ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
7df845d50ec03fc34f465f31a9fc4b782969fbc6
#!/usr/bin/env python # Copyright 2014-2019 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Qiming Sun <[email protected]> # ''' Non-relativistic generalized Hartree-Fock with point group symmetry. ''' from functools import reduce import numpy import scipy.linalg from pyscf import lib from pyscf import symm from pyscf.lib import logger from pyscf.scf import hf_symm from pyscf.scf import ghf from pyscf.scf import chkfile from pyscf import __config__ WITH_META_LOWDIN = getattr(__config__, 'scf_analyze_with_meta_lowdin', True) MO_BASE = getattr(__config__, 'MO_BASE', 1) def analyze(mf, verbose=logger.DEBUG, with_meta_lowdin=WITH_META_LOWDIN, **kwargs): mol = mf.mol if not mol.symmetry: return ghf.analyze(mf, verbose, **kwargs) mo_energy = mf.mo_energy mo_occ = mf.mo_occ mo_coeff = mf.mo_coeff ovlp_ao = mf.get_ovlp() log = logger.new_logger(mf, verbose) if log.verbose >= logger.NOTE: nirrep = len(mol.irrep_id) orbsym = get_orbsym(mf.mol, mo_coeff, ovlp_ao, False) wfnsym = 0 noccs = [sum(orbsym[mo_occ>0]==ir) for ir in mol.irrep_id] log.note('total symmetry = %s', symm.irrep_id2name(mol.groupname, wfnsym)) log.note('occupancy for each irrep: ' + (' %4s'*nirrep), *mol.irrep_name) log.note('double occ ' + (' %4d'*nirrep), *noccs) log.note('**** MO energy ****') irname_full = {} for k,ir in enumerate(mol.irrep_id): irname_full[ir] = mol.irrep_name[k] irorbcnt = {} for k, j in enumerate(orbsym): if j in irorbcnt: irorbcnt[j] += 1 else: irorbcnt[j] = 1 log.note('MO #%d (%s #%d), energy= %.15g occ= %g', k+MO_BASE, irname_full[j], irorbcnt[j], mo_energy[k], mo_occ[k]) dm = mf.make_rdm1(mo_coeff, mo_occ) dip = mf.dip_moment(mol, dm, verbose=log) if with_meta_lowdin: pop_and_chg = mf.mulliken_meta(mol, dm, s=ovlp_ao, verbose=log) else: pop_and_chg = mf.mulliken_pop(mol, dm, s=ovlp_ao, verbose=log) return pop_and_chg, dip def canonicalize(mf, mo_coeff, mo_occ, fock=None): '''Canonicalization diagonalizes the UHF Fock matrix in occupied, virtual subspaces separatedly (without change occupancy). ''' mol = mf.mol if not mol.symmetry: return ghf.canonicalize(mf, mo_coeff, mo_occ, fock) if getattr(mo_coeff, 'orbsym', None) is not None: return hf_symm.canonicalize(mf, mo_coeff, mo_occ, fock) else: raise NotImplementedError class GHF(ghf.GHF): __doc__ = ghf.GHF.__doc__ + ''' Attributes for symmetry allowed GHF: irrep_nelec : dict Specify the number of electrons for particular irrep {'ir_name':int, ...}. For the irreps not listed in these dicts, the program will choose the occupancy based on the orbital energies. ''' def __init__(self, mol): ghf.GHF.__init__(self, mol) # number of electrons for each irreps self.irrep_nelec = {} self._keys = self._keys.union(['irrep_nelec']) def dump_flags(self, verbose=None): ghf.GHF.dump_flags(self, verbose) if self.irrep_nelec: logger.info(self, 'irrep_nelec %s', self.irrep_nelec) return self def build(self, mol=None): if mol is None: mol = self.mol if mol.symmetry: for irname in self.irrep_nelec: if irname not in mol.irrep_name: logger.warn(self, 'Molecule does not have irrep %s', irname) nelec_fix = self.irrep_nelec.values() if any(isinstance(x, (tuple, list)) for x in nelec_fix): msg =('Number of alpha/beta electrons cannot be assigned ' 'separately in GHF. irrep_nelec = %s' % self.irrep_nelec) raise ValueError(msg) nelec_fix = sum(nelec_fix) float_irname = set(mol.irrep_name) - set(self.irrep_nelec) if nelec_fix > mol.nelectron: msg =('More electrons defined by irrep_nelec than total num electrons. ' 'mol.nelectron = %d irrep_nelec = %s' % (mol.nelectron, self.irrep_nelec)) raise ValueError(msg) else: logger.info(mol, 'Freeze %d electrons in irreps %s', nelec_fix, self.irrep_nelec.keys()) if len(float_irname) == 0 and nelec_fix != mol.nelectron: msg =('Num electrons defined by irrep_nelec != total num electrons. ' 'mol.nelectron = %d irrep_nelec = %s' % (mol.nelectron, self.irrep_nelec)) raise ValueError(msg) else: logger.info(mol, ' %d free electrons in irreps %s', mol.nelectron-nelec_fix, ' '.join(float_irname)) return ghf.GHF.build(self, mol) def eig(self, h, s): mol = self.mol if not mol.symmetry: return self._eigh(h, s) nirrep = len(mol.symm_orb) symm_orb = [scipy.linalg.block_diag(c, c) for c in mol.symm_orb] s = [reduce(numpy.dot, (c.T,s,c)) for c in symm_orb] h = [reduce(numpy.dot, (c.T,h,c)) for c in symm_orb] cs = [] es = [] orbsym = [] for ir in range(nirrep): e, c = self._eigh(h[ir], s[ir]) cs.append(c) es.append(e) orbsym.append([mol.irrep_id[ir]] * e.size) e = numpy.hstack(es) c = hf_symm.so2ao_mo_coeff(symm_orb, cs) c = lib.tag_array(c, orbsym=numpy.hstack(orbsym)) return e, c def get_grad(self, mo_coeff, mo_occ, fock=None): g = ghf.GHF.get_grad(self, mo_coeff, mo_occ, fock) if self.mol.symmetry: occidx = mo_occ > 0 viridx = ~occidx orbsym = get_orbsym(self.mol, mo_coeff) sym_forbid = orbsym[viridx].reshape(-1,1) != orbsym[occidx] g[sym_forbid.ravel()] = 0 return g def get_occ(self, mo_energy=None, mo_coeff=None): ''' We assumed mo_energy are grouped by symmetry irreps, (see function self.eig). The orbitals are sorted after SCF. ''' if mo_energy is None: mo_energy = self.mo_energy mol = self.mol if not mol.symmetry: return ghf.GHF.get_occ(self, mo_energy, mo_coeff) orbsym = get_orbsym(mol, mo_coeff) mo_occ = numpy.zeros_like(mo_energy) rest_idx = numpy.ones(mo_occ.size, dtype=bool) nelec_fix = 0 for i, ir in enumerate(mol.irrep_id): irname = mol.irrep_name[i] ir_idx = numpy.where(orbsym == ir)[0] if irname in self.irrep_nelec: n = self.irrep_nelec[irname] occ_sort = numpy.argsort(mo_energy[ir_idx].round(9), kind='mergesort') occ_idx = ir_idx[occ_sort[:n]] mo_occ[occ_idx] = 1 nelec_fix += n rest_idx[ir_idx] = False nelec_float = mol.nelectron - nelec_fix assert(nelec_float >= 0) if nelec_float > 0: rest_idx = numpy.where(rest_idx)[0] occ_sort = numpy.argsort(mo_energy[rest_idx].round(9), kind='mergesort') occ_idx = rest_idx[occ_sort[:nelec_float]] mo_occ[occ_idx] = 1 vir_idx = (mo_occ==0) if self.verbose >= logger.INFO and numpy.count_nonzero(vir_idx) > 0: ehomo = max(mo_energy[~vir_idx]) elumo = min(mo_energy[ vir_idx]) noccs = [] for i, ir in enumerate(mol.irrep_id): irname = mol.irrep_name[i] ir_idx = (orbsym == ir) noccs.append(int(mo_occ[ir_idx].sum())) if ehomo in mo_energy[ir_idx]: irhomo = irname if elumo in mo_energy[ir_idx]: irlumo = irname logger.info(self, 'HOMO (%s) = %.15g LUMO (%s) = %.15g', irhomo, ehomo, irlumo, elumo) logger.debug(self, 'irrep_nelec = %s', noccs) hf_symm._dump_mo_energy(mol, mo_energy, mo_occ, ehomo, elumo, orbsym, verbose=self.verbose) if mo_coeff is not None and self.verbose >= logger.DEBUG: ss, s = self.spin_square(mo_coeff[:,mo_occ>0], self.get_ovlp()) logger.debug(self, 'multiplicity <S^2> = %.8g 2S+1 = %.8g', ss, s) return mo_occ def _finalize(self): ghf.GHF._finalize(self) # Using mergesort because it is stable. We don't want to change the # ordering of the symmetry labels when two orbitals are degenerated. o_sort = numpy.argsort(self.mo_energy[self.mo_occ> 0].round(9), kind='mergesort') v_sort = numpy.argsort(self.mo_energy[self.mo_occ==0].round(9), kind='mergesort') orbsym = get_orbsym(self.mol, self.mo_coeff) self.mo_energy = numpy.hstack((self.mo_energy[self.mo_occ> 0][o_sort], self.mo_energy[self.mo_occ==0][v_sort])) self.mo_coeff = numpy.hstack((self.mo_coeff[:,self.mo_occ> 0].take(o_sort, axis=1), self.mo_coeff[:,self.mo_occ==0].take(v_sort, axis=1))) orbsym = numpy.hstack((orbsym[self.mo_occ> 0][o_sort], orbsym[self.mo_occ==0][v_sort])) self.mo_coeff = lib.tag_array(self.mo_coeff, orbsym=orbsym) nocc = len(o_sort) self.mo_occ[:nocc] = 1 self.mo_occ[nocc:] = 0 if self.chkfile: chkfile.dump_scf(self.mol, self.chkfile, self.e_tot, self.mo_energy, self.mo_coeff, self.mo_occ, overwrite_mol=False) return self def analyze(self, verbose=None, **kwargs): if verbose is None: verbose = self.verbose return analyze(self, verbose, **kwargs) @lib.with_doc(hf_symm.get_irrep_nelec.__doc__) def get_irrep_nelec(self, mol=None, mo_coeff=None, mo_occ=None, s=None): if mol is None: mol = self.mol if mo_occ is None: mo_occ = self.mo_occ if mo_coeff is None: mo_coeff = self.mo_coeff if s is None: s = self.get_ovlp() return hf_symm.get_irrep_nelec(mol, mo_coeff, mo_occ, s) canonicalize = canonicalize def get_orbsym(mol, mo_coeff, s=None, check=False): if mo_coeff is None: orbsym = numpy.hstack([[ir] * mol.symm_orb[i].shape[1] for i, ir in enumerate(mol.irrep_id)]) elif getattr(mo_coeff, 'orbsym', None) is not None: orbsym = mo_coeff.orbsym else: nao = mo_coeff.shape[0] // 2 if isinstance(s, numpy.ndarray): assert(s.size == nao**2 or numpy.allclose(s[:nao,:nao], s[nao:,nao:])) s = s[:nao,:nao] mo_a = mo_coeff[:nao].copy() mo_b = mo_coeff[nao:] zero_alpha_idx = numpy.linalg.norm(mo_a, axis=0) < 1e-7 mo_a[:,zero_alpha_idx] = mo_b[:,zero_alpha_idx] orbsym = symm.label_orb_symm(mol, mol.irrep_id, mol.symm_orb, mo_a, s, check) return numpy.asarray(orbsym) if __name__ == '__main__': from pyscf import gto mol = gto.Mole() mol.build( verbose = 1, output = None, atom = [['O', (0.,0.,0.)], ['O', (0.,0.,1.)], ], basis = {'O': 'ccpvdz'}, symmetry = True, charge = -1, spin = 1 ) method = GHF(mol) method.verbose = 5 method.irrep_nelec['A1u'] = 1 energy = method.kernel() print(energy - -126.117033823738) method.canonicalize(method.mo_coeff, method.mo_occ) method.analyze()
py
7df845f7a49a8d4cb2dfff361754a3168c1e0428
import random n1 = str(input("Aluno 1: ")) n2 = str(input("Aluno 2: ")) n3 = str(input("Aluno 3: ")) n4 = str(input("Aluno 4: ")) lista = [n1, n2, n3, n4] escolhido = random.choice(lista) print("O aluno escolhido foi {}".format(escolhido))
py
7df8466f4c30973a0f0ab2cd7cf3722657ffd5f9
from pypy.interpreter.error import OperationError from pypy.interpreter.gateway import unwrap_spec from rpython.rlib.rstring import StringBuilder from pypy.module.binascii.interp_binascii import raise_Error, raise_Incomplete from rpython.rlib.rarithmetic import ovfcheck # ____________________________________________________________ DONE = 0x7f SKIP = 0x7e FAIL = 0x7d table_a2b_hqx = [ #^@ ^A ^B ^C ^D ^E ^F ^G FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, #\b \t \n ^K ^L \r ^N ^O FAIL, FAIL, SKIP, FAIL, FAIL, SKIP, FAIL, FAIL, #^P ^Q ^R ^S ^T ^U ^V ^W FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, #^X ^Y ^Z ^[ ^\ ^] ^^ ^_ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, # ! " # $ % & ' FAIL, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, #( ) * + , - . / 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, FAIL, FAIL, #0 1 2 3 4 5 6 7 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, FAIL, #8 9 : ; < = > ? 0x14, 0x15, DONE, FAIL, FAIL, FAIL, FAIL, FAIL, #@ A B C D E F G 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, #H I J K L M N O 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, FAIL, #P Q R S T U V W 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, FAIL, #X Y Z [ \ ] ^ _ 0x2C, 0x2D, 0x2E, 0x2F, FAIL, FAIL, FAIL, FAIL, #` a b c d e f g 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, FAIL, #h i j k l m n o 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, FAIL, FAIL, #p q r s t u v w 0x3D, 0x3E, 0x3F, FAIL, FAIL, FAIL, FAIL, FAIL, #x y z { | } ~ ^? FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, ] table_a2b_hqx = ''.join(map(chr, table_a2b_hqx)) @unwrap_spec(ascii='bufferstr') def a2b_hqx(space, ascii): """Decode .hqx coding. Returns (bin, done).""" # overestimate the resulting length res = StringBuilder(len(ascii)) done = 0 pending_value = 0 pending_bits = 0 for c in ascii: n = ord(table_a2b_hqx[ord(c)]) if n <= 0x3F: pending_value = (pending_value << 6) | n pending_bits += 6 if pending_bits == 24: # flush res.append(chr(pending_value >> 16)) res.append(chr((pending_value >> 8) & 0xff)) res.append(chr(pending_value & 0xff)) pending_value = 0 pending_bits = 0 elif n == FAIL: raise_Error(space, 'Illegal character') elif n == DONE: if pending_bits >= 8: res.append(chr(pending_value >> (pending_bits - 8))) if pending_bits >= 16: res.append(chr((pending_value >> (pending_bits - 16)) & 0xff)) done = 1 break #elif n == SKIP: pass else: if pending_bits > 0: raise_Incomplete(space, 'String has incomplete number of bytes') return space.newtuple([space.newbytes(res.build()), space.newint(done)]) # ____________________________________________________________ hqx_encoding = ( '!"#$%&\'()*+,-012345689@ABCDEFGHIJKLMNPQRSTUVXYZ[`abcdefhijklmpqr') @unwrap_spec(bin='bufferstr') def b2a_hqx(space, bin): "Encode .hqx data." extra = (len(bin) + 2) // 3 try: newlength = ovfcheck(len(bin) + extra) except OverflowError: raise OperationError(space.w_MemoryError, space.w_None) res = StringBuilder(newlength) leftchar = 0 leftbits = 0 for c in bin: # Shift into our buffer, and output any 6bits ready leftchar = (leftchar << 8) | ord(c) leftbits += 8 res.append(hqx_encoding[(leftchar >> (leftbits-6)) & 0x3f]) leftbits -= 6 if leftbits >= 6: res.append(hqx_encoding[(leftchar >> (leftbits-6)) & 0x3f]) leftbits -= 6 # Output a possible runt byte if leftbits > 0: leftchar <<= (6 - leftbits) res.append(hqx_encoding[leftchar & 0x3f]) return space.newbytes(res.build()) # ____________________________________________________________ @unwrap_spec(hexbin='bufferstr') def rledecode_hqx(space, hexbin): "Decode hexbin RLE-coded string." # that's a guesstimation of the resulting length res = StringBuilder(len(hexbin)) end = len(hexbin) i = 0 lastpushed = -1 while i < end: c = hexbin[i] i += 1 if c != '\x90': res.append(c) lastpushed = ord(c) else: if i == end: raise_Incomplete(space, 'String ends with the RLE code \\x90') count = ord(hexbin[i]) - 1 i += 1 if count < 0: res.append('\x90') lastpushed = 0x90 else: if lastpushed < 0: raise_Error(space, 'String starts with the RLE code \\x90') res.append_multiple_char(chr(lastpushed), count) return space.newbytes(res.build()) # ____________________________________________________________ @unwrap_spec(data='bufferstr') def rlecode_hqx(space, data): "Binhex RLE-code binary data." # that's a guesstimation of the resulting length res = StringBuilder(len(data)) i = 0 end = len(data) while i < end: c = data[i] res.append(c) if c == '\x90': # Escape it, and ignore repetitions (*). res.append('\x00') else: # Check how many following are the same inend = i + 1 while inend < end and data[inend] == c and inend < i + 255: inend += 1 if inend - i > 3: # More than 3 in a row. Output RLE. For the case of more # than 255, see (*) below. res.append('\x90') res.append(chr(inend - i)) i = inend continue i += 1 # (*) Note that we put simplicity before compatness here, like CPython. # I am sure that if we tried harder to produce the smallest possible # string that rledecode_hqx() would expand back to 'data', there are # some programs somewhere that would start failing obscurely in rare # cases. return space.newbytes(res.build()) # ____________________________________________________________ crctab_hqx = [ 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0, ] @unwrap_spec(data='bufferstr', oldcrc=int) def crc_hqx(space, data, oldcrc): "Compute CRC-CCIT incrementally." crc = oldcrc for c in data: crc = ((crc << 8) & 0xff00) ^ crctab_hqx[((crc >> 8) & 0xff) ^ ord(c)] return space.newint(crc)
