ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a3a1edee8d4acc2fb77b356ed1fd89a5cb190ca
#!/usr/bin/python3 -i # # Copyright (c) 2015-2021 The Khronos Group Inc. # Copyright (c) 2015-2021 Valve Corporation # Copyright (c) 2015-2021 LunarG, Inc. # Copyright (c) 2015-2021 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Dustin Graves <[email protected]> # Author: Mark Lobodzinski <[email protected]> # Author: Dave Houlton <[email protected]> import os,re,sys,string,json import xml.etree.ElementTree as etree from generator import * from collections import namedtuple from common_codegen import * # This is a workaround to use a Python 2.7 and 3.x compatible syntax. from io import open # ParameterValidationGeneratorOptions - subclass of GeneratorOptions. # # Adds options used by ParameterValidationOutputGenerator object during Parameter validation layer generation. # # Additional members # prefixText - list of strings to prefix generated header with # (usually a copyright statement + calling convention macros). # protectFile - True if multiple inclusion protection should be # generated (based on the filename) around the entire header. # protectFeature - True if #ifndef..#endif protection should be # generated around a feature interface in the header file. # genFuncPointers - True if function pointer typedefs should be # generated # protectProto - If conditional protection should be generated # around prototype declarations, set to either '#ifdef' # to require opt-in (#ifdef protectProtoStr) or '#ifndef' # to require opt-out (#ifndef protectProtoStr). Otherwise # set to None. # protectProtoStr - #ifdef/#ifndef symbol to use around prototype # declarations, if protectProto is set # apicall - string to use for the function declaration prefix, # such as APICALL on Windows. # apientry - string to use for the calling convention macro, # in typedefs, such as APIENTRY. # apientryp - string to use for the calling convention macro # in function pointer typedefs, such as APIENTRYP. # indentFuncProto - True if prototype declarations should put each # parameter on a separate line # indentFuncPointer - True if typedefed function pointers should put each # parameter on a separate line # alignFuncParam - if nonzero and parameters are being put on a # separate line, align parameter names at the specified column class ParameterValidationGeneratorOptions(GeneratorOptions): def __init__(self, conventions = None, filename = None, directory = '.', genpath = None, apiname = None, profile = None, versions = '.*', emitversions = '.*', defaultExtensions = None, addExtensions = None, removeExtensions = None, emitExtensions = None, emitSpirv = None, sortProcedure = regSortFeatures, prefixText = "", apicall = '', apientry = '', apientryp = '', indentFuncProto = True, indentFuncPointer = False, alignFuncParam = 0, expandEnumerants = True, valid_usage_path = ''): GeneratorOptions.__init__(self, conventions = conventions, filename = filename, directory = directory, genpath = genpath, apiname = apiname, profile = profile, versions = versions, emitversions = emitversions, defaultExtensions = defaultExtensions, addExtensions = addExtensions, removeExtensions = removeExtensions, emitExtensions = emitExtensions, emitSpirv = emitSpirv, sortProcedure = sortProcedure) self.prefixText = prefixText self.apicall = apicall self.apientry = apientry self.apientryp = apientryp self.indentFuncProto = indentFuncProto self.indentFuncPointer = indentFuncPointer self.alignFuncParam = alignFuncParam self.expandEnumerants = expandEnumerants self.valid_usage_path = valid_usage_path # ParameterValidationOutputGenerator - subclass of OutputGenerator. # Generates param checker layer code. # # ---- methods ---- # ParamCheckerOutputGenerator(errFile, warnFile, diagFile) - args as for # OutputGenerator. Defines additional internal state. # ---- methods overriding base class ---- # beginFile(genOpts) # endFile() # beginFeature(interface, emit) # endFeature() # genType(typeinfo,name) # genStruct(typeinfo,name) # genGroup(groupinfo,name) # genEnum(enuminfo, name) # genCmd(cmdinfo) class ParameterValidationOutputGenerator(OutputGenerator): """Generate Parameter Validation code based on XML element attributes""" # This is an ordered list of sections in the header file. ALL_SECTIONS = ['command'] def __init__(self, errFile = sys.stderr, warnFile = sys.stderr, diagFile = sys.stdout): OutputGenerator.__init__(self, errFile, warnFile, diagFile) self.INDENT_SPACES = 4 self.declarations = [] inline_custom_source_preamble = """ """ # These functions have additional, custom-written checks in the utils cpp file. CodeGen will automatically add a call # to those functions of the form 'bool manual_PreCallValidateAPIName', where the 'vk' is dropped. # see 'manual_PreCallValidateCreateGraphicsPipelines' as an example. self.functions_with_manual_checks = [ 'vkCreateInstance', 'vkCreateDevice', 'vkCreateQueryPool', 'vkCreateRenderPass', 'vkCreateRenderPass2', 'vkCreateRenderPass2KHR', 'vkCreateBuffer', 'vkCreateImage', 'vkCreatePipelineLayout', 'vkCreateGraphicsPipelines', 'vkCreateComputePipelines', 'vkCreateRayTracingPipelinesNV', 'vkCreateRayTracingPipelinesKHR', 'vkCreateSampler', 'vkCreateDescriptorSetLayout', 'vkFreeDescriptorSets', 'vkUpdateDescriptorSets', 'vkBeginCommandBuffer', 'vkCmdSetViewport', 'vkCmdSetScissor', 'vkCmdSetLineWidth', 'vkCmdDrawIndirect', 'vkCmdDrawIndexedIndirect', 'vkCmdDrawMultiEXT', 'vkCmdDrawMultiIndexedEXT', 'vkCmdClearAttachments', 'vkCmdBindIndexBuffer', 'vkCmdCopyBuffer', 'vkCmdUpdateBuffer', 'vkCmdFillBuffer', 'vkCreateSwapchainKHR', 'vkCreateSharedSwapchainsKHR', 'vkQueuePresentKHR', 'vkCreateDescriptorPool', 'vkCmdDispatch', 'vkCmdDispatchIndirect', 'vkCmdDispatchBaseKHR', 'vkCmdPushDescriptorSetKHR', 'vkCmdSetExclusiveScissorNV', 'vkCmdSetViewportShadingRatePaletteNV', 'vkCmdSetCoarseSampleOrderNV', 'vkCmdDrawMeshTasksNV', 'vkCmdDrawMeshTasksIndirectNV', 'vkCmdDrawMeshTasksIndirectCountNV', 'vkAllocateMemory', 'vkCreateAccelerationStructureNV', 'vkCreateAccelerationStructureKHR', 'vkGetAccelerationStructureHandleNV', 'vkGetPhysicalDeviceImageFormatProperties', 'vkGetPhysicalDeviceImageFormatProperties2', 'vkGetPhysicalDeviceImageFormatProperties2KHR', 'vkCmdBuildAccelerationStructureNV', 'vkCreateFramebuffer', 'vkCmdSetLineStippleEXT', 'vkSetDebugUtilsObjectNameEXT', 'vkSetDebugUtilsObjectTagEXT', 'vkCmdSetViewportWScalingNV', 'vkAcquireNextImageKHR', 'vkAcquireNextImage2KHR', 'vkCmdBindTransformFeedbackBuffersEXT', 'vkCmdBeginTransformFeedbackEXT', 'vkCmdEndTransformFeedbackEXT', 'vkCmdDrawIndirectByteCountEXT', 'vkCreateSamplerYcbcrConversion', 'vkCreateSamplerYcbcrConversionKHR', 'vkImportSemaphoreFdKHR', 'vkCmdBindVertexBuffers', 'vkCreateImageView', 'vkCopyAccelerationStructureToMemoryKHR', 'vkCmdCopyAccelerationStructureToMemoryKHR', 'vkCopyAccelerationStructureKHR', 'vkCmdCopyAccelerationStructureKHR', 'vkCopyMemoryToAccelerationStructureKHR', 'vkCmdCopyMemoryToAccelerationStructureKHR', 'vkCmdDrawIndirectCount', 'vkCmdDrawIndirectCountKHR', 'vkCmdDrawIndexedIndirectCount', 'vkCmdDrawIndexedIndirectCountKHR', 'vkCmdWriteAccelerationStructuresPropertiesKHR', 'vkWriteAccelerationStructuresPropertiesKHR', 'vkGetRayTracingCaptureReplayShaderGroupHandlesKHR', 'vkCmdTraceRaysKHR', 'vkCmdTraceRaysNV', 'vkCmdTraceRaysIndirectKHR', 'vkCmdBuildAccelerationStructureIndirectKHR', 'vkGetDeviceAccelerationStructureCompatibilityKHR', 'vkCmdSetViewportWithCountEXT', 'vkCmdSetScissorWithCountEXT', 'vkCmdBindVertexBuffers2EXT', 'vkCmdCopyBuffer2KHR', 'vkCmdBuildAccelerationStructuresKHR', 'vkCmdBuildAccelerationStructuresIndirectKHR', 'vkBuildAccelerationStructuresKHR', 'vkGetAccelerationStructureBuildSizesKHR', 'vkCmdWriteAccelerationStructuresPropertiesNV', 'vkCreateDisplayModeKHR', 'vkCreatePrivateDataSlotEXT', 'vkCmdSetVertexInputEXT', 'vkCmdPushConstants', 'vkMergePipelineCaches' ] # Commands to ignore self.blacklist = [ 'vkGetInstanceProcAddr', 'vkGetDeviceProcAddr', 'vkEnumerateInstanceVersion', 'vkEnumerateInstanceLayerProperties', 'vkEnumerateInstanceExtensionProperties', 'vkEnumerateDeviceLayerProperties', 'vkEnumerateDeviceExtensionProperties', 'vkGetDeviceGroupSurfacePresentModes2EXT' ] # Structure fields to ignore self.structMemberBlacklist = { 'VkWriteDescriptorSet' : ['dstSet'], 'VkAccelerationStructureGeometryKHR' :['geometry'] } # Validation conditions for some special case struct members that are conditionally validated self.structMemberValidationConditions = { 'VkPipelineColorBlendStateCreateInfo' : { 'logicOp' : '{}logicOpEnable == VK_TRUE' } } # Header version self.headerVersion = None # Internal state - accumulators for different inner block text self.validation = [] # Text comprising the main per-api parameter validation routines self.stypes = [] # Values from the VkStructureType enumeration self.structTypes = dict() # Map of Vulkan struct typename to required VkStructureType self.handleTypes = set() # Set of handle type names self.commands = [] # List of CommandData records for all Vulkan commands self.structMembers = [] # List of StructMemberData records for all Vulkan structs self.validatedStructs = dict() # Map of structs type names to generated validation code for that struct type self.enumRanges = set() # Set of enum names self.enum_values_definitions = dict() # [enum, string] containing enumerated type map definitions self.flag_values_definitions = dict() # [flag, string] containing flag type map definitions self.stype_version_dict = dict() # String containing structtype to version map data self.flags = set() # Map of flags typenames self.flagBits = dict() # Map of flag bits typename to list of values self.newFlags = set() # Map of flags typenames /defined in the current feature/ self.required_extensions = dict() # Dictionary of required extensions for each item in the current extension self.extension_type = '' # Type of active feature (extension), device or instance self.extension_names = dict() # Dictionary of extension names to extension name defines self.structextends_list = [] # List of extensions which extend another struct self.struct_feature_protect = dict() # Dictionary of structnames and FeatureExtraProtect strings self.valid_vuids = set() # Set of all valid VUIDs self.vuid_dict = dict() # VUID dictionary (from JSON) self.alias_dict = dict() # Dict of cmd|struct aliases self.header_file = False # Header file generation flag self.source_file = False # Source file generation flag self.instance_extension_list = '' # List of instance extension name defines self.device_extension_list = '' # List of device extension name defines self.returnedonly_structs = [] # List of structs with 'returnonly' attribute self.called_types = set() # Set of types called via function/struct - not in list == app never passes in to validate # Named tuples to store struct and command data self.CommandParam = namedtuple('CommandParam', ['type', 'name', 'ispointer', 'isstaticarray', 'isbool', 'israngedenum', 'isconst', 'isoptional', 'iscount', 'noautovalidity', 'len', 'extstructs', 'condition', 'cdecl']) self.CommandData = namedtuple('CommandData', ['name', 'params', 'cdecl', 'extension_type', 'result', 'promotion_info']) self.StructMemberData = namedtuple('StructMemberData', ['name', 'members']) # # Generate Copyright comment block for file def GenerateCopyright(self): copyright = '/* *** THIS FILE IS GENERATED - DO NOT EDIT! ***\n' copyright += ' * See parameter_validation_generator.py for modifications\n' copyright += ' *\n' copyright += ' * Copyright (c) 2015-2021 The Khronos Group Inc.\n' copyright += ' * Copyright (c) 2015-2021 LunarG, Inc.\n' copyright += ' * Copyright (C) 2015-2021 Google Inc.\n' copyright += ' *\n' copyright += ' * Licensed under the Apache License, Version 2.0 (the "License");\n' copyright += ' * you may not use this file except in compliance with the License.\n' copyright += ' * Copyright (c) 2015-2017 Valve Corporation\n' copyright += ' * You may obtain a copy of the License at\n' copyright += ' *\n' copyright += ' * http://www.apache.org/licenses/LICENSE-2.0\n' copyright += ' *\n' copyright += ' * Unless required by applicable law or agreed to in writing, software\n' copyright += ' * distributed under the License is distributed on an "AS IS" BASIS,\n' copyright += ' * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n' copyright += ' * See the License for the specific language governing permissions and\n' copyright += ' * limitations under the License.\n' copyright += ' *\n' copyright += ' * Author: Mark Lobodzinski <[email protected]>\n' copyright += ' * Author: Dave Houlton <[email protected]>\n' copyright += ' */\n\n' return copyright # # Increases the global indent variable def incIndent(self, indent): inc = ' ' * self.INDENT_SPACES if indent: return indent + inc return inc # # Decreases the global indent variable def decIndent(self, indent): if indent and (len(indent) > self.INDENT_SPACES): return indent[:-self.INDENT_SPACES] return '' # # Walk the JSON-derived dict and find all "vuid" key values def ExtractVUIDs(self, d): if hasattr(d, 'items'): for k, v in d.items(): if k == "vuid": yield v elif isinstance(v, dict): for s in self.ExtractVUIDs(v): yield s elif isinstance (v, list): for l in v: for s in self.ExtractVUIDs(l): yield s # # Called at file creation time def beginFile(self, genOpts): OutputGenerator.beginFile(self, genOpts) self.header_file = (genOpts.filename == 'parameter_validation.h') self.source_file = (genOpts.filename == 'parameter_validation.cpp') if not self.header_file and not self.source_file: print("Error: Output Filenames have changed, update generator source.\n") sys.exit(1) if self.source_file or self.header_file: # Output Copyright text s = self.GenerateCopyright() write(s, file=self.outFile) if self.header_file: return stype_map = '' stype_version_dict = dict() # Create contents of Structs->API version unordered map root = self.registry.reg for node in root.findall('feature'): version_name = node.get('name') version_name = version_name.replace('VK_', 'VK_API_') for enum_item in node.iter('enum'): if enum_item.get('extends') == "VkStructureType": struct_type_id = enum_item.get('name') self.stype_version_dict[struct_type_id] = version_name for extensions in root.findall('extensions'): for extension in extensions.findall('extension'): for entry in extension.iterfind('require/enum[@extends="VkStructureType"]'): alias = entry.get('alias') if alias is not None and (entry.get('comment') is None or 'typo' not in entry.get('comment')): self.stype_version_dict[alias] = extension.get('name') # Build map of structure type names to VkStructureType enum values # Find all types of category "struct" for struct in self.registry.tree.iterfind('types/type[@category="struct"]'): # Check if struct has member named "sType" of type "VkStructureType" which has values defined stype = struct.find('member[name="sType"][type="VkStructureType"][@values]') if stype is not None: # Store VkStructureType value for this type self.structTypes[struct.get('name')] = stype.get('values') self.valid_usage_path = genOpts.valid_usage_path vu_json_filename = os.path.join(self.valid_usage_path + os.sep, 'validusage.json') if os.path.isfile(vu_json_filename): json_file = open(vu_json_filename, 'r', encoding='utf-8') self.vuid_dict = json.load(json_file) json_file.close() if len(self.vuid_dict) == 0: print("Error: Could not find, or error loading %s/validusage.json\n", vu_json_filename) sys.exit(1) # # Build a set of all vuid text strings found in validusage.json for json_vuid_string in self.ExtractVUIDs(self.vuid_dict): self.valid_vuids.add(json_vuid_string) # # Headers write('#include "chassis.h"', file=self.outFile) self.newline() write('#include "stateless_validation.h"', file=self.outFile) self.newline() # # Called at end-time for final content output def endFile(self): if self.source_file: # C-specific self.newline() # Don't need flag/enum lists if app can never call it to be validated # But need to save everything as not all information is known until endFile() for flag, string in self.flag_values_definitions.items(): if flag == 'VkGeometryInstanceFlagsKHR': # only called in VkAccelerationStructureInstanceKHR which is never called anywhere explicitly continue flagBits = flag.replace('Flags', 'FlagBits') if flag in self.called_types or flagBits in self.called_types: write(string, file=self.outFile) for enum, string in self.enum_values_definitions.items(): if enum in self.called_types: write(string, file=self.outFile) self.newline() self.newline() api_func = 'bool StatelessValidation::CheckPromotedApiAgainstVulkanVersion(VkInstance instance, const char *api_name, const uint32_t promoted_version) const {\n' api_func += ' bool skip = false;\n' api_func += ' if (api_version < promoted_version) {\n' api_func += ' skip = LogError(instance,\n' api_func += ' kVUID_PVError_ApiVersionViolation, "Attemped to call %s() with an effective API version of %s"\n' api_func += ' "but this API was not promoted until version %s.", api_name, StringAPIVersion(api_version).c_str(),\n' api_func += ' StringAPIVersion(promoted_version).c_str());\n' api_func += ' }\n' api_func += ' return skip;\n' api_func += '}\n\n' api_func += 'bool StatelessValidation::CheckPromotedApiAgainstVulkanVersion(VkPhysicalDevice pdev, const char *api_name, const uint32_t promoted_version) const {\n' api_func += ' bool skip = false;\n' api_func += ' const auto &target_pdev = physical_device_properties_map.find(pdev);\n' api_func += ' if (target_pdev != physical_device_properties_map.end()) {\n' api_func += ' auto effective_api_version = std::min(target_pdev->second->apiVersion, api_version);\n' api_func += ' if (effective_api_version < promoted_version) {\n' api_func += ' skip = LogError(instance,\n' api_func += ' kVUID_PVError_ApiVersionViolation, "Attemped to call %s() with an effective API version of %s, "\n' api_func += ' "which is the minimum of version requested in pApplicationInfo (%s) and supported by this physical device (%s), "\n' api_func += ' "but this API was not promoted until version %s.", api_name, StringAPIVersion(api_version).c_str(),\n' api_func += ' StringAPIVersion(target_pdev->second->apiVersion).c_str(), StringAPIVersion(effective_api_version).c_str(),\n' api_func += ' StringAPIVersion(promoted_version).c_str());\n' api_func += ' }\n' api_func += ' }\n' api_func += ' return skip;\n' api_func += '}\n' write(api_func, file=self.outFile) pnext_handler = 'bool StatelessValidation::ValidatePnextStructContents(const char *api_name, const ParameterName &parameter_name,\n' pnext_handler += ' const VkBaseOutStructure* header, const char *pnext_vuid) const {\n' pnext_handler += ' bool skip = false;\n' pnext_handler += ' switch(header->sType) {\n' # Do some processing here to extract data from validatedstructs... for item in self.structextends_list: postProcSpec = {} postProcSpec['ppp'] = '' if not item else '{postProcPrefix}' postProcSpec['pps'] = '' if not item else '{postProcSuffix}' postProcSpec['ppi'] = '' if not item else '{postProcInsert}' pnext_case = '\n' pnext_check = '' protect = '' # Guard struct cases with feature ifdefs, if necessary if item in self.struct_feature_protect.keys(): protect = self.struct_feature_protect[item] pnext_case += '#ifdef %s\n' % protect pnext_case += ' // Validation code for %s structure members\n' % item pnext_case += ' case %s: { // Covers VUID-%s-sType-sType\n' % (self.structTypes[item], item) # pNext version/extension-enabled checks ver_info = '' struct_type = self.structTypes[item] if struct_type in self.stype_version_dict.keys(): ver_info = self.stype_version_dict[struct_type] else: struct_type[:-4] if struct_type[:-4] in self.stype_version_dict.values(): ver_info = self.stype_version_dict[struct_type[:-4]] else: ver_info = None if ver_info is not None: if 'VK_API_VERSION_' in ver_info: api_version = ver_info; pnext_check += ' if (api_version < %s) {\n' % ver_info pnext_check += ' skip |= LogError(\n' pnext_check += ' instance, pnext_vuid,\n' pnext_check += ' "%%s: Includes a pNext pointer (%%s) to a VkStructureType (%s) which was added in %s but the "\n' % (struct_type, ver_info) pnext_check += ' "current effective API version is %s.",\n' pnext_check += ' api_name, parameter_name.get_name().c_str(), StringAPIVersion(api_version).c_str());\n' pnext_check += ' }\n' else: # Dependent on enabled extension ext_name = ver_info ext_name_define = self.extension_names[ver_info] table_type = '' if ext_name_define in self.instance_extension_list: table_type = 'instance' elif ext_name_define in self.device_extension_list: table_type = 'device' else: print("Error in parameter_validation_generator.py CodeGen.") norm_ext_name = ext_name_define[:-15].lower() if table_type == 'device': pnext_check += ' if ((!SupportedByPdev(physical_device, %s)) && !%s_extensions.%s) {\n' % (ext_name_define, table_type, norm_ext_name.lower()) else: pnext_check += ' if (!%s_extensions.%s) {\n' % (table_type, norm_ext_name.lower()) pnext_check += ' skip |= LogError(\n' pnext_check += ' instance, pnext_vuid,\n' pnext_check += ' "%%s: Includes a pNext pointer (%%s) to a VkStructureType (%s), but its parent extension "\n' % struct_type pnext_check += ' "%s has not been enabled.",\n' % ext_name pnext_check += ' api_name, parameter_name.get_name().c_str());\n' pnext_check += ' }\n' pnext_check += '\n' expr = self.expandStructCode(item, item, 'structure->', '', ' ', [], postProcSpec) struct_validation_source = self.ScrubStructCode(expr) if struct_validation_source != '': pnext_case += ' %s *structure = (%s *) header;\n' % (item, item) pnext_case += '%s%s' % (pnext_check, struct_validation_source) pnext_case += ' } break;\n' if protect: pnext_case += '#endif // %s\n' % protect # Skip functions containing no validation if struct_validation_source or pnext_check != '': pnext_handler += pnext_case; else: pnext_handler += '\n // No Validation code for %s structure members -- Covers VUID-%s-sType-sType\n' % (item, item) pnext_handler += ' default:\n' pnext_handler += ' skip = false;\n' pnext_handler += ' }\n' pnext_handler += ' return skip;\n' pnext_handler += '}\n' write(pnext_handler, file=self.outFile) self.newline() ext_template = 'bool StatelessValidation::OutputExtensionError(const std::string &api_name, const std::string &extension_name) const {\n' ext_template += ' return LogError(instance,\n' ext_template += ' kVUID_PVError_ExtensionNotEnabled, "Attemped to call %s() but its required extension %s has not been enabled\\n",\n' ext_template += ' api_name.c_str(), extension_name.c_str());\n' ext_template += '}\n' write(ext_template, file=self.outFile) self.newline() commands_text = '\n'.join(self.validation) write(commands_text, file=self.outFile) self.newline() if self.header_file: # Output declarations and record intercepted procedures write('\n'.join(self.declarations), file=self.outFile) # Finish processing in superclass OutputGenerator.endFile(self) # # Processing at beginning of each feature or extension def beginFeature(self, interface, emit): # Start processing in superclass OutputGenerator.beginFeature(self, interface, emit) # C-specific # Accumulate includes, defines, types, enums, function pointer typedefs, end function prototypes separately for this # feature. They're only printed in endFeature(). self.headerVersion = None self.stypes = [] self.commands = [] self.structMembers = [] self.newFlags = set() self.featureExtraProtect = GetFeatureProtect(interface) # Get base list of extension dependencies for all items in this extension base_required_extensions = [] if "VK_VERSION_1" not in self.featureName: nameElem = interface[0][1] name = nameElem.get('name') # Save Name Define to get correct enable name later self.extension_names[self.featureName] = name # This extension is the first dependency for this command base_required_extensions.append(self.featureName) # Add any defined extension dependencies to the base dependency list for this extension requires = interface.get('requires') if requires is not None: base_required_extensions.extend(requires.split(',')) # Build dictionary of extension dependencies for each item in this extension self.required_extensions = dict() for require_element in interface.findall('require'): # Copy base extension dependency list required_extensions = list(base_required_extensions) # Add any additional extension dependencies specified in this require block additional_extensions = require_element.get('extension') if additional_extensions: required_extensions.extend(additional_extensions.split(',')) # Save full extension list for all named items for element in require_element.findall('*[@name]'): self.required_extensions[element.get('name')] = required_extensions # And note if this is an Instance or Device extension self.extension_type = interface.get('type') if interface.tag == 'extension': name_elem = interface[0][1] name_definition = name_elem.get('name') if 'EXTENSION_NAME' not in name_definition: print("Error in vk.xml file -- extension name is not available") if interface.get('type') == 'instance': self.instance_extension_list += '%s, ' % name_definition else: self.device_extension_list += '%s, ' % name_definition # # Called at the end of each extension (feature) def endFeature(self): if self.header_file: return # C-specific # Actually write the interface to the output file. if (self.emit): # If type declarations are needed by other features based on this one, it may be necessary to suppress the ExtraProtect, # or move it below the 'for section...' loop. ifdef = '' if (self.featureExtraProtect is not None): ifdef = '#ifdef %s\n' % self.featureExtraProtect self.validation.append(ifdef) # Generate the struct member checking code from the captured data self.processStructMemberData() # Generate the command parameter checking code from the captured data self.processCmdData() # Write the declaration for the HeaderVersion if self.headerVersion: write('const uint32_t GeneratedVulkanHeaderVersion = {};'.format(self.headerVersion), file=self.outFile) # Write the declarations for the VkFlags values combining all flag bits for flag in sorted(self.newFlags): flagBits = flag.replace('Flags', 'FlagBits') if flagBits in self.flagBits: bits = self.flagBits[flagBits] decl = 'const {} All{} = {}'.format(flag, flagBits, bits[0]) for bit in bits[1:]: decl += '|' + bit decl += ';' self.flag_values_definitions[flag] = decl endif = '\n' if (self.featureExtraProtect is not None): endif = '#endif // %s\n' % self.featureExtraProtect self.validation.append(endif) # Finish processing in superclass OutputGenerator.endFeature(self) # # Type generation def genType(self, typeinfo, name, alias): # record the name/alias pair if alias is not None: self.alias_dict[name]=alias OutputGenerator.genType(self, typeinfo, name, alias) typeElem = typeinfo.elem # If the type is a struct type, traverse the embedded <member> tags generating a structure. Otherwise, emit the tag text. category = typeElem.get('category') if (category == 'struct' or category == 'union'): self.genStruct(typeinfo, name, alias) elif (category == 'handle'): self.handleTypes.add(name) elif (category == 'bitmask'): self.flags.add(name) self.newFlags.add(name) elif (category == 'define'): if name == 'VK_HEADER_VERSION': nameElem = typeElem.find('name') self.headerVersion = noneStr(nameElem.tail).strip() # # Struct parameter check generation. # This is a special case of the <type> tag where the contents are interpreted as a set of <member> tags instead of freeform C # type declarations. The <member> tags are just like <param> tags - they are a declaration of a struct or union member. # Only simple member declarations are supported (no nested structs etc.) def genStruct(self, typeinfo, typeName, alias): if not self.source_file: return # alias has already been recorded in genType, above OutputGenerator.genStruct(self, typeinfo, typeName, alias) conditions = self.structMemberValidationConditions[typeName] if typeName in self.structMemberValidationConditions else None members = typeinfo.elem.findall('.//member') if self.featureExtraProtect is not None: self.struct_feature_protect[typeName] = self.featureExtraProtect # # Iterate over members once to get length parameters for arrays lens = set() for member in members: len = self.getLen(member) if len: lens.add(len) # # Generate member info membersInfo = [] returned_only = typeinfo.elem.attrib.get('returnedonly') is not None for member in members: # Get the member's type and name info = self.getTypeNameTuple(member) type = info[0] name = info[1] stypeValue = '' cdecl = self.makeCParamDecl(member, 0) ispointer = self.paramIsPointer(member) isconst = True if 'const' in cdecl else False # Store pointer/array/string info -- Check for parameter name in lens set iscount = False if name in lens: iscount = True # The pNext members are not tagged as optional, but are treated as optional for parameter NULL checks. Static array # members are also treated as optional to skip NULL pointer validation, as they won't be NULL. isstaticarray = self.paramIsStaticArray(member) isoptional = False if self.paramIsOptional(member) or (name == 'pNext') or (isstaticarray): isoptional = True # Determine if value should be ignored by code generation. noautovalidity = False if (member.attrib.get('noautovalidity') is not None) or ((typeName in self.structMemberBlacklist) and (name in self.structMemberBlacklist[typeName])): noautovalidity = True # Some types are marked as noautovalidity, but stateless_validation.h will still want them for manual validation noautovalidity_type_exceptions = [ "VkQueryPipelineStatisticFlags", "VkBorderColor" ] # Store all types that are from incoming calls if auto validity # non-const pointers don't have auto gen code as used for return values if (noautovalidity == False) or (type in noautovalidity_type_exceptions): if not returned_only and (not ispointer or isconst): self.called_types.add(type) structextends = False membersInfo.append(self.CommandParam(type=type, name=name, ispointer=ispointer, isstaticarray=isstaticarray, isbool=True if type == 'VkBool32' else False, israngedenum=True if type in self.enumRanges else False, isconst=isconst, isoptional=isoptional, iscount=iscount, noautovalidity=noautovalidity, len=self.getLen(member), extstructs=self.registry.validextensionstructs[typeName] if name == 'pNext' else None, condition=conditions[name] if conditions and name in conditions else None, cdecl=cdecl)) # If this struct extends another, keep its name in list for further processing if typeinfo.elem.attrib.get('structextends') is not None: self.structextends_list.append(typeName) # Returnedonly structs should have most of their members ignored -- on entry, we only care about validating the sType and # pNext members. Everything else will be overwritten by the callee. if returned_only: self.returnedonly_structs.append(typeName) membersInfo = [m for m in membersInfo if m.name in ('sType', 'pNext')] self.structMembers.append(self.StructMemberData(name=typeName, members=membersInfo)) # # Capture group (e.g. C "enum" type) info to be used for param check code generation. # These are concatenated together with other types. def genGroup(self, groupinfo, groupName, alias): if not self.source_file: return # record the name/alias pair if alias is not None: self.alias_dict[groupName]=alias OutputGenerator.genGroup(self, groupinfo, groupName, alias) groupElem = groupinfo.elem # Store the sType values if groupName == 'VkStructureType': for elem in groupElem.findall('enum'): self.stypes.append(elem.get('name')) elif 'FlagBits' in groupName: bits = [] for elem in groupElem.findall('enum'): if elem.get('supported') != 'disabled': bits.append(elem.get('name')) if bits: self.flagBits[groupName] = bits else: # Determine if begin/end ranges are needed (we don't do this for VkStructureType, which has a more finely grained check) expandName = re.sub(r'([0-9a-z_])([A-Z0-9][^A-Z0-9]?)',r'\1_\2',groupName).upper() expandPrefix = expandName expandSuffix = '' expandSuffixMatch = re.search(r'[A-Z][A-Z]+$',groupName) if expandSuffixMatch: expandSuffix = '_' + expandSuffixMatch.group() # Strip off the suffix from the prefix expandPrefix = expandName.rsplit(expandSuffix, 1)[0] isEnum = ('FLAG_BITS' not in expandPrefix) if isEnum: self.enumRanges.add(groupName) # Create definition for a list containing valid enum values for this enumerated type if self.featureExtraProtect is not None: enum_entry = '#ifdef %s\n' % self.featureExtraProtect else: enum_entry = '' enum_entry += 'const std::vector<%s> All%sEnums = {' % (groupName, groupName) for enum in groupElem: name = enum.get('name') if name is not None and enum.get('supported') != 'disabled': enum_entry += '%s, ' % name enum_entry += '};' if self.featureExtraProtect is not None: enum_entry += '\n#endif // %s' % self.featureExtraProtect self.enum_values_definitions[groupName] = enum_entry # # Capture command parameter info to be used for param check code generation. def genCmd(self, cmdinfo, name, alias): # record the name/alias pair if alias is not None: self.alias_dict[name]=alias OutputGenerator.genCmd(self, cmdinfo, name, alias) decls = self.makeCDecls(cmdinfo.elem) typedef = decls[1] typedef = typedef.split(')',1)[1] if self.header_file: if name not in self.blacklist: if (self.featureExtraProtect is not None): self.declarations += [ '#ifdef %s' % self.featureExtraProtect ] # Strip off 'vk' from API name decl = '%s%s' % ('bool PreCallValidate', decls[0].split("VKAPI_CALL vk")[1]) decl_terminator = ' const override;' if 'ValidationCache' in name: decl_terminator = ' const;' decl = str(decl).replace(';', decl_terminator) self.declarations += [ decl ] if (self.featureExtraProtect is not None): self.declarations += [ '#endif' ] if self.source_file: if name not in self.blacklist: params = cmdinfo.elem.findall('param') # Get list of array lengths lens = set() for param in params: len = self.getLen(param) if len: lens.add(len) # Get param info paramsInfo = [] for param in params: paramInfo = self.getTypeNameTuple(param) cdecl = self.makeCParamDecl(param, 0) ispointer = self.paramIsPointer(param) isconst = True if 'const' in cdecl else False # non-const pointers don't have auto gen code as used for return values if not ispointer or isconst: self.called_types.add(paramInfo[0]) # Check for parameter name in lens set iscount = False if paramInfo[1] in lens: iscount = True paramsInfo.append(self.CommandParam(type=paramInfo[0], name=paramInfo[1], ispointer=ispointer, isstaticarray=self.paramIsStaticArray(param), isbool=True if paramInfo[0] == 'VkBool32' else False, israngedenum=True if paramInfo[0] in self.enumRanges else False, isconst=isconst, isoptional=self.paramIsOptional(param), iscount=iscount, noautovalidity=True if param.attrib.get('noautovalidity') is not None else False, len=self.getLen(param), extstructs=None, condition=None, cdecl=cdecl)) # Save return value information, if any result_type = '' promotion_info = '' resultinfo = cmdinfo.elem.find('proto/type') if (resultinfo is not None and resultinfo.text != 'void'): result_type = resultinfo.text if "VK_VERSION" in self.featureName and "VK_VERSION_1_0" != self.featureName: if ('VkInstance' == paramsInfo[0].type or 'VkPhysicalDevice' == paramsInfo[0].type): promotion_info = [paramsInfo[0].name, self.featureName] self.commands.append(self.CommandData(name=name, params=paramsInfo, cdecl=self.makeCDecls(cmdinfo.elem)[0], extension_type=self.extension_type, result=result_type, promotion_info=promotion_info)) # # Check if the parameter passed in is a pointer def paramIsPointer(self, param): ispointer = 0 paramtype = param.find('type') if (paramtype.tail is not None) and ('*' in paramtype.tail): ispointer = paramtype.tail.count('*') elif paramtype.text[:4] == 'PFN_': # Treat function pointer typedefs as a pointer to a single value ispointer = 1 return ispointer # # Check if the parameter passed in is a static array def paramIsStaticArray(self, param): isstaticarray = 0 paramname = param.find('name') if (paramname.tail is not None) and ('[' in paramname.tail): isstaticarray = paramname.tail.count('[') return isstaticarray # # Check if the parameter passed in is optional # Returns a list of Boolean values for comma separated len attributes (len='false,true') def paramIsOptional(self, param): # See if the handle is optional isoptional = False # Simple, if it's optional, return true optString = param.attrib.get('optional') if optString: if optString == 'true': isoptional = True elif ',' in optString: opts = [] for opt in optString.split(','): val = opt.strip() if val == 'true': opts.append(True) elif val == 'false': opts.append(False) else: print('Unrecognized len attribute value',val) isoptional = opts return isoptional # # Check if the handle passed in is optional # Uses the same logic as ValidityOutputGenerator.isHandleOptional def isHandleOptional(self, param, lenParam): # Simple, if it's optional, return true if param.isoptional: return True # If no validity is being generated, it usually means that validity is complex and not absolute, so let's say yes. if param.noautovalidity: return True # If the parameter is an array and we haven't already returned, find out if any of the len parameters are optional if lenParam and lenParam.isoptional: return True return False # # Retrieve the value of the len tag def getLen(self, param): result = None # Default to altlen when available to avoid LaTeX markup if 'altlen' in param.attrib: len = param.attrib.get('altlen') else: len = param.attrib.get('len') if len and len != 'null-terminated': # Only first level is supported for multidimensional arrays. Conveniently, this also strips the trailing # 'null-terminated' from arrays of strings len = len.split(',')[0] # Convert scope notation to pointer access result = str(len).replace('::', '->') elif self.paramIsStaticArray(param): # For static arrays get length from inside [] array_match = re.search(r'\[(\d+)\]', param.find('name').tail) if array_match: result = array_match.group(1) return result # # Retrieve the type and name for a parameter def getTypeNameTuple(self, param): type = '' name = '' for elem in param: if elem.tag == 'type': type = noneStr(elem.text) elif elem.tag == 'name': name = noneStr(elem.text) return (type, name) # # Find a named parameter in a parameter list def getParamByName(self, params, name): for param in params: if param.name == name: return param return None # # Get the length paramater record for the specified length expression def getLenParam(self, params, length): # First check if any element of params matches length exactly lenParam = self.getParamByName(params, length) if not lenParam: # Otherwise, look for any elements of params that appear within length len_candidates = [p for p in params if re.search(r'\b{}\b'.format(p.name), length)] # 0 or 1 matches are expected, >1 would require a special case and/or explicit validation if len(len_candidates) == 0: lenParam = None elif len(len_candidates) == 1: lenParam = len_candidates[0] else: raise Exception('Cannot determine length parameter for len attribute value {}'.format(length)) return lenParam # # Convert a vulkan.h command declaration into a parameter_validation.h definition def getCmdDef(self, cmd): # Strip the trailing ';' and split into individual lines lines = cmd.cdecl[:-1].split('\n') cmd_hdr = '\n'.join(lines) return cmd_hdr # # Generate the code to check for a NULL dereference before calling the # validation function def genCheckedLengthCall(self, name, exprs): count = name.count('->') if count: checkedExpr = [] localIndent = '' elements = name.split('->') # Open the if expression blocks for i in range(0, count): checkedExpr.append(localIndent + 'if ({} != NULL) {{\n'.format('->'.join(elements[0:i+1]))) localIndent = self.incIndent(localIndent) # Add the validation expression for expr in exprs: checkedExpr.append(localIndent + expr) # Close the if blocks for i in range(0, count): localIndent = self.decIndent(localIndent) checkedExpr.append(localIndent + '}\n') return [checkedExpr] # No if statements were required return exprs # # Generate code to check for a specific condition before executing validation code def genConditionalCall(self, prefix, condition, exprs): checkedExpr = [] localIndent = '' formattedCondition = condition.format(prefix) checkedExpr.append(localIndent + 'if ({})\n'.format(formattedCondition)) checkedExpr.append(localIndent + '{\n') localIndent = self.incIndent(localIndent) for expr in exprs: checkedExpr.append(localIndent + expr) localIndent = self.decIndent(localIndent) checkedExpr.append(localIndent + '}\n') return [checkedExpr] # # Get VUID identifier from implicit VUID tag def GetVuid(self, name, suffix): vuid_string = 'VUID-%s-%s' % (name, suffix) vuid = "kVUIDUndefined" if '->' in vuid_string: return vuid if vuid_string in self.valid_vuids: vuid = "\"%s\"" % vuid_string else: if name in self.alias_dict: alias_string = 'VUID-%s-%s' % (self.alias_dict[name], suffix) if alias_string in self.valid_vuids: vuid = "\"%s\"" % alias_string return vuid # # Generate the sType check string def makeStructTypeCheck(self, prefix, value, lenValue, valueRequired, lenValueRequired, lenPtrRequired, funcPrintName, lenPrintName, valuePrintName, postProcSpec, struct_type_name): checkExpr = [] stype = self.structTypes[value.type] vuid_name = struct_type_name if struct_type_name is not None else funcPrintName stype_vuid = self.GetVuid(value.type, "sType-sType") param_vuid = self.GetVuid(vuid_name, "%s-parameter" % value.name) if lenValue: count_required_vuid = self.GetVuid(vuid_name, "%s-arraylength" % value.len) # This is an array of struct pointers if value.ispointer == 2: checkExpr.append('skip |= validate_struct_pointer_type_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, "{sv}", {pf}{ln}, {pf}{vn}, {sv}, {}, {}, {}, {}, {});\n'.format( funcPrintName, lenValueRequired, valueRequired, stype_vuid, param_vuid, count_required_vuid, ln=lenValue.name, ldn=lenPrintName, dn=valuePrintName, vn=value.name, sv=stype, pf=prefix, **postProcSpec)) # This is an array with a pointer to a count value elif lenValue.ispointer: # When the length parameter is a pointer, there is an extra Boolean parameter in the function call to indicate if it is required checkExpr.append('skip |= validate_struct_type_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, "{sv}", {pf}{ln}, {pf}{vn}, {sv}, {}, {}, {}, {}, {}, {});\n'.format( funcPrintName, lenPtrRequired, lenValueRequired, valueRequired, stype_vuid, param_vuid, count_required_vuid, ln=value.len, ldn=lenPrintName, dn=valuePrintName, vn=value.name, sv=stype, pf=prefix, **postProcSpec)) # This is an array with an integer count value else: checkExpr.append('skip |= validate_struct_type_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, "{sv}", {pf}{ln}, {pf}{vn}, {sv}, {}, {}, {}, {}, {});\n'.format( funcPrintName, lenValueRequired, valueRequired, stype_vuid, param_vuid, count_required_vuid, ln=value.len, ldn=lenPrintName, dn=valuePrintName, vn=value.name, sv=stype, pf=prefix, **postProcSpec)) # This is an individual struct else: checkExpr.append('skip |= validate_struct_type("{}", {ppp}"{}"{pps}, "{sv}", {}{vn}, {sv}, {}, {}, {});\n'.format( funcPrintName, valuePrintName, prefix, valueRequired, param_vuid, stype_vuid, vn=value.name, sv=stype, vt=value.type, **postProcSpec)) return checkExpr # # Generate the handle check string def makeHandleCheck(self, prefix, value, lenValue, valueRequired, lenValueRequired, funcPrintName, lenPrintName, valuePrintName, postProcSpec): checkExpr = [] if lenValue: if lenValue.ispointer: # This is assumed to be an output array with a pointer to a count value raise('Unsupported parameter validation case: Output handle array elements are not NULL checked') else: count_required_vuid = self.GetVuid(funcPrintName, "%s-arraylength" % (value.len)) # This is an array with an integer count value checkExpr.append('skip |= validate_handle_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, {pf}{ln}, {pf}{vn}, {}, {}, {});\n'.format( funcPrintName, lenValueRequired, valueRequired, count_required_vuid, ln=value.len, ldn=lenPrintName, dn=valuePrintName, vn=value.name, pf=prefix, **postProcSpec)) else: # This is assumed to be an output handle pointer raise('Unsupported parameter validation case: Output handles are not NULL checked') return checkExpr # # Generate check string for an array of VkFlags values def makeFlagsArrayCheck(self, prefix, value, lenValue, valueRequired, lenValueRequired, funcPrintName, lenPrintName, valuePrintName, postProcSpec): checkExpr = [] flagBitsName = value.type.replace('Flags', 'FlagBits') if not flagBitsName in self.flagBits: raise('Unsupported parameter validation case: array of reserved VkFlags') else: allFlags = 'All' + flagBitsName checkExpr.append('skip |= validate_flags_array("{}", {ppp}"{}"{pps}, {ppp}"{}"{pps}, "{}", {}, {pf}{}, {pf}{}, {}, {});\n'.format(funcPrintName, lenPrintName, valuePrintName, flagBitsName, allFlags, value.len, value.name, lenValueRequired, valueRequired, pf=prefix, **postProcSpec)) return checkExpr # # Generate pNext check string def makeStructNextCheck(self, prefix, value, funcPrintName, valuePrintName, postProcSpec, struct_type_name): checkExpr = [] # Generate an array of acceptable VkStructureType values for pNext extStructCount = 0 extStructVar = 'NULL' extStructNames = 'NULL' pNextVuid = self.GetVuid(struct_type_name, "pNext-pNext") sTypeVuid = self.GetVuid(struct_type_name, "sType-unique") if value.extstructs: extStructVar = 'allowed_structs_{}'.format(struct_type_name) extStructCount = 'ARRAY_SIZE({})'.format(extStructVar) extStructNames = '"' + ', '.join(value.extstructs) + '"' checkExpr.append('const VkStructureType {}[] = {{ {} }};\n'.format(extStructVar, ', '.join([self.structTypes[s] for s in value.extstructs]))) checkExpr.append('skip |= validate_struct_pnext("{}", {ppp}"{}"{pps}, {}, {}{}, {}, {}, GeneratedVulkanHeaderVersion, {}, {});\n'.format( funcPrintName, valuePrintName, extStructNames, prefix, value.name, extStructCount, extStructVar, pNextVuid, sTypeVuid, **postProcSpec)) return checkExpr # # Generate the pointer check string def makePointerCheck(self, prefix, value, lenValue, valueRequired, lenValueRequired, lenPtrRequired, funcPrintName, lenPrintName, valuePrintName, postProcSpec, struct_type_name): checkExpr = [] vuid_tag_name = struct_type_name if struct_type_name is not None else funcPrintName if lenValue: length_deref = '->' in value.len count_required_vuid = self.GetVuid(vuid_tag_name, "%s-arraylength" % (value.len)) array_required_vuid = self.GetVuid(vuid_tag_name, "%s-parameter" % (value.name)) # TODO: Remove workaround for missing optional tag in vk.xml if array_required_vuid == '"VUID-VkFramebufferCreateInfo-pAttachments-parameter"': return [] # This is an array with a pointer to a count value if lenValue.ispointer and not length_deref: # If count and array parameters are optional, there will be no validation if valueRequired == 'true' or lenPtrRequired == 'true' or lenValueRequired == 'true': # When the length parameter is a pointer, there is an extra Boolean parameter in the function call to indicate if it is required checkExpr.append('skip |= validate_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, {pf}{ln}, &{pf}{vn}, {}, {}, {}, {}, {});\n'.format( funcPrintName, lenPtrRequired, lenValueRequired, valueRequired, count_required_vuid, array_required_vuid, ln=value.len, ldn=lenPrintName, dn=valuePrintName, vn=value.name, pf=prefix, **postProcSpec)) # This is an array with an integer count value else: # If count and array parameters are optional, there will be no validation if valueRequired == 'true' or lenValueRequired == 'true': if value.type != 'char': # A valid VU can't use '->' in the middle so the generated VUID from the spec uses '::' instead count_required_vuid = self.GetVuid(vuid_tag_name, "%s-arraylength" % (value.len.replace('->', '::'))) checkExpr.append('skip |= validate_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, {pf}{ln}, &{pf}{vn}, {}, {}, {}, {});\n'.format( funcPrintName, lenValueRequired, valueRequired, count_required_vuid, array_required_vuid, ln=value.len, ldn=lenPrintName, dn=valuePrintName, vn=value.name, pf=prefix, **postProcSpec)) else: # Arrays of strings receive special processing checkExpr.append('skip |= validate_string_array("{}", {ppp}"{ldn}"{pps}, {ppp}"{dn}"{pps}, {pf}{ln}, {pf}{vn}, {}, {}, {}, {});\n'.format( funcPrintName, lenValueRequired, valueRequired, count_required_vuid, array_required_vuid, ln=value.len, ldn=lenPrintName, dn=valuePrintName, vn=value.name, pf=prefix, **postProcSpec)) if checkExpr: if lenValue and length_deref: # Add checks to ensure the validation call does not dereference a NULL pointer to obtain the count checkExpr = self.genCheckedLengthCall(value.len, checkExpr) # This is an individual struct that is not allowed to be NULL elif not value.isoptional: # Function pointers need a reinterpret_cast to void* ptr_required_vuid = self.GetVuid(vuid_tag_name, "%s-parameter" % (value.name)) if value.type[:4] == 'PFN_': allocator_dict = {'pfnAllocation': '"VUID-VkAllocationCallbacks-pfnAllocation-00632"', 'pfnReallocation': '"VUID-VkAllocationCallbacks-pfnReallocation-00633"', 'pfnFree': '"VUID-VkAllocationCallbacks-pfnFree-00634"', } vuid = allocator_dict.get(value.name) if vuid is not None: ptr_required_vuid = vuid checkExpr.append('skip |= validate_required_pointer("{}", {ppp}"{}"{pps}, reinterpret_cast<const void*>({}{}), {});\n'.format(funcPrintName, valuePrintName, prefix, value.name, ptr_required_vuid, **postProcSpec)) else: checkExpr.append('skip |= validate_required_pointer("{}", {ppp}"{}"{pps}, {}{}, {});\n'.format(funcPrintName, valuePrintName, prefix, value.name, ptr_required_vuid, **postProcSpec)) else: # Special case for optional internal allocation function pointers. if (value.type, value.name) == ('PFN_vkInternalAllocationNotification', 'pfnInternalAllocation'): checkExpr.extend(self.internalAllocationCheck(funcPrintName, prefix, value.name, 'pfnInternalFree', postProcSpec)) elif (value.type, value.name) == ('PFN_vkInternalFreeNotification', 'pfnInternalFree'): checkExpr.extend(self.internalAllocationCheck(funcPrintName, prefix, value.name, 'pfnInternalAllocation', postProcSpec)) return checkExpr # # Generate internal allocation function pointer check. def internalAllocationCheck(self, funcPrintName, prefix, name, complementaryName, postProcSpec): checkExpr = [] vuid = '"VUID-VkAllocationCallbacks-pfnInternalAllocation-00635"' checkExpr.append('if ({}{} != NULL)'.format(prefix, name)) checkExpr.append('{') local_indent = self.incIndent('') # Function pointers need a reinterpret_cast to void* checkExpr.append(local_indent + 'skip |= validate_required_pointer("{}", {ppp}"{}{}"{pps}, reinterpret_cast<const void*>({}{}), {});\n'.format(funcPrintName, prefix, complementaryName, prefix, complementaryName, vuid, **postProcSpec)) checkExpr.append('}\n') return checkExpr # # Process struct member validation code, performing name substitution if required def processStructMemberCode(self, line, funcName, memberNamePrefix, memberDisplayNamePrefix, postProcSpec): # Build format specifier list kwargs = {} if '{postProcPrefix}' in line: # If we have a tuple that includes a format string and format parameters, need to use ParameterName class if type(memberDisplayNamePrefix) is tuple: kwargs['postProcPrefix'] = 'ParameterName(' else: kwargs['postProcPrefix'] = postProcSpec['ppp'] if '{postProcSuffix}' in line: # If we have a tuple that includes a format string and format parameters, need to use ParameterName class if type(memberDisplayNamePrefix) is tuple: kwargs['postProcSuffix'] = ', ParameterName::IndexVector{{ {}{} }})'.format(postProcSpec['ppi'], memberDisplayNamePrefix[1]) else: kwargs['postProcSuffix'] = postProcSpec['pps'] if '{postProcInsert}' in line: # If we have a tuple that includes a format string and format parameters, need to use ParameterName class if type(memberDisplayNamePrefix) is tuple: kwargs['postProcInsert'] = '{}{}, '.format(postProcSpec['ppi'], memberDisplayNamePrefix[1]) else: kwargs['postProcInsert'] = postProcSpec['ppi'] if '{funcName}' in line: kwargs['funcName'] = funcName if '{valuePrefix}' in line: kwargs['valuePrefix'] = memberNamePrefix if '{displayNamePrefix}' in line: # Check for a tuple that includes a format string and format parameters to be used with the ParameterName class if type(memberDisplayNamePrefix) is tuple: kwargs['displayNamePrefix'] = memberDisplayNamePrefix[0] else: kwargs['displayNamePrefix'] = memberDisplayNamePrefix if kwargs: # Need to escape the C++ curly braces if 'IndexVector' in line: line = line.replace('IndexVector{ ', 'IndexVector{{ ') line = line.replace(' }),', ' }}),') return line.format(**kwargs) return line # # Process struct member validation code, stripping metadata def ScrubStructCode(self, code): scrubbed_lines = '' for line in code: if 'validate_struct_pnext' in line: continue if 'allowed_structs' in line: continue if 'xml-driven validation' in line: continue line = line.replace('{postProcPrefix}', '') line = line.replace('{postProcSuffix}', '') line = line.replace('{postProcInsert}', '') line = line.replace('{funcName}', '') line = line.replace('{valuePrefix}', '') line = line.replace('{displayNamePrefix}', '') line = line.replace('{IndexVector}', '') line = line.replace('local_data->', '') scrubbed_lines += line return scrubbed_lines # # Process struct validation code for inclusion in function or parent struct validation code def expandStructCode(self, item_type, funcName, memberNamePrefix, memberDisplayNamePrefix, indent, output, postProcSpec): lines = self.validatedStructs[item_type] for line in lines: if output: output[-1] += '\n' if type(line) is list: for sub in line: output.append(self.processStructMemberCode(indent + sub, funcName, memberNamePrefix, memberDisplayNamePrefix, postProcSpec)) else: output.append(self.processStructMemberCode(indent + line, funcName, memberNamePrefix, memberDisplayNamePrefix, postProcSpec)) return output # # Process struct pointer/array validation code, performing name substitution if required def expandStructPointerCode(self, prefix, value, lenValue, funcName, valueDisplayName, postProcSpec): expr = [] expr.append('if ({}{} != NULL)\n'.format(prefix, value.name)) expr.append('{') indent = self.incIndent(None) if lenValue: # Need to process all elements in the array indexName = value.len.replace('Count', 'Index') expr[-1] += '\n' if lenValue.ispointer: # If the length value is a pointer, de-reference it for the count. expr.append(indent + 'for (uint32_t {iname} = 0; {iname} < *{}{}; ++{iname})\n'.format(prefix, value.len, iname=indexName)) else: expr.append(indent + 'for (uint32_t {iname} = 0; {iname} < {}{}; ++{iname})\n'.format(prefix, value.len, iname=indexName)) expr.append(indent + '{') indent = self.incIndent(indent) # Prefix for value name to display in error message if value.ispointer == 2: memberNamePrefix = '{}{}[{}]->'.format(prefix, value.name, indexName) memberDisplayNamePrefix = ('{}[%i]->'.format(valueDisplayName), indexName) else: memberNamePrefix = '{}{}[{}].'.format(prefix, value.name, indexName) memberDisplayNamePrefix = ('{}[%i].'.format(valueDisplayName), indexName) else: memberNamePrefix = '{}{}->'.format(prefix, value.name) memberDisplayNamePrefix = '{}->'.format(valueDisplayName) # Expand the struct validation lines expr = self.expandStructCode(value.type, funcName, memberNamePrefix, memberDisplayNamePrefix, indent, expr, postProcSpec) if lenValue: # Close if and for scopes indent = self.decIndent(indent) expr.append(indent + '}\n') expr.append('}\n') return expr # # Generate the parameter checking code def genFuncBody(self, funcName, values, valuePrefix, displayNamePrefix, structTypeName): lines = [] # Generated lines of code unused = [] # Unused variable names duplicateCountVuid = [] # prevent duplicate VUs being generated for value in values: usedLines = [] lenParam = None # # Prefix and suffix for post processing of parameter names for struct members. Arrays of structures need special processing to include the array index in the full parameter name. postProcSpec = {} postProcSpec['ppp'] = '' if not structTypeName else '{postProcPrefix}' postProcSpec['pps'] = '' if not structTypeName else '{postProcSuffix}' postProcSpec['ppi'] = '' if not structTypeName else '{postProcInsert}' # # Generate the full name of the value, which will be printed in the error message, by adding the variable prefix to the value name valueDisplayName = '{}{}'.format(displayNamePrefix, value.name) # # Check for NULL pointers, ignore the in-out count parameters that # will be validated with their associated array if (value.ispointer or value.isstaticarray) and not value.iscount: # Parameters for function argument generation req = 'true' # Parameter cannot be NULL cpReq = 'true' # Count pointer cannot be NULL cvReq = 'true' # Count value cannot be 0 lenDisplayName = None # Name of length parameter to print with validation messages; parameter name with prefix applied countRequiredVuid = None # If there is a count required VUID to check # Generate required/optional parameter strings for the pointer and count values if value.isoptional: req = 'false' if value.len: # The parameter is an array with an explicit count parameter lenParam = self.getLenParam(values, value.len) if lenParam: lenDisplayName = value.len.replace(lenParam.name, displayNamePrefix + lenParam.name) if lenParam.ispointer: # Count parameters that are pointers are inout if type(lenParam.isoptional) is list: if lenParam.isoptional[0]: cpReq = 'false' if lenParam.isoptional[1]: cvReq = 'false' else: if lenParam.isoptional: cpReq = 'false' else: if lenParam.isoptional: cvReq = 'false' elif value.noautovalidity: # Handle edge case where XML expresses a non-optional non-pointer value length with noautovalidity # ex: <param noautovalidity="true"len="commandBufferCount"> vuidNameTag = structTypeName if structTypeName is not None else funcName countRequiredVuid = self.GetVuid(vuidNameTag, "%s-arraylength" % (lenParam.name)) if countRequiredVuid in duplicateCountVuid: countRequiredVuid = None else: duplicateCountVuid.append(countRequiredVuid) else: # Do not generate length checks for constant sized arrays cpReq = 'false' cvReq = 'false' # # The parameter will not be processed when tagged as 'noautovalidity' # For the pointer to struct case, the struct pointer will not be validated, but any # members not tagged as 'noautovalidity' will be validated # We special-case the custom allocator checks, as they are explicit but can be auto-generated. AllocatorFunctions = ['PFN_vkAllocationFunction', 'PFN_vkReallocationFunction', 'PFN_vkFreeFunction', 'PFN_vkInternalAllocationNotification', 'PFN_vkInternalFreeNotification'] if value.noautovalidity and value.type not in AllocatorFunctions and not countRequiredVuid: # Log a diagnostic message when validation cannot be automatically generated and must be implemented manually self.logMsg('diag', 'ParameterValidation: No validation for {} {}'.format(structTypeName if structTypeName else funcName, value.name)) elif countRequiredVuid: usedLines.append('skip |= validate_array("{}", {ppp}"{ldn}"{pps}, "", {pf}{ln}, &{pf}{vn}, true, false, {}, kVUIDUndefined);\n'.format( funcName, countRequiredVuid, pf=valuePrefix, ldn=lenDisplayName, ln=value.len, vn=value.name, **postProcSpec)) else: if value.type in self.structTypes: # If this is a pointer to a struct with an sType field, verify the type usedLines += self.makeStructTypeCheck(valuePrefix, value, lenParam, req, cvReq, cpReq, funcName, lenDisplayName, valueDisplayName, postProcSpec, structTypeName) # If this is an input handle array that is not allowed to contain NULL handles, verify that none of the handles are VK_NULL_HANDLE elif value.type in self.handleTypes and value.isconst and not self.isHandleOptional(value, lenParam): usedLines += self.makeHandleCheck(valuePrefix, value, lenParam, req, cvReq, funcName, lenDisplayName, valueDisplayName, postProcSpec) elif value.type in self.flags and value.isconst: usedLines += self.makeFlagsArrayCheck(valuePrefix, value, lenParam, req, cvReq, funcName, lenDisplayName, valueDisplayName, postProcSpec) elif value.isbool and value.isconst: usedLines.append('skip |= validate_bool32_array("{}", {ppp}"{}"{pps}, {ppp}"{}"{pps}, {pf}{}, {pf}{}, {}, {});\n'.format(funcName, lenDisplayName, valueDisplayName, value.len, value.name, cvReq, req, pf=valuePrefix, **postProcSpec)) elif value.israngedenum and value.isconst: enum_value_list = 'All%sEnums' % value.type usedLines.append('skip |= validate_ranged_enum_array("{}", {ppp}"{}"{pps}, {ppp}"{}"{pps}, "{}", {}, {pf}{}, {pf}{}, {}, {});\n'.format(funcName, lenDisplayName, valueDisplayName, value.type, enum_value_list, value.len, value.name, cvReq, req, pf=valuePrefix, **postProcSpec)) elif value.name == 'pNext': usedLines += self.makeStructNextCheck(valuePrefix, value, funcName, valueDisplayName, postProcSpec, structTypeName) else: usedLines += self.makePointerCheck(valuePrefix, value, lenParam, req, cvReq, cpReq, funcName, lenDisplayName, valueDisplayName, postProcSpec, structTypeName) # If this is a pointer to a struct (input), see if it contains members that need to be checked if value.type in self.validatedStructs: if value.isconst: # or value.type in self.returnedonly_structs: usedLines.append(self.expandStructPointerCode(valuePrefix, value, lenParam, funcName, valueDisplayName, postProcSpec)) elif value.type in self.returnedonly_structs: usedLines.append(self.expandStructPointerCode(valuePrefix, value, lenParam, funcName, valueDisplayName, postProcSpec)) # Non-pointer types else: # The parameter will not be processes when tagged as 'noautovalidity' # For the struct case, the struct type will not be validated, but any # members not tagged as 'noautovalidity' will be validated if value.noautovalidity: # Log a diagnostic message when validation cannot be automatically generated and must be implemented manually self.logMsg('diag', 'ParameterValidation: No validation for {} {}'.format(structTypeName if structTypeName else funcName, value.name)) else: vuid_name_tag = structTypeName if structTypeName is not None else funcName if value.type in self.structTypes: stype = self.structTypes[value.type] vuid = self.GetVuid(value.type, "sType-sType") undefined_vuid = '"kVUIDUndefined"' usedLines.append('skip |= validate_struct_type("{}", {ppp}"{}"{pps}, "{sv}", &({}{vn}), {sv}, false, kVUIDUndefined, {});\n'.format( funcName, valueDisplayName, valuePrefix, vuid, vn=value.name, sv=stype, vt=value.type, **postProcSpec)) elif value.type in self.handleTypes: if not self.isHandleOptional(value, None): usedLines.append('skip |= validate_required_handle("{}", {ppp}"{}"{pps}, {}{});\n'.format(funcName, valueDisplayName, valuePrefix, value.name, **postProcSpec)) elif value.type in self.flags and value.type.replace('Flags', 'FlagBits') not in self.flagBits: vuid = self.GetVuid(vuid_name_tag, "%s-zerobitmask" % (value.name)) usedLines.append('skip |= validate_reserved_flags("{}", {ppp}"{}"{pps}, {pf}{}, {});\n'.format(funcName, valueDisplayName, value.name, vuid, pf=valuePrefix, **postProcSpec)) elif value.type in self.flags or value.type in self.flagBits: if value.type in self.flags: flagBitsName = value.type.replace('Flags', 'FlagBits') flagsType = 'kOptionalFlags' if value.isoptional else 'kRequiredFlags' invalidVuid = self.GetVuid(vuid_name_tag, "%s-parameter" % (value.name)) zeroVuid = self.GetVuid(vuid_name_tag, "%s-requiredbitmask" % (value.name)) elif value.type in self.flagBits: flagBitsName = value.type flagsType = 'kOptionalSingleBit' if value.isoptional else 'kRequiredSingleBit' invalidVuid = self.GetVuid(vuid_name_tag, "%s-parameter" % (value.name)) zeroVuid = invalidVuid allFlagsName = 'All' + flagBitsName invalid_vuid = self.GetVuid(vuid_name_tag, "%s-parameter" % (value.name)) allFlagsName = 'All' + flagBitsName zeroVuidArg = '' if value.isoptional else ', ' + zeroVuid usedLines.append('skip |= validate_flags("{}", {ppp}"{}"{pps}, "{}", {}, {pf}{}, {}, {}{});\n'.format(funcName, valueDisplayName, flagBitsName, allFlagsName, value.name, flagsType, invalidVuid, zeroVuidArg, pf=valuePrefix, **postProcSpec)) elif value.isbool: usedLines.append('skip |= validate_bool32("{}", {ppp}"{}"{pps}, {}{});\n'.format(funcName, valueDisplayName, valuePrefix, value.name, **postProcSpec)) elif value.israngedenum: vuid = self.GetVuid(vuid_name_tag, "%s-parameter" % (value.name)) enum_value_list = 'All%sEnums' % value.type usedLines.append('skip |= validate_ranged_enum("{}", {ppp}"{}"{pps}, "{}", {}, {}{}, {});\n'.format(funcName, valueDisplayName, value.type, enum_value_list, valuePrefix, value.name, vuid, **postProcSpec)) # If this is a struct, see if it contains members that need to be checked if value.type in self.validatedStructs: memberNamePrefix = '{}{}.'.format(valuePrefix, value.name) memberDisplayNamePrefix = '{}.'.format(valueDisplayName) usedLines.append(self.expandStructCode(value.type, funcName, memberNamePrefix, memberDisplayNamePrefix, '', [], postProcSpec)) # Append the parameter check to the function body for the current command if usedLines: # Apply special conditional checks if value.condition: usedLines = self.genConditionalCall(valuePrefix, value.condition, usedLines) lines += usedLines elif not value.iscount: # If no expression was generated for this value, it is unreferenced by the validation function, unless # it is an array count, which is indirectly referenced for array valiadation. unused.append(value.name) if not lines: lines.append('// No xml-driven validation\n') return lines, unused # # Generate the struct member check code from the captured data def processStructMemberData(self): indent = self.incIndent(None) for struct in self.structMembers: # # The string returned by genFuncBody will be nested in an if check for a NULL pointer, so needs its indent incremented lines, unused = self.genFuncBody('{funcName}', struct.members, '{valuePrefix}', '{displayNamePrefix}', struct.name) if lines: self.validatedStructs[struct.name] = lines # # Generate the command param check code from the captured data def processCmdData(self): indent = self.incIndent(None) for command in self.commands: # Skip first parameter if it is a dispatch handle (everything except vkCreateInstance) startIndex = 0 if command.name == 'vkCreateInstance' else 1 lines, unused = self.genFuncBody(command.name, command.params[startIndex:], '', '', None) # Cannot validate extension dependencies for device extension APIs having a physical device as their dispatchable object if (command.name in self.required_extensions) and (self.extension_type != 'device' or command.params[0].type != 'VkPhysicalDevice'): ext_test = '' if command.params[0].type in ["VkInstance", "VkPhysicalDevice"] or command.name == 'vkCreateInstance': ext_table_type = 'instance' else: ext_table_type = 'device' for ext in self.required_extensions[command.name]: ext_name_define = '' ext_enable_name = '' for extension in self.registry.extensions: if extension.attrib['name'] == ext: ext_name_define = extension[0][1].get('name') ext_enable_name = ext_name_define.lower() ext_enable_name = re.sub('_extension_name', '', ext_enable_name) break ext_test = 'if (!%s_extensions.%s) skip |= OutputExtensionError("%s", %s);\n' % (ext_table_type, ext_enable_name, command.name, ext_name_define) lines.insert(0, ext_test) if lines: func_sig = self.getCmdDef(command) + ' const {\n' func_sig = func_sig.split('VKAPI_CALL vk')[1] cmdDef = 'bool StatelessValidation::PreCallValidate' + func_sig cmdDef += '%sbool skip = false;\n' % indent if isinstance(command.promotion_info, list): version_flag = command.promotion_info[1] version_id = version_flag.replace('VK_VERSION', 'VK_API_VERSION') cmdDef += '%s if (CheckPromotedApiAgainstVulkanVersion(%s, "%s", %s)) return true;\n' % (indent, command.promotion_info[0], command.name, version_id) for line in lines: if type(line) is list: for sub in line: cmdDef += indent + sub else: cmdDef += indent + line # Insert call to custom-written function if present if command.name in self.functions_with_manual_checks: # Generate parameter list for manual fcn and down-chain calls params_text = '' for param in command.params: params_text += '%s, ' % param.name params_text = params_text[:-2] + ');\n' cmdDef += ' if (!skip) skip |= manual_PreCallValidate'+ command.name[2:] + '(' + params_text cmdDef += '%sreturn skip;\n' % indent cmdDef += '}\n' self.validation.append(cmdDef)
py
1a3a1f6abeae1a833d6b66f9878535e57fe668d6
