ext
stringclasses 9
values | sha
stringlengths 40
40
| content
stringlengths 3
1.04M
|
---|---|---|
py
|
1a58fdb444fe7c06026933d0dbdf8865e16517ec
|
from django.db import models
# Create your models here.
class Saison(models.Model):
nom = models.CharField(max_length=100)
Date = models.DateTimeField()
def __str__(self):
return self.nom
class Categorie(models.Model):
age_min = models.IntegerField()
age_max = models.IntegerField()
categorie = models.CharField(max_length=100)
tarif_intra = models.IntegerField()
tarif_extra = models.IntegerField()
def __str__(self):
return self.categorie
class Joueur(models.Model):
nom = models.CharField(max_length=100)
prenom = models.CharField(max_length=100)
adresse = models.CharField(max_length=100)
code_postal = models.IntegerField()
commune = models.CharField(max_length=100)
intra_extra = models.CharField(max_length=10)
categorie = models.CharField(max_length=100)
prix = models.IntegerField()
#categorie = models.ForeignKey()
#saison = models.ForeignKey()
age = models.IntegerField()
naissance = models.DateTimeField()
licence = models.IntegerField()
genre = models.CharField(max_length=1)
taille = models.IntegerField()
def __str__(self):
return '{} {}'.format(self.nom, self.prenom)
|
py
|
1a58fde27fa6a4d7ddc65c80661f3f4e6b74eae7
|
log_level = 'INFO'
load_from = None
resume_from = None
dist_params = dict(backend='nccl')
workflow = [('train', 1)]
checkpoint_config = dict(interval=50)
evaluation = dict(interval=50, metric='mAP', key_indicator='AP')
optimizer = dict(
type='Adam',
lr=0.0015,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[200, 260])
total_epochs = 300
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
channel_cfg = dict(
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])
data_cfg = dict(
image_size=512,
base_size=256,
base_sigma=2,
heatmap_size=[128],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
num_scales=1,
scale_aware_sigma=False,
)
# model settings
model = dict(
type='BottomUp',
pretrained='mmcls://mobilenet_v2',
backbone=dict(type='MobileNetV2', widen_factor=1., out_indices=(7, )),
keypoint_head=dict(
type='BottomUpSimpleHead',
in_channels=1280,
num_joints=17,
tag_per_joint=True,
with_ae_loss=[True]),
train_cfg=dict(
num_joints=channel_cfg['dataset_joints'],
img_size=data_cfg['image_size']),
test_cfg=dict(
num_joints=channel_cfg['dataset_joints'],
max_num_people=30,
scale_factor=[1],
with_heatmaps=[True],
with_ae=[True],
project2image=True,
nms_kernel=5,
nms_padding=2,
tag_per_joint=True,
detection_threshold=0.1,
tag_threshold=1,
use_detection_val=True,
ignore_too_much=False,
adjust=True,
refine=True,
flip_test=True),
loss_pose=dict(
type='MultiLossFactory',
num_joints=17,
num_stages=1,
ae_loss_type='exp',
with_ae_loss=[True],
push_loss_factor=[0.001],
pull_loss_factor=[0.001],
with_heatmaps_loss=[True],
heatmaps_loss_factor=[1.0],
),
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='BottomUpRandomAffine',
rot_factor=30,
scale_factor=[0.75, 1.5],
scale_type='short',
trans_factor=40),
dict(type='BottomUpRandomFlip', flip_prob=0.5),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='BottomUpGenerateTarget',
sigma=2,
max_num_people=30,
),
dict(
type='Collect',
keys=['img', 'joints', 'targets', 'masks'],
meta_keys=[]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='BottomUpGetImgSize', test_scale_factor=[1]),
dict(
type='BottomUpResizeAlign',
transforms=[
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'aug_data', 'test_scale_factor', 'base_size',
'center', 'scale', 'flip_index'
]),
]
test_pipeline = val_pipeline
data_root = 'data/coco'
data = dict(
samples_per_gpu=24,
workers_per_gpu=1,
train=dict(
type='BottomUpCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json',
img_prefix=f'{data_root}/train2017/',
data_cfg=data_cfg,
pipeline=train_pipeline),
val=dict(
type='BottomUpCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline),
test=dict(
type='BottomUpCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline),
)
|
py
|
1a58fe887b6b60eea23b89d913f935e450b82c24
|
from __future__ import absolute_import
import os
import shutil
import tempfile
import unittest
import pytest
import cwltool.expression as expr
import cwltool.pathmapper
import cwltool.process
import cwltool.workflow
from cwltool.main import main
from cwltool.utils import onWindows
from .util import get_data, needs_docker, windows_needs_docker
@needs_docker
class TestListing(unittest.TestCase):
def test_missing_enable_ext(self):
# Require that --enable-ext is provided.
self.assertEquals(main([get_data('tests/wf/listing_deep.cwl'), get_data('tests/listing-job.yml')]), 1)
def test_listing_deep(self):
# Should succeed.
self.assertEquals(main(["--enable-ext", get_data('tests/wf/listing_deep.cwl'), get_data('tests/listing-job.yml')]), 0)
def test_listing_shallow(self):
# This fails on purpose, because it tries to access listing in a subdirectory the same way that listing_deep does,
# but it shouldn't be expanded.
self.assertEquals(main(["--enable-ext", get_data('tests/wf/listing_shallow.cwl'), get_data('tests/listing-job.yml')]), 1)
def test_listing_none(self):
# This fails on purpose, because it tries to access listing but it shouldn't be there.
self.assertEquals(main(["--enable-ext", get_data('tests/wf/listing_none.cwl'), get_data('tests/listing-job.yml')]), 1)
def test_listing_v1_0(self):
# Default behavior in 1.0 is deep expansion.
self.assertEquals(main([get_data('tests/wf/listing_v1_0.cwl'), get_data('tests/listing-job.yml')]), 0)
# def test_listing_v1_1(self):
# # Default behavior in 1.1 will be no expansion
# self.assertEquals(main([get_data('tests/wf/listing_v1_1.cwl'), get_data('tests/listing-job.yml')]), 1)
@pytest.mark.skipif(onWindows(),
reason="InplaceUpdate uses symlinks,does not run on windows without admin privileges")
class TestInplaceUpdate(unittest.TestCase):
def test_updateval(self):
try:
tmp = tempfile.mkdtemp()
with open(os.path.join(tmp, "value"), "w") as f:
f.write("1")
out = tempfile.mkdtemp()
self.assertEquals(main(["--outdir", out, get_data('tests/wf/updateval.cwl'), "-r", os.path.join(tmp, "value")]), 0)
with open(os.path.join(tmp, "value"), "r") as f:
self.assertEquals("1", f.read())
with open(os.path.join(out, "value"), "r") as f:
self.assertEquals("2", f.read())
finally:
shutil.rmtree(tmp)
shutil.rmtree(out)
def test_updateval_inplace(self):
try:
tmp = tempfile.mkdtemp()
with open(os.path.join(tmp, "value"), "w") as f:
f.write("1")
out = tempfile.mkdtemp()
self.assertEquals(main(["--enable-ext", "--leave-outputs", "--outdir", out, get_data('tests/wf/updateval_inplace.cwl'), "-r", os.path.join(tmp, "value")]), 0)
with open(os.path.join(tmp, "value"), "r") as f:
self.assertEquals("2", f.read())
self.assertFalse(os.path.exists(os.path.join(out, "value")))
finally:
shutil.rmtree(tmp)
shutil.rmtree(out)
def test_write_write_conflict(self):
try:
tmp = tempfile.mkdtemp()
with open(os.path.join(tmp, "value"), "w") as f:
f.write("1")
self.assertEquals(main(["--enable-ext", get_data('tests/wf/mut.cwl'), "-a", os.path.join(tmp, "value")]), 1)
with open(os.path.join(tmp, "value"), "r") as f:
self.assertEquals("2", f.read())
finally:
shutil.rmtree(tmp)
def test_sequencing(self):
try:
tmp = tempfile.mkdtemp()
with open(os.path.join(tmp, "value"), "w") as f:
f.write("1")
self.assertEquals(main(["--enable-ext", get_data('tests/wf/mut2.cwl'), "-a", os.path.join(tmp, "value")]), 0)
with open(os.path.join(tmp, "value"), "r") as f:
self.assertEquals("3", f.read())
finally:
shutil.rmtree(tmp)
# def test_read_write_conflict(self):
# try:
# tmp = tempfile.mkdtemp()
# with open(os.path.join(tmp, "value"), "w") as f:
# f.write("1")
# self.assertEquals(main(["--enable-ext", get_data('tests/wf/mut3.cwl'), "-a", os.path.join(tmp, "value")]), 0)
# finally:
# shutil.rmtree(tmp)
def test_updatedir(self):
try:
tmp = tempfile.mkdtemp()
with open(os.path.join(tmp, "value"), "w") as f:
f.write("1")
out = tempfile.mkdtemp()
self.assertFalse(os.path.exists(os.path.join(tmp, "blurb")))
self.assertFalse(os.path.exists(os.path.join(out, "blurb")))
self.assertEquals(main(["--outdir", out, get_data('tests/wf/updatedir.cwl'), "-r", tmp]), 0)
self.assertFalse(os.path.exists(os.path.join(tmp, "blurb")))
self.assertTrue(os.path.exists(os.path.join(out, "inp/blurb")))
finally:
shutil.rmtree(tmp)
shutil.rmtree(out)
def test_updatedir_inplace(self):
try:
tmp = tempfile.mkdtemp()
with open(os.path.join(tmp, "value"), "w") as f:
f.write("1")
out = tempfile.mkdtemp()
self.assertFalse(os.path.exists(os.path.join(tmp, "blurb")))
self.assertFalse(os.path.exists(os.path.join(out, "blurb")))
self.assertEquals(main(["--enable-ext", "--leave-outputs", "--outdir", out, get_data('tests/wf/updatedir_inplace.cwl'), "-r", tmp]), 0)
self.assertTrue(os.path.exists(os.path.join(tmp, "blurb")))
self.assertFalse(os.path.exists(os.path.join(out, "inp/blurb")))
finally:
shutil.rmtree(tmp)
shutil.rmtree(out)
class TestV1_1backports(unittest.TestCase):
@needs_docker
def test_require_prefix_networkaccess(self):
self.assertEquals(main(["--enable-ext", get_data('tests/wf/networkaccess.cwl')]), 0)
self.assertEquals(main([get_data('tests/wf/networkaccess.cwl')]), 1)
self.assertEquals(main(["--enable-ext", get_data('tests/wf/networkaccess-fail.cwl')]), 1)
@needs_docker
def test_require_prefix_workreuse(self):
self.assertEquals(main(["--enable-ext", get_data('tests/wf/workreuse.cwl')]), 0)
self.assertEquals(main([get_data('tests/wf/workreuse.cwl')]), 1)
self.assertEquals(main(["--enable-ext", get_data('tests/wf/workreuse-fail.cwl')]), 1)
@windows_needs_docker
def test_require_prefix_timelimit(self):
self.assertEquals(main(["--enable-ext", get_data('tests/wf/timelimit.cwl')]), 0)
self.assertEquals(main([get_data('tests/wf/timelimit.cwl')]), 1)
self.assertEquals(main(["--enable-ext", get_data('tests/wf/timelimit-fail.cwl')]), 1)
|
py
|
1a58fe8bcc5c312c36026452dd80b57cb7af1622
|
#!/usr/bin/env python
# coding: utf-8
# In[7]:
#!/usr/bin/env python
# coding: utf-8
# In[1]:
"""
This script will check for the zip codes format and whether it begins with a
68 for the City of Omaha
"""
import xml.etree.cElementTree as ET
from collections import defaultdict
import re
import pprint
osmfile = 'omaha_nebraska'
zip_type_re = re.compile(r'\d{5}$') #5 digit zip code, no dashes
def audit_ziptype(zip_types, zipcode):
if zipcode[0:2]!= 68:
zip_types[zipcode[0:2]].add(zipcode)
def is_zipcode(elem):
return (elem.attrib['k'] == "addr:postcode")
def audit_zip(osmfile):
osm_file = open (osmfile, "r")
zip_types = defaultdict(set)
for event, elem in ET.iterparse(osmfile, events=("start",)):
if elem.tag == "node" or elem.tag == "way":
for tag in elem.iter("tag"):
if is_zipcode(tag):
audit_ziptype(zip_types,tag.attrib['v'])
osm_file.close()
return zip_types
zip_print = audit_zip(osmfile)
def test():
pprint.pprint(dict(zip_print))
if __name__ == '__main__':
test()
def update_zipcode(zipcode):
"""
This function updates the zip codes by replacing the wrong zip codes with fixed ones'''
"""
if re.findall(r'(^\d{5})-\d{4}$', zipcode):
valid_zipcode = re.findall(r'(^\d{5})-\d{4}$',zipcode)[0]
return valid_zipcode
else:
return zipcode
def test_zip():
for zips, ways in zip_print.items():
for name in ways:
better_name = update_zipcode(name)
print (name, "=>", better_name)
if __name__ == '__main__':
test_zip()
# In[ ]:
|
py
|
1a58feaf4d020c1e922a81895b72ebd01c7a7f05
|
class MockCache():
def __init__(self):
self.d = {}
def set(self, key, value, timeout=0, version=None):
self.d[key] = value
def has_key(self, k, version=None):
return self.d.has_key(k)
def get_many(self, keys, version=None):
d = {}
for k in keys:
val = self.get(k, version=version)
if val is not None:
d[k] = val
return d
def clear(self):
self.d = {}
def validate_key(self, key):
return True
def set_many(self, data, timeout=None, version=None):
for key, value in data.items():
self.set(key, value, timeout=timeout, version=version)
def get(self, key, default=None, version=None):
return self.d.get(key,default)
def delete(self, key, version=None):
try:
del self.d[key]
except KeyError:
pass
class NamespacedCache(object):
"""
Structure is a
__root-keys__ -> (
rootkey1,
rootkey2
)
"__keys-list__" + root-key -> (
subkey,
subkey.something,
subkey.something.a,
subkey.a
)
main.footer.links
main.footer.articles
root = main
base = footer.links
root = main
base = footer.articles
"""
# should not contain the divisor
namespace_root_key = "__root-keys__" # contains all the root keys
namespace_base_prefix = "__keys-list__" # contains all the base keys for a root key
# default to . like namespace.object.specific
namespace_divisor = "."
def set_cache(self, cache):
"""
wraps a valid cache and add a simple namespace support
"""
self.cache = cache
def _ns_store(self, key, key_data, version=None):
# Stores in a set of keys the current key-data
data = self.cache.get(key, set(), version=version)
data.add(key_data)
self.cache.set(key, data, version=version)
def _ns_delete_(self, key, key_remove, version=None):
# deletes a key from namespace store
data = self.cache.get(key, set(), version=version)
try:
data.remove(key_remove)
except KeyError:
pass
else:
self.cache.set(key, data, version=version)
def _store_base_key(self, root, base, version=None):
self._ns_store(self.namespace_base_prefix+root, base, version=version)
def _store_root_key(self, root, version=None):
self._ns_store(self.namespace_root_key, root, version=version)
def _split(self, key):
sp = key.split(self.namespace_divisor)
root = sp[0]
base = self.namespace_divisor.join(sp[1:])
return root, base
def _get_root_keys(self, root):
base_keys = self.cache.get(self.namespace_base_prefix+root, set())
keys = []
for key in base_keys:
if key == "": #stored value on the root key
keys.append(root)
else:
keys.append(root+self.namespace_divisor+key)
return keys
def _get_all_keys(self):
root_keys = self.cache.get(self.namespace_root_key, set())
keys = map(lambda k:self._get_root_keys(k), root_keys)
return reduce(lambda x,y:x.union(y), keys, set())
def get(self, key, default=None, version=None):
return self.cache.get(key=key, default=default, version=None)
def set(self, key, value, timeout=0, version=None):
"""
"""
self.cache.set(key, value, timeout=timeout, version=version)
root, base = self._split(key)
self._store_base_key(root, base, version=version)
self._store_root_key(root, version=version)
def delete(self, key, version=None):
"""
this method can't delete namespaced roots, for that used delete_keys
"""
self.cache.delete(key=key)
root, base = self._split(key)
self._ns_delete_(self.namespace_base_prefix+root, base, version=version)
def get_many(self, keys, version=None):
return self.cache.get_many(keys, version)
def has_key(self, key, version=None):
return self.cache.has_key(key, version=version)
def add(self, key, value, timeout=None, version=None):
return self.cache.add(self, key, value, timeout=timeout, version=version)
def incr(self, key, delta=1, version=None):
return self.incr(self, key, delta=delta, version=version)
def decr(self, key, delta=1, version=None):
return self.decr(self, key, delta=delta, version=version)
def set_many(self, data, timeout=None, version=None):
# we do a lot of key changing before saving
for key, value in data.items():
self.set(key, value, timeout=timeout, version=version)
def delete_many(self, keys, version=None):
# we do a lot of key changing before deleting
for key in keys:
self.delete(key, version=version)
def clear(self):
return self.cache.clear()
def validate_key(self, key):
return self.cache.validate_key(key)
def incr_version(self, key, delta=1, version=None):
raise NotImplementedError
def decr_version(self, key, delta=1, version=None):
raise NotImplementedError
def get_keys(self, pattern=None):
# pattern
# "root" all the sub trees under root + "root" key if present
# "root.subroot" all the sub trees under subroot + subroot if present
# "root." all the sub tress under root
# "root.subroot." all the sub trees under subroot
if pattern is None:
return list(self._get_all_keys())
root, base = self._split(pattern)
keys = self._get_root_keys(root)
if root.endswith(self.namespace_divisor):
try:
keys.remove(root)
except ValueError:
pass
return filter( lambda x:x.startswith(pattern), keys )
def delete_keys(self, pattern=None):
keys = self.get_keys(pattern=pattern)
for key in keys:
self.delete(key)
try:
from django.core.cache import BaseCache
except:
BaseCache = object
class NamespacedCacheDjango(NamespacedCache, BaseCache):
def __init__(self, cache_name, *args, **kwargs):
BaseCache.__init__(self, *args, **kwargs)
if cache_name == "":
cache_name = "default"
try:
#django > 1.7 support
from django.core.cache import caches
except ImportError:
from django.core.cache import get_cache
self.set_cache(get_cache(cache_name))
else:
self.set_cache(caches[cache_name])
|
py
|
1a58ff42e233001cbbb0ccd3ac20b40c785e949c
|
import numpy as np
from statsmodels.graphics.plottools import rainbow
import utils
def interaction_plot(x, trace, response, func=np.mean, ax=None, plottype='b',
xlabel=None, ylabel=None, colors = [], markers = [],
linestyles = [], legendloc='best', legendtitle=None,
**kwargs):
"""
Interaction plot for factor level statistics
uses pandas.DataFrame to calculate an `aggregate` statistic for each
level of the factor or group given by `trace`.
Parameters
----------
x : array-like
The `x` factor levels are the x-axis. If a `pandas.Series` is given
its name will be used in `xlabel` if `xlabel` is None.
trace : array-like
The `trace` factor levels will form the trace. If `trace` is a
`pandas.Series` its name will be used as the `legendtitle` if
`legendtitle` is None.
response : array-like
The reponse variable. If a `pandas.Series` is given
its name will be used in `ylabel` if `ylabel` is None.
func : function
Anything accepted by `pandas.DataFrame.aggregate`. This is applied to
the response variable grouped by the trace levels.
plottype : str {'line', 'scatter', 'both'}, optional
The type of plot to return. Can be 'l', 's', or 'b'
ax : axes, optional
Matplotlib axes instance
xlabel : str, optional
Label to use for `x`. Default is 'X'. If `x` is a `pandas.Series` it
will use the series names.
ylabel : str, optional
Label to use for `response`. Default is 'func of response'. If
`response` is a `pandas.Series` it will use the series names.
colors : list, optional
If given, must have length == number of levels in trace.
linestyles : list, optional
If given, must have length == number of levels in trace.
markers : list, optional
If given, must have length == number of lovels in trace
kwargs
These will be passed to the plot command used either plot or scatter.
If you want to control the overall plotting options, use kwargs.
Returns
-------
fig : Figure
The figure given by `ax.figure` or a new instance.
Examples
--------
>>> import numpy as np
>>> np.random.seed(12345)
>>> weight = np.random.randint(1,4,size=60)
>>> duration = np.random.randint(1,3,size=60)
>>> days = np.log(np.random.randint(1,30, size=60))
>>> fig = interaction_plot(weight, duration, days,
... colors=['red','blue'], markers=['D','^'], ms=10)
>>> import matplotlib.pyplot as plt
>>> plt.show()
.. plot::
import numpy as np
from statsmodels.graphics.factorplots import interaction_plot
np.random.seed(12345)
weight = np.random.randint(1,4,size=60)
duration = np.random.randint(1,3,size=60)
days = np.log(np.random.randint(1,30, size=60))
fig = interaction_plot(weight, duration, days,
colors=['red','blue'], markers=['D','^'], ms=10)
import matplotlib.pyplot as plt
#plt.show()
"""
from pandas import DataFrame
fig, ax = utils.create_mpl_ax(ax)
if ylabel is None:
try: # did we get a pandas.Series
response_name = response.name
except:
response_name = 'response'
#NOTE: py3 compatible?
ylabel = '%s of %s' % (func.func_name, response_name)
if xlabel is None:
try:
x_name = x.name
except:
x_name = 'X'
if legendtitle is None:
try:
legendtitle = trace.name
except:
legentitle = 'Trace'
ax.set_ylabel(ylabel)
ax.set_xlabel(x_name)
data = DataFrame(dict(x=x, trace=trace, response=response))
plot_data = data.groupby(['trace', 'x']).aggregate(func).reset_index()
# check plot args
n_trace = len(plot_data['trace'].unique())
if linestyles:
try:
assert len(linestyles) == n_trace
except AssertionError, err:
raise ValueError("Must be a linestyle for each trace level")
else: # set a default
linestyles = ['-'] * n_trace
if markers:
try:
assert len(markers) == n_trace
except AssertionError, err:
raise ValueError("Must be a linestyle for each trace level")
else: # set a default
markers = ['.'] * n_trace
if colors:
try:
assert len(colors) == n_trace
except AssertionError, err:
raise ValueError("Must be a linestyle for each trace level")
else: # set a default
#TODO: how to get n_trace different colors?
colors = rainbow(n_trace)
if plottype == 'both' or plottype == 'b':
for i, (values, group) in enumerate(plot_data.groupby(['trace'])):
# trace label
label = str(group['trace'].values[0])
ax.plot(group['x'], group['response'], color=colors[i],
marker=markers[i], label=label,
linestyle=linestyles[i], **kwargs)
elif plottype == 'line' or plottype == 'l':
for i, (values, group) in enumerate(plot_data.groupby(['trace'])):
# trace label
label = str(group['trace'].values[0])
ax.plot(group['x'], group['response'], color=colors[i],
label=label, linestyle=linestyles[i], **kwargs)
elif plottype == 'scatter' or plottype == 's':
for i, (values, group) in enumerate(plot_data.groupby(['trace'])):
# trace label
label = str(group['trace'].values[0])
ax.scatter(group['x'], group['response'], color=colors[i],
label=label, marker=markers[i], **kwargs)
else:
raise ValueError("Plot type %s not understood" % plottype)
ax.legend(loc=legendloc, title=legendtitle)
ax.margins(.1)
return fig
|
py
|
1a58ffd8a518eb162b4896d649086e3e48f85688
|
import logging
import examples.basic.main as basic
import sim.docker as docker
from sim.core import Environment
from sim.faas import FunctionDefinition, FunctionSimulator, FunctionReplica, FunctionRequest
from sim.faassim import Simulation
logger = logging.getLogger(__name__)
def main():
logging.basicConfig(level=logging.INFO)
# prepare simulation with topology and benchmark from basic example
sim = Simulation(basic.example_topology(), basic.ExampleBenchmark())
# override the SimulatorFactory factory
sim.create_simulator_factory = CustomSimulatorFactory
# run the simulation
sim.run()
class CustomSimulatorFactory:
def __init__(self) -> None:
super().__init__()
def create(self, env: Environment, fn: FunctionDefinition) -> FunctionSimulator:
return MyFunctionSimulator()
class MyFunctionSimulator(FunctionSimulator):
def deploy(self, env: Environment, replica: FunctionReplica):
# simulate a docker pull command for deploying the function (also done by sim.faassim.DockerDeploySimMixin)
yield from docker.pull(env, replica.function.image, replica.node.ether_node)
def startup(self, env: Environment, replica: FunctionReplica):
logger.info('[simtime=%.2f] starting up function replica for function %s', env.now, replica.function.name)
# you could create a very fine-grained setup routines here
yield env.timeout(10) # simulate docker startup
def setup(self, env: Environment, replica: FunctionReplica):
# no setup routine
yield env.timeout(0)
def invoke(self, env: Environment, replica: FunctionReplica, request: FunctionRequest):
# you would probably either create one simulator per function, or use a generalized simulator, this is just
# to demonstrate how the simulators are used to encapsulate simulator behavior.
logger.info('[simtime=%.2f] invoking function %s on node %s', env.now, request, replica.node.name)
if replica.function.name == 'python-pi':
if replica.node.name.startswith('rpi3'): # those are nodes we created in basic.example_topology()
yield env.timeout(20) # invoking this function takes 20 seconds on a raspberry pi
else:
yield env.timeout(2) # invoking this function takes 2 seconds on all other nodes in the cluster
elif replica.function.name == 'resnet50-inference':
yield env.timeout(0.5) # invoking this function takes 500 ms
else:
yield env.timeout(0)
def teardown(self, env: Environment, replica: FunctionReplica):
yield env.timeout(0)
if __name__ == '__main__':
main()
|
py
|
1a5900ef0c7e66617bbbf5505f1d96c2be3a4101
|
from .. utils import TranspileTestCase, BuiltinFunctionTestCase
class BinTests(TranspileTestCase):
def test_int_but_no_index(self):
self.assertCodeExecution("""
class IntLike:
def __init__(self, val):
self.val = val
def __int__(self):
return self.val
x = IntLike(5)
print(bin(x))
""", run_in_function=False)
class BuiltinBinFunctionTests(BuiltinFunctionTestCase, TranspileTestCase):
functions = ["bin"]
not_implemented = [
'test_int',
]
|
py
|
1a5901234b8b202dc80ae438fde4b42200cc8175
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn.functional as F
from fairseq import utils
from fairseq.criterions import LegacyFairseqCriterion, register_criterion
from fairseq.data import encoders
@register_criterion("wsc")
class WSCCriterion(LegacyFairseqCriterion):
def __init__(self, args, task):
super().__init__(args, task)
if self.args.save_predictions is not None:
self.prediction_h = open(self.args.save_predictions, "w")
else:
self.prediction_h = None
self.bpe = encoders.build_bpe(args)
self.tokenizer = encoders.build_tokenizer(args)
def __del__(self):
if self.prediction_h is not None:
self.prediction_h.close()
@staticmethod
def add_args(parser):
"""Add criterion-specific arguments to the parser."""
parser.add_argument("--wsc-margin-alpha", type=float, metavar="A", default=1.0)
parser.add_argument("--wsc-margin-beta", type=float, metavar="B", default=0.0)
parser.add_argument(
"--wsc-cross-entropy",
action="store_true",
help="use cross entropy formulation instead of margin loss",
)
parser.add_argument(
"--save-predictions", metavar="FILE", help="file to save predictions to"
)
def get_masked_input(self, tokens, mask):
masked_tokens = tokens.clone()
masked_tokens[mask] = self.task.mask
return masked_tokens
def get_lprobs(self, model, tokens, mask):
logits, _ = model(src_tokens=self.get_masked_input(tokens, mask))
lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float)
scores = lprobs.gather(2, tokens.unsqueeze(-1)).squeeze(-1)
mask = mask.type_as(scores)
scores = (scores * mask).sum(dim=-1) / mask.sum(dim=-1)
return scores
def get_loss(self, query_lprobs, cand_lprobs):
if self.args.wsc_cross_entropy:
return F.cross_entropy(
torch.cat([query_lprobs, cand_lprobs]).unsqueeze(0),
query_lprobs.new([0]).long(),
)
else:
return (
-query_lprobs
+ self.args.wsc_margin_alpha
* (cand_lprobs - query_lprobs + self.args.wsc_margin_beta).clamp(min=0)
).sum()
def forward(self, model, sample, reduce=True):
# compute loss and accuracy
loss, nloss = 0.0, 0
ncorrect, nqueries = 0, 0
for i, label in enumerate(sample["labels"]):
query_lprobs = self.get_lprobs(
model,
sample["query_tokens"][i].unsqueeze(0),
sample["query_masks"][i].unsqueeze(0),
)
cand_lprobs = self.get_lprobs(
model,
sample["candidate_tokens"][i],
sample["candidate_masks"][i],
)
pred = (query_lprobs >= cand_lprobs).all().item()
if label is not None:
label = 1 if label else 0
ncorrect += 1 if pred == label else 0
nqueries += 1
if label:
# only compute a loss for positive instances
nloss += 1
loss += self.get_loss(query_lprobs, cand_lprobs)
id = sample["id"][i].item()
if self.prediction_h is not None:
print("{}\t{}\t{}".format(id, pred, label), file=self.prediction_h)
if nloss == 0:
loss = torch.tensor(0.0, requires_grad=True)
sample_size = nqueries if nqueries > 0 else 1
logging_output = {
"loss": utils.item(loss.data) if reduce else loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["nsentences"],
"sample_size": sample_size,
"ncorrect": ncorrect,
"nqueries": nqueries,
}
return loss, sample_size, logging_output
@staticmethod
def aggregate_logging_outputs(logging_outputs):
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
agg_output = {
"loss": loss_sum / sample_size / math.log(2),
"ntokens": ntokens,
"nsentences": nsentences,
"sample_size": sample_size,
}
ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs)
nqueries = sum(log.get("nqueries", 0) for log in logging_outputs)
if nqueries > 0:
agg_output["accuracy"] = ncorrect / float(nqueries)
return agg_output
@register_criterion("winogrande")
class WinograndeCriterion(WSCCriterion):
def forward(self, model, sample, reduce=True):
# compute loss and accuracy
query_lprobs = self.get_lprobs(
model,
sample["query_tokens"],
sample["query_masks"],
)
cand_lprobs = self.get_lprobs(
model,
sample["candidate_tokens"],
sample["candidate_masks"],
)
pred = query_lprobs >= cand_lprobs
loss = self.get_loss(query_lprobs, cand_lprobs)
sample_size = sample["query_tokens"].size(0)
ncorrect = pred.sum().item()
logging_output = {
"loss": utils.item(loss.data) if reduce else loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["nsentences"],
"sample_size": sample_size,
"ncorrect": ncorrect,
"nqueries": sample_size,
}
return loss, sample_size, logging_output
|
py
|
1a5901693ddcfbe3bc8a53b4b87156cb05a2433f
|
# Generated by Django 2.0.3 on 2018-03-21 17:24
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('patientbasicinfo', '0009_description'),
]
operations = [
migrations.RemoveField(
model_name='description',
name='identity_fk',
),
migrations.DeleteModel(
name='Description',
),
]
|
py
|
1a5901f8ddf5922a7081bb15a425dba2c28a6fb6
|
# -*- coding: utf-8 -*-
"""
author: 左想
date: 2018-01-11
"""
import cv2
import random
import numpy as np
from math import fabs, sin, cos, radians
from PIL import Image, ImageDraw, ImageEnhance
def img_rotation(file_path, output, degree, is_full):
"""
对图片进行旋转,并另存为旋转后的图片;
:param file_path: String 图片路径;
:param output: String 输出旋转后的图片路径;
:param degree: String 旋转角度;
:param is_full: Bool 是否保留整张图片进行旋转。
True则在旋转时会将尺寸进行扩大以保留完整的图片;
False则在旋转时保留原始图片的尺寸进行旋转;
:return:
"""
im = cv2.imread(file_path, 1)
height, width = im.shape[:2]
matRotation = cv2.getRotationMatrix2D((width / 2, height / 2), degree, 1)
if is_full:
height_new = int(width * fabs(sin(radians(degree))) + height * fabs(cos(radians(degree))))
width_new = int(height * fabs(sin(radians(degree))) + width * fabs(cos(radians(degree))))
matRotation[0, 2] += (width_new - width) / 2 # 重点在这步,目前不懂为什么加这步
matRotation[1, 2] += (height_new - height) / 2 # 重点在这步
imgRotation = cv2.warpAffine(im, matRotation, (width_new, height_new), borderMode=cv2.BORDER_REPLICATE)
else:
imgRotation = cv2.warpAffine(im, matRotation, (width, height), borderMode=cv2.BORDER_REPLICATE)
return imgRotation
def randomColor(image):
"""
对图像进行颜色抖动
:param image: PIL的图像image
:return: 有颜色色差的图像image
"""
random_factor = np.random.randint(0, 21) / 10. # 随机因子
color_image = ImageEnhance.Color(image).enhance(random_factor) # 调整图像的饱和度
random_factor = np.random.randint(3, 15) / 10. # 随机因子
brightness_image = ImageEnhance.Brightness(color_image).enhance(random_factor) # 调整图像的亮度
random_factor = np.random.randint(10, 15) / 10. # 随机因1子
contrast_image = ImageEnhance.Contrast(brightness_image).enhance(random_factor) # 调整图像对比度
random_factor = np.random.randint(0, 21) / 10. # 随机因子
return ImageEnhance.Sharpness(contrast_image).enhance(random_factor) # 调整图像锐度
def randomGaussian(image, mean=0.5, sigma=0.3):
"""
对图像进行高斯噪声处理
:param image:
:return:
"""
def gaussianNoisy(im, mean=0.5, sigma=0.3):
"""
对图像做高斯噪音处理
:param im: 单通道图像
:param mean: 偏移量
:param sigma: 标准差
:return:
"""
for _i in range(len(im)):
im[_i] += random.gauss(mean, sigma)
return im
# 将图像转化成数组
img = np.asarray(image)
img.flags.writeable = True # 将数组改为读写模式
width, height = img.shape[:2]
img_r = gaussianNoisy(img[:, :, 0].flatten(), mean, sigma)
img_g = gaussianNoisy(img[:, :, 1].flatten(), mean, sigma)
img_b = gaussianNoisy(img[:, :, 2].flatten(), mean, sigma)
img[:, :, 0] = img_r.reshape([width, height])
img[:, :, 1] = img_g.reshape([width, height])
img[:, :, 2] = img_b.reshape([width, height])
return Image.fromarray(np.uint8(img))
def translate_coord(left_top, length, width, theta, center=None):
"""
根据旋转前矩形坐标以及旋转弧度来计算将矩形旋转弧度之后的顶点坐标
:param left_top: 左下角顶点坐标
:param length: 矩形长度
:param width: 矩形宽度
:param theta: 旋转弧度
:return: 返回四个顶点坐标
"""
# 获取左下角顶点坐标
left_down = [left_top[0], left_top[1] + width]
# 获取右上角顶点坐标
right_top = [left_top[0] + length, left_top[1]]
# 获取右下角顶点坐标
right_down = [left_top[0] + length, left_top[1] + width]
# 计算中心点坐标
if center is None:
center = [(left_top[0] + right_down[0]) / 2, (left_top[1] + right_down[1]) / 2]
# 计算四个顶点旋转后的坐标
right_down_rotation = calculate_rotation_coord(right_down, center, theta)
right_top_rotation = calculate_rotation_coord(right_top, center, theta)
left_down_rotation = calculate_rotation_coord(left_down, center, theta)
left_top_rotation = calculate_rotation_coord(left_top, center, theta)
return left_top_rotation, left_down_rotation, right_top_rotation, right_down_rotation
def calculate_rotation_coord(point, center, theta):
"""
计算一个点以另一个点为中心,旋转theta弧度后的坐标
:param point: 旋转前点的坐标
:param center: 旋转中心坐标
:param theta: 旋转弧度
:return: 返回旋转后点的坐标
"""
# 计算旋转之后点的坐标
right_rotation_x = (point[0] - center[0]) * cos(theta) - \
(point[1] - center[1]) * sin(theta) + center[0]
right_rotation_y = (point[0] - center[0]) * sin(theta) + \
(point[1] - center[1]) * cos(theta) + center[1]
return [int(right_rotation_x), int(right_rotation_y)]
def draw_box(img, img_save, left_top, left_down, right_top, right_down):
"""
根据矩形的四个点的坐标,在图片中画框
:param img: 图片路径
:param img_save: 图片保存路径
:param left_top: 左上顶点坐标
:param left_down: 左下顶点坐标
:param right_top: 右上顶点坐标
:param right_down: 右下顶点坐标
:return: None
"""
# 打开图片
im = Image.open(img)
draw = ImageDraw.Draw(im)
# 分别画四条直线,即框出box的位置了
draw.line((left_top[0], left_top[1], left_down[0], left_down[1]))
draw.line((left_top[0], left_top[1], right_top[0], right_top[1]))
draw.line((right_top[0], right_top[1], right_down[0], right_down[1]))
draw.line((left_down[0], left_down[1], right_down[0], right_down[1]))
im.save(img_save)
def get_color_box(img, height_im, width_im, move_pix=10):
"""
给定一个box的长宽以及移动的像素值,从图片的左上角开始移动,
每次通过统计区域中像素颜色h的方差,找出图片h方差最小的区域也就是颜色相近的区域
:param img: 样本图片
:param height_im: 选取区域的长度
:param width_im: 选取区域的宽度
:param move_pix: 移动的像素值大小
:return: 返回图片颜色相近区域的起始位置,该区域颜色的反色rgb值
"""
im = cv2.imread(img)
# 将rgb值转化为hsv值
hsv_im = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)
# rgb矩阵
rgb_array = np.array(im)
# hsv矩阵
hsv_array = np.array(hsv_im)
height, width, chanel = hsv_array.shape
# 计算box需要移动的次数
width_times = int((width - width_im) / move_pix + 1)
height_times = int((height - height_im) / move_pix + 1)
# 定义统计方差的list
var_result = np.ndarray([height_times, width_times], dtype=np.float32)
# 开始移动box
for i in range(height_times):
for j in range(width_times):
# 计算box的起始位置
begin_height = i * move_pix
end_height = begin_height + height_im + 1
begin_width = j * move_pix
end_width = begin_width + width_im + 1
# 获取到box对应的hsv数组
hsv_box = hsv_array[begin_height:end_height, begin_width:end_width, :]
# 计算box内的hsv中h的方差
box_color_count = statistic_color(hsv_box)
var_result[i, j] = box_color_count
# 找出方差最小的box所在的行和列
min_row, min_col = np.where(var_result == np.min(var_result))
# 随机从符合的位置中选取一个
rand_number = random.randint(0, len(min_row)-1)
# 计算box对应的起始位置
height_location_begin = min_row[rand_number] * move_pix
height_location_end = height_location_begin + height_im
width_location_begin = min_col[rand_number] * move_pix
width_location_end = width_location_begin + width_im
# 获取到box对应的rgb数组
rgb_box = rgb_array[height_location_begin:height_location_end, width_location_begin:width_location_end, :]
# 获取box的里的反色
diff_max_rgb = get_diff_color(rgb_box)
return [[height_location_begin, height_location_end], [width_location_begin, width_location_end]], diff_max_rgb
def statistic_color(color_array):
"""
主要是获取box内的hsv值中h的方差
:param color_array: box对应的矩阵
:return: 返回box的hsv值中h的方差
"""
h_value = color_array[:, :, 0]
s_value = color_array[:, :, 1]
variance = np.var(h_value) + np.var(s_value)
return variance
def get_diff_color(color_array):
"""
主要是获取当前box的rgb值的均值,再求均值的反色
:param color_array: 当前box的rgb矩阵
:return: 当前box的反色的rgb值
"""
r_mean = np.mean(color_array[:, :, 0])
g_mean = np.mean(color_array[:, :, 1])
b_mean = np.mean(color_array[:, :, 2])
return (int(255-r_mean), int(255-g_mean), int(255-b_mean))
def save_image_use_cv2(image, path):
cv2.imwrite(path, image)
def save_image_use_pil(image, path):
image.save(path)
|
py
|
1a590211dc268e3b496d821a43593cf6e24e3c9d
|
import numpy as np
import pytest
from docarray import DocumentArray
from docarray.array.qdrant import DocumentArrayQdrant
from docarray.array.sqlite import DocumentArraySqlite
from docarray.array.annlite import DocumentArrayAnnlite, AnnliteConfig
from docarray.array.storage.qdrant import QdrantConfig
from docarray.array.storage.weaviate import WeaviateConfig
from docarray.array.weaviate import DocumentArrayWeaviate
from docarray.array.elastic import DocumentArrayElastic, ElasticConfig
@pytest.mark.parametrize(
'cls',
[
DocumentArray,
DocumentArraySqlite,
DocumentArrayAnnlite,
DocumentArrayWeaviate,
DocumentArrayQdrant,
DocumentArrayElastic,
],
)
@pytest.mark.parametrize(
'content_attr', ['texts', 'embeddings', 'tensors', 'blobs', 'contents']
)
def test_content_empty_getter_return_none(cls, content_attr, start_storage):
if cls in [
DocumentArrayAnnlite,
DocumentArrayWeaviate,
DocumentArrayQdrant,
DocumentArrayElastic,
]:
da = cls(config={'n_dim': 3})
else:
da = cls()
assert getattr(da, content_attr) is None
@pytest.mark.parametrize(
'cls',
[
DocumentArray,
DocumentArraySqlite,
DocumentArrayAnnlite,
DocumentArrayWeaviate,
DocumentArrayQdrant,
DocumentArrayElastic,
],
)
@pytest.mark.parametrize(
'content_attr',
[
('texts', ''),
('embeddings', np.array([])),
('tensors', np.array([])),
('blobs', []),
('contents', []),
],
)
def test_content_empty_setter(cls, content_attr, start_storage):
if cls in [
DocumentArrayAnnlite,
DocumentArrayWeaviate,
DocumentArrayQdrant,
DocumentArrayElastic,
]:
da = cls(config={'n_dim': 3})
else:
da = cls()
setattr(da, content_attr[0], content_attr[1])
assert getattr(da, content_attr[0]) is None
@pytest.mark.parametrize(
'cls,config',
[
(DocumentArray, None),
(DocumentArraySqlite, None),
(DocumentArrayAnnlite, AnnliteConfig(n_dim=128)),
(DocumentArrayWeaviate, WeaviateConfig(n_dim=128)),
(DocumentArrayQdrant, QdrantConfig(n_dim=128)),
(DocumentArrayElastic, ElasticConfig(n_dim=128)),
],
)
@pytest.mark.parametrize(
'content_attr',
[
('texts', ['s'] * 10),
('tensors', np.random.random([10, 2])),
('blobs', [b's'] * 10),
],
)
def test_content_getter_setter(cls, content_attr, config, start_storage):
if config:
da = cls.empty(10, config=config)
else:
da = cls.empty(10)
setattr(da, content_attr[0], content_attr[1])
np.testing.assert_equal(da.contents, content_attr[1])
da.contents = content_attr[1]
np.testing.assert_equal(da.contents, content_attr[1])
np.testing.assert_equal(getattr(da, content_attr[0]), content_attr[1])
da.contents = None
assert da.contents is None
@pytest.mark.parametrize('da_len', [0, 1, 2])
@pytest.mark.parametrize(
'da_cls,config',
[
(DocumentArray, None),
(DocumentArraySqlite, None),
(DocumentArrayAnnlite, AnnliteConfig(n_dim=128)),
(DocumentArrayWeaviate, WeaviateConfig(n_dim=128)),
(DocumentArrayQdrant, QdrantConfig(n_dim=128)),
(DocumentArrayElastic, ElasticConfig(n_dim=128)),
],
)
def test_content_empty(da_len, da_cls, config, start_storage):
if config:
da = da_cls.empty(da_len, config=config)
else:
da = da_cls.empty(da_len)
assert not da.contents
assert not da.tensors
if da_len == 0:
assert not da.texts
assert not da.blobs
else:
assert da.texts == [''] * da_len
assert da.blobs == [b''] * da_len
da.texts = ['hello'] * da_len
if da_len == 0:
assert not da.contents
else:
assert da.contents == ['hello'] * da_len
assert da.texts == ['hello'] * da_len
assert not da.tensors
assert da.blobs == [b''] * da_len
@pytest.mark.parametrize('da_len', [0, 1, 2])
@pytest.mark.parametrize(
'da_cls,config',
[
(DocumentArray, None),
(DocumentArraySqlite, None),
(DocumentArrayAnnlite, AnnliteConfig(n_dim=5)),
(DocumentArrayWeaviate, WeaviateConfig(n_dim=5)),
(DocumentArrayQdrant, QdrantConfig(n_dim=5)),
(DocumentArrayElastic, ElasticConfig(n_dim=5)),
],
)
def test_embeddings_setter(da_len, da_cls, config, start_storage):
if config:
da = da_cls.empty(da_len, config=config)
else:
da = da_cls.empty(da_len)
da.embeddings = np.random.rand(da_len, 5)
for doc in da:
assert doc.embedding.shape == (5,)
|
py
|
1a59027263416d69d218543d3cf80a29d08f34ff
|
import enum
from collections import OrderedDict, namedtuple
from typing import Callable, Tuple, Sequence
from gtp import Status, GTPRunner
class CommandType(str, enum.Enum):
SBOARD = 'sboard'
DBOARD = 'dboard'
CBOARD = 'cboard'
STRING = 'string'
HSTRING = 'hstring'
HPSTRING = 'hpstring'
PSTRING = 'pstring'
PLIST = 'plist'
PARAM = 'param'
PSPAIRS = 'pspairs'
VARC = 'varc'
GFX = 'gfx'
NONE = 'none'
GoGuiParam = namedtuple('GoGuiParam', 'name type gogui_type value')
class GoGuiParams:
def __init__(self, params: Sequence[GoGuiParam]):
self.params = OrderedDict()
for param in params:
self.params[param.name] = (param.type, param.gogui_type, param.value)
@property
def param_names(self):
return self.params.keys()
def keys(self):
return self.param_names
def __getitem__(self, key):
if key in self.params:
return self.__getattr__(key)
raise KeyError
def __getattr__(self, name):
if name in self.params:
param_type, _, param_value = self.params[name]
return param_type(param_value)
raise AttributeError
def update(self, key, value):
assert key in self.params
param_type, gogui_type, _ = self.params[key]
self.params[key] = (param_type, gogui_type, value)
def __call__(self, param_name=None, param_value=None):
if param_name is None and param_value is None:
return Status.success, str(self)
self.update(param_name, param_value)
return Status.success, ""
def __str__(self):
return '\n'.join(["[{type}] {param} {value}".format(type=gogui_type, param=param_name, value=value)
for (param_name, (param_type, gogui_type, value)) in self.params.items()])
class GoGuiGTPRunner(GTPRunner):
def __init__(self):
super().__init__()
self._analyze_callbacks = []
self.add_callback('gogui_analyze_commands', self.cmd_gogui_analyze_commands, arity=0)
def add_analyze_callback(self,
command_type: CommandType,
command_str: str,
callback: Callable[..., Tuple[Status, str]],
check_arity=True,
display_name: str=None,
description: str=None) -> None:
command_tokens = command_str.split()
self._assert_command_tokens(command_tokens)
self._analyze_callbacks.append("%s/%s/%s" % (command_type.value, display_name or command_str, command_str))
arity = len(command_tokens) - 1 if check_arity else None
if command_tokens[0] not in self.list_commands:
self.add_callback(command_tokens[0], callback, arity=arity, description=description)
def cmd_gogui_analyze_commands(self, *_) -> Tuple[Status, str]:
return Status.success, "\n".join(self._analyze_callbacks)
@staticmethod
def _assert_command_tokens(command_tokens) -> None:
assert len(command_tokens) > 0
for param in command_tokens[1:]:
assert param in {'%s', '%p', '%c', '%w', '%r'}
|
py
|
1a59033186c850dd24c706c4fe5b3bfeb3fd665e
|
# -*- coding: utf-8 -*-
#
# Copyright (C) 2004-2020 Edgewall Software
# Copyright (C) 2004 Francois Harvey <[email protected]>
# Copyright (C) 2005 Matthew Good <[email protected]>
# All rights reserved.
#
# This software is licensed as described in the file COPYING, which
# you should have received as part of this distribution. The terms
# are also available at https://trac.edgewall.org/wiki/TracLicense.
#
# This software consists of voluntary contributions made by many
# individuals. For the exact contribution history, see the revision
# history and logs, available at https://trac.edgewall.org/log/.
#
# Author: Francois Harvey <[email protected]>
# Matthew Good <[email protected]>
import os.path
from trac.config import ConfigurationError, Option, ParsingError, \
PathOption, UnicodeConfigParser
from trac.core import Component, TracError, implements
from trac.perm import IPermissionPolicy
from trac.util import pathjoin, to_list
from trac.util.text import exception_to_unicode
from trac.versioncontrol.api import RepositoryManager
def parent_iter(path):
while 1:
yield path
if path == '/':
return
path = path[:-1]
yield path
idx = path.rfind('/')
path = path[:idx + 1]
def parse(authz_file, modules):
"""Parse a Subversion authorization file.
Return a dict of modules, each containing a dict of paths, each containing
a dict mapping users to permissions. Only modules contained in `modules`
are retained.
"""
parser = UnicodeConfigParser(ignorecase_option=False)
parser.read(authz_file)
groups = {}
aliases = {}
sections = {}
for section in parser.sections():
if section == 'groups':
for name, value in parser.items(section):
groups.setdefault(name, set()).update(to_list(value))
elif section == 'aliases':
for name, value in parser.items(section):
aliases[name] = value.strip()
else:
for name, value in parser.items(section):
parts = section.split(':', 1)
module, path = parts[0] if len(parts) > 1 else '', parts[-1]
if module in modules:
sections.setdefault((module, path), []) \
.append((name, value))
def resolve(subject, done):
if subject.startswith('@'):
done.add(subject)
for members in groups[subject[1:]] - done:
for each in resolve(members, done):
yield each
elif subject.startswith('&'):
yield aliases[subject[1:]]
else:
yield subject
authz = {}
for (module, path), items in sections.iteritems():
section = authz.setdefault(module, {}).setdefault(path, {})
for subject, perms in items:
readable = 'r' in perms
# Ordering isn't significant; any entry could grant permission
section.update((user, readable)
for user in resolve(subject, set())
if not section.get(user))
return authz
class AuthzSourcePolicy(Component):
"""Permission policy for `source:` and `changeset:` resources using a
Subversion authz file.
`FILE_VIEW` and `BROWSER_VIEW` permissions are granted as specified in the
authz file.
`CHANGESET_VIEW` permission is granted for changesets where `FILE_VIEW` is
granted on at least one modified file, as well as for empty changesets.
"""
implements(IPermissionPolicy)
authz_file = PathOption('svn', 'authz_file', '',
"""The path to the Subversion
[%(svnbook)s authorization (authz) file].
To enable authz permission checking, the `AuthzSourcePolicy`
permission policy must be added to `[trac] permission_policies`.
Non-absolute paths are relative to the Environment `conf`
directory.
""",
doc_args={'svnbook': 'http://svnbook.red-bean.com/en/1.7/'
'svn.serverconfig.pathbasedauthz.html'})
authz_module_name = Option('svn', 'authz_module_name', '',
"""The module prefix used in the `authz_file` for the default
repository. If left empty, the global section is used.
""")
_handled_perms = frozenset([(None, 'BROWSER_VIEW'),
(None, 'CHANGESET_VIEW'),
(None, 'FILE_VIEW'),
(None, 'LOG_VIEW'),
('source', 'BROWSER_VIEW'),
('source', 'FILE_VIEW'),
('source', 'LOG_VIEW'),
('changeset', 'CHANGESET_VIEW')])
def __init__(self):
self._mtime = 0
self._authz = {}
self._users = set()
# IPermissionPolicy methods
def check_permission(self, action, username, resource, perm):
realm = resource.realm if resource else None
if (realm, action) in self._handled_perms:
authz, users = self._get_authz_info()
if authz is None:
return False
if username == 'anonymous':
usernames = '$anonymous', '*'
else:
usernames = username, '$authenticated', '*'
if resource is None:
return True if users & set(usernames) else None
rm = RepositoryManager(self.env)
try:
repos = rm.get_repository(resource.parent.id)
except TracError:
return True # Allow error to be displayed in the repo index
if repos is None:
return True
modules = [resource.parent.id or self.authz_module_name]
if modules[0]:
modules.append('')
def check_path_0(spath):
sections = [authz.get(module, {}).get(spath)
for module in modules]
sections = [section for section in sections if section]
denied = False
for user in usernames:
for section in sections:
if user in section:
if section[user]:
return True
denied = True
# Don't check section without module name
# because the section with module name defines
# the user's permissions.
break
if denied: # All users has no readable permission.
return False
def check_path(path):
path = '/' + pathjoin(repos.scope, path)
if path != '/':
path += '/'
# Allow access to parent directories of allowed resources
for spath in set(sum((list(authz.get(module, {}))
for module in modules), [])):
if spath.startswith(path):
result = check_path_0(spath)
if result is True:
return True
# Walk from resource up parent directories
for spath in parent_iter(path):
result = check_path_0(spath)
if result is not None:
return result
if realm == 'source':
return check_path(resource.id)
elif realm == 'changeset':
changes = list(repos.get_changeset(resource.id).get_changes())
if not changes or any(check_path(change[0])
for change in changes):
return True
def _get_authz_info(self):
if not self.authz_file:
self.log.error("The [svn] authz_file configuration option in "
"trac.ini is empty or not defined")
raise ConfigurationError()
try:
mtime = os.path.getmtime(self.authz_file)
except OSError as e:
self.log.error("Error accessing svn authz permission policy "
"file: %s", exception_to_unicode(e))
raise ConfigurationError()
if mtime != self._mtime:
self._mtime = mtime
rm = RepositoryManager(self.env)
modules = set(repos.reponame
for repos in rm.get_real_repositories())
if '' in modules and self.authz_module_name:
modules.add(self.authz_module_name)
modules.add('')
self.log.info("Parsing authz file: %s", self.authz_file)
try:
self._authz = parse(self.authz_file, modules)
except ParsingError as e:
self.log.error("Error parsing svn authz permission policy "
"file: %s", exception_to_unicode(e))
raise ConfigurationError()
else:
self._users = {user
for paths in self._authz.itervalues()
for path in paths.itervalues()
for user, result in path.iteritems()
if result}
return self._authz, self._users
|
py
|
1a5903b398b73ce4642737c65e7ff71e6d6ac9f3
|
# -*- coding: utf-8 -*-
"""
pygments.lexers.sas
~~~~~~~~~~~~~~~~~~~
Lexer for SAS.
:copyright: Copyright 2006-2020 by the Pygments team, see AUTHORS.
:license: BSD, see LICENSE for details.
"""
import re
from pygments.lexer import RegexLexer, include, words
from pygments.token import Comment, Keyword, Name, Number, String, Text, \
Other, Generic
__all__ = ['SASLexer']
class SASLexer(RegexLexer):
"""
For `SAS <http://www.sas.com/>`_ files.
.. versionadded:: 2.2
"""
# Syntax from syntax/sas.vim by James Kidd <[email protected]>
name = 'SAS'
aliases = ['sas']
filenames = ['*.SAS', '*.sas']
mimetypes = ['text/x-sas', 'text/sas', 'application/x-sas']
flags = re.IGNORECASE | re.MULTILINE
builtins_macros = (
"bquote", "nrbquote", "cmpres", "qcmpres", "compstor", "datatyp",
"display", "do", "else", "end", "eval", "global", "goto", "if",
"index", "input", "keydef", "label", "left", "length", "let",
"local", "lowcase", "macro", "mend", "nrquote",
"nrstr", "put", "qleft", "qlowcase", "qscan",
"qsubstr", "qsysfunc", "qtrim", "quote", "qupcase", "scan",
"str", "substr", "superq", "syscall", "sysevalf", "sysexec",
"sysfunc", "sysget", "syslput", "sysprod", "sysrc", "sysrput",
"then", "to", "trim", "unquote", "until", "upcase", "verify",
"while", "window"
)
builtins_conditionals = (
"do", "if", "then", "else", "end", "until", "while"
)
builtins_statements = (
"abort", "array", "attrib", "by", "call", "cards", "cards4",
"catname", "continue", "datalines", "datalines4", "delete", "delim",
"delimiter", "display", "dm", "drop", "endsas", "error", "file",
"filename", "footnote", "format", "goto", "in", "infile", "informat",
"input", "keep", "label", "leave", "length", "libname", "link",
"list", "lostcard", "merge", "missing", "modify", "options", "output",
"out", "page", "put", "redirect", "remove", "rename", "replace",
"retain", "return", "select", "set", "skip", "startsas", "stop",
"title", "update", "waitsas", "where", "window", "x", "systask"
)
builtins_sql = (
"add", "and", "alter", "as", "cascade", "check", "create",
"delete", "describe", "distinct", "drop", "foreign", "from",
"group", "having", "index", "insert", "into", "in", "key", "like",
"message", "modify", "msgtype", "not", "null", "on", "or",
"order", "primary", "references", "reset", "restrict", "select",
"set", "table", "unique", "update", "validate", "view", "where"
)
builtins_functions = (
"abs", "addr", "airy", "arcos", "arsin", "atan", "attrc",
"attrn", "band", "betainv", "blshift", "bnot", "bor",
"brshift", "bxor", "byte", "cdf", "ceil", "cexist", "cinv",
"close", "cnonct", "collate", "compbl", "compound",
"compress", "cos", "cosh", "css", "curobs", "cv", "daccdb",
"daccdbsl", "daccsl", "daccsyd", "dacctab", "dairy", "date",
"datejul", "datepart", "datetime", "day", "dclose", "depdb",
"depdbsl", "depsl", "depsyd",
"deptab", "dequote", "dhms", "dif", "digamma",
"dim", "dinfo", "dnum", "dopen", "doptname", "doptnum",
"dread", "dropnote", "dsname", "erf", "erfc", "exist", "exp",
"fappend", "fclose", "fcol", "fdelete", "fetch", "fetchobs",
"fexist", "fget", "fileexist", "filename", "fileref",
"finfo", "finv", "fipname", "fipnamel", "fipstate", "floor",
"fnonct", "fnote", "fopen", "foptname", "foptnum", "fpoint",
"fpos", "fput", "fread", "frewind", "frlen", "fsep", "fuzz",
"fwrite", "gaminv", "gamma", "getoption", "getvarc", "getvarn",
"hbound", "hms", "hosthelp", "hour", "ibessel", "index",
"indexc", "indexw", "input", "inputc", "inputn", "int",
"intck", "intnx", "intrr", "irr", "jbessel", "juldate",
"kurtosis", "lag", "lbound", "left", "length", "lgamma",
"libname", "libref", "log", "log10", "log2", "logpdf", "logpmf",
"logsdf", "lowcase", "max", "mdy", "mean", "min", "minute",
"mod", "month", "mopen", "mort", "n", "netpv", "nmiss",
"normal", "note", "npv", "open", "ordinal", "pathname",
"pdf", "peek", "peekc", "pmf", "point", "poisson", "poke",
"probbeta", "probbnml", "probchi", "probf", "probgam",
"probhypr", "probit", "probnegb", "probnorm", "probt",
"put", "putc", "putn", "qtr", "quote", "ranbin", "rancau",
"ranexp", "rangam", "range", "rank", "rannor", "ranpoi",
"rantbl", "rantri", "ranuni", "repeat", "resolve", "reverse",
"rewind", "right", "round", "saving", "scan", "sdf", "second",
"sign", "sin", "sinh", "skewness", "soundex", "spedis",
"sqrt", "std", "stderr", "stfips", "stname", "stnamel",
"substr", "sum", "symget", "sysget", "sysmsg", "sysprod",
"sysrc", "system", "tan", "tanh", "time", "timepart", "tinv",
"tnonct", "today", "translate", "tranwrd", "trigamma",
"trim", "trimn", "trunc", "uniform", "upcase", "uss", "var",
"varfmt", "varinfmt", "varlabel", "varlen", "varname",
"varnum", "varray", "varrayx", "vartype", "verify", "vformat",
"vformatd", "vformatdx", "vformatn", "vformatnx", "vformatw",
"vformatwx", "vformatx", "vinarray", "vinarrayx", "vinformat",
"vinformatd", "vinformatdx", "vinformatn", "vinformatnx",
"vinformatw", "vinformatwx", "vinformatx", "vlabel",
"vlabelx", "vlength", "vlengthx", "vname", "vnamex", "vtype",
"vtypex", "weekday", "year", "yyq", "zipfips", "zipname",
"zipnamel", "zipstate"
)
tokens = {
'root': [
include('comments'),
include('proc-data'),
include('cards-datalines'),
include('logs'),
include('general'),
(r'.', Text),
],
# SAS is multi-line regardless, but * is ended by ;
'comments': [
(r'^\s*\*.*?;', Comment),
(r'/\*.*?\*/', Comment),
(r'^\s*\*(.|\n)*?;', Comment.Multiline),
(r'/[*](.|\n)*?[*]/', Comment.Multiline),
],
# Special highlight for proc, data, quit, run
'proc-data': [
(r'(^|;)\s*(proc \w+|data|run|quit)[\s;]',
Keyword.Reserved),
],
# Special highlight cards and datalines
'cards-datalines': [
(r'^\s*(datalines|cards)\s*;\s*$', Keyword, 'data'),
],
'data': [
(r'(.|\n)*^\s*;\s*$', Other, '#pop'),
],
# Special highlight for put NOTE|ERROR|WARNING (order matters)
'logs': [
(r'\n?^\s*%?put ', Keyword, 'log-messages'),
],
'log-messages': [
(r'NOTE(:|-).*', Generic, '#pop'),
(r'WARNING(:|-).*', Generic.Emph, '#pop'),
(r'ERROR(:|-).*', Generic.Error, '#pop'),
include('general'),
],
'general': [
include('keywords'),
include('vars-strings'),
include('special'),
include('numbers'),
],
# Keywords, statements, functions, macros
'keywords': [
(words(builtins_statements,
prefix = r'\b',
suffix = r'\b'),
Keyword),
(words(builtins_sql,
prefix = r'\b',
suffix = r'\b'),
Keyword),
(words(builtins_conditionals,
prefix = r'\b',
suffix = r'\b'),
Keyword),
(words(builtins_macros,
prefix = r'%',
suffix = r'\b'),
Name.Builtin),
(words(builtins_functions,
prefix = r'\b',
suffix = r'\('),
Name.Builtin),
],
# Strings and user-defined variables and macros (order matters)
'vars-strings': [
(r'&[a-z_]\w{0,31}\.?', Name.Variable),
(r'%[a-z_]\w{0,31}', Name.Function),
(r'\'', String, 'string_squote'),
(r'"', String, 'string_dquote'),
],
'string_squote': [
('\'', String, '#pop'),
(r'\\\\|\\"|\\\n', String.Escape),
# AFAIK, macro variables are not evaluated in single quotes
# (r'&', Name.Variable, 'validvar'),
(r'[^$\'\\]+', String),
(r'[$\'\\]', String),
],
'string_dquote': [
(r'"', String, '#pop'),
(r'\\\\|\\"|\\\n', String.Escape),
(r'&', Name.Variable, 'validvar'),
(r'[^$&"\\]+', String),
(r'[$"\\]', String),
],
'validvar': [
(r'[a-z_]\w{0,31}\.?', Name.Variable, '#pop'),
],
# SAS numbers and special variables
'numbers': [
(r'\b[+-]?([0-9]+(\.[0-9]+)?|\.[0-9]+|\.)(E[+-]?[0-9]+)?i?\b',
Number),
],
'special': [
(r'(null|missing|_all_|_automatic_|_character_|_n_|'
r'_infile_|_name_|_null_|_numeric_|_user_|_webout_)',
Keyword.Constant),
],
# 'operators': [
# (r'(-|=|<=|>=|<|>|<>|&|!=|'
# r'\||\*|\+|\^|/|!|~|~=)', Operator)
# ],
}
|
py
|
1a5903b7951653de054f1422bb86d159562071d3
|
#!/usr/bin/env python
"""
"""
# ==============================================================================
# --General imports ------------------------------------------------------------
# ==============================================================================
from time import sleep
import math
import numpy as np
import sys
import copy
sys.path.append('./HiddenMarkovModel')
from HiddenMarkovModel.HMM_MODEL import *
# ==============================================================================
# -- ROS imports ---------------------------------------------------------------
# ==============================================================================
import rospy
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
from perception.msg import Object
from perception.msg import ObjectsList
from perception.msg import WaypointsList
from perception.msg import Waypoint
from perception.msg import TrajectoriesList
from perception.srv import DrivingPaths, DrivingPathsRequest, DrivingPathsResponse
from prediction.msg import VehiclesCollisionEvent
from prediction.msg import VehiclesCollisionEventList
from prediction.msg import PedestrianCollisionEvent
from prediction.msg import PedestrianCollisionEventList
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
# ==============================================================================
# -- Implementation ------------------------------------------------------------
# ==============================================================================
MAX_SEQ_LENGTH_MEMORY = 5
MAX_STATE_SEQ_LENGTH_MEMORY = 1
GLOBAL_DRAW = True
state_i = 0
class VehicleState:
def __init__(self, vehicle, angle):
self.vehicle = [vehicle]
self.angles = [angle]
self.vehicle_id = vehicle.object_id
self.trajectories = []
self.possible_trajectory_id = []
self.state = []
self.observations_seq = []
def v_pop(self, index=0):
if len(self.vehicle) > MAX_SEQ_LENGTH_MEMORY:
self.angles.pop(index)
self.vehicle.pop(index)
def s_pop(self, index=0):
if len(self.state) > MAX_STATE_SEQ_LENGTH_MEMORY:
self.state.pop(index)
def ob_pop(self, index=0):
if len(self.observations_seq) > MAX_STATE_SEQ_LENGTH_MEMORY:
self.observations_seq.pop(index)
class MotionPrediction:
def __init__(self):
self.vehicles_state_list = []
self.vehicles_id = []
self.trajectories_length = 40.0
self.HMM_MODEL = HMM_MODEL()
self.vehicles_collision_events_info = []
self.pedestrians_collision_events_info = []
# --- ROS ---
rospy.init_node('Prediction_node', anonymous=True)
self.ego_vehicle = Object()
self.vehicles_list = []
self.pedestrians_list = []
self.traffic_signs_loc = []
self.ego_trajectory = []
self.subscriber_ego_vehicle = rospy.Subscriber("ego_vehicle_msg", Object, self.callback_ego_vehicle,
queue_size=1)
self.subscriber_ego_trajectory = rospy.Subscriber("ego_trajectory_msg", WaypointsList, self.callback_ego_trajectory,
queue_size=1)
self.subscriber_vehicles_list = rospy.Subscriber('vehicles_list_msg', ObjectsList, self.callback_vehicles_list,
queue_size=1)
self.subscriber_pedestrians_list = rospy.Subscriber('pedestrians_list_msg', ObjectsList, self.callback_pedestrians_list,
queue_size=1)
self.subscriber_signs_location = rospy.Subscriber("signs_location_msg", WaypointsList, self.callback_signs_location,
queue_size=1)
self.pub_vehicles_collision_info = rospy.Publisher('vehicles_collision_info_msg', VehiclesCollisionEventList, queue_size=1)
self.pub_pedestrians_collision_info = rospy.Publisher('pedestrians_collision_info_msg', PedestrianCollisionEventList, queue_size=1)
# Draw trajectories
if GLOBAL_DRAW:
self.pub_prototype_trajectories_draw = rospy.Publisher('prototype_trajectories_draw_msg', TrajectoriesList, queue_size=1)
self.pub_collision_points_draw = rospy.Publisher('collision_points_draw_msg', WaypointsList, queue_size=1)
def track_vehicles_and_save_states(self, vehicles, angles):
# For vehicles found
for vehicle in vehicles:
if vehicle.object_id in self.vehicles_id:
index = self.vehicles_id.index(vehicle.object_id)
veh_state = self.vehicles_state_list[index]
veh_state.vehicle.append(vehicle)
veh_state.angles.append(angles[vehicles.index(vehicle)])
veh_state.v_pop(0)
else:
self.vehicles_state_list.append(VehicleState(vehicle, angles[vehicles.index(vehicle)]))
self.vehicles_id.append(vehicle.object_id)
# Remove vehicles from list which don't exist any more
if not vehicles:
self.vehicles_state_list = []
self.vehicles_id = []
existed_vehicles_id = [veh.object_id for veh in vehicles]
#print(existed_vehicles_id)
if len(existed_vehicles_id) != 0:
self.vehicles_state_list = [self.vehicles_state_list[i] for i in range(len(self.vehicles_state_list)) if self.vehicles_id[i] in existed_vehicles_id]
self.vehicles_id = [v_id for v_id in self.vehicles_id if v_id in existed_vehicles_id]
def get_objects_around_vehicle(self, obj_type="vehicle", min_radius=50.0):
ego_vehicle = copy.deepcopy(self.ego_vehicle)
if obj_type == "vehicle":
to_angle = 120.0 - ego_vehicle.speed * 3.6 if ego_vehicle.speed * 3.6 < 30.0 else 90.0
else:
to_angle = 80.0 - ego_vehicle.speed * 3.6 if ego_vehicle.speed * 3.6 < 30.0 else 40.0
from_angle = - to_angle
t_stop = 3.0
radius = min_radius + ego_vehicle.speed * t_stop
objects, angles = self.objects_in_angle_range_and_in_radius(obj_type, from_angle, to_angle, radius)
return objects, angles
def objects_in_angle_range_and_in_radius(self, object_type, from_angle=-90.0, to_angle=90.0, radius=20.0):
"""
Method to find all the objects of a type like vehicles, pedestrians,etc
between two angles (from_angle -> to_angle) in relation to vehicle coordinate system
:param ego_vehicle: The self driving vehicle
:param object_type: The object type, vehicles, pedestrians, traffic signs etc.
:param from_angle: Start angle in relation to vehicle coordinate system in degrees in the interval [-180, 180)
:param to_angle: The final angle in relation to vehicle coordinate system in degrees in the interval [-180, 180)
:param radius: The max radius in which the object need to be
"""
ego_vehicle = copy.deepcopy(self.ego_vehicle)
if object_type == "vehicle":
objects_list = copy.deepcopy(self.vehicles_list)
elif object_type == "pedestrian":
objects_list = copy.deepcopy(self.pedestrians_list)
else:
return [], []
if len(objects_list) == 0:
return [], []
target_objects = []
angle_list = []
for an_object in objects_list:
x = an_object.x - ego_vehicle.x
y = an_object.y - ego_vehicle.y
theta = math.degrees(math.atan2(y, x)) % 360.0
theta = theta - ego_vehicle.yaw
theta = theta % 360.0
theta = theta - 360.0 if theta > 180.0 else theta
rel_dist = math.hypot(an_object.y - ego_vehicle.y, an_object.x - ego_vehicle.x)
if from_angle <= theta <= to_angle and rel_dist < radius:
target_objects.append(an_object)
# theta = theta + 360 if theta < 0 else theta
angle_list.append(theta)
return [object_i for object_i in target_objects] if len(target_objects) != 0 else [], angle_list
def get_prototype_trajectories_and_vehicles(self):
draw_points_flag = True
percentage_renew = 0.5
vehicles, angles = self.get_objects_around_vehicle(obj_type="vehicle")
self.track_vehicles_and_save_states(vehicles, angles)
veh_trajectories = self.client_driving_paths(vehicles)
if vehicles:
for v_i, vehicle in enumerate(vehicles):
index = self.vehicles_id.index(vehicle.object_id)
if len(self.vehicles_state_list[index].trajectories) == 0:
self.vehicles_state_list[index].trajectories = veh_trajectories[v_i]
else:
w_e = self.vehicles_state_list[index].trajectories[0][-1]
w_b = self.vehicles_state_list[index].trajectories[0][0]
dist = math.hypot(vehicle.x - w_e.x, vehicle.y - w_e.y)
dist_reverse = math.hypot(vehicle.x - w_b.x, vehicle.y - w_b.y)
if dist < percentage_renew*self.trajectories_length or \
dist_reverse > (percentage_renew/4)*self.trajectories_length or \
len(self.vehicles_state_list[index].trajectories) == 1:
self.vehicles_state_list[index].trajectories = veh_trajectories[v_i]
if GLOBAL_DRAW:
self.publish_prototype_trajectories_draw()
return [state.vehicle[-1] for state in self.vehicles_state_list], [state.trajectories for state in self.vehicles_state_list]
def calculate_trajectories_probability(self):
"""
For each vehicle saved in data base we calculate the most possible trajectory from the prototypes trajectories
to follow. For each vehicle track we take all the past instances of the vehicle and we calculate the minimum
distance of each from each trajectory and sum them. Finally the trajectory with the lowest sum is chosen.
The most possible trajectory and the position of the vehicle on it is saved in "possible_trajectory_id"
"""
e_threshold = 0.1
min_probability = 0.3
max_probability = 0.6
trajectories_list = []
probabilities = []
for track in self.vehicles_state_list:
x_y = [[vehicle_inst.x, vehicle_inst.y] for vehicle_inst in track.vehicle]
min_sums = []
index = []
yaw_cos = []
for trajectory in track.trajectories:
dist_min_list = []
idx = 0
for i in range(len(x_y)):
min_dist = float("inf")
for w in trajectory:
dist = math.hypot(w.x - x_y[i][0], w.y - x_y[i][1])
if min_dist > dist:
min_dist = dist
if i == len(x_y)-1:
idx = trajectory.index(w)
dist_min_list.append(min_dist)
yaw_cos.append(sum([math.cos(math.radians(tr.yaw)) for tr in trajectory[idx:]])/len(trajectory[idx:]))
index.append(idx)
min_sums.append(sum(dist_min_list))
k1 = abs(math.cos(math.radians(track.vehicle[-1].yaw)))
max_yaw = [1-abs(k1 - abs(c_yaw)) for c_yaw in yaw_cos]
max_sums = [1-m_s/(max(min_sums)+0.0000001) for m_s in min_sums]
max_value = [(max_sums[i]+max_yaw[i]**2) for i in range(len(max_sums))]
probability = [m_v/(sum(max_value)+0.000001) for m_v in max_value]
max_of_all = max(probability)
track.possible_trajectory_id = []
for i in range(len(probability)):
if abs(max_of_all-probability[i]) < e_threshold or \
probability[probability.index(max_of_all)] < min_probability or\
probability[i] > max_probability:
track.possible_trajectory_id.append([i, index[i]])
if len(track.possible_trajectory_id) == 0:
i = probability.index(max_of_all)
track.possible_trajectory_id.append([i, index[i]])
trajectories = []
for i in range(len(track.trajectories)):
pos_tr = [p_t[0] for p_t in track.possible_trajectory_id]
if i in pos_tr:
trajectories.append(track.trajectories[i][track.possible_trajectory_id[pos_tr.index(i)][1]:])
track.trajectories = trajectories
probabilities.append(probability)
trajectories_list.append(trajectories)
return trajectories_list, probabilities
def get_trajectories_with_stop_constraints(self):
min_dist = 3.0
vehicles = [track.vehicle[-1] for track in self.vehicles_state_list]
trajectories = [track.trajectories for track in self.vehicles_state_list]
traffic_signs_loc = copy.deepcopy(self.traffic_signs_loc)
traject_with_constr = []
for signs_loc in traffic_signs_loc:
for v_t in trajectories:
for trajectory in v_t:
for t_loc in trajectory:
dist = math.hypot(signs_loc.x - t_loc.x, signs_loc.y - t_loc.y)
if dist < min_dist:
vehicle = vehicles[trajectories.index(v_t)]
v_dist = math.hypot(signs_loc.x - vehicle.x, signs_loc.y - vehicle.y)
traject_with_constr.append([trajectories.index(v_t), v_t.index(trajectory), v_dist])
break
return traject_with_constr
def predict_vehicle_speed(self, traject_with_constr):
ego_vehicle = copy.deepcopy(self.ego_vehicle)
vehicles_speed = []
speed_probabilities = []
tick_time = 1.0
a_stop = 6.0
a_deceleration = 4.0
a_acceleration = 3.0
global state_i
for v_i in range(len(self.vehicles_state_list)):
vehicle = self.vehicles_state_list[v_i].vehicle[-1]
traf_info_const = [const_info for const_info in traject_with_constr if v_i == const_info[0]]
if len(traf_info_const) != 0:
observation = self.HMM_MODEL.get_observation(vehicle, traf_info_const, ego_vehicle)
#print(observation)
self.vehicles_state_list[v_i].observations_seq.append(observation)
self.vehicles_state_list[v_i].ob_pop(0)
#print(self.vehicles_state_list[v_i].observations_seq)
ln_prob, num_seq, curr_state = self.HMM_MODEL.predict_state(vehicle.speed, self.vehicles_state_list[v_i].observations_seq)
probability = math.exp(ln_prob)
states = [STATE_VECTOR[i] for i in num_seq]
#print(states)
next_state = states[-1]
state_i = OBSERVATION_VECTOR.index(observation)
else:
probability = 1
next_state = STATE_VECTOR[2] # Steady state
curr_state = next_state
if next_state == STATE_VECTOR[2]: # Steady state
predicted_speed = vehicle.speed
elif next_state == STATE_VECTOR[0]: # Stop
predicted_speed = vehicle.speed - tick_time*a_stop
predicted_speed = 0.0 if predicted_speed < 0.0 else predicted_speed
elif next_state == STATE_VECTOR[3]: # Accelerate
predicted_speed = vehicle.speed + tick_time * a_acceleration*probability
else: # Deceleration
predicted_speed = vehicle.speed - tick_time * a_deceleration*probability
predicted_speed = 0.0 if predicted_speed < 0.0 else predicted_speed
speed_probabilities.append(probability)
vehicles_speed.append(predicted_speed)
#print(STATE_VECTOR.index(next_state), state_i, round(predicted_speed, 2), round(vehicle.speed, 2), round(probability, 2), STATE_VECTOR.index(curr_state))
return vehicles_speed, speed_probabilities
def predict_vehicles_collision(self):
ego_vehicle = copy.deepcopy(self.ego_vehicle)
draw_points_flag = True
ego_vehicle_trajectory = copy.deepcopy(self.ego_trajectory)
if len(ego_vehicle_trajectory) == 0:
return True
vehicles, all_vehicles_paths = self.get_prototype_trajectories_and_vehicles()
possible_trajectories, trajectories_probabilities = self.calculate_trajectories_probability()
traject_with_constr = self.get_trajectories_with_stop_constraints()
predicted_vehicles_speed, speed_probabilities = self.predict_vehicle_speed(traject_with_constr)
# angles = [angles[i] for i in range(len(vehicles)) if vehicles[i] in c_vehicles]
min_collision_dist = 2.0
t = [0.0]
ego_vehicle_speed = ego_vehicle.speed + 0.00000001
dist = 0.0
for i_d in range(len(ego_vehicle_trajectory)-1):
dist += math.hypot(ego_vehicle_trajectory[i_d + 1].y - ego_vehicle_trajectory[i_d].y,
ego_vehicle_trajectory[i_d + 1].x - ego_vehicle_trajectory[i_d].x)
t.append(dist/ego_vehicle_speed if ego_vehicle_speed > 0.0 else 100000.0)
t_v = []
for trajectories in possible_trajectories:
t_tr = []
other_vehicles_speed = predicted_vehicles_speed[possible_trajectories.index(trajectories)] + 0.001
for trajectory in trajectories:
t_t = [0.0]
dist = 0.0
for i_d in range(len(trajectory) - 1):
dist += math.hypot(trajectory[i_d + 1].y - trajectory[i_d].y,
trajectory[i_d + 1].x - trajectory[i_d].x)
t_t.append(dist / other_vehicles_speed if other_vehicles_speed > 0.0 else 100000.0)
t_tr.append(t_t)
t_v.append(t_tr)
collision_vehicles = []
for t_tr in t_v:
# t_windows = min_collision_dist/vehicles[t_v.index(t_tr)].speed + 0.001
for t_t in t_tr:
break_flag = False
for time_i in t_t:
bigger_than = False
for time_j in t:
if time_j >= time_i:
bigger_than = True
w1 = possible_trajectories[t_v.index(t_tr)][t_tr.index(t_t)][t_t.index(time_i)]
w2 = ego_vehicle_trajectory[t.index(time_j)]
dist = math.hypot(w2.y - w1.y, w2.x - w1.x)
if dist < min_collision_dist:
break_flag = True
collision_time = time_i
collision_vehicles.append([t_v.index(t_tr), t_tr.index(t_t), collision_time, w1])
break
if not bigger_than and time_i != 0.0:
for time_j in t:
w1 = possible_trajectories[t_v.index(t_tr)][t_tr.index(t_t)][t_t.index(time_i)]
w2 = ego_vehicle_trajectory[t.index(time_j)]
dist = math.hypot(w2.y - w1.y, w2.x - w1.x)
if dist < min_collision_dist:
break_flag = True
collision_time = time_i
if math.hypot(w2.y - ego_vehicle_trajectory[0].y, w2.x - ego_vehicle_trajectory[0].x) > \
math.hypot(w2.y - possible_trajectories[t_v.index(t_tr)][t_tr.index(t_t)][0].y,
w2.x - possible_trajectories[t_v.index(t_tr)][t_tr.index(t_t)][0].x):
collision_time = time_j
collision_vehicles.append([t_v.index(t_tr), t_tr.index(t_t), collision_time, w1])
break
if break_flag:
break
collision_events_info = []
for collision in collision_vehicles:
vehicle = self.vehicles_state_list[collision[0]].vehicle[-1]
trajectory_probability = trajectories_probabilities[collision[0]][collision[1]]
speed_probability = speed_probabilities[collision[0]]
collision_time = collision[2]
collision_point = collision[3]
predict_probability = trajectory_probability*speed_probability
collision_events_info.append([vehicle, collision_point, collision_time, predict_probability])
self.vehicles_collision_events_info = collision_events_info
self.publish_vehicles_collision_events()
if GLOBAL_DRAW and len(vehicles) != 0 and len(collision_vehicles) != 0:
self.publish_collision_points_draw([collision[-1] for collision in collision_vehicles])
def predict_pedestrians_collision(self):
ego_vehicle = copy.deepcopy(self.ego_vehicle)
radius_sum = 2.0
pedestrians, angles = self.get_objects_around_vehicle(obj_type="pedestrian", min_radius=12)
t_col = []
dist_col = []
for pedestrian in pedestrians:
t = 100000.0
min_dist = 10000.0
relative_speed_x = pedestrian.vel_x - ego_vehicle.vel_x - math.cos(math.radians(ego_vehicle.yaw))*0.1
relative_speed_y = pedestrian.vel_y - ego_vehicle.vel_y - math.sin(math.radians(ego_vehicle.yaw))*0.1
relative_distance_x = pedestrian.x - ego_vehicle.x
relative_distance_y = pedestrian.y - ego_vehicle.y
a = relative_speed_x**2 + relative_speed_y**2 + 0.000001
b = 2*(relative_speed_x*relative_distance_x + relative_speed_y*relative_distance_y)
c = relative_distance_x**2 + relative_distance_y**2 - radius_sum**2
discriminant = b**2 - 4*a*c
if discriminant > 0.0: # Collision happens
t0 = (-b - math.sqrt(discriminant)) / (2.0 * a)
t1 = (-b + math.sqrt(discriminant)) / (2.0 * a)
t = min([t0, t1]) if min([t0, t1]) >= 0.0 else max([t0, t1])
min_dist = 0.0
else:
t = -b/(2*a)
min_dist = a * (t ** 2) + t * b + c
t, min_dist = (100000.0, 10000.0) if t < 0.0 else (t, min_dist) # No collision if t < 0
t_col.append(t)
dist_col.append(min_dist)
if t_col:
collision_event = [pedestrians[dist_col.index(min(dist_col))], angles[dist_col.index(min(dist_col))],
t_col[dist_col.index(min(dist_col))], min(dist_col)]
else:
collision_event = []
self.pedestrians_collision_events_info = [collision_event]
self.publish_pedestrians_collision_events()
if GLOBAL_DRAW and len(collision_event) != 0 and collision_event[-1] < 2.0:
pedestrian_object = collision_event[0]
dist_ped = math.hypot(pedestrian_object.x-ego_vehicle.x, pedestrian_object.y-ego_vehicle.y)
angle = math.radians(collision_event[1])
dist_ped = dist_ped*math.cos(angle)
waypoint = Waypoint()
theta = math.radians(ego_vehicle.yaw)
waypoint.x = ego_vehicle.x + dist_ped * math.cos(theta)
waypoint.y = ego_vehicle.y + dist_ped * math.sin(theta)
self.publish_collision_points_draw([waypoint])
# -------- ROS functions ---------
def callback_ego_vehicle(self, ros_data):
self.ego_vehicle = ros_data
def callback_vehicles_list(self, ros_data):
self.vehicles_list = ros_data.objects_list
def callback_pedestrians_list(self, ros_data):
self.pedestrians_list = ros_data.objects_list
def callback_signs_location(self, ros_data):
self.traffic_signs_loc = ros_data.waypoints_list
def callback_ego_trajectory(self, ros_data):
self.ego_trajectory = ros_data.waypoints_list
def client_driving_paths(self, vehicles):
rospy.wait_for_service('driving_paths_srv')
rospy.wait_for_service('driving_paths_srv')
x_list = [vehicle.x for vehicle in vehicles]
y_list = [vehicle.y for vehicle in vehicles]
try:
driving_paths = rospy.ServiceProxy('driving_paths_srv', DrivingPaths)
resp1 = driving_paths(x_list, y_list, self.trajectories_length)
veh_trajectories = []
for vehicle in resp1.driving_paths:
trajectories = [trajectory.waypoints_list for trajectory in vehicle.trajectories_list]
veh_trajectories.append(trajectories)
#rospy.loginfo(veh_trajectories)
return veh_trajectories
except rospy.ServiceException as e:
print("Service call failed: %s" % e)
def publish_vehicles_collision_events(self):
pub = self.pub_vehicles_collision_info
collision_event_list = []
for collision_event in self.vehicles_collision_events_info:
ros_vehicle_collision_event = VehiclesCollisionEvent()
ros_vehicle_collision_event.object = collision_event[0]
ros_vehicle_collision_event.collision_point = collision_event[1]
ros_vehicle_collision_event.collision_time = collision_event[2]
ros_vehicle_collision_event.prediction_probability = collision_event[3]
collision_event_list.append(ros_vehicle_collision_event)
ros_collision_event_list = VehiclesCollisionEventList()
ros_collision_event_list.collision_event_list = collision_event_list
#rospy.loginfo(ros_collision_event_list)
pub.publish(ros_collision_event_list)
def publish_pedestrians_collision_events(self):
pub = self.pub_pedestrians_collision_info
collision_event_list = []
if self.pedestrians_collision_events_info[0]:
for collision_event in self.pedestrians_collision_events_info:
ros_collision_event = PedestrianCollisionEvent()
ros_collision_event.object = collision_event[0]
ros_collision_event.angle = collision_event[1]
ros_collision_event.collision_time = collision_event[2]
ros_collision_event.collision_distance = collision_event[3]
collision_event_list.append(ros_collision_event)
ros_collision_event_list = PedestrianCollisionEventList()
ros_collision_event_list.collision_event_list = collision_event_list
# rospy.loginfo(ros_collision_event)
pub.publish(ros_collision_event_list)
def publish_prototype_trajectories_draw(self):
pub = self.pub_prototype_trajectories_draw
trajectories_list = []
for prototype_trajectories in [veh.trajectories for veh in self.vehicles_state_list]:
for trajectory in prototype_trajectories:
ros_trajectory = WaypointsList()
ros_trajectory.waypoints_list = trajectory
trajectories_list.append(ros_trajectory)
prototype_trajectories = TrajectoriesList()
prototype_trajectories.trajectories_list = trajectories_list
#rospy.loginfo(prototype_trajectories)
pub.publish(prototype_trajectories)
def publish_collision_points_draw(self, collision_points):
pub = self.pub_collision_points_draw
ros_points_list = WaypointsList()
ros_points_list.waypoints_list = collision_points
#rospy.loginfo(prototype_trajectories)
pub.publish(ros_points_list)
def main():
motion_prediction = MotionPrediction()
try:
while not rospy.is_shutdown():
motion_prediction.predict_vehicles_collision()
motion_prediction.predict_pedestrians_collision()
except rospy.ROSInterruptException:
print("Local path planner node failed")
pass
if __name__ == '__main__':
main()
|
py
|
1a590401371eedd6547f85a129aa4d1cf0998999
|
"""Data types for agent-based learning."""
import collections
import enum
import akro
import numpy as np
from garage.np import concat_tensor_dict_list, slice_nested_dict
# pylint: disable=too-many-lines
class EpisodeBatch(
collections.namedtuple('EpisodeBatch', [
'env_spec',
'observations',
'last_observations',
'actions',
'rewards',
'env_infos',
'agent_infos',
'step_types',
'lengths',
])):
# pylint: disable=missing-return-doc, missing-return-type-doc, missing-param-doc, missing-type-doc # noqa: E501
r"""A tuple representing a batch of whole episodes.
