ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
7df808f80823e9a9117d18a574c0ce73cf534bd4
import logging from unittest import mock from unittest.mock import MagicMock from django.test import TestCase from django.utils import timezone from eth_account import Account from gnosis.eth.ethereum_client import ( EthereumClient, EthereumClientProvider, EthereumNetwork, ) from ...history.tests.utils import just_test_if_mainnet_node from ...utils.redis import get_redis from ..services import PriceService, PriceServiceProvider from ..tasks import ( EthValueWithTimestamp, calculate_token_eth_price_task, fix_pool_tokens_task, ) logger = logging.getLogger(__name__) class TestTasks(TestCase): def setUp(self) -> None: PriceServiceProvider.del_singleton() get_redis().flushall() def tearDown(self) -> None: get_redis().flushall() @mock.patch( "safe_transaction_service.tokens.tasks.get_ethereum_network", return_value=EthereumNetwork.MAINNET, ) def test_fix_pool_tokens_task(self, get_network_mock: MagicMock): self.assertEqual(fix_pool_tokens_task.delay().result, 0) get_network_mock.return_value = EthereumNetwork.RINKEBY self.assertIsNone(fix_pool_tokens_task.delay().result) @mock.patch.object( PriceService, "get_token_eth_value", autospec=True, return_value=4815 ) @mock.patch.object(timezone, "now", return_value=timezone.now()) def test_calculate_token_eth_price_task( self, timezone_now_mock: MagicMock, get_token_eth_value_mock: MagicMock ): random_token_address = Account.create().address random_redis_key = Account.create().address expected = EthValueWithTimestamp( get_token_eth_value_mock.return_value, timezone_now_mock.return_value ) self.assertEqual( calculate_token_eth_price_task.delay( random_token_address, random_redis_key ).result, expected, ) # Check caching works even if we change the token_address another_token_address = Account.create().address self.assertEqual( calculate_token_eth_price_task.delay( another_token_address, random_redis_key ).result, expected, ) with self.settings(CELERY_ALWAYS_EAGER=False): random_token_address = Account.create().address random_redis_key = Account.create().address calculate_token_eth_price_task.delay(random_token_address, random_redis_key) def test_calculate_token_eth_price_task_without_mock(self): mainnet_node_url = just_test_if_mainnet_node() EthereumClientProvider.instance = EthereumClient(mainnet_node_url) dai_address = "0x6B175474E89094C44Da98b954EedeAC495271d0F" random_redis_key = Account.create().address eth_value_with_timestamp = calculate_token_eth_price_task( dai_address, random_redis_key ) self.assertGreater(eth_value_with_timestamp.eth_value, 0.0) pool_together_address = "0x334cBb5858417Aee161B53Ee0D5349cCF54514CF" random_redis_key = Account.create().address eth_value_with_timestamp = calculate_token_eth_price_task( pool_together_address, random_redis_key ) self.assertGreater(eth_value_with_timestamp.eth_value, 0.0) random_token_address = Account.create().address random_redis_key = Account.create().address eth_value_with_timestamp = calculate_token_eth_price_task( random_token_address, random_redis_key ) self.assertEqual(eth_value_with_timestamp.eth_value, 0.0) del EthereumClientProvider.instance
py
7df80a1901d396aff9b92112d89eabfa45fca959
# Copyright 2017 Palantir Technologies, Inc. import logging from pyls import hookimpl, uris log = logging.getLogger(__name__) @hookimpl def pyls_definitions(config, document, position): params = {k: v for k, v in config.plugin_settings('jedi_definition').items() if v is not None} definitions = document.jedi_script(position).goto_assignments(**params) definitions = [ d for d in definitions if d.is_definition() and d.line is not None and d.column is not None and d.module_path is not None ] return [{ 'uri': uris.uri_with(document.uri, path=d.module_path), 'range': { 'start': {'line': d.line - 1, 'character': d.column}, 'end': {'line': d.line - 1, 'character': d.column + len(d.name)} } } for d in definitions]
py
7df80b5b0095e0178986a8bf5dc07a70ef4c832c
#!/usr/bin/env python3 import psutil import datetime import time while(1): for p in psutil.process_iter(): try: cmd = " ".join(p.cmdline()) # if("sudo -S" in cmd or "id -u" in cmd or "grep root" in cmd or "grep win" in cmd): # if("nginx -c" in cmd or "nginx -s stop" in cmd): if("ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -p" in cmd or "sshpass -p" in cmd or "sshd -f /etc/ssh/sshd_test_config" in cmd or "sleep 1" in cmd): age = datetime.datetime.now() - datetime.datetime.fromtimestamp(p.create_time()) if(age.seconds > 6): try: print(cmd + " " + str(p.pid) + " " + str(age.seconds)) except UnicodeEncodeError: continue p.kill() except psutil.NoSuchProcess: continue time.sleep(2)
py
7df80b7751811a7a2c8133c67da585974e23be46
from typing import List import dgl import torch from PIL import Image from dgl.nn.pytorch import GATConv from torch import nn from torchnlp.word_to_vector.glove import GloVe from torchvision.models import resnet18 from torchvision.transforms import transforms import constants from constants import DATA_DIR, DEVICE, DUMP_DIR, GAT_HEAD, GAT_LAYER, GAT_INTER_DIM, ACT_FN, RESIDUAL class QueryEncoderExpand(nn.Module): """ Weighted average for node initialization. """ EMPTY_IMAGE = torch.zeros(3, 64, 64) transform = transforms.Compose([ transforms.CenterCrop(64), transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) def __init__(self, raw_data): super().__init__() self.raw_data = raw_data self.vocab = self.raw_data.dialog_vocab self.vocab_size = len(self.vocab) self.images = raw_data.images pretrained_embedding = self.get_pretrained_embedding() self.word_embed = nn.Embedding(self.vocab_size, 300).from_pretrained(pretrained_embedding).to(DEVICE) self.resnet = nn.Sequential(*list(resnet18(pretrained=True).children())[:-2]).to(DEVICE) # self.image_fc = nn.Linear(2048, 300).to(DEVICE) self.image_fc = nn.Linear(2048, 1024) self.text_fc = nn.Linear(300, 1024) self.sen_embed_weight = nn.Linear(300, 1) self.utt_embed_weight = nn.Linear(300, 1) self.dia_embed_weight = nn.Linear(300, 1) self.apply(self._init_weights) # The GATConv has its own initialization method. self.gat = nn.ModuleList() act_fn = { "elu": torch.nn.ELU(), "gelu": torch.nn.GELU(), }[ACT_FN] for i in range(GAT_LAYER): if i == 0: self.gat.append(GATConv(in_feats=1024, out_feats=GAT_INTER_DIM, num_heads=GAT_HEAD, feat_drop=constants.GAT_FEAT_DROPOUT, attn_drop=constants.GAT_ATT_DROPOUT, residual=RESIDUAL, activation=act_fn)) elif i < GAT_LAYER - 1: self.gat.append(GATConv(in_feats=GAT_HEAD * GAT_INTER_DIM, out_feats=GAT_INTER_DIM, feat_drop=constants.GAT_FEAT_DROPOUT, attn_drop=constants.GAT_ATT_DROPOUT, num_heads=GAT_HEAD, residual=RESIDUAL, activation=act_fn)) else: self.gat.append(GATConv(in_feats=GAT_HEAD * GAT_INTER_DIM, out_feats=512, feat_drop=constants.GAT_FEAT_DROPOUT, attn_drop=constants.GAT_ATT_DROPOUT, num_heads=1, residual=RESIDUAL, activation=None)) print(f"query encoder using DGL {self.__class__.__name__} is loaded.") print(f"query encoder parameters: layer: {GAT_LAYER}\tinter_dim: {GAT_INTER_DIM}\thead_num: {GAT_HEAD}\t" f"feature_dropout: {constants.GAT_FEAT_DROPOUT}\tatt_dropout: {constants.GAT_ATT_DROPOUT}\t" f"act_fn: {ACT_FN}, residual: {RESIDUAL}") def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=0.02) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def get_pretrained_embedding(self): pretrained_embedding = GloVe(is_include=lambda x: x in self.vocab, cache=str(DUMP_DIR / '.word_vectors_cache')) embedding_weights = torch.zeros((self.vocab_size, 300)) for i, token in enumerate(self.vocab): embedding_weights[i] = pretrained_embedding[token] return embedding_weights def forward(self, graph: dgl.DGLGraph, graph_word_num: List[int], graph_image_num: List[int], all_words: torch.Tensor, all_images: List[int], sentences: torch.Tensor, sentence_mask: torch.Tensor, utterances: torch.Tensor, utterance_mask: torch.Tensor, session_ids: torch.Tensor): all_words = all_words.to(DEVICE) sentences = sentences.to(DEVICE) sentence_mask = sentence_mask.to(DEVICE) utterances = utterances.to(DEVICE) utterance_mask = utterance_mask.to(DEVICE) session_ids = session_ids.to(DEVICE) graph = graph.to(DEVICE) all_word_embedding = self.word_embed(all_words) num_images = len(all_images) image_embeddings = [] if num_images: for image_id in all_images: image_path = DATA_DIR / 'images' / self.images[image_id] if image_id != 0 and image_path.is_file(): try: image = Image.open(image_path).convert("RGB") image = QueryEncoderExpand.transform(image) except OSError: image = QueryEncoderExpand.EMPTY_IMAGE else: image = QueryEncoderExpand.EMPTY_IMAGE image_embeddings.append(image) image_embeddings = torch.stack(image_embeddings).to(DEVICE) image_embeddings = self.resnet(image_embeddings).view(num_images, -1) image_embeddings = self.image_fc(image_embeddings) batch, sent_num, word_num = sentences.size() sentence_word_embed = self.word_embed(sentences.view(-1, word_num)).reshape(batch, sent_num, word_num, -1) # sentence_word_embed = (sentence_word_embed * sentence_mask[:, :, :, None]).sum(dim=2) valid_word_num = sentence_mask.sum(dim=2, keepdim=True) # (batch, sent_num, 1) valid_sent_num = (valid_word_num.squeeze(-1) > 0).sum(dim=1) # (batch) # valid_word_num[valid_word_num == 0] = 1. # sentence_word_embed = sentence_word_embed / valid_word_num sentence_word_weight = (self.sen_embed_weight(sentence_word_embed).squeeze(-1) + (1 - sentence_mask) * -10000.0).softmax(dim=-1) sentence_word_embed = torch.einsum("bsw,bswh->bsh", sentence_word_weight, sentence_word_embed) # (batch, utt_num=2, sent_num) utt_num, utt_sent_num = utterances.size(1), utterances.size(2) utterances = utterances.view(batch, utt_num * utt_sent_num) utterance_index = utterances[:, :, None].expand(-1, -1, sentence_word_embed.size(-1)) utterance_embed = sentence_word_embed.gather(dim=1, index=utterance_index) # (batch, utt_num * utt_sent_num, h) utterance_embed = utterance_embed.reshape(batch, utt_num, utt_sent_num, -1) # utterance_embed = (utterance_embed * utterance_mask[:, :, :, None]).sum(dim=2) # (batch, utt_num=2, h) # valid_utt_sent_num = utterance_mask.sum(dim=2, keepdim=True) # (batch, utt_num=2, 1) # valid_utt_sent_num[valid_utt_sent_num == 0] = 1. # utterance_embed = utterance_embed / valid_utt_sent_num utterance_weight = (self.utt_embed_weight(utterance_embed).squeeze(-1) + (1 - utterance_mask) * -10000.0).softmax(dim=-1) utterance_embed = torch.einsum("bsw,bswh->bsh", utterance_weight, utterance_embed) # session_embed = utterance_embed.mean(dim=1, keepdim=True) # (batch, 1, h) session_weight = self.dia_embed_weight(utterance_embed).squeeze(-1).softmax(dim=-1) session_embed = torch.einsum("bs,bsh->bh", session_weight, utterance_embed).unsqueeze(1) all_word_embedding = self.text_fc(all_word_embedding) sentence_word_embed = self.text_fc(sentence_word_embed) utterance_embed = self.text_fc(utterance_embed) session_embed = self.text_fc(session_embed) word_offset = 0 image_offset = 0 node_features = [] for batch_id in range(batch): node_features.extend([ all_word_embedding[word_offset: word_offset + graph_word_num[batch_id]], image_embeddings[image_offset: image_offset + graph_image_num[batch_id]], sentence_word_embed[batch_id, :valid_sent_num[batch_id].item()], utterance_embed[batch_id], session_embed[batch_id] ]) word_offset = word_offset + graph_word_num[batch_id] image_offset = image_offset + graph_image_num[batch_id] # print(len(node_features)) node_features = torch.cat(node_features, dim=0) num_nodes = node_features.size(0) for layer_idx in range(GAT_LAYER): node_features = self.gat[layer_idx](graph, node_features) node_features = node_features.reshape(num_nodes, -1) session_index = session_ids.unsqueeze(-1).expand(-1, node_features.size(-1)) session_hidden = node_features.gather(dim=0, index=session_index) return session_hidden
py
7df80df1f502c7a5b29d0331fcedc5fff9b7066e
# -*- coding: utf-8 -*- """ Created on Mon Jul 29 16:14:52 2019 @author: Phoenix """ import os from .Stage import Stage from .Map import Map import Global class WaterStage(Stage): def __init__(self): Stage.__init__(self) self.active = True self.id = "Test 2d Level" self.images = ["image/Wasser_1.png", "image/Wasser_2.png", "image/Wasser_3.png", "image/Wasser_4.png", "image/Level1Final.png"] self.textures = [] self.unordered_draw = True for i in self.images: index, width, height = Global.master.screen.loadImage(i) vbo, vbo_count = Global.master.screen.create_image_vbo(width,height) self.textures.append((index, width, height, vbo, vbo_count)) self.map = Map.createFromLevel(os.path.join(Global.master.dir,"image/level.bmp")) self.do_draw_vbo = False def update(self): Stage.update(self) def draw(self, screen): if self.unordered_draw: screen.disableImageDepth() #screen.drawImageSimple(self.textures[4][0],0,0,5,5,-3) #screen.drawImageSimple(self.textures[11][0],0,0,self.textures[11][1]*6/1920,self.textures[11][2]*6/1920,-4+constants.mue)#-2) screen.draw_vbo_pos((0,0,0),self.textures[4][0],self.textures[4][3],self.textures[4][4]) #screen.draw_vbo_pos((0,0,-4+constants.mue),self.textures[11][0],self.textures[11][3],self.textures[11][4]) #self.drawVbo(screen) if self.do_draw_vbo: self.map.drawVbo(screen) self.drawUnits(screen) if self.player is not None: self.player.draw(screen) if self.unordered_draw: screen.enableImageDepth()
py
7df80e0351d5ecfcf304afbc834e80d522668d11
def FourierPower(db1Trace, inSampleRate, varargin): ''' STILL NOT IMPLEMENTED IN PYTHON!!! [DBWINLENSEC, INNSTEP, BLDOPLOT]) computes the spectral power of DB1TRACE over time. DB1TRACE is divided into segments whose length is specified by DBWINLENSEC and INSAMPLERATE. INNSTEP controls the overlap between segments (e.g. if INNSTEP is 4, then segments are spaced with 1/4 of the length of the window). Defautl for DBWINLENSEC is 0.5 sec. Default for INNSTEP is 4. The power spectrum is returned in DB2POWER. In addition, the indices of the center of each segment on DB1TRACE are returned in IN1CNTRIDX. The code is adapted from the help page 'power spectral density estimate using fft' and is the same as DoFourierPowerSpectrum 2016-11-15 QP: Transcripted from DoFourierPowerSpectrum ''' switch length(varargin) case 0 dbWinLenSec = 0.5; inNStep = 5; blDoPlot = false; case 1 dbWinLenSec = varargin{1}; inNStep = 5; blDoPlot = false; case 2 dbWinLenSec = varargin{1}; inNStep = varargin{2}; blDoPlot = false; otherwise dbWinLenSec = varargin{1}; inNStep = varargin{2}; blDoPlot = varargin{3}; end %Checks that step divides the traces without remainder inWinLen = round(dbWinLenSec * inSampleRate); inStepLen = inWinLen / inNStep; if mod(inStepLen, 1) ~= 0 error('The step taken does not divide the length into segments of equal length'); end # Checks for the maximal number of chunks that can fit the trace and removes # the points that might not be used inNChunk = floor(length(db1Trace) / inStepLen); db1Trace = db1Trace(1:inNChunk * inStepLen); %Removes unused points inNChunk = inNChunk - (inNStep - 1); # Substract the mean of the the trace in order to remove the zeros frequency # componant db1Trace = db1Trace - mean(db1Trace); # Create a matrix, whose columns are samples of the signal whose length is # windowLengthSec. Successive samples (columns) are overlapping and spaced # by windowLength/step seconds. Each sample is then multiplied by a Hamming # window. in1ChunkBegIdx = ((1:inNChunk) * inStepLen) - (inStepLen - 1); in1ChunkIdx = ((1:inWinLen) - 1)'; in2ChunkIdx = repmat(in1ChunkBegIdx, inWinLen, 1) + repmat(in1ChunkIdx, 1, inNChunk); # Convolutes with a hamming taper db1Taper = hamming(size(in2ChunkIdx, 1), 'periodic'); if size(in2ChunkIdx, 2) ~= 1 db2TaperTrace = db1Trace(in2ChunkIdx).*repmat(db1Taper , 1, size(in2ChunkIdx, 2)); else db2TaperTrace = db1Trace(in2ChunkIdx)'.*repmat(db1Taper, 1, size(in2ChunkIdx, 2)); end # Computes the FFT and calculate the spectrum as the modulus of the FFT myFFT=fft(db2TaperTrace); myFFT=myFFT(1:size(db2TaperTrace,1)/2+1,:); # db2Power = (1/(inSampleRate*size(db2TaperTrace,1))).*abs(myFFT).^2; db2Power = (1/(inSampleRate*sum(db1Taper))).*abs(myFFT).^2; db2Power(2:end-1,:) = 2*db2Power(2:end-1,:); # Gets the central index of each window in1CntrIdx = ceil(median(in2ChunkIdx)); # Plots the result if needed if blDoPlot dbTraceLenSec = length(db1Trace)/inSampleRate; inTopFreq = 120; figure imagesc(dbWinLenSec/2: dbWinLenSec/inNStep : dbTraceLenSec-(dbWinLenSec/2), 0:1/dbWinLenSec:inTopFreq, ... 10*log10(db2Power(1:inTopFreq*dbWinLenSec+1,:))); xlabel('Time (s)') ylabel('Frequency (Hz)') set(gca, 'YDir', 'normal') colorbar end return db2Power, in1CntrIdx
py
7df80ec01245a7fe820c79d5879458c4cd0a93cb
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Bring in all of the public TensorFlow interface into this module.""" from __future__ import absolute_import as _absolute_import from __future__ import division as _division from __future__ import print_function as _print_function import os as _os # pylint: disable=g-bad-import-order from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import from tensorflow.python.tools import component_api_helper as _component_api_helper _component_api_helper.package_hook( parent_package_str=__name__, child_package_str=('tensorflow_estimator.python.estimator.api.estimator')) # API IMPORTS PLACEHOLDER from tensorflow.python.platform import flags # pylint: disable=g-import-not-at-top app.flags = flags # pylint: disable=undefined-variable
py
7df80fad1fe0523af3db0524bcd75243bbfab325
"""Methods to deal with IUPAC encode bases.""" IUPAC_BASES = ( "A", "C", "T", "G", "U", "R", "Y", "S", "W", "K", "M", "B", "D", "H", "V", "N") def complement(base: str) -> (str): """ Complement the base with respect to the IUPAC code. :param base: the base to complement :return: the complemented base """ # assert base in IUPAC_BASES if base == 'A': return 'T' elif base == 'T': return 'A' elif base == 'G': return 'C' elif base == 'C': return 'G' elif base == 'U': return 'A' elif base == 'N': return 'N' elif base == 'R': return 'Y' elif base == 'Y': return 'R' elif base == 'W': return 'S' elif base == 'S': return 'W' elif base == 'K': return 'M' elif base == 'M': return 'K' elif base == 'B': # CGT return 'V' # GCT elif base == 'D': # AGT return 'H' # TCA elif base == 'H': # ACT return 'D' # TGA elif base == 'V': # ACG return 'B' # TGC else: raise ValueError( "base {0} is not present in the IUPAC alphabet".format( base)) def reverse_complement(seq: str) -> (str): """ Reverse and complement a sequence. :param seq: the sequence to reverse complement :return: the reverse complemented sequence """ retval = [complement(b) for b in seq] retval.reverse() return ''.join(retval) def to_regexp(seq: str) -> (str): """ Convert IUPAC to regular expresions. Decodes a sequence which is IUPAC and convert this to a regular expression friendly sequence. :param seq: the sequence to encode :return: the regular expression """ # convert IUPAC bases seq = seq.replace('R', '[A,G]') seq = seq.replace('Y', '[C,T]') seq = seq.replace('S', '[G,C]') seq = seq.replace('W', '[A,T]') seq = seq.replace('K', '[G,T]') seq = seq.replace('M', '[A,C]') seq = seq.replace('B', '[C,G,T]') seq = seq.replace('D', '[A,G,T]') seq = seq.replace('H', '[A,C,T]') seq = seq.replace('V', '[A,C,G]') seq = seq.replace('N', '.') # return the sequence return seq def expand_iupac(base: str, fill_n: bool=False) -> (str): """ Expand the IUPAC base :param base: the IUPAC base to expand :param fill_n: should we fill N or leave it empty :return: a string with all the primary bases that are encoded by the IUPAC bases """ if base == "N": if not fill_n: return "" else: return "ACGT" elif base == "V": return "ACG" elif base == "H": return "ACT" elif base == "D": return "AGT" elif base == "B": return "CGT" elif base == "M": return "AC" elif base == "K": return "GT" elif base == "S": return "GC" elif base == "W": return "AT" elif base == "R": return "AG" elif base == "Y": return "CT" else: return base def to_list(seq: str, fill_n: bool= False) -> (list): """Convert a sequence to a list.""" retval = [] for base in seq: retval.append(expand_iupac(base, fill_n)) return retval
py
7df80fd928104c53b70dae35d414475dfb821c58
""" WSGI config for automated_survey project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application from whitenoise.django import DjangoWhiteNoise os.environ.setdefault("DJANGO_SETTINGS_MODULE", "twilio_sample_project.settings.production") application = get_wsgi_application() application = DjangoWhiteNoise(application)
py
7df8109c5f21035cc8abbbb9e6126b80966945ea
from flask import Flask, render_template #fá render template from markupsafe import escape #Listi fyrir frettir á fréttasíðu frettir = [ ["0","Latur og kæru­laus","Wim Kieft, fyrr­ver­andi landsliðsmaður Hol­lands í knatt­spyrnu, skaut föst­um skot­um að Virgil van Dijk, varn­ar­manni Li­verpool, í viðtali við hol­lenska miðil­inn De Tel­egra­af á dög­un­um. Kieft er 57 ára gam­all í dag en hann lék með liðum á borð við Ajax, Tor­ino, PSV og Bordeaux á sín­um ferli og þá lék hann 42 lands­leiki fyr­ir Hol­land frá 1981 til 1993. Van Dijk virk­ar eins og hann sé með haus­inn ein­hversstaðar allt ann­arsstaðar en hann á að vera,“ sagði Kieft í sam­tali við hol­lenska miðil­inn.\nHann hag­ar sér eins og út­brunn­in stjarna, bæði með Li­verpool og hol­lenska landsliðinu og mér finnst hann ekki leggja nærri því jafn mikið á sig og liðsfé­lag­ar hans gera í leikj­um. Hann er latur og kæru­laus í þokka­bót og hleyp­ur oft á tíðum frá bolta­mann­in­um í stað þess að gefa sig all­an í tæk­ling­arn­ar.\nÞað tók miðvörðinn lang­an tíma að kom­ast í fremstu röð en hann hef­ur verið einn sá besti und­an­far­in tvö tíma­bil. Hann má ekki hætta núna og þarf að halda áfram að vera gagn­rýn­inn á sjálf­an sig. Hann þarf að stíga upp og það þarf að hrista hann dug­lega því hann hef­ur verið langt frá sínu besta í fyrstu tveim­ur leikj­um tíma­bils­ins með Li­verpool,“ bætti Kieft við.","Höfundur"], ["1","Helgi Björns tek­ur við Borg­inni","Þau stórtíðindi ber­ast úr veit­inga­geir­an­um að sjálf­ur Helgi Björns sé að taka við rekstri á veit­inga­rými Hót­els Borg­ar en þar er meðal ann­ars að finna hinn forn­fræga Gyllta sal. Helgi grein­ir frá þessu í helgar­blaði Frétta­blaðsins en þar seg­ist hann ekki hafa geta skor­ast und­an þegar tæki­færið bauðst. Hann hyggst, að eig­in sögn, hefja Borg­ina aft­ur til fyrri dýrðar ásamt Guðfinni Karls­syni veit­inga­manni. Það verði dansað á ný í Gyllta saln­um og vænt­an­lega boðið upp á ít­alsk­an mat með.","Höfundur"], ["2","Safn­plata með lög­um Ragga Bjarna kom­in út","Í dag kom út safn­plata sem inni­held­ur 45 lög í flutn­ingi Ragn­ars Bjarna­son­ar frá glæsi­leg­um 65 ára ferli hans. Plat­an ber titil­inn Þannig týn­ist tím­inn: Vin­sæl­ustu lög Ragga Bjarna. 22. sept­em­ber er fæðing­ar­dag­ur Ragn­ars en hann hefði orðið 86 ára í dag. Ragn­ar lést þann 25. fe­brú­ar á þessu ári 85 ára að aldri. Plat­an verður fyrst um sinn aðgengi­leg á Spotify og öðrum streym­isveit­um en þegar nær dreg­ur jól­um kem­ur hún út á vínyl og geisladiski.","Höfundur"], ["3","Karl kall­ar eft­ir Mars­hall-aðstoð við um­hverfið","Karl Bretaprins kall­ar eft­ir því að heim­ur­inn setji sig í stríðsstell­ing­ar til þess að tak­ast á við lofts­lags­vána. Í ávarpi sínu á lofts­lagsviku New York-borg­ar sagði Karl að sú yf­ir­vof­andi hætta sem lofts­lags­vá­in skapaði, sem og tap líf­fræðilegs fjöl­breyti­leika, myndi áhrif kór­ónu­veirufar­ald­urs­ins að engu gera.","Höfundur"] ] app = Flask(__name__) @app.route("/") def home(): return render_template("index.html") @app.route("/a-hluti") def ahluti(): return render_template("kennitala.html") @app.route("/b-hluti") def bhluti(): return render_template("frettir.html", frettir=frettir) @app.route("/frett/<int:id>") def frett(id): return render_template("frett.html",frett=frettir[id],nr=id) @app.route("/ktala/<kt>") #seinni kt kemur fra kennitala template def ktalan(kt): # setjum kt inn i þettana streng summa = 0 for item in kt: summa = summa + int(item) #þurfum að breita í int því allt er strengur enþá return render_template("ktsum.html",kt=kt,summa=summa) # skilar bæði kt og summu @app.errorhandler(404) def pagenotfound(error): return render_template("pagenotfound.html"), 404 @app.errorhandler(500) def servererror(error): return render_template("servererror.html"), 500 if __name__ == '__main__': app.run(debug=True, use_reloader=True)
py
7df8112ef7ae37e8c0fe74403968b99d05eae439
from datetime import date maior = 0 menor = 0 ano = date.today().year for c in range(1, 8): dnasc = int(input('Em que ano nasceu a {}ª pessoa? - '.format(c))) if dnasc + 18 >= ano: maior += 1 else: menor += 1 print('\nAo todo tivemos {} maiores de idade e {} menores de idade'.format(maior, menor))
py
7df81181b92260e10cce0a9c26cbd321f1904733
# -*- encoding: utf-8 -*- # # Copyright © 2020 Mergify SAS # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import httpx import urllib3 from mergify_engine import logs LOG = logs.getLogger(__name__) RETRY = urllib3.Retry( total=None, redirect=3, connect=5, read=5, status=5, backoff_factor=0.2, status_forcelist=list(range(500, 599)) + [429], method_whitelist=[ "HEAD", "TRACE", "GET", "PUT", "OPTIONS", "DELETE", "POST", "PATCH", ], raise_on_status=False, ) DEFAULT_CLIENT_OPTIONS = { "headers": { "Accept": "application/vnd.github.machine-man-preview+json", "User-Agent": "Mergify/Python", }, "trust_env": False, } class HTTPClientSideError(httpx.HTTPError): @property def message(self): # TODO(sileht): do something with errors and documentation_url when present # https://developer.github.com/v3/#client-errors return self.response.json()["message"] @property def status_code(self): return self.response.status_code class HTTPNotFound(HTTPClientSideError): pass httpx.HTTPClientSideError = HTTPClientSideError httpx.HTTPNotFound = HTTPNotFound STATUS_CODE_TO_EXC = {404: HTTPNotFound} class Client(httpx.Client): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # httpx doesn't support retries yet, but the sync client uses urllib3 like request # https://github.com/encode/httpx/blob/master/httpx/_dispatch/urllib3.py#L105 real_urlopen = self.dispatch.pool.urlopen def _mergify_patched_urlopen(*args, **kwargs): kwargs["retries"] = RETRY return real_urlopen(*args, **kwargs) self.dispatch.pool.urlopen = _mergify_patched_urlopen def request(self, method, url, *args, **kwargs): LOG.debug("http request start", method=method, url=url) try: r = super().request(method, url, *args, **kwargs) r.raise_for_status() return r except httpx.HTTPError as e: if e.response and 400 <= e.response.status_code < 500: exc_class = STATUS_CODE_TO_EXC.get( e.response.status_code, HTTPClientSideError ) message = e.args[0] gh_message = e.response.json().get("message") if gh_message: message = f"{message}\nGitHub details: {gh_message}" raise exc_class( message, *e.args[1:], request=e.request, response=e.response, ) raise finally: LOG.debug("http request end", method=method, url=url)
py
7df8121f7f3480c7426c56ed10a2649420e712c2
#!/usr/bin/python3 # -*-coding:utf-8-*- # 输入相关 # Python提供了一个input(),可以让用户输入字符串,并存放到一个变量里 name = input() print(name) name1 = input("请输入您的姓名:") print(name1) ## 练习:求正方形的面积 ## 练习:求长方形的面积
py
7df8128b9d26dc81b30208fa240554c3c123e669
# Copyright 2016-2020 Blue Marble Analytics LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from builtins import str from collections import OrderedDict from importlib import import_module import os.path import sys import unittest from tests.common_functions import create_abstract_model, \ add_components_and_load_data from tests.project.operations.common_functions import \ get_project_operational_timepoints TEST_DATA_DIRECTORY = \ os.path.join(os.path.dirname(__file__), "..", "..", "..", "test_data") # Import prerequisite modules PREREQUISITE_MODULE_NAMES = [ "temporal.operations.timepoints", "temporal.operations.horizons", "temporal.investment.periods", "geography.load_zones", "geography.spinning_reserves_balancing_areas", "project", "project.capacity.capacity"] NAME_OF_MODULE_BEING_TESTED = \ "project.operations.reserves.spinning_reserves" IMPORTED_PREREQ_MODULES = list() for mdl in PREREQUISITE_MODULE_NAMES: try: imported_module = import_module("." + str(mdl), package='gridpath') IMPORTED_PREREQ_MODULES.append(imported_module) except ImportError: print("ERROR! Module " + str(mdl) + " not found.") sys.exit(1) # Import the module we'll test try: MODULE_BEING_TESTED = import_module("." + NAME_OF_MODULE_BEING_TESTED, package='gridpath') except ImportError: print("ERROR! Couldn't import module " + NAME_OF_MODULE_BEING_TESTED + " to test.") class TestLFReservesUpProvision(unittest.TestCase): """ """ def test_add_model_components(self): """ Test that there are no errors when adding model components :return: """ create_abstract_model(prereq_modules=IMPORTED_PREREQ_MODULES, module_to_test=MODULE_BEING_TESTED, test_data_dir=TEST_DATA_DIRECTORY, subproblem="", stage="" ) def test_load_model_data(self): """ Test that data are loaded with no errors :return: """ add_components_and_load_data(prereq_modules=IMPORTED_PREREQ_MODULES, module_to_test=MODULE_BEING_TESTED, test_data_dir=TEST_DATA_DIRECTORY, subproblem="", stage="" ) def test_data_loaded_correctly(self): """ Test that the data loaded are as expected :return: """ m, data = add_components_and_load_data( prereq_modules=IMPORTED_PREREQ_MODULES, module_to_test=MODULE_BEING_TESTED, test_data_dir=TEST_DATA_DIRECTORY, subproblem="", stage="" ) instance = m.create_instance(data) # Set: SPINNING_RESERVES_PROJECTS expected_projects = sorted([ "Gas_CCGT", "Gas_CCGT_New", "Gas_CCGT_New_Binary", "Gas_CCGT_z2", "Battery", "Battery_Binary", "Battery_Specified", "Hydro", "Hydro_NonCurtailable" ]) actual_projects = sorted([ prj for prj in instance.SPINNING_RESERVES_PROJECTS ]) self.assertListEqual(expected_projects, actual_projects) # Param: spinning_reserves_zone expected_reserves_zone = OrderedDict(sorted( {"Gas_CCGT": "Zone1", "Gas_CCGT_New": "Zone1", "Gas_CCGT_New_Binary": "Zone1", "Gas_CCGT_z2": "Zone2", "Battery": "Zone1", "Battery_Binary": "Zone1", "Battery_Specified": "Zone1", "Hydro": "Zone1", "Hydro_NonCurtailable": "Zone1"}.items() ) ) actual_reserves_zone = OrderedDict(sorted( {prj: instance.spinning_reserves_zone[prj] for prj in instance.SPINNING_RESERVES_PROJECTS}.items() ) ) self.assertDictEqual(expected_reserves_zone, actual_reserves_zone) # Set: SPINNING_RESERVES_PRJ_OPR_TMPS expected_prj_op_tmps = sorted( get_project_operational_timepoints(expected_projects) ) actual_prj_op_tmps = sorted([ (prj, tmp) for (prj, tmp) in instance.SPINNING_RESERVES_PRJ_OPR_TMPS ]) self.assertListEqual(expected_prj_op_tmps, actual_prj_op_tmps) # Param: spinning_reserves_derate (defaults to 1 if not specified) expected_derate = OrderedDict(sorted( {"Battery": 1, "Battery_Binary": 1, "Battery_Specified": 0.5, "Gas_CCGT": 1, "Gas_CCGT_New": 1, "Gas_CCGT_New_Binary": 1, "Gas_CCGT_z2": 1, "Hydro": 1, "Hydro_NonCurtailable": 1}.items() ) ) actual_derate = OrderedDict(sorted( {prj: instance.spinning_reserves_derate[prj] for prj in instance.SPINNING_RESERVES_PROJECTS}.items() ) ) self.assertDictEqual(expected_derate, actual_derate) # Param: spinning_reserves_reserve_to_energy_adjustment # (defaults to 0 if not specified) expected_adjustment = OrderedDict(sorted( {"Zone1": 0.1, "Zone2": 0}.items() ) ) actual_adjustment = OrderedDict(sorted( {z: instance. spinning_reserves_reserve_to_energy_adjustment[z] for z in instance.SPINNING_RESERVES_ZONES}.items() ) ) self.assertDictEqual(expected_adjustment, actual_adjustment) if __name__ == "__main__": unittest.main()
py
7df8132f20b85002920fb13ea28a0a3f8fc1b955
#! /usr/bin/python2 # # Copyright (c) 2017 Intel Corporation # # SPDX-License-Identifier: Apache-2.0 # # pylint: disable = missing-docstring import os import re import commonl.testing import tcfl.tc import tcfl.tl srcdir = os.path.dirname(__file__) ttbd = commonl.testing.test_ttbd(config_files = [ os.path.join(srcdir, "conf_00_lib.py"), os.path.join(srcdir, "conf_zephyr_tests.py"), os.path.join(srcdir, "conf_zephyr_tests3.py"), os.path.join(srcdir, "conf_07_zephyr.py"), ]) tcfl.tc.target_c.extension_register(tcfl.app_zephyr.zephyr) if not tcfl.app.driver_valid(tcfl.app_zephyr.app_zephyr.__name__): tcfl.app.driver_add(tcfl.app_zephyr.app_zephyr) @tcfl.tc.tags(**tcfl.tl.zephyr_tags()) @tcfl.tc.target( ttbd.url_spec + " and zephyr_board", app_zephyr = os.path.join(os.environ['ZEPHYR_BASE'], "samples", "hello_world")) class _01_simple(tcfl.tc.tc_c): """ Expect to find Hello World in the most simple way """ # app_zephyr provides start() methods start the targets @staticmethod def eval(target): target.expect("Hello World! %s" % target.bsp, # In the multiple BSP simulation we have, each # BSP prints to a different console console = target.bsp) @tcfl.tc.tags(**tcfl.tl.zephyr_tags()) @tcfl.tc.target( ttbd.url_spec + " and zephyr_board", app_zephyr = os.path.join(os.environ['ZEPHYR_BASE'], "samples", "hello_world")) class _02_expecter_loop(tcfl.tc.tc_c): """ Expect to find Hello World but by setting hooks and running the expecter loop, which shall return a pass exception when all the expectations are met. """ @staticmethod def setup(target): target.on_console_rx("Hello World! %s" % target.bsp, 20, console = target.kws.get('console', None)) # app_zephyr provides start() methods start the targets def eval(self): self.expecter.run() @tcfl.tc.tags(**tcfl.tl.zephyr_tags()) @tcfl.tc.target( ttbd.url_spec + " and zephyr_board", app_zephyr = os.path.join(os.environ['ZEPHYR_BASE'], "samples", "hello_world")) @tcfl.tc.target( ttbd.url_spec + " and zephyr_board", app_zephyr = os.path.join(os.environ['ZEPHYR_BASE'], "samples", "hello_world")) class _03_multi_bsp_expecter_loop(tcfl.tc.tc_c): """ With a special multi-BSP target we defined in the configuration, try to run multiple Hello Worlds on each BSP and ensure we find them when running the expectation loop. """ @staticmethod def setup(target, target1): for t in target, target1: t.on_console_rx("Hello World! %s" % t.bsp_model, 20, console = t.kws.get('console', None)) # app_zephyr provides start() methods start the targets def eval(self): self.expecter.run() @tcfl.tc.tags(**tcfl.tl.zephyr_tags()) @tcfl.tc.target( ttbd.url_spec + " and zephyr_board", app_zephyr = { 'arm': os.path.join(os.environ['ZEPHYR_BASE'], "samples", "hello_world") }) class _03_multi_bsp_only_one_bsp(tcfl.tc.tc_c): """ With a multi-BSP target, we run only in one and the rest get stubbed automatically. We see nothing in the output of the others. """ @staticmethod def setup(target): for bsp in target.bsps_all: if bsp == 'arm': continue # Any output on the other BSPs means the stub is not being silent target.on_console_rx(re.compile(".+"), result = 'fail', timeout = None, # Each BSP has a console named after it console = bsp) @staticmethod def eval(target): target.expect("Hello World! arm") @tcfl.tc.tags(**tcfl.tl.zephyr_tags()) @tcfl.tc.target( ttbd.url_spec + " and zephyr_board", app_zephyr = dict( x86 = os.path.join(os.environ['ZEPHYR_BASE'], "samples", "hello_world"), arm = os.path.join(os.environ['ZEPHYR_BASE'], "samples", "hello_world"), nios2 = os.path.join(os.environ['ZEPHYR_BASE'], "samples", "hello_world"), ) ) class _04_multi_bsp_three_hello_world(tcfl.tc.tc_c): """ With a special three-BSP target we defined in the configuration, try to run multiple Hello Worlds on each BSP and ensure we find them when running the expectation loop. """ @staticmethod def setup(target): for bsp in target.bsps_all: target.bsp_set(bsp) target.on_console_rx("Hello World! %s" % target.bsp, 20, console = bsp) def eval(self): self.expecter.run()
py
7df813a8d5b6593beca8ca4c7d4ff5bcba421515
from pymongo import MongoClient from pymongo.errors import DuplicateKeyError from app import bcrypt import os def main(): # Connect to the DB connection = MongoClient(os.getenv("DB_URL"), 27017) db = connection["drfms"] collection = db['users'] # Ask for data to store user = raw_input("Enter your username: ") password = raw_input("Enter your password: ") pass_hash = bcrypt.generate_password_hash(password) # Insert the user in the DB try: collection.insert({"_id": user, "password": pass_hash}) print "User created." except DuplicateKeyError: print "User already present in DB." if __name__ == '__main__': main()
py
7df813fa685bc7de2fcc80f25e96e9d3416d125b
import tkinter as tk from .templates import templates from .game.questions import questions class GameScreen: def __init__(self, mainframe, root): self.mainframe = mainframe self.start_card_loop() self.main_menu = root def start_card_loop(self): templates.clear_frame(self.mainframe) # TODO: Função de gerar um card loop sem tempo e sem loop, fodase self.generate_question_card( questions["1"]["enun"], questions["1"]["alts"], # questions["1"]["corr"] ) # TODO: make a beautiful card generator def generate_question_card(self, enun, alts): self.quest_enun = templates.template_label( self.mainframe, enun, (0, 0) ) self.alt_a = templates.template_card_button( self.mainframe, alts["a"], (0.0153, 0.2775) ) self.alt_b = templates.template_card_button( self.mainframe, alts["b"], (0.0153, 0.6565) ) self.alt_c = templates.template_card_button( self.mainframe, alts["c"], (0.71, 0.2775) ) self.alt_a = templates.template_card_button( self.mainframe, alts["d"], (0.71, 0.6565) ) def exit_game_screen(self, event): self.main_menu.config_main_menu()
py
7df814f1d1c851a1a6d70b0d54fdb2438134a494
# /* # # MIT License # # Copyright (c) 2021 AI4Finance # # Author: Berend Gort # # Year: 2021 # # GitHub_link_author: https://github.com/Burntt # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import threading import time from datetime import datetime, timedelta import alpaca_trade_api as tradeapi import numpy as np import pandas as pd import torch from finrl_meta.data_processors.ccxt import CCXTProcessor class AlpacaPaperTradingMultiCrypto(): def __init__(self, ticker_list, time_interval, drl_lib, agent, cwd, net_dim, state_dim, action_dim, API_KEY, API_SECRET, API_BASE_URL, tech_indicator_list, max_stock=1e2, latency=None): # load agent self.drl_lib = drl_lib if agent != 'ppo': raise ValueError('Agent input is NOT supported yet.') if drl_lib == 'elegantrl': from elegantrl.agent import AgentPPO # load agent try: agent = AgentPPO() agent.init(net_dim, state_dim, action_dim) agent.save_or_load_agent(cwd=cwd, if_save=False) self.act = agent.act self.device = agent.device except: raise ValueError('Fail to load agent!') # connect to Alpaca trading API try: self.alpaca = tradeapi.REST(API_KEY, API_SECRET, API_BASE_URL, 'v2') print('Connected to Alpaca API!') except: raise ValueError('Fail to connect Alpaca. Please check account info and internet connection.') # CCXT uses different time_interval than Alpaca (confusing I know) self.CCTX_time_interval = time_interval # read trading time interval if self.CCTX_time_interval == '1m': self.time_interval = 60 elif self.CCTX_time_interval == '1h': self.time_interval = 60 ** 2 elif self.CCTX_time_interval == '1d': self.time_interval = 60 ** 2 * 24 else: raise ValueError('Time interval input is NOT supported yet.') # read trading settings self.tech_indicator_list = tech_indicator_list self.max_stock = max_stock self.previous_candles = 250 self.lookback = 1 self.action_dim = action_dim self.action_decimals = 2 # initialize account self.stocks = np.asarray([0] * len(ticker_list)) # stocks holding self.stocks_cd = np.zeros_like(self.stocks) self.cash = None # cash record self.stocks_df = pd.DataFrame(self.stocks, columns=['stocks'], index=ticker_list) self.asset_list = [] self.price = np.asarray([0] * len(ticker_list)) stockUniverse = [] for stock in ticker_list: stock = stock.replace("USDT", "USD") stockUniverse.append(stock) self.ticker_list = ticker_list self.stockUniverse = stockUniverse self.equities = [] def test_latency(self, test_times=10): total_time = 0 for _ in range(test_times): time0 = time.time() self.get_state() time1 = time.time() temp_time = time1 - time0 total_time += temp_time latency = total_time / test_times print('latency for data processing: ', latency) return latency def run(self): orders = self.alpaca.list_orders(status="open") for order in orders: self.alpaca.cancel_order(order.id) while True: print('\n' + '#################### NEW CANDLE ####################') print('#################### NEW CANDLE ####################' + '\n') trade = threading.Thread(target=self.trade) trade.start() trade.join() last_equity = float(self.alpaca.get_account().last_equity) cur_time = time.time() self.equities.append([cur_time, last_equity]) time.sleep(self.time_interval) def trade(self): # Get state state = self.get_state() # Get action if self.drl_lib != 'elegantrl': raise ValueError('The DRL library input is NOT supported yet. Please check your input.') with torch.no_grad(): s_tensor = torch.as_tensor((state,), device=self.device) a_tensor = self.act(s_tensor) action = a_tensor.detach().cpu().numpy()[0] action = (action * self.max_stock).astype(float) print('\n' + 'ACTION: ', action, '\n') # Normalize action action_norm_vector = [] for price in self.price: print('PRICE: ', price) x = math.floor(math.log(price, 10)) - 2 print('MAG: ', x) action_norm_vector.append(1 / ((10) ** x)) print('NORM VEC: ', action_norm_vector) for i in range(self.action_dim): norm_vector_i = action_norm_vector[i] action[i] = action[i] * norm_vector_i print('\n' + 'NORMALIZED ACTION: ', action, '\n') # Trade self.stocks_cd += 1 min_action = 10 ** -(self.action_decimals) # stock_cd for index in np.where(action < -min_action)[0]: # sell_index: sell_num_shares = min(self.stocks[index], -action[index]) qty = abs(float(sell_num_shares)) qty = round(qty, self.action_decimals) print('SELL, qty:', qty) respSO = [] tSubmitOrder = threading.Thread(target=self.submitOrder(qty, self.stockUniverse[index], 'sell', respSO)) tSubmitOrder.start() tSubmitOrder.join() self.cash = float(self.alpaca.get_account().cash) self.stocks_cd[index] = 0 for index in np.where(action > min_action)[0]: # buy_index: tmp_cash = max(self.cash, 0) print('current cash:', tmp_cash) # Adjusted part to accept decimal places up to two buy_num_shares = min(tmp_cash / self.price[index], abs(float(action[index]))) qty = abs(float(buy_num_shares)) qty = round(qty, self.action_decimals) print('BUY, qty:', qty) respSO = [] tSubmitOrder = threading.Thread(target=self.submitOrder(qty, self.stockUniverse[index], 'buy', respSO)) tSubmitOrder.start() tSubmitOrder.join() self.cash = float(self.alpaca.get_account().cash) self.stocks_cd[index] = 0 print('Trade finished') def get_state(self): datetime_today = datetime.today() if self.CCTX_time_interval == '1m': start_date = (datetime_today - timedelta(minutes=self.previous_candles)).strftime("%Y%m%d %H:%M:%S") end_date = datetime.today().strftime("%Y%m%d %H:%M:%S") elif self.CCTX_time_interval == '1h': start_date = (datetime_today - timedelta(hours=self.previous_candles)).strftime("%Y%m%d %H:%M:%S") end_date = datetime.today().strftime("%Y%m%d %H:%M:%S") elif self.CCTX_time_interval == '1d': start_date = (datetime_today - timedelta(days=self.previous_candles)).strftime("%Y%m%d %H:%M:%S") end_date = datetime.today().strftime("%Y%m%d %H:%M:%S") print('fetching latest ' + str(self.previous_candles) + ' candles..') CCXT_instance = CCXTProcessor() CCXT_instance.download_data(self.ticker_list, start_date, end_date, self.CCTX_time_interval) CCXT_instance.add_technical_indicators(self.ticker_list, self.tech_indicator_list) price_array, tech_array, _ = CCXT_instance.df_to_ary(self.ticker_list, self.tech_indicator_list) self.price_array = price_array self.tech_array = tech_array print('downloaded candles..') positions = self.alpaca.list_positions() stocks = [0] * len(self.stockUniverse) for position in positions: ind = self.stockUniverse.index(position.symbol) stocks[ind] = (abs(int(float(position.qty)))) stocks = np.asarray(stocks, dtype=float) cash = float(self.alpaca.get_account().cash) self.cash = cash self.stocks = stocks # latest price and tech arrays self.price = price_array[-1] # Stack cash and stocks state = np.hstack((self.cash * 2 ** -18, self.stocks * 2 ** -3)) for i in range(self.lookback): tech_i = self.tech_array[-1 - i] normalized_tech_i = tech_i * 2 ** -15 state = np.hstack((state, normalized_tech_i)).astype(np.float32) print('\n' + 'STATE:') print(state) return state def submitOrder(self, qty, stock, side, resp): if (qty > 0): try: self.alpaca.submit_order(stock, qty, side, "market", "day") print("Market order of | " + str(qty) + " " + stock + " " + side + " | completed.") resp.append(True) except Exception as e: print('ALPACA API ERROR: ', e) print("Order of | " + str(qty) + " " + stock + " " + side + " | did not go through.") resp.append(False) else: print("Quantity is 0, order of | " + str(qty) + " " + stock + " " + side + " | not completed.") resp.append(True) @staticmethod def sigmoid_sign(ary, thresh): def sigmoid(x): return 1 / (1 + np.exp(-x * np.e)) - 0.5 return sigmoid(ary / thresh) * thresh
py
7df8153772ed3ef72f01930a8c1a02791e938b89
#!/usr/bin/env python3 # === IMPORTS === import logging import os import redpipe import unittest from inovonics.cloud.datastore import InoRedis # === GLOBALS === logging.basicConfig(level=logging.DEBUG) # === FUNCTIONS === # === CLASSES === class TestCasesInoRedis(unittest.TestCase): def __init__(self, *args, **kwargs): self.logger = logging.getLogger(type(self).__name__) super().__init__(*args, **kwargs) def setUp(self): self.redis_host = os.getenv('REDIS_HOST', 'localhost') self.redis_port = os.getenv('REDIS_PORT', 6379) self.redis_db = os.getenv('REDIS_DB', 0) def test_connect_to_db(self): # Connect to the database dstore = InoRedis(host=self.redis_host, port=self.redis_port, db=self.redis_db) # Flush the database dstore.redis.flushdb() # Write a value to a key dstore.redis.set('TESTKEY', 'TESTVALUE') # Read the value back from the key test_value = dstore.redis.get('TESTKEY').decode('utf-8') # Compare the values to make sure everything is happy self.logger.debug("test_value: %s, type: %s", test_value, type(test_value)) self.assertEqual(test_value, 'TESTVALUE') # Flush the database dstore.redis.flushdb() # Force deletion of the dstore object (to force garbage collection). This is due to an issue on the Travis-CI # environment of instantiating the next test before the current test is garbage collected. del dstore def test_connect_redpipe(self): # Connect to the database dstore = InoRedis(host=self.redis_host, port=self.redis_port, db=self.redis_db) # Flush the database dstore.redis.flushdb() # Add an item with a redpipe pipeline with redpipe.autoexec() as pipe: pipe.set('TESTKEY2', 'TESTVALUE2') # Get the item with without a pipeline test_value2 = None with redpipe.autoexec() as pipe: test_value2 = pipe.get('TESTKEY2') test_value2 = test_value2.decode('utf-8') # Compare the values to make sure everything is happy self.logger.debug("test_value2: %s, type: %s", test_value2, type(test_value2)) self.assertEqual(test_value2, 'TESTVALUE2') # Flush the database dstore.redis.flushdb() # Force deletion of the dstore object (to force garbage collection). This is due to an issue on the Travis-CI # environment of instantiating the next test before the current test is garbage collected. del dstore def tearDown(self): pass # === MAIN === if __name__ == '__main__': # THIS SCRIPT SHOULD NEVER BE CALLED DIRECTLY # Call from the base directory of the package with the following command: # python3 -m unittest tests.<name_of_module>.<name_of_class> pass
py
7df81558867659e7bff96f08eb2567151af00b3f
# https://github.com/hplgit/web4sciapps/blob/master/doc/src/web4sa/src-web4sa/apps/flask_apps/vib1/controller.py from model import InputForm from flask import Flask, render_template, request from compute import compute app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def index(): form = InputForm(request.form) if request.method == 'POST' and form.validate(): result = compute(form.input_expression.data, form.inference_rule.data, form.feed.data, form.output_expression.data) else: result = None return render_template('view.html', form=form, result=result) if __name__ == '__main__': app.run(debug=True)
py
7df8169fd2d73a04f3231c8cafb12541d6acc004
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (c) 2010 Cloud.com, Inc # Copyright 2012 Cloudbase Solutions Srl / Pedro Navarro Perez # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Utility class for VM related operations on Hyper-V. """ import sys import time import uuid if sys.platform == 'win32': import wmi from oslo.config import cfg from nova import exception from nova.openstack.common.gettextutils import _ from nova.openstack.common import log as logging from nova.virt.hyperv import constants CONF = cfg.CONF LOG = logging.getLogger(__name__) # TODO(alexpilotti): Move the exceptions to a separate module # TODO(alexpilotti): Add more domain exceptions class HyperVException(exception.NovaException): def __init__(self, message=None): super(HyperVException, self).__init__(message) # TODO(alexpilotti): Add a storage exception base class class VHDResizeException(HyperVException): def __init__(self, message=None): super(HyperVException, self).__init__(message) class HyperVAuthorizationException(HyperVException): def __init__(self, message=None): super(HyperVException, self).__init__(message) class UnsupportedConfigDriveFormatException(HyperVException): def __init__(self, message=None): super(HyperVException, self).__init__(message) class VMUtils(object): # These constants can be overridden by inherited classes _PHYS_DISK_RES_SUB_TYPE = 'Microsoft Physical Disk Drive' _DISK_RES_SUB_TYPE = 'Microsoft Synthetic Disk Drive' _DVD_RES_SUB_TYPE = 'Microsoft Synthetic DVD Drive' _IDE_DISK_RES_SUB_TYPE = 'Microsoft Virtual Hard Disk' _IDE_DVD_RES_SUB_TYPE = 'Microsoft Virtual CD/DVD Disk' _IDE_CTRL_RES_SUB_TYPE = 'Microsoft Emulated IDE Controller' _SCSI_CTRL_RES_SUB_TYPE = 'Microsoft Synthetic SCSI Controller' _SETTINGS_DEFINE_STATE_CLASS = 'Msvm_SettingsDefineState' _VIRTUAL_SYSTEM_SETTING_DATA_CLASS = 'Msvm_VirtualSystemSettingData' _RESOURCE_ALLOC_SETTING_DATA_CLASS = 'Msvm_ResourceAllocationSettingData' _PROCESSOR_SETTING_DATA_CLASS = 'Msvm_ProcessorSettingData' _MEMORY_SETTING_DATA_CLASS = 'Msvm_MemorySettingData' _STORAGE_ALLOC_SETTING_DATA_CLASS = _RESOURCE_ALLOC_SETTING_DATA_CLASS _SYNTHETIC_ETHERNET_PORT_SETTING_DATA_CLASS = \ 'Msvm_SyntheticEthernetPortSettingData' _AFFECTED_JOB_ELEMENT_CLASS = "Msvm_AffectedJobElement" _vm_power_states_map = {constants.HYPERV_VM_STATE_ENABLED: 2, constants.HYPERV_VM_STATE_DISABLED: 3, constants.HYPERV_VM_STATE_REBOOT: 10, constants.HYPERV_VM_STATE_PAUSED: 32768, constants.HYPERV_VM_STATE_SUSPENDED: 32769} def __init__(self, host='.'): self._enabled_states_map = dict((v, k) for k, v in self._vm_power_states_map.iteritems()) if sys.platform == 'win32': self._init_hyperv_wmi_conn(host) self._conn_cimv2 = wmi.WMI(moniker='//%s/root/cimv2' % host) def _init_hyperv_wmi_conn(self, host): self._conn = wmi.WMI(moniker='//%s/root/virtualization' % host) def list_instances(self): """Return the names of all the instances known to Hyper-V.""" vm_names = [v.ElementName for v in self._conn.Msvm_ComputerSystem(['ElementName'], Caption="Virtual Machine")] return vm_names def get_vm_summary_info(self, vm_name): vm = self._lookup_vm_check(vm_name) vs_man_svc = self._conn.Msvm_VirtualSystemManagementService()[0] vmsettings = vm.associators( wmi_association_class=self._SETTINGS_DEFINE_STATE_CLASS, wmi_result_class=self._VIRTUAL_SYSTEM_SETTING_DATA_CLASS) settings_paths = [v.path_() for v in vmsettings] #See http://msdn.microsoft.com/en-us/library/cc160706%28VS.85%29.aspx (ret_val, summary_info) = vs_man_svc.GetSummaryInformation( [constants.VM_SUMMARY_NUM_PROCS, constants.VM_SUMMARY_ENABLED_STATE, constants.VM_SUMMARY_MEMORY_USAGE, constants.VM_SUMMARY_UPTIME], settings_paths) if ret_val: raise HyperVException(_('Cannot get VM summary data for: %s') % vm_name) si = summary_info[0] memory_usage = None if si.MemoryUsage is not None: memory_usage = long(si.MemoryUsage) up_time = None if si.UpTime is not None: up_time = long(si.UpTime) enabled_state = self._enabled_states_map[si.EnabledState] summary_info_dict = {'NumberOfProcessors': si.NumberOfProcessors, 'EnabledState': enabled_state, 'MemoryUsage': memory_usage, 'UpTime': up_time} return summary_info_dict def _lookup_vm_check(self, vm_name): vm = self._lookup_vm(vm_name) if not vm: raise exception.NotFound(_('VM not found: %s') % vm_name) return vm def _lookup_vm(self, vm_name): vms = self._conn.Msvm_ComputerSystem(ElementName=vm_name) n = len(vms) if n == 0: return None elif n > 1: raise HyperVException(_('Duplicate VM name found: %s') % vm_name) else: return vms[0] def vm_exists(self, vm_name): return self._lookup_vm(vm_name) is not None def _get_vm_setting_data(self, vm): vmsettings = vm.associators( wmi_result_class=self._VIRTUAL_SYSTEM_SETTING_DATA_CLASS) # Avoid snapshots return [s for s in vmsettings if s.SettingType == 3][0] def _set_vm_memory(self, vm, vmsetting, memory_mb, dynamic_memory_ratio): mem_settings = vmsetting.associators( wmi_result_class=self._MEMORY_SETTING_DATA_CLASS)[0] max_mem = long(memory_mb) mem_settings.Limit = max_mem if dynamic_memory_ratio > 1: mem_settings.DynamicMemoryEnabled = True # Must be a multiple of 2 reserved_mem = min( long(max_mem / dynamic_memory_ratio) >> 1 << 1, max_mem) else: mem_settings.DynamicMemoryEnabled = False reserved_mem = max_mem mem_settings.Reservation = reserved_mem # Start with the minimum memory mem_settings.VirtualQuantity = reserved_mem self._modify_virt_resource(mem_settings, vm.path_()) def _set_vm_vcpus(self, vm, vmsetting, vcpus_num, limit_cpu_features): procsetting = vmsetting.associators( wmi_result_class=self._PROCESSOR_SETTING_DATA_CLASS)[0] vcpus = long(vcpus_num) procsetting.VirtualQuantity = vcpus procsetting.Reservation = vcpus procsetting.Limit = 100000 # static assignment to 100% procsetting.LimitProcessorFeatures = limit_cpu_features self._modify_virt_resource(procsetting, vm.path_()) def update_vm(self, vm_name, memory_mb, vcpus_num, limit_cpu_features, dynamic_memory_ratio): vm = self._lookup_vm_check(vm_name) vmsetting = self._get_vm_setting_data(vm) self._set_vm_memory(vm, vmsetting, memory_mb, dynamic_memory_ratio) self._set_vm_vcpus(vm, vmsetting, vcpus_num, limit_cpu_features) def check_admin_permissions(self): if not self._conn.Msvm_VirtualSystemManagementService(): msg = _("The Windows account running nova-compute on this Hyper-V" " host doesn't have the required permissions to create or" " operate the virtual machine.") raise HyperVAuthorizationException(msg) def create_vm(self, vm_name, memory_mb, vcpus_num, limit_cpu_features, dynamic_memory_ratio): """Creates a VM.""" vs_man_svc = self._conn.Msvm_VirtualSystemManagementService()[0] LOG.debug(_('Creating VM %s'), vm_name) vm = self._create_vm_obj(vs_man_svc, vm_name) vmsetting = self._get_vm_setting_data(vm) LOG.debug(_('Setting memory for vm %s'), vm_name) self._set_vm_memory(vm, vmsetting, memory_mb, dynamic_memory_ratio) LOG.debug(_('Set vCPUs for vm %s'), vm_name) self._set_vm_vcpus(vm, vmsetting, vcpus_num, limit_cpu_features) def _create_vm_obj(self, vs_man_svc, vm_name): vs_gs_data = self._conn.Msvm_VirtualSystemGlobalSettingData.new() vs_gs_data.ElementName = vm_name (job_path, ret_val) = vs_man_svc.DefineVirtualSystem([], None, vs_gs_data.GetText_(1))[1:] self.check_ret_val(ret_val, job_path) return self._lookup_vm_check(vm_name) def get_vm_scsi_controller(self, vm_name): vm = self._lookup_vm_check(vm_name) vmsettings = vm.associators( wmi_result_class=self._VIRTUAL_SYSTEM_SETTING_DATA_CLASS) rasds = vmsettings[0].associators( wmi_result_class=self._RESOURCE_ALLOC_SETTING_DATA_CLASS) res = [r for r in rasds if r.ResourceSubType == self._SCSI_CTRL_RES_SUB_TYPE][0] return res.path_() def _get_vm_ide_controller(self, vm, ctrller_addr): vmsettings = vm.associators( wmi_result_class=self._VIRTUAL_SYSTEM_SETTING_DATA_CLASS) rasds = vmsettings[0].associators( wmi_result_class=self._RESOURCE_ALLOC_SETTING_DATA_CLASS) return [r for r in rasds if r.ResourceSubType == self._IDE_CTRL_RES_SUB_TYPE and r.Address == str(ctrller_addr)][0].path_() def get_vm_ide_controller(self, vm_name, ctrller_addr): vm = self._lookup_vm_check(vm_name) return self._get_vm_ide_controller(vm, ctrller_addr) def get_attached_disks_count(self, scsi_controller_path): volumes = self._conn.query("SELECT * FROM %(class_name)s " "WHERE ResourceSubType = " "'%(res_sub_type)s' AND " "Parent = '%(parent)s'" % {"class_name": self._RESOURCE_ALLOC_SETTING_DATA_CLASS, 'res_sub_type': self._PHYS_DISK_RES_SUB_TYPE, 'parent': scsi_controller_path.replace("'", "''")}) return len(volumes) def _get_new_setting_data(self, class_name): return self._conn.query("SELECT * FROM %s WHERE InstanceID " "LIKE '%%\\Default'" % class_name)[0] def _get_new_resource_setting_data(self, resource_sub_type, class_name=None): if class_name is None: class_name = self._RESOURCE_ALLOC_SETTING_DATA_CLASS return self._conn.query("SELECT * FROM %(class_name)s " "WHERE ResourceSubType = " "'%(res_sub_type)s' AND " "InstanceID LIKE '%%\\Default'" % {"class_name": class_name, "res_sub_type": resource_sub_type})[0] def attach_ide_drive(self, vm_name, path, ctrller_addr, drive_addr, drive_type=constants.IDE_DISK): """Create an IDE drive and attach it to the vm.""" vm = self._lookup_vm_check(vm_name) ctrller_path = self._get_vm_ide_controller(vm, ctrller_addr) if drive_type == constants.IDE_DISK: res_sub_type = self._DISK_RES_SUB_TYPE elif drive_type == constants.IDE_DVD: res_sub_type = self._DVD_RES_SUB_TYPE drive = self._get_new_resource_setting_data(res_sub_type) #Set the IDE ctrller as parent. drive.Parent = ctrller_path drive.Address = drive_addr #Add the cloned disk drive object to the vm. new_resources = self._add_virt_resource(drive, vm.path_()) drive_path = new_resources[0] if drive_type == constants.IDE_DISK: res_sub_type = self._IDE_DISK_RES_SUB_TYPE elif drive_type == constants.IDE_DVD: res_sub_type = self._IDE_DVD_RES_SUB_TYPE res = self._get_new_resource_setting_data(res_sub_type) #Set the new drive as the parent. res.Parent = drive_path res.Connection = [path] #Add the new vhd object as a virtual hard disk to the vm. self._add_virt_resource(res, vm.path_()) def create_scsi_controller(self, vm_name): """Create an iscsi controller ready to mount volumes.""" vm = self._lookup_vm_check(vm_name) scsicontrl = self._get_new_resource_setting_data( self._SCSI_CTRL_RES_SUB_TYPE) scsicontrl.VirtualSystemIdentifiers = ['{' + str(uuid.uuid4()) + '}'] self._add_virt_resource(scsicontrl, vm.path_()) def attach_volume_to_controller(self, vm_name, controller_path, address, mounted_disk_path): """Attach a volume to a controller.""" vm = self._lookup_vm_check(vm_name) diskdrive = self._get_new_resource_setting_data( self._PHYS_DISK_RES_SUB_TYPE) diskdrive.Address = address diskdrive.Parent = controller_path diskdrive.HostResource = [mounted_disk_path] self._add_virt_resource(diskdrive, vm.path_()) def set_nic_connection(self, vm_name, nic_name, vswitch_conn_data): nic_data = self._get_nic_data_by_name(nic_name) nic_data.Connection = [vswitch_conn_data] vm = self._lookup_vm_check(vm_name) self._modify_virt_resource(nic_data, vm.path_()) def _get_nic_data_by_name(self, name): return self._conn.Msvm_SyntheticEthernetPortSettingData( ElementName=name)[0] def create_nic(self, vm_name, nic_name, mac_address): """Create a (synthetic) nic and attach it to the vm.""" #Create a new nic new_nic_data = self._get_new_setting_data( self._SYNTHETIC_ETHERNET_PORT_SETTING_DATA_CLASS) #Configure the nic new_nic_data.ElementName = nic_name new_nic_data.Address = mac_address.replace(':', '') new_nic_data.StaticMacAddress = 'True' new_nic_data.VirtualSystemIdentifiers = ['{' + str(uuid.uuid4()) + '}'] #Add the new nic to the vm vm = self._lookup_vm_check(vm_name) self._add_virt_resource(new_nic_data, vm.path_()) def set_vm_state(self, vm_name, req_state): """Set the desired state of the VM.""" vm = self._lookup_vm_check(vm_name) (job_path, ret_val) = vm.RequestStateChange(self._vm_power_states_map[req_state]) #Invalid state for current operation (32775) typically means that #the VM is already in the state requested self.check_ret_val(ret_val, job_path, [0, 32775]) LOG.debug(_("Successfully changed vm state of %(vm_name)s " "to %(req_state)s"), {'vm_name': vm_name, 'req_state': req_state}) def _get_disk_resource_disk_path(self, disk_resource): return disk_resource.Connection def get_vm_storage_paths(self, vm_name): vm = self._lookup_vm_check(vm_name) (disk_resources, volume_resources) = self._get_vm_disks(vm) volume_drives = [] for volume_resource in volume_resources: drive_path = volume_resource.HostResource[0] volume_drives.append(drive_path) disk_files = [] for disk_resource in disk_resources: disk_files.extend( [c for c in self._get_disk_resource_disk_path(disk_resource)]) return (disk_files, volume_drives) def _get_vm_disks(self, vm): vmsettings = vm.associators( wmi_result_class=self._VIRTUAL_SYSTEM_SETTING_DATA_CLASS) rasds = vmsettings[0].associators( wmi_result_class=self._STORAGE_ALLOC_SETTING_DATA_CLASS) disk_resources = [r for r in rasds if r.ResourceSubType in [self._IDE_DISK_RES_SUB_TYPE, self._IDE_DVD_RES_SUB_TYPE]] volume_resources = [r for r in rasds if r.ResourceSubType == self._PHYS_DISK_RES_SUB_TYPE] return (disk_resources, volume_resources) def destroy_vm(self, vm_name): vm = self._lookup_vm_check(vm_name) vs_man_svc = self._conn.Msvm_VirtualSystemManagementService()[0] #Remove the VM. Does not destroy disks. (job_path, ret_val) = vs_man_svc.DestroyVirtualSystem(vm.path_()) self.check_ret_val(ret_val, job_path) def check_ret_val(self, ret_val, job_path, success_values=[0]): if ret_val == constants.WMI_JOB_STATUS_STARTED: return self._wait_for_job(job_path) elif ret_val not in success_values: raise HyperVException(_('Operation failed with return value: %s') % ret_val) def _wait_for_job(self, job_path): """Poll WMI job state and wait for completion.""" job = self._get_wmi_obj(job_path) while job.JobState == constants.WMI_JOB_STATE_RUNNING: time.sleep(0.1) job = self._get_wmi_obj(job_path) if job.JobState != constants.WMI_JOB_STATE_COMPLETED: job_state = job.JobState if job.path().Class == "Msvm_ConcreteJob": err_sum_desc = job.ErrorSummaryDescription err_desc = job.ErrorDescription err_code = job.ErrorCode raise HyperVException(_("WMI job failed with status " "%(job_state)d. Error details: " "%(err_sum_desc)s - %(err_desc)s - " "Error code: %(err_code)d") % {'job_state': job_state, 'err_sum_desc': err_sum_desc, 'err_desc': err_desc, 'err_code': err_code}) else: (error, ret_val) = job.GetError() if not ret_val and error: raise HyperVException(_("WMI job failed with status " "%(job_state)d. Error details: " "%(error)s") % {'job_state': job_state, 'error': error}) else: raise HyperVException(_("WMI job failed with status " "%d. No error " "description available") % job_state) desc = job.Description elap = job.ElapsedTime LOG.debug(_("WMI job succeeded: %(desc)s, Elapsed=%(elap)s"), {'desc': desc, 'elap': elap}) return job def _get_wmi_obj(self, path): return wmi.WMI(moniker=path.replace('\\', '/')) def _clone_wmi_obj(self, wmi_class, wmi_obj): """Clone a WMI object.""" cl = getattr(self._conn, wmi_class) # get the class newinst = cl.new() #Copy the properties from the original. for prop in wmi_obj._properties: if prop == "VirtualSystemIdentifiers": strguid = [] strguid.append(str(uuid.uuid4())) newinst.Properties_.Item(prop).Value = strguid else: prop_value = wmi_obj.Properties_.Item(prop).Value newinst.Properties_.Item(prop).Value = prop_value return newinst def _add_virt_resource(self, res_setting_data, vm_path): """Adds a new resource to the VM.""" vs_man_svc = self._conn.Msvm_VirtualSystemManagementService()[0] res_xml = [res_setting_data.GetText_(1)] (job_path, new_resources, ret_val) = vs_man_svc.AddVirtualSystemResources(res_xml, vm_path) self.check_ret_val(ret_val, job_path) return new_resources def _modify_virt_resource(self, res_setting_data, vm_path): """Updates a VM resource.""" vs_man_svc = self._conn.Msvm_VirtualSystemManagementService()[0] (job_path, ret_val) = vs_man_svc.ModifyVirtualSystemResources( ResourceSettingData=[res_setting_data.GetText_(1)], ComputerSystem=vm_path) self.check_ret_val(ret_val, job_path) def _remove_virt_resource(self, res_setting_data, vm_path): """Removes a VM resource.""" vs_man_svc = self._conn.Msvm_VirtualSystemManagementService()[0] res_path = [res_setting_data.path_()] (job_path, ret_val) = vs_man_svc.RemoveVirtualSystemResources(res_path, vm_path) self.check_ret_val(ret_val, job_path) def take_vm_snapshot(self, vm_name): vm = self._lookup_vm_check(vm_name) vs_man_svc = self._conn.Msvm_VirtualSystemManagementService()[0] (job_path, ret_val, snp_setting_data) = vs_man_svc.CreateVirtualSystemSnapshot(vm.path_()) self.check_ret_val(ret_val, job_path) job_wmi_path = job_path.replace('\\', '/') job = wmi.WMI(moniker=job_wmi_path) snp_setting_data = job.associators( wmi_result_class=self._VIRTUAL_SYSTEM_SETTING_DATA_CLASS)[0] return snp_setting_data.path_() def remove_vm_snapshot(self, snapshot_path): vs_man_svc = self._conn.Msvm_VirtualSystemManagementService()[0] (job_path, ret_val) = vs_man_svc.RemoveVirtualSystemSnapshot( snapshot_path) self.check_ret_val(ret_val, job_path) def detach_vm_disk(self, vm_name, disk_path): vm = self._lookup_vm_check(vm_name) physical_disk = self._get_mounted_disk_resource_from_path(disk_path) if physical_disk: self._remove_virt_resource(physical_disk, vm.path_()) def _get_mounted_disk_resource_from_path(self, disk_path): physical_disks = self._conn.query("SELECT * FROM %(class_name)s " "WHERE ResourceSubType = '%(res_sub_type)s'" % {"class_name": self._RESOURCE_ALLOC_SETTING_DATA_CLASS, 'res_sub_type': self._PHYS_DISK_RES_SUB_TYPE}) for physical_disk in physical_disks: if physical_disk.HostResource: if physical_disk.HostResource[0].lower() == disk_path.lower(): return physical_disk def get_mounted_disk_by_drive_number(self, device_number): mounted_disks = self._conn.query("SELECT * FROM Msvm_DiskDrive " "WHERE DriveNumber=" + str(device_number)) if len(mounted_disks): return mounted_disks[0].path_() def get_controller_volume_paths(self, controller_path): disks = self._conn.query("SELECT * FROM %(class_name)s " "WHERE ResourceSubType = '%(res_sub_type)s' " "AND Parent='%(parent)s'" % {"class_name": self._RESOURCE_ALLOC_SETTING_DATA_CLASS, "res_sub_type": self._PHYS_DISK_RES_SUB_TYPE, "parent": controller_path}) disk_data = {} for disk in disks: if disk.HostResource: disk_data[disk.path().RelPath] = disk.HostResource[0] return disk_data def enable_vm_metrics_collection(self, vm_name): raise NotImplementedError(_("Metrics collection is not supported on " "this version of Hyper-V"))