#!/usr/bin/python3 # -*- coding: utf-8 -*- # from trainer import Trainer import pyximport pyximport.install() from cython_train.trainer_cython import Trainer from ssd_v2 import SSD300v2 import keras import argparse def main(): parser = argparse.ArgumentParser(description="Training ssd model with keras") parser.add_argument("-c", "--class_number", metavar="class_number", type=int, default=21, dest="class_number", help="set the classify number ") parser.add_argument("-b", "--prior_boxes_ssd300", metavar="prior_boxes_ssd300", type=str, default='prior_boxes_ssd300.pkl', dest="prior_boxes_ssd300", help="set the prior boxes file") parser.add_argument("-t", "--train_file", metavar="train_file", type=str, default='VOC2007.pkl', dest="train_file", help="set the train file") parser.add_argument("-p", "--path_prefix", metavar="path_prefix", type=str, default='./VOCdevkit/VOC2007/JPEGImages/', dest="path_prefix", help="set the path prefix") parser.add_argument("-w", "--weight_file", metavar="weight_file", type=str, default='weights_SSD300.hdf5', dest="weight_file", help="set the weight file") parser.add_argument("-s", "--save_weight_file", metavar="save_weight_file", type=str, default='./resource/checkpoints/weights.{epoch:02d}-{val_loss:.2f}.hdf5', dest="save_weight_file", help="set the save weight file") parser.add_argument("-n", "--nb_epoch", metavar="nb_epoch", type=int, default=100, dest="nb_epoch", help="set the number of epoch") args = parser.parse_args() input_shape = (300, 300, 3) model = SSD300v2(input_shape, num_classes=args.class_number) base_lr=3e-4 trainer = Trainer(class_number=args.class_number, input_shape=input_shape, priors_file=args.prior_boxes_ssd300, train_file=args.train_file, path_prefix=args.path_prefix, model=model, weight_file=args.weight_file, freeze=('input_1', 'conv1_1', 'conv1_2', 'pool1', 'conv2_1', 'conv2_2', 'pool2', 'conv3_1', 'conv3_2', 'conv3_3', 'pool3'), save_weight_file=args.save_weight_file, optim=keras.optimizers.Adam(lr=base_lr), ) trainer.train(nb_epoch=args.nb_epoch) if __name__ == "__main__": main()
py
1a3a1ffdaa1fbfb212713809bb2cd885524e5918
#!/usr/bin/python import plistlib import os import subprocess import sys import json import CoreFoundation sys.path.insert(0, '/usr/local/munki') from munkilib import FoundationPlist DEBUG = False # Don't skip manual check if len(sys.argv) > 1: if sys.argv[1] == 'debug': print '**** DEBUGGING ENABLED ****' DEBUG = True import pprint PP = pprint.PrettyPrinter(indent=4) microsoft_office_config = {} # Apps to check apps=['Microsoft Word','Microsoft Excel','Microsoft Outlook','Microsoft PowerPoint','Microsoft OneNote','Microsoft Teams','OneDrive'] for app in apps: app_path = '/Applications/' + app + '.app/' if os.path.isdir(app_path): microsoft_office_config[app] = {} if os.path.exists(app_path + '/Contents/_MASReceipt'): microsoft_office_config[app]["MAS"] = "True" else: microsoft_office_config[app]["MAS"] = "False" pl = FoundationPlist.readPlist(app_path + '/Contents/Info.plist') app_version = pl["CFBundleVersion"] microsoft_office_config[app]["Version"] = app_version # Check for Licensing Helper file Licensing_Helper = os.path.isfile("/Library/PrivilegedHelperTools/com.microsoft.office.licensingV2.helper") if Licensing_Helper: microsoft_office_config['Licensing_Helper'] = 'Detected' else: microsoft_office_config['Licensing_Helper'] = 'Not Detected' # Check for Retail VL License Retail_VL_License = os.path.isfile("/Library/Preferences/com.microsoft.office.licensingV2.plist") if Retail_VL_License: microsoft_office_config['Retail_VL_License'] = 'Detected' else: microsoft_office_config['Retail_VL_License'] = 'Not Detected' # Check versions for each app # Check MAS for each app # Get all users' home folders cmd = ['dscl', '.', '-readall', '/Users', 'NFSHomeDirectory'] proc = subprocess.Popen(cmd, shell=False, bufsize=-1, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (output, unused_error) = proc.communicate() # Check each home folder for MAU Channel for user in output.split('\n'): if 'NFSHomeDirectory' in user and '/var/empty' not in user: user_name = user.replace("NFSHomeDirectory: /Users/", "") userpath = user.replace("NFSHomeDirectory: ", "") # Check each home folder for MAU Version autoupdate_pref = userpath + '/Library/Preferences/com.microsoft.autoupdate2.plist' if os.path.isfile(autoupdate_pref): pl = FoundationPlist.readPlist(autoupdate_pref) microsoft_office_config["Users"] = {} microsoft_office_config["Users"][user_name] = {} microsoft_office_config["Users"][user_name]["MAU_Channel"] = pl["ChannelName"] # Check each home folder for Office 365 License office_365_license = userpath + '/Library/Group Containers/UBF8T346G9.Office/com.microsoft.Office365.plist' if os.path.isfile(office_365_license): microsoft_office_config["Users"][user_name]["Office_365_License"] = "Detected" def main(): """Main""" # Create cache dir if it does not exist cachedir = '%s/cache' % os.path.dirname(os.path.realpath(__file__)) if not os.path.exists(cachedir): os.makedirs(cachedir) microsoft_office_cache = os.path.join(cachedir, 'microsoft_office.json') print json.dumps(microsoft_office_config, indent=4) with open(microsoft_office_cache, 'w') as fp: json.dump(microsoft_office_config, fp, indent=4) if __name__ == "__main__": main()
py
1a3a2017caa21a0f3c0fe7bbda1eff5527e5b9f2
input = """ 1 2 0 0 1 3 0 0 1 4 0 0 1 5 0 0 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 1 10 0 0 1 11 0 0 1 12 0 0 1 13 0 0 1 14 0 0 1 15 0 0 1 16 0 0 1 17 0 0 1 18 0 0 1 19 0 0 1 20 0 0 1 21 0 0 1 22 0 0 1 23 0 0 1 24 0 0 1 25 0 0 1 26 0 0 1 27 0 0 1 28 0 0 1 29 0 0 1 30 0 0 1 31 0 0 1 32 0 0 1 33 0 0 1 34 0 0 1 35 0 0 1 36 0 0 1 37 0 0 1 38 0 0 1 39 0 0 1 40 0 0 1 41 0 0 1 42 0 0 1 43 0 0 1 44 0 0 1 45 0 0 1 46 0 0 1 47 0 0 1 48 0 0 1 49 0 0 1 50 0 0 1 51 0 0 1 52 0 0 1 53 0 0 1 54 0 0 1 55 0 0 1 56 0 0 1 57 0 0 1 58 0 0 1 59 0 0 1 60 0 0 1 61 0 0 1 62 0 0 1 63 0 0 1 64 0 0 1 65 0 0 1 66 0 0 1 67 0 0 1 68 0 0 1 69 0 0 1 70 0 0 1 71 0 0 1 72 0 0 1 73 0 0 1 74 0 0 1 75 0 0 1 76 0 0 1 77 0 0 1 78 0 0 1 79 0 0 1 80 0 0 1 81 0 0 1 82 0 0 1 83 0 0 1 84 0 0 1 85 0 0 1 86 0 0 1 87 0 0 1 88 0 0 1 89 0 0 1 90 0 0 1 91 0 0 1 92 0 0 1 93 0 0 1 94 0 0 1 95 0 0 1 96 0 0 1 97 0 0 1 98 0 0 1 99 0 0 1 100 0 0 1 101 0 0 1 102 0 0 1 103 0 0 1 104 0 0 1 105 0 0 1 106 0 0 1 107 0 0 1 108 0 0 1 109 0 0 1 110 0 0 1 111 0 0 1 112 0 0 1 113 0 0 1 114 0 0 1 115 0 0 1 116 0 0 1 117 0 0 1 118 0 0 1 119 0 0 1 120 0 0 1 121 0 0 1 122 0 0 1 123 0 0 1 124 0 0 1 125 0 0 1 126 0 0 1 127 0 0 1 128 0 0 1 129 0 0 1 130 0 0 1 131 0 0 1 132 0 0 1 133 0 0 1 134 0 0 1 135 0 0 1 136 0 0 1 137 0 0 1 138 0 0 1 139 0 0 1 140 0 0 1 141 0 0 1 142 0 0 1 143 0 0 1 144 0 0 1 145 0 0 1 146 0 0 1 147 0 0 1 148 0 0 1 149 0 0 1 150 0 0 1 151 0 0 1 152 0 0 1 153 0 0 1 154 0 0 1 155 0 0 1 156 0 0 1 157 0 0 1 158 0 0 1 159 0 0 1 160 0 0 1 161 0 0 1 162 0 0 1 163 0 0 1 164 0 0 1 165 0 0 1 166 0 0 1 167 0 0 1 168 0 0 1 169 0 0 1 170 0 0 1 171 0 0 1 172 0 0 1 173 0 0 1 174 0 0 1 175 0 0 1 176 0 0 1 177 0 0 1 178 0 0 1 179 0 0 1 180 0 0 1 181 0 0 1 182 0 0 1 183 0 0 1 184 0 0 1 185 0 0 1 186 0 0 1 187 0 0 1 188 0 0 1 189 0 0 1 190 0 0 1 191 0 0 1 192 0 0 1 193 0 0 1 194 0 0 1 195 0 0 1 196 0 0 1 197 0 0 1 198 0 0 1 199 0 0 1 200 0 0 1 201 2 1 202 203 1 202 2 1 201 203 1 203 0 0 1 204 2 1 205 206 1 205 2 1 204 206 1 206 0 0 1 207 2 1 208 209 1 208 2 1 207 209 1 209 0 0 1 210 2 1 211 212 1 211 2 1 210 212 1 212 0 0 1 213 2 1 214 215 1 214 2 1 213 215 1 215 0 0 1 216 2 1 217 218 1 217 2 1 216 218 1 218 0 0 1 219 2 1 220 221 1 220 2 1 219 221 1 221 0 0 1 222 2 1 223 224 1 223 2 1 222 224 1 224 0 0 1 225 2 1 226 227 1 226 2 1 225 227 1 227 0 0 1 228 2 1 229 230 1 229 2 1 228 230 1 230 0 0 1 231 2 1 232 233 1 232 2 1 231 233 1 233 0 0 1 234 2 1 235 236 1 235 2 1 234 236 1 236 0 0 1 237 2 1 238 239 1 238 2 1 237 239 1 239 0 0 1 240 2 1 241 242 1 241 2 1 240 242 1 242 0 0 1 243 2 1 244 245 1 244 2 1 243 245 1 245 0 0 1 246 2 1 247 248 1 247 2 1 246 248 1 248 0 0 1 249 2 1 250 251 1 250 2 1 249 251 1 251 0 0 1 252 2 1 253 254 1 253 2 1 252 254 1 254 0 0 1 255 2 1 256 257 1 256 2 1 255 257 1 257 0 0 1 258 2 1 259 260 1 259 2 1 258 260 1 260 0 0 1 261 2 1 262 263 1 262 2 1 261 263 1 263 0 0 1 264 2 1 265 266 1 265 2 1 264 266 1 266 0 0 1 267 2 1 268 269 1 268 2 1 267 269 1 269 0 0 1 270 2 1 271 272 1 271 2 1 270 272 1 272 0 0 1 273 2 1 274 275 1 274 2 1 273 275 1 275 0 0 1 276 2 1 277 278 1 277 2 1 276 278 1 278 0 0 1 279 2 1 280 281 1 280 2 1 279 281 1 281 0 0 1 282 2 1 283 284 1 283 2 1 282 284 1 284 0 0 1 285 2 1 286 287 1 286 2 1 285 287 1 287 0 0 1 288 2 1 289 290 1 289 2 1 288 290 1 290 0 0 1 291 2 1 292 293 1 292 2 1 291 293 1 293 0 0 1 294 2 1 295 296 1 295 2 1 294 296 1 296 0 0 1 297 2 1 298 299 1 298 2 1 297 299 1 299 0 0 1 300 2 1 301 302 1 301 2 1 300 302 1 302 0 0 1 303 2 1 304 305 1 304 2 1 303 305 1 305 0 0 1 306 2 1 307 308 1 307 2 1 306 308 1 308 0 0 1 309 2 1 310 311 1 310 2 1 309 311 1 311 0 0 1 312 2 1 313 314 1 313 2 1 312 314 1 314 0 0 1 315 2 1 316 317 1 316 2 1 315 317 1 317 0 0 1 318 2 1 319 320 1 319 2 1 318 320 1 320 0 0 1 321 2 1 322 323 1 322 2 1 321 323 1 323 0 0 1 324 2 1 325 326 1 325 2 1 324 326 1 326 0 0 1 327 2 1 328 329 1 328 2 1 327 329 1 329 0 0 1 330 2 1 331 332 1 331 2 1 330 332 1 332 0 0 1 333 2 1 334 335 1 334 2 1 333 335 1 335 0 0 1 336 2 1 337 338 1 337 2 1 336 338 1 338 0 0 1 339 2 1 340 341 1 340 2 1 339 341 1 341 0 0 1 342 2 1 343 344 1 343 2 1 342 344 1 344 0 0 1 345 2 1 346 347 1 346 2 1 345 347 1 347 0 0 1 348 2 1 349 350 1 349 2 1 348 350 1 350 0 0 1 351 2 1 352 353 1 352 2 1 351 353 1 353 0 0 1 354 2 1 355 356 1 355 2 1 354 356 1 356 0 0 1 357 2 1 358 359 1 358 2 1 357 359 1 359 0 0 1 360 2 1 361 362 1 361 2 1 360 362 1 362 0 0 1 363 2 1 364 365 1 364 2 1 363 365 1 365 0 0 1 366 2 1 367 368 1 367 2 1 366 368 1 368 0 0 1 369 2 1 370 371 1 370 2 1 369 371 1 371 0 0 1 372 2 1 373 374 1 373 2 1 372 374 1 374 0 0 1 375 2 1 376 377 1 376 2 1 375 377 1 377 0 0 1 378 2 1 379 380 1 379 2 1 378 380 1 380 0 0 1 381 2 1 382 383 1 382 2 1 381 383 1 383 0 0 1 384 2 1 385 386 1 385 2 1 384 386 1 386 0 0 1 387 2 1 388 389 1 388 2 1 387 389 1 389 0 0 1 390 2 1 391 392 1 391 2 1 390 392 1 392 0 0 1 393 2 1 394 395 1 394 2 1 393 395 1 395 0 0 1 396 2 1 397 398 1 397 2 1 396 398 1 398 0 0 1 399 2 1 400 401 1 400 2 1 399 401 1 401 0 0 1 402 2 1 403 404 1 403 2 1 402 404 1 404 0 0 1 405 2 1 406 407 1 406 2 1 405 407 1 407 0 0 1 408 2 1 409 410 1 409 2 1 408 410 1 410 0 0 1 411 2 1 412 413 1 412 2 1 411 413 1 413 0 0 1 414 2 1 415 416 1 415 2 1 414 416 1 416 0 0 1 417 2 1 418 419 1 418 2 1 417 419 1 419 0 0 1 420 2 1 421 422 1 421 2 1 420 422 1 422 0 0 1 423 2 1 424 425 1 424 2 1 423 425 1 425 0 0 1 426 2 1 427 428 1 427 2 1 426 428 1 428 0 0 1 429 2 1 430 431 1 430 2 1 429 431 1 431 0 0 1 432 2 1 433 434 1 433 2 1 432 434 1 434 0 0 1 435 2 1 436 437 1 436 2 1 435 437 1 437 0 0 1 438 2 1 439 440 1 439 2 1 438 440 1 440 0 0 1 441 2 1 442 443 1 442 2 1 441 443 1 443 0 0 1 444 2 1 445 446 1 445 2 1 444 446 1 446 0 0 1 447 2 1 448 449 1 448 2 1 447 449 1 449 0 0 1 450 2 1 451 452 1 451 2 1 450 452 1 452 0 0 1 453 2 1 454 455 1 454 2 1 453 455 1 455 0 0 1 456 2 1 457 458 1 457 2 1 456 458 1 458 0 0 1 459 2 1 460 461 1 460 2 1 459 461 1 461 0 0 1 462 2 1 463 464 1 463 2 1 462 464 1 464 0 0 1 465 2 1 466 467 1 466 2 1 465 467 1 467 0 0 1 468 2 1 469 470 1 469 2 1 468 470 1 470 0 0 1 471 1 0 468 1 472 1 0 465 1 473 1 0 462 1 474 1 0 459 1 475 1 0 456 1 476 1 0 453 1 477 1 0 450 1 478 1 0 447 1 479 1 0 444 1 480 1 0 441 1 481 1 0 438 1 482 1 0 435 1 483 1 0 432 1 484 1 0 429 1 485 1 0 426 1 486 1 0 423 1 487 1 0 420 1 488 1 0 417 1 489 1 0 414 1 490 1 0 411 1 491 1 0 408 1 492 1 0 405 1 493 1 0 402 1 494 1 0 399 1 495 1 0 396 1 496 1 0 393 1 497 1 0 390 1 498 1 0 387 1 499 1 0 384 1 500 1 0 381 1 471 1 0 378 1 472 1 0 375 1 473 1 0 372 1 474 1 0 369 1 475 1 0 366 1 476 1 0 363 1 477 1 0 360 1 478 1 0 357 1 479 1 0 354 1 480 1 0 351 1 481 1 0 348 1 482 1 0 345 1 483 1 0 342 1 484 1 0 339 1 485 1 0 336 1 486 1 0 333 1 487 1 0 330 1 488 1 0 327 1 489 1 0 324 1 490 1 0 321 1 491 1 0 318 1 492 1 0 315 1 493 1 0 312 1 494 1 0 309 1 495 1 0 306 1 496 1 0 303 1 497 1 0 300 1 498 1 0 297 1 499 1 0 294 1 500 1 0 291 1 471 1 0 288 1 472 1 0 285 1 473 1 0 282 1 474 1 0 279 1 475 1 0 276 1 476 1 0 273 1 477 1 0 270 1 478 1 0 267 1 479 1 0 264 1 480 1 0 261 1 481 1 0 258 1 482 1 0 255 1 483 1 0 252 1 484 1 0 249 1 485 1 0 246 1 486 1 0 243 1 487 1 0 240 1 488 1 0 237 1 489 1 0 234 1 490 1 0 231 1 491 1 0 228 1 492 1 0 225 1 493 1 0 222 1 494 1 0 219 1 495 1 0 216 1 496 1 0 213 1 497 1 0 210 1 498 1 0 207 1 499 1 0 204 1 500 1 0 201 1 1 1 1 500 1 1 1 1 499 1 1 1 1 498 1 1 1 1 497 1 1 1 1 496 1 1 1 1 495 1 1 1 1 494 1 1 1 1 493 1 1 1 1 492 1 1 1 1 491 1 1 1 1 490 1 1 1 1 489 1 1 1 1 488 1 1 1 1 487 1 1 1 1 486 1 1 1 1 485 1 1 1 1 484 1 1 1 1 483 1 1 1 1 482 1 1 1 1 481 1 1 1 1 480 1 1 1 1 479 1 1 1 1 478 1 1 1 1 477 1 1 1 1 476 1 1 1 1 475 1 1 1 1 474 1 1 1 1 473 1 1 1 1 472 1 1 1 1 471 1 1 2 0 468 378 1 1 2 0 468 288 1 1 2 0 465 375 1 1 2 0 465 285 1 1 2 0 462 372 1 1 2 0 462 282 1 1 2 0 459 369 1 1 2 0 459 279 1 1 2 0 456 366 1 1 2 0 456 276 1 1 2 0 453 363 1 1 2 0 453 273 1 1 2 0 450 360 1 1 2 0 450 270 1 1 2 0 447 357 1 1 2 0 447 267 1 1 2 0 444 354 1 1 2 0 444 264 1 1 2 0 441 351 1 1 2 0 441 261 1 1 2 0 438 348 1 1 2 0 438 258 1 1 2 0 435 345 1 1 2 0 435 255 1 1 2 0 432 342 1 1 2 0 432 252 1 1 2 0 429 339 1 1 2 0 429 249 1 1 2 0 426 336 1 1 2 0 426 246 1 1 2 0 423 333 1 1 2 0 423 243 1 1 2 0 420 330 1 1 2 0 420 240 1 1 2 0 417 327 1 1 2 0 417 237 1 1 2 0 414 324 1 1 2 0 414 234 1 1 2 0 411 321 1 1 2 0 411 231 1 1 2 0 408 318 1 1 2 0 408 228 1 1 2 0 405 315 1 1 2 0 405 225 1 1 2 0 402 312 1 1 2 0 402 222 1 1 2 0 399 309 1 1 2 0 399 219 1 1 2 0 396 306 1 1 2 0 396 216 1 1 2 0 393 303 1 1 2 0 393 213 1 1 2 0 390 300 1 1 2 0 390 210 1 1 2 0 387 297 1 1 2 0 387 207 1 1 2 0 384 294 1 1 2 0 384 204 1 1 2 0 381 291 1 1 2 0 381 201 1 1 2 0 378 468 1 1 2 0 378 288 1 1 2 0 375 465 1 1 2 0 375 285 1 1 2 0 372 462 1 1 2 0 372 282 1 1 2 0 369 459 1 1 2 0 369 279 1 1 2 0 366 456 1 1 2 0 366 276 1 1 2 0 363 453 1 1 2 0 363 273 1 1 2 0 360 450 1 1 2 0 360 270 1 1 2 0 357 447 1 1 2 0 357 267 1 1 2 0 354 444 1 1 2 0 354 264 1 1 2 0 351 441 1 1 2 0 351 261 1 1 2 0 348 438 1 1 2 0 348 258 1 1 2 0 345 435 1 1 2 0 345 255 1 1 2 0 342 432 1 1 2 0 342 252 1 1 2 0 339 429 1 1 2 0 339 249 1 1 2 0 336 426 1 1 2 0 336 246 1 1 2 0 333 423 1 1 2 0 333 243 1 1 2 0 330 420 1 1 2 0 330 240 1 1 2 0 327 417 1 1 2 0 327 237 1 1 2 0 324 414 1 1 2 0 324 234 1 1 2 0 321 411 1 1 2 0 321 231 1 1 2 0 318 408 1 1 2 0 318 228 1 1 2 0 315 405 1 1 2 0 315 225 1 1 2 0 312 402 1 1 2 0 312 222 1 1 2 0 309 399 1 1 2 0 309 219 1 1 2 0 306 396 1 1 2 0 306 216 1 1 2 0 303 393 1 1 2 0 303 213 1 1 2 0 300 390 1 1 2 0 300 210 1 1 2 0 297 387 1 1 2 0 297 207 1 1 2 0 294 384 1 1 2 0 294 204 1 1 2 0 291 381 1 1 2 0 291 201 1 1 2 0 288 468 1 1 2 0 288 378 1 1 2 0 285 465 1 1 2 0 285 375 1 1 2 0 282 462 1 1 2 0 282 372 1 1 2 0 279 459 1 1 2 0 279 369 1 1 2 0 276 456 1 1 2 0 276 366 1 1 2 0 273 453 1 1 2 0 273 363 1 1 2 0 270 450 1 1 2 0 270 360 1 1 2 0 267 447 1 1 2 0 267 357 1 1 2 0 264 444 1 1 2 0 264 354 1 1 2 0 261 441 1 1 2 0 261 351 1 1 2 0 258 438 1 1 2 0 258 348 1 1 2 0 255 435 1 1 2 0 255 345 1 1 2 0 252 432 1 1 2 0 252 342 1 1 2 0 249 429 1 1 2 0 249 339 1 1 2 0 246 426 1 1 2 0 246 336 1 1 2 0 243 423 1 1 2 0 243 333 1 1 2 0 240 420 1 1 2 0 240 330 1 1 2 0 237 417 1 1 2 0 237 327 1 1 2 0 234 414 1 1 2 0 234 324 1 1 2 0 231 411 1 1 2 0 231 321 1 1 2 0 228 408 1 1 2 0 228 318 1 1 2 0 225 405 1 1 2 0 225 315 1 1 2 0 222 402 1 1 2 0 222 312 1 1 2 0 219 399 1 1 2 0 219 309 1 1 2 0 216 396 1 1 2 0 216 306 1 1 2 0 213 393 1 1 2 0 213 303 1 1 2 0 210 390 1 1 2 0 210 300 1 1 2 0 207 387 1 1 2 0 207 297 1 1 2 0 204 384 1 1 2 0 204 294 1 1 2 0 201 381 1 1 2 0 201 291 1 1 2 0 468 429 1 1 2 0 468 417 1 1 2 0 468 408 1 1 2 0 468 405 1 1 2 0 468 396 1 1 2 0 465 444 1 1 2 0 465 441 1 1 2 0 465 399 1 1 2 0 465 396 1 1 2 0 465 393 1 1 2 0 465 381 1 1 2 0 462 459 1 1 2 0 462 453 1 1 2 0 462 423 1 1 2 0 462 411 1 1 2 0 462 408 1 1 2 0 462 402 1 1 2 0 459 453 1 1 2 0 459 435 1 1 2 0 459 432 1 1 2 0 459 405 1 1 2 0 459 399 1 1 2 0 456 447 1 1 2 0 456 438 1 1 2 0 456 432 1 1 2 0 456 399 1 1 2 0 456 390 1 1 2 0 453 411 1 1 2 0 453 402 1 1 2 0 453 399 1 1 2 0 450 438 1 1 2 0 450 435 1 1 2 0 450 423 1 1 2 0 450 414 1 1 2 0 450 390 1 1 2 0 447 441 1 1 2 0 447 417 1 1 2 0 447 396 1 1 2 0 447 390 1 1 2 0 447 387 1 1 2 0 447 384 1 1 2 0 444 441 1 1 2 0 444 420 1 1 2 0 444 399 1 1 2 0 441 438 1 1 2 0 441 408 1 1 2 0 441 399 1 1 2 0 441 390 1 1 2 0 441 387 1 1 2 0 441 381 1 1 2 0 438 420 1 1 2 0 438 417 1 1 2 0 438 405 1 1 2 0 438 387 1 1 2 0 438 384 1 1 2 0 435 426 1 1 2 0 435 420 1 1 2 0 435 411 1 1 2 0 435 402 1 1 2 0 435 390 1 1 2 0 432 411 1 1 2 0 432 408 1 1 2 0 432 402 1 1 2 0 432 393 1 1 2 0 429 417 1 1 2 0 429 396 1 1 2 0 429 390 1 1 2 0 426 423 1 1 2 0 426 399 1 1 2 0 426 396 1 1 2 0 423 420 1 1 2 0 420 405 1 1 2 0 420 399 1 1 2 0 417 405 1 1 2 0 414 408 1 1 2 0 414 405 1 1 2 0 414 393 1 1 2 0 411 402 1 1 2 0 408 402 1 1 2 0 408 396 1 1 2 0 408 384 1 1 2 0 405 399 1 1 2 0 405 384 1 1 2 0 402 399 1 1 2 0 402 393 1 1 2 0 399 396 1 1 2 0 399 393 1 1 2 0 396 393 1 1 2 0 396 387 1 1 2 0 390 387 1 1 2 0 378 339 1 1 2 0 378 327 1 1 2 0 378 318 1 1 2 0 378 315 1 1 2 0 378 306 1 1 2 0 375 354 1 1 2 0 375 351 1 1 2 0 375 309 1 1 2 0 375 306 1 1 2 0 375 303 1 1 2 0 375 291 1 1 2 0 372 369 1 1 2 0 372 363 1 1 2 0 372 333 1 1 2 0 372 321 1 1 2 0 372 318 1 1 2 0 372 312 1 1 2 0 369 363 1 1 2 0 369 345 1 1 2 0 369 342 1 1 2 0 369 315 1 1 2 0 369 309 1 1 2 0 366 357 1 1 2 0 366 348 1 1 2 0 366 342 1 1 2 0 366 309 1 1 2 0 366 300 1 1 2 0 363 321 1 1 2 0 363 312 1 1 2 0 363 309 1 1 2 0 360 348 1 1 2 0 360 345 1 1 2 0 360 333 1 1 2 0 360 324 1 1 2 0 360 300 1 1 2 0 357 351 1 1 2 0 357 327 1 1 2 0 357 306 1 1 2 0 357 300 1 1 2 0 357 297 1 1 2 0 357 294 1 1 2 0 354 351 1 1 2 0 354 330 1 1 2 0 354 309 1 1 2 0 351 348 1 1 2 0 351 318 1 1 2 0 351 309 1 1 2 0 351 300 1 1 2 0 351 297 1 1 2 0 351 291 1 1 2 0 348 330 1 1 2 0 348 327 1 1 2 0 348 315 1 1 2 0 348 297 1 1 2 0 348 294 1 1 2 0 345 336 1 1 2 0 345 330 1 1 2 0 345 321 1 1 2 0 345 312 1 1 2 0 345 300 1 1 2 0 342 321 1 1 2 0 342 318 1 1 2 0 342 312 1 1 2 0 342 303 1 1 2 0 339 327 1 1 2 0 339 306 1 1 2 0 339 300 1 1 2 0 336 333 1 1 2 0 336 309 1 1 2 0 336 306 1 1 2 0 333 330 1 1 2 0 330 315 1 1 2 0 330 309 1 1 2 0 327 315 1 1 2 0 324 318 1 1 2 0 324 315 1 1 2 0 324 303 1 1 2 0 321 312 1 1 2 0 318 312 1 1 2 0 318 306 1 1 2 0 318 294 1 1 2 0 315 309 1 1 2 0 315 294 1 1 2 0 312 309 1 1 2 0 312 303 1 1 2 0 309 306 1 1 2 0 309 303 1 1 2 0 306 303 1 1 2 0 306 297 1 1 2 0 300 297 1 1 2 0 288 249 1 1 2 0 288 237 1 1 2 0 288 228 1 1 2 0 288 225 1 1 2 0 288 216 1 1 2 0 285 264 1 1 2 0 285 261 1 1 2 0 285 219 1 1 2 0 285 216 1 1 2 0 285 213 1 1 2 0 285 201 1 1 2 0 282 279 1 1 2 0 282 273 1 1 2 0 282 243 1 1 2 0 282 231 1 1 2 0 282 228 1 1 2 0 282 222 1 1 2 0 279 273 1 1 2 0 279 255 1 1 2 0 279 252 1 1 2 0 279 225 1 1 2 0 279 219 1 1 2 0 276 267 1 1 2 0 276 258 1 1 2 0 276 252 1 1 2 0 276 219 1 1 2 0 276 210 1 1 2 0 273 231 1 1 2 0 273 222 1 1 2 0 273 219 1 1 2 0 270 258 1 1 2 0 270 255 1 1 2 0 270 243 1 1 2 0 270 234 1 1 2 0 270 210 1 1 2 0 267 261 1 1 2 0 267 237 1 1 2 0 267 216 1 1 2 0 267 210 1 1 2 0 267 207 1 1 2 0 267 204 1 1 2 0 264 261 1 1 2 0 264 240 1 1 2 0 264 219 1 1 2 0 261 258 1 1 2 0 261 228 1 1 2 0 261 219 1 1 2 0 261 210 1 1 2 0 261 207 1 1 2 0 261 201 1 1 2 0 258 240 1 1 2 0 258 237 1 1 2 0 258 225 1 1 2 0 258 207 1 1 2 0 258 204 1 1 2 0 255 246 1 1 2 0 255 240 1 1 2 0 255 231 1 1 2 0 255 222 1 1 2 0 255 210 1 1 2 0 252 231 1 1 2 0 252 228 1 1 2 0 252 222 1 1 2 0 252 213 1 1 2 0 249 237 1 1 2 0 249 216 1 1 2 0 249 210 1 1 2 0 246 243 1 1 2 0 246 219 1 1 2 0 246 216 1 1 2 0 243 240 1 1 2 0 240 225 1 1 2 0 240 219 1 1 2 0 237 225 1 1 2 0 234 228 1 1 2 0 234 225 1 1 2 0 234 213 1 1 2 0 231 222 1 1 2 0 228 222 1 1 2 0 228 216 1 1 2 0 228 204 1 1 2 0 225 219 1 1 2 0 225 204 1 1 2 0 222 219 1 1 2 0 222 213 1 1 2 0 219 216 1 1 2 0 219 213 1 1 2 0 216 213 1 1 2 0 216 207 1 1 2 0 210 207 0 201 col(29,3) 204 col(28,3) 207 col(27,3) 210 col(26,3) 213 col(25,3) 216 col(24,3) 219 col(23,3) 222 col(22,3) 225 col(21,3) 228 col(20,3) 231 col(19,3) 234 col(18,3) 237 col(17,3) 240 col(16,3) 243 col(15,3) 246 col(14,3) 249 col(13,3) 252 col(12,3) 255 col(11,3) 258 col(10,3) 261 col(9,3) 264 col(8,3) 267 col(7,3) 270 col(6,3) 273 col(5,3) 276 col(4,3) 279 col(3,3) 282 col(2,3) 285 col(1,3) 288 col(0,3) 291 col(29,2) 294 col(28,2) 297 col(27,2) 300 col(26,2) 303 col(25,2) 306 col(24,2) 309 col(23,2) 312 col(22,2) 315 col(21,2) 318 col(20,2) 321 col(19,2) 324 col(18,2) 327 col(17,2) 330 col(16,2) 333 col(15,2) 336 col(14,2) 339 col(13,2) 342 col(12,2) 345 col(11,2) 348 col(10,2) 351 col(9,2) 354 col(8,2) 357 col(7,2) 360 col(6,2) 363 col(5,2) 366 col(4,2) 369 col(3,2) 372 col(2,2) 375 col(1,2) 378 col(0,2) 381 col(29,1) 384 col(28,1) 387 col(27,1) 390 col(26,1) 393 col(25,1) 396 col(24,1) 399 col(23,1) 402 col(22,1) 405 col(21,1) 408 col(20,1) 411 col(19,1) 414 col(18,1) 417 col(17,1) 420 col(16,1) 423 col(15,1) 426 col(14,1) 429 col(13,1) 432 col(12,1) 435 col(11,1) 438 col(10,1) 441 col(9,1) 444 col(8,1) 447 col(7,1) 450 col(6,1) 453 col(5,1) 456 col(4,1) 459 col(3,1) 462 col(2,1) 465 col(1,1) 468 col(0,1) 0 B+ 0 B- 1 0 1 """ output = """ """
py
1a3a2025ad21b549bc628df6d2f7899519499f18
from setuptools import setup from oioswift import __version__ setup( name='oioswift', version=__version__, author='OpenIO', author_email='[email protected]', description='OpenIO Swift Gateway', url='https://github.com/open-io/oio-swift', license='Apache License (2.0)', classifiers=[ 'Development Status :: 3 - Alpha', 'Programming Language :: Python :: 2.7', 'License :: OSI Approved :: Apache Software License', 'Intended Audience :: Information Technology', 'Operating System :: OS Independent', ], packages=[ 'oioswift', 'oioswift.common', 'oioswift.common.middleware', 'oioswift.common.middleware.crypto', 'oioswift.proxy', 'oioswift.proxy.controllers'], entry_points={ 'paste.app_factory': [ 'main=oioswift.server:app_factory', ], 'paste.filter_factory': [ 'autocontainer=oioswift.common.middleware.autocontainer:filter_factory', 'encryption=oioswift.common.middleware.crypto:filter_factory', 'hashedcontainer=oioswift.common.middleware.hashedcontainer:filter_factory', 'healthcheck=oioswift.common.middleware.healthcheck:filter_factory', 'keymaster=oioswift.common.middleware.crypto.keymaster:filter_factory', 'regexcontainer=oioswift.common.middleware.regexcontainer:filter_factory', 'versioned_writes=oioswift.common.middleware.versioned_writes:filter_factory', 'container_hierarchy=oioswift.common.middleware.container_hierarchy:filter_factory', 'copy=oioswift.common.middleware.copy:filter_factory', 'verb_acl=oioswift.common.middleware.verb_acl:filter_factory', 'tempauth=oioswift.common.middleware.tempauth:filter_factory', ], }, scripts=[ 'bin/oioswift-proxy-server', ], install_requires=['swift>=2.13.0', 'oio>=4.2.0'] )
py
1a3a204aac23314b4ad60cd184b371cae5cef3e7
import json import re from datetime import datetime, timedelta, date from itertools import groupby, dropwhile, izip_longest import requests from cabot.cabotapp import alert from cabot.cabotapp.utils import cabot_needs_setup from dateutil.relativedelta import relativedelta from django import forms from django.conf import settings from django.contrib import messages from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.contrib.auth import get_user_model from django.core.exceptions import ValidationError from django.core.validators import URLValidator from django.core.urlresolvers import reverse from django.core.urlresolvers import reverse_lazy from django.db import transaction from django.http import JsonResponse, HttpResponse, HttpResponseRedirect from django.template import RequestContext, loader from django.utils import timezone from django.utils.decorators import method_decorator from django.utils.timezone import utc from django.views.generic import ( DetailView, CreateView, UpdateView, ListView, DeleteView, TemplateView, View) from django.shortcuts import redirect, render from alert import AlertPlugin, AlertPluginUserData from models import ( StatusCheck, GraphiteStatusCheck, JenkinsStatusCheck, HttpStatusCheck, ICMPStatusCheck, StatusCheckResult, UserProfile, Service, Instance, Shift, get_duty_officers) from tasks import run_status_check as _run_status_check from .graphite import get_data, get_matching_metrics class LoginRequiredMixin(object): @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(LoginRequiredMixin, self).dispatch(*args, **kwargs) @login_required def subscriptions(request): """ Simple list of all checks """ services = Service.objects.all() users = User.objects.filter(is_active=True) return render(request, 'cabotapp/subscriptions.html', { 'services': services, 'users': users, 'duty_officers': get_duty_officers(), }) @login_required def run_status_check(request, pk): """Runs a specific check""" _run_status_check(check_or_id=pk) return HttpResponseRedirect(reverse('check', kwargs={'pk': pk})) def duplicate_icmp_check(request, pk): pc = StatusCheck.objects.get(pk=pk) npk = pc.duplicate() return HttpResponseRedirect(reverse('update-icmp-check', kwargs={'pk': npk})) def duplicate_instance(request, pk): instance = Instance.objects.get(pk=pk) new_instance = instance.duplicate() return HttpResponseRedirect(reverse('update-instance', kwargs={'pk': new_instance})) def duplicate_http_check(request, pk): pc = StatusCheck.objects.get(pk=pk) npk = pc.duplicate() return HttpResponseRedirect(reverse('update-http-check', kwargs={'pk': npk})) def duplicate_graphite_check(request, pk): pc = StatusCheck.objects.get(pk=pk) npk = pc.duplicate() return HttpResponseRedirect(reverse('update-graphite-check', kwargs={'pk': npk})) def duplicate_jenkins_check(request, pk): pc = StatusCheck.objects.get(pk=pk) npk = pc.duplicate() return HttpResponseRedirect(reverse('update-jenkins-check', kwargs={'pk': npk})) class StatusCheckResultDetailView(LoginRequiredMixin, DetailView): model = StatusCheckResult context_object_name = 'result' class SymmetricalForm(forms.ModelForm): symmetrical_fields = () # Iterable of 2-tuples (field, model) def __init__(self, *args, **kwargs): super(SymmetricalForm, self).__init__(*args, **kwargs) if self.instance and self.instance.pk: for field in self.symmetrical_fields: self.fields[field].initial = getattr( self.instance, field).all() def save(self, commit=True): instance = super(SymmetricalForm, self).save(commit=False) if commit: instance.save() if instance.pk: for field in self.symmetrical_fields: setattr(instance, field, self.cleaned_data[field]) self.save_m2m() return instance base_widgets = { 'name': forms.TextInput(attrs={ 'style': 'width:30%', }), 'importance': forms.RadioSelect(), } class StatusCheckForm(SymmetricalForm): symmetrical_fields = ('service_set', 'instance_set') service_set = forms.ModelMultipleChoiceField( queryset=Service.objects.all(), required=False, help_text='Link to service(s).', widget=forms.SelectMultiple( attrs={ 'data-rel': 'chosen', 'style': 'width: 70%', }, ) ) instance_set = forms.ModelMultipleChoiceField( queryset=Instance.objects.all(), required=False, help_text='Link to instance(s).', widget=forms.SelectMultiple( attrs={ 'data-rel': 'chosen', 'style': 'width: 70%', }, ) ) class GraphiteStatusCheckForm(StatusCheckForm): class Meta: model = GraphiteStatusCheck fields = ( 'name', 'metric', 'check_type', 'value', 'frequency', 'active', 'importance', 'expected_num_hosts', 'allowed_num_failures', 'debounce', ) widgets = dict(**base_widgets) widgets.update({ 'value': forms.TextInput(attrs={ 'style': 'width: 100px', 'placeholder': 'threshold value', }), 'metric': forms.TextInput(attrs={ 'style': 'width: 100%', 'placeholder': 'graphite metric key' }), 'check_type': forms.Select(attrs={ 'data-rel': 'chosen', }) }) class ICMPStatusCheckForm(StatusCheckForm): class Meta: model = ICMPStatusCheck fields = ( 'name', 'frequency', 'importance', 'active', 'debounce', ) widgets = dict(**base_widgets) class HttpStatusCheckForm(StatusCheckForm): class Meta: model = HttpStatusCheck fields = ( 'name', 'endpoint', 'username', 'password', 'text_match', 'status_code', 'timeout', 'verify_ssl_certificate', 'frequency', 'importance', 'active', 'debounce', ) widgets = dict(**base_widgets) widgets.update({ 'endpoint': forms.TextInput(attrs={ 'style': 'width: 100%', 'placeholder': 'https://www.arachnys.com', }), 'username': forms.TextInput(attrs={ 'style': 'width: 30%', }), 'password': forms.PasswordInput(attrs={ 'style': 'width: 30%', }), 'text_match': forms.TextInput(attrs={ 'style': 'width: 100%', 'placeholder': '[Aa]rachnys\s+[Rr]ules', }), 'status_code': forms.TextInput(attrs={ 'style': 'width: 20%', 'placeholder': '200', }), }) def clean_password(self): new_password_value = self.cleaned_data['password'] if new_password_value == '': new_password_value = self.initial.get('password') return new_password_value class JenkinsStatusCheckForm(StatusCheckForm): class Meta: model = JenkinsStatusCheck fields = ( 'name', 'importance', 'debounce', 'max_queued_build_time', ) widgets = dict(**base_widgets) class InstanceForm(SymmetricalForm): symmetrical_fields = ('service_set',) service_set = forms.ModelMultipleChoiceField( queryset=Service.objects.all(), required=False, help_text='Link to service(s).', widget=forms.SelectMultiple( attrs={ 'data-rel': 'chosen', 'style': 'width: 70%', }, ) ) class Meta: model = Instance template_name = 'instance_form.html' fields = ( 'name', 'address', 'users_to_notify', 'status_checks', 'service_set', ) widgets = { 'name': forms.TextInput(attrs={'style': 'width: 70%;'}), 'address': forms.TextInput(attrs={'style': 'width: 70%;'}), 'status_checks': forms.SelectMultiple(attrs={ 'data-rel': 'chosen', 'style': 'width: 70%', }), 'service_set': forms.SelectMultiple(attrs={ 'data-rel': 'chosen', 'style': 'width: 70%', }), 'alerts': forms.SelectMultiple(attrs={ 'data-rel': 'chosen', 'style': 'width: 70%', }), 'users_to_notify': forms.CheckboxSelectMultiple(), } def __init__(self, *args, **kwargs): ret = super(InstanceForm, self).__init__(*args, **kwargs) self.fields['users_to_notify'].queryset = User.objects.filter( is_active=True).order_by('first_name', 'last_name') return ret class ServiceForm(forms.ModelForm): class Meta: model = Service template_name = 'service_form.html' fields = ( 'name', 'url', 'users_to_notify', 'status_checks', 'instances', 'alerts', 'alerts_enabled', 'hackpad_id', 'runbook_link' ) widgets = { 'name': forms.TextInput(attrs={'style': 'width: 70%;'}), 'url': forms.TextInput(attrs={'style': 'width: 70%;'}), 'status_checks': forms.SelectMultiple(attrs={ 'data-rel': 'chosen', 'style': 'width: 70%', }), 'instances': forms.SelectMultiple(attrs={ 'data-rel': 'chosen', 'style': 'width: 70%', }), 'alerts': forms.SelectMultiple(attrs={ 'data-rel': 'chosen', 'style': 'width: 70%', }), 'users_to_notify': forms.CheckboxSelectMultiple(), 'hackpad_id': forms.TextInput(attrs={'style': 'width:70%;'}), 'runbook_link': forms.TextInput(attrs={'style': 'width:70%;'}), } def __init__(self, *args, **kwargs): ret = super(ServiceForm, self).__init__(*args, **kwargs) self.fields['users_to_notify'].queryset = User.objects.filter( is_active=True).order_by('first_name', 'last_name') return ret def clean_hackpad_id(self): value = self.cleaned_data['hackpad_id'] if not value: return '' for pattern in settings.RECOVERY_SNIPPETS_WHITELIST: if re.match(pattern, value): return value raise ValidationError('Please specify a valid JS snippet link') def clean_runbook_link(self): value = self.cleaned_data['runbook_link'] if not value: return '' try: URLValidator()(value) return value except ValidationError: raise ValidationError('Please specify a valid runbook link') class StatusCheckReportForm(forms.Form): service = forms.ModelChoiceField( queryset=Service.objects.all(), widget=forms.HiddenInput ) checks = forms.ModelMultipleChoiceField( queryset=StatusCheck.objects.all(), widget=forms.SelectMultiple( attrs={ 'data-rel': 'chosen', 'style': 'width: 70%', }, ) ) date_from = forms.DateField(label='From', widget=forms.DateInput(attrs={'class': 'datepicker'})) date_to = forms.DateField(label='To', widget=forms.DateInput(attrs={'class': 'datepicker'})) def get_report(self): checks = self.cleaned_data['checks'] now = timezone.now() for check in checks: # Group results of the check by status (failed alternating with succeeded), # take time of the first one in each group (starting from a failed group), # split them into pairs and form the list of problems. results = check.statuscheckresult_set.filter( time__gte=self.cleaned_data['date_from'], time__lt=self.cleaned_data['date_to'] + timedelta(days=1) ).order_by('time') groups = dropwhile(lambda item: item[0], groupby(results, key=lambda r: r.succeeded)) times = [next(group).time for succeeded, group in groups] pairs = izip_longest(*([iter(times)] * 2)) check.problems = [(start, end, (end or now) - start) for start, end in pairs] if results: check.success_rate = results.filter(succeeded=True).count() / float(len(results)) * 100 return checks class CheckCreateView(LoginRequiredMixin, CreateView): template_name = 'cabotapp/statuscheck_form.html' def form_valid(self, form): form.instance.created_by = self.request.user return super(CheckCreateView, self).form_valid(form) def get_initial(self): if self.initial: initial = self.initial else: initial = {} metric = self.request.GET.get('metric') if metric: initial['metric'] = metric service_id = self.request.GET.get('service') instance_id = self.request.GET.get('instance') if service_id: try: service = Service.objects.get(id=service_id) initial['service_set'] = [service] except Service.DoesNotExist: pass if instance_id: try: instance = Instance.objects.get(id=instance_id) initial['instance_set'] = [instance] except Instance.DoesNotExist: pass return initial def get_success_url(self): if self.request.GET.get('service'): return reverse('service', kwargs={'pk': self.request.GET.get('service')}) if self.request.GET.get('instance'): return reverse('instance', kwargs={'pk': self.request.GET.get('instance')}) return reverse('checks') class CheckUpdateView(LoginRequiredMixin, UpdateView): template_name = 'cabotapp/statuscheck_form.html' def get_success_url(self): return reverse('check', kwargs={'pk': self.object.id}) class ICMPCheckCreateView(CheckCreateView): model = ICMPStatusCheck form_class = ICMPStatusCheckForm class ICMPCheckUpdateView(CheckUpdateView): model = ICMPStatusCheck form_class = ICMPStatusCheckForm class GraphiteCheckUpdateView(CheckUpdateView): model = GraphiteStatusCheck form_class = GraphiteStatusCheckForm class GraphiteCheckCreateView(CheckCreateView): model = GraphiteStatusCheck form_class = GraphiteStatusCheckForm class HttpCheckCreateView(CheckCreateView): model = HttpStatusCheck form_class = HttpStatusCheckForm class HttpCheckUpdateView(CheckUpdateView): model = HttpStatusCheck form_class = HttpStatusCheckForm class JenkinsCheckCreateView(CheckCreateView): model = JenkinsStatusCheck form_class = JenkinsStatusCheckForm def form_valid(self, form): form.instance.frequency = 1 return super(JenkinsCheckCreateView, self).form_valid(form) class JenkinsCheckUpdateView(CheckUpdateView): model = JenkinsStatusCheck form_class = JenkinsStatusCheckForm def form_valid(self, form): form.instance.frequency = 1 return super(JenkinsCheckUpdateView, self).form_valid(form) class StatusCheckListView(LoginRequiredMixin, ListView): model = StatusCheck context_object_name = 'checks' def get_queryset(self): return StatusCheck.objects.all().order_by('name').prefetch_related('service_set', 'instance_set') class StatusCheckDeleteView(LoginRequiredMixin, DeleteView): model = StatusCheck success_url = reverse_lazy('checks') context_object_name = 'check' template_name = 'cabotapp/statuscheck_confirm_delete.html' class StatusCheckDetailView(LoginRequiredMixin, DetailView): model = StatusCheck context_object_name = 'check' template_name = 'cabotapp/statuscheck_detail.html' def render_to_response(self, context, *args, **kwargs): if context is None: context = {} context['checkresults'] = self.object.statuscheckresult_set.order_by( '-time_complete')[:100] return super(StatusCheckDetailView, self).render_to_response(context, *args, **kwargs) class UserProfileUpdateView(LoginRequiredMixin, View): model = AlertPluginUserData def get(self, *args, **kwargs): return HttpResponseRedirect(reverse('update-alert-user-data', args=(self.kwargs['pk'], u'General'))) class UserProfileUpdateAlert(LoginRequiredMixin, View): template = loader.get_template('cabotapp/alertpluginuserdata_form.html') model = AlertPluginUserData def get(self, request, pk, alerttype): try: profile = UserProfile.objects.get(user=pk) except UserProfile.DoesNotExist: user = User.objects.get(id=pk) profile = UserProfile(user=user) profile.save() profile.user_data() if alerttype == u'General': form = GeneralSettingsForm(initial={ 'first_name': profile.user.first_name, 'last_name': profile.user.last_name, 'email_address': profile.user.email, 'enabled': profile.user.is_active, }) else: plugin_userdata = self.model.objects.get(title=alerttype, user=profile) form_model = get_object_form(type(plugin_userdata)) form = form_model(instance=plugin_userdata) return render(request, self.template.template.name, { 'form': form, 'alert_preferences': profile.user_data(), }) def post(self, request, pk, alerttype): profile = UserProfile.objects.get(user=pk) success = False if alerttype == u'General': form = GeneralSettingsForm(request.POST) if form.is_valid(): profile.user.first_name = form.cleaned_data['first_name'] profile.user.last_name = form.cleaned_data['last_name'] profile.user.is_active = form.cleaned_data['enabled'] profile.user.email = form.cleaned_data['email_address'] profile.user.save() success = True else: plugin_userdata = self.model.objects.get(title=alerttype, user=profile) form_model = get_object_form(type(plugin_userdata)) form = form_model(request.POST, instance=plugin_userdata) if form.is_valid(): form.save() success = True if success: messages.add_message(request, messages.SUCCESS, 'Updated Successfully', extra_tags='success') else: messages.add_message(request, messages.ERROR, 'Error Updating Profile', extra_tags='danger') return HttpResponseRedirect(reverse('update-alert-user-data', args=(self.kwargs['pk'], alerttype))) class PluginSettingsView(LoginRequiredMixin, View): template = loader.get_template('cabotapp/plugin_settings_form.html') model = AlertPlugin def get(self, request, plugin_name): if plugin_name == u'global': form = CoreSettingsForm() alert_test_form = AlertTestForm() else: plugin = self.model.objects.get(title=plugin_name) form_model = get_object_form(type(plugin)) form = form_model(instance=plugin) alert_test_form = AlertTestPluginForm(initial = { 'alert_plugin': plugin }) return render(request, self.template.template.name, { 'form': form, 'plugins': AlertPlugin.objects.all(), 'plugin_name': plugin_name, 'alert_test_form': alert_test_form }) def post(self, request, plugin_name): if plugin_name == u'global': form = CoreSettingsForm(request.POST) else: plugin = self.model.objects.get(title=plugin_name) form_model = get_object_form(type(plugin)) form = form_model(request.POST, instance=plugin) if form.is_valid(): form.save() messages.add_message(request, messages.SUCCESS, 'Updated Successfully', extra_tags='success') else: messages.add_message(request, messages.ERROR, 'Error Updating Plugin', extra_tags='danger') return HttpResponseRedirect(reverse('plugin-settings', args=(plugin_name,))) def get_object_form(model_type): class AlertPreferencesForm(forms.ModelForm): class Meta: model = model_type fields = '__all__' def is_valid(self): return True return AlertPreferencesForm class AlertTestForm(forms.Form): action = reverse_lazy('alert-test') service = forms.ModelChoiceField( queryset=Service.objects.all(), widget=forms.Select(attrs={ 'data-rel': 'chosen', }) ) STATUS_CHOICES = ( (Service.PASSING_STATUS, 'Passing'), (Service.WARNING_STATUS, 'Warning'), (Service.ERROR_STATUS, 'Error'), (Service.CRITICAL_STATUS, 'Critical'), ) old_status = forms.ChoiceField( choices=STATUS_CHOICES, initial=Service.PASSING_STATUS, widget=forms.Select(attrs={ 'data-rel': 'chosen', }) ) new_status = forms.ChoiceField( choices=STATUS_CHOICES, initial=Service.ERROR_STATUS, widget=forms.Select(attrs={ 'data-rel': 'chosen', }) ) class AlertTestPluginForm(AlertTestForm): action = reverse_lazy('alert-test-plugin') service = None alert_plugin = forms.ModelChoiceField( queryset=AlertPlugin.objects.filter(enabled=True), widget=forms.HiddenInput ) class AlertTestView(LoginRequiredMixin, View): def trigger_alert_to_user(self, service, user, old_status, new_status): """ Clear out all service users and duty shifts, and disable all fallback users. Then add a single shift for this user, and add this user to users-to-notify. This should ensure we never alert anyone except the user triggering the alert test. """ with transaction.atomic(): sid = transaction.savepoint() service.update_status() service.status_checks.update(active=False) service.overall_status = new_status service.old_overall_status = old_status service.last_alert_sent = None check = StatusCheck(name='ALERT_TEST') check.save() StatusCheckResult.objects.create( status_check=check, time=timezone.now(), time_complete=timezone.now(), succeeded=new_status == Service.PASSING_STATUS) check.last_run = timezone.now() check.save() service.status_checks.add(check) service.users_to_notify.clear() service.users_to_notify.add(user) service.unexpired_acknowledgements().delete() Shift.objects.update(deleted=True) UserProfile.objects.update(fallback_alert_user=False) Shift( start=timezone.now() - timedelta(days=1), end=timezone.now() + timedelta(days=1), uid='test-shift', last_modified=timezone.now(), user=user ).save() service.alert() transaction.savepoint_rollback(sid) def post(self, request): form = AlertTestForm(request.POST) if form.is_valid(): data = form.clean() service = data['service'] self.trigger_alert_to_user(service, request.user, data['old_status'], data['new_status']) return JsonResponse({"result": "ok"}) return JsonResponse({"result": "error"}, status=400) class AlertTestPluginView(AlertTestView): def post(self, request): form = AlertTestPluginForm(request.POST) if form.is_valid(): data = form.clean() with transaction.atomic(): sid = transaction.savepoint() service = Service.objects.create( name='test-alert-service' ) service.alerts.add(data['alert_plugin']) self.trigger_alert_to_user(service, request.user, data['old_status'], data['new_status']) transaction.savepoint_rollback(sid) return JsonResponse({"result": "ok"}) return JsonResponse({"result": "error"}, status=400) class CoreSettingsForm(forms.Form): pass class GeneralSettingsForm(forms.Form): first_name = forms.CharField(label='First name', max_length=30, required=False) last_name = forms.CharField(label='Last name', max_length=30, required=False) email_address = forms.CharField(label='Email Address', max_length=75, required=False) # We use 75 and not the 254 because Django 1.6.8 only supports # 75. See commit message for details. enabled = forms.BooleanField(label='Enabled', required=False) class InstanceListView(LoginRequiredMixin, ListView): model = Instance context_object_name = 'instances' def get_queryset(self): return Instance.objects.all().order_by('name').prefetch_related('status_checks') class ServiceListView(LoginRequiredMixin, ListView): model = Service context_object_name = 'services' def get_queryset(self): return Service.objects.all().order_by('name').prefetch_related('status_checks') class InstanceDetailView(LoginRequiredMixin, DetailView): model = Instance context_object_name = 'instance' def get_context_data(self, **kwargs): context = super(InstanceDetailView, self).get_context_data(**kwargs) date_from = date.today() - relativedelta(day=1) context['report_form'] = StatusCheckReportForm(initial={ 'checks': self.object.status_checks.all(), 'service': self.object, 'date_from': date_from, 'date_to': date_from + relativedelta(months=1) - relativedelta(days=1) }) return context class ServiceDetailView(LoginRequiredMixin, DetailView): model = Service context_object_name = 'service' def get_context_data(self, **kwargs): context = super(ServiceDetailView, self).get_context_data(**kwargs) date_from = date.today() - relativedelta(day=1) context['report_form'] = StatusCheckReportForm(initial={ 'alerts': self.object.alerts.all(), 'checks': self.object.status_checks.all(), 'service': self.object, 'date_from': date_from, 'date_to': date_from + relativedelta(months=1) - relativedelta(days=1) }) return context class InstanceCreateView(LoginRequiredMixin, CreateView): model = Instance form_class = InstanceForm def form_valid(self, form): ret = super(InstanceCreateView, self).form_valid(form) if self.object.status_checks.filter(polymorphic_ctype__model='icmpstatuscheck').count() == 0: self.generate_default_ping_check(self.object) return ret def generate_default_ping_check(self, obj): pc = ICMPStatusCheck( name="Default Ping Check for %s" % obj.name, frequency=5, importance=Service.ERROR_STATUS, debounce=0, created_by=None, ) pc.save() obj.status_checks.add(pc) def get_success_url(self): return reverse('instance', kwargs={'pk': self.object.id}) def get_initial(self): if self.initial: initial = self.initial else: initial = {} service_id = self.request.GET.get('service') if service_id: try: service = Service.objects.get(id=service_id) initial['service_set'] = [service] except Service.DoesNotExist: pass return initial @login_required def acknowledge_alert(request, pk): service = Service.objects.get(pk=pk) service.acknowledge_alert(user=request.user) return HttpResponseRedirect(reverse('service', kwargs={'pk': pk})) @login_required def remove_acknowledgement(request, pk): service = Service.objects.get(pk=pk) service.remove_acknowledgement(user=request.user) return HttpResponseRedirect(reverse('service', kwargs={'pk': pk})) class ServiceCreateView(LoginRequiredMixin, CreateView): model = Service form_class = ServiceForm def __init__(self, *args, **kwargs): super(ServiceCreateView, self).__init__(*args, **kwargs) def get_success_url(self): return reverse('service', kwargs={'pk': self.object.id}) class InstanceUpdateView(LoginRequiredMixin, UpdateView): model = Instance form_class = InstanceForm def get_success_url(self): return reverse('instance', kwargs={'pk': self.object.id}) class ServiceUpdateView(LoginRequiredMixin, UpdateView): model = Service form_class = ServiceForm def get_success_url(self): return reverse('service', kwargs={'pk': self.object.id}) class ServiceDeleteView(LoginRequiredMixin, DeleteView): model = Service success_url = reverse_lazy('services') context_object_name = 'service' template_name = 'cabotapp/service_confirm_delete.html' class InstanceDeleteView(LoginRequiredMixin, DeleteView): model = Instance success_url = reverse_lazy('instances') context_object_name = 'instance' template_name = 'cabotapp/instance_confirm_delete.html' class ShiftListView(LoginRequiredMixin, ListView): model = Shift context_object_name = 'shifts' def get_queryset(self): return Shift.objects.filter( end__gt=datetime.utcnow().replace(tzinfo=utc), deleted=False).order_by('start') class StatusCheckReportView(LoginRequiredMixin, TemplateView): template_name = 'cabotapp/statuscheck_report.html' def get_context_data(self, **kwargs): form = StatusCheckReportForm(self.request.GET) if form.is_valid(): return {'checks': form.get_report(), 'service': form.cleaned_data['service']} class SetupForm(forms.Form): username = forms.CharField(label='Username', max_length=100, required=True) email = forms.EmailField(label='Email', max_length=200, required=False) password = forms.CharField(label='Password', required=True, widget=forms.PasswordInput()) class SetupView(View): template = loader.get_template('cabotapp/setup.html') def get(self, request): if not cabot_needs_setup(): return redirect('login') form = SetupForm(initial={ 'username': 'admin', }) return HttpResponse(self.template.render({'form': form}, request)) def post(self, request): if not cabot_needs_setup(): return redirect('login') form = SetupForm(request.POST) if form.is_valid(): get_user_model().objects.create_superuser( username=form.cleaned_data['username'], email=form.cleaned_data['email'], password=form.cleaned_data['password'], ) return redirect('login') return HttpResponse(self.template.render({'form': form}, request), status=400) # Misc JSON api and other stuff def checks_run_recently(request): """ Checks whether or not stuff is running by looking to see if checks have run in last 10 mins """ ten_mins = datetime.utcnow().replace(tzinfo=utc) - timedelta(minutes=10) most_recent = StatusCheckResult.objects.filter(time_complete__gte=ten_mins) if most_recent.exists(): return HttpResponse('Checks running') return HttpResponse('Checks not running') def about(request): """ Very simple about page """ from cabot import version return render(request, 'cabotapp/about.html', { 'cabot_version': version, }) def jsonify(d): return HttpResponse(json.dumps(d), content_type='application/json') @login_required def graphite_api_data(request): metric = request.GET.get('metric') if request.GET.get('frequency'): mins_to_check = int(request.GET.get('frequency')) else: mins_to_check = None data = None matching_metrics = None try: data = get_data(metric, mins_to_check) except requests.exceptions.RequestException, e: pass if not data: try: matching_metrics = get_matching_metrics(metric) except requests.exceptions.RequestException, e: return jsonify({'status': 'error', 'message': str(e)}) matching_metrics = {'metrics': matching_metrics} return jsonify({'status': 'ok', 'data': data, 'matchingMetrics': matching_metrics})
py
1a3a20b86b4f9cb627f08b6816347396ea438bde
#!/usr/bin/env python __copyright__ = 'Copyright 2013-2014, http://radical.rutgers.edu' __license__ = 'MIT' import os import sys verbose = os.environ.get('RADICAL_PILOT_VERBOSE', 'REPORT') os.environ['RADICAL_PILOT_VERBOSE'] = verbose import radical.pilot as rp import radical.utils as ru # ------------------------------------------------------------------------------ # # READ the RADICAL-Pilot documentation: https://radicalpilot.readthedocs.io/ # # ------------------------------------------------------------------------------ # ----------------------------------------------------------------------------- # if __name__ == '__main__': # we use a reporter class for nicer output report = ru.Reporter(name='radical.pilot') report.title('Getting Started (RP version %s)' % rp.version) # use the resource specified as argument, fall back to localhost if len(sys.argv) > 2: report.exit('Usage:\t%s [resource]\n\n' % sys.argv[0]) elif len(sys.argv) == 2: resource = sys.argv[1] else : resource = 'local.localhost' # Create a new session. No need to try/except this: if session creation # fails, there is not much we can do anyways... session = rp.Session() # all other pilot code is now tried/excepted. If an exception is caught, we # can rely on the session object to exist and be valid, and we can thus tear # the whole RP stack down via a 'session.close()' call in the 'finally' # clause... try: # read the config used for resource details report.info('read config') config = ru.read_json('%s/config.json' % os.path.dirname(os.path.abspath(__file__))) report.ok('>>ok\n') report.header('submit pilots') # Add a Pilot Manager. Pilot managers manage one or more ComputePilots. pmgr = rp.PilotManager(session=session) # Define an [n]-core local pilot that runs for [x] minutes # Here we use a dict to initialize the description object pd_init = { 'resource' : resource, 'runtime' : 15, # pilot runtime (min) 'exit_on_error' : True, 'project' : config[resource].get('project', None), 'queue' : config[resource].get('queue', None), 'access_schema' : config[resource].get('schema', None), 'cores' : config[resource].get('cores', 1), 'gpus' : config[resource].get('gpus', 0), } pdesc = rp.ComputePilotDescription(pd_init) # Launch the pilot. pilot = pmgr.submit_pilots(pdesc) report.header('submit units') # Register the ComputePilot in a UnitManager object. umgr = rp.UnitManager(session=session) umgr.add_pilots(pilot) # Create a workload of ComputeUnits. # Each compute unit runs a specific `echo` command n = 128 # number of units to run report.info('create %d unit description(s)\n\t' % n) cuds = list() for i in range(0, n): # create a new CU description, and fill it. # Here we don't use dict initialization. cud = rp.ComputeUnitDescription() cud.environment = {'TEST' : 'jabberwocky'} cud.executable = '/bin/echo' cud.arguments = ['$RP_UNIT_ID greets $TEST'] cuds.append(cud) report.progress() report.ok('>>ok\n') # Submit the previously created ComputeUnit descriptions to the # PilotManager. This will trigger the selected scheduler to start # assigning ComputeUnits to the ComputePilots. units = umgr.submit_units(cuds) # Wait for all compute units to reach a final state (DONE, CANCELED or FAILED). report.header('gather results') umgr.wait_units() report.info('\n') for unit in units: report.plain(' * %s: %s, exit: %3s, out: %s\n' % (unit.uid, unit.state[:4], unit.exit_code, unit.stdout.strip()[:35])) except Exception as e: # Something unexpected happened in the pilot code above report.error('caught Exception: %s\n' % e) raise except (KeyboardInterrupt, SystemExit): # the callback called sys.exit(), and we can here catch the # corresponding KeyboardInterrupt exception for shutdown. We also catch # SystemExit (which gets raised if the main threads exits for some other # reason). report.warn('exit requested\n') finally: # always clean up the session, no matter if we caught an exception or # not. This will kill all remaining pilots. report.header('finalize') session.close() report.header() # ------------------------------------------------------------------------------
py
1a3a241b29e3df2f7dc08f8dc07a3b4c74bf0ed4
""" File: 1514.py Title: Path with Maximum Probability Difficulty: Medium URL: https://leetcode.com/problems/path-with-maximum-probability/ """ import heapq import unittest from collections import defaultdict, deque from typing import List class Solution: def maxProbability(self, n: int, edges: List[List[int]], probs: List[float], start: int, end: int) -> float: adjacents = defaultdict(dict) for edge, prob in zip(edges, probs): a, b = edge adjacents[a][b] = prob adjacents[b][a] = prob heap = [(-1, start)] visited = [False] * n while heap: neg_prob, here = heapq.heappop(heap) if visited[here]: continue if here == end: return -neg_prob visited[here] = True for there in adjacents[here]: if not visited[there]: there_prob = neg_prob * adjacents[here][there] heapq.heappush(heap, (there_prob, there)) return 0.0 class SolutionTestCase(unittest.TestCase): def test_example1(self): # Input n = 3 edges = [[0, 1], [1, 2], [0, 2]] probs = [0.5, 0.5, 0.2] start = 0 end = 2 # Output output = 0.25000 solution = Solution() self.assertEqual(solution.maxProbability(n, edges, probs, start, end), output) def test_example2(self): # Input n = 3 edges = [[0, 1], [1, 2], [0, 2]] probs = [0.5, 0.5, 0.3] start = 0 end = 2 # Output output = 0.30000 solution = Solution() self.assertEqual(solution.maxProbability(n, edges, probs, start, end), output) def test_example3(self): # Input n = 3 edges = [[0, 1]] probs = [0.5] start = 0 end = 2 # Output output = 0.00000 solution = Solution() self.assertEqual(solution.maxProbability(n, edges, probs, start, end), output) if __name__ == "__main__": unittest.main()
py
1a3a250b7bdf379dbcdc0c09ffa219d7d8aa2278
"""arikefoods URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('accounts/', include('allauth.urls')), path('', include('home.urls')), path('food_menu/', include('menu.urls')), path('', include('order.urls')), path('checkout/', include('checkout.urls')), path('', include('recipe_blog.urls')), path('feedback/', include('feedback.urls')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
py
1a3a2676f22bd8ef1c8f63624fc09674876c9e9b
# Generated by Django 1.11.15 on 2018-08-17 18:14 import django.db.models.deletion from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('credentials', '0003_auto_20170525_1109'), ] operations = [ migrations.CreateModel( name='NotifyCredentialsConfig', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('change_date', models.DateTimeField(auto_now_add=True, verbose_name='Change date')), ('enabled', models.BooleanField(default=False, verbose_name='Enabled')), ('arguments', models.TextField(blank=True, default='', help_text='Useful for manually running a Jenkins job. Specify like "--start-date=2018 --courses A B".')), ('changed_by', models.ForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL, verbose_name='Changed by')), ], options={ 'verbose_name': 'notify_credentials argument', }, ), ]
py
1a3a26f6dc04bd10f1fa64936f3005016c5fc005
from direct.interval.IntervalGlobal import * from otp.nametag.NametagConstants import * from panda3d.core import * from random import choice FlippyWheelbarrowPies = [ [ 1.16, 11.24, 7.0, 246.8, 351.25, 0.0, 1.6, 1.4, 1.8], [ 2.27, 8.02, 6.35, 104.04, 311.99, 9.46, 1.35, 1.35, 1], [ -1.23, 7.33, 6.88, 276.34, 28.61, 350.54, 1.41, 1.41, 1.6], [ 0.27, 8.24, 6.42, 198.15, 351.87, 355.24, 1.93, 2, 2], [ 0.06, 5.23, 6.78, 63.43, 355.91, 15.26, 1.3, 1.6, 1.8], [ -0.81, 11.37, 6.82, 326.31, 5.19, 19.98, 1.76, 1.86, 1.5], [ 1.35, 10.09, 5.92, 35.54, 353.66, 343.3, 1.5, 1.9, 1.8], [ 1.9, 5.59, 6.5, 75.96, 326.31, 8, 1.76, 1.56, 1.5], [ -1.74, 5.42, 6.28, 327.53, 318.81, 4.76, 1.8, 2, 2], [ -1.55, 9.22, 5.72, 266.53, 341.57, 0.0, 2.09, 1.68, 1.81]] IntroMusic = 'phase_4/audio/bgm/EE_Intro.ogg' AnnouncementMusic = 'phase_4/audio/bgm/EE_Announcement.ogg' VictoryMusic = 'phase_4/audio/bgm/EE_Celebration.ogg' SadMusic = 'phase_4/audio/bgm/EE_DiesandPies.ogg' CreditsMusic = 'phase_4/audio/bgm/EE_Theme.ogg' SurleeTips = [ 'Always watch all sides of you, the Cogs are sneaky and love to backstab.', "Make sure to not only pie the cogs, but your fellow toons as well! There's lots of Laff to go around.", "Mover and Shakers give tremors as they walk -- You'll need to hit them from a distance.", 'Come on, get more pies! Fight for the town!', 'The bigger a Cog is, the faster they walk and the more they talk.', "Don't let them take away our fun! Stop them!", "The Cog's business is too boring to bear. Don't let them talk to you.", "That's what I'm talking about. Keep at it!", "Flippy, we need more pies over here. They're flying out quick.", "Doctor Dimm, have you had any luck on Slappy's stand?", 'Keep a close eye on your pie count, it can run out fast.'] BalloonBasePosition = [ -15, 33, 1.1] BalloonElectionPosition = [166.5, 64.0, 53.0] BalloonScale = 2.5 FlippyGibPies = [ "Let 'em fly!", "Wow, I've never seen someone carry so many pies.", 'Come back any time.', 'Ready for WAR?', 'Let the pies fly!', 'Clobber the competition! Try not to hit him too hard, though.', 'Are you really going to eat that many pies, __NAME__?', 'Oof, I better start baking more pies!'] FlippyGibPiesChoice = choice(FlippyGibPies) FlippyDelayResponse = 1.0 FlippyPhraseIds = [ [ 100, 101, 102, 103, 104, 105], [ 107, 108], [ 200, 201, 202, 206, 207], [ 203, 204, 205], [ 208, 209], [ 301], [ 500, 21002], [ 505, 506, 507, 5602], [ 508, 511, 1001, 1003, 1005, 1006, 1126, 1127, 5603, 1106, 1107, 1108, 1109, 1110, 1124, 1125, 1126, 1127, 1128], [ 509], [ 510], [ 600, 601, 602, 603], [ 700, 701, 702, 704, 705, 706, 707], [ 703], [ 800, 801, 802, 803, 804], [ 807], [ 808], [ 901], [ 900, 902, 903, 904, 905], [ 1200], [ 1500], [ 1501], [ 1508], [ 1415], [ 1520, 1527], [ 1526], [ 1112, 1114, 1554, 1555, 1556, 1557, 1559, 812], [ 1558], [ 5400], [ 5401, 5407, 5408, 5409], [ 5402], [ 5404], [ 5405], [ 5500], [ 5501], [ 5502], [ 5503], [ 5504], [ 5505], [ 5506], [ 5507], [ 5600, 5601], [ 10100], [ 10101, 10102], [ 10103, 10104], [ 10105], [ 5700], [ 1130, 1131, 1132, 1133, 1136], [ 5406], [ 5411], [ 1600], [ 1605], [ 1104, 1105]] FlippyPhrases = [ 'Hey there, __NAME__! How are you doing?', "I'm here, present and accounted for!", 'Alrighty, catcha later!', 'Thanks! To you as well.', 'Leaving so soon?', "Ha, that's a funny phrase. Owooo!", 'No problem.', 'You betcha!', 'I would if I could, but I should stay here in case new toons come along.', 'Thanks for the offer, but I think I have things under control.', "Sorry, I'm not allowed to make friends over the election period. :(", "Right back 'atcha!", 'Aw, shucks. I like yours too!', 'Not sure if I should consider that a compliement or...', "No problem. It's all good.", 'Huh. I forget.', 'Good, because I can only respond to SpeedChat. Haha!', "It's probably the leftover ingredients from all of those pies. Pee-yew!", "I'm sorry. Did I do something wrong? :(", "I haven't gotten any in a while. I guess you could say that the election is my ToonTask!", 'All the cream pies we need!', 'Oh? No problem, just grab some from the wheelbarrow.', 'Totally! Throw is my favorite kind of gag.', "Uh oh, that's no good. You should find an ice cream cone around here.", "I'm wide open, pass it here!", 'Sorry, only pies here.', '...like, the gear? What have gears ever done to you? :(', 'Hmm, good idea. Pies are going so fast that we might have to switch to cupcakes by the time of the election.', "Toontown... Offline? I've heard Toons say that a few times, but I can never figure out what they mean.", 'Hmm, well I did spot a butterfly over there.', 'Oof, plenty of times at first. Karts are tricky to get used to.', "I do, actually! I don't use it often.", "Hiya, viewers! Don't forget to Flip for Flippy!", ':D', ':C', ':)', ':(', ':P', ':O', '>:C', '>:)', "I'm doing pretty great! And you?", "I'm not allowed to vote, silly!", "That's the spirit!", 'Slappy is pretty fun, too. Great balloon. Though... See that plane stuck up there...?', 'Me too. Alec did a great job, and I hear there are more coming.', 'Ooooh, I just love that word! Good to see it catching on.', "Don't worry, I have time.", 'At least you have me to keep you company.', "I probably should. There's way too many butterflies here!", 'Please, take as many as you want!', 'I think Slappy has some over at his stand.', "We're already in Toontown Central!"] SlappySpeech1 = [ 'Hiya! Up for a ride?', 'Off we goooo!', "In case you didn't get it back there, that was a pun.", '"Up" for a ride. Get it?', 'Haha! I quack myself up.', 'That was another pun!', "Do you know any good puns? I'm full of them.", "That wasn't a pun, though. I should have had one there. It was fitting.", "Oh man, we're almost back already?", 'Well, at least we had a WHALE of a time!', "Err- no. Wrong pun. That one didn't make sense.", "I'll CATCHA later! Get it, because of the whale pun? It makes sense now. I planned that."] SlappySpeech2 = [ 'Hello! Want a ride, I assume?', "Good! It would be kind of weird if you didn't.", "I take it you're a balloon fanatic like myself, eh?", "No? Oh. I don't see how you can't be.", "Just look at this thing. It's a 500 pound bag floating in the sky!", "If that isn't amazing, I don't know what is.", "Small balloons, too. You know, I've always wanted to be a balloon salesman.", "I'd get my own little cart and everything!", 'They soar through the skies, going beyond what we know.', "Maybe even into another world. Who knows what they'd see on the outskirts of Toontown?", "I've always wondered what kind of mysteries lie out there. The balloons know.", "D'awh, here already. I was just about to get into the history of balloons. Come back any time!"] SlappySpeech3 = [ 'Hey there! Yep, just hop on in!', "You know, some may consider it rude to jump into someone else's balloon without permission.", "In fact, I'm going to have to ask you to step out now.", "Yeah, just right off the side there. It's not too high up yet.", "I'm joking! I'm joking. Don't jump out, the ride is free.", 'Can you see your house from up here?', "I can't. This cardboard hill is in the way.", "I've always wondered why they put those up. Why not enjoy the scenery?", 'Not to mention the Jellybeans they could have saved by not buying paint.', 'It seems counterproductive to me. Those are definitely getting torn down.', 'That is, if I get elected. Hey, are you voting for me?', "Nonono, don't tell me. I want to be surprised. Remember this free balloon ride at the polls, though!"] SlappySpeech5 = [ 'Oooh, look who it is!', 'I was wondering when you would come by for a ride.', 'How are things going? Having fun with this election excitement?', "I know I certainly am. I've been on hundreds of these balloon rides, and they never get old.", 'You get used to the air sickness after a while.', 'Woah, look over there! You can see some of the grey!', 'The grey is just one of those many things in Toontown that bewilders me.', 'An undrawn area, just waiting for color. Can you imagine the creativity?', "It's an unexplored blank canvas of imagination.", "You know what? You and I -- after this election, we're going to go out there.", 'You and I will figure out the secrets of the grey, unleash the creativity it holds. I promise you on that.', "We'll find out what it is, for not only Toontown but for the whole Tooniverse. Make sure you hold me to it! "] SlappySpeechChoices = [ SlappySpeech1, SlappySpeech2, SlappySpeech3, SlappySpeech5] SlappySpeeches = choice(SlappySpeechChoices) NumBalloonPaths = 1 def generateFlightPaths(balloon): flightPaths = [] flightPaths.append(Sequence(Wait(0.5), balloon.balloon.posHprInterval(1.5, Point3(-19, 35, 3), (0, 2, 2)), balloon.balloon.posHprInterval(1.5, Point3(-23, 38, 5), (0, -2, -2)), balloon.balloon.posHprInterval(8.0, Point3(-53, 75, 24), (0, 0, 0)), balloon.balloon.posHprInterval(0.5, Point3(-54, 76, 25), (5, 2, 2)), balloon.balloon.posHprInterval(11.0, Point3(-105, 33, 54), (180, -2, -2)), balloon.balloon.posHprInterval(0.5, Point3(-106, 34, 55), (175, -4, 0)), balloon.balloon.posHprInterval(10.0, Point3(-100, -60, 54), (0, 2, -2)), balloon.balloon.posHprInterval(0.5, Point3(-97.5, -59.5, 54), (-2, -2, 2)), balloon.balloon.posHprInterval(18.0, Point3(60, -10, 54), (-70, 0, 0)), balloon.balloon.posHprInterval(0.5, Point3(62, -11, 54), (-65, -2, 2)), balloon.balloon.posHprInterval(15.0, Point3(-15, 33, 1.1), (0, 0, 0)))) return flightPaths def generateToonFlightPaths(balloon): toonFlightPaths = [] toonFlightPaths.append(Sequence(Wait(0.5), base.localAvatar.posInterval(1.5, Point3(-19, 35, 3)), base.localAvatar.posInterval(1.5, Point3(-23, 38, 5)), base.localAvatar.posInterval(8.0, Point3(-53, 75, 24)), base.localAvatar.posInterval(0.5, Point3(-54, 76, 25)), base.localAvatar.posInterval(11.0, Point3(-105, 33, 54)), base.localAvatar.posInterval(0.5, Point3(-106, 34, 55)), base.localAvatar.posInterval(10.0, Point3(-100, -60, 54)), base.localAvatar.posInterval(0.5, Point3(-99, -59, 53)), base.localAvatar.posInterval(18.0, Point3(60, -10, 54)), base.localAvatar.posInterval(0.5, Point3(62, -11, 54)), base.localAvatar.posInterval(15.0, Point3(-15, 33, 1.1)))) return toonFlightPaths def generateSpeechSequence(balloon): speechSequence = Sequence(Func(balloon.slappy.setChatAbsolute, SlappySpeeches[0], CFSpeech | CFTimeout), Wait(4), Func(balloon.slappy.setChatAbsolute, SlappySpeeches[1], CFSpeech | CFTimeout), Wait(6), Func(balloon.slappy.setChatAbsolute, SlappySpeeches[2], CFSpeech | CFTimeout), Wait(4), Func(balloon.slappy.setChatAbsolute, SlappySpeeches[3], CFSpeech | CFTimeout), Wait(6), Func(balloon.slappy.setChatAbsolute, SlappySpeeches[4], CFSpeech | CFTimeout), Wait(10), Func(balloon.slappy.setChatAbsolute, SlappySpeeches[5], CFSpeech | CFTimeout), Wait(6), Func(balloon.slappy.setChatAbsolute, SlappySpeeches[6], CFSpeech | CFTimeout), Wait(10), Func(balloon.slappy.setChatAbsolute, SlappySpeeches[7], CFSpeech | CFTimeout), Wait(6), Func(balloon.slappy.setChatAbsolute, SlappySpeeches[8], CFSpeech | CFTimeout), Wait(7), Func(balloon.slappy.setChatAbsolute, SlappySpeeches[9], CFSpeech | CFTimeout), Wait(5), Func(balloon.slappy.setChatAbsolute, SlappySpeeches[10], CFSpeech | CFTimeout), Wait(6), Func(balloon.slappy.setChatAbsolute, SlappySpeeches[11], CFSpeech | CFTimeout)) return speechSequence
py
1a3a2783767e4a7e9fe2614e0bc48b04cf8a46c7
# Generated by Django 2.2.13 on 2020-07-21 19:17 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('pipeline', '0034_auto_20200721_1753'), ] operations = [ migrations.CreateModel( name='PostSecondaryInstitution', fields=[ ('location_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='pipeline.Location')), ('institution_type', models.CharField(blank=True, max_length=255, null=True)), ('economic_development_region', models.CharField(blank=True, max_length=255, null=True)), ], bases=('pipeline.location',), ), ]
py
