ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a58b0d63928da515eb049799058d746f90de59a
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json import os import subprocess from typing import Optional from airflow import settings from airflow.exceptions import AirflowException from airflow.models import Connection # Please keep these variables in alphabetical order. from tests.test_utils import AIRFLOW_MAIN_FOLDER from tests.test_utils.logging_command_executor import CommandExecutor GCP_AI_KEY = 'gcp_ai.json' GCP_AUTOML_KEY = 'gcp_automl.json' GCP_BIGQUERY_KEY = 'gcp_bigquery.json' GCP_BIGTABLE_KEY = 'gcp_bigtable.json' GCP_CLOUD_BUILD_KEY = 'gcp_cloud_build.json' GCP_CLOUDSQL_KEY = 'gcp_cloudsql.json' GCP_COMPUTE_KEY = 'gcp_compute.json' GCP_COMPUTE_SSH_KEY = 'gcp_compute_ssh.json' GCP_DATACATALOG_KEY = 'gcp_datacatalog.json' GCP_DATAFLOW_KEY = 'gcp_dataflow.json' GCP_DATAFUSION_KEY = 'gcp_datafusion.json' GCP_DATAPROC_KEY = 'gcp_dataproc.json' GCP_DATASTORE_KEY = 'gcp_datastore.json' GCP_DLP_KEY = 'gcp_dlp.json' GCP_FUNCTION_KEY = 'gcp_function.json' GCP_GCS_KEY = 'gcp_gcs.json' GCP_GCS_TRANSFER_KEY = 'gcp_gcs_transfer.json' GCP_GKE_KEY = "gcp_gke.json" GCP_KMS_KEY = "gcp_kms.json" GCP_LIFE_SCIENCES_KEY = 'gcp_life_sciences.json' GCP_MEMORYSTORE = 'gcp_memorystore.json' GCP_PUBSUB_KEY = "gcp_pubsub.json" GCP_SECRET_MANAGER_KEY = 'gcp_secret_manager.json' GCP_SPANNER_KEY = 'gcp_spanner.json' GCP_STACKDRIVER = 'gcp_stackdriver.json' GCP_TASKS_KEY = 'gcp_tasks.json' GCP_WORKFLOWS_KEY = "gcp_workflows.json" GMP_KEY = 'gmp.json' G_FIREBASE_KEY = 'g_firebase.json' GCP_AWS_KEY = 'gcp_aws.json' KEYPATH_EXTRA = 'extra__google_cloud_platform__key_path' KEYFILE_DICT_EXTRA = 'extra__google_cloud_platform__keyfile_dict' SCOPE_EXTRA = 'extra__google_cloud_platform__scope' PROJECT_EXTRA = 'extra__google_cloud_platform__project' class GcpAuthenticator(CommandExecutor): """ Initialises the authenticator. :param gcp_key: name of the key to use for authentication (see GCP_*_KEY values) :param project_extra: optional extra project parameter passed to google cloud connection """ original_account = None # type: Optional[str] def __init__(self, gcp_key: str, project_extra: Optional[str] = None): super().__init__() self.gcp_key = gcp_key self.project_extra = project_extra self.project_id = self.get_project_id() self.full_key_path = None self._set_key_path() @staticmethod def get_project_id(): return os.environ.get('GCP_PROJECT_ID') def set_key_path_in_airflow_connection(self): """ Set key path in 'google_cloud_default' connection to point to the full key path :return: None """ session = settings.Session() try: conn = session.query(Connection).filter(Connection.conn_id == 'google_cloud_default')[0] extras = conn.extra_dejson extras[KEYPATH_EXTRA] = self.full_key_path if extras.get(KEYFILE_DICT_EXTRA): del extras[KEYFILE_DICT_EXTRA] extras[SCOPE_EXTRA] = 'https://www.googleapis.com/auth/cloud-platform' extras[PROJECT_EXTRA] = self.project_extra if self.project_extra else self.project_id conn.extra = json.dumps(extras) session.commit() except BaseException as ex: self.log.error('Airflow DB Session error: %s', str(ex)) session.rollback() raise finally: session.close() def set_dictionary_in_airflow_connection(self): """ Set dictionary in 'google_cloud_default' connection to contain content of the json service account file. :return: None """ session = settings.Session() try: conn = session.query(Connection).filter(Connection.conn_id == 'google_cloud_default')[0] extras = conn.extra_dejson with open(self.full_key_path) as path_file: content = json.load(path_file) extras[KEYFILE_DICT_EXTRA] = json.dumps(content) if extras.get(KEYPATH_EXTRA): del extras[KEYPATH_EXTRA] extras[SCOPE_EXTRA] = 'https://www.googleapis.com/auth/cloud-platform' extras[PROJECT_EXTRA] = self.project_extra conn.extra = json.dumps(extras) session.commit() except BaseException as ex: self.log.error('Airflow DB Session error: %s', str(ex)) session.rollback() raise finally: session.close() def _set_key_path(self): """ Sets full key path - if GCP_CONFIG_DIR points to absolute directory, it tries to find the key in this directory. Otherwise it assumes that Airflow is running from the directory where configuration is checked out next to airflow directory in config directory it tries to find the key folder in the workspace's config directory. :param : name of the key file to find. """ if "GCP_CONFIG_DIR" in os.environ: gcp_config_dir = os.environ["GCP_CONFIG_DIR"] else: gcp_config_dir = os.path.join(AIRFLOW_MAIN_FOLDER, os.pardir, "config") if not os.path.isdir(gcp_config_dir): self.log.info("The %s is not a directory", gcp_config_dir) key_dir = os.path.join(gcp_config_dir, "keys") if not os.path.isdir(key_dir): self.log.error("The %s is not a directory", key_dir) return key_path = os.path.join(key_dir, self.gcp_key) if not os.path.isfile(key_path): self.log.error("The %s file is missing", key_path) self.full_key_path = key_path def _validate_key_set(self): if self.full_key_path is None: raise AirflowException("The gcp_key is not set!") if not os.path.isfile(self.full_key_path): raise AirflowException( f"The key {self.gcp_key} could not be found. Please copy it to the {self.full_key_path} path." ) def gcp_authenticate(self): """ Authenticate with service account specified via key name. """ self._validate_key_set() self.log.info("Setting the Google Cloud key to %s", self.full_key_path) # Checking if we can authenticate using service account credentials provided self.execute_cmd( [ 'gcloud', 'auth', 'activate-service-account', f'--key-file={self.full_key_path}', f'--project={self.project_id}', ] ) self.set_key_path_in_airflow_connection() def gcp_revoke_authentication(self): """ Change default authentication to none - which is not existing one. """ self._validate_key_set() self.log.info("Revoking authentication - setting it to none") self.execute_cmd(['gcloud', 'config', 'get-value', 'account', f'--project={self.project_id}']) self.execute_cmd(['gcloud', 'config', 'set', 'account', 'none', f'--project={self.project_id}']) def gcp_store_authentication(self): """ Store authentication as it was originally so it can be restored and revoke authentication. """ self._validate_key_set() if not GcpAuthenticator.original_account: GcpAuthenticator.original_account = self.check_output( ['gcloud', 'config', 'get-value', 'account', f'--project={self.project_id}'] ).decode('utf-8') self.log.info("Storing account: to restore it later %s", GcpAuthenticator.original_account) def gcp_restore_authentication(self): """ Restore authentication to the original one. """ self._validate_key_set() if GcpAuthenticator.original_account: self.log.info("Restoring original account stored: %s", GcpAuthenticator.original_account) subprocess.call( [ 'gcloud', 'config', 'set', 'account', GcpAuthenticator.original_account, f'--project={self.project_id}', ] ) else: self.log.info("Not restoring the original Google Cloud account: it is not set")
py
1a58b24873b39ebb82894ffb6e132cf055be37c0
# This file is part of Indico. # Copyright (C) 2002 - 2021 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from indico.modules.events.tracks.controllers import (RHCreateTrack, RHCreateTrackGroup, RHDeleteTrack, RHDeleteTrackGroup, RHDisplayTracks, RHEditProgram, RHEditTrack, RHEditTrackGroup, RHManageTracks, RHSortTracks, RHTracksPDF) from indico.web.flask.util import make_compat_redirect_func from indico.web.flask.wrappers import IndicoBlueprint _bp = IndicoBlueprint('tracks', __name__, template_folder='templates', virtual_template_folder='events/tracks', url_prefix='/event/<int:event_id>') _bp.add_url_rule('/manage/tracks/', 'manage', RHManageTracks) _bp.add_url_rule('/manage/tracks/program', 'edit_program', RHEditProgram, methods=('GET', 'POST')) _bp.add_url_rule('/manage/tracks/create', 'create_track', RHCreateTrack, methods=('GET', 'POST')) _bp.add_url_rule('/manage/tracks/sort', 'sort_tracks', RHSortTracks, methods=('POST',)) _bp.add_url_rule('/manage/tracks/<int:track_id>', 'edit_track', RHEditTrack, methods=('GET', 'POST')) _bp.add_url_rule('/manage/tracks/<int:track_id>', 'delete_track', RHDeleteTrack, methods=('DELETE',)) _bp.add_url_rule('/manage/track-groups/create', 'create_track_group', RHCreateTrackGroup, methods=('GET', 'POST')) _bp.add_url_rule('/manage/track-groups/<int:track_group_id>', 'edit_track_group', RHEditTrackGroup, methods=('GET', 'POST')) _bp.add_url_rule('/manage/track-groups/<int:track_group_id>', 'delete_track_group', RHDeleteTrackGroup, methods=('DELETE',)) _bp.add_url_rule('/program', 'program', RHDisplayTracks) _bp.add_url_rule('/program.pdf', 'program_pdf', RHTracksPDF) _compat_bp = IndicoBlueprint('compat_tracks', __name__, url_prefix='/event/<int:event_id>') _compat_bp.add_url_rule('/manage/program/tracks/<int:track_id>/contributions/', 'track_contribs', make_compat_redirect_func('contributions', 'contribution_list', view_args_conv={'track_id': None}))
py
1a58b29f660076d92a793f2b26f244c2fce25a33
import os import sys import subprocess import random class Plopper: def __init__(self,sourcefile,outputdir): # Initilizing global variables self.sourcefile = sourcefile self.outputdir = outputdir+"/tmp_files" if not os.path.exists(self.outputdir): os.makedirs(self.outputdir) #Creating a dictionary using parameter label and value def createDict(self, x, params): dictVal = {} for p, v in zip(params, x): dictVal[p] = v return(dictVal) #Replace the Markers in the source file with the corresponding Pragma values def plotValues(self, dictVal, inputfile, outputfile): with open(inputfile, "r") as f1: buf = f1.readlines() with open(outputfile, "w") as f2: for line in buf: modify_line = line for key, value in dictVal.items(): if key in modify_line: if value != 'None': #For empty string options modify_line = modify_line.replace('#'+key, str(value)) if modify_line != line: f2.write(modify_line) else: #To avoid writing the Marker f2.write(line) # Function to find the execution time of the interim file, and return the execution time as cost to the search module def findRuntime(self, x, params): interimfile = "" #exetime = float('inf') #exetime = sys.maxsize exetime = 1 counter = random.randint(1, 10001) # To reduce collision increasing the sampling intervals interimfile = self.outputdir+"/"+str(counter)+".c" # Generate intermediate file dictVal = self.createDict(x, params) self.plotValues(dictVal, self.sourcefile, interimfile) #compile and find the execution time tmpbinary = interimfile[:-2] kernel_idx = self.sourcefile.rfind('/') kernel_dir = self.sourcefile[:kernel_idx] cmd1 = "clang -fno-caret-diagnostics " +interimfile +" " + kernel_dir + "/Materials.c " \ + kernel_dir + "/XSutils.c " + " -I" + kernel_dir + \ " -std=c99 -fopenmp -DOPENMP -fno-unroll-loops -O3 -mllvm -polly -mllvm -polly-process-unprofitable -mllvm -polly-use-llvm-names -ffast-math -march=native -L/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib -o "+tmpbinary cmd2 = kernel_dir + "/exe.pl " + tmpbinary #Find the compilation status using subprocess compilation_status = subprocess.run(cmd1, shell=True, stderr=subprocess.PIPE) #Find the execution time only when the compilation return code is zero, else return infinity if compilation_status.returncode == 0 : #and len(compilation_status.stderr) == 0: #Second condition is to check for warnings execution_status = subprocess.run(cmd2, shell=True, stdout=subprocess.PIPE) exetime = float(execution_status.stdout.decode('utf-8')) if exetime == 0: exetime = 1 else: print(compilation_status.stderr) print("compile failed") return exetime #return execution time as cost
py
1a58b4896d90e0439f9134be6f68651796211833
import commands import os import sys class EnvFileReader: def read_file(self, filename, env_var = os.environ): file_lines = open(filename,'r').readlines() line_num = 1 for line in file_lines: # get rid of comments line = line.split("#")[0] # strip whitespace from ends line = line.strip() # check if empty line if line == "": line_num += 1 continue # check for = if line.find("=") == -1: raise "Missing '=' on line %i of file %s" % (line_num,filename) # split into var = val pairs (var,val) = line.split("=",1) # remove whitespace from vars and values var = var.strip() val = val.strip() # search for variables in val done = False while True: var_start_index = val.find("$(") if var_start_index == -1: break var_end_index = val.find(")") if var_end_index == -1: raise "Variable parse error on line %i of file %s" % (line_num,filename) # extract variable value sub_var = val[var_start_index+2:var_end_index] # look for variable in environment, if there rebuild val if os.environ.has_key(sub_var): val = val[0:var_start_index] + os.environ[sub_var] + val[var_end_index+1:] elif env_var.has_key(sub_var): val = val[0:var_start_index] + env_var[sub_var] + val[var_end_index+1:] else: raise "Variable %s not found in environment" % sub_var # print "%s = %s" % (var, val) env_var[var] = val line_num += 1 if __name__ == '__main__' : reader = EnvFileReader() reader.read_file(sys.argv[1]) # for env in os.environ: # print "%s = %s" % (env,os.environ[env])
py
1a58b509f67c2818403c2be4951585a037bf0e3d
"""Utilities for with-statement contexts. See PEP 343.""" import abc import sys import _collections_abc from collections import deque from functools import wraps from types import MethodType __all__ = ["asynccontextmanager", "contextmanager", "closing", "nullcontext", "AbstractContextManager", "AbstractAsyncContextManager", "AsyncExitStack", "ContextDecorator", "ExitStack", "redirect_stdout", "redirect_stderr", "suppress"] class AbstractContextManager(abc.ABC): """An abstract base class for context managers.""" def __enter__(self): """Return `self` upon entering the runtime context.""" return self @abc.abstractmethod def __exit__(self, exc_type, exc_value, traceback): """Raise any exception triggered within the runtime context.""" return None @classmethod def __subclasshook__(cls, C): if cls is AbstractContextManager: return _collections_abc._check_methods(C, "__enter__", "__exit__") return NotImplemented class AbstractAsyncContextManager(abc.ABC): """An abstract base class for asynchronous context managers.""" async def __aenter__(self): """Return `self` upon entering the runtime context.""" return self @abc.abstractmethod async def __aexit__(self, exc_type, exc_value, traceback): """Raise any exception triggered within the runtime context.""" return None @classmethod def __subclasshook__(cls, C): if cls is AbstractAsyncContextManager: return _collections_abc._check_methods(C, "__aenter__", "__aexit__") return NotImplemented class ContextDecorator(object): "A base class or mixin that enables context managers to work as decorators." def _recreate_cm(self): """Return a recreated instance of self. Allows an otherwise one-shot context manager like _GeneratorContextManager to support use as a decorator via implicit recreation. This is a private interface just for _GeneratorContextManager. See issue #11647 for details. """ return self def __call__(self, func): @wraps(func) def inner(*args, **kwds): with self._recreate_cm(): return func(*args, **kwds) return inner class _GeneratorContextManagerBase: """Shared functionality for @contextmanager and @asynccontextmanager.""" def __init__(self, func, args, kwds): self.gen = func(*args, **kwds) self.func, self.args, self.kwds = func, args, kwds # Issue 19330: ensure context manager instances have good docstrings doc = getattr(func, "__doc__", None) if doc is None: doc = type(self).__doc__ self.__doc__ = doc # Unfortunately, this still doesn't provide good help output when # inspecting the created context manager instances, since pydoc # currently bypasses the instance docstring and shows the docstring # for the class instead. # See http://bugs.python.org/issue19404 for more details. class _GeneratorContextManager(_GeneratorContextManagerBase, AbstractContextManager, ContextDecorator): """Helper for @contextmanager decorator.""" def _recreate_cm(self): # _GCM instances are one-shot context managers, so the # CM must be recreated each time a decorated function is # called return self.__class__(self.func, self.args, self.kwds) def __enter__(self): # do not keep args and kwds alive unnecessarily # they are only needed for recreation, which is not possible anymore del self.args, self.kwds, self.func try: return next(self.gen) except StopIteration: raise RuntimeError("generator didn't yield") from None def __exit__(self, type, value, traceback): if type is None: try: next(self.gen) except StopIteration: return False else: raise RuntimeError("generator didn't stop") else: if value is None: # Need to force instantiation so we can reliably # tell if we get the same exception back value = type() try: self.gen.throw(type, value, traceback) except StopIteration as exc: # Suppress StopIteration *unless* it's the same exception that # was passed to throw(). This prevents a StopIteration # raised inside the "with" statement from being suppressed. return exc is not value except RuntimeError as exc: # Don't re-raise the passed in exception. (issue27122) if exc is value: return False # Likewise, avoid suppressing if a StopIteration exception # was passed to throw() and later wrapped into a RuntimeError # (see PEP 479). if type is StopIteration and exc.__cause__ is value: return False raise except: # only re-raise if it's *not* the exception that was # passed to throw(), because __exit__() must not raise # an exception unless __exit__() itself failed. But throw() # has to raise the exception to signal propagation, so this # fixes the impedance mismatch between the throw() protocol # and the __exit__() protocol. # # This cannot use 'except BaseException as exc' (as in the # async implementation) to maintain compatibility with # Python 2, where old-style class exceptions are not caught # by 'except BaseException'. if sys.exc_info()[1] is value: return False raise raise RuntimeError("generator didn't stop after throw()") class _AsyncGeneratorContextManager(_GeneratorContextManagerBase, AbstractAsyncContextManager): """Helper for @asynccontextmanager.""" async def __aenter__(self): try: return await self.gen.__anext__() except StopAsyncIteration: raise RuntimeError("generator didn't yield") from None async def __aexit__(self, typ, value, traceback): if typ is None: try: await self.gen.__anext__() except StopAsyncIteration: return else: raise RuntimeError("generator didn't stop") else: if value is None: value = typ() # See _GeneratorContextManager.__exit__ for comments on subtleties # in this implementation try: await self.gen.athrow(typ, value, traceback) raise RuntimeError("generator didn't stop after throw()") except StopAsyncIteration as exc: return exc is not value except RuntimeError as exc: if exc is value: return False # Avoid suppressing if a StopIteration exception # was passed to throw() and later wrapped into a RuntimeError # (see PEP 479 for sync generators; async generators also # have this behavior). But do this only if the exception wrapped # by the RuntimeError is actully Stop(Async)Iteration (see # issue29692). if isinstance(value, (StopIteration, StopAsyncIteration)): if exc.__cause__ is value: return False raise except BaseException as exc: if exc is not value: raise def contextmanager(func): """@contextmanager decorator. Typical usage: @contextmanager def some_generator(<arguments>): <setup> try: yield <value> finally: <cleanup> This makes this: with some_generator(<arguments>) as <variable>: <body> equivalent to this: <setup> try: <variable> = <value> <body> finally: <cleanup> """ @wraps(func) def helper(*args, **kwds): return _GeneratorContextManager(func, args, kwds) return helper def asynccontextmanager(func): """@asynccontextmanager decorator. Typical usage: @asynccontextmanager async def some_async_generator(<arguments>): <setup> try: yield <value> finally: <cleanup> This makes this: async with some_async_generator(<arguments>) as <variable>: <body> equivalent to this: <setup> try: <variable> = <value> <body> finally: <cleanup> """ @wraps(func) def helper(*args, **kwds): return _AsyncGeneratorContextManager(func, args, kwds) return helper class closing(AbstractContextManager): """Context to automatically close something at the end of a block. Code like this: with closing(<module>.open(<arguments>)) as f: <block> is equivalent to this: f = <module>.open(<arguments>) try: <block> finally: f.close() """ def __init__(self, thing): self.thing = thing def __enter__(self): return self.thing def __exit__(self, *exc_info): self.thing.close() class _RedirectStream(AbstractContextManager): _stream = None def __init__(self, new_target): self._new_target = new_target # We use a list of old targets to make this CM re-entrant self._old_targets = [] def __enter__(self): self._old_targets.append(getattr(sys, self._stream)) setattr(sys, self._stream, self._new_target) return self._new_target def __exit__(self, exctype, excinst, exctb): setattr(sys, self._stream, self._old_targets.pop()) class redirect_stdout(_RedirectStream): """Context manager for temporarily redirecting stdout to another file. # How to send help() to stderr with redirect_stdout(sys.stderr): help(dir) # How to write help() to a file with open('help.txt', 'w') as f: with redirect_stdout(f): help(pow) """ _stream = "stdout" class redirect_stderr(_RedirectStream): """Context manager for temporarily redirecting stderr to another file.""" _stream = "stderr" class suppress(AbstractContextManager): """Context manager to suppress specified exceptions After the exception is suppressed, execution proceeds with the next statement following the with statement. with suppress(FileNotFoundError): os.remove(somefile) # Execution still resumes here if the file was already removed """ def __init__(self, *exceptions): self._exceptions = exceptions def __enter__(self): pass def __exit__(self, exctype, excinst, exctb): # Unlike isinstance and issubclass, CPython exception handling # currently only looks at the concrete type hierarchy (ignoring # the instance and subclass checking hooks). While Guido considers # that a bug rather than a feature, it's a fairly hard one to fix # due to various internal implementation details. suppress provides # the simpler issubclass based semantics, rather than trying to # exactly reproduce the limitations of the CPython interpreter. # # See http://bugs.python.org/issue12029 for more details return exctype is not None and issubclass(exctype, self._exceptions) class _BaseExitStack: """A base class for ExitStack and AsyncExitStack.""" @staticmethod def _create_exit_wrapper(cm, cm_exit): return MethodType(cm_exit, cm) @staticmethod def _create_cb_wrapper(callback, *args, **kwds): def _exit_wrapper(exc_type, exc, tb): callback(*args, **kwds) return _exit_wrapper def __init__(self): self._exit_callbacks = deque() def pop_all(self): """Preserve the context stack by transferring it to a new instance.""" new_stack = type(self)() new_stack._exit_callbacks = self._exit_callbacks self._exit_callbacks = deque() return new_stack def push(self, exit): """Registers a callback with the standard __exit__ method signature. Can suppress exceptions the same way __exit__ method can. Also accepts any object with an __exit__ method (registering a call to the method instead of the object itself). """ # We use an unbound method rather than a bound method to follow # the standard lookup behaviour for special methods. _cb_type = type(exit) try: exit_method = _cb_type.__exit__ except AttributeError: # Not a context manager, so assume it's a callable. self._push_exit_callback(exit) else: self._push_cm_exit(exit, exit_method) return exit # Allow use as a decorator. def enter_context(self, cm): """Enters the supplied context manager. If successful, also pushes its __exit__ method as a callback and returns the result of the __enter__ method. """ # We look up the special methods on the type to match the with # statement. _cm_type = type(cm) _exit = _cm_type.__exit__ result = _cm_type.__enter__(cm) self._push_cm_exit(cm, _exit) return result def callback(self, callback, *args, **kwds): """Registers an arbitrary callback and arguments. Cannot suppress exceptions. """ _exit_wrapper = self._create_cb_wrapper(callback, *args, **kwds) # We changed the signature, so using @wraps is not appropriate, but # setting __wrapped__ may still help with introspection. _exit_wrapper.__wrapped__ = callback self._push_exit_callback(_exit_wrapper) return callback # Allow use as a decorator def _push_cm_exit(self, cm, cm_exit): """Helper to correctly register callbacks to __exit__ methods.""" _exit_wrapper = self._create_exit_wrapper(cm, cm_exit) self._push_exit_callback(_exit_wrapper, True) def _push_exit_callback(self, callback, is_sync=True): self._exit_callbacks.append((is_sync, callback)) # Inspired by discussions on http://bugs.python.org/issue13585 class ExitStack(_BaseExitStack, AbstractContextManager): """Context manager for dynamic management of a stack of exit callbacks. For example: with ExitStack() as stack: files = [stack.enter_context(open(fname)) for fname in filenames] # All opened files will automatically be closed at the end of # the with statement, even if attempts to open files later # in the list raise an exception. """ def __enter__(self): return self def __exit__(self, *exc_details): received_exc = exc_details[0] is not None # We manipulate the exception state so it behaves as though # we were actually nesting multiple with statements frame_exc = sys.exc_info()[1] def _fix_exception_context(new_exc, old_exc): # Context may not be correct, so find the end of the chain while 1: exc_context = new_exc.__context__ if exc_context is old_exc: # Context is already set correctly (see issue 20317) return if exc_context is None or exc_context is frame_exc: break new_exc = exc_context # Change the end of the chain to point to the exception # we expect it to reference new_exc.__context__ = old_exc # Callbacks are invoked in LIFO order to match the behaviour of # nested context managers suppressed_exc = False pending_raise = False while self._exit_callbacks: is_sync, cb = self._exit_callbacks.pop() assert is_sync try: if cb(*exc_details): suppressed_exc = True pending_raise = False exc_details = (None, None, None) except: new_exc_details = sys.exc_info() # simulate the stack of exceptions by setting the context _fix_exception_context(new_exc_details[1], exc_details[1]) pending_raise = True exc_details = new_exc_details if pending_raise: try: # bare "raise exc_details[1]" replaces our carefully # set-up context fixed_ctx = exc_details[1].__context__ raise exc_details[1] except BaseException: exc_details[1].__context__ = fixed_ctx raise return received_exc and suppressed_exc def close(self): """Immediately unwind the context stack.""" self.__exit__(None, None, None) # Inspired by discussions on https://bugs.python.org/issue29302 class AsyncExitStack(_BaseExitStack, AbstractAsyncContextManager): """Async context manager for dynamic management of a stack of exit callbacks. For example: async with AsyncExitStack() as stack: connections = [await stack.enter_async_context(get_connection()) for i in range(5)] # All opened connections will automatically be released at the # end of the async with statement, even if attempts to open a # connection later in the list raise an exception. """ @staticmethod def _create_async_exit_wrapper(cm, cm_exit): return MethodType(cm_exit, cm) @staticmethod def _create_async_cb_wrapper(callback, *args, **kwds): async def _exit_wrapper(exc_type, exc, tb): await callback(*args, **kwds) return _exit_wrapper async def enter_async_context(self, cm): """Enters the supplied async context manager. If successful, also pushes its __aexit__ method as a callback and returns the result of the __aenter__ method. """ _cm_type = type(cm) _exit = _cm_type.__aexit__ result = await _cm_type.__aenter__(cm) self._push_async_cm_exit(cm, _exit) return result def push_async_exit(self, exit): """Registers a coroutine function with the standard __aexit__ method signature. Can suppress exceptions the same way __aexit__ method can. Also accepts any object with an __aexit__ method (registering a call to the method instead of the object itself). """ _cb_type = type(exit) try: exit_method = _cb_type.__aexit__ except AttributeError: # Not an async context manager, so assume it's a coroutine function self._push_exit_callback(exit, False) else: self._push_async_cm_exit(exit, exit_method) return exit # Allow use as a decorator def push_async_callback(self, callback, *args, **kwds): """Registers an arbitrary coroutine function and arguments. Cannot suppress exceptions. """ _exit_wrapper = self._create_async_cb_wrapper(callback, *args, **kwds) # We changed the signature, so using @wraps is not appropriate, but # setting __wrapped__ may still help with introspection. _exit_wrapper.__wrapped__ = callback self._push_exit_callback(_exit_wrapper, False) return callback # Allow use as a decorator async def aclose(self): """Immediately unwind the context stack.""" await self.__aexit__(None, None, None) def _push_async_cm_exit(self, cm, cm_exit): """Helper to correctly register coroutine function to __aexit__ method.""" _exit_wrapper = self._create_async_exit_wrapper(cm, cm_exit) self._push_exit_callback(_exit_wrapper, False) async def __aenter__(self): return self async def __aexit__(self, *exc_details): received_exc = exc_details[0] is not None # We manipulate the exception state so it behaves as though # we were actually nesting multiple with statements frame_exc = sys.exc_info()[1] def _fix_exception_context(new_exc, old_exc): # Context may not be correct, so find the end of the chain while 1: exc_context = new_exc.__context__ if exc_context is old_exc: # Context is already set correctly (see issue 20317) return if exc_context is None or exc_context is frame_exc: break new_exc = exc_context # Change the end of the chain to point to the exception # we expect it to reference new_exc.__context__ = old_exc # Callbacks are invoked in LIFO order to match the behaviour of # nested context managers suppressed_exc = False pending_raise = False while self._exit_callbacks: is_sync, cb = self._exit_callbacks.pop() try: if is_sync: cb_suppress = cb(*exc_details) else: cb_suppress = await cb(*exc_details) if cb_suppress: suppressed_exc = True pending_raise = False exc_details = (None, None, None) except: new_exc_details = sys.exc_info() # simulate the stack of exceptions by setting the context _fix_exception_context(new_exc_details[1], exc_details[1]) pending_raise = True exc_details = new_exc_details if pending_raise: try: # bare "raise exc_details[1]" replaces our carefully # set-up context fixed_ctx = exc_details[1].__context__ raise exc_details[1] except BaseException: exc_details[1].__context__ = fixed_ctx raise return received_exc and suppressed_exc class nullcontext(AbstractContextManager): """Context manager that does no additional processing. Used as a stand-in for a normal context manager, when a particular block of code is only sometimes used with a normal context manager: cm = optional_cm if condition else nullcontext() with cm: # Perform operation, using optional_cm if condition is True """ def __init__(self, enter_result=None): self.enter_result = enter_result def __enter__(self): return self.enter_result def __exit__(self, *excinfo): pass
py
1a58b6c6e6f106876df931ebe620e79f4785efd3
from tkinter import * root=Tk() root.title("CAR RENTAL RECEIPT") root.geometry('700x800') #Labels g1=Label(root, text="CAR RENTAL RECEIPT", font="Calibri 18 bold") l1=Label(root, text="Date: ") e1=Entry(root,width=30, borderwidth=2) l2=Label(root, text="Receipt #: ") e2=Entry(root,width=30, borderwidth=2) l3=Label(root, text="Rental Company Info", font="Calibri 12 bold") l3_1=Label(root, text="Company: ") e3_1=Entry(root,width=30, borderwidth=2) l3_2=Label(root, text="Representative: ") e3_2=Entry(root,width=30, borderwidth=2) l3_3=Label(root, text="Location: ") e3_3=Entry(root,width=30, borderwidth=2) l3_4=Label(root, text="City/State/ZIP: ") e3_4=Entry(root,width=30, borderwidth=2) l3_5=Label(root, text="Phone: ") e3_5=Entry(root,width=30, borderwidth=2) l4=Label(root, text="Lessee Info", font="Calibri 12 bold") l4_1=Label(root, text="License: ") e4_1=Entry(root,width=30, borderwidth=2) l4_2=Label(root, text="Representative: ") e4_2=Entry(root,width=30, borderwidth=2) l4_3=Label(root, text="Address: ") e4_3=Entry(root,width=30, borderwidth=2) l4_4=Label(root, text="City/State/ZIP: ") e4_4=Entry(root,width=30, borderwidth=2) l4_5=Label(root, text="Phone: ") e4_5=Entry(root,width=30, borderwidth=2) g2=Label(root, text="Vehicle Information", font="Calibri 18 bold") l5_1=Label(root, text="VIN: ") e5_1=Entry(root,width=30, borderwidth=2) l5_2=Label(root, text="Make: ") e5_2=Entry(root,width=30, borderwidth=2) l5_3=Label(root, text="Year: ") e5_3=Entry(root,width=30, borderwidth=2) l5_4=Label(root, text="Color: ") e5_4=Entry(root,width=30, borderwidth=2) l6_1=Label(root, text="Registration: ") e6_1=Entry(root,width=30, borderwidth=2) l6_2=Label(root, text="Model: ") e6_2=Entry(root,width=30, borderwidth=2) l6_3=Label(root, text="Mileage: ") e6_3=Entry(root,width=30, borderwidth=2) h1=Label(root, text="VIN", font="Calibri 12 bold") h1_1=Entry(root,width=14, borderwidth=2) h1_2=Entry(root,width=14, borderwidth=2) h1_3=Entry(root,width=14, borderwidth=2) h2=Label(root, text="Cost/Day", font="Calibri 12 bold") h2_1=Entry(root,width=12, borderwidth=2) h2_2=Entry(root,width=12, borderwidth=2) h2_3=Entry(root,width=12, borderwidth=2) h3=Label(root, text="# of Days", font="Calibri 12 bold") h3_1=Entry(root,width=19, borderwidth=2) h3_2=Entry(root,width=19, borderwidth=2) h3_3=Entry(root,width=19, borderwidth=2) h4=Label(root, text="Additional Costs", font="Calibri 12 bold") h4_1=Entry(root,width=18, borderwidth=2) h4_2=Entry(root,width=18, borderwidth=2) h4_3=Entry(root,width=18, borderwidth=2) h4l1=Label(root, text="Subtotal: ") h4l2=Label(root, text="Tax (%): ") h4l3=Label(root, text="Total: ") h4l4=Label(root, text="Amount paid: ") h4e1=Entry(root,width=8, borderwidth=2) h4e2=Entry(root,width=9, borderwidth=2) h4e3=Entry(root,width=10, borderwidth=2) h4e4=Entry(root,width=4, borderwidth=2) h5=Label(root, text="Line Total", font="Calibri 12 bold") h5_1=Entry(root,width=16, borderwidth=2) h5_2=Entry(root,width=16, borderwidth=2) h5_3=Entry(root,width=16, borderwidth=2) h5_4=Entry(root,width=16, borderwidth=2) h5_5=Entry(root,width=16, borderwidth=2) h5_6=Entry(root,width=16, borderwidth=2) h5_7=Entry(root,width=16, borderwidth=2) xl1=Label(root, text="Payment Method: ") ck1=Checkbutton(root, text='Cash. ', onvalue=1, offvalue=0) ck2=Checkbutton(root, text='Check No.: ', onvalue=1, offvalue=0) ent1=Entry(root,width=31, borderwidth=2) ck3=Checkbutton(root, text='Credit No.: ', onvalue=1, offvalue=0) ent3=Entry(root,width=41, borderwidth=2) ck4=Checkbutton(root, text='Other.: ', onvalue=1, offvalue=0) ent4=Entry(root,width=44, borderwidth=2) lasl1=Label(root, text="Authorized Signature: ", font="Calibri 10 bold") lasl2=Label(root, text="Representative Name: ", font="Calibri 10") lase1=Entry(root,width=22, borderwidth=2) lase2=Entry(root,width=20, borderwidth=2) #Positioning l1.place(x=10, y=45) e1.place(x=50, y=45) l2.place(x=10, y=75) e2.place(x=73, y=75) l3.place(x=10, y=110) l3_1.place(x=10, y=150) l3_2.place(x=10, y=180) l3_3.place(x=10, y=210) l3_4.place(x=10, y=240) l3_5.place(x=10, y=270) e3_1.place(x=110, y=150) e3_2.place(x=110, y=180) e3_3.place(x=110, y=210) e3_4.place(x=110, y=240) e3_5.place(x=110, y=270) l4.place(x=320, y=110) l4_1.place(x=320, y=150) l4_2.place(x=320, y=180) l4_3.place(x=320, y=210) l4_4.place(x=320, y=240) l4_5.place(x=320, y=270) e4_1.place(x=420, y=150) e4_2.place(x=420, y=180) e4_3.place(x=420, y=210) e4_4.place(x=420, y=240) e4_5.place(x=420, y=270) g1.place(x=240, y=0) g2.place(x=240, y=300) l5_1.place(x=10, y=360) l5_2.place(x=10, y=390) l5_3.place(x=10, y=420) l5_4.place(x=10, y=450) e5_1.place(x=60, y=360) e5_2.place(x=60, y=390) e5_3.place(x=60, y=420) e5_4.place(x=60, y=450) l6_1.place(x=320, y=360) l6_2.place(x=320, y=390) l6_3.place(x=320, y=420) e6_1.place(x=420, y=360) e6_2.place(x=420, y=390) e6_3.place(x=420, y=420) h1.place(x=70, y=490) h2.place(x=160, y=490) h3.place(x=290, y=490) h4.place(x=400, y=490) h5.place(x=560, y=490) h1_1.place(x=40, y=520) h1_2.place(x=40, y=545) h1_3.place(x=40, y=570) h2_1.place(x=150, y=520) h2_2.place(x=150, y=545) h2_3.place(x=150, y=570) h3_1.place(x=260, y=520) h3_2.place(x=260, y=545) h3_3.place(x=260, y=570) h4_1.place(x=400, y=520) h4_2.place(x=400, y=545) h4_3.place(x=400, y=570) h4l1.place(x=400, y=595) h4l2.place(x=400, y=620) h4l3.place(x=400, y=645) h4l4.place(x=400, y=670) h4e1.place(x=460, y=595) h4e2.place(x=454, y=620) h4e3.place(x=447, y=645) h4e4.place(x=483, y=670) h5_1.place(x=540, y=520) h5_2.place(x=540, y=545) h5_3.place(x=540, y=570) h5_4.place(x=540, y=595) h5_5.place(x=540, y=620) h5_6.place(x=540, y=645) h5_7.place(x=540, y=670) xl1.place(x=40, y=595) ck1.place(x=40, y=620) ck2.place(x=100, y=620) ck3.place(x=40, y=645) ck4.place(x=40, y=670) ent1.place(x=188, y=623) ent3.place(x=128, y=649) ent4.place(x=110, y=675) lasl1.place(x=380, y=710) lasl2.place(x=390, y=735) lase1.place(x=505, y=710) lase2.place(x=518, y=735) root.mainloop()
py
1a58b703d201a6129423d0c248f4ecbf3d362fb8
# Copyright (c) 2016 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # # See the License for the specific language governing permissions and # limitations under the License. """ test_devstack ------------- Throw errors if we do not actually detect the services we're supposed to. """ import os from testscenarios import load_tests_apply_scenarios as load_tests # noqa from openstack.tests.functional.cloud import base class TestDevstack(base.BaseFunctionalTestCase): scenarios = [ ('designate', dict(env='DESIGNATE', service='dns')), ('heat', dict(env='HEAT', service='orchestration')), ('magnum', dict(env='MAGNUM', service='container-infra')), ('neutron', dict(env='NEUTRON', service='network')), ('octavia', dict(env='OCTAVIA', service='load-balancer')), ('swift', dict(env='SWIFT', service='object-store')), ] def test_has_service(self): if os.environ.get( 'OPENSTACKSDK_HAS_{env}'.format(env=self.env), '0') == '1': self.assertTrue(self.user_cloud.has_service(self.service)) class TestKeystoneVersion(base.BaseFunctionalTestCase): def test_keystone_version(self): use_keystone_v2 = os.environ.get('OPENSTACKSDK_USE_KEYSTONE_V2', False) if use_keystone_v2 and use_keystone_v2 != '0': self.assertEqual('2.0', self.identity_version) else: self.assertEqual('3', self.identity_version)
py
1a58b878fd841c70963bdd0b602071fed6687112
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-06-16 14:29 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0001_initial'), ] operations = [ migrations.AlterField( model_name='postcommentmodel', name='createTime', field=models.FloatField(default=1497623356.988723, verbose_name='Comment create time'), ), migrations.AlterField( model_name='postmodel', name='createTime', field=models.FloatField(default=1497623356.9878757, verbose_name='Post create time'), ), migrations.AlterField( model_name='postmodel', name='lastMessTime', field=models.FloatField(default=1497623356.9879315, verbose_name='Last messege time'), ), ]
py
1a58b87c5d2fa8f42d0bd1b6fa61414fa087b456
class utilidades: def __init__(self, carne, nombre): self.carne = carne self.nombre = nombre def retorno(self, carne, nombre):
py
1a58b9f7a3961893cdca006bae7d3dddcffd2979
# -*- coding: utf-8 -*- from distutils.core import setup from setuptools import find_packages with open('.meta/packages') as reqs: install_requires = reqs.read().split('\n') setup( name='rpihelper', version='0.0.3', author='Nikita Grishko', author_email='[email protected]', url='https://github.com/Gr1N/rpihelper', packages=find_packages(), include_package_data=True, zip_safe=False, install_requires=install_requires, classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', ], scripts=[ 'bin/rqscheduletasks', ], )
py
1a58ba0411158d5441049f2066374144fa2ff4a1
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup, find_packages # Always prefer setuptools over distutils from codecs import open # To use a consistent encoding from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the relevant file with open(path.join(here, 'DESCRIPTION.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='pyxmlescpos', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/development.html#single-sourcing-the-version version='0.1.0', description='Print XML-defined Receipts on ESC/POS Receipt Printers', long_description=long_description, # The project's main homepage. url='https://github.com/fvdsn/py-xml-escpos', download_url = 'https://github.com/fvdsn/py-xml-escpos/tarball/0.1.0', # Author details author='Frédéric van der Essen & Manuel F Martinez', author_email='[email protected]', # Choose your license license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Topic :: Printing', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', ], # What does your project relate to? keywords='printing receipt xml escpos', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['contrib', 'docs', 'tests*']), # List run-time dependencies here. These will be installed by pip when your # project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/technical.html#install-requires-vs-requirements-files install_requires=['pyusb', 'qrcode'], # List additional groups of dependencies here (e.g. development dependencies). # You can install these using the following syntax, for example: # $ pip install -e .[dev,test] # extras_require = { # 'dev': ['check-manifest'], # 'test': ['coverage'], # }, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. # package_data={ # 'sample': ['package_data.dat'], # }, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. # see http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' # data_files=[('my_data', ['data/data_file'])], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. # entry_points={ # 'console_scripts': [ # 'sample=sample:main', # ], # }, )
py
1a58bb018b9bc6ee37b64beeba91cf9e83b27934
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ FILE: sample_get_operations_async.py DESCRIPTION: This sample demonstrates how to list/get all document model operations (succeeded, in-progress, failed) associated with the Form Recognizer resource. Kinds of operations returned are "documentModelBuild", "documentModelCompose", and "documentModelCopyTo". Note that operation information only persists for 24 hours. If the operation was successful, the document model can be accessed using get_model or list_models APIs. USAGE: python sample_get_operations_async.py Set the environment variables with your own values before running the sample: 1) AZURE_FORM_RECOGNIZER_ENDPOINT - the endpoint to your Cognitive Services resource. 2) AZURE_FORM_RECOGNIZER_KEY - your Form Recognizer API key """ import os import asyncio async def sample_get_operations_async(): # [START list_operations_async] from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import DocumentModelAdministrationClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_model_admin_client = DocumentModelAdministrationClient(endpoint=endpoint, credential=AzureKeyCredential(key)) async with document_model_admin_client: operations = document_model_admin_client.list_operations() print("The following document model operations exist under my resource:") async for operation in operations: print("\nOperation ID: {}".format(operation.operation_id)) print("Operation kind: {}".format(operation.kind)) print("Operation status: {}".format(operation.status)) print("Operation percent completed: {}".format(operation.percent_completed)) print("Operation created on: {}".format(operation.created_on)) print("Operation last updated on: {}".format(operation.last_updated_on)) print("Resource location of successful operation: {}".format(operation.resource_location)) # [END list_operations_async] # [START get_operation_async] # Get an operation by ID try: first_operation = await operations.__anext__() print("\nGetting operation info by ID: {}".format(first_operation.operation_id)) operation_info = await document_model_admin_client.get_operation(first_operation.operation_id) if operation_info.status == "succeeded": print("My {} operation is completed.".format(operation_info.kind)) result = operation_info.result print("Model ID: {}".format(result.model_id)) elif operation_info.status == "failed": print("My {} operation failed.".format(operation_info.kind)) error = operation_info.error print("{}: {}".format(error.code, error.message)) else: print("My operation status is {}".format(operation_info.status)) except StopAsyncIteration: print("No operations found.") # [END get_operation_async] async def main(): await sample_get_operations_async() if __name__ == '__main__': asyncio.run(main())
py
1a58bc72b9bf36300abce9a8af8ae079cc05996f
from .scheduler import Scheduler from .simplescheduler import SimpleScheduler from .threadedscheduler import ThreadedScheduler
py
1a58bd4a5fe02f510ac1ada32082afe10eb8a1ca
import hashlib import uuid from django.conf import settings from django.core.exceptions import ValidationError from django.db import models from django.urls.base import reverse_lazy from django.utils import timezone from core.colors import random_color from user_management.models import Organization class ClientUser(models.Model): """ A user of the software. Users are always anonymized and only represented by a hash value, so privacy can be guaranteed. Hashing will use the provided object's __repr__ method, so please make sure that the __repr__ method outputs a value that is unique to the user and unchanging. """ id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) name = models.CharField(max_length=255) created_at = models.DateTimeField(auto_now_add=True) nickname = models.CharField(max_length=255, blank=True, null=True) def __repr__(self): return self.name def __str__(self): return self.name @property def short_name(self): if self.nickname is None: return self.name[:8] return self.name[:8] + " " + self.nickname @classmethod def user_from_object(cls, user_object, organization: Organization = None, organization_id: str = None): if organization: user_hash = cls.hash_from_object(user_object, str(organization.id)) elif organization_id: user_hash = cls.hash_from_object(user_object, organization_id) else: raise AttributeError("You need to specify an Organization") instance, created = cls.objects.get_or_create(name=user_hash) return instance @classmethod def hash_from_object(cls, hashable_object, organization_id: str): string_to_hash = str(hashable_object) + str(organization_id) return hashlib.sha256(settings.HASH_SALT.encode() + string_to_hash.encode()).hexdigest() class App(models.Model): """ A collection of FunctionalityGroups. """ id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) name = models.CharField(max_length=140) slug = models.SlugField(max_length=100) created_at = models.DateTimeField(auto_now_add=True) organization = models.ForeignKey(Organization, on_delete=models.CASCADE) def __str__(self): return "{}.{}".format(self.organization, self.slug) def get_absolute_url(self): return reverse_lazy("app-detail", kwargs={"app_id": self.id}) class Functionality(models.Model): """ A behaviour, functionality, or program option to be managed. A Functionality contains one or more Flavor objects that represent individual variations of one functionality. This is helpful when you want to A/B test multiple incarnations of a functionality. """ id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) name = models.CharField(max_length=140) slug = models.SlugField(max_length=100) created_at = models.DateTimeField(auto_now_add=True) app = models.ForeignKey(App, on_delete=models.CASCADE) def __str__(self): return "{}.{}".format(self.app, self.slug) class Meta: verbose_name_plural = "Functionalities" @property def slug_as_scorecase(self): return self.slug.replace("-", "_") @property def number_of_users(self): return Availability.objects.filter(flavor__functionality=self).count() @property def number_of_enabled_users(self): return Availability.objects.filter(flavor__functionality=self, is_enabled=True).count() def get_absolute_url(self): return reverse_lazy("functionality-detail", kwargs={"pk": self.id}) def get_default_tag(self): from tagging.models import Tag return Tag.objects.get_or_create(name="Default", organization=self.app.organization)[0] class Flavor(models.Model): """ A specific version of a functionality. Add more then one Flavor to a Functionality to A/B test. One will be randomly activated depending on its enable_probability. """ id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) name = models.CharField(max_length=140) slug = models.SlugField(max_length=100) functionality = models.ForeignKey(Functionality, on_delete=models.CASCADE) client_users = models.ManyToManyField(ClientUser, through="Availability") color = models.CharField(max_length=6, default=random_color) created_at = models.DateTimeField(auto_now_add=True) def __str__(self): return "{}.{}".format(self.functionality, self.slug) @property def number_of_users(self): return self.availability_set.count() @property def number_of_enabled_users(self): return self.availability_set.filter(is_enabled=True).count() @property def number_of_disabled_users(self): return self.availability_set.filter(is_enabled=False).count() @property def single_width_percent(self): try: return float(self.number_of_enabled_users) / self.number_of_users * 100 except ZeroDivisionError: return 1 * 100 @property def width_percent(self): try: return float(self.number_of_enabled_users) / self.functionality.number_of_users * 100 except ZeroDivisionError: return 1 * 100 def get_absolute_url(self): return reverse_lazy("functionality-detail", kwargs={"pk": self.functionality.id}) class RolloutStrategy(models.Model): """ A description of how a feature should be rolled out, depending on a tag. """ id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) functionality = models.ForeignKey(Functionality, on_delete=models.CASCADE) possible_flavors = models.ManyToManyField(Flavor, blank=False) tag = models.ForeignKey("tagging.Tag", on_delete=models.CASCADE, null=True, blank=True) start_at = models.DateTimeField(default=timezone.now) max_enabled_users = models.IntegerField(default=0) priority = models.PositiveSmallIntegerField(default=0) RECALL_FUNCTIONALITY = "recall" PAUSE_ROLLOUT = "pause_rollout" DEFINED_BY_RELEASES = "defined_by_releases" ENABLE_GLOBALLY = "enable_globally" STRATEGY_CHOICES = ( (RECALL_FUNCTIONALITY, "Recall"), (PAUSE_ROLLOUT, "Roll Out Paused"), (DEFINED_BY_RELEASES, "Release-Driven"), (ENABLE_GLOBALLY, "Enabled Globally"), ) strategy = models.CharField(max_length=50, choices=STRATEGY_CHOICES, default=DEFINED_BY_RELEASES) class Meta: ordering = ["start_at"] unique_together = ("tag", "functionality") def get_absolute_url(self): return reverse_lazy("functionality-detail", kwargs={"pk": self.functionality.id}) def clean(self): super().clean() # make sure only the functionality's flavors are selected for flavor in self.possible_flavors.all(): if flavor.functionality != self.functionality: raise ValidationError({"possible_flavors": "Only Related Flavors can be selected"}) # make sure only the organization's tags are selected if self.tag and self.functionality and self.tag.organization != self.functionality.app.organization: raise ValidationError({"tag": "Only your organization's tags can be selected"}) class Availability(models.Model): """ A Flavor that is enabled for a specific user. """ id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) user = models.ForeignKey(ClientUser, on_delete=models.CASCADE) flavor = models.ForeignKey(Flavor, on_delete=models.CASCADE) is_enabled = models.BooleanField(default=False) created_at = models.DateTimeField(auto_now_add=True) def __str__(self): return "{}.{}".format(self.flavor, self.user) class Meta: verbose_name_plural = "Availabilities"
py
1a58bdb2e904ff044bf4ec00bf8ddc92c386dd26
import numpy as np from torch import nn import torch from encoder.params_model import * from encoder.params_data import * from encoder.data_objects.iemocap_dataset import emo_categories class EmoEncoder(nn.Module): def __init__(self, device): super().__init__() self.device = device self.lstm = nn.LSTM(input_size=mel_n_channels, hidden_size=model_hidden_size, num_layers=model_num_layers, batch_first=True).to(device) self.linear = nn.Linear(in_features=model_hidden_size, out_features=model_embedding_size).to(device) self.relu = torch.nn.ReLU().to(device) self.linear_cls = nn.Linear(in_features=model_embedding_size, out_features=len(emo_categories)).to(device) def forward(self, utterances, hidden_init=None): """ Computes the embeddings of a batch of utterance spectrograms. :param utterances: batch of mel-scale filterbanks of same duration as a tensor of shape (batch_size, n_frames, n_channels) :param hidden_init: initial hidden state of the LSTM as a tensor of shape (num_layers, batch_size, hidden_size). Will default to a tensor of zeros if None. :return: the embeddings as a tensor of shape (batch_size, embedding_size) """ # Pass the input through the LSTM layers and retrieve all outputs, the final hidden state # and the final cell state. out, (hidden, cell) = self.lstm(utterances, hidden_init) # We take only the hidden state of the last layer embeds_raw = self.relu(self.linear(hidden[-1])) # L2-normalize it embeds = embeds_raw / (torch.norm(embeds_raw, dim=1, keepdim=True) + 1e-5) pred = self.linear_cls(embeds) return embeds, pred class StackedBiLSTMEmoEncoder(nn.Module): def __init__(self, device): super(StackedBiLSTMEmoEncoder, self).__init__() self.device = device self.lstm1 = nn.LSTM(input_size=mel_n_channels, hidden_size=512, bidirectional=True, batch_first=True).to(device) self.lstm2 = nn.LSTM(input_size=1024, hidden_size=256, bidirectional=True, batch_first=True).to(device) self.linear = nn.Linear(in_features=512, out_features=512).to(device) self.tanh = nn.Tanh().to(device) self.linear_cls = nn.Linear(in_features=512, out_features=len(emo_categories)).to(device) def forward(self, utterances, hidden_init=None): o, _ = self.lstm1(utterances, hidden_init) o, (h, c) = self.lstm2(o) # Take the hidden state of last layers and concatenate the two directions h = torch.transpose(h[-2:], 0, 1) h = h.reshape([h.shape[0], -1]) embeds = self.tanh(self.linear(h)) pred = self.linear_cls(embeds) return embeds, pred
py
1a58bed4df2072bea30a837f2f6613409753b6e5
import torch import random import numpy as np from collections import deque from snake_gameai import SnakeGameAI, Direction, Point, BLOCK_SIZE from model import Linear_QNet, QTrainer from Helper import plot MAX_MEMORY = 100_000 BATCH_SIZE = 1000 LR = 0.001 class Agent: def __init__(self): self.n_game = 0 self.epsilon = 0 # Randomness self.gamma = 0.9 # discount rate self.memory = deque(maxlen=MAX_MEMORY) # popleft() self.model = Linear_QNet(11, 256, 3) self.trainer = QTrainer(self.model, lr=LR, gamma=self.gamma) # for n,p in self.model.named_parameters(): # print(p.device,'',n) # self.model.to('cuda') # for n,p in self.model.named_parameters(): # print(p.device,'',n) # state (11 Values) # [ danger straight, danger right, danger left, # # direction left, direction right, # direction up, direction down # # food left,food right, # food up, food down] def get_state(self, game): head = game.snake[0] point_l = Point(head.x - BLOCK_SIZE, head.y) point_r = Point(head.x + BLOCK_SIZE, head.y) point_u = Point(head.x, head.y - BLOCK_SIZE) point_d = Point(head.x, head.y + BLOCK_SIZE) dir_l = game.direction == Direction.LEFT dir_r = game.direction == Direction.RIGHT dir_u = game.direction == Direction.UP dir_d = game.direction == Direction.DOWN state = [ # Danger Straight (dir_u and game.is_collision(point_u)) or (dir_d and game.is_collision(point_d)) or (dir_l and game.is_collision(point_l)) or (dir_r and game.is_collision(point_r)), # Danger right (dir_u and game.is_collision(point_r)) or (dir_d and game.is_collision(point_l)) or (dir_u and game.is_collision(point_u)) or (dir_d and game.is_collision(point_d)), # Danger Left (dir_u and game.is_collision(point_r)) or (dir_d and game.is_collision(point_l)) or (dir_r and game.is_collision(point_u)) or (dir_l and game.is_collision(point_d)), # Move Direction dir_l, dir_r, dir_u, dir_d, # Food Location game.food.x < game.head.x, # food is in left game.food.x > game.head.x, # food is in right game.food.y < game.head.y, # food is up game.food.y > game.head.y # food is down ] return np.array(state, dtype=int) def remember(self, state, action, reward, next_state, done): # popleft if memory exceed self.memory.append((state, action, reward, next_state, done)) def train_long_memory(self): if (len(self.memory) > BATCH_SIZE): mini_sample = random.sample(self.memory, BATCH_SIZE) else: mini_sample = self.memory states, actions, rewards, next_states, dones = zip(*mini_sample) self.trainer.train_step(states, actions, rewards, next_states, dones) def train_short_memory(self, state, action, reward, next_state, done): self.trainer.train_step(state, action, reward, next_state, done) # TODO: What is the role of epsilon in this method? Feel free to reference the OpenAI Gym RL tutorial from 02/09/22 """ The role of epsilon is to introduce randomness, of choosing random instead of best action. This helps our model explore more to collect more and to allow the AI to explore other random options rather than the immediate best one, without heavily depending on the information it already has prior. In this specific method, higher epsilon equals more chance of exploration and more chance of random choice. """ def get_action(self, state): # random moves: tradeoff explotation / exploitation self.epsilon = 80 - self.n_game final_move = [0, 0, 0] if(random.randint(0, 200) < self.epsilon): move = random.randint(0, 2) final_move[move] = 1 else: state0 = torch.tensor(state, dtype=torch.float).cpu() prediction = self.model(state0).cpu() # prediction by model move = torch.argmax(prediction).item() final_move[move] = 1 return final_move # TODO: Write a couple sentences describing the training process coded below. """ This is where the program does most of the work. This code below initalizes all variables. Sets the agent class and and game class. The the while loop that cycles over after every move that: - grabs the state of the game - grabs the player movement - performs the move - grabs the updated and updated state of the game After the infinite while loop comes and if statement that IF the game is 'done,' we train the long term memory, the game resets and prints its status, counts and updates total stats and then repeats the loop all over again. """ def train(): plot_scores = [] plot_mean_scores = [] total_score = 0 record = 0 agent = Agent() game = SnakeGameAI() while True: # Get Old state state_old = agent.get_state(game) # get move final_move = agent.get_action(state_old) # perform move and get new state reward, done, score = game.play_step(final_move) state_new = agent.get_state(game) # train short memory agent.train_short_memory( state_old, final_move, reward, state_new, done) # remember agent.remember(state_old, final_move, reward, state_new, done) if done: # Train long memory,plot result game.reset() agent.n_game += 1 agent.train_long_memory() if(score > reward): # new High score reward = score agent.model.save() print('Game:', agent.n_game, 'Score:', score, 'Record:', record) plot_scores.append(score) total_score += score mean_score = total_score / agent.n_game plot_mean_scores.append(mean_score) plot(plot_scores, plot_mean_scores) if(__name__ == "__main__"): train() # TODO: Write a brief paragraph on your thoughts about this implementation. # Was there anything surprising, interesting, confusing, or clever? Does the code smell at all? """ I thought the code was very direct and simple. It's very interesting to look at the script and dissect the mind of the program of how ti will perform and react. I think overall, the implementtaion is really well thought out and well written regarding the implementation and view of reinforcement learning. I'm sure there could be other technical improvements in regards to the coding aspect of it all, but the code was great overall. """
py
1a58bedf7138a7e0a5edae868e4a47439e0adb4b
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch.nn import functional as F from fcos_core.layers import smooth_l1_loss from fcos_core.modeling.box_coder import BoxCoder from fcos_core.modeling.matcher import Matcher from fcos_core.structures.boxlist_ops import boxlist_iou from fcos_core.modeling.balanced_positive_negative_sampler import ( BalancedPositiveNegativeSampler ) from fcos_core.modeling.utils import cat class FastRCNNLossComputation(torch.nn.Module): """ Computes the loss for Faster R-CNN. Also supports FPN """ def __init__( self, proposal_matcher, fg_bg_sampler, box_coder, cls_agnostic_bbox_reg=False, classification_loss_type='CE', num_classes=81, attribute_on=False, boundingbox_loss_type='SL1', cfg=None, ): """ Arguments: proposal_matcher (Matcher) fg_bg_sampler (BalancedPositiveNegativeSampler) box_coder (BoxCoder) """ super().__init__() self.proposal_matcher = proposal_matcher self.fg_bg_sampler = fg_bg_sampler self.box_coder = box_coder self.cls_agnostic_bbox_reg = cls_agnostic_bbox_reg self.attribute_on = attribute_on self.classification_loss_type = classification_loss_type if self.classification_loss_type == 'CE': self._classifier_loss = F.cross_entropy elif self.classification_loss_type == 'BCE': from qd.qd_pytorch import BCEWithLogitsNegLoss self._classifier_loss = BCEWithLogitsNegLoss() elif self.classification_loss_type.startswith('IBCE'): param = map(float, self.classification_loss_type[4:].split('_')) from qd.qd_pytorch import IBCEWithLogitsNegLoss self._classifier_loss = IBCEWithLogitsNegLoss(*param) elif self.classification_loss_type == 'MCEB': from qd.qd_pytorch import MCEBLoss self._classifier_loss = MCEBLoss() elif self.classification_loss_type == 'tree': tree_file = cfg.MODEL.ROI_BOX_HEAD.TREE_0_BKG from mtorch.softmaxtree_loss import SoftmaxTreeWithLoss self._classifier_loss = SoftmaxTreeWithLoss( tree_file, ignore_label=-1, # this is dummy value since this will not happend loss_weight=1, valid_normalization=True, ) self.copied_fields = ["labels"] if self.attribute_on: self.copied_fields.append("attributes") assert boundingbox_loss_type == 'SL1' def create_all_bkg_labels(self, num, device): if self.classification_loss_type in ['CE', 'tree']: return torch.zeros(num, dtype=torch.float32, device=device) elif self.classification_loss_type in ['BCE'] or \ self.classification_loss_type.startswith('IBCE'): return torch.zeros((num, self.num_classes), dtype=torch.float32, device=device) else: raise NotImplementedError(self.classification_loss_type) def match_targets_to_proposals(self, proposal, target): match_quality_matrix = boxlist_iou(target, proposal) matched_idxs = self.proposal_matcher(match_quality_matrix) # Fast RCNN only need "labels" field for selecting the targets target = target.copy_with_fields(self.copied_fields) # get the targets corresponding GT for each proposal # NB: need to clamp the indices because we can have a single # GT in the image, and matched_idxs can be -2, which goes # out of bounds if len(target) == 0: dummy_bbox = torch.zeros((len(matched_idxs), 4), dtype=torch.float32, device=matched_idxs.device) from maskrcnn_benchmark.structures.bounding_box import BoxList matched_targets = BoxList(dummy_bbox, target.size, target.mode) matched_targets.add_field('labels', self.create_all_bkg_labels( len(matched_idxs), matched_idxs.device)) matched_targets.add_field('tightness', torch.zeros(len(matched_idxs), device=matched_idxs.device)) matched_targets.add_field( 'attributes', torch.zeros((len(matched_idxs), 1), device=matched_idxs.device)) else: matched_targets = target[matched_idxs.clamp(min=0)] matched_targets.add_field("matched_idxs", matched_idxs) return matched_targets def prepare_targets(self, proposals, targets): labels = [] regression_targets = [] attributes = [] for proposals_per_image, targets_per_image in zip(proposals, targets): matched_targets = self.match_targets_to_proposals( proposals_per_image, targets_per_image ) matched_idxs = matched_targets.get_field("matched_idxs") labels_per_image = matched_targets.get_field("labels") labels_per_image = labels_per_image.to(dtype=torch.int64) # Label background (below the low threshold) bg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD labels_per_image[bg_inds] = 0 # Label ignore proposals (between low and high thresholds) ignore_inds = matched_idxs == Matcher.BETWEEN_THRESHOLDS labels_per_image[ignore_inds] = -1 # -1 is ignored by sampler # compute regression targets regression_targets_per_image = self.box_coder.encode( matched_targets.bbox, proposals_per_image.bbox ) labels.append(labels_per_image) regression_targets.append(regression_targets_per_image) if self.attribute_on: attributes_per_image = matched_targets.get_field("attributes") attributes_per_image = attributes_per_image.to(dtype=torch.int64) if len(targets_per_image) > 0: # Label background (below the low threshold) # attribute 0 is ignored in the loss attributes_per_image[bg_inds,:] = 0 # Label ignore proposals (between low and high thresholds) attributes_per_image[ignore_inds,:] = 0 # return attributes attributes.append(attributes_per_image) else: attributes.append([]) #return labels, regression_targets result = { 'labels': labels, 'regression_targets': regression_targets, } if self.attribute_on: result['attributes'] = attributes return result def subsample(self, proposals, targets): """ This method performs the positive/negative sampling, and return the sampled proposals. Note: this function keeps a state. Arguments: proposals (list[BoxList]) targets (list[BoxList]) """ prepare_result = self.prepare_targets(proposals, targets) labels = prepare_result['labels'] regression_targets = prepare_result['regression_targets'] sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels) proposals = list(proposals) # add corresponding label and regression_targets information to the bounding boxes for i, (labels_per_image, regression_targets_per_image, proposals_per_image) in enumerate(zip( labels, regression_targets, proposals )): proposals_per_image.add_field("labels", labels_per_image) proposals_per_image.add_field( "regression_targets", regression_targets_per_image ) if self.attribute_on: # add attributes labels attributes_per_image = prepare_result['attributes'][i] proposals_per_image.add_field( "attributes", attributes_per_image ) # distributed sampled proposals, that were obtained on all feature maps # concatenated via the fg_bg_sampler, into individual feature map levels for img_idx, (pos_inds_img, neg_inds_img) in enumerate( zip(sampled_pos_inds, sampled_neg_inds) ): img_sampled_inds = torch.nonzero(pos_inds_img | neg_inds_img, as_tuple=False).squeeze(1) proposals_per_image = proposals[img_idx][img_sampled_inds] proposals[img_idx] = proposals_per_image self._proposals = proposals return proposals def forward(self, class_logits, box_regression): """ Computes the loss for Faster R-CNN. This requires that the subsample method has been called beforehand. Arguments: class_logits (list[Tensor]) box_regression (list[Tensor]) Returns: classification_loss (Tensor) box_loss (Tensor) """ class_logits = cat(class_logits, dim=0) box_regression = cat(box_regression, dim=0) device = class_logits.device if not hasattr(self, "_proposals"): raise RuntimeError("subsample needs to be called before") proposals = self._proposals labels = cat([proposal.get_field("labels") for proposal in proposals], dim=0) regression_targets = cat( [proposal.get_field("regression_targets") for proposal in proposals], dim=0 ) classification_loss = self._classifier_loss(class_logits, labels) # get indices that correspond to the regression targets for # the corresponding ground truth labels, to be used with # advanced indexing sampled_pos_inds_subset = torch.nonzero(labels > 0, as_tuple=False).squeeze(1) labels_pos = labels[sampled_pos_inds_subset] if self.cls_agnostic_bbox_reg: map_inds = torch.tensor([4, 5, 6, 7], device=device) else: map_inds = 4 * labels_pos[:, None] + torch.tensor( [0, 1, 2, 3], device=device) box_loss = smooth_l1_loss( box_regression[sampled_pos_inds_subset[:, None], map_inds], regression_targets[sampled_pos_inds_subset], size_average=False, beta=1, ) box_loss = box_loss / labels.numel() return classification_loss, box_loss def make_roi_box_loss_evaluator(cfg): matcher = Matcher( cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD, cfg.MODEL.ROI_HEADS.BG_IOU_THRESHOLD, allow_low_quality_matches=False, ) bbox_reg_weights = cfg.MODEL.ROI_HEADS.BBOX_REG_WEIGHTS box_coder = BoxCoder(weights=bbox_reg_weights) attribute_on = cfg.MODEL.ATTRIBUTE_ON fg_bg_sampler = BalancedPositiveNegativeSampler( cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE, cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION ) cls_agnostic_bbox_reg = cfg.MODEL.CLS_AGNOSTIC_BBOX_REG classification_loss_type = cfg.MODEL.ROI_BOX_HEAD.CLASSIFICATION_LOSS num_classes = cfg.MODEL.ROI_BOX_HEAD.NUM_CLASSES cfg = cfg loss_evaluator = FastRCNNLossComputation( matcher, fg_bg_sampler, box_coder, cls_agnostic_bbox_reg, classification_loss_type, num_classes, attribute_on=attribute_on, boundingbox_loss_type=cfg.MODEL.ROI_BOX_HEAD.BOUNDINGBOX_LOSS_TYPE, cfg=cfg, ) return loss_evaluator
py
1a58bf14f278628307ba469c1664385de9dcf958
import unittest import sys try: import aula1_resp as aula1 except ImportError: print('Erro: o arquivo aula1.py não foi encontrado') sys.exit(1) MAX_PRIMES = 10000 def primes_sieve(limit): limitn = limit+1 not_prime = [False] * limitn primes = [] for i in range(2, limitn): if not_prime[i]: continue for f in range(i*2, limitn, i): not_prime[f] = True primes.append(i) return primes def fibonacci(n): a, b = 0, 1 for i in range(n): a, b = b, a+b return a def factorial(n): for i in range(2, n): n *= i return n class TesteAula1(unittest.TestCase): @unittest.skipIf('is_prime' not in vars(aula1), 'Função "is_prime" não foi encontrada') def test_is_prime(self): primes = primes_sieve(MAX_PRIMES) for i in range(1, MAX_PRIMES): if aula1.is_prime(i): self.assertIn(i, primes) else: self.assertNotIn(i, primes) @unittest.skipIf('fibonacci' not in vars(aula1), 'Função "fibonacci" não foi encontrada') def test_fibonacci(self): for i in range(0, 30): self.assertEqual(fibonacci(i), aula1.fibonacci(i)) @unittest.skipIf('factorial' not in vars(aula1), 'Função "factorial" não foi encontrada') def test_factorial(self): for i in range(1, 70): self.assertEqual(factorial(i), aula1.factorial(i)) if __name__ == '__main__': unittest.main(verbosity=2)
py
1a58bf5255ef456da068e73d7f095a9ce5d4f08c
# encoding: utf-8 from __future__ import unicode_literals, absolute_import import os import sys import locale from itertools import chain from six import iterkeys, iteritems from six.moves.configparser import ConfigParser from .autocomplete import SIMPLE as default_completion, ALL_MODES class Struct(object): """Simple class for instantiating objects we can add arbitrary attributes to and use for various arbitrary things.""" def getpreferredencoding(): """Get the user's preferred encoding.""" return locale.getpreferredencoding() or sys.getdefaultencoding() def can_encode(c): try: c.encode(getpreferredencoding()) return True except UnicodeEncodeError: return False def supports_box_chars(): """Check if the encoding supports Unicode box characters.""" return all(map(can_encode, "│─└┘┌┐")) def get_config_home(): """Returns the base directory for bpython's configuration files.""" xdg_config_home = os.environ.get("XDG_CONFIG_HOME", "~/.config") return os.path.join(xdg_config_home, "bpython") def default_config_path(): """Returns bpython's default configuration file path.""" return os.path.join(get_config_home(), "config") def fill_config_with_default_values(config, default_values): for section in iterkeys(default_values): if not config.has_section(section): config.add_section(section) for (opt, val) in iteritems(default_values[section]): if not config.has_option(section, opt): config.set(section, opt, "%s" % (val,)) def loadini(struct, configfile): """Loads .ini configuration file and stores its values in struct""" config_path = os.path.expanduser(configfile) config = ConfigParser() defaults = { "general": { "arg_spec": True, "auto_display_list": True, "autocomplete_mode": default_completion, "color_scheme": "default", "complete_magic_methods": True, "dedent_after": 1, "default_autoreload": False, "editor": os.environ.get("VISUAL", os.environ.get("EDITOR", "vi")), "flush_output": True, "highlight_show_source": True, "hist_duplicates": True, "hist_file": "~/.pythonhist", "hist_length": 1000, "paste_time": 0.02, "pastebin_confirm": True, "pastebin_expiry": "1week", "pastebin_helper": "", "pastebin_url": "https://bpaste.net", "save_append_py": False, "single_undo_time": 1.0, "syntax": True, "tab_length": 4, "unicode_box": True, }, "keyboard": { "backspace": "C-h", "beginning_of_line": "C-a", "clear_line": "C-u", "clear_screen": "C-l", "clear_word": "C-w", "copy_clipboard": "F10", "cut_to_buffer": "C-k", "delete": "C-d", "down_one_line": "C-n", "edit_config": "F3", "edit_current_block": "C-x", "end_of_line": "C-e", "exit": "", "external_editor": "F7", "help": "F1", "incremental_search": "M-s", "last_output": "F9", "left": "C-b", "pastebin": "F8", "redo": "C-g", "reimport": "F6", "reverse_incremental_search": "M-r", "right": "C-f", "save": "C-s", "search": "C-o", "show_source": "F2", "suspend": "C-z", "toggle_file_watch": "F5", "transpose_chars": "C-t", "undo": "C-r", "up_one_line": "C-p", "yank_from_buffer": "C-y", }, "cli": {"suggestion_width": 0.8, "trim_prompts": False,}, "curtsies": {"list_above": False, "right_arrow_completion": True,}, } default_keys_to_commands = dict( (value, key) for (key, value) in iteritems(defaults["keyboard"]) ) fill_config_with_default_values(config, defaults) try: if not config.read(config_path): # No config file. If the user has it in the old place then complain if os.path.isfile(os.path.expanduser("~/.bpython.ini")): sys.stderr.write( "Error: It seems that you have a config file at " "~/.bpython.ini. Please move your config file to " "%s\n" % default_config_path() ) sys.exit(1) except UnicodeDecodeError as e: sys.stderr.write( "Error: Unable to parse config file at '{}' due to an " "encoding issue. Please make sure to fix the encoding " "of the file or remove it and then try again.\n".format(config_path) ) sys.exit(1) def get_key_no_doublebind(command): default_commands_to_keys = defaults["keyboard"] requested_key = config.get("keyboard", command) try: default_command = default_keys_to_commands[requested_key] if default_commands_to_keys[default_command] == config.get( "keyboard", default_command ): setattr(struct, "%s_key" % default_command, "") except KeyError: pass return requested_key struct.config_path = config_path struct.dedent_after = config.getint("general", "dedent_after") struct.tab_length = config.getint("general", "tab_length") struct.auto_display_list = config.getboolean("general", "auto_display_list") struct.syntax = config.getboolean("general", "syntax") struct.arg_spec = config.getboolean("general", "arg_spec") struct.paste_time = config.getfloat("general", "paste_time") struct.single_undo_time = config.getfloat("general", "single_undo_time") struct.highlight_show_source = config.getboolean( "general", "highlight_show_source" ) struct.hist_file = config.get("general", "hist_file") struct.editor = config.get("general", "editor") struct.hist_length = config.getint("general", "hist_length") struct.hist_duplicates = config.getboolean("general", "hist_duplicates") struct.flush_output = config.getboolean("general", "flush_output") struct.default_autoreload = config.getboolean( "general", "default_autoreload" ) struct.pastebin_key = get_key_no_doublebind("pastebin") struct.copy_clipboard_key = get_key_no_doublebind("copy_clipboard") struct.save_key = get_key_no_doublebind("save") struct.search_key = get_key_no_doublebind("search") struct.show_source_key = get_key_no_doublebind("show_source") struct.suspend_key = get_key_no_doublebind("suspend") struct.toggle_file_watch_key = get_key_no_doublebind("toggle_file_watch") struct.undo_key = get_key_no_doublebind("undo") struct.redo_key = get_key_no_doublebind("redo") struct.reimport_key = get_key_no_doublebind("reimport") struct.reverse_incremental_search_key = get_key_no_doublebind( "reverse_incremental_search" ) struct.incremental_search_key = get_key_no_doublebind("incremental_search") struct.up_one_line_key = get_key_no_doublebind("up_one_line") struct.down_one_line_key = get_key_no_doublebind("down_one_line") struct.cut_to_buffer_key = get_key_no_doublebind("cut_to_buffer") struct.yank_from_buffer_key = get_key_no_doublebind("yank_from_buffer") struct.clear_word_key = get_key_no_doublebind("clear_word") struct.backspace_key = get_key_no_doublebind("backspace") struct.clear_line_key = get_key_no_doublebind("clear_line") struct.clear_screen_key = get_key_no_doublebind("clear_screen") struct.delete_key = get_key_no_doublebind("delete") struct.left_key = get_key_no_doublebind("left") struct.right_key = get_key_no_doublebind("right") struct.end_of_line_key = get_key_no_doublebind("end_of_line") struct.beginning_of_line_key = get_key_no_doublebind("beginning_of_line") struct.transpose_chars_key = get_key_no_doublebind("transpose_chars") struct.exit_key = get_key_no_doublebind("exit") struct.last_output_key = get_key_no_doublebind("last_output") struct.edit_config_key = get_key_no_doublebind("edit_config") struct.edit_current_block_key = get_key_no_doublebind("edit_current_block") struct.external_editor_key = get_key_no_doublebind("external_editor") struct.help_key = get_key_no_doublebind("help") struct.pastebin_confirm = config.getboolean("general", "pastebin_confirm") struct.pastebin_url = config.get("general", "pastebin_url") struct.pastebin_expiry = config.get("general", "pastebin_expiry") struct.pastebin_helper = config.get("general", "pastebin_helper") struct.cli_suggestion_width = config.getfloat("cli", "suggestion_width") struct.cli_trim_prompts = config.getboolean("cli", "trim_prompts") struct.complete_magic_methods = config.getboolean( "general", "complete_magic_methods" ) struct.autocomplete_mode = config.get("general", "autocomplete_mode") struct.save_append_py = config.getboolean("general", "save_append_py") struct.curtsies_list_above = config.getboolean("curtsies", "list_above") struct.curtsies_right_arrow_completion = config.getboolean( "curtsies", "right_arrow_completion" ) color_scheme_name = config.get("general", "color_scheme") default_colors = { "keyword": "y", "name": "c", "comment": "b", "string": "m", "error": "r", "number": "G", "operator": "Y", "punctuation": "y", "token": "C", "background": "d", "output": "w", "main": "c", "paren": "R", "prompt": "c", "prompt_more": "g", "right_arrow_suggestion": "K", } if color_scheme_name == "default": struct.color_scheme = default_colors else: struct.color_scheme = dict() theme_filename = color_scheme_name + ".theme" path = os.path.expanduser( os.path.join(get_config_home(), theme_filename) ) try: load_theme(struct, path, struct.color_scheme, default_colors) except EnvironmentError: sys.stderr.write( "Could not load theme '%s'.\n" % (color_scheme_name,) ) sys.exit(1) # expand path of history file struct.hist_file = os.path.expanduser(struct.hist_file) # verify completion mode if struct.autocomplete_mode not in ALL_MODES: struct.autocomplete_mode = default_completion # set box drawing characters if config.getboolean("general", "unicode_box") and supports_box_chars(): struct.left_border = "│" struct.right_border = "│" struct.top_border = "─" struct.bottom_border = "─" struct.left_bottom_corner = "└" struct.right_bottom_corner = "┘" struct.left_top_corner = "┌" struct.right_top_corner = "┐" else: struct.left_border = "|" struct.right_border = "|" struct.top_border = "-" struct.bottom_border = "-" struct.left_bottom_corner = "+" struct.right_bottom_corner = "+" struct.left_top_corner = "+" struct.right_top_corner = "+" def load_theme(struct, path, colors, default_colors): theme = ConfigParser() with open(path, "r") as f: theme.readfp(f) for k, v in chain(theme.items("syntax"), theme.items("interface")): if theme.has_option("syntax", k): colors[k] = theme.get("syntax", k) else: colors[k] = theme.get("interface", k) # Check against default theme to see if all values are defined for k, v in iteritems(default_colors): if k not in colors: colors[k] = v
py
1a58c031fc8c5ee8ba873c2c70c11b732b9c2afc