py
7df81739c4f14759efd6d7c85a7e8b4020f6de7d
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pyre-strict from typing import Any import libcst as cst from libcst import parse_statement from libcst._nodes.tests.base import CSTNodeTest from libcst.helpers import ensure_type from libcst.metadata import CodeRange from libcst.testing.utils import data_provider class GlobalConstructionTest(CSTNodeTest): @data_provider( ( # Single global statement {"node": cst.Global((cst.NameItem(cst.Name("a")),)), "code": "global a"}, # Multiple entries in global statement { "node": cst.Global( (cst.NameItem(cst.Name("a")), cst.NameItem(cst.Name("b"))) ), "code": "global a, b", }, # Whitespace rendering test { "node": cst.Global( ( cst.NameItem( cst.Name("a"), comma=cst.Comma( whitespace_before=cst.SimpleWhitespace(" "), whitespace_after=cst.SimpleWhitespace(" "), ), ), cst.NameItem(cst.Name("b")), ), whitespace_after_global=cst.SimpleWhitespace(" "), ), "code": "global a , b", "expected_position": CodeRange((1, 0), (1, 15)), }, ) ) def test_valid(self, **kwargs: Any) -> None: self.validate_node(**kwargs) @data_provider( ( # Validate construction { "get_node": lambda: cst.Global(()), "expected_re": "A Global statement must have at least one NameItem", }, # Validate whitespace handling { "get_node": lambda: cst.Global( (cst.NameItem(cst.Name("a")),), whitespace_after_global=cst.SimpleWhitespace(""), ), "expected_re": "Must have at least one space after 'global' keyword", }, # Validate comma handling { "get_node": lambda: cst.Global( (cst.NameItem(cst.Name("a"), comma=cst.Comma()),) ), "expected_re": "The last NameItem in a Global cannot have a trailing comma", }, # Validate paren handling { "get_node": lambda: cst.Global( ( cst.NameItem( cst.Name( "a", lpar=(cst.LeftParen(),), rpar=(cst.RightParen(),) ) ), ) ), "expected_re": "Cannot have parens around names in NameItem", }, ) ) def test_invalid(self, **kwargs: Any) -> None: self.assert_invalid(**kwargs) class GlobalParsingTest(CSTNodeTest): @data_provider( ( # Single global statement {"node": cst.Global((cst.NameItem(cst.Name("a")),)), "code": "global a"}, # Multiple entries in global statement { "node": cst.Global( ( cst.NameItem( cst.Name("a"), comma=cst.Comma(whitespace_after=cst.SimpleWhitespace(" ")), ), cst.NameItem(cst.Name("b")), ) ), "code": "global a, b", }, # Whitespace rendering test { "node": cst.Global( ( cst.NameItem( cst.Name("a"), comma=cst.Comma( whitespace_before=cst.SimpleWhitespace(" "), whitespace_after=cst.SimpleWhitespace(" "), ), ), cst.NameItem(cst.Name("b")), ), whitespace_after_global=cst.SimpleWhitespace(" "), ), "code": "global a , b", }, ) ) def test_valid(self, **kwargs: Any) -> None: self.validate_node( parser=lambda code: ensure_type( parse_statement(code), cst.SimpleStatementLine ).body[0], **kwargs, )
py
7df817ce2491199a5dc90dcfdd47f252ee8d46e0
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. import os import sys import django if os.getenv("READTHEDOCS", default=False) == "True": sys.path.insert(0, os.path.abspath("..")) os.environ["DJANGO_READ_DOT_ENV_FILE"] = "True" os.environ["USE_DOCKER"] = "no" else: sys.path.insert(0, os.path.abspath("..")) os.environ["DATABASE_URL"] = "sqlite:///readthedocs.db" os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.local") django.setup() # -- Project information ----------------------------------------------------- project = "FinalProject" copyright = """2022, Daniel Roy Greenfeld""" author = "Daniel Roy Greenfeld" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.napoleon", ] # Add any paths that contain templates here, relative to this directory. # templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "alabaster" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ["_static"]
py
7df8187163aa4888aea8d2019c043b3881631dae
#!/usr/bin/python # # The MIT License (MIT) # # Copyright (c) 2015 Piotr Minkina <projects[i.am.spammer]@piotrminkina.pl> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from os import path from types import FunctionType class FilterModule(object): """ Common pathname manipulations """ def filters(self): get = path.__dict__.get return {'path_' + name: get(name) for name in dir(path) if isinstance(get(name), FunctionType)}
py
7df818ab48d7e589a2f667f5369251d813965b49
""" Calculating the loss with Categorical Cross Entropy Associated with YT NNFS tutorial: https://www.youtube.com/watch?v=dEXPMQXoiLc """ import math softmax_output = [0.7, 0.1, 0.2] target_output = [1, 0, 0] loss = -(math.log(softmax_output[0]) * target_output[0] + math.log(softmax_output[1]) * target_output[1] + math.log(softmax_output[2]) * target_output[2]) print(loss) print(-math.log(0.7)) print(-math.log(0.5))
py
7df8192736e12829b8c28c9f260858d36e667227
import pathlib import subprocess import click class ContextObj(): def __init__(self, pkgname, release, architecture): self._base = pathlib.Path.cwd() self.pkgname = pkgname or self._base.name self.release = release self.architecture = architecture def setup(self): if self.release is None: err = ('Undefined release.\n\nSet the release either with the ' '"--release" flag or by setting the environment variable ' 'WOCK.\n\nExample:\nexport WOCK=el6\n') raise click.ClickException(err) mockdir = pathlib.Path('/etc/mock') pattern = '{}?{}.cfg'.format(self.release, self.architecture) configs = list(mockdir.glob(pattern)) if len(configs) == 0: raise click.ClickException('no matching mock configs found') if len(configs) > 1: err = 'multiple matching mock configs found' for config in configs: err += '\n' err += config.as_posix() raise click.ClickException(err) self._mockcfg = configs[0] self.mockcfg = self._mockcfg.as_posix() self.root = self._mockcfg.stem def build_setup(self): self._sources = self._base / 'SOURCES' if not self._sources.is_dir(): self._sources.mkdir() self.sources = self._sources.as_posix() self._results = self._base / 'MOCK' / self.root if not self._results.is_dir(): self._results.mkdir(parents=True) self.results = self._results.as_posix() self._spec = self._base / 'SPECS' / (self.pkgname + '.spec') if not self._spec.exists(): err = 'spec file {} does not exist'.format(self.spec) raise click.ClickException(err) self.spec = self._spec.as_posix() def get_sources(self): command = ['spectool', '--directory', self.sources, '--get-files', self.spec] click.secho(' '.join(command), fg='cyan') self._run(command) @property def srpm(self): command = ['rpm', '--define', 'dist .{}'.format(self.release), '--query', '--queryformat', '%{name}-%{version}-%{release}\n', '--specfile', self.spec] output = subprocess.check_output(command, universal_newlines=True, stderr=subprocess.DEVNULL) srpm_name = output.split('\n')[0] + '.src.rpm' self._srpm = self._results / srpm_name if self._srpm.exists(): return self._srpm.as_posix() else: err = 'srpm {} does not exist'.format(self._srpm) raise click.ClickException(err) def _run(self, command): with subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, universal_newlines=True) as process: for line in process.stdout: print(line, end='') def init(self): self.setup() command = ['mock', '--root', self.root, '--init'] click.secho(' '.join(command), fg='cyan') self._run(command) def clean(self): self.setup() command = ['mock', '--root', self.root, '--clean'] click.secho(' '.join(command), fg='cyan') self._run(command) def install(self, packages): self.setup() command = ['mock', '--root', self.root, '--install'] command.extend(packages) click.secho(' '.join(command), fg='cyan') self._run(command) def shell(self, task): self.setup() command = ['mock', '--root', self.root, '--shell', task] click.secho(' '.join(command), fg='cyan') self._run(command) def build(self, just_srpm): self.setup() self.build_setup() self.get_sources() command = ['mock', '--root', self.root, '--define', 'dist .{}'.format(self.release), '--buildsrpm', '--spec', self.spec, '--sources', self.sources, '--resultdir', self.results, '--no-clean', '--no-cleanup-after'] click.secho(' '.join(command), fg='cyan') self._run(command) if not just_srpm: command = ['mock', '--root', self.root, '--define', 'dist .{}'.format(self.release), '--rebuild', self.srpm, '--spec', self.spec, '--sources', self.sources, '--resultdir', self.results, '--no-clean', '--no-cleanup-after'] click.secho(' '.join(command), fg='cyan') self._run(command)
py
7df81a2516c57cf3626d641bbd190830fda97127
# -*- coding: utf-8 -*- import json import time from threading import RLock from uuid import uuid4 try: from queue import Queue, Empty except ImportError: from Queue import Queue, Empty from ws4py.client.threadedclient import WebSocketClient from pywebostv.discovery import discover SIGNATURE = ("eyJhbGdvcml0aG0iOiJSU0EtU0hBMjU2Iiwia2V5SWQiOiJ0ZXN0LXNpZ25pbm" + "ctY2VydCIsInNpZ25hdHVyZVZlcnNpb24iOjF9.hrVRgjCwXVvE2OOSpDZ58hR" + "+59aFNwYDyjQgKk3auukd7pcegmE2CzPCa0bJ0ZsRAcKkCTJrWo5iDzNhMBWRy" + "aMOv5zWSrthlf7G128qvIlpMT0YNY+n/FaOHE73uLrS/g7swl3/qH/BGFG2Hu4" + "RlL48eb3lLKqTt2xKHdCs6Cd4RMfJPYnzgvI4BNrFUKsjkcu+WD4OO2A27Pq1n" + "50cMchmcaXadJhGrOqH5YmHdOCj5NSHzJYrsW0HPlpuAx/ECMeIZYDh6RMqaFM" + "2DXzdKX9NmmyqzJ3o/0lkk/N97gfVRLW5hA29yeAwaCViZNCP8iC9aO0q9fQoj" + "oa7NQnAtw==") REGISTRATION_PAYLOAD = { "forcePairing": False, "manifest": { "appVersion": "1.1", "manifestVersion": 1, "permissions": [ "LAUNCH", "LAUNCH_WEBAPP", "APP_TO_APP", "CLOSE", "TEST_OPEN", "TEST_PROTECTED", "CONTROL_AUDIO", "CONTROL_DISPLAY", "CONTROL_INPUT_JOYSTICK", "CONTROL_INPUT_MEDIA_RECORDING", "CONTROL_INPUT_MEDIA_PLAYBACK", "CONTROL_INPUT_TV", "CONTROL_POWER", "READ_APP_STATUS", "READ_CURRENT_CHANNEL", "READ_INPUT_DEVICE_LIST", "READ_NETWORK_STATE", "READ_RUNNING_APPS", "READ_TV_CHANNEL_LIST", "WRITE_NOTIFICATION_TOAST", "READ_POWER_STATE", "READ_COUNTRY_INFO" ], "signatures": [ { "signature": SIGNATURE, "signatureVersion": 1 } ], "signed": { "appId": "com.lge.test", "created": "20140509", "localizedAppNames": { "": "LG Remote App", "ko-KR": u"리모컨 앱", "zxx-XX": u"ЛГ Rэмotэ AПП" }, "localizedVendorNames": { "": "LG Electronics" }, "permissions": [ "TEST_SECURE", "CONTROL_INPUT_TEXT", "CONTROL_MOUSE_AND_KEYBOARD", "READ_INSTALLED_APPS", "READ_LGE_SDX", "READ_NOTIFICATIONS", "SEARCH", "WRITE_SETTINGS", "WRITE_NOTIFICATION_ALERT", "CONTROL_POWER", "READ_CURRENT_CHANNEL", "READ_RUNNING_APPS", "READ_UPDATE_INFO", "UPDATE_FROM_REMOTE_APP", "READ_LGE_TV_INPUT_EVENTS", "READ_TV_CURRENT_TIME" ], "serial": "2f930e2d2cfe083771f68e4fe7bb07", "vendorId": "com.lge" } }, "pairingType": "PROMPT" } class WebOSWebSocketClient(WebSocketClient): @property def handshake_headers(self): headers = super(WebOSWebSocketClient, self).handshake_headers return [(k, v) for k, v in headers if k.lower() != 'origin'] class WebOSClient(WebOSWebSocketClient): PROMPTED = 1 REGISTERED = 2 def __init__(self, host): ws_url = "ws://{}:3000/".format(host) super(WebOSClient, self).__init__(ws_url) self.waiters = {} self.waiter_lock = RLock() self.subscribers = {} self.subscriber_lock = RLock() self.send_lock = RLock() @staticmethod def discover(): res = discover("urn:schemas-upnp-org:device:MediaRenderer:1", keyword="LG", hosts=True, retries=3) return [WebOSClient(x) for x in res] def register(self, store, timeout=60): if "client_key" in store: REGISTRATION_PAYLOAD["client-key"] = store["client_key"] queue = self.send_message('register', None, REGISTRATION_PAYLOAD, get_queue=True) while True: try: item = queue.get(block=True, timeout=timeout) except Empty: raise Exception("Timeout.") if item.get("payload", {}).get("pairingType") == "PROMPT": yield WebOSClient.PROMPTED elif item["type"] == "registered": store["client_key"] = item["payload"]["client-key"] yield WebOSClient.REGISTERED break else: # TODO: Better exception. raise Exception("Failed to register.") def send_message(self, request_type, uri, payload, unique_id=None, get_queue=False, callback=None, cur_time=time.time): if unique_id is None: unique_id = str(uuid4()) if get_queue: wait_queue = Queue() callback = wait_queue.put if callback is not None: with self.waiter_lock: self.waiters[unique_id] = (callback, cur_time()) obj = {"type": request_type, "id": unique_id} if uri is not None: obj["uri"] = uri if payload is not None: obj["payload"] = payload with self.send_lock: self.send(json.dumps(obj)) if get_queue: return wait_queue def subscribe(self, uri, unique_id, callback, payload=None): def func(obj): callback(obj.get("payload")) with self.subscriber_lock: self.subscribers[unique_id] = uri self.send_message('subscribe', uri, payload, unique_id=unique_id, callback=func, cur_time=lambda: None) return unique_id def unsubscribe(self, unique_id): with self.subscriber_lock: uri = self.subscribers.pop(unique_id, None) if not uri: raise ValueError("Subscription not found: {}".format(unique_id)) with self.waiter_lock: self.waiters.pop(unique_id) self.send_message('unsubscribe', uri, payload=None) def received_message(self, msg): obj = json.loads(str(msg)) with self.waiter_lock: self.clear_old_waiters() if "id" in obj and obj["id"] in self.waiters: callback, created_time = self.waiters[obj["id"]] callback(obj) def clear_old_waiters(self, delta=60): to_clear = [] cur_time = time.time() for key, value in self.waiters.items(): callback, created_time = value if created_time and created_time + delta < cur_time: to_clear.append(key) for key in to_clear: self.waiters.pop(key)
py
7df81a735f73272c5be8deefb23be782e05839d8
def hail_caesar(enc_str): return enc_str.decode('rot13')
py
7df81a908931bbd220e6e99e9d1df279d02db961
# -*- coding: utf-8 -*- """ Part3.py a little programme to stop using educated guess Created on Fri Nov 20 15:28:43 2020 @author: Sebastian Tamon Hascilowicz """ import os import csv import matplotlib.pyplot as plt def Holzer(imax, omega, Ks, Is, tq, ang): """ Holzer method rotating system calculator using the equation provided in Marine Engineering Lecutre 11 slides. Parameters ---------- imax : int Number of is. Should be integer omega : float Natural Frequency Ks : list of floats List of torsional stiffnecess. Is : list of floats List of moments of inertia. tq : float Initial torque value. ang : float Initial angle displacement. Returns ------- angs : List List of obtained angular displacements tqs : List List of obtained torques """ angs = [] tqs = [] for i in range(imax): angout = ang + (tq / Ks[i]) tqout = -1 * omega ** 2 * Is[i] * ang + \ (1 - (omega ** 2) * Is[i] / Ks[i]) * tq angs.append(angout) tqs.append(tqout) ang = angout tq = tqout return angs, tqs def iterator(sta, end, d, dep, imax, Ks, Is, tq, ang): """ Recursive function that speeds up the calculation. It is not reccomentded to go any further than 14 as it really takes some time to calculate and our computer really does not like this... """ if d == dep: out = [round(sta, dep)] angs, tqs = Holzer(imax, sta, Ks, Is, tq, ang) out.append(angs) out.append(tqs) return out else: inc = 10 ** (-1 * d) i = sta while i <= end: angs1, tqs1 = Holzer(imax, i, Ks, Is, tq, ang) angs2, tqs2 = Holzer(imax, i+inc, Ks, Is, tq, ang) if tqs1[imax-1] * tqs2[imax-1] <= 0: return iterator(i, i+inc, d+1, dep, imax, Ks, Is, tq, ang) i = i + inc def exporter(data): """ This function returns the data in clean way """ plt.clf() topstring = ' f(rad/s)' fields = ['Freq(rad/s)'] for i in range(len(data[0][1])): fields.append('theta'+str(i+1)) topstring = topstring + ' | theta' + str(i+1) for j in range(len(data[0][1])): fields.append('torque'+str(j+1)) topstring = topstring + ' | torque' + str(j+1) print(topstring) # make line line = '-' * len(topstring) print(line + '-') # makes data outer = [] d = '' for k in range(len(data)): y = data[k][1] d = ' ' if len(str(data[k][0])) < 7: # corrects the lengh spacenum = 7 - len(str(data[k][0])) spaces = ' ' * spacenum num = spaces + str(data[k][0]) else: num = str(data[k][0])[:7] d = d + ' ' + num inner = [data[k][0]] x = [] y = data[k][1] for ii in range(len(data[k][1])): x.append(ii) if len(str(data[k][1][ii])) < 7: # corrects the lengh spacenum = 7 - len(str(data[k][1][ii])) spaces = ' ' * spacenum num = spaces + str(data[k][1][ii]) else: num = str(data[k][1][ii])[:7] d = d + ' | ' + num inner.append(data[k][1][ii]) for iii in range(len(data[k][2])): if len(str(data[k][2][iii])) < 7: # corrects the lengh spacenum = 7 - len(str(data[k][2][iii])) spaces = ' ' * spacenum num = spaces + str(data[k][2][iii]) else: num = str(data[k][2][iii])[:7] d = d + ' | ' + num inner.append(data[k][2][iii]) print(d) outer.append(inner) plt.plot(x, y, label="Omega="+str(data[k][0])[:5]) plt.style.use('bmh') plt.grid(b=True, axis='both') plt.legend(loc='best') plt.ylabel('Deflection(rad)') # if saving is required option = input('Save Results? (y/n) : ') if option == 'y': directory = os.getcwd() name = input('Enter filename : ') form = input('plot type (png/pdf/svg) : ') filename = name + '.csv' plotname = name + '.' + form with open(filename, 'w') as f: write = csv.writer(f) write.writerow(fields) write.writerows(outer) print(filename + ' saved at ' + directory) plt.savefig(plotname, format=form) print(plotname + ' saved at ' + directory) def main(): """ Main function Returns ------- result : List Returns the result for part 3. """ # this get's the maximum value for i print('This Programme gets natural frequencies of Shafts using lumped') print('parameter method iterating through frequencies.') print('') print('== Input Parameters ==========================================') imax = int(input('Enter max value for i : ')) # collects the data Is = [] for i in range(imax): In = float(input('Enter I' + str(i+1) + '(kgm^2) : ')) Is.append(In) Ks = [1] for j in range(imax-1): K = float(input('Enter k' + str(j+2) + ' (MNm/rad) : ')) * 10 ** 6 Ks.append(K) tq = 0 ang = 1 # analysis setup print('') print('== Analysis Setup ============================================') startk = int(input('Enter start freq (rad/sec): ')) endk = int(input('Enter end freq (rad/sec): ')) decis = int(input('Enter number of decimal places \ (up to 14) : ')) # first loop finds roughly how many zero crossings there are. # Then it throws to the iterator wich gets more exact value result = [] k = startk while k <= endk: angs1, tqs1 = Holzer(imax, k, Ks, Is, tq, ang) angs2, tqs2 = Holzer(imax, k+1, Ks, Is, tq, ang) if tqs1[imax-1] * tqs2[imax-1] <= 0: result.append(iterator(k, k+1, 1, decis, imax, Ks, Is, tq, ang)) k = k + 1 # data format and export print('') print('== Exporter ==================================================') exporter(result) main()
py
7df81bb4df4818c11109e2497926fde422691b53
class Link: def __init__(self, caIndex): self.caIndex = caIndex
py
7df81bc4534c2a8a5ecb420ec890969ccb8f5593
from django.shortcuts import render, get_object_or_404 from django.utils import timezone from django import forms from django.contrib.auth.forms import UserCreationForm from django.http import HttpResponseRedirect from django.contrib.auth import authenticate, login def register(request): if request.method == 'POST': form = UserCreationForm(request.POST) if form.is_valid(): new_user = form.save() # Log the user in automatically in next two lines new_user = authenticate(username=form.cleaned_data['username'], password=form.cleaned_data['password1'], ) login(request, new_user) # TODO Redirect should be updated to request the '?next='' paramter return HttpResponseRedirect("/story/") else: form = UserCreationForm() return render(request, "registration/signup.html", { 'form': form, }) def user(request): user = User.objects.all() return render(request, 'users/signin.html', {'user': user})
py
7df81c6a2b76bb8fa9f2f177708a2606eded49ae
import requests from requests.auth import HTTPBasicAuth api_key = "" # Your API key here, required url = "https://api-us.musiio.com/v1/catalog/info" response = requests.get(url, auth=HTTPBasicAuth(api_key, '')) print(response.text.encode('utf8'))
py
7df81c8b4c01f3b1c5d957b4bb9fcfad2139f923
import pytest from bottery.message import Message from bottery.telegram import reply from bottery.telegram.engine import TelegramChat, TelegramEngine, TelegramUser @pytest.fixture def engine(): return TelegramEngine @pytest.fixture def user(): return TelegramUser @pytest.fixture def chat(): return TelegramChat @pytest.fixture() def message(): return Message( id=1, platform='telegram', text='', user=user, chat=chat, timestamp='', raw='', ) @pytest.fixture def message_data(): return { 'message': { 'chat': { 'first_name': 'John', 'id': 12345678, 'last_name': 'Snow', 'type': 'private', 'username': 'johnsnow' }, 'date': 1516787847, 'from': { 'first_name': 'John', 'id': 12345678, 'is_bot': False, 'language_code': 'en-US', 'last_name': 'Snow', 'username': 'johnsnow' }, 'message_id': 2, 'text': 'Hi bot, how are you?' }, 'update_id': 987456321 } @pytest.fixture def edited_message_data(message_data): return {'edited_message': message_data['message']} @pytest.mark.parametrize('chat_type,id_expected', [ ('group', 456), ('private', 123), ]) def test_platform_telegram_engine_get_chat_id(chat_type, id_expected, engine, message): setattr(message.chat, 'id', id_expected) setattr(message.chat, 'type', chat_type) setattr(message.user, 'id', id_expected) assert engine.get_chat_id(engine, message) == id_expected @pytest.mark.parametrize('message_input,message_key,message_edited', [ (pytest.lazy_fixture('message_data'), 'message', False), (pytest.lazy_fixture('edited_message_data'), 'edited_message', True) ]) def test_build_message(engine, message_input, message_key, message_edited): message = engine.build_message(engine, message_input) assert message.id == message_input[message_key]['message_id'] assert message.text == message_input[message_key]['text'] assert message.timestamp == message_input[message_key]['date'] assert message.raw == message_input assert message.edited == message_edited def test_build_message_without_text(message_data, engine): ''' Telegram can send a message without text. For example, when a bot is added to a group. ''' message_data_without_text = message_data del message_data_without_text['message']['text'] message = engine.build_message(engine, message_data_without_text) assert message.id == message_data_without_text['message']['message_id'] assert message.text is not None assert message.text == '' assert message.timestamp == message_data_without_text['message']['date'] assert message.raw == message_data def test_reply_decorator(message): @reply() def view(message): return '' view(message) assert message._request_payload['reply_to_message_id'] == message.id def test_reply_decorator_to_previous_message(message): @reply(to=lambda message: message.id - 2) def view(message): return '' view(message) assert message._request_payload['reply_to_message_id'] == message.id - 2
py
7df81e9c3aab49f00a490e883bee7056bd1bcf61
from selenium import webdriver from selenium.webdriver.chrome.options import Options def driver(): from webdriver_manager.chrome import ChromeDriverManager chrome_options = Options() chrome_options.add_argument("--log-level=3") chrome_options.add_argument("--headless") return webdriver.Chrome(ChromeDriverManager().install(),options=chrome_options)
py
7df81f15c8d42c039994e9aa0d96ca75d587d8d0
from mlf_core.common.suggest_similar_commands import SIMILARITY_SUGGEST_FACTOR, SIMILARITY_USE_FACTOR def levensthein_dist(input_command: str, candidate: str) -> int: """ Implement the Levenshtein distance algorithm to determine, in case of a non-existing handle, if theres a very similar command to suggest. :param input_command: The non-existing handle the user gave as input :param candidate: The (possible similar) alternative command :return: The similarity between the two strings measured by the levensthein distance """ if not input_command or not candidate: return max(len(input_command), len(candidate)) # at least one string is empty dp_table = [[0 for col in range(len(input_command) + 1)] for row in range(len(candidate) + 1)] dp_table[0] = list(range(0, len(input_command) + 1)) for i in range(1, len(candidate) + 1): dp_table[i][0] = i # now choose minimum levensthein distance from the three option delete/replace/insert # if chars are the same -> levensthein distance is the same as for those substring without these chars of input_command # and candidate for i in range(1, len(candidate) + 1): for j in range(1, len(input_command) + 1): # choose minimum edit distance from delete, replace or insert at current substring if input_command[j - 1] == candidate[i - 1]: dp_table[i][j] = dp_table[i - 1][j - 1] else: dp_table[i][j] = min(min(dp_table[i][j - 1], dp_table[i - 1][j - 1]), dp_table[i - 1][j]) + 1 return dp_table[len(candidate)][len(input_command)] def most_similar_command(command: str, command_list: set) -> (list, str): """ Determine whether its possible to suggest a similar command. The similarity is determined by the levensthein distance and a factor (currently 1/3) sets a limit where a similar command is useful to be automatically used. If the difference diff is 1/3 < diff <= 2/3, one or more similar commands could be suggested, but not used automatically. :param command_list: The commands that are available by the users specific action :param command: The command given by the user :return: A list of similar command(s) or the empty string if there's none and a string that indicates the action to be taken """ min_use = 999999 # some random large integer -> we will never have handles that are larger than 1000 character min_suggest = 999999 sim_command_use = [] sim_command_suggest = [] # for each valid handle calculate the levensthein distance and if one is found that is a new minimal distance, # replace it and take this handle as the most similar command. for handle in command_list: dist = levensthein_dist(command, handle) # the more restrict condition for automatic use lim_use = int(len(command) * SIMILARITY_USE_FACTOR) # the weaker condition for command suggestion lim_suggest = int(len(command) * SIMILARITY_SUGGEST_FACTOR) # check if the command is close to the inputted command so it can be automatically used if lim_use >= dist: if min_use > dist: # and min >= dist: min_use = dist sim_command_use = [handle] elif min_use == dist: sim_command_use.append(handle) # the input is not very close to any command, but maybe a similar one can be suggested? elif lim_use < dist <= lim_suggest: if min_suggest > dist: # and min >= dist: min_suggest = dist sim_command_suggest = [handle] elif min_suggest == dist: sim_command_suggest.append(handle) # return the use list, as those are closer, but if its empty, return the list of suggested commands (or if that is empty too, an empty list) return (sim_command_use, 'use') if sim_command_use else (sim_command_suggest, 'suggest') if sim_command_suggest else ([], '')
py
7df81fe66a1037044b70e15a097234a309bed9bb
#! /usr/bin/env python # Copyright (c) 2019 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import logging from collections import OrderedDict import numpy as np from sklearn import metrics from sklearn.metrics import confusion_matrix logger = logging.getLogger(__name__) class ConfusionMatrix: def __init__(self, conditions, predictions, labels=None, sample_weight=None): # assert (len(predictions) == len(conditions)) min_length = min(len(predictions), len(conditions)) self.predictions = predictions[:min_length] self.conditions = conditions[:min_length] if labels is not None: self.label2idx = {label: idx for idx, label in enumerate(labels)} self.idx2label = {idx: label for idx, label in enumerate(labels)} labels = list(range(len(labels))) else: self.label2idx = { str(label): idx for idx, label in enumerate(np.unique([self.predictions, self.conditions])) } self.idx2label = { idx: str(label) for idx, label in enumerate(np.unique([self.predictions, self.conditions])) } self.cm = confusion_matrix(self.conditions, self.predictions, labels=labels, sample_weight=sample_weight) # if labels is not None: # self.labels_dict = {label: idx for idx, label in enumerate(labels)} # else: # if conditions.dtype.char == 'S': # it's an array of strings # self.labels_dict = {str(label): idx for idx, label in # enumerate(np.unique([predictions, conditions]))} # else: # numerical # max_label = np.concatenate([predictions, conditions]).max() # self.labels_dict = {str(i): i for i in range(max_label + 1)} # labels = [str(i) for i in range(max_label + 1)] # self.cm = confusion_matrix(conditions, predictions, labels, sample_weight) self.sum_predictions = np.sum(self.cm, axis=0) self.sum_conditions = np.sum(self.cm, axis=1) self.all = np.sum(self.cm) def label_to_idx(self, label): return self.label2idx[label] def true_positives(self, idx): return self.cm[idx, idx] def true_negatives(self, idx): return self.all - self.sum_predictions[idx] - self.sum_conditions[idx] + self.true_positives(idx) def false_positives(self, idx): return self.sum_predictions[idx] - self.true_positives(idx) def false_negatives(self, idx): return self.sum_conditions[idx] - self.true_positives(idx) def true_positive_rate(self, idx): nom = self.true_positives(idx) den = self.sum_conditions[idx] if den == 0 or den == np.nan: return 0 else: return nom / den def true_negative_rate(self, idx): nom = tn = self.true_negatives(idx) den = tn + self.false_positives(idx) if den == 0 or den == np.nan: return 0 else: return nom / den def positive_predictive_value(self, idx): nom = self.true_positives(idx) den = self.sum_predictions[idx] if den == 0 or den == np.nan: return 0 else: return nom / den def negative_predictive_value(self, idx): nom = tn = self.true_negatives(idx) den = tn + self.false_negatives(idx) if den == 0 or den == np.nan: return 0 else: return nom / den def false_negative_rate(self, idx): return 1.0 - self.true_positive_rate(idx) def false_positive_rate(self, idx): return 1.0 - self.true_negative_rate(idx) def false_discovery_rate(self, idx): return 1.0 - self.positive_predictive_value(idx) def false_omission_rate(self, idx): return 1.0 - self.negative_predictive_value(idx) def accuracy(self, idx): nom = self.true_positives(idx) + self.true_negatives(idx) den = self.all if den == 0 or den == np.nan: return 0 else: return nom / den def precision(self, idx): return self.positive_predictive_value(idx) def recall(self, idx): return self.true_positive_rate(idx) def fbeta_score(self, beta, idx): beta_2 = np.power(beta, 2) precision = self.precision(idx) recall = self.recall(idx) nom = (1 + beta_2) * precision * recall den = (beta_2 * precision) + recall if den == 0 or den == np.nan: return 0 else: return nom / den def f1_score(self, idx): return self.fbeta_score(1, idx) def sensitivity(self, idx): return self.true_positive_rate(idx) def specificity(self, idx): return self.true_negative_rate(idx) def hit_rate(self, idx): return self.true_positive_rate(idx) def miss_rate(self, idx): return self.false_negative_rate(idx) def fall_out(self, idx): return self.false_positive_rate(idx) def matthews_correlation_coefficient(self, idx): tp = self.true_positives(idx) tn = self.true_negatives(idx) fp = self.false_positives(idx) fn = self.false_negatives(idx) nom = tp * tn - fp * fn den = np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) if den == 0 or den == np.nan: return 0 else: return nom / den def informedness(self, idx): return self.true_positive_rate(idx) + self.true_negative_rate(idx) - 1 def markedness(self, idx): return self.positive_predictive_value(idx) + self.negative_predictive_value(idx) - 1 def token_accuracy(self): return metrics.accuracy_score(self.conditions, self.predictions) def avg_precision(self, average="macro"): return metrics.precision_score(self.conditions, self.predictions, average=average) def avg_recall(self, average="macro"): return metrics.recall_score(self.conditions, self.predictions, average=average) def avg_f1_score(self, average="macro"): return metrics.f1_score(self.conditions, self.predictions, average=average) def avg_fbeta_score(self, beta, average="macro"): return metrics.fbeta_score(self.conditions, self.predictions, beta=beta, average=average) def kappa_score(self): return metrics.cohen_kappa_score(self.conditions, self.predictions) def class_stats(self, idx): return { "true_positives": self.true_positives(idx), "true_negatives": self.true_negatives(idx), "false_positives": self.false_positives(idx), "false_negatives": self.false_negatives(idx), "true_positive_rate": self.true_positive_rate(idx), "true_negative_rate": self.true_negative_rate(idx), "positive_predictive_value": self.positive_predictive_value(idx), "negative_predictive_value": self.negative_predictive_value(idx), "false_negative_rate": self.false_negative_rate(idx), "false_positive_rate": self.false_positive_rate(idx), "false_discovery_rate": self.false_discovery_rate(idx), "false_omission_rate": self.false_omission_rate(idx), "accuracy": self.accuracy(idx), "precision": self.precision(idx), "recall": self.recall(idx), "f1_score": self.f1_score(idx), "sensitivity": self.sensitivity(idx), "specificity": self.specificity(idx), "hit_rate": self.hit_rate(idx), "miss_rate": self.miss_rate(idx), "fall_out": self.fall_out(idx), "matthews_correlation_coefficient": self.matthews_correlation_coefficient(idx), "informedness": self.informedness(idx), "markedness": self.markedness(idx), } def per_class_stats(self): stats = OrderedDict() for idx in sorted(self.idx2label.keys()): stats[self.idx2label[idx]] = self.class_stats(idx) return stats def stats(self): return { "token_accuracy": self.token_accuracy(), "avg_precision_macro": self.avg_precision(average="macro"), "avg_recall_macro": self.avg_recall(average="macro"), "avg_f1_score_macro": self.avg_f1_score(average="macro"), "avg_precision_micro": self.avg_precision(average="micro"), "avg_recall_micro": self.avg_recall(average="micro"), "avg_f1_score_micro": self.avg_f1_score(average="micro"), "avg_precision_weighted": self.avg_precision(average="micro"), "avg_recall_weighted": self.avg_recall(average="micro"), "avg_f1_score_weighted": self.avg_f1_score(average="weighted"), "kappa_score": self.kappa_score(), } def roc_curve(conditions, prediction_scores, pos_label=None, sample_weight=None): return metrics.roc_curve(conditions, prediction_scores, pos_label=pos_label, sample_weight=sample_weight) def roc_auc_score(conditions, prediction_scores, average="micro", sample_weight=None): try: return metrics.roc_auc_score(conditions, prediction_scores, average=average, sample_weight=sample_weight) except ValueError as ve: logger.info(ve) def precision_recall_curve(conditions, prediction_scores, pos_label=None, sample_weight=None): return metrics.precision_recall_curve( conditions, prediction_scores, pos_label=pos_label, sample_weight=sample_weight ) def average_precision_score(conditions, prediction_scores, average="micro", sample_weight=None): # average == [micro, macro, sampled, weidhted] return metrics.average_precision_score(conditions, prediction_scores, average=average, sample_weight=sample_weight)
py
7df82039c3255b3fab2af242e9de984189f82f7a
from fastai.vision import * from fastai.metrics import error_rate from fastai.callbacks import * from torch.utils.data.sampler import WeightedRandomSampler __all__ = ['OverSamplingCallback'] class OverSamplingCallback(LearnerCallback): def __init__(self,learn:Learner,weights:torch.Tensor=None): super().__init__(learn) self.weights = weights def on_train_begin(self, **kwargs): ds,dl = self.data.train_ds,self.data.train_dl self.labels = ds.y.items assert np.issubdtype(self.labels.dtype, np.integer), "Can only oversample integer values" _,self.label_counts = np.unique(self.labels,return_counts=True) if self.weights is None: self.weights = torch.DoubleTensor((1/self.label_counts)[self.labels]) self.total_len_oversample = int(self.data.c*np.max(self.label_counts)) sampler = WeightedRandomSampler(self.weights, self.total_len_oversample) self.data.train_dl = dl.new(shuffle=False, sampler=sampler) #init learn def trainfor(num_epochs,size): np.random.seed(33) torch.random.manual_seed(33) data : ImageDataBunch= ImageDataBunch.from_folder("./image_data",train='.',valid_pct=0.2, ds_tfms=get_transforms(flip_vert=False), size=size, bs=bs,num_workers=4).normalize(imagenet_stats) #beware of num_workers, many errors are because of it learn.data = data learn.lr_find() learn.recorder.plot(suggestion=True) try: min_grad_lr = learn.recorder.min_grad_lr except: min_grad_lr = 3e-5 learn.fit_one_cycle(num_epochs, min_grad_lr,callbacks=[SaveModelCallback(learn, every='epoch', monitor='error_rate')]) if __name__ == "__main__": bs = 24 data : ImageDataBunch= ImageDataBunch.from_folder("./image_data",train='.',valid_pct=0.2, ds_tfms=get_transforms(flip_vert=False), size=50, bs=bs,num_workers=4).normalize(imagenet_stats) learn = cnn_learner(data, models.resnet50, metrics=[accuracy,Precision(),Recall(),FBeta()] , callback_fns=[OverSamplingCallback]) print('******************FROZEN*********************') learn.path=Path("./learners/endgame/frozen") trainfor(8,128) print('******************FROZEN BIGGER *********************') learn.path=Path("./learners/endgame/frozen-bigger") trainfor(6,256) learn.unfreeze() print('******************UNFROZEN *********************') learn.path=Path("./learners/endgame/unfrozen") trainfor(6,256) print('******************UNFROZEN BIGGER*********************') learn.path=Path("./learners/endgame/unfrozen-bigger") trainfor(4,512) trainfor(4,512) learn.export() learn.path=Path("./learners/endgame/unfrozen-bigger2") trainfor(1,1024) learn.export()
py
7df820aecac77f5f66d27d049f511db7ccc50544
import argparse from . import PersonalDataCommand class ConvertCmd(PersonalDataCommand): name = 'convert' def exec(self, command_args): parser = argparse.ArgumentParser(self.name) parser.add_argument('--path', type=str, required=True, help='Path to a serialized database') parser.add_argument('--converted_path', type=str, required=True, help='Path to save a converted database') args = parser.parse_args(command_args) self.convert(args.path, args.converted_path) def convert(self, db_path, converted_db_path): storage = self.create_storage() storage.load_from_file(db_path) storage.save_to_file(converted_db_path) print("Conversion finished")
py
7df8216419533b687781d794ee8181fca2038def
# Language: Python 3 i = 4 d = 4.0 s = 'HackerRank ' int2 = int(input()) double2 = float(input()) string2 = input() int2_i = i + int2 double2_d = d + double2 string2_s = s + string2 print(int2_i, double2_d, string2_s, sep="\n")
py
7df82176b3efd8b5c15fb78bc4b750bc74be771f
""" Copyright 2017-2018 Fizyr (https://fizyr.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from libs.EfficientDet.generators.common import Generator import os import numpy as np from pycocotools.coco import COCO import cv2 class CocoGenerator(Generator): """ Generate data from the COCO dataset. See https://github.com/cocodataset/cocoapi/tree/master/PythonAPI for more information. """ def __init__(self, data_dir, set_name, **kwargs): """ Initialize a COCO data generator. Args data_dir: Path to where the COCO dataset is stored. set_name: Name of the set to parse. """ self.data_dir = data_dir self.set_name = set_name if set_name in ['train2017', 'val2017']: self.coco = COCO(os.path.join(data_dir, 'annotations', 'instances_' + set_name + '.json')) else: self.coco = COCO(os.path.join(data_dir, 'annotations', 'image_info_' + set_name + '.json')) self.image_ids = self.coco.getImgIds() self.load_classes() super(CocoGenerator, self).__init__(**kwargs) def load_classes(self): """ Loads the class to label mapping (and inverse) for COCO. """ # load class names (name -> label) categories = self.coco.loadCats(self.coco.getCatIds()) categories.sort(key=lambda x: x['id']) self.classes = {} self.coco_labels = {} self.coco_labels_inverse = {} for c in categories: self.coco_labels[len(self.classes)] = c['id'] self.coco_labels_inverse[c['id']] = len(self.classes) self.classes[c['name']] = len(self.classes) # also load the reverse (label -> name) self.labels = {} for key, value in self.classes.items(): self.labels[value] = key def size(self): """ Size of the COCO dataset. """ return len(self.image_ids) def num_classes(self): """ Number of classes in the dataset. For COCO this is 80. """ return 90 def has_label(self, label): """ Return True if label is a known label. """ return label in self.labels def has_name(self, name): """ Returns True if name is a known class. """ return name in self.classes def name_to_label(self, name): """ Map name to label. """ return self.classes[name] def label_to_name(self, label): """ Map label to name. """ return self.labels[label] def coco_label_to_label(self, coco_label): """ Map COCO label to the label as used in the network. COCO has some gaps in the order of labels. The highest label is 90, but there are 80 classes. """ return self.coco_labels_inverse[coco_label] def coco_label_to_name(self, coco_label): """ Map COCO label to name. """ return self.label_to_name(self.coco_label_to_label(coco_label)) def label_to_coco_label(self, label): """ Map label as used by the network to labels as used by COCO. """ return self.coco_labels[label] def image_aspect_ratio(self, image_index): """ Compute the aspect ratio for an image with image_index. """ image = self.coco.loadImgs(self.image_ids[image_index])[0] return float(image['width']) / float(image['height']) def load_image(self, image_index): """ Load an image at the image_index. """ # {'license': 2, 'file_name': '000000259765.jpg', 'coco_url': 'http://images.cocodataset.org/test2017/000000259765.jpg', 'height': 480, 'width': 640, 'date_captured': '2013-11-21 04:02:31', 'id': 259765} image_info = self.coco.loadImgs(self.image_ids[image_index])[0] path = os.path.join(self.data_dir, 'images', self.set_name, image_info['file_name']) image = cv2.imread(path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) return image def load_annotations(self, image_index): """ Load annotations for an image_index. """ # get ground truth annotations annotations_ids = self.coco.getAnnIds(imgIds=self.image_ids[image_index], iscrowd=False) annotations = {'labels': np.empty((0,), dtype=np.float32), 'bboxes': np.empty((0, 4), dtype=np.float32)} # some images appear to miss annotations (like image with id 257034) if len(annotations_ids) == 0: return annotations # parse annotations coco_annotations = self.coco.loadAnns(annotations_ids) for idx, a in enumerate(coco_annotations): # some annotations have basically no width / height, skip them if a['bbox'][2] < 1 or a['bbox'][3] < 1: continue annotations['labels'] = np.concatenate( [annotations['labels'], [a['category_id'] - 1]], axis=0) annotations['bboxes'] = np.concatenate([annotations['bboxes'], [[ a['bbox'][0], a['bbox'][1], a['bbox'][0] + a['bbox'][2], a['bbox'][1] + a['bbox'][3], ]]], axis=0) return annotations
py
7df8219c0f7ed04f31d6a6f42ad1ac90cd9e6c8c
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 5 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_1_0 from isi_sdk_8_1_0.models.auth_log_level_level import AuthLogLevelLevel # noqa: E501 from isi_sdk_8_1_0.rest import ApiException class TestAuthLogLevelLevel(unittest.TestCase): """AuthLogLevelLevel unit test stubs""" def setUp(self): pass def tearDown(self): pass def testAuthLogLevelLevel(self): """Test AuthLogLevelLevel""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_1_0.models.auth_log_level_level.AuthLogLevelLevel() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
7df822d07b018f040612f195edb18f7f76ff6975
from interval import Interval from numlike import Numlike from nplike import Nplike from npinterval import NpInterval from theanointerval import TheanoInterval from utils import assert_numlike __all__ = ['Interval', 'Numlike', 'Nplike', 'TheanoInterval', 'NpInterval', 'assert_numlike']
py
7df822df1f370b6e09109e1f62f405a791721e0b
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Dict, List, Mapping, Optional, Tuple, Union from .. import _utilities, _tables __all__ = ['Instance'] class Instance(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, availability_zone: Optional[pulumi.Input[str]] = None, blueprint_id: Optional[pulumi.Input[str]] = None, bundle_id: Optional[pulumi.Input[str]] = None, key_pair_name: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, user_data: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Provides a Lightsail Instance. Amazon Lightsail is a service to provide easy virtual private servers with custom software already setup. See [What is Amazon Lightsail?](https://lightsail.aws.amazon.com/ls/docs/getting-started/article/what-is-amazon-lightsail) for more information. > **Note:** Lightsail is currently only supported in a limited number of AWS Regions, please see ["Regions and Availability Zones in Amazon Lightsail"](https://lightsail.aws.amazon.com/ls/docs/overview/article/understanding-regions-and-availability-zones-in-amazon-lightsail) for more details ## Example Usage ```python import pulumi import pulumi_aws as aws # Create a new GitLab Lightsail Instance gitlab_test = aws.lightsail.Instance("gitlabTest", availability_zone="us-east-1b", blueprint_id="string", bundle_id="string", key_pair_name="some_key_name", tags={ "foo": "bar", }) ``` ## Availability Zones Lightsail currently supports the following Availability Zones (e.g. `us-east-1a`): - `ap-northeast-1{a,c,d}` - `ap-northeast-2{a,c}` - `ap-south-1{a,b}` - `ap-southeast-1{a,b,c}` - `ap-southeast-2{a,b,c}` - `ca-central-1{a,b}` - `eu-central-1{a,b,c}` - `eu-west-1{a,b,c}` - `eu-west-2{a,b,c}` - `eu-west-3{a,b,c}` - `us-east-1{a,b,c,d,e,f}` - `us-east-2{a,b,c}` - `us-west-2{a,b,c}` ## Blueprints Lightsail currently supports the following Blueprint IDs: ### OS Only - `amazon_linux_2018_03_0_2` - `centos_7_1901_01` - `debian_8_7` - `debian_9_5` - `freebsd_11_1` - `opensuse_42_2` - `ubuntu_16_04_2` - `ubuntu_18_04` ### Apps and OS - `drupal_8_5_6` - `gitlab_11_1_4_1` - `joomla_3_8_11` - `lamp_5_6_37_2` - `lamp_7_1_20_1` - `magento_2_2_5` - `mean_4_0_1` - `nginx_1_14_0_1` - `nodejs_10_8_0` - `plesk_ubuntu_17_8_11_1` - `redmine_3_4_6` - `wordpress_4_9_8` - `wordpress_multisite_4_9_8` ## Bundles Lightsail currently supports the following Bundle IDs (e.g. an instance in `ap-northeast-1` would use `small_2_0`): ### Prefix A Bundle ID starts with one of the below size prefixes: - `nano_` - `micro_` - `small_` - `medium_` - `large_` - `xlarge_` - `2xlarge_` ### Suffix A Bundle ID ends with one of the following suffixes depending on Availability Zone: - ap-northeast-1: `2_0` - ap-northeast-2: `2_0` - ap-south-1: `2_1` - ap-southeast-1: `2_0` - ap-southeast-2: `2_2` - ca-central-1: `2_0` - eu-central-1: `2_0` - eu-west-1: `2_0` - eu-west-2: `2_0` - eu-west-3: `2_0` - us-east-1: `2_0` - us-east-2: `2_0` - us-west-2: `2_0` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] availability_zone: The Availability Zone in which to create your instance (see list below) :param pulumi.Input[str] blueprint_id: The ID for a virtual private server image (see list below) :param pulumi.Input[str] bundle_id: The bundle of specification information (see list below) :param pulumi.Input[str] key_pair_name: The name of your key pair. Created in the Lightsail console (cannot use `ec2.KeyPair` at this time) :param pulumi.Input[str] name: The name of the Lightsail Instance. Names be unique within each AWS Region in your Lightsail account. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. :param pulumi.Input[str] user_data: launch script to configure server with additional user data """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if availability_zone is None: raise TypeError("Missing required property 'availability_zone'") __props__['availability_zone'] = availability_zone if blueprint_id is None: raise TypeError("Missing required property 'blueprint_id'") __props__['blueprint_id'] = blueprint_id if bundle_id is None: raise TypeError("Missing required property 'bundle_id'") __props__['bundle_id'] = bundle_id __props__['key_pair_name'] = key_pair_name __props__['name'] = name __props__['tags'] = tags __props__['user_data'] = user_data __props__['arn'] = None __props__['cpu_count'] = None __props__['created_at'] = None __props__['ipv6_address'] = None __props__['is_static_ip'] = None __props__['private_ip_address'] = None __props__['public_ip_address'] = None __props__['ram_size'] = None __props__['username'] = None super(Instance, __self__).__init__( 'aws:lightsail/instance:Instance', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, arn: Optional[pulumi.Input[str]] = None, availability_zone: Optional[pulumi.Input[str]] = None, blueprint_id: Optional[pulumi.Input[str]] = None, bundle_id: Optional[pulumi.Input[str]] = None, cpu_count: Optional[pulumi.Input[float]] = None, created_at: Optional[pulumi.Input[str]] = None, ipv6_address: Optional[pulumi.Input[str]] = None, is_static_ip: Optional[pulumi.Input[bool]] = None, key_pair_name: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, private_ip_address: Optional[pulumi.Input[str]] = None, public_ip_address: Optional[pulumi.Input[str]] = None, ram_size: Optional[pulumi.Input[float]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, user_data: Optional[pulumi.Input[str]] = None, username: Optional[pulumi.Input[str]] = None) -> 'Instance': """ Get an existing Instance resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] arn: The ARN of the Lightsail instance (matches `id`). :param pulumi.Input[str] availability_zone: The Availability Zone in which to create your instance (see list below) :param pulumi.Input[str] blueprint_id: The ID for a virtual private server image (see list below) :param pulumi.Input[str] bundle_id: The bundle of specification information (see list below) :param pulumi.Input[str] created_at: The timestamp when the instance was created. * `availability_zone` * `blueprint_id` * `bundle_id` * `key_pair_name` * `user_data` :param pulumi.Input[str] key_pair_name: The name of your key pair. Created in the Lightsail console (cannot use `ec2.KeyPair` at this time) :param pulumi.Input[str] name: The name of the Lightsail Instance. Names be unique within each AWS Region in your Lightsail account. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. :param pulumi.Input[str] user_data: launch script to configure server with additional user data """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["arn"] = arn __props__["availability_zone"] = availability_zone __props__["blueprint_id"] = blueprint_id __props__["bundle_id"] = bundle_id __props__["cpu_count"] = cpu_count __props__["created_at"] = created_at __props__["ipv6_address"] = ipv6_address __props__["is_static_ip"] = is_static_ip __props__["key_pair_name"] = key_pair_name __props__["name"] = name __props__["private_ip_address"] = private_ip_address __props__["public_ip_address"] = public_ip_address __props__["ram_size"] = ram_size __props__["tags"] = tags __props__["user_data"] = user_data __props__["username"] = username return Instance(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def arn(self) -> pulumi.Output[str]: """ The ARN of the Lightsail instance (matches `id`). """ return pulumi.get(self, "arn") @property @pulumi.getter(name="availabilityZone") def availability_zone(self) -> pulumi.Output[str]: """ The Availability Zone in which to create your instance (see list below) """ return pulumi.get(self, "availability_zone") @property @pulumi.getter(name="blueprintId") def blueprint_id(self) -> pulumi.Output[str]: """ The ID for a virtual private server image (see list below) """ return pulumi.get(self, "blueprint_id") @property @pulumi.getter(name="bundleId") def bundle_id(self) -> pulumi.Output[str]: """ The bundle of specification information (see list below) """ return pulumi.get(self, "bundle_id") @property @pulumi.getter(name="cpuCount") def cpu_count(self) -> pulumi.Output[float]: return pulumi.get(self, "cpu_count") @property @pulumi.getter(name="createdAt") def created_at(self) -> pulumi.Output[str]: """ The timestamp when the instance was created. * `availability_zone` * `blueprint_id` * `bundle_id` * `key_pair_name` * `user_data` """ return pulumi.get(self, "created_at") @property @pulumi.getter(name="ipv6Address") def ipv6_address(self) -> pulumi.Output[str]: return pulumi.get(self, "ipv6_address") @property @pulumi.getter(name="isStaticIp") def is_static_ip(self) -> pulumi.Output[bool]: return pulumi.get(self, "is_static_ip") @property @pulumi.getter(name="keyPairName") def key_pair_name(self) -> pulumi.Output[Optional[str]]: """ The name of your key pair. Created in the Lightsail console (cannot use `ec2.KeyPair` at this time) """ return pulumi.get(self, "key_pair_name") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the Lightsail Instance. Names be unique within each AWS Region in your Lightsail account. """ return pulumi.get(self, "name") @property @pulumi.getter(name="privateIpAddress") def private_ip_address(self) -> pulumi.Output[str]: return pulumi.get(self, "private_ip_address") @property @pulumi.getter(name="publicIpAddress") def public_ip_address(self) -> pulumi.Output[str]: return pulumi.get(self, "public_ip_address") @property @pulumi.getter(name="ramSize") def ram_size(self) -> pulumi.Output[float]: return pulumi.get(self, "ram_size") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ A map of tags to assign to the resource. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="userData") def user_data(self) -> pulumi.Output[Optional[str]]: """ launch script to configure server with additional user data """ return pulumi.get(self, "user_data") @property @pulumi.getter def username(self) -> pulumi.Output[str]: return pulumi.get(self, "username") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