Data type for on-policy algorithms.
A :class:`~EpisodeBatch` represents a batch of whole episodes, produced
when one or more agents interacts with one or more environments.
+-----------------------+-------------------------------------------------+
| Symbol | Description |
+=======================+=================================================+
| :math:`N` | Episode batch dimension |
+-----------------------+-------------------------------------------------+
| :math:`[T]` | Variable-length time dimension of each |
| | episode |
+-----------------------+-------------------------------------------------+
| :math:`S^*` | Single-step shape of a time-series tensor |
+-----------------------+-------------------------------------------------+
| :math:`N \bullet [T]` | A dimension computed by flattening a |
| | variable-length time dimension :math:`[T]` into |
| | a single batch dimension with length |
| | :math:`sum_{i \in N} [T]_i` |
+-----------------------+-------------------------------------------------+
Attributes:
env_spec (EnvSpec): Specification for the environment from
which this data was sampled.
observations (numpy.ndarray): A numpy array of shape
:math:`(N \bullet [T], O^*)` containing the (possibly
multi-dimensional) observations for all time steps in this batch.
These must conform to :obj:`EnvStep.observation_space`.
last_observations (numpy.ndarray): A numpy array of shape
:math:`(N, O^*)` containing the last observation of each episode.
This is necessary since there are one more observations than
actions every episode.
actions (numpy.ndarray): A numpy array of shape
:math:`(N \bullet [T], A^*)` containing the (possibly
multi-dimensional) actions for all time steps in this batch. These
must conform to :obj:`EnvStep.action_space`.
rewards (numpy.ndarray): A numpy array of shape
:math:`(N \bullet [T])` containing the rewards for all time steps
in this batch.
env_infos (dict): A dict of numpy arrays arbitrary environment state
information. Each value of this dict should be a numpy array of
shape :math:`(N \bullet [T])` or :math:`(N \bullet [T], S^*)`.
agent_infos (numpy.ndarray): A dict of numpy arrays arbitrary agent
state information. Each value of this dict should be a numpy array
of shape :math:`(N \bullet [T])` or :math:`(N \bullet [T], S^*)`.
For example, this may contain the hidden states from an RNN policy.
step_types (numpy.ndarray): A numpy array of `StepType with shape
:math:`(N,)` containing the time step types for all transitions in
this batch.
lengths (numpy.ndarray): An integer numpy array of shape :math:`(N,)`
containing the length of each episode in this batch. This may be
used to reconstruct the individual episodes.
Raises:
ValueError: If any of the above attributes do not conform to their
prescribed types and shapes.
"""
__slots__ = ()
def __new__(cls, env_spec, observations, last_observations, actions,
rewards, env_infos, agent_infos, step_types,
lengths): # noqa: D102
# pylint: disable=too-many-branches
first_observation = observations[0]
first_action = actions[0]
inferred_batch_size = lengths.sum()
# lengths
if len(lengths.shape) != 1:
raise ValueError(
'Lengths tensor must be a tensor of shape (N,), but got a '
'tensor of shape {} instead'.format(lengths.shape))
if not (lengths.dtype.kind == 'u' or lengths.dtype.kind == 'i'):
raise ValueError(
'Lengths tensor must have an integer dtype, but got dtype {} '
'instead.'.format(lengths.dtype))
# observations
if not env_spec.observation_space.contains(first_observation):
# Discrete actions can be either in the space normally, or one-hot
# encoded.
if isinstance(env_spec.observation_space,
(akro.Box, akro.Discrete, akro.Dict)):
if env_spec.observation_space.flat_dim != np.prod(
first_observation.shape):
raise ValueError('observations should have the same '
'dimensionality as the observation_space '
'({}), but got data with shape {} '
'instead'.format(
env_spec.observation_space.flat_dim,
first_observation.shape))
else:
raise ValueError(
'observations must conform to observation_space {}, but '
'got data with shape {} instead.'.format(
env_spec.observation_space, first_observation))
if observations.shape[0] != inferred_batch_size:
raise ValueError(
'Expected batch dimension of observations to be length {}, '
'but got length {} instead.'.format(inferred_batch_size,
observations.shape[0]))
# observations
if not env_spec.observation_space.contains(last_observations[0]):
# Discrete actions can be either in the space normally, or one-hot
# encoded.
if isinstance(env_spec.observation_space,
(akro.Box, akro.Discrete, akro.Dict)):
if env_spec.observation_space.flat_dim != np.prod(
last_observations[0].shape):
raise ValueError('last_observations should have the same '
'dimensionality as the observation_space '
'({}), but got data with shape {} '
'instead'.format(
env_spec.observation_space.flat_dim,
last_observations[0].shape))
else:
raise ValueError(
'last_observations must conform to observation_space {}, '
'but got data with shape {} instead.'.format(
env_spec.observation_space, last_observations[0]))
if last_observations.shape[0] != len(lengths):
raise ValueError(
'Expected batch dimension of last_observations to be length '
'{}, but got length {} instead.'.format(
len(lengths), last_observations.shape[0]))
# actions
if not env_spec.action_space.contains(first_action):
# Discrete actions can be either in the space normally, or one-hot
# encoded.
if isinstance(env_spec.action_space,
(akro.Box, akro.Discrete, akro.Dict)):
if env_spec.action_space.flat_dim != np.prod(
first_action.shape):
raise ValueError('actions should have the same '
'dimensionality as the action_space '
'({}), but got data with shape {} '
'instead'.format(
env_spec.action_space.flat_dim,
first_action.shape))
else:
raise ValueError(
'actions must conform to action_space {}, but got data '
'with shape {} instead.'.format(env_spec.action_space,
first_action))
if actions.shape[0] != inferred_batch_size:
raise ValueError(
'Expected batch dimension of actions to be length {}, but got '
'length {} instead.'.format(inferred_batch_size,
actions.shape[0]))
# rewards
if rewards.shape != (inferred_batch_size, ):
raise ValueError(
'Rewards tensor must have shape {}, but got shape {} '
'instead.'.format(inferred_batch_size, rewards.shape))
# env_infos
for key, val in env_infos.items():
if not isinstance(val, (dict, np.ndarray)):
raise ValueError(
'Each entry in env_infos must be a numpy array or '
'dictionary, but got key {} with value type {} instead.'.
format(key, type(val)))
if (isinstance(val, np.ndarray)
and val.shape[0] != inferred_batch_size):
raise ValueError(
'Each entry in env_infos must have a batch dimension of '
'length {}, but got key {} with batch size {} instead.'.
format(inferred_batch_size, key, val.shape[0]))
# agent_infos
for key, val in agent_infos.items():
if not isinstance(val, (dict, np.ndarray)):
raise ValueError(
'Each entry in agent_infos must be a numpy array or '
'dictionary, but got key {} with value type {} instead.'
'instead'.format(key, type(val)))
if (isinstance(val, np.ndarray)
and val.shape[0] != inferred_batch_size):
raise ValueError(
'Each entry in agent_infos must have a batch dimension of '
'length {}, but got key {} with batch size {} instead.'.
format(inferred_batch_size, key, val.shape[0]))
# step_types
if step_types.shape != (inferred_batch_size, ):
raise ValueError(
'step_types tensor must have shape {}, but got shape {} '
'instead.'.format(inferred_batch_size, step_types.shape))
if step_types.dtype != StepType:
raise ValueError(
'step_types tensor must be dtype `StepType`, but got tensor '
'of dtype {} instead.'.format(step_types.dtype))
return super().__new__(EpisodeBatch, env_spec, observations,
last_observations, actions, rewards, env_infos,
agent_infos, step_types, lengths)
@classmethod
def concatenate(cls, *batches):
"""Create a EpisodeBatch by concatenating EpisodeBatches.
Args:
batches (list[EpisodeBatch]): Batches to concatenate.
Returns:
EpisodeBatch: The concatenation of the batches.
"""
if __debug__:
for b in batches:
assert (set(b.env_infos.keys()) == set(
batches[0].env_infos.keys()))
assert (set(b.agent_infos.keys()) == set(
batches[0].agent_infos.keys()))
env_infos = {
k: np.concatenate([b.env_infos[k] for b in batches])
for k in batches[0].env_infos.keys()
}
agent_infos = {
k: np.concatenate([b.agent_infos[k] for b in batches])
for k in batches[0].agent_infos.keys()
}
return cls(
env_spec=batches[0].env_spec,
observations=np.concatenate(
[batch.observations for batch in batches]),
last_observations=np.concatenate(
[batch.last_observations for batch in batches]),
actions=np.concatenate([batch.actions for batch in batches]),
rewards=np.concatenate([batch.rewards for batch in batches]),
env_infos=env_infos,
agent_infos=agent_infos,
step_types=np.concatenate([batch.step_types for batch in batches]),
lengths=np.concatenate([batch.lengths for batch in batches]))
def split(self):
"""Split an EpisodeBatch into a list of EpisodeBatches.
The opposite of concatenate.
Returns:
list[EpisodeBatch]: A list of EpisodeBatches, with one
episode per batch.
"""
episodes = []
start = 0
for i, length in enumerate(self.lengths):
stop = start + length
eps = EpisodeBatch(
env_spec=self.env_spec,
observations=self.observations[start:stop],
last_observations=np.asarray([self.last_observations[i]]),
actions=self.actions[start:stop],
rewards=self.rewards[start:stop],
env_infos=slice_nested_dict(self.env_infos, start, stop),
agent_infos=slice_nested_dict(self.agent_infos, start, stop),
step_types=self.step_types[start:stop],
lengths=np.asarray([length]))
episodes.append(eps)
start = stop
return episodes
def to_list(self):
"""Convert the batch into a list of dictionaries.
Returns:
list[dict[str, np.ndarray or dict[str, np.ndarray]]]: Keys:
* observations (np.ndarray): Non-flattened array of
observations. Has shape (T, S^*) (the unflattened state
space of the current environment). observations[i] was
used by the agent to choose actions[i].
* next_observations (np.ndarray): Non-flattened array of
observations. Has shape (T, S^*). next_observations[i] was
observed by the agent after taking actions[i].
* actions (np.ndarray): Non-flattened array of actions. Should
have shape (T, S^*) (the unflattened action space of the
current environment).
* rewards (np.ndarray): Array of rewards of shape (T,) (1D
array of length timesteps).
* agent_infos (dict[str, np.ndarray]): Dictionary of stacked,
non-flattened `agent_info` arrays.
* env_infos (dict[str, np.ndarray]): Dictionary of stacked,
non-flattened `env_info` arrays.
* step_types (numpy.ndarray): A numpy array of `StepType with
shape (T,) containing the time step types for all
transitions in this batch.
"""
start = 0
episodes = []
for i, length in enumerate(self.lengths):
stop = start + length
episodes.append({
'observations':
self.observations[start:stop],
'next_observations':
np.concatenate((self.observations[1 + start:stop],
[self.last_observations[i]])),
'actions':
self.actions[start:stop],
'rewards':
self.rewards[start:stop],
'env_infos':
{k: v[start:stop]
for (k, v) in self.env_infos.items()},
'agent_infos':
{k: v[start:stop]
for (k, v) in self.agent_infos.items()},
'step_types':
self.step_types[start:stop]
})
start = stop
return episodes
@classmethod
def from_list(cls, env_spec, paths):
"""Create a EpisodeBatch from a list of episodes.
Args:
env_spec (EnvSpec): Specification for the environment from which
this data was sampled.
paths (list[dict[str, np.ndarray or dict[str, np.ndarray]]]): Keys:
* observations (np.ndarray): Non-flattened array of
observations. Typically has shape (T, S^*) (the unflattened
state space of the current environment). observations[i]
was used by the agent to choose actions[i]. observations
may instead have shape (T + 1, S^*).
* next_observations (np.ndarray): Non-flattened array of
observations. Has shape (T, S^*). next_observations[i] was
observed by the agent after taking actions[i]. Optional.
Note that to ensure all information from the environment
was preserved, observations[i] should have shape (T + 1,
S^*), or this key should be set. However, this method is
lenient and will "duplicate" the last observation if the
original last observation has been lost.
* actions (np.ndarray): Non-flattened array of actions. Should
have shape (T, S^*) (the unflattened action space of the
current environment).
* rewards (np.ndarray): Array of rewards of shape (T,) (1D
array of length timesteps).
* agent_infos (dict[str, np.ndarray]): Dictionary of stacked,
non-flattened `agent_info` arrays.
* env_infos (dict[str, np.ndarray]): Dictionary of stacked,
non-flattened `env_info` arrays.
* step_types (numpy.ndarray): A numpy array of `StepType with
shape (T,) containing the time step types for all
transitions in this batch.
"""
lengths = np.asarray([len(p['rewards']) for p in paths])
if all(
len(path['observations']) == length + 1
for (path, length) in zip(paths, lengths)):
last_observations = np.asarray(
[p['observations'][-1] for p in paths])
observations = np.concatenate(
[p['observations'][:-1] for p in paths])
else:
# The number of observations and timesteps must match.
observations = np.concatenate([p['observations'] for p in paths])
if paths[0].get('next_observations') is not None:
last_observations = np.asarray(
[p['next_observations'][-1] for p in paths])
else:
last_observations = np.asarray(
[p['observations'][-1] for p in paths])
stacked_paths = concat_tensor_dict_list(paths)
# Temporary solution. This logic is not needed if algorithms process
# step_types instead of dones directly.
if 'dones' in stacked_paths and 'step_types' not in stacked_paths:
step_types = np.array([
StepType.TERMINAL if done else StepType.MID
for done in stacked_paths['dones']
],
dtype=StepType)
stacked_paths['step_types'] = step_types
del stacked_paths['dones']
return cls(env_spec=env_spec,
observations=observations,
last_observations=last_observations,
actions=stacked_paths['actions'],
rewards=stacked_paths['rewards'],
env_infos=stacked_paths['env_infos'],
agent_infos=stacked_paths['agent_infos'],
step_types=stacked_paths['step_types'],
lengths=lengths)
@property
def next_observations(self):
"""Get the observations seen after actions are performed.
Usually, in an :class:`~EpisodeBatch`, next_observations don't need to
be stored explicitly, since the next observation is already stored in
the batch.
Returns:
np.ndarray: The "next_observations".
"""
return np.concatenate(
tuple([
np.concatenate((eps.observations[1:], eps.last_observations))
for eps in self.split()
]))
class StepType(enum.IntEnum):
"""Defines the status of a :class:`~TimeStep` within a sequence.
Note that the last :class:`~TimeStep` in a sequence can either be
:attribute:`StepType.TERMINAL` or :attribute:`StepType.TIMEOUT`.
Suppose max_episode_length = 5:
* A success sequence terminated at step 4 will look like:
FIRST, MID, MID, TERMINAL
* A success sequence terminated at step 5 will look like:
FIRST, MID, MID, MID, TERMINAL
* An unsuccessful sequence truncated by time limit will look like:
FIRST, MID, MID, MID, TIMEOUT
"""
# Denotes the first :class:`~TimeStep` in a sequence.
FIRST = 0
# Denotes any :class:`~TimeStep` in the middle of a sequence (i.e. not the
# first or last one).
MID = 1
# Denotes the last :class:`~TimeStep` in a sequence that terminates
# successfully.
TERMINAL = 2
# Denotes the last :class:`~TimeStep` in a sequence truncated by time
# limit.
TIMEOUT = 3
@classmethod
def get_step_type(cls, step_cnt, max_episode_length, done):
"""Determines the step type based on step cnt and done signal.
Args:
step_cnt (int): current step cnt of the environment.
max_episode_length (int): maximum episode length.
done (bool): the done signal returned by Environment.
Returns:
StepType: the step type.
Raises:
ValueError: if step_cnt is < 1. In this case a environment's
`reset()` is likely not called yet and the step_cnt is None.
"""
if max_episode_length is not None and step_cnt >= max_episode_length:
return StepType.TIMEOUT
elif done:
return StepType.TERMINAL
elif step_cnt == 1:
return StepType.FIRST
elif step_cnt < 1:
raise ValueError('Expect step_cnt to be >= 1, but got {} '
'instead. Did you forget to call `reset('
')`?'.format(step_cnt))
else:
return StepType.MID
class TimeStep(
collections.namedtuple('TimeStep', [
'env_spec', 'observation', 'action', 'reward', 'next_observation',
'env_info', 'agent_info', 'step_type'
])):
# pylint: disable=missing-return-doc, missing-return-type-doc, missing-param-doc, missing-type-doc # noqa: E501
r"""A tuple representing a single TimeStep.
A :class:`~TimeStep` represents a single sample when an agent interacts
with an environment. It describes as SARS (State–action–reward–state)
tuple that characterizes the evolution of a MDP.
Attributes:
env_spec (EnvSpec): Specification for the environment from which this
data was sampled.
observation (numpy.ndarray): A numpy array of shape :math:`(O^*)`
containing the observation for the this time step in the
environment. These must conform to
:obj:`EnvStep.observation_space`.
The observation before applying the action.
`None` if `step_type` is `StepType.FIRST`, i.e. at the start of a
sequence.
action (numpy.ndarray): A numpy array of shape :math:`(A^*)`
containing the action for the this time step. These must conform
to :obj:`EnvStep.action_space`.
`None` if `step_type` is `StepType.FIRST`, i.e. at the start of a
sequence.
reward (float): A float representing the reward for taking the action
given the observation, at the this time step.
`None` if `step_type` is `StepType.FIRST`, i.e. at the start of a
sequence.
next_observation (numpy.ndarray): A numpy array of shape :math:`(O^*)`
containing the observation for the this time step in the
environment. These must conform to
:obj:`EnvStep.observation_space`.
The observation after applying the action.
env_info (dict): A dict arbitrary environment state information.
agent_info (dict): A dict of arbitrary agent
state information. For example, this may contain the hidden states
from an RNN policy.
step_type (StepType): a :class:`~StepType` enum value. Can be one of
:attribute:`~StepType.FIRST`, :attribute:`~StepType.MID`,
:attribute:`~StepType.TERMINAL`, or :attribute:`~StepType.TIMEOUT`.
"""
@property
def first(self):
"""bool: Whether this step is the first of its episode."""
return self.step_type is StepType.FIRST
@property
def mid(self):
"""bool: Whether this step is in the middle of its episode."""
return self.step_type is StepType.MID
@property
def terminal(self):
"""bool: Whether this step records a termination condition."""
return self.step_type is StepType.TERMINAL
@property
def timeout(self):
"""bool: Whether this step records a timeout condition."""
return self.step_type is StepType.TIMEOUT
@property
def last(self):
"""bool: Whether this step is the last of its episode."""
return self.step_type is StepType.TERMINAL or self.step_type \
is StepType.TIMEOUT
@classmethod
def from_env_step(cls, env_step, last_observation, agent_info):
"""Create a TimeStep from a EnvStep.
Args:
env_step (EnvStep): the env step returned by the environment.
last_observation (numpy.ndarray): A numpy array of shape
:math:`(O^*)` containing the observation for the this time
step in the environment. These must conform to
:obj:`EnvStep.observation_space`.
The observation before applying the action.
agent_info (dict): A dict of arbitrary agent state information.
Returns:
TimeStep: The TimeStep with all information of EnvStep plus the
agent info.
"""
return cls(env_spec=env_step.env_spec,
observation=last_observation,
action=env_step.action,
reward=env_step.reward,
next_observation=env_step.observation,
env_info=env_step.env_info,
agent_info=agent_info,
step_type=env_step.step_type)
class InOutSpec:
"""Describes the input and output spaces of a primitive or module.
Args:
input_space (akro.Space): Input space of a module.
output_space (akro.Space): Output space of a module.
"""
def __init__(self, input_space, output_space):
self._input_space = input_space
self._output_space = output_space
@property
def input_space(self):
"""Get input space of the module.
Returns:
akro.Space: Input space of the module.
"""
return self._input_space
@property
def output_space(self):
"""Get output space of the module.
Returns:
akro.Space: Output space of the module.
"""
return self._output_space
class TimeStepBatch(
collections.namedtuple('TimeStepBatch', [
'env_spec', 'observations', 'actions', 'rewards',
'next_observations', 'env_infos', 'agent_infos', 'step_types'
])):
# pylint: disable=missing-param-doc, missing-type-doc
"""A tuple representing a batch of TimeSteps.
Data type for off-policy algorithms, imitation learning and batch-RL.
Attributes:
env_spec (EnvSpec): Specification for the environment from
which this data was sampled.
observations (numpy.ndarray): Non-flattened array of observations.
Typically has shape (batch_size, S^*) (the unflattened state space
of the current environment).
actions (numpy.ndarray): Non-flattened array of actions. Should
have shape (batch_size, S^*) (the unflattened action space of the
current environment).
rewards (numpy.ndarray): Array of rewards of shape (batch_size, 1).
next_observation (numpy.ndarray): Non-flattened array of next
observations. Has shape (batch_size, S^*). next_observations[i] was
observed by the agent after taking actions[i].
env_infos (dict): A dict arbitrary environment state
information.
agent_infos (dict): A dict of arbitrary agent state information. For
example, this may contain the hidden states from an RNN policy.
step_types (numpy.ndarray): A numpy array of `StepType with shape (
batch_size,) containing the time step types for all transitions in
this batch.
Raises:
ValueError: If any of the above attributes do not conform to their
prescribed types and shapes.
"""
__slots__ = ()
def __new__(cls, env_spec, observations, actions, rewards,
next_observations, env_infos, agent_infos,
step_types): # noqa: D102
# pylint: disable=missing-return-doc, missing-return-type-doc,
# pylint: disable=too-many-branches
inferred_batch_size = len(rewards)
if inferred_batch_size < 1:
raise ValueError(
'Expected batch dimension of rewards to be greater than 1, '
'but got length {} instead.'.format(inferred_batch_size))
first_observation = observations[0]
first_action = actions[0]
# observation
if not env_spec.observation_space.contains(first_observation):
if isinstance(env_spec.observation_space,
(akro.Box, akro.Discrete, akro.Dict)):
if env_spec.observation_space.flat_dim != np.prod(
first_observation.shape):
raise ValueError('observations should have the same '
'dimensionality as the observation_space '
'({}), but got data with shape {} '
'instead'.format(
env_spec.observation_space.flat_dim,
first_observation.shape))
else:
raise ValueError(
'observations must conform to observation_space {}, '
'but got data with shape {} instead.'.format(
env_spec.observation_space, first_observation.shape))
if observations.shape[0] != inferred_batch_size:
raise ValueError(
'Expected batch dimension of observations to be length {}, '
'but got length {} instead.'.format(inferred_batch_size,
observations.shape[0]))
# next_observation
if not env_spec.observation_space.contains(next_observations[0]):
if isinstance(env_spec.observation_space,
(akro.Box, akro.Discrete, akro.Dict)):
if env_spec.observation_space.flat_dim != np.prod(
next_observations[0].shape):
raise ValueError('next_observations should have the same '
'dimensionality as the observation_space '
'({}), but got data with shape {} '
'instead'.format(
env_spec.observation_space.flat_dim,
next_observations[0].shape))
else:
raise ValueError(
'next_observations must conform to observation_space {}, '
'but got data with shape {} instead.'.format(
env_spec.observation_space,
next_observations[0].shape[0]))
if next_observations.shape[0] != inferred_batch_size:
raise ValueError(
'Expected batch dimension of next_observations to be length {'
'}, but got length {} instead.'.format(
inferred_batch_size, next_observations[0].shape[0]))
# action
if not env_spec.action_space.contains(first_action):
if isinstance(env_spec.action_space,
(akro.Box, akro.Discrete, akro.Dict)):
if env_spec.action_space.flat_dim != np.prod(
first_action.shape):
raise ValueError('actions should have the same '
'dimensionality as the action_space '
'({}), but got data with shape {} '
'instead'.format(
env_spec.action_space.flat_dim,
first_action.shape))
else:
raise ValueError('actions must conform to action_space {}, '
'but got data with shape {} instead.'.format(
env_spec.action_space,
first_action.shape))
if actions.shape[0] != inferred_batch_size:
raise ValueError(
'Expected batch dimension of actions to be length {}, but got '
'length {} instead.'.format(inferred_batch_size,
actions.shape[0]))
# rewards
if rewards.shape != (inferred_batch_size, 1):
raise ValueError(
'Rewards tensor must have shape {}, but got shape {} '
'instead.'.format((inferred_batch_size, 1), rewards.shape))
# step_types
if step_types.shape[0] != inferred_batch_size:
raise ValueError(
'Expected batch dimension of step_types to be length {}, '
'but got '
'length {} instead.'.format(inferred_batch_size,
rewards.shape[0]))
for step_type in step_types:
if not isinstance(step_type, StepType):
raise ValueError(
'Each entry in step_types must be a StepType, but got'
' value type {} instead.'.format(type(step_type)))
# env_infos
for key, val in env_infos.items():
if not isinstance(val, (dict, np.ndarray)):
raise ValueError(
'Each entry in env_infos must be a numpy array or '
'dictionary, but got key {} with value type {} '
'instead.'.format(key, type(val)))
if (isinstance(val, np.ndarray)
and val.shape[0] != inferred_batch_size):
raise ValueError(
'Each entry in env_infos must have a batch dimension '
'of '
'length {}, but got key {} with batch size {} instead.'.
format(inferred_batch_size, key, val.shape[0]))
# agent_infos
for key, val in agent_infos.items():
if not isinstance(val, (dict, np.ndarray)):
raise ValueError(
'Each entry in agent_infos must be a numpy array or '
'dictionary, but got key {} with value type {} instead.'
'instead'.format(key, type(val)))
if (isinstance(val, np.ndarray)
and val.shape[0] != inferred_batch_size):
raise ValueError(
'Each entry in agent_infos must have a batch '
'dimension of '
'length {}, but got key {} with batch size {} instead.'.
format(inferred_batch_size, key, val.shape[0]))
return super().__new__(TimeStepBatch, env_spec, observations, actions,
rewards, next_observations, env_infos,
agent_infos, step_types)
@classmethod
def concatenate(cls, *batches):
"""Concatenate two or more :class:`TimeStepBatch`s.
Args:
batches (list[TimeStepBatch]): Batches to concatenate.
Returns:
TimeStepBatch: The concatenation of the batches.
Raises:
ValueError: If no TimeStepBatches are provided.
"""
if len(batches) < 1:
raise ValueError('Please provide at least one TimeStepBatch to '
'concatenate')
env_infos = {
k: np.concatenate([b.env_infos[k] for b in batches])
for k in batches[0].env_infos.keys()
}
agent_infos = {
k: np.concatenate([b.agent_infos[k] for b in batches])
for k in batches[0].agent_infos.keys()
}
return cls(
env_spec=batches[0].env_spec,
observations=np.concatenate(
[batch.observations for batch in batches]),
actions=np.concatenate([batch.actions for batch in batches]),
rewards=np.concatenate([batch.rewards for batch in batches]),
next_observations=np.concatenate(
[batch.next_observations for batch in batches]),
env_infos=env_infos,
agent_infos=agent_infos,
step_types=np.concatenate([batch.step_types for batch in batches]))
def split(self):
"""Split a :class:`~TimeStepBatch` into a list of :class:`~TimeStepBatch`s.
The opposite of concatenate.
Returns:
list[TimeStepBatch]: A list of :class:`TimeStepBatch`s, with one
:class:`~TimeStep` per :class:`~TimeStepBatch`.
"""
time_steps = []
for i in range(len(self.rewards)):
time_step = TimeStepBatch(
env_spec=self.env_spec,
observations=np.asarray([self.observations[i]]),
actions=np.asarray([self.actions[i]]),
rewards=np.asarray([self.rewards[i]]),
next_observations=np.asarray([self.next_observations[i]]),
env_infos={
k: np.asarray([v[i]])
for (k, v) in self.env_infos.items()
},
agent_infos={
k: np.asarray([v[i]])
for (k, v) in self.agent_infos.items()
},
step_types=np.asarray([self.step_types[i]], dtype=StepType))
time_steps.append(time_step)
return time_steps
def to_time_step_list(self):
"""Convert the batch into a list of dictionaries.
Breaks the :class:`~TimeStepBatch` into a list of single time step
sample dictionaries. len(rewards) (or the number of discrete time step)
dictionaries are returned
Returns:
list[dict[str, np.ndarray or dict[str, np.ndarray]]]: Keys:
observations (numpy.ndarray): Non-flattened array of
observations.
Typically has shape (batch_size, S^*) (the unflattened
state space
of the current environment).
actions (numpy.ndarray): Non-flattened array of actions. Should
have shape (batch_size, S^*) (the unflattened action
space of the
current environment).
rewards (numpy.ndarray): Array of rewards of shape (
batch_size,) (1D array of length batch_size).
next_observation (numpy.ndarray): Non-flattened array of next
observations. Has shape (batch_size, S^*).
next_observations[i] was
observed by the agent after taking actions[i].
env_infos (dict): A dict arbitrary environment state
information.
agent_infos (dict): A dict of arbitrary agent state
information. For example, this may contain the
hidden states from an RNN policy.
step_types (numpy.ndarray): A numpy array of `StepType with
shape (batch_size,) containing the time step types for
all transitions in this batch.
"""
samples = []
for i in range(len(self.rewards)):
samples.append({
'observations':
np.asarray([self.observations[i]]),
'actions':
np.asarray([self.actions[i]]),
'rewards':
np.asarray([self.rewards[i]]),
'next_observations':
np.asarray([self.next_observations[i]]),
'env_infos':
{k: np.asarray([v[i]])
for (k, v) in self.env_infos.items()},
'agent_infos':
{k: np.asarray([v[i]])
for (k, v) in self.agent_infos.items()},
'step_types':
np.asarray([self.step_types[i]]),
})
return samples
@property
def terminals(self):
"""Get an array of boolean indicating ternianal information.
Returns:
numpy.ndarray: An array of boolean of shape (batch_size, 1)
indicating whether the `StepType is `TERMINAL
"""
return np.array([[s == StepType.TERMINAL] for s in self.step_types])
@classmethod
def from_time_step_list(cls, env_spec, ts_samples):
"""Create a :class:`~TimeStepBatch` from a list of time step dictionaries.
Args:
env_spec (EnvSpec): Specification for the environment from which
this data was sampled.
ts_samples (list[dict[str, np.ndarray or dict[str, np.ndarray]]]):
keys:
* observations (numpy.ndarray): Non-flattened array of
observations.
Typically has shape (batch_size, S^*) (the unflattened
state space of the current environment).
* actions (numpy.ndarray): Non-flattened array of actions.
Should have shape (batch_size, S^*) (the unflattened action
space of the current environment).
* rewards (numpy.ndarray): Array of rewards of shape (
batch_size,) (1D array of length batch_size).
* next_observation (numpy.ndarray): Non-flattened array of next
observations. Has shape (batch_size, S^*).
next_observations[i] was observed by the agent after
taking actions[i].
* env_infos (dict): A dict arbitrary environment state
information.
* agent_infos (dict): A dict of arbitrary agent
state information. For example, this may contain the
hidden states from an RNN policy.
* step_types (numpy.ndarray): A numpy array of `StepType with
shape (batch_size,) containing the time step types for all
transitions in this batch.
Returns:
TimeStepBatch: The concatenation of samples.
Raises:
ValueError: If no dicts are provided.
"""
if len(ts_samples) < 1:
raise ValueError('Please provide at least one dict')
ts_batches = [
TimeStepBatch(env_spec=env_spec,
observations=sample['observations'],
actions=sample['actions'],
rewards=sample['rewards'],
next_observations=sample['next_observations'],
env_infos=sample['env_infos'],
agent_infos=sample['agent_infos'],
step_types=sample['step_types'])
for sample in ts_samples
]
return TimeStepBatch.concatenate(*ts_batches)
@classmethod
def from_episode_batch(cls, batch):
"""Construct a :class:`~TimeStepBatch` from an :class:`~EpisodeBatch`.
Args:
batch (EpisodeBatch): Episode batch to convert.
Returns:
TimeStepBatch: The converted batch.
"""
next_observations = np.concatenate(
tuple([
np.concatenate((eps.observations[1:], eps.last_observations))
for eps in batch.split()
]))
return cls(env_spec=batch.env_spec,
observations=batch.observations,
actions=batch.actions,
rewards=batch.rewards.reshape(-1, 1),
next_observations=next_observations,
env_infos=batch.env_infos,
agent_infos=batch.agent_infos,
step_types=batch.step_types)
|
py
|
1a59042cf2dea4686ecce672f433aa7ffee1b42a
|
#!/usr/local/bin/python3
import argparse
import random
class GenerationConfig:
count = 0
maximum = 0
minimum = 0
def __init__(self, count = 100, maximum = 100, minimum = 0):
if count <= 0:
raise Exception("Count must be positive!")
if minimum >= maximum:
raise Exception("Maximum must be greater than minimum!")
self.count = count
self.maximum = maximum
self.minimum = minimum
def generate(self):
result = []
for i in range(self.count):
result.append(random.randint(self.minimum, self.maximum))
return result
def process_args():
parser = argparse.ArgumentParser()
parser.add_argument("--count", help="number of items to generate", default = 100, required = False)
parser.add_argument("--max", help="maximum value of generated items", default = 100, required = False)
parser.add_argument("--min", help="maximum value of generated items", default = 0, required = False)
args = parser.parse_args()
return GenerationConfig(int(args.count), int(args.max), int(args.min))
def generate(generationConfig):
return generationConfig.generate()
def main():
generationConfig = process_args()
data = generate(generationConfig)
for item in data:
print(item)
if __name__ == '__main__':
main()
|
py
|
1a5904894da575e63be0b62d5a1997595baae7a4
|
"""Utility functions for tensor operations
"""
import numpy as np
from six.moves import xrange
def _check_1d_vector(vector):
"""Check 1D vector shape
Check 1D vector shape. array with shape
[n, 1] or [n, ] are accepted. Will return
a 1 dimension vector.
Parameters
----------
vector : array (n,) or (n, 1)
rank one vector
Returns
-------
vector : array, (n,)
"""
v_shape = vector.shape
if len(v_shape) == 1:
return vector
elif len(v_shape) == 2 and v_shape[1] == 1:
return vector.reshape(v_shape[0],)
else:
raise ValueError("Vector is not 1-d array: shape %s" % str(v_shape))
def _check_square_matrix(matrix):
"""Check 2D matrix shape
Check 1D vector shape. array with shape
[n, 1] or [n, ] are accepted. Will return
a 1 dimension vector.
Parameters
----------
matrix : (n, n)
rank one vector
Returns
-------
matrix : array, (n, n)
"""
m_shape = matrix.shape
if len(m_shape) == 2:
if m_shape[0] != m_shape[1]:
raise ValueError("matrix is not square: shape %s" % str(m_shape))
return matrix
else:
raise ValueError("matrix is not 2-d array: shape %s" % str(m_shape))
def rank_1_tensor_3d(a, b, c):
"""Generate a 3-D tensor from 3 1-D vectors
Generate a 3D tensor from 3 rank one vectors
`a`, `b`, and `c`. The returned 3-D tensor is
in unfolded format.
Parameters
----------
a : array, shape (n,)
first rank one vector
b : array, shape (n,)
second rank one vector
c : array, shape (n,)
thrid rank one vector
Returns
-------
tensor: array, (n, n * n)
3D tensor in unfolded format. element
(i, j, k) will map to (i, (n * k) + j)
"""
a = _check_1d_vector(a)
b = _check_1d_vector(b)
c = _check_1d_vector(c)
dim = a.shape[0]
# check dimension
if (dim != b.shape[0]) or (dim != c.shape[0]):
raise ValueError("Vector dimension mismatch: (%d, %d, %d)" %
(dim, b.shape[0], c.shape[0]))
outter = b[:, np.newaxis] * c[:, np.newaxis].T
tensor = a[:, np.newaxis] * outter.ravel(order='F')[np.newaxis, :]
return tensor
def tensor_3d_from_vector_matrix(a, b):
"""Generate 3-D tensor from 1-D vector and 2-D matrix
Generate a 3D tensor from a 1-D vector `a` and 2-D
matrix `b`. The returned 3-D tensor is
in unfolded format.
Parameters
----------
a : array, shape (m,)
1-D vector
b : 2-D array, shape (n, p)
2-D matrix
Returns
-------
tensor: array, (m, n * p)
3D tensor in unfolded format.
"""
a = _check_1d_vector(a)
tensor = a[:, np.newaxis] * b.ravel(order='F')[np.newaxis, :]
return tensor
def tensor_3d_from_matrix_vector(b, a):
"""Generate 3-D tensor from 2-D matrix and 1-D vector
This function is similar to `tensor_3d_from_vector_matrix`
function. The only difference is the first argument is 2-D
matrix and the second element is 1-D vector.
Parameters
----------
b : array, shape (m, n)
2-D matrix
a : array, shape (p,)
vector
Returns
-------
tensor : array, shape (m, n * p)
3D tensor in unfolded format.
"""
len_a = a.shape[0]
n_col = b.shape[1]
tensor = np.tile(b, len_a)
for i in xrange(len_a):
col_from = n_col * i
col_to = n_col * (i+1)
tensor[:, col_from:col_to] *= a[i]
return tensor
def tensor_3d_permute(tensor, tensor_shape, a, b, c):
"""Permute the mode of a 3-D tensor
This is a slow implementation to generate 3-D tensor
permutations.
Parameters
----------
tensor : 2D array, shape (n, m * k)
3D tensor in unfolded format
tensor_shape : int triple
Shape of the tensor. Since tensor is in
unfolded format. We need it's real format
to calculate permutation.
a : int, {1, 2, 3}
new first index
}
b : int, {1, 2, 3}
new second index
c : int, {1, 2, 3}
new thrid order index
Return
------
permuted_tensor: 2D array
Permuted tensor, element (i_1, i_2, i_3) in
the permuted tensor will be element
(i_a, i_b, i_c) in the original tensor
"""
# TODO: check parameter
a_idx = a - 1
b_idx = b - 1
c_idx = c - 1
# TODO: move this part to cython loop
n_col = tensor_shape[1]
dim1 = tensor_shape[a_idx]
dim2 = tensor_shape[b_idx]
dim3 = tensor_shape[c_idx]
permuted_tensor = np.empty((dim1, dim2 * dim3))
old_idx = np.zeros(3).astype('int32')
for i in xrange(dim1):
for j in xrange(dim2):
for k in xrange(dim3):
old_idx[a_idx] = i
old_idx[b_idx] = j
old_idx[c_idx] = k
old_val = tensor[old_idx[0], (n_col * old_idx[2]) + old_idx[1]]
# new index
permuted_tensor[i, (dim2 * k) + j] = old_val
return permuted_tensor
def khatri_rao_prod(a, b):
"""Khatri-Rao product
Generate Khatri-Rao product from 2 2-D matrix.
Parameters
----------
a : 2D array, shape (n, k)
first matrix
b : 2D array, shape (m, k)
second matrix
Returns
-------
matrix : 2D array, shape (n * m, k)
Khatri-Rao product of `a` and `b`
"""
a_row, a_col = a.shape
b_row, b_col = b.shape
# check column size
if a_col != b_col:
raise ValueError("column dimension mismatch: %d != %d" %
a_col, b_col)
matrix = np.empty((a_row * b_row, a_col))
for i in xrange(a_col):
matrix[:, i] = np.kron(a[:, i], b[:, i])
return matrix
def tensor_3d_prod(tensor, a, b, c):
"""Calculate product of 3D tensor with matrix on each dimension
TODO: move it to test
Parameters
----------
tensor : 3D array, shape (n1, n2, n3)
a : array, (n1, m)
b : array, (n2, n)
c : array, (n3, p)
Returns
-------
t_abc : array, (m, n, p)
tensor(a, b, c)
"""
n1, n2, n3 = tensor.shape
n1_, m = a.shape
n2_, n = b.shape
n3_, p = c.shape
# (n1, n2, p)
t_c = np.dot(tensor, c)
t_bc = np.empty((n1, n, p))
for i in xrange(n1):
# (n, p) = (n, n2) * (n2, p)
t_bc[i, :, :] = np.dot(b.T, t_c[i, :, :])
t_abc = np.empty((m, n, p))
for i in xrange(p):
t_abc[:, :, i] = np.dot(a.T, t_bc[:, :, i])
return t_abc
|
py
|
1a5905320f9832d5ae2dfffec8c29e3b2c712a23
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
"""
Tests for the API /conductors/ methods.
"""
import datetime
import mock
from oslo_config import cfg
from oslo_utils import timeutils
from oslo_utils import uuidutils
from six.moves import http_client
from ironic.api.controllers import base as api_base
from ironic.api.controllers import v1 as api_v1
from ironic.tests.unit.api import base as test_api_base
from ironic.tests.unit.objects import utils as obj_utils
class TestListConductors(test_api_base.BaseApiTest):
def test_empty(self):
data = self.get_json(
'/conductors',
headers={api_base.Version.string: str(api_v1.max_version())})
self.assertEqual([], data['conductors'])
def test_list(self):
obj_utils.create_test_conductor(self.context, hostname='why care')
obj_utils.create_test_conductor(self.context, hostname='why not')
data = self.get_json(
'/conductors',
headers={api_base.Version.string: str(api_v1.max_version())})
self.assertEqual(2, len(data['conductors']))
for c in data['conductors']:
self.assertIn('hostname', c)
self.assertIn('conductor_group', c)
self.assertIn('alive', c)
self.assertNotIn('drivers', c)
self.assertEqual(data['conductors'][0]['hostname'], 'why care')
self.assertEqual(data['conductors'][1]['hostname'], 'why not')
def test_list_with_detail(self):
obj_utils.create_test_conductor(self.context, hostname='why care')
obj_utils.create_test_conductor(self.context, hostname='why not')
data = self.get_json(
'/conductors?detail=true',
headers={api_base.Version.string: str(api_v1.max_version())})
self.assertEqual(2, len(data['conductors']))
for c in data['conductors']:
self.assertIn('hostname', c)
self.assertIn('drivers', c)
self.assertIn('conductor_group', c)
self.assertIn('alive', c)
self.assertIn('drivers', c)
self.assertEqual(data['conductors'][0]['hostname'], 'why care')
self.assertEqual(data['conductors'][1]['hostname'], 'why not')
def test_list_with_invalid_api(self):
response = self.get_json(
'/conductors', headers={api_base.Version.string: '1.48'},
expect_errors=True)
self.assertEqual(http_client.NOT_FOUND, response.status_int)
def test_get_one(self):
obj_utils.create_test_conductor(self.context, hostname='rocky.rocks')
data = self.get_json(
'/conductors/rocky.rocks',
headers={api_base.Version.string: str(api_v1.max_version())})
self.assertIn('hostname', data)
self.assertIn('drivers', data)
self.assertIn('conductor_group', data)
self.assertIn('alive', data)
self.assertIn('drivers', data)
self.assertEqual(data['hostname'], 'rocky.rocks')
self.assertTrue(data['alive'])
@mock.patch.object(timeutils, 'utcnow', autospec=True)
def test_get_one_conductor_offline(self, mock_utcnow):
self.config(heartbeat_timeout=10, group='conductor')
_time = datetime.datetime(2000, 1, 1, 0, 0)
mock_utcnow.return_value = _time
obj_utils.create_test_conductor(self.context, hostname='rocky.rocks')
mock_utcnow.return_value = _time + datetime.timedelta(seconds=30)
data = self.get_json(
'/conductors/rocky.rocks',
headers={api_base.Version.string: str(api_v1.max_version())})
self.assertIn('hostname', data)
self.assertIn('drivers', data)
self.assertIn('conductor_group', data)
self.assertIn('alive', data)
self.assertIn('drivers', data)
self.assertEqual(data['hostname'], 'rocky.rocks')
self.assertFalse(data['alive'])
def test_get_one_with_invalid_api(self):
response = self.get_json(
'/conductors/rocky.rocks',
headers={api_base.Version.string: '1.48'},
expect_errors=True)
self.assertEqual(http_client.NOT_FOUND, response.status_int)
def test_get_one_custom_fields(self):
obj_utils.create_test_conductor(self.context, hostname='rocky.rocks')
fields = 'hostname,alive'
data = self.get_json(
'/conductors/rocky.rocks?fields=%s' % fields,
headers={api_base.Version.string: str(api_v1.max_version())})
self.assertItemsEqual(['hostname', 'alive', 'links'], data)
def test_get_collection_custom_fields(self):
obj_utils.create_test_conductor(self.context, hostname='rocky.rocks')
obj_utils.create_test_conductor(self.context, hostname='stein.rocks')
fields = 'hostname,alive'
data = self.get_json(
'/conductors?fields=%s' % fields,
headers={api_base.Version.string: str(api_v1.max_version())})
self.assertEqual(2, len(data['conductors']))
for c in data['conductors']:
self.assertItemsEqual(['hostname', 'alive', 'links'], c)
def test_get_custom_fields_invalid_fields(self):
obj_utils.create_test_conductor(self.context, hostname='rocky.rocks')
fields = 'hostname,spongebob'
response = self.get_json(
'/conductors/rocky.rocks?fields=%s' % fields,
headers={api_base.Version.string: str(api_v1.max_version())},
expect_errors=True)
self.assertEqual(http_client.BAD_REQUEST, response.status_int)
self.assertEqual('application/json', response.content_type)
self.assertIn('spongebob', response.json['error_message'])
def _test_links(self, public_url=None):
cfg.CONF.set_override('public_endpoint', public_url, 'api')
obj_utils.create_test_conductor(self.context, hostname='rocky.rocks')
headers = {api_base.Version.string: str(api_v1.max_version())}
data = self.get_json(
'/conductors/rocky.rocks',
headers=headers)
self.assertIn('links', data)
self.assertEqual(2, len(data['links']))
self.assertIn('rocky.rocks', data['links'][0]['href'])
for l in data['links']:
bookmark = l['rel'] == 'bookmark'
self.assertTrue(self.validate_link(l['href'], bookmark=bookmark,
headers=headers))
if public_url is not None:
expected = [{'href': '%s/v1/conductors/rocky.rocks' % public_url,
'rel': 'self'},
{'href': '%s/conductors/rocky.rocks' % public_url,
'rel': 'bookmark'}]
for i in expected:
self.assertIn(i, data['links'])
def test_links(self):
self._test_links()
def test_links_public_url(self):
self._test_links(public_url='http://foo')
def test_collection_links(self):
conductors = []
for id in range(5):
hostname = uuidutils.generate_uuid()
conductor = obj_utils.create_test_conductor(self.context,
hostname=hostname)
conductors.append(conductor.hostname)
data = self.get_json(
'/conductors/?limit=3',
headers={api_base.Version.string: str(api_v1.max_version())})
self.assertEqual(3, len(data['conductors']))
next_marker = data['conductors'][-1]['hostname']
self.assertIn(next_marker, data['next'])
def test_collection_links_default_limit(self):
cfg.CONF.set_override('max_limit', 3, 'api')
conductors = []
for id in range(5):
hostname = uuidutils.generate_uuid()
conductor = obj_utils.create_test_conductor(self.context,
hostname=hostname)
conductors.append(conductor.hostname)
data = self.get_json(
'/conductors',
headers={api_base.Version.string: str(api_v1.max_version())})
self.assertEqual(3, len(data['conductors']))
next_marker = data['conductors'][-1]['hostname']
self.assertIn(next_marker, data['next'])
def test_collection_links_custom_fields(self):
cfg.CONF.set_override('max_limit', 3, 'api')
conductors = []
fields = 'hostname,alive'
for id in range(5):
hostname = uuidutils.generate_uuid()
conductor = obj_utils.create_test_conductor(self.context,
hostname=hostname)
conductors.append(conductor.hostname)
data = self.get_json(
'/conductors?fields=%s' % fields,
headers={api_base.Version.string: str(api_v1.max_version())})
self.assertEqual(3, len(data['conductors']))
next_marker = data['conductors'][-1]['hostname']
self.assertIn(next_marker, data['next'])
self.assertIn('fields', data['next'])
def test_sort_key(self):
conductors = []
for id in range(5):
hostname = uuidutils.generate_uuid()
conductor = obj_utils.create_test_conductor(self.context,
hostname=hostname)
conductors.append(conductor.hostname)
data = self.get_json(
'/conductors?sort_key=hostname',
headers={api_base.Version.string: str(api_v1.max_version())})
hosts = [n['hostname'] for n in data['conductors']]
self.assertEqual(sorted(conductors), hosts)
def test_sort_key_invalid(self):
invalid_keys_list = ['alive', 'drivers']
headers = {api_base.Version.string: str(api_v1.max_version())}
for invalid_key in invalid_keys_list:
response = self.get_json('/conductors?sort_key=%s' % invalid_key,
headers=headers,
expect_errors=True)
self.assertEqual(http_client.BAD_REQUEST, response.status_int)
self.assertEqual('application/json', response.content_type)
self.assertIn(invalid_key, response.json['error_message'])
|
py
|
1a590584f73b10fe4a46d474029b25dcd81ebf96
|
from statsmodels.stats.proportion import proportion_confint
# an example of NCBI
alpha = 0.02
total, rate = 964, 0.8959
positives = int(total*rate)
low, _ = proportion_confint(positives, total, method='wilson', alpha=alpha)
lower_bound = rate - low
print('lower bound = {a}'.format(a=lower_bound))
|
py
|
1a590597aa1c9d13b890b66b8a5313035dd3ec64
|
""" Analysis code for IGMSurvey objects
"""
from __future__ import print_function, absolute_import, division, unicode_literals
import numpy as np
import glob
import json
import pdb
from astropy.table import Table
from linetools import utils as ltu
def calc_slgrid_atan(surveys, Agrid, Bgrid, Cgrid, C2grid):
""" Calculate the sightline grid for a Atan l(z) fit
Breaking this off for bootstrap speed-up
Parameters
----------
surveys : list of DLASurvey objects
Agrid
Bgrid
Cgrid
C2grid
Returns
-------
slgrid : ndarray
Sightline term in likelihood function
"""
# Integrating over the sightlines
slgrid = np.zeros_like(Agrid)
# Int(atan[x-a]) = (a-x) atan(a-x) - 0.5 * ln(a**2 - 2ax + x**2 + 1)
for isurvey in surveys:
slines = isurvey.sightlines
gds = slines['Z_START'] < slines['Z_END']
zstart = slines['Z_START'][gds]
zend = slines['Z_END'][gds]
# Integrate constant term
AAgrid = Agrid * np.sum(zend-zstart)
slgrid += AAgrid
# Integrate second term
for iz in zend:
CCgrid = (Cgrid-iz) * np.arctan(Cgrid-iz) - 0.5 * np.log(
C2grid - 2*Cgrid*iz + iz**2 + 1)
slgrid += Bgrid * CCgrid
if np.min(CCgrid) < -0.1:
pdb.set_trace()
for iz in zstart:
CCgrid = (Cgrid-iz) * np.arctan(Cgrid-iz) - 0.5 * np.log(
C2grid - 2*Cgrid*iz + iz**2 + 1)
slgrid -= Bgrid * CCgrid
# Return
return slgrid
def fit_atan_dla_lz(surveys, nstep=20, bootstrap=True,
nboot=10, nproc=2,
fit_out=None, boot_out=None,
verbose=True):
""" Fit a A + B * atan(z-C) l(z) model to AbsSys data
Writes bootstrap analysis to hard-drive
Code used in Prochaska & Neeleman 2017 for DLAs
Parameters
----------
surveys : list of IGMSurvey objects
If None, a default list is loaded
nstep : int, optional
Steps in each dimension of the grid
bootstrap : bool, optional
Perform bootstrap analysis
nboot : int, optional
Number of bootstrap iterations
nproc : int, optional
Number of processors to use
fit_out : str, optional
Output filename for best fit (JSON)
boot_out : str, optional
Output filename for bootstrap analysis
verbose : bool, optional
Returns
-------
dfits : dict
Best fit parameters
boot_tbl : Table
Returned if bootstrap=True
else return None
"""
# Name and date
# Init
if boot_out is None:
boot_out = './lz_boot.fits.gz'
if fit_out is None:
fit_out = './lz_fit.json'
# Synthesize
all_z = np.concatenate([isurvey.zabs for isurvey in surveys])
ndla = len(all_z)
# Model : l(z) = A + B * atan(C-z)
Aparm = np.linspace(0.05, 0.5, num=nstep).astype(np.float32)
Bparm = np.linspace(0.05, 0.5, num=nstep).astype(np.float32)
Cparm = np.linspace(1., 6., num=nstep).astype(np.float32)
# Generate grids (float32)
Agrid, Bgrid, Cgrid = np.meshgrid(Aparm, Bparm, Cparm, copy=False)
C2grid = Cgrid**2
# Sightline grid
if verbose:
print("Sightline calculation...")
slgrid = calc_slgrid_atan(surveys, Agrid, Bgrid, Cgrid, C2grid)
if bootstrap:
if verbose:
print("Bootstrapping!")
sv_fits = []
rN = np.random.poisson(ndla, size=nboot)
# Boot me
z_list = []
for kk,irN in enumerate(rN):
# Draw nPoisson
rval = (np.random.uniform(size=irN)*ndla).astype(int)
# Draw from all_z
draw_z = all_z[rval]
z_list.append(draw_z)
# Run
if nproc == 1:
for draw_z in z_list:
if verbose:
print("Working on iteration: {:d} of {:d}".format(kk, nboot))
dfits, _, _ = Ln_lz_atan(Agrid, Bgrid, Cgrid, slgrid, draw_z, write=False)
# Save
sv_fits.append(dfits.copy())
else:
import multiprocessing
pool = multiprocessing.Pool(nproc) # initialize thread pool N threads
inp_list = []
for ii in range(nboot):
inp_list.append(
dict(A=Agrid, B=Bgrid, C=Cgrid, sl=slgrid, z=z_list[ii]))
if verbose:
print("Mapping...")
sv_fits = pool.map(map_Ln_atan, inp_list)
# Write
boot_tbl = Table()
for key in ['A', 'B', 'C']:
boot_tbl[key] = [ifits['lz']['atan'][key] for ifits in sv_fits]
boot_tbl.write(boot_out, overwrite=True)
if verbose:
print("Wrote {:s}".format(boot_out))
else:
boot_tbl = None
# Best
dfits, _, _ = Ln_lz_atan(Agrid, Bgrid, Cgrid, slgrid, all_z, write=True)
# Finish
return dfits, boot_tbl
def Ln_lz_atan(Agrid, Bgrid, Cgrid, slgrid, all_z, write=True, verbose=True):
""" Likelihood function for arctan model
Parameters
----------
Agrid
Bgrid
Cgrid
slgrid
all_z
write
Returns
-------
dfits : dict
Contains best fit model
dlagrid : ndarray
for debugging
lngrid : ndarray
"""
# z0 estimate from 21cm surveys
lz_z0 = dict(value=np.mean([0.026, 0.045]), sig=0.01)
# Init
dlagrid = np.zeros_like(Agrid)
# Generate Likelihood for DLAs
np.seterr(invalid='ignore')
for z in all_z:
dlagrid += np.log(Agrid + Bgrid * np.arctan(z-Cgrid))
bad = np.isnan(dlagrid)
dlagrid[bad] = -1e9
# Likelihood
lngrid = dlagrid - slgrid
# z=0
model_z0 = Agrid + Bgrid * np.arctan(0.-Cgrid)
lnP = -1 * (model_z0-lz_z0['value'])**2 / 2 / (lz_z0['sig']**2)
lngrid += lnP
# Best
indices = np.where(lngrid == np.max(lngrid))
best = Agrid[indices][0], Bgrid[indices][0], Cgrid[indices][0]
if verbose:
print('Best fit: A={}, B={}, C={}'.format(best[0], best[1], best[2]))
# Load
dfits = {}
# Write
dfits['lz'] = {}
dfits['lz']['atan'] = dict(A=Agrid[indices][0], B=Bgrid[indices][0], C=Cgrid[indices][0],
form='A + B*atan(z-C)')
# Return
return dfits, dlagrid, lngrid
def map_Ln_atan(map_dict):
""" For multiprocessing the bootstrap
Parameters
----------
map_dict
Returns
-------
"""
dfits, _, _ = Ln_lz_atan(map_dict['A'], map_dict['B'], map_dict['C'],
map_dict['sl'], map_dict['z'], write=False,
verbose=False)
return dfits
def fit_fN_dblpow(NHI, a3_mnx, a4_mnx, Nd_mnx, nstep=100,
Nmin=10**(20.3), Nmax=1e99, verbose=True):
""" Fit a double power-law to an input NHI distribution
Only does the shape
Done in float32 to preserve memory
Code from Prochaska & Neeleman (2017) [and also PHW05]
Parameters
----------
NHI : ndarray
log10 NHI values
a3_mnx : tuple
min/max of lower NHI power-law
a4_mnx : tuple
min/max of upper NHI power-law
Nd_mnx : tuple
min/max of break column in log10
nstep : int, optional
Nmin : float, optional
Minimum NHI in the analysis [usually DLA criterion]
Nmax : float, optional
Maximum NHI in the analysis
Returns
-------
dfits : dict
Contains the fit
best : tuple
Best fit values in grid for Nd, a3, a4
Ndgrid
a3grid
a4grid
lik
"""
# Generate 1D arrays
a3stp = np.linspace(a3_mnx[0], a3_mnx[1], nstep).astype(np.float32)
a4stp = np.linspace(a4_mnx[0], a4_mnx[1], nstep).astype(np.float32)
Ndstp = np.linspace(Nd_mnx[0], Nd_mnx[1], nstep).astype(np.float32)
# Generate grids (float32)
a3grid, a4grid, Ndgrid = np.meshgrid(a3stp, a4stp, Ndstp, copy=False)
# Linear
Ns10 = 10.**Ndgrid
# Calculate denominator
denom = Ns10 * ((1. - (Nmin / Ns10)**(a3grid + 1.)) / (1. + a3grid) + (
(Nmax / Ns10)**(a4grid + 1) - 1.) / (a4grid + 1.))
num = np.zeros_like(Ns10)
# Numerator
# Loop on DLAs
for iNHI10 in 10.**NHI:
# Upper end
high = iNHI10 > Ns10
if np.sum(high) > 0:
num[high] += a4grid[high] * np.log(iNHI10 / Ns10[high])
# Low end
if np.sum(~high) > 0:
num[~high] += a3grid[~high] * np.log(iNHI10 / Ns10[~high])
# Liklihood (Beware of Signs!)
lik = num - NHI.size * np.log(denom)
mxL = np.max(lik)
indices = np.where(lik == mxL)
best = Ndgrid[indices][0], a3grid[indices][0], a4grid[indices][0]
if verbose:
print('Best fit: Nd={}, a3={}, a4={}'.format(best[0], best[1], best[2]))
# Load
dfits = {}
# Write
dfits['fN'] = {}
dfits['fN']['dpow'] = dict(Nd=Ndgrid[indices][0], a3=a3grid[indices][0], a4=a4grid[indices][0],
form='(N/Nd)**aa with aa=a3 if N<Nd else aa=a4')
# KS Test
ks_test = False
if ks_test:
ns10 = 10**best[0]
dblpow_k = 1. / (ns10 * (1. - (Nmin / Ns10)**(best[1] + 1)) / (1. + best[1]) + (
(Nmax / Ns10)**(best[2] + 1) - 1.) / (best[2] + 1))
dblpow_b1 = best[1]
dblpow_b2 = best[2]
dblpow_nd = ns10
dblpow_nmin = Nmin
noise = 0.02
dNHI = 10**(NHI + noise * np.random.uniform(size=NHI.size))
#ksone, darr, 'x_maxdblpow_kscumf', d, ksprob
return dfits, best, Ndgrid, a3grid, a4grid, lik
|
py
|
1a5907fba701b78ed820ef209fe8cb2ae3c82b60
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import logging
from typing import Any, Optional
from flask import g, request, Response
from flask_appbuilder.api import expose, permission_name, protect, rison, safe
from flask_appbuilder.hooks import before_request
from flask_appbuilder.models.sqla.interface import SQLAInterface
from flask_babel import ngettext
from marshmallow import ValidationError
from superset import is_feature_enabled
from superset.charts.filters import ChartFilter
from superset.constants import MODEL_API_RW_METHOD_PERMISSION_MAP, RouteMethod
from superset.dashboards.filters import DashboardAccessFilter
from superset.databases.filters import DatabaseFilter
from superset.models.reports import ReportSchedule
from superset.reports.commands.bulk_delete import BulkDeleteReportScheduleCommand
from superset.reports.commands.create import CreateReportScheduleCommand
from superset.reports.commands.delete import DeleteReportScheduleCommand
from superset.reports.commands.exceptions import (
ReportScheduleBulkDeleteFailedError,
ReportScheduleCreateFailedError,
ReportScheduleDeleteFailedError,
ReportScheduleForbiddenError,
ReportScheduleInvalidError,
ReportScheduleNotFoundError,
ReportScheduleUpdateFailedError,
)
from superset.reports.commands.update import UpdateReportScheduleCommand
from superset.reports.filters import ReportScheduleAllTextFilter
from superset.reports.schemas import (
get_delete_ids_schema,
openapi_spec_methods_override,
ReportSchedulePostSchema,
ReportSchedulePutSchema,
)
from superset.views.base_api import (
BaseSupersetModelRestApi,
RelatedFieldFilter,
statsd_metrics,
)
from superset.views.filters import FilterRelatedOwners
logger = logging.getLogger(__name__)
class ReportScheduleRestApi(BaseSupersetModelRestApi):
datamodel = SQLAInterface(ReportSchedule)
@before_request
def ensure_alert_reports_enabled(self) -> Optional[Response]:
if not is_feature_enabled("ALERT_REPORTS"):
return self.response_404()
return None
include_route_methods = RouteMethod.REST_MODEL_VIEW_CRUD_SET | {
RouteMethod.RELATED,
"bulk_delete", # not using RouteMethod since locally defined
}
class_permission_name = "ReportSchedule"
method_permission_name = MODEL_API_RW_METHOD_PERMISSION_MAP
resource_name = "report"
allow_browser_login = True
show_columns = [
"id",
"active",
"chart.id",
"chart.slice_name",
"chart.viz_type",
"context_markdown",
"creation_method",
"crontab",
"dashboard.dashboard_title",
"dashboard.id",
"database.database_name",
"database.id",
"description",
"grace_period",
"last_eval_dttm",
"last_state",
"last_value",
"last_value_row_json",
"log_retention",
"name",
"owners.first_name",
"owners.id",
"owners.last_name",
"recipients.id",
"recipients.recipient_config_json",
"recipients.type",
"report_format",
"sql",
"timezone",
"type",
"validator_config_json",
"validator_type",
"working_timeout",
]
show_select_columns = show_columns + [
"chart.datasource_id",
"chart.datasource_type",
]
list_columns = [
"active",
"changed_by.first_name",
"changed_by.last_name",
"changed_on",
"changed_on_delta_humanized",
"created_by.first_name",
"created_by.last_name",
"created_on",
"creation_method",
"crontab",
"crontab_humanized",
"description",
"id",
"last_eval_dttm",
"last_state",
"name",
"owners.first_name",
"owners.id",
"owners.last_name",
"recipients.id",
"recipients.type",
"timezone",
"type",
]
add_columns = [
"active",
"chart",
"context_markdown",
"creation_method",
"crontab",
"dashboard",
"database",
"description",
"grace_period",
"log_retention",
"name",
"owners",
"recipients",
"report_format",
"sql",
"timezone",
"type",
"validator_config_json",
"validator_type",
"working_timeout",
]
edit_columns = add_columns
add_model_schema = ReportSchedulePostSchema()
edit_model_schema = ReportSchedulePutSchema()
order_columns = [
"active",
"description",
"created_by.first_name",
"changed_by.first_name",
"changed_on",
"changed_on_delta_humanized",
"created_on",
"crontab",
"last_eval_dttm",
"name",
"type",
"crontab_humanized",
]
search_columns = [
"name",
"active",
"created_by",
"type",
"last_state",
"creation_method",
"dashboard_id",
"chart_id",
]
search_filters = {"name": [ReportScheduleAllTextFilter]}
allowed_rel_fields = {"owners", "chart", "dashboard", "database", "created_by"}
filter_rel_fields = {
"chart": [["id", ChartFilter, lambda: []]],
"dashboard": [["id", DashboardAccessFilter, lambda: []]],
"database": [["id", DatabaseFilter, lambda: []]],
}
text_field_rel_fields = {
"dashboard": "dashboard_title",
"chart": "slice_name",
"database": "database_name",
}
related_field_filters = {
"dashboard": "dashboard_title",
"chart": "slice_name",
"database": "database_name",
"owners": RelatedFieldFilter("first_name", FilterRelatedOwners),
}
apispec_parameter_schemas = {
"get_delete_ids_schema": get_delete_ids_schema,
}
openapi_spec_tag = "Report Schedules"
openapi_spec_methods = openapi_spec_methods_override
@expose("/<int:pk>", methods=["DELETE"])
@protect()
@safe
@statsd_metrics
@permission_name("delete")
def delete(self, pk: int) -> Response:
"""Delete a Report Schedule
---
delete:
description: >-
Delete a Report Schedule
parameters:
- in: path
schema:
type: integer
name: pk
description: The report schedule pk
responses:
200:
description: Item deleted
content:
application/json:
schema:
type: object
properties:
message:
type: string
403:
$ref: '#/components/responses/403'
404:
$ref: '#/components/responses/404'
422:
$ref: '#/components/responses/422'
500:
$ref: '#/components/responses/500'
"""
try:
DeleteReportScheduleCommand(g.user, pk).run()
return self.response(200, message="OK")
except ReportScheduleNotFoundError:
return self.response_404()
except ReportScheduleForbiddenError:
return self.response_403()
except ReportScheduleDeleteFailedError as ex:
logger.error(
"Error deleting report schedule %s: %s",
self.__class__.__name__,
str(ex),
exc_info=True,
)
return self.response_422(message=str(ex))
@expose("/", methods=["POST"])
@protect()
@statsd_metrics
@permission_name("post")
def post(self) -> Response:
"""Creates a new Report Schedule
---
post:
description: >-
Create a new Report Schedule
requestBody:
description: Report Schedule schema
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/{{self.__class__.__name__}}.post'
responses:
201:
description: Report schedule added
content:
application/json:
schema:
type: object
properties:
id:
type: number
result:
$ref: '#/components/schemas/{{self.__class__.__name__}}.post'
400:
$ref: '#/components/responses/400'
401:
$ref: '#/components/responses/401'
404:
$ref: '#/components/responses/404'
500:
$ref: '#/components/responses/500'
"""
if not request.is_json:
return self.response_400(message="Request is not JSON")
try:
item = self.add_model_schema.load(request.json)
# This validates custom Schema with custom validations
except ValidationError as error:
return self.response_400(message=error.messages)
try:
new_model = CreateReportScheduleCommand(g.user, item).run()
return self.response(201, id=new_model.id, result=item)
except ReportScheduleNotFoundError as ex:
return self.response_400(message=str(ex))
except ReportScheduleInvalidError as ex:
return self.response_422(message=ex.normalized_messages())
except ReportScheduleCreateFailedError as ex:
logger.error(
"Error creating report schedule %s: %s",
self.__class__.__name__,
str(ex),
exc_info=True,
)
return self.response_422(message=str(ex))
@expose("/<int:pk>", methods=["PUT"])
@protect()
@safe
@statsd_metrics
@permission_name("put")
def put(self, pk: int) -> Response:
"""Updates an Report Schedule
---
put:
description: >-
Updates a Report Schedule
parameters:
- in: path
schema:
type: integer
name: pk
description: The Report Schedule pk
requestBody:
description: Report Schedule schema
required: true
content:
application/json:
schema:
$ref: '#/components/schemas/{{self.__class__.__name__}}.put'
responses:
200:
description: Report Schedule changed
content:
application/json:
schema:
type: object
properties:
id:
type: number
result:
$ref: '#/components/schemas/{{self.__class__.__name__}}.put'
400:
$ref: '#/components/responses/400'
401:
$ref: '#/components/responses/401'
403:
$ref: '#/components/responses/403'
404:
$ref: '#/components/responses/404'
500:
$ref: '#/components/responses/500'
"""
if not request.is_json:
return self.response_400(message="Request is not JSON")
try:
item = self.edit_model_schema.load(request.json)
# This validates custom Schema with custom validations
except ValidationError as error:
return self.response_400(message=error.messages)
try:
new_model = UpdateReportScheduleCommand(g.user, pk, item).run()
return self.response(200, id=new_model.id, result=item)
except ReportScheduleNotFoundError:
return self.response_404()
except ReportScheduleInvalidError as ex:
return self.response_422(message=ex.normalized_messages())
except ReportScheduleForbiddenError:
return self.response_403()
except ReportScheduleUpdateFailedError as ex:
logger.error(
"Error updating report %s: %s",
self.__class__.__name__,
str(ex),
exc_info=True,
)
return self.response_422(message=str(ex))
@expose("/", methods=["DELETE"])
@protect()
@safe
@statsd_metrics
@rison(get_delete_ids_schema)
def bulk_delete(self, **kwargs: Any) -> Response:
"""Delete bulk Report Schedule layers
---
delete:
description: >-
Deletes multiple report schedules in a bulk operation.
parameters:
- in: query
name: q
content:
application/json:
schema:
$ref: '#/components/schemas/get_delete_ids_schema'
responses:
200:
description: Report Schedule bulk delete
content:
application/json:
schema:
type: object
properties:
message:
type: string
401:
$ref: '#/components/responses/401'
403:
$ref: '#/components/responses/403'
404:
$ref: '#/components/responses/404'
422:
$ref: '#/components/responses/422'
500:
$ref: '#/components/responses/500'
"""
item_ids = kwargs["rison"]
try:
BulkDeleteReportScheduleCommand(g.user, item_ids).run()
return self.response(
200,
message=ngettext(
"Deleted %(num)d report schedule",
"Deleted %(num)d report schedules",
num=len(item_ids),
),
)
except ReportScheduleNotFoundError:
return self.response_404()
except ReportScheduleForbiddenError:
return self.response_403()
except ReportScheduleBulkDeleteFailedError as ex:
return self.response_422(message=str(ex))
|
py
|
1a59094e3fd390fb968bbd591a0e3d98209f717d
|
import traitlets
import ipyvuetify as v
def set_msg(
pts, bands_combo, sources, basename, mosaics, image_size, square_size, driver
):
# transform sources in a str
source_name = " & ".join(sources) if type(sources) == list else None
nb_pts = len(pts)
# compute the surface
pts_conform = pts.to_crs("ESRI:54009")
minx, miny, maxx, maxy = pts_conform.total_bounds
surface = (maxx - minx) * (maxy - miny) / 10e6 # in km2
msg = f"""
<div>
<p>
You're about to launch the following downloading :
<p>
<ul>
<li>
<b>{nb_pts}</b> points distributed on <b>{surface:.2f}</b> km\u00B2
</li>
<li>
Using the images coming from <b>{source_name if source_name else driver}</b>
<li>
Using the <b>{bands_combo}</b> band combination
</li>
<li>
Using <b>{len(mosaics)}</b> different mosaics
</li>
<li>
Using thumbnails of <b>{image_size}x{image_size}</b> m\u00B2
</li>
<li>
Displaying squares of <b>{square_size}x{square_size}</b> m\u00B2
</li>
<li>
Saved in a file using <b>{basename}</b> as a basename
</li>
</ul>
<p>
If you agree with these input you can start the downloading, if not please change the inputs in the previous panels
</p>
</div>
"""
# create a Html widget
class MyHTML(v.VuetifyTemplate):
template = traitlets.Unicode(msg).tag(sync=True)
return MyHTML()
|
py
|
1a5909cee990f6b8f721bdafb8de838912d921b1
|
import copy
from membase.helper.cluster_helper import ClusterOperationHelper
from couchbase_helper.documentgenerator import BlobGenerator
from .xdcrnewbasetests import XDCRNewBaseTest
from .xdcrnewbasetests import NodeHelper
from .xdcrnewbasetests import Utility, BUCKET_NAME, OPS
from remote.remote_util import RemoteMachineShellConnection
from lib.memcached.helper.data_helper import MemcachedClientHelper
from membase.api.rest_client import RestConnection
# Assumption that at least 2 nodes on every cluster
class bidirectional(XDCRNewBaseTest):
def setUp(self):
super(bidirectional, self).setUp()
self.src_cluster = self.get_cb_cluster_by_name('C1')
self.src_master = self.src_cluster.get_master_node()
self.dest_cluster = self.get_cb_cluster_by_name('C2')
self.dest_master = self.dest_cluster.get_master_node()
def tearDown(self):
super(bidirectional, self).tearDown()
def __perform_ops_joint_sets(self):
# Merging the keys as keys are actually replicated.
temp_expires = self._expires
self._expires = 0 # Assigning it to 0, so that merge_buckets don't wait for expiration here.
self.merge_all_buckets()
tasks = []
kv_gen_src = self.src_cluster.get_kv_gen()[OPS.CREATE]
gen_update = BlobGenerator(kv_gen_src.name,
kv_gen_src.seed,
kv_gen_src.value_size,
start=0,
end=int(kv_gen_src.end * (float)(self._perc_upd) / 100))
gen_delete = BlobGenerator(kv_gen_src.name,
kv_gen_src.seed,
kv_gen_src.value_size,
start=int((kv_gen_src.end) * (float)(100 - self._perc_del) / 100),
end=kv_gen_src.end)
if "C1" in self._upd_clusters:
tasks += self.src_cluster.async_load_all_buckets_from_generator(gen_update, OPS.UPDATE, self._expires)
if "C2" in self._upd_clusters:
tasks += self.dest_cluster.async_load_all_buckets_from_generator(gen_update, OPS.UPDATE, self._expires)
if "C1" in self._del_clusters:
tasks += self.src_cluster.async_load_all_buckets_from_generator(gen_delete, OPS.DELETE, 0)
if "C2" in self._del_clusters:
tasks += self.dest_cluster.async_load_all_buckets_from_generator(gen_delete, OPS.DELETE, 0)
for task in tasks:
task.result()
self._expires = temp_expires
if (self._wait_for_expiration and self._expires) and ("C1" in self._upd_clusters or "C2" in self._upd_clusters):
self.sleep(self._expires)
self.sleep(self._wait_timeout)
"""Bidirectional replication between two clusters(currently), create-updates-deletes on DISJOINT sets on same bucket."""
def load_with_ops(self):
self.setup_xdcr_and_load()
self.perform_update_delete()
self.verify_results()
"""Bidirectional replication between two clusters(currently), create-updates-deletes on DISJOINT sets on same bucket.
Here running incremental load on both cluster1 and cluster2 as specified by the user/conf file"""
def load_with_async_ops(self):
self.setup_xdcr_and_load()
self.async_perform_update_delete()
self.verify_results()
"""Testing Bidirectional load( Loading at source/destination). Failover node at Source/Destination while
Create/Update/Delete are performed in parallel based on doc-ops specified by the user.
Verifying whether XDCR replication is successful on subsequent destination clusters. """
def load_with_async_ops_and_joint_sets(self):
self.setup_xdcr_and_load()
self.async_perform_update_delete()
self.verify_results()
def load_with_async_ops_with_warmup(self):
self.setup_xdcr_and_load()
warmupnodes = []
if "C1" in self._warmup:
warmupnodes.append(self.src_cluster.warmup_node())
if "C2" in self._warmup:
warmupnodes.append(self.dest_cluster.warmup_node())
self.sleep(self._wait_timeout)
NodeHelper.wait_warmup_completed(warmupnodes)
self.async_perform_update_delete()
self.sleep(self._wait_timeout // 2)
self.verify_results()
def load_with_async_ops_with_warmup_master(self):
self.setup_xdcr_and_load()
warmupnodes = []
if "C1" in self._warmup:
warmupnodes.append(self.src_cluster.warmup_node(master=True))
if "C2" in self._warmup:
warmupnodes.append(self.dest_cluster.warmup_node(master=True))
self.sleep(self._wait_timeout)
NodeHelper.wait_warmup_completed(warmupnodes)
self.async_perform_update_delete()
self.sleep(self._wait_timeout // 2)
self.verify_results()
def load_with_async_ops_and_joint_sets_with_warmup(self):
bucket_type = self._input.param("bucket_type", "membase")
if bucket_type == "ephemeral":
"Test case does not apply for Ephemeral buckets"
return
self.setup_xdcr_and_load()
warmupnodes = []
if "C1" in self._warmup:
warmupnodes.append(self.src_cluster.warmup_node())
if "C2" in self._warmup:
warmupnodes.append(self.dest_cluster.warmup_node())
self.sleep(self._wait_timeout)
self.async_perform_update_delete()
self.sleep(self._wait_timeout // 2)
NodeHelper.wait_warmup_completed(warmupnodes)
self.verify_results()
def load_with_async_ops_and_joint_sets_with_warmup_master(self):
self.setup_xdcr_and_load()
warmupnodes = []
if "C1" in self._warmup:
warmupnodes.append(self.src_cluster.warmup_node(master=True))
if "C2" in self._warmup:
warmupnodes.append(self.dest_cluster.warmup_node(master=True))
self.sleep(self._wait_timeout)
self.async_perform_update_delete()
self.sleep(self._wait_timeout // 2)
NodeHelper.wait_warmup_completed(warmupnodes)
self.verify_results()
def load_with_failover(self):
self.setup_xdcr_and_load()
if "C1" in self._failover:
self.src_cluster.failover_and_rebalance_nodes()
if "C2" in self._failover:
self.dest_cluster.failover_and_rebalance_nodes()
self.sleep(self._wait_timeout // 6)
self.perform_update_delete()
self.sleep(300)
self.verify_results()
def load_with_failover_then_add_back(self):
self.setup_xdcr_and_load()
if "C1" in self._failover:
self.src_cluster.failover_and_rebalance_nodes(rebalance=False)
self.src_cluster.add_back_node()
if "C2" in self._failover:
self.dest_cluster.failover_and_rebalance_nodes(rebalance=False)
self.dest_cluster.add_back_node()
self.perform_update_delete()
self.verify_results()
def load_with_failover_master(self):
self.setup_xdcr_and_load()
if "C1" in self._failover:
self.src_cluster.failover_and_rebalance_master()
if "C2" in self._failover:
self.dest_cluster.failover_and_rebalance_master()
self.sleep(self._wait_timeout // 6)
self.perform_update_delete()
self.verify_results()
"""Replication with compaction ddocs and view queries on both clusters.
This test begins by loading a given number of items on both clusters.
It creates _num_views as development/production view with default
map view funcs(_is_dev_ddoc = True by default) on both clusters.
