ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a56e0a38c5633f647ce068399091aca025e1c5a
from socket import * import threading class RecvThread(threading.Thread): def __init__(self, s, bufsize): if not isinstance(s, socket): raise TypeError super(RecvThread, self).__init__() self.s = s self.bufsize = bufsize def run(self): while True: data = self.s.recv(self.bufsize).decode() if not data: break print(f'\r{data} \n> ', end='') class SendThread(threading.Thread): def __init__(self, s): if not isinstance(s, socket): raise TypeError super(SendThread, self).__init__() self.s = s def run(self): while True: data = input('> ').encode() self.s.send(data)
py
1a56e10af70b0ec1235a27fc62226c78b34a39d4
from typing import List, Any, Sequence from .util import MLP, ThreadedIterator, SMALL_NUMBER import tensorflow as tf import numpy as np import time import pickle import os import shutil class GGNN(object): @classmethod def default_params(cls): return { 'num_epochs': 1, 'patience': 250, 'learning_rate': 0.001, 'clamp_gradient_norm': 1.0, 'out_layer_dropout_keep_prob': 1.0, 'hidden_size': 200, 'num_timesteps': 4, 'use_graph': True, 'task_ids': [0], 'random_seed': 0, } def __init__(self, data_training, data_testing, params=None, restore_file=None, freeze_graph_model=False, log_dir="./logged_models", cleanup=False): """ Basic GGNN class that needs to be extended for use. :param data_training: data set of PIGs for training [list]. :param data_testing: data set of PIGs for validation [list]. :param params: hyperparameters of the model [dict]. :param restore_file: path to a model that should be restored [str]. :param freeze_graph_model: do not train parameters of graph model (i.e. model is not trained) [bool]. :param log_dir: directory where the model is stored [str]. :param cleanup: clean directory, where the model is stored, before storing it [bool]. """ # Collect parameters store_params = params self.params = self.default_params() if store_params is not None: self.params.update(store_params) # Load data self.max_num_vertices = 0 self.num_edge_types = 0 self.annotation_size = 0 self.train_data = self.load_data(data_training, is_training_data=True) self.valid_data = self.load_data(data_testing, is_training_data=False) self.freeze_graph_model = freeze_graph_model self.restore = restore_file # Safe best models/cleanup previous models if cleanup: shutil.rmtree(log_dir, ignore_errors=True) self.log_dir = log_dir os.makedirs(log_dir, exist_ok=True) # Path to best model self.best_model_file = os.path.join(log_dir, "%s_best_model.pickle" % "_".join([time.strftime("%Y-%m-%d-%H-%M")])) # Build the actual GGNN model config = tf.ConfigProto() config.gpu_options.allow_growth = True self.graph = tf.Graph() self.sess = tf.Session(graph=self.graph, config=config) with self.graph.as_default(): tf.set_random_seed(self.params['random_seed']) self.placeholders = {} self.weights = {} self.ops = {} self.make_model() self.make_train_step() # Restore/initialize variables if restore_file is not None: self.restore_model(restore_file) else: self.initialize_model() @staticmethod def graph_string_to_array(graph_string: str) -> List[List[int]]: """ Returns graph string from string. :param graph_string: graph as string [str]. :return: graph string as array [list]. """ return [[int(v) for v in s.split(' ')] for s in graph_string.split('\n')] def load_data(self, data, is_training_data: bool): """ Loads data :param data: list of graphs [list] A graph = {targets, graph, node_features} :param is_training_data: boolean flag if data is for training or not [bool] :return: raw process graphs [list] A raw process graph = {adjacency_lists [dict], num_incoming_edge per_type [dict], init [list], labels [list]} """ num_fwd_edge_types = 0 for g in data: self.max_num_vertices = max(self.max_num_vertices, max([v for e in g['graph'] for v in [e[0], e[2]]])) num_fwd_edge_types = max(num_fwd_edge_types, max([e[1] for e in g['graph']])) self.num_edge_types = max(self.num_edge_types, num_fwd_edge_types) self.annotation_size = max(self.annotation_size, len(data[0]["node_features"][0])) return self.process_raw_graphs(data, is_training_data) def process_raw_graphs(self, raw_data: Sequence[Any], is_training_data: bool) -> Any: raise Exception("Models have to implement process_raw_graphs!") def make_model(self): """ Makes the GGNN model. :return: none. """ # Create placeholders for the GGNN model self.placeholders['target_values'] = tf.placeholder(tf.float32, [len(self.params['task_ids']), None], name='target_values') self.placeholders['target_mask'] = tf.placeholder(tf.float32, [len(self.params['task_ids']), None], name='target_mask') self.placeholders['num_graphs'] = tf.placeholder(tf.int32, [], name='num_graphs') self.placeholders['out_layer_dropout_keep_prob'] = tf.placeholder(tf.float32, [], name='out_layer_dropout_keep_prob') # Start message passing phase (i.e. update of node representations) with tf.variable_scope("graph_mode"): self.prepare_specific_graph_model() if self.params['use_graph']: self.ops['final_node_representations'] = self.compute_final_node_representations() else: self.ops['final_node_representations'] = tf.zeros_like(self.placeholders['initial_node_representation']) # Start readout phase (i.e. mapping of node representations to output self.ops['losses'] = [] for (internal_id, task_id) in enumerate(self.params['task_ids']): with tf.variable_scope("out_layer_task%i" % task_id): with tf.variable_scope("regression_gate"): self.weights['regression_gate_task%i' % task_id] = MLP(2 * self.params['hidden_size'], 1, [], self.placeholders[ 'out_layer_dropout_keep_prob']) with tf.variable_scope("regression"): self.weights['regression_transform_task%i' % task_id] = MLP(self.params['hidden_size'], 1, [], self.placeholders[ 'out_layer_dropout_keep_prob']) # Computes the output of the GGNN model computed_values = self.gated_regression(self.ops['final_node_representations'], self.weights['regression_gate_task%i' % task_id], self.weights['regression_transform_task%i' % task_id]) # Computes the difference diff = self.placeholders['target_values'][internal_id, :] - computed_values # Ignore none comparisons task_target_mask = self.placeholders['target_mask'][internal_id, :] task_target_num = tf.reduce_sum(task_target_mask) + SMALL_NUMBER diff = diff * task_target_mask # Mask out unused values self.ops['accuracy_task%i' % task_id] = tf.reduce_sum(tf.cast(tf.equal(tf.round(computed_values), self.placeholders[ 'target_values'][internal_id, :]), tf.float32)) # Calculate loss (here, normalised mean squared error) task_loss = tf.reduce_sum(tf.square(diff)) / task_target_num # Normalise loss task_loss = task_loss * (1.0 / (self.params['task_sample_ratios'].get(task_id) or 1.0)) self.ops['losses'].append(task_loss) self.ops['loss'] = tf.reduce_sum(self.ops['losses']) def make_train_step(self): """ Performs a training step. :return: none. """ trainable_vars = self.sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if self.freeze_graph_model: graph_vars = set(self.sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="graph_model")) filtered_vars = [] for var in trainable_vars: if var not in graph_vars: filtered_vars.append(var) else: print("Freezing weights of variable %s." % var.name) trainable_vars = filtered_vars optimizer = tf.train.AdadeltaOptimizer(1.0) grads_and_vars = optimizer.compute_gradients(self.ops['loss'], var_list=trainable_vars) clipped_grads = [] for grad, var in grads_and_vars: if grad is not None: clipped_grads.append((tf.clip_by_norm(grad, self.params['clamp_gradient_norm']), var)) else: clipped_grads.append((grad, var)) self.ops['train_step'] = optimizer.apply_gradients(clipped_grads) self.sess.run(tf.local_variables_initializer()) def gated_regression(self, last_h, regression_gate, regression_transform): raise Exception("Models have to implement gated_regression!") def prepare_specific_graph_model(self) -> None: raise Exception("Models have to implement prepare_specific_graph_model!") def compute_final_node_representations(self) -> tf.Tensor: raise Exception("Models have to implement compute_final_node_representations!") def make_minibatch_iterator(self, data: Any, is_training: bool): raise Exception("Models have to implement make_minibatch_iterator!") def run_epoch(self, data, is_training: bool): """ Performs an epoch (i.e. learning iteration). :param data: set of graphs [list]. :param is_training: boolean flag if data is for training or not [bool]. :return: loss [list], accuracies [list], error_ratios [list], instance_per_sec [list]. """ loss = 0 accuracies = [] accuracy_ops = [self.ops['accuracy_task%i' % task_id] for task_id in self.params['task_ids']] start_time = time.time() processed_graphs = 0 batch_iterator = ThreadedIterator(self.make_minibatch_iterator(data, is_training), max_queue_size=5) for step, batch_data in enumerate(batch_iterator): num_graphs = batch_data[self.placeholders['num_graphs']] processed_graphs += num_graphs if is_training: batch_data[self.placeholders['out_layer_dropout_keep_prob']] = self.params[ 'out_layer_dropout_keep_prob'] fetch_list = [self.ops['loss'], accuracy_ops, self.ops['train_step']] else: batch_data[self.placeholders['out_layer_dropout_keep_prob']] = 1.0 fetch_list = [self.ops['loss'], accuracy_ops] result = self.sess.run(fetch_list, feed_dict=batch_data) (batch_loss, batch_accuracies) = (result[0], result[1]) loss += batch_loss * num_graphs accuracies.append(np.array(batch_accuracies)) accuracies = np.sum(accuracies, axis=0) / processed_graphs loss = loss / processed_graphs error_ratios = 1 - accuracies instance_per_sec = processed_graphs / (time.time() - start_time) return loss, accuracies, error_ratios, instance_per_sec def train(self): """ Train the GGNN model. :return: none. """ with self.graph.as_default(): if self.restore is not None: # Epoch resume training _, valid_accs, _, _ = self.run_epoch(self.valid_data, False) best_val_acc = np.sum(valid_accs) best_val_acc_epoch = 0 print("\r\x1b[KResumed operation, initial cum. val. acc: %.5f" % best_val_acc) else: (best_val_acc, best_val_acc_epoch) = (0, 0) for epoch in range(1, self.params['num_epochs'] + 1): print("== Epoch %i" % epoch) # Epoch train train_loss, train_acc, train_errs, train_speed = self.run_epoch(self.train_data, True) accs_str = " ".join(["%i:%.5f" % (id, acc) for (id, acc) in zip(self.params['task_ids'], train_acc)]) errs_str = " ".join(["%i:%.5f" % (id, err) for (id, err) in zip(self.params['task_ids'], train_errs)]) print("\r\x1b[K Train: loss: %.5f | acc: %s | error_ratio: %s | instances/sec: %.2f" % (train_loss, accs_str, errs_str, train_speed)) # Epoch validation valid_loss, valid_accs, valid_errs, valid_speed = self.run_epoch(self.valid_data, False) accs_str = " ".join(["%i:%.5f" % (id, acc) for (id, acc) in zip(self.params['task_ids'], valid_accs)]) errs_str = " ".join(["%i:%.5f" % (id, err) for (id, err) in zip(self.params['task_ids'], valid_errs)]) print("\r\x1b[K Valid: loss: %.5f | acc: %s | error_ratio: %s | instances/sec: %.2f" % (valid_loss, accs_str, errs_str, valid_speed)) val_acc = np.sum(valid_accs) # type: float if val_acc > best_val_acc: # Save best model to self.best_model_file self.save_model(self.best_model_file) print("LOG: (Best epoch so far, cum. val. acc decreased to %.5f from %.5f. Saving to '%s')" % (val_acc, best_val_acc, self.best_model_file)) best_val_acc = val_acc best_val_acc_epoch = epoch elif epoch - best_val_acc_epoch >= self.params['patience']: print("LOG: Stopping training after %i epochs without improvement on validation accuracy." % self.params['patience']) break def save_model(self, model_path: str) -> None: """ Saves the GGNN model. :param model_path: path of GGNN model [str]. :return: none. """ weights_save = {} for variable in self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): assert variable.name not in weights_save weights_save[variable.name] = self.sess.run(variable) model_save = {"params": self.params, "weights": weights_save} with open(model_path, 'wb') as out_file: pickle.dump(model_save, out_file, pickle.HIGHEST_PROTOCOL) def initialize_model(self) -> None: """ Initialises the GGNN model. :return: none. """ init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) self.sess.run(init_op) def restore_model(self, path: str) -> None: """ Restores a GGNN model. :param path: path of model [str] :return: none. """ print("Restoring weights from file %s." % path) with open(path, 'rb') as rest_file: data_to_load = pickle.load(rest_file) # Assert that we got the same model configuration assert len(self.params) == len(data_to_load['params']) for (par, par_value) in self.params.items(): # Different task_ids possible if par not in ['task_ids', 'num_epochs']: assert par_value == data_to_load['params'][par] variables_to_initialize = [] with tf.name_scope("restore"): restore_ops = [] used_vars = set() for variable in self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): used_vars.add(variable.name) if variable.name in data_to_load['weights']: restore_ops.append(variable.assign(data_to_load['weights'][variable.name])) else: print('Freshly initializing %s since no saved value was found.' % variable.name) variables_to_initialize.append(variable) for var_name in data_to_load['weights']: if var_name not in used_vars: print('Saved weights for %s not used by model.' % var_name) restore_ops.append(tf.variables_initializer(variables_to_initialize)) self.sess.run(restore_ops)
py
1a56e16171232f25a1cbd3f94b5df62754163da9
class StatefulObjectBase: stateList = [] stateMachine = None def ChangeState(self, state): if self.stateMachine is None: return self.stateMachine.ChangeState(self.stateList[state]) def IsCurrentState(self, state): if self.stateMachine is None: return None return self.stateMachine.currentState is self.stateList[state] def Update(self): if self.stateMachine is not None: self.stateMachine.Update()
py
1a56e1a46fe3a4111fcf66467f35d7a68469a300
import os import logging import boto3 from botocore.exceptions import ClientError from datetime import datetime as dt import json logger = logging.getLogger() logger.setLevel(logging.INFO) TABLE_NAME = "aqa_scores" VIDEO_NAME_KEY = 'videoName' VIDEO_SCORE_KEY = 'videoScore' def handler(event, context): try: logger.info(event) raw_query_str = event["rawQueryString"] if "=" in raw_query_str: video_key = raw_query_str.split("=")[-1] else: logger.error("Something wrong with the HTTP request, no valid query string available.") return None # Get region name associated with this lambda function region = os.environ["AWS_REGION"] video_score = fetch_db_result(region, video_key) return video_score except Exception as e: logger.exceptions(e) raise e def fetch_db_result(region_name, video_key): """Fetch item from DynamoDB of a certain video key :param region_name: string :param video_key: string :return: video_score of DB item with the video_key. If not present, returns None. """ db_client = boto3.client("dynamodb", region_name=region_name) logger.info(f"Getting score for [{video_key}] from table:{TABLE_NAME}...") try: response = db_client.get_item( TableName = TABLE_NAME, Key = {VIDEO_NAME_KEY: { "S": video_key }}, ProjectionExpression= VIDEO_SCORE_KEY, ) logger.info(response) if "Item" in response: score = response["Item"]["videoScore"]["N"] logger.info(f"Score for video [{video_key}]: {score}") else: score = None logger.info(f"Score for video [{video_key}] is not available") return score except ClientError as e: logger.exceptions(e) return None
py
1a56e274f9e44c1bc1f8ba8ab46cb83d0f288ea5
import ast import re from abc import ABC, abstractmethod from dataclasses import dataclass from enum import Enum from pathlib import PurePath from typing import Callable, Dict, List, Optional, Sequence, TypeVar, Union from .logging import log from .utils import fmt_path, str_path class ArrowHead(Enum): NORMAL = 0 SEQUENCE = 1 class Ignore: pass class Empty: pass RightSide = Union[str, Ignore, Empty] @dataclass class Transformed: path: PurePath class Ignored: pass TransformResult = Optional[Union[Transformed, Ignored]] @dataclass class Rule: left: str left_index: int name: str head: ArrowHead right: RightSide right_index: int def right_result(self, path: PurePath) -> Union[str, Transformed, Ignored]: if isinstance(self.right, str): return self.right elif isinstance(self.right, Ignore): return Ignored() elif isinstance(self.right, Empty): return Transformed(path) else: raise RuntimeError(f"Right side has invalid type {type(self.right)}") class Transformation(ABC): def __init__(self, rule: Rule): self.rule = rule @abstractmethod def transform(self, path: PurePath) -> TransformResult: pass class ExactTf(Transformation): def transform(self, path: PurePath) -> TransformResult: if path != PurePath(self.rule.left): return None right = self.rule.right_result(path) if not isinstance(right, str): return right return Transformed(PurePath(right)) class ExactReTf(Transformation): def transform(self, path: PurePath) -> TransformResult: match = re.fullmatch(self.rule.left, str_path(path)) if not match: return None right = self.rule.right_result(path) if not isinstance(right, str): return right # For some reason, mypy thinks that "groups" has type List[str]. But # since elements of "match.groups()" can be None, mypy is wrong. groups: Sequence[Optional[str]] = [match[0]] + list(match.groups()) locals_dir: Dict[str, Union[str, int, float]] = {} for i, group in enumerate(groups): if group is None: continue locals_dir[f"g{i}"] = group try: locals_dir[f"i{i}"] = int(group) except ValueError: pass try: locals_dir[f"f{i}"] = float(group) except ValueError: pass result = eval(f"f{right!r}", {}, locals_dir) return Transformed(PurePath(result)) class RenamingParentsTf(Transformation): def __init__(self, sub_tf: Transformation): super().__init__(sub_tf.rule) self.sub_tf = sub_tf def transform(self, path: PurePath) -> TransformResult: for i in range(len(path.parts), -1, -1): parent = PurePath(*path.parts[:i]) child = PurePath(*path.parts[i:]) transformed = self.sub_tf.transform(parent) if not transformed: continue elif isinstance(transformed, Transformed): return Transformed(transformed.path / child) elif isinstance(transformed, Ignored): return transformed else: raise RuntimeError(f"Invalid transform result of type {type(transformed)}: {transformed}") return None class RenamingPartsTf(Transformation): def __init__(self, sub_tf: Transformation): super().__init__(sub_tf.rule) self.sub_tf = sub_tf def transform(self, path: PurePath) -> TransformResult: result = PurePath() any_part_matched = False for part in path.parts: transformed = self.sub_tf.transform(PurePath(part)) if not transformed: result /= part elif isinstance(transformed, Transformed): result /= transformed.path any_part_matched = True elif isinstance(transformed, Ignored): return transformed else: raise RuntimeError(f"Invalid transform result of type {type(transformed)}: {transformed}") if any_part_matched: return Transformed(result) else: return None class RuleParseError(Exception): def __init__(self, line: "Line", reason: str): super().__init__(f"Error in rule on line {line.line_nr}, column {line.index}: {reason}") self.line = line self.reason = reason def pretty_print(self) -> None: log.error(f"Error parsing rule on line {self.line.line_nr}:") log.error_contd(self.line.line) spaces = " " * self.line.index log.error_contd(f"{spaces}^--- {self.reason}") T = TypeVar("T") class Line: def __init__(self, line: str, line_nr: int): self._line = line self._line_nr = line_nr self._index = 0 @property def line(self) -> str: return self._line @property def line_nr(self) -> int: return self._line_nr @property def index(self) -> int: return self._index @index.setter def index(self, index: int) -> None: self._index = index @property def rest(self) -> str: return self.line[self.index:] def peek(self, amount: int = 1) -> str: return self.rest[:amount] def take(self, amount: int = 1) -> str: string = self.peek(amount) self.index += len(string) return string def expect(self, string: str) -> str: if self.peek(len(string)) == string: return self.take(len(string)) else: raise RuleParseError(self, f"Expected {string!r}") def expect_with(self, string: str, value: T) -> T: self.expect(string) return value def one_of(self, parsers: List[Callable[[], T]], description: str) -> T: for parser in parsers: index = self.index try: return parser() except RuleParseError: self.index = index raise RuleParseError(self, description) # RULE = LEFT SPACE '-' NAME '-' HEAD (SPACE RIGHT)? # SPACE = ' '+ # NAME = '' | 'exact' | 'name' | 're' | 'exact-re' | 'name-re' # HEAD = '>' | '>>' # LEFT = STR | QUOTED_STR # RIGHT = STR | QUOTED_STR | '!' def parse_zero_or_more_spaces(line: Line) -> None: while line.peek() == " ": line.take() def parse_one_or_more_spaces(line: Line) -> None: line.expect(" ") parse_zero_or_more_spaces(line) def parse_str(line: Line) -> str: result = [] while c := line.peek(): if c == " ": break else: line.take() result.append(c) if result: return "".join(result) else: raise RuleParseError(line, "Expected non-space character") QUOTATION_MARKS = {'"', "'"} def parse_quoted_str(line: Line) -> str: escaped = False # Points to first character of string literal start_index = line.index quotation_mark = line.peek() if quotation_mark not in QUOTATION_MARKS: raise RuleParseError(line, "Expected quotation mark") line.take() while c := line.peek(): if escaped: escaped = False line.take() elif c == quotation_mark: line.take() stop_index = line.index literal = line.line[start_index:stop_index] try: return ast.literal_eval(literal) except SyntaxError as e: line.index = start_index raise RuleParseError(line, str(e)) from e elif c == "\\": escaped = True line.take() else: line.take() raise RuleParseError(line, "Expected end of string literal") def parse_left(line: Line) -> str: if line.peek() in QUOTATION_MARKS: return parse_quoted_str(line) else: return parse_str(line) def parse_right(line: Line) -> Union[str, Ignore]: c = line.peek() if c in QUOTATION_MARKS: return parse_quoted_str(line) else: string = parse_str(line) if string == "!": return Ignore() return string def parse_arrow_name(line: Line) -> str: return line.one_of([ lambda: line.expect("exact-re"), lambda: line.expect("exact"), lambda: line.expect("name-re"), lambda: line.expect("name"), lambda: line.expect("re"), lambda: line.expect(""), ], "Expected arrow name") def parse_arrow_head(line: Line) -> ArrowHead: return line.one_of([ lambda: line.expect_with(">>", ArrowHead.SEQUENCE), lambda: line.expect_with(">", ArrowHead.NORMAL), ], "Expected arrow head") def parse_eol(line: Line) -> None: if line.peek(): raise RuleParseError(line, "Expected end of line") def parse_rule(line: Line) -> Rule: parse_zero_or_more_spaces(line) left_index = line.index left = parse_left(line) parse_one_or_more_spaces(line) line.expect("-") name = parse_arrow_name(line) line.expect("-") head = parse_arrow_head(line) right_index = line.index right: RightSide try: parse_zero_or_more_spaces(line) parse_eol(line) right = Empty() except RuleParseError: line.index = right_index parse_one_or_more_spaces(line) right = parse_right(line) parse_eol(line) return Rule(left, left_index, name, head, right, right_index) def parse_transformation(line: Line) -> Transformation: rule = parse_rule(line) if rule.name == "": return RenamingParentsTf(ExactTf(rule)) elif rule.name == "exact": return ExactTf(rule) elif rule.name == "name": if len(PurePath(rule.left).parts) > 1: line.index = rule.left_index raise RuleParseError(line, "Expected name, not multiple segments") return RenamingPartsTf(ExactTf(rule)) elif rule.name == "re": return RenamingParentsTf(ExactReTf(rule)) elif rule.name == "exact-re": return ExactReTf(rule) elif rule.name == "name-re": return RenamingPartsTf(ExactReTf(rule)) else: raise RuntimeError(f"Invalid arrow name {rule.name!r}") class Transformer: def __init__(self, rules: str): """ May throw a RuleParseException. """ self._tfs = [] for i, line in enumerate(rules.split("\n")): line = line.strip() if line: tf = parse_transformation(Line(line, i)) self._tfs.append((line, tf)) def transform(self, path: PurePath) -> Optional[PurePath]: for i, (line, tf) in enumerate(self._tfs): log.explain(f"Testing rule {i+1}: {line}") try: result = tf.transform(path) except Exception as e: log.warn(f"Error while testing rule {i+1}: {line}") log.warn_contd(str(e)) continue if not result: continue if isinstance(result, Ignored): log.explain("Match found, path ignored") return None if tf.rule.head == ArrowHead.NORMAL: log.explain(f"Match found, transformed path to {fmt_path(result.path)}") path = result.path break elif tf.rule.head == ArrowHead.SEQUENCE: log.explain(f"Match found, updated path to {fmt_path(result.path)}") path = result.path else: raise RuntimeError(f"Invalid transform result of type {type(result)}: {result}") log.explain(f"Final result: {fmt_path(path)}") return path
py
1a56e34611b114e7184d5659e1aa728eb7e88a52
"""Basic tests for quadrature GPy wrappers.""" import GPy import numpy as np import pytest from pytest_lazyfixture import lazy_fixture from emukit.model_wrappers.gpy_quadrature_wrappers import ( BaseGaussianProcessGPy, BrownianGPy, ProductBrownianGPy, ProductMatern32GPy, ProductMatern52GPy, RBFGPy, create_emukit_model_from_gpy_model, ) from emukit.quadrature.kernels import ( QuadratureBrownianLebesgueMeasure, QuadratureProductBrownianLebesgueMeasure, QuadratureProductMatern32LebesgueMeasure, QuadratureProductMatern52LebesgueMeasure, QuadratureRBFGaussianMeasure, QuadratureRBFLebesgueMeasure, ) from emukit.quadrature.measures import GaussianMeasure, LebesgueMeasure def get_prod_kernel(kernel_type, n_dim): k = kernel_type(input_dim=1, active_dims=[0]) for i in range(1, n_dim): k = k * kernel_type(input_dim=1, active_dims=[i]) return k def data(n_dim: int): return np.ones([3, n_dim]), np.ones([3, 1]) def integral_bounds(n_dim: int): return n_dim * [(0, 1)] def measure_lebesgue(n_dim: int): return LebesgueMeasure.from_bounds(bounds=n_dim * [(0, 1)]) def measure_gaussian(n_dim: int): return GaussianMeasure(mean=np.ones(n_dim), variance=1.0) # === dimension fixtures start here @pytest.fixture def dim2(): return 2 @pytest.fixture def dim1(): return 1 # === 1D GPy kernel fixtures start here @pytest.fixture def gpy_brownian(dim1): kernel_type = GPy.kern.Brownian return kernel_type(input_dim=dim1), kernel_type, False @pytest.fixture def gpy_matern32(dim1): kernel_type = GPy.kern.Matern32 return kernel_type(input_dim=dim1), kernel_type, False @pytest.fixture def gpy_matern52(dim1): kernel_type = GPy.kern.Matern52 return kernel_type(input_dim=dim1), kernel_type, False # === 2D GPy kernel fixtures start here @pytest.fixture def gpy_rbf(dim2): kernel_type = GPy.kern.RBF return kernel_type(input_dim=dim2), kernel_type, False @pytest.fixture def gpy_prodbrownian(dim2): kernel_type = GPy.kern.Brownian return get_prod_kernel(kernel_type, dim2), kernel_type, True @pytest.fixture def gpy_prodmatern32(dim2): kernel_type = GPy.kern.Matern32 return get_prod_kernel(kernel_type, dim2), kernel_type, True @pytest.fixture def gpy_prodmatern52(dim2): kernel_type = GPy.kern.Matern52 return get_prod_kernel(kernel_type, dim2), kernel_type, True def get_wrapper_dict(n_dim, measure, gpy_kern, gpy_kernel_wrapper_type, emukit_qkernel_type): gpy_kernel, gpy_kernel_type, is_prod = gpy_kern return { "data": data(n_dim), "measure": measure(n_dim), "gpy_kernel": gpy_kernel, "gpy_kernel_type": gpy_kernel_type, "is_prod": is_prod, "gpy_kernel_wrapper_type": gpy_kernel_wrapper_type, "emukit_qkernel_type": emukit_qkernel_type, } # === RBF wrapper test cases @pytest.fixture def wrapper_rbf_1(dim2, gpy_rbf): return get_wrapper_dict(dim2, measure_lebesgue, gpy_rbf, RBFGPy, QuadratureRBFLebesgueMeasure) @pytest.fixture def wrapper_rbf_2(dim2, gpy_rbf): return get_wrapper_dict(dim2, measure_gaussian, gpy_rbf, RBFGPy, QuadratureRBFGaussianMeasure) # === (product) Brownian wrapper test cases @pytest.fixture def wrapper_brownian_1(dim1, gpy_brownian): return get_wrapper_dict(dim1, measure_lebesgue, gpy_brownian, BrownianGPy, QuadratureBrownianLebesgueMeasure) @pytest.fixture def wrapper_brownian_2(dim2, gpy_prodbrownian): return get_wrapper_dict( dim2, measure_lebesgue, gpy_prodbrownian, ProductBrownianGPy, QuadratureProductBrownianLebesgueMeasure ) # === Product Matern32 wrapper test cases @pytest.fixture def wrapper_matern32_1(dim2, gpy_prodmatern32): return get_wrapper_dict( dim2, measure_lebesgue, gpy_prodmatern32, ProductMatern32GPy, QuadratureProductMatern32LebesgueMeasure ) @pytest.fixture def wrapper_matern32_2(dim1, gpy_matern32): return get_wrapper_dict( dim1, measure_lebesgue, gpy_matern32, ProductMatern32GPy, QuadratureProductMatern32LebesgueMeasure ) # === Product Matern52 wrapper test cases @pytest.fixture def wrapper_matern52_1(dim2, gpy_prodmatern52): return get_wrapper_dict( dim2, measure_lebesgue, gpy_prodmatern52, ProductMatern52GPy, QuadratureProductMatern52LebesgueMeasure ) @pytest.fixture def wrapper_matern52_2(dim1, gpy_matern52): return get_wrapper_dict( dim1, measure_lebesgue, gpy_matern52, ProductMatern52GPy, QuadratureProductMatern52LebesgueMeasure ) gpy_test_list = [ lazy_fixture("wrapper_rbf_1"), lazy_fixture("wrapper_rbf_2"), lazy_fixture("wrapper_brownian_1"), lazy_fixture("wrapper_brownian_2"), lazy_fixture("wrapper_matern32_1"), lazy_fixture("wrapper_matern32_2"), lazy_fixture("wrapper_matern52_1"), lazy_fixture("wrapper_matern52_2"), ] @pytest.mark.parametrize("wrapper", gpy_test_list) def test_create_emukit_model_from_gpy_model_types(wrapper): gpy_model = GPy.models.GPRegression(kernel=wrapper["gpy_kernel"], X=wrapper["data"][0], Y=wrapper["data"][1]) emukit_gp = create_emukit_model_from_gpy_model(gpy_model=gpy_model, measure=wrapper["measure"]) assert isinstance(emukit_gp.kern, wrapper["emukit_qkernel_type"]) assert isinstance(emukit_gp.kern.kern, wrapper["gpy_kernel_wrapper_type"]) # product kernel if wrapper["is_prod"]: assert isinstance(wrapper["gpy_kernel"], GPy.kern.Prod) for k in wrapper["gpy_kernel"].parameters: assert isinstance(k, wrapper["gpy_kernel_type"]) assert k.input_dim == 1 else: assert isinstance(emukit_gp.gpy_model.kern, wrapper["gpy_kernel_type"]) def test_create_emukit_model_from_gpy_model_raises_warns(): input_dim = 2 gpy_kernel = GPy.kern.RBF(input_dim=input_dim) gpy_model = GPy.models.GPRegression(kernel=gpy_kernel, X=np.ones([3, input_dim]), Y=np.ones([3, 1])) bounds = input_dim * [(0, 1)] measure = LebesgueMeasure.from_bounds(bounds=bounds) # Neither measure nor bounds given with pytest.raises(ValueError): create_emukit_model_from_gpy_model(gpy_model=gpy_model) # both measure and bounds are given. Bounds will be ignored. with pytest.warns(UserWarning): create_emukit_model_from_gpy_model(gpy_model=gpy_model, integral_bounds=bounds, measure=measure) def test_base_gp_gpy_raises(gpy_prodbrownian): incompatible_offset = -3 n_dim = 2 dat = data(n_dim=n_dim) kern = ProductBrownianGPy(variance=1.0, input_dim=n_dim, offset=incompatible_offset) measure = LebesgueMeasure.from_bounds(bounds=n_dim * [(0, 1)]) qkern = QuadratureProductBrownianLebesgueMeasure(brownian_kernel=kern, measure=measure) # this GPy model and hence the emukit base_gp wrapper are not compatible with the kernel wrapper # for offsets other than zero. gpy_model = GPy.models.GPRegression(kernel=kern.gpy_brownian, X=dat[0], Y=dat[1]) with pytest.raises(ValueError): BaseGaussianProcessGPy(kern=qkern, gpy_model=gpy_model)
py
1a56e3a215ef1039cd2f7700829a745d36bfdada
# TODO(naman) figure out how to either disable runtime hooks for other tests, # or run pkgexploration tests in a separate process import pytest from . import runtime # initialize runtime hooks at import time: # as early as possible during pytest initialization RUNTIME_REFMAP = runtime.patch() @pytest.fixture(scope='session', autouse=True) def runtime_refmap(): return RUNTIME_REFMAP
py
1a56e44127c1e507eb31f6cd1df573183adf14e0
#!/usr/bin/env python #===- lib/asan/scripts/asan_symbolize.py -----------------------------------===# # # The LLVM Compiler Infrastructure # # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. # #===------------------------------------------------------------------------===# import argparse import bisect import getopt import os import re import subprocess import sys symbolizers = {} DEBUG = False demangle = False binutils_prefix = None sysroot_path = None binary_name_filter = None fix_filename_patterns = None logfile = sys.stdin allow_system_symbolizer = True force_system_symbolizer = False # FIXME: merge the code that calls fix_filename(). def fix_filename(file_name): if fix_filename_patterns: for path_to_cut in fix_filename_patterns: file_name = re.sub('.*' + path_to_cut, '', file_name) file_name = re.sub('.*asan_[a-z_]*.cc:[0-9]*', '_asan_rtl_', file_name) file_name = re.sub('.*crtstuff.c:0', '???:0', file_name) return file_name def sysroot_path_filter(binary_name): return sysroot_path + binary_name def is_valid_arch(s): return s in ["i386", "x86_64", "x86_64h", "arm", "armv6", "armv7", "armv7s", "armv7k", "arm64", "powerpc64", "powerpc64le", "s390x", "s390"] def guess_arch(addr): # Guess which arch we're running. 10 = len('0x') + 8 hex digits. if len(addr) > 10: return 'x86_64' else: return 'i386' class Symbolizer(object): def __init__(self): pass def symbolize(self, addr, binary, offset): """Symbolize the given address (pair of binary and offset). Overriden in subclasses. Args: addr: virtual address of an instruction. binary: path to executable/shared object containing this instruction. offset: instruction offset in the @binary. Returns: list of strings (one string for each inlined frame) describing the code locations for this instruction (that is, function name, file name, line and column numbers). """ return None class LLVMSymbolizer(Symbolizer): def __init__(self, symbolizer_path, default_arch, system, dsym_hints=[]): super(LLVMSymbolizer, self).__init__() self.symbolizer_path = symbolizer_path self.default_arch = default_arch self.system = system self.dsym_hints = dsym_hints self.pipe = self.open_llvm_symbolizer() def open_llvm_symbolizer(self): cmd = [self.symbolizer_path, '--use-symbol-table=true', '--demangle=%s' % demangle, '--functions=linkage', '--inlining=true', '--default-arch=%s' % self.default_arch] if self.system == 'Darwin': for hint in self.dsym_hints: cmd.append('--dsym-hint=%s' % hint) if DEBUG: print(' '.join(cmd)) try: result = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, bufsize=0, universal_newlines=True) except OSError: result = None return result def symbolize(self, addr, binary, offset): """Overrides Symbolizer.symbolize.""" if not self.pipe: return None result = [] try: symbolizer_input = '"%s" %s' % (binary, offset) if DEBUG: print(symbolizer_input) self.pipe.stdin.write("%s\n" % symbolizer_input) while True: function_name = self.pipe.stdout.readline().rstrip() if not function_name: break file_name = self.pipe.stdout.readline().rstrip() file_name = fix_filename(file_name) if (not function_name.startswith('??') or not file_name.startswith('??')): # Append only non-trivial frames. result.append('%s in %s %s' % (addr, function_name, file_name)) except Exception: result = [] if not result: result = None return result def LLVMSymbolizerFactory(system, default_arch, dsym_hints=[]): symbolizer_path = os.getenv('LLVM_SYMBOLIZER_PATH') if not symbolizer_path: symbolizer_path = os.getenv('ASAN_SYMBOLIZER_PATH') if not symbolizer_path: # Assume llvm-symbolizer is in PATH. symbolizer_path = 'llvm-symbolizer' return LLVMSymbolizer(symbolizer_path, default_arch, system, dsym_hints) class Addr2LineSymbolizer(Symbolizer): def __init__(self, binary): super(Addr2LineSymbolizer, self).__init__() self.binary = binary self.pipe = self.open_addr2line() self.output_terminator = -1 def open_addr2line(self): addr2line_tool = 'addr2line' if binutils_prefix: addr2line_tool = binutils_prefix + addr2line_tool cmd = [addr2line_tool, '-fi'] if demangle: cmd += ['--demangle'] cmd += ['-e', self.binary] if DEBUG: print(' '.join(cmd)) return subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, bufsize=0, universal_newlines=True) def symbolize(self, addr, binary, offset): """Overrides Symbolizer.symbolize.""" if self.binary != binary: return None lines = [] try: self.pipe.stdin.write("%s\n" % offset) self.pipe.stdin.write("%s\n" % self.output_terminator) is_first_frame = True while True: function_name = self.pipe.stdout.readline().rstrip() file_name = self.pipe.stdout.readline().rstrip() if is_first_frame: is_first_frame = False elif function_name in ['', '??']: assert file_name == function_name break lines.append((function_name, file_name)); except Exception: lines.append(('??', '??:0')) return ['%s in %s %s' % (addr, function, fix_filename(file)) for (function, file) in lines] class UnbufferedLineConverter(object): """ Wrap a child process that responds to each line of input with one line of output. Uses pty to trick the child into providing unbuffered output. """ def __init__(self, args, close_stderr=False): # Local imports so that the script can start on Windows. import pty import termios pid, fd = pty.fork() if pid == 0: # We're the child. Transfer control to command. if close_stderr: dev_null = os.open('/dev/null', 0) os.dup2(dev_null, 2) os.execvp(args[0], args) else: # Disable echoing. attr = termios.tcgetattr(fd) attr[3] = attr[3] & ~termios.ECHO termios.tcsetattr(fd, termios.TCSANOW, attr) # Set up a file()-like interface to the child process self.r = os.fdopen(fd, "r", 1) self.w = os.fdopen(os.dup(fd), "w", 1) def convert(self, line): self.w.write(line + "\n") return self.readline() def readline(self): return self.r.readline().rstrip() class DarwinSymbolizer(Symbolizer): def __init__(self, addr, binary, arch): super(DarwinSymbolizer, self).__init__() self.binary = binary self.arch = arch self.open_atos() def open_atos(self): if DEBUG: print('atos -o %s -arch %s' % (self.binary, self.arch)) cmdline = ['atos', '-o', self.binary, '-arch', self.arch] self.atos = UnbufferedLineConverter(cmdline, close_stderr=True) def symbolize(self, addr, binary, offset): """Overrides Symbolizer.symbolize.""" if self.binary != binary: return None atos_line = self.atos.convert('0x%x' % int(offset, 16)) while "got symbolicator for" in atos_line: atos_line = self.atos.readline() # A well-formed atos response looks like this: # foo(type1, type2) (in object.name) (filename.cc:80) match = re.match('^(.*) \(in (.*)\) \((.*:\d*)\)$', atos_line) if DEBUG: print('atos_line: ', atos_line) if match: function_name = match.group(1) function_name = re.sub('\(.*?\)', '', function_name) file_name = fix_filename(match.group(3)) return ['%s in %s %s' % (addr, function_name, file_name)] else: return ['%s in %s' % (addr, atos_line)] # Chain several symbolizers so that if one symbolizer fails, we fall back # to the next symbolizer in chain. class ChainSymbolizer(Symbolizer): def __init__(self, symbolizer_list): super(ChainSymbolizer, self).__init__() self.symbolizer_list = symbolizer_list def symbolize(self, addr, binary, offset): """Overrides Symbolizer.symbolize.""" for symbolizer in self.symbolizer_list: if symbolizer: result = symbolizer.symbolize(addr, binary, offset) if result: return result return None def append_symbolizer(self, symbolizer): self.symbolizer_list.append(symbolizer) def BreakpadSymbolizerFactory(binary): suffix = os.getenv('BREAKPAD_SUFFIX') if suffix: filename = binary + suffix if os.access(filename, os.F_OK): return BreakpadSymbolizer(filename) return None def SystemSymbolizerFactory(system, addr, binary, arch): if system == 'Darwin': return DarwinSymbolizer(addr, binary, arch) elif system == 'Linux' or system == 'FreeBSD': return Addr2LineSymbolizer(binary) class BreakpadSymbolizer(Symbolizer): def __init__(self, filename): super(BreakpadSymbolizer, self).__init__() self.filename = filename lines = file(filename).readlines() self.files = [] self.symbols = {} self.address_list = [] self.addresses = {} # MODULE mac x86_64 A7001116478B33F18FF9BEDE9F615F190 t fragments = lines[0].rstrip().split() self.arch = fragments[2] self.debug_id = fragments[3] self.binary = ' '.join(fragments[4:]) self.parse_lines(lines[1:]) def parse_lines(self, lines): cur_function_addr = '' for line in lines: fragments = line.split() if fragments[0] == 'FILE': assert int(fragments[1]) == len(self.files) self.files.append(' '.join(fragments[2:])) elif fragments[0] == 'PUBLIC': self.symbols[int(fragments[1], 16)] = ' '.join(fragments[3:]) elif fragments[0] in ['CFI', 'STACK']: pass elif fragments[0] == 'FUNC': cur_function_addr = int(fragments[1], 16) if not cur_function_addr in self.symbols.keys(): self.symbols[cur_function_addr] = ' '.join(fragments[4:]) else: # Line starting with an address. addr = int(fragments[0], 16) self.address_list.append(addr) # Tuple of symbol address, size, line, file number. self.addresses[addr] = (cur_function_addr, int(fragments[1], 16), int(fragments[2]), int(fragments[3])) self.address_list.sort() def get_sym_file_line(self, addr): key = None if addr in self.addresses.keys(): key = addr else: index = bisect.bisect_left(self.address_list, addr) if index == 0: return None else: key = self.address_list[index - 1] sym_id, size, line_no, file_no = self.addresses[key] symbol = self.symbols[sym_id] filename = self.files[file_no] if addr < key + size: return symbol, filename, line_no else: return None def symbolize(self, addr, binary, offset): if self.binary != binary: return None res = self.get_sym_file_line(int(offset, 16)) if res: function_name, file_name, line_no = res result = ['%s in %s %s:%d' % ( addr, function_name, file_name, line_no)] print(result) return result else: return None class SymbolizationLoop(object): def __init__(self, binary_name_filter=None, dsym_hint_producer=None): if sys.platform == 'win32': # ASan on Windows uses dbghelp.dll to symbolize in-process, which works # even in sandboxed processes. Nothing needs to be done here. self.process_line = self.process_line_echo else: # Used by clients who may want to supply a different binary name. # E.g. in Chrome several binaries may share a single .dSYM. self.binary_name_filter = binary_name_filter self.dsym_hint_producer = dsym_hint_producer self.system = os.uname()[0] if self.system not in ['Linux', 'Darwin', 'FreeBSD']: raise Exception('Unknown system') self.llvm_symbolizers = {} self.last_llvm_symbolizer = None self.dsym_hints = set([]) self.frame_no = 0 self.process_line = self.process_line_posix def symbolize_address(self, addr, binary, offset, arch): # On non-Darwin (i.e. on platforms without .dSYM debug info) always use # a single symbolizer binary. # On Darwin, if the dsym hint producer is present: # 1. check whether we've seen this binary already; if so, # use |llvm_symbolizers[binary]|, which has already loaded the debug # info for this binary (might not be the case for # |last_llvm_symbolizer|); # 2. otherwise check if we've seen all the hints for this binary already; # if so, reuse |last_llvm_symbolizer| which has the full set of hints; # 3. otherwise create a new symbolizer and pass all currently known # .dSYM hints to it. result = None if not force_system_symbolizer: if not binary in self.llvm_symbolizers: use_new_symbolizer = True if self.system == 'Darwin' and self.dsym_hint_producer: dsym_hints_for_binary = set(self.dsym_hint_producer(binary)) use_new_symbolizer = bool(dsym_hints_for_binary - self.dsym_hints) self.dsym_hints |= dsym_hints_for_binary if self.last_llvm_symbolizer and not use_new_symbolizer: self.llvm_symbolizers[binary] = self.last_llvm_symbolizer else: self.last_llvm_symbolizer = LLVMSymbolizerFactory( self.system, arch, self.dsym_hints) self.llvm_symbolizers[binary] = self.last_llvm_symbolizer # Use the chain of symbolizers: # Breakpad symbolizer -> LLVM symbolizer -> addr2line/atos # (fall back to next symbolizer if the previous one fails). if not binary in symbolizers: symbolizers[binary] = ChainSymbolizer( [BreakpadSymbolizerFactory(binary), self.llvm_symbolizers[binary]]) result = symbolizers[binary].symbolize(addr, binary, offset) else: symbolizers[binary] = ChainSymbolizer([]) if result is None: if not allow_system_symbolizer: raise Exception('Failed to launch or use llvm-symbolizer.') # Initialize system symbolizer only if other symbolizers failed. symbolizers[binary].append_symbolizer( SystemSymbolizerFactory(self.system, addr, binary, arch)) result = symbolizers[binary].symbolize(addr, binary, offset) # The system symbolizer must produce some result. assert result return result def get_symbolized_lines(self, symbolized_lines): if not symbolized_lines: return [self.current_line] else: result = [] for symbolized_frame in symbolized_lines: result.append(' #%s %s' % (str(self.frame_no), symbolized_frame.rstrip())) self.frame_no += 1 return result def process_logfile(self): self.frame_no = 0 for line in logfile: processed = self.process_line(line) print('\n'.join(processed)) def process_line_echo(self, line): return [line.rstrip()] def process_line_posix(self, line): self.current_line = line.rstrip() #0 0x7f6e35cf2e45 (/blah/foo.so+0x11fe45) stack_trace_line_format = ( '^( *#([0-9]+) *)(0x[0-9a-f]+) *\((.*)\+(0x[0-9a-f]+)\)') match = re.match(stack_trace_line_format, line) if not match: return [self.current_line] if DEBUG: print(line) _, frameno_str, addr, binary, offset = match.groups() arch = "" # Arch can be embedded in the filename, e.g.: "libabc.dylib:x86_64h" colon_pos = binary.rfind(":") if colon_pos != -1: maybe_arch = binary[colon_pos+1:] if is_valid_arch(maybe_arch): arch = maybe_arch binary = binary[0:colon_pos] if arch == "": arch = guess_arch(addr) if frameno_str == '0': # Assume that frame #0 is the first frame of new stack trace. self.frame_no = 0 original_binary = binary if self.binary_name_filter: binary = self.binary_name_filter(binary) symbolized_line = self.symbolize_address(addr, binary, offset, arch) if not symbolized_line: if original_binary != binary: symbolized_line = self.symbolize_address(addr, binary, offset, arch) return self.get_symbolized_lines(symbolized_line) if __name__ == '__main__': parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description='ASan symbolization script', epilog='Example of use:\n' 'asan_symbolize.py -c "$HOME/opt/cross/bin/arm-linux-gnueabi-" ' '-s "$HOME/SymbolFiles" < asan.log') parser.add_argument('path_to_cut', nargs='*', help='pattern to be cut from the result file path ') parser.add_argument('-d','--demangle', action='store_true', help='demangle function names') parser.add_argument('-s', metavar='SYSROOT', help='set path to sysroot for sanitized binaries') parser.add_argument('-c', metavar='CROSS_COMPILE', help='set prefix for binutils') parser.add_argument('-l','--logfile', default=sys.stdin, type=argparse.FileType('r'), help='set log file name to parse, default is stdin') parser.add_argument('--force-system-symbolizer', action='store_true', help='don\'t use llvm-symbolizer') args = parser.parse_args() if args.path_to_cut: fix_filename_patterns = args.path_to_cut if args.demangle: demangle = True if args.s: binary_name_filter = sysroot_path_filter sysroot_path = args.s if args.c: binutils_prefix = args.c if args.logfile: logfile = args.logfile else: logfile = sys.stdin if args.force_system_symbolizer: force_system_symbolizer = True if force_system_symbolizer: assert(allow_system_symbolizer) loop = SymbolizationLoop(binary_name_filter) loop.process_logfile()
py
1a56e523656167bc56f09a9849d622ed2cff3919
# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). # Adapted from https://mypyc.readthedocs.io/en/latest/getting_started.html#example-program import time def fib(n: int) -> int: if n <= 1: return n else: return fib(n - 2) + fib(n - 1) t0 = time.time() fib(32) if "__file__" in locals(): print("interpreted") else: print("compiled") print(time.time() - t0)
py
1a56e537f8ff448e3eeffe63909219393a8d189d
#!/usr/bin/python3 from pathlib import Path import pytest priv_key = "0x416b8a7d9290502f5661da81f0cf43893e3d19cb9aea3c426cfb36e8186e9c09" addr = "0x14b0Ed2a7C4cC60DD8F676AE44D0831d3c9b2a9E" @pytest.fixture(autouse=True) def no_pass(monkeypatch): monkeypatch.setattr("brownie.network.account.getpass", lambda x: "") def test_save(accounts, tmpdir): a = accounts.add(priv_key) a.save(tmpdir + "/temp.json") assert Path(tmpdir + "/temp.json").exists() accounts._reset() def test_save_nopath(accounts, tmpdir): a = accounts.add(priv_key) path = Path(a.save("temp", True)) assert path.exists() path.unlink() Path(a.save("temp")) assert path.exists() path.unlink() accounts._reset() def test_save_overwrite(accounts, tmpdir): a = accounts.add(priv_key) a.save(tmpdir + "/temp.json") with pytest.raises(FileExistsError): a.save(tmpdir + "/temp.json") a.save(tmpdir + "/temp.json", True) accounts._reset() def test_load(accounts, tmpdir): a = accounts.add(priv_key) a.save(tmpdir + "/temp.json") accounts._reset() assert a not in accounts a = accounts.load(tmpdir + "/temp.json") assert a.address == addr def test_load_nopath(accounts, tmpdir): a = accounts.add(priv_key) path = a.save("temp") accounts._reset() a = accounts.load("temp") assert a.address == addr Path(path).unlink() def test_load_not_exists(accounts, tmpdir): with pytest.raises(FileNotFoundError): accounts.load(tmpdir + "/temp.json") with pytest.raises(FileNotFoundError): accounts.load("temp")
py
1a56e5824fbefc9b83d449aa10e13ffeaa4d445a
import csv import os from datetime import datetime from time import time modNomeReduzido = { "Ampla concorrência": "AC", "A3 - o candidato tenha cursado integralmente todas as séries do 2º ciclo do Ensino Fundamental, ou seja, do 6º ao 9º ano, e todas as séries, do Ensino Médio em escolas públicas de todo o território nacional.": "EP", "COTAS - Escolas Públicas - Lei Estadual no 6.542, de 7 de dezembro de 2004": "EP", "Candidato (s) Oriundos da rede pública de ensino.": "EP", "Candidato (s) que tenham cursado integral, exclusiva e regularmente os anos finais do Ensino Fundamental (6º ao 9º ano) e todo o Ensino Médio em escolas da rede pública estadual ou municipal, excluindo-se os candidatos que tenham concluído curso de nível superior ainda que pendente a colação de grau.": "EP", "Candidato (s) que tenham cursado integralmente o Ensino Médio em instituições públicas de ensino": "EP", "Candidatos que tenham cursado integral e exclusivamente os ensinos fundamental e médio em estabelecimentos da rede pública de ensino.": "EP", "Candidatos que tenham cursado todo o Ensino Médio e os últimos quatro anos do Ensino Fundamental em Escola Pública e que não se autodeclararam negros.": "EP", "Candidatos que tenham cursado todo o Ensino Médio e os últimos quatro anos do Ensino Fundamental em Escola Pública e que se autodeclararam negros.": "EP", "Candidatos que, independentemente da renda (art. 14, II, Portaria Normativa nº 18/2012), tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "EP", "Cota Social - Candidatos que frequentaram integralmente todas as séries do Ensino Médio ou equivalente em instituições públicas brasileiras de ensino.": "EP", "com procedência de no mínimo sete anos de estudos regulares ou que tenham realizado curso supletivo ou outra modalidade de ensino equivalente, em estabelecimento da Rede Pública de Ensino do Brasil, compreendendo parte do ensino fundamental (6º ao 9º ano) e Ensino Médio completo (incluindo os cursos técnicos com duração de 4 anos) ou ter realizado curso supletivo ou outra modalidade de ensino equivalente.": "EP", "que cursaram o Ensino Médio, integral e exclusivamente, em escola pública do Brasil, e que não tenham concluído curso de graduação": "EP", "que frequentaram integralmente as 4 últimas séries do Ensino Fundamental e todas as séries do Ensino Médio em instituições públicas brasileiras de ensino.": "EP", "que independentemente da renda, tenham cursado integralmente o ensino médio em escolas públicas. (L3)": "EP", "que tenham cursado integralmente o Ensino Médio em escolas públicas.": "EP", "que tenham cursado integralmente o Ensino Médio em instituições públicas de ensino ou tenham obtido certificado de conclusão com base no resultado do Exame Nacional do Ensino Médio, ENEM, ou do Exame Nacional de Certificação de Competências de Jovens e Adultos, ENCCEJA, ou de exames de certificação de competência ou de avaliação de jovens e adultos realizados pelos sistemas de ensino e não possuam curso superior concluído ou não estejam matriculados em curso superior.": "EP", "que tenham cursado integralmente o Ensino Médio em instituições públicas e gratuitas de ensino": "EP", "que tenham cursado o ensino fundamental e médio integralmente em escola pública": "EP", "que tenham cursado todo o ensino médio e pelo menos dois anos do Ensino Fundamental II em escola pública": "EP", "Candidato (s) que cursaram o ensino médio, integral e exclusivamente, em escola pública do Brasil e que não tenham concluído curso de graduação.": "EP", "CANDIDATOS QUE TENHAM CURSADO, NA REDE PÚBLICA, OS ÚLTIMOS QUATRO ANOS DO ENSINO FUNDAMENTAL E TODO O ENSINO MÉDIO": "EP", "demais de escola pública": "EP", "que tenham cursado parcialmente o ensino médio em escola pública (pelo menos um ano com aprovação) ou em escolas de direito privado sem fins lucrativos, cujo orçamento da instituição seja proveniente do poder público, em pelo menos 50%.": "EP", "membros de grupos indígenas": "INDIGENA", "Candidato (s) Indígenas": "INDIGENA", "indígenas aldeados": "INDIGENA", "indígenas, condição que deve ser comprovada mediante apresentação do RANI (Registro Administrativo de Nascimento de Indígena) ou declaração atestada pela FUNAI.": "INDIGENA", "Candidato (s) indígena": "INDIGENA", "Candidatos indígenas": "INDIGENA", "Indígenas": "INDIGENA", "Candidatos autodeclarados indígenas que, independentemente da renda (art. 14, II, Portaria Normativa nº 18/2012), tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "INDIGENA + EP", "INDÍGENAS que cursaram integralmente o Ensino Médio em escolas públicas": "INDIGENA + EP", "Candidatos Indígenas que tenham cursado todo o 2º Ciclo do Ensino Fundamental e o Ensino Médio exclusivamente em escola pública, que tenham renda bruta familiar mensal inferior ou igual a 04 (quatro) vezes o valor do salário mínimo nacional vigente no ato da matrícula e que não possuam título de graduação.": "INDIGENA + RENDA + EP", "Candidatos Indígenas, de baixa renda que sejam egressos de escola pública:": "INDIGENA + RENDA + EP", "Candidatos autodeclarados indígenas, com renda familiar bruta per capita igual ou inferior a 1,5 salário mínimo e que tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "INDIGENA + RENDA + EP", "Candidato (s) economicamente hipossuficientes indígenas": "INDIGENA + RENDA", "Candidatos que tenham cursado todo o Ensino Médio e os últimos quatro anos do Ensino Fundamental em Escola Pública e que sejam índios reconhecidos pela FUNAI ou moradores de comunidades remanescentes de quilombos registrados na Fundação Cultural Palmares.": "INDIGENA/QUILOMBOLA + EP", "Categoria VI - Pessoas com deficiência": "PCD", "Candidato (s) Pessoas com Deficiências - PCD": "PCD", "Candidato (s) com deficiência": "PCD", "Candidato (s) com deficiência.": "PCD", "Candidatos Candidatos Pessoa com Deficiência independentemente da sua condição acadêmica prévia declarada (pública ou privada)": "PCD", "Candidatos com deficiência:": "PCD", "Cota para candidatos com deficiência": "PCD", "com Deficiência, Transtorno do Espectro Autista, Altas Habilidades/Superdotação e/ou estudantes que sejam público alvo da educação especial": "PCD", "com deficiência (Denominada A1)": "PCD", "com deficiência que concluíram o Ensino Médio, independente do percurso de formação.": "PCD", "com deficiência": "PCD", "com deficiência: será reservada uma vaga, por curso e turno, qualquer que seja a sua procedência escolar.": "PCD", "Candidatos com deficiência": "PCD", "com deficiência PROAAf": "PCD", "Pessoa com Deficiência": "PCD", "Reserva de vagas para candidatos com deficiência (PCD)": "PCD", "Candidatos com deficiência que cursaram todo o ensino médio em escolas públicas.": "PCD + EP", "Candidatos com deficiência que, independentemente da renda (art. 14, II, Portaria Normativa nº 18/2012), tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "PCD + EP", "com deficiência que, independentemente da renda (art. 14, II, Portaria Normativa nº 18/2012), tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "PCD + EP", "Candidatos com deficiência que tenham renda familiar bruta per capita igual ou inferior a 1,5 salário mínimo e que tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "PCD + RENDA + EP", "com deficiência que tenham renda familiar bruta per capita igual ou inferior a 1,5 salário mínimo e que tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "PCD + RENDA + EP", "Candidatos com deficiência, transtorno do espectro autista e altas habilidades que tenham cursado todo o 2º Ciclo do Ensino Fundamental e o Ensino Médio exclusivamente em escola pública, que tenham renda bruta familiar mensal inferior ou igual a 04 (quatro) vezes o valor do salário mínimo nacional vigente no ato da matrícula e que não possuam título de graduação.": "PCD + RENDA + EP", "Candidatos com deficiência autodeclarados pretos ou pardos que, independentemente da renda (art. 14, II, Portaria Normativa nº 18/2012), tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "PCD + PRETO/PARDO + EP", "Candidatos com deficiência autodeclarados pretos ou pardos, que tenham renda familiar bruta per capita igual ou inferior a 1,5 salário mínimo e que tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "PCD + PRETO/PARDO + RENDA + EP", "autodeclarados Pretos, Pardos e Indígenas": "PPI", "A2 - Candidatos negros, indígenas e quilombolas com comprovação de carência socioeconômica": "PPI/QUILOMBOLA + RENDA", "Candidato (s) NEGROS, INDÍGENAS OU QUILOMBOLAS COM COMPROVAÇÃO DE CARÊNCIA SOCIOECONÔMICA": "PPI/QUILOMBOLA + RENDA", "Candidatos Negros ou Indígenas ou Quilombolas com comprovação de carência socioeconômica": "PPI/QUILOMBOLA + RENDA", "Candidatos negros, indígenas ou oriundos de comunidades quilombolas com comprovação de carência socioeconômica.": "PPI/QUILOMBOLA + RENDA", "Candidatos autodeclarados pretos, pardos ou indígenas que, independentemente da renda (art. 14, II, Portaria Normativa nº 18/2012), tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "PPI + EP", "Candidatos que tenha cursado integral e exclusivamente os ensinos fundamental e médio em estabelecimentos da rede pública de ensino e que se autodeclarem negros.": "PPI + EP", "NEGROS (pretos e pardos) que cursaram integralmente o Ensino Médio em escolas públicas (Banca avaliadora obrigatória)": "PPI + EP", "autodeclarados pretos, pardos ou indígenas que, independentemente da renda, tenham cursado integralmente o ensino médio em escolas públicas. (L4)": "PPI + EP", "A2 - Candidatos negros ou indígenas com comprovação de carência socioeconômica": "PPI + RENDA", "Candidato (s) negros ou indígenas com comprovação de carência socioeconômica": "PPI + RENDA", "Candidatos autodeclarados pretos, pardos ou indígenas, com renda familiar bruta per capita igual ou inferior a 1,5 salário mínimo e que tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "PPI + RENDA + EP", "autodeclarados pretos, pardos ou indígenas com renda familiar bruta per capita igual ou inferior a 1,5 salário mínimo, que tenham cursado integralmente o ensino médio em escolas públicas. (L2)": "PPI + RENDA + EP", "Candidatos com deficiência autodeclarados pretos, pardos ou indígenas que, independentemente da renda (art. 14, II, Portaria Normativa nº 18/2012), tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "PPI + PCD + EP", "Candidatos com deficiência autodeclarados pretos, pardos ou indígenas, que tenham renda familiar bruta per capita igual ou inferior a 1,5 salário mínimo e que tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012)": "PPI + PCD + RENDA + EP", "Negros (pretos ou pardos) (Denominada A2)": "PRETO/PARDO", "Negros": "PRETO/PARDO", "autodeclarados negros de forma irrestrita, independente do percurso de formação.": "PRETO/PARDO", "negros, entendidos como candidatos que possuem fenótipo que os caracterizem, na sociedade, como pertencentes ao grupo racial negro": "PRETO/PARDO", "Candidatos autodeclarados pretos ou pardos que, independentemente da renda (art. 14, II, Portaria Normativa nº 18/2012), tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "PRETO/PARDO + EP", "Cota Sociorracial: candidatos(as) autodeclarados(as) negros(as) e que tenham frequentado integralmente todas as séries do Ensino Médio ou equivalente em instituições públicas brasileiras de ensino.": "PRETO/PARDO + EP", "autodeclarados negros (somatório das categorias pretos e pardos, segundo classificação étnico-racial adotada pelo IBGE) que tenham cursado o ensino fundamental 2 (do 6º ao 9º ano) e ensino medio completo ( incluindo os cursos técnicos com duração de 4 anos) ou ter realizado curso supletivo ou outra modalidade de ensino equivalente, em estabelecimento da Rede Pública de Ensino do Brasil. Vedado aos portadores de diploma de nível superior": "PRETO/PARDO + EP", "autodeclarados negros que tenham cursado todo o 2º ciclo do Ensino Fundamental (5ª a 8ª séries) e todo o Ensino Médio, única e exclusivamente, na rede pública de ensino no Brasil.": "PRETO/PARDO + EP", "que se declararem negros que tenham cursado todo o ensino médio e pelo menos dois anos do Ensino Fundamental II em escola pública seguindo a ordem de classificação": "PRETO/PARDO + EP", "pretos e pardos, que tenham cursado integralmente o Ensino Médio em escolas públicas.": "PRETO/PARDO + EP", "Candidato (s) economicamente hipossuficientes negros e pardos": "PRETO/PARDO + RENDA", "Candidatos Negros, de baixa renda que sejam egresso de escola pública:": "PRETO/PARDO + RENDA + EP", "Candidatos autodeclarados pretos ou pardos, com renda familiar bruta per capita igual ou inferior a 1,5 salário mínimo que tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "PRETO/PARDO + RENDA + EP", "Categoria I - Candidatos declarados negros, de baixa renda e egressos de escola pública": "PRETO/PARDO + RENDA + EP", "Candidatos Negros que tenham cursado todo o 2º Ciclo do Ensino Fundamental e o Ensino Médio exclusivamente em escola pública, que tenham renda bruta familiar mensal inferior ou igual a 04 (quatro) vezes o valor do salário mínimo nacional vigente no ato da matrícula e que não possuam título de graduação.": "PRETO/PARDO + RENDA + EP", "Categoria II - Candidatos declarados quilombolas, de baixa renda e egressos de escola pública": "QUILOMBOLA + RENDA + EP", "Categoria III - Candidatos declarados indígenas, de baixa renda e egressos de escola pública": "INDIGENA + RENDA + EP", "Candidato (s) Quilombolas": "QUILOMBOLA", "membros de comunidade quilombola": "QUILOMBOLA", "de comunidades remanescentes de quilombos ou comunidades identitárias tradicionais": "QUILOMBOLA", "Candidato (s) economicamente hipossuficientes": "RENDA", "Candidato (s) que tenham cursado, na rede pública, os últimos quatro anos do ensino fundamental e todo o ensino médio e com comprovação de carência socioeconômica": "RENDA + EP", "Candidatos Egressos da Escola Pública, de baixa renda:": "RENDA + EP", "Candidatos com renda familiar bruta per capita igual ou inferior a 1,5 salário mínimo que tenham cursado integralmente o ensino médio em escolas públicas (Lei nº 12.711/2012).": "RENDA + EP", "Candidatos que tenham cursado na rede pública os últimos quatro anos do ensino fundamental e todo o ensino médio e com comprovação de carência socioeconômica.": "RENDA + EP", "Categoria V - Outros candidatos de baixa renda e egressos de escola pública": "RENDA + EP", "com renda familiar bruta per capita igual ou inferior a 1,5 salário mínimo, que tenham cursado integralmente o ensino médio em escolas públicas. (L1)": "RENDA + EP", "A3 - Candidatos que tenham cursado na rede pública os últimos quatro anos do ensino fundamental e todo o ensino médio e com comprovação de carência socioeconômica": "RENDA + EP", "Candidatos que tenham cursado na rede pública os últimos quatro anos do ensino fundamental e todo o ensino médio e com comprovação de carência socioeconômica": "RENDA + EP", "Pessoas Transgêneras em situação de Vulnerabilidade Econômica.": "TRANS", "transexuais, travestis e transgêneros": "TRANS", "Pessoas Transgêneras, independentemente de renda familiar": "TRANS", "Candidatos Transexuais, travestis e transgêneros que tenham cursado todo o 2º Ciclo do Ensino Fundamental e o Ensino Médio exclusivamente em escola pública, que tenham renda bruta familiar mensal inferior ou igual a 04 (quatro) vezes o valor do salário mínimo nacional vigente no ato da matrícula e que não possuam título de graduação.": "TRANS + RENDA + EP" } modNomeReduzido = {k.lower(): v for k, v in modNomeReduzido.items()} class Aluno: def __init__(self, m): self.codigo, self.nome, self.posicao, self.nota, self.modNome, self.bonus = m # Reduces modality names based on the modNomeReduzido dict modNomeKey = self.modNome.lower() if modNomeKey in modNomeReduzido: self.modNome = modNomeReduzido[modNomeKey] def __str__(self): s = [ "\t{}:".format(self.modNome), "\t\t{:>3}: {:>6} - {}".format(self.posicao, self.nota, self.nome) ] return "\n".join(s) class Curso: def __init__(self, info, alunos): self.campusUF, self.iesNome, self.iesSG, self.campusCidade = info[:4] self.campusNome, self.cursoNome, self.cursoGrau, self.cursoTurno, self.vagasTotais = info[4:] self.alunos = [Aluno(alunos[i:i+6]) for i in range(0, len(alunos), 6)] def __str__(self): s = [ "{} ({}) - {}, {}, {}".format(self.iesNome, self.iesSG, self.campusNome, self.campusCidade, self.campusUF), "{}, {}, {}".format(self.cursoNome, self.cursoGrau, self.cursoTurno), ] alunos = [str(m) for m in self.alunos] # Only print modality name if it's the first occurence last = alunos[0].split("\n")[0] for i in range(1, len(alunos)): if alunos[i].split("\n")[0] == last: alunos[i] = alunos[i].split("\n")[1] else: last = alunos[i].split("\n")[0] return "\n".join(s+alunos) directory = "data" filename = input("Filename (without extension): /{}/".format(directory)).strip() t0 = time() ################################################## # Get all course info from .csv file try: with open("all_courses.csv", "r", encoding="UTF-8") as csvFile: csvFileReader = csv.reader(csvFile, delimiter=";") cursosInfo = {oferta[-1]: oferta[:-1] for oferta in [tuple(l) for l in csvFileReader]} except FileNotFoundError: print("File /all_courses.csv not found.") exit() # Read csv and process strings (via class constructors) try: with open(os.path.join(directory, filename + ".csv"), "r", encoding="UTF-8") as csvFile: csvFileReader = csv.reader(csvFile, delimiter=";") cursos = [Curso(cursosInfo[c[0]], c[1:]) for c in csvFileReader] except FileNotFoundError: print("File /{}/{}.csv not found.".format(directory, filename)) exit() # Sort lexicographically cursos = sorted(cursos, key=lambda x: (x.campusUF, x.iesNome, x.iesSG, x.campusCidade, x.campusNome, x.cursoNome)) # Write to .txt with open(os.path.join(directory, filename + ".txt"), "w+", encoding="UTF-8") as humanFile: for i, curso in enumerate(cursos): nl = str(curso).index("\n") # Only write iesNome if it's the first occurence if i == 0 or (str(curso)[:nl] != str(cursos[i-1]).split("\n")[0]): humanFile.write("="*50 + "\n") humanFile.write(str(curso)[:nl] + "\n") humanFile.write("="*50 + "\n") humanFile.write(str(curso)[nl+1:] + "\n") humanFile.write("\n") print("Written {} courses to '{}.txt' in {:.1f}s.".format(len(cursos), directory+"/"+filename, time()-t0))
py
1a56e6271fc1ba4ad8c23f2015d984f3457e91ab
""" data collector """ from random import randint from time import sleep import csv import re import concurrent.futures import datetime from bs4 import BeautifulSoup import urllib3 import requests from utils.utilities import ProjectCommon OUTPUT_FILE_PATH = 'reviews_with_ranks.csv' SCRAPER_FINAL_OUTPUT = [] MOVIE_REVIEW_URLS = [] class Anonymize: """ anonymize class """ def __init__(self): self.headers = [{'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5)' ' AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/50.0.2661.102 Safari/537.36'}, {'User-Agent': 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; ' 'rv:1.9.1.5) Gecko/20091102 Firefox/3.5.5 ' '(.NET CLR 3.5.30729)'}, {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) ' 'MyAppName/1.0.0 ([email protected])'}] @staticmethod def sleeper(): """ sleeper method used to sleep between requests :return: """ sleep(randint(2, 5)) def randomize_request_headers(self): """ method to randomize request headers for each request :return: """ return self.headers[randint(0, len(self.headers) - 1)] def movie_review_url_collector(): """ function collecting urls with the movie reviews :return:0 """ start_page_urls = ['https://www.csfd.cz/zebricky/nejhorsi-filmy/?show=complete', 'https://www.csfd.cz/zebricky/nejlepsi-filmy/?show=complete'] anonymize = Anonymize() for start_page in start_page_urls: page = requests.get(start_page, headers=anonymize.randomize_request_headers()) soup = BeautifulSoup(page.content, 'html.parser') movie_review_url = soup.find_all('td', attrs={'class': 'film'}) for url_item in movie_review_url[:300]: children = url_item.findChildren("a", recursive=False) movie_name = str(children).split("/")[2] for random_index in ([2, 3, 4, 5, 6, 7]): review_page = str(random_index) MOVIE_REVIEW_URLS.append('https://www.csfd.cz/film/{}/komentare/strana-{}'. format(movie_name, review_page)) return 0 def movie_review_scraper(url_to_scrape): """ function getting the url from the argument, requesting the raw html and scraping the movie review html code :param url_to_scrape: url :return:None """ anonymize = Anonymize() print(f'{datetime.datetime.now()} started scraping {url_to_scrape}') try: anonymize.sleeper() page = requests.get(url, headers=anonymize.randomize_request_headers()) if page.status_code == 200: # the <li> html tag structure we're scraping in loops: # # variation #1 with star count as rank in the img alt text tag: # <li id = "comment-796722" > # <div class ="info" > # <a href = "" > all reviewer's reviews </a>/ # <a href = "" > <img src = "" class ="" ></a> # </div> # <h5 class = "author" > <a href="" > reviewers nickname </a></h5> # <img src = "" class ="rating" width="32" alt="****" / > # <p class ="post" > movie review # <span class ="date desc" > date of review </span></p> # </li> # # variation #2 with 1 word ranking ("odpad!" translates to "junk") in the strong tag: # <li id = "comment-9092651" > # <div class ="info" > # <a href = "" > all reviewer's reviews </a>/ # <a href = "" > <img src = "" class ="" ></a> # </div> # <h5 class ="author" > <a href="" > reviewers nickname </a></h5> # <strong class ="rating" > odpad! </strong> # <p class ="post" > movie review # <span class ="date desc" > date of review </span></p> # </li> soup = BeautifulSoup(page.content, 'html.parser') _l_substring_to_trim_from = '<p class="post">' _r_substring_to_trim_to = '<span class="date desc">' for soup_item in soup.find_all("li", {"id": re.compile(r"comment-*")}): scraper_temp_output = [] img = soup_item.findChildren("img", attrs={'class': 'rating'}) strong = soup_item.findChildren(["strong", "p"], attrs={'class': ['rating', 'post']}) if strong and str(strong).startswith('[<strong class="rating">odpad!</strong>'): _r_trim = len(str(strong)) - str(strong).rfind(_r_substring_to_trim_to) _l_trim = str(strong).rfind(_l_substring_to_trim_from) + len(_l_substring_to_trim_from) scraper_temp_output.append({'rank': -2, 'review': str(strong)[_l_trim:-_r_trim]}) else: _r_trim = len(str(img)) - str(img).rfind(_r_substring_to_trim_to) _l_trim = str(img).rfind(_l_substring_to_trim_from) + len(_l_substring_to_trim_from) if img and str(img).startswith('[<img alt="*"'): scraper_temp_output.append({'rank': -2, 'review': str(img)[_l_trim:-_r_trim]}) elif img and str(img).startswith('[<img alt="**"'): scraper_temp_output.append({'rank': -1, 'review': str(img)[_l_trim:-_r_trim]}) elif img and str(img).startswith('[<img alt="***"'): scraper_temp_output.append({'rank': 1, 'review': str(img)[_l_trim:-_r_trim]}) elif img and str(img).startswith('[<img alt="****"'): scraper_temp_output.append({'rank': 2, 'review': str(img)[_l_trim:-_r_trim]}) elif img and str(img).startswith('[<img alt="*****"'): scraper_temp_output.append({'rank': 2, 'review': str(img)[_l_trim:-_r_trim]}) for item in scraper_temp_output: raw_review = item.get('review') review = ProjectCommon.remove_html(str(raw_review).lower()) rank = item.get('rank') SCRAPER_FINAL_OUTPUT.append((review, rank)) print(f'{datetime.datetime.now()} finished scraping {url}') else: print(f'{datetime.datetime.now()} Invalid request status code ' f'{str(page.status_code)} for {url}') except urllib3.exceptions.ConnectionError as connerr: print(str(connerr)) except Exception as exc: print(str(exc)) if __name__ == "__main__": # fill the list with urls used for movie data scraping movie_review_url_collector() # process the list items in a multi-threaded pool based # scraper function movie_review_scraper with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: FUTURE_TO_URL = {executor.submit(movie_review_scraper, url): url for url in MOVIE_REVIEW_URLS} for future in concurrent.futures.as_completed(FUTURE_TO_URL): url = FUTURE_TO_URL[future] try: data = future.result() except Exception as exc: print('%r generated an exception: %s' % (url, exc)) # write to OUTPUT_FILE_PATH csv file the scraped movie review data with open(OUTPUT_FILE_PATH, 'w', encoding='utf8', newline='\n') as fw: writer = csv.writer(fw, escapechar='/', quoting=csv.QUOTE_NONNUMERIC) writer.writerows(SCRAPER_FINAL_OUTPUT) print("Movie review data collection phase complete.")