#!/usr/bin/env python # This will try to import setuptools. If not here, it will reach for the embedded # ez_setup (or the ez_setup package). If none, it fails with a message import sys from codecs import open try: from setuptools import find_packages, setup from setuptools.command.test import test as TestCommand except ImportError: try: import ez_setup ez_setup.use_setuptools() except ImportError: raise ImportError('MoviePy could not be installed, probably because' ' neither setuptools nor ez_setup are installed on this computer.' '\nInstall ez_setup ([sudo] pip install ez_setup) and try again.') class PyTest(TestCommand): """Handle test execution from setup.""" user_options = [('pytest-args=', 'a', "Arguments to pass into pytest")] def initialize_options(self): """Initialize the PyTest options.""" TestCommand.initialize_options(self) self.pytest_args = "" def finalize_options(self): """Finalize the PyTest options.""" TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): """Run the PyTest testing suite.""" try: import pytest except ImportError: raise ImportError('Running tests requires additional dependencies.' '\nPlease run (pip install moviepy[test])') errno = pytest.main(self.pytest_args.split(" ")) sys.exit(errno) cmdclass = {'test': PyTest} # Define custom commands. if 'build_docs' in sys.argv: try: from sphinx.setup_command import BuildDoc except ImportError: raise ImportError('Running the documenation builds has additional' ' dependencies. Please run (pip install moviepy[docs])') cmdclass['build_docs'] = BuildDoc __version__ = None # Explicitly set version to quieten static code checkers. exec(open('moviepy/version.py').read()) # loads __version__ # Define the requirements for specific execution needs. requires = [ 'decorator>=4.0.2,<5.0', "imageio>=2.5,<3.0; python_version>='3.4'", "imageio>=2.0,<2.5; python_version<'3.4'", "imageio_ffmpeg>=0.2.0; python_version>='3.4'", 'tqdm>=4.11.2,<5.0', 'numpy', 'requests>=2.8.1,<3.0', 'proglog<=1.0.0' ] optional_reqs = [ "opencv-python>=3.0,<4.0; python_version!='2.7'", "scikit-image>=0.13.0,<1.0; python_version>='3.4'", "scikit-learn; python_version>='3.4'", "scipy>=0.19.0,<1.0; python_version!='3.3'", "matplotlib>=2.0.0,<3.0; python_version>='3.4'", "youtube_dl" ] doc_reqs = [ "pygame>=1.9.3,<2.0; python_version!='3.3'", 'numpydoc>=0.6.0,<1.0', 'sphinx_rtd_theme>=0.1.10b0,<1.0', 'Sphinx>=1.5.2,<2.0', ] test_reqs = [ 'coverage<5.0', 'coveralls>=1.1,<2.0', 'pytest-cov>=2.5.1,<3.0', 'pytest>=3.0.0,<4.0', 'requests>=2.8.1,<3.0' ] extra_reqs = { "optional": optional_reqs, "doc": doc_reqs, "test": test_reqs } # Load the README. with open('README.rst', 'r', 'utf-8') as f: readme = f.read() setup( name='moviepy', version=__version__, author='Zulko 2017', description='Video editing with Python', long_description=readme, url='https://zulko.github.io/moviepy/', license='MIT License', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Multimedia', 'Topic :: Multimedia :: Sound/Audio', 'Topic :: Multimedia :: Sound/Audio :: Analysis', 'Topic :: Multimedia :: Video', 'Topic :: Multimedia :: Video :: Capture', 'Topic :: Multimedia :: Video :: Conversion', ], keywords='video editing audio compositing ffmpeg', packages=find_packages(exclude=['docs', 'tests']), cmdclass=cmdclass, command_options={ 'build_docs': { 'build_dir': ('setup.py', './docs/build'), 'config_dir': ('setup.py', './docs'), 'version': ('setup.py', __version__.rsplit('.', 2)[0]), 'release': ('setup.py', __version__)}}, tests_require=test_reqs, install_requires=requires, extras_require=extra_reqs, )
py
1a58c1d0cd9e9f298798998aa8632bd18ab5d993
import os import random from collections import namedtuple import numpy as np import torch import torch.utils.data as data from PIL import Image import h5py from lilanet.datasets.transforms import Compose, RandomHorizontalFlip, Normalize class DENSE(data.Dataset): """`DENSE LiDAR`_ Dataset. Args: root (string): Root directory of the ``lidar_2d`` and ``ImageSet`` folder. split (string, optional): Select the split to use, ``train``, ``val`` or ``all`` transform (callable, optional): A function/transform that takes in distance, reflectivity and target tensors and returns a transformed version. """ #TODO: Bu class kismina bir bak Class = namedtuple('Class', ['name', 'id', 'color']) classes = [ Class('unknown', 0, (0, 0, 0)), Class('car', 1, (0, 0, 142)), Class('pedestrian', 2, (220, 20, 60)), Class('cyclist', 3, (119, 11, 32)), ] def __init__(self, root, split='train', transform=None): self.root = os.path.expanduser(root) self.lidar_path = os.path.join(self.root, 'lidar_2d') self.split = os.path.join(self.root, '{}_01'.format(split)) self.transform = transform self.lidar = [] if split not in ['train', 'val', 'all']: raise ValueError('Invalid split! Use split="train", split="val" or split="all"') self.lidar = [os.path.join(r,file) for r,d,f in os.walk(self.split) for file in f] def __getitem__(self, index): with h5py.File(self.lidar[index], "r", driver='core') as hdf5: # for channel in self.channels: distance_1 = hdf5.get('distance_m_1')[()] reflectivity_1 = hdf5.get('intensity_1')[()] label_1 = hdf5.get('labels_1')[()] #Label transformation is necessary to have contiguous labeling label_dict= {0:0, 100:1, 101:2, 102:3} label_1 = np.vectorize(label_dict.get)(label_1) distance = torch.as_tensor(distance_1.astype(np.float32, copy=False)).contiguous() reflectivity = torch.as_tensor(reflectivity_1.astype(np.float32, copy=False)).contiguous() label = torch.as_tensor(label_1.astype(np.float32, copy=False)).contiguous() # distance = torch.as_tensor(distance_1.astype(np.float32, copy=False)) # reflectivity = torch.as_tensor(reflectivity_1.astype(np.float32, copy=False)) # label = torch.as_tensor(label_1.astype(np.float32, copy=False)) # print("label: '{}'".format(label)) if self.transform: distance, reflectivity, label = self.transform(distance, reflectivity, label) return distance, reflectivity, label def __len__(self): return len(self.lidar) @staticmethod def num_classes(): return len(DENSE.classes) @staticmethod def mean(): return [0.21, 12.12] @staticmethod def std(): return [0.16, 12.32] @staticmethod def class_weights(): return torch.tensor([1 / 15.0, 1.0, 10.0, 10.0]) @staticmethod def get_colormap(): cmap = torch.zeros([256, 3], dtype=torch.uint8) for cls in DENSE.classes: cmap[cls.id, :] = torch.tensor(cls.color, dtype=torch.uint8) return cmap if __name__ == '__main__': import matplotlib.pyplot as plt joint_transforms = Compose([ RandomHorizontalFlip(), Normalize(mean=DENSE.mean(), std=DENSE.std()) ]) def _normalize(x): return (x - x.min()) / (x.max() - x.min()) def visualize_seg(label_map, one_hot=False): if one_hot: label_map = np.argmax(label_map, axis=-1) out = np.zeros((label_map.shape[0], label_map.shape[1], 3)) for l in range(1, DENSE.num_classes()): mask = label_map == l out[mask, 0] = np.array(DENSE.classes[l].color[1]) out[mask, 1] = np.array(DENSE.classes[l].color[0]) out[mask, 2] = np.array(DENSE.classes[l].color[2]) return out dataset = DENSE('../../data/DENSE', transform=joint_transforms) distance, reflectivity, label = random.choice(dataset) print('Distance size: ', distance.size()) print('Reflectivity size: ', reflectivity.size()) print('Label size: ', label.size()) distance_map = Image.fromarray((255 * _normalize(distance.numpy())).astype(np.uint8)) reflectivity_map = Image.fromarray((255 * _normalize(reflectivity.numpy())).astype(np.uint8)) label_map = Image.fromarray((255 * visualize_seg(label.numpy())).astype(np.uint8)) blend_map = Image.blend(distance_map.convert('RGBA'), label_map.convert('RGBA'), alpha=0.4) plt.figure(figsize=(10, 5)) plt.subplot(221) plt.title("Distance") plt.imshow(distance_map) plt.subplot(222) plt.title("Reflectivity") plt.imshow(reflectivity_map) plt.subplot(223) plt.title("Label") plt.imshow(label_map) plt.subplot(224) plt.title("Result") plt.imshow(blend_map) plt.show()
py
1a58c255bfc6e3bfca9078c6b8cf714c85295b39
import enum class TransactionType(enum.Enum): OPTIONS = 'options' FOREX = 'forex' DEPOSIT_WITHDRAW = 'deposit-withdraw' BUY_SELL = 'buy-sell' DIVIDEND = 'dividend' INTEREST = 'interest' FOREIGN_TAX = 'foreign-tax' class TransactionsDetailsType(enum.Enum): DIVIDEND = 'DIVIDEND' BUY = 'BUY' SELL = 'SELL' WITHDRAW = 'WITHDRAW' DEPOSIT = 'DEPOSIT' UNKNOWN = 'UNKNOWN' class ChannelType(enum.Enum): ACCOUNTS = 'accounts' QUOTES = 'quotes' ORDERDEPTHS = 'orderdepths' TRADES = 'trades' BROKERTRADESUMMARY = 'brokertradesummary' POSITIONS = 'positions' ORDERS = 'orders' DEALS = 'deals' class TimePeriod(enum.Enum): TODAY = 'TODAY' ONE_WEEK = 'ONE_WEEK' ONE_MONTH = 'ONE_MONTH' THREE_MONTHS = 'THREE_MONTHS' THIS_YEAR = 'THIS_YEAR' ONE_YEAR = 'ONE_YEAR' FIVE_YEARS = 'FIVE_YEARS' class ListType(enum.Enum): HIGHEST_RATED_FUNDS = 'HIGHEST_RATED_FUNDS' LOWEST_FEE_INDEX_FUNDS = 'LOWEST_FEE_INDEX_FUNDS' BEST_DEVELOPMENT_FUNDS_LAST_THREE_MONTHS = 'BEST_DEVELOPMENT_FUNDS_LAST_THREE_MONTHS' MOST_OWNED_FUNDS = 'MOST_OWNED_FUNDS' class InstrumentType(enum.Enum): STOCK = 'stock' FUND = 'fund' BOND = 'bond' OPTION = 'option' FUTURE_FORWARD = 'future_forward' CERTIFICATE = 'certificate' WARRANT = 'warrant' EXCHANGE_TRADED_FUND = 'exchange_traded_fund' INDEX = 'index' PREMIUM_BOND = 'premium_bond' SUBSCRIPTION_OPTION = 'subscription_option' EQUITY_LINKED_BOND = 'equity_linked_bond' CONVERTIBLE = 'convertible' ANY = '' class OrderType(enum.Enum): BUY = 'BUY' SELL = 'SELL' class HttpMethod(enum.Enum): POST = 1 GET = 2 PUT = 3 DELETE = 4 class Route(enum.Enum): ACCOUNT_OVERVIEW_PATH = '/_mobile/account/{}/overview' ACCOUNTS_POSITIONS_PATH = '/_cqbe/ff/overview/positions' AUTHENTICATION_PATH = '/_api/authentication/sessions/usercredentials' CHARTDATA_PATH = '/_mobile/chart/orderbook/{}?timePeriod={}' DEALS_AND_ORDERS_PATH = '/_mobile/account/dealsandorders' INSIGHTS_PATH = '/_cqbe/insights/?timePeriod={}&accountIds={}' INSPIRATION_LIST_PATH = '/_mobile/marketing/inspirationlist/{}' INSTRUMENT_PATH = '/_mobile/market/{}/{}' INSTRUMENT_SEARCH_PATH = '/_mobile/market/search/{}?query={}' MONTHLY_SAVINGS_CREATE_PATH = '/_api/transfer/monthly-savings/{}' MONTHLY_SAVINGS_PATH = '/_mobile/transfer/monthly-savings/{}' MONTHLY_SAVINGS_PAUSE_PATH = '/_api/transfer/monthly-savings/{}/{}/pause' MONTHLY_SAVINGS_REMOVE_PATH = '/_api/transfer/monthly-savings/{}/{}/' MONTHLY_SAVINGS_RESUME_PATH = '/_api/transfer/monthly-savings/{}/{}/resume' NOTE_PATH = '/_api/contract-notes/documents/{}/{}/note.pdf' ORDER_DELETE_PATH = '/_api/order?accountId={}&orderId={}' ORDER_GET_PATH = '/_mobile/order/{}?accountId={}&orderId={}' ORDER_PLACE_PATH = '/_api/order' ORDER_PLACE_PATH_BUY_FUND = '/_api/fund-guide/fund-order-page/buy' ORDER_PLACE_PATH_SELL_FUND = '/_api/fund-guide/fund-order-page/sell' ORDER_EDIT_PATH = '/_api/order/{}/{}' ORDERBOOK_LIST_PATH = '/_mobile/market/orderbooklist/{}' ORDERBOOK_PATH = '/_mobile/order/{}?orderbookId={}' OVERVIEW_PATH = '/_mobile/account/overview' POSITIONS_PATH = '/_mobile/account/positions' TOTP_PATH = '/_api/authentication/sessions/totp' TRANSACTIONS_PATH = '/_mobile/account/transactions/{}' TRANSACTIONS_DETAILS_PATH = '/_api/transactions' WATCHLISTS_ADD_DELETE_PATH = '/_api/usercontent/watchlist/{}/orderbooks/{}' WATCHLISTS_PATH = '/_mobile/usercontent/watchlist'
py
1a58c2bd306947b92b12679c4ea4b3c91b52eb2f
import pytest import torch from src.models.main import TrainOREvaluate from src.models.model import MyAwesomeModel def test_weight_change(): init_weights, step_weights = TrainOREvaluate(single_step=True).weights assert not torch.all(torch.eq(init_weights, step_weights)) def test_forward_raise(): with pytest.raises(ValueError): model = MyAwesomeModel() model.forward(torch.rand(1, 1, 28, 27))
py
1a58c2d35ae959f5733ae0fb04be3a809fdd917d
from mapping.tridiag.get_tridiag_solver import get_tridiag, get_tridiag_from_diag, get_tridiag_from_special_sparse
py
1a58c39346d554f4e6e84ff4df69d422c4b75c7c
# Generated by Django 3.0.6 on 2020-05-15 00:51 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('vi_lomas_changes', '0014_auto_20200506_0230'), ] operations = [ migrations.RemoveField( model_name='raster', name='extent_geom', ), ]
py
1a58c4e16afd1515875d955fb455ecdfa4926a39
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 3.1.7. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'j6997cv93d6adl5%6d274b#^je8@ut4q0dhyd_x9gx-gbo@q@-' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'game.apps.GameConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'game1', 'USER': 'djangouser', 'PASSWORD': 'Password.New20', 'HOST': 'localhost', 'PORT': '3306', 'TEST': { 'NAME': 'test_game1', }, } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
py
1a58c6d027d9cc75605bf8bfb1ce3abfa3d3995b
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.core.commands import CliCommandType # pylint: disable=line-too-long, too-many-locals, too-many-statements def load_command_table(self, _): from ._client_factory import ( cf_alert_rules, cf_metrics, cf_metric_def, cf_alert_rule_incidents, cf_log_profiles, cf_autoscale, cf_diagnostics, cf_activity_log, cf_action_groups, cf_activity_log_alerts, cf_event_categories) from ._exception_handler import monitor_exception_handler, missing_resource_handler from .transformers import (action_group_list_table) action_group_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.action_groups_operations#ActionGroupsOperations.{}', client_factory=cf_action_groups) action_group_custom = CliCommandType( operations_tmpl='azure.cli.command_modules.monitor.operations.action_groups#{}', client_factory=cf_action_groups) activity_log_custom = CliCommandType( operations_tmpl='azure.cli.command_modules.monitor.operations.activity_log#{}', client_factory=cf_activity_log) activity_log_alerts_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.activity_log_alerts_operations#ActivityLogAlertsOperations.{}', client_factory=cf_activity_log_alerts) activity_log_alerts_custom = CliCommandType( operations_tmpl='azure.cli.command_modules.monitor.operations.activity_log_alerts#{}', client_factory=cf_activity_log_alerts) alert_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.alert_rules_operations#AlertRulesOperations.{}', client_factory=cf_alert_rules) alert_rule_incidents_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.alert_rule_incidents_operations#AlertRuleIncidentsOperations.{}', client_factory=cf_alert_rule_incidents) autoscale_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.autoscale_settings_operations#AutoscaleSettingsOperations.{}', client_factory=cf_autoscale) autoscale_custom = CliCommandType( operations_tmpl='azure.cli.command_modules.monitor.operations.autoscale_settings#{}', client_factory=cf_autoscale) diagnostics_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.diagnostic_settings_operations#DiagnosticSettingsOperations.{}', client_factory=cf_diagnostics) diagnostics_categories_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.diagnostic_settings_category_operations#DiagnosticSettingsCategoryOperations.{}', client_factory=cf_diagnostics) diagnostics_custom = CliCommandType( operations_tmpl='azure.cli.command_modules.monitor.operations.diagnostics_settings#{}', client_factory=cf_diagnostics) log_profiles_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.log_profiles_operations#LogProfilesOperations.{}', client_factory=cf_log_profiles) metric_operations_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.metrics_operations#MetricsOperations.{}', client_factory=cf_metrics) alert_custom = CliCommandType( operations_tmpl='azure.cli.command_modules.monitor.operations.metric_alert#{}', client_factory=cf_alert_rules) metric_definitions_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.metric_definitions_operations#MetricDefinitionsOperations.{}', client_factory=cf_metric_def) with self.command_group('monitor action-group', action_group_sdk, custom_command_type=action_group_custom) as g: g.command('show', 'get', table_transformer=action_group_list_table) g.command('create', 'create_or_update', table_transformer=action_group_list_table) g.command('delete', 'delete') g.command('enable-receiver', 'enable_receiver', table_transformer=action_group_list_table, exception_handler=monitor_exception_handler) g.custom_command('list', 'list_action_groups', table_transformer=action_group_list_table) g.generic_update_command('update', custom_func_name='update_action_groups', setter_arg_name='action_group', table_transformer=action_group_list_table, exception_handler=monitor_exception_handler) with self.command_group('monitor activity-log', activity_log_custom) as g: g.command('list', 'list_activity_log') g.command('list-categories', 'list', operations_tmpl='azure.mgmt.monitor.operations.event_categories_operations#EventCategoriesOperations.{}', client_factory=cf_event_categories) with self.command_group('monitor activity-log alert', activity_log_alerts_sdk, custom_command_type=activity_log_alerts_custom) as g: g.custom_command('list', 'list_activity_logs_alert') g.custom_command('create', 'create', exception_handler=monitor_exception_handler) g.command('show', 'get', exception_handler=missing_resource_handler) g.command('delete', 'delete', exception_handler=missing_resource_handler) g.generic_update_command('update', custom_func_name='update', setter_arg_name='activity_log_alert', exception_handler=monitor_exception_handler) g.custom_command('action-group add', 'add_action_group', exception_handler=monitor_exception_handler) g.custom_command('action-group remove', 'remove_action_group', exception_handler=monitor_exception_handler) g.custom_command('scope add', 'add_scope', exception_handler=monitor_exception_handler) g.custom_command('scope remove', 'remove_scope', exception_handler=monitor_exception_handler) with self.command_group('monitor alert', alert_sdk, custom_command_type=alert_custom) as g: g.custom_command('create', 'create_metric_rule') g.command('delete', 'delete') g.command('show', 'get') g.command('list', 'list_by_resource_group') g.command('show-incident', 'get', command_type=alert_rule_incidents_sdk) g.command('list-incidents', 'list_by_alert_rule', command_type=alert_rule_incidents_sdk) g.generic_update_command('update', custom_func_name='update_metric_rule', exception_handler=monitor_exception_handler) with self.command_group('monitor autoscale-settings', autoscale_sdk, custom_command_type=autoscale_custom) as g: g.command('create', 'create_or_update') g.command('delete', 'delete') g.command('show', 'get') g.command('list', 'list_by_resource_group') g.custom_command('get-parameters-template', 'scaffold_autoscale_settings_parameters') g.generic_update_command('update', exception_handler=monitor_exception_handler) with self.command_group('monitor diagnostic-settings', diagnostics_sdk, custom_command_type=diagnostics_custom) as g: from .validators import validate_diagnostic_settings g.custom_command('create', 'create_diagnostics_settings', validator=validate_diagnostic_settings) g.command('show', 'get') g.command('list', 'list') g.command('delete', 'delete') g.generic_update_command('update', exception_handler=monitor_exception_handler) with self.command_group('monitor diagnostic-settings categories', diagnostics_categories_sdk) as g: g.command('show', 'get') g.command('list', 'list') with self.command_group('monitor log-profiles', log_profiles_sdk) as g: g.command('create', 'create_or_update') g.command('delete', 'delete') g.command('show', 'get') g.command('list', 'list') g.generic_update_command('update', exception_handler=monitor_exception_handler) with self.command_group('monitor metrics') as g: from .transformers import metrics_table, metrics_definitions_table g.command('list', 'list', command_type=metric_operations_sdk, table_transformer=metrics_table) g.command('list-definitions', 'list', command_type=metric_definitions_sdk, table_transformer=metrics_definitions_table)
py
1a58c7e12820daf233fc3452807d1807e77a6490
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for nlp.nhnet.decoder.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from official.nlp.modeling import layers from official.nlp.nhnet import configs from official.nlp.nhnet import decoder from official.nlp.nhnet import utils def _create_cache(batch_size, init_decode_length, num_heads, head_size): return { "key": tf.zeros([batch_size, init_decode_length, num_heads, head_size], dtype=tf.float32), "value": tf.zeros([batch_size, init_decode_length, num_heads, head_size], dtype=tf.float32) } class DecoderTest(tf.test.TestCase): def setUp(self): super(DecoderTest, self).setUp() self._config = utils.get_test_params() def test_transformer_decoder(self): decoder_block = decoder.TransformerDecoder( num_hidden_layers=self._config.num_hidden_layers, hidden_size=self._config.hidden_size, num_attention_heads=self._config.num_attention_heads, intermediate_size=self._config.intermediate_size, intermediate_activation=self._config.hidden_act, hidden_dropout_prob=self._config.hidden_dropout_prob, attention_probs_dropout_prob=self._config.attention_probs_dropout_prob, initializer_range=self._config.initializer_range) decoder_block.build(None) self.assertEqual(len(decoder_block.layers), self._config.num_hidden_layers) def test_decoder_block_with_cache(self): decoder_block = decoder.TransformerDecoderBlock( hidden_size=self._config.hidden_size, num_attention_heads=self._config.num_attention_heads, intermediate_size=self._config.intermediate_size, intermediate_activation=self._config.hidden_act, hidden_dropout_prob=self._config.hidden_dropout_prob, attention_probs_dropout_prob=self._config.attention_probs_dropout_prob, initializer_range=self._config.initializer_range) # Forward path. dummy_tensor = tf.zeros([2, 4, self._config.hidden_size], dtype=tf.float32) dummy_mask = tf.zeros([2, 4, 4], dtype=tf.float32) inputs = [dummy_tensor, dummy_tensor, dummy_mask, dummy_mask] cache = _create_cache( 2, 0, self._config.num_attention_heads, self._config.hidden_size // self._config.num_attention_heads) output, cache = decoder_block(inputs, cache) self.assertEqual(output.shape, (2, 4, self._config.hidden_size)) self.assertEqual(cache["value"].shape, (2, 4, 2, 8)) def test_bert_decoder(self): seq_length = 10 encoder_input_ids = tf.keras.layers.Input( shape=(seq_length,), name="encoder_input_ids", dtype=tf.int32) target_ids = tf.keras.layers.Input( shape=(seq_length,), name="target_ids", dtype=tf.int32) encoder_outputs = tf.keras.layers.Input( shape=(seq_length, self._config.hidden_size), name="all_encoder_outputs", dtype=tf.float32) embedding_lookup = layers.OnDeviceEmbedding( vocab_size=self._config.vocab_size, embedding_width=self._config.hidden_size, initializer=tf.keras.initializers.TruncatedNormal( stddev=self._config.initializer_range), name="word_embeddings") cross_attention_bias = decoder.AttentionBias(bias_type="single_cross")( encoder_input_ids) self_attention_bias = decoder.AttentionBias(bias_type="decoder_self")( target_ids) inputs = dict( attention_bias=cross_attention_bias, self_attention_bias=self_attention_bias, target_ids=target_ids, all_encoder_outputs=encoder_outputs) decoder_layer = decoder.Decoder(self._config, embedding_lookup) outputs = decoder_layer(inputs) model_inputs = dict( encoder_input_ids=encoder_input_ids, target_ids=target_ids, all_encoder_outputs=encoder_outputs) model = tf.keras.Model(inputs=model_inputs, outputs=outputs, name="test") self.assertLen(decoder_layer.trainable_weights, 30) # Forward path. fake_inputs = { "encoder_input_ids": np.zeros((2, 10), dtype=np.int32), "target_ids": np.zeros((2, 10), dtype=np.int32), "all_encoder_outputs": np.zeros((2, 10, 16), dtype=np.float32), } output_tensor = model(fake_inputs) self.assertEqual(output_tensor.shape, (2, 10, 16)) def test_multi_doc_decoder(self): self._config = utils.get_test_params(cls=configs.NHNetConfig) seq_length = 10 num_docs = 5 encoder_input_ids = tf.keras.layers.Input( shape=(num_docs, seq_length), name="encoder_input_ids", dtype=tf.int32) target_ids = tf.keras.layers.Input( shape=(seq_length,), name="target_ids", dtype=tf.int32) encoder_outputs = tf.keras.layers.Input( shape=(num_docs, seq_length, self._config.hidden_size), name="all_encoder_outputs", dtype=tf.float32) embedding_lookup = layers.OnDeviceEmbedding( vocab_size=self._config.vocab_size, embedding_width=self._config.hidden_size, initializer=tf.keras.initializers.TruncatedNormal( stddev=self._config.initializer_range), name="word_embeddings") doc_attention_probs = tf.keras.layers.Input( shape=(self._config.num_decoder_attn_heads, seq_length, num_docs), name="doc_attention_probs", dtype=tf.float32) cross_attention_bias = decoder.AttentionBias(bias_type="multi_cross")( encoder_input_ids) self_attention_bias = decoder.AttentionBias(bias_type="decoder_self")( target_ids) inputs = dict( attention_bias=cross_attention_bias, self_attention_bias=self_attention_bias, target_ids=target_ids, all_encoder_outputs=encoder_outputs, doc_attention_probs=doc_attention_probs) decoder_layer = decoder.Decoder(self._config, embedding_lookup) outputs = decoder_layer(inputs) model_inputs = dict( encoder_input_ids=encoder_input_ids, target_ids=target_ids, all_encoder_outputs=encoder_outputs, doc_attention_probs=doc_attention_probs) model = tf.keras.Model(inputs=model_inputs, outputs=outputs, name="test") self.assertLen(decoder_layer.trainable_weights, 30) # Forward path. fake_inputs = { "encoder_input_ids": np.zeros((2, num_docs, seq_length), dtype=np.int32), "target_ids": np.zeros((2, seq_length), dtype=np.int32), "all_encoder_outputs": np.zeros((2, num_docs, seq_length, 16), dtype=np.float32), "doc_attention_probs": np.zeros( (2, self._config.num_decoder_attn_heads, seq_length, num_docs), dtype=np.float32) } output_tensor = model(fake_inputs) self.assertEqual(output_tensor.shape, (2, seq_length, 16)) if __name__ == "__main__": tf.test.main()
py
1a58c7fb3f8517e549618f6da24ab0fb4c3e46f3
import numpy as np import cv2 from os.path import * import math # trs, let's assume width is always wider than height def video_to_npy(infile, outfile=None, width=None, height=None, squarecrop=None, fps=None, mode='rgb', maxlength=None, use_cache=False): global vcache if use_cache and outfile is not None and 'vcache' in globals(): if outfile in vcache: return vcache[outfile] else: vcache = dict() # has this video already been saved before? if outfile and isfile(outfile): frames = np.load(outfile) if use_cache: vcache[outfile] = frames # just return this preloaded video return frames print('reading fresh video from %s' % infile) vidcap = cv2.VideoCapture(infile) success, image = vidcap.read() frames = [] count = 0 if not success: raise ValueError('Could not read the video file!') while success: frames.append( image[...,::-1] if mode == 'rgb' else image ) count += 1 success,image = vidcap.read() if fps: span = int(vidcap.get(cv2.CAP_PROP_FPS) / fps) frames = frames[0::span] if width or height: width = width if width else int(height / frames[0].shape[0] * frames[0].shape[1]) height = height if height else int(width / frames[0].shape[1] * frames[0].shape[0]) frames = [ cv2.resize(frame, (width, height)) for frame in frames ] if squarecrop: tl = int((width/2)-(height/2)) # note that x,y is the wrong way around i.e. it's # F x Y x X x C frames = [ frame[ 0:height, tl:(tl+height)] for frame in frames ] # trs-renamed this from "cropat" as it's a more intuative name if maxlength: frames = frames[0:maxlength*fps] frames = np.array(frames) if outfile: np.save(outfile, frames) return frames def resize_video(video, video_size=(100,100)): """ Resize video content """ width, height = video_size width = width if width else int(height / video[0].shape[0] * video[0].shape[1]) height = height if height else int(width / video[0].shape[1] * video[0].shape[0]) video = np.array([ cv2.resize(frame, (width, height)) for frame in video ]) return video def dense_optical_flow(frame1, frame2): f1 = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY) f2 = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY) return cv2.calcOpticalFlowFarneback(f1, f2, None, 0.5, 3, 15, 3, 5, 1.2, 0) def flow_to_hsv(frame1, flow): hsvImg = np.zeros_like(frame1) mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1]) hsvImg[..., 0] = 0.5 * ang * 180 / np.pi hsvImg[..., 1] = 255 hsvImg[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX) return cv2.cvtColor(hsvImg, cv2.COLOR_HSV2BGR) def naive_stabilization(f): vec = np.average(f,axis=(0,1)) mask = f==0 f = f-vec f[mask]=0 return f def flow_to_polar(f): return cv2.cartToPolar(f[..., 0], f[..., 1])
py
1a58c87e650f1d7c4f9f2253b068cb35d8eac22e
#!/usr/bin/env python # Fit proper motion and parallax using ra/dec/mjd data # Most of this code was taken from here: # https://github.com/ctheissen/WISE_Parallaxes/blob/master/WISE_Parallax.py import numpy as np from astropy.table import Table, vstack, join import matplotlib.pyplot as plt from astropy import units as u from scipy.optimize import curve_fit, minimize from astropy.time import Time import astropy.coordinates as coords from dlnpyutils import utils as dln, coords as dcoords # Set some constants d2a = 3600. d2ma = 3600000. d2y = 1/365.25 def astrometryfunc(x, Delta1, Delta2, PMra, PMdec, pi): """ Compute proper motion and parallax model for a set of ra/dec/mjd values.""" # x: input list of central RA and DEC positions and array of MJDs # Delta1: initial dRA position # Delta2: initial dDEC position # PMra: proper motion in RA (arcsec/yr) # PMdec: proper motion in DEC (arcsec/yr) # pi: parallax (arcsec) ra0, dec0, mjds = x n = len(mjds) years = (mjds - mjds[0])*d2y ras = np.zeros(n,np.float64)+ra0 decs = np.zeros(n,np.float64)+dec0 bary = coords.get_body_barycentric('earth', Time(mjds, format='mjd')) # Parallax factors Fac1 = (bary.x * np.sin(ras*np.pi/180.) - bary.y * np.cos(ras*np.pi/180.) ) Fac2 = bary.x * np.cos(ras*np.pi/180.) * np.sin(decs*np.pi/180.) + \ bary.y * np.sin(ras*np.pi/180.) * np.sin(decs*np.pi/180.) - \ bary.z * np.cos(decs*np.pi/180.) RAsend = Delta1 + PMra * years + pi * Fac1.value DECsend = Delta2 + PMdec * years + pi * Fac2.value return np.concatenate( [RAsend, DECsend]).flatten() def fit(cat): """ Fit proper motion and parallax to ra/dec/mjd data in a table.""" mjd = cat['mjd'] ra = cat['ra'] raerr = cat['raerr'] dec = cat['dec'] decerr = cat['decerr'] # Compute relative positions cenra = np.mean(ra) cendec = np.mean(dec) lon,lat = dcoords.rotsphcen(ra,dec,cenra,cendec,gnomic=True) lon *= d2a lat *= d2a # Fit proper motion and parallax pars, cov = curve_fit(astrometryfunc, [ra, dec, mjd] , np.concatenate( [lon,lat] ).flatten(), sigma=np.concatenate( [ raerr, decerr ] ).flatten() ) return pars,cov def plotfit(cat,pars,cov,savefig=None): """ Plot a figure of the data and the proper motion/parallax fit.""" plt.rcParams.update({'font.size': 12}) # Compute relative positions cenra = np.mean(cat['ra']) cendec = np.mean(cat['dec']) lon,lat = dcoords.rotsphcen(cat['ra'],cat['dec'],cenra,cendec,gnomic=True) lon *= d2a lat *= d2a # Array of MJDs for model curve mjd = np.linspace(np.min(cat['mjd']),np.max(cat['mjd']),100) out = astrometryfunc([cenra,cendec,mjd],pars[0],pars[1],pars[2],pars[3],pars[4]) ll = out[0:100] bb = out[100:] # Plot the model and data plt.plot(ll,bb) plt.errorbar(lon,lat,xerr=cat['raerr'],yerr=cat['decerr'],fmt='o',color='black', markersize=5,ecolor='lightgray',elinewidth=2,linestyle='none',capsize=0) plt.xlabel('dRA (arcsec)') plt.ylabel('dDEC (arcsec)') xr = dln.minmax(np.concatenate((lon,ll))) xr = [xr[0]-0.05*dln.valrange(xr),xr[1]+0.05*dln.valrange(xr)] yr = dln.minmax(np.concatenate((lat,bb))) yr = [yr[0]-0.05*dln.valrange(yr),yr[1]+0.05*dln.valrange(yr)] plt.xlim(xr) plt.ylim(yr) perr = np.sqrt(np.diag(cov)) plt.annotate(r'$\mu_\alpha$ = %5.3f $\pm$ %5.3f mas/yr' % (pars[2]*1e3,perr[2]*1e3) + '\n' + r'$\mu_\delta$ = %5.3f $\pm$ %5.3f mas/yr' % (pars[3]*1e3,perr[3]*1e3) + '\n' + r'$\pi$ = %5.3f $\pm$ %5.3f mas' % (pars[4]*1e3,perr[4]*1e3), xy=(xr[0]+0.05*dln.valrange(xr),yr[1]-0.20*dln.valrange(yr)),ha='left') if savefig is not None: plt.savefig(savefig)
py
1a58c8a746301b8e814357d026abc32a704c0eb2
# Time: O(n) # Space: O(1) class ListNode(object): def __init__(self, x): self.val = x self.next = None def __str__(self): if self: return "{}".format(self.val) else: return None class Solution(object): # @param head, a ListNode # @return a list node def detectCycle(self, head): fast, slow = head, head while fast and fast.next: fast, slow = fast.next.next, slow.next if fast is slow: fast = head while fast is not slow: fast, slow = fast.next, slow.next return fast return None
py
1a58c8e0eedff8bed9d5383ceb7af7b9fdd5b250
from sqlbag import S from schemainspect import get_inspector CREATE = """ DROP SCHEMA IF EXISTS it CASCADE; CREATE SCHEMA it; CREATE FUNCTION it.key_func(jsonb) RETURNS int AS $$ SELECT jsonb_array_length($1); $$ LANGUAGE SQL IMMUTABLE; CREATE FUNCTION it.part_func(jsonb) RETURNS boolean AS $$ SELECT jsonb_typeof($1) = 'array'; $$ LANGUAGE SQL IMMUTABLE; CREATE TABLE it.foo(a bigserial, b jsonb); CREATE UNIQUE INDEX fun_partial_index ON it.foo (it.key_func(b)) WHERE it.part_func(b); CREATE INDEX brin_index ON it.foo USING BRIN (a); """ def test_indexes(db): with S(db) as s: s.execute(CREATE) i1 = get_inspector(s, schema="it") # Recreate schema. # Functions oids will be changed s.execute(CREATE) i2 = get_inspector(s, schema="it") assert i1.indexes == i2.indexes CREATE_CONST = """ create table t(id uuid primary key, x bigint); """ def test_constraints(db): with S(db) as s: s.execute(CREATE_CONST) i = get_inspector(s) constraints_keys = list(i.constraints.keys()) assert constraints_keys == ['"public"."t"."t_pkey"'] indexes_keys = list(i.indexes.keys()) assert indexes_keys == ['"public"."t_pkey"']
py
1a58c8e7224933af823f6ad723ad33ffdfbc394b
import warnings import numpy as np import pytest import pandas as pd from pandas.api.types import ( infer_dtype, is_object_dtype, is_string_dtype, ) from pandas.tests.extension.base.base import BaseExtensionTests class BaseDtypeTests(BaseExtensionTests): """Base class for ExtensionDtype classes""" def test_name(self, dtype): assert isinstance(dtype.name, str) def test_kind(self, dtype): valid = set("biufcmMOSUV") assert dtype.kind in valid def test_construct_from_string_own_name(self, dtype): result = dtype.construct_from_string(dtype.name) assert type(result) is type(dtype) # check OK as classmethod result = type(dtype).construct_from_string(dtype.name) assert type(result) is type(dtype) def test_is_dtype_from_name(self, dtype): result = type(dtype).is_dtype(dtype.name) assert result is True def test_is_dtype_unboxes_dtype(self, data, dtype): assert dtype.is_dtype(data) is True def test_is_dtype_from_self(self, dtype): result = type(dtype).is_dtype(dtype) assert result is True def test_is_dtype_other_input(self, dtype): assert dtype.is_dtype([1, 2, 3]) is False def test_is_not_string_type(self, dtype): return not is_string_dtype(dtype) def test_is_not_object_type(self, dtype): return not is_object_dtype(dtype) def test_eq_with_str(self, dtype): assert dtype == dtype.name assert dtype != dtype.name + "-suffix" def test_eq_with_numpy_object(self, dtype): assert dtype != np.dtype("object") def test_eq_with_self(self, dtype): assert dtype == dtype assert dtype != object() def test_array_type(self, data, dtype): assert dtype.construct_array_type() is type(data) def test_check_dtype(self, data): dtype = data.dtype # check equivalency for using .dtypes df = pd.DataFrame( {"A": pd.Series(data, dtype=dtype), "B": data, "C": "foo", "D": 1} ) # TODO(numpy-1.20): This warnings filter and if block can be removed # once we require numpy>=1.20 with warnings.catch_warnings(): warnings.simplefilter("ignore", DeprecationWarning) result = df.dtypes == str(dtype) # NumPy>=1.20.0, but not pandas.compat.numpy till there # is a wheel available with this change. try: new_numpy_behavior = np.dtype("int64") != "Int64" except TypeError: new_numpy_behavior = True if dtype.name == "Int64" and not new_numpy_behavior: expected = pd.Series([True, True, False, True], index=list("ABCD")) else: expected = pd.Series([True, True, False, False], index=list("ABCD")) self.assert_series_equal(result, expected) expected = pd.Series([True, True, False, False], index=list("ABCD")) result = df.dtypes.apply(str) == str(dtype) self.assert_series_equal(result, expected) def test_hashable(self, dtype): hash(dtype) # no error def test_str(self, dtype): assert str(dtype) == dtype.name def test_eq(self, dtype): assert dtype == dtype.name assert dtype != "anonther_type" def test_construct_from_string(self, dtype): dtype_instance = type(dtype).construct_from_string(dtype.name) assert isinstance(dtype_instance, type(dtype)) def test_construct_from_string_another_type_raises(self, dtype): msg = f"Cannot construct a '{type(dtype).__name__}' from 'another_type'" with pytest.raises(TypeError, match=msg): type(dtype).construct_from_string("another_type") def test_construct_from_string_wrong_type_raises(self, dtype): with pytest.raises( TypeError, match="'construct_from_string' expects a string, got <class 'int'>", ): type(dtype).construct_from_string(0) def test_get_common_dtype(self, dtype): # in practice we will not typically call this with a 1-length list # (we shortcut to just use that dtype as the common dtype), but # still testing as good practice to have this working (and it is the # only case we can test in general) assert dtype._get_common_dtype([dtype]) == dtype @pytest.mark.parametrize("skipna", [True, False]) def test_infer_dtype(self, data, data_missing, skipna): # only testing that this works without raising an error res = infer_dtype(data, skipna=skipna) assert isinstance(res, str) res = infer_dtype(data_missing, skipna=skipna) assert isinstance(res, str)
py
1a58c91b9cf613d1b4eb4585754d905648a4f28b
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mining RPCs - getmininginfo - getblocktemplate proposal mode - submitblock""" import copy from binascii import b2a_hex from decimal import Decimal from test_framework.blocktools import create_coinbase from test_framework.mininode import CBlock from test_framework.test_framework import PALLY1TestFramework from test_framework.util import assert_equal, assert_raises_rpc_error def b2x(b): return b2a_hex(b).decode('ascii') def assert_template(node, block, expect, rehash=True): if rehash: block.hashMerkleRoot = block.calc_merkle_root() rsp = node.getblocktemplate({'data': b2x(block.serialize()), 'mode': 'proposal'}) assert_equal(rsp, expect) class MiningTest(PALLY1TestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = False def run_test(self): node = self.nodes[0] self.log.info('getmininginfo') mining_info = node.getmininginfo() assert_equal(mining_info['blocks'], 200) assert_equal(mining_info['chain'], 'regtest') assert_equal(mining_info['currentblocktx'], 0) assert_equal(mining_info['currentblockweight'], 0) assert_equal(mining_info['difficulty'], Decimal('4.656542373906925E-10')) assert_equal(mining_info['networkhashps'], Decimal('0.003333333333333334')) assert_equal(mining_info['pooledtx'], 0) # Mine a block to leave initial block download node.generate(1) tmpl = node.getblocktemplate() self.log.info("getblocktemplate: Test capability advertised") assert 'proposal' in tmpl['capabilities'] assert 'coinbasetxn' not in tmpl coinbase_tx = create_coinbase(height=int(tmpl["height"]) + 1) # sequence numbers must not be max for nLockTime to have effect coinbase_tx.vin[0].nSequence = 2 ** 32 - 2 coinbase_tx.rehash() block = CBlock() block.nVersion = tmpl["version"] block.hashPrevBlock = int(tmpl["previousblockhash"], 16) block.nTime = tmpl["curtime"] block.nBits = int(tmpl["bits"], 16) block.nNonce = 0 block.vtx = [coinbase_tx] self.log.info("getblocktemplate: Test valid block") assert_template(node, block, None) self.log.info("submitblock: Test block decode failure") assert_raises_rpc_error(-22, "Block decode failed", node.submitblock, b2x(block.serialize()[:-15])) self.log.info("getblocktemplate: Test bad input hash for coinbase transaction") bad_block = copy.deepcopy(block) bad_block.vtx[0].vin[0].prevout.hash += 1 bad_block.vtx[0].rehash() assert_template(node, bad_block, 'bad-cb-missing') self.log.info("submitblock: Test invalid coinbase transaction") assert_raises_rpc_error(-22, "Block does not start with a coinbase", node.submitblock, b2x(bad_block.serialize())) self.log.info("getblocktemplate: Test truncated final transaction") assert_raises_rpc_error(-22, "Block decode failed", node.getblocktemplate, {'data': b2x(block.serialize()[:-1]), 'mode': 'proposal'}) self.log.info("getblocktemplate: Test duplicate transaction") bad_block = copy.deepcopy(block) bad_block.vtx.append(bad_block.vtx[0]) assert_template(node, bad_block, 'bad-txns-duplicate') self.log.info("getblocktemplate: Test invalid transaction") bad_block = copy.deepcopy(block) bad_tx = copy.deepcopy(bad_block.vtx[0]) bad_tx.vin[0].prevout.hash = 255 bad_tx.rehash() bad_block.vtx.append(bad_tx) assert_template(node, bad_block, 'bad-txns-inputs-missingorspent') self.log.info("getblocktemplate: Test nonfinal transaction") bad_block = copy.deepcopy(block) bad_block.vtx[0].nLockTime = 2 ** 32 - 1 bad_block.vtx[0].rehash() assert_template(node, bad_block, 'bad-txns-nonfinal') self.log.info("getblocktemplate: Test bad tx count") # The tx count is immediately after the block header TX_COUNT_OFFSET = 80 bad_block_sn = bytearray(block.serialize()) assert_equal(bad_block_sn[TX_COUNT_OFFSET], 1) bad_block_sn[TX_COUNT_OFFSET] += 1 assert_raises_rpc_error(-22, "Block decode failed", node.getblocktemplate, {'data': b2x(bad_block_sn), 'mode': 'proposal'}) self.log.info("getblocktemplate: Test bad bits") bad_block = copy.deepcopy(block) bad_block.nBits = 469762303 # impossible in the real world assert_template(node, bad_block, 'bad-diffbits') self.log.info("getblocktemplate: Test bad merkle root") bad_block = copy.deepcopy(block) bad_block.hashMerkleRoot += 1 assert_template(node, bad_block, 'bad-txnmrklroot', False) self.log.info("getblocktemplate: Test bad timestamps") bad_block = copy.deepcopy(block) bad_block.nTime = 2 ** 31 - 1 assert_template(node, bad_block, 'time-too-new') bad_block.nTime = 0 assert_template(node, bad_block, 'time-too-old') self.log.info("getblocktemplate: Test not best block") bad_block = copy.deepcopy(block) bad_block.hashPrevBlock = 123 assert_template(node, bad_block, 'inconclusive-not-best-prevblk') if __name__ == '__main__': MiningTest().main()
py
1a58c91bbfca57276b768dfed4de455edee6d38a
# -*- coding: utf-8 -*- #--------------------------------------------------------------------------- # Copyright 2019 VMware, Inc. All rights reserved. # AUTO GENERATED FILE -- DO NOT MODIFY! # # vAPI stub file for package com.vmware.nsx.pools.ip_pools. #--------------------------------------------------------------------------- """ """ __author__ = 'VMware, Inc.' __docformat__ = 'restructuredtext en' import sys from vmware.vapi.bindings import type from vmware.vapi.bindings.converter import TypeConverter from vmware.vapi.bindings.enum import Enum from vmware.vapi.bindings.error import VapiError from vmware.vapi.bindings.struct import VapiStruct from vmware.vapi.bindings.stub import ( ApiInterfaceStub, StubFactoryBase, VapiInterface) from vmware.vapi.bindings.common import raise_core_exception from vmware.vapi.data.validator import (UnionValidator, HasFieldsOfValidator) from vmware.vapi.exception import CoreException from vmware.vapi.lib.constants import TaskType from vmware.vapi.lib.rest import OperationRestMetadata class Allocations(VapiInterface): """ """ _VAPI_SERVICE_ID = 'com.vmware.nsx.pools.ip_pools.allocations' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _AllocationsStub) def list(self, pool_id, ): """ Returns information about which addresses have been allocated from a specified IP address pool. :type pool_id: :class:`str` :param pool_id: IP pool ID (required) :rtype: :class:`com.vmware.nsx.model_client.AllocationIpAddressListResult` :return: com.vmware.nsx.model.AllocationIpAddressListResult :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('list', { 'pool_id': pool_id, }) class _AllocationsStub(ApiInterfaceStub): def __init__(self, config): # properties for list operation list_input_type = type.StructType('operation-input', { 'pool_id': type.StringType(), }) list_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } list_input_value_validator_list = [ ] list_output_validator_list = [ ] list_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/api/v1/pools/ip-pools/{pool-id}/allocations', path_variables={ 'pool_id': 'pool-id', }, query_parameters={ }, content_type='application/json' ) operations = { 'list': { 'input_type': list_input_type, 'output_type': type.ReferenceType('com.vmware.nsx.model_client', 'AllocationIpAddressListResult'), 'errors': list_error_dict, 'input_value_validator_list': list_input_value_validator_list, 'output_validator_list': list_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'list': list_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.nsx.pools.ip_pools.allocations', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=False) class StubFactory(StubFactoryBase): _attrs = { 'Allocations': Allocations, }
py
1a58cae48c6afa2fb00ca374a70d7d394abfc9a4
from django.apps import AppConfig class KinksConfig(AppConfig): name = 'kinks'
py
1a58cbb4638146e5caa44937219a137ece230682
from netatmobeat import BaseTest import os class Test(BaseTest): def test_base(self): """ Basic test with exiting Netatmobeat normally """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*" ) netatmobeat_proc = self.start_beat() self.wait_until(lambda: self.log_contains("netatmobeat is running")) exit_code = netatmobeat_proc.kill_and_wait() assert exit_code == 0
py
1a58cc3bdd33528a36dd77fea439c6a78944741a
#!/usr/bin/env python3 from dataclasses import dataclass, field from typing import List, Type from ml.rl.models.actor import GaussianFullyConnectedActor from ml.rl.models.base import ModelBase from ml.rl.net_builder.continuous_actor_net_builder import ContinuousActorNetBuilder from ml.rl.parameters import NormalizationData, param_hash from ml.rl.preprocessing.identify_types import CONTINUOUS_ACTION from ml.rl.preprocessing.normalization import get_num_output_features @dataclass(frozen=True) class GaussianFullyConnectedConfig: __hash__ = param_hash sizes: List[int] = field(default_factory=lambda: [128, 64]) activations: List[str] = field(default_factory=lambda: ["relu", "relu"]) use_batch_norm: bool = False use_layer_norm: bool = False class GaussianFullyConnected(ContinuousActorNetBuilder): def __init__(self, config: GaussianFullyConnectedConfig): super().__init__() assert len(config.sizes) == len(config.activations), ( f"Must have the same numbers of sizes and activations; got: " f"{config.sizes}, {config.activations}" ) self.config = config @classmethod def config_type(cls) -> Type: return GaussianFullyConnectedConfig @property def default_action_preprocessing(self) -> str: return CONTINUOUS_ACTION def build_actor( self, state_normalization_data: NormalizationData, action_normalization_data: NormalizationData, ) -> ModelBase: state_dim = get_num_output_features( state_normalization_data.dense_normalization_parameters ) action_dim = get_num_output_features( action_normalization_data.dense_normalization_parameters ) return GaussianFullyConnectedActor( state_dim=state_dim, action_dim=action_dim, sizes=self.config.sizes, activations=self.config.activations, use_batch_norm=self.config.use_batch_norm, use_layer_norm=self.config.use_layer_norm, )
py
1a58cc65347ddc4be9f73b1dbe3d82a73f8a4132
from nose.tools import ok_, eq_ # It was shorthand actually: # ok_ assert(..) # eq_ assert_equals(..) def test_case01(): ok_(2+2 == 4, msg="Test Case Failure") def test_case02(): eq_(2+2, 4, msg="Test Case Failure") def test_case03(): ok_(2+2 == 5, msg="Test Case Failure") def test_case04(): eq_(2+2, 5, msg="Test Case Failure")
py
1a58cfe76d0bf752911b44b69ef352a513ca4d7f
import unittest from scripts.caesar import shift_character class TestCaesarCipher(unittest.TestCase): def test_shift_character(self): self.assertEqual(shift_character("a", 1), "B") self.assertEqual(shift_character("a", 2), "C") self.assertEqual(shift_character("a", 3), "D") self.assertEqual(shift_character("z", 1), "A") self.assertEqual(shift_character("Z", 2), "B") self.assertEqual(shift_character("1", 2), "1") self.assertEqual(shift_character(",", 2), ",") self.assertEqual(shift_character(".", 2), ".") self.assertEqual(shift_character(";", 2), ";") self.assertEqual(shift_character(":", 2), ":") self.assertEqual(shift_character("!", 2), "!") self.assertEqual(shift_character("(", 2), "(") self.assertEqual(shift_character(")", 2), ")") self.assertEqual(shift_character("'", 2), "'") self.assertEqual(shift_character('"', 2), '"') self.assertEqual(shift_character("?", 2), "?") self.assertEqual(shift_character("-", 2), "-") with self.assertRaisesRegexp(Exception, "Illegal input"): shift_character("$", 1) with self.assertRaisesRegexp(Exception, "too long"): shift_character("ab", 1)
py
1a58d04a00cbe43c10115313476d7bf7b931188c
""" power_meter_hardware.py "__" """ __author__ = "Prakash Manandhar, and Sophie Yang" __copyright__ = "Copyright 2021, Hydration Team" __credits__ = ["Prakash Manandhar, and Sophie Yang"] __license__ = "Internal" __version__ = "1.0.0" __maintainer__ = "Sophie Yang" __email__ = "[email protected]" __status__ = "Production" from time import sleep # this lets us have a time delay import time from abc import ABC, abstractmethod # https://docs.python.org/3/library/abc.html import numpy import threading import configparser config = configparser.ConfigParser() config.read('config.ini') from pymodbus.client.sync import ModbusSerialClient from pymodbus.payload import BinaryPayloadDecoder class AbstractPowerMeter(ABC): @abstractmethod # returns a timestamped power reading def get_active_power_W(self): pass @abstractmethod def get_current_mA(self): pass class MockPowerMeterSensor(AbstractPowerMeter): def get_active_power_W(self): return [time.time(), -2000.0] def get_current_mA(self): return [time.time(), -999.0] class PowerMeterThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) self.stopped = True self.sensor_readings = { "time_s": 0.0, "active_power_W": 0.0, "current_mA": 0.0, } self.client = ModbusSerialClient(port=config.get('PowerMeter', 'port'), method='rtu', baudrate=config.getint('PowerMeter', 'baudrate')) def run(self): self.stopped = False address = config.getint("PowerMeter", "address") count = config.getint("PowerMeter", "count") sampling_time = config.getfloat("PowerMeter", "SamplingTime") while not self.stopped: loop_start = time.time() result = self.client.read_holding_registers(address, count, unit=1) decoder = BinaryPayloadDecoder.fromRegisters(result.registers, wordorder = '>', byteorder = '>') current_mA = decoder.decode_32bit_float() power_W = decoder.decode_32bit_float() self.sensor_readings["time_s"] = loop_start self.sensor_readings["active_power_W"] = power_W self.sensor_readings["current_mA"] = current_mA loop_end = time.time() delta_time = loop_end - loop_start if (delta_time < sampling_time): time.sleep(sampling_time - delta_time) def stop(self): self.stopped = True class FileWriterThread(threading.Thread): def __init__(self, power_meter_thread): threading.Thread.__init__(self) self.power_meter_thread = power_meter_thread self.stopped = True def run(self): self.stopped = False time_start_s = time.time() fp = open(f"power_meter_{time_start_s}.csv", "w") keys = self.power_meter_thread.sensor_readings.keys() for k in keys: fp.write(f"{k},") fp.write("\n") sampling_time = config.getfloat("PowerMeter", "SamplingTime") while not self.stopped: #read sensor continuously loop_start = time.time() for k in keys: fp.write(f"{self.power_meter_thread.sensor_readings[k]},") fp.write("\n") loop_start_int = (int(loop_start))%10 if loop_start_int == 0: print(f"[t (s), Power (W)] = {self.power_meter_thread.sensor_readings['time_s']}, "\ f"{self.power_meter_thread.sensor_readings['active_power_W']}") loop_end = time.time() delta_time = loop_end - loop_start if (delta_time < sampling_time): time.sleep(sampling_time - delta_time) fp.close() def stop(self): self.stopped = True class PowerMeter(AbstractPowerMeter): def __init__(self): self.power_meter_thread = PowerMeterThread() self.file_writer_thread = FileWriterThread(self.power_meter_thread) self.power_meter_thread.start() self.file_writer_thread.start() def get_active_power_W(self): return [self.power_meter_thread.sensor_readings["time_s"], self.power_meter_thread.sensor_readings["active_power_W"]] def get_current_mA(self): return [self.power_meter_thread.sensor_readings["time_s"], self.power_meter_thread.sensor_readings["current_mA"]]
py
1a58d0875c0608d8680144cc2ba969dc774ff8e1
from django.urls import path, re_path from . import views app_name = 'courses' urlpatterns = [ path('', views.course_list, name='courses'), re_path(r'(?P<course_pk>\d+)/(?P<step_pk>\d+)$', views.step_detail, name='step'), re_path(r'(?P<pk>\d+)/$', views.course_detail, name='detail'), ]
py
1a58d0e4e3d144d487e8bec5d3468b8dbb3c679d
#!/usr/bin/python # # Copyright 2014 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Requires Python 2.4+ import os import sys import imp import base64 import re import json import platform import shutil import time import traceback import datetime from Utils.WAAgentUtil import waagent import Utils.HandlerUtil as Util from redhatPatching import redhatPatching class OraclePatching(redhatPatching): def __init__(self, hutil): super(OraclePatching,self).__init__(hutil)
py
1a58d122228921cf8b48c52177abcb8e72870674
import os import sys from datetime import datetime sys.path.append(os.path.dirname(os.path.dirname(__file__))) from db.db import db # TODO: 定义User模型 class User(db.Model): __tablename__ = 'user' id = db.Column(db.Integer, primary_key=True, autoincrement=True) email = db.Column(db.String(30), nullable=False) username = db.Column(db.String(30), nullable=False) psd = db.Column(db.String(30), nullable=False) money = db.Column(db.Float, nullable=False, default=0) create_time = db.Column(db.DATETIME, default=datetime.now)
py
1a58d18861046ade3587c4f48b9795108fd32034
# Disable debbuging logs (to get rid of cuda warnings) import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf import matplotlib.pyplot as plt import pandas as pd import pylab as pl import numpy as np import tensorflow as tf import matplotlib.patches as mpatches import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (10, 6) if not tf.__version__ == '2.2.0': print(tf.__version__) raise ValueError('please upgrade to TensorFlow 2.2.0, or restart your Kernel (Kernel->Restart & Clear Output)') ''' arange returns evenly spaces values within a given interval (between 0 and 5) using 0.1 steps ''' X = np.arange(0.0, 5.0, 0.1) #Independent a = 1 # Slope b = 0 # Intercept Y = a * X + b #Dependent # Graphical interface plt.plot(X, Y) plt.ylabel('Dependent Variable') plt.xlabel('Independent Variable') plt.show()
py
1a58d1a235be2efa36790fbb834a3cdfa2170276
from django.core.exceptions import ValidationError from django.core.validators import RegexValidator, URLValidator from django.utils.encoding import force_text from django.utils.safestring import mark_safe from django.utils.translation import gettext from cms.utils.page import get_all_pages_from_path from cms.utils.urlutils import admin_reverse, relative_url_regex def validate_relative_url(value): RegexValidator(regex=relative_url_regex)(value) def validate_url(value): try: # Validate relative urls first validate_relative_url(value) except ValidationError: # Fallback to absolute urls URLValidator()(value) def validate_url_uniqueness(site, path, language, exclude_page=None): """ Checks for conflicting urls """ if '/' in path: validate_url(path) path = path.strip('/') pages = get_all_pages_from_path(site, path, language) pages = pages.select_related('publisher_public') if exclude_page: pages = pages.exclude(pk=exclude_page.pk) if exclude_page.publisher_public_id: pages = pages.exclude(pk=exclude_page.publisher_public_id) try: conflict_page = pages[0] except IndexError: return True if conflict_page.publisher_is_draft: page_id = conflict_page.pk else: # rare case where draft points to one url # and live points to another which conflicts. # Use the draft ID because public page is not editable. page_id = conflict_page.publisher_public_id if conflict_page.is_page_type: change_url = admin_reverse('cms_pagetype_change', args=[page_id]) else: change_url = admin_reverse('cms_page_change', args=[page_id]) conflict_url = '<a href="%(change_url)s" target="_blank">%(page_title)s</a>' % { 'change_url': change_url, 'page_title': force_text(conflict_page), } if exclude_page: message = gettext('Page %(conflict_page)s has the same url \'%(url)s\' as current page "%(instance)s".') else: message = gettext('Page %(conflict_page)s has the same url \'%(url)s\' as current page.') message = message % {'conflict_page': conflict_url, 'url': path, 'instance': exclude_page} raise ValidationError(mark_safe(message))
py
1a58d257c6e947efecd5aada41ca9a0abedf92b8
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Callable, Dict, List, Optional, Tuple import numpy as np import torch from ax.models.base import Model from ax.models.model_utils import tunable_feature_indices from ax.models.random.base import RandomModel from ax.models.types import TConfig from ax.utils.common.docutils import copy_doc from ax.utils.common.typeutils import not_none from torch.quasirandom import SobolEngine class SobolGenerator(RandomModel): """This class specifies the generation algorithm for a Sobol generator. As Sobol does not make use of a model, it does not implement the fit or predict methods. Attributes: deduplicate: If true, a single instantiation of the generator will not return the same point twice. init_position: The initial state of the Sobol generator. Starts at 0 by default. scramble: If True, permutes the parameter values among the elements of the Sobol sequence. Default is True. seed: An optional seed value for scrambling. """ engine: Optional[SobolEngine] = None def __init__( self, seed: Optional[int] = None, deduplicate: bool = False, init_position: int = 0, scramble: bool = True, generated_points: Optional[np.ndarray] = None, fallback_to_sample_polytope: bool = False, ) -> None: super().__init__( deduplicate=deduplicate, seed=seed, generated_points=generated_points ) self.init_position = init_position self.scramble = scramble # Initialize engine on gen. self._engine = None self.fallback_to_sample_polytope = fallback_to_sample_polytope def init_engine(self, n_tunable_features: int) -> SobolEngine: """Initialize singleton SobolEngine, only on gen. Args: n_tunable_features: The number of features which can be searched over. Returns: SobolEngine, which can generate Sobol points. """ if not self._engine: self._engine = SobolEngine( dimension=n_tunable_features, scramble=self.scramble, seed=self.seed ).fast_forward(self.init_position) return self._engine @property def engine(self) -> Optional[SobolEngine]: """Return a singleton SobolEngine.""" return self._engine def gen( self, n: int, bounds: List[Tuple[float, float]], linear_constraints: Optional[Tuple[np.ndarray, np.ndarray]] = None, fixed_features: Optional[Dict[int, float]] = None, model_gen_options: Optional[TConfig] = None, rounding_func: Optional[Callable[[np.ndarray], np.ndarray]] = None, ) -> Tuple[np.ndarray, np.ndarray]: """Generate new candidates. Args: n: Number of candidates to generate. bounds: A list of (lower, upper) tuples for each column of X. linear_constraints: A tuple of (A, b). For k linear constraints on d-dimensional x, A is (k x d) and b is (k x 1) such that A x <= b. fixed_features: A map {feature_index: value} for features that should be fixed to a particular value during generation. rounding_func: A function that rounds an optimization result appropriately (e.g., according to `round-trip` transformations) but *unused here*. Returns: 2-element tuple containing - (n x d) array of generated points. - Uniform weights, an n-array of ones for each point. """ tf_indices = tunable_feature_indices( bounds=bounds, fixed_features=fixed_features ) if len(tf_indices) > 0: self.init_engine(len(tf_indices)) points, weights = super().gen( n=n, bounds=bounds, linear_constraints=linear_constraints, fixed_features=fixed_features, model_gen_options=model_gen_options, rounding_func=rounding_func, ) if self.engine: self.init_position = not_none(self.engine).num_generated return (points, weights) @copy_doc(Model._get_state) def _get_state(self) -> Dict[str, Any]: state = super()._get_state() state.update({"init_position": self.init_position}) return state @copy_doc(RandomModel._gen_unconstrained) def _gen_unconstrained( self, n: int, d: int, tunable_feature_indices: np.ndarray, fixed_features: Optional[Dict[int, float]] = None, ) -> np.ndarray: if len(tunable_feature_indices) == 0: # Search space is entirely fixed, should return the only avail. point. fixed_features = fixed_features or {} # pyre-fixme[7]: Expected `ndarray` but got `Tuple[typing.Any, typing.Any]`. return ( np.tile(np.array([list(not_none(fixed_features).values())]), (n, 1)), np.ones(n), ) return super()._gen_unconstrained( n=n, d=d, tunable_feature_indices=tunable_feature_indices, fixed_features=fixed_features, ) def _gen_samples(self, n: int, tunable_d: int) -> np.ndarray: """Generate n samples. tunable_d is ignored; as it is specified at engine initialization. Args: bounds: A list of d (lower, upper) tuples for each column of X. fixed_feature_indices: Indices of features which are fixed at a particular value. """ if self.engine is None: raise ValueError( # pragma: no cover "Sobol Engine must be initialized before candidate generation." ) return not_none(self.engine).draw(n, dtype=torch.double).numpy()
py
1a58d26208b79fef1fc511f297e0ac23b844e3d7
from django.contrib import admin from pages.models import Expert, Meeting class MeetingAdmin(admin.ModelAdmin): list_display = ("user", "objective") admin.site.register(Expert) admin.site.register(Meeting, MeetingAdmin)
py
1a58d287f604ad83957b320d058e4d38a0b75ef9
#!/usr/bin/env python import struct from serial import Serial, PARITY_NONE from umodbus.client.serial import rtu from umodbus.functions import function_code_to_function_map, ModbusFunction # This code is the great work of: # https://github.com/greentangerine/ME3000 # Thank you so much @greentangerine for sharing your work and letting us all build on it class ME3000: # some constants from the Passive protocol STANDBY=0x0100 DISCHARGE=0x0101 CHARGE=0x0102 AUTO=0x0103 STANDBY_VAL=0x5555 ME_HOLDING=0x0200 NUM_HOLDING=69 # specific holding registers ME_STATE=0x0200 BATTPCT=0x0210 ME_INPUT=0x10B0 NUM_INPUT=13 INV_STATES = ("WAIT", "CHECK CHARGE", "CHARGE", "CHECK DISCHARGE", "DISCHARGE", "EPS", "FAULT", "PERM FAULT") port_id = None slave_id = None serial_port = None def __init__(self, port, slave): self.port_id = port self.slave_id = slave self.serial_port = self.get_serial_port() def connect(self): if self.serial_port is not None: self.serial_port = self.get_serial_port() def get_serial_port(self): """ Return serial.Serial instance, ready to use for RS485.""" port = Serial(port=self.port_id, baudrate=9600, parity=PARITY_NONE, stopbits=1, bytesize=8, timeout=1) return port def disconnect(self): if self.serial_port is not None: self.close_serial_port() def close_serial_port(self): self.serial_port.close() self.serial_port = None def set_auto(self): """ Switch inverter to AUTO.""" ret_status = True message = write_passive_register(slave_id=self.slave_id, address=self.AUTO, value=0) try: response = rtu.send_message(message, self.serial_port) except: ret_status = False response = 0 return ret_status, response def set_standby(self): """ Switch inverter to STANDBY.""" ret_status = True message = write_passive_register(slave_id=self.slave_id, address=self.STANDBY, value=self.STANDBY_VAL) try: response = rtu.send_message(message, self.serial_port) except: ret_status = False response = 0 return ret_status, response def set_charge(self, charge=3000): """ Set charge value.""" ret_status = True message = write_passive_register(slave_id=self.slave_id, address=self.CHARGE, value=charge) try: response = rtu.send_message(message, self.serial_port) except: ret_status = False response = 0 return ret_status, response def set_discharge(self, discharge=3000): """ Set discharge value.""" ret_status = True message = write_passive_register(slave_id=self.slave_id, address=self.DISCHARGE, value=discharge) try: response = rtu.send_message(message, self.serial_port) except: ret_status = False response = 0 return ret_status, response def read_holding(self): """ Read all the holding registers from inverter.""" ret_status = True message = rtu.read_holding_registers(slave_id=self.slave_id, starting_address=self.ME_HOLDING, quantity=self.NUM_HOLDING) try: response = rtu.send_message(message, self.serial_port) except: ret_status = False response = 0 return ret_status, response def read_input(self): """ Read the inverter's input registers.""" ret_status = True message = rtu.read_input_registers(slave_id=self.slave_id, starting_address=self.ME_INPUT, quantity=self.NUM_INPUT) try: response = rtu.send_message(message, self.serial_port) except: ret_status = False response = 0 return ret_status, response def get_inverter_state(self): """ Return the inverter state.""" ret_status = True message = rtu.read_holding_registers(slave_id=self.slave_id, starting_address=self.ME_STATE, quantity=1) try: response = rtu.send_message(message, self.serial_port) except: ret_status = False response = [-1] return ret_status, response[0], self.INV_STATES[response[0]] def get_battery_percentage(self): """ Return the current charge percentage of the batteries.""" ret_status = True message = rtu.read_holding_registers(slave_id=self.slave_id, starting_address=self.BATTPCT, quantity=1) try: response = rtu.send_message(message, self.serial_port) except: ret_status = False response = [-1] return ret_status, response[0] def write_passive_register(slave_id, address, value): """ Return ADU for Modbus extended function code 66: Write Passive Register. :param slave_id: Number of slave. :return: Byte array with ADU. """ function = WritePassiveRegister() function._address = address function._value = value return rtu._create_request_adu(slave_id, function.request_pdu) # SoFar ME30000 Passive Mode WRITE_PASSIVE_REGISTER = 66 class WritePassiveRegister(ModbusFunction): """ Implement SoFar Modbus function code 66. This function code is used to write a single holding register in a remote device. The Request PDU specifies the address of the register to be written. The response is consists of the slave id, function code, byte count and status bytes. The request PDU with function code 66 must be 5 bytes: ================ =============== Field Length (bytes) ================ =============== Function code 1 Address 2 Value 2 ================ =============== The PDU can unpacked to this: .. Note: the backslash in the bytes below are escaped using an extra back slash. Without escaping the bytes aren't printed correctly in the HTML output of this docs. To work with the bytes in Python you need to remove the escape sequences. `b'\\x01\\x00d` -> `b\x01\x00d` .. code-block:: python >>> struct.unpack('>BHh', b'\\x42\\x00d\\x00\\x03') (6, 100, 3) The reponse PDU is a two byte status value. ================ =============== Field Length (bytes) ================ =============== Function code 1 Byte Count 1 Status Value 2 ================ =============== """ function_code = WRITE_PASSIVE_REGISTER _address = None _count = 2 _value = None data = None @property def value(self): return self._value @value.setter def value(self, value): """ Value to be written on register. :param value: An integer. :raises: IllegalDataValueError when value isn't in range. """ try: struct.pack('>h', value) except struct.error: raise IllegalDataValueError self._value = value @property def request_pdu(self): """ Build request PDU to write single register. :return: Byte array of 5 bytes with PDU. """ if None in [self._address, self._value]: # TODO Raise proper exception. raise Exception return struct.pack('>BHh', self.function_code, self._address, self._value) @staticmethod def create_from_request_pdu(pdu): """ Create instance from request PDU. :param pdu: A request PDU. """ _, address, value = \ struct.unpack('>BHh', pdu) instance = WritePassiveRegister() instance._address = address instance._value = value return instance @property def expected_response_pdu_size(self): """ Return number of bytes expected for response PDU. :return: number of bytes. """ return 4 def create_response_pdu(self): fmt = '>BBH' ret_val = struct.pack(fmt, self.function_code, self._count, self.data) return ret_val @staticmethod def create_from_response_pdu(resp_pdu): """ Create instance from response PDU. :param resp_pdu: Byte array with request PDU. :return: Instance of :class:`WritePassiveRegister`. """ write_passive_register = WritePassiveRegister() quantity, value = struct.unpack('>BH', resp_pdu[1:4]) write_passive_register._address = quantity write_passive_register.data = value return write_passive_register def execute(self, slave_id, route_map): """ Execute the Modbus function registered for a route. :param slave_id: Slave id. :param eindpoint: Instance of modbus.route.Map. """ endpoint = route_map.match(slave_id, self.function_code, self._address) try: endpoint(slave_id=slave_id, address=self._address, value=self._value, function_code=self.function_code) # route_map.match() returns None if no match is found. Calling None # results in TypeError. except TypeError: raise IllegalDataAddressError() function_code_to_function_map[WRITE_PASSIVE_REGISTER] = WritePassiveRegister
py
1a58d3169bd241ce24945a476b634cc01b9340a8
"""helloworld URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.urls import include urlpatterns = [ path('admin/', admin.site.urls), path('', include('main_app.urls')), ]
py
1a58d3a6cb0e541f2a96376006f8369719b22ca6
# Copyright (c) 2015 Nicolas JOUANIN # # See the file license.txt for copying permission. """ hbmqtt_pub - MQTT 3.1.1 publisher Usage: hbmqtt_pub --version hbmqtt_pub (-h | --help) hbmqtt_pub --url BROKER_URL -t TOPIC (-f FILE | -l | -m MESSAGE | -n | -s) [-c CONFIG_FILE] [-i CLIENT_ID] [-q | --qos QOS] [-d] [-k KEEP_ALIVE] [--clean-session] [--ca-file CAFILE] [--ca-path CAPATH] [--ca-data CADATA] [ --will-topic WILL_TOPIC [--will-message WILL_MESSAGE] [--will-qos WILL_QOS] [--will-retain] ] [--extra-headers HEADER] [-r] Options: -h --help Show this screen. --version Show version. --url BROKER_URL Broker connection URL (musr conform to MQTT URI scheme (see https://github.com/mqtt/mqtt.github.io/wiki/URI-Scheme>) -c CONFIG_FILE Broker configuration file (YAML format) -i CLIENT_ID Id to use as client ID. -q | --qos QOS Quality of service to use for the message, from 0, 1 and 2. Defaults to 0. -r Set retain flag on connect -t TOPIC Message topic -m MESSAGE Message data to send -f FILE Read file by line and publish message for each line -s Read from stdin and publish message for each line -k KEEP_ALIVE Keep alive timeout in second --clean-session Clean session on connect (defaults to False) --ca-file CAFILE] CA file --ca-path CAPATH] CA Path --ca-data CADATA CA data --will-topic WILL_TOPIC --will-message WILL_MESSAGE --will-qos WILL_QOS --will-retain --extra-headers EXTRA_HEADERS JSON object with key-value pairs of additional headers for websocket connections -d Enable debug messages """ import sys import logging import asyncio import os import json import hbmqtt from hbmqtt.client import MQTTClient, ConnectException from docopt import docopt from hbmqtt.utils import read_yaml_config logger = logging.getLogger(__name__) def _gen_client_id(): import os import socket pid = os.getpid() hostname = socket.gethostname() return "hbmqtt_pub/%d-%s" % (pid, hostname) def _get_qos(arguments): try: return int(arguments["--qos"][0]) except: return None def _get_extra_headers(arguments): try: return json.loads(arguments["--extra-headers"]) except: return {} def _get_message(arguments): if arguments["-n"]: yield b"" if arguments["-m"]: yield arguments["-m"].encode(encoding="utf-8") if arguments["-f"]: try: with open(arguments["-f"], "r") as f: for line in f: yield line.encode(encoding="utf-8") except: logger.error("Failed to read file '%s'" % arguments["-f"]) if arguments["-l"]: import sys for line in sys.stdin: if line: yield line.encode(encoding="utf-8") if arguments["-s"]: import sys message = bytearray() for line in sys.stdin: message.extend(line.encode(encoding="utf-8")) yield message async def do_pub(client, arguments): running_tasks = [] try: logger.info("%s Connecting to broker" % client.client_id) await client.connect( uri=arguments["--url"], cleansession=arguments["--clean-session"], cafile=arguments["--ca-file"], capath=arguments["--ca-path"], cadata=arguments["--ca-data"], extra_headers=_get_extra_headers(arguments), ) qos = _get_qos(arguments) topic = arguments["-t"] retain = arguments["-r"] for message in _get_message(arguments): logger.info("%s Publishing to '%s'" % (client.client_id, topic)) task = asyncio.ensure_future(client.publish(topic, message, qos, retain)) running_tasks.append(task) if running_tasks: await asyncio.wait(running_tasks) await client.disconnect() logger.info("%s Disconnected from broker" % client.client_id) except KeyboardInterrupt: await client.disconnect() logger.info("%s Disconnected from broker" % client.client_id) except ConnectException as ce: logger.fatal("connection to '%s' failed: %r" % (arguments["--url"], ce)) except asyncio.CancelledError: logger.fatal("Publish canceled due to previous error") def main(*args, **kwargs): if sys.version_info[:2] < (3, 6): logger.fatal("Error: Python 3.6+ is required") sys.exit(-1) arguments = docopt(__doc__, version=hbmqtt.__version__) # print(arguments) formatter = "[%(asctime)s] :: %(levelname)s - %(message)s" if arguments["-d"]: level = logging.DEBUG else: level = logging.INFO logging.basicConfig(level=level, format=formatter) if arguments["-c"]: config = read_yaml_config(arguments["-c"]) else: config = read_yaml_config( os.path.join( os.path.dirname(os.path.realpath(__file__)), "default_client.yaml" ) ) logger.debug("Using default configuration") loop = asyncio.get_event_loop() client_id = arguments.get("-i", None) if not client_id: client_id = _gen_client_id() if arguments["-k"]: config["keep_alive"] = int(arguments["-k"]) if ( arguments["--will-topic"] and arguments["--will-message"] and arguments["--will-qos"] ): config["will"] = dict() config["will"]["topic"] = arguments["--will-topic"] config["will"]["message"] = arguments["--will-message"].encode("utf-8") config["will"]["qos"] = int(arguments["--will-qos"]) config["will"]["retain"] = arguments["--will-retain"] client = MQTTClient(client_id=client_id, config=config, loop=loop) loop.run_until_complete(do_pub(client, arguments)) loop.close() if __name__ == "__main__": main()
py
1a58d5313c38bf12e6f5db86fd0bf740a60feeab
# Caeser Encryption import sys if (__name__ == "__main__"): def readFile (path): file = open(path, "r") lineList = [] for line in file: lineList.append(line) #print(lineList) return lineList def encrypt (lines,x): encrypted = [] for line in lines: for idx in range(0,len(line)-1): num = ord(line[idx])+x while(num < 0): num += 256 while(num > 255): num -= 256 char = chr(num) encrypted.append(char) encrypted.append("\n") return encrypted def writeFile(path, encrypted): file = open(path, "w") for char in encrypted: file.write(char) #print(char) file.close if(len(sys.argv) < 4): print("INPUT ERROR") print("try:\npython caesar.py \"number\" \"path\" \"-e\\-d\"") else: num = int(sys.argv[1]) path = sys.argv[2] crypt = sys.argv[3] lines = readFile(path) if(crypt == "-d"): num = num * (-1) encrypted = encrypt(lines, num) elif(crypt == "-e"): encrypted = encrypt(lines, num) writeFile(path, encrypted)
py
1a58d5c82eddb2aac383010682ed0d4262f6c2a7
# Copyright 2018 ICON Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Dict, TYPE_CHECKING from loopchain.components import SingletonMetaClass if TYPE_CHECKING: from loopchain.peer import PeerInnerStub from loopchain.channel.channel_inner_service import ChannelInnerStub, \ ChannelTxReceiverInnerStub, ChannelTxCreatorInnerStub from loopchain.scoreservice import IconScoreInnerStub class StubCollection(metaclass=SingletonMetaClass): def __init__(self): self.amqp_target = None self.amqp_key = None self.peer_stub: PeerInnerStub = None self.channel_stubs: Dict[str, ChannelInnerStub] = {} self.channel_tx_creator_stubs: Dict[str, ChannelTxCreatorInnerStub] = {} self.channel_tx_receiver_stubs: Dict[str, ChannelTxReceiverInnerStub] = {} self.icon_score_stubs: Dict[str, IconScoreInnerStub] = {} async def create_peer_stub(self): from loopchain import configure as conf from loopchain.peer import PeerInnerStub queue_name = conf.PEER_QUEUE_NAME_FORMAT.format(amqp_key=self.amqp_key) self.peer_stub = PeerInnerStub(self.amqp_target, queue_name, conf.AMQP_USERNAME, conf.AMQP_PASSWORD) await self.peer_stub.connect(conf.AMQP_CONNECTION_ATTEMPTS, conf.AMQP_RETRY_DELAY) return self.peer_stub async def create_channel_stub(self, channel_name): from loopchain import configure as conf from loopchain.channel.channel_inner_service import ChannelInnerStub queue_name = conf.CHANNEL_QUEUE_NAME_FORMAT.format( channel_name=channel_name, amqp_key=self.amqp_key) stub = ChannelInnerStub(self.amqp_target, queue_name, conf.AMQP_USERNAME, conf.AMQP_PASSWORD) await stub.connect(conf.AMQP_CONNECTION_ATTEMPTS, conf.AMQP_RETRY_DELAY) self.channel_stubs[channel_name] = stub logging.debug(f"Channel : {channel_name}, Queue : {queue_name}") return stub async def create_channel_tx_creator_stub(self, channel_name): from loopchain import configure as conf from loopchain.channel.channel_inner_service import ChannelTxCreatorInnerStub queue_name = conf.CHANNEL_TX_CREATOR_QUEUE_NAME_FORMAT.format(channel_name=channel_name, amqp_key=self.amqp_key) stub = ChannelTxCreatorInnerStub(self.amqp_target, queue_name) await stub.connect() self.channel_tx_creator_stubs[channel_name] = stub logging.debug(f"Channel : {channel_name}, Queue : {queue_name}") return stub async def create_channel_tx_receiver_stub(self, channel_name): from loopchain import configure as conf from loopchain.channel.channel_inner_service import ChannelTxReceiverInnerStub queue_name = conf.CHANNEL_TX_RECEIVER_QUEUE_NAME_FORMAT.format( channel_name=channel_name, amqp_key=self.amqp_key) stub = ChannelTxReceiverInnerStub(self.amqp_target, queue_name, conf.AMQP_USERNAME, conf.AMQP_PASSWORD) await stub.connect(conf.AMQP_CONNECTION_ATTEMPTS, conf.AMQP_RETRY_DELAY) self.channel_tx_receiver_stubs[channel_name] = stub logging.debug(f"Channel : {channel_name}, Queue : {queue_name}") return stub async def create_icon_score_stub(self, channel_name): from loopchain import configure as conf from loopchain.scoreservice import IconScoreInnerStub queue_name = conf.ICON_SCORE_QUEUE_NAME_FORMAT.format( channel_name=channel_name, amqp_key=self.amqp_key ) stub = IconScoreInnerStub(self.amqp_target, queue_name, conf.AMQP_USERNAME, conf.AMQP_PASSWORD) await stub.connect(conf.AMQP_CONNECTION_ATTEMPTS, conf.AMQP_RETRY_DELAY) self.icon_score_stubs[channel_name] = stub return stub
py
1a58d8049828b56ade32e01f0709baf48cdf76bd
# _*_ coding: utf-8 _*_ # # Package: src.core.model __all__ = [ "car", "customer", "employee", "entity", "rental", "user" ]
py
1a58dac9634102e9d2fe4611afbd81eaa687010c
import operator from functools import cached_property import kafka from confluent_kafka.admin import AdminClient, ConfigResource from esque.config import Config from esque.controller.topic_controller import TopicController from esque.helpers import ensure_kafka_future_done, unpack_confluent_config class Cluster: def __init__(self): self._config = Config.get_instance() self.__topic_controller = None @cached_property def kafka_python_client(self) -> kafka.KafkaAdminClient: return kafka.KafkaAdminClient(**self._config.create_kafka_python_config()) @cached_property def confluent_client(self) -> AdminClient: return AdminClient({"topic.metadata.refresh.interval.ms": "250", **self._config.create_confluent_config()}) @property def topic_controller(self) -> TopicController: if self.__topic_controller is None: self.__topic_controller = TopicController(self, self._config) return self.__topic_controller @property def bootstrap_servers(self): return self._config.bootstrap_servers def get_metadata(self): return self.confluent_client.list_topics(timeout=1) @property def brokers(self): metadata = self.confluent_client.list_topics(timeout=1) return sorted( [{"id": broker.id, "host": broker.host, "port": broker.port} for broker in metadata.brokers.values()], key=operator.itemgetter("id"), ) def retrieve_config(self, config_type: ConfigResource.Type, id): requested_resources = [ConfigResource(config_type, str(id))] futures = self.confluent_client.describe_configs(requested_resources) ((old_resource, future),) = futures.items() future = ensure_kafka_future_done(future) result = future.result() return unpack_confluent_config(result)
py