Then we disabled compaction for ddoc on src cluster. While we don't reach
expected fragmentation for ddoc on src cluster we update docs and perform
view queries for all views. Then we start compaction when fragmentation
was reached fragmentation_value. When compaction was completed we perform
a full verification: wait for the disk queues to drain
and then verify that there has been no data loss on both clusters."""
def replication_with_ddoc_compaction(self):
bucket_type = self._input.param("bucket_type", "membase")
if bucket_type == "ephemeral":
self.log.info("Test case does not apply to ephemeral")
return
self.setup_xdcr()
self.src_cluster.load_all_buckets(self._num_items)
self.dest_cluster.load_all_buckets(self._num_items)
num_views = self._input.param("num_views", 5)
is_dev_ddoc = self._input.param("is_dev_ddoc", True)
fragmentation_value = self._input.param("fragmentation_value", 80)
for bucket in self.src_cluster.get_buckets():
views = Utility.make_default_views(bucket.name, num_views, is_dev_ddoc)
ddoc_name = "ddoc1"
prefix = ("", "dev_")[is_dev_ddoc]
query = {"full_set": "true", "stale": "false"}
tasks = self.src_cluster.async_create_views(ddoc_name, views, BUCKET_NAME.DEFAULT)
tasks += self.dest_cluster.async_create_views(ddoc_name, views, BUCKET_NAME.DEFAULT)
for task in tasks:
task.result(self._poll_timeout)
self.src_cluster.disable_compaction()
fragmentation_monitor = self.src_cluster.async_monitor_view_fragmentation(prefix + ddoc_name, fragmentation_value, BUCKET_NAME.DEFAULT)
# generate load until fragmentation reached
while fragmentation_monitor.state != "FINISHED":
# update docs to create fragmentation
self.src_cluster.update_delete_data(OPS.UPDATE)
for view in views:
# run queries to create indexes
self.src_cluster.query_view(prefix + ddoc_name, view.name, query)
self.dest_cluster.query_view(prefix + ddoc_name, view.name, query)
fragmentation_monitor.result()
compaction_task = self.src_cluster.async_compact_view(prefix + ddoc_name, 'default')
self.assertTrue(compaction_task.result())
self.verify_results()
def replication_with_view_queries_and_ops(self):
bucket_type = self._input.param("bucket_type", "membase")
if bucket_type == "ephemeral":
self.log.info("Test case does not apply to ephemeral")
return
tasks = []
try:
self.setup_xdcr()
self.src_cluster.load_all_buckets(self._num_items)
self.dest_cluster.load_all_buckets(self._num_items)
num_views = self._input.param("num_views", 5)
is_dev_ddoc = self._input.param("is_dev_ddoc", True)
for bucket in self.src_cluster.get_buckets():
views = Utility.make_default_views(bucket.name, num_views, is_dev_ddoc)
ddoc_name = "ddoc1"
prefix = ("", "dev_")[is_dev_ddoc]
query = {"full_set": "true", "stale": "false", "connection_timeout": 60000}
tasks = self.src_cluster.async_create_views(ddoc_name, views, BUCKET_NAME.DEFAULT)
tasks += self.dest_cluster.async_create_views(ddoc_name, views, BUCKET_NAME.DEFAULT)
for task in tasks:
task.result(self._poll_timeout)
tasks = []
# Setting up doc-ops at source nodes
if "C1" in self._upd_clusters:
tasks.extend(self.src_cluster.async_update_delete(OPS.UPDATE, self._perc_upd, self._expires))
if "C1" in self._del_clusters:
tasks.extend(self.src_cluster.async_update_delete(OPS.DELETE, self._perc_del))
if "C2" in self._upd_clusters:
tasks.extend(self.dest_cluster.async_update_delete(OPS.UPDATE, self._perc_upd, self._expires))
if "C2" in self._del_clusters:
tasks.extend(self.dest_cluster.async_update_delete(OPS.DELETE, self._perc_del))
self.sleep(5)
while True:
for view in views:
self.src_cluster.query_view(prefix + ddoc_name, view.name, query)
self.dest_cluster.query_view(prefix + ddoc_name, view.name, query)
if {task.state for task in tasks} != {"FINISHED"}:
continue
else:
if self._wait_for_expiration:
if "C1" in self._upd_clusters or "C2" in self._upd_clusters:
self.sleep(self._expires)
break
self.merge_all_buckets()
self.src_cluster.verify_items_count()
self.dest_cluster.verify_items_count()
tasks = []
src_buckets = self.src_cluster.get_buckets()
dest_buckets = self.dest_cluster.get_buckets()
for view in views:
tasks.append(self.src_cluster.async_query_view(prefix + ddoc_name, view.name, query, src_buckets[0].kvs[1].__len__()))
tasks.append(self.src_cluster.async_query_view(prefix + ddoc_name, view.name, query, dest_buckets[0].kvs[1].__len__()))
for task in tasks:
task.result(self._poll_timeout)
self.verify_results()
finally:
# For timeout error, all tasks to be cancelled
# Before proceeding to next test
for task in tasks:
task.cancel()
"""Replication with disabled/enabled ddoc compaction on both clusters.
This test begins by loading a given number of items on both clusters.
Then we disabled or enabled compaction on both clusters( set via params).
Then we mutate and delete data on clusters 3 times. After deletion we recreate
deleted items. When data was changed 3 times we perform
a full verification: wait for the disk queues to drain
and then verify that there has been no data loss on both clusters."""
def replication_with_disabled_ddoc_compaction(self):
self.setup_xdcr()
self.src_cluster.load_all_buckets(self._num_items)
self.dest_cluster.load_all_buckets(self._num_items)
if "C1" in self._disable_compaction:
self.src_cluster.disable_compaction()
if "C2" in self._disable_compaction:
self.dest_cluster.disable_compaction()
# perform doc's ops 3 times to increase rev number
for _ in range(3):
self.async_perform_update_delete()
# wait till deletes have been sent to recreate
self.sleep(60)
# restore(re-creating) deleted items
if 'C1' in self._del_clusters:
c1_kv_gen = self.src_cluster.get_kv_gen()
c1_gen_delete = copy.deepcopy(c1_kv_gen[OPS.DELETE])
if self._expires:
# if expiration set, recreate those keys before
# trying to update
c1_gen_update = copy.deepcopy(c1_kv_gen[OPS.UPDATE])
self.src_cluster.load_all_buckets_from_generator(kv_gen=c1_gen_update)
self.src_cluster.load_all_buckets_from_generator(kv_gen=c1_gen_delete)
if 'C2' in self._del_clusters:
c2_kv_gen = self.dest_cluster.get_kv_gen()
c2_gen_delete = copy.deepcopy(c2_kv_gen[OPS.DELETE])
if self._expires:
c2_gen_update = copy.deepcopy(c2_kv_gen[OPS.UPDATE])
self.dest_cluster.load_all_buckets_from_generator(kv_gen=c2_gen_update)
self.dest_cluster.load_all_buckets_from_generator(kv_gen=c2_gen_delete)
# wait till we recreate deleted keys before we can delete/update
self.sleep(300)
self.verify_results()
def replication_while_rebooting_a_non_master_src_dest_node(self):
bucket_type = self._input.param("bucket_type", "membase")
if bucket_type == "ephemeral":
self.log.info("Test case does not apply to ephemeral")
return
self.setup_xdcr_and_load()
self.async_perform_update_delete()
self.sleep(self._wait_timeout)
reboot_node_dest = self.dest_cluster.reboot_one_node(self)
NodeHelper.wait_node_restarted(reboot_node_dest, self, wait_time=self._wait_timeout * 4, wait_if_warmup=True)
reboot_node_src = self.src_cluster.reboot_one_node(self)
NodeHelper.wait_node_restarted(reboot_node_src, self, wait_time=self._wait_timeout * 4, wait_if_warmup=True)
self.sleep(120)
ClusterOperationHelper.wait_for_ns_servers_or_assert([reboot_node_dest], self, wait_if_warmup=True)
ClusterOperationHelper.wait_for_ns_servers_or_assert([reboot_node_src], self, wait_if_warmup=True)
self.verify_results()
def test_disk_full(self):
self.setup_xdcr_and_load()
self.verify_results()
self.sleep(self._wait_timeout)
zip_file = "%s.zip" % (self._input.param("file_name", "collectInfo"))
try:
for node in [self.src_master, self.dest_master]:
self.shell = RemoteMachineShellConnection(node)
self.shell.execute_cbcollect_info(zip_file)
if self.shell.extract_remote_info().type.lower() != "windows":
command = "unzip %s" % (zip_file)
output, error = self.shell.execute_command(command)
self.shell.log_command_output(output, error)
if len(error) > 0:
raise Exception("unable to unzip the files. Check unzip command output for help")
cmd = 'grep -R "Approaching full disk warning." cbcollect_info*/'
output, _ = self.shell.execute_command(cmd)
else:
cmd = "curl -0 http://{1}:{2}@{0}:8091/diag 2>/dev/null | grep 'Approaching full disk warning.'".format(
self.src_master.ip,
self.src_master.rest_username,
self.src_master.rest_password)
output, _ = self.shell.execute_command(cmd)
self.assertNotEqual(len(output), 0, "Full disk warning not generated as expected in %s" % node.ip)
self.log.info("Full disk warning generated as expected in %s" % node.ip)
self.shell.delete_files(zip_file)
self.shell.delete_files("cbcollect_info*")
except Exception as e:
self.log.info(e)
def test_rollback(self):
bucket = self.src_cluster.get_buckets()[0]
src_nodes = self.src_cluster.get_nodes()
dest_nodes = self.dest_cluster.get_nodes()
nodes = src_nodes + dest_nodes
# Stop Persistence on Node A & Node B
for node in nodes:
mem_client = MemcachedClientHelper.direct_client(node, bucket)
mem_client.stop_persistence()
goxdcr_log = NodeHelper.get_goxdcr_log_dir(self._input.servers[0])\
+ '/goxdcr.log*'
self.setup_xdcr()
self.src_cluster.pause_all_replications()
self.dest_cluster.pause_all_replications()
gen = BlobGenerator("C1-", "C1-", self._value_size, end=self._num_items)
self.src_cluster.load_all_buckets_from_generator(gen)
gen = BlobGenerator("C2-", "C2-", self._value_size, end=self._num_items)
self.dest_cluster.load_all_buckets_from_generator(gen)
self.src_cluster.resume_all_replications()
self.dest_cluster.resume_all_replications()
# Perform mutations on the bucket
self.async_perform_update_delete()
rest1 = RestConnection(self.src_cluster.get_master_node())
rest2 = RestConnection(self.dest_cluster.get_master_node())
# Fetch count of docs in src and dest cluster
_count1 = rest1.fetch_bucket_stats(bucket=bucket.name)["op"]["samples"]["curr_items"][-1]
_count2 = rest2.fetch_bucket_stats(bucket=bucket.name)["op"]["samples"]["curr_items"][-1]
self.log.info("Before rollback src cluster count = {0} dest cluster count = {1}".format(_count1, _count2))
# Kill memcached on Node A so that Node B becomes master
shell = RemoteMachineShellConnection(self.src_cluster.get_master_node())
shell.kill_memcached()
shell = RemoteMachineShellConnection(self.dest_cluster.get_master_node())
shell.kill_memcached()
# Start persistence on Node B
mem_client = MemcachedClientHelper.direct_client(src_nodes[1], bucket)
mem_client.start_persistence()
mem_client = MemcachedClientHelper.direct_client(dest_nodes[1], bucket)
mem_client.start_persistence()
# Failover Node B
failover_task = self.src_cluster.async_failover()
failover_task.result()
failover_task = self.dest_cluster.async_failover()
failover_task.result()
# Wait for Failover & rollback to complete
self.sleep(60)
# Fetch count of docs in src and dest cluster
_count1 = rest1.fetch_bucket_stats(bucket=bucket.name)["op"]["samples"]["curr_items"][-1]
_count2 = rest2.fetch_bucket_stats(bucket=bucket.name)["op"]["samples"]["curr_items"][-1]
self.log.info("After rollback src cluster count = {0} dest cluster count = {1}".format(_count1, _count2))
self.assertTrue(self.src_cluster.wait_for_outbound_mutations(),
"Mutations in source cluster not replicated to target after rollback")
self.assertTrue(self.dest_cluster.wait_for_outbound_mutations(),
"Mutations in target cluster not replicated to source after rollback")
_, count = NodeHelper.check_goxdcr_log(
src_nodes[0],
"Received rollback from DCP stream",
goxdcr_log)
self.assertGreater(count, 0, "rollback did not happen as expected")
self.log.info("rollback happened as expected")
_, count = NodeHelper.check_goxdcr_log(
dest_nodes[0],
"Received rollback from DCP stream",
goxdcr_log)
self.assertGreater(count, 0, "rollback did not happen as expected")
self.log.info("rollback happened as expected")
def test_scramsha(self):
"""
Creates a new bi-xdcr replication with scram-sha
Make sure to pass use-scramsha=True
from command line
"""
self.setup_xdcr()
self.sleep(60, "wait before checking logs")
for node in [self.src_cluster.get_master_node()]+[self.dest_cluster.get_master_node()]:
_, count = NodeHelper.check_goxdcr_log(node,
"HttpAuthMech=ScramSha for remote cluster reference remoteCluster", timeout=60)
if count <= 0:
self.fail("Node {0} does not use SCRAM-SHA authentication".format(node.ip))
else:
self.log.info("SCRAM-SHA auth successful on node {0}".format(node.ip))
self.verify_results()
def test_update_to_scramsha_auth(self):
"""
Start with ordinary replication, then switch to use scram_sha_auth
Search for success log stmtsS
"""
_, old_count = NodeHelper.check_goxdcr_log(self.src_cluster.get_master_node(),
"HttpAuthMech=ScramSha for remote cluster reference remoteCluster", timeout=60)
self.setup_xdcr()
# modify remote cluster ref to use scramsha
for remote_cluster in self.src_cluster.get_remote_clusters()+self.dest_cluster.get_remote_clusters():
remote_cluster.use_scram_sha_auth()
self.sleep(60, "wait before checking the logs for using scram-sha")
for node in [self.src_cluster.get_master_node()]+[self.dest_cluster.get_master_node()]:
_, count = NodeHelper.check_goxdcr_log(node, "HttpAuthMech=ScramSha for remote cluster reference remoteCluster", timeout=60)
if count <= old_count:
self.fail("Node {0} does not use SCRAM-SHA authentication".format(node.ip))
else:
self.log.info("SCRAM-SHA auth successful on node {0}".format(node.ip))
self.verify_results()
|
py
|
1a590a46498bf11d098399d531709815eeb94ab4
|
# -*- coding: utf-8 -*-
"""
Provides the service module for systemd
.. versionadded:: 0.10.0
.. important::
If you feel that Salt should be using this module to manage services on a
minion, and it is using a different module (or gives an error similar to
*'service.start' is not available*), see :ref:`here
<module-provider-override>`.
.. important::
This is an implementation of virtual 'service' module. As such, you must
call it under the name 'service' and NOT 'systemd'. You can see that also
in the examples below.
"""
# Import Python libs
from __future__ import absolute_import, print_function, unicode_literals
import errno
import fnmatch
import glob
import logging
import os
import re
import shlex
# Import Salt libs
import salt.utils.files
import salt.utils.itertools
import salt.utils.path
import salt.utils.stringutils
import salt.utils.systemd
from salt.exceptions import CommandExecutionError
# Import 3rd-party libs
from salt.ext import six
log = logging.getLogger(__name__)
__func_alias__ = {
"reload_": "reload",
"unmask_": "unmask",
}
SYSTEM_CONFIG_PATHS = ("/lib/systemd/system", "/usr/lib/systemd/system")
LOCAL_CONFIG_PATH = "/etc/systemd/system"
INITSCRIPT_PATH = "/etc/init.d"
VALID_UNIT_TYPES = (
"service",
"socket",
"device",
"mount",
"automount",
"swap",
"target",
"path",
"timer",
)
# Define the module's virtual name
__virtualname__ = "service"
# Disable check for string substitution
# pylint: disable=E1321
def __virtual__():
"""
Only work on systems that have been booted with systemd
"""
if __grains__.get("kernel") == "Linux" and salt.utils.systemd.booted(__context__):
return __virtualname__
return (
False,
"The systemd execution module failed to load: only available on Linux "
"systems which have been booted with systemd.",
)
def _root(path, root):
"""
Relocate an absolute path to a new root directory.
"""
if root:
return os.path.join(root, os.path.relpath(path, os.path.sep))
else:
return path
def _canonical_unit_name(name):
"""
Build a canonical unit name treating unit names without one
of the valid suffixes as a service.
"""
if not isinstance(name, six.string_types):
name = six.text_type(name)
if any(name.endswith(suffix) for suffix in VALID_UNIT_TYPES):
return name
return "%s.service" % name
def _check_available(name):
"""
Returns boolean telling whether or not the named service is available
"""
_status = _systemctl_status(name)
sd_version = salt.utils.systemd.version(__context__)
if sd_version is not None and sd_version >= 231:
# systemd 231 changed the output of "systemctl status" for unknown
# services, and also made it return an exit status of 4. If we are on
# a new enough version, check the retcode, otherwise fall back to
# parsing the "systemctl status" output.
# See: https://github.com/systemd/systemd/pull/3385
# Also: https://github.com/systemd/systemd/commit/3dced37
return 0 <= _status["retcode"] < 4
out = _status["stdout"].lower()
if "could not be found" in out:
# Catch cases where the systemd version is < 231 but the return code
# and output changes have been backported (e.g. RHEL 7.3).
return False
for line in salt.utils.itertools.split(out, "\n"):
match = re.match(r"\s+loaded:\s+(\S+)", line)
if match:
ret = match.group(1) != "not-found"
break
else:
raise CommandExecutionError("Failed to get information on unit '%s'" % name)
return ret
def _check_for_unit_changes(name):
"""
Check for modified/updated unit files, and run a daemon-reload if any are
found.
"""
contextkey = "systemd._check_for_unit_changes.{0}".format(name)
if contextkey not in __context__:
if _untracked_custom_unit_found(name) or _unit_file_changed(name):
systemctl_reload()
# Set context key to avoid repeating this check
__context__[contextkey] = True
def _check_unmask(name, unmask, unmask_runtime, root=None):
"""
Common code for conditionally removing masks before making changes to a
service's state.
"""
if unmask:
unmask_(name, runtime=False, root=root)
if unmask_runtime:
unmask_(name, runtime=True, root=root)
def _clear_context():
"""
Remove context
"""
# Using list() here because modifying a dictionary during iteration will
# raise a RuntimeError.
for key in list(__context__):
try:
if key.startswith("systemd._systemctl_status."):
__context__.pop(key)
except AttributeError:
continue
def _default_runlevel():
"""
Try to figure out the default runlevel. It is kept in
/etc/init/rc-sysinit.conf, but can be overridden with entries
in /etc/inittab, or via the kernel command-line at boot
"""
# Try to get the "main" default. If this fails, throw up our
# hands and just guess "2", because things are horribly broken
try:
with salt.utils.files.fopen("/etc/init/rc-sysinit.conf") as fp_:
for line in fp_:
line = salt.utils.stringutils.to_unicode(line)
if line.startswith("env DEFAULT_RUNLEVEL"):
runlevel = line.split("=")[-1].strip()
except Exception: # pylint: disable=broad-except
return "2"
# Look for an optional "legacy" override in /etc/inittab
try:
with salt.utils.files.fopen("/etc/inittab") as fp_:
for line in fp_:
line = salt.utils.stringutils.to_unicode(line)
if not line.startswith("#") and "initdefault" in line:
runlevel = line.split(":")[1]
except Exception: # pylint: disable=broad-except
pass
# The default runlevel can also be set via the kernel command-line.
try:
valid_strings = set(
("0", "1", "2", "3", "4", "5", "6", "s", "S", "-s", "single")
)
with salt.utils.files.fopen("/proc/cmdline") as fp_:
for line in fp_:
line = salt.utils.stringutils.to_unicode(line)
for arg in line.strip().split():
if arg in valid_strings:
runlevel = arg
break
except Exception: # pylint: disable=broad-except
pass
return runlevel
def _get_systemd_services(root):
"""
Use os.listdir() to get all the unit files
"""
ret = set()
for path in SYSTEM_CONFIG_PATHS + (LOCAL_CONFIG_PATH,):
# Make sure user has access to the path, and if the path is a
# link it's likely that another entry in SYSTEM_CONFIG_PATHS
# or LOCAL_CONFIG_PATH points to it, so we can ignore it.
path = _root(path, root)
if os.access(path, os.R_OK) and not os.path.islink(path):
for fullname in os.listdir(path):
try:
unit_name, unit_type = fullname.rsplit(".", 1)
except ValueError:
continue
if unit_type in VALID_UNIT_TYPES:
ret.add(unit_name if unit_type == "service" else fullname)
return ret
def _get_sysv_services(root, systemd_services=None):
"""
Use os.listdir() and os.access() to get all the initscripts
"""
initscript_path = _root(INITSCRIPT_PATH, root)
try:
sysv_services = os.listdir(initscript_path)
except OSError as exc:
if exc.errno == errno.ENOENT:
pass
elif exc.errno == errno.EACCES:
log.error(
"Unable to check sysvinit scripts, permission denied to %s",
initscript_path,
)
else:
log.error(
"Error %d encountered trying to check sysvinit scripts: %s",
exc.errno,
exc.strerror,
)
return []
if systemd_services is None:
systemd_services = _get_systemd_services(root)
ret = []
for sysv_service in sysv_services:
if os.access(os.path.join(initscript_path, sysv_service), os.X_OK):
if sysv_service in systemd_services:
log.debug(
"sysvinit script '%s' found, but systemd unit "
"'%s.service' already exists",
sysv_service,
sysv_service,
)
continue
ret.append(sysv_service)
return ret
def _get_service_exec():
"""
Returns the path to the sysv service manager (either update-rc.d or
chkconfig)
"""
contextkey = "systemd._get_service_exec"
if contextkey not in __context__:
executables = ("update-rc.d", "chkconfig")
for executable in executables:
service_exec = salt.utils.path.which(executable)
if service_exec is not None:
break
else:
raise CommandExecutionError(
"Unable to find sysv service manager (tried {0})".format(
", ".join(executables)
)
)
__context__[contextkey] = service_exec
return __context__[contextkey]
def _runlevel():
"""
Return the current runlevel
"""
contextkey = "systemd._runlevel"
if contextkey in __context__:
return __context__[contextkey]
out = __salt__["cmd.run"]("runlevel", python_shell=False, ignore_retcode=True)
try:
ret = out.split()[1]
except IndexError:
# The runlevel is unknown, return the default
ret = _default_runlevel()
__context__[contextkey] = ret
return ret
def _strip_scope(msg):
"""
Strip unnecessary message about running the command with --scope from
stderr so that we can raise an exception with the remaining stderr text.
"""
ret = []
for line in msg.splitlines():
if not line.endswith(".scope"):
ret.append(line)
return "\n".join(ret).strip()
def _systemctl_cmd(action, name=None, systemd_scope=False, no_block=False, root=None):
"""
Build a systemctl command line. Treat unit names without one
of the valid suffixes as a service.
"""
ret = []
if (
systemd_scope
and salt.utils.systemd.has_scope(__context__)
and __salt__["config.get"]("systemd.scope", True)
):
ret.extend(["systemd-run", "--scope"])
ret.append("systemctl")
if no_block:
ret.append("--no-block")
if root:
ret.extend(["--root", root])
if isinstance(action, six.string_types):
action = shlex.split(action)
ret.extend(action)
if name is not None:
ret.append(_canonical_unit_name(name))
if "status" in ret:
ret.extend(["-n", "0"])
return ret
def _systemctl_status(name):
"""
Helper function which leverages __context__ to keep from running 'systemctl
status' more than once.
"""
contextkey = "systemd._systemctl_status.%s" % name
if contextkey in __context__:
return __context__[contextkey]
__context__[contextkey] = __salt__["cmd.run_all"](
_systemctl_cmd("status", name),
python_shell=False,
redirect_stderr=True,
ignore_retcode=True,
)
return __context__[contextkey]
def _sysv_enabled(name, root):
"""
A System-V style service is assumed disabled if the "startup" symlink
(starts with "S") to its script is found in /etc/init.d in the current
runlevel.
"""
# Find exact match (disambiguate matches like "S01anacron" for cron)
rc = _root("/etc/rc{}.d/S*{}".format(_runlevel(), name), root)
for match in glob.glob(rc):
if re.match(r"S\d{,2}%s" % name, os.path.basename(match)):
return True
return False
def _untracked_custom_unit_found(name, root=None):
"""
If the passed service name is not available, but a unit file exist in
/etc/systemd/system, return True. Otherwise, return False.
"""
system = _root("/etc/systemd/system", root)
unit_path = os.path.join(system, _canonical_unit_name(name))
return os.access(unit_path, os.R_OK) and not _check_available(name)
def _unit_file_changed(name):
"""
Returns True if systemctl reports that the unit file has changed, otherwise
returns False.
"""
status = _systemctl_status(name)["stdout"].lower()
return "'systemctl daemon-reload'" in status
def systemctl_reload():
"""
.. versionadded:: 0.15.0
Reloads systemctl, an action needed whenever unit files are updated.
CLI Example:
.. code-block:: bash
salt '*' service.systemctl_reload
"""
out = __salt__["cmd.run_all"](
_systemctl_cmd("--system daemon-reload"),
python_shell=False,
redirect_stderr=True,
)
if out["retcode"] != 0:
raise CommandExecutionError(
"Problem performing systemctl daemon-reload: %s" % out["stdout"]
)
_clear_context()
return True
def get_running():
"""
Return a list of all running services, so far as systemd is concerned
CLI Example:
.. code-block:: bash
salt '*' service.get_running
"""
ret = set()
# Get running systemd units
out = __salt__["cmd.run"](
_systemctl_cmd("--full --no-legend --no-pager"),
python_shell=False,
ignore_retcode=True,
)
for line in salt.utils.itertools.split(out, "\n"):
try:
comps = line.strip().split()
fullname = comps[0]
if len(comps) > 3:
active_state = comps[3]
except ValueError as exc:
log.error(exc)
continue
else:
if active_state != "running":
continue
try:
unit_name, unit_type = fullname.rsplit(".", 1)
except ValueError:
continue
if unit_type in VALID_UNIT_TYPES:
ret.add(unit_name if unit_type == "service" else fullname)
return sorted(ret)
def get_enabled(root=None):
"""
Return a list of all enabled services
root
Enable/disable/mask unit files in the specified root directory
CLI Example:
.. code-block:: bash
salt '*' service.get_enabled
"""
ret = set()
# Get enabled systemd units. Can't use --state=enabled here because it's
# not present until systemd 216.
out = __salt__["cmd.run"](
_systemctl_cmd("--full --no-legend --no-pager list-unit-files", root=root),
python_shell=False,
ignore_retcode=True,
)
for line in salt.utils.itertools.split(out, "\n"):
try:
fullname, unit_state = line.strip().split(None, 1)
except ValueError:
continue
else:
if unit_state != "enabled":
continue
try:
unit_name, unit_type = fullname.rsplit(".", 1)
except ValueError:
continue
if unit_type in VALID_UNIT_TYPES:
ret.add(unit_name if unit_type == "service" else fullname)
# Add in any sysvinit services that are enabled
ret.update(set([x for x in _get_sysv_services(root) if _sysv_enabled(x, root)]))
return sorted(ret)
def get_disabled(root=None):
"""
Return a list of all disabled services
root
Enable/disable/mask unit files in the specified root directory
CLI Example:
.. code-block:: bash
salt '*' service.get_disabled
"""
ret = set()
# Get disabled systemd units. Can't use --state=disabled here because it's
# not present until systemd 216.
out = __salt__["cmd.run"](
_systemctl_cmd("--full --no-legend --no-pager list-unit-files", root=root),
python_shell=False,
ignore_retcode=True,
)
for line in salt.utils.itertools.split(out, "\n"):
try:
fullname, unit_state = line.strip().split(None, 1)
except ValueError:
continue
else:
if unit_state != "disabled":
continue
try:
unit_name, unit_type = fullname.rsplit(".", 1)
except ValueError:
continue
if unit_type in VALID_UNIT_TYPES:
ret.add(unit_name if unit_type == "service" else fullname)
# Add in any sysvinit services that are disabled
ret.update(set([x for x in _get_sysv_services(root) if not _sysv_enabled(x, root)]))
return sorted(ret)
def get_static(root=None):
"""
.. versionadded:: 2015.8.5
Return a list of all static services
root
Enable/disable/mask unit files in the specified root directory
CLI Example:
.. code-block:: bash
salt '*' service.get_static
"""
ret = set()
# Get static systemd units. Can't use --state=static here because it's
# not present until systemd 216.
out = __salt__["cmd.run"](
_systemctl_cmd("--full --no-legend --no-pager list-unit-files", root=root),
python_shell=False,
ignore_retcode=True,
)
for line in salt.utils.itertools.split(out, "\n"):
try:
fullname, unit_state = line.strip().split(None, 1)
except ValueError:
continue
else:
if unit_state != "static":
continue
try:
unit_name, unit_type = fullname.rsplit(".", 1)
except ValueError:
continue
if unit_type in VALID_UNIT_TYPES:
ret.add(unit_name if unit_type == "service" else fullname)
# sysvinit services cannot be static
return sorted(ret)
def get_all(root=None):
"""
Return a list of all available services
root
Enable/disable/mask unit files in the specified root directory
CLI Example:
.. code-block:: bash
salt '*' service.get_all
"""
ret = _get_systemd_services(root)
ret.update(set(_get_sysv_services(root, systemd_services=ret)))
return sorted(ret)
def available(name):
"""
.. versionadded:: 0.10.4
Check that the given service is available taking into account template
units.
CLI Example:
.. code-block:: bash
salt '*' service.available sshd
"""
_check_for_unit_changes(name)
return _check_available(name)
def missing(name):
"""
.. versionadded:: 2014.1.0
The inverse of :py:func:`service.available
<salt.modules.systemd.available>`. Returns ``True`` if the specified
service is not available, otherwise returns ``False``.
CLI Example:
.. code-block:: bash
salt '*' service.missing sshd
"""
return not available(name)
def unmask_(name, runtime=False, root=None):
"""
.. versionadded:: 2015.5.0
.. versionchanged:: 2015.8.12,2016.3.3,2016.11.0
On minions running systemd>=205, `systemd-run(1)`_ is now used to
isolate commands run by this function from the ``salt-minion`` daemon's
control group. This is done to avoid a race condition in cases where
the ``salt-minion`` service is restarted while a service is being
modified. If desired, usage of `systemd-run(1)`_ can be suppressed by
setting a :mod:`config option <salt.modules.config.get>` called
``systemd.scope``, with a value of ``False`` (no quotes).
.. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html
Unmask the specified service with systemd
runtime : False
Set to ``True`` to unmask this service only until the next reboot
.. versionadded:: 2017.7.0
In previous versions, this function would remove whichever mask was
identified by running ``systemctl is-enabled`` on the service.
However, since it is possible to both have both indefinite and
runtime masks on a service simultaneously, this function now
removes a runtime mask only when this argument is set to ``True``,
and otherwise removes an indefinite mask.
root
Enable/disable/mask unit files in the specified root directory
CLI Example:
.. code-block:: bash
salt '*' service.unmask foo
salt '*' service.unmask foo runtime=True
"""
_check_for_unit_changes(name)
if not masked(name, runtime, root=root):
log.debug("Service '%s' is not %smasked", name, "runtime-" if runtime else "")
return True
cmd = "unmask --runtime" if runtime else "unmask"
out = __salt__["cmd.run_all"](
_systemctl_cmd(cmd, name, systemd_scope=True, root=root),
python_shell=False,
redirect_stderr=True,
)
if out["retcode"] != 0:
raise CommandExecutionError("Failed to unmask service '%s'" % name)
return True
def mask(name, runtime=False, root=None):
"""
.. versionadded:: 2015.5.0
.. versionchanged:: 2015.8.12,2016.3.3,2016.11.0
On minions running systemd>=205, `systemd-run(1)`_ is now used to
isolate commands run by this function from the ``salt-minion`` daemon's
control group. This is done to avoid a race condition in cases where
the ``salt-minion`` service is restarted while a service is being
modified. If desired, usage of `systemd-run(1)`_ can be suppressed by
setting a :mod:`config option <salt.modules.config.get>` called
``systemd.scope``, with a value of ``False`` (no quotes).
.. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html
Mask the specified service with systemd
runtime : False
Set to ``True`` to mask this service only until the next reboot
.. versionadded:: 2015.8.5
root
Enable/disable/mask unit files in the specified root directory
CLI Example:
.. code-block:: bash
salt '*' service.mask foo
salt '*' service.mask foo runtime=True
"""
_check_for_unit_changes(name)
cmd = "mask --runtime" if runtime else "mask"
out = __salt__["cmd.run_all"](
_systemctl_cmd(cmd, name, systemd_scope=True, root=root),
python_shell=False,
redirect_stderr=True,
)
if out["retcode"] != 0:
raise CommandExecutionError(
"Failed to mask service '%s'" % name, info=out["stdout"]
)
return True
def masked(name, runtime=False, root=None):
"""
.. versionadded:: 2015.8.0
.. versionchanged:: 2015.8.5
The return data for this function has changed. If the service is
masked, the return value will now be the output of the ``systemctl
is-enabled`` command (so that a persistent mask can be distinguished
from a runtime mask). If the service is not masked, then ``False`` will
be returned.
.. versionchanged:: 2017.7.0
This function now returns a boolean telling the user whether a mask
specified by the new ``runtime`` argument is set. If ``runtime`` is
``False``, this function will return ``True`` if an indefinite mask is
set for the named service (otherwise ``False`` will be returned). If
``runtime`` is ``False``, this function will return ``True`` if a
runtime mask is set, otherwise ``False``.
Check whether or not a service is masked
runtime : False
Set to ``True`` to check for a runtime mask
.. versionadded:: 2017.7.0
In previous versions, this function would simply return the output
of ``systemctl is-enabled`` when the service was found to be
masked. However, since it is possible to both have both indefinite
and runtime masks on a service simultaneously, this function now
only checks for runtime masks if this argument is set to ``True``.
Otherwise, it will check for an indefinite mask.
root
Enable/disable/mask unit files in the specified root directory
CLI Examples:
.. code-block:: bash
salt '*' service.masked foo
salt '*' service.masked foo runtime=True
"""
_check_for_unit_changes(name)
root_dir = _root("/run" if runtime else "/etc", root)
link_path = os.path.join(root_dir, "systemd", "system", _canonical_unit_name(name))
try:
return os.readlink(link_path) == "/dev/null"
except OSError as exc:
if exc.errno == errno.ENOENT:
log.trace(
"Path %s does not exist. This is normal if service '%s' is "
"not masked or does not exist.",
link_path,
name,
)
elif exc.errno == errno.EINVAL:
log.error(
"Failed to check mask status for service %s. Path %s is a "
"file, not a symlink. This could be caused by changes in "
"systemd and is probably a bug in Salt. Please report this "
"to the developers.",
name,
link_path,
)
return False
def start(name, no_block=False, unmask=False, unmask_runtime=False):
"""
.. versionchanged:: 2015.8.12,2016.3.3,2016.11.0
On minions running systemd>=205, `systemd-run(1)`_ is now used to
isolate commands run by this function from the ``salt-minion`` daemon's
control group. This is done to avoid a race condition in cases where
the ``salt-minion`` service is restarted while a service is being
modified. If desired, usage of `systemd-run(1)`_ can be suppressed by
setting a :mod:`config option <salt.modules.config.get>` called
``systemd.scope``, with a value of ``False`` (no quotes).
.. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html
Start the specified service with systemd
no_block : False
Set to ``True`` to start the service using ``--no-block``.
.. versionadded:: 2017.7.0
unmask : False
Set to ``True`` to remove an indefinite mask before attempting to start
the service.
.. versionadded:: 2017.7.0
In previous releases, Salt would simply unmask a service before
starting. This behavior is no longer the default.
unmask_runtime : False
Set to ``True`` to remove a runtime mask before attempting to start the
service.
.. versionadded:: 2017.7.0
In previous releases, Salt would simply unmask a service before
starting. This behavior is no longer the default.
CLI Example:
.. code-block:: bash
salt '*' service.start <service name>
"""
_check_for_unit_changes(name)
_check_unmask(name, unmask, unmask_runtime)
ret = __salt__["cmd.run_all"](
_systemctl_cmd("start", name, systemd_scope=True, no_block=no_block),
python_shell=False,
)
if ret["retcode"] != 0:
# Instead of returning a bool, raise an exception so that we can
# include the error message in the return data. This helps give more
# information to the user in instances where the service is masked.
raise CommandExecutionError(_strip_scope(ret["stderr"]))
return True
def stop(name, no_block=False):
"""
.. versionchanged:: 2015.8.12,2016.3.3,2016.11.0
On minions running systemd>=205, `systemd-run(1)`_ is now used to
isolate commands run by this function from the ``salt-minion`` daemon's
control group. This is done to avoid a race condition in cases where
the ``salt-minion`` service is restarted while a service is being
modified. If desired, usage of `systemd-run(1)`_ can be suppressed by
setting a :mod:`config option <salt.modules.config.get>` called
``systemd.scope``, with a value of ``False`` (no quotes).
.. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html
Stop the specified service with systemd
no_block : False
Set to ``True`` to start the service using ``--no-block``.
.. versionadded:: 2017.7.0
CLI Example:
.. code-block:: bash
salt '*' service.stop <service name>
"""
_check_for_unit_changes(name)
# Using cmd.run_all instead of cmd.retcode here to make unit tests easier
return (
__salt__["cmd.run_all"](
_systemctl_cmd("stop", name, systemd_scope=True, no_block=no_block),
python_shell=False,
)["retcode"]
== 0
)
def restart(name, no_block=False, unmask=False, unmask_runtime=False):
"""
.. versionchanged:: 2015.8.12,2016.3.3,2016.11.0
On minions running systemd>=205, `systemd-run(1)`_ is now used to
isolate commands run by this function from the ``salt-minion`` daemon's
control group. This is done to avoid a race condition in cases where
the ``salt-minion`` service is restarted while a service is being
modified. If desired, usage of `systemd-run(1)`_ can be suppressed by
setting a :mod:`config option <salt.modules.config.get>` called
``systemd.scope``, with a value of ``False`` (no quotes).
.. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html
Restart the specified service with systemd
no_block : False
Set to ``True`` to start the service using ``--no-block``.
.. versionadded:: 2017.7.0
unmask : False
Set to ``True`` to remove an indefinite mask before attempting to
restart the service.
.. versionadded:: 2017.7.0
In previous releases, Salt would simply unmask a service before
restarting. This behavior is no longer the default.
unmask_runtime : False
Set to ``True`` to remove a runtime mask before attempting to restart
the service.
.. versionadded:: 2017.7.0
In previous releases, Salt would simply unmask a service before
restarting. This behavior is no longer the default.
CLI Example:
.. code-block:: bash
salt '*' service.restart <service name>
"""
_check_for_unit_changes(name)
_check_unmask(name, unmask, unmask_runtime)
ret = __salt__["cmd.run_all"](
_systemctl_cmd("restart", name, systemd_scope=True, no_block=no_block),
python_shell=False,
)
if ret["retcode"] != 0:
# Instead of returning a bool, raise an exception so that we can
# include the error message in the return data. This helps give more
# information to the user in instances where the service is masked.
raise CommandExecutionError(_strip_scope(ret["stderr"]))
return True
def reload_(name, no_block=False, unmask=False, unmask_runtime=False):
"""
.. versionchanged:: 2015.8.12,2016.3.3,2016.11.0
On minions running systemd>=205, `systemd-run(1)`_ is now used to
isolate commands run by this function from the ``salt-minion`` daemon's
control group. This is done to avoid a race condition in cases where
the ``salt-minion`` service is restarted while a service is being
modified. If desired, usage of `systemd-run(1)`_ can be suppressed by
setting a :mod:`config option <salt.modules.config.get>` called
``systemd.scope``, with a value of ``False`` (no quotes).
.. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html
Reload the specified service with systemd
no_block : False
Set to ``True`` to reload the service using ``--no-block``.
.. versionadded:: 2017.7.0
unmask : False
Set to ``True`` to remove an indefinite mask before attempting to
reload the service.
.. versionadded:: 2017.7.0
In previous releases, Salt would simply unmask a service before
reloading. This behavior is no longer the default.
unmask_runtime : False
Set to ``True`` to remove a runtime mask before attempting to reload
the service.
.. versionadded:: 2017.7.0
In previous releases, Salt would simply unmask a service before
reloading. This behavior is no longer the default.
CLI Example:
.. code-block:: bash
salt '*' service.reload <service name>
"""
_check_for_unit_changes(name)
_check_unmask(name, unmask, unmask_runtime)
ret = __salt__["cmd.run_all"](
_systemctl_cmd("reload", name, systemd_scope=True, no_block=no_block),
python_shell=False,
)
if ret["retcode"] != 0:
# Instead of returning a bool, raise an exception so that we can
# include the error message in the return data. This helps give more
# information to the user in instances where the service is masked.
raise CommandExecutionError(_strip_scope(ret["stderr"]))
return True
def force_reload(name, no_block=True, unmask=False, unmask_runtime=False):
"""
.. versionchanged:: 2015.8.12,2016.3.3,2016.11.0
On minions running systemd>=205, `systemd-run(1)`_ is now used to
isolate commands run by this function from the ``salt-minion`` daemon's
control group. This is done to avoid a race condition in cases where
the ``salt-minion`` service is restarted while a service is being
modified. If desired, usage of `systemd-run(1)`_ can be suppressed by
setting a :mod:`config option <salt.modules.config.get>` called
``systemd.scope``, with a value of ``False`` (no quotes).
.. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html
.. versionadded:: 0.12.0
Force-reload the specified service with systemd
no_block : False
Set to ``True`` to start the service using ``--no-block``.
.. versionadded:: 2017.7.0
unmask : False
Set to ``True`` to remove an indefinite mask before attempting to
force-reload the service.
.. versionadded:: 2017.7.0
In previous releases, Salt would simply unmask a service before
force-reloading. This behavior is no longer the default.
unmask_runtime : False
Set to ``True`` to remove a runtime mask before attempting to
force-reload the service.
.. versionadded:: 2017.7.0
In previous releases, Salt would simply unmask a service before
force-reloading. This behavior is no longer the default.
CLI Example:
.. code-block:: bash
salt '*' service.force_reload <service name>
"""
_check_for_unit_changes(name)
_check_unmask(name, unmask, unmask_runtime)
ret = __salt__["cmd.run_all"](
_systemctl_cmd("force-reload", name, systemd_scope=True, no_block=no_block),
python_shell=False,
)
if ret["retcode"] != 0:
# Instead of returning a bool, raise an exception so that we can
# include the error message in the return data. This helps give more
# information to the user in instances where the service is masked.
raise CommandExecutionError(_strip_scope(ret["stderr"]))
return True
# The unused sig argument is required to maintain consistency with the API
# established by Salt's service management states.
def status(name, sig=None): # pylint: disable=unused-argument
"""
Return the status for a service via systemd.
If the name contains globbing, a dict mapping service name to True/False
values is returned.
.. versionchanged:: 2018.3.0
The service name can now be a glob (e.g. ``salt*``)
Args:
name (str): The name of the service to check
sig (str): Not implemented
Returns:
bool: True if running, False otherwise
dict: Maps service name to True if running, False otherwise
CLI Example:
.. code-block:: bash
salt '*' service.status <service name> [service signature]
"""
contains_globbing = bool(re.search(r"\*|\?|\[.+\]", name))
if contains_globbing:
services = fnmatch.filter(get_all(), name)
else:
services = [name]
results = {}
for service in services:
_check_for_unit_changes(service)
results[service] = (
__salt__["cmd.retcode"](
_systemctl_cmd("is-active", service),
python_shell=False,
ignore_retcode=True,
)
== 0
)
if contains_globbing:
return results
return results[name]
# **kwargs is required to maintain consistency with the API established by
# Salt's service management states.
def enable(
name, no_block=False, unmask=False, unmask_runtime=False, root=None, **kwargs
): # pylint: disable=unused-argument
"""
.. versionchanged:: 2015.8.12,2016.3.3,2016.11.0
On minions running systemd>=205, `systemd-run(1)`_ is now used to
isolate commands run by this function from the ``salt-minion`` daemon's
control group. This is done to avoid a race condition in cases where
the ``salt-minion`` service is restarted while a service is being
modified. If desired, usage of `systemd-run(1)`_ can be suppressed by
setting a :mod:`config option <salt.modules.config.get>` called
``systemd.scope``, with a value of ``False`` (no quotes).
.. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html
Enable the named service to start when the system boots
no_block : False
Set to ``True`` to start the service using ``--no-block``.
.. versionadded:: 2017.7.0
unmask : False
Set to ``True`` to remove an indefinite mask before attempting to
enable the service.
.. versionadded:: 2017.7.0
In previous releases, Salt would simply unmask a service before
enabling. This behavior is no longer the default.
unmask_runtime : False
Set to ``True`` to remove a runtime mask before attempting to enable
the service.
.. versionadded:: 2017.7.0
In previous releases, Salt would simply unmask a service before
enabling. This behavior is no longer the default.
root
Enable/disable/mask unit files in the specified root directory
CLI Example:
.. code-block:: bash
salt '*' service.enable <service name>
"""
_check_for_unit_changes(name)
_check_unmask(name, unmask, unmask_runtime, root)
if name in _get_sysv_services(root):
cmd = []
if salt.utils.systemd.has_scope(__context__) and __salt__["config.get"](
"systemd.scope", True
):
cmd.extend(["systemd-run", "--scope"])
service_exec = _get_service_exec()
if service_exec.endswith("/update-rc.d"):
cmd.extend([service_exec, "-f", name, "defaults", "99"])
elif service_exec.endswith("/chkconfig"):
cmd.extend([service_exec, name, "on"])
return (
__salt__["cmd.retcode"](cmd, python_shell=False, ignore_retcode=True) == 0
)
ret = __salt__["cmd.run_all"](
_systemctl_cmd(
"enable", name, systemd_scope=True, no_block=no_block, root=root
),
python_shell=False,
ignore_retcode=True,
)
if ret["retcode"] != 0:
# Instead of returning a bool, raise an exception so that we can
# include the error message in the return data. This helps give more
# information to the user in instances where the service is masked.
raise CommandExecutionError(_strip_scope(ret["stderr"]))
return True
# The unused kwargs argument is required to maintain consistency with the API
# established by Salt's service management states.
def disable(
name, no_block=False, root=None, **kwargs
): # pylint: disable=unused-argument
"""
.. versionchanged:: 2015.8.12,2016.3.3,2016.11.0
On minions running systemd>=205, `systemd-run(1)`_ is now used to
isolate commands run by this function from the ``salt-minion`` daemon's
control group. This is done to avoid a race condition in cases where
the ``salt-minion`` service is restarted while a service is being
modified. If desired, usage of `systemd-run(1)`_ can be suppressed by
setting a :mod:`config option <salt.modules.config.get>` called
``systemd.scope``, with a value of ``False`` (no quotes).
.. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html
Disable the named service to not start when the system boots
no_block : False
Set to ``True`` to start the service using ``--no-block``.
.. versionadded:: 2017.7.0
root
Enable/disable/mask unit files in the specified root directory
CLI Example:
.. code-block:: bash
salt '*' service.disable <service name>
"""
_check_for_unit_changes(name)
if name in _get_sysv_services(root):
cmd = []
if salt.utils.systemd.has_scope(__context__) and __salt__["config.get"](
"systemd.scope", True
):
cmd.extend(["systemd-run", "--scope"])
service_exec = _get_service_exec()
if service_exec.endswith("/update-rc.d"):
cmd.extend([service_exec, "-f", name, "remove"])
elif service_exec.endswith("/chkconfig"):
cmd.extend([service_exec, name, "off"])
return (
__salt__["cmd.retcode"](cmd, python_shell=False, ignore_retcode=True) == 0
)
# Using cmd.run_all instead of cmd.retcode here to make unit tests easier
return (
__salt__["cmd.run_all"](
_systemctl_cmd(
"disable", name, systemd_scope=True, no_block=no_block, root=root
),
python_shell=False,
ignore_retcode=True,
)["retcode"]
== 0
)
# The unused kwargs argument is required to maintain consistency with the API
# established by Salt's service management states.
def enabled(name, root=None, **kwargs): # pylint: disable=unused-argument
"""
Return if the named service is enabled to start on boot
root
Enable/disable/mask unit files in the specified root directory
CLI Example:
.. code-block:: bash
salt '*' service.enabled <service name>
"""
# Try 'systemctl is-enabled' first, then look for a symlink created by
# systemctl (older systemd releases did not support using is-enabled to
# check templated services), and lastly check for a sysvinit service.
if (
__salt__["cmd.retcode"](
_systemctl_cmd("is-enabled", name, root=root),
python_shell=False,
ignore_retcode=True,
)
== 0
):
return True
elif "@" in name:
# On older systemd releases, templated services could not be checked
# with ``systemctl is-enabled``. As a fallback, look for the symlinks
# created by systemctl when enabling templated services.
local_config_path = _root(LOCAL_CONFIG_PATH, "/")
cmd = [
"find",
local_config_path,
"-name",
name,
"-type",
"l",
"-print",
"-quit",
]
# If the find command returns any matches, there will be output and the
# string will be non-empty.
if bool(__salt__["cmd.run"](cmd, python_shell=False)):
return True
elif name in _get_sysv_services(root):
return _sysv_enabled(name, root)
return False
def disabled(name, root=None):
"""
Return if the named service is disabled from starting on boot
root
Enable/disable/mask unit files in the specified root directory
CLI Example:
.. code-block:: bash
salt '*' service.disabled <service name>
"""
return not enabled(name, root=root)
def show(name, root=None):
"""
.. versionadded:: 2014.7.0
Show properties of one or more units/jobs or the manager
root
Enable/disable/mask unit files in the specified root directory
CLI Example:
salt '*' service.show <service name>
"""
ret = {}
out = __salt__["cmd.run"](
_systemctl_cmd("show", name, root=root), python_shell=False
)
for line in salt.utils.itertools.split(out, "\n"):
comps = line.split("=")
name = comps[0]
value = "=".join(comps[1:])
if value.startswith("{"):
value = value.replace("{", "").replace("}", "")
ret[name] = {}
for item in value.split(" ; "):
comps = item.split("=")
ret[name][comps[0].strip()] = comps[1].strip()
elif name in ("Before", "After", "Wants"):
ret[name] = value.split()
else:
ret[name] = value
return ret
def execs(root=None):
"""
.. versionadded:: 2014.7.0
Return a list of all files specified as ``ExecStart`` for all services.
root
Enable/disable/mask unit files in the specified root directory
CLI Example:
salt '*' service.execs
"""
ret = {}
for service in get_all(root=root):
data = show(service, root=root)
if "ExecStart" not in data:
continue
ret[service] = data["ExecStart"]["path"]
return ret
def firstboot(
locale=None,
locale_message=None,
keymap=None,
timezone=None,
hostname=None,
machine_id=None,
root=None,
):
"""
.. versionadded:: TBD
Call systemd-firstboot to configure basic settings of the system
locale
Set primary locale (LANG=)
locale_message
Set message locale (LC_MESSAGES=)
keymap
Set keymap
timezone
Set timezone
hostname
Set host name
machine_id
Set machine ID
root
Operate on an alternative filesystem root
CLI Example:
salt '*' service.firstboot keymap=jp locale=en_US.UTF-8
"""
cmd = ["systemd-firstboot"]
parameters = [
("locale", locale),
("locale-message", locale_message),
("keymap", keymap),
("timezone", timezone),
("hostname", hostname),
("machine-ID", machine_id),
("root", root),
]
for parameter, value in parameters:
if value:
cmd.extend(["--{}".format(parameter), str(value)])
out = __salt__["cmd.run_all"](cmd)
if out["retcode"] != 0:
raise CommandExecutionError("systemd-firstboot error: {}".format(out["stderr"]))
return True
|
py
|
1a590a56e84cd660052ca1e253145cc08ad1ff71
|
from distutils.core import setup
setup(name='metametamerge',
author='Vitor C. Piro',
author_email='[email protected]',
url='https://github.com/pirovc/metametamerge',
version='1.1',
package_dir={'metametamerge': ''},
packages=['metametamerge'],
scripts=['MetaMetaMerge.py']
)
|
py
|
1a590ac59aa6d248c437bd9e8ded3caaeac778f7
|
# ------------------------------------------------- #
# Auto generated. Modification will be overwritten. #
# ------------------------------------------------- #
import base64
file_data_list=[
{
'name': '/app/login.html', 'data': base64.b64decode(b'PCFET0NUWVBFIGh0bWw+CjxodG1sIG5nLWFwcD0iY29zbW9zQXBwIj4KPGhlYWQgbGFuZz0iZW4iPgogICAgPG1ldGEgY2hhcnNldD0iVVRGLTgiPgogICAgPHRpdGxlPkNvc21vcyBzZXJ2aWNlIGNvbnN1bWVyPC90aXRsZT4KPC9oZWFkPgo8Ym9keSAgcm9sZT0iZG9jdW1lbnQiIG5nLWNvbnRyb2xsZXI9IlNlcnZpY2VDb25zdW1lckN0cmwiPgogICAgPGRpdiBjbGFzcz0ibmF2YmFyIG5hdmJhci1pbnZlcnNlIG5hdmJhci1maXhlZC10b3AiIHJvbGU9Im5hdmlnYXRpb24iPgogICAgICA8ZGl2IGNsYXNzPSJjb250YWluZXIiPgogICAgICAgIDxkaXYgY2xhc3M9Im5hdmJhci1oZWFkZXIiPgogICAgICAgICAgPGEgY2xhc3M9Im5hdmJhci1icmFuZCIgaHJlZj0iLyI+Q29zbW9zIEZyYW1ld29yazwvYT4KICAgICAgICA8L2Rpdj4KICAgICAgICA8ZGl2IGNsYXNzPSJuYXZiYXItY29sbGFwc2UgY29sbGFwc2UiPgogICAgICAgICAgPHVsIGNsYXNzPSJuYXYgbmF2YmFyLW5hdiI+CiAgICAgICAgICAgIDxsaSBjbGFzcz0iYWN0aXZlIj48YSBocmVmPSIvIj5Ib21lPC9hPjwvbGk+CiAgICAgICAgICAgIDxsaSBjbGFzcz0iZHJvcGRvd24iIG5nLXNob3c9ImxvZ2dlZEluKCkiPgogICAgICAgICAgICAgIDxhIGhyZWY9IiMiIGNsYXNzPSJkcm9wZG93bi10b2dnbGUiIGRhdGEtdG9nZ2xlPSJkcm9wZG93biIgbmctYmluZD0idXNlck5hbWUiPjxiIGNsYXNzPSJjYXJldCI+PC9iPjwvYT4KICAgICAgICAgICAgICA8dWwgY2xhc3M9ImRyb3Bkb3duLW1lbnUiPgogICAgICAgICAgICAgICAgPGxpPjxhIGhyZWY9Ii9sb2dvdXQvIj5Mb2dvdXQ8L2E+PC9saT4KICAgICAgICAgICAgICAgIDxsaSBjbGFzcz0iZGl2aWRlciI+PC9saT4KICAgICAgICAgICAgICAgIDxsaT48YSBocmVmPSIjIj5TZXR0aW5nczwvYT48L2xpPgogICAgICAgICAgICAgIDwvdWw+CiAgICAgICAgICAgIDwvbGk+CiAgICAgICAgICA8L3VsPgogICAgICAgIDwvZGl2PjwhLS0vLm5hdi1jb2xsYXBzZSAtLT4KICAgICAgPC9kaXY+CiAgICA8L2Rpdj4KCiAgICA8ZGl2IGNsYXNzPSJjb250YWluZXIgdGhlbWUtc2hvd2Nhc2UiIHJvbGU9Im1haW4iPgogICAgICAgICAgPGRpdiBjbGFzcz0ianVtYm90cm9uIj4KICAgICAgICAgICAgPGgzICBuZy1zaG93PSIhbG9nZ2VkSW4oKSI+TG9naW48L2gzPgogICAgICAgICAgICA8ZGl2ICBuZy1zaG93PSIhbG9nZ2VkSW4oKSI+CiAgICAgICAgICAgICAgICA8YSBjbGFzcz0iYnRuIGJ0bi1zbWFsbCBidG4tcHJpbWFyeSIgaHJlZj0iL2xvZ2luL2dvb2dsZS8iPkdvb2dsZTwvYT4KICAgICAgICAgICAgICAgIDxhIGNsYXNzPSJidG4gYnRuLXNtYWxsIGJ0bi1wcmltYXJ5IiBocmVmPSIvbG9naW4vZmFjZWJvb2tncmFwaC8iPkZhY2Vib29rPC9hPgogICAgICAgICAgICAgICAgPGJyIC8+CiAgICAgICAgICAgICAgICA8aHIgLz4KICAgICAgICAgICAgICAgIDxmb3JtIGFjdGlvbj0iL2xvZ2luL29wZW5pZC8iIG1ldGhvZD0iZ2V0Ij4KICAgICAgICAgICAgICAgICAgICA8bGFiZWw+T3BlbmlkPC9sYWJlbD48aW5wdXQgdHlwZT0idGV4dCIgbmFtZT0ib3BlbmlkLm9wX2VuZHBvaW50Ij4KICAgICAgICAgICAgICAgICAgICA8aW5wdXQgdHlwZT0ic3VibWl0IiB2YWx1ZT0iTG9naW4iPgogICAgICAgICAgICAgICAgPC9mb3JtPgogICAgICAgICAgICAgICAgPGhyIC8+CiAgICAgICAgICAgIDwvZGl2PgogICAgICAgICAgICA8Zm9ybSBuZy1zaG93PSIhbG9nZ2VkSW4oKSIgcm9sZT0iZm9ybSIgbWV0aG9kPSJwb3N0IiBhY3Rpb249Ii9sb2dpbi8iPgogICAgICAgICAgICAgICAgPGRpdiBjbGFzcz0iZm9ybS1ncm91cCI+CiAgICAgICAgICAgICAgICAgICAgPGxhYmVsPlVzZXIgbmFtZTwvbGFiZWw+CiAgICAgICAgICAgICAgICAgICAgPGlucHV0IGNsYXNzPSJmb3JtLWNvbnRyb2wiIGlkPSJ1c2VybmFtZSIgdHlwZT0idGV4dCIgbmFtZT0idXNlcm5hbWUiLz4KICAgICAgICAgICAgICAgIDwvZGl2PgogICAgICAgICAgICAgICAgPGRpdiBjbGFzcz0iZm9ybS1ncm91cCI+CiAgICAgICAgICAgICAgICAgICAgPGxhYmVsPlBhc3N3b3JkPC9sYWJlbD4KICAgICAgICAgICAgICAgICAgICA8aW5wdXQgY2xhc3M9ImZvcm0tY29udHJvbCIgdHlwZT0icGFzc3dvcmQiIGlkPSJwYXNzd29yZCIgbmFtZT0icGFzc3dvcmQiIC8+CiAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgICAgIDxkaXYgY2xhc3M9ImZvcm0tZ3JvdXAiPgogICAgICAgICAgICAgICAgICAgIDxpbnB1dCB0eXBlPSJzdWJtaXQiIHZhbHVlPSJMb2dpbiIgY2xhc3M9ImJ0biBidG4tcHJpbWFyeSIgLz4KICAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgPC9mb3JtPgogICAgICAgICAgICAgPGRpdiBuZy1zaG93PSJsb2dnZWRJbigpIj5XZWxjb21lPC9kaXY+CiAgICAgICAgICA8L2Rpdj4KICAgICAgICA8ZGl2IGlkPSJzdGF0dXMiPjwvZGl2PgogICAgPC9kaXY+CgogICAgPHNjcmlwdCBzcmM9Ii8vYWpheC5nb29nbGVhcGlzLmNvbS9hamF4L2xpYnMvanF1ZXJ5LzEuMTEuMS9qcXVlcnkubWluLmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSIvL2FqYXguZ29vZ2xlYXBpcy5jb20vYWpheC9saWJzL2FuZ3VsYXJqcy8xLjIuMTcvYW5ndWxhci5taW4uanMiPjwvc2NyaXB0PgogICAgPHNjcmlwdCBzcmM9Ii8vbmV0ZG5hLmJvb3RzdHJhcGNkbi5jb20vYm9vdHN0cmFwLzMuMS4xL2pzL2Jvb3RzdHJhcC5taW4uanMiPjwvc2NyaXB0PgogICAgPHNjcmlwdCBzcmM9Ii9zZXJ2aWNlYXBpLmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSIvY29udHJvbGxlcnMuanMiPjwvc2NyaXB0PgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSIvL25ldGRuYS5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjEuMS9jc3MvYm9vdHN0cmFwLm1pbi5jc3MiPgo8L2JvZHk+CjwvaHRtbD4K')
},
{
'name': '/app/serviceapi.js', 'data': base64.b64decode(b'LyoqCiAqIENyZWF0ZWQgYnkgTWFydWYgTWFuaXJ1enphbWFuIChtYXJ1Zm1AY29zbW9zZnJhbWV3b3JrLmNvbSkgb24gNi8xNC8xNC4KICovCgpmdW5jdGlvbiBwcm9jZXNzRXJyb3IoanFYSFIsIHRleHRTdGF0dXMsIGVycm9yVGhyb3duKXsKICAgIGpRdWVyeSgiI3N0YXR1cyIpLmh0bWwoIjxoMz5FcnJvcjwvaDM+PGRpdj4iK2Vycm9yVGhyb3duKyI8L2Rpdj4iKTsKfQoKZnVuY3Rpb24gcHJvY2Vzc1N1Y2Nlc3MoZGF0YSl7CiAgICB2YXIgZGF0YTIgPSBKU09OLnBhcnNlKGRhdGEpOwogICAgalF1ZXJ5KCIjcmVzdWx0IikudmFsKEpTT04uc3RyaW5naWZ5KGRhdGEyLHVuZGVmaW5lZCwgMikpOwp9CgpmdW5jdGlvbiBnZXRTZXJ2aWNlVXJsKHNlcnZpY2UpIHsKICAgIHZhciByb290ID0gZG9jdW1lbnQuVVJMOwogICAgaWYoc2VydmljZVswXSA9PSAnLycpewogICAgICAgIHNlcnZpY2UgPSBzZXJ2aWNlLnN1YnN0cmluZygxKTsKICAgIH0KICAgIHJldHVybiByb290K3NlcnZpY2U7Cn0KCmZ1bmN0aW9uIGRvX29wZXJhdGlvbih1cmwsIG1ldGhvZCwgZGF0YSwgY2FsbGJhY2ssIGVycm9yX2NhbGxiYWNrKXsKICAgIGpRdWVyeSgiI3Jlc3VsdCIpLnZhbCgiIik7CiAgICBqUXVlcnkoIiNzdGF0dXMiKS5odG1sKCIiKTsKICAgIGNvbnNvbGUubG9nKG1ldGhvZCsgIjogIit1cmwpCiAgICAkLmFqYXgoewogICAgICAgIHVybDogdXJsLAogICAgICAgIHR5cGU6IG1ldGhvZCwKICAgICAgICBkYXRhOmRhdGEsCiAgICAgICAgc3VjY2VzczogY2FsbGJhY2ssCiAgICAgICAgZXJyb3I6IGVycm9yX2NhbGxiYWNrCiAgICB9KTsKfQoKZnVuY3Rpb24gaW5zZXJ0U2VydmljZSgpewogICAgdmFyIG5hbWUgPSBqUXVlcnkoIiNuYW1lIikudmFsKCk7CiAgICB2YXIgZGF0YSA9IGpRdWVyeSgiI2RhdGEiKS52YWwoKTsKCiAgICB2YXIgdXJsID0gIGdldFNlcnZpY2VVcmwobmFtZSk7CiAgICBkb19vcGVyYXRpb24odXJsLCAnUE9TVCcsIGRhdGEsIHByb2Nlc3NTdWNjZXNzLCBwcm9jZXNzRXJyb3IpOwp9CgpmdW5jdGlvbiBkZWxldGVJdGVtKCl7CiAgICB2YXIgbmFtZSA9IGpRdWVyeSgiI25hbWUiKS52YWwoKTsKICAgIHZhciBkYXRhID0galF1ZXJ5KCIjZGF0YSIpLnZhbCgpOwoKICAgIHZhciB1cmwgPSAgZ2V0U2VydmljZVVybChuYW1lKTsKCiAgICBkb19vcGVyYXRpb24odXJsLCAnREVMRVRFJywgZGF0YSwgcHJvY2Vzc1N1Y2Nlc3MsIHByb2Nlc3NFcnJvcik7Cn0KCmZ1bmN0aW9uIGxvYWRJdGVtKCl7CiAgICB2YXIgbmFtZSA9IGpRdWVyeSgiI25hbWUiKS52YWwoKTsKICAgIHZhciBkYXRhID0galF1ZXJ5KCIjZGF0YSIpLnZhbCgpOwogICAgdmFyIGNvbHVtbnMgPSBqUXVlcnkoIiNjb2x1bW5zIikudmFsKCk7CiAgICB2YXIgZmlsdGVyID0galF1ZXJ5KCIjZmlsdGVyIikudmFsKCk7CgogICAgdmFyIHVybCA9ICBnZXRTZXJ2aWNlVXJsKG5hbWUpOwogICAgaWYoY29sdW1ucyl7CiAgICAgICAgdXJsID0gdXJsKyI/IjsKICAgICAgICB1cmwgPXVybCsgImNvbHVtbnM9Iitjb2x1bW5zOwogICAgfQogICAgaWYoZmlsdGVyKXsKICAgICAgICBpZighY29sdW1ucykgewogICAgICAgICAgICB1cmwgPSB1cmwgKyAiPyI7CiAgICAgICAgfQogICAgICAgIGVsc2V7CiAgICAgICAgICAgIHVybD11cmwrIiYiOwogICAgICAgIH0KICAgICAgICB1cmwgPSB1cmwrImZpbHRlcj0iK2ZpbHRlcgogICAgfQoKICAgIGRvX29wZXJhdGlvbih1cmwsICdHRVQnLCBkYXRhLCBwcm9jZXNzU3VjY2VzcyAscHJvY2Vzc0Vycm9yKTsKfQoKZnVuY3Rpb24gdXBkYXRlSXRlbSgpewogICAgdmFyIG5hbWUgPSBqUXVlcnkoIiNuYW1lIikudmFsKCk7CiAgICB2YXIgZGF0YSA9IGpRdWVyeSgiI2RhdGEiKS52YWwoKTsKCiAgICB2YXIgdXJsID0gIGdldFNlcnZpY2VVcmwobmFtZSk7CgogICAgZG9fb3BlcmF0aW9uKHVybCwgJ1BVVCcsIGRhdGEsIHByb2Nlc3NTdWNjZXNzLCBwcm9jZXNzRXJyb3IpOwp9CgpmdW5jdGlvbiBzdWJzY3JpYmUgKG1vbml0b3JfZW5kcG9pbnQsIG9iamVjdF9uYW1lLCBjYWxsYmFjaykgewogICAgLy9UT0RPOiBVbmlmeSB0aGUgb2JzZXJ2ZXIgdG8gbGlzdGVuIHRvIG1hbnkgb2JqZWN0cyBhdCBhIHRpbWUgdXNpbmcgZGlmZmVyZW50IGNhbGxiYWNrCiAgICAvL3ZhciBtb25pdG9yX2VuZHBvaW50ID0gIndzOi8vbG9jYWxob3N0OjgwODAvY2hhbmdlbW9uaXRvciIKICAgIHZhciB3ZWJzb2NrZXQgPSBuZXcgV2ViU29ja2V0KG1vbml0b3JfZW5kcG9pbnQpOwogICAgdmFyIGZuID0gY2FsbGJhY2s7CiAgICB3ZWJzb2NrZXQub25vcGVuID0gZnVuY3Rpb24gKCkgewogICAgICAgIGNvbnNvbGUubG9nKCJTb2NrZXQgb3BlbmVkIik7CiAgICAgICAgd2Vic29ja2V0LnNlbmQoSlNPTi5zdHJpbmdpZnkoeyJ0eXBlIjogIm1vbml0b3JfbnMiLCAibnMiOiBvYmplY3RfbmFtZX0pKQogICAgfQoKICAgIHdlYnNvY2tldC5vbm1lc3NhZ2UgPSBmdW5jdGlvbiAoZXZ0KSB7CiAgICAgICAgY29uc29sZS5sb2coIk9uIG1lc3NhZ2U6ICIgKyBldnQuZGF0YSk7CiAgICAgICAgaWYgKGZuKSB7CiAgICAgICAgICAgIGZuKGV2dC5kYXRhKTsKICAgICAgICAgICAgLyoKICAgICAgICAgICAgIC8vSW4gY2FsbGJhY2sgeW91IG1heSBkbyBzb21ldGhpbmcgbGlrZSAoYWxzbyBjb25zaWRlciB0aGUgZXZ0LmRhdGEgaWYgeW91IGFyZSBtb25pdG9yaW5nIG11bHRpcGxlIG9iamVjdHMuOgogICAgICAgICAgICAgJGh0dHAuZ2V0KCcvc2VydmljZS8nK29iamVjdF9uYW1lKycvJykuc3VjY2VzcyhmdW5jdGlvbihkYXRhKSB7CiAgICAgICAgICAgICAkc2NvcGUuZGF0YSA9IGRhdGE7CiAgICAgICAgICAgICB9KTsKICAgICAgICAgICAgICovCiAgICAgICAgfQoKICAgIH0KCiAgICB3ZWJzb2NrZXQub25jbG9zZSA9IGZ1bmN0aW9uICgpIHsKICAgICAgICBjb25zb2xlLmxvZygiT24gY2xvc2VkIik7CiAgICB9Cn0=')
},
{
'name': '/app/controllers.js', 'data': base64.b64decode(b'LyoqCiAqIENyZWF0ZWQgYnkgTWFydWYgTWFuaXJ1enphbWFuIG9uIDYvMTYvMTQuCiAqLwoKdmFyIGNvc21vc0FwcCA9IGFuZ3VsYXIubW9kdWxlKCdjb3Ntb3NBcHAnLCBbXSk7CgpmdW5jdGlvbiBnZXRDb29raWUobmFtZSkgewogIHZhciB2YWx1ZSA9ICI7ICIgKyBkb2N1bWVudC5jb29raWU7CiAgdmFyIHBhcnRzID0gdmFsdWUuc3BsaXQoIjsgIiArIG5hbWUgKyAiPSIpOwogIGlmIChwYXJ0cy5sZW5ndGggPT0gMikgcmV0dXJuIHBhcnRzLnBvcCgpLnNwbGl0KCI7Iikuc2hpZnQoKTsKfQoKZnVuY3Rpb24gZ2V0VXNlck5hbWUoZGVmYXVsdF91c2VyKXsKICAgIHZhciB1c2VyQ29va2llID0gZ2V0Q29va2llKCJ1c2VyIik7CiAgICBpZih1c2VyQ29va2llKXsKICAgICAgICB1c2VyQ29va2llID0gdXNlckNvb2tpZS5yZXBsYWNlKC9cIi9nLCAiIikKICAgICAgICB2YXIgZGVjb2RlZCA9IEpTT04ucGFyc2Uod2luZG93LmF0b2IodXNlckNvb2tpZSkpOwogICAgICAgIHJldHVybiBkZWNvZGVkWyJ1c2VybmFtZSJdIHx8IGRlZmF1bHRfdXNlcjsKICAgIH0KCiAgICByZXR1cm4gZGVmYXVsdF91c2VyOwp9CgpmdW5jdGlvbiBsb2dnZWRJbigpewogICAgICAgIHZhciB1c2VyQ29va2llID0gZ2V0Q29va2llKCJ1c2Vyc2VjcmV0Iik7CiAgICAgICAgaWYodXNlckNvb2tpZSl7CiAgICAgICAgICAgIHJldHVybiB0cnVlOwogICAgICAgIH0KICAgICAgICByZXR1cm4gZmFsc2U7Cn0KCmNvc21vc0FwcC5jb250cm9sbGVyKCdTZXJ2aWNlQ29uc3VtZXJDdHJsJywgZnVuY3Rpb24gKCRzY29wZSwgJGh0dHApIHsKICAgICRzY29wZS51c2VyTmFtZSA9IGdldFVzZXJOYW1lKCJObyBOYW1lIik7CiAgICAkc2NvcGUubG9nZ2VkSW4gPSBsb2dnZWRJbjsKfSk7')
},
{
'name': '/app/index.html', 'data': base64.b64decode(b'PCFET0NUWVBFIGh0bWw+CjxodG1sIG5nLWFwcD0iY29zbW9zQXBwIj4KPGhlYWQgbGFuZz0iZW4iPgogICAgPG1ldGEgY2hhcnNldD0iVVRGLTgiPgogICAgPHRpdGxlPkNvc21vcyBzZXJ2aWNlIGNvbnN1bWVyPC90aXRsZT4KPC9oZWFkPgo8Ym9keSAgcm9sZT0iZG9jdW1lbnQiIG5nLWNvbnRyb2xsZXI9IlNlcnZpY2VDb25zdW1lckN0cmwiPgogICAgPGRpdiBjbGFzcz0ibmF2YmFyIG5hdmJhci1pbnZlcnNlIG5hdmJhci1maXhlZC10b3AiIHJvbGU9Im5hdmlnYXRpb24iPgogICAgICA8ZGl2IGNsYXNzPSJjb250YWluZXIiPgogICAgICAgIDxkaXYgY2xhc3M9Im5hdmJhci1oZWFkZXIiPgogICAgICAgICAgPGEgY2xhc3M9Im5hdmJhci1icmFuZCIgaHJlZj0iLyI+Q29zbW9zIEZyYW1ld29yazwvYT4KICAgICAgICA8L2Rpdj4KICAgICAgICA8ZGl2IGNsYXNzPSJuYXZiYXItY29sbGFwc2UgY29sbGFwc2UiPgogICAgICAgICAgPHVsIGNsYXNzPSJuYXYgbmF2YmFyLW5hdiI+CiAgICAgICAgICAgIDxsaSBjbGFzcz0iYWN0aXZlIj48YSBocmVmPSIvIj5Ib21lPC9hPjwvbGk+CiAgICAgICAgICAgIDxsaSBjbGFzcz0iZHJvcGRvd24iIG5nLXNob3c9ImxvZ2dlZEluKCkiPgogICAgICAgICAgICAgIDxhIGhyZWY9IiMiIGNsYXNzPSJkcm9wZG93bi10b2dnbGUiIGRhdGEtdG9nZ2xlPSJkcm9wZG93biI+PHNwYW4gbmctYmluZD0idXNlck5hbWUiPjwvc3Bhbj48YiBjbGFzcz0iY2FyZXQiPjwvYj48L2E+CiAgICAgICAgICAgICAgPHVsIGNsYXNzPSJkcm9wZG93bi1tZW51Ij4KICAgICAgICAgICAgICAgIDxsaT48YSBocmVmPSIvbG9nb3V0LyI+TG9nb3V0PC9hPjwvbGk+CiAgICAgICAgICAgICAgICA8bGkgY2xhc3M9ImRpdmlkZXIiPjwvbGk+CiAgICAgICAgICAgICAgICA8bGk+PGEgaHJlZj0iIyI+U2V0dGluZ3M8L2E+PC9saT4KICAgICAgICAgICAgICA8L3VsPgogICAgICAgICAgICA8L2xpPgogICAgICAgICAgICA8bGkgbmctc2hvdz0iIWxvZ2dlZEluKCkiPjxhIGhyZWY9Ii8jL2xvZ2luLyI+TG9naW48L2E+PC9saT4KICAgICAgICAgIDwvdWw+CiAgICAgICAgPC9kaXY+PCEtLS8ubmF2LWNvbGxhcHNlIC0tPgogICAgICA8L2Rpdj4KICAgIDwvZGl2PgoKICAgIDxkaXYgY2xhc3M9ImNvbnRhaW5lciB0aGVtZS1zaG93Y2FzZSIgcm9sZT0ibWFpbiI+CiAgICAgICAgICA8ZGl2IGNsYXNzPSJqdW1ib3Ryb24iPgogICAgICAgICAgIDxoMz5PcGVyYXRpb25zPC9oMz4KICAgICAgICAgICAgPGZvcm0gcm9sZT0iZm9ybSI+CiAgICAgICAgICAgICAgICA8ZGl2IGNsYXNzPSJmb3JtLWdyb3VwIj4KICAgICAgICAgICAgICAgICAgICA8bGFiZWw+U2VydmljZSBVUkwgKHJlbGF0aXZlKSAqPC9sYWJlbD4KICAgICAgICAgICAgICAgICAgICA8aW5wdXQgY2xhc3M9ImZvcm0tY29udHJvbCIgaWQ9Im5hbWUiIHR5cGU9InRleHQiIG5hbWU9Im5hbWUiIHZhbHVlPSIvc2VydmljZS8iIC8+CiAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgICAgIDxkaXYgY2xhc3M9ImZvcm0tZ3JvdXAiPgogICAgICAgICAgICAgICAgICAgIDxsYWJlbD5Db2x1bW5zIFtHRVRdPC9sYWJlbD4KICAgICAgICAgICAgICAgICAgICA8aW5wdXQgY2xhc3M9ImZvcm0tY29udHJvbCIgaWQ9ImNvbHVtbnMiIHR5cGU9InRleHQiIG5hbWU9ImNvbHVtbnMiICAvPgogICAgICAgICAgICAgICAgPC9kaXY+CiAgICAgICAgICAgICAgICA8ZGl2IGNsYXNzPSJmb3JtLWdyb3VwIj4KICAgICAgICAgICAgICAgICAgICA8bGFiZWw+RmlsdGVyIFtHRVRdPC9sYWJlbD4KICAgICAgICAgICAgICAgICAgICA8aW5wdXQgY2xhc3M9ImZvcm0tY29udHJvbCIgaWQ9ImZpbHRlciIgdHlwZT0idGV4dCIgbmFtZT0idmlsdGVyIiAvPgogICAgICAgICAgICAgICAgPC9kaXY+CiAgICAgICAgICAgICAgICA8ZGl2IGNsYXNzPSJmb3JtLWdyb3VwIj4KICAgICAgICAgICAgICAgICAgICA8bGFiZWw+RGF0YSBbKiBQT1NUfFBVVF08L2xhYmVsPgogICAgICAgICAgICAgICAgICAgIDx0ZXh0YXJlYSBjbGFzcz0iZm9ybS1jb250cm9sIiBpZD0iZGF0YSIgbmFtZT0iZGF0YSI+PC90ZXh0YXJlYT4KICAgICAgICAgICAgICAgIDwvZGl2PgoKICAgICAgICAgICAgICAgIDxkaXYgY2xhc3M9ImZvcm0tZ3JvdXAiPgogICAgICAgICAgICAgICAgICAgIDxsYWJlbD5SZXN1bHQ8L2xhYmVsPgogICAgICAgICAgICAgICAgICAgIDx0ZXh0YXJlYSBjbGFzcz0iZm9ybS1jb250cm9sIiBpZD0icmVzdWx0IiBuYW1lPSJyZXN1bHQiPjwvdGV4dGFyZWE+CiAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgICAgIDxkaXYgY2xhc3M9ImZvcm0tZ3JvdXAiPgogICAgICAgICAgICAgICAgICAgIDxidXR0b24gY2xhc3M9ImJ0biBidG4tcHJpbWFyeSIgb25jbGljaz0ibG9hZEl0ZW0oKSI+ICBHRVQgPC9idXR0b24+CiAgICAgICAgICAgICAgICAgICAgPGJ1dHRvbiBjbGFzcz0iYnRuIGJ0bi1wcmltYXJ5IiBvbmNsaWNrPSJpbnNlcnRTZXJ2aWNlKCkiPiBQT1NUIDwvYnV0dG9uPgogICAgICAgICAgICAgICAgICAgIDxidXR0b24gY2xhc3M9ImJ0biBidG4taW5mbyIgb25jbGljaz0idXBkYXRlSXRlbSgpIj4gIFBVVCA8L2J1dHRvbj4KICAgICAgICAgICAgICAgICAgICA8YnV0dG9uIGNsYXNzPSJidG4gYnRuLWRhbmdlciIgb25jbGljaz0iZGVsZXRlSXRlbSgpIj5ERUxFVEU8L2J1dHRvbj4KICAgICAgICAgICAgICAgICA8L2Rpdj4KICAgICAgICAgICAgPC9mb3JtPgogICAgICAgICAgICA8ZGl2IGlkPSJzdGF0dXMiPjwvZGl2PgogICAgICAgICAgPC9kaXY+CiAgICA8L2Rpdj4KCiAgICA8c2NyaXB0IHNyYz0iLy9hamF4Lmdvb2dsZWFwaXMuY29tL2FqYXgvbGlicy9qcXVlcnkvMS4xMS4xL2pxdWVyeS5taW4uanMiPjwvc2NyaXB0PgogICAgPHNjcmlwdCBzcmM9Ii8vYWpheC5nb29nbGVhcGlzLmNvbS9hamF4L2xpYnMvYW5ndWxhcmpzLzEuMi4xNy9hbmd1bGFyLm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iLy9uZXRkbmEuYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4xLjEvanMvYm9vdHN0cmFwLm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iL3NlcnZpY2VhcGkuanMiPjwvc2NyaXB0PgogICAgPHNjcmlwdCBzcmM9Ii9jb250cm9sbGVycy5qcyI+PC9zY3JpcHQ+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Ii8vbmV0ZG5hLmJvb3RzdHJhcGNkbi5jb20vYm9vdHN0cmFwLzMuMS4xL2Nzcy9ib290c3RyYXAubWluLmNzcyI+CjwvYm9keT4KPC9odG1sPg==')
}]
|
py
|
1a590e9618a568740b0ac7ef2d12c5f577bb1434
|
from app import create_app
from app.cli import cli
if __name__ == "__main__":
app = create_app()
cli()
|
py
|
1a590ec72b4af2535054b66816e4ac93c04af43e
|
from __future__ import unicode_literals
import hashlib
import itertools
import json
import re
from ..compat import compat_HTTPError, compat_str
from ..utils import (ExtractorError, float_or_none, get_element_by_attribute,
int_or_none, lowercase_escape, std_headers, try_get,
url_or_none)
from .common import InfoExtractor
class InstagramIE(InfoExtractor):
_VALID_URL = (
r"(?P<url>https?://(?:www\.)?instagram\.com/(?:p|tv|reel)/(?P<id>[^/?#&]+))"
)
_TESTS = [
{
"url": "https://instagram.com/p/aye83DjauH/?foo=bar#abc",
"md5": "0d2da106a9d2631273e192b372806516",
"info_dict": {
"id": "aye83DjauH",
"ext": "mp4",
"title": "Video by naomipq",
"description": "md5:1f17f0ab29bd6fe2bfad705f58de3cb8",
"thumbnail": r"re:^https?://.*\.jpg",
"duration": 0,
"timestamp": 1371748545,
"upload_date": "20130620",
"uploader_id": "naomipq",
"uploader": "B E A U T Y F O R A S H E S",
"like_count": int,
"comment_count": int,
"comments": list,
},
},
{
# missing description
"url": "https://www.instagram.com/p/BA-pQFBG8HZ/?taken-by=britneyspears",
"info_dict": {
"id": "BA-pQFBG8HZ",
"ext": "mp4",
"title": "Video by britneyspears",
"thumbnail": r"re:^https?://.*\.jpg",
"duration": 0,
"timestamp": 1453760977,
"upload_date": "20160125",
"uploader_id": "britneyspears",
"uploader": "Britney Spears",
"like_count": int,
"comment_count": int,
"comments": list,
},
"params": {
"skip_download": True,
},
},
{
# multi video post
"url": "https://www.instagram.com/p/BQ0eAlwhDrw/",
"playlist": [
{
"info_dict": {
"id": "BQ0dSaohpPW",
"ext": "mp4",
"title": "Video 1",
},
},
{
"info_dict": {
"id": "BQ0dTpOhuHT",
"ext": "mp4",
"title": "Video 2",
},
},
{
"info_dict": {
"id": "BQ0dT7RBFeF",
"ext": "mp4",
"title": "Video 3",
},
},
],
"info_dict": {
"id": "BQ0eAlwhDrw",
"title": "Post by instagram",
"description": "md5:0f9203fc6a2ce4d228da5754bcf54957",
},
},
{
# IGTV
"url": "https://www.instagram.com/tv/BkfuX9UB-eK/",
"info_dict": {
"id": "BkfuX9UB-eK",
"ext": "mp4",
"title": "Fingerboarding Tricks with @cass.fb",
"thumbnail": r"re:^https?://.*\.jpg",
"duration": 53.83,
"timestamp": 1530032919,
"upload_date": "20180626",
"uploader_id": "instagram",
"uploader": "Instagram",
"like_count": int,
"comment_count": int,
"comments": list,
"description": "Meet Cass Hirst (@cass.fb), a fingerboarding pro who can perform tiny ollies and kickflips while blindfolded.",
},
},
{
"url": "https://instagram.com/p/-Cmh1cukG2/",
"only_matching": True,
},
{
"url": "http://instagram.com/p/9o6LshA7zy/embed/",
"only_matching": True,
},
{
"url": "https://www.instagram.com/tv/aye83DjauH/",
"only_matching": True,
},
{
"url": "https://www.instagram.com/reel/CDUMkliABpa/",
"only_matching": True,
},
]
@staticmethod
def _extract_embed_url(webpage):
mobj = re.search(
r'<iframe[^>]+src=(["\'])(?P<url>(?:https?:)?//(?:www\.)?instagram\.com/p/[^/]+/embed.*?)\1',
webpage,
)
if mobj:
return mobj.group("url")
blockquote_el = get_element_by_attribute("class", "instagram-media", webpage)
if blockquote_el is None:
return
mobj = re.search(r'<a[^>]+href=([\'"])(?P<link>[^\'"]+)\1', blockquote_el)
if mobj:
return mobj.group("link")
def _real_extract(self, url):
mobj = re.match(self._VALID_URL, url)
video_id = mobj.group("id")
url = mobj.group("url")
webpage = self._download_webpage(url, video_id)
(
media,
video_url,
description,
thumbnail,
timestamp,
uploader,
uploader_id,
like_count,
comment_count,
comments,
height,
width,
) = [None] * 12
shared_data = self._parse_json(
self._search_regex(
r"window\._sharedData\s*=\s*({.+?});",
webpage,
"shared data",
default="{}",
),
video_id,
fatal=False,
)
if shared_data:
media = try_get(
shared_data,
(
lambda x: x["entry_data"]["PostPage"][0]["graphql"][
"shortcode_media"
],
lambda x: x["entry_data"]["PostPage"][0]["media"],
),
dict,
)
# _sharedData.entry_data.PostPage is empty when authenticated (see
# https://github.com/nextdl/nextdl/pull/22880)
if not media:
additional_data = self._parse_json(
self._search_regex(
r"window\.__additionalDataLoaded\s*\(\s*[^,]+,\s*({.+?})\s*\)\s*;",
webpage,
"additional data",
default="{}",
),
video_id,
fatal=False,
)
if additional_data:
media = try_get(
additional_data, lambda x: x["graphql"]["shortcode_media"], dict
)
if media:
video_url = media.get("video_url")
height = int_or_none(media.get("dimensions", {}).get("height"))
width = int_or_none(media.get("dimensions", {}).get("width"))
description = try_get(
media,
lambda x: x["edge_media_to_caption"]["edges"][0]["node"]["text"],
compat_str,
) or media.get("caption")
title = media.get("title")
thumbnail = media.get("display_src") or media.get("display_url")
duration = float_or_none(media.get("video_duration"))
timestamp = int_or_none(
media.get("taken_at_timestamp") or media.get("date")
)
uploader = media.get("owner", {}).get("full_name")
uploader_id = media.get("owner", {}).get("username")
def get_count(keys, kind):
if not isinstance(keys, (list, tuple)):
keys = [keys]
for key in keys:
count = int_or_none(
try_get(
media,
(
lambda x: x["edge_media_%s" % key]["count"],
lambda x: x["%ss" % kind]["count"],
),
)
)
if count is not None:
return count
like_count = get_count("preview_like", "like")
comment_count = get_count(
("preview_comment", "to_comment", "to_parent_comment"), "comment"
)
comments = [
{
"author": comment.get("user", {}).get("username"),
"author_id": comment.get("user", {}).get("id"),
"id": comment.get("id"),
"text": comment.get("text"),
"timestamp": int_or_none(comment.get("created_at")),
}
for comment in media.get("comments", {}).get("nodes", [])
if comment.get("text")
]
if not video_url:
edges = (
try_get(
media, lambda x: x["edge_sidecar_to_children"]["edges"], list
)
or []
)
if edges:
entries = []
for edge_num, edge in enumerate(edges, start=1):
node = try_get(edge, lambda x: x["node"], dict)
if not node:
continue
node_video_url = url_or_none(node.get("video_url"))
if not node_video_url:
continue
entries.append(
{
"id": node.get("shortcode") or node["id"],
"title": node.get("title") or "Video %d" % edge_num,
"url": node_video_url,
"thumbnail": node.get("display_url"),
"duration": float_or_none(node.get("video_duration")),
"width": int_or_none(
try_get(node, lambda x: x["dimensions"]["width"])
),
"height": int_or_none(
try_get(node, lambda x: x["dimensions"]["height"])
),
"view_count": int_or_none(node.get("video_view_count")),
}
)
return self.playlist_result(
entries,
video_id,
"Post by %s" % uploader_id if uploader_id else None,
description,
)
if not video_url:
video_url = self._og_search_video_url(webpage, secure=False)
formats = [
{
"url": video_url,
"width": width,
"height": height,
}
]
if not uploader_id:
uploader_id = self._search_regex(
r'"owner"\s*:\s*{\s*"username"\s*:\s*"(.+?)"',
webpage,
"uploader id",
fatal=False,
)
if not description:
description = self._search_regex(
r'"caption"\s*:\s*"(.+?)"', webpage, "description", default=None
)
if description is not None:
description = lowercase_escape(description)
if not thumbnail:
thumbnail = self._og_search_thumbnail(webpage)
return {
"id": video_id,
"formats": formats,
"ext": "mp4",
"title": title or "Video by %s" % uploader_id,
"description": description,
"duration": duration,
"thumbnail": thumbnail,
"timestamp": timestamp,
"uploader_id": uploader_id,
"uploader": uploader,
"like_count": like_count,
"comment_count": comment_count,
"comments": comments,
}
class InstagramPlaylistIE(InfoExtractor):
# A superclass for handling any kind of query based on GraphQL which
# results in a playlist.
_gis_tmpl = None # used to cache GIS request type
def _parse_graphql(self, webpage, item_id):
# Reads a webpage and returns its GraphQL data.
return self._parse_json(
self._search_regex(
r"sharedData\s*=\s*({.+?})\s*;\s*[<\n]", webpage, "data"
),
item_id,
)
def _extract_graphql(self, data, url):
# Parses GraphQL queries containing videos and generates a playlist.
def get_count(suffix):
return int_or_none(
try_get(node, lambda x: x["edge_media_" + suffix]["count"])
)
uploader_id = self._match_id(url)
csrf_token = data["config"]["csrf_token"]
rhx_gis = data.get("rhx_gis") or "3c7ca9dcefcf966d11dacf1f151335e8"
cursor = ""
for page_num in itertools.count(1):
variables = {
"first": 12,
"after": cursor,
}
variables.update(self._query_vars_for(data))
variables = json.dumps(variables)
if self._gis_tmpl:
gis_tmpls = [self._gis_tmpl]
else:
gis_tmpls = [
"%s" % rhx_gis,
"",
"%s:%s" % (rhx_gis, csrf_token),
"%s:%s:%s" % (rhx_gis, csrf_token, std_headers["User-Agent"]),
]
# try all of the ways to generate a GIS query, and not only use the
# first one that works, but cache it for future requests
for gis_tmpl in gis_tmpls:
try:
json_data = self._download_json(
"https://www.instagram.com/graphql/query/",
uploader_id,
"Downloading JSON page %d" % page_num,
headers={
"X-Requested-With": "XMLHttpRequest",
"X-Instagram-GIS": hashlib.md5(
("%s:%s" % (gis_tmpl, variables)).encode("utf-8")
).hexdigest(),
},
query={
"query_hash": self._QUERY_HASH,
"variables": variables,
},
)
media = self._parse_timeline_from(json_data)
self._gis_tmpl = gis_tmpl
break
except ExtractorError as e:
# if it's an error caused by a bad query, and there are
# more GIS templates to try, ignore it and keep trying
if isinstance(e.cause, compat_HTTPError) and e.cause.code == 403:
if gis_tmpl != gis_tmpls[-1]:
continue
raise
edges = media.get("edges")
if not edges or not isinstance(edges, list):
break
for edge in edges:
node = edge.get("node")
if not node or not isinstance(node, dict):
continue
if (
node.get("__typename") != "GraphVideo"
and node.get("is_video") is not True
):
continue
video_id = node.get("shortcode")
if not video_id:
continue
info = self.url_result(
"https://instagram.com/p/%s/" % video_id,
ie=InstagramIE.ie_key(),
video_id=video_id,
)
description = try_get(
node,
lambda x: x["edge_media_to_caption"]["edges"][0]["node"]["text"],
compat_str,
)
thumbnail = node.get("thumbnail_src") or node.get("display_src")
timestamp = int_or_none(node.get("taken_at_timestamp"))
comment_count = get_count("to_comment")
like_count = get_count("preview_like")
view_count = int_or_none(node.get("video_view_count"))
info.update(
{
"description": description,
"thumbnail": thumbnail,
"timestamp": timestamp,
"comment_count": comment_count,
"like_count": like_count,
"view_count": view_count,
}
)
yield info
page_info = media.get("page_info")
if not page_info or not isinstance(page_info, dict):
break
has_next_page = page_info.get("has_next_page")
if not has_next_page:
break
cursor = page_info.get("end_cursor")
if not cursor or not isinstance(cursor, compat_str):
break
def _real_extract(self, url):
user_or_tag = self._match_id(url)
webpage = self._download_webpage(url, user_or_tag)
data = self._parse_graphql(webpage, user_or_tag)
self._set_cookie("instagram.com", "ig_pr", "1")
return self.playlist_result(
self._extract_graphql(data, url), user_or_tag, user_or_tag
)
class InstagramUserIE(InstagramPlaylistIE):
_VALID_URL = r"https?://(?:www\.)?instagram\.com/(?P<id>[^/]{2,})/?(?:$|[?#])"
IE_DESC = "Instagram user profile"
IE_NAME = "instagram:user"
_TEST = {
"url": "https://instagram.com/porsche",
"info_dict": {
"id": "porsche",
"title": "porsche",
},
"playlist_count": 5,
"params": {
"extract_flat": True,
"skip_download": True,
"playlistend": 5,
},
}
_QUERY_HASH = ("42323d64886122307be10013ad2dcc44",)
@staticmethod
def _parse_timeline_from(data):
# extracts the media timeline data from a GraphQL result
return data["data"]["user"]["edge_owner_to_timeline_media"]
@staticmethod
def _query_vars_for(data):
# returns a dictionary of variables to add to the timeline query based
# on the GraphQL of the original page
return {"id": data["entry_data"]["ProfilePage"][0]["graphql"]["user"]["id"]}
class InstagramTagIE(InstagramPlaylistIE):
_VALID_URL = r"https?://(?:www\.)?instagram\.com/explore/tags/(?P<id>[^/]+)"
IE_DESC = "Instagram hashtag search"
IE_NAME = "instagram:tag"
_TEST = {
"url": "https://instagram.com/explore/tags/lolcats",
"info_dict": {
"id": "lolcats",
"title": "lolcats",
},
"playlist_count": 50,
"params": {
"extract_flat": True,
"skip_download": True,
"playlistend": 50,
},
}
_QUERY_HASH = ("f92f56d47dc7a55b606908374b43a314",)
@staticmethod
def _parse_timeline_from(data):
# extracts the media timeline data from a GraphQL result
return data["data"]["hashtag"]["edge_hashtag_to_media"]
@staticmethod
def _query_vars_for(data):
# returns a dictionary of variables to add to the timeline query based
# on the GraphQL of the original page
return {
"tag_name": data["entry_data"]["TagPage"][0]["graphql"]["hashtag"]["name"]
}
|
py
|
1a591005698ab1e3cc0f9e8872abf1e662a8445b
|
import time
import inspect
from functools import update_wrapper
from fixate.core.common import mode_builder, unit_scale
from fixate.core.exceptions import ParameterError, InstrumentError
from fixate.drivers.funcgen.helper import FuncGen
MODES = {
":SINusoid": {
" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}},
":CH2": {" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}},
},
":SQUare": {
" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}},
":CH2": {" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}},
},
":RAMP": {
" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}},
":CH2": {" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}},
},
":PULSE": {
" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}},
":CH2": {" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}},
},
":NOISe DEFault": {",[{amplitude}]": {",[{offset}]": {}}},
":DC DEFault,DEFault": {",[{offset}]": {}},
":USER": {" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}},
}
ADV_MODES = {":SQUare:" "DCYCle"}
# -----------------------------------------------------------------------------------------------------------------------
class RigolDG1022(FuncGen):
REGEX_ID = "RIGOL TECHNOLOGIES,DG1022"
INSTR_TYPE = "VISA"
retrys_on_timeout = 3
_verify = True
def __init__(self, instrument):
"""
The self._ values indicate the user values as entered if valid.