py
1a56e6450f86d82ba120d0d9c2d9967988d62442
import os import numpy as np from scipy.io import netcdf_file from pychemia.utils.periodic import atomic_symbol from .htmlparser import MyHTMLParser """ This module provides general routines used by abipython but not requiring the abipython classes """ __author__ = "Guillermo Avendano-Franco" __copyright__ = "Copyright 2016" __version__ = "1.1" __maintainer__ = "Guillermo Avendano-Franco" __email__ = "[email protected]" __status__ = "Development" __date__ = "May 13, 2016" def netcdf2dict(filename): """ Read a NetCDF file and create a python dictionary with numpy arrays for variables Args: filename: NetCDF filename """ if not os.path.isfile(filename): print('ERROR: No such file: ', filename) return None output = {} netcdffile = netcdf_file(filename, 'r', mmap=False) for ii in netcdffile.variables.keys(): output[ii] = netcdffile.variables[ii][:] netcdffile.close() return output def psp_name(atomicnumber, exchange, kind): """ Return the filename of a certain PSP given the atomic number, exchange ('LDA' or 'GGA') and kind ('FHI','TM') :param atomicnumber: (int) Atomic number :param exchange: (str) 'LDA' or 'GGA' :param kind: (str) Source of Pseudopotentials :return: """ atom_symbol = str(atomic_symbol(atomicnumber)) if kind == 'FHI' and exchange == 'LDA': filename = str(atomicnumber).zfill(2) + '-' + atom_symbol + '.LDA.fhi' elif kind == 'FHI' and exchange == 'GGA': filename = str(atomicnumber).zfill(2) + '-' + atom_symbol + '.GGA.fhi' elif kind == 'CORE' and exchange == 'LDA': filename = str(atomicnumber) + atom_symbol.lower() + '.1s_psp.mod' elif kind == 'GTH' and exchange == 'LDA': filename = str(atomicnumber).zfill(2) + atom_symbol.lower() + '.pspgth' elif kind == 'TM' and exchange == 'LDA': filename = str(atomicnumber) + atom_symbol.lower() + '.pspnc' elif kind == 'AE' and exchange == 'DEN': filename = '0.' + str(atomicnumber).zfill(2) + '-' + atom_symbol + '.8.density.AE' elif kind == 'FC' and exchange == 'DEN': filename = str(atomicnumber).zfill(2) + '-' + atom_symbol + '.8.fc' elif kind == 'PAW' and exchange == 'GGA': filename = 'JTH-PBE-atomicdata-0.2/' + atom_symbol + '.GGA_PBE-JTH.xml' elif kind == 'PAW' and exchange == 'LDA': filename = 'JTH-LDA-atomicdata-0.2/' + atom_symbol + '.LDA_PW-JTH.xml' elif kind == 'HGH' and exchange == 'GGA': filename = str(atomicnumber).zfill(2) + atom_symbol.lower() + '.pbe_hgh' elif kind == 'ONC' and exchange == 'PBE': filename = 'pbe_s_sr' + os.sep + atom_symbol + '.psp8' else: print('The combination of exchange=%s and kind=%s is not known' % (exchange, kind)) filename = '' return filename def split_varname(varname): if varname[-2:].isdigit(): prefix = varname[:-2] suffix = varname[-2:] elif varname[-2].isdigit() and varname[-1] == '?': prefix = varname[:-2] suffix = varname[-2:] elif varname[-1].isdigit() and varname[-2] == '?': prefix = varname[:-2] suffix = varname[-2:] elif varname[-1].isdigit(): prefix = varname[:-1] suffix = varname[-1:] elif varname[-1] == '?': prefix = varname[:-1] suffix = varname[-1:] else: prefix = varname suffix = '' return prefix, suffix def plot_simple(variables, varname): from matplotlib.pylab import subplots from numpy import arange, mean, apply_along_axis, linalg from math import sqrt fig, ax = subplots(nrows=1, ncols=1) fig.set_size_inches(15, 4) ndtset = variables['ndtset'][0] lens = np.array([len(variables[varname + str(x + 1)]) for x in range(ndtset)]) x = arange(ndtset) + 1 if max(lens) == min(lens): if lens[0] == 1: y = np.array([variables['etotal' + str(x + 1)][0] for x in range(ndtset)]) elif lens[0] % 3 == 0: y = np.array([mean(apply_along_axis(linalg.norm, 1, variables['fcart' + str(x + 1)].reshape((-1, 3)))) for x in range(ndtset)]) else: y = np.array([sqrt(sum(variables['fcart' + str(x + 1)] ** 2)) for x in range(ndtset)]) ax.plot(x, y, 'ro') ax.plot(x, y, 'b-') ax.set_xlabel('Dataset') ax.set_ylabel(varname) ax.set_xlim(1, ndtset + 1) if ndtset < 30: ax.set_xticks(arange(ndtset + 1)) ax.grid(which='major', axis='both') def abihelp(varname): import json hp = MyHTMLParser() import pychemia.code.abinit as _pdca rf = open(_pdca.__path__[0] + '/ABINIT_variables.json', 'r') variables = json.load(rf) rf.close() if varname not in variables.keys(): print('ERROR: ' + varname + ' is not in the list of variables of ABINIT') return else: abivar = variables[varname] print(varname) print('') print('DEFINITION:', abivar['definition']) print('SECTION: ', abivar['section']) print('DEFAULT: ', hp.feed(abivar['default'])) print('') print(hp.feed(abivar['text'])) print('')
py
1a56e6901f07236895d8ee3495e3a829b2383fc6
''' Pattern Reversed Mirrored Right triangle star pattern Enter number of rows: 5 ***** **** *** ** * ''' print('Reversed Mirrored Right Triangle star pattern: ') rows=int(input('Enter number of rows: ')) for i in range(1,rows+1): for j in range(1,i): print(' ',end="") for j in range(i,rows+1): print('*',end='') print('\n',end=' ')
py
1a56e6add34b3fdf193a4452094a8d6eb4e8a754
# # This is the Robotics Language compiler # # Parameters.py: Definition of the parameters for this package # # Created on: June 22, 2017 # Author: Gabriel A. D. Lopes # Licence: Apache 2.0 # Copyright: 2014-2017 Robot Care Systems BV, The Hague, The Netherlands. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
py
1a56e6c6dcbd1a257c63e768c3fb9730a47db0ea
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## ECE Department, Rutgers University ## Email: [email protected] ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ from PIL import Image def get_mask_pallete(npimg, dataset='ade20k'): """Get image color pallete for visualizing masks""" # recovery boundary if dataset == 'pascal_voc': npimg[npimg==21] = 255 # put colormap out_img = Image.fromarray(npimg.squeeze().astype('uint8')) if dataset == 'ade20k': out_img.putpalette(adepallete) elif dataset == 'citys': out_img.putpalette(citypallete) elif dataset in ('detail', 'pascal_voc', 'pascal_aug'): out_img.putpalette(vocpallete) return out_img def _get_voc_pallete(num_cls): n = num_cls pallete = [0]*(n*3) for j in range(0,n): lab = j pallete[j*3+0] = 0 pallete[j*3+1] = 0 pallete[j*3+2] = 0 i = 0 while (lab > 0): pallete[j*3+0] |= (((lab >> 0) & 1) << (7-i)) pallete[j*3+1] |= (((lab >> 1) & 1) << (7-i)) pallete[j*3+2] |= (((lab >> 2) & 1) << (7-i)) i = i + 1 lab >>= 3 return pallete vocpallete = _get_voc_pallete(256) adepallete = [0, 0, 0, 120, 120, 120, 180, 120, 120, 6, 230, 230, 80, 50, 50, 4, 200, 3, 120, 120, 80, 140, 140, 140, 204, 5, 255, 230, 230, 230, 4, 250, 7, 224, 5, 255, 235, 255, 7, 150, 5, 61, 120, 120, 70, 8, 255, 51, 255, 6, 82, 143, 255, 140, 204, 255, 4, 255, 51, 7, 204, 70, 3, 0, 102, 200, 61, 230, 250, 255, 6, 51, 11, 102, 255, 255, 7, 71, 255, 9, 224, 9, 7, 230, 220, 220, 220, 255, 9, 92, 112, 9, 255, 204, 70, 3, 7, 255, 224, 255, 184, 6, 10, 255, 71, 255, 41, 10, 7, 255, 255, 224, 255, 8, 102, 8, 255, 255, 61, 6, 255, 194, 7, 255, 122, 8, 0, 255, 20, 255, 8, 41, 255, 5, 153, 6, 51, 255, 235, 12, 255, 160, 150, 20, 0, 163, 255, 140, 140, 140, 250, 10, 15, 20, 255, 0, 31, 255, 0, 255, 31, 0, 255, 224, 0, 153, 255, 0, 0, 0, 255, 255, 71, 0, 0, 235, 255, 0, 173, 255, 31, 0, 255, 11, 200, 200, 255, 82, 0, 0, 255, 245, 0, 61, 255, 0, 255, 112, 0, 255, 133, 255, 0, 0, 255, 163, 0, 255, 102, 0, 194, 255, 0, 0, 143, 255, 51, 255, 0, 0, 82, 255, 0, 255, 41, 0, 255, 173, 204, 70, 3, 173, 255, 0, 0, 255, 153, 255, 92, 0, 255, 0, 255, 255, 0, 245, 255, 0, 102, 224, 255, 8, 255, 0, 20, 255, 184, 184, 224, 255, 8, 0, 255, 61, 0, 71, 255, 255, 0, 204, 0, 255, 194, 0, 255, 82, 0, 10, 255, 0, 112, 255, 51, 0, 255, 0, 194, 255, 0, 122, 255, 0, 255, 163, 255, 153, 0, 0, 255, 10, 255, 112, 0, 143, 255, 0, 82, 0, 255, 163, 255, 0, 255, 235, 0, 8, 184, 170, 133, 0, 255, 0, 255, 92, 184, 0, 255, 255, 0, 31, 0, 184, 255, 204, 70, 3, 255, 0, 112, 92, 255, 0, 0, 224, 255, 112, 224, 255, 70, 184, 160, 163, 0, 255, 153, 0, 255, 71, 255, 0, 255, 0, 163, 255, 204, 0, 255, 0, 143, 0, 255, 235, 133, 255, 0, 255, 0, 235, 245, 0, 255, 255, 0, 122, 255, 245, 0, 10, 190, 212, 214, 255, 0, 0, 204, 255, 20, 0, 255, 255, 255, 0, 0, 153, 255, 224, 255, 8, 0, 255, 204, 41, 0, 255, 41, 255, 0, 173, 0, 255, 0, 245, 255, 71, 0, 255, 122, 0, 255, 0, 255, 184, 0, 92, 255, 184, 255, 0, 0, 133, 255, 255, 214, 0, 25, 194, 194, 102, 255, 0, 92, 0, 255] citypallete = [ 128,64,128,244,35,232,70,70,70,102,102,156,190,153,153,153,153,153,250,170,30,220,220,0,107,142,35,152,251,152,70,130,180,220,20,60,255,0,0,0,0,142,0,0,70,0,60,100,0,80,100,0,0,230,119,11,32,128,192,0,0,64,128,128,64,128,0,192,128,128,192,128,64,64,0,192,64,0,64,192,0,192,192,0,64,64,128,192,64,128,64,192,128,192,192,128,0,0,64,128,0,64,0,128,64,128,128,64,0,0,192,128,0,192,0,128,192,128,128,192,64,0,64,192,0,64,64,128,64,192,128,64,64,0,192,192,0,192,64,128,192,192,128,192,0,64,64,128,64,64,0,192,64,128,192,64,0,64,192,128,64,192,0,192,192,128,192,192,64,64,64,192,64,64,64,192,64,192,192,64,64,64,192,192,64,192,64,192,192,192,192,192,32,0,0,160,0,0,32,128,0,160,128,0,32,0,128,160,0,128,32,128,128,160,128,128,96,0,0,224,0,0,96,128,0,224,128,0,96,0,128,224,0,128,96,128,128,224,128,128,32,64,0,160,64,0,32,192,0,160,192,0,32,64,128,160,64,128,32,192,128,160,192,128,96,64,0,224,64,0,96,192,0,224,192,0,96,64,128,224,64,128,96,192,128,224,192,128,32,0,64,160,0,64,32,128,64,160,128,64,32,0,192,160,0,192,32,128,192,160,128,192,96,0,64,224,0,64,96,128,64,224,128,64,96,0,192,224,0,192,96,128,192,224,128,192,32,64,64,160,64,64,32,192,64,160,192,64,32,64,192,160,64,192,32,192,192,160,192,192,96,64,64,224,64,64,96,192,64,224,192,64,96,64,192,224,64,192,96,192,192,224,192,192,0,32,0,128,32,0,0,160,0,128,160,0,0,32,128,128,32,128,0,160,128,128,160,128,64,32,0,192,32,0,64,160,0,192,160,0,64,32,128,192,32,128,64,160,128,192,160,128,0,96,0,128,96,0,0,224,0,128,224,0,0,96,128,128,96,128,0,224,128,128,224,128,64,96,0,192,96,0,64,224,0,192,224,0,64,96,128,192,96,128,64,224,128,192,224,128,0,32,64,128,32,64,0,160,64,128,160,64,0,32,192,128,32,192,0,160,192,128,160,192,64,32,64,192,32,64,64,160,64,192,160,64,64,32,192,192,32,192,64,160,192,192,160,192,0,96,64,128,96,64,0,224,64,128,224,64,0,96,192,128,96,192,0,224,192,128,224,192,64,96,64,192,96,64,64,224,64,192,224,64,64,96,192,192,96,192,64,224,192,192,224,192,32,32,0,160,32,0,32,160,0,160,160,0,32,32,128,160,32,128,32,160,128,160,160,128,96,32,0,224,32,0,96,160,0,224,160,0,96,32,128,224,32,128,96,160,128,224,160,128,32,96,0,160,96,0,32,224,0,160,224,0,32,96,128,160,96,128,32,224,128,160,224,128,96,96,0,224,96,0,96,224,0,224,224,0,96,96,128,224,96,128,96,224,128,224,224,128,32,32,64,160,32,64,32,160,64,160,160,64,32,32,192,160,32,192,32,160,192,160,160,192,96,32,64,224,32,64,96,160,64,224,160,64,96,32,192,224,32,192,96,160,192,224,160,192,32,96,64,160,96,64,32,224,64,160,224,64,32,96,192,160,96,192,32,224,192,160,224,192,96,96,64,224,96,64,96,224,64,224,224,64,96,96,192,224,96,192,96,224,192,0,0,0]
py
1a56e78b4524814c982ef731b03543e9b2deb49c
'''Michael Lange <klappnase (at) freakmail (dot) de> The ToolTip class provides a flexible tooltip widget for Tkinter; it is based on IDLE's ToolTip module which unfortunately seems to be broken (at least the version I saw). INITIALIZATION OPTIONS: anchor : where the text should be positioned inside the widget, must be on of "n", "s", "e", "w", "nw" and so on; default is "center" bd : borderwidth of the widget; default is 1 (NOTE: don't use "borderwidth" here) bg : background color to use for the widget; default is "lightyellow" (NOTE: don't use "background") delay : time in ms that it takes for the widget to appear on the screen when the mouse pointer has entered the parent widget; default is 1500 fg : foreground (i.e. text) color to use; default is "black" (NOTE: don't use "foreground") follow_mouse : if set to 1 the tooltip will follow the mouse pointer instead of being displayed outside of the parent widget; this may be useful if you want to use tooltips for large widgets like listboxes or canvases; default is 0 font : font to use for the widget; default is system specific justify : how multiple lines of text will be aligned, must be "left", "right" or "center"; default is "left" padx : extra space added to the left and right within the widget; default is 4 pady : extra space above and below the text; default is 2 relief : one of "flat", "ridge", "groove", "raised", "sunken" or "solid"; default is "solid" state : must be "normal" or "disabled"; if set to "disabled" the tooltip will not appear; default is "normal" text : the text that is displayed inside the widget textvariable : if set to an instance of Tkinter.StringVar() the variable's value will be used as text for the widget width : width of the widget; the default is 0, which means that "wraplength" will be used to limit the widgets width wraplength : limits the number of characters in each line; default is 150 WIDGET METHODS: configure(**opts) : change one or more of the widget's options as described above; the changes will take effect the next time the tooltip shows up; NOTE: follow_mouse cannot be changed after widget initialization Other widget methods that might be useful if you want to subclass ToolTip: enter() : callback when the mouse pointer enters the parent widget leave() : called when the mouse pointer leaves the parent widget motion() : is called when the mouse pointer moves inside the parent widget if follow_mouse is set to 1 and the tooltip has shown up to continually update the coordinates of the tooltip window coords() : calculates the screen coordinates of the tooltip window create_contents() : creates the contents of the tooltip window (by default a Tkinter.Label) ''' # Ideas gleaned from PySol try: import Tkinter as tkinter except ImportError: import tkinter class ToolTip: def __init__(self, master, text='Your text here', delay=1500, **opts): self.master = master self._opts = {'anchor':'center', 'bd':1, 'bg':'lightyellow', 'delay':delay, 'fg':'black',\ 'follow_mouse':0, 'font':None, 'justify':'left', 'padx':4, 'pady':2,\ 'relief':'solid', 'state':'normal', 'text':text, 'textvariable':None,\ 'width':0, 'wraplength':150} self.configure(**opts) self._tipwindow = None self._id = None self._id1 = self.master.bind("<Enter>", self.enter, '+') self._id2 = self.master.bind("<Leave>", self.leave, '+') self._id3 = self.master.bind("<ButtonPress>", self.leave, '+') self._follow_mouse = 0 if self._opts['follow_mouse']: self._id4 = self.master.bind("<Motion>", self.motion, '+') self._follow_mouse = 1 def configure(self, **opts): for key in opts: if key in self._opts: self._opts[key] = opts[key] else: KeyError = 'KeyError: Unknown option: "%s"' % key raise KeyError ##----these methods handle the callbacks on "<Enter>", "<Leave>" and "<Motion>"---------------## ##----events on the parent widget; override them if you want to change the widget's behavior--## def enter(self, event=None): self._schedule() def leave(self, event=None): self._unschedule() self._hide() def motion(self, event=None): if self._tipwindow and self._follow_mouse: x, y = self.coords() self._tipwindow.wm_geometry("+%d+%d" % (x, y)) ##------the methods that do the work:---------------------------------------------------------## def _schedule(self): self._unschedule() if self._opts['state'] == 'disabled': return self._id = self.master.after(self._opts['delay'], self._show) def _unschedule(self): id = self._id self._id = None if id: self.master.after_cancel(id) def _show(self): if self._opts['state'] == 'disabled': self._unschedule() return if not self._tipwindow: self._tipwindow = tw = tkinter.Toplevel(self.master) # hide the window until we know the geometry tw.withdraw() tw.wm_overrideredirect(1) if tw.tk.call("tk", "windowingsystem") == 'aqua': tw.tk.call("::tk::unsupported::MacWindowStyle", "style", tw._w, "help", "none") self.create_contents() tw.update_idletasks() x, y = self.coords() tw.wm_geometry("+%d+%d" % (x, y)) tw.deiconify() def _hide(self): tw = self._tipwindow self._tipwindow = None if tw: tw.destroy() ##----these methods might be overridden in derived classes:----------------------------------## def coords(self): # The tip window must be completely outside the master widget; # otherwise when the mouse enters the tip window we get # a leave event and it disappears, and then we get an enter # event and it reappears, and so on forever :-( # or we take care that the mouse pointer is always outside the tipwindow :-) tw = self._tipwindow twx, twy = tw.winfo_reqwidth(), tw.winfo_reqheight() w, h = tw.winfo_screenwidth(), tw.winfo_screenheight() # calculate the y coordinate: if self._follow_mouse: y = tw.winfo_pointery() + 20 # make sure the tipwindow is never outside the screen: if y + twy > h: y = y - twy - 30 else: y = self.master.winfo_rooty() + self.master.winfo_height() + 3 if y + twy > h: y = self.master.winfo_rooty() - twy - 3 # we can use the same x coord in both cases: x = tw.winfo_pointerx() - twx / 2 if x < 0: x = 0 elif x + twx > w: x = w - twx return x, y def create_contents(self): opts = self._opts.copy() for opt in ('delay', 'follow_mouse', 'state'): del opts[opt] label = tkinter.Label(self._tipwindow, **opts) label.pack() ##---------demo code-----------------------------------## def demo(): root = tkinter.Tk(className='ToolTip-demo') l = tkinter.Listbox(root) l.insert('end', "I'm a listbox") l.pack(side='top') t1 = ToolTip(l, follow_mouse=1, text="I'm a tooltip with follow_mouse set to 1, so I won't be placed outside my parent") b = tkinter.Button(root, text='Quit', command=root.quit) b.pack(side='bottom') t2 = ToolTip(b, text='Enough of this') root.mainloop() if __name__ == '__main__': demo()
py
1a56e7ed8d52059d680c2cee52793368a0e2c54f
import json from collections import Counter class Sorter(object): def __init__(self): # These are playlists that are to be edited, this can be changed from configparser import ConfigParser; config = ConfigParser(); \ config.read('config.ini'); \ self.target_playlists = config.get('Settings', 'TargetPlaylists') self.target_playlists = self.target_playlists.split(',') self.target_playlists = [x.strip() for x in self.target_playlists] def findtargetPlaylists(self, playlist_json, length_check=False): found_playlists = {} if(isinstance(playlist_json, (str, bytes))): playlist_json = json.loads(playlist_json) playlist_names = self.findPlaylists(playlist_json) for i, playlist in enumerate(playlist_names): if playlist in self.target_playlists: found_playlists[playlist] = playlist_json['items'][i]['id'] if(length_check): if len(playlist_json['items']) == 20: extension_state=True else: extension_state=False return(found_playlists, extension_state) return(found_playlists) def findPlaylists(self, playlist_json): found_playlists = [] if(isinstance(playlist_json, (str, bytes))): playlist_json = json.loads(playlist_json) for item in playlist_json['items']: found_playlists.append(f"{item['name']}") return(found_playlists) def findSongs(self, recent_json): recent_songs = [] if(isinstance(recent_json, (str, bytes))): recent_json = json.loads(recent_json) for item in recent_json['items']: recent_songs.append(f"{item['track']['name']}:{item['track']['id']}") return(recent_songs) def findtopSongs(self, songs_list): listened_songs = [] for vector in songs_list: listened_songs.append(vector) song_counter = Counter(listened_songs) top_songs = sorted(song_counter, key=lambda x: -song_counter[x]) songs_counted = song_counter.most_common() return(songs_counted) def findtimeAdded(self, playlist_json): if(isinstance(playlist_json, (str, bytes))): playlist_json = json.loads(playlist_json) elif(isinstance(playlist_json, dict)): pass else: return timestamp_list = [item['added_at'] for item in playlist_json['items']] return(timestamp_list) def compare_recent(self, recent_json, new_json): new_songs = self.findSongs(new_json) recent_songs = self.findSongs(recent_json) return not(new_songs == recent_songs)
py
1a56e881b8bc5ffe03c8c648d023eff59c9af3b2
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the -alertnotify, -blocknotify and -walletnotify options.""" import os from test_framework.test_framework import JdCoinTestFramework from test_framework.util import ( assert_equal, wait_until, connect_nodes, ) class NotificationsTest(JdCoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True def setup_network(self): self.alert_filename = os.path.join(self.options.tmpdir, "alert.txt") self.block_filename = os.path.join(self.options.tmpdir, "blocks.txt") self.tx_filename = os.path.join(self.options.tmpdir, "transactions.txt") # -alertnotify and -blocknotify on node0, walletnotify on node1 self.extra_args = [["-blockversion=4", "-alertnotify=echo %%s >> %s" % self.alert_filename, "-blocknotify=echo %%s >> %s" % self.block_filename], ["-blockversion=211", "-rescan", "-walletnotify=echo %%s >> %s" % self.tx_filename]] super().setup_network() def run_test(self): self.log.info("test -blocknotify") block_count = 10 blocks = self.nodes[1].generate(block_count) # wait at most 10 seconds for expected file size before reading the content wait_until(lambda: os.path.isfile(self.block_filename) and os.stat(self.block_filename).st_size >= (block_count * 65), timeout=10) # file content should equal the generated blocks hashes with open(self.block_filename, 'r') as f: assert_equal(sorted(blocks), sorted(f.read().splitlines())) self.log.info("test -walletnotify") # wait at most 10 seconds for expected file size before reading the content wait_until(lambda: os.path.isfile(self.tx_filename) and os.stat(self.tx_filename).st_size >= (block_count * 65), timeout=10) # file content should equal the generated transaction hashes txids_rpc = list(map(lambda t: t['txid'], self.nodes[1].listtransactions("*", block_count))) with open(self.tx_filename, 'r') as f: assert_equal(sorted(txids_rpc), sorted(f.read().splitlines())) os.remove(self.tx_filename) self.log.info("test -walletnotify after rescan") # restart node to rescan to force wallet notifications self.restart_node(1) connect_nodes(self.nodes[0], 1) wait_until(lambda: os.path.isfile(self.tx_filename) and os.stat(self.tx_filename).st_size >= (block_count * 65), timeout=10) # file content should equal the generated transaction hashes txids_rpc = list(map(lambda t: t['txid'], self.nodes[1].listtransactions("*", block_count))) with open(self.tx_filename, 'r') as f: assert_equal(sorted(txids_rpc), sorted(f.read().splitlines())) # Mine another 41 up-version blocks. -alertnotify should trigger on the 51st. self.log.info("test -alertnotify") self.nodes[1].generate(51) self.sync_all() # Give jdcoind 10 seconds to write the alert notification wait_until(lambda: os.path.isfile(self.alert_filename) and os.path.getsize(self.alert_filename), timeout=10) with open(self.alert_filename, 'r', encoding='utf8') as f: alert_text = f.read() # Mine more up-version blocks, should not get more alerts: self.nodes[1].generate(2) self.sync_all() with open(self.alert_filename, 'r', encoding='utf8') as f: alert_text2 = f.read() self.log.info("-alertnotify should not continue notifying for more unknown version blocks") assert_equal(alert_text, alert_text2) if __name__ == '__main__': NotificationsTest().main()
py
1a56e8b235e8ffd6f66024fa8bac3824427df911
import os def rename_files(): # (1) get file names from a folder file_list = os.listdir("prank") print(file_list) saved_path = os.getcwd() print("Current Working Directory is %s" % saved_path) os.chdir("prank") # (2) for each file, rename filename for file_name in file_list: os.rename(file_name, file_name.translate(None, "0123456789")) os.chdir(saved_path) rename_files() # os.rename("test", "test3") # os.rename("test1", "test2")
py
1a56e9195c9dd453e45598166fcb63ed508846f3
from pymongo import MongoClient client = MongoClient("mongodb://127.0.0.1:27017/") database = "mydb" collections = ["cars", "cops"] database = client[database] cars = database[collections[0]] cops = database[collections[1]] def get_all_cars(): return cars.find() def get_free_cars(): return cars.find({"resolved": 0, "assigned": 0}) def put_car(car): car['cop_id'] = "" car['resolved'] = 0 car['assigned'] = 0 car_id = cars.insert_one(car).inserted_id return car_id def get_all_cops(): return cops.find() def get_available_cops(): return cops.find({"available": 1}) def put_cop(cop): cop['available'] = 1 cop['car_id'] = "" cop_id = cops.insert_one(cop).inserted_id return cop_id def assign_cop_car(cop_id, car_id): if list(cops.find_one({"_id": cop_id}, {"_id": 0, "available": 1}).values()) != [1]: return "failed" if list(cars.find_one({"_id": car_id}, {"_id": 0, "resolved": 1, "assigned": 1}).values()) != [0, 0]: return "failed" cops.update_one({"_id": cop_id}, {"$set": {"available": 0, "car_id": car_id}}) cars.update_one({"_id": car_id}, {"$set": {"assigned": 1, "cop_id": cop_id}}) return "assigned" def complete_assignment(cop_id, car_id): if list(cops.find_one({"_id": cop_id}, {"_id": 0, "available": 1}).values()) != [0]: return "failed" if list(cars.find_one({"_id": car_id}, {"_id": 0, "resolved": 1, "assigned": 1}).values()) != [0, 1]: return "failed" cops.update_one({"_id": cop_id}, {"$set": {"available": 1}}) cops.update_one({"_id": cop_id}, {"$set": {"car_id": ""}}) cars.update_one({"_id": car_id}, {"$set": {"assigned": 0}}) cars.update_one({"_id": car_id}, {"$set": {"resolved": 1}}) cars.update_one({"_id": car_id}, {"$set": {"cop_id": ""}}) return "resolved"
py
1a56ebaa676367536cb856879110bf3bbc96449c
"""Utilities related archives. """ # The following comment should be removed at some point in the future. # mypy: strict-optional=False # mypy: disallow-untyped-defs=False from __future__ import absolute_import import logging import os import shutil import stat import tarfile import zipfile from pip._internal.exceptions import InstallationError from pip._internal.utils.filetypes import ( BZ2_EXTENSIONS, TAR_EXTENSIONS, XZ_EXTENSIONS, ZIP_EXTENSIONS, ) from pip._internal.utils.misc import ensure_dir from pip._internal.utils.typing import MYPY_CHECK_RUNNING if MYPY_CHECK_RUNNING: from typing import Iterable, List, Optional, Text, Union logger = logging.getLogger(__name__) SUPPORTED_EXTENSIONS = ZIP_EXTENSIONS + TAR_EXTENSIONS try: import bz2 # noqa SUPPORTED_EXTENSIONS += BZ2_EXTENSIONS except ImportError: logger.debug("bz2 module is not available") try: # Only for Python 3.3+ import lzma # noqa SUPPORTED_EXTENSIONS += XZ_EXTENSIONS except ImportError: logger.debug("lzma module is not available") def current_umask(): """Get the current umask which involves having to set it temporarily.""" mask = os.umask(0) os.umask(mask) return mask def split_leading_dir(path): # type: (Union[str, Text]) -> List[Union[str, Text]] path = path.lstrip("/").lstrip("\\") if "/" in path and ( ("\\" in path and path.find("/") < path.find("\\")) or "\\" not in path ): return path.split("/", 1) elif "\\" in path: return path.split("\\", 1) else: return [path, ""] def has_leading_dir(paths): # type: (Iterable[Union[str, Text]]) -> bool """Returns true if all the paths have the same leading path name (i.e., everything is in one subdirectory in an archive)""" common_prefix = None for path in paths: prefix, rest = split_leading_dir(path) if not prefix: return False elif common_prefix is None: common_prefix = prefix elif prefix != common_prefix: return False return True def is_within_directory(directory, target): # type: ((Union[str, Text]), (Union[str, Text])) -> bool """ Return true if the absolute path of target is within the directory """ abs_directory = os.path.abspath(directory) abs_target = os.path.abspath(target) prefix = os.path.commonprefix([abs_directory, abs_target]) return prefix == abs_directory def unzip_file(filename, location, flatten=True): # type: (str, str, bool) -> None """ Unzip the file (with path `filename`) to the destination `location`. All files are written based on system defaults and umask (i.e. permissions are not preserved), except that regular file members with any execute permissions (user, group, or world) have "chmod +x" applied after being written. Note that for windows, any execute changes using os.chmod are no-ops per the python docs. """ ensure_dir(location) zipfp = open(filename, "rb") try: zip = zipfile.ZipFile(zipfp, allowZip64=True) leading = has_leading_dir(zip.namelist()) and flatten for info in zip.infolist(): name = info.filename fn = name if leading: fn = split_leading_dir(name)[1] fn = os.path.join(location, fn) dir = os.path.dirname(fn) if not is_within_directory(location, fn): message = ( "The zip file ({}) has a file ({}) trying to install " "outside target directory ({})" ) raise InstallationError(message.format(filename, fn, location)) if fn.endswith("/") or fn.endswith("\\"): # A directory ensure_dir(fn) else: ensure_dir(dir) # Don't use read() to avoid allocating an arbitrarily large # chunk of memory for the file's content fp = zip.open(name) try: with open(fn, "wb") as destfp: shutil.copyfileobj(fp, destfp) finally: fp.close() mode = info.external_attr >> 16 # if mode and regular file and any execute permissions for # user/group/world? if mode and stat.S_ISREG(mode) and mode & 0o111: # make dest file have execute for user/group/world # (chmod +x) no-op on windows per python docs os.chmod(fn, (0o777 - current_umask() | 0o111)) finally: zipfp.close() def untar_file(filename, location): # type: (str, str) -> None """ Untar the file (with path `filename`) to the destination `location`. All files are written based on system defaults and umask (i.e. permissions are not preserved), except that regular file members with any execute permissions (user, group, or world) have "chmod +x" applied after being written. Note that for windows, any execute changes using os.chmod are no-ops per the python docs. """ ensure_dir(location) if filename.lower().endswith(".gz") or filename.lower().endswith(".tgz"): mode = "r:gz" elif filename.lower().endswith(BZ2_EXTENSIONS): mode = "r:bz2" elif filename.lower().endswith(XZ_EXTENSIONS): mode = "r:xz" elif filename.lower().endswith(".tar"): mode = "r" else: logger.warning( "Cannot determine compression type for file %s", filename, ) mode = "r:*" tar = tarfile.open(filename, mode) try: leading = has_leading_dir([member.name for member in tar.getmembers()]) for member in tar.getmembers(): fn = member.name if leading: # https://github.com/python/mypy/issues/1174 fn = split_leading_dir(fn)[1] # type: ignore path = os.path.join(location, fn) if not is_within_directory(location, path): message = ( "The tar file ({}) has a file ({}) trying to install " "outside target directory ({})" ) raise InstallationError(message.format(filename, path, location)) if member.isdir(): ensure_dir(path) elif member.issym(): try: # https://github.com/python/typeshed/issues/2673 tar._extract_member(member, path) # type: ignore except Exception as exc: # Some corrupt tar files seem to produce this # (specifically bad symlinks) logger.warning( "In the tar file %s the member %s is invalid: %s", filename, member.name, exc, ) continue else: try: fp = tar.extractfile(member) except (KeyError, AttributeError) as exc: # Some corrupt tar files seem to produce this # (specifically bad symlinks) logger.warning( "In the tar file %s the member %s is invalid: %s", filename, member.name, exc, ) continue ensure_dir(os.path.dirname(path)) with open(path, "wb") as destfp: shutil.copyfileobj(fp, destfp) fp.close() # Update the timestamp (useful for cython compiled files) # https://github.com/python/typeshed/issues/2673 tar.utime(member, path) # type: ignore # member have any execute permissions for user/group/world? if member.mode & 0o111: # make dest file have execute for user/group/world # no-op on windows per python docs os.chmod(path, (0o777 - current_umask() | 0o111)) finally: tar.close() def unpack_file( filename, # type: str location, # type: str content_type=None, # type: Optional[str] ): # type: (...) -> None filename = os.path.realpath(filename) if ( content_type == "application/zip" or filename.lower().endswith(ZIP_EXTENSIONS) or zipfile.is_zipfile(filename) ): unzip_file(filename, location, flatten=not filename.endswith(".whl")) elif ( content_type == "application/x-gzip" or tarfile.is_tarfile(filename) or filename.lower().endswith(TAR_EXTENSIONS + BZ2_EXTENSIONS + XZ_EXTENSIONS) ): untar_file(filename, location) else: # FIXME: handle? # FIXME: magic signatures? logger.critical( "Cannot unpack file %s (downloaded from %s, content-type: %s); " "cannot detect archive format", filename, location, content_type, ) raise InstallationError( "Cannot determine archive format of {}".format(location) )
py
1a56ebd1f1e5c924f4155b1018d4a414bbb1d4ec
# -*- coding: utf-8 -*- """ Deeplabv3+ model for Keras. This model is based on TF repo: https://github.com/tensorflow/models/tree/master/research/deeplab On Pascal VOC, original model gets to 84.56% mIOU Now this model is only available for the TensorFlow backend, due to its reliance on `SeparableConvolution` layers, but Theano will add this layer soon. MobileNetv2 backbone is based on this repo: https://github.com/JonathanCMitchell/mobilenet_v2_keras # Reference - [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/pdf/1802.02611.pdf) - [Xception: Deep Learning with Depthwise Separable Convolutions] (https://arxiv.org/abs/1610.02357) - [Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation](https://arxiv.org/abs/1801.04381) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from keras.models import Model from keras import layers from keras.layers import Input from keras.layers import Activation from keras.layers import Concatenate from keras.layers import Add from keras.layers import Dropout from keras.layers import BatchNormalization from keras.layers import Conv2D from keras.layers import DepthwiseConv2D from keras.layers import ZeroPadding2D from keras.layers import AveragePooling2D from keras.engine import Layer from keras.engine import InputSpec from keras.engine.topology import get_source_inputs from keras import backend as K from keras.applications import imagenet_utils from keras.utils import conv_utils from keras.utils.data_utils import get_file WEIGHTS_PATH_X = "https://github.com/bonlime/keras-deeplab-v3-plus/releases/download/1.1/deeplabv3_xception_tf_dim_ordering_tf_kernels.h5" WEIGHTS_PATH_MOBILE = "https://github.com/bonlime/keras-deeplab-v3-plus/releases/download/1.1/deeplabv3_mobilenetv2_tf_dim_ordering_tf_kernels.h5" class BilinearUpsampling(Layer): """Just a simple bilinear upsampling layer. Works only with TF. Args: upsampling: tuple of 2 numbers > 0. The upsampling ratio for h and w output_size: used instead of upsampling arg if passed! """ def __init__(self, upsampling=(2, 2), output_size=None, data_format=None, **kwargs): super(BilinearUpsampling, self).__init__(**kwargs) self.data_format = K.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4) if output_size: self.output_size = conv_utils.normalize_tuple( output_size, 2, 'output_size') self.upsampling = None else: self.output_size = None self.upsampling = conv_utils.normalize_tuple( upsampling, 2, 'upsampling') def compute_output_shape(self, input_shape): if self.upsampling: height = self.upsampling[0] * \ input_shape[1] if input_shape[1] is not None else None width = self.upsampling[1] * \ input_shape[2] if input_shape[2] is not None else None else: height = self.output_size[0] width = self.output_size[1] return (input_shape[0], height, width, input_shape[3]) def call(self, inputs): if self.upsampling: return K.tf.image.resize_bilinear(inputs, (inputs.shape[1] * self.upsampling[0], inputs.shape[2] * self.upsampling[1]), align_corners=True) else: return K.tf.image.resize_bilinear(inputs, (self.output_size[0], self.output_size[1]), align_corners=True) def get_config(self): config = {'upsampling': self.upsampling, 'output_size': self.output_size, 'data_format': self.data_format} base_config = super(BilinearUpsampling, self).get_config() return dict(list(base_config.items()) + list(config.items())) def SepConv_BN(x, filters, prefix, stride=1, kernel_size=3, rate=1, depth_activation=False, epsilon=1e-3): """ SepConv with BN between depthwise & pointwise. Optionally add activation after BN Implements right "same" padding for even kernel sizes Args: x: input tensor filters: num of filters in pointwise convolution prefix: prefix before name stride: stride at depthwise conv kernel_size: kernel size for depthwise convolution rate: atrous rate for depthwise convolution depth_activation: flag to use activation between depthwise & poinwise convs epsilon: epsilon to use in BN layer """ if stride == 1: depth_padding = 'same' else: kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1) pad_total = kernel_size_effective - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg x = ZeroPadding2D((pad_beg, pad_end))(x) depth_padding = 'valid' if not depth_activation: x = Activation('relu')(x) x = DepthwiseConv2D((kernel_size, kernel_size), strides=(stride, stride), dilation_rate=(rate, rate), padding=depth_padding, use_bias=False, name=prefix + '_depthwise')(x) x = BatchNormalization(name=prefix + '_depthwise_BN', epsilon=epsilon)(x) if depth_activation: x = Activation('relu')(x) x = Conv2D(filters, (1, 1), padding='same', use_bias=False, name=prefix + '_pointwise')(x) x = BatchNormalization(name=prefix + '_pointwise_BN', epsilon=epsilon)(x) if depth_activation: x = Activation('relu')(x) return x def _conv2d_same(x, filters, prefix, stride=1, kernel_size=3, rate=1): """Implements right 'same' padding for even kernel sizes Without this there is a 1 pixel drift when stride = 2 Args: x: input tensor filters: num of filters in pointwise convolution prefix: prefix before name stride: stride at depthwise conv kernel_size: kernel size for depthwise convolution rate: atrous rate for depthwise convolution """ if stride == 1: return Conv2D(filters, (kernel_size, kernel_size), strides=(stride, stride), padding='same', use_bias=False, dilation_rate=(rate, rate), name=prefix)(x) else: kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1) pad_total = kernel_size_effective - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg x = ZeroPadding2D((pad_beg, pad_end))(x) return Conv2D(filters, (kernel_size, kernel_size), strides=(stride, stride), padding='valid', use_bias=False, dilation_rate=(rate, rate), name=prefix)(x) def _xception_block(inputs, depth_list, prefix, skip_connection_type, stride, rate=1, depth_activation=False, return_skip=False): """ Basic building block of modified Xception network Args: inputs: input tensor depth_list: number of filters in each SepConv layer. len(depth_list) == 3 prefix: prefix before name skip_connection_type: one of {'conv','sum','none'} stride: stride at last depthwise conv rate: atrous rate for depthwise convolution depth_activation: flag to use activation between depthwise & pointwise convs return_skip: flag to return additional tensor after 2 SepConvs for decoder """ residual = inputs for i in range(3): residual = SepConv_BN(residual, depth_list[i], prefix + '_separable_conv{}'.format(i + 1), stride=stride if i == 2 else 1, rate=rate, depth_activation=depth_activation) if i == 1: skip = residual if skip_connection_type == 'conv': shortcut = _conv2d_same(inputs, depth_list[-1], prefix + '_shortcut', kernel_size=1, stride=stride) shortcut = BatchNormalization(name=prefix + '_shortcut_BN')(shortcut) outputs = layers.add([residual, shortcut]) elif skip_connection_type == 'sum': outputs = layers.add([residual, inputs]) elif skip_connection_type == 'none': outputs = residual if return_skip: return outputs, skip else: return outputs def relu6(x): return K.relu(x, max_value=6) def _make_divisible(v, divisor, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id, skip_connection, rate=1): in_channels = inputs._keras_shape[-1] pointwise_conv_filters = int(filters * alpha) pointwise_filters = _make_divisible(pointwise_conv_filters, 8) x = inputs prefix = 'expanded_conv_{}_'.format(block_id) if block_id: # Expand x = Conv2D(expansion * in_channels, kernel_size=1, padding='same', use_bias=False, activation=None, name=prefix + 'expand')(x) x = BatchNormalization(epsilon=1e-3, momentum=0.999, name=prefix + 'expand_BN')(x) x = Activation(relu6, name=prefix + 'expand_relu')(x) else: prefix = 'expanded_conv_' # Depthwise x = DepthwiseConv2D(kernel_size=3, strides=stride, activation=None, use_bias=False, padding='same', dilation_rate=(rate, rate), name=prefix + 'depthwise')(x) x = BatchNormalization(epsilon=1e-3, momentum=0.999, name=prefix + 'depthwise_BN')(x) x = Activation(relu6, name=prefix + 'depthwise_relu')(x) # Project x = Conv2D(pointwise_filters, kernel_size=1, padding='same', use_bias=False, activation=None, name=prefix + 'project')(x) x = BatchNormalization(epsilon=1e-3, momentum=0.999, name=prefix + 'project_BN')(x) if skip_connection: return Add(name=prefix + 'add')([inputs, x]) # if in_channels == pointwise_filters and stride == 1: # return Add(name='res_connect_' + str(block_id))([inputs, x]) return x def Deeplabv3(weights='pascal_voc', input_tensor=None, input_shape=(512, 512, 3), classes=21, backbone='mobilenetv2', OS=16, alpha=1.): """ Instantiates the Deeplabv3+ architecture Optionally loads weights pre-trained on PASCAL VOC. This model is available for TensorFlow only, and can only be used with inputs following the TensorFlow data format `(width, height, channels)`. # Arguments weights: one of 'pascal_voc' (pre-trained on pascal voc) or None (random initialization) input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: shape of input image. format HxWxC PASCAL VOC model was trained on (512,512,3) images classes: number of desired classes. If classes != 21, last layer is initialized randomly backbone: backbone to use. one of {'xception','mobilenetv2'} OS: determines input_shape/feature_extractor_output ratio. One of {8,16}. Used only for xception backbone. alpha: controls the width of the MobileNetV2 network. This is known as the width multiplier in the MobileNetV2 paper. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. Used only for mobilenetv2 backbone # Returns A Keras model instance. # Raises RuntimeError: If attempting to run this model with a backend that does not support separable convolutions. ValueError: in case of invalid argument for `weights` or `backbone` """ if not (weights in {'pascal_voc', None}): raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `pascal_voc` ' '(pre-trained on PASCAL VOC)') if K.backend() != 'tensorflow': raise RuntimeError('The Deeplabv3+ model is only available with ' 'the TensorFlow backend.') if not (backbone in {'xception', 'mobilenetv2'}): raise ValueError('The `backbone` argument should be either ' '`xception` or `mobilenetv2` ') if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor if backbone == 'xception': if OS == 8: entry_block3_stride = 1 middle_block_rate = 2 # ! Not mentioned in paper, but required exit_block_rates = (2, 4) atrous_rates = (12, 24, 36) else: entry_block3_stride = 2 middle_block_rate = 1 exit_block_rates = (1, 2) atrous_rates = (6, 12, 18) x = Conv2D(32, (3, 3), strides=(2, 2), name='entry_flow_conv1_1', use_bias=False, padding='same')(img_input) x = BatchNormalization(name='entry_flow_conv1_1_BN')(x) x = Activation('relu')(x) x = _conv2d_same(x, 64, 'entry_flow_conv1_2', kernel_size=3, stride=1) x = BatchNormalization(name='entry_flow_conv1_2_BN')(x) x = Activation('relu')(x) x = _xception_block(x, [128, 128, 128], 'entry_flow_block1', skip_connection_type='conv', stride=2, depth_activation=False) x, skip1 = _xception_block(x, [256, 256, 256], 'entry_flow_block2', skip_connection_type='conv', stride=2, depth_activation=False, return_skip=True) x = _xception_block(x, [728, 728, 728], 'entry_flow_block3', skip_connection_type='conv', stride=entry_block3_stride, depth_activation=False) for i in range(16): x = _xception_block(x, [728, 728, 728], 'middle_flow_unit_{}'.format(i + 1), skip_connection_type='sum', stride=1, rate=middle_block_rate, depth_activation=False) x = _xception_block(x, [728, 1024, 1024], 'exit_flow_block1', skip_connection_type='conv', stride=1, rate=exit_block_rates[0], depth_activation=False) x = _xception_block(x, [1536, 1536, 2048], 'exit_flow_block2', skip_connection_type='none', stride=1, rate=exit_block_rates[1], depth_activation=True) else: OS = 8 first_block_filters = _make_divisible(32 * alpha, 8) x = Conv2D(first_block_filters, kernel_size=3, strides=(2, 2), padding='same', use_bias=False, name='Conv')(img_input) x = BatchNormalization( epsilon=1e-3, momentum=0.999, name='Conv_BN')(x) x = Activation(relu6, name='Conv_Relu6')(x) x = _inverted_res_block(x, filters=16, alpha=alpha, stride=1, expansion=1, block_id=0, skip_connection=False) x = _inverted_res_block(x, filters=24, alpha=alpha, stride=2, expansion=6, block_id=1, skip_connection=False) x = _inverted_res_block(x, filters=24, alpha=alpha, stride=1, expansion=6, block_id=2, skip_connection=True) x = _inverted_res_block(x, filters=32, alpha=alpha, stride=2, expansion=6, block_id=3, skip_connection=False) x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1, expansion=6, block_id=4, skip_connection=True) x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1, expansion=6, block_id=5, skip_connection=True) # stride in block 6 changed from 2 -> 1, so we need to use rate = 2 x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, # 1! expansion=6, block_id=6, skip_connection=False) x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, rate=2, expansion=6, block_id=7, skip_connection=True) x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, rate=2, expansion=6, block_id=8, skip_connection=True) x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, rate=2, expansion=6, block_id=9, skip_connection=True) x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, rate=2, expansion=6, block_id=10, skip_connection=False) x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, rate=2, expansion=6, block_id=11, skip_connection=True) x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, rate=2, expansion=6, block_id=12, skip_connection=True) x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, rate=2, # 1! expansion=6, block_id=13, skip_connection=False) x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, rate=4, expansion=6, block_id=14, skip_connection=True) x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, rate=4, expansion=6, block_id=15, skip_connection=True) x = _inverted_res_block(x, filters=320, alpha=alpha, stride=1, rate=4, expansion=6, block_id=16, skip_connection=False) # end of feature extractor # branching for Atrous Spatial Pyramid Pooling # Image Feature branch #out_shape = int(np.ceil(input_shape[0] / OS)) b4 = AveragePooling2D(pool_size=(int(np.ceil(input_shape[0] / OS)), int(np.ceil(input_shape[1] / OS))))(x) b4 = Conv2D(256, (1, 1), padding='same', use_bias=False, name='image_pooling')(b4) b4 = BatchNormalization(name='image_pooling_BN', epsilon=1e-5)(b4) b4 = Activation('relu')(b4) b4 = BilinearUpsampling((int(np.ceil(input_shape[0] / OS)), int(np.ceil(input_shape[1] / OS))))(b4) # simple 1x1 b0 = Conv2D(256, (1, 1), padding='same', use_bias=False, name='aspp0')(x) b0 = BatchNormalization(name='aspp0_BN', epsilon=1e-5)(b0) b0 = Activation('relu', name='aspp0_activation')(b0) # there are only 2 branches in mobilenetV2. not sure why if backbone == 'xception': # rate = 6 (12) b1 = SepConv_BN(x, 256, 'aspp1', rate=atrous_rates[0], depth_activation=True, epsilon=1e-5) # rate = 12 (24) b2 = SepConv_BN(x, 256, 'aspp2', rate=atrous_rates[1], depth_activation=True, epsilon=1e-5) # rate = 18 (36) b3 = SepConv_BN(x, 256, 'aspp3', rate=atrous_rates[2], depth_activation=True, epsilon=1e-5) # concatenate ASPP branches & project x = Concatenate()([b4, b0, b1, b2, b3]) else: x = Concatenate()([b4, b0]) x = Conv2D(256, (1, 1), padding='same', use_bias=False, name='concat_projection')(x) x = BatchNormalization(name='concat_projection_BN', epsilon=1e-5)(x) x = Activation('relu')(x) x = Dropout(0.1)(x) # DeepLab v.3+ decoder if backbone == 'xception': # Feature projection # x4 (x2) block x = BilinearUpsampling(output_size=(int(np.ceil(input_shape[0] / 4)), int(np.ceil(input_shape[1] / 4))))(x) dec_skip1 = Conv2D(48, (1, 1), padding='same', use_bias=False, name='feature_projection0')(skip1) dec_skip1 = BatchNormalization( name='feature_projection0_BN', epsilon=1e-5)(dec_skip1) dec_skip1 = Activation('relu')(dec_skip1) x = Concatenate()([x, dec_skip1]) x = SepConv_BN(x, 256, 'decoder_conv0', depth_activation=True, epsilon=1e-5) x = SepConv_BN(x, 256, 'decoder_conv1', depth_activation=True, epsilon=1e-5) # you can use it with arbitary number of classes if classes == 21: last_layer_name = 'logits_semantic' else: last_layer_name = 'custom_logits_semantic' x = Conv2D(classes, (1, 1), padding='same', name=last_layer_name)(x) x = BilinearUpsampling(output_size=(input_shape[0], input_shape[1]))(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input model = Model(inputs, x, name='deeplabv3plus') # load weights if weights == 'pascal_voc': if backbone == 'xception': weights_path = get_file('deeplabv3_xception_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH_X, cache_subdir='models') else: weights_path = get_file('deeplabv3_mobilenetv2_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH_MOBILE, cache_subdir='models') model.load_weights(weights_path, by_name=True) return model def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Input array scaled to [-1.,1.] """ return imagenet_utils.preprocess_input(x, mode='tf')
py
1a56ec7ccca5dd7409052e32a4fc5efdae1d0ff3
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdksmartag.endpoint import endpoint_data class UnbindVbrRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Smartag', '2018-03-13', 'UnbindVbr','smartag') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): # Long return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self, ResourceOwnerId): # Long self.add_query_param('ResourceOwnerId', ResourceOwnerId) def get_VbrId(self): # String return self.get_query_params().get('VbrId') def set_VbrId(self, VbrId): # String self.add_query_param('VbrId', VbrId) def get_VbrRegionId(self): # String return self.get_query_params().get('VbrRegionId') def set_VbrRegionId(self, VbrRegionId): # String self.add_query_param('VbrRegionId', VbrRegionId) def get_ResourceOwnerAccount(self): # String return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self, ResourceOwnerAccount): # String self.add_query_param('ResourceOwnerAccount', ResourceOwnerAccount) def get_OwnerAccount(self): # String return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self, OwnerAccount): # String self.add_query_param('OwnerAccount', OwnerAccount) def get_OwnerId(self): # Long return self.get_query_params().get('OwnerId') def set_OwnerId(self, OwnerId): # Long self.add_query_param('OwnerId', OwnerId) def get_SmartAGUid(self): # Long return self.get_query_params().get('SmartAGUid') def set_SmartAGUid(self, SmartAGUid): # Long self.add_query_param('SmartAGUid', SmartAGUid) def get_SmartAGId(self): # String return self.get_query_params().get('SmartAGId') def set_SmartAGId(self, SmartAGId): # String self.add_query_param('SmartAGId', SmartAGId)
py
1a56ec97112a5f3b666ed13f0a94c3d28c786f2a
# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Ironic base exception handling. SHOULD include dedicated exception logging. """ import collections from oslo_log import log as logging from oslo_serialization import jsonutils import six from six.moves import http_client from ironic.common.i18n import _ from ironic.conf import CONF LOG = logging.getLogger(__name__) def _ensure_exception_kwargs_serializable(exc_class_name, kwargs): """Ensure that kwargs are serializable Ensure that all kwargs passed to exception constructor can be passed over RPC, by trying to convert them to JSON, or, as a last resort, to string. If it is not possible, unserializable kwargs will be removed, letting the receiver to handle the exception string as it is configured to. :param exc_class_name: an IronicException class name. :param kwargs: a dictionary of keyword arguments passed to the exception constructor. :returns: a dictionary of serializable keyword arguments. """ serializers = [(jsonutils.dumps, _('when converting to JSON')), (six.text_type, _('when converting to string'))] exceptions = collections.defaultdict(list) serializable_kwargs = {} for k, v in kwargs.items(): for serializer, msg in serializers: try: serializable_kwargs[k] = serializer(v) exceptions.pop(k, None) break except Exception as e: exceptions[k].append( '(%(serializer_type)s) %(e_type)s: %(e_contents)s' % {'serializer_type': msg, 'e_contents': e, 'e_type': e.__class__.__name__}) if exceptions: LOG.error("One or more arguments passed to the %(exc_class)s " "constructor as kwargs can not be serialized. The " "serialized arguments: %(serialized)s. These " "unserialized kwargs were dropped because of the " "exceptions encountered during their " "serialization:\n%(errors)s", dict(errors=';\n'.join("%s: %s" % (k, '; '.join(v)) for k, v in exceptions.items()), exc_class=exc_class_name, serialized=serializable_kwargs)) # We might be able to actually put the following keys' values into # format string, but there is no guarantee, drop it just in case. for k in exceptions: del kwargs[k] return serializable_kwargs class IronicException(Exception): """Base Ironic Exception To correctly use this class, inherit from it and define a '_msg_fmt' property. That message will get printf'd with the keyword arguments provided to the constructor. If you need to access the message from an exception you should use six.text_type(exc) """ _msg_fmt = _("An unknown exception occurred.") code = http_client.INTERNAL_SERVER_ERROR safe = False def __init__(self, message=None, **kwargs): self.kwargs = _ensure_exception_kwargs_serializable( self.__class__.__name__, kwargs) if 'code' not in self.kwargs: try: self.kwargs['code'] = self.code except AttributeError: pass else: self.code = int(kwargs['code']) if not message: try: message = self._msg_fmt % kwargs except Exception as e: # kwargs doesn't match a variable in self._msg_fmt # log the issue and the kwargs prs = ', '.join('%s: %s' % pair for pair in kwargs.items()) LOG.exception('Exception in string format operation ' '(arguments %s)', prs) if CONF.fatal_exception_format_errors: raise e else: # at least get the core self._msg_fmt out if something # happened message = self._msg_fmt super(IronicException, self).__init__(message) def __str__(self): """Encode to utf-8 then wsme api can consume it as well.""" if not six.PY3: return six.text_type(self.args[0]).encode('utf-8') return self.args[0] def __unicode__(self): """Return a unicode representation of the exception message.""" return six.text_type(self.args[0]) class NotAuthorized(IronicException): _msg_fmt = _("Not authorized.") code = http_client.FORBIDDEN class OperationNotPermitted(NotAuthorized): _msg_fmt = _("Operation not permitted.") class Invalid(IronicException): _msg_fmt = _("Unacceptable parameters.") code = http_client.BAD_REQUEST class Conflict(IronicException): _msg_fmt = _('Conflict.') code = http_client.CONFLICT class TemporaryFailure(IronicException): _msg_fmt = _("Resource temporarily unavailable, please retry.") code = http_client.SERVICE_UNAVAILABLE class NotAcceptable(IronicException): # TODO(deva): We need to set response headers in the API for this exception _msg_fmt = _("Request not acceptable.") code = http_client.NOT_ACCEPTABLE class InvalidState(Conflict): _msg_fmt = _("Invalid resource state.") class NodeAlreadyExists(Conflict): _msg_fmt = _("A node with UUID %(uuid)s already exists.") class MACAlreadyExists(Conflict): _msg_fmt = _("A port with MAC address %(mac)s already exists.") class ChassisAlreadyExists(Conflict): _msg_fmt = _("A chassis with UUID %(uuid)s already exists.") class PortAlreadyExists(Conflict): _msg_fmt = _("A port with UUID %(uuid)s already exists.") class PortgroupAlreadyExists(Conflict): _msg_fmt = _("A portgroup with UUID %(uuid)s already exists.") class PortgroupDuplicateName(Conflict): _msg_fmt = _("A portgroup with name %(name)s already exists.") class PortgroupMACAlreadyExists(Conflict): _msg_fmt = _("A portgroup with MAC address %(mac)s already exists.") class InstanceAssociated(Conflict): _msg_fmt = _("Instance %(instance_uuid)s is already associated with a " "node, it cannot be associated with this other node %(node)s") class DuplicateName(Conflict): _msg_fmt = _("A node with name %(name)s already exists.") class VolumeConnectorAlreadyExists(Conflict): _msg_fmt = _("A volume connector with UUID %(uuid)s already exists.") class VolumeConnectorTypeAndIdAlreadyExists(Conflict): _msg_fmt = _("A volume connector with type %(type)s and connector ID " "%(connector_id)s already exists.") class VolumeTargetAlreadyExists(Conflict): _msg_fmt = _("A volume target with UUID %(uuid)s already exists.") class VolumeTargetBootIndexAlreadyExists(Conflict): _msg_fmt = _("A volume target with boot index '%(boot_index)s' " "for the same node already exists.") class VifAlreadyAttached(Conflict): _msg_fmt = _("Unable to attach VIF because VIF %(vif)s is already " "attached to Ironic %(object_type)s %(object_uuid)s") class NoFreePhysicalPorts(Invalid): _msg_fmt = _("Unable to attach VIF %(vif)s, not " "enough free physical ports.") class VifNotAttached(Invalid): _msg_fmt = _("Unable to detach VIF %(vif)s from node %(node)s " "because it is not attached to it.") class InvalidUUID(Invalid): _msg_fmt = _("Expected a UUID but received %(uuid)s.") class InvalidUuidOrName(Invalid): _msg_fmt = _("Expected a logical name or UUID but received %(name)s.") class InvalidName(Invalid): _msg_fmt = _("Expected a logical name but received %(name)s.") class InvalidConductorGroup(Invalid): _msg_fmt = _("Expected a conductor group but received %(group)s.") class InvalidIdentity(Invalid): _msg_fmt = _("Expected a UUID or int but received %(identity)s.") class InvalidMAC(Invalid): _msg_fmt = _("Expected a MAC address but received %(mac)s.") class InvalidSwitchID(Invalid): _msg_fmt = _("Expected a MAC address or OpenFlow datapath ID but " "received %(switch_id)s.") class InvalidDatapathID(Invalid): _msg_fmt = _("Expected an OpenFlow datapath ID but received " "%(datapath_id)s.") class InvalidStateRequested(Invalid): _msg_fmt = _('The requested action "%(action)s" can not be performed ' 'on node "%(node)s" while it is in state "%(state)s".') class PatchError(Invalid): _msg_fmt = _("Couldn't apply patch '%(patch)s'. Reason: %(reason)s") class InstanceDeployFailure(IronicException): _msg_fmt = _("Failed to deploy instance: %(reason)s") class ImageUnacceptable(IronicException): _msg_fmt = _("Image %(image_id)s is unacceptable: %(reason)s") class ImageConvertFailed(IronicException): _msg_fmt = _("Image %(image_id)s is unacceptable: %(reason)s") # Cannot be templated as the error syntax varies. # msg needs to be constructed when raised. class InvalidParameterValue(Invalid): _msg_fmt = "%(err)s" class MissingParameterValue(InvalidParameterValue): _msg_fmt = "%(err)s" class Duplicate(IronicException): _msg_fmt = _("Resource already exists.") class NotFound(IronicException): _msg_fmt = _("Resource could not be found.") code = http_client.NOT_FOUND class DHCPLoadError(IronicException): _msg_fmt = _("Failed to load DHCP provider %(dhcp_provider_name)s, " "reason: %(reason)s") # TODO(dtantsur): word "driver" is overused in class names here, and generally # means stevedore driver, not ironic driver. Rename them in the future. class DriverNotFound(NotFound): _msg_fmt = _("Could not find the following driver(s) or hardware type(s): " "%(driver_name)s.") class DriverNotFoundInEntrypoint(DriverNotFound): _msg_fmt = _("Could not find the following items in the " "'%(entrypoint)s' entrypoint: %(names)s.") class InterfaceNotFoundInEntrypoint(InvalidParameterValue): _msg_fmt = _("Could not find the following interface in the " "'%(entrypoint)s' entrypoint: %(iface)s. Valid interfaces " "are %(valid)s.") class IncompatibleInterface(InvalidParameterValue): _msg_fmt = _("%(interface_type)s interface implementation " "'%(interface_impl)s' is not supported by hardware type " "%(hardware_type)s.") class NoValidDefaultForInterface(InvalidParameterValue): # NOTE(rloo): in the line below, there is no blank space after 'For' # because node_info could be an empty string. If node_info # is not empty, it should start with a space. _msg_fmt = _("For%(node_info)s hardware type '%(driver)s', no default " "value found for %(interface_type)s interface.") class ImageNotFound(NotFound): _msg_fmt = _("Image %(image_id)s could not be found.") class NoValidHost(NotFound): _msg_fmt = _("No valid host was found. Reason: %(reason)s") class InstanceNotFound(NotFound): _msg_fmt = _("Instance %(instance)s could not be found.") class InputFileError(IronicException): _msg_fmt = _("Error with file %(file_name)s. Reason: %(reason)s") class NodeNotFound(NotFound): _msg_fmt = _("Node %(node)s could not be found.") class PortgroupNotFound(NotFound): _msg_fmt = _("Portgroup %(portgroup)s could not be found.") class PortgroupNotEmpty(Invalid): _msg_fmt = _("Cannot complete the requested action because portgroup " "%(portgroup)s contains ports.") class NodeAssociated(InvalidState): _msg_fmt = _("Node %(node)s is associated with instance %(instance)s.") class PortNotFound(NotFound): _msg_fmt = _("Port %(port)s could not be found.") class FailedToUpdateDHCPOptOnPort(IronicException): _msg_fmt = _("Update DHCP options on port: %(port_id)s failed.") class FailedToCleanDHCPOpts(IronicException): _msg_fmt = _("Clean up DHCP options on node: %(node)s failed.") class FailedToGetIPAddressOnPort(IronicException): _msg_fmt = _("Retrieve IP address on port: %(port_id)s failed.") class InvalidIPv4Address(IronicException): _msg_fmt = _("Invalid IPv4 address %(ip_address)s.") class FailedToUpdateMacOnPort(IronicException): _msg_fmt = _("Update MAC address on port: %(port_id)s failed.") class ChassisNotFound(NotFound): _msg_fmt = _("Chassis %(chassis)s could not be found.") class VolumeConnectorNotFound(NotFound): _msg_fmt = _("Volume connector %(connector)s could not be found.") class VolumeTargetNotFound(NotFound): _msg_fmt = _("Volume target %(target)s could not be found.") class NoDriversLoaded(IronicException): _msg_fmt = _("Conductor %(conductor)s cannot be started " "because no hardware types were loaded.") class ConductorNotFound(NotFound): _msg_fmt = _("Conductor %(conductor)s could not be found.") class ConductorAlreadyRegistered(IronicException): _msg_fmt = _("Conductor %(conductor)s already registered.") class ConductorHardwareInterfacesAlreadyRegistered(IronicException): _msg_fmt = _("At least one of these (hardware type %(hardware_type)s, " "interface type %(interface_type)s, interfaces " "%(interfaces)s) combinations are already registered for " "this conductor.") class PowerStateFailure(InvalidState): _msg_fmt = _("Failed to set node power state to %(pstate)s.") class ExclusiveLockRequired(NotAuthorized): _msg_fmt = _("An exclusive lock is required, " "but the current context has a shared lock.") class NodeMaintenanceFailure(Invalid): _msg_fmt = _("Failed to toggle maintenance-mode flag " "for node %(node)s: %(reason)s") class NodeConsoleNotEnabled(Invalid): _msg_fmt = _("Console access is not enabled on node %(node)s") class NodeInMaintenance(Invalid): _msg_fmt = _("The %(op)s operation can't be performed on node " "%(node)s because it's in maintenance mode.") class ChassisNotEmpty(Invalid): _msg_fmt = _("Cannot complete the requested action because chassis " "%(chassis)s contains nodes.") class IPMIFailure(IronicException): _msg_fmt = _("IPMI call failed: %(cmd)s.") class UnsupportedDriverExtension(Invalid): _msg_fmt = _('Driver %(driver)s does not support %(extension)s ' '(disabled or not implemented).') class GlanceConnectionFailed(IronicException): _msg_fmt = _("Connection to glance endpoint %(endpoint)s failed: " "%(reason)s") class ImageNotAuthorized(NotAuthorized): _msg_fmt = _("Not authorized for image %(image_id)s.") class InvalidImageRef(Invalid): _msg_fmt = _("Invalid image href %(image_href)s.") class ImageRefValidationFailed(IronicException): _msg_fmt = _("Validation of image href %(image_href)s failed, " "reason: %(reason)s") class ImageDownloadFailed(IronicException): _msg_fmt = _("Failed to download image %(image_href)s, reason: %(reason)s") class KeystoneUnauthorized(IronicException): _msg_fmt = _("Not authorized in Keystone.") class KeystoneFailure(IronicException): pass class CatalogNotFound(IronicException): _msg_fmt = _("Service type %(service_type)s with endpoint type " "%(endpoint_type)s not found in keystone service catalog.") class ServiceUnavailable(IronicException): _msg_fmt = _("Connection failed") class Forbidden(IronicException): _msg_fmt = _("Requested OpenStack Images API is forbidden") class BadRequest(IronicException): pass class InvalidEndpoint(IronicException): _msg_fmt = _("The provided endpoint is invalid") class CommunicationError(IronicException): _msg_fmt = _("Unable to communicate with the server.") class HTTPForbidden(NotAuthorized): _msg_fmt = _("Access was denied to the following resource: %(resource)s") class Unauthorized(IronicException): pass class HTTPNotFound(NotFound): pass class ConfigNotFound(IronicException): _msg_fmt = _("Could not find config at %(path)s") class NodeLocked(Conflict): _msg_fmt = _("Node %(node)s is locked by host %(host)s, please retry " "after the current operation is completed.") class NodeNotLocked(Invalid): _msg_fmt = _("Node %(node)s found not to be locked on release") class NoFreeConductorWorker(TemporaryFailure): _msg_fmt = _('Requested action cannot be performed due to lack of free ' 'conductor workers.') code = http_client.SERVICE_UNAVAILABLE class VendorPassthruException(IronicException): pass class ConfigInvalid(IronicException): _msg_fmt = _("Invalid configuration file. %(error_msg)s") class DriverLoadError(IronicException): _msg_fmt = _("Driver, hardware type or interface %(driver)s could not be " "loaded. Reason: %(reason)s.") class DriverOperationError(IronicException): _msg_fmt = _("Runtime driver %(driver)s failure. Reason: %(reason)s.") class ConsoleError(IronicException): pass class NoConsolePid(ConsoleError): _msg_fmt = _("Could not find pid in pid file %(pid_path)s") class ConsoleSubprocessFailed(ConsoleError): _msg_fmt = _("Console subprocess failed to start. %(error)s") class PasswordFileFailedToCreate(IronicException): _msg_fmt = _("Failed to create the password file. %(error)s") class IloOperationError(DriverOperationError): _msg_fmt = _("%(operation)s failed, error: %(error)s") class IloOperationNotSupported(DriverOperationError): _msg_fmt = _("%(operation)s not supported. error: %(error)s") class DracOperationError(DriverOperationError): _msg_fmt = _('DRAC operation failed. Reason: %(error)s') class FailedToGetSensorData(IronicException): _msg_fmt = _("Failed to get sensor data for node %(node)s. " "Error: %(error)s") class FailedToParseSensorData(IronicException): _msg_fmt = _("Failed to parse sensor data for node %(node)s. " "Error: %(error)s") class InsufficientDiskSpace(IronicException): _msg_fmt = _("Disk volume where '%(path)s' is located doesn't have " "enough disk space. Required %(required)d MiB, " "only %(actual)d MiB available space present.") class ImageCreationFailed(IronicException): _msg_fmt = _('Creating %(image_type)s image failed: %(error)s') class SwiftOperationError(IronicException): _msg_fmt = _("Swift operation '%(operation)s' failed: %(error)s") class SwiftObjectNotFoundError(SwiftOperationError): _msg_fmt = _("Swift object %(obj)s from container %(container)s " "not found. Operation '%(operation)s' failed.") class SwiftTempUrlKeyNotFoundError(SwiftOperationError): _msg_fmt = _("Swift Temp-Url-Key property not found in account." " Operation '%(operation)s' failed.") class SNMPFailure(DriverOperationError): _msg_fmt = _("SNMP operation '%(operation)s' failed: %(error)s") class FileSystemNotSupported(IronicException): _msg_fmt = _("Failed to create a file system. " "File system %(fs)s is not supported.") class IRMCOperationError(DriverOperationError): _msg_fmt = _('iRMC %(operation)s failed. Reason: %(error)s') class IRMCSharedFileSystemNotMounted(DriverOperationError): _msg_fmt = _("iRMC shared file system '%(share)s' is not mounted.") class HardwareInspectionFailure(IronicException): _msg_fmt = _("Failed to inspect hardware. Reason: %(error)s") class NodeCleaningFailure(IronicException): _msg_fmt = _("Failed to clean node %(node)s: %(reason)s") class PathNotFound(IronicException): _msg_fmt = _("Path %(dir)s does not exist.") class DirectoryNotWritable(IronicException): _msg_fmt = _("Directory %(dir)s is not writable.") class UcsOperationError(DriverOperationError): _msg_fmt = _("Cisco UCS client: operation %(operation)s failed for node" " %(node)s. Reason: %(error)s") class UcsConnectionError(IronicException): _msg_fmt = _("Cisco UCS client: connection failed for node " "%(node)s. Reason: %(error)s") class ImageUploadFailed(IronicException): _msg_fmt = _("Failed to upload %(image_name)s image to web server " "%(web_server)s, reason: %(reason)s") class CIMCException(DriverOperationError): _msg_fmt = _("Cisco IMC exception occurred for node %(node)s: %(error)s") class OneViewError(DriverOperationError): _msg_fmt = _("OneView exception occurred. Error: %(error)s") class OneViewInvalidNodeParameter(OneViewError): _msg_fmt = _("Error while obtaining OneView info from node %(node_uuid)s. " "Error: %(error)s") class NodeTagNotFound(IronicException): _msg_fmt = _("Node %(node_id)s doesn't have a tag '%(tag)s'") class NetworkError(IronicException): _msg_fmt = _("Network operation failure.") class IncompleteLookup(Invalid): _msg_fmt = _("At least one of 'addresses' and 'node_uuid' parameters " "is required") class NotificationSchemaObjectError(IronicException): _msg_fmt = _("Expected object %(obj)s when populating notification payload" " but got object %(source)s") class NotificationSchemaKeyError(IronicException): _msg_fmt = _("Object %(obj)s doesn't have the field \"%(field)s\" " "required for populating notification schema key " "\"%(key)s\"") class NotificationPayloadError(IronicException): _msg_fmt = _("Payload not populated when trying to send notification " "\"%(class_name)s\"") class StorageError(IronicException): _msg_fmt = _("Storage operation failure.") class RedfishError(DriverOperationError): _msg_fmt = _("Redfish exception occurred. Error: %(error)s") class RedfishConnectionError(RedfishError): _msg_fmt = _("Redfish connection failed for node %(node)s: %(error)s") class PortgroupPhysnetInconsistent(IronicException): _msg_fmt = _("Port group %(portgroup)s has member ports with inconsistent " "physical networks (%(physical_networks)s). All ports in a " "port group must have the same physical network.") class VifInvalidForAttach(Conflict): _msg_fmt = _("Unable to attach VIF %(vif)s to node %(node)s. Reason: " "%(reason)s") class AgentAPIError(IronicException): _msg_fmt = _('Agent API for node %(node)s returned HTTP status code ' '%(status)s with error: %(error)s') class NodeTraitNotFound(NotFound): _msg_fmt = _("Node %(node_id)s doesn't have a trait '%(trait)s'") class InstanceRescueFailure(IronicException): _msg_fmt = _('Failed to rescue instance %(instance)s for node ' '%(node)s: %(reason)s') class InstanceUnrescueFailure(IronicException): _msg_fmt = _('Failed to unrescue instance %(instance)s for node ' '%(node)s: %(reason)s') class XClarityError(IronicException): _msg_fmt = _("XClarity exception occurred. Error: %(error)s") class BIOSSettingAlreadyExists(Conflict): _msg_fmt = _('A BIOS setting %(name)s for node %(node)s already exists.') class BIOSSettingNotFound(NotFound): _msg_fmt = _("Node %(node)s doesn't have a BIOS setting '%(name)s'") class BIOSSettingListNotFound(NotFound): _msg_fmt = _("Node %(node)s doesn't have BIOS settings '%(names)s'") class DatabaseVersionTooOld(IronicException): _msg_fmt = _("Database version is too old") class AgentConnectionFailed(IronicException): _msg_fmt = _("Connection to agent failed: %(reason)s")