1a3a2813fd94ced5d033bb187275a7905b675ca2
#coding=utf8 import traceback from extensions.database import db from extensions.hueyext import hueyapp from extensions.celeryext import celeryapp from models.asyncmodel import Async from models.warehouse import Warehouse, Area, Workarea, Location from models.inv import Good, Category, Inv from models.auth import Partner, Seq from models.stockout import Stockout, StockoutLine from blueprints.stockout.action import StockoutAction from utils.upload import get_file_content from utils.functions import clear_empty from utils.base import DictNone # #@hueyapp.task() @celeryapp.task def import_stockout(company_code, warehouse_code, owner_code, args, task_id, user_code=None, user_name=None): ret = import_stockout_sync(company_code, warehouse_code, owner_code, args, task_id, user_code=user_code, user_name=user_name) db.session.close() return ret def import_stockout_sync(company_code, warehouse_code, owner_code, args, task_id, user_code=None, user_name=None): task = Async.query.get(task_id) print('handle async task_id ==> ', task_id, task.async_id) task.get_file() content = get_file_content(task.link) success = True exc_info = '' try: order_dict = DictNone() task.code = 'stockout' for row in content: d = DictNone(clear_empty(row)) if not d.erp_order_code: continue # 创建订单 if d.erp_order_code not in order_dict: if Stockout.query.filter_by(company_code=company_code, warehouse_code=warehouse_code, owner_code=owner_code, \ erp_order_code=d.erp_order_code).count() > 0: continue order = Stockout(company_code=company_code, warehouse_code=warehouse_code, owner_code=owner_code, source='import', user_code=user_code, user_name=user_name) order_dict[d.erp_order_code] = order order.erp_order_code = d.erp_order_code order.order_code = Seq.make_order_code('C', company_code, warehouse_code, owner_code) order.xtype = d.xtype or 'B2B' order.order_type = d.order_type order.date_planned = d.date_planned order.source = 'custom' order.remark = d.remark or '' order.partner_code = d.partner_code or '' order.partner_name = d.partner_name or '' order.sender_info = {'name': d.sender, 'tel': d.sender_tel, 'address': d.sender_address} order.receiver_info = {'name': d.receiver, 'tel': d.receiver_tel, 'address': d.receiver_address} order.supplier_info = {'supplier_code': d.supplier_code} order.express_info = {'express_code': d.express_code} order.invoice_info = {'invoice': d.invoice} # order.JSON = {'custom1': d.custom1, 'custom2': d.custom2, 'custom3': d.custom3, 'custom4': d.custom4} db.session.add(order) else: order = order_dict[d.erp_order_code] if not d.sku or not d.qty: continue line = StockoutLine(company_code=company_code, warehouse_code=warehouse_code, owner_code=owner_code) line.erp_order_code = order.erp_order_code line.order_code = order.order_code line.sku = d.sku line.barcode = d.barcode or d.sku line.name = d.name or d.sku line.qty = int(d.qty) line.remark = d.remark or '' line.supplier_code = d.supplier_code or '' # line.supplier_code = d.supplier_code or '' # line.quality_type = d.quality_type or 'ZP' # line.product_date = d.product_date or None # line.expire_date = d.expire_date or None # line.batch_code = d.batch_code or '' # line.virtual_warehouse = d.virtual_warehouse or '' # line.spec = d.spec or '' line.style = d.style or '' line.color = d.color or '' line.size = d.size or '' line.unit = d.unit or '' # line.JSON = {'custom1': d.custom1, 'custom2': d.custom2, 'custom3': d.custom3, 'custom4': d.custom4} db.session.add(line) line.stockout = order db.session.flush() exc_info = 'save stockout: %s'%len(content) except: exc_info = traceback.format_exc() success = False if success: db.session.commit() task.state = 'done' task.exc_info = 'SUCCESS' else: db.session.rollback() task.state = 'fail' task.exc_info = exc_info[-1500:] print(exc_info) db.session.commit()
py
1a3a2942e6544224d4762106c960f4da206b31ed
# -*- coding:utf-8 -*- from __future__ import absolute_import """ 词向量测试 20K 词向量: - 规模: 19527 x 300D - 来源: [Chinese-Word-Vectors: sgns.sikuquanshu.word.bz2](https://github.com/Embedding/Chinese-Word-Vectors) 测试结果: - faiss: load index, 0.82s; search 100 times by word, 1.08s; search 100 times by vec, 1.06s - gensim: load index, 5.80s; search 100 times by word, 1.64s; search 100 times by vec, 1.62s """ import bz2 import logging import pickle import time import gensim import numpy as np import os from pyxtools import global_init_logger from pyxtools.faiss_tools import faiss class BasicBenchmark(object): """ Basic Class """ def __init__(self, similar_top_n: int = 20): """ init """ self.logger = logging.getLogger(self.__class__.__name__) self.similar_top_n = similar_top_n self.dimension = None self.result_dict = {} self.word_vec_model_file = "vec.model" self._word_vec_dict = {} def prepare(self): """ 准备工作 """ self._global_prepare() def _global_prepare(self): """ """ if not os.path.exists(self.word_vec_model_file): with open(self.word_vec_model_file, "wb") as fw: with bz2.BZ2File('./sgns.sikuquanshu.word.bz2', 'rb') as fr: fw.write(fr.read()) @staticmethod def get_word_list() -> [str]: """ 测试词 """ return ["计", "算", "机", "词", "向", "量", "囧"] def run(self): # prepare self.prepare() # init time_start = time.time() self.init() self.logger.info("Init: cost {} s!".format(time.time() - time_start)) # search similar words time_start = time.time() for i in range(100): self.search() for word in self.get_word_list(): result_list = self.result_dict[word] self.logger.info("{}>>\n{}".format( word, "\n".join([result for result in result_list]) )) self.logger.info("Search 100 times by word: cost {} s!".format(time.time() - time_start)) # search similar words by vec self.result_dict.clear() time_start = time.time() for i in range(100): self.vec_search() for word in self.get_word_list(): result_list = self.result_dict[word] self.logger.info("{}>>\n{}".format( word, "\n".join([result for result in result_list]) )) self.logger.info("Search 100 times by vec: cost {} s!".format(time.time() - time_start)) def init(self): raise NotImplementedError def search(self): raise NotImplementedError def vec_search(self, ): raise NotImplementedError def save_result_dict(self, word: str, result: str): if word not in self.result_dict: self.result_dict[word] = [result] else: result_list = self.result_dict[word] if result not in result_list: self.result_dict[word].append(result) def load_pre_trained_model(self, ): """ 返回预训练好的模型 """ gensim_model = gensim.models.KeyedVectors.load_word2vec_format(self.word_vec_model_file, binary=False) self.dimension = gensim_model.vector_size return gensim_model class GensimBenchmark(BasicBenchmark): """ Gensim """ def __init__(self): super(GensimBenchmark, self).__init__() self._model = None def init(self): self._model = self.load_pre_trained_model() for word in self.get_word_list(): self._word_vec_dict[word] = self._model.get_vector(word) def search(self): for word in self.get_word_list(): result = ", ".join([item[0] for item in self._model.similar_by_word(word, topn=self.similar_top_n)]) self.save_result_dict(word, result) def vec_search(self): """ 直接使用词向量搜索 """ for word in self.get_word_list(): word_vec = self._word_vec_dict[word] result = ", ".join( [item[0] for item in self._model.similar_by_word(word_vec, topn=self.similar_top_n + 1)[1:]] ) self.save_result_dict(word, result) class FaissBenchmark(BasicBenchmark): """ Faiss """ def __init__(self): super(FaissBenchmark, self).__init__() self._model = None self._word_detail_info = None self.faiss_index_file = "./faiss.index" self.faiss_index_detail_pkl = "./faiss.pkl" def prepare(self): """ 将Gensim 版本的模型转化为Faiss模型 """ super(FaissBenchmark, self).prepare() # turn model from gensim to faiss index if os.path.exists(self.faiss_index_file) and os.path.exists(self.faiss_index_detail_pkl): return # load model to dict self.logger.info("loading model...") time_start = time.time() gensim_model = self.load_pre_trained_model() model_size = len(gensim_model.vocab) self.dimension = gensim_model.vector_size feature = np.zeros(shape=(model_size, self.dimension), dtype=np.float32) word_list = [word for word in gensim_model.vocab] for i, word in enumerate(word_list): feature[i] = gensim_model.get_vector(word) # not normed self.logger.info("success to load index! Cost {} seconds!".format(time.time() - time_start)) # train faiss index index_factory = "Flat" normed_feature = feature / np.linalg.norm(feature, axis=1, keepdims=True) faiss_index = faiss.index_factory(self.dimension, index_factory) self.logger.info("training index...") time_start = time.time() faiss_index.train(normed_feature) # nb * d faiss_index.add(normed_feature) self.logger.info("success to train index! Cost {} seconds!".format(time.time() - time_start)) # save in file faiss.write_index(faiss_index, self.faiss_index_file) with open(self.faiss_index_detail_pkl, "wb") as f: pickle.dump((word_list, feature), f) def init(self): """ load model """ self._model = faiss.read_index(self.faiss_index_file) with open(self.faiss_index_detail_pkl, "rb") as f: self._word_detail_info = pickle.load(f) self.dimension = self._word_detail_info[1].shape[-1] for word in self.get_word_list(): self._word_vec_dict[word] = self._word_detail_info[1][self._word_detail_info[0].index(word)] def _search_by_vec(self, feature_list, ): """ 向量搜索 """ normed_feature_list = feature_list / np.linalg.norm(feature_list, axis=1, keepdims=True) length = normed_feature_list.shape[0] distance_list, indices = self._model.search(normed_feature_list, self.similar_top_n + 1) distance_list = distance_list.reshape((length, self.similar_top_n + 1)) indices = indices.reshape((length, self.similar_top_n + 1)) return distance_list, indices def search(self): """ search similar words """ # 获取查询词向量 word_list = self.get_word_list() word_feature_list = np.zeros(shape=(len(word_list), self.dimension), dtype=np.float32) for i, word in enumerate(word_list): word_feature_list[i] = self._word_detail_info[1][self._word_detail_info[0].index(word)] # search _, indices_arr = self._search_by_vec(word_feature_list) # show result for i, word in enumerate(word_list): result = ", ".join([self._word_detail_info[0][word_index] for word_index in indices_arr[i][1:]]) self.save_result_dict(word, result) def vec_search(self): """ 直接使用词向量搜索 """ # 获取查询词向量 word_list = self.get_word_list() word_feature_list = np.zeros(shape=(len(word_list), self.dimension), dtype=np.float32) for i, word in enumerate(word_list): word_feature_list[i] = self._word_vec_dict[word] # search _, indices_arr = self._search_by_vec(word_feature_list) # show result for i, word in enumerate(word_list): result = ", ".join([self._word_detail_info[0][word_index] for word_index in indices_arr[i][1:]]) self.save_result_dict(word, result) if __name__ == '__main__': # global logger global_init_logger() # benchmark for method_cls in [FaissBenchmark, GensimBenchmark, ]: method_cls().run()
py
1a3a2a2b0a093f228ef66263035599da4da29189
# Imports from datetime import timedelta from typing import List, Tuple import hypothesis.strategies as st import numpy as np import numpy.testing as npt import pandas as pd import pyarrow as pa import pytest from hypothesis import given, settings from fletcher._algorithms import ( _extract_data_buffer_as_np_array, _merge_valid_bitmaps, max_op, min_op, np_ufunc_op, prod_op, sum_op, ) from fletcher.algorithms.utils.chunking import ( _calculate_chunk_offsets, _combined_in_chunk_offsets, _in_chunk_offsets, ) def _is_na(a): return (a is pa.NA) or (a is None) or (np.isnan(a)) def assert_allclose_na(a, b): """assert_allclose with a broader NA/nan/None definition.""" if _is_na(a) and _is_na(b): pass else: npt.assert_allclose(a, b) @pytest.mark.parametrize( "op, pandas_op", [(sum_op, pd.Series.sum), (prod_op, pd.Series.prod)] ) @settings(deadline=timedelta(milliseconds=1000)) @given( data=st.lists(st.one_of(st.floats(max_value=10.0, min_value=-10), st.none())), skipna=st.booleans(), ) def test_reduce_op(data, skipna, op, pandas_op): arrow = pa.array(data, type=pa.float64(), from_pandas=True) pandas = pd.Series(data, dtype=float) assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna)) # Split in the middle and check whether this still works if len(data) > 2: arrow = pa.chunked_array( [ pa.array(data[: len(data) // 2], type=pa.float64(), from_pandas=True), pa.array(data[len(data) // 2 :], type=pa.float64(), from_pandas=True), ] ) assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna)) @pytest.mark.parametrize( "op, pandas_op", [(min_op, pd.Series.min), (max_op, pd.Series.max)] ) @settings(deadline=timedelta(milliseconds=1000)) @given( data=st.lists(st.one_of(st.floats(max_value=10.0), st.none())), skipna=st.booleans() ) def test_reduce_op_no_identity(data, skipna, op, pandas_op): arrow = pa.array(data, type=pa.float64(), from_pandas=True) pandas = pd.Series(data, dtype=float) should_raise = arrow.null_count == len(arrow) and (skipna or len(arrow) == 0) if should_raise: with pytest.raises(ValueError): assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna)) else: assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna)) # Split in the middle and check whether this still works if len(data) > 2: arrow = pa.chunked_array( [ pa.array(data[: len(data) // 2], type=pa.float64(), from_pandas=True), pa.array(data[len(data) // 2 :], type=pa.float64(), from_pandas=True), ] ) if should_raise: with pytest.raises(ValueError): assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna)) else: assert_allclose_na(op(arrow, skipna), pandas_op(pandas, skipna=skipna)) def test_calculate_chunk_offsets(): arr = pa.chunked_array([[1, 1, 1]]) npt.assert_array_equal(_calculate_chunk_offsets(arr), np.array([0])) arr = pa.chunked_array([[1], [1, 1]]) npt.assert_array_equal(_calculate_chunk_offsets(arr), np.array([0, 1])) arr = pa.chunked_array([[1, 1], [1]]) npt.assert_array_equal(_calculate_chunk_offsets(arr), np.array([0, 2])) def check_valid_in_offsets( arr: pa.ChunkedArray, in_offsets: List[Tuple[int, int, int]] ) -> None: if arr.num_chunks == 0: assert in_offsets == [] return # We always start at the beginning assert in_offsets[0][0] == 0 assert in_offsets[0][1] == 0 # Overall, the chunk offsets must have the same length as the array assert sum(x[2] for x in in_offsets) == len(arr) @given(data=st.lists(st.lists(st.integers(min_value=0, max_value=10)))) def test_in_chunk_offsets(data: List[List[int]]): arr = pa.chunked_array(data, type=pa.int64()) # Simple case: Passing in the actual chunk offsets should yield a valid selection offsets = list(_calculate_chunk_offsets(arr)) in_offsets = _in_chunk_offsets(arr, offsets) check_valid_in_offsets(arr, in_offsets) def test_combined_in_chunk_offsets(): a = pa.chunked_array([[]]) b = pa.chunked_array([[]]) in_a_offsets, in_b_offsets = _combined_in_chunk_offsets(a, b) assert in_a_offsets == [(0, 0, 0)] assert in_b_offsets == [(0, 0, 0)] a = pa.chunked_array([[1]]) b = pa.chunked_array([[2]]) in_a_offsets, in_b_offsets = _combined_in_chunk_offsets(a, b) assert in_a_offsets == [(0, 0, 1)] assert in_b_offsets == [(0, 0, 1)] a = pa.chunked_array([[1, 2], [3, 4, 5]]) b = pa.chunked_array([[1], [2, 3], [4, 5]]) in_a_offsets, in_b_offsets = _combined_in_chunk_offsets(a, b) assert in_a_offsets == [(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 2)] assert in_b_offsets == [(0, 0, 1), (1, 0, 1), (1, 1, 1), (2, 0, 2)] @pytest.mark.parametrize("data", [[1, 2, 4, 5], [1.0, 0.5, 4.0, 5.0]]) def test_extract_data_buffer_as_np_array(data): arr = pa.array(data) result = _extract_data_buffer_as_np_array(arr) expected = np.array(data) npt.assert_array_equal(result, expected) result = _extract_data_buffer_as_np_array(arr[2:4]) expected = np.array(data[2:4]) npt.assert_array_equal(result, expected) def assert_content_equals_array(result, expected): """Assert that the result is an Arrow structure and the content matches an array.""" assert isinstance(result, (pa.Array, pa.ChunkedArray)) if isinstance(result, pa.ChunkedArray): result = pa.concat_arrays(result.iterchunks()) assert result.equals(expected) def check_np_ufunc(a, b, expected): result = np_ufunc_op(a, b, np.ndarray.__add__) assert_content_equals_array(result, expected) result = np_ufunc_op(b, a, np.ndarray.__add__) assert_content_equals_array(result, expected) def test_np_ufunc_op_chunked_chunked(): a = pa.chunked_array([[1, 2], [3, None, None]]) b = pa.chunked_array([[1], [2, 3], [4, None]]) expected = pa.array([2, 4, 6, None, None]) check_np_ufunc(a, b, expected) def test_np_ufunc_op_chunked_flat(): a = pa.chunked_array([[1, 2], [3, None, None]]) b = pa.array([1, 2, 3, 4, None]) expected = pa.array([2, 4, 6, None, None]) check_np_ufunc(a, b, expected) def test_np_ufunc_op_chunked_np_array(): a = pa.chunked_array([[1, 2], [3, None]]) b = np.array([1, 2, 3, 4]) expected = pa.array([2, 4, 6, None]) check_np_ufunc(a, b, expected) def test_np_ufunc_op_chunked_scalar(): a = pa.chunked_array([[1, 2], [3, None]]) b = 4 expected = pa.array([5, 6, 7, None]) check_np_ufunc(a, b, expected) def test_np_ufunc_op_flat_flat(): a = pa.array([1, 2, 3, None, None]) b = pa.array([1, 2, 3, 4, None]) expected = pa.array([2, 4, 6, None, None]) check_np_ufunc(a, b, expected) def test_np_ufunc_op_flat_np_array(): a = pa.array([1, 2, 3, None]) b = np.array([1, 2, 3, 4]) expected = pa.array([2, 4, 6, None]) check_np_ufunc(a, b, expected) def test_np_ufunc_op_flat_scalar(): a = pa.array([1, 2, 3, None]) b = 4 expected = pa.array([5, 6, 7, None]) check_np_ufunc(a, b, expected) def test_merge_valid_bitmaps(): a = pa.array([1, 1, 1, 1, 1, 1, 1, 1, 1]) b = pa.array([1, 1, 1, None, None, None, 1, 1, 1]) expected = np.array([0xFF, 0x1], dtype=np.uint8) result = _merge_valid_bitmaps(a, a) npt.assert_array_equal(result, expected) expected = np.array([0xC7, 0x1], dtype=np.uint8) result = _merge_valid_bitmaps(a, b) npt.assert_array_equal(result, expected) expected = np.array([0x1], dtype=np.uint8) result = _merge_valid_bitmaps(a.slice(8, 1), a.slice(8, 1)) npt.assert_array_equal(result, expected) expected = np.array([0xF], dtype=np.uint8) result = _merge_valid_bitmaps(a.slice(0, 4), a.slice(0, 4)) npt.assert_array_equal(result, expected) expected = np.array([0x7], dtype=np.uint8) result = _merge_valid_bitmaps(a.slice(0, 4), b.slice(0, 4)) npt.assert_array_equal(result, expected) expected = np.array([0xF], dtype=np.uint8) result = _merge_valid_bitmaps(a.slice(5, 4), a.slice(5, 4)) npt.assert_array_equal(result, expected) expected = np.array([0xE], dtype=np.uint8) result = _merge_valid_bitmaps(a.slice(5, 4), b.slice(5, 4)) npt.assert_array_equal(result, expected) expected = np.array([0x3], dtype=np.uint8) result = _merge_valid_bitmaps(a.slice(5, 2), a.slice(5, 2)) npt.assert_array_equal(result, expected) expected = np.array([0x2], dtype=np.uint8) result = _merge_valid_bitmaps(a.slice(5, 2), b.slice(5, 2)) npt.assert_array_equal(result, expected) expected = np.array([0x3], dtype=np.uint8) result = _merge_valid_bitmaps(a.slice(5, 2), a.slice(3, 2)) npt.assert_array_equal(result, expected) expected = np.array([0x0], dtype=np.uint8) result = _merge_valid_bitmaps(a.slice(5, 2), b.slice(3, 2)) npt.assert_array_equal(result, expected)
py
1a3a2a98e89c3ee8a69a023e04140f2d3face4d2
# Copyright 2020, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Libraries for constructing federated aggregation. For example uses of the symbols in this module, see [Tuning recommended aggregations for learning]( https://www.tensorflow.org/federated/tutorials/tuning_recommended_aggregators) tutorial, and for details of the design and how to implement new aggregations, see [Implementing Custom Aggregations]( https://www.tensorflow.org/federated/tutorials/custom_aggregators) tutorial. """ from tensorflow_federated.python.aggregators.differential_privacy import DifferentiallyPrivateFactory from tensorflow_federated.python.aggregators.encoded import EncodedSumFactory from tensorflow_federated.python.aggregators.factory import AggregationFactory from tensorflow_federated.python.aggregators.factory import UnweightedAggregationFactory from tensorflow_federated.python.aggregators.factory import WeightedAggregationFactory from tensorflow_federated.python.aggregators.mean import MeanFactory from tensorflow_federated.python.aggregators.mean import UnweightedMeanFactory from tensorflow_federated.python.aggregators.quantile_estimation import PrivateQuantileEstimationProcess from tensorflow_federated.python.aggregators.robust import clipping_factory from tensorflow_federated.python.aggregators.robust import zeroing_factory from tensorflow_federated.python.aggregators.sampling import UnweightedReservoirSamplingFactory from tensorflow_federated.python.aggregators.secure import SecureSumFactory from tensorflow_federated.python.aggregators.sum_factory import SumFactory
py
1a3a2b0bba9f130977723b63e47b742cd692be40
""" Python Markdown A Python implementation of John Gruber's Markdown. Documentation: https://python-markdown.github.io/ GitHub: https://github.com/Python-Markdown/markdown/ PyPI: https://pypi.org/project/Markdown/ Started by Manfred Stienstra (http://www.dwerg.net/). Maintained for a few years by Yuri Takhteyev (http://www.freewisdom.org). Currently maintained by Waylan Limberg (https://github.com/waylan), Dmitry Shachnev (https://github.com/mitya57) and Isaac Muse (https://github.com/facelessuser). Copyright 2007-2018 The Python Markdown Project (v. 1.7 and later) Copyright 2004, 2005, 2006 Yuri Takhteyev (v. 0.2-1.6b) Copyright 2004 Manfred Stienstra (the original version) License: BSD (see LICENSE.md for details). """ from markdown.test_tools import TestCase class TestFootnotes(TestCase): default_kwargs = {'extensions': ['footnotes']} maxDiff = None def test_basic_footnote(self): self.assertMarkdownRenders( self.dedent( """ paragraph[^1] [^1]: A Footnote """ ), '<p>paragraph<sup id="fnref:1"><a class="footnote-ref" href="#fn:1">1</a></sup></p>\n' '<div class="footnote">\n' '<hr />\n' '<ol>\n' '<li id="fn:1">\n' '<p>A Footnote&#160;<a class="footnote-backref" href="#fnref:1"' ' title="Jump back to footnote 1 in the text">&#8617;</a></p>\n' '</li>\n' '</ol>\n' '</div>' ) def test_multiple_footnotes(self): self.assertMarkdownRenders( self.dedent( """ foo[^1] bar[^2] [^1]: Footnote 1 [^2]: Footnote 2 """ ), '<p>foo<sup id="fnref:1"><a class="footnote-ref" href="#fn:1">1</a></sup></p>\n' '<p>bar<sup id="fnref:2"><a class="footnote-ref" href="#fn:2">2</a></sup></p>\n' '<div class="footnote">\n' '<hr />\n' '<ol>\n' '<li id="fn:1">\n' '<p>Footnote 1&#160;<a class="footnote-backref" href="#fnref:1"' ' title="Jump back to footnote 1 in the text">&#8617;</a></p>\n' '</li>\n' '<li id="fn:2">\n' '<p>Footnote 2&#160;<a class="footnote-backref" href="#fnref:2"' ' title="Jump back to footnote 2 in the text">&#8617;</a></p>\n' '</li>\n' '</ol>\n' '</div>' ) def test_multiple_footnotes_multiline(self): self.assertMarkdownRenders( self.dedent( """ foo[^1] bar[^2] [^1]: Footnote 1 line 2 [^2]: Footnote 2 """ ), '<p>foo<sup id="fnref:1"><a class="footnote-ref" href="#fn:1">1</a></sup></p>\n' '<p>bar<sup id="fnref:2"><a class="footnote-ref" href="#fn:2">2</a></sup></p>\n' '<div class="footnote">\n' '<hr />\n' '<ol>\n' '<li id="fn:1">\n' '<p>Footnote 1\nline 2&#160;<a class="footnote-backref" href="#fnref:1"' ' title="Jump back to footnote 1 in the text">&#8617;</a></p>\n' '</li>\n' '<li id="fn:2">\n' '<p>Footnote 2&#160;<a class="footnote-backref" href="#fnref:2"' ' title="Jump back to footnote 2 in the text">&#8617;</a></p>\n' '</li>\n' '</ol>\n' '</div>' ) def test_footnote_multi_line(self): self.assertMarkdownRenders( self.dedent( """ paragraph[^1] [^1]: A Footnote line 2 """ ), '<p>paragraph<sup id="fnref:1"><a class="footnote-ref" href="#fn:1">1</a></sup></p>\n' '<div class="footnote">\n' '<hr />\n' '<ol>\n' '<li id="fn:1">\n' '<p>A Footnote\nline 2&#160;<a class="footnote-backref" href="#fnref:1"' ' title="Jump back to footnote 1 in the text">&#8617;</a></p>\n' '</li>\n' '</ol>\n' '</div>' ) def test_footnote_multi_line_lazy_indent(self): self.assertMarkdownRenders( self.dedent( """ paragraph[^1] [^1]: A Footnote line 2 """ ), '<p>paragraph<sup id="fnref:1"><a class="footnote-ref" href="#fn:1">1</a></sup></p>\n' '<div class="footnote">\n' '<hr />\n' '<ol>\n' '<li id="fn:1">\n' '<p>A Footnote\nline 2&#160;<a class="footnote-backref" href="#fnref:1"' ' title="Jump back to footnote 1 in the text">&#8617;</a></p>\n' '</li>\n' '</ol>\n' '</div>' ) def test_footnote_multi_line_complex(self): self.assertMarkdownRenders( self.dedent( """ paragraph[^1] [^1]: A Footnote line 2 * list item > blockquote """ ), '<p>paragraph<sup id="fnref:1"><a class="footnote-ref" href="#fn:1">1</a></sup></p>\n' '<div class="footnote">\n' '<hr />\n' '<ol>\n' '<li id="fn:1">\n' '<p>A Footnote\nline 2</p>\n' '<ul>\n<li>list item</li>\n</ul>\n' '<blockquote>\n<p>blockquote</p>\n</blockquote>\n' '<p><a class="footnote-backref" href="#fnref:1"' ' title="Jump back to footnote 1 in the text">&#8617;</a></p>\n' '</li>\n' '</ol>\n' '</div>' ) def test_footnote_multple_complex(self): self.assertMarkdownRenders( self.dedent( """ foo[^1] bar[^2] [^1]: A Footnote line 2 * list item > blockquote [^2]: Second footnote paragraph 2 """ ), '<p>foo<sup id="fnref:1"><a class="footnote-ref" href="#fn:1">1</a></sup></p>\n' '<p>bar<sup id="fnref:2"><a class="footnote-ref" href="#fn:2">2</a></sup></p>\n' '<div class="footnote">\n' '<hr />\n' '<ol>\n' '<li id="fn:1">\n' '<p>A Footnote\nline 2</p>\n' '<ul>\n<li>list item</li>\n</ul>\n' '<blockquote>\n<p>blockquote</p>\n</blockquote>\n' '<p><a class="footnote-backref" href="#fnref:1"' ' title="Jump back to footnote 1 in the text">&#8617;</a></p>\n' '</li>\n' '<li id="fn:2">\n' '<p>Second footnote</p>\n' '<p>paragraph 2&#160;<a class="footnote-backref" href="#fnref:2"' ' title="Jump back to footnote 2 in the text">&#8617;</a></p>\n' '</li>\n' '</ol>\n' '</div>' ) def test_footnote_multple_complex_no_blank_line_between(self): self.assertMarkdownRenders( self.dedent( """ foo[^1] bar[^2] [^1]: A Footnote line 2 * list item > blockquote [^2]: Second footnote paragraph 2 """ ), '<p>foo<sup id="fnref:1"><a class="footnote-ref" href="#fn:1">1</a></sup></p>\n' '<p>bar<sup id="fnref:2"><a class="footnote-ref" href="#fn:2">2</a></sup></p>\n' '<div class="footnote">\n' '<hr />\n' '<ol>\n' '<li id="fn:1">\n' '<p>A Footnote\nline 2</p>\n' '<ul>\n<li>list item</li>\n</ul>\n' '<blockquote>\n<p>blockquote</p>\n</blockquote>\n' '<p><a class="footnote-backref" href="#fnref:1"' ' title="Jump back to footnote 1 in the text">&#8617;</a></p>\n' '</li>\n' '<li id="fn:2">\n' '<p>Second footnote</p>\n' '<p>paragraph 2&#160;<a class="footnote-backref" href="#fnref:2"' ' title="Jump back to footnote 2 in the text">&#8617;</a></p>\n' '</li>\n' '</ol>\n' '</div>' ) def test_backlink_text(self): """Test backlink configuration.""" self.assertMarkdownRenders( 'paragraph[^1]\n\n[^1]: A Footnote', '<p>paragraph<sup id="fnref:1"><a class="footnote-ref" href="#fn:1">1</a></sup></p>\n' '<div class="footnote">\n' '<hr />\n' '<ol>\n' '<li id="fn:1">\n' '<p>A Footnote&#160;<a class="footnote-backref" href="#fnref:1"' ' title="Jump back to footnote 1 in the text">back</a></p>\n' '</li>\n' '</ol>\n' '</div>', extension_configs={'footnotes': {'BACKLINK_TEXT': 'back'}} ) def test_footnote_separator(self): """Test separator configuration.""" self.assertMarkdownRenders( 'paragraph[^1]\n\n[^1]: A Footnote', '<p>paragraph<sup id="fnref-1"><a class="footnote-ref" href="#fn-1">1</a></sup></p>\n' '<div class="footnote">\n' '<hr />\n' '<ol>\n' '<li id="fn-1">\n' '<p>A Footnote&#160;<a class="footnote-backref" href="#fnref-1"' ' title="Jump back to footnote 1 in the text">&#8617;</a></p>\n' '</li>\n' '</ol>\n' '</div>', extension_configs={'footnotes': {'SEPARATOR': '-'}} )
py
1a3a2b293650433b0d7cacb0faeba913c9351b36
from __future__ import print_function import gdbremote_testcase from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class TestGdbRemoteAuxvSupport(gdbremote_testcase.GdbRemoteTestCaseBase): mydir = TestBase.compute_mydir(__file__) AUXV_SUPPORT_FEATURE_NAME = "qXfer:auxv:read" @skipIfDarwinEmbedded # <rdar://problem/34539270> lldb-server tests not updated to work on ios etc yet def has_auxv_support(self): inferior_args = ["message:main entered", "sleep:5"] procs = self.prep_debug_monitor_and_inferior( inferior_args=inferior_args) # Don't do anything until we match the launched inferior main entry output. # Then immediately interrupt the process. # This prevents auxv data being asked for before it's ready and leaves # us in a stopped state. self.test_sequence.add_log_lines([ # Start the inferior... "read packet: $c#63", # ... match output.... {"type": "output_match", "regex": self.maybe_strict_output_regex( r"message:main entered\r\n")}, ], True) # ... then interrupt. self.add_interrupt_packets() self.add_qSupported_packets() context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) features = self.parse_qSupported_response(context) return self.AUXV_SUPPORT_FEATURE_NAME in features and features[ self.AUXV_SUPPORT_FEATURE_NAME] == "+" def get_raw_auxv_data(self): # Start up llgs and inferior, and check for auxv support. if not self.has_auxv_support(): self.skipTest("auxv data not supported") # Grab pointer size for target. We'll assume that is equivalent to an unsigned long on the target. # Auxv is specified in terms of pairs of unsigned longs. self.reset_test_sequence() self.add_process_info_collection_packets() context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) proc_info = self.parse_process_info_response(context) self.assertIsNotNone(proc_info) self.assertTrue("ptrsize" in proc_info) word_size = int(proc_info["ptrsize"]) OFFSET = 0 LENGTH = 0x400 # Grab the auxv data. self.reset_test_sequence() self.test_sequence.add_log_lines( [ "read packet: $qXfer:auxv:read::{:x},{:x}:#00".format( OFFSET, LENGTH), { "direction": "send", "regex": re.compile( r"^\$([^E])(.*)#[0-9a-fA-F]{2}$", re.MULTILINE | re.DOTALL), "capture": { 1: "response_type", 2: "content_raw"}}], True) context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) # Ensure we end up with all auxv data in one packet. # FIXME don't assume it all comes back in one packet. self.assertEqual(context.get("response_type"), "l") # Decode binary data. content_raw = context.get("content_raw") self.assertIsNotNone(content_raw) return (word_size, self.decode_gdbremote_binary(content_raw)) def supports_auxv(self): # When non-auxv platforms support llgs, skip the test on platforms # that don't support auxv. self.assertTrue(self.has_auxv_support()) # # We skip the "supports_auxv" test on debugserver. The rest of the tests # appropriately skip the auxv tests if the support flag is not present # in the qSupported response, so the debugserver test bits are still there # in case debugserver code one day does have auxv support and thus those # tests don't get skipped. # @skipIfWindows # no auxv support. @llgs_test def test_supports_auxv_llgs(self): self.init_llgs_test() self.build() self.set_inferior_startup_launch() self.supports_auxv() def auxv_data_is_correct_size(self): (word_size, auxv_data) = self.get_raw_auxv_data() self.assertIsNotNone(auxv_data) # Ensure auxv data is a multiple of 2*word_size (there should be two # unsigned long fields per auxv entry). self.assertEqual(len(auxv_data) % (2 * word_size), 0) # print("auxv contains {} entries".format(len(auxv_data) / (2*word_size))) @debugserver_test def test_auxv_data_is_correct_size_debugserver(self): self.init_debugserver_test() self.build() self.set_inferior_startup_launch() self.auxv_data_is_correct_size() @skipIfWindows @expectedFailureNetBSD @llgs_test def test_auxv_data_is_correct_size_llgs(self): self.init_llgs_test() self.build() self.set_inferior_startup_launch() self.auxv_data_is_correct_size() def auxv_keys_look_valid(self): (word_size, auxv_data) = self.get_raw_auxv_data() self.assertIsNotNone(auxv_data) # Grab endian. self.reset_test_sequence() self.add_process_info_collection_packets() context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) process_info = self.parse_process_info_response(context) self.assertIsNotNone(process_info) endian = process_info.get("endian") self.assertIsNotNone(endian) auxv_dict = self.build_auxv_dict(endian, word_size, auxv_data) self.assertIsNotNone(auxv_dict) # Verify keys look reasonable. for auxv_key in auxv_dict: self.assertTrue(auxv_key >= 1) self.assertTrue(auxv_key <= 1000) # print("auxv dict: {}".format(auxv_dict)) @debugserver_test def test_auxv_keys_look_valid_debugserver(self): self.init_debugserver_test() self.build() self.set_inferior_startup_launch() self.auxv_keys_look_valid() @skipIfWindows @expectedFailureNetBSD @llgs_test def test_auxv_keys_look_valid_llgs(self): self.init_llgs_test() self.build() self.set_inferior_startup_launch() self.auxv_keys_look_valid() def auxv_chunked_reads_work(self): # Verify that multiple smaller offset,length reads of auxv data # return the same data as a single larger read. # Grab the auxv data with a single large read here. (word_size, auxv_data) = self.get_raw_auxv_data() self.assertIsNotNone(auxv_data) # Grab endian. self.reset_test_sequence() self.add_process_info_collection_packets() context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) process_info = self.parse_process_info_response(context) self.assertIsNotNone(process_info) endian = process_info.get("endian") self.assertIsNotNone(endian) auxv_dict = self.build_auxv_dict(endian, word_size, auxv_data) self.assertIsNotNone(auxv_dict) iterated_auxv_data = self.read_binary_data_in_chunks( "qXfer:auxv:read::", 2 * word_size) self.assertIsNotNone(iterated_auxv_data) auxv_dict_iterated = self.build_auxv_dict( endian, word_size, iterated_auxv_data) self.assertIsNotNone(auxv_dict_iterated) # Verify both types of data collection returned same content. self.assertEqual(auxv_dict_iterated, auxv_dict) @debugserver_test def test_auxv_chunked_reads_work_debugserver(self): self.init_debugserver_test() self.build() self.set_inferior_startup_launch() self.auxv_chunked_reads_work() @skipIfWindows @expectedFailureNetBSD @llgs_test def test_auxv_chunked_reads_work_llgs(self): self.init_llgs_test() self.build() self.set_inferior_startup_launch() self.auxv_chunked_reads_work()
py
1a3a2bc4aac8f2a9636e322026f110532a792b57
# coding: utf-8 """ grafeas.proto No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: v1beta1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class V1beta1NoteKind(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ allowed enum values """ NOTE_KIND_UNSPECIFIED = "NOTE_KIND_UNSPECIFIED" VULNERABILITY = "VULNERABILITY" BUILD = "BUILD" IMAGE = "IMAGE" PACKAGE = "PACKAGE" DEPLOYMENT = "DEPLOYMENT" DISCOVERY = "DISCOVERY" ATTESTATION = "ATTESTATION" INTOTO = "INTOTO" SBOM = "SBOM" SPDX_PACKAGE = "SPDX_PACKAGE" SPDX_FILE = "SPDX_FILE" SPDX_RELATIONSHIP = "SPDX_RELATIONSHIP" """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { } attribute_map = { } def __init__(self): # noqa: E501 """V1beta1NoteKind - a model defined in Swagger""" # noqa: E501 self.discriminator = None def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(V1beta1NoteKind, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1beta1NoteKind): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
1a3a2cf146d0b356666881f4c3443c8d224ddcdd
import time import atexit import logging from apscheduler.schedulers.background import BackgroundScheduler from apscheduler.triggers.interval import IntervalTrigger from app import app from app.helper.feed import getFeed @app.before_first_request def init(): scheduler = BackgroundScheduler() scheduler.start() scheduler.add_job( func=getFeed, trigger=IntervalTrigger(minutes=30), id="get_rss_fed", name="Get Feed every 30 minutes", replace_existing=True, ) atexit.register(lambda: scheduler.shutdown()) logging.basicConfig() logging.getLogger("apscheduler").setLevel(logging.DEBUG)
py
1a3a2d1fd9ef484fc0d00b0aadb9d02d722af795
import os from unittest.mock import patch from ..decorators import messagebox_on_error, die_on_error def test_messagebox_on_error(): os.environ['GLUE_TESTING'] = 'False' def failing_function(): raise ValueError("Dialog failure") def working_function(): pass @messagebox_on_error('An error occurred') def decorated_failing_function(): failing_function() @messagebox_on_error('An error occurred') def decorated_working_function(): working_function() # Test decorator with patch('qtpy.QtWidgets.QMessageBox') as mb: decorated_failing_function() assert mb.call_args[0][2] == 'An error occurred\nDialog failure' with patch('qtpy.QtWidgets.QMessageBox') as mb: decorated_working_function() assert mb.call_count == 0 # Test context manager with patch('qtpy.QtWidgets.QMessageBox') as mb: with messagebox_on_error('An error occurred'): failing_function() assert mb.call_args[0][2] == 'An error occurred\nDialog failure' with patch('qtpy.QtWidgets.QMessageBox') as mb: with messagebox_on_error('An error occurred'): working_function() assert mb.call_count == 0 os.environ['GLUE_TESTING'] = 'True' def test_die_on_error(): os.environ['GLUE_TESTING'] = 'False' def failing_function(): raise ValueError("Dialog failure") def working_function(): pass @die_on_error('An error occurred') def decorated_failing_function(): failing_function() @die_on_error('An error occurred') def decorated_working_function(): working_function() # Test decorator with patch('sys.exit') as exit: with patch('qtpy.QtWidgets.QMessageBox') as mb: decorated_failing_function() assert mb.call_args[0][2] == 'An error occurred\nDialog failure' assert exit.called_once_with(1) with patch('sys.exit') as exit: with patch('qtpy.QtWidgets.QMessageBox') as mb: decorated_working_function() assert mb.call_count == 0 assert exit.call_count == 0 # Test context manager with patch('sys.exit') as exit: with patch('qtpy.QtWidgets.QMessageBox') as mb: with die_on_error('An error occurred'): failing_function() assert mb.call_args[0][2] == 'An error occurred\nDialog failure' assert exit.called_once_with(1) with patch('sys.exit') as exit: with patch('qtpy.QtWidgets.QMessageBox') as mb: with die_on_error('An error occurred'): working_function() assert mb.call_count == 0 assert exit.call_count == 0 os.environ['GLUE_TESTING'] = 'True'
py
1a3a2e503f85cebe33164f900024788884271b7a
# Generated by Django 2.1.10 on 2019-07-24 18:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('nodasf', '0006_county_image'), ] operations = [ migrations.AddField( model_name='congressdistrict', name='image', field=models.ImageField(blank=True, default='', upload_to='media/stock'), ), ]
py
1a3a2ee562ab1097161b7630633d804ddaa42171
# -*- coding: utf-8 -*- """This file contains a parser for the Google Drive snapshots. The Google Drive snapshots are stored in SQLite database files named snapshot.db. """ from __future__ import unicode_literals from dfdatetime import posix_time as dfdatetime_posix_time from plaso.containers import events from plaso.containers import time_events from plaso.lib import definitions from plaso.parsers import sqlite from plaso.parsers.sqlite_plugins import interface class GoogleDriveSnapshotCloudEntryEventData(events.EventData): """Google Drive snapshot cloud entry event data. Attributes: doc_type (int): document type. path (str): path of the file. shared (bool): True if the file is shared, False if the file is private. size (int): size of the file. url (str): URL of the file. """ DATA_TYPE = 'gdrive:snapshot:cloud_entry' def __init__(self): """Initializes event data.""" super(GoogleDriveSnapshotCloudEntryEventData, self).__init__( data_type=self.DATA_TYPE) self.document_type = None self.path = None self.shared = None self.size = None self.url = None class GoogleDriveSnapshotLocalEntryEventData(events.EventData): """Google Drive snapshot local entry event data. Attributes: path (str): path of the file. size (int): size of the file. """ DATA_TYPE = 'gdrive:snapshot:local_entry' def __init__(self): """Initializes event data.""" super(GoogleDriveSnapshotLocalEntryEventData, self).__init__( data_type=self.DATA_TYPE) self.path = None self.size = None class GoogleDrivePlugin(interface.SQLitePlugin): """SQLite plugin for Google Drive snapshot.db files.""" NAME = 'google_drive' DESCRIPTION = 'Parser for Google Drive SQLite database files.' # Define the needed queries. QUERIES = [ (('SELECT cloud_entry.resource_id, cloud_entry.filename, ' 'cloud_entry.modified, cloud_entry.created, cloud_entry.size, ' 'cloud_entry.doc_type, cloud_entry.shared, cloud_entry.checksum, ' 'cloud_entry.url, cloud_relations.parent_resource_id ' 'FROM cloud_entry, cloud_relations ' 'WHERE cloud_relations.child_resource_id = cloud_entry.resource_id ' 'AND cloud_entry.modified IS NOT NULL;'), 'ParseCloudEntryRow'), (('SELECT inode_number, filename, modified, checksum, size ' 'FROM local_entry WHERE modified IS NOT NULL;'), 'ParseLocalEntryRow')] # The required tables. REQUIRED_TABLES = frozenset([ 'cloud_entry', 'cloud_relations', 'local_entry', 'local_relations', 'mapping', 'overlay_status']) SCHEMAS = [{ 'cloud_entry': ( 'CREATE TABLE cloud_entry (resource_id TEXT, filename TEXT, ' 'modified INTEGER, created INTEGER, acl_role INTEGER, doc_type ' 'INTEGER, removed INTEGER, url TEXT, size INTEGER, checksum TEXT, ' 'shared INTEGER, PRIMARY KEY (resource_id))'), 'cloud_relations': ( 'CREATE TABLE cloud_relations (child_resource_id TEXT, ' 'parent_resource_id TEXT, UNIQUE (child_resource_id, ' 'parent_resource_id), FOREIGN KEY (child_resource_id) REFERENCES ' 'cloud_entry(resource_id), FOREIGN KEY (parent_resource_id) ' 'REFERENCES cloud_entry(resource_id))'), 'local_entry': ( 'CREATE TABLE local_entry (inode_number INTEGER, filename TEXT, ' 'modified INTEGER, checksum TEXT, size INTEGER, PRIMARY KEY ' '(inode_number))'), 'local_relations': ( 'CREATE TABLE local_relations (child_inode_number INTEGER, ' 'parent_inode_number INTEGER, UNIQUE (child_inode_number), FOREIGN ' 'KEY (parent_inode_number) REFERENCES local_entry(inode_number), ' 'FOREIGN KEY (child_inode_number) REFERENCES ' 'local_entry(inode_number))'), 'mapping': ( 'CREATE TABLE mapping (inode_number INTEGER, resource_id TEXT, ' 'UNIQUE (inode_number), FOREIGN KEY (inode_number) REFERENCES ' 'local_entry(inode_number), FOREIGN KEY (resource_id) REFERENCES ' 'cloud_entry(resource_id))'), 'overlay_status': ( 'CREATE TABLE overlay_status (path TEXT, overlay_status INTEGER, ' 'PRIMARY KEY (path))')}] # Queries used to build cache. LOCAL_PATH_CACHE_QUERY = ( 'SELECT local_relations.child_inode_number, ' 'local_relations.parent_inode_number, local_entry.filename ' 'FROM local_relations, local_entry ' 'WHERE local_relations.child_inode_number = local_entry.inode_number') CLOUD_PATH_CACHE_QUERY = ( 'SELECT cloud_entry.filename, cloud_entry.resource_id, ' 'cloud_relations.parent_resource_id AS parent ' 'FROM cloud_entry, cloud_relations ' 'WHERE cloud_entry.doc_type = 0 ' 'AND cloud_entry.resource_id = cloud_relations.child_resource_id') def GetLocalPath(self, inode, cache, database): """Return local path for a given inode. Args: inode: The inode number for the file. cache (SQLiteCache): cache. database (SQLiteDatabase): database. Returns: A full path, including the filename of the given inode value. """ local_path = cache.GetResults('local_path') if not local_path: results = database.Query(self.LOCAL_PATH_CACHE_QUERY) cache.CacheQueryResults( results, 'local_path', 'child_inode_number', ('parent_inode_number', 'filename')) local_path = cache.GetResults('local_path') parent, path = local_path.get(inode, [None, None]) # TODO: Read the local_sync_root from the sync_config.db and use that # for a root value. root_value = '%local_sync_root%/' if not path: return root_value paths = [] while path: paths.append(path) parent, path = local_path.get(parent, [None, None]) if not paths: return root_value # Paths are built top level to root so we need to reverse the list to # represent them in the traditional order. paths.reverse() return root_value + '/'.join(paths) def GetCloudPath(self, resource_id, cache, database): """Return cloud path given a resource id. Args: resource_id: The resource_id for the file. cache: The local cache object. database: A database object (instance of SQLiteDatabase). Returns: A full path to the resource value. """ cloud_path = cache.GetResults('cloud_path') if not cloud_path: results = database.Query(self.CLOUD_PATH_CACHE_QUERY) cache.CacheQueryResults( results, 'cloud_path', 'resource_id', ('filename', 'parent')) cloud_path = cache.GetResults('cloud_path') if resource_id == 'folder:root': return '/' paths = [] parent_path, parent_id = cloud_path.get(resource_id, ['', '']) while parent_path: if parent_path == 'folder:root': break paths.append(parent_path) parent_path, parent_id = cloud_path.get(parent_id, ['', '']) if not paths: return '/' # Paths are built top level to root so we need to reverse the list to # represent them in the traditional order. paths.reverse() return '/{0:s}/'.format('/'.join(paths)) def ParseCloudEntryRow( self, parser_mediator, query, row, cache=None, database=None, **unused_kwargs): """Parses a cloud entry row. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. query (str): query that created the row. row (sqlite3.Row): row. cache (SQLiteCache): cache. database (SQLiteDatabase): database. """ query_hash = hash(query) parent_resource_id = self._GetRowValue( query_hash, row, 'parent_resource_id') filename = self._GetRowValue(query_hash, row, 'filename') cloud_path = self.GetCloudPath(parent_resource_id, cache, database) cloud_filename = '{0:s}{1:s}'.format(cloud_path, filename) event_data = GoogleDriveSnapshotCloudEntryEventData() event_data.document_type = self._GetRowValue(query_hash, row, 'doc_type') event_data.path = cloud_filename event_data.query = query event_data.shared = bool(self._GetRowValue(query_hash, row, 'shared')) event_data.size = self._GetRowValue(query_hash, row, 'size') event_data.url = self._GetRowValue(query_hash, row, 'url') timestamp = self._GetRowValue(query_hash, row, 'modified') date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_MODIFICATION) parser_mediator.ProduceEventWithEventData(event, event_data) timestamp = self._GetRowValue(query_hash, row, 'created') if timestamp: date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_CREATION) parser_mediator.ProduceEventWithEventData(event, event_data) def ParseLocalEntryRow( self, parser_mediator, query, row, cache=None, database=None, **unused_kwargs): """Parses a local entry row. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. query (str): query that created the row. row (sqlite3.Row): row. cache (Optional[SQLiteCache]): cache. database (Optional[SQLiteDatabase]): database. """ query_hash = hash(query) inode_number = self._GetRowValue(query_hash, row, 'inode_number') local_path = self.GetLocalPath(inode_number, cache, database) event_data = GoogleDriveSnapshotLocalEntryEventData() event_data.path = local_path event_data.query = query event_data.size = self._GetRowValue(query_hash, row, 'size') timestamp = self._GetRowValue(query_hash, row, 'modified') date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_MODIFICATION) parser_mediator.ProduceEventWithEventData(event, event_data) sqlite.SQLiteParser.RegisterPlugin(GoogleDrivePlugin)
py
1a3a302ca8ea9e3c9f998c3e303d48e4bd177b45
import os import pytest from conda_build import api from .utils import fail_dir, metadata_dir @pytest.mark.parametrize("pkg_format,pkg_ext", [(None, ".tar.bz2"), ("2", ".conda")]) def test_conda_pkg_format( pkg_format, pkg_ext, testing_config, testing_workdir, monkeypatch, capfd ): """Conda package format "2" builds .conda packages.""" # Build the "entry_points" recipe, which contains a test pass for package. recipe = os.path.join(metadata_dir, "entry_points") # These variables are defined solely for testing purposes, # so they can be checked within build scripts testing_config.activate = True testing_config.conda_pkg_format = pkg_format monkeypatch.setenv("CONDA_TEST_VAR", "conda_test") monkeypatch.setenv("CONDA_TEST_VAR_2", "conda_test_2") output_file, = api.get_output_file_paths(recipe, config=testing_config) assert output_file.endswith(pkg_ext) api.build(recipe, config=testing_config) assert os.path.exists(output_file) out, err = capfd.readouterr() # Verify that test pass ran through api assert "Manual entry point" in out assert "TEST END: %s" % output_file in out
py
1a3a30a4899d1d14fb4e1c1ee6fdd72771b03e54
from openpyxl import load_workbook from docx import Document from docx.oxml.ns import qn import os # 设置文档字体 def set_font(document): document.styles['Normal'].font.name = u'宋体' document.styles['Normal']._element.rPr.rFonts.set(qn('w:eastAsia'), u'宋体') def get_ws(file_path): # 读取excel xlsx文件 wb = load_workbook(file_path) # 打开现有工作表 ws = wb.active # 默认对第一张工作表进行操作 return ws def get_title(ws): title = [] for col_index in range(ws.max_column): title.append(ws.cell(row=1, column=col_index+1).value) return title def print_title(title): print("表头字段如下:") for t in title: print(t,end=" ") print() def enter_choice(): optional = '是否YyNn' sure = '是Yy' while True: try: choice = input("是否采用与字段内容无关的数值递增的文件命名方式?(是/否)(y/n):\n") if choice not in optional: # 如果输入不在可选字符范围 raise ValueError("需输入'是'、'否'、'y'、'n'中的一个字符") break except Exception as err: print("输入不符合要求:{}\n请重新输入".format(repr(err))) if choice in sure: return True else: return False def enter_name_rules(title): while True: try: print("请输入命名字段") name_title = input() if name_title not in title: raise ValueError("请原样输入表头中的一个字段") name_rules = title.index(name_title) break except Exception as err: print(err) return name_rules # 转换成word表格 def excel_to_table(ws,name_rules,default_value,save_dir='ExcelToWordResult'): ''' :param ws: load_workbook处理后的工作簿对象 :param name_rules: 命名规则 :param default_value: 命名缺省值 :return: ''' # 获取行列数 if not os.path.exists(save_dir): os.makedirs(save_dir) row_num = ws.max_row column_num = ws.max_column # for row in ws.rows: # ws.rows是一个存储每行ceil的元组 # for ceil in row: # print(ceil.value) # 写入word文件 for row_index in range(1,row_num): # 跳过表头,写入每个记录 # 创建word文档 document = Document() # 设置文档字体 set_font(document) # 在word文档中添加表格 tbobj = document.add_table(rows=2, cols=column_num, style="Table Grid") # 添加表头以及记录 for col_index in range(column_num): tbobj.cell(0, col_index).text = str(ws.cell(row=1, column=col_index+1).value) # 添加表头 tbobj.cell(1, col_index).text = str(ws.cell(row=row_index+1, column=col_index+1).value) # 添加记录 if name_rules == default_value: # 如果采用默认命名(数字递增) filename = str(row_index) + '.docx' # 文件名 else: filename = str(ws.cell(row=row_index+1, column=name_rules+1).value) + '.docx' # 保存文件 save_path = save_dir + '\\' + filename try: # 涉及文件IO,进行异常处理 document.save(save_path) # 输出文件存储路径的提示信息 current_path = os.getcwd() # 获得当前路径 print("当前路径是{}".format(current_path)) print("{} 存储成功".format(save_path)) except Exception as err: print(err) print("文件存储失败") def main(file_path): ws = get_ws(file_path) # 获取工作簿对象 title = get_title(ws) # 获取其表头字段 print_title(title) choice = enter_choice() # 由用户指定是否采用数值递增命名 default_value = -1 # 命名方式缺省值 if choice: name_rules = default_value else: name_rules = enter_name_rules(title) excel_to_table(ws, name_rules, default_value) # 以表格形式写入批量word if __name__ == "__main__": file_path = '学生信息表.xlsx' main(file_path)
py
1a3a31f7104038e95603784abaed8bea8bad9317
import datetime import inspect import json import logging import logging.config import os import pathlib from types import ModuleType from typing import Any, Callable, ContextManager, List, Optional, Union import dotenv import orjson # type: ignore import sentry_sdk import structlog import platform import tempfile from structlog_sentry_logger import structlog_sentry ROOT_DIR = pathlib.Path("/tmp" if platform.system() == "Darwin" else tempfile.gettempdir()) LOG_DATA_DIR = ROOT_DIR / ".logs" LOG_DATA_DIR.mkdir(exist_ok=True) DATETIME_FORMAT = "iso" _CONFIGS = {"USE_ORJSON": True} def _toggle_json_library(use_orjson: bool = True) -> None: _CONFIGS["USE_ORJSON"] = use_orjson def get_namespaced_module_name(__file__: Union[pathlib.Path, str]) -> str: fully_qualified_path = pathlib.Path(__file__).resolve() prefix_dir = str(ROOT_DIR) if str(ROOT_DIR) in str(fully_qualified_path) else "/" namespaces = fully_qualified_path.relative_to(prefix_dir).with_suffix("").parts return ".".join(namespaces) def get_caller_name(prev_stack_frame: inspect.FrameInfo) -> str: deduced_calling_module = deduce_module(prev_stack_frame) return ( deduced_calling_module.__name__ if deduced_calling_module and not is_caller_main(deduced_calling_module.__name__) else get_namespaced_module_name(prev_stack_frame.filename) ) def deduce_module(prev_stack_frame: inspect.FrameInfo) -> Optional[ModuleType]: return inspect.getmodule(prev_stack_frame[0]) def get_caller_name_from_frames(stack_frames: List[inspect.FrameInfo]) -> str: prev_stack_frame = stack_frames[1] if __file__.endswith(".py") else stack_frames[0] return get_caller_name(prev_stack_frame) def get_logger(name: Optional[str] = None) -> Any: """ Convenience function that returns a logger Returns: A proxy that creates a correctly configured logger bound to the __name__ of the calling module """ del name stack_frames = inspect.stack() caller_name = get_caller_name_from_frames(stack_frames) if not structlog.is_configured(): timestamper = structlog.processors.TimeStamper(fmt=DATETIME_FORMAT) set_logging_config(caller_name, timestamper) set_structlog_config(timestamper) logger = structlog.get_logger(caller_name) logger.setLevel(logging.DEBUG) return logger getLogger = get_logger """ CamelCase alias for `structlog_sentry_logger.get_logger`. """ def get_config_dict() -> dict: """ Convenience function to get the local logging configuration dictionary, e.g., to help configure loggers from other libraries. Returns: The logging configuration dictionary that would be used to configure the Python logging library component of the logger """ stack_frames = inspect.stack() caller_name = get_caller_name_from_frames(stack_frames) timestamper = structlog.processors.TimeStamper(fmt=DATETIME_FORMAT) return get_logging_config(caller_name, timestamper) def is_caller_main(caller_name: str) -> bool: return caller_name == "__main__" def get_logging_config( module_name: str, timestamper: structlog.processors.TimeStamper ) -> dict: handlers = get_handlers(module_name) return { "version": 1, "disable_existing_loggers": False, "formatters": (get_formatters(timestamper)), "handlers": handlers, "loggers": { "": { "handlers": list(handlers.keys()), "level": "WARNING", "propagate": True, } }, } def set_logging_config( module_name: str, timestamper: structlog.processors.TimeStamper ) -> None: config_dict = get_logging_config(module_name, timestamper) logging.config.dictConfig(config_dict) def get_formatters(timestamper: structlog.processors.TimeStamper) -> dict: pre_chain = [ # Add the log level and a timestamp to the event_dict if the log # entry is not from structlog. structlog.stdlib.add_log_level, timestamper, structlog.stdlib.add_logger_name, ] return { "plain": { "()": structlog.stdlib.ProcessorFormatter, "processor": structlog.processors.JSONRenderer( serializer=serializer, option=orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS, ), "foreign_pre_chain": pre_chain, }, "colored": { "()": structlog.stdlib.ProcessorFormatter, "processor": structlog.dev.ConsoleRenderer(colors=True), "format": "%(message)s [in %(funcName)s]", "foreign_pre_chain": pre_chain, }, } def serializer( *args: Any, default: Optional[Callable[[Any], Any]] = None, option: Optional[int] = orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS, ) -> str: if _CONFIGS["USE_ORJSON"]: return orjson.dumps(*args, default=default, option=option).decode() # type: ignore[misc] return json.dumps(*args, sort_keys=True) def get_handlers(module_name: str) -> dict: default_key = "default" base_handlers = { default_key: { "level": "DEBUG", "class": "logging.StreamHandler", "stream": "ext://sys.stdout", } } if _ENV_VARS_REQUIRED_BY_LIBRARY[get_handlers] in os.environ: # Prettify stdout/stderr streams base_handlers[default_key]["formatter"] = "colored" # Add filename handler file_timestamp = datetime.datetime.utcnow().isoformat().replace(":", "-") log_file_name = f"{file_timestamp}_{module_name}.jsonl" log_file_path = LOG_DATA_DIR / log_file_name base_handlers["filename"] = { "level": "DEBUG", "class": "logging.handlers.RotatingFileHandler", "filename": str(log_file_path), # 1 MB "maxBytes": 1 << 20, # type: ignore[dict-item] "backupCount": 3, # type: ignore[dict-item] "formatter": "plain", } else: base_handlers[default_key]["formatter"] = "plain" return base_handlers def set_structlog_config(timestamper: structlog.processors.TimeStamper) -> None: structlog_processors = [ timestamper, structlog.processors.StackInfoRenderer(), add_severity_field_from_level_if_in_cloud_environment, ] stdlib_log_compatibility_processors = [ structlog.stdlib.filter_by_level, structlog.stdlib.add_log_level, structlog.stdlib.add_logger_name, structlog.stdlib.PositionalArgumentsFormatter(), SentryBreadcrumbJsonProcessor(level=logging.ERROR, tag_keys="__all__"), ] # Note: MUST come last! format_wrapper_processer = [structlog.stdlib.ProcessorFormatter.wrap_for_formatter] structlog.configure( processors=( stdlib_log_compatibility_processors # type: ignore[arg-type] + structlog_processors + format_wrapper_processer # type: ignore[arg-type,operator] ), # See [Performance](https://www.structlog.org/en/stable/performance.html) # for an in-depth explanation of the below settings context_class=dict, logger_factory=structlog.stdlib.LoggerFactory(), wrapper_class=structlog.stdlib.BoundLogger, cache_logger_on_first_use=True, ) def add_severity_field_from_level_if_in_cloud_environment( logger: Any, # pylint: disable=unused-argument method: str, # pylint: disable=unused-argument event_dict: structlog.types.EventDict, ) -> structlog.types.EventDict: """A custom processor for structlog for Cloud Logging compatibility Since Cloud Logging infers log levels from the `severity` key, simply duplicates `level` to the `severity` field in the logger's event dictionary. """ if ( is_cloud_logging_compatibility_mode_requested() or is_probably_in_cloud_environment() ): cloud_logging_log_level_key, python_log_level_key = "severity", "level" if cloud_logging_log_level_key in event_dict: # Dogfood by instantiating a local logger with own library. # Note: NO infinite loop since the below log message does *NOT* use # `severity` as a key in the emitted event. local_logger = get_logger() local_logger.warning( "Existing log value being overwritten", src_key=python_log_level_key, dest_key=cloud_logging_log_level_key, old_value=event_dict[cloud_logging_log_level_key], new_value=event_dict[python_log_level_key], logger_name=logger.name, ) event_dict[cloud_logging_log_level_key] = event_dict[python_log_level_key] return event_dict def is_cloud_logging_compatibility_mode_requested() -> bool: return ( _ENV_VARS_REQUIRED_BY_LIBRARY[is_cloud_logging_compatibility_mode_requested] in os.environ ) def is_probably_in_cloud_environment() -> bool: """Returns True if it is *likely* (but not guaranteed) logging is occurring in the context of a Cloud Logging environment""" for env_var in [ # GKE # There are no GKE-specific environment variable that definitively imply we are # running in GKE... Falling back to detecting Kubernetes-injected environment # variables since those are the only ones present in GKE pods that *could* imply # we are running in GKE. # Kubernetes # see: https://kubernetes.io/docs/concepts/services-networking/connect-applications-service/#environment-variables "KUBERNETES_SERVICE_HOST", # Cloud Function # see: https://cloud.google.com/functions/docs/configuring/env-var#runtime_environment_variables_set_automatically "GCP_PROJECT", # GAE # see: https://cloud.google.com/functions/docs/configuring/env-var#runtime_environment_variables_set_automatically "GOOGLE_CLOUD_PROJECT", ]: if env_var in os.environ: return True return False _ENV_VARS_REQUIRED_BY_LIBRARY = { get_handlers: "STRUCTLOG_SENTRY_LOGGER_LOCAL_DEVELOPMENT_LOGGING_MODE_ON", is_cloud_logging_compatibility_mode_requested: "STRUCTLOG_SENTRY_LOGGER_CLOUD_LOGGING_COMPATIBILITY_MODE_ON", sentry_sdk.init: "SENTRY_DSN", } class SentryBreadcrumbJsonProcessor(structlog_sentry.SentryJsonProcessor): """ Addresses: `SentryJsonProcessor breaks logging breadcrumbs #25`_ (source_) .. _`SentryJsonProcessor breaks logging breadcrumbs #25`: https://github.com/kiwicom/structlog-sentry/issues/25 .. _`source`: https://github.com/kiwicom/structlog-sentry/issues/25#issuecomment-660292563 """ def __init__( # pylint: disable=too-many-arguments self, breadcrumb_level: int = logging.INFO, level: int = logging.WARNING, active: bool = True, as_extra: bool = True, tag_keys: Union[List[str], str] = None, ) -> None: self.breadcrumb_level = breadcrumb_level super().__init__( level=level, active=active, as_extra=as_extra, tag_keys=tag_keys ) @staticmethod def save_breadcrumb(logger: Any, event_dict: structlog.types.EventDict) -> None: data = event_dict.copy() # type: ignore[attr-defined] data.pop("event") data.pop("logger", None) data.pop("level", None) data.pop("timestamp", None) breadcrumb = { "ty": "log", "level": event_dict["level"].lower(), "category": event_dict.get("logger") or logger.name, "message": event_dict["event"], "data": data, } sentry_sdk.add_breadcrumb(breadcrumb, hint={"event_dict": event_dict}) def __call__( self, logger: Any, method: str, event_dict: structlog.types.EventDict ) -> structlog.types.EventDict: do_breadcrumb = ( getattr(logging, event_dict["level"].upper()) >= self.breadcrumb_level ) if do_breadcrumb: self.save_breadcrumb(logger, event_dict) return super().__call__(logger=logger, method=method, event_dict=event_dict) def _load_library_specific_env_vars() -> None: # Inject into the environment ONLY the env vars required by the library; # we manually update/add to the the environment ONLY the keys in a user's `.env` for # which the library is inspecting (i.e., the set intersection between the # aforementioned), and only if they weren't already defined in the environment. users_dotenv_values = dotenv.dotenv_values(dotenv.find_dotenv()) legal_env_vars_keys = ( _ENV_VARS_REQUIRED_BY_LIBRARY.values() & users_dotenv_values.keys() ) for k in legal_env_vars_keys: v = users_dotenv_values[k] # Any env-var-to-add already defined in the environment will take precedent over # what is defined in a user's `.env` file. if k not in os.environ and v is not None: os.environ[k] = v def _init_sentry() -> ContextManager[Any]: # Note: if DSN isn't defined, will silently not transmit telemetry return sentry_sdk.init() # pylint: disable=abstract-class-instantiated
py
1a3a31f9d7809d12b5019a6e79d7ab2139466622
############################################################################## # Copyright (c) 2013-2017, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the LICENSE file for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class PerlIntervaltree(PerlPackage): """Set::IntervalTree uses Interval Trees to store and efficiently look up ranges using a range-based lookup.""" homepage = "https://metacpan.org/release/Set-IntervalTree" url = "https://cpan.metacpan.org/authors/id/B/BE/BENBOOTH/Set-IntervalTree-0.10.tar.gz" version('0.10', '42efe9369f1b30e7fd04e10c07226b06') depends_on('perl-extutils-makemaker', type='build')
py
1a3a32882c34e0cfa689cf052144bcbb555bd8df
from machine import mem32 # import time import sys import uasyncio from i2c_responder_base import I2CResponderBase import calc_icmpv6_chksum class I2CResponder(I2CResponderBase): """Implementation of a (polled) Raspberry Pico I2C Responder. Subclass of the original I2CResponder class which has been renamed I2CReponderBase. See that class for more info. This new version I2CResponder implments a protocol which both Controller and Responder must adhere to in order to send longer messages. Created: March 30, 2022 By: D. Garrett """ VERSION = "2.0.1" def __init__(self, i2c_device_id=0, sda_gpio=0, scl_gpio=1, responder_address=0x41): """Initialize. Args: i2c_device_id (int, optional): The internal Pico I2C device to use (0 or 1). sda_gpio (int, optional): The gpio number of the pin to use for SDA. scl_gpio (int, optional): The gpio number of the pin to use for SCL. responder_address (int, required): The I2C address to assign to this Responder. """ super().__init__(i2c_device_id=i2c_device_id, sda_gpio=sda_gpio, scl_gpio=scl_gpio, responder_address=responder_address) """ Send a long message to the Controller 16 bytes at a time. First send 4 byte length of message. Then send blocks of up to 16 bytes. """ async def send_msg(self, msg): # send length of message # UTF8 may have multibyte characters buff = bytearray(msg.encode('utf8')) rem_bytes = len(buff) len_buff = bytearray(rem_bytes.to_bytes(4,sys.byteorder)) await self.send_bytes(len_buff) # print("sending: " + str(len_buff)) # send message msg_pos = 0 # if controller no longer requesting input # stop sending data while rem_bytes > 0: # and self.read_is_pending(): if rem_bytes <= 16: await self.send_bytes(buff[msg_pos:]) return await self.send_bytes(buff[msg_pos:msg_pos+16]) msg_pos += 16 rem_bytes -= 16 """ Send a block bytes of up to 16 bytes of data """ async def send_bytes(self,buffer_out): for value in buffer_out: # loop (polling) until the Controller issues an I2C READ. while not self.read_is_pending(): await uasyncio.sleep_ms(0) # stop sending if controller no longer soliciting input # if not self.read_is_pending(): # return self.put_read_data(value) """ Read a long message from the Controller. Send an acknowledgment to the Controller of if the receive was successful. If receive failed, retry up to 5 times, then send 2 telling controller it was a permanent error and don't bother to resend. If failed receive, returns an empty string, else returns the string received. """ async def rcv_msg(self): if not self.write_data_is_available(): return "" retry = 8 ok = False while not ok and retry > 0: b_array, ok = await self.rcv_block() retry = retry - 1 if retry > 0: # Controller will resend if not okay await self.send_ack(int(ok)) if not ok: """ print("receive error... ",end="") print((5-retry)) print("received: ", end="") print(b_array) """ # await uasyncio.sleep_ms(0) else: # permanent error - don't resend print("***** permanent receive error *****") await self.send_ack(2) if ok: # don't try to decode invalid receive. # may result in decode error. return b_array.decode('utf8') else: return "" """ Send a 2 byte int acknowledgement to the Controller of message received. 1 = message received ok and checksum matched 0 = message not received ok, resend 2 = message not received ok, but don't resend """ async def send_ack(self, ok): b = bytearray(ok.to_bytes(2,sys.byteorder)) await self.send_bytes(b) """ Receive a byte array data where the first two bytes of the input stream contain the msg length and the next two contain a checksum. Return a byte array of data and True/False for if the checksum matched. """ async def rcv_block(self): # read length of message and checksum data = self.get_write_data(max_size=4) n_bytes = int.from_bytes(bytes(data[0:2]),sys.byteorder) chksum = int.from_bytes(bytes(data[2:4]),sys.byteorder) """ print("rcv bytes: ",end="") print(n_bytes, end="") print(", checksum: ",end="") print(chksum) """ r = await self.rcv_bytes(n_bytes) # print("returning results") # r = bytearray(data) cs = calc_icmpv6_chksum.calc_icmpv6_chksum(r) # wait until all sent data is received # and controller issues a read for the ack while not self.read_is_pending(): if self.write_data_is_available(): self.get_write_data(max_size=16) return r, cs == chksum """ Receive bytes in blocks of 16 bytes or less until n_bytes of data received or "times out". Here, "times out" means no bytes received for 50ms. Returns a list of bytes. """ async def rcv_bytes(self, rem_bytes): data = bytearray(rem_bytes) data_offset = 0 wait_cnt = 0 empty = [] while rem_bytes > 0: if self.write_data_is_available(): b = self.get_write_data(max_size=16) else: b = empty if len(b) == 0: print("+",end="") await uasyncio.sleep_ms(5) wait_cnt = wait_cnt + 1 if wait_cnt > 50: # time out receive - exit early # print("i2c_responder.rcv_msg() tired of waiting, exiting before EOD") return data[:data_offset] else: wait_cnt = 0 r_cnt = len(b) rem_bytes = rem_bytes - r_cnt for i in range(r_cnt): data[data_offset] = b[i] data_offset = data_offset + 1 if rem_bytes > 0 and r_cnt != 16: # received a short block print("**** <16 bytes in block: ", end="") print(len(b)) return data[:data_offset] """ print("v2 rcvd '", end="") print(bytearray(b),end="") print("' blk remain: ",end="") print(rem_bytes) """ return data