py
7df846fe9b897364145e731f4ba1ea6d23dd2fda
from flask import Flask, request, Response from github import Github from flask import request import requests import json import os app = Flask(__name__) git_token = os.environ['GITHUB_TOKEN'] repo_name = '' default_branch ='' default_user = os.environ['DEFAULT_USER'] issue_Template = """ Hi @{}, the security settings for your main branch has been changed! This will keep your repository safe and maintain a high standards. We included the following changes automatically: **Changes**: - Admin branch protection: You have absolute control over this branch. - Pull request protection: Auto approval of pull requests, requires at least 5 approving reviews. """.format(default_user) @app.route('/webhook', methods=['POST']) def respond(): git_data = request.json; if 'action' in git_data: if git_data['action'] == 'created': if git_data['repository']: repo_name = git_data['repository']['full_name']; default_branch = git_data['repository']['default_branch'] createGitHubIssue(repo_name, 'Updated branch protection', issue_Template, default_user, 'enhancement'); createBranchProtection(git_data['repository']['owner']['login'],git_data['repository']['name'], default_branch) return Response(status=200) def createBranchProtection(owner,repo,branch,review_number=5): '''This is still in preview mode''' url = 'https://api.github.com/repos/{}/{}/branches/{}/protection'.format(owner,repo, branch) headers = {"Authorization": "token {}".format(git_token), "Accept": "application/vnd.github.luke-cage-preview+json"} data = { "required_status_checks": { "strict": True, "contexts": [ "trevis-baby" ] }, "enforce_admins": True, "required_pull_request_reviews": { "dismissal_restrictions": { "users": [ "users" ], "teams": [ "teams" ] }, "dismiss_stale_reviews": True, "require_code_owner_reviews": True, "required_approving_review_count": review_number }, "restrictions": { "users": [ 'users' ], "teams": [ 'teams' ], "apps": [ 'apps' ] } } r = requests.put(url, headers=headers, data=json.dumps(data)) return def createGitHubIssue(repoName, title, body=None, assignee=None, labels=None): '''Create an issue on github.com using the given parameters.''' client = Github(git_token) repo = client.get_repo("%s" % (repoName)) issue = repo.create_issue( title= title, body= body, assignee= assignee, labels=[ repo.get_label(labels) ] )
py
7df84708d20783bdafd0f37f73bb3e7f5f4a7f34
# -*- coding: utf-8 -*- import dataset from . import config from . import helpers # Module API class Warehouse(object): # Public def open_spider(self, spider): print("------ open_spider", spider.conf, spider.conn) if spider.conf and spider.conn: self.__conf = spider.conf self.__conn = spider.conn else: # For runs trigered by scrapy CLI utility self.__conf = helpers.get_variables(config, str.isupper) self.__conn = {'warehouse': dataset.connect(config.WAREHOUSE_URL)} def process_item(self, record, spider): record.write(self.__conf, self.__conn) return record
py
7df8470b1791af919abd258f22587dc3097ab655
# base16-qutebrowser (https://github.com/theova/base16-qutebrowser) # Base16 qutebrowser template by theova # Summerfruit Dark scheme by Christopher Corley (http://christop.club/) base00 = "#151515" base01 = "#202020" base02 = "#303030" base03 = "#505050" base04 = "#B0B0B0" base05 = "#D0D0D0" base06 = "#E0E0E0" base07 = "#FFFFFF" base08 = "#FF0086" base09 = "#FD8900" base0A = "#ABA800" base0B = "#00C918" base0C = "#1FAAAA" base0D = "#3777E6" base0E = "#AD00A1" base0F = "#CC6633" # set qutebrowser colors # Text color of the completion widget. May be a single color to use for # all columns or a list of three colors, one for each column. c.colors.completion.fg = base05 # Background color of the completion widget for odd rows. c.colors.completion.odd.bg = base03 # Background color of the completion widget for even rows. c.colors.completion.even.bg = base00 # Foreground color of completion widget category headers. c.colors.completion.category.fg = base0A # Background color of the completion widget category headers. c.colors.completion.category.bg = base00 # Top border color of the completion widget category headers. c.colors.completion.category.border.top = base00 # Bottom border color of the completion widget category headers. c.colors.completion.category.border.bottom = base00 # Foreground color of the selected completion item. c.colors.completion.item.selected.fg = base01 # Background color of the selected completion item. c.colors.completion.item.selected.bg = base0A # Top border color of the completion widget category headers. c.colors.completion.item.selected.border.top = base0A # Bottom border color of the selected completion item. c.colors.completion.item.selected.border.bottom = base0A # Foreground color of the matched text in the selected completion item. c.colors.completion.item.selected.match.fg = base08 # Foreground color of the matched text in the completion. c.colors.completion.match.fg = base0B # Color of the scrollbar handle in the completion view. c.colors.completion.scrollbar.fg = base05 # Color of the scrollbar in the completion view. c.colors.completion.scrollbar.bg = base00 # Background color for the download bar. c.colors.downloads.bar.bg = base00 # Color gradient start for download text. c.colors.downloads.start.fg = base00 # Color gradient start for download backgrounds. c.colors.downloads.start.bg = base0D # Color gradient end for download text. c.colors.downloads.stop.fg = base00 # Color gradient stop for download backgrounds. c.colors.downloads.stop.bg = base0C # Foreground color for downloads with errors. c.colors.downloads.error.fg = base08 # Font color for hints. c.colors.hints.fg = base00 # Background color for hints. Note that you can use a `rgba(...)` value # for transparency. c.colors.hints.bg = base0A # Font color for the matched part of hints. c.colors.hints.match.fg = base05 # Text color for the keyhint widget. c.colors.keyhint.fg = base05 # Highlight color for keys to complete the current keychain. c.colors.keyhint.suffix.fg = base05 # Background color of the keyhint widget. c.colors.keyhint.bg = base00 # Foreground color of an error message. c.colors.messages.error.fg = base00 # Background color of an error message. c.colors.messages.error.bg = base08 # Border color of an error message. c.colors.messages.error.border = base08 # Foreground color of a warning message. c.colors.messages.warning.fg = base00 # Background color of a warning message. c.colors.messages.warning.bg = base0E # Border color of a warning message. c.colors.messages.warning.border = base0E # Foreground color of an info message. c.colors.messages.info.fg = base05 # Background color of an info message. c.colors.messages.info.bg = base00 # Border color of an info message. c.colors.messages.info.border = base00 # Foreground color for prompts. c.colors.prompts.fg = base05 # Border used around UI elements in prompts. c.colors.prompts.border = base00 # Background color for prompts. c.colors.prompts.bg = base00 # Background color for the selected item in filename prompts. c.colors.prompts.selected.bg = base0A # Foreground color of the statusbar. c.colors.statusbar.normal.fg = base0B # Background color of the statusbar. c.colors.statusbar.normal.bg = base00 # Foreground color of the statusbar in insert mode. c.colors.statusbar.insert.fg = base00 # Background color of the statusbar in insert mode. c.colors.statusbar.insert.bg = base0D # Foreground color of the statusbar in passthrough mode. c.colors.statusbar.passthrough.fg = base00 # Background color of the statusbar in passthrough mode. c.colors.statusbar.passthrough.bg = base0C # Foreground color of the statusbar in private browsing mode. c.colors.statusbar.private.fg = base00 # Background color of the statusbar in private browsing mode. c.colors.statusbar.private.bg = base03 # Foreground color of the statusbar in command mode. c.colors.statusbar.command.fg = base05 # Background color of the statusbar in command mode. c.colors.statusbar.command.bg = base00 # Foreground color of the statusbar in private browsing + command mode. c.colors.statusbar.command.private.fg = base05 # Background color of the statusbar in private browsing + command mode. c.colors.statusbar.command.private.bg = base00 # Foreground color of the statusbar in caret mode. c.colors.statusbar.caret.fg = base00 # Background color of the statusbar in caret mode. c.colors.statusbar.caret.bg = base0E # Foreground color of the statusbar in caret mode with a selection. c.colors.statusbar.caret.selection.fg = base00 # Background color of the statusbar in caret mode with a selection. c.colors.statusbar.caret.selection.bg = base0D # Background color of the progress bar. c.colors.statusbar.progress.bg = base0D # Default foreground color of the URL in the statusbar. c.colors.statusbar.url.fg = base05 # Foreground color of the URL in the statusbar on error. c.colors.statusbar.url.error.fg = base08 # Foreground color of the URL in the statusbar for hovered links. c.colors.statusbar.url.hover.fg = base05 # Foreground color of the URL in the statusbar on successful load # (http). c.colors.statusbar.url.success.http.fg = base0C # Foreground color of the URL in the statusbar on successful load # (https). c.colors.statusbar.url.success.https.fg = base0B # Foreground color of the URL in the statusbar when there's a warning. c.colors.statusbar.url.warn.fg = base0E # Background color of the tab bar. c.colors.tabs.bar.bg = base00 # Color gradient start for the tab indicator. c.colors.tabs.indicator.start = base0D # Color gradient end for the tab indicator. c.colors.tabs.indicator.stop = base0C # Color for the tab indicator on errors. c.colors.tabs.indicator.error = base08 # Foreground color of unselected odd tabs. c.colors.tabs.odd.fg = base05 # Background color of unselected odd tabs. c.colors.tabs.odd.bg = base03 # Foreground color of unselected even tabs. c.colors.tabs.even.fg = base05 # Background color of unselected even tabs. c.colors.tabs.even.bg = base00 # Background color of pinned unselected even tabs. c.colors.tabs.pinned.even.bg = base0C # Foreground color of pinned unselected even tabs. c.colors.tabs.pinned.even.fg = base07 # Background color of pinned unselected odd tabs. c.colors.tabs.pinned.odd.bg = base0B # Foreground color of pinned unselected odd tabs. c.colors.tabs.pinned.odd.fg = base07 # Background color of pinned selected even tabs. c.colors.tabs.pinned.selected.even.bg = base05 # Foreground color of pinned selected even tabs. c.colors.tabs.pinned.selected.even.fg = base00 # Background color of pinned selected odd tabs. c.colors.tabs.pinned.selected.odd.bg = base05 # Foreground color of pinned selected odd tabs. c.colors.tabs.pinned.selected.odd.fg = base0E # Foreground color of selected odd tabs. c.colors.tabs.selected.odd.fg = base00 # Background color of selected odd tabs. c.colors.tabs.selected.odd.bg = base05 # Foreground color of selected even tabs. c.colors.tabs.selected.even.fg = base00 # Background color of selected even tabs. c.colors.tabs.selected.even.bg = base05 # Background color for webpages if unset (or empty to use the theme's # color). # c.colors.webpage.bg = base00
py
7df8473029c7df2e472471f7466deaa50cf48a40
#!/usr/bin/env python3 # BlueKitchen GmbH (c) 2014 # convert log output to PacketLogger format # can be viewed with Wireshark # APPLE PacketLogger # typedef struct { # uint32_t len; # uint32_t ts_sec; # uint32_t ts_usec; # uint8_t type; // 0xfc for note # } import re import sys import time import os default_date="2001-01-01" default_hours = 12 packet_counter = 0 last_time = default_date + " " + str(default_hours) + ":00:00.000" def chop(line, prefix): if line.startswith(prefix): return line[len(prefix):] return None def str2hex(value): if value: return int(value, 16) return None def arrayForNet32(value): return bytearray([value >> 24, (value >> 16) & 0xff, (value >> 8) & 0xff, value & 0xff]) def generateTimestamp(t): global last_time global packet_counter # use last_time if time missing for this entry if not t: t = last_time if t: last_time = t # check for date parts = t.split(' ') have_date = True if len(parts) == 1: # only time, prepend fixed date have_date = False t = "2000-01-01 " + t; # handle ms try: (t1, t2) = t.split('.') if t1 and t2: t_obj = time.strptime(t1, "%Y-%m-%d %H:%M:%S") tv_sec = int(time.mktime(t_obj)) if not have_date: # start at 12:00 tv_sec += 12*60*60 tv_usec = int(t2) * 1000 return (tv_sec, tv_usec) except ValueError: # print 'Cannot parse time', t pass packet_counter += 1 return (packet_counter, 0) def dumpPacket(fout, timestamp, type, data): length = 9 + len(data) (tv_sec, tv_usec) = generateTimestamp(timestamp) fout.write(arrayForNet32(length)) fout.write(arrayForNet32(tv_sec)) fout.write(arrayForNet32(tv_usec)) fout.write(bytearray([type])) fout.write(data) def handleHexPacket(fout, timestamp, type, text): try: data = bytearray(list(map(str2hex, text.strip().split()))) dumpPacket(fout, timestamp, type, data) except TypeError: print('Cannot parse hexdump', text.strip()) if len(sys.argv) == 1: print('BTstack Console to PacketLogger converter') print('Copyright 2014, BlueKitchen GmbH') print('') print('Usage: ', sys.argv[0], 'ascii-log-file.txt [hci_dump.pklg]') print('Converted hci_dump.pklg can be viewed with Wireshark and OS X PacketLogger') exit(0) infile = sys.argv[1] outfile = os.path.splitext(infile)[0] + ".pklg" if len(sys.argv) > 2: outfile = sys.argv[2] # with open(outfile, 'w') as fout: with open (outfile, 'wb') as fout: with open (infile, 'rt') as fin: packet_counter = 0 line_conter = 0 for line in fin: try: # try to deal with windows 16-bit unicode by dropping \0 characters line = ''.join([c for c in line if c != '\0']) line_conter += 1 timestamp = None # strip newlines line = line.strip("\n\r") # skip empty lines if len(line) == 0: continue parts = re.match('\[(.*)\] (.*)', line) if parts and len(parts.groups()) == 2: (timestamp, line) = parts.groups() rest = chop(line,'CMD => ') if rest: handleHexPacket(fout, timestamp, 0, rest) continue rest = chop(line,'EVT <= ') if rest: handleHexPacket(fout, timestamp, 1, rest) continue rest = chop(line,'ACL => ') if rest: handleHexPacket(fout, timestamp, 2, rest) continue rest = chop(line,'ACL <= ') if rest: handleHexPacket(fout, timestamp, 3, rest) continue rest = chop(line,'SCO => ') if rest: handleHexPacket(fout, timestamp, 8, rest) continue rest = chop(line,'SCO <= ') if rest: handleHexPacket(fout, timestamp, 9, rest) continue rest = chop(line,'LOG -- ') if rest: line = rest dumpPacket(fout, timestamp, 0xfc, line.encode('ascii')) except: print("Error in line %u: '%s'" % (line_conter, line)) print("\nPacket Log: %s" % outfile)