py
1a56eca1896aa5a9a76708e6778511cec4423c7d
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from .. import models class CertificateRegistrationProviderOperations(object): """CertificateRegistrationProviderOperations operations. You should not instantiate directly this class, but create a Client instance that will create it for you and attach it as attribute. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: API Version. Constant value: "2015-08-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2015-08-01" self.config = config def list_operations( self, custom_headers=None, raw=False, **operation_config): """Implements Csm operations Api to exposes the list of available Csm Apis under the resource provider. Implements Csm operations Api to exposes the list of available Csm Apis under the resource provider. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of CsmOperationDescription :rtype: ~azure.mgmt.web.models.CsmOperationDescriptionPaged[~azure.mgmt.web.models.CsmOperationDescription] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list_operations.metadata['url'] # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request def internal_paging(next_link=None): request = prepare_request(next_link) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response header_dict = None if raw: header_dict = {} deserialized = models.CsmOperationDescriptionPaged(internal_paging, self._deserialize.dependencies, header_dict) return deserialized list_operations.metadata = {'url': '/providers/Microsoft.CertificateRegistration/operations'}
py
1a56ed1f8667a05f7bbb651ef352eed41d8c254f
''' Copyright 2016 Tom Kenter Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import theano import theano.tensor as T import lasagne import numpy as np import sys import os import re import _pickle as cPickle #import cPickle def makeOutputFileName(oArgs, iNrOfEmbeddings, iEmbeddingSize): sShareWeights = "sharedWeights" if oArgs.bShareWeights else "noSharedWeights" sReg = "reg" if oArgs.bRegularize else "noReg" sLower = "noLc" if oArgs.bDontLowercase else "lc" sPreInit = "preInit" if oArgs.sWord2VecFile else "noPreInit" sGradientClippingBound = "noGradClip" \ if oArgs.fGradientClippingBound is None \ else ("gradClip_%f" % oArgs.fGradientClippingBound).replace(".", "_") sOutputFile = "%s_%s_%s_lr_%s_%s_epochs_%d_batch_%d_neg_%d_voc_%dx%d_%s_%s_%s.pickle" % \ (oArgs.sLastLayer, sShareWeights, oArgs.sUpdate, re.sub("_?0*$", '', ("%f" % oArgs.fLearningRate).replace(".", "_")), sGradientClippingBound, oArgs.iEpochs, oArgs.iBatchSize, oArgs.iNeg, iNrOfEmbeddings - 1, # -1, because of the 0-embedding iEmbeddingSize, sReg, sLower, sPreInit) return os.path.join(oArgs.OUTPUT_DIR, sOutputFile) def storeWordEmbeddings(sOutputFile, npaWordEmbeddings, oVocab, oArgs): if oArgs.bVerbose: print("Storing word embeddings to %s" % sOutputFile) fhOut = open(sOutputFile, mode='wb') dSCBOW = {"oArgs": oArgs, "npaWordEmbeddings": npaWordEmbeddings, "oVocab": oVocab } cPickle.dump(dSCBOW, fhOut) fhOut.close() class softMaxLayer_matrix(lasagne.layers.MergeLayer): ''' First layer gives a vector (or a batch of vectors, really) Second layer gives a matrix (well, a batch of matrices) We return a vector of numbers, just as many as there are cols in the second layer matrix (NOTE that the second input layer is a transposed version of the layer before it) ''' def __init__(self, incomings, iEmbeddingSize, **kwargs): super(softMaxLayer, self).__init__(incomings, **kwargs) self.iEmbeddingSize = iEmbeddingSize def get_output_shape_for(self, input_shapes): # input_shapes come like this: # [(batch_size, vectors_size), (batch_size, rows, cols)] return (input_shapes[0][0], input_shapes[1][1]) def get_output_for(self, inputs, **kwargs): exps = T.exp((inputs[0].reshape((-1, self.iEmbeddingSize, 1)) * \ inputs[1]).sum(axis=1)) return exps / exps.sum(axis=1).dimshuffle((0, 'x')) class softMaxLayer(lasagne.layers.Layer): def __init__(self, incoming, **kwargs): super(softMaxLayer, self).__init__(incoming, **kwargs) def get_output_shape_for(self, input_shape): ''' The input is just a vector of numbers. The output is also a vector, same size as the input. ''' return input_shape def get_output_for(self, input, **kwargs): ''' Take the exp() of all inputs, and divide by the total. ''' exps = T.exp(input) return exps / exps.sum(axis=1).dimshuffle((0, 'x')) class sigmoidLayer(lasagne.layers.MergeLayer): ''' First layer gives a vector (or a batch of vectors, really) Second layer gives a matrix (well, a batch of matrices) We return a vector of numbers, just as many as there are cols in the second layer matrix (NOTE that the second input layer is a transposed version of the layer before it) ''' def __init__(self, incomings, iEmbeddingSize, **kwargs): super(sigmoidLayer, self).__init__(incomings, **kwargs) self.iEmbeddingSize = iEmbeddingSize def get_output_shape_for(self, input_shapes): # input_shapes come like this: # [(batch_size, vectors_size), (batch_size, rows, cols)] return (input_shapes[0][0], input_shapes[1][1]) def get_output_for(self, inputs, **kwargs): ''' We want a dot product of every row in inputs[0] (a vector) with every row in inputs[1] (a matrix). We do this 'by hand': we do a element-wise multiplication of every vector in inputs[0] with every matrix in inputs[1], and sum the result. ''' dots = (inputs[0].reshape((-1, self.iEmbeddingSize, 1)) * \ inputs[1]).sum(axis=1) # Take the sigmoid return 1.0 / (1.0 + T.exp(dots)) class cosineLayer(lasagne.layers.MergeLayer): ''' First layer gives a vector (or a batch of vectors, really) Second layer gives a matrix (well, a batch of matrices) We return a vector of numbers, just as many as there are cols in the second layer matrix (NOTE that the second input layer is a transposed version of the layer before it) ''' def __init__(self, incomings, iEmbeddingSize, **kwargs): super(cosineLayer, self).__init__(incomings, **kwargs) self.iEmbeddingSize = iEmbeddingSize def get_output_shape_for(self, input_shapes): # input_shapes come like this: # [(batch_size, vectors_size), (batch_size, rows, cols)] return (input_shapes[0][0], input_shapes[1][1]) def get_output_for(self, inputs, **kwargs): ''' We want a dot product of every row in inputs[0] (a vector) with every row in inputs[1] (a matrix). We do this 'by hand': we do a element-wise multiplication of every vector in inputs[0] with every matrix in inputs[1], and sum the result. ''' dots = (inputs[0].reshape((-1, self.iEmbeddingSize, 1)) * \ inputs[1]).sum(axis=1) # Make sure the braodcasting is right norms_1 = T.sqrt(T.square(inputs[0]).sum(axis=1)).dimshuffle(0, 'x') # NOTE that the embeddings are transposed in the previous layer norms_2 = T.sqrt(T.square(inputs[1]).sum(axis=1)) norms = norms_1 * norms_2 return dots / norms class averageLayer(lasagne.layers.Layer): def __init__(self, incoming, fGradientClippingBound=None, **kwargs): super(averageLayer, self).__init__(incoming, **kwargs) self.fGradientClippingBound = fGradientClippingBound def get_output_shape_for(self, input_shape): ''' The input is a batch of word vectors. The output is a single vector, same size as the input word embeddings In other words, since we are averaging, we loose the penultimate dimension ''' return (input_shape[0], input_shape[2]) def get_output_for(self, input, **kwargs): ''' The input is a batch of word vectors. The output the sum of the word embeddings divided by the number of non-null word embeddings in the input. What we do with the normalizers is, we go from [[[.01, .02, .03], # Word embedding sentence 1, word 1 [.02, .3, .01], # Word embedding sentence 1, word 2 [.0, .0, .0]], [[.05, .06, .063], # Word embedding sentence 2, word 1 [.034,.45, .05], [.01, .001, .03]], ... ] first to (so that is the inner non-zero sum(axis=2) part): [[3, 3, 0], # Number of non-zero components per vector in sentence 1 [3, 3, 3], # Number of non-zero components per vector in sentence 1 ... ] and finally to (so that is the outer non-zero sum(axis=1) part): [2, 3, ...] and we reshape that to: [[2], # Number of words in sentence 1 [3], # Number of words in sentence 2 ...] ''' # Sums of word embeddings (so the zero embeddings don't matter here) sums = input.sum(axis=1) # Can we do this cheaper (as in, more efficient)? # NOTE that we explicitly cast the output of the last sum() to floatX # as otherwise Theano will cast the result of 'sums / normalizers' to # float64 normalisers = T.neq((T.neq(input, 0.0)).sum(axis=2, dtype='int32'), 0.0).sum(axis=1, dtype='floatX').reshape((-1, 1)) averages = sums / normalisers if self.fGradientClippingBound is not None: averages = theano.gradient.grad_clip(averages, - self.fGradientClippingBound, self.fGradientClippingBound) return averages class averageLayer_matrix(lasagne.layers.Layer): def __init__(self, incoming, iNrOfSentences=None, fGradientClippingBound=None, **kwargs): super(averageLayer_matrix, self).__init__(incoming, **kwargs) self.iNrOfSentences = iNrOfSentences self.fGradientClippingBound = fGradientClippingBound def get_output_shape_for(self, input_shape): ''' The input is a batch of matrices of word vectors. The output is a batch of vectors, one for each matrix, the same size as the input word embeddings In other words, since we are averaging, we loose the penultimate dimension ''' return (input_shape[0], input_shape[1], input_shape[3]) def get_output_for(self, input, **kwargs): ''' The input is a batch of matrices of word vectors. The output the sum of the word embeddings divided by the number of non-zero word embeddings in the input. The idea with the normalisers is similar as in the normal averageLayer ''' # Sums of word embeddings (so the zero embeddings don't matter here) sums = input.sum(axis=2) # Can we do this cheaper (as in, more efficient)? # NOTE that we explicitly cast the output of the last sum() to floatX # as otherwise Theano will cast the result of 'sums / normalizers' to # float64 normalisers = T.neq((T.neq(input, 0.0)).sum(axis=3, dtype='int32'), 0.0).sum(axis=2, dtype='floatX').reshape((-1, self.iNrOfSentences, 1)) averages = sums / normalisers if self.fGradientClippingBound is not None: averages = theano.gradient.grad_clip(averages, - self.fGradientClippingBound, self.fGradientClippingBound) return averages class gateLayer(lasagne.layers.MergeLayer): def __init__(self, incomings, **kwargs): super(gateLayer, self).__init__(incomings, **kwargs) def get_output_shape_for(self, input_shapes): return input_shapes[1] def get_output_for(self, inputs, **kwargs): ''' First layer is a batch of embedding indices: [[11,21,43,0,0], [234,543,0,0,0,], ... ] Second layer are the embeddings: [ [[.02, .01...], [.004, .005, ...], ..., .0 .0 .0 ... , .0 .0 .0 ...], [[...], .... ] ] ''' return \ T.where(T.eq(inputs[0],0), np.float32(0.0), np.float32(1.0)).dimshuffle((0,1,'x')) * inputs[1] class gateLayer_matrix(lasagne.layers.MergeLayer): def __init__(self, incomings, **kwargs): super(gateLayer_matrix, self).__init__(incomings, **kwargs) def get_output_shape_for(self, input_shapes): return input_shapes[1] def get_output_for(self, inputs, **kwargs): ''' First layer is a batch of matrices of embedding indices: Second layer are the corresponding embeddings: ''' return \ T.where(T.eq(inputs[0],0), np.float32(0.0), np.float32(1.0)).dimshuffle((0,1,2,'x')) * inputs[1] class flipLayer(lasagne.layers.Layer): ''' Flip the word embeddings of the negative examples. So the word embeddings <we> of the negative examples will be become <-we> ''' def __init__(self, incoming, iPos=None, iNrOfSentences=None, **kwargs): super(flipLayer, self).__init__(incoming, **kwargs) # Set all the values to -1 npaFlipper = np.ones(iNrOfSentences, dtype=np.int8) * -1 # Except for the first one/two (the positive examples) npaFlipper[0:iPos] = 1 # Set the broadcasting right self.flipper = theano.shared(npaFlipper).dimshuffle('x', 0, 'x', 'x') def get_output_shape_for(self, input_shape): return input_shape def get_output_for(self, input, **kwargs): return input * self.flipper def preInit(tWeightShape, oW2v, oVocab): assert tWeightShape == (oW2v.syn0.shape[0] + 1, oW2v.syn0.shape[1]) # Copy the embeddings W = np.empty(tWeightShape, dtype=np.float32) # NOTE that we start at 1 here (rather than 0) W[1:tWeightShape[0],:] = oW2v.syn0 # Make a corresponding vocabulary # We start at index 1 (0 is a dummy 0.0 embedding) for i in range(oW2v.syn0.shape[0]): sWord = oW2v.index2word[i] iVocabIndex = i+1 oVocab.dVocab[sWord] = iVocabIndex oVocab.dIndex2word[iVocabIndex] = sWord return W def nextBatch(oSentenceIterator, funcRandomIterator, oVocab=None, npaBatch_1=None, npaBatch_2=None, iMaxNrOfTokens=None, iBatchSize=None, iPos=None, iNeg=None): ''' This function gives back a batch to train/test on. It needs: - a sentence iterator object that yields a triple of sentences: (sentence n, sentence n-1, sentence n+1) which are next to one another in the corpus. These are considered positive examples. - a sentence iterator that yields random sentences (so single sentences) from the corpus. These are used as negative examples. - the vocabulary object is usually empty npaBatch_1 and npaBatch_2 should be pre-allocated arrays of size: npaBatch_1: (iBatchSize, iMaxNrOfTokens) npaBatch_2: (iBatchSize, iNeg + iPos, iMaxNrOfTokens) ''' npaBatch_1[:] = 0.0 # Set the pre-allocated arrays to 0 again npaBatch_2[:] = 0.0 iSentencePairsSampled = 0 # NOTE that because of how we do things, the last batch isn't included if # it's smaller than the batch size for tSentenceTuple in oSentenceIterator: # NOTE in the toronto case, the sentence iterator already yields tokens isTorontoFormat= oSentenceIterator.sName == "torontoSentenceIterator" or \ oSentenceIterator.sName =="week" aWeIndices1 = \ [oVocab[sToken] for sToken in tSentenceTuple[0] \ if oVocab[sToken] is not None] \ if isTorontoFormat else \ [oVocab[sToken] for sToken in tSentenceTuple[0].split(' ') \ if oVocab[sToken] is not None] aWeIndices2 = \ [oVocab[sToken] for sToken in tSentenceTuple[1] \ if oVocab[sToken] is not None] \ if isTorontoFormat else \ [oVocab[sToken] for sToken in tSentenceTuple[1].split(' ') \ if oVocab[sToken] is not None] aWeIndices3 = None if iPos == 2: aWeIndices3 = \ [oVocab[sToken] for sToken in tSentenceTuple[2] \ if oVocab[sToken] is not None] \ if isTorontoFormat else \ [oVocab[sToken] for sToken in tSentenceTuple[2].split(' ') \ if oVocab[sToken] is not None] # We only deal with triples all of which members contain at least one known # word if (len(aWeIndices1) == 0) or (len(aWeIndices2) == 0) or \ ((iPos == 2) and (len(aWeIndices3) == 0)): continue npaBatch_1[iSentencePairsSampled][0:min(len(aWeIndices1),iMaxNrOfTokens)]=\ aWeIndices1[:iMaxNrOfTokens] npaBatch_2[iSentencePairsSampled][0][0:min(len(aWeIndices2),iMaxNrOfTokens)] = aWeIndices2[:iMaxNrOfTokens] if iPos == 2: npaBatch_2[iSentencePairsSampled][1][0:min(len(aWeIndices3),iMaxNrOfTokens)] = aWeIndices3[:iMaxNrOfTokens] iRandomSamples = 0 while 1: # We break from inside the loop if iRandomSamples == iNeg: # So if iNeg == 0, we break right away break aWeIndicesRandom = [] while len(aWeIndicesRandom) == 0: # Get a non-empty random sentence # NOTE that randomSentence is a list of tokens in the Toronto case randomSentence = next(funcRandomIterator) aWeIndicesRandom = \ [oVocab[sToken] for sToken in randomSentence \ if oVocab[sToken] is not None] \ if isTorontoFormat \ else [oVocab[sToken] for sToken in randomSentence.split(' ') \ if oVocab[sToken] is not None] iRandomSamples += 1 npaBatch_2[iSentencePairsSampled][(iPos-1)+iRandomSamples][0:min(len(aWeIndicesRandom),iMaxNrOfTokens)] = aWeIndicesRandom[:iMaxNrOfTokens] iSentencePairsSampled += 1 if iSentencePairsSampled == iBatchSize: # Just yield something (npaBatch_1, npaBatch_2 are filled already) yield 1 # Reset iSentencePairsSampled = 0 def build_scbow(oArgs, iPos=None, oW2v=None, oVocab=None, tWeightShape=None): # Input variable for a batch of sentences (so: sentence n) input_var_1 = T.matrix('input_var_1', dtype='uint32') # Input variable for a batch of positive and negative examples # (so sentence n-1, sentence n+1, neg1, neg2, ...) input_var_2 = T.tensor3('input_var_2', dtype='uint32') W_init_1, W_init_2 = None, None # First embedding input layer llIn_1 = lasagne.layers.InputLayer(shape=(None, oArgs.iMaxNrOfTokens), input_var=input_var_1, name='llIn_1') # Second embedding input layer llIn_2 = lasagne.layers.InputLayer(shape=(None, iPos + oArgs.iNeg, oArgs.iMaxNrOfTokens), input_var=input_var_2, name='llIn_2') W_init_1 = None if oW2v is None: W_init_1 = lasagne.init.Normal().sample(tWeightShape) else: ## Here is the pre-initialization W_init_1 = preInit(tWeightShape, oW2v, oVocab) W_init_1[0,:] = 0.0 # First embedding layer llEmbeddings_1 = lasagne.layers.EmbeddingLayer( llIn_1, input_size=tWeightShape[0], output_size=tWeightShape[1], W=W_init_1, name='llEmbeddings_1') llGate_1 = gateLayer([llIn_1, llEmbeddings_1], name='llGate_1') llAverage_1 = averageLayer(llGate_1, fGradientClippingBound=oArgs.fGradientClippingBound, name='llAverage_1') W_init_2 = None if not oArgs.bShareWeights: if oW2v is None: W_init_2 = lasagne.init.Normal().sample(tWeightShape) else: # We are not sharing, but we are pre-initializing preInit(W_init_2, oW2v, oVocab) W_init_2[0,:] = 0.0 # Second embedding layer, the weights tied with the first embedding layer llEmbeddings_2 = lasagne.layers.EmbeddingLayer( llIn_2, input_size=tWeightShape[0], output_size=tWeightShape[1], W=llEmbeddings_1.W if oArgs.bShareWeights else W_init_2, name='llEmbeddings_2') llGate_2 = gateLayer_matrix([llIn_2, llEmbeddings_2], name='llGate_2') llAverage_2 = None if oArgs.sLastLayer == 'cosine': llAverage_2 = \ averageLayer_matrix(llGate_2, iNrOfSentences=iPos + oArgs.iNeg, fGradientClippingBound=\ oArgs.fGradientClippingBound, name="llAverage_2") else: llFlip_2 = flipLayer(llGate_2, iPos=iPos, iNrOfSentences=iPos + oArgs.iNeg, name='llFlip_2') llAverage_2 = \ averageLayer_matrix(llFlip_2, iNrOfSentences=iPos + oArgs.iNeg, fGradientClippingBound=\ oArgs.fGradientClippingBound, name="llAverage_2") llTranspose_2 = lasagne.layers.DimshuffleLayer(llAverage_2, (0,2,1), name='llTranspose_2') llFinalLayer = None if oArgs.sLastLayer == 'cosine': llCosine = cosineLayer([llAverage_1, llTranspose_2], tWeightShape[1], name='llCosine') llFinalLayer = softMaxLayer(llCosine, name='llSoftMax') else: llFinalLayer = sigmoidLayer([llAverage_1, llTranspose_2], tWeightShape[1], name='llSigmoid') ### That was all the network stuff ### Now let's build the functions # Target var if needed target_var = T.fmatrix('targets') if oArgs.sLastLayer == "cosine" else None if oArgs.bVerbose: print("Building prediction functions") # Create a loss expression for training, i.e., a scalar objective we want # to minimize (for our multi-class problem, it is the cross-entropy loss): prediction = lasagne.layers.get_output(llFinalLayer) if oArgs.bVerbose: print("Building loss functions") # For checking/debugging forward_pass_fn = theano.function([input_var_1, input_var_2], prediction) loss = None if oArgs.sLastLayer == 'cosine': loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) else: # sigmoid loss = - T.log(prediction).sum(axis=1) if oArgs.bRegularize: l2_penalty = regularize_layer_params(llFinalLayer, l2) loss = loss + l2_penalty loss = loss.mean() if oArgs.bVerbose: print("Building update functions") params = lasagne.layers.get_all_params(llFinalLayer, trainable=True) fStartLearningRate = np.float32(oArgs.fLearningRate) thsLearningRate = None updates = None if oArgs.sUpdate == 'nesterov': updates = lasagne.updates.nesterov_momentum( loss, params, learning_rate=oArgs.fLearningRate, momentum=oArgs.fMomentum) elif oArgs.sUpdate == 'adamax': updates = lasagne.updates.adamax(loss, params, learning_rate=oArgs.fLearningRate) elif oArgs.sUpdate == 'adadelta': updates = lasagne.updates.adadelta(loss, params, learning_rate=oArgs.fLearningRate) elif oArgs.sUpdate == "sgd": # This doesn't work with INEX for now... thsLearningRate = theano.shared(fStartLearningRate) updates = lasagne.updates.sgd(loss, params, learning_rate=thsLearningRate) if oArgs.bVerbose: print("Building training function") # Compile a function performing a training step on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: train_fn = None if oArgs.sLastLayer == "cosine": train_fn = theano.function([input_var_1, input_var_2, target_var], loss, updates=updates) else: train_fn = theano.function([input_var_1, input_var_2], loss, updates=updates) return llFinalLayer, forward_pass_fn, thsLearningRate, train_fn def updateLearningRate(thsLearningRate, iNrOfBatchesSoFar, fTotalNrOfBatches, oArgs): fNewLearningRate = \ max(oArgs.fLearningRate * 0.0001, oArgs.fLearningRate * (1.0 - (iNrOfBatchesSoFar / fTotalNrOfBatches)) ) thsLearningRate.set_value(fNewLearningRate) if oArgs.bVeryVerbose: print("Batch %d of %.0f" % (iNrOfBatchesSoFar, fTotalNrOfBatches)) print("Learning rate: %f" % thsLearningRate.get_value()) def parseArguments(): import argparse oArgsParser = argparse.ArgumentParser(description='Siamese CBOW') oArgsParser.add_argument('DATA', help="File (in PPDB case) or directory (in Toronto Book Corpus and INEX case) to read the data from. NOTE that the program runs in aparticular input mode (INEX/PPDB/TORONTO) which is deduced from the directory/file name)") oArgsParser.add_argument('OUTPUT_DIR', help="A file to store the final and possibly intermediate word embeddings to (in cPickle format)") oArgsParser.add_argument('-batch_size', metavar="INT", dest="iBatchSize", help="Batch size. Default: 1", type=int, action="store", default=1) oArgsParser.add_argument('-dont_lowercase', dest='bDontLowercase', help="By default, all input text is lowercased. Use this option to prevent this.", action='store_true') oArgsParser.add_argument('-dry_run', dest="bDryRun", help="Build the network, print some statistics (if -v is on) and quit before training starts.", action="store_true") oArgsParser.add_argument('-embedding_size', metavar="INT", dest="iEmbeddingSize", help="Dimensionality of the word embeddings. Default: 300", type=int, action="store", default=300) oArgsParser.add_argument('-epochs', metavar="INT", dest="iEpochs", help="Maximum number of epochs for training. Default: 10", type=int, action="store", default=10) oArgsParser.add_argument('-gradient_clipping_bound', metavar="FLOAT", dest="fGradientClippingBound", help="Gradient clipping bound (so gradients will be clipped to [-FLOAT, +FLOAT]).", type=float, action="store") oArgsParser.add_argument('-last_layer', metavar="LAYER", dest="sLastLayer", help="Last layer is 'cosine' or 'sigmoid'. NOTE that this choice also determines the loss function (binary cross entropy or negative sampling loss, respectively). Default: cosine", action="store", default='cosine', choices=['cosine', 'sigmoid']) oArgsParser.add_argument('-learning_rate', metavar="FLOAT", dest="fLearningRate", help="Learning rate. Default: 1.0", type=float, action="store", default=1.0) oArgsParser.add_argument('-max_nr_of_tokens', metavar="INT", dest="iMaxNrOfTokens", help="Maximum number of tokens considered per sentence. Default: 50", type=int, action="store", default=50) oArgsParser.add_argument('-max_nr_of_vocab_words', metavar="INT", dest="iMaxNrOfVocabWords", help="Maximum number of words considered. If this is not specified, all words are considered", type=int, action="store") oArgsParser.add_argument('-momentum', metavar="FLOAT", dest="fMomentum", help="Momentum, only applies when 'nesterov' is used as update method (see -update). Default: 0.0", type=float, action="store", default=0.0) oArgsParser.add_argument('-neg', metavar="INT", dest="iNeg", help="Number of negative examples. Default: 1", type=int, action="store", default=1) oArgsParser.add_argument('-regularize', dest="bRegularize", help="Use l2 normalization on the parameters of the network", action="store_true") oArgsParser.add_argument('-share_weights', dest="bShareWeights", help="Turn this option on (a good idea in general) for the embedding weights of the input sentences and the other sentences to be shared.", action="store_true") oArgsParser.add_argument('-start_storing_at', metavar="INT", dest="iStartStoringAt", help="Start storing embeddings at epoch number INT. Default: 0. I.e. start storing right away (if -store_at_epoch is on, that is)", action="store", type=int, default=0) oArgsParser.add_argument('-store_at_batch', metavar="INT", dest="iStoreAtBatch", help="Store embeddings every INT batches.", action="store", type=int, default=None) oArgsParser.add_argument('-store_at_epoch', dest="iStoreAtEpoch", metavar="INT", help="Store embeddings every INT epochs (so 1 for storing at the end of every epoch, 10 for for storing every 10 epochs, etc.).", action="store", type=int) oArgsParser.add_argument('-update', metavar="UPDATE_ALGORITHM", dest="sUpdate", help="Update algorithm. Options are 'adadelta', 'adamax', 'nesterov' (which uses momentum) and 'sgd'. Default: 'adadelta'", action="store", default='adadelta', choices=['adadelta', 'adamax', 'sgd', 'nesterov']) oArgsParser.add_argument("-v", dest="bVerbose", action="store_true", help="Be verbose") oArgsParser.add_argument('-vocab', dest="sVocabFile", metavar="FILE", help="A vocabulary file is simply a file, SORTED BY FREQUENCY of frequence<SPACE>word lines. You can take the top n of these (which is why it should be sorted by frequency). See -max_nr_of_vocab_words.", action="store") oArgsParser.add_argument("-vv", dest="bVeryVerbose", action="store_true", help="Be very verbose") oArgsParser.add_argument('-w2v', dest="sWord2VecFile", metavar="FILE", help="A word2vec model can be used to initialize the weights for words in the vocabulary file from (missing words just get a random embedding). If the weights are not initialized this way, they will be trained from scratch.", action="store") oArgsParser.add_argument('-wk',dest="week",action='store') oArgs = oArgsParser.parse_args() if (oArgs.sVocabFile is None) and (oArgs.sWord2VecFile is None): print >>sys.stderr, "[ERROR] Please specify either a word2vec file or a vocab file" exit(1) if oArgs.bVeryVerbose: # If we are very verbose, we are also just verbose oArgs.bVerbose=True return oArgs if __name__ == "__main__": oArgs = parseArguments() iPos=2 # Prepare Theano variables for inputs and targets # Input variable for a batch of left sentences input_var_1 = T.matrix('input_var_1', dtype='int32') # Input variable for a batch of right sentences, plus negative examples input_var_2 = T.tensor3('input_var_2', dtype='int32') target_var = T.fmatrix('targets') if oArgs.sLastLayer == "cosine" else None npaWordEmbeddings = np.array([[.1, .2, .3, .4], [.2, .3, .4, 5], [-.7, -.4, -.5, -.6], [-.8, -.9, -.45, -.56], [.2131, .213, .434, .652]] ).astype(np.float32) dModel = None if oArgs.sStoredModel is not None: import cPickle fhFile = open(oArgs.sStoredModel, mode='rb') dModel = cPickle.load(fhFile) fhFile.close() npaWordEmbeddings = dModel['npaWordEmbeddings'] npaTargets = np.zeros((oArgs.iBatchSize, oArgs.iNeg + iPos), dtype=np.float32) if iPos == 2: npaTargets[:,[0,1]] = .5 else: npaTargets[:,0] = 1.0 iNrOfEmbeddings, iEmbeddingSize = npaWordEmbeddings.shape npaInput_1 = np.array([[0,1], [0,1], [1,0]]).astype('int32') npaInput_2 = np.array([[2,1], [3,2], [1,0]]).astype('int32') npaInput_3 = np.array([[2,3], [1,2], [1,4]]).astype('int32') iMaxNrOfTokens = 2 network = build_scbow(input_var_1, input_var_2, iBatchSize=oArgs.iBatchSize, iPos=iPos, iNeg=oArgs.iNeg, iMaxNrOfTokens=iMaxNrOfTokens, tWeightShape=npaWordEmbeddings.shape, npaWordEmbeddings=npaWordEmbeddings, sLastLayer=oArgs.sLastLayer, bVerbose=oArgs.bVerbose) prediction = lasagne.layers.get_output(network) forward_pass_fn = theano.function([input_var_1, input_var_2], prediction) # We want to maximize the sum of the log probabilities, so we want to # minimize this loss objective # NOTE that we expect the word embeddings of the negative examples to be # reversed (as in: -1 * word embedding) npaLossBoost = np.ones(oArgs.iNeg + iPos, dtype=np.float32) #npaLossBoost[0:iPos] = oArgs.fLossBoost loss = None if oArgs.sLastLayer == 'cosine': loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) else: # sigmoid loss = - (T.log(prediction) * npaLossBoost).sum(axis=1) loss_fn = theano.function([prediction, target_var], loss) # Pre-allocate memory npaBatch_1 = np.zeros((oArgs.iBatchSize, iMaxNrOfTokens), dtype=np.int8) npaBatch_2 = np.zeros((oArgs.iBatchSize, oArgs.iNeg + iPos, iMaxNrOfTokens), dtype=np.int8) # Check that the network is producing anything for i in moetNog(npaInput_1, npaInput_2, npaInput_3, npaBatch_1, npaBatch_2, iNeg=oArgs.iNeg, iBatchSize=oArgs.iBatchSize, bShuffle=False): # Check the batch itself print("Batch (1):\n%s\n (2)\n%s" % (npaBatch_1, npaBatch_2)) npaPredictions = forward_pass_fn(npaBatch_1, npaBatch_2) print("Predictions (%s):\n%s" % (npaPredictions[0].dtype, npaPredictions)) L = loss_fn(npaPredictions, npaTargets) print("Loss: %s" % L)
py
1a56ed85b95d2480b32f7aeadbbf759ac78cedd3
import enum import logging from typing import Any, Optional from plugins.costume_loader_pkg.backend.taxonomy import Taxonomy, TaxonomyType """ This class is an enum for all attributes. An attribute is a special property that is used to describe one characteristic of an entity. For example, a costume has the attribute "Dominante Farbe". The attribute should not be confused with TaxonomyType, which is the enum for all possible taxonomies in the database. """ class Attribute(enum.Enum): ortsbegebenheit = "ortsbegebenheit" dominanteFarbe = "dominanteFarbe" stereotypRelevant = "stereotypRelevant" dominanteFunktion = "dominanteFunktion" dominanterZustand = "dominanterZustand" dominanteCharaktereigenschaft = "dominanteCharaktereigenschaft" stereotyp = "stereotyp" geschlecht = "geschlecht" dominanterAlterseindruck = "dominanterAlterseindruck" genre = "genre" rollenberuf = "rollenberuf" dominantesAlter = "dominantesAlter" rollenrelevanz = "rollenrelevanz" spielzeit = "spielzeit" tageszeit = "tageszeit" koerpermodifikation = "koerpermodifikation" kostuemZeit = "kostuemZeit" familienstand = "familienstand" charaktereigenschaft = "charaktereigenschaft" spielort = "spielort" spielortDetail = "spielortDetail" alterseindruck = "alterseindruck" alter = "alter" basiselement = "basiselement" design = "design" form = "form" trageweise = "trageweise" zustand = "zustand" funktion = "funktion" material = "material" materialeindruck = "materialeindruck" farbe = "farbe" farbeindruck = "farbeindruck" farbkonzept = "farbkonzept" # German names for attributes """ @staticmethod def get_name(attribute) -> str: if attribute == Attribute.ortsbegebenheit: return "Ortsbegebenheit" elif attribute == Attribute.dominanteFarbe: return "Dominante Farbe" elif attribute == Attribute.stereotypRelevant: return "Stereotyp relevant" elif attribute == Attribute.dominanteFunktion: return "Dominante Funktion" elif attribute == Attribute.dominanterZustand: return "Dominanter Zustand" elif attribute == Attribute.dominanteCharaktereigenschaft: return "Dominante Charaktereigenschaft" elif attribute == Attribute.stereotyp: return "Stereotyp" elif attribute == Attribute.geschlecht: return "Geschlecht" elif attribute == Attribute.dominanterAlterseindruck: return "Dominanter Alterseindruck" elif attribute == Attribute.genre: return "Genre" elif attribute == Attribute.rollenberuf: return "Rollenberuf" elif attribute == Attribute.dominantesAlter: return "Dominantes Alter" elif attribute == Attribute.rollenrelevanz: return "Rollenrelevanz" elif attribute == Attribute.spielzeit: return "Spielzeit" elif attribute == Attribute.tageszeit: return "Tageszeit" elif attribute == Attribute.koerpermodifikation: return "Körpermodifikation" elif attribute == Attribute.kostuemZeit: return "Kostümzeit" elif attribute == Attribute.familienstand: return "Familienstand" elif attribute == Attribute.charaktereigenschaft: return "Charaktereigenschaft" elif attribute == Attribute.spielort: return "Spielort" elif attribute == Attribute.spielortDetail: return "SpielortDetail" elif attribute == Attribute.alterseindruck: return "Alterseindruck" elif attribute == Attribute.alter: return "Alter" elif attribute == Attribute.basiselement: return "Basiselement" elif attribute == Attribute.design: return "Design" elif attribute == Attribute.form: return "Form" elif attribute == Attribute.trageweise: return "Trageweise" elif attribute == Attribute.zustand: return "Zustand" elif attribute == Attribute.funktion: return "Funktion" elif attribute == Attribute.material: return "Material" elif attribute == Attribute.materialeindruck: return "Materialeindruck" elif attribute == Attribute.farbe: return "Farbe" elif attribute == Attribute.farbeindruck: return "Farbeindruck" elif attribute == Attribute.farbkonzept: return "Farbkonzept" else: Logger.error("No name for attribute \"" + str(attribute) + "\" specified") raise ValueError("No name for attribute \"" + str(attribute) + "\" specified") return """ # englisch names for attributes @staticmethod def get_name(attribute) -> str: """ Returns the human representable name for the given Attribute. """ if attribute == Attribute.ortsbegebenheit: return "Location" elif attribute == Attribute.dominanteFarbe: return "Dominant Color" elif attribute == Attribute.stereotypRelevant: return "Stereotyp Relevant" elif attribute == Attribute.dominanteFunktion: return "Dominant Function" elif attribute == Attribute.dominanterZustand: return "Dominant Condition" elif attribute == Attribute.dominanteCharaktereigenschaft: return "Dominant Character Trait" elif attribute == Attribute.stereotyp: return "Stereotype" elif attribute == Attribute.geschlecht: return "Gender" elif attribute == Attribute.dominanterAlterseindruck: return "Dominant Age Impression" elif attribute == Attribute.genre: return "Genre" elif attribute == Attribute.rollenberuf: return "Profession" elif attribute == Attribute.dominantesAlter: return "Dominant Age" elif attribute == Attribute.rollenrelevanz: return "Role Relevance" elif attribute == Attribute.spielzeit: return "Time of Setting" elif attribute == Attribute.tageszeit: return "Time of Day" elif attribute == Attribute.koerpermodifikation: return "Body Modification" elif attribute == Attribute.kostuemZeit: return "Costume Time" elif attribute == Attribute.familienstand: return "Marital Status" elif attribute == Attribute.charaktereigenschaft: return "Character Trait" elif attribute == Attribute.spielort: return "Venue" elif attribute == Attribute.spielortDetail: return "Venue Detail" elif attribute == Attribute.alterseindruck: return "Age Impression" elif attribute == Attribute.alter: return "Age" elif attribute == Attribute.basiselement: return "Base Element" elif attribute == Attribute.design: return "Design" elif attribute == Attribute.form: return "Form" elif attribute == Attribute.trageweise: return "Way of Wearing" elif attribute == Attribute.zustand: return "Condition" elif attribute == Attribute.funktion: return "Function" elif attribute == Attribute.material: return "Material" elif attribute == Attribute.materialeindruck: return "Material Impression" elif attribute == Attribute.farbe: return "Color" elif attribute == Attribute.farbeindruck: return "Color Impression" elif attribute == Attribute.farbkonzept: return "Color Concept" else: logging.error('No name for attribute "' + str(attribute) + '" specified') raise ValueError('No name for attribute "' + str(attribute) + '" specified') @staticmethod def get_taxonomy_type(attribute) -> Optional[TaxonomyType]: """ Returns the corresponding taxonomy type this attribute is used for. Note, that an attribute has only one taxonomy type, while a taxonomy type can be used by multiple attributes. """ if attribute == Attribute.ortsbegebenheit: return TaxonomyType.ortsbegebenheit elif attribute == Attribute.dominanteFarbe: return TaxonomyType.farbe elif attribute == Attribute.stereotypRelevant: return TaxonomyType.stereotypRelevant elif attribute == Attribute.dominanteFunktion: return TaxonomyType.funktion elif attribute == Attribute.dominanterZustand: return TaxonomyType.zustand elif attribute == Attribute.dominanteCharaktereigenschaft: return TaxonomyType.typus elif attribute == Attribute.stereotyp: return TaxonomyType.stereotyp elif attribute == Attribute.geschlecht: return TaxonomyType.geschlecht elif attribute == Attribute.dominanterAlterseindruck: return TaxonomyType.alterseindruck elif attribute == Attribute.genre: return TaxonomyType.genre elif attribute == Attribute.rollenberuf: return TaxonomyType.rollenberuf elif attribute == Attribute.dominantesAlter: return None elif attribute == Attribute.rollenrelevanz: return TaxonomyType.rollenrelevanz elif attribute == Attribute.spielzeit: return TaxonomyType.spielzeit elif attribute == Attribute.tageszeit: return TaxonomyType.tageszeit elif attribute == Attribute.koerpermodifikation: return TaxonomyType.koerpermodifikation elif attribute == Attribute.kostuemZeit: return None elif attribute == Attribute.familienstand: return TaxonomyType.familienstand elif attribute == Attribute.charaktereigenschaft: return TaxonomyType.charaktereigenschaft elif attribute == Attribute.spielort: return TaxonomyType.spielort elif attribute == Attribute.spielortDetail: return TaxonomyType.spielortDetail elif attribute == Attribute.alterseindruck: return TaxonomyType.alterseindruck elif attribute == Attribute.alter: return None elif attribute == Attribute.basiselement: return TaxonomyType.basiselement elif attribute == Attribute.design: return TaxonomyType.design elif attribute == Attribute.form: return TaxonomyType.form elif attribute == Attribute.trageweise: return TaxonomyType.trageweise elif attribute == Attribute.zustand: return TaxonomyType.zustand elif attribute == Attribute.funktion: return TaxonomyType.funktion elif attribute == Attribute.material: return TaxonomyType.material elif attribute == Attribute.materialeindruck: return TaxonomyType.materialeindruck elif attribute == Attribute.farbe: return TaxonomyType.farbe elif attribute == Attribute.farbeindruck: return TaxonomyType.farbeindruck elif attribute == Attribute.farbkonzept: return TaxonomyType.farbkonzept else: logging.error( 'No taxonomy type for attribute "' + str(attribute) + '" specified' ) raise ValueError( 'No taxonomy type for attribute "' + str(attribute) + '" specified' )
py
1a56ed91553c9ebab54fb3e9b6d408f5859414b0
# -*- coding: utf-8 -*- """ <application name> Copyright ©<year> <author> Licensed under the terms of the <LICENSE>. See LICENSE for details. @author: <author> """ # Setup PyQt's v2 APIs import sip API_NAMES = ["QDate", "QDateTime", "QString", "QTextStream", "QTime", "QUrl", "QVariant"] API_VERSION = 2 for name in API_NAMES: sip.setapi(name, API_VERSION)
py
1a56edf50280c5fa6889ade178b890bf10c52af1
import numpy as np import os, sys, gzip import urllib, zipfile from MTL_run import run_mtl from sklearn.metrics import f1_score def do_10_fold(): shared_nnet_spec= [ 1200 ] individual_nnet_spec0= [ 1200, 1200 ] individual_nnet_spec1= [ 1200, 1200 ] individual_nnet_spec2= [ 1200, 1200 ] individual_nnet_spec = [ individual_nnet_spec0, individual_nnet_spec1, individual_nnet_spec2 ] learning_rate = 0.01 batch_size = 10 n_epochs = 10 dropout = 0.0 truth0 = [] pred0 = [] truth1 = [] pred1 = [] truth2 = [] pred2 = [] ## Read files file_path = os.path.dirname(os.path.realpath(__file__)) print file_path lib_path = os.path.abspath(os.path.join(file_path, '..', '..', 'common')) sys.path.append(lib_path) from data_utils import get_file origin = 'http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P3B1/P3B1_data.tgz' data_loc = get_file('P3B1_data.tgz', origin, untar=True, md5_hash=None, cache_subdir='P3B1') print 'Data downloaded and stored at: ' + data_loc data_path = os.path.dirname(data_loc) print data_path for fold in range( 1 ): feature_train_0 = np.genfromtxt( data_path + '/task0_' + str( fold ) + '_train_feature.csv', delimiter= ',' ) truth_train_0 = np.genfromtxt( data_path + '/task0_' + str( fold ) + '_train_label.csv', delimiter= ',' ) feature_test_0 = np.genfromtxt( data_path + '/task0_' + str( fold ) + '_test_feature.csv', delimiter= ',' ) truth_test_0 = np.genfromtxt( data_path + '/task0_' + str( fold ) + '_test_label.csv', delimiter= ',' ) feature_train_1 = np.genfromtxt( data_path + '/task1_' + str( fold ) + '_train_feature.csv', delimiter= ',' ) truth_train_1 = np.genfromtxt( data_path + '/task1_' + str( fold ) + '_train_label.csv', delimiter= ',' ) feature_test_1 = np.genfromtxt( data_path + '/task1_' + str( fold ) + '_test_feature.csv', delimiter= ',' ) truth_test_1 = np.genfromtxt( data_path + '/task1_' + str( fold ) + '_test_label.csv', delimiter= ',' ) feature_train_2 = np.genfromtxt( data_path + '/task2_' + str( fold ) + '_train_feature.csv', delimiter= ',' ) truth_train_2 = np.genfromtxt( data_path + '/task2_' + str( fold ) + '_train_label.csv', delimiter= ',' ) feature_test_2 = np.genfromtxt( data_path + '/task2_' + str( fold ) + '_test_feature.csv', delimiter= ',' ) truth_test_2 = np.genfromtxt( data_path + '/task2_' + str( fold ) + '_test_label.csv', delimiter= ',' ) features_train = [ feature_train_0, feature_train_1, feature_train_2 ] truths_train = [ truth_train_0, truth_train_1, truth_train_2 ] features_test = [ feature_test_0, feature_test_1, feature_test_2 ] truths_test = [ truth_test_0, truth_test_1, truth_test_2 ] ret = run_mtl( features_train= features_train, truths_train= truths_train, features_test= features_test, truths_test= truths_test, shared_nnet_spec= shared_nnet_spec, individual_nnet_spec= individual_nnet_spec, learning_rate= learning_rate, batch_size= batch_size, n_epochs= n_epochs, dropout= dropout ) truth0.extend( ret[ 0 ][ 0 ] ) pred0.extend( ret[ 0 ][ 1 ] ) truth1.extend( ret[ 1 ][ 0 ] ) pred1.extend( ret[ 1 ][ 1 ] ) truth2.extend( ret[ 2 ][ 0 ] ) pred2.extend( ret[ 2 ][ 1 ] ) print 'Task 1: Primary site - Macro F1 score', f1_score( truth0, pred0, average= 'macro' ) print 'Task 1: Primary site - Micro F1 score', f1_score( truth0, pred0, average= 'micro' ) print 'Task 2: Tumor laterality - Macro F1 score', f1_score( truth1, pred1, average= 'macro' ) print 'Task 3: Tumor laterality - Micro F1 score', f1_score( truth1, pred1, average= 'micro' ) print 'Task 3: Histological grade - Macro F1 score', f1_score( truth2, pred2, average= 'macro' ) print 'Task 3: Histological grade - Micro F1 score', f1_score( truth2, pred2, average= 'micro' ) if __name__ == "__main__": do_10_fold()
py
1a56ee00cedec52d54d602ec8c8d0e23a7399b3d
#!/usr/bin/env python import rospy from std_msgs.msg import String def utalker(): pub = rospy.Publisher('chatter', String, queue_size=10) # initialize ros node rospy.init_node('talker', anonymous=True) # set time loop rate rate = rospy.Rate(10) # Keep on Publishing the data while not rospy.is_shutdown(): hello_str = "hello world %s" % rospy.get_time() rospy.loginfo(hello_str) pub.publish(hello_str) rate.sleep() if __name__ == '__main__': try: utalker() except rospy.ROSInterruptException: pass
py
1a56ee0dc7a2d23095a87b00f3886250037ad691
""" Simple application that logs on to the APIC, pull all CDP neighbours, and display in text table format """ import acitoolkit.acitoolkit as ACI from acitoolkit import Node from acitoolkit.aciConcreteLib import ConcreteCdp from tabulate import tabulate def main(): """ Main show Cdps routine :return: None """ # Take login credentials from the command line if provided # Otherwise, take them from your environment variables file ~/.profile description = ('Simple application that logs on to the APIC' 'and displays all the CDP neighbours.') creds = ACI.Credentials('apic', description) args = creds.get() # Login to APIC session = ACI.Session(args.url, args.login, args.password) resp = session.login() if not resp.ok: print('%% Could not login to APIC') return nodes = Node.get_deep(session, include_concrete=True) cdps = [] for node in nodes: node_concrete_cdp = node.get_children(child_type=ConcreteCdp) for node_concrete_cdp_obj in node_concrete_cdp: cdps.append(node_concrete_cdp_obj) tables = ConcreteCdp.get_table(cdps) output_list = [] for table in tables: for table_data in table.data: if table_data not in output_list: output_list.append(table_data) print tabulate(output_list, headers=["Node-ID", "Local Interface", "Neighbour Device", "Neighbour Platform", "Neighbour Interface"]) if __name__ == '__main__': main()
py
1a56ee2a61fff920f8306cdc14d02f1894cc6008
import datetime import pytz import calendar import os cdt = datetime.datetime.now().date() str_cdt=cdt.strftime("%d/%B") print(str_cdt) #заношу в виде строки date_to_str=str(cdt) #меняю в строке - на _ clear_str=date_to_str.replace('-',' ') #разбиваю на отдельные слова slice_str=clear_str.split() #cоздаю новую дату +2 дня к ней creat_date=datetime.datetime(int(slice_str[0]),int(slice_str[1]),int(slice_str[2])+2) print("созданная дата 17.00 : ",creat_date) # через dimedelta td=datetime.timedelta(minutes=3) print("отнимаем от созаднной даты 3 минуты(td) : ",creat_date-td) #из строки делаем время strptime=datetime.datetime.strptime('1803191327','%d%m%y%H%M') print("из строки далем время",strptime) # import sys # print("sys.path : \n",sys.path) # print("\n fp_date.__file__ : \n",pytz.__file__) # print(fp_date.count_lines()) # print(fp_date.last_word_on_line(6666)) # print(fp_date.def_counter(fp_date.get_ip(1))) print('_'*30) format_date_on_log='17/May/2015:10:05:00' #cоздаю дату из строки введенных данных cdt=datetime.datetime(2020,5,5) print('созданная дата из цфр ',cdt) format_calculate_date='0:00:16.603720' print("format_date_on_log=",format_date_on_log) time_obj=datetime.datetime.strptime(format_date_on_log,'%d/%B/%Y:%H:%M:%S') print("time_obj",time_obj) tz_minsk = pytz.timezone("Europe/Minsk") tz_utc = pytz.timezone('UTC') ct_minsk=datetime.datetime.now() d_minsk=tz_minsk.localize(ct_minsk) utc_minsk=d_minsk.astimezone(tz_utc) print('_'*30) print(utc_minsk) print(d_minsk) #текущее время в UTC # ct_utc=datetime.datetime.utcnow() #текущенее время в +3 # ct_minsk=datetime.datetime.now() # # d_minsk=tz_minsk.localize(ct_minsk) # d_utc=tz_utc.localize(ct_utc) # d_minsk_utc=d_utc.astimezone(tz_utc) # print("Вывод d_minsk в формете +3 Europe/Minsk :",d_minsk) # print("Вывод d_minsk в формете UTC :",d_utc) # print("Вывод d_minsk в формете d_minsk_utc :",d_minsk_utc) os.system('cls' if os.name=='nt' else 'clear')
py
1a56eeafb74526cef1efe99435cc3d9240c6fd1c
# encoding: utf-8 # # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this file, # You can obtain one at http://mozilla.org/MPL/2.0/. # # Author: Kyle Lahnakoski ([email protected]) # from __future__ import absolute_import, division, unicode_literals import json import math import time from datetime import date, datetime, timedelta from decimal import Decimal from json.encoder import encode_basestring from math import floor from mo_dots import Data, FlatList, Null, NullType, SLOT, is_data, is_list from mo_future import PYPY, binary_type, is_binary, is_text, long, sort_using_key, text, utf8_json_encoder, xrange from mo_json import ESCAPE_DCT, float2json, scrub from mo_logs import Except from mo_logs.strings import quote from mo_times import Timer from mo_times.dates import Date from mo_times.durations import Duration json_decoder = json.JSONDecoder().decode _get = object.__getattribute__ _ = Except # THIS FILE EXISTS TO SERVE AS A FAST REPLACEMENT FOR JSON ENCODING # THE DEFAULT JSON ENCODERS CAN NOT HANDLE A DIVERSITY OF TYPES *AND* BE FAST # # 1) WHEN USING cPython, WE HAVE NO COMPILER OPTIMIZATIONS: THE BEST STRATEGY IS TO # CONVERT THE MEMORY STRUCTURE TO STANDARD TYPES AND SEND TO THE INSANELY FAST # DEFAULT JSON ENCODER # 2) WHEN USING PYPY, WE USE CLEAR-AND-SIMPLE PROGRAMMING SO THE OPTIMIZER CAN DO # ITS JOB. ALONG WITH THE UnicodeBuilder WE GET NEAR C SPEEDS COMMA = u"," QUOTE = u'"' COLON = u":" QUOTE_COLON = QUOTE + COLON COMMA_QUOTE = COMMA + QUOTE PRETTY_COMMA = u", " PRETTY_COLON = u": " if PYPY: # UnicodeBuilder IS ABOUT 2x FASTER THAN list() from __pypy__.builders import UnicodeBuilder else: class UnicodeBuilder(list): def __init__(self, length=None): list.__init__(self) def build(self): return u"".join(self) append = UnicodeBuilder.append _dealing_with_problem = False def pypy_json_encode(value, pretty=False): """ pypy DOES NOT OPTIMIZE GENERATOR CODE WELL """ global _dealing_with_problem if pretty: return pretty_json(value) try: _buffer = UnicodeBuilder(2048) _value2json(value, _buffer) output = _buffer.build() return output except Exception as e: # THE PRETTY JSON WILL PROVIDE MORE DETAIL ABOUT THE SERIALIZATION CONCERNS from mo_logs import Log if _dealing_with_problem: Log.error("Serialization of JSON problems", e) else: Log.warning("Serialization of JSON problems", e) _dealing_with_problem = True try: return pretty_json(value) except Exception as f: Log.error("problem serializing object", f) finally: _dealing_with_problem = False class cPythonJSONEncoder(object): def __init__(self, sort_keys=True): object.__init__(self) self.encoder = utf8_json_encoder def encode(self, value, pretty=False): if pretty: return pretty_json(value) try: with Timer("scrub", too_long=0.1): scrubbed = scrub(value) param = {"size": 0} with Timer("encode {{size}} characters", param=param, too_long=0.1): output = text(self.encoder(scrubbed)) param["size"] = len(output) return output except Exception as e: from mo_logs.exceptions import Except from mo_logs import Log e = Except.wrap(e) Log.warning("problem serializing {{type}}", type=text(repr(value)), cause=e) raise e def ujson_encode(value, pretty=False): if pretty: return pretty_json(value) try: scrubbed = scrub(value) return ujson_dumps(scrubbed, ensure_ascii=False, sort_keys=True, escape_forward_slashes=False).decode('utf8') except Exception as e: from mo_logs.exceptions import Except from mo_logs import Log e = Except.wrap(e) Log.warning("problem serializing {{type}}", type=text(repr(value)), cause=e) raise e def _value2json(value, _buffer): try: _class = value.__class__ if value is None: append(_buffer, u"null") return elif value is True: append(_buffer, u"true") return elif value is False: append(_buffer, u"false") return type = value.__class__ if type is binary_type: append(_buffer, QUOTE) try: v = value.decode('utf8') except Exception as e: problem_serializing(value, e) for c in v: append(_buffer, ESCAPE_DCT.get(c, c)) append(_buffer, QUOTE) elif type is text: append(_buffer, QUOTE) for c in value: append(_buffer, ESCAPE_DCT.get(c, c)) append(_buffer, QUOTE) elif type is dict: if not value: append(_buffer, u"{}") else: _dict2json(value, _buffer) return elif type is Data: d = _get(value, SLOT) # MIGHT BE A VALUE NOT A DICT _value2json(d, _buffer) return elif type in (int, long, Decimal): append(_buffer, text(value)) elif type is float: if math.isnan(value) or math.isinf(value): append(_buffer, u'null') else: append(_buffer, float2json(value)) elif type in (set, list, tuple, FlatList): _list2json(value, _buffer) elif type is date: append(_buffer, float2json(time.mktime(value.timetuple()))) elif type is datetime: append(_buffer, float2json(time.mktime(value.timetuple()))) elif type is Date: append(_buffer, float2json(value.unix)) elif type is timedelta: append(_buffer, float2json(value.total_seconds())) elif type is Duration: append(_buffer, float2json(value.seconds)) elif type is NullType: append(_buffer, u"null") elif is_data(value): if not value: append(_buffer, u"{}") else: _dict2json(value, _buffer) return elif hasattr(value, '__data__'): d = value.__data__() _value2json(d, _buffer) elif hasattr(value, '__json__'): j = value.__json__() append(_buffer, j) elif hasattr(value, '__iter__'): _iter2json(value, _buffer) else: from mo_logs import Log Log.error(text(repr(value)) + " is not JSON serializable") except Exception as e: from mo_logs import Log Log.error(text(repr(value)) + " is not JSON serializable", cause=e) def _list2json(value, _buffer): if not value: append(_buffer, u"[]") else: sep = u"[" for v in value: append(_buffer, sep) sep = COMMA _value2json(v, _buffer) append(_buffer, u"]") def _iter2json(value, _buffer): append(_buffer, u"[") sep = u"" for v in value: append(_buffer, sep) sep = COMMA _value2json(v, _buffer) append(_buffer, u"]") def _dict2json(value, _buffer): try: prefix = u"{\"" for k, v in value.items(): append(_buffer, prefix) prefix = COMMA_QUOTE if is_binary(k): k = k.decode('utf8') for c in k: append(_buffer, ESCAPE_DCT.get(c, c)) append(_buffer, QUOTE_COLON) _value2json(v, _buffer) append(_buffer, u"}") except Exception as e: from mo_logs import Log Log.error(text(repr(value)) + " is not JSON serializable", cause=e) ARRAY_ROW_LENGTH = 80 ARRAY_ITEM_MAX_LENGTH = 30 ARRAY_MAX_COLUMNS = 10 INDENT = " " def pretty_json(value): try: if value is False: return "false" elif value is True: return "true" elif is_data(value): try: items = sort_using_key(value.items(), lambda r: r[0]) values = [encode_basestring(k) + PRETTY_COLON + pretty_json(v) for k, v in items if v != None] if not values: return "{}" elif len(values) == 1: return "{" + values[0] + "}" else: return "{\n" + ",\n".join(indent(v) for v in values) + "\n}" except Exception as e: from mo_logs import Log from mo_math import OR if OR(not is_text(k) for k in value.keys()): Log.error( "JSON must have string keys: {{keys}}:", keys=[k for k in value.keys()], cause=e ) Log.error( "problem making dict pretty: keys={{keys}}:", keys=[k for k in value.keys()], cause=e ) elif value in (None, Null): return "null" elif value.__class__ in (binary_type, text): if is_binary(value): value = value.decode('utf8') try: if "\n" in value and value.strip(): return pretty_json({"$concat": value.split("\n"), "separator": "\n"}) else: return quote(value) except Exception as e: from mo_logs import Log try: Log.note("try explicit convert of string with length {{length}}", length=len(value)) acc = [QUOTE] for c in value: try: try: c2 = ESCAPE_DCT[c] except Exception: c2 = c c3 = text(c2) acc.append(c3) except BaseException: pass # Log.warning("odd character {{ord}} found in string. Ignored.", ord= ord(c)}, cause=g) acc.append(QUOTE) output = u"".join(acc) Log.note("return value of length {{length}}", length=len(output)) return output except BaseException as f: Log.warning("can not convert {{type}} to json", type=f.__class__.__name__, cause=f) return "null" elif is_list(value): if not value: return "[]" if ARRAY_MAX_COLUMNS == 1: return "[\n" + ",\n".join([indent(pretty_json(v)) for v in value]) + "\n]" if len(value) == 1: j = pretty_json(value[0]) if j.find("\n") >= 0: return "[\n" + indent(j) + "\n]" else: return "[" + j + "]" js = [pretty_json(v) for v in value] max_len = max(*[len(j) for j in js]) if max_len <= ARRAY_ITEM_MAX_LENGTH and max(*[j.find("\n") for j in js]) == -1: # ALL TINY VALUES num_columns = max(1, min(ARRAY_MAX_COLUMNS, int(floor((ARRAY_ROW_LENGTH + 2.0) / float(max_len + 2))))) # +2 TO COMPENSATE FOR COMMAS if len(js) <= num_columns: # DO NOT ADD \n IF ONLY ONE ROW return "[" + PRETTY_COMMA.join(js) + "]" if num_columns == 1: # DO NOT rjust IF THERE IS ONLY ONE COLUMN return "[\n" + ",\n".join([indent(pretty_json(v)) for v in value]) + "\n]" content = ",\n".join( PRETTY_COMMA.join(j.rjust(max_len) for j in js[r:r + num_columns]) for r in xrange(0, len(js), num_columns) ) return "[\n" + indent(content) + "\n]" pretty_list = js output = ["[\n"] for i, p in enumerate(pretty_list): try: if i > 0: output.append(",\n") output.append(indent(p)) except Exception: from mo_logs import Log Log.warning("problem concatenating string of length {{len1}} and {{len2}}", len1=len("".join(output)), len2=len(p) ) output.append("\n]") try: return "".join(output) except Exception as e: from mo_logs import Log Log.error("not expected", cause=e) elif hasattr(value, '__data__'): d = value.__data__() return pretty_json(d) elif hasattr(value, '__json__'): j = value.__json__() if j == None: return " null " # TODO: FIND OUT WHAT CAUSES THIS return pretty_json(json_decoder(j)) elif scrub(value) is None: return "null" elif hasattr(value, '__iter__'): return pretty_json(list(value)) elif hasattr(value, '__call__'): return "null" else: try: if int(value) == value: return text(int(value)) except Exception: pass try: if float(value) == value: return text(float(value)) except Exception: pass return pypy_json_encode(value) except Exception as e: problem_serializing(value, e) def problem_serializing(value, e=None): """ THROW ERROR ABOUT SERIALIZING """ from mo_logs import Log try: typename = type(value).__name__ except Exception: typename = "<error getting name>" try: rep = text(repr(value)) except Exception as _: rep = None if rep == None: Log.error( "Problem turning value of type {{type}} to json", type=typename, cause=e ) else: Log.error( "Problem turning value ({{value}}) of type {{type}} to json", value=rep, type=typename, cause=e ) def indent(value, prefix=INDENT): try: content = value.rstrip() suffix = value[len(content):] lines = content.splitlines() return prefix + (u"\n" + prefix).join(lines) + suffix except Exception as e: raise Exception(u"Problem with indent of value (" + e.message + u")\n" + value) def value_compare(a, b): if a == None: if b == None: return 0 return -1 elif b == None: return 1 if a > b: return 1 elif a < b: return -1 else: return 0 def datetime2milli(d, type): try: if type == datetime: diff = d - datetime(1970, 1, 1) else: diff = d - date(1970, 1, 1) return long(diff.total_seconds()) * long(1000) + long(diff.microseconds / 1000) except Exception as e: problem_serializing(d, e) def unicode_key(key): """ CONVERT PROPERTY VALUE TO QUOTED NAME OF SAME """ if not isinstance(key, (text, binary_type)): from mo_logs import Log Log.error("{{key|quote}} is not a valid key", key=key) return quote(text(key)) # OH HUM, cPython with uJSON, OR pypy WITH BUILTIN JSON? # http://liangnuren.wordpress.com/2012/08/13/python-json-performance/ # http://morepypy.blogspot.ca/2011/10/speeding-up-json-encoding-in-pypy.html if PYPY: json_encoder = pypy_json_encode else: # from ujson import dumps as ujson_dumps # json_encoder = ujson_encode json_encoder = cPythonJSONEncoder().encode
py
1a56effba0f4b75bf19dd7d0d0cb6418ced372ce
from spoof import * from test_unit import TestUnit
py
1a56f0cf3118a1a40d2e8fcaedf00e40643b1d4e
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from copy import deepcopy from nnunet.network_architecture.generic_UNet import Generic_UNet import SimpleITK as sitk import shutil from batchgenerators.utilities.file_and_folder_operations import join def split_4d_nifti(filename, output_folder): img_itk = sitk.ReadImage(filename) dim = img_itk.GetDimension() file_base = filename.split("/")[-1] if dim == 3: shutil.copy(filename, join(output_folder, file_base[:-7] + "_0000.nii.gz")) return elif dim != 4: raise RuntimeError("Unexpected dimensionality: %d of file %s, cannot split" % (dim, filename)) else: img_npy = sitk.GetArrayFromImage(img_itk) spacing = img_itk.GetSpacing() origin = img_itk.GetOrigin() direction = np.array(img_itk.GetDirection()).reshape(4,4) # now modify these to remove the fourth dimension spacing = tuple(list(spacing[:-1])) origin = tuple(list(origin[:-1])) direction = tuple(direction[:-1, :-1].reshape(-1)) for i, t in enumerate(range(img_npy.shape[0])): img = img_npy[t] img_itk_new = sitk.GetImageFromArray(img) img_itk_new.SetSpacing(spacing) img_itk_new.SetOrigin(origin) img_itk_new.SetDirection(direction) sitk.WriteImage(img_itk_new, join(output_folder, file_base[:-7] + "_%04.0d.nii.gz" % i)) def get_pool_and_conv_props_poolLateV2(patch_size, min_feature_map_size, max_numpool, spacing): """ :param spacing: :param patch_size: :param min_feature_map_size: min edge length of feature maps in bottleneck :return: """ initial_spacing = deepcopy(spacing) reach = max(initial_spacing) dim = len(patch_size) num_pool_per_axis = get_network_numpool(patch_size, max_numpool, min_feature_map_size) net_num_pool_op_kernel_sizes = [] net_conv_kernel_sizes = [] net_numpool = max(num_pool_per_axis) current_spacing = spacing for p in range(net_numpool): reached = [current_spacing[i] / reach > 0.5 for i in range(dim)] pool = [2 if num_pool_per_axis[i] + p >= net_numpool else 1 for i in range(dim)] if all(reached): conv = [3] * dim else: conv = [3 if not reached[i] else 1 for i in range(dim)] net_num_pool_op_kernel_sizes.append(pool) net_conv_kernel_sizes.append(conv) current_spacing = [i * j for i, j in zip(current_spacing, pool)] net_conv_kernel_sizes.append([3] * dim) must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis) patch_size = pad_shape(patch_size, must_be_divisible_by) # we need to add one more conv_kernel_size for the bottleneck. We always use 3x3(x3) conv here return num_pool_per_axis, net_num_pool_op_kernel_sizes, net_conv_kernel_sizes, patch_size, must_be_divisible_by def get_pool_and_conv_props(spacing, patch_size, min_feature_map_size, max_numpool): """ :param spacing: :param patch_size: :param min_feature_map_size: min edge length of feature maps in bottleneck :return: """ dim = len(spacing) current_spacing = deepcopy(list(spacing)) current_size = deepcopy(list(patch_size)) pool_op_kernel_sizes = [] conv_kernel_sizes = [] num_pool_per_axis = [0] * dim while True: # This is a problem because sometimes we have spacing 20, 50, 50 and we want to still keep pooling. # Here we would stop however. This is not what we want! Fixed in get_pool_and_conv_propsv2 min_spacing = min(current_spacing) valid_axes_for_pool = [i for i in range(dim) if current_spacing[i] / min_spacing < 2] axes = [] for a in range(dim): my_spacing = current_spacing[a] partners = [i for i in range(dim) if current_spacing[i] / my_spacing < 2 and my_spacing / current_spacing[i] < 2] if len(partners) > len(axes): axes = partners conv_kernel_size = [3 if i in axes else 1 for i in range(dim)] # exclude axes that we cannot pool further because of min_feature_map_size constraint #before = len(valid_axes_for_pool) valid_axes_for_pool = [i for i in valid_axes_for_pool if current_size[i] >= 2*min_feature_map_size] #after = len(valid_axes_for_pool) #if after == 1 and before > 1: # break valid_axes_for_pool = [i for i in valid_axes_for_pool if num_pool_per_axis[i] < max_numpool] if len(valid_axes_for_pool) == 0: break #print(current_spacing, current_size) other_axes = [i for i in range(dim) if i not in valid_axes_for_pool] pool_kernel_sizes = [0] * dim for v in valid_axes_for_pool: pool_kernel_sizes[v] = 2 num_pool_per_axis[v] += 1 current_spacing[v] *= 2 current_size[v] = np.ceil(current_size[v] / 2) for nv in other_axes: pool_kernel_sizes[nv] = 1 pool_op_kernel_sizes.append(pool_kernel_sizes) conv_kernel_sizes.append(conv_kernel_size) #print(conv_kernel_sizes) must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis) patch_size = pad_shape(patch_size, must_be_divisible_by) # we need to add one more conv_kernel_size for the bottleneck. We always use 3x3(x3) conv here conv_kernel_sizes.append([3]*dim) return num_pool_per_axis, pool_op_kernel_sizes, conv_kernel_sizes, patch_size, must_be_divisible_by def get_pool_and_conv_props_v2(spacing, patch_size, min_feature_map_size, max_numpool): """ :param spacing: :param patch_size: :param min_feature_map_size: min edge length of feature maps in bottleneck :return: """ dim = len(spacing) current_spacing = deepcopy(list(spacing)) current_size = deepcopy(list(patch_size)) pool_op_kernel_sizes = [] conv_kernel_sizes = [] num_pool_per_axis = [0] * dim kernel_size = [1] * dim while True: # exclude axes that we cannot pool further because of min_feature_map_size constraint valid_axes_for_pool = [i for i in range(dim) if current_size[i] >= 2*min_feature_map_size] if len(valid_axes_for_pool) < 1: break spacings_of_axes = [current_spacing[i] for i in valid_axes_for_pool] # find axis that are within factor of 2 within smallest spacing min_spacing_of_valid = min(spacings_of_axes) valid_axes_for_pool = [i for i in valid_axes_for_pool if current_spacing[i] / min_spacing_of_valid < 2] # max_numpool constraint valid_axes_for_pool = [i for i in valid_axes_for_pool if num_pool_per_axis[i] < max_numpool] if len(valid_axes_for_pool) == 1: if current_size[valid_axes_for_pool[0]] >= 3 * min_feature_map_size: pass else: break if len(valid_axes_for_pool) < 1: break # now we need to find kernel sizes # kernel sizes are initialized to 1. They are successively set to 3 when their associated axis becomes within # factor 2 of min_spacing. Once they are 3 they remain 3 for d in range(dim): if kernel_size[d] == 3: continue else: if spacings_of_axes[d] / min(current_spacing) < 2: kernel_size[d] = 3 other_axes = [i for i in range(dim) if i not in valid_axes_for_pool] pool_kernel_sizes = [0] * dim for v in valid_axes_for_pool: pool_kernel_sizes[v] = 2 num_pool_per_axis[v] += 1 current_spacing[v] *= 2 current_size[v] = np.ceil(current_size[v] / 2) for nv in other_axes: pool_kernel_sizes[nv] = 1 pool_op_kernel_sizes.append(pool_kernel_sizes) conv_kernel_sizes.append(deepcopy(kernel_size)) #print(conv_kernel_sizes) must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis) patch_size = pad_shape(patch_size, must_be_divisible_by) # we need to add one more conv_kernel_size for the bottleneck. We always use 3x3(x3) conv here conv_kernel_sizes.append([3]*dim) return num_pool_per_axis, pool_op_kernel_sizes, conv_kernel_sizes, patch_size, must_be_divisible_by def get_shape_must_be_divisible_by(net_numpool_per_axis): return 2 ** np.array(net_numpool_per_axis) def pad_shape(shape, must_be_divisible_by): """ pads shape so that it is divisibly by must_be_divisible_by :param shape: :param must_be_divisible_by: :return: """ if not isinstance(must_be_divisible_by, (tuple, list, np.ndarray)): must_be_divisible_by = [must_be_divisible_by] * len(shape) else: assert len(must_be_divisible_by) == len(shape) new_shp = [shape[i] + must_be_divisible_by[i] - shape[i] % must_be_divisible_by[i] for i in range(len(shape))] for i in range(len(shape)): if shape[i] % must_be_divisible_by[i] == 0: new_shp[i] -= must_be_divisible_by[i] new_shp = np.array(new_shp).astype(int) return new_shp def get_network_numpool(patch_size, maxpool_cap=999, min_feature_map_size=4): network_numpool_per_axis = np.floor([np.log(i / min_feature_map_size) / np.log(2) for i in patch_size]).astype(int) network_numpool_per_axis = [min(i, maxpool_cap) for i in network_numpool_per_axis] return network_numpool_per_axis if __name__ == '__main__': # trying to fix https://github.com/MIC-DKFZ/nnUNet/issues/261 median_shape = [24, 504, 512] spacing = [5.9999094, 0.50781202, 0.50781202] num_pool_per_axis, net_num_pool_op_kernel_sizes, net_conv_kernel_sizes, patch_size, must_be_divisible_by = get_pool_and_conv_props_poolLateV2(median_shape, min_feature_map_size=4, max_numpool=999, spacing=spacing)
py
1a56f160767f49bf3abc44b4d1df014ca7ce0abe