The self.__ values are the sanitised values used internally in the system to parse between functions
Limitations:
The function generator switches internal relays at certain thresholds.
Try to avoid these ranges in design if the function generator is loaded with a relatively low impedance
Table of ranges on the same relay arrangement
Min mVpp Max mVpp
4 60
60.1 199.9
200 599.9
600 2000
2001 6000
6001 20000
:param instrument:
:return:
"""
super().__init__(instrument)
self.instrument.query_delay = 0.2
self.instrument.timeout = 1000
# Rigol Restrictions
self.__restr_bandwidth = {"min": unit_scale("4uHz"), "max": unit_scale("20MHz")}
self.__restr_phase = {"min": -180, "max": 180}
self.__restr_amplitude = {
"min": unit_scale("4mVpp"),
"max": unit_scale("20Vpp"),
}
self._amplitude = None
self._store = {"ch1_duty": "50", "ch2_duty": "50"}
self.api = [
# WAVEFORM SELECTION:
# Channel 1:
(
"channel1.waveform.sin",
self.store_and_write,
("FUNC SIN", {"ch1_waveform_handler": None}), # base_str
), # handler
(
"channel1.waveform.square",
self.store_and_write,
(
"FUNC SQU\r\nFUNC:SQU:DCYC {self._store[ch1_duty]}",
{"ch1_waveform_handler": "channel1.waveform.square"},
),
),
(
"channel1.waveform.ramp",
self.store_and_write,
("FUNC RAMP", {"ch1_waveform_handler": None}),
),
(
"channel1.waveform.pulse",
self.store_and_write,
(
"FUNC PULS\r\nPULS:DCYC {self._store[ch1_duty]}",
{"ch1_waveform_handler": "channel1.waveform.pulse"},
),
),
(
"channel1.waveform.arb",
self.store_and_write,
("FUNC USER", {"ch1_waveform_handler": None}),
),
(
"channel1.waveform.triangle",
self.store_and_write,
("FUNC TRI", {"ch1_waveform_handler": None}),
),
(
"channel1.waveform.noise",
self.store_and_write,
("FUNC NOIS", {"ch1_waveform_handler": None}),
),
(
"channel1.waveform.dc",
self.store_and_write,
("FUNC DC", {"ch1_waveform_handler": None}),
),
# Channel 2:
(
"channel2.waveform.sin",
self.store_and_write,
("FUNC:CH2 SIN", {"ch2_waveform_handler": None}), # base_str
), # handler
(
"channel2.waveform.square",
self.store_and_write,
(
"FUNC:CH2 SQU\r\nFUNC:SQU:DCYC:CH2 {self._store[ch2_duty]}",
{"ch2_waveform_handler": "channel2.waveform.square"},
),
),
(
"channel2.waveform.ramp",
self.store_and_write,
("FUNC:CH2 RAMP", {"ch2_waveform_handler": None}),
),
(
"channel2.waveform.pulse",
self.store_and_write,
(
"FUNC:CH2 PULS\r\nPULS:DCYC {self._store[ch2_duty]}",
{"ch2_waveform_handler": "channel2.waveform.pulse"},
),
),
(
"channel2.waveform.arb",
self.store_and_write,
("FUNC:CH2 USER", {"ch2_waveform_handler": None}),
),
(
"channel2.waveform.triangle",
self.store_and_write,
("FUNC:CH2 TRI", {"ch2_waveform_handler": None}),
),
(
"channel2.waveform.noise",
self.store_and_write,
("FUNC:CH2 NOIS", {"ch2_waveform_handler": None}),
),
(
"channel2.waveform.dc",
self.store_and_write,
("FUNC:CH2 DC", {"ch2_waveform_handler": None}),
),
# CHANNEL CONFIGURATION:
# Channel 1:
("channel1.vrms", self.write, "VOLT:UNIT VRMS\r\nVOLT {value}"),
("channel1.vpp", self.write, "VOLT:UNIT VPP\r\nVOLT {value}"),
("channel1.dbm", self.write, "VOLT:UNIT DBM\r\nVOLT {value}"),
("channel1.offset", self.write, "VOLT:OFFS {value}"),
("channel1.phase", self.write, "PHAS {value}"),
(
"channel1.duty",
self.store_and_execute,
({"ch1_duty": "{value}"}, "ch1_waveform_handler"),
),
("channel1.frequency", self.write, "FREQ {value}"),
# Channel 2:
("channel2.vrms", self.write, "VOLT:UNIT:CH2 VRMS\r\nVOLT {value}"),
("channel2.vpp", self.write, "VOLT:UNIT:CH2 VPP\r\nVOLT {value}"),
("channel2.dbm", self.write, "VOLT:UNIT:CH2 DBM\r\nVOLT {value}"),
("channel2.offset", self.write, "VOLT:OFFS:CH2 {value}"),
("channel2.phase", self.write, "PHAS:CH2 {value}"),
("channel2.duty", self.store, {"ch2_duty": "{value}"}),
("channel2.frequency", self.write, "FREQ:CH2 {value}"),
# CHANNEL ACTIVATION:
(
"channel1._call",
self.write,
"OUTP {value}",
), # True won't work here needs to be ON or 1, OFF or 0
(
"channel2._call",
self.write,
"OUTP:CH2 {value}",
), # True won't work here needs to be ON or 1, OFF or 0
# SYNC CONFIGURATION:
("sync.polarity.normal", self.write, ""),
("sync.mode.normal", self.write, ""),
("sync.mode.source", self.write, ""),
("sync._call", self.write, "OUTP {value}"),
# TRIGGER CONFIGURATION:
("trigger.immediate", self.write, "TRIG:SOUR IMM"),
("trigger.external._call", self.write, "TRIG:SOUR EXT"),
("trigger.external.rising", self.write, "TRIG:SOUR EXT\r\n TRIG1:SLOP POS"),
(
"trigger.external.falling",
self.write,
"TRIG:SOUR EXT\r\n TRIG1:SLOP NEG",
),
("trigger.manual", self.write, "TRIG:SOUR BUS"),
("trigger.delay", self.write, "TRIG:DEL {seconds}"),
("trigger.out.off", self.write, "OUTP:TRIG OFF"),
("trigger.out._call", self.write, "OUTP:TRIG {output}"),
("trigger.out.rising", self.write, "OUTP:TRIG:SLOP POS"),
("trigger.out.falling", self.write, "OUTP:TRIG:SLOP NEG"),
# Modulate
# Channel 1:
(
"channel1.modulate.am._call",
self.store,
{"ch1_modulate_state": "AM", "ch1_modulate_setting": "FREQ"},
),
(
"channel1.modulate.fm._call",
self.store,
{"ch1_modulate_state": "FM", "ch1_modulate_setting": "FREQ"},
),
(
"channel1.modulate.pm._call",
self.store,
{"ch1_modulate_state": "PM", "ch1_modulate_setting": "FREQ"},
),
(
"channel1.modulate.fsk._call",
self.store,
{"ch1_modulate_state": "FSK", "ch1_modulate_setting": "RATE"},
),
(
"channel1.modulate.bpsk._call",
self.store,
{"ch1_modulate_state": "BPSK", "ch1_modulate_setting": "RATE"},
),
(
"channel1.modulate.sum._call",
self.store,
{"ch1_modulate_state": "SUM", "ch1_modulate_setting": "RATE"},
),
# MODULATE SOURCES:
(
"channel1.modulate.source.internal._call",
self.store_and_write,
(
"{self._store[ch1_modulate_state]}:SOUR INT",
{"ch1_modulate_source": "INT"},
),
),
(
"channel1.modulate.source.external",
self.store_and_write,
(
"{self._store[ch1_modulate_state]}:SOUR EXT",
{"ch1_modulate_source": "EXT"},
),
),
# MODULATE ACTIVATION:
# Channel 1:
(
"channel1.modulate._call",
self.write,
"{self._store[ch1_modulate_state]}:STAT {value}\r\n{self._store[ch1_modulate_state]}:SOUR"
"{self._store[ch1_modulate_source]}",
),
# MODULATE OPTIONS:
# Channel 1:
("channel1.modulate.am.depth", self.write, "AM:DEPT {value}"),
("channel1.modulate.fm.freq_dev", self.write, "FM:DEV {value}"),
("channel1.modulate.pm.phase_dev", self.write, "PM:DEV{value}"),
("channel1.modulate.fsk.hop_freq", self.write, "FSK:FREQ {value}"),
("channel1.modulate.fsk.rate", self.write, "FSK:INT:RATE {value}"),
# MODULATE SHAPES:
# Channel 1:
(
"channel1.modulate.source.internal.shape.sin",
self.write,
"{self._store[ch1_modulate_state]}:INT:FUNC SIN",
),
(
"channel1.modulate.source.internal.shape.square",
self.write,
"{self._store[ch1_modulate_state]}:INT:FUNC SQU",
),
(
"channel1.modulate.source.internal.shape.triangle",
self.write,
"{self._store[ch1_modulate_state]}:INT:FUNC TRI",
),
(
"channel1.modulate.source.internal.shape.up_ramp",
self.write,
"{self._store[ch1_modulate_state]}:INT:FUNC RAMP",
),
(
"channel1.modulate.source.internal.shape.down_ramp",
self.write,
"{self._store[ch1_modulate_state]}:INT:FUNC NRAMP",
),
(
"channel1.modulate.source.internal.shape.noise",
self.write,
"{self._store[ch1_modulate_state]}:INT:FUNC NOIS",
),
# BURST
# Channel 1:
("channel1.burst.gated._call", self.write, "BURS:MODE GAT"),
("channel1.burst._call", self.write, "BURS:STAT {value}"),
("channel1.burst.ncycle._call", self.write, "BURS:MODE TRIG"),
("channel1.burst.ncycle.cycles._call", self.write, "BURS:NCYC {cycles}"),
("channel1.burst.ncycle.cycles.infinite", self.write, "BURS:NCYC INF"),
(
"channel1.burst.ncycle.burst_period",
self.write,
"BURS:INT:PER {seconds}",
),
("channel1.burst.gated.positive", self.write, "BURS:GATE:POL NORM"),
("channel1.burst.gated.negative", self.write, "BURS:GATE:POL INV"),
("channel1.burst.phase", self.write, "BURS:PHAS {degrees}"),
# Modulate Frequency
(
"channel1.modulate.source.internal.frequency",
self.write,
"{self._store[ch1_modulate_state]}:INT:{self._store[ch1_modulate_setting]} {value}",
),
# LOAD:
# channel1:
("channel1.load._call", self.write, "OUTP:LOAD {ohms}"),
("channel1.load.infinite", self.write, "OUTP:LOAD INF"),
# channel2:
("channel2.load._call", self.write, "OUTP:LOAD:CH2 {ohms}"),
("channel2.load.infinite", self.write, "OUTP:LOAD:CH2 INF"),
]
# -----------------------------------------------------------------------------------------------------------------------
self.init_api()
def sync_output(self, sync):
"""
:param sync:
True or False
:return:
None
"""
if sync:
self._write(["OUTPut:SYNC ON"])
else:
self._write(["OUTPut:SYNC OFF"])
def trigger_output(self, trigger, rising=False, falling=False):
"""
:param sync:
True or False
:return:
None
"""
if rising and falling:
raise ValueError("Cannot trigger on both rising and falling edges")
if trigger:
if rising:
self._write(["OUTPut:TRIGger:SLOPe POSitive"])
if falling:
self._write(["OUTPut:TRIGger:SLOPe NEGative"])
self._write(["OUTPut:TRIGger ON"])
else:
self._write(["OUTPut:TRIGger OFF"])
@property
def verify_values(self):
return self._verify
@verify_values.setter
def verify_values(self, val):
if val not in [True, False]:
raise ValueError("Invalid value. Use True or False")
self._verify = val
@property
def amplitude_ch1(self):
return self.instrument.query_ascii_values("VOLTAGE?")[0]
@property
def amplitude_ch2(self):
return self.instrument.query_ascii_values("VOLTAGE:CH2?")[0]
@amplitude_ch1.setter
def amplitude_ch1(self, val):
self._write("VOLTAGE {}".format(val))
@amplitude_ch2.setter
def amplitude_ch2(self, val):
self._write("VOLTAGE:CH2 {}".format(val))
@property
def output_ch1(self):
resp = self.instrument.query("OUTP?")
if "OFF" in resp:
return False
elif "ON" in resp:
return True
@output_ch1.setter
def output_ch1(self, val):
if val not in [True, False]:
raise ParameterError(
"Unknown output {} value for CH1\r\nPlease select True or False".format(
val
)
)
if val:
self._write("OUTP ON")
else:
self._write("OUTP OFF")
@property
def output_ch2(self):
resp = self.instrument.query("OUTP:CH2?")
if "OFF" in resp:
return False
elif "ON" in resp:
return True
@output_ch2.setter
def output_ch2(self, val):
if val not in [True, False]:
raise ParameterError(
"Unknown output {} value for CH2\nPlease select True or False".format(
val
)
)
if val:
self._write("OUTP:CH2 ON")
else:
self._write("OUTP:CH2 OFF")
@FuncGen.output_sync.setter
def output_sync(self, val):
time.sleep(0.5)
if val not in [True, False]:
raise ParameterError(
"Unknown output {} value for SYNC\nPlease select True or False".format(
val
)
)
self._output_sync = val
if self._output_sync:
self._write("OUTP:SYNC ON")
else:
self._write("OUTP:SYNC OFF")
def local(self):
"""
Gives local control back to the instrument
Remote control is activated on any other commands set to the device
:return:
"""
time.sleep(0.5)
self._write("SYSTem:LOCal")
def reset(self):
"""
Be aware that the funcgen can have a short period where it sets to 5Vpp 1kHz with the output on for a short
period. This could cause issues. Ensure that setup is in a safe state to receive such a signal.
:return:
"""
# Due to the 5Vpp 1kHz signal. Explicit call to turn output off first
self.output_ch1 = False
self.output_ch2 = False
self._write("*RST")
def function(
self, waveform, channel=1, duty_cycle=None, symmetry=None, phase=None, **kwargs
):
"""
if parameters empty then uses previous set mode
The mode and mode parameters are used in mode_build to search recursively through the
MODES dictionary to build the visa string necessary for the equipment to interpret the commands.
usage
function('sin')
parsed to visa:
'APPLy:SINusoid'
function('square', channel=2, amplit=5, offset=2.5, freq='1kHz')
parsed to visa:
'APPLy:SQUare:CH2 1000, 5, 2.5'
corresponds to a square wave at 1kHz, where the min of the wave is at 0 and the max at 5V
for more advanced functions that cannot be explained through waveform, amplitude, offset and frequency:
use adv_function.
"""
if int(channel) in range(1, 3):
channel = "CH{}".format(channel)
else:
raise ValueError(
"Invalid channel {} use a number between 1-2".format(channel)
)
mode = (waveform, channel)
# self.reset()
if duty_cycle is not None:
if waveform.upper() not in "PULSE":
if channel == "CH1":
self._write(
["FUNCtion:{}:DCYCle {}".format(waveform.upper(), duty_cycle)]
)
else:
self._write(
[
"FUNCtion:{}:DCYCle:{} {}".format(
waveform.upper(), channel, duty_cycle
)
]
)
else:
if channel == "CH1":
self._write(["PULSe:DCYC {}".format(duty_cycle)])
else:
self._write(["PULSe:DCYC:{} {}".format(channel, duty_cycle)])
if symmetry is not None:
if channel == "CH1":
self._write(["FUNCtion:RAMP:SYMMetry {}".format(symmetry)])
else:
self._write(["FUNCtion:RAMP:SYMMetry:{} {}".format(channel, symmetry)])
if phase is not None:
if channel == "CH1":
self._write(["PHASe {}".format(phase)])
else:
self._write(["PHASe:CH2 {}".format(phase)])
self._write(["APPLy{}".format(mode_builder(MODES, {}, *mode, **kwargs))])
def am(self, frequency, depth, source=None, waveform="SIN"):
self._write(
[
"AM:SOURce INT",
"AM:INT:FREQuency {frequency}".format(frequency=frequency),
"AM:DEPTh {depth}".format(depth=depth),
"AM:INT:FUNC {waveform}".format(waveform=waveform),
"AM:STATe ON",
]
)
def disable_am(self):
self._write(["AM:STATe OFF"])
def enable_am(self):
self._write(["AM:STATe ON"])
def adv_function(self, *mode, **mode_params):
"""
Exposes the advanced functionality of the function generator.
Currently not implemented
:param mode:
:param mode_params:
:return:
"""
raise NotImplementedError
def _write(self, data):
"""
The DG1022 cannot respond to visa commands as quickly as some other devices
A 100ms delay was found to be reliable for most commands with the exception of the *IDN?
identification command. An extra 100ms should be allowed for explicit calls to *IDN?
Note:
The 6000 number for the sleep is derived from trial and error. The write calls don't seem to block at the rate
they write. By allowing 166uS delay for each byte of data then the Funcgen doesn't choke on the next call. A
flat 100ms is added to allow processing time.
This is especially important for commands that write large amounts of data such as user arbitrary forms.
"""
if data:
if isinstance(data, str):
data = data.split("\r\n")
for itm in data:
self.instrument.write(itm)
time.sleep(0.1 + len(itm) / 6000)
else:
raise ParameterError("Missing data in instrument write")
self._is_error()
def _check_errors(self):
resp = self.instrument.query("SYST:ERR?")
code, msg = resp.strip("\n").split(",")
code = int(code)
msg = msg.strip('"')
return code, msg
def _is_error(self, silent=False):
errors = []
while True:
code, msg = self._check_errors()
if code != 0:
errors.append((code, msg))
else:
break
if errors:
if silent:
return errors
else:
raise InstrumentError(
"Error(s) Returned from FuncGen\n"
+ "\n".join(
[
"Code: {}\nMessage:{}".format(code, msg)
for code, msg in errors
]
)
)
def write(self, base_str, *args, **kwargs):
formatted_string = self._format_string(base_str, **kwargs)
self._write(formatted_string)
def _format_string(self, base_str, **kwargs):
kwargs["self"] = self
prev_string = base_str
cur_string = ""
while True:
cur_string = prev_string.format(**kwargs)
if cur_string == prev_string:
break
prev_string = cur_string
return cur_string
def store(self, store_dict, *args, **kwargs):
"""
Store a dictionary of values in TestClass
:param kwargs:
Dictionary containing the parameters to store
:return:
"""
new_dict = store_dict.copy()
for k, v in store_dict.items():
# I want the same function from write to set up the string before putting it in new_dict
try:
new_dict[k] = v.format(**kwargs)
except:
pass
self._store.update(new_dict)
def store_and_execute(self, params, *args, **kwargs):
store_dict, handler_id = params
self.store(store_dict, *args, **kwargs)
handler_string = self._store[handler_id]
if handler_string is not None:
*parents, func = handler_string.split(".")
parent_obj = self
for parent in parents:
parent_obj = getattr(parent_obj, parent)
handler = getattr(parent_obj, func)
handler()
def store_and_write(self, params, *args, **kwargs):
base_str, store_dict = params
self.store(store_dict)
self.write(base_str, *args, **kwargs)
def init_api(self):
for func_str, handler, base_str in self.api:
*parents, func = func_str.split(".")
parent_obj = self
try:
for parent in parents:
parent_obj = getattr(parent_obj, parent)
func_obc = getattr(parent_obj, func)
except AttributeError:
# print("FAILED ON:", func_str)
raise
setattr(parent_obj, func, self.prepare_string(func_obc, handler, base_str))
def prepare_string(self, func, handler, base_str, *args, **kwargs):
def temp_func(*nargs, **nkwargs):
"""
Only formats using **nkwargs
New Temp
:param nargs:
:param nkwargs:
:return:
"""
sig = inspect.signature(func)
keys = [itm[0] for itm in sig.parameters.items()]
# Hard coding for RIGOL. BOOLS should be converted to "ON", "OFF"
for index, param in enumerate(nargs):
nkwargs[keys[index]] = param
for k, v in nkwargs.items():
if sig.parameters[k].annotation == bool:
if v:
nkwargs[k] = "ON"
else:
nkwargs[k] = "OFF"
return handler(base_str, **nkwargs)
return update_wrapper(temp_func, func)
# ------------------------------------------------------------------------------------------
def get_identity(self):
"""
Query ID character string of instrument, including a field separated by 4 “,”, manufactory, model, serial number
and the edition number that consists of numbers and separated by “.” .
:return: RIGOL TECHNOLOGIES,DG1022,DG1000000002,00.01.00.04.00
"""
return self.instrument.query("*IDN?").strip()
|
py
|
1a59111f208e1020b4706767671279223ffc2d84
|
import logging
from pyvisdk.exceptions import InvalidArgumentError
########################################
# Automatically generated, do not edit.
########################################
log = logging.getLogger(__name__)
def HostCpuIdInfo(vim, *args, **kwargs):
'''The CpuIdInfo data object type is used to represent the CPU features of a
particular host or product, or to specify what the CPU feature requirements are
for a particular virtual machine or guest operating system.For each register
(eax,ebx,ecx,edx), the string is a bit mask of the form:When used to represent
the features of a specific processor package (cpuPkg), the features common to
all processors on a host (cpuFeature), or the features supported by a
virtualization platform (supportedCpuFeature), each bit is either '0' or '1',
or '-' for unknown/unspecified. In these feature vectors, the vendor field is
never set.Optional values in these feature vectors default to
'----:----:----:----:----:----:----:----'.When specifying the required feature
set for a virtual machine or a guest operating system, the bits can take on the
values as described below, and the vendor field may be set. The total feature
requirements for a virtual machine are composed by using any requirements
listed in the virtual machine's configuration to override the requirements
listed in the descriptor for the virtual machine's guest OS.Bits used for
specifying requirements:The values 'F' and '1' are rarely used but included for
completeness. The '0' and '1' values do not promise a faithful virtualization
of these features; whether the features work when forced to 0 or 1 is highly
dependent on the guest software.Optional values in the requirements from the
virtual machine's configuration default to
'----:----:----:----:----:----:----:----'. Optional values in the requirements
from the guest OS descriptor default to
'xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx'.Once the feature requirements for a
virtual machine have been composed from the virtual machine's configuration and
guest OS descriptor, the bit types above are used to identify whether or not
the virtual machine can be powered on or be migrated with VMotion to a
particular host. The rules are as follows:'''
obj = vim.client.factory.create('{urn:vim25}HostCpuIdInfo')
# do some validation checking...
if (len(args) + len(kwargs)) < 1:
raise IndexError('Expected at least 2 arguments got: %d' % len(args))
required = [ 'level' ]
optional = [ 'eax', 'ebx', 'ecx', 'edx', 'vendor', 'dynamicProperty', 'dynamicType' ]
for name, arg in zip(required+optional, args):
setattr(obj, name, arg)
for name, value in kwargs.items():
if name in required + optional:
setattr(obj, name, value)
else:
raise InvalidArgumentError("Invalid argument: %s. Expected one of %s" % (name, ", ".join(required + optional)))
return obj
|
py
|
1a5911fe20928d4721b836368ad28633be0d92fd
|
from __future__ import unicode_literals
import os
import re
import sys
import types
from django.conf import settings
from django.core.urlresolvers import Resolver404, resolve
from django.http import (
HttpRequest, HttpResponse, HttpResponseNotFound, build_request_repr,
)
from django.template import Context, Engine, TemplateDoesNotExist
from django.template.defaultfilters import force_escape, pprint
from django.utils import lru_cache, six, timezone
from django.utils.datastructures import MultiValueDict
from django.utils.encoding import force_bytes, smart_text
from django.utils.module_loading import import_string
from django.utils.translation import ugettext as _
# Minimal Django templates engine to render the error templates
# regardless of the project's TEMPLATES setting.
DEBUG_ENGINE = Engine(debug=True)
HIDDEN_SETTINGS = re.compile('API|TOKEN|KEY|SECRET|PASS|SIGNATURE')
CLEANSED_SUBSTITUTE = '********************'
def linebreak_iter(template_source):
yield 0
p = template_source.find('\n')
while p >= 0:
yield p + 1
p = template_source.find('\n', p + 1)
yield len(template_source) + 1
class CallableSettingWrapper(object):
""" Object to wrap callable appearing in settings
* Not to call in the debug page (#21345).
* Not to break the debug page if the callable forbidding to set attributes (#23070).
"""
def __init__(self, callable_setting):
self._wrapped = callable_setting
def __repr__(self):
return repr(self._wrapped)
def cleanse_setting(key, value):
"""Cleanse an individual setting key/value of sensitive content.
If the value is a dictionary, recursively cleanse the keys in
that dictionary.
"""
try:
if HIDDEN_SETTINGS.search(key):
cleansed = CLEANSED_SUBSTITUTE
else:
if isinstance(value, dict):
cleansed = {k: cleanse_setting(k, v) for k, v in value.items()}
else:
cleansed = value
except TypeError:
# If the key isn't regex-able, just return as-is.
cleansed = value
if callable(cleansed):
# For fixing #21345 and #23070
cleansed = CallableSettingWrapper(cleansed)
return cleansed
def get_safe_settings():
"Returns a dictionary of the settings module, with sensitive settings blurred out."
settings_dict = {}
for k in dir(settings):
if k.isupper():
settings_dict[k] = cleanse_setting(k, getattr(settings, k))
return settings_dict
def technical_500_response(request, exc_type, exc_value, tb, status_code=500):
"""
Create a technical server error response. The last three arguments are
the values returned from sys.exc_info() and friends.
"""
reporter = ExceptionReporter(request, exc_type, exc_value, tb)
if request.is_ajax():
text = reporter.get_traceback_text()
return HttpResponse(text, status=status_code, content_type='text/plain')
else:
html = reporter.get_traceback_html()
return HttpResponse(html, status=status_code, content_type='text/html')
@lru_cache.lru_cache()
def get_default_exception_reporter_filter():
# Instantiate the default filter for the first time and cache it.
return import_string(settings.DEFAULT_EXCEPTION_REPORTER_FILTER)()
def get_exception_reporter_filter(request):
default_filter = get_default_exception_reporter_filter()
return getattr(request, 'exception_reporter_filter', default_filter)
class ExceptionReporterFilter(object):
"""
Base for all exception reporter filter classes. All overridable hooks
contain lenient default behaviors.
"""
def get_request_repr(self, request):
if request is None:
return repr(None)
else:
return build_request_repr(request, POST_override=self.get_post_parameters(request))
def get_post_parameters(self, request):
if request is None:
return {}
else:
return request.POST
def get_traceback_frame_variables(self, request, tb_frame):
return list(six.iteritems(tb_frame.f_locals))
class SafeExceptionReporterFilter(ExceptionReporterFilter):
"""
Use annotations made by the sensitive_post_parameters and
sensitive_variables decorators to filter out sensitive information.
"""
def is_active(self, request):
"""
This filter is to add safety in production environments (i.e. DEBUG
is False). If DEBUG is True then your site is not safe anyway.
This hook is provided as a convenience to easily activate or
deactivate the filter on a per request basis.
"""
return settings.DEBUG is False
def get_cleansed_multivaluedict(self, request, multivaluedict):
"""
Replaces the keys in a MultiValueDict marked as sensitive with stars.
This mitigates leaking sensitive POST parameters if something like
request.POST['nonexistent_key'] throws an exception (#21098).
"""
sensitive_post_parameters = getattr(request, 'sensitive_post_parameters', [])
if self.is_active(request) and sensitive_post_parameters:
multivaluedict = multivaluedict.copy()
for param in sensitive_post_parameters:
if param in multivaluedict:
multivaluedict[param] = CLEANSED_SUBSTITUTE
return multivaluedict
def get_post_parameters(self, request):
"""
Replaces the values of POST parameters marked as sensitive with
stars (*********).
"""
if request is None:
return {}
else:
sensitive_post_parameters = getattr(request, 'sensitive_post_parameters', [])
if self.is_active(request) and sensitive_post_parameters:
cleansed = request.POST.copy()
if sensitive_post_parameters == '__ALL__':
# Cleanse all parameters.
for k, v in cleansed.items():
cleansed[k] = CLEANSED_SUBSTITUTE
return cleansed
else:
# Cleanse only the specified parameters.
for param in sensitive_post_parameters:
if param in cleansed:
cleansed[param] = CLEANSED_SUBSTITUTE
return cleansed
else:
return request.POST
def cleanse_special_types(self, request, value):
try:
# If value is lazy or a complex object of another kind, this check
# might raise an exception. isinstance checks that lazy HttpRequests
# or MultiValueDicts will have a return value.
is_request = isinstance(value, HttpRequest)
except Exception as e:
return '{!r} while evaluating {!r}'.format(e, value)
if is_request:
# Cleanse the request's POST parameters.
value = self.get_request_repr(value)
elif isinstance(value, MultiValueDict):
# Cleanse MultiValueDicts (request.POST is the one we usually care about)
value = self.get_cleansed_multivaluedict(request, value)
return value
def get_traceback_frame_variables(self, request, tb_frame):
"""
Replaces the values of variables marked as sensitive with
stars (*********).
"""
# Loop through the frame's callers to see if the sensitive_variables
# decorator was used.
current_frame = tb_frame.f_back
sensitive_variables = None
while current_frame is not None:
if (current_frame.f_code.co_name == 'sensitive_variables_wrapper'
and 'sensitive_variables_wrapper' in current_frame.f_locals):
# The sensitive_variables decorator was used, so we take note
# of the sensitive variables' names.
wrapper = current_frame.f_locals['sensitive_variables_wrapper']
sensitive_variables = getattr(wrapper, 'sensitive_variables', None)
break
current_frame = current_frame.f_back
cleansed = {}
if self.is_active(request) and sensitive_variables:
if sensitive_variables == '__ALL__':
# Cleanse all variables
for name, value in tb_frame.f_locals.items():
cleansed[name] = CLEANSED_SUBSTITUTE
else:
# Cleanse specified variables
for name, value in tb_frame.f_locals.items():
if name in sensitive_variables:
value = CLEANSED_SUBSTITUTE
else:
value = self.cleanse_special_types(request, value)
cleansed[name] = value
else:
# Potentially cleanse the request and any MultiValueDicts if they
# are one of the frame variables.
for name, value in tb_frame.f_locals.items():
cleansed[name] = self.cleanse_special_types(request, value)
if (tb_frame.f_code.co_name == 'sensitive_variables_wrapper'
and 'sensitive_variables_wrapper' in tb_frame.f_locals):
# For good measure, obfuscate the decorated function's arguments in
# the sensitive_variables decorator's frame, in case the variables
# associated with those arguments were meant to be obfuscated from
# the decorated function's frame.
cleansed['func_args'] = CLEANSED_SUBSTITUTE
cleansed['func_kwargs'] = CLEANSED_SUBSTITUTE
return cleansed.items()
class ExceptionReporter(object):
"""
A class to organize and coordinate reporting on exceptions.
"""
def __init__(self, request, exc_type, exc_value, tb, is_email=False):
self.request = request
self.filter = get_exception_reporter_filter(self.request)
self.exc_type = exc_type
self.exc_value = exc_value
self.tb = tb
self.is_email = is_email
self.template_info = getattr(self.exc_value, 'template_debug', None)
self.template_does_not_exist = False
self.loader_debug_info = None
# Handle deprecated string exceptions
if isinstance(self.exc_type, six.string_types):
self.exc_value = Exception('Deprecated String Exception: %r' % self.exc_type)
self.exc_type = type(self.exc_value)
def format_path_status(self, path):
if not os.path.exists(path):
return "File does not exist"
return "File exists"
def get_traceback_data(self):
"""Return a dictionary containing traceback information."""
try:
default_template_engine = Engine.get_default()
except Exception:
# Since the debug view must never crash, catch all exceptions.
# If Django can't find a default template engine, get_default()
# raises ImproperlyConfigured. If some template engines fail to
# load, any exception may be raised.
default_template_engine = None
# TODO: add support for multiple template engines (#24120).
# TemplateDoesNotExist should carry all the information.
# Replaying the search process isn't a good design.
if self.exc_type and issubclass(self.exc_type, TemplateDoesNotExist):
if default_template_engine is None:
template_loaders = []
else:
self.template_does_not_exist = True
self.loader_debug_info = []
# If Django fails in get_template_loaders, provide an empty list
# for the following loop to not fail.
try:
template_loaders = default_template_engine.template_loaders
except Exception:
template_loaders = []
for loader in template_loaders:
try:
source_list_func = loader.get_template_sources
# NOTE: This assumes exc_value is the name of the template that
# the loader attempted to load.
template_list = [{
'name': t,
'status': self.format_path_status(t),
} for t in source_list_func(str(self.exc_value))]
except AttributeError:
template_list = []
loader_name = loader.__module__ + '.' + loader.__class__.__name__
self.loader_debug_info.append({
'loader': loader_name,
'templates': template_list,
})
frames = self.get_traceback_frames()
for i, frame in enumerate(frames):
if 'vars' in frame:
frame_vars = []
for k, v in frame['vars']:
v = pprint(v)
# The force_escape filter assume unicode, make sure that works
if isinstance(v, six.binary_type):
v = v.decode('utf-8', 'replace') # don't choke on non-utf-8 input
# Trim large blobs of data
if len(v) > 4096:
v = '%s... <trimmed %d bytes string>' % (v[0:4096], len(v))
frame_vars.append((k, force_escape(v)))
frame['vars'] = frame_vars
frames[i] = frame
unicode_hint = ''
if self.exc_type and issubclass(self.exc_type, UnicodeError):
start = getattr(self.exc_value, 'start', None)
end = getattr(self.exc_value, 'end', None)
if start is not None and end is not None:
unicode_str = self.exc_value.args[1]
unicode_hint = smart_text(
unicode_str[max(start - 5, 0):min(end + 5, len(unicode_str))],
'ascii', errors='replace'
)
from django import get_version
c = {
'is_email': self.is_email,
'unicode_hint': unicode_hint,
'frames': frames,
'request': self.request,
'filtered_POST': self.filter.get_post_parameters(self.request),
'settings': get_safe_settings(),
'sys_executable': sys.executable,
'sys_version_info': '%d.%d.%d' % sys.version_info[0:3],
'server_time': timezone.now(),
'django_version_info': get_version(),
'sys_path': sys.path,
'template_info': self.template_info,
'template_does_not_exist': self.template_does_not_exist,
'loader_debug_info': self.loader_debug_info,
}
# Check whether exception info is available
if self.exc_type:
c['exception_type'] = self.exc_type.__name__
if self.exc_value:
c['exception_value'] = smart_text(self.exc_value, errors='replace')
if frames:
c['lastframe'] = frames[-1]
return c
def get_traceback_html(self):
"Return HTML version of debug 500 HTTP error page."
t = DEBUG_ENGINE.from_string(TECHNICAL_500_TEMPLATE)
c = Context(self.get_traceback_data(), use_l10n=False)
return t.render(c)
def get_traceback_text(self):
"Return plain text version of debug 500 HTTP error page."
t = DEBUG_ENGINE.from_string(TECHNICAL_500_TEXT_TEMPLATE)
c = Context(self.get_traceback_data(), autoescape=False, use_l10n=False)
return t.render(c)
def _get_lines_from_file(self, filename, lineno, context_lines, loader=None, module_name=None):
"""
Returns context_lines before and after lineno from file.
Returns (pre_context_lineno, pre_context, context_line, post_context).
"""
source = None
if loader is not None and hasattr(loader, "get_source"):
try:
source = loader.get_source(module_name)
except ImportError:
pass
if source is not None:
source = source.splitlines()
if source is None:
try:
with open(filename, 'rb') as fp:
source = fp.read().splitlines()
except (OSError, IOError):
pass
if source is None:
return None, [], None, []
# If we just read the source from a file, or if the loader did not
# apply tokenize.detect_encoding to decode the source into a Unicode
# string, then we should do that ourselves.
if isinstance(source[0], six.binary_type):
encoding = 'ascii'
for line in source[:2]:
# File coding may be specified. Match pattern from PEP-263
# (http://www.python.org/dev/peps/pep-0263/)
match = re.search(br'coding[:=]\s*([-\w.]+)', line)
if match:
encoding = match.group(1).decode('ascii')
break
source = [six.text_type(sline, encoding, 'replace') for sline in source]
lower_bound = max(0, lineno - context_lines)
upper_bound = lineno + context_lines
pre_context = source[lower_bound:lineno]
context_line = source[lineno]
post_context = source[lineno + 1:upper_bound]
return lower_bound, pre_context, context_line, post_context
def get_traceback_frames(self):
def explicit_or_implicit_cause(exc_value):
explicit = getattr(exc_value, '__cause__', None)
implicit = getattr(exc_value, '__context__', None)
return explicit or implicit
# Get the exception and all its causes
exceptions = []
exc_value = self.exc_value
while exc_value:
exceptions.append(exc_value)
exc_value = explicit_or_implicit_cause(exc_value)
frames = []
# No exceptions were supplied to ExceptionReporter
if not exceptions:
return frames
# In case there's just one exception (always in Python 2,
# sometimes in Python 3), take the traceback from self.tb (Python 2
# doesn't have a __traceback__ attribute on Exception)
exc_value = exceptions.pop()
tb = self.tb if not exceptions else exc_value.__traceback__
while tb is not None:
# Support for __traceback_hide__ which is used by a few libraries
# to hide internal frames.
if tb.tb_frame.f_locals.get('__traceback_hide__'):
tb = tb.tb_next
continue
filename = tb.tb_frame.f_code.co_filename
function = tb.tb_frame.f_code.co_name
lineno = tb.tb_lineno - 1
loader = tb.tb_frame.f_globals.get('__loader__')
module_name = tb.tb_frame.f_globals.get('__name__') or ''
pre_context_lineno, pre_context, context_line, post_context = self._get_lines_from_file(
filename, lineno, 7, loader, module_name,
)
if pre_context_lineno is not None:
frames.append({
'exc_cause': explicit_or_implicit_cause(exc_value),
'exc_cause_explicit': getattr(exc_value, '__cause__', True),
'tb': tb,
'type': 'django' if module_name.startswith('django.') else 'user',
'filename': filename,
'function': function,
'lineno': lineno + 1,
'vars': self.filter.get_traceback_frame_variables(self.request, tb.tb_frame),
'id': id(tb),
'pre_context': pre_context,
'context_line': context_line,
'post_context': post_context,
'pre_context_lineno': pre_context_lineno + 1,
})
# If the traceback for current exception is consumed, try the
# other exception.
if not tb.tb_next and exceptions:
exc_value = exceptions.pop()
tb = exc_value.__traceback__
else:
tb = tb.tb_next
return frames
def format_exception(self):
"""
Return the same data as from traceback.format_exception.
"""
import traceback
frames = self.get_traceback_frames()
tb = [(f['filename'], f['lineno'], f['function'], f['context_line']) for f in frames]
list = ['Traceback (most recent call last):\n']
list += traceback.format_list(tb)
list += traceback.format_exception_only(self.exc_type, self.exc_value)
return list
def technical_404_response(request, exception):
"Create a technical 404 error response. The exception should be the Http404."
try:
error_url = exception.args[0]['path']
except (IndexError, TypeError, KeyError):
error_url = request.path_info[1:] # Trim leading slash
try:
tried = exception.args[0]['tried']
except (IndexError, TypeError, KeyError):
tried = []
else:
if (not tried # empty URLconf
or (request.path == '/'
and len(tried) == 1 # default URLconf
and len(tried[0]) == 1
and getattr(tried[0][0], 'app_name', '') == getattr(tried[0][0], 'namespace', '') == 'admin')):
return default_urlconf(request)
urlconf = getattr(request, 'urlconf', settings.ROOT_URLCONF)
if isinstance(urlconf, types.ModuleType):
urlconf = urlconf.__name__
caller = ''
try:
resolver_match = resolve(request.path)
except Resolver404:
pass
else:
obj = resolver_match.func
if hasattr(obj, '__name__'):
caller = obj.__name__
elif hasattr(obj, '__class__') and hasattr(obj.__class__, '__name__'):
caller = obj.__class__.__name__
if hasattr(obj, '__module__'):
module = obj.__module__
caller = '%s.%s' % (module, caller)
t = DEBUG_ENGINE.from_string(TECHNICAL_404_TEMPLATE)
c = Context({
'urlconf': urlconf,
'root_urlconf': settings.ROOT_URLCONF,
'request_path': error_url,
'urlpatterns': tried,
'reason': force_bytes(exception, errors='replace'),
'request': request,
'settings': get_safe_settings(),
'raising_view_name': caller,
})
return HttpResponseNotFound(t.render(c), content_type='text/html')
def default_urlconf(request):
"Create an empty URLconf 404 error response."
t = DEBUG_ENGINE.from_string(DEFAULT_URLCONF_TEMPLATE)
c = Context({
"title": _("Welcome to Django"),
"heading": _("It worked!"),
"subheading": _("Congratulations on your first Django-powered page."),
"instructions": _("Of course, you haven't actually done any work yet. "
"Next, start your first app by running <code>python manage.py startapp [app_label]</code>."),
"explanation": _("You're seeing this message because you have <code>DEBUG = True</code> in your "
"Django settings file and you haven't configured any URLs. Get to work!"),
})
return HttpResponse(t.render(c), content_type='text/html')
#
# Templates are embedded in the file so that we know the error handler will
# always work even if the template loader is broken.
#
TECHNICAL_500_TEMPLATE = ("""
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="robots" content="NONE,NOARCHIVE">
<title>{% if exception_type %}{{ exception_type }}{% else %}Report{% endif %}"""
"""{% if request %} at {{ request.path_info|escape }}{% endif %}</title>
<style type="text/css">
html * { padding:0; margin:0; }
body * { padding:10px 20px; }
body * * { padding:0; }
body { font:small sans-serif; }
body>div { border-bottom:1px solid #ddd; }
h1 { font-weight:normal; }
h2 { margin-bottom:.8em; }
h2 span { font-size:80%; color:#666; font-weight:normal; }
h3 { margin:1em 0 .5em 0; }
h4 { margin:0 0 .5em 0; font-weight: normal; }
code, pre { font-size: 100%; white-space: pre-wrap; }
table { border:1px solid #ccc; border-collapse: collapse; width:100%; background:white; }
tbody td, tbody th { vertical-align:top; padding:2px 3px; }
thead th {
padding:1px 6px 1px 3px; background:#fefefe; text-align:left;
font-weight:normal; font-size:11px; border:1px solid #ddd;
}
tbody th { width:12em; text-align:right; color:#666; padding-right:.5em; }
table.vars { margin:5px 0 2px 40px; }
table.vars td, table.req td { font-family:monospace; }
table td.code { width:100%; }
table td.code pre { overflow:hidden; }
table.source th { color:#666; }
table.source td { font-family:monospace; white-space:pre; border-bottom:1px solid #eee; }
ul.traceback { list-style-type:none; color: #222; }
ul.traceback li.frame { padding-bottom:1em; color:#666; }
ul.traceback li.user { background-color:#e0e0e0; color:#000 }
div.context { padding:10px 0; overflow:hidden; }
div.context ol { padding-left:30px; margin:0 10px; list-style-position: inside; }
div.context ol li { font-family:monospace; white-space:pre; color:#777; cursor:pointer; }
div.context ol li pre { display:inline; }
div.context ol.context-line li { color:#505050; background-color:#dfdfdf; }
div.context ol.context-line li span { position:absolute; right:32px; }
.user div.context ol.context-line li { background-color:#bbb; color:#000; }
.user div.context ol li { color:#666; }
div.commands { margin-left: 40px; }
div.commands a { color:#555; text-decoration:none; }
.user div.commands a { color: black; }
#summary { background: #ffc; }
#summary h2 { font-weight: normal; color: #666; }
#explanation { background:#eee; }
#template, #template-not-exist { background:#f6f6f6; }
#template-not-exist ul { margin: 0 0 0 20px; }
#unicode-hint { background:#eee; }
#traceback { background:#eee; }
#requestinfo { background:#f6f6f6; padding-left:120px; }
#summary table { border:none; background:transparent; }
#requestinfo h2, #requestinfo h3 { position:relative; margin-left:-100px; }
#requestinfo h3 { margin-bottom:-1em; }
.error { background: #ffc; }
.specific { color:#cc3300; font-weight:bold; }
h2 span.commands { font-size:.7em;}
span.commands a:link {color:#5E5694;}
pre.exception_value { font-family: sans-serif; color: #666; font-size: 1.5em; margin: 10px 0 10px 0; }
</style>
{% if not is_email %}
<script type="text/javascript">
//<!--
function getElementsByClassName(oElm, strTagName, strClassName){
// Written by Jonathan Snook, http://www.snook.ca/jon; Add-ons by Robert Nyman, http://www.robertnyman.com
var arrElements = (strTagName == "*" && document.all)? document.all :
oElm.getElementsByTagName(strTagName);
var arrReturnElements = new Array();
strClassName = strClassName.replace(/\-/g, "\\-");
var oRegExp = new RegExp("(^|\\s)" + strClassName + "(\\s|$)");
var oElement;
for(var i=0; i<arrElements.length; i++){
oElement = arrElements[i];
if(oRegExp.test(oElement.className)){
arrReturnElements.push(oElement);
}
}
return (arrReturnElements)
}
function hideAll(elems) {
for (var e = 0; e < elems.length; e++) {
elems[e].style.display = 'none';
}
}
window.onload = function() {
hideAll(getElementsByClassName(document, 'table', 'vars'));
hideAll(getElementsByClassName(document, 'ol', 'pre-context'));
hideAll(getElementsByClassName(document, 'ol', 'post-context'));
hideAll(getElementsByClassName(document, 'div', 'pastebin'));
}
function toggle() {
for (var i = 0; i < arguments.length; i++) {
var e = document.getElementById(arguments[i]);
if (e) {
e.style.display = e.style.display == 'none' ? 'block': 'none';
}
}
return false;
}
function varToggle(link, id) {
toggle('v' + id);
var s = link.getElementsByTagName('span')[0];
var uarr = String.fromCharCode(0x25b6);
var darr = String.fromCharCode(0x25bc);
s.innerHTML = s.innerHTML == uarr ? darr : uarr;
return false;
}
function switchPastebinFriendly(link) {
s1 = "Switch to copy-and-paste view";
s2 = "Switch back to interactive view";
link.innerHTML = link.innerHTML == s1 ? s2: s1;
toggle('browserTraceback', 'pastebinTraceback');
return false;
}
//-->
</script>
{% endif %}
</head>
<body>
<div id="summary">
<h1>{% if exception_type %}{{ exception_type }}{% else %}Report{% endif %}"""
"""{% if request %} at {{ request.path_info|escape }}{% endif %}</h1>
<pre class="exception_value">"""
"""{% if exception_value %}{{ exception_value|force_escape }}{% else %}No exception message supplied{% endif %}"""
"""</pre>
<table class="meta">
{% if request %}
<tr>
<th>Request Method:</th>
<td>{{ request.META.REQUEST_METHOD }}</td>
</tr>
<tr>
<th>Request URL:</th>
<td>{{ request.build_absolute_uri|escape }}</td>
</tr>
{% endif %}
<tr>
<th>Django Version:</th>
<td>{{ django_version_info }}</td>
</tr>
{% if exception_type %}
<tr>
<th>Exception Type:</th>
<td>{{ exception_type }}</td>
</tr>
{% endif %}
{% if exception_type and exception_value %}
<tr>
<th>Exception Value:</th>
<td><pre>{{ exception_value|force_escape }}</pre></td>
</tr>
{% endif %}
{% if lastframe %}
<tr>
<th>Exception Location:</th>
<td>{{ lastframe.filename|escape }} in {{ lastframe.function|escape }}, line {{ lastframe.lineno }}</td>
</tr>
{% endif %}
<tr>
<th>Python Executable:</th>
<td>{{ sys_executable|escape }}</td>
</tr>
<tr>
<th>Python Version:</th>
<td>{{ sys_version_info }}</td>
</tr>
<tr>
<th>Python Path:</th>
<td><pre>{{ sys_path|pprint }}</pre></td>
</tr>
<tr>
<th>Server time:</th>
<td>{{server_time|date:"r"}}</td>
</tr>
</table>
</div>
{% if unicode_hint %}
<div id="unicode-hint">
<h2>Unicode error hint</h2>
<p>The string that could not be encoded/decoded was: <strong>{{ unicode_hint|force_escape }}</strong></p>
</div>
{% endif %}
{% if template_does_not_exist %}
<div id="template-not-exist">
<h2>Template-loader postmortem</h2>
{% if loader_debug_info %}
<p>Django tried loading these templates, in this order:</p>
<ul>
{% for loader in loader_debug_info %}
<li>Using loader <code>{{ loader.loader }}</code>:
<ul>
{% for t in loader.templates %}<li><code>{{ t.name }}</code> ({{ t.status }})</li>{% endfor %}
</ul>
</li>
{% endfor %}
</ul>
{% else %}
<p>Django couldn't find any templates because your <code>'loaders'</code> option is empty!</p>
{% endif %}
</div>
{% endif %}
{% if template_info %}
<div id="template">
<h2>Error during template rendering</h2>
<p>In template <code>{{ template_info.name }}</code>, error at line <strong>{{ template_info.line }}</strong></p>
<h3>{{ template_info.message }}</h3>
<table class="source{% if template_info.top %} cut-top{% endif %}
{% ifnotequal template_info.bottom template_info.total %} cut-bottom{% endifnotequal %}">
{% for source_line in template_info.source_lines %}
{% ifequal source_line.0 template_info.line %}
<tr class="error"><th>{{ source_line.0 }}</th>
<td>
{{ template_info.before }}
<span class="specific">{{ template_info.during }}</span>
{{ template_info.after }}
</td>
</tr>
{% else %}
<tr><th>{{ source_line.0 }}</th>
<td>{{ source_line.1 }}</td></tr>
{% endifequal %}
{% endfor %}
</table>
</div>
{% endif %}
{% if frames %}
<div id="traceback">
<h2>Traceback <span class="commands">{% if not is_email %}<a href="#" onclick="return switchPastebinFriendly(this);">
Switch to copy-and-paste view</a></span>{% endif %}
</h2>
{% autoescape off %}
<div id="browserTraceback">
<ul class="traceback">
{% for frame in frames %}
{% ifchanged frame.exc_cause %}{% if frame.exc_cause %}
<li><h3>
{% if frame.exc_cause_explicit %}
The above exception ({{ frame.exc_cause }}) was the direct cause of the following exception:
{% else %}
During handling of the above exception ({{ frame.exc_cause }}), another exception occurred:
{% endif %}
</h3></li>
{% endif %}{% endifchanged %}
<li class="frame {{ frame.type }}">
<code>{{ frame.filename|escape }}</code> in <code>{{ frame.function|escape }}</code>
{% if frame.context_line %}
<div class="context" id="c{{ frame.id }}">
{% if frame.pre_context and not is_email %}
<ol start="{{ frame.pre_context_lineno }}" class="pre-context" id="pre{{ frame.id }}">
{% for line in frame.pre_context %}
<li onclick="toggle('pre{{ frame.id }}', 'post{{ frame.id }}')"><pre>{{ line|escape }}</pre></li>
{% endfor %}
</ol>
{% endif %}
<ol start="{{ frame.lineno }}" class="context-line">
<li onclick="toggle('pre{{ frame.id }}', 'post{{ frame.id }}')"><pre>
{{ frame.context_line|escape }}</pre>{% if not is_email %} <span>...</span>{% endif %}</li></ol>
{% if frame.post_context and not is_email %}
<ol start='{{ frame.lineno|add:"1" }}' class="post-context" id="post{{ frame.id }}">
{% for line in frame.post_context %}
<li onclick="toggle('pre{{ frame.id }}', 'post{{ frame.id }}')"><pre>{{ line|escape }}</pre></li>
{% endfor %}
</ol>
{% endif %}
</div>
{% endif %}
{% if frame.vars %}
<div class="commands">
{% if is_email %}
<h2>Local Vars</h2>
{% else %}
<a href="#" onclick="return varToggle(this, '{{ frame.id }}')"><span>▶</span> Local vars</a>
{% endif %}
</div>
<table class="vars" id="v{{ frame.id }}">
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
{% for var in frame.vars|dictsort:"0" %}
<tr>
<td>{{ var.0|force_escape }}</td>
<td class="code"><pre>{{ var.1 }}</pre></td>
</tr>
{% endfor %}
</tbody>
</table>
{% endif %}
</li>
{% endfor %}
</ul>
</div>
{% endautoescape %}
<form action="http://dpaste.com/" name="pasteform" id="pasteform" method="post">
{% if not is_email %}
<div id="pastebinTraceback" class="pastebin">
<input type="hidden" name="language" value="PythonConsole">
<input type="hidden" name="title"
value="{{ exception_type|escape }}{% if request %} at {{ request.path_info|escape }}{% endif %}">
<input type="hidden" name="source" value="Django Dpaste Agent">
<input type="hidden" name="poster" value="Django">
<textarea name="content" id="traceback_area" cols="140" rows="25">
Environment:
{% if request %}
Request Method: {{ request.META.REQUEST_METHOD }}
Request URL: {{ request.build_absolute_uri|escape }}
{% endif %}
Django Version: {{ django_version_info }}
Python Version: {{ sys_version_info }}
Installed Applications:
{{ settings.INSTALLED_APPS|pprint }}
Installed Middleware:
{{ settings.MIDDLEWARE_CLASSES|pprint }}
{% if template_does_not_exist %}Template Loader Error:
{% if loader_debug_info %}Django tried loading these templates, in this order:
{% for loader in loader_debug_info %}Using loader {{ loader.loader }}:
{% for t in loader.templates %}{{ t.name }} ({{ t.status }})
{% endfor %}{% endfor %}
{% else %}Django couldn't find any templates because your 'loaders' option is empty!
{% endif %}
{% endif %}{% if template_info %}
Template error:
In template {{ template_info.name }}, error at line {{ template_info.line }}
{{ template_info.message }}{% for source_line in template_info.source_lines %}
{% ifequal source_line.0 template_info.line %}
{{ source_line.0 }} : {{ template_info.before }} {{ template_info.during }} {{ template_info.after }}
{% else %}
{{ source_line.0 }} : {{ source_line.1 }}
{% endifequal %}{% endfor %}{% endif %}
Traceback:
{% for frame in frames %}File "{{ frame.filename|escape }}" in {{ frame.function|escape }}
{% if frame.context_line %} {{ frame.lineno }}. {{ frame.context_line|escape }}{% endif %}
{% endfor %}
Exception Type: {{ exception_type|escape }}{% if request %} at {{ request.path_info|escape }}{% endif %}
Exception Value: {{ exception_value|force_escape }}
</textarea>
<br><br>
<input type="submit" value="Share this traceback on a public Web site">
</div>
</form>
</div>
{% endif %}
{% endif %}
<div id="requestinfo">
<h2>Request information</h2>
{% if request %}
<h3 id="get-info">GET</h3>
{% if request.GET %}
<table class="req">
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
{% for var in request.GET.items %}
<tr>
<td>{{ var.0 }}</td>
<td class="code"><pre>{{ var.1|pprint }}</pre></td>
</tr>
{% endfor %}
</tbody>
</table>
{% else %}
<p>No GET data</p>
{% endif %}
<h3 id="post-info">POST</h3>
{% if filtered_POST %}
<table class="req">
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
{% for var in filtered_POST.items %}
<tr>
<td>{{ var.0 }}</td>
<td class="code"><pre>{{ var.1|pprint }}</pre></td>
</tr>
{% endfor %}
</tbody>
</table>
{% else %}
<p>No POST data</p>
{% endif %}
<h3 id="files-info">FILES</h3>
{% if request.FILES %}
<table class="req">
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
{% for var in request.FILES.items %}
<tr>
<td>{{ var.0 }}</td>
<td class="code"><pre>{{ var.1|pprint }}</pre></td>
</tr>
{% endfor %}
</tbody>
</table>
{% else %}
<p>No FILES data</p>
{% endif %}
<h3 id="cookie-info">COOKIES</h3>
{% if request.COOKIES %}
<table class="req">
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
{% for var in request.COOKIES.items %}
<tr>
<td>{{ var.0 }}</td>
<td class="code"><pre>{{ var.1|pprint }}</pre></td>
</tr>
{% endfor %}
</tbody>
</table>
{% else %}
<p>No cookie data</p>
{% endif %}
<h3 id="meta-info">META</h3>
<table class="req">
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
{% for var in request.META.items|dictsort:"0" %}
<tr>
<td>{{ var.0 }}</td>
<td class="code"><pre>{{ var.1|pprint }}</pre></td>
</tr>
{% endfor %}
</tbody>
</table>
{% else %}
<p>Request data not supplied</p>
{% endif %}
<h3 id="settings-info">Settings</h3>
<h4>Using settings module <code>{{ settings.SETTINGS_MODULE }}</code></h4>
<table class="req">
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
{% for var in settings.items|dictsort:"0" %}
<tr>
<td>{{ var.0 }}</td>
<td class="code"><pre>{{ var.1|pprint }}</pre></td>
</tr>
{% endfor %}
</tbody>
</table>
</div>
{% if not is_email %}
<div id="explanation">
<p>
You're seeing this error because you have <code>DEBUG = True</code> in your
Django settings file. Change that to <code>False</code>, and Django will
display a standard page generated by the handler for this status code.
</p>
</div>
{% endif %}
</body>
</html>
""")
TECHNICAL_500_TEXT_TEMPLATE = """{% firstof exception_type 'Report' %}{% if request %} at {{ request.path_info }}{% endif %}
{% firstof exception_value 'No exception message supplied' %}
{% if request %}
Request Method: {{ request.META.REQUEST_METHOD }}
Request URL: {{ request.build_absolute_uri }}{% endif %}
Django Version: {{ django_version_info }}
Python Executable: {{ sys_executable }}
Python Version: {{ sys_version_info }}
Python Path: {{ sys_path }}
Server time: {{server_time|date:"r"}}
Installed Applications:
{{ settings.INSTALLED_APPS|pprint }}
Installed Middleware:
{{ settings.MIDDLEWARE_CLASSES|pprint }}
{% if template_does_not_exist %}Template loader Error:
{% if loader_debug_info %}Django tried loading these templates, in this order:
{% for loader in loader_debug_info %}Using loader {{ loader.loader }}:
{% for t in loader.templates %}{{ t.name }} ({{ t.status }})
{% endfor %}{% endfor %}
{% else %}Django couldn't find any templates because your 'loaders' option is empty!
{% endif %}
{% endif %}{% if template_info %}
Template error:
In template {{ template_info.name }}, error at line {{ template_info.line }}
{{ template_info.message }}{% for source_line in template_info.source_lines %}
{% ifequal source_line.0 template_info.line %}
{{ source_line.0 }} : {{ template_info.before }} {{ template_info.during }} {{ template_info.after }}
{% else %}
{{ source_line.0 }} : {{ source_line.1 }}
{% endifequal %}{% endfor %}{% endif %}{% if frames %}
Traceback:
{% for frame in frames %}
{% ifchanged frame.exc_cause %}
{% if frame.exc_cause %}
{% if frame.exc_cause_explicit %}
The above exception ({{ frame.exc_cause }}) was the direct cause of the following exception:
{% else %}
During handling of the above exception ({{ frame.exc_cause }}), another exception occurred:
{% endif %}
{% endif %}
{% endifchanged %}
File "{{ frame.filename }}" in {{ frame.function }}
{% if frame.context_line %} {{ frame.lineno }}. {{ frame.context_line }}{% endif %}
{% endfor %}
{% if exception_type %}Exception Type: {{ exception_type }}{% if request %} at {{ request.path_info }}{% endif %}
{% if exception_value %}Exception Value: {{ exception_value }}{% endif %}{% endif %}{% endif %}
{% if request %}Request information:
GET:{% for k, v in request.GET.items %}
{{ k }} = {{ v|stringformat:"r" }}{% empty %} No GET data{% endfor %}
POST:{% for k, v in filtered_POST.items %}
{{ k }} = {{ v|stringformat:"r" }}{% empty %} No POST data{% endfor %}
FILES:{% for k, v in request.FILES.items %}
{{ k }} = {{ v|stringformat:"r" }}{% empty %} No FILES data{% endfor %}
COOKIES:{% for k, v in request.COOKIES.items %}
{{ k }} = {{ v|stringformat:"r" }}{% empty %} No cookie data{% endfor %}
META:{% for k, v in request.META.items|dictsort:"0" %}
{{ k }} = {{ v|stringformat:"r" }}{% endfor %}
{% else %}Request data not supplied
{% endif %}
Settings:
Using settings module {{ settings.SETTINGS_MODULE }}{% for k, v in settings.items|dictsort:"0" %}
{{ k }} = {{ v|stringformat:"r" }}{% endfor %}
You're seeing this error because you have DEBUG = True in your
Django settings file. Change that to False, and Django will
display a standard page generated by the handler for this status code.
"""
TECHNICAL_404_TEMPLATE = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<title>Page not found at {{ request.path_info|escape }}</title>
<meta name="robots" content="NONE,NOARCHIVE">
<style type="text/css">
html * { padding:0; margin:0; }
body * { padding:10px 20px; }
body * * { padding:0; }
body { font:small sans-serif; background:#eee; }
body>div { border-bottom:1px solid #ddd; }
h1 { font-weight:normal; margin-bottom:.4em; }
h1 span { font-size:60%; color:#666; font-weight:normal; }
table { border:none; border-collapse: collapse; width:100%; }
td, th { vertical-align:top; padding:2px 3px; }
th { width:12em; text-align:right; color:#666; padding-right:.5em; }
#info { background:#f6f6f6; }
#info ol { margin: 0.5em 4em; }
#info ol li { font-family: monospace; }
#summary { background: #ffc; }
#explanation { background:#eee; border-bottom: 0px none; }
</style>
</head>
<body>
<div id="summary">
<h1>Page not found <span>(404)</span></h1>
<table class="meta">
<tr>
<th>Request Method:</th>
<td>{{ request.META.REQUEST_METHOD }}</td>
</tr>
<tr>
<th>Request URL:</th>
<td>{{ request.build_absolute_uri|escape }}</td>
</tr>
{% if raising_view_name %}
<tr>
<th>Raised by:</th>
<td>{{ raising_view_name }}</td>
</tr>
{% endif %}
</table>
</div>
<div id="info">
{% if urlpatterns %}
<p>
Using the URLconf defined in <code>{{ urlconf }}</code>,
Django tried these URL patterns, in this order:
</p>
<ol>
{% for pattern in urlpatterns %}
<li>
{% for pat in pattern %}
{{ pat.regex.pattern }}
{% if forloop.last and pat.name %}[name='{{ pat.name }}']{% endif %}
{% endfor %}
</li>
{% endfor %}
</ol>
<p>The current URL, <code>{{ request_path|escape }}</code>, didn't match any of these.</p>
{% else %}
<p>{{ reason }}</p>
{% endif %}
</div>
<div id="explanation">
<p>
You're seeing this error because you have <code>DEBUG = True</code> in
your Django settings file. Change that to <code>False</code>, and Django
will display a standard 404 page.
</p>
</div>
</body>
</html>
"""
DEFAULT_URLCONF_TEMPLATE = """
<!DOCTYPE html>
<html lang="en"><head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="robots" content="NONE,NOARCHIVE"><title>{{ title }}</title>
<style type="text/css">
html * { padding:0; margin:0; }
body * { padding:10px 20px; }
body * * { padding:0; }
body { font:small sans-serif; }
body>div { border-bottom:1px solid #ddd; }
h1 { font-weight:normal; }
h2 { margin-bottom:.8em; }
h2 span { font-size:80%; color:#666; font-weight:normal; }
h3 { margin:1em 0 .5em 0; }
h4 { margin:0 0 .5em 0; font-weight: normal; }
table { border:1px solid #ccc; border-collapse: collapse; width:100%; background:white; }
tbody td, tbody th { vertical-align:top; padding:2px 3px; }
thead th {
padding:1px 6px 1px 3px; background:#fefefe; text-align:left;
font-weight:normal; font-size:11px; border:1px solid #ddd;
}
tbody th { width:12em; text-align:right; color:#666; padding-right:.5em; }
#summary { background: #e0ebff; }
#summary h2 { font-weight: normal; color: #666; }
#explanation { background:#eee; }
#instructions { background:#f6f6f6; }
#summary table { border:none; background:transparent; }
</style>
</head>
<body>
<div id="summary">
<h1>{{ heading }}</h1>
<h2>{{ subheading }}</h2>
</div>
<div id="instructions">
<p>
{{ instructions|safe }}
</p>
</div>
<div id="explanation">
<p>
{{ explanation|safe }}
</p>
</div>
</body></html>
"""
|
py
|
1a591276b25283c3070b793dfc83cd4429f72915
|
if True:
foo = 42
else:
foo = None
|
py
|
1a5912d80d3b3b9981711368250d6b6dd3410a88
|
def get_filter_wordlist():
f = open('transskribilo/data/filter_wordlist.txt', 'r')
s = set()
for line in f:
line = line.strip()
s.add(line)
return s
|
py
|
1a59133c13af73681d639b1c62a38b0d64730b8c
|
EPSILON = 1e-5
DICT_ALIASES_CORE = {
'node': 'NODE',
'displacement': 'DISPLACEMENT',
'disp': 'DISPLACEMENT',
'nodal_stress': 'NodalSTRESS',
'nodal_strain': 'NodalSTRAIN',
'nodal_mises': 'NodalMISES',
't_init': 'INITIAL_TEMPERATURE',
't_cnt': 'CNT_TEMPERATURE',
'reac': 'REACTION_FORCE',
'elemental_stress': 'ElementalSTRESS',
'elemental_strain': 'ElementalSTRAIN',
'elemental_mises': 'ElementalMISES',
'modulus': 'Young_modulus',
'poisson_ratio': 'Poisson_ratio',
'density': 'density',
'lte': 'linear_thermal_expansion_coefficient',
'lte_full': 'linear_thermal_expansion_coefficient_full',
'specific_heat': 'specific_heat',
'thermal_conductivity': 'thermal_conductivity',
'orient': 'ORIENTATION',
'boundary': 'boundary',
'cload': 'cload',
'fixtemp': 'fixtemp',
'istrain1': 'GaussSTRAIN1',
'istrain2': 'GaussSTRAIN2',
'istrain3': 'GaussSTRAIN3',
'istrain4': 'GaussSTRAIN4',
'istrain5': 'GaussSTRAIN5',
'istrain6': 'GaussSTRAIN6',
'istrain7': 'GaussSTRAIN7',
'istrain8': 'GaussSTRAIN8',
'vf': 'VF',
'pressure_start_shrinkage': 'pressure_start_shrinkage',
'specific_volume_start_shrinkage': 'specific_volume_start_shrinkage',
'average_temperature_start_shrinkage':
'average_temperature_start_shrinkage',
'time_start_shrinkage': 'time_start_shrinkage',
'shrinkage': 'shrinkage',
'gradient_temperature_mold': 'gradient_temperature_mold',
'shrinkage_mold': 'shrinkage_mold',
'pressure': 'pressure',
'specific_volume': 'specific_volume',
'average_temperature': 'average_temperature',
'max_temperature': 'max_temperature',
'thickness_flow_layer': 'thickness_flow_layer',
'viscosity': 'viscosity',
'shear_velocity': 'shear_velocity',
'shear_stress': 'shear_stress',
'flow_velocity': 'flow_velocity',
'fiber_orientation_tensor': 'fiber_orientation_tensor',
'fiber_orientation_vector': 'fiber_orientation_vector',
'fiber_velocity': 'fiber_velocity',
'skin_fiber_orientation_vector': 'skin_fiber_orientation_vector',
'inflow_gate': 'inflow_gate',
'flow_length': 'flow_length',
'flow_length_by_thickness': 'flow_length_by_thickness',
'temperature_difference': 'temperature_difference',
'flow_front_time': 'flow_front_time',
'normal': 'normal',
'area': 'area',
}
DICT_ALIASES = dict(DICT_ALIASES_CORE)
DICT_ALIASES.update({
v: v for v in DICT_ALIASES_CORE.values()})
DICT_INVERSE_ALIASES = {v: k for k, v in DICT_ALIASES_CORE.items()}
DICT_INVERSE_ALIASES.update({
v: v for v in DICT_INVERSE_ALIASES.values()})
LIST_NODAL = [
'node',
'displacement',
'disp',
'nodal_mises',
'nodal_stress',
'nodal_strain',
'reac',
't_cnt',
't_init',
'pressure_start_shrinkage',
'specific_volume_start_shrinkage',
'average_temperature_start_shrinkage',
'time_start_shrinkage',
'shrinkage',
'gradient_temperature_mold',
'shrinkage_mold',
'pressure',
'specific_volume',
'average_temperature',
'max_temperature',
'thickness_flow_layer',
'temperature_difference',
'flow_front_time',
]
LIST_ELEMENTAL = [
'density',
'elemental_mises',
'elemental_strain',
'elemental_stress',
'istrain1',
'istrain2',
'istrain3',
'istrain4',
'istrain5',
'istrain6',
'istrain7',
'istrain8',
'lte',
'lte_full',
'modulus',
'orient',
'poisson_ratio',
'vf',
'viscosity',
'shear_velocity',
'shear_stress',
'flow_velocity',
'fiber_orientation_tensor',
'fiber_orientation_vector',
'fiber_velocity',
'skin_fiber_orientation_vector',
]
LIST_CONSTRAINTS = [
'boundary',
'cload',
'fixtemp',
]
LIST_MATERIALS = [
'modulus',
'poisson_ratio',
'density',
'lte',
'lte_full',
'specific_heat',
'thermal_conductivity',
'linear_thermal_expansion_coefficient',
'linear_thermal_expansion_coefficient_full',
]
LINE_ELEMENT_NAMES = [
'line',
'line2',
]
SHELL_ELEMENT_NAMES = [
'tri',
'tri2',
'quad',
'quad2',
]
SOLID_ELEMENT_NAMES = [
'line',
'line2',
'tet',
'tet2',
'pyr',
'pyr2',
'prism',
'prism2',
'hex',
'hex2',
]
DICT_FEMIO_ELEMENT_TO_MESHIO_ELEMENT = {
'pt': 'vertex',
'line': 'line',
'line2': 'line3',
'tri': 'triangle',
'tri2': 'triangle6',
'quad': 'quad',
'quad2': 'quad8',
'tet': 'tetra',
'tet2': 'tetra10',
'pyr': 'pyramid',
'pyr2': 'pyramid13',
'prism': 'wedge',
'prism2': 'wedge15',
'hex': 'hexahedron',
'hex2': 'hexahedron27',
'hexprism': 'hexa_prism',
}
DICT_MESHIO_ELEMENT_TO_FEMIO_ELEMENT = {
v: k for k, v in DICT_FEMIO_ELEMENT_TO_MESHIO_ELEMENT.items()}
DICT_EXT = {
'fistr': '',
'obj': 'obj',
'stl': 'stl',
'ucd': 'inp',
'vtk': 'vtk',
}
|
py
|
1a5913591a572844f6f307ae95b2310e5bb226d8
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Copyright 2015, Perceivon Hosting Inc.
# Copyright 2021, Vladimir Botka <[email protected]>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY [COPYRIGHT HOLDER] AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL [COPYRIGHT HOLDER] OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import (absolute_import, division, print_function)
__metaclass__ = type
DOCUMENTATION = r'''
---
module: iocage
short_description: FreeBSD iocage jail handling
description:
- The M(iocage) module allows several iocage commands to be executed through ansible.
- document use-cases here
options:
state:
description:
- I(state) of the desired result.
type: str
choices: [basejail, thickjail, template, present, cloned, started,
stopped, restarted, fetched, exec, pkg, exists, absent,
set, facts]
default: facts
name:
description:
- I(name) of the jail (former uuid).
type: str
pkglist:
description:
- Path to a JSON file containing packages to install. Only applicable when creating a jail.
type: path
properties:
description:
- I(properties) of the jail.
type: dict
args:
description:
- Additional arguments.
type: dict
user:
description:
- I(user) who runs the command I(cmd).
type: str
default: root
cmd:
description:
- Execute the command I(cmd) inside the specified jail I(name).
type: str
clone_from:
description:
- Clone the jail I(clone_from) to I(name). Use I(properties) to configure the clone.
type: str
release:
description:
- Specify which RELEASE to fetch, update, or create a jail.
type: str
update:
description:
- Update the fetch to the latest patch level.
type: bool
default: False
components:
description:
- Uses a local file directory for the root directory instead
of HTTP to downloads and/or updates releases.
type: list
elements: path
aliases: [files, component]
requirements:
- lang/python >= 3.6
- sysutils/iocage
notes:
- Supports C(check_mode).
- The module always creates facts B(iocage_releases), B(iocage_templates), and B(iocage_jails)
- There is no mandatory option.