1a58dcfb1f91c169fc3da03fed303f103f5d44b7
import pdb import numpy as np import pandas as pd from aif360.datasets import BinaryLabelDataset from sklearn.preprocessing import OneHotEncoder, StandardScaler def _quantization_binning(data, num_bins=10): qtls = np.arange(0.0, 1.0 + 1 / num_bins, 1 / num_bins) bin_edges = np.quantile(data, qtls, axis=0) # (num_bins + 1, num_features) bin_widths = np.diff(bin_edges, axis=0) bin_centers = bin_edges[:-1] + bin_widths / 2 # () return bin_edges, bin_centers, bin_widths def _quantize(inputs, bin_edges, num_bins=10): quant_inputs = np.zeros(inputs.shape[0]) for i, x in enumerate(inputs): quant_inputs[i] = np.digitize(x, bin_edges) quant_inputs = quant_inputs.clip(1, num_bins) - 1 # Clip edges return quant_inputs def _one_hot(a, num_bins=10): return np.squeeze(np.eye(num_bins)[a.reshape(-1).astype(np.int32)]) def DataQuantize(X, bin_edges=None, num_bins=10): ''' Quantize: First 4 entries are continuos, and the rest are binary ''' X_ = [] for i in range(5): if bin_edges is not None: Xi_q = _quantize(X[:, i], bin_edges, num_bins) else: bin_edges, bin_centers, bin_widths = _quantization_binning(X[:, i], num_bins) Xi_q = _quantize(X[:, i], bin_edges, num_bins) Xi_q = _one_hot(Xi_q, num_bins) X_.append(Xi_q) for i in range(5, len(X[0])): if i == 39: # gender attribute continue Xi_q = _one_hot(X[:, i], num_bins=2) X_.append(Xi_q) return np.concatenate(X_,1), bin_edges def get_adult_data(): ''' We borrow the code from https://github.com/IBM/sensitive-subspace-robustness Preprocess the adult data set by removing some features and put adult data into a BinaryLabelDataset You need to download the adult dataset (both the adult.data and adult.test files) from https://archive.ics.uci.edu/ml/datasets/Adult ''' headers = ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-stataus', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'y'] train = pd.read_csv('adult/adult.data', header = None) test = pd.read_csv('adult/adult.test', header = None) df = pd.concat([train, test], ignore_index=True) df.columns = headers df['y'] = df['y'].replace({' <=50K.': 0, ' >50K.': 1, ' >50K': 1, ' <=50K': 0 }) df = df.drop(df[(df[headers[-2]] == ' ?') | (df[headers[6]] == ' ?')].index) df = pd.get_dummies(df, columns=[headers[1], headers[5], headers[6], headers[7], headers[9], headers[8], 'native-country']) delete_these = ['race_ Amer-Indian-Eskimo','race_ Asian-Pac-Islander','race_ Black','race_ Other', 'sex_ Female'] delete_these += ['native-country_ Cambodia', 'native-country_ Canada', 'native-country_ China', 'native-country_ Columbia', 'native-country_ Cuba', 'native-country_ Dominican-Republic', 'native-country_ Ecuador', 'native-country_ El-Salvador', 'native-country_ England', 'native-country_ France', 'native-country_ Germany', 'native-country_ Greece', 'native-country_ Guatemala', 'native-country_ Haiti', 'native-country_ Holand-Netherlands', 'native-country_ Honduras', 'native-country_ Hong', 'native-country_ Hungary', 'native-country_ India', 'native-country_ Iran', 'native-country_ Ireland', 'native-country_ Italy', 'native-country_ Jamaica', 'native-country_ Japan', 'native-country_ Laos', 'native-country_ Mexico', 'native-country_ Nicaragua', 'native-country_ Outlying-US(Guam-USVI-etc)', 'native-country_ Peru', 'native-country_ Philippines', 'native-country_ Poland', 'native-country_ Portugal', 'native-country_ Puerto-Rico', 'native-country_ Scotland', 'native-country_ South', 'native-country_ Taiwan', 'native-country_ Thailand', 'native-country_ Trinadad&Tobago', 'native-country_ United-States', 'native-country_ Vietnam', 'native-country_ Yugoslavia'] delete_these += ['fnlwgt', 'education'] df.drop(delete_these, axis=1, inplace=True) return BinaryLabelDataset(df = df, label_names = ['y'], protected_attribute_names = ['sex_ Male', 'race_ White']) def preprocess_adult_data(seed = 0): ''' Description: Ths code (1) standardizes the continuous features, (2) one hot encodes the categorical features, (3) splits into a train (80%) and test set (20%), (4) based on this data, create another copy where gender is deleted as a predictive feature and the feature we predict is gender (used by SenSR when learning the sensitive directions) Input: seed: the seed used to split data into train/test ''' # Get the dataset and split into train and test dataset_orig = get_adult_data() # we will standardize continous features continous_features = ['age', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week'] continous_features_indices = [dataset_orig.feature_names.index(feat) for feat in continous_features] # get a 80%/20% train/test split dataset_orig_train, dataset_orig_test = dataset_orig.split([0.8], shuffle=True, seed = seed) SS = StandardScaler().fit(dataset_orig_train.features[:, continous_features_indices]) dataset_orig_train.features[:, continous_features_indices] = SS.transform(dataset_orig_train.features[:, continous_features_indices]) dataset_orig_test.features[:, continous_features_indices] = SS.transform(dataset_orig_test.features[:, continous_features_indices]) X_train = dataset_orig_train.features X_test = dataset_orig_test.features y_train = dataset_orig_train.labels y_test = dataset_orig_test.labels X_val = X_train[:len(X_test)] y_val = y_train[:len(X_test)] X_train = X_train[len(X_test):] y_train = y_train[len(X_test):] # gender id = 39 A_train = X_train[:,39] A_val = X_val[:,39] A_test = X_test[:,39] X_train, bin_edges = DataQuantize(X_train) X_val, _ = DataQuantize(X_val, bin_edges) X_test, _ = DataQuantize(X_test, bin_edges) return X_train, X_val, X_test, y_train, y_val, y_test, A_train, A_val, A_test
py
1a58de39ff0572ec7087269e22f00e24811e703e
''' @Author: hua @Date: 2019-12-03 14:44:23 @description: @LastEditors: hua @LastEditTime: 2019-12-03 15:18:00 ''' from app.Models.Admin import Admin from sqlalchemy import event import time @event.listens_for(Admin, "before_insert") def admin_before_insert(mapper, connection, target): target.add_time = int(time.time()) target.update_time = int(time.time()) @event.listens_for(Admin, "before_update") def admin_before_update(mapper, connection, target): target.update_time = int(time.time())
py
1a58df596b6b75074a5e09054809b26c82930f77
#!/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from coredb.query_managers.manager import BaseQueryManager from polyaxon.pql.builder import BoolCondition, SearchCondition, ValueCondition from polyaxon.pql.parser import parse_search_operation, parse_value_operation class ArtifactQueryManager(BaseQueryManager): NAME = "artifact" FIELDS_ORDERING = ("name", "kind", "path", "is_input") FIELDS_USE_UUID = {"run"} FIELDS_PROXY = { "id": "name", "name": "artifact__name", "kind": "artifact__kind", "path": "artifact__path", "state": "artifact__state", } CHECK_ALIVE = False PARSERS_BY_FIELD = { # Name "name": parse_search_operation, # Kind "kind": parse_value_operation, # Path "path": parse_value_operation, # State "state": parse_value_operation, # Is input "is_input": parse_value_operation, # Run "run": parse_value_operation, } CONDITIONS_BY_FIELD = { # Name "name": SearchCondition, # Kind "kind": ValueCondition, # Path "path": ValueCondition, # State "state": ValueCondition, # Is input "is_input": BoolCondition, # Run "run": ValueCondition, }
py
1a58e50570154071bf520b07705a25b2918c3e69
# Generated by Django 3.1.7 on 2021-05-07 11:30 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('booking', '0012_auto_20210506_0650'), ] operations = [ migrations.AlterModelOptions( name='ticket', options={'ordering': ['-pk', 'expected_activation_date']}, ), ]
py
1a58e6199f8f4d13f7753779d461b125279d95eb
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('C6A', ['C8pro']) Monomer('BaxA', ['BaxM', 'BaxA_1', 'BaxA_2', 'SmacM']) Monomer('Ligand', ['Receptor']) Monomer('C6pro', ['C3A']) Monomer('ParpU', ['C3A']) Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU', 'C6pro']) Monomer('BidM', ['BaxM']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('C8A', ['BidU', 'C3pro']) Monomer('Xiap', ['SmacC', 'C3A']) Monomer('Receptor', ['Ligand', 'Fadd']) Monomer('C3ub') Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('C3pro', ['C8A']) Monomer('SmacM', ['BaxA']) Monomer('SmacC', ['Xiap']) Monomer('C8pro', ['Fadd', 'C6A']) Monomer('ParpC') Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr', 1.0) Parameter('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('C6A_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('Ligand_0', 1000.0) Parameter('C6pro_0', 100.0) Parameter('ParpU_0', 1000000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('BidM_0', 0.0) Parameter('BaxM_0', 40000.0) Parameter('C8A_0', 0.0) Parameter('Xiap_0', 188250.0) Parameter('Receptor_0', 100.0) Parameter('C3ub_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('C3pro_0', 21000.0) Parameter('SmacM_0', 100000.0) Parameter('SmacC_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('ParpC_0', 0.0) Observable('C6A_obs', C6A()) Observable('BaxA_obs', BaxA()) Observable('Ligand_obs', Ligand()) Observable('C6pro_obs', C6pro()) Observable('ParpU_obs', ParpU()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('BidM_obs', BidM()) Observable('BaxM_obs', BaxM()) Observable('C8A_obs', C8A()) Observable('Xiap_obs', Xiap()) Observable('Receptor_obs', Receptor()) Observable('C3ub_obs', C3ub()) Observable('Fadd_obs', Fadd()) Observable('C3pro_obs', C3pro()) Observable('SmacM_obs', SmacM()) Observable('SmacC_obs', SmacC()) Observable('C8pro_obs', C8pro()) Observable('ParpC_obs', ParpC()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None, C6A=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None, C3pro=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None, C3pro=None) + BidU(C8A=None) | C8A(BidU=1, C3pro=None) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1, C3pro=None) % BidU(C8A=1) >> C8A(BidU=None, C3pro=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('inhibition_0_SmacC_inhibitor_Xiap_inh_target', SmacC(Xiap=None) + Xiap(SmacC=None, C3A=None) | SmacC(Xiap=1) % Xiap(SmacC=1, C3A=None), inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf, inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, C3A=None) + C3A(Xiap=None, ParpU=None, C6pro=None) | Xiap(SmacC=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None) >> Xiap(SmacC=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None, C6pro=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, SmacM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, SmacM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None) | BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, SmacM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, SmacM=None) | BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None) + BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None) + SmacM(BaxA=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=5) % SmacM(BaxA=5), transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf, transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr) Rule('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=5) % SmacM(BaxA=5) >> BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None) + SmacC(Xiap=None), transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc) Rule('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=None) + C3pro(C8A=None) | C8A(BidU=None, C3pro=1) % C3pro(C8A=1), catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=1) % C3pro(C8A=1) >> C8A(BidU=None, C3pro=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=None) + C6pro(C3A=None) | C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1), catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf, catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr) Rule('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + C6A(C8pro=None), catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc) Rule('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=None) + C8pro(Fadd=None, C6A=None) | C6A(C8pro=1) % C8pro(Fadd=None, C6A=1), catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf, catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr) Rule('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=1) % C8pro(Fadd=None, C6A=1) >> C6A(C8pro=None) + C8A(BidU=None, C3pro=None), catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc) Initial(C6A(C8pro=None), C6A_0) Initial(BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None), BaxA_0) Initial(Ligand(Receptor=None), Ligand_0) Initial(C6pro(C3A=None), C6pro_0) Initial(ParpU(C3A=None), ParpU_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None, C6pro=None), C3A_0) Initial(BidM(BaxM=None), BidM_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(C8A(BidU=None, C3pro=None), C8A_0) Initial(Xiap(SmacC=None, C3A=None), Xiap_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0) Initial(C3ub(), C3ub_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(C3pro(C8A=None), C3pro_0) Initial(SmacM(BaxA=None), SmacM_0) Initial(SmacC(Xiap=None), SmacC_0) Initial(C8pro(Fadd=None, C6A=None), C8pro_0) Initial(ParpC(), ParpC_0)
py
1a58e647168c3fabdd9e4c5cd827a1f09abe49fe
import unittest from cnc.gcode import * class TestGCode(unittest.TestCase): def setUp(self): self.default = Coordinates(-7, 8, 9, -10) def tearDown(self): pass def test_constructor(self): # GCode shouldn't be created with constructor, but since it uses # internally, let's check it. self.assertRaises(TypeError, GCode) gc = GCode({"X": "1", "Y": "-2", "Z": "0", "E": 99, "G": "1"}) self.assertEqual(gc.coordinates(self.default, 1).x, 1.0) self.assertEqual(gc.coordinates(self.default, 1).y, -2.0) self.assertEqual(gc.coordinates(self.default, 1).z, 0.0) self.assertEqual(gc.coordinates(self.default, 1).e, 99.0) def test_has(self): gc = GCode.parse_line("g1X2Y3z4E5F50") self.assertTrue(gc.has("G")) self.assertTrue(gc.has("X")) self.assertTrue(gc.has("Y")) self.assertTrue(gc.has("Z")) self.assertTrue(gc.has("E")) self.assertTrue(gc.has("F")) def test_parser(self): gc = GCode.parse_line("G1X2Y-3Z4E1.5") self.assertEqual(gc.command(), "G1") self.assertEqual(gc.coordinates(self.default, 1).x, 2.0) self.assertEqual(gc.coordinates(self.default, 1).y, -3.0) self.assertEqual(gc.coordinates(self.default, 1).z, 4.0) self.assertEqual(gc.coordinates(self.default, 1).e, 1.5) gc = GCode.parse_line("") self.assertIsNone(gc) def test_defaults(self): # defaults are values which should be returned if corresponding # value doesn't exist in gcode. default = Coordinates(11, -12, 14, -10) gc = GCode.parse_line("G1") self.assertEqual(gc.coordinates(default, 1).x, 11.0) self.assertEqual(gc.coordinates(default, 1).y, -12.0) self.assertEqual(gc.coordinates(default, 1).z, 14.0) self.assertEqual(gc.coordinates(default, 1).e, -10.0) def test_commands(self): gc = GCode({"G": "1"}) self.assertEqual(gc.command(), "G1") gc = GCode.parse_line("M99") self.assertEqual(gc.command(), "M99") def test_case_sensitivity(self): gc = GCode.parse_line("m111") self.assertEqual(gc.command(), "M111") gc = GCode.parse_line("g2X3y-4Z5e6") self.assertEqual(gc.command(), "G2") self.assertEqual(gc.coordinates(self.default, 1).x, 3.0) self.assertEqual(gc.coordinates(self.default, 1).y, -4.0) self.assertEqual(gc.coordinates(self.default, 1).z, 5.0) self.assertEqual(gc.coordinates(self.default, 1).e, 6.0) def test_has_coordinates(self): gc = GCode.parse_line("X2Y-3Z4") self.assertTrue(gc.has_coordinates()) gc = GCode.parse_line("G1") self.assertFalse(gc.has_coordinates()) gc = GCode.parse_line("X1") self.assertTrue(gc.has_coordinates()) gc = GCode.parse_line("Y1") self.assertTrue(gc.has_coordinates()) gc = GCode.parse_line("Z1") self.assertTrue(gc.has_coordinates()) gc = GCode.parse_line("E1") self.assertTrue(gc.has_coordinates()) def test_radius(self): gc = GCode.parse_line("G2I1J2K3") self.assertEqual(gc.radius(self.default, 1).x, 1) self.assertEqual(gc.radius(self.default, 1).y, 2) self.assertEqual(gc.radius(self.default, 1).z, 3) gc = GCode.parse_line("G3") self.assertEqual(gc.radius(self.default, 1).x, self.default.x) self.assertEqual(gc.radius(self.default, 1).y, self.default.y) self.assertEqual(gc.radius(self.default, 1).z, self.default.z) def test_multiply(self): # getting coordinates could modify value be specified multiplier. gc = GCode.parse_line("X2 Y-3 Z4 E5") self.assertEqual(gc.coordinates(self.default, 25.4).x, 50.8) self.assertEqual(gc.coordinates(self.default, 2).y, -6) self.assertEqual(gc.coordinates(self.default, 0).y, 0) self.assertEqual(gc.coordinates(self.default, 5).e, 25) def test_whitespaces(self): gc = GCode.parse_line("X1 Y2") self.assertEqual(gc.coordinates(self.default, 1).x, 1.0) self.assertEqual(gc.coordinates(self.default, 1).y, 2.0) gc = GCode.parse_line("X 3 Y4") self.assertEqual(gc.coordinates(self.default, 1).x, 3.0) self.assertEqual(gc.coordinates(self.default, 1).y, 4.0) gc = GCode.parse_line("X 5 Y\t 6") self.assertEqual(gc.coordinates(self.default, 1).x, 5.0) self.assertEqual(gc.coordinates(self.default, 1).y, 6.0) gc = GCode.parse_line(" \tX\t\t \t\t7\t ") self.assertEqual(gc.coordinates(self.default, 1).x, 7.0) def test_errors(self): self.assertRaises(GCodeException, GCode.parse_line, "X1X1") self.assertRaises(GCodeException, GCode.parse_line, "X1+Y1") self.assertRaises(GCodeException, GCode.parse_line, "X1-Y1") self.assertRaises(GCodeException, GCode.parse_line, "~Y1") self.assertRaises(GCodeException, GCode.parse_line, "Y") self.assertRaises(GCodeException, GCode.parse_line, "abracadabra") self.assertRaises(GCodeException, GCode.parse_line, "G1M1") self.assertRaises(GCodeException, GCode.parse_line, "x 1 y 1 z 1 X 1") def test_comments(self): self.assertIsNone(GCode.parse_line("; some text")) self.assertIsNone(GCode.parse_line(" \t \t ; some text")) self.assertIsNone(GCode.parse_line("(another comment)")) gc = GCode.parse_line("X2.5 ; end of line comment") self.assertEqual(gc.coordinates(self.default, 1).x, 2.5) gc = GCode.parse_line("X2 Y(inline comment)7") self.assertEqual(gc.coordinates(self.default, 1).x, 2.0) self.assertEqual(gc.coordinates(self.default, 1).y, 7.0) gc = GCode.parse_line("X2 Y(inline comment)3 \t(one more comment) " "\tz4 ; multi comment test") self.assertEqual(gc.coordinates(self.default, 1).x, 2.0) self.assertEqual(gc.coordinates(self.default, 1).y, 3.0) self.assertEqual(gc.coordinates(self.default, 1).z, 4.0) if __name__ == '__main__': unittest.main()
py
1a58e68915f23662dede86518f3bcf785c75cbf4
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-03-17 16:04 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tracker', '0007_auto_20160317_1504'), ] operations = [ migrations.RemoveField( model_name='tracker', name='L1', ), migrations.AddField( model_name='tracker', name='endpt', field=models.CharField(choices=[(b'0', b'Data goes to both Cavatica and cBioPortal'), (b'1', b'Data goes to cBioPortal only'), (b'2', b'Data goes to Cavatica only')], default=b'0', max_length=254), ), migrations.AddField( model_name='tracker', name='level', field=models.CharField(choices=[(b'0', b'L1 Data: FASTQ'), (b'1', b'L2 Data: VCF, BAM'), (b'2', b'L3 Data: Processed data')], default=b'0', max_length=230), ), migrations.AlterField( model_name='tracker', name='group', field=models.CharField(choices=[(b'0', b'PRIVATE: requester access only'), (b'1', b'CBTTC'), (b'2', b'SU2C'), (b'3', b'PNOC'), (b'9', b'PUBLIC')], default=b'0', help_text=b'PNOC, CBTTC, SU2C, PUBLIC', max_length=245), ), ]
py
1a58e6c679a9d74fa851348409d44eeec8add291
#! /usr/bin/env python3 from nexus import settings,job,run_project,obj from nexus import generate_physical_system from nexus import generate_pyscf settings( results = '', sleep = 3, machine = 'ws16', ) system = generate_physical_system( units = 'A', axes = '''1.785 1.785 0.000 0.000 1.785 1.785 1.785 0.000 1.785''', elem_pos = ''' C 0.0000 0.0000 0.0000 C 0.8925 0.8925 0.8925 ''', kgrid = (1,1,1), kshift = (0,0,0), C = 4, ) scf = generate_pyscf( identifier = 'scf', # log output goes to scf.out path = 'diamond_pp_dft_gamma', # directory to run in job = job(serial=True,threads=16),# pyscf must run w/o mpi template = './dft_template.py', # pyscf template file system = system, cell = obj( # used to make Cell() inputs basis = 'bfd-vdz', ecp = 'bfd', drop_exponent = 0.1, verbose = 5, ), ) run_project()
py
1a58e7860ba9469db535a1ed97a1f857efe2fae3
import dsd, os path = 'ADItotal\\' lista = os.listdir(path) dsd.limpar_arquivo('ADItotal(sem_andamentos).txt') dsd.limpar_arquivo('ADItotal(andamentos).txt') dsd.limpar_arquivo('excluidos.txt') partes_total = [] dados_csv = [] andamentos_csv = [] lista_excluidos = [] dsd.limpar_arquivo('ADItotalpartes.txt') dsd.write_csv_header('ADItotalpartes.txt', 'nome, tipo, processo') contador=0 excluidos = 0 for item in lista[0:]: gravar_processo = True contador = contador +1 nome_arquivo = path+item processo = item.replace('.txt','') # carrega dados do arquivo html = 'NA' html = dsd.carregar_arquivo(nome_arquivo) html = html.replace(',',';') html = html.replace('\n','') html = html.replace(' ',' ') # extrai as partes partes_string = dsd.extrair(html,'partes>>>>', '<div id="partes-resumidas">') partes = dsd.extrair_partes(partes_string) lista_das_partes = [] lista_das_partes = dsd.listar_partes(partes_string, item.replace('.txt','')) for y in lista_das_partes: dsd.write_csv_line('ADItotalpartes.txt', y) # extrai os andamentos andamentos = dsd.extrair(html,'andamentos>>>>', 'pauta>>>>') andamentos = dsd.extrair_andamentos(andamentos) #extrai os elementos do código fonte codigofonte =dsd.extrair(html,'fonte>>>>', 'partes>>>>') eletronico_fisico =dsd.extrair(codigofonte,'bg-primary">','</span>') sigilo =dsd.extrair(codigofonte,'bg-success">','</span>') nome_processo =dsd.extrair(codigofonte,'-processo" value="','">') numerounico = dsd.extrair(codigofonte,'-rotulo">','</div>') numerounico = dsd.extrair(numerounico,': ', '') relator = dsd.extrair(codigofonte,'Relator:','</div>') relator = relator.strip(' ') relator = relator.replace('MIN. ','') relator = dsd.remover_acentos(relator) redator_acordao = dsd.extrair(codigofonte,'>Redator do acórdão:','</div>') redator_acordao = dsd.remover_acentos(redator_acordao) redator_acordao = redator_acordao.replace('MIN. ','') redator_acordao = redator_acordao.strip(' ') redator_acordao = redator_acordao.replace ('MINISTRO ','') relator_ultimo_incidente = dsd.extrair(codigofonte, 'Relator do último incidente:' ,'</div>') relator_ultimo_incidente = relator_ultimo_incidente.replace ('MIN. ','') relator_ultimo_incidente = relator_ultimo_incidente.replace ('MINISTRO ','') relator_ultimo_incidente = relator_ultimo_incidente.strip(' ') relator_ultimo_incidente = dsd.remover_acentos(relator_ultimo_incidente) ultimoincidente = dsd.extrair(relator_ultimo_incidente,"(",'') relator_ultimo_incidente = dsd.extrair(relator_ultimo_incidente,'','(') ultimoincidente = ultimoincidente.replace(')','') ultimoincidente = ultimoincidente.strip(' ') #extrai os elementos da aba informações informacoes = dsd.extrair(html,'informacoes>>>>', '>>>>') assuntos = dsd.extrair(informacoes, '<ul style="list-style:none;">', '</ul>') assuntos = dsd.limpar(assuntos) assuntos = dsd.extrair(assuntos,'<li>','') assuntos = assuntos.replace('</li>','') assuntos = dsd.limpar(assuntos) protocolo_data = dsd.extrair(informacoes, '<div class="col-md-5 processo-detalhes-bold m-l-0">', '</div>') protocolo_data = protocolo_data.strip(' ') orgaodeorigem = dsd.extrair(informacoes, '''Órgão de Origem: </div> <div class="col-md-5 processo-detalhes">''', '</div>') numerodeorigem = dsd.extrair(informacoes, '''Número de Origem: </div> <div class="col-md-5 processo-detalhes">''', '</div>') origem = dsd.extrair(informacoes, '''Origem: </div> <div class="col-md-5 processo-detalhes">''', '</div>') procedencia = dsd.extrair(informacoes, '''<span id="descricao-procedencia">''', '</span>') procedencia = procedencia.replace(' ','') procedencia = dsd.extrair(procedencia, '', ' -') cc = 'NA' # extrai campos CC if 'ADI' in nome_processo or 'ADPF' in nome_processo or 'ADC' in nome_processo or 'ADO' in nome_processo: cc = dsd.extrair(html, 'cc>>>','') # extrai campo incidente incidentecc = dsd.extrair (cc, 'verProcessoAndamento.asp?incidente=', '">') # extrai campos classe + liminar + numero cln = 'NA' cln = dsd.extrair(cc, '<div><h3><strong>', '</strong>') dsd.limpar_cln(cln) cln = cln.upper() # extrai numero numerocc = 'NA' numerocc = dsd.extrair (cln, ' - ', '') numerocc = dsd.limpar_numero(numerocc) # extrai liminar e classe if 'LIMINAR' in cln: liminarcc = 'sim' classecc = dsd.extrair(cln, '', ' (MED') else: liminarcc = 'não' classecc = dsd.extrair(cln, '', ' - ') dsd.limpar_classe(classecc) classecc.upper() classecc = classecc.replace('ACAO DIRETA DE INCONSTITUCIONALIDADE','ADI') classecc = classecc.replace('AÇÃO DIRETA DE INCONSTITUCIONALIDADE','ADI') classecc = classecc.replace('ARGUIÇÃO DE DESCUMPRIMENTO DE PRECEITO FUNDAMENTAL','ADPF') # definição de campo: origem origemcc = 'NA' origemcc = dsd.extrair(cc,'Origem:</td><td><strong>','</strong>') procedencia = procedencia.replace('***', dsd.limpa_estado(origemcc).replace('/', '')) ## definição de campo: entrada entradacc = dsd.extrair(cc,'Entrada no STF:</td><td><strong>','</strong>') entradacc = dsd.substituir_data(entradacc) ## definição de campo: relator relatorcc = dsd.extrair(cc,'Relator:</td><td><strong>','</strong>') relatorcc = relatorcc.replace('MINISTRO ','') relatorcc = relatorcc.replace('MINISTRA ','') relatorcc = dsd.remover_acentos(relatorcc) ## definição de campo: distribuição distribuicaocc = dsd.extrair(cc,'Distribuído:</td><td><strong>','</strong>') distribuicaocc = dsd.substituir_data(distribuicaocc) distribuicaocc = distribuicaocc.replace('-','/') ## definição de campo: requerente requerentecc = dsd.extrair(cc,'Requerente: <strong>','</strong>') requerentecc = requerentecc.replace(' ',' ') requerentecc = requerentecc.replace(' ;',';') requerentecc = requerentecc.replace('; ',';') requerentecc = requerentecc.replace('( CF','(CF') if '(CF' in requerentecc: requerentesplit = requerentecc.split('(CF') requerentecc = requerentesplit[0] requerentecc = requerentecc.strip() requerentetipo = requerentesplit[1] requerentetipo = dsd.extrair(requerentetipo, ';','') requerentetipo = requerentetipo.replace(')','') requerentetipocc = requerentetipo.replace('0','') requerentetipocc = requerentetipocc.replace(' 2','') else: requerentesplit = 'NA' requerentetipocc = 'NA' ## definição de campo: requerido requeridocc = dsd.extrair(cc, 'Requerido :<strong>', '</strong>') ## definição de campo: dispositivo questionado dispositivoquestionadocc = dsd.extrair(cc, 'Dispositivo Legal Questionado</b></strong><br /><pre>', '</pre>') dispositivoquestionadocc = dsd.limpar(dispositivoquestionadocc) ## definição de campo: resultado da liminar resultadoliminarcc = dsd.extrair(cc, 'Resultado da Liminar</b></strong><br /><br />', '<br />') ### filtro resultado liminar # filtros resultadoliminarcc = resultadoliminarcc.replace('Aguardadno','Aguardadno') resultadoliminarcc = resultadoliminarcc.replace('Decisão Monocrática - "Ad referendum"','Deferida') resultadoliminarcc = resultadoliminarcc.replace('Monicrática','Monocrática') resultadoliminarcc = resultadoliminarcc.replace('Monoacrática','Monocrática') resultadoliminarcc = resultadoliminarcc.replace('Monocrático','Monocrática') resultadoliminarcc = resultadoliminarcc.replace('Decisão Monocrática Deferida -','Deferida') resultadoliminarcc = resultadoliminarcc.replace('"','') resultadoliminarcc = resultadoliminarcc.replace('Decisão Monocrática - ','') resultadoliminarcc = resultadoliminarcc.replace('liminar deferida','Deferida') resultadoliminarcc = resultadoliminarcc.upper() resultadoliminarcc = resultadoliminarcc.replace('PREJUDICADO','PREJUDICADA') resultadoliminarcc = resultadoliminarcc.replace('PROCEDENTE','DEFERIDA') resultadoliminarcc = resultadoliminarcc.replace('AD REFERENDUM','') resultadoliminarcc = resultadoliminarcc.replace('PROCEDENTE','DEFERIDA') ## definição de campo: resultado final resultadofinalcc = dsd.extrair(cc, 'Resultado Final</b></strong><br /><br />', '<br />') ## definição de campo: decisão monocrática final if 'Decisão Monocrática Final</b></strong><br /><pre>' in cc: decisaomonofinal = dsd.extrair(cc, 'Decisão Monocrática Final</b></strong><br /><pre>', '</pre>') decisaomonofinalcc = dsd.limpar(decisaomonofinal) else: decisaomonofinalcc = 'NA' ## definição de campo: fundamento if 'Fundamentação Constitucional</b></strong><br /><pre>' in cc: fundamentocc = dsd.extrair(cc, 'Fundamentação Constitucional</b></strong><br /><pre>', '</pre>') fundamentocc = dsd.limpar(fundamentocc) else: fundamentocc = 'NA' ## definição de campo: indexação if 'Indexação</b></strong><br /><pre>' in cc: indexacaocc = dsd.extrair(cc, 'Indexação</b></strong><br /><pre>', '</pre>') indexacaocc = dsd.limpar(indexacaocc) else: indexacaocc = 'NA' else: gravar_processo = False # criação da variável dados extraídos, com uma lista de dados dados = [processo, incidentecc, requerentecc, requerentetipocc, requeridocc, len(lista_das_partes), lista_das_partes ,len(andamentos), andamentos[:9], eletronico_fisico, sigilo, numerounico, relatorcc, relator, redator_acordao, ultimoincidente, relator_ultimo_incidente, assuntos, procedencia, protocolo_data, distribuicaocc, orgaodeorigem, numerodeorigem, origem, liminarcc, dispositivoquestionadocc, resultadoliminarcc, resultadofinalcc, decisaomonofinalcc, fundamentocc, indexacaocc] #inserir aqui o conteúdo da lista acima, trocando [] por '' campos = '''processo, incidentecc, requerentecc, requerentetipocc, requeridocc, len(partes),partes,len(andamentos), andamentos[:9], eletronico_fisico, sigilo, numerounico, relatorcc, relator, redator_acordao, ultimoincidente, relator_ultimo_incidente, assuntos, procedencia, protocolo_data, distribuicaocc, orgaodeorigem, numerodeorigem, origem, liminarcc, dispositivoquestionadocc, resultadoliminarcc, resultadofinalcc, decisaomonofinalcc, fundamentocc, indexacaocc''' campos = campos.replace('\n','') campos = campos.replace(' ','') dados2 = [processo, len(andamentos), len(str(andamentos)), andamentos] campos2 = 'processo, len(andamentos), len(str(andamentos)), andamentos' dsd.write_csv_header('ADItotal(sem_andamentos).txt',campos) dsd.write_csv_header('excluidos.txt','processos excluídos') dsd.write_csv_header('ADItotal(andamentos).txt',campos2) # grava de 500 em 500 if andamentos == []: andamentos = ['SEM ANDAMENTOS CADASTRADOS'] if (gravar_processo == False or nome_processo == 'NA' or len(lista_das_partes) == 0 or 'IMPOSSIBILIDADE DE PROCESSAMENTO' in andamentos[0] or 'REAUTUADO' in andamentos[0] or 'CANCELAMENTO DE AUTUACAO' in andamentos[0]): lista_excluidos.append(processo) excluidos = excluidos + 1 else: dados_csv.append(dados) andamentos_csv.append(dados2) print(nome_processo) dsd.write_csv_lines('ADItotal(sem_andamentos).txt',dados_csv) dsd.write_csv_lines('ADItotal(andamentos).txt',andamentos_csv) dsd.write_csv_lines('excluidos.txt',lista_excluidos) print ('Gravados arquivos ADItotal(sem_andamentos).txt e ADItotal(andamentos).txt') print (f'Excluídos {excluidos} processos')
py
1a58e97f71312d4b807a81395c788d73388308b6
import pytest from Cryptodome.PublicKey import RSA from django.urls import reverse from oidc_provider.models import RESPONSE_TYPE_CHOICES, RSAKey, UserConsent from oidc_apis.factories import ApiFactory, ApiScopeFactory from users.factories import OIDCClientFactory, UserFactory from users.views import TunnistamoOidcAuthorizeView @pytest.mark.parametrize('with_trailing_slash', (True, False)) @pytest.mark.django_db def test_tunnistamo_authorize_view_is_used(client, with_trailing_slash): response = client.get('/openid/authorize{}'.format('/' if with_trailing_slash else '')) assert response.resolver_match.func.__name__ == TunnistamoOidcAuthorizeView.as_view().__name__ @pytest.mark.parametrize('ui_locales, expected_text', ( (None, 'Sähköposti'), ('', 'Sähköposti'), ('bogus', 'Sähköposti'), ('en', 'Email'), ('fi en', 'Sähköposti'), ('bogus en fi', 'Email'), )) @pytest.mark.django_db def test_tunnistamo_authorize_view_language(client, ui_locales, expected_text): oidc_client = OIDCClientFactory(require_consent=True) user = UserFactory() client.force_login(user) url = reverse('authorize') data = { 'client_id': oidc_client.client_id, 'redirect_uri': oidc_client.redirect_uris[0], 'response_type': 'code', 'scope': 'email', } if ui_locales is not None: data['ui_locales'] = ui_locales response = client.get(url, data) assert expected_text in response.content.decode('utf-8') @pytest.mark.django_db def test_api_scopes_are_shown_in_and_returned_from_consent_screen(client): oidc_client = OIDCClientFactory(require_consent=True) user = UserFactory() client.force_login(user) api = ApiFactory(required_scopes=['github_username']) api_scope = ApiScopeFactory(api=api) response = client.get(reverse('authorize'), { 'client_id': oidc_client.client_id, 'redirect_uri': oidc_client.redirect_uris[0], 'scope': api_scope.identifier, 'response_type': 'code', }) assert response.status_code == 200 content = response.content.decode('utf-8') expected_scope = '{} github_username'.format(api_scope.identifier) assert '<input name="scope" type="hidden" value="{}" />'.format(expected_scope) in content assert api_scope.name in content assert api_scope.description in content @pytest.mark.parametrize('api_scope_in_request', (False, True)) @pytest.mark.django_db def test_api_scopes_are_added_to_user_consent_after_authorization(client, api_scope_in_request): oidc_client = OIDCClientFactory(require_consent=True) user = UserFactory() client.force_login(user) api = ApiFactory(required_scopes=['github_username']) api_scope = ApiScopeFactory(api=api) response = client.post(reverse('authorize'), { 'client_id': oidc_client.client_id, 'redirect_uri': oidc_client.redirect_uris[0], 'scope': '{} github_username'.format(api_scope.identifier) if api_scope_in_request else api_scope.identifier, 'response_type': 'code', 'allow': True, }) assert response.status_code == 302 user_consent = UserConsent.objects.get(user=user, client=oidc_client) assert 'github_username' in user_consent.scope @pytest.mark.parametrize('create_client', (False, True)) @pytest.mark.django_db def test_original_client_id_is_saved_to_the_session( client, loginmethod_factory, oidcclient_factory, create_client, ): """Test that the original client id is saved to the session This is an implementation detail test, but we don't have a better way to test this right now. Proper testing would need end-to-end tests with e.g. Selenium.""" oidc_client = None if create_client: oidc_client = oidcclient_factory( client_id="test_client", redirect_uris=['https://tunnistamo.test/redirect_uri'], response_types=["id_token"] ) url = reverse('authorize') data = { 'client_id': 'test_client', 'response_type': 'id_token', 'redirect_uri': 'https://tunnistamo.test/redirect_uri', 'scope': 'openid', 'response_mode': 'form_post', 'nonce': 'abcdefg' } client.get(url, data) if oidc_client: session_client_id = client.session.get("oidc_authorize_original_client_id") assert session_client_id == oidc_client.client_id else: assert "oidc_authorize_original_client_id" not in client.session @pytest.mark.django_db @pytest.mark.parametrize('with_pkce', (True, False)) @pytest.mark.parametrize('response_type', [key for key, val in RESPONSE_TYPE_CHOICES]) def test_public_clients_ability_to_skip_consent( client, user, oidcclient_factory, with_pkce, response_type, ): key = RSA.generate(1024) rsakey = RSAKey(key=key.exportKey('PEM').decode('utf8')) rsakey.save() oidc_client = oidcclient_factory( client_type='public', require_consent=False, response_types=[key for key, val in RESPONSE_TYPE_CHOICES], redirect_uris=['https://example.com/callback'], ) client.force_login(user) url = reverse('authorize') data = { 'client_id': oidc_client.client_id, 'redirect_uri': oidc_client.redirect_uris[0], 'scope': 'openid profile', 'response_type': response_type, 'nonce': 'testnonce', } if with_pkce: data.update({ # The code challenge value doesn't matter as only its existence is checked # in the authorize endpoint. The value would be verified in the token endpoint. 'code_challenge': 'abcdefg', 'code_challenge_method': 'S256' }) response = client.get(url, data) # Consent skip should happen when using implicit flow, or code flow with pkce. should_redirect_to_client_map = { ('code', True): True, ('code', False): False, ('id_token', True): True, ('id_token', False): True, ('id_token token', True): True, ('id_token token', False): True, ('code token', True): True, ('code token', False): False, ('code id_token', True): True, ('code id_token', False): False, ('code id_token token', True): True, ('code id_token token', False): False, } if should_redirect_to_client_map[(response_type, with_pkce)]: assert response.status_code == 302 assert response['Location'].startswith(oidc_client.redirect_uris[0]) assert 'error' not in response['Location'] else: assert response.status_code == 200 assert 'name="allow" type="submit"' in response.content.decode('utf-8')
py
1a58e9cd302698322742d260b397d2fbee2e8755
import logging import traceback import peewee from flask import request from east.exceptions import * from app import app, db print('TESTING') class DummyLogger: def log(self, *args): pass def error(self, *args): pass logger = DummyLogger() # logger = logging.getLogger(__name__) @app.errorhandler(BaseAPIException) def handle_api_errors(e): logger.error('API Exception <%s>:: %s', e.name, e.description) db.rollback() return e.make_response() @app.errorhandler(peewee.DoesNotExist) def handle_peewee_doesnotexist(e): logger.error('DoesNotExist: %s' % e) db.rollback() return DoesNotExistError(str(e)).make_response() @app.errorhandler(404) def handle_404_error(e): logger.error(str(e)) return APIRouteDoesNotExist().make_response() @app.errorhandler(405) def handle_405_error(e): logger.error(str(e)) return APIMethodNotAllowed('Requested route does not support this method [%s].' % request.method).make_response() @app.errorhandler(Exception) def handle_generic_exception(e): logger.error('Generic <%s>:: %s', e.__class__.__name__, e) logger.error(traceback.format_exc()) db.rollback() return BaseAPIException(e.__class__.__name__, str(e)).make_response()
py
1a58eac1550cf7acc5fdde8f70d2b24a7231037b
import numpy as np from pyscf import gto, scf from kspies import wy mol = gto.M(atom = 'N 0 0 0 ; N 1.1 0 0', basis = 'cc-pVDZ') mf = scf.RHF(mol).run() dm_tar = mf.make_rdm1() PBS = gto.expand_etbs([(0, 13, 2**-4 , 2), (1, 3 , 2**-2 , 2)]) mw = wy.RWY(mol, dm_tar, pbas=PBS) #Note that for this designed-to-be ill-conditioned problem, #Hessian-based optimization algorithms are problematic. mw.method = 'bfgs' mw.tol = 2e-7 mw.run() mw.info() Ws_fin = mw.Ws etas = [ 2.**(-a) for a in np.linspace(5., 27., 45) ] v = np.zeros(len(etas)) W = np.zeros(len(etas)) for i, eta in enumerate(etas): mw.reg=eta mw.run() v[i] = mw.Dvb() W[i] = mw.Ws mw.info() import matplotlib.pyplot as plt fig,ax = plt.subplots(2) ax[0].scatter(np.log10(Ws_fin-W), np.log10(v)) ax[1].scatter(np.log10(etas), v*etas/(Ws_fin-W)) plt.tight_layout() #plt.savefig('L_curves.pdf', format='pdf') #plt.savefig('L_curves.eps', format='eps') plt.show()
py
1a58eac85481796e2e7c1eb243a563fc59964441
from flask import Flask, render_template app = Flask(__name__, template_folder='', static_folder='') @app.route('/') def result(): return render_template('compare_ops.html') if __name__ == "__main__": app.run(host='0.0.0.0', port=5000, debug=True)
py
1a58ec2d9494e45c8993f65ee066a76990c2cca9
#!/usr/bin/env python # Construct a command that will create a texture, appending console # output to the file "out.txt". def omaketx_command (infile, outfile, extraargs="", options="", output_cmd="-otex", showinfo=True, showinfo_extra="", silent=False, concat=True) : command = (oiio_app("oiiotool") + " " + make_relpath(infile,tmpdir) + " " + extraargs + " " + output_cmd + options + " " + make_relpath(outfile,tmpdir) ) if not silent : command += " >> out.txt" if concat: command += " ;\n" if showinfo: command += info_command (outfile, extraargs=showinfo_extra, safematch=1) return command # location of oiio-images directory oiio_images = OIIO_TESTSUITE_IMAGEDIR # Just for simplicity, make a checkerboard with a solid alpha command += oiiotool (" --pattern checker 128x128 4 --ch R,G,B,=1.0" + " -d uint8 -o " + make_relpath("checker.tif") ) # Basic test - recreate the grid texture command += omaketx_command (oiio_images + "/grid.tif", "grid.tx") # Test --resize (to power of 2) with the grid, which is 1000x1000 command += omaketx_command (oiio_images + "/grid.tif", "grid-resize.tx", options=":resize=1") # Test -d to set output data type command += omaketx_command ("checker.tif", "checker-uint16.tx", "-d uint16") # Test --ch to restrict the number of channels command += omaketx_command ("checker.tif", "checker-1chan.tx", "--ch 0") # Test --tiles to set a non-default tile size command += omaketx_command ("checker.tif", "checker-16x32tile.tx", "--tile 16 32") # Test --separate and --compression command += omaketx_command ("checker.tif", "checker-seplzw.tx", "--planarconfig separate --compression lzw") # Test --wrap command += omaketx_command ("checker.tif", "checker-clamp.tx", options=":wrap=clamp") # Test --swrap and --twrap command += omaketx_command ("checker.tif", "checker-permir.tx", options=":swrap=periodic:twrap=mirror") # Test --nomipmap command += omaketx_command ("checker.tif", "checker-nomip.tx", options=":nomipmap=1") # Test setting matrices command += omaketx_command ("checker.tif", "checker-camera.tx", "--attrib:type=matrix worldtocamera 1,0,0,0,0,2,0,0,0,0,1,0,0,0,0,1 " + "--attrib:type=matrix worldtoscreen 3,0,0,0,0,3,0,0,0,0,3,0,1,2,3,1") # Test --opaque-detect (should drop the alpha channel) command += omaketx_command ("checker.tif", "checker-opaque.tx", options=":opaque_detect=1") # Test --monochrome-detect (first create a monochrome image) command += oiiotool (" --pattern constant:color=.25,.25,.25 256x256 3 " + " -d uint8 -o " + make_relpath("gray.tif")) command += omaketx_command ("gray.tif", "gray-mono.tx", options=":monochrome_detect=1") # Test --monochrome-detect on something that is NOT monochrome command += oiiotool (" --pattern constant:color=.25,.2,.15 256x256 3 " + " -d uint8 -o " + make_relpath("pink.tif")) command += omaketx_command ("pink.tif", "pink-mono.tx", options=":monochrome_detect=1") # Test --prman : should save 'separate' planarconfig, and funny 64x32 tiles # since we are specifying 16 bits, and it should save as 'int16' even though # we asked for unsigned. command += omaketx_command ("checker.tif", "checker-prman.tx", "-d uint16", options=":prman=1") # Test --fixnan : take advantage of the bad.exr images in # testsuite/oiiotool-fixnan. (Use --nomipmap to cut down on stats output) # FIXME: would also like to test --checknan, but the problem with that is # that is actually FAILS if there's a nan. command += omaketx_command (OIIO_TESTSUITE_ROOT+"/oiiotool-fixnan/src/bad.exr", "nan.exr", "--fixnan box3", options=":nomipmap=1", showinfo=True, showinfo_extra="--stats") # Test that when outputting half textures, we clamp large float values # rather than inadvertetly turning into Inf in the process of output to # half. command += oiiotool (" --pattern constant:color=1.0e6,1.0e6,1.0e6 2x2 3 -d float -o million.tif") command += omaketx_command ("million.tif", "bigval.exr", "-d half", showinfo_extra="--stats") # Test --format to force exr even though it can't be deduced from the name. command += omaketx_command ("checker.tif", "checker-exr.pdq", options=":fileformatname=exr") # Test that the oiio:SHA-1 hash is stable, and that that changing filter and # using -hicomp result in different images and different hashes. command += omaketx_command (oiio_images + "/grid.tif", "grid-lanczos3.tx", options = ":filter=lanczos3", showinfo=False) command += omaketx_command (oiio_images + "/grid.tif", "grid-lanczos3-hicomp.tx", options = ":filter=lanczos3:highlightcomp=1", showinfo=False) command += info_command ("grid.tx", extraargs="--metamatch oiio:SHA-1") command += info_command ("grid-lanczos3.tx", extraargs="--metamatch oiio:SHA-1") command += info_command ("grid-lanczos3-hicomp.tx", extraargs="--metamatch oiio:SHA-1") # Test that we cleanly replace any existing SHA-1 hash and ConstantColor # hint in the ImageDescription of the input file. command += oiiotool (" --pattern constant:color=1,0,0 64x64 3 " + " --caption \"foo SHA-1=1234abcd ConstantColor=[0.0,0,-0.0] bar\"" + " -d uint8 -o " + make_relpath("small.tif") ) command += info_command ("small.tif", safematch=1); command += omaketx_command ("small.tif", "small.tx", options=":oiio=1:constant_color_detect=1") # Regression test -- at one point, we had a bug where we were botching # the poles of OpenEXR env maps, adding energy. Check it by creating an # all-white image, turning it into an env map, and calculating its # statistics (should be 1.0 everywhere). command += oiiotool (" --pattern constant:color=1,1,1 4x2 3 " + " -d half -o " + make_relpath("white.exr")) command += omaketx_command ("white.exr", "whiteenv.exr", output_cmd="-oenv", showinfo=False) command += oiiotool ("--stats -a whiteenv.exr") command += oiiotool (" --pattern noise 64x64 1" + " -d half -o " + make_relpath("bump.exr")) command += omaketx_command ("bump.exr", "bumpslope.exr", extraargs="-d half", output_cmd="-obump", showinfo=False) command += oiiotool ("--stats -a bumpslope.exr") outputs = [ "out.txt" ] # To do: --filter --checknan --fullpixels # --prman-metadata --ignore-unassoc # --mipimage # --envlatl TIFF, --envlatl EXR # --colorconvert --unpremult -u --fovcot
py
1a58ec6d7209b57df579bd9557b324cbbdb65227
# Always prefer setuptools over distutils from setuptools import setup # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, "README.md"), encoding="utf-8") as f: long_description = f.read() setup( name="implicit_lambda", # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version="0.4.0", description="Implicit lambdas with placeholder notation and code generation", # Fix windows newlines. long_description=long_description.replace("\r\n", "\n"), # The project's main homepage. url="https://github.com/blackhc/implicit_lambda", # Author details author="Andreas @blackhc Kirsch", author_email="[email protected]", # Choose your license license="MIT", # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable "Development Status :: 3 - Alpha", # Indicate who your project is intended for "Intended Audience :: Developers", "Intended Audience :: Science/Research", "Topic :: Software Development :: Libraries :: Python Modules", # Pick your license as you wish (should match "license" above) "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.7", ], # What does your project relate to? keywords="tools lambda placeholder", # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=["implicit_lambda", "implicit_lambda.details", "implicit_lambda.tests"], package_dir={"": "src"}, # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=[], # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] extras_require={ "dev": ["check-manifest"], "test": ["coverage", "codecov", "pytest", "pytest-benchmark", "pytest-cov", "hypothesis"], }, setup_requires=["pytest-runner"], )
py
1a58eca0eaecbada72303cbdee5e3ca4e7154ab9
from cereal import car from common.numpy_fast import mean from selfdrive.config import Conversions as CV from opendbc.can.can_define import CANDefine from opendbc.can.parser import CANParser from selfdrive.car.interfaces import CarStateBase from selfdrive.car.gm.values import DBC, CAR, AccState, CanBus, \ CruiseButtons, STEER_THRESHOLD class CarState(CarStateBase): def __init__(self, CP): super().__init__(CP) can_define = CANDefine(DBC[CP.carFingerprint]['pt']) self.shifter_values = can_define.dv["ECMPRDNL"]["PRNDL"] def update(self, pt_cp): ret = car.CarState.new_message() self.prev_cruise_buttons = self.cruise_buttons self.cruise_buttons = pt_cp.vl["ASCMSteeringButton"]['ACCButtons'] ret.wheelSpeeds.fl = pt_cp.vl["EBCMWheelSpdFront"]['FLWheelSpd'] * CV.KPH_TO_MS ret.wheelSpeeds.fr = pt_cp.vl["EBCMWheelSpdFront"]['FRWheelSpd'] * CV.KPH_TO_MS ret.wheelSpeeds.rl = pt_cp.vl["EBCMWheelSpdRear"]['RLWheelSpd'] * CV.KPH_TO_MS ret.wheelSpeeds.rr = pt_cp.vl["EBCMWheelSpdRear"]['RRWheelSpd'] * CV.KPH_TO_MS ret.vEgoRaw = mean([ret.wheelSpeeds.fl, ret.wheelSpeeds.fr, ret.wheelSpeeds.rl, ret.wheelSpeeds.rr]) ret.vEgo, ret.aEgo = self.update_speed_kf(ret.vEgoRaw) ret.standstill = ret.vEgoRaw < 0.01 ret.steeringAngle = pt_cp.vl["PSCMSteeringAngle"]['SteeringWheelAngle'] ret.gearShifter = self.parse_gear_shifter(self.shifter_values.get(pt_cp.vl["ECMPRDNL"]['PRNDL'], None)) ret.brake = pt_cp.vl["EBCMBrakePedalPosition"]['BrakePedalPosition'] / 0xd0 # Brake pedal's potentiometer returns near-zero reading even when pedal is not pressed. if ret.brake < 10/0xd0: ret.brake = 0. ret.gas = pt_cp.vl["AcceleratorPedal"]['AcceleratorPedal'] / 254. ret.gasPressed = ret.gas > 1e-5 ret.steeringTorque = pt_cp.vl["PSCMStatus"]['LKADriverAppldTrq'] ret.steeringPressed = abs(ret.steeringTorque) > STEER_THRESHOLD # 1 - open, 0 - closed ret.doorOpen = (pt_cp.vl["BCMDoorBeltStatus"]['FrontLeftDoor'] == 1 or pt_cp.vl["BCMDoorBeltStatus"]['FrontRightDoor'] == 1 or pt_cp.vl["BCMDoorBeltStatus"]['RearLeftDoor'] == 1 or pt_cp.vl["BCMDoorBeltStatus"]['RearRightDoor'] == 1) # 1 - latched ret.seatbeltUnlatched = pt_cp.vl["BCMDoorBeltStatus"]['LeftSeatBelt'] == 0 ret.leftBlinker = pt_cp.vl["BCMTurnSignals"]['TurnSignals'] == 1 ret.rightBlinker = pt_cp.vl["BCMTurnSignals"]['TurnSignals'] == 2 self.park_brake = pt_cp.vl["EPBStatus"]['EPBClosed'] ret.cruiseState.available = bool(pt_cp.vl["ECMEngineStatus"]['CruiseMainOn']) ret.espDisabled = pt_cp.vl["ESPStatus"]['TractionControlOn'] != 1 self.pcm_acc_status = pt_cp.vl["AcceleratorPedal2"]['CruiseState'] ret.brakePressed = ret.brake > 1e-5 # Regen braking is braking if self.car_fingerprint == CAR.VOLT: ret.brakePressed = ret.brakePressed or bool(pt_cp.vl["EBCMRegenPaddle"]['RegenPaddle']) ret.cruiseState.enabled = self.pcm_acc_status != AccState.OFF # ret.cruiseState.standstill = self.pcm_acc_status == AccState.STANDSTILL ret.cruiseState.standstill = False # Never be in standstill (for auto-resume to work) # 0 - inactive, 1 - active, 2 - temporary limited, 3 - failed self.lkas_status = pt_cp.vl["PSCMStatus"]['LKATorqueDeliveredStatus'] ret.steerWarning = self.lkas_status not in [0, 1] return ret @staticmethod def get_can_parser(CP): # this function generates lists for signal, messages and initial values signals = [ # sig_name, sig_address, default ("BrakePedalPosition", "EBCMBrakePedalPosition", 0), ("FrontLeftDoor", "BCMDoorBeltStatus", 0), ("FrontRightDoor", "BCMDoorBeltStatus", 0), ("RearLeftDoor", "BCMDoorBeltStatus", 0), ("RearRightDoor", "BCMDoorBeltStatus", 0), ("LeftSeatBelt", "BCMDoorBeltStatus", 0), ("RightSeatBelt", "BCMDoorBeltStatus", 0), ("TurnSignals", "BCMTurnSignals", 0), ("AcceleratorPedal", "AcceleratorPedal", 0), ("CruiseState", "AcceleratorPedal2", 0), ("ACCButtons", "ASCMSteeringButton", CruiseButtons.UNPRESS), ("SteeringWheelAngle", "PSCMSteeringAngle", 0), ("FLWheelSpd", "EBCMWheelSpdFront", 0), ("FRWheelSpd", "EBCMWheelSpdFront", 0), ("RLWheelSpd", "EBCMWheelSpdRear", 0), ("RRWheelSpd", "EBCMWheelSpdRear", 0), ("PRNDL", "ECMPRDNL", 0), ("LKADriverAppldTrq", "PSCMStatus", 0), ("LKATorqueDeliveredStatus", "PSCMStatus", 0), ("TractionControlOn", "ESPStatus", 0), ("EPBClosed", "EPBStatus", 0), ("CruiseMainOn", "ECMEngineStatus", 0), ] if CP.carFingerprint == CAR.VOLT: signals += [ ("RegenPaddle", "EBCMRegenPaddle", 0), ] return CANParser(DBC[CP.carFingerprint]['pt'], signals, [], CanBus.POWERTRAIN)
py
1a58ede6a34862736621ed9a801caf7df16b78b7
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2020, John McNamara, [email protected] # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('chart_axis19.xlsx') def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({'type': 'column'}) chart.axis_ids = [43813504, 45705472] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column('A1', data[0]) worksheet.write_column('B1', data[1]) worksheet.write_column('C1', data[2]) chart.add_series({'values': '=Sheet1!$A$1:$A$5'}) chart.add_series({'values': '=Sheet1!$B$1:$B$5'}) chart.add_series({'values': '=Sheet1!$C$1:$C$5'}) chart.set_x_axis({'label_position': 'high'}) chart.set_y_axis({'label_position': 'low'}) worksheet.insert_chart('E9', chart) workbook.close() self.assertExcelEqual()
py
1a58ee430979cd89a00fe4735947807feb6391dd
import os import unittest from shutil import rmtree import numpy as np class TestSkeletonIo(unittest.TestCase): shape = 128 n_nodes = 100 tmp_folder = './tmp' def setUp(self): os.makedirs(self.tmp_folder, exist_ok=True) def tearDown(self): try: rmtree(self.tmp_folder) except OSError: pass def _get_skel(self): coords = np.random.randint(0, self.shape, size=(self.n_nodes, 3)) edges = np.random.randint(0, self.n_nodes, size=(self.n_nodes, 2)) return coords, edges def test_swc(self): from elf.skeleton.io import read_swc, write_swc n_skels = 5 for skel_id in range(n_skels): path = os.path.join(self.tmp_folder, f'{skel_id}.swc') coords, edges = self._get_skel() write_swc(path, coords, edges) _, coords_read, parents_read, = read_swc(path) self.assertTrue(np.array_equal(coords, coords_read)) self.assertEqual(len(parents_read), len(coords_read)) # checking for edges is a bit more complicated ... # self.assertTrue(np.array_equal(edges, edges_read)) def test_nml(self): from elf.skeleton.io import read_nml, write_nml if __name__ == '__main__': unittest.main()
py
1a58ee9df19cfb313f22364670558fe0b4d38f6e
from exception_wrappers.libraries.playhouse.apsw_ext import * def migrate(migrator, database): # Account migrator.add_column('account', 'deleted', BooleanField(default=False)) # # Schema specification (for migration verification) # SPEC = { 'account': { 'id': 'INTEGER PRIMARY KEY NOT NULL', 'name': 'VARCHAR(255)', 'thumb': 'TEXT', 'deleted': 'SMALLINT NOT NULL', 'refreshed_at': 'DATETIME' }, }
py
1a58f06cdb19696e53c09f2916427d72457bde60
import numpy as np from gym.spaces import Box from metaworld.envs.asset_path_utils import full_v1_path_for from metaworld.envs.mujoco.sawyer_xyz.sawyer_xyz_env import SawyerXYZEnv, _assert_task_is_set class SawyerBasketballEnv(SawyerXYZEnv): def __init__(self): liftThresh = 0.3 goal_low = (-0.1, 0.85, 0.15) goal_high = (0.1, 0.9+1e-7, 0.15) hand_low = (-0.5, 0.40, 0.05) hand_high = (0.5, 1, 0.5) obj_low = (-0.1, 0.6, 0.03) obj_high = (0.1, 0.7, 0.03) super().__init__( self.model_name, hand_low=hand_low, hand_high=hand_high, ) self.init_config = { 'obj_init_angle': .3, 'obj_init_pos': np.array([0, 0.6, 0.03], dtype=np.float32), 'hand_init_pos': np.array((0, 0.6, 0.2), dtype=np.float32), } self.goal = np.array([0, 0.9, 0.15]) self.obj_init_pos = self.init_config['obj_init_pos'] self.obj_init_angle = self.init_config['obj_init_angle'] self.hand_init_pos = self.init_config['hand_init_pos'] self.liftThresh = liftThresh self._random_reset_space = Box( np.hstack((obj_low, goal_low)), np.hstack((obj_high, goal_high)), ) self.goal_space = Box( np.array(goal_low) + np.array([0, -0.05001, 0.1000]), np.array(goal_high) + np.array([0, -0.05000, 0.1001]) ) @property def model_name(self): return full_v1_path_for('sawyer_xyz/sawyer_basketball.xml') @_assert_task_is_set def step(self, action): ob = super().step(action) reward, reachDist, pickRew, placingDist = self.compute_reward(action, ob) self.curr_path_length += 1 info = { 'reachDist': reachDist, 'goalDist': placingDist, 'epRew': reward, 'pickRew': pickRew, 'success': float(placingDist <= 0.08) } return ob, reward, False, info def _get_pos_objects(self): return self.data.get_geom_xpos('objGeom') def reset_model(self): self._reset_hand() basket_pos = self.goal.copy() self.sim.model.body_pos[self.model.body_name2id('basket_goal')] = basket_pos self._target_pos = self.data.site_xpos[self.model.site_name2id('goal')] self.objHeight = self.data.get_geom_xpos('objGeom')[2] self.heightTarget = self.objHeight + self.liftThresh if self.random_init: goal_pos = self._get_state_rand_vec() basket_pos = goal_pos[3:] while np.linalg.norm(goal_pos[:2] - basket_pos[:2]) < 0.15: goal_pos = self._get_state_rand_vec() basket_pos = goal_pos[3:] self.obj_init_pos = np.concatenate((goal_pos[:2], [self.obj_init_pos[-1]])) self.sim.model.body_pos[self.model.body_name2id('basket_goal')] = basket_pos self._target_pos = basket_pos + np.array([0, -0.05, 0.1]) self._set_obj_xyz(self.obj_init_pos) self.maxPlacingDist = np.linalg.norm(np.array([self.obj_init_pos[0], self.obj_init_pos[1], self.heightTarget]) - np.array(self._target_pos)) + self.heightTarget return self._get_obs() def _reset_hand(self): super()._reset_hand(10) rightFinger, leftFinger = self._get_site_pos('rightEndEffector'), self._get_site_pos('leftEndEffector') self.init_fingerCOM = (rightFinger + leftFinger)/2 self.pickCompleted = False def compute_reward(self, actions, obs): objPos = obs[3:6] rightFinger, leftFinger = self._get_site_pos('rightEndEffector'), self._get_site_pos('leftEndEffector') fingerCOM = (rightFinger + leftFinger)/2 heightTarget = self.heightTarget goal = self._target_pos reachDist = np.linalg.norm(objPos - fingerCOM) placingDist = np.linalg.norm(objPos - goal) assert np.all(goal == self._get_site_pos('goal')) def reachReward(): reachRew = -reachDist reachDistxy = np.linalg.norm(objPos[:-1] - fingerCOM[:-1]) zRew = np.linalg.norm(fingerCOM[-1] - self.init_fingerCOM[-1]) if reachDistxy < 0.05: reachRew = -reachDist else: reachRew = -reachDistxy - 2*zRew #incentive to close fingers when reachDist is small if reachDist < 0.05: reachRew = -reachDist + max(actions[-1],0)/50 return reachRew , reachDist def pickCompletionCriteria(): tolerance = 0.01 if objPos[2] >= (heightTarget - tolerance): return True else: return False if pickCompletionCriteria(): self.pickCompleted = True def objDropped(): return (objPos[2] < (self.objHeight + 0.005)) and (placingDist >0.02) and (reachDist > 0.02) def orig_pickReward(): hScale = 100 if self.pickCompleted and not(objDropped()): return hScale*heightTarget elif (reachDist < 0.1) and (objPos[2]> (self.objHeight + 0.005)) : return hScale* min(heightTarget, objPos[2]) else: return 0 def placeReward(): c1 = 1000 ; c2 = 0.01 ; c3 = 0.001 cond = self.pickCompleted and (reachDist < 0.1) and not(objDropped()) if cond: placeRew = 1000*(self.maxPlacingDist - placingDist) + c1*(np.exp(-(placingDist**2)/c2) + np.exp(-(placingDist**2)/c3)) placeRew = max(placeRew,0) return [placeRew , placingDist] else: return [0 , placingDist] reachRew, reachDist = reachReward() pickRew = orig_pickReward() placeRew , placingDist = placeReward() assert ((placeRew >=0) and (pickRew>=0)) reward = reachRew + pickRew + placeRew return [reward, reachDist, pickRew, placingDist]
py
1a58f0895514afc56154f1fedd114dd3a3615c46
# Generated from 'v1_5_1.xml' on 2020-11-30 09:07:51.857660 from typing import Tuple from toptica.lasersdk.client import UserLevel from toptica.lasersdk.client import Client from toptica.lasersdk.client import DecopBoolean from toptica.lasersdk.client import DecopInteger from toptica.lasersdk.client import DecopReal from toptica.lasersdk.client import DecopString from toptica.lasersdk.client import DecopBinary from toptica.lasersdk.client import MutableDecopBoolean from toptica.lasersdk.client import MutableDecopInteger from toptica.lasersdk.client import MutableDecopReal from toptica.lasersdk.client import MutableDecopString from toptica.lasersdk.client import MutableDecopBinary from toptica.lasersdk.client import Connection from toptica.lasersdk.client import NetworkConnection from toptica.lasersdk.client import SerialConnection from toptica.lasersdk.client import DecopError from toptica.lasersdk.client import DeviceNotFoundError class Laser: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._type_ = DecopString(client, name + ':type') self._product_name = DecopString(client, name + ':product-name') self._emission = DecopBoolean(client, name + ':emission') self._health = DecopInteger(client, name + ':health') self._health_txt = DecopString(client, name + ':health-txt') self._dl = LaserHead(client, name + ':dl') self._ctl = CtlT(client, name + ':ctl') self._amp = LaserAmp(client, name + ':amp') self._scan = Siggen(client, name + ':scan') self._scope = ScopeT(client, name + ':scope') self._nlo = Nlo(client, name + ':nlo') self._pd_ext = PdExt(client, name + ':pd-ext') self._power_stabilization = PwrStab(client, name + ':power-stabilization') @property def type_(self) -> 'DecopString': return self._type_ @property def product_name(self) -> 'DecopString': return self._product_name @property def emission(self) -> 'DecopBoolean': return self._emission @property def health(self) -> 'DecopInteger': return self._health @property def health_txt(self) -> 'DecopString': return self._health_txt @property def dl(self) -> 'LaserHead': return self._dl @property def ctl(self) -> 'CtlT': return self._ctl @property def amp(self) -> 'LaserAmp': return self._amp @property def scan(self) -> 'Siggen': return self._scan @property def scope(self) -> 'ScopeT': return self._scope @property def nlo(self) -> 'Nlo': return self._nlo @property def pd_ext(self) -> 'PdExt': return self._pd_ext @property def power_stabilization(self) -> 'PwrStab': return self._power_stabilization def detect(self) -> None: self.__client.exec(self.__name + ':detect', input_stream=None, output_type=None, return_type=None) def save(self) -> None: self.__client.exec(self.__name + ':save', input_stream=None, output_type=None, return_type=None) def load(self) -> None: self.__client.exec(self.__name + ':load', input_stream=None, output_type=None, return_type=None) class LaserHead: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._legacy = DecopBoolean(client, name + ':legacy') self._type_ = DecopString(client, name + ':type') self._version = DecopString(client, name + ':version') self._serial_number = DecopString(client, name + ':serial-number') self._ontime = DecopInteger(client, name + ':ontime') self._ontime_txt = DecopString(client, name + ':ontime-txt') self._cc = CurrDrv1(client, name + ':cc') self._tc = TcChannel(client, name + ':tc') self._pc = PiezoDrv1(client, name + ':pc') self._lock = Lock(client, name + ':lock') self._pressure_compensation = PressureCompensation(client, name + ':pressure-compensation') self._factory_settings = LhFactory(client, name + ':factory-settings') @property def legacy(self) -> 'DecopBoolean': return self._legacy @property def type_(self) -> 'DecopString': return self._type_ @property def version(self) -> 'DecopString': return self._version @property def serial_number(self) -> 'DecopString': return self._serial_number @property def ontime(self) -> 'DecopInteger': return self._ontime @property def ontime_txt(self) -> 'DecopString': return self._ontime_txt @property def cc(self) -> 'CurrDrv1': return self._cc @property def tc(self) -> 'TcChannel': return self._tc @property def pc(self) -> 'PiezoDrv1': return self._pc @property def lock(self) -> 'Lock': return self._lock @property def pressure_compensation(self) -> 'PressureCompensation': return self._pressure_compensation @property def factory_settings(self) -> 'LhFactory': return self._factory_settings def store(self) -> None: self.__client.exec(self.__name + ':store', input_stream=None, output_type=None, return_type=None) def restore(self) -> None: self.__client.exec(self.__name + ':restore', input_stream=None, output_type=None, return_type=None) class CurrDrv1: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._path = DecopString(client, name + ':path') self._variant = DecopString(client, name + ':variant') self._enabled = MutableDecopBoolean(client, name + ':enabled') self._emission = DecopBoolean(client, name + ':emission') self._current_set = MutableDecopReal(client, name + ':current-set') self._current_offset = MutableDecopReal(client, name + ':current-offset') self._current_set_dithering = MutableDecopBoolean(client, name + ':current-set-dithering') self._external_input = ExtInput1(client, name + ':external-input') self._output_filter = OutputFilter1(client, name + ':output-filter') self._current_act = DecopReal(client, name + ':current-act') self._positive_polarity = MutableDecopBoolean(client, name + ':positive-polarity') self._current_clip = MutableDecopReal(client, name + ':current-clip') self._current_clip_limit = DecopReal(client, name + ':current-clip-limit') self._voltage_act = DecopReal(client, name + ':voltage-act') self._voltage_clip = MutableDecopReal(client, name + ':voltage-clip') self._feedforward_master = MutableDecopInteger(client, name + ':feedforward-master') self._feedforward_enabled = MutableDecopBoolean(client, name + ':feedforward-enabled') self._feedforward_factor = MutableDecopReal(client, name + ':feedforward-factor') self._pd = DecopReal(client, name + ':pd') self._aux = DecopReal(client, name + ':aux') self._snubber = MutableDecopBoolean(client, name + ':snubber') self._status = DecopInteger(client, name + ':status') self._status_txt = DecopString(client, name + ':status-txt') self._forced_off = MutableDecopBoolean(client, name + ':forced-off') @property def path(self) -> 'DecopString': return self._path @property def variant(self) -> 'DecopString': return self._variant @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def emission(self) -> 'DecopBoolean': return self._emission @property def current_set(self) -> 'MutableDecopReal': return self._current_set @property def current_offset(self) -> 'MutableDecopReal': return self._current_offset @property def current_set_dithering(self) -> 'MutableDecopBoolean': return self._current_set_dithering @property def external_input(self) -> 'ExtInput1': return self._external_input @property def output_filter(self) -> 'OutputFilter1': return self._output_filter @property def current_act(self) -> 'DecopReal': return self._current_act @property def positive_polarity(self) -> 'MutableDecopBoolean': return self._positive_polarity @property def current_clip(self) -> 'MutableDecopReal': return self._current_clip @property def current_clip_limit(self) -> 'DecopReal': return self._current_clip_limit @property def voltage_act(self) -> 'DecopReal': return self._voltage_act @property def voltage_clip(self) -> 'MutableDecopReal': return self._voltage_clip @property def feedforward_master(self) -> 'MutableDecopInteger': return self._feedforward_master @property def feedforward_enabled(self) -> 'MutableDecopBoolean': return self._feedforward_enabled @property def feedforward_factor(self) -> 'MutableDecopReal': return self._feedforward_factor @property def pd(self) -> 'DecopReal': return self._pd @property def aux(self) -> 'DecopReal': return self._aux @property def snubber(self) -> 'MutableDecopBoolean': return self._snubber @property def status(self) -> 'DecopInteger': return self._status @property def status_txt(self) -> 'DecopString': return self._status_txt @property def forced_off(self) -> 'MutableDecopBoolean': return self._forced_off class ExtInput1: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._signal = MutableDecopInteger(client, name + ':signal') self._factor = MutableDecopReal(client, name + ':factor') self._enabled = MutableDecopBoolean(client, name + ':enabled') @property def signal(self) -> 'MutableDecopInteger': return self._signal @property def factor(self) -> 'MutableDecopReal': return self._factor @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled class OutputFilter1: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._slew_rate = MutableDecopReal(client, name + ':slew-rate') self._slew_rate_enabled = MutableDecopBoolean(client, name + ':slew-rate-enabled') self._slew_rate_limited = DecopBoolean(client, name + ':slew-rate-limited') @property def slew_rate(self) -> 'MutableDecopReal': return self._slew_rate @property def slew_rate_enabled(self) -> 'MutableDecopBoolean': return self._slew_rate_enabled @property def slew_rate_limited(self) -> 'DecopBoolean': return self._slew_rate_limited class TcChannel: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._path = DecopString(client, name + ':path') self._enabled = MutableDecopBoolean(client, name + ':enabled') self._temp_act = DecopReal(client, name + ':temp-act') self._temp_set = MutableDecopReal(client, name + ':temp-set') self._ready = DecopBoolean(client, name + ':ready') self._fault = DecopBoolean(client, name + ':fault') self._status = DecopInteger(client, name + ':status') self._status_txt = DecopString(client, name + ':status-txt') self._t_loop = TcChannelTLoop(client, name + ':t-loop') self._c_loop = TcChannelCLoop(client, name + ':c-loop') self._limits = TcChannelCheck(client, name + ':limits') self._current_set = DecopReal(client, name + ':current-set') self._current_set_min = MutableDecopReal(client, name + ':current-set-min') self._current_set_max = MutableDecopReal(client, name + ':current-set-max') self._current_act = DecopReal(client, name + ':current-act') self._voltage_act = DecopReal(client, name + ':voltage-act') self._resistance = DecopReal(client, name + ':resistance') self._ntc_series_resistance = DecopReal(client, name + ':ntc-series-resistance') self._temp_set_max = MutableDecopReal(client, name + ':temp-set-max') self._temp_set_min = MutableDecopReal(client, name + ':temp-set-min') self._temp_reset = MutableDecopBoolean(client, name + ':temp-reset') self._temp_roc_enabled = MutableDecopBoolean(client, name + ':temp-roc-enabled') self._temp_roc_limit = MutableDecopReal(client, name + ':temp-roc-limit') self._power_source = DecopInteger(client, name + ':power-source') self._drv_voltage = DecopReal(client, name + ':drv-voltage') @property def path(self) -> 'DecopString': return self._path @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def temp_act(self) -> 'DecopReal': return self._temp_act @property def temp_set(self) -> 'MutableDecopReal': return self._temp_set @property def ready(self) -> 'DecopBoolean': return self._ready @property def fault(self) -> 'DecopBoolean': return self._fault @property def status(self) -> 'DecopInteger': return self._status @property def status_txt(self) -> 'DecopString': return self._status_txt @property def t_loop(self) -> 'TcChannelTLoop': return self._t_loop @property def c_loop(self) -> 'TcChannelCLoop': return self._c_loop @property def limits(self) -> 'TcChannelCheck': return self._limits @property def current_set(self) -> 'DecopReal': return self._current_set @property def current_set_min(self) -> 'MutableDecopReal': return self._current_set_min @property def current_set_max(self) -> 'MutableDecopReal': return self._current_set_max @property def current_act(self) -> 'DecopReal': return self._current_act @property def voltage_act(self) -> 'DecopReal': return self._voltage_act @property def resistance(self) -> 'DecopReal': return self._resistance @property def ntc_series_resistance(self) -> 'DecopReal': return self._ntc_series_resistance @property def temp_set_max(self) -> 'MutableDecopReal': return self._temp_set_max @property def temp_set_min(self) -> 'MutableDecopReal': return self._temp_set_min @property def temp_reset(self) -> 'MutableDecopBoolean': return self._temp_reset @property def temp_roc_enabled(self) -> 'MutableDecopBoolean': return self._temp_roc_enabled @property def temp_roc_limit(self) -> 'MutableDecopReal': return self._temp_roc_limit @property def power_source(self) -> 'DecopInteger': return self._power_source @property def drv_voltage(self) -> 'DecopReal': return self._drv_voltage def check_peltier(self) -> float: return self.__client.exec(self.__name + ':check-peltier', input_stream=None, output_type=None, return_type=float) class TcChannelTLoop: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._on = MutableDecopBoolean(client, name + ':on') self._p_gain = MutableDecopReal(client, name + ':p-gain') self._i_gain = MutableDecopReal(client, name + ':i-gain') self._d_gain = MutableDecopReal(client, name + ':d-gain') self._ok_tolerance = MutableDecopReal(client, name + ':ok-tolerance') self._ok_time = MutableDecopReal(client, name + ':ok-time') @property def on(self) -> 'MutableDecopBoolean': return self._on @property def p_gain(self) -> 'MutableDecopReal': return self._p_gain @property def i_gain(self) -> 'MutableDecopReal': return self._i_gain @property def d_gain(self) -> 'MutableDecopReal': return self._d_gain @property def ok_tolerance(self) -> 'MutableDecopReal': return self._ok_tolerance @property def ok_time(self) -> 'MutableDecopReal': return self._ok_time class TcChannelCLoop: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._on = MutableDecopBoolean(client, name + ':on') self._i_gain = MutableDecopReal(client, name + ':i-gain') @property def on(self) -> 'MutableDecopBoolean': return self._on @property def i_gain(self) -> 'MutableDecopReal': return self._i_gain class TcChannelCheck: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._temp_min = MutableDecopReal(client, name + ':temp-min') self._temp_max = MutableDecopReal(client, name + ':temp-max') self._timeout = MutableDecopInteger(client, name + ':timeout') self._timed_out = DecopBoolean(client, name + ':timed-out') self._out_of_range = DecopBoolean(client, name + ':out-of-range') @property def temp_min(self) -> 'MutableDecopReal': return self._temp_min @property def temp_max(self) -> 'MutableDecopReal': return self._temp_max @property def timeout(self) -> 'MutableDecopInteger': return self._timeout @property def timed_out(self) -> 'DecopBoolean': return self._timed_out @property def out_of_range(self) -> 'DecopBoolean': return self._out_of_range class PiezoDrv1: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._path = DecopString(client, name + ':path') self._enabled = MutableDecopBoolean(client, name + ':enabled') self._voltage_set = MutableDecopReal(client, name + ':voltage-set') self._voltage_min = MutableDecopReal(client, name + ':voltage-min') self._voltage_max = MutableDecopReal(client, name + ':voltage-max') self._voltage_set_dithering = MutableDecopBoolean(client, name + ':voltage-set-dithering') self._external_input = ExtInput1(client, name + ':external-input') self._output_filter = OutputFilter1(client, name + ':output-filter') self._voltage_act = DecopReal(client, name + ':voltage-act') self._feedforward_master = MutableDecopInteger(client, name + ':feedforward-master') self._feedforward_enabled = MutableDecopBoolean(client, name + ':feedforward-enabled') self._feedforward_factor = MutableDecopReal(client, name + ':feedforward-factor') self._status = DecopInteger(client, name + ':status') self._status_txt = DecopString(client, name + ':status-txt') @property def path(self) -> 'DecopString': return self._path @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def voltage_set(self) -> 'MutableDecopReal': return self._voltage_set @property def voltage_min(self) -> 'MutableDecopReal': return self._voltage_min @property def voltage_max(self) -> 'MutableDecopReal': return self._voltage_max @property def voltage_set_dithering(self) -> 'MutableDecopBoolean': return self._voltage_set_dithering @property def external_input(self) -> 'ExtInput1': return self._external_input @property def output_filter(self) -> 'OutputFilter1': return self._output_filter @property def voltage_act(self) -> 'DecopReal': return self._voltage_act @property def feedforward_master(self) -> 'MutableDecopInteger': return self._feedforward_master @property def feedforward_enabled(self) -> 'MutableDecopBoolean': return self._feedforward_enabled @property def feedforward_factor(self) -> 'MutableDecopReal': return self._feedforward_factor @property def status(self) -> 'DecopInteger': return self._status @property def status_txt(self) -> 'DecopString': return self._status_txt class Lock: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._type_ = MutableDecopInteger(client, name + ':type') self._lock_without_lockpoint = MutableDecopBoolean(client, name + ':lock-without-lockpoint') self._state = DecopInteger(client, name + ':state') self._state_txt = DecopString(client, name + ':state-txt') self._lock_enabled = MutableDecopBoolean(client, name + ':lock-enabled') self._hold = MutableDecopBoolean(client, name + ':hold') self._spectrum_input_channel = MutableDecopInteger(client, name + ':spectrum-input-channel') self._pid_selection = MutableDecopInteger(client, name + ':pid-selection') self._setpoint = MutableDecopReal(client, name + ':setpoint') self._relock = AlRelock(client, name + ':relock') self._reset = AlReset(client, name + ':reset') self._window = AlWindow(client, name + ':window') self._pid1 = Pid(client, name + ':pid1') self._pid2 = Pid(client, name + ':pid2') self._lockin = Lockin(client, name + ':lockin') self._lockpoint = AlLockpoint(client, name + ':lockpoint') self._candidate_filter = AlCandidateFilter(client, name + ':candidate-filter') self._candidates = DecopBinary(client, name + ':candidates') self._locking_delay = MutableDecopInteger(client, name + ':locking-delay') self._background_trace = DecopBinary(client, name + ':background-trace') @property def type_(self) -> 'MutableDecopInteger': return self._type_ @property def lock_without_lockpoint(self) -> 'MutableDecopBoolean': return self._lock_without_lockpoint @property def state(self) -> 'DecopInteger': return self._state @property def state_txt(self) -> 'DecopString': return self._state_txt @property def lock_enabled(self) -> 'MutableDecopBoolean': return self._lock_enabled @property def hold(self) -> 'MutableDecopBoolean': return self._hold @property def spectrum_input_channel(self) -> 'MutableDecopInteger': return self._spectrum_input_channel @property def pid_selection(self) -> 'MutableDecopInteger': return self._pid_selection @property def setpoint(self) -> 'MutableDecopReal': return self._setpoint @property def relock(self) -> 'AlRelock': return self._relock @property def reset(self) -> 'AlReset': return self._reset @property def window(self) -> 'AlWindow': return self._window @property def pid1(self) -> 'Pid': return self._pid1 @property def pid2(self) -> 'Pid': return self._pid2 @property def lockin(self) -> 'Lockin': return self._lockin @property def lockpoint(self) -> 'AlLockpoint': return self._lockpoint @property def candidate_filter(self) -> 'AlCandidateFilter': return self._candidate_filter @property def candidates(self) -> 'DecopBinary': return self._candidates @property def locking_delay(self) -> 'MutableDecopInteger': return self._locking_delay @property def background_trace(self) -> 'DecopBinary': return self._background_trace def show_candidates(self) -> Tuple[str, int]: return self.__client.exec(self.__name + ':show-candidates', input_stream=None, output_type=str, return_type=int) def find_candidates(self) -> None: self.__client.exec(self.__name + ':find-candidates', input_stream=None, output_type=None, return_type=None) def select_lockpoint(self, x: float, y: float, type_: int) -> None: assert isinstance(x, float), "expected type 'float' for parameter 'x', got '{}'".format(type(x)) assert isinstance(y, float), "expected type 'float' for parameter 'y', got '{}'".format(type(y)) assert isinstance(type_, int), "expected type 'int' for parameter 'type_', got '{}'".format(type(type_)) self.__client.exec(self.__name + ':select-lockpoint', x, y, type_, input_stream=None, output_type=None, return_type=None) def close(self) -> None: self.__client.exec(self.__name + ':close', input_stream=None, output_type=None, return_type=None) def open(self) -> None: self.__client.exec(self.