# coding: utf-8 """ Schemas The CRM uses schemas to define how custom objects should store and represent information in the HubSpot CRM. Schemas define details about an object's type, properties, and associations. The schema can be uniquely identified by its **object type ID**. # noqa: E501 The version of the OpenAPI document: v3 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from hubspot.crm.schemas.api_client import ApiClient from hubspot.crm.schemas.exceptions import ApiTypeError, ApiValueError # noqa: F401 class PublicObjectSchemasApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def purge(self, object_type, **kwargs): # noqa: E501 """purge # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.purge(object_type, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str object_type: (required) :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: None If the method is called asynchronously, returns the request thread. """ kwargs["_return_http_data_only"] = True return self.purge_with_http_info(object_type, **kwargs) # noqa: E501 def purge_with_http_info(self, object_type, **kwargs): # noqa: E501 """purge # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.purge_with_http_info(object_type, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str object_type: (required) :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: None If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = ["object_type"] all_params.extend(["async_req", "_return_http_data_only", "_preload_content", "_request_timeout"]) for key, val in six.iteritems(local_var_params["kwargs"]): if key not in all_params: raise ApiTypeError("Got an unexpected keyword argument '%s'" " to method purge" % key) local_var_params[key] = val del local_var_params["kwargs"] # verify the required parameter 'object_type' is set if self.api_client.client_side_validation and ("object_type" not in local_var_params or local_var_params["object_type"] is None): # noqa: E501 # noqa: E501 raise ApiValueError("Missing the required parameter `object_type` when calling `purge`") # noqa: E501 collection_formats = {} path_params = {} if "object_type" in local_var_params: path_params["objectType"] = local_var_params["object_type"] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params["Accept"] = self.api_client.select_header_accept(["*/*"]) # noqa: E501 # Authentication setting auth_settings = ["hapikey"] # noqa: E501 return self.api_client.call_api( "/crm/v3/schemas/{objectType}/purge", "DELETE", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get("async_req"), _return_http_data_only=local_var_params.get("_return_http_data_only"), # noqa: E501 _preload_content=local_var_params.get("_preload_content", True), _request_timeout=local_var_params.get("_request_timeout"), collection_formats=collection_formats, )
py
1a56f316e0f99e5899c0fc6c681344ebca0e8aad
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymongo db = pymongo.MongoClient() xianyu = db.python.xianyu class ErshouPipeline(object): def process_item(self, item, spider): return item class WriteMongo(object): def process_item(self, item, spider): data = dict(item) xianyu.insert(data) return item
py
1a56f3a0a4a9b36e4020f260f5b79bb590b4ee1f
from PyQt5.QtWidgets import * from PyQt5.QtCore import Qt, QBasicTimer from PyQt5.QtGui import QPen, QColor, QBrush import time class Settings: BLOCK_WIDTH = 10 BLOCK_HEIGHT = 10 NUM_BLOCKS_X = 50 NUM_BLOCKS_Y = 50 SCREEN_WIDTH = BLOCK_WIDTH * NUM_BLOCKS_X SCREEN_HEIGHT = BLOCK_HEIGHT * NUM_BLOCKS_Y class AppScene(QGraphicsScene): SPEED = 50 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.lines = [] self.create_ant() self.draw_grid() self.set_opacity(0.7) self.ant_x = 50 self.timer = QBasicTimer() #print(self.itemAt(Settings.NUM_BLOCKS_X // 2, Settings.NUM_BLOCKS_Y // 2, QTransform())) #time.sleep(1) #self.move_ant(Settings.BLOCK_HEIGHT*9, 0) self.start() def start(self): self.addItem(self.ant) self.timer.start(self.SPEED, self) def timerEvent(self, event): if event.timerId() == self.timer.timerId(): self.set_ant(self.ant_x % 500 - 250, -40) self.ant_x += 10 def move_ant(self, dx, dy): self.ant.moveBy(dx, dy) def set_ant(self, x, y): self.ant.setPos(x, y) def create_ant(self): self.ant = QGraphicsEllipseItem(Settings.SCREEN_WIDTH // 2, Settings.SCREEN_HEIGHT // 2, Settings.BLOCK_WIDTH, Settings.BLOCK_HEIGHT) self.ant.setBrush(QBrush(QColor(0, 0, 255), Qt.SolidPattern)) def draw_grid(self): width = Settings.SCREEN_WIDTH height = Settings.SCREEN_HEIGHT self.setSceneRect(0, 0, width, height) pen = QPen(QColor(100, 100, 100), 1, Qt.SolidLine) for x in range(0, Settings.NUM_BLOCKS_X + 1): _x = x * Settings.BLOCK_WIDTH self.lines.append(self.addLine(_x, 0, _x, height, pen)) for y in range(0, Settings.NUM_BLOCKS_Y + 1): _y = y * Settings.BLOCK_HEIGHT self.lines.append(self.addLine(0, _y, width, _y, pen)) def sert_visible(self, visible=True): for line in self.lines: line.setVisible(visible) def draw_rect(self, col, row, color): col = col * Settings.BLOCK_HEIGHT row = row * Settings.BLOCK_WIDTH rect = QGraphicsRectItem(row, col, Settings.BLOCK_WIDTH, Settings.BLOCK_HEIGHT) rect.setBrush(QBrush(color, Qt.SolidPattern)) self.addItem(rect) def delete_grid(self): for line in self.lines: self.removeItem(line) del self.lines[:] def set_opacity(self, opacity): for line in self.lines: line.setOpacity(opacity) class Appview(QGraphicsView): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setFixedSize(Settings.SCREEN_WIDTH + 10, Settings.SCREEN_HEIGHT + 10) def drawBackground(self, painter, rect): super().drawBackground(painter, rect) if __name__ == "__main__": import sys sys._excepthook = sys.excepthook def exception_hook(exctype, value, traceback): print(exctype, value, traceback) sys._excepthook(exctype, value, traceback) sys.exit(1) sys.excepthook = exception_hook app = QApplication(sys.argv) QScene = AppScene() win = Appview() win.setScene(QScene) win.show() sys.exit(app.exec_())
py
1a56f486e041e115309bb95b2b2fe9ac8babca60
import os import shutil from conans.client.source import complete_recipe_sources from conans.errors import ConanException from conans.model.ref import ConanFileReference, PackageReference from conans.util.files import rmdir def _prepare_sources(cache, ref, remote_manager, loader, remotes): conan_file_path = cache.package_layout(ref).conanfile() conanfile = loader.load_class(conan_file_path) complete_recipe_sources(remote_manager, cache, conanfile, ref, remotes) return conanfile.short_paths def _get_package_ids(cache, ref, package_ids): if not package_ids: return [] if package_ids is True: packages = cache.package_layout(ref).packages() if os.path.exists(packages): package_ids = os.listdir(packages) else: package_ids = [] return package_ids def cmd_copy(ref, user_channel, package_ids, cache, user_io, remote_manager, loader, remotes, force=False): """ param package_ids: Falsey=do not copy binaries. True=All existing. []=list of ids """ # It is important to get the revision early, so "complete_recipe_sources" can # get the right revision sources, not latest layout = cache.package_layout(ref) src_metadata = layout.load_metadata() ref = ref.copy_with_rev(src_metadata.recipe.revision) short_paths = _prepare_sources(cache, ref, remote_manager, loader, remotes) package_ids = _get_package_ids(cache, ref, package_ids) package_copy(ref, user_channel, package_ids, cache, user_io, short_paths, force) def package_copy(src_ref, user_channel, package_ids, cache, user_io, short_paths=False, force=False): dest_ref = ConanFileReference.loads("%s/%s@%s" % (src_ref.name, src_ref.version, user_channel)) # Generate metadata src_layout = cache.package_layout(src_ref, short_paths) src_metadata = src_layout.load_metadata() dst_layout = cache.package_layout(dest_ref, short_paths) # Copy export export_origin = src_layout.export() if not os.path.exists(export_origin): raise ConanException("'%s' doesn't exist" % str(src_ref)) export_dest = dst_layout.export() if os.path.exists(export_dest): if not force and not user_io.request_boolean("'%s' already exist. Override?" % str(dest_ref)): return rmdir(export_dest) shutil.copytree(export_origin, export_dest, symlinks=True) user_io.out.info("Copied %s to %s" % (str(src_ref), str(dest_ref))) export_sources_origin = src_layout.export_sources() export_sources_dest = dst_layout.export_sources() if os.path.exists(export_sources_dest): rmdir(export_sources_dest) shutil.copytree(export_sources_origin, export_sources_dest, symlinks=True) user_io.out.info("Copied sources %s to %s" % (str(src_ref), str(dest_ref))) # Copy packages package_revisions = {} # To be stored in the metadata for package_id in package_ids: pref_origin = PackageReference(src_ref, package_id) pref_dest = PackageReference(dest_ref, package_id) package_path_origin = src_layout.package(pref_origin) package_path_dest = dst_layout.package(pref_dest) if os.path.exists(package_path_dest): if not force and not user_io.request_boolean("Package '%s' already exist." " Override?" % str(package_id)): continue rmdir(package_path_dest) package_revisions[package_id] = (src_metadata.packages[package_id].revision, src_metadata.recipe.revision) shutil.copytree(package_path_origin, package_path_dest, symlinks=True) user_io.out.info("Copied %s to %s" % (str(package_id), str(dest_ref))) # Generate the metadata with dst_layout.update_metadata() as metadata: metadata.recipe.revision = src_metadata.recipe.revision for package_id, (revision, recipe_revision) in package_revisions.items(): metadata.packages[package_id].revision = revision metadata.packages[package_id].recipe_revision = recipe_revision
py
1a56f53a60712ed91642b4d9e20c2a791686c256
import _plotly_utils.basevalidators class ColorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="color", parent_name="layout.xaxis.rangeselector.font", **kwargs ): super(ColorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "plot"), role=kwargs.pop("role", "style"), **kwargs )
py
1a56f5a86688c86da22af72da83870936fa88f07
import sys import os.path sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from robot_localisation.main import main main()
py
1a56f7b5ccf62d8a61f3e3b790fa787165541f9f
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from ._accounts_operations import AccountsOperations from ._consumer_invitations_operations import ConsumerInvitationsOperations from ._data_sets_operations import DataSetsOperations from ._data_set_mappings_operations import DataSetMappingsOperations from ._invitations_operations import InvitationsOperations from ._operations import Operations from ._shares_operations import SharesOperations from ._provider_share_subscriptions_operations import ProviderShareSubscriptionsOperations from ._share_subscriptions_operations import ShareSubscriptionsOperations from ._consumer_source_data_sets_operations import ConsumerSourceDataSetsOperations from ._synchronization_settings_operations import SynchronizationSettingsOperations from ._triggers_operations import TriggersOperations __all__ = [ 'AccountsOperations', 'ConsumerInvitationsOperations', 'DataSetsOperations', 'DataSetMappingsOperations', 'InvitationsOperations', 'Operations', 'SharesOperations', 'ProviderShareSubscriptionsOperations', 'ShareSubscriptionsOperations', 'ConsumerSourceDataSetsOperations', 'SynchronizationSettingsOperations', 'TriggersOperations', ]
py
1a56f855c65ff2594bbe7fcab1c9c207c84e2ab6
"""converted from ..\fonts\50146chareuro_8x8in8x16.bin """ WIDTH = 8 HEIGHT = 16 FIRST = 0x20 LAST = 0x7f _FONT =\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x30\x78\x78\x30\x30\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x6c\x6c\x6c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x6c\x6c\xfe\x6c\xfe\x6c\x6c\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x18\x7e\xd0\x7c\x16\xfc\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\xc6\xcc\x18\x30\x66\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x38\x6c\x38\x76\xdc\xcc\x76\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x60\x60\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x18\x30\x60\x60\x60\x30\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x60\x30\x18\x18\x18\x30\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x66\x3c\xff\x3c\x66\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x30\x30\xfc\x30\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x30\x30\x60\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\xfc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x30\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x06\x0c\x18\x30\x60\xc0\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x7c\xc6\xce\xde\xf6\xe6\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x30\x70\x30\x30\x30\x30\xfc\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x78\xcc\x0c\x38\x60\xcc\xfc\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x78\xcc\x0c\x38\x0c\xcc\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x1c\x3c\x6c\xcc\xfe\x0c\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xfc\xc0\xf8\x0c\x0c\xcc\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x38\x60\xc0\xf8\xcc\xcc\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xfc\xcc\x0c\x18\x30\x30\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x78\xcc\xcc\x78\xcc\xcc\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x78\xcc\xcc\x7c\x0c\x18\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x30\x30\x00\x00\x30\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x30\x30\x00\x30\x30\x60\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x18\x30\x60\xc0\x60\x30\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\xfc\x00\xfc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x60\x30\x18\x0c\x18\x30\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x78\xcc\x0c\x18\x30\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x7c\xc6\xce\xde\xdc\xc0\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x30\x78\xcc\xcc\xfc\xcc\xcc\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xfc\x66\x66\x7c\x66\x66\xfc\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x3c\x66\xc0\xc0\xc0\x66\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xf8\x6c\x66\x66\x66\x6c\xf8\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xfe\x62\x68\x78\x68\x62\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xfe\x62\x68\x78\x68\x60\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x3c\x66\xc0\xc0\xce\x66\x3e\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xcc\xcc\xcc\xfc\xcc\xcc\xcc\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x78\x30\x30\x30\x30\x30\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x1e\x0c\x0c\x0c\xcc\xcc\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xe6\x66\x6c\x78\x6c\x66\xe6\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xf0\x60\x60\x60\x60\x66\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xc6\xee\xfe\xfe\xd6\xc6\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xc6\xe6\xf6\xde\xce\xc6\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x7c\xc6\xc6\xc6\xc6\xc6\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xfc\x66\x66\x7c\x60\x60\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x7c\xc6\xc6\xc6\xd6\x7c\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xfc\x66\x66\x7c\x6c\x66\xe6\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x7c\xc6\x60\x38\x0c\xc6\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xfc\xb4\x30\x30\x30\x30\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xc6\xc6\xc6\xc6\xc6\xc6\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xcc\xcc\xcc\xcc\xcc\x78\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xc6\xc6\xc6\xd6\xfe\xee\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xc6\xc6\x6c\x38\x38\x6c\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xcc\xcc\xcc\x78\x30\x30\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xfe\xc6\x0c\x18\x30\x66\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x78\x60\x60\x60\x60\x60\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xc0\x60\x30\x18\x0c\x06\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x78\x18\x18\x18\x18\x18\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x10\x38\x6c\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\xff\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x30\x30\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x78\x0c\x7c\xcc\x76\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xe0\x60\x60\x7c\x66\x66\xdc\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x78\xcc\xc0\xcc\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x1c\x0c\x0c\x7c\xcc\xcc\x76\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x78\xcc\xfc\xc0\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x3c\x66\x60\xf0\x60\x60\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x76\xcc\xcc\x7c\x0c\xf8\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xe0\x60\x6c\x76\x66\x66\xe6\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x30\x00\x70\x30\x30\x30\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x0c\x00\x0c\x0c\x0c\xcc\xcc\x78\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xe0\x60\x66\x6c\x78\x6c\xe6\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x70\x30\x30\x30\x30\x30\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\xcc\xfe\xfe\xd6\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\xdc\x66\x66\x66\x66\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x78\xcc\xcc\xcc\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\xdc\x66\x66\x7c\x60\xf0\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x76\xcc\xcc\x7c\x0c\x1e\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\xdc\x76\x66\x60\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc2\x38\x86\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x10\x30\x7c\x30\x30\x34\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\xcc\xcc\xcc\xcc\x76\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\xcc\xcc\xcc\x78\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\xd6\xfe\x6c\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\xc6\x6c\x38\x6c\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\xcc\xcc\xcc\x7c\x0c\xf8\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\xfc\x98\x30\x64\xfc\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x1c\x30\x30\xe0\x30\x30\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x18\x18\x18\x00\x18\x18\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xe0\x30\x30\x1c\x30\x30\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x76\xdc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x10\x38\x6c\xc6\xc6\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ FONT = memoryview(_FONT)
py
1a56f9e74416561ec16571c406524963614d0d43
import cv2 cv2_data_dir = '/usr/local/lib/python3.7/dist-packages/cv2/data/' face_cascade = cv2.CascadeClassifier(cv2_data_dir + 'haarcascade_frontalface_default.xml') img = cv2.imread('faces.jpg', cv2.IMREAD_GRAYSCALE) scale_factor = 1.4 min_neighbours = 5 faces = face_cascade.detectMultiScale(img, scale_factor, min_neighbours) print(faces) for (x,y,w,h) in faces: img = cv2.rectangle(img, (x,y), (x+w,y+h), (255, 255, 255), 2) cv2.imshow('image',img) cv2.waitKey(0) cv2.destroyAllWindows()
py
1a56fa8883465db598a0e33a13d87848d6b17be2
""" Overrides the tf.keras.metrics.MeanIoU in order to use the one-hot encoded predictions instead of argmax. """ import tensorflow as tf from tensorflow import keras from tensorflow.keras import backend as K class SoftmaxSingleMeanIoU(keras.metrics.MeanIoU): """ mIoU metric specific to only one class that uses softmax input (not argmax input). """ def __init__(self, label, name=None, dtype=None): """ :param name: name used for the metric :param label: ID (integer) of the class used """ super(SoftmaxSingleMeanIoU, self).__init__( 2, name=name, dtype=dtype) self.label = label def update_state(self, y_true, y_pred, sample_weight=None): # Change the softmax masks into the argmax equivalent to make the metric work y_true = K.cast(K.equal(K.argmax(y_true), self.label), K.floatx()) y_pred = K.cast(K.equal(K.argmax(y_pred), self.label), K.floatx()) return super(SoftmaxSingleMeanIoU, self).update_state( y_true, y_pred, sample_weight=sample_weight) def result(self): return super(SoftmaxSingleMeanIoU, self).result() def reset_states(self): super(SoftmaxSingleMeanIoU, self).reset_states() def get_config(self): return super(SoftmaxSingleMeanIoU, self).get_config() class SoftmaxMeanIoU(keras.metrics.MeanIoU): def __init__(self, num_classes, name=None, dtype=None): """ :param: num_classes: number of class available :param name: name used for the metric """ super(SoftmaxMeanIoU, self).__init__( num_classes, name=name, dtype=dtype) def update_state(self, y_true, y_pred, sample_weight=None): # Change the softmax masks into the argmax equivalent to make the metric work y_true = K.argmax(y_true) y_pred = K.argmax(y_pred) return super(SoftmaxMeanIoU, self).update_state( y_true, y_pred, sample_weight=sample_weight) def result(self): return super(SoftmaxMeanIoU, self).result() def reset_states(self): super(SoftmaxMeanIoU, self).reset_states() def get_config(self): return super(SoftmaxMeanIoU, self).get_config()
py
1a56fae0948f0e108e53ba32e4b03092c424b5dd
import base64 import datetime import plotly import plotly.figure_factory as ff import os import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate import json import dashUI.run as run import dashUI.run_OD as run_OD iterationList = [] lossList = [] epochOfLossList = [] epochOfTop1ErrorList = [] epochOfMeanAPList = [] TrainSet_top1_error_valueList = [] ValidationSet_top1_error_valueList = [] TrainSet_mean_ap_valueList = [] ValidationSet_mean_ap_valueList = [] metricList = [] external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) image_filename = 'C:/Users/930415/PycharmProjects/chadle/dashUI/icon.png' # replace with your own image encoded_image = base64.b64encode(open(image_filename, 'rb').read()) CLProjectNames = ','.join(run.CLProjectList) ODProjectNames = ','.join(run.ODProjectList) app.layout = html.Div([ html.Center(html.Img(src='data:image/png;base64,{}'.format(encoded_image.decode()), width='80', height='70')), # Title html.H1('CHaDLE ', style={ "font": 'verdana', 'textAlign': 'center', 'color': 'Black' } ), # Tabs for CL and OD html.Div([ dcc.Tabs(id='AllTab', value='AllTab', children=[ # Classification Tab dcc.Tab(label='Classification', value='CLTab', children=[ html.Div([html.Th(children='Available Classification Projects: ' + CLProjectNames, colSpan="1"), html.Br(), "Project Name:", dcc.Input( id='ProjectName_CL', value='Animals', type='text' ), html.Br(), "Training Device:", dcc.RadioItems( id='Runtime_CL', options=[{'label': i, 'value': i} for i in ['cpu', 'gpu']], value='cpu', labelStyle={'display': 'inline-block'} ), "Pretrained Model:", dcc.Dropdown( id='PretrainedModel_CL', options=[{'label': i, 'value': i} for i in ["classifier_enhanced", "classifier_compact"]], value='classifier_compact' ), ], style={'width': '25%', 'display': 'inline-block'} ), html.Br(), html.Br(), html.Div([ html.Div([ html.Label('Image Width'), dcc.Input(id='ImWidth_CL', value='100 ', type='number', min=0, step=1, ), html.Label('Image Height'), dcc.Input(id='ImHeight_CL', value='100', type='number', min=0, step=1, ), html.Label('Image Channel'), dcc.Input(id='ImChannel_CL', value='3', type='number', min=0, step=1, ), html.Label('Batch Size'), dcc.Input(id='BatchSize_CL', value='1', type='number', min=0, step=1, ), html.Label('Initial Learning Rate'), dcc.Input(id='InitialLearningRate_CL', value='0.001', type='number', min=0, step=0.00001, ), html.Label('Momentum'), dcc.Input(id='Momentum_CL', value='0.09', type='number', min=0, step=0.00001, ), html.Label('Number of Epochs'), dcc.Input(id='NumEpochs_CL', value='2', type='number', min=0, step=1, ), html.Label('Change Learning Rate @ Epochs'), dcc.Input(id='ChangeLearningRateEpochs_CL', value='50,100', type='text'), html.Label('Learning Rate Schedule'), dcc.Input(id='lr_change_CL', value='0.01,0.05', type='text'), html.Label('Regularisation Constant'), dcc.Input(id='WeightPrior_CL', value='0.001', type='number', min=0, step=0.00001, ), html.Label('Class Penalty'), dcc.Input(id='class_penalty_CL', value='0,0', type='text'), ], style={'width': '20%', 'display': 'inline-block'}), html.Div([ html.Label('Augmentation Percentage'), dcc.Input(id='AugmentationPercentage_CL', value='100', type='number', min=0, max=100, step=1, ), html.Label('Rotation'), dcc.Input(id='Rotation_CL', value='90', type='number', min=-180, max=180, step=90, ), html.Label('Mirror (off,c,r,rc)'), dcc.Input(id='mirror_CL', value='off', type='text', ), html.Label('Brightness Variation'), dcc.Input(id='BrightnessVariation_CL', value='1', type='number', min=-100, max=100, step=1, ), html.Label('Brightness Variation Spot'), dcc.Input(id='BrightnessVariationSpot_CL', value='1', type='number', min=-100, max=100, step=1, ), html.Label('Rotation Range (Step of 1)'), dcc.Input(id='RotationRange_CL', value='1', type='number', min=1, step=1, ), # html.Label('Ignore Direction'), # dcc.Input(id='IgnoreDirection', value='false', type='text'), # html.Label('Class IDs No Orientation Exist'), # dcc.Input(id='ClassIDsNoOrientationExist', value='false', type='text'), # html.Label('Class IDs No Orientation'), # dcc.Input(id='ClassIDsNoOrientation', value='[]', type='text'), ], style={'width': '20%', 'float': 'left', 'display': 'inline-block'}), html.Div([html.H4('Evaluation'), html.Div(id='evaluation_text_CL'), dcc.Graph(id='evaluation_graph_CL'), ], style={'width': '50%', 'float': 'right', }), dcc.Interval( id='interval-evaluation_CL', interval=1 * 1000, # in milliseconds n_intervals=0 ) ]), html.Br(), html.Br(), dcc.Loading( id="loading-1", type="default", children=[html.Div(id="Training_loading_CL"), html.Div(id="Evaluation_loading_CL")] ), html.Div([ # html.Button(id='submit-button-state', n_clicks=0, children='Submit'), html.Button(id='operation_button_CL', n_clicks=0, children='Start Training'), # html.Button(id='train_button', n_clicks=0, children='Train'), # html.Button(id='parameters_out_button', n_clicks=0, children='Output Parameters'), html.Button(id='evaluation_button_CL', n_clicks=0, children='Evaluation'), ], style={ 'width': '70%', 'float': 'right', } ), html.Br(), html.Br(), html.Br(), html.Br(), html.Div(id='Operation_output_CL'), html.Div(id='makeJson_CL'), # html.Div(id='output-state'), # html.Div(id='Train Result'), # html.Div(id='Evaluation Result'), # Graph Plotter html.Div([ html.H1('CHaDLE Training Monitor - Classification', style={ "font": 'Helvetica', 'textAlign': 'center', 'color': 'Black' }), html.Div(id='metrics_CL', style={ "font": 'Helvetica', 'textAlign': 'center', 'color': 'Blue' }), dcc.Graph(id='iteration_loss_graph_CL'), dcc.Graph(id='top1_error_graph_CL'), dcc.Interval( id='interval_graph_CL', interval=1 * 1000, # in milliseconds n_intervals=0 ) ]) ]), # Object Detection Tab dcc.Tab(label='Object Detection', value='ODTab', children=[ # Basic inputs html.Div([html.Th(children='Available Object Detection Projects: ' + ODProjectNames, colSpan="1"), html.Br(), "Project Name:", dcc.Input( id='ProjectName_OD', value='NTBW', type='text' ), html.Br(), "Training Device:", dcc.RadioItems( id='Runtime_OD', options=[{'label': i, 'value': i} for i in ['cpu', 'gpu']], value='cpu', labelStyle={'display': 'inline-block'} ), "Pretrained Model:", dcc.Dropdown( id='PretrainedModel_OD', options=[{'label': i, 'value': i} for i in ["classifier_enhanced", "classifier_compact"]], value='classifier_compact' ), ], style={'width': '15%', 'display': 'inline-block'}), html.Br(), html.Br(), # Parameters inputs html.Div([ html.Div([ html.Label('Number of Classes'), dcc.Input(id='NumClasses_OD', value='5', type='number', min=0, step=1, ), html.Label('Image Width'), dcc.Input(id='ImWidth_OD', value='960', type='number', min=0, step=1, ), html.Label('Image Height'), dcc.Input(id='ImHeight_OD', value='1024', type='number', min=0, step=1, ), html.Label('Image Channel'), dcc.Input(id='ImChannel_OD', value='3', type='number', min=0, step=1, ), html.Label('Capacity'), dcc.Input(id='Capacity_OD', value='medium', type='text', min=0, step=1, ), html.Label('Instance Type'), dcc.Input(id='InstanceType_OD', value='rectangle1', type='text', min=0, step=1, ), html.Label('Training Percent'), dcc.Input(id='TrainingPercent_OD', value='75', type='number', min=0, step=1, ), html.Label('Validation Percent'), dcc.Input(id='ValidationPercent_OD', value='15', type='number', min=0, step=1, ), ], style={'width': '15%', 'display': 'inline-block'}), html.Div([ html.Label('Batch Size'), dcc.Input(id='BatchSize_OD', value='10', type='number', min=0, step=1, ), html.Label('Initial Learning Rate'), dcc.Input(id='InitialLearningRate_OD', value='0.001', type='number', min=0, step=0.00001, ), html.Label('Momentum'), dcc.Input(id='Momentum_OD', value='0.09', type='number', min=0, step=0.00001, ), html.Label('Number of Epochs'), dcc.Input(id='NumEpochs_OD', value='2', type='number', min=0, step=1, ), html.Label('Change Learning Rate @ Epochs'), dcc.Input(id='ChangeLearningRateEpochs_OD', value='50,100', type='text'), html.Label('Learning Rate Schedule'), dcc.Input(id='lr_change_OD', value='0.01,0.05', type='text'), html.Label('Regularisation Constant'), dcc.Input(id='WeightPrior_OD', value='0.001', type='number', min=0, step=0.00001, ), html.Label('Class Penalty'), dcc.Input(id='class_penalty_OD', value='0,0', type='text'), ], style={'width': '15%', 'display': 'inline-block'}), html.Div([ html.Label('Augmentation Percentage'), dcc.Input(id='AugmentationPercentage_OD', value='100', type='number', min=0, max=100, step=1, ), html.Label('Rotation'), dcc.Input(id='Rotation_OD', value='90', type='number', min=-180, max=180, step=90, ), html.Label('Mirror (off,c,r,rc)'), dcc.Input(id='mirror_OD', value='off', type='text', ), html.Label('Brightness Variation'), dcc.Input(id='BrightnessVariation_OD', value='0', type='number', min=-100, max=100, step=1, ), html.Label('Brightness Variation Spot'), dcc.Input(id='BrightnessVariationSpot_OD', value='0', type='number', min=-100, max=100, step=1, ), html.Label('Rotation Range (Step of 1)'), dcc.Input(id='RotationRange_OD', value='10', type='number', min=1, step=1, ), # html.Label('Ignore Direction'), # dcc.Input(id='IgnoreDirection', value='false', type='text'), # html.Label('Class IDs No Orientation Exist'), # dcc.Input(id='ClassIDsNoOrientationExist', value='false', type='text'), # html.Label('Class IDs No Orientation'), # dcc.Input(id='ClassIDsNoOrientation', value='[]', type='text'), ], style={'width': '15%', 'float': 'initial', 'display': 'inline-block', }), # Estimated Value show and input html.Div([ html.H4('Halcon estimated values'), html.P('Key in new desired value or leave it empty: '), html.Br(), html.Div([html.P('Min Level: '), html.Div([html.Div(id='MinLevel_OD'), ], style={"font": 'Helvetica', 'color': 'Blue'}), dcc.Input(id='MinLevel_Input_OD', placeholder='Integer', type='number', min=0, step=1, debounce=True), ]), html.Br(), html.Div([html.P('Max Level: '), html.Div([html.Div(id='MaxLevel_OD'), ], style={"font": 'Helvetica', 'color': 'Blue'}), dcc.Input(id='MaxLevel_Input_OD', placeholder='Integer', type='number', min=0, step=1, debounce=True), ]), html.Br(), html.Div([html.P('Anchor Number of Subscales: '), html.Div([html.Div(id='AnchorNumSubscales_OD'), ], style={"font": 'Helvetica', 'color': 'Blue'}), dcc.Input(id='AnchorNumSubscales_Input_OD', placeholder='Integer', type='number', min=0, step=1, debounce=True), ]), html.Br(), html.Div([html.P('Anchor Aspect Ratios (min,max,mean,deviation): '), html.Div([html.Div(id='AnchorAspectRatios_OD'), ], style={"font": 'Helvetica', 'color': 'Blue'}), dcc.Input(id='AnchorAspectRatios_Input_OD', placeholder='List (0.720, 1.475, 2.125, 2.753)', type='text', min=0, debounce=True, style={'width': '50%', }), ]), # if user wanna change, type in the desired value. # value = Best value among 4 read by halcon # label the value, ], style={'width': '40%', 'float': 'right'}, ), ]), html.Br(), html.Br(), html.Br(), dcc.Loading( id="loading_OD", type="default", children=[html.Div(id="Training_loading_OD"), html.Div(id="Estimate_values_loading_OD")] ), html.Br(), # Buttons html.Div([ html.Button(id='estimate_button_OD', n_clicks=0, children='Halcon Estimate Values'), html.Button(id='operation_button_OD', n_clicks=0, children='Train'), # html.Button(id='parameters_out_button', n_clicks=0, children='Output Parameters'), html.Button(id='evaluation_button_OD', n_clicks=0, children='Evaluation'), ], style={'display': 'flex', 'justify-content': 'center', 'align-items': 'center', 'height': '100px', }, ), html.Div([html.Label(id='training_output_OD'), ], style={'display': 'flex', 'justify-content': 'center', 'align-items': 'center', 'height': '50px', }, ), # Evaluation Graph html.Div([ html.Div([html.H2('Evaluation Graph Coming Soon...', style={ "font": 'Helvetica', 'textAlign': 'center', 'color': 'Black' }), html.Div(id='evaluation_text_OD'), dcc.Graph(id='evaluation_graph_OD'), ], style={'width': '100%', 'float': 'initial'}), dcc.Interval( id='interval-evaluation_OD', interval=1 * 1000, # in milliseconds n_intervals=0 ) ], ), # OD training monitor graph plotter html.Div([ html.H1('CHaDLE Training Monitor - Object Detection', style={ "font": 'Helvetica', 'textAlign': 'center', 'color': 'Black' }), html.Div(id='metrics_OD', style={ "font": 'Helvetica', 'textAlign': 'center', 'color': 'Blue' }), dcc.Graph(id='iteration_loss_graph_OD'), dcc.Graph(id='mean_ap_graph_OD'), dcc.Interval( id='interval_graph_OD', interval=1 * 1000, # in milliseconds n_intervals=0 ) ]) ]), ]), ]), ]) ############################################################################################################ ############################################## Call Backs ################################################## ############################################################################################################ ############################################ Classification ################################## @app.callback(Output('Operation_output_CL', 'children'), Output("Training_loading_CL", "children"), Input('operation_button_CL', 'n_clicks'), State('ProjectName_CL', 'value'), State('Runtime_CL', 'value'), State('PretrainedModel_CL', 'value'), State('ImWidth_CL', 'value'), State('ImHeight_CL', 'value'), State('ImChannel_CL', 'value'), State('BatchSize_CL', 'value'), State('InitialLearningRate_CL', 'value'), State('Momentum_CL', 'value'), State('NumEpochs_CL', 'value'), State('ChangeLearningRateEpochs_CL', 'value'), State('lr_change_CL', 'value'), State('WeightPrior_CL', 'value'), State('class_penalty_CL', 'value'), State('AugmentationPercentage_CL', 'value'), State('Rotation_CL', 'value'), State('mirror_CL', 'value'), State('BrightnessVariation_CL', 'value'), State('BrightnessVariationSpot_CL', 'value'), State('RotationRange_CL', 'value'), ) def operation_CL(operation_button_CL, ProjectName_CL, Runtime_CL, PretrainedModel_CL, ImWidth_CL, ImHeight_CL, ImChannel_CL, BatchSize_CL, InitialLearningRate_CL, Momentum_CL, NumEpochs_CL, ChangeLearningRateEpochs_CL, lr_change_CL, WeightPrior_CL, class_penalty_CL, AugmentationPercentage_CL, Rotation_CL, mirror_CL, BrightnessVariation_CL, BrightnessVariationSpot_CL, RotationRange_CL): ctx_operation_CL = dash.callback_context if not ctx_operation_CL.triggered: button_id = 'Null' else: button_id = ctx_operation_CL.triggered[0]['prop_id'].split('.')[0] print(button_id) if button_id == 'Null': raise PreventUpdate else: if button_id == 'operation_button_CL': pre_process_param = run.pre_process_CL(ProjectName_CL, Runtime_CL, PretrainedModel_CL, ImWidth_CL, ImHeight_CL, ImChannel_CL, BatchSize_CL, InitialLearningRate_CL, Momentum_CL, NumEpochs_CL, ChangeLearningRateEpochs_CL, lr_change_CL, WeightPrior_CL, class_penalty_CL, AugmentationPercentage_CL, Rotation_CL, mirror_CL, BrightnessVariation_CL, BrightnessVariationSpot_CL, RotationRange_CL) DLModelHandle = pre_process_param[0][0] DLDataset = pre_process_param[1][0] TrainParam = pre_process_param[2][0] run.training_CL(DLModelHandle, DLDataset, TrainParam) metricList.append(DLModelHandle) metricList.append(DLDataset) metricList.append(TrainParam) # run.training(templist[-3], templist[-2], templist[-1]) # run.training(templist[0], templist[1], templist[2]) else: i = 1 # run.training(templist[-3], templist[-2], templist[-1]) return '', '' @app.callback(Output('evaluation_graph_CL', 'figure'), Output('Evaluation_loading_CL', 'children'), Input('evaluation_button_CL', 'n_clicks'), State('ProjectName_CL', 'value'), State('Runtime_CL', 'value'), State('PretrainedModel_CL', 'value'), State('ImWidth_CL', 'value'), State('ImHeight_CL', 'value'), State('ImChannel_CL', 'value'), State('BatchSize_CL', 'value'), State('InitialLearningRate_CL', 'value'), State('Momentum_CL', 'value'), State('NumEpochs_CL', 'value'), State('ChangeLearningRateEpochs_CL', 'value'), State('lr_change_CL', 'value'), State('WeightPrior_CL', 'value'), State('class_penalty_CL', 'value'), State('AugmentationPercentage_CL', 'value'), State('Rotation_CL', 'value'), State('mirror_CL', 'value'), State('BrightnessVariation_CL', 'value'), State('BrightnessVariationSpot_CL', 'value'), # State('RotationRange', 'value'), # State('IgnoreDirection', 'value'), ) def evaluation_CL(evaluation_button_CL, ProjectName_CL, Runtime_CL, PretrainedModel_CL, ImWidth_CL, ImHeight_CL, ImChannel_CL, BatchSize_CL, InitialLearningRate_CL, Momentum_CL, NumEpochs_CL, ChangeLearningRateEpochs_CL, lr_change_CL, WeightPrior_CL, class_penalty_CL, AugmentationPercentage_CL, Rotation_CL, mirror_CL, BrightnessVariation_CL, BrightnessVariationSpot_CL, ): z = [[0, 0], [0, 0]] x = ['Confusion Matrix', 'Confusion Matrix'] y = ['Confusion Matrix', 'Confusion Matrix'] # change each element of z to type string for annotations z_text = [[str(y) for y in x] for x in z] fig = ff.create_annotated_heatmap([[0, 0], [0, 0]], x=x, y=y, annotation_text=z_text, colorscale='Blues') ctx_evaluation_CL = dash.callback_context if not ctx_evaluation_CL.triggered: button_id = 'Null' else: button_id = ctx_evaluation_CL.triggered[0]['prop_id'].split('.')[0] if button_id == 'evaluation_button_CL': print('Evaluation Started') evaluationList = run.evaluation_CL(ProjectName_CL, Runtime_CL, PretrainedModel_CL, ImWidth_CL, ImHeight_CL, ImChannel_CL, BatchSize_CL, InitialLearningRate_CL, Momentum_CL, NumEpochs_CL, ChangeLearningRateEpochs_CL, lr_change_CL, WeightPrior_CL, class_penalty_CL, AugmentationPercentage_CL, Rotation_CL, mirror_CL, BrightnessVariation_CL, BrightnessVariationSpot_CL, ) z.clear() x.clear() y.clear() z_text.clear() confusion_matrix_List = evaluationList[0] mean_precision = evaluationList[1][0] mean_recall = evaluationList[2][0] mean_f_score = evaluationList[3][0] mean_precision = format(mean_precision, '.3f') mean_recall = format(mean_recall, '.3f') mean_f_score = format(mean_f_score, '.3f') categories = run.getImageCategories(ProjectName_CL, 'Classification')[0] labels = run.getImageCategories(ProjectName_CL, 'Classification')[1] # threading.Thread(target=evaluation).start() length = len(categories) sublist = [confusion_matrix_List[i:i + length] for i in range(0, len(confusion_matrix_List), length)] for i in sublist: z.append(i) for i in categories: x.append(i) y.append(i) # change each element of z to type string for annotations # z_text = [[str(y) for y in x] for x in z] # set up figure z_text = [[str(y) for y in x] for x in z] fig = ff.create_annotated_heatmap(z, x=x, y=y, annotation_text=z_text, colorscale='Blues') # change each element of z to type string for annotations # add title fig.update_layout( title_text='Mean Precision: ' + str(mean_precision) + '\n Mean Recall: ' + str( mean_recall) + '\n Mean F Score: ' + str(mean_f_score), ) # add custom xaxis title fig.add_annotation(dict(font=dict(color="black", size=14), x=0.5, y=-0.15, showarrow=False, text="Ground Truth", xref="paper", yref="paper")) # add custom yaxis title fig.add_annotation(dict(font=dict(color="black", size=14), x=-0.1, y=0.5, showarrow=False, text="Prediction", textangle=-90, xref="paper", yref="paper")) # adjust margins to make room for yaxis title fig.update_layout(margin=dict(t=50, l=200)) # add colorbar fig['data'][0]['showscale'] = True return fig, ' ' # Historical method to produce json file of input parameters @app.callback(Output('makeJson_CL', 'children'), # Input('parameters_out_button', 'n_clicks'), Input('ProjectName_CL', 'value'), State('Runtime_CL', 'value'), State('PretrainedModel_CL', 'value'), State('ImWidth_CL', 'value'), State('ImHeight_CL', 'value'), State('ImChannel_CL', 'value'), State('BatchSize_CL', 'value'), State('InitialLearningRate_CL', 'value'), State('Momentum_CL', 'value'), State('NumEpochs_CL', 'value'), State('ChangeLearningRateEpochs_CL', 'value'), State('lr_change_CL', 'value'), State('WeightPrior_CL', 'value'), State('class_penalty_CL', 'value'), State('AugmentationPercentage_CL', 'value'), State('Rotation_CL', 'value'), State('mirror_CL', 'value'), State('BrightnessVariation_CL', 'value'), State('BrightnessVariationSpot_CL', 'value'), State('RotationRange_CL', 'value'), # State('IgnoreDirection', 'value'), # State('ClassIDsNoOrientationExist', 'value'), # State('ClassIDsNoOrientation', 'value'), ) def makeJson_CL(ProjectName_CL, Runtime_CL, PretrainedModel_CL, ImWidth_CL, ImHeight_CL, ImChannel_CL, BatchSize_CL, InitialLearningRate_CL, Momentum_CL, NumEpochs_CL, ChangeLearningRateEpochs_CL, lr_change_CL, WeightPrior_CL, class_penalty_CL, AugmentationPercentage_CL, Rotation_CL, mirror_CL, BrightnessVariation_CL, BrightnessVariationSpot_CL, RotationRange_CL): ParameterDict = {'ProjectName': ProjectName_CL, 'Runtime': Runtime_CL, 'PretrainedModel': PretrainedModel_CL, 'ImWidth': ImWidth_CL, 'ImHeight': ImHeight_CL, 'ImChannel': ImChannel_CL, 'BatchSize': BatchSize_CL, 'InitialLearningRate': InitialLearningRate_CL, 'Momentum': Momentum_CL, 'NumEpochs': NumEpochs_CL, 'ChangeLearningRateEpochs': ChangeLearningRateEpochs_CL, 'lr_change': lr_change_CL, 'WeightPrior': WeightPrior_CL, 'class_penalty': class_penalty_CL, 'AugmentationPercentage': AugmentationPercentage_CL, 'Rotation': Rotation_CL, 'mirror': mirror_CL, 'BrightnessVariation': BrightnessVariation_CL, 'BrightnessVariationSpot': BrightnessVariationSpot_CL, 'RotationRange': RotationRange_CL, } ctx = dash.callback_context if not ctx.triggered: button_id = 'Null' else: button_id = ctx.triggered[0]['prop_id'].split('.')[0] if button_id == 'parameters_out_button': with open('parameters_json.txt', 'w') as outfile: json.dump(ParameterDict, outfile) return 'To json done!' @app.callback(Output('metrics_CL', 'children'), Input('interval_graph_CL', 'n_intervals')) def update_metrics_CL(n): # Indication Text configuration # Extract data from Hdict and show as texts. style = {'padding': '5px', 'fontSize': '16px'} get_metrics = run.get_TrainInfo_CL() if get_metrics: time_elapsed = get_metrics[0] time_remaining = get_metrics[1] epoch_metrics = get_metrics[2] else: time_elapsed = 0 time_remaining = 0 epoch_metrics = 0 return [ html.Span('Time Elapsed: {}'.format(str(datetime.timedelta(seconds=int(time_elapsed)))), style=style), html.Span('Time Remaining: {}'.format(time_remaining), style=style), html.Span('Current Epoch: {}'.format(epoch_metrics), style=style) ] # Multiple components can update everytime interval gets fired. @app.callback(Output('iteration_loss_graph_CL', 'figure'), Input('interval_graph_CL', 'n_intervals')) def iteration_loss_graph_CL(n): # Loss Graph configuration # Using plotly subplots. May consider changing to others. iteration_loss_graph_fig = plotly.tools.make_subplots(rows=1, cols=1, vertical_spacing=1) iteration_loss_graph_fig['layout']['margin'] = { 'l': 80, 'r': 80, 'b': 50, 't': 80, 'autoexpand': False, } iteration_loss_graph_fig['layout']['legend'] = {'x': 0, 'y': 1, 'xanchor': 'left', 'title': 'Loss-Iteration Graph'} iteration_loss_graph_fig.update_layout(legend_title_text=123) iteration_loss_graph_fig.update_xaxes(title_text="Iteration", row=1, col=1) iteration_loss_graph_fig.update_yaxes(title_text="Loss", row=1, col=1) # If Hdict files does not exist, clear graph and lists for plotting. # Therefore, could reset graph by deleting the Hdict files. getTrainInfo = run.get_TrainInfo_CL() if not getTrainInfo: iterationList.clear() epochOfLossList.clear() lossList.clear() else: epoch_TrainInfo = getTrainInfo[2] loss = getTrainInfo[3] iteration = getTrainInfo[4] # Avoid duplicate output from Halcon. # Interval for this web app is set to 1 sec. However feedback from Halcon may take up tp 5 secs. # Using <in> with list, average time complexity: O(n) # if iteration not in iterationList: epochOfLossList.append(epoch_TrainInfo) lossList.append(loss) iterationList.append(iteration) # Add the values to graph and start plotting. iteration_loss_graph_fig.append_trace({ 'x': epochOfLossList, 'y': lossList, 'text': iterationList, 'name': 'iteration vs loss', 'mode': 'lines', 'type': 'scatter' }, 1, 1) return iteration_loss_graph_fig @app.callback(Output('top1_error_graph_CL', 'figure'), Input('interval_graph_CL', 'n_intervals')) def top1_error_graph_CL(n): # Top1 Error Graph configuration. # Using plotly subplots. May consider changing to others. top1_error_graph_fig = plotly.tools.make_subplots(rows=1, cols=1, vertical_spacing=1, ) top1_error_graph_fig['layout']['margin'] = { 'l': 80, 'r': 80, 'b': 100, 't': 80, 'autoexpand': False, } top1_error_graph_fig['layout']['legend'] = {'x': 0, 'y': 1, 'xanchor': 'left'} top1_error_graph_fig.update_xaxes(title_text="Epoch", row=1, col=1) top1_error_graph_fig.update_yaxes(title_text="Top1 Error", row=1, col=1) # If Hdict files does not exist, clear graph and lists for plotting. # Therefore, could reset graph by deleting the Hdict files. getEvaluationInfo = run.get_EvaluationInfo_CL() if not getEvaluationInfo: TrainSet_top1_error_valueList.clear() ValidationSet_top1_error_valueList.clear() epochOfTop1ErrorList.clear() else: epoch_EvaluationInfo = getEvaluationInfo[0] TrainSet_top1_error_value = getEvaluationInfo[1] ValidationSet_top1_error_value = getEvaluationInfo[2] # Avoid duplicate output from Halcon. # Interval for this web app is set to 1 sec. However feedback from Halcon may take up tp 5 secs. # Using <in> with list, average time complexity: O(n) if TrainSet_top1_error_value not in TrainSet_top1_error_valueList: epochOfTop1ErrorList.append(epoch_EvaluationInfo) TrainSet_top1_error_valueList.append(TrainSet_top1_error_value) ValidationSet_top1_error_valueList.append(ValidationSet_top1_error_value) # Add the values to graph and start plotting. # Two plots on the same graph. top1_error_graph_fig.append_trace({ 'x': epochOfTop1ErrorList, 'y': TrainSet_top1_error_valueList, 'name': 'Train Set Top1_error', 'mode': 'lines+markers', 'type': 'scatter' }, 1, 1) top1_error_graph_fig.append_trace({ 'x': epochOfTop1ErrorList, 'y': ValidationSet_top1_error_valueList, 'name': 'Validation Set Top1_error', 'mode': 'lines+markers', 'type': 'scatter' }, 1, 1) return top1_error_graph_fig ############################################ Object Detection ################################ @app.callback(Output('MinLevel_OD', 'children'), Output('MaxLevel_OD', 'children'), Output('AnchorNumSubscales_OD', 'children'), Output('AnchorAspectRatios_OD', 'children'), Output('Estimate_values_loading_OD', 'children'), Input('estimate_button_OD', 'n_clicks'), State('ImWidth_OD', 'value'), State('ImHeight_OD', 'value'), State('TrainingPercent_OD', 'value'), State('ValidationPercent_OD', 'value'), ) def estimate_value_OD(estimate_button_OD, ImWidth_OD, ImHeight_OD, TrainingPercent_OD, ValidationPercent_OD, ): Label_data_OD = 'C:/Users/930415/Desktop/Chadle_Projects/Chadle_Data/Object_Detection/NTBW_Image Analytics/NTBW_Initial_2.hdict' ctx_estimate_value_OD = dash.callback_context if not ctx_estimate_value_OD.triggered: button_id = 'Null' else: button_id = ctx_estimate_value_OD.triggered[0]['prop_id'].split('.')[0] if button_id == 'estimate_button_OD': estimate_value = run_OD.estimate_values_OD(ImWidth_OD, ImHeight_OD, TrainingPercent_OD, ValidationPercent_OD, Label_data_OD) DLDataset_preprocess = (estimate_value[0]) MinLevel_OD = (estimate_value[1]) MaxLevel_OD = (estimate_value[2]) AnchorNumSubscales_OD = (estimate_value[3]) estimate_value = [round(number, 3) for number in estimate_value[4]] print(estimate_value) AnchorAspectRatios_OD_String = ", ".join(str(number) for number in estimate_value) AnchorAspectRatios_OD = AnchorAspectRatios_OD_String return MinLevel_OD, MaxLevel_OD, AnchorNumSubscales_OD, AnchorAspectRatios_OD, ' ' else: return ' ', ' ', ' ', ' ', ' ' @app.callback(Output('training_output_OD', 'children'), Output('Training_loading_OD', 'children'), Input('operation_button_OD', 'n_clicks'), # State('ProjectName_OD', 'value'), State('ImWidth_OD', 'value'), State('ImHeight_OD', 'value'), State('TrainingPercent_OD', 'value'), State('ValidationPercent_OD', 'value'), State('MinLevel_Input_OD', 'value'), State('MaxLevel_Input_OD', 'value'), State('AnchorNumSubscales_Input_OD', 'value'), State('AnchorAspectRatios_Input_OD', 'value'), State('ImChannel_OD', 'value'), State('PretrainedModel_OD', 'value'), State('InstanceType_OD', 'value'), State('NumClasses_OD', 'value'), State('Capacity_OD', 'value'), State('AugmentationPercentage_OD', 'value'), State('Rotation_OD', 'value'), State('mirror_OD', 'value'), State('BrightnessVariation_OD', 'value'), State('BrightnessVariationSpot_OD', 'value'), State('RotationRange_OD', 'value'), State('BatchSize_OD', 'value'), State('InitialLearningRate_OD', 'value'), State('Momentum_OD', 'value'), State('NumEpochs_OD', 'value'), State('ChangeLearningRateEpochs_OD', 'value'), State('lr_change_OD', 'value'), State('WeightPrior_OD', 'value'), State('class_penalty_OD', 'value'), ) def operation_OD(operation_button_OD, ImWidth_OD, ImHeight_OD, TrainingPercent_OD, ValidationPercent_OD, MinLevel_Input_OD, MaxLevel_Input_OD, AnchorNumSubscales_Input_OD, AnchorAspectRatios_Input_OD, ImChannel_OD, PretrainedModel_OD, InstanceType_OD, NumClasses_OD, Capacity_OD, AugmentationPercentage_OD, Rotation_OD, mirror_OD, BrightnessVariation_OD, BrightnessVariationSpot_OD, RotationRange_OD, BatchSize_OD, InitialLearningRate_OD, Momentum_OD, NumEpochs_OD, ChangeLearningRateEpochs_OD, lr_change_OD, WeightPrior_OD, class_penalty_OD): Label_data_OD = 'C:/Users/930415/Desktop/Chadle_Projects/Chadle_Data/Object_Detection/NTBW_Image Analytics/NTBW_Initial_2.hdict' ctx_operation_OD = dash.callback_context if not ctx_operation_OD.triggered: button_id = 'Null' else: button_id = ctx_operation_OD.triggered[0]['prop_id'].split('.')[0] if button_id == 'operation_button_OD': estimate_value = run_OD.estimate_values_OD(ImWidth_OD, ImHeight_OD, TrainingPercent_OD, ValidationPercent_OD, Label_data_OD) DLDataset_preprocess = (estimate_value[0]) # If input empty, use Halcon estimate value. if MinLevel_Input_OD: MinLevel_OD = MinLevel_Input_OD else: MinLevel_OD = (estimate_value[1]) if MaxLevel_Input_OD: MaxLevel_OD = MaxLevel_Input_OD else: MaxLevel_OD = (estimate_value[2]) if AnchorNumSubscales_Input_OD: AnchorNumSubscales_OD = AnchorNumSubscales_Input_OD else: AnchorNumSubscales_OD = (estimate_value[3]) if AnchorAspectRatios_Input_OD: AnchorAspectRatios_OD = AnchorAspectRatios_Input_OD.split(',') else: AnchorAspectRatios_OD = (estimate_value[4]) print(ImChannel_OD) preprocess_OD = run_OD.preprocess_OD(ImWidth_OD, ImHeight_OD, ImChannel_OD, TrainingPercent_OD, ValidationPercent_OD, Label_data_OD, PretrainedModel_OD, InstanceType_OD, DLDataset_preprocess, MinLevel_OD, MaxLevel_OD, AnchorNumSubscales_OD, AnchorAspectRatios_OD, NumClasses_OD, Capacity_OD) DLDatasetFileName = preprocess_OD[0] DLPreprocessParamFileName = preprocess_OD[1] ModelFileName = preprocess_OD[2] prepare_for_training_OD = run_OD.prepare_for_training_OD(AugmentationPercentage_OD, Rotation_OD, mirror_OD, BrightnessVariation_OD, BrightnessVariationSpot_OD, RotationRange_OD, BatchSize_OD, InitialLearningRate_OD, Momentum_OD, NumEpochs_OD, ChangeLearningRateEpochs_OD, lr_change_OD, WeightPrior_OD, class_penalty_OD, DLDatasetFileName, DLPreprocessParamFileName, ModelFileName) DLModelHandle = prepare_for_training_OD[0][0] DLDataset = prepare_for_training_OD[1][0] TrainParam = prepare_for_training_OD[2][0] # Training training_OD = run_OD.training_OD(DLDataset, DLModelHandle, TrainParam) return ' ', ' ' # OD metrics and graphs @app.callback(Output('metrics_OD', 'children'), Input('interval_graph_OD', 'n_intervals')) def update_metrics_OD(n): # Indication Text configuration # Extract data from Hdict and show as texts. style = {'padding': '5px', 'fontSize': '16px'} get_metrics = run_OD.get_TrainInfo_OD() if get_metrics: time_elapsed = get_metrics[0] time_remaining = get_metrics[1] epoch_metrics = get_metrics[2] else: time_elapsed = 0 time_remaining = 0 epoch_metrics = 0 return [ html.Span('Time Elapsed: {}'.format(str(datetime.timedelta(seconds=int(time_elapsed)))), style=style), html.Span('Time Remaining: {}'.format(time_remaining), style=style), html.Span('Current Epoch: {}'.format(epoch_metrics), style=style) ] # Multiple components can update everytime interval gets fired. @app.callback(Output('iteration_loss_graph_OD', 'figure'), Input('interval_graph_OD', 'n_intervals')) def iteration_loss_graph_CL(n): # Loss Graph configuration # Using plotly subplots. May consider changing to others. iteration_loss_graph_fig = plotly.tools.make_subplots(rows=1, cols=1, vertical_spacing=1) iteration_loss_graph_fig['layout']['margin'] = { 'l': 80, 'r': 80, 'b': 50, 't': 80, 'autoexpand': False, } iteration_loss_graph_fig['layout']['legend'] = {'x': 0, 'y': 1, 'xanchor': 'left', 'title': 'Loss-Iteration Graph'} iteration_loss_graph_fig.update_layout(legend_title_text=123) iteration_loss_graph_fig.update_xaxes(title_text="Iteration", row=1, col=1) iteration_loss_graph_fig.update_yaxes(title_text="Loss", row=1, col=1) # If Hdict files does not exist, clear graph and lists for plotting. # Therefore, could reset graph by deleting the Hdict files. getTrainInfo = run_OD.get_TrainInfo_OD() if not getTrainInfo: iterationList.clear() epochOfLossList.clear() lossList.clear() else: epoch_TrainInfo = getTrainInfo[2] loss = getTrainInfo[3] iteration = getTrainInfo[4] # Avoid duplicate output from Halcon. # Interval for this web app is set to 1 sec. However feedback from Halcon may take up tp 5 secs. # Using <in> with list, average time complexity: O(n) if iteration not in iterationList: epochOfLossList.append(epoch_TrainInfo) lossList.append(loss) iterationList.append(iteration) # Add the values to graph and start plotting. iteration_loss_graph_fig.append_trace({ 'x': epochOfLossList, 'y': lossList, 'text': iterationList, 'name': 'iteration vs loss', 'mode': 'lines', 'type': 'scatter' }, 1, 1) return iteration_loss_graph_fig @app.callback(Output('mean_ap_graph_OD', 'figure'), Input('interval_graph_OD', 'n_intervals')) def mean_ap_graph_OD(n): # Mean AP Graph configuration. # Using plotly subplots. May consider changing to others. mean_ap_graph_fig = plotly.tools.make_subplots(rows=1, cols=1, vertical_spacing=1, ) mean_ap_graph_fig['layout']['margin'] = { 'l': 80, 'r': 80, 'b': 100, 't': 80, 'autoexpand': False, } mean_ap_graph_fig['layout']['legend'] = {'x': 0, 'y': 1, 'xanchor': 'left'} mean_ap_graph_fig.update_xaxes(title_text="Epoch", row=1, col=1) mean_ap_graph_fig.update_yaxes(title_text="Top1 Error", row=1, col=1) # If Hdict files does not exist, clear graph and lists for plotting. # Therefore, could reset graph by deleting the Hdict files. getEvaluationInfo = run_OD.get_EvaluationInfo_OD() if not getEvaluationInfo: TrainSet_mean_ap_valueList.clear() ValidationSet_mean_ap_valueList.clear() epochOfMeanAPList.clear() else: epoch_EvaluationInfo = getEvaluationInfo[0] TrainSet_mean_ap_value = getEvaluationInfo[1] ValidationSet_mean_ap_value = getEvaluationInfo[2] # Avoid duplicate output from Halcon. # Interval for this web app is set to 1 sec. However feedback from Halcon may take up tp 5 secs. # Using <in> with list, average time complexity: O(n) # if TrainSet_mean_ap_value not in TrainSet_mean_ap_valueList: epochOfMeanAPList.append(epoch_EvaluationInfo) TrainSet_mean_ap_valueList.append(TrainSet_mean_ap_value) ValidationSet_mean_ap_valueList.append(ValidationSet_mean_ap_value) # Add the values to graph and start plotting. # Two plots on the same graph. mean_ap_graph_fig.append_trace({ 'x': epochOfMeanAPList, 'y': TrainSet_mean_ap_valueList, 'name': 'Train Set Top1_error', 'mode': 'lines+markers', 'type': 'scatter' }, 1, 1) mean_ap_graph_fig.append_trace({ 'x': epochOfMeanAPList, 'y': ValidationSet_mean_ap_valueList, 'name': 'Validation Set Top1_error', 'mode': 'lines+markers', 'type': 'scatter' }, 1, 1) return mean_ap_graph_fig if __name__ == '__main__': app.run_server(debug=True)
py
1a56fb37dedfb15ba22302990051f0cf2acef350
# flake8: noqa # @TODO: code formatting issue for 20.07 release from typing import List import logging from urllib.parse import quote_plus from urllib.request import Request, urlopen from catalyst import utils from catalyst.core.callback import Callback, CallbackNode, CallbackOrder from catalyst.core.runner import IRunner from catalyst.tools import settings class TelegramLogger(Callback): """ Logger callback, translates ``runner.metric_manager`` to telegram channel. """ def __init__( self, token: str = None, chat_id: str = None, metric_names: List[str] = None, log_on_stage_start: bool = True, log_on_loader_start: bool = True, log_on_loader_end: bool = True, log_on_stage_end: bool = True, log_on_exception: bool = True, ): """ Args: token: telegram bot's token, see https://core.telegram.org/bots chat_id: Chat unique identifier metric_names: List of metric names to log. if none - logs everything. log_on_stage_start: send notification on stage start log_on_loader_start: send notification on loader start log_on_loader_end: send notification on loader end log_on_stage_end: send notification on stage end log_on_exception: send notification on exception """ super().__init__(order=CallbackOrder.logging, node=CallbackNode.master) # @TODO: replace this logic with global catalyst config at ~/.catalyst self._token = token or settings.telegram_logger_token self._chat_id = chat_id or settings.telegram_logger_chat_id assert self._token is not None and self._chat_id is not None self._base_url = ( f"https://api.telegram.org/bot{self._token}/sendMessage" ) self.log_on_stage_start = log_on_stage_start self.log_on_loader_start = log_on_loader_start self.log_on_loader_end = log_on_loader_end self.log_on_stage_end = log_on_stage_end self.log_on_exception = log_on_exception self.metrics_to_log = metric_names def _send_text(self, text: str): try: url = ( f"{self._base_url}?" f"chat_id={self._chat_id}&" f"disable_web_page_preview=1&" f"text={quote_plus(text, safe='')}" ) request = Request(url) urlopen(request) # noqa: S310 except Exception as e: logging.getLogger(__name__).warning(f"telegram.send.error:{e}") def on_stage_start(self, runner: IRunner): """Notify about starting a new stage.""" if self.log_on_stage_start: text = f"{runner.stage_name} stage was started" self._send_text(text) def on_loader_start(self, runner: IRunner): """Notify about starting running the new loader.""" if self.log_on_loader_start: text = ( f"{runner.loader_name} {runner.global_epoch} epoch has started" ) self._send_text(text) def on_loader_end(self, runner: IRunner): """Translate ``runner.metric_manager`` to telegram channel.""" if self.log_on_loader_end: metrics = runner.loader_metrics if self.metrics_to_log is None: metrics_to_log = sorted(metrics.keys()) else: metrics_to_log = self.metrics_to_log rows: List[str] = [ f"{runner.loader_name} {runner.global_epoch}" f" epoch was finished:" ] for name in metrics_to_log: if name in metrics: rows.append(utils.format_metric(name, metrics[name])) text = "\n".join(rows) self._send_text(text) def on_stage_end(self, runner: IRunner): """Notify about finishing a stage.""" if self.log_on_stage_end: text = f"{runner.stage_name} stage was finished" self._send_text(text) def on_exception(self, runner: IRunner): """Notify about raised ``Exception``.""" if self.log_on_exception: exception = runner.exception if utils.is_exception(exception) and not isinstance( exception, KeyboardInterrupt ): text = ( f"`{type(exception).__name__}` exception was raised:\n" f"{exception}" ) self._send_text(text) __all__ = ["TelegramLogger"]
py
1a56fb3d8a1702038502ab6f9503a643515a2e78
# Copyright (C) 2019 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> from datetime import date from datetime import datetime from freezegun import freeze_time from mock import patch from ggrc.app import db from ggrc.notifications import common from ggrc.models import Notification from ggrc.models import Person from ggrc.models import all_models from ggrc_workflows.models import Cycle from integration.ggrc import TestCase from integration.ggrc.access_control import acl_helper from integration.ggrc.api_helper import Api from integration.ggrc.generator import ObjectGenerator from integration.ggrc_workflows.generator import WorkflowsGenerator class TestOneTimeWorkflowNotification(TestCase): """ This class contains simple one time workflow tests that are not in the gsheet test grid """ def setUp(self): super(TestOneTimeWorkflowNotification, self).setUp() self.api = Api() self.wf_generator = WorkflowsGenerator() self.object_generator = ObjectGenerator() self.random_objects = self.object_generator.generate_random_objects() self.random_people = self.object_generator.generate_random_people( user_role="Administrator" ) self.create_test_cases() def init_decorator(init): def new_init(self, *args, **kwargs): init(self, *args, **kwargs) if hasattr(self, "created_at"): self.created_at = datetime.now() return new_init Notification.__init__ = init_decorator(Notification.__init__) def test_one_time_wf_activate(self): def get_person(person_id): return db.session.query(Person).filter(Person.id == person_id).one() with freeze_time("2015-04-10"): _, wf = self.wf_generator.generate_workflow(self.one_time_workflow_1) _, cycle = self.wf_generator.generate_cycle(wf) self.wf_generator.activate_workflow(wf) person_2 = get_person(self.random_people[2].id) with freeze_time("2015-04-11"): _, notif_data = common.get_daily_notifications() self.assertIn(person_2.email, notif_data) self.assertIn("cycle_started", notif_data[person_2.email]) self.assertIn(cycle.id, notif_data[person_2.email]["cycle_started"]) self.assertIn("my_tasks", notif_data[person_2.email]["cycle_data"][cycle.id]) person_1 = get_person(self.random_people[0].id) with freeze_time("2015-05-03"): # two days befor due date _, notif_data = common.get_daily_notifications() self.assertIn(person_1.email, notif_data) self.assertNotIn("due_in", notif_data[person_1.email]) self.assertNotIn("due_today", notif_data[person_1.email]) with freeze_time("2015-05-04"): # one day befor due date _, notif_data = common.get_daily_notifications() self.assertEqual(len(notif_data[person_1.email]["due_in"]), 1) with freeze_time("2015-05-05"): # due date _, notif_data = common.get_daily_notifications() self.assertEqual(len(notif_data[person_1.email]["due_today"]), 1) @patch("ggrc.notifications.common.send_email") def test_one_time_wf_activate_single_person(self, mock_mail): with freeze_time("2015-04-10"): user = "[email protected]" _, wf = self.wf_generator.generate_workflow( self.one_time_workflow_single_person) _, cycle = self.wf_generator.generate_cycle(wf) self.wf_generator.activate_workflow(wf) with freeze_time("2015-04-11"): _, notif_data = common.get_daily_notifications() self.assertIn("cycle_started", notif_data[user]) self.assertIn(cycle.id, notif_data[user]["cycle_started"]) self.assertIn("my_tasks", notif_data[user]["cycle_data"][cycle.id]) self.assertIn("cycle_tasks", notif_data[user]["cycle_data"][cycle.id]) self.assertIn( "my_task_groups", notif_data[user]["cycle_data"][cycle.id]) self.assertIn("cycle_url", notif_data[user]["cycle_started"][cycle.id]) cycle = Cycle.query.get(cycle.id) cycle_data = notif_data[user]["cycle_data"][cycle.id] for task in cycle.cycle_task_group_object_tasks: self.assertIn(task.id, cycle_data["my_tasks"]) self.assertIn(task.id, cycle_data["cycle_tasks"]) self.assertIn("title", cycle_data["my_tasks"][task.id]) self.assertIn("title", cycle_data["cycle_tasks"][task.id]) self.assertIn("cycle_task_url", cycle_data["cycle_tasks"][task.id]) with freeze_time("2015-05-03"): # two days before due date _, notif_data = common.get_daily_notifications() self.assertIn(user, notif_data) self.assertNotIn("due_in", notif_data[user]) self.assertNotIn("due_today", notif_data[user]) with freeze_time("2015-05-04"): # one day before due date _, notif_data = common.get_daily_notifications() self.assertEqual(len(notif_data[user]["due_in"]), 2) with freeze_time("2015-05-05"): # due date _, notif_data = common.get_daily_notifications() self.assertEqual(len(notif_data[user]["due_today"]), 2) common.send_daily_digest_notifications() self.assertEqual(mock_mail.call_count, 1) def create_test_cases(self): def person_dict(person_id): return { "href": "/api/people/%d" % person_id, "id": person_id, "type": "Person" } role_id = all_models.AccessControlRole.query.filter( all_models.AccessControlRole.name == "Task Assignees", all_models.AccessControlRole.object_type == "TaskGroupTask", ).one().id self.one_time_workflow_1 = { "title": "one time test workflow", "description": "some test workflow", "notify_on_change": True, # admin will be current user with id == 1 "task_groups": [{ "title": "one time task group", "contact": person_dict(self.random_people[2].id), "task_group_tasks": [{ "title": "task 1", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, self.random_people[0].id) ], "start_date": date(2015, 5, 1), # friday "end_date": date(2015, 5, 5), }, { "title": "task 2", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, self.random_people[1].id) ], "start_date": date(2015, 5, 4), "end_date": date(2015, 5, 7), }], "task_group_objects": self.random_objects[:2] }, { "title": "another one time task group", "contact": person_dict(self.random_people[2].id), "task_group_tasks": [{ "title": "task 1 in tg 2", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, self.random_people[0].id) ], "start_date": date(2015, 5, 8), # friday "end_date": date(2015, 5, 12), }, { "title": "task 2 in tg 2", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, self.random_people[2].id) ], "start_date": date(2015, 5, 1), # friday "end_date": date(2015, 5, 5), }], "task_group_objects": [] }] } user = Person.query.filter(Person.email == "[email protected]").one().id self.one_time_workflow_single_person = { "title": "one time test workflow", "notify_on_change": True, "description": "some test workflow", # admin will be current user with id == 1 "task_groups": [{ "title": "one time task group", "contact": person_dict(user), "task_group_tasks": [{ "title": u"task 1 \u2062 WITH AN UMBRELLA ELLA ELLA. \u2062", "description": "some task. ", "access_control_list": [ acl_helper.get_acl_json(role_id, user) ], "start_date": date(2015, 5, 1), # friday "end_date": date(2015, 5, 5), }, { "title": "task 2", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, user) ], "start_date": date(2015, 5, 4), "end_date": date(2015, 5, 7), }], "task_group_objects": self.random_objects[:2] }, { "title": "another one time task group", "contact": person_dict(user), "task_group_tasks": [{ "title": u"task 1 \u2062 WITH AN UMBRELLA ELLA ELLA. \u2062", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, user) ], "start_date": date(2015, 5, 8), # friday "end_date": date(2015, 5, 12), }, { "title": "task 2 in tg 2", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, user) ], "start_date": date(2015, 5, 1), # friday "end_date": date(2015, 5, 5), }], "task_group_objects": [] }] }
py
1a56fbb746d4119bf0ec7336099c41079b5f1db6
#!/usr/bin/env python3 import argparse import logging from db_test_meter.database import Database from db_test_meter.util import init_logger, collect_user_input, AppConfig def create_db(db: Database) -> None: """ Utility to create the db and table for the sync check :param db: :return: """ try: log.debug(f'creating database {AppConfig.TEST_DB_NAME}') db.run_query(f"DROP DATABASE IF EXISTS {AppConfig.TEST_DB_NAME}") db.run_query(f"CREATE DATABASE IF NOT EXISTS {AppConfig.TEST_DB_NAME}") log.debug(f'creating table {AppConfig.TEST_DB_TABLE}') db.run_query( f"CREATE TABLE {AppConfig.TEST_DB_NAME}.{AppConfig.TEST_DB_TABLE} (`test_run_id` varchar(50) NOT NULL, `index_id` int(10) unsigned NOT NULL, `created` int(8) NOT NULL)") print(f'Database {AppConfig.TEST_DB_NAME} created') print(f'Table {AppConfig.TEST_DB_NAME}.{AppConfig.TEST_DB_TABLE} created') except Exception as e: print(f'There was an error: {e}') parser = argparse.ArgumentParser( 'simple utility to create the db and table used by failover_test.py. Usage: ./create_failover_sync_db.py') parser.add_argument('--debug', action='store_true') init_logger(debug=parser.parse_args().debug) log = logging.getLogger() print('This will destroy and recreate sync database and tracking table') if (input("enter y to continue, n to exit [n]: ") or 'n').lower() == 'y': db_connection_metadata = collect_user_input() db = Database(db_connection_metadata) create_db(db) else: print('exiting...')