- Returns B(module_args) when debugging is set B(ANSIBLE_DEBUG=true)
seealso:
- name: iocage - A FreeBSD Jail Manager
description: iocage 1.2 documentation
link: https://iocage.readthedocs.io/en/latest/
- name: iocage -- jail manager using ZFS and VNET
description: FreeBSD System Manager's Manual
link: https://www.freebsd.org/cgi/man.cgi?query=iocage
author:
- Johannes Meixner (@xmj)
- dgeo (@dgeo)
- Berend de Boer (@berenddeboer)
- Dr Josef Karthauser (@Infiniverse)
- Kevin P. Fleming (@kpfleming)
- Ross Williams (@overhacked)
- david8001 (@david8001)
- luto (@luto)
- Keve Müller (@kevemueller)
- Mårten Lindblad (@martenlindblad)
- Vladimir Botka (@vbotka)
'''
EXAMPLES = r'''
- name: Create all iocage_* ansible_facts
iocage:
- name: Display lists of bases, names of templates, and names of jails
debug:
msg: |-
{{ iocage_releases }}
{{ iocage_templates.keys()|list }}
{{ iocage_jails.keys()|list }}
- name: Create jail without cloning
iocage:
name: foo
state: present
pkglist: /path/to/pkglist.json
properties:
ip4_addr: 'lo1|10.1.0.5'
boot: true
allow_sysvipc: true
defaultrouter: '10.1.0.1'
- name: Create template
iocage:
name: tplfoo
state: template
pkglist: /path/to/pkglist.json
properties:
ip4_addr: 'lo1|10.1.0.5'
boot: true
allow_sysvipc: true
defaultrouter: '10.1.0.1'
- name: Create a cloned jail. Creates basejail if needed.
iocage:
name: foo
state: present
clone_from: tplfoo
pkglist: /path/to/pkglist.json
properties:
ip4_addr: 'lo1|10.1.0.5'
boot: true
allow_sysvipc: true
defaultrouter: '10.1.0.1'
- name: Start existing jail
iocage:
name: foo
state: started
- name: Stop existing jail
iocage:
name: foo
state: stopped
- name: Restart existing jail
iocage:
name: foo
state: restarted
- name: Execute command in running jail
iocage:
name: foo
state: exec
cmd: service sshd start
- name: Destroy jail
iocage:
name: foo
state: absent
'''
RETURN = r'''
ansible_facts:
description: Facts to add to ansible_facts.
returned: always
type: dict
contains:
iocage_releases:
description: List of all bases.
returned: always
type: list
elements: str
sample: ['13.0-RELEASE']
iocage_templates:
description: Dictionary of all templates.
returned: always
type: dict
sample: {}
iocage_jails:
description: Dictionary of all jails.
returned: always
type: dict
sample: {}
module_args:
description: Information on how the module was invoked.
returned: debug
type: dict
'''
import json
import re
from ansible.module_utils.basic import AnsibleModule
from ansible.module_utils._text import to_bytes
def _command_fail(module, label, cmd, rc, stdout, stderr):
module.fail_json(msg=f"{label}\ncmd: '{cmd}' return: {rc}\nstdout: '{stdout}'\nstderr: '{stderr}'")
def _get_iocage_facts(module, iocage_path, argument="all", name=None):
opt = dict(jails="list -hl",
templates="list -hlt",
releases="list -hr",
init="list -h")
if argument == "all":
# _init = _get_iocage_facts(module, iocage_path, "init")
_jails = _get_iocage_facts(module, iocage_path, "jails")
_templates = _get_iocage_facts(module, iocage_path, "templates")
_releases = _get_iocage_facts(module, iocage_path, "releases")
return dict(iocage_jails=_jails,
iocage_templates=_templates,
iocage_releases=_releases)
elif argument in opt:
cmd = f"{iocage_path} {opt[argument]}"
else:
module.fail_json(msg=f"_get_iocage_facts({argument}): argument not understood")
rc, state, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'),
errors='surrogate_or_strict')
if rc != 0 and argument != "init":
_command_fail(module, "_get_iocage_facts()", cmd, rc, state, err)
elif argument == "init":
return {}
if argument == 'releases':
_releases = []
for line in state.split('\n'):
if re.match(r'\s*\d', line):
_releases.append(line.strip())
return _releases
_jails = {}
try:
for line in state.split('\n'):
if line == "":
continue
_jid = line.split('\t')[0]
if _jid == '---':
# non-iocage jails: skip all
break
elif re.match(r'(\d+|-)', _jid):
_fragments = line.split('\t')
if len(_fragments) == 10:
(_jid, _name, _boot, _state, _type, _release, _ip4, _ip6, _template, _basejail) = _fragments
else:
(_jid, _name, _boot, _state, _type, _release, _ip4, _ip6, _template) = _fragments
if _name != "":
_properties = _jail_get_properties(module, iocage_path, _name)
_jails[_name] = {"jid": _jid, "name": _name, "state": _state, "properties": _properties}
else:
module.fail_json(msg=f"_get_iocage_facts():\nUnreadable stdout line from cmd '{cmd}': '{line}'")
except ValueError:
module.fail_json(msg=f"unable to parse {state}")
if name is not None:
if name in _jails:
return _jails[name]
else:
return {}
return _jails
def _jail_started(module, iocage_path, name):
cmd = f"{iocage_path} list -h"
rc, state, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'),
errors='surrogate_or_strict')
if rc != 0:
_command_fail(module, f"jail_started({name})", cmd, rc, state, err)
st = None
for line in state.split('\n'):
u = line.split('\t')[1]
if u == name:
s = line.split('\t')[2]
if s == 'up':
st = True
break
elif s == 'down':
st = False
break
else:
module.fail_json(msg=f"Jail {name} unknown state: {line}")
return st
def jail_exists(module, iocage_path, argument=None, assume_absent=False):
cmd = f"{iocage_path} get host_hostuuid {argument}"
rc, name, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'),
errors='surrogate_or_strict')
if not rc == 0:
name = ""
# local variable '_msg' is assigned to but never used [F841]
# _msg = ""
if name != "" and assume_absent:
module.fail_json(msg=f"Jail {argument} exists.")
return name.strip()
def jail_start(module, iocage_path, name):
cmd = f"{iocage_path} start {name}"
rc = 1
out = ""
_msg = ""
_changed = True
if not module.check_mode:
rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'),
errors='surrogate_or_strict')
if not rc == 0:
_command_fail(module, f"Jail {name} could not be started.", cmd, rc, out, err)
_msg = f"Jail {name} was started.\n{out}"
else:
_msg = f"Jail {name} would have been started."
return _changed, _msg
def _props_to_str(props):
argstr = ""
# local variable 'minargs' is assigned to but never used [F841]
# minargs = ""
for _prop in props:
_val = props[_prop]
if _val == '-' or _val == '' or not _val:
continue
if _val in ['yes', 'on', True]:
argstr += f"{_prop}=1 "
elif _val in ['no', 'off', False]:
argstr += f"{_prop}=0 "
elif _val in ['-', 'none']:
argstr += f"{_prop}={_val} "
else:
argstr += f"{_prop}={str(_val)} "
return argstr
def release_fetch(module, iocage_path, update=False, release="NO-RELEASE", components=None, args=""):
if not module.check_mode:
if update:
args += " -U"
if components is not None:
for _component in components:
if _component != "":
args += f" -F {_component}"
cmd = f"{iocage_path} fetch -r {release} {args}"
rc = 1
rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'),
errors='surrogate_or_strict')
if not rc == 0:
_command_fail(module, f"Release {release} could not be fetched.", cmd, rc, out, err)
_changed = True
if update:
_msg = f"Release {release} was successfully updated."
else:
_msg = f"Release {release} was successfully fetched."
else:
_changed = True
_msg = f"Release {release} would have been fetched."
return release, _changed, _msg
def jail_restart(module, iocage_path, name):
cmd = f"{iocage_path} restart {name}"
rc = 1
out = ""
_msg = ""
_changed = True
if not module.check_mode:
rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'),
errors='surrogate_or_strict')
if not rc == 0:
_command_fail(module, f"Jail {name} could not be restarted.", cmd, rc, out, err)
_msg = f"Jail {name} was restarted.\n{rc}"
else:
_msg = f"Jail {name} would have been restarted."
return _changed, _msg
def jail_stop(module, iocage_path, name):
cmd = f"{iocage_path} stop {name}"
_changed = False
rc = 1
out = ""
_msg = ""
if not module.check_mode:
rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'),
errors='surrogate_or_strict')
if not rc == 0:
_command_fail(module, f"Jail {name} could not be stopped.", cmd, rc, out, err)
_msg = f"Jail {name} was stopped.\n"
else:
_msg = f"Jail {name} would have been stopped"
return _changed, _msg
def jail_exec(module, iocage_path, name, user="root", _cmd='/usr/bin/true'):
rc = 1
out = ""
err = ""
_msg = ""
_changed = True
if not module.check_mode:
cmd = f"{iocage_path} exec -u {user} {name} -- {_cmd}"
rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'),
errors='surrogate_or_strict')
if not rc == 0:
_command_fail(module,
f"Command '{_cmd}' could not be executed in jail '{name}'.",
cmd, rc, out, err)
_msg = (f"Command '{cmd}' was executed in jail '{name}'.\nrc: {rc}\nstdout:\n{out}\nstderr:\n{err}")
else:
_msg = f"Command '{_cmd}' would have been executed in jail '{name}'."
return _changed, _msg, out, err
def jail_pkg(module, iocage_path, name, _cmd='info'):
rc = 1
out = ""
err = ""
_msg = ""
_changed = True
if not module.check_mode:
cmd = f"{iocage_path} pkg {name} {_cmd}"
rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'),
errors='surrogate_or_strict')
if not rc == 0:
_command_fail(module,
f"pkg '{_cmd}' could not be executed in jail '{name}'.",
cmd, rc, out, err)
_msg = (f"pkg '{_cmd}' was executed in jail '{name}'.\nstdout:\n{out}\nstderr:\n{err}")
else:
_msg = f"pkg '{_cmd}' would have been executed in jail '{name}'."
return _changed, _msg, out, err
def _jail_get_properties(module, iocage_path, name):
rc = 1
out = ""
if name is not None and name != "":
properties = {}
cmd = f"{iocage_path} get all {name}"
rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'),
errors='surrogate_or_strict')
if rc == 0:
_properties = [line.strip() for line in out.strip().split('\n')]
for p in _properties:
for _property in [p.split(':', 1)]:
if len(_property) == 2:
properties[_property[0]] = _property[1]
else:
module.fail_json(msg=f"error parsing property {p} from {str(properties)}")
else:
_command_fail(module, f"_jail_get_properties({name})", cmd, rc, out, err)
elif module.check_mode and name == "CHECK_MODE_FAKE_UUID":
properties = {"CHECK_NEW_JAIL": True}
else:
module.fail_json(msg=f"jail {name} not found.")
return properties
def jail_set(module, iocage_path, name, properties=None):
if properties is None:
properties = {}
rc = 1
out = ""
_msg = ""
_changed = False
cmd = ""
_existing_props = _jail_get_properties(module, iocage_path, name)
_props_to_be_changed = {}
for _property in properties:
if _property not in _existing_props:
continue
if _existing_props[_property] == '-' and not properties[_property]:
continue
if _property == "template":
continue
propval = None
_val = properties[_property]
_oval = _existing_props[_property]
if _val in [0, 'no', 'off', False]:
propval = 0
elif _val in [1, 'yes', 'on', True]:
propval = 1
elif isinstance(_oval, str):
if _val == '':
propval = 'none'
else:
propval = f'{_val}'
else:
module.fail_json(msg="Unable to set attribute {0} to {1} for jail {2}"
.format(_property, str(_val).replace("'", "'\\''"), name))
if 'CHECK_NEW_JAIL' in _existing_props or \
(_property in _existing_props.keys() and str(_existing_props[_property]) != str(propval)) and \
propval is not None:
_props_to_be_changed[_property] = propval
if len(_props_to_be_changed) > 0:
need_restart = False
for p in _props_to_be_changed.keys():
if p in ['ip4_addr', 'ip6_addr', 'template', 'interfaces', 'vnet', 'host_hostname']:
need_restart = _jail_started(module, iocage_path, name)
cmd = f"{iocage_path} set {_props_to_str(_props_to_be_changed)} {name}"
if not module.check_mode:
if need_restart:
jail_stop(module, iocage_path, name)
rc, out, err = module.run_command(cmd)
if need_restart:
jail_start(module, iocage_path, name)
if not rc == 0 or (rc == 1 and "is already a jail!" in err):
_command_fail(module, f"Attributes could not be set on jail '{name}'.", cmd, rc, out, err)
_msg = f"properties {str(_props_to_be_changed.keys())} were set on jail '{name}' with cmd={cmd}."
else:
_msg = f"properties {str(_props_to_be_changed.keys())} would have been changed for jail {name} with command {cmd}"
_msg += str(_props_to_be_changed)
_changed = True
else:
_changed = False
_msg = f"properties {properties.keys()} already set for jail {name}"
return _changed, _msg
def jail_create(module, iocage_path, name=None, properties=None, clone_from_name=None,
clone_from_template=None, release=None, basejail=False, thickjail=False, pkglist=None):
if properties is None:
properties = {}
rc = 1
out = ""
_msg = ""
if clone_from_name is None and clone_from_template is None:
if basejail:
cmd = f"{iocage_path} create -b -n {name} -r {release}"
elif thickjail:
cmd = f"{iocage_path} create -T -n {name} -r {release} {_props_to_str(properties)}"
else:
cmd = f"{iocage_path} create -n {name} -r {release} {_props_to_str(properties)}"
if pkglist:
cmd += " --pkglist=" + pkglist
elif clone_from_name:
cmd = f"{iocage_path} clone {clone_from_name} -n {name} {_props_to_str(properties)}"
elif clone_from_template:
cmd = f"{iocage_path} create -t {clone_from_template} -n {name} {_props_to_str(properties)}"
if not module.check_mode:
rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'),
errors='surrogate_or_strict')
if not rc == 0:
_command_fail(module, f"Jail '{name}' could not be created.", cmd, rc, out, err)
_msg += f"Jail '{name}' was created with properties {str(properties)}.\n\n{cmd}"
name = jail_exists(module, iocage_path, name)
if not name:
module.fail_json(msg=f"Jail '{name}' not created ???\ncmd: {cmd}\nstdout:\n{out}\nstderr:\n{err}")
else:
_msg += f"Jail {name} would be created with command:\n{cmd}\n"
name = f"CHECK_MODE_FAKE_UUID_FOR_{name}"
return name, True, _msg
def jail_update(module, iocage_path, name):
rc = 1
out = ""
_msg = ""
_changed = False
cmd = f"{iocage_path} update {name}"
if not module.check_mode:
rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'),
errors='surrogate_or_strict')
if not rc == 0:
_command_fail(module, f"Jail '{name}' not updated.", cmd, rc, out, err)
if "No updates needed" in out:
_changed = False
elif "updating to" in out:
nv = re.search(r' ([^ ]*):$', filter((lambda x: 'updating to' in x), out.split('\n'))[0]).group(1)
_msg = f"jail {name} updated to {nv}"
_changed = True
else:
_msg = "Unable to check for updates in check_mode"
return _changed, _msg
def jail_destroy(module, iocage_path, name):
rc = 1
out = ""
_msg = ""
_changed = True
if not module.check_mode:
cmd = f"{iocage_path} destroy -f {name}"
rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'),
errors='surrogate_or_strict')
if not rc == 0:
_command_fail(module, f"Jail '{name}' could not be destroyed.", cmd, rc, out, err)
_msg = f"Jail '{name}' was destroyed."
jail_exists(module, iocage_path, name, True)
else:
_msg = f"Jail {name} would have been destroyed."
return name, _changed, _msg
def run_module():
module_args = dict(
state=dict(type='str',
default="facts",
choices=["basejail", "thickjail", "template", "present", "cloned", "started",
"stopped", "restarted", "fetched", "exec", "pkg", "exists", "absent",
"set", "facts"],),
name=dict(type='str'),
pkglist=dict(type='path'),
properties=dict(type='dict'),
args=dict(type='dict'),
user=dict(type='str', default="root"),
cmd=dict(type='str'),
clone_from=dict(type='str'),
release=dict(type='str'),
update=dict(type='bool', default=False,),
components=dict(type='list', elements='path', aliases=["files", "component"],),)
module = AnsibleModule(argument_spec=module_args,
supports_check_mode=True)
iocage_path = module.get_bin_path('iocage', True)
if not iocage_path:
module.fail_json(msg='Utility iocage not found!')
p = module.params
name = p["name"]
properties = p["properties"]
cmd = p["cmd"]
args = p["args"]
clone_from = p["clone_from"]
user = p["user"]
release = p["release"]
update = p["update"]
components = p["components"]
pkglist = p["pkglist"]
msgs = []
changed = False
out = ""
err = ""
facts = _get_iocage_facts(module, iocage_path, "all")
jails = {}
for u in facts["iocage_jails"]:
jails[u] = facts["iocage_jails"][u]
for u in facts["iocage_templates"]:
jails[u] = facts["iocage_templates"][u]
if p["state"] == "facts":
result = dict(changed=changed,
msg=", ".join(msgs),
ansible_facts=facts,
stdout=out,
stderr=err,
)
if module._debug:
result['module_args'] = f"{(json.dumps(module.params, indent=4))}"
module.exit_json(**result)
# Input validation
# states that need name of jail
if name is None and p["state"] in ["started", "stopped", "restarted", "exists", "set", "exec", "pkg", "absent"]:
module.fail_json(msg=f"name needed for state {p['state']}")
# states that need release defined
if p["state"] in ["basejail", "thickjail", "template", "fetched", "present"] or p["update"]:
if release is None or release == "":
# if name and not (upgrade):
# _jail_props = _jail_get_properties(module, iocage_path, name)
# release = _jail_props["release"]
# else:
rc, out, err = module.run_command("uname -r")
if rc != 0:
module.fail_json(msg="Unable to run uname -r ???")
matches = re.match(r'(\d+\.\d+)\-(RELEASE|RC\d+).*', out.strip())
if matches is not None:
release = matches.group(1) + "-RELEASE"
else:
module.fail_json(msg=f"Release not recognised: {out}")
# need existing jail
if p["state"] in ["started", "stopped", "restarted", "set", "exec", "pkg", "exists"]:
if name not in jails:
module.fail_json(msg=f"Jail '{name}' doesn't exist")
# states that need running jail
if p["state"] in ["exec", "pkg"] and jails[name]["state"] != "up":
module.fail_json(msg=f"Jail '{name}' not running")
if p["state"] == "started":
if jails[name]["state"] != "up":
changed, _msg = jail_start(module, iocage_path, name)
msgs.append(_msg)
jails[name] = _get_iocage_facts(module, iocage_path, "jails", name)
if jails[name]["state"] != "up" and not module.check_mode:
module.fail_json(msg=f"Starting jail {name} failed with {_msg}")
else:
msgs.append(f"Jail {name} already started")
elif p["state"] == "stopped":
if jails[name]["state"] == "up":
changed, _msg = jail_stop(module, iocage_path, name)
msgs.append(_msg)
if not module.check_mode:
jails[name] = _get_iocage_facts(module, iocage_path, "jails", name)
if jails[name]["state"] != "down":
module.fail_json(msg=f"Stopping jail {name} failed with {_msg}")
else:
msgs.append(f"Jail {name} already stopped")
elif p["state"] == "restarted":
changed, _msg = jail_restart(module, iocage_path, name)
jails[name] = _get_iocage_facts(module, iocage_path, "jails", name)
if jails[name]["state"] != "up":
module.fail_json(msg=f"Restarting jail {name} failed with {_msg}")
msgs.append(_msg)
elif p["state"] == "exec":
changed, _msg, out, err = jail_exec(module, iocage_path, name, user, cmd)
msgs.append(_msg)
elif p["state"] == "pkg":
changed, _msg, out, err = jail_pkg(module, iocage_path, name, cmd)
msgs.append(_msg)
elif p["state"] == "exists":
msgs.append(f"Jail {name} exists")
elif p["state"] == "fetched":
if update or release not in facts["iocage_releases"]:
rel, changed, _msg = release_fetch(module, iocage_path, update, release, components, args)
msgs.append(_msg)
facts["iocage_releases"] = _get_iocage_facts(module, iocage_path, "releases")
if release not in facts["iocage_releases"] or update:
module.fail_json(msg=f"Fetching release {release} failed with {_msg}")
else:
msgs.append(f"Release {release} already fetched")
elif p["state"] == "set":
changed, _msg = jail_set(module, iocage_path, name, properties)
msgs.append(_msg)
jails[name] = _get_iocage_facts(module, iocage_path, "jails", name)
elif p["state"] in ["present", "cloned", "template", "basejail", "thickjail"]:
do_basejail = False
do_thickjail = False
clone_from_name = None
clone_from_template = None
# local variable 'jail_exists' is assigned to but never used [F841]
# jail_exists = False
if p["state"] != "cloned" and release not in facts["iocage_releases"]:
release, _release_changed, _release_msg = release_fetch(module, iocage_path, update, release, components, args)
if _release_changed:
facts["iocage_releases"] = _get_iocage_facts(module, iocage_path, "releases")
msgs.append(_release_msg)
if p["state"] == "template":
if properties is None:
properties = {}
properties["template"] = "true"
properties["boot"] = "false"
if name in facts["iocage_templates"]:
# local variable 'jail_exists' is assigned to but never used [F841]
# jail_exists = True
pass
elif p["state"] == "basejail":
properties = {}
do_basejail = True
elif p["state"] == "thickjail":
do_thickjail = True
elif clone_from:
if clone_from in facts["iocage_jails"]:
clone_from_name = clone_from
elif clone_from in facts["iocage_templates"]:
clone_from_template = clone_from
else:
if module.check_mode:
# todo: use facts to check if basejail would have been created before
msgs.append(f"Jail {name} would have been cloned from (nonexisting) jail or template {clone_from}")
else:
module.fail_json(msg=f"unable to create jail {name}\nbasejail {clone_from} doesn't exist")
if name not in facts["iocage_templates"] and name not in facts["iocage_jails"]:
name, changed, _msg = jail_create(module, iocage_path, name, properties, clone_from_name,
clone_from_template, release, do_basejail, do_thickjail,
pkglist)
msgs.append(_msg)
else:
changed, _msg = jail_set(module, iocage_path, name, properties)
msgs.append("%s already exists" % (name))
if changed:
msgs.append(_msg)
if p["update"]:
if release not in facts["iocage_releases"]:
release, _release_changed, _release_msg = release_fetch(module, iocage_path, update, release, components, args)
if _release_changed:
_msg += _release_msg
facts["iocage_releases"] = _get_iocage_facts(module, iocage_path, "releases")
release, changed, _msg = jail_update(module, iocage_path, name, release)
msgs.append(_msg)
# # re-set properties (iocage missing them on creation - iocage-sh bug)
# if len(p["properties"]) > 0:
# changed, _msg = jail_set(module, iocage_path, name, properties)
# if changed:
# msgs.append(_msg)
if changed:
if p["state"] == "template":
facts["iocage_templates"][name] = _get_iocage_facts(module, iocage_path, "templates", name)
else:
facts["iocage_jails"][name] = _get_iocage_facts(module, iocage_path, "jails", name)
elif p["state"] == "absent":
if name in jails:
if jails[name]['state'] == "up":
changed, _msg = jail_stop(module, iocage_path, name)
msgs.append(_msg)
name, changed, _msg = jail_destroy(module, iocage_path, name)
msgs.append(_msg)
del(jails[name])
else:
_msg = f"Jail {name} is already absent."
msgs.append(_msg)
if name in facts["iocage_jails"]:
del(facts["iocage_jails"][name])
_msg = f"Jail {name} removed from iocage_jails."
msgs.append(_msg)
if name in facts["iocage_templates"]:
del(facts["iocage_templates"][name])
_msg = f"Jail {name} removed from iocage_templates."
msgs.append(_msg)
result = dict(changed=changed,
msg=", ".join(msgs),
ansible_facts=facts,
stdout=out,
stderr=err,
)
if module._debug:
result['module_args'] = f"{(json.dumps(module.params, indent=4))}"
module.exit_json(**result)
def main():
run_module()
if __name__ == '__main__':
main()
|
py
|
1a5913b9f5c21e4fe8635becab498368fe77c13f
|
# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
#
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is
# regenerated.
# --------------------------------------------------------------------------
from .tracked_resource import TrackedResource
class ApplicationResourceDescription(TrackedResource):
"""This type describes an application resource.
Variables are only populated by the server, and will be ignored when
sending a request.
:ivar id: Fully qualified identifier for the resource. Ex -
/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}
:vartype id: str
:ivar name: The name of the resource
:vartype name: str
:ivar type: The type of the resource. Ex-
Microsoft.Compute/virtualMachines or Microsoft.Storage/storageAccounts.
:vartype type: str
:param location: The geo-location where the resource lives
:type location: str
:param tags: Resource tags.
:type tags: dict[str, str]
:ivar provisioning_state: State of the resource.
:vartype provisioning_state: str
:param description: User readable description of the application.
:type description: str
:param debug_params: Internal use.
:type debug_params: str
:param services: describes the services in the application.
:type services:
list[~azure.mgmt.servicefabricmesh.models.ServiceResourceDescription]
:ivar health_state: Describes the health state of an application resource.
Possible values include: 'Invalid', 'Ok', 'Warning', 'Error', 'Unknown'
:vartype health_state: str or
~azure.mgmt.servicefabricmesh.models.HealthState
:ivar unhealthy_evaluation: When the application's health state is not
'Ok', this additional details from service fabric Health Manager for the
user to know why the application is marked unhealthy.
:vartype unhealthy_evaluation: str
:ivar status: Status of the application resource. Possible values include:
'Invalid', 'Ready', 'Upgrading', 'Creating', 'Deleting', 'Failed'
:vartype status: str or
~azure.mgmt.servicefabricmesh.models.ApplicationResourceStatus
:ivar status_details: Gives additional information about the current
status of the application deployment.
:vartype status_details: str
:ivar service_names: Names of the services in the application.
:vartype service_names: list[str]
:param diagnostics: Describes the diagnostics definition and usage for an
application resource.
:type diagnostics:
~azure.mgmt.servicefabricmesh.models.DiagnosticsDescription
"""
_validation = {
'id': {'readonly': True},
'name': {'readonly': True},
'type': {'readonly': True},
'provisioning_state': {'readonly': True},
'health_state': {'readonly': True},
'unhealthy_evaluation': {'readonly': True},
'status': {'readonly': True},
'status_details': {'readonly': True},
'service_names': {'readonly': True},
}
_attribute_map = {
'id': {'key': 'id', 'type': 'str'},
'name': {'key': 'name', 'type': 'str'},
'type': {'key': 'type', 'type': 'str'},
'location': {'key': 'location', 'type': 'str'},
'tags': {'key': 'tags', 'type': '{str}'},
'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'},
'description': {'key': 'properties.description', 'type': 'str'},
'debug_params': {'key': 'properties.debugParams', 'type': 'str'},
'services': {'key': 'properties.services', 'type': '[ServiceResourceDescription]'},
'health_state': {'key': 'properties.healthState', 'type': 'str'},
'unhealthy_evaluation': {'key': 'properties.unhealthyEvaluation', 'type': 'str'},
'status': {'key': 'properties.status', 'type': 'str'},
'status_details': {'key': 'properties.statusDetails', 'type': 'str'},
'service_names': {'key': 'properties.serviceNames', 'type': '[str]'},
'diagnostics': {'key': 'properties.diagnostics', 'type': 'DiagnosticsDescription'},
}
def __init__(self, location=None, tags=None, description=None, debug_params=None, services=None, diagnostics=None):
super(ApplicationResourceDescription, self).__init__(location=location, tags=tags)
self.provisioning_state = None
self.description = description
self.debug_params = debug_params
self.services = services
self.health_state = None
self.unhealthy_evaluation = None
self.status = None
self.status_details = None
self.service_names = None
self.diagnostics = diagnostics
|
py
|
1a5914e8e8d318077494d19e7039c4430fcc81f7
|
import numpy as np
import scipy.stats as stats
from sira.modelling.structural import Base
from sira.modelling.structural import Element as _Element
from sira.modelling.structural import Info
class Algorithm:
@staticmethod
def factory(response_params):
function_name = response_params["function_name"]
funcname_nocase = str(function_name).casefold()
if funcname_nocase in [
"stepfunc", "step_func", "stepfunction", "step_function"]:
return StepFunc(**response_params)
elif funcname_nocase in [
"lognormal", "lognormalcdf", "lognormal_cdf"]:
return LogNormalCDF(**response_params)
elif funcname_nocase in [
"normal", "normalcdf", "normal_cdf"]:
return NormalCDF(**response_params)
elif funcname_nocase in [
"rayleigh", "rayleighcdf", "rayleigh_cdf"]:
return RayleighCDF(**response_params)
elif funcname_nocase in [
"ConstantFunction".lower(), "constant_function"]:
return ConstantFunction(**response_params)
elif funcname_nocase in [
"Level0Response".lower(), "Level0Recovery".lower()]:
return Level0Response(**response_params)
elif funcname_nocase in [
"PiecewiseFunction".lower(), "piecewise_function"]:
return PiecewiseFunction(**response_params)
raise ValueError("No response model matches {}".format(function_name))
class Level0Response(Base):
"""
Standard response for no damage.
"""
mode = 1
damage_ratio = 0.0
functionality = 1.0
beta = 0.0
median = 1.0
lower_limit = _Element(
'float',
'lower limit of function if part of piecewise function',
None, [lambda x: float(x) > 0.])
upper_limit = _Element(
'float',
'upper limit of function if part of piecewise function',
None, [lambda x: float(x) > 0.])
def __call__(self, hazard_level):
return 0.0
class RayleighCDF(Base):
"""
The Rayliegh CDF response model for components.
"""
scale = _Element(
'float',
'Scale parameter for Rayleigh CDF.',
_Element.NO_DEFAULT, validators=[lambda x: float(x) > 0.])
loc = _Element(
'float',
'Location parameter for Rayleigh CDF.',
default=0, validators=[lambda x: float(x) >= 0.])
def __call__(self, x):
"""
SciPy implementation of Rayleigh CDF:
loc = shift parameter
scale = scaling parameter
"""
return stats.rayleigh.cdf(x, loc=self.loc, scale=self.scale)
class LogNormalCDF(Base):
"""
The lognormal CDF response model for components.
"""
median = _Element('float', 'Median of the log normal CDF.',
_Element.NO_DEFAULT, [lambda x: float(x) > 0.])
beta = _Element('float', 'Log standard deviation of the log normal CDF',
_Element.NO_DEFAULT, [lambda x: float(x) > 0.])
location = _Element('float', 'Location parameter of the log normal CDF',
0.0, [lambda x: float(x) > 0.])
lower_limit = _Element(
'float',
'lower limit of function if part of piecewise function',
None,
[lambda x: float(x) > 0.])
upper_limit = _Element(
'float',
'upper limit of function if part of piecewise function',
None,
[lambda x: float(x) > 0.])
def __call__(self, data_point):
"""
SciPy implementation of LogNormal CDF:
scipy.stats.lognorm.cdf(x, s, loc=0, scale=1)
where,
s = sigma # or beta or standard deviation (shape parameter)
scale = exp(mean) = median
loc is used to shift the distribution and commonly not used
"""
return stats.lognorm.cdf(
data_point, self.beta, loc=self.location, scale=self.median)
class NormalCDF(Base):
"""
The normal CDF response model for components
"""
# -----------------------------------------------
mean = _Element(
'float',
'Mean of the normal or Gaussian CDF',
_Element.NO_DEFAULT,
[lambda x: float(x) >= 0.])
stddev = _Element(
'float',
'Standard deviation of the normal CDF',
_Element.NO_DEFAULT,
[lambda x: float(x) > 0.])
# -----------------------------------------------
lower_limit = _Element(
'float',
'lower limit of function if part of piecewise function',
-np.inf,
[lambda x: float(x) > 0.])
upper_limit = _Element(
'float',
'upper limit of function if part of piecewise function',
np.inf,
[lambda x: float(x) > 0.])
# -----------------------------------------------
def __call__(self, data_point, inverse=False):
"""
SciPy implementation of Normal CDF:
scipy.stats.norm.cdf(x, loc=0, scale=1)
where,
loc = Mean
scale = Standard Deviation i.e. square root of Variance
"""
if not inverse:
return stats.norm.cdf(data_point,
loc=self.mean,
scale=self.stddev)
elif inverse:
return stats.norm.ppf(data_point,
loc=self.mean,
scale=self.stddev)
class ConstantFunction(Base):
"""
A function for defining a constant amplitude for a given range
"""
amplitude = _Element(
'float',
'Constant amplitude of function',
_Element.NO_DEFAULT, [lambda x: float(x) >= 0.])
lower_limit = _Element(
'float',
'lower limit of function if part of piecewise function',
None, [lambda x: float(x) >= 0.])
upper_limit = _Element(
'float',
'upper limit of function if part of piecewise function',
None, [lambda x: float(x) >= 0])
def __call__(self, hazard_intensity):
return self.amplitude
class StepFunc(Base):
"""
A response model that does not have a cumulative distribution
function, rather a series of steps for damage.
"""
xys = _Element(
'XYPairs', 'A list of X, Y pairs.', list,
[lambda xy: [(float(x), float(y)) for x, y in xy]])
lower_limit = _Element(
'float',
'lower limit of function if part of piecewise function',
None,
[lambda x: float(x) > 0.])
upper_limit = _Element(
'float',
'upper limit of function if part of piecewise function',
None,
[lambda x: float(x) > 0.])
def __call__(self, hazard_intensity):
"""
Note that intervals are closed on the right.
"""
for x, y in self.xys: # noqa: E1133
if hazard_intensity < x:
return y
raise ValueError('value is greater than all xs!')
class XYPairs(object):
"""
A list of float values that implement a step function.
"""
description = Info("The (x, f(x)) pairs defining a step function.")
def __init__(self, pairs):
"""
Create the tuple list containing the float values.
:param pairs: An iterable container of tuples containing floats
"""
self.pairs = pairs
def __iter__(self):
"""
Return the XYPairs
:return: iterator over the XYPairs
"""
return iter(self.pairs)
class PiecewiseFunction(object):
"""
This class builds a piecwise function defined by algorithm constructor
data of a specified format. This data is part of the defined
attributes of a system Component.
Each dict in the list contains:
- the parameters required to construct an algorithm, and
- the conditions where that algorithm will be applicable
"""
piecewise_function_constructor = None
def __init__(self, **kwargs):
"""
input: a list of dicts.
Dict name must be 'piecewise_function_constructor'
"""
for k, v in kwargs.items():
setattr(self, k, v)
self.functions = []
self.validranges = []
for param_dict in self.piecewise_function_constructor: # noqa: E1133
lo = self.check_limit(param_dict['lower_limit'], which_lim='lower')
hi = self.check_limit(param_dict['upper_limit'], which_lim='upper')
self.functions.append(Algorithm.factory(param_dict))
self.validranges.append((lo, hi))
def check_limit(self, val, which_lim):
if which_lim == 'lower':
inf, infstr = -np.inf, ['-np.inf', '-inf']
else:
inf, infstr = np.inf, ['np.inf', '+np.inf', 'inf', '+inf']
if (val is None) or str(val) in ['', 'NA', *infstr]:
val = inf
else:
try:
val = float(val)
except ValueError:
print(f"Invalid value passed for {which_lim} limit of function.")
exit(1)
return val
def condfunc(self, x, func_lims):
return (x >= func_lims[0]) & (x < func_lims[1])
def pwfunc(self, x):
x = np.asarray(x)
y = np.zeros(x.shape)
for i, func in enumerate(self.functions):
func_lims = self.validranges[i]
y += self.condfunc(x, func_lims) * func(x) # noqa: W0123
return y
def __call__(self, hazard_intensity):
"""
input: hazard intensity value
output: probability of a response (linked to a damage state)
"""
vectorized_pwf = np.vectorize(self.pwfunc)
return vectorized_pwf(hazard_intensity)
|
py
|
1a591505e0bedb18ff05e07f5429e25ba7c0a83c
|
# Copyright (c) 2014 Intel Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# The contents of this file are mainly copied from cm_api sources,
# released by Cloudera. Codes not used by Sahara CDH plugin are removed.
# You can find the original codes at
#
# https://github.com/cloudera/cm_api/tree/master/python/src/cm_api
#
# To satisfy the pep8 and python3 tests, we did some changes to the codes.
# We also change some importings to use Sahara inherited classes.
import copy
import datetime
import time
from oslo_serialization import jsonutils as json
from oslo_utils import reflection
import six
from sahara.plugins import context
from sahara_plugin_cdh.i18n import _
from sahara_plugin_cdh.plugins.cdh import exceptions as ex
class Attr(object):
"""Base Attribute
Encapsulates information about an attribute in the JSON encoding of the
object. It identifies properties of the attribute such as whether it's
read-only, its type, etc.
"""
DATE_FMT = "%Y-%m-%dT%H:%M:%S.%fZ"
def __init__(self, atype=None, rw=True, is_api_list=False):
self._atype = atype
self._is_api_list = is_api_list
self.rw = rw
def to_json(self, value, preserve_ro):
"""Returns the JSON encoding of the given attribute value
If the value has a 'to_json_dict' object, that method is called.
Otherwise, the following values are returned for each input type:
- datetime.datetime: string with the API representation of a date.
- dictionary: if 'atype' is ApiConfig, a list of ApiConfig objects.
- python list: python list (or ApiList) with JSON encoding of items
- the raw value otherwise
"""
if hasattr(value, 'to_json_dict'):
return value.to_json_dict(preserve_ro)
elif isinstance(value, dict) and self._atype == ApiConfig:
return config_to_api_list(value)
elif isinstance(value, datetime.datetime):
return value.strftime(self.DATE_FMT)
elif isinstance(value, list) or isinstance(value, tuple):
if self._is_api_list:
return ApiList(value).to_json_dict()
else:
return [self.to_json(x, preserve_ro) for x in value]
else:
return value
def from_json(self, resource_root, data):
"""Parses the given JSON value into an appropriate python object
This means:
- a datetime.datetime if 'atype' is datetime.datetime
- a converted config dictionary or config list if 'atype' is ApiConfig
- if the attr is an API list, an ApiList with instances of 'atype'
- an instance of 'atype' if it has a 'from_json_dict' method
- a python list with decoded versions of the member objects if the
input is a python list.
- the raw value otherwise
"""
if data is None:
return None
if self._atype == datetime.datetime:
return datetime.datetime.strptime(data, self.DATE_FMT)
elif self._atype == ApiConfig:
# ApiConfig is special. We want a python dictionary for summary
# views, but an ApiList for full views. Try to detect each case
# from the JSON data.
if not data['items']:
return {}
first = data['items'][0]
return json_to_config(data, len(first) == 2)
elif self._is_api_list:
return ApiList.from_json_dict(data, resource_root, self._atype)
elif isinstance(data, list):
return [self.from_json(resource_root, x) for x in data]
elif hasattr(self._atype, 'from_json_dict'):
return self._atype.from_json_dict(data, resource_root)
else:
return data
class ROAttr(Attr):
"""Subclass that just defines the attribute as read-only."""
def __init__(self, atype=None, is_api_list=False):
Attr.__init__(self, atype=atype, rw=False, is_api_list=is_api_list)
def check_api_version(resource_root, min_version):
"""Check API version
Checks if the resource_root's API version it at least the given minimum
version.
"""
if resource_root.version < min_version:
raise ex.CMApiVersionError(
_("API version %(minv)s is required but %(acv)s is in use.")
% {'minv': min_version, 'acv': resource_root.version})
def call(method, path, ret_type,
ret_is_list=False, data=None, params=None, api_version=1):
"""Call a resource method
Generic function for calling a resource method and automatically dealing
with serialization of parameters and deserialization of return values.
:param method: method to call (must be bound to a resource;
e.g., "resource_root.get").
:param path: the full path of the API method to call.
:param ret_type: return type of the call.
:param ret_is_list: whether the return type is an ApiList.
:param data: Optional data to send as payload to the call.
:param params: Optional query parameters for the call.
:param api_version: minimum API version for the call.
"""
check_api_version(method.__self__, api_version)
if data is not None:
data = json.dumps(Attr(is_api_list=True).to_json(data, False))
ret = method(path, data=data, params=params)
else:
ret = method(path, params=params)
if ret_type is None:
return
elif ret_is_list:
return ApiList.from_json_dict(ret, method.__self__, ret_type)
elif isinstance(ret, list):
return [ret_type.from_json_dict(x, method.__self__) for x in ret]
else:
return ret_type.from_json_dict(ret, method.__self__)
class BaseApiObject(object):
"""The BaseApiObject helps with (de)serialization from/to JSON
The derived class has two ways of defining custom attributes:
- Overwriting the '_ATTRIBUTES' field with the attribute dictionary
- Override the _get_attributes() method, in case static initialization of
the above field is not possible.
It's recommended that the _get_attributes() implementation do caching to
avoid computing the dictionary on every invocation.
The derived class's constructor must call the base class's init() static
method. All constructor arguments (aside from self and resource_root) must
be keywords arguments with default values (typically None), or
from_json_dict() will not work.
"""
_ATTRIBUTES = {}
_WHITELIST = ('_resource_root', '_attributes')
@classmethod
def _get_attributes(cls):
"""Get an attribute dictionary
Returns a map of property names to attr instances (or None for default
attribute behavior) describing the properties of the object.
By default, this method will return the class's _ATTRIBUTES field.
Classes can override this method to do custom initialization of the
attributes when needed.
"""
return cls._ATTRIBUTES
@staticmethod
def init(obj, resource_root, attrs=None):
"""Wraper of real constructor
Wraper around the real constructor to avoid issues with the 'self'
argument. Call like this, from a subclass's constructor:
- BaseApiObject.init(self, locals())
"""
# This works around http://bugs.python.org/issue2646
# We use unicode strings as keys in kwargs.
str_attrs = {}
if attrs:
for k, v in six.iteritems(attrs):
if k not in ('self', 'resource_root'):
str_attrs[k] = v
BaseApiObject.__init__(obj, resource_root, **str_attrs)
def __init__(self, resource_root, **attrs):
"""Init method
Initializes internal state and sets all known writable properties of
the object to None. Then initializes the properties given in the
provided attributes dictionary.
:param resource_root: API resource object.
:param attrs: optional dictionary of attributes to set. This should
only contain r/w attributes.
"""
self._resource_root = resource_root
for name, attr in six.iteritems(self._get_attributes()):
object.__setattr__(self, name, None)
if attrs:
self._set_attrs(attrs, from_json=False)
def _set_attrs(self, attrs, allow_ro=False, from_json=True):
"""Set attributes from dictionary
Sets all the attributes in the dictionary. Optionally, allows setting
read-only attributes (e.g. when deserializing from JSON) and skipping
JSON deserialization of values.
"""
for k, v in six.iteritems(attrs):
attr = self._check_attr(k, allow_ro)
if attr and from_json:
v = attr.from_json(self._get_resource_root(), v)
object.__setattr__(self, k, v)
def __setattr__(self, name, val):
if name not in BaseApiObject._WHITELIST:
self._check_attr(name, False)
object.__setattr__(self, name, val)
def _check_attr(self, name, allow_ro):
cls_name = reflection.get_class_name(self, fully_qualified=False)
if name not in self._get_attributes():
raise ex.CMApiAttributeError(
_('Invalid property %(attname)s for class %(classname)s.')
% {'attname': name, 'classname': cls_name})
attr = self._get_attributes()[name]
if not allow_ro and attr and not attr.rw:
raise ex.CMApiAttributeError(
_('Attribute %(attname)s of class %(classname)s '
'is read only.')
% {'attname': name, 'classname': cls_name})
return attr
def _get_resource_root(self):
return self._resource_root
def _update(self, api_obj):
"""Copy state from api_obj to this object."""
if not isinstance(self, api_obj.__class__):
raise ex.CMApiValueError(
_("Class %(class1)s does not derive from %(class2)s; "
"cannot update attributes.")
% {'class1': self.__class__, 'class2': api_obj.__class__})
for name in self._get_attributes().keys():
try:
val = getattr(api_obj, name)
setattr(self, name, val)
except AttributeError:
pass
def to_json_dict(self, preserve_ro=False):
dic = {}
for name, attr in six.iteritems(self._get_attributes()):
if not preserve_ro and attr and not attr.rw:
continue
try:
value = getattr(self, name)
if value is not None:
if attr:
dic[name] = attr.to_json(value, preserve_ro)
else:
dic[name] = value
except AttributeError:
pass
return dic
def __str__(self):
"""Give a printable format of an attribute
Default implementation of __str__. Uses the type name and the first
attribute retrieved from the attribute map to create the string.
"""
cls_name = reflection.get_class_name(self, fully_qualified=False)
name = list(self._get_attributes().keys())[0]
value = getattr(self, name, None)
return "<%s>: %s = %s" % (cls_name, name, value)
@classmethod
def from_json_dict(cls, dic, resource_root):
obj = cls(resource_root)
obj._set_attrs(dic, allow_ro=True)
return obj
class BaseApiResource(BaseApiObject):
"""Base ApiResource
A specialization of BaseApiObject that provides some utility methods for
resources. This class allows easier serialization / deserialization of
parameters and return values.
"""
def _api_version(self):
"""Get API version
Returns the minimum API version for this resource. Defaults to 1.
"""
return 1
def _path(self):
"""Get resource path
Returns the path to the resource.
e.g., for a service 'foo' in cluster 'bar', this should return
'/clusters/bar/services/foo'.
"""
raise NotImplementedError
def _require_min_api_version(self, version):
"""Check minimum version requirement
Raise an exception if the version of the api is less than the given
version.
:param version: The minimum required version.
"""
actual_version = self._get_resource_root().version
version = max(version, self._api_version())
if actual_version < version:
raise ex.CMApiVersionError(
_("API version %(minv)s is required but %(acv)s is in use.")
% {'minv': version, 'acv': actual_version})
def _cmd(self, command, data=None, params=None, api_version=1):
"""Invoke a command on the resource
Invokes a command on the resource. Commands are expected to be under
the "commands/" sub-resource.
"""
return self._post("commands/" + command, ApiCommand,
data=data, params=params, api_version=api_version)
def _get_config(self, rel_path, view, api_version=1):
"""Get resource configurations
Retrieves an ApiConfig list from the given relative path.
"""
self._require_min_api_version(api_version)
params = dict(view=view) if view else None
resp = self._get_resource_root().get(self._path() + '/' + rel_path,
params=params)
return json_to_config(resp, view == 'full')
def _update_config(self, rel_path, config, api_version=1):
self._require_min_api_version(api_version)
resp = self._get_resource_root().put(self._path() + '/' + rel_path,
data=config_to_json(config))
return json_to_config(resp, False)
def _delete(self, rel_path, ret_type, ret_is_list=False, params=None,
api_version=1):
return self._call('delete', rel_path, ret_type, ret_is_list, None,
params, api_version)
def _get(self, rel_path, ret_type, ret_is_list=False, params=None,
api_version=1):
return self._call('get', rel_path, ret_type, ret_is_list, None,
params, api_version)
def _post(self, rel_path, ret_type, ret_is_list=False, data=None,
params=None, api_version=1):
return self._call('post', rel_path, ret_type, ret_is_list, data,
params, api_version)
def _put(self, rel_path, ret_type, ret_is_list=False, data=None,
params=None, api_version=1):
return self._call('put', rel_path, ret_type, ret_is_list, data,
params, api_version)
def _call(self, method, rel_path, ret_type, ret_is_list=False, data=None,
params=None, api_version=1):
path = self._path()
if rel_path:
path += '/' + rel_path
return call(getattr(self._get_resource_root(), method),
path,
ret_type,
ret_is_list,
data,
params,
api_version)
class ApiList(BaseApiObject):
"""A list of some api object"""
LIST_KEY = "items"
def __init__(self, objects, resource_root=None, **attrs):
BaseApiObject.__init__(self, resource_root, **attrs)
# Bypass checks in BaseApiObject.__setattr__
object.__setattr__(self, 'objects', objects)
def __str__(self):
return ("<ApiList>(%d): [%s]" % (len(self.objects),
", ".join([str(item) for item in self.objects])))
def to_json_dict(self, preserve_ro=False):
ret = BaseApiObject.to_json_dict(self, preserve_ro)
attr = Attr()
ret[ApiList.LIST_KEY] = [attr.to_json(x, preserve_ro)
for x in self.objects]
return ret
def __len__(self):
return self.objects.__len__()
def __iter__(self):
return self.objects.__iter__()
def __getitem__(self, i):
return self.objects.__getitem__(i)
def __getslice__(self, i, j):
return self.objects.__getslice__(i, j)
@classmethod
def from_json_dict(cls, dic, resource_root, member_cls=None):
if not member_cls:
member_cls = cls._MEMBER_CLASS
attr = Attr(atype=member_cls)
items = []
if ApiList.LIST_KEY in dic:
items = [attr.from_json(resource_root, x)
for x in dic[ApiList.LIST_KEY]]
ret = cls(items)
# If the class declares custom attributes, populate them based on the
# input dict. The check avoids extra overhead for the common case,
# where we just have a plain list. _set_attrs() also does not
# understand the "items" attribute, so it can't be in the input data.
if cls._ATTRIBUTES:
if ApiList.LIST_KEY in dic:
dic = copy.copy(dic)
del dic[ApiList.LIST_KEY]
ret._set_attrs(dic, allow_ro=True)
return ret
class ApiHostRef(BaseApiObject):
_ATTRIBUTES = {
'hostId': None,
}
def __init__(self, resource_root, hostId=None):
BaseApiObject.init(self, resource_root, locals())
def __str__(self):
return "<ApiHostRef>: %s" % (self.hostId)
class ApiServiceRef(BaseApiObject):
_ATTRIBUTES = {
'clusterName': None,
'serviceName': None,
'peerName': None,
}
def __init__(self, resource_root, serviceName=None, clusterName=None,
peerName=None):
BaseApiObject.init(self, resource_root, locals())
class ApiClusterRef(BaseApiObject):
_ATTRIBUTES = {
'clusterName': None,
}
def __init__(self, resource_root, clusterName=None):
BaseApiObject.init(self, resource_root, locals())
class ApiRoleRef(BaseApiObject):
_ATTRIBUTES = {
'clusterName': None,
'serviceName': None,
'roleName': None,
}
def __init__(self, resource_root, serviceName=None, roleName=None,
clusterName=None):
BaseApiObject.init(self, resource_root, locals())
class ApiRoleConfigGroupRef(BaseApiObject):
_ATTRIBUTES = {
'roleConfigGroupName': None,
}
def __init__(self, resource_root, roleConfigGroupName=None):
BaseApiObject.init(self, resource_root, locals())
class ApiCommand(BaseApiObject):
SYNCHRONOUS_COMMAND_ID = -1
@classmethod
def _get_attributes(cls):
if not ('_ATTRIBUTES' in cls.__dict__):
cls._ATTRIBUTES = {
'id': ROAttr(),
'name': ROAttr(),
'startTime': ROAttr(datetime.datetime),
'endTime': ROAttr(datetime.datetime),
'active': ROAttr(),
'success': ROAttr(),
'resultMessage': ROAttr(),
'clusterRef': ROAttr(ApiClusterRef),
'serviceRef': ROAttr(ApiServiceRef),
'roleRef': ROAttr(ApiRoleRef),
'hostRef': ROAttr(ApiHostRef),
'children': ROAttr(ApiCommand, is_api_list=True),
'parent': ROAttr(ApiCommand),
'resultDataUrl': ROAttr(),
'canRetry': ROAttr(),
}
return cls._ATTRIBUTES
def __str__(self):
return ("<ApiCommand>: '%s' (id: %s; active: %s; success: %s)"
% (self.name, self.id, self.active, self.success))
def _path(self):
return '/commands/%d' % self.id
def fetch(self):
"""Retrieve updated data about the command from the server
:return: A new ApiCommand object.
"""
if self.id == ApiCommand.SYNCHRONOUS_COMMAND_ID:
return self
resp = self._get_resource_root().get(self._path())
return ApiCommand.from_json_dict(resp, self._get_resource_root())
def wait(self, timeout=None):
"""Wait for command to finish
:param timeout: (Optional) Max amount of time (in seconds) to wait.
Wait forever by default.
:return: The final ApiCommand object, containing the last known state.
The command may still be running in case of timeout.
"""
if self.id == ApiCommand.SYNCHRONOUS_COMMAND_ID:
return self
SLEEP_SEC = 5
if timeout is None:
deadline = None
else:
deadline = time.time() + timeout
while True:
cmd = self.fetch()
if not cmd.active:
return cmd
if deadline is not None:
now = time.time()
if deadline < now:
return cmd
else:
context.sleep(min(SLEEP_SEC, deadline - now))
else:
context.sleep(SLEEP_SEC)
def abort(self):
"""Abort a running command
:return: A new ApiCommand object with the updated information.
"""
if self.id == ApiCommand.SYNCHRONOUS_COMMAND_ID:
return self
path = self._path() + '/abort'
resp = self._get_resource_root().post(path)
return ApiCommand.from_json_dict(resp, self._get_resource_root())
class ApiBulkCommandList(ApiList):
_ATTRIBUTES = {
'errors': ROAttr(),
}
_MEMBER_CLASS = ApiCommand
#
# Configuration helpers.
#
class ApiConfig(BaseApiObject):
_ATTRIBUTES = {
'name': None,
'value': None,
'required': ROAttr(),
'default': ROAttr(),
'displayName': ROAttr(),
'description': ROAttr(),
'relatedName': ROAttr(),
'validationState': ROAttr(),
'validationMessage': ROAttr(),
}
def __init__(self, resource_root, name=None, value=None):
BaseApiObject.init(self, resource_root, locals())
def __str__(self):
return "<ApiConfig>: %s = %s" % (self.name, self.value)
def config_to_api_list(dic):
"""Convert a python dictionary into an ApiConfig list
Converts a python dictionary into a list containing the proper
ApiConfig encoding for configuration data.
:param dic: Key-value pairs to convert.
:return: JSON dictionary of an ApiConfig list (*not* an ApiList).
"""
config = []
for k, v in six.iteritems(dic):
config.append({'name': k, 'value': v})
return {ApiList.LIST_KEY: config}
def config_to_json(dic):
"""Converts a python dictionary into a JSON payload
The payload matches the expected "apiConfig list" type used to update
configuration parameters using the API.
:param dic: Key-value pairs to convert.
:return: String with the JSON-encoded data.
"""
return json.dumps(config_to_api_list(dic))
def json_to_config(dic, full=False):
"""Converts a JSON-decoded config dictionary to a python dictionary
When materializing the full view, the values in the dictionary will be
instances of ApiConfig, instead of strings.
:param dic: JSON-decoded config dictionary.
:param full: Whether to materialize the full view of the config data.
:return: Python dictionary with config data.
"""
config = {}
for entry in dic['items']:
k = entry['name']
if full:
config[k] = ApiConfig.from_json_dict(entry, None)
else:
config[k] = entry.get('value')
return config
|
py
|
1a59165bb0a7bd4d5bd7dbae1e9dc77302d4423c
|
import re
import textwrap
from ast import literal_eval
from inspect import cleandoc
from weakref import WeakKeyDictionary
from parso.python import tree
from parso.cache import parser_cache
from parso import split_lines
_EXECUTE_NODES = {'funcdef', 'classdef', 'import_from', 'import_name', 'test',
'or_test', 'and_test', 'not_test', 'comparison', 'expr',
'xor_expr', 'and_expr', 'shift_expr', 'arith_expr',
'atom_expr', 'term', 'factor', 'power', 'atom'}
_FLOW_KEYWORDS = (
'try', 'except', 'finally', 'else', 'if', 'elif', 'with', 'for', 'while'
)
def get_executable_nodes(node, last_added=False):
"""
For static analysis.
"""
result = []
typ = node.type
if typ == 'name':
next_leaf = node.get_next_leaf()
if last_added is False and node.parent.type != 'param' and next_leaf != '=':
result.append(node)
elif typ == 'expr_stmt':
# I think inferring the statement (and possibly returned arrays),
# should be enough for static analysis.
result.append(node)
for child in node.children:
result += get_executable_nodes(child, last_added=True)
elif typ == 'decorator':
# decorator
if node.children[-2] == ')':
node = node.children[-3]
if node != '(':
result += get_executable_nodes(node)
else:
try:
children = node.children
except AttributeError:
pass
else:
if node.type in _EXECUTE_NODES and not last_added:
result.append(node)
for child in children:
result += get_executable_nodes(child, last_added)
return result
def get_sync_comp_fors(comp_for):
yield comp_for
last = comp_for.children[-1]
while True:
if last.type == 'comp_for':
yield last.children[1] # Ignore the async.
elif last.type == 'sync_comp_for':
yield last
elif not last.type == 'comp_if':
break
last = last.children[-1]
def for_stmt_defines_one_name(for_stmt):
"""
Returns True if only one name is returned: ``for x in y``.
Returns False if the for loop is more complicated: ``for x, z in y``.
:returns: bool
"""
return for_stmt.children[1].type == 'name'
def get_flow_branch_keyword(flow_node, node):
start_pos = node.start_pos
if not (flow_node.start_pos < start_pos <= flow_node.end_pos):
raise ValueError('The node is not part of the flow.')
keyword = None
for i, child in enumerate(flow_node.children):
if start_pos < child.start_pos:
return keyword
first_leaf = child.get_first_leaf()
if first_leaf in _FLOW_KEYWORDS:
keyword = first_leaf
return None
def clean_scope_docstring(scope_node):
""" Returns a cleaned version of the docstring token. """
node = scope_node.get_doc_node()
if node is not None:
# TODO We have to check next leaves until there are no new
# leaves anymore that might be part of the docstring. A
# docstring can also look like this: ``'foo' 'bar'
# Returns a literal cleaned version of the ``Token``.
return cleandoc(safe_literal_eval(node.value))
return ''
def find_statement_documentation(tree_node):
if tree_node.type == 'expr_stmt':
tree_node = tree_node.parent # simple_stmt
maybe_string = tree_node.get_next_sibling()
if maybe_string is not None:
if maybe_string.type == 'simple_stmt':
maybe_string = maybe_string.children[0]
if maybe_string.type == 'string':
return cleandoc(safe_literal_eval(maybe_string.value))
return ''
def safe_literal_eval(value):
first_two = value[:2].lower()
if first_two[0] == 'f' or first_two in ('fr', 'rf'):
# literal_eval is not able to resovle f literals. We have to do that
# manually, but that's right now not implemented.
return ''
return literal_eval(value)
def get_signature(funcdef, width=72, call_string=None,
omit_first_param=False, omit_return_annotation=False):
"""
Generate a string signature of a function.
:param width: Fold lines if a line is longer than this value.
:type width: int
:arg func_name: Override function name when given.
:type func_name: str
:rtype: str
"""
# Lambdas have no name.
if call_string is None:
if funcdef.type == 'lambdef':
call_string = '<lambda>'
else:
call_string = funcdef.name.value
params = funcdef.get_params()
if omit_first_param:
params = params[1:]
p = '(' + ''.join(param.get_code() for param in params).strip() + ')'
# TODO this is pretty bad, we should probably just normalize.
p = re.sub(r'\s+', ' ', p)
if funcdef.annotation and not omit_return_annotation:
rtype = " ->" + funcdef.annotation.get_code()
else:
rtype = ""
code = call_string + p + rtype
return '\n'.join(textwrap.wrap(code, width))
def move(node, line_offset):
"""
Move the `Node` start_pos.
"""
try:
children = node.children
except AttributeError:
node.line += line_offset
else:
for c in children:
move(c, line_offset)
def get_following_comment_same_line(node):
"""
returns (as string) any comment that appears on the same line,
after the node, including the #
"""
try:
if node.type == 'for_stmt':
whitespace = node.children[5].get_first_leaf().prefix
elif node.type == 'with_stmt':
whitespace = node.children[3].get_first_leaf().prefix
elif node.type == 'funcdef':
# actually on the next line
whitespace = node.children[4].get_first_leaf().get_next_leaf().prefix
else:
whitespace = node.get_last_leaf().get_next_leaf().prefix
except AttributeError:
return None
except ValueError:
# TODO in some particular cases, the tree doesn't seem to be linked
# correctly
return None
if "#" not in whitespace:
return None
comment = whitespace[whitespace.index("#"):]
if "\r" in comment:
comment = comment[:comment.index("\r")]
if "\n" in comment:
comment = comment[:comment.index("\n")]
return comment
def is_scope(node):
t = node.type
if t == 'comp_for':
# Starting with Python 3.8, async is outside of the statement.
return node.children[1].type != 'sync_comp_for'
return t in ('file_input', 'classdef', 'funcdef', 'lambdef', 'sync_comp_for')
def _get_parent_scope_cache(func):
cache = WeakKeyDictionary()
def wrapper(used_names, node, include_flows=False):
try:
for_module = cache[used_names]
except KeyError:
for_module = cache[used_names] = {}
try:
return for_module[node]
except KeyError:
result = for_module[node] = func(node, include_flows)
return result
return wrapper
def get_parent_scope(node, include_flows=False):
"""
Returns the underlying scope.
"""
scope = node.parent
if scope is None:
return None # It's a module already.
while True:
if is_scope(scope):
if scope.type in ('classdef', 'funcdef', 'lambdef'):
index = scope.children.index(':')
if scope.children[index].start_pos >= node.start_pos:
if node.parent.type == 'param' and node.parent.name == node:
pass
elif node.parent.type == 'tfpdef' and node.parent.children[0] == node:
pass
else:
scope = scope.parent
continue
return scope
elif include_flows and isinstance(scope, tree.Flow):
# The cursor might be on `if foo`, so the parent scope will not be
# the if, but the parent of the if.
if not (scope.type == 'if_stmt'
and any(n.start_pos <= node.start_pos < n.end_pos
for n in scope.get_test_nodes())):
return scope
scope = scope.parent
get_cached_parent_scope = _get_parent_scope_cache(get_parent_scope)
def get_cached_code_lines(grammar, path):
"""
Basically access the cached code lines in parso. This is not the nicest way
to do this, but we avoid splitting all the lines again.
"""
return parser_cache[grammar._hashed][path].lines
def cut_value_at_position(leaf, position):
"""
Cuts of the value of the leaf at position
"""
lines = split_lines(leaf.value, keepends=True)[:position[0] - leaf.line + 1]
column = position[1]
if leaf.line == position[0]:
column -= leaf.column
if not lines:
return ''
lines[-1] = lines[-1][:column]
return ''.join(lines)
def expr_is_dotted(node):
"""
Checks if a path looks like `name` or `name.foo.bar` and not `name()`.
"""
if node.type == 'atom':
if len(node.children) == 3 and node.children[0] == '(':
return expr_is_dotted(node.children[1])
return False
if node.type == 'atom_expr':
children = node.children
if children[0] == 'await':
return False
if not expr_is_dotted(children[0]):
return False
# Check trailers
return all(c.children[0] == '.' for c in children[1:])
return node.type == 'name'
def _function_is_x_method(*method_names):
def wrapper(function_node):
"""
This is a heuristic. It will not hold ALL the times, but it will be
correct pretty much for anyone that doesn't try to beat it.
staticmethod/classmethod are builtins and unless overwritten, this will
be correct.
"""
for decorator in function_node.get_decorators():
dotted_name = decorator.children[1]
if dotted_name.get_code() in method_names:
return True
return False
return wrapper
function_is_staticmethod = _function_is_x_method('staticmethod')
function_is_classmethod = _function_is_x_method('classmethod')
function_is_property = _function_is_x_method('property', 'cached_property')
|
py
|
1a59178fd1f03d24d394dca8580702a9da9642e4
|
#!/usr/bin/env python
"""
Copyright (C) 2006 Google Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
"""
$URL: https://regionator.googlecode.com/svn/trunk/scripts/mkregionboxes.py $
$Revision: 251 $
$Date: 2007-03-10 12:27:26 -0800 (Sat, 10 Mar 2007) $
"""
import os
import sys
import kml.smalltiles
if len(sys.argv) != 5:
app = os.path.basename(sys.argv[0])
print 'usage: %s url.kml level name output.html' % app
print ' level 0 is finest grain'
print ' name is used for each box + number'
sys.exit(1)
inputkml = sys.argv[1]
level = int(sys.argv[2])
name = sys.argv[3]
output = sys.argv[4]
kml.smalltiles.FindTiles(inputkml, level, name, output)
|
py
|
1a5919160e9f5c0ccf0f78c6d22040bebca334aa
|
# -*- coding: utf-8 -*-
"""
Functions for Integration
Taken from the book "A primer on Scientific Programming using Python by Springer"
"""
class Integrator:
def __init__(self,a,b,n):
self.a, self.b, self.n=a,b,n
self.points, self.weights = self.construct_method()
def construct_method(self):
raise NotImplementedError('no rule in class %s' %self.__class__.__name__)
def integrate(self,f):
s = 0
for i in range(len(self.weights)):
s += self.weights[i]*f(self.points[i])
return s
|
py
|
1a591930f9a963e0fd4d0894dd48abb98ad9feb5
|
"""
WSGI config for britecore_test project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "britecore_test.settings")
application = get_wsgi_application()
|
py
|
1a5919daf5ac023969eced4fad3717f89a3159f0
|
import pytest
import cdx_toolkit
class MockResp:
def __init__(self, thing):
self.thing = thing
def json(self):
return self.thing
def test_showNumPages():
j_cc = MockResp({'blocks': 3})
assert cdx_toolkit.showNumPages(j_cc) == 3
j_ia = MockResp(3)
assert cdx_toolkit.showNumPages(j_ia) == 3
with pytest.raises(ValueError):
j_bad = MockResp('3')
assert cdx_toolkit.showNumPages(j_bad) == 3
def test_args():
with pytest.raises(ValueError):
cdx = cdx_toolkit.CDXFetcher(wb='foo', warc_prefix='foo')
with pytest.raises(ValueError):
cdx = cdx_toolkit.CDXFetcher(source='asdf')
with pytest.raises(ValueError):
cdx = cdx_toolkit.CDXFetcher(source='cc', wb='foo')
|
py
|
1a591ad15fc8693e2783ceb46d064fab97fcc594
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Copyright: (c) 2021, Phillipe Smith <[email protected]>
# GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt)
from __future__ import absolute_import, division, print_function
__metaclass__ = type
DOCUMENTATION = '''
---
module: rundeck_job_run
short_description: Run a Rundeck job
description:
- This module runs a Rundeck job specified by ID.
author: "Phillipe Smith (@phsmith)"
version_added: 3.8.0
options:
job_id:
type: str
description:
- The job unique ID.
required: true
job_options:
type: dict
description:
- The job options for the steps.
- Numeric values must be quoted.
filter_nodes:
type: str
description:
- Filter the nodes where the jobs must run.
- See U(https://docs.rundeck.com/docs/manual/11-node-filters.html#node-filter-syntax).
run_at_time:
type: str
description:
- Schedule the job execution to run at specific date and time.
- ISO-8601 date and time format like C(2021-10-05T15:45:00-03:00).
loglevel:
type: str
description:
- Log level configuration.
choices: [debug, verbose, info, warn, error]
default: info
wait_execution:
type: bool
description:
- Wait until the job finished the execution.
default: true
wait_execution_delay:
type: int
description:
- Delay, in seconds, between job execution status check requests.
default: 5
wait_execution_timeout:
type: int
description:
- Job execution wait timeout in seconds.
- If the timeout is reached, the job will be aborted.
- Keep in mind that there is a sleep based on I(wait_execution_delay) after each job status check.
default: 120
abort_on_timeout:
type: bool
description:
- Send a job abort request if exceeded the I(wait_execution_timeout) specified.
default: false
extends_documentation_fragment:
- community.general.rundeck
- url
'''
EXAMPLES = '''
- name: Run a Rundeck job
community.general.rundeck_job_run:
url: "https://rundeck.example.org"
api_version: 39
api_token: "mytoken"
job_id: "xxxxxxxxxxxxxxxxx"
register: rundeck_job_run
- name: Show execution info
ansible.builtin.debug:
var: rundeck_job_run.execution_info
- name: Run a Rundeck job with options
community.general.rundeck_job_run:
url: "https://rundeck.example.org"
api_version: 39
api_token: "mytoken"
job_id: "xxxxxxxxxxxxxxxxx"
job_options:
option_1: "value_1"
option_2: "value_3"
option_3: "value_3"
register: rundeck_job_run
- name: Run a Rundeck job with timeout, delay between status check and abort on timeout
community.general.rundeck_job_run:
url: "https://rundeck.example.org"
api_version: 39
api_token: "mytoken"
job_id: "xxxxxxxxxxxxxxxxx"
wait_execution_timeout: 30
wait_execution_delay: 10
abort_on_timeout: true
register: rundeck_job_run
- name: Schedule a Rundeck job
community.general.rundeck_job_run:
url: "https://rundeck.example.org"
api_version: 39
api_token: "mytoken"
job_id: "xxxxxxxxxxxxxxxxx"
run_at_time: "2021-10-05T15:45:00-03:00"
register: rundeck_job_schedule
- name: Fire-and-forget a Rundeck job
community.general.rundeck_job_run:
url: "https://rundeck.example.org"
api_version: 39
api_token: "mytoken"
job_id: "xxxxxxxxxxxxxxxxx"
wait_execution: false
register: rundeck_job_run
'''
RETURN = '''
execution_info:
description: Rundeck job execution metadata.
returned: always
type: dict
sample: {
"msg": "Job execution succeeded!",
"execution_info": {
"id": 1,
"href": "https://rundeck.example.org/api/39/execution/1",
"permalink": "https://rundeck.example.org/project/myproject/execution/show/1",
"status": "succeeded",
"project": "myproject",
"executionType": "user",
"user": "admin",
"date-started": {
"unixtime": 1633449020784,
"date": "2021-10-05T15:50:20Z"
},
"date-ended": {
"unixtime": 1633449026358,
"date": "2021-10-05T15:50:26Z"
},
"job": {
"id": "697af0c4-72d3-4c15-86a3-b5bfe3c6cb6a",
"averageDuration": 4917,
"name": "Test",
"group": "",
"project": "myproject",
"description": "",
"options": {
"exit_code": "0"
},
"href": "https://rundeck.example.org/api/39/job/697af0c4-72d3-4c15-86a3-b5bfe3c6cb6a",
"permalink": "https://rundeck.example.org/project/myproject/job/show/697af0c4-72d3-4c15-86a3-b5bfe3c6cb6a"
},
"description": "sleep 5 && echo 'Test!' && exit ${option.exit_code}",
"argstring": "-exit_code 0",
"serverUUID": "5b9a1438-fa3a-457e-b254-8f3d70338068",
"successfulNodes": [
"localhost"
],
"output": "Test!"
}
}
'''
# Modules import
import json
from datetime import datetime, timedelta
from time import sleep
from ansible.module_utils.basic import AnsibleModule
from ansible.module_utils.common.text.converters import to_native
from ansible.module_utils.six.moves.urllib.parse import quote
from ansible_collections.community.general.plugins.module_utils.rundeck import (
api_argument_spec,
api_request
)
class RundeckJobRun(object):
def __init__(self, module):
self.module = module
self.url = self.module.params["url"]
self.api_version = self.module.params["api_version"]
self.job_id = self.module.params["job_id"]
self.job_options = self.module.params["job_options"] or {}
self.filter_nodes = self.module.params["filter_nodes"] or ""
self.run_at_time = self.module.params["run_at_time"] or ""
self.loglevel = self.module.params["loglevel"].upper()
self.wait_execution = self.module.params['wait_execution']
self.wait_execution_delay = self.module.params['wait_execution_delay']
self.wait_execution_timeout = self.module.params['wait_execution_timeout']
self.abort_on_timeout = self.module.params['abort_on_timeout']
for k, v in self.job_options.items():
if not isinstance(v, str):
self.module.exit_json(
msg="Job option '%s' value must be a string" % k,
execution_info={}
)
def job_status_check(self, execution_id):
response = dict()
timeout = False
due = datetime.now() + timedelta(seconds=self.wait_execution_timeout)
while not timeout:
endpoint = "execution/%d" % execution_id
response = api_request(module=self.module, endpoint=endpoint)[0]
output = api_request(module=self.module,
endpoint="execution/%d/output" % execution_id)
log_output = "\n".join([x["log"] for x in output[0]["entries"]])
response.update({"output": log_output})
if response["status"] == "aborted":
break
elif response["status"] == "scheduled":
self.module.exit_json(msg="Job scheduled to run at %s" % self.run_at_time,
execution_info=response,
changed=True)
elif response["status"] == "failed":
self.module.fail_json(msg="Job execution failed",
execution_info=response)
elif response["status"] == "succeeded":
self.module.exit_json(msg="Job execution succeeded!",
execution_info=response)
if datetime.now() >= due:
timeout = True
break
# Wait for 5s before continue
sleep(self.wait_execution_delay)
response.update({"timed_out": timeout})
return response
def job_run(self):
response, info = api_request(
module=self.module,
endpoint="job/%s/run" % quote(self.job_id),
method="POST",
data={
"loglevel": self.loglevel,
"options": self.job_options,
"runAtTime": self.run_at_time,
"filter": self.filter_nodes
}
)
if info["status"] != 200:
self.module.fail_json(msg=info["msg"])
if not self.wait_execution:
self.module.exit_json(msg="Job run send successfully!",
execution_info=response)
job_status = self.job_status_check(response["id"])
if job_status["timed_out"]:
if self.abort_on_timeout:
api_request(
module=self.module,
endpoint="execution/%s/abort" % response['id'],
method="GET"
)
abort_status = self.job_status_check(response["id"])
self.module.fail_json(msg="Job execution aborted due the timeout specified",
execution_info=abort_status)
self.module.fail_json(msg="Job execution timed out",
execution_info=job_status)
def main():
argument_spec = api_argument_spec()
argument_spec.update(dict(
job_id=dict(required=True, type="str"),
job_options=dict(type="dict"),
filter_nodes=dict(type="str"),
run_at_time=dict(type="str"),
wait_execution=dict(type="bool", default=True),
wait_execution_delay=dict(type="int", default=5),
wait_execution_timeout=dict(type="int", default=120),
abort_on_timeout=dict(type="bool", default=False),
loglevel=dict(
type="str",
choices=["debug", "verbose", "info", "warn", "error"],
default="info"
)
))
module = AnsibleModule(
argument_spec=argument_spec,
supports_check_mode=False
)
if module.params["api_version"] < 14:
module.fail_json(msg="API version should be at least 14")
rundeck = RundeckJobRun(module)
rundeck.job_run()
if __name__ == "__main__":
main()
|
py
|
1a591c250bbeb6a206e444e545478c5ec7267cf2
|
# Copyright (C) 2019 Project AGI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model base class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
from sklearn.model_selection import learning_curve
class Model:
"""
The base class for building a classifcation models and running inference
on them.
"""
__metaclass__ = abc.ABCMeta
def __init__(self, hparams, batch_size=None, num_classes=None,
summary_dir=None, verbose=False):
"""
Initializes the model parameters.
Args:
hparams: The hyperparameters for the model as
tf.contrib.training.HParams.
batch_size: An integer, the number of samples in a batch.
num_classes: An integer, the number of classes.
summary_dir: The output directory for the results.
verbose: A boolean to enable verbose logging.
"""
self._model = None
self._hparams = hparams
self._verbose = verbose
self._batch_size = batch_size
self._num_classes = num_classes
self._summary_dir = summary_dir
@abc.abstractstaticmethod
def default_hparams():
"""Builds an HParam object with default hyperparameters."""
raise NotImplementedError('Not implemented')
@abc.abstractmethod
def train(self, features, labels, seed=None):
"""
Setup the model with specified hyperparameters and train the model.
Args:
features: A numpy n-dimensional array containing the features in
the shape of samples x features.
labels: A numpy array containing the label for each sample.
seed: An integer used to specify the randomness seed.
"""
raise NotImplementedError('Not implemented')
@abc.abstractmethod
def evaluate(self, features, labels):
"""
Evaluates the trained model using the specified features and labels.
Args:
features: A numpy n-dimensional array containing the features in
the shape of samples x features.
labels: A numpy array containing the label for each sample.
Returns:
accuracy: The accuracy score of the model.
predictions: The labels predicted by the model for each sample.
"""
raise NotImplementedError('Not implemented')
def learning_curve(self, features, labels):
"""Simple wrapper around sklearn's learning curve module"""
return learning_curve(self._model, features, labels)
|
py
|
1a591cecd9ebb408be733b641e6bd37ddf86e8a9
|
"""train finetune"""
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
from mindspore import context
from mindspore.context import ParallelMode
import mindspore.dataset as ds
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.common import set_seed
from src.args import args
from src.data.imagenet import ImgData
from src.data.srdata import SRData
from src.data.div2k import DIV2K
from src.data.bicubic import bicubic
from src.ipt_model import IPT
from src.utils import Trainer
def train_net(distribute, imagenet):
"""Train net with finetune"""
set_seed(1)
device_id = int(os.getenv('DEVICE_ID', '0'))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
if imagenet == 1:
train_dataset = ImgData(args)
elif not args.derain:
train_dataset = DIV2K(args, name=args.data_train, train=True, benchmark=False)
train_dataset.set_scale(args.task_id)
else:
train_dataset = SRData(args, name=args.data_train, train=True, benchmark=False)
train_dataset.set_scale(args.task_id)
if distribute:
init()
rank_id = get_rank()
rank_size = get_group_size()
parallel_mode = ParallelMode.DATA_PARALLEL
context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=rank_size, gradients_mean=True)
print('Rank {}, group_size {}'.format(rank_id, rank_size))
if imagenet == 1:
train_de_dataset = ds.GeneratorDataset(train_dataset,
["HR", "Rain", "LRx2", "LRx3", "LRx4", "scales", "filename"],
num_shards=rank_size, shard_id=rank_id, shuffle=True)
else:
train_de_dataset = ds.GeneratorDataset(train_dataset, ["LR", "HR", "idx", "filename"],
num_shards=rank_size, shard_id=rank_id, shuffle=True)
else:
if imagenet == 1:
train_de_dataset = ds.GeneratorDataset(train_dataset,
["HR", "Rain", "LRx2", "LRx3", "LRx4", "scales", "filename"],
shuffle=True)
else:
train_de_dataset = ds.GeneratorDataset(train_dataset, ["LR", "HR", "idx", "filename"], shuffle=True)
if args.imagenet == 1:
resize_fuc = bicubic()
train_de_dataset = train_de_dataset.batch(
args.batch_size,
input_columns=["HR", "Rain", "LRx2", "LRx3", "LRx4", "scales", "filename"],
output_columns=["LR", "HR", "idx", "filename"], drop_remainder=True,
per_batch_map=resize_fuc.forward)
else:
train_de_dataset = train_de_dataset.batch(args.batch_size, drop_remainder=True)
train_loader = train_de_dataset.create_dict_iterator(output_numpy=True)
net_m = IPT(args)
print("Init net weights successfully")
if args.pth_path:
param_dict = load_checkpoint(args.pth_path)
load_param_into_net(net_m, param_dict)
print("Load net weight successfully")
train_func = Trainer(args, train_loader, net_m)
for epoch in range(0, args.epochs):
train_func.update_learning_rate(epoch)
train_func.train()
if __name__ == "__main__":
train_net(distribute=args.distribute, imagenet=args.imagenet)
|
py
|
1a591cf7eae5c9833df722104b609d2f88d045cf
|
# coding: utf-8
from __future__ import absolute_import
from bitmovin_api_sdk.common import BaseApi, BitmovinApiLoggerBase
from bitmovin_api_sdk.common.poscheck import poscheck_except
from bitmovin_api_sdk.models.audio_volume_filter import AudioVolumeFilter
from bitmovin_api_sdk.models.bitmovin_response import BitmovinResponse
from bitmovin_api_sdk.models.response_envelope import ResponseEnvelope
from bitmovin_api_sdk.models.response_error import ResponseError
from bitmovin_api_sdk.encoding.filters.audio_volume.customdata.customdata_api import CustomdataApi
from bitmovin_api_sdk.encoding.filters.audio_volume.audio_volume_filter_list_query_params import AudioVolumeFilterListQueryParams
class AudioVolumeApi(BaseApi):
@poscheck_except(2)
def __init__(self, api_key, tenant_org_id=None, base_url=None, logger=None):
# type: (str, str, str, BitmovinApiLoggerBase) -> None
super(AudioVolumeApi, self).__init__(
api_key=api_key,
tenant_org_id=tenant_org_id,
base_url=base_url,
logger=logger
)
self.customdata = CustomdataApi(
api_key=api_key,
tenant_org_id=tenant_org_id,
base_url=base_url,
logger=logger
)
def create(self, audio_volume_filter, **kwargs):
# type: (AudioVolumeFilter, dict) -> AudioVolumeFilter
"""Create Audio Volume Filter
:param audio_volume_filter: The Audio Volume Filter to be created
:type audio_volume_filter: AudioVolumeFilter, required
:return: Audio volume details
:rtype: AudioVolumeFilter
"""
return self.api_client.post(
'/encoding/filters/audio-volume',
audio_volume_filter,
type=AudioVolumeFilter,
**kwargs
)
def delete(self, filter_id, **kwargs):
# type: (string_types, dict) -> BitmovinResponse
"""Delete Audio Volume Filter
:param filter_id: Id of the Audio volume configuration.
:type filter_id: string_types, required
:return: Id of the Audio volume.
:rtype: BitmovinResponse
"""
return self.api_client.delete(
'/encoding/filters/audio-volume/{filter_id}',
path_params={'filter_id': filter_id},
type=BitmovinResponse,
**kwargs
)
def get(self, filter_id, **kwargs):
# type: (string_types, dict) -> AudioVolumeFilter
"""Audio Volume Filter Details
:param filter_id: Id of the audio volume configuration.
:type filter_id: string_types, required
:return: Audio volume details
:rtype: AudioVolumeFilter
"""
return self.api_client.get(
'/encoding/filters/audio-volume/{filter_id}',
path_params={'filter_id': filter_id},
type=AudioVolumeFilter,
**kwargs
)
def list(self, query_params=None, **kwargs):
# type: (AudioVolumeFilterListQueryParams, dict) -> AudioVolumeFilter
"""List Audio Volume Filters
:param query_params: Query parameters
:type query_params: AudioVolumeFilterListQueryParams
:return: List of Audio volume ids
:rtype: AudioVolumeFilter
"""
return self.api_client.get(
'/encoding/filters/audio-volume',
query_params=query_params,
pagination_response=True,
type=AudioVolumeFilter,
**kwargs
)
|
py
|
1a591d2aa1881c5be9905a6dfd559d8e91cac866
|
# -*- coding: utf-8 -*-
"""
DWX_ZMQ_Execution.py
--
@author: Darwinex Labs (www.darwinex.com)
Copyright (c) 2019 onwards, Darwinex. All rights reserved.
Licensed under the BSD 3-Clause License, you may not use this file except
in compliance with the License.
You may obtain a copy of the License at:
https://opensource.org/licenses/BSD-3-Clause
"""
from pandas import to_datetime
from time import sleep
class DWX_ZMQ_Execution():
def __init__(self, _zmq):
self._zmq = _zmq
##########################################################################
def _execute_(self,
_exec_dict,
_verbose=False,
_delay=0.1,
_wbreak=10):
_check = ''
# Reset thread data output
self._zmq._set_response_(None)
# OPEN TRADE
if _exec_dict['_action'] == 'OPEN':
_check = '_action'
self._zmq._DWX_MTX_NEW_TRADE_(_order=_exec_dict)
# CLOSE TRADE
elif _exec_dict['_action'] == 'CLOSE':
_check = '_response_value'
self._zmq._DWX_MTX_CLOSE_TRADE_BY_TICKET_(_exec_dict['_ticket'])
if _verbose:
print('\n[{}] {} -> MetaTrader'.format(_exec_dict['_comment'],
str(_exec_dict)))
# While loop start time reference
_ws = to_datetime('now')
# While data not received, sleep until timeout
while self._zmq._valid_response_('zmq') == False:
sleep(_delay)
if (to_datetime('now') - _ws).total_seconds() > (_delay * _wbreak):
break
# If data received, return DataFrame
if self._zmq._valid_response_('zmq'):
if _check in self._zmq._get_response_().keys():
return self._zmq._get_response_()
# Default
return None
##########################################################################
|
py
|
1a591d960b8061f5af062ac30ab38866b6a247d9
|
n = int(input())
unique_names = set()
for _ in range(n):
name = input()
unique_names.add(name)
for current_name in unique_names:
print(current_name)
|
py
|
1a591df53eab1293676e8bfe07a3caa2fae1bd28
|
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import unicodedata
import os
import logging
from .file_utils import cached_path
logger = logging.getLogger(__name__)
PRETRAINED_VOCAB_ARCHIVE_MAP = {
'bert-base-uncased': "/media/disk2/jennybae/bert-base-uncased-vocab.txt",
'bert-base-cased': "/media/disk2/jennybae/bert-base-cased-vocab.txt",
'bert-large-uncased': "/media/disk2/jennybae/bert-large-uncased-vocab.txt",
# 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
# 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
# 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
'bert-base-uncased': 512,
'bert-large-uncased': 512,
'bert-base-cased': 512,
'bert-large-cased': 512,
'bert-base-multilingual-uncased': 512,
'bert-base-multilingual-cased': 512,
'bert-base-chinese': 512,
}
VOCAB_NAME = 'vocab.txt'
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
index = 0
with open(vocab_file, "r", encoding="utf-8") as reader:
while True:
token = reader.readline()
if not token:
break
token = token.strip()
vocab[token] = index
index += 1
return vocab
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a peice of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class BertTokenizer(object):
"""Runs end-to-end tokenization: punctuation splitting + wordpiece"""
def __init__(self, vocab_file, do_lower_case=True, max_len=None):
if not os.path.isfile(vocab_file):
raise ValueError(
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict(
[(ids, tok) for tok, ids in self.vocab.items()])
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
self.max_len = max_len if max_len is not None else int(1e12)
def tokenize(self, text):
split_tokens = []
for token in self.basic_tokenizer.tokenize(text):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def convert_tokens_to_ids(self, tokens):
"""Converts a sequence of tokens into ids using the vocab."""
ids = []
for token in tokens:
ids.append(self.vocab[token])
if len(ids) > self.max_len:
raise ValueError(
"Token indices sequence length is longer than the specified maximum "
" sequence length for this BERT model ({} > {}). Running this"
" sequence through BERT will result in indexing errors".format(len(ids), self.max_len)
)
return ids
def convert_ids_to_tokens(self, ids):
"""Converts a sequence of ids in wordpiece tokens using the vocab."""
tokens = []
for i in ids:
tokens.append(self.ids_to_tokens[i])
return tokens
@classmethod
def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a PreTrainedBertModel from a pre-trained model file.