__name + ':open', input_stream=None, output_type=None, return_type=None) class AlRelock: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._output_channel = MutableDecopInteger(client, name + ':output-channel') self._frequency = MutableDecopReal(client, name + ':frequency') self._amplitude = MutableDecopReal(client, name + ':amplitude') self._delay = MutableDecopReal(client, name + ':delay') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def output_channel(self) -> 'MutableDecopInteger': return self._output_channel @property def frequency(self) -> 'MutableDecopReal': return self._frequency @property def amplitude(self) -> 'MutableDecopReal': return self._amplitude @property def delay(self) -> 'MutableDecopReal': return self._delay class AlReset: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled class AlWindow: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._input_channel = MutableDecopInteger(client, name + ':input-channel') self._level_high = MutableDecopReal(client, name + ':level-high') self._level_low = MutableDecopReal(client, name + ':level-low') self._level_hysteresis = MutableDecopReal(client, name + ':level-hysteresis') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def input_channel(self) -> 'MutableDecopInteger': return self._input_channel @property def level_high(self) -> 'MutableDecopReal': return self._level_high @property def level_low(self) -> 'MutableDecopReal': return self._level_low @property def level_hysteresis(self) -> 'MutableDecopReal': return self._level_hysteresis class Pid: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._gain = Gain(client, name + ':gain') self._sign = MutableDecopBoolean(client, name + ':sign') self._slope = MutableDecopBoolean(client, name + ':slope') self._setpoint = MutableDecopReal(client, name + ':setpoint') self._input_channel = MutableDecopInteger(client, name + ':input-channel') self._output_channel = MutableDecopInteger(client, name + ':output-channel') self._outputlimit = Outputlimit(client, name + ':outputlimit') self._hold = MutableDecopBoolean(client, name + ':hold') self._lock_state = DecopBoolean(client, name + ':lock-state') self._hold_state = DecopBoolean(client, name + ':hold-state') self._regulating_state = DecopBoolean(client, name + ':regulating-state') self._hold_output_on_unlock = MutableDecopBoolean(client, name + ':hold-output-on-unlock') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def gain(self) -> 'Gain': return self._gain @property def sign(self) -> 'MutableDecopBoolean': return self._sign @property def slope(self) -> 'MutableDecopBoolean': return self._slope @property def setpoint(self) -> 'MutableDecopReal': return self._setpoint @property def input_channel(self) -> 'MutableDecopInteger': return self._input_channel @property def output_channel(self) -> 'MutableDecopInteger': return self._output_channel @property def outputlimit(self) -> 'Outputlimit': return self._outputlimit @property def hold(self) -> 'MutableDecopBoolean': return self._hold @property def lock_state(self) -> 'DecopBoolean': return self._lock_state @property def hold_state(self) -> 'DecopBoolean': return self._hold_state @property def regulating_state(self) -> 'DecopBoolean': return self._regulating_state @property def hold_output_on_unlock(self) -> 'MutableDecopBoolean': return self._hold_output_on_unlock class Gain: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._all = MutableDecopReal(client, name + ':all') self._p = MutableDecopReal(client, name + ':p') self._i = MutableDecopReal(client, name + ':i') self._d = MutableDecopReal(client, name + ':d') self._i_cutoff = MutableDecopReal(client, name + ':i-cutoff') self._i_cutoff_enabled = MutableDecopBoolean(client, name + ':i-cutoff-enabled') self._fc_ip = DecopReal(client, name + ':fc-ip') self._fc_pd = DecopReal(client, name + ':fc-pd') @property def all(self) -> 'MutableDecopReal': return self._all @property def p(self) -> 'MutableDecopReal': return self._p @property def i(self) -> 'MutableDecopReal': return self._i @property def d(self) -> 'MutableDecopReal': return self._d @property def i_cutoff(self) -> 'MutableDecopReal': return self._i_cutoff @property def i_cutoff_enabled(self) -> 'MutableDecopBoolean': return self._i_cutoff_enabled @property def fc_ip(self) -> 'DecopReal': return self._fc_ip @property def fc_pd(self) -> 'DecopReal': return self._fc_pd class Outputlimit: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._max = MutableDecopReal(client, name + ':max') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def max(self) -> 'MutableDecopReal': return self._max class Lockin: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._modulation_enabled = MutableDecopBoolean(client, name + ':modulation-enabled') self._input_channel = MutableDecopInteger(client, name + ':input-channel') self._modulation_output_channel = MutableDecopInteger(client, name + ':modulation-output-channel') self._frequency = MutableDecopReal(client, name + ':frequency') self._amplitude = MutableDecopReal(client, name + ':amplitude') self._phase_shift = MutableDecopReal(client, name + ':phase-shift') self._lock_level = MutableDecopReal(client, name + ':lock-level') @property def modulation_enabled(self) -> 'MutableDecopBoolean': return self._modulation_enabled @property def input_channel(self) -> 'MutableDecopInteger': return self._input_channel @property def modulation_output_channel(self) -> 'MutableDecopInteger': return self._modulation_output_channel @property def frequency(self) -> 'MutableDecopReal': return self._frequency @property def amplitude(self) -> 'MutableDecopReal': return self._amplitude @property def phase_shift(self) -> 'MutableDecopReal': return self._phase_shift @property def lock_level(self) -> 'MutableDecopReal': return self._lock_level class AlLockpoint: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._position = Coordinate(client, name + ':position') self._type_ = DecopString(client, name + ':type') @property def position(self) -> 'Coordinate': return self._position @property def type_(self) -> 'DecopString': return self._type_ class Coordinate: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name def get(self) -> Tuple[float, float]: return self.__client.get(self.__name) def set(self, x: float, y: float) -> None: assert isinstance(x, float), "expected type 'float' for 'x', got '{}'".format(type(x)) assert isinstance(y, float), "expected type 'float' for 'y', got '{}'".format(type(y)) self.__client.set(self.__name, x, y) class AlCandidateFilter: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._top = MutableDecopBoolean(client, name + ':top') self._bottom = MutableDecopBoolean(client, name + ':bottom') self._positive_edge = MutableDecopBoolean(client, name + ':positive-edge') self._negative_edge = MutableDecopBoolean(client, name + ':negative-edge') self._edge_level = MutableDecopReal(client, name + ':edge-level') self._peak_noise_tolerance = MutableDecopReal(client, name + ':peak-noise-tolerance') self._edge_min_distance = MutableDecopInteger(client, name + ':edge-min-distance') @property def top(self) -> 'MutableDecopBoolean': return self._top @property def bottom(self) -> 'MutableDecopBoolean': return self._bottom @property def positive_edge(self) -> 'MutableDecopBoolean': return self._positive_edge @property def negative_edge(self) -> 'MutableDecopBoolean': return self._negative_edge @property def edge_level(self) -> 'MutableDecopReal': return self._edge_level @property def peak_noise_tolerance(self) -> 'MutableDecopReal': return self._peak_noise_tolerance @property def edge_min_distance(self) -> 'MutableDecopInteger': return self._edge_min_distance class PressureCompensation: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._air_pressure = DecopReal(client, name + ':air-pressure') self._factor = MutableDecopReal(client, name + ':factor') self._offset = DecopReal(client, name + ':offset') self._compensation_voltage = DecopReal(client, name + ':compensation-voltage') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def air_pressure(self) -> 'DecopReal': return self._air_pressure @property def factor(self) -> 'MutableDecopReal': return self._factor @property def offset(self) -> 'DecopReal': return self._offset @property def compensation_voltage(self) -> 'DecopReal': return self._compensation_voltage class LhFactory: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._wavelength = MutableDecopReal(client, name + ':wavelength') self._threshold_current = MutableDecopReal(client, name + ':threshold-current') self._power = MutableDecopReal(client, name + ':power') self._cc = LhFactoryCc(client, name + ':cc') self._tc = TcFactorySettings(client, name + ':tc') self._pc = PcFactorySettings(client, name + ':pc') self._last_modified = DecopString(client, name + ':last-modified') self._modified = DecopBoolean(client, name + ':modified') @property def wavelength(self) -> 'MutableDecopReal': return self._wavelength @property def threshold_current(self) -> 'MutableDecopReal': return self._threshold_current @property def power(self) -> 'MutableDecopReal': return self._power @property def cc(self) -> 'LhFactoryCc': return self._cc @property def tc(self) -> 'TcFactorySettings': return self._tc @property def pc(self) -> 'PcFactorySettings': return self._pc @property def last_modified(self) -> 'DecopString': return self._last_modified @property def modified(self) -> 'DecopBoolean': return self._modified def apply(self) -> None: self.__client.exec(self.__name + ':apply', input_stream=None, output_type=None, return_type=None) def retrieve_now(self) -> None: self.__client.exec(self.__name + ':retrieve-now', input_stream=None, output_type=None, return_type=None) class LhFactoryCc: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._feedforward_factor = MutableDecopReal(client, name + ':feedforward-factor') self._current_set = MutableDecopReal(client, name + ':current-set') self._current_clip = MutableDecopReal(client, name + ':current-clip') self._current_clip_modified = DecopBoolean(client, name + ':current-clip-modified') self._current_clip_last_modified = DecopString(client, name + ':current-clip-last-modified') self._voltage_clip = MutableDecopReal(client, name + ':voltage-clip') self._positive_polarity = MutableDecopBoolean(client, name + ':positive-polarity') self._snubber = MutableDecopBoolean(client, name + ':snubber') @property def feedforward_factor(self) -> 'MutableDecopReal': return self._feedforward_factor @property def current_set(self) -> 'MutableDecopReal': return self._current_set @property def current_clip(self) -> 'MutableDecopReal': return self._current_clip @property def current_clip_modified(self) -> 'DecopBoolean': return self._current_clip_modified @property def current_clip_last_modified(self) -> 'DecopString': return self._current_clip_last_modified @property def voltage_clip(self) -> 'MutableDecopReal': return self._voltage_clip @property def positive_polarity(self) -> 'MutableDecopBoolean': return self._positive_polarity @property def snubber(self) -> 'MutableDecopBoolean': return self._snubber class TcFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._temp_min = MutableDecopReal(client, name + ':temp-min') self._temp_max = MutableDecopReal(client, name + ':temp-max') self._temp_set = MutableDecopReal(client, name + ':temp-set') self._temp_roc_enabled = MutableDecopBoolean(client, name + ':temp-roc-enabled') self._temp_roc_limit = MutableDecopReal(client, name + ':temp-roc-limit') self._current_max = MutableDecopReal(client, name + ':current-max') self._current_min = MutableDecopReal(client, name + ':current-min') self._p_gain = MutableDecopReal(client, name + ':p-gain') self._i_gain = MutableDecopReal(client, name + ':i-gain') self._d_gain = MutableDecopReal(client, name + ':d-gain') self._c_gain = MutableDecopReal(client, name + ':c-gain') self._ok_tolerance = MutableDecopReal(client, name + ':ok-tolerance') self._ok_time = MutableDecopReal(client, name + ':ok-time') self._timeout = MutableDecopInteger(client, name + ':timeout') self._power_source = MutableDecopInteger(client, name + ':power-source') self._ntc_series_resistance = MutableDecopReal(client, name + ':ntc-series-resistance') @property def temp_min(self) -> 'MutableDecopReal': return self._temp_min @property def temp_max(self) -> 'MutableDecopReal': return self._temp_max @property def temp_set(self) -> 'MutableDecopReal': return self._temp_set @property def temp_roc_enabled(self) -> 'MutableDecopBoolean': return self._temp_roc_enabled @property def temp_roc_limit(self) -> 'MutableDecopReal': return self._temp_roc_limit @property def current_max(self) -> 'MutableDecopReal': return self._current_max @property def current_min(self) -> 'MutableDecopReal': return self._current_min @property def p_gain(self) -> 'MutableDecopReal': return self._p_gain @property def i_gain(self) -> 'MutableDecopReal': return self._i_gain @property def d_gain(self) -> 'MutableDecopReal': return self._d_gain @property def c_gain(self) -> 'MutableDecopReal': return self._c_gain @property def ok_tolerance(self) -> 'MutableDecopReal': return self._ok_tolerance @property def ok_time(self) -> 'MutableDecopReal': return self._ok_time @property def timeout(self) -> 'MutableDecopInteger': return self._timeout @property def power_source(self) -> 'MutableDecopInteger': return self._power_source @property def ntc_series_resistance(self) -> 'MutableDecopReal': return self._ntc_series_resistance class PcFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._voltage_min = MutableDecopReal(client, name + ':voltage-min') self._voltage_max = MutableDecopReal(client, name + ':voltage-max') self._feedforward_enabled = MutableDecopBoolean(client, name + ':feedforward-enabled') self._feedforward_factor = MutableDecopReal(client, name + ':feedforward-factor') self._capacitance = MutableDecopReal(client, name + ':capacitance') self._scan_offset = MutableDecopReal(client, name + ':scan-offset') self._scan_amplitude = MutableDecopReal(client, name + ':scan-amplitude') self._slew_rate = MutableDecopReal(client, name + ':slew-rate') self._slew_rate_enabled = MutableDecopBoolean(client, name + ':slew-rate-enabled') self._pressure_compensation_factor = MutableDecopReal(client, name + ':pressure-compensation-factor') @property def voltage_min(self) -> 'MutableDecopReal': return self._voltage_min @property def voltage_max(self) -> 'MutableDecopReal': return self._voltage_max @property def feedforward_enabled(self) -> 'MutableDecopBoolean': return self._feedforward_enabled @property def feedforward_factor(self) -> 'MutableDecopReal': return self._feedforward_factor @property def capacitance(self) -> 'MutableDecopReal': return self._capacitance @property def scan_offset(self) -> 'MutableDecopReal': return self._scan_offset @property def scan_amplitude(self) -> 'MutableDecopReal': return self._scan_amplitude @property def slew_rate(self) -> 'MutableDecopReal': return self._slew_rate @property def slew_rate_enabled(self) -> 'MutableDecopBoolean': return self._slew_rate_enabled @property def pressure_compensation_factor(self) -> 'MutableDecopReal': return self._pressure_compensation_factor class CtlT: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._fpga_fw_ver = DecopInteger(client, name + ':fpga-fw-ver') self._wavelength_set = MutableDecopReal(client, name + ':wavelength-set') self._wavelength_act = DecopReal(client, name + ':wavelength-act') self._wavelength_min = DecopReal(client, name + ':wavelength-min') self._wavelength_max = DecopReal(client, name + ':wavelength-max') self._tuning_current_min = DecopReal(client, name + ':tuning-current-min') self._tuning_power_min = DecopReal(client, name + ':tuning-power-min') self._state = DecopInteger(client, name + ':state') self._state_txt = DecopString(client, name + ':state-txt') self._head_temperature = DecopReal(client, name + ':head-temperature') self._scan = CtlScanT(client, name + ':scan') self._optimization = CtlOptimizationT(client, name + ':optimization') self._remote_control = CtlRemoteControl(client, name + ':remote-control') self._mode_control = CtlModeControl(client, name + ':mode-control') self._motor = CtlMotor(client, name + ':motor') self._power = CtlPower(client, name + ':power') self._factory_settings = CtlFactory(client, name + ':factory-settings') @property def fpga_fw_ver(self) -> 'DecopInteger': return self._fpga_fw_ver @property def wavelength_set(self) -> 'MutableDecopReal': return self._wavelength_set @property def wavelength_act(self) -> 'DecopReal': return self._wavelength_act @property def wavelength_min(self) -> 'DecopReal': return self._wavelength_min @property def wavelength_max(self) -> 'DecopReal': return self._wavelength_max @property def tuning_current_min(self) -> 'DecopReal': return self._tuning_current_min @property def tuning_power_min(self) -> 'DecopReal': return self._tuning_power_min @property def state(self) -> 'DecopInteger': return self._state @property def state_txt(self) -> 'DecopString': return self._state_txt @property def head_temperature(self) -> 'DecopReal': return self._head_temperature @property def scan(self) -> 'CtlScanT': return self._scan @property def optimization(self) -> 'CtlOptimizationT': return self._optimization @property def remote_control(self) -> 'CtlRemoteControl': return self._remote_control @property def mode_control(self) -> 'CtlModeControl': return self._mode_control @property def motor(self) -> 'CtlMotor': return self._motor @property def power(self) -> 'CtlPower': return self._power @property def factory_settings(self) -> 'CtlFactory': return self._factory_settings class CtlScanT: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._wavelength_begin = MutableDecopReal(client, name + ':wavelength-begin') self._wavelength_end = MutableDecopReal(client, name + ':wavelength-end') self._speed = MutableDecopReal(client, name + ':speed') self._speed_min = DecopReal(client, name + ':speed-min') self._speed_max = DecopReal(client, name + ':speed-max') self._microsteps = MutableDecopBoolean(client, name + ':microsteps') self._progress = DecopInteger(client, name + ':progress') self._remaining_time = DecopInteger(client, name + ':remaining-time') self._continuous_mode = MutableDecopBoolean(client, name + ':continuous-mode') self._trigger = CtlTriggerT(client, name + ':trigger') self._shape = MutableDecopInteger(client, name + ':shape') @property def wavelength_begin(self) -> 'MutableDecopReal': return self._wavelength_begin @property def wavelength_end(self) -> 'MutableDecopReal': return self._wavelength_end @property def speed(self) -> 'MutableDecopReal': return self._speed @property def speed_min(self) -> 'DecopReal': return self._speed_min @property def speed_max(self) -> 'DecopReal': return self._speed_max @property def microsteps(self) -> 'MutableDecopBoolean': return self._microsteps @property def progress(self) -> 'DecopInteger': return self._progress @property def remaining_time(self) -> 'DecopInteger': return self._remaining_time @property def continuous_mode(self) -> 'MutableDecopBoolean': return self._continuous_mode @property def trigger(self) -> 'CtlTriggerT': return self._trigger @property def shape(self) -> 'MutableDecopInteger': return self._shape def start(self) -> None: self.__client.exec(self.__name + ':start', input_stream=None, output_type=None, return_type=None) def stop(self) -> None: self.__client.exec(self.__name + ':stop', input_stream=None, output_type=None, return_type=None) def pause(self) -> None: self.__client.exec(self.__name + ':pause', input_stream=None, output_type=None, return_type=None) def continue_(self) -> None: self.__client.exec(self.__name + ':continue', input_stream=None, output_type=None, return_type=None) class CtlTriggerT: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._input_enabled = MutableDecopBoolean(client, name + ':input-enabled') self._input_channel = MutableDecopInteger(client, name + ':input-channel') self._output_enabled = MutableDecopBoolean(client, name + ':output-enabled') self._output_threshold = MutableDecopReal(client, name + ':output-threshold') @property def input_enabled(self) -> 'MutableDecopBoolean': return self._input_enabled @property def input_channel(self) -> 'MutableDecopInteger': return self._input_channel @property def output_enabled(self) -> 'MutableDecopBoolean': return self._output_enabled @property def output_threshold(self) -> 'MutableDecopReal': return self._output_threshold class CtlOptimizationT: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._progress = DecopInteger(client, name + ':progress') @property def progress(self) -> 'DecopInteger': return self._progress def smile(self) -> None: self.__client.exec(self.__name + ':smile', input_stream=None, output_type=None, return_type=None) def flow(self) -> None: self.__client.exec(self.__name + ':flow', input_stream=None, output_type=None, return_type=None) def abort(self) -> None: self.__client.exec(self.__name + ':abort', input_stream=None, output_type=None, return_type=None) class CtlRemoteControl: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._signal = MutableDecopInteger(client, name + ':signal') self._factor = MutableDecopReal(client, name + ':factor') self._speed = MutableDecopReal(client, name + ':speed') self._enabled = MutableDecopBoolean(client, name + ':enabled') @property def signal(self) -> 'MutableDecopInteger': return self._signal @property def factor(self) -> 'MutableDecopReal': return self._factor @property def speed(self) -> 'MutableDecopReal': return self._speed @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled class CtlModeControl: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._loop_enabled = MutableDecopBoolean(client, name + ':loop-enabled') @property def loop_enabled(self) -> 'MutableDecopBoolean': return self._loop_enabled class CtlMotor: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._position_accuracy = MutableDecopInteger(client, name + ':position-accuracy') self._position_hysteresis = MutableDecopInteger(client, name + ':position-hysteresis') self._power_save_disabled = MutableDecopBoolean(client, name + ':power-save-disabled') @property def position_accuracy(self) -> 'MutableDecopInteger': return self._position_accuracy @property def position_hysteresis(self) -> 'MutableDecopInteger': return self._position_hysteresis @property def power_save_disabled(self) -> 'MutableDecopBoolean': return self._power_save_disabled class CtlPower: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._power_act = DecopReal(client, name + ':power-act') @property def power_act(self) -> 'DecopReal': return self._power_act class CtlFactory: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._wavelength_min = DecopReal(client, name + ':wavelength-min') self._wavelength_max = DecopReal(client, name + ':wavelength-max') self._tuning_current_min = DecopReal(client, name + ':tuning-current-min') self._tuning_power_min = DecopReal(client, name + ':tuning-power-min') @property def wavelength_min(self) -> 'DecopReal': return self._wavelength_min @property def wavelength_max(self) -> 'DecopReal': return self._wavelength_max @property def tuning_current_min(self) -> 'DecopReal': return self._tuning_current_min @property def tuning_power_min(self) -> 'DecopReal': return self._tuning_power_min def apply(self) -> None: self.__client.exec(self.__name + ':apply', input_stream=None, output_type=None, return_type=None) class LaserAmp: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._legacy = DecopBoolean(client, name + ':legacy') self._type_ = DecopString(client, name + ':type') self._version = DecopString(client, name + ':version') self._serial_number = DecopString(client, name + ':serial-number') self._ontime = DecopInteger(client, name + ':ontime') self._ontime_txt = DecopString(client, name + ':ontime-txt') self._cc = Cc5000Drv(client, name + ':cc') self._tc = TcChannel(client, name + ':tc') self._seed_limits = AmpPower(client, name + ':seed-limits') self._output_limits = AmpPower(client, name + ':output-limits') self._seedonly_check = AmpSeedonlyCheck(client, name + ':seedonly-check') self._factory_settings = AmpFactory(client, name + ':factory-settings') @property def legacy(self) -> 'DecopBoolean': return self._legacy @property def type_(self) -> 'DecopString': return self._type_ @property def version(self) -> 'DecopString': return self._version @property def serial_number(self) -> 'DecopString': return self._serial_number @property def ontime(self) -> 'DecopInteger': return self._ontime @property def ontime_txt(self) -> 'DecopString': return self._ontime_txt @property def cc(self) -> 'Cc5000Drv': return self._cc @property def tc(self) -> 'TcChannel': return self._tc @property def seed_limits(self) -> 'AmpPower': return self._seed_limits @property def output_limits(self) -> 'AmpPower': return self._output_limits @property def seedonly_check(self) -> 'AmpSeedonlyCheck': return self._seedonly_check @property def factory_settings(self) -> 'AmpFactory': return self._factory_settings def store(self) -> None: self.__client.exec(self.__name + ':store', input_stream=None, output_type=None, return_type=None) def restore(self) -> None: self.__client.exec(self.__name + ':restore', input_stream=None, output_type=None, return_type=None) class Cc5000Drv: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._path = DecopString(client, name + ':path') self._variant = DecopString(client, name + ':variant') self._enabled = MutableDecopBoolean(client, name + ':enabled') self._emission = DecopBoolean(client, name + ':emission') self._current_set = MutableDecopReal(client, name + ':current-set') self._current_offset = MutableDecopReal(client, name + ':current-offset') self._output_filter = OutputFilter1(client, name + ':output-filter') self._current_act = DecopReal(client, name + ':current-act') self._current_clip = MutableDecopReal(client, name + ':current-clip') self._current_clip_limit = DecopReal(client, name + ':current-clip-limit') self._voltage_act = DecopReal(client, name + ':voltage-act') self._voltage_out = DecopReal(client, name + ':voltage-out') self._voltage_clip = MutableDecopReal(client, name + ':voltage-clip') self._feedforward_master = MutableDecopInteger(client, name + ':feedforward-master') self._feedforward_enabled = MutableDecopBoolean(client, name + ':feedforward-enabled') self._feedforward_factor = MutableDecopReal(client, name + ':feedforward-factor') self._aux = DecopReal(client, name + ':aux') self._status = DecopInteger(client, name + ':status') self._status_txt = DecopString(client, name + ':status-txt') self._forced_off = MutableDecopBoolean(client, name + ':forced-off') @property def path(self) -> 'DecopString': return self._path @property def variant(self) -> 'DecopString': return self._variant @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def emission(self) -> 'DecopBoolean': return self._emission @property def current_set(self) -> 'MutableDecopReal': return self._current_set @property def current_offset(self) -> 'MutableDecopReal': return self._current_offset @property def output_filter(self) -> 'OutputFilter1': return self._output_filter @property def current_act(self) -> 'DecopReal': return self._current_act @property def current_clip(self) -> 'MutableDecopReal': return self._current_clip @property def current_clip_limit(self) -> 'DecopReal': return self._current_clip_limit @property def voltage_act(self) -> 'DecopReal': return self._voltage_act @property def voltage_out(self) -> 'DecopReal': return self._voltage_out @property def voltage_clip(self) -> 'MutableDecopReal': return self._voltage_clip @property def feedforward_master(self) -> 'MutableDecopInteger': return self._feedforward_master @property def feedforward_enabled(self) -> 'MutableDecopBoolean': return self._feedforward_enabled @property def feedforward_factor(self) -> 'MutableDecopReal': return self._feedforward_factor @property def aux(self) -> 'DecopReal': return self._aux @property def status(self) -> 'DecopInteger': return self._status @property def status_txt(self) -> 'DecopString': return self._status_txt @property def forced_off(self) -> 'MutableDecopBoolean': return self._forced_off class AmpPower: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._power = DecopReal(client, name + ':power') self._photodiode = DecopReal(client, name + ':photodiode') self._cal_offset = MutableDecopReal(client, name + ':cal-offset') self._cal_factor = MutableDecopReal(client, name + ':cal-factor') self._power_min = MutableDecopReal(client, name + ':power-min') self._power_min_warning_delay = MutableDecopReal(client, name + ':power-min-warning-delay') self._power_min_shutdown_delay = MutableDecopReal(client, name + ':power-min-shutdown-delay') self._power_max = MutableDecopReal(client, name + ':power-max') self._power_max_warning_delay = MutableDecopReal(client, name + ':power-max-warning-delay') self._power_max_shutdown_delay = MutableDecopReal(client, name + ':power-max-shutdown-delay') self._status = DecopInteger(client, name + ':status') self._status_txt = DecopString(client, name + ':status-txt') @property def power(self) -> 'DecopReal': return self._power @property def photodiode(self) -> 'DecopReal': return self._photodiode @property def cal_offset(self) -> 'MutableDecopReal': return self._cal_offset @property def cal_factor(self) -> 'MutableDecopReal': return self._cal_factor @property def power_min(self) -> 'MutableDecopReal': return self._power_min @property def power_min_warning_delay(self) -> 'MutableDecopReal': return self._power_min_warning_delay @property def power_min_shutdown_delay(self) -> 'MutableDecopReal': return self._power_min_shutdown_delay @property def power_max(self) -> 'MutableDecopReal': return self._power_max @property def power_max_warning_delay(self) -> 'MutableDecopReal': return self._power_max_warning_delay @property def power_max_shutdown_delay(self) -> 'MutableDecopReal': return self._power_max_shutdown_delay @property def status(self) -> 'DecopInteger': return self._status @property def status_txt(self) -> 'DecopString': return self._status_txt class AmpSeedonlyCheck: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._seed = DecopBoolean(client, name + ':seed') self._pump = DecopBoolean(client, name + ':pump') self._warning_delay = MutableDecopReal(client, name + ':warning-delay') self._shutdown_delay = MutableDecopReal(client, name + ':shutdown-delay') self._status = DecopInteger(client, name + ':status') self._status_txt = DecopString(client, name + ':status-txt') @property def seed(self) -> 'DecopBoolean': return self._seed @property def pump(self) -> 'DecopBoolean': return self._pump @property def warning_delay(self) -> 'MutableDecopReal': return self._warning_delay @property def shutdown_delay(self) -> 'MutableDecopReal': return self._shutdown_delay @property def status(self) -> 'DecopInteger': return self._status @property def status_txt(self) -> 'DecopString': return self._status_txt class AmpFactory: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._wavelength = MutableDecopReal(client, name + ':wavelength') self._power = MutableDecopReal(client, name + ':power') self._cc = AmpFactoryCc(client, name + ':cc') self._tc = TcFactorySettings(client, name + ':tc') self._seed_limits = AmpFactoryPower(client, name + ':seed-limits') self._output_limits = AmpFactoryPower(client, name + ':output-limits') self._seedonly_check = AmpFactorySeedonly(client, name + ':seedonly-check') self._last_modified = DecopString(client, name + ':last-modified') self._modified = DecopBoolean(client, name + ':modified') @property def wavelength(self) -> 'MutableDecopReal': return self._wavelength @property def power(self) -> 'MutableDecopReal': return self._power @property def cc(self) -> 'AmpFactoryCc': return self._cc @property def tc(self) -> 'TcFactorySettings': return self._tc @property def seed_limits(self) -> 'AmpFactoryPower': return self._seed_limits @property def output_limits(self) -> 'AmpFactoryPower': return self._output_limits @property def seedonly_check(self) -> 'AmpFactorySeedonly': return self._seedonly_check @property def last_modified(self) -> 'DecopString': return self._last_modified @property def modified(self) -> 'DecopBoolean': return self._modified def apply(self) -> None: self.__client.exec(self.__name + ':apply', input_stream=None, output_type=None, return_type=None) def retrieve_now(self) -> None: self.__client.exec(self.__name + ':retrieve-now', input_stream=None, output_type=None, return_type=None) class AmpFactoryCc: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._feedforward_factor = MutableDecopReal(client, name + ':feedforward-factor') self._current_set = MutableDecopReal(client, name + ':current-set') self._current_clip = MutableDecopReal(client, name + ':current-clip') self._current_clip_modified = DecopBoolean(client, name + ':current-clip-modified') self._current_clip_last_modified = DecopString(client, name + ':current-clip-last-modified') self._voltage_clip = MutableDecopReal(client, name + ':voltage-clip') @property def feedforward_factor(self) -> 'MutableDecopReal': return self._feedforward_factor @property def current_set(self) -> 'MutableDecopReal': return self._current_set @property def current_clip(self) -> 'MutableDecopReal': return self._current_clip @property def current_clip_modified(self) -> 'DecopBoolean': return self._current_clip_modified @property def current_clip_last_modified(self) -> 'DecopString': return self._current_clip_last_modified @property def voltage_clip(self) -> 'MutableDecopReal': return self._voltage_clip class AmpFactoryPower: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._cal_offset = MutableDecopReal(client, name + ':cal-offset') self._cal_factor = MutableDecopReal(client, name + ':cal-factor') self._power_min = MutableDecopReal(client, name + ':power-min') self._power_min_warning_delay = MutableDecopReal(client, name + ':power-min-warning-delay') self._power_min_shutdown_delay = MutableDecopReal(client, name + ':power-min-shutdown-delay') self._power_max = MutableDecopReal(client, name + ':power-max') self._power_max_warning_delay = MutableDecopReal(client, name + ':power-max-warning-delay') self._power_max_shutdown_delay = MutableDecopReal(client, name + ':power-max-shutdown-delay') @property def cal_offset(self) -> 'MutableDecopReal': return self._cal_offset @property def cal_factor(self) -> 'MutableDecopReal': return self._cal_factor @property def power_min(self) -> 'MutableDecopReal': return self._power_min @property def power_min_warning_delay(self) -> 'MutableDecopReal': return self._power_min_warning_delay @property def power_min_shutdown_delay(self) -> 'MutableDecopReal': return self._power_min_shutdown_delay @property def power_max(self) -> 'MutableDecopReal': return self._power_max @property def power_max_warning_delay(self) -> 'MutableDecopReal': return self._power_max_warning_delay @property def power_max_shutdown_delay(self) -> 'MutableDecopReal': return self._power_max_shutdown_delay class AmpFactorySeedonly: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._warning_delay = MutableDecopReal(client, name + ':warning-delay') self._shutdown_delay = MutableDecopReal(client, name + ':shutdown-delay') @property def warning_delay(self) -> 'MutableDecopReal': return self._warning_delay @property def shutdown_delay(self) -> 'MutableDecopReal': return self._shutdown_delay class Siggen: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._hold = MutableDecopBoolean(client, name + ':hold') self._signal_type = MutableDecopInteger(client, name + ':signal-type') self._frequency = MutableDecopReal(client, name + ':frequency') self._phase_shift = MutableDecopReal(client, name + ':phase-shift') self._output_channel = MutableDecopInteger(client, name + ':output-channel') self._unit = DecopString(client, name + ':unit') self._amplitude = MutableDecopReal(client, name + ':amplitude') self._offset = MutableDecopReal(client, name + ':offset') self._start = MutableDecopReal(client, name + ':start') self._end = MutableDecopReal(client, name + ':end') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def hold(self) -> 'MutableDecopBoolean': return self._hold @property def signal_type(self) -> 'MutableDecopInteger': return self._signal_type @property def frequency(self) -> 'MutableDecopReal': return self._frequency @property def phase_shift(self) -> 'MutableDecopReal': return self._phase_shift @property def output_channel(self) -> 'MutableDecopInteger': return self._output_channel @property def unit(self) -> 'DecopString': return self._unit @property def amplitude(self) -> 'MutableDecopReal': return self._amplitude @property def offset(self) -> 'MutableDecopReal': return self._offset @property def start(self) -> 'MutableDecopReal': return self._start @property def end(self) -> 'MutableDecopReal': return self._end class ScopeT: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._variant = MutableDecopInteger(client, name + ':variant') self._update_rate = MutableDecopInteger(client, name + ':update-rate') self._channel1 = ScopeChannelT(client, name + ':channel1') self._channel2 = ScopeChannelT(client, name + ':channel2') self._channelx = ScopeXAxisT(client, name + ':channelx') self._timescale = MutableDecopReal(client, name + ':timescale') self._data = DecopBinary(client, name + ':data') @property def variant(self) -> 'MutableDecopInteger': return self._variant @property def update_rate(self) -> 'MutableDecopInteger': return self._update_rate @property def channel1(self) -> 'ScopeChannelT': return self._channel1 @property def channel2(self) -> 'ScopeChannelT': return self._channel2 @property def channelx(self) -> 'ScopeXAxisT': return self._channelx @property def timescale(self) -> 'MutableDecopReal': return self._timescale @property def data(self) -> 'DecopBinary': return self._data class ScopeChannelT: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._signal = MutableDecopInteger(client, name + ':signal') self._enabled = MutableDecopBoolean(client, name + ':enabled') self._unit = DecopString(client, name + ':unit') self._name = DecopString(client, name + ':name') @property def signal(self) -> 'MutableDecopInteger': return self._signal @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def unit(self) -> 'DecopString': return self._unit @property def name(self) -> 'DecopString': return self._name class ScopeXAxisT: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._xy_signal = MutableDecopInteger(client, name + ':xy-signal') self._scope_timescale = MutableDecopReal(client, name + ':scope-timescale') self._spectrum_range = MutableDecopReal(client, name + ':spectrum-range') self._spectrum_omit_dc = MutableDecopBoolean(client, name + ':spectrum-omit-dc') self._unit = DecopString(client, name + ':unit') self._name = DecopString(client, name + ':name') @property def xy_signal(self) -> 'MutableDecopInteger': return self._xy_signal @property def scope_timescale(self) -> 'MutableDecopReal': return self._scope_timescale @property def spectrum_range(self) -> 'MutableDecopReal': return self._spectrum_range @property def spectrum_omit_dc(self) -> 'MutableDecopBoolean': return self._spectrum_omit_dc @property def unit(self) -> 'DecopString': return self._unit @property def name(self) -> 'DecopString': return self._name class Nlo: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._servo = NloLaserHeadServos(client, name + ':servo') self._pd = NloLaserHeadPhotoDiodes(client, name + ':pd') self._power_optimization = NloLaserHeadPowerOptimization(client, name + ':power-optimization') self._shg = Shg(client, name + ':shg') self._fhg = Fhg(client, name + ':fhg') self._ssw_ver = DecopString(client, name + ':ssw-ver') @property def servo(self) -> 'NloLaserHeadServos': return self._servo @property def pd(self) -> 'NloLaserHeadPhotoDiodes': return self._pd @property def power_optimization(self) -> 'NloLaserHeadPowerOptimization': return self._power_optimization @property def shg(self) -> 'Shg': return self._shg @property def fhg(self) -> 'Fhg': return self._fhg @property def ssw_ver(self) -> 'DecopString': return self._ssw_ver class NloLaserHeadServos: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._ta1_hor = NloLaserHeadServoPwm(client, name + ':ta1-hor') self._ta1_vert = NloLaserHeadServoPwm(client, name + ':ta1-vert') self._ta2_hor = NloLaserHeadServoPwm(client, name + ':ta2-hor') self._ta2_vert = NloLaserHeadServoPwm(client, name + ':ta2-vert') self._shg1_hor = NloLaserHeadServoPwm(client, name + ':shg1-hor') self._shg1_vert = NloLaserHeadServoPwm(client, name + ':shg1-vert') self._shg2_hor = NloLaserHeadServoPwm(client, name + ':shg2-hor') self._shg2_vert = NloLaserHeadServoPwm(client, name + ':shg2-vert') self._fhg1_hor = NloLaserHeadServoPwm(client, name + ':fhg1-hor') self._fhg1_vert = NloLaserHeadServoPwm(client, name + ':fhg1-vert') self._fhg2_hor = NloLaserHeadServoPwm(client, name + ':fhg2-hor') self._fhg2_vert = NloLaserHeadServoPwm(client, name + ':fhg2-vert') self._fiber1_hor = NloLaserHeadServoPwm(client, name + ':fiber1-hor') self._fiber1_vert = NloLaserHeadServoPwm(client, name + ':fiber1-vert') self._fiber2_hor = NloLaserHeadServoPwm(client, name + ':fiber2-hor') self._fiber2_vert = NloLaserHeadServoPwm(client, name + ':fiber2-vert') self._uv_outcpl = NloLaserHeadServoPwm(client, name + ':uv-outcpl') self._uv_cryst = NloLaserHeadServoPwm(client, name + ':uv-cryst') @property def ta1_hor(self) -> 'NloLaserHeadServoPwm': return self._ta1_hor @property def ta1_vert(self) -> 'NloLaserHeadServoPwm': return self._ta1_vert @property def ta2_hor(self) -> 'NloLaserHeadServoPwm': return self._ta2_hor @property def ta2_vert(self) -> 'NloLaserHeadServoPwm': return self._ta2_vert @property def shg1_hor(self) -> 'NloLaserHeadServoPwm': return self._shg1_hor @property def shg1_vert(self) -> 'NloLaserHeadServoPwm': return self._shg1_vert @property def shg2_hor(self) -> 'NloLaserHeadServoPwm': return self._shg2_hor @property def shg2_vert(self) -> 'NloLaserHeadServoPwm': return self._shg2_vert @property def fhg1_hor(self) -> 'NloLaserHeadServoPwm': return self._fhg1_hor @property def fhg1_vert(self) -> 'NloLaserHeadServoPwm': return self._fhg1_vert @property def fhg2_hor(self) -> 'NloLaserHeadServoPwm': return self._fhg2_hor @property def fhg2_vert(self) -> 'NloLaserHeadServoPwm': return self._fhg2_vert @property def fiber1_hor(self) -> 'NloLaserHeadServoPwm': return self._fiber1_hor @property def fiber1_vert(self) -> 'NloLaserHeadServoPwm': return self._fiber1_vert @property def fiber2_hor(self) -> 'NloLaserHeadServoPwm': return self._fiber2_hor @property def fiber2_vert(self) -> 'NloLaserHeadServoPwm': return self._fiber2_vert @property def uv_outcpl(self) -> 'NloLaserHeadServoPwm': return self._uv_outcpl @property def uv_cryst(self) -> 'NloLaserHeadServoPwm': return self._uv_cryst def center_ta_servos(self) -> None: self.__client.exec(self.__name + ':center-ta-servos', input_stream=None, output_type=None, return_type=None) def center_shg_servos(self) -> None: self.__client.exec(self.__name + ':center-shg-servos', input_stream=None, output_type=None, return_type=None) def center_fhg_servos(self) -> None: self.__client.exec(self.__name + ':center-fhg-servos', input_stream=None, output_type=None, return_type=None) def center_fiber_servos(self) -> None: self.__client.exec(self.__name + ':center-fiber-servos', input_stream=None, output_type=None, return_type=None) def center_all_servos(self) -> None: self.__client.exec(self.__name + ':center-all-servos', input_stream=None, output_type=None, return_type=None) class NloLaserHeadServoPwm: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._display_name = DecopString(client, name + ':display-name') self._enabled = MutableDecopBoolean(client, name + ':enabled') self._value = MutableDecopInteger(client, name + ':value') @property def display_name(self) -> 'DecopString': return self._display_name @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def value(self) -> 'MutableDecopInteger': return self._value def center_servo(self) -> None: self.__client.exec(self.__name + ':center-servo', input_stream=None, output_type=None, return_type=None) class NloLaserHeadPhotoDiodes: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._dl = NloLaserHeadNloPhotodiode(client, name + ':dl') self._amp = NloLaserHeadNloPhotodiode(client, name + ':amp') self._fiber = NloLaserHeadNloPhotodiode(client, name + ':fiber') self._shg = NloLaserHeadNloPhotodiode(client, name + ':shg') self._shg_int = NloLaserHeadNloDigilockPhotodiode(client, name + ':shg-int') self._shg_pdh_dc = NloLaserHeadNloDigilockPhotodiode(client, name + ':shg-pdh-dc') self._shg_pdh_rf = NloLaserHeadNloPdhPhotodiode(client, name + ':shg-pdh-rf') self._fhg = NloLaserHeadNloPhotodiode(client, name + ':fhg') self._fhg_int = NloLaserHeadNloDigilockPhotodiode(client, name + ':fhg-int') self._fhg_pdh_dc = NloLaserHeadNloDigilockPhotodiode(client, name + ':fhg-pdh-dc') self._fhg_pdh_rf = NloLaserHeadNloPdhPhotodiode(client, name + ':fhg-pdh-rf') @property def dl(self) -> 'NloLaserHeadNloPhotodiode': return self._dl @property def amp(self) -> 'NloLaserHeadNloPhotodiode': return self._amp @property def fiber(self) -> 'NloLaserHeadNloPhotodiode': return self._fiber @property def shg(self) -> 'NloLaserHeadNloPhotodiode': return self._shg @property def shg_int(self) -> 'NloLaserHeadNloDigilockPhotodiode': return self._shg_int @property def shg_pdh_dc(self) -> 'NloLaserHeadNloDigilockPhotodiode': return self._shg_pdh_dc @property def shg_pdh_rf(self) -> 'NloLaserHeadNloPdhPhotodiode': return self._shg_pdh_rf @property def fhg(self) -> 'NloLaserHeadNloPhotodiode': return self._fhg @property def fhg_int(self) -> 'NloLaserHeadNloDigilockPhotodiode': return self._fhg_int @property def fhg_pdh_dc(self) -> 'NloLaserHeadNloDigilockPhotodiode': return self._fhg_pdh_dc @property def fhg_pdh_rf(self) -> 'NloLaserHeadNloPdhPhotodiode': return self._fhg_pdh_rf class NloLaserHeadNloPhotodiode: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._power = DecopReal(client, name + ':power') self._photodiode = DecopReal(client, name + ':photodiode') self._cal_offset = MutableDecopReal(client, name + ':cal-offset') self._cal_factor = MutableDecopReal(client, name + ':cal-factor') @property def power(self) -> 'DecopReal': return self._power @property def photodiode(self) -> 'DecopReal': return self._photodiode @property def cal_offset(self) -> 'MutableDecopReal': return self._cal_offset @property def cal_factor(self) -> 'MutableDecopReal': return self._cal_factor class NloLaserHeadNloDigilockPhotodiode: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._photodiode = DecopReal(client, name + ':photodiode') self._cal_offset = MutableDecopReal(client, name + ':cal-offset') @property def photodiode(self) -> 'DecopReal': return self._photodiode @property def cal_offset(self) -> 'MutableDecopReal': return self._cal_offset class NloLaserHeadNloPdhPhotodiode: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._photodiode = DecopReal(client, name + ':photodiode') self._gain = MutableDecopReal(client, name + ':gain') @property def photodiode(self) -> 'DecopReal': return self._photodiode @property def gain(self) -> 'MutableDecopReal': return self._gain class NloLaserHeadPowerOptimization: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._ongoing = DecopBoolean(client, name + ':ongoing') self._progress = DecopInteger(client, name + ':progress') self._status = DecopInteger(client, name + ':status') self._status_string = DecopString(client, name + ':status-string') self._shg_advanced = MutableDecopBoolean(client, name + ':shg-advanced') self._stage1 = NloLaserHeadStage(client, name + ':stage1') self._stage2 = NloLaserHeadStage(client, name + ':stage2') self._stage3 = NloLaserHeadStage(client, name + ':stage3') self._stage4 = NloLaserHeadStage(client, name + ':stage4') self._stage5 = NloLaserHeadStage(client, name + ':stage5') self._progress_data_amp = DecopBinary(client, name + ':progress-data-amp') self._progress_data_shg = DecopBinary(client, name + ':progress-data-shg') self._progress_data_fiber = DecopBinary(client, name + ':progress-data-fiber') self._progress_data_fhg = DecopBinary(client, name + ':progress-data-fhg') self._abort = MutableDecopBoolean(client, name + ':abort') @property def ongoing(self) -> 'DecopBoolean': return self._ongoing @property def progress(self) -> 'DecopInteger': return self._progress @property def status(self) -> 'DecopInteger': return self._status @property def status_string(self) -> 'DecopString': return self._status_string @property def shg_advanced(self) -> 'MutableDecopBoolean': return self._shg_advanced @property def stage1(self) -> 'NloLaserHeadStage': return self._stage1 @property def stage2(self) -> 'NloLaserHeadStage': return self._stage2 @property def stage3(self) -> 'NloLaserHeadStage': return self._stage3 @property def stage4(self) -> 'NloLaserHeadStage': return self._stage4 @property def stage5(self) -> 'NloLaserHeadStage': return self._stage5 @property def progress_data_amp(self) -> 'DecopBinary': return self._progress_data_amp @property def progress_data_shg(self) -> 'DecopBinary': return self._progress_data_shg @property def progress_data_fiber(self) -> 'DecopBinary': return self._progress_data_fiber @property def progress_data_fhg(self) -> 'DecopBinary': return self._progress_data_fhg @property def abort(self) -> 'MutableDecopBoolean': return self._abort def start_optimization_all(self) -> int: return self.__client.exec(self.__name + ':start-optimization-all', input_stream=None, output_type=None, return_type=int) def start_optimization_amp(self) -> int: return self.__client.exec(self.__name + ':start-optimization-amp', input_stream=None, output_type=None, return_type=int) def start_optimization_shg(self) -> int: return self.__client.exec(self.__name + ':start-optimization-shg', input_stream=None, output_type=None, return_type=int) def start_optimization_fiber(self) -> int: return self.__client.exec(self.__name + ':start-optimization-fiber', input_stream=None, output_type=None, return_type=int) def start_optimization_fhg(self) -> int: return self.__client.exec(self.__name + ':start-optimization-fhg', input_stream=None, output_type=None, return_type=int) class NloLaserHeadStage: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._input = NloLaserHeadOptInput(client, name + ':input') self._progress = DecopInteger(client, name + ':progress') self._optimization_in_progress = DecopBoolean(client, name + ':optimization-in-progress') self._restore_on_abort = MutableDecopBoolean(client, name + ':restore-on-abort') self._restore_on_regress = MutableDecopBoolean(client, name + ':restore-on-regress') self._regress_tolerance = MutableDecopInteger(client, name + ':regress-tolerance') @property def input(self) -> 'NloLaserHeadOptInput': return self._input @property def progress(self) -> 'DecopInteger': return self._progress @property def optimization_in_progress(self) -> 'DecopBoolean': return self._optimization_in_progress @property def restore_on_abort(self) -> 'MutableDecopBoolean': return self._restore_on_abort @property def restore_on_regress(self) -> 'MutableDecopBoolean': return self._restore_on_regress @property def regress_tolerance(self) -> 'MutableDecopInteger': return self._regress_tolerance def start_optimization(self) -> int: return self.__client.exec(self.__name + ':start-optimization', input_stream=None, output_type=None, return_type=int) class NloLaserHeadOptInput: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._value_calibrated = DecopReal(client, name + ':value-calibrated') @property def value_calibrated(self) -> 'DecopReal': return self._value_calibrated class Shg: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._tc = TcChannel(client, name + ':tc') self._pc = PiezoDrv1(client, name + ':pc') self._scan = NloLaserHeadSiggen(client, name + ':scan') self._scope = NloLaserHeadScopeT(client, name + ':scope') self._lock = NloLaserHeadLockShg(client, name + ':lock') self._factory_settings = ShgFactorySettings(client, name + ':factory-settings') @property def tc(self) -> 'TcChannel': return self._tc @property def pc(self) -> 'PiezoDrv1': return self._pc @property def scan(self) -> 'NloLaserHeadSiggen': return self._scan @property def scope(self) -> 'NloLaserHeadScopeT': return self._scope @property def lock(self) -> 'NloLaserHeadLockShg': return self._lock @property def factory_settings(self) -> 'ShgFactorySettings': return self._factory_settings def store(self) -> None: self.__client.exec(self.__name + ':store', input_stream=None, output_type=None, return_type=None) def restore(self) -> None: self.__client.exec(self.__name + ':restore', input_stream=None, output_type=None, return_type=None) class NloLaserHeadSiggen: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._frequency = MutableDecopReal(client, name + ':frequency') self._amplitude = MutableDecopReal(client, name + ':amplitude') self._offset = MutableDecopReal(client, name + ':offset') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def frequency(self) -> 'MutableDecopReal': return self._frequency @property def amplitude(self) -> 'MutableDecopReal': return self._amplitude @property def offset(self) -> 'MutableDecopReal': return self._offset class NloLaserHeadScopeT: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._variant = MutableDecopInteger(client, name + ':variant') self._update_rate = MutableDecopInteger(client, name + ':update-rate') self._channel1 = NloLaserHeadScopeChannelT(client, name + ':channel1') self._channel2 = NloLaserHeadScopeChannelT(client, name + ':channel2') self._channelx = NloLaserHeadScopeXAxisT(client, name + ':channelx') self._timescale = MutableDecopReal(client, name + ':timescale') self._data = DecopBinary(client, name + ':data') @property def variant(self) -> 'MutableDecopInteger': return self._variant @property def update_rate(self) -> 'MutableDecopInteger': return self._update_rate @property def channel1(self) -> 'NloLaserHeadScopeChannelT': return self._channel1 @property def channel2(self) -> 'NloLaserHeadScopeChannelT': return self._channel2 @property def channelx(self) -> 'NloLaserHeadScopeXAxisT': return self._channelx @property def timescale(self) -> 'MutableDecopReal': return self._timescale @property def data(self) -> 'DecopBinary': return self._data class NloLaserHeadScopeChannelT: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._signal = MutableDecopInteger(client, name + ':signal') self._enabled = MutableDecopBoolean(client, name + ':enabled') self._unit = DecopString(client, name + ':unit') self._name = DecopString(client, name + ':name') @property def signal(self) -> 'MutableDecopInteger': return self._signal @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def unit(self) -> 'DecopString': return self._unit @property def name(self) -> 'DecopString': return self._name class NloLaserHeadScopeXAxisT: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._xy_signal = MutableDecopInteger(client, name + ':xy-signal') self._scope_timescale = MutableDecopReal(client, name + ':scope-timescale') self._spectrum_range = MutableDecopReal(client, name + ':spectrum-range') self._spectrum_omit_dc = MutableDecopBoolean(client, name + ':spectrum-omit-dc') self._unit = DecopString(client, name + ':unit') self._name = DecopString(client, name + ':name') @property def xy_signal(self) -> 'MutableDecopInteger': return self._xy_signal @property def scope_timescale(self) -> 'MutableDecopReal': return self._scope_timescale @property def spectrum_range(self) -> 'MutableDecopReal': return self._spectrum_range @property def spectrum_omit_dc(self) -> 'MutableDecopBoolean': return self._spectrum_omit_dc @property def unit(self) -> 'DecopString': return self._unit @property def name(self) -> 'DecopString': return self._name class NloLaserHeadLockShg: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._state = DecopInteger(client, name + ':state') self._state_txt = DecopString(client, name + ':state-txt') self._lock_enabled = MutableDecopBoolean(client, name + ':lock-enabled') self._pid_selection = MutableDecopInteger(client, name + ':pid-selection') self._setpoint = MutableDecopReal(client, name + ':setpoint') self._relock = NloLaserHeadRelock(client, name + ':relock') self._window = NloLaserHeadWindow(client, name + ':window') self._pid1 = NloLaserHeadPid(client, name + ':pid1') self._pid2 = NloLaserHeadPid(client, name + ':pid2') self._analog_dl_gain = NloLaserHeadMinifalc(client, name + ':analog-dl-gain') self._local_oscillator = NloLaserHeadLocalOscillatorShg(client, name + ':local-oscillator') self._cavity_fast_pzt_voltage = MutableDecopReal(client, name + ':cavity-fast-pzt-voltage') self._cavity_slow_pzt_voltage = MutableDecopReal(client, name + ':cavity-slow-pzt-voltage') self._background_trace = DecopBinary(client, name + ':background-trace') @property def state(self) -> 'DecopInteger': return self._state @property def state_txt(self) -> 'DecopString': return self._state_txt @property def lock_enabled(self) -> 'MutableDecopBoolean': return self._lock_enabled @property def pid_selection(self) -> 'MutableDecopInteger': return self._pid_selection @property def setpoint(self) -> 'MutableDecopReal': return self._setpoint @property def relock(self) -> 'NloLaserHeadRelock': return self._relock @property def window(self) -> 'NloLaserHeadWindow': return self._window @property def pid1(self) -> 'NloLaserHeadPid': return self._pid1 @property def pid2(self) -> 'NloLaserHeadPid': return self._pid2 @property def analog_dl_gain(self) -> 'NloLaserHeadMinifalc': return self._analog_dl_gain @property def local_oscillator(self) -> 'NloLaserHeadLocalOscillatorShg': return self._local_oscillator @property def cavity_fast_pzt_voltage(self) -> 'MutableDecopReal': return self._cavity_fast_pzt_voltage @property def cavity_slow_pzt_voltage(self) -> 'MutableDecopReal': return self._cavity_slow_pzt_voltage @property def background_trace(self) -> 'DecopBinary': return self._background_trace class NloLaserHeadRelock: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._frequency = MutableDecopReal(client, name + ':frequency') self._amplitude = MutableDecopReal(client, name + ':amplitude') self._delay = MutableDecopReal(client, name + ':delay') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def frequency(self) -> 'MutableDecopReal': return self._frequency @property def amplitude(self) -> 'MutableDecopReal': return self._amplitude @property def delay(self) -> 'MutableDecopReal': return self._delay class NloLaserHeadWindow: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._input_channel = MutableDecopInteger(client, name + ':input-channel') self._threshold = MutableDecopReal(client, name + ':threshold') self._level_hysteresis = MutableDecopReal(client, name + ':level-hysteresis') @property def input_channel(self) -> 'MutableDecopInteger': return self._input_channel @property def threshold(self) -> 'MutableDecopReal': return self._threshold @property def level_hysteresis(self) -> 'MutableDecopReal': return self._level_hysteresis class NloLaserHeadPid: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._gain = NloLaserHeadGain(client, name + ':gain') @property def gain(self) -> 'NloLaserHeadGain': return self._gain class NloLaserHeadGain: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._all = MutableDecopReal(client, name + ':all') self._p = MutableDecopReal(client, name + ':p') self._i = MutableDecopReal(client, name + ':i') self._d = MutableDecopReal(client, name + ':d') self._i_cutoff = MutableDecopReal(client, name + ':i-cutoff') self._i_cutoff_enabled = MutableDecopBoolean(client, name + ':i-cutoff-enabled') @property def all(self) -> 'MutableDecopReal': return self._all @property def p(self) -> 'MutableDecopReal': return self._p @property def i(self) -> 'MutableDecopReal': return self._i @property def d(self) -> 'MutableDecopReal': return self._d @property def i_cutoff(self) -> 'MutableDecopReal': return self._i_cutoff @property def i_cutoff_enabled(self) -> 'MutableDecopBoolean': return self._i_cutoff_enabled class NloLaserHeadMinifalc: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._p_gain = MutableDecopReal(client, name + ':p-gain') @property def p_gain(self) -> 'MutableDecopReal': return self._p_gain class NloLaserHeadLocalOscillatorShg: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._coupled_modulation = MutableDecopBoolean(client, name + ':coupled-modulation') self._use_fast_oscillator = MutableDecopBoolean(client, name + ':use-fast-oscillator') self._use_external_oscillator = MutableDecopBoolean(client, name + ':use-external-oscillator') self._amplitude = MutableDecopReal(client, name + ':amplitude') self._attenuation_raw = MutableDecopInteger(client, name + ':attenuation-raw') self._phase_shift = MutableDecopReal(client, name + ':phase-shift') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def coupled_modulation(self) -> 'MutableDecopBoolean': return self._coupled_modulation @property def use_fast_oscillator(self) -> 'MutableDecopBoolean': return self._use_fast_oscillator @property def use_external_oscillator(self) -> 'MutableDecopBoolean': return self._use_external_oscillator @property def amplitude(self) -> 'MutableDecopReal': return self._amplitude @property def attenuation_raw(self) -> 'MutableDecopInteger': return self._attenuation_raw @property def phase_shift(self) -> 'MutableDecopReal': return self._phase_shift def auto_pdh(self) -> None: self.__client.exec(self.__name + ':auto-pdh', input_stream=None, output_type=None, return_type=None) class ShgFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._modified = DecopBoolean(client, name + ':modified') self._tc = NloLaserHeadTcFactorySettings(client, name + ':tc') self._pc = NloLaserHeadPcFactorySettings(client, name + ':pc') self._pd = NloLaserHeadShgPhotodiodesFactorySettings(client, name + ':pd') self._lock = NloLaserHeadLockFactorySettings(client, name + ':lock') @property def modified(self) -> 'DecopBoolean': return self._modified @property def tc(self) -> 'NloLaserHeadTcFactorySettings': return self._tc @property def pc(self) -> 'NloLaserHeadPcFactorySettings': return self._pc @property def pd(self) -> 'NloLaserHeadShgPhotodiodesFactorySettings': return self._pd @property def lock(self) -> 'NloLaserHeadLockFactorySettings': return self._lock def apply(self) -> None: self.__client.exec(self.__name + ':apply', input_stream=None, output_type=None, return_type=None) def retrieve_now(self) -> None: self.__client.exec(self.__name + ':retrieve-now', input_stream=None, output_type=None, return_type=None) class NloLaserHeadTcFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._temp_min = MutableDecopReal(client, name + ':temp-min') self._temp_max = MutableDecopReal(client, name + ':temp-max') self._temp_set = MutableDecopReal(client, name + ':temp-set') self._temp_roc_limit = MutableDecopReal(client, name + ':temp-roc-limit') self._temp_roc_enabled = MutableDecopBoolean(client, name + ':temp-roc-enabled') self._current_max = MutableDecopReal(client, name + ':current-max') self._current_min = MutableDecopReal(client, name + ':current-min') self._p_gain = MutableDecopReal(client, name + ':p-gain') self._i_gain = MutableDecopReal(client, name + ':i-gain') self._d_gain = MutableDecopReal(client, name + ':d-gain') self._c_gain = MutableDecopReal(client, name + ':c-gain') self._ok_tolerance = MutableDecopReal(client, name + ':ok-tolerance') self._ok_time = MutableDecopReal(client, name + ':ok-time') self._timeout = MutableDecopInteger(client, name + ':timeout') self._power_source = MutableDecopInteger(client, name + ':power-source') self._ntc_series_resistance = MutableDecopReal(client, name + ':ntc-series-resistance') @property def temp_min(self) -> 'MutableDecopReal': return self._temp_min @property def temp_max(self) -> 'MutableDecopReal': return self._temp_max @property def temp_set(self) -> 'MutableDecopReal': return self._temp_set @property def temp_roc_limit(self) -> 'MutableDecopReal': return self._temp_roc_limit @property def temp_roc_enabled(self) -> 'MutableDecopBoolean': return self._temp_roc_enabled @property def current_max(self) -> 'MutableDecopReal': return self._current_max @property def current_min(self) -> 'MutableDecopReal': return self._current_min @property def p_gain(self) -> 'MutableDecopReal': return self._p_gain @property def i_gain(self) -> 'MutableDecopReal': return self._i_gain @property def d_gain(self) -> 'MutableDecopReal': return self._d_gain @property def c_gain(self) -> 'MutableDecopReal': return self._c_gain @property def ok_tolerance(self) -> 'MutableDecopReal': return self._ok_tolerance @property def ok_time(self) -> 'MutableDecopReal': return self._ok_time @property def timeout(self) -> 'MutableDecopInteger': return self._timeout @property def power_source(self) -> 'MutableDecopInteger': return self._power_source @property def ntc_series_resistance(self) -> 'MutableDecopReal': return self._ntc_series_resistance class NloLaserHeadPcFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._voltage_min = MutableDecopReal(client, name + ':voltage-min') self._voltage_max = MutableDecopReal(client, name + ':voltage-max') self._feedforward_enabled = MutableDecopBoolean(client, name + ':feedforward-enabled') self._feedforward_factor = MutableDecopReal(client, name + ':feedforward-factor') self._capacitance = MutableDecopReal(client, name + ':capacitance') self._scan_offset = MutableDecopReal(client, name + ':scan-offset') self._scan_amplitude = MutableDecopReal(client, name + ':scan-amplitude') self._scan_frequency = MutableDecopReal(client, name + ':scan-frequency') @property def voltage_min(self) -> 'MutableDecopReal': return self._voltage_min @property def voltage_max(self) -> 'MutableDecopReal': return self._voltage_max @property def feedforward_enabled(self) -> 'MutableDecopBoolean': return self._feedforward_enabled @property def feedforward_factor(self) -> 'MutableDecopReal': return self._feedforward_factor @property def capacitance(self) -> 'MutableDecopReal': return self._capacitance @property def scan_offset(self) -> 'MutableDecopReal': return self._scan_offset @property def scan_amplitude(self) -> 'MutableDecopReal': return self._scan_amplitude @property def scan_frequency(self) -> 'MutableDecopReal': return self._scan_frequency class NloLaserHeadShgPhotodiodesFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._shg = NloLaserHeadPdFactorySettings(client, name + ':shg') self._fiber = NloLaserHeadPdFactorySettings(client, name + ':fiber') self._int = NloLaserHeadPdDigilockFactorySettings(client, name + ':int') self._pdh_dc = NloLaserHeadPdDigilockFactorySettings(client, name + ':pdh-dc') self._pdh_rf = NloLaserHeadPdPdhFactorySettings(client, name + ':pdh-rf') @property def shg(self) -> 'NloLaserHeadPdFactorySettings': return self._shg @property def fiber(self) -> 'NloLaserHeadPdFactorySettings': return self._fiber @property def int(self) -> 'NloLaserHeadPdDigilockFactorySettings': return self._int @property def pdh_dc(self) -> 'NloLaserHeadPdDigilockFactorySettings': return self._pdh_dc @property def pdh_rf(self) -> 'NloLaserHeadPdPdhFactorySettings': return self._pdh_rf class NloLaserHeadPdFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._cal_offset = MutableDecopReal(client, name + ':cal-offset') self._cal_factor = MutableDecopReal(client, name + ':cal-factor') @property def cal_offset(self) -> 'MutableDecopReal': return self._cal_offset @property def cal_factor(self) -> 'MutableDecopReal': return self._cal_factor class NloLaserHeadPdDigilockFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._cal_offset = MutableDecopReal(client, name + ':cal-offset') @property def cal_offset(self) -> 'MutableDecopReal': return self._cal_offset class NloLaserHeadPdPdhFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._gain = MutableDecopReal(client, name + ':gain') @property def gain(self) -> 'MutableDecopReal': return self._gain class NloLaserHeadLockFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._pid_selection = MutableDecopInteger(client, name + ':pid-selection') self._setpoint = MutableDecopReal(client, name + ':setpoint') self._relock = NloLaserHeadRelockFactorySettings(client, name + ':relock') self._window = NloLaserHeadLockWindowFactorySettings(client, name + ':window') self._pid1_gain = NloLaserHeadPidGainFactorySettings(client, name + ':pid1-gain') self._pid2_gain = NloLaserHeadPidGainFactorySettings(client, name + ':pid2-gain') self._analog_p_gain = MutableDecopReal(client, name + ':analog-p-gain') self._local_oscillator = NloLaserHeadLocalOscillatorFactorySettings(client, name + ':local-oscillator') @property def pid_selection(self) -> 'MutableDecopInteger': return self._pid_selection @property def setpoint(self) -> 'MutableDecopReal': return self._setpoint @property def relock(self) -> 'NloLaserHeadRelockFactorySettings': return self._relock @property def window(self) -> 'NloLaserHeadLockWindowFactorySettings': return self._window @property def pid1_gain(self) -> 'NloLaserHeadPidGainFactorySettings': return self._pid1_gain @property def pid2_gain(self) -> 'NloLaserHeadPidGainFactorySettings': return self._pid2_gain @property def analog_p_gain(self) -> 'MutableDecopReal': return self._analog_p_gain @property def local_oscillator(self) -> 'NloLaserHeadLocalOscillatorFactorySettings': return self._local_oscillator class NloLaserHeadRelockFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._frequency = MutableDecopReal(client, name + ':frequency') self._amplitude = MutableDecopReal(client, name + ':amplitude') self._delay = MutableDecopReal(client, name + ':delay') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def frequency(self) -> 'MutableDecopReal': return self._frequency @property def amplitude(self) -> 'MutableDecopReal': return self._amplitude @property def delay(self) -> 'MutableDecopReal': return self._delay class NloLaserHeadLockWindowFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._input_channel = MutableDecopInteger(client, name + ':input-channel') self._threshold = MutableDecopReal(client, name + ':threshold') self._level_hysteresis = MutableDecopReal(client, name + ':level-hysteresis') @property def input_channel(self) -> 'MutableDecopInteger': return self._input_channel @property def threshold(self) -> 'MutableDecopReal': return self._threshold @property def level_hysteresis(self) -> 'MutableDecopReal': return self._level_hysteresis class NloLaserHeadPidGainFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._all = MutableDecopReal(client, name + ':all') self._p = MutableDecopReal(client, name + ':p') self._i = MutableDecopReal(client, name + ':i') self._d = MutableDecopReal(client, name + ':d') self._i_cutoff = MutableDecopReal(client, name + ':i-cutoff') self._i_cutoff_enabled = MutableDecopBoolean(client, name + ':i-cutoff-enabled') @property def all(self) -> 'MutableDecopReal': return self._all @property def p(self) -> 'MutableDecopReal': return self._p @property def i(self) -> 'MutableDecopReal': return self._i @property def d(self) -> 'MutableDecopReal': return self._d @property def i_cutoff(self) -> 'MutableDecopReal': return self._i_cutoff @property def i_cutoff_enabled(self) -> 'MutableDecopBoolean': return self._i_cutoff_enabled class NloLaserHeadLocalOscillatorFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._use_fast_oscillator = MutableDecopBoolean(client, name + ':use-fast-oscillator') self._coupled_modulation = MutableDecopBoolean(client, name + ':coupled-modulation') self._attenuation_shg_raw = MutableDecopInteger(client, name + ':attenuation-shg-raw') self._attenuation_fhg_raw = MutableDecopInteger(client, name + ':attenuation-fhg-raw') self._phase_shift_shg = MutableDecopReal(client, name + ':phase-shift-shg') self._phase_shift_fhg = MutableDecopReal(client, name + ':phase-shift-fhg') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def use_fast_oscillator(self) -> 'MutableDecopBoolean': return self._use_fast_oscillator @property def coupled_modulation(self) -> 'MutableDecopBoolean': return self._coupled_modulation @property def attenuation_shg_raw(self) -> 'MutableDecopInteger': return self._attenuation_shg_raw @property def attenuation_fhg_raw(self) -> 'MutableDecopInteger': return self._attenuation_fhg_raw @property def phase_shift_shg(self) -> 'MutableDecopReal': return self._phase_shift_shg @property def phase_shift_fhg(self) -> 'MutableDecopReal': return self._phase_shift_fhg class Fhg: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._tc = TcChannel(client, name + ':tc') self._pc = PiezoDrv1(client, name + ':pc') self._scan = NloLaserHeadSiggen(client, name + ':scan') self._scope = NloLaserHeadScopeT(client, name + ':scope') self._lock = NloLaserHeadLockFhg(client, name + ':lock') self._factory_settings = FhgFactorySettings(client, name + ':factory-settings') @property def tc(self) -> 'TcChannel': return self._tc @property def pc(self) -> 'PiezoDrv1': return self._pc @property def scan(self) -> 'NloLaserHeadSiggen': return self._scan @property def scope(self) -> 'NloLaserHeadScopeT': return self._scope @property def lock(self) -> 'NloLaserHeadLockFhg': return self._lock @property def factory_settings(self) -> 'FhgFactorySettings': return self._factory_settings def store(self) -> None: self.__client.exec(self.__name + ':store', input_stream=None, output_type=None, return_type=None) def restore(self) -> None: self.__client.exec(self.__name + ':restore', input_stream=None, output_type=None, return_type=None) class NloLaserHeadLockFhg: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._state = DecopInteger(client, name + ':state') self._state_txt = DecopString(client, name + ':state-txt') self._lock_enabled = MutableDecopBoolean(client, name + ':lock-enabled') self._pid_selection = MutableDecopInteger(client, name + ':pid-selection') self._setpoint = MutableDecopReal(client, name + ':setpoint') self._relock = NloLaserHeadRelock(client, name + ':relock') self._window = NloLaserHeadWindow(client, name + ':window') self._pid1 = NloLaserHeadPid(client, name + ':pid1') self._pid2 = NloLaserHeadPid(client, name + ':pid2') self._local_oscillator = NloLaserHeadLocalOscillatorFhg(client, name + ':local-oscillator') self._cavity_fast_pzt_voltage = MutableDecopReal(client, name + ':cavity-fast-pzt-voltage') self._cavity_slow_pzt_voltage = MutableDecopReal(client, name + ':cavity-slow-pzt-voltage') self._background_trace = DecopBinary(client, name + ':background-trace') @property def state(self) -> 'DecopInteger': return self._state @property def state_txt(self) -> 'DecopString': return self._state_txt @property def lock_enabled(self) -> 'MutableDecopBoolean': return self._lock_enabled @property def pid_selection(self) -> 'MutableDecopInteger': return self._pid_selection @property def setpoint(self) -> 'MutableDecopReal': return self._setpoint @property def relock(self) -> 'NloLaserHeadRelock': return self._relock @property def window(self) -> 'NloLaserHeadWindow': return self._window @property def pid1(self) -> 'NloLaserHeadPid': return self._pid1 @property def pid2(self) -> 'NloLaserHeadPid': return self._pid2 @property def local_oscillator(self) -> 'NloLaserHeadLocalOscillatorFhg': return self._local_oscillator @property def cavity_fast_pzt_voltage(self) -> 'MutableDecopReal': return self._cavity_fast_pzt_voltage @property def cavity_slow_pzt_voltage(self) -> 'MutableDecopReal': return self._cavity_slow_pzt_voltage @property def background_trace(self) -> 'DecopBinary': return self._background_trace class NloLaserHeadLocalOscillatorFhg: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._coupled_modulation = MutableDecopBoolean(client, name + ':coupled-modulation') self._use_fast_oscillator = MutableDecopBoolean(client, name + ':use-fast-oscillator') self._amplitude = MutableDecopReal(client, name + ':amplitude') self._attenuation_raw = MutableDecopInteger(client, name + ':attenuation-raw') self._phase_shift = MutableDecopReal(client, name + ':phase-shift') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def coupled_modulation(self) -> 'MutableDecopBoolean': return self._coupled_modulation @property def use_fast_oscillator(self) -> 'MutableDecopBoolean': return self._use_fast_oscillator @property def amplitude(self) -> 'MutableDecopReal': return self._amplitude @property def attenuation_raw(self) -> 'MutableDecopInteger': return self._attenuation_raw @property def phase_shift(self) -> 'MutableDecopReal': return self._phase_shift def auto_pdh(self) -> None: self.__client.exec(self.__name + ':auto-pdh', input_stream=None, output_type=None, return_type=None) class FhgFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._modified = DecopBoolean(client, name + ':modified') self._tc = NloLaserHeadTcFactorySettings(client, name + ':tc') self._pc = NloLaserHeadPcFactorySettings(client, name + ':pc') self._pd = NloLaserHeadFhgPhotodiodesFactorySettings(client, name + ':pd') self._lock = NloLaserHeadLockFactorySettings(client, name + ':lock') @property def modified(self) -> 'DecopBoolean': return self._modified @property def tc(self) -> 'NloLaserHeadTcFactorySettings': return self._tc @property def pc(self) -> 'NloLaserHeadPcFactorySettings': return self._pc @property def pd(self) -> 'NloLaserHeadFhgPhotodiodesFactorySettings': return self._pd @property def lock(self) -> 'NloLaserHeadLockFactorySettings': return self._lock def apply(self) -> None: self.__client.exec(self.__name + ':apply', input_stream=None, output_type=None, return_type=None) def retrieve_now(self) -> None: self.__client.exec(self.