py
1a56fc82be2d8e04021709fa01f21944ba2cca57
# -*- coding: utf-8 -*- # Data paths DATA_DIR = "~/data/" # Neo4J connectors ADMIN_NAME = "neo4j" ADMIN_PASS = "neo4jbinder" URL = "bolt://localhost:7687" ENCODING = 'ISO-8859-1' ENGINE = "python"
py
1a56fd023572c56a190b4850eb9c94033636ac1f
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1. / np.sqrt(fan_in) return -lim, lim class Actor(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc1_units=400, fc2_units=300, batch_norm=True): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in first hidden layer fc2_units (int): Number of nodes in second hidden layer """ super(Actor, self).__init__() self.seed = torch.manual_seed(seed) self.batch_norm = batch_norm self.fc1 = nn.Linear(state_size, fc1_units) if batch_norm: self.bn1 = nn.BatchNorm1d(fc1_units) self.fc2 = nn.Linear(fc1_units, fc2_units) if batch_norm: self.bn2 = nn.BatchNorm1d(fc2_units) self.fc3 = nn.Linear(fc2_units, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-3e-3, 3e-3) def forward(self, state): """Build an actor (policy) network that maps states -> actions.""" if self.batch_norm: x = F.relu(self.bn1(self.fc1(state))) x = F.relu(self.bn2(self.fc2(x))) else: x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) return torch.tanh(self.fc3(x)) class Critic(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=400, fc2_units=300, batch_norm=True): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fcs1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer """ super(Critic, self).__init__() self.seed = torch.manual_seed(seed) self.batch_norm = batch_norm self.fcs1 = nn.Linear(state_size, fcs1_units) self.bn1 = nn.BatchNorm1d(fcs1_units) self.fc2 = nn.Linear(fcs1_units+action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-3e-3, 3e-3) def forward(self, state, action): """Build a critic (value) network that maps (state, action) pairs -> Q-values.""" if self.batch_norm: xs = F.relu(self.bn1(self.fcs1(state))) else: xs = F.relu(self.fcs1(state)) x = torch.cat((xs, action), dim=1) x = F.relu(self.fc2(x)) return self.fc3(x)
py
1a56fe13d403456e308ecfea11284c04a9f89056
from functools import reduce from operator import __mul__ import pytest from treevalue.tree import func_treelize, TreeValue, method_treelize, classmethod_treelize, delayed # noinspection DuplicatedCode @pytest.mark.unittest class TestTreeFuncFunc: def test_tree_value_type(self): class _MyTreeValue(TreeValue): pass @func_treelize(return_type=_MyTreeValue) def ssum(*args): return sum(args) t1 = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) t2 = TreeValue({'a': 11, 'b': 22, 'x': {'c': 33, 'd': 44}}) tr1 = ssum(t1, t2) assert tr1 != TreeValue({'a': 12, 'b': 24, 'x': {'c': 36, 'd': 48}}) assert tr1 == _MyTreeValue({'a': 12, 'b': 24, 'x': {'c': 36, 'd': 48}}) assert isinstance(tr1, _MyTreeValue) assert isinstance(tr1.x, _MyTreeValue) @func_treelize(return_type=_MyTreeValue) def ssum2(*args): return sum(args), reduce(__mul__, args, 1) tr2 = ssum2(t1, t2) assert tr2 == _MyTreeValue({'a': (12, 11), 'b': (24, 44), 'x': {'c': (36, 99), 'd': (48, 176)}}) @func_treelize(return_type=_MyTreeValue, rise=True) def ssum3(*args): return sum(args), reduce(__mul__, args, 1) tr3, tr4 = ssum3(t1, t2) assert tr3 == _MyTreeValue({'a': 12, 'b': 24, 'x': {'c': 36, 'd': 48}}) assert tr4 == _MyTreeValue({'a': 11, 'b': 44, 'x': {'c': 99, 'd': 176}}) @func_treelize(return_type=_MyTreeValue, subside=True, rise=dict(template=(None, None))) def ssum4(args): return sum(args), reduce(__mul__, args, 1) tr5, tr6 = ssum4([t1, t2]) assert tr5 == _MyTreeValue({'a': 12, 'b': 24, 'x': {'c': 36, 'd': 48}}) assert tr6 == _MyTreeValue({'a': 11, 'b': 44, 'x': {'c': 99, 'd': 176}}) @func_treelize() def ssum5(a, b, c): return a + b * c t3 = TreeValue({'a': 31, 'b': 12, 'x': {'c': 43, 'd': 24}}) assert ssum5(1, c=3, b=5) == 16 assert ssum5(t2, c=t1, b=t3) == TreeValue({ 'a': 42, 'b': 46, 'x': { 'c': 162, 'd': 140, } }) assert ssum5(t2, c=2, b=t3) == TreeValue({ 'a': 73, 'b': 46, 'x': { 'c': 119, 'd': 92, } }) @func_treelize('outer', missing=lambda: 1) def ssum6(a, b, c): return a + b * c t4 = TreeValue({'a': 31, 'b': 12, 'x': {'c': 43}}) with pytest.raises(KeyError): ssum5(t2, c=2, b=t4) assert ssum6(t2, c=2, b=t4) == TreeValue({ 'a': 73, 'b': 46, 'x': { 'c': 119, 'd': 46, } }) @func_treelize('left') def ssum7(a, b, c): return a + b * c with pytest.raises(KeyError): ssum7(t2, c=2, b=t4) @func_treelize(inherit=False) def ssum8(a, b, c): return a + b * c with pytest.raises(TypeError): ssum8(t2, c=2, b=t1) def test_tree_value_type_none(self): @func_treelize(return_type=None) def ssum(*args): return sum(args) t1 = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) t2 = TreeValue({'a': 11, 'b': 22, 'x': {'c': 33, 'd': 44}}) tr1 = ssum(t1, t2) assert tr1 is None def test_tree_value_type_invalid(self): class _MyTreeValue: pass with pytest.raises(TypeError): # noinspection PyTypeChecker @func_treelize(return_type=_MyTreeValue) def ssum(*args): return sum(args) with pytest.raises(TypeError): # noinspection PyTypeChecker @func_treelize(return_type=233) def ssum(*args): return sum(args) def test_method_treelize(self): class TreeNumber(TreeValue): @method_treelize() def _attr_extern(self, key): return getattr(self, key) @method_treelize('outer', missing=0) def __add__(self, other): return self + other @method_treelize('outer', missing=0) def __radd__(self, other): return other + self @method_treelize('outer', missing=0) def __sub__(self, other): return self - other @method_treelize('outer', missing=0) def __rsub__(self, other): return other - self @method_treelize() def __pos__(self): return +self @method_treelize() def __neg__(self): return -self @method_treelize() def __call__(self, *args, **kwargs): return self(*args, **kwargs) @method_treelize(return_type=TreeValue) def damn_it(self, x): return self + x t1 = TreeNumber({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) t2 = TreeNumber({'a': 11, 'b': 22, 'x': {'c': 33, 'd': 5}}) assert (t1 + t2 + 1) == TreeNumber({'a': 13, 'b': 25, 'x': {'c': 37, 'd': 10}}) assert (t1 - t2) == TreeNumber({'a': -10, 'b': -20, 'x': {'c': -30, 'd': -1}}) assert (1 - t2) == TreeNumber({'a': -10, 'b': -21, 'x': {'c': -32, 'd': -4}}) assert t1.damn_it(2) == TreeValue({'a': 3, 'b': 4, 'x': {'c': 5, 'd': 6}}) class P: def __init__(self, value): self.__value = value @property def value(self): return self.__value def vv(self): return self.__value + 1 ttt = TreeNumber({"a": P(1), "b": P(2), "x": {"c": P(3), "d": P(4)}}) assert ttt.value == TreeNumber({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) assert ttt.vv() == TreeNumber({'a': 2, 'b': 3, 'x': {'c': 4, 'd': 5}}) with pytest.warns(UserWarning): class MyTreeValue(TreeValue): @method_treelize(self_copy=True, rise=True) def __iadd__(self, other): return self + other def test_classmethod_treelize(self): class TestUtils: @classmethod @classmethod_treelize('outer', missing=0, return_type=TreeValue) def add(cls, a, b): return cls, a + b @classmethod @classmethod_treelize(return_type=TreeValue) def add2(cls, a, b): return cls, a + b assert TestUtils.add(1, 2) == (TestUtils, 3) assert TestUtils.add(TreeValue({'a': 1, 'b': 2}), 2) == TreeValue({'a': (TestUtils, 3), 'b': (TestUtils, 4)}) assert TestUtils.add2(TreeValue({'a': 1, 'b': 2}), TreeValue({'a': 12, 'b': 22})) == TreeValue( {'a': (TestUtils, 13), 'b': (TestUtils, 24)}) class MyTreeValue(TreeValue): @classmethod @classmethod_treelize() def plus(cls, x, y): return x + y assert MyTreeValue.plus(TreeValue({'a': 1, 'b': 2}), 2) == MyTreeValue({'a': 3, 'b': 4}) def test_missing(self): @func_treelize(mode='outer', missing=lambda: []) def append(arr: list, *args): for item in args: if item: arr.append(item) return arr t0 = TreeValue({}) t1 = TreeValue({'a': 2, 'b': 7, 'x': {'c': 4, 'd': 9}}) t2 = TreeValue({'a': 4, 'b': 48, 'x': {'c': -11, 'd': 54}}) t3 = TreeValue({'a': 9, 'b': -12, 'x': {'c': 3, 'd': 4}}) assert append(t0, t1, t2, t3) == TreeValue({ 'a': [2, 4, 9], 'b': [7, 48, -12], 'x': { 'c': [4, -11, 3], 'd': [9, 54, 4], } }) t0 = TreeValue({}) t1 = TreeValue({'a': 2, 'x': {'c': 4, 'd': 9}}) t2 = TreeValue({'a': 4, 'b': 48, 'x': {'d': 54}}) t3 = TreeValue({'b': -12, 'x': 7, 'y': {'e': 3, 'f': 4}}) assert append(t0, t1, t2, t3) == TreeValue({ 'a': [2, 4], 'b': [48, -12], 'x': { 'c': [4, 7], 'd': [9, 54, 7], }, 'y': { 'e': [3], 'f': [4], }, }) def test_delay_support(self): @func_treelize(return_type=TreeValue) def f(x, y, z): return x + y * 2 + z * 3 t1 = TreeValue({ 'a': 1, 'b': delayed(lambda x: x ** 2, 3), 'c': {'x': 2, 'y': delayed(lambda: 4)}, }) t2 = TreeValue({ 'a': delayed(lambda x: x + 1, t1.a), 'b': delayed(lambda: t1.c.y), 'c': delayed(lambda: 5), }) t3 = delayed(lambda: 6) assert f(t1, t2, t3) == TreeValue({ 'a': 23, 'b': 35, 'c': {'x': 30, 'y': 32}, }) t1 = TreeValue({ 'a': 1, 'b': delayed(lambda x: x ** 2, 3), 'c': {'x': 2, 'y': delayed(lambda: 4)}, }) t2 = TreeValue({ 'a': delayed(lambda x: x + 1, t1.a), 'b': delayed(lambda: t1.c.y), 'c': delayed(lambda: 5), }) t3 = delayed(lambda: 6) assert f(x=t1, y=t2, z=t3) == TreeValue({ 'a': 23, 'b': 35, 'c': {'x': 30, 'y': 32}, }) def test_delayed_treelize(self): t1 = TreeValue({ 'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}, }) t2 = TreeValue({ 'a': 11, 'b': 23, 'x': {'c': 35, 'd': 47}, }) cnt_1 = 0 @func_treelize(delayed=True) def total(a, b): nonlocal cnt_1 cnt_1 += 1 return a + b # positional t3 = total(t1, t2) assert cnt_1 == 0 assert t3.a == 12 assert cnt_1 == 1 assert t3.x == TreeValue({'c': 38, 'd': 51}) assert cnt_1 == 3 assert t3 == TreeValue({ 'a': 12, 'b': 25, 'x': {'c': 38, 'd': 51} }) assert cnt_1 == 4 # keyword cnt_1 = 0 t3 = total(a=t1, b=t2) assert cnt_1 == 0 assert t3.a == 12 assert cnt_1 == 1 assert t3.x == TreeValue({'c': 38, 'd': 51}) assert cnt_1 == 3 assert t3 == TreeValue({ 'a': 12, 'b': 25, 'x': {'c': 38, 'd': 51} }) assert cnt_1 == 4 # positional, with constant cnt_1 = 0 t3 = total(1, t2) assert cnt_1 == 0 assert t3.a == 12 assert cnt_1 == 1 assert t3.x == TreeValue({'c': 36, 'd': 48}) assert cnt_1 == 3 assert t3 == TreeValue({ 'a': 12, 'b': 24, 'x': {'c': 36, 'd': 48} }) assert cnt_1 == 4 # keyword, with constant cnt_1 = 0 t3 = total(b=1, a=t2) assert cnt_1 == 0 assert t3.a == 12 assert cnt_1 == 1 assert t3.x == TreeValue({'c': 36, 'd': 48}) assert cnt_1 == 3 assert t3 == TreeValue({ 'a': 12, 'b': 24, 'x': {'c': 36, 'd': 48} }) assert cnt_1 == 4 # positional, with delay cnt_1 = 0 t4 = TreeValue({'v': delayed(lambda: t1)}) t5 = TreeValue({'v': delayed(lambda: t2)}) t6 = total(t4, t5) assert cnt_1 == 0 assert t6.v.a == 12 assert cnt_1 == 1 assert t6.v.x == TreeValue({'c': 38, 'd': 51}) assert cnt_1 == 3 assert t6 == TreeValue({ 'v': {'a': 12, 'b': 25, 'x': {'c': 38, 'd': 51}}, }) assert cnt_1 == 4 # keyword, with delay cnt_1 = 0 t4 = TreeValue({'v': delayed(lambda: t1)}) t5 = TreeValue({'v': delayed(lambda: t2)}) t6 = total(a=t4, b=t5) assert cnt_1 == 0 assert t6.v.a == 12 assert cnt_1 == 1 assert t6.v.x == TreeValue({'c': 38, 'd': 51}) assert cnt_1 == 3 assert t6 == TreeValue({ 'v': {'a': 12, 'b': 25, 'x': {'c': 38, 'd': 51}}, }) assert cnt_1 == 4
py
1a56fe4c66b7e3812182fd07f2529a29c380e34c
# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Handle mapping from old network building function names to new names. Flexible network configuration is achieved by specifying the function name that builds a network module (e.g., the name of the conv backbone or the mask roi head). However we may wish to change names over time without breaking previous config files. This module provides backwards naming compatibility by providing a mapping from the old name to the new name. When renaming functions, it's generally a good idea to codemod existing yaml config files. An easy way to batch edit, by example, is a shell command like $ find . -name "*.yaml" -exec sed -i -e \ 's/head_builder\.add_roi_2mlp_head/fast_rcnn_heads.add_roi_2mlp_head/g' {} \; to perform the renaming: head_builder.add_roi_2mlp_head => fast_rcnn_heads.add_roi_2mlp_head """ _RENAME = { # Removed "ResNet_" from the name because it wasn't relevent 'mask_rcnn_heads.ResNet_mask_rcnn_fcn_head_v1up4convs': 'mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs', # Removed "ResNet_" from the name because it wasn't relevent 'mask_rcnn_heads.ResNet_mask_rcnn_fcn_head_v1up': 'mask_rcnn_heads.mask_rcnn_fcn_head_v1up', # Removed "ResNet_" from the name because it wasn't relevent 'mask_rcnn_heads.ResNet_mask_rcnn_fcn_head_v0upshare': 'mask_rcnn_heads.mask_rcnn_fcn_head_v0upshare', # Removed "ResNet_" from the name because it wasn't relevent 'mask_rcnn_heads.ResNet_mask_rcnn_fcn_head_v0up': 'mask_rcnn_heads.mask_rcnn_fcn_head_v0up', # Removed head_builder module in favor of the more specific fast_rcnn name 'head_builder.add_roi_2mlp_head': 'fast_rcnn_heads.add_roi_2mlp_head', } def get_new_name(func_name): if func_name in _RENAME: func_name = _RENAME[func_name] return func_name
py
1a56ff00bac2efc955e29e1f6a6be2672a850cad
__author__ = 'Simon' import json import re import urllib.request import html fnc_base_url = 'http://cbateam.github.io/CBA_A3/docs/index/' fnc_page_names = ['Functions', 'Functions2', 'Functions3'] fncPrefix = 'CBA_fnc_' macro_base_url = 'http://cbateam.github.io/CBA_A3/docs/files/main/script_macros_common-hpp.html' f = urllib.request.urlopen(macro_base_url) content = f.read().decode("utf-8") f.close() allMacros = re.findall(r'<div class=CTopic><h3 class=CTitle><a name="[^"]*"></a>([^<]*)</h3><div class=CBody>(.*?)</div>',content,re.DOTALL) for macroContent in allMacros: c = re.search(r'(.*?)(<h4 class=CHeading>Parameters</h4>.*?)?(<h4 class=CHeading>Example</h4>.*?)?(?:<h4 class=CHeading>Author</h4>.*?)',macroContent[1],re.DOTALL) if c: description = c.group(1) descriptionTable = re.findall(r'<tr><td class=CDLEntry>(.*?)</td><td class=CDLDescription>(.*?)</td></tr>',macroContent[1],re.DOTALL) for tableEntry in descriptionTable: re.search(r'(.*?)(<h4 class=CHeading>Parameters</h4>.*?)?(<h4 class=CHeading>Example</h4>.*?)?(?:<h4 class=CHeading>Author</h4>.*?)',macroContent[1],re.DOTALL) output = [] functionList = [] for fnc_page in fnc_page_names: f = urllib.request.urlopen(fnc_base_url + fnc_page + '.html') content = f.read().decode("utf-8") f.close() allFunctions = re.findall(r'<a[^>]*href\s*=\s*"([^"]*)"[^>]*class=ISymbol[^>]*>([^<]*)',content) for function in allFunctions: outputTemplate = {} outputTemplate['rightLabel'] = "CBA Function" outputTemplate['text'] = '' outputTemplate['description'] = '' outputTemplate['type'] = 'function' outputTemplate['descriptionMoreURL'] = fnc_base_url + function[0] print(function[1]) functionList.append(function[1]) f = urllib.request.urlopen(outputTemplate['descriptionMoreURL']) content = f.read().decode("utf-8") f.close() nameRegex = re.search(r'<a name="([^"]*)">',content) if nameRegex: outputTemplate['text'] = nameRegex.group(1) descriptionRegex = re.search(r'<h4 class=CHeading>Description</h4>(.*)<h4 class=CHeading>Parameters</h4>',content) if descriptionRegex: outputTemplate['description'] = str(html.unescape(re.sub(r'(<[^<]+?>)','',descriptionRegex.group(1)).strip())) output.append(outputTemplate) autocompleteDict = { '.source.sqf': { 'autocomplete': { 'symbols':{ 'CBAfunctions':{ 'suggestions': output } } } } } with open('../settingsAvailable/language-sqf-functions-cba.json', 'w') as f: json.dump(autocompleteDict,f,indent=2) with open('grammars-sqf-functions-cba.json', 'w') as f: f.write('|'.join(functionList)) print("\nCopy contents of 'grammars-sqf-functions-cba.json' into the 'support.function.cba.sqf' section of 'grammars/sqf.json'")
py
1a56ff37124ad1ac1d2528592b6646dd9b4dac8b
# # TODO: BIG DISCLAIMER -- The trace visualization / window does *not* make # use of the MVC pattern that the other widgets do. # # this is mainly due to the fact that it was prototyped last, and I haven't # gotten around to moving the 'logic' out of window/widget classes and into # a dedicated controller class. # # this will probably happen sooner than later, to keep everything consistent # from tenet.types import BreakpointType from tenet.util.qt import * from tenet.util.misc import register_callback, notify_callback #------------------------------------------------------------------------------ # TraceView #------------------------------------------------------------------------------ # TODO/XXX: ugly BORDER_SIZE = 1 LOCKON_DISTANCE = 4 class TraceBar(QtWidgets.QWidget): """ A trace visualization. """ def __init__(self, core, zoom=False, parent=None): super(TraceBar, self).__init__(parent) self.core = core self._is_zoom = zoom # misc widget settings self.setSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) self.setMouseTracking(True) self.setMinimumSize(32, 32) # the rendered trace visualization self._image = QtGui.QImage() # # setup trace colors / pens / brushes # # r / w / x accesses self.color_read = self.core.palette.mem_read_bg self.color_write = self.core.palette.mem_write_bg self.color_exec = self.core.palette.breakpoint # current idx self.color_cursor = self.core.palette.trace_cursor self.cursor_pen = QtGui.QPen(self.color_cursor, 1, QtCore.Qt.SolidLine) # zoom / region selection self.color_selection = self.core.palette.trace_selection self.color_selection_border = self.core.palette.trace_selection_border self.pen_selection = QtGui.QPen(self.color_selection, 2, QtCore.Qt.SolidLine) self.brush_selection = QtGui.QBrush(QtCore.Qt.Dense6Pattern) self.brush_selection.setColor(self.color_selection_border) self._last_hovered = None self.start_idx = 0 self.end_idx = 0 self.density = 0 self._width = 0 self._height = 0 self._selection_origin = -1 self._selection_start = -1 self._selection_end = -1 self._executions = [] self._reads = [] self._writes = [] #---------------------------------------------------------------------- # Callbacks #---------------------------------------------------------------------- self._selection_changed_callbacks = [] def _focused_breakpoint_changed(self, breakpoint): """ The focused breakpoint has changed. """ self._refresh_breakpoint_hits(breakpoint) self.refresh() def _refresh_breakpoint_hits(self, breakpoint): self._executions = [] self._reads = [] self._writes = [] if not self.isVisible(): return if not (self.core.reader and breakpoint): return if breakpoint.type == BreakpointType.EXEC: self._executions = self.core.reader.get_executions_between(breakpoint.address, self.start_idx, self.end_idx, self.density) elif breakpoint.type == BreakpointType.ACCESS: if breakpoint.length == 1: self._reads, self._writes = self.core.reader.get_memory_accesses_between(breakpoint.address, self.start_idx, self.end_idx, self.density) else: self._reads, self._writes = self.core.reader.get_memory_region_accesses_between(breakpoint.address, breakpoint.length, self.start_idx, self.end_idx, self.density) else: raise NotImplementedError def attach_reader(self, reader): # clear out any existing state self.reset() # save the reader self.reader = reader # initialize state based on the reader self.set_zoom(0, reader.trace.length) # attach signals to the new reader reader.idx_changed(self.refresh) def reset(self): """ TODO """ self.reader = None self.start_idx = 0 self.end_idx = 0 self.density = 0 self._selection_origin = -1 self._selection_start = -1 self._selection_end = -1 self._executions = [] self._reads = [] self._writes = [] self.refresh() def refresh(self, *args): """ TODO """ self._draw_trace() self.update() def _idx2pos(self, idx): """ Translate a given Y coordinate to an approximate IDX. """ relative_idx = idx - self.start_idx y = int(relative_idx / self.density) + BORDER_SIZE if y < BORDER_SIZE: y = BORDER_SIZE elif y > (self._height - BORDER_SIZE): y = self._height return y def _pos2idx(self, y): """ Translate a given Y coordinate to an approximate IDX. """ y -= BORDER_SIZE relative_idx = round(y * self.density) idx = self.start_idx + relative_idx # clamp IDX to the start / end of the trace if idx < self.start_idx: idx = self.start_idx elif idx > self.end_idx: idx = self.end_idx return idx def _compute_pixel_distance(self, y, idx): """ Compute the pixel distance from a given y to an IDX. """ y_idx = ((idx - self.start_idx) / self.density) - BORDER_SIZE distance_pixels = abs(y-y_idx) return distance_pixels def _update_hover(self, current_y): """ TODO """ # fast path / nothing to do if hovered position hasn't changed if self._last_hovered and self._last_hovered[1] == current_y: return # see if there's an interesting trace event close to the hover hovered_idx = self._pos2idx(current_y) closest_idx = self._get_closest_visible_idx(hovered_idx) px_distance = self._compute_pixel_distance(current_y, closest_idx) #print(f" HOVERED IDX {hovered_idx:,}, CLOSEST IDX {closest_idx:,}, DIST {px_distance}") painter = QtGui.QPainter(self._image) LINE_WIDTH = self._width - (BORDER_SIZE * 2) # unpaint the last hovered line with the position/color we stored for it if self._last_hovered: old_data, prev_y = self._last_hovered length = min(len(old_data), self._image.width() * 4) current_data = self._image.scanLine(prev_y).asarray(length) for i in range(length): current_data[i] = old_data[i] # nothing close, so don't bother painting a highlight if px_distance >= LOCKON_DISTANCE: self._last_hovered = None #print("NOTHING CLOSE!") self._draw_cursor(painter) return locked_y = self._idx2pos(closest_idx) # overwrite last_hovered with the latest hover position / color we will stomp current_line_data = self._image.scanLine(locked_y) old_data = [x for x in current_line_data.asarray(4 * self._image.width())] self._last_hovered = (old_data, locked_y) #self._last_hovered = (self._image.pixelColor(LINE_WIDTH//2, locked_y), locked_y) # paint the currently hovered line painter.setPen(self.cursor_pen) painter.drawLine(BORDER_SIZE, locked_y, LINE_WIDTH, locked_y) #print("PAINTED NEW!") self._draw_cursor(painter) def set_zoom(self, start_idx, end_idx): """ TODO """ #print("Setting Zoom!", start_idx, end_idx) # save the first and last timestamps to be shown self.start_idx = start_idx self.end_idx = end_idx # compute the number of instructions visible self.length = (end_idx - start_idx) # compute the number of instructions per y pixel self.density = self.length / (self._height - BORDER_SIZE * 2) self._refresh_breakpoint_hits(self.core.breakpoints.model.focused_breakpoint) self.refresh() def set_selection(self, start_idx, end_idx): """ TODO """ self._selection_end = end_idx self._selection_start = start_idx self.refresh() def _global_selection_changed(self, start_idx, end_idx): if start_idx == end_idx: return self.set_selection(start_idx, end_idx) def _zoom_selection_changed(self, start_idx, end_idx): if start_idx == end_idx: self.hide() else: self.show() self.set_zoom(start_idx, end_idx) def highlight_executions(self, idxs): self._executions = idxs self.refresh() def _draw_trace(self): w, h = self._width, self._height self._last_hovered = None self._image = QtGui.QImage(w, h, QtGui.QImage.Format_RGB32) if not self.reader: self._image.fill(self.core.palette.trace_bedrock) else: self._image.fill(self.core.palette.trace_instruction) painter = QtGui.QPainter(self._image) # # draw accesses along the trace timeline # self._draw_accesses(painter) # # draw region selection # self._draw_selection(painter) # # draw border around trace timeline # border_pen = QtGui.QPen(self.core.palette.trace_border, 1, QtCore.Qt.SolidLine) painter.setPen(border_pen) # top & bottom painter.drawLine(0, 0, w, 0) painter.drawLine(0, h-1, w, h-1) # left & right painter.drawLine(0, 0, 0, h) painter.drawLine(w-1, 0, w-1, h) # # draw current trace position cursor # self._draw_cursor(painter) def _draw_accesses(self, painter): """ Draw read / write / execs accesses on the trace timeline. """ access_sets = \ [ (self._reads, self.color_read), (self._writes, self.color_write), (self._executions, self.color_exec), ] for entries, color in access_sets: painter.setPen(color) for idx in entries: # skip entries that fall outside the visible zoom if not(self.start_idx <= idx < self.end_idx): continue relative_idx = idx - self.start_idx y = int(relative_idx / self.density) + BORDER_SIZE painter.drawLine(0, y, self._width, y) def _draw_cursor(self, painter): """ Draw the user cursor / current position in the trace. """ if not self.reader: return path = QtGui.QPainterPath() size = 13 assert size % 2, "Cursor triangle size must be odd" # rebase the absolute trace cursor idx to the current 'zoomed' view relative_idx = self.reader.idx - self.start_idx if relative_idx < 0: return False # compute the y coordinate / line to center the user cursor around cursor_y = int(relative_idx / self.density) + BORDER_SIZE # the top point of the triangle top_x = 0 top_y = cursor_y - (size // 2) # vertically align the triangle so the tip matches the cross section #print("TOP", top_x, top_y) # bottom point of the triangle bottom_x = top_x bottom_y = top_y + size - 1 #print("BOT", bottom_x, bottom_y) # the 'tip' of the triangle pointing into towards the center of the trace tip_x = top_x + (size // 2) tip_y = top_y + (size // 2) #print("CURSOR", tip_x, tip_y) # start drawing from the 'top' of the triangle path.moveTo(top_x, top_y) # generate the triangle path / shape path.lineTo(bottom_x, bottom_y) path.lineTo(tip_x, tip_y) path.lineTo(top_x, top_y) painter.setPen(self.cursor_pen) painter.drawLine(0, cursor_y, self._width, cursor_y) # paint the defined triangle # TODO: don't hardcode colors painter.setPen(QtCore.Qt.black) painter.setBrush(QtGui.QBrush(QtGui.QColor("red"))) painter.drawPath(path) def _draw_selection(self, painter): """ Draw a region selection rect. """ #print("DRAWING SELECTION?", self._selection_start, self._selection_end) if self._selection_start == self._selection_end: return start_y = int((self._selection_start - self.start_idx) / self.density) end_y = int((self._selection_end - self.start_idx) / self.density) painter.setBrush(self.brush_selection) painter.setPen(self.pen_selection) painter.drawRect( BORDER_SIZE, # x start_y+BORDER_SIZE, # y self._width - (BORDER_SIZE * 2), # width end_y - start_y - (BORDER_SIZE * 2) # height ) def wheelEvent(self, event): if not self.reader: return mod = QtGui.QGuiApplication.keyboardModifiers() step_over = bool(mod & QtCore.Qt.ShiftModifier) if event.angleDelta().y() > 0: self.reader.step_backward(1, step_over) elif event.angleDelta().y() < 0: self.reader.step_forward(1, step_over) self.refresh() event.accept() def _update_selection(self, y): idx_event = self._pos2idx(y) if idx_event > self._selection_origin: self._selection_start = self._selection_origin self._selection_end = idx_event else: self._selection_end = self._selection_origin self._selection_start = idx_event def mouseMoveEvent(self, event): #mod = QtGui.QGuiApplication.keyboardModifiers() #if mod & QtCore.Qt.ShiftModifier: # print("SHIFT IS HELD!!") #import ida_kernwin #ida_kernwin.refresh_idaview_anyway() if event.buttons() == QtCore.Qt.MouseButton.LeftButton: self._update_selection(event.y()) self.refresh() else: self._update_hover(event.y()) self.update() def mousePressEvent(self, event): """ Qt override to capture mouse button presses """ if event.button() == QtCore.Qt.MouseButton.LeftButton: idx_origin = self._pos2idx(event.y()) self._selection_origin = idx_origin self._selection_start = idx_origin self._selection_end = idx_origin return def _get_closest_visible_idx(self, idx): """ Return the closest IDX (timestamp) to the given IDX. """ closest_idx = -1 smallest_distace = 999999999999999999999999 for entries in [self._reads, self._writes, self._executions]: for current_idx in entries: distance = abs(idx - current_idx) if distance < smallest_distace: closest_idx = current_idx smallest_distace = distance return closest_idx #overridden event to capture mouse button releases def mouseReleaseEvent(self, event): if not self.reader: return # if the left mouse button was released... if event.button() == QtCore.Qt.MouseButton.LeftButton: # # the initial 'click' origin is not set, so that means the 'click' # event did not start over this widget... or is something we # should just ignore. # if self._selection_origin == -1: return # # clear the selection origin as we will be consuming the # selection event in the followin codepath # self._selection_origin = -1 # # if the user selection appears to be a 'click' vs a zoom / range # selection, then seek to the clicked address # if self._selection_start == self._selection_end: selected_idx = self._selection_start #clear_focus = True # # if there is a highlighted bp near the click, we should lock # onto that instead... # closest_idx = self._get_closest_visible_idx(selected_idx) current_y = self._idx2pos(self._selection_start) px_distance = self._compute_pixel_distance(current_y, closest_idx) if px_distance < LOCKON_DISTANCE: selected_idx = closest_idx # clear_focus = False #elif self._is_zoom: # clear_focus = False # # jump to the selected area # #print(f"Jumping to {selected_idx:,}") self.reader.seek(selected_idx) #if clear_focus: # self.core.breakpoints.model.focused_breakpoint = None self._notify_selection_changed(selected_idx, selected_idx) self.refresh() return if self._is_zoom: new_start = self._selection_start new_end = self._selection_end self._selection_start = self._selection_end = -1 self.set_zoom(new_start, new_end) self._notify_selection_changed(new_start, new_end) else: self._notify_selection_changed(self._selection_start, self._selection_end) def leaveEvent(self, event): self.refresh() def keyPressEvent(self, e): #print("PRESSING", e.key(), e.modifiers()) pass def keyReleaseEvent(self, e): #print("RELEASING", e.key(), e.modifiers()) pass def resizeEvent(self, event): size = event.size() self._width, self._height = self.width(), self.height() self.density = self.length / (self._height - BORDER_SIZE * 2) #self._refresh_breakpoint_hits(breakpoint) self.refresh() def paintEvent(self, event): painter = QtGui.QPainter(self) painter.drawImage(0, 0, self._image) #---------------------------------------------------------------------- # Callbacks #---------------------------------------------------------------------- def selection_changed(self, callback): """ Subscribe a callback for a trace slice selection change event. """ register_callback(self._selection_changed_callbacks, callback) def _notify_selection_changed(self, start_idx, end_idx): """ Notify listeners of a trace slice selection change event. """ notify_callback(self._selection_changed_callbacks, start_idx, end_idx) class TraceView(QtWidgets.QWidget): def __init__(self, core, parent=None): super(TraceView, self).__init__(parent) self.core = core self._init_ui() def _init_ui(self): """ TODO """ self._init_bars() self._init_ctx_menu() def attach_reader(self, reader): self.trace_global.attach_reader(reader) self.trace_local.attach_reader(reader) self.trace_local.hide() def detach_reader(self): self.trace_global.reset() self.trace_local.reset() self.trace_local.hide() def _init_bars(self): """ TODO """ self.trace_local = TraceBar(self.core, zoom=True) self.trace_global = TraceBar(self.core) # connect the local view to follow the global selection self.trace_global.selection_changed(self.trace_local._zoom_selection_changed) self.trace_local.selection_changed(self.trace_global._global_selection_changed) # connect other signals self.core.breakpoints.model.focused_breakpoint_changed(self.trace_global._focused_breakpoint_changed) self.core.breakpoints.model.focused_breakpoint_changed(self.trace_local._focused_breakpoint_changed) # hide the zoom bar by default self.trace_local.hide() # setup the layout and spacing for the tracebar hbox = QtWidgets.QHBoxLayout(self) hbox.setContentsMargins(3, 3, 3, 3) hbox.setSpacing(3) # add the layout container / mechanism to the toolbar hbox.addWidget(self.trace_local) hbox.addWidget(self.trace_global) self.setLayout(hbox) def _init_ctx_menu(self): """ TODO """ self._menu = QtWidgets.QMenu() # create actions to show in the context menu self._action_load = self._menu.addAction("Load new trace") self._action_close = self._menu.addAction("Close trace") # install the right click context menu self.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.customContextMenuRequested.connect(self._ctx_menu_handler) #-------------------------------------------------------------------------- # Signals #-------------------------------------------------------------------------- def _ctx_menu_handler(self, position): action = self._menu.exec_(self.mapToGlobal(position)) if action == self._action_load: self.core.interactive_load_trace(True) elif action == self._action_close: self.core.close_trace() # if a tracebar got added, we need to update the layout def update_from_model(self): for bar in self.model.tracebars.values()[::-1]: self.hbox.addWidget(bar) # this will insert the children (tracebars) and apply spacing as appropriate self.bar_container.setLayout(self.hbox) #----------------------------------------------------------------------------- # Dockable Trace Visualization #----------------------------------------------------------------------------- # TODO: refactor out to trace controller / dock model class TraceDock(QtWidgets.QToolBar): """ A Qt 'Toolbar' to house the TraceBar visualizations. We use a Toolbar explicitly because they are given unique docking regions around the QMainWindow in Qt-based applications. This allows us to pin the visualizations to areas where they will not be dist """ def __init__(self, core, parent=None): super(TraceDock, self).__init__(parent) self.core = core self.view = TraceView(core, self) self.setMovable(False) self.setContentsMargins(0, 0, 0, 0) self.addWidget(self.view) def attach_reader(self, reader): self.view.attach_reader(reader) def detach_reader(self): self.view.detach_reader()
py
1a5702e2d592b1a3b10851b3b237d2e43ab10947
""" Post-processing function that takes a case_data_set and outputs a csv file """ import csv # pylint: disable=E0611,F0401 from openmdao.main.case import flatten_obj def caseset_query_to_csv(data, filename='cases.csv', delimiter=',', quotechar='"'): """ Post-processing function that takes a case_data_set and outputs a csv file. Should be able to pass tests of current csv case recorder (column ordering, meta column, etc...) Assume query by case (not variable). Inputs: data - results of fetch on Query object """ cds = data.cds drivers = {} for driver in cds.drivers: drivers[driver['_id']] = driver['name'] # Determine inputs & outputs, map pseudos to expression names. expressions = cds.simulation_info['expressions'] metadata = cds.simulation_info['variable_metadata'] inputs = [] outputs = [] pseudos = {} for name in sorted(data[0].keys()): # All inputs and outputs that change. if name in metadata: if metadata[name]['iotype'] == 'in': inputs.append(name) else: outputs.append(name) # Include objectives and constraints from all simulation levels. elif '_pseudo_' in name and not name.endswith('.out0'): for exp_name, exp_dict in expressions.items(): if exp_dict['pcomp_name'] == name: pseudos[name] = '%s(%s)' % (exp_dict['data_type'], exp_name) break else: raise RuntimeError('Cannot find %r in expressions' % name) outputs.append(name) # Allow private vars from components. elif '.' in name: outputs.append(name) # Open CSV file outfile = open(filename, 'wb') csv_writer = csv.writer(outfile, delimiter=delimiter, quotechar=quotechar, quoting=csv.QUOTE_NONNUMERIC) # No automatic data type conversion is performed unless the # QUOTE_NONNUMERIC format option is specified (in which case unquoted # fields are transformed into floats). # Write the data # data is a list of lists where the inner list is the values and metadata # for a case sorted_input_keys = [] sorted_input_values = [] sorted_output_keys = [] sorted_output_values = [] for i, row in enumerate( data ): input_keys = [] input_values = [] for name in inputs: obj = row[ row.name_map[ name ] ] for key, value in flatten_obj(name, obj): input_keys.append(key) input_values.append(value) output_keys = [] output_values = [] for name in outputs: obj = row[ row.name_map[ name ] ] if name in pseudos: name = pseudos[name] for key, value in flatten_obj(name, obj): output_keys.append(key) output_values.append(value) # This should not be necessary, however python's csv writer # is not writing boolean variables correctly as strings. for index, item in enumerate(input_values): if isinstance(item, bool): input_values[index] = str(item) for index, item in enumerate(output_values): if isinstance(item, bool): output_values[index] = str(item) # Sort the columns alphabetically. if len(input_keys) > 0: sorted_input_keys, sorted_input_values = \ (list(item) for item in zip(*sorted(zip(input_keys, input_values)))) if len(output_keys) > 0: sorted_output_keys, sorted_output_values = \ (list(item) for item in zip(*sorted(zip(output_keys, output_values)))) if outfile is None: raise RuntimeError('Attempt to record on closed recorder') if i == 0: headers = ['timestamp', '/INPUTS'] headers.extend(sorted_input_keys) headers.append('/OUTPUTS') headers.extend(sorted_output_keys) headers.extend(['/METADATA', 'uuid', 'parent_uuid', 'msg']) csv_writer.writerow(headers) header_size = len(headers) timestamp = row[ row.name_map[ 'timestamp' ] ] csv_data = [timestamp] csv_data.append('') csv_data.extend(sorted_input_values) csv_data.append('') csv_data.extend(sorted_output_values) exc = row[ row.name_map[ 'error_message' ] ] msg = '' if exc is None else str(exc) case_uuid = row[ row.name_map[ '_id' ] ] parent_uuid = row[ row.name_map[ '_parent_id' ] ] csv_data.extend(['', case_uuid, parent_uuid, msg]) if header_size != len(csv_data): raise RuntimeError("number of data points (%d) doesn't match header" " size (%d) in CSV recorder" % (len(csv_data), header_size)) csv_writer.writerow(csv_data) outfile.close()
py
1a57041a5c37b40576a1d671f6bb6e541b0c5b5c
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=40 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=9 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.Z.on(input_qubit[2])) # number=36 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.Y.on(input_qubit[3])) # number=12 c.append(cirq.H.on(input_qubit[0])) # number=5 c.append(cirq.H.on(input_qubit[1])) # number=6 c.append(cirq.H.on(input_qubit[2])) # number=7 c.append(cirq.H.on(input_qubit[3])) # number=8 c.append(cirq.H.on(input_qubit[3])) # number=30 c.append(cirq.CZ.on(input_qubit[0],input_qubit[3])) # number=31 c.append(cirq.H.on(input_qubit[3])) # number=32 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[3])) # number=33 c.append(cirq.X.on(input_qubit[3])) # number=34 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[3])) # number=35 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[3])) # number=29 c.append(cirq.Y.on(input_qubit[2])) # number=10 c.append(cirq.Y.on(input_qubit[2])) # number=11 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=13 c.append(cirq.H.on(input_qubit[0])) # number=15 c.append(cirq.CZ.on(input_qubit[1],input_qubit[0])) # number=16 c.append(cirq.H.on(input_qubit[1])) # number=20 c.append(cirq.H.on(input_qubit[2])) # number=19 c.append(cirq.CNOT.on(input_qubit[3],input_qubit[0])) # number=24 c.append(cirq.Z.on(input_qubit[3])) # number=25 c.append(cirq.H.on(input_qubit[0])) # number=37 c.append(cirq.CZ.on(input_qubit[3],input_qubit[0])) # number=38 c.append(cirq.H.on(input_qubit[0])) # number=39 c.append(cirq.H.on(input_qubit[0])) # number=17 c.append(cirq.CNOT.on(input_qubit[2],input_qubit[0])) # number=21 c.append(cirq.X.on(input_qubit[1])) # number=23 c.append(cirq.CNOT.on(input_qubit[2],input_qubit[0])) # number=22 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq3094.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
py
1a5705afc43a1412e026818bef13e3ab4551bd67
from tkinter import Frame, Canvas, Tk, Text, LEFT, INSERT, END, messagebox, Button, X from alarming_service import time_diff def GUI_present(): root = Tk() canvas = Canvas(root) canvas.pack() frame = Frame(canvas) frame.pack() top_text = Text(frame) top_text.insert( INSERT, "Welcome to the Simple Alarming Service" ) top_text.pack() alarm_set = Button(frame, text="Set and Deploy Alarm", command=time_diff) alarm_set.pack(fill=X) root.mainloop() if __name__ == "__main__": GUI_present()
py
1a5705d766d70213905af07cd2676a7ee725b194
""" This is a file includes the main function for gym atari reinforcement learning. """ import os import gym import numpy as np from argparse_decorate import init_parser, add_arg from deep_q_learning import DQLAtari from sac_discrete import SoftActorCriticsDiscrete @init_parser() @add_arg('--start_episode', type=int, default=0, help='A number for start episode index.') @add_arg('--eval', type=bool, default=False, help='True means evaluate model only.') @add_arg('--game_index', type=int, default=1, choices=[0, 1, 2], help='Represent Breakout, MsPacman and Pong respectively.') @add_arg('--env_name', type=str, default=None, help='The name of the gym atari environment.') @add_arg('--memory_size', type=int, default=100000, help='The size of the memory space.') @add_arg('--start_epsilon', type=float, default=1.0, help='The probability for random actions.') @add_arg('--min_epsilon', type=float, default=0.05, help='The probability for random actions.') @add_arg('--reward_clip', type=bool, default=False, help='Clip reward in [-1, 1] range if True.') @add_arg('--live_penalty', type=bool, default=True, help='Penalties when agent lose a life in the game.') @add_arg('--agent', type=str, default='dsac', choices=['dql', 'dsac'], help='Deep Q-learning and discrete soft Actor-Critics algorithms.') def main(**kwargs): """ The main function for gym atari reinforcement learning. """ atari_game = ['BreakoutNoFrameskip-v4', 'MsPacmanNoFrameskip-v4', 'PongNoFrameskip-v4'] env_name = kwargs['env_name'] if kwargs['env_name'] is not None else atari_game[kwargs['game_index']] dirs = './' + env_name if not os.path.exists(dirs): os.makedirs(dirs) img_size = (4, 84, 84) env = gym.make(env_name) memory_par = (kwargs['memory_size'], img_size) action_space = np.array([i for i in range(env.action_space.n)], dtype=np.uint8) game = (env_name, env, kwargs['live_penalty']) if kwargs['agent'] == 'dql': agent = DQLAtari(memory_par=memory_par, action_space=action_space, game=game, reward_clip=kwargs['reward_clip'], epsilon=(kwargs['start_epsilon'], kwargs['min_epsilon'])) elif kwargs['agent'] == 'dsac': agent = SoftActorCriticsDiscrete(memory_par=memory_par, action_space=action_space, game=game, reward_clip=kwargs['reward_clip']) else: raise Exception('The agent does not exist.') agent.simulate(net_path=dirs, start_episodes=kwargs['start_episode'], eval=kwargs['eval'], start_frames=0) if __name__ == '__main__': main()
py
1a5708762d01c0f99729b99b5009c0e704c429df
class GPX: def __init__(self,filename): self.fd = open(filename,"w") self.fd.write('<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>\n') self.fd.write('<gpx version="1.1"\n') self.fd.write(' creator="Osmawalk - https://github.com/xtompok/osmawalk"\n') self.fd.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"\n') self.fd.write(' xmlns="http://www.topografix.com/GPX/1/1"\n') self.fd.write(' xsi:schemaLocation="http://www.topografix.com/GPX/1/1 http://www.topografix.com/GPX/1/1/gpx.xsd">\n') self.wpts = [] def close(self): for wpt in self.wpts: self.fd.write(str(wpt)) self.wpts = [] self.fd.write('</gpx>\n'); self.fd.close() def writeTrack(self,track): self.startTrack() for point in track: self.writeTrkpt(point[0],point[1],point[2]) self.endTrack() def addWpt(self,name,lat,lon,ele): self.wpts.append(Wpt(name,lat,lon,ele)) def startTrack(self): self.fd.write('<trk>\n<trkseg>\n') def endTrack(self): self.fd.write('</trkseg>\n</trk>\n') for wpt in self.wpts: self.fd.write(str(wpt)) self.wpts = [] def writeTrkpt(self,lat,lon,ele): self.fd.write(' <trkpt lat="'+str(lat)+'" lon="'+str(lon)+'">\n') self.fd.write(' <ele>'+str(ele)+'</ele>\n') self.fd.write(' </trkpt>\n') class Wpt: def __init__(self,aname,alat,alon,anele): self.name = aname self.lat = alat self.lon = alon self.ele = anele def __str__(self): start='<wpt lat="'+str(self.lat)+'" lon="'+str(self.lon)+'">\n' inner=' <name>'+str(self.name)+'</name>\n <ele>'+str(self.ele)+'</ele>\n' end='</wpt>\n' return start+inner+end
py
1a5708893b9418def560d0d21f81666e3fd866ba
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # OnVBA documentation build configuration file, created by # sphinx-quickstart on Sat Nov 14 15:46:01 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import shlex # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['ntemplates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'OnVBA' copyright = '2015, Rolenun' author = 'Rolenun' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.0.1' # The full version, including alpha/beta/rc tags. release = '0.0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['nstatic'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'OnVBAdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'OnVBA.tex', 'OnVBA Documentation', 'Rolenun', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'onvba', 'OnVBA Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'OnVBA', 'OnVBA Documentation', author, 'OnVBA', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
py
1a570898a3e24436162b59cd902370c05929daec
import logging from .dispatcher import Dispatcher from .function import promised_type_of as promised_type_of1 from .type import ( ComparableType, as_type, TypeType, promised_type_of as promised_type_of2, is_type, ) from .util import multihash __all__ = ["parametric", "type_parameter", "kind", "Kind", "List", "Tuple", "type_of"] log = logging.getLogger(__name__) _dispatch = Dispatcher() @_dispatch def _get_id(x): return id(x) @_dispatch def _get_id(x: {int, float, str, TypeType}): return x class CovariantType(type): """A metaclass that implements *covariance* of parametric types.""" def __subclasscheck__(self, subclass): if hasattr(subclass, "_is_parametric"): # Check that they are instances of the same parametric type. if subclass.__bases__ == self.__bases__: par_subclass = type_parameter(subclass) par_self = type_parameter(self) # Check that the type parameters are types. if is_type(par_subclass) and is_type(par_self): return as_type(par_subclass) <= as_type(par_self) # Default behaviour to `type`s subclass check. return type.__subclasscheck__(self, subclass) def parametric(Class): """A decorator for parametric classes.""" subclasses = {} if not issubclass(Class, object): # pragma: no cover raise RuntimeError( f"To let {Class} be a parametric class, it must be a new-style class." ) def __new__(cls, *ps): # Convert type parameters. ps = tuple(_get_id(p) for p in ps) # Only create new subclass if it doesn't exist already. if ps not in subclasses: def __new__(cls, *args, **kw_args): return Class.__new__(cls) # Create subclass. name = Class.__name__ + "{" + ",".join(str(p) for p in ps) + "}" SubClass = type.__new__( CovariantType, name, (ParametricClass,), {"__new__": __new__, "_is_parametric": True}, ) SubClass._type_parameter = ps[0] if len(ps) == 1 else ps SubClass.__module__ = Class.__module__ # Attempt to correct docstring. try: SubClass.__doc__ = Class.__doc__ except AttributeError: # pragma: no cover pass subclasses[ps] = SubClass return subclasses[ps] # Create parametric class. ParametricClass = type(Class.__name__, (Class,), {"__new__": __new__}) ParametricClass.__module__ = Class.__module__ # Attempt to correct docstring. try: ParametricClass.__doc__ = Class.__doc__ except AttributeError: # pragma: no cover pass return ParametricClass @_dispatch def type_parameter(x): """Get the type parameter of an instance of a parametric type. Args: x (object): Instance of a parametric type. Returns: object: Type parameter. """ return x._type_parameter def kind(SuperClass=object): """Create a parametric wrapper type for dispatch purposes. Args: SuperClass (type): Super class. Returns: object: New parametric type wrapper. """ @parametric class Kind(SuperClass): def __init__(self, *xs): self.xs = xs def get(self): return self.xs[0] if len(self.xs) == 1 else self.xs return Kind Kind = kind() #: A default kind provided for convenience. @parametric class _ParametricList(list): """Parametric list type.""" class List(ComparableType): """Parametric list Plum type. Args: el_type (type or ptype): Element type. """ def __init__(self, el_type): self._el_type = as_type(el_type) def __hash__(self): return multihash(List, self._el_type) def __repr__(self): return f"ListType({self._el_type})" def get_types(self): return (_ParametricList(self._el_type),) @property def parametric(self): return True @parametric class _ParametricTuple(tuple): """Parametric tuple type.""" class Tuple(ComparableType): """Parametric tuple Plum type. Args: el_type (type or ptype): Element type. """ def __init__(self, el_type): self._el_type = as_type(el_type) def __hash__(self): return multihash(Tuple, self._el_type) def __repr__(self): return f"TupleType({self._el_type})" def get_types(self): return (_ParametricTuple(self._el_type),) @property def parametric(self): return True def _types_of_iterable(xs): types = {type_of(x) for x in xs} if len(types) == 1: return list(types)[0] else: return as_type(types) def type_of(obj): """Get the Plum type of an object. Args: obj (object): Object to get type of. Returns ptype: Plum type of `obj`. """ if isinstance(obj, list): return List(_types_of_iterable(obj)) if isinstance(obj, tuple): return Tuple(_types_of_iterable(obj)) return as_type(type(obj)) # Deliver `type_of`. promised_type_of1.deliver(type_of) promised_type_of2.deliver(type_of)
py
1a5708c99e855c2cec806f6e9801c3419a62ebc3
#!/usr/bin/env python # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" """ Ensure that projects with multiple translation catalogs maintain translation files correctly. """ # There was a bug that affected the `Translate()` when no targets were provided # explicitelly via argument list. If, for exapmle, `pkg1/SConscript` and # `pkg2/SConscript` scripts in some project `p1` had: # # Translate(LINGUAS_FILE = 1) # # then target languages defined in `pkg1/LINGUAS` would affect the list of # target languages emitted by `pkg2/SConscript` and vice versa. # # The pull request #64 on bitbucket fixes this. Here is the test case to # replicate the bug. import TestSCons from os import path test = TestSCons.TestSCons() if not test.where_is('xgettext'): test.skip_test("could not find 'xgettext'; skipping test(s)\n") if not test.where_is('msgmerge'): test.skip_test("Could not find 'msgmerge'; skipping test(s)\n") if not test.where_is('msginit'): test.skip_test("could not find 'msginit'; skipping test(s)\n") if not test.where_is('msgfmt'): test.skip_test("could not find 'msgfmt'; skipping test(s)\n") ############################################################################# # Test case 1 ############################################################################# test.subdir(['tc1']) test.write( ['tc1', 'SConstruct'], """ env = Environment( tools = ["default", "gettext"] ) env.Replace(POAUTOINIT = 1) env.Replace(LINGUAS_FILE = 1) SConscript(["pkg1/SConscript", "pkg2/SConscript"], exports = ["env"]) """) # package `pkg1` test.subdir(['tc1', 'pkg1']) test.write( ['tc1', 'pkg1', 'LINGUAS'], """ en pl """) test.write( ['tc1', 'pkg1', 'SConscript'], """ Import("env") env.Translate(source = ['a.cpp']) """) test.write(['tc1', 'pkg1', 'a.cpp'], """ gettext("Hello from pkg1/a.cpp") """ ) # package `pkg2` test.subdir(['tc1', 'pkg2']) test.write( ['tc1', 'pkg2', 'LINGUAS'], """ de fr """) test.write( ['tc1', 'pkg2', 'SConscript'], """ Import("env") env.Translate(source = ['b.cpp']) """) test.write(['tc1', 'pkg2', 'b.cpp'], """ gettext("Hello from pkg2/b.cpp") """ ) # NOTE: msgmerge(1) prints its messages to stderr, we must ignore them, # So, stderr=None is crucial here. It is no point to match stderr to some # specific valuse; the messages are internationalized :) ). test.run(arguments = 'po-update', chdir = 'tc1', stderr = None) test.must_exist( ['tc1', 'pkg1', 'en.po'] ) test.must_exist( ['tc1', 'pkg1', 'pl.po'] ) test.must_not_exist(['tc1', 'pkg1', 'de.po'] ) test.must_not_exist(['tc1', 'pkg1', 'fr.po'] ) test.must_exist( ['tc1', 'pkg2', 'de.po'] ) test.must_exist( ['tc1', 'pkg2', 'fr.po'] ) test.must_not_exist(['tc1', 'pkg2', 'en.po'] ) test.must_not_exist(['tc1', 'pkg2', 'pl.po'] ) test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
py
1a57092aae12bd2905d0f0af2e41efe8d6d2fe43
# coding: utf-8 """ SCORM Cloud Rest API REST API used for SCORM Cloud integrations. # noqa: E501 OpenAPI spec version: 2.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class LaunchLinkSchema(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'launch_link': 'str' } attribute_map = { 'launch_link': 'launchLink' } def __init__(self, launch_link=None): # noqa: E501 """LaunchLinkSchema - a model defined in Swagger""" # noqa: E501 self._launch_link = None self.discriminator = None self.launch_link = launch_link @property def launch_link(self): """Gets the launch_link of this LaunchLinkSchema. # noqa: E501 :return: The launch_link of this LaunchLinkSchema. # noqa: E501 :rtype: str """ return self._launch_link @launch_link.setter def launch_link(self, launch_link): """Sets the launch_link of this LaunchLinkSchema. :param launch_link: The launch_link of this LaunchLinkSchema. # noqa: E501 :type: str """ if launch_link is None: raise ValueError("Invalid value for `launch_link`, must not be `None`") # noqa: E501 self._launch_link = launch_link def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(LaunchLinkSchema, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, LaunchLinkSchema): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
1a5709c49604d7fad74c928f5495cdfc40928877
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output
py
1a570a50db7e13c542b8b3bea9b390c37ca5e6ab
import os import sys import psutil from monk.pytorch_prototype import prototype from monk.compare_prototype import compare from monk.pip_unit_tests.pytorch.common import print_start from monk.pip_unit_tests.pytorch.common import print_status import torch import numpy as np from monk.pytorch.losses.return_loss import load_loss def test_block_inception_c(system_dict): forward = True; test = "test_block_inception_c"; system_dict["total_tests"] += 1; print_start(test, system_dict["total_tests"]) if(forward): try: gtf = prototype(verbose=0); gtf.Prototype("sample-project-1", "sample-experiment-1"); network = []; network.append(gtf.inception_c_block(channels_7x7=3, pool_type="avg")); network.append(gtf.inception_c_block(channels_7x7=3, pool_type="max")); gtf.Compile_Network(network, data_shape=(1, 64, 64), use_gpu=False); x = torch.randn(1, 1, 64, 64); y = gtf.system_dict["local"]["model"](x); system_dict["successful_tests"] += 1; print_status("Pass"); except Exception as e: system_dict["failed_tests_exceptions"].append(e); system_dict["failed_tests_lists"].append(test); forward = False; print_status("Fail"); else: system_dict["skipped_tests_lists"].append(test); print_status("Skipped"); return system_dict
py
1a570d4a334fef732efc4018f5034f967e099077
import asyncio import logging import time from typing import Iterable import uvicorn from fastapi import FastAPI from fastapi.responses import RedirectResponse from async_batch.batch_processor import BatchProcessor, TaskQueue log = logging.getLogger(__file__) LOGGING_CONFIG = { "version": 1, "disable_existing_loggers": False, "formatters": { "default": { "()": "uvicorn.logging.DefaultFormatter", "fmt": "%(asctime)-15s %(levelprefix)s %(message)s", "use_colors": None, }, "access": { "()": "uvicorn.logging.AccessFormatter", "fmt": '%(asctime)-15s %(levelprefix)s %(client_addr)s - "%(request_line)s" %(status_code)s', }, }, "handlers": { "default": { "formatter": "default", "class": "logging.StreamHandler", "stream": "ext://sys.stderr", }, "access": { "formatter": "access", "class": "logging.StreamHandler", "stream": "ext://sys.stdout", }, }, "loggers": { "": {"handlers": ["default"], "level": "DEBUG"}, "uvicorn.error": {"level": "DEBUG"}, "uvicorn.access": {"handlers": ["access"], "level": "DEBUG", "propagate": False}, }, } class ExampleBatchProcessor(BatchProcessor): def _process(self, batch_data: Iterable[int]) -> Iterable[int]: return [x ** 2 for x in batch_data] def __init__(self, batch_size: int): self.batch_size = batch_size def get_batch_size(self) -> int: return self.batch_size tq = TaskQueue( batch_processor=ExampleBatchProcessor(2), max_wait_time=3 ) app = FastAPI( title="Async Batcher Example Project", version="0.1", description="Async Batch Project", ) app.task_queue = tq @app.on_event("startup") async def start_task_queue(): log.info("Starting Task Queue") app.task_queue.start() @app.on_event("shutdown") async def start_task_queue(): log.info("Stopping Task Queue") app.task_queue.stop() @app.get("/") async def read_root(): """ Got to document """ return RedirectResponse("docs") @app.post("/set/interval") async def set_interval(interval: float): """ Got to document """ app.task_queue._interval = interval return {"status": "success"} @app.post("/set/batch_size") async def set_batch_size(batch_size: int): """ Got to document """ app.task_queue._batch_processor.batch_size = batch_size return {"status": "success"} @app.get("/test") async def api_test(number: int): log.info(f"Request come in with number={number}") if not app.task_queue.is_alive(): if not app.task_queue.stop(): app.task_queue.start() start_time = time.time() data = await asyncio.wait_for( app.task_queue.async_submit(number), timeout=app.task_queue._interval + 1.0 ) spent = time.time() - start_time return { "status": "success", "result": data, "used_time": spent } if __name__ == '__main__': uvicorn.run(app, log_config=LOGGING_CONFIG)
py
1a570e48e9d329f52891965f088cc09bb3bba822
"""Registers functions to be called if an exception or signal occurs.""" import functools import logging import signal import traceback # pylint: disable=unused-import, no-name-in-module from acme.magic_typing import Any, Callable, Dict, List, Union # pylint: enable=unused-import, no-name-in-module from certbot import errors from certbot.compat import os logger = logging.getLogger(__name__) # _SIGNALS stores the signals that will be handled by the ErrorHandler. These # signals were chosen as their default handler terminates the process and could # potentially occur from inside Python. Signals such as SIGILL were not # included as they could be a sign of something devious and we should terminate # immediately. if os.name != "nt": _SIGNALS = [signal.SIGTERM] for signal_code in [signal.SIGHUP, signal.SIGQUIT, signal.SIGXCPU, signal.SIGXFSZ]: # Adding only those signals that their default action is not Ignore. # This is platform-dependent, so we check it dynamically. if signal.getsignal(signal_code) != signal.SIG_IGN: _SIGNALS.append(signal_code) else: # POSIX signals are not implemented natively in Windows, but emulated from the C runtime. # As consumed by CPython, most of handlers on theses signals are useless, in particular # SIGTERM: for instance, os.kill(pid, signal.SIGTERM) will call TerminateProcess, that stops # immediately the process without calling the attached handler. Besides, non-POSIX signals # (CTRL_C_EVENT and CTRL_BREAK_EVENT) are implemented in a console context to handle the # CTRL+C event to a process launched from the console. Only CTRL_C_EVENT has a reliable # behavior in fact, and maps to the handler to SIGINT. However in this case, a # KeyboardInterrupt is raised, that will be handled by ErrorHandler through the context manager # protocol. Finally, no signal on Windows is electable to be handled using ErrorHandler. # # Refs: https://stackoverflow.com/a/35792192, https://maruel.ca/post/python_windows_signal, # https://docs.python.org/2/library/os.html#os.kill, # https://www.reddit.com/r/Python/comments/1dsblt/windows_command_line_automation_ctrlc_question _SIGNALS = [] class ErrorHandler(object): """Context manager for running code that must be cleaned up on failure. The context manager allows you to register functions that will be called when an exception (excluding SystemExit) or signal is encountered. Usage:: handler = ErrorHandler(cleanup1_func, *cleanup1_args, **cleanup1_kwargs) handler.register(cleanup2_func, *cleanup2_args, **cleanup2_kwargs) with handler: do_something() Or for one cleanup function:: with ErrorHandler(func, args, kwargs): do_something() If an exception is raised out of do_something, the cleanup functions will be called in last in first out order. Then the exception is raised. Similarly, if a signal is encountered, the cleanup functions are called followed by the previously received signal handler. Each registered cleanup function is called exactly once. If a registered function raises an exception, it is logged and the next function is called. Signals received while the registered functions are executing are deferred until they finish. """ def __init__(self, func, *args, **kwargs): self.call_on_regular_exit = False self.body_executed = False self.funcs = [] # type: List[Callable[[], Any]] self.prev_handlers = {} # type: Dict[int, Union[int, None, Callable]] self.received_signals = [] # type: List[int] if func is not None: self.register(func, *args, **kwargs) def __enter__(self): self.body_executed = False self._set_signal_handlers() def __exit__(self, exec_type, exec_value, trace): self.body_executed = True retval = False # SystemExit is ignored to properly handle forks that don't exec if exec_type is SystemExit: return retval elif exec_type is None: if not self.call_on_regular_exit: return retval elif exec_type is errors.SignalExit: logger.debug("Encountered signals: %s", self.received_signals) retval = True else: logger.debug("Encountered exception:\n%s", "".join( traceback.format_exception(exec_type, exec_value, trace))) self._call_registered() self._reset_signal_handlers() self._call_signals() return retval def register(self, func, *args, **kwargs): # type: (Callable, *Any, **Any) -> None """Sets func to be run with the given arguments during cleanup. :param function func: function to be called in case of an error """ self.funcs.append(functools.partial(func, *args, **kwargs)) def _call_registered(self): """Calls all registered functions""" logger.debug("Calling registered functions") while self.funcs: try: self.funcs[-1]() except Exception: # pylint: disable=broad-except logger.error("Encountered exception during recovery: ", exc_info=True) self.funcs.pop() def _set_signal_handlers(self): """Sets signal handlers for signals in _SIGNALS.""" for signum in _SIGNALS: prev_handler = signal.getsignal(signum) # If prev_handler is None, the handler was set outside of Python if prev_handler is not None: self.prev_handlers[signum] = prev_handler signal.signal(signum, self._signal_handler) def _reset_signal_handlers(self): """Resets signal handlers for signals in _SIGNALS.""" for signum in self.prev_handlers: signal.signal(signum, self.prev_handlers[signum]) self.prev_handlers.clear() def _signal_handler(self, signum, unused_frame): """Replacement function for handling received signals. Store the received signal. If we are executing the code block in the body of the context manager, stop by raising signal exit. :param int signum: number of current signal """ self.received_signals.append(signum) if not self.body_executed: raise errors.SignalExit def _call_signals(self): """Finally call the deferred signals.""" for signum in self.received_signals: logger.debug("Calling signal %s", signum) os.kill(os.getpid(), signum) class ExitHandler(ErrorHandler): """Context manager for running code that must be cleaned up. Subclass of ErrorHandler, with the same usage and parameters. In addition to cleaning up on all signals, also cleans up on regular exit. """ def __init__(self, func, *args, **kwargs): ErrorHandler.__init__(self, func, *args, **kwargs) self.call_on_regular_exit = True