py
7df823c987187d2171707cd929f367eaa1b5f336
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from contextlib import contextmanager import sys import asyncio.log import unittest import contextlib import re import types import asyncio import inspect import warnings import testslide.mock_callable import testslide.mock_constructor import testslide.matchers import testslide.patch_attribute from testslide.strict_mock import StrictMock # noqa if sys.version_info < (3, 6): raise RuntimeError("Python >=3.6 required.") def _importer(target): components = target.split(".") import_path = components.pop(0) thing = __import__(import_path) def dot_lookup(thing, comp, import_path): try: return getattr(thing, comp) except AttributeError: __import__(import_path) return getattr(thing, comp) for comp in components: import_path += ".%s" % comp thing = dot_lookup(thing, comp, import_path) return thing class _ContextData(object): """ To be used as a repository of context specific data, used during each example execution. """ def _init_sub_example(self): self._sub_examples_agg_ex = AggregatedExceptions() def real_assert_sub_examples(self): if self._sub_examples_agg_ex.exceptions: self._sub_examples_agg_ex.raise_correct_exception() if self._example.is_async: async def assert_sub_examples(self): real_assert_sub_examples(self) else: def assert_sub_examples(self): real_assert_sub_examples(self) self.after(assert_sub_examples) def _init_mocks(self): self.mock_callable = testslide.mock_callable.mock_callable self.mock_async_callable = testslide.mock_callable.mock_async_callable self.mock_constructor = testslide.mock_constructor.mock_constructor self.patch_attribute = testslide.patch_attribute.patch_attribute self._mock_callable_after_functions = [] def register_assertion(assertion): if self._example.is_async: async def f(_): assertion() else: f = lambda _: assertion() self._mock_callable_after_functions.append(f) testslide.mock_callable.register_assertion = register_assertion def __init__(self, example): self._example = example self._context = example.context self._after_functions = [] self._test_case = unittest.TestCase() self._init_sub_example() self._init_mocks() @staticmethod def _not_callable(self): raise BaseException("This function should not be called outside test code.") @property def _all_methods(self): return self._context.all_context_data_methods @property def _all_attributes(self): return self._context.all_context_data_memoizable_attributes def __getattr__(self, name): if name in self._all_methods.keys(): def static(*args, **kwargs): return self._all_methods[name](self, *args, **kwargs) self.__dict__[name] = static if name in self._all_attributes.keys(): attribute_code = self._all_attributes[name] if self._example.is_async and inspect.iscoroutinefunction(attribute_code): raise ValueError( f"Function can not be a coroutine function: {repr(attribute_code)}" ) self.__dict__[name] = attribute_code(self) try: return self.__dict__[name] except KeyError: # Forward assert* methods to unittest.TestCase if re.match("^assert", name) and hasattr(self._test_case, name): return getattr(self._test_case, name) raise AttributeError( "Context '{}' has no attribute '{}'".format(self._context, name) ) def after(self, after_code): """ Use this to decorate a function to be registered to be executed after the example code. """ self._after_functions.append(after_code) return self._not_callable @contextmanager def sub_example(self, name=None): """ Use this as a context manager many times inside the same example. Failures in the code inside the context manager will be aggregated, and reported individually at the end. """ with self._sub_examples_agg_ex.catch(): yield class AggregatedExceptions(Exception): """ Aggregate example execution exceptions. """ def __init__(self): super(AggregatedExceptions, self).__init__() self.exceptions = [] def append_exception(self, exception): if isinstance(exception, AggregatedExceptions): self.exceptions.extend(exception.exceptions) else: self.exceptions.append(exception) @contextmanager def catch(self): try: yield except BaseException as exception: self.append_exception(exception) def __str__(self): return "{} failures.\n".format(len(self.exceptions)) + "\n".join( f"{type(e)}: {str(e)}" for e in self.exceptions ) def raise_correct_exception(self): if not self.exceptions: return ex_types = {type(ex) for ex in self.exceptions} if Skip in ex_types or unittest.SkipTest in ex_types: raise Skip() elif len(self.exceptions) == 1: raise self.exceptions[0] else: raise self if len(self.exceptions) == 1: raise self.exceptions[0] else: raise self class Skip(Exception): """ Raised by an example when it is skipped """ pass class UnexpectedSuccess(Exception): """ Raised by an example when it unexpectedly succeeded """ class SlowCallback(Exception): """ Raised by TestSlide when an asyncio slow callback warning is detected """ class _ExampleRunner: def __init__(self, example): self.example = example @staticmethod async def _fail_if_not_coroutine_function(func, *args, **kwargs): if not inspect.iscoroutinefunction(func): raise ValueError(f"Function must be a coroutine function: {repr(func)}") return await func(*args, **kwargs) async def _real_async_run_all_hooks_and_example( self, context_data, around_functions=None ): """ *********************************************************************** *********************************************************************** WARNING *********************************************************************** *********************************************************************** This function **MUST** be keep the exact same execution flow of _sync_run_all_hooks_and_example()!!! """ if around_functions is None: around_functions = list(reversed(self.example.context.all_around_functions)) if not around_functions: aggregated_exceptions = AggregatedExceptions() with aggregated_exceptions.catch(): for before_code in self.example.context.all_before_functions: await self._fail_if_not_coroutine_function( before_code, context_data ) await self._fail_if_not_coroutine_function( self.example.code, context_data ) after_functions = [] after_functions.extend(context_data._mock_callable_after_functions) after_functions.extend(self.example.context.all_after_functions) after_functions.extend(context_data._after_functions) for after_code in reversed(after_functions): with aggregated_exceptions.catch(): await self._fail_if_not_coroutine_function(after_code, context_data) aggregated_exceptions.raise_correct_exception() return around_code = around_functions.pop() wrapped_called = [] async def async_wrapped(): wrapped_called.append(True) await self._real_async_run_all_hooks_and_example( context_data, around_functions ) await self._fail_if_not_coroutine_function( around_code, context_data, async_wrapped ) if not wrapped_called: raise RuntimeError( "Around hook " + repr(around_code.__name__) + " did not execute example code!" ) @contextlib.contextmanager def _raise_if_asyncio_warnings(self, context_data): if sys.version_info < (3, 7): yield return original_showwarning = warnings.showwarning caught_failures = [] def showwarning(message, category, filename, lineno, file=None, line=None): failure_warning_messages = { RuntimeWarning: "^coroutine '.+' was never awaited" } warning_class = type(message) pattern = failure_warning_messages.get(warning_class, None) if pattern and re.compile(pattern).match(str(message)): caught_failures.append(message) else: original_showwarning(message, category, filename, lineno, file, line) warnings.showwarning = showwarning original_logger_warning = asyncio.log.logger.warning def logger_warning(msg, *args, **kwargs): if re.compile("^Executing .+ took .+ seconds$").match(str(msg)): msg = ( f"{msg}\n" "During the execution of the async test a slow callback " "that blocked the event loop was detected.\n" "Tip: you can customize the detection threshold with:\n" " asyncio.get_running_loop().slow_callback_duration = seconds" ) caught_failures.append(SlowCallback(msg % args)) else: original_logger_warning(msg, *args, **kwargs) asyncio.log.logger.warning = logger_warning aggregated_exceptions = AggregatedExceptions() try: with aggregated_exceptions.catch(): yield finally: warnings.showwarning = original_showwarning asyncio.log.logger.warning = original_logger_warning for failure in caught_failures: with aggregated_exceptions.catch(): raise failure aggregated_exceptions.raise_correct_exception() def _async_run_all_hooks_and_example(self, context_data): coro = self._real_async_run_all_hooks_and_example(context_data) with self._raise_if_asyncio_warnings(context_data): if sys.version_info < (3, 7): loop = asyncio.events.new_event_loop() try: loop.set_debug(True) loop.run_until_complete(coro) finally: try: loop.run_until_complete(loop.shutdown_asyncgens()) finally: loop.close() else: asyncio.run(coro, debug=True) @staticmethod def _fail_if_coroutine_function(func, *args, **kwargs): if inspect.iscoroutinefunction(func): raise ValueError(f"Function can not be a coroutine function: {repr(func)}") return func(*args, **kwargs) def _sync_run_all_hooks_and_example(self, context_data, around_functions=None): """ *********************************************************************** *********************************************************************** WARNING *********************************************************************** *********************************************************************** This function **MUST** be keep the exact same execution flow of _real_async_run_all_hooks_and_example()!!! """ if around_functions is None: around_functions = list(reversed(self.example.context.all_around_functions)) if not around_functions: aggregated_exceptions = AggregatedExceptions() with aggregated_exceptions.catch(): for before_code in self.example.context.all_before_functions: self._fail_if_coroutine_function(before_code, context_data) self._fail_if_coroutine_function(self.example.code, context_data) after_functions = [] after_functions.extend(context_data._mock_callable_after_functions) after_functions.extend(self.example.context.all_after_functions) after_functions.extend(context_data._after_functions) for after_code in reversed(after_functions): with aggregated_exceptions.catch(): self._fail_if_coroutine_function(after_code, context_data) aggregated_exceptions.raise_correct_exception() return around_code = around_functions.pop() wrapped_called = [] def wrapped(): wrapped_called.append(True) self._sync_run_all_hooks_and_example(context_data, around_functions) self._fail_if_coroutine_function(around_code, context_data, wrapped) if not wrapped_called: raise RuntimeError( "Around hook " + repr(around_code.__name__) + " did not execute example code!" ) def run(self): try: if self.example.skip: raise Skip() context_data = _ContextData(self.example) if self.example.is_async: self._async_run_all_hooks_and_example(context_data) else: self._sync_run_all_hooks_and_example(context_data) finally: sys.stdout.flush() sys.stderr.flush() testslide.mock_callable.unpatch_all_callable_mocks() testslide.mock_constructor.unpatch_all_constructor_mocks() testslide.patch_attribute.unpatch_all_mocked_attributes() class Example(object): """ Individual example. """ def __init__(self, name, code, context, skip=False, focus=False): self.name = name self.code = code self.is_async = inspect.iscoroutinefunction(self.code) self.context = context self.__dict__["skip"] = skip self.__dict__["focus"] = focus @property def full_name(self): return "{context_full_name}: {example_name}".format( context_full_name=self.context.full_name, example_name=self.name ) @property def skip(self): """ True if the example of its context is marked to be skipped. """ return any([self.context.skip, self.__dict__["skip"]]) @property def focus(self): """ True if the example of its context is marked to be focused. """ return any([self.context.focus, self.__dict__["focus"]]) def __call__(self): """ Run the example, including all around, before and after hooks. """ _ExampleRunner(self).run() def __str__(self): return self.name class _TestSlideTestResult(unittest.TestResult): """ Concrete unittest.TestResult to allow unttest.TestCase integration, by aggregating failures at an AggregatedExceptions instance. """ def __init__(self): super(_TestSlideTestResult, self).__init__() self.aggregated_exceptions = AggregatedExceptions() def _add_exception(self, err): exc_type, exc_value, exc_traceback = err self.aggregated_exceptions.append_exception(exc_value) def addError(self, test, err): """Called when an error has occurred. 'err' is a tuple of values as returned by sys.exc_info(). """ super(_TestSlideTestResult, self).addError(test, err) self._add_exception(err) def addFailure(self, test, err): """Called when an error has occurred. 'err' is a tuple of values as returned by sys.exc_info().""" super(_TestSlideTestResult, self).addFailure(test, err) self._add_exception(err) def addSkip(self, test, reason): """Called when the test case test is skipped. reason is the reason the test gave for skipping.""" super(_TestSlideTestResult, self).addSkip(test, reason) self._add_exception((type(Skip), Skip(), None)) def addUnexpectedSuccess(self, test): """Called when the test case test was marked with the expectedFailure() decorator, but succeeded.""" super(_TestSlideTestResult, self).addUnexpectedSuccess(test) self._add_exception((type(UnexpectedSuccess), UnexpectedSuccess(), None)) def addSubTest(self, test, subtest, err): """Called at the end of a subtest. 'err' is None if the subtest ended successfully, otherwise it's a tuple of values as returned by sys.exc_info(). """ super(_TestSlideTestResult, self).addSubTest(test, subtest, err) if err: self._add_exception(err) class Context(object): """ Container for example contexts. """ _SAME_CONTEXT_NAME_ERROR = "A context with the same name is already defined" # List of all top level contexts created all_top_level_contexts = [] # Constructor def __init__( self, name, parent_context=None, shared=False, skip=False, focus=False ): """ Creates a new context. """ # Validate context name if parent_context: current_level_contexts = parent_context.children_contexts else: current_level_contexts = self.all_top_level_contexts if name in [context.name for context in current_level_contexts]: raise RuntimeError(self._SAME_CONTEXT_NAME_ERROR) self.name = name self.parent_context = parent_context self.shared = shared self.__dict__["skip"] = skip self.__dict__["focus"] = focus self.children_contexts = [] self.examples = [] self.before_functions = [] self.after_functions = [] self.around_functions = [] self.context_data_methods = {} self.context_data_memoizable_attributes = {} self.shared_contexts = {} self._runtime_attributes = [] if not self.parent_context and not self.shared: self.all_top_level_contexts.append(self) # Properties @property def parent_contexts(self): """ Returns a list of all parent contexts, from bottom to top. """ final_list = [] parent = self.parent_context while parent: final_list.append(parent) parent = parent.parent_context return final_list @property def depth(self): """ Number of parent contexts this context has. """ return len(self.parent_contexts) def _all_parents_as_dict(original): # noqa: B902 """ Use as a decorator for empty functions named all_attribute_name, to make them return a dict with self.parent_context.all_attribute_name and self.attribute_name. """ def get_all(self): final_dict = {} if self.parent_context: final_dict.update(getattr(self.parent_context, original.__name__)) final_dict.update(getattr(self, original.__name__.split("all_")[1])) return final_dict return get_all def _all_parents_as_list(original): # noqa: B902 """ Use as a decorator for empty functions named all_attribute_name, to make them return a list with self.parent_context.all_attribute_name and self.attribute_name. """ def get_all(self): final_list = [] if self.parent_context: final_list.extend(getattr(self.parent_context, original.__name__)) final_list.extend(getattr(self, original.__name__.split("all_")[1])) return final_list return get_all @property # type: ignore @_all_parents_as_dict def all_context_data_methods(self): """ Returns a combined dict of all context_data_methods, including from parent contexts. """ pass @property # type: ignore @_all_parents_as_dict def all_context_data_memoizable_attributes(self): """ Returns a combined dict of all context_data_memoizable_attributes, including from parent contexts. """ pass @property # type: ignore @_all_parents_as_list def all_around_functions(self): """ Return a list of all around_functions, including from parent contexts. """ pass @property # type: ignore @_all_parents_as_list def all_before_functions(self): """ Return a list of all before_functions, including from parent contexts. """ pass @property # type: ignore @_all_parents_as_list def all_after_functions(self): """ Return a list of all after_functions, including from parent contexts. """ pass @property # type: ignore @_all_parents_as_dict def all_shared_contexts(self): """ Returns a combined dict of all shared_contexts, including from parent contexts. """ pass @property def all_examples(self): """ List of of all examples in this context and nested contexts. """ final_list = [] final_list.extend(self.examples) for child_context in self.children_contexts: final_list.extend(child_context.all_examples) return final_list @property def hierarchy(self): """ Returns a list of all contexts in this hierarchy. """ return [context for context in list(reversed(self.parent_contexts)) + [self]] @property def full_name(self): """ Full context name, including parent contexts. """ return ", ".join(str(context) for context in self.hierarchy) @property def skip(self): """ True if this context of any parent context are tagged to be skipped. """ return any(context.__dict__["skip"] for context in self.hierarchy) @property def focus(self): """ True if this context of any parent context are tagged to be focused. """ return any(context.__dict__["focus"] for context in self.hierarchy) def __str__(self): return self.name def add_child_context(self, name, skip=False, focus=False): """ Creates a nested context below self. """ if name in [context.name for context in self.children_contexts]: raise RuntimeError(self._SAME_CONTEXT_NAME_ERROR) child_context = Context(name, parent_context=self, skip=skip, focus=focus) self.children_contexts.append(child_context) return child_context def add_example(self, name, example_code, skip=False, focus=False): """ Add an example to this context. """ if name in [example.name for example in self.examples]: raise RuntimeError("An example with the same name is already defined") self.examples.append( Example(name, code=example_code, context=self, skip=skip, focus=focus) ) return self.examples[-1] def has_attribute(self, name): return any( [ name in self.context_data_methods.keys(), name in self.context_data_memoizable_attributes.keys(), name in self._runtime_attributes, ] ) def add_function(self, name, function_code): """ Add given function to example execution scope. """ if self.has_attribute(name): raise AttributeError( 'Attribute "{}" already set for context "{}"'.format(name, self) ) self.context_data_methods[name] = function_code def register_runtime_attribute(self, name): """ Register name as a new runtime attribute, that can not be registered again. """ if name in self._runtime_attributes: raise AttributeError( 'Attribute "{}" already set for context "{}"'.format(name, self) ) self._runtime_attributes.append(name) def add_memoized_attribute(self, name, memoizable_code): """ Add given attribute name to execution scope, by lazily memoizing the return value of memoizable_code(). """ if self.has_attribute(name): raise AttributeError( 'Attribute "{}" already set for context "{}"'.format(name, self) ) self.context_data_memoizable_attributes[name] = memoizable_code def add_shared_context(self, name, shared_context_code): """ Create a shared context. """ if name in self.shared_contexts: raise RuntimeError("A shared context with the same name is already defined") self.shared_contexts[name] = shared_context_code def add_test_case(self, test_case, attr_name): """ Add around hooks to context from given unittest.TestCase class. Only hooks such as setUp or tearDown will be called, no tests will be included. """ def wrap_test_case(self, example): def test_test_slide(_): example() def exec_body(ns): ns.update({"test_test_slide": test_test_slide}) # Build a child class of given TestCase, with a defined test that # will run TestSlide example. test_slide_test_case = types.new_class( "TestSlideTestCase", bases=(test_case,), exec_body=exec_body ) # This suite will only contain TestSlide's example test. test_suite = unittest.TestLoader().loadTestsFromName( "test_test_slide", test_slide_test_case ) setattr(self, attr_name, list(test_suite)[0]) result = _TestSlideTestResult() test_suite(result=result) if not result.wasSuccessful(): result.aggregated_exceptions.raise_correct_exception() self.around_functions.append(wrap_test_case) def reset(): """ Clear all defined contexts and hooks. """ Context.all_top_level_contexts.clear() class TestCase(unittest.TestCase): """ A subclass of unittest.TestCase that adds TestSlide's features. """ def setUp(self): testslide.mock_callable.register_assertion = lambda assertion: self.addCleanup( assertion ) self.addCleanup(testslide.mock_callable.unpatch_all_callable_mocks) self.addCleanup(testslide.mock_constructor.unpatch_all_constructor_mocks) self.addCleanup(testslide.patch_attribute.unpatch_all_mocked_attributes) super(TestCase, self).setUp() @staticmethod def mock_callable(*args, **kwargs): return testslide.mock_callable.mock_callable(*args, **kwargs) @staticmethod def mock_async_callable(*args, **kwargs): return testslide.mock_callable.mock_async_callable(*args, **kwargs) @staticmethod def mock_constructor(*args, **kwargs): return testslide.mock_constructor.mock_constructor(*args, **kwargs) @staticmethod def patch_attribute(*args, **kwargs): return testslide.patch_attribute.patch_attribute(*args, **kwargs)
py
7df823f27620d87e789022b705206ddc6195bdca
import glob import os import re from importlib import import_module from unwind.models.meta import MigrateMeta from malibu.util import log from malibu.util.decorators import function_marker, function_registrator modules = glob.glob(os.path.dirname(__file__) + "/*.py") __all__ = [os.path.basename(f)[:-3] for f in modules if not os.path.basename(f).startswith('_') and not f.endswith('__init__.py') and os.path.isfile(f)] __UPGRADE__ = [] __DOWNGRADE__ = [] MIGRATION_ORDERING_RGX = re.compile(r"^(?P<order>[\d]+)(?:.*)$") """ upgrade and downgrade are function decorators that designate a migration function as a database upgrader or a database downgrader. A migration function should take one argument, which would be an instance of peewee's playhouse.migrate.SchemaMigrator. """ __upgrade_reg = function_registrator(__UPGRADE__) __downgrade_reg = function_registrator(__DOWNGRADE__) __upgrade_mark = function_marker("mig_type", "upgrade") __downgrade_mark = function_marker("mig_type", "downgrade") def upgrade(func): __upgrade_reg(func) __upgrade_mark(func) return func def downgrade(func): __downgrade_reg(func) __downgrade_mark(func) return func def load_migrations(): """ Loads all migration modules. Migration functions should be defined with @upgrade and @downgrade. Only labelled functions will be executed with the specified migration case! Migration functions will be loaded into __UPGRADE__ or __DOWNGRADE__ depending on how they are marked. Because of the way migrations are marked, stored, and loaded, this function doesn't return a list of migration functions, but returns a list of migration modules. """ LOG = log.LoggingDriver.find_logger() migrations = [] for migration in __all__: LOG.info("Checking for migrations in {}.{}".format( __package__, migration)) module = import_module("{}.{}".format(__package__, migration)) order_match = MIGRATION_ORDERING_RGX.match(migration) if not order_match: LOG.warning("No leading migration number found in '%s', skipping" % (migration)) continue mig_num = order_match.groups( order_match.groupdict({"order": None})["order"])[0] if not mig_num: LOG.warning("No leading migration number found in '%s', skipping" % (migration)) continue migrations.append(module) mig_num = int(mig_num) for obj_n in dir(module): obj = getattr(module, obj_n) if hasattr(obj, "mig_type"): # This function is a migration. Tag it! obj.mig_order = mig_num LOG.info("%s migration (%s) loaded from %s (order: %s)" % (obj.mig_type, obj.__name__, module.__name__, mig_num)) else: continue return migrations def run_migrations(migrator, migrations, delete_meta=False): LOG = log.LoggingDriver.find_logger() ordered_migrations = sorted( migrations, key=lambda item: item.mig_order) for mig in ordered_migrations: try: mig_meta = MigrateMeta.get( MigrateMeta.upgrade_number == mig.mig_order) except: mig_meta = None if delete_meta and mig_meta: try: mig_meta.delete() except: LOG.info("Could not delete migration meta: %s %s" % (mig.__name__, mig.mig_order)) elif not delete_meta and not mig_meta: mig_meta = MigrateMeta.create( upgrade_number=mig.mig_order) mig_meta.save() elif not delete_meta and mig_meta: LOG.info("Can't perform migration, meta for migration %s " "already exists (migration has already been applied)" % (mig.mig_order)) continue elif delete_meta and not mig_meta: LOG.info("Not going to perform downgrade migration, migration " "meta does not exist: %s" % (mig.mig_order)) continue try: mig(migrator) LOG.info("Finished migration: %s (num: %s)" % (mig.__name__, mig.mig_order)) except Exception: LOG.error("An error occured while running a migration (order: %s)" % (mig.mig_order)) raise def migrate_single(migrator, migrate_action, migrate_num): """ Runs a single migration specified by migrate_num. migrate_action should be a string, either "upgrade" or "downgrade". """ LOG = log.LoggingDriver.find_logger() mig_list = [] if migrate_action == "upgrade": mig_list = __UPGRADE__ elif migrate_action == "downgrade": mig_list = __DOWNGRADE__ else: LOG.error("Invalid migration action! Only 'upgrade' and 'downgrade' " "are allowed.") return False migrations = filter( lambda item: item.mig_order == migrate_num, mig_list) if len(migrations) == 0: LOG.error("No migrations found for migration number %s" % (migrate_num)) return False try: mig_meta = MigrateMeta.get( MigrateMeta.upgrade_number == migrate_num) except: mig_meta = None if migrate_action == "downgrade" and mig_meta: try: mig_meta.delete() except: LOG.info("Could not delete migration meta: %s %s" % (mig_meta.__name__, migrate_num)) elif migrate_action == "upgrade" and not mig_meta: mig_meta = MigrateMeta.create( upgrade_number=migrate_num) mig_meta.save() elif migrate_action == "upgrade" and mig_meta: LOG.info("Can't perform migration, meta for migration %s " "already exists (migration has already been applied)" % (migrate_num)) return False elif migrate_action == "downgrade" and not mig_meta: LOG.info("Not going to perform downgrade migration, migration " "meta does not exist: %s" % (migrate_num)) return False for mig in migrations: try: mig(migrator) LOG.info("Finished migration: %s (num: %s)" % (mig.__name__, mig.mig_order)) except Exception: LOG.error("An error occured while running a migration (order: %s)" % (mig.mig_order)) raise return True migrate_upgrades = lambda migrator: run_migrations( migrator, __UPGRADE__, delete_meta=False) migrate_downgrades = lambda migrator: run_migrations( migrator, __DOWNGRADE__, delete_meta=True)
py
7df824522cddccb09c82b7c9b5b124aff9b6c0c2
#!/usr/bin/python ############################################################################## # Copyright Gimpel Software LLC 2017-2019. All rights reserved. # Confidential and proprietary. No part of this file may be redistributed # without express written permission of Gimpel Software LLC. # # This file is provided by Gimpel Software LLC (https://www.gimpel.com) for # use exclusively with PC-lint Plus. Redistribution to and use by licensed # users is permitted. Any such redistribution must preserve this notice and, # if the redistributed file has been modified, provide notice that the file # has been modified from the original. ############################################################################## from __future__ import print_function import regex import yaml import os import sys import subprocess import argparse import string import stat import tempfile import ntpath from datetime import datetime __version__ = "1.3.0" def emit_note(text): sys.stderr.write("Note: " + text) def emit_warning(text): sys.stderr.write("Warning: " + text) def emit_error(text): sys.stderr.write("Error: " + text) sys.exit(1) def makeHeaderGuardName(fname): prefix = "GS_PCLP_" fname = ntpath.basename(fname) fname = regex.sub("[.-]", "_", fname) fname = regex.sub("[^[:alnum:]_]", "", fname) return prefix + fname.upper() def processConfig(config_file): try: config = yaml.load(open(config_file), Loader=yaml.Loader); return config except yaml.YAMLError as exc: emit_error("unable to parse configuration file '" + config_file + "': " + str(exc) + "\n") except IOError as exc: if not os.path.isabs(config_file): # If we didn't find a config file specified with # a relative path in the working directory, try # again in this script's own directory. script_dir = os.path.dirname(os.path.abspath(__file__)) abs_config = os.path.join(script_dir, config_file) try: config = yaml.load(open(abs_config), Loader=yaml.Loader); return config except yaml.YAMLError as exc_abs: emit_error("unable to parse configuration file '" + abs_config + "': " + str(exc_abs) + "\n") except IOError as exc_abs: emit_error("unable to open configuration file '" + config_file + "' in the working directory, '" + os.getcwd() + "', nor in the script directory, '" + script_dir + "': " + str(exc) + ", " + str(exc_abs) + "\n") emit_error("unable to open configuration file '" + config_file + "': " + str(exc) + "\n") def runCommand(command, prog_input=None): # Run a command and return the collected stdout, stderr, and return value # Command should be list containing the executable and any arguments # prog_input, if provided, is sent to the stdin stream of the program. try: if prog_input is None: child_process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) std_output, std_error = child_process.communicate() exit_code = child_process.returncode return std_output.decode('utf-8'), std_error.decode('utf-8'), exit_code else: child_process = subprocess.Popen(command, stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.PIPE) std_output, std_error = child_process.communicate(input=prog_input.encode()) exit_code = child_process.returncode return std_output.decode('utf-8'), std_error.decode('utf-8'), exit_code except OSError as exc: emit_error("unable to execute command '" + " ".join(command) + "': " + str(exc) + "\n") def listSupportedCompilers(config): # Dump the supported compilers and their descriptions to stdout. print("{:20}{}".format("Compiler Family", "Description")) print("{:20}{}".format("---------------", "-----------")) if 'compilers' in config: for compiler in sorted(config['compilers']): if 'description' in config['compilers'][compiler]: #print(compiler, "-", config['compilers'][compiler]['description']) print("{:20}{}".format(compiler, config['compilers'][compiler]['description'])) def getCompilerVersion(config, compiler, exe): # Run the compiler and extract the version information from it version_instructions = config.get('compilers', {}).get(compiler, {}).get('version', {}) if version_instructions is None: emit_warning("don't know how to extract compiler version for this compiler\n") return None version = None if 'command' in version_instructions: if exe is not None: # We need to launch the compiler to extract the version number command = version_instructions['command'] command.insert(0, exe) std_out, std_err, ret_val = runCommand(command) if 'match_expr' in version_instructions: result = regex.search(version_instructions['match_expr'], std_out if version_instructions.get('channel', '') == 'stdout' else std_err, regex.MULTILINE) if result is None: emit_warning("unable to extract compiler version\n") return None return result.group('version') else: emit_warning("need to specify compiler location with --compiler-bin to extract version information\n") return None return None def createTemporaryFileWithContents(contents): t = tempfile.NamedTemporaryFile(mode='w', delete=False) t.file.write(contents) return t.name def generateSizeOptions(config, args): # Find the instructions for generating PCLP size options for compiler # from the configuration database and execute the instructions returning # the result. compiler = args.compiler base_options = [] if args.compiler_options: base_options = args.compiler_options.split() exe = args.compiler_bin size_instructions = config.get('compilers', {}).get(compiler, {}).get('size_options') if size_instructions is None: emit_note("size options for this compiler cannot be determined automatically, please set size options manually in the generated .lnt file\n") return None # The presence of 'command' means we should try to extract the information by # invoking the compiler. if 'command' in size_instructions and exe is not None: # We need to launch the compiler to extract the size options # The options we pass to the compiler (if any) are stored in 'command' # The input sent to the compiler's stdin stream, if any, is in 'input' command = [exe] if base_options: command = command + base_options if size_instructions['command']: command = command + size_instructions['command'] tempfilename = None if 'tempfile' in size_instructions: tempfilename = createTemporaryFileWithContents(size_instructions['tempfile']) command.append(tempfilename) compiler_input = size_instructions.get('input') std_out, std_err, ret_val = runCommand(command, compiler_input) if tempfilename: os.remove(tempfilename) # The 'channel' determines where in the output we should look for the size options result_channel = size_instructions.get('channel') result_text = std_err if result_channel == 'stderr' else std_out # 'match_expr' is the pattern to use to extract the size options from # the output channel. If this doesn't exist, we'll just return it all. match_expr = size_instructions.get('match_expr') if match_expr is None: return result_text match_result = regex.search(match_expr, result_text, regex.MULTILINE | regex.DOTALL) if match_result is not None: if 'size_options' in match_result.groupdict(): # The size options should be in a named capture group called 'size_options' matched_portion = match_result.group('size_options') if matched_portion is not None: return matched_portion if {'size_name', 'size_value'} <= set(match_result.groupdict()): matched_names = match_result.captures('size_name') matched_values = match_result.captures('size_value') if len(matched_names) == len(matched_values): size_option_list = zip(matched_names, matched_values) size_options = [] for size_name, size_value in size_option_list: size_options.append('-' + size_name + size_value) return " ".join(size_options) if 'fallback_values' in size_instructions: return size_instructions.get('fallback_values') if 'command' in size_instructions and exe is None: emit_warning("size options could not be extracted because the compiler binary was not provided, please set size options manually in the generated .lnt file or rerun with the --compiler-bin option\n") return None def generateIncludeOptions(config, args): # Find the built-in compiler include paths, typically used to find standard # and system headers. These can reside in 'cpp_include_paths', 'c_include_paths', # and 'include_paths'. Well process all we find, dedupe them, and put them in # the order listed above. compiler = args.compiler base_options = args.compiler_options.split() exe = args.compiler_bin include_paths = config.get('compilers', {}).get(compiler, {}).get('include_paths') c_include_paths = config.get('compilers', {}).get(compiler, {}).get('c_include_paths') cpp_include_paths = config.get('compilers', {}).get(compiler, {}).get('cpp_include_paths') all_include_paths = [] if cpp_include_paths is not None: all_include_paths.append(cpp_include_paths) if c_include_paths is not None: all_include_paths.append(c_include_paths) if include_paths is not None: all_include_paths.append(include_paths) if len(all_include_paths) == 0: return None found_paths = [] for include_path in all_include_paths: result_text = '' if 'command' in include_path: if not exe: emit_warning("unable to extract include path information from compiler, use --compiler-bin to specify compiler locations\n") return None # We'll be invoking the compiler to paths command = [exe] if base_options: command.extend(base_options) command.extend(include_path['command']) compiler_input = include_path.get('input') std_out, std_err, ret_val = runCommand(command, compiler_input) # The 'channel' determines where in the output we should look for the include paths result_channel = include_path.get('channel') result_text = std_err if result_channel == 'stderr' else std_out elif 'env_var' in include_path: result_text = os.environ.get(include_path['env_var'], '') # 'match_expr' is the pattern to use to extract the include paths from # the output channel. If this doesn't exist, we'll just continue. match_expr = include_path.get('match_expr') if match_expr is None: continue match_result = regex.search(match_expr, result_text, regex.MULTILINE | regex.DOTALL) if match_result is not None: # The paths should be in one or more named capture groups called 'include_dir' matched_portions = match_result.captures('include_dir') if matched_portions is not None: for matched_portion in matched_portions: matched_portion = matched_portion.strip() matched_portion = regex.sub(r'\s+', " ", matched_portion) if matched_portion not in found_paths: found_paths.append(matched_portion) return found_paths def defaultIgnoredMacroNames(): ignored_names = ( '_Pragma', '__BASE_FILE__', '__COUNTER__', '__DATE__', '__FILE__', '__INCLUDE_LEVEL__', '__LINE__', '__TIMESTAMP__', '__TIME__', '__VA_ARGS__', '__cplusplus', '__has_attribute', '__has_builtin', '__has_extension', '__has_feature', '__has_include', '__has_include_next', '__has_warning', '__is_identifier', 'and', 'and_eq', 'bitand', 'bitor', 'compl', 'define', 'defined', 'not', 'not_eq', 'or', 'or_eq', 'xor', 'xor_eq') return ignored_names def extractPotentialMacros(filename): "Extract and return a uniq list of potential macro names from file." ignored_names = defaultIgnoredMacroNames() names = set() try: with open(filename, "rb") as f: s = "" for c in f.read(): if (c in string.letters + '_') or (s and c in string.digits): s += c continue elif s: if s not in ignored_names: names.add(s) s = "" except IOError as exc: emit_error("unable to scavenge macros from file '" + filename + "': " + str(exc) + "\n") return names def createScavengeData(names): # Produce scavenger data for preprocessing scavenge_data = '' for name in names: scavenge_data += ("#ifdef %s\n-d%s{%s}\n#endif\n" % (name, name, name)) return scavenge_data def extractScavengeResults(output): # Remove anything except -d options from preprocessed scavenger output. good_lines = [] good_pattern = regex.compile("^\s*-d") for line in output.split('\n'): if good_pattern.match(line): # Convert to #define line = regex.sub("^\s*-d(.*?)\{(.*)\}$", "#define \\1 \\2", line) good_lines.append(line) return good_lines def generateMacroDefinitions(instructions, args, base_options): # There are several ways macro definitions may be generated: # 'command' - via compiler invocation and pattern matching # 'definitions' - explicitly specified # 'scavenge' - using the macro scavenger method # # For 'command', the macro definitions are expected to appear in the # output of the invocation, either in 'stdout' or 'stderr' as indicated # by 'channel'. 'match_expr' will be used to match the definitions, if # present, otherwise the output will be used as-is. # # For 'definitions', a list of lists is expected where the first item # in each list is the definition name, including parameter list for # function-like macros, and the second item is the definition, or null # for no definition. E.g.: # # [['A', 1], ['B', ''], ['C', null], ['f(a,b)', '(a + b)']] # # results in the definitions: # # #define A 1 # #define B # #define C # #define f(a,b) (a + b) # # For 'scavenge', 'scavenge_files' and/or 'scavenge_dirs', provided # on the command line, are used to search for possible macros. # A scavenger file is built and passed to the compiler using the # preprocessor to expand defined macros and the output is exhumed # to dig out and build a macro list. # # In all cases, a list of macro definitions, one per line, is returned. exe = args.compiler_bin scavenging = args.scavenge_files or args.scavenge_dirs if scavenging and 'scavenge_command' in instructions: scavenge_files = set() if args.scavenge_files: scavenge_files.update(args.scavenge_files) if args.scavenge_dirs: for scavenge_dir in args.scavenge_dirs: for folder, subs, files in os.walk(scavenge_dir): for filename in files: if args.scavenge_pattern: if not regex.match(args.scavenge_pattern, filename): continue full_path = os.path.join(folder, filename) stat_info = os.stat(full_path) if stat.S_ISREG(stat_info.st_mode): scavenge_files.add(full_path) potential_macros = set() for scavenge_file in scavenge_files: potential_macros.update(extractPotentialMacros(scavenge_file)) scavenge_data = createScavengeData(potential_macros) command = [exe] + instructions['scavenge_command'] compiler_input = scavenge_data std_out, std_err, ret_val = runCommand(command, compiler_input) result_channel = instructions.get('channel') result_text = std_err if result_channel == 'stderr' else std_out return "\n".join(extractScavengeResults(result_text)) + "\n" if 'command' in instructions: if exe is None: emit_warning("unable to extract macro definitions from compiler, use --compiler-bin to specify compiler locations\n") else: command = [exe] if base_options: command.extend(base_options) command.extend(instructions['command']) tempfilename = None if 'tempfile' in instructions: tempfilename = createTemporaryFileWithContents(instructions['tempfile']) command.append(tempfilename) compiler_input = instructions.get('input') std_out, std_err, ret_val = runCommand(command, compiler_input) if tempfilename: os.remove(tempfilename) result_channel = instructions.get('channel') result_text = std_err if result_channel == 'stderr' else std_out # 'match_expr' is the pattern to use to extract the macros from # the output channel. match_expr = instructions.get('match_expr') if match_expr is None: return result_text match_result = regex.search(match_expr, result_text, regex.MULTILINE|regex.DOTALL) if match_result: ignored_names = defaultIgnoredMacroNames() macros = match_result.group('macros') macros_to_keep = [] for md in macros.splitlines(): m = regex.match(r'\s*#define\s+(\w+)', md) if not m or m.group(1) in ignored_names: continue macros_to_keep.append(md) return "\n".join(macros_to_keep) + "\n" if 'definitions' in instructions: macro_defs_str = '' for definition in instructions['definitions']: macro_name, macro_def = definition macro_defs_str += '#define ' + macro_name + ' ' + macro_def + "\n" return macro_defs_str return None def generateDecls(config, args): # Find the built-in compiler decls. We can have 'c_decls', 'cpp_decls', # and 'decls'. compiler = args.compiler base_options = args.compiler_options.split() exe = args.compiler_bin decls = config.get('compilers', {}).get(compiler, {}).get('decls', {}).get('definitions') c_decls = config.get('compilers', {}).get(compiler, {}).get('c_decls', {}).get('definitions') cpp_decls = config.get('compilers', {}).get(compiler, {}).get('cpp_decls', {}).get('definitions') all_decls = '' if decls: all_decls += "\n".join(decls) if c_decls: all_decls += '#ifndef __cplusplus\n' + "\n".join(c_decls) + '\n#endif\n' if cpp_decls: all_decls += '#ifdef __cplusplus\n' + "\n".join(cpp_decls) + '\n#endif\n' return all_decls def generateMacros(config, args): # Find the built-in compiler macros. We can have 'c_macros', 'cpp_macros', # and 'macros'. compiler = args.compiler base_options = args.compiler_options.split() exe = args.compiler_bin macros = config.get('compilers', {}).get(compiler, {}).get('macros') c_macros = config.get('compilers', {}).get(compiler, {}).get('c_macros') cpp_macros = config.get('compilers', {}).get(compiler, {}).get('cpp_macros') all_macro_definitions = '' if macros: generic_macro_defs = generateMacroDefinitions(macros, args, args.compiler_options.split()) if generic_macro_defs: all_macro_definitions += generic_macro_defs if c_macros: c_macro_defs = generateMacroDefinitions(c_macros, args, args.compiler_options.split() + args.compiler_c_options.split()) if c_macro_defs: all_macro_definitions += '#ifndef __cplusplus\n' + c_macro_defs + '#endif\n' if cpp_macros: cpp_macro_defs = generateMacroDefinitions(cpp_macros, args, args.compiler_options.split() + args.compiler_cpp_options.split()) if cpp_macro_defs: all_macro_definitions += '#ifdef __cplusplus\n' + cpp_macro_defs + '#endif\n' return all_macro_definitions def generateBaseOptions(config, args): compiler = args.compiler base_config = config.get('compilers', {}).get(compiler, {}).get('base_config', {}) base_options = "" for key in sorted(base_config.keys()): base_options += "// " + key.title() + "\n" for option, annotation in base_config[key]: base_options += option if annotation: base_options += " // " + annotation base_options += "\n" base_options += "\n" return base_options def generateCompilerConfig(config, args): if not 'compilers' in config: emit_error("compiler database doesn't contain any compiler data\n") compiler = args.compiler compile_commands = args.compiler_options.split() exe = args.compiler_bin if compiler is None: emit_error("no --compiler specified\n") if not compiler in config['compilers']: emit_error("'" + compiler + "' is not recognized for automatic configuration; use the option '--list-compilers' to list compilers in the database (refer to the 'System Configuration' section in chapter 2 of the manual to configure an unknown compiler manually)\n") compiler_entry = config['compilers'][compiler] compiler_version = getCompilerVersion(config, compiler, exe) intro_string = "/* Compiler configuration for %s %s.\n Using the options: %s \n Generated on %s with pclp_config version %s.\n */\n\n" % (compiler, compiler_version, " ".join(compile_commands), datetime.now().strftime('%Y-%m-%d %H:%M:%S'), __version__) # Base configuration base_string = "" base_options = generateBaseOptions(config, args) if base_options is None: base_string = "// Unable to generate base compiler options.\n\n" else: base_string = "// Base Options\n" + base_options + "\n\n" # Size Options size_string = "" size_options = generateSizeOptions(config, args) if size_options is None: emit_warning("unable to determine size options, these will need to be set manually in the generated .lnt file\n") size_string = "// Unable to determine size options. \n\n" else: size_string = "// Size Options\n" + size_options + "\n\n" # Built-in include directories includes_string = "" include_directories = generateIncludeOptions(config, args) if include_directories is None: emit_warning("unable to determine built-in include directories, these will need to be set manually in the generated .lnt file\n") includes_string = "// Failed to extract include paths. \n" else: includes_string = "// Include Options\n" for include_dir in include_directories: includes_string += "--i\"" + include_dir.strip() + "\"\n" includes_string += "\n" # Built-in macros builtin_macros = generateMacros(config, args) builtin_decls = generateDecls(config, args) # Custom compile commands custom_options_string = "// Transformed compiler options\n" while compile_commands: transformations, options_consumed = handleCompilerOption(config, compiler, compile_commands) if transformations: custom_options_string += " ".join(transformations) + " // From compiler option(s): " + " ".join(compile_commands[:options_consumed]) + "\n" compile_commands = compile_commands[options_consumed:] custom_options_string += "\n" if args.config_output_lnt_file: with open(args.config_output_lnt_file, 'w') as f: f.write(intro_string) f.write(base_string) f.write(custom_options_string) f.write(size_string) f.write(includes_string) if args.config_output_header_file: header_guard_macro = makeHeaderGuardName(args.config_output_header_file) with open(args.config_output_header_file, 'w') as h: h.write('#ifndef ' + header_guard_macro + "\n") h.write('#define ' + header_guard_macro + "\n") h.write(builtin_macros) h.write(builtin_decls) h.write('\n#endif /* ' + header_guard_macro + " */\n") header_path = args.config_output_header_file if args.header_option_use_enclosing_directory: header_path = "%ENCLOSING_DIRECTORY%/" + header_path header_string = '+libh(' + header_path + ')\n' + '-header(' + header_path + ')\n' f.write(header_string) else: emit_warning("no --config-output-header-file specified\n") else: emit_warning("no --config-output-lnt-file specified\n") def generateProjectConfig(config, args): compiler = args.compiler source_pattern = args.source_pattern imposter_file = args.imposter_file if not imposter_file: emit_error("An imposter input file must be specified when using --generate-project-config, " + "use --imposter-file to specify the imposter file\n") imposter_contents = '' with open(imposter_file) as f: imposter_contents = '[' + ",".join(f.readlines()) + ']' compile_commands = yaml.load(imposter_contents, Loader=yaml.Loader) output_file = open(args.config_output_lnt_file, 'w') for compile_command in compile_commands: source_files = [] options_str = '' while compile_command: sf_match = regex.match(source_pattern, compile_command[0]) if sf_match: source_files.append(compile_command[0]) compile_command.pop(0) continue transformations, options_consumed = handleCompilerOption(config, compiler, compile_command) if transformations: options_str += "\n".join(transformations) + "\n" compile_command = compile_command[options_consumed:] if source_files: output_file.write("-env_push\n") output_file.write(options_str) for source_file in source_files: output_file.write('"' + source_file + '"\n') output_file.write("-env_pop\n\n") output_file.close() def handleCompilerOption(config, compiler, option_list): # Given a configuration and a compiler, attempt to decode the provided # compiler option, mapping it to the corresponding PC-lint option if # an appropriate transformation exists. Returns the transformation # (or None) and the number of options consumed. option_map = config.get('compilers', {}).get(compiler, {}).get('options') if option_map is None or not option_list: return (None, 1) option_str = option_list[0] # Find the longest matching option best_match = None best_match_size = 0 for candidate_option in option_map: if option_str.startswith(candidate_option): if len(candidate_option) > best_match_size: best_match = candidate_option best_match_size = len(candidate_option) if best_match is None: # We didn't recognize the option return (None, 1) found_option_map = option_map[best_match] if found_option_map is None: return (None, 1) if 'transform' in found_option_map: return ([found_option_map['transform']], 1) if 'transforms' in found_option_map: options_consumed = 1 while True: replacements = [] for transform_pair in found_option_map['transforms']: match_pattern, repl_pattern = transform_pair replaced_option_str = option_str if 'pre_transforms_replacements' in found_option_map: for replacement_pair in found_option_map['pre_transforms_replacements']: replaced_option_str = replaced_option_str.replace(replacement_pair[0], replacement_pair[1]) match_result = regex.match(match_pattern, replaced_option_str) if match_result: replacement = regex.sub(match_pattern, repl_pattern, replaced_option_str) replacements.append(replacement) if replacements: return (replacements, options_consumed) # Didn't match any of the transformation patterns. Add the next # option to the option string to see if we can match with an arg. if len(option_list) > options_consumed: option_str += " " + option_list[options_consumed] options_consumed += 1 else: return (None, 1) # Found an option but no transformations exist return (None, 1) def main(): parser = argparse.ArgumentParser() parser.add_argument('--list-compilers', help='list the supported compilers', default=False, action='store_true') parser.add_argument('--generate-compiler-config', help='generate a customized compiler configuration', default=False, action='store_true') parser.add_argument('--generate-project-config', help='generate a customized project configuration', default=False, action='store_true') parser.add_argument('--compiler', help='the compiler that will be used to generate configurations', type=str) parser.add_argument('--compiler-bin', help='the location of the compiler executable', type=str) parser.add_argument('--compiler-options', help='base compiler options', default='') parser.add_argument('--compiler-c-options', help='base C-specific compiler options', default='') parser.add_argument('--compiler-cpp-options', help='base C++-specific compiler options', default='') parser.add_argument('--ignore-options', help='compiler options that should be ignored (not transformed)', nargs='+') parser.add_argument('--compiler-database', help='the name of the compiler database file', default='compilers.yaml') parser.add_argument('--repl', help="enter compiler options and see the transformations that would be made", default=False, action='store_true') parser.add_argument('--compiler-version', help="show the version of the compiler being configured", default=False, action='store_true') parser.add_argument('--source-pattern', help="the pattern used to match project source files in compiler invocations", default='.*\.(c|cpp)$', type=str) parser.add_argument('--imposter-file', help="the file containing compiler invocations logged by the imposter program", type=str) parser.add_argument('--config-output-lnt-file', help="the file to write the configuration to", type=str) parser.add_argument('--config-output-header-file', help="the file to write supplemental configuration data to (macro definitions, etc)", type=str) parser.add_argument('--scavenge-files', help="the list of files to attempt to extract macro information from", action='append') parser.add_argument('--scavenge-dirs', help="the list of directories to recursively process files from to extract macro information from", action='append') parser.add_argument('--scavenge-pattern', help="the regular expression pattern used to match filenames, excluding path, for macro extraction", type=str) parser.add_argument('--header-option-use-enclosing-directory', help="use the built-in %%ENCLOSING_DIRECTORY%% environment variable to provide an 'absolute' path for the compiler configuration -header option", default=False, action='store_true') args = parser.parse_args() handled_task = False if args.compiler_version: config = processConfig(args.compiler_database) print(getCompilerVersion(config, args.compiler, args.compiler_bin)) handled_task = True if args.list_compilers: config = processConfig(args.compiler_database) listSupportedCompilers(config) handled_task = True if args.generate_compiler_config: config = processConfig(args.compiler_database) generateCompilerConfig(config, args) handled_task = True if args.generate_project_config: config = processConfig(args.compiler_database) generateProjectConfig(config, args) handled_task = True if args.repl: config = processConfig(args.compiler_database) handled_task = True while True: line = sys.stdin.readline() if not line: break print(handleCompilerOption(config, args.compiler, line.strip().split())) if not handled_task: if args.imposter_file: emit_warning("No work done as no task was requested, did you forget the --generate-project-config option?\n") elif args.config_output_lnt_file or args.config_output_header_file: emit_warning("No work done as no task was requested, did you forget the --generate-compiler-config option?\n") else: emit_warning("No work done as no task was requested, use --help for usage.\n") if __name__ == '__main__': try: main() except Exception as e: emit_error(str(e) + "\n")
py
7df82500d93407fdfb0b0b0ecb7b055d06b4cb13
from django.db import models class Emotion(models.Model): """An emotion that the user is capable of feeling at any time. This is application-wide and not user-specific.""" name = models.CharField(max_length=50) description = models.CharField(max_length=500, blank=True) class Meta: ordering = ["name"] db_table = "emotion" def __str__(self) -> str: return self.name
py
7df8267616b4e49b78bf72aecefc1aee44c93d9a