__name + ':retrieve-now', input_stream=None, output_type=None, return_type=None) class NloLaserHeadFhgPhotodiodesFactorySettings: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._fhg = NloLaserHeadPdFactorySettings(client, name + ':fhg') self._int = NloLaserHeadPdDigilockFactorySettings(client, name + ':int') self._pdh_dc = NloLaserHeadPdDigilockFactorySettings(client, name + ':pdh-dc') self._pdh_rf = NloLaserHeadPdPdhFactorySettings(client, name + ':pdh-rf') @property def fhg(self) -> 'NloLaserHeadPdFactorySettings': return self._fhg @property def int(self) -> 'NloLaserHeadPdDigilockFactorySettings': return self._int @property def pdh_dc(self) -> 'NloLaserHeadPdDigilockFactorySettings': return self._pdh_dc @property def pdh_rf(self) -> 'NloLaserHeadPdPdhFactorySettings': return self._pdh_rf class PdExt: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._input_channel = MutableDecopInteger(client, name + ':input-channel') self._photodiode = DecopReal(client, name + ':photodiode') self._power = DecopReal(client, name + ':power') self._cal_offset = MutableDecopReal(client, name + ':cal-offset') self._cal_factor = MutableDecopReal(client, name + ':cal-factor') @property def input_channel(self) -> 'MutableDecopInteger': return self._input_channel @property def photodiode(self) -> 'DecopReal': return self._photodiode @property def power(self) -> 'DecopReal': return self._power @property def cal_offset(self) -> 'MutableDecopReal': return self._cal_offset @property def cal_factor(self) -> 'MutableDecopReal': return self._cal_factor class PwrStab: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._gain = PwrStabGain(client, name + ':gain') self._sign = MutableDecopBoolean(client, name + ':sign') self._input_channel = MutableDecopInteger(client, name + ':input-channel') self._setpoint = MutableDecopReal(client, name + ':setpoint') self._window = PwrStabWindow(client, name + ':window') self._hold_output_on_unlock = MutableDecopBoolean(client, name + ':hold-output-on-unlock') self._output_channel = DecopInteger(client, name + ':output-channel') self._input_channel_value_act = DecopReal(client, name + ':input-channel-value-act') self._state = DecopInteger(client, name + ':state') self._feedforward_enabled = MutableDecopBoolean(client, name + ':feedforward-enabled') self._feedforward_factor = MutableDecopReal(client, name + ':feedforward-factor') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def gain(self) -> 'PwrStabGain': return self._gain @property def sign(self) -> 'MutableDecopBoolean': return self._sign @property def input_channel(self) -> 'MutableDecopInteger': return self._input_channel @property def setpoint(self) -> 'MutableDecopReal': return self._setpoint @property def window(self) -> 'PwrStabWindow': return self._window @property def hold_output_on_unlock(self) -> 'MutableDecopBoolean': return self._hold_output_on_unlock @property def output_channel(self) -> 'DecopInteger': return self._output_channel @property def input_channel_value_act(self) -> 'DecopReal': return self._input_channel_value_act @property def state(self) -> 'DecopInteger': return self._state @property def feedforward_enabled(self) -> 'MutableDecopBoolean': return self._feedforward_enabled @property def feedforward_factor(self) -> 'MutableDecopReal': return self._feedforward_factor class PwrStabGain: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._all = MutableDecopReal(client, name + ':all') self._p = MutableDecopReal(client, name + ':p') self._i = MutableDecopReal(client, name + ':i') self._d = MutableDecopReal(client, name + ':d') @property def all(self) -> 'MutableDecopReal': return self._all @property def p(self) -> 'MutableDecopReal': return self._p @property def i(self) -> 'MutableDecopReal': return self._i @property def d(self) -> 'MutableDecopReal': return self._d class PwrStabWindow: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._level_low = MutableDecopReal(client, name + ':level-low') self._level_hysteresis = MutableDecopReal(client, name + ':level-hysteresis') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def level_low(self) -> 'MutableDecopReal': return self._level_low @property def level_hysteresis(self) -> 'MutableDecopReal': return self._level_hysteresis class CcBoard: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._slot = DecopString(client, name + ':slot') self._serial_number = DecopString(client, name + ':serial-number') self._revision = DecopString(client, name + ':revision') self._fpga_fw_ver = DecopInteger(client, name + ':fpga-fw-ver') self._board_temp = DecopReal(client, name + ':board-temp') self._variant = DecopString(client, name + ':variant') self._parallel_mode = DecopBoolean(client, name + ':parallel-mode') self._status = DecopInteger(client, name + ':status') self._status_txt = DecopString(client, name + ':status-txt') self._channel1 = CurrDrv2(client, name + ':channel1') self._channel2 = CurrDrv2(client, name + ':channel2') @property def slot(self) -> 'DecopString': return self._slot @property def serial_number(self) -> 'DecopString': return self._serial_number @property def revision(self) -> 'DecopString': return self._revision @property def fpga_fw_ver(self) -> 'DecopInteger': return self._fpga_fw_ver @property def board_temp(self) -> 'DecopReal': return self._board_temp @property def variant(self) -> 'DecopString': return self._variant @property def parallel_mode(self) -> 'DecopBoolean': return self._parallel_mode @property def status(self) -> 'DecopInteger': return self._status @property def status_txt(self) -> 'DecopString': return self._status_txt @property def channel1(self) -> 'CurrDrv2': return self._channel1 @property def channel2(self) -> 'CurrDrv2': return self._channel2 class CurrDrv2: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._path = DecopString(client, name + ':path') self._variant = DecopString(client, name + ':variant') self._enabled = MutableDecopBoolean(client, name + ':enabled') self._emission = DecopBoolean(client, name + ':emission') self._current_set = MutableDecopReal(client, name + ':current-set') self._current_offset = MutableDecopReal(client, name + ':current-offset') self._current_set_dithering = MutableDecopBoolean(client, name + ':current-set-dithering') self._external_input = ExtInput2(client, name + ':external-input') self._output_filter = OutputFilter2(client, name + ':output-filter') self._current_act = DecopReal(client, name + ':current-act') self._positive_polarity = MutableDecopBoolean(client, name + ':positive-polarity') self._current_clip = MutableDecopReal(client, name + ':current-clip') self._current_clip_limit = DecopReal(client, name + ':current-clip-limit') self._voltage_act = DecopReal(client, name + ':voltage-act') self._voltage_clip = MutableDecopReal(client, name + ':voltage-clip') self._feedforward_master = MutableDecopInteger(client, name + ':feedforward-master') self._feedforward_enabled = MutableDecopBoolean(client, name + ':feedforward-enabled') self._feedforward_factor = MutableDecopReal(client, name + ':feedforward-factor') self._pd = DecopReal(client, name + ':pd') self._aux = DecopReal(client, name + ':aux') self._snubber = MutableDecopBoolean(client, name + ':snubber') self._status = DecopInteger(client, name + ':status') self._status_txt = DecopString(client, name + ':status-txt') self._forced_off = MutableDecopBoolean(client, name + ':forced-off') @property def path(self) -> 'DecopString': return self._path @property def variant(self) -> 'DecopString': return self._variant @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def emission(self) -> 'DecopBoolean': return self._emission @property def current_set(self) -> 'MutableDecopReal': return self._current_set @property def current_offset(self) -> 'MutableDecopReal': return self._current_offset @property def current_set_dithering(self) -> 'MutableDecopBoolean': return self._current_set_dithering @property def external_input(self) -> 'ExtInput2': return self._external_input @property def output_filter(self) -> 'OutputFilter2': return self._output_filter @property def current_act(self) -> 'DecopReal': return self._current_act @property def positive_polarity(self) -> 'MutableDecopBoolean': return self._positive_polarity @property def current_clip(self) -> 'MutableDecopReal': return self._current_clip @property def current_clip_limit(self) -> 'DecopReal': return self._current_clip_limit @property def voltage_act(self) -> 'DecopReal': return self._voltage_act @property def voltage_clip(self) -> 'MutableDecopReal': return self._voltage_clip @property def feedforward_master(self) -> 'MutableDecopInteger': return self._feedforward_master @property def feedforward_enabled(self) -> 'MutableDecopBoolean': return self._feedforward_enabled @property def feedforward_factor(self) -> 'MutableDecopReal': return self._feedforward_factor @property def pd(self) -> 'DecopReal': return self._pd @property def aux(self) -> 'DecopReal': return self._aux @property def snubber(self) -> 'MutableDecopBoolean': return self._snubber @property def status(self) -> 'DecopInteger': return self._status @property def status_txt(self) -> 'DecopString': return self._status_txt @property def forced_off(self) -> 'MutableDecopBoolean': return self._forced_off class ExtInput2: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._signal = MutableDecopInteger(client, name + ':signal') self._factor = MutableDecopReal(client, name + ':factor') self._enabled = MutableDecopBoolean(client, name + ':enabled') @property def signal(self) -> 'MutableDecopInteger': return self._signal @property def factor(self) -> 'MutableDecopReal': return self._factor @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled class OutputFilter2: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._slew_rate = MutableDecopReal(client, name + ':slew-rate') self._slew_rate_enabled = MutableDecopBoolean(client, name + ':slew-rate-enabled') self._slew_rate_limited = DecopBoolean(client, name + ':slew-rate-limited') @property def slew_rate(self) -> 'MutableDecopReal': return self._slew_rate @property def slew_rate_enabled(self) -> 'MutableDecopBoolean': return self._slew_rate_enabled @property def slew_rate_limited(self) -> 'DecopBoolean': return self._slew_rate_limited class Cc5000Board: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._slot = DecopString(client, name + ':slot') self._serial_number = DecopString(client, name + ':serial-number') self._revision = DecopString(client, name + ':revision') self._fpga_fw_ver = DecopInteger(client, name + ':fpga-fw-ver') self._board_temp = DecopReal(client, name + ':board-temp') self._variant = DecopString(client, name + ':variant') self._parallel_mode = DecopBoolean(client, name + ':parallel-mode') self._inverter_temp = DecopReal(client, name + ':inverter-temp') self._inverter_temp_fuse = DecopReal(client, name + ':inverter-temp-fuse') self._regulator_temp = DecopReal(client, name + ':regulator-temp') self._regulator_temp_fuse = DecopReal(client, name + ':regulator-temp-fuse') self._power_15v = MutableDecopBoolean(client, name + ':power-15v') self._status = DecopInteger(client, name + ':status') self._status_txt = DecopString(client, name + ':status-txt') self._channel1 = Cc5000Drv(client, name + ':channel1') @property def slot(self) -> 'DecopString': return self._slot @property def serial_number(self) -> 'DecopString': return self._serial_number @property def revision(self) -> 'DecopString': return self._revision @property def fpga_fw_ver(self) -> 'DecopInteger': return self._fpga_fw_ver @property def board_temp(self) -> 'DecopReal': return self._board_temp @property def variant(self) -> 'DecopString': return self._variant @property def parallel_mode(self) -> 'DecopBoolean': return self._parallel_mode @property def inverter_temp(self) -> 'DecopReal': return self._inverter_temp @property def inverter_temp_fuse(self) -> 'DecopReal': return self._inverter_temp_fuse @property def regulator_temp(self) -> 'DecopReal': return self._regulator_temp @property def regulator_temp_fuse(self) -> 'DecopReal': return self._regulator_temp_fuse @property def power_15v(self) -> 'MutableDecopBoolean': return self._power_15v @property def status(self) -> 'DecopInteger': return self._status @property def status_txt(self) -> 'DecopString': return self._status_txt @property def channel1(self) -> 'Cc5000Drv': return self._channel1 class PcBoard: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._slot = DecopString(client, name + ':slot') self._serial_number = DecopString(client, name + ':serial-number') self._revision = DecopString(client, name + ':revision') self._fpga_fw_ver = DecopInteger(client, name + ':fpga-fw-ver') self._status = DecopInteger(client, name + ':status') self._status_txt = DecopString(client, name + ':status-txt') self._heatsink_temp = DecopReal(client, name + ':heatsink-temp') self._channel1 = PiezoDrv2(client, name + ':channel1') @property def slot(self) -> 'DecopString': return self._slot @property def serial_number(self) -> 'DecopString': return self._serial_number @property def revision(self) -> 'DecopString': return self._revision @property def fpga_fw_ver(self) -> 'DecopInteger': return self._fpga_fw_ver @property def status(self) -> 'DecopInteger': return self._status @property def status_txt(self) -> 'DecopString': return self._status_txt @property def heatsink_temp(self) -> 'DecopReal': return self._heatsink_temp @property def channel1(self) -> 'PiezoDrv2': return self._channel1 class PiezoDrv2: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._path = DecopString(client, name + ':path') self._enabled = MutableDecopBoolean(client, name + ':enabled') self._voltage_set = MutableDecopReal(client, name + ':voltage-set') self._voltage_min = MutableDecopReal(client, name + ':voltage-min') self._voltage_max = MutableDecopReal(client, name + ':voltage-max') self._voltage_set_dithering = MutableDecopBoolean(client, name + ':voltage-set-dithering') self._external_input = ExtInput2(client, name + ':external-input') self._output_filter = OutputFilter2(client, name + ':output-filter') self._voltage_act = DecopReal(client, name + ':voltage-act') self._feedforward_master = MutableDecopInteger(client, name + ':feedforward-master') self._feedforward_enabled = MutableDecopBoolean(client, name + ':feedforward-enabled') self._feedforward_factor = MutableDecopReal(client, name + ':feedforward-factor') self._status = DecopInteger(client, name + ':status') self._status_txt = DecopString(client, name + ':status-txt') @property def path(self) -> 'DecopString': return self._path @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def voltage_set(self) -> 'MutableDecopReal': return self._voltage_set @property def voltage_min(self) -> 'MutableDecopReal': return self._voltage_min @property def voltage_max(self) -> 'MutableDecopReal': return self._voltage_max @property def voltage_set_dithering(self) -> 'MutableDecopBoolean': return self._voltage_set_dithering @property def external_input(self) -> 'ExtInput2': return self._external_input @property def output_filter(self) -> 'OutputFilter2': return self._output_filter @property def voltage_act(self) -> 'DecopReal': return self._voltage_act @property def feedforward_master(self) -> 'MutableDecopInteger': return self._feedforward_master @property def feedforward_enabled(self) -> 'MutableDecopBoolean': return self._feedforward_enabled @property def feedforward_factor(self) -> 'MutableDecopReal': return self._feedforward_factor @property def status(self) -> 'DecopInteger': return self._status @property def status_txt(self) -> 'DecopString': return self._status_txt class TcBoard: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._slot = DecopString(client, name + ':slot') self._serial_number = DecopString(client, name + ':serial-number') self._revision = DecopString(client, name + ':revision') self._fpga_fw_ver = DecopString(client, name + ':fpga-fw-ver') self._board_temp = DecopReal(client, name + ':board-temp') self._channel1 = TcChannel(client, name + ':channel1') self._channel2 = TcChannel(client, name + ':channel2') @property def slot(self) -> 'DecopString': return self._slot @property def serial_number(self) -> 'DecopString': return self._serial_number @property def revision(self) -> 'DecopString': return self._revision @property def fpga_fw_ver(self) -> 'DecopString': return self._fpga_fw_ver @property def board_temp(self) -> 'DecopReal': return self._board_temp @property def channel1(self) -> 'TcChannel': return self._channel1 @property def channel2(self) -> 'TcChannel': return self._channel2 class McBoard: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._serial_number = DecopString(client, name + ':serial-number') self._revision = DecopString(client, name + ':revision') self._fpga_fw_ver = DecopString(client, name + ':fpga-fw-ver') self._board_temp = DecopReal(client, name + ':board-temp') self._relative_humidity = DecopReal(client, name + ':relative-humidity') self._air_pressure = DecopReal(client, name + ':air-pressure') @property def serial_number(self) -> 'DecopString': return self._serial_number @property def revision(self) -> 'DecopString': return self._revision @property def fpga_fw_ver(self) -> 'DecopString': return self._fpga_fw_ver @property def board_temp(self) -> 'DecopReal': return self._board_temp @property def relative_humidity(self) -> 'DecopReal': return self._relative_humidity @property def air_pressure(self) -> 'DecopReal': return self._air_pressure class IoBoard: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._serial_number = DecopString(client, name + ':serial-number') self._revision = DecopString(client, name + ':revision') self._fpga_fw_ver = DecopInteger(client, name + ':fpga-fw-ver') self._out_a = IoOutputChannel(client, name + ':out-a') self._out_b = IoOutputChannel(client, name + ':out-b') self._digital_in0 = IoDigitalInput(client, name + ':digital-in0') self._digital_in1 = IoDigitalInput(client, name + ':digital-in1') self._digital_in2 = IoDigitalInput(client, name + ':digital-in2') self._digital_in3 = IoDigitalInput(client, name + ':digital-in3') self._digital_out0 = IoDigitalOutput(client, name + ':digital-out0') self._digital_out1 = IoDigitalOutput(client, name + ':digital-out1') self._digital_out2 = IoDigitalOutput(client, name + ':digital-out2') self._digital_out3 = IoDigitalOutput(client, name + ':digital-out3') @property def serial_number(self) -> 'DecopString': return self._serial_number @property def revision(self) -> 'DecopString': return self._revision @property def fpga_fw_ver(self) -> 'DecopInteger': return self._fpga_fw_ver @property def out_a(self) -> 'IoOutputChannel': return self._out_a @property def out_b(self) -> 'IoOutputChannel': return self._out_b @property def digital_in0(self) -> 'IoDigitalInput': return self._digital_in0 @property def digital_in1(self) -> 'IoDigitalInput': return self._digital_in1 @property def digital_in2(self) -> 'IoDigitalInput': return self._digital_in2 @property def digital_in3(self) -> 'IoDigitalInput': return self._digital_in3 @property def digital_out0(self) -> 'IoDigitalOutput': return self._digital_out0 @property def digital_out1(self) -> 'IoDigitalOutput': return self._digital_out1 @property def digital_out2(self) -> 'IoDigitalOutput': return self._digital_out2 @property def digital_out3(self) -> 'IoDigitalOutput': return self._digital_out3 class IoOutputChannel: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._voltage_set = MutableDecopReal(client, name + ':voltage-set') self._voltage_offset = MutableDecopReal(client, name + ':voltage-offset') self._voltage_min = MutableDecopReal(client, name + ':voltage-min') self._voltage_max = MutableDecopReal(client, name + ':voltage-max') self._external_input = ExtInput1(client, name + ':external-input') self._output_filter = OutputFilter1(client, name + ':output-filter') self._feedforward_master = MutableDecopInteger(client, name + ':feedforward-master') self._feedforward_enabled = MutableDecopBoolean(client, name + ':feedforward-enabled') self._feedforward_factor = MutableDecopReal(client, name + ':feedforward-factor') @property def voltage_set(self) -> 'MutableDecopReal': return self._voltage_set @property def voltage_offset(self) -> 'MutableDecopReal': return self._voltage_offset @property def voltage_min(self) -> 'MutableDecopReal': return self._voltage_min @property def voltage_max(self) -> 'MutableDecopReal': return self._voltage_max @property def external_input(self) -> 'ExtInput1': return self._external_input @property def output_filter(self) -> 'OutputFilter1': return self._output_filter @property def feedforward_master(self) -> 'MutableDecopInteger': return self._feedforward_master @property def feedforward_enabled(self) -> 'MutableDecopBoolean': return self._feedforward_enabled @property def feedforward_factor(self) -> 'MutableDecopReal': return self._feedforward_factor class IoDigitalInput: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._value_act = DecopBoolean(client, name + ':value-act') @property def value_act(self) -> 'DecopBoolean': return self._value_act class IoDigitalOutput: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._value_act = DecopBoolean(client, name + ':value-act') self._value_set = MutableDecopBoolean(client, name + ':value-set') self._mode = MutableDecopInteger(client, name + ':mode') self._invert = MutableDecopBoolean(client, name + ':invert') @property def value_act(self) -> 'DecopBoolean': return self._value_act @property def value_set(self) -> 'MutableDecopBoolean': return self._value_set @property def mode(self) -> 'MutableDecopInteger': return self._mode @property def invert(self) -> 'MutableDecopBoolean': return self._invert class PowerSupply: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._serial_number = DecopString(client, name + ':serial-number') self._revision = DecopString(client, name + ':revision') self._board_temp = DecopReal(client, name + ':board-temp') self._heatsink_temp = DecopReal(client, name + ':heatsink-temp') self._current_5V = DecopReal(client, name + ':current-5V') self._current_15V = DecopReal(client, name + ':current-15V') self._current_15Vn = DecopReal(client, name + ':current-15Vn') self._voltage_5V = DecopReal(client, name + ':voltage-5V') self._voltage_15V = DecopReal(client, name + ':voltage-15V') self._voltage_15Vn = DecopReal(client, name + ':voltage-15Vn') self._voltage_3V3 = DecopReal(client, name + ':voltage-3V3') self._load = DecopReal(client, name + ':load') self._status = DecopInteger(client, name + ':status') self._status_txt = DecopString(client, name + ':status-txt') @property def serial_number(self) -> 'DecopString': return self._serial_number @property def revision(self) -> 'DecopString': return self._revision @property def board_temp(self) -> 'DecopReal': return self._board_temp @property def heatsink_temp(self) -> 'DecopReal': return self._heatsink_temp @property def current_5V(self) -> 'DecopReal': return self._current_5V @property def current_15V(self) -> 'DecopReal': return self._current_15V @property def current_15Vn(self) -> 'DecopReal': return self._current_15Vn @property def voltage_5V(self) -> 'DecopReal': return self._voltage_5V @property def voltage_15V(self) -> 'DecopReal': return self._voltage_15V @property def voltage_15Vn(self) -> 'DecopReal': return self._voltage_15Vn @property def voltage_3V3(self) -> 'DecopReal': return self._voltage_3V3 @property def load(self) -> 'DecopReal': return self._load @property def status(self) -> 'DecopInteger': return self._status @property def status_txt(self) -> 'DecopString': return self._status_txt class Buzzer: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._welcome = MutableDecopString(client, name + ':welcome') @property def welcome(self) -> 'MutableDecopString': return self._welcome def play_welcome(self) -> None: self.__client.exec(self.__name + ':play-welcome', input_stream=None, output_type=None, return_type=None) def play(self, melody: str) -> None: assert isinstance(melody, str), "expected type 'str' for parameter 'melody', got '{}'".format(type(melody)) self.__client.exec(self.__name + ':play', melody, input_stream=None, output_type=None, return_type=None) class Display: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._brightness = MutableDecopReal(client, name + ':brightness') self._auto_dark = MutableDecopBoolean(client, name + ':auto-dark') self._idle_timeout = MutableDecopInteger(client, name + ':idle-timeout') self._state = DecopInteger(client, name + ':state') @property def brightness(self) -> 'MutableDecopReal': return self._brightness @property def auto_dark(self) -> 'MutableDecopBoolean': return self._auto_dark @property def idle_timeout(self) -> 'MutableDecopInteger': return self._idle_timeout @property def state(self) -> 'DecopInteger': return self._state def update_state(self, active: bool) -> None: assert isinstance(active, bool), "expected type 'bool' for parameter 'active', got '{}'".format(type(active)) self.__client.exec(self.__name + ':update-state', active, input_stream=None, output_type=None, return_type=None) class Standby: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = MutableDecopBoolean(client, name + ':enabled') self._state = DecopInteger(client, name + ':state') self._laser1 = StandbyLaser(client, name + ':laser1') @property def enabled(self) -> 'MutableDecopBoolean': return self._enabled @property def state(self) -> 'DecopInteger': return self._state @property def laser1(self) -> 'StandbyLaser': return self._laser1 class StandbyLaser: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._dl = StandbyDl(client, name + ':dl') self._amp = StandbyAmp(client, name + ':amp') self._nlo = StandbyShg(client, name + ':nlo') @property def dl(self) -> 'StandbyDl': return self._dl @property def amp(self) -> 'StandbyAmp': return self._amp @property def nlo(self) -> 'StandbyShg': return self._nlo class StandbyDl: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._disable_pc = MutableDecopBoolean(client, name + ':disable-pc') self._disable_cc = MutableDecopBoolean(client, name + ':disable-cc') self._disable_tc = MutableDecopBoolean(client, name + ':disable-tc') @property def disable_pc(self) -> 'MutableDecopBoolean': return self._disable_pc @property def disable_cc(self) -> 'MutableDecopBoolean': return self._disable_cc @property def disable_tc(self) -> 'MutableDecopBoolean': return self._disable_tc class StandbyAmp: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._disable_cc = MutableDecopBoolean(client, name + ':disable-cc') self._disable_tc = MutableDecopBoolean(client, name + ':disable-tc') @property def disable_cc(self) -> 'MutableDecopBoolean': return self._disable_cc @property def disable_tc(self) -> 'MutableDecopBoolean': return self._disable_tc class StandbyShg: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._disable_pc = MutableDecopBoolean(client, name + ':disable-pc') self._disable_tc = MutableDecopBoolean(client, name + ':disable-tc') self._disable_servo_subsystem = MutableDecopBoolean(client, name + ':disable-servo-subsystem') self._disable_power_stabilization = MutableDecopBoolean(client, name + ':disable-power-stabilization') self._disable_cavity_lock = MutableDecopBoolean(client, name + ':disable-cavity-lock') @property def disable_pc(self) -> 'MutableDecopBoolean': return self._disable_pc @property def disable_tc(self) -> 'MutableDecopBoolean': return self._disable_tc @property def disable_servo_subsystem(self) -> 'MutableDecopBoolean': return self._disable_servo_subsystem @property def disable_power_stabilization(self) -> 'MutableDecopBoolean': return self._disable_power_stabilization @property def disable_cavity_lock(self) -> 'MutableDecopBoolean': return self._disable_cavity_lock class SystemMessages: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._count = DecopInteger(client, name + ':count') self._count_new = DecopInteger(client, name + ':count-new') self._latest_message = DecopString(client, name + ':latest-message') @property def count(self) -> 'DecopInteger': return self._count @property def count_new(self) -> 'DecopInteger': return self._count_new @property def latest_message(self) -> 'DecopString': return self._latest_message def mark_as_read(self, ID: int) -> None: assert isinstance(ID, int), "expected type 'int' for parameter 'ID', got '{}'".format(type(ID)) self.__client.exec(self.__name + ':mark-as-read', ID, input_stream=None, output_type=None, return_type=None) def show_all(self) -> str: return self.__client.exec(self.__name + ':show-all', input_stream=None, output_type=str, return_type=None) def show_new(self) -> str: return self.__client.exec(self.__name + ':show-new', input_stream=None, output_type=str, return_type=None) def show_log(self) -> str: return self.__client.exec(self.__name + ':show-log', input_stream=None, output_type=str, return_type=None) def show_persistent(self) -> str: return self.__client.exec(self.__name + ':show-persistent', input_stream=None, output_type=str, return_type=None) class Licenses: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._options = LicenseOptions(client, name + ':options') self._installed_keys = DecopInteger(client, name + ':installed-keys') @property def options(self) -> 'LicenseOptions': return self._options @property def installed_keys(self) -> 'DecopInteger': return self._installed_keys def get_key(self, key_number: int) -> str: assert isinstance(key_number, int), "expected type 'int' for parameter 'key_number', got '{}'".format(type(key_number)) return self.__client.exec(self.__name + ':get-key', key_number, input_stream=None, output_type=None, return_type=str) def install(self, licensekey: str) -> bool: assert isinstance(licensekey, str), "expected type 'str' for parameter 'licensekey', got '{}'".format(type(licensekey)) return self.__client.exec(self.__name + ':install', licensekey, input_stream=None, output_type=None, return_type=bool) class LicenseOptions: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._lock = LicenseOption(client, name + ':lock') @property def lock(self) -> 'LicenseOption': return self._lock class LicenseOption: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._enabled = DecopBoolean(client, name + ':enabled') self._licensee = DecopString(client, name + ':licensee') self._valid_until = DecopString(client, name + ':valid-until') @property def enabled(self) -> 'DecopBoolean': return self._enabled @property def licensee(self) -> 'DecopString': return self._licensee @property def valid_until(self) -> 'DecopString': return self._valid_until class FwUpdate: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name def upload(self, input_stream: bytes, filename: str) -> None: assert isinstance(input_stream, bytes), "expected type 'bytes' for parameter 'input_stream', got '{}'".format(type(input_stream)) assert isinstance(filename, str), "expected type 'str' for parameter 'filename', got '{}'".format(type(filename)) self.__client.exec(self.__name + ':upload', filename, input_stream=input_stream, output_type=None, return_type=None) def show_log(self) -> str: return self.__client.exec(self.__name + ':show-log', input_stream=None, output_type=str, return_type=None) def show_history(self) -> str: return self.__client.exec(self.__name + ':show-history', input_stream=None, output_type=str, return_type=None) class ServiceReport: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._ready = DecopBoolean(client, name + ':ready') @property def ready(self) -> 'DecopBoolean': return self._ready def service_report(self) -> bytes: return self.__client.exec(self.__name + ':service-report', input_stream=None, output_type=bytes, return_type=None) def request(self) -> None: self.__client.exec(self.__name + ':request', input_stream=None, output_type=None, return_type=None) def print(self) -> bytes: return self.__client.exec(self.__name + ':print', input_stream=None, output_type=bytes, return_type=None) class BuildInformation: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._build_number = DecopInteger(client, name + ':build-number') self._build_id = DecopString(client, name + ':build-id') self._build_tag = DecopString(client, name + ':build-tag') self._job_name = DecopString(client, name + ':job-name') self._build_node_name = DecopString(client, name + ':build-node-name') self._build_url = DecopString(client, name + ':build-url') self._cxx_compiler_version = DecopString(client, name + ':cxx-compiler-version') self._c_compiler_version = DecopString(client, name + ':c-compiler-version') self._cxx_compiler_id = DecopString(client, name + ':cxx-compiler-id') self._c_compiler_id = DecopString(client, name + ':c-compiler-id') @property def build_number(self) -> 'DecopInteger': return self._build_number @property def build_id(self) -> 'DecopString': return self._build_id @property def build_tag(self) -> 'DecopString': return self._build_tag @property def job_name(self) -> 'DecopString': return self._job_name @property def build_node_name(self) -> 'DecopString': return self._build_node_name @property def build_url(self) -> 'DecopString': return self._build_url @property def cxx_compiler_version(self) -> 'DecopString': return self._cxx_compiler_version @property def c_compiler_version(self) -> 'DecopString': return self._c_compiler_version @property def cxx_compiler_id(self) -> 'DecopString': return self._cxx_compiler_id @property def c_compiler_id(self) -> 'DecopString': return self._c_compiler_id class Ipconfig: def __init__(self, client: Client, name: str) -> None: self.__client = client self.__name = name self._ip_addr = DecopString(client, name + ':ip-addr') self._net_mask = DecopString(client, name + ':net-mask') self._mac_addr = DecopString(client, name + ':mac-addr') self._dhcp = DecopBoolean(client, name + ':dhcp') self._cmd_port = DecopInteger(client, name + ':cmd-port') self._mon_port = DecopInteger(client, name + ':mon-port') @property def ip_addr(self) -> 'DecopString': return self._ip_addr @property def net_mask(self) -> 'DecopString': return self._net_mask @property def mac_addr(self) -> 'DecopString': return self._mac_addr @property def dhcp(self) -> 'DecopBoolean': return self._dhcp @property def cmd_port(self) -> 'DecopInteger': return self._cmd_port @property def mon_port(self) -> 'DecopInteger': return self._mon_port def set_dhcp(self) -> None: self.__client.exec(self.__name + ':set-dhcp', input_stream=None, output_type=None, return_type=None) def set_ip(self, ip_addr: str, net_mask: str) -> None: assert isinstance(ip_addr, str), "expected type 'str' for parameter 'ip_addr', got '{}'".format(type(ip_addr)) assert isinstance(net_mask, str), "expected type 'str' for parameter 'net_mask', got '{}'".format(type(net_mask)) self.__client.exec(self.__name + ':set-ip', ip_addr, net_mask, input_stream=None, output_type=None, return_type=None) def apply(self) -> None: self.__client.exec(self.__name + ':apply', input_stream=None, output_type=None, return_type=None) class DLCpro: def __init__(self, connection: Connection) -> None: self.__client = Client(connection) self._interlock_open = DecopBoolean(self.__client, 'interlock-open') self._frontkey_locked = DecopBoolean(self.__client, 'frontkey-locked') self._emission = DecopBoolean(self.__client, 'emission') self._system_health = DecopInteger(self.__client, 'system-health') self._system_health_txt = DecopString(self.__client, 'system-health-txt') self._laser1 = Laser(self.__client, 'laser1') self._cc1 = CcBoard(self.__client, 'cc1') self._ampcc1 = Cc5000Board(self.__client, 'ampcc1') self._ampcc2 = Cc5000Board(self.__client, 'ampcc2') self._pc1 = PcBoard(self.__client, 'pc1') self._pc2 = PcBoard(self.__client, 'pc2') self._pc3 = PcBoard(self.__client, 'pc3') self._tc1 = TcBoard(self.__client, 'tc1') self._tc2 = TcBoard(self.__client, 'tc2') self._mc = McBoard(self.__client, 'mc') self._io = IoBoard(self.__client, 'io') self._power_supply = PowerSupply(self.__client, 'power-supply') self._buzzer = Buzzer(self.__client, 'buzzer') self._display = Display(self.__client, 'display') self._standby = Standby(self.__client, 'standby') self._time = MutableDecopString(self.__client, 'time') self._tan = DecopInteger(self.__client, 'tan') self._system_messages = SystemMessages(self.__client, 'system-messages') self._licenses = Licenses(self.__client, 'licenses') self._fw_update = FwUpdate(self.__client, 'fw-update') self._system_service_report = ServiceReport(self.__client, 'system-service-report') self._uptime = DecopInteger(self.__client, 'uptime') self._uptime_txt = DecopString(self.__client, 'uptime-txt') self._fw_ver = DecopString(self.__client, 'fw-ver') self._ssw_ver = DecopString(self.__client, 'ssw-ver') self._decof_ver = DecopString(self.__client, 'decof-ver') self._echo = MutableDecopBoolean(self.__client, 'echo') self._serial_number = DecopString(self.__client, 'serial-number') self._system_type = DecopString(self.__client, 'system-type') self._system_model = DecopString(self.__client, 'system-model') self._system_label = MutableDecopString(self.__client, 'system-label') self._svn_revision = DecopString(self.__client, 'svn-revision') self._decof_svn_revision = DecopString(self.__client, 'decof-svn-revision') self._ssw_svn_revision = DecopString(self.__client, 'ssw-svn-revision') self._build_information = BuildInformation(self.__client, 'build-information') self._net_conf = Ipconfig(self.__client, 'net-conf') self._ul = MutableDecopInteger(self.__client, 'ul') def __enter__(self): self.open() return self def __exit__(self, *args): self.close() def open(self) -> None: self.__client.open() def close(self) -> None: self.__client.close() def run(self, timeout: int = None) -> None: self.__client.run(timeout) def stop(self) -> None: self.__client.stop() def poll(self) -> None: self.__client.poll() @property def interlock_open(self) -> 'DecopBoolean': return self._interlock_open @property def frontkey_locked(self) -> 'DecopBoolean': return self._frontkey_locked @property def emission(self) -> 'DecopBoolean': return self._emission @property def system_health(self) -> 'DecopInteger': return self._system_health @property def system_health_txt(self) -> 'DecopString': return self._system_health_txt @property def laser1(self) -> 'Laser': return self._laser1 @property def cc1(self) -> 'CcBoard': return self._cc1 @property def ampcc1(self) -> 'Cc5000Board': return self._ampcc1 @property def ampcc2(self) -> 'Cc5000Board': return self._ampcc2 @property def pc1(self) -> 'PcBoard': return self._pc1 @property def pc2(self) -> 'PcBoard': return self._pc2 @property def pc3(self) -> 'PcBoard': return self._pc3 @property def tc1(self) -> 'TcBoard': return self._tc1 @property def tc2(self) -> 'TcBoard': return self._tc2 @property def mc(self) -> 'McBoard': return self._mc @property def io(self) -> 'IoBoard': return self._io @property def power_supply(self) -> 'PowerSupply': return self._power_supply @property def buzzer(self) -> 'Buzzer': return self._buzzer @property def display(self) -> 'Display': return self._display @property def standby(self) -> 'Standby': return self._standby @property def time(self) -> 'MutableDecopString': return self._time @property def tan(self) -> 'DecopInteger': return self._tan @property def system_messages(self) -> 'SystemMessages': return self._system_messages @property def licenses(self) -> 'Licenses': return self._licenses @property def fw_update(self) -> 'FwUpdate': return self._fw_update @property def system_service_report(self) -> 'ServiceReport': return self._system_service_report @property def uptime(self) -> 'DecopInteger': return self._uptime @property def uptime_txt(self) -> 'DecopString': return self._uptime_txt @property def fw_ver(self) -> 'DecopString': return self._fw_ver @property def ssw_ver(self) -> 'DecopString': return self._ssw_ver @property def decof_ver(self) -> 'DecopString': return self._decof_ver @property def echo(self) -> 'MutableDecopBoolean': return self._echo @property def serial_number(self) -> 'DecopString': return self._serial_number @property def system_type(self) -> 'DecopString': return self._system_type @property def system_model(self) -> 'DecopString': return self._system_model @property def system_label(self) -> 'MutableDecopString': return self._system_label @property def svn_revision(self) -> 'DecopString': return self._svn_revision @property def decof_svn_revision(self) -> 'DecopString': return self._decof_svn_revision @property def ssw_svn_revision(self) -> 'DecopString': return self._ssw_svn_revision @property def build_information(self) -> 'BuildInformation': return self._build_information @property def net_conf(self) -> 'Ipconfig': return self._net_conf @property def ul(self) -> 'MutableDecopInteger': return self._ul def system_connections(self) -> Tuple[str, int]: return self.__client.exec('system-connections', input_stream=None, output_type=str, return_type=int) def debug_log(self) -> str: return self.__client.exec('debug-log', input_stream=None, output_type=str, return_type=None) def error_log(self) -> str: return self.__client.exec('error-log', input_stream=None, output_type=str, return_type=None) def service_log(self) -> str: return self.__client.exec('service-log', input_stream=None, output_type=str, return_type=None) def service_script(self, input_stream: bytes) -> None: assert isinstance(input_stream, bytes), "expected type 'bytes' for parameter 'input_stream', got '{}'".format(type(input_stream)) self.__client.exec('service-script', input_stream=input_stream, output_type=None, return_type=None) def service_report(self) -> bytes: return self.__client.exec('service-report', input_stream=None, output_type=bytes, return_type=None) def system_summary(self) -> str: return self.__client.exec('system-summary', input_stream=None, output_type=str, return_type=None) def change_ul(self, ul: UserLevel, passwd: str) -> int: assert isinstance(ul, UserLevel), "expected type 'UserLevel' for parameter 'ul', got '{}'".format(type(ul)) assert isinstance(passwd, str), "expected type 'str' for parameter 'passwd', got '{}'".format(type(passwd)) return self.__client.change_ul(ul, passwd) def change_password(self, password: str) -> None: assert isinstance(password, str), "expected type 'str' for parameter 'password', got '{}'".format(type(password)) self.__client.exec('change-password', password, input_stream=None, output_type=None, return_type=None)
py
1a58f0a3f820e40e177ce31f79b8812c4925ce85
from pgshovel.interfaces.replication_pb2 import ( State, StreamState, ) from pgshovel.replication.validation.bootstrap import validate_bootstrap_state from pgshovel.replication.validation.consumers import validate_consumer_state from pgshovel.replication.validation.transactions import validate_transaction_state class MultipleStateValidator(object): def __init__(self, message, validators): self.message = message self.validators = validators def __call__(self, state, *args, **kwargs): states = {} for name, validator in self.validators.items(): if state is not None and state.HasField(name): value = getattr(state, name) else: value = None result = validator(value, *args, **kwargs) if result is not None: states[name] = result return self.message(**states) validate_state = MultipleStateValidator(State, { 'bootstrap_state': validate_bootstrap_state, 'stream_state': MultipleStateValidator(StreamState, { 'consumer_state': validate_consumer_state, 'transaction_state': validate_transaction_state, }) }) #: The expected types of event for a stream of transactions when there is no #: existing ``TransactionState``. TRANSACTION_START_EVENT_TYPES = validate_state.validators['stream_state'].validators['transaction_state'].receivers[None].keys() # noqa
py
1a58f1c1b951a92e1c96a0a963d68dd15824fffe
"""This module provides file I/O for Quake BSP2 map files. Example: bsp_file = bsp.Bsp.open('ad_sepulcher.bsp') """ import struct from .bsp29 import Bsp as Bsp29 __all__ = ['is_bspfile', 'Bsp'] IDENTITY = b'BSP2' def _check_bspfile(fp): fp.seek(0) data = fp.read(struct.calcsize('<4s')) identity = struct.unpack('<4s', data)[0] fp.seek(0) return identity == IDENTITY def is_bspfile(filename): """Quickly see if a file is a bsp file by checking the magic number. The filename argument may be a file for file-like object. Args: filename: File to check as string or file-like object. Returns: True if given file's magic number is correct. """ try: if hasattr(filename, 'read'): return _check_bspfile(fp=filename) else: with open(filename, 'rb') as fp: return _check_bspfile(fp) except Exception: return False class Node(Bsp29.factory.Node): format = '<i8i2I' size = struct.calcsize(format) class Face(Bsp29.factory.Face): format = '<2ii2i4Bi' size = struct.calcsize(format) class ClipNode(Bsp29.factory.ClipNode): format = '<i2i' size = struct.calcsize(format) class Leaf(Bsp29.factory.Leaf): format = '<2i6i2I4B' size = struct.calcsize(format) class Edge(Bsp29.factory.Edge): format = '<2I' size = struct.calcsize(format) class Bsp(Bsp29): """Class for working with Bsp files Example: Basic usage:: from vgio.quake.bsp.bsp29a import Bsp b = Bsp.open('ad_sepulcher.bsp') Attributes: version: Version of the map file. Vanilla Quake is 29. entities: A string containing the entity definitions. planes: A sequence of Planes used by the bsp tree data structure. miptextures: A sequence of Miptextures. vertexes: A sequence of Vertexes. visibilities: A sequence of ints representing visibility data. nodes: A sequence of Nodes used by the bsp tree data structure. texture_infos: A sequence of TextureInfo objects. faces: A sequence of Faces. lighting: A sequence of ints representing lighting data. clip_nodes: A sequence of ClipNodes used by the bsp tree data structure. leafs: A sequence of Leafs used by the bsp tree data structure. mark_surfaces: A sequence of ints representing lists of consecutive faces used by the Node objects. edges: A sequence of Edges. surf_edges: A sequence of ints representing list of consecutive edges used by the Face objects. models: A sequence of Models. Note: The first model is the entire level. fp: The file-like object to read data from. mode: The file mode for the file-like object. """ class factory(Bsp29.factory): Node = Node Face = Face ClipNode = ClipNode Leaf = Leaf Edge = Edge
py
1a58f1c6d315109172c4b0515072043f078d0d58
import os import setuptools dir_repo = os.path.abspath(os.path.dirname(__file__)) # read the contents of REQUIREMENTS file with open(os.path.join(dir_repo, "requirements.txt"), "r") as f: requirements = f.read().splitlines() # read the contents of README file with open(os.path.join(dir_repo, "README.md"), encoding="utf-8") as f: readme = f.read() setuptools.setup( name="neuralprophet", version="0.2.5", description="A simple yet customizable forecaster", author="Oskar Triebe", author_email='[email protected]', url="https://github.com/ourownstory/neural_prophet", license="MIT", packages=setuptools.find_packages(), python_requires=">=3.7", install_requires=requirements, extras_require={ "dev": ["livelossplot>=0.5.3", "black"], "live": ["livelossplot>=0.5.3"], }, # setup_requires=[""], scripts=["scripts/neuralprophet_dev_setup"], long_description=readme, long_description_content_type="text/markdown", include_package_data=True, classifiers=[ "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], )
py
1a58f27b4c433647d0fb7334f418d96f3c8934f8
# ###################################################################### # Copyright (c) 2014, Brookhaven Science Associates, Brookhaven # # National Laboratory. All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # # modification, are permitted provided that the following conditions # # are met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright # # notice this list of conditions and the following disclaimer in # # the documentation and/or other materials provided with the # # distribution. # # # # * Neither the name of the Brookhaven Science Associates, Brookhaven # # National Laboratory nor the names of its contributors may be used # # to endorse or promote products derived from this software without # # specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OTHERWISE) ARISING # # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # ######################################################################## """ The included functions supplement the logical operations currently provided in numpy in order to provide a complete set of logical operations. """ from __future__ import absolute_import, division, print_function from numpy import (logical_and, logical_or, logical_not, logical_xor, add, subtract, multiply, divide) __all__ = ["add", "subtract", "multiply", "divide", "logical_and", "logical_or", "logical_nor", "logical_xor", "logical_not", "logical_sub", "logical_nand"] def logical_nand(x1, x2, out=None): """Computes the truth value of NOT (x1 AND x2) element wise. This function enables the computation of the LOGICAL_NAND of two image or volume data sets. This function enables easy isolation of all data points NOT INCLUDED IN BOTH SOURCE DATA SETS. This function can be used for data comparison, material isolation, noise removal, or mask application/generation. Parameters ---------- x1, x2 : array-like Input arrays. `x1` and `x2` must be of the same shape. output : array-like Boolean result with the same shape as `x1` and `x2` of the logical operation on corresponding elements of `x1` and `x2`. Returns ------- output : {ndarray, bool} Boolean result with the same shape as `x1` and `x2` of the logical NAND operation on corresponding elements of `x1` and `x2`. Example ------- >>> x1 = [[0,0,1,0,0], [2,1,1,1,2], [2,0,1,0,2]] >>> x2 = [[0,0,0,0,0], [2,1,1,1,2], [0,0,0,0,0]] >>> logical_nand(x1, x2) array([[ True, True, True, True, True], [False, False, False, False, False], [ True, True, True, True, True]], dtype=bool) """ return logical_not(logical_and(x1, x2, out), out) def logical_nor(x1, x2, out=None): """Compute truth value of NOT (x1 OR x2)) element wise. This function enables the computation of the LOGICAL_NOR of two image or volume data sets. This function enables easy isolation of all data points NOT INCLUDED IN EITHER OF THE SOURCE DATA SETS. This function can be used for data comparison, material isolation, noise removal, or mask application/generation. Parameters ---------- x1, x2 : array-like Input arrays. `x1` and `x2` must be of the same shape. output : array-like Boolean result with the same shape as `x1` and `x2` of the logical operation on corresponding elements of `x1` and `x2`. Returns ------- output : {ndarray, bool} Boolean result with the same shape as `x1` and `x2` of the logical NOR operation on corresponding elements of `x1` and `x2`. Example ------- >>> x1 = [[0,0,1,0,0], [2,1,1,1,2], [2,0,1,0,2]] >>> x2 = [[0,0,0,0,0], [2,1,1,1,2], [0,0,0,0,0]] >>> logical_nor(x1, x2) array([[ True, True, False, True, True], [False, False, False, False, False], [False, True, False, True, False]], dtype=bool) """ return logical_not(logical_or(x1, x2, out), out) def logical_sub(x1, x2, out=None): """Compute truth value of x1 AND (NOT (x1 AND x2)) element wise. This function enables LOGICAL SUBTRACTION of one binary image or volume data set from another. This function can be used to remove phase information, interface boundaries, or noise, present in two data sets, without having to worry about mislabeling of pixels which would result from arithmetic subtraction. This function will evaluate as true for all "true" voxels present ONLY in Source Dataset 1. This function can be used for data cleanup, or boundary/interface analysis. Parameters ---------- x1, x2 : array-like Input arrays. `x1` and `x2` must be of the same shape. output : array-like Boolean result with the same shape as `x1` and `x2` of the logical operation on corresponding elements of `x1` and `x2`. Returns ------- output : {ndarray, bool} Boolean result with the same shape as `x1` and `x2` of the logical SUBTRACT operation on corresponding elements of `x1` and `x2`. Example ------- >>> x1 = [[0,0,1,0,0], [2,1,1,1,2], [2,0,1,0,2]] >>> x2 = [[0,0,0,0,0], [2,1,1,1,2], [0,0,0,0,0]] >>> logical_sub(x1, x2) array([[False, False, True, False, False], [False, False, False, False, False], [ True, False, True, False, True]], dtype=bool) """ return logical_and(x1, logical_not(logical_and(x1, x2, out), out), out)
py
1a58f2e44bbfb40dc203e807c3d115aacf4b0193
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------- from . import _utils, _io, _logger from ._graph_execution_manager import GraphExecutionManager, _RunStateInfo from ._execution_agent import InferenceAgent from .debug_options import DebugOptions from ._fallback import ORTModuleFallbackException, _FallbackPolicy, _FallbackManager from onnxruntime.capi import _pybind_state as C import onnx import torch import warnings class InferenceManager(GraphExecutionManager): """Concrete instance of GraphExecutionManager that is able to manage the inference model InferenceManager is resposible for building and running the forward graph of the inference model """ def __init__(self, model, debug_options: DebugOptions, fallback_manager: _FallbackManager): super().__init__(model, debug_options, fallback_manager) self._export_mode = torch.onnx.TrainingMode.EVAL @staticmethod def execution_session_run_forward(execution_session, onnx_model, device, *inputs): """Runs the forward graph on execution_session with given model inputs and device""" # Assert that the input and model device match _utils._check_same_device(device, "Input argument to forward", *inputs) # TODO: Try to reuse the output buffers as some of the output tensors are same sizes, # especially the backward graph outputs. # REVIEW(codemzs): Consolidate Training Agent with InferenceAgent on C++ side to not # have the need for passing IOBinding. io_binding = execution_session.io_binding() run_options = C.RunOptions() # Use IO binding _utils._create_iobinding(io_binding, inputs, onnx_model, device) # Run and return module outputs. ort_output = execution_session.run_forward(io_binding, run_options) forward_outputs, run_id = ort_output.ortvalues, ort_output.run_id user_outputs = tuple(_utils._ortvalue_to_torch_tensor( forward_output._ortvalue) for forward_output in forward_outputs) state = None # Assert that the outputs and model device match _utils._check_same_device( device, "Output argument from forward", *user_outputs) output_info = [(output.shape, output.device, output.dtype) for output in user_outputs] run_info = _RunStateInfo(state, output_info) # Return user outputs and forward run information return user_outputs, run_info def forward(self, *inputs, **kwargs): '''Forward pass of the inference model ONNX model is exported the first time this method is executed. Next, we build an optimized inference graph with module_graph_builder. Finally, we instantiate the ONNX Runtime InferenceSession through the InferenceAgent. ''' # Fallback to PyTorch due to failures *external* to forward(), # typically from initialization if self._fallback_manager.is_pending(): return self._fallback_manager.fallback(self._original_module, self._debug_options.logging.log_level, *inputs, **kwargs) try: # Exporting module to ONNX for the first time build_graph = self._export_model(*inputs, **kwargs) if build_graph: # If model was exported, then initialize the graph builder self._initialize_graph_builder(training=False) # Build the inference graph if build_graph: self._build_graph() module_device = _utils.get_device_from_module( self._original_module) # The inference session should be created every time # the graph was built or if the device changed between calls to forward create_execution_session = build_graph or self._device != module_device if self._device != module_device: self._device = module_device if create_execution_session: # Create execution session creates the inference_session self._create_execution_agent() user_outputs, _ = InferenceManager.execution_session_run_forward(self._execution_agent, self._onnx_models.optimized_model, self._device, *_io._combine_input_buffers_initializers( self._graph_initializers, self._graph_info.user_input_names, self._input_info, self._flattened_module.named_buffers(), inputs, kwargs, self._device)) return _io.unflatten_user_output(self._module_output_schema, user_outputs) except ORTModuleFallbackException as e: # Exceptions subject to fallback are handled here self._fallback_manager.handle_exception(exception=e, log_level=self._debug_options.logging.log_level) except Exception as e: # Catch-all FALLBACK_FORCE_TORCH_FORWARD fallback is handled here self._fallback_manager.handle_exception(exception=e, log_level=self._debug_options.logging.log_level, override_policy=_FallbackPolicy.FALLBACK_FORCE_TORCH_FORWARD) # Fallback to PyTorch due to failures *during* forward(), # (e.g. export, model/input post-processing, forward, output processing, etc) if self._fallback_manager.is_pending(): return self._fallback_manager.fallback(self._original_module, self._debug_options.logging.log_level, *inputs, **kwargs) def _build_graph(self): """Build an optimized inference graph using the module_graph_builder""" super()._build_graph() if self._debug_options.save_onnx_models.save: self._onnx_models.save_optimized_model(self._debug_options.save_onnx_models.path, self._debug_options.save_onnx_models.name_prefix, self._export_mode) def _create_execution_agent(self): """Creates an InferenceAgent that can run forward graph on an inference model""" session_options, providers, provider_options = self._get_session_config() self._execution_agent = InferenceAgent(self._onnx_models.optimized_model.SerializeToString(), session_options, providers, provider_options)
py
1a58f3311683c3427730706c018a7c9b77f92f1f
import numpy from chainer import cuda from chainer import function from chainer.utils import type_check class Sum(function.Function): """Summation over all elements.""" def check_type_forward(self, in_types): type_check.expect( in_types.size() == 1, in_types[0].dtype == numpy.float32 ) def forward_cpu(self, x): return numpy.array(x[0].sum()), def forward_gpu(self, x): return x[0].sum(), def backward_cpu(self, x, gy): return numpy.full_like(x[0], gy[0]), def backward_gpu(self, x, gy): # TODO(beam2d): Make it async return cuda.full_like(x[0], gy[0].get()), def sum(x): """Computes sum of all elements.""" return Sum()(x)
py
1a58f48803a9b5a09a55703048d259f03eadc254
# Copyright (C) 2011-2020 Airbus, [email protected] import sys, os import logging log = logging.getLogger("plasmasm") try: # Check amoco dependency on OrderedDict from collections import OrderedDict del OrderedDict except ImportError: log.error('amoco backend needs python 2.7, with OrderedDict') raise ImportError('amoco backend needs python 2.7, with OrderedDict') try: # Check amoco dependency on pyparsing import pyparsing del pyparsing except ImportError: log.error('amoco backend needs that pyparsing is installed') raise ImportError('amoco backend needs that pyparsing is installed') # If amoco is not installed system-wide, it is recommended to install it # in the parent directory of plasmasm. basedir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) if basedir == '': basedir = '.' sys.path.append(basedir+'/amoco') sys.path.append(basedir+'/crysp') sys.path.append(basedir+'/grandalf') import amoco from amoco.logger import Log Log.progress = lambda count, total=0, pfx='': None try: from amoco.arch.core import type_data_processing, type_control_flow, type_other, type_cpu_state, type_undefined except ImportError: log.error("PATH %s", sys.path) e = 'amoco backend not well installed: %s' % sys.exc_info()[1] log.error(e) raise ImportError(e) from amoco.cas.mapper import mapper from amoco.arch.x86 import env from amoco.arch.x86 import cpu_x86 as cpu_amoco try: # Newer amoco from amoco.arch.x86.cpu_x86 import instruction_x86 as instruction except ImportError: # Older amoco from amoco.arch.core import instruction env.internals['keep_order'] = True cpu_addrsize = 32 from amoco.arch.x86.formats import default_mnemo_name, default_eqn_parser, \ mnemo_string_rep, \ IA32_Binutils_ATT, IA32_Binutils_Intel, IA32_MacOSX_ATT #NON_REGRESSION_FOUND = True # Define this variable to avoid raising errors # Encapsulation of internals class API_AMOCO(object): # API to access opname or prefix def opname(self): return default_mnemo_name(self.amoco)[-1][1] opname = property(opname) def prefix(self): if self.amoco.misc.get('pfx') is None: return [] pfx = [] if self.amoco.misc['pfx'][0] is not None: pfx.append({ 'lock': 0xf0, 'repne': 0xf2, 'rep': 0xf3, }[self.amoco.misc['pfx'][0]]) if self.amoco.misc['pfx'][1] is not None: assert 'segreg' == self.amoco.misc['pfx'][1] pfx.append({ env.es: 0x26, env.cs: 0x2e, env.ss: 0x36, env.ds: 0x3e, env.fs: 0x64, env.gs: 0x65, }[self.amoco.misc['segreg']]) if self.amoco.misc['pfx'][2] is not None: pfx.append({ 'opdsz': 0x66, }[self.amoco.misc['pfx'][2]]) if self.amoco.misc['pfx'][3] is not None: pfx.append({ 'adrsz': 0x67, }[self.amoco.misc['pfx'][3]]) return pfx prefix = property(prefix) # # API to access the arguments def api_nb_arg(self): ''' How many arguments for this instruction ''' return len(self.amoco.operands) def api_arg_txt(self, pos, asm_format=None): ''' Text representation of argument 'pos' ''' if asm_format == 'att_syntax': from amoco.arch.x86.formats import att_opers return list(reversed(att_opers(self.amoco)))[pos*2][1] else: from amoco.arch.x86.formats import intel_opers res = intel_opers(self.amoco)[pos*2][1] if res.startswith('DWORD PTR '): res = res[10:] return res def api_get_cst(self, pos): ''' If the argument 'pos' is numeric, then get its value as an 'int' ''' arg = self.amoco.operands[pos] if arg._is_cst: return int(int(arg)) return None def api_get_imm(self, pos): ''' If the argument 'pos' contains an immediate value / displacement then get its value as an 'int' ''' arg = self.amoco.operands[pos] if arg._is_cst: return int(int(arg)) elif arg._is_mem and arg.a.base._is_cst: return int(int(arg.a.base)) elif arg._is_mem and not hasattr(arg.a.disp, '_is_cst'): return int(int(arg.a.disp)) elif arg._is_eqn and arg.op.symbol == '+' and arg.r._is_cst: return arg.r.value elif arg._is_eqn and arg.op.symbol == '-' and arg.r._is_cst: return (-arg.r).value return None def api_get_symbol(self, pos): ''' Gets the argument 'pos' in the form of a symbol if it is a label ''' arg = self.amoco.operands[pos] if arg._is_lab: return arg.ref return None def api_get_label(self, pos): ''' Gets a label if present in the argument 'pos'. Gets two labels if it is a label difference. ''' arg = self.amoco.operands[pos] if arg._is_mem and not hasattr(arg.a.disp, '_is_lab'): label, label_dif, cste = default_eqn_parser(arg.a.base) return label, label_dif elif arg._is_mem: label, label_dif, cste = default_eqn_parser(arg.a.disp) return label, label_dif else: label, label_dif, cste = default_eqn_parser(arg) return label, label_dif def api_is_address(self, pos): ''' True if the argument 'pos' is an address ''' arg = self.amoco.operands[pos] return arg is not None and arg._is_mem def api_is_arg_size(self, pos, size): ''' True if the argument 'pos' is a size-bit argument ''' arg = self.amoco.operands[pos] if arg.size != size: return False return True def api_is_reg_size(self, pos, size=None): ''' True if the argument 'pos' is a size-bit register ''' arg = self.amoco.operands[pos] if expr.get_reg(arg) is None: return False if size is not None and arg.size != size: return False return True def api_is_reg_in_arg(self, pos, reg): ''' True if the argument 'pos' contains a reference to a given register ''' arg = self.amoco.operands[pos] log.debug("(DEBUG:api_is_reg_in_arg) %s %s", arg, reg) return str(reg) in str(arg) def api_same_base_reg(self, pos, instr): ''' Checks that arguments at position 'pos' in 'self' and 'instr' have the same base register (they may have different disp) ''' arg = expr.get_reg(self.amoco.operands[pos].a.base) return arg is not None and arg == expr.get_reg(instr.amoco.operands[pos].a.base) def api_set_imm_label(self, pos, value, label=None, label_dif=None): ''' If the argument 'pos' contains an immediate value / displacement then substract 'value' and add the symbol 'label'. If the argument is an absolute address, then 'label' should be at address 'value'; if it is a relative address, then 'label' should be at 'value' bytes of the current instruction. 'label_dif' is used for Mach-O binaries to represent LOC_DIF relocations. If 'label' is None, we only change the immediate. If 'label' is False, we remove the label. ''' arg = self.amoco.operands[pos] sym = 0 if label is False: # Delete label assert arg._is_mem if arg.a.base._is_lab: _, _, cste = default_eqn_parser(arg.a.base) arg.a.base = expressions.cst(cste, size=cpu_addrsize) elif not hasattr(arg.a.disp, '_is_lab'): _, _, cste = default_eqn_parser(arg.a.base) arg.a.base = expressions.cst(cste, size=cpu_addrsize) elif arg.a.disp._is_lab: arg.a.disp = 0 elif arg.a.disp._is_eqn: _, _, cste = default_eqn_parser(arg.a.disp) arg.a.disp = cste else: NEVER elif label is not None: sym = expressions.lab(label, size=cpu_addrsize) if label_dif is not None: sym -= expressions.lab(label_dif, size=cpu_addrsize) if arg._is_cst: self.amoco.operands[pos] -= value self.amoco.operands[pos] += sym elif arg._is_mem and arg.a.base._is_cst: arg.a.base -= value arg.a.base += sym elif arg._is_mem and (arg.a.base._is_reg or arg.a.base._is_eqn): arg.a.disp -= value arg.a.disp += sym if hasattr(arg.a.disp, '_is_cst') and arg.a.disp._is_cst: arg.a.disp = arg.a.disp.value else: NEVER def reg_from_name(reg): if reg == 'eflag': reg = 'eflags' return env.__dict__[reg] reg_from_name = staticmethod(reg_from_name) def api_add_reg(self, pos, reg, last=False): arg = self.amoco.operands[pos] reg = self.reg_from_name(reg) assert arg._is_mem if arg.a.base._is_cst: arg.a.disp += arg.a.base.value arg.a.base = reg elif arg.a.base._is_lab: arg.a.disp += arg.a.base arg.a.base = reg elif arg.a.base._is_eqn \ and not (arg.a.base.l._is_reg and not arg.a.base.l._is_lab) \ and not (arg.a.base.r._is_reg and not arg.a.base.r._is_lab): # No register in arg.a.base => becomes a displacement arg.a.disp += arg.a.base arg.a.base = reg elif arg.a.base._is_reg or arg.a.base._is_eqn: # Replace 'reg+reg' with '2*reg' if arg.a.base._is_eqn and arg.a.base.op.symbol == '+' \ and arg.a.base.l is arg.a.base.r: arg.a.base = expressions.op('*', arg.a.base.l, expressions.cst(2,size=arg.a.base.l.size)) # Force the order of operands if last: # reg is last arg.a.base = expressions.op('+', arg.a.base, reg) else: # reg is first arg.a.base = expressions.op('+', reg, arg.a.base) if env.internals.get('keep_order'): arg.a.base.prop |= 16 else: NEVER def api_replace_reg(self, src, dst): ''' In all arguments, replace register 'src' with 'dst'. ''' src = self.reg_from_name(src) dst = self.reg_from_name(dst) for pos, arg in enumerate(self.amoco.operands): if arg._is_cst: pass elif arg._is_eqn: pass elif arg._is_reg: if arg is src: self.amoco.operands[pos] = dst elif arg._is_mem and arg.a.base._is_reg: if arg.a.base is src: arg.a.base = dst elif arg._is_mem and arg.a.base._is_eqn and \ arg.a.base.op.symbol == '*' and \ arg.a.base.l._is_reg: if arg.a.base.l is src: arg.a.base.l = dst elif arg._is_mem and arg.a.base._is_eqn and \ arg.a.base.op.symbol == '+' and \ arg.a.base.l._is_reg and \ arg.a.base.r._is_reg: if arg.a.base.l is src: arg.a.base.l = dst if arg.a.base.r is src: arg.a.base.r = dst elif arg._is_mem and arg.a.base._is_eqn and \ arg.a.base.op.symbol == '+' and \ arg.a.base.l._is_reg and \ arg.a.base.r._is_eqn and \ arg.a.base.r.op.symbol == '*' and \ arg.a.base.r.l._is_reg: if arg.a.base.l is src: arg.a.base.l = dst if arg.a.base.r.l is src: arg.a.base.r.l = dst else: log.error("ARG=%s", arg) NEVER class StubNone(object): ''' When amoco fails to disassemble the data ''' def __str__(self, asm_format=None): return "NoneASM" def __init__(self, offset, bytes): self.length = len(bytes) self.bytes = bytes mnemonic = 'NoneASM' type = None operands = [] misc = {} def __call__(self, m): # Calling a mapper pass def clang_bug_test(self): if self.amoco.mnemonic == 'TEST' \ and self.symbols.meta.get('compiler') == 'clang' \ and self.symbols.meta.get('os_minversion', (0,0,0))[1] < 14 \ and self.api_is_address(0) \ and self.api_is_reg_size(1) \ : # Clang-LLVM on MacOSX sometimes use Intel argument order # it is the case for # Apple LLVM version 6.0 (clang-600.0.54) # Apple LLVM version 7.0.2 (clang-700.1.81) # Apple LLVM version 9.0.0 (clang-900.0.39.2) # not for # Apple clang version 11.0.0 (clang-1100.0.33.17) instr = self.amoco.__class__(b"") instr.mnemonic = self.amoco.mnemonic instr.operands = list(reversed(self.amoco.operands)) instr.spec = self.amoco.spec return instr else: return self.amoco def att_bug_fsub_fdiv(instr): if not instr.mnemonic[:4] in [ 'FSUB', 'FDIV' ]: return for _ in instr.operands: if _._is_mem: return # https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528 # The binutils mix fsubp/fdivp with fsubrp/fdivrp if instr.mnemonic[4:] == 'P': instr.mnemonic = instr.mnemonic[:4] + 'RP' elif instr.mnemonic[4:] == 'RP': instr.mnemonic = instr.mnemonic[:4] + 'P' elif len(instr.operands) == 2 and str(instr.operands[0]) != 'st0': if instr.mnemonic[4:] == '': instr.mnemonic = instr.mnemonic + 'R' elif instr.mnemonic[4:] == 'R': instr.mnemonic = instr.mnemonic[:4] spec_table = {} for spec in amoco.arch.x86.spec_ia32.ISPECS \ + amoco.arch.x86.spec_fpu.ISPECS \ + amoco.arch.x86.spec_sse.ISPECS: mnemo = spec.iattr.get('mnemonic', None) if not mnemo in spec_table: spec_table[mnemo] = [spec] elif not spec in spec_table[mnemo]: spec_table[mnemo].append(spec) del spec def set_spec(i, spec_table): log.debug("%s %s", i.mnemonic, [_.size for _ in reversed(i.operands)]) spec_collision = { 'CBW': 'CWDE', 'CWD': 'CDQ', 'IRET': 'IRETD', 'CDQE': 'CWDE', 'CQO': 'CDQ', 'LFENCE': 'XRSTOR', 'MFENCE': 'XSAVEOPT', 'SFENCE': 'CLFLUSH', 'PEXTRQ': 'PEXTRD', 'PINSRQ': 'PINSRD', 'CMPXCHG16B': 'CMPXCHG8B', } if i.mnemonic in spec_collision: spec_list = spec_table[spec_collision[i.mnemonic]] elif i.mnemonic[:-1].lower() in mnemo_string_rep: spec_list = spec_table[i.mnemonic[:-1]+'D'] else: spec_list = spec_table[i.mnemonic] if len(spec_list) > 1: log.debug("Many possible spec for %s", i.mnemonic) for spec in spec_list: log.debug("... %s", spec.hook) log.debug(" misc: %s", i.misc) ispec_idx = 0 if i.mnemonic in ('CALL','JMP'): if i.operands[0]._is_mem: ispec_idx = 0 elif i.operands[0]._is_reg and not i.operands[0]._is_lab: ispec_idx = 0 else: ispec_idx = 1 if i.mnemonic.lower()[:-1] in mnemo_string_rep: if not len(i.operands): ispec_idx = -1 i.spec = spec_list[ispec_idx] if 'type' in i.spec.iattr: i.type = i.spec.iattr['type'] else: i.type = type_data_processing import re def replace_names_with_symbols(symbols, args): for e in args: for _ in expressions.symbols_of(e): if _._is_lab: symbol = _.ref r = re.match(r'(\d+)([bf])', symbol) if r: symbol, direction = r.groups() idx = symbols.meta['local_labels'][symbol] if direction == 'f': idx += 1 symbol = '.L%s\02%d'%(symbol,idx) _.ref = symbols.find_symbol(name = symbol) from plasmasm.symbols import Line from plasmasm.compilers import \ switch_detection_x86_update, \ switch_detection_gcc463m32opt, \ switch_detection_gcc346m32opt, \ gcc_label_for_inlined_memcpy from amoco.arch.x86.parsers import att_syntax class Instruction(Line, API_AMOCO): __slots__ = ('section', 'offset', 'bytelen', 'amoco') CPU = 'I386' def from_txt(self, txt): ''' text input, in assembly format ''' log.debug("> %s", txt) if txt.startswith('rep; ret'): txt = 'rep ret' instr = att_syntax.instr.parseString(txt, True)[0] att_bug_fsub_fdiv(instr) set_spec(instr, spec_table) replace_names_with_symbols(self.symbols, instr.operands) self.amoco = instr return self def from_bin(self, in_str, section): ''' binary input, in assembly format ''' self.section = section self.offset = in_str.offset from plasmasm.parse_bin import endofsection_address end_of_section = endofsection_address(self.symbols, section) end_of_instr = in_str.offset+cpu_amoco.disassemble.maxlen if end_of_instr > end_of_section: end_of_instr = end_of_section instr = cpu_amoco.disassemble(in_str[self.offset:end_of_instr]) if instr is None: instr = StubNone(self.offset, in_str[self.offset:self.offset+1]) self.bytelen = instr.length in_str.offset = self.offset + self.bytelen self.amoco = instr return self def pack(self): ''' binary representation ''' return self.amoco.bytes # Only if unchanged def txt(self, asm_format=None): ''' text output, to be used by an assembler ''' if asm_format is not None: asm_format_orig = self.asm_format self.set_asm_format(asm_format) if self.asm_format == 'raw' and str(self.amoco) == 'nop ': txt = 'nop [%r]' % self.amoco.bytes elif self.asm_format == 'raw': txt = '%s [%s]' % (self.amoco, self.amoco.spec.hook.__name__) else: txt = str(clang_bug_test(self)) if asm_format is not None: self.set_asm_format(asm_format_orig) return txt def labels(self): ''' labels that are referenced in the line ''' res = set() for arg in self.amoco.operands: if arg._is_lab: res.add(arg) if arg._is_eqn and arg.l._is_lab: res.add(arg.l) if arg._is_eqn and arg.r._is_lab: res.add(arg.r) if arg._is_mem and hasattr(arg.a.disp, '_is_lab') and arg.a.disp._is_lab: res.add(arg.a.disp) if arg._is_mem and arg.a.base._is_lab: res.add(arg.a.base) if arg._is_mem and arg.a.base._is_eqn and arg.a.base.l._is_lab: res.add(arg.a.base.l) if arg._is_mem and arg.a.base._is_eqn and arg.a.base.r._is_lab: res.add(arg.a.base.r) return set([_.ref for _ in res if hasattr(_.ref, 'name')]) def set_asm_format(self, asm_format): if asm_format is None or asm_format.startswith('att_syntax'): if asm_format == 'att_syntax clang': instruction.set_formatter(IA32_MacOSX_ATT) else: instruction.set_formatter(IA32_Binutils_ATT) # AT&T syntax is buggy, and depends on whether it is used by # binutils or clang, cf. att_bug_fsub_fdiv elif asm_format.startswith('intel_syntax'): instruction.set_formatter(IA32_Binutils_Intel) # Intel syntax is ambiguous, e.g. call eax # when there is a global variable eax self.asm_format = asm_format set_asm_format = classmethod(set_asm_format) asm_format = None def _create_reloc(self, a): ''' needed to be able to pack an instruction ''' TODO def _extract_symbols(self, a): # Parsing the argument 'a', find if there is a relocation # to be made, extract the symbols # Output: relocation type (None/False/True), label(s) TODO def list_relocs(self): ''' needed to create a relocatable ELF ''' TODO # Methods for binary parser def create_label_imm(self): ''' Replace immediate values that may be labels ''' from plasmasm.parse_bin import label_for_address if switch_detection_x86_update(self): return address = switch_detection_gcc463m32opt(self) if address is not None: section = self.symbols.get_sectionname(address) label = self.symbols.find_symbol(section = section, address = address) log.debug("... TABLE(imm) %r", label) self.api_set_imm_label(1, address, label) return for idx in range(self.api_nb_arg()): value = self.api_get_imm(idx) label = label_for_address(self.symbols, value) if label is not None: assert label.address == value self.api_set_imm_label(idx, value, label) gcc_label_for_inlined_memcpy(self) def create_label_rel(self): ''' Replace relative addresses for call/jmp/jcc ''' if self.opname == 'call' or self.opname.startswith('j'): idx = 0 value = self.api_get_cst(idx) else: return if value is None: return props = { 'address': (self.offset+self.bytelen+value)%(1<<cpu_addrsize), 'section': self.section } label_imm = self.symbols.find_symbol(**props) if label_imm is None: NON_REGRESSION_FOUND return if label_imm.is_symbol() and self.bytelen < 5: # If the argument is not 4 bytes long, create a new label # and keep the same stack; if we don't do this, then instead # of generating a relative jump, the assembler will generate # a jump with relocation; it is the same semantics, but breaks # non-regression tests asking that the generated .o is the same # as the original one # Non-regression: jcmarker.o from libjpeg-6b / gcc 4.6.3 old_stack = label_imm.stack props['name'] = self.symbols.new_name(**props) label_imm = self.symbols.find_symbol(**props) label_imm.stack = old_stack self.api_set_imm_label(idx, value, label_imm) def apply_reloc(self, pos, reloc): ''' 'reloc' is a relocation at offset 'pos' This function modifies the argument impacted by the relocation ''' # Step 1: find which arg is impacted pos -= self.offset b, = struct.unpack("B", self.amoco.bytes[pos:pos+1]) b = struct.pack("B", (1+b)%256) o = cpu_amoco.disassemble(self.amoco.bytes) patched = self.amoco.bytes[:pos] + b + self.amoco.bytes[pos+1:] p = cpu_amoco.disassemble(patched) if o is None or p is None or o.mnemonic != p.mnemonic: log.error("Relocation changes instruction! %s => %s", o, p) log.error(" at offset %r with reloc %r", pos, reloc) log.error(" for '%s' at %s, address=%s", self, self.section, self.offset) return # To find if an argument has changed, we compute the difference # and test if it is non-zero argpos = None for idx, (oa, na) in enumerate(zip(o.operands, p.operands)): try: d = na - oa except ValueError: log.error("Invalid relocation effect") log.error(" incompatible sizes %s %s", na, oa) log.error(" reloc %r for '%s'", reloc, self) return if d._is_cst and int(d) == 0: # Not changed continue if argpos is not None: log.error("Relocation touches many arguments") log.error(" reloc %r for '%s'", reloc, self) return argpos = idx if argpos is None: log.error("Relocation touches no argument") log.error(" reloc %r for '%s'", reloc, self) log.error("ARGPOS %s", argpos) return # Step 2: modify the argument by using the reloc data address = switch_detection_gcc463m32opt(self) if address is None: address = switch_detection_gcc346m32opt(self) if self.amoco.operands[argpos]._is_cst: offset = int(self.amoco.operands[argpos]) if offset >= (1<<(cpu_addrsize-1)): offset -= 1<<cpu_addrsize # Signed self.amoco.operands[argpos] -= offset elif self.amoco.operands[argpos]._is_mem: base = self.amoco.operands[argpos].a.base if base._is_cst: offset = int(base) self.amoco.operands[argpos].a.base -= offset else: if base._is_eqn and base.op.symbol == '+': pass # We may want to extract the constant from an operation # (reg+imm), but normally it is stored as (base+disp) offset = self.amoco.operands[argpos].a.disp self.amoco.operands[argpos].a.disp -= offset else: log.error("Arg of type %s", self.amoco.operands[argpos].__class__) return if address is None: from plasmasm.get_symbols import analyze_reloc label, label_dif, offset, size = analyze_reloc(self, reloc, offset, pos, self.bytelen) else: # Special case: offset to a switch table r_type, data = reloc # Some coherency checks from elfesteem import elf, pe if r_type == ('ELF', elf.EM_386, elf.R_386_32): assert data['section'] == '.rodata' elif r_type == ('COFF', pe.IMAGE_FILE_MACHINE_I386, pe.IMAGE_REL_I386_DIR32): assert data['section'] == '.rdata' else: log.error("Unknown reloc type: %s", reloc) log.error("for: %s", self) return label = self.symbols.find_symbol( section=data['section'], address=address) label_dif = None offset -= address size = cpu_addrsize log.debug("... TABLE(rel) %r", label) self.dst = [[label]] ext_label = expressions.lab(label, size=size) if label_dif is not None: ext_label -= expressions.lab(label_dif, size=size) if offset != 0: ext_label = ext_label + offset if self.amoco.operands[argpos]._is_cst: self.amoco.operands[argpos] += ext_label elif self.amoco.operands[argpos]._is_mem and self.amoco.operands[argpos].a.base._is_cst: self.amoco.operands[argpos].a.base += ext_label elif self.amoco.operands[argpos]._is_mem: self.amoco.operands[argpos].a.disp += ext_label else: NEVER #if self.amoco.operands[argpos]._is_lab and \ # self.opname in [ 'call', 'jmp' ]: # self.amoco.misc['dst'] = label class InstructionCFG(Instruction): __slots__ = ('flow', 'dst') def _set_flow(self): if self.opname == 'call': self.flow = 'sub' elif self.opname == 'ret': self.flow = 'ret' elif self.opname == 'retn': self.flow = 'ret' elif self.opname == 'ud2': self.flow = 'ret' elif self.opname == 'jmp': self.flow = 'jmp' elif self.opname.startswith('j'): self.flow = 'jcc' elif self.opname == 'loop': TODO elif self.opname == 'iret': TODO elif self.opname == 'int': TODO else: self.flow = None def _set_dst(self): if hasattr(self, 'dst'): # Already set by switch detection return if self.flow is None: self.dst = [] elif self.flow == 'ret': self.dst = [None] elif self.flow in [ 'sub', 'jmp', 'jcc' ]: self.dst = [ self.api_get_symbol(0) ] else: raise ValueError("Flow %s unknown"%self.flow) if self.flow == 'sub' and len(self.dst) == 1 \ and hasattr(self, 'offset') \ and getattr(self.dst[0], 'address', None) == self.offset+self.bytelen: # Detection of clang or gcc 3.x computation of GOT offset # "call Ln" and "Ln: pop reg" and "add GOT" self.flow = 'PIC' def evaluate_lines(self, lines, in_str): return evaluate_lines(self, lines, in_str) def get_touched(e, indirect=False): # If indirect==True, registers read to determine addresses in e # If indirect==False, other registers read/written when e is read/written t = set() if e._is_def == 0: # top # some flags may have undetermined values, e.g. for sar edx, 31 # some semantics are not implemented, e.g. shld edi, ebx, cl pass elif e._is_slc: t.update(get_touched(e.x, indirect)) elif e._is_cmp: for s in e.parts: t.update(get_touched(e.parts[s], indirect)) elif e._is_cst: pass elif e._is_lab: pass elif e._is_reg: if not indirect: t.update([e]) elif e._is_mem: t.update(get_touched(e.a, indirect)) elif e._is_ptr: if not indirect: t.update(['MEM']) else: t.update(get_touched(e.base, False)) elif e._is_tst: t.update(get_touched(e.tst, False)) t.update(get_touched(e.l, indirect)) t.update(get_touched(e.r, indirect)) elif e._is_eqn: if e.l is not None: t.update(get_touched(e.l, indirect)) if e.r is not None: t.update(get_touched(e.r, indirect)) else: raise ValueError("in get_touched %s %s"%(type(e),e)) return t def get_rw(m): r = set() w = set() for dst, src in m: w.update(get_touched(dst, False)) r.update(get_touched(src, False)) r.update(get_touched(dst, True)) r.update(get_touched(src, True)) return r, w def is_mmx(line, env): if line.opname.startswith('cvt'): return True for reg in env.mmregs + env.xmmregs: # Loop, and use 'is', because for arg in line.amoco.operands: # membership test with 'in' uses if arg is reg: return True # '==' which is redefined and buggy return False def add_semantics_missing(line, r, w, env, get_touched): # Some bugs of amoco emulation; we modify r and w reg_flags = list(get_touched(env.cf))[0] # eflags/rflags in 32/64-bit mode # flags are not read, for these instructions if line.opname in ('cmp', 'test', 'inc', 'dec', 'add', 'sub', 'mul', 'imul', 'neg', 'and', 'or', 'bsf', 'bsr', 'aaa', 'aad', 'aam', 'aas', 'daa', 'das', 'bt'): r.remove(reg_flags) if line.opname in ('rol', 'ror'): r.discard(reg_flags) # No semantics for div in amoco if line.opname in ('div', 'idiv'): r.update(get_touched(env.eax)) w.update(get_touched(env.eax)) arg = line.amoco.operands[0] if not (arg._is_slc and arg.size == 8): # not 8-bit r.update(get_touched(env.edx)) w.update(get_touched(env.edx)) r.update(get_touched(arg, False)) r.update(get_touched(arg, True)) # Incomplete semantics if line.opname == 'bt': for arg in line.amoco.operands: r.update(get_touched(arg, False)) r.update(get_touched(arg, True)) if line.opname in ('shld', 'shrd') and line.amoco.operands[2]._is_slc: dst = line.amoco.operands[0] src = line.amoco.operands[1] w.update(get_touched(dst, False)) r.update(get_touched(dst, False)) r.update(get_touched(src, False)) r.update(get_touched(dst, True)) r.update(get_touched(src, True)) r.update(get_touched(env.ecx)) if line.opname in ('ldmxcsr', 'stmxcsr', 'xsave', 'xrstor', 'xsaveopt', 'clflush', 'lfence', 'mfence', 'sfence'): # reads or writes registers that are not in amoco's model, # e.g. Processor Extended States pass # No semantics for fpu operations in amoco if line.opname.startswith('f'): fpu_s = env.fpu_status fpu_c = env.fpu_control # NB: we don't include in the following table the modification of C1 # when there is a FPU stack overflow, because it depends on the value # of other status flags fpu_table = { # stack, read, written (2,'fcomi'): (0, (env.st(0),1), (reg_flags,)), (1,'fcomi'): (0, (env.st(0),0), (reg_flags,)), (2,'fcomip'): (1, (env.st(0),1), (reg_flags,)), (1,'fcomip'): (1, (env.st(0),0), (reg_flags,)), (2,'fucomi'): (0, (env.st(0),1), (reg_flags,)), (1,'fucomi'): (0, (env.st(0),0), (reg_flags,)), (2,'fucomip'): (1, (env.st(0),1), (reg_flags,)), (1,'fucomip'): (1, (env.st(0),0), (reg_flags,)), (1,'fcom'): (0, (env.st(0),0), (fpu_s,)), (1,'fcomp'): (0, (env.st(0),0), (fpu_s,)), (0,'fcompp'): (2, (env.st(0),env.st(1)), (fpu_s,)), (1,'fucom'): (0, (env.st(0),0), (fpu_s,)), (1,'fucomp'): (1, (env.st(0),0), (fpu_s,)), (0,'fucompp'): (2, (env.st(0),env.st(1)), (fpu_s,)), (0,'fldz'): (0, (fpu_c,), (env.st(0),)), (0,'fld1'): (0, (fpu_c,), (env.st(0),)), (0,'fldl2t'): (0, (fpu_c,), (env.st(0),)), (0,'fldl2e'): (0, (fpu_c,), (env.st(0),)), (0,'fldpi'): (0, (fpu_c,), (env.st(0),)), (0,'fldlg2'): (0, (fpu_c,), (env.st(0),)), (0,'fldln2'): (0, (fpu_c,), (env.st(0),)), (0,'fxam'): (0, (env.st(0),), (fpu_s,)), (0,'fabs'): (0, (env.st(0),), (env.st(0),)), (0,'frndint'): (0, (env.st(0),fpu_c), (env.st(0),)), (0,'fsqrt'): (0, (env.st(0),), (env.st(0),)), (0,'fchs'): (0, (env.st(0),), (env.st(0),)), (0,'fptan'): (-1, (env.st(0),), (env.st(0),)), (0,'fpatan'): (1, (env.st(0),), (env.st(0),)), (0,'fprem'): (0, (env.st(0),env.st(1)), (env.st(0),fpu_s)), (0,'fprem1'): (0, (env.st(0),env.st(1)), (env.st(0),fpu_s)), (1,'fld'): (-1, (0,), (env.st(0),)), (1,'fild'): (-1, (0,), (env.st(0),)), (1,'fst'): (0, (env.st(0),fpu_c), (fpu_s,0)), (1,'fstp'): (1, (env.st(0),fpu_c), (fpu_s,0)), (1,'fist'): (0, (env.st(0),fpu_c), (fpu_s,0)), (1,'fistp'): (1, (env.st(0),fpu_c), (fpu_s,0)), (1,'fisttp'): (1, (env.st(0),fpu_c), (fpu_s,0)), (1,'fxch'): (0, (env.st(0),0), (env.st(0),0)), (1,'fiadd'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fisub'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fisubr'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fimul'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fidiv'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fidivr'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fadd'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fsub'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fsubr'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fmul'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fdiv'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fdivr'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (2,'fadd'): (0, (0,1), (fpu_s,0,)), (2,'fsub'): (0, (0,1), (fpu_s,0,)), (2,'fsubr'): (0, (0,1), (fpu_s,0,)), (2,'fmul'): (0, (0,1), (fpu_s,0,)), (2,'fdiv'): (0, (0,1), (fpu_s,0,)), (2,'fdivr'): (0, (0,1), (fpu_s,0,)), (2,'faddp'): (1, (0,1), (fpu_s,0,)), (2,'fsubp'): (1, (0,1), (fpu_s,0,)), (2,'fsubrp'): (1, (0,1), (fpu_s,0,)), (2,'fmulp'): (1, (0,1), (fpu_s,0,)), (2,'fdivp'): (1, (0,1), (fpu_s,0,)), (2,'fdivrp'): (1, (0,1), (fpu_s,0,)), (1,'fbstp'): (0, (env.st(0),fpu_c), (0,)), (1,'fldcw'): (0, (0,), (fpu_c,)), (1,'fnstcw'): (0, (fpu_c,), (0,)), (1,'fnstsw'): (0, (fpu_s,), (0,)), (0,'fsave'): (0, (fpu_c,fpu_s), ()), (0,'fnsave'): (0, (fpu_c,fpu_s), ()), (1,'fstenv'): (0, (fpu_c,fpu_s), (0,)), (1,'fnstenv'): (0, (fpu_c,fpu_s), (0,)), (0,'finit'): (0, (), (fpu_c,fpu_s)), (0,'frstor'): (0, (), (fpu_c,fpu_s)), (0,'fnclex'): (0, (), (fpu_s,)), (1,'fxsave'): (0, (fpu_s,), ()), (1,'fxrstor'): (0, (), (fpu_s,)), } try: key = (len(line.amoco.operands), line.opname) stack_pop, reg_r, reg_w = fpu_table[key] except KeyError: if line.opname.startswith('fcmov'): stack_pop, reg_r, reg_w = 0, (reg_flags,1), (fpu_s,env.st(0),) else: stack_pop, reg_r, reg_w = 0, (), () log.error("fpu_table: %r missing",key) if stack_pop == -1: # push on FPU stack r.update([env.st(_) for _ in range(7)]) w.update([env.st(1+_) for _ in range(7)]) elif stack_pop == 1: # pop on FPU stack # bug for faddp %st(7) and similar: because of stack_pop # the register %st(6) is written instead of %st(7) r.update([env.st(1+_) for _ in range(7)]) w.update([env.st(_) for _ in range(7)]) elif stack_pop == 2: # pop twice on FPU stack r.update([env.st(2+_) for _ in range(6)]) w.update([env.st(_) for _ in range(6)]) for reg in reg_r: if isinstance(reg, int): r.update(get_touched(line.amoco.operands[reg],False)) r.update(get_touched(line.amoco.operands[reg],True)) else: r.add(reg) for reg in reg_w: if isinstance(reg, int): w.update(get_touched(line.amoco.operands[reg],False)) r.update(get_touched(line.amoco.operands[reg],True)) else: w.add(reg) # No semantics for MMX/SSE operations in amoco if is_mmx(line, env): dst = line.amoco.operands[0] src = line.amoco.operands[1] w.update(get_touched(dst, False)) r.update(get_touched(dst, False)) # Not for all MMX operations r.update(get_touched(src, False)) r.update(get_touched(dst, True)) r.update(get_touched(src, True)) if line.opname.startswith('ucomi'): w.add(reg_flags) elif 0xF2 in line.prefix or (0xF3 in line.prefix and line.opname != 'ret'): # True rep/repz/repnz r.update(get_touched(env.ecx)) w.update(get_touched(env.ecx)) class InstructionRW(InstructionCFG): __slots__ = ('rw',) def _set_rw(self): m = mapper() self.amoco(m) r, w = get_rw(m) add_semantics_missing(self, r, w, env, get_touched) self.rw = r, w def reg_name(r): return str(r) reg_name = staticmethod(reg_name) class InstructionDEAD(InstructionRW): __slots__ = ('pic', 'stack', 'dead', 'immutable') from amoco.cas import expressions def evaluate_lines(instr, lines, in_str): # Run the emulation of the basic bloc machine = mapper() def print_machine(machine): return sorted(str(machine).split("\n")) for line in lines: # eip is the next instruction: basic bloc may have been merged, # but conditional jumps are not taken machine[env.eip] = env.cst(line.offset,cpu_addrsize) try: line.amoco(machine) except NotImplementedError: return (('Not implemented', line, print_machine(machine)), [None]) except NameError: return (('Cannot be emulated (name)', line, print_machine(machine)), [None]) except amoco.arch.core.InstructionError: return (('Cannot be emulated', line, print_machine(machine)), [None]) except TypeError: return (('Not callable', line, print_machine(machine)), [None]) if line.opname == 'call': # amoco emulation pushes eip+i.length # we prefer to push the label of the next basic bloc label = instr.symbols.find_symbol( section=line.section, address=line.offset+line.amoco.length) machine[env.mem(env.esp,cpu_addrsize)] = expressions.lab(label, size=cpu_addrsize) retval = machine[env.eip] msg, val = evaluate(retval, machine, instr.symbols.find_symbols, instr, in_str) if val is None: return ((str(retval.