py
1a3a329f9677b88eb93ed33b2ed8e958a32b948c
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from __future__ import print_function, unicode_literals from unittest import TestCase, skip from docutils.core import Publisher from docutils import io from m2rr import prolog, convert class RendererTestBase(TestCase): def conv(self, src, **kwargs): out = convert(src, **kwargs) self.check_rst(out) return out def conv_no_check(self, src, **kwargs): out = convert(src, **kwargs) return out def check_rst(self, rst): pub = Publisher(reader=None, parser=None, writer=None, settings=None, source_class=io.StringInput, destination_class=io.StringOutput) pub.set_components(reader_name='standalone', parser_name='restructuredtext', writer_name='pseudoxml') pub.process_programmatic_settings( settings_spec=None, settings_overrides={'output_encoding': 'unicode'}, config_section=None, ) pub.set_source(rst, source_path=None) pub.set_destination(destination=None, destination_path=None) output = pub.publish(enable_exit_status=False) self.assertLess(pub.document.reporter.max_level, 0) return output, pub class TestBasic(RendererTestBase): def test_fail_rst(self): with self.assertRaises(AssertionError): # This check should be failed and report warning self.check_rst('```') def test_simple_paragraph(self): src = 'this is a sentence.\n' out = self.conv(src) self.assertEqual(out, '\n' + src) def test_multiline_paragraph(self): src = '\n'.join([ 'first sentence.', 'second sentence.', ]) out = self.conv(src) self.assertEqual(out, '\n' + src + '\n') def test_multi_paragraph(self): src = '\n'.join([ 'first paragraph.', '', 'second paragraph.', ]) out = self.conv(src) self.assertEqual(out, '\n' + src + '\n') def test_hr(self): src = 'a\n\n---\n\nb' out = self.conv(src) self.assertEqual(out, '\na\n\n----\n\nb\n') def test_linebreak(self): src = 'abc def \nghi' out = self.conv(src) self.assertEqual( out, prolog + '\nabc def\\ :raw-html-m2rr:`<br>`\nghi' + '\n', ) class TestInlineMarkdown(RendererTestBase): def test_inline_code(self): src = '`a`' out = self.conv(src) self.assertEqual(out.replace('\n', ''), '``a``') def test_inline_code_with_backticks(self): src = '```a``a```' out = self.conv(src) self.assertEqual(out.strip(), '.. role:: raw-html-m2rr(raw)\n' ' :format: html\n\n\n' ':raw-html-m2rr:`<code class="docutils literal">' '<span class="pre">a&#96;&#96;a</span></code>`' ) def test_strikethrough(self): src = ('~~a~~') self.conv(src) def test_emphasis(self): src = '*a*' out = self.conv(src) self.assertEqual(out.replace('\n', ''), '*a*') def test_emphasis_(self): src = '_a_' out = self.conv(src) self.assertEqual(out.replace('\n', ''), '*a*') def test_emphasis_no_(self): src = '_a_' out = self.conv(src, no_underscore_emphasis=True) self.assertEqual(out.replace('\n', ''), '_a_') def test_double_emphasis(self): src = '**a**' out = self.conv(src) self.assertEqual(out.replace('\n', ''), '**a**') def test_double_emphasis__(self): src = '__a__' out = self.conv(src) self.assertEqual(out.replace('\n', ''), '**a**') def test_emphasis_no__(self): src = '__a__' out = self.conv(src, no_underscore_emphasis=True) self.assertEqual(out.replace('\n', ''), '__a__') def test_autolink(self): src = 'link to http://example.com/ in sentence.' out = self.conv(src) self.assertEqual(out, '\n' + src + '\n') def test_link(self): src = 'this is a [link](http://example.com/).' out = self.conv(src) self.assertEqual( out, '\nthis is a `link <http://example.com/>`_.\n') def test_anonymous_link(self): src = 'this is a [link](http://example.com/).' out = self.conv(src, anonymous_references=True) self.assertEqual( out, '\nthis is a `link <http://example.com/>`__.\n') def test_link_with_rel_link_enabled(self): src = 'this is a [link](http://example.com/).' out = self.conv_no_check( src, parse_relative_links=True ) self.assertEqual( out, '\nthis is a `link <http://example.com/>`_.\n') def test_anonymous_link_with_rel_link_enabled(self): src = 'this is a [link](http://example.com/).' out = self.conv_no_check( src, parse_relative_links=True, anonymous_references=True ) self.assertEqual( out, '\nthis is a `link <http://example.com/>`__.\n') def test_anchor(self): src = 'this is an [anchor](#anchor).' out = self.conv_no_check( src, parse_relative_links=True ) self.assertEqual( out, '\nthis is an :ref:`anchor <anchor>`.\n') def test_relative_link(self): src = 'this is a [relative link](a_file.md).' out = self.conv_no_check( src, parse_relative_links=True ) self.assertEqual( out, '\nthis is a :doc:`relative link <a_file>`.\n') def test_relative_link_with_anchor(self): src = 'this is a [relative link](a_file.md#anchor).' out = self.conv_no_check( src, parse_relative_links=True ) self.assertEqual( out, '\nthis is a :doc:`relative link <a_file>`.\n') def test_link_title(self): src = 'this is a [link](http://example.com/ "example").' out = self.conv(src) self.assertEqual( out, '.. role:: raw-html-m2rr(raw)\n' ' :format: html\n\n\n' 'this is a :raw-html-m2rr:' '`<a href="http://example.com/" title="example">link</a>`.\n' ) def test_image_link(self): src = '[![Alt Text](image_taget_url)](link_target_url)' out = self.conv(src) self.assertEqual( out, '\n\n.. image:: image_taget_url\n' ' :target: link_target_url\n :alt: Alt Text\n\n', ) def test_rest_role(self): src = 'a :code:`some code` inline.' out = self.conv(src) self.assertEqual(out, '\n' + src + '\n') def test_rest_role2(self): src = 'a `some code`:code: inline.' out = self.conv(src) self.assertEqual(out, '\n' + src + '\n') def test_rest_link(self): src = 'a `RefLink <http://example.com>`_ here.' out = self.conv(src) self.assertEqual(out, '\n' + src + '\n') def test_rest_link_and_role(self): src = 'a :code:`a` and `RefLink <http://example.com>`_ here.' out = self.conv(src) self.assertEqual(out, '\n' + src + '\n') def test_rest_link_and_role2(self): src = 'a `a`:code: and `RefLink <http://example.com>`_ here.' out = self.conv(src) self.assertEqual(out, '\n' + src + '\n') def test_rest_role_incomplete(self): src = 'a co:`de` and `RefLink <http://example.com>`_ here.' out = self.conv(src) self.assertEqual( out, '\na co:\\ ``de`` and `RefLink <http://example.com>`_ here.\n', ) def test_rest_role_incomplete2(self): src = 'a `RefLink <http://example.com>`_ and co:`de` here.' out = self.conv(src) self.assertEqual( out, '\na `RefLink <http://example.com>`_ and co:\\ ``de`` here.\n', ) def test_rest_role_with_code(self): src = 'a `code` and :code:`rest` here.' out = self.conv(src) self.assertEqual(out, '\na ``code`` and :code:`rest` here.\n') def test_rest2_role_with_code(self): src = 'a `code` and `rest`:code: here.' out = self.conv(src) self.assertEqual(out, '\na ``code`` and `rest`:code: here.\n') def test_code_with_rest_role(self): src = 'a :code:`rest` and `code` here.' out = self.conv(src) self.assertEqual(out, '\na :code:`rest` and ``code`` here.\n') def test_code_with_rest_role2(self): src = 'a `rest`:code: and `code` here.' out = self.conv(src) self.assertEqual(out, '\na `rest`:code: and ``code`` here.\n') def test_rest_link_with_code(self): src = 'a `RefLink <a>`_ and `code` here.' out = self.conv(src) self.assertEqual(out, '\na `RefLink <a>`_ and ``code`` here.\n') def test_code_with_rest_link(self): src = 'a `code` and `RefLink <a>`_ here.' out = self.conv(src) self.assertEqual(out, '\na ``code`` and `RefLink <a>`_ here.\n') def test_inline_math(self): src = 'this is `$E = mc^2$` inline math.' out = self.conv(src) self.assertEqual(out, '\nthis is :math:`E = mc^2` inline math.\n') def test_disable_inline_math(self): src = 'this is `$E = mc^2$` inline math.' out = self.conv(src, disable_inline_math=True) self.assertEqual(out, '\nthis is ``$E = mc^2$`` inline math.\n') def test_inline_html(self): src = 'this is <s>html</s>.' out = self.conv(src) self.assertEqual( out, prolog + '\nthis is :raw-html-m2rr:`<s>html</s>`.\n') def test_block_html(self): src = '<h1>title</h1>' out = self.conv(src) self.assertEqual(out, '\n\n.. raw:: html\n\n <h1>title</h1>\n\n') class TestBlockQuote(RendererTestBase): def test_block_quote(self): src = '> q1\n> q2' out = self.conv(src) self.assertEqual(out, '\n..\n\n q1\n q2\n\n') def test_block_quote_nested(self): src = '> q1\n> > q2' out = self.conv(src) # one extra empty line is inserted, but still valid rst anyway self.assertEqual(out, '\n..\n\n q1\n\n ..\n\n q2\n\n') @skip('markdown does not support dedent in block quote') def test_block_quote_nested_2(self): src = '> q1\n> > q2\n> q3' out = self.conv(src) self.assertEqual(out, '\n..\n\n q1\n\n ..\n q2\n\n q3\n\n') class TestCodeBlock(RendererTestBase): def test_plain_code_block(self): src = '\n'.join([ '```', 'pip install sphinx', '```', ]) out = self.conv(src) # Default to text block if non specified self.assertEqual(out, '\n.. code-block:: text\n\n\ pip install sphinx\n') def test_plain_code_block_tilda(self): src = '\n'.join([ '~~~', 'pip install sphinx', '~~~', ]) out = self.conv(src) self.assertEqual(out, '\n.. code-block:: text\n\n pip install \ sphinx\n') def test_code_block_math(self): src = '\n'.join([ '```math', 'E = mc^2', '```', ]) out = self.conv(src) self.assertEqual(out, '\n.. math::\n\n E = mc^2\n') def test_plain_code_block_indent(self): src = '\n'.join([ '```', 'pip install sphinx', ' new line', '```', ]) out = self.conv(src) self.assertEqual( out, '\n.. code-block:: text\n\n pip install \ sphinx\n new line\n', ) def test_python_code_block(self): src = '\n'.join([ '```python', 'print(1)', '```', ]) out = self.conv(src) self.assertEqual(out, '\n.. code-block:: python\n\n print(1)\n') def test_python_code_block_indent(self): src = '\n'.join([ '```python', 'def a(i):', ' print(i)', '```', ]) out = self.conv(src) self.assertEqual( out, '\n.. code-block:: python\n\n def a(i):\n print(i)\n', ) class TestImage(RendererTestBase): def test_image(self): src = '![alt text](a.png)' out = self.conv(src) # first and last newline is inserted by paragraph self.assertEqual( out, '\n\n.. image:: a.png\n :target: a.png\n :alt: alt text\n\n', ) def test_image_title(self): src = '![alt text](a.png "title")' self.conv(src) # title is not supported now class TestHeading(RendererTestBase): def test_heading(self): src = '# head 1' out = self.conv(src) self.assertEqual(out, '\nhead 1\n' + '=' * 6 + '\n') def test_heading_multibyte(self): src = '# マルチバイト文字\n' out = self.conv(src) self.assertEqual(out, '\nマルチバイト文字\n' + '=' * 16 + '\n') class TestList(RendererTestBase): def test_ul(self): src = '* list' out = self.conv(src) self.assertEqual(out, '\n\n* list\n') def test_ol(self): src = '1. list' out = self.conv(src) self.assertEqual(out, '\n\n#. list\n') def test_nested_ul(self): src = '\n'.join([ '* list 1', '* list 2', ' * list 2.1', ' * list 2.2', '* list 3', ]) out = self.conv(src) self.assertEqual( out, '\n\n* list 1\n' '* list 2\n\n' ' * list 2.1\n' ' * list 2.2\n\n' '* list 3\n', ) def test_nested_ul_2(self): src = '\n'.join([ '* list 1', '* list 2', ' * list 2.1', ' * list 2.2', ' * list 2.2.1', ' * list 2.2.2', '* list 3', ]) out = self.conv(src) self.assertEqual( out, '\n\n* list 1\n' '* list 2\n\n' ' * list 2.1\n' ' * list 2.2\n\n' ' * list 2.2.1\n' ' * list 2.2.2\n\n' '* list 3\n' ) def test_nested_ol(self): src = '\n'.join([ '1. list 1', '2. list 2', ' 2. list 2.1', ' 3. list 2.2', '3. list 3', ]) out = self.conv(src) self.assertEqual( out, '\n\n#. list 1\n' '#. list 2\n' '\n' ' #. list 2.1\n' ' #. list 2.2\n' '\n' '#. list 3\n', ) def test_nested_ol_2(self): src = '\n'.join([ '1. list 1', '2. list 2', ' 3. list 2.1', ' 4. list 2.2', ' 5. list 2.2.1', ' 6. list 2.2.2', '7. list 3', ]) out = self.conv(src) self.assertEqual( out, '\n'.join([ '\n\n#. list 1', '#. list 2', '', ' #. list 2.1', ' #. list 2.2', '', ' #. list 2.2.1', ' #. list 2.2.2', '', '#. list 3\n', ]) ) def test_nested_mixed_1(self): src = '\n'.join([ '1. list 1', '2. list 2', ' * list 2.1', ' * list 2.2', ' 1. list 2.2.1', ' 2. list 2.2.2', '7. list 3', ]) out = self.conv(src) self.assertEqual( out, '\n'.join([ '\n\n#. list 1', '#. list 2', '', ' * list 2.1', ' * list 2.2', '', ' #. list 2.2.1', ' #. list 2.2.2', '', '#. list 3\n', ]) ) def test_nested_multiline_1(self): src = '\n'.join([ '* list 1', ' list 1 cont', '* list 2', ' list 2 cont', ' * list 2.1', ' list 2.1 cont', ' * list 2.2', ' list 2.2 cont', ' * list 2.2.1', ' * list 2.2.2', '* list 3', ]) out = self.conv(src) self.assertEqual( out, '\n'.join([ '\n\n* list 1', ' list 1 cont', '* list 2', ' list 2 cont', '', ' * list 2.1', ' list 2.1 cont', ' * list 2.2', ' list 2.2 cont', '', ' * list 2.2.1', ' * list 2.2.2', '', '* list 3\n', ]) ) def test_nested_multiline_2(self): src = '\n'.join([ '1. list 1', ' list 1 cont', '1. list 2', ' list 2 cont', ' 1. list 2.1', ' list 2.1 cont', ' 1. list 2.2', ' list 2.2 cont', ' 1. list 2.2.1', ' 1. list 2.2.2', '1. list 3', ]) out = self.conv(src) self.assertEqual( out, '\n'.join([ '\n\n#. list 1', ' list 1 cont', '#. list 2', ' list 2 cont', '', ' #. list 2.1', ' list 2.1 cont', ' #. list 2.2', ' list 2.2 cont', '', ' #. list 2.2.1', ' #. list 2.2.2', '', '#. list 3\n', ]) ) def test_nested_multiline_3(self): src = '\n'.join([ '1. list 1', ' list 1 cont', '1. list 2', ' list 2 cont', ' * list 2.1', ' list 2.1 cont', ' * list 2.2', ' list 2.2 cont', ' 1. list 2.2.1', ' 1. list 2.2.2', '1. list 3', ]) out = self.conv(src) self.assertEqual( out, '\n'.join([ '\n\n#. list 1', ' list 1 cont', '#. list 2', ' list 2 cont', '', ' * list 2.1', ' list 2.1 cont', ' * list 2.2', ' list 2.2 cont', '', ' #. list 2.2.1', ' #. list 2.2.2', '', '#. list 3\n', ]) ) class TestConplexText(RendererTestBase): def test_code(self): src = ''' some sentence ```python print(1) ``` some sentence # title ```python print(1) ``` --- end ''' self.conv(src) class TestTable(RendererTestBase): def test_table(self): src = '''h1 | h2 | h3\n--- | --- | ---\n1 | 2 | 3\n4 | 5 | 6''' out = self.conv(src) self.assertEqual(out, '\n'.join([ '', '.. list-table::', ' :header-rows: 1', '', ' * - h1', ' - h2', ' - h3', ' * - 1', ' - 2', ' - 3', ' * - 4', ' - 5', ' - 6', '', '', ])) class TestFootNote(RendererTestBase): def test_footnote(self): src = '\n'.join([ 'This is a[^1] footnote[^2] ref[^ref] with rst [#a]_.', '', '[^1]: note 1', '[^2]: note 2', '[^ref]: note ref', '.. [#a] note rst', ]) out = self.conv(src) self.assertEqual(out, '\n'.join([ '', 'This is a\\ [#fn-1]_ ' 'footnote\\ [#fn-2]_ ref\\ [#fn-ref]_ with rst [#a]_.', '', '.. [#a] note rst', # one empty line inserted... '', '.. [#fn-1] note 1', '.. [#fn-2] note 2', '.. [#fn-ref] note ref', '', ])) def test_sphinx_ref(self): src = 'This is a sphinx [ref]_ global ref.\n\n.. [ref] ref text' out = self.conv(src) self.assertEqual(out, '\n' + src) class TestDirective(RendererTestBase): def test_comment_oneline(self): src = '.. a' out = self.conv(src) self.assertEqual(out, '\n.. a') def test_comment_indented(self): src = ' .. a' out = self.conv(src) self.assertEqual(out, '\n .. a') def test_comment_newline(self): src = '..\n\n comment\n\nnewline' out = self.conv(src) self.assertEqual(out, '\n..\n\n comment\n\nnewline\n') def test_comment_multiline(self): comment = ( '.. this is comment.\n' ' this is also comment.\n' '\n' '\n' ' comment may include empty line.\n' '\n\n') src = comment + '`eoc`' out = self.conv(src) self.assertEqual(out, '\n' + comment + '``eoc``\n') class TestRestCode(RendererTestBase): def test_rest_code_block_empty(self): src = '\n\n::\n\n' out = self.conv(src) self.assertEqual(out, '\n\n') def test_eol_marker(self): src = 'a::\n\n code\n' out = self.conv(src) self.assertEqual(out, '\na:\n\n.. code-block:: text\n\n code\n') def test_eol_marker_remove(self): src = 'a ::\n\n code\n' out = self.conv(src) self.assertEqual(out, '\na\n\n.. code-block:: text\n\n code\n')
py
1a3a32f6c90ab449ab0b7efe2b64638ce6a87a49
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class RouteTablesOperations: """RouteTablesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_07_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, route_table_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-07-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def begin_delete( self, resource_group_name: str, route_table_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def get( self, resource_group_name: str, route_table_name: str, expand: Optional[str] = None, **kwargs ) -> "models.RouteTable": """Gets the specified route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RouteTable, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_07_01.models.RouteTable :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.RouteTable"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-07-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, route_table_name: str, parameters: "models.RouteTable", **kwargs ) -> "models.RouteTable": cls = kwargs.pop('cls', None) # type: ClsType["models.RouteTable"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-07-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'RouteTable') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('RouteTable', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, route_table_name: str, parameters: "models.RouteTable", **kwargs ) -> AsyncLROPoller["models.RouteTable"]: """Create or updates a route table in a specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param parameters: Parameters supplied to the create or update route table operation. :type parameters: ~azure.mgmt.network.v2018_07_01.models.RouteTable :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RouteTable or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2018_07_01.models.RouteTable] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.RouteTable"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def _update_tags_initial( self, resource_group_name: str, route_table_name: str, parameters: "models.TagsObject", **kwargs ) -> "models.RouteTable": cls = kwargs.pop('cls', None) # type: ClsType["models.RouteTable"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-07-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_tags_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_tags_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def begin_update_tags( self, resource_group_name: str, route_table_name: str, parameters: "models.TagsObject", **kwargs ) -> AsyncLROPoller["models.RouteTable"]: """Updates a route table tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param parameters: Parameters supplied to update route table tags. :type parameters: ~azure.mgmt.network.v2018_07_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RouteTable or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2018_07_01.models.RouteTable] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.RouteTable"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_tags_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore def list( self, resource_group_name: str, **kwargs ) -> AsyncIterable["models.RouteTableListResult"]: """Gets all route tables in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RouteTableListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_07_01.models.RouteTableListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.RouteTableListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-07-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RouteTableListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables'} # type: ignore def list_all( self, **kwargs ) -> AsyncIterable["models.RouteTableListResult"]: """Gets all route tables in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RouteTableListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_07_01.models.RouteTableListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.RouteTableListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-07-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RouteTableListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/routeTables'} # type: ignore
py
1a3a341873efaa53386ef9cb51c8c5362081b89a
# flake8: noqa import base64 import collections import datetime import inspect import os import os.path as osp import pickle import re import subprocess import sys import cloudpickle import dateutil.tz import numpy as np from garage.core import Serializable class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def flatten(l): return [item for sublist in l for item in sublist] class BinaryOp(Serializable): def __init__(self): Serializable.quick_init(self, locals()) def rdiv(self, a, b): return b / a # def __init__(self, opname, a, b): # self.opname = opname # self.a = a # self.b = b class VariantDict(AttrDict): def __init__(self, d, hidden_keys): super(VariantDict, self).__init__(d) self._hidden_keys = hidden_keys def dump(self): return {k: v for k, v in self.items() if k not in self._hidden_keys} class VariantGenerator: """ Usage: vg = VariantGenerator() vg.add("param1", [1, 2, 3]) vg.add("param2", ['x', 'y']) vg.variants() => # all combinations of [1,2,3] x ['x','y'] Supports noncyclic dependency among parameters: vg = VariantGenerator() vg.add("param1", [1, 2, 3]) vg.add("param2", lambda param1: [param1+1, param1+2]) vg.variants() => # .. """ def __init__(self): self._variants = [] self._populate_variants() self._hidden_keys = [] for k, vs, cfg in self._variants: if cfg.get('hide', False): self._hidden_keys.append(k) def add(self, key, vals, **kwargs): self._variants.append((key, vals, kwargs)) def _populate_variants(self): methods = inspect.getmembers( self.__class__, predicate=lambda x: inspect.isfunction(x) or inspect.ismethod(x)) methods = [ x[1].__get__(self, self.__class__) for x in methods if getattr(x[1], '__is_variant', False) ] for m in methods: self.add(m.__name__, m, **getattr(m, '__variant_config', dict())) def variants(self, randomized=False): ret = list(self.ivariants()) if randomized: np.random.shuffle(ret) return list(map(self.variant_dict, ret)) def variant_dict(self, variant): return VariantDict(variant, self._hidden_keys) def to_name_suffix(self, variant): suffix = [] for k, vs, cfg in self._variants: if not cfg.get('hide', False): suffix.append(k + '_' + str(variant[k])) return '_'.join(suffix) def ivariants(self): dependencies = list() for key, vals, _ in self._variants: if hasattr(vals, '__call__'): args = inspect.getfullargspec(vals).args if hasattr(vals, 'im_self') or hasattr(vals, '__self__'): # remove the first 'self' parameter args = args[1:] dependencies.append((key, set(args))) else: dependencies.append((key, set())) sorted_keys = [] # topo sort all nodes while len(sorted_keys) < len(self._variants): # get all nodes with zero in-degree free_nodes = [k for k, v in dependencies if not v] if not free_nodes: error_msg = 'Invalid parameter dependency: \n' for k, v in dependencies: if v: error_msg += k + ' depends on ' + ' & '.join(v) + '\n' raise ValueError(error_msg) dependencies = [(k, v) for k, v in dependencies if k not in free_nodes] # remove the free nodes from the remaining dependencies for _, v in dependencies: v.difference_update(free_nodes) sorted_keys += free_nodes return self._ivariants_sorted(sorted_keys) def _ivariants_sorted(self, sorted_keys): if not sorted_keys: yield dict() else: first_keys = sorted_keys[:-1] first_variants = self._ivariants_sorted(first_keys) last_key = sorted_keys[-1] last_vals = [v for k, v, _ in self._variants if k == last_key][0] if hasattr(last_vals, '__call__'): last_val_keys = inspect.getfullargspec(last_vals).args if hasattr(last_vals, 'im_self') or hasattr( last_vals, '__self__'): last_val_keys = last_val_keys[1:] else: last_val_keys = None for variant in first_variants: if hasattr(last_vals, '__call__'): last_variants = last_vals( **{k: variant[k] for k in last_val_keys}) for last_choice in last_variants: yield AttrDict(variant, **{last_key: last_choice}) else: for last_choice in last_vals: yield AttrDict(variant, **{last_key: last_choice}) def variant(*args, **kwargs): def _variant(fn): fn.__is_variant = True fn.__variant_config = kwargs return fn if len(args) == 1 and isinstance(args[0], collections.Callable): return _variant(args[0]) return _variant def query_yes_no(question, default='yes'): """Ask a yes/no question via raw_input() and return their answer. "question" is a string that is presented to the user. "default" is the presumed answer if the user just hits <Enter>. It must be "yes" (the default), "no" or None (meaning an answer is required of the user). The "answer" return value is True for "yes" or False for "no". """ valid = {'yes': True, 'y': True, 'ye': True, 'no': False, 'n': False} if default is None: prompt = ' [y/n] ' elif default == 'yes': prompt = ' [Y/n] ' elif default == 'no': prompt = ' [y/N] ' else: raise ValueError("invalid default answer: '%s'" % default) while True: sys.stdout.write(question + prompt) choice = input().lower() if default is not None and choice == '': return valid[default] elif choice in valid: return valid[choice] else: sys.stdout.write("Please respond with 'yes' or 'no' " "(or 'y' or 'n').\n") exp_count = 0 now = datetime.datetime.now(dateutil.tz.tzlocal()) timestamp = now.strftime('%Y_%m_%d_%H_%M_%S') def run_experiment(method_call=None, batch_tasks=None, exp_prefix='experiment', exp_name=None, log_dir=None, script='garage.experiment.experiment_wrapper', python_command='python', dry=False, env=None, variant=None, use_tf=False, use_gpu=False, pre_commands=None, **kwargs): """Serialize the method call and run the experiment using the specified mode. Args: method_call (callable): A method call. batch_tasks (list[dict]): A batch of method calls. exp_prefix (str): Name prefix for the experiment. exp_name (str): Name of the experiment. log_dir (str): Log directory for the experiment. script (str): The name of the entrance point python script. python_command (str): Python command to run the experiment. dry (bool): Whether to do a dry-run, which only prints the commands without executing them. env (dict): Extra environment variables. variant (dict): If provided, should be a dictionary of parameters. use_tf (bool): Used along with the Theano and GPU configuration when using TensorFlow use_gpu (bool): Whether the launched task is running on GPU. This triggers a few configuration changes including certain environment flags. pre_commands (str): Pre commands to run the experiment. """ if method_call is None and batch_tasks is None: raise Exception( 'Must provide at least either method_call or batch_tasks') for task in (batch_tasks or [method_call]): if not hasattr(task, '__call__'): raise ValueError('batch_tasks should be callable') # ensure variant exists if variant is None: variant = dict() if batch_tasks is None: batch_tasks = [ dict( kwargs, pre_commands=pre_commands, method_call=method_call, exp_name=exp_name, log_dir=log_dir, env=env, variant=variant) ] global exp_count if use_tf: if not use_gpu: os.environ['CUDA_VISIBLE_DEVICES'] = '' else: os.unsetenv('CUDA_VISIBLE_DEVICES') for task in batch_tasks: call = task.pop('method_call') data = base64.b64encode(cloudpickle.dumps(call)).decode('utf-8') task['args_data'] = data exp_count += 1 if task.get('exp_name', None) is None: task['exp_name'] = '{}_{}_{:04n}'.format(exp_prefix, timestamp, exp_count) if task.get('log_dir', None) is None: task['log_dir'] = ( '{log_dir}/local/{exp_prefix}/{exp_name}'.format( log_dir=osp.join(os.getcwd(), 'data'), exp_prefix=exp_prefix.replace('_', '-'), exp_name=task['exp_name'])) if task.get('variant', None) is not None: variant = task.pop('variant') if 'exp_name' not in variant: variant['exp_name'] = task['exp_name'] task['variant_data'] = base64.b64encode( pickle.dumps(variant)).decode('utf-8') elif 'variant' in task: del task['variant'] task['env'] = task.get('env', dict()) or dict() task['env']['GARAGE_USE_GPU'] = str(use_gpu) task['env']['GARAGE_USE_TF'] = str(use_tf) for task in batch_tasks: env = task.pop('env', None) command = to_local_command( task, python_command=python_command, script=script) print(command) if dry: return try: if env is None: env = dict() subprocess.call(command, shell=True, env=dict(os.environ, **env)) except Exception as e: print(e) if isinstance(e, KeyboardInterrupt): raise _find_unsafe = re.compile(r'[a-zA-Z0-9_^@%+=:,./-]').search def _shellquote(s): """Return a shell-escaped version of the string *s*.""" if not s: return "''" if _find_unsafe(s) is None: return s # use single quotes, and put single quotes into double quotes # the string $'b is then quoted as '$'"'"'b' return "'" + s.replace("'", "'\"'\"'") + "'" def _to_param_val(v): if v is None: return '' elif isinstance(v, list): return ' '.join(map(_shellquote, list(map(str, v)))) else: return _shellquote(str(v)) def to_local_command(params, python_command='python', script='garage.experiment.experiment_wrapper'): command = python_command + ' -m ' + script garage_env = eval(os.environ.get('GARAGE_ENV', '{}')) for k, v in garage_env.items(): command = '{}={} '.format(k, v) + command pre_commands = params.pop('pre_commands', None) post_commands = params.pop('post_commands', None) if pre_commands is not None or post_commands is not None: print('Not executing the pre_commands: ', pre_commands, ', nor post_commands: ', post_commands) for k, v in params.items(): if isinstance(v, dict): for nk, nv in v.items(): if str(nk) == '_name': command += ' --{} {}'.format(k, _to_param_val(nv)) else: command += \ ' --{}_{} {}'.format(k, nk, _to_param_val(nv)) else: command += ' --{} {}'.format(k, _to_param_val(v)) return command def concretize(obj): if isinstance(obj, dict): # make sure that there's no hidden caveat ret = dict() for k, v in obj.items(): ret[concretize(k)] = concretize(v) return ret elif isinstance(obj, (list, tuple)): return obj.__class__(list(map(concretize, obj))) else: return obj
py
1a3a3679dac3e038051840870d0e1b94b7d14832
# Copyright 2020 The StackStorm Authors. # Copyright 2019 Extreme Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from st2common import transport from st2common.models.db.sensor import sensor_type_access from st2common.persistence.base import ContentPackResource __all__ = ["SensorType"] class SensorType(ContentPackResource): impl = sensor_type_access publisher = None @classmethod def _get_impl(cls): return cls.impl @classmethod def _get_publisher(cls): if not cls.publisher: cls.publisher = transport.reactor.SensorCUDPublisher() return cls.publisher
py
1a3a36f6cf0ce7ef2a2ca282d35d2a24fc80bd7c
# -*- coding: utf-8 -*- # Copyright 2019-2021 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from http import HTTPStatus from typing import TYPE_CHECKING, List, Optional, Tuple from urllib import parse as urlparse from synapse.api.constants import EventTypes, JoinRules, Membership from synapse.api.errors import AuthError, Codes, NotFoundError, SynapseError from synapse.api.filtering import Filter from synapse.http.servlet import ( RestServlet, assert_params_in_dict, parse_integer, parse_json_object_from_request, parse_string, ) from synapse.http.site import SynapseRequest from synapse.rest.admin._base import ( admin_patterns, assert_requester_is_admin, assert_user_is_admin, ) from synapse.storage.databases.main.room import RoomSortOrder from synapse.types import JsonDict, RoomAlias, RoomID, UserID, create_requester from synapse.util import json_decoder if TYPE_CHECKING: from synapse.server import HomeServer logger = logging.getLogger(__name__) class ShutdownRoomRestServlet(RestServlet): """Shuts down a room by removing all local users from the room and blocking all future invites and joins to the room. Any local aliases will be repointed to a new room created by `new_room_user_id` and kicked users will be auto joined to the new room. """ PATTERNS = admin_patterns("/shutdown_room/(?P<room_id>[^/]+)") def __init__(self, hs: "HomeServer"): self.hs = hs self.auth = hs.get_auth() self.room_shutdown_handler = hs.get_room_shutdown_handler() async def on_POST( self, request: SynapseRequest, room_id: str ) -> Tuple[int, JsonDict]: requester = await self.auth.get_user_by_req(request) await assert_user_is_admin(self.auth, requester.user) content = parse_json_object_from_request(request) assert_params_in_dict(content, ["new_room_user_id"]) ret = await self.room_shutdown_handler.shutdown_room( room_id=room_id, new_room_user_id=content["new_room_user_id"], new_room_name=content.get("room_name"), message=content.get("message"), requester_user_id=requester.user.to_string(), block=True, ) return (200, ret) class DeleteRoomRestServlet(RestServlet): """Delete a room from server. It is a combination and improvement of shutdown and purge room. Shuts down a room by removing all local users from the room. Blocking all future invites and joins to the room is optional. If desired any local aliases will be repointed to a new room created by `new_room_user_id` and kicked users will be auto- joined to the new room. If 'purge' is true, it will remove all traces of a room from the database. """ PATTERNS = admin_patterns("/rooms/(?P<room_id>[^/]+)/delete$") def __init__(self, hs: "HomeServer"): self.hs = hs self.auth = hs.get_auth() self.room_shutdown_handler = hs.get_room_shutdown_handler() self.pagination_handler = hs.get_pagination_handler() async def on_POST( self, request: SynapseRequest, room_id: str ) -> Tuple[int, JsonDict]: requester = await self.auth.get_user_by_req(request) await assert_user_is_admin(self.auth, requester.user) content = parse_json_object_from_request(request) block = content.get("block", False) if not isinstance(block, bool): raise SynapseError( HTTPStatus.BAD_REQUEST, "Param 'block' must be a boolean, if given", Codes.BAD_JSON, ) purge = content.get("purge", True) if not isinstance(purge, bool): raise SynapseError( HTTPStatus.BAD_REQUEST, "Param 'purge' must be a boolean, if given", Codes.BAD_JSON, ) force_purge = content.get("force_purge", False) if not isinstance(force_purge, bool): raise SynapseError( HTTPStatus.BAD_REQUEST, "Param 'force_purge' must be a boolean, if given", Codes.BAD_JSON, ) ret = await self.room_shutdown_handler.shutdown_room( room_id=room_id, new_room_user_id=content.get("new_room_user_id"), new_room_name=content.get("room_name"), message=content.get("message"), requester_user_id=requester.user.to_string(), block=block, ) # Purge room if purge: await self.pagination_handler.purge_room(room_id, force=force_purge) return (200, ret) class ListRoomRestServlet(RestServlet): """ List all rooms that are known to the homeserver. Results are returned in a dictionary containing room information. Supports pagination. """ PATTERNS = admin_patterns("/rooms$") def __init__(self, hs: "HomeServer"): self.store = hs.get_datastore() self.auth = hs.get_auth() self.admin_handler = hs.get_admin_handler() async def on_GET(self, request: SynapseRequest) -> Tuple[int, JsonDict]: requester = await self.auth.get_user_by_req(request) await assert_user_is_admin(self.auth, requester.user) # Extract query parameters start = parse_integer(request, "from", default=0) limit = parse_integer(request, "limit", default=100) order_by = parse_string(request, "order_by", default=RoomSortOrder.NAME.value) if order_by not in ( RoomSortOrder.ALPHABETICAL.value, RoomSortOrder.SIZE.value, RoomSortOrder.NAME.value, RoomSortOrder.CANONICAL_ALIAS.value, RoomSortOrder.JOINED_MEMBERS.value, RoomSortOrder.JOINED_LOCAL_MEMBERS.value, RoomSortOrder.VERSION.value, RoomSortOrder.CREATOR.value, RoomSortOrder.ENCRYPTION.value, RoomSortOrder.FEDERATABLE.value, RoomSortOrder.PUBLIC.value, RoomSortOrder.JOIN_RULES.value, RoomSortOrder.GUEST_ACCESS.value, RoomSortOrder.HISTORY_VISIBILITY.value, RoomSortOrder.STATE_EVENTS.value, ): raise SynapseError( 400, "Unknown value for order_by: %s" % (order_by,), errcode=Codes.INVALID_PARAM, ) search_term = parse_string(request, "search_term") if search_term == "": raise SynapseError( 400, "search_term cannot be an empty string", errcode=Codes.INVALID_PARAM, ) direction = parse_string(request, "dir", default="f") if direction not in ("f", "b"): raise SynapseError( 400, "Unknown direction: %s" % (direction,), errcode=Codes.INVALID_PARAM ) reverse_order = True if direction == "b" else False # Return list of rooms according to parameters rooms, total_rooms = await self.store.get_rooms_paginate( start, limit, order_by, reverse_order, search_term ) response = { # next_token should be opaque, so return a value the client can parse "offset": start, "rooms": rooms, "total_rooms": total_rooms, } # Are there more rooms to paginate through after this? if (start + limit) < total_rooms: # There are. Calculate where the query should start from next time # to get the next part of the list response["next_batch"] = start + limit # Is it possible to paginate backwards? Check if we currently have an # offset if start > 0: if start > limit: # Going back one iteration won't take us to the start. # Calculate new offset response["prev_batch"] = start - limit else: response["prev_batch"] = 0 return 200, response class RoomRestServlet(RestServlet): """Get room details. TODO: Add on_POST to allow room creation without joining the room """ PATTERNS = admin_patterns("/rooms/(?P<room_id>[^/]+)$") def __init__(self, hs: "HomeServer"): self.hs = hs self.auth = hs.get_auth() self.store = hs.get_datastore() async def on_GET( self, request: SynapseRequest, room_id: str ) -> Tuple[int, JsonDict]: await assert_requester_is_admin(self.auth, request) ret = await self.store.get_room_with_stats(room_id) if not ret: raise NotFoundError("Room not found") members = await self.store.get_users_in_room(room_id) ret["joined_local_devices"] = await self.store.count_devices_by_users(members) return (200, ret) class RoomMembersRestServlet(RestServlet): """ Get members list of a room. """ PATTERNS = admin_patterns("/rooms/(?P<room_id>[^/]+)/members") def __init__(self, hs: "HomeServer"): self.hs = hs self.auth = hs.get_auth() self.store = hs.get_datastore() async def on_GET( self, request: SynapseRequest, room_id: str ) -> Tuple[int, JsonDict]: await assert_requester_is_admin(self.auth, request) ret = await self.store.get_room(room_id) if not ret: raise NotFoundError("Room not found") members = await self.store.get_users_in_room(room_id) ret = {"members": members, "total": len(members)} return 200, ret class RoomStateRestServlet(RestServlet): """ Get full state within a room. """ PATTERNS = admin_patterns("/rooms/(?P<room_id>[^/]+)/state") def __init__(self, hs: "HomeServer"): self.hs = hs self.auth = hs.get_auth() self.store = hs.get_datastore() self.clock = hs.get_clock() self._event_serializer = hs.get_event_client_serializer() async def on_GET( self, request: SynapseRequest, room_id: str ) -> Tuple[int, JsonDict]: requester = await self.auth.get_user_by_req(request) await assert_user_is_admin(self.auth, requester.user) ret = await self.store.get_room(room_id) if not ret: raise NotFoundError("Room not found") event_ids = await self.store.get_current_state_ids(room_id) events = await self.store.get_events(event_ids.values()) now = self.clock.time_msec() room_state = await self._event_serializer.serialize_events( events.values(), now, # We don't bother bundling aggregations in when asked for state # events, as clients won't use them. bundle_aggregations=False, ) ret = {"state": room_state} return 200, ret class JoinRoomAliasServlet(RestServlet): PATTERNS = admin_patterns("/join/(?P<room_identifier>[^/]*)") def __init__(self, hs: "HomeServer"): self.hs = hs self.auth = hs.get_auth() self.room_member_handler = hs.get_room_member_handler() self.admin_handler = hs.get_admin_handler() self.state_handler = hs.get_state_handler() async def on_POST( self, request: SynapseRequest, room_identifier: str ) -> Tuple[int, JsonDict]: requester = await self.auth.get_user_by_req(request) await assert_user_is_admin(self.auth, requester.user) content = parse_json_object_from_request(request) assert_params_in_dict(content, ["user_id"]) target_user = UserID.from_string(content["user_id"]) if not self.hs.is_mine(target_user): raise SynapseError(400, "This endpoint can only be used with local users") if not await self.admin_handler.get_user(target_user): raise NotFoundError("User not found") if RoomID.is_valid(room_identifier): room_id = room_identifier try: remote_room_hosts = [ x.decode("ascii") for x in request.args[b"server_name"] ] # type: Optional[List[str]] except Exception: remote_room_hosts = None elif RoomAlias.is_valid(room_identifier): handler = self.room_member_handler room_alias = RoomAlias.from_string(room_identifier) room_id, remote_room_hosts = await handler.lookup_room_alias(room_alias) else: raise SynapseError( 400, "%s was not legal room ID or room alias" % (room_identifier,) ) fake_requester = create_requester( target_user, authenticated_entity=requester.authenticated_entity ) # send invite if room has "JoinRules.INVITE" room_state = await self.state_handler.get_current_state(room_id) join_rules_event = room_state.get((EventTypes.JoinRules, "")) if join_rules_event: if not (join_rules_event.content.get("join_rule") == JoinRules.PUBLIC): # update_membership with an action of "invite" can raise a # ShadowBanError. This is not handled since it is assumed that # an admin isn't going to call this API with a shadow-banned user. await self.room_member_handler.update_membership( requester=requester, target=fake_requester.user, room_id=room_id, action="invite", remote_room_hosts=remote_room_hosts, ratelimit=False, ) await self.room_member_handler.update_membership( requester=fake_requester, target=fake_requester.user, room_id=room_id, action="join", remote_room_hosts=remote_room_hosts, ratelimit=False, ) return 200, {"room_id": room_id} class MakeRoomAdminRestServlet(RestServlet): """Allows a server admin to get power in a room if a local user has power in a room. Will also invite the user if they're not in the room and it's a private room. Can specify another user (rather than the admin user) to be granted power, e.g.: POST/_synapse/admin/v1/rooms/<room_id_or_alias>/make_room_admin { "user_id": "@foo:example.com" } """ PATTERNS = admin_patterns("/rooms/(?P<room_identifier>[^/]*)/make_room_admin") def __init__(self, hs: "HomeServer"): self.hs = hs self.auth = hs.get_auth() self.room_member_handler = hs.get_room_member_handler() self.event_creation_handler = hs.get_event_creation_handler() self.state_handler = hs.get_state_handler() self.is_mine_id = hs.is_mine_id async def on_POST(self, request, room_identifier): requester = await self.auth.get_user_by_req(request) await assert_user_is_admin(self.auth, requester.user) content = parse_json_object_from_request(request, allow_empty_body=True) # Resolve to a room ID, if necessary. if RoomID.is_valid(room_identifier): room_id = room_identifier elif RoomAlias.is_valid(room_identifier): room_alias = RoomAlias.from_string(room_identifier) room_id, _ = await self.room_member_handler.lookup_room_alias(room_alias) room_id = room_id.to_string() else: raise SynapseError( 400, "%s was not legal room ID or room alias" % (room_identifier,) ) # Which user to grant room admin rights to. user_to_add = content.get("user_id", requester.user.to_string()) # Figure out which local users currently have power in the room, if any. room_state = await self.state_handler.get_current_state(room_id) if not room_state: raise SynapseError(400, "Server not in room") create_event = room_state[(EventTypes.Create, "")] power_levels = room_state.get((EventTypes.PowerLevels, "")) if power_levels is not None: # We pick the local user with the highest power. user_power = power_levels.content.get("users", {}) admin_users = [ user_id for user_id in user_power if self.is_mine_id(user_id) ] admin_users.sort(key=lambda user: user_power[user]) if not admin_users: raise SynapseError(400, "No local admin user in room") admin_user_id = None for admin_user in reversed(admin_users): if room_state.get((EventTypes.Member, admin_user)): admin_user_id = admin_user break if not admin_user_id: raise SynapseError( 400, "No local admin user in room", ) pl_content = power_levels.content else: # If there is no power level events then the creator has rights. pl_content = {} admin_user_id = create_event.sender if not self.is_mine_id(admin_user_id): raise SynapseError( 400, "No local admin user in room", ) # Grant the user power equal to the room admin by attempting to send an # updated power level event. new_pl_content = dict(pl_content) new_pl_content["users"] = dict(pl_content.get("users", {})) new_pl_content["users"][user_to_add] = new_pl_content["users"][admin_user_id] fake_requester = create_requester( admin_user_id, authenticated_entity=requester.authenticated_entity, ) try: await self.event_creation_handler.create_and_send_nonmember_event( fake_requester, event_dict={ "content": new_pl_content, "sender": admin_user_id, "type": EventTypes.PowerLevels, "state_key": "", "room_id": room_id, }, ) except AuthError: # The admin user we found turned out not to have enough power. raise SynapseError( 400, "No local admin user in room with power to update power levels." ) # Now we check if the user we're granting admin rights to is already in # the room. If not and it's not a public room we invite them. member_event = room_state.get((EventTypes.Member, user_to_add)) is_joined = False if member_event: is_joined = member_event.content["membership"] in ( Membership.JOIN, Membership.INVITE, ) if is_joined: return 200, {} join_rules = room_state.get((EventTypes.JoinRules, "")) is_public = False if join_rules: is_public = join_rules.content.get("join_rule") == JoinRules.PUBLIC if is_public: return 200, {} await self.room_member_handler.update_membership( fake_requester, target=UserID.from_string(user_to_add), room_id=room_id, action=Membership.INVITE, ) return 200, {} class ForwardExtremitiesRestServlet(RestServlet): """Allows a server admin to get or clear forward extremities. Clearing does not require restarting the server. Clear forward extremities: DELETE /_synapse/admin/v1/rooms/<room_id_or_alias>/forward_extremities Get forward_extremities: GET /_synapse/admin/v1/rooms/<room_id_or_alias>/forward_extremities """ PATTERNS = admin_patterns("/rooms/(?P<room_identifier>[^/]*)/forward_extremities") def __init__(self, hs: "HomeServer"): self.hs = hs self.auth = hs.get_auth() self.room_member_handler = hs.get_room_member_handler() self.store = hs.get_datastore() async def resolve_room_id(self, room_identifier: str) -> str: """Resolve to a room ID, if necessary.""" if RoomID.is_valid(room_identifier): resolved_room_id = room_identifier elif RoomAlias.is_valid(room_identifier): room_alias = RoomAlias.from_string(room_identifier) room_id, _ = await self.room_member_handler.lookup_room_alias(room_alias) resolved_room_id = room_id.to_string() else: raise SynapseError( 400, "%s was not legal room ID or room alias" % (room_identifier,) ) if not resolved_room_id: raise SynapseError( 400, "Unknown room ID or room alias %s" % room_identifier ) return resolved_room_id async def on_DELETE(self, request, room_identifier): requester = await self.auth.get_user_by_req(request) await assert_user_is_admin(self.auth, requester.user) room_id = await self.resolve_room_id(room_identifier) deleted_count = await self.store.delete_forward_extremities_for_room(room_id) return 200, {"deleted": deleted_count} async def on_GET(self, request, room_identifier): requester = await self.auth.get_user_by_req(request) await assert_user_is_admin(self.auth, requester.user) room_id = await self.resolve_room_id(room_identifier) extremities = await self.store.get_forward_extremities_for_room(room_id) return 200, {"count": len(extremities), "results": extremities} class RoomEventContextServlet(RestServlet): """ Provide the context for an event. This API is designed to be used when system administrators wish to look at an abuse report and understand what happened during and immediately prior to this event. """ PATTERNS = admin_patterns("/rooms/(?P<room_id>[^/]*)/context/(?P<event_id>[^/]*)$") def __init__(self, hs): super().__init__() self.clock = hs.get_clock() self.room_context_handler = hs.get_room_context_handler() self._event_serializer = hs.get_event_client_serializer() self.auth = hs.get_auth() async def on_GET(self, request, room_id, event_id): requester = await self.auth.get_user_by_req(request, allow_guest=False) await assert_user_is_admin(self.auth, requester.user) limit = parse_integer(request, "limit", default=10) # picking the API shape for symmetry with /messages filter_str = parse_string(request, b"filter", encoding="utf-8") if filter_str: filter_json = urlparse.unquote(filter_str) event_filter = Filter( json_decoder.decode(filter_json) ) # type: Optional[Filter] else: event_filter = None results = await self.room_context_handler.get_event_context( requester, room_id, event_id, limit, event_filter, use_admin_priviledge=True, ) if not results: raise SynapseError(404, "Event not found.", errcode=Codes.NOT_FOUND) time_now = self.clock.time_msec() results["events_before"] = await self._event_serializer.serialize_events( results["events_before"], time_now ) results["event"] = await self._event_serializer.serialize_event( results["event"], time_now ) results["events_after"] = await self._event_serializer.serialize_events( results["events_after"], time_now ) results["state"] = await self._event_serializer.serialize_events( results["state"], time_now ) return 200, results
py
1a3a37d18ed5555b6972bbecfeb918b6e1bd9793
import smtplib from smtplib import SMTPServerDisconnected from email.message import EmailMessage import mimetypes import os import logging class MailClient(object): """ Example mail client using SMTPlib Uses config """ def __init__(self, config=None, logger=None): self.mailserver = None self.logger = logger if logger else logging.getLogger("MailClient") self.C = config self.fromaddr = self.C["mail.connection.user"] self.connect() def connect(self): self.mailserver = smtplib.SMTP(self.C["mail.connection.host"], self.C["mail.connection.port"]) self.mailserver.ehlo() self.mailserver.starttls() self.mailserver.login(self.fromaddr, self.C["mail.connection.passwd"]) self.logger.info("self.Connected successfully to mail server.") @staticmethod def add_attachment(msg, fpath): """ Liberated from docs """ ctype, encoding = mimetypes.guess_type(fpath) if ctype is None or encoding is not None: ctype = 'application/octet-stream' maintype, subtype = ctype.split('/', 1) with open(fpath, "rb") as f: msg.add_attachment(f.read(), maintype=maintype, subtype=subtype, filename=os.path.basename(fpath)) def compose_mail(self, title, body, attachments=None, to=None): msg = EmailMessage() msg.set_content(body) msg["To"] = to if to else ", ".join(self.C["mail.recipients"]) msg["From"] = self.fromaddr msg["Subject"] = title if attachments: if not isinstance(attachments, list): attachments = [attachments] self.logger.info("Found {} attachment. Processing".format(len(attachments))) for attachment in attachments: self.logger.info("Attaching \"{}\"".format(attachment)) self.add_attachment(msg, attachment) self.logger.debug("Attached \"{}\"".format(attachment)) return msg def send(self, msg): try: self.mailserver.send_message(msg) self.logger.info("Mail sent to the {} recipients".format(len(self.C["mail.recipients"]))) except SMTPServerDisconnected: self.logger.warning("Mail server disconnected. Reconnecting.") self.connect() self.send(msg) if __name__ == '__main__': from src.config.config import Config c = Config("mail.yaml") m = MailClient(config=c) mail = m.compose_mail("test mail", "this is a test mail. \n Please ignore the content", attachments=["attachments/1.txt", "attachments/2.txt"]) m.send(mail)
py
1a3a38b44011478686dc83d1c82949cbbab58086
yahoo = search.Yahoo() def singlescan(url): """instance to scan single targeted domain""" if urlparse(url).query != '': @@ -67,7 +67,7 @@ def singleScan(url): return vulnerables def initparser(): """initialize parser arguments""" global parser @@ -80,7 +80,7 @@ def initParser(): if __name__ == "__main__": initparser() args = parser.parse_args() # find random SQLi by dork @@ -109,8 +109,14 @@ def initParser(): exit(0) io.stdout("scanning server information") vulnerableurls = [result[0] for result in vulnerables] table_data = serverinfo.check(vulnerableurls) # add db name to info for result, info in zip(vulnerables, table_data): info.insert(1, result[1]) # database name io.fullprint(table_data) # do reverse domain of given site @@ -141,7 +147,7 @@ def initParser(): vulnerables = [] for domain in domains: vulnerables_temp = singlescan(domain) if vulnerables_temp: vulnerables += vulnerables_temp @@ -151,13 +157,18 @@ def initParser(): exit(0) io.stdout("scanning server information") vulnerableurls = [result[0] for result in vulnerables] table_data = serverinfo.check(vulnerableurls) # add db name to info for result, info in zip(vulnerables, table_data): info.insert(1, result[1]) # database name io.fullprint(table_data) # scan SQLi of given site elif args.target: vulnerables = singlescan(args.target) if not vulnerables: exit(0) @@ -166,9 +177,9 @@ def initParser(): io.stdout("getting server info of domains can take a few mins") table_data = serverinfo.check([args.target]) io.printserverinfo(table_data) print "" # give space between two table io.normalprint(vulnerables) # print help message, if no parameter is provided
py
1a3a3904da552b504ba1080f23fa59ec937d94c8
from django.shortcuts import render, HttpResponse from posts.models import Post # Create your views here. def index(request): posts = Post.objects.all().order_by('-registered_at')[:5] context = { 'posts' : posts } return render(request, 'home/index.html', context)
py
1a3a3982731a4be31da1d5f74b89af30c6b79588
from elegantrl.agents.AgentSAC import AgentSAC from elegantrl.agents.net import Critic, ActorSAC, ActorFixSAC, CriticREDQ import torch import numpy as np from copy import deepcopy class AgentREDQ(AgentSAC): # [ElegantRL.2021.11.11] """ Bases: ``AgentBase`` Randomized Ensemble Double Q-learning algorithm. “Randomized Ensembled Double Q-Learning: Learning Fast Without A Model”. Xinyue Chen et al.. 2021. :param net_dim[int]: the dimension of networks (the width of neural networks) :param state_dim[int]: the dimension of state (the number of state vector) :param action_dim[int]: the dimension of action (the number of discrete action) :param reward_scale: scale the reward to get a appropriate scale Q value :param gamma: the discount factor of Reinforcement Learning :param learning_rate: learning rate of optimizer :param if_per_or_gae: PER (off-policy) or GAE (on-policy) for sparse reward :param env_num: the env number of VectorEnv. env_num == 1 means don't use VectorEnv :param gpu_id: the gpu_id of the training device. Use CPU when cuda is not available. :param G: Update to date ratio :param M: subset size of critics :param N: ensemble number of critics """ def __init__(self, net_dim, state_dim, action_dim, gpu_id=0, args=None): self.ClassCri = Critic self.get_obj_critic = self.get_obj_critic_raw self.ClassAct = ActorSAC self.if_use_cri_target = True self.if_use_act_target = False self.alpha_log = None self.alpha_optim = None self.target_entropy = None self.obj_critic = (-np.log(0.5)) ** 0.5 # for reliable_lambda self.act_class = getattr(self, "act_class", ActorFixSAC) self.cri_class = getattr(self, "cri_class", CriticREDQ) super().__init__(net_dim, state_dim, action_dim, gpu_id, args) self.obj_c = (-np.log(0.5)) ** 0.5 # for reliable_lambda def init( self, net_dim=256, state_dim=8, action_dim=2, reward_scale=1.0, gamma=0.99, learning_rate=3e-4, if_per_or_gae=False, env_num=1, gpu_id=0, G=20, M=2, N=10, ): self.gamma = gamma self.state_dim = state_dim self.action_dim = action_dim self.reward_scale = reward_scale self.traj_list = [[] for _ in range(env_num)] self.G = G self.M = M self.N = N self.device = torch.device( f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu" ) self.cri_list = [ self.ClassCri(net_dim, state_dim, action_dim).to(self.device) for i in range(self.N) ] self.act = self.ClassAct(net_dim, state_dim, action_dim).to(self.device) self.cri_target_list = [deepcopy(self.cri_list[i]) for i in range(N)] self.cri_optim_list = [ torch.optim.Adam(self.cri_list[i].parameters(), learning_rate) for i in range(self.N) ] self.act_optim = torch.optim.Adam(self.act.parameters(), learning_rate) assert isinstance(if_per_or_gae, bool) if env_num == 1: self.explore_env = self.explore_one_env else: self.explore_env = self.explore_vec_env self.alpha_log = torch.zeros( 1, requires_grad=True, device=self.device ) # trainable parameter self.alpha_optim = torch.optim.Adam([self.alpha_log], lr=learning_rate) self.target_entropy = np.log(action_dim) self.criterion = torch.nn.MSELoss() def get_obj_critic_raw(self, buffer, batch_size): with torch.no_grad(): reward, mask, action, state, next_s = buffer.sample_batch(batch_size) next_a, next_log_prob = self.act_target.get_action_logprob( next_s ) # stochastic policy next_q = self.cri_target.get_q_min(next_s, next_a) alpha = self.alpha_log.exp().detach() q_label = reward + mask * (next_q + next_log_prob * alpha) qs = self.cri.get_q_values(state, action) obj_critic = self.criterion(qs, q_label * torch.ones_like(qs)) return obj_critic, state def get_obj_critic_per(self, buffer, batch_size): with torch.no_grad(): reward, mask, action, state, next_s, is_weights = buffer.sample_batch( batch_size ) next_a, next_log_prob = self.act_target.get_action_logprob( next_s ) # stochastic policy next_q = self.cri_target.get_q_min(next_s, next_a) alpha = self.alpha_log.exp().detach() q_label = reward + mask * (next_q + next_log_prob * alpha) qs = self.cri.get_q_values(state, action) td_error = self.criterion(qs, q_label * torch.ones_like(qs)).mean(dim=1) obj_critic = (td_error * is_weights).mean() buffer.td_error_update(td_error.detach()) return obj_critic, state def get_obj_critic_raw_(self, buffer, batch_size, alpha): """ Calculate the loss of networks with **uniform sampling**. :param buffer: the ReplayBuffer instance that stores the trajectories. :param batch_size: the size of batch data for Stochastic Gradient Descent (SGD). :param alpha: the trade-off coefficient of entropy regularization. :return: the loss of the network and states. """ with torch.no_grad(): batch = buffer.sample_batch(batch_size) state = torch.Tensor(batch["obs1"]).to(self.device) next_s = torch.Tensor(batch["obs2"]).to(self.device) action = torch.Tensor(batch["acts"]).to(self.device) reward = torch.Tensor(batch["rews"]).unsqueeze(1).to(self.device) mask = torch.Tensor(batch["done"]).unsqueeze(1).to(self.device) # state, next_s, actions, reward, mask = buffer.sample_batch(batch_size) # print(batch_size,reward.shape,mask.shape,action.shape, state.shape, next_s.shape) next_a, next_log_prob = self.act.get_action_logprob( next_s ) # stochastic policy g = torch.Generator() g.manual_seed(torch.randint(high=10000000, size=(1,))[0].item()) a = torch.randperm(self.N, generator=g) # a = np.random.choice(self.N, self.M, replace=False) # print(a[:M]) q_tmp = [self.cri_target_list[a[j]](next_s, next_a) for j in range(self.M)] q_prediction_next_cat = torch.cat(q_tmp, 1) min_q, min_indices = torch.min(q_prediction_next_cat, dim=1, keepdim=True) next_q_with_log_prob = min_q - alpha * next_log_prob y_q = reward + (1 - mask) * self.gamma * next_q_with_log_prob q_values = [ self.cri_list[j](state, action) for j in range(self.N) ] # todo ensemble q_values_cat = torch.cat(q_values, dim=1) y_q = y_q.expand(-1, self.N) if y_q.shape[1] == 1 else y_q obj_critic = self.criterion(q_values_cat, y_q) * self.N return obj_critic, state # return y_q, state,action def select_actions_(self, state, size, env): """ Select continuous actions for exploration :param state: states.shape==(batch_size, state_dim, ) :return: actions.shape==(batch_size, action_dim, ), -1 < action < +1 """ state = state.to(self.device) actions = self.act.get_action(state) return actions.detach().cpu() def cri_multi_train_(self, k): q_values = self.cri_list[k](self.state, self.action) obj = self.criterion(q_values, self.y_q) self.cri_optim_list[k].zero_grad() obj.backward() self.cri_optim_list[k].step() def update_net_(self, buffer, batch_size, soft_update_tau): # buffer.update_now_len() """ Update the neural networks by sampling batch data from ``ReplayBuffer``. :param buffer: the ReplayBuffer instance that stores the trajectories. :param batch_size: the size of batch data for Stochastic Gradient Descent (SGD). :param soft_update_tau: the soft update parameter. :return: a tuple of the log information. """ for i in range(self.G): alpha = self.alpha_log.cpu().exp().item() """objective of critic (loss function of critic)""" obj_critic, state = self.get_obj_critic(buffer, batch_size, alpha) # self.y_q, self.state,self.action = self.get_obj_critic(buffer, batch_size, alpha) for q_i in range(self.N): self.cri_optim_list[q_i].zero_grad() obj_critic.backward() if ((i + 1) % self.G == 0) or i == self.G - 1: a_noise_pg, logprob = self.act.get_action_logprob( state ) # policy gradient """objective of alpha (temperature parameter automatic adjustment)""" cri_tmp = [] for j in range(self.N): self.cri_list[j].requires_grad_(False) cri_tmp.append(self.cri_list[j](state, a_noise_pg)) q_value_pg = torch.cat(cri_tmp, 1) q_value_pg = torch.mean(q_value_pg, dim=1, keepdim=True) obj_actor = (-q_value_pg + logprob * alpha).mean() # todo ensemble self.act_optim.zero_grad() obj_actor.backward() for j in range(self.N): self.cri_list[j].requires_grad_(True) obj_alpha = -(self.alpha_log * (logprob - 1).detach()).mean() self.optim_update(self.alpha_optim, obj_alpha) for q_i in range(self.N): self.cri_optim_list[q_i].step() if ((i + 1) % self.G == 0) or i == self.G - 1: self.act_optim.step() for q_i in range(self.N): self.soft_update( self.cri_target_list[q_i], self.cri_list[q_i], soft_update_tau ) return obj_actor, alpha
py
1a3a39da8ad6c25d198a38e8c7ecadf295767291
from asyncore import dispatcher_with_send from concurrent.futures import thread import imp import multiprocessing from queue import Queue from neuron import States import wirelessNode import neuronNetworks from configure import config from multiprocessing import Process from multiprocessing import Value import numpy as np class Model(object): def __init__(self): self.wn = wirelessNode.wirelessNetwork() self.nn = neuronNetworks.neuronNetwork() self.wn.setNN(self.nn) self.complete = True def setWeight(self, srcID, desID, weight): self.nn.setConnectWeight(srcID, desID, weight) def setSelfWeight(self, nodeID, weight): self.nn.setNodeSelfWeight(nodeID, weight) def addEdge(self, srcID, desID): self.nn.addConnect(srcID, desID) def delEdge(self, srcID, desID): self.nn.delConnect(srcID, desID) def getNodeState(self, nodeID): return self.nn.getNodeState(nodeID) def getConnectToNode(self, nodeID): return self.nn.getConnectToNode(nodeID) def isComplete(self): if self.runFlag.value == 0: return False else: return True def recordStructure(self, stream): self.nn.recordStructure(stream) #调用这个函数时,线程会重新跑起来 def resetResult(self): self.startTest() def setLastLoss(self, minValue): self.nn.setLastLoss(minValue) def getResult(self): return self.result.value def setModelID(self, id): self.id = id def startTest(self): self.runFlag = Value('b', False) self.result = Value('f', 1) self.t = Process(target=self.doTest, args=(self.nn, self.wn, self.runFlag, self.result)) self.t.start() return True def doTest(self, nn, wn, runFlag, result): #当未完成时,开始工作,直到完成测试。完成测试后complete会被修改为True timeSec = 0 slotPerSec = config.slotPerSec nn.resetResult() while nn.isComplete() == False: for i in range(slotPerSec): wn.timeLapse(timeSec, i) timeSec = timeSec + 1 runResult = nn.getResult() value = np.array(runResult) result.value = np.sqrt(((value) ** 2).mean()) runFlag.value = 1
py
1a3a3a5a19ebb776f90a7e379fe0566f5a7df493
""" Run a large scale benchmark. We measure: {dataset, encoder, model, train and test accuracy measures, train and test runtimes, feature count}. Note: A reasonably recent version of sklearn is required to run GradientBoostingClassifier and MLPClassifier. """ import os import warnings import pandas as pd import numpy as np from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import category_encoders from examples.benchmarking_large import arff_loader from examples.benchmarking_large.util import train_model, train_encoder # The settings are taken from: # Data-driven advice for applying machine learning to bioinformatics problems, Olson et al. # Following models have high variance of results: SGD, SVC and DecisionTree. That is not a big deal. # Just be careful during result interpretation. # Also, following models are slow because of their configuration: GradientBoosting and RandomForest. # SGD and DecisionTree benefit from stronger regularization. models = [SGDClassifier(loss='modified_huber', max_iter=50, tol=1e-3), LogisticRegression(C=1.5, penalty='l1', fit_intercept=True), SVC(kernel='poly', probability=True, C=0.01, gamma=0.1, degree=3, coef0=10.0), KNeighborsClassifier(), GaussianNB(), DecisionTreeClassifier(max_depth=4), GradientBoostingClassifier(loss='deviance', learning_rate=0.1, n_estimators=500, max_depth=3, max_features='log2'), RandomForestClassifier(n_estimators=500, max_features=0.25, criterion='entropy'), MLPClassifier()] # We use Arff datasets on GitHub. But once OpenML loader will be part of scikit-learn: # https://github.com/scikit-learn/scikit-learn/pull/11419 # the plan is to move on OpenML. # We ignore datasets without any polynomial feature. # We also ignore 'splice.arff', 'anneal.arff', 'anneal.orig.arff' due to high runtime. # Datasets sensitive to amount of regularization are: # breast.cancer.arff Medium impact # bridges.version1.arff # bridges.version2.arff # car.arff # colic.arff # cylinder.bands.arff Medium impact # flags.arff Large impact # heart.c.arff # hepatitis.arff # hypothyroid.arff # kr.vs.kp.arff # labor.arff Large impact # lymph.arff # nursery.arff # postoperative.patient.data.arff Large impact # primary.tumor.arff # solar.flare1.arff Medium impact # solar.flare2.arff Medium impact # soybean.arff Large impact # sick.arff # spectrometer.arff Large impact # sponge.arff Large impact # tic-tac-toe.arff # trains.arff Medium impact (note that this is a tiny dataset -> with high variance) datasets = [#'audiology.arff', 'autos.arff', 'breast.cancer.arff', 'bridges.version1.arff', 'bridges.version2.arff', 'car.arff', # 'colic.arff', 'credit.a.arff', 'credit.g.arff', 'cylinder.bands.arff', 'flags.arff', 'heart.c.arff', 'heart.h.arff', 'hepatitis.arff', 'hypothyroid.arff', 'kr.vs.kp.arff', 'labor.arff', 'lymph.arff', 'mushroom.arff', 'nursery.arff', 'postoperative.patient.data.arff', 'primary.tumor.arff', 'sick.arff', 'solar.flare1.arff', 'solar.flare2.arff', 'soybean.arff', 'spectrometer.arff', 'sponge.arff', 'tic-tac-toe.arff', 'trains.arff', 'vote.arff', 'vowel.arff'] # datasets = ['postoperative.patient.data.arff'] # datasets = ['amazon.csv', 'carvana.csv', 'erasmus.csv', 'internetusage.csv', 'ipumsla97small.csv', 'kobe.csv', 'pbcseq.csv', 'phpvcoG8S.csv', 'westnile.csv'] # We ignore encoders {BackwardDifferenceEncoder, HelmertEncoder, PolynomialEncoder and SumEncoder} because of: # https://github.com/scikit-learn-contrib/categorical-encoding/issues/91 encoders = [ category_encoders.TargetEncoderV2()] # Initialization if os.path.isfile('./output/result.csv'): os.remove('./output/result.csv') # Ok... warnings.filterwarnings('ignore') # Loop over datasets, then over encoders, and finally, over the models for dataset_name in datasets: X, y, fold_count = arff_loader.load(dataset_name) non_numeric = list(X.select_dtypes(exclude=[np.number]).columns.values) for encoder in encoders: print("Encoding:", dataset_name, y.name, encoder.__class__.__name__) folds, fit_encoder_time, score_encoder_time = train_encoder(X, y, fold_count, encoder) for model in models: print('Evaluating:', dataset_name, encoder.__class__.__name__, model.__class__.__name__) scores, fit_model_time, score_model_time = train_model(folds, model) # Log into csv result = pd.DataFrame([dataset_name, y.name, encoder.__class__.__name__, model.__class__.__name__, X.shape[1], folds[0][0].shape[1], fit_encoder_time, score_encoder_time, fit_model_time, score_model_time] + list(scores)).T if not os.path.isfile('./output/result.csv'): result.to_csv('./output/result.csv', header=['dataset', 'target', 'encoder', 'model', 'input_features', 'output_features', 'fit_encoder_time', 'score_encoder_time', 'fit_model_time', 'score_model_time', 'test_matthews', 'train_matthews', 'test_auc', 'train_auc', 'test_brier', 'train_brier'], index=False) else: result.to_csv('./output/result.csv', mode='a', header=False, index=False) print('Finished. The result was stored into ./output/result.csv.')