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'chengzhi' import asyncio import time from datetime import datetime from asyncio import gather from inspect import isfunction from typing import Optional, Union, Callable from tqsdk import utils from tqsdk.api import TqApi from tqsdk.backtest import TqBacktest from tqsdk.channel import TqChan from tqsdk.datetime import _is_in_trading_time, _timestamp_nano_to_str from tqsdk.diff import _get_obj from tqsdk.lib.utils import _check_volume_limit, _check_direction, _check_offset, _check_volume, _check_price, \ _check_offset_priority from tqsdk.tradeable import TqAccount, TqKq, TqSim class TargetPosTaskSingleton(type): """ TargetPosTask 需要保证在每个账户下每个合约只有一个 TargetPosTask 实例。 当用户多次调用时,应该保证对于同一账户同一合约使用相同的参数构造,否则抛错。 在修改 TargetPosTask 构造参数时,同时应该修改 TargetPosTaskSingleton.__call__ 方法的参数,要确保其个数、名称、默认值和文档描述一致,\ 这些参数才是实际传给 TargetPosTask.__init__ 方法的参数。 同时应该在 TargetPosTask 实例运行结束时释放相应的资源,_instances 需要情况对应的引用。 """ # key 为 id(account) + '#' + symbol, 值为 TargetPosTask 实例。 _instances = {} def __call__(cls, api, symbol, price="ACTIVE", offset_priority="今昨,开", min_volume=None, max_volume=None, trade_chan=None, trade_objs_chan=None, account: Optional[Union[TqAccount, TqKq, TqSim]]=None, *args, **kwargs): target_account = api._account._check_valid(account) if target_account is None: raise Exception(f"多账户模式下, 需要指定账户实例 account") key = api._account._get_account_key(target_account) + "#" + symbol if key not in TargetPosTaskSingleton._instances: TargetPosTaskSingleton._instances[key] = super(TargetPosTaskSingleton, cls).__call__(api, symbol, price, offset_priority, min_volume, max_volume, trade_chan, trade_objs_chan, target_account, *args, **kwargs) else: instance = TargetPosTaskSingleton._instances[key] if instance._offset_priority != offset_priority: raise Exception("您试图用不同的 offset_priority 参数创建两个 %s 调仓任务, offset_priority参数原为 %s, 现为 %s" % ( symbol, instance._offset_priority, offset_priority)) if instance._price != price: raise Exception("您试图用不同的 price 参数创建两个 %s 调仓任务, price参数原为 %s, 现为 %s" % (symbol, instance._price, price)) if instance._min_volume != min_volume: raise Exception(f"您试图用不同的 min_volume 参数创建两个 {symbol} 调仓任务, min_volume 参数原为 {instance._min_volume}, 现为 {min_volume}") if instance._max_volume != max_volume: raise Exception(f"您试图用不同的 max_volume 参数创建两个 {symbol} 调仓任务, max_volume 参数原为 {instance._max_volume}, 现为 {max_volume}") return TargetPosTaskSingleton._instances[key] class TargetPosTask(object, metaclass=TargetPosTaskSingleton): """目标持仓 task, 该 task 可以将指定合约调整到目标头寸""" def __init__(self, api: TqApi, symbol: str, price: Union[str, Callable[[str], Union[float, int]]] = "ACTIVE", offset_priority: str = "今昨,开", min_volume: Optional[int] = None, max_volume: Optional[int] = None, trade_chan: Optional[TqChan] = None, trade_objs_chan: Optional[TqChan] = None, account: Optional[Union[TqAccount, TqKq, TqSim]] = None) -> None: """ 创建目标持仓task实例,负责调整归属于该task的持仓 **(默认为整个账户的该合约净持仓)**. **注意:** 1. TargetPosTask 在 set_target_volume 时并不下单或撤单, 它的下单和撤单动作, 是在之后的每次 wait_update 时执行的. 因此, **需保证 set_target_volume 后还会继续调用wait_update()** 。 2. 请勿在使用 TargetPosTask 的同时使用 insert_order() 函数, 否则将导致 TargetPosTask 报错或错误下单。 3. TargetPosTask 如果同时设置 min_volume(每笔最小下单手数),max_volume(每笔最大下单的手数)两个参数,表示采用 **大单拆分模式** 下单。 在 **大单拆分模式** 下,每次下单的手数为随机生成的正整数,值介于 min_volume、max_volume 之间。 具体说明:调用 set_target_volume 后,首先会根据目标持仓手数、开平仓顺序计算出,需要平今、平昨、开仓的目标下单手数及顺序。 + 如果在调整持仓的目标下单手数小于 max_volume,则直接以目标下单手数下单。 + 如果在调整持仓的目标下单手数大于等于 max_volume,则会以 min_volume、max_volume 之间的随机手数下一笔委托单,手数全部成交后,会接着处理剩余的手数;\ 继续以随机手数下一笔委托单,全部成交后,继续处理剩余的手数,直至剩余手数小于 max_volume 时,直接以剩余手数下单。 当使用大单拆分模式下单时,必须同时填写 min_volume、max_volume,且需要满足 max_volume >= min_volume > 0。 Args: api (TqApi): TqApi实例,该task依托于指定api下单/撤单 symbol (str): 负责调整的合约代码 price (str / Callable): [可选]下单方式, 默认为 "ACTIVE"。 * "ACTIVE":对价下单,在持仓调整过程中,若下单方向为买,对价为卖一价;若下单方向为卖,对价为买一价。 * "PASSIVE":排队价下单,在持仓调整过程中,若下单方向为买,对价为买一价;若下单方向为卖,对价为卖一价。 * Callable[[str], Union[float, int]]: 函数参数为下单方向,函数返回值是下单价格。如果返回 nan,程序会抛错。 offset_priority (str): [可选]开平仓顺序,昨=平昨仓,今=平今仓,开=开仓,逗号=等待之前操作完成 对于下单指令区分平今/昨的交易所(如上期所),按照今/昨仓的数量计算是否能平今/昨仓 对于下单指令不区分平今/昨的交易所(如中金所),按照“先平当日新开仓,再平历史仓”的规则计算是否能平今/昨仓,如果这些交易所设置为"昨开"在有当日新开仓和历史仓仓的情况下,会自动跳过平昨仓进入到下一步 * "今昨,开" 表示先平今仓,再平昨仓,等待平仓完成后开仓,对于没有单向大边的品种避免了开仓保证金不足 * "今昨开" 表示先平今仓,再平昨仓,并开仓,所有指令同时发出,适合有单向大边的品种 * "昨开" 表示先平昨仓,再开仓,禁止平今仓,适合股指这样平今手续费较高的品种 * "开" 表示只开仓,不平仓,适合需要进行锁仓操作的品种 min_volume (int): [可选] **大单拆分模式下** 每笔最小下单的手数,默认不启用 **大单拆分模式** max_volume (int): [可选] **大单拆分模式下** 每笔最大下单的手数,默认不启用 **大单拆分模式** trade_chan (TqChan): [可选]成交通知channel, 当有成交发生时会将成交手数(多头为正数,空头为负数)发到该channel上 trade_objs_chan (TqChan): [可选]成交对象通知channel, 当有成交发生时会将成交对象发送到该channel上 account (TqAccount/TqKq/TqSim): [可选]指定发送下单指令的账户实例, 多账户模式下,该参数必须指定 **注意** 当 price 参数为函数类型时,该函数应该返回一个有效的价格值,应该避免返回 nan。以下为 price 参数是函数类型时的示例。 Example1:: # ... 用户代码 ... quote = api.get_quote("SHFE.cu2012") def get_price(direction): # 在 BUY 时使用买一价加一档价格,SELL 时使用卖一价减一档价格 if direction == "BUY": price = quote.bid_price1 + quote.price_tick else: price = quote.ask_price1 - quote.price_tick # 如果 price 价格是 nan,使用最新价报单 if price != price: price = quote.last_price return price target_pos = TargetPosTask(api, "SHFE.cu2012", price=get_price) # ... 用户代码 ... Example2:: # ... 用户代码 ... quote_list = api.get_quote_list(["SHFE.cu2012","SHFE.au2012"]) def get_price_by_quote(quote): def get_price(direction): # 在 BUY 时使用买一价加一档价格,SELL 时使用卖一价减一档价格 if direction == "BUY": price = quote["upper_limit"] else: price = quote.lower_limit # 如果 price 价格是 nan,使用最新价报单 if price != price: price = quote.last_price return price return get_price for quote in quote_list: target_pos_active_dict[quote.instrument_id] = TargetPosTask(api, quote.instrument_id, price=get_price_by_quote(quote)) # ... 用户代码 ... Example3:: # 大单拆分模式用法示例 from tqsdk import TqApi, TqAuth, TargetPosTask api = TqApi(auth=TqAuth("信易账户", "账户密码")) position = api.get_position('SHFE.rb2106') # 同时设置 min_volume、max_volume 两个参数,表示使用大单拆分模式 t = TargetPosTask(api, 'SHFE.rb2106', min_volume=2, max_volume=10) t.set_target_volume(50) while True: api.wait_update() if position.pos_long == 50: break api.close() # 说明: # 以上代码使用 TqSim 交易,开始时用户没有 SHFE.cu2012 合约的任何持仓,那么在 t.set_target_volume(50) 之后应该开多仓 50 手 # 根据用户参数,下单使用大单拆分模式,每次下单手数在 2~10 之间,打印出的成交通知可能是这样的: # 2021-03-15 11:29:48 - INFO - 模拟交易成交记录 # 2021-03-15 11:29:48 - INFO - 时间: 2021-03-15 11:29:47.516138, 合约: SHFE.rb2106, 开平: OPEN, 方向: BUY, 手数: 7, 价格: 4687.000,手续费: 32.94 # 2021-03-15 11:29:48 - INFO - 时间: 2021-03-15 11:29:47.519699, 合约: SHFE.rb2106, 开平: OPEN, 方向: BUY, 手数: 8, 价格: 4687.000,手续费: 37.64 # 2021-03-15 11:29:48 - INFO - 时间: 2021-03-15 11:29:47.522848, 合约: SHFE.rb2106, 开平: OPEN, 方向: BUY, 手数: 10, 价格: 4687.000,手续费: 47.05 # 2021-03-15 11:29:48 - INFO - 时间: 2021-03-15 11:29:47.525617, 合约: SHFE.rb2106, 开平: OPEN, 方向: BUY, 手数: 8, 价格: 4687.000,手续费: 37.64 # 2021-03-15 11:29:48 - INFO - 时间: 2021-03-15 11:29:47.528151, 合约: SHFE.rb2106, 开平: OPEN, 方向: BUY, 手数: 7, 价格: 4687.000,手续费: 32.94 # 2021-03-15 11:29:48 - INFO - 时间: 2021-03-15 11:29:47.530930, 合约: SHFE.rb2106, 开平: OPEN, 方向: BUY, 手数: 7, 价格: 4687.000,手续费: 32.94 # 2021-03-15 11:29:48 - INFO - 时间: 2021-03-15 11:29:47.533515, 合约: SHFE.rb2106, 开平: OPEN, 方向: BUY, 手数: 3, 价格: 4687.000,手续费: 14.12 """ if symbol.startswith("CZCE.CJ"): raise Exception("红枣期货不支持创建 targetpostask、twap、vwap 任务,交易所规定该品种最小开仓手数为大于等于 4 手,这些函数还未支持该规则!") if symbol.startswith("CZCE.ZC"): raise Exception("动力煤期货不支持创建 targetpostask、twap、vwap 任务,交易所规定该品种最小开仓手数为大于等于 4 手,这些函数还未支持该规则!") if symbol.startswith("CZCE.WH"): raise Exception("强麦期货不支持创建 targetpostask、twap、vwap 任务,交易所规定该品种最小开仓手数为大于等于 10 手,这些函数还未支持该规则!") super(TargetPosTask, self).__init__() self._api = api self._account = api._account._check_valid(account) self._symbol = symbol self._exchange = symbol.split(".")[0] self._offset_priority = _check_offset_priority(offset_priority) self._min_volume, self._max_volume = _check_volume_limit(min_volume, max_volume) self._price = _check_price(price) self._pos = self._account.get_position(self._symbol) self._pos_chan = TqChan(self._api, last_only=True) self._trade_chan = trade_chan self._trade_objs_chan = trade_objs_chan self._task = self._api.create_task(self._target_pos_task()) self._time_update_task = self._api.create_task(self._update_time_from_md()) # 监听行情更新并记录当时本地时间的task self._local_time_record = time.time() - 0.005 # 更新最新行情时间时的本地时间 self._local_time_record_update_chan = TqChan(self._api, last_only=True) # 监听 self._local_time_record 更新 def set_target_volume(self, volume: int) -> None: """ 设置目标持仓手数 Args: volume (int): 目标持仓手数,正数表示多头,负数表示空头,0表示空仓 Example1:: # 设置 rb1810 持仓为多头5手 from tqsdk import TqApi, TqAuth, TargetPosTask api = TqApi(auth=TqAuth("信易账户", "账户密码")) target_pos = TargetPosTask(api, "SHFE.rb1810") target_pos.set_target_volume(5) while True: # 需在 set_target_volume 后调用wait_update()以发出指令 api.wait_update() Example2:: # 多账户模式下使用 TargetPosTask from tqsdk import TqApi, TqMultiAccount, TqAuth, TargetPosTask account1 = TqAccount("H海通期货", "123456", "123456") account2 = TqAccount("H宏源期货", "654321", "123456") api = TqApi(TqMultiAccount([account1, account2]), auth=TqAuth("信易账户", "账户密码")) symbol1 = "DCE.m2105" symbol2 = "DCE.i2101" # 多账户模式下, 调仓工具需要指定账户实例 target_pos1 = TargetPosTask(api, symbol1, account=account1) target_pos2 = TargetPosTask(api, symbol2, account=account2) target_pos1.set_target_volume(30) target_pos2.set_target_volume(80) while True: api.wait_update() api.close() """ if self._task.done(): raise Exception("已经结束的 TargetPosTask 实例不可以再设置手数。") self._pos_chan.send_nowait(int(volume)) def _get_order(self, offset, vol, pending_frozen): """ 根据指定的offset和预期下单手数vol, 返回符合要求的委托单最大报单手数 :param offset: "昨" / "今" / "开" :param vol: int, <0表示SELL, >0表示BUY :return: order_offset: "CLOSE"/"CLOSETODAY"/"OPEN"; order_dir: "BUY"/"SELL"; "order_volume": >=0, 报单手数 """ if vol > 0: # 买单(增加净持仓) order_dir = "BUY" pos_all = self._pos.pos_short else: # 卖单 order_dir = "SELL" pos_all = self._pos.pos_long if offset == "昨": order_offset = "CLOSE" if self._exchange == "SHFE" or self._exchange == "INE": if vol > 0: pos_all = self._pos.pos_short_his else: pos_all = self._pos.pos_long_his frozen_volume = sum([order.volume_left for order in self._pos.orders.values() if not order.is_dead and order.offset == order_offset and order.direction == order_dir]) else: frozen_volume = pending_frozen + sum([order.volume_left for order in self._pos.orders.values() if not order.is_dead and order.offset != "OPEN" and order.direction == order_dir]) # 判断是否有未冻结的今仓手数: 若有则不平昨仓 if (self._pos.pos_short_today if vol > 0 else self._pos.pos_long_today) - frozen_volume > 0: pos_all = frozen_volume order_volume = min(abs(vol), max(0, pos_all - frozen_volume)) elif offset == "今": if self._exchange == "SHFE" or self._exchange == "INE": order_offset = "CLOSETODAY" if vol > 0: pos_all = self._pos.pos_short_today else: pos_all = self._pos.pos_long_today frozen_volume = sum([order.volume_left for order in self._pos.orders.values() if not order.is_dead and order.offset == order_offset and order.direction == order_dir]) else: order_offset = "CLOSE" frozen_volume = pending_frozen + sum([order.volume_left for order in self._pos.orders.values() if not order.is_dead and order.offset != "OPEN" and order.direction == order_dir]) pos_all = self._pos.pos_short_today if vol > 0 else self._pos.pos_long_today order_volume = min(abs(vol), max(0, pos_all - frozen_volume)) elif offset == "开": order_offset = "OPEN" order_volume = abs(vol) else: order_offset = "" order_volume = 0 return order_offset, order_dir, order_volume async def _update_time_from_md(self): """监听行情更新并记录当时本地时间的task""" try: chan = TqChan(self._api, last_only=True) self._quote = await self._api.get_quote(self._symbol) self._api.register_update_notify(self._quote, chan) # quote有更新时: 更新记录的时间 if isinstance(self._api._backtest, TqBacktest): # 回测情况下,在收到回测时间有更新的时候,也需要更新记录的时间 self._api.register_update_notify(_get_obj(self._api._data, ["_tqsdk_backtest"]), chan) async for _ in chan: self._local_time_record = time.time() - 0.005 # 更新最新行情时间时的本地时间 self._local_time_record_update_chan.send_nowait(True) # 通知记录的时间有更新 finally: await chan.close() async def _target_pos_task(self): """负责调整目标持仓的task""" all_tasks = [] try: self._quote = await self._api.get_quote(self._symbol) async for target_pos in self._pos_chan: # lib 中对于时间判断的方案: # 如果当前时间(模拟交易所时间)不在交易时间段内,则:等待直到行情更新 # 行情更新(即下一交易时段开始)后:获取target_pos最新的目标仓位, 开始调整仓位 # 如果不在可交易时间段内(回测时用 backtest 下发的时间判断,实盘使用 quote 行情判断): 等待更新 while True: if isinstance(self._api._backtest, TqBacktest): cur_timestamp = self._api._data.get("_tqsdk_backtest", {}).get("current_dt", float("nan")) cur_dt = _timestamp_nano_to_str(cur_timestamp) time_record = float("nan") else: cur_dt = self._quote["datetime"] time_record = self._local_time_record if _is_in_trading_time(self._quote, cur_dt, time_record): break await self._local_time_record_update_chan.recv() target_pos = self._pos_chan.recv_latest(target_pos) # 获取最后一个target_pos目标仓位 # 确定调仓增减方向 delta_volume = target_pos - self._pos.pos pending_forzen = 0 for each_priority in self._offset_priority + ",": # 按不同模式的优先级顺序报出不同的offset单,股指(“昨开”)平昨优先从不平今就先报平昨,原油平今优先("今昨开")就报平今 if each_priority == ",": await gather(*[each._task for each in all_tasks]) pending_forzen = 0 all_tasks = [] continue order_offset, order_dir, order_volume = self._get_order(each_priority, delta_volume, pending_forzen) if order_volume == 0: # 如果没有则直接到下一种offset continue elif order_offset != "OPEN": pending_forzen += order_volume order_task = InsertOrderUntilAllTradedTask(self._api, self._symbol, order_dir, offset=order_offset, volume=order_volume, min_volume=self._min_volume, max_volume=self._max_volume, price=self._price, trade_chan=self._trade_chan, trade_objs_chan=self._trade_objs_chan, account=self._account) all_tasks.append(order_task) delta_volume -= order_volume if order_dir == "BUY" else -order_volume finally: # 执行 task.cancel() 时, 删除掉该 symbol 对应的 TargetPosTask 实例 # self._account 类型为 TqSim/TqKq/TqAccount,都包括 _account_key 变量 TargetPosTaskSingleton._instances.pop(self._account._account_key + "#" + self._symbol, None) await self._pos_chan.close() self._time_update_task.cancel() await asyncio.gather(*([t._task for t in all_tasks] + [self._time_update_task]), return_exceptions=True) def cancel(self): """ 取消当前 TargetPosTask 实例,会将该实例已经发出但还是未成交的委托单撤单,并且如果后续调用此实例的 set_target_volume 函数会报错。 任何时刻,每个账户下一个合约只能有一个 TargetPosTask 实例,并且其构造参数不能修改。 如果对于同一个合约要构造不同参数的 TargetPosTask 实例,需要调用 cancel 方法销毁,才能创建新的 TargetPosTask 实例 Example1:: from datetime import datetime, time from tqsdk import TqApi, TargetPosTask api = TqApi(auth=TqAuth("信易账户", "账户密码")) quote = api.get_quote("SHFE.rb2110") target_pos_passive = TargetPosTask(api, "SHFE.rb2110", price="PASSIVE") while datetime.strptime(quote.datetime, "%Y-%m-%d %H:%M:%S.%f").time() < time(14, 50): api.wait_update() # ... 策略代码 ... # 取消 TargetPosTask 实例 target_pos_passive.cancel() while not target_pos_passive.is_finished(): # 此循环等待 target_pos_passive 处理 cancel 结束 api.wait_update() # 调用wait_update(),会对已经发出但还是未成交的委托单撤单 # 创建新的 TargetPosTask 实例 target_pos_active = TargetPosTask(api, "SHFE.rb2110", price="ACTIVE") target_pos_active.set_target_volume(0) # 平所有仓位 while True: api.wait_update() # ... 策略代码 ... api.close() """ self._task.cancel() def is_finished(self) -> bool: """ 返回当前 TargetPosTask 实例是否已经结束。即如果后续调用此实例的 set_target_volume 函数会报错,此实例不会再下单或者撤单。 Returns: bool: 当前 TargetPosTask 实例是否已经结束 """ return self._task.done() class InsertOrderUntilAllTradedTask(object): """追价下单task, 该task会在行情变化后自动撤单重下,直到全部成交 (注:此类主要在tqsdk内部使用,并非简单用法,不建议用户使用)""" def __init__(self, api, symbol, direction, offset, volume, min_volume: Optional[int] = None, max_volume: Optional[int] = None, price: Union[str, Callable[[str], Union[float, int]]] = "ACTIVE", trade_chan=None, trade_objs_chan=None, account: Optional[Union[TqAccount, TqKq, TqSim]] = None): """ 创建追价下单task实例 Args: api (TqApi): TqApi实例,该task依托于指定api下单/撤单 symbol (str): 拟下单的合约symbol, 格式为 交易所代码.合约代码, 例如 "SHFE.cu1801" direction (str): "BUY" 或 "SELL" offset (str): "OPEN", "CLOSE" 或 "CLOSETODAY" volume (int): 需要下单的手数 min_volume (int): [可选] **大单拆分模式下** 每笔最小下单的手数,默认不启用 **大单拆分模式** max_volume (int): [可选] **大单拆分模式下** 每笔最大下单的手数,默认不启用 **大单拆分模式** price (str / Callable): [可选]下单方式, 默认为 "ACTIVE"。 * "ACTIVE":对价下单,在持仓调整过程中,若下单方向为买,对价为卖一价;若下单方向为卖,对价为买一价。 * "PASSIVE":对价下单,在持仓调整过程中,若下单方向为买,对价为买一价;若下单方向为卖,对价为卖一价。 * Callable[[str], Union[float, int]]: 函数参数为下单方向,函数返回值是下单价格。如果返回 nan,程序会抛错。 trade_chan (TqChan): [可选]成交通知channel, 当有成交发生时会将成交手数(多头为正数,空头为负数)发到该channel上 trade_objs_chan (TqChan): [可选]成交对象通知channel, 当有成交发生时会将成交对象发送到该channel上 account (TqAccount/TqKq/TqSim): [可选]指定发送下单指令的账户实例, 多账户模式下,该参数必须指定 """ self._api = api self._account = account self._symbol = symbol self._direction = _check_direction(direction) self._offset = _check_offset(offset) self._volume = _check_volume(volume) self._min_volume, self._max_volume = _check_volume_limit(min_volume, max_volume) self._price = _check_price(price) self._trade_chan = trade_chan self._trade_objs_chan = trade_objs_chan self._task = self._api.create_task(self._run()) async def _run(self): """负责追价下单的task""" self._quote = await self._api.get_quote(self._symbol) while self._volume != 0: limit_price = self._get_price(self._direction) if limit_price != limit_price: raise Exception("设置价格函数返回 nan,无法处理。请检查后重试。") # 当前下单手数 if self._min_volume and self._max_volume and self._volume >= self._max_volume: this_volume = utils.RD.randint(self._min_volume, self._max_volume) else: this_volume = self._volume insert_order_task = InsertOrderTask(self._api, self._symbol, self._direction, self._offset, this_volume, limit_price=limit_price, trade_chan=self._trade_chan, trade_objs_chan=self._trade_objs_chan, account=self._account) order = await insert_order_task._order_chan.recv() check_chan = TqChan(self._api, last_only=True) check_task = self._api.create_task(self._check_price(check_chan, limit_price, order['order_id'])) try: # 当父 task 被 cancel,子 task 如果正在执行,也会捕获 CancelError # 添加 asyncio.shield 后,如果父 task 被 cancel,asyncio.shield 也会被 cancel,但是子 task 不会收到 CancelError # 这里需要 asyncio.shield,是因为 insert_order_task._task 预期不会被 cancel, 应该等待到 order 状态是 FINISHED 才返回 await asyncio.shield(insert_order_task._task) order = insert_order_task._order_chan.recv_latest(order) self._volume -= (this_volume - order['volume_left']) if order['volume_left'] != 0 and not check_task.done(): raise Exception("遇到错单: %s %s %s %d手 %f %s" % ( self._symbol, self._direction, self._offset, this_volume, limit_price, order['last_msg'])) finally: if self._api.get_order(order['order_id'], account=self._account).status == "ALIVE": # 当 task 被 cancel 时,主动撤掉未成交的挂单 self._api.cancel_order(order['order_id'], account=self._account) await check_chan.close() await check_task # 在每次退出时,都等到 insert_order_task 执行完,此时 order 状态一定是 FINISHED;self._trade_chan 也一定会收到全部的成交手数 try: # 当用户调用 api.close(), 会主动 cancel 所有由 api 创建的 task,包括 TargetPosTask._target_pos_task, # 此时,insert_order_task._task 如果有未完成委托单,会永远等待下去(因为网络连接已经断开),所以这里增加超时机制。 await asyncio.wait_for(insert_order_task._task, timeout=30) except asyncio.TimeoutError: raise Exception(f"InsertOrderTask 执行超时,30s 内报单未执行完。此错误产生可能的原因:" f"可能是用户调用了 api.close() 之后,已经创建的 InsertOrderTask 无法正常结束。") def _get_price(self, direction): """根据最新行情和下单方式计算出最优的下单价格""" if self._price not in ('ACTIVE', 'PASSIVE'): assert isfunction(self._price) return self._price(direction) # 主动买的价格序列(优先判断卖价,如果没有则用买价) price_list = [self._quote.ask_price1, self._quote.bid_price1] if direction == "SELL": price_list.reverse() if self._price == "PASSIVE": price_list.reverse() limit_price = price_list[0] if limit_price != limit_price: limit_price = price_list[1] if limit_price != limit_price: limit_price = self._quote.last_price if limit_price != limit_price: limit_price = self._quote.pre_close return limit_price async def _check_price(self, update_chan, order_price, order_id): """判断价格是否变化的task""" async with self._api.register_update_notify(chan=update_chan): async for _ in update_chan: new_price = self._get_price(self._direction) if (self._direction == "BUY" and new_price > order_price) or ( self._direction == "SELL" and new_price < order_price): self._api.cancel_order(order_id, account=self._account) break class InsertOrderTask(object): """下单task (注:此类主要在tqsdk内部使用,并非简单用法,不建议用户使用)""" def __init__(self, api, symbol, direction, offset, volume, limit_price=None, order_chan=None, trade_chan=None, trade_objs_chan=None, account: Optional[Union[TqAccount, TqKq, TqSim]] = None): """ 创建下单task实例 Args: api (TqApi): TqApi实例,该task依托于指定api下单/撤单 symbol (str): 拟下单的合约symbol, 格式为 交易所代码.合约代码, 例如 "SHFE.cu1801" direction (str): "BUY" 或 "SELL" offset (str): "OPEN", "CLOSE" 或 "CLOSETODAY" volume (int): 需要下单的手数 limit_price (float): [可选]下单价格, 默认市价单 order_chan (TqChan): [可选]委托单通知channel, 当委托单状态发生时会将委托单信息发到该channel上 trade_chan (TqChan): [可选]成交通知channel, 当有成交发生时会将成交手数(多头为正数,空头为负数)发到该channel上 trade_objs_chan (TqChan): [可选]成交对象通知channel, 当有成交发生时会将成交对象发送到该channel上 account (TqAccount/TqKq/TqSim): [可选]指定发送下单指令的账户实例, 多账户模式下,该参数必须指定 """ self._api = api self._account = account self._symbol = symbol self._direction = _check_direction(direction) self._offset = _check_offset(offset) self._volume = _check_volume(volume) self._offset = offset self._volume = int(volume) self._limit_price = float(limit_price) if limit_price is not None else None self._order_chan = order_chan if order_chan is not None else TqChan(self._api) self._trade_chan = trade_chan self._trade_objs_chan = trade_objs_chan self._task = self._api.create_task(self._run()) async def _run(self): """负责下单的task""" order_id = utils._generate_uuid("PYSDK_target") order = self._api.insert_order(self._symbol, self._direction, self._offset, self._volume, self._limit_price, order_id=order_id, account=self._account) last_order = order.copy() # 保存当前 order 的状态 last_left = self._volume all_trades_id = set() # 记录所有的 trade_id async with self._api.register_update_notify() as update_chan: await self._order_chan.send({k: v for k, v in last_order.items() if not k.startswith("_")}) # 将副本的数据及所有权转移 while order.status != "FINISHED" or (order.volume_orign - order.volume_left) != sum( [trade.volume for trade in order.trade_records.values()]): await update_chan.recv() if order.volume_left != last_left: vol = last_left - order.volume_left last_left = order.volume_left if self._trade_chan: await self._trade_chan.send(vol if order.direction == "BUY" else -vol) if self._trade_objs_chan: # 当前用户需要接受 trade_obj,才会运行以下代码 rest_trades_id = set(order.trade_records) - all_trades_id for trade_id in rest_trades_id: # 新收到的 trade 发送到 self._trade_objs_chan await self._trade_objs_chan.send({k: v for k, v in order.trade_records[trade_id].items() if not k.startswith("_")}) all_trades_id.add(trade_id) if order != last_order: last_order = order.copy() await self._order_chan.send({k: v for k, v in last_order.items() if not k.startswith("_")})
py
7df82896e7487f707d264aab4410a6e9ff5b0d0a
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files from typing import List, Any, Union class FcoeClientFlogiRange(Base): """The configuration parameters for a range of FLOGI VN_Ports. The FcoeClientFlogiRange class encapsulates a required fcoeClientFlogiRange resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'fcoeClientFlogiRange' _SDM_ATT_MAP = { 'Count': 'count', 'Enabled': 'enabled', 'FipAddressingMode': 'fipAddressingMode', 'FipDestinationMacAddress': 'fipDestinationMacAddress', 'FipEnabled': 'fipEnabled', 'FipOptionSet': 'fipOptionSet', 'FipOptionSetName': 'fipOptionSetName', 'FipSolicitTimeout': 'fipSolicitTimeout', 'FipVendorId': 'fipVendorId', 'FipVlanDiscovery': 'fipVlanDiscovery', 'FipVlanDiscoveryUntagged': 'fipVlanDiscoveryUntagged', 'Name': 'name', 'NameServerCommands': 'nameServerCommands', 'NameServerQuery': 'nameServerQuery', 'NameServerQueryCommand': 'nameServerQueryCommand', 'NameServerQueryParameterType': 'nameServerQueryParameterType', 'NameServerQueryParameterValue': 'nameServerQueryParameterValue', 'NameServerRegistration': 'nameServerRegistration', 'NodeWwnIncrement': 'nodeWwnIncrement', 'NodeWwnStart': 'nodeWwnStart', 'ObjectId': 'objectId', 'PlogiDestId': 'plogiDestId', 'PlogiEnabled': 'plogiEnabled', 'PlogiMeshMode': 'plogiMeshMode', 'PlogiTargetName': 'plogiTargetName', 'PortWwnIncrement': 'portWwnIncrement', 'PortWwnStart': 'portWwnStart', 'PrliEnabled': 'prliEnabled', 'SourceOui': 'sourceOui', 'SourceOuiIncrement': 'sourceOuiIncrement', 'StateChangeRegistration': 'stateChangeRegistration', 'StateChangeRegistrationOption': 'stateChangeRegistrationOption', 'UnicastFipSolicit': 'unicastFipSolicit', } _SDM_ENUM_MAP = { } def __init__(self, parent, list_op=False): super(FcoeClientFlogiRange, self).__init__(parent, list_op) @property def Count(self): # type: () -> int """ Returns ------- - number: The number of FLOGI VN_Ports to be created by this VN_Port range. """ return self._get_attribute(self._SDM_ATT_MAP['Count']) @Count.setter def Count(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['Count'], value) @property def Enabled(self): # type: () -> bool """ Returns ------- - bool: Disabled ranges won't be configured nor validated. """ return self._get_attribute(self._SDM_ATT_MAP['Enabled']) @Enabled.setter def Enabled(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['Enabled'], value) @property def FipAddressingMode(self): # type: () -> str """ Returns ------- - str: The addressing mode specified by FLOGI/FDISC requests. """ return self._get_attribute(self._SDM_ATT_MAP['FipAddressingMode']) @FipAddressingMode.setter def FipAddressingMode(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['FipAddressingMode'], value) @property def FipDestinationMacAddress(self): # type: () -> str """ Returns ------- - str: Represents the address to which FIP Solicit Unicast is sent. """ return self._get_attribute(self._SDM_ATT_MAP['FipDestinationMacAddress']) @FipDestinationMacAddress.setter def FipDestinationMacAddress(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['FipDestinationMacAddress'], value) @property def FipEnabled(self): # type: () -> bool """ Returns ------- - bool: Enable FCoE Initialization Protocol (FIP). """ return self._get_attribute(self._SDM_ATT_MAP['FipEnabled']) @FipEnabled.setter def FipEnabled(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['FipEnabled'], value) @property def FipOptionSet(self): # type: () -> str """ Returns ------- - str(None | /api/v1/sessions/1/ixnetwork/globals/.../fcoeClientOptionSet): List of TLV options used with FIP. """ return self._get_attribute(self._SDM_ATT_MAP['FipOptionSet']) @FipOptionSet.setter def FipOptionSet(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['FipOptionSet'], value) @property def FipOptionSetName(self): # type: () -> str """ Returns ------- - str: The name of the Option Set used by this range. """ return self._get_attribute(self._SDM_ATT_MAP['FipOptionSetName']) @FipOptionSetName.setter def FipOptionSetName(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['FipOptionSetName'], value) @property def FipSolicitTimeout(self): # type: () -> int """ Returns ------- - number: Period of time (in seconds) that the client waits for a message of type FIP Discovery Advertisement Multicast before failing. """ return self._get_attribute(self._SDM_ATT_MAP['FipSolicitTimeout']) @FipSolicitTimeout.setter def FipSolicitTimeout(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['FipSolicitTimeout'], value) @property def FipVendorId(self): # type: () -> str """ Returns ------- - str: The Vendor Identifier value (8-byte). """ return self._get_attribute(self._SDM_ATT_MAP['FipVendorId']) @FipVendorId.setter def FipVendorId(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['FipVendorId'], value) @property def FipVlanDiscovery(self): # type: () -> bool """ Returns ------- - bool: Enable FIP VLAN Discovery. """ return self._get_attribute(self._SDM_ATT_MAP['FipVlanDiscovery']) @FipVlanDiscovery.setter def FipVlanDiscovery(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['FipVlanDiscovery'], value) @property def FipVlanDiscoveryUntagged(self): # type: () -> bool """ Returns ------- - bool: If enabled, VLAN Discovery will be performed using plain Ethernet frames, i.e. without any VLAN tags. """ return self._get_attribute(self._SDM_ATT_MAP['FipVlanDiscoveryUntagged']) @FipVlanDiscoveryUntagged.setter def FipVlanDiscoveryUntagged(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['FipVlanDiscoveryUntagged'], value) @property def Name(self): # type: () -> str """ Returns ------- - str: Name of range """ return self._get_attribute(self._SDM_ATT_MAP['Name']) @Name.setter def Name(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['Name'], value) @property def NameServerCommands(self): # type: () -> List[int] """ Returns ------- - list(number): Signifies the Name Server Commands that will be sent by the client. """ return self._get_attribute(self._SDM_ATT_MAP['NameServerCommands']) @NameServerCommands.setter def NameServerCommands(self, value): # type: (List[int]) -> None self._set_attribute(self._SDM_ATT_MAP['NameServerCommands'], value) @property def NameServerQuery(self): # type: () -> bool """ Returns ------- - bool: If set, the N_Port will attempt to query a Name Server. """ return self._get_attribute(self._SDM_ATT_MAP['NameServerQuery']) @NameServerQuery.setter def NameServerQuery(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['NameServerQuery'], value) @property def NameServerQueryCommand(self): # type: () -> str """ Returns ------- - str: Name Server request command codes. """ return self._get_attribute(self._SDM_ATT_MAP['NameServerQueryCommand']) @NameServerQueryCommand.setter def NameServerQueryCommand(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['NameServerQueryCommand'], value) @property def NameServerQueryParameterType(self): # type: () -> str """ Returns ------- - str: State Change Registration Parameter Type. """ return self._get_attribute(self._SDM_ATT_MAP['NameServerQueryParameterType']) @NameServerQueryParameterType.setter def NameServerQueryParameterType(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['NameServerQueryParameterType'], value) @property def NameServerQueryParameterValue(self): # type: () -> str """ Returns ------- - str: State Change Registration Parameter Value. """ return self._get_attribute(self._SDM_ATT_MAP['NameServerQueryParameterValue']) @NameServerQueryParameterValue.setter def NameServerQueryParameterValue(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['NameServerQueryParameterValue'], value) @property def NameServerRegistration(self): # type: () -> bool """ Returns ------- - bool: If set, the N_Port will attempt to register to a Name Server. """ return self._get_attribute(self._SDM_ATT_MAP['NameServerRegistration']) @NameServerRegistration.setter def NameServerRegistration(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['NameServerRegistration'], value) @property def NodeWwnIncrement(self): # type: () -> str """ Returns ------- - str: The Node Name incrementing value for this N_Port range. """ return self._get_attribute(self._SDM_ATT_MAP['NodeWwnIncrement']) @NodeWwnIncrement.setter def NodeWwnIncrement(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['NodeWwnIncrement'], value) @property def NodeWwnStart(self): # type: () -> str """ Returns ------- - str: The Node Name starting value for this N_Port range. """ return self._get_attribute(self._SDM_ATT_MAP['NodeWwnStart']) @NodeWwnStart.setter def NodeWwnStart(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['NodeWwnStart'], value) @property def ObjectId(self): # type: () -> str """ Returns ------- - str: Unique identifier for this object """ return self._get_attribute(self._SDM_ATT_MAP['ObjectId']) @property def PlogiDestId(self): # type: () -> str """ Returns ------- - str: Indicates FCIDs and WWNs that can be used as destination for PLOGI requests. """ return self._get_attribute(self._SDM_ATT_MAP['PlogiDestId']) @PlogiDestId.setter def PlogiDestId(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['PlogiDestId'], value) @property def PlogiEnabled(self): # type: () -> bool """ Returns ------- - bool: Enables these N_Ports to attempt a PLOGI connection with specified destinations. """ return self._get_attribute(self._SDM_ATT_MAP['PlogiEnabled']) @PlogiEnabled.setter def PlogiEnabled(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['PlogiEnabled'], value) @property def PlogiMeshMode(self): # type: () -> str """ Returns ------- - str: The association mode between PLOGI initiators and targets. """ return self._get_attribute(self._SDM_ATT_MAP['PlogiMeshMode']) @PlogiMeshMode.setter def PlogiMeshMode(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['PlogiMeshMode'], value) @property def PlogiTargetName(self): # type: () -> str """ Returns ------- - str: Indicates the N_Port range used as destination for PLOGI requests. """ return self._get_attribute(self._SDM_ATT_MAP['PlogiTargetName']) @PlogiTargetName.setter def PlogiTargetName(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['PlogiTargetName'], value) @property def PortWwnIncrement(self): # type: () -> str """ Returns ------- - str: The Port Name incrementing value for this N_Port range. """ return self._get_attribute(self._SDM_ATT_MAP['PortWwnIncrement']) @PortWwnIncrement.setter def PortWwnIncrement(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['PortWwnIncrement'], value) @property def PortWwnStart(self): # type: () -> str """ Returns ------- - str: The Port Name starting value for this N_Port range. """ return self._get_attribute(self._SDM_ATT_MAP['PortWwnStart']) @PortWwnStart.setter def PortWwnStart(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['PortWwnStart'], value) @property def PrliEnabled(self): # type: () -> bool """ Returns ------- - bool: Process login. """ return self._get_attribute(self._SDM_ATT_MAP['PrliEnabled']) @PrliEnabled.setter def PrliEnabled(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['PrliEnabled'], value) @property def SourceOui(self): # type: () -> str """ Returns ------- - str: The OUI ID (3-byte) associated to all N_Ports in this range. """ return self._get_attribute(self._SDM_ATT_MAP['SourceOui']) @SourceOui.setter def SourceOui(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['SourceOui'], value) @property def SourceOuiIncrement(self): # type: () -> str """ Returns ------- - str: The OUI ID incrementing value for this N_Port range. """ return self._get_attribute(self._SDM_ATT_MAP['SourceOuiIncrement']) @SourceOuiIncrement.setter def SourceOuiIncrement(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['SourceOuiIncrement'], value) @property def StateChangeRegistration(self): # type: () -> bool """ Returns ------- - bool: If set, the N_Port will attempt to subscribe to State Change events. """ return self._get_attribute(self._SDM_ATT_MAP['StateChangeRegistration']) @StateChangeRegistration.setter def StateChangeRegistration(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['StateChangeRegistration'], value) @property def StateChangeRegistrationOption(self): # type: () -> str """ Returns ------- - str: State Change Registration option. """ return self._get_attribute(self._SDM_ATT_MAP['StateChangeRegistrationOption']) @StateChangeRegistrationOption.setter def StateChangeRegistrationOption(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['StateChangeRegistrationOption'], value) @property def UnicastFipSolicit(self): # type: () -> str """ Returns ------- - str: None - Fip Solicit is made as multicast. Listen/Learn FIFO - The client waits a message of type FIP Discovery Advertisement Multicast and replies with FIP Solicit Unicast to the server. Listen/Learn PB - In this mode the FCoE Client listens for Unsolicited Advertisements from FCFs; when the waiting period is over, the FCF with the highest priority is chosen and a Discovery Solicitation unicast is sent to it. Explicit - The client sends directly a FIP Solicit Unicast to the address from FIP Destination MAC Address field. """ return self._get_attribute(self._SDM_ATT_MAP['UnicastFipSolicit']) @UnicastFipSolicit.setter def UnicastFipSolicit(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['UnicastFipSolicit'], value) def update(self, Count=None, Enabled=None, FipAddressingMode=None, FipDestinationMacAddress=None, FipEnabled=None, FipOptionSet=None, FipOptionSetName=None, FipSolicitTimeout=None, FipVendorId=None, FipVlanDiscovery=None, FipVlanDiscoveryUntagged=None, Name=None, NameServerCommands=None, NameServerQuery=None, NameServerQueryCommand=None, NameServerQueryParameterType=None, NameServerQueryParameterValue=None, NameServerRegistration=None, NodeWwnIncrement=None, NodeWwnStart=None, PlogiDestId=None, PlogiEnabled=None, PlogiMeshMode=None, PlogiTargetName=None, PortWwnIncrement=None, PortWwnStart=None, PrliEnabled=None, SourceOui=None, SourceOuiIncrement=None, StateChangeRegistration=None, StateChangeRegistrationOption=None, UnicastFipSolicit=None): # type: (int, bool, str, str, bool, str, str, int, str, bool, bool, str, List[int], bool, str, str, str, bool, str, str, str, bool, str, str, str, str, bool, str, str, bool, str, str) -> FcoeClientFlogiRange """Updates fcoeClientFlogiRange resource on the server. Args ---- - Count (number): The number of FLOGI VN_Ports to be created by this VN_Port range. - Enabled (bool): Disabled ranges won't be configured nor validated. - FipAddressingMode (str): The addressing mode specified by FLOGI/FDISC requests. - FipDestinationMacAddress (str): Represents the address to which FIP Solicit Unicast is sent. - FipEnabled (bool): Enable FCoE Initialization Protocol (FIP). - FipOptionSet (str(None | /api/v1/sessions/1/ixnetwork/globals/.../fcoeClientOptionSet)): List of TLV options used with FIP. - FipOptionSetName (str): The name of the Option Set used by this range. - FipSolicitTimeout (number): Period of time (in seconds) that the client waits for a message of type FIP Discovery Advertisement Multicast before failing. - FipVendorId (str): The Vendor Identifier value (8-byte). - FipVlanDiscovery (bool): Enable FIP VLAN Discovery. - FipVlanDiscoveryUntagged (bool): If enabled, VLAN Discovery will be performed using plain Ethernet frames, i.e. without any VLAN tags. - Name (str): Name of range - NameServerCommands (list(number)): Signifies the Name Server Commands that will be sent by the client. - NameServerQuery (bool): If set, the N_Port will attempt to query a Name Server. - NameServerQueryCommand (str): Name Server request command codes. - NameServerQueryParameterType (str): State Change Registration Parameter Type. - NameServerQueryParameterValue (str): State Change Registration Parameter Value. - NameServerRegistration (bool): If set, the N_Port will attempt to register to a Name Server. - NodeWwnIncrement (str): The Node Name incrementing value for this N_Port range. - NodeWwnStart (str): The Node Name starting value for this N_Port range. - PlogiDestId (str): Indicates FCIDs and WWNs that can be used as destination for PLOGI requests. - PlogiEnabled (bool): Enables these N_Ports to attempt a PLOGI connection with specified destinations. - PlogiMeshMode (str): The association mode between PLOGI initiators and targets. - PlogiTargetName (str): Indicates the N_Port range used as destination for PLOGI requests. - PortWwnIncrement (str): The Port Name incrementing value for this N_Port range. - PortWwnStart (str): The Port Name starting value for this N_Port range. - PrliEnabled (bool): Process login. - SourceOui (str): The OUI ID (3-byte) associated to all N_Ports in this range. - SourceOuiIncrement (str): The OUI ID incrementing value for this N_Port range. - StateChangeRegistration (bool): If set, the N_Port will attempt to subscribe to State Change events. - StateChangeRegistrationOption (str): State Change Registration option. - UnicastFipSolicit (str): None - Fip Solicit is made as multicast. Listen/Learn FIFO - The client waits a message of type FIP Discovery Advertisement Multicast and replies with FIP Solicit Unicast to the server. Listen/Learn PB - In this mode the FCoE Client listens for Unsolicited Advertisements from FCFs; when the waiting period is over, the FCF with the highest priority is chosen and a Discovery Solicitation unicast is sent to it. Explicit - The client sends directly a FIP Solicit Unicast to the address from FIP Destination MAC Address field. Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def CustomProtocolStack(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the customProtocolStack operation on the server. Create custom protocol stack under /vport/protocolStack customProtocolStack(Arg2=list, Arg3=enum, async_operation=bool) --------------------------------------------------------------- - Arg2 (list(str)): List of plugin types to be added in the new custom stack - Arg3 (str(kAppend | kMerge | kOverwrite)): Append, merge or overwrite existing protocol stack - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('customProtocolStack', payload=payload, response_object=None) def DisableProtocolStack(self, *args, **kwargs): # type: (*Any, **Any) -> Union[str, None] """Executes the disableProtocolStack operation on the server. Disable a protocol under protocolStack using the class name disableProtocolStack(Arg2=string, async_operation=bool)string ------------------------------------------------------------- - Arg2 (str): Protocol class name to disable - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns str: Status of the exec Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('disableProtocolStack', payload=payload, response_object=None) def EnableProtocolStack(self, *args, **kwargs): # type: (*Any, **Any) -> Union[str, None] """Executes the enableProtocolStack operation on the server. Enable a protocol under protocolStack using the class name enableProtocolStack(Arg2=string, async_operation=bool)string ------------------------------------------------------------ - Arg2 (str): Protocol class name to enable - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns str: Status of the exec Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('enableProtocolStack', payload=payload, response_object=None) def FcoeClientFlogi(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the fcoeClientFlogi operation on the server. Enable VN_Port (transmits FLOGI, if necessary). The IxNetwork model allows for multiple method Signatures with the same name while python does not. fcoeClientFlogi(async_operation=bool) ------------------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. fcoeClientFlogi(Arg2=enum, async_operation=bool) ------------------------------------------------ - Arg2 (str(async | sync)): kArray[kObjref=/vport/protocolStack/ethernet/fcoeClientEndpoint,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFlogiRange] - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('fcoeClientFlogi', payload=payload, response_object=None) def FcoeClientFlogo(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the fcoeClientFlogo operation on the server. Disable VN_Port (transmits FLOGO, if necessary). The IxNetwork model allows for multiple method Signatures with the same name while python does not. fcoeClientFlogo(async_operation=bool) ------------------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. fcoeClientFlogo(Arg2=enum, async_operation=bool) ------------------------------------------------ - Arg2 (str(async | sync)): kArray[kObjref=/vport/protocolStack/ethernet/fcoeClientEndpoint,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFlogiRange] - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('fcoeClientFlogo', payload=payload, response_object=None) def FcoeClientPause(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the fcoeClientPause operation on the server. Pause negotiation of FCoE sessions for selected plugins and ranges fcoeClientPause(async_operation=bool) ------------------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('fcoeClientPause', payload=payload, response_object=None) def FcoeClientPlogi(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the fcoeClientPlogi operation on the server. Enable PLOGI (transmits PLOGI, to PLOGI Destination(s) if configured, and must display error message if not configured). The IxNetwork model allows for multiple method Signatures with the same name while python does not. fcoeClientPlogi(async_operation=bool) ------------------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. fcoeClientPlogi(Arg2=enum, async_operation=bool) ------------------------------------------------ - Arg2 (str(async | sync)): kArray[kObjref=/vport/protocolStack/ethernet/fcoeClientEndpoint,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFdiscRange,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFlogiRange] - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('fcoeClientPlogi', payload=payload, response_object=None) def FcoeClientPlogo(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the fcoeClientPlogo operation on the server. Disable PLOGI (transmits PLOGO, if already logged in to destination VN_Port(s). The IxNetwork model allows for multiple method Signatures with the same name while python does not. fcoeClientPlogo(async_operation=bool) ------------------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. fcoeClientPlogo(Arg2=enum, async_operation=bool) ------------------------------------------------ - Arg2 (str(async | sync)): kArray[kObjref=/vport/protocolStack/ethernet/fcoeClientEndpoint,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFdiscRange,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFlogiRange] - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('fcoeClientPlogo', payload=payload, response_object=None) def FcoeClientResume(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the fcoeClientResume operation on the server. Resume previously paused negotiation for selected plugins and ranges fcoeClientResume(async_operation=bool) -------------------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('fcoeClientResume', payload=payload, response_object=None) def FcoeClientStart(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the fcoeClientStart operation on the server. Negotiate FCoE sessions for selected ranges The IxNetwork model allows for multiple method Signatures with the same name while python does not. fcoeClientStart(async_operation=bool) ------------------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. fcoeClientStart(Arg2=enum, async_operation=bool) ------------------------------------------------ - Arg2 (str(async | sync)): kArray[kObjref=/vport/protocolStack/ethernet/fcoeClientEndpoint,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFdiscRange,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFlogiRange] - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('fcoeClientStart', payload=payload, response_object=None) def FcoeClientStop(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the fcoeClientStop operation on the server. Teardown FCoE sessions for selected ranges The IxNetwork model allows for multiple method Signatures with the same name while python does not. fcoeClientStop(async_operation=bool) ------------------------------------ - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. fcoeClientStop(Arg2=enum, async_operation=bool) ----------------------------------------------- - Arg2 (str(async | sync)): kArray[kObjref=/vport/protocolStack/ethernet/fcoeClientEndpoint,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFdiscRange,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFlogiRange] - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('fcoeClientStop', payload=payload, response_object=None) def Start(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the start operation on the server. Negotiate sessions for all protocols on all ranges belonging to selected plugins The IxNetwork model allows for multiple method Signatures with the same name while python does not. start(async_operation=bool) --------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. start(Arg2=enum, async_operation=bool) -------------------------------------- - Arg2 (str(async | sync)): kArray[kObjref=/vport/protocolStack/atm,/vport/protocolStack/atm/dhcpEndpoint,/vport/protocolStack/atm/dhcpEndpoint/ancp,/vport/protocolStack/atm/dhcpEndpoint/range,/vport/protocolStack/atm/dhcpEndpoint/range/ancpRange,/vport/protocolStack/atm/dhcpServerEndpoint,/vport/protocolStack/atm/dhcpServerEndpoint/range,/vport/protocolStack/atm/emulatedRouter,/vport/protocolStack/atm/emulatedRouter/dhcpEndpoint,/vport/protocolStack/atm/emulatedRouter/dhcpEndpoint/ancp,/vport/protocolStack/atm/emulatedRouter/dhcpEndpoint/range,/vport/protocolStack/atm/emulatedRouter/dhcpEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/dhcpEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/dhcpServerEndpoint,/vport/protocolStack/atm/emulatedRouter/dhcpServerEndpoint/range,/vport/protocolStack/atm/emulatedRouter/dhcpServerEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip,/vport/protocolStack/atm/emulatedRouter/ip/ancp,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8PgwEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8PgwEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8PgwEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8PgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8SgwEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpSgwEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/egtpSgwEndpoint/range,/vport/protocolStack/atm/emulatedRouter/ip/egtpSgwEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpSgwEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpSgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpUeS5S8SgwEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/egtpUeS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpUeS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpUeS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint/range,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/smDnsEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/smDnsEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/smDnsEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/smDnsEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/twampClient,/vport/protocolStack/atm/emulatedRouter/ip/twampServer,/vport/protocolStack/atm/emulatedRouter/ipEndpoint,/vport/protocolStack/atm/emulatedRouter/ipEndpoint/ancp,/vport/protocolStack/atm/emulatedRouter/ipEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ipEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ipEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ipEndpoint/twampClient,/vport/protocolStack/atm/emulatedRouter/ipEndpoint/twampServer,/vport/protocolStack/atm/emulatedRouterEndpoint,/vport/protocolStack/atm/emulatedRouterEndpoint/range/amtRange,/vport/protocolStack/atm/ip,/vport/protocolStack/atm/ip/ancp,/vport/protocolStack/atm/ip/egtpPcrfEndpoint,/vport/protocolStack/atm/ip/egtpPcrfEndpoint/range/amtRange,/vport/protocolStack/atm/ip/egtpPcrfEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/egtpPcrfEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/egtpPcrfS5S8SgwEndpoint,/vport/protocolStack/atm/ip/egtpPcrfS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/atm/ip/egtpPcrfS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/egtpPcrfS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/egtpS5S8PgwEndpoint,/vport/protocolStack/atm/ip/egtpS5S8PgwEndpoint/range/amtRange,/vport/protocolStack/atm/ip/egtpS5S8PgwEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/egtpS5S8PgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/egtpS5S8SgwEndpoint,/vport/protocolStack/atm/ip/egtpS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/atm/ip/egtpS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/egtpS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/egtpSgwEndpoint,/vport/protocolStack/atm/ip/egtpSgwEndpoint/range,/vport/protocolStack/atm/ip/egtpSgwEndpoint/range/amtRange,/vport/protocolStack/atm/ip/egtpSgwEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/egtpSgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/egtpUeS5S8SgwEndpoint,/vport/protocolStack/atm/ip/egtpUeS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/atm/ip/egtpUeS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/egtpUeS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/l2tp,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range/amtRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range/amtRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/l2tpEndpoint,/vport/protocolStack/atm/ip/l2tpEndpoint/range,/vport/protocolStack/atm/ip/l2tpEndpoint/range/amtRange,/vport/protocolStack/atm/ip/l2tpEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/l2tpEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/ip/l2tpEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/ip/l2tpEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/smDnsEndpoint,/vport/protocolStack/atm/ip/smDnsEndpoint/range/amtRange,/vport/protocolStack/atm/ip/smDnsEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/smDnsEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/twampClient,/vport/protocolStack/atm/ip/twampServer,/vport/protocolStack/atm/ipEndpoint,/vport/protocolStack/atm/ipEndpoint/ancp,/vport/protocolStack/atm/ipEndpoint/range/amtRange,/vport/protocolStack/atm/ipEndpoint/range/ancpRange,/vport/protocolStack/atm/ipEndpoint/range/twampControlRange,/vport/protocolStack/atm/ipEndpoint/twampClient,/vport/protocolStack/atm/ipEndpoint/twampServer,/vport/protocolStack/atm/pppox,/vport/protocolStack/atm/pppox/ancp,/vport/protocolStack/atm/pppox/dhcpoPppClientEndpoint,/vport/protocolStack/atm/pppox/dhcpoPppClientEndpoint/range,/vport/protocolStack/atm/pppox/dhcpoPppClientEndpoint/range,/vport/protocolStack/atm/pppox/dhcpoPppClientEndpoint/range/ancpRange,/vport/protocolStack/atm/pppox/dhcpoPppClientEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/pppox/dhcpoPppClientEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/pppox/dhcpoPppServerEndpoint,/vport/protocolStack/atm/pppox/dhcpoPppServerEndpoint/range,/vport/protocolStack/atm/pppox/dhcpoPppServerEndpoint/range,/vport/protocolStack/atm/pppox/dhcpoPppServerEndpoint/range/ancpRange,/vport/protocolStack/atm/pppox/dhcpoPppServerEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/pppox/dhcpoPppServerEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/pppoxEndpoint,/vport/protocolStack/atm/pppoxEndpoint/ancp,/vport/protocolStack/atm/pppoxEndpoint/range,/vport/protocolStack/atm/pppoxEndpoint/range/ancpRange,/vport/protocolStack/atm/pppoxEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/pppoxEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet,/vport/protocolStack/ethernet/dcbxEndpoint,/vport/protocolStack/ethernet/dcbxEndpoint/range,/vport/protocolStack/ethernet/dhcpEndpoint,/vport/protocolStack/ethernet/dhcpEndpoint/ancp,/vport/protocolStack/ethernet/dhcpEndpoint/range,/vport/protocolStack/ethernet/dhcpEndpoint/range/ancpRange,/vport/protocolStack/ethernet/dhcpServerEndpoint,/vport/protocolStack/ethernet/dhcpServerEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter,/vport/protocolStack/ethernet/emulatedRouter/dhcpEndpoint,/vport/protocolStack/ethernet/emulatedRouter/dhcpEndpoint/ancp,/vport/protocolStack/ethernet/emulatedRouter/dhcpEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/dhcpEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/dhcpEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/dhcpServerEndpoint,/vport/protocolStack/ethernet/emulatedRouter/dhcpServerEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/dhcpServerEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip,/vport/protocolStack/ethernet/emulatedRouter/ip/ancp,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8PgwEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8PgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8PgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8PgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8SgwEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpSgwEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpSgwEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpSgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpSgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpSgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpUeS5S8SgwEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpUeS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpUeS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpUeS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/smDnsEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/smDnsEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/smDnsEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/smDnsEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/twampClient,/vport/protocolStack/ethernet/emulatedRouter/ip/twampServer,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint/ancp,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint/twampClient,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint/twampServer,/vport/protocolStack/ethernet/emulatedRouterEndpoint,/vport/protocolStack/ethernet/emulatedRouterEndpoint/range/amtRange,/vport/protocolStack/ethernet/esmc,/vport/protocolStack/ethernet/fcoeClientEndpoint,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFdiscRange,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFlogiRange,/vport/protocolStack/ethernet/fcoeFwdEndpoint,/vport/protocolStack/ethernet/fcoeFwdEndpoint/range,/vport/protocolStack/ethernet/fcoeFwdEndpoint/secondaryRange,/vport/protocolStack/ethernet/ip,/vport/protocolStack/ethernet/ip/ancp,/vport/protocolStack/ethernet/ip/egtpPcrfEndpoint,/vport/protocolStack/ethernet/ip/egtpPcrfEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/egtpPcrfEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/egtpPcrfEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/egtpPcrfS5S8SgwEndpoint,/vport/protocolStack/ethernet/ip/egtpPcrfS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/egtpPcrfS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/egtpPcrfS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/egtpS5S8PgwEndpoint,/vport/protocolStack/ethernet/ip/egtpS5S8PgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/egtpS5S8PgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/egtpS5S8PgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/egtpS5S8SgwEndpoint,/vport/protocolStack/ethernet/ip/egtpS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/egtpS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/egtpS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/egtpSgwEndpoint,/vport/protocolStack/ethernet/ip/egtpSgwEndpoint/range,/vport/protocolStack/ethernet/ip/egtpSgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/egtpSgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/egtpSgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/egtpUeS5S8SgwEndpoint,/vport/protocolStack/ethernet/ip/egtpUeS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/egtpUeS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/egtpUeS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/l2tp,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/l2tpEndpoint,/vport/protocolStack/ethernet/ip/l2tpEndpoint/range,/vport/protocolStack/ethernet/ip/l2tpEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/l2tpEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/l2tpEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/ip/l2tpEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/ip/l2tpEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/smDnsEndpoint,/vport/protocolStack/ethernet/ip/smDnsEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/smDnsEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/smDnsEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/twampClient,/vport/protocolStack/ethernet/ip/twampServer,/vport/protocolStack/ethernet/ipEndpoint,/vport/protocolStack/ethernet/ipEndpoint/ancp,/vport/protocolStack/ethernet/ipEndpoint/range/amtRange,/vport/protocolStack/ethernet/ipEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ipEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ipEndpoint/twampClient,/vport/protocolStack/ethernet/ipEndpoint/twampServer,/vport/protocolStack/ethernet/pppox,/vport/protocolStack/ethernet/pppox/ancp,/vport/protocolStack/ethernet/pppox/dhcpoPppClientEndpoint,/vport/protocolStack/ethernet/pppox/dhcpoPppClientEndpoint/range,/vport/protocolStack/ethernet/pppox/dhcpoPppClientEndpoint/range,/vport/protocolStack/ethernet/pppox/dhcpoPppClientEndpoint/range/ancpRange,/vport/protocolStack/ethernet/pppox/dhcpoPppClientEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/pppox/dhcpoPppClientEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/pppox/dhcpoPppServerEndpoint,/vport/protocolStack/ethernet/pppox/dhcpoPppServerEndpoint/range,/vport/protocolStack/ethernet/pppox/dhcpoPppServerEndpoint/range,/vport/protocolStack/ethernet/pppox/dhcpoPppServerEndpoint/range/ancpRange,/vport/protocolStack/ethernet/pppox/dhcpoPppServerEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/pppox/dhcpoPppServerEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/pppoxEndpoint,/vport/protocolStack/ethernet/pppoxEndpoint/ancp,/vport/protocolStack/ethernet/pppoxEndpoint/range,/vport/protocolStack/ethernet/pppoxEndpoint/range/ancpRange,/vport/protocolStack/ethernet/pppoxEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/pppoxEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/vepaEndpoint,/vport/protocolStack/ethernet/vepaEndpoint/range,/vport/protocolStack/ethernetEndpoint,/vport/protocolStack/ethernetEndpoint/esmc,/vport/protocolStack/fcClientEndpoint,/vport/protocolStack/fcClientEndpoint/range,/vport/protocolStack/fcClientEndpoint/range,/vport/protocolStack/fcClientEndpoint/range/fcClientFdiscRange,/vport/protocolStack/fcClientEndpoint/range/fcClientFlogiRange,/vport/protocolStack/fcFportFwdEndpoint,/vport/protocolStack/fcFportFwdEndpoint/range,/vport/protocolStack/fcFportFwdEndpoint/secondaryRange] - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('start', payload=payload, response_object=None) def