py
1a570e76663eb36f9ec9802be56e156d827958fb
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # documentation build configuration file, created by # sphinx-quickstart on Thu Jul 23 19:40:08 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import gc import importlib.util import inspect import os from pathlib import Path import shlex import subprocess import sys import sphinx_gallery # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. curr_path = Path(__file__).expanduser().absolute().parent if curr_path.name == "_staging": # Can't use curr_path.parent, because sphinx_gallery requires a relative path. tvm_path = Path(os.pardir, os.pardir) else: tvm_path = Path(os.pardir) sys.path.insert(0, str(tvm_path.resolve() / "python")) sys.path.insert(0, str(tvm_path.resolve() / "vta" / "python")) sys.path.insert(0, str(tvm_path.resolve() / "docs")) # -- General configuration ------------------------------------------------ locale_dirs = ["translates/locales/"] gettext_compact = False # General information about the project. project = "tvm" author = "Apache Software Foundation" copyright = "2020 - 2021, %s" % author github_doc_root = "https://github.com/apache/tvm/tree/main/docs/" os.environ["TVM_BUILD_DOC"] = "1" def git_describe_version(original_version): """Get git describe version.""" ver_py = tvm_path.joinpath("version.py") libver = {"__file__": ver_py} exec(compile(open(ver_py, "rb").read(), ver_py, "exec"), libver, libver) _, gd_version = libver["git_describe_version"]() if gd_version != original_version: print("Use git describe based version %s" % gd_version) return gd_version # Version information. import tvm from tvm import topi from tvm import te from tvm import testing version = git_describe_version(tvm.__version__) release = version # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones extensions = [ "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.intersphinx", "sphinx.ext.napoleon", "sphinx.ext.mathjax", "sphinx_gallery.gen_gallery", "autodocsumm", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = [".rst", ".md"] # The encoding of source files. # source_encoding = 'utf-8-sig' # generate autosummary even if no references autosummary_generate = True # The master toctree document. master_doc = "index" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build", "_staging"] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme is set by the make target html_theme = os.environ.get("TVM_THEME", "rtd") on_rtd = os.environ.get("READTHEDOCS", None) == "True" # only import rtd theme and set it if want to build docs locally if not on_rtd and html_theme == "rtd": import sphinx_rtd_theme html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] html_theme_options = { "analytics_id": "UA-75982049-2", "logo_only": True, } html_logo = "_static/img/tvm-logo-small.png" html_favicon = "_static/img/tvm-logo-square.png" # Output file base name for HTML help builder. htmlhelp_basename = project + "doc" # -- Options for LaTeX output --------------------------------------------- latex_elements = {} # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, "%s.tex" % project, project, author, "manual"), ] intersphinx_mapping = { "python": ("https://docs.python.org/{.major}".format(sys.version_info), None), "numpy": ("https://numpy.org/doc/stable", None), "scipy": ("https://docs.scipy.org/doc/scipy-1.8.0/html-scipyorg/", None), "matplotlib": ("https://matplotlib.org/", None), } from sphinx_gallery.sorting import ExplicitOrder examples_dirs = [ tvm_path.joinpath("gallery", "tutorial"), tvm_path.joinpath("gallery", "how_to", "compile_models"), tvm_path.joinpath("gallery", "how_to", "deploy_models"), tvm_path.joinpath("gallery", "how_to", "work_with_relay"), tvm_path.joinpath("gallery", "how_to", "work_with_schedules"), tvm_path.joinpath("gallery", "how_to", "optimize_operators"), tvm_path.joinpath("gallery", "how_to", "tune_with_autotvm"), tvm_path.joinpath("gallery", "how_to", "tune_with_autoscheduler"), tvm_path.joinpath("gallery", "how_to", "work_with_microtvm"), tvm_path.joinpath("gallery", "how_to", "extend_tvm"), tvm_path.joinpath("vta", "tutorials"), ] gallery_dirs = [ "tutorial", "how_to/compile_models", "how_to/deploy_models", "how_to/work_with_relay", "how_to/work_with_schedules", "how_to/optimize_operators", "how_to/tune_with_autotvm", "how_to/tune_with_autoscheduler", "how_to/work_with_microtvm", "how_to/extend_tvm", "topic/vta/tutorials", ] subsection_order = ExplicitOrder( str(p) for p in [ tvm_path / "vta" / "tutorials" / "frontend", tvm_path / "vta" / "tutorials" / "optimize", tvm_path / "vta" / "tutorials" / "autotvm", ] ) # Explicitly define the order within a subsection. # The listed files are sorted according to the list. # The unlisted files are sorted by filenames. # The unlisted files always appear after listed files. within_subsection_order = { "tutorial": [ "introduction.py", "install.py", "tvmc_command_line_driver.py", "tvmc_python.py", "autotvm_relay_x86.py", "tensor_expr_get_started.py", "autotvm_matmul_x86.py", "auto_scheduler_matmul_x86.py", "tensor_ir_blitz_course.py", "topi.pi", "cross_compilation_and_rpc.py", "relay_quick_start.py", ], "compile_models": [ "from_pytorch.py", "from_tensorflow.py", "from_mxnet.py", "from_onnx.py", "from_keras.py", "from_tflite.py", "from_coreml.py", "from_darknet.py", "from_caffe2.py", "from_paddle.py", ], "work_with_schedules": [ "schedule_primitives.py", "reduction.py", "intrin_math.py", "scan.py", "extern_op.py", "tensorize.py", "tuple_inputs.py", "tedd.py", ], "optimize_operators": [ "opt_gemm.py", "opt_conv_cuda.py", "opt_conv_tensorcore.py", ], "tune_with_autotvm": [ "tune_conv2d_cuda.py", "tune_relay_cuda.py", "tune_relay_x86.py", "tune_relay_arm.py", "tune_relay_mobile_gpu.py", ], "tune_with_autoscheduler": [ "tune_matmul_x86.py", "tune_conv2d_layer_cuda.py", "tune_network_x86.py", "tune_network_cuda.py", ], "extend_tvm": [ "low_level_custom_pass.py", "use_pass_infra.py", "use_pass_instrument.py", "bring_your_own_datatypes.py", ], "micro": [ "micro_autotune.py", "micro_reference_vm.py", "micro_tflite.py", "micro_ethosu.py", "micro_tvmc.py", ], } class WithinSubsectionOrder: def __init__(self, src_dir): self.src_dir = src_dir.split("/")[-1] def __call__(self, filename): # If the order is provided, use the provided order if ( self.src_dir in within_subsection_order and filename in within_subsection_order[self.src_dir] ): index = within_subsection_order[self.src_dir].index(filename) assert index < 1e10 return "\0%010d" % index # Otherwise, sort by filename return filename # When running the tutorials on GPUs we are dependent on the Python garbage collector # collecting TVM packed function closures for any device memory to also be released. This # is not a good setup for machines with lots of CPU ram but constrained GPU ram, so force # a gc after each example. def force_gc(gallery_conf, fname): gc.collect() sphinx_gallery_conf = { "backreferences_dir": "gen_modules/backreferences", "doc_module": ("tvm", "numpy"), "reference_url": { "tvm": None, "matplotlib": "https://matplotlib.org/", "numpy": "https://numpy.org/doc/stable", }, "examples_dirs": examples_dirs, "within_subsection_order": WithinSubsectionOrder, "gallery_dirs": gallery_dirs, "subsection_order": subsection_order, "filename_pattern": os.environ.get("TVM_TUTORIAL_EXEC_PATTERN", ".py"), "find_mayavi_figures": False, "download_all_examples": False, "min_reported_time": 60, "expected_failing_examples": [], "reset_modules": ("matplotlib", "seaborn", force_gc), } autodoc_default_options = { "member-order": "bysource", } # Maps the original namespace to list of potential modules # that we can import alias from. tvm_alias_check_map = { "tvm.te": ["tvm.tir"], "tvm.tir": ["tvm.ir", "tvm.runtime"], "tvm.relay": ["tvm.ir", "tvm.tir"], } ## Setup header and other configs import tlcpack_sphinx_addon footer_copyright = "© 2020 Apache Software Foundation | All right reserved" footer_note = " ".join( """ Copyright © 2020 The Apache Software Foundation. Apache TVM, Apache, the Apache feather, and the Apache TVM project logo are either trademarks or registered trademarks of the Apache Software Foundation.""".split( "\n" ) ).strip() header_logo = "https://tvm.apache.org/assets/images/logo.svg" header_logo_link = "https://tvm.apache.org/" header_links = [ ("Community", "https://tvm.apache.org/community"), ("Download", "https://tvm.apache.org/download"), ("VTA", "https://tvm.apache.org/vta"), ("Blog", "https://tvm.apache.org/blog"), ("Docs", "https://tvm.apache.org/docs"), ("Conference", "https://tvmconf.org"), ("Github", "https://github.com/apache/tvm/"), ] header_dropdown = { "name": "ASF", "items": [ ("Apache Homepage", "https://apache.org/"), ("License", "https://www.apache.org/licenses/"), ("Sponsorship", "https://www.apache.org/foundation/sponsorship.html"), ("Security", "https://www.apache.org/security/"), ("Thanks", "https://www.apache.org/foundation/thanks.html"), ("Events", "https://www.apache.org/events/current-event"), ], } html_context = { "footer_copyright": footer_copyright, "footer_note": footer_note, "header_links": header_links, "header_dropdown": header_dropdown, "header_logo": header_logo, "header_logo_link": header_logo_link, } # add additional overrides templates_path += [tlcpack_sphinx_addon.get_templates_path()] html_static_path += [tlcpack_sphinx_addon.get_static_path()] def update_alias_docstring(name, obj, lines): """Update the docstring of alias functions. This function checks if the obj is an alias of another documented object in a different module. If it is an alias, then it will append the alias information to the docstring. Parameters ---------- name : str The full name of the object in the doc. obj : object The original object. lines : list The docstring lines, need to be modified inplace. """ arr = name.rsplit(".", 1) if len(arr) != 2: return target_mod, target_name = arr if target_mod not in tvm_alias_check_map: return if not hasattr(obj, "__module__"): return obj_mod = obj.__module__ for amod in tvm_alias_check_map[target_mod]: if not obj_mod.startswith(amod): continue if hasattr(sys.modules[amod], target_name): obj_type = ":py:func" if callable(obj) else ":py:class" lines.append(".. rubric:: Alias of %s:`%s.%s`" % (obj_type, amod, target_name)) def process_docstring(app, what, name, obj, options, lines): """Sphinx callback to process docstring""" if callable(obj) or inspect.isclass(obj): update_alias_docstring(name, obj, lines) from legacy_redirect import build_legacy_redirect def setup(app): app.connect("autodoc-process-docstring", process_docstring) app.connect("build-finished", build_legacy_redirect(tvm_path))
py
1a570f6df3c3710b3a9966b283d917a6a1b6e051
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.constant.ParamConstants import * class AlipayOpenAuthAppCancelModel(object): def __init__(self): self._auth_app_id = None self._auth_scene = None self._operator_user_id = None @property def auth_app_id(self): return self._auth_app_id @auth_app_id.setter def auth_app_id(self, value): self._auth_app_id = value @property def auth_scene(self): return self._auth_scene @auth_scene.setter def auth_scene(self, value): self._auth_scene = value @property def operator_user_id(self): return self._operator_user_id @operator_user_id.setter def operator_user_id(self, value): self._operator_user_id = value def to_alipay_dict(self): params = dict() if self.auth_app_id: if hasattr(self.auth_app_id, 'to_alipay_dict'): params['auth_app_id'] = self.auth_app_id.to_alipay_dict() else: params['auth_app_id'] = self.auth_app_id if self.auth_scene: if hasattr(self.auth_scene, 'to_alipay_dict'): params['auth_scene'] = self.auth_scene.to_alipay_dict() else: params['auth_scene'] = self.auth_scene if self.operator_user_id: if hasattr(self.operator_user_id, 'to_alipay_dict'): params['operator_user_id'] = self.operator_user_id.to_alipay_dict() else: params['operator_user_id'] = self.operator_user_id return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayOpenAuthAppCancelModel() if 'auth_app_id' in d: o.auth_app_id = d['auth_app_id'] if 'auth_scene' in d: o.auth_scene = d['auth_scene'] if 'operator_user_id' in d: o.operator_user_id = d['operator_user_id'] return o
py
1a5712af5749f6fe2d031db2c05a822292bd784c
# -*- coding: utf-8 -*- import click import json from ..utils.spinner import ( init_spinner, start_spinner, stop_spinner, ) from ..utils.print import ( tbprint, eprint, oprint, opprint, ) @click.group() @click.pass_obj @click.pass_context def command_runner(ctx, obj): """DNA Center Command Runner API (version: 1.3.3). Wraps the DNA Center Command Runner API and exposes the API as native Python commands. """ ctx.obj = obj.command_runner @command_runner.command() @click.option('--headers', type=str, help='''Dictionary of HTTP Headers to send with the Request.''', default=None, show_default=True) @click.option('-pp', '--pretty_print', type=int, help='''Pretty print indent''', default=None, show_default=True) @click.option('--beep', is_flag=True, help='''Spinner beep (on)''') @click.pass_obj def get_all_keywords_of_clis_accepted(obj, pretty_print, beep, headers): """Get valid keywords. """ spinner = init_spinner(beep=beep) start_spinner(spinner) try: if headers is not None: headers = json.loads(headers) result = obj.get_all_keywords_of_clis_accepted( headers=headers) stop_spinner(spinner) opprint(result, indent=pretty_print) except Exception as e: stop_spinner(spinner) tbprint() eprint('Error:', e) click.Context.exit(-1) @command_runner.command() @click.option('--commands', type=str, multiple=True, help='''CommandRunnerDTO's commands (list of strings).''', default=None, show_default=True) @click.option('--description', type=str, help='''CommandRunnerDTO's description.''', default=None, show_default=True) @click.option('--deviceuuids', type=str, multiple=True, help='''CommandRunnerDTO's deviceUuids (list of strings).''', default=None, show_default=True) @click.option('--name', type=str, help='''CommandRunnerDTO's name.''', default=None, show_default=True) @click.option('--timeout', type=int, help='''CommandRunnerDTO's timeout.''', default=None, show_default=True) @click.option('--headers', type=str, help='''Dictionary of HTTP Headers to send with the Request.''', default=None, show_default=True) @click.option('--payload', type=str, help='''A JSON serializable Python object to send in the body of the Request.''', default=None, show_default=True) @click.option('--active_validation', type=bool, help='''Enable/Disable payload validation.''', default=True, show_default=True) @click.option('-pp', '--pretty_print', type=int, help='''Pretty print indent''', default=None, show_default=True) @click.option('--beep', is_flag=True, help='''Spinner beep (on)''') @click.pass_obj def run_read_only_commands_on_devices(obj, pretty_print, beep, commands, description, deviceuuids, name, timeout, headers, payload, active_validation): """Submit request for read-only CLIs. """ spinner = init_spinner(beep=beep) start_spinner(spinner) try: if headers is not None: headers = json.loads(headers) if payload is not None: payload = json.loads(payload) commands = list(commands) commands = commands if len(commands) > 0 else None deviceuuids = list(deviceuuids) deviceuuids = deviceuuids if len(deviceuuids) > 0 else None result = obj.run_read_only_commands_on_devices( commands=commands, description=description, deviceUuids=deviceuuids, name=name, timeout=timeout, headers=headers, payload=payload, active_validation=active_validation) stop_spinner(spinner) opprint(result, indent=pretty_print) except Exception as e: stop_spinner(spinner) tbprint() eprint('Error:', e) click.Context.exit(-1)
py
1a5713eb6333e87c12f00fec4c3969f5286e2d92
name = 'network_scanner'
py
1a5713eee5a615af79a0ef67fce70c4a991e68a7
# Copyright (C) 2021, RTE (http://www.rte-france.com) # SPDX-License-Identifier: Apache-2.0 from vm_manager.vm_manager import ( list_vms, start, stop, create, clone, remove, enable_vm, disable_vm, is_enabled, status, create_snapshot, remove_snapshot, list_snapshots, purge_image, rollback_snapshot, list_metadata, get_metadata, set_metadata, )
py
1a5714b666b1cbe5126bbc30b56395e0611fa848
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from datetime import datetime, timedelta from django.utils.translation import ugettext as _ from notebook.connectors.dataeng import DataEng, DATE_FORMAT from jobbrowser.apis.base_api import Api LOG = logging.getLogger(__name__) class DataEngClusterApi(Api): def apps(self, filters): api = DataEng(self.user) jobs = api.list_clusters() return { 'apps': [{ 'id': app['crn'], 'name': '%(clusterName)s' % app, 'status': app['status'], 'apiStatus': self._api_status(app['status']), 'type': '%(serviceType)s %(workersGroupSize)s %(instanceType)s %(cdhVersion)s' % app, 'user': app['clusterName'].split('-', 1)[0], 'progress': 100, 'queue': 'group', 'duration': 1, 'submitted': app['creationDate'] } for app in jobs['clusters']], 'total': len(jobs) } def app(self, appid): return {} def action(self, appid, action): return {} def logs(self, appid, app_type, log_name=None, is_embeddable=False): return {'logs': ''} def profile(self, appid, app_type, app_property): return {} def _api_status(self, status): if status in ['CREATING', 'CREATED', 'TERMINATING']: return 'RUNNING' elif status in ['ARCHIVING', 'COMPLETED']: return 'SUCCEEDED' else: return 'FAILED' # KILLED and FAILED class DataEngJobApi(Api): def apps(self, filters): kwargs = {} if 'time' in filters: if filters['time']['time_unit'] == 'minutes': delta = timedelta(minutes=int(filters['time']['time_value'])) elif filters['time']['time_unit'] == 'hours': delta = timedelta(hours=int(filters['time']['time_value'])) else: delta = timedelta(days=int(filters['time']['time_value'])) kwargs['creation_date_after'] = (datetime.today() - delta).strftime(DATE_FORMAT) # Todo: filter on 'cluster_crn' api = DataEng(self.user) jobs = api.list_jobs(**kwargs) return { 'apps': [{ 'id': app['jobId'], 'name': app['creationDate'], 'status': app['status'], 'apiStatus': self._api_status(app['status']), 'type': app['jobType'], 'user': '', 'progress': 100, 'duration': 10 * 3600, 'submitted': app['creationDate'] } for app in jobs['jobs']], 'total': len(jobs) } def app(self, appid): handle = DataEng(self.user).describe_job(job_id=appid) job = handle['job'] common = { 'id': job['jobId'], 'name': job['jobId'], 'status': job['status'], 'apiStatus': self._api_status(job['status']), 'progress': 50, 'duration': 10 * 3600, 'submitted': job['creationDate'], 'type': 'dataeng-job-%s' % job['jobType'], } common['properties'] = { 'properties': job } return common def action(self, appid, action): return {} def logs(self, appid, app_type, log_name=None, is_embeddable=False): return {'logs': ''} def profile(self, appid, app_type, app_property): return {} def _api_status(self, status): if status in ['CREATING', 'CREATED', 'TERMINATING']: return 'RUNNING' elif status in ['COMPLETED']: return 'SUCCEEDED' else: return 'FAILED' # INTERRUPTED , KILLED, TERMINATED and FAILED
py
1a57163a8de9cbcd6cc9d4e18bd380cecef4e533
# # Copyright (C) 2010-2017 Samuel Abels # The MIT License (MIT) # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ Logging utilities. """ from .. import FileLogger from .impl import add_label _loggers = [] def log_to(logger): """ Wraps a function that has a connection passed such that everything that happens on the connection is logged using the given logger. :type logger: Logger :param logger: The logger that handles the logging. """ logger_id = id(logger) def decorator(function): return add_label(function, 'log_to', logger_id=logger_id) return decorator def log_to_file(logdir, mode='a', delete=False, clearmem=True): """ Like :class:`log_to()`, but automatically creates a new FileLogger instead of having one passed. Note that the logger stays alive (in memory) forever. If you need to control the lifetime of a logger, use :class:`log_to()` instead. """ logger = FileLogger(logdir, mode, delete, clearmem) _loggers.append(logger) return log_to(logger)
py
1a57179ac0c618ccf46bbf527fd453b83c6d94fc
# Import the modules import cv2 import numpy as np import os import imutils from imutils.video import WebcamVideoStream DEBUG = True # Custom functions # define rotate function def rotate(image, angle, center=None, scale=1.0): # get image size (h, w) = image.shape[:2] # if dosen't assign image center, set image center point as center if center is None: center = (w / 2, h / 2) # Do rotation M = cv2.getRotationMatrix2D(center, angle, scale) rotated = cv2.warpAffine(image, M, (w, h)) # return rotated image return rotated # Load the model os.chdir(os.path.dirname(__file__)) net = cv2.dnn.readNet('../model/inference_graph.xml', '../model/inference_graph.bin') # Specify target device net.setPreferableTarget(cv2.dnn.DNN_TARGET_MYRIAD) # Read the Camera vs = WebcamVideoStream(src=0).start() while True: # grab the frame from the threaded video stream and resize it # to have a maximum width of 400 pixels frame = vs.read() frame = imutils.resize(frame, width=600) frame = rotate(frame, 180) # Convert to grayscale and apply Gaussian filtering im_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) im_gray = cv2.GaussianBlur(im_gray, (5, 5), 0) # Threshold the image (_INV: Inverse 黑白反轉) ret, im_th = cv2.threshold(im_gray, 127, 255, cv2.THRESH_BINARY_INV) if DEBUG: im_th_display = im_th.copy() # Find contours in the image ctrs, hier = cv2.findContours(im_th.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Get rectangles contains each contour rects = [cv2.boundingRect(ctr) for ctr in ctrs] # For each rectangular region, use mnist cnn model to predict. for rect in rects: # detect empty rect # (x, y, w, h) => ex. (0, 0, 600, 450) #ignore too small, too big, bad w:h ratio rect if(rect[2]*rect[3] < 60 or rect[2]*rect[3] > 20000 or rect[2]>rect[3]*10): if DEBUG: print('info:{}, IGNORE'.format(rect)) break else: if DEBUG: print('info:{}, DISPLAY'.format(rect)) else: pass cv2.rectangle(frame, (rect[0], rect[1]), (rect[0] + rect[2], rect[1] + rect[3]), (0, 255, 0), 3) # Make the rectangular region around the digit leng = int(rect[3] * 1.6) pt1 = int(rect[1] + rect[3] // 2 - leng // 2) pt2 = int(rect[0] + rect[2] // 2 - leng // 2) roi = im_th[pt1:pt1+leng, pt2:pt2+leng] # Draw the rectangles if DEBUG: cv2.rectangle(im_th_display, (pt2, pt1), (pt2+leng, pt1+leng), (255, 255, 255), 3) # Prevent error: (-215 Assertion failed) !ssize.empty() in function 'resize' if(roi.size == 0): break # Resize the image roi = cv2.resize(roi, (28, 28), interpolation=cv2.INTER_AREA) # 膨脹 roi = cv2.dilate(roi, (3, 3)) # Inference blob = cv2.dnn.blobFromImage(roi, size=(28, 28), ddepth=cv2.CV_32F) net.setInput(blob) out = net.forward() if out[0][int(np.argmax(out[0]))] > 0.5: #cv2.putText(image, text, coordinate, font, size, color, width of line, type of line) #cv2.putText(影像, 文字, 座標, 字型, 大小, 顏色, 線條寬度, 線條種類) #if DEBUG: cv2.putText(im_th_display, str(np.argmax(out[0])), (rect[0], rect[1]), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 255, 255), 3) cv2.putText(frame, str(np.argmax(out[0])), (rect[0], rect[1]), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 255, 255), 3) if DEBUG: cv2.imshow("Debug", im_th_display) cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # do a bit of cleanup cv2.destroyAllWindows() vs.stop()
py
1a57180823434daacbcd40e76141c3bc055b2599
""" Functionalities for read game log data and representing it in an object-oriented fashion. """ __author__ = "Todd Shore <[email protected]>" __copyright__ = "Copyright 2017 Todd Shore" __license__ = "Apache License, Version 2.0" import sys from typing import Mapping import pandas as pd from . import session_data as sd class EventData(object): def __init__(self, events: pd.DataFrame, source_participant_ids: Mapping[str, str], initial_instructor_id: str): self.events = events self.source_participant_ids = source_participant_ids self.initial_instructor_id = initial_instructor_id def __eq__(self, other): return (self is other or (isinstance(other, type(self)) and self.__key == other.__key)) def __ne__(self, other): return not (self == other) def __repr__(self): return self.__class__.__name__ + str(self.__dict__) @property def __key(self): return self.initial_instructor_id, self.source_participant_ids, self.events def read_events(session_data: sd.SessionData) -> EventData: participant_metadata = session_data.read_participant_metadata() participant_source_ids = participant_metadata[sd.ParticipantMetadataRow.SOURCE_ID.value] interned_source_participant_ids = dict( (sys.intern(source_id), sys.intern(participant_id)) for (participant_id, source_id) in participant_source_ids.items()) session_metadata = session_data.read_session_metadata() initial_instructor_id = sys.intern(session_metadata[sd.EventMetadataRow.INITIAL_INSTRUCTOR_ID.value]) event_df = session_data.read_events() return EventData(event_df, interned_source_participant_ids, initial_instructor_id)
py
1a57180897258f648145d20affacf9d7d2c95a83
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, LSTM, Dropout import tensorflow.keras as keras from zoo.automl.model.abstract import BaseModel from zoo.automl.common.util import * from zoo.automl.common.metrics import Evaluator class VanillaLSTM(BaseModel): def __init__(self, check_optional_config=False, future_seq_len=1): """ Constructor of Vanilla LSTM model """ self.model = None self.check_optional_config = check_optional_config self.future_seq_len = future_seq_len self.feature_num = None self.metric = None self.batch_size = None self.loss = None def _get_dropout(self, input_tensor, p=0.5, mc=False): if mc: return Dropout(p)(input_tensor, training=True) else: return Dropout(p)(input_tensor) def _build(self, mc=False, **config): """ build vanilla LSTM model :param config: model hyper parameters :return: self """ super()._check_config(**config) self.metric = config.get('metric', 'mean_squared_error') self.batch_size = config.get('batch_size', 1024) self.feature_num = config["feature_num"] self.loss = config.get("loss", "mse") inp = Input(shape=(None, self.feature_num)) lstm_1 = LSTM(units=config.get('lstm_1_units', 20), return_sequences=True)(inp) dropout_1 = self._get_dropout(lstm_1, p=config.get('dropout_1', 0.2), mc=mc) lstm_2 = LSTM(units=config.get('lstm_2_units', 10), return_sequences=False)(dropout_1) dropout_2 = self._get_dropout(lstm_2, p=config.get('dropout_2', 0.2), mc=mc) out = Dense(self.future_seq_len)(dropout_2) self.model = Model(inputs=inp, outputs=out) self.model.compile(loss=self.loss, metrics=[self.metric], optimizer=keras.optimizers.RMSprop(lr=config.get('lr', 0.001))) return self.model def fit_eval(self, x, y, validation_data=None, mc=False, verbose=0, **config): """ fit for one iteration :param x: 3-d array in format (no. of samples, past sequence length, 2+feature length), in the last dimension, the 1st col is the time index (data type needs to be numpy datetime type, e.g. "datetime64"), the 2nd col is the target value (data type should be numeric) :param y: 2-d numpy array in format (no. of samples, future sequence length) if future sequence length > 1, or 1-d numpy array in format (no. of samples, ) if future sequence length = 1 :param validation_data: tuple in format (x_test,y_test), data used for validation. If this is specified, validation result will be the optimization target for automl. Otherwise, train metric will be the optimization target. :param config: optimization hyper parameters :return: the resulting metric """ config.update({"feature_num": x.shape[2]}) # if model is not initialized, __build the model if self.model is None: self._build(mc=mc, **config) hist = self.model.fit(x, y, validation_data=validation_data, batch_size=self.batch_size, epochs=config.get("epochs", 10), verbose=verbose ) # print(hist.history) if validation_data is None: # get train metrics # results = self.model.evaluate(x, y) result = hist.history.get(self.metric)[0] else: result = hist.history.get('val_' + str(self.metric))[0] return result def evaluate(self, x, y, metric=['mse']): """ Evaluate on x, y :param x: input :param y: target :param metric: a list of metrics in string format :return: a list of metric evaluation results """ y_pred = self.predict(x) return [Evaluator.evaluate(m, y, y_pred) for m in metric] def predict(self, x, mc=False): """ Prediction on x. :param x: input :return: predicted y """ return self.model.predict(x) def predict_with_uncertainty(self, x, n_iter=100): result = np.zeros((n_iter,) + (x.shape[0], self.future_seq_len)) for i in range(n_iter): result[i, :, :] = self.predict(x) prediction = result.mean(axis=0) uncertainty = result.std(axis=0) return prediction, uncertainty def save(self, model_path, config_path): """ save model to file. :param model_path: the model file. :param config_path: the config file :return: """ self.model.save(model_path) # os.rename("vanilla_lstm_tmp.h5", model_path) config_to_save = { # "future_seq_len": self.future_seq_len, "metric": self.metric, "batch_size": self.batch_size } save_config(config_path, config_to_save) def restore(self, model_path, **config): """ restore model from file :param model_path: the model file :param config: the trial config :return: the restored model """ # self.model = None # self._build(**config) self.model = keras.models.load_model(model_path) # self.model.load_weights(file_path) # self.future_seq_len = config["future_seq_len"] # for continuous training self.metric = config["metric"] self.batch_size = config["batch_size"] def _get_required_parameters(self): return { "feature_num" } def _get_optional_parameters(self): return { 'lstm_1_units', 'dropout_1', 'lstm_2_units', 'dropout_2', 'metric', 'lr', 'epochs', 'batch_size', 'loss' }
py
1a57186bd9b7e2b5cb6aab2c96191dc7a2992e0d
"""Support to interface with the Plex API.""" from functools import wraps import json import logging import plexapi.exceptions import requests.exceptions from homeassistant.components.media_player import DOMAIN as MP_DOMAIN, MediaPlayerEntity from homeassistant.components.media_player.const import ( MEDIA_TYPE_MUSIC, SUPPORT_BROWSE_MEDIA, SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PLAY, SUPPORT_PLAY_MEDIA, SUPPORT_PREVIOUS_TRACK, SUPPORT_SEEK, SUPPORT_STOP, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_SET, ) from homeassistant.const import STATE_IDLE, STATE_PAUSED, STATE_PLAYING from homeassistant.core import callback from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers.dispatcher import ( async_dispatcher_connect, async_dispatcher_send, ) from homeassistant.helpers.entity_registry import async_get_registry from homeassistant.helpers.network import is_internal_request from .const import ( COMMON_PLAYERS, CONF_SERVER_IDENTIFIER, DISPATCHERS, DOMAIN as PLEX_DOMAIN, NAME_FORMAT, PLEX_NEW_MP_SIGNAL, PLEX_UPDATE_MEDIA_PLAYER_SESSION_SIGNAL, PLEX_UPDATE_MEDIA_PLAYER_SIGNAL, PLEX_UPDATE_SENSOR_SIGNAL, SERVERS, ) from .media_browser import browse_media _LOGGER = logging.getLogger(__name__) def needs_session(func): """Ensure session is available for certain attributes.""" @wraps(func) def get_session_attribute(self, *args): if self.session is None: return None return func(self, *args) return get_session_attribute async def async_setup_entry(hass, config_entry, async_add_entities): """Set up Plex media_player from a config entry.""" server_id = config_entry.data[CONF_SERVER_IDENTIFIER] registry = await async_get_registry(hass) @callback def async_new_media_players(new_entities): _async_add_entities(hass, registry, async_add_entities, server_id, new_entities) unsub = async_dispatcher_connect( hass, PLEX_NEW_MP_SIGNAL.format(server_id), async_new_media_players ) hass.data[PLEX_DOMAIN][DISPATCHERS][server_id].append(unsub) _LOGGER.debug("New entity listener created") @callback def _async_add_entities(hass, registry, async_add_entities, server_id, new_entities): """Set up Plex media_player entities.""" _LOGGER.debug("New entities: %s", new_entities) entities = [] plexserver = hass.data[PLEX_DOMAIN][SERVERS][server_id] for entity_params in new_entities: plex_mp = PlexMediaPlayer(plexserver, **entity_params) entities.append(plex_mp) # Migration to per-server unique_ids old_entity_id = registry.async_get_entity_id( MP_DOMAIN, PLEX_DOMAIN, plex_mp.machine_identifier ) if old_entity_id is not None: new_unique_id = f"{server_id}:{plex_mp.machine_identifier}" _LOGGER.debug( "Migrating unique_id from [%s] to [%s]", plex_mp.machine_identifier, new_unique_id, ) registry.async_update_entity(old_entity_id, new_unique_id=new_unique_id) async_add_entities(entities, True) class PlexMediaPlayer(MediaPlayerEntity): """Representation of a Plex device.""" def __init__(self, plex_server, device, player_source, session=None): """Initialize the Plex device.""" self.plex_server = plex_server self.device = device self.player_source = player_source self.device_make = None self.device_platform = None self.device_product = None self.device_title = None self.device_version = None self.machine_identifier = device.machineIdentifier self.session_device = None self._available = False self._device_protocol_capabilities = None self._name = None self._previous_volume_level = 1 # Used in fake muting self._state = STATE_IDLE self._volume_level = 1 # since we can't retrieve remotely self._volume_muted = False # since we can't retrieve remotely # Initializes other attributes self.session = session async def async_added_to_hass(self): """Run when about to be added to hass.""" _LOGGER.debug("Added %s [%s]", self.entity_id, self.unique_id) self.async_on_remove( async_dispatcher_connect( self.hass, PLEX_UPDATE_MEDIA_PLAYER_SIGNAL.format(self.unique_id), self.async_refresh_media_player, ) ) self.async_on_remove( async_dispatcher_connect( self.hass, PLEX_UPDATE_MEDIA_PLAYER_SESSION_SIGNAL.format(self.unique_id), self.async_update_from_websocket, ) ) @callback def async_refresh_media_player(self, device, session, source): """Set instance objects and trigger an entity state update.""" _LOGGER.debug("Refreshing %s [%s / %s]", self.entity_id, device, session) self.device = device self.session = session if source: self.player_source = source self.async_schedule_update_ha_state(True) async_dispatcher_send( self.hass, PLEX_UPDATE_SENSOR_SIGNAL.format(self.plex_server.machine_identifier), ) @callback def async_update_from_websocket(self, state): """Update the entity based on new websocket data.""" self.update_state(state) self.async_write_ha_state() async_dispatcher_send( self.hass, PLEX_UPDATE_SENSOR_SIGNAL.format(self.plex_server.machine_identifier), ) def update(self): """Refresh key device data.""" if not self.session: self.force_idle() if not self.device: self._available = False return self._available = True try: device_url = self.device.url("/") except plexapi.exceptions.BadRequest: device_url = "127.0.0.1" if "127.0.0.1" in device_url: self.device.proxyThroughServer() self._device_protocol_capabilities = self.device.protocolCapabilities for device in filter(None, [self.device, self.session_device]): self.device_make = self.device_make or device.device self.device_platform = self.device_platform or device.platform self.device_product = self.device_product or device.product self.device_title = self.device_title or device.title self.device_version = self.device_version or device.version name_parts = [self.device_product, self.device_title or self.device_platform] if (self.device_product in COMMON_PLAYERS) and self.device_make: # Add more context in name for likely duplicates name_parts.append(self.device_make) if self.username and self.username != self.plex_server.owner: # Prepend username for shared/managed clients name_parts.insert(0, self.username) self._name = NAME_FORMAT.format(" - ".join(name_parts)) def force_idle(self): """Force client to idle.""" self._state = STATE_IDLE if self.player_source == "session": self.device = None self.session_device = None self._available = False @property def should_poll(self): """Return True if entity has to be polled for state.""" return False @property def unique_id(self): """Return the id of this plex client.""" return f"{self.plex_server.machine_identifier}:{self.machine_identifier}" @property def session(self): """Return the active session for this player.""" return self._session @session.setter def session(self, session): self._session = session if session: self.session_device = self.session.player self.update_state(self.session.state) else: self._state = STATE_IDLE @property def available(self): """Return the availability of the client.""" return self._available @property def name(self): """Return the name of the device.""" return self._name @property @needs_session def username(self): """Return the username of the client owner.""" return self.session.username @property def state(self): """Return the state of the device.""" return self._state def update_state(self, state): """Set the state of the device, handle session termination.""" if state == "playing": self._state = STATE_PLAYING elif state == "paused": self._state = STATE_PAUSED elif state == "stopped": self.session = None self.force_idle() else: self._state = STATE_IDLE @property def _is_player_active(self): """Report if the client is playing media.""" return self.state in [STATE_PLAYING, STATE_PAUSED] @property def _active_media_plexapi_type(self): """Get the active media type required by PlexAPI commands.""" if self.media_content_type is MEDIA_TYPE_MUSIC: return "music" return "video" @property @needs_session def session_key(self): """Return current session key.""" return self.session.sessionKey @property @needs_session def media_library_title(self): """Return the library name of playing media.""" return self.session.media_library_title @property @needs_session def media_content_id(self): """Return the content ID of current playing media.""" return self.session.media_content_id @property @needs_session def media_content_type(self): """Return the content type of current playing media.""" return self.session.media_content_type @property @needs_session def media_content_rating(self): """Return the content rating of current playing media.""" return self.session.media_content_rating @property @needs_session def media_artist(self): """Return the artist of current playing media, music track only.""" return self.session.media_artist @property @needs_session def media_album_name(self): """Return the album name of current playing media, music track only.""" return self.session.media_album_name @property @needs_session def media_album_artist(self): """Return the album artist of current playing media, music only.""" return self.session.media_album_artist @property @needs_session def media_track(self): """Return the track number of current playing media, music only.""" return self.session.media_track @property @needs_session def media_duration(self): """Return the duration of current playing media in seconds.""" return self.session.media_duration @property @needs_session def media_position(self): """Return the duration of current playing media in seconds.""" return self.session.media_position @property @needs_session def media_position_updated_at(self): """When was the position of the current playing media valid.""" return self.session.media_position_updated_at @property @needs_session def media_image_url(self): """Return the image URL of current playing media.""" return self.session.media_image_url @property @needs_session def media_summary(self): """Return the summary of current playing media.""" return self.session.media_summary @property @needs_session def media_title(self): """Return the title of current playing media.""" return self.session.media_title @property @needs_session def media_season(self): """Return the season of current playing media (TV Show only).""" return self.session.media_season @property @needs_session def media_series_title(self): """Return the title of the series of current playing media.""" return self.session.media_series_title @property @needs_session def media_episode(self): """Return the episode of current playing media (TV Show only).""" return self.session.media_episode @property def supported_features(self): """Flag media player features that are supported.""" if self.device and "playback" in self._device_protocol_capabilities: return ( SUPPORT_PAUSE | SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK | SUPPORT_STOP | SUPPORT_SEEK | SUPPORT_VOLUME_SET | SUPPORT_PLAY | SUPPORT_PLAY_MEDIA | SUPPORT_VOLUME_MUTE | SUPPORT_BROWSE_MEDIA ) return SUPPORT_BROWSE_MEDIA | SUPPORT_PLAY_MEDIA def set_volume_level(self, volume): """Set volume level, range 0..1.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.setVolume(int(volume * 100), self._active_media_plexapi_type) self._volume_level = volume # store since we can't retrieve @property def volume_level(self): """Return the volume level of the client (0..1).""" if ( self._is_player_active and self.device and "playback" in self._device_protocol_capabilities ): return self._volume_level return None @property def is_volume_muted(self): """Return boolean if volume is currently muted.""" if self._is_player_active and self.device: return self._volume_muted return None def mute_volume(self, mute): """Mute the volume. Since we can't actually mute, we'll: - On mute, store volume and set volume to 0 - On unmute, set volume to previously stored volume """ if not (self.device and "playback" in self._device_protocol_capabilities): return self._volume_muted = mute if mute: self._previous_volume_level = self._volume_level self.set_volume_level(0) else: self.set_volume_level(self._previous_volume_level) def media_play(self): """Send play command.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.play(self._active_media_plexapi_type) def media_pause(self): """Send pause command.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.pause(self._active_media_plexapi_type) def media_stop(self): """Send stop command.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.stop(self._active_media_plexapi_type) def media_seek(self, position): """Send the seek command.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.seekTo(position * 1000, self._active_media_plexapi_type) def media_next_track(self): """Send next track command.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.skipNext(self._active_media_plexapi_type) def media_previous_track(self): """Send previous track command.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.skipPrevious(self._active_media_plexapi_type) def play_media(self, media_type, media_id, **kwargs): """Play a piece of media.""" if not (self.device and "playback" in self._device_protocol_capabilities): _LOGGER.debug( "Client is not currently accepting playback controls: %s", self.name ) return src = json.loads(media_id) if isinstance(src, int): src = {"plex_key": src} playqueue_id = src.pop("playqueue_id", None) if playqueue_id: try: playqueue = self.plex_server.get_playqueue(playqueue_id) except plexapi.exceptions.NotFound as err: raise HomeAssistantError( f"PlayQueue '{playqueue_id}' could not be found" ) from err else: shuffle = src.pop("shuffle", 0) media = self.plex_server.lookup_media(media_type, **src) if media is None: _LOGGER.error("Media could not be found: %s", media_id) return _LOGGER.debug("Attempting to play %s on %s", media, self.name) playqueue = self.plex_server.create_playqueue(media, shuffle=shuffle) try: self.device.playMedia(playqueue) except requests.exceptions.ConnectTimeout: _LOGGER.error("Timed out playing on %s", self.name) @property def device_state_attributes(self): """Return the scene state attributes.""" attributes = {} for attr in [ "media_content_rating", "media_library_title", "player_source", "media_summary", "username", ]: value = getattr(self, attr, None) if value: attributes[attr] = value return attributes @property def device_info(self): """Return a device description for device registry.""" if self.machine_identifier is None: return None return { "identifiers": {(PLEX_DOMAIN, self.machine_identifier)}, "manufacturer": self.device_platform or "Plex", "model": self.device_product or self.device_make, "name": self.name, "sw_version": self.device_version, "via_device": (PLEX_DOMAIN, self.plex_server.machine_identifier), } async def async_browse_media(self, media_content_type=None, media_content_id=None): """Implement the websocket media browsing helper.""" is_internal = is_internal_request(self.hass) return await self.hass.async_add_executor_job( browse_media, self, is_internal, media_content_type, media_content_id, ) async def async_get_browse_image( self, media_content_type, media_content_id, media_image_id=None ): """Get media image from Plex server.""" image_url = self.plex_server.thumbnail_cache.get(media_content_id) if image_url: result = await self._async_fetch_image(image_url) return result return (None, None)
py
1a5718bd7559482e0640ec8a853643c3ef90bcf7
from django import template register = template.Library() @register.filter_function def attr(obj, arg1): """ Use in templates: {% load field_attrs %} then, in a form field: {{ form.phone|attr:"style=width:143px;background-color:yellow"|attr:"size=30" }} """ att, value = arg1.split("=") obj.field.widget.attrs[att] = value return obj
py
1a5718bef949ee0223b9ea61bc4e06269f53866f
# -*- coding: utf-8 -*- import pymysql from selenium import webdriver # driver = webdriver.PhantomJS() driver = webdriver.Chrome() base_url = 'https://wwww.baidu.com' driver.get(base_url) driver.find_element_by_id('kw').send_keys('selenium') driver.find_element_by_id('su').click()
py
1a5718f1e5e784a53854d403701e28d13f8b3461
# This section is to improve python compataibilty between py27 and py3 from __future__ import absolute_import import sys from . import ColorPy sys.modules[__package__] = ColorPy
py
1a57191a45da12bc8aac2d306e361c5f2645d415
from random import choice, randrange import uwsgi import gevent import gevent.queue import gevent.event import gevent.select import redis import math class ArenaObject(object): def __init__(self, x, y, r, speed=15): self.height = 13.5 self.width = 13.5 self.scale = 5 self.x = x self.y = y self.r = r self.speed = speed def translate(self, amount): amount_x = math.sin(self.r) * amount amount_y = math.cos(self.r) * amount self.x += round(amount_x) self.y += round(amount_y) #print('x:{} y:{} r:{}'.format(self.x, self.y, self.r)) def rotateR(self): if self.r <= 0: self.r = 2 * math.pi else: self.r -= 0.1 def rotateL(self): if self.r >= 2 * math.pi: self.r = 0 else: self.r += 0.1 def collide(self, x, y, width, height): dx = abs(self.x - x) * 2 dw = self.width * self.scale + width dy = abs(self.y - y) * 2 dh = self.height * self.scale + height return (dx < dw) and (dy < dh) class Bonus(object): def __init__(self, game, id, x, y, type): self.game = game self.id = id self.type = type self.arena_object = ArenaObject(x, y, 0, 0) self.game.active_bonus_malus.append(self) self.game.broadcast('bm,{},{},{},{},{}'.format( self.id, self.type, self.arena_object.x, 50, self.arena_object.y)) def activate_bonus(self, player): self.game.active_bonus_malus.remove(self) self.game.broadcast( 'bm,gv,{},{},{}'.format(self.id, self.type, player.name)) self.game.bonus_malus_spawn_points.append( (self.arena_object.x, self.arena_object.y)) class TimerBonus(Bonus): def __init__(self, game, id, x, y, type, time=15): super(TimerBonus, self).__init__(game, id, x, y, type) self.time = time class BonusHaste(TimerBonus): def __init__(self, game, id, x, y, type='haste'): super(BonusHaste, self).__init__(game, id, x, y, type) def activate_bonus(self, player): super(BonusHaste, self).activate_bonus(player) old_speed = player.arena_object.speed player.arena_object.speed *= 2 gevent.sleep(self.time) player.arena_object.speed = old_speed self.game.broadcast('bm,rm,{},{}'.format(self.type, player.name)) class BonusPower(TimerBonus): def __init__(self, game, id, x, y, type='power'): super(BonusPower, self).__init__(game, id, x, y, type) def activate_bonus(self, player): super(BonusPower, self).activate_bonus(player) old_damage = player.bullet.damage player.bullet.damage *= 2 gevent.sleep(self.time) player.bullet.damage = old_damage self.game.broadcast('bm,rm,{},{}'.format(self.type, player.name)) class BonusHeal(Bonus): def __init__(self, game, id, x, y, type='heal', amount=50.0): super(BonusHeal, self).__init__(game, id, x, y, type) self.amount = amount def activate_bonus(self, player): super(BonusHeal, self).activate_bonus(player) player.energy = player.energy + self.amount if player.energy <= 50 else 100.0 class Arena(object): def __init__(self, min_players=3, max_players=8, warmup=10): self.greenlets = { 'engine': self.engine_start, 'start': self.start } self.posters = [ 'posters/robbo.jpg', 'posters/raffo.jpg', 'posters/unbit.jpg', 'posters/20tab.jpg', 'posters/beri.jpg', 'posters/pycon.jpg' ] self.animations = [] self.players = {} self.waiting_players = [] self.min_players = min_players self.max_players = max_players self.warmup = warmup self.started = False self.finished = False #self.warming_up = False self.walls = ( #sc_x, sc_y, sc_z, x, y, z, r (200, 100, 50, 0, 150, -1950, 0), (200, 100, 50, -1950, 150, 0, -math.pi / 2), (200, 100, 50, 1950, 150, 0, -math.pi / 2), (200, 100, 50, 0, 150, 1950, 0), ( 50, 50, 30, -730, 150, -1200, 0), ( 50, 50, 30, 730, 150, -1200, 0), ( 50, 50, 30, -1200, 150, -730, -math.pi / 2), ( 50, 50, 30, -1200, 150, 730, -math.pi / 2), ( 50, 50, 30, 1200, 150, -730, -math.pi / 2), ( 50, 50, 30, 1200, 150, 730, -math.pi / 2), ( 50, 50, 30, -730, 150, 1200, 0), ( 50, 50, 30, 730, 150, 1200, 0), ) self.spawn_points = ( # x, y, r #( 0, 1650, math.pi), #( 0, -1650, 0), ( -935, 935, 3 * math.pi / 4, 0x7777AA), ( 935, 935, 5 * math.pi / 4, 0x770000), ( 935, -935, 7 * math.pi / 4, 0x007700), ( -935, -935, math.pi / 4, 0x777700), (-1650, 1650, 3 * math.pi / 4, 0xAA00AA), #(-1650, 0, math.pi / 2), #( 1650, 0, 3 * math.pi / 2), ( 1650, 1650, 5 * math.pi / 4, 0x007777), ( 1650, -1650, 7 * math.pi / 4, 0x000077), (-1650, -1650, math.pi / 4, 0xFFAA77), ) self.arena = "arena{}".format(uwsgi.worker_id()) self.redis = redis.StrictRedis() self.channel = self.redis.pubsub() self.channel.subscribe(self.arena) self.bonus_malus = ( BonusHaste, # BonusGiant, BonusPower, BonusHeal, ) self.bonus_malus_spawn_points = [ ( 0, 0), ( 0, 1650), ( 0, -1650), (-1650, 0), ( 1650, 0), ] self.active_bonus_malus = [] self.spawn_iterator = iter(self.spawn_points) def broadcast(self, msg): self.redis.publish(self.arena, 'arena:{}'.format(msg)) def msg_handler(self, player, msg): p, cmd = msg.split(':') try: if cmd in ('at', 'AT'): self.players[p].attack_cmd = cmd else: self.players[p].cmd = cmd except KeyError: print 'Player {} does not exists or is dead'.format(p) def attack_cmd_handler(self, player, cmd): if cmd == 'AT': player.bullet.shoot() player.attack = 1 return True elif cmd == 'at': player.attack = 0 return False def cmd_handler(self, player, cmd): if cmd == 'rl': player.arena_object.rotateL() return True elif cmd == 'rr': player.arena_object.rotateR() return True elif cmd == 'fw': old_x = player.arena_object.x old_y = player.arena_object.y player.arena_object.translate(player.arena_object.speed) if not self.collision(player): return True player.arena_object.x = old_x player.arena_object.y = old_y # player.arena_object.translate(-player.arena_object.speed) elif cmd == 'bw': old_x = player.arena_object.x old_y = player.arena_object.y player.arena_object.translate(-player.arena_object.speed) if not self.collision(player): return True player.arena_object.x = old_x player.arena_object.y = old_y # player.arena_object.translate(player.arena_object.speed) return False def collision(self, player): for p in self.players.keys(): if self.players[p] == player: continue #check for body collision if player.arena_object.collide( self.players[p].arena_object.x, self.players[p].arena_object.y, self.players[p].arena_object.width * self.players[p].arena_object.scale, self.players[p].arena_object.height * self.players[p].arena_object.scale ): # if player.attack == 1: # if self.players[p].attack == 0: # self.players[p].damage(1.0, player.name) # else: # self.players[p].damage(1.0, player.name) # elif self.players[p]. attack == 1: # player.damage(1.0, 'himself') # self.broadcast("collision between {} and {}".format(player.name, p)) return True for wall in self.walls: if wall[6] == 0: height = 1 * wall[2] width = 20 * wall[0] else: height = 20 * wall[0] width = 1 * wall[2] if player.arena_object.collide(wall[3], wall[5], width, height): return True for bm in self.active_bonus_malus: if player.arena_object.collide( bm.arena_object.x, bm.arena_object.y, bm.arena_object.width * bm.arena_object.scale, bm.arena_object.height * bm.arena_object.scale, ): gevent.spawn(bm.activate_bonus, player) return False def engine_start(self): del self.greenlets['engine'] print('engine started') while True: if (len(self.players) == 1 and self.started): self.finished = True self.winning_logic() self.restart_game(11) break elif (len(self.players) == 0): self.finished = True self.restart_game() break t = uwsgi.micros() / 1000.0 for p in self.players.keys(): player = self.players[p] if player.cmd: draw = self.cmd_handler(player, player.cmd) if draw: player.update_gfx() player.cmd = None if player.attack_cmd: draw = self.attack_cmd_handler(player, player.attack_cmd) # print player.attack_cmd if draw: player.update_gfx() player.attack_cmd = None for animation in self.animations: animation.animate() t1 = uwsgi.micros() / 1000.0 delta = t1 - t if delta < 33.33: gevent.sleep((33.33 - delta) / 1000.0) self.greenlets['engine'] = self.engine_start print("engine ended") def start(self): del self.greenlets['start'] print("START!!") #self.warming_up = True while len(self.players) < self.min_players: for p in self.players.keys(): self.players[p].update_gfx() gevent.sleep(1) if self.finished: self.greenlets['start'] = self.start print("ending") return warmup = self.warmup while warmup > 0: gevent.sleep(1.0) self.broadcast("warmup,{} seconds to start".format(warmup)) warmup -= 1 #self.warmup = False self.started = True #gevent.spawn(self.engine_start) gevent.sleep() self.broadcast("FIGHT!!!") gevent.sleep() bm_counter = 0 while not self.finished: gevent.sleep(10.0) if len(self.bonus_malus_spawn_points) > 0: coordinates = self.bonus_malus_spawn_points.pop( randrange(len(self.bonus_malus_spawn_points))) choice(self.bonus_malus)(self, bm_counter, *(coordinates)) bm_counter += 1 gevent.sleep(1.0) self.broadcast("end") self.started = False self.greenlets['start'] = self.start print("end") gevent.sleep() def spawn_greenlets(self): for greenlet in self.greenlets: #if len(self.players) >= self.min_players: if len(self.players) >= 1: gevent.spawn(self.greenlets[greenlet]) # place up to 8 waiting_players # in the player list and start the game again # unless less than 2 players are available def winning_logic(self): winner_name = self.players.keys()[0] self.players[winner_name].end('winner') def restart_game(self, countdown=15): countdown = countdown while countdown > 0: self.broadcast( 'next game will start in {} seconds'.format(countdown)) gevent.sleep(1) countdown -= 1 self.finished = False self.players = {} if len(self.waiting_players) > 0: for player in self.waiting_players: self.players[player.name] = player if len(self.players) >= self.max_players: break self.broadcast('waiting for players') class Player(object): def __init__(self, game, name, avatar, fd, x, y, r, color, speed=15): self.game = game self.name = name self.avatar = avatar self.fd = fd self.arena_object = ArenaObject(x, y, r, speed) self.attack = 0 self.energy = 100.0 self.arena = "arena{}".format(uwsgi.worker_id()) self.redis = redis.StrictRedis() self.channel = self.redis.pubsub() self.channel.subscribe(self.arena) self.redis_fd = self.channel.connection._sock.fileno() self.cmd = None self.attack_cmd = None self.bullet = Bullet(self.game, self) self.color = color # check if self.energy is 0, in such a case # trigger the kill procedure removing the player from the list # if after the death a single player remains, # trigger the winning procedure def damage(self, amount, attacker): if not self.game.started: return self.energy -= amount if self.energy <= 0: self.game.broadcast( '{} was killed by {}'.format(self.name, attacker) ) self.end('loser') else: self.update_gfx() def end(self, status): self.send_all('kill:{},{}'.format(status, self.name)) del self.game.players[self.name] def send_all(self, msg): self.redis.publish(self.arena, msg) def update_gfx(self): msg = "{}:{},{},{},{},{},{},{},{},{}".format( self.name, self.arena_object.r, self.arena_object.x, 30, self.arena_object.y, self.attack, self.energy, self.avatar, self.arena_object.scale, self.color ) self.send_all(msg) def wait_for_game(self): while (self.game.started or self.game.finished or self.name not in self.game.players): gevent.sleep(1) try: uwsgi.websocket_recv_nb() except IOError: import sys print sys.exc_info() if self.name in self.players: self.end('leaver') return [""] class Bullet(object): def __init__(self, game, player, damage=10, speed=50, _range=1500.0): self.game = game self.player = player self.arena_object = ArenaObject( self.player.arena_object.x, self.player.arena_object.y, 0.0, speed) self.is_shooting = 0 self._range = _range self.damage = damage def shoot(self): if self.is_shooting > 0: return self.arena_object.x = self.player.arena_object.x self.arena_object.y = self.player.arena_object.y self.arena_object.r = self.player.arena_object.r self.is_shooting = self._range self.player.damage(1.0, 'himself') self.game.animations.append(self) def animate(self): self.arena_object.translate(self.arena_object.speed) if self.collision(): self.is_shooting = 0 else: self.is_shooting -= self.arena_object.speed msg = "!:{}:{},{},{},{},{}".format( self.player.name, self.arena_object.r, self.arena_object.x, 50, self.arena_object.y, self.is_shooting ) self.player.send_all(msg) if self.is_shooting <= 0: self.game.animations.remove(self) def collision(self): for p in self.game.players.keys(): if self.game.players[p] == self.player: continue if self.arena_object.collide( self.game.players[p].arena_object.x, self.game.players[p].arena_object.y, self.game.players[p].arena_object.width * self.game.players[p].arena_object.scale, self.game.players[p].arena_object.height * self.game.players[p].arena_object.scale, ): self.game.players[p].damage(self.damage, self.player.name) return True for wall in self.game.walls: if wall[6] == 0: height = 1 * wall[2] width = 19.5 * wall[0] else: height = 19.5 * wall[0] width = 1 * wall[2] if self.arena_object.collide(wall[3], wall[5], width, height): return True return False class Robotab(Arena): def __call__(self, e, sr): if e['PATH_INFO'] == '/': sr('200 OK', [('Content-Type', 'text/html')]) return [open('robotab_ws.html').read()] if e['PATH_INFO'] == '/robotab.js': sr('200 OK', [('Content-Type', 'application/javascript')]) return [open('static/js/robotab.js').read()] if e['PATH_INFO'] == '/robotab': uwsgi.websocket_handshake() username, avatar = uwsgi.websocket_recv().split(':') try: robot_coordinates = self.spawn_iterator.next() except StopIteration: self.spawn_iterator = iter(self.spawn_points) robot_coordinates = self.spawn_iterator.next() uwsgi.websocket_send('posters:{}'.format(';'.join(self.posters))) for wall in self.walls: uwsgi.websocket_send( 'wall:{},{},{},{},{},{},{}'.format(*wall)) player = Player(self, username, avatar, uwsgi.connection_fd(), *robot_coordinates) if(self.started or self.finished or len(self.players) > self.max_players or len(self.waiting_players) > 0): print('{}:{}:{}:{}'.format( self.started, self.finished, len(self.players) > self.max_players, len(self.waiting_players) > 0)) self.waiting_players.append(player) uwsgi.websocket_send( "arena:hey {}, wait for next game".format(player.name)) player.wait_for_game() self.waiting_players.remove(player) else: self.players[player.name] = player self.spawn_greenlets() for p in self.players.keys(): self.players[p].update_gfx() while True: ready = gevent.select.select( [player.fd, player.redis_fd], [], [], timeout=4.0) if not ready[0]: uwsgi.websocket_recv_nb() for fd in ready[0]: if fd == player.fd: try: msg = uwsgi.websocket_recv_nb() except IOError: import sys print sys.exc_info() if player.name in self.players: player.end('leaver') return [""] if msg and not self.finished: self.msg_handler(player, msg) elif fd == player.redis_fd: msg = player.channel.parse_response() if msg[0] == 'message': uwsgi.websocket_send(msg[2]) application = Robotab()
py
1a571960bc7e5cd8b89b990fd593dfd28df03b65
""" Component for the Goalfeed service. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/goalfeed/ """ import json import requests import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.const import CONF_PASSWORD, CONF_USERNAME REQUIREMENTS = ['pysher==1.0.4'] DOMAIN = 'goalfeed' CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, }) }, extra=vol.ALLOW_EXTRA) GOALFEED_HOST = 'feed.goalfeed.ca' GOALFEED_AUTH_ENDPOINT = 'https://goalfeed.ca/feed/auth' GOALFEED_APP_ID = 'bfd4ed98c1ff22c04074' def setup(hass, config): """Set up the Goalfeed component.""" import pysher conf = config[DOMAIN] username = conf.get(CONF_USERNAME) password = conf.get(CONF_PASSWORD) def goal_handler(data): """Handle goal events.""" goal = json.loads(json.loads(data)) hass.bus.fire('goal', event_data=goal) def connect_handler(data): """Handle connection.""" post_data = { 'username': username, 'password': password, 'connection_info': data} resp = requests.post(GOALFEED_AUTH_ENDPOINT, post_data, timeout=30).json() channel = pusher.subscribe('private-goals', resp['auth']) channel.bind('goal', goal_handler) pusher = pysher.Pusher(GOALFEED_APP_ID, secure=False, port=8080, custom_host=GOALFEED_HOST) pusher.connection.bind('pusher:connection_established', connect_handler) pusher.connect() return True
py
1a5719f1ad65d6a14e437231abfc57167de1bddc