__class__), retval, print_machine(machine)), [None]) elif val == [None]: return ((msg, retval, print_machine(machine)), [None]) else: return (msg, val) # Interface for expressions class expr(object): def get_cst(e): NON_REGRESSION_FOUND if e is not None and e._is_cst: return int(e) get_cst = staticmethod(get_cst) def get_lab(e): if e is not None and e._is_lab: return e.ref get_lab = staticmethod(get_lab) def get_lab_imm(e): if e is not None and e._is_cst: return None, int(e) if e is not None and e._is_lab: return e.ref, 0 if e is not None and e._is_eqn and e.op.symbol == '+' \ and e.l._is_lab \ and e.r._is_cst: return e.l.ref, int(e.r) return None, None get_lab_imm = staticmethod(get_lab_imm) def get_reg(e): if e is not None and e._is_reg and not e._is_lab: return e.ref get_reg = staticmethod(get_reg) def get_mem(e): if e is None: return None if not e._is_mem: return None return e.a.base+e.a.disp get_mem = staticmethod(get_mem) def get_eqn(e): NON_REGRESSION_FOUND if e is not None and e._is_eqn: return True get_eqn = staticmethod(get_eqn) def get_tst(e): if e is not None and e._is_tst: return e.l, e.r get_tst = staticmethod(get_tst) def evaluate(address, machine, find, instr, in_str): # Generates a list of labels, each label being a possible value # for the expression 'address' log.debug("EVALUATE %s\n\t%s", address.__class__.__name__, address) address = remove_got(address, instr.symbols) v = expr.get_reg(address) if v is not None: return 'REG', [ None ] v = expr.get_lab(address) if v is not None: return 'ID', [ v ] v = expr.get_mem(address) if v is not None: # Lookup at some address return evaluate_mem(v, machine, find, instr, in_str) v = test_clang_switch_array(address) if v is not None: L1, L2 = v L1 = expr.get_lab(L1) if not hasattr(L1, 'lines'): # Switch table needs to be parsed later # Switch table already detected by pattern matching in compilers.py NON_REGRESSION_FOUND log.debug("Parse switch table later %r", L1) pic_base, ptr_size, tbl_size = L1.switch_table assert ptr_size == 4 assert L2 == "-%s"%pic_base return 'SWITCH', 'TABLE' msg = 'ARRAY' lines = [ _.value[0] for _ in L1.lines ] table = [] for s in lines: if not hasattr(s, 'name'): s = False elif not s.name.endswith(L2): msg = 'INCOHERENT' continue else: s = find(name = s.name[:-len(L2)])[0] if not s in table: table.append(s) if not hasattr(L1, 'size'): # Switch table not complete if not None in table: table.append(None) return msg, table v = expr.get_tst(address) if v is not None: msg_l, res_l = evaluate(v[0], machine, find, instr, in_str) msg_r, res_r = evaluate(v[1], machine, find, instr, in_str) if res_l is None or res_r is None: return None, None return "%s+%s"%(msg_l,msg_r), res_l+res_r log.debug("Need better analysis of %s:%s", address.__class__.__name__, address) return None, None def evaluate_mem(address, machine, find, instr, in_str): log.debug("EVALUATE_MEM %s\n\t%s", address.__class__.__name__, address) v = expr.get_reg(address) if v is not None: return 'MEM_REG', [ None ] table, offset = expr.get_lab_imm(address) if offset is not None: msg, val = deref_table(table, offset, instr, in_str) if val is not None: return msg, val v = expr.get_mem(address) if v is not None: return 'MEM_MEM', [ None ] return array_detection(address, machine, find, instr, in_str) def array_detection(input, machine, find, instr, in_str): log.debug("ARRAY_DETECT %s\n\t%s", input.__class__.__name__, input) dst_lst = [] # Is it an element of an array? # Find the multiplication, replace it by 'index_in_array' index_var = env.ext('index_in_array',size=cpu_addrsize) item_len = 0 if input.op.symbol == '+' and input.l._is_eqn: if input.l.op.symbol == '+' and input.l.l._is_eqn and \ input.l.l.op.symbol == '*' and input.l.l.r._is_cst: item_len = int(input.l.l.r) input.l.l = index_var elif input.l.op.symbol == '+' and input.l.r._is_eqn and \ input.l.r.op.symbol == '*' and input.l.r.r._is_cst: item_len = int(input.l.r.r) input.l.r = index_var elif input.l.op.symbol == '*' and input.l.r._is_cst: item_len = int(input.l.r) input.l = index_var elif input.l.op.symbol == '<<': item_len = 1 << int(input.l.r) input.l = index_var elif input.op.symbol == '+' and input.r._is_eqn: if input.r.op.symbol == '*' and input.r.r._is_cst: item_len = int(input.r.r) if input.r.l._is_ptr and input.r.l.disp == 0 and \ input.r.l.base._is_eqn and input.r.l.base.op.symbol == '+' and \ input.r.l.base.r._is_eqn and input.r.l.base.r.op.symbol == '*' \ and input.r.l.base.r.r._is_cst \ and input.r.l.base.l == input.r.l.base.r.l: item_len *= 1 + int(input.r.l.base.r.r) input.r = index_var elif input.r.op.symbol == '<<': NON_REGRESSION_FOUND item_len = 1 << int(input.r.r) input.r = index_var if item_len == 0: msg = 'MEM_EXP - NOT AN ARRAY' return msg, [None] log.debug(" ARRAY of %d-byte items", item_len) # Usually 4-byte items # Can be 8-byte items e.g. for ceval.o from python2.4.5 / gcc 4.6.3 # Can be 12-byte items e.g. for deflate.o from zlib 1.2.8 / gcc 4.6.3 invalid_indexes = 0 index_in_array = -item_len while invalid_indexes < 4: index_in_array += item_len m2 = mapper() m2[index_var] = env.cst(index_in_array, size=cpu_addrsize) address_in_array = input.eval(m2) log.debug(" x[%d] at %s:%s", index_in_array//item_len, address_in_array.__class__.__name__, address_in_array) msg, val = 'NOT FOUND', None table, offset = expr.get_lab_imm(address_in_array) if val is None and offset is not None: msg, val = deref_table(table, offset, instr, in_str) if val is None: mapper.assume_no_aliasing = True offset = machine.M(env.mem(address_in_array)) mapper.assume_no_aliasing = False offset = remove_got(offset, instr.symbols) v = expr.get_lab(offset) if v: msg, val = 'MEM', [ v ] table, offset = expr.get_lab_imm(expr.get_mem(offset)) if offset is not None: msg, val = deref_table(table, offset, instr, in_str) if val == 'TABLE': return msg, val if val in (None, [None]): log.debug(" ----> %s", msg) invalid_indexes += 1 continue for label in val: if label.name.endswith('@GOTOFF'): # to make this work also with executables, we will need to # change our API and get the offset value that will have to # be substracted; removing @GOTOFF is not enough! label = find(name = label.name[:-7])[0] log.debug(" => %s", label) if not label in dst_lst: dst_lst.append(label) if dst_lst == []: return 'MEM_EXP', [None] return 'ARRAY', dst_lst def deref_table(table, offset, instr, in_str): pool = instr.symbols log.debug("DEREF %s at %s", table, offset) if table is None: return deref_address(offset, pool, in_str) if getattr(table, 'section', None) in ['.got.plt', '.got', '.idata']: assert offset == 0 return 'GOT_PLT', [ table ] if not hasattr(table, 'lines'): # 'table' has not been parsed; will be later return 'MEM_TABLE %s not parsed (offset %d)' % (table, offset), 'TABLE' if offset < table.bytelen: # Offset in a table sz = 0 for line in table.lines: if sz == offset: break sz += line.bytelen else: line = None if getattr(line, 'type', None) == 'long' and \ hasattr(line.value[0], 'name'): label = line.value[0] if label.name.startswith('_GLOBAL_OFFSET_TABLE_+[.-'): label = label.reference return 'MEM_ID', [ label ] else: return 'MEM_TABLE %s[%d]=%s' % (table, offset, line), [ None ] if not hasattr(table, 'address'): # Non-regression: gp.o from pari-2.5.5 / gcc 4.6.3 NON_REGRESSION_FOUND return 'MEM_LAB_IMM %r offset=%s' % (table, offset), [ None ] return deref_address(table.address + offset, pool, in_str) import struct def deref_address(offset, pool, in_str): log.debug("DEREF_ADDRESS %#x", offset) if offset == 0: # Non-regression: cjpeg.o from libjpeg-6b / gcc 3.2.3 # relocated value NON_REGRESSION_FOUND return 'NULL', [ None ] # Read from file (mapped in memory) # Should not happen, the data sections should have been parsed and # labels should have been created # However, compilers sometimes generate (idx*4)+(label-4) rather than # ((idx-1)*4)+label, and therefore 'label' is hidden section = pool.get_sectionname(offset) if section in [".data"]: address = struct.unpack("I", in_str[offset:offset+4])[0] a_section = pool.get_sectionname(address) if a_section in [".text", ".plt"]: label_list = pool.find_symbols(address = address) if len(label_list): return 'MEM_VAL', label_list if section in [".got"]: label = pool.find_symbols(address = offset) if label == []: NON_REGRESSION_FOUND return 'MEM_LAB_IMM %r address=%s' % (table, offset), [ None ] if label[0].name.startswith('.rel.dyn.'): label = pool.find_symbol(name = label[0].name[9:]) else: label = label[0] NON_REGRESSION_FOUND return 'MEM_INT GOT', [ label ] if section in [".idata"]: NON_REGRESSION_FOUND label = pool.find_symbol(address = offset) if label.name.startswith('msvcrt.dll'): return 'MSVCRT', [ label ] return 'MEM_INT', [ label ] return 'NOT IN TABLE [%s:%#x]' % (section, offset), None def remove_got(address, pool): if '@GOT' in str(address): # When the expression contains @GOT or @GOTOFF, one should cancel # the PIC offset # This trick works only for relocatable objects :-( v = remove_pic_offset(address, pool) if v is not None: log.debug("REMOVE GOT => %s", v) return v return address def remove_pic_offset(e, pool): log.debug("DETECT PIC FROM %s:%s", e.__class__.__name__, e) if e._is_tst: label_l = remove_pic_offset(e.l, pool) label_r = remove_pic_offset(e.r, pool) if label_l is None or label_r is None: return None return env.tst(e.tst, label_l, label_r) # M32[M32[M32[PIC_OFFSET+toto@GOT]]+cte] # => M32[M32[toto]+cte] if e._is_mem \ and e.a.base._is_mem \ and e.a.base.a.disp == 0 \ and e.a.base.a.base._is_mem: label = remove_pic_offset(e.a.base.a.base, pool) if label is None: return None return env.mem(env.mem(label), disp=e.a.disp) # M32[M32[PIC_OFFSET+toto@GOT]+cte] # => M32[toto+cte] if e._is_mem and e.a.base._is_mem: label = remove_pic_offset(e.a.base, pool) if label is None: return None return env.mem(label, disp=e.a.disp) # M32[M32[PIC_OFFSET+toto@GOT]+formula] # => M32[toto+formula] if e._is_mem \ and e.a.base._is_eqn \ and e.a.base.op.symbol == '+' \ and e.a.base.l._is_mem: label = remove_pic_offset(e.a.base.l, pool) if label is None: return return env.mem(label+e.a.base.r, disp=e.a.disp) if e._is_mem and not hasattr(e.a.disp, '_is_lab'): log.debug("BASE %s; DISP %s; TODO", e.a.base, e.a.disp) return None # M32[PIC_OFFSET+toto@GOT] # => toto if e._is_mem \ and e.a.disp._is_lab \ and e.a.disp.ref.name.endswith('@GOT'): label_name = e.a.disp.ref.name[:-4] pic_data = e.a.base if not check_pic_data(pic_data): NON_REGRESSION_FOUND log.debug("PIC OFFSET [%s] LABEL %s", pic_data, label_name) return None return env.lab(pool.find_symbol(name = label_name), size=cpu_addrsize) # M32[PIC_OFFSET+toto@GOTOFF] # => M32[toto] if e._is_mem \ and e.a.disp._is_lab \ and e.a.disp.ref.name.endswith('@GOTOFF'): label = remove_pic_offset(e.a, pool) if label is None: return # Not sound: usually is a reference to somewhere in a data section # that may change at runtime return env.mem(label) # (M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF]+PIC_OFFSET) if e._is_ptr \ and e.disp == 0: return remove_pic_offset(e.base, pool) # (PIC_OFFSET+toto@GOTOFF) # => toto if e._is_ptr \ and e.disp._is_lab \ and e.disp.ref.name.endswith('@GOTOFF'): label_name = e.disp.ref.name[:-7] pic_data = e.base if not check_pic_data(pic_data): log.debug("PIC OFFSET [%s] LABEL %s", pic_data, label_name) return None return env.lab(pool.find_symbol(name = label_name), size=cpu_addrsize) # (PIC_OFFSET+M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF]) # (M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF]+PIC_OFFSET) # (-M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF]+PIC_OFFSET) # => M32[toto+INDEX_IN_TABLE] # @GOTOFF will be removed later from the deref value # to make this work also with executables, we will need to change # our API and return the offset that will have to be substracted if e._is_eqn and e.op.symbol == '+': base, index, pic_data, pic_data_dup = extract_base_index(e) if base is None: log.error("Unknown base %s", e) return None if pic_data != pic_data_dup: log.error("Inconsistent PIC %s != %s", pic_data, pic_data_dup) return None label_name = base.disp.ref.name[:-7] if not check_pic_data(pic_data): log.error("PIC OFFSET [%s] LABEL %s", pic_data, label_name) # Don't abort, for now, improvement of pic_tracking needed label = env.lab(pool.find_symbol(name = label_name), size=cpu_addrsize) return env.mem(index, disp=label) def extract_base_index(e): # M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF]+PIC_OFFSET # e.l.a.base.l e.l.a.base.r e.l.a.disp + e.r if (e.l._is_mem and e.l.a.disp._is_lab and e.l.a.base._is_eqn and e.l.a.base.op.symbol == '+'): return e.l.a, e.l.a.base.l, e.l.a.base.r, e.r # PIC_OFFSET+M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF] # e.l + e.r.a.base.l e.r.a.base.r e.r.a.disp if (e.r._is_mem and e.r.a.disp._is_lab and e.r.a.base._is_eqn and e.r.a.base.op.symbol == '+'): return e.r.a, e.r.a.base.l, e.r.a.base.r, e.l # (-M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF]+PIC_OFFSET) if (e.l._is_eqn and e.l.op.symbol == '-' and e.l.l is None and e.l.r._is_mem and e.l.r.a.disp._is_lab and e.l.r.a.base._is_eqn and e.l.r.a.base.op.symbol == '+' ): return e.l.r.a, e.l.r.a.base.l, e.l.r.a.base.r, e.r return None, None, None, None def check_pic_data(pic): pic = str(pic) if pic == '(@_GLOBAL_OFFSET_TABLE_+M32(esp))': # gcc 4.x PIC # The backtracking went back to the start of the function, where # the PIC offset is computed as @_GLOBAL_OFFSET_TABLE_+M32(esp) # after a call to __i686.get_pc_thunk.?x return True if pic == '(@_GLOBAL_OFFSET_TABLE_+ebx)': # gcc 4.x PIC # The backtracking went after returning from __i686.get_pc_thunk.bx return True if pic == 'ebx': # gcc 4.x PIC # The backtracking went not far but ebx may contain the PIC offset # This is a risky hypothesis, yet it seems to work return True if pic == 'ecx': # gcc 4.x PIC # The backtracking went not far but ecx may contain the PIC offset # This is a risky hypothesis, yet it seems to work return True return False def test_clang_switch_array(address): # Expression of the form M32[L1-L2+r2+(r1*4)]+r2 # L1 is the label of the table # r1 is the index in the table (register, sometimes shifted) # r2 stores the address of label L2 (register, immediate, ...) if not address._is_eqn: return None if not address.op.symbol == '+': return None if address.l._is_mem and getattr(address.l.a.disp, '_is_eqn', False): mem_expr, r2 = address.l, address.r elif address.r._is_mem and getattr(address.r.a.disp, '_is_eqn', False): r2, mem_expr = address.l, address.r else: return None if mem_expr.a.base._is_eqn and mem_expr.a.base.op.symbol == '+' and \ mem_expr.a.base.r == r2: r1_4 = mem_expr.a.base.l elif mem_expr.a.base._is_eqn and mem_expr.a.base.op.symbol == '+' and \ mem_expr.a.base.l == r2: r1_4 = mem_expr.a.base.r else: return None if not r1_4._is_eqn or not r1_4.r._is_cst or r1_4.r != 4: return None if mem_expr.a.disp._is_eqn and mem_expr.a.disp.op.symbol == '+' and \ mem_expr.a.disp.r._is_lab and mem_expr.a.disp.l._is_eqn and \ mem_expr.a.disp.l.op.symbol == '-' and \ mem_expr.a.disp.l.l is None and mem_expr.a.disp.l.r._is_lab: L1 = mem_expr.a.disp.r L2 = '-%s' % mem_expr.a.disp.l.r.ref else: return None # Now that everything has been verified, we scan the array log.debug("CLANG SWITCH %s%s %s %s", L1, L2, r1_4, r2) return L1, L2
py
1a58f5169277912f4392ee4045fe8759473e375a
# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import itertools import json import os import pickle import re import shutil import tempfile import unittest from collections import OrderedDict from itertools import takewhile from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union from huggingface_hub import HfApi from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AlbertTokenizerFast, BertTokenizer, BertTokenizerFast, PreTrainedTokenizer, PreTrainedTokenizerBase, PreTrainedTokenizerFast, SpecialTokensMixin, Trainer, TrainingArguments, is_tf_available, is_torch_available, ) from transformers.testing_utils import ( ENDPOINT_STAGING, PASS, USER, get_tests_dir, is_pt_tf_cross_test, is_staging_test, require_tf, require_tokenizers, require_torch, slow, ) from transformers.tokenization_utils import AddedToken, Trie if is_torch_available(): import torch.nn as nn if TYPE_CHECKING: from transformers import PretrainedConfig, PreTrainedModel, TFPreTrainedModel NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"] SMALL_TRAINING_CORPUS = [ ["This is the first sentence.", "This is the second one."], ["This sentence (contains #) over symbols and numbers 12 3.", "But not this one."], ] def filter_non_english(_, pretrained_name: str): """Filter all the model for non-english language""" return not any([lang in pretrained_name for lang in NON_ENGLISH_TAGS]) def filter_roberta_detectors(_, pretrained_name: str): return "detector" not in pretrained_name def merge_model_tokenizer_mappings( model_mapping: Dict["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]], tokenizer_mapping: Dict["PretrainedConfig", Tuple["PreTrainedTokenizer", "PreTrainedTokenizerFast"]], ) -> Dict[ Union["PreTrainedTokenizer", "PreTrainedTokenizerFast"], Tuple["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]], ]: configurations = list(model_mapping.keys()) model_tokenizer_mapping = OrderedDict([]) for configuration in configurations: if configuration in model_mapping and configuration in tokenizer_mapping: model = model_mapping[configuration] tokenizer = tokenizer_mapping[configuration][0] tokenizer_fast = tokenizer_mapping[configuration][1] model_tokenizer_mapping.update({tokenizer: (configuration, model)}) if tokenizer_fast is not None: model_tokenizer_mapping.update({tokenizer_fast: (configuration, model)}) return model_tokenizer_mapping class TokenizerTesterMixin: tokenizer_class = None rust_tokenizer_class = None test_slow_tokenizer = True test_rust_tokenizer = True space_between_special_tokens = False from_pretrained_kwargs = None from_pretrained_filter = None from_pretrained_vocab_key = "vocab_file" test_seq2seq = True # set to True to test a sentencepiece tokenizer test_sentencepiece = False # set to True to ignore casing when testing a sentencepiece tokenizer # test_sentencepiece must also be set to True test_sentencepiece_ignore_case = False def setUp(self) -> None: # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the # information available in Tokenizer (name, rust class, python class, vocab key name) if self.test_rust_tokenizer: tokenizers_list = [ ( self.rust_tokenizer_class, pretrained_name, self.from_pretrained_kwargs if self.from_pretrained_kwargs is not None else {}, ) for pretrained_name in self.rust_tokenizer_class.pretrained_vocab_files_map[ self.from_pretrained_vocab_key ].keys() if self.from_pretrained_filter is None or (self.from_pretrained_filter is not None and self.from_pretrained_filter(pretrained_name)) ] self.tokenizers_list = tokenizers_list[:1] # Let's just test the first pretrained vocab for speed else: self.tokenizers_list = [] with open(f"{get_tests_dir()}/fixtures/sample_text.txt", encoding="utf-8") as f_data: self._data = f_data.read().replace("\n\n", "\n").strip() self.tmpdirname = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tmpdirname) def get_input_output_texts(self, tokenizer): input_txt = self.get_clean_sequence(tokenizer)[0] return input_txt, input_txt def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]: toks = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in range(len(tokenizer))] toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks)) toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks)) if max_length is not None and len(toks) > max_length: toks = toks[:max_length] if min_length is not None and len(toks) < min_length and len(toks) > 0: while len(toks) < min_length: toks = toks + toks # toks_str = [t[1] for t in toks] toks_ids = [t[0] for t in toks] # Ensure consistency output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False) if " " not in output_txt and len(toks_ids) > 1: output_txt = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False) ) if with_prefix_space: output_txt = " " + output_txt output_ids = tokenizer.encode(output_txt, add_special_tokens=False) return output_txt, output_ids def get_tokenizers(self, fast=True, **kwargs) -> List[PreTrainedTokenizerBase]: if fast and self.test_rust_tokenizer and self.test_slow_tokenizer: return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)] elif fast and self.test_rust_tokenizer: return [self.get_rust_tokenizer(**kwargs)] elif self.test_slow_tokenizer: return [self.get_tokenizer(**kwargs)] else: raise ValueError("This tokenizer class has no tokenizer to be tested.") def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast: return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def tokenizer_integration_test_util( self, expected_encoding: Dict, model_name: str, revision: str = None, sequences: List[str] = None, decode_kwargs: Dict[str, Any] = None, padding: bool = True, ): """ Util for integration test. Text is tokenized and then reverted back to text. Both results are then checked. Args: expected_encoding: The expected result of the tokenizer output. model_name: The model name of the tokenizer to load and use. revision: The full git revision number of the model. This is to pin the tokenizer config and to avoid that tests start to fail if the config gets changed upstream. sequences: Can overwrite the texts that are used to check the tokenizer. This is useful if the tokenizer supports non english languages like france. decode_kwargs: Additional args for the ``decode`` function which reverts the tokenized text back to a string. padding: Activates and controls padding of the tokenizer. """ decode_kwargs = {} if decode_kwargs is None else decode_kwargs if sequences is None: sequences = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained " "models in 100+ languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] if self.test_sentencepiece_ignore_case: sequences = [sequence.lower() for sequence in sequences] tokenizer_classes = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: tokenizer = tokenizer_class.from_pretrained( model_name, revision=revision, # to pin the tokenizer version ) encoding = tokenizer(sequences, padding=padding) decoded_sequences = [ tokenizer.decode(seq, skip_special_tokens=True, **decode_kwargs) for seq in encoding["input_ids"] ] encoding_data = encoding.data self.assertDictEqual(encoding_data, expected_encoding) for expected, decoded in zip(sequences, decoded_sequences): if self.test_sentencepiece_ignore_case: expected = expected.lower() self.assertEqual(expected, decoded) def assert_padded_input_match(self, input_r: list, input_p: list, max_length: int, pad_token_id: int): # Ensure we match max_length self.assertEqual(len(input_r), max_length) self.assertEqual(len(input_p), max_length) # Ensure the number of padded tokens is the same padded_tokens_r = list(takewhile(lambda i: i == pad_token_id, reversed(input_r))) padded_tokens_p = list(takewhile(lambda i: i == pad_token_id, reversed(input_p))) self.assertSequenceEqual(padded_tokens_r, padded_tokens_p) def assert_batch_padded_input_match( self, input_r: dict, input_p: dict, max_length: int, pad_token_id: int, model_main_input_name: str = "input_ids", ): for i_r in input_r.values(): self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual( len(i_r[1]), max_length ) self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual( len(i_r[1]), max_length ) for i_r, i_p in zip(input_r[model_main_input_name], input_p[model_main_input_name]): self.assert_padded_input_match(i_r, i_p, max_length, pad_token_id) for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]): self.assertSequenceEqual(i_r, i_p) @staticmethod def convert_batch_encode_plus_format_to_encode_plus(batch_encode_plus_sequences): # Switch from batch_encode_plus format: {'input_ids': [[...], [...]], ...} # to the list of examples/ encode_plus format: [{'input_ids': [...], ...}, {'input_ids': [...], ...}] return [ {value: batch_encode_plus_sequences[value][i] for value in batch_encode_plus_sequences.keys()} for i in range(len(batch_encode_plus_sequences["input_ids"])) ] # TODO: this test can be combined with `test_sentencepiece_tokenize_and_convert_tokens_to_string` after the latter is extended to all tokenizers. def test_tokenize_special_tokens(self): """Test `tokenize` with special tokens.""" tokenizers = self.get_tokenizers(fast=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): SPECIAL_TOKEN_1 = "[SPECIAL_TOKEN_1]" SPECIAL_TOKEN_2 = "[SPECIAL_TOKEN_2]" # TODO: # Can we combine `unique_no_split_tokens` and `all_special_tokens`(and properties related to it) # with one variable(property) for a better maintainability? # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]}) token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1) token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2) self.assertEqual(len(token_1), 1) self.assertEqual(len(token_2), 1) self.assertEqual(token_1[0], SPECIAL_TOKEN_1) self.assertEqual(token_2[0], SPECIAL_TOKEN_2) # TODO: this test could be extended to all tokenizers - not just the sentencepiece def test_sentencepiece_tokenize_and_convert_tokens_to_string(self): """Test ``_tokenize`` and ``convert_tokens_to_string``.""" if not self.test_sentencepiece: return tokenizer = self.get_tokenizer() text = "This is text to test the tokenizer." if self.test_sentencepiece_ignore_case: text = text.lower() tokens = tokenizer.tokenize(text) self.assertTrue(len(tokens) > 0) # check if converting back to original text works reverse_text = tokenizer.convert_tokens_to_string(tokens) if self.test_sentencepiece_ignore_case: reverse_text = reverse_text.lower() self.assertEqual(reverse_text, text) def test_subword_regularization_tokenizer(self) -> None: if not self.test_sentencepiece: return # Subword regularization is only available for the slow tokenizer. sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1} tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs) self.assertTrue(hasattr(tokenizer, "sp_model_kwargs")) self.assertIsNotNone(tokenizer.sp_model_kwargs) self.assertTrue(isinstance(tokenizer.sp_model_kwargs, dict)) self.assertEqual(tokenizer.sp_model_kwargs, sp_model_kwargs) self.check_subword_sampling(tokenizer) def test_pickle_subword_regularization_tokenizer(self) -> None: if not self.test_sentencepiece: return """Google pickle __getstate__ __setstate__ if you are struggling with this.""" # Subword regularization is only available for the slow tokenizer. sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1} tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs) tokenizer_bin = pickle.dumps(tokenizer) del tokenizer tokenizer_new = pickle.loads(tokenizer_bin) self.assertTrue(hasattr(tokenizer_new, "sp_model_kwargs")) self.assertIsNotNone(tokenizer_new.sp_model_kwargs) self.assertTrue(isinstance(tokenizer_new.sp_model_kwargs, dict)) self.assertEqual(tokenizer_new.sp_model_kwargs, sp_model_kwargs) self.check_subword_sampling(tokenizer_new) def test_model_input_names_signature(self): accepted_model_main_input_names = [ "input_ids", # nlp models "input_values", # speech models ] tokenizers = self.get_tokenizers() for tokenizer in tokenizers: # first name of model_input_names has to correspond to main model input name # to make sure `tokenizer.pad(...)` works correctly self.assertTrue(tokenizer.model_input_names[0] in accepted_model_main_input_names) def test_rust_tokenizer_signature(self): if not self.test_rust_tokenizer: return signature = inspect.signature(self.rust_tokenizer_class.__init__) self.assertIn("tokenizer_file", signature.parameters) self.assertIsNone(signature.parameters["tokenizer_file"].default) def test_tokenizer_slow_store_full_signature(self): if not self.test_slow_tokenizer: return signature = inspect.signature(self.tokenizer_class.__init__) tokenizer = self.get_tokenizer() for parameter_name, parameter in signature.parameters.items(): if parameter.default != inspect.Parameter.empty: self.assertIn(parameter_name, tokenizer.init_kwargs) def test_tokenizer_fast_store_full_signature(self): if not self.test_rust_tokenizer: return signature = inspect.signature(self.rust_tokenizer_class.__init__) tokenizer = self.get_rust_tokenizer() for parameter_name, parameter in signature.parameters.items(): if parameter.default != inspect.Parameter.empty and parameter_name not in [ "vocab_file", "merges_file", "tokenizer_file", ]: self.assertIn(parameter_name, tokenizer.init_kwargs) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence, _ = self.get_input_output_texts(tokenizer) # We don't have an exact equivalence on `tokenize()` between Rust and Slow # Slow tokenizer only split tokens, Rust tokenizers will replace with <unk> # tokens = tokenizer.tokenize(sequence) # rust_tokens = rust_tokenizer.tokenize(sequence) # self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) ids = tokenizer.encode(sequence, add_special_tokens=True) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=True) self.assertListEqual(ids, rust_ids) def test_tokenizers_common_properties(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): attributes_list = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] for attr in attributes_list: self.assertTrue(hasattr(tokenizer, attr)) self.assertTrue(hasattr(tokenizer, attr + "_id")) self.assertTrue(hasattr(tokenizer, "additional_special_tokens")) self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids")) attributes_list = [ "model_max_length", "init_inputs", "init_kwargs", ] if not isinstance(tokenizer, PreTrainedTokenizerFast): attributes_list += [ "added_tokens_encoder", "added_tokens_decoder", ] for attr in attributes_list: self.assertTrue(hasattr(tokenizer, attr)) def test_save_and_load_tokenizer(self): # safety check on max_len default value so we are sure the test works tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length, 42) # Now let's start the test tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) before_vocab = tokenizer.get_vocab() tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) after_vocab = after_tokenizer.get_vocab() self.assertListEqual(before_tokens, after_tokens) self.assertDictEqual(before_vocab, after_vocab) shutil.rmtree(tmpdirname) tokenizers = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"]) additional_special_tokens = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token") tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) before_vocab = tokenizer.get_vocab() tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) after_vocab = after_tokenizer.get_vocab() self.assertListEqual(before_tokens, after_tokens) self.assertDictEqual(before_vocab, after_vocab) self.assertIn("bim", after_vocab) self.assertIn("bambam", after_vocab) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length, 42) tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) self.assertEqual(tokenizer.model_max_length, 43) shutil.rmtree(tmpdirname) # Test that we can also use the non-legacy saving format for fast tokenizers tokenizers = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: if not tokenizer.is_fast: continue with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"]) additional_special_tokens = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token") tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) before_vocab = tokenizer.get_vocab() tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) after_vocab = after_tokenizer.get_vocab() self.assertListEqual(before_tokens, after_tokens) self.assertDictEqual(before_vocab, after_vocab) self.assertIn("bim", after_vocab) self.assertIn("bambam", after_vocab) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length, 42) tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) self.assertEqual(tokenizer.model_max_length, 43) shutil.rmtree(tmpdirname) def test_pickle_tokenizer(self): """Google pickle __getstate__ __setstate__ if you are struggling with this.""" tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertIsNotNone(tokenizer) text = "Munich and Berlin are nice cities" subwords = tokenizer.tokenize(text) filename = os.path.join(self.tmpdirname, "tokenizer.bin") with open(filename, "wb") as handle: pickle.dump(tokenizer, handle) with open(filename, "rb") as handle: tokenizer_new = pickle.load(handle) subwords_loaded = tokenizer_new.tokenize(text) self.assertListEqual(subwords, subwords_loaded) @require_tokenizers def test_pickle_added_tokens(self): tok1 = AddedToken("<s>", rstrip=True, lstrip=True, normalized=False, single_word=True) tok2 = pickle.loads(pickle.dumps(tok1)) self.assertEqual(tok1.__getstate__(), tok2.__getstate__()) def test_added_tokens_do_lower_case(self): # TODO(thom) activate fast tokenizer tests once Rust tokenizers accepts white spaces in added tokens. tokenizers = [self.get_tokenizer(do_lower_case=True)] if self.test_slow_tokenizer else [] for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if not hasattr(tokenizer, "do_lower_case") or not tokenizer.do_lower_case: continue special_token = tokenizer.all_special_tokens[0] text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token toks0 = tokenizer.tokenize(text) # toks before adding new_toks new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"] added = tokenizer.add_tokens(new_toks) self.assertEqual(added, 2) toks = tokenizer.tokenize(text) toks2 = tokenizer.tokenize(text2) self.assertEqual(len(toks), len(toks2)) self.assertListEqual(toks, toks2) if not isinstance(tokenizer, PreTrainedTokenizerFast): # Python tokenizers can have added tokens with spaces inside them # cf https://github.com/huggingface/tokenizers/issues/302 self.assertNotEqual(len(toks), len(toks0)) # toks0 should be longer # Check that none of the special tokens are lowercased sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B" tokenized_sequence = tokenizer.tokenize(sequence_with_special_tokens) for special_token in tokenizer.all_special_tokens: self.assertTrue(special_token in tokenized_sequence) tokenizers = [self.get_tokenizer(do_lower_case=True)] if self.test_slow_tokenizer else [] for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if hasattr(tokenizer, "do_lower_case") and tokenizer.do_lower_case: continue special_token = tokenizer.all_special_tokens[0] text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"] toks0 = tokenizer.tokenize(text) # toks before adding new_toks added = tokenizer.add_tokens(new_toks) self.assertIn(added, [2, 4]) toks = tokenizer.tokenize(text) toks2 = tokenizer.tokenize(text2) self.assertEqual(len(toks), len(toks2)) # Length should still be the same self.assertNotEqual(toks[1], toks2[1]) # But at least the first non-special tokens should differ if not isinstance(tokenizer, PreTrainedTokenizerFast): # Python tokenizers can have added tokens with spaces inside them # cf https://github.com/huggingface/tokenizers/issues/302 self.assertNotEqual(len(toks), len(toks0)) # toks0 should be longer def test_add_tokens_tokenizer(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): vocab_size = tokenizer.vocab_size all_size = len(tokenizer) self.assertNotEqual(vocab_size, 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"] added_toks = tokenizer.add_tokens(new_toks) vocab_size_2 = tokenizer.vocab_size all_size_2 = len(tokenizer) self.assertNotEqual(vocab_size_2, 0) self.assertEqual(vocab_size, vocab_size_2) self.assertEqual(added_toks, len(new_toks)) self.assertEqual(all_size_2, all_size + len(new_toks)) tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False) self.assertGreaterEqual(len(tokens), 4) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} added_toks_2 = tokenizer.add_special_tokens(new_toks_2) vocab_size_3 = tokenizer.vocab_size all_size_3 = len(tokenizer) self.assertNotEqual(vocab_size_3, 0) self.assertEqual(vocab_size, vocab_size_3) self.assertEqual(added_toks_2, len(new_toks_2)) self.assertEqual(all_size_3, all_size_2 + len(new_toks_2)) tokens = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False ) self.assertGreaterEqual(len(tokens), 6) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[0], tokens[1]) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokens[-3]) self.assertEqual(tokens[0], tokenizer.eos_token_id) self.assertEqual(tokens[-2], tokenizer.pad_token_id) def test_add_special_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input_text, ids = self.get_clean_sequence(tokenizer) special_token = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token}) encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False) self.assertEqual(len(encoded_special_token), 1) text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False) encoded = tokenizer.encode(text, add_special_tokens=False) input_encoded = tokenizer.encode(input_text, add_special_tokens=False) special_token_id = tokenizer.encode(special_token, add_special_tokens=False) self.assertEqual(encoded, input_encoded + special_token_id) decoded = tokenizer.decode(encoded, skip_special_tokens=True) self.assertTrue(special_token not in decoded) def test_internal_consistency(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input_text, output_text = self.get_input_output_texts(tokenizer) tokens = tokenizer.tokenize(input_text) ids = tokenizer.convert_tokens_to_ids(tokens) ids_2 = tokenizer.encode(input_text, add_special_tokens=False) self.assertListEqual(ids, ids_2) tokens_2 = tokenizer.convert_ids_to_tokens(ids) self.assertNotEqual(len(tokens_2), 0) text_2 = tokenizer.decode(ids) self.assertIsInstance(text_2, str) self.assertEqual(text_2, output_text) @require_tokenizers def test_encode_decode_with_spaces(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # new_toks = ["[ABC]", "[DEF]"] # TODO(thom) add this one back when Rust toks are ready: , "GHI IHG"] new_toks = [AddedToken("[ABC]", normalized=False), AddedToken("[DEF]", normalized=False)] tokenizer.add_tokens(new_toks) input = "[ABC][DEF][ABC][DEF]" # TODO(thom) add back cf above: "[ABC] [DEF] [ABC] GHI IHG [DEF]" if self.space_between_special_tokens: output = "[ABC] [DEF] [ABC] [DEF]" else: output = input encoded = tokenizer.encode(input, add_special_tokens=False) decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens) self.assertIn(decoded, [output, output.lower()]) def test_pretrained_model_lists(self): # We should have at least one default checkpoint for each tokenizer # We should specify the max input length as well (used in some part to list the pretrained checkpoints) self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1) self.assertEqual( len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), len(self.tokenizer_class.max_model_input_sizes), ) weights_list = list(self.tokenizer_class.max_model_input_sizes.keys()) weights_lists_2 = [] for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items(): weights_lists_2.append(list(map_list.keys())) for weights_list_2 in weights_lists_2: self.assertListEqual(weights_list, weights_list_2) def test_mask_output(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if ( tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer" and "token_type_ids" in tokenizer.model_input_names ): seq_0 = "Test this method." seq_1 = "With these inputs." information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True) sequences, mask = information["input_ids"], information["token_type_ids"] self.assertEqual(len(sequences), len(mask)) def test_token_type_ids(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): seq_0 = "Test this method." # We want to have sequence 0 and sequence 1 are tagged # respectively with 0 and 1 token_ids # (regardless of whether the model use token type ids) # We use this assumption in the QA pipeline among other place output = tokenizer(seq_0, return_token_type_ids=True) self.assertIn(0, output["token_type_ids"]) def test_sequence_ids(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: if not tokenizer.is_fast: continue with self.subTest(f"{tokenizer.__class__.__name__}"): seq_0 = "Test this method." seq_1 = "With these inputs." # We want to have sequence 0 and sequence 1 are tagged # respectively with 0 and 1 token_ids # (regardless of whether the model use token type ids) # We use this assumption in the QA pipeline among other place output = tokenizer(seq_0) self.assertIn(0, output.sequence_ids()) output = tokenizer(seq_0, seq_1) self.assertIn(0, output.sequence_ids()) self.assertIn(1, output.sequence_ids()) if tokenizer.num_special_tokens_to_add(pair=True): self.assertIn(None, output.sequence_ids()) def test_number_of_added_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): seq_0 = "Test this method." seq_1 = "With these inputs." sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False) attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True) # Method is implemented (e.g. not GPT-2) if len(attached_sequences) != 2: self.assertEqual( tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences) ) def test_maximum_encoding_length_single_input(self): tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20) sequence = tokenizer.encode(seq_0, add_special_tokens=False) total_length = len(sequence) assert total_length > 4, "Issue with the testing sequence, please update it it's too short" # Test with max model input length model_max_length = tokenizer.model_max_length self.assertEqual(model_max_length, 100) seq_1 = seq_0 * model_max_length sequence1 = tokenizer(seq_1, add_special_tokens=False) total_length1 = len(sequence1["input_ids"]) assert ( total_length1 > model_max_length ), "Issue with the testing sequence, please update it it's too short" # Simple padding_strategies = ( [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False] ) for padding_state in padding_strategies: with self.subTest(f"Padding: {padding_state}"): for truncation_state in [True, "longest_first", "only_first"]: with self.subTest(f"Truncation: {truncation_state}"): output = tokenizer(seq_1, padding=padding_state, truncation=truncation_state) self.assertEqual(len(output["input_ids"]), model_max_length) output = tokenizer([seq_1], padding=padding_state, truncation=truncation_state) self.assertEqual(len(output["input_ids"][0]), model_max_length) # Simple with no truncation # Reset warnings tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer(seq_1, padding=padding_state, truncation=False) self.assertNotEqual(len(output["input_ids"]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length for this model" ) ) tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer([seq_1], padding=padding_state, truncation=False) self.assertNotEqual(len(output["input_ids"][0]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length for this model" ) ) # Overflowing tokens stride = 2 information = tokenizer( seq_0, max_length=total_length - 2, add_special_tokens=False, stride=stride, truncation="longest_first", return_overflowing_tokens=True, # add_prefix_space=False, ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, PreTrainedTokenizerFast): truncated_sequence = information["input_ids"][0] overflowing_tokens = information["input_ids"][1] self.assertEqual(len(information["input_ids"]), 2) self.assertEqual(len(truncated_sequence), total_length - 2) self.assertEqual(truncated_sequence, sequence[:-2]) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :]) else: truncated_sequence = information["input_ids"] overflowing_tokens = information["overflowing_tokens"] self.assertEqual(len(truncated_sequence), total_length - 2) self.assertEqual(truncated_sequence, sequence[:-2]) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :]) def test_maximum_encoding_length_pair_input(self): tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Build a sequence from our model's vocabulary stride = 2 seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20) if len(ids) <= 2 + stride: seq_0 = (seq_0 + " ") * (2 + stride) ids = None seq0_tokens = tokenizer.encode(seq_0, add_special_tokens=False) assert len(seq0_tokens) > 2 + stride seq_1 = "This is another sentence to be encoded." seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False) if abs(len(seq0_tokens) - len(seq1_tokens)) <= 2: seq1_tokens = seq1_tokens + seq1_tokens seq_1 = tokenizer.decode(seq1_tokens, clean_up_tokenization_spaces=False) seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False) assert len(seq1_tokens) > 2 + stride smallest = seq1_tokens if len(seq0_tokens) > len(seq1_tokens) else seq0_tokens # We are not using the special tokens - a bit too hard to test all the tokenizers with this # TODO try this again later sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=False) # , add_prefix_space=False) # Test with max model input length model_max_length = tokenizer.model_max_length self.assertEqual(model_max_length, 100) seq_2 = seq_0 * model_max_length assert len(seq_2) > model_max_length sequence1 = tokenizer(seq_1, add_special_tokens=False) total_length1 = len(sequence1["input_ids"]) sequence2 = tokenizer(seq_2, seq_1, add_special_tokens=False) total_length2 = len(sequence2["input_ids"]) assert total_length1 < model_max_length - 10, "Issue with the testing sequence, please update it." assert total_length2 > model_max_length, "Issue with the testing sequence, please update it." # Simple padding_strategies = ( [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False] ) for padding_state in padding_strategies: with self.subTest(f"{tokenizer.__class__.__name__} Padding: {padding_state}"): for truncation_state in [True, "longest_first", "only_first"]: with self.subTest(f"{tokenizer.__class__.__name__} Truncation: {truncation_state}"): output = tokenizer(seq_2, seq_1, padding=padding_state, truncation=truncation_state) self.assertEqual(len(output["input_ids"]), model_max_length) output = tokenizer( [seq_2], [seq_1], padding=padding_state, truncation=truncation_state ) self.assertEqual(len(output["input_ids"][0]), model_max_length) # Simple output = tokenizer(seq_1, seq_2, padding=padding_state, truncation="only_second") self.assertEqual(len(output["input_ids"]), model_max_length) output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation="only_second") self.assertEqual(len(output["input_ids"][0]), model_max_length) # Simple with no truncation # Reset warnings tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer(seq_1, seq_2, padding=padding_state, truncation=False) self.assertNotEqual(len(output["input_ids"]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length for this model" ) ) tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation=False) self.assertNotEqual(len(output["input_ids"][0]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length for this model" ) ) truncated_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[:-2] + tokenizer.encode( seq_1, add_special_tokens=False ) truncated_second_sequence = ( tokenizer.encode(seq_0, add_special_tokens=False) + tokenizer.encode(seq_1, add_special_tokens=False)[:-2] ) truncated_longest_sequence = ( truncated_first_sequence if len(seq0_tokens) > len(seq1_tokens) else truncated_second_sequence ) overflow_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[ -(2 + stride) : ] + tokenizer.encode(seq_1, add_special_tokens=False) overflow_second_sequence = ( tokenizer.encode(seq_0, add_special_tokens=False) + tokenizer.encode(seq_1, add_special_tokens=False)[-(2 + stride) :] ) overflow_longest_sequence = ( overflow_first_sequence if len(seq0_tokens) > len(seq1_tokens) else overflow_second_sequence ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, PreTrainedTokenizerFast): information = tokenizer( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=False, stride=stride, truncation="longest_first", return_overflowing_tokens=True, # add_prefix_space=False, ) truncated_sequence = information["input_ids"][0] overflowing_tokens = information["input_ids"][1] self.assertEqual(len(information["input_ids"]), 2) self.assertEqual(len(truncated_sequence), len(sequence) - 2) self.assertEqual(truncated_sequence, truncated_longest_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest)) self.assertEqual(overflowing_tokens, overflow_longest_sequence) else: # No overflowing tokens when using 'longest' in python tokenizers with self.assertRaises(ValueError) as context: information = tokenizer( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=False, stride=stride, truncation="longest_first", return_overflowing_tokens=True, # add_prefix_space=False, ) self.assertTrue( context.exception.args[0].startswith( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, PreTrainedTokenizerFast): information = tokenizer( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=False, stride=stride, truncation=True, return_overflowing_tokens=True, # add_prefix_space=False, ) truncated_sequence = information["input_ids"][0] overflowing_tokens = information["input_ids"][1] self.assertEqual(len(information["input_ids"]), 2) self.assertEqual(len(truncated_sequence), len(sequence) - 2) self.assertEqual(truncated_sequence, truncated_longest_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest)) self.assertEqual(overflowing_tokens, overflow_longest_sequence) else: # No overflowing tokens when using 'longest' in python tokenizers with self.assertRaises(ValueError) as context: information = tokenizer( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=False, stride=stride, truncation=True, return_overflowing_tokens=True, # add_prefix_space=False, ) self.assertTrue( context.exception.args[0].startswith( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) ) information_first_truncated = tokenizer( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=False, stride=stride, truncation="only_first", return_overflowing_tokens=True, # add_prefix_space=False, ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, PreTrainedTokenizerFast): truncated_sequence = information_first_truncated["input_ids"][0] overflowing_tokens = information_first_truncated["input_ids"][1] self.assertEqual(len(information_first_truncated["input_ids"]), 2) self.assertEqual(len(truncated_sequence), len(sequence) - 2) self.assertEqual(truncated_sequence, truncated_first_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq1_tokens)) self.assertEqual(overflowing_tokens, overflow_first_sequence) else: truncated_sequence = information_first_truncated["input_ids"] overflowing_tokens = information_first_truncated["overflowing_tokens"] self.assertEqual(len(truncated_sequence), len(sequence) - 2) self.assertEqual(truncated_sequence, truncated_first_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, seq0_tokens[-(2 + stride) :]) information_second_truncated = tokenizer( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=False, stride=stride, truncation="only_second", return_overflowing_tokens=True, # add_prefix_space=False, ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, PreTrainedTokenizerFast): truncated_sequence = information_second_truncated["input_ids"][0] overflowing_tokens = information_second_truncated["input_ids"][1] self.assertEqual(len(information_second_truncated["input_ids"]), 2) self.assertEqual(len(truncated_sequence), len(sequence) - 2) self.assertEqual(truncated_sequence, truncated_second_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq0_tokens)) self.assertEqual(overflowing_tokens, overflow_second_sequence) else: truncated_sequence = information_second_truncated["input_ids"] overflowing_tokens = information_second_truncated["overflowing_tokens"] self.assertEqual(len(truncated_sequence), len(sequence) - 2) self.assertEqual(truncated_sequence, truncated_second_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, seq1_tokens[-(2 + stride) :]) # def test_encode_input_type(self): # tokenizers = self.get_tokenizers(do_lower_case=False) # for tokenizer in tokenizers: # with self.subTest(f"{tokenizer.__class__.__name__}"): # sequence = "Let's encode this sequence" # tokens = sequence.split() # tokenizer.tokenize(sequence) # # input_ids = tokenizer.convert_tokens_to_ids(tokens) # formatted_input = tokenizer.encode(sequence, add_special_tokens=True, add_prefix_space=False) # self.assertEqual( # tokenizer.encode(tokens, is_split_into_words=True, add_special_tokens=True), formatted_input # ) # # This is not supported with the Rust tokenizers # # self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input) # def test_swap_special_token(self): # tokenizers = self.get_tokenizers(do_lower_case=False) # for tokenizer in tokenizers: # with self.subTest(f"{tokenizer.__class__.__name__}"): # # Our mask token # mask = "<mask>" # # We take a single word in the middle of the vocabulary # all_tokens = sorted(tokenizer.get_vocab().keys()) # word = tokenizer.decode(tokenizer.encode(all_tokens[len(all_tokens)//2], add_special_tokens=False)[:1]) # sequence_0 = "Encode " + word + " sequence" # sequence_masked_0 = "Encode " + mask + " sequence" # sequence_1 = word + " this sequence" # sequence_masked_1 = mask + " this sequence" # # Add tokens so that masked token isn't split # # tokens = [AddedToken(t, lstrip=True, normalized=False) for t in sequence.split()] # # tokenizer.add_tokens(tokens) # tokenizer.add_special_tokens( # {"mask_token": AddedToken(mask, normalized=False)} # ) # Eat left space on Byte-level BPE tokenizers # mask_ind = tokenizer.convert_tokens_to_ids(mask) # # Test first masked sequence # encoded_0 = tokenizer.encode(sequence_0, add_special_tokens=False) # encoded_masked = tokenizer.encode(sequence_masked_0, add_special_tokens=False) # assert len(encoded_masked) == len(encoded_0) # mask_loc = encoded_masked.index(mask_ind) # encoded_masked[mask_loc] = encoded_0[mask_loc] # self.assertEqual(encoded_masked, encoded_0) # # Test second masked sequence # encoded_1 = tokenizer.encode(sequence_1, add_special_tokens=False) # encoded_masked = tokenizer.encode(sequence_masked_1, add_special_tokens=False) # assert len(encoded_masked) == len(encoded_1) # mask_loc = encoded_masked.index(mask_ind) # encoded_masked[mask_loc] = encoded_1[mask_loc] # self.assertEqual(encoded_masked, encoded_1) def test_special_tokens_mask(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequence_0 = "Encode this." # Testing single inputs encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False) encoded_sequence_dict = tokenizer.encode_plus( sequence_0, add_special_tokens=True, return_special_tokens_mask=True # , add_prefix_space=False ) encoded_sequence_w_special = encoded_sequence_dict["input_ids"] special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]] self.assertEqual(encoded_sequence, filtered_sequence) def test_special_tokens_mask_input_pairs(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequence_0 = "Encode this." sequence_1 = "This one too please." encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False) encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False) encoded_sequence_dict = tokenizer.encode_plus( sequence_0, sequence_1, add_special_tokens=True, return_special_tokens_mask=True, # add_prefix_space=False, ) encoded_sequence_w_special = encoded_sequence_dict["input_ids"] special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) filtered_sequence = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special) ] filtered_sequence = [x for x in filtered_sequence if x is not None] self.assertEqual(encoded_sequence, filtered_sequence) def test_right_and_left_padding(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequence = "Sequence" padding_size = 10 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequence) padding_idx = tokenizer.pad_token_id # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "right" encoded_sequence = tokenizer.encode(sequence) sequence_length = len(encoded_sequence) padded_sequence = tokenizer.encode( sequence, max_length=sequence_length + padding_size, padding="max_length" ) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert encoded_sequence + [padding_idx] * padding_size == padded_sequence # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "left" encoded_sequence = tokenizer.encode(sequence) sequence_length = len(encoded_sequence) padded_sequence = tokenizer.encode( sequence, max_length=sequence_length + padding_size, padding="max_length" ) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert [padding_idx] * padding_size + encoded_sequence == padded_sequence # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding' encoded_sequence = tokenizer.encode(sequence) sequence_length = len(encoded_sequence) tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(sequence, padding=True) padded_sequence_right_length = len(padded_sequence_right) assert sequence_length == padded_sequence_right_length assert encoded_sequence == padded_sequence_right tokenizer.padding_side = "left" padded_sequence_left = tokenizer.encode(sequence, padding="longest") padded_sequence_left_length = len(padded_sequence_left) assert sequence_length == padded_sequence_left_length assert encoded_sequence == padded_sequence_left tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(sequence) padded_sequence_right_length = len(padded_sequence_right) assert sequence_length == padded_sequence_right_length assert encoded_sequence == padded_sequence_right tokenizer.padding_side = "left" padded_sequence_left = tokenizer.encode(sequence, padding=False) padded_sequence_left_length = len(padded_sequence_left) assert sequence_length == padded_sequence_left_length assert encoded_sequence == padded_sequence_left def test_padding_to_max_length(self): """We keep this test for backward compatibility but it should be remove when `pad_to_max_length` will e deprecated""" tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequence = "Sequence" padding_size = 10 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequence) padding_idx = tokenizer.pad_token_id # Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "right" encoded_sequence = tokenizer.encode(sequence) sequence_length = len(encoded_sequence) # FIXME: the next line should be padding(max_length) to avoid warning padded_sequence = tokenizer.encode( sequence, max_length=sequence_length + padding_size, pad_to_max_length=True ) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert encoded_sequence + [padding_idx] * padding_size == padded_sequence # Check that nothing is done when a maximum length is not specified encoded_sequence = tokenizer.encode(sequence) sequence_length = len(encoded_sequence) tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True) padded_sequence_right_length = len(padded_sequence_right) assert sequence_length == padded_sequence_right_length assert encoded_sequence == padded_sequence_right def test_padding_to_multiple_of(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.pad_token is None: self.skipTest("No padding token.") else: empty_tokens = tokenizer("", padding=True, pad_to_multiple_of=8) normal_tokens = tokenizer("This is a sample input", padding=True, pad_to_multiple_of=8) for key, value in empty_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") normal_tokens = tokenizer("This", pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") # Should also work with truncation normal_tokens = tokenizer("This", padding=True, truncation=True, pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") # truncation to something which is not a multiple of pad_to_multiple_of raises an error self.assertRaises( ValueError, tokenizer.__call__, "This", padding=True, truncation=True, max_length=12, pad_to_multiple_of=8, ) def test_encode_plus_with_padding(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequence = "Sequence" # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequence) padding_size = 10 padding_idx = tokenizer.pad_token_id token_type_padding_idx = tokenizer.pad_token_type_id encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True) input_ids = encoded_sequence["input_ids"] special_tokens_mask = encoded_sequence["special_tokens_mask"] sequence_length = len(input_ids) # Test 'longest' and 'no_padding' don't do anything tokenizer.padding_side = "right" not_padded_sequence = tokenizer.encode_plus( sequence, padding=True, return_special_tokens_mask=True, ) not_padded_input_ids = not_padded_sequence["input_ids"] not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"] not_padded_sequence_length = len(not_padded_input_ids) assert sequence_length == not_padded_sequence_length assert input_ids == not_padded_input_ids assert special_tokens_mask == not_padded_special_tokens_mask not_padded_sequence = tokenizer.encode_plus( sequence, padding=False, return_special_tokens_mask=True, ) not_padded_input_ids = not_padded_sequence["input_ids"] not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"] not_padded_sequence_length = len(not_padded_input_ids) assert sequence_length == not_padded_sequence_length assert input_ids == not_padded_input_ids assert special_tokens_mask == not_padded_special_tokens_mask # Test right padding tokenizer.padding_side = "right" right_padded_sequence = tokenizer.encode_plus( sequence, max_length=sequence_length + padding_size, padding="max_length", return_special_tokens_mask=True, ) right_padded_input_ids = right_padded_sequence["input_ids"] right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"] right_padded_sequence_length = len(right_padded_input_ids) assert sequence_length + padding_size == right_padded_sequence_length assert input_ids + [padding_idx] * padding_size == right_padded_input_ids assert special_tokens_mask + [1] * padding_size == right_padded_special_tokens_mask # Test left padding tokenizer.padding_side = "left" left_padded_sequence = tokenizer.encode_plus( sequence, max_length=sequence_length + padding_size, padding="max_length", return_special_tokens_mask=True, ) left_padded_input_ids = left_padded_sequence["input_ids"] left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"] left_padded_sequence_length = len(left_padded_input_ids) assert sequence_length + padding_size == left_padded_sequence_length assert [padding_idx] * padding_size + input_ids == left_padded_input_ids assert [1] * padding_size + special_tokens_mask == left_padded_special_tokens_mask if "token_type_ids" in tokenizer.model_input_names: token_type_ids = encoded_sequence["token_type_ids"] left_padded_token_type_ids = left_padded_sequence["token_type_ids"] right_padded_token_type_ids = right_padded_sequence["token_type_ids"] assert token_type_ids + [token_type_padding_idx] * padding_size == right_padded_token_type_ids assert [token_type_padding_idx] * padding_size + token_type_ids == left_padded_token_type_ids if "attention_mask" in tokenizer.model_input_names: attention_mask = encoded_sequence["attention_mask"] right_padded_attention_mask = right_padded_sequence["attention_mask"] left_padded_attention_mask = left_padded_sequence["attention_mask"] assert attention_mask + [0] * padding_size == right_padded_attention_mask assert [0] * padding_size + attention_mask == left_padded_attention_mask def test_separate_tokenizers(self): # This tests that tokenizers don't impact others. Unfortunately the case where it fails is when # we're loading an S3 configuration from a pre-trained identifier, and we have no way of testing those today. tokenizers = self.get_tokenizers(random_argument=True) new_tokenizers = self.get_tokenizers(random_argument=False) for tokenizer, new_tokenizer in zip(tokenizers, new_tokenizers): with self.subTest(f"{tokenizer.__class__.__name__}"): assert tokenizer.init_kwargs["random_argument"] is True assert tokenizer.init_kwargs["random_argument"] is True assert new_tokenizer.init_kwargs["random_argument"] is False def test_get_vocab(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): vocab_dict = tokenizer.get_vocab() self.assertIsInstance(vocab_dict, dict) self.assertGreaterEqual(len(tokenizer), len(vocab_dict)) vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))] self.assertEqual(len(vocab), len(tokenizer)) tokenizer.add_tokens(["asdfasdfasdfasdf"]) vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))] self.assertEqual(len(vocab), len(tokenizer)) def test_conversion_reversible(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): vocab = tokenizer.get_vocab() for word, ind in vocab.items(): if word == tokenizer.unk_token: continue self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind) self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] # Test not batched encoded_sequences_1 = tokenizer.encode_plus(sequences[0]) encoded_sequences_2 = tokenizer(sequences[0]) self.assertEqual(encoded_sequences_1, encoded_sequences_2) # Test not batched pairs encoded_sequences_1 = tokenizer.encode_plus(sequences[0], sequences[1]) encoded_sequences_2 = tokenizer(sequences[0], sequences[1]) self.assertEqual(encoded_sequences_1, encoded_sequences_2) # Test batched encoded_sequences_1 = tokenizer.batch_encode_plus(sequences) encoded_sequences_2 = tokenizer(sequences) self.assertEqual(encoded_sequences_1, encoded_sequences_2) # Test batched pairs encoded_sequences_1 = tokenizer.batch_encode_plus(list(zip(sequences, sequences))) encoded_sequences_2 = tokenizer(sequences, sequences) self.assertEqual(encoded_sequences_1, encoded_sequences_2) def test_batch_encode_plus_batch_sequence_length(self): # Tests that all encoded values have the correct size tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] encoded_sequences = [tokenizer.encode_plus(sequence) for sequence in sequences] encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, padding=False) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) maximum_length = len( max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len) ) # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequences) encoded_sequences_padded = [ tokenizer.encode_plus(sequence, max_length=maximum_length, padding="max_length") for sequence in sequences ] encoded_sequences_batch_padded = tokenizer.batch_encode_plus(sequences, padding=True) self.assertListEqual( encoded_sequences_padded, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded), ) # check 'longest' is unsensitive to a max length encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=True) encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus( sequences, max_length=maximum_length + 10, padding="longest" ) for key in encoded_sequences_batch_padded_1.keys(): self.assertListEqual( encoded_sequences_batch_padded_1[key], encoded_sequences_batch_padded_2[key], ) # check 'no_padding' is unsensitive to a max length encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=False) encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus( sequences, max_length=maximum_length + 10, padding=False ) for key in encoded_sequences_batch_padded_1.keys(): self.assertListEqual( encoded_sequences_batch_padded_1[key], encoded_sequences_batch_padded_2[key], ) @require_tokenizers def test_added_token_are_matched_longest_first(self): if not self.test_slow_tokenizer: self.skipTest("This test is only for slow tokenizers") return tokenizers = self.get_tokenizers(fast=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): try: tokenizer.add_tokens([AddedToken("extra_id_1")]) tokenizer.add_tokens([AddedToken("extra_id_100")]) except Exception: # Canine cannot add tokens which are not codepoints self.skipTest("Cannot add those Added tokens") # XXX: This used to split on `extra_id_1` first we're matching # longest first now. tokens = tokenizer.tokenize("This is some extra_id_100") self.assertIn("extra_id_100", tokens) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): tokenizer.add_tokens([AddedToken("extra_id_100")]) tokenizer.add_tokens([AddedToken("extra_id_1")]) tokens = tokenizer.tokenize("This is some extra_id_100") self.assertIn("extra_id_100", tokens) @require_tokenizers def test_added_token_serializable(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): new_token = AddedToken("new_token", lstrip=True) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]}) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(tmp_dir_name) tokenizer.from_pretrained(tmp_dir_name) def test_batch_encode_plus_padding(self): # Test that padded sequences are equivalent between batch_encode_plus and encode_plus # Right padding tests tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] max_length = 100 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequences) encoded_sequences = [ tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length") for sequence in sequences ] encoded_sequences_batch = tokenizer.batch_encode_plus( sequences, max_length=max_length, padding="max_length" ) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) # Left padding tests tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): tokenizer.padding_side = "left" sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] max_length = 100 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequences) encoded_sequences = [ tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length") for sequence in sequences ] encoded_sequences_batch = tokenizer.batch_encode_plus( sequences, max_length=max_length, padding="max_length" ) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) def test_pretokenized_inputs(self): # Test when inputs are pretokenized tokenizers = self.get_tokenizers(do_lower_case=False) # , add_prefix_space=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if hasattr(tokenizer, "add_prefix_space") and not tokenizer.add_prefix_space: continue # Prepare a sequence from our tokenizer vocabulary sequence, ids = self.get_clean_sequence(tokenizer, with_prefix_space=True, max_length=20) # sequence = " " + sequence # To be sure the byte-level tokenizers are feeling good token_sequence = sequence.split() # sequence_no_prefix_space = sequence.strip() # Test encode for pretokenized inputs output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=False) output_sequence = tokenizer.encode(sequence, add_special_tokens=False) self.assertEqual(output, output_sequence) output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=True) output_sequence = tokenizer.encode(sequence, add_special_tokens=True) self.assertEqual(output, output_sequence) # Test encode_plus for pretokenized inputs output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=False) output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=False) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=True) output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=True) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) # Test batch_encode_plus for pretokenized inputs sequence_batch = [sequence.strip()] * 2 + [sequence.strip() + " " + sequence.strip()] token_sequence_batch = [s.split() for s in sequence_batch] sequence_batch_cleaned_up_spaces = [" " + " ".join(s) for s in token_sequence_batch] output = tokenizer.batch_encode_plus( token_sequence_batch, is_split_into_words=True, add_special_tokens=False ) output_sequence = tokenizer.batch_encode_plus( sequence_batch_cleaned_up_spaces, add_special_tokens=False ) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) output = tokenizer.batch_encode_plus( token_sequence_batch, is_split_into_words=True, add_special_tokens=True ) output_sequence = tokenizer.batch_encode_plus( sequence_batch_cleaned_up_spaces, add_special_tokens=True ) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) # Test encode for pretokenized inputs pairs output = tokenizer.encode( token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False ) output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=False) self.assertEqual(output, output_sequence) output = tokenizer.encode( token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True ) output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=True) self.assertEqual(output, output_sequence) # Test encode_plus for pretokenized inputs pairs output = tokenizer.encode_plus( token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False ) output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=False) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) output = tokenizer.encode_plus( token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True ) output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=True) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) # Test batch_encode_plus for pretokenized inputs pairs sequence_pair_batch = [(sequence.strip(), sequence.strip())] * 2 + [ (sequence.strip() + " " + sequence.strip(), sequence.strip()) ] token_sequence_pair_batch = [tuple(s.split() for s in pair) for pair in sequence_pair_batch] sequence_pair_batch_cleaned_up_spaces = [ tuple(" " + " ".join(s) for s in pair) for pair in token_sequence_pair_batch ] output = tokenizer.batch_encode_plus( token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=False ) output_sequence = tokenizer.batch_encode_plus( sequence_pair_batch_cleaned_up_spaces, add_special_tokens=False ) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) output = tokenizer.batch_encode_plus( token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=True ) output_sequence = tokenizer.batch_encode_plus( sequence_pair_batch_cleaned_up_spaces, add_special_tokens=True ) for key in output.keys(): self.assertEqual(output[key], output_sequence[key]) def test_prepare_for_model(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): string_sequence = "Testing the prepare_for_model method." ids = tokenizer.encode(string_sequence, add_special_tokens=False) prepared_input_dict = tokenizer.prepare_for_model(ids, add_special_tokens=True) input_dict = tokenizer.encode_plus(string_sequence, add_special_tokens=True) self.assertEqual(input_dict, prepared_input_dict) def test_batch_encode_plus_overflowing_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: string_sequences = ["Testing the prepare_for_model method.", "Test"] if tokenizer.pad_token is None: tokenizer.add_special_tokens({"pad_token": "[PAD]"}) tokenizer.batch_encode_plus( string_sequences, return_overflowing_tokens=True, truncation=True, padding=True, max_length=3 ) @is_pt_tf_cross_test def test_batch_encode_plus_tensors(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] # A Tensor cannot be build by sequences which are not the same size self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="pt") self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="tf") if tokenizer.pad_token_id is None: self.assertRaises( ValueError, tokenizer.batch_encode_plus, sequences, padding=True, return_tensors="pt", ) self.assertRaises( ValueError, tokenizer.batch_encode_plus, sequences, padding="longest", return_tensors="tf", ) else: pytorch_tensor = tokenizer.batch_encode_plus(sequences, padding=True, return_tensors="pt") tensorflow_tensor = tokenizer.batch_encode_plus(sequences, padding="longest", return_tensors="tf") encoded_sequences = tokenizer.batch_encode_plus(sequences, padding=True) for key in encoded_sequences.keys(): pytorch_value = pytorch_tensor[key].tolist() tensorflow_value = tensorflow_tensor[key].numpy().tolist() encoded_value = encoded_sequences[key] self.assertEqual(pytorch_value, tensorflow_value, encoded_value) def _check_no_pad_token_padding(self, tokenizer, sequences): # if tokenizer does not have pad_token_id, an error should be thrown if tokenizer.pad_token_id is None: with self.assertRaises(ValueError): if isinstance(sequences, list): tokenizer.batch_encode_plus(sequences, padding="longest") else: tokenizer.encode_plus(sequences, padding=True) # add pad_token_id to pass subsequent tests tokenizer.add_special_tokens({"pad_token": "<PAD>"}) def check_subword_sampling( self, tokenizer: PreTrainedTokenizer, text: str = None, ) -> None: """ Check if the tokenizer generates different results when subword regularization is enabled. Subword regularization augments training data with subword sampling. This has a random component. Args: tokenizer: The tokenizer to check. text: The text to use for the checks. """ text = "This is a test for subword regularization." if text is None else text if self.test_sentencepiece_ignore_case: text = text.lower() tokens_list = [] for _ in range(5): tokens_list.append(tokenizer.tokenize(text)) # the list of different pairs of tokens_list combinations = itertools.combinations(tokens_list, 2) # check of sampling is done subword_sampling_found = False for combination in combinations: if combination[0] != combination[1]: subword_sampling_found = True self.assertTrue(subword_sampling_found) # check if converting back to original text works for tokens in tokens_list: if self.test_sentencepiece_ignore_case: self.assertEqual(text, tokenizer.convert_tokens_to_string(tokens).lower()) else: self.assertEqual(text, tokenizer.convert_tokens_to_string(tokens)) @require_torch @slow def test_torch_encode_plus_sent_to_model(self): import torch from transformers import MODEL_MAPPING, TOKENIZER_MAPPING MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING) tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING: return config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__] config = config_class() if config.is_encoder_decoder or config.pad_token_id is None: return model = model_class(config) # Make sure the model contains at least the full vocabulary size in its embedding matrix is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight") assert ( (model.get_input_embeddings().weight.shape[0] >= len(tokenizer)) if is_using_common_embeddings else True ) # Build sequence first_ten_tokens = list(tokenizer.get_vocab().keys())[:10] sequence = " ".join(first_ten_tokens) encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt") # Ensure that the BatchEncoding.to() method works. encoded_sequence.to(model.device) batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt") # This should not fail with torch.no_grad(): # saves some time model(**encoded_sequence) model(**batch_encoded_sequence) # if self.test_rust_tokenizer: # fast_tokenizer = self.get_rust_tokenizer() # encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="pt") # batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt") # # This should not fail # model(**encoded_sequence_fast) # model(**batch_encoded_sequence_fast) @require_tf @slow def test_tf_encode_plus_sent_to_model(self): from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING) tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING: return config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__] config = config_class() if config.is_encoder_decoder or config.pad_token_id is None: return model = model_class(config) # Make sure the model contains at least the full vocabulary size in its embedding matrix assert model.config.vocab_size >= len(tokenizer) # Build sequence first_ten_tokens = list(tokenizer.get_vocab().keys())[:10] sequence = " ".join(first_ten_tokens) encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="tf") batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf") # This should not fail model(encoded_sequence) model(batch_encoded_sequence) # TODO: Check if require_torch is the best to test for numpy here ... Maybe move to require_flax when available @require_torch @slow def test_np_encode_plus_sent_to_model(self): from transformers import MODEL_MAPPING, TOKENIZER_MAPPING MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING) tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING: return config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__] config = config_class() if config.is_encoder_decoder or config.pad_token_id is None: return # Build sequence first_ten_tokens = list(tokenizer.get_vocab().keys())[:10] sequence = " ".join(first_ten_tokens) encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="np") batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="np") # TODO: add forward through JAX/Flax when PR is merged # This is currently here to make flake8 happy ! if encoded_sequence is None: raise ValueError("Cannot convert list to numpy tensor on encode_plus()") if batch_encoded_sequence is None: raise ValueError("Cannot convert list to numpy tensor on batch_encode_plus()") if self.test_rust_tokenizer: fast_tokenizer = self.get_rust_tokenizer() encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="np") batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus( [sequence, sequence], return_tensors="np" ) # TODO: add forward through JAX/Flax when PR is merged # This is currently here to make flake8 happy ! if encoded_sequence_fast is None: raise ValueError("Cannot convert list to numpy tensor on encode_plus() (fast)") if batch_encoded_sequence_fast is None: raise ValueError("Cannot convert list to numpy tensor on batch_encode_plus() (fast)") @require_torch def test_prepare_seq2seq_batch(self): if not self.test_seq2seq: return tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Longer text that will definitely require truncation. src_text = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] tgt_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei " 'pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu ' "vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: batch = tokenizer.prepare_seq2seq_batch( src_texts=src_text, tgt_texts=tgt_text, max_length=3, max_target_length=10, return_tensors="pt", src_lang="en_XX", # this should be ignored (for all but mbart) but not cause an error ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.labels.shape[1], 10) # max_target_length will default to max_length if not specified batch = tokenizer.prepare_seq2seq_batch( src_text, tgt_texts=tgt_text, max_length=3, return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.labels.shape[1], 3) batch_encoder_only = tokenizer.prepare_seq2seq_batch( src_texts=src_text, max_length=3, max_target_length=10, return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1], 3) self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3) self.assertNotIn("decoder_input_ids", batch_encoder_only) def test_is_fast(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Check is_fast is set correctly self.assertTrue(tokenizer_r.is_fast) if self.test_slow_tokenizer: tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) self.assertFalse(tokenizer_p.is_fast) def test_fast_only_inputs(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Ensure None raise an error self.assertRaises(TypeError, tokenizer_r.tokenize, None) self.assertRaises(TypeError, tokenizer_r.encode, None) self.assertRaises(TypeError, tokenizer_r.encode_plus, None) self.assertRaises(TypeError, tokenizer_r.batch_encode_plus, None) def test_alignement_methods(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"] text = " ".join(words) batch_size = 3 encoding = tokenizer_r.encode_plus(text, add_special_tokens=False) batch_encoding = tokenizer_r.batch_encode_plus([text] * batch_size, add_special_tokens=False) num_tokens = len(encoding["input_ids"]) last_word_index = len(words) - 1 last_token_index = num_tokens - 1 last_batch_index = batch_size - 1 last_char_index = len(text) - 1 # words, tokens self.assertEqual(len(encoding.words(0)), num_tokens) self.assertEqual(max(encoding.words(0)), last_word_index) self.assertEqual(min(encoding.words(0)), 0) self.assertEqual(len(batch_encoding.words(last_batch_index)), num_tokens) self.assertEqual(max(batch_encoding.words(last_batch_index)), last_word_index) self.assertEqual(min(batch_encoding.words(last_batch_index)), 0) self.assertEqual(len(encoding.tokens(0)), num_tokens) # Assert token_to_word self.assertEqual(encoding.token_to_word(0), 0) self.assertEqual(encoding.token_to_word(0, 0), 0) self.assertEqual(encoding.token_to_word(last_token_index), last_word_index) self.assertEqual(encoding.token_to_word(0, last_token_index), last_word_index) self.assertEqual(batch_encoding.token_to_word(1, 0), 0) self.assertEqual(batch_encoding.token_to_word(0, last_token_index), last_word_index) self.assertEqual(batch_encoding.token_to_word(last_batch_index, last_token_index), last_word_index) # Assert word_to_tokens self.assertEqual(encoding.word_to_tokens(0).start, 0) self.assertEqual(encoding.word_to_tokens(0, 0).start, 0) self.assertEqual(encoding.word_to_tokens(last_word_index).end, last_token_index + 1) self.assertEqual(encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1) self.assertEqual(batch_encoding.word_to_tokens(1, 0).start, 0) self.assertEqual(batch_encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1) self.assertEqual( batch_encoding.word_to_tokens(last_batch_index, last_word_index).end, last_token_index + 1 ) # Assert token_to_chars self.assertEqual(encoding.token_to_chars(0).start, 0) self.assertEqual(encoding.token_to_chars(0, 0).start, 0) self.assertEqual(encoding.token_to_chars(last_token_index).end, last_char_index + 1) self.assertEqual(encoding.token_to_chars(0, last_token_index).end, last_char_index + 1) self.assertEqual(batch_encoding.token_to_chars(1, 0).start, 0) self.assertEqual(batch_encoding.token_to_chars(0, last_token_index).end, last_char_index + 1) self.assertEqual( batch_encoding.token_to_chars(last_batch_index, last_token_index).end, last_char_index + 1 ) # Assert char_to_token self.assertEqual(encoding.char_to_token(0), 0) self.assertEqual(encoding.char_to_token(0, 0), 0) self.assertEqual(encoding.char_to_token(last_char_index), last_token_index) self.assertEqual(encoding.char_to_token(0, last_char_index), last_token_index) self.assertEqual(batch_encoding.char_to_token(1, 0), 0) self.assertEqual(batch_encoding.char_to_token(0, last_char_index), last_token_index) self.assertEqual(batch_encoding.char_to_token(last_batch_index, last_char_index), last_token_index) # Assert char_to_word self.assertEqual(encoding.char_to_word(0), 0) self.assertEqual(encoding.char_to_word(0, 0), 0) self.assertEqual(encoding.char_to_word(last_char_index), last_word_index) self.assertEqual(encoding.char_to_word(0, last_char_index), last_word_index) self.assertEqual(batch_encoding.char_to_word(1, 0), 0) self.assertEqual(batch_encoding.char_to_word(0, last_char_index), last_word_index) self.assertEqual(batch_encoding.char_to_word(last_batch_index, last_char_index), last_word_index) # Assert word_to_chars self.assertEqual(encoding.word_to_chars(0).start, 0) self.assertEqual(encoding.word_to_chars(0, 0).start, 0) self.assertEqual(encoding.word_to_chars(last_word_index).end, last_char_index + 1) self.assertEqual(encoding.word_to_chars(0, last_word_index).end, last_char_index + 1) self.assertEqual(batch_encoding.word_to_chars(1, 0).start, 0) self.assertEqual(batch_encoding.word_to_chars(0, last_word_index).end, last_char_index + 1) self.assertEqual( batch_encoding.word_to_chars(last_batch_index, last_word_index).end, last_char_index + 1 ) # Assert token_to_sequence self.assertEqual(encoding.token_to_sequence(num_tokens // 2), 0) self.assertEqual(encoding.token_to_sequence(0, num_tokens // 2), 0) self.assertEqual(batch_encoding.token_to_sequence(1, num_tokens // 2), 0) self.assertEqual(batch_encoding.token_to_sequence(0, num_tokens // 2), 0) self.assertEqual(batch_encoding.token_to_sequence(last_batch_index, num_tokens // 2), 0) # Pair of input sequences words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"] text = " ".join(words) pair_words = ["Amazing", "example", "full", "of", "inspiration"] pair_text = " ".join(pair_words) batch_size = 3 index_word_in_first_seq = words.index("inspiration") index_word_in_pair_seq = pair_words.index("inspiration") index_char_in_first_seq = text.find("inspiration") index_char_in_pair_seq = pair_text.find("inspiration") pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=False) pair_batch_encoding = tokenizer_r.batch_encode_plus( [(text, pair_text)] * batch_size, add_special_tokens=False ) num_tokens = len(encoding["input_ids"]) last_word_index = len(words) - 1 last_token_index = num_tokens - 1 last_batch_index = batch_size - 1 last_char_index = len(text) - 1 # Assert word_to_tokens self.assertNotEqual( pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start, pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start, ) self.assertEqual( pair_encoding["input_ids"][ pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start ], pair_encoding["input_ids"][ pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start ], ) self.assertNotEqual( pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start, pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start, ) self.assertEqual( pair_batch_encoding["input_ids"][1][ pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start ], pair_batch_encoding["input_ids"][1][ pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start ], ) # Assert char_to_token self.assertNotEqual( pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0), pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1), ) self.assertEqual( pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0)], pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1)], ) self.assertNotEqual( pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0), pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1), ) self.assertEqual( pair_batch_encoding["input_ids"][1][ pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0) ], pair_batch_encoding["input_ids"][1][ pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1) ], ) # Assert char_to_word self.assertNotEqual( pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0), pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1), ) self.assertEqual( words[pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0)], pair_words[pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1)], ) self.assertNotEqual( pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0), pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1), ) self.assertEqual( words[pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0)], pair_words[pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1)], ) # Assert word_to_chars self.assertNotEqual( pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start, pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start, ) self.assertEqual( text[pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start], pair_text[pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start], ) self.assertNotEqual( pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start, pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start, ) self.assertEqual( text[pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start], pair_text[pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start], ) # Assert token_to_sequence pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=True) pair_sequence_ids = [ pair_encoding.token_to_sequence(i) for i in range(len(pair_encoding["input_ids"])) ] self.assertIn(0, pair_sequence_ids) self.assertIn(1, pair_sequence_ids) if tokenizer_r.num_special_tokens_to_add(pair=True): self.assertIn(None, pair_sequence_ids) pair_batch_encoding = tokenizer_r.batch_encode_plus( [(text, pair_text)] * batch_size, add_special_tokens=True ) pair_batch_sequence_ids = [ pair_batch_encoding.token_to_sequence(1, i) for i in range(len(pair_batch_encoding["input_ids"][0])) ] self.assertIn(0, pair_batch_sequence_ids) self.assertIn(1, pair_batch_sequence_ids) if tokenizer_r.num_special_tokens_to_add(pair=True): self.assertIn(None, pair_batch_sequence_ids) def test_tokenization_python_rust_equals(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Ensure basic input match input_p = tokenizer_p.encode_plus(self._data) input_r = tokenizer_r.encode_plus(self._data) for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): self.assertSequenceEqual(input_p[key], input_r[key]) input_pairs_p = tokenizer_p.encode_plus(self._data, self._data) input_pairs_r = tokenizer_r.encode_plus(self._data, self._data) for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key]) # Ensure truncation match input_p = tokenizer_p.encode_plus(self._data, max_length=512, truncation=True) input_r = tokenizer_r.encode_plus(self._data, max_length=512, truncation=True) for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): self.assertSequenceEqual(input_p[key], input_r[key]) # Ensure truncation with stride match input_p = tokenizer_p.encode_plus( self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True ) input_r = tokenizer_r.encode_plus( self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True ) for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): self.assertSequenceEqual(input_p[key], input_r[key][0]) def test_num_special_tokens_to_add_equal(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Check we have the same number of added_tokens for both pair and non-pair inputs. self.assertEqual( tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False) ) self.assertEqual( tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True) ) def test_max_length_equal(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Check we have the correct max_length for both pair and non-pair inputs. self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence) self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair) def test_special_tokens_map_equal(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Assert the set of special tokens match. self.assertSequenceEqual( tokenizer_p.special_tokens_map.items(), tokenizer_r.special_tokens_map.items(), ) def test_add_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) vocab_size = len(tokenizer_r) self.assertEqual(tokenizer_r.add_tokens(""), 0) self.assertEqual(tokenizer_r.add_tokens("testoken"), 1) self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2) self.assertEqual(len(tokenizer_r), vocab_size + 3) self.assertEqual(tokenizer_r.add_special_tokens({}), 0) self.assertEqual(tokenizer_r.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2) self.assertRaises( AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"} ) self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1) self.assertEqual( tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2 ) self.assertIn("<testtoken3>", tokenizer_r.special_tokens_map["additional_special_tokens"]) self.assertIsInstance(tokenizer_r.special_tokens_map["additional_special_tokens"], list) self.assertGreaterEqual(len(tokenizer_r.special_tokens_map["additional_special_tokens"]), 2) self.assertEqual(len(tokenizer_r), vocab_size + 8) def test_offsets_mapping(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) text = "Wonderful no inspiration example with subtoken" pair = "Along with an awesome pair" # No pair tokens_with_offsets = tokenizer_r.encode_plus( text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True ) added_tokens = tokenizer_r.num_special_tokens_to_add(False) offsets = tokens_with_offsets["offset_mapping"] # Assert there is the same number of tokens and offsets self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"])) # Assert there is online added_tokens special_tokens self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens) # Pairs tokens_with_offsets = tokenizer_r.encode_plus( text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True ) added_tokens = tokenizer_r.num_special_tokens_to_add(True) offsets = tokens_with_offsets["offset_mapping"] # Assert there is the same number of tokens and offsets self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"])) # Assert there is online added_tokens special_tokens self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens) def test_batch_encode_dynamic_overflowing(self): """ When calling batch_encode with multiple sequence it can returns different number of overflowing encoding for each sequence: [ Sequence 1: [Encoding 1, Encoding 2], Sequence 2: [Encoding 1], Sequence 3: [Encoding 1, Encoding 2, ... Encoding N] ] This needs to be padded so that it can represented as a tensor """ for tokenizer, pretrained_name, kwargs in self.tokenizers_list: tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name}, {tokenizer.__class__.__name__})"): if is_torch_available(): returned_tensor = "pt" elif is_tf_available(): returned_tensor = "tf" else: returned_tensor = "jax" if not tokenizer.pad_token or tokenizer.pad_token_id < 0: return tokens = tokenizer.encode_plus( "HuggingFace is solving NLP one commit at a time", max_length=6, padding=True, truncation=True, return_tensors=returned_tensor, return_overflowing_tokens=True, ) for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): self.assertEqual(len(tokens[key].shape), 2) # Mono sample tokens = tokenizer.batch_encode_plus( ["HuggingFace is solving NLP one commit at a time"], max_length=6, padding=True, truncation="only_first", return_tensors=returned_tensor, return_overflowing_tokens=True, ) for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): self.assertEqual(len(tokens[key].shape), 2) self.assertEqual(tokens[key].shape[-1], 6) # Multi sample tokens = tokenizer.batch_encode_plus( ["HuggingFace is solving NLP one commit at a time", "Very tiny input"], max_length=6, padding=True, truncation="only_first", return_tensors=returned_tensor, return_overflowing_tokens=True, ) for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): self.assertEqual(len(tokens[key].shape), 2) self.assertEqual(tokens[key].shape[-1], 6) def test_compare_pretokenized_inputs(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) if hasattr(tokenizer_p, "add_prefix_space") and not tokenizer_p.add_prefix_space: continue # Too hard to test for now # Input string pretokenized_input_simple = "This is a sample input".split() pretokenized_input_pair = "This is a sample pair".split() # Test encode for pretokenized inputs output_r = tokenizer_r.encode( pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False ) output_p = tokenizer_p.encode( pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False ) self.assertEqual(output_p, output_r) kwargs = { "is_split_into_words": True, # "return_token_type_ids": True, # Use the defaults for each tokenizers # "return_attention_mask": True, # Use the defaults for each tokenizers "return_overflowing_tokens": False, "return_special_tokens_mask": True, "return_offsets_mapping": False, # Not implemented in python tokenizers # "add_special_tokens": False, } batch_kwargs = { "is_split_into_words": True, # "return_token_type_ids": True, # Use the defaults for each tokenizers # "return_attention_mask": True, # Use the defaults for each tokenizers "return_overflowing_tokens": False, "return_special_tokens_mask": True, "return_offsets_mapping": False, # Not implemented in python tokenizers # "add_special_tokens": False, } # Test encode_plus for pretokenized inputs output_r = tokenizer_r.encode_plus(pretokenized_input_simple, **kwargs) output_p = tokenizer_p.encode_plus(pretokenized_input_simple, **kwargs) for key in output_p.keys(): self.assertEqual(output_p[key], output_r[key]) # Test batch_encode_plus for pretokenized inputs input_batch = ([pretokenized_input_simple] * 2) + [pretokenized_input_simple + pretokenized_input_pair] output_r = tokenizer_r.batch_encode_plus(input_batch, **batch_kwargs) output_p = tokenizer_p.batch_encode_plus(input_batch, **batch_kwargs) for key in output_p.keys(): self.assertEqual(output_p[key], output_r[key]) # Test encode for pretokenized inputs pairs output_r = tokenizer_r.encode( pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True ) output_p = tokenizer_p.encode( pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True ) self.assertEqual(output_p, output_r) # Test encode_plus for pretokenized inputs output_r = tokenizer_r.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs) output_p = tokenizer_p.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs) for key in output_p.keys(): self.assertEqual(output_p[key], output_r[key]) # Test batch_encode_plus for pretokenized inputs input_batch_pair = ([pretokenized_input_simple, pretokenized_input_pair] * 2) + [ pretokenized_input_simple + pretokenized_input_pair, pretokenized_input_pair, ] output_r = tokenizer_r.batch_encode_plus(input_batch_pair, **batch_kwargs) output_p = tokenizer_p.batch_encode_plus(input_batch_pair, **batch_kwargs) for key in output_p.keys(): self.assertEqual(output_p[key], output_r[key]) def test_create_token_type_ids(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) input_simple = [1, 2, 3] input_pair = [1, 2, 3] # Generate output output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple) output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple) self.assertEqual(output_p, output_r) # Generate pair output output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple, input_pair) output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple, input_pair) self.assertEqual(output_p, output_r) def test_build_inputs_with_special_tokens(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) # # Input string # input_simple = tokenizer_p.tokenize("This is a sample input", add_special_tokens=False) # input_pair = tokenizer_p.tokenize("This is a sample pair", add_special_tokens=False) # # Generate output # output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple) # output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple) # self.assertEqual(output_p, output_r) # # Generate pair output # output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair) # output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair) # self.assertEqual(output_p, output_r) # Input tokens id input_simple = tokenizer_p.encode("This is a sample input", add_special_tokens=False) input_pair = tokenizer_p.encode("This is a sample pair", add_special_tokens=False) # Generate output output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple) output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple) self.assertEqual(output_p, output_r) # Generate pair output output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair) output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair) self.assertEqual(output_p, output_r) def test_padding(self, max_length=50): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id) pad_token_id = tokenizer_p.pad_token_id # Encode - Simple input input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True) input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True) self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, padding="max_length") input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, padding="max_length") self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.encode("This is a simple input", padding="longest") input_p = tokenizer_p.encode("This is a simple input", padding=True) self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id) # Encode - Pair input input_r = tokenizer_r.encode( "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True ) input_p = tokenizer_p.encode( "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True ) self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.encode( "This is a simple input", "This is a pair", max_length=max_length, padding="max_length" ) input_p = tokenizer_p.encode( "This is a simple input", "This is a pair", max_length=max_length, padding="max_length" ) self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.encode("This is a simple input", "This is a pair", padding=True) input_p = tokenizer_p.encode("This is a simple input", "This is a pair", padding="longest") self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id) # Encode_plus - Simple input input_r = tokenizer_r.encode_plus( "This is a simple input", max_length=max_length, pad_to_max_length=True ) input_p = tokenizer_p.encode_plus( "This is a simple input", max_length=max_length, pad_to_max_length=True ) self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus( "This is a simple input", max_length=max_length, padding="max_length" ) input_p = tokenizer_p.encode_plus( "This is a simple input", max_length=max_length, padding="max_length" ) self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus("This is a simple input", padding="longest") input_p = tokenizer_p.encode_plus("This is a simple input", padding=True) self.assert_padded_input_match( input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id ) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) # Encode_plus - Pair input input_r = tokenizer_r.encode_plus( "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True ) input_p = tokenizer_p.encode_plus( "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True ) self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus( "This is a simple input", "This is a pair", max_length=max_length, padding="max_length" ) input_p = tokenizer_p.encode_plus( "This is a simple input", "This is a pair", max_length=max_length, padding="max_length" ) self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus("This is a simple input", "This is a pair", padding="longest") input_p = tokenizer_p.encode_plus("This is a simple input", "This is a pair", padding=True) self.assert_padded_input_match( input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id ) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) # Batch_encode_plus - Simple input input_r = tokenizer_r.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True, ) input_p = tokenizer_p.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True, ) self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding="max_length", ) input_p = tokenizer_p.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding="max_length", ) self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding="longest", ) input_p = tokenizer_p.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding=True, ) self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) input_r = tokenizer_r.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], padding="longest" ) input_p = tokenizer_p.batch_encode_plus( ["This is a simple input 1", "This is a simple input 2"], padding=True ) self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) # Batch_encode_plus - Pair input input_r = tokenizer_r.batch_encode_plus( [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ], max_length=max_length, truncation=True, padding="max_length", ) input_p = tokenizer_p.batch_encode_plus( [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ], max_length=max_length, truncation=True, padding="max_length", ) self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.batch_encode_plus( [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ], padding=True, ) input_p = tokenizer_p.batch_encode_plus( [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ], padding="longest", ) self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) # Using pad on single examples after tokenization input_r = tokenizer_r.encode_plus("This is a input 1") input_r = tokenizer_r.pad(input_r) input_p = tokenizer_r.encode_plus("This is a input 1") input_p = tokenizer_r.pad(input_p) self.assert_padded_input_match( input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id ) # Using pad on single examples after tokenization input_r = tokenizer_r.encode_plus("This is a input 1") input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length") input_p = tokenizer_r.encode_plus("This is a input 1") input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length") self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) # Using pad after tokenization input_r = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_r = tokenizer_r.pad(input_r) input_p = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_p = tokenizer_r.pad(input_p) self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) # Using pad after tokenization input_r = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length") input_p = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length") self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) def test_padding_different_model_input_name(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id) pad_token_id = tokenizer_p.pad_token_id input_r = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) input_p = tokenizer_r.batch_encode_plus( ["This is a input 1", "This is a much longer input whilch should be padded"] ) # rename encoded batch to "inputs" input_r["inputs"] = input_r[tokenizer_r.model_input_names[0]] del input_r[tokenizer_r.model_input_names[0]] input_p["inputs"] = input_p[tokenizer_p.model_input_names[0]] del input_p[tokenizer_p.model_input_names[0]] # Renaming `input_ids` to `inputs` tokenizer_r.model_input_names = ["inputs"] + tokenizer_r.model_input_names[1:] tokenizer_p.model_input_names = ["inputs"] + tokenizer_p.model_input_names[1:] input_r = tokenizer_r.pad(input_r, padding="longest") input_p = tokenizer_r.pad(input_p, padding="longest") max_length = len(input_p["inputs"][0]) self.assert_batch_padded_input_match( input_r, input_p, max_length, pad_token_id, model_main_input_name="inputs" ) def test_save_pretrained(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) tmpdirname2 = tempfile.mkdtemp() tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2) tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files) # Checks everything loads correctly in the same way tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(tokenizer_rp, key)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(tmpdirname2) # Save tokenizer rust, legacy_format=True tmpdirname2 = tempfile.mkdtemp() tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True) tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) # Checks it save with the same files self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files) # Checks everything loads correctly in the same way tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(tokenizer_rp, key)) shutil.rmtree(tmpdirname2) # Save tokenizer rust, legacy_format=False tmpdirname2 = tempfile.mkdtemp() tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False) tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(tokenizer_rp, key)) shutil.rmtree(tmpdirname2) def test_embeded_special_tokens(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus( sentence, add_special_tokens=True, ) tokens_p = tokenizer_p.encode_plus( sentence, add_special_tokens=True, ) for key in tokens_p.keys(): self.assertEqual(tokens_r[key], tokens_p[key]) if "token_type_ids" in tokens_r: self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) self.assertSequenceEqual(tokens_r, tokens_p) def test_compare_add_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False) # pair_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=True) for text in ["", " "]: # tokenize() no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False) with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True) self.assertEqual( len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add ) # encode() no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False) with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True) self.assertEqual( len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add ) # encode_plus() no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False) with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True) for key in no_special_tokens.keys(): self.assertEqual( len(no_special_tokens[key]), len(with_special_tokens[key]) - simple_num_special_tokens_to_add, ) # # batch_encode_plus no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False) with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True) for key in no_special_tokens.keys(): for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]): self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add) def test_compare_prepare_for_model(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) string_sequence = "Asserting that both tokenizers are equal" python_output = tokenizer_p.prepare_for_model( tokenizer_p.encode(string_sequence, add_special_tokens=False) ) rust_output = tokenizer_r.prepare_for_model( tokenizer_r.encode(string_sequence, add_special_tokens=False) ) for key in python_output: self.assertEqual(python_output[key], rust_output[key]) def test_special_tokens_initialization(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): added_tokens = [AddedToken("<special>", lstrip=True)] tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) r_output = tokenizer_r.encode("Hey this is a <special> token") special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0] self.assertTrue(special_token_id in r_output) if self.test_slow_tokenizer: tokenizer_cr = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True ) tokenizer_p = self.tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) p_output = tokenizer_p.encode("Hey this is a <special> token") cr_output = tokenizer_cr.encode("Hey this is a <special> token") self.assertEqual(p_output, r_output) self.assertEqual(cr_output, r_output) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in cr_output) def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): tokenizer_list = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(tmp_dir) with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: special_tokens_map = json.load(json_file) with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: tokenizer_config = json.load(json_file) special_tokens_map["additional_special_tokens"] = ["an_additional_special_token"] tokenizer_config["additional_special_tokens"] = ["an_additional_special_token"] with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: json.dump(special_tokens_map, outfile) with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: json.dump(tokenizer_config, outfile) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files tokenizer_without_change_in_init = tokenizer_class.from_pretrained( tmp_dir, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) self.assertIn("an_additional_special_token", tokenizer_without_change_in_init.get_vocab()) self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"]) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained new_added_tokens = [AddedToken("a_new_additional_special_token", lstrip=True)] tokenizer = tokenizer_class.from_pretrained( tmp_dir, additional_special_tokens=new_added_tokens, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"]) ), ) def test_training_new_tokenizer(self): # This feature only exists for fast tokenizers if not self.test_rust_tokenizer: return tokenizer = self.get_rust_tokenizer() new_tokenizer = tokenizer.train_new_from_iterator(SMALL_TRAINING_CORPUS, 100) # Test we can use the new tokenizer with something not seen during training inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."]) self.assertEqual(len(inputs["input_ids"]), 2) decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True) expected_result = "This is the first sentence" if tokenizer.backend_tokenizer.normalizer is not None: expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result) self.assertEqual(expected_result, decoded_input) # We check that the parameters of the tokenizer remained the same # Check we have the same number of added_tokens for both pair and non-pair inputs. self.assertEqual(tokenizer.num_special_tokens_to_add(False), new_tokenizer.num_special_tokens_to_add(False)) self.assertEqual(tokenizer.num_special_tokens_to_add(True), new_tokenizer.num_special_tokens_to_add(True)) # Check we have the correct max_length for both pair and non-pair inputs. self.assertEqual(tokenizer.max_len_single_sentence, new_tokenizer.max_len_single_sentence) self.assertEqual(tokenizer.max_len_sentences_pair, new_tokenizer.max_len_sentences_pair) # Assert the set of special tokens match as we didn't ask to change them self.assertSequenceEqual( tokenizer.all_special_tokens_extended, new_tokenizer.all_special_tokens_extended, ) self.assertDictEqual(tokenizer.special_tokens_map, new_tokenizer.special_tokens_map) def test_training_new_tokenizer_with_special_tokens_change(self): # This feature only exists for fast tokenizers if not self.test_rust_tokenizer: return tokenizer = self.get_rust_tokenizer() # Test with a special tokens map class_signature = inspect.signature(tokenizer.__class__) if "cls_token" in class_signature.parameters: new_tokenizer = tokenizer.train_new_from_iterator( SMALL_TRAINING_CORPUS, 100, special_tokens_map={tokenizer.cls_token: "<cls>"} ) cls_id = new_tokenizer.get_vocab()["<cls>"] self.assertEqual(new_tokenizer.cls_token, "<cls>") self.assertEqual(new_tokenizer.cls_token_id, cls_id) # Create a new mapping from the special tokens defined in the original tokenizer special_tokens_list = SpecialTokensMixin.SPECIAL_TOKENS_ATTRIBUTES.copy() special_tokens_list.remove("additional_special_tokens") special_tokens_map = {} for token in special_tokens_list: # Get the private one to avoid unnecessary warnings. if getattr(tokenizer, f"_{token}") is not None: special_token = getattr(tokenizer, token) special_tokens_map[special_token] = f"{special_token}a" # Train new tokenizer new_tokenizer = tokenizer.train_new_from_iterator( SMALL_TRAINING_CORPUS, 100, special_tokens_map=special_tokens_map ) # Check the changes for token in special_tokens_list: # Get the private one to avoid unnecessary warnings. if getattr(tokenizer, f"_{token}") is None: continue special_token = getattr(tokenizer, token) if special_token in special_tokens_map: new_special_token = getattr(new_tokenizer, token) self.assertEqual(special_tokens_map[special_token], new_special_token) new_id = new_tokenizer.get_vocab()[new_special_token] self.assertEqual(getattr(new_tokenizer, f"{token}_id"), new_id) # Check if the AddedToken / string format has been kept for special_token in tokenizer.all_special_tokens_extended: if isinstance(special_token, AddedToken) and special_token.content not in special_tokens_map: # The special token must appear identically in the list of the new tokenizer. self.assertTrue( special_token in new_tokenizer.all_special_tokens_extended, f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}", ) elif isinstance(special_token, AddedToken): # The special token must appear in the list of the new tokenizer as an object of type AddedToken with # the same parameters as the old AddedToken except the content that the user has requested to change. special_token_str = special_token.content new_special_token_str = special_tokens_map[special_token_str] find = False for candidate in new_tokenizer.all_special_tokens_extended: if ( isinstance(candidate, AddedToken) and candidate.content == new_special_token_str and candidate.lstrip == special_token.lstrip and candidate.rstrip == special_token.rstrip and candidate.normalized == special_token.normalized and candidate.single_word == special_token.single_word ): find = True break self.assertTrue( find, ( f"'{new_special_token_str}' doesn't appear in the list " f"'{new_tokenizer.all_special_tokens_extended}' as an AddedToken with the same parameters as " f"'{special_token}' in the list {tokenizer.all_special_tokens_extended}" ), ) elif special_token not in special_tokens_map: # The special token must appear identically in the list of the new tokenizer. self.assertTrue( special_token in new_tokenizer.all_special_tokens_extended, f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}", ) else: # The special token must appear in the list of the new tokenizer as an object of type string. self.assertTrue(special_tokens_map[special_token] in new_tokenizer.all_special_tokens_extended) # Test we can use the new tokenizer with something not seen during training inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."]) self.assertEqual(len(inputs["input_ids"]), 2) decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True) expected_result = "This is the first sentence" if tokenizer.backend_tokenizer.normalizer is not None: expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result) self.assertEqual(expected_result, decoded_input) def test_tokenizer_mismatch_warning(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): with self.assertLogs("transformers", level="WARNING") as cm: try: if self.tokenizer_class == BertTokenizer: AlbertTokenizer.from_pretrained(pretrained_name) else: BertTokenizer.from_pretrained(pretrained_name) except (TypeError, AttributeError): # Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned, # here we just check that the warning has been logged before the error is raised pass finally: self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function is called from." ) ) try: if self.rust_tokenizer_class == BertTokenizerFast: AlbertTokenizerFast.from_pretrained(pretrained_name) else: BertTokenizerFast.from_pretrained(pretrained_name) except (TypeError, AttributeError): # Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned, # here we just check that the warning has been logged before the error is raised pass finally: self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function is called from." ) ) @require_torch def test_saving_tokenizer_trainer(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): with tempfile.TemporaryDirectory() as tmp_dir: # Save the fast tokenizer files in a temporary directory tokenizer_old = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs, use_fast=True) tokenizer_old.save_pretrained(tmp_dir, legacy_format=False) # save only fast version # Initialize toy model for the trainer model = nn.Module() # Load tokenizer from a folder without legacy files tokenizer = self.rust_tokenizer_class.from_pretrained(tmp_dir) training_args = TrainingArguments(output_dir=tmp_dir, do_train=True, no_cuda=True) trainer = Trainer(model=model, args=training_args, tokenizer=tokenizer) # Should not raise an error trainer.save_model(os.path.join(tmp_dir, "checkpoint")) self.assertIn("tokenizer.json", os.listdir(os.path.join(tmp_dir, "checkpoint"))) @is_staging_test class TokenizerPushToHubTester(unittest.TestCase): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def setUpClass(cls): cls._api = HfApi(endpoint=ENDPOINT_STAGING) cls._token = cls._api.login(username=USER, password=PASS) @classmethod def tearDownClass(cls): try: cls._api.delete_repo(token=cls._token, name="test-tokenizer") except HTTPError: pass try: cls._api.delete_repo(token=cls._token, name="test-tokenizer-org", organization="valid_org") except HTTPError: pass def test_push_to_hub(self): with tempfile.TemporaryDirectory() as tmp_dir: vocab_file = os.path.join(tmp_dir, "vocab.txt") with open(vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) tokenizer = BertTokenizer(vocab_file) tokenizer.save_pretrained( os.path.join(tmp_dir, "test-tokenizer"), push_to_hub=True, use_auth_token=self._token ) new_tokenizer = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer") self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab) def test_push_to_hub_in_organization(self): with tempfile.TemporaryDirectory() as tmp_dir: vocab_file = os.path.join(tmp_dir, "vocab.txt") with open(vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) tokenizer = BertTokenizer(vocab_file) tokenizer.save_pretrained( os.path.join(tmp_dir, "test-tokenizer-org"), push_to_hub=True, use_auth_token=self._token, organization="valid_org", ) new_tokenizer = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org") self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab) class TrieTest(unittest.TestCase): def test_trie(self): trie = Trie() trie.add("Hello 友達") self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}}) trie.add("Hello") trie.data self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}}) def test_trie_split(self): trie = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100"), ["[CLS] This is a extra_id_100"]) trie.add("[CLS]") trie.add("extra_id_1") trie.add("extra_id_100") self.assertEqual(trie.split("[CLS] This is a extra_id_100"), ["[CLS]", " This is a ", "extra_id_100"]) def test_trie_single(self): trie = Trie() trie.add("A") self.assertEqual(trie.split("ABC"), ["A", "BC"]) self.assertEqual(trie.split("BCA"), ["BC", "A"]) def test_trie_final(self): trie = Trie() trie.add("TOKEN]") trie.add("[SPECIAL_TOKEN]") self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]"), ["This is something ", "[SPECIAL_TOKEN]"])
py
1a58f5360574e681e9f43391027b6e6934e5cad1
from passrotate.provider import Provider, ProviderOption, PromptType, register_provider from passrotate.forms import get_form import requests from urllib.parse import urlparse class Twitter(Provider): """ [twitter.com] username=Your Twitter username """ name = "Twitter" domains = [ "twitter.com", "m.twitter.com" ] options = { "username": ProviderOption(str, "Your Twitter username") } def __init__(self, options): self.username = options["username"] def prepare(self, old_password): self._session = requests.Session() r = self._session.get("https://mobile.twitter.com/login") tk = self._session.cookies.get("_mb_tk") if not tk or r.status_code != 200: return False r = self._session.post("https://mobile.twitter.com/sessions", data={ "authenticity_token": tk, "session[username_or_email]": self.username, "session[password]": old_password, "remember_me": 0, "wfa": 1, "redirect_after_login": "/home" }) url = urlparse(r.url) if url.path == "/login/error": raise Exception("Current password for Twitter is incorrect") if url.path == "/account/locked": raise Exception("Twitter has locked us out of further login attempts. Wait 60 minutes and try again.") while url.path == "/account/login_verification": data = get_form(r.text) challenge_type = data.get("challenge_type") if challenge_type == "Sms": response = self.prompt("Enter your SMS authorization code", PromptType.sms) else: raise Exception("Unsupported two-factor method '{}'".format(challenge_type)) data.update({ "challenge_response": response }) r = self._session.post( "https://mobile.twitter.com/account/login_verification", data=data) url = urlparse(r.url) r = self._session.get("https://twitter.com") r = self._session.get("https://twitter.com/settings/password") self._form = get_form(r.text, id="password-form") def execute(self, old_password, new_password): self._form.update({ "current_password": old_password, "user_password": new_password, "user_password_confirmation": new_password, }) r = self._session.post("https://twitter.com/settings/passwords/update", data=self._form, headers={ "origin": "https://twitter.com", "referer": "https://twitter.com/settings/password" }) register_provider(Twitter)
py
1a58f6763eb1ef71b85c8d4ef307f06cecb5b450
# coding: utf-8 import copy import numpy as np from flearn.common.distiller import DFDistiller, KDLoss from .strategy import ParentStrategy from .utils import convert_to_tensor class DF(ParentStrategy): """ Ensemble distillation for robust model fusion in federated learning [1] Lin T, Kong L, Stich S U, et al. Ensemble distillation for robust model fusion in federated learning[J]. arXiv preprint arXiv:2006.07242, 2020. """ def __init__(self, model_base, strategy): super().__init__(strategy) self.model_base = model_base def server_post_processing(self, ensemble_params_lst, ensemble_params, **kwargs): w_glob = convert_to_tensor(ensemble_params["w_glob"]) agg_weight_lst, w_local_lst = self.server_pre_processing(ensemble_params_lst) teacher_lst = [] for w_local in w_local_lst: self.model_base.load_state_dict(convert_to_tensor(w_local)) teacher_lst.append(copy.deepcopy(self.model_base)) self.model_base.load_state_dict(w_glob) student = copy.deepcopy(self.model_base) kd_loader, device = kwargs.pop("kd_loader"), kwargs.pop("device") temperature = kwargs.pop("T") distiller = DFDistiller( kd_loader, device, kd_loss=KDLoss(temperature), ) molecular = np.sum(agg_weight_lst) weight_lst = [w / molecular for w in agg_weight_lst] # agg_weight_lst:应该依照每个模型在验证集上的性能来进行分配 ensemble_params["w_glob"] = distiller.multi( teacher_lst, student, kwargs.pop("method"), weight_lst=weight_lst, **kwargs ) return ensemble_params def server(self, ensemble_params_lst, round_, **kwargs): """ kwargs: dict { "lr": 学习率, "T": 蒸馏超参,温度 "epoch": 蒸馏训练轮数 "method": 多个教师蒸馏一个学习的方法,avg_logits, avg_losses "kd_loader": 蒸馏数据集,仅需输入,无需标签 } """ ensemble_params = super().server(ensemble_params_lst, round_) return self.server_post_processing( ensemble_params_lst, ensemble_params, **kwargs )
py
1a58f70d815552637c90e60049ebbd6f5140b69e
import arcpy #from arcpy.sa import * #If anything is ever not defined see if it is part of arcpy.as import glob import os import sys import csv import traceback import numpy ##from scipy import stats try: import mysql.connector from mysql.connector import errorcode except ImportError: print('No MySQL support. Use SQLite database or install MySQL') import sqlite3 import datetime import json import shutil import subprocess import smtplib from email.MIMEMultipart import MIMEMultipart from email.MIMEText import MIMEText ##Checkout needed Extentions class SpatialLicenseError(Exception): pass class GeostatsLicenseError(Exception): pass try: if arcpy.CheckExtension('Spatial') == "Available": arcpy.CheckOutExtension('Spatial') else: raise SpatialLicenseError except SpatialLicenseError: arcpy.AddError("Spatial License is unavailable") sys.exit(1) ## Terminate script try: if arcpy.CheckExtension('Geostats') == "Available": arcpy.CheckOutExtension('Geostats') else: raise GeostatsLicenseError except GeostatsLicenseError: arcpy.AddError("Geostats License is unavailable") sys.exit(1) ## Terminate script data = {'sql_ph': '%s'} ##Set up workspaces scratchWS = arcpy.env.scratchFolder arcpy.env.workspace = scratchWS arcpy.env.scratchWorkspace = scratchWS arcpy.AddMessage('Scratch Workspace: ' + scratchWS) scratchGDB = arcpy.env.scratchGDB arcpy.env.overwriteOutput = True ##Add workspace to data dict data['scratch_ws'] = scratchWS data['scratch_gdb'] = scratchGDB date_now = datetime.datetime.now() s_now = date_now.strftime('%Y%d%b_%H%M%S') os.makedirs(scratchWS + '/Output_' + s_now) outFolder = '{0}/Output_{1}'.format(scratchWS, s_now) data['out_folder'] = outFolder ##arcpy.AddMessage('Output Folder: ' + outFolder) ##Define Functions def roundTime(dt, roundTo=60): seconds = (dt - dt.min).seconds rounding = (seconds+roundTo/2) // roundTo * roundTo return dt + datetime.timedelta(0,rounding-seconds,-dt.microsecond) def selectWatershed(watershed): ''' Initialize all Relevant Data from the Geodatabase based on chosen watershed ''' stations = '' # Feature class of station meta data/locations elev_tiff = '' # Needed for wind speed. Cannot have NoData cells dem = '' # Needed for almost all/elev_tiff can also be used for this view_factor = '' # Needed for Thermal radiation search_radius = '' db = '' if watershed == 'Johnston Draw': arcpy.AddMessage('Johnston Draw Watershed') base_path = r'C:\ReynoldsCreek\Input_Data' stations = r'{0}\Input_Data.gdb\station_locations_jd'.format(base_path) stations_soil = r'{0}\Input_Data.gdb\station_locations_jd'.format(base_path) elev_tiff = r'{0}\jd_elevation_filled.tif'.format(base_path) dem = elev_tiff view_factor = r'{0}\jd_view_factor.tif'.format(base_path) search_radius = '1000' db = '{0}/jd_data.db'.format(base_path) data['sql_ph'] = '?' elif watershed == 'Reynolds Creek': arcpy.AddMessage('Reynolds Creek Watershed') base_path = r'C:\ReynoldsCreek\Input_Data' stations = r'{0}\Input_Data.gdb\station_locations_rc'.format(base_path) stations_soil = r'{0}\Input_Data.gdb\station_locations_rc_soil'.format(base_path) elev_tiff = r'{0}\rc_elev_filled.tif'.format(base_path) dem = elev_tiff view_factor = r'{0}\rc_view_factor.tif'.format(base_path) search_radius = '10000' db = r'{0}\rc_data.db'.format(base_path) data['sql_ph'] = '?' elif watershed == 'Valles Caldera': arcpy.AddMessage('Valles Caldera Watershed') base_path = r'C:\ReynoldsCreek\Input_Data' stations = r'{0}\Input_Data.gdb\station_locations_vc'.format(base_path) stations_soil = r'{0}\Input_Data.gdb\station_locations_vc'.format(base_path) elev_tiff = r'{0}\vc_elev_filled.tif'.format(base_path) dem = elev_tiff view_factor = '' search_radius = '21500' db = r'{0}\vc_data.db'.format(base_path) data['sql_ph'] = '?' ##elif watershed == 'TESTING': ## arcpy.AddMessage('Testing watershed') ## file_path = os.path.dirname(os.path.abspath(__file__)) ## base_path = r'{0}\demo_data'.format(file_path) ## stations = '{0}\demo_sites.shp'.format(base_path) ## elev_tiff = '{0}\demo_data.tif'.format(base_path) ## dem = '{0}\demo_data.tif'.format(base_path) ## view_factor = '{0}\demo_data_vf.tif'.format(base_path) ## db = '{0}\demo.db'.format(base_path) ## search_radius = '1000' ## data['sql_ph'] = '?' return stations, stations_soil, elev_tiff, dem, view_factor, search_radius, db def ConnectDB(db, username = 'root', passwd = ''): '''connect to MySQL database''' if len(db.split('.')) == 1: try: cnx = mysql.connector.connect(user=username, password=passwd, host='localhost', database=db, buffered=True) return cnx except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: arcpy.AddMessage('Something is wrong with your user name or password') elif err.errno == errorcode.ER_BAD_DB_ERROR: arcpy.AddMessage('Database does not exist') else: arcpy.AddMessage(err) else: arcpy.AddMessage('Connection successful') ## Connect to sqlite3 database elif db.split('.')[-1] == 'db': cnx = sqlite3.connect(db) return cnx def ParameterList(param_dict, rows, table_type): '''Append all data to the end of the parameter list''' if table_type == 'climate': for row in rows: if data['watershed'] == 'Johnston Draw' or data['watershed'] == 'TESTING': param_dict['site_key'].append(row[0]) param_dict['date_time'].append(row[1]) param_dict['air_temperature'].append(row[8]) param_dict['vapor_pressure'].append(row[10]) param_dict['dew_point'].append(row[11]) param_dict['solar_radiation'].append(row[12]) param_dict['wind_speed'].append(row[13]) param_dict['wind_direction'].append(row[14]) elif data['watershed'] == 'Reynolds Creek' or data['watershed'] == 'Valles Caldera': param_dict['site_key'].append(row[0]) param_dict['date_time'].append(row[1]) param_dict['air_temperature'].append(row[9]) param_dict['vapor_pressure'].append(row[11]) param_dict['dew_point'].append(row[12]) param_dict['solar_radiation'].append(row[13]) param_dict['wind_speed'].append(row[14]) param_dict['wind_direction'].append(row[15]) elif table_type == 'precip': for row in rows: if data['watershed'] == 'Johnston Draw' or data['watershed'] == 'TESTING': param_dict['site_key'].append(row[0]) param_dict['ppts'].append(row[2]) param_dict['pptu'].append(row[3]) param_dict['ppta'].append(row[4]) elif data['watershed'] == 'Reynolds Creek' or data['watershed'] == 'Valles Caldera': param_dict['site_key'].append(row[0]) param_dict['ppts'].append(row[2]) param_dict['pptu'].append(row[3]) param_dict['ppta'].append(row[4]) elif table_type == 'soil_temperature': for row in rows: if data['watershed'] == 'Johnston Draw': param_dict['site_key'].append(row[0]) param_dict['stm005'].append(row[3]) # column 3 is soil temp at 5 cm depth if data['watershed'] == 'Reynolds Creek': param_dict['site_key'].append(row[0]) param_dict['stm005'].append(row[4]) # column 3 is soil temp at 5 cm depth elif table_type == 'snow_depth': for row in rows: if data['watershed'] == 'Johnston Draw' or data['watershed'] == 'Reynolds Creek' or data['watershed'] == 'TESTING': param_dict['site_key'].append(row[0]) param_dict['zs'].append(row[-1]) ##arcpy.AddMessage(param_dict) return param_dict def BuildClimateTable(params, num): arcpy.management.CreateTable(data['scratch_gdb'], 'climate_table') table = data['scratch_gdb'] + '/climate_table' keys = [] # Holds data types collected (wind speed, air temperature, etc) to add to table for key in params: if key == 'site_key': ftype = 'TEXT' elif key == 'date_time': ftype = 'DATE' else: ftype = 'FLOAT' arcpy.management.AddField(in_table = table, field_name = key, field_type = ftype) keys.append(key) in_cursor = arcpy.InsertCursor(table) #print keys #print params #Add data from rows into climate table for j in range(0, num): row = in_cursor.newRow() for k in range(0, len(keys)): # keys[x] = site_key, air_temperature, etc. # params[keys[k][j] = value (ie -2.5) row.setValue(keys[k], params[ keys[k] ][j]) in_cursor.insertRow(row) del in_cursor ## del row return table def DataTable(parameter, data_table, multi_fields = []): ''' Create paramater scratch table to be used for interpolation ''' scratch_data = [] temp_table1 = parameter + '_table' temp_table2 = 'in_memory/' + parameter + '_table2' ##=============================================================== ## ## These checks really need some work. ## ##=============================================================== if len(multi_fields) == 2: #Simplify these checks somehow #Thermal radation stats_fields # format - [['air_temperature', 'MEAN'], ['vapor_pressure', 'MEAN']] stats_fields = [] clause = '{0} > -500 AND {1} > -500'.format(multi_fields[0], multi_fields[1]) for l in multi_fields: stats_fields.append([l, 'MEAN']) elif len(multi_fields) == 3: # Wind speed stats_fields = [] clause = '{0} > -500 AND {1} > -500 AND {2} > -500'.format(multi_fields[0], multi_fields[1], multi_fields[2]) for l in multi_fields: stats_fields.append([l, 'MEAN']) else: # regular parameters stats_fields = parameter + ' MEAN' clause = parameter + ' > -500' # Make new temporary table out = arcpy.management.MakeTableView(in_table = data_table, out_view = temp_table1, where_clause = clause) scratch_data.append(temp_table1) out_mem = arcpy.analysis.Statistics(in_table = temp_table1, out_table = temp_table2, statistics_fields = stats_fields, case_field = 'site_key') # Copy stats to tempStations feature class if parameter == 'stm005': ###==================================== ### ### Soil temperature feature class already has elevation data for all feature classes ### ###==================================== arcpy.env.extent = data['station_locations_soil'] temp_stations = arcpy.management.CopyFeatures(in_features = data['station_locations_soil'], out_feature_class = data['scratch_gdb'] + '/tempStations') else: temp_stations = arcpy.management.CopyFeatures(in_features = data['fc_stations_elev'], out_feature_class = data['scratch_gdb'] + '/tempStations') # Join stats to temp stations feature class if len(multi_fields) > 0: #Thermal radiation and wind speed tr_fields = [] for l in multi_fields: tr_fields.append('MEAN_' + l) arcpy.management.JoinField(in_data = temp_stations, in_field = 'Site_key', join_table = temp_table2, join_field = 'site_key', fields = tr_fields) else: # Regular paramters arcpy.management.JoinField(in_data = temp_stations, in_field = 'Site_Key', join_table = temp_table2, join_field = 'site_key', fields = 'MEAN_' + parameter) # Delete rows from feature class that have negative or null elevations cursor = arcpy.UpdateCursor(temp_stations) if parameter == 'stm005': arcpy.AddMessage('Soil temperature') arcpy.env.extent = data['station_locations_soil'] else: for row in cursor: if (row.getValue('RASTERVALU') < 0 or row.getValue('RASTERVALU') == 'None' or row.getValue('RASTERVALU') is None ): cursor.deleteRow(row) else: row.setValue('RASTERVALU', round(row.getValue('RASTERVALU'), 2)) cursor.updateRow(row) del cursor del row # Delete rows from feature class that have null values for paramter cursor = arcpy.UpdateCursor(temp_stations) if len(multi_fields) == 2: #thermal Radiation check for row in cursor: val0 = 'MEAN_' + multi_fields[0] val1 = 'MEAN_' + multi_fields[1] if row.isNull(val0) or row.isNull(val1): cursor.deleteRow(row) if len(multi_fields) == 3: # Wind speed for row in cursor: val0 = 'MEAN_' + multi_fields[0] val1 = 'MEAN_' + multi_fields[1] val2 = 'MEAN_' + multi_fields[2] if row.isNull(val0) or row.isNull(val1) or row.isNull(val2): cursor.deleteRow(row) else: for row in cursor: if row.isNull('MEAN_' + parameter): cursor.deleteRow(row) else: row.setValue('MEAN_' + parameter, round(row.getValue('MEAN_' + parameter), 2)) cursor.updateRow(row) del cursor del row DeleteScratchData(scratch_data) return temp_stations def DetrendedMethod(parameter, data_table, date_stamp, out_ras): arcpy.AddMessage('Detrended Kriging') resid_raster = data['scratch_gdb'] + '/' + parameter out_raster_name = '{0}/{1}_{2}.{3}'.format(data['out_folder'], out_ras, date_stamp, data['file_format']) # Add unique ID field to temporary data table for use in OLS function arcpy.management.AddField(in_table = data_table, field_name = 'Unique_ID', field_type = 'SHORT', field_is_nullable = 'NULLABLE', field_is_required = 'NON_REQUIRED') arcpy.management.CalculateField(in_table = data_table, field = 'Unique_ID', expression = '!OBJECTID!', expression_type = 'PYTHON_9.3') #Run ordinary least squares of temporary data table coef_table = arcpy.management.CreateTable(data['scratch_gdb'], 'coef_table_' + parameter) ols = arcpy.stats.OrdinaryLeastSquares(Input_Feature_Class = data_table, Unique_ID_Field = 'Unique_ID', Output_Feature_Class = 'in_memory/fcResid', Dependent_Variable = 'MEAN_' + parameter, Explanatory_Variables = 'RASTERVALU', Coefficient_Output_Table = coef_table) intercept = list((row.getValue('Coef') for row in arcpy.SearchCursor(coef_table, fields='Coef')))[0] slope = list((row.getValue('Coef') for row in arcpy.SearchCursor(coef_table, fields='Coef')))[1] #Calculate residuals and add them to temporary data table arcpy.management.AddField(in_table = data_table, field_name = 'residual', field_type = 'DOUBLE', field_is_nullable = 'NULLABLE', field_is_required = 'NON_REQUIRED') cursor = arcpy.UpdateCursor(data_table) for row in cursor: row_math = row.getValue('MEAN_' + parameter) - ((slope * row.getValue('RASTERVALU')) + intercept) row.setValue('residual', row_math) cursor.updateRow(row) del cursor del row #Run ordinary kriging on residuals #Dewpoint/Vapor pressure kriging model k_model = KrigingModelOrdinary('SPHERICAL', 460, 3686, .1214, .2192) #Air temp kriging model #k_model = KrigingModelOrdinary('LINEAR', 37.061494) radius = RadiusFixed(10000, 1) outKrig = arcpy.sa.Kriging(in_point_features = data_table, z_field = 'residual', kriging_model = k_model, cell_size = data['output_cell_size'], search_radius = radius) outKrig.save(resid_raster) return_raster = arcpy.Raster(resid_raster) + (arcpy.Raster(data['dem']) * slope + intercept) if(data['file_format'] == 'ASC'): arcpy.conversion.RasterToASCII(return_raster, out_raster_name) else: return_raster.save(out_raster_name) #Delete scratch/residual data. del outKrig del k_model del radius arcpy.management.Delete(resid_raster) return out_raster_name def IDWMethod(parameter, data_table, date_stamp, out_ras): arcpy.AddMessage('Inverse Distance Weighted') scratch_raster = '{0}/{1}'.format(data['scratch_gdb'], parameter) out_raster_name = '{0}/{1}_{2}.{3}'.format(data['out_folder'], out_ras, date_stamp, data['file_format']) idw_out = arcpy.sa.Idw(in_point_features = data_table, z_field = 'MEAN_' + parameter, cell_size = data['elev_tiff'], power = 2) if(data['file_format'] == 'ASC'): arcpy.conversion.RasterToASCII(idw_out, out_raster_name) else: idw_out.save(out_raster_name) arcpy.AddMessage('Out Raster {0}'.format(out_raster_name)) return out_raster_name def EBKMethod(parameter, data_table, date_stamp, out_ras): arcpy.AddMessage('Empirical Bayesian Kriging') scratch_raster = '{0}/{1}'.format(data['scratch_gdb'], parameter) out_raster_name = '{0}/{1}_{2}.{3}'.format(data['out_folder'], out_ras, date_stamp, data['file_format']) #arcpy.AddMessage(data_table) arcpy.ga.EmpiricalBayesianKriging(in_features = data_table, z_field = 'MEAN_' + parameter, out_raster = scratch_raster, cell_size = data['output_cell_size'], transformation_type = 'EMPIRICAL', max_local_points = '100', overlap_factor = '1', number_semivariograms = '100', search_neighborhood = 'NBRTYPE=SmoothCircular RADIUS={0} SMOOTH_FACTOR=0.2'.format(data['search_radius']), output_type = 'PREDICTION', quantile_value = '0.5', threshold_type = 'EXCEED', semivariogram_model_type='WHITTLE_DETRENDED') #Mask output to size of original DEM ## For some reason this is no longer a problem. ## Extract By Mask does not run well on newer versions of arcmap so it is not used. #outExtract = ExtractByMask(scratch_raster, data['dem']) outExtract = arcpy.Raster(scratch_raster) if(data['file_format'] =='ASC'): arcpy.conversion.RasterToASCII(outExtract, out_raster_name) else: outExtract.save(out_raster_name) arcpy.management.Delete(scratch_raster) return out_raster_name def CombinedMethod(parameter, data_table, date_stamp, out_ras): arcpy.AddMessage('Combined Method') scratch_raster = '{0}/{1}'.format(data['scratch_gdb'], parameter) resid_raster = '{0}/{1}_{2}'.format(data['scratch_gdb'], parameter, 'residual') out_raster_name = '{0}/{1}_{2}.{3}'.format(data['out_folder'], out_ras, date_stamp, data['file_format']) # Add unique ID field to temporary data table for use in OLS function arcpy.management.AddField(in_table = data_table, field_name = 'Unique_ID', field_type = 'SHORT', field_is_nullable = 'NULLABLE', field_is_required = 'NON_REQUIRED') arcpy.management.CalculateField(in_table = data_table, field = 'Unique_ID', expression = '!OBJECTID!', expression_type = 'PYTHON_9.3') #Run ordinary least squares of temporary data table coef_table = arcpy.management.CreateTable(data['scratch_gdb'], 'coef_table_' + parameter) ols = arcpy.stats.OrdinaryLeastSquares(Input_Feature_Class = data_table, Unique_ID_Field = 'Unique_ID', Output_Feature_Class = 'in_memory/fcResid', Dependent_Variable = 'MEAN_' + parameter, Explanatory_Variables = 'RASTERVALU', Coefficient_Output_Table = coef_table) intercept = list((row.getValue('Coef') for row in arcpy.SearchCursor(coef_table, fields='Coef')))[0] slope = list((row.getValue('Coef') for row in arcpy.SearchCursor(coef_table, fields='Coef')))[1] #Calculate residuals and add them to temporary data table arcpy.management.AddField(in_table = data_table, field_name = 'residual', field_type = 'DOUBLE', field_is_nullable = 'NULLABLE', field_is_required = 'NON_REQUIRED') cursor = arcpy.UpdateCursor(data_table) for row in cursor: row_math = row.getValue('MEAN_' + parameter) - ((slope * row.getValue('RASTERVALU')) + intercept) row.setValue('residual', row_math) cursor.updateRow(row) del cursor del row arcpy.ga.EmpiricalBayesianKriging(in_features = data_table, z_field = 'MEAN_' + parameter, out_raster = resid_raster, cell_size = data['output_cell_size'], transformation_type = 'EMPIRICAL', max_local_points = '100', overlap_factor = '1', number_semivariograms = '100', search_neighborhood = 'NBRTYPE=SmoothCircular RADIUS=10000.9518700025 SMOOTH_FACTOR=0.2', output_type = 'PREDICTION', quantile_value = '0.5', threshold_type = 'EXCEED', semivariogram_model_type='WHITTLE_DETRENDED') out_extract = arcpy.sa.ExtractByMask(resid_raster, data['dem']) out_extract.save(scratch_raster) #Add back elevation trends and save final raster output_raster = arcpy.Raster(scratch_raster) + (arcpy.Raster(data['dem']) * slope + intercept) if(data['file_format'] == 'ASC'): arcpy.conversion.RasterToASCII(output_raster, out_raster_name) else: output_raster.save(out_raster_name) arcpy.management.Delete(scratch_raster) arcpy.management.Delete(resid_raster) return out_raster_name def Interpolate(parameter, scratch_table, date_stamp, out_name): '''Interpolate using the chosen method''' raster = '' if data['kriging_method'] == 'Detrended': raster = DetrendedMethod(parameter, scratch_table, date_stamp, out_name) #raster.save(data['out_folder'] + '/' + param + '.tif') elif data['kriging_method'] == 'Combined': raster = CombinedMethod(parameter, scratch_table, date_stamp, out_name) elif data['kriging_method'] == 'IDW': raster = IDWMethod(parameter, scratch_table, date_stamp, out_name) else: try: raster = EBKMethod(parameter, scratch_table, date_stamp, out_name) except arcpy.ExecuteError: arcpy.AddMessage(arcpy.GetMessages(2)) return raster def OLS(parameter, scratch_table, date_stamp, out_name): out_raster_name = '{0}/{1}_{2}.{3}'.format(data['out_folder'], out_name, date_stamp, data['file_format']) #Run ordinary least squares on scratch_table coef_table = arcpy.management.CreateTable(data['scratch_gdb'], 'coef_table') if parameter == 'stm005': exp_var = 'Elevation' else: exp_var = 'RASTERVALU' arcpy.management.AddField(in_table = scratch_table, field_name = 'Unique_ID', field_type = 'SHORT', field_is_nullable = 'NULLABLE', field_is_required = 'NON_REQUIRED') arcpy.management.CalculateField(in_table = scratch_table, field = 'Unique_ID', expression = '!OBJECTID!', expression_type = 'PYTHON_9.3') ols = arcpy.stats.OrdinaryLeastSquares(Input_Feature_Class = scratch_table, Unique_ID_Field = 'Unique_ID', Output_Feature_Class = 'in_memory/fcResid', Dependent_Variable = 'MEAN_' + parameter, Explanatory_Variables = exp_var, Coefficient_Output_Table = coef_table) intercept = list((row.getValue('Coef') for row in arcpy.SearchCursor(coef_table, fields='Coef')))[0] slope = list((row.getValue('Coef') for row in arcpy.SearchCursor(coef_table, fields='Coef')))[1] arcpy.env.extent = data['ext_elev'] return_raster = arcpy.Raster(data['dem']) * slope + intercept if(data['file_format'] == 'ASC'): arcpy.conversion.RasterToASCII(return_raster, out_raster_name) else: return_raster.save(out_raster_name) return out_raster_name def AirTemperature(clim_tab, date_stamp): arcpy.AddMessage('Air Temperature') param = 'air_temperature' out_raster_title = 'T_a' scratch_table = DataTable(param, clim_tab) #arcpy.management.CopyRows(scratch_table, data['scratch_gdb'] + '/temp_ta') #Kriging raster = Interpolate(param, scratch_table, date_stamp, out_raster_title) #Delete tempStations when done. #arcpy.management.Delete(scratch_table) return raster def DewPoint(clim_tab, date_stamp): arcpy.AddMessage('Dewpoint Temperature') param = 'dew_point' scratch_table = DataTable(param, clim_tab) out_raster_title = 'T_pp' #arcpy.management.CopyRows(scratch_table, data['scratch_gdb'] + '/temp_dp') #Kriging raster = Interpolate(param, scratch_table, date_stamp, out_raster_title) #Delete tempStations when done arcpy.management.Delete(scratch_table) return raster def PercentSnow(dew_point, date_stamp): inRas = arcpy.Raster(dew_point) outRas = '{0}/percent_snow_{1}.{2}'.format(data['out_folder'], date_stamp, data['file_format']) out_snow_ras = arcpy.sa.Con(inRas < -5.0, 1.0, arcpy.sa.Con((inRas >= -5.0) & (inRas < -3.0), 1.0, arcpy.sa.Con((inRas >= -3.0) & (inRas < -1.5), 1.0, arcpy.sa.Con((inRas >= -1.5) & (inRas < -0.5), 1.0, arcpy.sa.Con((inRas >= -0.5) & (inRas < 0.0), 0.75, arcpy.sa.Con((inRas >= 0.0) & (inRas < 0.5), 0.25, arcpy.sa.Con(inRas >= 0.5,0.0))))))) if(data['file_format'] == 'ASC'): arcpy.conversion.RasterToASCII(out_snow_ras, outRas) else: arcpy.management.CopyRaster(in_raster = out_snow_ras, out_rasterdataset=outRas, pixel_type = '32_BIT_FLOAT') return outRas def SnowDensity(dew_point, date_stamp): inRas = arcpy.Raster(dew_point) outRas = '{0}/rho_snow_{1}.{2}'.format(data['out_folder'], date_stamp, data['file_format']) out_snow_density = arcpy.sa.Con(inRas < -5.0, 1.0, arcpy.sa.Con((inRas >= -5.0) & (inRas < -3.0), 1.0, arcpy.sa.Con((inRas >= -3.0) & (inRas < -1.5), 1.0, arcpy.sa.Con((inRas >= -1.5) & (inRas < -0.5), 1.0, arcpy.sa.Con((inRas >= -0.5) & (inRas < 0.0), 0.75, arcpy.sa.Con((inRas >= 0.0) & (inRas < 0.5), 0.25, arcpy.sa.Con(inRas >= 0.5,0.0))))))) if(data['file_format'] == 'ASC'): arcpy.conversion.RasterToASCII(out_snow_density, outRas) else: arcpy.management.CopyRaster(in_raster = out_snow_density, out_rasterdataset=outRas, pixel_type = '32_BIT_FLOAT') return outRas def VaporPressure(clim_tab, date_stamp): arcpy.AddMessage('Vapor Pressure') param = 'vapor_pressure' scratch_table = DataTable(param, clim_tab) out_raster_title = 'e_a' #arcpy.management.CopyRows(scratch_table, data['scratch_gdb'] + '/temp_ta') #Kriging raster = Interpolate(param, scratch_table, date_stamp, out_raster_title) #Delete tempStations when done. arcpy.management.Delete(scratch_table) return raster def SolarRadiation(clim_tab, date_stamp, date_time, time_step): arcpy.AddMessage('Solar Radiation') scratch_data = [] param = 'solar_radiation' out_raster_title = 'S_n' out_raster_name = '{0}/{1}_{2}.{3}'.format(data['out_folder'], out_raster_title, date_stamp, data['file_format']) #set up area solar radiation tool parameters and run the tool #Set up time parameters day_of_year = date_time.timetuple().tm_yday i_sr_start = int(date_time.strftime('%H')) i_sr_end = i_sr_start + data['time_step'] in_twd = TimeWithinDay(day_of_year, i_sr_start, i_sr_end) sky_size = 200 try: out_global_radiation = arcpy.sa.AreaSolarRadiation(data['dem'], '', sky_size, in_twd) #out_global_radiation = out_global_radiation / data['time_step'] except arcpy.ExecuteError: msgs = arcpy.GetMessages(2) #arcpy.AddMessage(msgs) if 'Failed to open raster dataset' in msgs or 'Error in creating sun map' in msgs: arcpy.AddMessage("Skip night hours") return #Set up scratch data table scratch_table = DataTable(param, clim_tab) scratch_data.append(scratch_table) glob_rad_raster = data['scratch_gdb'] + '/glob_rad_raster' sim_points = data['scratch_gdb'] + '/simPoints' scratch_data.append(glob_rad_raster) scratch_data.append(sim_points) #Correct global radiation raster for cloud conditions #Extract simulated global radiation values to station location feature class arcpy.management.AlterField(in_table = scratch_table, field = 'RASTERVALU', new_field_name = 'Elevation') arcpy.sa.ExtractValuesToPoints(in_point_features = scratch_table, in_raster = out_global_radiation, out_point_features = sim_points, interpolate_values = 'NONE', add_attributes = 'VALUE_ONLY') arcpy.management.AddField(in_table = sim_points, field_name = 'ratio', field_type = 'FLOAT', field_is_nullable = 'NULLABLE', field_is_required = 'NON_REQUIRED') arcpy.management.CalculateField(in_table = sim_points, field = 'ratio', expression = '!MEAN_solar_radiation!/ !RASTERVALU!', expression_type = 'PYTHON_9.3') #convert 'ration' field to numpy array na = arcpy.da.TableToNumPyArray(sim_points, 'ratio') #calculate average ratio d_mean_ratio = numpy.mean(na['ratio']) d_mean_ratio2 = numpy.asscalar(d_mean_ratio) #multiply simulated raster by average ratio out_global_radiation_corrected = out_global_radiation * d_mean_ratio2 if(data['file_format'] == 'ASC'): arcpy.conversion.RasterToASCII(out_global_radiation, out_raster_name) else: out_global_radiation_corrected.save(out_raster_name) arcpy.management.Delete(scratch_table) return out_raster_name def ThermalRadiation(clim_tab, date_stamp, in_air, in_vap, in_surface_temp): arcpy.AddMessage('Thermal Radiation') param = 'thermal_radiation' out_raster_title = 'I_lw' out_file = '{0}/{1}_{2}.{3}'.format(data['out_folder'], out_raster_title, date_stamp, data['file_format']) z = data['dem'] vf = data['view_factor'] T_a = in_air vp = in_vap fields = ['air_temperature', 'vapor_pressure'] scratch_table = DataTable(param, clim_tab, multi_fields=fields) P_m = 0.0 # Reference Air Pressure (Vapor pressure) T_m = 0.0 # Reference Air Temp z_m = 0.0 # Reference elevation T_s = in_surface_temp cursor = arcpy.UpdateCursor(scratch_table) for row in cursor: z_m = row.getValue('RASTERVALU') P_m = row.getValue('MEAN_vapor_pressure') T_m = row.getValue('MEAN_air_temperature') cursor.deleteRow(row) break del cursor del row arcpy.AddMessage("P_m: " + str(P_m)) arcpy.AddMessage("T_m: " + str(T_m)) arcpy.AddMessage("z_m: " + str(z_m)) arcpy.AddMessage("T_s: " + str(T_s)) # Constants g = 9.8 # Gravity m = 0.0289 # Molecular Weight of dry air R = 8.3143 # Gas constant sigma = 5.6697 * 10 ** -8 # Stefan-Boltzmann constant epsilon_s = 0.95 # Surface emissivity gamma = -0.006 # temperature lapse rate (K m^-1) # convert temperature parameters to Kelvin T_m = T_m + 274.15 T_s = T_s + 274.15 T_a = arcpy.sa.Float(Raster(T_a) + 274.15) # convert vapor pressure to mb P_m = P_m * 0.01 vp = arcpy.sa.Float(Raster(vp) * 0.01) #Correct air temperature and vapor pressure rasters (Marks and Dozier (1979), pg. 164) #(4) corrected air temperature T_prime = T_a + (0.0065 * arcpy.Raster(z)) #saturated vapor pressure from original air temperature (T_a) e_sa = arcpy.sa.Float(6.11 * 10**((7.5*arcpy.sa.Float(T_a))/(237.3 + arcpy.sa.Float(T_a)))) #saturated vapor pressure from corrected air temperature (T_prime) e_sprime = arcpy.sa.Float(6.11 * 10**((7.5*arcpy.sa.Float(T_a))/(237.3 + arcpy.sa.Float(T_a)))) rh = arcpy.sa.Float(vp / e_sa) #(5) relative humidity e_prime = arcpy.sa.Float(rh * e_sprime) #(6) corrected vapor pressure #Pressure at a given elevation (Marks and Dozier (1979), pg. 168-169) term1 = ((-g*m)/(R*gamma)) delta_z = arcpy.Raster(z) - z_m term2 = ((T_m + gamma * delta_z)) / T_m lnTerm = arcpy.sa.Ln(term2) expTerm = arcpy.sa.Exp(term1 * lnTerm) P_a = P_m * expTerm #(10) air pressure #effective emissivity (Marks and Dozier (1979), pg. 164) epsilon_a = arcpy.sa.Float((1.24 * (e_prime / T_prime)**(1/7)) * (P_a / 1013.0)) #(7) #Incoming longwave radiation (Marks and Dozier (1979), pg. 164) term3 = arcpy.sa.Float((epsilon_a * sigma * (T_a ** 4)) * vf) term4 = arcpy.sa.Float(epsilon_s * sigma * (T_s ** 4)) term5 = (1 - arcpy.Raster(vf)) output_thermal_radiation = arcpy.sa.Float(term3 + (term4 * term5)) #(9) if(data['file_format'] == 'ASC'): arcpy.conversion.RasterToASCII(output_thermal_radiation, out_file) else: output_thermal_radiation.save(out_file) return out_file def PrecipitationMass(precip_tab, date_stamp): arcpy.AddMessage('Precipitation mass') param = 'ppta' out_raster_title = 'm_pp' out_raster_name = '{0}/{1}_{2}.