Download and cache the pre-trained model file if needed.
"""
if pretrained_model_name in PRETRAINED_VOCAB_ARCHIVE_MAP:
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name]
else:
vocab_file = pretrained_model_name
if os.path.isdir(vocab_file):
vocab_file = os.path.join(vocab_file, VOCAB_NAME)
# redirect to the cache, if necessary
try:
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
except FileNotFoundError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find any file "
"associated to this path or url.".format(
pretrained_model_name,
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
vocab_file))
return None
if resolved_vocab_file == vocab_file:
logger.info("loading vocabulary file {}".format(vocab_file))
else:
logger.info("loading vocabulary file {} from cache at {}".format(
vocab_file, resolved_vocab_file))
if pretrained_model_name in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
# than the number of positional embeddings
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name]
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
# Instantiate tokenizer.
tokenizer = cls(resolved_vocab_file, *inputs, **kwargs)
return tokenizer
class BasicTokenizer(object):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def __init__(self, do_lower_case=True):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self.do_lower_case = do_lower_case
def tokenize(self, text):
"""Tokenizes a piece of text."""
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case:
token = token.lower()
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xfffd or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class WordpieceTokenizer(object):
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""Tokenizes a piece of text into its word pieces.
This uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.
For example:
input = "unaffable"
output = ["un", "##aff", "##able"]
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer`.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
|
py
|
1a591e46c189b69cf6e1f956f0a4f5066fdd75fb
|
import os, tempfile, subprocess
from string import Template
from PuzzleLib import Config
from PuzzleLib.Compiler.JIT import getCacheDir, computeHash, FileLock
from PuzzleLib.Cuda.SourceModule import SourceModule, ElementwiseKernel, ElementHalf2Kernel, ReductionKernel
from PuzzleLib.Cuda.SourceModule import eltwiseTest, reductionTest
from PuzzleLib.Hip import Driver as HipDriver
hipWarpBit, hipBlockBit = 6, 8
hipWarpSize, hipBlockSize = 1 << hipWarpBit, 1 << hipBlockBit
class HipSourceModule(SourceModule):
Driver = HipDriver
runtimeHeader = """
#include <hip/hip_runtime.h>
#define __shfl_xor_sync(mask, value, laneMask, ...) __shfl_xor(value, laneMask, __VA_ARGS__)
#define __shfl_up_sync(mask, value, delta, ...) __shfl_up(value, delta, __VA_ARGS__)
"""
def __init__(self, source, options=None, includes=None, externC=False, verbose=True, debug=False, recompile=False,
name=None):
super().__init__(source, options, includes, externC, verbose, debug, name)
self.recompile = recompile
self.includes = [] if self.includes is None else self.includes
def build(self):
source = self.source.replace("cuda_fp16.h", "hip/hip_fp16.h")
source = ("%sextern \"C\"\n{\n%s\n}\n" if self.externC else "%s%s") % (self.runtimeHeader, source)
cachedir = getCacheDir(os.path.join(Config.libname, Config.Backend.hip.name))
with FileLock(cachedir):
try:
codename = self.tryBuild(source, cachedir)
except subprocess.CalledProcessError as e:
log = e.output.decode()
text = log if self.debug else "%s\nSource:\n%s" % (
log,
"\n".join("%-4s %s" % (i + 1, line) for i, line in enumerate(source.splitlines(keepends=False)))
)
raise self.Driver.RtcError(text)
with open(codename, mode="rb") as f:
hsaco = f.read()
self.cumod = self.Driver.Module(hsaco)
def tryBuild(self, source, cachedir):
options, includes = self.options, self.includes
hashsum = computeHash(source, *options, *includes)
codepath = os.path.join(cachedir, hashsum)
name, srcext = "module" if self.name is None else self.name, ".hip.cpp"
codename = os.path.join(codepath, "%s.code" % name)
sourcename = os.path.join(codepath, "%s%s" % (name, srcext))
if not os.path.exists(codename) or self.recompile:
os.makedirs(codepath, exist_ok=True)
args = ["hipcc", "--genco"] + options + ["-o", codename]
stderr = subprocess.STDOUT if self.verbose else subprocess.DEVNULL
Config.getLogger().debug("No cache found for HIP extension '%s', performing compilation ...", name)
if not self.debug:
f = tempfile.NamedTemporaryFile(mode="w", encoding="utf-8", suffix=srcext, delete=False)
try:
with f:
f.write(source)
subprocess.check_output(args + [f.name], stderr=stderr)
finally:
os.remove(f.name)
else:
with open(sourcename, mode="w", encoding="utf-8") as f:
f.write(source)
subprocess.check_output(args + [sourcename], stderr=stderr)
else:
Config.getLogger().debug("Found cached compilation for HIP extension '%s', skipping compilation ...", name)
return codename
@classmethod
def getDefaultOptions(cls):
deviceIdx = cls.Driver.Device.getCurrent()
return ["--targets gfx%s" % cls.Driver.Device(deviceIdx).getArch()]
class HipEltwiseKernel(ElementwiseKernel):
Driver = HipDriver
SourceModule = HipSourceModule
warpBit, warpSize = hipWarpBit, hipWarpSize
blockBit, blockSize = hipBlockBit, hipBlockSize
class HipEltHalf2Kernel(ElementHalf2Kernel):
Driver = HipDriver
SourceModule = HipSourceModule
warpBit, warpSize = hipWarpBit, hipWarpSize
blockBit, blockSize = hipBlockBit, hipBlockSize
class HipReductionKernel(ReductionKernel):
Driver = HipDriver
SourceModule = HipSourceModule
warpBit, warpSize = hipWarpBit, hipWarpSize
blockBit, blockSize = hipBlockBit, hipBlockSize
reduceTmpl = Template("""
#undef READ_AND_MAP
#undef REDUCE
#define READ_AND_MAP(i) ($mapExpr)
#define REDUCE(a, b) ($reduceExpr)
extern "C" __global__ void $name($arguments, $T *partials, int size)
{
__shared__ $T sdata[$warpSize];
int tid = threadIdx.x;
int gid = tid + blockIdx.x * $NT;
$T acc = $neutral;
for (int i = gid; i < size; i += $NT * gridDim.x)
acc = REDUCE(acc, READ_AND_MAP(i));
for (int mask = $warpSize / 2; mask > 0; mask /= 2)
{
$T upval = __shfl_xor(acc, mask, $warpSize);
acc = REDUCE(acc, upval);
}
if (tid % $warpSize == 0)
sdata[tid / $warpSize] = acc;
__syncthreads();
int nwarps = $NT / $warpSize;
if (tid < $warpSize)
{
acc = (tid < nwarps) ? sdata[tid] : $neutral;
for (int mask = $warpSize / 2; mask > 0; mask /= 2)
{
$T upval = __shfl_xor(acc, mask, $warpSize);
acc = REDUCE(acc, upval);
}
}
if (tid == 0)
partials[blockIdx.x] = acc;
}
""")
def unittest():
from PuzzleLib.Hip import Backend
for deviceIdx in range(Backend.getDeviceCount()):
bnd = Backend.getBackend(deviceIdx)
eltwiseTest(bnd)
reductionTest(bnd)
if __name__ == "__main__":
unittest()
|
py
|
1a591f71a097fb277a222e3b29d0120fbc628fc4
|
# Written by Hannah Horng ([email protected])
import pandas as pd
import neuroCombat as nC
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
from scipy.stats import ranksums, ttest_ind, ttest_rel, ks_2samp
import os
def NestedComBat(dat, covars, batch_list, categorical_cols=None, continuous_cols=None, drop=False,
write_p=False, plotting=False, filepath=''):
"""
Completes sequential nested ComBat harmonization on an input DataFrame. Order is determined by number of features
with statistically significant differences in distribution (KS test) due to a particular batch effect.
Arguments
---------
data : DataFrame of original data with shape (features, samples)
covars : DataFrame with shape (samples, covariates) corresponding to original data. All variables should be label-
encoded (i.e. strings converted to integer designations)
batch_list : list of strings indicating batch effect column names within covars (i.e. ['Manufacturer', 'CE'...])
categorical_cols : string or list of strings of categorical variables to adjust for
continuous_cols : string or list of strings of continuous variables to adjust for
drop : Boolean, if True -- features with significant differences in distribution due to the batch effect being
harmonized are dropped with each iteration (corresponds to NestedD)
write_p : Boolean, if True -- KS test p-values will be written as a CSV into the directory created from filepath
plotting : Boolean, if True -- kernel density plots will be written as image files into the directory created from
filepath
filepath : root directory path for saving KS test p-values and kernel density plots created during harmonization
Returns
-------
new_dat : DataFrame with shape (features, samples) that has been sequentially harmonized with Nested ComBat
"""
p_dict = {}
count_dict = {}
f_dict = {}
print('ROUND 1:')
for a in range(len(batch_list)):
batch_col = batch_list[a]
print('Harmonizing by ' + batch_col + '...')
filepath2 = filepath + 'Round 1/' + batch_col + '/'
if not os.path.exists(filepath2):
os.makedirs(filepath2)
# RUN COMBAT
print('ComBat with Raw Data...')
output = nC.neuroCombat(dat, covars, batch_col, continuous_cols=continuous_cols,
categorical_cols=categorical_cols)['data']
output_df = pd.DataFrame.from_records(output.T)
output_df.columns = dat.T.columns
f_dict[batch_col] = output_df
if plotting:
combat_histograms(dat.T, output_df, covars, covars, batch_col, filepath2)
if write_p:
p_values = combat_kstest(dat.T, output_df, covars, covars, batch_col, write=True, filepath=filepath2)
else:
p_values = combat_kstest(dat.T, output_df, covars, covars, batch_col)
p_values.index = output_df.columns
p_dict[batch_col] = p_values['ComBat']
count_dict[batch_col] = len(p_values[p_values['ComBat'] < .05])
drop_feature = [key for key, value in count_dict.items() if value == min(count_dict.values())][0]
# Iteration
batch_list2 = batch_list.copy()
batch_list2.remove(drop_feature)
new_data_df = f_dict[drop_feature]
new_pvalues = p_dict[drop_feature]
new_dat = new_data_df.T
if drop:
new_dat = new_data_df.T[new_pvalues > .05] # Dropping every iteration
c = 1
while len(batch_list2) > 0:
print('ROUND ' + str(c+1) + ':')
p_dict = {}
count_dict = {}
f_dict = {}
c = c+1
for b in range(len(batch_list2)):
batch_col = batch_list2[b]
print('Harmonizing by ' + batch_col + '...')
filepath2 = filepath+'Round '+str(c) + '/' + batch_col+'/'
if not os.path.exists(filepath2):
os.makedirs(filepath2)
# RUN COMBAT
# print('ComBat with Raw Data...')
output = nC.neuroCombat(new_dat, covars, batch_col, continuous_cols=continuous_cols, categorical_cols=categorical_cols)['data']
output_df = pd.DataFrame.from_records(output.T)
output_df.columns = new_dat.T.columns
f_dict[batch_col] = output_df
if plotting:
combat_histograms(new_dat.T, output_df, covars, covars, batch_col, filepath2)
if write_p:
p_values = combat_kstest(new_dat.T, output_df, covars, covars, batch_col, write=True, filepath=filepath2)
else:
p_values = combat_kstest(new_dat.T, output_df, covars, covars, batch_col)
p_values.index = output_df.columns
p_dict[batch_col] = p_values['ComBat']
count_dict[batch_col] = len(p_values[p_values['ComBat'] < .05])
drop_feature = [key for key, value in count_dict.items() if value == min(count_dict.values())][0]
new_data_df = f_dict[drop_feature]
new_pvalues = p_dict[drop_feature]
if drop:
new_dat = new_data_df.T[new_pvalues > .05] # Iteration + Dropping
else:
new_dat = new_data_df.T
batch_list2.remove(drop_feature)
output_df = pd.DataFrame.from_records(new_dat.T)
output_df.columns = new_dat.T.columns
return output_df
def combat_kstest(data, output, covars1, covars2, batch_col, filepath='', write=False):
"""
Calculating KS test for differences in distribution due to batch effect before and after harmonization
*Note that this is differs from the version in GMMComBat only by file destination naming
Arguments
---------
data : DataFrame of original data with shape (samples, features)
output: DataFrame of harmonized data with shape (samples, features)
covars1 : DataFrame with shape (samples, covariates) corresponding to original data
covars2 : DataFrame with shape (samples, covariates) corresponding to harmonized data
batch_col : string indicating batch/imaging parameter name in covars
filepath : write destination for ks p-value DataFrame if write is True
write: Boolean, set to True to save ks p-value DataFrame
Returns
-------
p_df : DataFrame with two colums corresponding to KS test p-value testing for significant differences in
distribution attributable to the batch effect specified by batch_col
"""
data_keys = data.keys()
batch_var1 = covars1[batch_col]
batch_var2 = covars2[batch_col]
data_0 = data[batch_var1 == 0]
data_1 = data[batch_var1 == 1]
output_0 = output[batch_var2 == 0]
output_1 = output[batch_var2 == 1]
# KS Test (more generalized differences in distribution)
p_before = []
p_after = []
for m in range(0, data.shape[1]):
p_value1 = ks_2samp(data_0.iloc[:, m], data_1.iloc[:, m])
p_value2 = ks_2samp(output_0.iloc[:, m], output_1.iloc[:, m])
p_before.append(p_value1.pvalue)
p_after.append(p_value2.pvalue)
p_df = pd.DataFrame({'Raw': p_before, 'ComBat': p_after})
if write:
p_df = pd.DataFrame({'Raw': p_before, 'ComBat': p_after})
p_df.index = data_keys
p_df.to_csv(filepath + '_' + batch_col + '_feature_ks_values.csv')
return p_df
def combat_histograms(data, output, covars1, covars2, batch_col, filepath):
"""
Plots kernel density plots separated by batch effect groups and before vs. after ComBat harmonization
Arguments
---------
data : DataFrame of original data with shape (samples, features)
output: DataFrame of harmonized data with shape (samples, features)
covars1 : DataFrame with shape (samples, covariates) corresponding to original data
covars2 : DataFrame with shape (samples, covariates) corresponding to harmonized data
batch_col : string indicating batch/imaging parameter name in covars
filepath : write destination for kernel density plots
"""
print('Plotting histograms...')
data_keys = data.keys()
batch_var1 = covars1[batch_col]
batch_var2 = covars2[batch_col]
data_0 = data[batch_var1 == 0]
data_1 = data[batch_var1 == 1]
output_0 = output[batch_var2 == 0]
output_1 = output[batch_var2 == 1]
for k in range(0, data.shape[1]):
plt.figure()
data_0.iloc[:, k].plot.kde()
data_1.iloc[:, k].plot.kde()
output_0.iloc[:, k].plot.kde()
output_1.iloc[:, k].plot.kde()
plt.xlabel(data_keys[k])
leg = ["0", "1", "0_ComBat", "1_ComBat"]
plt.legend(leg, loc='upper right')
plt.rcParams.update({'font.size': 12})
filename = filepath + batch_col + '_' + 'histogram_' + data_keys[k] + ".png"
plt.savefig(filename, bbox_inches='tight')
plt.close()
def feature_kstest_histograms(dat, covars, batch_list, filepath):
"""
Plots kernel density plots and computes KS test p-values separated by batch effect groups for a dataset (intended
to assess differences in distribution to all batch effects in batch_list following harmonization with
NestedComBat
*Note that this is differs from the version in GMMComBat only by file destination naming
Arguments
---------
data : DataFrame of original data with shape (samples, features)
output: DataFrame of harmonized data with shape (samples, features)
covars : DataFrame with shape (samples, covariates) corresponding to original data. All variables should be label-
encoded (i.e. strings converted to integer designations)
batch_list : list of strings indicating batch effect column names within covars (i.e. ['Manufacturer', 'CE'...])
filepath : write destination for kernel density plots
"""
print('Plotting final feature histograms...')
p_df = pd.DataFrame()
for batch_col in batch_list:
p = []
split_col = covars[batch_col]
filepath2 = filepath + 'feature_histograms/' + batch_col + '/'
if not os.path.exists(filepath2):
os.makedirs(filepath2)
for feature in dat:
plt.figure()
dat[feature][split_col == 0].plot.kde()
dat[feature][split_col == 1].plot.kde()
plt.xlabel(feature)
filename = filepath2 + feature + '.png'
plt.savefig(filename, bbox_inches='tight')
plt.close()
p_value = ks_2samp(dat[feature][split_col == 0], dat[feature][split_col == 1])
p.append(p_value.pvalue)
p_df[batch_col] = p
p_df.index = dat.keys()
p_df.to_csv(filepath + 'final_nested_ks_values.csv')
|
py
|
1a591f9b0847f59ba85be9b6301969e0673b8023
|
import subprocess
import re
# ************************************************
# remove_custom_emoji
# 絵文字IDは読み上げない
# ************************************************
def remove_custom_emoji(text):
#pattern = r'<:[a-zA-Z0-9_]+:[0-9]+>' # カスタム絵文字のパターン
pattern = r'<:' # カスタム絵文字のパターン
text = re.sub(pattern,'',text) # 置換処理
pattern = r':[0-9]+>' # カスタム絵文字のパターン
return re.sub(pattern,'',text) # 置換処理
# ************************************************
# exclude_url
# URLなら省略
# ************************************************
def exclude_url(text):
pattern = "https?://[\w/:%#\$&\?\(\)~\.=\+\-]+"
return re.sub(pattern,'URL',text) # 置換処理
# ************************************************
# remove_picture
# 画像ファイルなら読み上げない
# ************************************************
def remove_picture(text):
pattern = r'.*(\.jpg|\.jpeg|\.gif|\.png|\.bmp)'
return re.sub(pattern,'画像',text) # 置換処理
# ************************************************
# remove_command
# コマンドは読み上げない
# ************************************************
def remove_command(text):
pattern = r'^\!.*'
return re.sub(pattern,'',text) # 置換処理
# ************************************************
# remove_log
# 参加ログは読み上げない
# ************************************************
def remove_log(text):
pattern = r'(\【VC参加ログ\】.*)'
return re.sub(pattern,'',text) # 置換処理
# ************************************************
# user_custam
# ユーザ登録した文字を読み替える
# ************************************************
def user_custam(text):
f = open('user_dictionary.txt', 'r')
line = f.readline()
while line:
pattern = line.strip().split(',')
if pattern[0] in text:
text = text.replace(pattern[0], pattern[1])
print('置換後のtext:'+text)
break
else:
line = f.readline()
f.close()
return text
# ************************************************
# creat_WAV
# message.contentをテキストファイルと音声ファイルに書き込む
# 引数:inputText
# 書き込みファイル:input.txt、output.wav
# ************************************************
def creat_WAV(text):
text = remove_custom_emoji(text) # 絵文字IDは読み上げない
text = exclude_url(text) # URLなら省略
open_jtalk = ['jtalk/bin/open_jtalk']
mech = ['-x', 'jtalk/dic']
htsvoice = ['-m', 'jtalk/mei/mei_normal.htsvoice']
speed = ['-r', '1.0']
outwav = ['-ow', 'output.wav']
cmd = open_jtalk + mech + htsvoice + speed + outwav
c = subprocess.Popen(' '.join(cmd), stdin=subprocess.PIPE, shell=True)
c.stdin.write(text.encode())
c.stdin.close()
c.wait()
if __name__ == '__main__':
creat_WAV('hello world')
|
py
|
1a591feea790c02e5d0f7979a6a861527411dae1
|
'''
The Pool.map and Pool.apply will lock the main program until all a process is finished, which is quite useful if we want to obtain resuls in a particular order for certain applications.
In contrast, the async variants will submit all processes at once and retrieve the results as soon as they are finished. One more difference is that we need to use the get method after the apply_async() call in order to obtain the return values of the finished processes.
'''
from multiprocessing import Pool, current_process, cpu_count
def f(x):
return x * 2
def start_process():
print('Starting', current_process().name)
if __name__ == '__main__':
inputs = list(range(10))
print('Input :', inputs)
builtin_outputs = list(map(f, inputs))
print('Built-in:', builtin_outputs)
#number of threads to use
pool_size = cpu_count()
print("Number of processes:", pool_size)
pool = Pool(processes=pool_size, initializer=start_process)
#using pool.map()
pool_outputs = pool.map(f, inputs)
#using pool.apply()
#pool_outputs = [pool.apply(f, args=(x,)) for x in inputs]
#using pool.apply_async()
#pool_outputs = [pool.apply_async(f, args=(x,)) for x in inputs]
#need to use p.get()
#pool_outputs = [p.get() for p in pool_outputs]
pool.close() # no more tasks
pool.join() # wrap up current tasks
print('Pool:', pool_outputs)
|
py
|
1a592054ba2da445f7f83360c1a02aa890893669
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
class Contest:
def __init__(self):
self.name = None
self.url = None
self.start_time = None
self.end_time = None
self.problems = None
def getProblems(self, ):
pass
def refreshContest(self, ):
pass
|
py
|
1a59207735b7d2f7f32821d82f09140d5ad55a2a
|
from operator import attrgetter
import pyangbind.lib.xpathhelper as xpathhelper
from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType
from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType
from pyangbind.lib.base import PybindBase
from decimal import Decimal
from bitarray import bitarray
import __builtin__
class dad(PybindBase):
"""
This class was auto-generated by the PythonClass plugin for PYANG
from YANG module brocade-common-def - based on the path /ipv6/ipv6-global-cmds/nd-global/dad. Each member element of
the container is represented as a class variable - with a specific
YANG type.
"""
__slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__global_dad_time',)
_yang_name = 'dad'
_rest_name = 'dad'
_pybind_generated_by = 'container'
def __init__(self, *args, **kwargs):
path_helper_ = kwargs.pop("path_helper", None)
if path_helper_ is False:
self._path_helper = False
elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper):
self._path_helper = path_helper_
elif hasattr(self, "_parent"):
path_helper_ = getattr(self._parent, "_path_helper", False)
self._path_helper = path_helper_
else:
self._path_helper = False
extmethods = kwargs.pop("extmethods", None)
if extmethods is False:
self._extmethods = False
elif extmethods is not None and isinstance(extmethods, dict):
self._extmethods = extmethods
elif hasattr(self, "_parent"):
extmethods = getattr(self._parent, "_extmethods", None)
self._extmethods = extmethods
else:
self._extmethods = False
self.__global_dad_time = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..5']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(1), is_leaf=True, yang_name="global-dad-time", rest_name="time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'retransmit time interval for Neighbor solicitations, sent as part of duplicate address detection', u'alt-name': u'time'}}, namespace='urn:brocade.com:mgmt:brocade-ipv6-nd-ra', defining_module='brocade-ipv6-nd-ra', yang_type='common-def:time-interval-sec', is_config=True)
load = kwargs.pop("load", None)
if args:
if len(args) > 1:
raise TypeError("cannot create a YANG container with >1 argument")
all_attr = True
for e in self._pyangbind_elements:
if not hasattr(args[0], e):
all_attr = False
break
if not all_attr:
raise ValueError("Supplied object did not have the correct attributes")
for e in self._pyangbind_elements:
nobj = getattr(args[0], e)
if nobj._changed() is False:
continue
setmethod = getattr(self, "_set_%s" % e)
if load is None:
setmethod(getattr(args[0], e))
else:
setmethod(getattr(args[0], e), load=load)
def _path(self):
if hasattr(self, "_parent"):
return self._parent._path()+[self._yang_name]
else:
return [u'ipv6', u'ipv6-global-cmds', u'nd-global', u'dad']
def _rest_path(self):
if hasattr(self, "_parent"):
if self._rest_name:
return self._parent._rest_path()+[self._rest_name]
else:
return self._parent._rest_path()
else:
return [u'ipv6', u'nd', u'dad']
def _get_global_dad_time(self):
"""
Getter method for global_dad_time, mapped from YANG variable /ipv6/ipv6_global_cmds/nd_global/dad/global_dad_time (common-def:time-interval-sec)
"""
return self.__global_dad_time
def _set_global_dad_time(self, v, load=False):
"""
Setter method for global_dad_time, mapped from YANG variable /ipv6/ipv6_global_cmds/nd_global/dad/global_dad_time (common-def:time-interval-sec)
If this variable is read-only (config: false) in the
source YANG file, then _set_global_dad_time is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_global_dad_time() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..5']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(1), is_leaf=True, yang_name="global-dad-time", rest_name="time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'retransmit time interval for Neighbor solicitations, sent as part of duplicate address detection', u'alt-name': u'time'}}, namespace='urn:brocade.com:mgmt:brocade-ipv6-nd-ra', defining_module='brocade-ipv6-nd-ra', yang_type='common-def:time-interval-sec', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """global_dad_time must be of a type compatible with common-def:time-interval-sec""",
'defined-type': "common-def:time-interval-sec",
'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..5']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(1), is_leaf=True, yang_name="global-dad-time", rest_name="time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'retransmit time interval for Neighbor solicitations, sent as part of duplicate address detection', u'alt-name': u'time'}}, namespace='urn:brocade.com:mgmt:brocade-ipv6-nd-ra', defining_module='brocade-ipv6-nd-ra', yang_type='common-def:time-interval-sec', is_config=True)""",
})
self.__global_dad_time = t
if hasattr(self, '_set'):
self._set()
def _unset_global_dad_time(self):
self.__global_dad_time = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..5']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(1), is_leaf=True, yang_name="global-dad-time", rest_name="time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'retransmit time interval for Neighbor solicitations, sent as part of duplicate address detection', u'alt-name': u'time'}}, namespace='urn:brocade.com:mgmt:brocade-ipv6-nd-ra', defining_module='brocade-ipv6-nd-ra', yang_type='common-def:time-interval-sec', is_config=True)
global_dad_time = __builtin__.property(_get_global_dad_time, _set_global_dad_time)
_pyangbind_elements = {'global_dad_time': global_dad_time, }
|
py
|
1a5921868ea32ce6551069e612ee1686eb9fee7f
|
from django.shortcuts import render
def main_view(request):
return render(request, 'main.html')
|
py
|
1a5923b7a6317a536cca57045ff8e73a40894fce
|
import math
import scipy
import numpy as np
from scipy.fftpack import fft, dct
arr = np.array([10., 50., 100., 150., 200., 250., 100., 0])
##arr = np.array([255., 0., 0., 255., 255., 0., 0., 255])
##arr = np.array([155., 0., 0., 155., 155., 0., 0., 155])
##arr = np.array([155., 154., 153., 152., 151., 150., 149., 148])
##print dct(arr, 2)
factor = []
factor.append(16)
factor.append(15)
factor.append(14)
factor.append(13)
factor.append(11)
factor.append(9)
factor.append(6)
factor.append(3)
##bitWidth = 4
##
##factor_space = np.linspace(0,7,8)
##
##for a in factor_space:
## temp = int (round(float(math.cos(a * math.pi /16)*(2**bitWidth))))
## factor.append(temp)
## print temp
factor_arr = np.array([[factor[4],factor[4],factor[4],factor[4],factor[4],factor[4],factor[4],factor[4]],
[factor[1],factor[3],factor[5],factor[7],-factor[7],-factor[5],-factor[3],-factor[1]],
[factor[2],factor[6],-factor[6],-factor[2],-factor[2],-factor[6],factor[6],factor[2]],
[factor[3],-factor[7],-factor[1],-factor[5],factor[5],factor[1],factor[7],-factor[3]],
[factor[4],-factor[4],-factor[4],factor[4],factor[4],-factor[4],-factor[4],factor[4]],
[factor[5],-factor[1],factor[7],factor[3],-factor[3],-factor[7],factor[1],-factor[5]],
[factor[6],-factor[2],factor[2],-factor[6],-factor[6],factor[2],-factor[2],factor[6]],
[factor[7],-factor[5],factor[3],-factor[1],factor[1],-factor[3],factor[5],-factor[7]]])
result_arr = np.dot(factor_arr,arr)
print result_arr
|
py
|
1a5923b9055e70b5ca7b52b07e23eed5aa06df41
|
# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
import functools
from typing import TYPE_CHECKING
import warnings
from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
from azure.core.paging import ItemPaged
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import HttpResponse
from azure.core.polling import LROPoller, NoPolling, PollingMethod
from azure.core.polling.base_polling import LROBasePolling
from azure.core.rest import HttpRequest
from azure.core.tracing.decorator import distributed_trace
from msrest import Serializer
from .. import models as _models
from .._vendor import _convert_request, _format_url_section
if TYPE_CHECKING:
# pylint: disable=unused-import,ungrouped-imports
from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union
T = TypeVar('T')
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
_SERIALIZER = Serializer()
# fmt: off
def build_get_sql_scripts_by_workspace_request(
**kwargs # type: Any
):
# type: (...) -> HttpRequest
api_version = kwargs.pop('api_version', "2020-12-01") # type: str
accept = "application/json"
# Construct URL
url = kwargs.pop("template_url", '/sqlScripts')
# Construct parameters
query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str')
# Construct headers
header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="GET",
url=url,
params=query_parameters,
headers=header_parameters,
**kwargs
)
def build_create_or_update_sql_script_request_initial(
sql_script_name, # type: str
**kwargs # type: Any
):
# type: (...) -> HttpRequest
api_version = kwargs.pop('api_version', "2020-12-01") # type: str
content_type = kwargs.pop('content_type', None) # type: Optional[str]
if_match = kwargs.pop('if_match', None) # type: Optional[str]
accept = "application/json"
# Construct URL
url = kwargs.pop("template_url", '/sqlScripts/{sqlScriptName}')
path_format_arguments = {
"sqlScriptName": _SERIALIZER.url("sql_script_name", sql_script_name, 'str'),
}
url = _format_url_section(url, **path_format_arguments)
# Construct parameters
query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str')
# Construct headers
header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
if if_match is not None:
header_parameters['If-Match'] = _SERIALIZER.header("if_match", if_match, 'str')
if content_type is not None:
header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="PUT",
url=url,
params=query_parameters,
headers=header_parameters,
**kwargs
)
def build_get_sql_script_request(
sql_script_name, # type: str
**kwargs # type: Any
):
# type: (...) -> HttpRequest
api_version = kwargs.pop('api_version', "2020-12-01") # type: str
if_none_match = kwargs.pop('if_none_match', None) # type: Optional[str]
accept = "application/json"
# Construct URL
url = kwargs.pop("template_url", '/sqlScripts/{sqlScriptName}')
path_format_arguments = {
"sqlScriptName": _SERIALIZER.url("sql_script_name", sql_script_name, 'str'),
}
url = _format_url_section(url, **path_format_arguments)
# Construct parameters
query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str')
# Construct headers
header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
if if_none_match is not None:
header_parameters['If-None-Match'] = _SERIALIZER.header("if_none_match", if_none_match, 'str')
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="GET",
url=url,
params=query_parameters,
headers=header_parameters,
**kwargs
)
def build_delete_sql_script_request_initial(
sql_script_name, # type: str
**kwargs # type: Any
):
# type: (...) -> HttpRequest
api_version = kwargs.pop('api_version', "2020-12-01") # type: str
accept = "application/json"
# Construct URL
url = kwargs.pop("template_url", '/sqlScripts/{sqlScriptName}')
path_format_arguments = {
"sqlScriptName": _SERIALIZER.url("sql_script_name", sql_script_name, 'str'),
}
url = _format_url_section(url, **path_format_arguments)
# Construct parameters
query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str')
# Construct headers
header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="DELETE",
url=url,
params=query_parameters,
headers=header_parameters,
**kwargs
)
def build_rename_sql_script_request_initial(
sql_script_name, # type: str
**kwargs # type: Any
):
# type: (...) -> HttpRequest
api_version = kwargs.pop('api_version', "2020-12-01") # type: str
content_type = kwargs.pop('content_type', None) # type: Optional[str]
accept = "application/json"
# Construct URL
url = kwargs.pop("template_url", '/sqlScripts/{sqlScriptName}/rename')
path_format_arguments = {
"sqlScriptName": _SERIALIZER.url("sql_script_name", sql_script_name, 'str'),
}
url = _format_url_section(url, **path_format_arguments)
# Construct parameters
query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str')
# Construct headers
header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
if content_type is not None:
header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="POST",
url=url,
params=query_parameters,
headers=header_parameters,
**kwargs
)
# fmt: on
class SqlScriptOperations(object):
"""SqlScriptOperations operations.
You should not instantiate this class directly. Instead, you should create a Client instance that
instantiates it for you and attaches it as an attribute.
:ivar models: Alias to model classes used in this operation group.
:type models: ~azure.synapse.artifacts.models
:param client: Client for service requests.
:param config: Configuration of service client.
:param serializer: An object model serializer.
:param deserializer: An object model deserializer.
"""
models = _models
def __init__(self, client, config, serializer, deserializer):
self._client = client
self._serialize = serializer
self._deserialize = deserializer
self._config = config
@distributed_trace
def get_sql_scripts_by_workspace(
self,
**kwargs # type: Any
):
# type: (...) -> Iterable["_models.SqlScriptsListResponse"]
"""Lists sql scripts.
:keyword api_version: Api Version. The default value is "2020-12-01". Note that overriding this
default value may result in unsupported behavior.
:paramtype api_version: str
:keyword callable cls: A custom type or function that will be passed the direct response
:return: An iterator like instance of either SqlScriptsListResponse or the result of
cls(response)
:rtype: ~azure.core.paging.ItemPaged[~azure.synapse.artifacts.models.SqlScriptsListResponse]
:raises: ~azure.core.exceptions.HttpResponseError
"""
api_version = kwargs.pop('api_version', "2020-12-01") # type: str
cls = kwargs.pop('cls', None) # type: ClsType["_models.SqlScriptsListResponse"]
error_map = {
401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
}
error_map.update(kwargs.pop('error_map', {}))
def prepare_request(next_link=None):
if not next_link:
request = build_get_sql_scripts_by_workspace_request(
api_version=api_version,
template_url=self.get_sql_scripts_by_workspace.metadata['url'],
)
request = _convert_request(request)
path_format_arguments = {
"endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True),
}
request.url = self._client.format_url(request.url, **path_format_arguments)
else:
request = build_get_sql_scripts_by_workspace_request(
api_version=api_version,
template_url=next_link,
)
request = _convert_request(request)
path_format_arguments = {
"endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True),
}
request.url = self._client.format_url(request.url, **path_format_arguments)
path_format_arguments = {
"endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True),
}
request.method = "GET"
return request
def extract_data(pipeline_response):
deserialized = self._deserialize("SqlScriptsListResponse", pipeline_response)
list_of_elem = deserialized.value
if cls:
list_of_elem = cls(list_of_elem)
return deserialized.next_link or None, iter(list_of_elem)
def get_next(next_link=None):
request = prepare_request(next_link)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.CloudErrorAutoGenerated, pipeline_response)
raise HttpResponseError(response=response, model=error)
return pipeline_response
return ItemPaged(
get_next, extract_data
)
get_sql_scripts_by_workspace.metadata = {'url': '/sqlScripts'} # type: ignore
def _create_or_update_sql_script_initial(
self,
sql_script_name, # type: str
sql_script, # type: "_models.SqlScriptResource"
if_match=None, # type: Optional[str]
**kwargs # type: Any
):
# type: (...) -> Optional["_models.SqlScriptResource"]
cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.SqlScriptResource"]]
error_map = {
401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
}
error_map.update(kwargs.pop('error_map', {}))
api_version = kwargs.pop('api_version', "2020-12-01") # type: str
content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
json = self._serialize.body(sql_script, 'SqlScriptResource')
request = build_create_or_update_sql_script_request_initial(
sql_script_name=sql_script_name,
api_version=api_version,
content_type=content_type,
json=json,
if_match=if_match,
template_url=self._create_or_update_sql_script_initial.metadata['url'],
)
request = _convert_request(request)
path_format_arguments = {
"endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True),
}
request.url = self._client.format_url(request.url, **path_format_arguments)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200, 202]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response)
deserialized = None
if response.status_code == 200:
deserialized = self._deserialize('SqlScriptResource', pipeline_response)
if cls:
return cls(pipeline_response, deserialized, {})
return deserialized
_create_or_update_sql_script_initial.metadata = {'url': '/sqlScripts/{sqlScriptName}'} # type: ignore
@distributed_trace
def begin_create_or_update_sql_script(
self,
sql_script_name, # type: str
sql_script, # type: "_models.SqlScriptResource"
if_match=None, # type: Optional[str]
**kwargs # type: Any
):
# type: (...) -> LROPoller["_models.SqlScriptResource"]
"""Creates or updates a Sql Script.
:param sql_script_name: The sql script name.
:type sql_script_name: str
:param sql_script: Sql Script resource definition.
:type sql_script: ~azure.synapse.artifacts.models.SqlScriptResource
:param if_match: ETag of the SQL script entity. Should only be specified for update, for which
it should match existing entity or can be * for unconditional update.
:type if_match: str
:keyword api_version: Api Version. The default value is "2020-12-01". Note that overriding this
default value may result in unsupported behavior.
:paramtype api_version: str
:keyword callable cls: A custom type or function that will be passed the direct response
:keyword str continuation_token: A continuation token to restart a poller from a saved state.
:keyword polling: By default, your polling method will be LROBasePolling. Pass in False for
this operation to not poll, or pass in your own initialized polling object for a personal
polling strategy.
:paramtype polling: bool or ~azure.core.polling.PollingMethod
:keyword int polling_interval: Default waiting time between two polls for LRO operations if no
Retry-After header is present.
:return: An instance of LROPoller that returns either SqlScriptResource or the result of
cls(response)
:rtype: ~azure.core.polling.LROPoller[~azure.synapse.artifacts.models.SqlScriptResource]
:raises: ~azure.core.exceptions.HttpResponseError
"""
api_version = kwargs.pop('api_version', "2020-12-01") # type: str
content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.PollingMethod]
cls = kwargs.pop('cls', None) # type: ClsType["_models.SqlScriptResource"]
lro_delay = kwargs.pop(
'polling_interval',
self._config.polling_interval
)
cont_token = kwargs.pop('continuation_token', None) # type: Optional[str]
if cont_token is None:
raw_result = self._create_or_update_sql_script_initial(
sql_script_name=sql_script_name,
sql_script=sql_script,
if_match=if_match,
api_version=api_version,
content_type=content_type,
cls=lambda x,y,z: x,
**kwargs
)
kwargs.pop('error_map', None)
def get_long_running_output(pipeline_response):
response = pipeline_response.http_response
deserialized = self._deserialize('SqlScriptResource', pipeline_response)
if cls:
return cls(pipeline_response, deserialized, {})
return deserialized
path_format_arguments = {
"endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True),
}
if polling is True: polling_method = LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs)
elif polling is False: polling_method = NoPolling()
else: polling_method = polling
if cont_token:
return LROPoller.from_continuation_token(
polling_method=polling_method,
continuation_token=cont_token,
client=self._client,
deserialization_callback=get_long_running_output
)
else:
return LROPoller(self._client, raw_result, get_long_running_output, polling_method)
begin_create_or_update_sql_script.metadata = {'url': '/sqlScripts/{sqlScriptName}'} # type: ignore
@distributed_trace
def get_sql_script(
self,
sql_script_name, # type: str
if_none_match=None, # type: Optional[str]
**kwargs # type: Any
):
# type: (...) -> Optional["_models.SqlScriptResource"]
"""Gets a sql script.
:param sql_script_name: The sql script name.
:type sql_script_name: str
:param if_none_match: ETag of the sql compute entity. Should only be specified for get. If the
ETag matches the existing entity tag, or if * was provided, then no content will be returned.
:type if_none_match: str
:keyword api_version: Api Version. The default value is "2020-12-01". Note that overriding this
default value may result in unsupported behavior.
:paramtype api_version: str
:keyword callable cls: A custom type or function that will be passed the direct response
:return: SqlScriptResource, or the result of cls(response)
:rtype: ~azure.synapse.artifacts.models.SqlScriptResource or None
:raises: ~azure.core.exceptions.HttpResponseError
"""
cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.SqlScriptResource"]]
error_map = {
401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
}
error_map.update(kwargs.pop('error_map', {}))
api_version = kwargs.pop('api_version', "2020-12-01") # type: str
request = build_get_sql_script_request(
sql_script_name=sql_script_name,
api_version=api_version,
if_none_match=if_none_match,
template_url=self.get_sql_script.metadata['url'],
)
request = _convert_request(request)
path_format_arguments = {
"endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True),
}
request.url = self._client.format_url(request.url, **path_format_arguments)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200, 304]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.CloudErrorAutoGenerated, pipeline_response)
raise HttpResponseError(response=response, model=error)
deserialized = None
if response.status_code == 200:
deserialized = self._deserialize('SqlScriptResource', pipeline_response)
if cls:
return cls(pipeline_response, deserialized, {})
return deserialized
get_sql_script.metadata = {'url': '/sqlScripts/{sqlScriptName}'} # type: ignore
def _delete_sql_script_initial(
self,
sql_script_name, # type: str
**kwargs # type: Any
):
# type: (...) -> None
cls = kwargs.pop('cls', None) # type: ClsType[None]
error_map = {
401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
}
error_map.update(kwargs.pop('error_map', {}))
api_version = kwargs.pop('api_version', "2020-12-01") # type: str
request = build_delete_sql_script_request_initial(
sql_script_name=sql_script_name,
api_version=api_version,
template_url=self._delete_sql_script_initial.metadata['url'],
)
request = _convert_request(request)
path_format_arguments = {
"endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True),
}
request.url = self._client.format_url(request.url, **path_format_arguments)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200, 202, 204]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response)
if cls:
return cls(pipeline_response, None, {})
_delete_sql_script_initial.metadata = {'url': '/sqlScripts/{sqlScriptName}'} # type: ignore
@distributed_trace
def begin_delete_sql_script(
self,
sql_script_name, # type: str
**kwargs # type: Any
):
# type: (...) -> LROPoller[None]
"""Deletes a Sql Script.
:param sql_script_name: The sql script name.
:type sql_script_name: str
:keyword api_version: Api Version. The default value is "2020-12-01". Note that overriding this
default value may result in unsupported behavior.
:paramtype api_version: str
:keyword callable cls: A custom type or function that will be passed the direct response
:keyword str continuation_token: A continuation token to restart a poller from a saved state.
:keyword polling: By default, your polling method will be LROBasePolling. Pass in False for
this operation to not poll, or pass in your own initialized polling object for a personal
polling strategy.
:paramtype polling: bool or ~azure.core.polling.PollingMethod
:keyword int polling_interval: Default waiting time between two polls for LRO operations if no
Retry-After header is present.
:return: An instance of LROPoller that returns either None or the result of cls(response)
:rtype: ~azure.core.polling.LROPoller[None]
:raises: ~azure.core.exceptions.HttpResponseError
"""
api_version = kwargs.pop('api_version', "2020-12-01") # type: str
polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.PollingMethod]
cls = kwargs.pop('cls', None) # type: ClsType[None]
lro_delay = kwargs.pop(
'polling_interval',
self._config.polling_interval
)
cont_token = kwargs.pop('continuation_token', None) # type: Optional[str]
if cont_token is None:
raw_result = self._delete_sql_script_initial(
sql_script_name=sql_script_name,
api_version=api_version,
cls=lambda x,y,z: x,
**kwargs
)
kwargs.pop('error_map', None)
def get_long_running_output(pipeline_response):
if cls:
return cls(pipeline_response, None, {})
path_format_arguments = {
"endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True),
}
if polling is True: polling_method = LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs)
elif polling is False: polling_method = NoPolling()
else: polling_method = polling
if cont_token:
return LROPoller.from_continuation_token(
polling_method=polling_method,
continuation_token=cont_token,
client=self._client,
deserialization_callback=get_long_running_output
)
else:
return LROPoller(self._client, raw_result, get_long_running_output, polling_method)
begin_delete_sql_script.metadata = {'url': '/sqlScripts/{sqlScriptName}'} # type: ignore
def _rename_sql_script_initial(
self,
sql_script_name, # type: str
new_name=None, # type: Optional[str]
**kwargs # type: Any
):
# type: (...) -> None
cls = kwargs.pop('cls', None) # type: ClsType[None]
error_map = {
401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
}
error_map.update(kwargs.pop('error_map', {}))
api_version = kwargs.pop('api_version', "2020-12-01") # type: str
content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
_request = _models.ArtifactRenameRequest(new_name=new_name)
json = self._serialize.body(_request, 'ArtifactRenameRequest')
request = build_rename_sql_script_request_initial(
sql_script_name=sql_script_name,
api_version=api_version,
content_type=content_type,
json=json,
template_url=self._rename_sql_script_initial.metadata['url'],
)
request = _convert_request(request)
path_format_arguments = {
"endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True),
}
request.url = self._client.format_url(request.url, **path_format_arguments)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200, 202]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response)
if cls:
return cls(pipeline_response, None, {})
_rename_sql_script_initial.metadata = {'url': '/sqlScripts/{sqlScriptName}/rename'} # type: ignore
@distributed_trace
def begin_rename_sql_script(
self,
sql_script_name, # type: str
new_name=None, # type: Optional[str]
**kwargs # type: Any
):
# type: (...) -> LROPoller[None]
"""Renames a sqlScript.
:param sql_script_name: The sql script name.
:type sql_script_name: str
:param new_name: New name of the artifact.
:type new_name: str
:keyword api_version: Api Version. The default value is "2020-12-01". Note that overriding this
default value may result in unsupported behavior.
:paramtype api_version: str
:keyword callable cls: A custom type or function that will be passed the direct response
:keyword str continuation_token: A continuation token to restart a poller from a saved state.
:keyword polling: By default, your polling method will be LROBasePolling. Pass in False for
this operation to not poll, or pass in your own initialized polling object for a personal
polling strategy.
:paramtype polling: bool or ~azure.core.polling.PollingMethod
:keyword int polling_interval: Default waiting time between two polls for LRO operations if no
Retry-After header is present.
:return: An instance of LROPoller that returns either None or the result of cls(response)
:rtype: ~azure.core.polling.LROPoller[None]
:raises: ~azure.core.exceptions.HttpResponseError
"""
api_version = kwargs.pop('api_version', "2020-12-01") # type: str
content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.PollingMethod]
cls = kwargs.pop('cls', None) # type: ClsType[None]
lro_delay = kwargs.pop(
'polling_interval',
self._config.polling_interval
)
cont_token = kwargs.pop('continuation_token', None) # type: Optional[str]
if cont_token is None:
raw_result = self._rename_sql_script_initial(
sql_script_name=sql_script_name,
new_name=new_name,
api_version=api_version,
content_type=content_type,
cls=lambda x,y,z: x,
**kwargs
)
kwargs.pop('error_map', None)
def get_long_running_output(pipeline_response):
if cls:
return cls(pipeline_response, None, {})
path_format_arguments = {
"endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True),
}
if polling is True: polling_method = LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs)
elif polling is False: polling_method = NoPolling()
else: polling_method = polling
if cont_token:
return LROPoller.from_continuation_token(
polling_method=polling_method,
continuation_token=cont_token,
client=self._client,
deserialization_callback=get_long_running_output
)
else:
return LROPoller(self._client, raw_result, get_long_running_output, polling_method)
begin_rename_sql_script.metadata = {'url': '/sqlScripts/{sqlScriptName}/rename'} # type: ignore
|
py
|
1a59241e29fd6b2976693ed13ea2848bde3592e4
|
import numpy as np
import cv2 as cv
'''
Based on GeeksForGeeks article with an opticalFLow demonstration
'''
def opticalFlow(img1_path,img2_path,blur=False,maxValue=True):
'''
Optical flow between two images
inputs:
two consecutive images,
blur: Boolean - adds blurring to the image for filtering out small particles
maxValue: Boolean - crates vector by means of the maximum value within the pellet bounding box. Average vector otherwise.
'''
framet1 = cv.imread(img1_path)
framet2 = cv.imread(img2_path)
if(blur):
framet1 = cv.GaussianBlur(framet1, (3, 31), 0)
framet2 = cv.GaussianBlur(framet2, (3, 31), 0)
grayt1 = cv.cvtColor(framet1, cv.COLOR_BGR2GRAY)
grayt2 = cv.cvtColor(framet2, cv.COLOR_BGR2GRAY)
flow = cv.calcOpticalFlowFarneback(grayt1, grayt2,
None,
0.5, 3, 15, 3, 5, 1.2, 0)
magnitude, angle = cv.cartToPolar(flow[..., 0], flow[..., 1])
mask = np.zeros_like(framet1)
mask[..., 1] = 255
# Sets image hue according to the optical flow
# direction
mask[..., 0] = angle * 180 / np.pi / 2
# Sets image value according to the optical flow
# magnitude (normalized)
mask[..., 2] = cv.normalize(magnitude, None, 0, 255, cv.NORM_MINMAX)
# Converts HSV to RGB (BGR) color representation
rgb = cv.cvtColor(mask, cv.COLOR_HSV2BGR)
x0 = 973
x1 = 1021
y0 = 300
y1 = 350
drawBbox(framet1,x0,x1,y0,y1)
if(maxValue):
d = (np.max(flow[973:1021,300:350][0][:,0],axis=0),np.max(flow[973:1021,300:350][0][:,1],axis=0))
else:
d = np.average(flow[973:1021,300:350][0],axis=0)
centerPoint = ((1000,325))
endPoint = (int(centerPoint[0]+d[0]),int(centerPoint[1]+d[1]))
framet1 = framet1+rgb
cv.arrowedLine(framet1,centerPoint,endPoint,(0,0,255) ,2)
displayImage(framet1)
return flow
def displayImage(frame,description="input, press 0 to exit"):
cv.imshow(description, frame)
cv.waitKey(0)
def drawBbox(frame,bbox, color = 100, linewidth=3):
cv.line(frame, (bbox.x0,bbox.y0), (bbox.x0,bbox.y1), color, linewidth)
cv.line(frame, (bbox.x0,bbox.y1), (bbox.x1,bbox.y1), color, linewidth)
cv.line(frame, (bbox.x1,bbox.y0), (bbox.x1,bbox.y1), color, linewidth)
cv.line(frame, (bbox.x0,bbox.y0), (bbox.x1,bbox.y0), color, linewidth)
return frame
def drawVectfromBbox(frame,startPoint,endPoint):
cv.arrowedLine(frame,startPoint,endPoint,(0,0,255) ,2)
return frame
def euclidianDistance(p1,p2):
return np.sqrt((int(p1[0])-int(p2[0]))**2+(int(p1[1])-int(p2[1]))**2)
#opticalFlow('img0371.jpg','img0372.jpg', blur = False)
|
py
|
1a5924449b3265e71e8aa8b0333f9e2c61510f56
|
import numpy as np
from astropy import units as u
from astropy.wcs import WCSSUB_CELESTIAL, WCSSUB_SPECTRAL
def get_spatial_scale(wcs, assert_square=True):
# Code adapted from APLpy
wcs = wcs.sub([WCSSUB_CELESTIAL])
cdelt = np.matrix(wcs.wcs.get_cdelt())
pc = np.matrix(wcs.wcs.get_pc())
scale = np.array(cdelt * pc)
if assert_square:
try:
np.testing.assert_almost_equal(abs(cdelt[0,0]), abs(cdelt[0,1]))
np.testing.assert_almost_equal(abs(pc[0,0]), abs(pc[1,1]))
np.testing.assert_almost_equal(abs(scale[0,0]), abs(scale[0,1]))
except AssertionError:
raise ValueError("Non-square pixels. Please resample data.")
return abs(scale[0,0]) * u.Unit(wcs.wcs.cunit[0])
def get_spectral_scale(wcs):
# Code adapted from APLpy
wcs = wcs.sub([WCSSUB_SPECTRAL])
cdelt = np.matrix(wcs.wcs.get_cdelt())
pc = np.matrix(wcs.wcs.get_pc())
scale = np.array(cdelt * pc)
return abs(scale[0,0]) * u.Unit(wcs.wcs.cunit[0])
def sanitize_wcs(mywcs):
pc = np.matrix(mywcs.wcs.get_pc())
if (pc[:,2].sum() != pc[2,2] or pc[2,:].sum() != pc[2,2]):
raise ValueError("Non-independent 3rd axis.")
axtypes = mywcs.get_axis_types()
if ((axtypes[0]['coordinate_type'] != 'celestial' or
axtypes[1]['coordinate_type'] != 'celestial' or
axtypes[2]['coordinate_type'] != 'spectral')):
cunit3 = mywcs.wcs.cunit[2]
ctype3 = mywcs.wcs.ctype[2]
if cunit3 != '':
cunit3 = u.Unit(cunit3)
if cunit3.is_equivalent(u.m/u.s):
mywcs.wcs.ctype[2] = 'VELO'
elif cunit3.is_equivalent(u.Hz):
mywcs.wcs.ctype[2] = 'FREQ'
elif cunit3.is_equivalent(u.m):
mywcs.wcs.ctype[2] = 'WAVE'
else:
raise ValueError("Could not determine type of 3rd axis.")
elif ctype3 != '':
if 'VELO' in ctype3:
mywcs.wcs.ctype[2] = 'VELO'
elif 'FELO' in ctype3:
mywcs.wcs.ctype[2] = 'VELO-F2V'
elif 'FREQ' in ctype3:
mywcs.wcs.ctype[2] = 'FREQ'
elif 'WAVE' in ctype3:
mywcs.wcs.ctype[2] = 'WAVE'
else:
raise ValueError("Could not determine type of 3rd axis.")
else:
raise ValueError("Cube axes not in expected orientation: PPV")
return mywcs
def get_wcs_system_frame(wcs):
"""TODO: move to astropy.wcs.utils"""
ct = wcs.sub([WCSSUB_CELESTIAL]).wcs.ctype
if 'GLON' in ct[0]:
from astropy.coordinates import Galactic
return Galactic
elif 'RA' in ct[0]:
from astropy.coordinates import ICRS
return ICRS
else:
raise ValueError("Unrecognized coordinate system")
|
py
|
1a5924c2024ca54ed09da2a3185ed70a38c39637
|
# Standard Library
import uuid
# Third Party
from tests.analysis.utils import generate_data
# First Party
from smdebug.analysis.utils import no_refresh
from smdebug.exceptions import StepNotYetAvailable
from smdebug.rules import Rule
from smdebug.trials import create_trial
def test_no_refresh_invocation():
class TestRule(Rule):
def __init__(self, base_trial):
super().__init__(base_trial=base_trial, action_str="")
def set_required_tensors(self, step):
for t in self.base_trial.tensor_names():
self.req_tensors.add(t, steps=[step])
def invoke_at_step(self, step):
for t in self.req_tensors.get():
if step == 0:
assert t.value(step + 1) is not None
elif step == 1:
try:
t.value(step + 1)
assert False
except StepNotYetAvailable:
pass
run_id = str(uuid.uuid4())
base_path = "ts_output/rule_no_refresh/"
path = base_path + run_id
num_tensors = 3
generate_data(
path=base_path,
trial=run_id,
num_tensors=num_tensors,
step=0,
tname_prefix="foo",
worker="algo-1",
shape=(3, 3, 3),
)
generate_data(
path=base_path,
trial=run_id,
num_tensors=num_tensors,
step=1,
tname_prefix="foo",
worker="algo-1",
shape=(3, 3, 3),
)
tr = create_trial(path)
r = TestRule(tr)
r.invoke(0)
r.invoke(1)
generate_data(
path=base_path,
trial=run_id,
num_tensors=num_tensors,
step=2,
tname_prefix="foo",
worker="algo-1",
shape=(3, 3, 3),
)
# will not see step2 data
with no_refresh(tr):
r.invoke_at_step(1)
# below will refresh
try:
r.invoke(1)
assert False
except AssertionError:
pass
|
py
|
1a5924e19dda4a1315f067364fc0d2d1049129c6
|
"""Utilities for processing test outputs."""
import pathlib
import re
import subprocess
from pathlib import Path
from typing import Iterator, Tuple
def split_string(
string: str, sub_length: int = 40, copy: bool = False
) -> Tuple[str, ...]:
"""Split a string into subsections less than or equal to new length.
Args:
string (str): The long string to split up.
sub_length (int): The maximum length of the subsections.
Defaults to 56.
copy (bool): Copy output to clipboard.
Returns:
Tuple[str]: The string split into sections.
"""
string_length = len(string)
split = tuple(
string[begin : begin + sub_length]
for begin in range(0, string_length, sub_length)
)
if copy is True:
string = str(split)
copy_string(string)
return split
def copy_string(string: str) -> None:
"""Copies the string to clipboard.
Uses pbcopy, so for now only works with macOS.
"""
subprocess.run("/usr/bin/pbcopy", text=True, input=string) # noqa: S603
def write_output(string: str, test_name: str, replace_links: bool = True) -> None:
"""Write the output to the expected output's file."""
if replace_links:
tempfile_link_pattern = re.compile(
r"(?P<prefix>file://)"
r"(?P<core_tempfile_link>[\w\s/\\]*)"
r"(?P<suffix>\d+\.\w+)"
)
string = tempfile_link_pattern.sub(
lambda match: f"{match.group('prefix')}"
"{{ tempfile_path }}"
f"{match.group('suffix')}",
string=string,
)
output_directory = pathlib.Path(__file__).parent.parent / pathlib.Path(
"unit", "expected_outputs"
)
expected_output_file = output_directory / pathlib.Path(test_name).with_suffix(
".txt"
)
expected_output_file.write_text(string)
def _get_all_expected_output_paths() -> Iterator[Path]:
"""Get the paths of all the expected output files."""
file_dir = pathlib.Path(__file__).parent
expected_outputs = (
file_dir.parent / pathlib.Path("unit", "expected_outputs")
).glob("**/*.txt")
yield from expected_outputs
def replace_expected_section(old: str, new: str) -> None:
"""Replace all occurrences of a section in the expected output."""
expected_output_paths = _get_all_expected_output_paths()
for expected_output_path in expected_output_paths:
old_text = expected_output_path.read_text()
new_text = old_text.replace(old, new)
expected_output_path.write_text(new_text)
|
py
|
1a5924e6067593ef52dc6f3579f5b229420b417a
|
"Camera based door sensor"
|
py
|
1a5924f1468498731ad231c4dbf170c6cb5fc639
|
# coding: utf-8
from __future__ import unicode_literals
import re
from .common import InfoExtractor
from ..utils import int_or_none
class TumblrIE(InfoExtractor):
_VALID_URL = r'https?://(?P<blog_name>[^/?#&]+)\.tumblr\.com/(?:post|video)/(?P<id>[0-9]+)(?:$|[/?#])'
_TESTS = [{
'url': 'http://tatianamaslanydaily.tumblr.com/post/54196191430/orphan-black-dvd-extra-behind-the-scenes',
'md5': '479bb068e5b16462f5176a6828829767',
'info_dict': {
'id': '54196191430',
'ext': 'mp4',
'title': 'tatiana maslany news, Orphan Black || DVD extra - behind the scenes ↳...',
'description': 'md5:37db8211e40b50c7c44e95da14f630b7',
'thumbnail': r're:http://.*\.jpg',
}
}, {
'url': 'http://5sostrum.tumblr.com/post/90208453769/yall-forgetting-the-greatest-keek-of-them-all',
'md5': 'bf348ef8c0ef84fbf1cbd6fa6e000359',
'info_dict': {
'id': '90208453769',
'ext': 'mp4',
'title': '5SOS STRUM ;]',
'description': 'md5:dba62ac8639482759c8eb10ce474586a',
'thumbnail': r're:http://.*\.jpg',
}
}, {
'url': 'http://hdvideotest.tumblr.com/post/130323439814/test-description-for-my-hd-video',
'md5': '7ae503065ad150122dc3089f8cf1546c',
'info_dict': {
'id': '130323439814',
'ext': 'mp4',
'title': 'HD Video Testing \u2014 Test description for my HD video',
'description': 'md5:97cc3ab5fcd27ee4af6356701541319c',
'thumbnail': r're:http://.*\.jpg',
},
'params': {
'format': 'hd',
},
}, {
'url': 'http://naked-yogi.tumblr.com/post/118312946248/naked-smoking-stretching',
'md5': 'de07e5211d60d4f3a2c3df757ea9f6ab',
'info_dict': {
'id': 'Wmur',
'ext': 'mp4',
'title': 'naked smoking & stretching',
'upload_date': '20150506',
'timestamp': 1430931613,
'age_limit': 18,
'uploader_id': '1638622',
'uploader': 'naked-yogi',
},
'add_ie': ['Vidme'],
}, {
'url': 'http://camdamage.tumblr.com/post/98846056295/',
'md5': 'a9e0c8371ea1ca306d6554e3fecf50b6',
'info_dict': {
'id': '105463834',
'ext': 'mp4',
'title': 'Cam Damage-HD 720p',
'uploader': 'John Moyer',
'uploader_id': 'user32021558',
},
'add_ie': ['Vimeo'],
}, {
'url': 'http://sutiblr.tumblr.com/post/139638707273',
'md5': '2dd184b3669e049ba40563a7d423f95c',
'info_dict': {
'id': 'ir7qBEIKqvq',
'ext': 'mp4',
'title': 'Vine by sutiblr',
'alt_title': 'Vine by sutiblr',
'uploader': 'sutiblr',
'uploader_id': '1198993975374495744',
'upload_date': '20160220',
'like_count': int,
'comment_count': int,
'repost_count': int,
},
'add_ie': ['Vine'],
}, {
'url': 'http://vitasidorkina.tumblr.com/post/134652425014/joskriver-victoriassecret-invisibility-or',
'md5': '01c12ceb82cbf6b2fe0703aa56b3ad72',
'info_dict': {
'id': '-7LnUPGlSo',
'ext': 'mp4',
'title': 'Video by victoriassecret',
'description': 'Invisibility or flight…which superpower would YOU choose? #VSFashionShow #ThisOrThat',
'uploader_id': 'victoriassecret',
'thumbnail': r're:^https?://.*\.jpg'
},
'add_ie': ['Instagram'],
}]
def _real_extract(self, url):
m_url = re.match(self._VALID_URL, url)
video_id = m_url.group('id')
blog = m_url.group('blog_name')
url = 'http://%s.tumblr.com/post/%s/' % (blog, video_id)
webpage, urlh = self._download_webpage_handle(url, video_id)
iframe_url = self._search_regex(
r'src=\'(https?://www\.tumblr\.com/video/[^\']+)\'',
webpage, 'iframe url', default=None)
if iframe_url is None:
return self.url_result(urlh.geturl(), 'Generic')
iframe = self._download_webpage(iframe_url, video_id, 'Downloading iframe page')
duration = None
sources = []
sd_url = self._search_regex(
r'<source[^>]+src=(["\'])(?P<url>.+?)\1', iframe,
'sd video url', default=None, group='url')
if sd_url:
sources.append((sd_url, 'sd'))
options = self._parse_json(
self._search_regex(
r'data-crt-options=(["\'])(?P<options>.+?)\1', iframe,
'hd video url', default='', group='options'),
video_id, fatal=False)
if options:
duration = int_or_none(options.get('duration'))
hd_url = options.get('hdUrl')
if hd_url:
sources.append((hd_url, 'hd'))
formats = [{
'url': video_url,
'ext': 'mp4',
'format_id': format_id,
'height': int_or_none(self._search_regex(
r'/(\d{3,4})$', video_url, 'height', default=None)),
'quality': quality,
} for quality, (video_url, format_id) in enumerate(sources)]
self._sort_formats(formats)
# The only place where you can get a title, it's not complete,
# but searching in other places doesn't work for all videos
video_title = self._html_search_regex(
r'(?s)<title>(?P<title>.*?)(?: \| Tumblr)?</title>',
webpage, 'title')
return {
'id': video_id,
'title': video_title,
'description': self._og_search_description(webpage, default=None),
'thumbnail': self._og_search_thumbnail(webpage, default=None),
'duration': duration,
'formats': formats,
}
|
py
|
1a5925aa29fbedb62600b0e541b20b8e77b0b87d
|
import re
import threading
from typing import Any
from antlr4 import CommonTokenStream, InputStream, ParserRuleContext
from antlr4.error.ErrorListener import ErrorListener
from .errors import GrammarParseError
# Import from visitor in order to check the presence of generated grammar files
# files in a single place.
from .grammar_visitor import ( # type: ignore
OmegaConfGrammarLexer,
OmegaConfGrammarParser,
)
# Used to cache grammar objects to avoid re-creating them on each call to `parse()`.
# We use a per-thread cache to make it thread-safe.
_grammar_cache = threading.local()
# Build regex pattern to efficiently identify typical interpolations.
# See test `test_match_simple_interpolation_pattern` for examples.
_config_key = r"[$\w]+" # foo, $0, $bar, $foo_$bar123$
_key_maybe_brackets = f"{_config_key}|\\[{_config_key}\\]" # foo, [foo], [$bar]
_node_access = f"\\.{_key_maybe_brackets}" # .foo, [foo], [$bar]
_node_path = f"(\\.)*({_key_maybe_brackets})({_node_access})*" # [foo].bar, .foo[bar]
_node_inter = f"\\${{\\s*{_node_path}\\s*}}" # node interpolation ${foo.bar}
_id = "[a-zA-Z_]\\w*" # foo, foo_bar, abc123
_resolver_name = f"({_id}(\\.{_id})*)?" # foo, ns.bar3, ns_1.ns_2.b0z
_arg = "[a-zA-Z_0-9/\\-\\+.$%*@?|]+" # string representing a resolver argument
_args = f"{_arg}(\\s*,\\s*{_arg})*" # list of resolver arguments
_resolver_inter = f"\\${{\\s*{_resolver_name}\\s*:\\s*{_args}?\\s*}}" # ${foo:bar}
_inter = f"({_node_inter}|{_resolver_inter})" # any kind of interpolation
_outer = "([^$]|\\$(?!{))+" # any character except $ (unless not followed by {)
SIMPLE_INTERPOLATION_PATTERN = re.compile(
f"({_outer})?({_inter}({_outer})?)+$", flags=re.ASCII
)
# NOTE: SIMPLE_INTERPOLATION_PATTERN must not generate false positive matches:
# it must not accept anything that isn't a valid interpolation (per the
# interpolation grammar defined in `omegaconf/grammar/*.g4`).
class OmegaConfErrorListener(ErrorListener): # type: ignore
def syntaxError(
self,
recognizer: Any,
offending_symbol: Any,
line: Any,
column: Any,
msg: Any,
e: Any,
) -> None:
raise GrammarParseError(str(e) if msg is None else msg) from e
def reportAmbiguity(
self,
recognizer: Any,
dfa: Any,
startIndex: Any,
stopIndex: Any,
exact: Any,
ambigAlts: Any,
configs: Any,
) -> None:
raise GrammarParseError("ANTLR error: Ambiguity") # pragma: no cover
def reportAttemptingFullContext(
self,
recognizer: Any,
dfa: Any,
startIndex: Any,
stopIndex: Any,
conflictingAlts: Any,
configs: Any,
) -> None:
# Note: for now we raise an error to be safe. However this is mostly a
# performance warning, so in the future this may be relaxed if we need
# to change the grammar in such a way that this warning cannot be
# avoided (another option would be to switch to SLL parsing mode).
raise GrammarParseError(
"ANTLR error: Attempting Full Context"
) # pragma: no cover
def reportContextSensitivity(
self,
recognizer: Any,
dfa: Any,
startIndex: Any,
stopIndex: Any,
prediction: Any,
configs: Any,
) -> None:
raise GrammarParseError("ANTLR error: ContextSensitivity") # pragma: no cover
def parse(
value: str, parser_rule: str = "configValue", lexer_mode: str = "DEFAULT_MODE"
) -> ParserRuleContext:
"""
Parse interpolated string `value` (and return the parse tree).
"""
l_mode = getattr(OmegaConfGrammarLexer, lexer_mode)
istream = InputStream(value)
cached = getattr(_grammar_cache, "data", None)
if cached is None:
error_listener = OmegaConfErrorListener()
lexer = OmegaConfGrammarLexer(istream)
lexer.removeErrorListeners()
lexer.addErrorListener(error_listener)
lexer.mode(l_mode)
token_stream = CommonTokenStream(lexer)
parser = OmegaConfGrammarParser(token_stream)
parser.removeErrorListeners()
parser.addErrorListener(error_listener)
# The two lines below could be enabled in the future if we decide to switch
# to SLL prediction mode. Warning though, it has not been fully tested yet!
# from antlr4 import PredictionMode
# parser._interp.predictionMode = PredictionMode.SLL
# Note that although the input stream `istream` is implicitly cached within
# the lexer, it will be replaced by a new input next time the lexer is re-used.
_grammar_cache.data = lexer, token_stream, parser
else:
lexer, token_stream, parser = cached
# Replace the old input stream with the new one.
lexer.inputStream = istream
# Initialize the lexer / token stream / parser to process the new input.
lexer.mode(l_mode)
token_stream.setTokenSource(lexer)
parser.reset()
try:
return getattr(parser, parser_rule)()
except Exception as exc:
if type(exc) is Exception and str(exc) == "Empty Stack":
# This exception is raised by antlr when trying to pop a mode while
# no mode has been pushed. We convert it into an `GrammarParseError`
# to facilitate exception handling from the caller.
raise GrammarParseError("Empty Stack")
else:
raise
|
py
|
1a5925e56bf1c0a0de750fe7b80066e4e177a0a7
|
# Copyright (C) 2018-2021 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
# test.BACKEND_NAME is a configuration variable determining which
# nGraph backend tests will use. It's set during pytest configuration time.
# See `pytest_configure` hook in `conftest.py` for more details.
BACKEND_NAME = None
# test.MODEL_ZOO_DIR is a configuration variable providing the path
# to the ZOO of ONNX models to test. It's set during pytest configuration time.
# See `pytest_configure` hook in `conftest.py` for more
# details.
MODEL_ZOO_DIR = None
# test.MODEL_ZOO_XFAIL is a configuration variable which enable xfails for model zoo.
MODEL_ZOO_XFAIL = False
def xfail_test(reason="Mark the test as expected to fail", strict=True):
return pytest.mark.xfail(reason=reason, strict=strict)
skip_segfault = pytest.mark.skip(reason="Segmentation fault error")
xfail_issue_33488 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"MaxUnpool")
xfail_issue_33512 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"Einsum")
xfail_issue_33535 = xfail_test(reason="nGraph does not support the following ONNX operations:"
"DynamicQuantizeLinear")
xfail_issue_33538 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"Scan")
skip_issue_38084 = pytest.mark.skip(reason="Aborted (core dumped) Assertion "
"`(layer->get_output_partial_shape(i).is_static())' failed.")
xfail_issue_33589 = xfail_test(reason="nGraph does not support the following ONNX operations:"
"IsNaN and isInf")
xfail_issue_33595 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"Unique")
xfail_issue_33596 = xfail_test(reason="RuntimeError: nGraph does not support different sequence operations:"
"ConcatFromSequence, SequenceConstruct, SequenceAt, SplitToSequence,"
"SequenceEmpty, SequenceInsert, SequenceErase, SequenceLength ")
xfail_issue_33606 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"Det")
xfail_issue_33651 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"TfIdfVectorizer")
xfail_issue_33581 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"GatherElements")
xfail_issue_33633 = xfail_test(reason="MaxPool: dilations unsupported")
xfail_issue_35911 = xfail_test(reason="Assertion error: Pad model mismatch error")
xfail_issue_35912 = xfail_test(reason="RuntimeError: Error of validate layer: B with type: "
"Pad. Cannot parse parameter pads_end from IR for layer B. "
"Value -1,0 cannot be casted to int.")
xfail_issue_35923 = xfail_test(reason="RuntimeError: PReLU without weights is not supported")
xfail_issue_35925 = xfail_test(reason="Assertion error - reduction ops results mismatch")
xfail_issue_35927 = xfail_test(reason="RuntimeError: B has zero dimension that is not allowable")
xfail_issue_36480 = xfail_test(reason="RuntimeError: [NOT_FOUND] Unsupported property dummy_option "
"by CPU plugin")
xfail_issue_36485 = xfail_test(reason="RuntimeError: Check 'm_group >= 1' failed at "
"/openvino/ngraph/core/src/op/shuffle_channels.cpp:77:")
xfail_issue_36486 = xfail_test(reason="RuntimeError: HardSigmoid operation should be converted "
"to HardSigmoid_IE")
xfail_issue_36487 = xfail_test(reason="Assertion error - mvn operator computation mismatch")
xfail_issue_38084 = xfail_test(reason="RuntimeError: AssertionFailed: layer->get_output_partial_shape(i)"
"is_static() nGraph <value> operation with name: <value> cannot be"
"converted to <value> layer with name: <value> because output"
"with index 0 contains dynamic shapes: {<value>}. Try to use "
"CNNNetwork::reshape() method in order to specialize shapes "
"before the conversion.")
xfail_issue_38091 = xfail_test(reason="AssertionError: Mismatched elements")
xfail_issue_38699 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"ai.onnx.preview.training.Gradient")
xfail_issue_38701 = xfail_test(reason="RuntimeError: unsupported element type: STRING")
xfail_issue_38706 = xfail_test(reason="RuntimeError: output_3.0 has zero dimension which is not allowed")
xfail_issue_38708 = xfail_test(reason="RuntimeError: While validating ONNX node '<Node(Slice): y>': "
"Axes input must be constant")
xfail_issue_38710 = xfail_test(reason="RuntimeError: roi has zero dimension which is not allowed")
xfail_issue_38713 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"ai.onnx.preview.training.Momentum")
xfail_issue_43742 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"If")
xfail_issue_45457 = xfail_test(reason="RuntimeError: Unsupported dynamic ops: v5::Loop"
"Not constant termination condition body output is not supported")
xfail_issue_38722 = xfail_test(reason="RuntimeError: While validating ONNX nodes MatMulInteger"
"and QLinearMatMul"
"Input0 scale and input0 zero point shape must be same and 1")
xfail_issue_38723 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"QLinearConv")
xfail_issue_38724 = xfail_test(reason="RuntimeError: While validating ONNX node '<Node(Resize): Y>':"
"tf_crop_and_resize - this type of coordinate transformation mode"
"is not supported. Choose one of the following modes:"
"tf_half_pixel_for_nn, asymmetric, align_corners, pytorch_half_pixel,"
"half_pixel")
xfail_issue_38725 = xfail_test(reason="RuntimeError: While validating ONNX node '<Node(Loop):"
"value info has no element type specified")
xfail_issue_38726 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"LessOrEqual")
xfail_issue_38732 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"ConvInteger")
xfail_issue_38734 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"ai.onnx.preview.training.Adam")
xfail_issue_38735 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"ai.onnx.preview.training.Adagrad")
xfail_issue_48052 = xfail_test(reason="Dropout op is not supported in traning mode")
xfail_issue_45180 = xfail_test(reason="RuntimeError: Unsupported dynamic op: ReduceSum")
xfail_issue_44839 = xfail_test(reason="Huge computation missmatch")
xfail_issue_44848 = xfail_test(reason="E Unsupported dynamic op: Range")
xfail_issue_44851 = xfail_test(reason="E Unsupported dynamic op: Broadcast")
xfail_issue_44854 = xfail_test(reason="E Unsupported dynamic op: VariadicSplit")
xfail_issue_44858 = xfail_test(reason="E Unsupported dynamic op: Unsqueeze")
xfail_issue_44956 = xfail_test(reason="E Unsupported dynamic op: Loop")
xfail_issue_44957 = xfail_test(reason="E Unsupported dynamic op: NonZero")
xfail_issue_44958 = xfail_test(reason="E Unsupported dynamic op: Interpolate")
xfail_issue_44965 = xfail_test(reason="E RuntimeError: value info has no element")
xfail_issue_44968 = xfail_test(reason="E Unsupported dynamic op: Squeeze")
xfail_issue_44970 = xfail_test(reason="Assertion error")
xfail_issue_44976 = xfail_test(reason="E RuntimeError: Quantize layer with name:"
"FakeQuantize_xxx has non const input on 1 port")
xfail_issue_46762 = xfail_test(reason="Incorrect result of Minimum op if uint data type is used")
xfail_issue_46765 = xfail_test(reason="select_last_index attribute is not supported by ArgMin and ArgMax")
xfail_issue_47323 = xfail_test(reason="RuntimeError: The plugin does not support FP64")
xfail_issue_47337 = xfail_test(reason="RuntimeError: Unsupported dynamic ops: v1::OneHot")
xfail_issue_33593 = xfail_test(reason="Current implementation of MaxPool doesn't support indices output")
# Model MSFT issues:
xfail_issue_37957 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:"
"com.microsoft.CropAndResize, com.microsoft.GatherND,"
"com.microsoft.Pad, com.microsoft.Range")
xfail_issue_39669 = xfail_test(reason="AssertionError: This model has no test data")
xfail_issue_40686 = xfail_test(reason="NANs as results")
xfail_issue_36534 = xfail_test(reason="RuntimeError: node input index is out of range")
xfail_issue_36536 = xfail_test(reason="RuntimeError: can't protect")
xfail_issue_36538 = xfail_test(reason="RuntimeError: Check 'PartialShape::broadcast_merge_into( pshape, "
"node->get_input_partial_shape(i), autob)' failed at "
"/openvino/ngraph/src/ngraph/op/util/elementwise_args.cpp:48:")
xfail_issue_39656 = xfail_test(reason="RuntimeError: Reshape reshaped has dynamic second input!")
xfail_issue_39658 = xfail_test(reason="RuntimeError: Tile operation has a form that is not supported."
" z should be converted to TileIE operation.")
xfail_issue_39659 = xfail_test(reason="RuntimeError: Broadcast operation has a form that is not supported."