Stop(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the stop operation on the server. Teardown sessions for all protocols on all ranges belonging to selected plugins The IxNetwork model allows for multiple method Signatures with the same name while python does not. stop(async_operation=bool) -------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. stop(Arg2=enum, async_operation=bool) ------------------------------------- - Arg2 (str(async | sync)): kArray[kObjref=/vport/protocolStack/atm,/vport/protocolStack/atm/dhcpEndpoint,/vport/protocolStack/atm/dhcpEndpoint/ancp,/vport/protocolStack/atm/dhcpEndpoint/range,/vport/protocolStack/atm/dhcpEndpoint/range/ancpRange,/vport/protocolStack/atm/dhcpServerEndpoint,/vport/protocolStack/atm/dhcpServerEndpoint/range,/vport/protocolStack/atm/emulatedRouter,/vport/protocolStack/atm/emulatedRouter/dhcpEndpoint,/vport/protocolStack/atm/emulatedRouter/dhcpEndpoint/ancp,/vport/protocolStack/atm/emulatedRouter/dhcpEndpoint/range,/vport/protocolStack/atm/emulatedRouter/dhcpEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/dhcpEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/dhcpServerEndpoint,/vport/protocolStack/atm/emulatedRouter/dhcpServerEndpoint/range,/vport/protocolStack/atm/emulatedRouter/dhcpServerEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip,/vport/protocolStack/atm/emulatedRouter/ip/ancp,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8PgwEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8PgwEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8PgwEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8PgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8SgwEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpSgwEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/egtpSgwEndpoint/range,/vport/protocolStack/atm/emulatedRouter/ip/egtpSgwEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpSgwEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpSgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpUeS5S8SgwEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/egtpUeS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpUeS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/egtpUeS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint/range,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/emulatedRouter/ip/l2tpEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/smDnsEndpoint,/vport/protocolStack/atm/emulatedRouter/ip/smDnsEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ip/smDnsEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ip/smDnsEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ip/twampClient,/vport/protocolStack/atm/emulatedRouter/ip/twampServer,/vport/protocolStack/atm/emulatedRouter/ipEndpoint,/vport/protocolStack/atm/emulatedRouter/ipEndpoint/ancp,/vport/protocolStack/atm/emulatedRouter/ipEndpoint/range/amtRange,/vport/protocolStack/atm/emulatedRouter/ipEndpoint/range/ancpRange,/vport/protocolStack/atm/emulatedRouter/ipEndpoint/range/twampControlRange,/vport/protocolStack/atm/emulatedRouter/ipEndpoint/twampClient,/vport/protocolStack/atm/emulatedRouter/ipEndpoint/twampServer,/vport/protocolStack/atm/emulatedRouterEndpoint,/vport/protocolStack/atm/emulatedRouterEndpoint/range/amtRange,/vport/protocolStack/atm/ip,/vport/protocolStack/atm/ip/ancp,/vport/protocolStack/atm/ip/egtpPcrfEndpoint,/vport/protocolStack/atm/ip/egtpPcrfEndpoint/range/amtRange,/vport/protocolStack/atm/ip/egtpPcrfEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/egtpPcrfEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/egtpPcrfS5S8SgwEndpoint,/vport/protocolStack/atm/ip/egtpPcrfS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/atm/ip/egtpPcrfS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/egtpPcrfS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/egtpS5S8PgwEndpoint,/vport/protocolStack/atm/ip/egtpS5S8PgwEndpoint/range/amtRange,/vport/protocolStack/atm/ip/egtpS5S8PgwEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/egtpS5S8PgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/egtpS5S8SgwEndpoint,/vport/protocolStack/atm/ip/egtpS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/atm/ip/egtpS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/egtpS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/egtpSgwEndpoint,/vport/protocolStack/atm/ip/egtpSgwEndpoint/range,/vport/protocolStack/atm/ip/egtpSgwEndpoint/range/amtRange,/vport/protocolStack/atm/ip/egtpSgwEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/egtpSgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/egtpUeS5S8SgwEndpoint,/vport/protocolStack/atm/ip/egtpUeS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/atm/ip/egtpUeS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/egtpUeS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/l2tp,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range/amtRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLacEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range/amtRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/ip/l2tp/dhcpoLnsEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/l2tpEndpoint,/vport/protocolStack/atm/ip/l2tpEndpoint/range,/vport/protocolStack/atm/ip/l2tpEndpoint/range/amtRange,/vport/protocolStack/atm/ip/l2tpEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/l2tpEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/ip/l2tpEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/ip/l2tpEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/smDnsEndpoint,/vport/protocolStack/atm/ip/smDnsEndpoint/range/amtRange,/vport/protocolStack/atm/ip/smDnsEndpoint/range/ancpRange,/vport/protocolStack/atm/ip/smDnsEndpoint/range/twampControlRange,/vport/protocolStack/atm/ip/twampClient,/vport/protocolStack/atm/ip/twampServer,/vport/protocolStack/atm/ipEndpoint,/vport/protocolStack/atm/ipEndpoint/ancp,/vport/protocolStack/atm/ipEndpoint/range/amtRange,/vport/protocolStack/atm/ipEndpoint/range/ancpRange,/vport/protocolStack/atm/ipEndpoint/range/twampControlRange,/vport/protocolStack/atm/ipEndpoint/twampClient,/vport/protocolStack/atm/ipEndpoint/twampServer,/vport/protocolStack/atm/pppox,/vport/protocolStack/atm/pppox/ancp,/vport/protocolStack/atm/pppox/dhcpoPppClientEndpoint,/vport/protocolStack/atm/pppox/dhcpoPppClientEndpoint/range,/vport/protocolStack/atm/pppox/dhcpoPppClientEndpoint/range,/vport/protocolStack/atm/pppox/dhcpoPppClientEndpoint/range/ancpRange,/vport/protocolStack/atm/pppox/dhcpoPppClientEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/pppox/dhcpoPppClientEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/pppox/dhcpoPppServerEndpoint,/vport/protocolStack/atm/pppox/dhcpoPppServerEndpoint/range,/vport/protocolStack/atm/pppox/dhcpoPppServerEndpoint/range,/vport/protocolStack/atm/pppox/dhcpoPppServerEndpoint/range/ancpRange,/vport/protocolStack/atm/pppox/dhcpoPppServerEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/pppox/dhcpoPppServerEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/atm/pppoxEndpoint,/vport/protocolStack/atm/pppoxEndpoint/ancp,/vport/protocolStack/atm/pppoxEndpoint/range,/vport/protocolStack/atm/pppoxEndpoint/range/ancpRange,/vport/protocolStack/atm/pppoxEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/atm/pppoxEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet,/vport/protocolStack/ethernet/dcbxEndpoint,/vport/protocolStack/ethernet/dcbxEndpoint/range,/vport/protocolStack/ethernet/dhcpEndpoint,/vport/protocolStack/ethernet/dhcpEndpoint/ancp,/vport/protocolStack/ethernet/dhcpEndpoint/range,/vport/protocolStack/ethernet/dhcpEndpoint/range/ancpRange,/vport/protocolStack/ethernet/dhcpServerEndpoint,/vport/protocolStack/ethernet/dhcpServerEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter,/vport/protocolStack/ethernet/emulatedRouter/dhcpEndpoint,/vport/protocolStack/ethernet/emulatedRouter/dhcpEndpoint/ancp,/vport/protocolStack/ethernet/emulatedRouter/dhcpEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/dhcpEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/dhcpEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/dhcpServerEndpoint,/vport/protocolStack/ethernet/emulatedRouter/dhcpServerEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/dhcpServerEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip,/vport/protocolStack/ethernet/emulatedRouter/ip/ancp,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpPcrfS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8PgwEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8PgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8PgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8PgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8SgwEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpSgwEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpSgwEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpSgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpSgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpSgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpUeS5S8SgwEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpUeS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpUeS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/egtpUeS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLacEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tp/dhcpoLnsEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint/range,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/emulatedRouter/ip/l2tpEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/smDnsEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ip/smDnsEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ip/smDnsEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ip/smDnsEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ip/twampClient,/vport/protocolStack/ethernet/emulatedRouter/ip/twampServer,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint/ancp,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint/range/amtRange,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint/range/ancpRange,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint/twampClient,/vport/protocolStack/ethernet/emulatedRouter/ipEndpoint/twampServer,/vport/protocolStack/ethernet/emulatedRouterEndpoint,/vport/protocolStack/ethernet/emulatedRouterEndpoint/range/amtRange,/vport/protocolStack/ethernet/esmc,/vport/protocolStack/ethernet/fcoeClientEndpoint,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFdiscRange,/vport/protocolStack/ethernet/fcoeClientEndpoint/range/fcoeClientFlogiRange,/vport/protocolStack/ethernet/fcoeFwdEndpoint,/vport/protocolStack/ethernet/fcoeFwdEndpoint/range,/vport/protocolStack/ethernet/fcoeFwdEndpoint/secondaryRange,/vport/protocolStack/ethernet/ip,/vport/protocolStack/ethernet/ip/ancp,/vport/protocolStack/ethernet/ip/egtpPcrfEndpoint,/vport/protocolStack/ethernet/ip/egtpPcrfEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/egtpPcrfEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/egtpPcrfEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/egtpPcrfS5S8SgwEndpoint,/vport/protocolStack/ethernet/ip/egtpPcrfS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/egtpPcrfS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/egtpPcrfS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/egtpS5S8PgwEndpoint,/vport/protocolStack/ethernet/ip/egtpS5S8PgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/egtpS5S8PgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/egtpS5S8PgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/egtpS5S8SgwEndpoint,/vport/protocolStack/ethernet/ip/egtpS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/egtpS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/egtpS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/egtpSgwEndpoint,/vport/protocolStack/ethernet/ip/egtpSgwEndpoint/range,/vport/protocolStack/ethernet/ip/egtpSgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/egtpSgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/egtpSgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/egtpUeS5S8SgwEndpoint,/vport/protocolStack/ethernet/ip/egtpUeS5S8SgwEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/egtpUeS5S8SgwEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/egtpUeS5S8SgwEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/l2tp,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLacEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/ip/l2tp/dhcpoLnsEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/l2tpEndpoint,/vport/protocolStack/ethernet/ip/l2tpEndpoint/range,/vport/protocolStack/ethernet/ip/l2tpEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/l2tpEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/l2tpEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/ip/l2tpEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/ip/l2tpEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/smDnsEndpoint,/vport/protocolStack/ethernet/ip/smDnsEndpoint/range/amtRange,/vport/protocolStack/ethernet/ip/smDnsEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ip/smDnsEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ip/twampClient,/vport/protocolStack/ethernet/ip/twampServer,/vport/protocolStack/ethernet/ipEndpoint,/vport/protocolStack/ethernet/ipEndpoint/ancp,/vport/protocolStack/ethernet/ipEndpoint/range/amtRange,/vport/protocolStack/ethernet/ipEndpoint/range/ancpRange,/vport/protocolStack/ethernet/ipEndpoint/range/twampControlRange,/vport/protocolStack/ethernet/ipEndpoint/twampClient,/vport/protocolStack/ethernet/ipEndpoint/twampServer,/vport/protocolStack/ethernet/pppox,/vport/protocolStack/ethernet/pppox/ancp,/vport/protocolStack/ethernet/pppox/dhcpoPppClientEndpoint,/vport/protocolStack/ethernet/pppox/dhcpoPppClientEndpoint/range,/vport/protocolStack/ethernet/pppox/dhcpoPppClientEndpoint/range,/vport/protocolStack/ethernet/pppox/dhcpoPppClientEndpoint/range/ancpRange,/vport/protocolStack/ethernet/pppox/dhcpoPppClientEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/pppox/dhcpoPppClientEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/pppox/dhcpoPppServerEndpoint,/vport/protocolStack/ethernet/pppox/dhcpoPppServerEndpoint/range,/vport/protocolStack/ethernet/pppox/dhcpoPppServerEndpoint/range,/vport/protocolStack/ethernet/pppox/dhcpoPppServerEndpoint/range/ancpRange,/vport/protocolStack/ethernet/pppox/dhcpoPppServerEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/pppox/dhcpoPppServerEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/pppoxEndpoint,/vport/protocolStack/ethernet/pppoxEndpoint/ancp,/vport/protocolStack/ethernet/pppoxEndpoint/range,/vport/protocolStack/ethernet/pppoxEndpoint/range/ancpRange,/vport/protocolStack/ethernet/pppoxEndpoint/range/dhcpv6PdClientRange,/vport/protocolStack/ethernet/pppoxEndpoint/range/dhcpv6ServerRange,/vport/protocolStack/ethernet/vepaEndpoint,/vport/protocolStack/ethernet/vepaEndpoint/range,/vport/protocolStack/ethernetEndpoint,/vport/protocolStack/ethernetEndpoint/esmc,/vport/protocolStack/fcClientEndpoint,/vport/protocolStack/fcClientEndpoint/range,/vport/protocolStack/fcClientEndpoint/range,/vport/protocolStack/fcClientEndpoint/range/fcClientFdiscRange,/vport/protocolStack/fcClientEndpoint/range/fcClientFlogiRange,/vport/protocolStack/fcFportFwdEndpoint,/vport/protocolStack/fcFportFwdEndpoint/range,/vport/protocolStack/fcFportFwdEndpoint/secondaryRange] - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('stop', payload=payload, response_object=None)
py
7df828bd8fabe0a15d9e436cc748b5fb7428daf9
from __future__ import division import matplotlib.pyplot as plt import numpy as np import lmfit from scipy.optimize import curve_fit def model_func(x,x0,a): return np.sin(a*x+x0) def objective_func(pars,x,obs,err): parvals = pars.valuesdict() x0 = parvals['x0'] a = parvals['a'] ex = model_func(x,x0,a) out = (obs-ex)/err return out def fit_function(params, x=None, dat1=None, dat2=None): ''' an example of how to write an objective function to fit multiple data sets with shared parameters ''' model1 = params['offset'] + x * params['slope1'] model2 = params['offset'] + x * params['slope2'] resid1 = dat1 - model1 resid2 = dat2 - model2 return numpy.concatenate((resid1, resid2)) N = 10 x = np.linspace(0,2*np.pi,N) y = np.sin(x)+(np.random.random(N)-0.5)/5 errs = np.random.random(N)*0.1 plt.errorbar(x,y,errs,ls='') ########## curve fit ############# res = curve_fit(model_func,x,y,sigma=errs,absolute_sigma=True) print(res[0]) print(np.diag(res[1])**.5) xfit = np.linspace(0,2*np.pi,1000) fit = model_func(xfit,*res[0]) plt.plot(xfit,fit) ########### lmfit ############ p = lmfit.Parameters() # (Name, Value, Vary, Min, Max, Expr) p.add_many(('x0', 0, True, None, None, None), ('a', 1, True, None, None, None)) minner = lmfit.Minimizer(objective_func,p,(x,y,errs)) result = minner.minimize() # calculate final result a = result.params['a'].value x0 = result.params['x0'].value fit = model_func(xfit,x0,a) plt.plot(xfit,fit) # write error report lmfit.report_fit(result) ########### plotting ############ plt.xlim(-1,7) plt.ylim(-1.5,1.5) plt.show()
py
7df82b57a0df04675e7bf2a30487fe3092708400
import _plotly_utils.basevalidators class BordercolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="bordercolor", parent_name="layout.slider", **kwargs ): super(BordercolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "arraydraw"), **kwargs, )
py
7df82bf2a8d1de99fb133a9d35105b3d75630c6a
# GENERATED BY KOMAND SDK - DO NOT EDIT from setuptools import setup, find_packages setup(name='domaintools-rapid7-plugin', version='1.0.1', description='Domain name search tool that allows a wildcard search, monitoring of WHOIS record changes and history caching, as well as Reverse IP queries', author='rapid7', author_email='', url='', packages=find_packages(), install_requires=['komand'], # Add third-party dependencies to requirements.txt, not here! scripts=['bin/komand_domaintools'] )
py
7df82c34a2dcfb14681087cbf11cd9cdb4916d6a
# -*- coding: utf-8 -*- # Copyright European Organization for Nuclear Research (CERN) since 2012 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division import datetime import json try: from json.decoder import JSONDecodeError except ImportError: JSONDecodeError = ValueError import functools import logging import time import traceback try: from urlparse import urlparse # py2 except ImportError: from urllib.parse import urlparse # py3 import uuid import requests from configparser import NoOptionError, NoSectionError from json import loads from requests.adapters import ReadTimeout from requests.packages.urllib3 import disable_warnings # pylint: disable=import-error from dogpile.cache.api import NoValue from rucio.common.cache import make_region_memcached from rucio.common.config import config_get, config_get_bool from rucio.common.constants import FTS_JOB_TYPE, FTS_STATE, FTS_COMPLETE_STATE from rucio.common.exception import TransferToolTimeout, TransferToolWrongAnswer, DuplicateFileTransferSubmission from rucio.common.utils import APIEncoder, chunks, set_checksum_value from rucio.core.request import get_source_rse, get_transfer_error from rucio.core.rse import get_rse_supported_checksums_from_attributes from rucio.core.oidc import get_token_for_account_operation from rucio.core.monitor import record_counter, record_timer, MultiCounter from rucio.transfertool.transfertool import Transfertool, TransferToolBuilder, TransferStatusReport from rucio.db.sqla.constants import RequestState logging.getLogger("requests").setLevel(logging.CRITICAL) disable_warnings() REGION_SHORT = make_region_memcached(expiration_time=900) SUBMISSION_COUNTER = MultiCounter(prom='rucio_transfertool_fts3_submission', statsd='transfertool.fts3.{host}.submission.{state}', documentation='Number of transfers submitted', labelnames=('state', 'host')) CANCEL_COUNTER = MultiCounter(prom='rucio_transfertool_fts3_cancel', statsd='transfertool.fts3.{host}.cancel.{state}', documentation='Number of cancelled transfers', labelnames=('state', 'host')) UPDATE_PRIORITY_COUNTER = MultiCounter(prom='rucio_transfertool_fts3_update_priority', statsd='transfertool.fts3.{host}.update_priority.{state}', documentation='Number of priority updates', labelnames=('state', 'host')) QUERY_COUNTER = MultiCounter(prom='rucio_transfertool_fts3_query', statsd='transfertool.fts3.{host}.query.{state}', documentation='Number of queried transfers', labelnames=('state', 'host')) WHOAMI_COUNTER = MultiCounter(prom='rucio_transfertool_fts3_whoami', statsd='transfertool.fts3.{host}.whoami.{state}', documentation='Number of whoami requests', labelnames=('state', 'host')) VERSION_COUNTER = MultiCounter(prom='rucio_transfertool_fts3_version', statsd='transfertool.fts3.{host}.version.{state}', documentation='Number of version requests', labelnames=('state', 'host')) BULK_QUERY_COUNTER = MultiCounter(prom='rucio_transfertool_fts3_bulk_query', statsd='transfertool.fts3.{host}.bulk_query.{state}', documentation='Number of bulk queries', labelnames=('state', 'host')) QUERY_DETAILS_COUNTER = MultiCounter(prom='rucio_transfertool_fts3_query_details', statsd='transfertool.fts3.{host}.query_details.{state}', documentation='Number of detailed status queries', labelnames=('state', 'host')) ALLOW_USER_OIDC_TOKENS = config_get_bool('conveyor', 'allow_user_oidc_tokens', False, False) REQUEST_OIDC_SCOPE = config_get('conveyor', 'request_oidc_scope', False, 'fts:submit-transfer') REQUEST_OIDC_AUDIENCE = config_get('conveyor', 'request_oidc_audience', False, 'fts:example') # https://fts3-docs.web.cern.ch/fts3-docs/docs/state_machine.html FINAL_FTS_JOB_STATES = (FTS_STATE.FAILED, FTS_STATE.CANCELED, FTS_STATE.FINISHED, FTS_STATE.FINISHEDDIRTY) FINAL_FTS_FILE_STATES = (FTS_STATE.FAILED, FTS_STATE.CANCELED, FTS_STATE.FINISHED, FTS_STATE.NOT_USED) def oidc_supported(transfer_hop) -> bool: """ checking OIDC AuthN/Z support per destination and source RSEs; for oidc_support to be activated, all sources and the destination must explicitly support it """ # assumes use of boolean 'oidc_support' RSE attribute if not transfer_hop.dst.rse.attributes.get('oidc_support', False): return False for source in transfer_hop.sources: if not source.rse.attributes.get('oidc_support', False): return False return True def checksum_validation_strategy(src_attributes, dst_attributes, logger): """ Compute the checksum validation strategy (none, source, destination or both) and the supported checksums from the attributes of the source and destination RSE. """ source_supported_checksums = get_rse_supported_checksums_from_attributes(src_attributes) dest_supported_checksums = get_rse_supported_checksums_from_attributes(dst_attributes) common_checksum_names = set(source_supported_checksums).intersection(dest_supported_checksums) verify_checksum = 'both' if not dst_attributes.get('verify_checksum', True): if not src_attributes.get('verify_checksum', True): verify_checksum = 'none' else: verify_checksum = 'source' else: if not src_attributes.get('verify_checksum', True): verify_checksum = 'destination' else: verify_checksum = 'both' if len(common_checksum_names) == 0: logger(logging.INFO, 'No common checksum method. Verifying destination only.') verify_checksum = 'destination' if source_supported_checksums == ['none']: if dest_supported_checksums == ['none']: # both endpoints support none verify_checksum = 'none' else: # src supports none but dst does verify_checksum = 'destination' else: if dest_supported_checksums == ['none']: # source supports some but destination does not verify_checksum = 'source' else: if len(common_checksum_names) == 0: # source and dst support some bot none in common (dst priority) verify_checksum = 'destination' else: # Don't override the value in the file_metadata pass checksums_to_use = ['none'] if verify_checksum == 'both': checksums_to_use = common_checksum_names elif verify_checksum == 'source': checksums_to_use = source_supported_checksums elif verify_checksum == 'destination': checksums_to_use = dest_supported_checksums return verify_checksum, checksums_to_use def job_params_for_fts_transfer(transfer, bring_online, default_lifetime, archive_timeout_override, max_time_in_queue, logger, multihop=False): """ Prepare the job parameters which will be passed to FTS transfertool """ overwrite, bring_online_local = True, None if transfer.src.rse.is_tape_or_staging_required(): bring_online_local = bring_online if transfer.dst.rse.is_tape(): overwrite = False # Get dest space token dest_protocol = transfer.protocol_factory.protocol(transfer.dst.rse, transfer.dst.scheme, transfer.operation_dest) dest_spacetoken = None if dest_protocol.attributes and 'extended_attributes' in dest_protocol.attributes and \ dest_protocol.attributes['extended_attributes'] and 'space_token' in dest_protocol.attributes['extended_attributes']: dest_spacetoken = dest_protocol.attributes['extended_attributes']['space_token'] src_spacetoken = None strict_copy = transfer.dst.rse.attributes.get('strict_copy', False) archive_timeout = transfer.dst.rse.attributes.get('archive_timeout', None) verify_checksum, checksums_to_use = checksum_validation_strategy(transfer.src.rse.attributes, transfer.dst.rse.attributes, logger=logger) transfer['checksums_to_use'] = checksums_to_use job_params = {'account': transfer.rws.account, 'verify_checksum': verify_checksum, 'copy_pin_lifetime': transfer.rws.attributes.get('lifetime', default_lifetime), 'bring_online': bring_online_local, 'job_metadata': { 'issuer': 'rucio', 'multi_sources': True if len(transfer.legacy_sources) > 1 else False, }, 'overwrite': transfer.rws.attributes.get('overwrite', overwrite), 'priority': transfer.rws.priority} if multihop: job_params['multihop'] = True job_params['job_metadata']['multihop'] = True if strict_copy: job_params['strict_copy'] = strict_copy if dest_spacetoken: job_params['spacetoken'] = dest_spacetoken if src_spacetoken: job_params['source_spacetoken'] = src_spacetoken if transfer.use_ipv4: job_params['ipv4'] = True job_params['ipv6'] = False if archive_timeout and transfer.dst.rse.is_tape(): try: archive_timeout = int(archive_timeout) if archive_timeout_override is None: job_params['archive_timeout'] = archive_timeout elif archive_timeout_override != 0: job_params['archive_timeout'] = archive_timeout_override # FTS only supports dst_file metadata if archive_timeout is set job_params['dst_file_report'] = True logger(logging.DEBUG, 'Added archive timeout to transfer.') except ValueError: logger(logging.WARNING, 'Could not set archive_timeout for %s. Must be integer.', transfer) pass if max_time_in_queue: if transfer.rws.activity in max_time_in_queue: job_params['max_time_in_queue'] = max_time_in_queue[transfer.rws.activity] elif 'default' in max_time_in_queue: job_params['max_time_in_queue'] = max_time_in_queue['default'] return job_params def bulk_group_transfers(transfer_paths, policy='rule', group_bulk=200, source_strategy=None, max_time_in_queue=None, logger=logging.log, archive_timeout_override=None, bring_online=None, default_lifetime=None): """ Group transfers in bulk based on certain criterias :param transfer_paths: List of transfer paths to group. Each path is a list of single-hop transfers. :param policy: Policy to use to group. :param group_bulk: Bulk sizes. :param source_strategy: Strategy to group sources :param max_time_in_queue: Maximum time in queue :param archive_timeout_override: Override the archive_timeout parameter for any transfers with it set (0 to unset) :param logger: Optional decorated logger that can be passed from the calling daemons or servers. :return: List of grouped transfers. """ grouped_transfers = {} grouped_jobs = [] try: default_source_strategy = config_get(section='conveyor', option='default-source-strategy') except (NoOptionError, NoSectionError, RuntimeError): default_source_strategy = 'orderly' try: activity_source_strategy = config_get(section='conveyor', option='activity-source-strategy') activity_source_strategy = loads(activity_source_strategy) except (NoOptionError, NoSectionError, RuntimeError): activity_source_strategy = {} except ValueError: logger(logging.WARNING, 'activity_source_strategy not properly defined') activity_source_strategy = {} for transfer_path in transfer_paths: for i, transfer in enumerate(transfer_path): transfer['selection_strategy'] = source_strategy if source_strategy else activity_source_strategy.get(str(transfer.rws.activity), default_source_strategy) _build_job_params = functools.partial(job_params_for_fts_transfer, bring_online=bring_online, default_lifetime=default_lifetime, archive_timeout_override=archive_timeout_override, max_time_in_queue=max_time_in_queue, logger=logger) for transfer_path in transfer_paths: if len(transfer_path) > 1: # for multihop transfers, all the path is submitted as a separate job job_params = _build_job_params(transfer_path[-1], multihop=True) for transfer in transfer_path[:-1]: hop_params = _build_job_params(transfer, multihop=True) # Only allow overwrite if all transfers in multihop allow it job_params['overwrite'] = hop_params['overwrite'] and job_params['overwrite'] # Activate bring_online if it was requested by first hop (it is a multihop starting at a tape) # We don't allow multihop via a tape, so bring_online should not be set on any other hop if transfer is transfer_path[0] and hop_params['bring_online']: job_params['bring_online'] = hop_params['bring_online'] group_key = 'multihop_%s' % transfer_path[-1].rws.request_id grouped_transfers[group_key] = {'transfers': transfer_path[0:group_bulk], 'job_params': job_params} elif len(transfer_path[0].legacy_sources) > 1: # for multi-source transfers, no bulk submission. transfer = transfer_path[0] grouped_jobs.append({'transfers': [transfer], 'job_params': _build_job_params(transfer)}) else: # it's a single-hop, single-source, transfer. Hence, a candidate for bulk submission. transfer = transfer_path[0] job_params = _build_job_params(transfer) # we cannot group transfers together if their job_key differ job_key = '%s,%s,%s,%s,%s,%s,%s,%s' % (job_params['verify_checksum'], job_params.get('spacetoken', None), job_params['copy_pin_lifetime'], job_params['bring_online'], job_params['job_metadata'], job_params.get('source_spacetoken', None), job_params['overwrite'], job_params['priority']) if 'max_time_in_queue' in job_params: job_key = job_key + ',%s' % job_params['max_time_in_queue'] # Additionally, we don't want to group transfers together if their policy_key differ policy_key = '' if policy == 'rule': policy_key = '%s' % transfer.rws.rule_id if policy == 'dest': policy_key = '%s' % transfer.dst.rse.name if policy == 'src_dest': policy_key = '%s,%s' % (transfer.src.rse.name, transfer.dst.rse.name) if policy == 'rule_src_dest': policy_key = '%s,%s,%s' % (transfer.rws.rule_id, transfer.src.rse.name, transfer.dst.rse.name) if policy == 'activity_dest': policy_key = '%s %s' % (transfer.rws.activity, transfer.dst.rse.name) policy_key = "_".join(policy_key.split(' ')) if policy == 'activity_src_dest': policy_key = '%s %s %s' % (transfer.rws.activity, transfer.src.rse.name, transfer.dst.rse.name) policy_key = "_".join(policy_key.split(' ')) # maybe here we need to hash the key if it's too long group_key = "%s_%s" % (job_key, policy_key) if group_key not in grouped_transfers: grouped_transfers[group_key] = {'transfers': [], 'job_params': job_params} grouped_transfers[group_key]['transfers'].append(transfer) # split transfer groups to have at most group_bulk elements in each one for group in grouped_transfers.values(): job_params = group['job_params'] for transfer_paths in chunks(group['transfers'], group_bulk): grouped_jobs.append({'transfers': transfer_paths, 'job_params': job_params}) return grouped_jobs class Fts3TransferStatusReport(TransferStatusReport): supported_db_fields = [ 'state', 'external_id', 'started_at', 'transferred_at', 'staging_started_at', 'staging_finished_at', 'source_rse_id', 'err_msg', 'attributes', ] def __init__(self, external_host, request_id, request=None): super().__init__(request_id, request=request) self.external_host = external_host # Initialized in child class constructors: self._transfer_id = None self._file_metadata = {} self._multi_sources = None self._src_url = None self._dst_url = None # Initialized in child class initialize(): self._reason = None self._src_rse = None # Supported db fields bellow: self.state = None self.external_id = None self.started_at = None self.transferred_at = None self.staging_started_at = None self.staging_finished_at = None self.source_rse_id = None self.err_msg = None self.attributes = None def __str__(self): return f'Transfer {self._transfer_id} of {self._file_metadata["scope"]}:{self._file_metadata["name"]} ' \ f'{self._file_metadata["src_rse"]} --({self._file_metadata["request_id"]})-> {self._file_metadata["dst_rse"]}' def initialize(self, session, logger=logging.log): raise NotImplementedError(f"{self.__class__.__name__} is abstract and shouldn't be used directly") def get_monitor_msg_fields(self, session, logger=logging.log): self.ensure_initialized(session, logger) fields = { 'transfer_link': self._transfer_link(), 'reason': self._reason, 'src-type': self._file_metadata.get('src_type'), 'src-rse': self._src_rse, 'src-url': self._src_url, 'dst-type': self._file_metadata.get('src_type'), 'dst-rse': self._file_metadata.get('dst_rse'), 'dst-url': self._dst_url, 'started_at': self.started_at, 'transferred_at': self.transferred_at, } return fields def _transfer_link(self): return '%s/fts3/ftsmon/#/job/%s' % (self.external_host.replace('8446', '8449'), self._transfer_id) def _find_attribute_updates(self, request, new_state, reason, overwrite_corrupted_files): attributes = None if new_state == RequestState.FAILED and 'Destination file exists and overwrite is not enabled' in (reason or ''): dst_file = self._file_metadata.get('dst_file', {}) if self._dst_file_set_and_file_corrupted(request, dst_file): if overwrite_corrupted_files: attributes = request['attributes'] attributes['overwrite'] = True return attributes def _find_used_source_rse(self, session, logger): """ For multi-source transfers, FTS has a choice between multiple sources. Find which of the possible sources FTS actually used for the transfer. """ meta_rse_name = self._file_metadata.get('src_rse', None) meta_rse_id = self._file_metadata.get('src_rse_id', None) request_id = self._file_metadata.get('request_id', None) if self._multi_sources and self._src_url: rse_name, rse_id = get_source_rse(request_id, self._src_url, session=session) if rse_name and rse_name != meta_rse_name: logger(logging.DEBUG, 'Correct RSE: %s for source surl: %s' % (rse_name, self._src_url)) return rse_name, rse_id return meta_rse_name, meta_rse_id @staticmethod def _dst_file_set_and_file_corrupted(request, dst_file): """ Returns True if the `dst_file` dict returned by fts was filled and its content allows to affirm that the file is corrupted. """ if (request and dst_file and ( dst_file.get('file_size') is not None and dst_file['file_size'] != request.get('bytes') or dst_file.get('checksum_type', '').lower() == 'adler32' and dst_file.get('checksum_value') != request.get('adler32') or dst_file.get('checksum_type', '').lower() == 'md5' and dst_file.get('checksum_value') != request.get('md5'))): return True return False @staticmethod def _dst_file_set_and_file_correct(request, dst_file): """ Returns True if the `dst_file` dict returned by fts was filled and its content allows to affirm that the file is correct. """ if (request and dst_file and dst_file.get('file_size') and dst_file.get('file_size') == request.get('bytes') and (dst_file.get('checksum_type', '').lower() == 'adler32' and dst_file.get('checksum_value') == request.get('adler32') or dst_file.get('checksum_type', '').lower() == 'md5' and dst_file.get('checksum_value') == request.get('md5'))): return True return False @classmethod def _is_recoverable_fts_overwrite_error(cls, request, reason, file_metadata): """ Verify the special case when FTS cannot copy a file because destination exists and overwrite is disabled, but the destination file is actually correct. This can happen when some transitory error happened during a previous submission attempt. Hence, the transfer is correctly executed by FTS, but rucio doesn't know about it. Returns true when the request must be marked as successful even if it was reported failed by FTS. """ if not request or not file_metadata: return False dst_file = file_metadata.get('dst_file', {}) dst_type = file_metadata.get('dst_type', None) if 'Destination file exists and overwrite is not enabled' in (reason or ''): if cls._dst_file_set_and_file_correct(request, dst_file): if dst_file.get('file_on_tape'): return True elif dst_type == 'DISK': return True return False class FTS3CompletionMessageTransferStatusReport(Fts3TransferStatusReport): """ Parses FTS Completion messages received via the message queue """ def __init__(self, external_host, request_id, fts_message): super().__init__(external_host=external_host, request_id=request_id) self.fts_message = fts_message self._transfer_id = fts_message.get('tr_id').split("__")[-1] self._file_metadata = fts_message['file_metadata'] self._multi_sources = str(fts_message.get('job_metadata', {}).get('multi_sources', '')).lower() == str('true') self._src_url = fts_message.get('src_url', None) self._dst_url = fts_message.get('dst_url', None) def initialize(self, session, logger=logging.log): fts_message = self.fts_message request_id = self.request_id reason = fts_message.get('t__error_message', None) # job_state = fts_message.get('t_final_transfer_state', None) new_state = None if str(fts_message['t_final_transfer_state']) == FTS_COMPLETE_STATE.OK: # pylint:disable=no-member new_state = RequestState.DONE elif str(fts_message['t_final_transfer_state']) == FTS_COMPLETE_STATE.ERROR: request = self.request(session) if self._is_recoverable_fts_overwrite_error(request, reason, self._file_metadata): # pylint:disable=no-member new_state = RequestState.DONE else: new_state = RequestState.FAILED transfer_id = self._transfer_id if new_state: request = self.request(session) if request['external_id'] == transfer_id and request['state'] != new_state: src_rse_name, src_rse_id = self._find_used_source_rse(session, logger) self._reason = reason self._src_rse = src_rse_name self.state = new_state self.external_id = transfer_id self.started_at = datetime.datetime.utcfromtimestamp(float(fts_message.get('tr_timestamp_start', 0)) / 1000) self.transferred_at = datetime.datetime.utcfromtimestamp(float(fts_message.get('tr_timestamp_complete', 0)) / 1000) self.staging_started_at = None self.staging_finished_at = None self.source_rse_id = src_rse_id self.err_msg = get_transfer_error(self.state, reason) if self.err_msg and self._file_metadata.get('src_type') == "TAPE": self.err_msg = '[TAPE SOURCE] ' + self.err_msg self.attributes = self._find_attribute_updates( request=request, new_state=new_state, reason=reason, overwrite_corrupted_files=config_get_bool('transfers', 'overwrite_corrupted_files', default=False, session=session), ) elif request['external_id'] != transfer_id: logger(logging.WARNING, "Response %s with transfer id %s is different from the request transfer id %s, will not update" % (request_id, transfer_id, request['external_id'])) else: logger(logging.DEBUG, "Request %s is already in %s state, will not update" % (request_id, new_state)) else: logger(logging.DEBUG, "No state change computed for %s. Skipping request update." % request_id) class FTS3ApiTransferStatusReport(Fts3TransferStatusReport): """ Parses FTS api response """ def __init__(self, external_host, request_id, job_response, file_response, request=None): super().__init__(external_host=external_host, request_id=request_id, request=request) self.job_response = job_response self.file_response = file_response self._transfer_id = job_response.get('job_id') self._file_metadata = file_response['file_metadata'] self._multi_sources = str(job_response['job_metadata'].get('multi_sources', '')).lower() == str('true') self._src_url = file_response.get('source_surl', None) self._dst_url = file_response.get('dest_surl', None) def initialize(self, session, logger=logging.log): job_response = self.job_response file_response = self.file_response request_id = self.request_id file_state = file_response['file_state'] reason = file_response.get('reason', None) new_state = None job_state = job_response.get('job_state', None) multi_hop = job_response.get('job_type') == FTS_JOB_TYPE.MULTI_HOP job_state_is_final = job_state in FINAL_FTS_JOB_STATES file_state_is_final = file_state in FINAL_FTS_FILE_STATES if file_state_is_final: if file_state == FTS_STATE.FINISHED: new_state = RequestState.DONE elif job_state_is_final and file_state == FTS_STATE.FAILED \ and self._is_recoverable_fts_overwrite_error(self.request(session), reason, self._file_metadata): new_state = RequestState.DONE elif job_state_is_final and file_state in (FTS_STATE.FAILED, FTS_STATE.CANCELED): new_state = RequestState.FAILED elif job_state_is_final and file_state == FTS_STATE.NOT_USED: if job_state == FTS_STATE.FINISHED: # it is a multi-source transfer. This source wasn't used, but another one was successful new_state = RequestState.DONE else: # failed multi-source or multi-hop (you cannot have unused sources in a successful multi-hop) new_state = RequestState.FAILED if not reason and multi_hop: reason = 'Unused hop in multi-hop' transfer_id = self._transfer_id if new_state: request = self.request(session) if request['external_id'] == transfer_id and request['state'] != new_state: src_rse_name, src_rse_id = self._find_used_source_rse(session, logger) self._reason = reason self._src_rse = src_rse_name self.state = new_state self.external_id = transfer_id self.started_at = datetime.datetime.strptime(file_response['start_time'], '%Y-%m-%dT%H:%M:%S') if file_response['start_time'] else None self.transferred_at = datetime.datetime.strptime(file_response['finish_time'], '%Y-%m-%dT%H:%M:%S') if file_response['finish_time'] else None self.staging_started_at = datetime.datetime.strptime(file_response['staging_start'], '%Y-%m-%dT%H:%M:%S') if file_response['staging_start'] else None self.staging_finished_at = datetime.datetime.strptime(file_response['staging_finished'], '%Y-%m-%dT%H:%M:%S') if file_response['staging_finished'] else None self.source_rse_id = src_rse_id self.err_msg = get_transfer_error(self.state, reason) if self.err_msg and self._file_metadata.get('src_type') == "TAPE": self.err_msg = '[TAPE SOURCE] ' + self.err_msg self.attributes = self._find_attribute_updates( request=request, new_state=new_state, reason=reason, overwrite_corrupted_files=config_get_bool('transfers', 'overwrite_corrupted_files', default=False, session=session), ) elif request['external_id'] != transfer_id: logger(logging.WARNING, "Response %s with transfer id %s is different from the request transfer id %s, will not update" % (request_id, transfer_id, request['external_id'])) else: logger(logging.DEBUG, "Request %s is already in %s state, will not update" % (request_id, new_state)) class FTS3Transfertool(Transfertool): """ FTS3 implementation of a Rucio transfertool """ external_name = 'fts3' def __init__(self, external_host, oidc_account=None, vo=None, group_bulk=1, group_policy='rule', source_strategy=None, max_time_in_queue=None, bring_online=43200, default_lifetime=172800, archive_timeout_override=None, logger=logging.log): """ Initializes the transfertool :param external_host: The external host where the transfertool API is running :param oidc_account: optional oidc account to use for submission """ super().__init__(external_host, logger) self.group_policy = group_policy self.group_bulk = group_bulk self.source_strategy = source_strategy self.max_time_in_queue = max_time_in_queue or {} self.bring_online = bring_online self.default_lifetime = default_lifetime self.archive_timeout_override = archive_timeout_override usercert = config_get('conveyor', 'usercert', False, None) if vo: usercert = config_get('vo_certs', vo, False, usercert) # token for OAuth 2.0 OIDC authorization scheme (working only with dCache + davs/https protocols as of Sep 2019) self.token = None if oidc_account: getadmintoken = False if ALLOW_USER_OIDC_TOKENS is False: getadmintoken = True self.logger(logging.DEBUG, 'Attempting to get a token for account %s. Admin token option set to %s' % (oidc_account, getadmintoken)) # find the appropriate OIDC token and exchange it (for user accounts) if necessary token_dict = get_token_for_account_operation(oidc_account, req_audience=REQUEST_OIDC_AUDIENCE, req_scope=REQUEST_OIDC_SCOPE, admin=getadmintoken) if token_dict is not None: self.logger(logging.DEBUG, 'Access token has been granted.') if 'token' in token_dict: self.logger(logging.DEBUG, 'Access token used as transfer token.') self.token = token_dict['token'] self.deterministic_id = config_get_bool('conveyor', 'use_deterministic_id', False, False) self.headers = {'Content-Type': 'application/json'} if self.external_host.startswith('https://'): if self.token: self.cert = None self.verify = False self.headers['Authorization'] = 'Bearer ' + self.token else: self.cert = (usercert, usercert) self.verify = False else: self.cert = None self.verify = True # True is the default setting of a requests.* method @classmethod def submission_builder_for_path(cls, transfer_path, logger=logging.log): vo = None if config_get_bool('common', 'multi_vo', False, None): vo = transfer_path[-1].rws.scope.vo sub_path = [] fts_hosts = [] for hop in transfer_path: src_and_dst_have_fts_attribute = hop.src.rse.attributes.get('fts', None) is not None and hop.dst.rse.attributes.get('fts', None) is not None hosts = hop.dst.rse.attributes.get('fts', None) if hop.src.rse.attributes.get('sign_url', None) == 'gcs': hosts = hop.src.rse.attributes.get('fts', None) hosts = hosts.split(",") if hosts else [] if src_and_dst_have_fts_attribute and hosts: fts_hosts = hosts sub_path.append(hop) else: break if len(sub_path) < len(transfer_path): logger(logging.INFO, 'FTS3Transfertool can only submit {} hops from {}'.format(len(sub_path), [str(hop) for hop in transfer_path])) if sub_path: oidc_account = None if all(oidc_supported(t) for t in sub_path): logger(logging.DEBUG, 'OAuth2/OIDC available for transfer {}'.format([str(hop) for hop in sub_path])) oidc_account = transfer_path[-1].rws.account return sub_path, TransferToolBuilder(cls, external_host=fts_hosts[0], oidc_account=oidc_account, vo=vo) else: return [], None def group_into_submit_jobs(self, transfer_paths): jobs = bulk_group_transfers( transfer_paths, policy=self.group_policy, group_bulk=self.group_bulk, source_strategy=self.source_strategy, max_time_in_queue=self.max_time_in_queue, bring_online=self.bring_online, default_lifetime=self.default_lifetime, archive_timeout_override=self.archive_timeout_override, ) return jobs @classmethod def __file_from_transfer(cls, transfer, job_params): rws = transfer.rws t_file = { 'sources': [s[1] for s in transfer.legacy_sources], 'destinations': [transfer.dest_url], 'metadata': { 'request_id': rws.request_id, 'scope': rws.scope, 'name': rws.name, 'activity': rws.activity, 'request_type': rws.request_type, 'src_type': "TAPE" if transfer.src.rse.is_tape_or_staging_required() else 'DISK', 'dst_type': "TAPE" if transfer.dst.rse.is_tape() else 'DISK', 'src_rse': transfer.src.rse.name, 'dst_rse': transfer.dst.rse.name, 'src_rse_id': transfer.src.rse.id, 'dest_rse_id': transfer.dst.rse.id, 'filesize': rws.byte_count, 'md5': rws.md5, 'adler32': rws.adler32 }, 'filesize': rws.byte_count, 'checksum': None, 'verify_checksum': job_params['verify_checksum'], 'selection_strategy': transfer['selection_strategy'], 'request_type': rws.request_type, 'activity': rws.activity } if t_file['verify_checksum'] != 'none': set_checksum_value(t_file, transfer['checksums_to_use']) return t_file def submit(self, transfers, job_params, timeout=None): """ Submit transfers to FTS3 via JSON. :param files: List of dictionaries describing the file transfers. :param job_params: Dictionary containing key/value pairs, for all transfers. :param timeout: Timeout in seconds. :returns: FTS transfer identifier. """ start_time = time.time() files = [] for transfer in transfers: if isinstance(transfer, dict): # Compatibility with scripts form /tools which directly use transfertools and pass a dict to it instead of transfer definitions # TODO: ensure that those scripts are still used and get rid of this compatibility otherwise files.append(transfer) continue files.append(self.__file_from_transfer(transfer, job_params)) # FTS3 expects 'davs' as the scheme identifier instead of https for transfer_file in files: if not transfer_file['sources'] or transfer_file['sources'] == []: raise Exception('No sources defined') new_src_urls = [] new_dst_urls = [] for url in transfer_file['sources']: if url.startswith('https'): new_src_urls.append(':'.join(['davs'] + url.split(':')[1:])) else: new_src_urls.append(url) for url in transfer_file['destinations']: if url.startswith('https'): new_dst_urls.append(':'.join(['davs'] + url.split(':')[1:])) else: new_dst_urls.append(url) transfer_file['sources'] = new_src_urls transfer_file['destinations'] = new_dst_urls transfer_id = None expected_transfer_id = None if self.deterministic_id: job_params = job_params.copy() job_params["id_generator"] = "deterministic" job_params["sid"] = files[0]['metadata']['request_id'] expected_transfer_id = self.__get_deterministic_id(job_params["sid"]) self.logger(logging.DEBUG, "Submit bulk transfers in deterministic mode, sid %s, expected transfer id: %s", job_params["sid"], expected_transfer_id) # bulk submission params_dict = {'files': files, 'params': job_params} params_str = json.dumps(params_dict, cls=APIEncoder) post_result = None try: start_time = time.time() post_result = requests.post('%s/jobs' % self.external_host, verify=self.verify, cert=self.cert, data=params_str, headers=self.headers, timeout=timeout) labels = {'host': self.__extract_host(self.external_host)} record_timer('transfertool.fts3.submit_transfer.{host}', (time.time() - start_time) * 1000 / len(files), labels=labels) except ReadTimeout as error: raise TransferToolTimeout(error) except JSONDecodeError as error: raise TransferToolWrongAnswer(error) except Exception as error: self.logger(logging.WARNING, 'Could not submit transfer to %s - %s' % (self.external_host, str(error))) if post_result and post_result.status_code == 200: SUBMISSION_COUNTER.labels(state='success', host=self.__extract_host(self.external_host)).inc(len(files)) transfer_id = str(post_result.json()['job_id']) elif post_result and post_result.status_code == 409: SUBMISSION_COUNTER.labels(state='failure', host=self.__extract_host(self.external_host)).inc(len(files)) raise DuplicateFileTransferSubmission() else: if expected_transfer_id: transfer_id = expected_transfer_id self.logger(logging.WARNING, "Failed to submit transfer to %s, will use expected transfer id %s, error: %s", self.external_host, transfer_id, post_result.text if post_result is not None else post_result) else: self.logger(logging.WARNING, "Failed to submit transfer to %s, error: %s", self.external_host, post_result.text if post_result is not None else post_result) SUBMISSION_COUNTER.labels(state='failure', host=self.__extract_host(self.external_host)).inc(len(files)) if not transfer_id: raise TransferToolWrongAnswer('No transfer id returned by %s' % self.external_host) record_timer('core.request.submit_transfers_fts3', (time.time() - start_time) * 1000 / len(transfers)) return transfer_id def cancel(self, transfer_ids, timeout=None): """ Cancel transfers that have been submitted to FTS3. :param transfer_ids: FTS transfer identifiers as list of strings. :param timeout: Timeout in seconds. :returns: True if cancellation was successful. """ if len(transfer_ids) > 1: raise NotImplementedError('Bulk cancelling not implemented') transfer_id = transfer_ids[0] job = None job = requests.delete('%s/jobs/%s' % (self.external_host, transfer_id), verify=self.verify, cert=self.cert, headers=self.headers, timeout=timeout) if job and job.status_code == 200: CANCEL_COUNTER.labels(state='success', host=self.__extract_host(self.external_host)).inc() return job.json() CANCEL_COUNTER.labels(state='failure', host=self.__extract_host(self.external_host)).inc() raise Exception('Could not cancel transfer: %s', job.content) def update_priority(self, transfer_id, priority, timeout=None): """ Update the priority of a transfer that has been submitted to FTS via JSON. :param transfer_id: FTS transfer identifier as a string. :param priority: FTS job priority as an integer from 1 to 5. :param timeout: Timeout in seconds. :returns: True if update was successful. """ job = None params_dict = {"params": {"priority": priority}} params_str = json.dumps(params_dict, cls=APIEncoder) job = requests.post('%s/jobs/%s' % (self.external_host, transfer_id), verify=self.verify, data=params_str, cert=self.cert, headers=self.headers, timeout=timeout) # TODO set to 3 in conveyor if job and job.status_code == 200: UPDATE_PRIORITY_COUNTER.labels(state='success', host=self.__extract_host(self.external_host)).inc() return job.json() UPDATE_PRIORITY_COUNTER.labels(state='failure', host=self.__extract_host(self.external_host)).inc() raise Exception('Could not update priority of transfer: %s', job.content) def query(self, transfer_ids, details=False, timeout=None): """ Query the status of a transfer in FTS3 via JSON. :param transfer_ids: FTS transfer identifiers as list of strings. :param details: Switch if detailed information should be listed. :param timeout: Timeout in seconds. :returns: Transfer status information as a list of dictionaries. """ if len(transfer_ids) > 1: raise NotImplementedError('FTS3 transfertool query not bulk ready') transfer_id = transfer_ids[0] if details: return self.__query_details(transfer_id=transfer_id) job = None job = requests.get('%s/jobs/%s' % (self.external_host, transfer_id), verify=self.verify, cert=self.cert, headers=self.headers, timeout=timeout) # TODO Set to 5 in conveyor if job and job.status_code == 200: QUERY_COUNTER.labels(state='success', host=self.__extract_host(self.external_host)).inc() return [job.json()] QUERY_COUNTER.labels(state='failure', host=self.__extract_host(self.external_host)).inc() raise Exception('Could not retrieve transfer information: %s', job.content) # Public methods, not part of the common interface specification (FTS3 specific) def whoami(self): """ Returns credential information from the FTS3 server. :returns: Credentials as stored by the FTS3 server as a dictionary. """ get_result = None get_result = requests.get('%s/whoami' % self.external_host, verify=self.verify, cert=self.cert, headers=self.headers) if get_result and get_result.status_code == 200: WHOAMI_COUNTER.labels(state='success', host=self.__extract_host(self.external_host)).inc() return get_result.json() WHOAMI_COUNTER.labels(state='failure', host=self.__extract_host(self.external_host)).inc() raise Exception('Could not retrieve credentials: %s', get_result.content) def version(self): """ Returns FTS3 server information. :returns: FTS3 server information as a dictionary. """ get_result = None get_result = requests.get('%s/' % self.external_host, verify=self.verify, cert=self.cert, headers=self.headers) if get_result and get_result.status_code == 200: VERSION_COUNTER.labels(state='success', host=self.__extract_host(self.external_host)).inc() return get_result.json() VERSION_COUNTER.labels(state='failure', host=self.__extract_host(self.external_host)).inc() raise Exception('Could not retrieve version: %s', get_result.content) def bulk_query(self, requests_by_eid, timeout=None): """ Query the status of a bulk of transfers in FTS3 via JSON. :param requests_by_eid: dictionary {external_id1: {request_id1: request1, ...}, ...} of request to be queried :returns: Transfer status information as a dictionary. """ responses = {} fts_session = requests.Session() xfer_ids = ','.join(requests_by_eid) jobs = fts_session.get('%s/jobs/%s?files=file_state,dest_surl,finish_time,start_time,staging_start,staging_finished,reason,source_surl,file_metadata' % (self.external_host, xfer_ids), verify=self.verify, cert=self.cert, headers=self.headers, timeout=timeout) if jobs is None: record_counter('transfertool.fts3.{host}.bulk_query.failure', labels={'host': self.__extract_host(self.external_host)}) for transfer_id in requests_by_eid: responses[transfer_id] = Exception('Transfer information returns None: %s' % jobs) elif jobs.status_code in (200, 207, 404): try: BULK_QUERY_COUNTER.labels(state='success', host=self.__extract_host(self.external_host)).inc() jobs_response = jobs.json() responses = self.__bulk_query_responses(jobs_response, requests_by_eid) except ReadTimeout as error: raise TransferToolTimeout(error) except JSONDecodeError as error: raise TransferToolWrongAnswer(error) except Exception as error: raise Exception("Failed to parse the job response: %s, error: %s" % (str(jobs), str(error))) else: BULK_QUERY_COUNTER.labels(state='failure', host=self.__extract_host(self.external_host)).inc() for transfer_id in requests_by_eid: responses[transfer_id] = Exception('Could not retrieve transfer information: %s', jobs.content) return responses def list_se_status(self): """ Get the list of banned Storage Elements. :returns: Detailed dictionnary of banned Storage Elements. """ try: result = requests.get('%s/ban/se' % self.external_host, verify=self.verify, cert=self.cert, headers=self.headers, timeout=None) except Exception as error: raise Exception('Could not retrieve transfer information: %s', error) if result and result.status_code == 200: return result.json() raise Exception('Could not retrieve transfer information: %s', result.content) def get_se_config(self, storage_element): """ Get the Json response for the configuration of a storage element. :returns: a Json result for the configuration of a storage element. :param storage_element: the storage element you want the configuration for. """ try: result = requests.get('%s/config/se' % (self.external_host), verify=self.verify, cert=self.cert, headers=self.headers, timeout=None) except Exception: self.logger(logging.WARNING, 'Could not get config of %s on %s - %s', storage_element, self.external_host, str(traceback.format_exc())) if result and result.status_code == 200: C = result.json() config_se = C[storage_element] return config_se raise Exception('Could not get the configuration of %s , status code returned : %s', (storage_element, result.status_code if result else None)) def set_se_config(self, storage_element, inbound_max_active=None, outbound_max_active=None, inbound_max_throughput=None, outbound_max_throughput=None, staging=None): """ Set the configuration for a storage element. Used for alleviating transfer failures due to timeout. :param storage_element: The storage element to be configured :param inbound_max_active: the integer to set the inbound_max_active for the SE. :param outbound_max_active: the integer to set the outbound_max_active for the SE. :param inbound_max_throughput: the float to set the inbound_max_throughput for the SE. :param outbound_max_throughput: the float to set the outbound_max_throughput for the SE. :param staging: the integer to set the staging for the operation of a SE. :returns: JSON post response in case of success, otherwise raise Exception. """ params_dict = {storage_element: {'operations': {}, 'se_info': {}}} if staging is not None: try: policy = config_get('policy', 'permission') except Exception: self.logger(logging.WARNING, 'Could not get policy from config') params_dict[storage_element]['operations'] = {policy: {'staging': staging}} # A lot of try-excepts to avoid dictionary overwrite's, # see https://stackoverflow.com/questions/27118687/updating-nested-dictionaries-when-data-has-existing-key/27118776 if inbound_max_active is not None: try: params_dict[storage_element]['se_info']['inbound_max_active'] = inbound_max_active except KeyError: params_dict[storage_element]['se_info'] = {'inbound_max_active': inbound_max_active} if outbound_max_active is not None: try: params_dict[storage_element]['se_info']['outbound_max_active'] = outbound_max_active except KeyError: params_dict[storage_element]['se_info'] = {'outbound_max_active': outbound_max_active} if inbound_max_throughput is not None: try: params_dict[storage_element]['se_info']['inbound_max_throughput'] = inbound_max_throughput except KeyError: params_dict[storage_element]['se_info'] = {'inbound_max_throughput': inbound_max_throughput} if outbound_max_throughput is not None: try: params_dict[storage_element]['se_info']['outbound_max_throughput'] = outbound_max_throughput except KeyError: params_dict[storage_element]['se_info'] = {'outbound_max_throughput': outbound_max_throughput} params_str = json.dumps(params_dict, cls=APIEncoder) try: result = requests.post('%s/config/se' % (self.external_host), verify=self.verify, cert=self.cert, data=params_str, headers=self.headers, timeout=None) except Exception: self.logger(logging.WARNING, 'Could not set the config of %s on %s - %s', storage_element, self.external_host, str(traceback.format_exc())) if result and result.status_code == 200: configSe = result.json() return configSe raise Exception('Could not set the configuration of %s , status code returned : %s', (storage_element, result.status_code if result else None)) def set_se_status(self, storage_element, message, ban=True, timeout=None): """ Ban a Storage Element. Used when a site is in downtime. One can use a timeout in seconds. In that case the jobs will wait before being cancel. If no timeout is specified, the jobs are canceled immediately :param storage_element: The Storage Element that will be banned. :param message: The reason of the ban. :param ban: Boolean. If set to True, ban the SE, if set to False unban the SE. :param timeout: if None, send to FTS status 'cancel' else 'waiting' + the corresponding timeout. :returns: 0 in case of success, otherwise raise Exception """ params_dict = {'storage': storage_element, 'message': message} status = 'CANCEL' if timeout: params_dict['timeout'] = timeout status = 'WAIT' params_dict['status'] = status params_str = json.dumps(params_dict, cls=APIEncoder) result = None if ban: try: result = requests.post('%s/ban/se' % self.external_host, verify=self.verify, cert=self.cert, data=params_str, headers=self.headers, timeout=None) except Exception: self.logger(logging.WARNING, 'Could not ban %s on %s - %s', storage_element, self.external_host, str(traceback.format_exc())) if result and result.status_code == 200: return 0 raise Exception('Could not ban the storage %s , status code returned : %s', (storage_element, result.status_code if result else None)) else: try: result = requests.delete('%s/ban/se?storage=%s' % (self.external_host, storage_element), verify=self.verify, cert=self.cert, data=params_str, headers=self.headers, timeout=None) except Exception: self.logger(logging.WARNING, 'Could not unban %s on %s - %s', storage_element, self.external_host, str(traceback.format_exc())) if result and result.status_code == 204: return 0 raise Exception('Could not unban the storage %s , status code returned : %s', (storage_element, result.status_code if result else None)) # Private methods unique to the FTS3 Transfertool @staticmethod def __extract_host(external_host): # graphite does not like the dots in the FQDN return urlparse(external_host).hostname.replace('.', '_') def __get_transfer_baseid_voname(self): """ Get transfer VO name from the external host. :returns base id as a string and VO name as a string. """ result = (None, None) try: key = 'voname: %s' % self.external_host result = REGION_SHORT.get(key) if isinstance(result, NoValue): self.logger(logging.DEBUG, "Refresh transfer baseid and voname for %s", self.external_host) get_result = None try: get_result = requests.get('%s/whoami' % self.external_host, verify=self.verify, cert=self.cert, headers=self.headers, timeout=5) except ReadTimeout as error: raise TransferToolTimeout(error) except JSONDecodeError as error: raise TransferToolWrongAnswer(error) except Exception as error: self.logger(logging.WARNING, 'Could not get baseid and voname from %s - %s' % (self.external_host, str(error))) if get_result and get_result.status_code == 200: baseid = str(get_result.json()['base_id']) voname = str(get_result.json()['vos'][0]) result = (baseid, voname) REGION_SHORT.set(key, result) self.logger(logging.DEBUG, "Get baseid %s and voname %s from %s", baseid, voname, self.external_host) else: self.logger(logging.WARNING, "Failed to get baseid and voname from %s, error: %s", self.external_host, get_result.text if get_result is not None else get_result) result = (None, None) except Exception as error: self.logger(logging.WARNING, "Failed to get baseid and voname from %s: %s" % (self.external_host, str(error))) result = (None, None) return result def __get_deterministic_id(self, sid): """ Get deterministic FTS job id. :param sid: FTS seed id. :returns: FTS transfer identifier. """ baseid, voname = self.__get_transfer_baseid_voname() if baseid is None or voname is None: return None root = uuid.UUID(baseid) atlas = uuid.uuid5(root, voname) jobid = uuid.uuid5(atlas, sid) return str(jobid) def __bulk_query_responses(self, jobs_response, requests_by_eid): if not isinstance(jobs_response, list): jobs_response = [jobs_response] responses = {} for job_response in jobs_response: transfer_id = job_response['job_id'] if job_response['http_status'] == '200 Ok': files_response = job_response['files'] multi_sources = job_response['job_metadata'].get('multi_sources', False) if multi_sources and job_response['job_state'] not in [FTS_STATE.FAILED, FTS_STATE.FINISHEDDIRTY, FTS_STATE.CANCELED, FTS_STATE.FINISHED]: # multipe source replicas jobs is still running. should wait responses[transfer_id] = {} continue resps = {} for file_resp in files_response: file_state = file_resp['file_state'] # for multiple source replicas jobs, the file_metadata(request_id) will be the same. # The next used file will overwrite the current used one. Only the last used file will return. if multi_sources and file_state == FTS_STATE.NOT_USED: continue request_id = file_resp['file_metadata']['request_id'] request = requests_by_eid.get(transfer_id, {}).get(request_id) if request is not None: resps[request_id] = FTS3ApiTransferStatusReport(self.external_host, request_id=request_id, request=request, job_response=job_response, file_response=file_resp) # multiple source replicas jobs and we found the successful one, it's the final state. if multi_sources and file_state == FTS_STATE.FINISHED: break responses[transfer_id] = resps elif job_response['http_status'] == '404 Not Found': # Lost transfer responses[transfer_id] = None else: responses[transfer_id] = Exception('Could not retrieve transfer information(http_status: %s, http_message: %s)' % (job_response['http_status'], job_response['http_message'] if 'http_message' in job_response else None)) return responses def __query_details(self, transfer_id): """ Query the detailed status of a transfer in FTS3 via JSON. :param transfer_id: FTS transfer identifier as a string. :returns: Detailed transfer status information as a dictionary. """ files = None files = requests.get('%s/jobs/%s/files' % (self.external_host, transfer_id), verify=self.verify, cert=self.cert, headers=self.headers, timeout=5) if files and (files.status_code == 200 or files.status_code == 207): QUERY_DETAILS_COUNTER.labels(state='success', host=self.__extract_host(self.external_host)).inc() return files.json() QUERY_DETAILS_COUNTER.labels(state='failure', host=self.__extract_host(self.external_host)).inc() return
py