py
7df84772a92fd108f711b4b2b0ee81c79029cccd
""" Usage: # From tensorflow/models/ # Create train data: python generate_tfrecord.py --csv_input=data/train_labels.csv --output_path=train.record # Create test data: python generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=test.record """ from __future__ import division from __future__ import print_function from __future__ import absolute_import import os import io import pandas as pd import tensorflow as tf from PIL import Image from object_detection.utils import dataset_util from collections import namedtuple, OrderedDict flags = tf.app.flags flags.DEFINE_string('csv_input', '', 'Path to the CSV input') flags.DEFINE_string('output_path', '', 'Path to output TFRecord') flags.DEFINE_string('image_dir', '', 'Path to images') FLAGS = flags.FLAGS # TO-DO replace this with label map def class_text_to_int(row_label): if row_label == 'mask': return 1 elif row_label == 'nomask': return 2 else: None def split(df, group): data = namedtuple('data', ['filename', 'object']) gb = df.groupby(group) return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] def create_tf_example(group, path): with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) width, height = image.size filename = group.filename.encode('utf8') image_format = b'jpg' xmins = [] xmaxs = [] ymins = [] ymaxs = [] classes_text = [] classes = [] for index, row in group.object.iterrows(): xmins.append(row['xmin'] / width) xmaxs.append(row['xmax'] / width) ymins.append(row['ymin'] / height) ymaxs.append(row['ymax'] / height) classes_text.append(row['class'].encode('utf8')) classes.append(class_text_to_int(row['class'])) tf_example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename), 'image/source_id': dataset_util.bytes_feature(filename), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example def main(_): writer = tf.python_io.TFRecordWriter(FLAGS.output_path) path = os.path.join(FLAGS.image_dir) examples = pd.read_csv(FLAGS.csv_input) grouped = split(examples, 'filename') for group in grouped: tf_example = create_tf_example(group, path) writer.write(tf_example.SerializeToString()) writer.close() output_path = os.path.join(os.getcwd(), FLAGS.output_path) print('Successfully created the TFRecords: {}'.format(output_path)) if __name__ == '__main__': tf.app.run()
py
7df84798b56cbe686d67ab305ad3ac8224024778
# -*- coding: utf-8 -*- import json import logging import socket from flask import current_app from polylogyx.utils import DateTimeEncoder, append_node_and_rule_information_to_alert, flatten_json from .base import AbstractAlerterPlugin DEFAULT_KEY_FORMAT = 'polylogyx-incident-{count}' class RsyslogAlerter(AbstractAlerterPlugin): def __init__(self, config): # Required configuration self.service_key = config['service_key'] # Optional self.client_url = config.get('client_url', '') self.key_format = config.get('key_format', DEFAULT_KEY_FORMAT) # Other self.incident_count = 0 self.logger = logging.getLogger(__name__ + '.RsyslogAlerter') def handle_alert(self, node, match,intel_match): self.incident_count += 1 key = self.key_format.format( count=self.incident_count ) import datetime as dt if match: current_app.logger.log(logging.WARNING, 'Triggered alert: {0!r}'.format(match)) description = match.rule.template.safe_substitute( match.result['columns'], **node ).rstrip() description = ":".join(description.split('\r\n\r\n', 1)) payload = json.dumps(append_node_and_rule_information_to_alert(node, flatten_json({ 'event_type': 'trigger', 'service_key': self.service_key, 'incident_key': key, 'description': description, 'host_identifier': node['host_identifier'], 'client': 'PolyLogyx', "client_url": self.client_url, "query_name": match.result['name'], 'rule_name': match.rule.name, 'rule_description': match.rule.description, 'rule_status': match.rule.status, 'severity':match.rule.severity, 'alert_type': 'Rule', 'created_at': dt.datetime.utcnow(), 'action': match.result['action'], 'columns': match.result['columns'], })), cls=DateTimeEncoder) elif intel_match: current_app.logger.log(logging.WARNING, 'Triggered alert: {0!r}'.format(intel_match)) payload = json.dumps(append_node_and_rule_information_to_alert(node, flatten_json({ 'event_type': 'trigger', 'service_key': self.service_key, 'incident_key': key, 'host_identifier': node['host_identifier'], 'client': 'PolyLogyx', "client_url": self.client_url, 'alert_type':'Threat Intel', "query_name": intel_match.intel['query_name'], 'source_data': intel_match.data, 'source': intel_match.intel['source'], 'severity': intel_match.intel['severity'], 'created_at': dt.datetime.utcnow(), 'columns': intel_match.result, })), cls=DateTimeEncoder) try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect(("rsyslogf", 514)) bSock = True current_app.logger.info("[alert] Socket connected") except: bSock = False current_app.logger.error("Unable to socket connect, is rsyslog forwarder running? If not, disable rsyslog forwading in docker compose file.") try: if bSock: sock.send(payload.encode('utf-8')) sock.send('\n'.encode('utf-8')) finally: if bSock: sock.close() current_app.logger.info("[alert] Socket closed")
py
7df848b65ead88baf7ba5fed2c1023e81608fe5b
""" file: test_transforms.py author: Jess Robertson CSIRO Mineral Resources date: January 2017 description: Unit tests for our transform implementations """ import unittest import numpy as np from scipy import stats np.random.seed(42) # don't forget your towel from earthchem.transform.isometric import IsometricLogTransform from earthchem.transform.centered import CenteredLogTransform from earthchem.transform.barycentric import BarycentricTransform from earthchem.transform.additive import AdditiveLogTransform from earthchem.transform.utilities import basis_matrix, closure def ortho_group(dim, size=1): """ Draw random samples from O(N). Stolen from scipy v. 18 code cause we don't have it here yet Parameters: dim - the dimension of rotation space (N). size - the number of samples to draw (default 1). Returns: Random size N-dimensional matrices, dimension (size, dim, dim) """ size = int(size) if size > 1: return np.array([ortho_group(dim) for i in range(size)]) H = np.eye(dim) for n in range(1, dim): x = stats.norm.rvs(size=(dim-n+1,)) # random sign, 50/50, but chosen carefully to avoid roundoff error D = np.sign(x[0]) x[0] += D * np.sqrt((x * x).sum()) # Householder transformation Hx = -D * (np.eye(dim - n + 1) - 2 * np.outer(x, x) / (x * x).sum()) mat = np.eye(dim) mat[n-1:, n-1:] = Hx H = np.dot(H, mat) return H def correlation_matrix(ndim, distribution=None): """ Generate a random correlation matrix Parameters: ndim - the number of dimensions in the matrix distribution - optional, a scipy.stats distribution to generate eigenvalues from (random eigenvalues must be positive). Defaults to scipy.stats.gamma(1) Returns: a random correlation matrix """ # Specify the eigenvalue distribution dist = distribution or stats.gamma(1) # Generate random rotation D = np.diag(dist.rvs(ndim)) Q = ortho_group(ndim) return np.dot(np.dot(Q, D), Q.T) class TestTransforms(unittest.TestCase): "Unit tests for transforms" def test_centered_logratio_isometry(self): "Centered logratio should be isomorphic under closure" t = CenteredLogTransform() # Loop over different dimensions npts = 1000 for ndim in (3, 5, 10, 20): for _ in range(10): # Generate random variables mvn = stats.multivariate_normal( mean=stats.uniform(0, 1).rvs(ndim), cov=correlation_matrix(ndim, stats.gamma(2)) ) X = t.inverse_transform(mvn.rvs(npts)) L = t.transform(X) # Check that things are the right size self.assertEqual(X.shape, (npts, ndim)) self.assertEqual(L.shape, (npts, ndim)) # Check that inverse and transform are isomorphic# # Need to use pre-transformed variables since these are # only isomorphic to closure self.assertTrue(np.allclose(X, t.inverse_transform(L))) self.assertTrue(np.allclose(L, t.transform(X))) def test_barycentric_isometry(self): "Centered logratio should be isomorphic under closure" t = BarycentricTransform() # Loop over different dimensions npts = 1000 for _ in range(10): # Generate random variables mvn = stats.multivariate_normal( stats.uniform(0, 1).rvs(3), correlation_matrix(3, stats.gamma(2))) X = mvn.rvs(npts) L = t.transform(X) # Check that things are the right size self.assertEqual(X.shape, (npts, 3)) self.assertEqual(L.shape, (npts, 2)) def test_barycentric_error(self): "Passing data with ndims != 3 should raise a ValueError" t = BarycentricTransform() # Loop over different dimensions for ndim in (2, 4, 5, 10, 20): # Generate random variables mvn = stats.multivariate_normal( stats.uniform(0, 1).rvs(ndim), correlation_matrix(ndim, stats.gamma(2))) self.assertRaises(ValueError, t.transform, mvn.rvs(10)) def test_isometric_basis_matrix(self): "ILR basis matrix should be constructed correctly" for ndim in range(2, 20): psi = basis_matrix(ndim) # Check that Q @ Q.T = identity self.assertTrue( np.allclose(np.dot(psi, psi.T), np.identity(ndim - 1))) # Check that Q.T @ Q = identity - 1 / D * ones expected = np.identity(ndim) - np.ones((ndim, ndim)) / ndim self.assertTrue(np.allclose(np.dot(psi.T, psi), expected)) def test_closure(self): "Closure operator should work ok" for ndim in range(2, 20): for npts in (10, 100, 1000): mvn = stats.multivariate_normal(stats.uniform(0, 1).rvs(3), correlation_matrix(3, stats.gamma(2))) X = closure(mvn.rvs(npts)) self.assertTrue(np.allclose(X.sum(axis=1), np.ones(npts))) def test_isometric_logratio_isometry(self): "Isometric logratio should be isomorphic under closure" t = IsometricLogTransform() # Loop over different dimensions npts = 1000 for ndim in (3, 5, 10, 20): for _ in range(10): # Generate random variables mvn = stats.multivariate_normal( stats.uniform(0, 1).rvs(ndim - 1), correlation_matrix(ndim - 1)) X = t.inverse_transform(mvn.rvs(npts)) L = t.transform(X) # Check that things are the right size self.assertEqual(X.shape, (npts, ndim)) self.assertEqual(L.shape, (npts, ndim - 1)) # Check that inverse and transform are isomorphic# # Need to use pre-transformed variables since these are # only isomorphic to closure self.assertTrue(np.allclose(X, t.inverse_transform(L))) self.assertTrue(np.allclose(L, t.transform(X))) def test_additive_logratio_isometry(self): "Additive logratio should be isomorphic under closure" t = AdditiveLogTransform() # Loop over different dimensions npts = 1000 for ndim in (3, 5, 10, 20): for _ in range(10): # Generate random variables mvn = stats.multivariate_normal( stats.uniform(0, 1).rvs(ndim - 1), correlation_matrix(ndim - 1)) X = t.inverse_transform(mvn.rvs(npts)) L = t.transform(X) # Check that things are the right size self.assertEqual(X.shape, (npts, ndim)) self.assertEqual(L.shape, (npts, ndim - 1)) # Check that inverse and transform are isomorphic# # Need to use pre-transformed variables since these are # only isomorphic to closure self.assertTrue(np.allclose(X, t.inverse_transform(L))) self.assertTrue(np.allclose(L, t.transform(X))) def test_additive_logratio_isometry_with_specd_scale(self): "Additive logratio should be isomorphic under closure" # Loop over different dimensions npts = 1000 for ndim in (3, 5, 10, 20): for _ in range(10): t = AdditiveLogTransform(np.random.randint(0, ndim)) # Generate random variables mvn = stats.multivariate_normal( stats.uniform(0, 1).rvs(ndim - 1), correlation_matrix(ndim - 1)) X = t.inverse_transform(mvn.rvs(npts)) L = t.transform(X) # Check that things are the right size self.assertEqual(X.shape, (npts, ndim)) self.assertEqual(L.shape, (npts, ndim - 1)) # Check that inverse and transform are isomorphic# # Need to use pre-transformed variables since these are # only isomorphic to closure self.assertTrue(np.allclose(X, t.inverse_transform(L))) self.assertTrue(np.allclose(L, t.transform(X))) def test_additive_index_error(self): "Additive logratio should raise value error if base index > len" ndim = 4 mvn = stats.multivariate_normal( stats.uniform(0, 1).rvs(ndim - 1), correlation_matrix(ndim - 1)) alr = AdditiveLogTransform(ndim + 2) clr = CenteredLogTransform() X = clr.inverse_transform(mvn.rvs(1000)) self.assertRaises(ValueError, alr.transform, X) if __name__ == '__main__': unittest.main()
py
7df84996f8e3ecc384fda9a74cfc9c2cfba21a15
from datetime import datetime from enum import Enum from pydantic import BaseModel, Extra, Field from typing import Any, Dict, List, Optional # https://www.mongodb.com/blog/post/building-with-patterns-the-schema-versioning-pattern SCHEMA_VERSION = "1.2" DEFAULT_UID = "342e4568-e23b-12d3-a456-526714178000" class Persistable(BaseModel): uid: Optional[str] class ModelInfo(BaseModel): label_index: Optional[Dict[str, float]] class Locator(BaseModel): spec: str = Field(description="Description of the specification for this locator") path: Any = Field(description="Locator information defined by the spec field") class TagSource(Persistable): schema_version: str = SCHEMA_VERSION model_info: Optional[ModelInfo] type: str name: Optional[str] = Field(description="optional name of model that produces tags") class Config: extra = Extra.forbid class TaggingEvent(Persistable): schema_version: str = SCHEMA_VERSION tagger_id: str run_time: datetime accuracy: Optional[float] = Field(ge=0.0, le=1.0) class Config: extra = Extra.forbid class Tag(BaseModel): uid: str = DEFAULT_UID name: str = Field(description="name of the tag") locator: Optional[Locator] = Field(description="optional location information, " "for indicating a subset of a dataset that this tag applies to") confidence: Optional[float] = Field(description="confidence provided for this tag") event_id: Optional[str] = Field(description="id of event where this tag was created") class DatasetType(str, Enum): tiled = "tiled" file = "file" web = "web" class DatasetCollection(Persistable): assets: List[str] models: Dict[str, int] # model and the quality of that model when run against a model class Dataset(BaseModel): uid: str = DEFAULT_UID schema_version: str = SCHEMA_VERSION type: DatasetType uri: str tags: Optional[List[Tag]] class Config: extra = Extra.forbid class FileDataset(Dataset): type = DatasetType.file class TagPatchRequest(BaseModel): add_tags: Optional[List[Tag]] remove_tags: Optional[List[str]]