import os from celery.schedules import crontab # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # SECURITY WARNING: keep the secret key used in production secret! # Set in local_settings.py SECRET_KEY = 'SECRET_SECRET_SECRET' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = os.getenv('DEBUG_STATUS', True) ALLOWED_HOSTS = ['*'] # Application definition LOGIN_REDIRECT_URL = '/' LOGIN_URL = '/login/' INSTALLED_APPS = [ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.messages', 'django.contrib.sessions', 'django.contrib.staticfiles', 'simple_pagination', 'compressor', 'common', 'accounts', 'cases', 'contacts', 'emails', 'leads', 'opportunity', 'planner', 'sorl.thumbnail', 'phonenumber_field', 'storages', 'marketing', 'tasks', 'invoices', 'events', 'teams', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'crm.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, "templates"), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'crm.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'dj_crm', 'USER': 'postgres', 'PASSWORD': 'root', 'HOST': os.getenv('DB_HOST', '127.0.0.1'), 'PORT': os.getenv('DB_PORT', '5432') } } STATICFILES_DIRS = [os.path.join(BASE_DIR, "static"), ] # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Kolkata' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # EMAIL_BACKEND = 'django.core.mail.backends.dummy.EmailBackend' # EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # EMAIL_HOST = 'localhost' # EMAIL_PORT = 25 # AUTHENTICATION_BACKENDS = ('django.contrib.auth.backends.ModelBackend', ) EMAIL_HOST = 'smtp.sendgrid.net' EMAIL_HOST_USER = os.getenv('SG_USER', '') EMAIL_HOST_PASSWORD = os.getenv('SG_PWD', '') EMAIL_PORT = 587 EMAIL_USE_TLS = True AUTH_USER_MODEL = 'common.User' STORAGE_TYPE = os.getenv('STORAGE_TYPE', 'normal') if STORAGE_TYPE == 'normal': MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' STATIC_URL = '/static/' STATICFILES_DIRS = (BASE_DIR + '/static',) COMPRESS_ROOT = BASE_DIR + '/static/' elif STORAGE_TYPE == 's3-storage': AWS_STORAGE_BUCKET_NAME = AWS_BUCKET_NAME = os.getenv('AWSBUCKETNAME', '') AM_ACCESS_KEY = AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID', '') AM_PASS_KEY = AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY', '') S3_DOMAIN = AWS_S3_CUSTOM_DOMAIN = str(AWS_BUCKET_NAME) + '.s3.amazonaws.com' AWS_S3_OBJECT_PARAMETERS = { 'CacheControl': 'max-age=86400', } STATICFILES_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' DEFAULT_FILE_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' DEFAULT_S3_PATH = "media" STATICFILES_STORAGE = 'storages.backends.s3boto.S3BotoStorage' STATIC_S3_PATH = "static" COMPRESS_STORAGE = 'storages.backends.s3boto.S3BotoStorage' COMPRESS_CSS_FILTERS = [ 'compressor.filters.css_default.CssAbsoluteFilter', 'compressor.filters.cssmin.CSSMinFilter'] COMPRESS_JS_FILTERS = ['compressor.filters.jsmin.JSMinFilter'] COMPRESS_REBUILD_TIMEOUT = 5400 MEDIA_ROOT = '/%s/' % DEFAULT_S3_PATH MEDIA_URL = '//%s/%s/' % (S3_DOMAIN, DEFAULT_S3_PATH) STATIC_ROOT = "/%s/" % STATIC_S3_PATH STATIC_URL = 'https://%s/' % (S3_DOMAIN) ADMIN_MEDIA_PREFIX = STATIC_URL + 'admin/' CORS_ORIGIN_ALLOW_ALL = True AWS_IS_GZIPPED = True AWS_ENABLED = True AWS_S3_SECURE_URLS = True COMPRESS_ROOT = BASE_DIR + '/static/' COMPRESS_ENABLED = True COMPRESS_OFFLINE_CONTEXT = { 'STATIC_URL': 'STATIC_URL', } STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'compressor.finders.CompressorFinder', ) COMPRESS_CSS_FILTERS = [ 'compressor.filters.css_default.CssAbsoluteFilter', 'compressor.filters.cssmin.CSSMinFilter'] COMPRESS_REBUILD_TIMEOUT = 5400 COMPRESS_OUTPUT_DIR = 'CACHE' COMPRESS_URL = STATIC_URL COMPRESS_PRECOMPILERS = ( ('text/less', 'lessc {infile} {outfile}'), ('text/x-sass', 'sass {infile} {outfile}'), ('text/x-scss', 'sass {infile} {outfile}'), ) COMPRESS_OFFLINE_CONTEXT = { 'STATIC_URL': 'STATIC_URL', } DEFAULT_FROM_EMAIL = '[email protected]' # celery Tasks CELERY_BROKER_URL = 'redis://localhost:6379' CELERY_RESULT_BACKEND = 'redis://localhost:6379' CELERY_BEAT_SCHEDULE = { "runs-campaign-for-every-thiry-minutes": { "task": "marketing.tasks.run_all_campaigns", "schedule": crontab(minute=30, hour='*') }, "runs-campaign-for-every-five-minutes": { "task": "marketing.tasks.list_all_bounces_unsubscribes", "schedule": crontab(minute='*/5') }, "runs-scheduled-campaigns-for-every-one-hour": { "task": "marketing.tasks.send_scheduled_campaigns", "schedule": crontab(hour='*/1') }, "runs-scheduled-emails-for-accounts-every-five-minutes": { "task": "accounts.tasks.send_scheduled_emails", "schedule": crontab(minute='*/1') } } MAIL_SENDER = 'AMAZON' INACTIVE_MAIL_SENDER = 'MANDRILL' AM_ACCESS_KEY = os.getenv('AM_ACCESS_KEY', '') AM_PASS_KEY = os.getenv('AM_PASS_KEY', '') AWS_REGION = os.getenv('AWS_REGION', '') MGUN_API_URL = os.getenv('MGUN_API_URL', '') MGUN_API_KEY = os.getenv('MGUN_API_KEY', '') SG_USER = os.getenv('SG_USER', '') SG_PWD = os.getenv('SG_PWD', '') MANDRILL_API_KEY = os.getenv('MANDRILL_API_KEY', '') ADMIN_EMAIL = "[email protected]" URL_FOR_LINKS = "http://demo.django-crm.io" try: from .dev_settings import * except ImportError: pass GP_CLIENT_ID = os.getenv('GP_CLIENT_ID', False) GP_CLIENT_SECRET = os.getenv('GP_CLIENT_SECRET', False) ENABLE_GOOGLE_LOGIN = os.getenv('ENABLE_GOOGLE_LOGIN', False) MARKETING_REPLY_EMAIL = '[email protected]' PASSWORD_RESET_TIMEOUT_DAYS = 3 SENTRY_ENABLED = os.getenv('SENTRY_ENABLED', False) if SENTRY_ENABLED and not DEBUG: if os.getenv('SENTRYDSN') is not None: RAVEN_CONFIG = { 'dsn': os.getenv('SENTRYDSN', ''), } INSTALLED_APPS = INSTALLED_APPS + [ 'raven.contrib.django.raven_compat', ] MIDDLEWARE = [ 'raven.contrib.django.raven_compat.middleware.Sentry404CatchMiddleware', 'raven.contrib.django.raven_compat.middleware.SentryResponseErrorIdMiddleware', ] + MIDDLEWARE LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'root': { 'level': 'WARNING', 'handlers': ['sentry'], }, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' }, }, 'handlers': { 'sentry': { 'level': 'ERROR', 'class': 'raven.contrib.django.raven_compat.handlers.SentryHandler', }, 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose' } }, 'loggers': { 'django.db.backends': { 'level': 'ERROR', 'handlers': ['console'], 'propagate': False, }, 'raven': { 'level': 'DEBUG', 'handlers': ['console'], 'propagate': False, }, 'sentry.errors': { 'level': 'DEBUG', 'handlers': ['console'], 'propagate': False, }, }, } # Load the local settings file if it exists if os.path.isfile('crm/local_settings.py'): from .local_settings import * else: print("No local settings file found")
py
1a571a7ab6e81538e3ab9b48c937ca39c4626f3f
#!/usr/bin/env python3 import os import stat def getFileList(fileDir): fileList = os.listdir(fileDir) newFileList = [] for eachFile in fileList: if eachFile[:31] not in newFileList: newFileList.append(eachFile) return newFileList def createSubmitFile(eventRootName): fileName = str(eventRootName).split("_")[4] submitComtent = """Universe = vanilla Notification = Error Initialdir = /star/u/jhai/selfSC_GL/test/submit/submit6.8_9 Executable = $(Initialdir)/run47.csh Arguments = $(Process) Log = $(Initialdir)/log/job47_$(Process).log Output = $(Initialdir)/log/job47_$(Process).out Error = $(Initialdir)/log/job47_$(Process).err GetEnv = True +Job_Type = "cas" Queue 1""" submitComtentResult = submitComtent.split("\n") fileObject = open(fileName + ".con", "w") for eachLine in submitComtentResult: if eachLine.lower().startswith("executable"): eachLine = "Executable = $(Initialdir)/" + fileName + ".csh" fileObject.write(eachLine+'\n') fileObject.close() def createRunShell(eventRootName): fileName = str(eventRootName).split("_")[4] shellContent = """#!/bin/csh stardev root4star -b -q -l 'doEvents_SCGL_Calib.C(5000,"./output/*19072018_raw_5000008*")' """ shellContentResult = shellContent.split("\n") fileObject = open(fileName + ".csh", "w") for eachLine in shellContentResult: eachLine.strip('\n') if eachLine.lower().startswith("root4star"): eachLine = """root4star -b -q -l 'doEvents_SCGL_Calib.C(5000,"/star/u/jhai/scratch/test/""" + eventRootName + "*" + """")'""" fileObject.write(eachLine+"\n") fileObject.close() os.chmod(fileName + ".csh", stat.S_IRWXU) def main(): fileDir = "/star/u/jhai/scratch/test" eventFileList = getFileList(fileDir) for eachEventFile in eventFileList: eachEventFile = eachEventFile[:31] createRunShell(eachEventFile) createSubmitFile(eachEventFile) if __name__ == "__main__": main()
py
1a571b79b400fb6ac1f57ab3ca453c1793c23d4a
import autofit as af import autolens as al from test_autolens.integration.tests.imaging import runner test_type = "lens__source_inversion" test_name = "lens_both__source_rectangular" data_type = "lens_light__source_smooth" data_resolution = "lsst" def make_pipeline(name, phase_folders, optimizer_class=af.MultiNest): class SourcePix(al.PhaseImaging): def customize_priors(self, results): self.galaxies.lens.mass.centre.centre_0 = 0.0 self.galaxies.lens.mass.centre.centre_1 = 0.0 self.galaxies.lens.mass.einstein_radius = 1.6 self.galaxies.source.pixelization.shape_0 = 20.0 self.galaxies.source.pixelization.shape_1 = 20.0 phase1 = SourcePix( phase_name="phase_1", phase_folders=phase_folders, galaxies=dict( lens=al.GalaxyModel( redshift=0.5, light=al.lp.SphericalDevVaucouleurs, mass=al.mp.EllipticalIsothermal, ), source=al.GalaxyModel( redshift=1.0, pixelization=al.pix.Rectangular, regularization=al.reg.Constant, ), ), optimizer_class=optimizer_class, ) phase1.optimizer.const_efficiency_mode = True phase1.optimizer.n_live_points = 60 phase1.optimizer.sampling_efficiency = 0.8 return al.PipelineDataset(name, phase1) if __name__ == "__main__": import sys runner.run(sys.modules[__name__])
py
1a571c6a462bca4d58c8d936f7458d8c58e5c7a3
import csv import json import os import re from configparser import ConfigParser, NoOptionError, NoSectionError from itertools import chain, combinations, permutations from typing import Dict, Iterable, Iterator, List from decorator import decorator from logger import logger from perfrunner.helpers.misc import maybe_atoi, target_hash CBMONITOR_HOST = 'cbmonitor.sc.couchbase.com' SHOWFAST_HOST = 'showfast.sc.couchbase.com' # 'localhost:8000' REPO = 'https://github.com/couchbase/perfrunner' @decorator def safe(method, *args, **kwargs): try: return method(*args, **kwargs) except (NoSectionError, NoOptionError) as e: logger.warn('Failed to get option from config: {}'.format(e)) class Config: def __init__(self): self.config = ConfigParser() self.name = '' def parse(self, fname: str, override=None): logger.info('Reading configuration file: {}'.format(fname)) if not os.path.isfile(fname): logger.interrupt("File doesn't exist: {}".format(fname)) self.config.optionxform = str self.config.read(fname) basename = os.path.basename(fname) self.name = os.path.splitext(basename)[0] if override is not None: self.override(override) def override(self, override: List[str]): override = [x for x in csv.reader(override, delimiter='.')] for section, option, value in override: if not self.config.has_section(section): self.config.add_section(section) self.config.set(section, option, value) @safe def _get_options_as_dict(self, section: str) -> dict: if section in self.config.sections(): return {p: v for p, v in self.config.items(section)} else: return {} class ClusterSpec(Config): @property def dynamic_infrastructure(self): if 'infrastructure' in self.config.sections(): return True else: return False @property def generated_cloud_config_path(self): if self.dynamic_infrastructure: return "cloud/infrastructure/generated/infrastructure_config.json" else: return None @property def infrastructure_settings(self): return {k: v for k, v in self.config.items('infrastructure')} @property def infrastructure_clusters(self): return {k: v for k, v in self.config.items('clusters')} @property def infrastructure_clients(self): return {k: v for k, v in self.config.items('clients')} @property def infrastructure_utilities(self): return {k: v for k, v in self.config.items('utilities')} def kubernetes_version(self, cluster_name): return self.infrastructure_section(cluster_name)\ .get('version', '1.17') def istio_enabled(self, cluster_name): istio_enabled = self.infrastructure_section(cluster_name).get('istio_enabled', 0) istio_enabled = bool(int(istio_enabled)) return istio_enabled def kubernetes_storage_class(self, cluster_name): return self.infrastructure_section(cluster_name) \ .get('storage_class', 'default') def kubernetes_clusters(self): k8s_clusters = [] if 'k8s' in self.config.sections(): for k, v in self.config.items('k8s'): k8s_clusters += v.split(",") return k8s_clusters def infrastructure_section(self, section: str): if section in self.config.sections(): return {k: v for k, v in self.config.items(section)} else: return {} def infrastructure_config(self): infra_config = {} for section in self.config.sections(): infra_config[section] = {p: v for p, v in self.config.items(section)} return infra_config @property def clusters(self) -> Iterator: for cluster_name, servers in self.config.items('clusters'): hosts = [s.split(':')[0] for s in servers.split()] yield cluster_name, hosts @property def masters(self) -> Iterator[str]: for _, servers in self.clusters: yield servers[0] @property def servers(self) -> List[str]: servers = [] for _, cluster_servers in self.clusters: for server in cluster_servers: servers.append(server) return servers def servers_by_role(self, role: str) -> List[str]: has_service = [] for _, servers in self.config.items('clusters'): for server in servers.split(): host, roles = server.split(':') if role in roles: has_service.append(host) return has_service def servers_by_role_from_first_cluster(self, role: str) -> List[str]: has_service = [] servers = self.config.items('clusters')[0][1] for server in servers.split(): host, roles = server.split(':') if role in roles: has_service.append(host) return has_service @property def roles(self) -> Dict[str, str]: server_roles = {} for _, servers in self.config.items('clusters'): for server in servers.split(): host, roles = server.split(':') server_roles[host] = roles return server_roles @property def servers_and_roles(self) -> Dict[str, str]: server_and_roles = [] for _, servers in self.config.items('clusters'): for server in servers.split(): host, roles = server.split(':') server_and_roles.append((host, roles)) return server_and_roles @property def workers(self) -> List[str]: if self.dynamic_infrastructure: client_map = self.infrastructure_clients clients = [] for k, v in client_map.items(): if "workers" in k: clients += ["{}.{}".format(k, host) for host in v.split()] return clients else: return self.config.get('clients', 'hosts').split() @property def client_credentials(self) -> List[str]: return self.config.get('clients', 'credentials').split(':') @property def data_path(self) -> str: return self.config.get('storage', 'data') @property def index_path(self) -> str: return self.config.get('storage', 'index', fallback=self.config.get('storage', 'data')) @property def analytics_paths(self) -> List[str]: analytics_paths = self.config.get('storage', 'analytics', fallback=None) if analytics_paths is not None: return analytics_paths.split() return [] @property def paths(self) -> Iterator[str]: for path in set([self.data_path, self.index_path] + self.analytics_paths): if path is not None: yield path @property def backup(self) -> str: return self.config.get('storage', 'backup', fallback=None) @property def rest_credentials(self) -> List[str]: return self.config.get('credentials', 'rest').split(':') @property def ssh_credentials(self) -> List[str]: return self.config.get('credentials', 'ssh').split(':') @property def aws_key_name(self) -> List[str]: return self.config.get('credentials', 'aws_key_name') @property def parameters(self) -> dict: return self._get_options_as_dict('parameters') class TestCaseSettings: USE_WORKERS = 1 RESET_WORKERS = 0 def __init__(self, options: dict): self.test_module = '.'.join(options.get('test').split('.')[:-1]) self.test_class = options.get('test').split('.')[-1] self.use_workers = int(options.get('use_workers', self.USE_WORKERS)) self.reset_workers = int(options.get('reset_workers', self.RESET_WORKERS)) class ShowFastSettings: THRESHOLD = -10 def __init__(self, options: dict): self.title = options.get('title') self.component = options.get('component', '') self.category = options.get('category', '') self.sub_category = options.get('sub_category', '') self.order_by = options.get('orderby', '') self.build_label = options.get('build_label', '') self.threshold = int(options.get("threshold", self.THRESHOLD)) class ClusterSettings: NUM_BUCKETS = 1 INDEX_MEM_QUOTA = 256 FTS_INDEX_MEM_QUOTA = 0 ANALYTICS_MEM_QUOTA = 0 EVENTING_MEM_QUOTA = 0 EVENTING_BUCKET_MEM_QUOTA = 0 EVENTING_METADATA_BUCKET_MEM_QUOTA = 0 EVENTING_METADATA_BUCKET_NAME = 'eventing' EVENTING_BUCKETS = 0 KERNEL_MEM_LIMIT = 0 KERNEL_MEM_LIMIT_SERVICES = 'fts', 'index' ONLINE_CORES = 0 ENABLE_CPU_CORES = 'true' ENABLE_N2N_ENCRYPTION = None BUCKET_NAME = 'bucket-1' IPv6 = 0 def __init__(self, options: dict): self.mem_quota = int(options.get('mem_quota')) self.index_mem_quota = int(options.get('index_mem_quota', self.INDEX_MEM_QUOTA)) self.fts_index_mem_quota = int(options.get('fts_index_mem_quota', self.FTS_INDEX_MEM_QUOTA)) self.analytics_mem_quota = int(options.get('analytics_mem_quota', self.ANALYTICS_MEM_QUOTA)) self.eventing_mem_quota = int(options.get('eventing_mem_quota', self.EVENTING_MEM_QUOTA)) self.initial_nodes = [ int(nodes) for nodes in options.get('initial_nodes').split() ] self.num_buckets = int(options.get('num_buckets', self.NUM_BUCKETS)) self.eventing_bucket_mem_quota = int(options.get('eventing_bucket_mem_quota', self.EVENTING_BUCKET_MEM_QUOTA)) self.eventing_metadata_bucket_mem_quota = \ int(options.get('eventing_metadata_bucket_mem_quota', self.EVENTING_METADATA_BUCKET_MEM_QUOTA)) self.eventing_buckets = int(options.get('eventing_buckets', self.EVENTING_BUCKETS)) self.num_vbuckets = options.get('num_vbuckets') self.online_cores = int(options.get('online_cores', self.ONLINE_CORES)) self.enable_cpu_cores = maybe_atoi(options.get('enable_cpu_cores', self.ENABLE_CPU_CORES)) self.ipv6 = int(options.get('ipv6', self.IPv6)) self.kernel_mem_limit = options.get('kernel_mem_limit', self.KERNEL_MEM_LIMIT) self.enable_n2n_encryption = options.get('enable_n2n_encryption', self.ENABLE_N2N_ENCRYPTION) kernel_mem_limit_services = options.get('kernel_mem_limit_services') if kernel_mem_limit_services: self.kernel_mem_limit_services = kernel_mem_limit_services.split() else: self.kernel_mem_limit_services = self.KERNEL_MEM_LIMIT_SERVICES self.bucket_name = options.get('bucket_name', self.BUCKET_NAME) class StatsSettings: ENABLED = 1 POST_TO_SF = 0 INTERVAL = 5 LAT_INTERVAL = 1 POST_CPU = 0 CLIENT_PROCESSES = [] SERVER_PROCESSES = ['beam.smp', 'cbft', 'cbq-engine', 'indexer', 'memcached'] TRACED_PROCESSES = [] def __init__(self, options: dict): self.enabled = int(options.get('enabled', self.ENABLED)) self.post_to_sf = int(options.get('post_to_sf', self.POST_TO_SF)) self.interval = int(options.get('interval', self.INTERVAL)) self.lat_interval = float(options.get('lat_interval', self.LAT_INTERVAL)) self.post_cpu = int(options.get('post_cpu', self.POST_CPU)) self.client_processes = self.CLIENT_PROCESSES + \ options.get('client_processes', '').split() self.server_processes = self.SERVER_PROCESSES + \ options.get('server_processes', '').split() self.traced_processes = self.TRACED_PROCESSES + \ options.get('traced_processes', '').split() class ProfilingSettings: INTERVAL = 300 # 5 minutes NUM_PROFILES = 1 PROFILES = 'cpu' SERVICES = '' LINUX_PERF_PROFILE_DURATION = 10 # seconds LINUX_PERF_FREQUENCY = 99 LINUX_PERF_CALLGRAPH = 'lbr' # optional lbr, dwarf LINUX_PERF_DELAY_MULTIPLIER = 2 def __init__(self, options: dict): self.services = options.get('services', self.SERVICES).split() self.interval = int(options.get('interval', self.INTERVAL)) self.num_profiles = int(options.get('num_profiles', self.NUM_PROFILES)) self.profiles = options.get('profiles', self.PROFILES).split(',') self.linux_perf_profile_duration = int(options.get('linux_perf_profile_duration', self.LINUX_PERF_PROFILE_DURATION)) self.linux_perf_profile_flag = bool(options.get('linux_perf_profile_flag')) self.linux_perf_frequency = int(options.get('linux_perf_frequency', self.LINUX_PERF_FREQUENCY)) self.linux_perf_callgraph = options.get('linux_perf_callgraph', self.LINUX_PERF_CALLGRAPH) self.linux_perf_delay_multiplier = int(options.get('linux_perf_delay_multiplier', self.LINUX_PERF_DELAY_MULTIPLIER)) class BucketSettings: PASSWORD = 'password' REPLICA_NUMBER = 1 REPLICA_INDEX = 0 EVICTION_POLICY = 'valueOnly' # alt: fullEviction BUCKET_TYPE = 'membase' # alt: ephemeral AUTOFAILOVER_ENABLED = 'true' FAILOVER_MIN = 5 FAILOVER_MAX = 30 BACKEND_STORAGE = None def __init__(self, options: dict): self.password = options.get('password', self.PASSWORD) self.replica_number = int( options.get('replica_number', self.REPLICA_NUMBER) ) self.replica_index = int( options.get('replica_index', self.REPLICA_INDEX) ) self.eviction_policy = options.get('eviction_policy', self.EVICTION_POLICY) self.bucket_type = options.get('bucket_type', self.BUCKET_TYPE) self.conflict_resolution_type = options.get('conflict_resolution_type') self.compression_mode = options.get('compression_mode') if options.get('autofailover_enabled', self.AUTOFAILOVER_ENABLED).lower() == "false": self.autofailover_enabled = 'false' else: self.autofailover_enabled = 'true' self.failover_min = int(options.get('failover_min', self.FAILOVER_MIN)) self.failover_max = int(options.get('failover_max', self.FAILOVER_MAX)) self.backend_storage = options.get('backend_storage', self.BACKEND_STORAGE) class CollectionSettings: CONFIG = None COLLECTION_MAP = None USE_BULK_API = 1 def __init__(self, options: dict): self.config = options.get('config', self.CONFIG) self.collection_map = self.COLLECTION_MAP self.use_bulk_api = int(options.get('use_bulk_api', self.USE_BULK_API)) if self.config is not None: with open(self.config) as f: self.collection_map = json.load(f) class UserSettings: NUM_USERS_PER_BUCKET = 0 def __init__(self, options: dict): self.num_users_per_bucket = int(options.get('num_users_per_bucket', self.NUM_USERS_PER_BUCKET)) class CompactionSettings: DB_PERCENTAGE = 30 VIEW_PERCENTAGE = 30 PARALLEL = True BUCKET_COMPACTION = 'true' def __init__(self, options: dict): self.db_percentage = options.get('db_percentage', self.DB_PERCENTAGE) self.view_percentage = options.get('view_percentage', self.VIEW_PERCENTAGE) self.parallel = options.get('parallel', self.PARALLEL) self.bucket_compaction = options.get('bucket_compaction', self.BUCKET_COMPACTION) def __str__(self): return str(self.__dict__) class RebalanceSettings: SWAP = 0 FAILOVER = 'hard' # Atl: graceful DELTA_RECOVERY = 0 # Full recovery by default DELAY_BEFORE_FAILOVER = 600 START_AFTER = 1200 STOP_AFTER = 1200 FTS_PARTITIONS = "1" FTS_MAX_DCP_PARTITIONS = "0" def __init__(self, options: dict): nodes_after = options.get('nodes_after', '').split() self.nodes_after = [int(num_nodes) for num_nodes in nodes_after] self.swap = int(options.get('swap', self.SWAP)) self.failed_nodes = int(options.get('failed_nodes', 1)) self.failover = options.get('failover', self.FAILOVER) self.delay_before_failover = int(options.get('delay_before_failover', self.DELAY_BEFORE_FAILOVER)) self.delta_recovery = int(options.get('delta_recovery', self.DELTA_RECOVERY)) self.start_after = int(options.get('start_after', self.START_AFTER)) self.stop_after = int(options.get('stop_after', self.STOP_AFTER)) # The reblance settings for FTS self.ftspartitions = options.get('ftspartitions', self.FTS_PARTITIONS) self.fts_max_dcp_partitions = options.get('fts_max_dcp_partitions', self.FTS_MAX_DCP_PARTITIONS) self.fts_node_level_parameters = {} if self.ftspartitions != self.FTS_PARTITIONS: self.fts_node_level_parameters["maxConcurrentPartitionMovesPerNode"] = \ self.ftspartitions if self.fts_max_dcp_partitions != self.FTS_MAX_DCP_PARTITIONS: self.fts_node_level_parameters["maxFeedsPerDCPAgent"] = self.fts_max_dcp_partitions class PhaseSettings: TIME = 3600 * 24 DOC_GEN = 'basic' POWER_ALPHA = 0 ZIPF_ALPHA = 0 KEY_PREFIX = None CREATES = 0 READS = 0 UPDATES = 0 DELETES = 0 READS_AND_UPDATES = 0 FTS_UPDATES = 0 TTL = 0 OPS = 0 TARGET = 0 HOT_READS = False SEQ_UPSERTS = False BATCH_SIZE = 1000 BATCHES = 1 SPRING_BATCH_SIZE = 100 ITERATIONS = 1 ASYNC = False KEY_FMTR = 'decimal' ITEMS = 0 SIZE = 2048 PHASE = 0 INSERT_TEST_FLAG = 0 MEM_LOW_WAT = 0 MEM_HIGH_WAT = 0 WORKING_SET = 100 WORKING_SET_ACCESS = 100 WORKING_SET_MOVE_TIME = 0 WORKING_SET_MOVE_DOCS = 0 THROUGHPUT = float('inf') QUERY_THROUGHPUT = float('inf') N1QL_THROUGHPUT = float('inf') VIEW_QUERY_PARAMS = '{}' WORKERS = 0 QUERY_WORKERS = 0 N1QL_WORKERS = 0 FTS_DATA_SPREAD_WORKERS = None FTS_DATA_SPREAD_WORKER_TYPE = "default" WORKLOAD_INSTANCES = 1 N1QL_OP = 'read' N1QL_BATCH_SIZE = 100 N1QL_TIMEOUT = 0 ARRAY_SIZE = 10 NUM_CATEGORIES = 10 ** 6 NUM_REPLIES = 100 RANGE_DISTANCE = 10 ITEM_SIZE = 64 SIZE_VARIATION_MIN = 1 SIZE_VARIATION_MAX = 1024 RECORDED_LOAD_CACHE_SIZE = 0 INSERTS_PER_WORKERINSTANCE = 0 RUN_EXTRA_ACCESS = 'false' EPOLL = 'true' BOOST = 48 YCSB_FIELD_COUNT = 10 YCSB_FIELD_LENGTH = 100 YCSB_INSERTSTART = 0 SSL_MODE = 'none' SSL_AUTH_KEYSTORE = "certificates/auth.keystore" SSL_DATA_KEYSTORE = "certificates/data.keystore" SSL_KEYSTOREPASS = "storepass" CERTIFICATE_FILE = "root.pem" SHOW_TLS_VERSION = False CIPHER_LIST = None MIN_TLS_VERSION = None PERSIST_TO = 0 REPLICATE_TO = 0 TIMESERIES = 0 CBCOLLECT = 0 CONNSTR_PARAMS = "{'ipv6': 'allow', 'enable_tracing': 'false'}" YCSB_CLIENT = 'couchbase2' DURABILITY = None YCSB_KV_ENDPOINTS = 1 YCSB_ENABLE_MUTATION_TOKEN = None YCSB_RETRY_STRATEGY = 'default' YCSB_RETRY_LOWER = 1 YCSB_RETRY_UPPER = 500 YCSB_RETRY_FACTOR = 2 YCSB_OUT_OF_ORDER = 0 YCSB_SPLIT_WORKLOAD = 0 TRANSACTIONSENABLED = 0 NUM_ATRS = 1024 YCSB_JVM_ARGS = None TPCDS_SCALE_FACTOR = 1 DOCUMENTSINTRANSACTION = 4 TRANSACTIONREADPROPORTION = 0.25 TRANSACTIONUPDATEPROPORTION = 0.75 TRANSACTIONINSERTPROPORTION = 0 REQUESTDISTRIBUTION = 'zipfian' ANALYTICS_WARMUP_OPS = 0 ANALYTICS_WARMUP_WORKERS = 0 COLLECTION_MAP = None CUSTOM_PILLOWFIGHT = False USERS = None USER_MOD_THROUGHPUT = float('inf') USER_MOD_WORKERS = 0 COLLECTION_MOD_WORKERS = 0 COLLECTION_MOD_THROUGHPUT = float('inf') JAVA_DCP_STREAM = 'all' JAVA_DCP_CONFIG = None JAVA_DCP_CLIENTS = 0 SPLIT_WORKLOAD = None SPLIT_WORKLOAD_THROUGHPUT = 0 SPLIT_WORKLOAD_WORKERS = 0 DOCUMENT_GROUPS = 1 def __init__(self, options: dict): # Common settings self.time = int(options.get('time', self.TIME)) # KV settings self.doc_gen = options.get('doc_gen', self.DOC_GEN) self.power_alpha = float(options.get('power_alpha', self.POWER_ALPHA)) self.zipf_alpha = float(options.get('zipf_alpha', self.ZIPF_ALPHA)) self.key_prefix = options.get('key_prefix', self.KEY_PREFIX) self.size = int(options.get('size', self.SIZE)) self.items = int(options.get('items', self.ITEMS)) self.phase = int(options.get('phase', self.PHASE)) self.insert_test_flag = int(options.get('insert_test_flag', self.INSERT_TEST_FLAG)) self.mem_low_wat = int(options.get('mem_low_wat', self.MEM_LOW_WAT)) self.mem_high_wat = int(options.get('mem_high_wat', self.MEM_HIGH_WAT)) self.creates = int(options.get('creates', self.CREATES)) self.reads = int(options.get('reads', self.READS)) self.updates = int(options.get('updates', self.UPDATES)) self.deletes = int(options.get('deletes', self.DELETES)) self.ttl = int(options.get('ttl', self.TTL)) self.reads_and_updates = int(options.get('reads_and_updates', self.READS_AND_UPDATES)) self.fts_updates_swap = int(options.get('fts_updates_swap', self.FTS_UPDATES)) self.fts_updates_reverse = int(options.get('fts_updates_reverse', self.FTS_UPDATES)) self.ops = float(options.get('ops', self.OPS)) self.throughput = float(options.get('throughput', self.THROUGHPUT)) self.working_set = float(options.get('working_set', self.WORKING_SET)) self.working_set_access = int(options.get('working_set_access', self.WORKING_SET_ACCESS)) self.working_set_move_time = int(options.get('working_set_move_time', self.WORKING_SET_MOVE_TIME)) self.working_set_moving_docs = int(options.get('working_set_moving_docs', self.WORKING_SET_MOVE_DOCS)) self.workers = int(options.get('workers', self.WORKERS)) self.async = bool(int(options.get('async', self.ASYNC))) self.key_fmtr = options.get('key_fmtr', self.KEY_FMTR) self.hot_reads = self.HOT_READS self.seq_upserts = self.SEQ_UPSERTS self.iterations = int(options.get('iterations', self.ITERATIONS)) self.batch_size = int(options.get('batch_size', self.BATCH_SIZE)) self.batches = int(options.get('batches', self.BATCHES)) self.spring_batch_size = int(options.get('spring_batch_size', self.SPRING_BATCH_SIZE)) self.workload_instances = int(options.get('workload_instances', self.WORKLOAD_INSTANCES)) self.connstr_params = eval(options.get('connstr_params', self.CONNSTR_PARAMS)) self.run_extra_access = maybe_atoi(options.get('run_extra_access', self.RUN_EXTRA_ACCESS)) # Views settings self.ddocs = None self.index_type = None self.query_params = eval(options.get('query_params', self.VIEW_QUERY_PARAMS)) self.query_workers = int(options.get('query_workers', self.QUERY_WORKERS)) self.query_throughput = float(options.get('query_throughput', self.QUERY_THROUGHPUT)) # N1QL settings self.n1ql_gen = options.get('n1ql_gen') self.n1ql_workers = int(options.get('n1ql_workers', self.N1QL_WORKERS)) self.n1ql_op = options.get('n1ql_op', self.N1QL_OP) self.n1ql_throughput = float(options.get('n1ql_throughput', self.N1QL_THROUGHPUT)) self.n1ql_batch_size = int(options.get('n1ql_batch_size', self.N1QL_BATCH_SIZE)) self.array_size = int(options.get('array_size', self.ARRAY_SIZE)) self.num_categories = int(options.get('num_categories', self.NUM_CATEGORIES)) self.num_replies = int(options.get('num_replies', self.NUM_REPLIES)) self.range_distance = int(options.get('range_distance', self.RANGE_DISTANCE)) self.n1ql_timeout = int(options.get('n1ql_timeout', self.N1QL_TIMEOUT)) if 'n1ql_queries' in options: self.n1ql_queries = options.get('n1ql_queries').strip().split(',') # 2i settings self.item_size = int(options.get('item_size', self.ITEM_SIZE)) self.size_variation_min = int(options.get('size_variation_min', self.SIZE_VARIATION_MIN)) self.size_variation_max = int(options.get('size_variation_max', self.SIZE_VARIATION_MAX)) # YCSB settings self.workload_path = options.get('workload_path') self.recorded_load_cache_size = int(options.get('recorded_load_cache_size', self.RECORDED_LOAD_CACHE_SIZE)) self.inserts_per_workerinstance = int(options.get('inserts_per_workerinstance', self.INSERTS_PER_WORKERINSTANCE)) self.epoll = options.get("epoll", self.EPOLL) self.boost = options.get('boost', self.BOOST) self.target = float(options.get('target', self.TARGET)) self.field_count = int(options.get('field_count', self.YCSB_FIELD_COUNT)) self.field_length = int(options.get('field_length', self.YCSB_FIELD_LENGTH)) self.kv_endpoints = int(options.get('kv_endpoints', self.YCSB_KV_ENDPOINTS)) self.enable_mutation_token = options.get('enable_mutation_token', self.YCSB_ENABLE_MUTATION_TOKEN) self.ycsb_client = options.get('ycsb_client', self.YCSB_CLIENT) self.ycsb_out_of_order = int(options.get('out_of_order', self.YCSB_OUT_OF_ORDER)) self.insertstart = int(options.get('insertstart', self.YCSB_INSERTSTART)) self.ycsb_split_workload = int(options.get('ycsb_split_workload', self.YCSB_SPLIT_WORKLOAD)) # trasnsaction settings self.transactionsenabled = int(options.get('transactionsenabled', self.TRANSACTIONSENABLED)) self.documentsintransaction = int(options.get('documentsintransaction', self.DOCUMENTSINTRANSACTION)) self.transactionreadproportion = options.get('transactionreadproportion', self.TRANSACTIONREADPROPORTION) self.transactionupdateproportion = options.get('transactionupdateproportion', self.TRANSACTIONUPDATEPROPORTION) self.transactioninsertproportion = options.get('transactioninsertproportion', self.TRANSACTIONINSERTPROPORTION) self.requestdistribution = options.get('requestdistribution', self.REQUESTDISTRIBUTION) # multiple of 1024 self.num_atrs = int(options.get('num_atrs', self.NUM_ATRS)) # Subdoc & XATTR self.subdoc_field = options.get('subdoc_field') self.xattr_field = options.get('xattr_field') # SSL settings self.ssl_mode = (options.get('ssl_mode', self.SSL_MODE)) self.ssl_keystore_password = self.SSL_KEYSTOREPASS if self.ssl_mode == 'auth': self.ssl_keystore_file = self.SSL_AUTH_KEYSTORE else: self.ssl_keystore_file = self.SSL_DATA_KEYSTORE self.certificate_file = self.CERTIFICATE_FILE self.show_tls_version = options.get('show_tls_version', self.SHOW_TLS_VERSION) self.cipher_list = options.get('cipher_list', self.CIPHER_LIST) if self.cipher_list: self.cipher_list = self.cipher_list.split(',') self.min_tls_version = options.get('min_tls_version', self.MIN_TLS_VERSION) # Durability settings self.durability_set = False if options.get('persist_to', None) or \ options.get('replicate_to', None) or \ options.get('durability', None): self.durability_set = True self.replicate_to = int(options.get('replicate_to', self.REPLICATE_TO)) self.persist_to = int(options.get('persist_to', self.PERSIST_TO)) if options.get('durability', self.DURABILITY) is not None: self.durability = int(options.get('durability')) else: self.durability = self.DURABILITY # YCSB Retry Strategy settings self.retry_strategy = options.get('retry_strategy', self.YCSB_RETRY_STRATEGY) self.retry_lower = int(options.get('retry_lower', self.YCSB_RETRY_LOWER)) self.retry_upper = int(options.get('retry_upper', self.YCSB_RETRY_UPPER)) self.retry_factor = int(options.get('retry_factor', self.YCSB_RETRY_FACTOR)) # CbCollect Setting self.cbcollect = int(options.get('cbcollect', self.CBCOLLECT)) # Latency Setting self.timeseries = int(options.get('timeseries', self.TIMESERIES)) self.ycsb_jvm_args = options.get('ycsb_jvm_args', self.YCSB_JVM_ARGS) self.tpcds_scale_factor = int(options.get('tpcds_scale_factor', self.TPCDS_SCALE_FACTOR)) self.analytics_warmup_ops = int(options.get('analytics_warmup_ops', self.ANALYTICS_WARMUP_OPS)) self.analytics_warmup_workers = int(options.get('analytics_warmup_workers', self.ANALYTICS_WARMUP_WORKERS)) # collection map placeholder self.collections = self.COLLECTION_MAP self.custom_pillowfight = self.CUSTOM_PILLOWFIGHT self.users = self.USERS self.user_mod_workers = int(options.get('user_mod_workers', self.USER_MOD_WORKERS)) self.user_mod_throughput = float(options.get('user_mod_throughput', self.USER_MOD_THROUGHPUT)) self.collection_mod_workers = int(options.get('collection_mod_workers', self.COLLECTION_MOD_WORKERS)) self.collection_mod_throughput = float(options.get('collection_mod_throughput', self.COLLECTION_MOD_THROUGHPUT)) self.java_dcp_stream = self.JAVA_DCP_STREAM self.java_dcp_config = self.JAVA_DCP_CONFIG self.java_dcp_clients = self.JAVA_DCP_CLIENTS self.doc_groups = int(options.get('doc_groups', self.DOCUMENT_GROUPS)) self.fts_data_spread_workers = options.get( 'fts_data_spread_workers', self.FTS_DATA_SPREAD_WORKERS ) if self.fts_data_spread_workers is not None: self.fts_data_spread_workers = int(self.fts_data_spread_workers) self.fts_data_spread_worker_type = "default" self.split_workload = options.get('split_workload', self.SPLIT_WORKLOAD) self.split_workload_throughput = options.get('split_workload_throughput', self.SPLIT_WORKLOAD_THROUGHPUT) self.split_workload_workers = options.get('split_workload_throughput', self.SPLIT_WORKLOAD_WORKERS) def __str__(self) -> str: return str(self.__dict__) class LoadSettings(PhaseSettings): CREATES = 100 SEQ_UPSERTS = True class JTSAccessSettings(PhaseSettings): JTS_REPO = "https://github.com/couchbaselabs/JTS" JTS_REPO_BRANCH = "master" JTS_HOME_DIR = "JTS" JTS_RUN_CMD = "java -jar target/JTS-1.0-jar-with-dependencies.jar" JTS_LOGS_DIR = "JTSlogs" FTS_PARTITIONS = "1" FTS_MAX_DCP_PARTITIONS = "0" def __init__(self, options: dict): self.jts_repo = self.JTS_REPO self.jts_home_dir = self.JTS_HOME_DIR self.jts_run_cmd = self.JTS_RUN_CMD self.jts_logs_dir = self.JTS_LOGS_DIR self.jts_repo_branch = options.get("jts_repo_branch", self.JTS_REPO_BRANCH) self.jts_instances = options.get("jts_instances", "1") self.test_total_docs = options.get("test_total_docs", "1000000") self.test_query_workers = options.get("test_query_workers", "10") self.test_kv_workers = options.get("test_kv_workers", "0") self.test_kv_throughput_goal = options.get("test_kv_throughput_goal", "1000") self.test_data_file = options.get("test_data_file", "../tests/fts/low.txt") self.test_driver = options.get("test_driver", "couchbase") self.test_stats_limit = options.get("test_stats_limit", "1000000") self.test_stats_aggregation_step = options.get("test_stats_aggregation_step", "1000") self.test_debug = options.get("test_debug", "false") self.test_query_type = options.get("test_query_type", "term") self.test_query_limit = options.get("test_query_limit", "10") self.test_query_field = options.get("test_query_field", "text") self.test_mutation_field = options.get("test_mutation_field", "text2") self.test_worker_type = options.get("test_worker_type", "latency") self.couchbase_index_name = options.get("couchbase_index_name", "perf_fts_index") self.couchbase_index_configfile = options.get("couchbase_index_configfile") self.couchbase_index_type = options.get("couchbase_index_type") self.workload_instances = int(self.jts_instances) self.time = options.get('test_duration', "600") self.warmup_query_workers = options.get("warmup_query_workers", "0") self.warmup_time = options.get('warmup_time', "0") # Geo Queries parameters self.test_geo_polygon_coord_list = options.get("test_geo_polygon_coord_list", "") self.test_query_lon_width = options.get("test_query_lon_width", "2") self.test_query_lat_height = options.get("test_query_lat_height", "2") self.test_geo_distance = options.get("test_geo_distance", "5mi") # Flex Queries parameters self.test_flex = options.get("test_flex", 'false') self.test_flex_query_type = options.get('test_flex_query_type', 'array_predicate') # Collection settings self.test_collection_query_mode = options.get('test_collection_query_mode', 'default') # Number of indexes per index - group self.indexes_per_group = int(options.get('indexes_per_group', '1')) # index_group is the number of collections per index # if index_group is 1; all the collections are present in the index_def type mapping self.index_groups = int(options.get('index_groups', '1')) self.fts_index_map = {} self.collections_enabled = False self.test_collection_specific_count = \ int(options.get('test_collection_specific_count', '1')) # Extra parameters for the FTS debugging self.ftspartitions = options.get('ftspartitions', self.FTS_PARTITIONS) self.fts_max_dcp_partitions = options.get('fts_max_dcp_partitions', self.FTS_MAX_DCP_PARTITIONS) self.fts_node_level_parameters = {} if self.ftspartitions != self.FTS_PARTITIONS: self.fts_node_level_parameters["maxConcurrentPartitionMovesPerNode"] = \ self.ftspartitions if self.fts_max_dcp_partitions != self.FTS_MAX_DCP_PARTITIONS: self.fts_node_level_parameters["maxFeedsPerDCPAgent"] = self.fts_max_dcp_partitions def __str__(self) -> str: return str(self.__dict__) class HotLoadSettings(PhaseSettings): HOT_READS = True class XattrLoadSettings(PhaseSettings): SEQ_UPSERTS = True class RestoreSettings: BACKUP_STORAGE = '/backups' BACKUP_REPO = '' IMPORT_FILE = '' DOCS_PER_COLLECTION = 0 THREADS = 16 MAP_DATA = None def __init__(self, options): self.docs_per_collections = int(options.get('docs_per_collection', self.DOCS_PER_COLLECTION)) self.backup_storage = options.get('backup_storage', self.BACKUP_STORAGE) self.backup_repo = options.get('backup_repo', self.BACKUP_REPO) self.import_file = options.get('import_file', self.IMPORT_FILE) self.threads = options.get('threads', self.THREADS) self.map_data = options.get('map_data', self.MAP_DATA) def __str__(self) -> str: return str(self.__dict__) class ImportSettings: IMPORT_FILE = '' DOCS_PER_COLLECTION = 0 def __init__(self, options): self.docs_per_collections = int(options.get('docs_per_collection', self.DOCS_PER_COLLECTION)) self.import_file = options.get('import_file', self.IMPORT_FILE) def __str__(self) -> str: return str(self.__dict__) class XDCRSettings: WAN_DELAY = 0 NUM_XDCR_LINKS = 1 XDCR_LINKS_PRIORITY = 'HIGH' INITIAL_COLLECTION_MAPPING = '' # std format {"scope-1:collection-1":"scope-1:collection-1"} BACKFILL_COLLECTION_MAPPING = '' # ----------------------"---------------------------------- def __init__(self, options: dict): self.demand_encryption = options.get('demand_encryption') self.filter_expression = options.get('filter_expression') self.secure_type = options.get('secure_type') self.wan_delay = int(options.get('wan_delay', self.WAN_DELAY)) self.num_xdcr_links = int(options.get('num_xdcr_links', self.NUM_XDCR_LINKS)) self.xdcr_links_priority = options.get('xdcr_links_priority', self.XDCR_LINKS_PRIORITY).split(',') self.initial_collection_mapping = options.get('initial_collection_mapping', self.INITIAL_COLLECTION_MAPPING) self.backfill_collection_mapping = options.get('backfill_collection_mapping', self.BACKFILL_COLLECTION_MAPPING) self.collections_oso_mode = bool(options.get('collections_oso_mode')) def __str__(self) -> str: return str(self.__dict__) class ViewsSettings: VIEWS = '[1]' DISABLED_UPDATES = 0 def __init__(self, options: dict): self.views = eval(options.get('views', self.VIEWS)) self.disabled_updates = int(options.get('disabled_updates', self.DISABLED_UPDATES)) self.index_type = options.get('index_type') def __str__(self) -> str: return str(self.__dict__) class GSISettings: CBINDEXPERF_CONFIGFILE = '' CBINDEXPERF_CONCURRENCY = 0 CBINDEXPERF_REPEAT = 0 CBINDEXPERF_CONFIGFILES = '' RUN_RECOVERY_TEST = 0 INCREMENTAL_LOAD_ITERATIONS = 0 SCAN_TIME = 1200 INCREMENTAL_ONLY = 0 REPORT_INITIAL_BUILD_TIME = 0 DISABLE_PERINDEX_STATS = False def __init__(self, options: dict): self.indexes = {} if options.get('indexes') is not None: myindexes = options.get('indexes') if ".json" in myindexes: # index definitions passed in as json file with open(myindexes) as f: self.indexes = json.load(f) else: for index_def in myindexes.split('#'): name, field = index_def.split(':') if '"' in field: field = field.replace('"', '\\\"') self.indexes[name] = field self.cbindexperf_configfile = options.get('cbindexperf_configfile', self.CBINDEXPERF_CONFIGFILE) self.cbindexperf_concurrency = int(options.get('cbindexperf_concurrency', self.CBINDEXPERF_CONCURRENCY)) self.cbindexperf_repeat = int(options.get('cbindexperf_repeat', self.CBINDEXPERF_REPEAT)) self.cbindexperf_configfiles = options.get('cbindexperf_configfiles', self.CBINDEXPERF_CONFIGFILES) self.run_recovery_test = int(options.get('run_recovery_test', self.RUN_RECOVERY_TEST)) self.incremental_only = int(options.get('incremental_only', self.INCREMENTAL_ONLY)) self.incremental_load_iterations = int(options.get('incremental_load_iterations', self.INCREMENTAL_LOAD_ITERATIONS)) self.scan_time = int(options.get('scan_time', self.SCAN_TIME)) self.report_initial_build_time = int(options.get('report_initial_build_time', self.REPORT_INITIAL_BUILD_TIME)) self.disable_perindex_stats = options.get('disable_perindex_stats', self.DISABLE_PERINDEX_STATS) self.settings = {} for option in options: if option.startswith(('indexer', 'projector', 'queryport')): value = options.get(option) if '.' in value: self.settings[option] = maybe_atoi(value, t=float) else: self.settings[option] = maybe_atoi(value, t=int) if self.settings: if self.settings['indexer.settings.storage_mode'] == 'forestdb' or \ self.settings['indexer.settings.storage_mode'] == 'plasma': self.storage = self.settings['indexer.settings.storage_mode'] else: self.storage = 'memdb' def __str__(self) -> str: return str(self.__dict__) class DCPSettings: NUM_CONNECTIONS = 4 INVOKE_WARM_UP = 0 def __init__(self, options: dict): self.num_connections = int(options.get('num_connections', self.NUM_CONNECTIONS)) self.invoke_warm_up = int(options.get('invoke_warm_up', self.INVOKE_WARM_UP)) def __str__(self) -> str: return str(self.__dict__) class N1QLSettings: def __init__(self, options: dict): self.cbq_settings = { option: maybe_atoi(value) for option, value in options.items() } def __str__(self) -> str: return str(self.__dict__) class IndexSettings: FTS_INDEX_NAME = '' FTS_INDEX_CONFIG_FILE = '' TOP_DOWN = False INDEXES_PER_COLLECTION = 1 REPLICAS = 0 def __init__(self, options: dict): self.raw_statements = options.get('statements') self.fields = options.get('fields') self.replicas = int(options.get('replicas', self.REPLICAS)) self.collection_map = options.get('collection_map') self.indexes_per_collection = int(options.get('indexes_per_collection', self.INDEXES_PER_COLLECTION)) self.top_down = bool(options.get('top_down', self.TOP_DOWN)) self.couchbase_fts_index_name = options.get('couchbase_fts_index_name', self.FTS_INDEX_NAME) self.couchbase_fts_index_configfile = options.get('couchbase_fts_index_configfile', self.FTS_INDEX_CONFIG_FILE) self.statements = self.create_index_statements() def create_index_statements(self) -> List[str]: # Here we generate all permutations of all subsets of index fields # The total number generate given n fields is the following: # # Sum from k=0 to n, n!/k! where # # n=3 sum = 16 # n=4 sum = 65 # n=5 sum = 326 # n=6 sum = 1957 if self.collection_map and self.fields: statements = [] build_statements = [] if self.fields.strip() == 'primary': for bucket in self.collection_map.keys(): for scope in self.collection_map[bucket].keys(): for collection in self.collection_map[bucket][scope].keys(): index_num = 1 if self.collection_map[bucket][scope][collection]['load'] == 1: collection_num = collection.replace("collection-", "") index_name = 'pi{}_{}'\ .format(collection_num, index_num) new_statement = \ "CREATE PRIMARY INDEX {} ON default:`{}`.`{}`.`{}`". \ format(index_name, bucket, scope, collection) with_clause = " WITH {'defer_build': 'true'," if self.replicas > 0: with_clause += "'num_replica': " + str(self.replicas) + "," with_clause = with_clause[:-1] with_clause += "}" new_statement += with_clause statements.append(new_statement) build_statement = "BUILD INDEX ON default:`{}`.`{}`.`{}`('{}')" \ .format(bucket, scope, collection, index_name) build_statements.append(build_statement) index_num += 1 else: fields = self.fields.strip().split(',') parsed_fields = [] index = 1 for field in fields: while field.count("(") != field.count(")"): field = ",".join([field, fields[index]]) del fields[index] index += 1 parsed_fields.append(field) fields = parsed_fields field_combos = list(chain.from_iterable(combinations(fields, r) for r in range(1, len(fields)+1))) if self.top_down: field_combos.reverse() for bucket in self.collection_map.keys(): for scope in self.collection_map[bucket].keys(): for collection in self.collection_map[bucket][scope].keys(): if self.collection_map[bucket][scope][collection]['load'] == 1: indexes_created = 0 collection_num = collection.replace("collection-", "") for field_subset in field_combos: subset_permutations = list(permutations(list(field_subset))) for permutation in subset_permutations: index_field_list = list(permutation) index_name = "i{}_{}".format(collection_num, str(indexes_created+1)) index_fields = ",".join(index_field_list) new_statement = \ "CREATE INDEX {} ON default:`{}`.`{}`.`{}`({})".\ format( index_name, bucket, scope, collection, index_fields) with_clause = " WITH {'defer_build': 'true'," if self.replicas > 0: with_clause += \ "'num_replica': " + str(self.replicas) + "," with_clause = with_clause[:-1] with_clause += "}" new_statement += with_clause statements.append(new_statement) build_statement = \ "BUILD INDEX ON default:`{}`.`{}`.`{}`('{}')" \ .format(bucket, scope, collection, index_name) build_statements.append(build_statement) indexes_created += 1 if indexes_created == self.indexes_per_collection: break if indexes_created == self.indexes_per_collection: break statements = statements + build_statements return statements elif self.raw_statements: return self.raw_statements.strip().split('\n') elif self.raw_statements is None and self.fields is None: return [] else: raise Exception('Index options must include one statement, ' 'or fields (if collections enabled)') @property def indexes(self): if self.collection_map: indexes = [] for statement in self.statements: match = re.search(r'CREATE .*INDEX (.*) ON', statement) if match: indexes.append(match.group(1)) indexes_per_collection = set(indexes) index_map = {} for bucket in self.collection_map.keys(): for scope in self.collection_map[bucket].keys(): for collection in self.collection_map[bucket][scope].keys(): if self.collection_map[bucket][scope][collection]['load'] == 1: bucket_map = index_map.get(bucket, {}) if bucket_map == {}: index_map[bucket] = {} scope_map = index_map[bucket].get(scope, {}) if scope_map == {}: index_map[bucket][scope] = {} coll_map = index_map[bucket][scope].get(collection, {}) if coll_map == {}: index_map[bucket][scope][collection] = {} for index_name in list(indexes_per_collection): index_map[bucket][scope][collection][index_name] = "" return index_map else: indexes = [] for statement in self.statements: match = re.search(r'CREATE .*INDEX (.*) ON', statement) if match: indexes.append(match.group(1)) return indexes def __str__(self) -> str: return str(self.__dict__) class N1QLFunctionSettings(IndexSettings): pass class AccessSettings(PhaseSettings): OPS = float('inf') def define_queries(self, config): queries = [] for query_name in self.n1ql_queries: query = config.get_n1ql_query_definition(query_name) queries.append(query) self.n1ql_queries = queries class ExtraAccessSettings(PhaseSettings): OPS = float('inf') class BackupSettings: COMPRESSION = False # Undefined test parameters will use backup's default THREADS = None STORAGE_TYPE = None SINK_TYPE = None SHARDS = None OBJ_STAGING_DIR = None OBJ_REGION = None AWS_CREDENTIAL_PATH = None INCLUDE_DATA = None def __init__(self, options: dict): self.compression = int(options.get('compression', self.COMPRESSION)) self.threads = options.get('threads', self.THREADS) self.storage_type = options.get('storage_type', self.STORAGE_TYPE) self.sink_type = options.get('sink_type', self.SINK_TYPE) self.shards = options.get('shards', self.SHARDS) self.obj_staging_dir = options.get('obj_staging_dir', self.OBJ_STAGING_DIR) self.obj_region = options.get('obj_region', self.OBJ_REGION) self.aws_credential_path = options.get('aws_credential_path', self.AWS_CREDENTIAL_PATH) self.include_data = options.get('include_data', self.INCLUDE_DATA) class ExportSettings: THREADS = None IMPORT_FILE = None TYPE = 'json' # csv or json FORMAT = 'lines' # lines, list KEY_FIELD = None LOG_FILE = None FIELD_SEPARATOR = None LIMIT_ROWS = False SKIP_ROWS = False INFER_TYPES = False OMIT_EMPTY = False ERRORS_LOG = None # error log file COLLECTION_FIELD = None SCOPE_FEILD = None SCOPE_COLLECTION_EXP = None def __init__(self, options: dict): self.threads = options.get('threads', self.THREADS) self.type = options.get('type', self.TYPE) self.format = options.get('format', self.FORMAT) self.import_file = options.get('import_file', self.IMPORT_FILE) self.key_field = options.get('key_field', self.KEY_FIELD) self.log_file = options.get('log_file', self.LOG_FILE) self.log_file = options.get('log_file', self.LOG_FILE) self.field_separator = options.get('field_separator', self.FIELD_SEPARATOR) self.limit_rows = int(options.get('limit_rows', self.LIMIT_ROWS)) self.skip_rows = int(options.get('skip_rows', self.SKIP_ROWS)) self.infer_types = int(options.get('infer_types', self.INFER_TYPES)) self.omit_empty = int(options.get('omit_empty', self.OMIT_EMPTY)) self.errors_log = options.get('errors_log', self.ERRORS_LOG) self.collection_field = options.get('collection_field', self.COLLECTION_FIELD) self.scope_field = options.get('scope_field', self.SCOPE_FEILD) self.scope_collection_exp = options.get('scope_collection_exp', self.SCOPE_COLLECTION_EXP) class EventingSettings: WORKER_COUNT = 3 CPP_WORKER_THREAD_COUNT = 2 TIMER_WORKER_POOL_SIZE = 1 WORKER_QUEUE_CAP = 100000 TIMER_TIMEOUT = 0 TIMER_FUZZ = 0 CONFIG_FILE = "tests/eventing/config/function_sample.json" REQUEST_URL = "http://172.23.99.247/cgi-bin/text/1kb_text_200ms.py" def __init__(self, options: dict): self.functions = {} if options.get('functions') is not None: for function_def in options.get('functions').split(','): name, filename = function_def.split(':') self.functions[name.strip()] = filename.strip() self.worker_count = int(options.get("worker_count", self.WORKER_COUNT)) self.cpp_worker_thread_count = int(options.get("cpp_worker_thread_count", self.CPP_WORKER_THREAD_COUNT)) self.timer_worker_pool_size = int(options.get("timer_worker_pool_size", self.TIMER_WORKER_POOL_SIZE)) self.worker_queue_cap = int(options.get("worker_queue_cap", self.WORKER_QUEUE_CAP)) self.timer_timeout = int(options.get("timer_timeout", self.TIMER_TIMEOUT)) self.timer_fuzz = int(options.get("timer_fuzz", self.TIMER_FUZZ)) self.config_file = options.get("config_file", self.CONFIG_FILE) self.request_url = options.get("request_url", self.REQUEST_URL) def __str__(self) -> str: return str(self.__dict__) class MagmaSettings: COLLECT_PER_SERVER_STATS = 0 def __init__(self, options: dict): self.collect_per_server_stats = int(options.get("collect_per_server_stats", self.COLLECT_PER_SERVER_STATS)) class AnalyticsSettings: NUM_IO_DEVICES = 1 DEFAULT_LOG_LEVEL = "DEBUG" CACHE_PAGE_SIZE = 131072 STORAGE_COMPRESSION_BLOCK = None QUERIES = "" ANALYTICS_CONFIG_FILE = "" DROP_DATASET = "" ANALYTICS_LINK = "Local" def __init__(self, options: dict): self.num_io_devices = int(options.get('num_io_devices', self.NUM_IO_DEVICES)) self.log_level = options.get("log_level", self.DEFAULT_LOG_LEVEL) self.storage_buffer_cache_pagesize = options.get("cache_page_size", self.CACHE_PAGE_SIZE) self.storage_compression_block = options.get("storage_compression_block", self.STORAGE_COMPRESSION_BLOCK) self.queries = options.get("queries", self.QUERIES) self.analytics_config_file = options.get("analytics_config_file", self.ANALYTICS_CONFIG_FILE) self.drop_dataset = options.get("drop_dataset", self.DROP_DATASET) self.analytics_link = options.get("analytics_link", self.ANALYTICS_LINK) class AuditSettings: ENABLED = True EXTRA_EVENTS = '' def __init__(self, options: dict): self.enabled = bool(options.get('enabled', self.ENABLED)) self.extra_events = set(options.get('extra_events', self.EXTRA_EVENTS).split()) class YCSBSettings: REPO = 'git://github.com/couchbaselabs/YCSB.git' BRANCH = 'master' SDK_VERSION = None LATENCY_PERCENTILES = [98] AVERAGE_LATENCY = 0 def __init__(self, options: dict): self.repo = options.get('repo', self.REPO) self.branch = options.get('branch', self.BRANCH) self.sdk_version = options.get('sdk_version', self.SDK_VERSION) self.latency_percentiles = options.get('latency_percentiles', self.LATENCY_PERCENTILES) if isinstance(self.latency_percentiles, str): self.latency_percentiles = [int(x) for x in self.latency_percentiles.split(',')] self.average_latency = int(options.get('average_latency', self.AVERAGE_LATENCY)) def __str__(self) -> str: return str(self.__dict__) class SDKTestingSettings: ENABLE_SDKTEST = 0 SDK_TYPE = ['java', 'libc', 'python'] def __init__(self, options: dict): self.enable_sdktest = int(options.get('enable_sdktest', self.ENABLE_SDKTEST)) self.sdk_type = self.SDK_TYPE + options.get('sdk_type', '').split() def __str__(self) -> str: return str(self.__dict__) class ClientSettings: LIBCOUCHBASE = None PYTHON_CLIENT = None def __init__(self, options: dict): self.libcouchbase = options.get('libcouchbase', self.LIBCOUCHBASE) self.python_client = options.get('python_client', self.PYTHON_CLIENT) def __str__(self) -> str: return str(self.__dict__) class JavaDCPSettings: REPO = 'git://github.com/couchbase/java-dcp-client.git' BRANCH = 'master' COMMIT = None STREAM = 'all' CLIENTS = 1 def __init__(self, options: dict): self.config = options.get('config') self.repo = options.get('repo', self.REPO) self.branch = options.get('branch', self.BRANCH) self.commit = options.get('commit', self.COMMIT) self.stream = options.get('stream', self.STREAM) self.clients = int(options.get('clients', self.CLIENTS)) def __str__(self) -> str: return str(self.__dict__) class MagmaBenchmarkSettings: NUM_KVSTORES = 1 WRITE_BATCHSIZE = 1000 KEY_LEN = 40 DOC_SIZE = 1024 NUM_DOCS = 100000000 NUM_WRITES = 100000000 NUM_READS = 10000000 NUM_READERS = 32 MEM_QUOTA = 1048576 FS_CACHE_SIZE = 5368709120 WRITE_MULTIPLIER = 5 DATA_DIR = "/data" ENGINE = "magma" ENGINE_CONFIG = "" def __init__(self, options: dict): self.num_kvstores = int(options.get('num_kvstores', self.NUM_KVSTORES)) self.write_batchsize = int(options.get('write_batchsize', self.WRITE_BATCHSIZE)) self.key_len = int(options.get('key_len', self.KEY_LEN)) self.doc_size = int(options.get('doc_size', self.DOC_SIZE)) self.num_docs = int(options.get('num_docs', self.NUM_DOCS)) self.num_writes = int(options.get('num_writes', self.NUM_WRITES)) self.num_reads = int(options.get('num_reads', self.NUM_READS)) self.num_readers = int(options.get('num_readers', self.NUM_READERS)) self.memquota = int(options.get('memquota', self.MEM_QUOTA)) self.fs_cache_size = int(options.get('fs_cache_size', self.FS_CACHE_SIZE)) self.write_multiplier = int(options.get('write_multiplier', self.WRITE_MULTIPLIER)) self.data_dir = options.get('data_dir', self.DATA_DIR) self.engine = options.get('engine', self.ENGINE) self.engine_config = options.get('engine_config', self.ENGINE_CONFIG) def __str__(self) -> str: return str(self.__dict__) class TPCDSLoaderSettings: REPO = 'git://github.com/couchbaselabs/cbas-perf-support.git' BRANCH = 'master' def __init__(self, options: dict): self.repo = options.get('repo', self.REPO) self.branch = options.get('branch', self.BRANCH) def __str__(self) -> str: return str(self.__dict__) class PYTPCCSettings: WAREHOUSE = 1 CLIENT_THREADS = 1 DURATION = 600 MULTI_QUERY_NODE = 0 DRIVER = 'n1ql' QUERY_PORT = '8093' KV_PORT = '8091' RUN_SQL_SHELL = 'run_sqlcollections.sh' CBRINDEX_SQL = 'cbcrindexcollection_replicas3.sql' COLLECTION_CONFIG = 'cbcrbucketcollection_20GB.sh' DURABILITY_LEVEL = 'majority' SCAN_CONSISTENCY = 'not_bounded' TXTIMEOUT = 3.0 TXT_CLEANUP_WINDOW = 0 PYTPCC_BRANCH = 'py3' PYTPCC_REPO = 'https://github.com/couchbaselabs/py-tpcc.git' INDEX_REPLICAS = 0 def __init__(self, options: dict): self.warehouse = int(options.get('warehouse', self.WAREHOUSE)) self.client_threads = int(options.get('client_threads', self.CLIENT_THREADS)) self.duration = int(options.get('duration', self.DURATION)) self.multi_query_node = int(options.get('multi_query_node', self.MULTI_QUERY_NODE)) self.driver = options.get('driver', self.DRIVER) self.query_port = options.get('query_port', self.QUERY_PORT) self.kv_port = options.get('kv_port', self.KV_PORT) self.run_sql_shell = options.get('run_sql_shell', self.RUN_SQL_SHELL) self.cbrindex_sql = options.get('cbrindex_sql', self.CBRINDEX_SQL) self.collection_config = options.get('collection_config', self.COLLECTION_CONFIG) self.durability_level = options.get('durability_level', self.DURABILITY_LEVEL) self.scan_consistency = options.get('scan_consistency', self.SCAN_CONSISTENCY) self.txtimeout = options.get('txtimeout', self.TXTIMEOUT) self.txt_cleanup_window = int(options.get('txt_cleanup_window', self.TXT_CLEANUP_WINDOW)) self.pytpcc_branch = options.get('pytpcc_branch', self.PYTPCC_BRANCH) self.pytpcc_repo = options.get('pytpcc_repo', self.PYTPCC_REPO) self.use_pytpcc_backup = bool(options.get('use_pytpcc_backup')) self.index_replicas = int(options.get('index_replicas', self.INDEX_REPLICAS)) def __str__(self) -> str: return str(self.__dict__) class TestConfig(Config): @property def test_case(self) -> TestCaseSettings: options = self._get_options_as_dict('test_case') return TestCaseSettings(options) @property def showfast(self) -> ShowFastSettings: options = self._get_options_as_dict('showfast') return ShowFastSettings(options) @property def cluster(self) -> ClusterSettings: options = self._get_options_as_dict('cluster') return ClusterSettings(options) @property def bucket(self) -> BucketSettings: options = self._get_options_as_dict('bucket') return BucketSettings(options) @property def collection(self) -> CollectionSettings: options = self._get_options_as_dict('collection') return CollectionSettings(options) @property def users(self) -> UserSettings: options = self._get_options_as_dict('users') return UserSettings(options) @property def bucket_extras(self) -> dict: bucket_extras = self._get_options_as_dict('bucket_extras') options = self._get_options_as_dict('access') access = AccessSettings(options) if access.durability_set: if "num_writer_threads" not in bucket_extras: bucket_extras["num_writer_threads"] = "disk_io_optimized" return bucket_extras @property def buckets(self) -> List[str]: if self.cluster.num_buckets == 1 and self.cluster.bucket_name != 'bucket-1': return [self.cluster.bucket_name] else: return [ 'bucket-{}'.format(i + 1) for i in range(self.cluster.num_buckets) ] @property def eventing_buckets(self) -> List[str]: return [ 'eventing-bucket-{}'.format(i + 1) for i in range(self.cluster.eventing_buckets) ] @property def eventing_metadata_bucket(self) -> List[str]: return [ 'eventing' ] @property def compaction(self) -> CompactionSettings: options = self._get_options_as_dict('compaction') return CompactionSettings(options) @property def restore_settings(self) -> RestoreSettings: options = self._get_options_as_dict('restore') return RestoreSettings(options) @property def import_settings(self) -> ImportSettings: options = self._get_options_as_dict('import') return ImportSettings(options) @property def load_settings(self): load_options = self._get_options_as_dict('load') load_settings = LoadSettings(load_options) client_options = self._get_options_as_dict('clients') client_settings = ClientSettings(client_options) if hasattr(client_settings, "pillowfight"): load_settings.custom_pillowfight = True collection_options = self._get_options_as_dict('collection') collection_settings = CollectionSettings(collection_options) if collection_settings.collection_map is not None: load_settings.collections = collection_settings.collection_map return load_settings @property def hot_load_settings(self) -> HotLoadSettings: options = self._get_options_as_dict('hot_load') hot_load = HotLoadSettings(options) load = self.load_settings hot_load.doc_gen = load.doc_gen hot_load.array_size = load.array_size hot_load.num_categories = load.num_categories hot_load.num_replies = load.num_replies hot_load.size = load.size hot_load.key_fmtr = load.key_fmtr client_options = self._get_options_as_dict('clients') client_settings = ClientSettings(client_options) if hasattr(client_settings, "pillowfight"): hot_load.custom_pillowfight = True collection_options = self._get_options_as_dict('collection') collection_settings = CollectionSettings(collection_options) if collection_settings.collection_map is not None: hot_load.collections = collection_settings.collection_map return hot_load @property def xattr_load_settings(self) -> XattrLoadSettings: options = self._get_options_as_dict('xattr_load') return XattrLoadSettings(options) @property def xdcr_settings(self) -> XDCRSettings: options = self._get_options_as_dict('xdcr') return XDCRSettings(options) @property def views_settings(self) -> ViewsSettings: options = self._get_options_as_dict('views') return ViewsSettings(options) @property def gsi_settings(self) -> GSISettings: options = self._get_options_as_dict('secondary') return GSISettings(options) @property def dcp_settings(self) -> DCPSettings: options = self._get_options_as_dict('dcp') return DCPSettings(options) @property def index_settings(self) -> IndexSettings: options = self._get_options_as_dict('index') collection_options = self._get_options_as_dict('collection') collection_settings = CollectionSettings(collection_options) if collection_settings.collection_map is not None: options['collection_map'] = collection_settings.collection_map return IndexSettings(options) @property def n1ql_function_settings(self) -> N1QLFunctionSettings: options = self._get_options_as_dict('n1ql_function') return N1QLFunctionSettings(options) @property def n1ql_settings(self) -> N1QLSettings: options = self._get_options_as_dict('n1ql') return N1QLSettings(options) @property def backup_settings(self) -> BackupSettings: options = self._get_options_as_dict('backup') return BackupSettings(options) @property def export_settings(self) -> ExportSettings: options = self._get_options_as_dict('export') return ExportSettings(options) @property def access_settings(self) -> AccessSettings: options = self._get_options_as_dict('access') access = AccessSettings(options) java_dcp_options = self._get_options_as_dict('java_dcp') java_dcp_settings = JavaDCPSettings(java_dcp_options) access.java_dcp_config = java_dcp_settings.config access.java_dcp_clients = java_dcp_settings.clients access.java_dcp_stream = java_dcp_settings.stream client_options = self._get_options_as_dict('clients') client_settings = ClientSettings(client_options) if hasattr(client_settings, "pillowfight"): access.custom_pillowfight = True user_options = self._get_options_as_dict('users') user_settings = UserSettings(user_options) access.users = user_settings.num_users_per_bucket collection_options = self._get_options_as_dict('collection') collection_settings = CollectionSettings(collection_options) if collection_settings.collection_map is not None: access.collections = collection_settings.collection_map if access.split_workload is not None: with open(access.split_workload) as f: access.split_workload = json.load(f) if hasattr(access, 'n1ql_queries'): access.define_queries(self) load_settings = self.load_settings access.doc_gen = load_settings.doc_gen access.doc_groups = load_settings.doc_groups access.range_distance = load_settings.range_distance access.array_size = load_settings.array_size access.num_categories = load_settings.num_categories access.num_replies = load_settings.num_replies access.size = load_settings.size access.key_fmtr = load_settings.key_fmtr access.bucket_list = self.buckets return access @property def extra_access_settings(self) -> ExtraAccessSettings: options = self._get_options_as_dict('extra_access') extra_access = ExtraAccessSettings(options) java_dcp_options = self._get_options_as_dict('java_dcp') java_dcp_settings = JavaDCPSettings(java_dcp_options) extra_access.java_dcp_config = java_dcp_settings.config extra_access.java_dcp_clients = java_dcp_settings.clients extra_access.java_dcp_stream = java_dcp_settings.stream client_options = self._get_options_as_dict('clients') client_settings = ClientSettings(client_options) if hasattr(client_settings, "pillowfight"): extra_access.custom_pillowfight = True user_options = self._get_options_as_dict('users') user_settings = UserSettings(user_options) extra_access.users = user_settings.num_users_per_bucket collection_options = self._get_options_as_dict('collection') collection_settings = CollectionSettings(collection_options) if collection_settings.collection_map is not None: extra_access.collections = collection_settings.collection_map load_settings = self.load_settings extra_access.doc_gen = load_settings.doc_gen extra_access.range_distance = load_settings.range_distance extra_access.array_size = load_settings.array_size extra_access.num_categories = load_settings.num_categories extra_access.num_replies = load_settings.num_replies extra_access.size = load_settings.size extra_access.key_fmtr = load_settings.key_fmtr extra_access.bucket_list = self.buckets return extra_access @property def rebalance_settings(self) -> RebalanceSettings: options = self._get_options_as_dict('rebalance') return RebalanceSettings(options) @property def stats_settings(self) -> StatsSettings: options = self._get_options_as_dict('stats') return StatsSettings(options) @property def profiling_settings(self) -> ProfilingSettings: options = self._get_options_as_dict('profiling') return ProfilingSettings(options) @property def internal_settings(self) -> dict: return self._get_options_as_dict('internal') @property def xdcr_cluster_settings(self) -> dict: return self._get_options_as_dict('xdcr_cluster') @property def jts_access_settings(self) -> JTSAccessSettings: options = self._get_options_as_dict('jts') return JTSAccessSettings(options) @property def ycsb_settings(self) -> YCSBSettings: options = self._get_options_as_dict('ycsb') return YCSBSettings(options) @property def sdktesting_settings(self) -> SDKTestingSettings: options = self._get_options_as_dict('sdktesting') return SDKTestingSettings(options) @property def eventing_settings(self) -> EventingSettings: options = self._get_options_as_dict('eventing') return EventingSettings(options) @property def magma_settings(self) -> MagmaSettings: options = self._get_options_as_dict('magma') return MagmaSettings(options) @property def analytics_settings(self) -> AnalyticsSettings: options = self._get_options_as_dict('analytics') return AnalyticsSettings(options) @property def audit_settings(self) -> AuditSettings: options = self._get_options_as_dict('audit') return AuditSettings(options) def get_n1ql_query_definition(self, query_name: str) -> dict: return self._get_options_as_dict('n1ql-{}'.format(query_name)) @property def fio(self) -> dict: return self._get_options_as_dict('fio') @property def java_dcp_settings(self) -> JavaDCPSettings: options = self._get_options_as_dict('java_dcp') return JavaDCPSettings(options) @property def client_settings(self) -> ClientSettings: options = self._get_options_as_dict('clients') return ClientSettings(options) @property def magma_benchmark_settings(self) -> MagmaBenchmarkSettings: options = self._get_options_as_dict('magma_benchmark') return MagmaBenchmarkSettings(options) @property def tpcds_loader_settings(self) -> TPCDSLoaderSettings: options = self._get_options_as_dict('TPCDSLoader') return TPCDSLoaderSettings(options) @property def pytpcc_settings(self) -> PYTPCCSettings: options = self._get_options_as_dict('py_tpcc') return PYTPCCSettings(options) class TargetSettings: def __init__(self, host: str, bucket: str, password: str, prefix: str, cloud: dict = None): self.password = password self.node = host self.bucket = bucket self.prefix = prefix self.cloud = cloud @property def connection_string(self) -> str: return 'couchbase://{username}:{password}@{host}/{bucket}'.format( username=self.bucket, # Backward compatibility password=self.password, host=self.node, bucket=self.bucket, ) class TargetIterator(Iterable): def __init__(self, cluster_spec: ClusterSpec, test_config: TestConfig, prefix: str = None): self.cluster_spec = cluster_spec self.test_config = test_config self.prefix = prefix def __iter__(self) -> Iterator[TargetSettings]: password = self.test_config.bucket.password prefix = self.prefix for master in self.cluster_spec.masters: for bucket in self.test_config.buckets: if self.prefix is None: prefix = target_hash(master) if self.cluster_spec.dynamic_infrastructure: yield TargetSettings(master, bucket, password, prefix, {'cluster_svc': 'cb-example-perf'}) else: yield TargetSettings(master, bucket, password, prefix)