7df82c9e8e6265fcc25c2c9783a2ffc6631dc352
# This module contians a legacy API, an early approach to plans that # was deprecated in v0.10.0. It will be removed in a future release. It should # not be used. To build 'reusable' plans we now recommend `functools.partial`. from bluesky import utils from collections import defaultdict # The code below adds no new logic, but it wraps the generators above in # classes for an alternative interface that is more stateful. from bluesky import preprocessors as bpp from bluesky.plans import (count, list_scan, rel_list_scan, log_scan, rel_scan, adaptive_scan, rel_adaptive_scan, scan_nd, inner_product_scan, relative_inner_product_scan, grid_scan, scan, tweak, spiral, spiral_fermat, rel_spiral_fermat, rel_spiral, rel_log_scan, rel_grid_scan) class Plan(utils.Struct): """ This is a base class for wrapping plan generators in a stateful class. To create a new sub-class you need to over-ride two things: - an ``__init__`` method *or* a class level ``_fields`` attribute which is used to construct the init signature via meta-class magic - a ``_gen`` method, which should return a generator of Msg objects The class provides: - state stored in attributes that are used to re-generate a plan generator with the same parameters - a hook for adding "flyable" objects to a plan - attributes for adding subscriptions and subscription factory functions """ subs = utils.Subs({}) sub_factories = utils.Subs({}) def __iter__(self): """ Return an iterable of messages. """ return self() def __call__(self, **kwargs): """ Return an iterable of messages. Any keyword arguments override present settings. """ subs = defaultdict(list) utils.update_sub_lists(subs, self.subs) utils.update_sub_lists( subs, utils.apply_sub_factories(self.sub_factories, self)) flyers = getattr(self, 'flyers', []) def cls_plan(): current_settings = {} for key, val in kwargs.items(): current_settings[key] = getattr(self, key) setattr(self, key, val) try: plan = self._gen() plan = bpp.subs_wrapper(plan, subs) plan = bpp.stage_wrapper(plan, flyers) plan = bpp.fly_during_wrapper(plan, flyers) return (yield from plan) finally: for key, val in current_settings.items(): setattr(self, key, val) cls_plan.__name__ = self.__class__.__name__ return cls_plan() def _gen(self): "Subclasses override this to provide the main plan content." yield from utils.censure_generator([]) PlanBase = Plan # back-compat class Count(Plan): _fields = ['detectors', 'num', 'delay'] __doc__ = count.__doc__ def __init__(self, detectors, num=1, delay=0, *, md=None): self.detectors = detectors self.num = num self.delay = delay self.flyers = [] self.md = md def _gen(self): return count(self.detectors, self.num, self.delay, md=self.md) class ListScan(Plan): _fields = ['detectors', 'motor', 'steps'] __doc__ = list_scan.__doc__ def _gen(self): return list_scan(self.detectors, self.motor, self.steps, md=self.md) AbsListScanPlan = ListScan # back-compat class RelativeListScan(Plan): _fields = ['detectors', 'motor', 'steps'] __doc__ = rel_list_scan.__doc__ def _gen(self): return rel_list_scan(self.detectors, self.motor, self.steps, md=self.md) DeltaListScanPlan = RelativeListScan # back-compat class Scan(Plan): _fields = ['detectors', 'motor', 'start', 'stop', 'num'] __doc__ = scan.__doc__ def _gen(self): return scan(self.detectors, self.motor, self.start, self.stop, self.num, md=self.md) AbsScanPlan = Scan # back-compat class LogScan(Plan): _fields = ['detectors', 'motor', 'start', 'stop', 'num'] __doc__ = log_scan.__doc__ def _gen(self): return log_scan(self.detectors, self.motor, self.start, self.stop, self.num, md=self.md) LogAbsScanPlan = LogScan # back-compat class RelativeScan(Plan): _fields = ['detectors', 'motor', 'start', 'stop', 'num'] __doc__ = rel_scan.__doc__ def _gen(self): return rel_scan(self.detectors, self.motor, self.start, self.stop, self.num, md=self.md) DeltaScanPlan = RelativeScan # back-compat class RelativeLogScan(Plan): _fields = ['detectors', 'motor', 'start', 'stop', 'num'] __doc__ = rel_log_scan.__doc__ def _gen(self): return rel_log_scan(self.detectors, self.motor, self.start, self.stop, self.num, md=self.md) LogDeltaScanPlan = RelativeLogScan # back-compat class AdaptiveScan(Plan): _fields = ['detectors', 'target_field', 'motor', 'start', 'stop', 'min_step', 'max_step', 'target_delta', 'backstep', 'threshold'] __doc__ = adaptive_scan.__doc__ def __init__(self, detectors, target_field, motor, start, stop, min_step, max_step, target_delta, backstep, threshold=0.8, *, md=None): self.detectors = detectors self.target_field = target_field self.motor = motor self.start = start self.stop = stop self.min_step = min_step self.max_step = max_step self.target_delta = target_delta self.backstep = backstep self.threshold = threshold self.flyers = [] self.md = md def _gen(self): return adaptive_scan(self.detectors, self.target_field, self.motor, self.start, self.stop, self.min_step, self.max_step, self.target_delta, self.backstep, self.threshold, md=self.md) AdaptiveAbsScanPlan = AdaptiveScan # back-compat class RelativeAdaptiveScan(AdaptiveAbsScanPlan): __doc__ = rel_adaptive_scan.__doc__ def _gen(self): return rel_adaptive_scan(self.detectors, self.target_field, self.motor, self.start, self.stop, self.min_step, self.max_step, self.target_delta, self.backstep, self.threshold, md=self.md) AdaptiveDeltaScanPlan = RelativeAdaptiveScan # back-compat class ScanND(PlanBase): _fields = ['detectors', 'cycler'] __doc__ = scan_nd.__doc__ def _gen(self): return scan_nd(self.detectors, self.cycler, md=self.md) PlanND = ScanND # back-compat class InnerProductScan(Plan): __doc__ = inner_product_scan.__doc__ def __init__(self, detectors, num, *args, md=None): self.detectors = detectors self.num = num self.args = args self.flyers = [] self.md = md def _gen(self): return inner_product_scan(self.detectors, self.num, *self.args, md=self.md) InnerProductAbsScanPlan = InnerProductScan # back-compat class RelativeInnerProductScan(InnerProductScan): __doc__ = relative_inner_product_scan.__doc__ def _gen(self): return relative_inner_product_scan(self.detectors, self.num, *self.args, md=self.md) InnerProductDeltaScanPlan = RelativeInnerProductScan # back-compat class OuterProductScan(Plan): __doc__ = grid_scan.__doc__ def __init__(self, detectors, *args, md=None): self.detectors = detectors self.args = args self.flyers = [] self.md = md def _gen(self): return grid_scan(self.detectors, *self.args, md=self.md) OuterProductAbsScanPlan = OuterProductScan # back-compat class RelativeOuterProductScan(OuterProductScan): __doc__ = rel_grid_scan.__doc__ def _gen(self): return rel_grid_scan(self.detectors, *self.args, md=self.md) OuterProductDeltaScanPlan = RelativeOuterProductScan # back-compat class Tweak(Plan): _fields = ['detector', 'target_field', 'motor', 'step'] __doc__ = tweak.__doc__ def _gen(self): return tweak(self.detector, self.target_field, self.motor, self.step, md=self.md) class SpiralScan(Plan): _fields = ['detectors', 'x_motor', 'y_motor', 'x_start', 'y_start', 'x_range', 'y_range', 'dr', 'nth', 'tilt'] __doc__ = spiral.__doc__ def _gen(self): return spiral(self.detectors, self.x_motor, self.y_motor, self.x_start, self.y_start, self.x_range, self.y_range, self.dr, self.nth, tilt=self.tilt, md=self.md) class SpiralFermatScan(Plan): _fields = ['detectors', 'x_motor', 'y_motor', 'x_start', 'y_start', 'x_range', 'y_range', 'dr', 'factor', 'tilt'] __doc__ = spiral_fermat.__doc__ def _gen(self): return spiral_fermat(self.detectors, self.x_motor, self.y_motor, self.x_start, self.y_start, self.x_range, self.y_range, self.dr, self.factor, tilt=self.tilt, md=self.md) class RelativeSpiralScan(Plan): _fields = ['detectors', 'x_motor', 'y_motor', 'x_range', 'y_range', 'dr', 'nth', 'tilt'] __doc__ = rel_spiral.__doc__ def _gen(self): return rel_spiral(self.detectors, self.x_motor, self.y_motor, self.x_range, self.y_range, self.dr, self.nth, tilt=self.tilt, md=self.md) class RelativeSpiralFermatScan(Plan): _fields = ['detectors', 'x_motor', 'y_motor', 'x_range', 'y_range', 'dr', 'factor', 'tilt'] __doc__ = rel_spiral_fermat.__doc__ def _gen(self): return rel_spiral_fermat(self.detectors, self.x_motor, self.y_motor, self.x_range, self.y_range, self.dr, self.factor, tilt=self.tilt, md=self.md)
py
7df82fcc21dd45d9eb5d1a4617e63f1f8154d8c4
from fm_solver.translator.translator import Translator from fm_solver.translator.mini_zinc_arithmetic_translator import ( MiniZincArithmeticTranslator, ) from fm_solver.translator.xcsp3_arithmetic_translator import XCSP3ArithmeticTranslator from fm_solver.translator.cnf_translator import CNFTranslator __all__ = [ "Translator", "MiniZincArithmeticTranslator", "XCSP3ArithmeticTranslator", "CNFTranslator", ]
py
7df82fdaae1951c93bbe1760eb69fd54678a543f
from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from django.shortcuts import render from django.urls import reverse_lazy from django.views.generic import ( CreateView, DeleteView, DetailView, ListView, UpdateView, ) from .forms import ExpenditureFilterForm, ExpenditureForm from .models import Category, Expenditure def categories_list_view(request): categories_with_related_count = Category.objects.add_related_count( Category.objects.all(), Expenditure, "category", "o_count", cumulative=True ) return render( request, "budget/categories.html", {"categories": categories_with_related_count} ) class ExpenditureList(LoginRequiredMixin, ListView): model = Expenditure paginate_by = 20 def get_queryset(self): return Expenditure.objects.filter(user=self.request.user).order_by("-spent_at") class ExpenditureDetailView(DetailView): model = Expenditure class ExpenditureCreateView(LoginRequiredMixin, CreateView): model = Expenditure form_class = ExpenditureForm def form_valid(self, form): form.instance.user = self.request.user return super().form_valid(form) class ExpenditureUpdateView(LoginRequiredMixin, UserPassesTestMixin, UpdateView): model = Expenditure fields = ["value", "spent_at", "comment", "category"] def get_form_class(self): return ExpenditureForm def form_valid(self, form): form.instance.user = self.request.user return super().form_valid(form) def test_func(self): obj = self.get_object() if self.request.user == obj.user: return True return False class ExpenditureDeleteView(LoginRequiredMixin, UserPassesTestMixin, DeleteView): model = Expenditure success_url = reverse_lazy("budget:expenditure_list_view") def test_func(self): obj = self.get_object() if self.request.user == obj.user: return True return False class ExpenditureDetailedList(LoginRequiredMixin, ListView): model = Expenditure paginate_by = 20 template_name = "budget/expenditure_list_detailed.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["form"] = ExpenditureFilterForm( initial={"category": list(self.request.GET.getlist("category", []))} ) return context def get_queryset(self, *args, **kwargs): qs = Expenditure.objects.filter(user=self.request.user).order_by("-spent_at") get_data = self.request.GET if "category" in get_data: qs = qs.filter(category__in=get_data.getlist("category", [])) return qs.all()
py
7df8305d83201c3894f74ef1ba2d4cd7929c0678
# @Author: Manuel Rodriguez <valle> # @Date: 10-Jun-2018 # @Email: [email protected] # @Last modified by: valle # @Last modified time: 10-Jun-2018 # @License: Apache license vesion 2.0
py
7df830bd121bb3802d904902b3580aada9cb4d06
import os import argparse import logging import compreffor from compreffor.pyCompressor import human_size from fontTools.ttLib import TTFont from fontTools.misc.loggingTools import configLogger def parse_arguments(args=None): parser = argparse.ArgumentParser( prog='compreffor', description="FontTools Compreffor will take a CFF-flavored OpenType font " "and automatically detect repeated routines and generate " "subroutines to minimize the disk space needed to represent " "a font.") parser.add_argument("infile", metavar="INPUT", help="path to the input font file") parser.add_argument("outfile", nargs="?", metavar="OUTPUT", help="path to the compressed file (default: " "*.compressed.otf)") parser.add_argument('-v', '--verbose', action='count', default=0, help="print more messages to stdout; use it multiple " "times to increase the level of verbosity") parser.add_argument("-c", "--check", action='store_true', help="verify that the outputted font is valid and " "functionally equivalent to the input") parser.add_argument("-d", "--decompress", action="store_true", help="decompress source before compressing (necessary if " "there are subroutines in the source)") parser.add_argument("-n", "--nrounds", type=int, help="the number of iterations to run the algorithm" " (default: 4)") parser.add_argument("-m", "--max-subrs", type=int, help="limit to the number of subroutines per INDEX " " (default: 65533)") parser.add_argument('--generate-cff', action='store_true', help="Also save binary CFF table data as {INPUT}.cff") parser.add_argument('--py', dest="method_python", action='store_true', help="Use pure Python method, instead of C++ extension") py_meth_group = parser.add_argument_group("options for pure Python method") py_meth_group.add_argument("--chunk-ratio", type=float, help="specify the percentage size of the " "job chunks used for parallel processing " "(0 < float <= 1; default: 0.1)") py_meth_group.add_argument("-p", "--processes", type=int, help="specify number of concurrent processes to " "run. Use value 1 to perform operation serially " "(default: 12)") options = parser.parse_args(args) kwargs = vars(options) if options.method_python: if options.processes is not None and options.processes < 1: parser.error('argument --processes expects positive integer > 0') if (options.chunk_ratio is not None and not (0 < options.chunk_ratio <= 1)): parser.error('argument --chunk-ratio expects float number 0 < n <= 1') else: for attr in ('chunk_ratio', 'processes'): if getattr(options, attr): opt = attr.replace('_', '-') parser.error('argument --%s can only be used with --py (pure ' 'Python) method' % opt) else: del kwargs[attr] if options.outfile is None: options.outfile = "%s.compressed%s" % os.path.splitext(options.infile) return kwargs def main(args=None): log = compreffor.log timer = compreffor.timer timer.reset() options = parse_arguments(args) # consume kwargs that are not passed on to 'compress' function infile = options.pop('infile') outfile = options.pop('outfile') decompress = options.pop('decompress') generate_cff = options.pop('generate_cff') check = options.pop('check') verbose = options.pop('verbose') if verbose == 1: level = logging.INFO elif verbose > 1: level = logging.DEBUG else: level = logging.WARNING configLogger(logger=log, level=level) orig_size = os.path.getsize(infile) font = TTFont(infile) if decompress: log.info("Decompressing font with FontTools Subsetter") with timer("decompress the font"): compreffor.decompress(font) log.info("Compressing font through %s Compreffor", "pure-Python" if options['method_python'] else "C++") compreffor.compress(font, **options) with timer("compile and save compressed font"): font.save(outfile) if generate_cff: cff_file = os.path.splitext(outfile)[0] + ".cff" with open(cff_file, 'wb') as f: font['CFF '].cff.compile(f, None) log.info("Saved CFF data to '%s'" % os.path.basename(cff_file)) if check: log.info("Checking compression integrity and call depth") passed = compreffor.check(infile, outfile) if not passed: return 1 comp_size = os.path.getsize(outfile) log.info("Compressed to '%s' -- saved %s" % (os.path.basename(outfile), human_size(orig_size - comp_size))) log.debug("Total time: %gs", timer.time()) if __name__ == "__main__": main()
py
7df832ddd7038928398be71aaa03238b7f419fb7
import sys import os import csv import json import pika import boto3 from botocore.exceptions import ClientError CHECKSUM_HEADERS = ['object_id', 'type', 'checksum'] CONTENTS_HEADERS = ['object_id', 'id' , 'name', 'drs_uri', 'type'] OBJECT_HEADERS = ['id','name','description','self_uri','size','created_time','updated_time','version','mime_type','aliases'] OBJECT_HEADERS_V2 = ['id','name','type','description','self_uri','size','created_time','updated_time','version','mime_type','aliases','bundle','dataset'] URL_HEADERS = ['object_id', 'type', 'access_url', 'region', 'headers', 'access_id'] csv.field_size_limit(sys.maxsize) def write_or_append_csv(filename, DATA, headers): """Write DATA as CSV in filename""" print(DATA) with open(filename, mode='a', encoding='utf-8-sig') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=headers) if (csvfile.tell()==0): print("Writing headers") writer.writeheader() writer.writerow(DATA) def pull_queue(channel, rabbitmq_queue, file, headers): while True: method_frame, header_frame, body = channel.basic_get(queue=rabbitmq_queue) if method_frame: try: data_dict = json.loads(body) write_or_append_csv(file,data_dict,headers) channel.basic_ack(method_frame.delivery_tag) except Exception as err: print('Handling run-time error:', err) channel.basic_nack(method_frame.delivery_tag) raise err else: print("Message not found") break def create_s3_client(): session = boto3.session.Session() s3_client = session.client( service_name='s3', aws_access_key_id=os.environ.get('AWS_ACCESS_KEY'), aws_secret_access_key=os.environ.get('AWS_SECRET_KEY'), endpoint_url=os.environ.get('S3_ENDPOINT') ) return s3_client def upload_file(file_name, bucket, s3_client, object_name=None): """Upload a file to an S3 bucket :param file_name: File to upload :param bucket: Bucket to upload to :param s3_client: boto3 s3 client :param object_name: S3 object name. If not specified then file_name is used :return: True if file was uploaded, else False """ # If S3 object_name was not specified, use file_name if object_name is None: object_name = file_name # Upload the file try: print(file_name) print(bucket) print(object_name) s3_client.upload_file(file_name, bucket, object_name) except ClientError as e: print(e) raise e def main(): rabbitmq_url = os.environ.get('BROKER_URL') object_queue = os.environ.get('OBJECT_QUEUE','object_queue') checksums_queue = os.environ.get('CHECKSUMS_QUEUE','checksums_queue') contents_queue = os.environ.get('CONTENTS_QUEUE','contents_queue') access_methods_queue = os.environ.get('ACCESS_METHODS_QUEUE','access_methods_queue') # Pulling each queue and forming csv with records connection = pika.BlockingConnection(pika.URLParameters(rabbitmq_url)) channel = connection.channel() indexer_version = os.environ.get('INDEXER_VERSION') if (indexer_version == 'v2'): pull_queue(channel, object_queue , '/data/objects.csv', OBJECT_HEADERS_V2) else: pull_queue(channel, object_queue , '/data/objects.csv', OBJECT_HEADERS) pull_queue(channel, checksums_queue , '/data/checksums.csv', CHECKSUM_HEADERS) pull_queue(channel, contents_queue , '/data/contents.csv', CONTENTS_HEADERS) pull_queue(channel, access_methods_queue , '/data/access_methods.csv', URL_HEADERS) connection.close() # Pushing to object store for ingestion s3_bucket = os.environ.get('S3_OUTPUT_BUCKET','rdsds-indexing') s3_filepath = os.environ.get('S3_OUTPUT_FILEPATH','indexed_items/') s3_client = create_s3_client() upload_file(file_name='/data/objects.csv', bucket=s3_bucket, s3_client=s3_client,object_name=s3_filepath+'objects.csv') upload_file(file_name='/data/checksums.csv', bucket=s3_bucket, s3_client=s3_client,object_name=s3_filepath+'checksums.csv') upload_file(file_name='/data/contents.csv', bucket=s3_bucket, s3_client=s3_client,object_name=s3_filepath+'contents.csv') upload_file(file_name='/data/access_methods.csv', bucket=s3_bucket, s3_client=s3_client,object_name=s3_filepath+'access_methods.csv') if __name__ == "__main__": main()
py
7df832fc41586f09ad8199baed7e2d2652d76d30
from django.apps import AppConfig class DefaultConfig(AppConfig): name = '{{cookiecutter.project_name}}.{{cookiecutter.django_app}}'
py
7df833d64933d7df1ecee442cae75aecfb655fb1
import snoop def type_watch(source, value): return 'type({})'.format(source), type(value) snoop.install( out='logs/snoop.log', color = False, prefix = 'snoop: ', columns = ['time','file','function'], watch_extras=[type_watch], # builtins=False, )
py
7df834de4711a12496f9125631ec8537f619af41
#from setuptools import setup from distutils.core import setup setup( name = 'caterapp', packages=['caterapp'], version = '1.1', # Ideally should be same as your GitHub release tag varsion description='A TCP based file sharing application', author='Ravi Prakash', author_email='[email protected]', url='https://github.com/ravi-prakash1907/CaterApp', # github source url download_url = 'https://github.com/ravi-prakash1907/CaterApp/archive/refs/tags/v0.1-alpha.tar.gz', long_descp = 'README.md', keywords = ['v0.1-alpha', 'caterapp'], REQUIRED = ['cater','shareBox'], classifiers=[ 'Development Status :: 3 - Alpha', # "3 - Alpha", "4 - Beta" or "5 - Production/Stable" ---- the current state of this package 'License :: OSI Approved :: MIT License', # picking a license 'Programming Language :: Python :: 3', #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.8', ], )
py
7df8353536d31bfda235cfefe2d73597e7c47630
#!/usr/bin/env python """ Usage: process scripts/process.py Assumptions 1) Always run from poetics directory 2) virtual env for frozen-pie in in the same folder as frozen pie 3) paths are hardcoded """ poetics_path = "/Users/harsha/yuti/poetics" frozen_pie_path = "/Users/harsha/yuti/frozen-pie-latest" poems_path = "/Users/harsha/yuti/poems" errors_path = poems_path + "/errors" github_url = "[email protected]:Facjure/poetics.git" # get latest poems if any import os cmd = "cd " + poems_path + "; git pull origin master" os.system(cmd) os.system("rm except.log.md") log = open("except.log.md", "a") import sys import re import yaml import StringIO from glob import glob from pipes import quote from codecs import open from datetime import datetime from dateutil import tz import cleaners def split_file(poem_text): match = re.split(u"\n---[ ]*\n", poem_text, flags=re.U | re.S) yaml_text = match[0] poem = match[1] return yaml_text, poem print """Processing poems""" for txtfile in glob(poems_path + os.sep + "*.txt"): try: txtfile_name = os.path.basename(txtfile) if not cleaners.is_clean_name(txtfile_name): raise Exception("Filenames should have hyphens only. \"<authorLastName>-<first-five-words-of-title>.txt\". Use - for all special characters.") text = open(txtfile, "r", "utf-8").read() yaml_text, poem = split_file(text) if len(poem) < 10: raise Exception("Fault in process.py or Poem is too small") yaml.load(StringIO.StringIO(yaml_text)) except Exception, error: log.write("#### Error in \"" + txtfile + "\"\n" + str(error) + "\n\n") cmd = "mv " + quote(txtfile) + " " + quote(errors_path) print " " + cmd os.system(cmd) continue print "Done" log.close() log = open("except.log.md", "r") if len(log.readlines()) > 2: log.close() utc = datetime.utcnow() from_zone = tz.gettz('UTC') to_zone = tz.gettz('America/New_York') utc = utc.replace(tzinfo=from_zone) boston_time = utc.astimezone(to_zone) print str(boston_time) cmd = "mv except.log.md " + quote(errors_path + os.sep + "except.log.BostonTime." + str(boston_time) + ".md") print " " + cmd os.system(cmd) os.chdir(poems_path) os.system("git add -A; git commit -m 'BuildBot " + str(boston_time) + "'") os.system("git push origin master") os.chdir(frozen_pie_path) os.system("./env/bin/python bake.py --config " + poetics_path + os.sep + "config.yml") os.chdir(poetics_path) os.system("mkdir deploy") os.system("mv .build/index.html deploy/") os.system("rm -rf .build") os.system("git clone -b gh-pages " + github_url + " .build") os.system("cp deploy/index.html .build/") os.system("cd .build; git add index.html; git commit -m 'new deploy " + str(boston_time) + "'; git push --force origin gh-pages")
py
7df8355244f2100aafae9020518a79cacd9b8c9c
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Csiszar f-Divergence and helpers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools # Dependency imports import numpy as np import tensorflow.compat.v2 as tf from tensorflow_probability.python import monte_carlo from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import nest_util from tensorflow_probability.python.internal.reparameterization import FULLY_REPARAMETERIZED from tensorflow_probability.python.stats.leave_one_out import log_soomean_exp __all__ = [ 'amari_alpha', 'arithmetic_geometric', 'chi_square', 'csiszar_vimco', 'dual_csiszar_function', 'jeffreys', 'jensen_shannon', 'kl_forward', 'kl_reverse', 'log1p_abs', 'modified_gan', 'monte_carlo_variational_loss', 'pearson', 'squared_hellinger', 'symmetrized_csiszar_function', 't_power', 'total_variation', 'triangular', ] def amari_alpha(logu, alpha=1., self_normalized=False, name=None): """The Amari-alpha Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` When `self_normalized = True`, the Amari-alpha Csiszar-function is: ```none f(u) = { -log(u) + (u - 1), alpha = 0 { u log(u) - (u - 1), alpha = 1 { [(u**alpha - 1) - alpha (u - 1)] / (alpha (alpha - 1)), otherwise ``` When `self_normalized = False` the `(u - 1)` terms are omitted. Warning: when `alpha != 0` and/or `self_normalized = True` this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. For more information, see: A. Cichocki and S. Amari. "Families of Alpha-Beta-and GammaDivergences: Flexible and Robust Measures of Similarities." Entropy, vol. 12, no. 6, pp. 1532-1568, 2010. Args: logu: `float`-like `Tensor` representing `log(u)` from above. alpha: `float`-like Python scalar. (See Mathematical Details for meaning.) self_normalized: Python `bool` indicating whether `f'(u=1)=0`. When `f'(u=1)=0` the implied Csiszar f-Divergence remains non-negative even when `p, q` are unnormalized measures. name: Python `str` name prefixed to Ops created by this function. Returns: amari_alpha_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. Raises: TypeError: if `alpha` is `None` or a `Tensor`. TypeError: if `self_normalized` is `None` or a `Tensor`. """ with tf.name_scope(name or 'amari_alpha'): if tf.get_static_value(alpha) is None: raise TypeError('Argument `alpha` cannot be `None` or `Tensor` type.') if tf.get_static_value(self_normalized) is None: raise TypeError( 'Argument `self_normalized` cannot be `None` or `Tensor` type.') logu = tf.convert_to_tensor(logu, name='logu') if alpha == 0.: f = -logu elif alpha == 1.: f = tf.exp(logu) * logu else: f = tf.math.expm1(alpha * logu) / (alpha * (alpha - 1.)) if not self_normalized: return f if alpha == 0.: return f + tf.math.expm1(logu) elif alpha == 1.: return f - tf.math.expm1(logu) else: return f - tf.math.expm1(logu) / (alpha - 1.) def kl_reverse(logu, self_normalized=False, name=None): """The reverse Kullback-Leibler Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` When `self_normalized = True`, the KL-reverse Csiszar-function is: ```none f(u) = -log(u) + (u - 1) ``` When `self_normalized = False` the `(u - 1)` term is omitted. Observe that as an f-Divergence, this Csiszar-function implies: ```none D_f[p, q] = KL[q, p] ``` The KL is "reverse" because in maximum likelihood we think of minimizing `q` as in `KL[p, q]`. Warning: when self_normalized = True` this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. self_normalized: Python `bool` indicating whether `f'(u=1)=0`. When `f'(u=1)=0` the implied Csiszar f-Divergence remains non-negative even when `p, q` are unnormalized measures. name: Python `str` name prefixed to Ops created by this function. Returns: kl_reverse_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. Raises: TypeError: if `self_normalized` is `None` or a `Tensor`. """ with tf.name_scope(name or 'kl_reverse'): return amari_alpha(logu, alpha=0., self_normalized=self_normalized) def kl_forward(logu, self_normalized=False, name=None): """The forward Kullback-Leibler Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` When `self_normalized = True`, the KL-forward Csiszar-function is: ```none f(u) = u log(u) - (u - 1) ``` When `self_normalized = False` the `(u - 1)` term is omitted. Observe that as an f-Divergence, this Csiszar-function implies: ```none D_f[p, q] = KL[p, q] ``` The KL is "forward" because in maximum likelihood we think of minimizing `q` as in `KL[p, q]`. Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. self_normalized: Python `bool` indicating whether `f'(u=1)=0`. When `f'(u=1)=0` the implied Csiszar f-Divergence remains non-negative even when `p, q` are unnormalized measures. name: Python `str` name prefixed to Ops created by this function. Returns: kl_forward_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. Raises: TypeError: if `self_normalized` is `None` or a `Tensor`. """ with tf.name_scope(name or 'kl_forward'): return amari_alpha(logu, alpha=1., self_normalized=self_normalized) def jensen_shannon(logu, self_normalized=False, name=None): """The Jensen-Shannon Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` When `self_normalized = True`, the Jensen-Shannon Csiszar-function is: ```none f(u) = u log(u) - (1 + u) log(1 + u) + (u + 1) log(2) ``` When `self_normalized = False` the `(u + 1) log(2)` term is omitted. Observe that as an f-Divergence, this Csiszar-function implies: ```none D_f[p, q] = KL[p, m] + KL[q, m] m(x) = 0.5 p(x) + 0.5 q(x) ``` In a sense, this divergence is the "reverse" of the Arithmetic-Geometric f-Divergence. This Csiszar-function induces a symmetric f-Divergence, i.e., `D_f[p, q] = D_f[q, p]`. Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. For more information, see: Lin, J. "Divergence measures based on the Shannon entropy." IEEE Trans. Inf. Th., 37, 145-151, 1991. Args: logu: `float`-like `Tensor` representing `log(u)` from above. self_normalized: Python `bool` indicating whether `f'(u=1)=0`. When `f'(u=1)=0` the implied Csiszar f-Divergence remains non-negative even when `p, q` are unnormalized measures. name: Python `str` name prefixed to Ops created by this function. Returns: jensen_shannon_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. """ with tf.name_scope(name or 'jensen_shannon'): logu = tf.convert_to_tensor(logu, name='logu') y = tf.nn.softplus(logu) if self_normalized: y -= np.log(2.) # TODO(jvdillon): Maybe leverage the fact that: # (x-sp(x))*exp(x) approx= expm1(-1.1x + 0.5) for x>12? # Basically, take advantage of x approx= softplus(x) for x>>0. return (logu - y) * tf.exp(logu) - y def arithmetic_geometric(logu, self_normalized=False, name=None): """The Arithmetic-Geometric Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` When `self_normalized = True` the Arithmetic-Geometric Csiszar-function is: ```none f(u) = (1 + u) log( (1 + u) / sqrt(u) ) - (1 + u) log(2) ``` When `self_normalized = False` the `(1 + u) log(2)` term is omitted. Observe that as an f-Divergence, this Csiszar-function implies: ```none D_f[p, q] = KL[m, p] + KL[m, q] m(x) = 0.5 p(x) + 0.5 q(x) ``` In a sense, this divergence is the "reverse" of the Jensen-Shannon f-Divergence. This Csiszar-function induces a symmetric f-Divergence, i.e., `D_f[p, q] = D_f[q, p]`. Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. self_normalized: Python `bool` indicating whether `f'(u=1)=0`. When `f'(u=1)=0` the implied Csiszar f-Divergence remains non-negative even when `p, q` are unnormalized measures. name: Python `str` name prefixed to Ops created by this function. Returns: arithmetic_geometric_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. """ with tf.name_scope(name or 'arithmetic_geometric'): logu = tf.convert_to_tensor(logu, name='logu') y = tf.nn.softplus(logu) - 0.5 * logu if self_normalized: y -= np.log(2.) return (1. + tf.exp(logu)) * y def total_variation(logu, name=None): """The Total Variation Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` The Total-Variation Csiszar-function is: ```none f(u) = 0.5 |u - 1| ``` Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. name: Python `str` name prefixed to Ops created by this function. Returns: total_variation_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. """ with tf.name_scope(name or 'total_variation'): logu = tf.convert_to_tensor(logu, name='logu') return 0.5 * tf.abs(tf.math.expm1(logu)) def pearson(logu, name=None): """The Pearson Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` The Pearson Csiszar-function is: ```none f(u) = (u - 1)**2 ``` Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. name: Python `str` name prefixed to Ops created by this function. Returns: pearson_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. """ with tf.name_scope(name or 'pearson'): logu = tf.convert_to_tensor(logu, name='logu') return tf.square(tf.math.expm1(logu)) def squared_hellinger(logu, name=None): """The Squared-Hellinger Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` The Squared-Hellinger Csiszar-function is: ```none f(u) = (sqrt(u) - 1)**2 ``` This Csiszar-function induces a symmetric f-Divergence, i.e., `D_f[p, q] = D_f[q, p]`. Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. name: Python `str` name prefixed to Ops created by this function. Returns: squared_hellinger_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. """ with tf.name_scope(name or 'squared_hellinger'): logu = tf.convert_to_tensor(logu, name='logu') return pearson(0.5 * logu) def triangular(logu, name=None): """The Triangular Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` The Triangular Csiszar-function is: ```none f(u) = (u - 1)**2 / (1 + u) ``` This Csiszar-function induces a symmetric f-Divergence, i.e., `D_f[p, q] = D_f[q, p]`. Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. name: Python `str` name prefixed to Ops created by this function. Returns: triangular_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. """ with tf.name_scope(name or 'triangular'): logu = tf.convert_to_tensor(logu, name='logu') return pearson(logu) / (1. + tf.exp(logu)) def t_power(logu, t, self_normalized=False, name=None): """The T-Power Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` When `self_normalized = True` the T-Power Csiszar-function is: ```none f(u) = s [ u**t - 1 - t(u - 1) ] s = { -1 0 < t < 1 { +1 otherwise ``` When `self_normalized = False` the `- t(u - 1)` term is omitted. This is similar to the `amari_alpha` Csiszar-function, with the associated divergence being the same up to factors depending only on `t`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. t: `Tensor` of same `dtype` as `logu` and broadcastable shape. self_normalized: Python `bool` indicating whether `f'(u=1)=0`. name: Python `str` name prefixed to Ops created by this function. Returns: t_power_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. """ with tf.name_scope(name or 't_power'): logu = tf.convert_to_tensor(logu, name='logu') t = tf.convert_to_tensor( t, dtype=dtype_util.base_dtype(logu.dtype), name='t') fu = tf.math.expm1(t * logu) if self_normalized: fu = fu - t * tf.math.expm1(logu) return tf.where((0 < t) & (t < 1), -fu, fu) def log1p_abs(logu, name=None): """The log1p-abs Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` The Log1p-Abs Csiszar-function is: ```none f(u) = u**(sign(u-1)) - 1 ``` This function is so-named because it was invented from the following recipe. Choose a convex function g such that g(0)=0 and solve for f: ```none log(1 + f(u)) = g(log(u)). <=> f(u) = exp(g(log(u))) - 1 ``` That is, the graph is identically `g` when y-axis is `log1p`-domain and x-axis is `log`-domain. Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. name: Python `str` name prefixed to Ops created by this function. Returns: log1p_abs_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. """ with tf.name_scope(name or 'log1p_abs'): logu = tf.convert_to_tensor(logu, name='logu') return tf.math.expm1(tf.abs(logu)) def jeffreys(logu, name=None): """The Jeffreys Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` The Jeffreys Csiszar-function is: ```none f(u) = 0.5 ( u log(u) - log(u) ) = 0.5 kl_forward + 0.5 kl_reverse = symmetrized_csiszar_function(kl_reverse) = symmetrized_csiszar_function(kl_forward) ``` This Csiszar-function induces a symmetric f-Divergence, i.e., `D_f[p, q] = D_f[q, p]`. Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. name: Python `str` name prefixed to Ops created by this function. Returns: jeffreys_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. """ with tf.name_scope(name or 'jeffreys'): logu = tf.convert_to_tensor(logu, name='logu') return 0.5 * tf.math.expm1(logu) * logu def chi_square(logu, name=None): """The chi-Square Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` The Chi-square Csiszar-function is: ```none f(u) = u**2 - 1 ``` Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. name: Python `str` name prefixed to Ops created by this function. Returns: chi_square_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. """ with tf.name_scope(name or 'chi_square'): logu = tf.convert_to_tensor(logu, name='logu') return tf.math.expm1(2. * logu) def modified_gan(logu, self_normalized=False, name=None): """The Modified-GAN Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` When `self_normalized = True` the modified-GAN (Generative/Adversarial Network) Csiszar-function is: ```none f(u) = log(1 + u) - log(u) + 0.5 (u - 1) ``` When `self_normalized = False` the `0.5 (u - 1)` is omitted. The unmodified GAN Csiszar-function is identical to Jensen-Shannon (with `self_normalized = False`). Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. self_normalized: Python `bool` indicating whether `f'(u=1)=0`. When `f'(u=1)=0` the implied Csiszar f-Divergence remains non-negative even when `p, q` are unnormalized measures. name: Python `str` name prefixed to Ops created by this function. Returns: chi_square_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`. """ with tf.name_scope(name or 'chi_square'): logu = tf.convert_to_tensor(logu, name='logu') y = tf.nn.softplus(logu) - logu if self_normalized: y += 0.5 * tf.math.expm1(logu) return y def dual_csiszar_function(logu, csiszar_function, name=None): """Calculates the dual Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` The Csiszar-dual is defined as: ```none f^*(u) = u f(1 / u) ``` where `f` is some other Csiszar-function. For example, the dual of `kl_reverse` is `kl_forward`, i.e., ```none f(u) = -log(u) f^*(u) = u f(1 / u) = -u log(1 / u) = u log(u) ``` The dual of the dual is the original function: ```none f^**(u) = {u f(1/u)}^*(u) = u (1/u) f(1/(1/u)) = f(u) ``` Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. csiszar_function: Python `callable` representing a Csiszar-function over log-domain. name: Python `str` name prefixed to Ops created by this function. Returns: dual_f_of_u: `float`-like `Tensor` of the result of calculating the dual of `f` at `u = exp(logu)`. """ with tf.name_scope(name or 'dual_csiszar_function'): return tf.exp(logu) * csiszar_function(-logu) def symmetrized_csiszar_function(logu, csiszar_function, name=None): """Symmetrizes a Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` The symmetrized Csiszar-function is defined as: ```none f_g(u) = 0.5 g(u) + 0.5 u g (1 / u) ``` where `g` is some other Csiszar-function. We say the function is "symmetrized" because: ```none D_{f_g}[p, q] = D_{f_g}[q, p] ``` for all `p << >> q` (i.e., `support(p) = support(q)`). There exists alternatives for symmetrizing a Csiszar-function. For example, ```none f_g(u) = max(f(u), f^*(u)), ``` where `f^*` is the dual Csiszar-function, also implies a symmetric f-Divergence. Example: When either of the following functions are symmetrized, we obtain the Jensen-Shannon Csiszar-function, i.e., ```none g(u) = -log(u) - (1 + u) log((1 + u) / 2) + u - 1 h(u) = log(4) + 2 u log(u / (1 + u)) ``` implies, ```none f_g(u) = f_h(u) = u log(u) - (1 + u) log((1 + u) / 2) = jensen_shannon(log(u)). ``` Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. Args: logu: `float`-like `Tensor` representing `log(u)` from above. csiszar_function: Python `callable` representing a Csiszar-function over log-domain. name: Python `str` name prefixed to Ops created by this function. Returns: symmetrized_g_of_u: `float`-like `Tensor` of the result of applying the symmetrization of `g` evaluated at `u = exp(logu)`. """ with tf.name_scope(name or 'symmetrized_csiszar_function'): logu = tf.convert_to_tensor(logu, name='logu') return 0.5 * (csiszar_function(logu) + dual_csiszar_function(logu, csiszar_function)) def monte_carlo_variational_loss(target_log_prob_fn, surrogate_posterior, sample_size=1, discrepancy_fn=kl_reverse, use_reparameterization=None, seed=None, name=None): """Monte-Carlo approximation of an f-Divergence variational loss. Variational losses measure the divergence between an unnormalized target distribution `p` (provided via `target_log_prob_fn`) and a surrogate distribution `q` (provided as `surrogate_posterior`). When the target distribution is an unnormalized posterior from conditioning a model on data, minimizing the loss with respect to the parameters of `surrogate_posterior` performs approximate posterior inference. This function defines divergences of the form `E_q[discrepancy_fn(log p(z) - log q(z))]`, sometimes known as f-divergences [1, 2]. In the special case `discrepancy_fn(logu) == -logu` (the default `tfp.vi.kl_reverse`), this is the reverse Kullback-Liebler divergence `KL[q||p]`, whose negation applied to an unnormalized `p` is the widely-used evidence lower bound (ELBO) [3]. Other cases of interest available under `tfp.vi` include the forward `KL[p||q]` (given by `tfp.vi.kl_forward(logu) == exp(logu) * logu`), total variation distance, Amari alpha-divergences, and [more](https://en.wikipedia.org/wiki/F-divergence). Args: target_log_prob_fn: Python callable that takes a set of `Tensor` arguments and returns a `Tensor` log-density. Given `q_sample = surrogate_posterior.sample(sample_size)`, this will be called as `target_log_prob_fn(*q_sample)` if `q_sample` is a list or a tuple, `target_log_prob_fn(**q_sample)` if `q_sample` is a dictionary, or `target_log_prob_fn(q_sample)` if `q_sample` is a `Tensor`. It should support batched evaluation, i.e., should return a result of shape `[sample_size]`. surrogate_posterior: A `tfp.distributions.Distribution` instance defining a variational posterior (could be a `tfd.JointDistribution`). Crucially, the distribution's `log_prob` and (if reparameterizeable) `sample` methods must directly invoke all ops that generate gradients to the underlying variables. One way to ensure this is to use `tfp.util.TransformedVariable` and/or `tfp.util.DeferredTensor` to represent any parameters defined as transformations of unconstrained variables, so that the transformations execute at runtime instead of at distribution creation. sample_size: Integer scalar number of Monte Carlo samples used to approximate the variational divergence. Larger values may stabilize the optimization, but at higher cost per step in time and memory. Default value: `1`. discrepancy_fn: Python `callable` representing a Csiszar `f` function in in log-space. That is, `discrepancy_fn(log(u)) = f(u)`, where `f` is convex in `u`. Default value: `tfp.vi.kl_reverse`. use_reparameterization: Python `bool`. When `None` (the default), automatically set to: `surrogate_posterior.reparameterization_type == tfd.FULLY_REPARAMETERIZED`. When `True` uses the standard Monte-Carlo average. When `False` uses the score-gradient trick. (See above for details.) When `False`, consider using `csiszar_vimco`. seed: Python `int` seed for `surrogate_posterior.sample`. name: Python `str` name prefixed to Ops created by this function. Returns: monte_carlo_variational_loss: `float`-like `Tensor` Monte Carlo approximation of the Csiszar f-Divergence. Raises: ValueError: if `surrogate_posterior` is not a reparameterized distribution and `use_reparameterization = True`. A distribution is said to be "reparameterized" when its samples are generated by transforming the samples of another distribution that does not depend on the first distribution's parameters. This property ensures the gradient with respect to parameters is valid. TypeError: if `target_log_prob_fn` is not a Python `callable`. #### Csiszar f-divergences A Csiszar function `f` is a convex function from `R^+` (the positive reals) to `R`. The Csiszar f-Divergence is given by: ```none D_f[p(X), q(X)] := E_{q(X)}[ f( p(X) / q(X) ) ] ~= m**-1 sum_j^m f( p(x_j) / q(x_j) ), where x_j ~iid q(X) ``` For example, `f = lambda u: -log(u)` recovers `KL[q||p]`, while `f = lambda u: u * log(u)` recovers the forward `KL[p||q]`. These and other functions are available in `tfp.vi`. #### Tricks: Reparameterization and Score-Gradient When q is "reparameterized", i.e., a diffeomorphic transformation of a parameterless distribution (e.g., `Normal(Y; m, s) <=> Y = sX + m, X ~ Normal(0,1)`), we can swap gradient and expectation, i.e., `grad[Avg{ s_i : i=1...n }] = Avg{ grad[s_i] : i=1...n }` where `S_n=Avg{s_i}` and `s_i = f(x_i), x_i ~iid q(X)`. However, if q is not reparameterized, TensorFlow's gradient will be incorrect since the chain-rule stops at samples of unreparameterized distributions. In this circumstance using the Score-Gradient trick results in an unbiased gradient, i.e., ```none grad[ E_q[f(X)] ] = grad[ int dx q(x) f(x) ] = int dx grad[ q(x) f(x) ] = int dx [ q'(x) f(x) + q(x) f'(x) ] = int dx q(x) [q'(x) / q(x) f(x) + f'(x) ] = int dx q(x) grad[ f(x) q(x) / stop_grad[q(x)] ] = E_q[ grad[ f(x) q(x) / stop_grad[q(x)] ] ] ``` Unless `q.reparameterization_type != tfd.FULLY_REPARAMETERIZED` it is usually preferable to set `use_reparameterization = True`. #### Example Application: The Csiszar f-Divergence is a useful framework for variational inference. I.e., observe that, ```none f(p(x)) = f( E_{q(Z | x)}[ p(x, Z) / q(Z | x) ] ) <= E_{q(Z | x)}[ f( p(x, Z) / q(Z | x) ) ] := D_f[p(x, Z), q(Z | x)] ``` The inequality follows from the fact that the "perspective" of `f`, i.e., `(s, t) |-> t f(s / t))`, is convex in `(s, t)` when `s/t in domain(f)` and `t` is a real. Since the above framework includes the popular Evidence Lower BOund (ELBO) as a special case, i.e., `f(u) = -log(u)`, we call this framework "Evidence Divergence Bound Optimization" (EDBO). #### References: [1]: https://en.wikipedia.org/wiki/F-divergence [2]: Ali, Syed Mumtaz, and Samuel D. Silvey. "A general class of coefficients of divergence of one distribution from another." Journal of the Royal Statistical Society: Series B (Methodological) 28.1 (1966): 131-142. [3]: Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer, 2006. """ with tf.name_scope(name or 'monte_carlo_variational_loss'): reparameterization_types = tf.nest.flatten( surrogate_posterior.reparameterization_type) if use_reparameterization is None: use_reparameterization = all( reparameterization_type == FULLY_REPARAMETERIZED for reparameterization_type in reparameterization_types) elif (use_reparameterization and any(reparameterization_type != FULLY_REPARAMETERIZED for reparameterization_type in reparameterization_types)): # TODO(jvdillon): Consider only raising an exception if the gradient is # requested. raise ValueError( 'Distribution `surrogate_posterior` must be reparameterized, i.e.,' 'a diffeomorphic transformation of a parameterless distribution. ' '(Otherwise this function has a biased gradient.)') if not callable(target_log_prob_fn): raise TypeError('`target_log_prob_fn` must be a Python `callable`' 'function.') def divergence_fn(q_samples, q_lp=None): target_log_prob = nest_util.call_fn(target_log_prob_fn, q_samples) if q_lp is None: q_lp = surrogate_posterior.log_prob(q_samples) return discrepancy_fn(target_log_prob - q_lp) if use_reparameterization: # Attempt to avoid bijector inverses by computing the surrogate log prob # during the forward sampling pass. q_samples, q_lp = surrogate_posterior.experimental_sample_and_log_prob( sample_size, seed=seed) divergence_fn = functools.partial(divergence_fn, q_lp=q_lp) else: # Score fn objective requires explicit gradients of `log_prob`. q_samples = surrogate_posterior.sample(sample_size, seed=seed) return monte_carlo.expectation( f=divergence_fn, samples=q_samples, # Log-prob is only used if use_reparameterization=False. log_prob=surrogate_posterior.log_prob, use_reparameterization=use_reparameterization) def csiszar_vimco(f, p_log_prob, q, num_draws, num_batch_draws=1, seed=None, name=None): """Use VIMCO to lower the variance of gradient[csiszar_function(Avg(logu))]. This function generalizes VIMCO [(Mnih and Rezende, 2016)][1] to Csiszar f-Divergences. Note: if `q.reparameterization_type = tfd.FULLY_REPARAMETERIZED`, consider using `monte_carlo_csiszar_f_divergence`. The VIMCO loss is: ```none vimco = f(Avg{logu[i] : i=0,...,m-1}) where, logu[i] = log( p(x, h[i]) / q(h[i] | x) ) h[i] iid~ q(H | x) ``` Interestingly, the VIMCO gradient is not the naive gradient of `vimco`. Rather, it is characterized by: ```none grad[vimco] - variance_reducing_term where, variance_reducing_term = Sum{ grad[log q(h[i] | x)] * (vimco - f(log Avg{h[j;i] : j=0,...,m-1})) : i=0, ..., m-1 } h[j;i] = { u[j] j!=i { GeometricAverage{ u[k] : k!=i} j==i ``` (We omitted `stop_gradient` for brevity. See implementation for more details.) The `Avg{h[j;i] : j}` term is a kind of "swap-out average" where the `i`-th element has been replaced by the leave-`i`-out Geometric-average. This implementation prefers numerical precision over efficiency, i.e., `O(num_draws * num_batch_draws * prod(batch_shape) * prod(event_shape))`. (The constant may be fairly large, perhaps around 12.) Args: f: Python `callable` representing a Csiszar-function in log-space. p_log_prob: Python `callable` representing the natural-log of the probability under distribution `p`. (In variational inference `p` is the joint distribution.) q: `tf.Distribution`-like instance; must implement: `sample(n, seed)`, and `log_prob(x)`. (In variational inference `q` is the approximate posterior distribution.) num_draws: Integer scalar number of draws used to approximate the f-Divergence expectation. num_batch_draws: Integer scalar number of draws used to approximate the f-Divergence expectation. seed: Python `int` seed for `q.sample`. name: Python `str` name prefixed to Ops created by this function. Returns: vimco: The Csiszar f-Divergence generalized VIMCO objective. Raises: ValueError: if `num_draws < 2`. #### References [1]: Andriy Mnih and Danilo Rezende. Variational Inference for Monte Carlo objectives. In _International Conference on Machine Learning_, 2016. https://arxiv.org/abs/1602.06725 """ with tf.name_scope(name or 'csiszar_vimco'): if num_draws < 2: raise ValueError('Must specify num_draws > 1.') stop = tf.stop_gradient # For readability. q_sample = q.sample(sample_shape=[num_draws, num_batch_draws], seed=seed) x = tf.nest.map_structure(stop, q_sample) logqx = q.log_prob(x) logu = nest_util.call_fn(p_log_prob, x) - logqx f_log_sooavg_u, f_log_avg_u = map(f, log_soomean_exp(logu, axis=0)) dotprod = tf.reduce_sum( logqx * stop(f_log_avg_u - f_log_sooavg_u), axis=0) # Sum over iid samples. # We now rewrite f_log_avg_u so that: # `grad[f_log_avg_u] := grad[f_log_avg_u + dotprod]`. # To achieve this, we use a trick that # `f(x) - stop(f(x)) == zeros_like(f(x))` # but its gradient is grad[f(x)]. # Note that IEEE754 specifies that `x - x == 0.` and `x + 0. == x`, hence # this trick loses no precision. For more discussion regarding the relevant # portions of the IEEE754 standard, see the StackOverflow question, # "Is there a floating point value of x, for which x-x == 0 is false?" # http://stackoverflow.com/q/2686644 # Following is same as adding zeros_like(dot_prod). f_log_avg_u = f_log_avg_u + dotprod - stop(dotprod) return tf.reduce_mean(f_log_avg_u, axis=0) # Avg over batches.