py
7df84a1875ec8be24f5694b20c673a73b129bd1c
from .lib_template import * class Libxml2Seeker(Seeker): """Seeker (Identifier) for the libxml(2) open source library.""" # Library Name NAME = "libxml2" # Overridden base function def searchLib(self, logger): """Check if the open source library is located somewhere in the binary. Args: logger (logger): elementals logger instance Return Value: number of library instances that were found in the binary """ extra_parts = ["CVS", "SVN", "GIT"] key_string = ": program compiled against libxml %d using older %d\n" # Now search key_indices = [] for idx, bin_str in enumerate(self._all_strings): # we have a match if key_string in str(bin_str): logger.debug(f"Located a key string of {self.NAME} in address 0x{bin_str.ea:x}") key_indices.append(idx) break # Now check for the version string self._version_strings = [] for key_index in key_indices: for bin_str in self._all_strings[max(key_index - 10000, 0):min(key_index + 10000, len(self._all_strings))]: cur_str = str(bin_str) if cur_str.find("-") != -1 and cur_str.split("-")[1][:3] in extra_parts: logger.debug(f"Located a version string of {self.NAME} in address 0x{bin_str.ea:x}") self._version_strings.append(cur_str) break # return the result return len(self._version_strings) # Overridden base function def identifyVersions(self, logger): """Identify the version(s) of the library (assuming it was already found). Assumptions: 1. searchLib() was called before calling identifyVersions() 2. The call to searchLib() returned a number > 0 Args: logger (logger): elementals logger instance Return Value: list of Textual ID(s) of the library's version(s) """ results = [] # extract the version from the copyright string for work_str in self._version_strings: results.append(self.extractVersion(work_str)) # return the result return results # Register our class Libxml2Seeker.register(Libxml2Seeker.NAME, Libxml2Seeker)
py
7df84a375de8ecadbad05a3a5dcc57eaf6c660d9
# coding: utf-8 # # Copyright 2015 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from core import jobs from core.domain import feedback_domain from core.platform import models import feconf from google.appengine.ext import ndb (base_models, feedback_models, exp_models,) = models.Registry.import_models([ models.NAMES.base_model, models.NAMES.feedback, models.NAMES.exploration ]) transaction_services = models.Registry.import_transaction_services() class FeedbackAnalyticsRealtimeModel( jobs.BaseRealtimeDatastoreClassForContinuousComputations): """A continuous-computation job that sets the number of open threads and the total number of threads to the default integer value of zero in the realtime layer. """ num_open_threads = ndb.IntegerProperty(default=0) num_total_threads = ndb.IntegerProperty(default=0) class FeedbackAnalyticsAggregator(jobs.BaseContinuousComputationManager): """A continuous-computation job that computes analytics for feedback threads of explorations. """ @classmethod def get_event_types_listened_to(cls): return [feconf.EVENT_TYPE_NEW_THREAD_CREATED, feconf.EVENT_TYPE_THREAD_STATUS_CHANGED] @classmethod def _get_realtime_datastore_class(cls): return FeedbackAnalyticsRealtimeModel @classmethod def _get_batch_job_manager_class(cls): return FeedbackAnalyticsMRJobManager @classmethod def _handle_incoming_event(cls, active_realtime_layer, event_type, *args): """Records thread analytics in the given realtime layer. Args: active_realtime_layer: int. The currently active realtime datastore layer. event_type: str. The event triggered by the student. *args: list(*). Variable length argument list. The first element of *args corresponds to the id of the exploration currently being played. """ exp_id = args[0] def _increment_open_threads_count(): realtime_class = cls._get_realtime_datastore_class() realtime_model_id = realtime_class.get_realtime_id( active_realtime_layer, exp_id) model = realtime_class.get(realtime_model_id, strict=False) if model is None: realtime_class( id=realtime_model_id, num_open_threads=1, realtime_layer=active_realtime_layer).put() else: model.num_open_threads += 1 model.put() def _increment_total_threads_count(): realtime_class = cls._get_realtime_datastore_class() realtime_model_id = realtime_class.get_realtime_id( active_realtime_layer, exp_id) model = realtime_class.get(realtime_model_id, strict=False) if model is None: realtime_class( id=realtime_model_id, num_total_threads=1, realtime_layer=active_realtime_layer).put() else: model.num_total_threads += 1 model.put() def _decrement_open_threads_count(): realtime_class = cls._get_realtime_datastore_class() realtime_model_id = realtime_class.get_realtime_id( active_realtime_layer, exp_id) model = realtime_class.get(realtime_model_id, strict=False) if model is None: realtime_class( id=realtime_model_id, num_open_threads=-1, realtime_layer=active_realtime_layer).put() else: model.num_open_threads -= 1 model.put() if event_type == feconf.EVENT_TYPE_NEW_THREAD_CREATED: transaction_services.run_in_transaction( _increment_total_threads_count) transaction_services.run_in_transaction( _increment_open_threads_count) elif event_type == feconf.EVENT_TYPE_THREAD_STATUS_CHANGED: old_status = args[1] updated_status = args[2] # Status changed from closed to open. if (old_status != feedback_models.STATUS_CHOICES_OPEN and updated_status == feedback_models.STATUS_CHOICES_OPEN): transaction_services.run_in_transaction( _increment_open_threads_count) # Status changed from open to closed. elif (old_status == feedback_models.STATUS_CHOICES_OPEN and updated_status != feedback_models.STATUS_CHOICES_OPEN): transaction_services.run_in_transaction( _decrement_open_threads_count) # Public query methods. @classmethod def get_thread_analytics_multi(cls, exploration_ids): """Gets the thread analytics for the explorations specified by the exploration_ids. Args: exploration_ids: list(str). IDs of the explorations to get analytics for. Returns: list(dict). Each dict in this list corresponds to an exploration ID in the input list, and has two keys: - num_open_threads: int. The count of open feedback threads for this exploration. - num_total_threads: int. The count of all feedback threads for this exploration. """ realtime_model_ids = cls.get_multi_active_realtime_layer_ids( exploration_ids) realtime_models = cls._get_realtime_datastore_class().get_multi( realtime_model_ids) feedback_thread_analytics_models = ( feedback_models.FeedbackAnalyticsModel.get_multi(exploration_ids)) return [feedback_domain.FeedbackAnalytics( feconf.ENTITY_TYPE_EXPLORATION, exploration_ids[i], (realtime_models[i].num_open_threads if realtime_models[i] is not None else 0) + (feedback_thread_analytics_models[i].num_open_threads if feedback_thread_analytics_models[i] is not None else 0), (realtime_models[i].num_total_threads if realtime_models[i] is not None else 0) + (feedback_thread_analytics_models[i].num_total_threads if feedback_thread_analytics_models[i] is not None else 0) ) for i in range(len(exploration_ids))] @classmethod def get_thread_analytics(cls, exploration_id): """Retrieves the analytics for feedback threads. Args: exploration_id: str. ID of the exploration to get analytics for. Returns: dict with two keys: - num_open_threads: int. The count of open feedback threads for this exploration. - num_total_threads: int. The count of all feedback threads for this exploration. """ return FeedbackAnalyticsAggregator.get_thread_analytics_multi( [exploration_id])[0] class FeedbackAnalyticsMRJobManager( jobs.BaseMapReduceJobManagerForContinuousComputations): """Job that creates FeedbackAnalyticsModels for explorations by calculating various analytics for feedback threads corresponding to an exploration. Currently, this job calculates the number of open feedback threads, as well as the total feedback thread count for each exploration. """ @classmethod def _get_continuous_computation_class(cls): return FeedbackAnalyticsAggregator @classmethod def entity_classes_to_map_over(cls): return [feedback_models.GeneralFeedbackThreadModel] @staticmethod def map(item): """Map function. Args: item: FeedbackThreadModel. A feedback thread model instance. Yields: A tuple of two elements: - str. The exploration id associated to the feedback thread. - str. The feedback thread's status. """ if isinstance(item, feedback_models.GeneralFeedbackThreadModel): yield (item.entity_id, item.status) else: yield (item.exploration_id, item.status) @staticmethod def reduce(key, stringified_values): """Reduce function. Args: key: str. The exploration ID. stringified_values: list(str). List of all statuses from all mappers tagged with the given key. """ num_open_threads = stringified_values.count( feedback_models.STATUS_CHOICES_OPEN) num_total_threads = len(stringified_values) feedback_models.FeedbackAnalyticsModel.create( key, num_open_threads, num_total_threads)
py
7df84a5e30405bff18bb019d1f59c8e243ccaca5
"""Script containing the database class object """ from copy import deepcopy from .relation import Relation from .view import View from .table import Table from .sql import SqlScript from ..utils.helpers import atmost_one from ..utils.exceptions import DatabaseInputError import logging logger = logging.getLogger(__name__) class Database(object): """Class representing a database """ def __init__(self, relations=None, files=None): """Constructor for the database class """ self._relations = {} if not atmost_one(relations, files): raise ValueError('Only one of relations and files should be given') if files: relations = self._initialize_relations(files) if relations: for relation in relations: self.add_relation(relation) def copy(self): """Create a copy of the database object """ return deepcopy(self) @staticmethod def _initialize_relations(files): """Read the files and create relations from the files """ relations = [] for filename in files: with open(filename) as f: script = SqlScript(f.read()) if script.creates_table(): relations.append(Table(script)) elif script.creates_view(): relations.append(View(script)) else: raise ValueError('File does not create a relation') return relations def add_relation(self, relation): """Add a relation, only if its name is not already used. """ assert isinstance(relation, Relation), 'Input should be a relation' if relation.full_name in self._relations: raise ValueError( 'Relation %s already added to database' % relation.full_name) self._relations[relation.full_name] = relation def relations(self): """Unsorted list of relations of the database """ return self._relations.values() def relation(self, relation_name): """Get the relation with the given name """ return self._relations.get(relation_name, None) @property def num_views(self): """The number of views in the database """ return len([a for a in self.relations() if isinstance(a, View)]) @property def num_tables(self): """The number of tables in the database """ return len([a for a in self.relations() if isinstance(a, Table)]) def has_cycles(self, relation=None, visited=None): """Check if the database has no circular dependencies """ if visited is None: visited = list() if relation: # Don't include table as own dependency, ignore references not in DB relations_to_check = [ self.relation(x) for x in relation.dependencies if x != relation and self.relation(x) is not None] else: relations_to_check = self._relations.values() for relation in relations_to_check: if relation.full_name in visited: return True # Make a copy for immutability visited_copy = deepcopy(visited) visited_copy.append(relation.full_name) if self.has_cycles(relation, visited_copy): return True return False def sorted_relations(self): """Topological sort of the relations for dependency management """ if self.has_cycles(): logger.warning('Database has cycles') sorted_relations = [] graph = dict((x.full_name, x.dependencies) for x in self.relations()) # Run until the unsorted graph is empty while graph: acyclic = False # Cast graph.items() to list to avoid the error "dictionary changed size during iteration" for relation_name, dependencies in list(graph.items()): for dependency in dependencies: if dependency in graph: break else: acyclic = True graph.pop(relation_name) sorted_relations.append(self.relation(relation_name)) if not acyclic: raise RuntimeError("A cyclic dependency occurred") return sorted_relations def relations_script(self, function_name, **kwargs): """SQL Script for all the relations of the database """ result = SqlScript() for relation in self.sorted_relations(): func = getattr(relation, function_name) result.append(func(**kwargs)) return result def grant_relations_script(self): """SQL Script for granting permissions all the relations of the database """ return self.relations_script('grant_script') def create_relations_script(self, grant_permissions=True): """SQL Script for creating all the relations of the database """ return self.relations_script( 'create_script', grant_permissions=grant_permissions) def drop_relations_script(self): """SQL Script for dropping all the relations for the database """ return self.relations_script('drop_script') def recreate_relations_script(self, grant_permissions=True): """SQL Script for recreating all the relations of the database """ return self.relations_script( 'recreate_script', grant_permissions=grant_permissions) def recreate_table_dependencies(self, table_name, grant_permissions=True): """Recreate the dependencies for a particular table from the database """ result = SqlScript() for relation in self.relations(): if relation.full_name == table_name: # Continue as cannnot be dependecy of self continue if isinstance(relation, Table): # Recreate foreign key relations