py
1a571df2e10af82a1f9d196e2fdf81a5a5a736cb
from pymixconf.jsonconf import JSONConf import os def test_yamlconf(): loader = JSONConf(config_directory="test/fixtures", environment_key="TEST_ENV") os.environ["TEST_ENV"] = "dev" data = loader.load_config() expected = { "flask": { "port": 7000 }, "logging": { "level": "INFO" }, "custom": { "users": { "enabled": True, "admins": ["steve"] } } } print(data) assert data == expected
bzl
1a571e3830845b86856c86bca3ba3b4d8e985b70
""" Defines repositories and register toolchains for versions of the tools built from source """ load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") load("@bazel_tools//tools/build_defs/repo:utils.bzl", "maybe") _ALL_CONTENT = """\ filegroup( name = "all_srcs", srcs = glob(["**"]), visibility = ["//visibility:public"], ) """ # buildifier: disable=unnamed-macro def built_toolchains(cmake_version, make_version, ninja_version): """Register toolchains for built tools that will be built from source""" _cmake_toolchain(cmake_version) _make_toolchain(make_version) _ninja_toolchain(ninja_version) def _cmake_toolchain(version): native.register_toolchains( "@rules_foreign_cc//toolchains:built_cmake_toolchain", ) if version == "3.19.6": maybe( http_archive, name = "cmake_src", build_file_content = _ALL_CONTENT, sha256 = "ec87ab67c45f47c4285f204280c5cde48e1c920cfcfed1555b27fb3b1a1d20ba", strip_prefix = "cmake-3.19.6", urls = [ "https://github.com/Kitware/CMake/releases/download/v3.19.6/cmake-3.19.6.tar.gz", ], ) return fail("Unsupported cmake version: " + str(version)) def _make_toolchain(version): native.register_toolchains( "@rules_foreign_cc//toolchains:built_make_toolchain", ) if version == "4.3": maybe( http_archive, name = "gnumake_src", build_file_content = _ALL_CONTENT, sha256 = "e05fdde47c5f7ca45cb697e973894ff4f5d79e13b750ed57d7b66d8defc78e19", strip_prefix = "make-4.3", urls = [ "http://ftpmirror.gnu.org/gnu/make/make-4.3.tar.gz", ], ) return fail("Unsupported make version: " + str(version)) def _ninja_toolchain(version): native.register_toolchains( "@rules_foreign_cc//toolchains:built_ninja_toolchain", ) if version == "1.10.2": maybe( http_archive, name = "ninja_build_src", build_file_content = _ALL_CONTENT, sha256 = "ce35865411f0490368a8fc383f29071de6690cbadc27704734978221f25e2bed", strip_prefix = "ninja-1.10.2", urls = [ "https://github.com/ninja-build/ninja/archive/v1.10.2.tar.gz", ], ) return fail("Unsupported ninja version: " + str(version))
py
1a571e828a9bf81598d2da0bec7a22064bb1c4fa
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import datetime import json import logging import os import time import dateutil.tz METRICS_DIR = os.environ.get("SAGEMAKER_METRICS_DIRECTORY", ".") logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class SageMakerFileMetricsWriter(object): """Writes metric data to file.""" def __init__(self, metrics_file_path=None): self._metrics_file_path = metrics_file_path self._file = None self._closed = False def log_metric(self, metric_name, value, timestamp=None, iteration_number=None): """Write a metric to file. Args: metric_name (str): The name of the metric. value (str): The value of the metric. timestamp (datetime): Timestamp of the metric. iteration_number (int): Iteration number of the metric. Raises: SageMakerMetricsWriterException: If the metrics file is closed. """ raw_metric_data = _RawMetricData( metric_name=metric_name, value=value, timestamp=timestamp, iteration_number=iteration_number ) try: logging.debug("Writing metric: %s", raw_metric_data) self._file.write(json.dumps(raw_metric_data.to_record())) self._file.write("\n") except AttributeError: if self._closed: raise SageMakerMetricsWriterException("log_metric called on a closed writer") elif not self._file: self._file = open(self._get_metrics_file_path(), "a", buffering=1) self._file.write(json.dumps(raw_metric_data.to_record())) self._file.write("\n") else: raise def close(self): """Closes the metric file.""" if not self._closed and self._file: self._file.close() self._file = None # invalidate reference, causing subsequent log_metric to fail. self._closed = True def __enter__(self): """Return self""" return self def __exit__(self, type, value, traceback): """Execute self.close()""" self.close() def __del__(self): """Execute self.close()""" self.close() def _get_metrics_file_path(self): pid_filename = "{}.json".format(str(os.getpid())) metrics_file_path = self._metrics_file_path or os.path.join(METRICS_DIR, pid_filename) logging.debug("metrics_file_path=" + metrics_file_path) return metrics_file_path class SageMakerMetricsWriterException(Exception): """SageMakerMetricsWriterException""" def __init__(self, message, errors=None): super().__init__(message) if errors: self.errors = errors class _RawMetricData(object): MetricName = None Value = None Timestamp = None IterationNumber = None def __init__(self, metric_name, value, timestamp=None, iteration_number=None): if timestamp is None: timestamp = time.time() elif isinstance(timestamp, datetime.datetime): # If the input is a datetime then convert it to UTC time. Assume a naive datetime is in local timezone if not timestamp.tzinfo: timestamp = timestamp.replace(tzinfo=dateutil.tz.tzlocal()) timestamp = (timestamp - timestamp.utcoffset()).replace(tzinfo=datetime.timezone.utc) timestamp = timestamp.timestamp() else: timestamp = float(timestamp) if timestamp < (time.time() - 1209600) or timestamp > (time.time() + 7200): raise ValueError( "Supplied timestamp %f is invalid." " Timestamps must be between two weeks before and two hours from now." % timestamp ) value = float(value) self.MetricName = metric_name self.Value = float(value) self.Timestamp = timestamp if iteration_number is not None: assert isinstance(iteration_number, int) self.IterationNumber = iteration_number def to_record(self): return self.__dict__ def __str__(self): return repr(self) def __repr__(self): return "{}({})".format( type(self).__name__, ",".join(["{}={}".format(k, repr(v)) for k, v in vars(self).items()]), )
py
1a572152323f49a7ec7ba1a99b0ec9790322b751
from igramscraper.instagram import Instagram import urllib.request import argparse import os def get_media_from_hashtag(tag, media_type, quality, max_images, path): instagram = Instagram() medias = instagram.get_medias_by_tag(tag, count=max_images) count = 1 for media in medias: media.type = 'image' if media.type == 'sidecar' or media.type == 'carousel' else media.type # Extracting Image URL if (media.type == 'image' and media_type == 'image' or media_type == 'all') and not media.is_ad: # Get the links form media all_quality = ['low', 'standard', 'high'] url = media.__getattribute__(f"image_{quality}_resolution_url") # If the preferred quality is not available if not url: all_quality.remove(quality) for q in all_quality: url = media.__getattribute__( f"image_{q}_resolution_url") if url: break # Extracting Video URL if (media.type == 'video' and media_type == 'all' or media_type == 'video') and not media.is_ad: # Get the links form media media = instagram.get_media_by_id(media.identifier) url = media.video_standard_resolution_url or media.video_low_bandwidth_url or media.video_low_resolution_url or media.video_url # Downloading the media if url: urllib.request.urlretrieve( url, f"{path}/{media.type}s/{media.type}{count}.{'jpg' if media.type == 'image' else 'mp4'}") print(f"{count}/{max_images} media downloaded") else: print( f"[{count}] Failed downloading the media {media.link} (id - {media.identifier})") count += 1 if __name__ == "__main__": parser = argparse.ArgumentParser( description='Get All Post From Instagram Hashtag') parser.add_argument('-t', '--tag', required=True, help="valid tag name") parser.add_argument('-p', '--path', required=False, help="Path to save media", default="media") parser.add_argument('-mm', '--max-media', required=False, help="Max number of media to download", type=int, default=10) parser.add_argument('-mt', '--media-type', required=False, help="For Photos => `image` Videos => `video` All => `all` ", default="all") parser.add_argument('-q', '--quality', required=False, help="Media Quality Use either of `low`, `standard` or `high`", default="standard") arguments = parser.parse_args() # Checking if arguments.media_type not in ["video", "image", "all"]: raise ValueError("Media Type should be either videos, images or all") if arguments.quality not in ["low", "high", "standard"]: raise ValueError("Quality should be either low, standard or high") if not os.path.exists(arguments.path): print("Media path not found! \nCreating media path!") os.mkdir(arguments.path) if not os.path.exists(arguments.path + "/images"): os.mkdir(arguments.path + "/images") if not os.path.exists(arguments.path + "/videos"): os.mkdir(arguments.path + "/videos") # Running get_media_from_hashtag(tag=arguments.tag, media_type=arguments.media_type, quality=arguments.quality, max_images=arguments.max_media, path=arguments.path)
py
1a572160f0301fac23be1e029739d5f74a100662
from cricsheet.io_xml.parsers.parser import Parser class MatchParser(Parser): def __init__(self, match_id): self.match_id = match_id self.metadata_parser = MatchMetadataParser() self.outcome_parser = MatchOutcomeParser() self.umpire_parser = UmpireParser() def parse(self, raw): data = {'id': self.match_id} data.update(self.metadata_parser.parse(raw)) data.update(self.outcome_parser.parse(raw['outcome'])) if 'umpires' in raw: data.update(self.umpire_parser.parse(raw['umpires']['umpire'])) return data class MatchMetadataParser(Parser): def __init__(self): pass def parse(self, metadata): if 'player_of_match' in metadata: if type(metadata['player_of_match']['player_of_match']) == list: player_of_match = metadata['player_of_match']['player_of_match'][0] else: player_of_match = metadata['player_of_match']['player_of_match'] else: player_of_match = None return { 'gender': metadata['gender'], 'match_type': metadata['match_type'], 'competition': metadata['competition'] if 'competition' in metadata else None, 'max_overs': metadata['overs'] if 'overs' in metadata else None, 'venue': metadata['venue'] if 'venue' in metadata else None, 'city': metadata['city'] if 'city' in metadata else None, 'start_date': metadata['dates']['date'][0], 'end_date': metadata['dates']['date'][-1], 'team_home': metadata['teams']['team'][0], 'team_away': metadata['teams']['team'][1], 'player_of_match': player_of_match, 'toss_won_by': metadata['toss']['winner'], 'toss_decision': metadata['toss']['decision'] } class MatchOutcomeParser(Parser): def __init__(self): pass def parse(self, outcome): has_winner = (any(result in outcome for result in ('winner', 'eliminator'))) result = 'win' if has_winner else outcome['result'] method = outcome['method'] if 'method' in outcome else \ 'eliminator' if 'eliminator' in outcome else None winner = outcome['winner'] if 'winner' in outcome else \ outcome['eliminator'] if 'eliminator' in outcome else None by = outcome['by'] if 'by' in outcome else None #print(has_winner, result, method, winner, by) if (not has_winner) or ('eliminator' in outcome) or (method == 'Awarded'): won_by_type = None won_by_value = None elif by is not None: if ('innings' in by) and ('wickets' in by): won_by_type = 'innings_and_wickets' won_by_value = by['wickets'] elif ('innings' not in by) and ('wickets' in by): won_by_type = 'wickets' won_by_value = by['wickets'] elif ('innings' in by) and ('runs' in by): won_by_type = 'innings_and_runs' won_by_value = by['runs'] elif ('innings' not in by) and ('runs' in by): won_by_type = 'runs' won_by_value = by['runs'] else: won_by_type = None won_by_value = None return { 'result': result, 'method': method, 'winner': winner, 'won_by_type': won_by_type, 'won_by_value': won_by_value } class UmpireParser(Parser): def __init__(self): pass def parse(self, umpires): if len(umpires) == 2: first, second = umpires third, forth = None, None if len(umpires) == 3: first, second, third = umpires forth = None if len(umpires) == 4: first, second, third, forth = umpires return { 'umpire_first': first, 'umpire_second': second, 'umpire_third': third, 'umpire_forth': forth }
py
1a5721a288955d3c0b1a284ee675b97d84c15f07
class SimpleClassWithBlankParentheses(): pass class ClassWithSpaceParentheses ( ): first_test_data = 90 second_test_data = 100 def test_func(self): return None class ClassWithEmptyFunc(object): def func_with_blank_parentheses(): return 5 def public_func_with_blank_parentheses(): return None def class_under_the_func_with_blank_parentheses(): class InsideFunc(): pass class NormalClass ( ): def func_for_testing(self, first, second): sum = first + second return sum # output class SimpleClassWithBlankParentheses: pass class ClassWithSpaceParentheses: first_test_data = 90 second_test_data = 100 def test_func(self): return None class ClassWithEmptyFunc(object): def func_with_blank_parentheses(): return 5 def public_func_with_blank_parentheses(): return None def class_under_the_func_with_blank_parentheses(): class InsideFunc: pass class NormalClass: def func_for_testing(self, first, second): sum = first + second return sum
py
1a5721ee958b655e75e9eb1bf66e8537c61a57be
"""Remove processed notebooks from disk""" import argparse import shutil from reproducemegit.jupyter_reproducibility import config import os from reproducemegit.jupyter_reproducibility import consts from reproducemegit.jupyter_reproducibility.db import Repository, Notebook, connect from reproducemegit.jupyter_reproducibility.utils import vprint, StatusLogger, mount_basedir, check_exit, savepid def apply(session, status, keep, count, interval, reverse, check): """Compress repositories""" filters = [ Repository.processed.op('&')(consts.R_COMPRESS_OK) == 0, ] if interval: filters += [ Repository.id >= interval[0], Repository.id <= interval[1], ] query = session.query(Repository).filter(*filters) if count: print(query.count()) return if reverse: query = query.order_by( Repository.id.desc() ) else: query = query.order_by( Repository.id.asc() ) for repository in query: if check_exit(check): vprint(0, "Found .exit file. Exiting") return status.report() vprint(0, "Compressing {}".format(repository)) vprint(1, "Into {}".format(repository.zip_path)) with mount_basedir(): try: if repository.path.exists(): commit = repository.get_commit() if commit != repository.commit: repository.processed |= consts.R_COMMIT_MISMATCH repository.processed |= consts.R_COMPRESS_ERROR if repository.zip_path.exists() or repository.compress(): if repository.processed & consts.R_COMPRESS_ERROR: repository.processed -= consts.R_COMPRESS_ERROR if not keep: shutil.rmtree(str(repository.path), ignore_errors=True) elif not repository.zip_path.exists(): if repository.processed & consts.R_COMPRESS_ERROR: repository.processed -= consts.R_COMPRESS_ERROR if not repository.path.exists(): repository.processed |= consts.R_UNAVAILABLE_FILES vprint(1, "failed") if repository.zip_path.exists(): vprint(1, "ok") repository.processed |= consts.R_COMPRESS_OK except Exception as err: vprint(1, "Failed: {}".format(err)) session.add(repository) status.count += 1 session.commit() def main(): """Main function""" script_name = os.path.basename(__file__)[:-3] parser = argparse.ArgumentParser( description="Compress processed repositories") parser.add_argument("-v", "--verbose", type=int, default=config.VERBOSE, help="increase output verbosity") parser.add_argument("-z", "--compression", type=str, default=config.COMPRESSION, help="compression algorithm") parser.add_argument("-e", "--retry-errors", action='store_true', help="retry errors") parser.add_argument("-i", "--interval", type=int, nargs=2, default=config.REPOSITORY_INTERVAL, help="id interval") parser.add_argument("-c", "--count", action='store_true', help="count results") parser.add_argument('-r', '--reverse', action='store_true', help='iterate in reverse order') parser.add_argument('-k', '--keep-uncompressed', action='store_true', help='keep uncompressed files') parser.add_argument('--check', type=str, nargs='*', default={'all', script_name, script_name + '.py'}, help='check name in .exit') args = parser.parse_args() config.VERBOSE = args.verbose status = None if not args.count: status = StatusLogger(script_name) status.report() config.COMPRESSION = args.compression with connect() as session, savepid(): apply( session, status, args.keep_uncompressed, args.count, args.interval, args.reverse, set(args.check) ) if __name__ == "__main__": main()
py
1a572274b15de5a4099b3e316811e7da64b6d960
# Lab 4 Multi-variable linear regression import tensorflow as tf import numpy as np tf.set_random_seed(777) # for reproducibility xy = np.loadtxt('data-01-test-score.csv', delimiter=',', dtype=np.float32) x_data = xy[:, 0:-1] y_data = xy[:, [-1]] # Make sure the sape and data are OK print(x_data.shape, x_data, len(x_data)) print(y_data.shape, y_data) # placeholders for a tensor that will be always fed. X = tf.placeholder(tf.float32, shape=[None, 3]) Y = tf.placeholder(tf.float32, shape=[None, 1]) W = tf.Variable(tf.random_normal([3, 1]), name='weight') b = tf.Variable(tf.random_normal([1]), name='bias') # Hypothesis hypothesis = tf.matmul(X, W) + b # Simplified cost function cost = tf.reduce_mean(tf.square(hypothesis - Y)) # Minimize optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-5) train = optimizer.minimize(cost) # Launch the graph in a session. sess = tf.Session() # Initializes global variables in the graph. sess.run(tf.global_variables_initializer()) for step in range(2001): feed = {X: x_data, Y: y_data} sess.run(train, feed_dict=feed) if step % 10 == 0: print(step, "Cost: ", sess.run(cost, feed_dict=feed), "\nPrediction:\n", sess.run(hypothesis, feed_dict=feed)) # Ask my score score = np.array([[100, 70, 101]]) print("Your score will be ", sess.run(hypothesis, feed_dict={X: score})) score = np.array([[60, 70, 110], [90, 100, 80]]) print("Other scores will be ", sess.run(hypothesis, feed_dict={X: score})) ''' Your score will be [[ 181.73277283]] Other scores will be [[ 145.86265564] [ 187.23129272]] '''
py
1a5722d03546ae810abd263f6b8b5d1ea0bb6a52
import os import subprocess import glob import hashlib import shutil from common.basedir import BASEDIR from selfdrive.swaglog import cloudlog android_packages = ("ai.comma.plus.offroad",) def get_installed_apks(): dat = subprocess.check_output(["pm", "list", "packages", "-f"], encoding='utf8').strip().split("\n") ret = {} for x in dat: if x.startswith("package:"): v, k = x.split("package:")[1].split("=") ret[k] = v return ret def install_apk(path): # can only install from world readable path install_path = "/sdcard/%s" % os.path.basename(path) shutil.copyfile(path, install_path) ret = subprocess.call(["pm", "install", "-r", install_path]) os.remove(install_path) return ret == 0 def start_offroad(): set_package_permissions() system("am start -n ai.comma.plus.offroad/.MainActivity") def set_package_permissions(): try: output = subprocess.check_output(['dumpsys', 'package', 'ai.comma.plus.offroad'], encoding="utf-8") given_permissions = output.split("runtime permissions")[1] except Exception: given_permissions = "" wanted_permissions = ["ACCESS_FINE_LOCATION", "READ_PHONE_STATE", "READ_EXTERNAL_STORAGE"] for permission in wanted_permissions: if permission not in given_permissions: pm_grant("ai.comma.plus.offroad", "android.permission." + permission) appops_set("ai.comma.plus.offroad", "SU", "allow") appops_set("ai.comma.plus.offroad", "WIFI_SCAN", "allow") def appops_set(package, op, mode): system(f"LD_LIBRARY_PATH= appops set {package} {op} {mode}") def pm_grant(package, permission): system(f"pm grant {package} {permission}") def system(cmd): try: cloudlog.info("running %s" % cmd) subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True) except subprocess.CalledProcessError as e: cloudlog.event("running failed", cmd=e.cmd, output=e.output[-1024:], returncode=e.returncode) # *** external functions *** def update_apks(): # install apks installed = get_installed_apks() install_apks = glob.glob(os.path.join(BASEDIR, "apk/*.apk")) for apk in install_apks: app = os.path.basename(apk)[:-4] if app not in installed: installed[app] = None cloudlog.info("installed apks %s" % (str(installed), )) for app in installed.keys(): apk_path = os.path.join(BASEDIR, "apk/"+app+".apk") if not os.path.exists(apk_path): continue h1 = hashlib.sha1(open(apk_path, 'rb').read()).hexdigest() h2 = None if installed[app] is not None: h2 = hashlib.sha1(open(installed[app], 'rb').read()).hexdigest() cloudlog.info("comparing version of %s %s vs %s" % (app, h1, h2)) if h2 is None or h1 != h2: cloudlog.info("installing %s" % app) success = install_apk(apk_path) if not success: cloudlog.info("needing to uninstall %s" % app) system("pm uninstall %s" % app) success = install_apk(apk_path) assert success def pm_apply_packages(cmd): for p in android_packages: system("pm %s %s" % (cmd, p)) if __name__ == "__main__": update_apks()
py
1a5723ca932e86aa088cfb33ea9a64fdb7cad210
import time from cpo import * def run_demo(): Sols = [ BadRWSolution, ReadFavouredRWSolution, WriteFavouredSolution, BalancedRWSolution, ] for Sol in Sols: run_solution(Sol) return Sols def run_solution(Solution): N_READERS = 20 N_WRITERS = 20 DATA_LEN = 10000 RUN_TIME = 5 # seconds sol = Solution(DATA_LEN) sol.spawn_readers(N_READERS) sol.spawn_writers(N_WRITERS) time.sleep(RUN_TIME) sol.kill() return sol def main(): Sols = run_demo() for Sol in Sols: print( Sol.describe(), 'We got...', Sol.get_result() ) class RWSolution: def __init__(self, data_len): self.data = [0] * data_len self.n_reads = AtomicNum(0) self.n_writes = AtomicNum(0) self.n_corrupted = AtomicNum(0) self._kill = False def do_read(self, idx): val = self.data[0] for i in range(len(self.data)): if val != self.data[i]: self.n_corrupted.inc(1) break self.n_reads.inc(1) def do_write(self, idx): for i in range(len(self.data)): self.data[i] = idx self.n_writes.inc(1) def get_result(self): return { 'writes': self.n_writes.get(), 'reads': self.n_reads.get(), 'corrupt reads': self.n_corrupted.get(), } def spawn_readers(self, num_readers): fork_procs(range(num_readers))(self.reader_work) def spawn_writers(self, num_writers): fork_procs(range(num_writers))(self.writer_work) def kill(self): self._kill = True @repeat def reader_work(self, idx): if self._kill: raise Stopped self.before_read(idx) self.do_read(idx) self.after_read(idx) @repeat def writer_work(self, idx): if self._kill: raise Stopped self.before_write(idx) self.do_write(idx) self.after_write(idx) @staticmethod def describe() -> str: raise NotImplementedError def before_read(self, idx): raise NotImplementedError def after_read(self, idx): raise NotImplementedError def before_write(self, idx): raise NotImplementedError def after_write(self, idx): raise NotImplementedError class BadRWSolution(RWSolution): def __init__(self, data_len): super().__init__(data_len) @staticmethod def describe() -> str: return "With no protection." def before_read(self, idx): pass def after_read(self, idx): pass def before_write(self, idx): pass def after_write(self, idx): pass class ReadFavouredRWSolution(RWSolution): def __init__(self, data_len): super().__init__(data_len) self.read_count = 0 self.read_semaphore = BooleanSemaphore(True) self.write_semaphore = BooleanSemaphore(True) @staticmethod def describe() -> str: return "With protection favouring reads." def before_read(self, idx): self.read_semaphore.acquire() self.read_count += 1 if self.read_count == 1: self.write_semaphore.acquire() self.read_semaphore.release() def after_read(self, idx): self.read_semaphore.acquire() self.read_count -= 1 if self.read_count == 0: self.write_semaphore.release() self.read_semaphore.release() def before_write(self, idx): self.write_semaphore.acquire() def after_write(self, idx): self.write_semaphore.release() class WriteFavouredSolution(RWSolution): def __init__(self, data_len): super().__init__(data_len) self.read_count = 0 self.write_count = 0 self.read_semaphore = BooleanSemaphore(True) self.write_semaphore = BooleanSemaphore(True) self.read_try_semaphore = BooleanSemaphore(True) self.resource_semaphore = BooleanSemaphore(True) @staticmethod def describe() -> str: return "With protection favouring writes." def before_read(self, idx): self.read_try_semaphore.acquire() self.read_semaphore.acquire() self.read_count += 1 if self.read_count == 1: self.resource_semaphore.acquire() self.read_semaphore.release() self.read_try_semaphore.release() def after_read(self, idx): self.read_semaphore.acquire() self.read_count -= 1 if self.read_count == 0: self.resource_semaphore.release() self.read_semaphore.release() def before_write(self, idx): self.write_semaphore.acquire() self.write_count += 1 if self.write_count == 1: self.read_try_semaphore.acquire() self.write_semaphore.release() self.resource_semaphore.acquire() def after_write(self, idx): self.resource_semaphore.release() self.write_semaphore.acquire() self.write_count -= 1 if self.write_count == 0: self.read_try_semaphore.release() self.write_semaphore.release() class BalancedRWSolution(RWSolution): def __init__(self, data_len): super().__init__(data_len) self.read_count = 0 self.resource_semaphore = BooleanSemaphore(True) self.read_semaphore = BooleanSemaphore(True) self.queue_semaphore = BooleanSemaphore(True) @staticmethod def describe() -> str: return "With balanced protection." def before_read(self, idx): self.queue_semaphore.acquire() self.read_semaphore.acquire() self.read_count += 1 if self.read_count == 1: self.resource_semaphore.acquire() self.queue_semaphore.release() self.read_semaphore.release() def after_read(self, idx): self.read_semaphore.acquire() self.read_count -= 1 if self.read_count == 0: self.resource_semaphore.release() self.read_semaphore.release() def before_write(self, idx): self.queue_semaphore.acquire() self.resource_semaphore.acquire() self.queue_semaphore.release() def after_write(self, idx): self.resource_semaphore.release() if __name__ == '__main__': main()
py
1a5723f0e631dc17c4789b8ea68e2ecdda8b5ea6
from unittest import mock import pytest from django.contrib.auth.models import AnonymousUser from django.test import override_settings from ...account import CustomerEvents from ...account.models import CustomerEvent from ...core.exceptions import InsufficientStock from ...core.notify_events import NotifyEventType from ...core.taxes import zero_money, zero_taxed_money from ...giftcard import GiftCardEvents from ...giftcard.models import GiftCard, GiftCardEvent from ...order import OrderEvents from ...order.models import OrderEvent from ...order.notifications import get_default_order_payload from ...plugins.manager import get_plugins_manager from ...product.models import ProductTranslation, ProductVariantTranslation from ...tests.utils import flush_post_commit_hooks from .. import calculations from ..complete_checkout import _create_order, _prepare_order_data from ..fetch import fetch_checkout_info, fetch_checkout_lines from ..utils import add_variant_to_checkout @mock.patch("saleor.plugins.manager.PluginsManager.notify") def test_create_order_captured_payment_creates_expected_events( mock_notify, checkout_with_item, customer_user, shipping_method, payment_txn_captured, channel_USD, ): checkout = checkout_with_item checkout_user = customer_user # Ensure not events are existing prior assert not OrderEvent.objects.exists() assert not CustomerEvent.objects.exists() # Prepare valid checkout checkout.user = checkout_user checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_shipping_address checkout.shipping_method = shipping_method checkout.payments.add(payment_txn_captured) checkout.tracking_code = "tracking_code" checkout.redirect_url = "https://www.example.com" checkout.save() # Place checkout manager = get_plugins_manager() lines = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) order = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=_prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None, ), user=customer_user, app=None, manager=manager, ) flush_post_commit_hooks() ( order_placed_event, payment_captured_event, order_fully_paid_event, order_confirmed_event, ) = order.events.all() # type: OrderEvent # Ensure the correct order event was created # is the event the expected type assert order_placed_event.type == OrderEvents.PLACED # is the user anonymous/ the customer assert order_placed_event.user == checkout_user # is the associated backref order valid assert order_placed_event.order is order # ensure a date was set assert order_placed_event.date # should not have any additional parameters assert not order_placed_event.parameters # Ensure the correct order event was created # is the event the expected type assert payment_captured_event.type == OrderEvents.PAYMENT_CAPTURED # is the user anonymous/ the customer assert payment_captured_event.user == checkout_user # is the associated backref order valid assert payment_captured_event.order is order # ensure a date was set assert payment_captured_event.date # should not have any additional parameters assert "amount" in payment_captured_event.parameters.keys() assert "payment_id" in payment_captured_event.parameters.keys() assert "payment_gateway" in payment_captured_event.parameters.keys() # Ensure the correct order event was created # is the event the expected type assert order_fully_paid_event.type == OrderEvents.ORDER_FULLY_PAID # is the user anonymous/ the customer assert order_fully_paid_event.user == checkout_user # is the associated backref order valid assert order_fully_paid_event.order is order # ensure a date was set assert order_fully_paid_event.date # should not have any additional parameters assert not order_fully_paid_event.parameters expected_order_payload = { "order": get_default_order_payload(order, checkout.redirect_url), "recipient_email": order.get_customer_email(), "site_name": "mirumee.com", "domain": "mirumee.com", } expected_payment_payload = { "order": get_default_order_payload(order), "recipient_email": order.get_customer_email(), "payment": { "created": payment_txn_captured.created, "modified": payment_txn_captured.modified, "charge_status": payment_txn_captured.charge_status, "total": payment_txn_captured.total, "captured_amount": payment_txn_captured.captured_amount, "currency": payment_txn_captured.currency, }, "site_name": "mirumee.com", "domain": "mirumee.com", } # Ensure the correct order confirmed event was created # should be order confirmed event assert order_confirmed_event.type == OrderEvents.CONFIRMED # ensure the user is checkout user assert order_confirmed_event.user == checkout_user # ensure the order confirmed event is related to order assert order_confirmed_event.order is order # ensure a date was set assert order_confirmed_event.date # ensure the event parameters are empty assert order_confirmed_event.parameters == {} mock_notify.assert_has_calls( [ mock.call( NotifyEventType.ORDER_CONFIRMATION, expected_order_payload, channel_slug=channel_USD.slug, ), mock.call( NotifyEventType.ORDER_PAYMENT_CONFIRMATION, expected_payment_payload, channel_slug=channel_USD.slug, ), ], any_order=True, ) # Ensure the correct customer event was created if the user was not anonymous placement_event = customer_user.events.get() # type: CustomerEvent assert placement_event.type == CustomerEvents.PLACED_ORDER # check the event type assert placement_event.user == customer_user # check the backref is valid assert placement_event.order == order # check the associated order is valid assert placement_event.date # ensure a date was set assert not placement_event.parameters # should not have any additional parameters @mock.patch("saleor.plugins.manager.PluginsManager.notify") def test_create_order_captured_payment_creates_expected_events_anonymous_user( mock_notify, checkout_with_item, customer_user, shipping_method, payment_txn_captured, channel_USD, ): checkout = checkout_with_item checkout_user = None # Ensure not events are existing prior assert not OrderEvent.objects.exists() assert not CustomerEvent.objects.exists() # Prepare valid checkout checkout.user = checkout_user checkout.email = "[email protected]" checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_shipping_address checkout.shipping_method = shipping_method checkout.payments.add(payment_txn_captured) checkout.tracking_code = "tracking_code" checkout.redirect_url = "https://www.example.com" checkout.save() # Place checkout manager = get_plugins_manager() lines = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) order = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=_prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None, ), user=AnonymousUser(), app=None, manager=manager, ) flush_post_commit_hooks() ( order_placed_event, payment_captured_event, order_fully_paid_event, order_confirmed_event, ) = order.events.all() # type: OrderEvent # Ensure the correct order event was created # is the event the expected type assert order_placed_event.type == OrderEvents.PLACED # is the user anonymous/ the customer assert order_placed_event.user == checkout_user # is the associated backref order valid assert order_placed_event.order is order # ensure a date was set assert order_placed_event.date # should not have any additional parameters assert not order_placed_event.parameters # Ensure the correct order event was created # is the event the expected type assert payment_captured_event.type == OrderEvents.PAYMENT_CAPTURED # is the user anonymous/ the customer assert payment_captured_event.user == checkout_user # is the associated backref order valid assert payment_captured_event.order is order # ensure a date was set assert payment_captured_event.date # should not have any additional parameters assert "amount" in payment_captured_event.parameters.keys() assert "payment_id" in payment_captured_event.parameters.keys() assert "payment_gateway" in payment_captured_event.parameters.keys() # Ensure the correct order event was created # is the event the expected type assert order_fully_paid_event.type == OrderEvents.ORDER_FULLY_PAID # is the user anonymous/ the customer assert order_fully_paid_event.user == checkout_user # is the associated backref order valid assert order_fully_paid_event.order is order # ensure a date was set assert order_fully_paid_event.date # should not have any additional parameters assert not order_fully_paid_event.parameters expected_order_payload = { "order": get_default_order_payload(order, checkout.redirect_url), "recipient_email": order.get_customer_email(), "site_name": "mirumee.com", "domain": "mirumee.com", } expected_payment_payload = { "order": get_default_order_payload(order), "recipient_email": order.get_customer_email(), "payment": { "created": payment_txn_captured.created, "modified": payment_txn_captured.modified, "charge_status": payment_txn_captured.charge_status, "total": payment_txn_captured.total, "captured_amount": payment_txn_captured.captured_amount, "currency": payment_txn_captured.currency, }, "site_name": "mirumee.com", "domain": "mirumee.com", } # Ensure the correct order confirmed event was created # should be order confirmed event assert order_confirmed_event.type == OrderEvents.CONFIRMED # ensure the user is checkout user assert order_confirmed_event.user == checkout_user # ensure the order confirmed event is related to order assert order_confirmed_event.order is order # ensure a date was set assert order_confirmed_event.date # ensure the event parameters are empty assert order_confirmed_event.parameters == {} mock_notify.assert_has_calls( [ mock.call( NotifyEventType.ORDER_CONFIRMATION, expected_order_payload, channel_slug=channel_USD.slug, ), mock.call( NotifyEventType.ORDER_PAYMENT_CONFIRMATION, expected_payment_payload, channel_slug=channel_USD.slug, ), ], any_order=True, ) # Check no event was created if the user was anonymous assert not CustomerEvent.objects.exists() # should not have created any event @mock.patch("saleor.plugins.manager.PluginsManager.notify") def test_create_order_preauth_payment_creates_expected_events( mock_notify, checkout_with_item, customer_user, shipping_method, payment_txn_preauth, channel_USD, ): checkout = checkout_with_item checkout_user = customer_user # Ensure not events are existing prior assert not OrderEvent.objects.exists() assert not CustomerEvent.objects.exists() # Prepare valid checkout checkout.user = checkout_user checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_shipping_address checkout.shipping_method = shipping_method checkout.payments.add(payment_txn_preauth) checkout.tracking_code = "tracking_code" checkout.redirect_url = "https://www.example.com" checkout.save() # Place checkout manager = get_plugins_manager() lines = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) order = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=_prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None, ), user=customer_user, app=None, manager=manager, ) flush_post_commit_hooks() ( order_placed_event, payment_authorized_event, order_confirmed_event, ) = order.events.all() # type: OrderEvent # Ensure the correct order event was created # is the event the expected type assert order_placed_event.type == OrderEvents.PLACED # is the user anonymous/ the customer assert order_placed_event.user == checkout_user # is the associated backref order valid assert order_placed_event.order is order # ensure a date was set assert order_placed_event.date # should not have any additional parameters assert not order_placed_event.parameters # Ensure the correct order event was created # is the event the expected type assert payment_authorized_event.type == OrderEvents.PAYMENT_AUTHORIZED # is the user anonymous/ the customer assert payment_authorized_event.user == checkout_user # is the associated backref order valid assert payment_authorized_event.order is order # ensure a date was set assert payment_authorized_event.date # should not have any additional parameters assert "amount" in payment_authorized_event.parameters.keys() assert "payment_id" in payment_authorized_event.parameters.keys() assert "payment_gateway" in payment_authorized_event.parameters.keys() expected_payload = { "order": get_default_order_payload(order, checkout.redirect_url), "recipient_email": order.get_customer_email(), "site_name": "mirumee.com", "domain": "mirumee.com", } # Ensure the correct order confirmed event was created # should be order confirmed event assert order_confirmed_event.type == OrderEvents.CONFIRMED # ensure the user is checkout user assert order_confirmed_event.user == checkout_user # ensure the order confirmed event is related to order assert order_confirmed_event.order is order # ensure a date was set assert order_confirmed_event.date # ensure the event parameters are empty assert order_confirmed_event.parameters == {} mock_notify.assert_called_once_with( NotifyEventType.ORDER_CONFIRMATION, expected_payload, channel_slug=channel_USD.slug, ) # Ensure the correct customer event was created if the user was not anonymous placement_event = customer_user.events.get() # type: CustomerEvent assert placement_event.type == CustomerEvents.PLACED_ORDER # check the event type assert placement_event.user == customer_user # check the backref is valid assert placement_event.order == order # check the associated order is valid assert placement_event.date # ensure a date was set assert not placement_event.parameters # should not have any additional parameters @mock.patch("saleor.plugins.manager.PluginsManager.notify") def test_create_order_preauth_payment_creates_expected_events_anonymous_user( mock_notify, checkout_with_item, customer_user, shipping_method, payment_txn_preauth, channel_USD, ): checkout = checkout_with_item checkout_user = None # Ensure not events are existing prior assert not OrderEvent.objects.exists() assert not CustomerEvent.objects.exists() # Prepare valid checkout checkout.user = checkout_user checkout.email = "[email protected]" checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_shipping_address checkout.shipping_method = shipping_method checkout.payments.add(payment_txn_preauth) checkout.tracking_code = "tracking_code" checkout.redirect_url = "https://www.example.com" checkout.save() # Place checkout manager = get_plugins_manager() lines = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) order = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=_prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None, ), user=AnonymousUser(), app=None, manager=manager, ) flush_post_commit_hooks() ( order_placed_event, payment_captured_event, order_confirmed_event, ) = order.events.all() # type: OrderEvent # Ensure the correct order event was created # is the event the expected type assert order_placed_event.type == OrderEvents.PLACED # is the user anonymous/ the customer assert order_placed_event.user == checkout_user # is the associated backref order valid assert order_placed_event.order is order # ensure a date was set assert order_placed_event.date # should not have any additional parameters assert not order_placed_event.parameters # Ensure the correct order event was created # is the event the expected type assert payment_captured_event.type == OrderEvents.PAYMENT_AUTHORIZED # is the user anonymous/ the customer assert payment_captured_event.user == checkout_user # is the associated backref order valid assert payment_captured_event.order is order # ensure a date was set assert payment_captured_event.date # should not have any additional parameters assert "amount" in payment_captured_event.parameters.keys() assert "payment_id" in payment_captured_event.parameters.keys() assert "payment_gateway" in payment_captured_event.parameters.keys() expected_payload = { "order": get_default_order_payload(order, checkout.redirect_url), "recipient_email": order.get_customer_email(), "site_name": "mirumee.com", "domain": "mirumee.com", } # Ensure the correct order confirmed event was created # should be order confirmed event assert order_confirmed_event.type == OrderEvents.CONFIRMED # ensure the user is checkout user assert order_confirmed_event.user == checkout_user # ensure the order confirmed event is related to order assert order_confirmed_event.order is order # ensure a date was set assert order_confirmed_event.date # ensure the event parameters are empty assert order_confirmed_event.parameters == {} mock_notify.assert_called_once_with( NotifyEventType.ORDER_CONFIRMATION, expected_payload, channel_slug=channel_USD.slug, ) # Check no event was created if the user was anonymous assert not CustomerEvent.objects.exists() # should not have created any event def test_create_order_insufficient_stock( checkout, customer_user, product_without_shipping ): variant = product_without_shipping.variants.get() manager = get_plugins_manager() checkout_info = fetch_checkout_info(checkout, [], [], manager) add_variant_to_checkout(checkout_info, variant, 10, check_quantity=False) checkout.user = customer_user checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_billing_address checkout.tracking_code = "tracking_code" checkout.save() lines = fetch_checkout_lines(checkout) with pytest.raises(InsufficientStock): _prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None, ) def test_create_order_doesnt_duplicate_order( checkout_with_item, customer_user, shipping_method ): checkout = checkout_with_item checkout.user = customer_user checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_billing_address checkout.shipping_method = shipping_method checkout.tracking_code = "" checkout.redirect_url = "https://www.example.com" checkout.save() manager = get_plugins_manager() lines = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) order_data = _prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None ) order_1 = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=order_data, user=customer_user, app=None, manager=manager, ) assert order_1.checkout_token == checkout.token order_2 = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=order_data, user=customer_user, app=None, manager=manager, ) assert order_1.pk == order_2.pk @pytest.mark.parametrize("is_anonymous_user", (True, False)) def test_create_order_with_gift_card( checkout_with_gift_card, customer_user, shipping_method, is_anonymous_user ): checkout_user = None if is_anonymous_user else customer_user checkout = checkout_with_gift_card checkout.user = checkout_user checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_billing_address checkout.shipping_method = shipping_method checkout.tracking_code = "tracking_code" checkout.redirect_url = "https://www.example.com" checkout.save() manager = get_plugins_manager() lines = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) subtotal = calculations.checkout_subtotal( manager=manager, checkout_info=checkout_info, lines=lines, address=checkout.shipping_address, ) shipping_price = calculations.checkout_shipping_price( manager=manager, checkout_info=checkout_info, lines=lines, address=checkout.shipping_address, ) total_gross_without_gift_cards = ( subtotal.gross + shipping_price.gross - checkout.discount ) gift_cards_balance = checkout.get_total_gift_cards_balance() order = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=_prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None, ), user=customer_user if not is_anonymous_user else AnonymousUser(), app=None, manager=manager, ) assert order.gift_cards.count() == 1 gift_card = order.gift_cards.first() assert gift_card.current_balance.amount == 0 assert order.total.gross == (total_gross_without_gift_cards - gift_cards_balance) assert GiftCardEvent.objects.filter( gift_card=gift_card, type=GiftCardEvents.USED_IN_ORDER ) def test_create_order_with_gift_card_partial_use( checkout_with_item, gift_card_used, customer_user, shipping_method ): checkout = checkout_with_item checkout.user = customer_user checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_billing_address checkout.shipping_method = shipping_method checkout.tracking_code = "tracking_code" checkout.redirect_url = "https://www.example.com" checkout.save() manager = get_plugins_manager() lines = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) price_without_gift_card = calculations.checkout_total( manager=manager, checkout_info=checkout_info, lines=lines, address=checkout.shipping_address, ) gift_card_balance_before_order = gift_card_used.current_balance_amount checkout.gift_cards.add(gift_card_used) checkout.save() order = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=_prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None, ), user=customer_user, app=None, manager=manager, ) gift_card_used.refresh_from_db() expected_old_balance = ( price_without_gift_card.gross.amount + gift_card_used.current_balance_amount ) assert order.gift_cards.count() > 0 assert order.total == zero_taxed_money(order.currency) assert gift_card_balance_before_order == expected_old_balance assert GiftCardEvent.objects.filter( gift_card=gift_card_used, type=GiftCardEvents.USED_IN_ORDER ) def test_create_order_with_many_gift_cards( checkout_with_item, gift_card_created_by_staff, gift_card, customer_user, shipping_method, ): checkout = checkout_with_item checkout.user = customer_user checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_billing_address checkout.shipping_method = shipping_method checkout.tracking_code = "tracking_code" checkout.redirect_url = "https://www.example.com" checkout.save() manager = get_plugins_manager() lines = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) price_without_gift_card = calculations.checkout_total( manager=manager, checkout_info=checkout_info, lines=lines, address=checkout.shipping_address, ) gift_cards_balance_before_order = ( gift_card_created_by_staff.current_balance.amount + gift_card.current_balance.amount ) checkout.gift_cards.add(gift_card_created_by_staff) checkout.gift_cards.add(gift_card) checkout.save() order = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=_prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None, ), user=customer_user, app=None, manager=manager, ) gift_card_created_by_staff.refresh_from_db() gift_card.refresh_from_db() zero_price = zero_money(gift_card.currency) assert order.gift_cards.count() > 0 assert gift_card_created_by_staff.current_balance == zero_price assert gift_card.current_balance == zero_price assert price_without_gift_card.gross.amount == ( gift_cards_balance_before_order + order.total.gross.amount ) assert GiftCardEvent.objects.filter( gift_card=gift_card_created_by_staff, type=GiftCardEvents.USED_IN_ORDER ) assert GiftCardEvent.objects.filter( gift_card=gift_card, type=GiftCardEvents.USED_IN_ORDER ) @mock.patch("saleor.giftcard.utils.send_gift_card_notification") @pytest.mark.parametrize("is_anonymous_user", (True, False)) def test_create_order_gift_card_bought( send_notification_mock, checkout_with_gift_card_items, customer_user, shipping_method, is_anonymous_user, non_shippable_gift_card_product, ): checkout_user = None if is_anonymous_user else customer_user checkout = checkout_with_gift_card_items checkout.user = checkout_user checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_billing_address checkout.shipping_method = shipping_method checkout.tracking_code = "tracking_code" checkout.redirect_url = "https://www.example.com" checkout.save() manager = get_plugins_manager() lines = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) subtotal = calculations.checkout_subtotal( manager=manager, checkout_info=checkout_info, lines=lines, address=checkout.shipping_address, ) shipping_price = calculations.checkout_shipping_price( manager=manager, checkout_info=checkout_info, lines=lines, address=checkout.shipping_address, ) total_gross = subtotal.gross + shipping_price.gross - checkout.discount order = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=_prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None, ), user=customer_user if not is_anonymous_user else AnonymousUser(), app=None, manager=manager, ) assert order.total.gross == total_gross flush_post_commit_hooks() gift_card = GiftCard.objects.get() assert ( gift_card.initial_balance == order.lines.get( variant=non_shippable_gift_card_product.variants.first() ).unit_price_gross ) assert GiftCardEvent.objects.filter(gift_card=gift_card, type=GiftCardEvents.BOUGHT) send_notification_mock.assert_called_once_with( checkout_user, None, checkout_user, order.user_email, gift_card, manager, order.channel.slug, resending=False, ) @mock.patch("saleor.giftcard.utils.send_gift_card_notification") @pytest.mark.parametrize("is_anonymous_user", (True, False)) def test_create_order_gift_card_bought_only_shippable_gift_card( send_notification_mock, checkout, shippable_gift_card_product, customer_user, shipping_method, is_anonymous_user, ): checkout_user = None if is_anonymous_user else customer_user checkout_info = fetch_checkout_info(checkout, [], [], get_plugins_manager()) shippable_variant = shippable_gift_card_product.variants.get() add_variant_to_checkout(checkout_info, shippable_variant, 2) checkout.user = checkout_user checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_billing_address checkout.shipping_method = shipping_method checkout.tracking_code = "tracking_code" checkout.redirect_url = "https://www.example.com" checkout.save() manager = get_plugins_manager() lines = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) subtotal = calculations.checkout_subtotal( manager=manager, checkout_info=checkout_info, lines=lines, address=checkout.shipping_address, ) shipping_price = calculations.checkout_shipping_price( manager=manager, checkout_info=checkout_info, lines=lines, address=checkout.shipping_address, ) total_gross = subtotal.gross + shipping_price.gross - checkout.discount order = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=_prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None, ), user=customer_user if not is_anonymous_user else AnonymousUser(), app=None, manager=manager, ) assert order.total.gross == total_gross assert not GiftCard.objects.all() send_notification_mock.assert_not_called() @pytest.mark.parametrize("is_anonymous_user", (True, False)) def test_create_order_gift_card_bought_do_not_fulfill_gift_cards_automatically( site_settings, checkout_with_gift_card_items, customer_user, shipping_method, is_anonymous_user, non_shippable_gift_card_product, ): site_settings.automatically_fulfill_non_shippable_gift_card = False site_settings.save(update_fields=["automatically_fulfill_non_shippable_gift_card"]) checkout_user = None if is_anonymous_user else customer_user checkout = checkout_with_gift_card_items checkout.user = checkout_user checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_billing_address checkout.shipping_method = shipping_method checkout.tracking_code = "tracking_code" checkout.redirect_url = "https://www.example.com" checkout.save() manager = get_plugins_manager() lines = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) subtotal = calculations.checkout_subtotal( manager=manager, checkout_info=checkout_info, lines=lines, address=checkout.shipping_address, ) shipping_price = calculations.checkout_shipping_price( manager=manager, checkout_info=checkout_info, lines=lines, address=checkout.shipping_address, ) total_gross = subtotal.gross + shipping_price.gross - checkout.discount order = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=_prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None, ), user=customer_user if not is_anonymous_user else AnonymousUser(), app=None, manager=manager, ) assert order.total.gross == total_gross assert not GiftCard.objects.all() def test_note_in_created_order(checkout_with_item, address, customer_user): checkout_with_item.shipping_address = address checkout_with_item.note = "test_note" checkout_with_item.tracking_code = "tracking_code" checkout_with_item.redirect_url = "https://www.example.com" checkout_with_item.save() manager = get_plugins_manager() lines = fetch_checkout_lines(checkout_with_item) checkout_info = fetch_checkout_info(checkout_with_item, lines, [], manager) order = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=_prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None, ), user=customer_user, app=None, manager=manager, ) assert order.customer_note == checkout_with_item.note def test_create_order_with_variant_tracking_false( checkout, customer_user, variant_without_inventory_tracking ): variant = variant_without_inventory_tracking checkout.user = customer_user checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_billing_address checkout.tracking_code = "" checkout.redirect_url = "https://www.example.com" checkout.save() manager = get_plugins_manager() checkout_info = fetch_checkout_info(checkout, [], [], manager) add_variant_to_checkout(checkout_info, variant, 10, check_quantity=False) lines = fetch_checkout_lines(checkout) order_data = _prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None ) order_1 = _create_order( checkout_info=checkout_info, checkout_lines=lines, order_data=order_data, user=customer_user, app=None, manager=manager, ) assert order_1.checkout_token == checkout.token @override_settings(LANGUAGE_CODE="fr") def test_create_order_use_translations( checkout_with_item, customer_user, shipping_method ): translated_product_name = "French name" translated_variant_name = "French variant name" checkout = checkout_with_item checkout.user = customer_user checkout.billing_address = customer_user.default_billing_address checkout.shipping_address = customer_user.default_billing_address checkout.shipping_method = shipping_method checkout.tracking_code = "" checkout.redirect_url = "https://www.example.com" checkout.language_code = "fr" checkout.save() manager = get_plugins_manager() lines = fetch_checkout_lines(checkout) checkout_info = fetch_checkout_info(checkout, lines, [], manager) variant = lines[0].variant product = lines[0].product ProductTranslation.objects.create( language_code="fr", product=product, name=translated_product_name, ) ProductVariantTranslation.objects.create( language_code="fr", product_variant=variant, name=translated_variant_name, ) order_data = _prepare_order_data( manager=manager, checkout_info=checkout_info, lines=lines, discounts=None ) order_line = order_data["lines"][0].line assert order_line.translated_product_name == translated_product_name assert order_line.translated_variant_name == translated_variant_name