py
7df835959c63b88f998fd74ef3cc0d8795f98bd1
while input("y or n?") != "n": for i in range(1, 6): print(i)
py
7df835d7c50beaa2fc6630ab7d49b2c976a0d811
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2018-03-03 00:50 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('gdb', '0001_initial'), ] operations = [ migrations.RenameField( model_name='occurrence', old_name='specimen_number', new_name='catalog_number', ), ]
py
7df83649d0a1cb3262030d7520306fc43fc038d7
## @file # Trim files preprocessed by compiler # # Copyright (c) 2007 - 2014, Intel Corporation. All rights reserved.<BR> # This program and the accompanying materials # are licensed and made available under the terms and conditions of the BSD License # which accompanies this distribution. The full text of the license may be found at # http://opensource.org/licenses/bsd-license.php # # THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, # WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. # ## # Import Modules # import Common.LongFilePathOs as os import sys import re from optparse import OptionParser from optparse import make_option from Common.BuildToolError import * from Common.Misc import * from Common.BuildVersion import gBUILD_VERSION import Common.EdkLogger as EdkLogger from Common.LongFilePathSupport import OpenLongFilePath as open # Version and Copyright __version_number__ = ("0.10" + " " + gBUILD_VERSION) __version__ = "%prog Version " + __version_number__ __copyright__ = "Copyright (c) 2007-2010, Intel Corporation. All rights reserved." ## Regular expression for matching Line Control directive like "#line xxx" gLineControlDirective = re.compile('^\s*#(?:line)?\s+([0-9]+)\s+"*([^"]*)"') ## Regular expression for matching "typedef struct" gTypedefPattern = re.compile("^\s*typedef\s+struct(\s+\w+)?\s*[{]*$", re.MULTILINE) ## Regular expression for matching "#pragma pack" gPragmaPattern = re.compile("^\s*#pragma\s+pack", re.MULTILINE) # # The following number pattern match will only match if following criteria is met: # There is leading non-(alphanumeric or _) character, and no following alphanumeric or _ # as the pattern is greedily match, so it is ok for the gDecNumberPattern or gHexNumberPattern to grab the maximum match # ## Regular expression for matching HEX number gHexNumberPattern = re.compile("(?<=[^a-zA-Z0-9_])(0[xX])([0-9a-fA-F]+)(U(?=$|[^a-zA-Z0-9_]))?") ## Regular expression for matching decimal number with 'U' postfix gDecNumberPattern = re.compile("(?<=[^a-zA-Z0-9_])([0-9]+)U(?=$|[^a-zA-Z0-9_])") ## Regular expression for matching constant with 'ULL' 'LL' postfix gLongNumberPattern = re.compile("(?<=[^a-zA-Z0-9_])(0[xX][0-9a-fA-F]+|[0-9]+)U?LL(?=$|[^a-zA-Z0-9_])") ## Regular expression for matching "Include ()" in asl file gAslIncludePattern = re.compile("^(\s*)[iI]nclude\s*\(\"?([^\"\(\)]+)\"\)", re.MULTILINE) ## Regular expression for matching C style #include "XXX.asl" in asl file gAslCIncludePattern = re.compile(r'^(\s*)#include\s*[<"]\s*([-\\/\w.]+)\s*([>"])', re.MULTILINE) ## Patterns used to convert EDK conventions to EDK2 ECP conventions gImportCodePatterns = [ [ re.compile('^(\s*)\(\*\*PeiServices\)\.PciCfg\s*=\s*([^;\s]+);', re.MULTILINE), '''\\1{ \\1 STATIC EFI_PEI_PPI_DESCRIPTOR gEcpPeiPciCfgPpiList = { \\1 (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), \\1 &gEcpPeiPciCfgPpiGuid, \\1 \\2 \\1 }; \\1 (**PeiServices).InstallPpi (PeiServices, &gEcpPeiPciCfgPpiList); \\1}''' ], [ re.compile('^(\s*)\(\*PeiServices\)->PciCfg\s*=\s*([^;\s]+);', re.MULTILINE), '''\\1{ \\1 STATIC EFI_PEI_PPI_DESCRIPTOR gEcpPeiPciCfgPpiList = { \\1 (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), \\1 &gEcpPeiPciCfgPpiGuid, \\1 \\2 \\1 }; \\1 (**PeiServices).InstallPpi (PeiServices, &gEcpPeiPciCfgPpiList); \\1}''' ], [ re.compile("(\s*).+->Modify[\s\n]*\(", re.MULTILINE), '\\1PeiLibPciCfgModify (' ], [ re.compile("(\W*)gRT->ReportStatusCode[\s\n]*\(", re.MULTILINE), '\\1EfiLibReportStatusCode (' ], [ re.compile('#include\s+EFI_GUID_DEFINITION\s*\(FirmwareFileSystem\)', re.MULTILINE), '#include EFI_GUID_DEFINITION (FirmwareFileSystem)\n#include EFI_GUID_DEFINITION (FirmwareFileSystem2)' ], [ re.compile('gEfiFirmwareFileSystemGuid', re.MULTILINE), 'gEfiFirmwareFileSystem2Guid' ], [ re.compile('EFI_FVH_REVISION', re.MULTILINE), 'EFI_FVH_PI_REVISION' ], [ re.compile("(\s*)\S*CreateEvent\s*\([\s\n]*EFI_EVENT_SIGNAL_READY_TO_BOOT[^,]*,((?:[^;]+\n)+)(\s*\));", re.MULTILINE), '\\1EfiCreateEventReadyToBoot (\\2\\3;' ], [ re.compile("(\s*)\S*CreateEvent\s*\([\s\n]*EFI_EVENT_SIGNAL_LEGACY_BOOT[^,]*,((?:[^;]+\n)+)(\s*\));", re.MULTILINE), '\\1EfiCreateEventLegacyBoot (\\2\\3;' ], # [ # re.compile("(\W)(PEI_PCI_CFG_PPI)(\W)", re.MULTILINE), # '\\1ECP_\\2\\3' # ] ] ## file cache to avoid circular include in ASL file gIncludedAslFile = [] ## Trim preprocessed source code # # Remove extra content made by preprocessor. The preprocessor must enable the # line number generation option when preprocessing. # # @param Source File to be trimmed # @param Target File to store the trimmed content # @param Convert If True, convert standard HEX format to MASM format # def TrimPreprocessedFile(Source, Target, ConvertHex, TrimLong): CreateDirectory(os.path.dirname(Target)) try: f = open (Source, 'r') except: EdkLogger.error("Trim", FILE_OPEN_FAILURE, ExtraData=Source) # read whole file Lines = f.readlines() f.close() PreprocessedFile = "" InjectedFile = "" LineIndexOfOriginalFile = None NewLines = [] LineControlDirectiveFound = False for Index in range(len(Lines)): Line = Lines[Index] # # Find out the name of files injected by preprocessor from the lines # with Line Control directive # MatchList = gLineControlDirective.findall(Line) if MatchList != []: MatchList = MatchList[0] if len(MatchList) == 2: LineNumber = int(MatchList[0], 0) InjectedFile = MatchList[1] # The first injetcted file must be the preprocessed file itself if PreprocessedFile == "": PreprocessedFile = InjectedFile LineControlDirectiveFound = True continue elif PreprocessedFile == "" or InjectedFile != PreprocessedFile: continue if LineIndexOfOriginalFile == None: # # Any non-empty lines must be from original preprocessed file. # And this must be the first one. # LineIndexOfOriginalFile = Index EdkLogger.verbose("Found original file content starting from line %d" % (LineIndexOfOriginalFile + 1)) # convert HEX number format if indicated if ConvertHex: Line = gHexNumberPattern.sub(r"0\2h", Line) else: Line = gHexNumberPattern.sub(r"\1\2", Line) if TrimLong: Line = gLongNumberPattern.sub(r"\1", Line) # convert Decimal number format Line = gDecNumberPattern.sub(r"\1", Line) if LineNumber != None: EdkLogger.verbose("Got line directive: line=%d" % LineNumber) # in case preprocessor removed some lines, like blank or comment lines if LineNumber <= len(NewLines): # possible? NewLines[LineNumber - 1] = Line else: if LineNumber > (len(NewLines) + 1): for LineIndex in range(len(NewLines), LineNumber-1): NewLines.append(os.linesep) NewLines.append(Line) LineNumber = None EdkLogger.verbose("Now we have lines: %d" % len(NewLines)) else: NewLines.append(Line) # in case there's no line directive or linemarker found if (not LineControlDirectiveFound) and NewLines == []: NewLines = Lines # save to file try: f = open (Target, 'wb') except: EdkLogger.error("Trim", FILE_OPEN_FAILURE, ExtraData=Target) f.writelines(NewLines) f.close() ## Trim preprocessed VFR file # # Remove extra content made by preprocessor. The preprocessor doesn't need to # enable line number generation option when preprocessing. # # @param Source File to be trimmed # @param Target File to store the trimmed content # def TrimPreprocessedVfr(Source, Target): CreateDirectory(os.path.dirname(Target)) try: f = open (Source,'r') except: EdkLogger.error("Trim", FILE_OPEN_FAILURE, ExtraData=Source) # read whole file Lines = f.readlines() f.close() FoundTypedef = False Brace = 0 TypedefStart = 0 TypedefEnd = 0 for Index in range(len(Lines)): Line = Lines[Index] # don't trim the lines from "formset" definition to the end of file if Line.strip() == 'formset': break if FoundTypedef == False and (Line.find('#line') == 0 or Line.find('# ') == 0): # empty the line number directive if it's not aomong "typedef struct" Lines[Index] = "\n" continue if FoundTypedef == False and gTypedefPattern.search(Line) == None: # keep "#pragram pack" directive if gPragmaPattern.search(Line) == None: Lines[Index] = "\n" continue elif FoundTypedef == False: # found "typedef struct", keept its position and set a flag FoundTypedef = True TypedefStart = Index # match { and } to find the end of typedef definition if Line.find("{") >= 0: Brace += 1 elif Line.find("}") >= 0: Brace -= 1 # "typedef struct" must end with a ";" if Brace == 0 and Line.find(";") >= 0: FoundTypedef = False TypedefEnd = Index # keep all "typedef struct" except to GUID, EFI_PLABEL and PAL_CALL_RETURN if Line.strip("} ;\r\n") in ["GUID", "EFI_PLABEL", "PAL_CALL_RETURN"]: for i in range(TypedefStart, TypedefEnd+1): Lines[i] = "\n" # save all lines trimmed try: f = open (Target,'w') except: EdkLogger.error("Trim", FILE_OPEN_FAILURE, ExtraData=Target) f.writelines(Lines) f.close() ## Read the content ASL file, including ASL included, recursively # # @param Source File to be read # @param Indent Spaces before the Include() statement # @param IncludePathList The list of external include file # @param LocalSearchPath If LocalSearchPath is specified, this path will be searched # first for the included file; otherwise, only the path specified # in the IncludePathList will be searched. # def DoInclude(Source, Indent='', IncludePathList=[], LocalSearchPath=None): NewFileContent = [] try: # # Search LocalSearchPath first if it is specified. # if LocalSearchPath: SearchPathList = [LocalSearchPath] + IncludePathList else: SearchPathList = IncludePathList for IncludePath in SearchPathList: IncludeFile = os.path.join(IncludePath, Source) if os.path.isfile(IncludeFile): F = open(IncludeFile, "r") break else: EdkLogger.error("Trim", "Failed to find include file %s" % Source) except: EdkLogger.error("Trim", FILE_OPEN_FAILURE, ExtraData=Source) # avoid A "include" B and B "include" A IncludeFile = os.path.abspath(os.path.normpath(IncludeFile)) if IncludeFile in gIncludedAslFile: EdkLogger.warn("Trim", "Circular include", ExtraData= "%s -> %s" % (" -> ".join(gIncludedAslFile), IncludeFile)) return [] gIncludedAslFile.append(IncludeFile) for Line in F: LocalSearchPath = None Result = gAslIncludePattern.findall(Line) if len(Result) == 0: Result = gAslCIncludePattern.findall(Line) if len(Result) == 0 or os.path.splitext(Result[0][1])[1].lower() not in [".asl", ".asi"]: NewFileContent.append("%s%s" % (Indent, Line)) continue # # We should first search the local directory if current file are using pattern #include "XXX" # if Result[0][2] == '"': LocalSearchPath = os.path.dirname(IncludeFile) CurrentIndent = Indent + Result[0][0] IncludedFile = Result[0][1] NewFileContent.extend(DoInclude(IncludedFile, CurrentIndent, IncludePathList, LocalSearchPath)) NewFileContent.append("\n") gIncludedAslFile.pop() F.close() return NewFileContent ## Trim ASL file # # Replace ASL include statement with the content the included file # # @param Source File to be trimmed # @param Target File to store the trimmed content # @param IncludePathFile The file to log the external include path # def TrimAslFile(Source, Target, IncludePathFile): CreateDirectory(os.path.dirname(Target)) SourceDir = os.path.dirname(Source) if SourceDir == '': SourceDir = '.' # # Add source directory as the first search directory # IncludePathList = [SourceDir] # # If additional include path file is specified, append them all # to the search directory list. # if IncludePathFile: try: LineNum = 0 for Line in open(IncludePathFile,'r'): LineNum += 1 if Line.startswith("/I") or Line.startswith ("-I"): IncludePathList.append(Line[2:].strip()) else: EdkLogger.warn("Trim", "Invalid include line in include list file.", IncludePathFile, LineNum) except: EdkLogger.error("Trim", FILE_OPEN_FAILURE, ExtraData=IncludePathFile) Lines = DoInclude(Source, '', IncludePathList) # # Undef MIN and MAX to avoid collision in ASL source code # Lines.insert(0, "#undef MIN\n#undef MAX\n") # save all lines trimmed try: f = open (Target,'w') except: EdkLogger.error("Trim", FILE_OPEN_FAILURE, ExtraData=Target) f.writelines(Lines) f.close() ## Trim EDK source code file(s) # # # @param Source File or directory to be trimmed # @param Target File or directory to store the trimmed content # def TrimEdkSources(Source, Target): if os.path.isdir(Source): for CurrentDir, Dirs, Files in os.walk(Source): if '.svn' in Dirs: Dirs.remove('.svn') elif "CVS" in Dirs: Dirs.remove("CVS") for FileName in Files: Dummy, Ext = os.path.splitext(FileName) if Ext.upper() not in ['.C', '.H']: continue if Target == None or Target == '': TrimEdkSourceCode( os.path.join(CurrentDir, FileName), os.path.join(CurrentDir, FileName) ) else: TrimEdkSourceCode( os.path.join(CurrentDir, FileName), os.path.join(Target, CurrentDir[len(Source)+1:], FileName) ) else: TrimEdkSourceCode(Source, Target) ## Trim one EDK source code file # # Do following replacement: # # (**PeiServices\).PciCfg = <*>; # => { # STATIC EFI_PEI_PPI_DESCRIPTOR gEcpPeiPciCfgPpiList = { # (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), # &gEcpPeiPciCfgPpiGuid, # <*> # }; # (**PeiServices).InstallPpi (PeiServices, &gEcpPeiPciCfgPpiList); # # <*>Modify(<*>) # => PeiLibPciCfgModify (<*>) # # gRT->ReportStatusCode (<*>) # => EfiLibReportStatusCode (<*>) # # #include <LoadFile\.h> # => #include <FvLoadFile.h> # # CreateEvent (EFI_EVENT_SIGNAL_READY_TO_BOOT, <*>) # => EfiCreateEventReadyToBoot (<*>) # # CreateEvent (EFI_EVENT_SIGNAL_LEGACY_BOOT, <*>) # => EfiCreateEventLegacyBoot (<*>) # # @param Source File to be trimmed # @param Target File to store the trimmed content # def TrimEdkSourceCode(Source, Target): EdkLogger.verbose("\t%s -> %s" % (Source, Target)) CreateDirectory(os.path.dirname(Target)) try: f = open (Source,'rb') except: EdkLogger.error("Trim", FILE_OPEN_FAILURE, ExtraData=Source) # read whole file Lines = f.read() f.close() NewLines = None for Re,Repl in gImportCodePatterns: if NewLines == None: NewLines = Re.sub(Repl, Lines) else: NewLines = Re.sub(Repl, NewLines) # save all lines if trimmed if Source == Target and NewLines == Lines: return try: f = open (Target,'wb') except: EdkLogger.error("Trim", FILE_OPEN_FAILURE, ExtraData=Target) f.write(NewLines) f.close() ## Parse command line options # # Using standard Python module optparse to parse command line option of this tool. # # @retval Options A optparse.Values object containing the parsed options # @retval InputFile Path of file to be trimmed # def Options(): OptionList = [ make_option("-s", "--source-code", dest="FileType", const="SourceCode", action="store_const", help="The input file is preprocessed source code, including C or assembly code"), make_option("-r", "--vfr-file", dest="FileType", const="Vfr", action="store_const", help="The input file is preprocessed VFR file"), make_option("-a", "--asl-file", dest="FileType", const="Asl", action="store_const", help="The input file is ASL file"), make_option("-8", "--Edk-source-code", dest="FileType", const="EdkSourceCode", action="store_const", help="The input file is source code for Edk to be trimmed for ECP"), make_option("-c", "--convert-hex", dest="ConvertHex", action="store_true", help="Convert standard hex format (0xabcd) to MASM format (abcdh)"), make_option("-l", "--trim-long", dest="TrimLong", action="store_true", help="Remove postfix of long number"), make_option("-i", "--include-path-file", dest="IncludePathFile", help="The input file is include path list to search for ASL include file"), make_option("-o", "--output", dest="OutputFile", help="File to store the trimmed content"), make_option("-v", "--verbose", dest="LogLevel", action="store_const", const=EdkLogger.VERBOSE, help="Run verbosely"), make_option("-d", "--debug", dest="LogLevel", type="int", help="Run with debug information"), make_option("-q", "--quiet", dest="LogLevel", action="store_const", const=EdkLogger.QUIET, help="Run quietly"), make_option("-?", action="help", help="show this help message and exit"), ] # use clearer usage to override default usage message UsageString = "%prog [-s|-r|-a] [-c] [-v|-d <debug_level>|-q] [-i <include_path_file>] [-o <output_file>] <input_file>" Parser = OptionParser(description=__copyright__, version=__version__, option_list=OptionList, usage=UsageString) Parser.set_defaults(FileType="Vfr") Parser.set_defaults(ConvertHex=False) Parser.set_defaults(LogLevel=EdkLogger.INFO) Options, Args = Parser.parse_args() # error check if len(Args) == 0: EdkLogger.error("Trim", OPTION_MISSING, ExtraData=Parser.get_usage()) if len(Args) > 1: EdkLogger.error("Trim", OPTION_NOT_SUPPORTED, ExtraData=Parser.get_usage()) InputFile = Args[0] return Options, InputFile ## Entrance method # # This method mainly dispatch specific methods per the command line options. # If no error found, return zero value so the caller of this tool can know # if it's executed successfully or not. # # @retval 0 Tool was successful # @retval 1 Tool failed # def Main(): try: EdkLogger.Initialize() CommandOptions, InputFile = Options() if CommandOptions.LogLevel < EdkLogger.DEBUG_9: EdkLogger.SetLevel(CommandOptions.LogLevel + 1) else: EdkLogger.SetLevel(CommandOptions.LogLevel) except FatalError, X: return 1 try: if CommandOptions.FileType == "Vfr": if CommandOptions.OutputFile == None: CommandOptions.OutputFile = os.path.splitext(InputFile)[0] + '.iii' TrimPreprocessedVfr(InputFile, CommandOptions.OutputFile) elif CommandOptions.FileType == "Asl": if CommandOptions.OutputFile == None: CommandOptions.OutputFile = os.path.splitext(InputFile)[0] + '.iii' TrimAslFile(InputFile, CommandOptions.OutputFile, CommandOptions.IncludePathFile) elif CommandOptions.FileType == "EdkSourceCode": TrimEdkSources(InputFile, CommandOptions.OutputFile) else : if CommandOptions.OutputFile == None: CommandOptions.OutputFile = os.path.splitext(InputFile)[0] + '.iii' TrimPreprocessedFile(InputFile, CommandOptions.OutputFile, CommandOptions.ConvertHex, CommandOptions.TrimLong) except FatalError, X: import platform import traceback if CommandOptions != None and CommandOptions.LogLevel <= EdkLogger.DEBUG_9: EdkLogger.quiet("(Python %s on %s) " % (platform.python_version(), sys.platform) + traceback.format_exc()) return 1 except: import traceback import platform EdkLogger.error( "\nTrim", CODE_ERROR, "Unknown fatal error when trimming [%s]" % InputFile, ExtraData="\n(Please send email to [email protected] for help, attaching following call stack trace!)\n", RaiseError=False ) EdkLogger.quiet("(Python %s on %s) " % (platform.python_version(), sys.platform) + traceback.format_exc()) return 1 return 0 if __name__ == '__main__': r = Main() ## 0-127 is a safe return range, and 1 is a standard default error if r < 0 or r > 127: r = 1 sys.exit(r)
py
7df83671c104e22bdc7abda9e3e87af2d3059fc1
# -*- coding: utf-8 -*- """ Tests for the CreateEvaluateWorkChain. """ # pylint: disable=unused-argument,redefined-outer-name from aiida import orm from aiida.plugins import WorkflowFactory from aiida.engine.launch import run_get_node from sample_processes import echo_process # pylint: disable=import-error,useless-suppression, unused-import def test_create_evaluate_basic(configure_with_daemon, echo_process): """ Test the CreateEvaluateWorkChain by chaining two basic processes. """ CreateEvaluateWorkChain = WorkflowFactory('optimize.wrappers.create_evaluate') # pylint: disable=invalid-name res, node = run_get_node( CreateEvaluateWorkChain, create_process=echo_process, evaluate_process=echo_process, create={'x': orm.Float(1)}, output_input_mapping=orm.Dict(dict={'result': 'x'}) ) assert node.is_finished_ok assert 'create' in res assert 'evaluate' in res assert 'result' in res['create'] assert 'result' in res['evaluate'] assert res['create']['result'].value == 1 assert res['evaluate']['result'].value == 1
py
7df836f314d9b30e75826e425afaefcad5409da2
import websockets import asyncio import requests import json from threading import Thread from lib.interface import OrderBook, Tier, InstrumentDetails from lib.callback_utils import assert_param_counts import logging import sys import time from collections import defaultdict from typing import DefaultDict from operator import itemgetter URL_WS = 'wss://ftx.com/ws/' URL_REST = 'https://ftx.com/api' class FtxManager: def __init__(self, symbol: {str}, name='FTX'): # support string or set of string if isinstance(symbol, str): self._symbol = {symbol} elif isinstance(symbol, set): self._symbol = symbol else: raise ValueError('symbol must either be str or {str}') # web socket connection self._conn = None self._ws = None # create an empty dictionary to store static data self._instrument_static = {} # create an empty dictionary to store latest order books self._order_books = {} # create a new async event loop to run async tasks self._loop = asyncio.new_event_loop() # create a dedicated thread to run the event loop self._loop_thread = Thread(target=self._run_async_tasks, daemon=True, name=name) # order book processor, one per symbol self._book_processors = {} for sym in self._symbol: self._book_processors[sym] = OrderBookProcessor(sym) # order book callback self._book_callback = None # start connection to FTX def connect(self): logging.info('Initializing connection') # get instrument static data self._get_static() self._loop.run_until_complete(self._reconnect_ws()) logging.info("starting event loop thread") self._loop_thread.start() # make a REST call to /markets and store the price and size increments for all given symbols in the response def _get_static(self): logging.info('REST - Requesting static data') resp = requests.get(URL_REST + '/markets') message = resp.json() for data in message['result']: contract_name = data.get('name') instrument_static = InstrumentDetails(contract_name=contract_name, tick_size=float(data.get('priceIncrement')), quantity_size=float(data.get('sizeIncrement'))) self._instrument_static[contract_name] = instrument_static # reconnect websocket session to FTX async def _reconnect_ws(self): # ws connect await self._connect_ws() # subscribe to channels await self._subscribe_all() async def _connect_ws(self): logging.info('WebSocket - Connecting') self._conn = websockets.connect(URL_WS) try: # connecting self._ws = await self._conn.__aenter__() # connected logging.info('WebSocket - connection established') except Exception as e: logging.error(e) async def _send_ws(self, request: str): logging.info(request) await self._ws.send(request) # subscribe to orderbook channel async def _subscribe_all(self): if not self._ws: logging.error("websocket disconnected, unable to subscribe") return logging.info('WS - Subscribing to order book') for sym in self._symbol: request_msg = \ { "op": "subscribe", "channel": "orderbook", "market": sym } await self._send_ws(json.dumps(request_msg)) def _run_async_tasks(self): """ Run the following tasks concurrently in the current thread """ self._loop.create_task(self._listen_forever()) self._loop.create_task(self._keep_alive_websocket()) self._loop.run_forever() async def _keep_alive_websocket(self): while True: await asyncio.sleep(15) logging.info("Sending ping to WebSocket server") await self._ws.send('{"op": "ping"}') async def _listen_forever(self): """ This is the main callback that process incoming WebSocket messages from server """ logging.info("start listening on incoming messages") while True: if not self._ws: logging.error("websocket disconnected, reconnecting") await self._reconnect_ws() # wait for incoming message try: # wait for incoming message, with a maximum wait time response = await asyncio.wait_for(self._ws.recv(), timeout=10) # process the message self._process_websocket_message(response) except (asyncio.TimeoutError, websockets.exceptions.ConnectionClosed) as e: logging.error('connection issue, resetting ws: %s' % e) self._ws = None except Exception as e: logging.error('encountered issue, resetting ws: %s' % e) self._ws = None # parse and process incoming websocket message def _process_websocket_message(self, message: str): data = json.loads(message) if 'type' in data and data['type'] == 'subscribed': logging.info('Received subscription response: ' + message) elif 'channel' in data and data['channel'] == 'orderbook': market = data['market'] processor = self._book_processors.get(market) processor.handle(data) order_book = processor.get_orderbook() self._order_books[market] = order_book if self._book_callback: self._book_callback(market, order_book) else: logging.info(message) """ ----------------------------------- """ """ Interface """ """ ----------------------------------- """ # To get latest order book def get_ticker(self, contract_name: str) -> OrderBook: return self._order_books.get(contract_name) # To get tick size def get_tick_size(self, contract_name: str): if contract_name in self._instrument_static: instrument_static = self._instrument_static.get(contract_name) return instrument_static.tick_size else: return None # To get quantity size def get_quantity_size(self, contract_name: str): if contract_name in self._instrument_static: instrument_static = self._instrument_static.get(contract_name) return instrument_static.quantity_size else: return 0 def register_depth_callback(self, callback): """ a depth callback function takes two argument: (contract_name:str, book: OrderBook) """ assert_param_counts(callback, 2) self._book_callback = callback # A helper class to process order book message class OrderBookProcessor: def __init__(self, symbol: str, depth=5): self._symbol = symbol self._depth = depth # a map that contain bids and asks sides self._orderbooks: DefaultDict[str, DefaultDict[float, float]] = defaultdict(lambda: defaultdict(float)) self._timestamp = 0 def handle(self, message: {}): market = message['market'] if market != self._symbol: raise ValueError("Received message for market {} but this processor is for {}".format(market, self._symbol)) data = message['data'] if data['action'] == 'partial': self._reset() for side in {'bids', 'asks'}: book = self._orderbooks[side] for price, size in data[side]: if size: book[price] = size else: del book[price] self._timestamp = data['time'] def get_orderbook(self) -> OrderBook: if self._timestamp == 0: return 0 sorted_orderbooks = {side: sorted( [(price, quantity) for price, quantity in list(self._orderbooks[side].items()) if quantity], key=itemgetter(0), reverse=(True if side == 'bids' else False) ) for side in {'bids', 'asks'}} return OrderBook(timestamp=self._timestamp, bids=[Tier(price=p, size=s) for (p, s) in sorted_orderbooks['bids'][:self._depth]], asks=[Tier(price=p, size=s) for (p, s) in sorted_orderbooks['asks'][:self._depth]]) def _reset(self) -> None: if 'bids' in self._orderbooks: del self._orderbooks['bids'] if 'asks' in self._orderbooks: del self._orderbooks['asks'] self._timestamp = 0 if __name__ == '__main__': # logging stuff root = logging.getLogger() root.setLevel(logging.INFO) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.INFO) logFormatter = logging.Formatter("%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s") handler.setFormatter(logFormatter) root.addHandler(handler) # connect to FTX logging.info("main program starts") contract = 'BTC-PERP' ftx = FtxManager(contract) ftx.connect() # print tick and quantity size logging.info('Contract[{}]: tick size = {}, quantity size = {}'.format( contract, ftx.get_tick_size(contract), ftx.get_quantity_size(contract))) # print order book once a second while True: time.sleep(1) logging.info('Order book: %s' % ftx.get_ticker(contract))
py
7df8371b6cee6a700825207323d275462602f09f
# pylint: disable=line-too-long, invalid-name, missing-docstring import setuptools with open("README.md", "r") as fh: long_description = fh.read() with open("requirements.txt", "r") as fh: requirements = fh.readlines() setuptools.setup( name="resnet_models", version="1.1.3", author="Eugene Ilyushin", author_email="[email protected]", description="The package contains ResNet architectures which were developed on TensorFlow", long_description="The package contains ResNet architectures which were developed on TensorFlow", long_description_content_type="text/markdown", url="https://github.com/Ilyushin/resnet", packages=setuptools.find_packages(), package_dir={ 'resnet_models': 'resnet_models', }, entry_points={ 'console_scripts': [ 'resnet_models=resnet_models.main:main', ], }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=requirements )
py
7df83721a1f2c34c103b6d92460985184075ba66
# # mac_payload: fhdr(7..23) fport(1) frm_payload(0..N) # from MalformedPacketException import MalformedPacketException from FHDR import FHDR from MHDR import MHDR from JoinRequestPayload import JoinRequestPayload from JoinAcceptPayload import JoinAcceptPayload from DataPayload import DataPayload class MacPayload: def read(self, mtype, mac_payload): if len(mac_payload) < 1: raise MalformedPacketException("Invalid mac payload") self.fhdr = FHDR() self.fhdr.read(mac_payload) self.fport = mac_payload[self.fhdr.length()] self.frm_payload = None if mtype == MHDR.JOIN_REQUEST: self.frm_payload = JoinRequestPayload() self.frm_payload.read(mac_payload[self.fhdr.length() + 1:]) if mtype == MHDR.JOIN_ACCEPT: self.frm_payload = JoinAcceptPayload() self.frm_payload.read(mac_payload[self.fhdr.length() + 1:]) if mtype == MHDR.UNCONF_DATA_UP or mtype == MHDR.UNCONF_DATA_DOWN or\ mtype == MHDR.CONF_DATA_UP or mtype == MHDR.CONF_DATA_DOWN: self.frm_payload = DataPayload() self.frm_payload.read(self, mac_payload[self.fhdr.length() + 1:]) def create(self, mtype, key, args): self.fhdr = FHDR() self.fhdr.create(mtype, args) #changed by C. Pham self.fport = 0x01 self.frm_payload = None if mtype == MHDR.JOIN_REQUEST: self.frm_payload = JoinRequestPayload() self.frm_payload.create(args) if mtype == MHDR.JOIN_ACCEPT: self.frm_payload = JoinAcceptPayload() self.frm_payload.create(args) if mtype == MHDR.UNCONF_DATA_UP or mtype == MHDR.UNCONF_DATA_DOWN or\ mtype == MHDR.CONF_DATA_UP or mtype == MHDR.CONF_DATA_DOWN: self.frm_payload = DataPayload() self.frm_payload.create(self, key, args) def length(self): return len(self.to_raw()) def to_raw(self): mac_payload = [] if self.fhdr.get_devaddr() != [0x00, 0x00, 0x00, 0x00]: mac_payload += self.fhdr.to_raw() if self.frm_payload != None: if self.fhdr.get_devaddr() != [0x00, 0x00, 0x00, 0x00]: mac_payload += [self.fport] mac_payload += self.frm_payload.to_raw() return mac_payload def get_fhdr(self): return self.fhdr def set_fhdr(self, fhdr): self.fhdr = fhdr def get_fport(self): return self.fport def set_fport(self, fport): self.fport = fport def get_frm_payload(self): return self.frm_payload def set_frm_payload(self, frm_payload): self.frm_payload = frm_payload
py
7df8381116e0fcd25f1552f2e90822a34086d16d
"""Unit test package for kune."""
py
7df838473dce9781a10e87399aaa556113bff5fe
# Copyright (c) SenseTime. All Rights Reserved. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import logging import os import time import math import json import random import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader from tensorboardX import SummaryWriter from torch.nn.utils import clip_grad_norm_ import torch.nn.functional as F from torch.utils.data.distributed import DistributedSampler from pysot.utils.lr_scheduler import build_lr_scheduler from pysot.utils.log_helper import init_log, print_speed, add_file_handler from pysot.utils.distributed import dist_init, DistModule, reduce_gradients,\ average_reduce, get_rank, get_world_size from pysot.utils.model_load import load_pretrain, restore_from from pysot.utils.average_meter import AverageMeter from pysot.utils.misc import describe, commit from pysot.models.model_builder import ModelBuilder,Modified_ModelBuilder from pysot.datasets.dataset import modified_TrkDataset from pysot.core.config import cfg #initialize logger... logger = logging.getLogger('global') #get input... parser = argparse.ArgumentParser(description='siamrpn tracking') parser.add_argument('--cfg', type=str, default='config.yaml', help='configuration of tracking') parser.add_argument('--seed', type=int, default=123456, help='random seed') parser.add_argument('--local_rank', type=int, default=0, help='compulsory for pytorch launcer') args = parser.parse_args() #initialize random seed... def seed_torch(seed=0): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True #initialize dataloader... def build_data_loader(): logger.info("build train dataset") # train_dataset train_dataset = modified_TrkDataset() logger.info("build dataset done") train_sampler = None train_loader = DataLoader(train_dataset, batch_size=cfg.TRAIN.BATCH_SIZE, num_workers=cfg.TRAIN.NUM_WORKERS, pin_memory=True, sampler=train_sampler) return train_loader #initialize optimizer.. def build_opt_lr(model, current_epoch=0): for param in model.backbone.parameters(): param.requires_grad = False for m in model.backbone.modules(): if isinstance(m, nn.BatchNorm2d): m.eval() if current_epoch >= cfg.BACKBONE.TRAIN_EPOCH: for layer in cfg.BACKBONE.TRAIN_LAYERS: for param in getattr(model.backbone, layer).parameters(): param.requires_grad = True for m in getattr(model.backbone, layer).modules(): if isinstance(m, nn.BatchNorm2d): m.train() trainable_params = [] trainable_params+=[{ 'params':model.forgetting_factor_layer3, 'lr':cfg.TRAIN.BASE_LR }] trainable_params += [{ 'params': model.forgetting_factor_layer4, 'lr': cfg.TRAIN.BASE_LR }] trainable_params += [{ 'params': model.forgetting_factor_layer5, 'lr': cfg.TRAIN.BASE_LR }] trainable_params += [{'params': filter(lambda x: x.requires_grad, model.backbone.parameters()), 'lr': cfg.BACKBONE.LAYERS_LR * cfg.TRAIN.BASE_LR}] if cfg.ADJUST.ADJUST: trainable_params += [{'params': model.neck.parameters(), 'lr': cfg.TRAIN.BASE_LR}] trainable_params += [{'params': model.rpn_head.parameters(), 'lr': cfg.TRAIN.BASE_LR}] if cfg.MASK.MASK: trainable_params += [{'params': model.mask_head.parameters(), 'lr': cfg.TRAIN.BASE_LR}] if cfg.REFINE.REFINE: trainable_params += [{'params': model.refine_head.parameters(), 'lr': cfg.TRAIN.LR.BASE_LR}] optimizer = torch.optim.SGD(trainable_params, momentum=cfg.TRAIN.MOMENTUM, weight_decay=cfg.TRAIN.WEIGHT_DECAY) lr_scheduler = build_lr_scheduler(optimizer, epochs=cfg.TRAIN.EPOCH) lr_scheduler.step(cfg.TRAIN.START_EPOCH) return optimizer, lr_scheduler def train(train_loader, model, optimizer, lr_scheduler, tb_writer): cur_lr = lr_scheduler.get_cur_lr() rank = get_rank() average_meter = AverageMeter() def is_valid_number(x): return not(math.isnan(x) or math.isinf(x) or x > 1e4) world_size = get_world_size() num_per_epoch = len(train_loader.dataset) // \ cfg.TRAIN.EPOCH // (cfg.TRAIN.BATCH_SIZE * world_size) start_epoch = cfg.TRAIN.START_EPOCH epoch = start_epoch if not os.path.exists(cfg.TRAIN.SNAPSHOT_DIR) and \ get_rank() == 0: os.makedirs(cfg.TRAIN.SNAPSHOT_DIR) logger.info("model\n{}".format(describe(model.module))) # the describtion of the module end = time.time() for idx, data in enumerate(train_loader): if epoch != idx // num_per_epoch + start_epoch: epoch = idx // num_per_epoch + start_epoch if get_rank() == 0: torch.save( {'epoch': epoch, 'state_dict': model.module.state_dict(), 'optimizer': optimizer.state_dict()}, cfg.TRAIN.SNAPSHOT_DIR+'/checkpoint_e%d.pth' % (epoch)) if epoch == cfg.TRAIN.EPOCH: return if cfg.BACKBONE.TRAIN_EPOCH == epoch: logger.info('start training backbone.') optimizer, lr_scheduler = build_opt_lr(model.module, epoch) logger.info("model\n{}".format(describe(model.module))) lr_scheduler.step(epoch) cur_lr = lr_scheduler.get_cur_lr() logger.info('epoch: {}'.format(epoch+1)) tb_idx = idx if idx % num_per_epoch == 0 and idx != 0: for idx, pg in enumerate(optimizer.param_groups): logger.info('epoch {} lr {}'.format(epoch+1, pg['lr'])) if rank == 0: tb_writer.add_scalar('lr/group{}'.format(idx+1), pg['lr'], tb_idx) data_time = average_reduce(time.time() - end) if rank == 0: tb_writer.add_scalar('time/data', data_time, tb_idx) outputs = model(data) loss = outputs['total_loss'] if is_valid_number(loss.data.item()): optimizer.zero_grad() loss.backward() reduce_gradients(model) if rank == 0 and cfg.TRAIN.LOG_GRADS: log_grads(model.module, tb_writer, tb_idx) # clip gradient clip_grad_norm_(model.parameters(), cfg.TRAIN.GRAD_CLIP) optimizer.step() batch_time = time.time() - end batch_info = {} batch_info['batch_time'] = average_reduce(batch_time) batch_info['data_time'] = average_reduce(data_time) for k, v in sorted(outputs.items()): batch_info[k] = average_reduce(v.data.item()) average_meter.update(**batch_info) if rank == 0: for k, v in batch_info.items(): tb_writer.add_scalar(k, v, tb_idx) if (idx+1) % cfg.TRAIN.PRINT_FREQ == 0: for name, para in model.named_parameters(): if name == 'module.forgetting_factor_layer3': print("forgetting_factor_layer3: ", F.softmax(para,0)) if name == 'module.forgetting_factor_layer4': print("forgetting_factor_layer4: ", F.softmax(para,0)) if name == 'module.forgetting_factor_layer5': print("forgetting_factor_layer5: ", F.softmax(para,0)) info = "Epoch: [{}][{}/{}] lr: {:.6f}\n".format( epoch+1, (idx+1) % num_per_epoch, num_per_epoch, cur_lr) for cc, (k, v) in enumerate(batch_info.items()): if cc % 2 == 0: info += ("\t{:s}\t").format( getattr(average_meter, k)) else: info += ("{:s}\n").format( getattr(average_meter, k)) logger.info(info) print_speed(idx+1+start_epoch*num_per_epoch, average_meter.batch_time.avg, cfg.TRAIN.EPOCH * num_per_epoch) end = time.time() def main(): rank, world_size = dist_init() logger.info("init done") # load cfg cfg.merge_from_file(args.cfg) if rank == 0:#in distributed training,rank=0 stands for master node.. if not os.path.exists(cfg.TRAIN.LOG_DIR): #if not exist dir ./logs then create it! os.makedirs(cfg.TRAIN.LOG_DIR) init_log('global', logging.INFO) if cfg.TRAIN.LOG_DIR: #this code should add log file ... add_file_handler('global', os.path.join(cfg.TRAIN.LOG_DIR, 'logs.txt'), logging.INFO) logger.info("Version Information: \n{}\n".format(commit())) logger.info("config \n{}".format(json.dumps(cfg, indent=4))) # create model model = Modified_ModelBuilder().cuda().train() # for name, param in model.named_parameters(): # print(name) # load pretrained backbone weights if cfg.BACKBONE.PRETRAINED: cur_path = os.path.dirname(os.path.realpath(__file__)) backbone_path = os.path.join(cur_path, '../', cfg.BACKBONE.PRETRAINED) load_pretrain(model.backbone, backbone_path) # create tensorboard writer if rank == 0 and cfg.TRAIN.LOG_DIR: tb_writer = SummaryWriter(cfg.TRAIN.LOG_DIR) else: tb_writer = None # build dataset loader train_loader = build_data_loader() # build optimizer and lr_scheduler optimizer, lr_scheduler = build_opt_lr(model, cfg.TRAIN.START_EPOCH) # resume training if cfg.TRAIN.RESUME: logger.info("resume from {}".format(cfg.TRAIN.RESUME)) assert os.path.isfile(cfg.TRAIN.RESUME), \ '{} is not a valid file.'.format(cfg.TRAIN.RESUME) model, optimizer, cfg.TRAIN.START_EPOCH = \ restore_from(model, optimizer, cfg.TRAIN.RESUME) # load pretrain elif cfg.TRAIN.PRETRAINED: load_pretrain(model, cfg.TRAIN.PRETRAINED) dist_model = DistModule(model) logger.info(lr_scheduler) logger.info("model prepare done") # start training train(train_loader, dist_model, optimizer, lr_scheduler, tb_writer) if __name__ == '__main__': seed_torch(args.seed) main() """ the following code is just for testing dataloder module... create by zhangbo Nov 24 15:00 """ # from PIL import Image # import matplotlib.pyplot as plt # from torchvision import transforms # unloader = transforms.ToPILImage() # def imshow(tensor, title=None): # image = tensor.cpu().clone() # we clone the tensor to not do changes on it # #image = image.squeeze(0) # remove the fake batch dimension # image = unloader(image) # plt.imshow(image) # if title is not None: # plt.title(title) # plt.pause(20) # pause a bit so that plots are updated # train_loader=build_data_loader() # data=next(iter(train_loader)) # searchs=data['searchs'] # search=[] # for i in range(2,8): # search.append(searchs[:,3*(i-1):3*i,:,:]) # imshow(data['template'][0].to(torch.float32)) # print(len(search),search[0][0].shape) # for idx, data in enumerate(train_loader): # print("idx is ",idx) # searchs=data['searchs'] # search=[] # for i in range(2,8): # search.append(searchs[:,3*(i-1):3*i,:,:]) # imshow(search[0][0].to(torch.float32)) # print(len(search),search[0][0].shape)
py
7df8386438e91d4159da564cf99deaeb45dd0dcb
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class Petaca(CMakePackage): """A collection of modern Fortran modules. Modules include: - Parameter lists - map_any_type - fortran_dynamic_loader - timer_tree_type - yajl_fort - json """ homepage = "https://petaca.readthedocs.io/en/master" git = "https://github.com/nncarlson/petaca.git" url = "https://github.com/nncarlson/petaca/archive/refs/tags/v22.03.tar.gz" maintainers = ['pbrady'] version('develop', branch="master") version('22.03', sha256='e6559e928c7cca6017ef0582c204eee775f6bb3f927f1c224c515c2ad574cc32') version('21.03', commit='f17df95193ca1a3879687a59a91a123be25e3efa') depends_on('[email protected]:', type='build') depends_on('[email protected]:') # override RelWithDebugInfo since those flags aren't set in petaca variant('build_type', default="Release", description='Type build type to build', values=('Debug', 'Release')) variant('shared', default=False, description='build shared libraries') variant('std_name', default=False, description='enables std_mod_proc_name with intel') # copied from openmpi/package.py to ensure fortran support @run_before('cmake') def die_without_fortran(self): if (self.compiler.f77 is None) or (self.compiler.fc is None): raise InstallError( 'petaca requires both C and Fortran compilers!' ) def cmake_args(self): return [ self.define('ENABLE_TESTS', self.run_tests), self.define_from_variant("BUILD_SHARED_LIBS", "shared"), self.define_from_variant("ENABLE_STD_MOD_PROC_NAME", "std_name") ]
py
7df838fb26236c9330e95f2f79d637765a115e38
# Copyright (C) 2017 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> from lib import meta class MetaTestDecorator(meta.RequireDocs, meta.DecorateFlakyTests): """Composition of multiple metaclasses"""
py
7df83a285ba8b4ec6cf0467930740a0ea02e498c
import argparse import sys def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( '-f', '--faidx', help='Path to the .fa.idx file.' ) parser.add_argument( '-o', '--out', help='Path to the output length map.' ) args = parser.parse_args() return args def gen_length_map(args): f = open(args.faidx, 'r') if not args.out: f_out = sys.stdout else: f_out = open(args.out, 'w') for line in f: line = line.split() print(f'{line[0]}\t{line[1]}', file=f_out) if __name__ == '__main__': args = parse_args() gen_length_map(args)
py
7df83a3b8bcd4273dcc52fbf82efb814524f38f1
# Import dependencies import cv2 # Read Images img = cv2.imread(r'C:\Users\harrizazham98\Desktop\OpenCVForPython\resources\Day 1\image\KL_view.jpg') # Display Image cv2.imshow('Original Image',img) # make a copy of the original image imageRectangle = img.copy() # define the starting and end points of the rectangle start_point =(200,115) end_point =(300,225) # draw the rectangle cv2.rectangle(imageRectangle, start_point, end_point, (0, 0, 255), thickness= 3, lineType=cv2.LINE_8) # display the output cv2.imshow('imageRectangle', imageRectangle) cv2.waitKey(0) cv2.distroyAllWindows()
py
7df83aec88c23a55f7be023a6a1e6888b3303ea1
# -*- coding: utf-8 -*- ''' - - - - - -- - - - - - - - - - - - - - - - - - - - - - - Name - - CNN - Convolution Neural Network For Photo Recognizing Goal - - Recognize Handing Writting Word Photo Detail:Total 5 layers neural network * Convolution layer * Pooling layer * Input layer layer of BP * Hiden layer of BP * Output layer of BP Author: Stephen Lee Github: [email protected] Date: 2017.9.20 - - - - - -- - - - - - - - - - - - - - - - - - - - - - - ''' from __future__ import print_function import pickle import matplotlib.pyplot as plt import numpy as np class CNN(): def __init__(self, conv1_get, size_p1, bp_num1, bp_num2, bp_num3, rate_w=0.2, rate_t=0.2): ''' :param conv1_get: [a,c,d],size, number, step of convolution kernel :param size_p1: pooling size :param bp_num1: units number of flatten layer :param bp_num2: units number of hidden layer :param bp_num3: units number of output layer :param rate_w: rate of weight learning :param rate_t: rate of threshold learning ''' self.num_bp1 = bp_num1 self.num_bp2 = bp_num2 self.num_bp3 = bp_num3 self.conv1 = conv1_get[:2] self.step_conv1 = conv1_get[2] self.size_pooling1 = size_p1 self.rate_weight = rate_w self.rate_thre = rate_t self.w_conv1 = [np.mat(-1 * np.random.rand(self.conv1[0], self.conv1[0]) + 0.5) for i in range(self.conv1[1])] self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5) self.vji = np.mat(-1 * np.random.rand(self.num_bp2, self.num_bp1) + 0.5) self.thre_conv1 = -2 * np.random.rand(self.conv1[1]) + 1 self.thre_bp2 = -2 * np.random.rand(self.num_bp2) + 1 self.thre_bp3 = -2 * np.random.rand(self.num_bp3) + 1 def save_model(self, save_path): # save model dict with pickle model_dic = {'num_bp1': self.num_bp1, 'num_bp2': self.num_bp2, 'num_bp3': self.num_bp3, 'conv1': self.conv1, 'step_conv1': self.step_conv1, 'size_pooling1': self.size_pooling1, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conv1, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conv1, 'thre_bp2': self.thre_bp2, 'thre_bp3': self.thre_bp3} with open(save_path, 'wb') as f: pickle.dump(model_dic, f) print('Model saved: %s' % save_path) @classmethod def ReadModel(cls, model_path): # read saved model with open(model_path, 'rb') as f: model_dic = pickle.load(f) conv_get = model_dic.get('conv1') conv_get.append(model_dic.get('step_conv1')) size_p1 = model_dic.get('size_pooling1') bp1 = model_dic.get('num_bp1') bp2 = model_dic.get('num_bp2') bp3 = model_dic.get('num_bp3') r_w = model_dic.get('rate_weight') r_t = model_dic.get('rate_thre') # create model instance conv_ins = CNN(conv_get, size_p1, bp1, bp2, bp3, r_w, r_t) # modify model parameter conv_ins.w_conv1 = model_dic.get('w_conv1') conv_ins.wkj = model_dic.get('wkj') conv_ins.vji = model_dic.get('vji') conv_ins.thre_conv1 = model_dic.get('thre_conv1') conv_ins.thre_bp2 = model_dic.get('thre_bp2') conv_ins.thre_bp3 = model_dic.get('thre_bp3') return conv_ins def sig(self, x): return 1 / (1 + np.exp(-1 * x)) def do_round(self, x): return round(x, 3) def convolute(self, data, convs, w_convs, thre_convs, conv_step): # convolution process size_conv = convs[0] num_conv = convs[1] size_data = np.shape(data)[0] # get the data slice of original image data, data_focus data_focus = [] for i_focus in range(0, size_data - size_conv + 1, conv_step): for j_focus in range(0, size_data - size_conv + 1, conv_step): focus = data[i_focus:i_focus + size_conv, j_focus:j_focus + size_conv] data_focus.append(focus) # caculate the feature map of every single kernel, and saved as list of matrix data_featuremap = [] Size_FeatureMap = int((size_data - size_conv) / conv_step + 1) for i_map in range(num_conv): featuremap = [] for i_focus in range(len(data_focus)): net_focus = np.sum(np.multiply(data_focus[i_focus], w_convs[i_map])) - thre_convs[i_map] featuremap.append(self.sig(net_focus)) featuremap = np.asmatrix(featuremap).reshape(Size_FeatureMap, Size_FeatureMap) data_featuremap.append(featuremap) # expanding the data slice to One dimenssion focus1_list = [] for each_focus in data_focus: focus1_list.extend(self.Expand_Mat(each_focus)) focus_list = np.asarray(focus1_list) return focus_list, data_featuremap def pooling(self, featuremaps, size_pooling, type='average_pool'): # pooling process size_map = len(featuremaps[0]) size_pooled = int(size_map / size_pooling) featuremap_pooled = [] for i_map in range(len(featuremaps)): map = featuremaps[i_map] map_pooled = [] for i_focus in range(0, size_map, size_pooling): for j_focus in range(0, size_map, size_pooling): focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling] if type == 'average_pool': # average pooling map_pooled.append(np.average(focus)) elif type == 'max_pooling': # max pooling map_pooled.append(np.max(focus)) map_pooled = np.asmatrix(map_pooled).reshape(size_pooled, size_pooled) featuremap_pooled.append(map_pooled) return featuremap_pooled def _expand(self, datas): # expanding three dimension data to one dimension list data_expanded = [] for i in range(len(datas)): shapes = np.shape(datas[i]) data_listed = datas[i].reshape(1, shapes[0] * shapes[1]) data_listed = data_listed.getA().tolist()[0] data_expanded.extend(data_listed) data_expanded = np.asarray(data_expanded) return data_expanded def _expand_mat(self, data_mat): # expanding matrix to one dimension list data_mat = np.asarray(data_mat) shapes = np.shape(data_mat) data_expanded = data_mat.reshape(1, shapes[0] * shapes[1]) return data_expanded def _calculate_gradient_from_pool(self, out_map, pd_pool, num_map, size_map, size_pooling): ''' calcluate the gradient from the data slice of pool layer pd_pool: list of matrix out_map: the shape of data slice(size_map*size_map) return: pd_all: list of matrix, [num, size_map, size_map] ''' pd_all = [] i_pool = 0 for i_map in range(num_map): pd_conv1 = np.ones((size_map, size_map)) for i in range(0, size_map, size_pooling): for j in range(0, size_map, size_pooling): pd_conv1[i:i + size_pooling, j:j + size_pooling] = pd_pool[i_pool] i_pool = i_pool + 1 pd_conv2 = np.multiply(pd_conv1, np.multiply(out_map[i_map], (1 - out_map[i_map]))) pd_all.append(pd_conv2) return pd_all def train(self, patterns, datas_train, datas_teach, n_repeat, error_accuracy, draw_e=bool): # model traning print('----------------------Start Training-------------------------') print((' - - Shape: Train_Data ', np.shape(datas_train))) print((' - - Shape: Teach_Data ', np.shape(datas_teach))) rp = 0 all_mse = [] mse = 10000 while rp < n_repeat and mse >= error_accuracy: alle = 0 print('-------------Learning Time %d--------------' % rp) for p in range(len(datas_train)): # print('------------Learning Image: %d--------------'%p) data_train = np.asmatrix(datas_train[p]) data_teach = np.asarray(datas_teach[p]) data_focus1, data_conved1 = self.convolute(data_train, self.conv1, self.w_conv1, self.thre_conv1, conv_step=self.step_conv1) data_pooled1 = self.pooling(data_conved1, self.size_pooling1) shape_featuremap1 = np.shape(data_conved1) ''' print(' -----original shape ', np.shape(data_train)) print(' ---- after convolution ',np.shape(data_conv1)) print(' -----after pooling ',np.shape(data_pooled1)) ''' data_bp_input = self._expand(data_pooled1) bp_out1 = data_bp_input bp_net_j = np.dot(bp_out1, self.vji.T) - self.thre_bp2 bp_out2 = self.sig(bp_net_j) bp_net_k = np.dot(bp_out2, self.wkj.T) - self.thre_bp3 bp_out3 = self.sig(bp_net_k) # --------------Model Leaning ------------------------ # calcluate error and gradient--------------- pd_k_all = np.multiply((data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3))) pd_j_all = np.multiply(np.dot(pd_k_all, self.wkj), np.multiply(bp_out2, (1 - bp_out2))) pd_i_all = np.dot(pd_j_all, self.vji) pd_conv1_pooled = pd_i_all / (self.size_pooling1 * self.size_pooling1) pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist() pd_conv1_all = self._calculate_gradient_from_pool(data_conved1, pd_conv1_pooled, shape_featuremap1[0], shape_featuremap1[1], self.size_pooling1) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conv1[1]): pd_conv_list = self._expand_mat(pd_conv1_all[k_conv]) delta_w = self.rate_weight * np.dot(pd_conv_list, data_focus1) self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape((self.conv1[0], self.conv1[0])) self.thre_conv1[k_conv] = self.thre_conv1[k_conv] - np.sum(pd_conv1_all[k_conv]) * self.rate_thre # all connected layer self.wkj = self.wkj + pd_k_all.T * bp_out2 * self.rate_weight self.vji = self.vji + pd_j_all.T * bp_out1 * self.rate_weight self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre # calculate the sum error of all single image errors = np.sum(abs((data_teach - bp_out3))) alle = alle + errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) rp = rp + 1 mse = alle / patterns all_mse.append(mse) def draw_error(): yplot = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(all_mse, '+-') plt.plot(yplot, 'r--') plt.xlabel('Learning Times') plt.ylabel('All_mse') plt.grid(True, alpha=0.5) plt.show() print('------------------Training Complished---------------------') print((' - - Training epoch: ', rp, ' - - Mse: %.6f' % mse)) if draw_e: draw_error() return mse def predict(self, datas_test): # model predict produce_out = [] print('-------------------Start Testing-------------------------') print((' - - Shape: Test_Data ', np.shape(datas_test))) for p in range(len(datas_test)): data_test = np.asmatrix(datas_test[p]) data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1, self.thre_conv1, conv_step=self.step_conv1) data_pooled1 = self.pooling(data_conved1, self.size_pooling1) data_bp_input = self._expand(data_pooled1) bp_out1 = data_bp_input bp_net_j = bp_out1 * self.vji.T - self.thre_bp2 bp_out2 = self.sig(bp_net_j) bp_net_k = bp_out2 * self.wkj.T - self.thre_bp3 bp_out3 = self.sig(bp_net_k) produce_out.extend(bp_out3.getA().tolist()) res = [list(map(self.do_round, each)) for each in produce_out] return np.asarray(res) def convolution(self, data): # return the data of image after convoluting process so we can check it out data_test = np.asmatrix(data) data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1, self.thre_conv1, conv_step=self.step_conv1) data_pooled1 = self.pooling(data_conved1, self.size_pooling1) return data_conved1, data_pooled1 if __name__ == '__main__': pass ''' I will put the example on other file '''
py
7df83b02faa1abf427bfaeb7d4b65591583fc8c2
import rclpy from sensor_thermometer import thermometer_data_publisher_node as node def main(args=None): rclpy.init(args=args) # Construct the publisher thermometer_data_publisher = node.ThermometerDataPublisher() # Reading and publishing data at defined rate (2 seconds) rclpy.spin(thermometer_data_publisher) # Clean up when script is stopped thermometer_data_publisher.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
py
7df83b04bd4f53d5b96eac7d9f25efc95a462fd3
# -*- coding: utf-8 -*- import logging logging.getLogger(__name__).addHandler(logging.NullHandler())
py
7df83b1d537c92a52dd58962ebcf5dce643c32d5
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Caffe(CMakePackage): """Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Center (BVLC) and by community contributors.""" homepage = "http://caffe.berkeleyvision.org" url = "https://github.com/BVLC/caffe/archive/1.0.tar.gz" version('1.0', sha256='71d3c9eb8a183150f965a465824d01fe82826c22505f7aa314f700ace03fa77f') version('rc5', sha256='06592aa8f5254335df3e244dafacc15765e2c60479b4bf2e7c887e8e023802fb') version('rc4', sha256='018792411d75ee34b6107216550cca2a1d668d45cb366033ba3c647e6a3018df') version('rc3', sha256='0884207bfba0fbc8b263b87d30f9304f7094eec3a48f975177d142f8c72b6e3b') version('rc2', sha256='55c9c20870b30ce398e19e4f1a62ade1eff08fce51e28fa5604035b711978eec') variant('cuda', default=False, description='Builds with support for GPUs via CUDA and cuDNN') variant('opencv', default=True, description='Build with OpenCV support') variant('leveldb', default=True, description="Build with levelDB") variant('lmdb', default=True, description="Build with lmdb") variant('python', default=False, description='Build python wrapper and caffe python layer') variant('matlab', default=False, description='Build Matlab wrapper') depends_on('boost') depends_on('boost +python', when='+python') depends_on('cuda', when='+cuda') depends_on('blas') depends_on('protobuf') depends_on('glog') depends_on('gflags') depends_on('hdf5 +hl +cxx') # Optional dependencies depends_on('[email protected]+core+highgui+imgproc', when='+opencv') depends_on('leveldb', when='+leveldb') depends_on('lmdb', when='+lmdb') depends_on('[email protected]:', when='+python') depends_on('[email protected]:', when='+python', type=('build', 'run')) depends_on('matlab', when='+matlab') extends('python', when='+python') def cmake_args(self): spec = self.spec args = ['-DBLAS={0}'.format('open' if spec['blas'].name == 'openblas' else spec['blas'].name), '-DCPU_ONLY=%s' % ('~cuda' in spec), '-DUSE_CUDNN=%s' % ('+cuda' in spec), '-DBUILD_python=%s' % ('+python' in spec), '-DBUILD_python_layer=%s' % ('+python' in spec), '-DBUILD_matlab=%s' % ('+matlab' in spec), '-DUSE_OPENCV=%s' % ('+opencv' in spec), '-DUSE_LEVELDB=%s' % ('+leveldb' in spec), '-DUSE_LMDB=%s' % ('+lmdb' in spec), '-DGFLAGS_ROOT_DIR=%s' % spec['gflags'].prefix, '-DGLOG_ROOT_DIR=%s' % spec['glog'].prefix, ] if spec.satisfies('^openblas'): env['OpenBLAS_HOME'] = spec['openblas'].prefix if spec.satisfies('+lmdb'): env['LMDB_DIR'] = spec['lmdb'].prefix if spec.satisfies('+leveldb'): env['LEVELDB_ROOT'] = spec['leveldb'].prefix if spec.satisfies('+python'): version = spec['python'].version.up_to(1) args.append('-Dpython_version=%s' % version) return args
py
7df83b2f92d4836f5b16f91f675a326fbea55026
from django.forms import ModelForm from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User from django import forms from .models import * class CustomerForm(ModelForm): class Meta: model = Customer fields = '__all__' exclude = ['user'] class OrderForm(ModelForm): class Meta: model = Order fields = '__all__' class CreateUserForm(UserCreationForm): class Meta: model = User fields = ['username', 'email', 'password1', 'password2']
py
7df83b60124353901487b6f5634c819781ff24c5
# -*- coding: utf-8 -*- """ @author: Taar """ # conversion of https://github.com/openwebos/qt/tree/master/examples/tutorials/modelview/6_treeview import sys from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import Qt as qt ROWS = 2 COLS = 3 class MainWindow(QtWidgets.QMainWindow): def __init__(self, parent=None): super(MainWindow, self).__init__(parent) treeView = QtWidgets.QTreeView(self) self.setCentralWidget(treeView) standardModel = QtGui.QStandardItemModel() rootNode = standardModel.invisibleRootItem() # defining a couple of items americaItem = QtGui.QStandardItem("America") canadaItem = QtGui.QStandardItem("Canada") usaItem = QtGui.QStandardItem("USA") bostonItem = QtGui.QStandardItem("Boston") europeItem = QtGui.QStandardItem("Europe") italyItem = QtGui.QStandardItem("Italy") romeItem = QtGui.QStandardItem("Rome") veronaItem = QtGui.QStandardItem("Verona") # building up the hierarchy rootNode.appendRow(americaItem) rootNode.appendRow(europeItem) americaItem.appendRow(canadaItem) americaItem.appendRow(usaItem) usaItem.appendRow(bostonItem) europeItem.appendRow(italyItem) italyItem.appendRow(romeItem) italyItem.appendRow(veronaItem) # register the model treeView.setModel(standardModel) treeView.expandAll() # selection changes shall trigger a slot selectionModel = treeView.selectionModel() selectionModel.selectionChanged.connect(self.selectionChangedSlot) self.treeView = treeView @QtCore.pyqtSlot(QtCore.QItemSelection, QtCore.QItemSelection) # decorator has same signature as the signal def selectionChangedSlot(self, newSelection, oldSelection): # get the text of the selected item index = self.treeView.selectionModel().currentIndex() selectedText = index.data(qt.DisplayRole) # find out the hierarchy level of the selected item hierarchyLevel = 1 seekRoot = index invalid = QtCore.QModelIndex() while seekRoot.parent() != invalid: seekRoot = seekRoot.parent() hierarchyLevel += 1 showString = '{}, Level {}'.format(selectedText, hierarchyLevel) self.setWindowTitle(showString) if __name__ == '__main__': app = QtWidgets.QApplication.instance() if app is None: app = QtWidgets.QApplication(sys.argv) w = MainWindow(None) w.show() app.exec_()
py