py
1a3a3aa39ebe459d08ab6a435a19ca79622f0593
#!/usr/bin/python # -*- coding: utf-8 -*- """ Django settings for scrapy_joy project. For more information on this file, see https://docs.djangoproject.com/en/1.6/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.6/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '$k70*9=58#2%p(!b_1ox*!96^&vuvwz)3oq8&-yvofetyjyy)#' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = ['*'] CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'unique-snowflake', } } # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'xadmin', 'crispy_forms', # 'reversion', 'kombu.transport.django', 'djcelery', 'dynamic_scraper', 'debug_toolbar', 'scrapy_joy', 'open_news', 'open_loan', 'open_insurance', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'debug_toolbar.middleware.DebugToolbarMiddleware', ) ROOT_URLCONF = 'scrapy_joy.urls' WSGI_APPLICATION = 'scrapy_joy.wsgi.application' # Database # https://docs.djangoproject.com/en/1.6/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'scrapy_joy2', 'USER': 'root', 'PASSWORD': '123456', 'HOST': '127.0.0.1', 'PORT': '3306', 'OPTIONS': {'init_command': 'SET storage_engine=INNODB;'} } } # Internationalization # https://docs.djangoproject.com/en/1.6/topics/i18n/ LANGUAGE_CODE = 'zh_cn' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = False DATE_FORMAT = 'Y-m-d' DATETIME_FORMAT = 'Y-m-d H:i' TIME_FORMAT = 'H:i' # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.6/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, "static"), ) TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. os.path.join(BASE_DIR, 'templates'), ) # **** 发送邮件设置**** EMAIL_HOST = 'smtp.163.com' EMAIL_PORT = 25 EMAIL_HOST_USER = '[email protected]' EMAIL_HOST_PASSWORD = 'dafcnranfmcvwrds' EMAIL_SUBJECT_PREFIX = u'[Kaisa利率]' DEFAULT_FROM_EMAIL = u'Kaisa利率 <[email protected]>' SERVER_EMAIL = '[email protected]' HOST_NAME = 'http://127.0.0.1:8000' # **** cacheops缓存设置 **** CACHEOPS_REDIS = { 'host': 'localhost', 'port': 6379, 'db': 1, 'socket_timeout': 3, 'password': '', } CACHEOPS_DEFAULTS = { 'timeout': 60*60 } CACHEOPS = { 'auth.user': {'ops': 'get', 'timeout': 60*15}, 'auth.*': {'ops': ('fetch', 'get')}, 'auth.permission': {'ops': 'all'}, '*.*': {}, } DEBUG_TOOLBAR_PATCH_SETTINGS = False INTERNAL_IPS = '127.0.0.1' # django-celery settings import djcelery djcelery.setup_loader() BROKER_HOST = "localhost" BROKER_PORT = 5672 BROKER_BACKEND = "django" BROKER_USER = "guest" BROKER_PASSWORD = "guest" BROKER_VHOST = "/" CELERYBEAT_SCHEDULER = 'djcelery.schedulers.DatabaseScheduler' try: from local_settings import * except: pass
py
1a3a3ac204551e622b08f2b152baf2baa2b08a5a
from .passive_components import Filter from .active_components import Amplifier VALID_PASSIVE = [ 'Filter', 'Attenuator', 'Mixer', 'Coupler', 'Tap', 'Splitter', ] VALID_ACTIVE = [ 'Amplifier', 'ActiveMixer', 'Switch', ] VALID_COMPONENTS = VALID_PASSIVE + VALID_ACTIVE def component_builder(comp_dict): """ This function builds an actual component object from a dictionary as parsed from the xml_parser Args: comp_dict (dict): Component dictionary Returns: comp (Component): Component object of the correct type """ uid = comp_dict['uid'] name = comp_dict['name'] comp_type = comp_dict['type'] if comp_type in VALID_COMPONENTS: # valid component classHandle = globals()[comp_type] # get handle to class name compObj = classHandle(uid, name) # create instance of the component class # add all parameters to the component object params_dict = comp_dict['params'] for key, val in params_dict.items(): compObj.add_parameter(**val) return compObj else: raise Exception("Invalid component type ({}). Valid components: {}".format(comp_type, VALID_COMPONENTS))
py
1a3a3ad18869dc874318d11b740904124e299621
from fractions import Fraction from unittest import TestCase from musurgia.fractaltree.fractaltree import FractalTree class Test(TestCase): def setUp(self) -> None: self.ft = FractalTree(proportions=[1, 2, 3], tree_permutation_order=[3, 1, 2], value=10) def test_0(self): with self.assertRaises(Exception): self.ft.get_layer(1) def test_1(self): self.assertEqual([self.ft], self.ft.get_layer(0)) def test_2(self): self.ft.add_layer() result = self.ft.get_children() self.assertEqual(result, self.ft.get_layer(1)) def test_3(self): for i in range(3): self.ft.add_layer() result = self.ft.get_children() self.assertEqual(result, self.ft.get_layer(1)) def test_4(self): for i in range(3): self.ft.add_layer() result = [child.get_children() for child in self.ft.get_children()] self.assertEqual(result, self.ft.get_layer(2)) def test_5(self): for i in range(3): self.ft.add_layer() result = self.ft.get_leaves() self.assertEqual(result, self.ft.get_layer(3)) def test_6(self): for i in range(3): self.ft.add_layer() with self.assertRaises(ValueError): self.ft.get_layer(4) def test_7(self): self.ft.add_layer() self.ft.add_layer(lambda n: True if n.fractal_order > 1 else False) self.ft.add_layer(lambda n: True if n.fractal_order > 1 else False) self.ft.add_layer(lambda n: True if n.fractal_order > 1 else False) self.ft.add_layer(lambda n: True if n.fractal_order > 1 else False) result = [[['1.1'], [['1.2.1'], ['1.2.2.1', '1.2.2.2', '1.2.2.3'], ['1.2.3.1', '1.2.3.2', '1.2.3.3']], [['1.3.1.1', '1.3.1.2', '1.3.1.3'], ['1.3.2'], ['1.3.3.1', '1.3.3.2', '1.3.3.3']]], '2', [[['3.1.1'], ['3.1.2.1', '3.1.2.2', '3.1.2.3'], ['3.1.3.1', '3.1.3.2', '3.1.3.3']], [['3.2.1.1', '3.2.1.2', '3.2.1.3'], ['3.2.2'], ['3.2.3.1', '3.2.3.2', '3.2.3.3']], ['3.3']]] self.assertEqual(result, [name for name in self.ft.get_layer(4, key='name')]) def test_7_1(self): self.ft.add_layer() self.ft.add_layer() self.assertEqual([10], self.ft.get_layer(0, key='value')) def test_7_2(self): self.ft.add_layer() self.ft.add_layer() result = [Fraction(5, 1), Fraction(5, 3), Fraction(10, 3)] self.assertEqual(result, self.ft.get_layer(1, key='value')) def test_7_3(self): self.ft.add_layer() self.ft.add_layer() result = [[Fraction(5, 6), Fraction(5, 3), Fraction(5, 2)], [Fraction(5, 6), Fraction(5, 18), Fraction(5, 9)], [Fraction(10, 9), Fraction(5, 3), Fraction(5, 9)]] self.assertEqual(result, self.ft.get_layer(2, key='value')) def test_get_layer_key_lambda(self): self.ft.add_layer() self.ft.add_layer() result = [[0.83, 1.67, 2.5], [0.83, 0.28, 0.56], [1.11, 1.67, 0.56]] self.assertEqual(result, self.ft.get_layer(2, key=lambda node: round(float(node.value), 2)))
py
1a3a3b1da92e65dc39e7d3bb038cfc0db1125fa9
"""Test generating the Xibo API.""" from meetup2xibo.updater.xibo_api import XiboApi from meetup2xibo.updater.xibo_event import XiboEvent from meetup2xibo.updater.http_response_error import XiboApiError from requests_toolbelt.utils import dump import json import os import pytest SAMPLE_URL = "https://example.com/api" SAMPLE_XIBO_EVENT_COLUMNS = { 'dataSetColumnId_1': "Nova Labs Open House", 'dataSetColumnId_2': "Orange Bay", 'dataSetColumnId_3': "zvbxrpl2", 'dataSetColumnId_4': "2019-02-26 15:00:00", 'dataSetColumnId_5': "2019-02-26 17:00:00" } SAMPLE_ABOUT_JSON = json.loads("""{ "sourceUrl": null, "version": "1.8.12" }""") SAMPLE_JSON_LIST_0 = json.loads("[]") SAMPLE_JSON_LIST_1 = json.loads("[111]") SAMPLE_JSON_LIST_2 = json.loads("[211, 222]") SAMPLE_JSON_LIST_3 = json.loads("[311, 322, 333]") SAMPLE_XIBO_PAGE_LENGTH = 3 REAL_XIBO_PAGE_LENGTH = 50 def save_json(the_json, path): """Save JSON to a file.""" pretty_json = json.dumps(the_json, indent = 4, sort_keys = True) with path.with_suffix(".json").open("w") as f: print(pretty_json, file = f) def save_response(response, path): """Save an HTTP response to the path.""" with path.with_suffix(".txt").open("w") as f: data = dump.dump_response(response) print(data.decode('utf-8'), file = f) def test_bad_status(xibo_session, xibo_api_url_builder): """Test raising a Xibo API error for a bad HTTP response status.""" bad_about_url = xibo_api_url_builder.about_url() + "x" xibo_api = XiboApi(xibo_session, xibo_api_url_builder, SAMPLE_XIBO_PAGE_LENGTH) with pytest.raises(XiboApiError, match=r'.*HTTP status is \d+, not ok.*'): xibo_api.get_response(bad_about_url) @pytest.mark.skip(reason="Not authorized to use this API service") def test_about_response(module_file_path, xibo_session, xibo_api_url_builder): """Save response from an "about" request to Xibo.""" xibo_api = XiboApi(xibo_session, xibo_api_url_builder, SAMPLE_XIBO_PAGE_LENGTH) xibo_json = xibo_api.get_about() save_json(xibo_json, module_file_path) def test_get_xibo_api_version(mocker): """Testing getting the Xibo API version number.""" xibo_api = XiboApi(None, None, SAMPLE_XIBO_PAGE_LENGTH) xibo_api.get_about = mocker.Mock(return_value = SAMPLE_ABOUT_JSON) assert xibo_api.get_xibo_api_version() == "1.8.12" def test_get_datasets_by_code_response(module_file_path, xibo_session, xibo_api_url_builder): """Save response from a "dataset" request to Xibo.""" dataset_code = os.getenv("EVENT_DATASET_CODE") if not dataset_code: pytest.skip("Define environment variable EVENT_DATASET_CODE") xibo_api = XiboApi(xibo_session, xibo_api_url_builder, SAMPLE_XIBO_PAGE_LENGTH) xibo_json = xibo_api.get_datasets_by_code(dataset_code) save_json(xibo_json, module_file_path) def test_get_dataset_column_response(module_file_path, xibo_session, xibo_api_url_builder): """Save response from a "dataset column" request to Xibo.""" dataset_id = os.getenv("EVENT_DATASET_ID") if not dataset_id: pytest.skip("Define environment variable EVENT_DATASET_ID") xibo_api = XiboApi(xibo_session, xibo_api_url_builder, REAL_XIBO_PAGE_LENGTH) xibo_json = xibo_api.get_dataset_column_by_id(dataset_id) save_json(list(xibo_json), module_file_path) def test_get_response(module_file_path, xibo_session, xibo_api_url_builder): """Save response from a "dataset data" request to Xibo.""" dataset_id = os.getenv("EVENT_DATASET_ID") if not dataset_id: pytest.skip("Define environment variable EVENT_DATASET_ID") xibo_api = XiboApi(xibo_session, xibo_api_url_builder, SAMPLE_XIBO_PAGE_LENGTH) url = xibo_api_url_builder.dataset_data_url(dataset_id) response = xibo_api.get_response(url, start = 100, length = 7) save_response(response, module_file_path) def test_get_dataset_data(module_file_path, xibo_session, xibo_api_url_builder): """Save JSON from a "dataset data" request to Xibo.""" dataset_id = os.getenv("EVENT_DATASET_ID") if not dataset_id: pytest.skip("Define environment variable EVENT_DATASET_ID") xibo_api = XiboApi(xibo_session, xibo_api_url_builder, REAL_XIBO_PAGE_LENGTH) xibo_json = xibo_api.get_dataset_data_by_id(dataset_id) save_json(list(xibo_json), module_file_path) def test_delete_row_response(module_file_path, xibo_session, xibo_api_url_builder): """Save response from a "dataset data delete" request to Xibo.""" row_id = os.getenv("DELETE_ROW_ID") if not row_id: pytest.skip("Environment variable DELETE_ROW_ID is not defined") dataset_id = os.getenv("EVENT_DATASET_ID") if not dataset_id: pytest.skip("Define environment variable EVENT_DATASET_ID") xibo_api = XiboApi(xibo_session, xibo_api_url_builder, SAMPLE_XIBO_PAGE_LENGTH) response = xibo_api.delete_dataset_data_by_id(dataset_id, row_id) save_response(response, module_file_path) def test_insert_dataset_data_response(module_file_path, xibo_session, xibo_api_url_builder): """Save response from a "dataset data insert" request to Xibo.""" dataset_id = os.getenv("EVENT_DATASET_ID") if not dataset_id: pytest.skip("Define environment variable EVENT_DATASET_ID") xibo_api = XiboApi(xibo_session, xibo_api_url_builder, SAMPLE_XIBO_PAGE_LENGTH) response = xibo_api.insert_dataset_data(dataset_id, SAMPLE_XIBO_EVENT_COLUMNS) save_response(response, module_file_path) def test_update_dataset_data_response(module_file_path, xibo_session, xibo_api_url_builder): """Save response from a "dataset data update" request to Xibo.""" row_id = os.getenv("UPDATE_ROW_ID") if not row_id: pytest.skip("Environment variable UPDATE_ROW_ID is not defined") dataset_id = os.getenv("EVENT_DATASET_ID") if not dataset_id: pytest.skip("Define environment variable EVENT_DATASET_ID") xibo_api = XiboApi(xibo_session, xibo_api_url_builder, SAMPLE_XIBO_PAGE_LENGTH) response = xibo_api.update_dataset_data(dataset_id, row_id, SAMPLE_XIBO_EVENT_COLUMNS) save_response(response, module_file_path) def test_get_paged_json_0(mocker): """Test getting 0 paged JSON results.""" xibo_api = XiboApi(None, None, SAMPLE_XIBO_PAGE_LENGTH) xibo_api.get_json = mocker.Mock(return_value = SAMPLE_JSON_LIST_0) results = xibo_api.get_paged_json(SAMPLE_URL) assert list(results) == SAMPLE_JSON_LIST_0 xibo_api.get_json.assert_called_once_with(SAMPLE_URL, start = 0, length = SAMPLE_XIBO_PAGE_LENGTH) def test_get_paged_json_1(mocker): """Test getting 1 paged JSON result.""" xibo_api = XiboApi(None, None, SAMPLE_XIBO_PAGE_LENGTH) xibo_api.get_json = mocker.Mock(return_value = SAMPLE_JSON_LIST_1) results = xibo_api.get_paged_json(SAMPLE_URL) assert list(results) == SAMPLE_JSON_LIST_1 xibo_api.get_json.assert_called_once_with(SAMPLE_URL, start = 0, length = SAMPLE_XIBO_PAGE_LENGTH) def test_get_paged_json_2(mocker): """Test getting 2 paged JSON results.""" xibo_api = XiboApi(None, None, SAMPLE_XIBO_PAGE_LENGTH) xibo_api.get_json = mocker.Mock(return_value = SAMPLE_JSON_LIST_2) results = xibo_api.get_paged_json(SAMPLE_URL) assert list(results) == SAMPLE_JSON_LIST_2 xibo_api.get_json.assert_called_once_with(SAMPLE_URL, start = 0, length = SAMPLE_XIBO_PAGE_LENGTH) def test_get_paged_json_3(mocker): """Test getting 3 paged JSON results, requiring two pages.""" return_values = [SAMPLE_JSON_LIST_3, SAMPLE_JSON_LIST_0] expected_calls = [ mocker.call(SAMPLE_URL, start = 0, length = SAMPLE_XIBO_PAGE_LENGTH), mocker.call(SAMPLE_URL, start = SAMPLE_XIBO_PAGE_LENGTH, length = SAMPLE_XIBO_PAGE_LENGTH), ] xibo_api = XiboApi(None, None, SAMPLE_XIBO_PAGE_LENGTH) xibo_api.get_json = mocker.Mock(side_effect = return_values) results = xibo_api.get_paged_json(SAMPLE_URL) assert list(results) == SAMPLE_JSON_LIST_3 assert xibo_api.get_json.call_args_list == expected_calls def test_get_paged_json_4(mocker): """Test getting 4 paged JSON results, requiring two pages.""" return_values = [SAMPLE_JSON_LIST_3, SAMPLE_JSON_LIST_1] expected_calls = [ mocker.call(SAMPLE_URL, start = 0, length = SAMPLE_XIBO_PAGE_LENGTH), mocker.call(SAMPLE_URL, start = SAMPLE_XIBO_PAGE_LENGTH, length = SAMPLE_XIBO_PAGE_LENGTH), ] xibo_api = XiboApi(None, None, SAMPLE_XIBO_PAGE_LENGTH) xibo_api.get_json = mocker.Mock(side_effect = return_values) results = xibo_api.get_paged_json(SAMPLE_URL) assert list(results) == SAMPLE_JSON_LIST_3 + SAMPLE_JSON_LIST_1 assert xibo_api.get_json.call_args_list == expected_calls # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4 autoindent
py
1a3a3b1f1a9d70de5cee8ad8ec73e87ecc979180
"""SFP - Simple Functional Programming.""" from functools import reduce def tail(iterable): """Get tail of a iterable is everything except the first element.""" r = [x for x in iterable] return r[1:] def pipe(*args): """All the arguments given to this function will be passed as param to `reduce` and it will return a function with all closures set to pipe in.""" return reduce(_pipe, args) def _pipe(curr, prev): """Callback to `reduce` function.""" return lambda x: prev(curr(x)) def compose(*args): """Composes all the given function in one.""" return reduce(lambda fun, tion: lambda arg: fun(tion(arg)), args, lambda arg: arg)
py
1a3a3dcdc3550fd5e3257b579bd966922f1accb6
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'meuSite.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
py
1a3a3dee63379fcc88483acf53619ced9badf877
from dataclasses import dataclass, field from .base import GameServerPacket @dataclass class ActionFailed(GameServerPacket): type: Int8 = field(default=37, init=False, repr=False)
py
1a3a3fe4eacdc4264039dc54d319498859454d31
import unittest import openfigi class MyTestCase(unittest.TestCase): def test_wkn_ticker_anonymous(self): """Get an ETF by WKN and check if response makes sense""" ofg = openfigi.OpenFigi() ofg.enqueue_request(id_type='ID_WERTPAPIER', id_value='A0YEDG') response = ofg.fetch_response() self.assertTrue(type(response) is list) self.assertTrue(len(response) > 0) self.assertTrue(type(response[0]) is dict) self.assertTrue('data' in response[0].keys()) self.assertTrue(len(response[0]['data']) > 0) if __name__ == '__main__': unittest.main()
py
1a3a400db1b16960977a3822c23767ffb95d86b2
import base64 import datetime import hashlib import json from urllib.parse import parse_qs, urlencode, urlparse from django.contrib.auth import get_user_model from django.test import RequestFactory, TestCase from django.urls import reverse from django.utils import timezone from django.utils.crypto import get_random_string from oauthlib.oauth2.rfc6749 import errors as oauthlib_errors from oauth2_provider.models import ( get_access_token_model, get_application_model, get_grant_model, get_refresh_token_model ) from oauth2_provider.settings import oauth2_settings from oauth2_provider.views import ProtectedResourceView from .utils import get_basic_auth_header Application = get_application_model() AccessToken = get_access_token_model() Grant = get_grant_model() RefreshToken = get_refresh_token_model() UserModel = get_user_model() # mocking a protected resource view class ResourceView(ProtectedResourceView): def get(self, request, *args, **kwargs): return "This is a protected resource" class BaseTest(TestCase): def setUp(self): self.factory = RequestFactory() self.test_user = UserModel.objects.create_user("test_user", "[email protected]", "123456") self.dev_user = UserModel.objects.create_user("dev_user", "[email protected]", "123456") oauth2_settings.ALLOWED_REDIRECT_URI_SCHEMES = ["http", "custom-scheme"] self.application = Application( name="Test Application", redirect_uris=( "http://localhost http://example.com http://example.org custom-scheme://example.com" ), user=self.dev_user, client_type=Application.CLIENT_CONFIDENTIAL, authorization_grant_type=Application.GRANT_AUTHORIZATION_CODE, ) self.application.save() oauth2_settings._SCOPES = ["read", "write"] oauth2_settings._DEFAULT_SCOPES = ["read", "write"] def tearDown(self): self.application.delete() self.test_user.delete() self.dev_user.delete() class TestRegressionIssue315(BaseTest): """ Test to avoid regression for the issue 315: request object was being reassigned when getting AuthorizationView """ def test_request_is_not_overwritten(self): self.client.login(username="test_user", password="123456") query_string = urlencode({ "client_id": self.application.client_id, "response_type": "code", "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 200) assert "request" not in response.context_data class TestAuthorizationCodeView(BaseTest): def test_skip_authorization_completely(self): """ If application.skip_authorization = True, should skip the authorization page. """ self.client.login(username="test_user", password="123456") self.application.skip_authorization = True self.application.save() query_string = urlencode({ "client_id": self.application.client_id, "response_type": "code", "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 302) def test_pre_auth_invalid_client(self): """ Test error for an invalid client_id with response_type: code """ self.client.login(username="test_user", password="123456") query_string = urlencode({ "client_id": "fakeclientid", "response_type": "code", }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 400) self.assertEqual( response.context_data["url"], "?error=invalid_request&error_description=Invalid+client_id+parameter+value." ) def test_pre_auth_valid_client(self): """ Test response for a valid client_id with response_type: code """ self.client.login(username="test_user", password="123456") query_string = urlencode({ "client_id": self.application.client_id, "response_type": "code", "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 200) # check form is in context and form params are valid self.assertIn("form", response.context) form = response.context["form"] self.assertEqual(form["redirect_uri"].value(), "http://example.org") self.assertEqual(form["state"].value(), "random_state_string") self.assertEqual(form["scope"].value(), "read write") self.assertEqual(form["client_id"].value(), self.application.client_id) def test_pre_auth_valid_client_custom_redirect_uri_scheme(self): """ Test response for a valid client_id with response_type: code using a non-standard, but allowed, redirect_uri scheme. """ self.client.login(username="test_user", password="123456") query_string = urlencode({ "client_id": self.application.client_id, "response_type": "code", "state": "random_state_string", "scope": "read write", "redirect_uri": "custom-scheme://example.com", }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 200) # check form is in context and form params are valid self.assertIn("form", response.context) form = response.context["form"] self.assertEqual(form["redirect_uri"].value(), "custom-scheme://example.com") self.assertEqual(form["state"].value(), "random_state_string") self.assertEqual(form["scope"].value(), "read write") self.assertEqual(form["client_id"].value(), self.application.client_id) def test_pre_auth_approval_prompt(self): tok = AccessToken.objects.create( user=self.test_user, token="1234567890", application=self.application, expires=timezone.now() + datetime.timedelta(days=1), scope="read write" ) self.client.login(username="test_user", password="123456") query_string = urlencode({ "client_id": self.application.client_id, "response_type": "code", "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "approval_prompt": "auto", }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 302) # user already authorized the application, but with different scopes: prompt them. tok.scope = "read" tok.save() response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_pre_auth_approval_prompt_default(self): self.assertEqual(oauth2_settings.REQUEST_APPROVAL_PROMPT, "force") AccessToken.objects.create( user=self.test_user, token="1234567890", application=self.application, expires=timezone.now() + datetime.timedelta(days=1), scope="read write" ) self.client.login(username="test_user", password="123456") query_string = urlencode({ "client_id": self.application.client_id, "response_type": "code", "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_pre_auth_approval_prompt_default_override(self): oauth2_settings.REQUEST_APPROVAL_PROMPT = "auto" AccessToken.objects.create( user=self.test_user, token="1234567890", application=self.application, expires=timezone.now() + datetime.timedelta(days=1), scope="read write" ) self.client.login(username="test_user", password="123456") query_string = urlencode({ "client_id": self.application.client_id, "response_type": "code", "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 302) def test_pre_auth_default_redirect(self): """ Test for default redirect uri if omitted from query string with response_type: code """ self.client.login(username="test_user", password="123456") query_string = urlencode({ "client_id": self.application.client_id, "response_type": "code", }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 200) form = response.context["form"] self.assertEqual(form["redirect_uri"].value(), "http://localhost") def test_pre_auth_forbibben_redirect(self): """ Test error when passing a forbidden redirect_uri in query string with response_type: code """ self.client.login(username="test_user", password="123456") query_string = urlencode({ "client_id": self.application.client_id, "response_type": "code", "redirect_uri": "http://forbidden.it", }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 400) def test_pre_auth_wrong_response_type(self): """ Test error when passing a wrong response_type in query string """ self.client.login(username="test_user", password="123456") query_string = urlencode({ "client_id": self.application.client_id, "response_type": "WRONG", }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 302) self.assertIn("error=unsupported_response_type", response["Location"]) def test_code_post_auth_allow(self): """ Test authorization code is given for an allowed request with response_type: code """ self.client.login(username="test_user", password="123456") form_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "response_type": "code", "allow": True, } response = self.client.post(reverse("oauth2_provider:authorize"), data=form_data) self.assertEqual(response.status_code, 302) self.assertIn("http://example.org?", response["Location"]) self.assertIn("state=random_state_string", response["Location"]) self.assertIn("code=", response["Location"]) def test_code_post_auth_deny(self): """ Test error when resource owner deny access """ self.client.login(username="test_user", password="123456") form_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "response_type": "code", "allow": False, } response = self.client.post(reverse("oauth2_provider:authorize"), data=form_data) self.assertEqual(response.status_code, 302) self.assertIn("error=access_denied", response["Location"]) self.assertIn("state=random_state_string", response["Location"]) def test_code_post_auth_deny_no_state(self): """ Test optional state when resource owner deny access """ self.client.login(username="test_user", password="123456") form_data = { "client_id": self.application.client_id, "scope": "read write", "redirect_uri": "http://example.org", "response_type": "code", "allow": False, } response = self.client.post(reverse("oauth2_provider:authorize"), data=form_data) self.assertEqual(response.status_code, 302) self.assertIn("error=access_denied", response["Location"]) self.assertNotIn("state", response["Location"]) def test_code_post_auth_bad_responsetype(self): """ Test authorization code is given for an allowed request with a response_type not supported """ self.client.login(username="test_user", password="123456") form_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "response_type": "UNKNOWN", "allow": True, } response = self.client.post(reverse("oauth2_provider:authorize"), data=form_data) self.assertEqual(response.status_code, 302) self.assertIn("http://example.org?error", response["Location"]) def test_code_post_auth_forbidden_redirect_uri(self): """ Test authorization code is given for an allowed request with a forbidden redirect_uri """ self.client.login(username="test_user", password="123456") form_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://forbidden.it", "response_type": "code", "allow": True, } response = self.client.post(reverse("oauth2_provider:authorize"), data=form_data) self.assertEqual(response.status_code, 400) def test_code_post_auth_malicious_redirect_uri(self): """ Test validation of a malicious redirect_uri """ self.client.login(username="test_user", password="123456") form_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "/../", "response_type": "code", "allow": True, } response = self.client.post(reverse("oauth2_provider:authorize"), data=form_data) self.assertEqual(response.status_code, 400) def test_code_post_auth_allow_custom_redirect_uri_scheme(self): """ Test authorization code is given for an allowed request with response_type: code using a non-standard, but allowed, redirect_uri scheme. """ self.client.login(username="test_user", password="123456") form_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "custom-scheme://example.com", "response_type": "code", "allow": True, } response = self.client.post(reverse("oauth2_provider:authorize"), data=form_data) self.assertEqual(response.status_code, 302) self.assertIn("custom-scheme://example.com?", response["Location"]) self.assertIn("state=random_state_string", response["Location"]) self.assertIn("code=", response["Location"]) def test_code_post_auth_deny_custom_redirect_uri_scheme(self): """ Test error when resource owner deny access using a non-standard, but allowed, redirect_uri scheme. """ self.client.login(username="test_user", password="123456") form_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "custom-scheme://example.com", "response_type": "code", "allow": False, } response = self.client.post(reverse("oauth2_provider:authorize"), data=form_data) self.assertEqual(response.status_code, 302) self.assertIn("custom-scheme://example.com?", response["Location"]) self.assertIn("error=access_denied", response["Location"]) self.assertIn("state=random_state_string", response["Location"]) def test_code_post_auth_redirection_uri_with_querystring(self): """ Tests that a redirection uri with query string is allowed and query string is retained on redirection. See http://tools.ietf.org/html/rfc6749#section-3.1.2 """ self.client.login(username="test_user", password="123456") form_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.com?foo=bar", "response_type": "code", "allow": True, } response = self.client.post(reverse("oauth2_provider:authorize"), data=form_data) self.assertEqual(response.status_code, 302) self.assertIn("http://example.com?foo=bar", response["Location"]) self.assertIn("code=", response["Location"]) self.assertIn("state=random_state_string", response["Location"]) def test_code_post_auth_failing_redirection_uri_with_querystring(self): """ Test that in case of error the querystring of the redirection uri is preserved See https://github.com/jazzband/django-oauth-toolkit/issues/238 """ self.client.login(username="test_user", password="123456") form_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.com?foo=bar", "response_type": "code", "allow": False, } response = self.client.post(reverse("oauth2_provider:authorize"), data=form_data) self.assertEqual(response.status_code, 302) self.assertIn("http://example.com?", response["Location"]) self.assertIn("error=access_denied", response["Location"]) self.assertIn("state=random_state_string", response["Location"]) self.assertIn("foo=bar", response["Location"]) def test_code_post_auth_fails_when_redirect_uri_path_is_invalid(self): """ Tests that a redirection uri is matched using scheme + netloc + path """ self.client.login(username="test_user", password="123456") form_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.com/a?foo=bar", "response_type": "code", "allow": True, } response = self.client.post(reverse("oauth2_provider:authorize"), data=form_data) self.assertEqual(response.status_code, 400) class TestAuthorizationCodeTokenView(BaseTest): def get_auth(self): """ Helper method to retrieve a valid authorization code """ authcode_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "response_type": "code", "allow": True, } response = self.client.post(reverse("oauth2_provider:authorize"), data=authcode_data) query_dict = parse_qs(urlparse(response["Location"]).query) return query_dict["code"].pop() def generate_pkce_codes(self, algorithm, length=43): """ Helper method to generate pkce codes """ code_verifier = get_random_string(length) if algorithm == "S256": code_challenge = base64.urlsafe_b64encode( hashlib.sha256(code_verifier.encode()).digest() ).decode().rstrip("=") else: code_challenge = code_verifier return code_verifier, code_challenge def get_pkce_auth(self, code_challenge, code_challenge_method): """ Helper method to retrieve a valid authorization code using pkce """ oauth2_settings.PKCE_REQUIRED = True authcode_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "response_type": "code", "allow": True, "code_challenge": code_challenge, "code_challenge_method": code_challenge_method, } response = self.client.post(reverse("oauth2_provider:authorize"), data=authcode_data) query_dict = parse_qs(urlparse(response["Location"]).query) oauth2_settings.PKCE_REQUIRED = False return query_dict["code"].pop() def test_basic_auth(self): """ Request an access token using basic authentication for client authentication """ self.client.login(username="test_user", password="123456") authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 200) content = json.loads(response.content.decode("utf-8")) self.assertEqual(content["token_type"], "Bearer") self.assertEqual(content["scope"], "read write") self.assertEqual(content["expires_in"], oauth2_settings.ACCESS_TOKEN_EXPIRE_SECONDS) def test_refresh(self): """ Request an access token using a refresh token """ self.client.login(username="test_user", password="123456") authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) content = json.loads(response.content.decode("utf-8")) self.assertTrue("refresh_token" in content) # make a second token request to be sure the previous refresh token remains valid, see #65 authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) token_request_data = { "grant_type": "refresh_token", "refresh_token": content["refresh_token"], "scope": content["scope"], } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 200) content = json.loads(response.content.decode("utf-8")) self.assertTrue("access_token" in content) # check refresh token cannot be used twice response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 400) content = json.loads(response.content.decode("utf-8")) self.assertTrue("invalid_grant" in content.values()) def test_refresh_with_grace_period(self): """ Request an access token using a refresh token """ oauth2_settings.REFRESH_TOKEN_GRACE_PERIOD_SECONDS = 120 self.client.login(username="test_user", password="123456") authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) content = json.loads(response.content.decode("utf-8")) self.assertTrue("refresh_token" in content) # make a second token request to be sure the previous refresh token remains valid, see #65 authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) token_request_data = { "grant_type": "refresh_token", "refresh_token": content["refresh_token"], "scope": content["scope"], } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 200) content = json.loads(response.content.decode("utf-8")) self.assertTrue("access_token" in content) first_access_token = content["access_token"] first_refresh_token = content["refresh_token"] # check access token returns same data if used twice, see #497 response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 200) content = json.loads(response.content.decode("utf-8")) self.assertTrue("access_token" in content) self.assertEqual(content["access_token"], first_access_token) # refresh token should be the same as well self.assertTrue("refresh_token" in content) self.assertEqual(content["refresh_token"], first_refresh_token) oauth2_settings.REFRESH_TOKEN_GRACE_PERIOD_SECONDS = 0 def test_refresh_invalidates_old_tokens(self): """ Ensure existing refresh tokens are cleaned up when issuing new ones """ self.client.login(username="test_user", password="123456") authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) content = json.loads(response.content.decode("utf-8")) rt = content["refresh_token"] at = content["access_token"] token_request_data = { "grant_type": "refresh_token", "refresh_token": rt, "scope": content["scope"], } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 200) refresh_token = RefreshToken.objects.filter(token=rt).first() self.assertIsNotNone(refresh_token.revoked) self.assertFalse(AccessToken.objects.filter(token=at).exists()) def test_refresh_no_scopes(self): """ Request an access token using a refresh token without passing any scope """ self.client.login(username="test_user", password="123456") authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) content = json.loads(response.content.decode("utf-8")) self.assertTrue("refresh_token" in content) token_request_data = { "grant_type": "refresh_token", "refresh_token": content["refresh_token"], } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 200) content = json.loads(response.content.decode("utf-8")) self.assertTrue("access_token" in content) def test_refresh_bad_scopes(self): """ Request an access token using a refresh token and wrong scopes """ self.client.login(username="test_user", password="123456") authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) content = json.loads(response.content.decode("utf-8")) self.assertTrue("refresh_token" in content) token_request_data = { "grant_type": "refresh_token", "refresh_token": content["refresh_token"], "scope": "read write nuke", } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 400) def test_refresh_fail_repeating_requests(self): """ Try refreshing an access token with the same refresh token more than once """ self.client.login(username="test_user", password="123456") authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) content = json.loads(response.content.decode("utf-8")) self.assertTrue("refresh_token" in content) token_request_data = { "grant_type": "refresh_token", "refresh_token": content["refresh_token"], "scope": content["scope"], } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 200) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 400) def test_refresh_repeating_requests(self): """ Trying to refresh an access token with the same refresh token more than once succeeds in the grace period and fails outside """ oauth2_settings.REFRESH_TOKEN_GRACE_PERIOD_SECONDS = 120 self.client.login(username="test_user", password="123456") authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) content = json.loads(response.content.decode("utf-8")) self.assertTrue("refresh_token" in content) token_request_data = { "grant_type": "refresh_token", "refresh_token": content["refresh_token"], "scope": content["scope"], } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 200) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 200) # try refreshing outside the refresh window, see #497 rt = RefreshToken.objects.get(token=content["refresh_token"]) self.assertIsNotNone(rt.revoked) rt.revoked = timezone.now() - datetime.timedelta(minutes=10) # instead of mocking out datetime rt.save() response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 400) oauth2_settings.REFRESH_TOKEN_GRACE_PERIOD_SECONDS = 0 def test_refresh_repeating_requests_non_rotating_tokens(self): """ Try refreshing an access token with the same refresh token more than once when not rotating tokens. """ self.client.login(username="test_user", password="123456") authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) content = json.loads(response.content.decode("utf-8")) self.assertTrue("refresh_token" in content) token_request_data = { "grant_type": "refresh_token", "refresh_token": content["refresh_token"], "scope": content["scope"], } oauth2_settings.ROTATE_REFRESH_TOKEN = False response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 200) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 200) oauth2_settings.ROTATE_REFRESH_TOKEN = True def test_basic_auth_bad_authcode(self): """ Request an access token using a bad authorization code """ self.client.login(username="test_user", password="123456") token_request_data = { "grant_type": "authorization_code", "code": "BLAH", "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 400) def test_basic_auth_bad_granttype(self): """ Request an access token using a bad grant_type string """ self.client.login(username="test_user", password="123456") token_request_data = { "grant_type": "UNKNOWN", "code": "BLAH", "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 400) def test_basic_auth_grant_expired(self): """ Request an access token using an expired grant token """ self.client.login(username="test_user", password="123456") g = Grant( application=self.application, user=self.test_user, code="BLAH", expires=timezone.now(), redirect_uri="", scope="") g.save() token_request_data = { "grant_type": "authorization_code", "code": "BLAH", "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 400) def test_basic_auth_bad_secret(self): """ Request an access token using basic authentication for client authentication """ self.client.login(username="test_user", password="123456") authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, "BOOM!") response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 401) def test_basic_auth_wrong_auth_type(self): """ Request an access token using basic authentication for client authentication """ self.client.login(username="test_user", password="123456") authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } user_pass = "{0}:{1}".format(self.application.client_id, self.application.client_secret) auth_string = base64.b64encode(user_pass.encode("utf-8")) auth_headers = { "HTTP_AUTHORIZATION": "Wrong " + auth_string.decode("utf-8"), } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 401) def test_request_body_params(self): """ Request an access token using client_type: public """ self.client.login(username="test_user", password="123456") authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org", "client_id": self.application.client_id, "client_secret": self.application.client_secret, } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data) self.assertEqual(response.status_code, 200) content = json.loads(response.content.decode("utf-8")) self.assertEqual(content["token_type"], "Bearer") self.assertEqual(content["scope"], "read write") self.assertEqual(content["expires_in"], oauth2_settings.ACCESS_TOKEN_EXPIRE_SECONDS) def test_public(self): """ Request an access token using client_type: public """ self.client.login(username="test_user", password="123456") self.application.client_type = Application.CLIENT_PUBLIC self.application.save() authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org", "client_id": self.application.client_id } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data) self.assertEqual(response.status_code, 200) content = json.loads(response.content.decode("utf-8")) self.assertEqual(content["token_type"], "Bearer") self.assertEqual(content["scope"], "read write") self.assertEqual(content["expires_in"], oauth2_settings.ACCESS_TOKEN_EXPIRE_SECONDS) def test_public_pkce_S256_authorize_get(self): """ Request an access token using client_type: public and PKCE enabled. Tests if the authorize get is successfull for the S256 algorithm """ self.client.login(username="test_user", password="123456") self.application.client_type = Application.CLIENT_PUBLIC self.application.save() code_verifier, code_challenge = self.generate_pkce_codes("S256") oauth2_settings.PKCE_REQUIRED = True query_string = urlencode({ "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "response_type": "code", "allow": True, "code_challenge": code_challenge, "code_challenge_method": "S256" }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 200) oauth2_settings.PKCE_REQUIRED = False def test_public_pkce_plain_authorize_get(self): """ Request an access token using client_type: public and PKCE enabled. Tests if the authorize get is successfull for the plain algorithm """ self.client.login(username="test_user", password="123456") self.application.client_type = Application.CLIENT_PUBLIC self.application.save() code_verifier, code_challenge = self.generate_pkce_codes("plain") oauth2_settings.PKCE_REQUIRED = True query_string = urlencode({ "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "response_type": "code", "allow": True, "code_challenge": code_challenge, "code_challenge_method": "plain" }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) print(code_challenge) print(response.context_data) print(url) self.assertEqual(response.status_code, 200) oauth2_settings.PKCE_REQUIRED = False def test_public_pkce_S256(self): """ Request an access token using client_type: public and PKCE enabled with the S256 algorithm """ self.client.login(username="test_user", password="123456") self.application.client_type = Application.CLIENT_PUBLIC self.application.save() code_verifier, code_challenge = self.generate_pkce_codes("S256") authorization_code = self.get_pkce_auth(code_challenge, "S256") oauth2_settings.PKCE_REQUIRED = True token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org", "client_id": self.application.client_id, "code_verifier": code_verifier } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data) self.assertEqual(response.status_code, 200) content = json.loads(response.content.decode("utf-8")) self.assertEqual(content["token_type"], "Bearer") self.assertEqual(content["scope"], "read write") self.assertEqual(content["expires_in"], oauth2_settings.ACCESS_TOKEN_EXPIRE_SECONDS) oauth2_settings.PKCE_REQUIRED = False def test_public_pkce_plain(self): """ Request an access token using client_type: public and PKCE enabled with the plain algorithm """ self.client.login(username="test_user", password="123456") self.application.client_type = Application.CLIENT_PUBLIC self.application.save() code_verifier, code_challenge = self.generate_pkce_codes("plain") authorization_code = self.get_pkce_auth(code_challenge, "plain") oauth2_settings.PKCE_REQUIRED = True token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org", "client_id": self.application.client_id, "code_verifier": code_verifier } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data) print(response.content) self.assertEqual(response.status_code, 200) content = json.loads(response.content.decode("utf-8")) self.assertEqual(content["token_type"], "Bearer") self.assertEqual(content["scope"], "read write") self.assertEqual(content["expires_in"], oauth2_settings.ACCESS_TOKEN_EXPIRE_SECONDS) oauth2_settings.PKCE_REQUIRED = False def test_public_pkce_invalid_algorithm(self): """ Request an access token using client_type: public and PKCE enabled with an invalid algorithm """ self.client.login(username="test_user", password="123456") self.application.client_type = Application.CLIENT_PUBLIC self.application.save() code_verifier, code_challenge = self.generate_pkce_codes("invalid") oauth2_settings.PKCE_REQUIRED = True query_string = urlencode({ "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "response_type": "code", "allow": True, "code_challenge": code_challenge, "code_challenge_method": "invalid", }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 302) self.assertIn("error=invalid_request", response["Location"]) oauth2_settings.PKCE_REQUIRED = False def test_public_pkce_missing_code_challenge(self): """ Request an access token using client_type: public and PKCE enabled but with the code_challenge missing """ self.client.login(username="test_user", password="123456") self.application.client_type = Application.CLIENT_PUBLIC self.application.skip_authorization = True self.application.save() code_verifier, code_challenge = self.generate_pkce_codes("S256") oauth2_settings.PKCE_REQUIRED = True query_string = urlencode({ "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "response_type": "code", "allow": True, "code_challenge_method": "S256" }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 302) self.assertIn("error=invalid_request", response["Location"]) oauth2_settings.PKCE_REQUIRED = False def test_public_pkce_missing_code_challenge_method(self): """ Request an access token using client_type: public and PKCE enabled but with the code_challenge_method missing """ self.client.login(username="test_user", password="123456") self.application.client_type = Application.CLIENT_PUBLIC self.application.save() code_verifier, code_challenge = self.generate_pkce_codes("S256") oauth2_settings.PKCE_REQUIRED = True query_string = urlencode({ "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "response_type": "code", "allow": True, "code_challenge": code_challenge }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 200) oauth2_settings.PKCE_REQUIRED = False def test_public_pkce_S256_invalid_code_verifier(self): """ Request an access token using client_type: public and PKCE enabled with the S256 algorithm and an invalid code_verifier """ self.client.login(username="test_user", password="123456") self.application.client_type = Application.CLIENT_PUBLIC self.application.save() code_verifier, code_challenge = self.generate_pkce_codes("S256") authorization_code = self.get_pkce_auth(code_challenge, "S256") oauth2_settings.PKCE_REQUIRED = True token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org", "client_id": self.application.client_id, "code_verifier": "invalid" } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data) self.assertEqual(response.status_code, 400) oauth2_settings.PKCE_REQUIRED = False def test_public_pkce_plain_invalid_code_verifier(self): """ Request an access token using client_type: public and PKCE enabled with the plain algorithm and an invalid code_verifier """ self.client.login(username="test_user", password="123456") self.application.client_type = Application.CLIENT_PUBLIC self.application.save() code_verifier, code_challenge = self.generate_pkce_codes("plain") authorization_code = self.get_pkce_auth(code_challenge, "plain") oauth2_settings.PKCE_REQUIRED = True token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org", "client_id": self.application.client_id, "code_verifier": "invalid" } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data) self.assertEqual(response.status_code, 400) oauth2_settings.PKCE_REQUIRED = False def test_public_pkce_S256_missing_code_verifier(self): """ Request an access token using client_type: public and PKCE enabled with the S256 algorithm and the code_verifier missing """ self.client.login(username="test_user", password="123456") self.application.client_type = Application.CLIENT_PUBLIC self.application.save() code_verifier, code_challenge = self.generate_pkce_codes("S256") authorization_code = self.get_pkce_auth(code_challenge, "S256") oauth2_settings.PKCE_REQUIRED = True token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org", "client_id": self.application.client_id } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data) self.assertEqual(response.status_code, 400) oauth2_settings.PKCE_REQUIRED = False def test_public_pkce_plain_missing_code_verifier(self): """ Request an access token using client_type: public and PKCE enabled with the plain algorithm and the code_verifier missing """ self.client.login(username="test_user", password="123456") self.application.client_type = Application.CLIENT_PUBLIC self.application.save() code_verifier, code_challenge = self.generate_pkce_codes("plain") authorization_code = self.get_pkce_auth(code_challenge, "plain") oauth2_settings.PKCE_REQUIRED = True token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org", "client_id": self.application.client_id } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data) self.assertEqual(response.status_code, 400) oauth2_settings.PKCE_REQUIRED = False def test_malicious_redirect_uri(self): """ Request an access token using client_type: public and ensure redirect_uri is properly validated. """ self.client.login(username="test_user", password="123456") self.application.client_type = Application.CLIENT_PUBLIC self.application.save() authorization_code = self.get_auth() token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "/../", "client_id": self.application.client_id } response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data) self.assertEqual(response.status_code, 400) data = response.json() self.assertEqual(data["error"], "invalid_request") self.assertEqual(data["error_description"], oauthlib_errors.MismatchingRedirectURIError.description) def test_code_exchange_succeed_when_redirect_uri_match(self): """ Tests code exchange succeed when redirect uri matches the one used for code request """ self.client.login(username="test_user", password="123456") # retrieve a valid authorization code authcode_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org?foo=bar", "response_type": "code", "allow": True, } response = self.client.post(reverse("oauth2_provider:authorize"), data=authcode_data) query_dict = parse_qs(urlparse(response["Location"]).query) authorization_code = query_dict["code"].pop() # exchange authorization code for a valid access token token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org?foo=bar" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 200) content = json.loads(response.content.decode("utf-8")) self.assertEqual(content["token_type"], "Bearer") self.assertEqual(content["scope"], "read write") self.assertEqual(content["expires_in"], oauth2_settings.ACCESS_TOKEN_EXPIRE_SECONDS) def test_code_exchange_fails_when_redirect_uri_does_not_match(self): """ Tests code exchange fails when redirect uri does not match the one used for code request """ self.client.login(username="test_user", password="123456") # retrieve a valid authorization code authcode_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org?foo=bar", "response_type": "code", "allow": True, } response = self.client.post(reverse("oauth2_provider:authorize"), data=authcode_data) query_dict = parse_qs(urlparse(response["Location"]).query) authorization_code = query_dict["code"].pop() # exchange authorization code for a valid access token token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org?foo=baraa" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 400) data = response.json() self.assertEqual(data["error"], "invalid_request") self.assertEqual(data["error_description"], oauthlib_errors.MismatchingRedirectURIError.description) def test_code_exchange_succeed_when_redirect_uri_match_with_multiple_query_params(self): """ Tests code exchange succeed when redirect uri matches the one used for code request """ self.client.login(username="test_user", password="123456") self.application.redirect_uris = "http://localhost http://example.com?foo=bar" self.application.save() # retrieve a valid authorization code authcode_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.com?bar=baz&foo=bar", "response_type": "code", "allow": True, } response = self.client.post(reverse("oauth2_provider:authorize"), data=authcode_data) query_dict = parse_qs(urlparse(response["Location"]).query) authorization_code = query_dict["code"].pop() # exchange authorization code for a valid access token token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.com?bar=baz&foo=bar" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) self.assertEqual(response.status_code, 200) content = json.loads(response.content.decode("utf-8")) self.assertEqual(content["token_type"], "Bearer") self.assertEqual(content["scope"], "read write") self.assertEqual(content["expires_in"], oauth2_settings.ACCESS_TOKEN_EXPIRE_SECONDS) class TestAuthorizationCodeProtectedResource(BaseTest): def test_resource_access_allowed(self): self.client.login(username="test_user", password="123456") # retrieve a valid authorization code authcode_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "response_type": "code", "allow": True, } response = self.client.post(reverse("oauth2_provider:authorize"), data=authcode_data) query_dict = parse_qs(urlparse(response["Location"]).query) authorization_code = query_dict["code"].pop() # exchange authorization code for a valid access token token_request_data = { "grant_type": "authorization_code", "code": authorization_code, "redirect_uri": "http://example.org" } auth_headers = get_basic_auth_header(self.application.client_id, self.application.client_secret) response = self.client.post(reverse("oauth2_provider:token"), data=token_request_data, **auth_headers) content = json.loads(response.content.decode("utf-8")) access_token = content["access_token"] # use token to access the resource auth_headers = { "HTTP_AUTHORIZATION": "Bearer " + access_token, } request = self.factory.get("/fake-resource", **auth_headers) request.user = self.test_user view = ResourceView.as_view() response = view(request) self.assertEqual(response, "This is a protected resource") def test_resource_access_deny(self): auth_headers = { "HTTP_AUTHORIZATION": "Bearer " + "faketoken", } request = self.factory.get("/fake-resource", **auth_headers) request.user = self.test_user view = ResourceView.as_view() response = view(request) self.assertEqual(response.status_code, 403) class TestDefaultScopes(BaseTest): def test_pre_auth_default_scopes(self): """ Test response for a valid client_id with response_type: code using default scopes """ self.client.login(username="test_user", password="123456") oauth2_settings._DEFAULT_SCOPES = ["read"] query_string = urlencode({ "client_id": self.application.client_id, "response_type": "code", "state": "random_state_string", "redirect_uri": "http://example.org", }) url = "{url}?{qs}".format(url=reverse("oauth2_provider:authorize"), qs=query_string) response = self.client.get(url) self.assertEqual(response.status_code, 200) # check form is in context and form params are valid self.assertIn("form", response.context) form = response.context["form"] self.assertEqual(form["redirect_uri"].value(), "http://example.org") self.assertEqual(form["state"].value(), "random_state_string") self.assertEqual(form["scope"].value(), "read") self.assertEqual(form["client_id"].value(), self.application.client_id) oauth2_settings._DEFAULT_SCOPES = ["read", "write"]
py
1a3a40feb6e362d6cd5ffe5672ba8bb5ab87ab79
import numpy as np import scipy.sparse as sp import tensorflow as tf from keras import backend as K modes = { 'S': 1, # Single (rank(A)=2, rank(B)=2) 'M': 2, # Mixed (rank(A)=2, rank(B)=3) 'iM': 3, # Inverted mixed (rank(A)=3, rank(B)=2) 'B': 4, # Batch (rank(A)=3, rank(B)=3) 'UNK': -1 # Unknown } ################################################################################ # Ops for convolutions / Laplacians ################################################################################ def filter_dot(fltr, features): """ Performs the multiplication of a graph filter (N x N) with the node features, automatically dealing with single, mixed, and batch modes. :param fltr: the graph filter(s) (N x N in single and mixed mode, batch x N x N in batch mode). :param features: the node features (N x F in single mode, batch x N x F in mixed and batch mode). :return: the filtered features. """ if len(K.int_shape(features)) == 2: # Single mode return K.dot(fltr, features) else: if len(K.int_shape(fltr)) == 3: # Batch mode return K.batch_dot(fltr, features) else: # Mixed mode return mixed_mode_dot(fltr, features) def normalize_A(A): """ Computes symmetric normalization of A, dealing with sparse A and batch mode automatically. :param A: Tensor or SparseTensor with rank k = {2, 3}. :return: SparseTensor of rank k. """ D = degrees(A) D = tf.sqrt(D)[:, None] + K.epsilon() if K.ndim(A) == 3: # Batch mode output = (A / D) / transpose(D, perm=(0, 2, 1)) else: # Single mode output = (A / D) / transpose(D) return output def degrees(A): """ Computes the degrees of each node in A, dealing with sparse A and batch mode automatically. :param A: Tensor or SparseTensor with rank k = {2, 3}. :return: Tensor or SparseTensor of rank k - 1. """ if K.is_sparse(A): D = tf.sparse.reduce_sum(A, axis=-1) else: D = tf.reduce_sum(A, axis=-1) return D def degree_matrix(A, return_sparse_batch=False): """ Computes the degree matrix of A, deals with sparse A and batch mode automatically. :param A: Tensor or SparseTensor with rank k = {2, 3}. :param return_sparse_batch: if operating in batch mode, return a SparseTensor. Note that the sparse degree tensor returned by this function cannot be used for sparse matrix multiplication afterwards. :return: SparseTensor of rank k. """ D = degrees(A) batch_mode = K.ndim(D) == 2 N = tf.shape(D)[-1] batch_size = tf.shape(D)[0] if batch_mode else 1 inner_index = tf.tile(tf.stack([tf.range(N)] * 2, axis=1), (batch_size, 1)) if batch_mode: if return_sparse_batch: outer_index = repeat( tf.range(batch_size), tf.ones(batch_size) * tf.cast(N, tf.float32) ) indices = tf.concat([outer_index[:, None], inner_index], 1) dense_shape = (batch_size, N, N) else: return tf.linalg.diag(D) else: indices = inner_index dense_shape = (N, N) indices = tf.cast(indices, tf.int64) values = tf.reshape(D, (-1, )) return tf.SparseTensor(indices, values, dense_shape) ################################################################################ # Scipy to tf.sparse conversion ################################################################################ def sp_matrix_to_sp_tensor_value(x): """ Converts a Scipy sparse matrix to a tf.SparseTensorValue :param x: a Scipy sparse matrix :return: tf.SparseTensorValue """ if not hasattr(x, 'tocoo'): try: x = sp.coo_matrix(x) except: raise TypeError('x must be convertible to scipy.coo_matrix') else: x = x.tocoo() return tf.SparseTensorValue( indices=np.array([x.row, x.col]).T, values=x.data, dense_shape=x.shape ) def sp_matrix_to_sp_tensor(x): """ Converts a Scipy sparse matrix to a tf.SparseTensor :param x: a Scipy sparse matrix :return: tf.SparseTensor """ if not hasattr(x, 'tocoo'): try: x = sp.coo_matrix(x) except: raise TypeError('x must be convertible to scipy.coo_matrix') else: x = x.tocoo() return tf.SparseTensor( indices=np.array([x.row, x.col]).T, values=x.data, dense_shape=x.shape ) ################################################################################ # Matrix multiplication ################################################################################ def matmul_A_B(A, B): """ Computes A * B, dealing with sparsity and single/batch/mixed modes automatically. Mixed mode multiplication also works when A has rank 3 and B has rank 2. Sparse multiplication does not work with batch mode. :param A: Tensor or SparseTensor with rank 2 or 3. :param B: Tensor or SparseTensor with rank 2 or 3. :return: """ mode = autodetect_mode(A, B) if mode == modes['S']: # Single mode output = single_mode_dot(A, B) elif mode == modes['M']: # Mixed mode output = mixed_mode_dot(A, B) elif mode == modes['iM']: # Inverted mixed (rank(A)=3, rank(B)=2) # Works only with dense tensors output = K.dot(A, B) elif mode == modes['B']: # Batch mode # Works only with dense tensors output = K.batch_dot(A, B) else: raise ValueError('A and B must have rank 2 or 3.') return output def matmul_AT_B_A(A, B): """ Computes A.T * B * A, dealing with sparsity and single/batch/mixed modes automatically. Mixed mode multiplication also works when A has rank 3 and B has rank 2. Sparse multiplication does not work with batch mode. :param A: Tensor or SparseTensor with rank 2 or 3. :param B: Tensor or SparseTensor with rank 2 or 3. :return: """ mode = autodetect_mode(A, B) if mode == modes['S']: # Single (rank(A)=2, rank(B)=2) output = single_mode_dot(single_mode_dot(transpose(A), B), A) elif mode == modes['M']: # Mixed (rank(A)=2, rank(B)=3) output = mixed_mode_dot(transpose(A), B) if K.is_sparse(A): output = transpose( mixed_mode_dot(transpose(A), transpose(output, (0, 2, 1))), (0, 2, 1) ) else: output = K.dot(output, A) elif mode == modes['iM']: # Inverted mixed (rank(A)=3, rank(B)=2) # Works only with dense tensors output = mixed_mode_dot(B, A) output = K.batch_dot(transpose(A, (0, 2, 1)), output) elif mode == modes['B']: # Batch (rank(A)=3, rank(B)=3) # Works only with dense tensors output = K.batch_dot( K.batch_dot( transpose(A, (0, 2, 1)), B ), A ) else: raise ValueError('A and B must have rank 2 or 3.') return output def matmul_AT_B(A, B): """ Computes A.T * B, dealing with sparsity and single/batch/mixed modes automatically. Mixed mode multiplication also works when A has rank 3 and B has rank 2. Sparse multiplication does not work with batch mode. :param A: Tensor or SparseTensor with rank 2 or 3. :param B: Tensor or SparseTensor with rank 2 or 3. :return: """ mode = autodetect_mode(A, B) if mode == modes['S']: # Single (rank(A)=2, rank(B)=2) output = single_mode_dot(transpose(A), B) elif mode == modes['M']: # Mixed (rank(A)=2, rank(B)=3) output = mixed_mode_dot(transpose(A), B) elif mode == modes['iM']: # Inverted mixed (rank(A)=3, rank(B)=2) # Works only with dense tensors output = K.dot(transpose(A, (0, 2, 1)), B) elif mode == modes['B']: # Batch (rank(A)=3, rank(B)=3) # Works only with dense tensors output = K.batch_dot(transpose(A, (0, 2, 1)), B) else: raise ValueError('A and B must have rank 2 or 3.') return output def matmul_A_BT(A, B): """ Computes A * B.T, dealing with sparsity and single/batch/mixed modes automatically. Mixed mode multiplication also works when A has rank 3 and B has rank 2. Sparse multiplication does not work with batch mode. :param A: Tensor or SparseTensor with rank 2 or 3. :param B: Tensor or SparseTensor with rank 2 or 3. :return: """ mode = autodetect_mode(A, B) if mode == modes['S']: # Single (rank(A)=2, rank(B)=2) output = single_mode_dot(A, transpose(B)) elif mode == modes['M']: # Mixed (rank(A)=2, rank(B)=3) output = mixed_mode_dot(A, transpose(B, (0, 2, 1))) elif mode == modes['iM']: # Inverted mixed (rank(A)=3, rank(B)=2) # Works only with dense tensors output = K.dot(A, transpose(B)) elif mode == modes['B']: # Batch (rank(A)=3, rank(B)=3) # Works only with dense tensors output = K.batch_dot(A, transpose(B, (0, 2, 1))) else: raise ValueError('A and B must have rank 2 or 3.') return output ################################################################################ # Ops related to the modes of operation (single, mixed, batch) ################################################################################ def autodetect_mode(A, X): """ Return a code identifying the mode of operation (single, mixed, batch), given A and X. See the modes variable for meaning of codes. :param A: Tensor. :param X: Tensor. :return: mode of operation. """ if K.ndim(X) == 2: if K.ndim(A) == 2: return modes['S'] elif K.ndim(A) == 3: return modes['iM'] else: return modes['UNK'] elif K.ndim(X) == 3: if K.ndim(A) == 2: return modes['M'] elif K.ndim(A) == 3: return modes['B'] else: return modes['UNK'] else: return modes['UNK'] def single_mode_dot(A, B): """ Dot product between two rank 2 matrices. Deals automatically with either A or B being sparse. :param A: rank 2 Tensor or SparseTensor. :param B: rank 2 Tensor or SparseTensor. :return: rank 2 Tensor or SparseTensor. """ a_sparse = K.is_sparse(A) b_sparse = K.is_sparse(B) if a_sparse and b_sparse: raise ValueError('Sparse x Sparse matmul is not implemented yet.') elif a_sparse: output = tf.sparse_tensor_dense_matmul(A, B) elif b_sparse: output = transpose( tf.sparse_tensor_dense_matmul( transpose(B), transpose(A) ) ) else: output = tf.matmul(A, B) return output def mixed_mode_dot(A, B): """ Computes the equivalent of `tf.einsum('ij,bjk->bik', fltr, output)`, but works for both dense and sparse input filters. :param A: rank 2 Tensor or SparseTensor. :param B: rank 3 Tensor or SparseTensor. :return: rank 3 Tensor or SparseTensor. """ s_0_, s_1_, s_2_ = K.int_shape(B) B_T = transpose(B, (1, 2, 0)) B_T = reshape(B_T, (s_1_, -1)) output = single_mode_dot(A, B_T) output = reshape(output, (s_1_, s_2_, -1)) output = transpose(output, (2, 0, 1)) return output ################################################################################ # Wrappers for automatic switching between dense and sparse ops ################################################################################ def transpose(A, perm=None, name=None): """ Transposes A according to perm, dealing with sparse A automatically. :param A: Tensor or SparseTensor with rank k. :param perm: permutation indices of size k. :param name: name for the operation. :return: Tensor or SparseTensor with rank k. """ if K.is_sparse(A): transpose_op = tf.sparse.transpose else: transpose_op = tf.transpose if perm is None: perm = (1, 0) # Make explicit so that shape will always be preserved return transpose_op(A, perm=perm, name=name) def reshape(A, shape=None, name=None): """ Reshapes A according to shape, dealing with sparse A automatically. :param A: Tensor or SparseTensor. :param shape: new shape. :param name: name for the operation. :return: Tensor or SparseTensor. """ if K.is_sparse(A): reshape_op = tf.sparse.reshape else: reshape_op = tf.reshape return reshape_op(A, shape=shape, name=name) ################################################################################ # Misc ops ################################################################################ def matrix_power(x, k): """ Computes the k-th power of a square matrix. :param x: a square matrix (Tensor or SparseTensor) :param k: exponent :return: matrix of same type and dtype as the input """ if K.ndim(x) != 2: raise ValueError('x must have rank 2.') sparse = K.is_sparse(x) if sparse: x_dense = tf.sparse.to_dense(x) else: x_dense = x x_k = x_dense for _ in range(k - 1): x_k = K.dot(x_k, x_dense) if sparse: return tf.contrib.layers.dense_to_sparse(x_k) else: return x_k def repeat(x, repeats): """ Repeats elements of a Tensor (equivalent to np.repeat, but only for 1D tensors). :param x: rank 1 tensor; :param repeats: rank 1 tensor with same shape as x, the number of repetitions for each element; :return: rank 1 tensor, of shape `(sum(repeats), )`. """ x = tf.expand_dims(x, 1) max_repeats = tf.reduce_max(repeats) tile_repeats = [1, max_repeats] arr_tiled = tf.tile(x, tile_repeats) mask = tf.less(tf.range(max_repeats), tf.expand_dims(repeats, 1)) result = tf.reshape(tf.boolean_mask(arr_tiled, mask), [-1]) return result def segment_top_k(x, I, ratio, top_k_var): """ Returns indices to get the top K values in x segment-wise, according to the segments defined in I. K is not fixed, but it is defined as a ratio of the number of elements in each segment. :param x: a rank 1 tensor; :param I: a rank 1 tensor with segment IDs for x; :param ratio: float, ratio of elements to keep for each segment; :param top_k_var: a tf.Variable created without shape validation (i.e., `tf.Variable(0.0, validate_shape=False)`); :return: a rank 1 tensor containing the indices to get the top K values of each segment in x. """ num_nodes = tf.segment_sum(tf.ones_like(I), I) # Number of nodes in each graph cumsum = tf.cumsum(num_nodes) # Cumulative number of nodes (A, A+B, A+B+C) cumsum_start = cumsum - num_nodes # Start index of each graph n_graphs = tf.shape(num_nodes)[0] # Number of graphs in batch max_n_nodes = tf.reduce_max(num_nodes) # Order of biggest graph in batch batch_n_nodes = tf.shape(I)[0] # Number of overall nodes in batch to_keep = tf.ceil(ratio * tf.cast(num_nodes, tf.float32)) to_keep = tf.cast(to_keep, tf.int32) # Nodes to keep in each graph index = tf.range(batch_n_nodes) index = (index - tf.gather(cumsum_start, I)) + (I * max_n_nodes) y_min = tf.reduce_min(x) dense_y = tf.ones((n_graphs * max_n_nodes,)) # subtract 1 to ensure that filler values do not get picked dense_y = dense_y * tf.cast(y_min - 1, tf.float32) # top_k_var is a variable with unknown shape defined in the elsewhere dense_y = tf.assign(top_k_var, dense_y, validate_shape=False) dense_y = tf.scatter_update(dense_y, index, x) dense_y = tf.reshape(dense_y, (n_graphs, max_n_nodes)) perm = tf.argsort(dense_y, direction='DESCENDING') perm = perm + cumsum_start[:, None] perm = tf.reshape(perm, (-1,)) to_rep = tf.tile(tf.constant([1., 0.]), (n_graphs,)) rep_times = tf.reshape(tf.concat((to_keep[:, None], (max_n_nodes - to_keep)[:, None]), -1), (-1,)) mask = repeat(to_rep, rep_times) perm = tf.boolean_mask(perm, mask) return perm
py
1a3a4101fcd7b7936c6b81b2ec712d7a60210d20
# Generated by Django 2.0 on 2017-12-05 00:17 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import organizations.base import organizations.fields class Migration(migrations.Migration): initial = True dependencies = [migrations.swappable_dependency(settings.AUTH_USER_MODEL)] operations = [ migrations.CreateModel( name="Organization", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "name", models.CharField( help_text="The name of the organization", max_length=200 ), ), ("is_active", models.BooleanField(default=True)), ( "created", organizations.fields.AutoCreatedField( default=django.utils.timezone.now, editable=False ), ), ( "modified", organizations.fields.AutoLastModifiedField( default=django.utils.timezone.now, editable=False ), ), ( "slug", organizations.fields.SlugField( editable=True, help_text="The name in all lowercase, suitable for URL identification", max_length=200, populate_from="name", unique=True, ), ), ], options={ "verbose_name": "organization", "verbose_name_plural": "organizations", "ordering": ["name"], "abstract": False, }, bases=(organizations.base.UnicodeMixin, models.Model), ), migrations.CreateModel( name="OrganizationOwner", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "created", organizations.fields.AutoCreatedField( default=django.utils.timezone.now, editable=False ), ), ( "modified", organizations.fields.AutoLastModifiedField( default=django.utils.timezone.now, editable=False ), ), ( "organization", models.OneToOneField( on_delete=django.db.models.deletion.CASCADE, related_name="owner", to="organizations.Organization", ), ), ], options={ "verbose_name": "organization owner", "verbose_name_plural": "organization owners", "abstract": False, }, bases=(organizations.base.UnicodeMixin, models.Model), ), migrations.CreateModel( name="OrganizationUser", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "created", organizations.fields.AutoCreatedField( default=django.utils.timezone.now, editable=False ), ), ( "modified", organizations.fields.AutoLastModifiedField( default=django.utils.timezone.now, editable=False ), ), ("is_admin", models.BooleanField(default=False)), ( "organization", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="organization_users", to="organizations.Organization", ), ), ( "user", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="organizations_organizationuser", to=settings.AUTH_USER_MODEL, ), ), ], options={ "verbose_name": "organization user", "verbose_name_plural": "organization users", "ordering": ["organization", "user"], "abstract": False, }, bases=(organizations.base.UnicodeMixin, models.Model), ), migrations.AddField( model_name="organizationowner", name="organization_user", field=models.OneToOneField( on_delete=django.db.models.deletion.CASCADE, to="organizations.OrganizationUser", ), ), migrations.AddField( model_name="organization", name="users", field=models.ManyToManyField( related_name="organizations_organization", through="organizations.OrganizationUser", to=settings.AUTH_USER_MODEL, ), ), migrations.AlterUniqueTogether( name="organizationuser", unique_together={("user", "organization")} ), ]
py
1a3a42085e176e8d21d806fa4fcbe909ad123fc8
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals from six.moves import range import json, os from semantic_version import Version import frappe import requests import subprocess # nosec from frappe.utils import cstr from frappe.utils.gitutils import get_app_branch from frappe import _, safe_decode import git def get_change_log(user=None): if not user: user = frappe.session.user last_known_versions = frappe._dict(json.loads(frappe.db.get_value("User", user, "last_known_versions") or "{}")) current_versions = get_versions() if not last_known_versions: update_last_known_versions() return [] change_log = [] def set_in_change_log(app, opts, change_log): from_version = last_known_versions.get(app, {}).get("version") or "0.0.1" to_version = opts["version"] if from_version != to_version: app_change_log = get_change_log_for_app(app, from_version=from_version, to_version=to_version) if app_change_log: change_log.append({ "title": opts["title"], "description": opts["description"], "version": to_version, "change_log": app_change_log }) for app, opts in current_versions.items(): if app != "frappe": set_in_change_log(app, opts, change_log) if "frappe" in current_versions: set_in_change_log("frappe", current_versions["frappe"], change_log) return change_log def get_change_log_for_app(app, from_version, to_version): change_log_folder = os.path.join(frappe.get_app_path(app), "change_log") if not os.path.exists(change_log_folder): return from_version = Version(from_version) to_version = Version(to_version) # remove pre-release part to_version.prerelease = None major_version_folders = ["v{0}".format(i) for i in range(from_version.major, to_version.major + 1)] app_change_log = [] for folder in os.listdir(change_log_folder): if folder in major_version_folders: for file in os.listdir(os.path.join(change_log_folder, folder)): version = Version(os.path.splitext(file)[0][1:].replace("_", ".")) if from_version < version <= to_version: file_path = os.path.join(change_log_folder, folder, file) content = frappe.read_file(file_path) app_change_log.append([version, content]) app_change_log = sorted(app_change_log, key=lambda d: d[0], reverse=True) # convert version to string and send return [[cstr(d[0]), d[1]] for d in app_change_log] @frappe.whitelist() def update_last_known_versions(): frappe.db.set_value("User", frappe.session.user, "last_known_versions", json.dumps(get_versions()), update_modified=False) @frappe.whitelist() def get_versions(): """Get versions of all installed apps. Example: { "frappe": { "title": "Frappe Framework", "version": "5.0.0" } }""" versions = {} for app in frappe.get_installed_apps(sort=True): app_hooks = frappe.get_hooks(app_name=app) versions[app] = { "title": app_hooks.get("app_title")[0], "description": app_hooks.get("app_description")[0], "branch": get_app_branch(app) } if versions[app]['branch'] != 'master': branch_version = app_hooks.get('{0}_version'.format(versions[app]['branch'])) if branch_version: versions[app]['branch_version'] = branch_version[0] + ' ({0})'.format(get_app_last_commit_ref(app)) try: versions[app]["version"] = frappe.get_attr(app + ".__version__") except AttributeError: versions[app]["version"] = '0.0.1' return versions def get_app_branch(app): '''Returns branch of an app''' try: result = subprocess.check_output('cd ../apps/{0} && git rev-parse --abbrev-ref HEAD'.format(app), shell=True) result = safe_decode(result) result = result.strip() return result except Exception as e: return '' def get_app_last_commit_ref(app): try: result = subprocess.check_output('cd ../apps/{0} && git rev-parse HEAD --short 7'.format(app), shell=True) result = safe_decode(result) result = result.strip() return result except Exception as e: return '' def check_for_update(): updates = frappe._dict(major=[], minor=[], patch=[]) apps = get_versions() for app in apps: app_details = check_release_on_github(app) if not app_details: continue github_version, org_name = app_details # Get local instance's current version or the app branch_version = apps[app]['branch_version'].split(' ')[0] if apps[app].get('branch_version', '') else '' instance_version = Version(branch_version or apps[app].get('version')) # Compare and popup update message for update_type in updates: if github_version.__dict__[update_type] > instance_version.__dict__[update_type]: updates[update_type].append(frappe._dict( current_version = str(instance_version), available_version = str(github_version), org_name = org_name, app_name = app, title = apps[app]['title'], )) break if github_version.__dict__[update_type] < instance_version.__dict__[update_type]: break add_message_to_redis(updates) def parse_latest_non_beta_release(response): """ Pasrses the response JSON for all the releases and returns the latest non prerelease Parameters response (list): response object returned by github Returns json : json object pertaining to the latest non-beta release """ for release in response: if release['prerelease'] == True: continue return release def check_release_on_github(app): # Check if repo remote is on github from subprocess import CalledProcessError try: remote_url = subprocess.check_output("cd ../apps/{} && git ls-remote --get-url".format(app), shell=True).decode() except CalledProcessError: # Passing this since some apps may not have git initializaed in them return None if isinstance(remote_url, bytes): remote_url = remote_url.decode() if "github.com" not in remote_url: return None # Get latest version from github if 'https' not in remote_url: return None org_name = remote_url.split('/')[3] r = requests.get('https://api.github.com/repos/{}/{}/releases'.format(org_name, app)) if r.status_code == 200 and r.json(): lastest_non_beta_release = parse_latest_non_beta_release(r.json()) return Version(lastest_non_beta_release['tag_name'].strip('v')), org_name else: # In case of an improper response or if there are no releases return None def add_message_to_redis(update_json): # "update-message" will store the update message string # "update-user-set" will be a set of users cache = frappe.cache() cache.set_value("update-info", json.dumps(update_json)) user_list = [x.name for x in frappe.get_all("User", filters={"enabled": True})] system_managers = [user for user in user_list if 'System Manager' in frappe.get_roles(user)] cache.sadd("update-user-set", *system_managers) @frappe.whitelist() def show_update_popup(): cache = frappe.cache() user = frappe.session.user update_info = cache.get_value("update-info") if not update_info: return updates = json.loads(update_info) current_versions = get_versions() # Check if user is int the set of users to send update message to update_message = "" if cache.sismember("update-user-set", user): for update_type in updates: release_links = "" for app in updates[update_type]: app = frappe._dict(app) release_links += "<a href='https://github.com/{org_name}/{app_name}/releases/tag/v{available_version}'><b>{title}</b>: v{available_version}</a><br>".format( available_version = app.available_version, org_name = app.org_name, app_name = app.app_name, title = app.title ) if release_links: update_message += _("New {} releases for the following apps are available".format(update_type)) + ":<br><br>{}".format(release_links) if update_message: frappe.msgprint(update_message, title=_("New updates are available"), indicator='green') cache.srem("update-user-set", user)
py
1a3a423d2a900386c2a9b8781596f965b3b8bea4