" y should be converted to Tile operation.")
xfail_issue_45344 = xfail_test(reason="Unsupported dynamic ops: v3::NonMaxSuppressionIE3")
xfail_issue_39662 = xfail_test(reason="RuntimeError: 'ScatterElementsUpdate' layer with name 'y' have "
"indices value that points to non-existing output tensor element")
xfail_issue_37973 = xfail_test(reason="TF Inception V2 - AssertionError: zoo models results mismatch")
xfail_issue_47430 = xfail_test(reason="FCN ResNet models - AssertionError: zoo models results mismatch")
xfail_issue_47495 = xfail_test(reason="BertSquad-10 from MSFT - AssertionError: zoo models results mismatch")
xfail_issue_49207 = xfail_test(reason="Function references undeclared parameters")
xfail_issue_48145 = xfail_test(reason="BertSquad-8 - AssertionError: Items are not equal: ACTUAL: 4 "
"DESIRED: 3")
xfail_issue_48190 = xfail_test(reason="RobertaBase-11 - AssertionError: Items are not equal: "
"ACTUAL: dtype('float64') DESIRED: dtype('float32')")
xfail_issue_49750 = xfail_test(reason="RuntimeError: Unsupported dynamic ops: v4::Interpolate")
xfail_issue_49752 = xfail_test(reason="RuntimeError: Unsupported dynamic ops: v1::Pad")
xfail_issue_49753 = xfail_test(reason="RuntimeError: Unsupported dynamic ops: v1::StridedSlice")
xfail_issue_49754 = xfail_test(reason="RuntimeError: Unsupported dynamic ops: v1::TopKIE")
xfail_issue_52463 = xfail_test(reason="test_operator_add_size1_singleton_broadcast_cpu - "
"Not equal to tolerance")
xfail_issue_49391 = xfail_test(reason="Roll is not implemented in CPU plugin.")
|
py
|
1a592682145e61a441b2f374248383d4825d7c0b
|
#########################################################################
## This file is part of the alpha-beta-CROWN verifier ##
## ##
## Copyright (C) 2021, Huan Zhang <[email protected]> ##
## Kaidi Xu <[email protected]> ##
## Shiqi Wang <[email protected]> ##
## Zhouxing Shi <[email protected]> ##
## Yihan Wang <[email protected]> ##
## ##
## This program is licenced under the BSD 3-Clause License, ##
## contained in the LICENCE file in this directory. ##
## ##
#########################################################################
"""alpha-beta-CROWN verifier interface to handle robustness verification."""
import os
import re
import socket
import random
import time
import gc
from utils import get_test_acc, load_model, load_verification_dataset
import numpy as np
import pandas as pd
import torch
import arguments
from auto_LiRPA import BoundedModule, BoundedTensor
from auto_LiRPA.perturbations import PerturbationLpNorm
from bab_verification_general import mip, incomplete_verifier, bab
from attack_pgd import pgd_attack
from utils import Normalization, get_pgd_acc
def config_args():
# Add arguments specific for this front-end.
h = ["general"]
arguments.Config.add_argument("--mode", type=str, default="verified-acc", choices=["verified-acc", "runnerup", "clean-acc", "crown-only-verified-acc", "alpha-crown-only-verified-acc", "ibp-only-verified-acc", "attack-only", "specify-target"],
help='Verify against all labels ("verified-acc" mode), or just the runnerup labels ("runnerup" mode), or using a specified label in dataset ("speicify-target" mode, only used for oval20). Mode can also be set as "crown-only-verified-acc" or "alpha-crown-only-verified-acc", which quickly computes the verified accuracy over the entire dataset via CROWN or alpha-CROWN.', hierarchy=h + ["mode"])
arguments.Config.add_argument('--complete_verifier', choices=["bab", "mip", "bab-refine", "skip"], default="bab",
help='Complete verification verifier. "bab": branch and bound with beta-CROWN; "mip": mixed integer programming (MIP) formulation; "bab-refine": branch and bound with intermediate layer bounds computed by MIP.', hierarchy=h + ["complete_verifier"])
arguments.Config.add_argument('--no_incomplete', action='store_false', dest='incomplete',
help='Enable/Disable initial alpha-CROWN incomplete verification (this can save GPU memory when disabled).', hierarchy=h + ["enable_incomplete_verification"])
arguments.Config.add_argument("--crown", action='store_true', help='Compute CROWN verified accuracy before verification (not used).', hierarchy=h + ["get_crown_verified_acc"])
h = ["model"]
arguments.Config.add_argument("--model", type=str, default="please_specify_model_name", help='Name of model. Model must be defined in the load_verification_dataset() function in utils.py.', hierarchy=h + ["name"])
h = ["data"]
arguments.Config.add_argument("--dataset", type=str, default="CIFAR", choices=["MNIST", "CIFAR", "CIFAR_SDP_FULL", "CIFAR_RESNET", "CIFAR_SAMPLE", "MNIST_SAMPLE", "CIFAR_ERAN", "MNIST_ERAN",
"MNIST_ERAN_UN", "MNIST_SDP", "MNIST_MADRY_UN", "CIFAR_SDP", "CIFAR_UN"], help='Dataset name. Dataset must be defined in utils.py.', hierarchy=h + ["dataset"])
arguments.Config.add_argument("--filter_path", type=str, default=None, help='A filter in pkl format contains examples that will be skipped (not used).', hierarchy=h + ["data_filter_path"])
arguments.Config.add_argument("--data_idx_file", type=str, default=None, help='A text file with a list of example IDs to run.', hierarchy=h + ["data_idx_file"])
h = ["attack"]
arguments.Config.add_argument("--mip_attack", action='store_true', help='Use MIP (Gurobi) based attack if PGD cannot find a successful adversarial example.', hierarchy=h + ["enable_mip_attack"])
arguments.Config.add_argument('--pgd_steps', type=int, default=100, help="Steps of PGD attack.", hierarchy=h + ["pgd_steps"])
arguments.Config.add_argument('--pgd_restarts', type=int, default=30, help="Number of random PGD restarts.", hierarchy= h + ["pgd_restarts"])
arguments.Config.add_argument('--no_pgd_early_stop', action='store_false', dest='pgd_early_stop', help="Early stop PGD when an adversarial example is found.", hierarchy=h + ["pgd_early_stop"])
arguments.Config.add_argument('--pgd_lr_decay', type=float, default=0.99, help='Learning rate decay factor used in PGD attack.', hierarchy= h + ["pgd_lr_decay"])
arguments.Config.add_argument('--pgd_alpha', type=str, default="auto", help='Step size of PGD attack. Default (auto) is epsilon/4.', hierarchy=h + ["pgd_alpha"])
h = ["debug"]
arguments.Config.add_argument("--lp_test", type=str, default=None, choices=["MIP", "LP", "LP_intermediate_refine", "MIP_intermediate_refine", None], help='Debugging option, do not use.', hierarchy=h + ['lp_test'])
arguments.Config.parse_config()
def get_statistics(model, image, true_label, eps, data_min, data_max, batch_size, method="CROWN"):
"""For quickly checking clean accuracy and CROWN verified accuracy."""
assert method == "CROWN" or method == "alpha-CROWN" or method == "IBP"
# Clearn accuracy
predicted = model(image)
n_correct = (predicted.argmax(dim=1) == true_label).sum().item()
print(f'{n_correct} examples are correct, image range ({image.min()}, {image.max()})')
# CROWN verified accuracy
verified = 0
N = image.size(0)
num_outputs = arguments.Config["data"]["num_outputs"]
norm = np.inf
assert norm == arguments.Config["specification"]["norm"] # TODO: make this function support more norms.
model = BoundedModule(model, torch.empty_like(image[:batch_size]), device=arguments.Config["general"]["device"])
if method == 'alpha-CROWN':
# Set alpha-CROWN optimization parameters.
lr_alpha = arguments.Config["solver"]["alpha-crown"]["lr_alpha"]
iteration = arguments.Config["solver"]["alpha-crown"]["iteration"]
share_slopes = arguments.Config["solver"]["alpha-crown"]["share_slopes"]
optimizer = arguments.Config["solver"]["beta-crown"]["optimizer"]
lr_decay = arguments.Config["solver"]["beta-crown"]["lr_decay"]
model.set_bound_opts({'optimize_bound_args': {'ob_iteration': iteration, 'ob_beta': False, 'ob_alpha': True,
'ob_alpha_share_slopes': share_slopes, 'ob_optimizer': optimizer,
'ob_lr': lr_alpha, 'ob_lr_decay': lr_decay}})
batch_idx = 0
all_start_time = time.time()
while batch_idx * batch_size < N:
start_time = time.time()
start_idx, end_idx = batch_idx*batch_size, min(batch_idx*batch_size+batch_size, N)
data, labels = image[start_idx:end_idx], torch.tensor(true_label[start_idx:end_idx])
if arguments.Config["specification"]["type"] == "lp":
# Linf norm only so far.
data_ub = torch.min(data + eps, data_max)
data_lb = torch.max(data - eps, data_min)
else:
# Per-example, per-element lower and upper bounds.
data_ub = data_max[start_idx:end_idx]
data_lb = data_min[start_idx:end_idx]
data, data_lb, data_ub, labels = data.cuda(), data_lb.cuda(), data_ub.cuda(), labels.cuda()
ptb = PerturbationLpNorm(norm=norm, eps=None, x_L=data_lb, x_U=data_ub)
data = BoundedTensor(data, ptb)
# labels = torch.argmax(pred, dim=1).cpu().detach().numpy()
c = torch.eye(num_outputs).type_as(data)[labels].unsqueeze(1) - torch.eye(num_outputs).type_as(data).unsqueeze(0)
I = (~(labels.data.unsqueeze(1) == torch.arange(num_outputs).type_as(labels.data).unsqueeze(0)))
c = (c[I].view(data.size(0), num_outputs - 1, num_outputs)).cuda()
if method == "CROWN" or method == "IBP":
with torch.no_grad():
lb, ub = model.compute_bounds(x=(data,), method=method, C=c, bound_upper=False)
else:
# alpha-CROWN requires gradient.
lb, ub = model.compute_bounds(x=(data,), method="CROWN-optimized", C=c, bound_upper=False)
verified += (lb.min(1)[0]>=0).sum().item()
# Print some bounds for the first batch for debugging.
duration = time.time() - start_time
if batch_idx == 0:
print("Bounds for first a few examples:")
print(lb[:10].detach().cpu().numpy())
print(f"batch: {batch_idx}, verified acc: {(lb.min(1)[0]>=0).sum().item()} / {data.size(0)}, time {duration}")
del lb, ub
batch_idx += 1
full_duration = time.time() - all_start_time
print(f"{method} verified acc: {verified/N * 100}%, {verified} verified, time {full_duration}")
def main():
print(f'Experiments at {time.ctime()} on {socket.gethostname()}')
torch.manual_seed(arguments.Config["general"]["seed"])
random.seed(arguments.Config["general"]["seed"])
np.random.seed(arguments.Config["general"]["seed"])
if arguments.Config["general"]["device"] != 'cpu':
torch.cuda.manual_seed_all(arguments.Config["general"]["seed"])
# Always disable TF32 (precision is too low for verification).
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
if arguments.Config["general"]["deterministic"]:
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
torch.use_deterministic_algorithms(True)
if arguments.Config["general"]["double_fp"]:
torch.set_default_dtype(torch.float64)
if arguments.Config["attack"]["pgd_order"] != "skip":
if arguments.Config["specification"]["type"] == "lp" and arguments.Config["specification"]["norm"] != np.inf:
print('Only Linf-norm attack is supported, the pgd_order will be changed to skip')
arguments.Config["attack"]["pgd_order"] = "skip"
model_ori = load_model(weights_loaded=True)
if arguments.Config["specification"]["epsilon"] is not None:
perturb_epsilon = torch.tensor(arguments.Config["specification"]["epsilon"], dtype=torch.get_default_dtype())
else:
print('No epsilon defined!')
perturb_epsilon = None
X, labels, runnerup, data_max, data_min, perturb_epsilon, target_label = load_verification_dataset(perturb_epsilon)
if arguments.Config["general"]["mode"] == "clean-acc":
print("Testing clean accuracy.")
get_test_acc(model_ori, X=X, labels=labels, batch_size=arguments.Config["solver"]["beta-crown"]["batch_size"])
return
if "MNIST" in arguments.Config["data"]["dataset"]:
attack_dataset = "MNIST"
elif "CIFAR" in arguments.Config["data"]["dataset"]:
attack_dataset = "CIFAR"
else:
attack_dataset = "UNKNOWN"
if arguments.Config["specification"]["type"] == 'lp':
if perturb_epsilon is None:
raise ValueError("Perturbation epsilon is not set by data loader. Do you mean to use the 'bound' type specification? Try adding --spec_type bound")
if arguments.Config["specification"]["epsilon"] is not None:
print(f"epsilon after preprocessing: {perturb_epsilon}, data_max = {data_max}, data_min = {data_min}")
if data_max.size(0) != 1 or data_min.size(0) != 1:
raise ValueError("For 'lp' type specification, you need rabsolute (global) lower and upper bounds, not per example bounds.")
elif arguments.Config["specification"]["type"] == 'bound':
print(f'Loaded datasets with per-element lower and upper bounds: max = {data_max.max().item()}, min = {data_min.min().item()}')
if data_max.size(0) != X.size(0) or data_min.size(0) != X.size(0):
raise ValueError("For 'bound' type specification, you need per example lower and upper bounds.")
if perturb_epsilon is None:
perturb_epsilon = (data_max - data_min).mean() / 2.
print(f'eps set to {perturb_epsilon}. This will not be used for certification, but will be used to determine PGD step size.')
if arguments.Config["data"]["data_idx_file"] is not None:
# Go over a list of data indices.
with open(arguments.Config["data"]["data_idx_file"]) as f:
bnb_ids = re.split(r'[;|,|\n|\s]+', f.read().strip())
bnb_ids = [int(b_id) for b_id in bnb_ids]
print(f'Example indices (total {len(bnb_ids)}): {bnb_ids}')
else:
# By default, we go over all data.
bnb_ids = list(range(X.shape[0]))
bnb_ids = bnb_ids[arguments.Config["data"]["start"]: arguments.Config["data"]["end"]]
print('Task length:', len(bnb_ids))
save_path = 'Verified_ret_[{}]_start={}_end={}_iter={}_b={}_timeout={}_branching={}-{}-{}_lra-init={}_lra={}_lrb={}_PGD={}.npy'. \
format(arguments.Config['model']['name'], arguments.Config["data"]["start"], arguments.Config["data"]["end"], arguments.Config["solver"]["beta-crown"]["iteration"], arguments.Config["solver"]["beta-crown"]["batch_size"],
arguments.Config["bab"]["timeout"], arguments.Config["bab"]["branching"]["method"], arguments.Config["bab"]["branching"]["reduceop"],
arguments.Config["bab"]["branching"]["candidates"], arguments.Config["solver"]["alpha-crown"]["lr_alpha"], arguments.Config["solver"]["beta-crown"]["lr_alpha"], arguments.Config["solver"]["beta-crown"]["lr_beta"], arguments.Config["attack"]["pgd_order"])
print(f'saving results to {save_path}')
if arguments.Config["general"]["mode"] == "crown-only-verified-acc":
get_statistics(model_ori, X, labels, perturb_epsilon, data_min, data_max, batch_size=arguments.Config["solver"]["beta-crown"]["batch_size"])
return
if arguments.Config["general"]["mode"] == "alpha-crown-only-verified-acc":
get_statistics(model_ori, X, labels, perturb_epsilon, data_min, data_max, batch_size=arguments.Config["solver"]["beta-crown"]["batch_size"], method="alpha-CROWN")
return
if arguments.Config["general"]["mode"] == "ibp-only-verified-acc":
get_statistics(model_ori, X, labels, perturb_epsilon, data_min, data_max, batch_size=arguments.Config["solver"]["beta-crown"]["batch_size"], method="IBP")
return
if arguments.Config["general"]["mode"] == "attack-only":
get_pgd_acc(model_ori, X, labels, perturb_epsilon, data_min, data_max, batch_size=arguments.Config["solver"]["beta-crown"]["batch_size"])
ret, lb_record, attack_success = [], [], []
mip_unsafe, mip_safe, mip_unknown = [], [], []
verified_acc = len(bnb_ids)
verified_failed = []
verified_success_list = []
example_time = []
skipped_examples = []
nat_acc = len(bnb_ids)
orig_timeout = arguments.Config["bab"]["timeout"]
model_ori, all_data_max, all_data_min = model_ori.to(arguments.Config["general"]["device"]), data_max.to(arguments.Config["general"]["device"]), data_min.to(arguments.Config["general"]["device"])
if isinstance(perturb_epsilon, torch.Tensor):
perturb_eps = perturb_epsilon.to(arguments.Config["general"]["device"])
for new_idx, imag_idx in enumerate(bnb_ids):
arguments.Config["bab"]["timeout"] = orig_timeout
print('\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% idx:', new_idx, 'img ID:', imag_idx, '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
torch.cuda.empty_cache()
gc.collect()
x, y = X[imag_idx], int(labels[imag_idx].item())
x = x.unsqueeze(0).to(dtype=torch.get_default_dtype(), device=arguments.Config["general"]["device"])
if arguments.Config["specification"]["type"] == 'bound':
data_min = all_data_min[imag_idx].unsqueeze(0)
data_max = all_data_max[imag_idx].unsqueeze(0)
else:
data_min = all_data_min
data_max = all_data_max
# first check the model is correct at the input
logit_pred = model_ori(x)[0]
if logit_pred.size(0) > 1:
# Multi-class.
y_pred = torch.max(logit_pred, 0)[1].item()
else:
# Binary classifier: logit_pred > 0 => label 1, otherwise label 0.
y_pred = int(logit_pred.item() > 0)
if type(perturb_epsilon) is list:
# Each image has different epsilon (e.g., OVAL 20).
perturb_eps = perturb_epsilon[imag_idx].to(arguments.Config["general"]["device"])
print(f'predicted label {y_pred}, correct label {y}, image norm {x.abs().sum().item()}, logits {logit_pred}')
if y_pred != y:
print(f'Result: image {imag_idx} prediction is incorrect, skipped.')
skipped_examples.append(imag_idx)
verified_acc -= 1
nat_acc -= 1
# attack_success.append(imag_idx)
continue
# else:
# # enable here to check clean acc
# continue
verified_success = False
verified_status = "unknown"
attack_margin = None
attack_images = None
example_start_time = time.time()
if arguments.Config["attack"]["pgd_order"] == "before":
start_attack = time.time()
attack_args = {'dataset': attack_dataset, 'model': model_ori, 'x': x, 'max_eps': perturb_eps, 'data_min': data_min, 'data_max': data_max, 'y': y}
attack_ret, attack_images, attack_margin = pgd_attack(**attack_args)
ret.append([imag_idx, 0, 0, time.time()-start_attack, new_idx, -3, np.inf, np.inf])
if attack_ret:
# Attack success.
verified_status = "unsafe-pgd"
verified_acc -= 1
attack_success.append(imag_idx)
print(f"Result: image {imag_idx} attack success!")
example_time.append(time.time() - example_start_time)
print(f'Wall time: {example_time[-1]}')
continue
# continue # uncomment for checking pgd attacking results
init_global_lb = saved_bounds = saved_slopes = None
# Incomplete verification is enabled by default. The intermediate lower and upper bounds will be reused in bab and mip.
if not verified_success and (arguments.Config["general"]["enable_incomplete_verification"] or arguments.Config["general"]["complete_verifier"] == "bab-refine"):
start_incomplete = time.time()
data = x
if arguments.Config["specification"]["type"] == 'lp':
# Lp norm.
if arguments.Config["specification"]["norm"] == np.inf:
if data_max is None:
data_ub = data + perturb_eps # perturb_eps is already normalized.
data_lb = data - perturb_eps
else:
data_ub = torch.min(data + perturb_eps, data_max)
data_lb = torch.max(data - perturb_eps, data_min)
else:
data_ub = data_lb = data
elif arguments.Config["specification"]["type"] == 'bound':
# Given lower and upper bounds *per example per pixel*.
data_lb = data_min
data_ub = data_max
else:
raise ValueError(f'Unexpected specification type {arguments.Config["specification"]["type"]}')
verified_status, init_global_lb, saved_bounds, saved_slopes = incomplete_verifier(model_ori, x,
y, data_ub=data_ub, data_lb=data_lb, eps=perturb_eps)
verified_success = verified_status != "unknown"
if not verified_success:
lower_bounds, upper_bounds = saved_bounds[1], saved_bounds[2]
arguments.Config["bab"]["timeout"] -= (time.time()-start_incomplete)
ret.append([imag_idx, 0, 0, time.time()-start_incomplete, new_idx, -1, np.inf, np.inf])
if verified_success:
print(f"Result: image {imag_idx} verification success (with incomplete verifier)!")
verified_success_list.append(imag_idx)
example_time.append(time.time() - example_start_time)
print(f'Wall time: {example_time[-1]}')
continue
if arguments.Config["attack"]["pgd_order"] == "after":
start_attack = time.time()
attack_args = {'dataset': attack_dataset, 'model': model_ori, 'x': x, 'max_eps': perturb_eps, 'data_min': data_min, 'data_max': data_max, 'y': y}
attack_ret, attack_images, attack_margin = pgd_attack(**attack_args)
ret.append([imag_idx, 0, 0, time.time()-start_attack, new_idx, -3, np.inf, np.inf])
if attack_ret:
# Attack success.
verified_status = "unsafe-pgd"
verified_acc -= 1
attack_success.append(imag_idx)
print(f"Result: image {imag_idx} attack success!")
example_time.append(time.time() - example_start_time)
print(f'Wall time: {example_time[-1]}')
continue
elif arguments.Config["attack"]["enable_mip_attack"]:
c = torch.eye(arguments.Config["data"]["num_outputs"]).type_as(data)[[y]].unsqueeze(1) - torch.eye(arguments.Config["data"]["num_outputs"]).type_as(data).unsqueeze(0)
lirpa_model, lower_bounds, upper_bounds, masks = saved_bounds[:4]
lirpa_model.build_mip_model(lower_bounds, upper_bounds, arguments.Config["bab"]["timeout"], arguments.Config["solver"]["mip"]["parallel_solvers"], arguments.Config["solver"]["mip"]["solver_threads"])
total_unstable = 0
for layer_i, m in enumerate(masks):
unstable = int(m.sum().item())
total_unstable += unstable
print(f'layer {layer_i} has {unstable} unstable neurons')
print(f'Total {total_unstable} unstable neurons.')
attack_ret = False
labels_to_verify = attack_margin.argsort().squeeze().tolist()
print('Sorted order for labels to attack:', labels_to_verify)
for target in labels_to_verify:
if target != y:
if init_global_lb[0][target].item() > 0:
print(f'Label {target} is already verified.')
continue
attack_image_target = target if target < y else target - 1
adv_pool = AdvExamplePool(lirpa_model.net, masks, C=c[:, target:target+1])
# Add adversarial image for the specific target only.
adv_pool.add_adv_images(attack_images[:, :, attack_image_target].view((-1, *attack_images.shape[-3:])))
neuron_idx, coeff = adv_pool.get_activation_pattern_from_pool()
# The initial starting point and activation pattern has a batch dimension because there can be multiple initializations.
selected_advs = adv_pool.adv_pool
best_adv = torch.stack([adv.x for adv in selected_advs], dim=0)
best_adv_pattern = [torch.stack([adv.activation_pattern[layer_i] for adv in selected_advs], dim=0) for layer_i in range(adv_pool.nlayers)]
print(f'Best adv example in pool: {adv_pool.adv_pool[0].obj}, worse {adv_pool.adv_pool[-1].obj}')
print(f'Target label {target} has {len(coeff)} out of {total_unstable} unstable neurons fixed.')
attack_ret, solver_results = lirpa_model.update_mip_model_fix_relu([neuron_idx], [coeff], target, arguments.Config["solver"]["mip"]["parallel_solvers"], arguments.Config["solver"]["mip"]["solver_threads"],
async_mip=False, best_adv=[best_adv], adv_activation_pattern=[best_adv_pattern])
with torch.no_grad():
pred = lirpa_model.net(solver_results[0][3].to(lirpa_model.net.device)).squeeze(0)
attack_margin = pred[y] - pred
print(f"attack margin: {attack_margin}, for label {target}: {pred[y] - pred[target]}")
if attack_ret:
break
if attack_ret:
# Attack success.
verified_status = "unsafe-mip_attack"
verified_acc -= 1
attack_success.append(imag_idx)
print(f"Result: image {imag_idx} attack success!")
example_time.append(time.time() - example_start_time)
print(f'Wall time: {example_time[-1]}')
continue
if arguments.Config["general"]["mode"] == "verified-acc":
if arguments.Config["attack"]["pgd_order"] != "skip":
# .reshape(-1) to handle the case where there is only 1 element.
labels_to_verify = attack_margin.argsort().squeeze().reshape(-1).tolist()
print('Sorted order for labels to attack:', labels_to_verify)
elif arguments.Config["general"]["enable_incomplete_verification"]:
# We have initial incomplete bounds.
labels_to_verify = init_global_lb.argsort().squeeze(0).tolist()
else:
labels_to_verify = list(range(arguments.Config["data"]["num_outputs"]))
elif arguments.Config["general"]["mode"] == "runnerup":
labels_to_verify = [logit_pred.argsort(descending=True)[1]]
elif arguments.Config["general"]["mode"] == "specify-target":
labels_to_verify = [target_label[imag_idx]]
else:
raise ValueError("unknown verification mode")
# MIP or MIP refined bounds.
if not verified_success and (arguments.Config["general"]["complete_verifier"] == "mip" or arguments.Config["general"]["complete_verifier"] == "bab-refine"):
start_refine = time.time()
verified_status, init_global_lb, lower_bounds, upper_bounds = mip(saved_bounds=saved_bounds, y=y, labels_to_verify=labels_to_verify)
verified_success = verified_status != "unknown-mip"
if verified_status == "unknown-mip":
verified_acc -= 1
mip_unknown.append(imag_idx)
elif verified_status == "unsafe-mip":
verified_acc -= 1
mip_unsafe.append(imag_idx)
elif verified_status == "safe-mip" or verified_status == "safe-incomplete-refine":
mip_safe.append(imag_idx)
arguments.Config["bab"]["timeout"] -= (time.time()-start_refine)
ret.append([imag_idx, 0, 0, time.time()-start_refine, new_idx, -2, np.inf, np.inf])
print("time threshold left for bab:", arguments.Config["bab"]["timeout"])
if verified_success:
if verified_status == "safe-mip":
print(f"Result: image {imag_idx} verification success (with mip)!")
verified_success_list.append(imag_idx)
elif verified_status == "safe-incomplete-refine":
print(f"Result: image {imag_idx} verification success (with mip refine)!")
verified_success_list.append(imag_idx)
elif verified_status == "unsafe-mip":
print(f"Result: image {imag_idx} attack success (with mip)!")
attack_success.append(imag_idx)
else:
print(f"Warning: verified status {verified_status} not supported!")
exit()
example_time.append(time.time() - example_start_time)
print(f'Wall time: {example_time[-1]}')
continue
elif arguments.Config["general"]["complete_verifier"] == 'skip':
print(f"Result: image {imag_idx} verification failure (complete verifier skipped as requested).")
verified_acc -= 1
verified_failed.append(imag_idx)
example_time.append(time.time() - example_start_time)
print(f'Wall time: {example_time[-1]}')
continue
elif verified_status == "unknown-mip":
print(f"Result: image {imag_idx} verification failure (with mip).")
example_time.append(time.time() - example_start_time)
print(f'Wall time: {example_time[-1]}')
continue
pidx_all_verified = True
bab_attack_success = False
for pidx in labels_to_verify:
if isinstance(pidx, torch.Tensor):
pidx = pidx.item()
print('##### [{}:{}] Tested against {} ######'.format(new_idx, imag_idx, pidx))
if pidx == y:
print("groundtruth label, skip!")
ret.append([imag_idx, 0, 0, 0, new_idx, pidx, np.inf, np.inf])
continue
torch.cuda.empty_cache()
gc.collect()
start_inner = time.time()
# attack_images shape: (1, batch, restarts, num_outputs-1, c, h, w)
# select target label attack_images according to pidx. New shape (restarts, c, h, w).
targeted_attack_images = None
if attack_images is not None:
targeted_attack_images = attack_images[0, :, pidx if pidx < y else pidx - 1]
attack_args.update({'target': pidx, 'only_target_attack': True})
attack_args.update({'data_max': torch.min(x + perturb_eps, data_max)})
attack_args.update({'data_min': torch.max(x - perturb_eps, data_min)})
arguments.attack_args = attack_args
else:
arguments.attack_args = None
try:
if arguments.Config["general"]["enable_incomplete_verification"]:
# Reuse results from incomplete results, or from refined MIPs.
# skip the prop that already verified
rlb, rub = list(lower_bounds), list(upper_bounds)
rlb[-1] = rlb[-1][0, pidx]
rub[-1] = rub[-1][0, pidx]
# print(init_global_lb[0].min().item(), init_global_lb[0].min().item() - arguments.Config["bab"]["decision_thresh"] <= -100.)
if init_global_lb[0].min().item() - arguments.Config["bab"]["decision_thresh"] <= -100.:
print(f"Initial alpha-CROWN with poor bound {init_global_lb[0].min().item()}. We will run not branch and bound.")
l, u, nodes, glb_record = rlb[-1].item(), float('inf'), 0, []
elif init_global_lb[0, pidx] >= arguments.Config["bab"]["decision_thresh"]:
print(f"Initial alpha-CROWN verified for label {pidx} with bound {init_global_lb[0, pidx]}")
l, u, nodes, glb_record = rlb[-1].item(), float('inf'), 0, []
else:
if arguments.Config["bab"]["timeout"] < 0:
print(f"Image {imag_idx} verification failure (running out of time budget).")
l, u, nodes, glb_record = rlb[-1].item(), float('inf'), 0, []
else:
# feed initialed bounds to save time
l, u, nodes, glb_record = bab(model_ori, x, pidx, y=y, eps=perturb_eps, data_ub=data_max, data_lb=data_min,
lower_bounds=lower_bounds, upper_bounds=upper_bounds, reference_slopes=saved_slopes, attack_images=targeted_attack_images)
else:
assert arguments.Config["general"]["complete_verifier"] == "bab" # for MIP and BaB-Refine.
# Main function to run verification
l, u, nodes, glb_record = bab(model_ori, x, pidx, y=y, eps=perturb_eps,
data_ub=data_max, data_lb=data_min, attack_images=targeted_attack_images)
time_cost = time.time() - start_inner
print('Image {} label {} verification end, final lower bound {}, upper bound {}, time: {}'.format(imag_idx, pidx, l, u, time_cost))
ret.append([imag_idx, l, nodes, time_cost, new_idx, pidx, u, attack_margin[pidx] if attack_margin is not None else np.inf])
arguments.Config["bab"]["timeout"] -= time_cost
lb_record.append([glb_record])
print(imag_idx, l)
np.save(save_path, np.array(ret))
# np.save('lb_record_' + save_path, np.array(lb_record))
if u < arguments.Config["bab"]["decision_thresh"]:
verified_status = "unsafe-bab"
pidx_all_verified = False
bab_attack_success = True
break
elif l < arguments.Config["bab"]["decision_thresh"]:
pidx_all_verified = False
# break to run next sample save time if any label is not verified.
break
except KeyboardInterrupt:
print('time:', imag_idx, time.time()-start_inner, "\n",)
print(ret)
pidx_all_verified = False
break
example_time.append(time.time() - example_start_time)
if not pidx_all_verified:
verified_acc -= 1
if bab_attack_success:
attack_success.append(imag_idx)
print(f'Result: image {imag_idx} attack success (with branch and bound)!')
else:
verified_failed.append(imag_idx)
print(f'Result: image {imag_idx} verification failure (with branch and bound).')
else:
verified_success_list.append(imag_idx)
print(f'Result: image {imag_idx} verification success (with branch and bound)!')
# Make sure ALL tensors used in this loop are deleted here.
del init_global_lb, saved_bounds, saved_slopes
print(f'Wall time: {example_time[-1]}')
# some results analysis
np.set_printoptions(suppress=True)
ret = np.array(ret)
print(f'\nnumber of correctly classified examples: {nat_acc}')
print(f'incorrectly classified idx (total {len(skipped_examples)}):', skipped_examples)
print(f'attack success idx (total {len(attack_success)}):', attack_success)
if len(attack_success) > 0:
print('attack_success rate:', len(attack_success)/len(bnb_ids))
np.save('Attack-success_{}_{}_start{}_end{}.npy'.
format(arguments.Config['model']['name'], arguments.Config["data"]["dataset"], arguments.Config["data"]["start"], arguments.Config["data"]["end"]), np.array(attack_success))
print(f'verification success idx (total {len(verified_success_list)}):', verified_success_list)
print(f'verification failure idx (total {len(verified_failed)}):', verified_failed)
if arguments.Config["general"]["complete_verifier"] == "mip":
print("##### Complete MIP solver summary #####")
print(f"mip verified safe idx: {mip_safe}")
print(f"mip unsafe idx: {mip_unsafe}")
print(f"mip unknown idx: {mip_unknown}")
print(f"mip verified safe rate {len(mip_safe)/len(bnb_ids)}, "
f"unsafe rate {len(mip_unsafe)/len(bnb_ids)}, "
f"unknown rate {len(mip_unknown)/len(bnb_ids)}, "
f"total {len(bnb_ids)}")
print("final verified acc: {}%[{}]".format(verified_acc/len(bnb_ids)*100., len(bnb_ids)))
np.save('Verified-acc_{}_{}_start{}_end{}_{}_branching_{}.npy'.
format(arguments.Config['model']['name'], arguments.Config["data"]["dataset"], arguments.Config["data"]["start"], arguments.Config["data"]["end"], verified_acc, arguments.Config["bab"]["branching"]["method"]), np.array(verified_failed))
total_verification = len(verified_success_list) + len(verified_failed)
print(f"verifier is called on {total_verification} examples.")
print("total verified:", verified_acc)
if ret.size > 0:
# print("mean time [total:{}]: {}".format(len(bnb_ids), ret[:, 3].sum()/float(len(bnb_ids))))
print("mean time [cnt:{}] (excluding attack success): {}".format(total_verification, ret[:, 3][ret[:, 5] != -3].sum()/float(total_verification if total_verification != 0 else "nan")))
if len(attack_success) > 0:
print("mean time [cnt:{}] (including attack success): {}".format(total_verification + len(attack_success), ret[:, 3].sum() / float(total_verification + len(attack_success))))
if __name__ == "__main__":
config_args()
main()
|
py
|
1a592828f43cca3e6d7363fd7aab3d021553a819
|
# Lint as: python2, python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""An experimental new unified TPU executor."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo import compat as tf
from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import base_model
from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import checkpointer
from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import cluster_factory
from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import ml_perf_log as mlp_log
from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import multitask_model
from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import py_utils
from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import task_scheduler
from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.google.trainer import base_runner
from REDACTED.tensorflow.python.tpu import device_assignment as device_assignment_lib # pylint: disable=g-direct-tensorflow-import
tf.flags.DEFINE_bool(
'cluster_placer_in_executor', False,
'If True, cluster.GetPlacer() is used in Executor. ' +
'When running on TPU model weights can be distributed ' +
'across TPU hosts, for outrageously large models this ' +
'enables sharded checkpointing and reduces host memory ' +
'requirements, see _LeastLoadedPlacer in cluster.py.')
tf.flags.DEFINE_bool(
'disable_meta_optimizer_in_executor', False,
'Disabling the grappler meta_optimizer improves start-up time.')
FLAGS = tf.flags.FLAGS
def GetExecutorParams(model_name, cluster_params, model_registry):
"""Get the params needed to instantiate the Executor.
Args:
model_name: A model name regsitered in the ModelRegistry.
cluster_params: A cluster hyperparams object.
model_registry: A ModelRegistry object.
Returns:
A tuple (dict, Params):
- ps_params_dict: High-level task name -> ProgramScheduleParams
- train_cfg: A SingleTaskModelParams or MultiTaskModelParams.
"""
ps_params_dict = {}
with cluster_factory.Cluster(cluster_params):
ps_cfg = model_registry.GetProgramSchedule(model_name)
train_cfg = model_registry.GetParams(model_name, 'Train')
train_cfg.cluster = cluster_params
if issubclass(train_cfg.cls, base_model.MultiTaskModel):
multi_task_train_cfg = train_cfg
# Create SingleTaskModelParams from a MultiTaskModelParams.
for k, _ in multi_task_train_cfg.task_params.IterParams():
single_task_params = base_model.SingleTaskModel.Params()
single_task_params.cluster = multi_task_train_cfg.cluster
single_task_params.input = multi_task_train_cfg.input.Get(k)
single_task_params.task = multi_task_train_cfg.task_params.Get(k)
single_task_params.train = single_task_params.task.train
if k not in ps_cfg.program_schedule_dict:
tf.logging.fatal(
'Could not find %s in ps_cfg.program_schedule_dict: %s', k,
ps_cfg)
program_schedule_params = ps_cfg.program_schedule_dict[k]
program_schedule_params.task_dict = {'Train': single_task_params}
for eval_dataset_name in program_schedule_params.dataset_names:
multi_task_eval_cfg = model_registry.GetParams(
model_name, eval_dataset_name)
eval_task_params = base_model.SingleTaskModel.Params()
eval_task_params.cluster = single_task_params.cluster
eval_task_params.input = multi_task_eval_cfg.input.Get(k)
eval_task_params.task = multi_task_eval_cfg.task_params.Get(k)
program_schedule_params.task_dict[
eval_dataset_name] = eval_task_params
ps_params_dict[k] = program_schedule_params
else:
program_schedule_params = ps_cfg
program_schedule_params.task_dict = {'Train': train_cfg}
for eval_dataset_name in program_schedule_params.dataset_names:
task_eval_params = model_registry.GetParams(model_name,
eval_dataset_name)
task_eval_params.cluster = train_cfg.cluster
program_schedule_params.task_dict[eval_dataset_name] = task_eval_params
ps_params_dict[''] = program_schedule_params
return ps_params_dict, train_cfg
class ExecutorTpu(base_runner.BaseRunner):
"""An experimental runner that does arbitrary multi-program execution on TPU.
Overview of operation:
- During construction, all programs construct their sub-graphs, in a sense
creating a mega-graph.
- A sequence of programs is then executed in-whole associated with that task.
eg: [train x 1000 steps, checkpoint, eval 4 steps, decode 2 steps]
- In this manner, programs and higher-level tasks cooperatively time-slice
share the TPU.
"""
def __init__(self, train_cfg, ps_params_dict, model_task_name, logdir,
tf_master, **kwargs):
"""Construct an ExecutorTpu BaseRunner.
Args:
train_cfg: SingleTaskModelParams or MultiTaskModelParams
ps_params_dict: A dict of top-level task name -> ProgramSchedule params,
if train_cfg is a SingleTaskModelParams, we expect only one entry.
model_task_name: An override for multi-task models, currently unused.
logdir: String path to the log directory to output to.
tf_master: String path to the master job, e.g. 'local'.
**kwargs: keyword args to pass through to BaseRunner.
"""
super(ExecutorTpu, self).__init__(train_cfg, model_task_name, logdir,
tf_master, **kwargs)
self._cluster_def = self._cluster.worker_cluster_def
# There is a single Executor task
assert self._cluster.num_replicas == 1
data_parallelism = self._cluster.num_splits_per_client
assert data_parallelism
num_devices_per_split = self._cluster.num_devices_per_split
tf.logging.info('data_parallelism: %d, num_devices_per_split: %d',
data_parallelism, num_devices_per_split)
self.task_scheduler = None
self._checkpoint_dir = os.path.join(logdir, 'train')
self._variable_renaming_rules = []
self._ml_perf = None
# If this is a multi-task model, grab the params for the TaskScheduler.
if issubclass(train_cfg.cls, base_model.SingleTaskModel):
tf.logging.info('single_task_model')
assert len(ps_params_dict) == 1
self._model_task_name = list(ps_params_dict.keys())[0]
self._single_task_mode = True
elif issubclass(train_cfg.cls, base_model.MultiTaskModel):
tf.logging.info('multi_task_model')
if issubclass(train_cfg.cls, multitask_model.RegExSharedVariableModel):
self._variable_renaming_rules = train_cfg.variable_renaming_rules
if train_cfg.task_schedule is None:
task_schedule_params = task_scheduler.ConstantScheduler.Params()
task_schedule_params.task_probs = sorted(
list(train_cfg.task_probs.IterParams()))
else:
task_schedule_params = train_cfg.task_schedule
self.task_scheduler = task_schedule_params.Instantiate()
self._single_task_mode = False
else:
tf.logging.fatal(
'Model %s is not a sub-class of SingleTaskModel or MultiTaskModel',
train_cfg.cls)
tf.logging.info('train_cfg.cls: %s', train_cfg.cls)
self._WriteToLog(train_cfg.ToText(), self._checkpoint_dir, 'params.txt')
self._program_schedule_dict = {}
self._programs = []
for task_string, program_schedule_params in ps_params_dict.items():
program_schedule_params.logdir = logdir
program_schedule_params.num_splits_per_client = data_parallelism
program_schedule_params.task_name = task_string
ps = program_schedule_params.Instantiate()
self._program_schedule_dict[task_string] = ps
tf.logging.info('program_schedule_params: %s',
program_schedule_params.ToText())
self._programs += ps.Programs()
if program_schedule_params.ml_perf.benchmark_name is not None:
self._ml_perf = program_schedule_params.ml_perf
tf.logging.info('num_programs: %d', len(self._programs))
if self._ml_perf is not None:
self._ml_perf_log = True
mlp_log.mlperf_print(key='benchmark', value=self._ml_perf.benchmark_name)
else:
self._ml_perf_log = False
# BaseRunner legacy
self.enqueue_ops = None
@py_utils.RetryOnTransientTfError()
def _WaitTillInit():
"""Wait until the model is ready."""
try:
with self._graph.as_default(), self._GetSession(
cluster_def=self._cluster_def,
disable_meta_optimizer=FLAGS.disable_meta_optimizer_in_executor
) as sess:
topology = sess.run(
tf.tpu.initialize_system(embedding_config=None, job=None))
device_assignment = device_assignment_lib.device_assignment(
topology,
computation_shape=py_utils.ComputationShape(
num_devices_per_split),
num_replicas=data_parallelism)
py_utils.SetTpuDeviceAssignment(device_assignment)
tf.logging.info('device_assignment.core_assignment: %s',
str(device_assignment.core_assignment))
tf.logging.info(
'device_assignment.topology.device_coordinates: %s',
str(device_assignment.topology.device_coordinates))
except py_utils.transient_tf_errors as e:
tf.logging.info('TPU initialization failed: %s', e)
raise
if self._ml_perf_log:
mlp_log.mlperf_print(key='cache_clear', value=True)
mlp_log.mlperf_print(key='init_start', value=None)
_WaitTillInit()
with self._graph.as_default(), tf.container(self._container_id):
tf.logging.info('self._cluster.job_spec.name: %s',
self._cluster.job_spec.name)
with self._cluster, tf.device(
self._cluster.job_spec.name if not FLAGS.cluster_placer_in_executor
else self._cluster.GetPlacer()):
with py_utils.VariableRenameScope(self._variable_renaming_rules):
_ = py_utils.GetOrCreateGlobalStepVar()
for program in self._programs:
program.BuildTpuSubgraph()
for program in self._programs:
program.SetStatusMessageFn(self._SetStatusMessage)
program.CreateCheckpointer()
self._initialize_tables = tf.tables_initializer()
self._initialize_local_vars = tf.local_variables_initializer()
self.save_only_checkpointer = checkpointer.Checkpointer(
self._checkpoint_dir,
model=None,
train_params=train_cfg.train,
save_only=True)
def Start(self):
# Run training.
self._RunLoop('executor_tpu', self._Loop)
def _Loop(self):
with tf.container(self._container_id), self._GetSession(
cluster_def=self._cluster_def,
disable_meta_optimizer=FLAGS.disable_meta_optimizer_in_executor
) as sess:
# Initialize the variables first, if needed.
for program in self._programs:
program.RestoreIfNeeded(sess)
program.Compile(sess)
sess.run(self._initialize_tables)
sess.run(self._initialize_local_vars)
while True:
global_step = sess.run(py_utils.GetGlobalStep())
if self._ShouldStop(sess, global_step):
tf.logging.info('Training finished.')
if not self._ml_perf_log:
self.save_only_checkpointer.Save(sess, global_step)
return
# If a task is explicitly selected, only run the programs associated
# with that task.
if self._single_task_mode or self._model_task_name:
tf.logging.info('Single task mode: %s', self._model_task_name)
program_schedule = self._program_schedule_dict[self._model_task_name]
else:
# Otherwise, sample a task.
model_task = self.task_scheduler.Sample(global_step)
tf.logging.info('Sampled %s', model_task)
program_schedule = self._program_schedule_dict[model_task]
done = program_schedule.Run(sess)
if done:
tf.logging.info('Program schedule told us to stop.')
return
# TODO(blee): More complex saving rules. Currently, we assume
# we save after every task's program schedule execution.
#
# global_step local variable above is a result of sess.run, not a
# tf variable, so when we do save_only_checkpointer.Save(...) here
# py_utils.GetGlobalStep() is ahead of it by
# (train_executions_per_eval * train_steps_per_loop)
# steps ahead already, due to program_schedule.Run(sess).
#
if not self._ml_perf_log:
self.save_only_checkpointer.Save(sess, py_utils.GetGlobalStep())
|
py
|
1a5929ad979bbc45f4954c6069e8ec55e60b6b09
|
import types
import sys
import os
import io
from pathlib import Path
from urllib.parse import urlparse
import logging
import asyncio
import tarfile
from io import BytesIO
import mimetypes
import functools
import ssl
import click
from girder_client import GirderClient
from flask import Flask, send_from_directory, jsonify
import aiohttp
from async_lru import alru_cache
import tenacity
class AsyncGirderClient(object):
def __init__(self, session, api_url):
self._ratelimit_semaphore = asyncio.Semaphore(5)
self._api_url = api_url.rstrip('/')
self._folder_create_semaphore = asyncio.Semaphore()
self._item_create_semaphore = asyncio.Semaphore()
self._session = session
async def authenticate(self, api_key):
params = {'key': api_key}
async with self._session.post('%s/api_key/token' % (self._api_url), params=params) as r:
r.raise_for_status()
auth = await r.json()
self._headers = {
'Girder-Token': auth['authToken']['token']
}
@tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError),
wait=tenacity.wait_exponential(max=10),
stop=tenacity.stop_after_attempt(10))
async def post(self, path, headers=None, params=None, raise_for_status=True, **kwargs):
if params is not None:
params = {k:str(v) for (k,v) in params.items()}
if headers is None:
headers = self._headers
else:
headers.update(self._headers)
async with self._ratelimit_semaphore:
async with self._session.post('%s/%s' % (self._api_url, path),
headers=headers, params=params,
**kwargs) as r:
if raise_for_status:
r.raise_for_status()
return await r.json()
@tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError),
wait=tenacity.wait_exponential(max=10),
stop=tenacity.stop_after_attempt(10))
async def put(self, path, headers=None, params=None, raise_for_status=True, **kwargs):
if params is not None:
params = {k:str(v) for (k,v) in params.items()}
if headers is None:
headers = self._headers
else:
headers.update(self._headers)
async with self._ratelimit_semaphore:
async with self._session.put('%s/%s' % (self._api_url, path),
headers=headers, params=params,
**kwargs) as r:
if raise_for_status:
r.raise_for_status()
return await r.json()
@tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError),
wait=tenacity.wait_exponential(max=10),
stop=tenacity.stop_after_attempt(10))
async def get(self, path, raise_for_status=True, params=None, status=False, **kwargs):
if params is not None:
params = {k:str(v) for (k,v) in params.items()}
async with self._ratelimit_semaphore:
async with self._session.get('%s/%s' % (self._api_url, path),
headers=self._headers, params=params, **kwargs) as r:
if raise_for_status and not status:
r.raise_for_status()
if status:
return (r.status, await r.json())
else:
return await r.json()
@alru_cache(maxsize=1000)
async def create_folder(self, parent_id, parent_type, name):
params = {
'parentId': parent_id,
'parentType': parent_type,
'name': name,
'description': '',
'reuseExisting': True
}
# We need this sempahore to prevent two folders with the same name be
# create, this opertion in not atomic in Girder.
async with self._folder_create_semaphore:
return await self.post('folder', params=params)
async def list_item(self, folder, name):
params = {
'parentId': folder['_id'],
'name': name
}
return await self.get('item', params=params)
@alru_cache(maxsize=1000)
async def create_item(self, folder_id, name):
params = {
'folderId': folder_id,
'name': name,
'description': '',
'reuseExisting': True
}
# We need this sempahore to prevent two items with the same name be
# create, this opertion in not atomic in Girder.
async with self._item_create_semaphore:
return await self.post('item', params=params)
async def upload_file(self, item, file_name, bits, size):
mime_type, _ = mimetypes.guess_type(file_name)
params = {
'parentType': 'item',
'parentId': item['_id'],
'name': file_name,
'size': size,
'mimeType': mime_type
}
headers = {
'Content-Length': str(size)
}
headers.update(self._headers)
upload = await self.post('file', params=params, headers=headers, data=bits)
return upload
async def set_metadata(self, resource_type, _id, meta, semaphore=None):
# The metadata put operation is not atomic!
if semaphore is not None:
await semaphore.acquire()
try:
return await self.put('%s/%s/metadata' % (resource_type, _id), json=meta)
finally:
if semaphore is not None:
semaphore.release()
async def get_metadata(self, resource_type, _id):
resource = await self.get('%s/%s' % (resource_type, _id))
return resource.get('meta')
@alru_cache(maxsize=1000)
async def resource_path(self, _id, resource_type):
params = {
'type': resource_type
}
return await self.get('resource/%s/path' % _id, params=params)
async def lookup_resource(self, path):
params = {
'path': path,
'test': True
}
(status, json_body) = await self.get('resource/lookup', params=params, status=True)
if status == 400:
return None
else:
return json_body
async def file_exist(self, item, name):
item_path = await self.resource_path(item['_id'], 'item')
return await self.lookup_resource('%s/%s' % (item_path, name)) is not None
async def ensure_folders(gc, parent, folders):
for folder_name in folders:
parent = await gc.create_folder(parent['_id'], 'folder', folder_name)
return parent
async def upload_image(gc, folder, shot_name, run_name, variable, timestep, bits, size, check_exists=False):
log = logging.getLogger('adash')
image_path = Path(variable['image_name'])
image_folders = [shot_name, run_name, variable['group_name']]
parent_folder = await ensure_folders(gc, folder, image_folders)
name = None
for k in ['name', 'variable_name']:
name = variable.get(k)
if name is not None:
break
if name is None:
raise Exception('Unable to extract variable name.')
variable_item = await gc.create_item(parent_folder['_id'], name)
image_name = '%s%s' % (str(timestep).zfill(4), image_path.suffix)
create = True
if check_exists:
create = not await gc.file_exist(variable_item, image_name)
if create:
log.info('Uploading "%s/%s/%s".' % ('/'.join([str(i) for i in image_folders]), name, image_name))
await gc.upload_file(variable_item, image_name, bits, size)
@tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError),
wait=tenacity.wait_exponential(max=10),
stop=tenacity.stop_after_attempt(10))
async def fetch_variables(session, upload_site_url, shot_name, run_name, timestep):
async with session.get('%s/shots/%s/%s/%d/variables.json' % (upload_site_url, shot_name,
run_name, timestep)) as r:
if r.status == 404:
return None
r.raise_for_status()
return await r.json()
@tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError),
wait=tenacity.wait_exponential(max=10),
stop=tenacity.stop_after_attempt(10))
async def fetch_images_archive(session, upload_site_url, shot_name,
run_name, timestep):
async with session.get('%s/shots/%s/%s/%d/images.tar.gz' % (upload_site_url, shot_name,
run_name, timestep)) as r:
if r.status == 404:
return None
r.raise_for_status()
return await r.read()
async def fetch_images(session, gc, folder, upload_site_url, shot_name, run_name, timestep,
metadata_semaphore, check_exists=False):
log = logging.getLogger('adash')
log.info('Fetching variables.json for timestep: "%d".' % timestep)
# Fetch variables.json
variables = await fetch_variables(session, upload_site_url, shot_name, run_name, timestep)
if variables is None:
log.warning('Unable to fetch variables.json. Timestep "%d" is missing.' % timestep)
else:
log.info('Fetching images.tar.gz for timestep: "%d".' % timestep)
buffer = BytesIO(await fetch_images_archive(session, upload_site_url, shot_name, run_name, timestep))
tasks = []
with tarfile.open(fileobj=buffer) as tgz:
for v in variables:
info = None
k = '%s/%s' % (v['group_name'], v['image_name'])
try:
info = tgz.getmember(k)
except KeyError:
pass
if info is None:
raise Exception('Unable to extract image: "%s"' % k)
br = tgz.extractfile(info)
bits = br.read()
tasks.append(
asyncio.create_task(
upload_image(gc, folder, shot_name, run_name, v,
timestep, bits, info.size, check_exists)
)
)
# Gather, so we fetch all images for this timestep before moving on to the
# next one!
await asyncio.gather(*tasks)
# Set the current timestep
metadata = {
'currentTimestep': timestep
}
run_folder = await ensure_folders(gc, folder, [shot_name, run_name])
await gc.set_metadata('folder', run_folder['_id'], metadata, metadata_semaphore)
# scheduler used to schedule fetch_images request inorder, so we fetch the images
# in timestep order.
async def fetch_images_scheduler(queue):
log = logging.getLogger('adash')
while True:
try:
fetch = await queue.get()
log.info(fetch)
await fetch
queue.task_done()
except asyncio.CancelledError:
raise
except:
log.exception('Exception occured fetching images.')
@tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError),
wait=tenacity.wait_exponential(max=10),
stop=tenacity.stop_after_attempt(10))
async def fetch_run_time(session, upload_site_url, shot_name, run_name):
run_path = 'shots/%s/%s/time.json' % (shot_name, run_name)
async with session.get('%s/%s' % (upload_site_url, run_path),
raise_for_status=False) as r:
if r.status == 404:
return None
return await r.json()
async def watch_run(session, gc, folder, upload_site_url, shot_name, run_name,
username, machine, run_poll_interval):
log = logging.getLogger('adash')
log.info('Starting to watch run "%s" shot "%s".' % (run_name, shot_name))
fetch_images_queue = asyncio.Queue()
metadata_semaphore = asyncio.Semaphore()
scheduler = asyncio.create_task(
fetch_images_scheduler(fetch_images_queue)
)
last_timestep = None
metadata = {
'username': username,
'machine': machine
}
run_folder = await ensure_folders(gc, folder, [shot_name, run_name])
await gc.set_metadata('folder', run_folder['_id'], metadata, metadata_semaphore)
while True:
# Check to see what the last successfully processed timestep was
metadata = await gc.get_metadata('folder', run_folder['_id'])
if last_timestep is None:
last_timestep = metadata.get('currentTimestep')
if last_timestep is not None:
log.info('Last timestep processed: "%d"' % last_timestep)
else:
log.info('No previous timestep have been processed.')
last_timestep = 0
# Now see where the simulation upload has got to
run_path = 'shots/%s/%s/time.json' % (shot_name, run_name)
time = await fetch_run_time(session, upload_site_url, shot_name, run_name)
# Wait for time.json to appear
if time is None:
log.warn('Unable to fetch "%s", waiting for 1 sec.' % run_path)
await asyncio.sleep(1)
continue
new_timestep = time['current']
complete = time.get('complete', False)
# Are we done. The run is marked as complete and we have ingested all the
# timesteps.
if complete and last_timestep == new_timestep:
log.info('Run "%s" is complete.' % run_name)
await fetch_images_queue.join()
scheduler.cancel()
break
# Did we miss any timesteps?
delta = new_timestep - last_timestep
# We have missed to timesteps so need to catch up!
if delta > 1:
# First schedule a fetch of the next timesetp checking if the files
# exists ( this is the one that could be partially processed.
fetch_images_queue.put_nowait(
fetch_images(session, gc, folder, upload_site_url,
shot_name, run_name, last_timestep+1,
metadata_semaphore, check_exists=True)
)
# Then process the rest normally
for t in range(last_timestep+2, new_timestep+1):
fetch_images_queue.put_nowait(
fetch_images(session, gc, folder, upload_site_url,
shot_name, run_name, t,
metadata_semaphore)
)
# We successfully processed the last timestep so just schedule the processing
# of the next.
elif delta == 1:
fetch_images_queue.put_nowait(
fetch_images(session, gc, folder, upload_site_url,
shot_name, run_name, new_timestep,
metadata_semaphore,
# If we processing the first timestep we need to check
# the existence of the files, as the fetching of this
# timestep may have failed before.
last_timestep == 0)
)
last_timestep = new_timestep
await asyncio.sleep(run_poll_interval)
@tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError),
wait=tenacity.wait_exponential(max=10),
stop=tenacity.stop_after_attempt(10))
async def fetch_shot_index(session, upload_site_url):
async with session.get('%s/shots/index.json' % upload_site_url) as r:
if r.status == 404:
return None
else:
r.raise_for_status()
return await r.json()
async def watch_shots_index(session, gc, folder, upload_site_url, api_url,
api_key, shot_poll_interval, run_poll_internval):
log = logging.getLogger('adash')
runs = set()
shot_metadata_semaphore = asyncio.Semaphore()
# Get users and machines
metadata = await gc.get_metadata('folder', folder['_id'])
users = set(metadata.get('users', [])) if metadata is not None else set()
machines = set(metadata.get('machines', [])) if metadata is not None else set()
while True:
log.info('Fetching /shots/index.json')
index = await fetch_shot_index(session, upload_site_url)
if index is None:
# Just wait for index.json to appear
log.warn('Unable to fetch "shots/index.json", waiting for 1 sec.')
await asyncio.sleep(1)
continue
for shot in index:
username = shot['username']
users.add(username)
machine = shot['machine_name']
machines.add(machine)
# TODO Update the meta data
shot_name = shot['shot_name']
run_name = shot['run_name']
run_key = '%s/%s' % ( shot_name, run_name)
if run_key not in runs:
asyncio.create_task(
watch_run(session, gc, folder, upload_site_url, shot_name,
run_name, username, machine, run_poll_internval)
)
runs.add(run_key)
metadata = {
'machines': list(machines),
'users': list(users)
}
await gc.set_metadata('folder', folder['_id'], metadata, shot_metadata_semaphore)
await asyncio.sleep(shot_poll_interval)
async def watch(folder_id, upload_site_url, api_url, api_key,
shot_poll_interval, run_poll_internval):
def ignore_aiohttp_ssl_eror(loop, aiohttpversion='3.5.4'):
"""Ignore aiohttp #3535 issue with SSL data after close
There appears to be an issue on Python 3.7 and aiohttp SSL that throws a
ssl.SSLError fatal error (ssl.SSLError: [SSL: KRB5_S_INIT] application data
after close notify (_ssl.c:2609)) after we are already done with the
connection. See GitHub issue aio-libs/aiohttp#3535
Given a loop, this sets up a exception handler that ignores this specific
exception, but passes everything else on to the previous exception handler
this one replaces.
If the current aiohttp version is not exactly equal to aiohttpversion
nothing is done, assuming that the next version will have this bug fixed.
This can be disabled by setting this parameter to None
"""
if aiohttpversion is not None and aiohttp.__version__ != aiohttpversion:
return
orig_handler = loop.get_exception_handler()
def ignore_ssl_error(loop, context):
if context.get('message') == 'SSL error in data received':
# validate we have the right exception, transport and protocol
exception = context.get('exception')
protocol = context.get('protocol')
if (
isinstance(exception, ssl.SSLError) and exception.reason == 'KRB5_S_INIT' and
isinstance(protocol, asyncio.sslproto.SSLProtocol) and
isinstance(protocol._app_protocol, aiohttp.client_proto.ResponseHandler)
):
if loop.get_debug():
asyncio.log.logger.debug('Ignoring aiohttp SSL KRB5_S_INIT error')
return
if orig_handler is not None:
orig_handler(loop, context)
else:
loop.default_exception_handler(context)
loop.set_exception_handler(ignore_ssl_error)
ignore_aiohttp_ssl_eror(asyncio.get_running_loop())
async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(verify_ssl=False)) as session:
gc = AsyncGirderClient(session, api_url)
await gc.authenticate(api_key)
folder = {
'_id': folder_id
}
await watch_shots_index(session, gc, folder, upload_site_url, api_url,
api_key, shot_poll_interval, run_poll_internval)
@click.command('watch', help='Watch upload site and ingest data into Girder')
@click.option('-f', '--folder-id', help='the folder to ingest into. [default: GIRDER_FOLDER_IR env. variable]', envvar='GIRDER_FOLDER_ID')
@click.option('-r', '--upload-site_url', help='the URL to the upload site to watch. [default: UPLOAD_SITE_URL env. variable]', envvar='UPLOAD_SITE_URL',)
@click.option('-u', '--api-url', default='http://localhost:8080/api/v1', help='RESTful API URL '
'(e.g https://girder.example.com/api/v1). [default: GIRDER_API_URL env. variable]', envvar='GIRDER_API_URL')
@click.option('-k', '--api-key', envvar='GIRDER_API_KEY',
help='[default: GIRDER_API_KEY env. variable]')
@click.option('-i', '--shot-poll-interval', default=30, type=int, help='shot poll interval (sec)')
@click.option('-v', '--run-poll-interval', default=30, type=int, help='run poll interval (sec)')
def main(folder_id, upload_site_url, api_url, api_key, shot_poll_interval, run_poll_interval):
#gc = GC(api_url=api_url, api_key=api_key)
if upload_site_url[-1] == '/':
upload_site_url = upload_site_url[:-1]
log = logging.getLogger('adash')
log.info('Watching: %s' % upload_site_url)
asyncio.run(
watch(folder_id, upload_site_url, api_url, api_key,
shot_poll_interval, run_poll_interval)
)
|
py
|
1a592c938ee8d15012768a07ea9c4d6e02ef1920
|
from collections import OrderedDict
import six
from django.http import Http404
from django.utils.encoding import force_text
from rest_framework import status
from rest_framework import exceptions, status
from rest_framework.compat import set_rollback
from rest_framework.exceptions import PermissionDenied
from rest_framework.response import Response
from django.utils.translation import ugettext_lazy as _
class APIError(Exception):
status_code = status.HTTP_500_INTERNAL_SERVER_ERROR
default_detail = _('A server error occurred.')
default_error_slug = 'internal_error'
def __init__(self, detail=None, error_slug=None):
if detail is not None:
self.detail = force_text(detail)
self.error_slug = force_text(error_slug)
else:
self.detail = force_text(self.default_detail)
self.error_slug = force_text(self.default_error_slug)
def __str__(self):
return self.detail
def custom_exception_handler(exc, context):
"""
Returns the response that should be used for any given exception.
By default we handle the REST framework `APIException`, and also
Django's built-in `Http404` and `PermissionDenied` exceptions.
Any unhandled exceptions may return `None`, which will cause a 500 error
to be raised.
"""
if isinstance(exc, exceptions.APIException):
headers = {}
if getattr(exc, 'auth_header', None):
headers['WWW-Authenticate'] = exc.auth_header
if getattr(exc, 'wait', None):
headers['Retry-After'] = '%d' % exc.wait
if isinstance(exc.detail, (list, dict)):
# Concatenate all field and non_field errors for message:
message = ''
for key in exc.detail:
try:
if isinstance(exc.detail[key], str):
message += exc.detail[key] + ' '
else:
for error in exc.detail[key]:
# Don't include duplicates in universal error message
if error not in message:
message += error + ' '
except TypeError:
if key == 'non_field_errors':
message = exc.detail[key][0]
else:
message = _('Invalid request.')
if message.endswith(' '):
message = message[:-1] # remove last space
data = OrderedDict([('status', 'error'), ('message', message), ('data', exc.detail)])
else:
data = OrderedDict([('status', 'error'), ('message', exc.detail)])
set_rollback()
return Response(data, status=exc.status_code, headers=headers)
elif isinstance(exc, Http404):
msg = _('Not found.')
data = {'status': 'error', 'message': six.text_type(msg)}
set_rollback()
return Response(data, status=status.HTTP_404_NOT_FOUND)
elif isinstance(exc, PermissionDenied):
msg = _('Permission denied.')
data = {'status': 'error', 'message': six.text_type(msg)}
set_rollback()
return Response(data, status=status.HTTP_403_FORBIDDEN)
# Note: Unhandled exceptions will raise a 500 error.
return None
|
py
|
1a592e2de103578f205bb7b42c154c1f06cec99f
|
import torch
import sys
import csv
import nestedtensor
import utils
import torchvision
from torch.nn import functional as F
import random
class DETRNestedTensor(object):
def __init__(self, tensors, mask):
self.tensors = tensors
self.mask = mask
def to(self, *args, **kwargs):
cast_tensor = self.tensors.to(*args, **kwargs)
cast_mask = self.mask.to(
*args, **kwargs) if self.mask is not None else None
return type(self)(cast_tensor, cast_mask)
def decompose(self):
return self.tensors, self.mask
@classmethod
def from_tensor_list(cls, tensor_list):
# TODO make this more general
if tensor_list[0].ndim == 3:
# TODO make it support different-sized images
max_size = tuple(max(s)
for s in zip(*[img.shape for img in tensor_list]))
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
batch_shape = (len(tensor_list),) + max_size
b, c, h, w = batch_shape
dtype = tensor_list[0].dtype
device = tensor_list[0].device
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
for img, pad_img, m in zip(tensor_list, tensor, mask):
pad_img[: img.shape[0], : img.shape[1],
: img.shape[2]].copy_(img)
m[: img.shape[1], :img.shape[2]] = False
else:
raise ValueError('not supported')
return cls(tensor, mask)
# Performance tanks hard for lots of small Tensors as expected
DEVICE = torch.device('cuda')
NDIM = 256
NHEAD = 8
MODEL = torch.nn.MultiheadAttention(NDIM, NHEAD).to(DEVICE).eval()
def run_benchmark(bsz, mean_i, mean_j, var, writer):
RAND_INTS = [(int(random.gauss(mean_j, var)), int(
random.gauss(mean_i, var))) for _ in range(bsz)]
src_ = nestedtensor.nested_tensor(
[torch.randn(NDIM * i * j).float().reshape(NDIM, i, j) for (i, j) in RAND_INTS], device=DEVICE, dtype=torch.float)
src = []
for i, s in enumerate(src_):
src.append(i*len(s) + s)
detr_nt_src = DETRNestedTensor.from_tensor_list(src)
sparsity = int(detr_nt_src.decompose()[1].float().mean().item() * 10) / 10
def gen_t_loop_mha(src):
detr_nt_src = DETRNestedTensor.from_tensor_list(src)
src, mask = detr_nt_src.decompose()
src = src.flatten(2).permute(2, 0, 1).contiguous()
mask = mask.flatten(1).contiguous()
def te():
MODEL(src, src, src, key_padding_mask=mask,
need_weights=False)
return te
def gen_nt_mha(src):
src = nestedtensor.nested_tensor([t.flatten(1).permute(
1, 0) for t in src], device=DEVICE, dtype=torch.float)
def nt():
MODEL(src, src, src, need_weights=False)
return nt
result_t = {**utils.benchmark_fn(gen_t_loop_mha(src), 5.0, cuda=True), "bsz": bsz,
"sparsity": sparsity, "var": var, "mean_i": mean_i, "mean_j": mean_j}
result_t["numel"] = sum([x.numel() for x in src_])
result_t["numel_div_avg_us"] = result_t["numel"] / result_t["avg_us"]
result_t["avg_ns_div_numel"] = result_t["avg_us"] / \
result_t["numel"] * 1000
writer.writerow(result_t)
result_nt = {**utils.benchmark_fn(gen_nt_mha(src), 5.0, cuda=True),
"bsz": bsz, "sparsity": 0.0, "var": var, "mean_i": mean_i, "mean_j": mean_j}
result_nt["numel"] = sum([x.numel() for x in src_])
result_nt["numel_div_avg_us"] = result_nt["numel"] / result_nt["avg_us"]
result_nt["avg_ns_div_numel"] = result_nt["avg_us"] / \
result_nt["numel"] * 1000
writer.writerow(result_nt)
if __name__ == "__main__":
random.seed(1011)
torch.manual_seed(1011)
writer = csv.DictWriter(sys.stdout, fieldnames=[
"name", "avg_us", "std_us", "runs", "bsz", "sparsity",
"var", "mean_i", "mean_j", "numel", "numel_div_avg_us",
"avg_ns_div_numel"])
writer.writeheader()
for var in [float(i) / 10 for i in range(0, 100, 50)]:
for batch_size in [2, 8, 16]:
run_benchmark(batch_size, 30, 30, var, writer)
|
py
|
1a592f3a6990d0a1ea3435f4a3ede2701c5ad2d9
|
# -*- coding: utf-8 -*-
from ..base import * # noqa
class TestAllVarTypes(EngineTestCase):
def test_all_var_types(self):
start = EmptyStartEvent()
act_1 = ServiceActivity(component_code="debug_node")
act_1.component.inputs.param_1 = Var(type=Var.SPLICE, value="${constant_1}")
act_1.component.inputs.param_2 = Var(type=Var.LAZY, custom_type="upper_case", value="abc")
act_1.component.inputs.param_3 = Var(type=Var.PLAIN, value="normal var")
end = EmptyEndEvent()
start.extend(act_1).extend(end)
pipeline_data = Data()
pipeline_data.inputs["${constant_1}"] = Var(type=Var.PLAIN, value="value_1")
pipeline = self.create_pipeline_and_run(start, data=pipeline_data)
self.join_or_fail(pipeline)
self.assert_pipeline_finished(pipeline)
self.assert_inputs_equals(act_1, "param_1", "value_1")
self.assert_inputs_equals(act_1, "param_2", "ABC")
self.assert_inputs_equals(act_1, "param_3", "normal var")
self.test_pass()
|
py
|
1a593099b8a27a845af1f3801a1cd79d267fce35
|
__________________________________________________________________________________________________
sample 52 ms submission
class Solution:
def isPowerOfThree(self, n: int) -> bool:
return n > 0 == 3**19 % n
__________________________________________________________________________________________________
sample 13076 kb submission
class Solution:
def isPowerOfThree(self, n: int) -> bool:
if n <= 0:
return False
while n > 1:
n, res = divmod(n, 3)
if res:
return False
return True
__________________________________________________________________________________________________
|
py
|
1a5931d31c6580227f0a18e26c5690e33e103290
|
from src import Env, LoggerFactory as Logger
LEYEND = '''
Leyend:
R : Robot
B : Baby
C : Corral
# : Obstacule
* : Dirt
- : Empty cell
'''
def main(args, log):
robot = 'Reagent'
robotA = 'Practical'
if args.practical:
robot = 'Practical'
robotA = 'Reagent'
#//HACKME:Monkey patch current_agent
#src.agent.current_agent.func = current_agent
house = None
while True:
e = Env(args.rows, args.columns, args.dirtiness, args.obstacules, args.babies, args.time, args.bernoulli, robot)
house = e.copy_house()
log.info('The generated environment is:')
print(e)
print(LEYEND)
print('If this environment ok to you? Insert REPEAT to re-generate, insert anything else to continue')
s = input()
if s != 'REPEAT':
break
mean, mess = e.simulate(args.interactive)
if e.fired:
log.info('The time is over, task failed for robot')
log.info(f'The amount of dirt at the end of this simulation is: {mess}')
if args.simulation:
mean_first = mean
print('\n')
eA = Env(args.rows, args.columns, args.dirtiness, args.obstacules, args.babies, args.time, args.bernoulli, robotA)
eA.house = house
mean, mess = eA.simulate(args.interactive)
if eA.fired:
log.info('The time is over, task failed for robot')
log.info(f'The amount of dirt at the end of this simulation is: {mess}')
print('\n')
print('*************************************************************')
print('Final Results:', 'Results')
print('\n')
print(f'Task completed by {robot} agent: {e.succeded}')
print(f'Task completed by {robotA} agent: {eA.succeded}')
print('\n')
print(f'{robot} agent fired: {e.fired}')
print(f'{robotA} agent fired: {eA.fired}')
print('\n')
print(f'Percentage of dirt at the end of this simulation of the {robot} agent: {mean_first}')
print(f'Percentage of dirt at the end of this simulation of the {robotA} agent: {mean}')
print('\n')
print(f'Final house env of {robotA} agent')
print('\n')
print(eA)
print('\n')
print(f'Final house env of {robot} agent')
print('\n')
print(e)
print('*************************************************************')
if __name__ == '__main__':
import argparse
import os
parser = argparse.ArgumentParser(description='Kindergarden simulator')
parser.add_argument('-r', '--rows', type=int, default=9, help='number of rows of the house')
parser.add_argument('-c', '--columns', type=int, default=8, help='number of columns of the house')
parser.add_argument('-d', '--dirtiness', type=int, default=30, help='percentage of dirty cells at the start of the simulation')
parser.add_argument('-o', '--obstacules', type=int, default=20, help='percentage of obstacules at the start of the simulation')
parser.add_argument('-b', '--babies', type=int, default=5, help='number of babies in the house')
parser.add_argument('-t', '--time', type=int, default=5, help='number of turns between changes of the environment')
parser.add_argument('-p', '--practical', type=bool, const=True, nargs='?', help='set if you want to simulate Practical agent. Reagent agent is default')
parser.add_argument('-P', '--bernoulli', type=float, default=0.5, help='probability of a baby moving in an environment change (0 to 1)')
parser.add_argument('-l', '--level', type=str, default='INFO', help='log level')
parser.add_argument('-f', '--file', type=bool, const=True, nargs='?', help='set if you want log to a file')
parser.add_argument('-i', '--interactive', type=bool, const=True, nargs='?', help='set if you want to see what happens in every turn')
parser.add_argument('-s', '--simulation', type=bool, const=True, nargs='?', help='set if you want to simulate all the agents')
args = parser.parse_args()
if not os.path.exists('./logs'):
os.mkdir('./logs/')
log = Logger(name='Kindergarden', log=args.file)
log.setLevel(args.level)
main(args, log)
|
py
|
1a5932baa7414b38ee5c7ab8273e1ee5d1bdbab6
|
import unittest
loader = unittest.TestLoader()
start_dir = '.'
suite = loader.discover(start_dir)
runner = unittest.TextTestRunner()
runner.run(suite)
|
py
|
1a59337196e5b63d0e329fe77f5b612f5f9b879e
|
# Generated by Django 3.2.6 on 2021-09-16 07:08
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
("students", "0003_studentgroup_user"),
]
operations = [
migrations.AlterField(
model_name="student",
name="group",
field=models.ForeignKey(
on_delete=django.db.models.deletion.CASCADE,
related_name="students",
to="students.studentgroup",
verbose_name="skupina",
),
),
migrations.AlterField(
model_name="student",
name="name",
field=models.CharField(max_length=255, verbose_name="ime"),
),
migrations.AlterField(
model_name="studentgroup",
name="name",
field=models.CharField(max_length=255, verbose_name="ime"),
),
]
|
py
|
1a5933deb42c13e670cc12fd3fd01eacdd6eab35
|
import os
def ui2main(ui_name, file_name = 'main.py', model_name = '*_ui2py.py'):
if model_name == '*_ui2py.py':
model_name = ui_name.split('.')[0] + '_ui2py.py'
if os.path.exists(ui_name):
if os.path.exists(model_name):
print('由ui直接转化为py格式的文件' + model_name + '已存在')
else:
print('开始转化ui文件至:' + model_name)
# os.system('pyuic5 -o ' + model_name + ' ' + ui_name)
os.system('python3 -m PyQt5.uic.pyuic -o ' + model_name + ' ' + ui_name)
while True:
if os.path.exists(model_name):
break
if os.path.exists(file_name):
print('用于编写功能的py文件(运行此函数)' + file_name + '已存在')
else:
print('开始生成主函数文件至:' + file_name)
model_text = open(model_name,encoding='utf8').read().split('\n')
msg = {'model_class':'未识别出', 'button':[], 'action':[], 'combobox':[]}
for line in model_text:
if 'class ' in line:
msg['model_class'] = line.split(' ')[1].split('(')[0]
elif 'QtWidgets.QPushButton(' in line:
button_name = line.split(' = ')[0] # .replace(' ','')
msg['button'].append(button_name)
elif '= QtWidgets.QAction(' in line:
action_name = line.split(' = ')[0]
msg['action'].append(action_name)
elif 'QtWidgets.QComboBox(' in line:
combobox_name = line.split(' = ')[0]
msg['combobox'].append(combobox_name)
buttonactive_test = '\n # 激活全部按钮、菜单选项、下拉列表用于测试,实际使用时注释掉\n'
button_text = '\n # 事件连接函数\n'
buttonfun_text = '\n\n # 按钮\n'
for button in msg['button']:
buttonactive_test += button + '.setEnabled(True)\n'
button_text += button +'.clicked.connect(' + button.replace(' ','') + '_ClickFun)\n'
buttonfun_text += ' def ' + button.replace(' ','').replace('self.', '') + '_ClickFun(self):\n print("你按了 " + ' + button.replace(' ','') + '.text() + " 这个按钮")\n\n'
actionactive_test = '\n'
action_text = '\n'
actionfun_text = '\n # 菜单选项\n'
for action in msg['action']:
actionactive_test += action + '.setEnabled(True)\n'
action_text += action + '.triggered.connect(' + action.replace(' ', '') + '_ClickFun)\n'
actionfun_text += ' def ' + action.replace(' ', '').replace('self.',
'') + '_ClickFun(self):\n print("你按了 " + ' + action.replace(
' ', '') + '.text() + " 这个菜单选项")\n\n'
comboboxactive_test = '\n'
combobox_text = '\n'
comboboxfun_text = '\n # 下拉列表\n'
for combobox in msg['combobox']:
comboboxactive_test += combobox + '.setEnabled(True)\n'
combobox_text += combobox + '.currentIndexChanged.connect(' + combobox.replace(' ', '') + '_ClickFun)\n'
comboboxfun_text += ' def ' + combobox.replace(' ', '').replace('self.',
'') + '_ClickFun(self):\n print("你将该下拉列表选项变成了 " + ' + combobox.replace(
' ', '') + '.currentText())\n\n'
sum_test = buttonactive_test + actionactive_test + comboboxactive_test +\
button_text + action_text + combobox_text +\
buttonfun_text + actionfun_text + comboboxfun_text
file_text = open(str(__file__).replace('__init__.py', 'model.txt'), encoding='utf8').read()
file_text = file_text.replace('MyFunction',
str(os.path.realpath(__file__)).replace('\\', '/').split('/')[-3])
file_text = file_text.replace('模板类', msg['model_class'])
file_text = file_text.replace('模板', model_name.split('.')[0])
file_text = file_text.replace('此处是一堆连接', sum_test)
open(file_name, 'w+', encoding='utf8').write(file_text)
print('完成')
else:
print('文件' + ui_name + '不存在!程序退出')
# if __name__ == '__main__':
# CreateWritngFile('main.ui', 'test.py')
|
py
|
1a5934868663f78f7e61b0ff08953213de532205
|
from collections import defaultdict
all_ingredients = []
candidates = defaultdict(list)
with open('in', 'r') as f:
for line in f.readlines():
ingredients, allergens = line.split(' (')
ingredients = ingredients.strip().split()
allergens = allergens.replace('contains ', '').replace(')', '').strip().split(', ')
all_ingredients += ingredients
for allergen in allergens:
candidates[allergen].append(set(ingredients))
are_allergens = set()
for allergen in candidates.keys():
options = set(all_ingredients)
for i in candidates[allergen]:
options = options.intersection(i)
for i in options:
are_allergens.add(i)
count = 0
for ingredient in all_ingredients:
if ingredient not in are_allergens:
count += 1
print(count)
|
py
|
1a593674f54421fc0d04a623fb1fbf8b83f4e8d2
|
#standard imports
from typing import Tuple,Union
#scientific imports
import numpy as np
from sympy.ntheory import factorint
#project imports
from data_handler.signal_features import get_time_step
def calculate_flicker_amplitude(data:np.ndarray) -> float:
"""
Computes the flicker amplitude after Bastien et al. (2013)
:param data: data consisting of the full lightcurve
:return: flicker amplitude
"""
flicker_time = get_flicker_time(data)
t_step = get_time_step(data)
elements = data[0].shape
box_size = np.round(flicker_time/t_step)
bin_count = int(elements / box_size)
points_left = elements - box_size * bin_count
index_shift,cols = get_index_shift(points_left)
mean_array, subtract_array_amplitude = get_flicker_arrays(data, elements, cols, index_shift, box_size, flicker_time)
mean_amp = np.mean(mean_array)
subtract_array_amplitude = np.unique(subtract_array_amplitude)
flic_amplitude = 0
for i in range(0, len(subtract_array_amplitude)):
flic_amplitude += (subtract_array_amplitude[i] - mean_amp) ** 2
denominator = float(len(subtract_array_amplitude))
amp_flic = np.sqrt(flic_amplitude / denominator)
return amp_flic
def flicker_amplitude_to_frequency(flicker_amplitude : float) -> float:
"""
Converts the flicker amplitude to the first filter frequency according to Kallinger et al. (2016)
:param flicker_amplitude: Flicker amplitude calculated according to Bastien et. al (2013)
:return: First filter frequency
"""
return 10 ** (5.187) / (flicker_amplitude ** (1.560))
def get_flicker_time(data : np.ndarray) -> float:
"""
Returns the flicker time. 2.5 hours for SC, 5 days for LC data
:param data: data consisting of the full lightcurve
:return: flicker time
"""
t_step = get_time_step(data)
t_step *= 24*60
if t_step < 10:
return 2.5/(60*24) #2.5 hours time for SC data
else:
return 5/24 #5 days for LC data
def get_index_shift(points_left : int) -> Tuple[int,int]:
"""
Depending on how many points are left in the array from the binsize, this method will return the according
index_shift for the data as well as the amount of cols whereover these have to be iterated
:param points_left: Restpoints after binning
:return: index_shift,cols
"""
index_shift = 0
cols = 1
if points_left > 1:
factors=factorint(points_left, multiple=True)
if len(factors) > 1:
index_shift = factors[0]**factors[1]
else:
index_shift = factors[0]
cols = int(points_left / index_shift + 1)
elif points_left == 1:
cols = 2
index_shift = 1
return index_shift,cols
def get_flicker_arrays(data : np.ndarray, elements : Union[int,Tuple[int,]], cols : int, index_shift : int, box_size : int
, filter_time :float) -> Tuple[float,np.ndarray]:
"""
This method, depending on the indexshift, boxsize and filtertime creates the appropiate arrays, for which the
flicker amplitude is calculated. It calculates the mean of every box for the boxsize
"""
if isinstance(elements,tuple) and len(elements) > 1:
raise ValueError("Elements is not allowed to be a tuple longer than 1!")