for column_names, ref_name, ref_columns in \ relation.foreign_key_references(): if ref_name == table_name: result.append( relation.foreign_key_reference_script( source_columns=column_names, reference_name=ref_name, reference_columns=ref_columns)) if isinstance(relation, View): # Recreate view if pointing to table if table_name in relation.dependencies: result.append(relation.recreate_script( grant_permissions=grant_permissions)) return result @staticmethod def _make_node_label(relation): """Create the table layout for graph nodes """ columns = list() row = '<TR><TD ALIGN="left" PORT="{col_name}">{col_name}{pk}</TD></TR>' for column in sorted(relation.columns(), key=lambda x: x.position): columns.append(row.format(col_name=column.name, pk=' (PK)' if column.primary else '')) layout = ('<<TABLE BORDER="1" CELLBORDER="0" CELLSPACING="0">\n' '<TR><TD BGCOLOR="lightblue">{table_name}</TD></TR>\n' '{columns}</TABLE>>').format(table_name=relation.full_name, columns='\n'.join(columns)) return layout def visualize(self, filename=None, tables_to_show=None): """Visualize databases and create an er-diagram Args: filename(str): filepath for saving the er-diagram tables_to_show(list): A list of tables to actually visualize. Tables not included in this list will not be visualized, but their foreign keys will be visualize if it refers to a table in this list """ # Import pygraphviz for plotting the graphs try: import pygraphviz except ImportError: logger.error('Install pygraphviz for visualizing databases') raise if filename is None: raise DatabaseInputError( 'Filename must be provided for visualization') logger.info('Creating a visualization of the database') graph = pygraphviz.AGraph(name='Database', label='Database') tables = [r for r in self.relations() if isinstance(r, Table)] if tables_to_show is None: tables_to_show = [table.full_name for table in tables] # Add nodes for table in tables: if table.full_name in tables_to_show: graph.add_node(table.full_name, shape='none', label=self._make_node_label(table)) # Add edges for table in tables: for cols, ref_table, ref_cols in table.foreign_key_references(): if table.full_name in tables_to_show or \ ref_table in tables_to_show: graph.add_edge( ref_table, table.full_name, tailport=ref_cols[0], headport=cols[0], dir='both', arrowhead='crow', arrowtail='dot', ) # Plotting the graph with dot layout graph.layout(prog='dot') graph.draw(filename)
py
7df84ab7cf346b0de02596cd8dd1464af66c38e4
#!/usr/bin/python # -*- coding: utf-8 -*- # © 2020 Nokia # Licensed under the GNU General Public License v3.0 only # SPDX-License-Identifier: GPL-3.0-only from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = r""" --- module: netbox_device_bay_template short_description: Create, update or delete device bay templates within Netbox description: - Creates, updates or removes device bay templates from Netbox notes: - Tags should be defined as a YAML list - This should be ran with connection C(local) and hosts C(localhost) author: - Tobias Groß (@toerb) requirements: - pynetbox version_added: '0.3.0' options: netbox_url: description: - URL of the Netbox instance resolvable by Ansible control host required: true type: str netbox_token: description: - The token created within Netbox to authorize API access required: true type: str data: description: - Defines the device bay template configuration suboptions: device_type: description: - The device type the device bay template will be associated to. The device type must be "parent". required: true type: raw name: description: - The name of the device bay template required: true type: str type: dict required: true state: description: - Use C(present) or C(absent) for adding or removing. choices: [ absent, present ] default: present type: str query_params: description: - This can be used to override the specified values in ALLOWED_QUERY_PARAMS that is defined - in plugins/module_utils/netbox_utils.py and provides control to users on what may make - an object unique in their environment. required: false type: list elements: str validate_certs: description: - If C(no), SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. default: true type: raw """ EXAMPLES = r""" - name: "Test Netbox modules" connection: local hosts: localhost gather_facts: False tasks: - name: Create device bay template within Netbox with only required information netbox_device_bay_template: netbox_url: http://netbox.local netbox_token: thisIsMyToken data: name: device bay template One device_type: Device Type One state: present - name: Delete device bay template within netbox netbox_device_bay_template: netbox_url: http://netbox.local netbox_token: thisIsMyToken data: name: device bay template One device_type: Device Type One state: absent """ RETURN = r""" device_bay_template: description: Serialized object as created or already existent within Netbox returned: success (when I(state=present)) type: dict msg: description: Message indicating failure or info about what has been achieved returned: always type: str """ from ansible_collections.netbox.netbox.plugins.module_utils.netbox_utils import ( NetboxAnsibleModule, NETBOX_ARG_SPEC, ) from ansible_collections.netbox.netbox.plugins.module_utils.netbox_dcim import ( NetboxDcimModule, NB_DEVICE_BAY_TEMPLATES, ) from copy import deepcopy def main(): """ Main entry point for module execution """ argument_spec = deepcopy(NETBOX_ARG_SPEC) argument_spec.update( dict( data=dict( type="dict", required=True, options=dict( device_type=dict(required=True, type="raw"), name=dict(required=True, type="str"), ), ), ) ) required_if = [ ("state", "present", ["name", "device_type"]), ("state", "absent", ["name", "device_type"]), ] module = NetboxAnsibleModule( argument_spec=argument_spec, supports_check_mode=True, required_if=required_if ) netbox_device_bay_template = NetboxDcimModule(module, NB_DEVICE_BAY_TEMPLATES) netbox_device_bay_template.run() if __name__ == "__main__": # pragma: no cover main()
py
7df84ad3752e37d67250b4ced89a5d6b7aa7d168
''' Copyright <2021> <Thomas Chapman> THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' # Restore world coordinate import rhinoscriptsyntax as rs def RestoreWorldCoordinate(): try: rs.EnableRedraw(False) # retreive northing and easting from text object obj = rs.ObjectsByName("_ORIGIN_TEXT_") if obj: text = rs.TextObjectText(obj) textList = text.split() easting = float(textList[1]) northing = float(textList[3]) # create reference coordinates to make vector orPoint = (easting, northing, 0) point = rs.PointCoordinates(rs.ObjectsByName("_ORIGIN_POINT_")) vector = rs.VectorCreate(orPoint, point) # move all objects back to original origin point allObj = rs.AllObjects() rs.MoveObjects(allObj, vector) # delete coordinate geometry isCurrent = rs.IsLayerCurrent("_ORIGIN_") if isCurrent == False: rs.PurgeLayer("_ORIGIN_") if isCurrent == True: defaultCheck = rs.IsLayer("Default") if defaultCheck == True: rs.CurrentLayer("Default") rs.PurgeLayer("_ORIGIN_") if defaultCheck == False: rs.AddLayer("Default") rs.CurrentLayer("Default") rs.PurgeLayer("_ORIGIN_") rs.EnableRedraw(True) except: print("Failed to execute") rs.EnableRedraw(True) return if __name__ == "__main__": RestoreWorldCoordinate()
py
7df84be7b09b077d8180918ce888f263979f979b
# Generated by Django 3.2.9 on 2021-11-24 06:30 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('patients', '0011_auto_20211121_2113'), ] operations = [ migrations.AddField( model_name='doctor', name='address', field=models.CharField(blank=True, max_length=200, null=True), ), migrations.AddField( model_name='doctor', name='specialization', field=models.CharField(blank=True, max_length=100, null=True), ), migrations.AddField( model_name='patient', name='address', field=models.CharField(blank=True, max_length=200, null=True), ), migrations.AddField( model_name='patient', name='email', field=models.EmailField(blank=True, max_length=254, null=True), ), migrations.AddField( model_name='patient', name='occupation', field=models.CharField(blank=True, max_length=100, null=True), ), ]
py
7df84bf77958fa06f3ed880b77a73d697a4ae08a
# Requirements: # pip3 install -U spacy # python3 -m spacy download de_core_news_sm import sys import json import spacy from spacy.matcher import Matcher from spacy.matcher import PhraseMatcher sp = spacy.load('de_core_news_sm') with open(sys.argv[1],"r") as f: input = f.read() doc = sp(input) # find articles # matcher = Matcher(sp.vocab) # pattern = [{"TAG": "ART"}] # matcher.add("pronouns", None, pattern) # matches = matcher(doc) # for match_id, start, end in matches: # string_id = sp.vocab.strings[match_id] # Get string representation # span = doc[start:end] # The matched span # print(match_id, string_id, start, end, span.text) # replace articles pool = { "des": ["des", "der"], "die": ["die", "der", "das"], "der": ["der", "die", "das"], "das": ["das", "der", "die"], "dem": ["dem", "den", "der"], "den": ["den", "dem", "der"], "ein": ["ein", "eine", "einem", "einer", "eines"], "eine": ["ein", "eine", "einem", "einer", "eines"], "einer": ["ein", "eine", "einem", "einer", "eines"], "einem": ["ein", "eine", "einem", "einer", "eines"], "einen": ["ein", "eine", "einem", "einer", "eines"], "eines": ["ein", "eine", "einem", "einer", "eines"] } index = { "in": input, "out": "", "pos": [] } is_bracket = False i = 0 text = '' for token in doc: #print(token.text, token.lemma_, token.pos_, token.tag_, token.dep_) if token.tag_ == 'ART': # tag=DET i += 1 text += " <pos-{}>".format(i) index["pos"].append({ 'id': i, 'pos': token.text, 'pool': pool[token.text.lower()] }) elif token.tag_ == '$,' or token.tag_ == '$.': text += token.text elif token.tag_ == '$(': is_bracket = True text += ' ' + token.text elif token.tag_ == '$)': text += token.text else: if is_bracket: is_bracket = False text += token.text else: text += ' ' + token.text index["out"] = text print (json.dumps(index)) #print (json.dumps(index, indent=4))
py
7df84c98b17fcf9356f87b23a29388f0d5efb4b4
import netaddr from django.conf import settings from django.contrib.contenttypes.fields import GenericForeignKey from django.contrib.contenttypes.models import ContentType from django.core.exceptions import ValidationError from django.db import models from django.db.models import F from django.urls import reverse from dcim.models import Device from extras.utils import extras_features from netbox.models import OrganizationalModel, PrimaryModel from ipam.choices import * from ipam.constants import * from ipam.fields import IPNetworkField, IPAddressField from ipam.managers import IPAddressManager from ipam.querysets import PrefixQuerySet from ipam.validators import DNSValidator from utilities.querysets import RestrictedQuerySet from virtualization.models import VirtualMachine __all__ = ( 'Aggregate', 'IPAddress', 'Prefix', 'RIR', 'Role', ) @extras_features('custom_fields', 'custom_links', 'export_templates', 'webhooks') class RIR(OrganizationalModel): """ A Regional Internet Registry (RIR) is responsible for the allocation of a large portion of the global IP address space. This can be an organization like ARIN or RIPE, or a governing standard such as RFC 1918. """ name = models.CharField( max_length=100, unique=True ) slug = models.SlugField( max_length=100, unique=True ) is_private = models.BooleanField( default=False, verbose_name='Private', help_text='IP space managed by this RIR is considered private' ) description = models.CharField( max_length=200, blank=True ) objects = RestrictedQuerySet.as_manager() csv_headers = ['name', 'slug', 'is_private', 'description'] class Meta: ordering = ['name'] verbose_name = 'RIR' verbose_name_plural = 'RIRs' def __str__(self): return self.name def get_absolute_url(self): return reverse('ipam:rir', args=[self.pk]) def to_csv(self): return ( self.name, self.slug, self.is_private, self.description, ) @extras_features('custom_fields', 'custom_links', 'export_templates', 'tags', 'webhooks') class Aggregate(PrimaryModel): """ An aggregate exists at the root level of the IP address space hierarchy in NetBox. Aggregates are used to organize the hierarchy and track the overall utilization of available address space. Each Aggregate is assigned to a RIR. """ prefix = IPNetworkField() rir = models.ForeignKey( to='ipam.RIR', on_delete=models.PROTECT, related_name='aggregates', verbose_name='RIR' ) tenant = models.ForeignKey( to='tenancy.Tenant', on_delete=models.PROTECT, related_name='aggregates', blank=True, null=True ) date_added = models.DateField( blank=True, null=True ) description = models.CharField( max_length=200, blank=True ) objects = RestrictedQuerySet.as_manager() csv_headers = ['prefix', 'rir', 'tenant', 'date_added', 'description'] clone_fields = [ 'rir', 'tenant', 'date_added', 'description', ] class Meta: ordering = ('prefix', 'pk') # prefix may be non-unique def __str__(self): return str(self.prefix) def get_absolute_url(self): return reverse('ipam:aggregate', args=[self.pk]) def clean(self): super().clean() if self.prefix: # Clear host bits from prefix self.prefix = self.prefix.cidr # /0 masks are not acceptable if self.prefix.prefixlen == 0: raise ValidationError({ 'prefix': "Cannot create aggregate with /0 mask." }) # Ensure that the aggregate being added is not covered by an existing aggregate covering_aggregates = Aggregate.objects.filter( prefix__net_contains_or_equals=str(self.prefix) ) if self.pk: covering_aggregates = covering_aggregates.exclude(pk=self.pk) if covering_aggregates: raise ValidationError({ 'prefix': "Aggregates cannot overlap. {} is already covered by an existing aggregate ({}).".format( self.prefix, covering_aggregates[0] ) }) # Ensure that the aggregate being added does not cover an existing aggregate covered_aggregates = Aggregate.objects.filter(prefix__net_contained=str(self.prefix)) if self.pk: covered_aggregates = covered_aggregates.exclude(pk=self.pk) if covered_aggregates: raise ValidationError({ 'prefix': "Aggregates cannot overlap. {} covers an existing aggregate ({}).".format( self.prefix, covered_aggregates[0] ) }) def to_csv(self): return ( self.prefix, self.rir.name, self.tenant.name if self.tenant else None, self.date_added, self.description, ) @property def family(self): if self.prefix: return self.prefix.version return None def get_utilization(self): """ Determine the prefix utilization of the aggregate and return it as a percentage. """ queryset = Prefix.objects.filter(prefix__net_contained_or_equal=str(self.prefix)) child_prefixes = netaddr.IPSet([p.prefix for p in queryset]) return int(float(child_prefixes.size) / self.prefix.size * 100) @extras_features('custom_fields', 'custom_links', 'export_templates', 'webhooks') class Role(OrganizationalModel): """ A Role represents the functional role of a Prefix or VLAN; for example, "Customer," "Infrastructure," or "Management." """ name = models.CharField( max_length=100, unique=True ) slug = models.SlugField( max_length=100, unique=True ) weight = models.PositiveSmallIntegerField( default=1000 ) description = models.CharField( max_length=200, blank=True, ) objects = RestrictedQuerySet.as_manager() csv_headers = ['name', 'slug', 'weight', 'description'] class Meta: ordering = ['weight', 'name'] def __str__(self): return self.name def get_absolute_url(self): return reverse('ipam:role', args=[self.pk]) def to_csv(self): return ( self.name, self.slug, self.weight, self.description, ) @extras_features('custom_fields', 'custom_links', 'export_templates', 'tags', 'webhooks') class Prefix(PrimaryModel): """ A Prefix represents an IPv4 or IPv6 network, including mask length. Prefixes can optionally be assigned to Sites and VRFs. A Prefix must be assigned a status and may optionally be assigned a used-define Role. A Prefix can also be assigned to a VLAN where appropriate. """ prefix = IPNetworkField( help_text='IPv4 or IPv6 network with mask' ) site = models.ForeignKey( to='dcim.Site', on_delete=models.PROTECT, related_name='prefixes', blank=True, null=True ) vrf = models.ForeignKey( to='ipam.VRF', on_delete=models.PROTECT, related_name='prefixes', blank=True, null=True, verbose_name='VRF' ) tenant = models.ForeignKey( to='tenancy.Tenant', on_delete=models.PROTECT, related_name='prefixes', blank=True, null=True ) vlan = models.ForeignKey( to='ipam.VLAN', on_delete=models.PROTECT, related_name='prefixes', blank=True, null=True, verbose_name='VLAN' ) status = models.CharField( max_length=50, choices=PrefixStatusChoices, default=PrefixStatusChoices.STATUS_ACTIVE, verbose_name='Status', help_text='Operational status of this prefix' ) role = models.ForeignKey( to='ipam.Role', on_delete=models.SET_NULL, related_name='prefixes', blank=True, null=True, help_text='The primary function of this prefix' ) is_pool = models.BooleanField( verbose_name='Is a pool', default=False, help_text='All IP addresses within this prefix are considered usable' ) description = models.CharField( max_length=200, blank=True ) objects = PrefixQuerySet.as_manager() csv_headers = [ 'prefix', 'vrf', 'tenant', 'site', 'vlan_group', 'vlan', 'status', 'role', 'is_pool', 'description', ] clone_fields = [ 'site', 'vrf', 'tenant', 'vlan', 'status', 'role', 'is_pool', 'description', ] class Meta: ordering = (F('vrf').asc(nulls_first=True), 'prefix', 'pk') # (vrf, prefix) may be non-unique verbose_name_plural = 'prefixes' def __str__(self): return str(self.prefix) def get_absolute_url(self): return reverse('ipam:prefix', args=[self.pk]) def clean(self): super().clean() if self.prefix: # /0 masks are not acceptable if self.prefix.prefixlen == 0: raise ValidationError({ 'prefix': "Cannot create prefix with /0 mask." }) # Disallow host masks if self.prefix.version == 4 and self.prefix.prefixlen == 32: raise ValidationError({ 'prefix': "Cannot create host addresses (/32) as prefixes. Create an IPv4 address instead." }) elif self.prefix.version == 6 and self.prefix.prefixlen == 128: raise ValidationError({ 'prefix': "Cannot create host addresses (/128) as prefixes. Create an IPv6 address instead." }) # Enforce unique IP space (if applicable) if (self.vrf is None and settings.ENFORCE_GLOBAL_UNIQUE) or (self.vrf and self.vrf.enforce_unique): duplicate_prefixes = self.get_duplicates() if duplicate_prefixes: raise ValidationError({ 'prefix': "Duplicate prefix found in {}: {}".format( "VRF {}".format(self.vrf) if self.vrf else "global table", duplicate_prefixes.first(), ) }) def save(self, *args, **kwargs): if isinstance(self.prefix, netaddr.IPNetwork): # Clear host bits from prefix self.prefix = self.prefix.cidr super().save(*args, **kwargs) def to_csv(self): return ( self.prefix, self.vrf.name if self.vrf else None, self.tenant.name if self.tenant else None, self.site.name if self.site else None, self.vlan.group.name if self.vlan and self.vlan.group else None, self.vlan.vid if self.vlan else None, self.get_status_display(), self.role.name if self.role else None, self.is_pool, self.description, ) @property def family(self): if self.prefix: return self.prefix.version return None def _set_prefix_length(self, value): """ Expose the IPNetwork object's prefixlen attribute on the parent model so that it can be manipulated directly, e.g. for bulk editing. """ if self.prefix is not None: self.prefix.prefixlen = value prefix_length = property(fset=_set_prefix_length) def get_status_class(self): return PrefixStatusChoices.CSS_CLASSES.get(self.status) def get_duplicates(self): return Prefix.objects.filter(vrf=self.vrf, prefix=str(self.prefix)).exclude(pk=self.pk) def get_child_prefixes(self): """ Return all Prefixes within this Prefix and VRF. If this Prefix is a container in the global table, return child Prefixes belonging to any VRF. """ if self.vrf is None and self.status == PrefixStatusChoices.STATUS_CONTAINER: return Prefix.objects.filter(prefix__net_contained=str(self.prefix)) else: return Prefix.objects.filter(prefix__net_contained=str(self.prefix), vrf=self.vrf) def get_child_ips(self): """ Return all IPAddresses within this Prefix and VRF. If this Prefix is a container in the global table, return child IPAddresses belonging to any VRF. """ if self.vrf is None and self.status == PrefixStatusChoices.STATUS_CONTAINER: return IPAddress.objects.filter(address__net_host_contained=str(self.prefix)) else: return IPAddress.objects.filter(address__net_host_contained=str(self.prefix), vrf=self.vrf) def get_available_prefixes(self): """ Return all available Prefixes within this prefix as an IPSet. """ prefix = netaddr.IPSet(self.prefix) child_prefixes = netaddr.IPSet([child.prefix for child in self.get_child_prefixes()]) available_prefixes = prefix - child_prefixes return available_prefixes def get_available_ips(self): """ Return all available IPs within this prefix as an IPSet. """ prefix = netaddr.IPSet(self.prefix) child_ips = netaddr.IPSet([ip.address.ip for ip in self.get_child_ips()]) available_ips = prefix - child_ips # IPv6, pool, or IPv4 /31 sets are fully usable if self.family == 6 or self.is_pool or self.prefix.prefixlen == 31: return available_ips # For "normal" IPv4 prefixes, omit first and last addresses available_ips -= netaddr.IPSet([ netaddr.IPAddress(self.prefix.first), netaddr.IPAddress(self.prefix.last), ]) return available_ips def get_first_available_prefix(self): """ Return the first available child prefix within the prefix (or None). """ available_prefixes = self.get_available_prefixes() if not available_prefixes: return None return available_prefixes.iter_cidrs()[0] def get_first_available_ip(self): """ Return the first available IP within the prefix (or None). """ available_ips = self.get_available_ips() if not available_ips: return None return '{}/{}'.format(next(available_ips.__iter__()), self.prefix.prefixlen) def get_utilization(self): """ Determine the utilization of the prefix and return it as a percentage. For Prefixes with a status of "container", calculate utilization based on child prefixes. For all others, count child IP addresses. """ if self.status == PrefixStatusChoices.STATUS_CONTAINER: queryset = Prefix.objects.filter( prefix__net_contained=str(self.prefix), vrf=self.vrf ) child_prefixes = netaddr.IPSet([p.prefix for p in queryset]) return int(float(child_prefixes.size) / self.prefix.size * 100) else: # Compile an IPSet to avoid counting duplicate IPs child_count = netaddr.IPSet([ip.address.ip for ip in self.get_child_ips()]).size prefix_size = self.prefix.size if self.prefix.version == 4 and self.prefix.prefixlen < 31 and not self.is_pool: prefix_size -= 2 return int(float(child_count) / prefix_size * 100) @extras_features('custom_fields', 'custom_links', 'export_templates', 'tags', 'webhooks') class IPAddress(PrimaryModel): """ An IPAddress represents an individual IPv4 or IPv6 address and its mask. The mask length should match what is configured in the real world. (Typically, only loopback interfaces are configured with /32 or /128 masks.) Like Prefixes, IPAddresses can optionally be assigned to a VRF. An IPAddress can optionally be assigned to an Interface. Interfaces can have zero or more IPAddresses assigned to them. An IPAddress can also optionally point to a NAT inside IP, designating itself as a NAT outside IP. This is useful, for example, when mapping public addresses to private addresses. When an Interface has been assigned an IPAddress which has a NAT outside IP, that Interface's Device can use either the inside or outside IP as its primary IP. """ address = IPAddressField( help_text='IPv4 or IPv6 address (with mask)' ) vrf = models.ForeignKey( to='ipam.VRF', on_delete=models.PROTECT, related_name='ip_addresses', blank=True, null=True, verbose_name='VRF' ) tenant = models.ForeignKey( to='tenancy.Tenant', on_delete=models.PROTECT, related_name='ip_addresses', blank=True, null=True ) status = models.CharField( max_length=50, choices=IPAddressStatusChoices, default=IPAddressStatusChoices.STATUS_ACTIVE, help_text='The operational status of this IP' ) role = models.CharField( max_length=50, choices=IPAddressRoleChoices, blank=True, help_text='The functional role of this IP' ) assigned_object_type = models.ForeignKey( to=ContentType, limit_choices_to=IPADDRESS_ASSIGNMENT_MODELS, on_delete=models.PROTECT, related_name='+', blank=True, null=True ) assigned_object_id = models.PositiveIntegerField( blank=True, null=True ) assigned_object = GenericForeignKey( ct_field='assigned_object_type', fk_field='assigned_object_id' ) nat_inside = models.OneToOneField( to='self', on_delete=models.SET_NULL, related_name='nat_outside', blank=True, null=True, verbose_name='NAT (Inside)', help_text='The IP for which this address is the "outside" IP' ) dns_name = models.CharField( max_length=255, blank=True, validators=[DNSValidator], verbose_name='DNS Name', help_text='Hostname or FQDN (not case-sensitive)' ) description = models.CharField( max_length=200, blank=True ) objects = IPAddressManager() csv_headers = [ 'address', 'vrf', 'tenant', 'status', 'role', 'assigned_object_type', 'assigned_object_id', 'is_primary', 'dns_name', 'description', ] clone_fields = [ 'vrf', 'tenant', 'status', 'role', 'description', ] class Meta: ordering = ('address', 'pk') # address may be non-unique verbose_name = 'IP address' verbose_name_plural = 'IP addresses' def __str__(self): return str(self.address) def get_absolute_url(self): return reverse('ipam:ipaddress', args=[self.pk]) def get_duplicates(self): return IPAddress.objects.filter( vrf=self.vrf, address__net_host=str(self.address.ip) ).exclude(pk=self.pk) def clean(self): super().clean() if self.address: # /0 masks are not acceptable if self.address.prefixlen == 0: raise ValidationError({ 'address': "Cannot create IP address with /0 mask." }) # Enforce unique IP space (if applicable) if (self.vrf is None and settings.ENFORCE_GLOBAL_UNIQUE) or (self.vrf and self.vrf.enforce_unique): duplicate_ips = self.get_duplicates() if duplicate_ips and ( self.role not in IPADDRESS_ROLES_NONUNIQUE or any(dip.role not in IPADDRESS_ROLES_NONUNIQUE for dip in duplicate_ips) ): raise ValidationError({ 'address': "Duplicate IP address found in {}: {}".format( "VRF {}".format(self.vrf) if self.vrf else "global table", duplicate_ips.first(), ) }) # Check for primary IP assignment that doesn't match the assigned device/VM if self.pk: device = Device.objects.filter(Q(primary_ip4=self) | Q(primary_ip6=self)).first() if device: if getattr(self.assigned_object, 'device', None) != device: raise ValidationError({ 'interface': f"IP address is primary for device {device} but not assigned to it!" }) vm = VirtualMachine.objects.filter(Q(primary_ip4=self) | Q(primary_ip6=self)).first() if vm: if getattr(self.assigned_object, 'virtual_machine', None) != vm: raise ValidationError({ 'vminterface': f"IP address is primary for virtual machine {vm} but not assigned to it!" }) # Validate IP status selection if self.status == IPAddressStatusChoices.STATUS_SLAAC and self.family != 6: raise ValidationError({ 'status': "Only IPv6 addresses can be assigned SLAAC status" }) def save(self, *args, **kwargs): # Force dns_name to lowercase self.dns_name = self.dns_name.lower() super().save(*args, **kwargs) def to_objectchange(self, action): # Annotate the assigned object, if any return super().to_objectchange(action, related_object=self.assigned_object) def to_csv(self): # Determine if this IP is primary for a Device is_primary = False if self.address.version == 4 and getattr(self, 'primary_ip4_for', False): is_primary = True elif self.address.version == 6 and getattr(self, 'primary_ip6_for', False): is_primary = True obj_type = None if self.assigned_object_type: obj_type = f'{self.assigned_object_type.app_label}.{self.assigned_object_type.model}' return ( self.address, self.vrf.name if self.vrf else None, self.tenant.name if self.tenant else None, self.get_status_display(), self.get_role_display(), obj_type, self.assigned_object_id, is_primary, self.dns_name, self.description, ) @property def family(self): if self.address: return self.address.version return None def _set_mask_length(self, value): """ Expose the IPNetwork object's prefixlen attribute on the parent model so that it can be manipulated directly, e.g. for bulk editing. """ if self.address is not None: self.address.prefixlen = value mask_length = property(fset=_set_mask_length) def get_status_class(self): return IPAddressStatusChoices.CSS_CLASSES.get(self.status) def get_role_class(self): return IPAddressRoleChoices.CSS_CLASSES.get(self.role)
py
7df84cc5c37048392c05da65f797a0aac73d29d6
# ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2008 Alex Holkner # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- '''Wrapper for http://developer.download.nvidia.com/opengl/includes/wglext.h Generated by tools/gengl.py. Do not modify this file. ''' __docformat__ = 'restructuredtext' __version__ = '$Id: gengl.py 601 2007-02-04 05:36:59Z Alex.Holkner $' from ctypes import * from pyglet.gl.lib import link_WGL as _link_function from pyglet.gl.lib import c_ptrdiff_t, c_void # BEGIN GENERATED CONTENT (do not edit below this line) # This content is generated by tools/gengl.py. # Wrapper for http://developer.download.nvidia.com/opengl/includes/wglext.h # H (C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:7) # H (C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:7) WIN32_LEAN_AND_MEAN = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:40 WGL_WGLEXT_VERSION = 6 # http://developer.download.nvidia.com/opengl/includes/wglext.h:60 # ARB_buffer_region (http://developer.download.nvidia.com/opengl/includes/wglext.h:62) WGL_FRONT_COLOR_BUFFER_BIT_ARB = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:63 WGL_BACK_COLOR_BUFFER_BIT_ARB = 2 # http://developer.download.nvidia.com/opengl/includes/wglext.h:64 WGL_DEPTH_BUFFER_BIT_ARB = 4 # http://developer.download.nvidia.com/opengl/includes/wglext.h:65 WGL_STENCIL_BUFFER_BIT_ARB = 8 # http://developer.download.nvidia.com/opengl/includes/wglext.h:66 # ARB_multisample (http://developer.download.nvidia.com/opengl/includes/wglext.h:69) WGL_SAMPLE_BUFFERS_ARB = 8257 # http://developer.download.nvidia.com/opengl/includes/wglext.h:70 WGL_SAMPLES_ARB = 8258 # http://developer.download.nvidia.com/opengl/includes/wglext.h:71 # ARB_extensions_string (http://developer.download.nvidia.com/opengl/includes/wglext.h:74) # ARB_pixel_format (http://developer.download.nvidia.com/opengl/includes/wglext.h:77) WGL_NUMBER_PIXEL_FORMATS_ARB = 8192 # http://developer.download.nvidia.com/opengl/includes/wglext.h:78 WGL_DRAW_TO_WINDOW_ARB = 8193 # http://developer.download.nvidia.com/opengl/includes/wglext.h:79 WGL_DRAW_TO_BITMAP_ARB = 8194 # http://developer.download.nvidia.com/opengl/includes/wglext.h:80 WGL_ACCELERATION_ARB = 8195 # http://developer.download.nvidia.com/opengl/includes/wglext.h:81 WGL_NEED_PALETTE_ARB = 8196 # http://developer.download.nvidia.com/opengl/includes/wglext.h:82 WGL_NEED_SYSTEM_PALETTE_ARB = 8197 # http://developer.download.nvidia.com/opengl/includes/wglext.h:83 WGL_SWAP_LAYER_BUFFERS_ARB = 8198 # http://developer.download.nvidia.com/opengl/includes/wglext.h:84 WGL_SWAP_METHOD_ARB = 8199 # http://developer.download.nvidia.com/opengl/includes/wglext.h:85 WGL_NUMBER_OVERLAYS_ARB = 8200 # http://developer.download.nvidia.com/opengl/includes/wglext.h:86 WGL_NUMBER_UNDERLAYS_ARB = 8201 # http://developer.download.nvidia.com/opengl/includes/wglext.h:87 WGL_TRANSPARENT_ARB = 8202 # http://developer.download.nvidia.com/opengl/includes/wglext.h:88 WGL_TRANSPARENT_RED_VALUE_ARB = 8247 # http://developer.download.nvidia.com/opengl/includes/wglext.h:89 WGL_TRANSPARENT_GREEN_VALUE_ARB = 8248 # http://developer.download.nvidia.com/opengl/includes/wglext.h:90 WGL_TRANSPARENT_BLUE_VALUE_ARB = 8249 # http://developer.download.nvidia.com/opengl/includes/wglext.h:91 WGL_TRANSPARENT_ALPHA_VALUE_ARB = 8250 # http://developer.download.nvidia.com/opengl/includes/wglext.h:92 WGL_TRANSPARENT_INDEX_VALUE_ARB = 8251 # http://developer.download.nvidia.com/opengl/includes/wglext.h:93 WGL_SHARE_DEPTH_ARB = 8204 # http://developer.download.nvidia.com/opengl/includes/wglext.h:94 WGL_SHARE_STENCIL_ARB = 8205 # http://developer.download.nvidia.com/opengl/includes/wglext.h:95 WGL_SHARE_ACCUM_ARB = 8206 # http://developer.download.nvidia.com/opengl/includes/wglext.h:96 WGL_SUPPORT_GDI_ARB = 8207 # http://developer.download.nvidia.com/opengl/includes/wglext.h:97 WGL_SUPPORT_OPENGL_ARB = 8208 # http://developer.download.nvidia.com/opengl/includes/wglext.h:98 WGL_DOUBLE_BUFFER_ARB = 8209 # http://developer.download.nvidia.com/opengl/includes/wglext.h:99 WGL_STEREO_ARB = 8210 # http://developer.download.nvidia.com/opengl/includes/wglext.h:100 WGL_PIXEL_TYPE_ARB = 8211 # http://developer.download.nvidia.com/opengl/includes/wglext.h:101 WGL_COLOR_BITS_ARB = 8212 # http://developer.download.nvidia.com/opengl/includes/wglext.h:102 WGL_RED_BITS_ARB = 8213 # http://developer.download.nvidia.com/opengl/includes/wglext.h:103 WGL_RED_SHIFT_ARB = 8214 # http://developer.download.nvidia.com/opengl/includes/wglext.h:104 WGL_GREEN_BITS_ARB = 8215 # http://developer.download.nvidia.com/opengl/includes/wglext.h:105 WGL_GREEN_SHIFT_ARB = 8216 # http://developer.download.nvidia.com/opengl/includes/wglext.h:106 WGL_BLUE_BITS_ARB = 8217 # http://developer.download.nvidia.com/opengl/includes/wglext.h:107 WGL_BLUE_SHIFT_ARB = 8218 # http://developer.download.nvidia.com/opengl/includes/wglext.h:108 WGL_ALPHA_BITS_ARB = 8219 # http://developer.download.nvidia.com/opengl/includes/wglext.h:109 WGL_ALPHA_SHIFT_ARB = 8220 # http://developer.download.nvidia.com/opengl/includes/wglext.h:110 WGL_ACCUM_BITS_ARB = 8221 # http://developer.download.nvidia.com/opengl/includes/wglext.h:111 WGL_ACCUM_RED_BITS_ARB = 8222 # http://developer.download.nvidia.com/opengl/includes/wglext.h:112 WGL_ACCUM_GREEN_BITS_ARB = 8223 # http://developer.download.nvidia.com/opengl/includes/wglext.h:113 WGL_ACCUM_BLUE_BITS_ARB = 8224 # http://developer.download.nvidia.com/opengl/includes/wglext.h:114 WGL_ACCUM_ALPHA_BITS_ARB = 8225 # http://developer.download.nvidia.com/opengl/includes/wglext.h:115 WGL_DEPTH_BITS_ARB = 8226 # http://developer.download.nvidia.com/opengl/includes/wglext.h:116 WGL_STENCIL_BITS_ARB = 8227 # http://developer.download.nvidia.com/opengl/includes/wglext.h:117 WGL_AUX_BUFFERS_ARB = 8228 # http://developer.download.nvidia.com/opengl/includes/wglext.h:118 WGL_NO_ACCELERATION_ARB = 8229 # http://developer.download.nvidia.com/opengl/includes/wglext.h:119 WGL_GENERIC_ACCELERATION_ARB = 8230 # http://developer.download.nvidia.com/opengl/includes/wglext.h:120 WGL_FULL_ACCELERATION_ARB = 8231 # http://developer.download.nvidia.com/opengl/includes/wglext.h:121 WGL_SWAP_EXCHANGE_ARB = 8232 # http://developer.download.nvidia.com/opengl/includes/wglext.h:122 WGL_SWAP_COPY_ARB = 8233 # http://developer.download.nvidia.com/opengl/includes/wglext.h:123 WGL_SWAP_UNDEFINED_ARB = 8234 # http://developer.download.nvidia.com/opengl/includes/wglext.h:124 WGL_TYPE_RGBA_ARB = 8235 # http://developer.download.nvidia.com/opengl/includes/wglext.h:125 WGL_TYPE_COLORINDEX_ARB = 8236 # http://developer.download.nvidia.com/opengl/includes/wglext.h:126 # ARB_make_current_read (http://developer.download.nvidia.com/opengl/includes/wglext.h:129) ERROR_INVALID_PIXEL_TYPE_ARB = 8259 # http://developer.download.nvidia.com/opengl/includes/wglext.h:130 ERROR_INCOMPATIBLE_DEVICE_CONTEXTS_ARB = 8276 # http://developer.download.nvidia.com/opengl/includes/wglext.h:131 # ARB_pbuffer (http://developer.download.nvidia.com/opengl/includes/wglext.h:134) WGL_DRAW_TO_PBUFFER_ARB = 8237 # http://developer.download.nvidia.com/opengl/includes/wglext.h:135 WGL_MAX_PBUFFER_PIXELS_ARB = 8238 # http://developer.download.nvidia.com/opengl/includes/wglext.h:136 WGL_MAX_PBUFFER_WIDTH_ARB = 8239 # http://developer.download.nvidia.com/opengl/includes/wglext.h:137 WGL_MAX_PBUFFER_HEIGHT_ARB = 8240 # http://developer.download.nvidia.com/opengl/includes/wglext.h:138 WGL_PBUFFER_LARGEST_ARB = 8243 # http://developer.download.nvidia.com/opengl/includes/wglext.h:139 WGL_PBUFFER_WIDTH_ARB = 8244 # http://developer.download.nvidia.com/opengl/includes/wglext.h:140 WGL_PBUFFER_HEIGHT_ARB = 8245 # http://developer.download.nvidia.com/opengl/includes/wglext.h:141 WGL_PBUFFER_LOST_ARB = 8246 # http://developer.download.nvidia.com/opengl/includes/wglext.h:142 # ARB_render_texture (http://developer.download.nvidia.com/opengl/includes/wglext.h:145) WGL_BIND_TO_TEXTURE_RGB_ARB = 8304 # http://developer.download.nvidia.com/opengl/includes/wglext.h:146 WGL_BIND_TO_TEXTURE_RGBA_ARB = 8305 # http://developer.download.nvidia.com/opengl/includes/wglext.h:147 WGL_TEXTURE_FORMAT_ARB = 8306 # http://developer.download.nvidia.com/opengl/includes/wglext.h:148 WGL_TEXTURE_TARGET_ARB = 8307 # http://developer.download.nvidia.com/opengl/includes/wglext.h:149 WGL_MIPMAP_TEXTURE_ARB = 8308 # http://developer.download.nvidia.com/opengl/includes/wglext.h:150 WGL_TEXTURE_RGB_ARB = 8309 # http://developer.download.nvidia.com/opengl/includes/wglext.h:151 WGL_TEXTURE_RGBA_ARB = 8310 # http://developer.download.nvidia.com/opengl/includes/wglext.h:152 WGL_NO_TEXTURE_ARB = 8311 # http://developer.download.nvidia.com/opengl/includes/wglext.h:153 WGL_TEXTURE_CUBE_MAP_ARB = 8312 # http://developer.download.nvidia.com/opengl/includes/wglext.h:154 WGL_TEXTURE_1D_ARB = 8313 # http://developer.download.nvidia.com/opengl/includes/wglext.h:155 WGL_TEXTURE_2D_ARB = 8314 # http://developer.download.nvidia.com/opengl/includes/wglext.h:156 WGL_MIPMAP_LEVEL_ARB = 8315 # http://developer.download.nvidia.com/opengl/includes/wglext.h:157 WGL_CUBE_MAP_FACE_ARB = 8316 # http://developer.download.nvidia.com/opengl/includes/wglext.h:158 WGL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB = 8317 # http://developer.download.nvidia.com/opengl/includes/wglext.h:159 WGL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB = 8318 # http://developer.download.nvidia.com/opengl/includes/wglext.h:160 WGL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB = 8319 # http://developer.download.nvidia.com/opengl/includes/wglext.h:161 WGL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB = 8320 # http://developer.download.nvidia.com/opengl/includes/wglext.h:162 WGL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB = 8321 # http://developer.download.nvidia.com/opengl/includes/wglext.h:163 WGL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB = 8322 # http://developer.download.nvidia.com/opengl/includes/wglext.h:164 WGL_FRONT_LEFT_ARB = 8323 # http://developer.download.nvidia.com/opengl/includes/wglext.h:165 WGL_FRONT_RIGHT_ARB = 8324 # http://developer.download.nvidia.com/opengl/includes/wglext.h:166 WGL_BACK_LEFT_ARB = 8325 # http://developer.download.nvidia.com/opengl/includes/wglext.h:167 WGL_BACK_RIGHT_ARB = 8326 # http://developer.download.nvidia.com/opengl/includes/wglext.h:168 WGL_AUX0_ARB = 8327 # http://developer.download.nvidia.com/opengl/includes/wglext.h:169 WGL_AUX1_ARB = 8328 # http://developer.download.nvidia.com/opengl/includes/wglext.h:170 WGL_AUX2_ARB = 8329 # http://developer.download.nvidia.com/opengl/includes/wglext.h:171 WGL_AUX3_ARB = 8330 # http://developer.download.nvidia.com/opengl/includes/wglext.h:172 WGL_AUX4_ARB = 8331 # http://developer.download.nvidia.com/opengl/includes/wglext.h:173 WGL_AUX5_ARB = 8332 # http://developer.download.nvidia.com/opengl/includes/wglext.h:174 WGL_AUX6_ARB = 8333 # http://developer.download.nvidia.com/opengl/includes/wglext.h:175 WGL_AUX7_ARB = 8334 # http://developer.download.nvidia.com/opengl/includes/wglext.h:176 WGL_AUX8_ARB = 8335 # http://developer.download.nvidia.com/opengl/includes/wglext.h:177 WGL_AUX9_ARB = 8336 # http://developer.download.nvidia.com/opengl/includes/wglext.h:178 # ARB_pixel_format_float (http://developer.download.nvidia.com/opengl/includes/wglext.h:181) WGL_TYPE_RGBA_FLOAT_ARB = 8608 # http://developer.download.nvidia.com/opengl/includes/wglext.h:182 # EXT_make_current_read (http://developer.download.nvidia.com/opengl/includes/wglext.h:185) ERROR_INVALID_PIXEL_TYPE_EXT = 8259 # http://developer.download.nvidia.com/opengl/includes/wglext.h:186 # EXT_pixel_format (http://developer.download.nvidia.com/opengl/includes/wglext.h:189) WGL_NUMBER_PIXEL_FORMATS_EXT = 8192 # http://developer.download.nvidia.com/opengl/includes/wglext.h:190 WGL_DRAW_TO_WINDOW_EXT = 8193 # http://developer.download.nvidia.com/opengl/includes/wglext.h:191 WGL_DRAW_TO_BITMAP_EXT = 8194 # http://developer.download.nvidia.com/opengl/includes/wglext.h:192 WGL_ACCELERATION_EXT = 8195 # http://developer.download.nvidia.com/opengl/includes/wglext.h:193 WGL_NEED_PALETTE_EXT = 8196 # http://developer.download.nvidia.com/opengl/includes/wglext.h:194 WGL_NEED_SYSTEM_PALETTE_EXT = 8197 # http://developer.download.nvidia.com/opengl/includes/wglext.h:195 WGL_SWAP_LAYER_BUFFERS_EXT = 8198 # http://developer.download.nvidia.com/opengl/includes/wglext.h:196 WGL_SWAP_METHOD_EXT = 8199 # http://developer.download.nvidia.com/opengl/includes/wglext.h:197 WGL_NUMBER_OVERLAYS_EXT = 8200 # http://developer.download.nvidia.com/opengl/includes/wglext.h:198 WGL_NUMBER_UNDERLAYS_EXT = 8201 # http://developer.download.nvidia.com/opengl/includes/wglext.h:199 WGL_TRANSPARENT_EXT = 8202 # http://developer.download.nvidia.com/opengl/includes/wglext.h:200 WGL_TRANSPARENT_VALUE_EXT = 8203 # http://developer.download.nvidia.com/opengl/includes/wglext.h:201 WGL_SHARE_DEPTH_EXT = 8204 # http://developer.download.nvidia.com/opengl/includes/wglext.h:202 WGL_SHARE_STENCIL_EXT = 8205 # http://developer.download.nvidia.com/opengl/includes/wglext.h:203 WGL_SHARE_ACCUM_EXT = 8206 # http://developer.download.nvidia.com/opengl/includes/wglext.h:204 WGL_SUPPORT_GDI_EXT = 8207 # http://developer.download.nvidia.com/opengl/includes/wglext.h:205 WGL_SUPPORT_OPENGL_EXT = 8208 # http://developer.download.nvidia.com/opengl/includes/wglext.h:206 WGL_DOUBLE_BUFFER_EXT = 8209 # http://developer.download.nvidia.com/opengl/includes/wglext.h:207 WGL_STEREO_EXT = 8210 # http://developer.download.nvidia.com/opengl/includes/wglext.h:208 WGL_PIXEL_TYPE_EXT = 8211 # http://developer.download.nvidia.com/opengl/includes/wglext.h:209 WGL_COLOR_BITS_EXT = 8212 # http://developer.download.nvidia.com/opengl/includes/wglext.h:210 WGL_RED_BITS_EXT = 8213 # http://developer.download.nvidia.com/opengl/includes/wglext.h:211 WGL_RED_SHIFT_EXT = 8214 # http://developer.download.nvidia.com/opengl/includes/wglext.h:212 WGL_GREEN_BITS_EXT = 8215 # http://developer.download.nvidia.com/opengl/includes/wglext.h:213 WGL_GREEN_SHIFT_EXT = 8216 # http://developer.download.nvidia.com/opengl/includes/wglext.h:214 WGL_BLUE_BITS_EXT = 8217 # http://developer.download.nvidia.com/opengl/includes/wglext.h:215 WGL_BLUE_SHIFT_EXT = 8218 # http://developer.download.nvidia.com/opengl/includes/wglext.h:216 WGL_ALPHA_BITS_EXT = 8219 # http://developer.download.nvidia.com/opengl/includes/wglext.h:217 WGL_ALPHA_SHIFT_EXT = 8220 # http://developer.download.nvidia.com/opengl/includes/wglext.h:218 WGL_ACCUM_BITS_EXT = 8221 # http://developer.download.nvidia.com/opengl/includes/wglext.h:219 WGL_ACCUM_RED_BITS_EXT = 8222 # http://developer.download.nvidia.com/opengl/includes/wglext.h:220 WGL_ACCUM_GREEN_BITS_EXT = 8223 # http://developer.download.nvidia.com/opengl/includes/wglext.h:221 WGL_ACCUM_BLUE_BITS_EXT = 8224 # http://developer.download.nvidia.com/opengl/includes/wglext.h:222 