#!/usr/bin/env python # -*- coding: utf-8 -*- import vim import re import os import os.path from functools import wraps from .utils import * from .explorer import * from .manager import * from .mru import * from .devicons import ( webDevIconsGetFileTypeSymbol, webDevIconsStrLen, webDevIconsBytesLen, matchaddDevIconsDefault, matchaddDevIconsExact, matchaddDevIconsExtension, ) #***************************************************** # BufferExplorer #***************************************************** class BufferExplorer(Explorer): def __init__(self): self._prefix_length = 0 self._max_bufname_len = 0 def getContent(self, *args, **kwargs): mru_bufnrs = [] for num in reversed(lfEval("g:Lf_MruBufnrs")): if num not in mru_bufnrs: mru_bufnrs.append(int(num)) for num in reversed(mru_bufnrs): mru.setBufferTimestamp(num) lfCmd("let g:Lf_MruBufnrs = []") if "--all" not in kwargs.get("arguments", {}): if "--tabpage" not in kwargs.get("arguments", {}): buffers = {b.number: b for b in vim.buffers if lfEval("buflisted(%d)" % b.number) == '1'} else: buffers = {w.buffer.number: w.buffer for w in vim.current.tabpage.windows if lfEval("buflisted(%d)" % w.buffer.number) == '1'} else: if "--tabpage" not in kwargs.get("arguments", {}): buffers = {b.number: b for b in vim.buffers if os.path.basename(b.name) != "LeaderF"} else: buffers = {w.buffer.number: w.buffer for w in vim.current.tabpage.windows if os.path.basename(w.buffer.name) != "LeaderF"} # e.g., 12 u %a+-  aaa.txt bufnr_len = len(lfEval("bufnr('$')")) self._prefix_length = bufnr_len + 8 if lfEval("get(g:, 'Lf_ShowDevIcons', 1)") == '1': self._prefix_length += webDevIconsStrLen() self._max_bufname_len = max([int(lfEval("strdisplaywidth('%s')" % escQuote(getBasename(buffers[nr].name)))) for nr in mru.getMruBufnrs() if nr in buffers] + [len('[No Name]')] or [0]) bufnames = [] for nr in mru.getMruBufnrs(): if nr in buffers: buf_name = buffers[nr].name if not buf_name: buf_name = "[No Name]" if lfEval("g:Lf_ShowRelativePath") == '1': buf_name = lfRelpath(buf_name) basename = getBasename(buf_name) dirname = getDirname(buf_name) space_num = self._max_bufname_len \ - int(lfEval("strdisplaywidth('%s')" % escQuote(basename))) if lfEval("get(g:, 'Lf_ShowDevIcons', 1)") == '1': icon = webDevIconsGetFileTypeSymbol(basename) else: icon = '' # e.g., 12 u %a+-  aaa.txt buf_name = '{:{width}d} {:1s} {:1s}{:1s}{:1s}{:1s} {}{}{} "{}"'.format(nr, '' if buffers[nr].options["buflisted"] else 'u', '%' if int(lfEval("bufnr('%')")) == nr else '#' if int(lfEval("bufnr('#')")) == nr else '', 'a' if lfEval("bufwinnr(%d)" % nr) != '-1' else 'h', '+' if buffers[nr].options["modified"] else '', '-' if not buffers[nr].options["modifiable"] else '', icon, basename, ' ' * space_num, dirname if dirname else '.' + os.sep, width=bufnr_len) bufnames.append(buf_name) del buffers[nr] elif lfEval("bufnr(%d)" % nr) == '-1': mru.delMruBufnr(nr) return bufnames def getStlCategory(self): return 'Buffer' def getStlCurDir(self): return escQuote(lfEncode(os.getcwd())) def supportsNameOnly(self): return True def getPrefixLength(self): return self._prefix_length def getMaxBufnameLen(self): return self._max_bufname_len #***************************************************** # BufExplManager #***************************************************** class BufExplManager(Manager): def __init__(self): super(BufExplManager, self).__init__() def _getExplClass(self): return BufferExplorer def _defineMaps(self): lfCmd("call leaderf#Buffer#Maps()") def _acceptSelection(self, *args, **kwargs): if len(args) == 0: return line = args[0] buf_number = int(re.sub(r"^.*?(\d+).*$", r"\1", line)) if kwargs.get("mode", '') == 't': buf_name = lfEval("bufname(%s)" % buf_number) lfCmd("tab drop %s" % escSpecial(buf_name)) else: if lfEval("get(g:, 'Lf_JumpToExistingWindow', 0)") == '1': buf_name = lfEval("bufname(%s)" % buf_number) lfCmd("hide drop %s" % escSpecial(buf_name)) else: lfCmd("hide buffer %d" % buf_number) def _getDigest(self, line, mode): """ specify what part in the line to be processed and highlighted Args: mode: 0, return the full path 1, return the name only 2, return the directory name """ if not line: return '' prefix_len = self._getExplorer().getPrefixLength() if mode == 0: return line[prefix_len:] elif mode == 1: buf_number = int(re.sub(r"^.*?(\d+).*$", r"\1", line)) basename = getBasename(vim.buffers[buf_number].name) return basename if basename else "[No Name]" else: start_pos = line.find(' "') return line[start_pos+2 : -1] def _getDigestStartPos(self, line, mode): """ return the start position of the digest returned by _getDigest() Args: mode: 0, return the start postion of full path 1, return the start postion of name only 2, return the start postion of directory name """ if not line: return 0 prefix_len = self._getExplorer().getPrefixLength() - webDevIconsStrLen() + webDevIconsBytesLen() if mode == 0: return prefix_len elif mode == 1: return prefix_len else: buf_number = int(re.sub(r"^.*?(\d+).*$", r"\1", line)) basename = getBasename(vim.buffers[buf_number].name) space_num = self._getExplorer().getMaxBufnameLen() \ - int(lfEval("strdisplaywidth('%s')" % escQuote(basename))) return prefix_len + lfBytesLen(basename) + space_num + 2 def _createHelp(self): help = [] help.append('" <CR>/<double-click>/o : open file under cursor') help.append('" x : open file under cursor in a horizontally split window') help.append('" v : open file under cursor in a vertically split window') help.append('" t : open file under cursor in a new tabpage') help.append('" d : wipe out buffer under cursor') help.append('" D : delete buffer under cursor') help.append('" i/<Tab> : switch to input mode') help.append('" q : quit') help.append('" <F1> : toggle this help') help.append('" ---------------------------------------------------------') return help def _afterEnter(self): super(BufExplManager, self)._afterEnter() winid = None if self._getInstance().getWinPos() == 'popup': lfCmd("""call win_execute(%d, 'let matchid = matchadd(''Lf_hl_bufNumber'', ''^\s*\zs\d\+'')')""" % self._getInstance().getPopupWinId()) id = int(lfEval("matchid")) self._match_ids.append(id) lfCmd("""call win_execute(%d, 'let matchid = matchadd(''Lf_hl_bufIndicators'', ''^\s*\d\+\s*\zsu\=\s*[#%%]\=...'')')""" % self._getInstance().getPopupWinId()) id = int(lfEval("matchid")) self._match_ids.append(id) lfCmd("""call win_execute(%d, 'let matchid = matchadd(''Lf_hl_bufModified'', ''^\s*\d\+\s*u\=\s*[#%%]\=.+\s*\zs.*$'')')""" % self._getInstance().getPopupWinId()) id = int(lfEval("matchid")) self._match_ids.append(id) lfCmd("""call win_execute(%d, 'let matchid = matchadd(''Lf_hl_bufNomodifiable'', ''^\s*\d\+\s*u\=\s*[#%%]\=..-\s*\zs.*$'')')""" % self._getInstance().getPopupWinId()) id = int(lfEval("matchid")) self._match_ids.append(id) lfCmd("""call win_execute(%d, 'let matchid = matchadd(''Lf_hl_bufDirname'', '' \zs".*"$'')')""" % self._getInstance().getPopupWinId()) id = int(lfEval("matchid")) self._match_ids.append(id) winid = self._getInstance().getPopupWinId() else: id = int(lfEval("matchadd('Lf_hl_bufNumber', '^\s*\zs\d\+')")) self._match_ids.append(id) id = int(lfEval("matchadd('Lf_hl_bufIndicators', '^\s*\d\+\s*\zsu\=\s*[#%]\=...')")) self._match_ids.append(id) id = int(lfEval("matchadd('Lf_hl_bufModified', '^\s*\d\+\s*u\=\s*[#%]\=.+\s*\zs.*$')")) self._match_ids.append(id) id = int(lfEval("matchadd('Lf_hl_bufNomodifiable', '^\s*\d\+\s*u\=\s*[#%]\=..-\s*\zs.*$')")) self._match_ids.append(id) id = int(lfEval('''matchadd('Lf_hl_bufDirname', ' \zs".*"$')''')) self._match_ids.append(id) # devicons if lfEval("get(g:, 'Lf_ShowDevIcons', 1)") == '1': self._match_ids.extend(matchaddDevIconsExtension(r'__icon__\ze\s\+\S\+\.__name__\($\|\s\)', winid)) self._match_ids.extend(matchaddDevIconsExact(r'__icon__\ze\s\+__name__\($\|\s\)', winid)) self._match_ids.extend(matchaddDevIconsDefault(r'__icon__\ze\s\+\S\+\($\|\s\)', winid)) def _beforeExit(self): super(BufExplManager, self)._beforeExit() def deleteBuffer(self, wipe=0): instance = self._getInstance() if self._inHelpLines(): return if instance.getWinPos() == 'popup': lfCmd("call win_execute(%d, 'setlocal modifiable')" % instance.getPopupWinId()) else: lfCmd("setlocal modifiable") line = instance._buffer_object[instance.window.cursor[0] - 1] if len(self._content) > 0: self._content.remove(line) self._getInstance().setStlTotal(len(self._content)//self._getUnit()) self._getInstance().setStlResultsCount(len(self._content)//self._getUnit()) buf_number = int(re.sub(r"^.*?(\d+).*$", r"\1", line)) lfCmd("confirm %s %d" % ('bw' if wipe else 'bd', buf_number)) del instance._buffer_object[instance.window.cursor[0] - 1] if instance.getWinPos() == 'popup': instance.refreshPopupStatusline() lfCmd("call win_execute(%d, 'setlocal nomodifiable')" % instance.getPopupWinId()) else: lfCmd("setlocal nomodifiable") def _previewInPopup(self, *args, **kwargs): line = args[0] buf_number = int(re.sub(r"^.*?(\d+).*$", r"\1", line)) self._createPopupPreview(vim.buffers[buf_number].name, buf_number, 0) #***************************************************** # bufExplManager is a singleton #***************************************************** bufExplManager = BufExplManager() __all__ = ['bufExplManager']
py
1a3a429f08b31da66f209b9859ca53996ab20713
#! /usr/bin/python # -*- coding: utf-8 -*- import base64 import gzip import json import math import os import pickle import re import shutil # import ast import sys import tarfile import time import zipfile import cloudpickle import h5py import numpy as np import scipy.io as sio from six.moves import cPickle import progressbar import tensorflow as tf import tensorlayer as tl from tensorflow.python.keras.saving import model_config as model_config_lib from tensorflow.python.platform import gfile from tensorflow.python.util import serialization from tensorflow.python.util.tf_export import keras_export from tensorlayer import logging, nlp, utils, visualize import cloudpickle import base64 from tensorflow.python.keras.saving import model_config as model_config_lib from tensorflow.python.util.tf_export import keras_export from tensorflow.python.util import serialization import json import datetime # from six.moves import zip if sys.version_info[0] == 2: from urllib import urlretrieve else: from urllib.request import urlretrieve # import tensorflow.contrib.eager.python.saver as tfes # TODO: tf2.0 not stable, cannot import tensorflow.contrib.eager.python.saver __all__ = [ 'assign_weights', 'del_file', 'del_folder', 'download_file_from_google_drive', 'exists_or_mkdir', 'file_exists', 'folder_exists', 'load_and_assign_npz', 'load_and_assign_npz_dict', 'load_ckpt', 'load_cropped_svhn', 'load_file_list', 'load_folder_list', 'load_npy_to_any', 'load_npz', 'maybe_download_and_extract', 'natural_keys', 'npz_to_W_pdf', 'read_file', 'save_any_to_npy', 'save_ckpt', 'save_npz', 'save_npz_dict', 'tf_variables_to_numpy', 'assign_tf_variable', 'save_weights_to_hdf5', 'load_hdf5_to_weights_in_order', 'load_hdf5_to_weights', 'save_hdf5_graph', 'load_hdf5_graph', # 'net2static_graph', 'static_graph2net', # 'save_pkl_graph', # 'load_pkl_graph', ] def func2str(expr): b = cloudpickle.dumps(expr) s = base64.b64encode(b).decode() return s def str2func(s): b = base64.b64decode(s) expr = cloudpickle.loads(b) return expr # def net2static_graph(network): # saved_file = dict() # # if network._NameNone is True: # # saved_file.update({"name": None}) # # else: # # saved_file.update({"name": network.name}) # # if not isinstance(network.inputs, list): # # saved_file.update({"inputs": network.inputs._info[0].name}) # # else: # # saved_inputs = [] # # for saved_input in network.inputs: # # saved_inputs.append(saved_input._info[0].name) # # saved_file.update({"inputs": saved_inputs}) # # if not isinstance(network.outputs, list): # # saved_file.update({"outputs": network.outputs._info[0].name}) # # else: # # saved_outputs = [] # # for saved_output in network.outputs: # # saved_outputs.append(saved_output._info[0].name) # # saved_file.update({"outputs": saved_outputs}) # saved_file.update({"config": network.config}) # # return saved_file @keras_export('keras.models.save_model') def save_keras_model(model): # f.attrs['keras_model_config'] = json.dumps( # { # 'class_name': model.__class__.__name__, # 'config': model.get_config() # }, # default=serialization.get_json_type).encode('utf8') # # f.flush() return json.dumps( { 'class_name': model.__class__.__name__, 'config': model.get_config() }, default=serialization.get_json_type ).encode('utf8') @keras_export('keras.models.load_model') def load_keras_model(model_config): custom_objects = {} if model_config is None: raise ValueError('No model found in config.') model_config = json.loads(model_config.decode('utf-8')) model = model_config_lib.model_from_config(model_config, custom_objects=custom_objects) return model def save_hdf5_graph(network, filepath='model.hdf5', save_weights=False, customized_data=None): """Save the architecture of TL model into a hdf5 file. Support saving model weights. Parameters ----------- network : TensorLayer Model. The network to save. filepath : str The name of model file. save_weights : bool Whether to save model weights. customized_data : dict The user customized meta data. Examples -------- >>> # Save the architecture (with parameters) >>> tl.files.save_hdf5_graph(network, filepath='model.hdf5', save_weights=True) >>> # Save the architecture (without parameters) >>> tl.files.save_hdf5_graph(network, filepath='model.hdf5', save_weights=False) >>> # Load the architecture in another script (no parameters restore) >>> net = tl.files.load_hdf5_graph(filepath='model.hdf5', load_weights=False) >>> # Load the architecture in another script (restore parameters) >>> net = tl.files.load_hdf5_graph(filepath='model.hdf5', load_weights=True) """ if network.outputs is None: raise RuntimeError("save_hdf5_graph not support dynamic mode yet") logging.info("[*] Saving TL model into {}, saving weights={}".format(filepath, save_weights)) model_config = network.config # net2static_graph(network) model_config["version_info"]["save_date"] = datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc ).isoformat() model_config_str = str(model_config) customized_data_str = str(customized_data) # version_info = { # "tensorlayer_version": tl.__version__, # "backend": "tensorflow", # "backend_version": tf.__version__, # "training_device": "gpu", # "save_date": datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat() # } # version_info_str = str(version_info) with h5py.File(filepath, 'w') as f: f.attrs["model_config"] = model_config_str.encode('utf8') f.attrs["customized_data"] = customized_data_str.encode('utf8') # f.attrs["version_info"] = version_info_str.encode('utf8') if save_weights: _save_weights_to_hdf5_group(f, network.all_layers) f.flush() logging.info("[*] Saved TL model into {}, saving weights={}".format(filepath, save_weights)) def generate_func(args): for key in args: if isinstance(args[key], tuple) and args[key][0] == 'is_Func': fn = str2func(args[key][1]) args[key] = fn # if key in ['act']: # # fn_dict = args[key] # # module_path = fn_dict['module_path'] # # func_name = fn_dict['func_name'] # # lib = importlib.import_module(module_path) # # fn = getattr(lib, func_name) # # args[key] = fn # fn = str2func(args[key]) # args[key] = fn # elif key in ['fn']: # fn = str2func(args[key]) # args[key] = fn def eval_layer(layer_kwargs): layer_class = layer_kwargs.pop('class') args = layer_kwargs['args'] layer_type = args.pop('layer_type') if layer_type == "normal": generate_func(args) return eval('tl.layers.' + layer_class)(**args) elif layer_type == "layerlist": ret_layer = [] layers = args["layers"] for layer_graph in layers: ret_layer.append(eval_layer(layer_graph)) args['layers'] = ret_layer return eval('tl.layers.' + layer_class)(**args) elif layer_type == "modellayer": M = static_graph2net(args['model']) args['model'] = M return eval('tl.layers.' + layer_class)(**args) elif layer_type == "keraslayer": M = load_keras_model(args['fn']) input_shape = args.pop('keras_input_shape') _ = M(np.random.random(input_shape).astype(np.float32)) args['fn'] = M args['fn_weights'] = M.trainable_variables return eval('tl.layers.' + layer_class)(**args) else: raise RuntimeError("Unknown layer type.") def static_graph2net(model_config): layer_dict = {} model_name = model_config["name"] inputs_tensors = model_config["inputs"] outputs_tensors = model_config["outputs"] all_args = model_config["model_architecture"] for idx, layer_kwargs in enumerate(all_args): layer_class = layer_kwargs["class"] # class of current layer prev_layers = layer_kwargs.pop("prev_layer") # name of previous layers net = eval_layer(layer_kwargs) if layer_class in tl.layers.inputs.__all__: net = net._nodes[0].out_tensors[0] if prev_layers is not None: for prev_layer in prev_layers: if not isinstance(prev_layer, list): output = net(layer_dict[prev_layer]) layer_dict[output._info[0].name] = output else: list_layers = [layer_dict[layer] for layer in prev_layer] output = net(list_layers) layer_dict[output._info[0].name] = output else: layer_dict[net._info[0].name] = net if not isinstance(inputs_tensors, list): model_inputs = layer_dict[inputs_tensors] else: model_inputs = [] for inputs_tensor in inputs_tensors: model_inputs.append(layer_dict[inputs_tensor]) if not isinstance(outputs_tensors, list): model_outputs = layer_dict[outputs_tensors] else: model_outputs = [] for outputs_tensor in outputs_tensors: model_outputs.append(layer_dict[outputs_tensor]) from tensorlayer.models import Model M = Model(inputs=model_inputs, outputs=model_outputs, name=model_name) logging.info("[*] Load graph finished") return M def load_hdf5_graph(filepath='model.hdf5', load_weights=False): """Restore TL model archtecture from a a pickle file. Support loading model weights. Parameters ----------- filepath : str The name of model file. load_weights : bool Whether to load model weights. Returns -------- network : TensorLayer Model. Examples -------- - see ``tl.files.save_hdf5_graph`` """ logging.info("[*] Loading TL model from {}, loading weights={}".format(filepath, load_weights)) f = h5py.File(filepath, 'r') model_config_str = f.attrs["model_config"].decode('utf8') model_config = eval(model_config_str) # version_info_str = f.attrs["version_info"].decode('utf8') # version_info = eval(version_info_str) version_info = model_config["version_info"] backend_version = version_info["backend_version"] tensorlayer_version = version_info["tensorlayer_version"] if backend_version != tf.__version__: logging.warning( "Saved model uses tensorflow version {}, but now you are using tensorflow version {}".format( backend_version, tf.__version__ ) ) if tensorlayer_version != tl.__version__: logging.warning( "Saved model uses tensorlayer version {}, but now you are using tensorlayer version {}".format( tensorlayer_version, tl.__version__ ) ) M = static_graph2net(model_config) if load_weights: if not ('layer_names' in f.attrs.keys()): raise RuntimeError("Saved model does not contain weights.") M.load_weights(filepath=filepath) f.close() logging.info("[*] Loaded TL model from {}, loading weights={}".format(filepath, load_weights)) return M # def load_pkl_graph(name='model.pkl'): # """Restore TL model archtecture from a a pickle file. No parameters be restored. # # Parameters # ----------- # name : str # The name of graph file. # # Returns # -------- # network : TensorLayer Model. # # Examples # -------- # >>> # It is better to use load_hdf5_graph # """ # logging.info("[*] Loading TL graph from {}".format(name)) # with open(name, 'rb') as file: # saved_file = pickle.load(file) # # M = static_graph2net(saved_file) # # return M # # # def save_pkl_graph(network, name='model.pkl'): # """Save the architecture of TL model into a pickle file. No parameters be saved. # # Parameters # ----------- # network : TensorLayer layer # The network to save. # name : str # The name of graph file. # # Example # -------- # >>> # It is better to use save_hdf5_graph # """ # if network.outputs is None: # raise AssertionError("save_graph not support dynamic mode yet") # # logging.info("[*] Saving TL graph into {}".format(name)) # # saved_file = net2static_graph(network) # # with open(name, 'wb') as file: # pickle.dump(saved_file, file, protocol=pickle.HIGHEST_PROTOCOL) # logging.info("[*] Saved graph") # Load dataset functions def load_mnist_dataset(shape=(-1, 784), path='data'): """Load the original mnist. Automatically download MNIST dataset and return the training, validation and test set with 50000, 10000 and 10000 digit images respectively. Parameters ---------- shape : tuple The shape of digit images (the default is (-1, 784), alternatively (-1, 28, 28, 1)). path : str The path that the data is downloaded to. Returns ------- X_train, y_train, X_val, y_val, X_test, y_test: tuple Return splitted training/validation/test set respectively. Examples -------- >>> X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1,784), path='datasets') >>> X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 28, 28, 1)) """ return _load_mnist_dataset(shape, path, name='mnist', url='http://yann.lecun.com/exdb/mnist/') def load_fashion_mnist_dataset(shape=(-1, 784), path='data'): """Load the fashion mnist. Automatically download fashion-MNIST dataset and return the training, validation and test set with 50000, 10000 and 10000 fashion images respectively, `examples <http://marubon-ds.blogspot.co.uk/2017/09/fashion-mnist-exploring.html>`__. Parameters ---------- shape : tuple The shape of digit images (the default is (-1, 784), alternatively (-1, 28, 28, 1)). path : str The path that the data is downloaded to. Returns ------- X_train, y_train, X_val, y_val, X_test, y_test: tuple Return splitted training/validation/test set respectively. Examples -------- >>> X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_fashion_mnist_dataset(shape=(-1,784), path='datasets') >>> X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_fashion_mnist_dataset(shape=(-1, 28, 28, 1)) """ return _load_mnist_dataset( shape, path, name='fashion_mnist', url='http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/' ) def _load_mnist_dataset(shape, path, name='mnist', url='http://yann.lecun.com/exdb/mnist/'): """A generic function to load mnist-like dataset. Parameters: ---------- shape : tuple The shape of digit images. path : str The path that the data is downloaded to. name : str The dataset name you want to use(the default is 'mnist'). url : str The url of dataset(the default is 'http://yann.lecun.com/exdb/mnist/'). """ path = os.path.join(path, name) # Define functions for loading mnist-like data's images and labels. # For convenience, they also download the requested files if needed. def load_mnist_images(path, filename): filepath = maybe_download_and_extract(filename, path, url) logging.info(filepath) # Read the inputs in Yann LeCun's binary format. with gzip.open(filepath, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=16) # The inputs are vectors now, we reshape them to monochrome 2D images, # following the shape convention: (examples, channels, rows, columns) data = data.reshape(shape) # The inputs come as bytes, we convert them to float32 in range [0,1]. # (Actually to range [0, 255/256], for compatibility to the version # provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.) return data / np.float32(256) def load_mnist_labels(path, filename): filepath = maybe_download_and_extract(filename, path, url) # Read the labels in Yann LeCun's binary format. with gzip.open(filepath, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=8) # The labels are vectors of integers now, that's exactly what we want. return data # Download and read the training and test set images and labels. logging.info("Load or Download {0} > {1}".format(name.upper(), path)) X_train = load_mnist_images(path, 'train-images-idx3-ubyte.gz') y_train = load_mnist_labels(path, 'train-labels-idx1-ubyte.gz') X_test = load_mnist_images(path, 't10k-images-idx3-ubyte.gz') y_test = load_mnist_labels(path, 't10k-labels-idx1-ubyte.gz') # We reserve the last 10000 training examples for validation. X_train, X_val = X_train[:-10000], X_train[-10000:] y_train, y_val = y_train[:-10000], y_train[-10000:] # We just return all the arrays in order, as expected in main(). # (It doesn't matter how we do this as long as we can read them again.) X_train = np.asarray(X_train, dtype=np.float32) y_train = np.asarray(y_train, dtype=np.int32) X_val = np.asarray(X_val, dtype=np.float32) y_val = np.asarray(y_val, dtype=np.int32) X_test = np.asarray(X_test, dtype=np.float32) y_test = np.asarray(y_test, dtype=np.int32) return X_train, y_train, X_val, y_val, X_test, y_test def load_cifar10_dataset(shape=(-1, 32, 32, 3), path='data', plotable=False): """Load CIFAR-10 dataset. It consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class. Parameters ---------- shape : tupe The shape of digit images e.g. (-1, 3, 32, 32) and (-1, 32, 32, 3). path : str The path that the data is downloaded to, defaults is ``data/cifar10/``. plotable : boolean Whether to plot some image examples, False as default. Examples -------- >>> X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3)) References ---------- - `CIFAR website <https://www.cs.toronto.edu/~kriz/cifar.html>`__ - `Data download link <https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz>`__ - `<https://teratail.com/questions/28932>`__ """ path = os.path.join(path, 'cifar10') logging.info("Load or Download cifar10 > {}".format(path)) # Helper function to unpickle the data def unpickle(file): fp = open(file, 'rb') if sys.version_info.major == 2: data = pickle.load(fp) elif sys.version_info.major == 3: data = pickle.load(fp, encoding='latin-1') fp.close() return data filename = 'cifar-10-python.tar.gz' url = 'https://www.cs.toronto.edu/~kriz/' # Download and uncompress file maybe_download_and_extract(filename, path, url, extract=True) # Unpickle file and fill in data X_train = None y_train = [] for i in range(1, 6): data_dic = unpickle(os.path.join(path, 'cifar-10-batches-py/', "data_batch_{}".format(i))) if i == 1: X_train = data_dic['data'] else: X_train = np.vstack((X_train, data_dic['data'])) y_train += data_dic['labels'] test_data_dic = unpickle(os.path.join(path, 'cifar-10-batches-py/', "test_batch")) X_test = test_data_dic['data'] y_test = np.array(test_data_dic['labels']) if shape == (-1, 3, 32, 32): X_test = X_test.reshape(shape) X_train = X_train.reshape(shape) elif shape == (-1, 32, 32, 3): X_test = X_test.reshape(shape, order='F') X_train = X_train.reshape(shape, order='F') X_test = np.transpose(X_test, (0, 2, 1, 3)) X_train = np.transpose(X_train, (0, 2, 1, 3)) else: X_test = X_test.reshape(shape) X_train = X_train.reshape(shape) y_train = np.array(y_train) if plotable: if sys.platform.startswith('darwin'): import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt logging.info('\nCIFAR-10') fig = plt.figure(1) logging.info('Shape of a training image: X_train[0] %s' % X_train[0].shape) plt.ion() # interactive mode count = 1 for _ in range(10): # each row for _ in range(10): # each column _ = fig.add_subplot(10, 10, count) if shape == (-1, 3, 32, 32): # plt.imshow(X_train[count-1], interpolation='nearest') plt.imshow(np.transpose(X_train[count - 1], (1, 2, 0)), interpolation='nearest') # plt.imshow(np.transpose(X_train[count-1], (2, 1, 0)), interpolation='nearest') elif shape == (-1, 32, 32, 3): plt.imshow(X_train[count - 1], interpolation='nearest') # plt.imshow(np.transpose(X_train[count-1], (1, 0, 2)), interpolation='nearest') else: raise Exception("Do not support the given 'shape' to plot the image examples") plt.gca().xaxis.set_major_locator(plt.NullLocator()) # 不显示刻度(tick) plt.gca().yaxis.set_major_locator(plt.NullLocator()) count = count + 1 plt.draw() # interactive mode plt.pause(3) # interactive mode logging.info("X_train: %s" % X_train.shape) logging.info("y_train: %s" % y_train.shape) logging.info("X_test: %s" % X_test.shape) logging.info("y_test: %s" % y_test.shape) X_train = np.asarray(X_train, dtype=np.float32) X_test = np.asarray(X_test, dtype=np.float32) y_train = np.asarray(y_train, dtype=np.int32) y_test = np.asarray(y_test, dtype=np.int32) return X_train, y_train, X_test, y_test def load_cropped_svhn(path='data', include_extra=True): """Load Cropped SVHN. The Cropped Street View House Numbers (SVHN) Dataset contains 32x32x3 RGB images. Digit '1' has label 1, '9' has label 9 and '0' has label 0 (the original dataset uses 10 to represent '0'), see `ufldl website <http://ufldl.stanford.edu/housenumbers/>`__. Parameters ---------- path : str The path that the data is downloaded to. include_extra : boolean If True (default), add extra images to the training set. Returns ------- X_train, y_train, X_test, y_test: tuple Return splitted training/test set respectively. Examples --------- >>> X_train, y_train, X_test, y_test = tl.files.load_cropped_svhn(include_extra=False) >>> tl.vis.save_images(X_train[0:100], [10, 10], 'svhn.png') """ start_time = time.time() path = os.path.join(path, 'cropped_svhn') logging.info("Load or Download Cropped SVHN > {} | include extra images: {}".format(path, include_extra)) url = "http://ufldl.stanford.edu/housenumbers/" np_file = os.path.join(path, "train_32x32.npz") if file_exists(np_file) is False: filename = "train_32x32.mat" filepath = maybe_download_and_extract(filename, path, url) mat = sio.loadmat(filepath) X_train = mat['X'] / 255.0 # to [0, 1] X_train = np.transpose(X_train, (3, 0, 1, 2)) y_train = np.squeeze(mat['y'], axis=1) y_train[y_train == 10] = 0 # replace 10 to 0 np.savez(np_file, X=X_train, y=y_train) del_file(filepath) else: v = np.load(np_file, allow_pickle=True) X_train = v['X'] y_train = v['y'] logging.info(" n_train: {}".format(len(y_train))) np_file = os.path.join(path, "test_32x32.npz") if file_exists(np_file) is False: filename = "test_32x32.mat" filepath = maybe_download_and_extract(filename, path, url) mat = sio.loadmat(filepath) X_test = mat['X'] / 255.0 X_test = np.transpose(X_test, (3, 0, 1, 2)) y_test = np.squeeze(mat['y'], axis=1) y_test[y_test == 10] = 0 np.savez(np_file, X=X_test, y=y_test) del_file(filepath) else: v = np.load(np_file, allow_pickle=True) X_test = v['X'] y_test = v['y'] logging.info(" n_test: {}".format(len(y_test))) if include_extra: logging.info(" getting extra 531131 images, please wait ...") np_file = os.path.join(path, "extra_32x32.npz") if file_exists(np_file) is False: logging.info(" the first time to load extra images will take long time to convert the file format ...") filename = "extra_32x32.mat" filepath = maybe_download_and_extract(filename, path, url) mat = sio.loadmat(filepath) X_extra = mat['X'] / 255.0 X_extra = np.transpose(X_extra, (3, 0, 1, 2)) y_extra = np.squeeze(mat['y'], axis=1) y_extra[y_extra == 10] = 0 np.savez(np_file, X=X_extra, y=y_extra) del_file(filepath) else: v = np.load(np_file, allow_pickle=True) X_extra = v['X'] y_extra = v['y'] # print(X_train.shape, X_extra.shape) logging.info(" adding n_extra {} to n_train {}".format(len(y_extra), len(y_train))) t = time.time() X_train = np.concatenate((X_train, X_extra), 0) y_train = np.concatenate((y_train, y_extra), 0) # X_train = np.append(X_train, X_extra, axis=0) # y_train = np.append(y_train, y_extra, axis=0) logging.info(" added n_extra {} to n_train {} took {}s".format(len(y_extra), len(y_train), time.time() - t)) else: logging.info(" no extra images are included") logging.info(" image size: %s n_train: %d n_test: %d" % (str(X_train.shape[1:4]), len(y_train), len(y_test))) logging.info(" took: {}s".format(int(time.time() - start_time))) return X_train, y_train, X_test, y_test def load_ptb_dataset(path='data'): """Load Penn TreeBank (PTB) dataset. It is used in many LANGUAGE MODELING papers, including "Empirical Evaluation and Combination of Advanced Language Modeling Techniques", "Recurrent Neural Network Regularization". It consists of 929k training words, 73k validation words, and 82k test words. It has 10k words in its vocabulary. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/ptb/``. Returns -------- train_data, valid_data, test_data : list of int The training, validating and testing data in integer format. vocab_size : int The vocabulary size. Examples -------- >>> train_data, valid_data, test_data, vocab_size = tl.files.load_ptb_dataset() References --------------- - ``tensorflow.models.rnn.ptb import reader`` - `Manual download <http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz>`__ Notes ------ - If you want to get the raw data, see the source code. """ path = os.path.join(path, 'ptb') logging.info("Load or Download Penn TreeBank (PTB) dataset > {}".format(path)) # Maybe dowload and uncompress tar, or load exsisting files filename = 'simple-examples.tgz' url = 'http://www.fit.vutbr.cz/~imikolov/rnnlm/' maybe_download_and_extract(filename, path, url, extract=True) data_path = os.path.join(path, 'simple-examples', 'data') train_path = os.path.join(data_path, "ptb.train.txt") valid_path = os.path.join(data_path, "ptb.valid.txt") test_path = os.path.join(data_path, "ptb.test.txt") word_to_id = nlp.build_vocab(nlp.read_words(train_path)) train_data = nlp.words_to_word_ids(nlp.read_words(train_path), word_to_id) valid_data = nlp.words_to_word_ids(nlp.read_words(valid_path), word_to_id) test_data = nlp.words_to_word_ids(nlp.read_words(test_path), word_to_id) vocab_size = len(word_to_id) # logging.info(nlp.read_words(train_path)) # ... 'according', 'to', 'mr.', '<unk>', '<eos>'] # logging.info(train_data) # ... 214, 5, 23, 1, 2] # logging.info(word_to_id) # ... 'beyond': 1295, 'anti-nuclear': 9599, 'trouble': 1520, '<eos>': 2 ... } # logging.info(vocabulary) # 10000 # exit() return train_data, valid_data, test_data, vocab_size def load_matt_mahoney_text8_dataset(path='data'): """Load Matt Mahoney's dataset. Download a text file from Matt Mahoney's website if not present, and make sure it's the right size. Extract the first file enclosed in a zip file as a list of words. This dataset can be used for Word Embedding. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/mm_test8/``. Returns -------- list of str The raw text data e.g. [.... 'their', 'families', 'who', 'were', 'expelled', 'from', 'jerusalem', ...] Examples -------- >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> print('Data size', len(words)) """ path = os.path.join(path, 'mm_test8') logging.info("Load or Download matt_mahoney_text8 Dataset> {}".format(path)) filename = 'text8.zip' url = 'http://mattmahoney.net/dc/' maybe_download_and_extract(filename, path, url, expected_bytes=31344016) with zipfile.ZipFile(os.path.join(path, filename)) as f: word_list = f.read(f.namelist()[0]).split() for idx, _ in enumerate(word_list): word_list[idx] = word_list[idx].decode() return word_list def load_imdb_dataset( path='data', nb_words=None, skip_top=0, maxlen=None, test_split=0.2, seed=113, start_char=1, oov_char=2, index_from=3 ): """Load IMDB dataset. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/imdb/``. nb_words : int Number of words to get. skip_top : int Top most frequent words to ignore (they will appear as oov_char value in the sequence data). maxlen : int Maximum sequence length. Any longer sequence will be truncated. seed : int Seed for reproducible data shuffling. start_char : int The start of a sequence will be marked with this character. Set to 1 because 0 is usually the padding character. oov_char : int Words that were cut out because of the num_words or skip_top limit will be replaced with this character. index_from : int Index actual words with this index and higher. Examples -------- >>> X_train, y_train, X_test, y_test = tl.files.load_imdb_dataset( ... nb_words=20000, test_split=0.2) >>> print('X_train.shape', X_train.shape) (20000,) [[1, 62, 74, ... 1033, 507, 27],[1, 60, 33, ... 13, 1053, 7]..] >>> print('y_train.shape', y_train.shape) (20000,) [1 0 0 ..., 1 0 1] References ----------- - `Modified from keras. <https://github.com/fchollet/keras/blob/master/keras/datasets/imdb.py>`__ """ path = os.path.join(path, 'imdb') filename = "imdb.pkl" url = 'https://s3.amazonaws.com/text-datasets/' maybe_download_and_extract(filename, path, url) if filename.endswith(".gz"): f = gzip.open(os.path.join(path, filename), 'rb') else: f = open(os.path.join(path, filename), 'rb') X, labels = cPickle.load(f) f.close() np.random.seed(seed) np.random.shuffle(X) np.random.seed(seed) np.random.shuffle(labels) if start_char is not None: X = [[start_char] + [w + index_from for w in x] for x in X] elif index_from: X = [[w + index_from for w in x] for x in X] if maxlen: new_X = [] new_labels = [] for x, y in zip(X, labels): if len(x) < maxlen: new_X.append(x) new_labels.append(y) X = new_X labels = new_labels if not X: raise Exception( 'After filtering for sequences shorter than maxlen=' + str(maxlen) + ', no sequence was kept. ' 'Increase maxlen.' ) if not nb_words: nb_words = max([max(x) for x in X]) # by convention, use 2 as OOV word # reserve 'index_from' (=3 by default) characters: 0 (padding), 1 (start), 2 (OOV) if oov_char is not None: X = [[oov_char if (w >= nb_words or w < skip_top) else w for w in x] for x in X] else: nX = [] for x in X: nx = [] for w in x: if (w >= nb_words or w < skip_top): nx.append(w) nX.append(nx) X = nX X_train = np.array(X[:int(len(X) * (1 - test_split))]) y_train = np.array(labels[:int(len(X) * (1 - test_split))]) X_test = np.array(X[int(len(X) * (1 - test_split)):]) y_test = np.array(labels[int(len(X) * (1 - test_split)):]) return X_train, y_train, X_test, y_test def load_nietzsche_dataset(path='data'): """Load Nietzsche dataset. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/nietzsche/``. Returns -------- str The content. Examples -------- >>> see tutorial_generate_text.py >>> words = tl.files.load_nietzsche_dataset() >>> words = basic_clean_str(words) >>> words = words.split() """ logging.info("Load or Download nietzsche dataset > {}".format(path)) path = os.path.join(path, 'nietzsche') filename = "nietzsche.txt" url = 'https://s3.amazonaws.com/text-datasets/' filepath = maybe_download_and_extract(filename, path, url) with open(filepath, "r") as f: words = f.read() return words def load_wmt_en_fr_dataset(path='data'): """Load WMT'15 English-to-French translation dataset. It will download the data from the WMT'15 Website (10^9-French-English corpus), and the 2013 news test from the same site as development set. Returns the directories of training data and test data. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/wmt_en_fr/``. References ---------- - Code modified from /tensorflow/models/rnn/translation/data_utils.py Notes ----- Usually, it will take a long time to download this dataset. """ path = os.path.join(path, 'wmt_en_fr') # URLs for WMT data. _WMT_ENFR_TRAIN_URL = "http://www.statmt.org/wmt10/" _WMT_ENFR_DEV_URL = "http://www.statmt.org/wmt15/" def gunzip_file(gz_path, new_path): """Unzips from gz_path into new_path.""" logging.info("Unpacking %s to %s" % (gz_path, new_path)) with gzip.open(gz_path, "rb") as gz_file: with open(new_path, "wb") as new_file: for line in gz_file: new_file.write(line) def get_wmt_enfr_train_set(path): """Download the WMT en-fr training corpus to directory unless it's there.""" filename = "training-giga-fren.tar" maybe_download_and_extract(filename, path, _WMT_ENFR_TRAIN_URL, extract=True) train_path = os.path.join(path, "giga-fren.release2.fixed") gunzip_file(train_path + ".fr.gz", train_path + ".fr") gunzip_file(train_path + ".en.gz", train_path + ".en") return train_path def get_wmt_enfr_dev_set(path): """Download the WMT en-fr training corpus to directory unless it's there.""" filename = "dev-v2.tgz" dev_file = maybe_download_and_extract(filename, path, _WMT_ENFR_DEV_URL, extract=False) dev_name = "newstest2013" dev_path = os.path.join(path, "newstest2013") if not (gfile.Exists(dev_path + ".fr") and gfile.Exists(dev_path + ".en")): logging.info("Extracting tgz file %s" % dev_file) with tarfile.open(dev_file, "r:gz") as dev_tar: fr_dev_file = dev_tar.getmember("dev/" + dev_name + ".fr") en_dev_file = dev_tar.getmember("dev/" + dev_name + ".en") fr_dev_file.name = dev_name + ".fr" # Extract without "dev/" prefix. en_dev_file.name = dev_name + ".en" dev_tar.extract(fr_dev_file, path) dev_tar.extract(en_dev_file, path) return dev_path logging.info("Load or Download WMT English-to-French translation > {}".format(path)) train_path = get_wmt_enfr_train_set(path) dev_path = get_wmt_enfr_dev_set(path) return train_path, dev_path def load_flickr25k_dataset(tag='sky', path="data", n_threads=50, printable=False): """Load Flickr25K dataset. Returns a list of images by a given tag from Flick25k dataset, it will download Flickr25k from `the official website <http://press.liacs.nl/mirflickr/mirdownload.html>`__ at the first time you use it. Parameters ------------ tag : str or None What images to return. - If you want to get images with tag, use string like 'dog', 'red', see `Flickr Search <https://www.flickr.com/search/>`__. - If you want to get all images, set to ``None``. path : str The path that the data is downloaded to, defaults is ``data/flickr25k/``. n_threads : int The number of thread to read image. printable : boolean Whether to print infomation when reading images, default is ``False``. Examples ----------- Get images with tag of sky >>> images = tl.files.load_flickr25k_dataset(tag='sky') Get all images >>> images = tl.files.load_flickr25k_dataset(tag=None, n_threads=100, printable=True) """ path = os.path.join(path, 'flickr25k') filename = 'mirflickr25k.zip' url = 'http://press.liacs.nl/mirflickr/mirflickr25k/' # download dataset if folder_exists(os.path.join(path, "mirflickr")) is False: logging.info("[*] Flickr25k is nonexistent in {}".format(path)) maybe_download_and_extract(filename, path, url, extract=True) del_file(os.path.join(path, filename)) # return images by the given tag. # 1. image path list folder_imgs = os.path.join(path, "mirflickr") path_imgs = load_file_list(path=folder_imgs, regx='\\.jpg', printable=False) path_imgs.sort(key=natural_keys) # 2. tag path list folder_tags = os.path.join(path, "mirflickr", "meta", "tags") path_tags = load_file_list(path=folder_tags, regx='\\.txt', printable=False) path_tags.sort(key=natural_keys) # 3. select images if tag is None: logging.info("[Flickr25k] reading all images") else: logging.info("[Flickr25k] reading images with tag: {}".format(tag)) images_list = [] for idx, _v in enumerate(path_tags): tags = read_file(os.path.join(folder_tags, path_tags[idx])).split('\n') # logging.info(idx+1, tags) if tag is None or tag in tags: images_list.append(path_imgs[idx]) images = visualize.read_images(images_list, folder_imgs, n_threads=n_threads, printable=printable) return images def load_flickr1M_dataset(tag='sky', size=10, path="data", n_threads=50, printable=False): """Load Flick1M dataset. Returns a list of images by a given tag from Flickr1M dataset, it will download Flickr1M from `the official website <http://press.liacs.nl/mirflickr/mirdownload.html>`__ at the first time you use it. Parameters ------------ tag : str or None What images to return. - If you want to get images with tag, use string like 'dog', 'red', see `Flickr Search <https://www.flickr.com/search/>`__. - If you want to get all images, set to ``None``. size : int integer between 1 to 10. 1 means 100k images ... 5 means 500k images, 10 means all 1 million images. Default is 10. path : str The path that the data is downloaded to, defaults is ``data/flickr25k/``. n_threads : int The number of thread to read image. printable : boolean Whether to print infomation when reading images, default is ``False``. Examples ---------- Use 200k images >>> images = tl.files.load_flickr1M_dataset(tag='zebra', size=2) Use 1 Million images >>> images = tl.files.load_flickr1M_dataset(tag='zebra') """ path = os.path.join(path, 'flickr1M') logging.info("[Flickr1M] using {}% of images = {}".format(size * 10, size * 100000)) images_zip = [ 'images0.zip', 'images1.zip', 'images2.zip', 'images3.zip', 'images4.zip', 'images5.zip', 'images6.zip', 'images7.zip', 'images8.zip', 'images9.zip' ] tag_zip = 'tags.zip' url = 'http://press.liacs.nl/mirflickr/mirflickr1m/' # download dataset for image_zip in images_zip[0:size]: image_folder = image_zip.split(".")[0] # logging.info(path+"/"+image_folder) if folder_exists(os.path.join(path, image_folder)) is False: # logging.info(image_zip) logging.info("[Flickr1M] {} is missing in {}".format(image_folder, path)) maybe_download_and_extract(image_zip, path, url, extract=True) del_file(os.path.join(path, image_zip)) # os.system("mv {} {}".format(os.path.join(path, 'images'), os.path.join(path, image_folder))) shutil.move(os.path.join(path, 'images'), os.path.join(path, image_folder)) else: logging.info("[Flickr1M] {} exists in {}".format(image_folder, path)) # download tag if folder_exists(os.path.join(path, "tags")) is False: logging.info("[Flickr1M] tag files is nonexistent in {}".format(path)) maybe_download_and_extract(tag_zip, path, url, extract=True) del_file(os.path.join(path, tag_zip)) else: logging.info("[Flickr1M] tags exists in {}".format(path)) # 1. image path list images_list = [] images_folder_list = [] for i in range(0, size): images_folder_list += load_folder_list(path=os.path.join(path, 'images%d' % i)) images_folder_list.sort(key=lambda s: int(s.split('/')[-1])) # folder/images/ddd for folder in images_folder_list[0:size * 10]: tmp = load_file_list(path=folder, regx='\\.jpg', printable=False) tmp.sort(key=lambda s: int(s.split('.')[-2])) # ddd.jpg images_list.extend([os.path.join(folder, x) for x in tmp]) # 2. tag path list tag_list = [] tag_folder_list = load_folder_list(os.path.join(path, "tags")) # tag_folder_list.sort(key=lambda s: int(s.split("/")[-1])) # folder/images/ddd tag_folder_list.sort(key=lambda s: int(os.path.basename(s))) for folder in tag_folder_list[0:size * 10]: tmp = load_file_list(path=folder, regx='\\.txt', printable=False) tmp.sort(key=lambda s: int(s.split('.')[-2])) # ddd.txt tmp = [os.path.join(folder, s) for s in tmp] tag_list += tmp # 3. select images logging.info("[Flickr1M] searching tag: {}".format(tag)) select_images_list = [] for idx, _val in enumerate(tag_list): tags = read_file(tag_list[idx]).split('\n') if tag in tags: select_images_list.append(images_list[idx]) logging.info("[Flickr1M] reading images with tag: {}".format(tag)) images = visualize.read_images(select_images_list, '', n_threads=n_threads, printable=printable) return images def load_cyclegan_dataset(filename='summer2winter_yosemite', path='data'): """Load images from CycleGAN's database, see `this link <https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/>`__. Parameters ------------ filename : str The dataset you want, see `this link <https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/>`__. path : str The path that the data is downloaded to, defaults is `data/cyclegan` Examples --------- >>> im_train_A, im_train_B, im_test_A, im_test_B = load_cyclegan_dataset(filename='summer2winter_yosemite') """ path = os.path.join(path, 'cyclegan') url = 'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/' if folder_exists(os.path.join(path, filename)) is False: logging.info("[*] {} is nonexistent in {}".format(filename, path)) maybe_download_and_extract(filename + '.zip', path, url, extract=True) del_file(os.path.join(path, filename + '.zip')) def load_image_from_folder(path): path_imgs = load_file_list(path=path, regx='\\.jpg', printable=False) return visualize.read_images(path_imgs, path=path, n_threads=10, printable=False) im_train_A = load_image_from_folder(os.path.join(path, filename, "trainA")) im_train_B = load_image_from_folder(os.path.join(path, filename, "trainB")) im_test_A = load_image_from_folder(os.path.join(path, filename, "testA")) im_test_B = load_image_from_folder(os.path.join(path, filename, "testB")) def if_2d_to_3d(images): # [h, w] --> [h, w, 3] for i, _v in enumerate(images): if len(images[i].shape) == 2: images[i] = images[i][:, :, np.newaxis] images[i] = np.tile(images[i], (1, 1, 3)) return images im_train_A = if_2d_to_3d(im_train_A) im_train_B = if_2d_to_3d(im_train_B) im_test_A = if_2d_to_3d(im_test_A) im_test_B = if_2d_to_3d(im_test_B) return im_train_A, im_train_B, im_test_A, im_test_B def download_file_from_google_drive(ID, destination): """Download file from Google Drive. See ``tl.files.load_celebA_dataset`` for example. Parameters -------------- ID : str The driver ID. destination : str The destination for save file. """ try: from tqdm import tqdm except ImportError as e: print(e) raise ImportError("Module tqdm not found. Please install tqdm via pip or other package managers.") try: import requests except ImportError as e: print(e) raise ImportError("Module requests not found. Please install requests via pip or other package managers.") def save_response_content(response, destination, chunk_size=32 * 1024): total_size = int(response.headers.get('content-length', 0)) with open(destination, "wb") as f: for chunk in tqdm(response.iter_content(chunk_size), total=total_size, unit='B', unit_scale=True, desc=destination): if chunk: # filter out keep-alive new chunks f.write(chunk) def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith('download_warning'): return value return None URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params={'id': ID}, stream=True) token = get_confirm_token(response) if token: params = {'id': ID, 'confirm': token} response = session.get(URL, params=params, stream=True) save_response_content(response, destination) def load_celebA_dataset(path='data'): """Load CelebA dataset Return a list of image path. Parameters ----------- path : str The path that the data is downloaded to, defaults is ``data/celebA/``. """ data_dir = 'celebA' filename, drive_id = "img_align_celeba.zip", "0B7EVK8r0v71pZjFTYXZWM3FlRnM" save_path = os.path.join(path, filename) image_path = os.path.join(path, data_dir) if os.path.exists(image_path): logging.info('[*] {} already exists'.format(save_path)) else: exists_or_mkdir(path) download_file_from_google_drive(drive_id, save_path) zip_dir = '' with zipfile.ZipFile(save_path) as zf: zip_dir = zf.namelist()[0] zf.extractall(path) os.remove(save_path) os.rename(os.path.join(path, zip_dir), image_path) data_files = load_file_list(path=image_path, regx='\\.jpg', printable=False) for i, _v in enumerate(data_files): data_files[i] = os.path.join(image_path, data_files[i]) return data_files def load_voc_dataset(path='data', dataset='2012', contain_classes_in_person=False): """Pascal VOC 2007/2012 Dataset. It has 20 objects: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tvmonitor and additional 3 classes : head, hand, foot for person. Parameters ----------- path : str The path that the data is downloaded to, defaults is ``data/VOC``. dataset : str The VOC dataset version, `2012`, `2007`, `2007test` or `2012test`. We usually train model on `2007+2012` and test it on `2007test`. contain_classes_in_person : boolean Whether include head, hand and foot annotation, default is False. Returns --------- imgs_file_list : list of str Full paths of all images. imgs_semseg_file_list : list of str Full paths of all maps for semantic segmentation. Note that not all images have this map! imgs_insseg_file_list : list of str Full paths of all maps for instance segmentation. Note that not all images have this map! imgs_ann_file_list : list of str Full paths of all annotations for bounding box and object class, all images have this annotations. classes : list of str Classes in order. classes_in_person : list of str Classes in person. classes_dict : dictionary Class label to integer. n_objs_list : list of int Number of objects in all images in ``imgs_file_list`` in order. objs_info_list : list of str Darknet format for the annotation of all images in ``imgs_file_list`` in order. ``[class_id x_centre y_centre width height]`` in ratio format. objs_info_dicts : dictionary The annotation of all images in ``imgs_file_list``, ``{imgs_file_list : dictionary for annotation}``, format from `TensorFlow/Models/object-detection <https://github.com/tensorflow/models/blob/master/object_detection/create_pascal_tf_record.py>`__. Examples ---------- >>> imgs_file_list, imgs_semseg_file_list, imgs_insseg_file_list, imgs_ann_file_list, >>> classes, classes_in_person, classes_dict, >>> n_objs_list, objs_info_list, objs_info_dicts = tl.files.load_voc_dataset(dataset="2012", contain_classes_in_person=False) >>> idx = 26 >>> print(classes) ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] >>> print(classes_dict) {'sheep': 16, 'horse': 12, 'bicycle': 1, 'bottle': 4, 'cow': 9, 'sofa': 17, 'car': 6, 'dog': 11, 'cat': 7, 'person': 14, 'train': 18, 'diningtable': 10, 'aeroplane': 0, 'bus': 5, 'pottedplant': 15, 'tvmonitor': 19, 'chair': 8, 'bird': 2, 'boat': 3, 'motorbike': 13} >>> print(imgs_file_list[idx]) data/VOC/VOC2012/JPEGImages/2007_000423.jpg >>> print(n_objs_list[idx]) 2 >>> print(imgs_ann_file_list[idx]) data/VOC/VOC2012/Annotations/2007_000423.xml >>> print(objs_info_list[idx]) 14 0.173 0.461333333333 0.142 0.496 14 0.828 0.542666666667 0.188 0.594666666667 >>> ann = tl.prepro.parse_darknet_ann_str_to_list(objs_info_list[idx]) >>> print(ann) [[14, 0.173, 0.461333333333, 0.142, 0.496], [14, 0.828, 0.542666666667, 0.188, 0.594666666667]] >>> c, b = tl.prepro.parse_darknet_ann_list_to_cls_box(ann) >>> print(c, b) [14, 14] [[0.173, 0.461333333333, 0.142, 0.496], [0.828, 0.542666666667, 0.188, 0.594666666667]] References ------------- - `Pascal VOC2012 Website <http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit>`__. - `Pascal VOC2007 Website <http://host.robots.ox.ac.uk/pascal/VOC/voc2007/>`__. """ import xml.etree.ElementTree as ET try: import lxml.etree as etree except ImportError as e: print(e) raise ImportError("Module lxml not found. Please install lxml via pip or other package managers.") path = os.path.join(path, 'VOC') def _recursive_parse_xml_to_dict(xml): """Recursively parses XML contents to python dict. We assume that `object` tags are the only ones that can appear multiple times at the same level of a tree. Args: xml: xml tree obtained by parsing XML file contents using lxml.etree Returns: Python dictionary holding XML contents. """ if not xml: # if xml is not None: return {xml.tag: xml.text} result = {} for child in xml: child_result = _recursive_parse_xml_to_dict(child) if child.tag != 'object': result[child.tag] = child_result[child.tag] else: if child.tag not in result: result[child.tag] = [] result[child.tag].append(child_result[child.tag]) return {xml.tag: result} if dataset == "2012": url = "http://host.robots.ox.ac.uk/pascal/VOC/voc2012/" tar_filename = "VOCtrainval_11-May-2012.tar" extracted_filename = "VOC2012" # "VOCdevkit/VOC2012" logging.info(" [============= VOC 2012 =============]") elif dataset == "2012test": extracted_filename = "VOC2012test" # "VOCdevkit/VOC2012" logging.info(" [============= VOC 2012 Test Set =============]") logging.info( " \nAuthor: 2012test only have person annotation, so 2007test is highly recommended for testing !\n" ) time.sleep(3) if os.path.isdir(os.path.join(path, extracted_filename)) is False: logging.info("For VOC 2012 Test data - online registration required") logging.info( " Please download VOC2012test.tar from: \n register: http://host.robots.ox.ac.uk:8080 \n voc2012 : http://host.robots.ox.ac.uk:8080/eval/challenges/voc2012/ \ndownload: http://host.robots.ox.ac.uk:8080/eval/downloads/VOC2012test.tar" ) logging.info(" unzip VOC2012test.tar,rename the folder to VOC2012test and put it into %s" % path) exit() # # http://host.robots.ox.ac.uk:8080/eval/downloads/VOC2012test.tar # url = "http://host.robots.ox.ac.uk:8080/eval/downloads/" # tar_filename = "VOC2012test.tar" elif dataset == "2007": url = "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/" tar_filename = "VOCtrainval_06-Nov-2007.tar" extracted_filename = "VOC2007" logging.info(" [============= VOC 2007 =============]") elif dataset == "2007test": # http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html#testdata # http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar url = "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/" tar_filename = "VOCtest_06-Nov-2007.tar" extracted_filename = "VOC2007test" logging.info(" [============= VOC 2007 Test Set =============]") else: raise Exception("Please set the dataset aug to 2012, 2012test or 2007.") # download dataset if dataset != "2012test": _platform = sys.platform if folder_exists(os.path.join(path, extracted_filename)) is False: logging.info("[VOC] {} is nonexistent in {}".format(extracted_filename, path)) maybe_download_and_extract(tar_filename, path, url, extract=True) del_file(os.path.join(path, tar_filename)) if dataset == "2012": if _platform == "win32": os.system("mv {}\VOCdevkit\VOC2012 {}\VOC2012".format(path, path)) else: os.system("mv {}/VOCdevkit/VOC2012 {}/VOC2012".format(path, path)) elif dataset == "2007": if _platform == "win32": os.system("mv {}\VOCdevkit\VOC2007 {}\VOC2007".format(path, path)) else: os.system("mv {}/VOCdevkit/VOC2007 {}/VOC2007".format(path, path)) elif dataset == "2007test": if _platform == "win32": os.system("mv {}\VOCdevkit\VOC2007 {}\VOC2007test".format(path, path)) else: os.system("mv {}/VOCdevkit/VOC2007 {}/VOC2007test".format(path, path)) del_folder(os.path.join(path, 'VOCdevkit')) # object classes(labels) NOTE: YOU CAN CUSTOMIZE THIS LIST classes = [ "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor" ] if contain_classes_in_person: classes_in_person = ["head", "hand", "foot"] else: classes_in_person = [] classes += classes_in_person # use extra 3 classes for person classes_dict = utils.list_string_to_dict(classes) logging.info("[VOC] object classes {}".format(classes_dict)) # 1. image path list # folder_imgs = path+"/"+extracted_filename+"/JPEGImages/" folder_imgs = os.path.join(path, extracted_filename, "JPEGImages") imgs_file_list = load_file_list(path=folder_imgs, regx='\\.jpg', printable=False) logging.info("[VOC] {} images found".format(len(imgs_file_list))) imgs_file_list.sort( key=lambda s: int(s.replace('.', ' ').replace('_', '').split(' ')[-2]) ) # 2007_000027.jpg --> 2007000027 imgs_file_list = [os.path.join(folder_imgs, s) for s in imgs_file_list] # logging.info('IM',imgs_file_list[0::3333], imgs_file_list[-1]) if dataset != "2012test": # ======== 2. semantic segmentation maps path list # folder_semseg = path+"/"+extracted_filename+"/SegmentationClass/" folder_semseg = os.path.join(path, extracted_filename, "SegmentationClass") imgs_semseg_file_list = load_file_list(path=folder_semseg, regx='\\.png', printable=False) logging.info("[VOC] {} maps for semantic segmentation found".format(len(imgs_semseg_file_list))) imgs_semseg_file_list.sort( key=lambda s: int(s.replace('.', ' ').replace('_', '').split(' ')[-2]) ) # 2007_000032.png --> 2007000032 imgs_semseg_file_list = [os.path.join(folder_semseg, s) for s in imgs_semseg_file_list] # logging.info('Semantic Seg IM',imgs_semseg_file_list[0::333], imgs_semseg_file_list[-1]) # ======== 3. instance segmentation maps path list # folder_insseg = path+"/"+extracted_filename+"/SegmentationObject/" folder_insseg = os.path.join(path, extracted_filename, "SegmentationObject") imgs_insseg_file_list = load_file_list(path=folder_insseg, regx='\\.png', printable=False) logging.info("[VOC] {} maps for instance segmentation found".format(len(imgs_semseg_file_list))) imgs_insseg_file_list.sort( key=lambda s: int(s.replace('.', ' ').replace('_', '').split(' ')[-2]) ) # 2007_000032.png --> 2007000032 imgs_insseg_file_list = [os.path.join(folder_insseg, s) for s in imgs_insseg_file_list] # logging.info('Instance Seg IM',imgs_insseg_file_list[0::333], imgs_insseg_file_list[-1]) else: imgs_semseg_file_list = [] imgs_insseg_file_list = [] # 4. annotations for bounding box and object class # folder_ann = path+"/"+extracted_filename+"/Annotations/" folder_ann = os.path.join(path, extracted_filename, "Annotations") imgs_ann_file_list = load_file_list(path=folder_ann, regx='\\.xml', printable=False) logging.info( "[VOC] {} XML annotation files for bounding box and object class found".format(len(imgs_ann_file_list)) ) imgs_ann_file_list.sort( key=lambda s: int(s.replace('.', ' ').replace('_', '').split(' ')[-2]) ) # 2007_000027.xml --> 2007000027 imgs_ann_file_list = [os.path.join(folder_ann, s) for s in imgs_ann_file_list] # logging.info('ANN',imgs_ann_file_list[0::3333], imgs_ann_file_list[-1]) if dataset == "2012test": # remove unused images in JPEG folder imgs_file_list_new = [] for ann in imgs_ann_file_list: ann = os.path.split(ann)[-1].split('.')[0] for im in imgs_file_list: if ann in im: imgs_file_list_new.append(im) break imgs_file_list = imgs_file_list_new logging.info("[VOC] keep %d images" % len(imgs_file_list_new)) # parse XML annotations def convert(size, box): dw = 1. / size[0] dh = 1. / size[1] x = (box[0] + box[1]) / 2.0 y = (box[2] + box[3]) / 2.0 w = box[1] - box[0] h = box[3] - box[2] x = x * dw w = w * dw y = y * dh h = h * dh return x, y, w, h def convert_annotation(file_name): """Given VOC2012 XML Annotations, returns number of objects and info.""" in_file = open(file_name) out_file = "" tree = ET.parse(in_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) n_objs = 0 for obj in root.iter('object'): if dataset != "2012test": difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult) == 1: continue else: cls = obj.find('name').text if cls not in classes: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = ( float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text) ) bb = convert((w, h), b) out_file += str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n' n_objs += 1 if cls in "person": for part in obj.iter('part'): cls = part.find('name').text if cls not in classes_in_person: continue cls_id = classes.index(cls) xmlbox = part.find('bndbox') b = ( float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text) ) bb = convert((w, h), b) # out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') out_file += str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n' n_objs += 1 in_file.close() return n_objs, out_file logging.info("[VOC] Parsing xml annotations files") n_objs_list = [] objs_info_list = [] # Darknet Format list of string objs_info_dicts = {} for idx, ann_file in enumerate(imgs_ann_file_list): n_objs, objs_info = convert_annotation(ann_file) n_objs_list.append(n_objs) objs_info_list.append(objs_info) with tf.io.gfile.GFile(ann_file, 'r') as fid: xml_str = fid.read() xml = etree.fromstring(xml_str) data = _recursive_parse_xml_to_dict(xml)['annotation'] objs_info_dicts.update({imgs_file_list[idx]: data}) return imgs_file_list, imgs_semseg_file_list, imgs_insseg_file_list, imgs_ann_file_list, classes, classes_in_person, classes_dict, n_objs_list, objs_info_list, objs_info_dicts def load_mpii_pose_dataset(path='data', is_16_pos_only=False): """Load MPII Human Pose Dataset. Parameters ----------- path : str The path that the data is downloaded to. is_16_pos_only : boolean If True, only return the peoples contain 16 pose keypoints. (Usually be used for single person pose estimation) Returns ---------- img_train_list : list of str The image directories of training data. ann_train_list : list of dict The annotations of training data. img_test_list : list of str The image directories of testing data. ann_test_list : list of dict The annotations of testing data. Examples -------- >>> import pprint >>> import tensorlayer as tl >>> img_train_list, ann_train_list, img_test_list, ann_test_list = tl.files.load_mpii_pose_dataset() >>> image = tl.vis.read_image(img_train_list[0]) >>> tl.vis.draw_mpii_pose_to_image(image, ann_train_list[0], 'image.png') >>> pprint.pprint(ann_train_list[0]) References ----------- - `MPII Human Pose Dataset. CVPR 14 <http://human-pose.mpi-inf.mpg.de>`__ - `MPII Human Pose Models. CVPR 16 <http://pose.mpi-inf.mpg.de>`__ - `MPII Human Shape, Poselet Conditioned Pictorial Structures and etc <http://pose.mpi-inf.mpg.de/#related>`__ - `MPII Keyponts and ID <http://human-pose.mpi-inf.mpg.de/#download>`__ """ path = os.path.join(path, 'mpii_human_pose') logging.info("Load or Download MPII Human Pose > {}".format(path)) # annotation url = "http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/" tar_filename = "mpii_human_pose_v1_u12_2.zip" extracted_filename = "mpii_human_pose_v1_u12_2" if folder_exists(os.path.join(path, extracted_filename)) is False: logging.info("[MPII] (annotation) {} is nonexistent in {}".format(extracted_filename, path)) maybe_download_and_extract(tar_filename, path, url, extract=True) del_file(os.path.join(path, tar_filename)) # images url = "http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/" tar_filename = "mpii_human_pose_v1.tar.gz" extracted_filename2 = "images" if folder_exists(os.path.join(path, extracted_filename2)) is False: logging.info("[MPII] (images) {} is nonexistent in {}".format(extracted_filename, path)) maybe_download_and_extract(tar_filename, path, url, extract=True) del_file(os.path.join(path, tar_filename)) # parse annotation, format see http://human-pose.mpi-inf.mpg.de/#download logging.info("reading annotations from mat file ...") # mat = sio.loadmat(os.path.join(path, extracted_filename, "mpii_human_pose_v1_u12_1.mat")) # def fix_wrong_joints(joint): # https://github.com/mitmul/deeppose/blob/master/datasets/mpii_dataset.py # if '12' in joint and '13' in joint and '2' in joint and '3' in joint: # if ((joint['12'][0] < joint['13'][0]) and # (joint['3'][0] < joint['2'][0])): # joint['2'], joint['3'] = joint['3'], joint['2'] # if ((joint['12'][0] > joint['13'][0]) and # (joint['3'][0] > joint['2'][0])): # joint['2'], joint['3'] = joint['3'], joint['2'] # return joint ann_train_list = [] ann_test_list = [] img_train_list = [] img_test_list = [] def save_joints(): # joint_data_fn = os.path.join(path, 'data.json') # fp = open(joint_data_fn, 'w') mat = sio.loadmat(os.path.join(path, extracted_filename, "mpii_human_pose_v1_u12_1.mat")) for _, (anno, train_flag) in enumerate( # all images zip(mat['RELEASE']['annolist'][0, 0][0], mat['RELEASE']['img_train'][0, 0][0])): img_fn = anno['image']['name'][0, 0][0] train_flag = int(train_flag) # print(i, img_fn, train_flag) # DEBUG print all images if train_flag: img_train_list.append(img_fn) ann_train_list.append([]) else: img_test_list.append(img_fn) ann_test_list.append([]) head_rect = [] if 'x1' in str(anno['annorect'].dtype): head_rect = zip( [x1[0, 0] for x1 in anno['annorect']['x1'][0]], [y1[0, 0] for y1 in anno['annorect']['y1'][0]], [x2[0, 0] for x2 in anno['annorect']['x2'][0]], [y2[0, 0] for y2 in anno['annorect']['y2'][0]] ) else: head_rect = [] # TODO if 'annopoints' in str(anno['annorect'].dtype): annopoints = anno['annorect']['annopoints'][0] head_x1s = anno['annorect']['x1'][0] head_y1s = anno['annorect']['y1'][0] head_x2s = anno['annorect']['x2'][0] head_y2s = anno['annorect']['y2'][0] for annopoint, head_x1, head_y1, head_x2, head_y2 in zip(annopoints, head_x1s, head_y1s, head_x2s, head_y2s): # if annopoint != []: # if len(annopoint) != 0: if annopoint.size: head_rect = [ float(head_x1[0, 0]), float(head_y1[0, 0]), float(head_x2[0, 0]), float(head_y2[0, 0]) ] # joint coordinates annopoint = annopoint['point'][0, 0] j_id = [str(j_i[0, 0]) for j_i in annopoint['id'][0]] x = [x[0, 0] for x in annopoint['x'][0]] y = [y[0, 0] for y in annopoint['y'][0]] joint_pos = {} for _j_id, (_x, _y) in zip(j_id, zip(x, y)): joint_pos[int(_j_id)] = [float(_x), float(_y)] # joint_pos = fix_wrong_joints(joint_pos) # visibility list if 'is_visible' in str(annopoint.dtype): vis = [v[0] if v.size > 0 else [0] for v in annopoint['is_visible'][0]] vis = dict([(k, int(v[0])) if len(v) > 0 else v for k, v in zip(j_id, vis)]) else: vis = None # if len(joint_pos) == 16: if ((is_16_pos_only ==True) and (len(joint_pos) == 16)) or (is_16_pos_only == False): # only use image with 16 key points / or use all data = { 'filename': img_fn, 'train': train_flag, 'head_rect': head_rect, 'is_visible': vis, 'joint_pos': joint_pos } # print(json.dumps(data), file=fp) # py3 if train_flag: ann_train_list[-1].append(data) else: ann_test_list[-1].append(data) # def write_line(datum, fp): # joints = sorted([[int(k), v] for k, v in datum['joint_pos'].items()]) # joints = np.array([j for i, j in joints]).flatten() # # out = [datum['filename']] # out.extend(joints) # out = [str(o) for o in out] # out = ','.join(out) # # print(out, file=fp) # def split_train_test(): # # fp_test = open('data/mpii/test_joints.csv', 'w') # fp_test = open(os.path.join(path, 'test_joints.csv'), 'w') # # fp_train = open('data/mpii/train_joints.csv', 'w') # fp_train = open(os.path.join(path, 'train_joints.csv'), 'w') # # all_data = open('data/mpii/data.json').readlines() # all_data = open(os.path.join(path, 'data.json')).readlines() # N = len(all_data) # N_test = int(N * 0.1) # N_train = N - N_test # # print('N:{}'.format(N)) # print('N_train:{}'.format(N_train)) # print('N_test:{}'.format(N_test)) # # np.random.seed(1701) # perm = np.random.permutation(N) # test_indices = perm[:N_test] # train_indices = perm[N_test:] # # print('train_indices:{}'.format(len(train_indices))) # print('test_indices:{}'.format(len(test_indices))) # # for i in train_indices: # datum = json.loads(all_data[i].strip()) # write_line(datum, fp_train) # # for i in test_indices: # datum = json.loads(all_data[i].strip()) # write_line(datum, fp_test) save_joints() # split_train_test() # # read images dir logging.info("reading images list ...") img_dir = os.path.join(path, extracted_filename2) _img_list = load_file_list(path=os.path.join(path, extracted_filename2), regx='\\.jpg', printable=False) # ann_list = json.load(open(os.path.join(path, 'data.json'))) for i, im in enumerate(img_train_list): if im not in _img_list: print('missing training image {} in {} (remove from img(ann)_train_list)'.format(im, img_dir)) # img_train_list.remove(im) del img_train_list[i] del ann_train_list[i] for i, im in enumerate(img_test_list): if im not in _img_list: print('missing testing image {} in {} (remove from img(ann)_test_list)'.format(im, img_dir)) # img_test_list.remove(im) del img_train_list[i] del ann_train_list[i] # check annotation and images n_train_images = len(img_train_list) n_test_images = len(img_test_list) n_images = n_train_images + n_test_images logging.info("n_images: {} n_train_images: {} n_test_images: {}".format(n_images, n_train_images, n_test_images)) n_train_ann = len(ann_train_list) n_test_ann = len(ann_test_list) n_ann = n_train_ann + n_test_ann logging.info("n_ann: {} n_train_ann: {} n_test_ann: {}".format(n_ann, n_train_ann, n_test_ann)) n_train_people = len(sum(ann_train_list, [])) n_test_people = len(sum(ann_test_list, [])) n_people = n_train_people + n_test_people logging.info("n_people: {} n_train_people: {} n_test_people: {}".format(n_people, n_train_people, n_test_people)) # add path to all image file name for i, value in enumerate(img_train_list): img_train_list[i] = os.path.join(img_dir, value) for i, value in enumerate(img_test_list): img_test_list[i] = os.path.join(img_dir, value) return img_train_list, ann_train_list, img_test_list, ann_test_list def save_npz(save_list=None, name='model.npz'): """Input parameters and the file name, save parameters into .npz file. Use tl.utils.load_npz() to restore. Parameters ---------- save_list : list of tensor A list of parameters (tensor) to be saved. name : str The name of the `.npz` file. Examples -------- Save model to npz >>> tl.files.save_npz(network.all_weights, name='model.npz') Load model from npz (Method 1) >>> load_params = tl.files.load_npz(name='model.npz') >>> tl.files.assign_weights(load_params, network) Load model from npz (Method 2) >>> tl.files.load_and_assign_npz(name='model.npz', network=network) References ---------- `Saving dictionary using numpy <http://stackoverflow.com/questions/22315595/saving-dictionary-of-header-information-using-numpy-savez>`__ """ logging.info("[*] Saving TL weights into %s" % name) if save_list is None: save_list = [] save_list_var = tf_variables_to_numpy(save_list) np.savez(name, params=save_list_var) save_list_var = None del save_list_var logging.info("[*] Saved") def load_npz(path='', name='model.npz'): """Load the parameters of a Model saved by tl.files.save_npz(). Parameters ---------- path : str Folder path to `.npz` file. name : str The name of the `.npz` file. Returns -------- list of array A list of parameters in order. Examples -------- - See ``tl.files.save_npz`` References ---------- - `Saving dictionary using numpy <http://stackoverflow.com/questions/22315595/saving-dictionary-of-header-information-using-numpy-savez>`__ """ d = np.load(os.path.join(path, name), allow_pickle=True) return d['params'] def assign_params(**kwargs): raise Exception("please change assign_params --> assign_weights") def assign_weights(weights, network): """Assign the given parameters to the TensorLayer network. Parameters ---------- weights : list of array A list of model weights (array) in order. network : :class:`Layer` The network to be assigned. Returns -------- 1) list of operations if in graph mode A list of tf ops in order that assign weights. Support sess.run(ops) manually. 2) list of tf variables if in eager mode A list of tf variables (assigned weights) in order. Examples -------- References ---------- - `Assign value to a TensorFlow variable <http://stackoverflow.com/questions/34220532/how-to-assign-value-to-a-tensorflow-variable>`__ """ ops = [] for idx, param in enumerate(weights): ops.append(network.all_weights[idx].assign(param)) return ops def load_and_assign_npz(name=None, network=None): """Load model from npz and assign to a network. Parameters ------------- name : str The name of the `.npz` file. network : :class:`Model` The network to be assigned. Examples -------- - See ``tl.files.save_npz`` """ if network is None: raise ValueError("network is None.") if not os.path.exists(name): logging.error("file {} doesn't exist.".format(name)) return False else: weights = load_npz(name=name) assign_weights(weights, network) logging.info("[*] Load {} SUCCESS!".format(name)) def save_npz_dict(save_list=None, name='model.npz'): """Input parameters and the file name, save parameters as a dictionary into .npz file. Use ``tl.files.load_and_assign_npz_dict()`` to restore. Parameters ---------- save_list : list of parameters A list of parameters (tensor) to be saved. name : str The name of the `.npz` file. """ if save_list is None: save_list = [] save_list_names = [tensor.name for tensor in save_list] save_list_var = tf_variables_to_numpy(save_list) save_var_dict = {save_list_names[idx]: val for idx, val in enumerate(save_list_var)} np.savez(name, **save_var_dict) save_list_var = None save_var_dict = None del save_list_var del save_var_dict logging.info("[*] Model saved in npz_dict %s" % name) def load_and_assign_npz_dict(name='model.npz', network=None, skip=False): """Restore the parameters saved by ``tl.files.save_npz_dict()``. Parameters ------------- name : str The name of the `.npz` file. network : :class:`Model` The network to be assigned. skip : boolean If 'skip' == True, loaded weights whose name is not found in network's weights will be skipped. If 'skip' is False, error will be raised when mismatch is found. Default False. """ if not os.path.exists(name): logging.error("file {} doesn't exist.".format(name)) return False weights = np.load(name, allow_pickle=True) if len(weights.keys()) != len(set(weights.keys())): raise Exception("Duplication in model npz_dict %s" % name) net_weights_name = [w.name for w in network.all_weights] for key in weights.keys(): if key not in net_weights_name: if skip: logging.warning("Weights named '%s' not found in network. Skip it." % key) else: raise RuntimeError( "Weights named '%s' not found in network. Hint: set argument skip=Ture " "if you want to skip redundant or mismatch weights." % key ) else: assign_tf_variable(network.all_weights[net_weights_name.index(key)], weights[key]) logging.info("[*] Model restored from npz_dict %s" % name) def save_ckpt(mode_name='model.ckpt', save_dir='checkpoint', var_list=None, global_step=None, printable=False): """Save parameters into `ckpt` file. Parameters ------------ mode_name : str The name of the model, default is ``model.ckpt``. save_dir : str The path / file directory to the `ckpt`, default is ``checkpoint``. var_list : list of tensor The parameters / variables (tensor) to be saved. If empty, save all global variables (default). global_step : int or None Step number. printable : boolean Whether to print all parameters information. See Also -------- load_ckpt """ if var_list is None: if sess is None: # FIXME: not sure whether global variables can be accessed in eager mode raise ValueError( "If var_list is None, sess must be specified. " "In eager mode, can not access global variables easily. " ) var_list = [] ckpt_file = os.path.join(save_dir, mode_name) if var_list == []: var_list = tf.global_variables() logging.info("[*] save %s n_weights: %d" % (ckpt_file, len(var_list))) if printable: for idx, v in enumerate(var_list): logging.info(" param {:3}: {:15} {}".format(idx, v.name, str(v.get_shape()))) if sess: # graph mode saver = tf.train.Saver(var_list) saver.save(sess, ckpt_file, global_step=global_step) else: # eager mode # saver = tfes.Saver(var_list) # saver.save(ckpt_file, global_step=global_step) # TODO: tf2.0 not stable, cannot import tensorflow.contrib.eager.python.saver pass def load_ckpt(sess=None, mode_name='model.ckpt', save_dir='checkpoint', var_list=None, is_latest=True, printable=False): """Load parameters from `ckpt` file. Parameters ------------ sess : Session TensorFlow Session. mode_name : str The name of the model, default is ``model.ckpt``. save_dir : str The path / file directory to the `ckpt`, default is ``checkpoint``. var_list : list of tensor The parameters / variables (tensor) to be saved. If empty, save all global variables (default). is_latest : boolean Whether to load the latest `ckpt`, if False, load the `ckpt` with the name of ```mode_name``. printable : boolean Whether to print all parameters information. Examples ---------- - Save all global parameters. >>> tl.files.save_ckpt(sess=sess, mode_name='model.ckpt', save_dir='model', printable=True) - Save specific parameters. >>> tl.files.save_ckpt(sess=sess, mode_name='model.ckpt', var_list=net.all_params, save_dir='model', printable=True) - Load latest ckpt. >>> tl.files.load_ckpt(sess=sess, var_list=net.all_params, save_dir='model', printable=True) - Load specific ckpt. >>> tl.files.load_ckpt(sess=sess, mode_name='model.ckpt', var_list=net.all_params, save_dir='model', is_latest=False, printable=True) """ # if sess is None: # raise ValueError("session is None.") if var_list is None: if sess is None: # FIXME: not sure whether global variables can be accessed in eager mode raise ValueError( "If var_list is None, sess must be specified. " "In eager mode, can not access global variables easily. " ) var_list = [] if is_latest: ckpt_file = tf.train.latest_checkpoint(save_dir) else: ckpt_file = os.path.join(save_dir, mode_name) if not var_list: var_list = tf.global_variables() logging.info("[*] load %s n_weights: %d" % (ckpt_file, len(var_list))) if printable: for idx, v in enumerate(var_list): logging.info(" weights {:3}: {:15} {}".format(idx, v.name, str(v.get_shape()))) try: if sess: # graph mode saver = tf.train.Saver(var_list) saver.restore(sess, ckpt_file) else: # eager mode # saver = tfes.Saver(var_list) # saver.restore(ckpt_file) # TODO: tf2.0 not stable, cannot import tensorflow.contrib.eager.python.saver pass except Exception as e: logging.info(e) logging.info("[*] load ckpt fail ...") def save_any_to_npy(save_dict=None, name='file.npy'): """Save variables to `.npy` file. Parameters ------------ save_dict : directory The variables to be saved. name : str File name. Examples --------- >>> tl.files.save_any_to_npy(save_dict={'data': ['a','b']}, name='test.npy') >>> data = tl.files.load_npy_to_any(name='test.npy') >>> print(data) {'data': ['a','b']} """ if save_dict is None: save_dict = {} np.save(name, save_dict) def load_npy_to_any(path='', name='file.npy'): """Load `.npy` file. Parameters ------------ path : str Path to the file (optional). name : str File name. Examples --------- - see tl.files.save_any_to_npy() """ file_path = os.path.join(path, name) try: return np.load(file_path, allow_pickle=True).item() except Exception: return np.load(file_path, allow_pickle=True) raise Exception("[!] Fail to load %s" % file_path) def file_exists(filepath): """Check whether a file exists by given file path.""" return os.path.isfile(filepath) def folder_exists(folderpath): """Check whether a folder exists by given folder path.""" return os.path.isdir(folderpath) def del_file(filepath): """Delete a file by given file path.""" os.remove(filepath) def del_folder(folderpath): """Delete a folder by given folder path.""" shutil.rmtree(folderpath) def read_file(filepath): """Read a file and return a string. Examples --------- >>> data = tl.files.read_file('data.txt') """ with open(filepath, 'r') as afile: return afile.read() def load_file_list(path=None, regx='\.jpg', printable=True, keep_prefix=False): r"""Return a file list in a folder by given a path and regular expression. Parameters ---------- path : str or None A folder path, if `None`, use the current directory. regx : str The regx of file name. printable : boolean Whether to print the files infomation. keep_prefix : boolean Whether to keep path in the file name. Examples ---------- >>> file_list = tl.files.load_file_list(path=None, regx='w1pre_[0-9]+\.(npz)') """ if path is None: path = os.getcwd() file_list = os.listdir(path) return_list = [] for _, f in enumerate(file_list): if re.search(regx, f): return_list.append(f) # return_list.sort() if keep_prefix: for i, f in enumerate(return_list): return_list[i] = os.path.join(path, f) if printable: logging.info('Match file list = %s' % return_list) logging.info('Number of files = %d' % len(return_list)) return return_list def load_folder_list(path=""): """Return a folder list in a folder by given a folder path. Parameters ---------- path : str A folder path. """ return [os.path.join(path, o) for o in os.listdir(path) if os.path.isdir(os.path.join(path, o))] def exists_or_mkdir(path, verbose=True): """Check a folder by given name, if not exist, create the folder and return False, if directory exists, return True. Parameters ---------- path : str A folder path. verbose : boolean If True (default), prints results. Returns -------- boolean True if folder already exist, otherwise, returns False and create the folder. Examples -------- >>> tl.files.exists_or_mkdir("checkpoints/train") """ if not os.path.exists(path): if verbose: logging.info("[*] creates %s ..." % path) os.makedirs(path) return False else: if verbose: logging.info("[!] %s exists ..." % path) return True def maybe_download_and_extract(filename, working_directory, url_source, extract=False, expected_bytes=None): """Checks if file exists in working_directory otherwise tries to dowload the file, and optionally also tries to extract the file if format is ".zip" or ".tar" Parameters ----------- filename : str The name of the (to be) dowloaded file. working_directory : str A folder path to search for the file in and dowload the file to url : str The URL to download the file from extract : boolean If True, tries to uncompress the dowloaded file is ".tar.gz/.tar.bz2" or ".zip" file, default is False. expected_bytes : int or None If set tries to verify that the downloaded file is of the specified size, otherwise raises an Exception, defaults is None which corresponds to no check being performed. Returns ---------- str File path of the dowloaded (uncompressed) file. Examples -------- >>> down_file = tl.files.maybe_download_and_extract(filename='train-images-idx3-ubyte.gz', ... working_directory='data/', ... url_source='http://yann.lecun.com/exdb/mnist/') >>> tl.files.maybe_download_and_extract(filename='ADEChallengeData2016.zip', ... working_directory='data/', ... url_source='http://sceneparsing.csail.mit.edu/data/', ... extract=True) """ # We first define a download function, supporting both Python 2 and 3. def _download(filename, working_directory, url_source): progress_bar = progressbar.ProgressBar() def _dlProgress(count, blockSize, totalSize, pbar=progress_bar): if (totalSize != 0): if not pbar.max_value: totalBlocks = math.ceil(float(totalSize) / float(blockSize)) pbar.max_value = int(totalBlocks) pbar.update(count, force=True) filepath = os.path.join(working_directory, filename) logging.info('Downloading %s...\n' % filename) urlretrieve(url_source + filename, filepath, reporthook=_dlProgress) exists_or_mkdir(working_directory, verbose=False) filepath = os.path.join(working_directory, filename) if not os.path.exists(filepath): _download(filename, working_directory, url_source) statinfo = os.stat(filepath) logging.info('Succesfully downloaded %s %s bytes.' % (filename, statinfo.st_size)) # , 'bytes.') if (not (expected_bytes is None) and (expected_bytes != statinfo.st_size)): raise Exception('Failed to verify ' + filename + '. Can you get to it with a browser?') if (extract): if tarfile.is_tarfile(filepath): logging.info('Trying to extract tar file') tarfile.open(filepath, 'r').extractall(working_directory) logging.info('... Success!') elif zipfile.is_zipfile(filepath): logging.info('Trying to extract zip file') with zipfile.ZipFile(filepath) as zf: zf.extractall(working_directory) logging.info('... Success!') else: logging.info("Unknown compression_format only .tar.gz/.tar.bz2/.tar and .zip supported") return filepath def natural_keys(text): """Sort list of string with number in human order. Examples ---------- >>> l = ['im1.jpg', 'im31.jpg', 'im11.jpg', 'im21.jpg', 'im03.jpg', 'im05.jpg'] >>> l.sort(key=tl.files.natural_keys) ['im1.jpg', 'im03.jpg', 'im05', 'im11.jpg', 'im21.jpg', 'im31.jpg'] >>> l.sort() # that is what we dont want ['im03.jpg', 'im05', 'im1.jpg', 'im11.jpg', 'im21.jpg', 'im31.jpg'] References ---------- - `link <http://nedbatchelder.com/blog/200712/human_sorting.html>`__ """ # - alist.sort(key=natural_keys) sorts in human order # http://nedbatchelder.com/blog/200712/human_sorting.html # (See Toothy's implementation in the comments) def atoi(text): return int(text) if text.isdigit() else text return [atoi(c) for c in re.split('(\d+)', text)] # Visualizing npz files def npz_to_W_pdf(path=None, regx='w1pre_[0-9]+\.(npz)'): r"""Convert the first weight matrix of `.npz` file to `.pdf` by using `tl.visualize.W()`. Parameters ---------- path : str A folder path to `npz` files. regx : str Regx for the file name. Examples --------- Convert the first weight matrix of w1_pre...npz file to w1_pre...pdf. >>> tl.files.npz_to_W_pdf(path='/Users/.../npz_file/', regx='w1pre_[0-9]+\.(npz)') """ file_list = load_file_list(path=path, regx=regx) for f in file_list: W = load_npz(path, f)[0] logging.info("%s --> %s" % (f, f.split('.')[0] + '.pdf')) visualize.draw_weights(W, second=10, saveable=True, name=f.split('.')[0], fig_idx=2012) def tf_variables_to_numpy(variables): """Convert TF tensor or a list of tensors into a list of numpy array""" if not isinstance(variables, list): var_list = [variables] else: var_list = variables results = [v.numpy() for v in var_list] return results def assign_tf_variable(variable, value): """Assign value to a TF variable""" variable.assign(value) def _save_weights_to_hdf5_group(f, layers): """ Save layer/model weights into hdf5 group recursively. Parameters ---------- f: hdf5 group A hdf5 group created by h5py.File() or create_group(). layers: list A list of layers to save weights. """ f.attrs['layer_names'] = [layer.name.encode('utf8') for layer in layers] for layer in layers: g = f.create_group(layer.name) if isinstance(layer, tl.models.Model): _save_weights_to_hdf5_group(g, layer.all_layers) elif isinstance(layer, tl.layers.ModelLayer): _save_weights_to_hdf5_group(g, layer.model.all_layers) elif isinstance(layer, tl.layers.LayerList): _save_weights_to_hdf5_group(g, layer.layers) elif isinstance(layer, tl.layers.Layer): if layer.all_weights is not None: weight_values = tf_variables_to_numpy(layer.all_weights) weight_names = [w.name.encode('utf8') for w in layer.all_weights] else: weight_values = [] weight_names = [] g.attrs['weight_names'] = weight_names for name, val in zip(weight_names, weight_values): val_dataset = g.create_dataset(name, val.shape, dtype=val.dtype) if not val.shape: # scalar val_dataset[()] = val else: val_dataset[:] = val else: raise Exception("Only layer or model can be saved into hdf5.") def _load_weights_from_hdf5_group_in_order(f, layers): """ Load layer weights from a hdf5 group sequentially. Parameters ---------- f: hdf5 group A hdf5 group created by h5py.File() or create_group(). layers: list A list of layers to load weights. """ layer_names = [n.decode('utf8') for n in f.attrs["layer_names"]] for idx, name in enumerate(layer_names): g = f[name] layer = layers[idx] if isinstance(layer, tl.models.Model): _load_weights_from_hdf5_group_in_order(g, layer.all_layers) elif isinstance(layer, tl.layers.ModelLayer): _load_weights_from_hdf5_group_in_order(g, layer.model.all_layers) elif isinstance(layer, tl.layers.LayerList): _load_weights_from_hdf5_group_in_order(g, layer.layers) elif isinstance(layer, tl.layers.Layer): weight_names = [n.decode('utf8') for n in g.attrs['weight_names']] for iid, w_name in enumerate(weight_names): assign_tf_variable(layer.all_weights[iid], np.asarray(g[w_name])) else: raise Exception("Only layer or model can be saved into hdf5.") if idx == len(layers) - 1: break def _load_weights_from_hdf5_group(f, layers, skip=False): """ Load layer weights from a hdf5 group by layer name. Parameters ---------- f: hdf5 group A hdf5 group created by h5py.File() or create_group(). layers: list A list of layers to load weights. skip : boolean If 'skip' == True, loaded layer whose name is not found in 'layers' will be skipped. If 'skip' is False, error will be raised when mismatch is found. Default False. """ layer_names = [n.decode('utf8') for n in f.attrs["layer_names"]] layer_index = {layer.name: layer for layer in layers} for idx, name in enumerate(layer_names): if name not in layer_index.keys(): if skip: logging.warning("Layer named '%s' not found in network. Skip it." % name) else: raise RuntimeError( "Layer named '%s' not found in network. Hint: set argument skip=Ture " "if you want to skip redundant or mismatch Layers." % name ) else: g = f[name] layer = layer_index[name] if isinstance(layer, tl.models.Model): _load_weights_from_hdf5_group(g, layer.all_layers, skip) elif isinstance(layer, tl.layers.ModelLayer): _load_weights_from_hdf5_group(g, layer.model.all_layers, skip) elif isinstance(layer, tl.layers.LayerList): _load_weights_from_hdf5_group(g, layer.layers, skip) elif isinstance(layer, tl.layers.Layer): weight_names = [n.decode('utf8') for n in g.attrs['weight_names']] for iid, w_name in enumerate(weight_names): # FIXME : this is only for compatibility if isinstance(layer, tl.layers.BatchNorm) and np.asarray(g[w_name]).ndim > 1: assign_tf_variable(layer.all_weights[iid], np.asarray(g[w_name]).squeeze()) continue assign_tf_variable(layer.all_weights[iid], np.asarray(g[w_name])) else: raise Exception("Only layer or model can be saved into hdf5.") def save_weights_to_hdf5(filepath, network): """Input filepath and save weights in hdf5 format. Parameters ---------- filepath : str Filename to which the weights will be saved. network : Model TL model. Returns ------- """ logging.info("[*] Saving TL weights into %s" % filepath) with h5py.File(filepath, 'w') as f: _save_weights_to_hdf5_group(f, network.all_layers) logging.info("[*] Saved") def load_hdf5_to_weights_in_order(filepath, network): """Load weights sequentially from a given file of hdf5 format Parameters ---------- filepath : str Filename to which the weights will be loaded, should be of hdf5 format. network : Model TL model. Notes: If the file contains more weights than given 'weights', then the redundant ones will be ignored if all previous weights match perfectly. Returns ------- """ f = h5py.File(filepath, 'r') try: layer_names = [n.decode('utf8') for n in f.attrs["layer_names"]] except Exception: raise NameError( "The loaded hdf5 file needs to have 'layer_names' as attributes. " "Please check whether this hdf5 file is saved from TL." ) if len(network.all_layers) != len(layer_names): logging.warning( "Number of weights mismatch." "Trying to load a saved file with " + str(len(layer_names)) + " layers into a model with " + str(len(network.all_layers)) + " layers." ) _load_weights_from_hdf5_group_in_order(f, network.all_layers) f.close() logging.info("[*] Load %s SUCCESS!" % filepath) def load_hdf5_to_weights(filepath, network, skip=False): """Load weights by name from a given file of hdf5 format Parameters ---------- filepath : str Filename to which the weights will be loaded, should be of hdf5 format. network : Model TL model. skip : bool If 'skip' == True, loaded weights whose name is not found in 'weights' will be skipped. If 'skip' is False, error will be raised when mismatch is found. Default False. Returns ------- """ f = h5py.File(filepath, 'r') try: layer_names = [n.decode('utf8') for n in f.attrs["layer_names"]] except Exception: raise NameError( "The loaded hdf5 file needs to have 'layer_names' as attributes. " "Please check whether this hdf5 file is saved from TL." ) net_index = {layer.name: layer for layer in network.all_layers} if len(network.all_layers) != len(layer_names): logging.warning( "Number of weights mismatch." "Trying to load a saved file with " + str(len(layer_names)) + " layers into a model with " + str(len(network.all_layers)) + " layers." ) # check mismatch form network weights to hdf5 for name in net_index.keys(): if name not in layer_names: logging.warning("Network layer named '%s' not found in loaded hdf5 file. It will be skipped." % name) # load weights from hdf5 to network _load_weights_from_hdf5_group(f, network.all_layers, skip) f.close() logging.info("[*] Load %s SUCCESS!" % filepath)