7df83b6c3abe997b00420eba36326f805b709b28
# -*- coding: utf-8 -*- """ Created on Wed Apr 24 21:30:14 2019 @author: wmy """ import tensorflow as tf from keras import backend as K from keras.optimizers import Adam from tqdm import tqdm class AdamWithWeightsNormalization(Adam): def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr *= (1. / (1. + self.decay * K.cast(self.iterations, K.floatx()))) pass t = K.cast(self.iterations + 1, K.floatx()) lr_t = lr * K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t)) shapes = [K.get_variable_shape(p) for p in params] ms = [K.zeros(shape) for shape in shapes] vs = [K.zeros(shape) for shape in shapes] self.weights = [self.iterations] + ms + vs for p, g, m, v in zip(params, grads, ms, vs): # if a weight tensor (len > 1) use weight normalized parameterization # this is the only part changed w.r.t. keras.optimizers.Adam ps = K.get_variable_shape(p) if len(ps)>1: # get weight normalization parameters V, V_norm, V_scaler, g_param, grad_g, grad_V = get_weightnorm_params_and_grads(p, g) # Adam containers for the 'g' parameter V_scaler_shape = K.get_variable_shape(V_scaler) m_g = K.zeros(V_scaler_shape) v_g = K.zeros(V_scaler_shape) # update g parameters m_g_t = (self.beta_1 * m_g) + (1. - self.beta_1) * grad_g v_g_t = (self.beta_2 * v_g) + (1. - self.beta_2) * K.square(grad_g) new_g_param = g_param - lr_t * m_g_t / (K.sqrt(v_g_t) + self.epsilon) self.updates.append(K.update(m_g, m_g_t)) self.updates.append(K.update(v_g, v_g_t)) # update V parameters m_t = (self.beta_1 * m) + (1. - self.beta_1) * grad_V v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(grad_V) new_V_param = V - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) # if there are constraints we apply them to V, not W if getattr(p, 'constraint', None) is not None: new_V_param = p.constraint(new_V_param) pass # wn param updates --> W updates add_weightnorm_param_updates(self.updates, new_V_param, new_g_param, p, V_scaler) pass else: # do optimization normally m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t # apply constraints if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) pass self.updates.append(K.update(p, new_p)) pass pass return self.updates pass def get_weightnorm_params_and_grads(p, g): ps = K.get_variable_shape(p) # construct weight scaler: V_scaler = g/||V|| V_scaler_shape = (ps[-1],) # assumes we're using tensorflow! V_scaler = K.ones(V_scaler_shape) # init to ones, so effective parameters don't change # get V parameters = ||V||/g * W norm_axes = [i for i in range(len(ps) - 1)] V = p / tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) # split V_scaler into ||V|| and g parameters V_norm = tf.sqrt(tf.reduce_sum(tf.square(V), norm_axes)) g_param = V_scaler * V_norm # get grad in V,g parameters grad_g = tf.reduce_sum(g * V, norm_axes) / V_norm grad_V = tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) * \ (g - tf.reshape(grad_g / V_norm, [1] * len(norm_axes) + [-1]) * V) return V, V_norm, V_scaler, g_param, grad_g, grad_V def add_weightnorm_param_updates(updates, new_V_param, new_g_param, W, V_scaler): ps = K.get_variable_shape(new_V_param) norm_axes = [i for i in range(len(ps) - 1)] # update W and V_scaler new_V_norm = tf.sqrt(tf.reduce_sum(tf.square(new_V_param), norm_axes)) new_V_scaler = new_g_param / new_V_norm new_W = tf.reshape(new_V_scaler, [1] * len(norm_axes) + [-1]) * new_V_param updates.append(K.update(W, new_W)) updates.append(K.update(V_scaler, new_V_scaler)) pass def data_based_init(model, input): # input can be dict, numpy array, or list of numpy arrays if type(input) is dict: feed_dict = input pass elif type(input) is list: feed_dict = {tf_inp: np_inp for tf_inp,np_inp in zip(model.inputs,input)} pass else: feed_dict = {model.inputs[0]: input} pass # add learning phase if required if model.uses_learning_phase and K.learning_phase() not in feed_dict: feed_dict.update({K.learning_phase(): 1}) pass # get all layer name, output, weight, bias tuples layer_output_weight_bias = [] for l in model.layers: trainable_weights = l.trainable_weights if len(trainable_weights) == 2: assert(l.built) W,b = trainable_weights layer_output_weight_bias.append((l.name,l.get_output_at(0),W,b)) # if more than one node, only use the first pass pass # iterate over our list and do data dependent init sess = K.get_session() pbar = tqdm(layer_output_weight_bias) for l,o,W,b in pbar: pbar.set_description(f"Init layer {l}") m,v = tf.nn.moments(o, [i for i in range(len(o.get_shape())-1)]) s = tf.sqrt(v + 1e-10) W_updated = W/tf.reshape(s,[1]*(len(W.get_shape())-1)+[-1]) updates = tf.group(W.assign(W_updated), b.assign((b-m)/s)) sess.run(updates, feed_dict) pass pass
py
7df83d505a3d8f8dc4651c2627619581bac18e31
from flask import Flask, render_template, request, escape, session, copy_current_request_context from annotation import search4letters from DBcm import UseDatabase, ConnectionError, CredentialsError, SQLError from checker import check_logged_in from threading import Thread from time import sleep app = Flask(__name__) app.secret_key = 'SuperSecretKeyByRaman' app.config['dbConfig'] = {'host': '127.0.0.1', 'user': 'vsearch', 'password': 'tmm0gqgB1!', 'database': 'vsearchlogDB', } # def check_logged_in() -> bool: # if 'logged_in' in session: # return True # return False @app.route('/search4', methods=['POST']) def do_search() -> 'html': phrase = request.form['phrase'] letters = request.form['letters'] results = str(search4letters(phrase, letters)) title = 'Here are your results' @copy_current_request_context def log_request(req: 'flask_request', res: str) -> None: sleep(15) with UseDatabase(app.config['dbConfig']) as cursor: _SQL = """insert into log (phrase, letters, ip, browser_string, results) values (%s, %s, %s, %s, %s)""" cursor.execute(_SQL, (req.form['phrase'], req.form['letters'], req.remote_addr, req.user_agent.browser, res,)) try: # log_request(request, results) t = Thread(target=log_request, args=(request, results)) t.start() except Exception as err: print('***** Logging failed with this error:', str(err)) return render_template('results.html', the_title=title, the_phrase=phrase, the_letters=letters, the_results=results ) @app.route('/') @app.route('/entry') def entry_page() -> 'html': return render_template('entry.html', the_title='Welcome to test page') @app.route('/viewlog') def view_the_log() -> 'html': try: """DIsplay the contents of the log file as a HTML table.""" with UseDatabase(app.config['dbConfig']) as cursor: _SQL = """select phrase, letters, ip, browser_string, results from log""" cursor.execute(_SQL) contents = cursor.fetchall() titles = ('Phrase', 'Letters', 'Remote_addr', 'User_agent', 'Results') return render_template('viewlog.html', the_title='View Log', the_row_titles=titles, the_data=contents, ) except ConnectionError as err: print('Is you database switched on? Errors:', str(err)) except CredentialsError as err: print('User-id/Password issues. Errors:', str(err)) except SQLError as err: print('Is your query correct? Errors:', str(err)) except Exception as err: print('Something went wrong:', str(err)) return 'Error' @app.route('/setuser/<user>') def setuser(user: str) -> str: session['user'] = user return 'User value set to: ' + session['user'] @app.route('/getuser') def getuser() -> str: return 'User value currently is set to: ' + session['user'] @app.route('/login') def login(): session['logged_in'] = True return 'You are now logged in.' @app.route('/logout') def logout(): session.pop('logged_in') return 'You are now logged out.' @app.route('/page1') @check_logged_in def page1() -> str: return 'This is page 1' @app.route('/page2') @check_logged_in def page2() -> str: return 'This is page 2' @app.route('/page3') @check_logged_in def page3() -> str: return 'This is page 3' # def execute_slowly(glacial, plogging, leaden): # return # # # t = Thread(target=execute_slowly, args=(glacial, plogging, leaden)) if __name__ == '__main__': app.run(debug=True)
py
7df83e0f6179432555c3a8a788eacce6ca6c617f
# -*- coding:utf-8 -*- import time,random,re,sys,json from util import * from driver import * import requests,json,sys from pyquery import PyQuery as pq from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.common.keys import Keys from selenium.webdriver.remote.command import Command driver = getChromeWebDriver() # print '进入大众点评移动版主页...' driver.get('https://m.dianping.com/') # time.sleep(1) # driver.find_element_by_css_selector('#index-kw').send_keys(u'大众点评') # driver.find_element_by_css_selector('#index-bn').click() # time.sleep(3) # driver.find_elements_by_partial_link_text(u'北京美食_生活_团购_旅游_电影_优惠券 - 大众点评网官网')[0].click() time.sleep(1) driver.find_element_by_css_selector('body > div.J_header > header > div.search.J_search_trigger').click() time.sleep(1) driver.find_element_by_css_selector('body > div.J_search_container.search_container > form > div.head_cnt > div > input.J_search_input').send_keys(u'千岛湖') print '输入千岛湖...' driver.find_element_by_css_selector('body > div.J_search_container.search_container > form > div.head_cnt > div > input.J_search_input').send_keys(Keys.ENTER) print '搜索千岛湖...' driver.find_element_by_css_selector('#app > div > div.J_searchList > nav > div > a:nth-child(2)').click() scrollbar = driver.find_element_by_css_selector('#app > div > div.J_searchList > nav > section:nth-child(3) > div.menu.main > div.iScrollVerticalScrollbar.iScrollLoneScrollbar > div') around = driver.find_element_by_css_selector('#app > div > div.J_searchList > nav > section:nth-child(3) > div.menu.main > div:nth-child(1) > div:nth-child(9)') ActionChains(driver).click_and_hold(scrollbar).move_by_offset(0,-100).click(scrollbar).perform() driver.find_element_by_css_selector('#app > div > div.J_searchList > nav > section:nth-child(3) > div.menu.main > div:nth-child(1) > div:nth-child(9)').click() # print '选择周边游...' driver.find_element_by_link_text(u'景点').click() # print '选择景点...' while(True): try: driver.find_element_by_css_selector('#app > div > div.J_footer') break except NoSuchElementException as e: # print e # print '正在下拉店铺页面...' DropDown(driver) getShopInfo(driver) driver.quit()
py
7df83e18950448c0acadad299520db8e18b96b5a
import Bio class RunnerFilterCodonStop(object): def __init__(self, variant_read_count_df): """Carries out a chimera analysis""" self.variant_read_count_df = variant_read_count_df self.genetic_code = None def get_variant_read_count_delete_df( self, variant_df, genetic_code, skip_filter_codon_stop): variant_read_count_delete_df = self.variant_read_count_df.copy() variant_read_count_delete_df['filter_delete'] = False if not skip_filter_codon_stop: variant_has_stop_codon_df = self.annotate_stop_codon_count( variant_df, genetic_code) variants_with_stop_codons_list = variant_has_stop_codon_df.index[variant_has_stop_codon_df['has_stop_codon'] == 1].tolist( ) variant_read_count_delete_df = self.variant_read_count_df.copy() variant_read_count_delete_df['filter_delete'] = False variant_read_count_delete_df.loc[variant_read_count_delete_df.variant_id.isin( variants_with_stop_codons_list), 'filter_delete'] = True return variant_read_count_delete_df def annotate_stop_codon_count(self, variant_df, genetic_code): """Takes a stats_df of variants and add the number of stop codons for each open reading frame Returns ------- pandas DF VariantReadCountLikeModel are id, sequence, codon_stop_nb_frame1, codon_stop_nb_frame2, codon_stop_nb_frame3""" # For safety, convert to upper variant_df['sequence'] = variant_df['sequence'].str.upper() variant_has_stop_codon_df = variant_df.copy() variant_has_stop_codon_df['has_stop_codon'] = 0 for row in variant_df.iterrows(): id = row[0] sequence = row[1].sequence # variant_has_stop_codon_frame1 = self.seq_has_codon_stop(sequence=sequence, frame=1, genetic_code=genetic_code) variant_has_stop_codon_frame2 = self.seq_has_codon_stop(sequence=sequence, frame=2, genetic_code=genetic_code) variant_has_stop_codon_frame3 = self.seq_has_codon_stop(sequence=sequence, frame=3, genetic_code=genetic_code) # Check if all frames have stop codons if variant_has_stop_codon_frame1 and variant_has_stop_codon_frame2 and variant_has_stop_codon_frame3: variant_has_stop_codon_df.loc[variant_has_stop_codon_df.index == id, 'has_stop_codon'] = 1 return variant_has_stop_codon_df def seq_has_codon_stop(self, sequence, frame, genetic_code): """Takes one sequence and returns whether it has a stop codon or not Parameters ---------- sequence: str DNA sequence in upper case frame : int Open reading frame index, 1,2,3 Returns ------- bool Has stop codon """ if self.count_sequence_codon_stops(sequence, frame, genetic_code) > 0: return True else: return False def count_sequence_codon_stops(self, sequence, frame, genetic_code): """Takes one sequence and counts the number of stop codons for a given open reading frame and genetic genetic_code Parameters ---------- sequence: str DNA sequence in upper case frame : int Open reading frame index, 1,2,3 genetic_code : int NCBI genetic_codes: https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi Returns ------- int Number of stop codons in the given open reading frame """ # genetic table number 5: 'stop_codons': ['TAA', 'UAA', 'TAG', 'UAG'] stop_codon_list = Bio.Data.CodonTable.generic_by_id[genetic_code].__dict__[ 'stop_codons'] codon_list = [sequence[i:i + 3] for i in range(frame - 1, len(sequence), 3)] codon_stop_count = sum([codon_list.count(stop_codon) for stop_codon in stop_codon_list]) return codon_stop_count
py
7df83e5cfa0a2a8330c2a8cbe04b259117c3faec
from crispy_forms.helper import FormHelper from crispy_forms_foundation.layout import ( ButtonHolder, Column, Fieldset, Layout, Row, Submit, ) from dal import autocomplete from django import forms from django.core.exceptions import ValidationError from django.forms import RadioSelect from . import const from .models.uczelnia import RaportSlotowUczelnia from bpp.const import PBN_MAX_ROK, PBN_MIN_ROK from bpp.models import Autor, Uczelnia from bpp.util import formdefaults_html_after, formdefaults_html_before, year_last_month OUTPUT_FORMATS = [ ("html", "wyświetl w przeglądarce"), ("xlsx", "Microsoft Excel (XLSX)"), ] OUTPUT_FORMATS_WITH_PDF = OUTPUT_FORMATS + [ ("pdf", "Portable Document Format (PDF)"), ] class AutorRaportSlotowForm(forms.Form): obiekt = forms.ModelChoiceField( label="Autor", queryset=Autor.objects.all(), widget=autocomplete.ModelSelect2(url="bpp:public-autor-autocomplete"), ) od_roku = forms.IntegerField(initial=year_last_month, min_value=2016) do_roku = forms.IntegerField(initial=Uczelnia.objects.do_roku_default) minimalny_pk = forms.IntegerField(label="Minimalna wartość PK pracy", initial=0) dzialanie = forms.ChoiceField( label="Wygeneruj", choices=( ( const.DZIALANIE_WSZYSTKO, "prace autora z punktacją dla dyscyplin za dany okres", ), (const.DZIALANIE_SLOT, "zbierz najlepsze prace do zadanej wielkości slotu"), ), initial="wszystko", widget=forms.RadioSelect, ) slot = forms.DecimalField( label="Zadana wielkość slotu", required=False, max_digits=8, decimal_places=4, max_value=20, ) _export = forms.ChoiceField( label="Format wyjściowy", choices=OUTPUT_FORMATS_WITH_PDF, required=True ) def clean(self): if "od_roku" in self.cleaned_data and "do_roku" in self.cleaned_data: if self.cleaned_data["od_roku"] > self.cleaned_data["do_roku"]: raise ValidationError( { "od_roku": ValidationError( 'Pole musi być większe lub równe jak pole "Do roku".', code="od_do_zle", ) } ) if ( self.cleaned_data["dzialanie"] == const.DZIALANIE_WSZYSTKO and "slot" in self.cleaned_data and self.cleaned_data["slot"] is not None ): raise ValidationError( { "slot": ValidationError( "Gdy chcesz wygenerować wszystkie prace tego autora, pozostaw pole 'Slot' puste. ", code="nie_podawaj_gdy_wszystko", ) } ) if self.cleaned_data["dzialanie"] == const.DZIALANIE_SLOT and ( "slot" not in self.cleaned_data or ("slot" in self.cleaned_data and self.cleaned_data["slot"] is None) or ( "slot" in self.cleaned_data and self.cleaned_data["slot"] is not None and self.cleaned_data["slot"] <= 0 ) ): raise ValidationError( { "slot": ValidationError( "Podaj wartość slota do którego chcesz zbierać prace. Wartość musi być większa od zera. ", code="podawaj_gdy_slot", ) } ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_class = "custom" self.helper.form_action = "." self.helper.layout = Layout( Fieldset( "Wybierz parametry", formdefaults_html_before(self), Row(Column("obiekt", css_class="large-12 small-12")), Row(Column("dzialanie", css_class="large-12 small-12")), Row(Column("slot", css_class="large-12 small-12")), Row( Column("od_roku", css_class="large-6 small-6"), Column("do_roku", css_class="large-6 small-6"), ), Row(Column("minimalny_pk")), Row(Column("_export")), formdefaults_html_after(self), ), ButtonHolder( Submit( "submit", "Pobierz raport", css_id="id_submit", css_class="submit button", ), ), ) class UtworzRaportSlotowUczelniaForm(forms.ModelForm): class Meta: model = RaportSlotowUczelnia fields = [ "od_roku", "do_roku", "akcja", "slot", "minimalny_pk", "dziel_na_jednostki_i_wydzialy", "pokazuj_zerowych", ] def __init__(self, *args, **kwargs): self.helper = FormHelper() self.helper.form_class = "custom" self.helper.form_action = "." self.helper.layout = Layout( Fieldset( "Wybierz parametry", formdefaults_html_before(self), Row( Column("od_roku", css_class="large-6 small-6"), Column("do_roku", css_class="large-6 small-6"), ), Row(Column("akcja", css_class="large-12 small-12")), Row(Column("slot", css_class="large-12 small-12")), Row(Column("minimalny_pk", css_class="large-12 small-12")), Row(Column("dziel_na_jednostki_i_wydzialy")), Row(Column("pokazuj_zerowych")), formdefaults_html_after(self), ), ButtonHolder( Submit( "submit", "Utwórz raport", css_id="id_submit", css_class="submit button", ), ), ) super().__init__(*args, **kwargs) class ParametryRaportSlotowEwaluacjaForm(forms.Form): od_roku = forms.IntegerField( initial=Uczelnia.objects.do_roku_default, min_value=PBN_MIN_ROK ) do_roku = forms.IntegerField( initial=Uczelnia.objects.do_roku_default, min_value=PBN_MIN_ROK, max_value=PBN_MAX_ROK, ) _export = forms.ChoiceField( label="Format wyjściowy", choices=OUTPUT_FORMATS, required=True, widget=RadioSelect, initial="html", ) upowaznienie_pbn = forms.NullBooleanField( required=False, # widget=RadioSelect, ) def clean(self): if "od_roku" in self.cleaned_data and "do_roku" in self.cleaned_data: if self.cleaned_data["od_roku"] > self.cleaned_data["do_roku"]: raise ValidationError( { "od_roku": ValidationError( 'Pole musi być większe lub równe jak pole "Do roku".', code="od_do_zle", ) } ) def __init__(self, *args, **kwargs): self.helper = FormHelper() self.helper.form_class = "custom" self.helper.form_action = "." self.helper.layout = Layout( Fieldset( "Wybierz parametry", formdefaults_html_before(self), Row( Column("od_roku", css_class="large-6 small-6"), Column("do_roku", css_class="large-6 small-6"), ), Row(Column("upowaznienie_pbn", css_class="large-12 small-12")), Row(Column("_export")), formdefaults_html_after(self), ), ButtonHolder( Submit( "submit", "Pobierz raport", css_id="id_submit", css_class="submit button", ), ), ) super().__init__(*args, **kwargs)
py
7df83eff3ad081476ffd0d6a6e6be57a00733172
import dash_bootstrap_components as dbc import dash_html_components as html from dash.dependencies import Input, Output, State collapses = html.Div( [ dbc.Button( "Toggle left", color="primary", id="left", className="mr-1" ), dbc.Button( "Toggle right", color="primary", id="right", className="mr-1" ), dbc.Button("Toggle both", color="primary", id="both"), dbc.Row( [ dbc.Col( dbc.Collapse( dbc.Card("This is the left card.", body=True), id="left-collapse", ) ), dbc.Col( dbc.Collapse( dbc.Card("This is the right card!", body=True), id="right-collapse", ) ), ], className="mt-3", ), ] ) @app.callback( Output("left-collapse", "is_open"), [Input("left", "n_clicks"), Input("both", "n_clicks")], [State("left-collapse", "is_open")], ) def toggle_left(n_left, n_both, is_open): if n_left or n_both: return not is_open return is_open @app.callback( Output("right-collapse", "is_open"), [Input("right", "n_clicks"), Input("both", "n_clicks")], [State("right-collapse", "is_open")], ) def toggle_left(n_right, n_both, is_open): if n_right or n_both: return not is_open return is_open
py
7df83f0c319c05614e77c46081881e861230500b
from demo.models.function.non_null_count import NotNullCount # noqa
py
7df83f6f28602e4f090729175b7904185424831e
from __future__ import print_function import argparse from math import log10 import os import torch import torch.nn as nn import torch.optim as optim import torch.backends.cudnn as cudnn from torch.autograd import Variable from torch.utils.data import DataLoader from eval import testing_data_loader from tishkovets_cnn import Net as TISHKOVETS_NET from dbpn_v1 import Net as DBPNLL from dbpns import Net as DBPNS from dbpn_iterative import Net as DBPNITER from data import get_training_set import pdb import socket import time # Training settings parser = argparse.ArgumentParser(description='PyTorch Super Res Example') parser.add_argument('--upscale_factor', type=int, default=8, help="super resolution upscale factor") parser.add_argument('--batchSize', type=int, default=1, help='training batch size') parser.add_argument('--nEpochs', type=int, default=2000, help='number of epochs to train for') parser.add_argument('--snapshots', type=int, default=50, help='Snapshots') parser.add_argument('--start_iter', type=int, default=1, help='Starting Epoch') parser.add_argument('--lr', type=float, default=1e-4, help='Learning Rate. Default=0.01') parser.add_argument('--gpu_mode', type=bool, default=False) parser.add_argument('--threads', type=int, default=1, help='number of threads for data loader to use') parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123') parser.add_argument('--gpus', default=1, type=int, help='number of gpu') parser.add_argument('--data_dir', type=str, default='') parser.add_argument('--data_augmentation', type=bool, default=True) parser.add_argument('--hr_train_dataset', type=str, default='div2k/DIV2K_train_HR') parser.add_argument('--model_type', type=str, default='DBPN') parser.add_argument('--residual', type=bool, default=True) parser.add_argument('--patch_size', type=int, default=40, help='Size of cropped HR image') parser.add_argument('--pretrained_sr', default='MIX2K_LR_aug_x4dl10DBPNITERtpami_epoch_399.pth', help='sr pretrained base model') parser.add_argument('--pretrained', type=bool, default=False) parser.add_argument('--save_folder', default='weights/', help='Location to save checkpoint models') parser.add_argument('--prefix', default='tpami_residual_filter8', help='Location to save checkpoint models') opt = parser.parse_args() gpus_list = range(opt.gpus) hostname = str(socket.gethostname()) cudnn.benchmark = True print(opt) def train(epoch): epoch_loss = 0 model.train() for iteration, batch in enumerate(training_data_loader, 1): input, target, bicubic = Variable(batch[0]), Variable(batch[1]), Variable(batch[2]) if cuda: input = input.cuda(gpus_list[0]) target = target.cuda(gpus_list[0]) bicubic = bicubic.cuda(gpus_list[0]) optimizer.zero_grad() t0 = time.time() prediction = model(input) if opt.residual: prediction = prediction + bicubic loss = criterion(prediction, target) t1 = time.time() epoch_loss += loss.data loss.backward() optimizer.step() print("===> Epoch[{}]({}/{}): Loss: {:.4f} || Timer: {:.4f} sec.".format(epoch, iteration, len(training_data_loader), loss.data, (t1 - t0))) print("===> Epoch {} Complete: Avg. Loss: {:.4f}".format(epoch, epoch_loss / len(training_data_loader))) def test(): avg_psnr = 0 for batch in testing_data_loader: input, target = Variable(batch[0]), Variable(batch[1]) if cuda: input = input.cuda(gpus_list[0]) target = target.cuda(gpus_list[0]) prediction = model(input) mse = criterion(prediction, target) psnr = 10 * log10(1 / mse.data[0]) avg_psnr += psnr print("===> Avg. PSNR: {:.4f} dB".format(avg_psnr / len(testing_data_loader))) def print_network(net): num_params = 0 for param in net.parameters(): num_params += param.numel() print(net) print('Total number of parameters: %d' % num_params) def checkpoint(epoch): model_out_path = opt.save_folder+opt.train_dataset+hostname+opt.model_type+opt.prefix+"_epoch_{}.pth".format(epoch) torch.save(model.state_dict(), model_out_path) print("Checkpoint saved to {}".format(model_out_path)) cuda = opt.gpu_mode if cuda and not torch.cuda.is_available(): raise Exception("No GPU found, please run without --cuda") torch.manual_seed(opt.seed) if cuda: torch.cuda.manual_seed(opt.seed) print('===> Loading datasets') train_set = get_training_set(opt.data_dir, opt.hr_train_dataset, opt.upscale_factor, opt.patch_size, opt.data_augmentation) training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True) print('===> Building model ', opt.model_type) if opt.model_type == 'DBPNLL': model = DBPNLL(num_channels=3, base_filter=64, feat = 256, num_stages=10, scale_factor=opt.upscale_factor) elif opt.model_type == 'DBPN-RES-MR64-3': model = DBPNITER(num_channels=3, base_filter=64, feat = 256, num_stages=3, scale_factor=opt.upscale_factor) else: model = TISHKOVETS_NET(num_channels=3, base_filter=64, feat = 256) model = torch.nn.DataParallel(model, device_ids=gpus_list) criterion = nn.L1Loss() print('---------- Networks architecture -------------') print_network(model) print('----------------------------------------------') if opt.pretrained: model_name = os.path.join(opt.save_folder + opt.pretrained_sr) if os.path.exists(model_name): #model= torch.load(model_name, map_location=lambda storage, loc: storage) model.load_state_dict(torch.load(model_name, map_location=lambda storage, loc: storage)) print('Pre-trained SR model is loaded.') if cuda: model = model.cuda(gpus_list[0]) criterion = criterion.cuda(gpus_list[0]) optimizer = optim.Adam(model.parameters(), lr=opt.lr, betas=(0.9, 0.999), eps=1e-8) for epoch in range(opt.start_iter, opt.nEpochs + 1): test() # learning rate is decayed by a factor of 10 every half of total epochs if (epoch+1) % (opt.nEpochs/2) == 0: for param_group in optimizer.param_groups: param_group['lr'] /= 10.0 print('Learning rate decay: lr={}'.format(optimizer.param_groups[0]['lr'])) if (epoch+1) % (opt.snapshots) == 0: checkpoint(epoch)
py
7df83f80235bed1bfe338ba68cefbb476e431004
from typing import TYPE_CHECKING, List from django.conf import settings from django.core.checks import Error, register from django.utils.module_loading import import_string if TYPE_CHECKING: from .base_plugin import BasePlugin @register() def check_extensions(app_configs, **kwargs): """Confirm a correct import of plugins and manager.""" errors = [] check_manager(errors) plugins = settings.PLUGINS or [] for plugin_path in plugins: check_single_plugin(plugin_path, errors) return errors def check_manager(errors: List[Error]): if not hasattr(settings, "EXTENSIONS_MANAGER") or not settings.EXTENSIONS_MANAGER: errors.append(Error("Settings should contain EXTENSIONS_MANAGER env")) return try: import_string(settings.EXTENSIONS_MANAGER) except ImportError: errors.append( Error( "Extension Manager path: %s doesn't exist" % settings.EXTENSIONS_MANAGER ) ) def check_single_plugin(plugin_path: str, errors: List[Error]): if not plugin_path: errors.append(Error("Wrong plugin_path %s" % plugin_path)) return try: plugin_class = import_string(plugin_path) except ImportError: errors.append(Error("Plugin with path: %s doesn't exist" % plugin_path)) if not errors: check_plugin_name(plugin_class, errors) def check_plugin_name(plugin_class: "BasePlugin", errors: List[Error]): if not getattr(plugin_class, "PLUGIN_NAME", None): errors.append( Error( "Missing field PLUGIN_NAME for plugin - %s" % plugin_class.__name__ # type: ignore ) )
py
7df84008af4a5c3297d4107e13fe7c3047732b4e
import unittest from transformers_keras.datapipe.sc_dataset import DatasetForSequenceClassification class DatasetTest(unittest.TestCase): """Dataset test.""" def test_sequence_classification_dataset_examples(self): print() print("====from_jsonl_files") d = DatasetForSequenceClassification.from_jsonl_files( "testdata/sequence_classify.jsonl", vocab_file="testdata/vocab.bert.txt", batch_size=2 ) print(next(iter(d))) print("====jsonl_to_examples") examples = DatasetForSequenceClassification.jsonl_to_examples( "testdata/sequence_classify.jsonl", vocab_file="testdata/vocab.bert.txt" ) for i in range(2): print(examples[i]) print("====from_examples") d = DatasetForSequenceClassification.from_examples(examples, batch_size=2) print(next(iter(d))) print("====examples_to_tfrecord") DatasetForSequenceClassification.examples_to_tfrecord( examples, output_files=["testdata/sequence_classify.tfrecord"] ) print("====from_tfrecord_files") d = DatasetForSequenceClassification.from_tfrecord_files("testdata/sequence_classify.tfrecord", batch_size=2) print(next(iter(d))) if __name__ == "__main__": unittest.main()
py
7df8403798269852e7f2c082bc7667fdc4d306ee
# -*- encoding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. { 'name': 'Bootswatch Theme', 'description': 'Bootswatch themes', 'category': 'Theme', 'sequence': 900, 'version': '1.0', 'depends': ['website', 'website_theme_install'], 'data': [ 'views/theme_bootswatch_templates.xml', ], 'images': [ 'static/description/bootswatch.png', 'static/description/bootswatch_screenshot.jpg', ], 'application': False, }
py
7df84148d1f00a91bce2d9c8cd23f19356224a15
# This module is automatically generated by autogen.sh. DO NOT EDIT. from . import _OnPrem class _Ci(_OnPrem): _type = "ci" _icon_dir = "resources/onprem/ci" class Circleci(_Ci): _icon = "circleci.png" class Concourseci(_Ci): _icon = "concourseci.png" class Gitlabci(_Ci): _icon = "gitlabci.png" class Jenkins(_Ci): _icon = "jenkins.png" class Teamcity(_Ci): _icon = "teamcity.png" class Travisci(_Ci): _icon = "travisci.png" class Zuulci(_Ci): _icon = "zuulci.png" # Aliases CircleCI = Circleci ConcourseCI = Concourseci GitlabCI = Gitlabci TravisCI = Travisci TC = Teamcity ZuulCI = Zuulci
py
7df842ed005e29dc22094895579288f65f349c2b
"""Test runway.core.providers.aws.s3._bucket.""" # pylint: disable=no-self-use # pyright: basic from __future__ import annotations import logging from http import HTTPStatus from typing import TYPE_CHECKING from mock import MagicMock from runway.core.providers.aws import BaseResponse from runway.core.providers.aws.s3 import Bucket if TYPE_CHECKING: from pytest import LogCaptureFixture from pytest_mock import MockerFixture from .....factories import MockRunwayContext MODULE = "runway.core.providers.aws.s3._bucket" class TestBucket: """Test runway.core.providers.aws.s3._bucket.Bucket.""" def test_client(self) -> None: """Test client.""" mock_ctx = MagicMock() mock_session = MagicMock() mock_client = MagicMock() mock_ctx.get_session.return_value = mock_session mock_session.client.return_value = mock_client bucket = Bucket(mock_ctx, "test-bucket", region="us-west-2") assert bucket.client == mock_client mock_ctx.get_session.assert_called_once_with(region="us-west-2") mock_session.client.assert_called_once_with("s3") def test_create(self, runway_context: MockRunwayContext) -> None: """Test create.""" stubber = runway_context.add_stubber("s3") bucket = Bucket(runway_context, "test-bucket") stubber.add_client_error( "head_bucket", "NoSuchBucket", "Not Found", 404, expected_params={"Bucket": "test-bucket"}, ) stubber.add_response( "create_bucket", {"Location": "us-east-1"}, {"ACL": "private", "Bucket": "test-bucket"}, ) with stubber: assert bucket.create(ACL="private") stubber.assert_no_pending_responses() def test_create_exists( self, caplog: LogCaptureFixture, runway_context: MockRunwayContext ) -> None: """Test create with exists=True.""" caplog.set_level(logging.DEBUG, logger="runway.core.providers.aws.s3.bucket") stubber = runway_context.add_stubber("s3", region="us-west-2") bucket = Bucket(runway_context, "test-bucket", region="us-west-2") stubber.add_response( "head_bucket", {"ResponseMetadata": {"HostId": "test", "HTTPStatusCode": 200}}, {"Bucket": "test-bucket"}, ) with stubber: assert not bucket.create() stubber.assert_no_pending_responses() assert "bucket already exists" in "\n".join(caplog.messages) def test_create_forbidden( self, caplog: LogCaptureFixture, runway_context: MockRunwayContext ) -> None: """Test create with forbidden=True.""" caplog.set_level(logging.DEBUG, logger="runway.core.providers.aws.s3.bucket") stubber = runway_context.add_stubber("s3", region="us-west-2") bucket = Bucket(runway_context, "test-bucket", region="us-west-2") stubber.add_client_error( "head_bucket", "AccessDenied", "Forbidden", 403, expected_params={"Bucket": "test-bucket"}, ) with stubber: assert not bucket.create() stubber.assert_no_pending_responses() assert "access denied" in "\n".join(caplog.messages) def test_create_us_west_2(self, runway_context: MockRunwayContext) -> None: """Test create with region=us-west-2.""" stubber = runway_context.add_stubber("s3", region="us-west-2") bucket = Bucket(runway_context, "test-bucket", region="us-west-2") stubber.add_client_error( "head_bucket", "NoSuchBucket", "The specified bucket does not exist.", 404, expected_params={"Bucket": "test-bucket"}, ) stubber.add_response( "create_bucket", {"Location": "us-east-1"}, { "Bucket": "test-bucket", "CreateBucketConfiguration": {"LocationConstraint": "us-west-2"}, }, ) with stubber: assert bucket.create() stubber.assert_no_pending_responses() def test_enable_versioning(self, runway_context: MockRunwayContext) -> None: """Test enable_versioning.""" stubber = runway_context.add_stubber("s3") bucket = Bucket(runway_context, "test-bucket") stubber.add_response( "get_bucket_versioning", {"Status": "Suspended", "MFADelete": "Enabled"}, {"Bucket": "test-bucket"}, ) stubber.add_response( "put_bucket_versioning", {}, { "Bucket": "test-bucket", "VersioningConfiguration": { "Status": "Enabled", "MFADelete": "Enabled", }, }, ) with stubber: bucket.enable_versioning() stubber.assert_no_pending_responses() def test_enable_versioning_skipped( self, caplog: LogCaptureFixture, runway_context: MockRunwayContext ) -> None: """Test enable_versioning with Status=Enabled.""" caplog.set_level(logging.DEBUG, logger="runway.core.providers.aws.s3.bucket") stubber = runway_context.add_stubber("s3") bucket = Bucket(runway_context, "test-bucket") stubber.add_response( "get_bucket_versioning", {"Status": "Enabled"}, {"Bucket": "test-bucket"} ) with stubber: bucket.enable_versioning() stubber.assert_no_pending_responses() assert ( 'did not modify versioning policy for bucket "test-bucket"; already enabled' ) in caplog.messages def test_exists( self, mocker: MockerFixture, runway_context: MockRunwayContext ) -> None: """Test not_found.""" mock_head = mocker.patch.object(Bucket, "head", spec=BaseResponse()) bucket = Bucket(runway_context, "test-bucket") mock_head.metadata.not_found = True assert not bucket.exists # initial value mock_head.metadata.not_found = False assert not bucket.exists # cached value del bucket.not_found assert bucket.exists # updated value def test_forbidden( self, mocker: MockerFixture, runway_context: MockRunwayContext ) -> None: """Test forbidden.""" mock_head = mocker.patch.object(Bucket, "head", spec=BaseResponse()) bucket = Bucket(runway_context, "test-bucket") mock_head.metadata.forbidden = True assert bucket.forbidden # initial value mock_head.metadata.forbidden = False assert bucket.forbidden # cached value del bucket.forbidden assert not bucket.forbidden # updated value def test_format_bucket_path_uri(self) -> None: """Test format_bucket_path_uri.""" uri = "s3://test-bucket" bucket = Bucket(MagicMock(), uri[5:]) assert bucket.format_bucket_path_uri() == uri assert bucket.format_bucket_path_uri(key="test.txt") == f"{uri}/test.txt" assert ( bucket.format_bucket_path_uri(key="test.txt", prefix="prefix") == f"{uri}/prefix/test.txt" ) assert bucket.format_bucket_path_uri(prefix="prefix") == f"{uri}/prefix" def test_get_versioning(self, runway_context: MockRunwayContext) -> None: """Test get_versioning.""" stubber = runway_context.add_stubber("s3") bucket = Bucket(runway_context, "test-bucket") response = {"Status": "Enabled", "MFADelete": "Enabled"} stubber.add_response( "get_bucket_versioning", response, {"Bucket": "test-bucket"} ) with stubber: assert bucket.get_versioning() == response stubber.assert_no_pending_responses() def test_head(self, runway_context: MockRunwayContext) -> None: """Test head.""" stubber = runway_context.add_stubber("s3") bucket = Bucket(runway_context, "test-bucket") stubber.add_response( "head_bucket", {"ResponseMetadata": {"HostId": "test", "HTTPStatusCode": 200}}, {"Bucket": "test-bucket"}, ) with stubber: assert bucket.head.metadata.host_id == "test" assert bucket.head.metadata.http_status_code == HTTPStatus.OK stubber.assert_no_pending_responses() def test_head_clienterror( self, caplog: LogCaptureFixture, runway_context: MockRunwayContext ) -> None: """Test head with ClientError.""" caplog.set_level(logging.DEBUG, logger="runway.core.providers.aws.s3.bucket") stubber = runway_context.add_stubber("s3") bucket = Bucket(runway_context, "test-bucket") stubber.add_client_error( "head_bucket", "AccessDenied", "Forbidden", 403, expected_params={"Bucket": "test-bucket"}, ) with stubber: assert bucket.head.metadata.http_status_code == HTTPStatus.FORBIDDEN stubber.assert_no_pending_responses() assert "received an error from AWS S3" in "\n".join(caplog.messages) def test_not_found( self, mocker: MockerFixture, runway_context: MockRunwayContext ) -> None: """Test not_found.""" mock_head = mocker.patch.object(Bucket, "head", spec=BaseResponse()) bucket = Bucket(runway_context, "test-bucket") mock_head.metadata.not_found = True assert bucket.not_found # initial value mock_head.metadata.not_found = False assert bucket.not_found # cached value del bucket.not_found assert not bucket.not_found # updated value def test_sync_from_local( self, mocker: MockerFixture, runway_context: MockRunwayContext ) -> None: """Test sync_from_local.""" mock_handler = MagicMock() mock_handler_class = mocker.patch( f"{MODULE}.S3SyncHandler", return_value=mock_handler ) runway_context.add_stubber("s3") src_directory = "/test/" obj = Bucket(runway_context, "test-bucket") assert not obj.sync_from_local( src_directory, delete=True, exclude=["something"], prefix="prefix" ) mock_handler_class.assert_called_once_with( context=runway_context, delete=True, dest="s3://test-bucket/prefix", exclude=["something"], follow_symlinks=False, include=None, session=obj.session, src=src_directory, ) mock_handler.run.assert_called_once_with() def test_sync_to_local( self, mocker: MockerFixture, runway_context: MockRunwayContext ) -> None: """Test sync_to_local.""" mock_handler = MagicMock() mock_handler_class = mocker.patch( f"{MODULE}.S3SyncHandler", return_value=mock_handler ) runway_context.add_stubber("s3") dest_directory = "/test/" obj = Bucket(runway_context, "test-bucket") assert not obj.sync_to_local( dest_directory, follow_symlinks=True, include=["something"] ) mock_handler_class.assert_called_once_with( context=runway_context, delete=False, dest=dest_directory, exclude=None, follow_symlinks=True, include=["something"], session=obj.session, src="s3://test-bucket", ) mock_handler.run.assert_called_once_with()
py
7df8438af14e474e5aa8ccc4ffe0477974390add
import unittest from unittest.mock import AsyncMock, patch from pathlib import Path from sporepedia.client import SporepediaClient from sporepedia.api.client import APIClient class SporepediaClientTest(unittest.IsolatedAsyncioTestCase): @patch.object(APIClient, "request") async def test__search(self, mock_request: AsyncMock): async with SporepediaClient() as client: with open(Path("./tests/testdata/dwr_search_testdata.js")) as fp: mock_request.return_value.text.return_value = fp.read() await client.search(text="Spore") async def test__close_exception(self): with self.assertRaises(ValueError): await SporepediaClient().close() async def test__create_and_close(self): client = SporepediaClient() await client.create() self.assertIsNotNone(client._api) await client.close() with self.assertRaises(ValueError): await SporepediaClient().close() async with SporepediaClient() as client: self.assertIsInstance(client, SporepediaClient) self.assertIsNotNone(client._api)
py
7df843c9746f48651b6c585447f0ebc8ee7b509e
""" FitGLF.py Author: Jordan Mirocha Affiliation: University of Colorado at Boulder Created on: Fri Oct 23 14:34:01 PDT 2015 Description: """ import gc, os import numpy as np from ..util import read_lit from ..util.Pickling import write_pickle_file from ..util.ParameterFile import par_info from ..util.Stats import symmetrize_errors from ..populations import GalaxyCohort, GalaxyEnsemble from .ModelFit import LogLikelihood, FitBase, def_kwargs try: # this runs with no issues in python 2 but raises error in python 3 basestring except: # this try/except allows for python 2/3 compatible string type checking basestring = str try: from mpi4py import MPI rank = MPI.COMM_WORLD.rank size = MPI.COMM_WORLD.size except ImportError: rank = 0 size = 1 twopi = 2. * np.pi _b14 = read_lit('bouwens2014') hst_shallow = _b14.filt_shallow hst_deep = _b14.filt_deep class loglikelihood(LogLikelihood): @property def redshifts(self): return self._redshifts @redshifts.setter def redshifts(self, value): self._redshifts = value @property def metadata(self): return self._metadata @metadata.setter def metadata(self, value): self._metadata = value @property def units(self): return self._units @units.setter def units(self, value): self._units = value @property def zmap(self): if not hasattr(self, '_zmap'): self._zmap = {} return self._zmap @zmap.setter def zmap(self, value): self._zmap = value @property def mask(self): if not hasattr(self, '_mask'): if type(self.xdata) is np.ma.core.MaskedArray: self._mask = self.xdata.mask else: self._mask = np.zeros(len(self.xdata)) return self._mask @property def include(self): if not hasattr(self, '_include'): assert self.metadata is not None self._include = [] for item in self.metadata: if item in self._include: continue self._include.append(item) return self._include @property def monotonic_beta(self): if not hasattr(self, '_monotonic_beta'): self._monotonic_beta = False return self._monotonic_beta @monotonic_beta.setter def monotonic_beta(self, value): self._monotonic_beta = bool(value) def __call__(self, sim): """ Compute log-likelihood for model generated via input parameters. Returns ------- Tuple: (log likelihood, blobs) """ # Figure out if `sim` is a population object or not. # OK if it's a simulation, will loop over LF-bearing populations. if not (isinstance(sim, GalaxyCohort.GalaxyCohort) \ or isinstance(sim, GalaxyEnsemble.GalaxyEnsemble)): pops = [] for pop in sim.pops: if not hasattr(pop, 'LuminosityFunction'): continue pops.append(pop) else: pops = [sim] if len(self.ydata) == 0: raise ValueError("Problem: data is empty.") if len(pops) > 1: raise NotImplemented('careful! need to think about this.') # Loop over all data points individually. #try: phi = np.zeros_like(self.ydata) for i, quantity in enumerate(self.metadata): if self.mask[i]: #print('masked:', rank, self.redshifts[i], self.xdata[i]) continue xdat = self.xdata[i] z = self.redshifts[i] if quantity in self.zmap: zmod = self.zmap[quantity][z] else: zmod = z for j, pop in enumerate(pops): # Generate model LF if quantity == 'lf': # New convention: LuminosityFunction always in terms of # observed magnitudes. # Compute LF p = pop.LuminosityFunction(z=zmod, x=xdat, mags=True) if not np.isfinite(p): print('LF is inf or nan!', zmod, xdat) raise ValueError('LF is inf or nan!', zmod, xdat) elif quantity == 'smf': M = np.log10(xdat) p = pop.StellarMassFunction(zmod, M) elif quantity == 'beta': zstr = int(round(zmod)) if zstr >= 7: filt_hst = hst_deep else: filt_hst = hst_shallow M = xdat p = pop.Beta(zmod, MUV=M, presets='hst', dlam=20., return_binned=True, rest_wave=None) if not np.isfinite(p): print('beta is inf or nan!', z, M) return -np.inf #raise ValueError('beta is inf or nan!', z, M) else: raise ValueError('Unrecognized quantity: {!s}'.format(\ quantity)) # If UVLF or SMF, could do multi-pop in which case we'd # increment here. phi[i] = p ## # Apply restrictions to beta if self.monotonic_beta: if type(self.monotonic_beta) in [int, float, np.float64]: Mlim = self.monotonic_beta else: # Don't let beta turn-over in the range of magnitudes that # overlap with UVLF constraints, or 2 extra mags if no UVLF # fitting happening (rare). xmod = [] ymod = [] zmod = [] xlf = [] for i, quantity in enumerate(self.metadata): if quantity == 'lf': xlf.append(self.xdata[i]) z = self.redshifts[i] if quantity in self.zmap: _zmod = self.zmap[quantity][z] else: _zmod = z xmod.append(self.xdata[i]) ymod.append(phi[i]) zmod.append(_zmod) i_lo = np.argmin(xmod) M_lo = xmod[i_lo] b_lo = ymod[i_lo] if 'lf' in self.metadata: Mlim = np.nanmin(xlf) - 1. else: Mlim = M_lo - 2. b_hi = {} for i, quantity in enumerate(self.metadata): if quantity != 'beta': continue if zmod[i] not in b_hi: b_hi[zmod[i]] = pop.Beta(zmod[i], MUV=Mlim, presets='hst', dlam=20., return_binned=True, rest_wave=None) if not (np.isfinite(Mlim) or np.isfinite(b_hi[zmod[i]])): raise ValueError("Mlim={}, beta_hi={:.2f}".format(Mlim, b_hi)) # Bit overkill to check every magnitude, but will *really* # enforce monotonic behavior. if b_hi[zmod[i]] < ymod[i]: print('beta is not monotonic!', zmod[i], Mlim, b_hi[zmod[i]], xmod[i], ymod[i]) return -np.inf #else: # print("beta monotonic at z={}: beta(MUV={})={}, beta(MUV={})={}".format(zmod[i], # Mlim, b_hi[zmod[i]], xmod[i], ymod[i])) #except: # return -np.inf, self.blank_blob #phi = np.ma.array(_phi, mask=self.mask) #del sim, pops lnL = -0.5 * np.ma.sum((phi - self.ydata)**2 / self.error**2) return lnL + self.const_term class FitGalaxyPopulation(FitBase): @property def loglikelihood(self): if not hasattr(self, '_loglikelihood'): self._loglikelihood = loglikelihood(self.xdata_flat, self.ydata_flat, self.error_flat) self._loglikelihood.redshifts = self.redshifts_flat self._loglikelihood.metadata = self.metadata_flat self._loglikelihood.zmap = self.zmap self._loglikelihood.monotonic_beta = self.monotonic_beta self.info return self._loglikelihood @property def monotonic_beta(self): if not hasattr(self, '_monotonic_beta'): self._monotonic_beta = False return self._monotonic_beta @monotonic_beta.setter def monotonic_beta(self, value): self._monotonic_beta = bool(value) @property def zmap(self): if not hasattr(self, '_zmap'): self._zmap = {} return self._zmap @zmap.setter def zmap(self, value): self._zmap = value @property def redshift_bounds(self): if not hasattr(self, '_redshift_bounds'): raise ValueError('Set by hand or include in litdata.') return self._redshift_bounds @redshift_bounds.setter def redshift_bounds(self, value): assert len(value) == 2 self._redshift_bounds = tuple(value) @property def redshifts(self): if not hasattr(self, '_redshifts'): raise ValueError('Set by hand or include in litdata.') return self._redshifts @redshifts.setter def redshifts(self, value): # This can be used to override the redshifts in the dataset and only # use some subset of them # Need to be ready for 'lf' or 'smf' designation. if len(self.include) > 1: assert type(value) is dict if type(value) in [int, float]: value = [value] self._redshifts = value @property def ztol(self): if not hasattr(self, '_ztol'): self._ztol = 0. return self._ztol @ztol.setter def ztol(self, value): self._ztol = value @property def data(self): if not hasattr(self, '_data'): raise AttributeError('Must set data by hand!') return self._data @data.setter def data(self, value): """ Set the data (duh). The structure is as follows. The highest level division is between different quantities (e.g., 'lf' vs. 'smf'). Each of these quantities is an element of the returned dictionary. For each, there is a list of dictionaries, one per redshift. Each redshift dictionary contains the magnitudes (or masses) along with number density measurements and error-bars. """ if isinstance(value, basestring): value = [value] if type(value) in [list, tuple]: self._data = {quantity:[] for quantity in self.include} self._units = {quantity:[] for quantity in self.include} z_by_range = hasattr(self, '_redshift_bounds') z_by_hand = hasattr(self, '_redshifts') if not z_by_hand: self._redshifts = {quantity:[] for quantity in self.include} # Loop over data sources for src in value: # Grab the data litdata = read_lit(src) # Loop over LF, SMF, etc. for quantity in self.include: if quantity not in litdata.data.keys(): continue # Short hand data = litdata.data[quantity] redshifts = litdata.redshifts # This is always just a number or str, i.e., # no need to breakdown by redshift so just do it now self._units[quantity].append(litdata.units[quantity]) # Now, be careful about what redshifts to include. if not (z_by_range or z_by_hand): srcdata = data srczarr = redshifts print('not by hand', srczarr) else: srczarr = [] srcdata = {} for z in redshifts: if z_by_range: zb = self.redshift_bounds if (zb[0] <= z <= zb[1]): srczarr.append(z) srcdata[z] = data[z] continue # z by hand from here down. # Find closest redshift to those requested, # see if it meets our tolerance. zreq = np.array(self._redshifts[quantity]) iz = np.argmin(np.abs(z - zreq)) # Does this redshift match any we've requested? if abs(z - zreq[iz]) > self.ztol: continue srczarr.append(z) srcdata[z] = data[z] self._data[quantity].append(srcdata) if not z_by_hand: self._redshifts[quantity].extend(srczarr) # Check to make sure we find requested measurements. for quantity in self.include: zlit = [] for element in self._data[quantity]: zlit.extend(list(element.keys())) zlit = np.array(zlit).ravel() zreq = self._redshifts[quantity] # Problems straight away if we don't have enough redshifts if len(zlit) != len(zreq): s = "Found {} suitable redshifts for {}.".format(len(zlit), quantity) s += " Requested {}.".format(len(zreq)) s += "z_requested={}, z_found={}.".format(zreq, zlit) s += " Perhaps rounding issue? Toggle `ztol` attribute" s += " to be more lenient in finding match with measurements." raise ValueError(s) # Need to loop over all sources. When we're done, should be # able to account for all requested redshifts. for j, z in enumerate(zreq): if z != zlit[j]: s = "# Will fit to {} at z={}".format(quantity, zlit[j]) s += " as it lies within ztol={} of requested z={}".format( self.ztol, z) if rank == 0: print(s) else: raise NotImplemented('help!') @property def include(self): if not hasattr(self, '_include'): self._include = ['lf'] return self._include @include.setter def include(self, value): self._include = value @property def xdata_flat(self): if not hasattr(self, '_xdata_flat'): self._mask = [] self._xdata_flat = []; self._ydata_flat = [] self._error_flat = []; self._redshifts_flat = [] self._metadata_flat = [] for quantity in self.include: # Sorted by sources for i, dataset in enumerate(self.data[quantity]): for j, redshift in enumerate(self.data[quantity][i]): M = self.data[quantity][i][redshift]['M'] # These could still be in log10 units if quantity == 'beta': phi = self.data[quantity][i][redshift]['beta'] else: phi = self.data[quantity][i][redshift]['phi'] err = self.data[quantity][i][redshift]['err'] if hasattr(M, 'mask'): self._mask.extend(M.mask) self._xdata_flat.extend(M.data) else: self._mask.extend(np.zeros_like(M)) self._xdata_flat.extend(M) if self.units[quantity][i] == 'log10': _phi = 10**phi else: _phi = phi if hasattr(M, 'mask'): self._ydata_flat.extend(_phi.data) else: self._ydata_flat.extend(_phi) # Cludge for asymmetric errors for k, _err in enumerate(err): if self.units[quantity][i] == 'log10': _err_ = symmetrize_errors(phi[k], _err, operation='min') else: _err_ = _err if type(_err_) in [tuple, list]: self._error_flat.append(np.mean(_err_)) else: self._error_flat.append(_err_) zlist = [redshift] * len(M) self._redshifts_flat.extend(zlist) self._metadata_flat.extend([quantity] * len(M)) self._mask = np.array(self._mask) self._xdata_flat = np.ma.array(self._xdata_flat, mask=self._mask) self._ydata_flat = np.ma.array(self._ydata_flat, mask=self._mask) self._error_flat = np.ma.array(self._error_flat, mask=self._mask) return self._xdata_flat @property def ydata_flat(self): if not hasattr(self, '_ydata_flat'): xdata_flat = self.xdata_flat return self._ydata_flat @property def error_flat(self): if not hasattr(self, '_error_flat'): xdata_flat = self.xdata_flat return self._error_flat @property def redshifts_flat(self): if not hasattr(self, '_redshifts_flat'): xdata_flat = self.xdata_flat return self._redshifts_flat @property def metadata_flat(self): if not hasattr(self, '_metadata_flat'): xdata_flat = self.xdata_flat return self._metadata_flat @property def units(self): if not hasattr(self, '_units'): xdata_flat = self.xdata_flat return self._units @property def xdata(self): if not hasattr(self, '_xdata'): if hasattr(self, '_data'): self._xdata = []; self._ydata = []; self._error = [] #for i, dataset in enumerate(self.redshifts): for h, quantity in enumerate(self.include): for i, dataset in enumerate(self.data[quantity]): for j, redshift in enumerate(self.data[i]): self._xdata.append(dataset[redshift]['M']) if quantity == 'beta': self._ydata.append(dataset[redshift]['beta']) else: self._ydata.append(dataset[redshift]['phi']) self._error.append(dataset[redshift]['err']) return self._xdata @xdata.setter def xdata(self, value): self._xdata = value @property def ydata(self): if not hasattr(self, '_ydata'): if hasattr(self, '_data'): xdata = self.xdata return self._ydata @ydata.setter def ydata(self, value): self._ydata = value @property def error(self): if not hasattr(self, '_error'): if hasattr(self, '_data'): xdata = self.xdata return self._error @error.setter def error(self, value): self._error = value @property def guess_override(self): if not hasattr(self, '_guess_override_'): self._guess_override_ = {} return self._guess_override_ @guess_override.setter def guess_override(self, kwargs): if not hasattr(self, '_guess_override_'): self._guess_override_ = {} self._guess_override_.update(kwargs) def save_data(self, prefix, clobber=False): if rank > 0: return fn = '{!s}.data.pkl'.format(prefix) if os.path.exists(fn) and (not clobber): print("{!s} exists! Set clobber=True to overwrite.".format(fn)) return write_pickle_file((self.xdata, self.ydata, self.redshifts,\ self.error), fn, ndumps=1, open_mode='w', safe_mode=False,\ verbose=False)
py
7df84435559fedc2113734d3a7de0dea14516e61
#!/usr/bin/env python3 # Copyright (c) 2016-2017 The DigiByte Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Create a blockchain cache. Creating a cache of the blockchain speeds up test execution when running multiple functional tests. This helper script is executed by test_runner when multiple tests are being run in parallel. """ from test_framework.test_framework import DigiByteTestFramework class CreateCache(DigiByteTestFramework): # Test network and test nodes are not required: def set_test_params(self): self.num_nodes = 0 self.supports_cli = True def setup_network(self): pass def run_test(self): pass if __name__ == '__main__': CreateCache().main()
py
7df844eb666e860791bd2d9fcb655b54ba21f7ef
# IMPORTS import pygetwindow from helping_scripts import json_handler from data_models.account import Account from data_models.alien_bot import AlienBot from program_logic.bot_runnable import BotRunnable import helping_scripts.chrome_driver_handler as cd_handler # ProgramInitializer CLASS # Read all accounts from json config file # Create separate chrome instances for each account found # Create one instance of BotRunnable for each account found, containing both account & chrome data # Return a list of all BotRunnables to main.py class ProgramInitializer: def __init__(self): self.bot_runnables_list = [] # [ BotRunnableInstance, BotRunnableInstance ] self.alien_bots_list = [] # [ AlienBotModel, AlienBotModel, AlienBotModel ] self.accounts_list = [] self.previous_chrome_windows = [] # USE CASE: helps keep track when new Chrome Windows are created self.new_chrome_port = 8001 def initialize(self): self.read_accounts() cd_handler.remove_all_existing_instances() # Delete previous chrome instances self.previous_chrome_windows = pygetwindow.getWindowsWithTitle( 'Chrome') # fill start value for previous_chrome_ids self.create_chrome_instances() self.initialize_bot_runnables() print("---\nProgram Initialization Successful...") pass def read_accounts(self): print("---\nACCOUNTS_CONFIGS_LIST") json_list = json_handler.read_json_file('account_configs/account_configs.json') for item in json_list: self.accounts_list.append(Account(item['username'], item['password'])) print(item) def create_chrome_instances(self): print("---\nBeginning creating chrome instances...\n") for account in self.accounts_list: driver = cd_handler.start_chrome(self.new_chrome_port) chrome_window = self.get_new_chrome_window() # print(type(driver)) self.alien_bots_list.append(AlienBot(driver, driver.current_window_handle, chrome_window, account)) self.new_chrome_port += 1 # Increment port to prepare creation of next Chrome Window print("\nSuccessfully created chrome_instances & created AlienBot data models") def get_new_chrome_window(self): new_chrome_window = None current_chrome_ids = pygetwindow.getWindowsWithTitle('Chrome') for chrome_id in current_chrome_ids: if chrome_id not in self.previous_chrome_windows: new_chrome_window = chrome_id # Before returning the Chrome Window, update previous_chrome_windows list with the newly created window self.previous_chrome_windows.append(new_chrome_window) print("New Chrome Window Found: " + str(new_chrome_window)) return new_chrome_window def initialize_bot_runnables(self): # Create new BotRunnable instances from AlienBots and append to bot_runnables_list for alien_bot_model in self.alien_bots_list: self.bot_runnables_list.append(BotRunnable(alien_bot_model)) # This function will be called by main.py def get_bot_runnables(self): return self.bot_runnables_list