{3}'.format(data['out_folder'], out_raster_title, date_stamp, data['file_format']) scratch_table = DataTable(param, precip_tab) if data['watershed'] == 'Johnston Draw': cursor = arcpy.SearchCursor(scratch_table) x = [] y = [] for row in cursor: x.append(row.getValue('RASTERVALU')) y.append(row.getValue('MEAN_ppta')) del cursor del row A = numpy.vstack([x,numpy.ones(len(x))]).T slope, intercept = numpy.linalg.lstsq(A, y)[0] arcpy.AddMessage('Slope {0}, Intercept {1}'.format(slope, intercept)) if slope != 0.0 and intercept != 0.0: #Create final raster arcpy.env.extent = data['ext_elev'] raster = (arcpy.Raster(data['dem']) * slope + intercept) if(data['file_format'] == 'ASC'): arcpy.conversion.RasterToASCII(raster, out_raster_name) else: raster.save(out_raster_name) return out_raster_name else: return else: raster = Interpolate(param, scratch_table, date_stamp, out_raster_title) #Delete tempStations when done arcpy.management.Delete(scratch_table) return raster def SoilTemperature(soil_tab, date_stamp): arcpy.AddMessage('Soil Temperature') param = 'stm005' out_raster_title = 'T_g' #Create Scratch Table -- # this is different from the rest in that it does not delete no elevation scratch_table = DataTable(param, soil_tab) raster = OLS(param, scratch_table, date_stamp, out_raster_title) arcpy.management.Delete(scratch_table) return raster def SnowDepth(snow_tab, date_stamp): arcpy.AddMessage('Snow depth') param = 'zs' out_raster_title = 'zs' scratch_table = DataTable(param, snow_tab) cursor = arcpy.SearchCursor(scratch_table) values = [] for row in cursor: values.append(row.getValue('MEAN_zs')) del cursor del row average = numpy.mean(values) count = int(arcpy.management.GetCount(scratch_table).getOutput(0)) if count >= 10 and average > 0: raster = Interpolate(param, scratch_table, date_stamp, out_raster_title) else: if count < 10: arcpy.AddMessage('Not enough data for snow depth. Try a different time step.') if average == 0: arcpy.AddMessage('No snow on the ground. Try a different time step if needed.') arcpy.management.Delete(scratch_table) return raster def SnowCoverTemperature(date_stamp): arcpy.AddMessage('Upper Layer') ul_param = 'T_s_0' avg_param = 'T_s' ul_raster_name = '{0}/{1}_{2}.{3}'.format(data['out_folder'], ul_param, date_stamp, data['file_format']) avg_raster_name = '{0}/{1}_{2}.{3}'.format(data['out_folder'], avg_param, date_stamp, data['file_format']) if len(data['ul_interp_values']['features']) <= 1: upper_layer_temperature = -0.0008 * arcpy.Raster(data['dem']) + 0.1053 if(data['file_format'] == 'ASC'): arcpy.conversion.RasterToASCII(upper_layer_temperature, ul_raster_name) else: upper_layer_temperature.save(ul_raster_name) else: ls_elevation = [] ls_temperature = [] for rec in data['ul_interp_values']['features']: ls_elevation.append(rec['attributes']['Elevation']) ls_density.append(rec['attributes']['Temperature']) lr_results = stats.linregress(ls_elevation, ls_density) slope_ul = lr_results[0] intercept_ul = lr_results[1] upper_layer_temperature = slope_ul * arcpy.Raster(data['dem']) + intercept_ul if(data['file_format'] == 'ASC'): arcpy.conversion.RasterToASCII(upper_layer_temperature, ul_raster_name) else: upper_layer_temperature.save(ul_raster_name) if len(data['ll_interp_values']['features']) <=1: lower_layer_temperature = -0.0008 * arcpy.Raster(data['dem']) + 1.3056 else: ls_elevation = [] ls_temperature = [] for rec in data['ll_interp_values']['features']: ls_elevation.append(rec['attributes']['Elevation']) ls_temperature.append(rec['attributes']['Temperature']) lr_results = stats.linregress(ls_elevation, ls_temperature) slope_ll = lr_results[0] intercept_ll = lr_results[1] lower_layer_temperature = slope_ll * arcpy.Raster(data['dem']) + intercept_ll #average snowcover temperature is the average of the upper and lower layer temperatures avg_sc_temp = arcpy.sa.CellStatistics([upper_layer_temperature, lower_layer_temperature], 'MEAN', 'NODATA') if data['file_format'] == 'ASC': arcpy.conversion.RasterToASCII(avg_sc_temp, avg_raster_name) else: avg_sc_temp.save(avg_raster_name) return ul_raster_name, avg_raster_name def SnowDensityInterpolation(date_stamp): arcpy.AddMessage('Snow Density Interpolation') param = 'rho' out_raster_name = '{0}/{1}_{2}.{3}'.format(data['out_folder'], param, date_stamp, data['file_format']) if len(data['density_interp_values']['features']) <= 1: snow_density_raster = -0.0395 * arcpy.Raster(data['dem']) + 405.26 if data['file_format'] == 'ASC': arcpy.conversion.RasterToASCII(snow_density_raster, out_raster_name) else: snow_density_raster.save(out_raster_name) else: # This will not work until we get scypy loaded ls_elevation = [] ls_density = [] for rec in data['density_interp_values']['features']: ls_elevation.append(rec['attributes']['Elevation']) ls_density.append(rec['attributes']['Density']) lr_results = stats.linregress(ls_elevation, ls_density) slope = lr_results[0] intercept = lr_results[1] snow_density_raster = slope * arcpy.Raster(data['dem']) + intercept snow_density_raster.save(out_raster_name) return out_raster_name def Constants(rl, h2o, date_stamp): arcpy.AddMessage('Constants') rl_param = 'z_0' h2o_param = 'h2o_sat' rl_raster_name = '{0}/{1}_{2}.{3}'.format(data['out_folder'],rl_param,date_stamp, data['file_format']) h2o_raster_name = '{0}/{1}_{2}.{3}'.format(data['out_folder'],h2o_param,date_stamp, data['file_format']) desc = arcpy.Describe(data['dem']) coord_system = desc.spatialReference rl_constant = CreateConstantRaster(rl, 'FLOAT', data['output_cell_size']) arcpy.management.DefineProjection(rl_constant, coord_system) if data['file_format'] == 'ASC': arcpy.conversion.RasterToASCII(rl_constant, rl_raster_name) else: rl_constant.save(rl_raster_name) h2o_constant = CreateConstantRaster(h2o, 'FLOAT', data['output_cell_size']) arcpy.management.DefineProjection(h2o_constant, coord_system) if data['file_format'] == 'ASC': arcpy.conversion.RasterToASCII(h2o_constant, h2o_raster_name) else: h2o_constant.save(h2o_raster_name) return rl_raster_name, h2o_raster_name def WindSpeed(clim_tab, date_stamp, in_date_time): arcpy.AddMessage('Wind Speed') scratch_data = [] param = 'wind_speed' out_raster_title = 'u' out_file = '{0}/{1}_{2}.{3}'.format(data['out_folder'], out_raster_title, date_stamp, data['file_format']) fields = ['wind_speed', 'wind_direction', 'air_temperature'] scratch_table = DataTable(param, clim_tab, multi_fields=fields) ninja_path = 'Upload text' #ninja_path = 'C:/WindNinja/WindNinja-3.1.1/bin/WindNinja_cli.exe' # comment to upload wind_date = in_date_time.split(" ")[0] wind_time = in_date_time.split(" ")[1] ls_wind_date = wind_date.split("-") ls_wind_time = wind_time.split(":") wind_year = ls_wind_date[0] wind_month = ls_wind_date[1] wind_day = ls_wind_date[2] wind_hour = ls_wind_time[0] wind_minute = ls_wind_time[1] #Build station csv file from SQL data # Add coordinates to station feature class arcpy.management.AddGeometryAttributes(scratch_table, 'POINT_X_Y_Z_M') #Loop through stations in station feature class and write parameter values to a csv file csv_filename = data['scratch_ws'] + '/wn_stations.csv' with open(csv_filename, 'wb') as csvFile: a = csv.writer(csvFile) a.writerow(['Station_Name', 'Coord_Sys(PROJCS,GEOGCS)', 'Datum(WGS84,NAD83,NAD27)', 'Lat/YCoord', 'Lon/XCoord', 'Height', 'Height_Units(meters,feet)', 'Speed', 'Speed_Units(mph,kph,mps)', 'Direction(degrees)', 'Temperature', 'Temperature_Units(F,C)', 'Cloud_Cover(%)', 'Radius_of_Influence', 'Radius_of_Influence_Units(miles,feet,meters,km)']) cursor = arcpy.SearchCursor(scratch_table) for row in cursor: a.writerow([row.getValue("Site_Key"), 'PROJCS', 'NAD83', row.getValue("Point_Y"), row.getValue("Point_X"), '3', 'meters', row.getValue("MEAN_wind_speed"), 'mps', row.getValue("MEAN_wind_direction"), row.getValue("MEAN_air_temperature"), 'C', '0', '-1', 'miles']) csvFile.close() #List arguments for WindNinja CLI args = [] # Comment forme here to end of Args for upload # args = [ninja_path, # "--initialization_method", "pointInitialization", # "--elevation_file", data['elev_tiff'], #elevation raster (cannot contain any "no-data" values) # "--match_points", "false", #match simulations to points (simulation fails if set to true) # "--year", wind_year, # "--month", wind_month, # "--day", wind_day, # "--hour", wind_hour, # "--minute", wind_minute, # "--mesh_resolution", data['output_cell_size'], #Resolution of model calculations # "--vegetation", "brush", #Vegetation type (can be 'grass', 'brush', or 'trees') # "--time_zone", "America/Boise", #time zone of target simulation # "--diurnal_winds", "true", #consider diurnal cycles in calculations # "--write_goog_output", "false", #write kml output (boolean: true/false) # "--write_shapefile_output", "false", #write shapefile output (boolean: true/false) # "--write_farsite_atm", "false", #write fire behavior file (boolean: true/false) # "--write_ascii_output", "true", #write ascii file output (this should always be set to true) # "--ascii_out_resolution", "-1", #resolution of output (-1 means same as mesh_resolution) # "--units_ascii_out_resolution", "m", # "--units_mesh_resolution", "m", #units of resolution of model calculations (should be "m" for meters) # "--units_output_wind_height", "m", #units of output wind height # "--output_speed_units", "mps", # "--output_wind_height", "3", # "--wx_station_filename", csv_filename, #weather station csv file used in point initialization method # "--output_path", data['scratch_ws']] #path to output # Last line uncomment for upload #run the WindNinja_cli.exe (output is written to the same location as elevatoin raster) arcpy.AddMessage('Calling WindNinja command line interface') runfile = subprocess.Popen(args, stdout = subprocess.PIPE, bufsize = -1) runfile.wait() output = runfile.stdout.read() if output is None: arcpy.AddMessage('Results: None returned\n') else: arcpy.AddMessage('Results:\n' + output) #convert ascii file to new grid for file in os.listdir(data['scratch_ws']): if file.endswith('_vel.asc'): path_2_ascii = '{0}/{1}'.format(data['scratch_ws'], file) scratch_data.append(path_2_ascii) elif ( file.endswith("_vel.prj") or file.endswith('_ang.asc') or file.endswith('_ang.prj') or file.endswith('cld.asc') or file.endswith('_cld.prj') ): scratch_data.append(data['scratch_ws'] + '/' + file) # if desired file format is ASC only copy to output folder if(data['file_format'] == 'ASC'): shutil.copyfile(path_2_ascii, out_file) else: arcpy.conversion.ASCIIToRaster(in_ascii_file=path_2_ascii, out_raster=out_file, data_type='FLOAT') #Get coordinate system information desc = arcpy.Describe(data['dem']) coord_system = desc.spatialReference arcpy.management.DefineProjection(out_file, coord_system) DeleteScratchData(scratch_data) return out_file def ClearBadZeros(): fix_zero = [] for f in glob.glob('m_pp_*.{0}'.format(data['file_format'])): fix_zero.append(f) for f in glob.glob('zs_*.{0}'.format(data['file_format'])): fix_zero.append(f) for f in fix_zero: nm = f.split('.') raster = arcpy.Raster(f) zero = 0 out_con = arcpy.sa.Con(raster, zero, raster, "VALUE < 0") if nm[1].lower() == 'asc': arcpy.management.Delete(raster) arcpy.conversion.RasterToASCII(out_con, '{0}\\{1}.asc'.format(data['scratch_ws'], nm[0])) else: out_con.save('{0}\\{1}.tif'.format(data['scratch_ws'], nm[0])) def emailer(email, subject, message): from_addr = '[email protected]' to_addrs = email msg = MIMEMultipart() msg['From'] = from_addr msg['To'] = to_addrs msg['Subject'] = subject message = message msg.attach(MIMEText(message)) if len(to_addrs) > 2: username = '[email protected]' password = '' dir_path = os.path.dirname(os.path.realpath(__file__)) text_file = dir_path + "/password.txt" with open(text_file, 'r') as myfile: password = myfile.read() ## MAKE SURE NOT TO COMMIT THE PASSWORD TO GIT server = smtplib.SMTP_SSL("smtp.gmail.com:465") server.login(username,password) server.sendmail(from_addr, to_addrs, msg.as_string()) server.quit() def DeleteScratchData(in_list): #pass #arcpy.AddMessage("Deleting scratch data") for path in in_list: print path arcpy.management.Delete(path) # Main Function --- Figure out a way to be run as script or as tool #====================================================================== def main(): from_date_round = datetime.datetime.strptime(data['from_date'], '%Y-%m-%d %H:%M:%S') to_date_round = datetime.datetime.strptime(data['to_date'], '%Y-%m-%d %H:%M:%S') data['from_date'] = roundTime(from_date_round, 60*60) data['to_date'] = roundTime(to_date_round) return_ws = selectWatershed(data['watershed']) data.update({'stations' : return_ws[0], 'stations_soil' : return_ws[1], 'elev_tiff' : return_ws[2], 'dem' : return_ws[3], 'view_factor' : return_ws[4], 'search_radius' : return_ws[5], 'db' : return_ws[6], }) # Connect to database db_cnx = ConnectDB(data['db']) # Scratch and output lists ls_scratch_data = [] ls_output = [] #Master stations feature class to be copied for each gridding function data.update({'fc_stations_elev': data['scratch_gdb'] + '/stations_wElev'}) ls_scratch_data.append(data['fc_stations_elev']) data.update({'station_locations' : data['scratch_gdb'] + '/station_locations'}) data.update({'station_locations_soil' : data['scratch_gdb'] + '/station_locations_soil'}) arcpy.management.CopyFeatures(data['stations'], data['station_locations']) arcpy.management.CopyFeatures(data['stations_soil'], data['station_locations_soil']) ls_scratch_data.append(data['station_locations']) ls_scratch_data.append(data['station_locations_soil']) data['ext_features'] = arcpy.Describe(data['station_locations']).extent arcpy.env.cellSize = data['dem'] arcpy.AddMessage(arcpy.Describe(data['dem']).extent) data.update({'output_cell_size' : arcpy.env.cellSize, 'ext_elev' : arcpy.Describe(data['dem']).extent }) arcpy.env.extent = data['ext_elev'] arcpy.sa.ExtractValuesToPoints(in_point_features = data['station_locations'], in_raster = data['dem'], out_point_features = data['fc_stations_elev'], interpolate_values = 'NONE', add_attributes = 'VALUE_ONLY') delta = datetime.timedelta(hours=data['time_step']) date_increment = data['from_date'] # date_counter - counter to help setup data for ISNOBAL (saved in date_file.txt) date_counter = 0 date_file = open('{0}/date_file.txt'.format(data['out_folder']), 'a') while date_increment < data['to_date']: arcpy.AddMessage(' ') arcpy.AddMessage('Current time step: {0}'.format(date_increment)) if any([data['bool_all_tools'], data['bool_air_temperature'], data['bool_dew_point'], data['bool_vapor_pressure'], data['bool_wind_speed'], data['bool_solar_radiation'], data['bool_thermal_radiation']]): # Run climate data ls_scratch_data_imd = [] # Paramter lists parameters = {'site_key' : [], 'date_time' : [], 'air_temperature' : [], 'vapor_pressure' : [], 'dew_point' : [], 'solar_radiation' : [], 'wind_speed' : [], 'wind_direction' : [] } # Query climage (weather) table from_date = date_increment.strftime('%Y-%m-%d %H:%M:%S') time_stamp = date_increment.strftime('%Y%m%d_%H') to_date_temp = date_increment + delta to_date = to_date_temp.strftime('%Y-%m-%d %H:%M:%S') query = ('SELECT * FROM weather WHERE '\ 'date_time >= ' + data['sql_ph'] + ' '\ 'AND date_time < ' + data['sql_ph'] + ';') cur = db_cnx.cursor() cur.execute(query, (from_date,to_date)) rows = cur.fetchall() i_num_return = len(rows) ##arcpy.AddMessage('Query: ' + query) #arcpy.AddMessage('Row Count: {0}'.format(i_num_return)) #Build parameter lists into dictionary parameters = ParameterList(parameters, rows, table_type = 'climate') cur.close() # Build Climate table climate_table = BuildClimateTable(parameters, i_num_return) ls_scratch_data_imd.append(climate_table) # Run interpolation tools if data['bool_air_temperature']: path_air_temp = AirTemperature(climate_table, time_stamp) ls_output.append(path_air_temp) if data['bool_dew_point']: path_dew_point = DewPoint(climate_table, time_stamp) path_percent_snow = PercentSnow(path_dew_point, time_stamp) path_snow_density = SnowDensity(path_dew_point, time_stamp) ls_output.extend([path_dew_point, path_percent_snow, path_snow_density]) if data['bool_vapor_pressure']: path_vapor_pressure = VaporPressure(climate_table, time_stamp) ls_output.append(path_vapor_pressure) if data['bool_wind_speed']: path_wind_speed = WindSpeed(climate_table, time_stamp, from_date) ls_output.append(path_wind_speed) if data['bool_solar_radiation']: path_solar_radiation = SolarRadiation(climate_table, time_stamp, date_increment, data['time_step']) ls_output.append(path_solar_radiation) if data['bool_thermal_radiation']: #Query database for average air temperature for current day sFromTR = date_increment.strftime("%Y-%m-%d") sQuery2 = ("SELECT AVG(NULLIF(ta , -999)) FROM weather " "WHERE date_time >= '" + sFromTR + " 00:00:00" + "' " "AND date_time <= '" + sFromTR + " 23:00:00'") cur2 = db_cnx.cursor() cur2.execute(sQuery2) d_ref_temp = cur2.fetchone()[0] cur2.close() path_thermal_radiation = ThermalRadiation(climate_table, time_stamp, path_air_temp, path_vapor_pressure, d_ref_temp) ls_output.append(path_thermal_radiation) DeleteScratchData(ls_scratch_data_imd) arcpy.management.Delete('in_memory') if any([data['bool_all_tools'], data['bool_precip_mass']]): # Run climate data ls_scratch_data_imd = [] # Initiate parameter lists parameters = {'site_key' : [], 'ppts' : [], 'pptu' : [], 'ppta' : []} # Query precip table from_date = date_increment.strftime('%Y-%m-%d %H:%M:%S') time_stamp = date_increment.strftime('%Y%m%d_%H') to_date_temp = date_increment + delta to_date = to_date_temp.strftime('%Y-%m-%d %H:%M:%S') query = ('SELECT * FROM precipitation WHERE '\ 'date_time >= ' + data['sql_ph'] + ' '\ 'AND date_time < ' + data['sql_ph'] + ';') cur = db_cnx.cursor() cur.execute(query, (from_date, to_date)) rows = cur.fetchall() i_num_return = len(rows) ##arcpy.AddMessage('Query: ' + query) ##arcpy.AddMessage('Row Count: {0}'.format(i_num_return)) parameters = ParameterList(parameters, rows, table_type = 'precip') cur.close() precip_table = BuildClimateTable(parameters, i_num_return) ls_scratch_data_imd.append(precip_table) if data['bool_precip_mass']: path_precip_mass = PrecipitationMass(precip_table, time_stamp) ls_output.append(path_precip_mass) DeleteScratchData(ls_scratch_data_imd) arcpy.management.Delete('in_memory') if any([data['bool_all_tools'], data['bool_soil_temperature']]): ls_scratch_data_imd = [] parameters = {'site_key': [], 'stm005': []} #Query soil temperature table # Query precip table from_date = date_increment.strftime('%Y-%m-%d %H:%M:%S') time_stamp = date_increment.strftime('%Y%m%d_%H') to_date_temp = date_increment + delta to_date = to_date_temp.strftime('%Y-%m-%d %H:%M:%S') query = ('SELECT * FROM soil_temperature WHERE '\ 'date_time >= ' + data['sql_ph'] + ' '\ 'AND date_time < ' + data['sql_ph'] + ';') cur = db_cnx.cursor() cur.execute(query, (from_date, to_date)) rows = cur.fetchall() i_num_return = len(rows) ##arcpy.AddMessage('Query: ' + query) ##arcpy.AddMessage('Row Count: {0}'.format(i_num_return)) parameters = ParameterList(parameters, rows, table_type = 'soil_temperature') cur.close() soil_table = BuildClimateTable(parameters, i_num_return) ls_scratch_data_imd.append(soil_table) if data['bool_soil_temperature']: path_soil_temp = SoilTemperature(soil_table, time_stamp) ls_output.append(path_soil_temp) DeleteScratchData(ls_scratch_data_imd) arcpy.management.Delete('in_memory') time_stamp = date_increment.strftime('%Y%m%d_%H') date_file.write('{0}\t{1}\n'.format(date_counter, time_stamp)) date_counter += 1 date_increment += delta #Run initial condition functions once from_date = date_increment.strftime('%Y-%m-%d %H:%M:%S') time_stamp = date_increment.strftime('%Y%m%d_%H') to_date_temp = date_increment + delta to_date = to_date_temp.strftime('%Y-%m-%d %H:%M:%S') if any([data['bool_all_tools'], data['bool_snow_depth']]): ls_scratch_data_imd = [] #Initiate parameter dict parameters = {'site_key': [], 'zs': [] } query = ('SELECT * FROM snow_depth WHERE '\ 'date_time >= ' + data['sql_ph'] + ' '\ 'AND date_time < ' + data['sql_ph'] + ';') cur = db_cnx.cursor() cur.execute(query, (from_date, to_date)) rows = cur.fetchall() i_num_return = len(rows) ##arcpy.AddMessage('Query: ' + query) ##arcpy.AddMessage('Row Count: {0}'.format(i_num_return)) #Build parameter lists into dictionary parameters = ParameterList(parameters, rows, table_type = 'snow_depth') cur.close() #Build Climate table snow_table = BuildClimateTable(parameters, i_num_return) ls_scratch_data_imd.append(snow_table) #Run gridding function if data['bool_snow_depth']: path_snow_depth = SnowDepth(snow_table, time_stamp) ls_output.append(path_snow_depth) DeleteScratchData(ls_scratch_data_imd) arcpy.management.Delete('in_memory') if data['bool_snow_properties']: arcpy.AddMessage('snow Properties') path_ul_snow_temperature, path_avg_snow_temperature = SnowCoverTemperature(time_stamp) path_snow_density = SnowDensityInterpolation(time_stamp) ls_output.extend([path_ul_snow_temperature, path_avg_snow_temperature, path_snow_density]) if data['bool_constants']: path_rl_constant, path_h2o_constant = Constants(data['rl_constant'], data['h2o_constant'], time_stamp) ls_output.extend([path_rl_constant, path_h2o_constant]) db_cnx.close() date_file.close() ls_scratch_data.append(scratchGDB) DeleteScratchData(ls_scratch_data) arcpy.management.Delete('in_memory') ClearBadZeros() ## Snow depth and precipitation update any values below zero to zero shutil.make_archive(data['out_folder'],'zip', data['out_folder']) arcpy.SetParameterAsText(22, data['out_folder'] + '.zip') if __name__ == '__main__': #Dictionary to hold all user input data. data.update({'watershed' : arcpy.GetParameterAsText(0), 'file_format' : arcpy.GetParameterAsText(1), 'from_date' : arcpy.GetParameterAsText(2), 'to_date' : arcpy.GetParameterAsText(3), 'time_step' : int(arcpy.GetParameterAsText(4)), 'kriging_method' : arcpy.GetParameterAsText(5), 'bool_all_tools' : arcpy.GetParameter(6), 'bool_air_temperature' : arcpy.GetParameter(7), 'bool_constants' : arcpy.GetParameter(8), 'rl_constant' : arcpy.GetParameter(9), 'h2o_constant' : arcpy.GetParameter(10), 'bool_dew_point' : arcpy.GetParameter(11), 'bool_precip_mass' : arcpy.GetParameter(12), 'bool_snow_depth' : arcpy.GetParameter(13), 'bool_snow_properties' : arcpy.GetParameter(14), 'll_interp_values' : json.loads(arcpy.GetParameter(15).JSON), 'ul_interp_values' : json.loads(arcpy.GetParameter(16).JSON), 'density_interp_values' : json.loads(arcpy.GetParameter(17).JSON), 'bool_soil_temperature' : arcpy.GetParameter(18), 'bool_solar_radiation' : arcpy.GetParameter(19), 'bool_thermal_radiation' : arcpy.GetParameter(20), 'bool_vapor_pressure' : arcpy.GetParameter(21), 'bool_wind_speed' : arcpy.GetParameter(22), 'email_address' : arcpy.GetParameterAsText(24), }) # main() try: main() except: arcpy.AddMessage("Error") subject = "[VWCSIT] There was an error" message = arcpy.GetMessages(0) arcpy.AddError(message) emailer(data['email_address'], subject, message) else: subject = "[VWCSIT] Processing Complete" message = "Download the output at <>\n\n" message += arcpy.GetMessages(0) emailer(data['email_address'], subject, message) ## import cProfile ## import pstats ## pr = cProfile.Profile() ## pr.enable() ## main() ## pr.disable() ## ps = pstats.Stats(pr).sort_stats('cumulative') ## ps.print_stats(25)
py
1a58f7a2d3c7fc6d25bdc6b0b567e54994818e9f
import webloader from bs4 import BeautifulSoup as soup def get_company_credentials(url): html = webloader.load(url) return html_to_list(html) def html_to_list(html): page_soup = soup(html, "html.parser") table = page_soup.find("div", {"class": "govspeak"}).table.findAll("tr") table_list = [] for row in table: cells = row.findAll("td") table_row = [] for cell in cells: table_row.append(cell.contents[0]) table_list.append(table_row) return table_list[1:-1]
py
1a58f8290df7ab41888adf3a7cdf3744b5abe80d
import os import platform from retriever.lib.models import Engine, no_cleanup class engine(Engine): """Engine instance for MySQL.""" name = "MySQL" abbreviation = "mysql" datatypes = { "auto": "INT(5) NOT NULL AUTO_INCREMENT", "int": "INT", "bigint": "BIGINT", "double": "DOUBLE", "decimal": "DECIMAL", "char": ("TEXT", "VARCHAR"), "bool": "BOOL", } max_int = 4294967295 required_opts = [("user", "Enter your MySQL username", "root"), ("password", "Enter your password", ""), ("host", "Enter your MySQL host", "localhost"), ("port", "Enter your MySQL port", 3306), ("database_name", "Format of database name", "{db}"), ("table_name", "Format of table name", "{db}.{table}"), ] def create_db_statement(self): createstatement = "CREATE DATABASE IF NOT EXISTS " + self.database_name() return createstatement def insert_data_from_file(self, filename): """Calls MySQL "LOAD DATA LOCAL INFILE" statement to perform a bulk insert.""" self.get_cursor() ct = len([True for c in self.table.columns if c[1][0][:3] == "ct-"]) != 0 if (self.table.cleanup.function == no_cleanup and not self.table.fixed_width and not ct and (not hasattr(self.table, "do_not_bulk_insert") or not self.table.do_not_bulk_insert) ): print ("Inserting data from " + os.path.basename(filename) + "...") columns = self.table.get_insert_columns() statement = """ LOAD DATA LOCAL INFILE '""" + filename.replace("\\", "\\\\") + """' INTO TABLE """ + self.table_name() + """ FIELDS TERMINATED BY '""" + self.table.delimiter + """' OPTIONALLY ENCLOSED BY '"' LINES TERMINATED BY '\\n' IGNORE """ + str(self.table.header_rows) + """ LINES (""" + columns + ")" try: self.cursor.execute(statement) except Exception as e: print "Failed bulk insert (%s), inserting manually" % e self.disconnect() # If the execute fails the database connection can get hung up return Engine.insert_data_from_file(self, filename) else: return Engine.insert_data_from_file(self, filename) def table_exists(self, dbname, tablename): """Checks to see if the given table exists""" if not hasattr(self, 'existing_table_names'): self.cursor.execute("SELECT table_schema, table_name FROM information_schema.tables WHERE table_schema NOT IN ('mysql', 'information_schema', 'performance_schema');") self.existing_table_names = set() for schema, table in self.cursor: self.existing_table_names.add((schema.lower(), table.lower())) return (dbname.lower(), tablename.lower()) in self.existing_table_names def get_connection(self): """Gets the db connection.""" args = {'host': self.opts['host'], 'port': int(self.opts['port']), 'user': self.opts['user'], 'passwd': self.opts['password']} import pymysql as dbapi import pymysql.constants.CLIENT as client args['client_flag'] = client.LOCAL_FILES self.get_input() return dbapi.connect(**args)
py
1a58f878e871515ddeaaabb06714d6f911cadce3
''' High-level error handling and exception raising routines and classes. ''' __all__ = ['validate', 'validate_eval', 'raise_eval', 'format_msg', 'ParsingException', 'EvaluationException', 'DocumentException', 'WebException'] import log from exceptions import Exception def validate(id, sline, expression, message): ''' If expression is False, logs critical error and raises ParsingException. ''' if not expression: msg = format_msg(message, sline.string, sline.number) log.critical(id, msg) raise ParsingException(msg) def validate_eval(id, sline, expression, message): ''' If expression is False, logs critical error and raises EvaluationException. ''' if not expression: msg = format_msg(message, sline.string, sline.number) log.critical(id, msg) raise EvaluationException(msg) def raise_eval(id, sline, message): ''' Raises EvaluationException with message and line number. ''' msg = format_msg(message, sline.string, sline.number) log.critical(id, msg) raise EvaluationException(msg) def format_msg(message, line, lnum): ''' Fromats and returns error message with line number. ''' return '{0}, line {2}: {1}'.format(message, line.strip(), lnum+1) class ExceptionWithArgs(Exception): ''' Generic exception with message. ''' def __init__(self, *args): self.args = [a for a in args] class ParsingException(ExceptionWithArgs): ''' Raised by synatax tree nodes, during parsing. ''' pass class EvaluationException(ExceptionWithArgs): ''' Raised by synatax tree nodes, during evaluation. ''' pass class DocumentException(ExceptionWithArgs): ''' Raised by document doc_loader. ''' pass class WebException(ExceptionWithArgs): ''' Raised by web client. ''' pass
py
1a58f880bea64a0a94b97a1b7140f4442d402cb5
from flask_caching import Cache cache = Cache() def clear_config(): from CTFd.utils import _get_config, get_app_config cache.delete_memoized(_get_config) cache.delete_memoized(get_app_config) def clear_standings(): from CTFd.utils.scores import get_standings cache.delete_memoized(get_standings) def clear_pages(): from CTFd.utils.config.pages import get_page, get_pages cache.delete_memoized(get_pages) cache.delete_memoized(get_page)
py
1a58f8e0ccbec98ade2d5d51d64c67e7750fdc9e
#!/usr/bin/env python # Copyright (c) 2014-2016 The ACB coin bt developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Run this script every time you change one of the png files. Using pngcrush, it will optimize the png files, remove various color profiles, remove ancillary chunks (alla) and text chunks (text). #pngcrush -brute -ow -rem gAMA -rem cHRM -rem iCCP -rem sRGB -rem alla -rem text ''' import os import sys import subprocess import hashlib from PIL import Image def file_hash(filename): '''Return hash of raw file contents''' with open(filename, 'rb') as f: return hashlib.sha256(f.read()).hexdigest() def content_hash(filename): '''Return hash of RGBA contents of image''' i = Image.open(filename) i = i.convert('RGBA') data = i.tobytes() return hashlib.sha256(data).hexdigest() pngcrush = 'pngcrush' git = 'git' folders = ["src/qt/res/movies", "src/qt/res/icons", "share/pixmaps"] basePath = subprocess.check_output([git, 'rev-parse', '--show-toplevel']).rstrip('\n') totalSaveBytes = 0 noHashChange = True outputArray = [] for folder in folders: absFolder=os.path.join(basePath, folder) for file in os.listdir(absFolder): extension = os.path.splitext(file)[1] if extension.lower() == '.png': print("optimizing "+file+"..."), file_path = os.path.join(absFolder, file) fileMetaMap = {'file' : file, 'osize': os.path.getsize(file_path), 'sha256Old' : file_hash(file_path)} fileMetaMap['contentHashPre'] = content_hash(file_path) pngCrushOutput = "" try: pngCrushOutput = subprocess.check_output( [pngcrush, "-brute", "-ow", "-rem", "gAMA", "-rem", "cHRM", "-rem", "iCCP", "-rem", "sRGB", "-rem", "alla", "-rem", "text", file_path], stderr=subprocess.STDOUT).rstrip('\n') except: print "pngcrush is not installed, aborting..." sys.exit(0) #verify if "Not a PNG file" in subprocess.check_output([pngcrush, "-n", "-v", file_path], stderr=subprocess.STDOUT): print "PNG file "+file+" is corrupted after crushing, check out pngcursh version" sys.exit(1) fileMetaMap['sha256New'] = file_hash(file_path) fileMetaMap['contentHashPost'] = content_hash(file_path) if fileMetaMap['contentHashPre'] != fileMetaMap['contentHashPost']: print "Image contents of PNG file "+file+" before and after crushing don't match" sys.exit(1) fileMetaMap['psize'] = os.path.getsize(file_path) outputArray.append(fileMetaMap) print("done\n"), print "summary:\n+++++++++++++++++" for fileDict in outputArray: oldHash = fileDict['sha256Old'] newHash = fileDict['sha256New'] totalSaveBytes += fileDict['osize'] - fileDict['psize'] noHashChange = noHashChange and (oldHash == newHash) print fileDict['file']+"\n size diff from: "+str(fileDict['osize'])+" to: "+str(fileDict['psize'])+"\n old sha256: "+oldHash+"\n new sha256: "+newHash+"\n" print "completed. Checksum stable: "+str(noHashChange)+". Total reduction: "+str(totalSaveBytes)+" bytes"
py
1a58f8f0b9aadfbf123bcf207972c63f51b971bf
def min_operations(nums): operations_count = 0 if not nums or len(nums) == 1: return 0 i = 0 while i < len(nums) - 1: if nums[i + 1] <= nums[i]: diff = nums[i] - nums[i + 1] nums[i + 1] += diff + 1 operations_count += diff + 1 else: i += 1 return operations_count print(min_operations([1, 5, 2, 4, 1])) print(min_operations([1, 1, 1])) print(min_operations([8])) print(min_operations([10, 2, 5])) print(min_operations([3, 5])) print(min_operations([7, 6, 1, 9, 9, 10]))
py
1a58f98d4072d89dbee5d1261164b5957a42d631
from setuptools import setup setup( name='quilt3_package_browse', version='0.0.1', py_modules=['index'], )
py
1a58f99a0cfbbc00c060950481ed5d5ba9a1e57d
# # Copyright (c) 2006-2019, RT-Thread Development Team # # SPDX-License-Identifier: Apache-2.0 # # Change Logs: # Date Author Notes # 2019-03-21 Bernard the first version # 2019-04-15 armink fix project update error # import os import sys import glob from utils import * from utils import _make_path_relative from utils import xml_indent import xml.etree.ElementTree as etree from xml.etree.ElementTree import SubElement from building import * MODULE_VER_NUM = 5 source_pattern = ['*.c', '*.cpp', '*.cxx', '*.s', '*.S', '*.asm'] def OSPath(path): import platform if type(path) == type('str'): if platform.system() == 'Windows': return path.replace('/', '\\') else: return path.replace('\\', '/') else: if platform.system() == 'Windows': return [item.replace('/', '\\') for item in path] else: return [item.replace('\\', '/') for item in path] # collect the build source code path and parent path def CollectPaths(paths): all_paths = [] def ParentPaths(path): ret = os.path.dirname(path) if ret == path or ret == '': return [] return [ret] + ParentPaths(ret) for path in paths: # path = os.path.abspath(path) path = path.replace('\\', '/') all_paths = all_paths + [path] + ParentPaths(path) all_paths = list(set(all_paths)) return sorted(all_paths) ''' Collect all of files under paths ''' def CollectFiles(paths, pattern): files = [] for path in paths: if type(pattern) == type(''): files = files + glob.glob(path + '/' + pattern) else: for item in pattern: # print('--> %s' % (path + '/' + item)) files = files + glob.glob(path + '/' + item) return sorted(files) def CollectAllFilesinPath(path, pattern): files = [] for item in pattern: files += glob.glob(path + '/' + item) list = os.listdir(path) if len(list): for item in list: if item.startswith('.'): continue if item == 'bsp': continue if os.path.isdir(os.path.join(path, item)): files = files + CollectAllFilesinPath(os.path.join(path, item), pattern) return files ''' Exclude files from infiles ''' def ExcludeFiles(infiles, files): in_files = set([OSPath(file) for file in infiles]) exl_files = set([OSPath(file) for file in files]) exl_files = in_files - exl_files return exl_files # caluclate the exclude path for project def ExcludePaths(rootpath, paths): ret = [] files = os.listdir(OSPath(rootpath)) for file in files: if file.startswith('.'): continue fullname = os.path.join(OSPath(rootpath), file) if os.path.isdir(fullname): # print(fullname) if not fullname in paths: ret = ret + [fullname] else: ret = ret + ExcludePaths(fullname, paths) return ret rtt_path_prefix = '"${workspace_loc://${ProjName}//' def ConverToRttEclipsePathFormat(path): return rtt_path_prefix + path + '}"' def IsRttEclipsePathFormat(path): if path.startswith(rtt_path_prefix): return True else: return False # all libs added by scons should be ends with five whitespace as a flag rtt_lib_flag = 5 * " " def ConverToRttEclipseLibFormat(lib): return str(lib) + str(rtt_lib_flag) def IsRttEclipseLibFormat(path): if path.endswith(rtt_lib_flag): return True else: return False def IsCppProject(): return GetDepend('RT_USING_CPLUSPLUS') def HandleToolOption(tools, env, project, reset): is_cpp_prj = IsCppProject() BSP_ROOT = os.path.abspath(env['BSP_ROOT']) CPPDEFINES = project['CPPDEFINES'] paths = [ConverToRttEclipsePathFormat(RelativeProjectPath(env, os.path.normpath(i)).replace('\\', '/')) for i in project['CPPPATH']] compile_include_paths_options = [] compile_include_files_options = [] compile_defs_options = [] linker_scriptfile_option = None linker_script_option = None linker_nostart_option = None linker_libs_option = None linker_paths_option = None linker_newlib_nano_option = None for tool in tools: if tool.get('id').find('compile') != 1: options = tool.findall('option') # find all compile options for option in options: if option.get('id').find('compiler.include.paths') != -1 or option.get('id').find( 'compiler.option.includepaths') != -1: compile_include_paths_options += [option] elif option.get('id').find('compiler.include.files') != -1 or option.get('id').find( 'compiler.option.includefiles') != -1: compile_include_files_options += [option] elif option.get('id').find('compiler.defs') != -1 or option.get('id').find( 'compiler.option.definedsymbols') != -1: compile_defs_options += [option] if tool.get('id').find('linker') != -1: options = tool.findall('option') # find all linker options for option in options: # the project type and option type must equal if is_cpp_prj != (option.get('id').find('cpp.linker') != -1): continue if option.get('id').find('linker.scriptfile') != -1: linker_scriptfile_option = option elif option.get('id').find('linker.option.script') != -1: linker_script_option = option elif option.get('id').find('linker.nostart') != -1: linker_nostart_option = option elif option.get('id').find('linker.libs') != -1: linker_libs_option = option elif option.get('id').find('linker.paths') != -1 and env.has_key('LIBPATH'): linker_paths_option = option elif option.get('id').find('linker.usenewlibnano') != -1: linker_newlib_nano_option = option # change the inclue path for option in compile_include_paths_options: # find all of paths in this project include_paths = option.findall('listOptionValue') for item in include_paths: if reset is True or IsRttEclipsePathFormat(item.get('value')): # clean old configuration option.remove(item) # print('c.compiler.include.paths') paths = sorted(paths) for item in paths: SubElement(option, 'listOptionValue', {'builtIn': 'false', 'value': item}) # change the inclue files (default) or definitions for option in compile_include_files_options: # add '_REENT_SMALL' to CPPDEFINES when --specs=nano.specs has select if linker_newlib_nano_option is not None and linker_newlib_nano_option.get( 'value') == 'true' and '_REENT_SMALL' not in CPPDEFINES: CPPDEFINES += ['_REENT_SMALL'] file_header = ''' #ifndef RTCONFIG_PREINC_H__ #define RTCONFIG_PREINC_H__ /* Automatically generated file; DO NOT EDIT. */ /* RT-Thread pre-include file */ ''' file_tail = '\n#endif /*RTCONFIG_PREINC_H__*/\n' rtt_pre_inc_item = '"${workspace_loc:/${ProjName}/rtconfig_preinc.h}"' # save the CPPDEFINES in to rtconfig_preinc.h with open('rtconfig_preinc.h', mode='w+') as f: f.write(file_header) for cppdef in CPPDEFINES: f.write("#define " + cppdef.replace('=', ' ') + '\n') f.write(file_tail) # change the c.compiler.include.files files = option.findall('listOptionValue') find_ok = False for item in files: if item.get('value') == rtt_pre_inc_item: find_ok = True break if find_ok is False: SubElement(option, 'listOptionValue', {'builtIn': 'false', 'value': rtt_pre_inc_item}) if len(compile_include_files_options) == 0: for option in compile_defs_options: defs = option.findall('listOptionValue') project_defs = [] for item in defs: if reset is True: # clean all old configuration option.remove(item) else: project_defs += [item.get('value')] if len(project_defs) > 0: cproject_defs = set(CPPDEFINES) - set(project_defs) else: cproject_defs = CPPDEFINES # print('c.compiler.defs') cproject_defs = sorted(cproject_defs) for item in cproject_defs: SubElement(option, 'listOptionValue', {'builtIn': 'false', 'value': item}) # update linker script config if linker_scriptfile_option is not None: option = linker_scriptfile_option linker_script = 'link.lds' items = env['LINKFLAGS'].split(' ') if '-T' in items: linker_script = items[items.index('-T') + 1] linker_script = ConverToRttEclipsePathFormat(linker_script) listOptionValue = option.find('listOptionValue') if listOptionValue != None: listOptionValue.set('value', linker_script) else: SubElement(option, 'listOptionValue', {'builtIn': 'false', 'value': linker_script}) # scriptfile in stm32cubeIDE if linker_script_option is not None: option = linker_script_option items = env['LINKFLAGS'].split(' ') if '-T' in items: linker_script = ConverToRttEclipsePathFormat(items[items.index('-T') + 1]).strip('"') option.set('value', linker_script) # update nostartfiles config if linker_nostart_option is not None: option = linker_nostart_option if env['LINKFLAGS'].find('-nostartfiles') != -1: option.set('value', 'true') else: option.set('value', 'false') # update libs if linker_libs_option is not None: option = linker_libs_option # remove old libs for item in option.findall('listOptionValue'): if IsRttEclipseLibFormat(item.get("value")): option.remove(item) # add new libs if env.has_key('LIBS'): for lib in env['LIBS']: formatedLib = ConverToRttEclipseLibFormat(lib) SubElement(option, 'listOptionValue', { 'builtIn': 'false', 'value': formatedLib}) # update lib paths if linker_paths_option is not None: option = linker_paths_option # remove old lib paths for item in option.findall('listOptionValue'): if IsRttEclipsePathFormat(item.get('value')): # clean old configuration option.remove(item) # add new old lib paths for path in env['LIBPATH']: SubElement(option, 'listOptionValue', {'builtIn': 'false', 'value': ConverToRttEclipsePathFormat( RelativeProjectPath(env, path).replace('\\', '/'))}) return def UpdateProjectStructure(env, prj_name): bsp_root = env['BSP_ROOT'] rtt_root = env['RTT_ROOT'] project = etree.parse('.project') root = project.getroot() if rtt_root.startswith(bsp_root): linkedResources = root.find('linkedResources') if linkedResources == None: linkedResources = SubElement(root, 'linkedResources') links = linkedResources.findall('link') # delete all RT-Thread folder links for link in links: if link.find('name').text.startswith('rt-thread'): linkedResources.remove(link) if prj_name: name = root.find('name') if name == None: name = SubElement(root, 'name') name.text = prj_name out = open('.project', 'w') out.write('<?xml version="1.0" encoding="UTF-8"?>\n') xml_indent(root) out.write(etree.tostring(root, encoding='utf-8')) out.close() return def GenExcluding(env, project): rtt_root = os.path.abspath(env['RTT_ROOT']) bsp_root = os.path.abspath(env['BSP_ROOT']) coll_dirs = CollectPaths(project['DIRS']) all_paths_temp = [OSPath(path) for path in coll_dirs] all_paths = [] # add used path for path in all_paths_temp: if path.startswith(rtt_root) or path.startswith(bsp_root): all_paths.append(path) if bsp_root.startswith(rtt_root): # bsp folder is in the RT-Thread root folder, such as the RT-Thread source code on GitHub exclude_paths = ExcludePaths(rtt_root, all_paths) elif rtt_root.startswith(bsp_root): # RT-Thread root folder is in the bsp folder, such as project folder which generate by 'scons --dist' cmd check_path = [] exclude_paths = [] # analyze the primary folder which relative to BSP_ROOT and in all_paths for path in all_paths: if path.startswith(bsp_root): folders = RelativeProjectPath(env, path).split('\\') if folders[0] != '.' and '\\' + folders[0] not in check_path: check_path += ['\\' + folders[0]] # exclue the folder which has managed by scons for path in check_path: exclude_paths += ExcludePaths(bsp_root + path, all_paths) else: exclude_paths = ExcludePaths(rtt_root, all_paths) exclude_paths += ExcludePaths(bsp_root, all_paths) paths = exclude_paths exclude_paths = [] # remove the folder which not has source code by source_pattern for path in paths: # add bsp and libcpu folder and not collect source files (too more files) if path.endswith('rt-thread\\bsp') or path.endswith('rt-thread\\libcpu'): exclude_paths += [path] continue set = CollectAllFilesinPath(path, source_pattern) if len(set): exclude_paths += [path] exclude_paths = [RelativeProjectPath(env, path).replace('\\', '/') for path in exclude_paths] all_files = CollectFiles(all_paths, source_pattern) src_files = project['FILES'] exclude_files = ExcludeFiles(all_files, src_files) exclude_files = [RelativeProjectPath(env, file).replace('\\', '/') for file in exclude_files] env['ExPaths'] = exclude_paths env['ExFiles'] = exclude_files return exclude_paths + exclude_files def RelativeProjectPath(env, path): project_root = os.path.abspath(env['BSP_ROOT']) rtt_root = os.path.abspath(env['RTT_ROOT']) if path.startswith(project_root): return _make_path_relative(project_root, path) if path.startswith(rtt_root): return 'rt-thread/' + _make_path_relative(rtt_root, path) # TODO add others folder print('ERROR: the ' + path + ' not support') return path def HandleExcludingOption(entry, sourceEntries, excluding): old_excluding = [] if entry != None: old_excluding = entry.get('excluding').split('|') sourceEntries.remove(entry) value = '' for item in old_excluding: if item.startswith('//'): old_excluding.remove(item) else: if value == '': value = item else: value += '|' + item for item in excluding: # add special excluding path prefix for RT-Thread item = '//' + item if value == '': value = item else: value += '|' + item SubElement(sourceEntries, 'entry', {'excluding': value, 'flags': 'VALUE_WORKSPACE_PATH|RESOLVED', 'kind': 'sourcePath', 'name': ""}) def UpdateCproject(env, project, excluding, reset, prj_name): excluding = sorted(excluding) cproject = etree.parse('.cproject') root = cproject.getroot() cconfigurations = root.findall('storageModule/cconfiguration') for cconfiguration in cconfigurations: tools = cconfiguration.findall('storageModule/configuration/folderInfo/toolChain/tool') HandleToolOption(tools, env, project, reset) sourceEntries = cconfiguration.find('storageModule/configuration/sourceEntries') entry = sourceEntries.find('entry') HandleExcludingOption(entry, sourceEntries, excluding) # update refreshScope if prj_name: prj_name = '/' + prj_name configurations = root.findall('storageModule/configuration') for configuration in configurations: resource = configuration.find('resource') configuration.remove(resource) SubElement(configuration, 'resource', {'resourceType': "PROJECT", 'workspacePath': prj_name}) # write back to .cproject out = open('.cproject', 'w') out.write('<?xml version="1.0" encoding="UTF-8" standalone="no"?>\n') out.write('<?fileVersion 4.0.0?>') xml_indent(root) out.write(etree.tostring(root, encoding='utf-8')) out.close() def TargetEclipse(env, reset=False, prj_name=None): global source_pattern print('Update eclipse setting...') if not os.path.exists('.cproject'): print('no eclipse CDT project found!') return project = ProjectInfo(env) # update the project file structure info on '.project' file UpdateProjectStructure(env, prj_name) # generate the exclude paths and files excluding = GenExcluding(env, project) # update the project configuration on '.cproject' file UpdateCproject(env, project, excluding, reset, prj_name) print('done!') return
py
1a58fadbc64626f235cabfdbd61c8126611db784
""" API operations allowing clients to determine datatype supported by Galaxy. """ from galaxy.web import _future_expose_api_anonymous_and_sessionless as expose_api_anonymous_and_sessionless from galaxy import exceptions from galaxy.web.base.controller import BaseAPIController from galaxy.util import asbool from galaxy.datatypes.data import Data import logging log = logging.getLogger( __name__ ) class DatatypesController( BaseAPIController ): @expose_api_anonymous_and_sessionless def index( self, trans, **kwd ): """ GET /api/datatypes Return an object containing upload datatypes. """ datatypes_registry = self._datatypes_registry extension_only = asbool( kwd.get( 'extension_only', True ) ) upload_only = asbool( kwd.get( 'upload_only', True ) ) try: if extension_only: if upload_only: return datatypes_registry.upload_file_formats else: return [ ext for ext in datatypes_registry.datatypes_by_extension ] else: rval = [] for elem in datatypes_registry.datatype_elems: if not asbool(elem.get('display_in_upload')) and upload_only: continue keys = ['extension', 'description', 'description_url'] dictionary = {} for key in keys: dictionary[key] = elem.get(key) extension = elem.get('extension') if extension in datatypes_registry.datatypes_by_extension: composite_files = datatypes_registry.datatypes_by_extension[ extension ].composite_files if composite_files: dictionary['composite_files'] = [_.dict() for _ in composite_files.itervalues()] rval.append(dictionary) return rval except Exception as exception: log.error( 'could not get datatypes: %s', str( exception ), exc_info=True ) if not isinstance( exception, exceptions.MessageException ): raise exceptions.InternalServerError( str( exception ) ) else: raise @expose_api_anonymous_and_sessionless def mapping( self, trans, **kwd ): ''' GET /api/datatypes/mapping Return a dictionary of class to class mappings. ''' try: ext_to_class_name = dict() classes = [] for k, v in self._datatypes_registry.datatypes_by_extension.iteritems(): c = v.__class__ ext_to_class_name[k] = c.__module__ + "." + c.__name__ classes.append( c ) class_to_classes = dict() def visit_bases( types, cls ): for base in cls.__bases__: if issubclass( base, Data ): types.add( base.__module__ + "." + base.__name__ ) visit_bases( types, base ) for c in classes: n = c.__module__ + "." + c.__name__ types = set( [ n ] ) visit_bases( types, c ) class_to_classes[ n ] = dict( ( t, True ) for t in types ) return dict( ext_to_class_name=ext_to_class_name, class_to_classes=class_to_classes ) except Exception as exception: log.error( 'could not get datatype mapping: %s', str( exception ), exc_info=True ) if not isinstance( exception, exceptions.MessageException ): raise exceptions.InternalServerError( str( exception ) ) else: raise @expose_api_anonymous_and_sessionless def sniffers( self, trans, **kwd ): ''' GET /api/datatypes/sniffers Return a list of sniffers. ''' try: rval = [] for sniffer_elem in self._datatypes_registry.sniffer_elems: datatype = sniffer_elem.get( 'type' ) if datatype is not None: rval.append( datatype ) return rval except Exception as exception: log.error( 'could not get datatypes: %s', str( exception ), exc_info=True ) if not isinstance( exception, exceptions.MessageException ): raise exceptions.InternalServerError( str( exception ) ) else: raise @expose_api_anonymous_and_sessionless def converters( self, trans, **kwd ): converters = [] for (source_type, targets) in self._datatypes_registry.datatype_converters.iteritems(): for target_type in targets: converters.append( { 'source': source_type, 'target': target_type, 'tool_id': targets[ target_type ].id, } ) return converters @expose_api_anonymous_and_sessionless def edam_formats( self, trans, **kwds ): return self._datatypes_registry.edam_formats @property def _datatypes_registry( self ): return self.app.datatypes_registry
py
1a58fafbaca63d3030e3a648a5997de5339cd8eb
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from ._enums import * __all__ = [ 'BindingArgs', 'ExprArgs', 'GoogleCloudDatacatalogV1beta1BigQueryDateShardedSpecArgs', 'GoogleCloudDatacatalogV1beta1BigQueryTableSpecArgs', 'GoogleCloudDatacatalogV1beta1ColumnSchemaArgs', 'GoogleCloudDatacatalogV1beta1GcsFilesetSpecArgs', 'GoogleCloudDatacatalogV1beta1SchemaArgs', 'GoogleCloudDatacatalogV1beta1TableSpecArgs', 'GoogleCloudDatacatalogV1beta1ViewSpecArgs', ] @pulumi.input_type class BindingArgs: def __init__(__self__, *, condition: Optional[pulumi.Input['ExprArgs']] = None, members: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, role: Optional[pulumi.Input[str]] = None): """ Associates `members`, or principals, with a `role`. :param pulumi.Input['ExprArgs'] condition: The condition that is associated with this binding. If the condition evaluates to `true`, then this binding applies to the current request. If the condition evaluates to `false`, then this binding does not apply to the current request. However, a different role binding might grant the same role to one or more of the principals in this binding. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). :param pulumi.Input[Sequence[pulumi.Input[str]]] members: Specifies the principals requesting access for a Cloud Platform resource. `members` can have the following values: * `allUsers`: A special identifier that represents anyone who is on the internet; with or without a Google account. * `allAuthenticatedUsers`: A special identifier that represents anyone who is authenticated with a Google account or a service account. * `user:{emailid}`: An email address that represents a specific Google account. For example, `[email protected]` . * `serviceAccount:{emailid}`: An email address that represents a service account. For example, `[email protected]`. * `group:{emailid}`: An email address that represents a Google group. For example, `[email protected]`. * `deleted:user:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a user that has been recently deleted. For example, `[email protected]?uid=123456789012345678901`. If the user is recovered, this value reverts to `user:{emailid}` and the recovered user retains the role in the binding. * `deleted:serviceAccount:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a service account that has been recently deleted. For example, `[email protected]?uid=123456789012345678901`. If the service account is undeleted, this value reverts to `serviceAccount:{emailid}` and the undeleted service account retains the role in the binding. * `deleted:group:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a Google group that has been recently deleted. For example, `[email protected]?uid=123456789012345678901`. If the group is recovered, this value reverts to `group:{emailid}` and the recovered group retains the role in the binding. * `domain:{domain}`: The G Suite domain (primary) that represents all the users of that domain. For example, `google.com` or `example.com`. :param pulumi.Input[str] role: Role that is assigned to the list of `members`, or principals. For example, `roles/viewer`, `roles/editor`, or `roles/owner`. """ if condition is not None: pulumi.set(__self__, "condition", condition) if members is not None: pulumi.set(__self__, "members", members) if role is not None: pulumi.set(__self__, "role", role) @property @pulumi.getter def condition(self) -> Optional[pulumi.Input['ExprArgs']]: """ The condition that is associated with this binding. If the condition evaluates to `true`, then this binding applies to the current request. If the condition evaluates to `false`, then this binding does not apply to the current request. However, a different role binding might grant the same role to one or more of the principals in this binding. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). """ return pulumi.get(self, "condition") @condition.setter def condition(self, value: Optional[pulumi.Input['ExprArgs']]): pulumi.set(self, "condition", value) @property @pulumi.getter def members(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Specifies the principals requesting access for a Cloud Platform resource. `members` can have the following values: * `allUsers`: A special identifier that represents anyone who is on the internet; with or without a Google account. * `allAuthenticatedUsers`: A special identifier that represents anyone who is authenticated with a Google account or a service account. * `user:{emailid}`: An email address that represents a specific Google account. For example, `[email protected]` . * `serviceAccount:{emailid}`: An email address that represents a service account. For example, `[email protected]`. * `group:{emailid}`: An email address that represents a Google group. For example, `[email protected]`. * `deleted:user:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a user that has been recently deleted. For example, `[email protected]?uid=123456789012345678901`. If the user is recovered, this value reverts to `user:{emailid}` and the recovered user retains the role in the binding. * `deleted:serviceAccount:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a service account that has been recently deleted. For example, `[email protected]?uid=123456789012345678901`. If the service account is undeleted, this value reverts to `serviceAccount:{emailid}` and the undeleted service account retains the role in the binding. * `deleted:group:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a Google group that has been recently deleted. For example, `[email protected]?uid=123456789012345678901`. If the group is recovered, this value reverts to `group:{emailid}` and the recovered group retains the role in the binding. * `domain:{domain}`: The G Suite domain (primary) that represents all the users of that domain. For example, `google.com` or `example.com`. """ return pulumi.get(self, "members") @members.setter def members(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "members", value) @property @pulumi.getter def role(self) -> Optional[pulumi.Input[str]]: """ Role that is assigned to the list of `members`, or principals. For example, `roles/viewer`, `roles/editor`, or `roles/owner`. """ return pulumi.get(self, "role") @role.setter def role(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "role", value) @pulumi.input_type class ExprArgs: def __init__(__self__, *, description: Optional[pulumi.Input[str]] = None, expression: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, title: Optional[pulumi.Input[str]] = None): """ Represents a textual expression in the Common Expression Language (CEL) syntax. CEL is a C-like expression language. The syntax and semantics of CEL are documented at https://github.com/google/cel-spec. Example (Comparison): title: "Summary size limit" description: "Determines if a summary is less than 100 chars" expression: "document.summary.size() < 100" Example (Equality): title: "Requestor is owner" description: "Determines if requestor is the document owner" expression: "document.owner == request.auth.claims.email" Example (Logic): title: "Public documents" description: "Determine whether the document should be publicly visible" expression: "document.type != 'private' && document.type != 'internal'" Example (Data Manipulation): title: "Notification string" description: "Create a notification string with a timestamp." expression: "'New message received at ' + string(document.create_time)" The exact variables and functions that may be referenced within an expression are determined by the service that evaluates it. See the service documentation for additional information. :param pulumi.Input[str] description: Optional. Description of the expression. This is a longer text which describes the expression, e.g. when hovered over it in a UI. :param pulumi.Input[str] expression: Textual representation of an expression in Common Expression Language syntax. :param pulumi.Input[str] location: Optional. String indicating the location of the expression for error reporting, e.g. a file name and a position in the file. :param pulumi.Input[str] title: Optional. Title for the expression, i.e. a short string describing its purpose. This can be used e.g. in UIs which allow to enter the expression. """ if description is not None: pulumi.set(__self__, "description", description) if expression is not None: pulumi.set(__self__, "expression", expression) if location is not None: pulumi.set(__self__, "location", location) if title is not None: pulumi.set(__self__, "title", title) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Optional. Description of the expression. This is a longer text which describes the expression, e.g. when hovered over it in a UI. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def expression(self) -> Optional[pulumi.Input[str]]: """ Textual representation of an expression in Common Expression Language syntax. """ return pulumi.get(self, "expression") @expression.setter def expression(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "expression", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Optional. String indicating the location of the expression for error reporting, e.g. a file name and a position in the file. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def title(self) -> Optional[pulumi.Input[str]]: """ Optional. Title for the expression, i.e. a short string describing its purpose. This can be used e.g. in UIs which allow to enter the expression. """ return pulumi.get(self, "title") @title.setter def title(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "title", value) @pulumi.input_type class GoogleCloudDatacatalogV1beta1BigQueryDateShardedSpecArgs: def __init__(__self__): """ Spec for a group of BigQuery tables with name pattern `[prefix]YYYYMMDD`. Context: https://cloud.google.com/bigquery/docs/partitioned-tables#partitioning_versus_sharding """ pass @pulumi.input_type class GoogleCloudDatacatalogV1beta1BigQueryTableSpecArgs: def __init__(__self__, *, table_spec: Optional[pulumi.Input['GoogleCloudDatacatalogV1beta1TableSpecArgs']] = None, view_spec: Optional[pulumi.Input['GoogleCloudDatacatalogV1beta1ViewSpecArgs']] = None): """ Describes a BigQuery table. :param pulumi.Input['GoogleCloudDatacatalogV1beta1TableSpecArgs'] table_spec: Spec of a BigQuery table. This field should only be populated if `table_source_type` is `BIGQUERY_TABLE`. :param pulumi.Input['GoogleCloudDatacatalogV1beta1ViewSpecArgs'] view_spec: Table view specification. This field should only be populated if `table_source_type` is `BIGQUERY_VIEW`. """ if table_spec is not None: pulumi.set(__self__, "table_spec", table_spec) if view_spec is not None: pulumi.set(__self__, "view_spec", view_spec) @property @pulumi.getter(name="tableSpec") def table_spec(self) -> Optional[pulumi.Input['GoogleCloudDatacatalogV1beta1TableSpecArgs']]: """ Spec of a BigQuery table. This field should only be populated if `table_source_type` is `BIGQUERY_TABLE`. """ return pulumi.get(self, "table_spec") @table_spec.setter def table_spec(self, value: Optional[pulumi.Input['GoogleCloudDatacatalogV1beta1TableSpecArgs']]): pulumi.set(self, "table_spec", value) @property @pulumi.getter(name="viewSpec") def view_spec(self) -> Optional[pulumi.Input['GoogleCloudDatacatalogV1beta1ViewSpecArgs']]: """ Table view specification. This field should only be populated if `table_source_type` is `BIGQUERY_VIEW`. """ return pulumi.get(self, "view_spec") @view_spec.setter def view_spec(self, value: Optional[pulumi.Input['GoogleCloudDatacatalogV1beta1ViewSpecArgs']]): pulumi.set(self, "view_spec", value) @pulumi.input_type class GoogleCloudDatacatalogV1beta1ColumnSchemaArgs: def __init__(__self__, *, column: pulumi.Input[str], type: pulumi.Input[str], description: Optional[pulumi.Input[str]] = None, mode: Optional[pulumi.Input[str]] = None, subcolumns: Optional[pulumi.Input[Sequence[pulumi.Input['GoogleCloudDatacatalogV1beta1ColumnSchemaArgs']]]] = None): """ Representation of a column within a schema. Columns could be nested inside other columns. :param pulumi.Input[str] column: Name of the column. :param pulumi.Input[str] type: Type of the column. :param pulumi.Input[str] description: Optional. Description of the column. Default value is an empty string. :param pulumi.Input[str] mode: Optional. A column's mode indicates whether the values in this column are required, nullable, etc. Only `NULLABLE`, `REQUIRED` and `REPEATED` are supported. Default mode is `NULLABLE`. :param pulumi.Input[Sequence[pulumi.Input['GoogleCloudDatacatalogV1beta1ColumnSchemaArgs']]] subcolumns: Optional. Schema of sub-columns. A column can have zero or more sub-columns. """ pulumi.set(__self__, "column", column) pulumi.set(__self__, "type", type) if description is not None: pulumi.set(__self__, "description", description) if mode is not None: pulumi.set(__self__, "mode", mode) if subcolumns is not None: pulumi.set(__self__, "subcolumns", subcolumns) @property @pulumi.getter def column(self) -> pulumi.Input[str]: """ Name of the column. """ return pulumi.get(self, "column") @column.setter def column(self, value: pulumi.Input[str]): pulumi.set(self, "column", value) @property @pulumi.getter def type(self) -> pulumi.Input[str]: """ Type of the column. """ return pulumi.get(self, "type") @type.setter def type(self, value: pulumi.Input[str]): pulumi.set(self, "type", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Optional. Description of the column. Default value is an empty string. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def mode(self) -> Optional[pulumi.Input[str]]: """ Optional. A column's mode indicates whether the values in this column are required, nullable, etc. Only `NULLABLE`, `REQUIRED` and `REPEATED` are supported. Default mode is `NULLABLE`. """ return pulumi.get(self, "mode") @mode.setter def mode(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "mode", value) @property @pulumi.getter def subcolumns(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GoogleCloudDatacatalogV1beta1ColumnSchemaArgs']]]]: """ Optional. Schema of sub-columns. A column can have zero or more sub-columns. """ return pulumi.get(self, "subcolumns") @subcolumns.setter def subcolumns(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GoogleCloudDatacatalogV1beta1ColumnSchemaArgs']]]]): pulumi.set(self, "subcolumns", value) @pulumi.input_type class GoogleCloudDatacatalogV1beta1GcsFilesetSpecArgs: def __init__(__self__, *, file_patterns: pulumi.Input[Sequence[pulumi.Input[str]]]): """ Describes a Cloud Storage fileset entry. :param pulumi.Input[Sequence[pulumi.Input[str]]] file_patterns: Patterns to identify a set of files in Google Cloud Storage. See [Cloud Storage documentation](https://cloud.google.com/storage/docs/gsutil/addlhelp/WildcardNames) for more information. Note that bucket wildcards are currently not supported. Examples of valid file_patterns: * `gs://bucket_name/dir/*`: matches all files within `bucket_name/dir` directory. * `gs://bucket_name/dir/**`: matches all files in `bucket_name/dir` spanning all subdirectories. * `gs://bucket_name/file*`: matches files prefixed by `file` in `bucket_name` * `gs://bucket_name/??.txt`: matches files with two characters followed by `.txt` in `bucket_name` * `gs://bucket_name/[aeiou].txt`: matches files that contain a single vowel character followed by `.txt` in `bucket_name` * `gs://bucket_name/[a-m].txt`: matches files that contain `a`, `b`, ... or `m` followed by `.txt` in `bucket_name` * `gs://bucket_name/a/*/b`: matches all files in `bucket_name` that match `a/*/b` pattern, such as `a/c/b`, `a/d/b` * `gs://another_bucket/a.txt`: matches `gs://another_bucket/a.txt` You can combine wildcards to provide more powerful matches, for example: * `gs://bucket_name/[a-m]??.j*g` """ pulumi.set(__self__, "file_patterns", file_patterns) @property @pulumi.getter(name="filePatterns") def file_patterns(self) -> pulumi.Input[Sequence[pulumi.Input[str]]]: """ Patterns to identify a set of files in Google Cloud Storage. See [Cloud Storage documentation](https://cloud.google.com/storage/docs/gsutil/addlhelp/WildcardNames) for more information. Note that bucket wildcards are currently not supported. Examples of valid file_patterns: * `gs://bucket_name/dir/*`: matches all files within `bucket_name/dir` directory. * `gs://bucket_name/dir/**`: matches all files in `bucket_name/dir` spanning all subdirectories. * `gs://bucket_name/file*`: matches files prefixed by `file` in `bucket_name` * `gs://bucket_name/??.txt`: matches files with two characters followed by `.txt` in `bucket_name` * `gs://bucket_name/[aeiou].txt`: matches files that contain a single vowel character followed by `.txt` in `bucket_name` * `gs://bucket_name/[a-m].txt`: matches files that contain `a`, `b`, ... or `m` followed by `.txt` in `bucket_name` * `gs://bucket_name/a/*/b`: matches all files in `bucket_name` that match `a/*/b` pattern, such as `a/c/b`, `a/d/b` * `gs://another_bucket/a.txt`: matches `gs://another_bucket/a.txt` You can combine wildcards to provide more powerful matches, for example: * `gs://bucket_name/[a-m]??.j*g` """ return pulumi.get(self, "file_patterns") @file_patterns.setter def file_patterns(self, value: pulumi.Input[Sequence[pulumi.Input[str]]]): pulumi.set(self, "file_patterns", value) @pulumi.input_type class GoogleCloudDatacatalogV1beta1SchemaArgs: def __init__(__self__, *, columns: pulumi.Input[Sequence[pulumi.Input['GoogleCloudDatacatalogV1beta1ColumnSchemaArgs']]]): """ Represents a schema (e.g. BigQuery, GoogleSQL, Avro schema). :param pulumi.Input[Sequence[pulumi.Input['GoogleCloudDatacatalogV1beta1ColumnSchemaArgs']]] columns: Schema of columns. A maximum of 10,000 columns and sub-columns can be specified. """ pulumi.set(__self__, "columns", columns) @property @pulumi.getter def columns(self) -> pulumi.Input[Sequence[pulumi.Input['GoogleCloudDatacatalogV1beta1ColumnSchemaArgs']]]: """ Schema of columns. A maximum of 10,000 columns and sub-columns can be specified. """ return pulumi.get(self, "columns") @columns.setter def columns(self, value: pulumi.Input[Sequence[pulumi.Input['GoogleCloudDatacatalogV1beta1ColumnSchemaArgs']]]): pulumi.set(self, "columns", value) @pulumi.input_type class GoogleCloudDatacatalogV1beta1TableSpecArgs: def __init__(__self__): """ Normal BigQuery table spec. """ pass @pulumi.input_type class GoogleCloudDatacatalogV1beta1ViewSpecArgs: def __init__(__self__): """ Table view specification. """ pass
py
1a58fb05355d02c56c2d17a6d5814d5ef7aa411a
"""Webroot plugin.""" import argparse import collections import json import logging from typing import DefaultDict from typing import Dict from typing import List from typing import Set from acme import challenges from certbot import crypto_util from certbot import errors from certbot import interfaces from certbot._internal import cli from certbot.achallenges import KeyAuthorizationAnnotatedChallenge as AnnotatedChallenge from certbot.compat import filesystem from certbot.compat import os from certbot.display import ops from certbot.display import util as display_util from certbot.plugins import common from certbot.plugins import util from certbot.util import safe_open logger = logging.getLogger(__name__) _WEB_CONFIG_CONTENT = """\ <?xml version="1.0" encoding="UTF-8" ?> <!--Generated by Certbot--> <configuration> <system.webServer> <staticContent> <mimeMap fileExtension="." mimeType="text/plain" /> </staticContent> </system.webServer> </configuration> """ # This list references the hashes of all versions of the web.config files that Certbot could # have generated during an HTTP-01 challenge. If you modify _WEB_CONFIG_CONTENT, you MUST add # the new hash in this list. _WEB_CONFIG_SHA256SUMS = ["20c5ca1bd58fa8ad5f07a2f1be8b7cbb707c20fcb607a8fc8db9393952846a97"] class Authenticator(common.Plugin, interfaces.Authenticator): """Webroot Authenticator.""" description = "Place files in webroot directory" MORE_INFO = """\ Authenticator plugin that performs http-01 challenge by saving necessary validation resources to appropriate paths on the file system. It expects that there is some other HTTP server configured to serve all files under specified web root ({0}).""" def more_info(self): # pylint: disable=missing-function-docstring return self.MORE_INFO.format(self.conf("path")) @classmethod def add_parser_arguments(cls, add): add("path", "-w", default=[], action=_WebrootPathAction, help="public_html / webroot path. This can be specified multiple " "times to handle different domains; each domain will have " "the webroot path that preceded it. For instance: `-w " "/var/www/example -d example.com -d www.example.com -w " "/var/www/thing -d thing.net -d m.thing.net` (default: Ask)") add("map", default={}, action=_WebrootMapAction, help="JSON dictionary mapping domains to webroot paths; this " "implies -d for each entry. You may need to escape this from " "your shell. E.g.: --webroot-map " '\'{"eg1.is,m.eg1.is":"/www/eg1/", "eg2.is":"/www/eg2"}\' ' "This option is merged with, but takes precedence over, -w / " "-d entries. At present, if you put webroot-map in a config " "file, it needs to be on a single line, like: webroot-map = " '{"example.com":"/var/www"}.') def auth_hint(self, failed_achalls): # pragma: no cover return ("The Certificate Authority failed to download the temporary challenge files " "created by Certbot. Ensure that the listed domains serve their content from " "the provided --webroot-path/-w and that files created there can be downloaded " "from the internet.") def get_chall_pref(self, domain): # pragma: no cover # pylint: disable=unused-argument,missing-function-docstring return [challenges.HTTP01] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.full_roots: Dict[str, str] = {} self.performed: DefaultDict[str, Set[AnnotatedChallenge]] = collections.defaultdict(set) # stack of dirs successfully created by this authenticator self._created_dirs: List[str] = [] def prepare(self): # pylint: disable=missing-function-docstring pass def perform(self, achalls): # pylint: disable=missing-function-docstring self._set_webroots(achalls) self._create_challenge_dirs() return [self._perform_single(achall) for achall in achalls] def _set_webroots(self, achalls): if self.conf("path"): webroot_path = self.conf("path")[-1] logger.info("Using the webroot path %s for all unmatched domains.", webroot_path) for achall in achalls: self.conf("map").setdefault(achall.domain, webroot_path) else: known_webroots = list(set(self.conf("map").values())) for achall in achalls: if achall.domain not in self.conf("map"): new_webroot = self._prompt_for_webroot(achall.domain, known_webroots) # Put the most recently input # webroot first for easy selection try: known_webroots.remove(new_webroot) except ValueError: pass known_webroots.insert(0, new_webroot) self.conf("map")[achall.domain] = new_webroot def _prompt_for_webroot(self, domain, known_webroots): webroot = None while webroot is None: if known_webroots: # Only show the menu if we have options for it webroot = self._prompt_with_webroot_list(domain, known_webroots) if webroot is None: webroot = self._prompt_for_new_webroot(domain) else: # Allow prompt to raise PluginError instead of looping forever webroot = self._prompt_for_new_webroot(domain, True) return webroot def _prompt_with_webroot_list(self, domain, known_webroots): path_flag = "--" + self.option_name("path") while True: code, index = display_util.menu( "Select the webroot for {0}:".format(domain), ["Enter a new webroot"] + known_webroots, cli_flag=path_flag, force_interactive=True) if code == display_util.CANCEL: raise errors.PluginError( "Every requested domain must have a " "webroot when using the webroot plugin.") return None if index == 0 else known_webroots[index - 1] # code == display_util.OK def _prompt_for_new_webroot(self, domain, allowraise=False): code, webroot = ops.validated_directory( _validate_webroot, "Input the webroot for {0}:".format(domain), force_interactive=True) if code == display_util.CANCEL: if not allowraise: return None raise errors.PluginError( "Every requested domain must have a " "webroot when using the webroot plugin.") return _validate_webroot(webroot) # code == display_util.OK def _create_challenge_dirs(self): path_map = self.conf("map") if not path_map: raise errors.PluginError( "Missing parts of webroot configuration; please set either " "--webroot-path and --domains, or --webroot-map. Run with " " --help webroot for examples.") for name, path in path_map.items(): self.full_roots[name] = os.path.join(path, os.path.normcase( challenges.HTTP01.URI_ROOT_PATH)) logger.debug("Creating root challenges validation dir at %s", self.full_roots[name]) # Change the permissions to be writable (GH #1389) # Umask is used instead of chmod to ensure the client can also # run as non-root (GH #1795) old_umask = filesystem.umask(0o022) try: # We ignore the last prefix in the next iteration, # as it does not correspond to a folder path ('/' or 'C:') for prefix in sorted(util.get_prefixes(self.full_roots[name])[:-1], key=len): if os.path.isdir(prefix): # Don't try to create directory if it already exists, as some filesystems # won't reliably raise EEXIST or EISDIR if directory exists. continue try: # Set owner as parent directory if possible, apply mode for Linux/Windows. # For Linux, this is coupled with the "umask" call above because # os.mkdir's "mode" parameter may not always work: # https://docs.python.org/3/library/os.html#os.mkdir filesystem.mkdir(prefix, 0o755) self._created_dirs.append(prefix) try: filesystem.copy_ownership_and_apply_mode( path, prefix, 0o755, copy_user=True, copy_group=True) except (OSError, AttributeError) as exception: logger.warning("Unable to change owner and uid of webroot directory") logger.debug("Error was: %s", exception) except OSError as exception: raise errors.PluginError( "Couldn't create root for {0} http-01 " "challenge responses: {1}".format(name, exception)) finally: filesystem.umask(old_umask) # On Windows, generate a local web.config file that allows IIS to serve expose # challenge files despite the fact they do not have a file extension. if not filesystem.POSIX_MODE: web_config_path = os.path.join(self.full_roots[name], "web.config") if os.path.exists(web_config_path): logger.info("A web.config file has not been created in " "%s because another one already exists.", self.full_roots[name]) continue logger.info("Creating a web.config file in %s to allow IIS " "to serve challenge files.", self.full_roots[name]) with safe_open(web_config_path, mode="w", chmod=0o644) as web_config: web_config.write(_WEB_CONFIG_CONTENT) def _get_validation_path(self, root_path, achall): return os.path.join(root_path, achall.chall.encode("token")) def _perform_single(self, achall): response, validation = achall.response_and_validation() root_path = self.full_roots[achall.domain] validation_path = self._get_validation_path(root_path, achall) logger.debug("Attempting to save validation to %s", validation_path) # Change permissions to be world-readable, owner-writable (GH #1795) old_umask = filesystem.umask(0o022) try: with safe_open(validation_path, mode="wb", chmod=0o644) as validation_file: validation_file.write(validation.encode()) finally: filesystem.umask(old_umask) self.performed[root_path].add(achall) return response def cleanup(self, achalls): # pylint: disable=missing-function-docstring for achall in achalls: root_path = self.full_roots.get(achall.domain, None) if root_path is not None: validation_path = self._get_validation_path(root_path, achall) logger.debug("Removing %s", validation_path) os.remove(validation_path) self.performed[root_path].remove(achall) if not filesystem.POSIX_MODE: web_config_path = os.path.join(root_path, "web.config") if os.path.exists(web_config_path): sha256sum = crypto_util.sha256sum(web_config_path) if sha256sum in _WEB_CONFIG_SHA256SUMS: logger.info("Cleaning web.config file generated by Certbot in %s.", root_path) os.remove(web_config_path) else: logger.info("Not cleaning up the web.config file in %s " "because it is not generated by Certbot.", root_path) not_removed: List[str] = [] while self._created_dirs: path = self._created_dirs.pop() try: os.rmdir(path) except OSError as exc: not_removed.insert(0, path) logger.info("Challenge directory %s was not empty, didn't remove", path) logger.debug("Error was: %s", exc) self._created_dirs = not_removed logger.debug("All challenges cleaned up") class _WebrootMapAction(argparse.Action): """Action class for parsing webroot_map.""" def __call__(self, parser, namespace, webroot_map, option_string=None): for domains, webroot_path in json.loads(webroot_map).items(): webroot_path = _validate_webroot(webroot_path) namespace.webroot_map.update( (d, webroot_path) for d in cli.add_domains(namespace, domains)) class _WebrootPathAction(argparse.Action): """Action class for parsing webroot_path.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._domain_before_webroot = False def __call__(self, parser, namespace, webroot_path, option_string=None): if self._domain_before_webroot: raise errors.PluginError( "If you specify multiple webroot paths, " "one of them must precede all domain flags") if namespace.webroot_path: # Apply previous webroot to all matched # domains before setting the new webroot path prev_webroot = namespace.webroot_path[-1] for domain in namespace.domains: namespace.webroot_map.setdefault(domain, prev_webroot) elif namespace.domains: self._domain_before_webroot = True namespace.webroot_path.append(_validate_webroot(webroot_path)) def _validate_webroot(webroot_path): """Validates and returns the absolute path of webroot_path. :param str webroot_path: path to the webroot directory :returns: absolute path of webroot_path :rtype: str """ if not os.path.isdir(webroot_path): raise errors.PluginError(webroot_path + " does not exist or is not a directory") return os.path.abspath(webroot_path)
py
1a58fb1dda24fcd5cb4bb49896853e34617cc8cf
import random ANSWERS = [ "of course not you idiot", "sure, why not", "do i look like an oracle to you?", "yes, obviously", "no", "yes", "literally kys", "absolutely haram", "idk, probably", "is grass green? is the sky blue? is taiwan numbah wan?" ] def is_question(msg): m = msg.lower() if (m.startswith("can ") or m.startswith("could ") or m.startswith("do ") or m.startswith("does ") or m.startswith("is ") or m.startswith("may ") or m.startswith("shall ") or m.startswith("should ") or m.startswith("would ") or m.startswith("will ")): return True return False def answer(): i = random.randint(1, len(ANSWERS) - 1) return ANSWERS[i]
py
1a58fd269af4917316704eee227ac54d197d9076
if __name__ == '__main__': import sys import os import distutils.util build_lib = 'build/lib' build_lib_ext = os.path.join( 'build', 'lib.%s-%s' % (distutils.util.get_platform(), sys.version[0:3]) ) sys.path.insert(0, build_lib) sys.path.insert(0, build_lib_ext) import test_yaml_ext import test_appliance test_appliance.run(test_yaml_ext)