py
1a3a42a15aeb0ac858f8f48fb1ab85e16a9c47af
import logging from typing import Dict from synch.factory import get_reader, get_writer from synch.settings import Settings logger = logging.getLogger("synch.replication.etl") def etl_full( alias: str, schema: str, tables_pk: Dict, renew=False, full=True ): """ full etl """ reader = get_reader(alias) source_db_database = Settings.get_source_db_database(alias, schema) schema = source_db_database.get("database") writer = get_writer() if not writer.check_database_exists(schema): if source_db_database.get("auto_create") is not False: writer.create_database(schema, Settings.cluster_name()) else: logger.warning( f"Can't etl since no database {schema} found in ClickHouse and auto_create=false" ) exit(-1) for table in source_db_database.get("tables"): if not full: if table['table'] not in list(tables_pk.keys()): continue if table.get("auto_full_etl") is False: continue table_name = table.get("table") pk = tables_pk.get(table_name) writer = get_writer(table.get("clickhouse_engine")) if not pk and not renew: logger.warning(f"No pk found in {schema}.{table_name}, skip") continue elif isinstance(pk, tuple): pk = f"({','.join(pk)})" if renew: drop_sql = f"drop table if exists {schema}.{table_name}" writer.execute(drop_sql) logger.info(f"drop table success:{schema}.{table_name}") if not writer.check_table_exists(schema, table_name): sign_column = table.get("sign_column") version_column = table.get("version_column") order_by = table.get("order_by") writer.execute( writer.get_table_create_sql( reader, schema, table_name, pk, table.get("partition_by"), table.get("engine_settings"), sign_column=sign_column, version_column=version_column, order_by=order_by, ) ) if Settings.is_cluster(): for w in get_writer(choice=False): w.execute( w.get_distributed_table_create_sql( schema, table_name, Settings.get("clickhouse.distributed_suffix") ) ) if reader.fix_column_type and not table.get("skip_decimal"): writer.fix_table_column_type(reader, schema, table_name) full_insert_sql = writer.get_full_insert_sql(reader, schema, table_name, sign_column) logger.info(f"{full_insert_sql}") writer.execute(full_insert_sql) logger.info(f"full data etl for {schema}.{table_name} success") else: logger.debug( f"{schema}.{table_name} exists, skip, or use --renew force etl with drop old tables" )
py
1a3a4434fccb34bb14f4adef8b909639a1e620f5
#! /usr/bin/env python3 import struct import enum def printMessage(s): return ' '.join("{:02x}".format(c) for c in s) class MessageType(enum.Enum): Text = 0 Numeric = 1 Logic = 2 def decodeMessage(s, msgType): payloadSize = struct.unpack_from('<H', s, 0)[0] if payloadSize < 5: # includes the mailSize raise BufferError('Payload size is too small') a, b, c, d = struct.unpack_from('<4B', s, 2) if a != 1 or b != 0 or c != 0x81 or d != 0x9e: raise BufferError('Header is not correct. Expecting 01 00 81 9e') mailSize = struct.unpack_from('<B', s, 6)[0] if payloadSize < (5 + mailSize): # includes the valueSize raise BufferError('Payload size is too small') mailBytes = struct.unpack_from('<' + str(mailSize) + 's', s, 7)[0] mail = mailBytes.decode('ascii')[:-1] valueSize = struct.unpack_from('<H', s, 7 + mailSize)[0] if payloadSize < (7 + mailSize + valueSize): # includes the valueSize raise BufferError('Payload size does not match the packet') if msgType == MessageType.Logic: if valueSize != 1: raise BufferError('Value size is not one byte required for Logic Type') valueBytes = struct.unpack_from('<B', s, 9 + mailSize)[0] value = True if valueBytes != 0 else False elif msgType == MessageType.Numeric: if valueSize != 4: raise BufferError('Value size is not four bytes required for Numeric Type') value = struct.unpack_from('<f', s, 9 + mailSize)[0] else: valueBytes = struct.unpack_from('<' + str(valueSize) + 's', s, 9 + mailSize)[0] value = valueBytes.decode('ascii')[:-1] remnant = None if len(s) > (payloadSize + 2): remnant = s[(payloadSize) + 2:] return (mail, value, remnant) def encodeMessage(msgType, mail, value): mail = mail + '\x00' mailBytes = mail.encode('ascii') mailSize = len(mailBytes) fmt = '<H4BB' + str(mailSize) + 'sH' if msgType == MessageType.Logic: valueSize = 1 valueBytes = 1 if value is True else 0 fmt += 'B' elif msgType == MessageType.Numeric: valueSize = 4 valueBytes = float(value) fmt += 'f' else: value = value + '\x00' valueBytes = value.encode('ascii') valueSize = len(valueBytes) fmt += str(valueSize) + 's' payloadSize = 7 + mailSize + valueSize s = struct.pack(fmt, payloadSize, 0x01, 0x00, 0x81, 0x9e, mailSize, mailBytes, valueSize, valueBytes) return s if __name__ == "__main__": s = encodeMessage(MessageType.Text, 'abc', 'Hello') print(printMessage(s))
py
1a3a44a704717b9eb2511b19b0f212915f0e4c28
def KDistanceUtil(root,k,nodes): if root is None: return if k == 0: nodes.append(root.data) else: KDistanceUtil(root.left, k-1,nodes) KDistanceUtil(root.right, k-1,nodes) def KDistance(root, k): nodes = [] KDistanceUtil(root,k,nodes) return nodes
py
1a3a44f1d11b5fc091d8ff724424b4059054a46a
from spacy.lang.en import English from spacy.tokens import Span nlp = English() # Define the method def to_html(span, tag): # Wrap the span text in a HTML tag and return it return f"<{tag}>{span.text}</{tag}>" # Register the Span method extension "to_html" with the method to_html ____.____(____, ____=____) # Process the text and call the to_html method on the span with the tag name "strong" doc = nlp("Hello world, this is a sentence.") span = doc[0:2] print(____)
py
1a3a486a361a6cc6108ab131988ef6cdbf48cb20
# Electrum - Lightweight Bitcoin Client # Copyright (c) 2015 Thomas Voegtlin # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import re import dns import json import traceback import sys from .address import Address from . import dnssec from .util import FileImportFailed, FileImportFailedEncrypted class Contacts(dict): def __init__(self, storage): self.storage = storage d = self.storage.get('contacts', {}) try: self.update(d) except: return # backward compatibility for k, v in self.items(): _type, n = v if _type == 'address' and Address.is_valid(n): self.pop(k) self[n] = ('address', k) def save(self): self.storage.put('contacts', dict(self)) def import_file(self, path): try: with open(path, 'r') as f: d = self._validate(json.loads(f.read())) except json.decoder.JSONDecodeError: traceback.print_exc(file=sys.stderr) raise FileImportFailedEncrypted() except BaseException: traceback.print_exc(file=sys.stdout) raise FileImportFailed() self.update(d) self.save() def __setitem__(self, key, value): dict.__setitem__(self, key, value) self.save() def pop(self, key): if key in self.keys(): dict.pop(self, key) self.save() def resolve(self, k): if Address.is_valid(k): return { 'address': Address.from_string(k), 'type': 'address' } if k in self.keys(): _type, addr = self[k] if _type == 'address': return { 'address': addr, 'type': 'contact' } out = self.resolve_openalias(k) if out: address, name, validated = out return { 'address': address, 'name': name, 'type': 'openalias', 'validated': validated } raise Exception("Invalid Bitcoin address or alias", k) def resolve_openalias(self, url): # support email-style addresses, per the OA standard url = url.replace('@', '.') records, validated = dnssec.query(url, dns.rdatatype.TXT) prefix = 'btc' for record in records: string = record.strings[0] if string.startswith('oa1:' + prefix): address = self.find_regex(string, r'recipient_address=([A-Za-z0-9]+)') name = self.find_regex(string, r'recipient_name=([^;]+)') if not name: name = address if not address: continue return Address.from_string(address), name, validated def find_regex(self, haystack, needle): regex = re.compile(needle) try: return regex.search(haystack).groups()[0] except AttributeError: return None def _validate(self, data): for k,v in list(data.items()): if k == 'contacts': return self._validate(v) if not Address.is_valid(k): data.pop(k) else: _type,_ = v if _type != 'address': data.pop(k) return data
py
1a3a4890438ae6a577d83439092f49db8b800e93
from __future__ import absolute_import, division, print_function import copy from databroker import Header # do this as a weird import to get the py2 shim from databroker._core import SimpleNamespace def test_header_dict_conformance(db): db.prepare_hook = lambda name, doc: copy.deepcopy(doc) # TODO update this if / when we add conformance testing to # validate attrs in Header target = {'start': {'uid': 'start'}, 'stop': {'uid': 'stop', 'start_uid': 'start'}, 'ext': SimpleNamespace()} h = Header(db, **target) # hack the descriptor lookup/cache mechanism target['descriptors'] = [{'uid': 'desc', 'start_uid': 'start'}] h._cache['desc'] = [{'uid': 'desc', 'start_uid': 'start'}] assert len(h) == len(target) assert set(h) == set(target) assert set(h.keys()) == set(target.keys()) for k, v in h.items(): assert v == target[k] assert v == h[k] # this is a dumb test assert len(list(h.values())) == len(h) n, d = h.to_name_dict_pair() assert n == 'header' assert d == target
py
1a3a49931548e04f0d363a18a2b313b8b0a85cf0
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys import json import numpy as np from scipy import misc as scp_misc import tensorflow as tf import facenet import align.detect_face as detect_face # from PIL import Image def initialize_mtcnn(gpu_memory_fraction): with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) return pnet, rnet, onet def align_image(input_image, output_image, pnet, rnet, onet, image_size=182, margin=44, random_order=True, gpu_memory_fraction=1.0, debug=False, just_count=False): minsize = 20 # minimum size of face threshold = [0.7, 0.7, 0.9] # three steps's threshold factor = 0.709 # scale factor if not os.path.exists(output_image): try: img = scp_misc.imread(input_image) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(input_image, e) if debug: print(errorMessage) else: if img.ndim < 2: if debug: print('Unable to align "%s"' % image_path) if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if just_count == True: return True, nrof_faces if nrof_faces > 0: det = bounding_boxes[:, 0:4] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: det = np.squeeze(det) counter = 0 scaled_list = [] for d in det: bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(d[0] - margin / 2, 0) bb[1] = np.maximum(d[1] - margin / 2, 0) bb[2] = np.minimum(d[2] + margin / 2, img_size[1]) bb[3] = np.minimum(d[3] + margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = scp_misc.imresize(cropped, (image_size, image_size), interp='bilinear') filename = "{}_{}.jpg".format(output_image.split(".")[0] + "image", str(counter)) scp_misc.imsave(filename, scaled) scaled_list.append(scaled) counter = counter +1 return True, scaled_list if nrof_faces == 1: det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - margin / 2, 0) bb[1] = np.maximum(det[1] - margin / 2, 0) bb[2] = np.minimum(det[2] + margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = scp_misc.imresize(cropped, (image_size, image_size), interp='bilinear') scp_misc.imsave(output_image, scaled) return True, scaled else: if debug: print('Unable to align "%s"' % input_image) return False, 1 def main(args): # TODO Check why this was previously being initialised inside the image loop file_to_facecount = dict() pnet, rnet, onet = initialize_mtcnn(0.8) for filename in os.listdir(args.input_dir): input_image = filename output_image = filename if os.path.isfile(os.path.join(args.input_dir, input_image)) == False: continue input_image = os.path.join(args.input_dir, input_image) output_image = os.path.join(args.output_dir, output_image) _, result = align_image(input_image, output_image, pnet, rnet, onet, image_size=args.image_size, margin=args.margin, random_order=args.random_order, gpu_memory_fraction=args.gpu_memory_fraction, debug=False, just_count=args.just_count) if args.just_count == True: file_to_facecount[filename] = result if args.just_count: json.dump(file_to_facecount, open(os.path.join(args.output_dir, args.count_file), "w")) def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument('input_dir', type=str, help='Directory with unaligned images.') parser.add_argument('output_dir', type=str, help='Directory with aligned face thumbnails.') parser.add_argument('--image_size', type=int, help='Image size (height, width) in pixels.', default=182) parser.add_argument('--margin', type=int, help='Margin for the crop around the bounding box (height, width) in pixels.', default=44) parser.add_argument('--random_order', help='Shuffles the order of images to enable alignment using multiple processes.', action='store_true') parser.add_argument('--gpu_memory_fraction', type=float, help='Upper bound on the amount of GPU memory that will be used by the process.', default=1.0) parser.add_argument('--has_classes', dest='has_classes', action='store_true', help='Input folder is split into class subfolders, and these should be replicated', default=True) parser.add_argument('--no_classes', dest='has_classes', action='store_false', help='Input folder is split into class subfolders, and these should be replicated', default=True) parser.add_argument('--just_count', dest='just_count', action='store_true', help='Just save out a JSON mapping filenames to counts of faces found', default=False) parser.add_argument('--count_file', type=str, help='Where to save counts of faces', default="face_counts.json") return parser.parse_args(argv) if __name__ == "__main__": main(parse_arguments(sys.argv[1:])) # #print(ads) #print("bleh"\ #print(os.listdir(path)) # # for filename in os.listdir(path): # print(filename) # x = filename.split('_')[0] # ads.append(x) # directory = (path + "/" + x) # if not os.path.exists(directory): # os.makedirs(directory) # #shutil.copy(newpath + "/" + filename, directory)
py
1a3a4aba544357acab869f5e3824056b6fc5ac92
from sqlalchemy.testing import eq_, assert_raises, \ assert_raises_message, is_ from sqlalchemy.ext import declarative as decl import sqlalchemy as sa from sqlalchemy import testing from sqlalchemy import Integer, String, ForeignKey from sqlalchemy.testing.schema import Table, Column from sqlalchemy.orm import relationship, create_session, class_mapper, \ configure_mappers, clear_mappers, \ polymorphic_union, deferred, Session from sqlalchemy.ext.declarative import declared_attr, AbstractConcreteBase, \ ConcreteBase, has_inherited_table from sqlalchemy.testing import fixtures Base = None class DeclarativeTestBase(fixtures.TestBase, testing.AssertsExecutionResults): def setup(self): global Base Base = decl.declarative_base(testing.db) def teardown(self): Session.close_all() clear_mappers() Base.metadata.drop_all() class DeclarativeInheritanceTest(DeclarativeTestBase): def test_we_must_copy_mapper_args(self): class Person(Base): __tablename__ = 'people' id = Column(Integer, primary_key=True) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator, 'polymorphic_identity': 'person'} class Engineer(Person): primary_language = Column(String(50)) assert 'inherits' not in Person.__mapper_args__ assert class_mapper(Engineer).polymorphic_identity is None assert class_mapper(Engineer).polymorphic_on is Person.__table__.c.type def test_we_must_only_copy_column_mapper_args(self): class Person(Base): __tablename__ = 'people' id = Column(Integer, primary_key=True) a = Column(Integer) b = Column(Integer) c = Column(Integer) d = Column(Integer) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator, 'polymorphic_identity': 'person', 'version_id_col': 'a', 'column_prefix': 'bar', 'include_properties': ['id', 'a', 'b'], } assert class_mapper(Person).version_id_col == 'a' assert class_mapper(Person).include_properties == set(['id', 'a', 'b']) def test_custom_join_condition(self): class Foo(Base): __tablename__ = 'foo' id = Column('id', Integer, primary_key=True) class Bar(Foo): __tablename__ = 'bar' id = Column('id', Integer, primary_key=True) foo_id = Column('foo_id', Integer) __mapper_args__ = {'inherit_condition': foo_id == Foo.id} # compile succeeds because inherit_condition is honored configure_mappers() def test_joined(self): class Company(Base, fixtures.ComparableEntity): __tablename__ = 'companies' id = Column('id', Integer, primary_key=True, test_needs_autoincrement=True) name = Column('name', String(50)) employees = relationship('Person') class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column('id', Integer, primary_key=True, test_needs_autoincrement=True) company_id = Column('company_id', Integer, ForeignKey('companies.id')) name = Column('name', String(50)) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __tablename__ = 'engineers' __mapper_args__ = {'polymorphic_identity': 'engineer'} id = Column('id', Integer, ForeignKey('people.id'), primary_key=True) primary_language = Column('primary_language', String(50)) class Manager(Person): __tablename__ = 'managers' __mapper_args__ = {'polymorphic_identity': 'manager'} id = Column('id', Integer, ForeignKey('people.id'), primary_key=True) golf_swing = Column('golf_swing', String(50)) Base.metadata.create_all() sess = create_session() c1 = Company(name='MegaCorp, Inc.', employees=[Engineer(name='dilbert', primary_language='java'), Engineer(name='wally', primary_language='c++'), Manager(name='dogbert', golf_swing='fore!')]) c2 = Company(name='Elbonia, Inc.', employees=[Engineer(name='vlad', primary_language='cobol')]) sess.add(c1) sess.add(c2) sess.flush() sess.expunge_all() eq_(sess.query(Company).filter(Company.employees.of_type(Engineer). any(Engineer.primary_language == 'cobol')).first(), c2) # ensure that the Manager mapper was compiled with the Manager id # column as higher priority. this ensures that "Manager.id" # is appropriately treated as the "id" column in the "manager" # table (reversed from 0.6's behavior.) eq_( Manager.id.property.columns, [Manager.__table__.c.id, Person.__table__.c.id] ) # assert that the "id" column is available without a second # load. as of 0.7, the ColumnProperty tests all columns # in it's list to see which is present in the row. sess.expunge_all() def go(): assert sess.query(Manager).filter(Manager.name == 'dogbert' ).one().id self.assert_sql_count(testing.db, go, 1) sess.expunge_all() def go(): assert sess.query(Person).filter(Manager.name == 'dogbert' ).one().id self.assert_sql_count(testing.db, go, 1) def test_add_subcol_after_the_fact(self): class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column('id', Integer, primary_key=True, test_needs_autoincrement=True) name = Column('name', String(50)) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __tablename__ = 'engineers' __mapper_args__ = {'polymorphic_identity': 'engineer'} id = Column('id', Integer, ForeignKey('people.id'), primary_key=True) Engineer.primary_language = Column('primary_language', String(50)) Base.metadata.create_all() sess = create_session() e1 = Engineer(primary_language='java', name='dilbert') sess.add(e1) sess.flush() sess.expunge_all() eq_(sess.query(Person).first(), Engineer(primary_language='java', name='dilbert')) def test_add_parentcol_after_the_fact(self): class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column('id', Integer, primary_key=True, test_needs_autoincrement=True) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __tablename__ = 'engineers' __mapper_args__ = {'polymorphic_identity': 'engineer'} primary_language = Column(String(50)) id = Column('id', Integer, ForeignKey('people.id'), primary_key=True) Person.name = Column('name', String(50)) Base.metadata.create_all() sess = create_session() e1 = Engineer(primary_language='java', name='dilbert') sess.add(e1) sess.flush() sess.expunge_all() eq_(sess.query(Person).first(), Engineer(primary_language='java', name='dilbert')) def test_add_sub_parentcol_after_the_fact(self): class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column('id', Integer, primary_key=True, test_needs_autoincrement=True) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __tablename__ = 'engineers' __mapper_args__ = {'polymorphic_identity': 'engineer'} primary_language = Column(String(50)) id = Column('id', Integer, ForeignKey('people.id'), primary_key=True) class Admin(Engineer): __tablename__ = 'admins' __mapper_args__ = {'polymorphic_identity': 'admin'} workstation = Column(String(50)) id = Column('id', Integer, ForeignKey('engineers.id'), primary_key=True) Person.name = Column('name', String(50)) Base.metadata.create_all() sess = create_session() e1 = Admin(primary_language='java', name='dilbert', workstation='foo') sess.add(e1) sess.flush() sess.expunge_all() eq_(sess.query(Person).first(), Admin(primary_language='java', name='dilbert', workstation='foo')) def test_subclass_mixin(self): class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column('id', Integer, primary_key=True) name = Column('name', String(50)) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class MyMixin(object): pass class Engineer(MyMixin, Person): __tablename__ = 'engineers' __mapper_args__ = {'polymorphic_identity': 'engineer'} id = Column('id', Integer, ForeignKey('people.id'), primary_key=True) primary_language = Column('primary_language', String(50)) assert class_mapper(Engineer).inherits is class_mapper(Person) def test_with_undefined_foreignkey(self): class Parent(Base): __tablename__ = 'parent' id = Column('id', Integer, primary_key=True) tp = Column('type', String(50)) __mapper_args__ = dict(polymorphic_on=tp) class Child1(Parent): __tablename__ = 'child1' id = Column('id', Integer, ForeignKey('parent.id'), primary_key=True) related_child2 = Column('c2', Integer, ForeignKey('child2.id')) __mapper_args__ = dict(polymorphic_identity='child1') # no exception is raised by the ForeignKey to "child2" even # though child2 doesn't exist yet class Child2(Parent): __tablename__ = 'child2' id = Column('id', Integer, ForeignKey('parent.id'), primary_key=True) related_child1 = Column('c1', Integer) __mapper_args__ = dict(polymorphic_identity='child2') sa.orm.configure_mappers() # no exceptions here def test_foreign_keys_with_col(self): """Test that foreign keys that reference a literal 'id' subclass 'id' attribute behave intuitively. See [ticket:1892]. """ class Booking(Base): __tablename__ = 'booking' id = Column(Integer, primary_key=True) class PlanBooking(Booking): __tablename__ = 'plan_booking' id = Column(Integer, ForeignKey(Booking.id), primary_key=True) # referencing PlanBooking.id gives us the column # on plan_booking, not booking class FeatureBooking(Booking): __tablename__ = 'feature_booking' id = Column(Integer, ForeignKey(Booking.id), primary_key=True) plan_booking_id = Column(Integer, ForeignKey(PlanBooking.id)) plan_booking = relationship(PlanBooking, backref='feature_bookings') assert FeatureBooking.__table__.c.plan_booking_id.\ references(PlanBooking.__table__.c.id) assert FeatureBooking.__table__.c.id.\ references(Booking.__table__.c.id) def test_single_colsonbase(self): """test single inheritance where all the columns are on the base class.""" class Company(Base, fixtures.ComparableEntity): __tablename__ = 'companies' id = Column('id', Integer, primary_key=True, test_needs_autoincrement=True) name = Column('name', String(50)) employees = relationship('Person') class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column('id', Integer, primary_key=True, test_needs_autoincrement=True) company_id = Column('company_id', Integer, ForeignKey('companies.id')) name = Column('name', String(50)) discriminator = Column('type', String(50)) primary_language = Column('primary_language', String(50)) golf_swing = Column('golf_swing', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __mapper_args__ = {'polymorphic_identity': 'engineer'} class Manager(Person): __mapper_args__ = {'polymorphic_identity': 'manager'} Base.metadata.create_all() sess = create_session() c1 = Company(name='MegaCorp, Inc.', employees=[Engineer(name='dilbert', primary_language='java'), Engineer(name='wally', primary_language='c++'), Manager(name='dogbert', golf_swing='fore!')]) c2 = Company(name='Elbonia, Inc.', employees=[Engineer(name='vlad', primary_language='cobol')]) sess.add(c1) sess.add(c2) sess.flush() sess.expunge_all() eq_(sess.query(Person).filter(Engineer.primary_language == 'cobol').first(), Engineer(name='vlad')) eq_(sess.query(Company).filter(Company.employees.of_type(Engineer). any(Engineer.primary_language == 'cobol')).first(), c2) def test_single_colsonsub(self): """test single inheritance where the columns are local to their class. this is a newer usage. """ class Company(Base, fixtures.ComparableEntity): __tablename__ = 'companies' id = Column('id', Integer, primary_key=True, test_needs_autoincrement=True) name = Column('name', String(50)) employees = relationship('Person') class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column(Integer, primary_key=True, test_needs_autoincrement=True) company_id = Column(Integer, ForeignKey('companies.id')) name = Column(String(50)) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __mapper_args__ = {'polymorphic_identity': 'engineer'} primary_language = Column(String(50)) class Manager(Person): __mapper_args__ = {'polymorphic_identity': 'manager'} golf_swing = Column(String(50)) # we have here a situation that is somewhat unique. the Person # class is mapped to the "people" table, but it was mapped when # the table did not include the "primary_language" or # "golf_swing" columns. declarative will also manipulate the # exclude_properties collection so that sibling classes don't # cross-pollinate. assert Person.__table__.c.company_id is not None assert Person.__table__.c.golf_swing is not None assert Person.__table__.c.primary_language is not None assert Engineer.primary_language is not None assert Manager.golf_swing is not None assert not hasattr(Person, 'primary_language') assert not hasattr(Person, 'golf_swing') assert not hasattr(Engineer, 'golf_swing') assert not hasattr(Manager, 'primary_language') Base.metadata.create_all() sess = create_session() e1 = Engineer(name='dilbert', primary_language='java') e2 = Engineer(name='wally', primary_language='c++') m1 = Manager(name='dogbert', golf_swing='fore!') c1 = Company(name='MegaCorp, Inc.', employees=[e1, e2, m1]) e3 = Engineer(name='vlad', primary_language='cobol') c2 = Company(name='Elbonia, Inc.', employees=[e3]) sess.add(c1) sess.add(c2) sess.flush() sess.expunge_all() eq_(sess.query(Person).filter(Engineer.primary_language == 'cobol').first(), Engineer(name='vlad')) eq_(sess.query(Company).filter(Company.employees.of_type(Engineer). any(Engineer.primary_language == 'cobol')).first(), c2) eq_(sess.query(Engineer).filter_by(primary_language='cobol' ).one(), Engineer(name='vlad', primary_language='cobol')) @testing.skip_if(lambda: testing.against('oracle'), "Test has an empty insert in it at the moment") def test_columns_single_inheritance_conflict_resolution(self): """Test that a declared_attr can return the existing column and it will be ignored. this allows conditional columns to be added. See [ticket:2472]. """ class Person(Base): __tablename__ = 'person' id = Column(Integer, primary_key=True) class Engineer(Person): """single table inheritance""" @declared_attr def target_id(cls): return cls.__table__.c.get('target_id', Column(Integer, ForeignKey('other.id')) ) @declared_attr def target(cls): return relationship("Other") class Manager(Person): """single table inheritance""" @declared_attr def target_id(cls): return cls.__table__.c.get('target_id', Column(Integer, ForeignKey('other.id')) ) @declared_attr def target(cls): return relationship("Other") class Other(Base): __tablename__ = 'other' id = Column(Integer, primary_key=True) is_( Engineer.target_id.property.columns[0], Person.__table__.c.target_id ) is_( Manager.target_id.property.columns[0], Person.__table__.c.target_id ) # do a brief round trip on this Base.metadata.create_all() session = Session() o1, o2 = Other(), Other() session.add_all([ Engineer(target=o1), Manager(target=o2), Manager(target=o1) ]) session.commit() eq_(session.query(Engineer).first().target, o1) def test_joined_from_single(self): class Company(Base, fixtures.ComparableEntity): __tablename__ = 'companies' id = Column('id', Integer, primary_key=True, test_needs_autoincrement=True) name = Column('name', String(50)) employees = relationship('Person') class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column(Integer, primary_key=True, test_needs_autoincrement=True) company_id = Column(Integer, ForeignKey('companies.id')) name = Column(String(50)) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Manager(Person): __mapper_args__ = {'polymorphic_identity': 'manager'} golf_swing = Column(String(50)) class Engineer(Person): __tablename__ = 'engineers' __mapper_args__ = {'polymorphic_identity': 'engineer'} id = Column(Integer, ForeignKey('people.id'), primary_key=True) primary_language = Column(String(50)) assert Person.__table__.c.golf_swing is not None assert not Person.__table__.c.has_key('primary_language') assert Engineer.__table__.c.primary_language is not None assert Engineer.primary_language is not None assert Manager.golf_swing is not None assert not hasattr(Person, 'primary_language') assert not hasattr(Person, 'golf_swing') assert not hasattr(Engineer, 'golf_swing') assert not hasattr(Manager, 'primary_language') Base.metadata.create_all() sess = create_session() e1 = Engineer(name='dilbert', primary_language='java') e2 = Engineer(name='wally', primary_language='c++') m1 = Manager(name='dogbert', golf_swing='fore!') c1 = Company(name='MegaCorp, Inc.', employees=[e1, e2, m1]) e3 = Engineer(name='vlad', primary_language='cobol') c2 = Company(name='Elbonia, Inc.', employees=[e3]) sess.add(c1) sess.add(c2) sess.flush() sess.expunge_all() eq_(sess.query(Person).with_polymorphic(Engineer). filter(Engineer.primary_language == 'cobol').first(), Engineer(name='vlad')) eq_(sess.query(Company).filter(Company.employees.of_type(Engineer). any(Engineer.primary_language == 'cobol')).first(), c2) eq_(sess.query(Engineer).filter_by(primary_language='cobol' ).one(), Engineer(name='vlad', primary_language='cobol')) def test_single_from_joined_colsonsub(self): class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Manager(Person): __tablename__ = 'manager' __mapper_args__ = {'polymorphic_identity': 'manager'} id = Column(Integer, ForeignKey('people.id'), primary_key=True) golf_swing = Column(String(50)) class Boss(Manager): boss_name = Column(String(50)) is_( Boss.__mapper__.column_attrs['boss_name'].columns[0], Manager.__table__.c.boss_name ) def test_polymorphic_on_converted_from_inst(self): class A(Base): __tablename__ = 'A' id = Column(Integer, primary_key=True) discriminator = Column(String) @declared_attr def __mapper_args__(cls): return { 'polymorphic_identity': cls.__name__, 'polymorphic_on': cls.discriminator } class B(A): pass is_(B.__mapper__.polymorphic_on, A.__table__.c.discriminator) def test_add_deferred(self): class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column('id', Integer, primary_key=True, test_needs_autoincrement=True) Person.name = deferred(Column(String(10))) Base.metadata.create_all() sess = create_session() p = Person(name='ratbert') sess.add(p) sess.flush() sess.expunge_all() eq_(sess.query(Person).all(), [Person(name='ratbert')]) sess.expunge_all() person = sess.query(Person).filter(Person.name == 'ratbert' ).one() assert 'name' not in person.__dict__ def test_single_fksonsub(self): """test single inheritance with a foreign key-holding column on a subclass. """ class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __mapper_args__ = {'polymorphic_identity': 'engineer'} primary_language_id = Column(Integer, ForeignKey('languages.id')) primary_language = relationship('Language') class Language(Base, fixtures.ComparableEntity): __tablename__ = 'languages' id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) assert not hasattr(Person, 'primary_language_id') Base.metadata.create_all() sess = create_session() java, cpp, cobol = Language(name='java'), Language(name='cpp'), \ Language(name='cobol') e1 = Engineer(name='dilbert', primary_language=java) e2 = Engineer(name='wally', primary_language=cpp) e3 = Engineer(name='vlad', primary_language=cobol) sess.add_all([e1, e2, e3]) sess.flush() sess.expunge_all() eq_(sess.query(Person).filter(Engineer.primary_language.has( Language.name == 'cobol')).first(), Engineer(name='vlad', primary_language=Language(name='cobol'))) eq_(sess.query(Engineer).filter(Engineer.primary_language.has( Language.name == 'cobol')).one(), Engineer(name='vlad', primary_language=Language(name='cobol'))) eq_(sess.query(Person).join(Engineer.primary_language).order_by( Language.name).all(), [Engineer(name='vlad', primary_language=Language(name='cobol')), Engineer(name='wally', primary_language=Language(name='cpp' )), Engineer(name='dilbert', primary_language=Language(name='java'))]) def test_single_three_levels(self): class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column(Integer, primary_key=True) name = Column(String(50)) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __mapper_args__ = {'polymorphic_identity': 'engineer'} primary_language = Column(String(50)) class JuniorEngineer(Engineer): __mapper_args__ = \ {'polymorphic_identity': 'junior_engineer'} nerf_gun = Column(String(50)) class Manager(Person): __mapper_args__ = {'polymorphic_identity': 'manager'} golf_swing = Column(String(50)) assert JuniorEngineer.nerf_gun assert JuniorEngineer.primary_language assert JuniorEngineer.name assert Manager.golf_swing assert Engineer.primary_language assert not hasattr(Engineer, 'golf_swing') assert not hasattr(Engineer, 'nerf_gun') assert not hasattr(Manager, 'nerf_gun') assert not hasattr(Manager, 'primary_language') def test_single_detects_conflict(self): class Person(Base): __tablename__ = 'people' id = Column(Integer, primary_key=True) name = Column(String(50)) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} class Engineer(Person): __mapper_args__ = {'polymorphic_identity': 'engineer'} primary_language = Column(String(50)) # test sibling col conflict def go(): class Manager(Person): __mapper_args__ = {'polymorphic_identity': 'manager'} golf_swing = Column(String(50)) primary_language = Column(String(50)) assert_raises(sa.exc.ArgumentError, go) # test parent col conflict def go(): class Salesman(Person): __mapper_args__ = {'polymorphic_identity': 'manager'} name = Column(String(50)) assert_raises(sa.exc.ArgumentError, go) def test_single_no_special_cols(self): class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column('id', Integer, primary_key=True) name = Column('name', String(50)) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} def go(): class Engineer(Person): __mapper_args__ = {'polymorphic_identity': 'engineer'} primary_language = Column('primary_language', String(50)) foo_bar = Column(Integer, primary_key=True) assert_raises_message(sa.exc.ArgumentError, 'place primary key', go) def test_single_no_table_args(self): class Person(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column('id', Integer, primary_key=True) name = Column('name', String(50)) discriminator = Column('type', String(50)) __mapper_args__ = {'polymorphic_on': discriminator} def go(): class Engineer(Person): __mapper_args__ = {'polymorphic_identity': 'engineer'} primary_language = Column('primary_language', String(50)) # this should be on the Person class, as this is single # table inheritance, which is why we test that this # throws an exception! __table_args__ = {'mysql_engine': 'InnoDB'} assert_raises_message(sa.exc.ArgumentError, 'place __table_args__', go) @testing.emits_warning("This declarative") def test_dupe_name_in_hierarchy(self): class A(Base): __tablename__ = "a" id = Column(Integer, primary_key=True) a_1 = A class A(a_1): __tablename__ = 'b' id = Column(Integer(), ForeignKey(a_1.id), primary_key=True) assert A.__mapper__.inherits is a_1.__mapper__ class OverlapColPrecedenceTest(DeclarativeTestBase): """test #1892 cases when declarative does column precedence.""" def _run_test(self, Engineer, e_id, p_id): p_table = Base.metadata.tables['person'] e_table = Base.metadata.tables['engineer'] assert Engineer.id.property.columns[0] is e_table.c[e_id] assert Engineer.id.property.columns[1] is p_table.c[p_id] def test_basic(self): class Person(Base): __tablename__ = 'person' id = Column(Integer, primary_key=True) class Engineer(Person): __tablename__ = 'engineer' id = Column(Integer, ForeignKey('person.id'), primary_key=True) self._run_test(Engineer, "id", "id") def test_alt_name_base(self): class Person(Base): __tablename__ = 'person' id = Column("pid", Integer, primary_key=True) class Engineer(Person): __tablename__ = 'engineer' id = Column(Integer, ForeignKey('person.pid'), primary_key=True) self._run_test(Engineer, "id", "pid") def test_alt_name_sub(self): class Person(Base): __tablename__ = 'person' id = Column(Integer, primary_key=True) class Engineer(Person): __tablename__ = 'engineer' id = Column("eid", Integer, ForeignKey('person.id'), primary_key=True) self._run_test(Engineer, "eid", "id") def test_alt_name_both(self): class Person(Base): __tablename__ = 'person' id = Column("pid", Integer, primary_key=True) class Engineer(Person): __tablename__ = 'engineer' id = Column("eid", Integer, ForeignKey('person.pid'), primary_key=True) self._run_test(Engineer, "eid", "pid") from test.orm.test_events import _RemoveListeners class ConcreteInhTest(_RemoveListeners, DeclarativeTestBase): def _roundtrip(self, Employee, Manager, Engineer, Boss, polymorphic=True, explicit_type=False): Base.metadata.create_all() sess = create_session() e1 = Engineer(name='dilbert', primary_language='java') e2 = Engineer(name='wally', primary_language='c++') m1 = Manager(name='dogbert', golf_swing='fore!') e3 = Engineer(name='vlad', primary_language='cobol') b1 = Boss(name="pointy haired") if polymorphic: for obj in [e1, e2, m1, e3, b1]: if explicit_type: eq_(obj.type, obj.__mapper__.polymorphic_identity) else: assert_raises_message( AttributeError, "does not implement attribute .?'type' " "at the instance level.", getattr, obj, "type" ) else: assert "type" not in Engineer.__dict__ assert "type" not in Manager.__dict__ assert "type" not in Boss.__dict__ sess.add_all([e1, e2, m1, e3, b1]) sess.flush() sess.expunge_all() if polymorphic: eq_(sess.query(Employee).order_by(Employee.name).all(), [Engineer(name='dilbert'), Manager(name='dogbert'), Boss(name='pointy haired'), Engineer(name='vlad'), Engineer(name='wally')]) else: eq_(sess.query(Engineer).order_by(Engineer.name).all(), [Engineer(name='dilbert'), Engineer(name='vlad'), Engineer(name='wally')]) eq_(sess.query(Manager).all(), [Manager(name='dogbert')]) eq_(sess.query(Boss).all(), [Boss(name='pointy haired')]) def test_explicit(self): engineers = Table('engineers', Base.metadata, Column('id', Integer, primary_key=True, test_needs_autoincrement=True), Column('name', String(50)), Column('primary_language', String(50))) managers = Table('managers', Base.metadata, Column('id', Integer, primary_key=True, test_needs_autoincrement=True), Column('name', String(50)), Column('golf_swing', String(50)) ) boss = Table('boss', Base.metadata, Column('id', Integer, primary_key=True, test_needs_autoincrement=True), Column('name', String(50)), Column('golf_swing', String(50)) ) punion = polymorphic_union({ 'engineer': engineers, 'manager': managers, 'boss': boss}, 'type', 'punion') class Employee(Base, fixtures.ComparableEntity): __table__ = punion __mapper_args__ = {'polymorphic_on': punion.c.type} class Engineer(Employee): __table__ = engineers __mapper_args__ = {'polymorphic_identity': 'engineer', 'concrete': True} class Manager(Employee): __table__ = managers __mapper_args__ = {'polymorphic_identity': 'manager', 'concrete': True} class Boss(Manager): __table__ = boss __mapper_args__ = {'polymorphic_identity': 'boss', 'concrete': True} self._roundtrip(Employee, Manager, Engineer, Boss) def test_concrete_inline_non_polymorphic(self): """test the example from the declarative docs.""" class Employee(Base, fixtures.ComparableEntity): __tablename__ = 'people' id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) class Engineer(Employee): __tablename__ = 'engineers' __mapper_args__ = {'concrete': True} id = Column(Integer, primary_key=True, test_needs_autoincrement=True) primary_language = Column(String(50)) name = Column(String(50)) class Manager(Employee): __tablename__ = 'manager' __mapper_args__ = {'concrete': True} id = Column(Integer, primary_key=True, test_needs_autoincrement=True) golf_swing = Column(String(50)) name = Column(String(50)) class Boss(Manager): __tablename__ = 'boss' __mapper_args__ = {'concrete': True} id = Column(Integer, primary_key=True, test_needs_autoincrement=True) golf_swing = Column(String(50)) name = Column(String(50)) self._roundtrip(Employee, Manager, Engineer, Boss, polymorphic=False) def test_abstract_concrete_extension(self): class Employee(AbstractConcreteBase, Base, fixtures.ComparableEntity): pass class Manager(Employee): __tablename__ = 'manager' employee_id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) golf_swing = Column(String(40)) __mapper_args__ = { 'polymorphic_identity': 'manager', 'concrete': True} class Boss(Manager): __tablename__ = 'boss' employee_id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) golf_swing = Column(String(40)) __mapper_args__ = { 'polymorphic_identity': 'boss', 'concrete': True} class Engineer(Employee): __tablename__ = 'engineer' employee_id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) primary_language = Column(String(40)) __mapper_args__ = {'polymorphic_identity': 'engineer', 'concrete': True} self._roundtrip(Employee, Manager, Engineer, Boss) def test_concrete_extension(self): class Employee(ConcreteBase, Base, fixtures.ComparableEntity): __tablename__ = 'employee' employee_id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) __mapper_args__ = { 'polymorphic_identity': 'employee', 'concrete': True} class Manager(Employee): __tablename__ = 'manager' employee_id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) golf_swing = Column(String(40)) __mapper_args__ = { 'polymorphic_identity': 'manager', 'concrete': True} class Boss(Manager): __tablename__ = 'boss' employee_id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) golf_swing = Column(String(40)) __mapper_args__ = { 'polymorphic_identity': 'boss', 'concrete': True} class Engineer(Employee): __tablename__ = 'engineer' employee_id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) primary_language = Column(String(40)) __mapper_args__ = {'polymorphic_identity': 'engineer', 'concrete': True} self._roundtrip(Employee, Manager, Engineer, Boss) def test_has_inherited_table_doesnt_consider_base(self): class A(Base): __tablename__ = 'a' id = Column(Integer, primary_key=True) assert not has_inherited_table(A) class B(A): __tablename__ = 'b' id = Column(Integer, ForeignKey('a.id'), primary_key=True) assert has_inherited_table(B) def test_has_inherited_table_in_mapper_args(self): class Test(Base): __tablename__ = 'test' id = Column(Integer, primary_key=True) type = Column(String(20)) @declared_attr def __mapper_args__(cls): if not has_inherited_table(cls): ret = { 'polymorphic_identity': 'default', 'polymorphic_on': cls.type, } else: ret = {'polymorphic_identity': cls.__name__} return ret class PolyTest(Test): __tablename__ = 'poly_test' id = Column(Integer, ForeignKey(Test.id), primary_key=True) configure_mappers() assert Test.__mapper__.polymorphic_on is Test.__table__.c.type assert PolyTest.__mapper__.polymorphic_on is Test.__table__.c.type def test_ok_to_override_type_from_abstract(self): class Employee(AbstractConcreteBase, Base, fixtures.ComparableEntity): pass class Manager(Employee): __tablename__ = 'manager' employee_id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) golf_swing = Column(String(40)) @property def type(self): return "manager" __mapper_args__ = { 'polymorphic_identity': "manager", 'concrete': True} class Boss(Manager): __tablename__ = 'boss' employee_id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) golf_swing = Column(String(40)) @property def type(self): return "boss" __mapper_args__ = { 'polymorphic_identity': "boss", 'concrete': True} class Engineer(Employee): __tablename__ = 'engineer' employee_id = Column(Integer, primary_key=True, test_needs_autoincrement=True) name = Column(String(50)) primary_language = Column(String(40)) @property def type(self): return "engineer" __mapper_args__ = {'polymorphic_identity': "engineer", 'concrete': True} self._roundtrip(Employee, Manager, Engineer, Boss, explicit_type=True)
py
1a3a4bd466cb105a1707cecc23cd4c5eb9b07cda
import os from alipay import AliPay from django.conf import settings from django.shortcuts import render from rest_framework import status from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated from rest_framework.views import APIView from orders.models import OrderInfo # Create your views here. # PUT /payment/status/?<支付结果数据> from payment.models import Payment class PaymentStatusView(APIView): permission_classes = [IsAuthenticated] def put(self,request): """ 保存支付结果 1.获取支付结果数据并进行签名认证 2.校验订单是否有效 3.保存支付结果并修改订单支付状态 4.返回支付交易编号 """ data = request.query_params.dict() signature = data.pop('sign') alipay = AliPay( appid=settings.ALIPAY_APPID, # 开发应用appid app_notify_url=None, # 默认回调url app_private_key_path=os.path.join(settings.BASE_DIR, 'apps/payment/keys/app_private_key.pem'), # 网站的私钥文件路径 alipay_public_key_path=os.path.join(settings.BASE_DIR, 'apps/payment/keys/alipay_public_key.pem'), # 支付宝公钥文件路径 sign_type="RSA2", # RSA 或者 RSA2 debug=settings.ALIPAY_DEBUG # 默认False ) success = alipay.verify(data, signature) if not success: return Response({'message':'非法操作'},status=status.HTTP_403_FORBIDDEN) try: order = OrderInfo.objects.get(order_id=data.get('out_trade_no'), user=request.user, pay_method=OrderInfo.PAY_METHODS_ENUM['ALIPAY'], status=OrderInfo.ORDER_STATUS_ENUM['UNPAID'] ) except OrderInfo.DoesNotExist: return Response({'message': '无效的订单id'}, status=status.HTTP_400_BAD_REQUEST) trade_id = data.get('trade_no') Payment.objects.create( order = order, trade_id=trade_id ) order.status = OrderInfo.ORDER_STATUS_ENUM['UNSEND'] order.save() return Response({'trade_id':trade_id}) # GET /orders/(?P<order_id>\d+)/payment/ class PaymentView(APIView): permission_classes = [IsAuthenticated] def get(self,request,order_id): """ 获取支付宝支付网址 1.获取order_id并校验订单是否有效 2.组织支付宝支付网址和参数 3.返回支付宝支付网址 """ user = request.user try: order = OrderInfo.objects.get(order_id=order_id, user=user, pay_method=OrderInfo.PAY_METHODS_ENUM['ALIPAY'], status=OrderInfo.ORDER_STATUS_ENUM['UNPAID'] ) except OrderInfo.DoesNotExist: return Response({'message': '无效的订单id'}, status=status.HTTP_400_BAD_REQUEST) # 初始化 alipay = AliPay( appid=settings.ALIPAY_APPID, # 开发应用appid app_notify_url=None, # 默认回调url app_private_key_path=os.path.join(settings.BASE_DIR, 'apps/payment/keys/app_private_key.pem'), # 网站的私钥文件路径 alipay_public_key_path=os.path.join(settings.BASE_DIR, 'apps/payment/keys/alipay_public_key.pem'), # 支付宝公钥文件路径 sign_type="RSA2", # RSA 或者 RSA2 debug=settings.ALIPAY_DEBUG # 默认False ) # 组织支付参数 # 电脑网站支付,需要跳转到https://openapi.alipaydev.com/gateway.do? + order_string total_pay = order.total_amount # Decimal order_string = alipay.api_alipay_trade_page_pay( out_trade_no=order_id, # 订单id total_amount=str(total_pay), subject='闫氏商城%s' % order_id, # 订单标题 return_url="http://www.meiduo.site:8080/pay_success.html", # 回调地址 ) alipay_url = settings.ALIPAY_URL + '?' + order_string return Response({'alipay_url': alipay_url})
py
1a3a4c9705fb93bd67b195b9d7d46e3072a994e3
# coding: utf-8 """ Openmoney API Openmoney API # noqa: E501 OpenAPI spec version: 2.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.models.namespaces_get import NamespacesGet # noqa: E501 from swagger_client.rest import ApiException class TestNamespacesGet(unittest.TestCase): """NamespacesGet unit test stubs""" def setUp(self): pass def tearDown(self): pass def testNamespacesGet(self): """Test NamespacesGet""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.namespaces_get.NamespacesGet() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
1a3a4cbd2815a0e335156f4315914864b72c1294
# coding: utf-8 """ ORCID Member No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: Latest Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from orcid_api_v3.models.title_v30_rc2 import TitleV30Rc2 # noqa: F401,E501 from orcid_api_v3.models.translated_title_v30_rc2 import TranslatedTitleV30Rc2 # noqa: F401,E501 class ResearchResourceTitleV30Rc2(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'title': 'TitleV30Rc2', 'translated_title': 'TranslatedTitleV30Rc2' } attribute_map = { 'title': 'title', 'translated_title': 'translated-title' } def __init__(self, title=None, translated_title=None): # noqa: E501 """ResearchResourceTitleV30Rc2 - a model defined in Swagger""" # noqa: E501 self._title = None self._translated_title = None self.discriminator = None if title is not None: self.title = title if translated_title is not None: self.translated_title = translated_title @property def title(self): """Gets the title of this ResearchResourceTitleV30Rc2. # noqa: E501 :return: The title of this ResearchResourceTitleV30Rc2. # noqa: E501 :rtype: TitleV30Rc2 """ return self._title @title.setter def title(self, title): """Sets the title of this ResearchResourceTitleV30Rc2. :param title: The title of this ResearchResourceTitleV30Rc2. # noqa: E501 :type: TitleV30Rc2 """ self._title = title @property def translated_title(self): """Gets the translated_title of this ResearchResourceTitleV30Rc2. # noqa: E501 :return: The translated_title of this ResearchResourceTitleV30Rc2. # noqa: E501 :rtype: TranslatedTitleV30Rc2 """ return self._translated_title @translated_title.setter def translated_title(self, translated_title): """Sets the translated_title of this ResearchResourceTitleV30Rc2. :param translated_title: The translated_title of this ResearchResourceTitleV30Rc2. # noqa: E501 :type: TranslatedTitleV30Rc2 """ self._translated_title = translated_title def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ResearchResourceTitleV30Rc2, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ResearchResourceTitleV30Rc2): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
1a3a4cc4d5a04f18bb6e3f317835b06eb7ecf4e1
"""Core module. Provides the basic operations needed in sympy. """ from basic import Basic, Atom, S, C from expr import Expr from sympify import sympify from symbol import Symbol, Wild, symbols, var from numbers import Number, Real, Rational, Integer, NumberSymbol,\ RealNumber, igcd, ilcm, seterr from power import Pow, integer_nthroot from mul import Mul from add import Add from relational import Rel, Eq, Ne, Lt, Le, Gt, Ge, \ Equality, Inequality, Unequality, StrictInequality from multidimensional import vectorize from function import Lambda, WildFunction, Derivative, diff, FunctionClass, \ Function, expand, PoleError, expand_mul, expand_log, expand_func,\ expand_trig, expand_complex from sets import Set, Interval, Union, EmptySet from evalf import PrecisionExhausted, N from containers import Tuple # expose singletons like exp, log, oo, I, etc. for _n, _cls in Basic.singleton.items(): exec '%s = _cls()' % (_n)
py
1a3a4ce51efd88bec962c1c79065988736ed361d
""" Implement a customer json encoder """ from json import JSONEncoder from datetime import datetime from decimal import Decimal class EnhancedEncoder(JSONEncoder): """ Enhanced encoder to encode datetime, Decimal object """ def default(self, o): """ Overriding default function of JSON encoder to dealing with datetime & decimal :param o: object value to be encoded :return: ways to encode datetime, decimal & default values """ if isinstance(o, datetime): return o.strftime("%Y-%m-%d %H:%M:%S") elif isinstance(o, Decimal): return float(o) else: return JSONEncoder.default(self, o)
py
1a3a4d836f58fc5366ae246c1379ea6c81c6b37b
from itertools import chain import glob import torch from PIL import Image from os import path from torch.utils.data import Dataset class SegmentationDataset(Dataset): _EXTENSIONS = ["*.jpg", "*.jpeg", "*.png"] def __init__(self, in_dir, transform): super(SegmentationDataset, self).__init__() self.in_dir = in_dir self.transform = transform # Find all images self.images = [] for img_path in chain(*(glob.iglob(path.join(self.in_dir, ext)) for ext in SegmentationDataset._EXTENSIONS)): _, name_with_ext = path.split(img_path) idx, _ = path.splitext(name_with_ext) self.images.append({ "idx": idx, "path": img_path }) def __len__(self): return len(self.images) def __getitem__(self, item): # Load image with Image.open(self.images[item]["path"]) as img_raw: size = img_raw.size img = self.transform(img_raw.convert(mode="RGB")) return {"img": img, "meta": {"idx": self.images[item]["idx"], "size": size}} def segmentation_collate(items): imgs = torch.stack([item["img"] for item in items]) metas = [item["meta"] for item in items] return {"img": imgs, "meta": metas}
py
1a3a4ddacaaa2c1bc4dcc4a95a2c4cbdc6a6c211
import tests.periodicities.period_test as per per.buildModel((30 , 'B' , 50));
py
1a3a4e79359244cab729f78e39a8ea5a9724c587
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from .services.translation_service import TranslationServiceClient from .services.translation_service import TranslationServiceAsyncClient from .types.translation_service import BatchDocumentInputConfig from .types.translation_service import BatchDocumentOutputConfig from .types.translation_service import BatchTranslateDocumentMetadata from .types.translation_service import BatchTranslateDocumentRequest from .types.translation_service import BatchTranslateDocumentResponse from .types.translation_service import BatchTranslateMetadata from .types.translation_service import BatchTranslateResponse from .types.translation_service import BatchTranslateTextRequest from .types.translation_service import CreateGlossaryMetadata from .types.translation_service import CreateGlossaryRequest from .types.translation_service import DeleteGlossaryMetadata from .types.translation_service import DeleteGlossaryRequest from .types.translation_service import DeleteGlossaryResponse from .types.translation_service import DetectedLanguage from .types.translation_service import DetectLanguageRequest from .types.translation_service import DetectLanguageResponse from .types.translation_service import DocumentInputConfig from .types.translation_service import DocumentOutputConfig from .types.translation_service import DocumentTranslation from .types.translation_service import GcsDestination from .types.translation_service import GcsSource from .types.translation_service import GetGlossaryRequest from .types.translation_service import GetSupportedLanguagesRequest from .types.translation_service import Glossary from .types.translation_service import GlossaryInputConfig from .types.translation_service import InputConfig from .types.translation_service import ListGlossariesRequest from .types.translation_service import ListGlossariesResponse from .types.translation_service import OutputConfig from .types.translation_service import SupportedLanguage from .types.translation_service import SupportedLanguages from .types.translation_service import TranslateDocumentRequest from .types.translation_service import TranslateDocumentResponse from .types.translation_service import TranslateTextGlossaryConfig from .types.translation_service import TranslateTextRequest from .types.translation_service import TranslateTextResponse from .types.translation_service import Translation __all__ = ( 'TranslationServiceAsyncClient', 'BatchDocumentInputConfig', 'BatchDocumentOutputConfig', 'BatchTranslateDocumentMetadata', 'BatchTranslateDocumentRequest', 'BatchTranslateDocumentResponse', 'BatchTranslateMetadata', 'BatchTranslateResponse', 'BatchTranslateTextRequest', 'CreateGlossaryMetadata', 'CreateGlossaryRequest', 'DeleteGlossaryMetadata', 'DeleteGlossaryRequest', 'DeleteGlossaryResponse', 'DetectLanguageRequest', 'DetectLanguageResponse', 'DetectedLanguage', 'DocumentInputConfig', 'DocumentOutputConfig', 'DocumentTranslation', 'GcsDestination', 'GcsSource', 'GetGlossaryRequest', 'GetSupportedLanguagesRequest', 'Glossary', 'GlossaryInputConfig', 'InputConfig', 'ListGlossariesRequest', 'ListGlossariesResponse', 'OutputConfig', 'SupportedLanguage', 'SupportedLanguages', 'TranslateDocumentRequest', 'TranslateDocumentResponse', 'TranslateTextGlossaryConfig', 'TranslateTextRequest', 'TranslateTextResponse', 'Translation', 'TranslationServiceClient', )
py
1a3a4f8df249632d321772c42a67f4496742c8c2
#!/usr/bin/env python ############################################################################### # Copyright (C) 1994 - 2009, Performance Dynamics Company # # # # This software is licensed as described in the file COPYING, which # # you should have received as part of this distribution. The terms # # are also available at http://www.perfdynamics.com/Tools/copyright.html. # # # # You may opt to use, copy, modify, merge, publish, distribute and/or sell # # copies of the Software, and permit persons to whom the Software is # # furnished to do so, under the terms of the COPYING file. # # # # This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY # # KIND, either express or implied. # ############################################################################### # # dbc.c - Teradata DBC-10/12 performance model # # PDQ calculation of optimal parallel configuration. # # $Id: dbc.py,v 4.3 2009/03/26 02:55:32 pfeller Exp $ # #--------------------------------------------------------------------- import pdq #--------------------------------------------------------------------- def itoa(n, s): sign = n if (sign < 0): n = -n i = 0 while (n > 0): # generate digits in reverse order s[i] = '0' + (n % 10) i += 1 n /= 10 if (sign < 0): s[i] = '-' i += 1 s[i] = '\0' # reverse l = len(s) j = l - 1 for i in range(l): c = s[i] s[i] = s[j] s[j] = c i += 1 j -= 1 if i >= j: break #--------------------------------------------------------------------- think = 10.0 importrs = 300 Sifp = 0.10 Samp = 0.60 Sdsu = 1.20 Nifp = 15 Namp = 50 Ndsu = 100 pdq.Init("Teradata DBC-10/12") # Create parallel centers for k in range(Nifp): name = "IFP%d" % k nodes = pdq.CreateNode(name, pdq.CEN, pdq.FCFS) for k in range(Namp): name = "AMP%d" % k nodes = pdq.CreateNode(name, pdq.CEN, pdq.FCFS) for k in range(Ndsu): name = "DSU%d" % k nodes = pdq.CreateNode(name, pdq.CEN, pdq.FCFS) streams = pdq.CreateClosed("query", pdq.TERM, importrs, think) # pdq.SetGraph("query", 100) - unsupported call for k in range(Nifp): name = "IFP%d" % k pdq.SetDemand(name, "query", Sifp / Nifp) for k in range(Namp): name = "AMP%d" % k pdq.SetDemand(name, "query", Samp / Namp) for k in range(Ndsu): name = "DSU%d" % k pdq.SetDemand(name, "query", Sdsu / Ndsu) # 300 nodes takes about a minute to solve on a PowerMac print("Solving ... ") pdq.Solve(pdq.EXACT) print("Done.\n") # pdq.PrintXLS() pdq.Report()
py
1a3a4ff92432dda2666e361829d4e18bd0936257
from panda3d.core import * from direct.distributed.MsgTypes import * from direct.directnotify import DirectNotifyGlobal import LoginBase from direct.distributed.PyDatagram import PyDatagram class LoginGSAccount(LoginBase.LoginBase): def __init__(self, cr): LoginBase.LoginBase.__init__(self, cr) def createAccount(self, loginName, password, data): self.loginName = loginName self.password = password self.createFlag = 1 self.cr.freeTimeExpiresAt = -1 self.cr.setIsPaid(1) return None def authorize(self, loginName, password): self.loginName = loginName self.password = password self.createFlag = 0 self.cr.freeTimeExpiresAt = -1 self.cr.setIsPaid(1) return None def supportsRelogin(self): return 1 def sendLoginMsg(self): DISLID = config.GetInt('fake-DISL-PlayerAccountId', 0) if not DISLID: NameStringId = 'DISLID_%s' % self.loginName DISLID = config.GetInt(NameStringId, 0) cr = self.cr datagram = PyDatagram() datagram.addUint16(CLIENT_LOGIN) datagram.addString(self.loginName) if cr.connectMethod != cr.CM_HTTP: datagram.addUint32(cr.tcpConn.getAddress().getIp()) else: datagram.addUint32(0) datagram.addUint16(5150) datagram.addString(cr.serverVersion) datagram.addUint32(cr.hashVal) datagram.addString(self.password) datagram.addBool(self.createFlag) datagram.addString(cr.validateDownload) datagram.addString(cr.wantMagicWords) datagram.addUint32(DISLID) datagram.addString(config.GetString('otp-whitelist', 'YES')) cr.send(datagram) def resendPlayToken(self): pass def requestPwdReminder(self, email = None, acctName = None): return 0 def getAccountData(self, loginName, password): return 'Unsupported' def supportsParentPassword(self): return 1 def authenticateParentPassword(self, loginName, password, parentPassword): return (password == parentPassword, None) def authenticateParentUsernameAndPassword(self, loginName, password, parentUsername, parentPassword): return (password == parentPassword, None) def supportsAuthenticateDelete(self): return 1 def authenticateDelete(self, loginName, password): return (password == self.cr.password, None) def enableSecretFriends(self, loginName, password, parentPassword, enable = 1): return (password == parentPassword, None)
py
1a3a5162125876af8109f030e53070c2a3ce5b26
from django.contrib import admin from .models import DMVModel, BankAccountModel # Register your models here. admin.site.register(DMVModel) admin.site.register(BankAccountModel)
py
1a3a51a8f8d87113dc7b5c0baa6a863e0f8e119a
__author__ = 'Sergey Matyunin' import numpy as np def interp2linear(z, xi, yi, extrapval=np.nan): """ Linear interpolation equivalent to interp2(z, xi, yi,'linear') in MATLAB @param z: function defined on square lattice [0..width(z))X[0..height(z)) @param xi: matrix of x coordinates where interpolation is required @param yi: matrix of y coordinates where interpolation is required @param extrapval: value for out of range positions. default is numpy.nan @return: interpolated values in [xi,yi] points @raise Exception: """ x = xi.copy() y = yi.copy() nrows, ncols = z.shape if nrows < 2 or ncols < 2: raise Exception("z shape is too small") if not x.shape == y.shape: raise Exception("sizes of X indexes and Y-indexes must match") # find x values out of range x_bad = ( (x < 0) | (x > ncols - 1)) if x_bad.any(): x[x_bad] = 0 # find y values out of range y_bad = ((y < 0) | (y > nrows - 1)) if y_bad.any(): y[y_bad] = 0 # linear indexing. z must be in 'C' order ndx = np.floor(y) * ncols + np.floor(x) ndx = ndx.astype('int32') # fix parameters on x border d = (x == ncols - 1) x = (x - np.floor(x)) if d.any(): x[d] += 1 ndx[d] -= 1 # fix parameters on y border d = (y == nrows - 1) y = (y - np.floor(y)) if d.any(): y[d] += 1 ndx[d] -= ncols # interpolate one_minus_t = 1 - y z = z.ravel() f = (z[ndx] * one_minus_t + z[ndx + ncols] * y ) * (1 - x) + ( z[ndx + 1] * one_minus_t + z[ndx + ncols + 1] * y) * x # Set out of range positions to extrapval if x_bad.any(): f[x_bad] = extrapval if y_bad.any(): f[y_bad] = extrapval return f
py
1a3a5214b4abeadc00942cb8089b25ff5bb6e41d
from textwrap import wrap def box(s, width=25): a = wrap(s, width) return ['+' + '-'*(width+2) + '+'] + \ ['| ' + l.ljust(width) + ' |' for l in a] + \ ['+' + '-'*(width+2) + '+'] def fillBoxes(boxes, maxWidth): s = [''] start = 0 for b in boxes: # locate start line for x in range(start, len(s)): if len(s[start]) + len(b[0]) < maxWidth: break start += 1 print 'Adding',len(s),start,len(b) if len(b) > len(s)-start: s += ['' for i in range(len(b))] p = len(s[start]) for l in range(len(b)): if len(s[start+l]) < p: s[start+l] += ' '*p s[start+l] += b[l] return '\n'.join(s).strip() b2 = box('1this is a very long string that needs to be wrapped into shorted lines', 45) b1 = box('2this is a very long string that needs to be wrapped into shorted lines') b3 = box('3this is a very long string that needs to be wrapped into shorted lines', 45) b4 = box('4this is a very long string that needs to be wrapped into shorted lines') b5 = box('5this is a very long string that needs to be wrapped into shorted lines') b6 = box(' '.join([str(i).zfill(2) for i in range(100)]), 29) print fillBoxes([b1,b2,b3,b4,b5,b6], 150)
py
1a3a525b1a37a3411bd34f21ae53c91463571e17
import logging from hazelcast.cluster import ClusterService, RandomLoadBalancer from hazelcast.config import ClientConfig from hazelcast.connection import ConnectionManager, Heartbeat from hazelcast.invocation import InvocationService, ListenerService from hazelcast.lifecycle import LifecycleService, LIFECYCLE_STATE_SHUTTING_DOWN, LIFECYCLE_STATE_SHUTDOWN from hazelcast.partition import PartitionService from hazelcast.proxy import ProxyManager, MAP_SERVICE, QUEUE_SERVICE, LIST_SERVICE, SET_SERVICE, MULTI_MAP_SERVICE, \ REPLICATED_MAP_SERVICE, ATOMIC_LONG_SERVICE, ATOMIC_REFERENCE_SERVICE, RINGBUFFER_SERIVCE, COUNT_DOWN_LATCH_SERVICE, \ TOPIC_SERVICE, RELIABLE_TOPIC_SERVICE, SEMAPHORE_SERVICE, LOCK_SERVICE, ID_GENERATOR_SERVICE, \ ID_GENERATOR_ATOMIC_LONG_PREFIX, \ EXECUTOR_SERVICE from hazelcast.reactor import AsyncoreReactor from hazelcast.serialization import SerializationServiceV1 from hazelcast.transaction import TWO_PHASE, TransactionManager from hazelcast.util import LockReferenceIdGenerator class HazelcastClient(object): """ Hazelcast Client. """ logger = logging.getLogger("HazelcastClient") _config = None def __init__(self, config=None): self.config = config or ClientConfig() self.lifecycle = LifecycleService(self.config) self.reactor = AsyncoreReactor() self.connection_manager = ConnectionManager(self, self.reactor.new_connection) self.heartbeat = Heartbeat(self) self.invoker = InvocationService(self) self.listener = ListenerService(self) self.cluster = ClusterService(self.config, self) self.partition_service = PartitionService(self) self.proxy = ProxyManager(self) self.load_balancer = RandomLoadBalancer(self.cluster) self.serialization_service = SerializationServiceV1(serialization_config=self.config.serialization_config) self.transaction_manager = TransactionManager(self) self.lock_reference_id_generator = LockReferenceIdGenerator() self._start() def _start(self): self.reactor.start() try: self.cluster.start() self.heartbeat.start() self.partition_service.start() except: self.reactor.shutdown() raise self.logger.info("Client started.") def get_atomic_long(self, name): """ Creates cluster-wide :class:`~hazelcast.proxy.atomic_long.AtomicLong`. :param name: (str), name of the AtomicLong proxy. :return: (:class:`~hazelcast.proxy.atomic_long.AtomicLong`), AtomicLong proxy for the given name. """ return self.proxy.get_or_create(ATOMIC_LONG_SERVICE, name) def get_atomic_reference(self, name): """ Creates cluster-wide :class:`~hazelcast.proxy.atomic_reference.AtomicReference`. :param name: (str), name of the AtomicReference proxy. :return: (:class:`~hazelcast.proxy.atomic_reference.AtomicReference`), AtomicReference proxy for the given name. """ return self.proxy.get_or_create(ATOMIC_REFERENCE_SERVICE, name) def get_count_down_latch(self, name): """ Creates cluster-wide :class:`~hazelcast.proxy.count_down_latch.CountDownLatch`. :param name: (str), name of the CountDownLatch proxy. :return: (:class:`~hazelcast.proxy.count_down_latch.CountDownLatch`), CountDownLatch proxy for the given name. """ return self.proxy.get_or_create(COUNT_DOWN_LATCH_SERVICE, name) def get_executor(self, name): """ Creates cluster-wide :class:`~hazelcast.proxy.executor.Executor`. :param name: (str), name of the Executor proxy. :return: (:class:`~hazelcast.proxy.executor.Executor`), Executor proxy for the given name. """ return self.proxy.get_or_create(EXECUTOR_SERVICE, name) def get_id_generator(self, name): """ Creates cluster-wide :class:`~hazelcast.proxy.id_generator.IdGenerator`. :param name: (str), name of the IdGenerator proxy. :return: (:class:`~hazelcast.proxy.id_generator.IdGenerator`), IdGenerator proxy for the given name. """ atomic_long = self.get_atomic_long(ID_GENERATOR_ATOMIC_LONG_PREFIX + name) return self.proxy.get_or_create(ID_GENERATOR_SERVICE, name, atomic_long=atomic_long) def get_queue(self, name): """ Returns the distributed queue instance with the specified name. :param name: (str), name of the distributed queue. :return: (:class:`~hazelcast.proxy.queue.Queue`), distributed queue instance with the specified name. """ return self.proxy.get_or_create(QUEUE_SERVICE, name) def get_list(self, name): """ Returns the distributed list instance with the specified name. :param name: (str), name of the distributed list. :return: (:class:`~hazelcast.proxy.list.List`), distributed list instance with the specified name. """ return self.proxy.get_or_create(LIST_SERVICE, name) def get_lock(self, name): """ Returns the distributed lock instance with the specified name. :param name: (str), name of the distributed lock. :return: (:class:`~hazelcast.proxy.lock.Lock`), distributed lock instance with the specified name. """ return self.proxy.get_or_create(LOCK_SERVICE, name) def get_map(self, name): """ Returns the distributed map instance with the specified name. :param name: (str), name of the distributed map. :return: (:class:`~hazelcast.proxy.map.Map`), distributed map instance with the specified name. """ return self.proxy.get_or_create(MAP_SERVICE, name) def get_multi_map(self, name): """ Returns the distributed MultiMap instance with the specified name. :param name: (str), name of the distributed MultiMap. :return: (:class:`~hazelcast.proxy.multi_map.MultiMap`), distributed MultiMap instance with the specified name. """ return self.proxy.get_or_create(MULTI_MAP_SERVICE, name) def get_reliable_topic(self, name): """ Returns the :class:`~hazelcast.proxy.reliable_topic.ReliableTopic` instance with the specified name. :param name: (str), name of the ReliableTopic. :return: (:class:`~hazelcast.proxy.reliable_topic.ReliableTopic`), the ReliableTopic. """ return self.proxy.get_or_create(RELIABLE_TOPIC_SERVICE, name) def get_replicated_map(self, name): """ Returns the distributed ReplicatedMap instance with the specified name. :param name: (str), name of the distributed ReplicatedMap. :return: (:class:`~hazelcast.proxy.replicated_map.ReplicatedMap`), distributed ReplicatedMap instance with the specified name. """ return self.proxy.get_or_create(REPLICATED_MAP_SERVICE, name) def get_ringbuffer(self, name): """ Returns the distributed RingBuffer instance with the specified name. :param name: (str), name of the distributed RingBuffer. :return: (:class:`~hazelcast.proxy.ringbuffer.RingBuffer`), distributed RingBuffer instance with the specified name. """ return self.proxy.get_or_create(RINGBUFFER_SERIVCE, name) def get_semaphore(self, name): """ Returns the distributed Semaphore instance with the specified name. :param name: (str), name of the distributed Semaphore. :return: (:class:`~hazelcast.proxy.semaphore.Semaphore`), distributed Semaphore instance with the specified name. """ return self.proxy.get_or_create(SEMAPHORE_SERVICE, name) def get_set(self, name): """ Returns the distributed Set instance with the specified name. :param name: (str), name of the distributed Set. :return: (:class:`~hazelcast.proxy.set.Set`), distributed Set instance with the specified name. """ return self.proxy.get_or_create(SET_SERVICE, name) def get_topic(self, name): """ Returns the :class:`~hazelcast.proxy.topic.Topic` instance with the specified name. :param name: (str), name of the Topic. :return: (:class:`~hazelcast.proxy.topic.Topic`), the Topic. """ return self.proxy.get_or_create(TOPIC_SERVICE, name) def new_transaction(self, timeout=120, durability=1, type=TWO_PHASE): """ Creates a new :class:`~hazelcast.transaction.Transaction` associated with the current thread using default or given options. :param timeout: (long), the timeout in seconds determines the maximum lifespan of a transaction. So if a transaction is configured with a timeout of 2 minutes, then it will automatically rollback if it hasn't committed yet. :param durability: (int), the durability is the number of machines that can take over if a member fails during a transaction commit or rollback :param type: (Transaction Type), the transaction type which can be :const:`~hazelcast.transaction.TWO_PHASE` or :const:`~hazelcast.transaction.ONE_PHASE` :return: (:class:`~hazelcast.transaction.Transaction`), new Transaction associated with the current thread. """ return self.transaction_manager.new_transaction(timeout, durability, type) def shutdown(self): """ Shuts down this HazelcastClient. """ if self.lifecycle.is_live: self.lifecycle.fire_lifecycle_event(LIFECYCLE_STATE_SHUTTING_DOWN) self.partition_service.shutdown() self.heartbeat.shutdown() self.cluster.shutdown() self.reactor.shutdown() self.lifecycle.fire_lifecycle_event(LIFECYCLE_STATE_SHUTDOWN) self.logger.info("Client shutdown.")