else:
elements = elements[0]
bin_count = int(elements / box_size)
points_left = elements - box_size * bin_count
array_mean = np.zeros(cols)
for k in range(0,cols):
array_rebin = np.zeros(int(elements-points_left))
n_points_bin_array = np.zeros(int(elements-points_left))
i = k * index_shift
for j in range(0,bin_count):
mean_bin = 0.0
timetime_referenceeference = i
count = 1
while i < (int(elements)-1) and (data[0][i] - data[0][timetime_referenceeference])/(3600*24) < filter_time:
mean_bin +=data[1][i]
if data[1][i] != 0:
count +=1
i+=1
mean_bin += data[1][i]
if data[1][i] != 0:
count +=1
if count > 1:
mean_bin /= count-1
array_rebin[timetime_referenceeference - k * index_shift:(i - 1) - k * index_shift] = mean_bin
n_points_bin_array[timetime_referenceeference - k * index_shift:(i - 1) - k * index_shift] = count
subtract_array_amplitude = data[1][k * index_shift:k * index_shift + len(array_rebin)] - array_rebin
subtract_array_amplitude = subtract_array_amplitude[n_points_bin_array >= box_size / 2]
array_mean[k] = np.mean(subtract_array_amplitude)
return array_mean,subtract_array_amplitude
|
py
|
1a59376ac1a23bd2eeacc62a27291cc13b31a164
|
normiefont = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
weebyfont = ['卂','乃','匚','刀','乇','下','厶','卄','工','丁','长','乚','从','𠘨','口','尸','㔿','尺','丂','丅','凵','リ','山','乂','丫','乙']
tantextfont = ['Ꭿ','Ᏸ','Ꮳ','Ꮄ','Ꮛ','Ꮄ','Ꮆ','Ꮒ','i','Ꮰ','Ꮶ','l','m','Ꮑ','Ꮻ','Ꮅ','Ꮔ','ᖇ','Ꭶ','Ꮏ','Ꮜ','Ꮙ','Ꮿ','メ','Ꭹ','Ꮓ']
linetextfont = ['𝔸','𝔹','ℂ','𝔻','𝔼','𝔽','𝔾','ℍ','𝕀','𝕁','𝕂','𝕃','𝕄','ℕ','𝕆','ℙ','ℚ','ℝ','𝕊','𝕋','𝕌','𝕍','𝕎','𝕏','𝕐','ℤ']
boxtextfont = ['🄰','🄱','🄲','🄳','🄴','🄵','🄶','🄷','🄸','🄹','🄺','🄻','🄼','🄽','🄾','🄿','🅀','🅁','🅂','🅃','🅄','🅅','🅆','🅇','🅈','🅉']
bubbletextfont = ['Ⓐ','Ⓑ','Ⓒ','Ⓓ','Ⓔ','Ⓕ','Ⓖ','Ⓗ','Ⓘ','Ⓙ','Ⓚ','Ⓛ','Ⓜ','Ⓝ','Ⓞ','Ⓟ','Ⓠ','Ⓡ','Ⓢ','Ⓣ','Ⓤ','Ⓥ','Ⓦ','Ⓧ','Ⓨ','Ⓩ']
cursivefont = ['𝓪','𝓫','𝓬','𝓭','𝓮','𝓯','𝓰','𝓱','𝓲','𝓳','𝓴','𝓵','𝓶','𝓷','𝓸','𝓹','𝓺','𝓻','𝓼','𝓽','𝓾','𝓿','𝔀','𝔁','𝔂','𝔃'
]
nefont = [ '𝕒' ,'𝕓','𝕔','𝕕','𝕖','𝕗','𝕘','𝕙','𝕚','𝕛','𝕜','𝕝','𝕞','𝕟','𝕠','𝕡','𝕢','𝕣','𝕤','𝕥','𝕦','𝕧','𝕨','𝕩','𝕪','𝕫']
@ultroid_cmd(pattern="dof ?(.*)")
async def weebify(ult):
args = ult.pattern_match.group(1)
if not args:
get = await ult.get_reply_message()
args = get.text
if not args:
await ult.edit("What I am Supposed to Weebify? Please Give Text Sir")
return
string = ''.join(args).lower()
for normiecharacter in string:
if normiecharacter in normiefont:
weebycharacter = nefont[normiefont.index(normiecharacter)]
string = string.replace(normiecharacter, weebycharacter)
await ult.edit(string)
@ultroid_cmd(pattern="weeb ?(.*)")
async def weebify(ult):
args = ult.pattern_match.group(1)
if not args:
get = await ult.get_reply_message()
args = get.text
if not args:
await ult.edit("What I am Supposed to Weebify? Please Give Text Sir")
return
string = ''.join(args).lower()
for normiecharacter in string:
if normiecharacter in normiefont:
weebycharacter = weebyfont[normiefont.index(normiecharacter)]
string = string.replace(normiecharacter, weebycharacter)
await ult.edit(string)
@ultroid_cmd(pattern="tantext ?(.*)")
async def tantxt(ult):
args = ult.pattern_match.group(1)
if not args:
get = await ult.get_reply_message()
args = get.text
if not args:
await ult.edit("What I am Supposed to tanify? Please Give Text Sir")
return
string = ''.join(args).lower()
for normiecharacter in string:
if normiecharacter in normiefont:
tanycharacter = tantextfont[normiefont.index(normiecharacter)]
string = string.replace(normiecharacter, tanycharacter)
await ult.edit(string)
@ultroid_cmd(pattern="linetext ?(.*)")
async def linetxt(ult):
args = ult.pattern_match.group(1)
if not args:
get = await ult.get_reply_message()
args = get.text
if not args:
await ult.edit("What I am Supposed to linefy? Please Give Text Sir")
return
string = ''.join(args).lower()
for normiecharacter in string:
if normiecharacter in normiefont:
linecharacter = linetextfont[normiefont.index(normiecharacter)]
string = string.replace(normiecharacter, linecharacter)
await ult.edit(string)
@ultroid_cmd(pattern="boxtext ?(.*)")
async def boxtxt(ult):
args = ult.pattern_match.group(1)
if not args:
get = await ult.get_reply_message()
args = get.text
if not args:
await ult.edit("What I am Supposed to boxify? Please Give Text Sir")
return
string = ''.join(args).lower()
for normiecharacter in string:
if normiecharacter in normiefont:
boxcharacter = boxtextfont[normiefont.index(normiecharacter)]
string = string.replace(normiecharacter, boxcharacter)
await ult.edit(string)
@ultroid_cmd(pattern="bubbletext ?(.*)")
async def bubbletxt(ult):
args = ult.pattern_match.group(1)
if not args:
get = await ult.get_reply_message()
args = get.text
if not args:
await ult.edit("What I am Supposed to bubblify? Please Give Text Sir")
return
string = ''.join(args).lower()
for normiecharacter in string:
if normiecharacter in normiefont:
bubblecharacter = bubbletextfont[normiefont.index(normiecharacter)]
string = string.replace(normiecharacter, bubblecharacter)
await ult.edit(string)
@ultroid_cmd(pattern="cursive ?(.*)")
async def cursive(ult):
args = ult.pattern_match.group(1)
if not args:
get = await ult.get_reply_message()
args = get.text
if not args:
await ult.edit("What I am Supposed to write in cursive? Please Give Text Sir")
return
string = ''.join(args).lower()
for normiecharacter in string:
if normiecharacter in normiefont:
cursivecharacter = cursivefont[normiefont.index(normiecharacter)]
string = string.replace(normiecharacter, weebycharacter)
await ult.edit(string)
|
py
|
1a5938409e2620d4d99ace248946c429af77e7d3
|
import colorama
from colorama import Fore, Style, Back
class RidePrinter:
COLOR_MAP = {
5: Fore.MAGENTA,
4: Fore.CYAN,
3: Fore.BLUE,
2: Fore.GREEN,
1: Fore.YELLOW,
0: Fore.RED
}
def __init__(self):
colorama.init()
self.curr_color_num = 0
def print_rider_location(self, rider):
"""Print the current webpage of some WikiRider instance"""
page_title = rider.html_source.find('title').text.split(' - ')[0]
next_color = self.COLOR_MAP[self.curr_color_num]
dash_counter = min(rider.depth_counter + 1, 25)
self.curr_color_num = (self.curr_color_num + 1) % len(self.COLOR_MAP)
print(Style.BRIGHT + Fore.WHITE + (" - " * dash_counter)
+ page_title + " - " + next_color + rider.next_url
+ Style.RESET_ALL)
def print_end(self):
print(Style.BRIGHT + Back.WHITE + Fore.BLACK +
"You rode the Wiki!" + Style.RESET_ALL)
def print_start(self):
print("\n" + Style.BRIGHT + Back.WHITE + Fore.BLACK +
"Starting the Track!" + Style.RESET_ALL)
def print_banner(self):
print(Style.BRIGHT + Fore.WHITE)
print(" (_\\")
print(" / \\")
print(" `== / /\\=,_")
print(" _-_- ;--==\\\\ \\\\o")
print(" _-_-__ /____//__/__\\")
print(" _-_- `(0) (0) ")
print("\t-Wiki_Rider" + Style.RESET_ALL)
def print_help(self):
print(Style.BRIGHT + Fore.WHITE + "\nUsage: " + Fore.YELLOW +
"./wikirun.py <starting url> <depth>" + Style.RESET_ALL)
def print_invalid_input_error(self):
print(Style.BRIGHT + Fore.RED +
"\n Depth must be a number! \n Starting URL must be a valid "
"WikiPedia URL! \n (You might me missing https:// and special "
"Pages aren't Allowed)!" + Style.RESET_ALL)
def print_connection_error(self):
print(Style.BRIGHT + Fore.RED +
'Cannot connect to WikiPedia.' + Style.RESET_ALL)
|
py
|
1a5938546a059e5bc00efad59fa27c6b94eaf1b9
|
import requests
import pprint
import json
import os
from bs4 import BeautifulSoup
if os.path.isfile('flipkart.json'):
with open('flipkart.json','r')as file:
file_data=json.load(file)
print(file_data)
else:
link="https://www.flipkart.com/search?q=mi+all+mobile&sid=tyy%2C4io&as=on&as-show=on&otracker=AS_QueryStore_OrganicAutoSuggest_0_6&otracker1=AS_QueryStore_OrganicAutoSuggest_0_6&as-pos=0&as-type=RECENT&as-searchtext=mi%20all%20"
req=requests.get(link)
# print(req)
page=req.text
# print(page)
soup=BeautifulSoup(page,'html.parser')
# print(soup)
main_div=soup.find_all('div',class_="_1UoZlX")
# print(main_div)
list_for_all_phones=[]
list_for_rupess=[]
list_for_rating=[]
list_for_all_detail=[]
dictionary={}
dic_list=[]
for i in main_div:
# print(i)
col=(i.find('div',class_='_1-2Iqu row'))
# print(col)
n=col.find('div',class_='_3wU53n')
text=(n.text)
list_for_all_phones.append(text)
for k in list_for_all_phones:
dictionary['mobile_name']=k
price=col.find('div',class_='_1vC4OE _2rQ-NK')
price_text=(price.text)
list_for_rupess.append(price_text)
for l in list_for_rupess:
dictionary['price']=l
rating=col.find('div',class_='hGSR34')
rt=(rating.text)
list_for_rating.append(rt)
for m in list_for_rating:
dictionary['rating']=m
b=col.find('div',class_='_3ULzGw')
c=b.find('ul')
for j in c:
sp=(j.text).split('\n')
list_for_all_detail.append(sp)
dictionary['ram']=list_for_all_detail[0]
dictionary['Display']=list_for_all_detail[1]
dictionary['camera']=list_for_all_detail[2]
dictionary['battery']=list_for_all_detail[3]
dictionary['processor']=list_for_all_detail[4]
dictionary['warranty']=list_for_all_detail[5]
# pprint.pprint(dictionary)
dic_list.append(dictionary)
# pprint.pprint(dic_list)
with open('flipkart.json','w')as file:
json.dump(dic_list,file)
# print(list_for_all_phones)
# print(list_for_rupess)
# print(list_for_rating)
# print(list_for_all_detail)
|
py
|
1a5939b1a66db34037f1df93473a07e1495aa258
|
import glob
import json
import time
import yaml
import luigi
from luigi.contrib.spark import PySparkTask
from py4j.protocol import Py4JJavaError
from pyspark import SparkContext
from pyspark.sql import DataFrame, SparkSession
from pyspark.sql.utils import IllegalArgumentException
from pyspark.sql.functions import lit, input_file_name, regexp_extract
from pyspark.sql.types import StructType, StructField, StringType
from etl import logger
from etl.constants import Constants
from etl.jobs.util.cleaner import trim_all_str
from etl.source_files_conf_reader import read_module
from etl.workflow.config import PdcmConfig
ROOT_FOLDER = "data/UPDOG"
def build_schema_from_cols(columns):
schema = []
for column in columns:
schema.append(StructField(column, StringType(), True))
return StructType(schema)
def select_rows_with_data(df: DataFrame, columns) -> DataFrame:
if "Field" in df.columns:
df = df.select(columns).where("nvl(field, '') not like '#%'")
else:
df = df.select(columns)
return df
def clean_column_names(df: DataFrame):
columns = df.columns
for column in columns:
df = df.withColumnRenamed(column, trim_all_str(column))
return df
def read_files(session, path_patterns, schema):
start = time.time()
df = session.read.option('sep', '\t').option('header', True).option('schema', schema).csv(path_patterns)
df = clean_column_names(df)
df = select_rows_with_data(df, schema.fieldNames())
datasource_pattern = "{0}\\/([a-zA-Z-]+)(\\/)".format(ROOT_FOLDER.replace("/", "\\/"))
df = df.withColumn("_data_source", lit(input_file_name()))
df = df.withColumn(Constants.DATA_SOURCE_COLUMN, regexp_extract("_data_source", datasource_pattern, 1))
df = df.drop("_data_source")
end = time.time()
logger.info(
"Read from path {0} count: {1} in {2} seconds".format(path_patterns, df.count(), round(end - start, 4)))
return df
def read_json(session, json_content):
df = session.read.option("multiline", True).json(session.sparkContext.parallelize([json_content]))
return df
class ReadByModuleAndPathPatterns(PySparkTask):
raw_folder_name = luigi.Parameter()
path_patterns = luigi.ListParameter()
columns_to_read = luigi.ListParameter()
data_dir_out = luigi.Parameter()
def output(self):
return PdcmConfig().get_target(
"{0}/{1}/{2}".format(self.data_dir_out, Constants.RAW_DIRECTORY, self.raw_folder_name))
def app_options(self):
return [
'|'.join([p for p in self.path_patterns]),
','.join(self.columns_to_read),
self.output().path]
def main(self, sc: SparkContext, *args):
spark = SparkSession(sc)
path_patterns = args[0].split('|')
columns_to_read = args[1].split(',')
output_path = args[2]
schema = build_schema_from_cols(columns_to_read)
if sc.master == "yarn":
hadoop = sc._jvm.org.apache.hadoop
fs = hadoop.fs.FileSystem
current_fs = fs.get(sc._jsc.hadoopConfiguration())
path_patterns = [path for path in path_patterns if
path != "" and current_fs.globStatus(hadoop.fs.Path(path))]
try:
df = read_files(spark, path_patterns, schema)
except (Py4JJavaError, IllegalArgumentException, FileNotFoundError, IOError) as error:
no_empty_patterns = list(filter(lambda x: x != '', path_patterns))
if "java.io.FileNotFoundException" in str(error) or len(no_empty_patterns) == 0 or error.__class__ in [FileNotFoundError, IOError]:
empty_df = spark.createDataFrame(sc.emptyRDD(), schema)
df = empty_df
df = df.withColumn(Constants.DATA_SOURCE_COLUMN, lit(""))
else:
raise error
df.write.mode("overwrite").parquet(output_path)
def build_path_patterns(data_dir, providers, file_patterns):
data_dir_root = "{0}/{1}".format(data_dir, ROOT_FOLDER)
paths_patterns = []
for file_pattern in file_patterns:
matching_providers = []
for provider in providers:
current_file_pattern = str(file_pattern).replace("$provider", provider)
if glob.glob("{0}/{1}/{2}".format(data_dir_root, provider,
current_file_pattern)) or PdcmConfig().deploy_mode == "cluster":
matching_providers.append(provider)
if matching_providers:
joined_providers_list = ','.join([p for p in matching_providers])
providers_pattern = "{" + joined_providers_list + "}"
path_pattern = "{0}/{1}/{2}".format(
data_dir_root, providers_pattern, file_pattern.replace("$provider", providers_pattern))
paths_patterns.append(path_pattern)
return paths_patterns
def build_path_pattern_by_provider(data_dir, provider, file_pattern):
data_dir_root = "{0}/{1}".format(data_dir, ROOT_FOLDER)
path_pattern = "{0}/{1}/{2}".format(data_dir_root, provider, file_pattern.replace("$provider", provider))
return path_pattern
def get_tsv_extraction_task_by_module(data_dir, providers, data_dir_out, module_name):
module = read_module(module_name)
file_patterns = module["name_patterns"]
columns = module["columns"]
path_patterns = build_path_patterns(data_dir, list(providers), file_patterns)
return ReadByModuleAndPathPatterns(module_name, path_patterns, columns, data_dir_out)
def extract_provider_name(path: str):
init_index = path.index(ROOT_FOLDER) + len(ROOT_FOLDER) + 1
next_slash = path.index("/", init_index)
return path[init_index:next_slash]
def get_json_by_yaml(yaml_content):
yaml_as_json = yaml.safe_load(yaml_content)
yaml_as_json = json.dumps(yaml_as_json)
yaml_as_json = yaml_as_json.encode("unicode_escape").decode("utf-8")
return yaml_as_json
class ReadYamlsByModule(PySparkTask):
raw_folder_name = luigi.Parameter()
yaml_paths = luigi.ListParameter()
columns_to_read = luigi.ListParameter()
data_dir_out = luigi.Parameter()
def output(self):
return PdcmConfig().get_target(
"{0}/{1}/{2}".format(self.data_dir_out, Constants.RAW_DIRECTORY, self.raw_folder_name))
def app_options(self):
return [
','.join(self.yaml_paths),
','.join(self.columns_to_read),
PdcmConfig().deploy_mode,
self.output().path]
def main(self, sc, *args):
spark = SparkSession(sc)
yaml_file_paths = args[0].split(',')
columns_to_read = args[1].split(',')
deploy_mode = args[2]
output_path = args[3]
all_json_and_providers = []
if deploy_mode == "cluster":
for yaml_file_path in yaml_file_paths:
yaml_as_json = sc.wholeTextFiles(yaml_file_path).collect()[0][1]
yaml_as_json = get_json_by_yaml(yaml_as_json)
json_content_and_provider = (yaml_as_json, extract_provider_name(yaml_file_path))
all_json_and_providers.append(json_content_and_provider)
else:
for yaml_file_path in yaml_file_paths:
with open(yaml_file_path, 'r') as stream:
yaml_as_json = get_json_by_yaml(stream)
json_content_and_provider = (yaml_as_json, extract_provider_name(yaml_file_path))
all_json_and_providers.append(json_content_and_provider)
source_df = spark.createDataFrame(spark.sparkContext.emptyRDD(), build_schema_from_cols(columns_to_read))
source_df = source_df.withColumn(Constants.DATA_SOURCE_COLUMN, lit(None).astype(StringType()))
for json_and_provider in all_json_and_providers:
json_content = json_and_provider[0]
provider = json_and_provider[1]
df = read_json(spark, json_content)
df = df.select(columns_to_read)
df = df.withColumn(Constants.DATA_SOURCE_COLUMN, lit(provider))
source_df = source_df.union(df)
source_df.write.mode("overwrite").parquet(output_path)
def get_yaml_extraction_task_by_module(data_dir, providers, data_dir_out, module_name):
module = read_module(module_name)
file_patterns = module["name_patterns"]
columns = module["columns"]
# There should be only one yaml file by module
file_path = str(file_patterns[0])
yaml_paths = []
for provider in providers:
yaml_file_path = build_path_pattern_by_provider(data_dir, provider, file_path)
yaml_paths.append(yaml_file_path)
return ReadYamlsByModule(module_name, yaml_paths, columns, data_dir_out)
if __name__ == "__main__":
luigi.run()
|
py
|
1a5939f3a8eb1d6f658c5d32f5f931d8c730c187
|
#!/usr/bin/env python3
import sys
import warnings
import tcod
import g
import states.mainmenu
def main() -> None:
screen_width = 720
screen_height = 480
tileset = tcod.tileset.load_tilesheet(
"data/cp437-14.png", 32, 8, tcod.tileset.CHARMAP_CP437
)
with tcod.context.new(
width=screen_width,
height=screen_height,
tileset=tileset,
title="libtcod tutorial revised",
renderer=tcod.RENDERER_SDL2,
vsync=True,
) as g.context:
g.console = tcod.Console(*g.context.recommended_console_size())
states.mainmenu.MainMenu().loop()
if __name__ == "__main__":
if not sys.warnoptions:
warnings.simplefilter("default") # Show all warnings once by default.
main()
|
py
|
1a593a39b789117fd7562b6377a7964b5751693d
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
from ._inputparser import InputParser
__all__ = ['InputParser']
|
py
|
1a593c3c4440a54fa10bb266a062e10ffc5122be
|
# Copyright 2014 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
# pylint: disable=W0401,W0614
from telemetry.page.actions.all_page_actions import *
from telemetry.page import page as page_module
from telemetry.page import page_set as page_set_module
class BypassPage(page_module.Page):
def __init__(self, url, page_set):
super(BypassPage, self).__init__(url=url, page_set=page_set)
self.archive_data_file = '../data/chrome_proxy_bypass.json'
class BypassPageSet(page_set_module.PageSet):
""" Chrome proxy test sites """
def __init__(self):
super(BypassPageSet, self).__init__(
archive_data_file='../data/chrome_proxy_bypass.json')
urls_list = [
'http://aws1.mdw.la/bypass/',
'http://aws1.mdw.la/piatek/bypass-demo'
]
for url in urls_list:
self.AddPage(BypassPage(url, self))
|
py
|
1a593cd85aa556e83bcb327827e37ca68f1c2b20
|
# This file is exec'd from settings.py, so it has access to and can
# modify all the variables in settings.py.
# If this file is changed in development, the development server will
# have to be manually restarted because changes will not be noticed
# immediately.
DEBUG = False
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysql',
# Django needs to make databases in the test mysql server
'NAME': 'travismep',
'USER': 'root',
'PASSWORD': '',
'HOST': '127.0.0.1',
'OPTIONS': {
# In each case, we want strict mode on to catch truncation issues
'init_command': "SET sql_mode='STRICT_TRANS_TABLES'",
# Load the socket info from .my.cnf in the travis user
'read_default_file': '~travis/.my.cnf'
},
'PORT': '',
'TEST': {
# We also want the test databse to for utf8 and the general
# collation to keep case sensitive unicode searches working
# as we would expect on production
'CHARSET': 'utf8',
'COLLATION': 'utf8_general_ci',
},
},
}
SOLR_CONNECTIONS = {
'default': {
'URL': 'http://localhost:8983/solr/',
'COLLECTION': 's-and-co',
'CONFIGSET': 'sandco',
'TEST': {
# aggressive commitWithin for test only
'COMMITWITHIN': 750,
}
}
}
# required by mezzanine for unit tests
ALLOWED_HOSTS = ['*']
# secret key added as a travis build step
|
py
|
1a593ee9490e7d594fe409bbaf662a6700fbbd4d
|
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: music.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
from google.protobuf import descriptor_pb2
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor.FileDescriptor(
name='music.proto',
package='tensorflow.magenta',
syntax='proto3',
serialized_pb=_b('\n\x0bmusic.proto\x12\x12tensorflow.magenta\"\xd3\x16\n\x0cNoteSequence\x12\n\n\x02id\x18\x01 \x01(\t\x12\x10\n\x08\x66ilename\x18\x02 \x01(\t\x12\x17\n\x0f\x63ollection_name\x18\x03 \x01(\t\x12\x19\n\x11ticks_per_quarter\x18\x04 \x01(\x05\x12G\n\x0ftime_signatures\x18\x05 \x03(\x0b\x32..tensorflow.magenta.NoteSequence.TimeSignature\x12\x45\n\x0ekey_signatures\x18\x06 \x03(\x0b\x32-.tensorflow.magenta.NoteSequence.KeySignature\x12\x36\n\x06tempos\x18\x07 \x03(\x0b\x32&.tensorflow.magenta.NoteSequence.Tempo\x12\x34\n\x05notes\x18\x08 \x03(\x0b\x32%.tensorflow.magenta.NoteSequence.Note\x12\x12\n\ntotal_time\x18\t \x01(\x01\x12?\n\x0bpitch_bends\x18\n \x03(\x0b\x32*.tensorflow.magenta.NoteSequence.PitchBend\x12G\n\x0f\x63ontrol_changes\x18\x0b \x03(\x0b\x32..tensorflow.magenta.NoteSequence.ControlChange\x12=\n\npart_infos\x18\x0c \x03(\x0b\x32).tensorflow.magenta.NoteSequence.PartInfo\x12@\n\x0bsource_info\x18\r \x01(\x0b\x32+.tensorflow.magenta.NoteSequence.SourceInfo\x12I\n\x10text_annotations\x18\x0e \x03(\x0b\x32/.tensorflow.magenta.NoteSequence.TextAnnotation\x1a\xf9\x01\n\x04Note\x12\r\n\x05pitch\x18\x01 \x01(\x05\x12>\n\npitch_name\x18\x0b \x01(\x0e\x32*.tensorflow.magenta.NoteSequence.PitchName\x12\x10\n\x08velocity\x18\x02 \x01(\x05\x12\x12\n\nstart_time\x18\x03 \x01(\x01\x12\x10\n\x08\x65nd_time\x18\x04 \x01(\x01\x12\x11\n\tnumerator\x18\x05 \x01(\x05\x12\x13\n\x0b\x64\x65nominator\x18\x06 \x01(\x05\x12\x12\n\ninstrument\x18\x07 \x01(\x05\x12\x0f\n\x07program\x18\x08 \x01(\x05\x12\x0f\n\x07is_drum\x18\t \x01(\x08\x12\x0c\n\x04part\x18\n \x01(\x05\x1a\x45\n\rTimeSignature\x12\x0c\n\x04time\x18\x01 \x01(\x01\x12\x11\n\tnumerator\x18\x02 \x01(\x05\x12\x13\n\x0b\x64\x65nominator\x18\x03 \x01(\x05\x1a\x89\x03\n\x0cKeySignature\x12\x0c\n\x04time\x18\x01 \x01(\x01\x12>\n\x03key\x18\x02 \x01(\x0e\x32\x31.tensorflow.magenta.NoteSequence.KeySignature.Key\x12@\n\x04mode\x18\x03 \x01(\x0e\x32\x32.tensorflow.magenta.NoteSequence.KeySignature.Mode\"\xb7\x01\n\x03Key\x12\x05\n\x01\x43\x10\x00\x12\x0b\n\x07\x43_SHARP\x10\x01\x12\n\n\x06\x44_FLAT\x10\x01\x12\x05\n\x01\x44\x10\x02\x12\x0b\n\x07\x44_SHARP\x10\x03\x12\n\n\x06\x45_FLAT\x10\x03\x12\x05\n\x01\x45\x10\x04\x12\x05\n\x01\x46\x10\x05\x12\x0b\n\x07\x46_SHARP\x10\x06\x12\n\n\x06G_FLAT\x10\x06\x12\x05\n\x01G\x10\x07\x12\x0b\n\x07G_SHARP\x10\x08\x12\n\n\x06\x41_FLAT\x10\x08\x12\x05\n\x01\x41\x10\t\x12\x0b\n\x07\x41_SHARP\x10\n\x12\n\n\x06\x42_FLAT\x10\n\x12\x05\n\x01\x42\x10\x0b\x1a\x02\x10\x01\"/\n\x04Mode\x12\t\n\x05MAJOR\x10\x00\x12\t\n\x05MINOR\x10\x01\x12\x11\n\rNOT_SPECIFIED\x10\x02\x1a\"\n\x05Tempo\x12\x0c\n\x04time\x18\x01 \x01(\x01\x12\x0b\n\x03qpm\x18\x02 \x01(\x01\x1a]\n\tPitchBend\x12\x0c\n\x04time\x18\x01 \x01(\x01\x12\x0c\n\x04\x62\x65nd\x18\x02 \x01(\x05\x12\x12\n\ninstrument\x18\x03 \x01(\x05\x12\x0f\n\x07program\x18\x04 \x01(\x05\x12\x0f\n\x07is_drum\x18\x05 \x01(\x08\x1a\x82\x01\n\rControlChange\x12\x0c\n\x04time\x18\x01 \x01(\x01\x12\x16\n\x0e\x63ontrol_number\x18\x02 \x01(\x05\x12\x15\n\rcontrol_value\x18\x03 \x01(\x05\x12\x12\n\ninstrument\x18\x04 \x01(\x05\x12\x0f\n\x07program\x18\x05 \x01(\x05\x12\x0f\n\x07is_drum\x18\x06 \x01(\x08\x1a&\n\x08PartInfo\x12\x0c\n\x04part\x18\x01 \x01(\x05\x12\x0c\n\x04name\x18\x02 \x01(\t\x1a\xc6\x03\n\nSourceInfo\x12K\n\x0bsource_type\x18\x01 \x01(\x0e\x32\x36.tensorflow.magenta.NoteSequence.SourceInfo.SourceType\x12O\n\rencoding_type\x18\x02 \x01(\x0e\x32\x38.tensorflow.magenta.NoteSequence.SourceInfo.EncodingType\x12\x42\n\x06parser\x18\x03 \x01(\x0e\x32\x32.tensorflow.magenta.NoteSequence.SourceInfo.Parser\"M\n\nSourceType\x12\x17\n\x13UNKNOWN_SOURCE_TYPE\x10\x00\x12\x0f\n\x0bSCORE_BASED\x10\x01\x12\x15\n\x11PERFORMANCE_BASED\x10\x02\"K\n\x0c\x45ncodingType\x12\x19\n\x15UNKNOWN_ENCODING_TYPE\x10\x00\x12\r\n\tMUSIC_XML\x10\x01\x12\x07\n\x03\x41\x42\x43\x10\x02\x12\x08\n\x04MIDI\x10\x03\":\n\x06Parser\x12\x12\n\x0eUNKNOWN_PARSER\x10\x00\x12\x0b\n\x07MUSIC21\x10\x01\x12\x0f\n\x0bPRETTY_MIDI\x10\x02\x1a\xbe\x01\n\x0eTextAnnotation\x12\x0c\n\x04time\x18\x01 \x01(\x01\x12\x0c\n\x04text\x18\x02 \x01(\t\x12[\n\x0f\x61nnotation_type\x18\x03 \x01(\x0e\x32\x42.tensorflow.magenta.NoteSequence.TextAnnotation.TextAnnotationType\"3\n\x12TextAnnotationType\x12\x0b\n\x07UNKNOWN\x10\x00\x12\x10\n\x0c\x43HORD_SYMBOL\x10\x01\"\xff\x03\n\tPitchName\x12\x16\n\x12UNKNOWN_PITCH_NAME\x10\x00\x12\x0f\n\x0b\x46_FLAT_FLAT\x10\x01\x12\x0f\n\x0b\x43_FLAT_FLAT\x10\x02\x12\x0f\n\x0bG_FLAT_FLAT\x10\x03\x12\x0f\n\x0b\x44_FLAT_FLAT\x10\x04\x12\x0f\n\x0b\x41_FLAT_FLAT\x10\x05\x12\x0f\n\x0b\x45_FLAT_FLAT\x10\x06\x12\x0f\n\x0b\x42_FLAT_FLAT\x10\x07\x12\n\n\x06\x46_FLAT\x10\x08\x12\n\n\x06\x43_FLAT\x10\t\x12\n\n\x06G_FLAT\x10\n\x12\n\n\x06\x44_FLAT\x10\x0b\x12\n\n\x06\x41_FLAT\x10\x0c\x12\n\n\x06\x45_FLAT\x10\r\x12\n\n\x06\x42_FLAT\x10\x0e\x12\x05\n\x01\x46\x10\x0f\x12\x05\n\x01\x43\x10\x10\x12\x05\n\x01G\x10\x11\x12\x05\n\x01\x44\x10\x12\x12\x05\n\x01\x41\x10\x13\x12\x05\n\x01\x45\x10\x14\x12\x05\n\x01\x42\x10\x15\x12\x0b\n\x07\x46_SHARP\x10\x16\x12\x0b\n\x07\x43_SHARP\x10\x17\x12\x0b\n\x07G_SHARP\x10\x18\x12\x0b\n\x07\x44_SHARP\x10\x19\x12\x0b\n\x07\x41_SHARP\x10\x1a\x12\x0b\n\x07\x45_SHARP\x10\x1b\x12\x0b\n\x07\x42_SHARP\x10\x1c\x12\x11\n\rF_SHARP_SHARP\x10\x1d\x12\x11\n\rC_SHARP_SHARP\x10\x1e\x12\x11\n\rG_SHARP_SHARP\x10\x1f\x12\x11\n\rD_SHARP_SHARP\x10 \x12\x11\n\rA_SHARP_SHARP\x10!\x12\x11\n\rE_SHARP_SHARP\x10\"\x12\x11\n\rB_SHARP_SHARP\x10#b\x06proto3')
)
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
_NOTESEQUENCE_KEYSIGNATURE_KEY = _descriptor.EnumDescriptor(
name='Key',
full_name='tensorflow.magenta.NoteSequence.KeySignature.Key',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='C', index=0, number=0,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='C_SHARP', index=1, number=1,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='D_FLAT', index=2, number=1,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='D', index=3, number=2,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='D_SHARP', index=4, number=3,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='E_FLAT', index=5, number=3,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='E', index=6, number=4,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='F', index=7, number=5,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='F_SHARP', index=8, number=6,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='G_FLAT', index=9, number=6,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='G', index=10, number=7,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='G_SHARP', index=11, number=8,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='A_FLAT', index=12, number=8,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='A', index=13, number=9,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='A_SHARP', index=14, number=10,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='B_FLAT', index=15, number=10,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='B', index=16, number=11,
options=None,
type=None),
],
containing_type=None,
options=_descriptor._ParseOptions(descriptor_pb2.EnumOptions(), _b('\020\001')),
serialized_start=1235,
serialized_end=1418,
)
_sym_db.RegisterEnumDescriptor(_NOTESEQUENCE_KEYSIGNATURE_KEY)
_NOTESEQUENCE_KEYSIGNATURE_MODE = _descriptor.EnumDescriptor(
name='Mode',
full_name='tensorflow.magenta.NoteSequence.KeySignature.Mode',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='MAJOR', index=0, number=0,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='MINOR', index=1, number=1,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='NOT_SPECIFIED', index=2, number=2,
options=None,
type=None),
],
containing_type=None,
options=None,
serialized_start=1420,
serialized_end=1467,
)
_sym_db.RegisterEnumDescriptor(_NOTESEQUENCE_KEYSIGNATURE_MODE)
_NOTESEQUENCE_SOURCEINFO_SOURCETYPE = _descriptor.EnumDescriptor(
name='SourceType',
full_name='tensorflow.magenta.NoteSequence.SourceInfo.SourceType',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='UNKNOWN_SOURCE_TYPE', index=0, number=0,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='SCORE_BASED', index=1, number=1,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='PERFORMANCE_BASED', index=2, number=2,
options=None,
type=None),
],
containing_type=None,
options=None,
serialized_start=2014,
serialized_end=2091,
)
_sym_db.RegisterEnumDescriptor(_NOTESEQUENCE_SOURCEINFO_SOURCETYPE)
_NOTESEQUENCE_SOURCEINFO_ENCODINGTYPE = _descriptor.EnumDescriptor(
name='EncodingType',
full_name='tensorflow.magenta.NoteSequence.SourceInfo.EncodingType',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='UNKNOWN_ENCODING_TYPE', index=0, number=0,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='MUSIC_XML', index=1, number=1,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='ABC', index=2, number=2,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='MIDI', index=3, number=3,
options=None,
type=None),
],
containing_type=None,
options=None,
serialized_start=2093,
serialized_end=2168,
)
_sym_db.RegisterEnumDescriptor(_NOTESEQUENCE_SOURCEINFO_ENCODINGTYPE)
_NOTESEQUENCE_SOURCEINFO_PARSER = _descriptor.EnumDescriptor(
name='Parser',
full_name='tensorflow.magenta.NoteSequence.SourceInfo.Parser',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='UNKNOWN_PARSER', index=0, number=0,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='MUSIC21', index=1, number=1,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='PRETTY_MIDI', index=2, number=2,
options=None,
type=None),
],
containing_type=None,
options=None,
serialized_start=2170,
serialized_end=2228,
)
_sym_db.RegisterEnumDescriptor(_NOTESEQUENCE_SOURCEINFO_PARSER)
_NOTESEQUENCE_TEXTANNOTATION_TEXTANNOTATIONTYPE = _descriptor.EnumDescriptor(
name='TextAnnotationType',
full_name='tensorflow.magenta.NoteSequence.TextAnnotation.TextAnnotationType',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='UNKNOWN', index=0, number=0,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='CHORD_SYMBOL', index=1, number=1,
options=None,
type=None),
],
containing_type=None,
options=None,
serialized_start=2370,
serialized_end=2421,
)
_sym_db.RegisterEnumDescriptor(_NOTESEQUENCE_TEXTANNOTATION_TEXTANNOTATIONTYPE)
_NOTESEQUENCE_PITCHNAME = _descriptor.EnumDescriptor(
name='PitchName',
full_name='tensorflow.magenta.NoteSequence.PitchName',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='UNKNOWN_PITCH_NAME', index=0, number=0,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='F_FLAT_FLAT', index=1, number=1,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='C_FLAT_FLAT', index=2, number=2,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='G_FLAT_FLAT', index=3, number=3,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='D_FLAT_FLAT', index=4, number=4,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='A_FLAT_FLAT', index=5, number=5,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='E_FLAT_FLAT', index=6, number=6,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='B_FLAT_FLAT', index=7, number=7,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='F_FLAT', index=8, number=8,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='C_FLAT', index=9, number=9,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='G_FLAT', index=10, number=10,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='D_FLAT', index=11, number=11,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='A_FLAT', index=12, number=12,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='E_FLAT', index=13, number=13,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='B_FLAT', index=14, number=14,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='F', index=15, number=15,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='C', index=16, number=16,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='G', index=17, number=17,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='D', index=18, number=18,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='A', index=19, number=19,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='E', index=20, number=20,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='B', index=21, number=21,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='F_SHARP', index=22, number=22,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='C_SHARP', index=23, number=23,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='G_SHARP', index=24, number=24,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='D_SHARP', index=25, number=25,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='A_SHARP', index=26, number=26,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='E_SHARP', index=27, number=27,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='B_SHARP', index=28, number=28,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='F_SHARP_SHARP', index=29, number=29,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='C_SHARP_SHARP', index=30, number=30,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='G_SHARP_SHARP', index=31, number=31,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='D_SHARP_SHARP', index=32, number=32,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='A_SHARP_SHARP', index=33, number=33,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='E_SHARP_SHARP', index=34, number=34,
options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='B_SHARP_SHARP', index=35, number=35,
options=None,
type=None),
],
containing_type=None,
options=None,
serialized_start=2424,
serialized_end=2935,
)
_sym_db.RegisterEnumDescriptor(_NOTESEQUENCE_PITCHNAME)
_NOTESEQUENCE_NOTE = _descriptor.Descriptor(
name='Note',
full_name='tensorflow.magenta.NoteSequence.Note',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='pitch', full_name='tensorflow.magenta.NoteSequence.Note.pitch', index=0,
number=1, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='pitch_name', full_name='tensorflow.magenta.NoteSequence.Note.pitch_name', index=1,
number=11, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='velocity', full_name='tensorflow.magenta.NoteSequence.Note.velocity', index=2,
number=2, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='start_time', full_name='tensorflow.magenta.NoteSequence.Note.start_time', index=3,
number=3, type=1, cpp_type=5, label=1,
has_default_value=False, default_value=float(0),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='end_time', full_name='tensorflow.magenta.NoteSequence.Note.end_time', index=4,
number=4, type=1, cpp_type=5, label=1,
has_default_value=False, default_value=float(0),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='numerator', full_name='tensorflow.magenta.NoteSequence.Note.numerator', index=5,
number=5, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='denominator', full_name='tensorflow.magenta.NoteSequence.Note.denominator', index=6,
number=6, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='instrument', full_name='tensorflow.magenta.NoteSequence.Note.instrument', index=7,
number=7, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='program', full_name='tensorflow.magenta.NoteSequence.Note.program', index=8,
number=8, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='is_drum', full_name='tensorflow.magenta.NoteSequence.Note.is_drum', index=9,
number=9, type=8, cpp_type=7, label=1,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='part', full_name='tensorflow.magenta.NoteSequence.Note.part', index=10,
number=10, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=751,
serialized_end=1000,
)
_NOTESEQUENCE_TIMESIGNATURE = _descriptor.Descriptor(
name='TimeSignature',
full_name='tensorflow.magenta.NoteSequence.TimeSignature',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='time', full_name='tensorflow.magenta.NoteSequence.TimeSignature.time', index=0,
number=1, type=1, cpp_type=5, label=1,
has_default_value=False, default_value=float(0),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='numerator', full_name='tensorflow.magenta.NoteSequence.TimeSignature.numerator', index=1,
number=2, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='denominator', full_name='tensorflow.magenta.NoteSequence.TimeSignature.denominator', index=2,
number=3, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=1002,
serialized_end=1071,
)
_NOTESEQUENCE_KEYSIGNATURE = _descriptor.Descriptor(
name='KeySignature',
full_name='tensorflow.magenta.NoteSequence.KeySignature',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='time', full_name='tensorflow.magenta.NoteSequence.KeySignature.time', index=0,
number=1, type=1, cpp_type=5, label=1,
has_default_value=False, default_value=float(0),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='key', full_name='tensorflow.magenta.NoteSequence.KeySignature.key', index=1,
number=2, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='mode', full_name='tensorflow.magenta.NoteSequence.KeySignature.mode', index=2,
number=3, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
_NOTESEQUENCE_KEYSIGNATURE_KEY,
_NOTESEQUENCE_KEYSIGNATURE_MODE,
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=1074,
serialized_end=1467,
)
_NOTESEQUENCE_TEMPO = _descriptor.Descriptor(
name='Tempo',
full_name='tensorflow.magenta.NoteSequence.Tempo',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='time', full_name='tensorflow.magenta.NoteSequence.Tempo.time', index=0,
number=1, type=1, cpp_type=5, label=1,
has_default_value=False, default_value=float(0),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='qpm', full_name='tensorflow.magenta.NoteSequence.Tempo.qpm', index=1,
number=2, type=1, cpp_type=5, label=1,
has_default_value=False, default_value=float(0),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=1469,
serialized_end=1503,
)
_NOTESEQUENCE_PITCHBEND = _descriptor.Descriptor(
name='PitchBend',
full_name='tensorflow.magenta.NoteSequence.PitchBend',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='time', full_name='tensorflow.magenta.NoteSequence.PitchBend.time', index=0,
number=1, type=1, cpp_type=5, label=1,
has_default_value=False, default_value=float(0),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='bend', full_name='tensorflow.magenta.NoteSequence.PitchBend.bend', index=1,
number=2, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='instrument', full_name='tensorflow.magenta.NoteSequence.PitchBend.instrument', index=2,
number=3, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='program', full_name='tensorflow.magenta.NoteSequence.PitchBend.program', index=3,
number=4, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='is_drum', full_name='tensorflow.magenta.NoteSequence.PitchBend.is_drum', index=4,
number=5, type=8, cpp_type=7, label=1,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=1505,
serialized_end=1598,
)
_NOTESEQUENCE_CONTROLCHANGE = _descriptor.Descriptor(
name='ControlChange',
full_name='tensorflow.magenta.NoteSequence.ControlChange',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='time', full_name='tensorflow.magenta.NoteSequence.ControlChange.time', index=0,
number=1, type=1, cpp_type=5, label=1,
has_default_value=False, default_value=float(0),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='control_number', full_name='tensorflow.magenta.NoteSequence.ControlChange.control_number', index=1,
number=2, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='control_value', full_name='tensorflow.magenta.NoteSequence.ControlChange.control_value', index=2,
number=3, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='instrument', full_name='tensorflow.magenta.NoteSequence.ControlChange.instrument', index=3,
number=4, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='program', full_name='tensorflow.magenta.NoteSequence.ControlChange.program', index=4,
number=5, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='is_drum', full_name='tensorflow.magenta.NoteSequence.ControlChange.is_drum', index=5,
number=6, type=8, cpp_type=7, label=1,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=1601,
serialized_end=1731,
)
_NOTESEQUENCE_PARTINFO = _descriptor.Descriptor(
name='PartInfo',
full_name='tensorflow.magenta.NoteSequence.PartInfo',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='part', full_name='tensorflow.magenta.NoteSequence.PartInfo.part', index=0,
number=1, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='name', full_name='tensorflow.magenta.NoteSequence.PartInfo.name', index=1,
number=2, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=1733,
serialized_end=1771,
)
_NOTESEQUENCE_SOURCEINFO = _descriptor.Descriptor(
name='SourceInfo',
full_name='tensorflow.magenta.NoteSequence.SourceInfo',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='source_type', full_name='tensorflow.magenta.NoteSequence.SourceInfo.source_type', index=0,
number=1, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='encoding_type', full_name='tensorflow.magenta.NoteSequence.SourceInfo.encoding_type', index=1,
number=2, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='parser', full_name='tensorflow.magenta.NoteSequence.SourceInfo.parser', index=2,
number=3, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
_NOTESEQUENCE_SOURCEINFO_SOURCETYPE,
_NOTESEQUENCE_SOURCEINFO_ENCODINGTYPE,
_NOTESEQUENCE_SOURCEINFO_PARSER,
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=1774,
serialized_end=2228,
)
_NOTESEQUENCE_TEXTANNOTATION = _descriptor.Descriptor(
name='TextAnnotation',
full_name='tensorflow.magenta.NoteSequence.TextAnnotation',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='time', full_name='tensorflow.magenta.NoteSequence.TextAnnotation.time', index=0,
number=1, type=1, cpp_type=5, label=1,
has_default_value=False, default_value=float(0),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='text', full_name='tensorflow.magenta.NoteSequence.TextAnnotation.text', index=1,
number=2, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='annotation_type', full_name='tensorflow.magenta.NoteSequence.TextAnnotation.annotation_type', index=2,
number=3, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
_NOTESEQUENCE_TEXTANNOTATION_TEXTANNOTATIONTYPE,
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=2231,
serialized_end=2421,
)
_NOTESEQUENCE = _descriptor.Descriptor(
name='NoteSequence',
full_name='tensorflow.magenta.NoteSequence',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='id', full_name='tensorflow.magenta.NoteSequence.id', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='filename', full_name='tensorflow.magenta.NoteSequence.filename', index=1,
number=2, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='collection_name', full_name='tensorflow.magenta.NoteSequence.collection_name', index=2,
number=3, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='ticks_per_quarter', full_name='tensorflow.magenta.NoteSequence.ticks_per_quarter', index=3,
number=4, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='time_signatures', full_name='tensorflow.magenta.NoteSequence.time_signatures', index=4,
number=5, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='key_signatures', full_name='tensorflow.magenta.NoteSequence.key_signatures', index=5,
number=6, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='tempos', full_name='tensorflow.magenta.NoteSequence.tempos', index=6,
number=7, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='notes', full_name='tensorflow.magenta.NoteSequence.notes', index=7,
number=8, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='total_time', full_name='tensorflow.magenta.NoteSequence.total_time', index=8,
number=9, type=1, cpp_type=5, label=1,
has_default_value=False, default_value=float(0),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='pitch_bends', full_name='tensorflow.magenta.NoteSequence.pitch_bends', index=9,
number=10, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='control_changes', full_name='tensorflow.magenta.NoteSequence.control_changes', index=10,
number=11, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='part_infos', full_name='tensorflow.magenta.NoteSequence.part_infos', index=11,
number=12, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='source_info', full_name='tensorflow.magenta.NoteSequence.source_info', index=12,
number=13, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='text_annotations', full_name='tensorflow.magenta.NoteSequence.text_annotations', index=13,
number=14, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[_NOTESEQUENCE_NOTE, _NOTESEQUENCE_TIMESIGNATURE, _NOTESEQUENCE_KEYSIGNATURE, _NOTESEQUENCE_TEMPO, _NOTESEQUENCE_PITCHBEND, _NOTESEQUENCE_CONTROLCHANGE, _NOTESEQUENCE_PARTINFO, _NOTESEQUENCE_SOURCEINFO, _NOTESEQUENCE_TEXTANNOTATION, ],
enum_types=[
_NOTESEQUENCE_PITCHNAME,
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=36,
serialized_end=2935,
)
_NOTESEQUENCE_NOTE.fields_by_name['pitch_name'].enum_type = _NOTESEQUENCE_PITCHNAME
_NOTESEQUENCE_NOTE.containing_type = _NOTESEQUENCE
_NOTESEQUENCE_TIMESIGNATURE.containing_type = _NOTESEQUENCE
_NOTESEQUENCE_KEYSIGNATURE.fields_by_name['key'].enum_type = _NOTESEQUENCE_KEYSIGNATURE_KEY
_NOTESEQUENCE_KEYSIGNATURE.fields_by_name['mode'].enum_type = _NOTESEQUENCE_KEYSIGNATURE_MODE
_NOTESEQUENCE_KEYSIGNATURE.containing_type = _NOTESEQUENCE
_NOTESEQUENCE_KEYSIGNATURE_KEY.containing_type = _NOTESEQUENCE_KEYSIGNATURE
_NOTESEQUENCE_KEYSIGNATURE_MODE.containing_type = _NOTESEQUENCE_KEYSIGNATURE
_NOTESEQUENCE_TEMPO.containing_type = _NOTESEQUENCE
_NOTESEQUENCE_PITCHBEND.containing_type = _NOTESEQUENCE
_NOTESEQUENCE_CONTROLCHANGE.containing_type = _NOTESEQUENCE
_NOTESEQUENCE_PARTINFO.containing_type = _NOTESEQUENCE
_NOTESEQUENCE_SOURCEINFO.fields_by_name['source_type'].enum_type = _NOTESEQUENCE_SOURCEINFO_SOURCETYPE
_NOTESEQUENCE_SOURCEINFO.fields_by_name['encoding_type'].enum_type = _NOTESEQUENCE_SOURCEINFO_ENCODINGTYPE
_NOTESEQUENCE_SOURCEINFO.fields_by_name['parser'].enum_type = _NOTESEQUENCE_SOURCEINFO_PARSER
_NOTESEQUENCE_SOURCEINFO.containing_type = _NOTESEQUENCE
_NOTESEQUENCE_SOURCEINFO_SOURCETYPE.containing_type = _NOTESEQUENCE_SOURCEINFO
_NOTESEQUENCE_SOURCEINFO_ENCODINGTYPE.containing_type = _NOTESEQUENCE_SOURCEINFO
_NOTESEQUENCE_SOURCEINFO_PARSER.containing_type = _NOTESEQUENCE_SOURCEINFO
_NOTESEQUENCE_TEXTANNOTATION.fields_by_name['annotation_type'].enum_type = _NOTESEQUENCE_TEXTANNOTATION_TEXTANNOTATIONTYPE
_NOTESEQUENCE_TEXTANNOTATION.containing_type = _NOTESEQUENCE
_NOTESEQUENCE_TEXTANNOTATION_TEXTANNOTATIONTYPE.containing_type = _NOTESEQUENCE_TEXTANNOTATION
_NOTESEQUENCE.fields_by_name['time_signatures'].message_type = _NOTESEQUENCE_TIMESIGNATURE
_NOTESEQUENCE.fields_by_name['key_signatures'].message_type = _NOTESEQUENCE_KEYSIGNATURE
_NOTESEQUENCE.fields_by_name['tempos'].message_type = _NOTESEQUENCE_TEMPO
_NOTESEQUENCE.fields_by_name['notes'].message_type = _NOTESEQUENCE_NOTE
_NOTESEQUENCE.fields_by_name['pitch_bends'].message_type = _NOTESEQUENCE_PITCHBEND
_NOTESEQUENCE.fields_by_name['control_changes'].message_type = _NOTESEQUENCE_CONTROLCHANGE
_NOTESEQUENCE.fields_by_name['part_infos'].message_type = _NOTESEQUENCE_PARTINFO
_NOTESEQUENCE.fields_by_name['source_info'].message_type = _NOTESEQUENCE_SOURCEINFO
_NOTESEQUENCE.fields_by_name['text_annotations'].message_type = _NOTESEQUENCE_TEXTANNOTATION
_NOTESEQUENCE_PITCHNAME.containing_type = _NOTESEQUENCE
DESCRIPTOR.message_types_by_name['NoteSequence'] = _NOTESEQUENCE
NoteSequence = _reflection.GeneratedProtocolMessageType('NoteSequence', (_message.Message,), dict(
Note = _reflection.GeneratedProtocolMessageType('Note', (_message.Message,), dict(
DESCRIPTOR = _NOTESEQUENCE_NOTE,
__module__ = 'music_pb2'
# @@protoc_insertion_point(class_scope:tensorflow.magenta.NoteSequence.Note)
))
,
TimeSignature = _reflection.GeneratedProtocolMessageType('TimeSignature', (_message.Message,), dict(
DESCRIPTOR = _NOTESEQUENCE_TIMESIGNATURE,
__module__ = 'music_pb2'
# @@protoc_insertion_point(class_scope:tensorflow.magenta.NoteSequence.TimeSignature)
))
,
KeySignature = _reflection.GeneratedProtocolMessageType('KeySignature', (_message.Message,), dict(
DESCRIPTOR = _NOTESEQUENCE_KEYSIGNATURE,
__module__ = 'music_pb2'
# @@protoc_insertion_point(class_scope:tensorflow.magenta.NoteSequence.KeySignature)
))
,
Tempo = _reflection.GeneratedProtocolMessageType('Tempo', (_message.Message,), dict(
DESCRIPTOR = _NOTESEQUENCE_TEMPO,
__module__ = 'music_pb2'
# @@protoc_insertion_point(class_scope:tensorflow.magenta.NoteSequence.Tempo)
))
,
PitchBend = _reflection.GeneratedProtocolMessageType('PitchBend', (_message.Message,), dict(
DESCRIPTOR = _NOTESEQUENCE_PITCHBEND,
__module__ = 'music_pb2'
# @@protoc_insertion_point(class_scope:tensorflow.magenta.NoteSequence.PitchBend)
))
,
ControlChange = _reflection.GeneratedProtocolMessageType('ControlChange', (_message.Message,), dict(
DESCRIPTOR = _NOTESEQUENCE_CONTROLCHANGE,
__module__ = 'music_pb2'
# @@protoc_insertion_point(class_scope:tensorflow.magenta.NoteSequence.ControlChange)
))
,
PartInfo = _reflection.GeneratedProtocolMessageType('PartInfo', (_message.Message,), dict(
DESCRIPTOR = _NOTESEQUENCE_PARTINFO,
__module__ = 'music_pb2'
# @@protoc_insertion_point(class_scope:tensorflow.magenta.NoteSequence.PartInfo)
))
,
SourceInfo = _reflection.GeneratedProtocolMessageType('SourceInfo', (_message.Message,), dict(
DESCRIPTOR = _NOTESEQUENCE_SOURCEINFO,
__module__ = 'music_pb2'
# @@protoc_insertion_point(class_scope:tensorflow.magenta.NoteSequence.SourceInfo)
))
,
TextAnnotation = _reflection.GeneratedProtocolMessageType('TextAnnotation', (_message.Message,), dict(
DESCRIPTOR = _NOTESEQUENCE_TEXTANNOTATION,
__module__ = 'music_pb2'
# @@protoc_insertion_point(class_scope:tensorflow.magenta.NoteSequence.TextAnnotation)
))
,
DESCRIPTOR = _NOTESEQUENCE,
__module__ = 'music_pb2'
# @@protoc_insertion_point(class_scope:tensorflow.magenta.NoteSequence)
))
_sym_db.RegisterMessage(NoteSequence)
_sym_db.RegisterMessage(NoteSequence.Note)
_sym_db.RegisterMessage(NoteSequence.TimeSignature)
_sym_db.RegisterMessage(NoteSequence.KeySignature)
_sym_db.RegisterMessage(NoteSequence.Tempo)
_sym_db.RegisterMessage(NoteSequence.PitchBend)
_sym_db.RegisterMessage(NoteSequence.ControlChange)
_sym_db.RegisterMessage(NoteSequence.PartInfo)
_sym_db.RegisterMessage(NoteSequence.SourceInfo)
_sym_db.RegisterMessage(NoteSequence.TextAnnotation)
_NOTESEQUENCE_KEYSIGNATURE_KEY.has_options = True
_NOTESEQUENCE_KEYSIGNATURE_KEY._options = _descriptor._ParseOptions(descriptor_pb2.EnumOptions(), _b('\020\001'))
# @@protoc_insertion_point(module_scope)
|
py
|
1a593ef683877b1df8366d42e5785536348988da
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
###############################################################################
# #
# RMG - Reaction Mechanism Generator #
# #
# Copyright (c) 2002-2019 Prof. William H. Green ([email protected]), #
# Prof. Richard H. West ([email protected]) and the RMG Team ([email protected]) #
# #
# Permission is hereby granted, free of charge, to any person obtaining a #
# copy of this software and associated documentation files (the 'Software'), #
# to deal in the Software without restriction, including without limitation #
# the rights to use, copy, modify, merge, publish, distribute, sublicense, #
# and/or sell copies of the Software, and to permit persons to whom the #
# Software is furnished to do so, subject to the following conditions: #
# #
# The above copyright notice and this permission notice shall be included in #
# all copies or substantial portions of the Software. #
# #
# THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING #
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER #
# DEALINGS IN THE SOFTWARE. #
# #
###############################################################################
"""
This module contains functionality for the parallel execution of RMG-Py.
"""
import sys
import traceback
import warnings
from functools import wraps
logger = None
try:
from scoop import futures
from scoop.futures import map, submit
from scoop import shared
from scoop import logger as scooplogger
logger = scooplogger
# logger.setLevel(20)#10 : debug, 20: info
except ImportError:
import logging as logging
logger = logging.getLogger()
logger.debug("Could not properly import SCOOP.")
def warnScoopStartedProperly(func):
@wraps(func)
def wrapper(*args, **kwargs):
futures_not_loaded = 'scoop.futures' not in sys.modules
warnings.simplefilter('ignore', RuntimeWarning)
try:
controller_not_started = not (
sys.modules['scoop.futures'].__dict__.get("_controller", None)
)
except KeyError:
warnings.warn(
"SCOOP was not started properly.\n"
"Be sure to start your program with the "
"'-m scoop' parameter. You can find "
"further information in the "
"documentation.\n",
RuntimeWarning
)
return
if futures_not_loaded or controller_not_started:
warnings.warn(
"SCOOP was not started properly.\n"
"Be sure to start your program with the "
"'-m scoop' parameter. You can find "
"further information in the "
"documentation.\n",
RuntimeWarning
)
return
return func(*args, **kwargs)
return wrapper
class WorkerWrapper(object):
"""
This class can be used to expose the exception trace of a worker
that was running on a remote worker.
Use it as follows:
Wrap the function that will be running on the remote worker with the current class:
futures.map(WorkerWrapper(f), mapped_data, ...) or
futures.submit(WorkerWrapper(f), mapped_data, ...)
"""
__name__ = 'WorkerWrapper'
def __init__(self, myfn):
self.myfn = myfn
def __call__(self, *args, **kwargs):
try:
return self.myfn(*args, **kwargs)
except:
type, value, tb = sys.exc_info()
lines = traceback.format_exception(type, value, tb)
print ''.join(lines)
raise
@warnScoopStartedProperly
def broadcast(obj, key):
"""
Broadcasts the object across the workers using the key parameter as the key.
"""
kwargs = {key : obj}
try:
if shared.getConst(key):
logger.debug('An object with the key {} was already broadcasted.'.format(key))
else:
shared.setConst(**kwargs)
except NameError:
"""
Name error will be caught when the SCOOP library is not imported properly.
"""
logger.debug('SCOOP not loaded. Not broadcasting the object {}'.format(obj))
@warnScoopStartedProperly
def get(key):
"""
Searches for the shared variable to retrieve identified by the
parameter key.
"""
try:
data = shared.getConst(key, timeout=1e-9)
return data
except NameError:
"""
Name error will be caught when the SCOOP library is not imported properly.
"""
logger.debug('SCOOP not loaded. Not retrieving the shared object with key {}'.format(key))
def map_(*args, **kwargs):
return map(WorkerWrapper(args[0]), *args[1:], **kwargs)
def submit_(func, *args, **kwargs):
"""
Task submission of a function.
returns the return value of the called function, or
when SCOOP is loaded, the future object.
"""
try:
task = submit(WorkerWrapper(func), *args, **kwargs)#returns immediately
return task
except Exception:
"""
Name error will be caught when the SCOOP library is not imported properly.
"""
logger.debug('SCOOP not loaded. Submitting serial mode.')
return func(*args, **kwargs)
|
py
|
1a593f0f1e40d4ae5aedd4b2ac36cf37a5c5b29e
|
"""Handle method for writting a dictionary to differnet file types."""
import os
from datetime import datetime
import json
import csv
import pandas
class OutputDict:
def __init__(self, data: dict, outDir: str, filetype: dict):
"""Handle method for writting a dictionary to differnet file types.
Args:
data - (dict) Data to output.
outDir - (str) Path to the output file directory.
filetype - (str) Output filetype.
"""
self.data = data
self.outDir = outDir
self.filetype = filetype
def write_output(self):
"""Outputs the data in the desired file format to the predefined
directory.
"""
os.makedirs(self.outDir, exist_ok=True)
getattr(self, f'_{self.filetype.lower()}')()
@staticmethod
def valdidate_filetype(filetype: str):
"""Checks if the filetype is supported."""
return str(filetype).lower() in ('json', 'csv', 'xlsx')
def _output_file(self, extension: str):
"""Returns the path to the output file.
Args:
extension - (str) File extension.
"""
return os.path.join(
self.outDir,
f'link_{hex(int(datetime.now().timestamp()))}.{extension}'
)
def _json(self):
"""Outputs the python dict as json."""
with open(self._output_file('json'), 'w') as jsonFile:
jsonFile.write(json.dumps(self.data))
def _csv(self):
"""Outputs the python dict as csv."""
with open(self._output_file('csv'), 'w') as csvFile:
writer = csv.writer(csvFile)
writer.writerows([[email, link] for email, link
in self.data.items()])
def _xlsx(self):
"""Outputs the python dict as xlsx."""
pandas.DataFrame(data=self.data, index=[0]).transpose()[1:].to_excel(
self._output_file('xlsx'),
header=False
)
|
py
|
1a593f930d4df919e2c695dded9824df5c70605f
|
# -*- coding: utf-8 -*-
###############################################################################
#
# DestroyFavorite
# Removes the specified status from a favorites list.
#
# Python versions 2.6, 2.7, 3.x
#
# Copyright 2014, Temboo Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
# either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
#
#
###############################################################################
from temboo.core.choreography import Choreography
from temboo.core.choreography import InputSet
from temboo.core.choreography import ResultSet
from temboo.core.choreography import ChoreographyExecution
import json
class DestroyFavorite(Choreography):
def __init__(self, temboo_session):
"""
Create a new instance of the DestroyFavorite Choreo. A TembooSession object, containing a valid
set of Temboo credentials, must be supplied.
"""
super(DestroyFavorite, self).__init__(temboo_session, '/Library/Twitter/Favorites/DestroyFavorite')
def new_input_set(self):
return DestroyFavoriteInputSet()
def _make_result_set(self, result, path):
return DestroyFavoriteResultSet(result, path)
def _make_execution(self, session, exec_id, path):
return DestroyFavoriteChoreographyExecution(session, exec_id, path)
class DestroyFavoriteInputSet(InputSet):
"""
An InputSet with methods appropriate for specifying the inputs to the DestroyFavorite
Choreo. The InputSet object is used to specify input parameters when executing this Choreo.
"""
def set_AccessTokenSecret(self, value):
"""
Set the value of the AccessTokenSecret input for this Choreo. ((required, string) The Access Token Secret provided by Twitter or retrieved during the OAuth process.)
"""
super(DestroyFavoriteInputSet, self)._set_input('AccessTokenSecret', value)
def set_AccessToken(self, value):
"""
Set the value of the AccessToken input for this Choreo. ((required, string) The Access Token provided by Twitter or retrieved during the OAuth process.)
"""
super(DestroyFavoriteInputSet, self)._set_input('AccessToken', value)
def set_ConsumerKey(self, value):
"""
Set the value of the ConsumerKey input for this Choreo. ((required, string) The API Key (or Consumer Key) provided by Twitter.)
"""
super(DestroyFavoriteInputSet, self)._set_input('ConsumerKey', value)
def set_ConsumerSecret(self, value):
"""
Set the value of the ConsumerSecret input for this Choreo. ((required, string) The API Secret (or Consumer Secret) provided by Twitter.)
"""
super(DestroyFavoriteInputSet, self)._set_input('ConsumerSecret', value)
def set_ID(self, value):
"""
Set the value of the ID input for this Choreo. ((required, string) The ID of the status to remove from your favorites.)
"""
super(DestroyFavoriteInputSet, self)._set_input('ID', value)
def set_IncludeEntities(self, value):
"""
Set the value of the IncludeEntities input for this Choreo. ((optional, boolean) The "entities" node containing extra metadata will not be included when set to false.)
"""
super(DestroyFavoriteInputSet, self)._set_input('IncludeEntities', value)
class DestroyFavoriteResultSet(ResultSet):
"""
A ResultSet with methods tailored to the values returned by the DestroyFavorite Choreo.
The ResultSet object is used to retrieve the results of a Choreo execution.
"""
def getJSONFromString(self, str):
return json.loads(str)
def get_Response(self):
"""
Retrieve the value for the "Response" output from this Choreo execution. ((json) The response from Twitter.)
"""
return self._output.get('Response', None)
class DestroyFavoriteChoreographyExecution(ChoreographyExecution):
def _make_result_set(self, response, path):
return DestroyFavoriteResultSet(response, path)
|
py
|
1a593fb3738791f7e39dee7cd6fb18774ba48271
|
import sys
import os
import numpy as np
import pandas as pd
import copy
# extract names, temperature, pressures and make folder
# function for mech reading
def readmechanism(input_type, cwd):
'''
method to read the mechanism file depending on the input type
'''
if input_type == 'MESS':
# extract parameters
P_LIST, T_LIST, species_names, species_names_bimol_frag2 = data_names_mess(
os.path.join(cwd, 'inp'))
# extract matrix of rate constants
rates = MATRIX(os.path.join(cwd, 'inp'), P_LIST, T_LIST, species_names)
mech_dict = dict(zip(['P_VECT_MESS', 'T_VECT_MESS', 'SPECIES', 'SPECIES_BIMOL', 'rates'], [
P_LIST, T_LIST, species_names, species_names_bimol_frag2, rates]))
elif input_type == 'CKI':
species_names, species_names_bimol_frag2 = data_names_CKI(
os.path.join(cwd, 'inp'))
mech_dict = dict(zip(['SPECIES', 'SPECIES_BIMOL'], [
species_names, species_names_bimol_frag2]))
return mech_dict
########################### extract and process MESS type mechanism #####################
def data_names_mess(cwd):
"""
Extract from the input file me_ktp.inp useful data:
- list of pressures
- list of temperatures
- list of species (names)
"""
species_names_unimol = np.array([], dtype='<U16')
species_names_bimol = np.array([], dtype='<U16')
species_names_unimol_frag2 = np.array([], dtype='<U16')
species_names_bimol_frag2 = np.array([], dtype='<U16')
look_for_species = 0
look_for_bimol_fragment = 0
bad_wellwrds = ['WellDepth', 'WellCutoff', 'WellExtension',
'WellReductionThreshold', 'WellPartitionMethod', 'WellProjectionThreshold']
with open(os.path.join(cwd, 'me_ktp.inp')) as myfile:
for line in myfile:
# do not read comments
if line[0] == '!':
line = '' # empty line
elif len(line.split('!')) > 1: # remove commented part
line = line.split('!')[0]
# if you enter the model section: start looking for species
if line.find('Model') != -1 and line.find('ModelEnergyLimit') == -1:
look_for_species = 1
if line.find('PressureList') != -1:
# verifica di non poter usare semplicemente line.split
pressures = [x.strip() for x in line.split()]
del pressures[0]
# print(pressures)
# print(len(pressures))
if line.find('TemperatureList') != -1:
temperatures = [x.strip() for x in line.split()]
del temperatures[0]
if (line.find('Well') != -1 and all(line.find(bad) == -1 for bad in bad_wellwrds)) and look_for_species == 1:
full_line = [x.strip() for x in line.split()]
species_names_unimol = np.append(
species_names_unimol, full_line[1])
species_names_unimol_frag2 = np.append(
species_names_unimol_frag2, '')
if (line.find('Bimolecular')) != -1 and look_for_species == 1:
look_for_bimol_fragment = 1
full_line = [x.strip() for x in line.split()]
species_names_bimol = np.append(
species_names_bimol, full_line[1])
if (line.find('Fragment')) != -1 and look_for_bimol_fragment > 0:
look_for_bimol_fragment += 1
if look_for_bimol_fragment == 3:
full_line = [x.strip() for x in line.split()]
species_names_bimol_frag2 = np.append(
species_names_bimol_frag2, full_line[1])
look_for_bimol_fragment = 0
myfile.close()
# write files
P_LIST = np.unique(np.array(pressures, dtype=np.float32))
T_LIST = np.unique(np.array(temperatures, dtype=np.int16))
species_names = np.append(species_names_unimol, species_names_bimol)
species_names_frag2 = np.append(
species_names_unimol_frag2, species_names_bimol_frag2)
# check that bimol fragments have different names
if len(list(set(species_names_bimol_frag2))) != len(list(species_names_bimol_frag2)):
print('*Warning: some bimol fragments share the same names. check that they are isomers')
return P_LIST, T_LIST, species_names, species_names_frag2
def MATRIX(cwd, P_LIST, T_LIST, species_names):
"""
Extract from rate.out all the rate constants in the form of a list
"""
# pre-allocation
matrix_list = []
capture_list = []
# define checks for temperature and pressure and read the file
# len works on b
check_P = len(T_LIST)*len(species_names)*len(P_LIST)
# define current checks
check_P_curr = 0
check_list = 0
with open(os.path.join(cwd, 'rate.out')) as myfile:
for line in myfile:
# find the 'Temperature-Species rate tables to extract the rates
if line.find('Temperature-Species Rate Tables:') != -1:
check_list = 1
if ((check_list == 1) and (check_P_curr < check_P)):
# add the check on 'Pressure' in case the values of temperature and pressure are accidentally the same
if any(line.find(T) != -1 for T in np.array(T_LIST, dtype=str)) and (line.find('Pressure') == -1):
check_P_curr += 1
rates = [x.strip() for x in line.split()]
# replace '***' values with 0
rates = [x.replace('***', '0') for x in rates]
matrix_list.append(rates[1:-2]) # -2 excluded
capture_list.append(float(rates[-1]))
if line.find('Temperature-Pressure Rate Tables:') != -1:
check_list = 0 # don't read the file anylonger
myfile.close()
matrix_float = np.array(matrix_list, dtype=np.float64)
# remove negative values from the matrix
n_T = len(T_LIST)
n_P = len(P_LIST)
warnings_neg = '' # generate list of warnings for negative values
for ii, row in enumerate(matrix_float):
mask_neg = np.where(row < 0)
mask_toohigh = np.where(row > capture_list[ii])
row[mask_toohigh] = 0
for mask_neg_i in mask_neg[0]:
row[mask_neg_i] = 0
R = int(ii/n_T/n_P)
P = int((ii-R*n_T*n_P)/n_T)
T = ii-R*n_T*n_P-P*n_T
warnings_neg = warnings_neg + \
'removed negative k_{R} at {T} K and {P} atm, be careful \n'.format(
R=species_names[R], T=T_LIST[T], P=P_LIST[P])
np.savetxt('warnings_negval_messrates.txt', [warnings_neg], fmt='%s')
return matrix_float
def MATRIX_TP(T, P, T_LIST, P_LIST, species_names, matrix_float):
"""
Extract square matrix of k_ij at the selected temperature and pressure
T,P are expected to be numbers, either floating or integers, to be compared with T,P in the lists
"""
# transform input types
if not isinstance(T, int):
try:
T = int(T)
except:
print('input T not convertible to number')
return None
if not isinstance(P, float):
try:
P = float(P)
except:
print('input P not convertible to number')
return None
n_T = len(T_LIST)
n_P = len(P_LIST)
# preallocate the matrix
n_species = len(species_names)
mat_TP = np.zeros((n_species, n_species))
# reconstruct indices
# set as option the exception case: if you put a value not present
# index [0][0] to save just the index itself
P_index = np.where((P == P_LIST))[0][0]
T_index = np.where((T == T_LIST))[0][0]
for ii in range(0, n_species):
# identify the string to place in the row: ki->prods
rates_row = matrix_float[ii*(n_P)*(n_T)+P_index*(n_T)+T_index, :]
# use list comprehension: kij = rate from reactant i to product j
col_indices = np.array([jj != ii for jj in range(0, n_species)])
mat_TP[ii, col_indices] = rates_row
# this returns the matrix at a certain temperature and pressure
return mat_TP
def REAC_P(P, reac, P_LIST, T_LIST, species_names, matrix_float):
"""
Method: only needed for MESS input. it extracts from the matrix of rate constants the reactivity of the selected reactant at a certain pressure
output: matrix [n_T*n_species-1]|P
useful if: you need to check the reactivity of the reactant in the full range of temperature
"""
n_T = len(T_LIST)
n_P = len(P_LIST)
# select the reactant
if not isinstance(reac, str):
print('input is not a string. please insert "reac" as string')
return None
# if the input is not a string: show an error
elif sum(np.array([reac == r_list for r_list in species_names])) == 0:
print('selected reactant not found in the list of species. select another reactant')
return None
# if the reactant is not in the list: show an error
else:
try:
float(P)
except ValueError as e:
print('P not convertible to number, error: ' + str(e))
return None
# derive the reactivity matrix at all the different temperatures
P_index = np.where((P == P_LIST))[0][0]
reac_index = np.array(
[reac == r_list for r_list in species_names], dtype=int)
ii_reac = np.where(reac_index == 1)[0][0] # index of the reactant
ii_in = ii_reac*(n_P)*(n_T)+P_index*(n_T)
rates_reac = matrix_float[ii_in:ii_in+n_T, :]
return rates_reac
# extract and process CHEMKIN type mechanism ########################à
def data_names_CKI(cwd):
'''
extract species names of CKI input mechanism
'''
# names of all the primary species
species_names = np.array([], dtype='<U32')
# names of the "second" reactant found in bimolecular reaction channels
species_names_bimol = np.array([], dtype='<U32')
# check in the file if you reading the part with all the reactions
check_reactions = 0
with open(os.path.join(cwd, 'kin.CKI')) as myfile:
for line in myfile:
if line.find('REACTIONS') != -1:
check_reactions += 1
# read the lines with the reaction rates;
# only irreversible reactions are considered ('=>')
# lines starting with a comment ('!') are not considered
if check_reactions == 1 and line.find('=>') != -1 and line.strip()[0] != '!':
line = line.split('!')[0] # remove the comments
REACS = [x.strip() for x in line.split('=>')][0]
REACS = [x.strip() for x in REACS.split('+')]
rest_ofline = [x.strip() for x in line.split('=>')][1]
# the arrhenius parameters will be the last three elements in the split
# ARR_PAR = rest_ofline.split()[-3:]
PRODS = ''.join(rest_ofline.split()[:-3])
PRODS = PRODS.split('+')
reacting_species = [REACS, PRODS]
# ALLOCATE THE SPECIES INTO THE ARRAYS
# if species are not into the array of species: append them
for x in reacting_species:
# IF LEN IS 1 AND REACTION IS LIKE 2A=>PRODS OR REACS=>2B: RECOGNIZE SPECIES B
# and add another product
if x[0][0] == '2':
x[0] = x[0][1:]
x.append(x[0])
if len(x) == 1 and np.array([x[0] == SP for SP in species_names]).any() != True:
species_names = np.append(species_names, x[0])
species_names_bimol = np.append(
species_names_bimol, '')
elif len(x) == 2:
r1 = x[0]
r2 = x[1]
# check that the combination is not present
flag = 0
for i in np.arange(0, len(species_names)):
s1 = species_names[i]
s2 = species_names_bimol[i]
# set flag to 1 if you find the same set of species
if (r1==s1 and r2==s2) or (r1==s2 and r2==s1):
flag = 1
if flag == 0:
species_names = np.append(species_names, r1)
species_names_bimol = np.append(species_names_bimol, r2)
if len(x) > 2:
print(
'Wrong number of elements when reading the reaction: line ' + line)
print('exiting now..')
sys.exit()
return species_names, species_names_bimol
def copy_CKI_processed(oldpath, newpath, PRODSINKS, ISOM_EQUIL, REAC, PRODS):
'''
IN THIS METHOD, THE MECHANISM IS COPIED TO NEWPATH FOLDER AFTER PREPROCESSING
PRODSINKS = 1: THE PRODUCTS ARE SET AS IRREVERSIBLE SINKS, SO THE LINES ARE COMMENTED WITH !
ISOM_EQUIL = 1: ALL BIMOLECULAR REACTIONS ARE DELETED,SO THAT EQUILIBRIUM WITHIN SETS OF ISOMERS IS REACHED.
=> ALL BIMOLECULAR REACTIONS COMMENTED WITH !
'''
if os.path.isdir(newpath) == False:
raise RuntimeError(
'The destination folder for the new mech does not exist ')
else:
with open(os.path.join(oldpath, 'kin.CKI'), mode='r') as mech_orig_file:
mech_orig = mech_orig_file.readlines()
newfile = copy.deepcopy(mech_orig)
for idx, row in enumerate(newfile):
if ISOM_EQUIL == 1 and row.find('=>') != -1 and row.strip()[0] != '!':
# check first if you only want isomer equilibrium: so you delete all bimolecular reactions
reactant = [x.strip() for x in row.split('=>')][0]
reactant = [x.strip() for x in reactant.split('+')][0]
product = [x.strip() for x in row.split('=>')][1]
# only bimolecular products will be meaningful
product = [x.strip() for x in product.split('+')][0]
product = product.split()[0]
# delete all the reactions involving species other than the reactants
if np.array([reactant == REAC]).any() and np.array([product == REAC]).any():
delete = 'NO'
else:
delete = 'YES'
elif PRODSINKS == 1 and row.find('=>') != -1 and row.strip()[0] != '!':
# if there is no isom_equil, you did not delete all bimol. reactions:
# so if you set product as sinks, then you have to delete those lines.
# NB product sinks are incompatible with isom_equil
# extract the first reactant of each row
reactant = [x.strip() for x in row.split('=>')][0]
reactant = [x.strip() for x in reactant.split('+')][0]
# if the reactant of the line is in the list of products, comment the line
if np.array([reactant == np.array(PRODS)]).any():
delete = 'YES'
else:
delete = 'NO'
else: # any other case (read a reaction or an empty line with no need of deleting anything)
delete = 'NO'
# ON THE BASIS OF THE CONDITIONS ABOVE: DELETE THE REACTION OR NOT
if delete == 'YES':
# comment the line
newfile[idx] = '!' + row
# if duplicate reaction: comment also that
# the "lower" notation is to trasfer all to lower cases so that you make the search independent of the font
if newfile[idx+1].lower().find('DUPLICATE'.lower()) != -1 or newfile[idx+1].lower().find('DUP'.lower()) != -1:
newfile[idx+1] = '!' + newfile[idx+1]
# if PLOG: comment also all the lines below until you don't find PLOG anymore
check_plog = 0
iline = 1
while check_plog == 0:
if newfile[idx+iline].find('PLOG') != -1:
newfile[idx+iline] = '!' + newfile[idx+iline]
iline += 1
else:
check_plog = 1
# check for duplicates
if newfile[idx+iline].lower().find('DUPLICATE'.lower()) != -1 or newfile[idx+iline].lower().find('DUP'.lower()) != -1:
newfile[idx+iline] = '!' + newfile[idx+iline]
elif delete == 'NO':
# copy the line as it is
newfile[idx] = row
# remove the file if it exists and write the new one
if os.path.isfile(os.path.join(newpath, 'kin.txt')):
os.remove(os.path.join(newpath, 'kin.txt'))
with open(os.path.join(newpath, 'kin.txt'), mode='x') as inp:
inp.writelines(newfile)
|
py
|
1a594022180b2aa6148de0d97b85c5515f5a0f8f
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from detectron2.config import CfgNode as CN
def add_detr_config(cfg):
"""
Add config for DETR.
"""
cfg.MODEL.DETR = CN()
cfg.MODEL.DETR.NUM_CLASSES = 80
# FBNet
cfg.MODEL.FBNET_V2.OUT_FEATURES = ["trunk3"]
# For Segmentation
cfg.MODEL.DETR.FROZEN_WEIGHTS = ''
# LOSS
cfg.MODEL.DETR.DEFORMABLE = False
cfg.MODEL.DETR.USE_FOCAL_LOSS = False
cfg.MODEL.DETR.CENTERED_POSITION_ENCODIND = False
cfg.MODEL.DETR.CLS_WEIGHT = 1.0
cfg.MODEL.DETR.NUM_FEATURE_LEVELS = 4
cfg.MODEL.DETR.GIOU_WEIGHT = 2.0
cfg.MODEL.DETR.L1_WEIGHT = 5.0
cfg.MODEL.DETR.DEEP_SUPERVISION = True
cfg.MODEL.DETR.NO_OBJECT_WEIGHT = 0.1
# TRANSFORMER
cfg.MODEL.DETR.NHEADS = 8
cfg.MODEL.DETR.DROPOUT = 0.1
cfg.MODEL.DETR.DIM_FEEDFORWARD = 2048
cfg.MODEL.DETR.ENC_LAYERS = 6
cfg.MODEL.DETR.DEC_LAYERS = 6
cfg.MODEL.DETR.PRE_NORM = False
cfg.MODEL.DETR.HIDDEN_DIM = 256
cfg.MODEL.DETR.NUM_OBJECT_QUERIES = 100
cfg.SOLVER.OPTIMIZER = "ADAMW"
cfg.SOLVER.BACKBONE_MULTIPLIER = 0.1
|
py
|
1a5940d24ddd108e485365d04986cdb518111b50
|
import random, math
from agent import Agent
from variables import *
MAX_NEIGHBOR_FORCE = abs(math.log(FISH_SENSING_DISTANCE/FISH_DESIRED_DIST))
# Model attempt some sort of propagation wave.
# Affected by propagation wave that pushes it farther away.
# If a marked fish is in a certain PROP_DIST (meaning getting
# attacked by Predator), then it experiences repulsive force.
# Smaller repulsive farther from the marked fish it is.
class PropagationFish(Agent):
def __init__(self, sim, start_loc = None):
random.seed()
super().__init__(sim, start_loc)
blue = random.randint(150, 255)
green = random.randint(0, 100)
red = random.randint(0, 100)
missing = 400-blue-green-red
red += missing//2
if red > 255:
red = 255
green += missing//2
if green > 255:
green = 255
self.nearby_predators = []
self.nearby_marked = []
self.marked = False
self.color = (red, green, blue)
def update(self):
total_x_vec = 0.0
total_y_vec = 0.0
# Computing effect that nearby predators on fish.
if len(self.nearby_predators) > 0:
predators = self.nearby_predators
for predator in predators:
x_vec = 0.0
y_vec = 0.0
pred, dist = predator
target = self.get_perceived_target_pos(pred.loc)
x, y = self.get_vector_to_target(target)
total_force = - PREDATOR_FISH_FORCE * pow((1.0)/dist, 4)
total_x_vec += x * total_force
total_y_vec += y * total_force
# Compute effect of propagation wave and compute other effects normally.
elif len(self.neighbors) > 0 or len(self.nearby_marked) > 0:
marked = self.nearby_marked
for fish in marked:
x_vec = 0.0
y_vec = 0.0
a, dist = fish
target = self.get_perceived_target_pos(a.loc)
x, y = self.get_vector_to_target(target)
total_force = -(1.0)*pow((1.0)/dist, 0.2)
total_x_vec += x * total_force
total_y_vec += y * total_force
neighbors = self.neighbors
if len(neighbors) > FISH_MAX_NEIGHBORS:
neighbors = sorted(self.neighbors, key=lambda x: x[1])
neighbors = neighbors[:FISH_MAX_NEIGHBORS]
for neighbor in neighbors:
x_vec = 0
y_vec = 0
fish, dist = neighbor
target = self.get_perceived_target_pos(fish.loc)
x, y = self.get_vector_to_target(target)
# Made the force between fishes stronger. Maybe change neighbor
# force constant in variables.py?
if dist > FISH_DESIRED_DIST:
total_force = 10*FISH_NEIGHBOR_FORCE * math.log(dist/FISH_DESIRED_DIST)/MAX_NEIGHBOR_FORCE
else:
total_force = -pow(FISH_DESIRED_DIST-dist, 1.5)
total_x_vec += x * total_force
total_y_vec += y * total_force
elif len(self.nearby_predators) == 0 and len(self.neighbors) == 0:
# randomly adjust speed
total_x_vec = (random.random() - 0.5) * 2 * FISH_ACCEL
total_y_vec = (random.random() - 0.5) * 2 * FISH_ACCEL
# normalize acceleration
accel = abs(total_x_vec) + abs(total_y_vec)
if accel > FISH_ACCEL:
adj = FISH_ACCEL/accel
total_x_vec *= adj
total_y_vec *= adj
self.x_speed += total_x_vec
self.y_speed += total_y_vec
# normalize speed
speed = abs(self.x_speed) + abs(self.y_speed)
if speed > FISH_SPEED:
adj = FISH_SPEED/speed
self.x_speed *= adj
self.y_speed *= adj
self.move()
|
py
|
1a5940d8eed4bc08301add15d5e09804d25c720a
|
#
# (c) Copyright 2017-2018 Hewlett Packard Enterprise Development LP
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import os
def load_proxy():
# docker exposes all of these variables as build args
# except for all_proxy
proxy_keys = ('http_proxy', 'https_proxy',
'no_proxy', 'all_proxy', 'ftp_proxy')
return {key: os.environ[key] for key in proxy_keys if key in os.environ}
def split_image(image):
"""Get the tag from a full image name.
127.0.0.1:5000/image:latest => 127.0.0.1:5000/image, latest
image:tag => image, tag
"""
parts = image.split('/', 1)
if len(parts) == 1 or (
'.' not in parts[0] and
':' not in parts[0]):
host, img = '', image
else:
host, img = parts
if ':' in img:
imagename, tag = img.rsplit(':', 1)
else:
imagename, tag = img, 'latest'
if host:
return host + "/" + imagename, tag
return imagename, tag
def all_blob_names(tree, parent=''):
"""This returns all blobs names from git tree object
"""
for t in tree.trees:
for b in all_blob_names(t, os.path.join(parent, tree.name)):
yield b
for b in tree.blobs:
yield os.path.join(parent, tree.name, b.name)
|
py
|
1a59417b9179fc71f5185fca375bb4b2b787e1f6
|
import subprocess
import os
import json
from uuid import uuid4
from vo2mft.util import _solve_front_path, _twodof_solve_front_path, _twodof_body_fixed_solve_front_path
def solve(env, eps=1e-8, ions=False, flags=None, twodof=False, twodof_body_indep=False):
'''Return the solved final env corresponding to the given env, solved to
accuracy given by eps.
'''
solver_path = _solve_front_path()
if twodof and twodof_body_indep:
solver_path = _twodof_solve_front_path()
elif twodof:
solver_path = _twodof_body_fixed_solve_front_path()
in_path, out_path = str(uuid4()), str(uuid4())
write_env_file(env, in_path)
# Run solver.
solver_call = None
if twodof:
solver_call = [solver_path, "--eps", str(eps)]
if ions:
solver_call.append("--ions")
if flags != None:
solver_call.extend(flags)
solver_call.extend([in_path, out_path])
elif ions and not twodof:
solver_call = [solver_path, "--eps", str(eps), "--ions"]
if flags != None:
solver_call.extend(flags)
solver_call.extend([in_path, out_path])
subprocess.call(solver_call)
# Read solver output, if it exists.
final_env_path = out_path + "_fenv.json"
final_env = None
try:
final_env = read_env_file(final_env_path)
except FileNotFoundError:
pass
# Clean up solver input/output.
try:
os.remove(in_path)
os.remove(final_env_path)
except FileNotFoundError:
pass
return final_env
def solve_set(envs, eps=1e-8, ions=False, flags=None, twodof=False, twodof_body_indep=False):
'''Return a list of solved final envs corresponding to the given list of
envs, solved to accuracy given by eps.
The set of envs is solved serially (only one process is invoked).
'''
final_envs = []
for i, initial_env in enumerate(envs):
this_flags = None
if flags != None:
this_flags = flags[i]
this_final_env = solve(initial_env, eps, ions, this_flags, twodof, twodof_body_indep)
final_envs.append(this_final_env)
return final_envs
def write_env_file(env, env_path):
env_str = json.dumps(env)
with open(env_path, 'w') as fp:
fp.write(env_str)
def read_env_file(env_path):
env = None
with open(env_path, 'r') as fp:
env_str = fp.read()
env = json.loads(env_str)
return env
|
py
|
1a594200ac034c8ff882369c01b708bccf0f05dd
|
import joblib
import pytest
import os
import numpy as np
import pandas as pd
from sklearn.compose import ColumnTransformer
from sklearn.dummy import DummyClassifier, DummyRegressor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from mlserver.settings import ModelSettings, ModelParameters
from mlserver.types import InferenceRequest
from mlserver_sklearn import SKLearnModel
TESTS_PATH = os.path.dirname(__file__)
TESTDATA_PATH = os.path.join(TESTS_PATH, "testdata")
def pytest_collection_modifyitems(items):
"""
Add pytest.mark.asyncio marker to every test.
"""
for item in items:
item.add_marker("asyncio")
@pytest.fixture
def model_uri(tmp_path) -> str:
n = 4
X = np.random.rand(n)
y = np.random.rand(n)
clf = DummyClassifier(strategy="prior")
clf.fit(X, y)
model_uri = os.path.join(tmp_path, "sklearn-model.joblib")
joblib.dump(clf, model_uri)
return model_uri
@pytest.fixture
def model_settings(model_uri: str) -> ModelSettings:
return ModelSettings(
name="sklearn-model",
parameters=ModelParameters(uri=model_uri, version="v1.2.3"),
)
@pytest.fixture
async def model(model_settings: ModelSettings) -> SKLearnModel:
model = SKLearnModel(model_settings)
await model.load()
return model
@pytest.fixture
def inference_request() -> InferenceRequest:
payload_path = os.path.join(TESTDATA_PATH, "inference-request.json")
return InferenceRequest.parse_file(payload_path)
@pytest.fixture
async def regression_model(tmp_path) -> SKLearnModel:
# Build a quick DummyRegressor
n = 4
X = np.random.rand(n)
y = np.random.rand(n)
clf = DummyRegressor()
clf.fit(X, y)
model_uri = os.path.join(tmp_path, "sklearn-regression-model.joblib")
joblib.dump(clf, model_uri)
settings = ModelSettings(
name="sklearn-regression-model",
parameters=ModelParameters(uri=model_uri, version="v1.2.3"),
)
model = SKLearnModel(settings)
await model.load()
return model
@pytest.fixture
def pandas_model_uri(tmp_path) -> str:
data: pd.DataFrame = pd.DataFrame(
{"a": [1, 2, 3], "op": ["+", "+", "-"], "y": [11, 22, -33]}
)
X: pd.DataFrame = data.drop("y", axis=1)
y: pd.DataFrame = data["y"]
numeric_features = ["a"]
numeric_transformer = StandardScaler()
categorical_features = ["op"]
categorical_transformer = OneHotEncoder(handle_unknown="ignore")
preprocessor = ColumnTransformer(
transformers=[
("num", numeric_transformer, numeric_features),
("cat", categorical_transformer, categorical_features),
]
)
model = Pipeline(
steps=[("preprocessor", preprocessor), ("regression", DummyRegressor())]
)
model.fit(X, y)
model_uri = os.path.join(tmp_path, "sklearn-pandas-model.joblib")
joblib.dump(model, model_uri)
return model_uri
@pytest.fixture
def pandas_model_settings(pandas_model_uri: str) -> ModelSettings:
return ModelSettings(
name="sklearn-pandas-model",
parameters=ModelParameters(uri=pandas_model_uri, version="v1.2.3"),
)
@pytest.fixture
async def pandas_model(pandas_model_settings: ModelSettings) -> SKLearnModel:
model = SKLearnModel(pandas_model_settings)
await model.load()
return model
@pytest.fixture
def pandas_inference_request() -> InferenceRequest:
inference_request = {
"parameters": {"content_type": "pd"},
"inputs": [
{"name": "a", "datatype": "INT32", "data": [10], "shape": [1]},
{
"name": "op",
"datatype": "BYTES",
"data": ["-"],
"shape": [1],
"parameters": {"content_type": "str"},
},
],
}
return InferenceRequest.parse_obj(inference_request)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.