py
1a3a52ebff4e517485e0b41bfd65a297a76bd6f7
""" CryptoAPIs Crypto APIs 2.0 is a complex and innovative infrastructure layer that radically simplifies the development of any Blockchain and Crypto related applications. Organized around REST, Crypto APIs 2.0 can assist both novice Bitcoin/Ethereum enthusiasts and crypto experts with the development of their blockchain applications. Crypto APIs 2.0 provides unified endpoints and data, raw data, automatic tokens and coins forwardings, callback functionalities, and much more. # noqa: E501 The version of the OpenAPI document: 2.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from cryptoapis.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from cryptoapis.exceptions import ApiAttributeError def lazy_import(): from cryptoapis.model.list_tokens_forwarding_automations_ri import ListTokensForwardingAutomationsRI globals()['ListTokensForwardingAutomationsRI'] = ListTokensForwardingAutomationsRI class ListTokensForwardingAutomationsRData(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'offset': (int,), # noqa: E501 'limit': (int,), # noqa: E501 'total': (int,), # noqa: E501 'items': ([ListTokensForwardingAutomationsRI],), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'offset': 'offset', # noqa: E501 'limit': 'limit', # noqa: E501 'total': 'total', # noqa: E501 'items': 'items', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, offset, limit, total, items, *args, **kwargs): # noqa: E501 """ListTokensForwardingAutomationsRData - a model defined in OpenAPI Args: offset (int): The starting index of the response items, i.e. where the response should start listing the returned items. limit (int): Defines how many items should be returned in the response per page basis. total (int): Defines the total number of items returned in the response. items ([ListTokensForwardingAutomationsRI]): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.offset = offset self.limit = limit self.total = total self.items = items for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, offset, limit, total, items, *args, **kwargs): # noqa: E501 """ListTokensForwardingAutomationsRData - a model defined in OpenAPI Args: offset (int): The starting index of the response items, i.e. where the response should start listing the returned items. limit (int): Defines how many items should be returned in the response per page basis. total (int): Defines the total number of items returned in the response. items ([ListTokensForwardingAutomationsRI]): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.offset = offset self.limit = limit self.total = total self.items = items for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
py
1a3a53383d86bd29388775da2632e61a0a3d10d9
from django import forms from .configs import CNT_CHOICES class IntegerRecordForm(forms.Form): content_type = forms.ChoiceField(widget=forms.HiddenInput(), required=True, choices=CNT_CHOICES) value = forms.IntegerField( label='Значение', widget=forms.NumberInput( attrs={'class':'form-control', 'placeholder':'Введите значение'} ) ) class FloatRecordForm(forms.Form): content_type = forms.ChoiceField(widget=forms.HiddenInput(), required=True, choices=CNT_CHOICES) value = forms.FloatField( label='Значение', widget=forms.NumberInput( attrs={'class':'form-control', 'placeholder':'Введите значение'} ) ) class TextRecordForm(forms.Form): content_type = forms.ChoiceField(widget=forms.HiddenInput(), required=True, choices=CNT_CHOICES) value = forms.CharField( label='Сообщение', max_length=400, widget=forms.Textarea( attrs={'class':'form-control', 'placeholder':'Введите значение', 'rows': 2} ) )
py
1a3a5476e7502f41e9a5588c98800f8841677c8c
from django.utils.translation import ugettext_lazy as _ from rest_framework import serializers, exceptions import pyotp from ..fields import UUIDField from ..models import Google_Authenticator from ..utils import decrypt_with_db_secret class ActivateGASerializer(serializers.Serializer): google_authenticator_id = UUIDField(required=True) google_authenticator_token = serializers.CharField(max_length=6, min_length=6, required=True) def validate(self, attrs: dict) -> dict: google_authenticator_id = attrs.get('google_authenticator_id', '') google_authenticator_token = attrs.get('google_authenticator_token', '').strip() if not google_authenticator_token.isdigit(): msg = _('GA Tokens only contain digits.') raise exceptions.ValidationError(msg) try: google_authenticator = Google_Authenticator.objects.get(pk=google_authenticator_id, user=self.context['request'].user, active=False) except Google_Authenticator.DoesNotExist: msg = "NO_PERMISSION_OR_NOT_EXIST" raise exceptions.ValidationError(msg) decrypted_ga_secret = decrypt_with_db_secret(google_authenticator.secret) totp = pyotp.TOTP(decrypted_ga_secret.encode()) if not totp.verify(google_authenticator_token): msg = _("GA Token incorrect.") raise exceptions.ValidationError(msg) attrs['google_authenticator'] = google_authenticator return attrs
py
1a3a54d34a44c58d8f41d96439efcc492c6e102f
""" ASGI config for hoodprject project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'hoodprject.settings') application = get_asgi_application()
py
1a3a559f261dabfdfc5724252b19dacff81dec97
import yaml d = {'subcommand': 'lottery', 'platform': 'local', 'display_output_location': False, 'num_workers': 0, 'gpu': '6', 'replicate': 2, 'default_hparams': 'mnist_lenet_300_100', 'quiet': False, 'evaluate_only_at_end': False, 'levels': 0, 'rewinding_steps': None, 'pretrain': False, 'dataset_name': 'fashionmnist', 'batch_size': 128, 'do_not_augment': False, 'transformation_seed': None, 'subsample_fraction': None, 'random_labels_fraction': None, 'unsupervised_labels': None, 'blur_factor': None, 'model_name': 'mnist_lenet_300_100', 'model_init': 'kaiming_normal', 'batchnorm_init': 'uniform', 'batchnorm_frozen': False, 'output_frozen': False, 'others_frozen': False, 'others_frozen_exceptions': None, 'optimizer_name': 'sgd', 'lr': 0.1, 'training_steps': '40ep', 'data_order_seed': None, 'momentum': 0.0, 'nesterov_momentum': 0.0, 'milestone_steps': None, 'gamma': None, 'warmup_steps': None, 'weight_decay': None, 'apex_fp16': False, 'pruning_strategy': 'sparse_global', 'pruning_fraction': 0.2, 'pruning_layers_to_ignore': 'fc.weight'} with open(r'./myyaml.yaml', 'w') as file: print(yaml.dump(d, file))
py
1a3a5618f0963e8ab23ff3b5f6be867876162baa
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import import numpy as np from alpharotate.utils.pretrain_zoo import PretrainModelZoo from configs._base_.models.retinanet_r50_fpn import * from configs._base_.datasets.dota_detection import * from configs._base_.schedules.schedule_1x import * # schedule BATCH_SIZE = 1 GPU_GROUP = "0" NUM_GPU = len(GPU_GROUP.strip().split(',')) LR = 1e-3 SAVE_WEIGHTS_INTE = 5000 DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE) # dataset DATASET_NAME = 'Total_Text' IMG_SHORT_SIDE_LEN = 512 IMG_MAX_LENGTH = 512 CLASS_NUM = 1 # model pretrain_zoo = PretrainModelZoo() PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH) TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights') # loss CLS_WEIGHT = 1.0 REG_WEIGHT = 0.01 POINT_SAMPLING_NUM = 12 # post-processing NMS = True NMS_IOU_THRESHOLD = 0.1 MAXIMUM_DETECTIONS = 20 FILTERED_SCORE = 0.05 VIS_SCORE = 0.75 VERSION = 'RetinaNet_Total-Text_RIDet_1x_20210519' """ FLOPs: 489267589; Trainable params: 33244941 """
py
1a3a572f525afc257c904d53aca4803762014bbf
#!/usr/bin/python import sys, os, csv from options import Program_Options import benchmark, planners, translation, hypothesis def custom_partition( s, sep ) : i = 0 while i < len(s) : if s[i] == sep : break i = i + 1 if i == len(s) : return (None,None,None) if i == 0 : return ( None, s[i], s[i+1:] ) return ( s[:i-1], s[i], s[i+1:] ) def load_hypotheses() : hyps = [] instream = open( 'hyps.dat' ) for line in instream : line = line.strip() H = hypothesis.Probabilistic() H.atoms = [ tok.strip() for tok in line.split(',') ] H.check_if_actual() hyps.append( H ) instream.close() return hyps def write_report( experiment, hyps ) : outstream = open( 'report.txt', 'w' ) print >> outstream, "Experiment=%s"%experiment print >> outstream, "Num_Hyp=%d"%len(hyps) for hyp in hyps : print >> outstream, "Hyp_Atoms=%s"%",".join( hyp.atoms ) if hyp.test_failed : print >> outstream, "Hyp_Test_Failed=True" else : print >> outstream, "Hyp_Test_Failed=False" print >> outstream, "Hyp_Cost_O=%f"%hyp.cost_O print >> outstream, "Hyp_Cost_Not_O=%f"%hyp.cost_Not_O print >> outstream, "Hyp_Prob_O=%f"%hyp.Probability_O print >> outstream, "Hyp_Prob_Not_O=%f"%hyp.Probability_Not_O print >> outstream, "Hyp_Plan_Time_O=%f"%hyp.Plan_Time_O print >> outstream, "Hyp_Plan_Time_Not_O=%f"%hyp.Plan_Time_Not_O print >> outstream, "Hyp_Trans_Time=%f"%hyp.trans_time print >> outstream, "Hyp_Plan_Time=%f"%hyp.plan_time print >> outstream, "Hyp_Test_Time=%f"%hyp.total_time print >> outstream, "Hyp_Is_True=%s"%hyp.is_true outstream.close() def main() : print sys.argv options = Program_Options( sys.argv[1:] ) if options.greedy : planners.LAMA.greedy = True hyps = load_hypotheses() hyp_time_bounds = [ options.max_time / len(hyps) for h in hyps ] for i in range( 0, len(hyps) ) : hyps[i].test(i, hyp_time_bounds[i], options.max_memory, options.optimal) if hyps[i].cost_O == 1e7 and hyps[i].cost_Not_O == 1e7 : hyps[i].test_failed = True remainder = hyp_time_bounds[i] - hyps[i].total_time if remainder > 0 : extra = remainder / (len(hyps)-i) for j in range(i+1,len(hyps)) : hyp_time_bounds[j] += extra write_report(options.exp_file, hyps) # pack logs, csvs and report.txt cmd = 'tar jcvf results.tar.bz2 *.pddl *.log report.txt obs.dat hyps.dat prob-*-PR' os.system( cmd ) cmd = 'rm -rf *.log report.txt *.res *.csv *.res.* *.pddl *.dat prob-*-PR' os.system( cmd ) if __name__ == '__main__' : main()
py
1a3a57f84a3593bc5cb667efc5af75d68828dc68
#!/usr/bin/env python # encoding: utf-8 import argparse from zstacklib import * start_time = datetime.now() # set default value file_root = "files/appliancevm" pip_url = "https=//pypi.python.org/simple/" proxy = "" sproxy = "" chroot_env = 'false' zstack_repo = 'false' post_url = "" chrony_servers = None pkg_appliancevm = "" virtualenv_version = "12.1.1" remote_user = "root" remote_pass = None remote_port = None # get parameter from shell parser = argparse.ArgumentParser(description='Deploy appliancevm to management node') parser.add_argument('-i', type=str, help="""specify inventory host file default=/etc/ansible/hosts""") parser.add_argument('--private-key', type=str, help='use this file to authenticate the connection') parser.add_argument('-e', type=str, help='set additional variables as key=value or YAML/JSON') args = parser.parse_args() argument_dict = eval(args.e) locals().update(argument_dict) # update the variable from shell arguments virtenv_path = "%s/virtualenv/appliancevm/" % zstack_root appliancevm_root = "%s/appliancevm/package" % zstack_root # create log logger_dir = "/var/log/zstack/" create_log(logger_dir) host_post_info = HostPostInfo() host_post_info.host_inventory = args.i host_post_info.host = host host_post_info.post_url = post_url host_post_info.chrony_servers = chrony_servers host_post_info.private_key = args.private_key host_post_info.remote_user = remote_user host_post_info.remote_pass = remote_pass host_post_info.remote_port = remote_port if remote_pass is not None and remote_user != 'root': host_post_info.become = True # include zstacklib.py (distro, distro_version, distro_release) = get_remote_host_info(host_post_info) zstacklib_args = ZstackLibArgs() zstacklib_args.distro = distro zstacklib_args.distro_release = distro_release zstacklib_args.distro_version = distro_version zstacklib_args.zstack_repo = zstack_repo zstacklib_args.yum_server = yum_server zstacklib_args.zstack_root = zstack_root zstacklib_args.host_post_info = host_post_info zstacklib_args.pip_url = pip_url zstacklib_args.trusted_host = trusted_host zstacklib = ZstackLib(zstacklib_args) # name: judge this process is init install or upgrade if file_dir_exist("path=" + appliancevm_root, host_post_info): init_install = False else: init_install = True # name: create root directories command = 'mkdir -p %s %s' % (appliancevm_root, virtenv_path) run_remote_command(command, host_post_info) run_remote_command("rm -rf %s/*" % appliancevm_root, host_post_info) # name: copy zstacklib and install copy_arg = CopyArg() copy_arg.src = "files/zstacklib/%s" % pkg_zstacklib copy_arg.dest = "%s/%s" % (appliancevm_root, pkg_zstacklib) copy_zstacklib = copy(copy_arg, host_post_info) # name: copy appliancevm and install copy_arg = CopyArg() copy_arg.src = "%s/%s" % (file_root, pkg_appliancevm) copy_arg.dest = "%s/%s" % (appliancevm_root, pkg_appliancevm) copy_appliancevm = copy(copy_arg, host_post_info) # name: copy bootstrap script copy_arg = CopyArg() copy_arg.src = "%s/zstack-appliancevm-bootstrap.py" % file_root copy_arg.dest = '/sbin/zstack-appliancevm-bootstrap.py' copy_arg.args = "mode=0777" copy(copy_arg, host_post_info) # name: copy appliancevm service file copy_arg = CopyArg() copy_arg.src = "%s/zstack-appliancevm" % file_root copy_arg.dest = "/etc/init.d/" copy_arg.args = "mode=755" copy(copy_arg, host_post_info) # name: install virtualenv virtual_env_status = check_and_install_virtual_env(virtualenv_version, trusted_host, pip_url, host_post_info) if virtual_env_status is False: command = "rm -rf %s && rm -rf %s" % (virtenv_path, appliancevm_root) run_remote_command(command, host_post_info) sys.exit(1) # name: make sure virtualenv has been setup command = "[ -f %s/bin/python ] || virtualenv %s " % (virtenv_path, virtenv_path) run_remote_command(command, host_post_info) if distro in RPM_BASED_OS: if zstack_repo != 'false': # name: install appliance vm related packages on RedHat based OS from user defined repo command = ("pkg_list=`rpm -q iputils tcpdump ethtool | grep \"not installed\" | awk '{ print $2 }'` && for pkg" " in $pkg_list; do yum --disablerepo=* --enablerepo=%s install -y $pkg; done;") % zstack_repo run_remote_command(command, host_post_info) else: # name: install appliance vm related packages on RedHat based OS for pkg in ['iputils', 'tcpdump', 'ethtool']: yum_install_package("openssh-clients", host_post_info) if distro_version >= 7: # name: workaround RHEL7 iptables service issue command = 'mkdir -p /var/lock/subsys/' run_remote_command(command, host_post_info) # name: remove RHEL7 firewalld yum_remove_package("firewalld", host_post_info) # name: copy iptables initial rules in RedHat copy_arg = CopyArg() copy_arg.src = "%s/iptables" % file_root copy_arg.dest = "/etc/sysconfig/iptables" iptables_copy_result = copy(copy_arg, host_post_info) if chroot_env == 'false': if iptables_copy_result != "changed:False": service_status("iptables", "state=restarted enabled=yes", host_post_info) else: # name: enable appliancevm service for RedHat on chroot service_status("zstack-appliancevm", "enabled=yes state=stopped", host_post_info) elif distro in DEB_BASED_OS: install_pkg_list = ['iputils-arping', 'tcpdump', 'ethtool'] apt_install_packages(install_pkg_list, host_post_info) # name: copy iptables initial rules in Debian copy_arg = CopyArg() copy_arg.src = "%s/iptables" % file_root copy_arg.dest = "/etc/iptables" copy(copy_arg, host_post_info) # name: copy iptables initial start script in Debian copy_arg = CopyArg() copy_arg.src = "%s/iptables.up" % file_root copy_arg.dest = "/etc/network/if-pre-up.d/iptables.up" copy_arg.args = "mode=0777" iptables_script_result = copy(copy_arg, host_post_info) if iptables_script_result == "status:changed": command = "/etc/network/if-pre-up.d/iptables.up" run_remote_command(command, host_post_info) # name: enable appliancevm service for Debian -1 command = "sed -i '/zstack-appliancevm start/d' /etc/rc.local" run_remote_command(command, host_post_info) # name: enable appliancevm service for Debian -2 update_arg = "insertbefore='^exit 0' line='/etc/init.d/zstack-appliancevm start\n'" update_file("/etc/rc.local", update_arg, host_post_info) # name: restore iptables command = '/etc/network/if-pre-up.d/iptables.up' run_remote_command(command, host_post_info) else: error("unsupported OS!") # name: install zstacklib if copy_zstacklib != "changed:False": agent_install_arg = AgentInstallArg(trusted_host, pip_url, virtenv_path, init_install) agent_install_arg.agent_name = "appliancevm" agent_install_arg.agent_root = appliancevm_root agent_install_arg.pkg_name = pkg_zstacklib agent_install(agent_install_arg, host_post_info) # name: install appliancevm if copy_appliancevm != "changed:False": agent_install_arg = AgentInstallArg(trusted_host, pip_url, virtenv_path, init_install) agent_install_arg.agent_name = "appliancevm" agent_install_arg.agent_root = appliancevm_root agent_install_arg.pkg_name = pkg_appliancevm agent_install(agent_install_arg, host_post_info) if chroot_env == 'false': # name: restart appliancevm if distro in RPM_BASED_OS: command = "service zstack-appliancevm stop && service zstack-appliancevm start && chkconfig zstack-appliancevm on" elif distro in DEB_BASED_OS: command = "update-rc.d zstack-appliancevm start 97 3 4 5 . stop 3 0 1 2 6 . && service zstack-appliancevm stop && service zstack-appliancevm start" run_remote_command(command, host_post_info) else: if distro in RPM_BASED_OS: # name: restart iptables service_status("iptables", "state=restarted enabled=yes", host_post_info) host_post_info.start_time = start_time handle_ansible_info("SUCC: Deploy appliancevm successful", host_post_info, "INFO") sys.exit(0)
py
1a3a584309705420336639bab7187cab8ac83586
from typing import Union from pydantic.types import UUID5 from account.models import JWTModel import uuid from time import time from datetime import datetime, timedelta from pathlib import Path from config.conf import JWT_KEY_PATH, JWT_CERT_PATH from cryptography.x509 import load_pem_x509_certificate from fastapi import HTTPException import jwt class JWT: rsa_crt_path: Path = JWT_CERT_PATH rsa_JWT_KEY_PATH: Path = JWT_KEY_PATH JWT_NAMESPACE: uuid.UUID = uuid.UUID("69d3e8f4-0872-4f7f-9f35-d2ee437e0887") @classmethod def jti(cls, uid: str) -> str: now = round(time() * 1000) return str(uuid.uuid5(cls.JWT_NAMESPACE, str(uid) + str(now))) @classmethod def base_payload(cls, duration: int) -> dict: now = datetime.utcnow() nbf = {"nbf": now} iat = {"iat": now} exp = {"exp": now + timedelta(days=duration)} payload = {**nbf, **iat, **exp} return payload @classmethod def create(cls, user: dict, duration=30) -> str: try: jti = {"jti": cls.jti(user["uid"])} key = cls.rsa_JWT_KEY_PATH.read_text() payload = cls.base_payload(duration) payload = {**payload, **user, **jti} token = jwt.encode(payload, key, algorithm="RS256") return token except Exception as e: raise HTTPException(500, "JWT error DAG: " + str(e)) @classmethod def verify(cls, token: str) -> JWTModel: try: crt = cls.rsa_crt_path.read_text() cert_obj = load_pem_x509_certificate(crt.encode()) public_key = cert_obj.public_key() # private_key = cert_obj.private_key() decoded = jwt.decode(token, public_key, algorithms=["RS256"]) return JWTModel(**decoded) except Exception as e: raise HTTPException(500, "JWT verify error DAG: " + str(e))
py
1a3a58bbd949bf007b126deff53f7a42a212bad3
# -*- coding: utf-8 -*- """Panagrams.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1r71Y6g3hvbecy-FOcnET1GW-8b-RPFg2 """ l = input().lower() s = 'abcdefghijklmnopqrstuvwxyz' for i in s: if i not in l: print('No',end='') break else: print('Yes',end='')
py
1a3a59b109897306b0d8c4454649dddebc75a27c
import mdtraj as md import networkx as nx import numpy as np import matplotlib.pyplot as plt from collections import defaultdict import scipy.optimize import unyt as u class BondCalculator: def __init__(self, traj, T): self.traj = traj graph = traj.top.to_bondgraph() bonds = self.identify_bonds(graph) angles = self.identify_angles(graph) bond_params = dict() angle_params = dict() for bond_type, pairs in bonds.items(): bond_lengths, bond_prob = self.calc_lengths(pairs, range=[0, 1.0]) params = self.calc_parameters(bond_lengths, bond_prob) k = 2 * u.kb * (T*u.K) / (params[0] * u.nm)**2 * u.Na l0 = params[1] * u.nm bond_params[bond_type]= {"k": k, "x0": l0} for angle_type, triplets in angles.items(): bond_angles, angle_prob = self.calc_angles(triplets, range=[0, 2*np.pi]) params = self.calc_parameters(bond_angles, angle_prob) k = 2 * u.kb * (T*u.K) / (params[0] * u.rad)**2 * u.Na t0 = params[1] * u.rad angle_params[angle_type]= {"k": k, "x0": t0} self.bond_params = bond_params self.angle_params = angle_params def identify_bonds(self, graph): all_bonds = [edge for edge in graph.edges] bonds = defaultdict(list) for bond in all_bonds: index = tuple(sorted([bond[0].name, bond[1].name])) pair = tuple([particle.index for particle in bond]) bonds[index].append(pair) return bonds def identify_angles(self, graph): angle_subgraph = nx.Graph() angle_subgraph.add_edge(0, 1) angle_subgraph.add_edge(1, 2) matcher = nx.algorithms.isomorphism.GraphMatcher(graph, angle_subgraph) all_angles = [] for m in matcher.subgraph_isomorphisms_iter(): all_angles.append(tuple(k for k in m.keys())) angles = defaultdict(list) for angle in all_angles: index = tuple(particle.name for particle in angle) if angle[0].name < angle[2].name: index = tuple(reversed(index)) triplet = tuple(particle.index for particle in angle) angles[index].append(triplet) return angles def calc_lengths(self, pairs, range=None): quantity = md.compute_distances(self.traj, pairs) hist, edges = np.histogram(quantity, density=True, range=range, bins=200) bins = (edges[1:]+edges[:-1]) * 0.5 return bins, hist def calc_angles(self, triplets, range=None): quantity = md.compute_angles(self.traj, triplets) hist, edges = np.histogram(quantity, density=True, range=range, bins=200) bins = (edges[1:]+edges[:-1]) * 0.5 hist /= np.sin(bins) hist /= np.sum(hist)*(bins[1]-bins[0]) return bins, hist def cost_function(self, args, x, y): w, x0 = args return np.sum((self.gaussian(w, x0, x) - y)**2) def gaussian(self, w, x0, x): return ((w * np.sqrt(np.pi / 2))**-1)*(np.exp(-2 * (x - x0)**2 / (w**2))) def calc_parameters(self, x, y): res = scipy.optimize.minimize(lambda args: self.cost_function(args, x, y), [np.ptp(x)/10, x[np.argmax(y)]]) return res.x
py
1a3a59f2299b6f0a41f7bb394caee86baf06025b
class Observation: __observation: list def __init__(self, observation: list): self.__observation = observation def get_observation(self): return self.__observation def set_observation(self, observation: list): self.__observation = observation
py
1a3a5a005cc3762602ebb4c7f31afe125e0816e4
#!/usr/bin/env python2.7 # coding: utf-8 import mongo from user import User from blockly import Blockly import time import os import sys import traceback reload(sys) sys.setdefaultencoding(sys.getfilesystemencoding()) MIN_GAP = 5 GENERATOR_PATH = "../compiler/generator.py" PYTHON_CMD = "python2" while True: try: for blo in Blockly.objects(enabled=True): try: lastexecution, timesexecuted = blo.lastexecution, blo.timesexecuted if time.time() - lastexecution < MIN_GAP: continue f = open('/tmp/flockly.xml', 'wb') print blo.content f.write(blo.content) f.close() f = open('./flockly.py', 'wb') f.write("# coding: utf-8\nfrom fbapi import *\nimport sys\nreload(sys)\nsys.setdefaultencoding('utf-8')\nsys.tracebacklimit=0\nfrom datetime import datetime\n") f.close() os.system("echo [SYSTEM] Generating code > /tmp/flockly.run.log") os.system(GENERATOR_PATH + " /tmp/flockly.xml >> ./flockly.py 2>>/tmp/flockly.run.log") os.system("echo [SYSTEM] Generated code: >> /tmp/flockly.run.log") os.system("cat ./flockly.py >> /tmp/flockly.run.log") os.system("printf \"[SYSTEM] Started \" >> /tmp/flockly.run.log") os.system("date >> /tmp/flockly.run.log") os.system("echo [SYSTEM] Running >> /tmp/flockly.run.log") os.system("timeout -s KILL 30 " + PYTHON_CMD + " -u ./flockly.py " + blo.userid + " " + str(blo.id) + " 1>>/tmp/flockly.run.log 2>&1") os.system("printf \"[SYSTEM] End \" >> /tmp/flockly.run.log") os.system("date >> /tmp/flockly.run.log") os.unlink('./flockly.py') blo.lastexecution = int(time.time()) blo.timesexecuted = blo.timesexecuted + 1 blo.logs.append(open('/tmp/flockly.run.log', 'rb').read(102400)) if len(blo.logs) > 5: blo.logs = blo.logs[-5:] blo.save() except Exception as e: print >>sys.stderr, e print >>sys.stderr, traceback.format_exc() finally: time.sleep(1) except Exception as e: print >>sys.stderr, e print >>sys.stderr, traceback.format_exc() finally: time.sleep(1)
py
1a3a5a824259175f6fa77a3a9b5f6ad368f107f5
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from __future__ import unicode_literals import re from ..._env import E2E_FIXTURE_NAME, deserialize_data CONFIG_MESSAGE_PATTERN = 'DDEV_E2E_START_MESSAGE (.+) DDEV_E2E_END_MESSAGE' def parse_config_from_result(env, result): if 'NO E2E FIXTURE AVAILABLE' in result.stdout: return None, None, 'The environment fixture `{}` does not exist.'.format(E2E_FIXTURE_NAME) if '{}: platform mismatch'.format(env) in result.stdout: return None, None, 'The environment `{}` does not support this platform.'.format(env) decoded = parse_encoded_config_data(result.stdout) if decoded is None: return ( None, None, ( '{}\n{}\nUnable to parse configuration. Try recreating your env to get the ' 'latest version of the dev package.'.format(result.stdout, result.stderr) ), ) config = decoded['config'] metadata = decoded['metadata'] if config is None: return None, None, 'The environment fixture `{}` did not yield any configuration.'.format(E2E_FIXTURE_NAME) return config, metadata, None def parse_encoded_config_data(output): match = re.search(CONFIG_MESSAGE_PATTERN, output) if match: return deserialize_data(match.group(1))
py
1a3a5b75db896766896e2c2389d277695d5c9eb8
"""mysite URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include urlpatterns = [ path('admin/', admin.site.urls), path('', include('blog.urls')), ]
py
1a3a5c2d8a056ea3057b01299c5f3a0ddb5d968e
# -*- coding: utf-8 -*- import numpy as np """ This script is for outputting PC1/PC2/PC3 data from preprocd_dataset.npz of MD 1000K-LCx3 samples """ def makePC123(dtsetfile, outfile, grpname): dtset= np.load(dtsetfile, allow_pickle=True) #allow_pickle op is for adapting spec change of numpy 1.16.3 and later dts= dtset['dataset'] dataset0=[] for dt in dts: dt0=dt['inputs/0'] dataset0.append(dt0) dim0=len(dataset0) dim1=len(dataset0[0]) dim2=len(dataset0[0][0]) with open(outfile, 'w') as f1: for dt64 in dataset0: for dt in dt64: wdt=str(dt[0])+" "+str(dt[1])+" "+str(dt[2])+"\n" f1.write(wdt) print(f'Saved PC1/PC2/PC3 data of {grpname}: Shape= {dim0} x {dim1} x {dim2}') if __name__ == '__main__': mdfolder="/home/okugawa/HDNNP/Si-190808-md" outfolder=mdfolder+"/result-LC/PC123/" grps=['1000K0.99', '1000K1.0', '1000K1.01'] for grp in grps: for j in range(1,11): grpname=grp+"-"+str(j) dtsetdir=mdfolder+"/"+grp+"/"+str(j) dtsetfile=dtsetdir+"/data/CrystalSi64/preprocd_dataset.npz" outfile=outfolder+grpname+"-PC123.txt" makePC123(dtsetfile, outfile, grpname)
py
1a3a5c6d3e21f31be080736961830c11de78062e
# Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Setup for pip package.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from setuptools import find_packages from setuptools import setup from setuptools.dist import Distribution __version__ = '1.2b1' class BinaryDistribution(Distribution): """This class is needed in order to create OS specific wheels.""" def has_ext_modules(self): return True setup( name='tensorflow-compression', version=__version__, description=('Data compression in TensorFlow'), url='https://tensorflow.github.io/compression/', author='Google LLC', # Contained modules and scripts. packages=find_packages(), install_requires=[ 'scipy >= 1.0.0', 'tensorflow >= 1.13.0', ], # Add in any packaged data. include_package_data=True, zip_safe=False, distclass=BinaryDistribution, # PyPI package information. classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Software Development :: Libraries', ], project_urls={ 'Documentation': 'https://tensorflow.github.io/compression/docs/api_docs/python/tfc.html', 'Discussion': 'https://groups.google.com/forum/#!forum/tensorflow-compression', 'Source': 'https://github.com/tensorflow/compression', 'Tracker': 'https://github.com/tensorflow/compression/issues', }, license='Apache 2.0', keywords='compression data-compression tensorflow machine-learning python deep-learning deep-neural-networks neural-network ml', )
py
1a3a5d3d3780d517082afed317d090ff66e6ac8c
import time import dash import dash_html_components as html import dash_core_components as dcc import dash_bootstrap_components as dbc from dash.dependencies import Input, Output, State from transformers import BartTokenizer, BartForConditionalGeneration import torch device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Device: {device}") # Load Model pretrained = "sshleifer/distilbart-xsum-12-6" model = BartForConditionalGeneration.from_pretrained(pretrained) tokenizer = BartTokenizer.from_pretrained(pretrained) # Switch to cuda, eval mode, and FP16 for faster inference if device == "cuda": model = model.half() model.to(device) model.eval() # Define app app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) server = app.server controls = dbc.Card( [ dbc.FormGroup( [ dbc.Label("Output Length (# Tokens)"), dcc.Slider( id="max-length", min=10, max=50, value=30, marks={i: str(i) for i in range(10, 51, 10)}, ), ] ), dbc.FormGroup( [ dbc.Label("Beam Size"), dcc.Slider( id="num-beams", min=2, max=6, value=4, marks={i: str(i) for i in [2, 4, 6]}, ), ] ), dbc.FormGroup( [ dbc.Spinner( [ dbc.Button("Summarize", id="button-run"), html.Div(id="time-taken"), ] ) ] ), ], body=True, style={"height": "275px"}, ) # Define Layout app.layout = dbc.Container( fluid=True, children=[ html.H1("Dash Automatic Summarization (with DistilBART)"), html.Hr(), dbc.Row( [ dbc.Col( width=5, children=[ controls, dbc.Card( body=True, children=[ dbc.FormGroup( [ dbc.Label("Summarized Content"), dcc.Textarea( id="summarized-content", style={ "width": "100%", "height": "calc(75vh - 275px)", }, ), ] ) ], ), ], ), dbc.Col( width=7, children=[ dbc.Card( body=True, children=[ dbc.FormGroup( [ dbc.Label("Original Text (Paste here)"), dcc.Textarea( id="original-text", style={"width": "100%", "height": "75vh"}, ), ] ) ], ) ], ), ] ), ], ) @app.callback( [Output("summarized-content", "value"), Output("time-taken", "children")], [ Input("button-run", "n_clicks"), Input("max-length", "value"), Input("num-beams", "value"), ], [State("original-text", "value")], ) def summarize(n_clicks, max_len, num_beams, original_text): if original_text is None or original_text == "": return "", "Did not run" t0 = time.time() inputs = tokenizer.batch_encode_plus( [original_text], max_length=1024, return_tensors="pt" ) inputs = inputs.to(device) # Generate Summary summary_ids = model.generate( inputs["input_ids"], num_beams=num_beams, max_length=max_len, early_stopping=True, ) out = [ tokenizer.decode( g, skip_special_tokens=True, clean_up_tokenization_spaces=False ) for g in summary_ids ] t1 = time.time() time_taken = f"Summarized on {device} in {t1-t0:.2f}s" return out[0], time_taken if __name__ == "__main__": app.run_server(debug=True)
py
1a3a5dc378138a65309520696af74dc8f91f1a46
import requests import json import configparser as cfg class telegram_chatbot(): def __init__(self, config): self.token = self.read_token_from_config_file(config) self.base = "https://api.telegram.org/bot{}/".format(self.token) def get_updates(self, offset=None): url = self.base + "getUpdates?timeout=100" if offset: url = url + "&offset={}".format(offset + 1) r = requests.get(url) return json.loads(r.content) def send_message(self, msg, chat_id): url = self.base + "sendMessage?chat_id={}&text={}".format(chat_id, msg) if msg is not None: requests.get(url) def read_token_from_config_file(self, config): parser = cfg.ConfigParser() parser.read(config) return parser.get('creds', 'token')
py
1a3a5e9db0a4872a969d1deaa54607c027ed3607
from discord.ext.commands import Cog class Cancer(Cog): def __init__(self, bot): self.bot = bot self.ok_list = [198101180180594688, 246291440106340352] @Cog.listener() async def on_member_join(self, member): if member.guild.id not in self.ok_list: return await member.guild.system_channel.send("yes " + member.mention) @Cog.listener() async def on_member_remove(self, member): if member.guild.id not in self.ok_list: return await member.guild.system_channel.send("no " + member.mention) @Cog.listener() async def on_guild_emojis_update(self, guild, before, after): if guild.id not in self.ok_list: return await guild.system_channel.send("the emojis were updated") def setup(bot): bot.add_cog(Cancer(bot))
py
1a3a5f7e53c9034c1bdd167f6123bd52d67a3ed0
import pandas as pd train = pd.read_csv('../data/train_mapped.tsv', sep='\t', header=0) data = pd.DataFrame(columns=['SentenceId','Phrase', 'Sentiment']) temp = list(train['SentenceId']) count = 1 for index, row in train.iterrows(): if row['SentenceId'] == count: data = data.append(row[['SentenceId', 'Phrase', 'Sentiment']]) count += 1 # if count == 2628 or count == 2746 or count == 4044 or count == 4365: # count += 1 if count not in temp: print(count) count += 1 data = data.reset_index() data = data.drop('index', axis=1) print(len(data)) data.to_csv('../data/train_extract.tsv', sep='\t', index=False)
py
1a3a601f2b1c79903f440ac71deb4dc5f6bf5deb
""" """ from __future__ import division from datetime import date import logging from date_helper import * logger = logging.getLogger(__name__).addHandler(logger.NullHandler()) def check_date_objects(date1, date2): if not(isinstance(date1, date) or isinstance(date2, date)): raise InputError(expr = "Dates must be instances of datetime.date class") class Error(Exception): """Base class for exceptions in this module. """ pass class InputError(Error): """Exception raised for errors in parameters. """ pass def _days_30_360_main(i_year, i_month, i_day, f_year, f_month, f_day): """Base formula calculation for the numerator and denominator of day count 30/360. """ num = 360 * (f_year - i_year) + 30 * (f_month - i_month) + (f_day - i_day) den = 360 log = "[%(num)r/%(den)r]" % {'num':num, 'den':den} logger.debug(log) return num / den def _daycount_act_act_ISDA(i_date, f_date): """Return factor to apply for interests between i_date and f_date. :i_date: initial date. :f_date: final date. *i_date* and *f_date* must be instances of datetime.date class from datetime module act/act, ISDA Days in a month: actual Days in a year: actual Flavor: ISDA This method splits up the actual number of days falling in leap years and in non-leap years. The year fraction is the sum of the actual number of days falling in leap years divided by 366 and the actual number of days falling in non-leap years divided by 365. """ days_in_commons, days_in_leaps = _days_in_leap_and_common_years(i_date, f_date) if days_in_commons == 0: num = days_in_leaps den = 366 elif days_in_leaps == 0: num = days_in_commons den = 365 else: num = (366 * days_in_commons) + (365 * days_in_leaps) den = 133590 #least common multiple between 366 and 365 log = "%(f_name)r(%(i_date)r, %(f_date)r)" % {'f_name':'daycount_act_act_ISDA', 'i_date':i_date, 'f_date':f_date} logger.debug(log) log = "[%(num)r/%(den)r]" % {'num':num, 'den':den} logger.debug(log) return num / den def _daycount_act_act_Euro(i_date, f_date): """Return factor to apply for interests between i_date and f_date. :i_date: initial date. :f_date: final date. *i_date* and *f_date* must be instances of datetime.date class from the datetime module act/act, Euro, AFB Days in a month: actual Days in a year: actual This method first calculates the number of full years counting backwards from the second date. For any resulting stub periods, the numerator is the actual number of days in the period, the denominator being 365 or 366 depending on whether February 29th falls in the stub period. """ # delta = f_date - i_date # days1 = delta.days # # log = "%(f_name)r(%(i_date)r, %(f_date)r)" % {'f_name':'daycount_act_act_Euro', 'i_date':i_date, 'f_date':f_date} # logger.debug(log) # log = "[%(num)r/%(den)r]" % {'num':num, 'den':den} # logger.debug(log) # return num / den def _daycount_act_365_Fixed(i_date, f_date): """Return factor to apply for interests between i_date and f_date. :i_date: initial date. :f_date: final date. *i_date* and *f_date* must be instances of datetime.date class from the datetime module act/365, act/365 fixed Days in a month: actual Days in a year: 365 Always Flavor: Fixed This method first calculates the number of full years counting backwards from the second date. For any resulting stub periods, the numerator is the actual number of days in the period, the denominator being 365 or 366 depending on whether February 29th falls in the stub period. """ delta = f_date - i_date num = delta.days den = 365 log = "%(f_name)r(%(i_date)r, %(f_date)r)" % {'f_name':'daycount_act_365_Fixed', 'i_date':i_date, 'f_date':f_date} logger.debug(log) log = "[%(num)r/%(den)r]" % {'num':num, 'den':den} logger.debug(log) return num / den def _daycount_30_360(i_date, f_date): """Return factor to apply for interests between i_date and f_date. :i_date: initial date. :f_date: final date. *i_date* and *f_date* must be instances of datetime.date class from the datetime module Days in a month: 30 Days in a year: 360 Flavor: None """ i_year = i_date.year i_month = i_date.month i_day = i_date.day f_year = f_date.year f_month = f_date.month f_day = f_date.day log = "%(f_name)r(%(i_date)r, %(f_date)r)" % {'f_name':'daycount_30_360', 'i_date':i_date, 'f_date':f_date} logger.debug(log) factor = _days_30_360_main(i_year, i_month, i_day, f_year, f_month, f_day) return factor def _daycount_30_360_US(i_date, f_date): """Return factor to apply for interests between i_date and f_date. :i_date: initial date. :f_date: final date. *i_date* and *f_date* must be instances of datetime.date class from the datetime module Days in a month: 30 Days in a year: 360 Flavor: US """ i_year = i_date.year i_month = i_date.month i_day = i_date.day f_year = f_date.year f_month = f_date.month f_day = f_date.day if (i_date.month == 2 and _is_end_of_month(i_date)) and (f_date.month == 2 and _is_end_of_month(f_date)): f_day = 30 if (i_date.month == 2 and _is_end_of_month(i_date)): i_day = 30 if (f_day == 31) and (i_day in [30, 31]): f_day = 30 if (i_day == 31): i_day = 30 log = "%(f_name)r(%(i_date)r, %(f_date)r)" % {'f_name':'daycount_30_360_US', 'i_date':i_date, 'f_date':f_date} logger.debug(log) factor = _days_30_360_main(i_year, i_month, i_day, f_year, f_month, f_day) return factor class InterestFactor(object): """. Usage:: >>> date1 = date(2012, 2, 5) >>> date2 = date(2012, 4, 6) >>> myCounter = DayCounter(30, 360, 'fixed') >>> myCounter.count(date1, date2) >>> """ def __init__(self, dim=30, diy=360, flavor=None): """Constructor. """ self.dim = dim self.diy = diy self.flavor = flavor method = '_'.join([str(self.dim), str(self.diy), str(self.flavor)]) #try: self.factor = self._methods[method] #except KeyError as e: #pass #TODO: catch this key error def __repr__(self): """Representation. """ return "interestFactor(dim=%(dim)r, diy=%(diy)r, flavor=%(flavor)r)" % {'dim':self.dim, 'diy':self.diy, 'flavor':self.flavor} _methods = { '30_360_None': _daycount_30_360, '30_360_US': _daycount_30_360_US, 'act_act_Fixed': _daycount_act_365_Fixed, 'act_act_ISDA': _daycount_act_act_ISDA, 'act_act_Euro': _daycount_act_act_Euro, } if __name__ == '__main__': date1 = date(2012, 2, 5) date2 = date(2012, 4, 6) days360 = InterestFactor(30, 360) print(days360) print(days360.factor(date1, date2))
py
1a3a61a334af6211ae7f3f0ebee70c4b469c066f
怎样找出一个序列中出现次数最多的元素呢? 问:假设你有一个单词列表并且想找出哪个单词出现频率最高? words = [ 'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes', 'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the', 'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into', 'my', 'eyes', "you're", 'under' ] print(words) from collections import Counter word_counts = Counter(words) # 出现频率最高的3个单词 top_three = word_counts.most_common(3) print(top_three)
py
1a3a61d2a8fbb74e6ff0651530b7018d931ae31f
# %% [markdown] # ## import os import warnings import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.transforms as transforms import numpy as np import pandas as pd import seaborn as sns from joblib import Parallel, delayed from sklearn.exceptions import ConvergenceWarning from sklearn.manifold import MDS, TSNE, Isomap from sklearn.metrics import pairwise_distances from sklearn.neighbors import NearestNeighbors from sklearn.utils.testing import ignore_warnings from tqdm.autonotebook import tqdm from umap import UMAP from graspy.embed import ( AdjacencySpectralEmbed, ClassicalMDS, LaplacianSpectralEmbed, OmnibusEmbed, select_dimension, selectSVD, ) from graspy.plot import pairplot from graspy.simulations import sbm from graspy.utils import ( augment_diagonal, binarize, pass_to_ranks, symmetrize, to_laplace, ) from src.align import Procrustes from src.cluster import MaggotCluster, get_paired_inds from src.data import load_metagraph from src.graph import preprocess from src.hierarchy import signal_flow from src.io import savecsv, savefig from src.visualization import ( CLASS_COLOR_DICT, add_connections, adjplot, barplot_text, draw_networkx_nice, gridmap, matrixplot, palplot, screeplot, set_axes_equal, stacked_barplot, ) warnings.filterwarnings(action="ignore", category=ConvergenceWarning) FNAME = os.path.basename(__file__)[:-3] print(FNAME) rc_dict = { "axes.spines.right": False, "axes.spines.top": False, "axes.formatter.limits": (-3, 3), "figure.figsize": (6, 3), "figure.dpi": 100, } for key, val in rc_dict.items(): mpl.rcParams[key] = val context = sns.plotting_context(context="talk", font_scale=1, rc=rc_dict) sns.set_context(context) np.random.seed(8888) def stashfig(name, **kws): savefig(name, foldername=FNAME, save_on=True, **kws) def stashcsv(df, name, **kws): savecsv(df, name, foldername=FNAME, **kws) graph_type = "G" def plot_pairs( X, labels, model=None, left_pair_inds=None, right_pair_inds=None, equal=False ): n_dims = X.shape[1] fig, axs = plt.subplots( n_dims, n_dims, sharex=False, sharey=False, figsize=(20, 20) ) data = pd.DataFrame(data=X) data["label"] = labels for i in range(n_dims): for j in range(n_dims): ax = axs[i, j] ax.axis("off") if i < j: sns.scatterplot( data=data, x=j, y=i, ax=ax, alpha=0.7, linewidth=0, s=8, legend=False, hue="label", palette=CLASS_COLOR_DICT, ) if left_pair_inds is not None and right_pair_inds is not None: add_connections( data.iloc[left_pair_inds, j], data.iloc[right_pair_inds, j], data.iloc[left_pair_inds, i], data.iloc[right_pair_inds, i], ax=ax, ) plt.tight_layout() return fig, axs def preprocess_adjs(adjs, method="ase"): adjs = [pass_to_ranks(a) for a in adjs] adjs = [a + 1 / a.size for a in adjs] if method == "ase": adjs = [augment_diagonal(a) for a in adjs] elif method == "lse": adjs = [to_laplace(a) for a in adjs] return adjs def omni( adjs, n_components=4, remove_first=None, concat_graphs=True, concat_directed=True, method="ase", ): adjs = preprocess_adjs(adjs, method=method) omni = OmnibusEmbed(n_components=n_components, check_lcc=False, n_iter=10) embed = omni.fit_transform(adjs) if concat_directed: embed = np.concatenate( embed, axis=-1 ) # this is for left/right latent positions if remove_first is not None: embed = embed[remove_first:] if concat_graphs: embed = np.concatenate(embed, axis=0) return embed def ipsi_omni(adj, lp_inds, rp_inds, co_adj=None, n_components=4, method="ase"): ll_adj = adj[np.ix_(lp_inds, lp_inds)] rr_adj = adj[np.ix_(rp_inds, rp_inds)] ipsi_adjs = [ll_adj, rr_adj] if co_adj is not None: co_ll_adj = co_adj[np.ix_(lp_inds, lp_inds)] co_rr_adj = co_adj[np.ix_(rp_inds, rp_inds)] ipsi_adjs += [co_ll_adj, co_rr_adj] out_ipsi, in_ipsi = omni( ipsi_adjs, n_components=n_components, concat_directed=False, concat_graphs=False, method=method, ) left_embed = np.concatenate((out_ipsi[0], in_ipsi[0]), axis=1) right_embed = np.concatenate((out_ipsi[1], in_ipsi[1]), axis=1) ipsi_embed = np.concatenate((left_embed, right_embed), axis=0) return ipsi_embed def contra_omni(adj, lp_inds, rp_inds, co_adj=None, n_components=4, method="ase"): lr_adj = adj[np.ix_(lp_inds, rp_inds)] rl_adj = adj[np.ix_(rp_inds, lp_inds)] contra_adjs = [lr_adj, rl_adj] if co_adj is not None: co_lr_adj = co_adj[np.ix_(lp_inds, rp_inds)] co_rl_adj = co_adj[np.ix_(rp_inds, lp_inds)] contra_adjs += [co_lr_adj, co_rl_adj] out_contra, in_contra = omni( contra_adjs, n_components=n_components, concat_directed=False, concat_graphs=False, method=method, ) left_embed = np.concatenate((out_contra[0], in_contra[1]), axis=1) right_embed = np.concatenate((out_contra[1], in_contra[0]), axis=1) contra_embed = np.concatenate((left_embed, right_embed), axis=0) return contra_embed def lateral_omni(adj, lp_inds, rp_inds, n_components=4, method="ase"): ipsi_embed = ipsi_omni( adj, lp_inds, rp_inds, n_components=n_components, method=method ) contra_embed = contra_omni( adj, lp_inds, rp_inds, n_components=n_components, method=method ) embed = np.concatenate((ipsi_embed, contra_embed), axis=1) return embed def multi_lateral_omni(adjs, lp_inds, rp_inds, n_components=4): ipsi_adjs = [] for a in adjs: ll_adj = a[np.ix_(lp_inds, lp_inds)] rr_adj = a[np.ix_(rp_inds, rp_inds)] ipsi_adjs.append(ll_adj) ipsi_adjs.append(rr_adj) ipsi_embed = omni(ipsi_adjs, concat_graphs=False, n_components=n_components) left = [] right = [] for i, e in enumerate(ipsi_embed): if i % 2 == 0: left.append(e) else: right.append(e) left = np.concatenate(left, axis=1) right = np.concatenate(right, axis=1) ipsi_embed = np.concatenate((left, right), axis=0) contra_adjs = [] for a in adjs: lr_adj = a[np.ix_(lp_inds, rp_inds)] rl_adj = a[np.ix_(rp_inds, lp_inds)] contra_adjs.append(lr_adj) contra_adjs.append(rl_adj) contra_embed = omni(contra_adjs, concat_graphs=False, n_components=n_components) left = [] right = [] for i, e in enumerate(contra_embed): if i % 2 == 0: left.append(e) else: right.append(e) left = np.concatenate(left, axis=1) right = np.concatenate(right, axis=1) contra_embed = np.concatenate((left, right), axis=0) embed = np.concatenate((ipsi_embed, contra_embed), axis=1) return embed def reg_lateral_omni(adj, base_adj, lp_inds, rp_inds, n_components=4): base_ll_adj = base_adj[np.ix_(lp_inds, lp_inds)] base_rr_adj = base_adj[np.ix_(rp_inds, rp_inds)] ll_adj = adj[np.ix_(lp_inds, lp_inds)] rr_adj = adj[np.ix_(rp_inds, rp_inds)] ipsi_adjs = [base_ll_adj, base_rr_adj, ll_adj, rr_adj] ipsi_embed = omni(ipsi_adjs, remove_first=2, n_components=n_components) base_lr_adj = base_adj[np.ix_(lp_inds, rp_inds)] base_rl_adj = base_adj[np.ix_(rp_inds, lp_inds)] lr_adj = adj[np.ix_(lp_inds, rp_inds)] rl_adj = adj[np.ix_(rp_inds, lp_inds)] contra_adjs = [base_lr_adj, base_rl_adj, lr_adj, rl_adj] contra_embed = omni(contra_adjs, remove_first=2, n_components=n_components) embed = np.concatenate((ipsi_embed, contra_embed), axis=1) return embed def quick_embed_viewer( embed, labels=None, lp_inds=None, rp_inds=None, left_right_indexing=False ): if left_right_indexing: lp_inds = np.arange(len(embed) // 2) rp_inds = np.arange(len(embed) // 2) + len(embed) // 2 fig, axs = plt.subplots(3, 2, figsize=(20, 30)) cmds = ClassicalMDS(n_components=2) cmds_euc = cmds.fit_transform(embed) plot_df = pd.DataFrame(data=cmds_euc) plot_df["labels"] = labels plot_kws = dict( x=0, y=1, hue="labels", palette=CLASS_COLOR_DICT, legend=False, s=20, linewidth=0.5, alpha=0.7, ) ax = axs[0, 0] sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") add_connections( plot_df.iloc[lp_inds, 0], plot_df.iloc[rp_inds, 0], plot_df.iloc[lp_inds, 1], plot_df.iloc[rp_inds, 1], ax=ax, ) ax.set_title("CMDS o euclidean") cmds = ClassicalMDS(n_components=2, dissimilarity="precomputed") pdist = symmetrize(pairwise_distances(embed, metric="cosine")) cmds_cos = cmds.fit_transform(pdist) plot_df[0] = cmds_cos[:, 0] plot_df[1] = cmds_cos[:, 1] ax = axs[0, 1] sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") add_connections( plot_df.iloc[lp_inds, 0], plot_df.iloc[rp_inds, 0], plot_df.iloc[lp_inds, 1], plot_df.iloc[rp_inds, 1], ax=ax, ) ax.set_title("CMDS o cosine") tsne = TSNE(metric="euclidean") tsne_euc = tsne.fit_transform(embed) plot_df[0] = tsne_euc[:, 0] plot_df[1] = tsne_euc[:, 1] ax = axs[1, 0] sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") add_connections( plot_df.iloc[lp_inds, 0], plot_df.iloc[rp_inds, 0], plot_df.iloc[lp_inds, 1], plot_df.iloc[rp_inds, 1], ax=ax, ) ax.set_title("TSNE o euclidean") tsne = TSNE(metric="precomputed") tsne_cos = tsne.fit_transform(pdist) plot_df[0] = tsne_cos[:, 0] plot_df[1] = tsne_cos[:, 1] ax = axs[1, 1] sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") add_connections( plot_df.iloc[lp_inds, 0], plot_df.iloc[rp_inds, 0], plot_df.iloc[lp_inds, 1], plot_df.iloc[rp_inds, 1], ax=ax, ) ax.set_title("TSNE o cosine") umap = UMAP(metric="euclidean", n_neighbors=30, min_dist=1) umap_euc = umap.fit_transform(embed) plot_df[0] = umap_euc[:, 0] plot_df[1] = umap_euc[:, 1] ax = axs[2, 0] sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") add_connections( plot_df.iloc[lp_inds, 0], plot_df.iloc[rp_inds, 0], plot_df.iloc[lp_inds, 1], plot_df.iloc[rp_inds, 1], ax=ax, ) ax.set_title("UMAP o euclidean") umap = UMAP(metric="cosine", n_neighbors=30, min_dist=1) umap_cos = umap.fit_transform(embed) plot_df[0] = umap_cos[:, 0] plot_df[1] = umap_cos[:, 1] ax = axs[2, 1] sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") add_connections( plot_df.iloc[lp_inds, 0], plot_df.iloc[rp_inds, 0], plot_df.iloc[lp_inds, 1], plot_df.iloc[rp_inds, 1], ax=ax, ) ax.set_title("UMAP o cosine") def umapper(embed, metric="euclidean", n_neighbors=30, min_dist=1, **kws): umap = UMAP(metric=metric, n_neighbors=n_neighbors, min_dist=min_dist) umap_euc = umap.fit_transform(embed) plot_df = pd.DataFrame(data=umap_euc) plot_df["labels"] = labels fig, ax = plt.subplots(1, 1, figsize=(10, 10)) plot_kws = dict( x=0, y=1, hue="labels", palette=CLASS_COLOR_DICT, legend=False, s=20, linewidth=0.5, alpha=0.7, ) sns.scatterplot(data=plot_df, ax=ax, **plot_kws) ax.axis("off") left_right_indexing = True if left_right_indexing: tlp_inds = np.arange(len(embed) // 2) trp_inds = np.arange(len(embed) // 2) + len(embed) // 2 add_connections( plot_df.iloc[tlp_inds, 0], plot_df.iloc[trp_inds, 0], plot_df.iloc[tlp_inds, 1], plot_df.iloc[trp_inds, 1], ax=ax, ) return fig, ax # %% [markdown] # ## Load and preprocess data VERSION = "2020-04-23" graph_type = "G" master_mg = load_metagraph(graph_type, version="2020-04-23") mg = preprocess( master_mg, threshold=0, sym_threshold=False, remove_pdiff=True, binarize=False, weight="weight", ) meta = mg.meta degrees = mg.calculate_degrees() quant_val = np.quantile(degrees["Total edgesum"], 0.05) # remove low degree neurons idx = meta[degrees["Total edgesum"] > quant_val].index print(quant_val) mg = mg.reindex(idx, use_ids=True) # remove center neurons # FIXME idx = mg.meta[mg.meta["hemisphere"].isin(["L", "R"])].index mg = mg.reindex(idx, use_ids=True) idx = mg.meta[mg.meta["Pair"].isin(mg.meta.index)].index mg = mg.reindex(idx, use_ids=True) mg = mg.make_lcc() mg.calculate_degrees(inplace=True) meta = mg.meta meta["pair_td"] = meta["Pair ID"].map(meta.groupby("Pair ID")["Total degree"].mean()) mg = mg.sort_values(["pair_td", "Pair ID"], ascending=False) meta["inds"] = range(len(meta)) adj = mg.adj.copy() lp_inds, rp_inds = get_paired_inds(meta) left_inds = meta[meta["left"]]["inds"] print(len(mg)) # %% [markdown] # ## Plot the ipsilateral connectomes if meta["pair_td"].max() > 0: meta["pair_td"] = -meta["pair_td"] ll_adj = adj[np.ix_(lp_inds, lp_inds)] rr_adj = adj[np.ix_(rp_inds, rp_inds)] left_meta = meta.iloc[lp_inds] right_meta = meta.iloc[rp_inds] plot_kws = dict( plot_type="scattermap", sort_class="merge_class", item_order=["pair_td", "Pair ID"], colors="merge_class", palette=CLASS_COLOR_DICT, ticks=False, class_order="pair_td", sizes=(1, 1), gridline_kws=dict(linewidth=0.2, color="grey", linestyle="--"), ) plot_adjs = False if plot_adjs: fig, axs = plt.subplots(1, 2, figsize=(20, 10)) _, _, top, _ = adjplot(ll_adj, ax=axs[0], meta=left_meta, **plot_kws) top.set_title(r"L $\to$ L") _, _, top, _ = adjplot(rr_adj, ax=axs[1], meta=right_meta, **plot_kws) top.set_title(r"R $\to$ R") plt.tight_layout() stashfig("ipsilateral-adj") lr_adj = adj[np.ix_(lp_inds, rp_inds)] rl_adj = adj[np.ix_(rp_inds, lp_inds)] fig, axs = plt.subplots(1, 2, figsize=(20, 10)) _, _, top, _ = adjplot(lr_adj, ax=axs[0], meta=left_meta, **plot_kws) top.set_title(r"L $\to$ R") _, _, top, _ = adjplot(rl_adj, ax=axs[1], meta=right_meta, **plot_kws) top.set_title(r"R $\to$ L") plt.tight_layout() stashfig("contralateral-adj") # %% [markdown] # ## Load the 4-color graphs graph_types = ["Gad", "Gaa", "Gdd", "Gda"] adjs = [] for g in graph_types: temp_mg = load_metagraph(g, version=VERSION) temp_mg.reindex(mg.meta.index, use_ids=True) temp_adj = temp_mg.adj adjs.append(temp_adj) # %% [markdown] # ## simple demo of "in" vs "out" latent positions # blocks 0, 1 differ only in their inputs, not their outputs B = np.array( [ [0.1, 0.1, 0.2, 0.05], [0.1, 0.1, 0.2, 0.05], [0.35, 0.15, 0.1, 0.1], [0.1, 0.05, 0.3, 0.4], ] ) sns.heatmap(B, square=True, annot=True) sbm_sample, sbm_labels = sbm([100, 100, 100, 100], B, directed=True, return_labels=True) ase = AdjacencySpectralEmbed() out_embed, in_embed = ase.fit_transform(sbm_sample) pairplot(out_embed, sbm_labels) # don't see separation between [0, 1] pairplot(in_embed, sbm_labels) # do see separation between [0, 1] # from this we can conclude that the "right" embedding or right singular vectors are the # ones corresponding to input # (out, in) # %% [markdown] # ## Options for the embedding # - ASE and procrustes (not shown here) # - Bilateral OMNI on G, SVD # - Bilateral OMNI on each of the 4-colors, concatenated, SVD # - Bilateral OMNI on each of the 4-colors, with regularization, concatenated, SVD # - Bilateral OMNI jointly with all 4-colors n_omni_components = 8 # this is used for all of the embedings initially n_svd_components = 16 # this is for the last step def svd(X, n_components=n_svd_components): return selectSVD(X, n_components=n_components, algorithm="full")[0] # %% [markdown] # ## only contra # just_contra_embed = omni( # [full_adjs[0], full_adjs[2]], # n_components=n_omni_components, # remove_first=None, # concat_graphs=True, # concat_directed=True, # method="ase", # ) # svd_contra_embed = svd(just_contra_embed) # %% [markdown] # # Omni of contra/ipsi together full_adjs = [ adj[np.ix_(lp_inds, lp_inds)], adj[np.ix_(lp_inds, rp_inds)], adj[np.ix_(rp_inds, rp_inds)], adj[np.ix_(rp_inds, lp_inds)], ] out_embed, in_embed = omni( full_adjs, n_components=n_omni_components, remove_first=None, concat_graphs=False, concat_directed=False, method="ase", ) # ipsi out, contra out, ipsi in, contra in left_embed = np.concatenate( (out_embed[0], out_embed[1], in_embed[0], in_embed[3]), axis=1 ) right_embed = np.concatenate( (out_embed[2], out_embed[3], in_embed[2], in_embed[1]), axis=1 ) omni_naive_embed = np.concatenate((left_embed, right_embed), axis=0) ase_naive_embed = svd(omni_naive_embed) # ## # out_embed, in_embed = omni( # full_adjs, # n_components=n_omni_components, # remove_first=None, # concat_graphs=False, # concat_directed=False, # method="lse", # ) # # ipsi out, contra out, ipsi in, contra in # left_embed = np.concatenate( # (out_embed[0], out_embed[1], in_embed[0], in_embed[3]), axis=1 # ) # right_embed = np.concatenate( # (out_embed[2], out_embed[3], in_embed[2], in_embed[1]), axis=1 # ) # omni_naive_embed = np.concatenate((left_embed, right_embed), axis=0) # lse_naive_embed = svd(omni_naive_embed) # %% [markdown] # ## Bilateral OMNI on G, SVD omni_flat_embed = lateral_omni( adj, lp_inds, rp_inds, n_components=n_omni_components, method="ase" ) ase_flat_embed = svd(omni_flat_embed) # %% [markdown] # ## just compare # %% [markdown] # ## Bilateral OMNI on each of the 4-colors, concatenated, SVD omni_multi_embed = [] for a in adjs: omni_multi_embed.append( lateral_omni(a, lp_inds, rp_inds, n_components=n_omni_components) ) omni_multi_embed = np.concatenate(omni_multi_embed, axis=1) ase_multi_embed = svd(omni_multi_embed) # %% [markdown] # ## Bilateral OMNI on each of the 4-colors, with regularization, concatenated, SVD omni_reg_embed = [] for a in adjs: omni_reg_embed.append( reg_lateral_omni(a, adj, lp_inds, rp_inds, n_components=n_omni_components) ) omni_reg_embed = np.concatenate(omni_reg_embed, axis=1) ase_reg_embed = svd(omni_reg_embed) # %% [markdown] # ## Bilateral OMNI on all 4-colors adjs_and_sum = adjs + [adj] omni_joint_embed = multi_lateral_omni( adjs_and_sum, lp_inds, rp_inds, n_components=n_omni_components ) ase_joint_embed = svd(omni_joint_embed) # %% [markdown] # ## Compute neighbors at K new_lp_inds = np.arange(len(mg) // 2) new_rp_inds = np.arange(len(mg) // 2) + len(mg) // 2 def compute_neighbors_at_k(X, left_inds, right_inds, k_max=10, metric="euclidean"): nn = NearestNeighbors(radius=0, n_neighbors=k_max + 1, metric=metric) nn.fit(X) neigh_dist, neigh_inds = nn.kneighbors(X) is_neighbor_mat = np.zeros((X.shape[0], k_max), dtype=bool) for left_ind, right_ind in zip(left_inds, right_inds): left_neigh_inds = neigh_inds[left_ind] right_neigh_inds = neigh_inds[right_ind] for k in range(k_max): if right_ind in left_neigh_inds[: k + 2]: is_neighbor_mat[left_ind, k] = True if left_ind in right_neigh_inds[: k + 2]: is_neighbor_mat[right_ind, k] = True neighbors_at_k = np.sum(is_neighbor_mat, axis=0) / is_neighbor_mat.shape[0] neighbors_at_k = pd.Series(data=neighbors_at_k, index=np.arange(1, k_max + 1)) neighbors_at_k.name = "p_at_k" return neighbors_at_k # names = ["flat", "multi", "joint", "reg", "naive"] # embeds = [ # ase_flat_embed, # ase_multi_embed, # ase_joint_embed, # ase_reg_embed, # ase_naive_embed, # ] names = ["iso", "aniso", "multi"] embeds = [ase_naive_embed, ase_flat_embed, ase_multi_embed] dims = np.arange(1, 16) dfs = [] for d in dims: for name, embed in zip(names, embeds): p_at_k = compute_neighbors_at_k(embed[:, :d], new_lp_inds, new_rp_inds) neighbor_df = p_at_k.to_frame() neighbor_df.reset_index(inplace=True) neighbor_df.rename(columns={"index": "K"}, inplace=True) neighbor_df["method"] = name neighbor_df["d"] = d dfs.append(neighbor_df) neighbor_df = pd.concat(dfs, ignore_index=True) # %% [markdown] # ## Plot nearest neighbor results fig, ax = plt.subplots(1, 1, figsize=(8, 4)) k = 5 sns.lineplot( data=neighbor_df[neighbor_df["K"] == k], x="d", y="p_at_k", hue="method", style="method", # style_order=["reg", "joint", "multi", "flat"], ) ax.set_ylabel(f"P @ K = {k}") ax.set_xlabel("# dimensions") stashfig(f"p_at_k={k}_embed-iso-aniso-multi") # %% [markdown] # ## Look at the best one! (ish) new_meta = meta.iloc[np.concatenate((lp_inds, rp_inds), axis=0)].copy() labels = new_meta["merge_class"].values plot_pairs( ase_flat_embed[:, :8], labels, left_pair_inds=new_lp_inds, right_pair_inds=new_rp_inds, ) stashfig("ase-flat-pairs") quick_embed_viewer( ase_flat_embed[:, :8], labels=labels, lp_inds=new_lp_inds, rp_inds=new_rp_inds ) stashfig("ase-flat-manifold") # %% [markdown] # ## Now, try to do a similar quantification but for classes # KC # MBON # MBIN # ORN # UPN # some of the antennal lobe stuff def class_neighbors_at_k(X, labels, target, k_max=10, metric="euclidean"): nn = NearestNeighbors(radius=0, n_neighbors=k_max + 1, metric=metric) nn.fit(X) neigh_dist, neigh_inds = nn.kneighbors(X) neigh_inds = neigh_inds[:, 1:] # remove self as neighbor mask = labels == target target_inds = np.arange(len(X))[mask] target_neigh_inds = neigh_inds[mask] p_nearby = [] neighbors_in_target = np.isin(target_neigh_inds, target_inds) for k in np.arange(1, k_max + 1): p_nearby_at_k = neighbors_in_target[:, :k].sum() / (k * len(target_inds)) p_nearby.append(p_nearby_at_k) p_nearby = np.array(p_nearby) neighbor_df = pd.DataFrame(data=p_nearby, index=np.arange(1, k_max + 1)) neighbor_df.index.name = "K" neighbor_df.rename(columns={0: target}, inplace=True) return neighbor_df new_meta = meta.iloc[np.concatenate((lp_inds, rp_inds), axis=0)].copy() labels = new_meta["merge_class"].values k_max = 10 embed_df = [] for name, embed in zip(names, embeds): neighbor_df = [] for d in np.arange(1, 16): X = embed[:, :d] class1 = new_meta["class1"].values neighbors = [] for target in ["uPN", "sens-ORN"]: neighbors.append(class_neighbors_at_k(X, labels, target)) for target in ["KC", "mPN", "MBON", "MBIN"]: neighbors.append(class_neighbors_at_k(X, class1, target)) neighbors = pd.concat(neighbors, ignore_index=False, axis=1) neighbors = neighbors.reset_index() neighbors = neighbors.melt(value_name="p_at_k", var_name="class", id_vars=["K"]) neighbors["d"] = d neighbor_df.append(neighbors) neighbor_df = pd.concat(neighbor_df, axis=0) neighbor_df["method"] = name embed_df.append(neighbor_df) embed_df = pd.concat(embed_df, axis=0) # k = 5 # temp_df = embed_df[embed_df["K"] == k] # fig, axs = plt.subplots(2, 2, figsize=(20, 10), sharex=True, sharey=True) # axs = axs.ravel() # for i, name in enumerate(names): # ax = axs[i] # plot_df = temp_df[temp_df["method"] == name] # sns.lineplot(data=plot_df, x="d", y="p_at_k", hue="class", ax=ax) # ax.set_title(name) # ax.get_legend().remove() # plt.tight_layout() # ax.legend(bbox_to_anchor=(1, 1), loc="upper left") # hard to compare directly on the above # %% [markdown] # ## # fix d # one plot for each class # line for each of the embeddings k = 5 plot_df = embed_df[embed_df["K"] == k] # plot_df = plot_df[plot_df["d"] == d] classes = ["uPN", "sens-ORN", "KC", "mPN", "MBON", "MBIN"] fig, axs = plt.subplots(2, 3, figsize=(20, 10), sharex=True, sharey=True) axs = axs.ravel() for i, cell_class in enumerate(classes): ax = axs[i] temp_df = plot_df[plot_df["class"] == cell_class] sns.lineplot( data=temp_df, x="d", y="p_at_k", hue="method", ax=ax, style="method", # style_order=["reg", "joint", "multi", "flat"], ) ax.set_title(cell_class) axs[0].set_ylabel(f"Prop. @ K = {k}") axs[3].set_ylabel(f"Prop. @ K = {k}") plt.tight_layout() stashfig(f"embed-class-knn-k={k}") # %% # # Notes # I like aniso better than iso # not sure about reg or not # for sides, we have {iso, aniso} # for method, we have {lse, ase} # for color, we have {flat, multi (separate), joint (omni), reg (multi but with G)} # there seems to be no single embedding that is winning at everything. n_levels = 12 metric = "bic" bic_ratio = 1 d = 8 basename = f"aniso-omni-bic_ratio={bic_ratio}-d={d}" mc = MaggotCluster( "0", adj=adj, n_init=25, meta=new_meta, stashfig=stashfig, min_clusters=1, max_clusters=3, X=ase_flat_embed[:, :d], bic_ratio=bic_ratio, reembed=False, min_split=4, ) for i in range(n_levels): for j, node in enumerate(mc.get_lowest_level()): node.fit_candidates(show_plot=False) for j, node in enumerate(mc.get_lowest_level()): node.select_model(k=None, metric=metric) mc.collect_labels() n_levels = mc.height fig, axs = plt.subplots(1, n_levels, figsize=(10 * n_levels, 40)) for i in range(n_levels): ax = axs[i] stacked_barplot( mc.meta[f"lvl{i}_labels_side"], mc.meta["merge_class"], category_order=np.unique(mc.meta[f"lvl{i}_labels_side"].values), color_dict=CLASS_COLOR_DICT, norm_bar_width=False, ax=ax, ) ax.set_yticks([]) ax.get_legend().remove() plt.tight_layout() stashfig(f"count-barplot-lvl{i}" + basename) plt.close() fig, axs = plt.subplots(1, n_levels, figsize=(10 * n_levels, 40)) for i in range(n_levels): ax = axs[i] stacked_barplot( mc.meta[f"lvl{i}_labels_side"], mc.meta["merge_class"], category_order=np.unique(mc.meta[f"lvl{i}_labels_side"].values), color_dict=CLASS_COLOR_DICT, norm_bar_width=True, ax=ax, ) ax.set_yticks([]) ax.get_legend().remove() plt.tight_layout() stashfig(f"prop-barplot-lvl{i}" + basename) plt.close() inds = np.concatenate((lp_inds, rp_inds)) new_adj = adj[np.ix_(inds, inds)] new_meta = mc.meta new_meta["sf"] = -signal_flow(new_adj) for l in range(n_levels): fig, ax = plt.subplots(1, 1, figsize=(20, 20)) sort_class = [f"lvl{i}_labels" for i in range(l)] sort_class += [f"lvl{l}_labels_side"] adjplot( new_adj, meta=new_meta, sort_class=sort_class, item_order="merge_class", plot_type="scattermap", class_order="sf", sizes=(0.5, 1), ticks=False, colors="merge_class", ax=ax, palette=CLASS_COLOR_DICT, gridline_kws=dict(linewidth=0.2, color="grey", linestyle="--"), ) stashfig(f"adj-lvl{l}" + basename) plt.close() pairs = np.unique(new_meta["Pair ID"]) p_same_clusters = [] for l in range(n_levels): n_same = 0 for p in pairs: if new_meta[new_meta["Pair ID"] == p][f"lvl{l}_labels"].nunique() == 1: n_same += 1 p_same = n_same / len(pairs) print(p_same) p_same_clusters.append(p_same) fig, ax = plt.subplots(1, 1, figsize=(8, 4)) sns.lineplot(x=range(n_levels), y=p_same_clusters, ax=ax) sns.scatterplot(x=range(n_levels), y=p_same_clusters, ax=ax) ax.set_ylabel("P same cluster") ax.set_xlabel("Level") stashfig("p_in_same_cluster" + basename) n_clusters = [] for l in range(n_levels): n_clusters.append(new_meta[f"lvl{l}_labels"].nunique()) fig, ax = plt.subplots(1, 1, figsize=(8, 4)) sns.lineplot(x=range(n_levels), y=n_clusters, ax=ax) sns.scatterplot(x=range(n_levels), y=n_clusters, ax=ax) ax.set_ylabel("Clusters per side") ax.set_xlabel("Level") stashfig("n_cluster" + basename) size_dfs = [] for l in range(n_levels): sizes = new_meta.groupby(f"lvl{l}_labels_side").size().values sizes = pd.DataFrame(data=sizes, columns=["Size"]) sizes["Level"] = l size_dfs.append(sizes) size_df = pd.concat(size_dfs) fig, ax = plt.subplots(1, 1, figsize=(8, 4)) sns.stripplot(data=size_df, x="Level", y="Size", ax=ax, jitter=0.45, alpha=0.5) ax.set_yscale("log") stashfig("log-sizes" + basename) # %% [markdown] # ## some other kind of visualization import networkx as nx import colorcet as cc def to_minigraph( adj, labels, drop_neg=True, remove_diag=True, size_scaler=1, use_counts=False, use_weights=True, color_map=None, ): # convert the adjacency and a partition to a minigraph based on SBM probs prob_df = get_blockmodel_df( adj, labels, return_counts=use_counts, use_weights=use_weights ) if drop_neg and ("-1" in prob_df.index): prob_df.drop("-1", axis=0, inplace=True) prob_df.drop("-1", axis=1, inplace=True) if remove_diag: adj = prob_df.values adj -= np.diag(np.diag(adj)) prob_df = pd.DataFrame(data=adj, index=prob_df.index, columns=prob_df.columns) g = nx.from_pandas_adjacency(prob_df, create_using=nx.DiGraph()) uni_labels, counts = np.unique(labels, return_counts=True) # add size attribute base on number of vertices size_map = dict(zip(uni_labels, size_scaler * counts)) nx.set_node_attributes(g, size_map, name="Size") # add signal flow attribute (for the minigraph itself) mini_adj = nx.to_numpy_array(g, nodelist=uni_labels) node_signal_flow = signal_flow(mini_adj) sf_map = dict(zip(uni_labels, node_signal_flow)) nx.set_node_attributes(g, sf_map, name="Signal Flow") # add spectral properties # sym_adj = symmetrize(mini_adj) # n_components = 10 # latent = AdjacencySpectralEmbed(n_components=n_components).fit_transform(sym_adj) # for i in range(n_components): # latent_dim = latent[:, i] # lap_map = dict(zip(uni_labels, latent_dim)) # nx.set_node_attributes(g, lap_map, name=f"AdjEvec-{i}") # add spring layout properties pos = nx.spring_layout(g) spring_x = {} spring_y = {} for key, val in pos.items(): spring_x[key] = val[0] spring_y[key] = val[1] nx.set_node_attributes(g, spring_x, name="Spring-x") nx.set_node_attributes(g, spring_y, name="Spring-y") # add colors if color_map is None: color_map = dict(zip(uni_labels, cc.glasbey_light)) nx.set_node_attributes(g, color_map, name="Color") return g from src.visualization import draw_networkx_nice from src.utils import get_blockmodel_df for l in range(n_levels): labels = new_meta[f"lvl{l}_labels_side"].values # block_df = get_blockmodel_df(new_adj, labels, return_counts=False, use_weights=True) mini_g = to_minigraph(new_adj, labels, use_counts=True, use_weights=True) draw_networkx_nice( mini_g, "Spring-x", "Signal Flow", colors="Color", sizes="Size", weight_scale=1 / 1000, ) # %% from src.visualization import plot_neurons from src.pymaid import start_instance lvl = 4 uni_labels = np.unique(new_meta[f"lvl{lvl}_labels"]) start_instance() for label in uni_labels: plot_neurons(new_meta, f"lvl{lvl}_labels", label=label, barplot=True) stashfig(f"label{label}_lvl{lvl}" + basename) # %% [markdown] # ## Do the distance thing for Michael d = 12 n_pairs = len(X) // 2 X = ase_flat_embed[:, :d] new_lp_inds = np.arange(n_pairs) new_rp_inds = np.arange(n_pairs).copy() + n_pairs left_X = X[new_lp_inds] right_X = X[new_rp_inds] left_meta = meta.iloc[lp_inds] right_meta = meta.iloc[rp_inds] # get nearest right neighbor for everyone on the left def rank_neighbors(source_X, target_X, metric="euclidean"): n_target = len(target_X) n_source = len(source_X) nn = NearestNeighbors(radius=0, n_neighbors=n_target, metric=metric) nn.fit(target_X) neigh_dist, neigh_inds = nn.kneighbors(source_X) source_rank_neighbors = np.empty((n_source, n_target), dtype=int) for i in range(n_source): source_rank_neighbors[i, neigh_inds[i]] = np.arange(1, n_target + 1, dtype=int) return source_rank_neighbors left_neighbors = rank_neighbors(left_X, right_X) right_neighbors = rank_neighbors(right_X, left_X) left_df = pd.DataFrame( index=left_meta.index, columns=right_meta.index, data=left_neighbors ) stashcsv(left_df, f"left_rank_neighbors_on_right-aniso_omni-d={d}") right_df = pd.DataFrame( index=right_meta.index, columns=left_meta.index, data=right_neighbors ) stashcsv(right_df, f"right_rank_neighbors_on_right-aniso_omni-d={d}") # %% [markdown] # ## fig, ax = plt.subplots(1, 1, figsize=(8, 4)) sns.distplot( np.diag(left_neighbors), bins=np.arange(0, n_pairs, 1), kde=False, norm_hist=True ) sns.distplot( np.diag(right_neighbors), bins=np.arange(0, n_pairs, 1), kde=False, norm_hist=True ) ax.set_xlim((0, 20)) ax.set_xticks(np.arange(0, 20, 2)) # ax.xaxis.set_major_locator(plt.IndexLocator(1, 2)) # %%
py
1a3a6202e71aae4470b2d9f75e338976e4e2d5f5
""" Mask R-CNN Multi-GPU Support for Keras. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla Ideas and a small code snippets from these sources: https://github.com/fchollet/keras/issues/2436 https://medium.com/@kuza55/transparent-multi-gpu-training-on-tensorflow-with-keras-8b0016fd9012 https://github.com/avolkov1/keras_experiments/blob/master/keras_exp/multigpu/ https://github.com/fchollet/keras/blob/master/keras/utils/training_utils.py """ #import tensorflow as tf #changing as tesorflow v2 does not support place holder import tensorflow.compat as tf tf.disable_v2_behavior() import keras.backend as K import keras.layers as KL import keras.models as KM class ParallelModel(KM.Model): """Subclasses the standard Keras Model and adds multi-GPU support. It works by creating a copy of the model on each GPU. Then it slices the inputs and sends a slice to each copy of the model, and then merges the outputs together and applies the loss on the combined outputs. """ def __init__(self, keras_model, gpu_count): """Class constructor. keras_model: The Keras model to parallelize gpu_count: Number of GPUs. Must be > 1 """ self.inner_model = keras_model self.gpu_count = gpu_count merged_outputs = self.make_parallel() super(ParallelModel, self).__init__(inputs=self.inner_model.inputs, outputs=merged_outputs) def __getattribute__(self, attrname): """Redirect loading and saving methods to the inner model. That's where the weights are stored.""" if 'load' in attrname or 'save' in attrname: return getattr(self.inner_model, attrname) return super(ParallelModel, self).__getattribute__(attrname) def summary(self, *args, **kwargs): """Override summary() to display summaries of both, the wrapper and inner models.""" super(ParallelModel, self).summary(*args, **kwargs) self.inner_model.summary(*args, **kwargs) def make_parallel(self): """Creates a new wrapper model that consists of multiple replicas of the original model placed on different GPUs. """ # Slice inputs. Slice inputs on the CPU to avoid sending a copy # of the full inputs to all GPUs. Saves on bandwidth and memory. input_slices = {name: tf.split(x, self.gpu_count) for name, x in zip(self.inner_model.input_names, self.inner_model.inputs)} output_names = self.inner_model.output_names outputs_all = [] for i in range(len(self.inner_model.outputs)): outputs_all.append([]) # Run the model call() on each GPU to place the ops there for i in range(self.gpu_count): with tf.device('/gpu:%d' % i): with tf.name_scope('tower_%d' % i): # Run a slice of inputs through this replica zipped_inputs = zip(self.inner_model.input_names, self.inner_model.inputs) inputs = [ KL.Lambda(lambda s: input_slices[name][i], output_shape=lambda s: (None,) + s[1:])(tensor) for name, tensor in zipped_inputs] # Create the model replica and get the outputs outputs = self.inner_model(inputs) if not isinstance(outputs, list): outputs = [outputs] # Save the outputs for merging back together later for l, o in enumerate(outputs): outputs_all[l].append(o) # Merge outputs on CPU with tf.device('/cpu:0'): merged = [] for outputs, name in zip(outputs_all, output_names): # Concatenate or average outputs? # Outputs usually have a batch dimension and we concatenate # across it. If they don't, then the output is likely a loss # or a metric value that gets averaged across the batch. # Keras expects losses and metrics to be scalars. if K.int_shape(outputs[0]) == (): # Average m = KL.Lambda(lambda o: tf.add_n(o) / len(outputs), name=name)(outputs) else: # Concatenate m = KL.Concatenate(axis=0, name=name)(outputs) merged.append(m) return merged if __name__ == "__main__": # Testing code below. It creates a simple model to train on MNIST and # tries to run it on 2 GPUs. It saves the graph so it can be viewed # in TensorBoard. Run it as: # # python3 parallel_model.py import os import numpy as np import keras.optimizers from keras.datasets import mnist from keras.preprocessing.image import ImageDataGenerator GPU_COUNT = 2 # Root directory of the project ROOT_DIR = os.path.abspath("../") # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") def build_model(x_train, num_classes): # Reset default graph. Keras leaves old ops in the graph, # which are ignored for execution but clutter graph # visualization in TensorBoard. tf.reset_default_graph() inputs = KL.Input(shape=x_train.shape[1:], name="input_image") x = KL.Conv2D(32, (3, 3), activation='relu', padding="same", name="conv1")(inputs) x = KL.Conv2D(64, (3, 3), activation='relu', padding="same", name="conv2")(x) x = KL.MaxPooling2D(pool_size=(2, 2), name="pool1")(x) x = KL.Flatten(name="flat1")(x) x = KL.Dense(128, activation='relu', name="dense1")(x) x = KL.Dense(num_classes, activation='softmax', name="dense2")(x) return KM.Model(inputs, x, "digit_classifier_model") # Load MNIST Data (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = np.expand_dims(x_train, -1).astype('float32') / 255 x_test = np.expand_dims(x_test, -1).astype('float32') / 255 print('x_train shape:', x_train.shape) print('x_test shape:', x_test.shape) # Build data generator and model datagen = ImageDataGenerator() model = build_model(x_train, 10) # Add multi-GPU support. model = ParallelModel(model, GPU_COUNT) optimizer = keras.optimizers.SGD(lr=0.01, momentum=0.9, clipnorm=5.0) model.compile(loss='sparse_categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.summary() # Train model.fit_generator( datagen.flow(x_train, y_train, batch_size=64), steps_per_epoch=50, epochs=10, verbose=1, validation_data=(x_test, y_test), callbacks=[keras.callbacks.TensorBoard(log_dir=MODEL_DIR, write_graph=True)] )