WGL_ACCUM_ALPHA_BITS_EXT = 8225 # http://developer.download.nvidia.com/opengl/includes/wglext.h:223 WGL_DEPTH_BITS_EXT = 8226 # http://developer.download.nvidia.com/opengl/includes/wglext.h:224 WGL_STENCIL_BITS_EXT = 8227 # http://developer.download.nvidia.com/opengl/includes/wglext.h:225 WGL_AUX_BUFFERS_EXT = 8228 # http://developer.download.nvidia.com/opengl/includes/wglext.h:226 WGL_NO_ACCELERATION_EXT = 8229 # http://developer.download.nvidia.com/opengl/includes/wglext.h:227 WGL_GENERIC_ACCELERATION_EXT = 8230 # http://developer.download.nvidia.com/opengl/includes/wglext.h:228 WGL_FULL_ACCELERATION_EXT = 8231 # http://developer.download.nvidia.com/opengl/includes/wglext.h:229 WGL_SWAP_EXCHANGE_EXT = 8232 # http://developer.download.nvidia.com/opengl/includes/wglext.h:230 WGL_SWAP_COPY_EXT = 8233 # http://developer.download.nvidia.com/opengl/includes/wglext.h:231 WGL_SWAP_UNDEFINED_EXT = 8234 # http://developer.download.nvidia.com/opengl/includes/wglext.h:232 WGL_TYPE_RGBA_EXT = 8235 # http://developer.download.nvidia.com/opengl/includes/wglext.h:233 WGL_TYPE_COLORINDEX_EXT = 8236 # http://developer.download.nvidia.com/opengl/includes/wglext.h:234 # EXT_pbuffer (http://developer.download.nvidia.com/opengl/includes/wglext.h:237) WGL_DRAW_TO_PBUFFER_EXT = 8237 # http://developer.download.nvidia.com/opengl/includes/wglext.h:238 WGL_MAX_PBUFFER_PIXELS_EXT = 8238 # http://developer.download.nvidia.com/opengl/includes/wglext.h:239 WGL_MAX_PBUFFER_WIDTH_EXT = 8239 # http://developer.download.nvidia.com/opengl/includes/wglext.h:240 WGL_MAX_PBUFFER_HEIGHT_EXT = 8240 # http://developer.download.nvidia.com/opengl/includes/wglext.h:241 WGL_OPTIMAL_PBUFFER_WIDTH_EXT = 8241 # http://developer.download.nvidia.com/opengl/includes/wglext.h:242 WGL_OPTIMAL_PBUFFER_HEIGHT_EXT = 8242 # http://developer.download.nvidia.com/opengl/includes/wglext.h:243 WGL_PBUFFER_LARGEST_EXT = 8243 # http://developer.download.nvidia.com/opengl/includes/wglext.h:244 WGL_PBUFFER_WIDTH_EXT = 8244 # http://developer.download.nvidia.com/opengl/includes/wglext.h:245 WGL_PBUFFER_HEIGHT_EXT = 8245 # http://developer.download.nvidia.com/opengl/includes/wglext.h:246 # EXT_depth_float (http://developer.download.nvidia.com/opengl/includes/wglext.h:249) WGL_DEPTH_FLOAT_EXT = 8256 # http://developer.download.nvidia.com/opengl/includes/wglext.h:250 # 3DFX_multisample (http://developer.download.nvidia.com/opengl/includes/wglext.h:253) WGL_SAMPLE_BUFFERS_3DFX = 8288 # http://developer.download.nvidia.com/opengl/includes/wglext.h:254 WGL_SAMPLES_3DFX = 8289 # http://developer.download.nvidia.com/opengl/includes/wglext.h:255 # EXT_multisample (http://developer.download.nvidia.com/opengl/includes/wglext.h:258) WGL_SAMPLE_BUFFERS_EXT = 8257 # http://developer.download.nvidia.com/opengl/includes/wglext.h:259 WGL_SAMPLES_EXT = 8258 # http://developer.download.nvidia.com/opengl/includes/wglext.h:260 # I3D_digital_video_control (http://developer.download.nvidia.com/opengl/includes/wglext.h:263) WGL_DIGITAL_VIDEO_CURSOR_ALPHA_FRAMEBUFFER_I3D = 8272 # http://developer.download.nvidia.com/opengl/includes/wglext.h:264 WGL_DIGITAL_VIDEO_CURSOR_ALPHA_VALUE_I3D = 8273 # http://developer.download.nvidia.com/opengl/includes/wglext.h:265 WGL_DIGITAL_VIDEO_CURSOR_INCLUDED_I3D = 8274 # http://developer.download.nvidia.com/opengl/includes/wglext.h:266 WGL_DIGITAL_VIDEO_GAMMA_CORRECTED_I3D = 8275 # http://developer.download.nvidia.com/opengl/includes/wglext.h:267 # I3D_gamma (http://developer.download.nvidia.com/opengl/includes/wglext.h:270) WGL_GAMMA_TABLE_SIZE_I3D = 8270 # http://developer.download.nvidia.com/opengl/includes/wglext.h:271 WGL_GAMMA_EXCLUDE_DESKTOP_I3D = 8271 # http://developer.download.nvidia.com/opengl/includes/wglext.h:272 # I3D_genlock (http://developer.download.nvidia.com/opengl/includes/wglext.h:275) WGL_GENLOCK_SOURCE_MULTIVIEW_I3D = 8260 # http://developer.download.nvidia.com/opengl/includes/wglext.h:276 WGL_GENLOCK_SOURCE_EXTENAL_SYNC_I3D = 8261 # http://developer.download.nvidia.com/opengl/includes/wglext.h:277 WGL_GENLOCK_SOURCE_EXTENAL_FIELD_I3D = 8262 # http://developer.download.nvidia.com/opengl/includes/wglext.h:278 WGL_GENLOCK_SOURCE_EXTENAL_TTL_I3D = 8263 # http://developer.download.nvidia.com/opengl/includes/wglext.h:279 WGL_GENLOCK_SOURCE_DIGITAL_SYNC_I3D = 8264 # http://developer.download.nvidia.com/opengl/includes/wglext.h:280 WGL_GENLOCK_SOURCE_DIGITAL_FIELD_I3D = 8265 # http://developer.download.nvidia.com/opengl/includes/wglext.h:281 WGL_GENLOCK_SOURCE_EDGE_FALLING_I3D = 8266 # http://developer.download.nvidia.com/opengl/includes/wglext.h:282 WGL_GENLOCK_SOURCE_EDGE_RISING_I3D = 8267 # http://developer.download.nvidia.com/opengl/includes/wglext.h:283 WGL_GENLOCK_SOURCE_EDGE_BOTH_I3D = 8268 # http://developer.download.nvidia.com/opengl/includes/wglext.h:284 # I3D_image_buffer (http://developer.download.nvidia.com/opengl/includes/wglext.h:287) WGL_IMAGE_BUFFER_MIN_ACCESS_I3D = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:288 WGL_IMAGE_BUFFER_LOCK_I3D = 2 # http://developer.download.nvidia.com/opengl/includes/wglext.h:289 # I3D_swap_frame_lock (http://developer.download.nvidia.com/opengl/includes/wglext.h:292) # NV_render_depth_texture (http://developer.download.nvidia.com/opengl/includes/wglext.h:295) WGL_BIND_TO_TEXTURE_DEPTH_NV = 8355 # http://developer.download.nvidia.com/opengl/includes/wglext.h:296 WGL_BIND_TO_TEXTURE_RECTANGLE_DEPTH_NV = 8356 # http://developer.download.nvidia.com/opengl/includes/wglext.h:297 WGL_DEPTH_TEXTURE_FORMAT_NV = 8357 # http://developer.download.nvidia.com/opengl/includes/wglext.h:298 WGL_TEXTURE_DEPTH_COMPONENT_NV = 8358 # http://developer.download.nvidia.com/opengl/includes/wglext.h:299 WGL_DEPTH_COMPONENT_NV = 8359 # http://developer.download.nvidia.com/opengl/includes/wglext.h:300 # NV_render_texture_rectangle (http://developer.download.nvidia.com/opengl/includes/wglext.h:303) WGL_BIND_TO_TEXTURE_RECTANGLE_RGB_NV = 8352 # http://developer.download.nvidia.com/opengl/includes/wglext.h:304 WGL_BIND_TO_TEXTURE_RECTANGLE_RGBA_NV = 8353 # http://developer.download.nvidia.com/opengl/includes/wglext.h:305 WGL_TEXTURE_RECTANGLE_NV = 8354 # http://developer.download.nvidia.com/opengl/includes/wglext.h:306 # ATI_pixel_format_float (http://developer.download.nvidia.com/opengl/includes/wglext.h:309) WGL_TYPE_RGBA_FLOAT_ATI = 8608 # http://developer.download.nvidia.com/opengl/includes/wglext.h:310 WGL_RGBA_FLOAT_MODE_ATI = 34848 # http://developer.download.nvidia.com/opengl/includes/wglext.h:311 WGL_COLOR_CLEAR_UNCLAMPED_VALUE_ATI = 34869 # http://developer.download.nvidia.com/opengl/includes/wglext.h:312 # NV_float_buffer (http://developer.download.nvidia.com/opengl/includes/wglext.h:315) WGL_FLOAT_COMPONENTS_NV = 8368 # http://developer.download.nvidia.com/opengl/includes/wglext.h:316 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_R_NV = 8369 # http://developer.download.nvidia.com/opengl/includes/wglext.h:317 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RG_NV = 8370 # http://developer.download.nvidia.com/opengl/includes/wglext.h:318 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGB_NV = 8371 # http://developer.download.nvidia.com/opengl/includes/wglext.h:319 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGBA_NV = 8372 # http://developer.download.nvidia.com/opengl/includes/wglext.h:320 WGL_TEXTURE_FLOAT_R_NV = 8373 # http://developer.download.nvidia.com/opengl/includes/wglext.h:321 WGL_TEXTURE_FLOAT_RG_NV = 8374 # http://developer.download.nvidia.com/opengl/includes/wglext.h:322 WGL_TEXTURE_FLOAT_RGB_NV = 8375 # http://developer.download.nvidia.com/opengl/includes/wglext.h:323 WGL_TEXTURE_FLOAT_RGBA_NV = 8376 # http://developer.download.nvidia.com/opengl/includes/wglext.h:324 # NV_swap_group (http://developer.download.nvidia.com/opengl/includes/wglext.h:327) # NV_gpu_affinity (http://developer.download.nvidia.com/opengl/includes/wglext.h:330) WGL_ERROR_INCOMPATIBLE_AFFINITY_MASKS_NV = 8400 # http://developer.download.nvidia.com/opengl/includes/wglext.h:331 WGL_ERROR_MISSING_AFFINITY_MASK_NV = 8401 # http://developer.download.nvidia.com/opengl/includes/wglext.h:332 # ARB_pbuffer (http://developer.download.nvidia.com/opengl/includes/wglext.h:338) HANDLE = POINTER(None) # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:58 HPBUFFERARB = HANDLE # http://developer.download.nvidia.com/opengl/includes/wglext.h:339 # EXT_pbuffer (http://developer.download.nvidia.com/opengl/includes/wglext.h:341) HPBUFFEREXT = HANDLE # http://developer.download.nvidia.com/opengl/includes/wglext.h:342 # NV_gpu_affinity (http://developer.download.nvidia.com/opengl/includes/wglext.h:345) HGPUNV = HANDLE # http://developer.download.nvidia.com/opengl/includes/wglext.h:346 class struct__GPU_DEVICE(Structure): __slots__ = [ 'cb', 'DeviceName', 'DeviceString', 'Flags', 'rcVirtualScreen', ] DWORD = c_ulong # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:54 CHAR = c_char # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:47 class struct_tagRECT(Structure): __slots__ = [ 'left', 'top', 'right', 'bottom', ] LONG = c_long # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:53 struct_tagRECT._fields_ = [ ('left', LONG), ('top', LONG), ('right', LONG), ('bottom', LONG), ] RECT = struct_tagRECT # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:200 struct__GPU_DEVICE._fields_ = [ ('cb', DWORD), ('DeviceName', CHAR * 32), ('DeviceString', CHAR * 128), ('Flags', DWORD), ('rcVirtualScreen', RECT), ] GPU_DEVICE = struct__GPU_DEVICE # http://developer.download.nvidia.com/opengl/includes/wglext.h:353 PGPU_DEVICE = POINTER(struct__GPU_DEVICE) # http://developer.download.nvidia.com/opengl/includes/wglext.h:353 # ARB_buffer_region (http://developer.download.nvidia.com/opengl/includes/wglext.h:356) WGL_ARB_buffer_region = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:357 HDC = HANDLE # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:61 UINT = c_uint # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:50 # http://developer.download.nvidia.com/opengl/includes/wglext.h:359 wglCreateBufferRegionARB = _link_function('wglCreateBufferRegionARB', HANDLE, [HDC, c_int, UINT], 'ARB_buffer_region') VOID = None # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:45 # http://developer.download.nvidia.com/opengl/includes/wglext.h:360 wglDeleteBufferRegionARB = _link_function('wglDeleteBufferRegionARB', VOID, [HANDLE], 'ARB_buffer_region') BOOL = c_long # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:52 # http://developer.download.nvidia.com/opengl/includes/wglext.h:361 wglSaveBufferRegionARB = _link_function('wglSaveBufferRegionARB', BOOL, [HANDLE, c_int, c_int, c_int, c_int], 'ARB_buffer_region') # http://developer.download.nvidia.com/opengl/includes/wglext.h:362 wglRestoreBufferRegionARB = _link_function('wglRestoreBufferRegionARB', BOOL, [HANDLE, c_int, c_int, c_int, c_int, c_int, c_int], 'ARB_buffer_region') PFNWGLCREATEBUFFERREGIONARBPROC = CFUNCTYPE(HANDLE, HDC, c_int, UINT) # http://developer.download.nvidia.com/opengl/includes/wglext.h:364 PFNWGLDELETEBUFFERREGIONARBPROC = CFUNCTYPE(VOID, HANDLE) # http://developer.download.nvidia.com/opengl/includes/wglext.h:365 PFNWGLSAVEBUFFERREGIONARBPROC = CFUNCTYPE(BOOL, HANDLE, c_int, c_int, c_int, c_int) # http://developer.download.nvidia.com/opengl/includes/wglext.h:366 PFNWGLRESTOREBUFFERREGIONARBPROC = CFUNCTYPE(BOOL, HANDLE, c_int, c_int, c_int, c_int, c_int, c_int) # http://developer.download.nvidia.com/opengl/includes/wglext.h:367 # ARB_multisample (http://developer.download.nvidia.com/opengl/includes/wglext.h:370) WGL_ARB_multisample = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:371 # ARB_extensions_string (http://developer.download.nvidia.com/opengl/includes/wglext.h:374) WGL_ARB_extensions_string = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:375 # http://developer.download.nvidia.com/opengl/includes/wglext.h:377 wglGetExtensionsStringARB = _link_function('wglGetExtensionsStringARB', c_char_p, [HDC], 'ARB_extensions_string') PFNWGLGETEXTENSIONSSTRINGARBPROC = CFUNCTYPE(c_char_p, HDC) # http://developer.download.nvidia.com/opengl/includes/wglext.h:379 # ARB_pixel_format (http://developer.download.nvidia.com/opengl/includes/wglext.h:382) WGL_ARB_pixel_format = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:383 # http://developer.download.nvidia.com/opengl/includes/wglext.h:385 wglGetPixelFormatAttribivARB = _link_function('wglGetPixelFormatAttribivARB', BOOL, [HDC, c_int, c_int, UINT, POINTER(c_int), POINTER(c_int)], 'ARB_pixel_format') FLOAT = c_float # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:55 # http://developer.download.nvidia.com/opengl/includes/wglext.h:386 wglGetPixelFormatAttribfvARB = _link_function('wglGetPixelFormatAttribfvARB', BOOL, [HDC, c_int, c_int, UINT, POINTER(c_int), POINTER(FLOAT)], 'ARB_pixel_format') # http://developer.download.nvidia.com/opengl/includes/wglext.h:387 wglChoosePixelFormatARB = _link_function('wglChoosePixelFormatARB', BOOL, [HDC, POINTER(c_int), POINTER(FLOAT), UINT, POINTER(c_int), POINTER(UINT)], 'ARB_pixel_format') PFNWGLGETPIXELFORMATATTRIBIVARBPROC = CFUNCTYPE(BOOL, HDC, c_int, c_int, UINT, POINTER(c_int), POINTER(c_int)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:389 PFNWGLGETPIXELFORMATATTRIBFVARBPROC = CFUNCTYPE(BOOL, HDC, c_int, c_int, UINT, POINTER(c_int), POINTER(FLOAT)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:390 PFNWGLCHOOSEPIXELFORMATARBPROC = CFUNCTYPE(BOOL, HDC, POINTER(c_int), POINTER(FLOAT), UINT, POINTER(c_int), POINTER(UINT)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:391 # ARB_make_current_read (http://developer.download.nvidia.com/opengl/includes/wglext.h:394) WGL_ARB_make_current_read = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:395 HGLRC = HANDLE # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:60 # http://developer.download.nvidia.com/opengl/includes/wglext.h:397 wglMakeContextCurrentARB = _link_function('wglMakeContextCurrentARB', BOOL, [HDC, HDC, HGLRC], 'ARB_make_current_read') # http://developer.download.nvidia.com/opengl/includes/wglext.h:398 wglGetCurrentReadDCARB = _link_function('wglGetCurrentReadDCARB', HDC, [], 'ARB_make_current_read') PFNWGLMAKECONTEXTCURRENTARBPROC = CFUNCTYPE(BOOL, HDC, HDC, HGLRC) # http://developer.download.nvidia.com/opengl/includes/wglext.h:400 PFNWGLGETCURRENTREADDCARBPROC = CFUNCTYPE(HDC) # http://developer.download.nvidia.com/opengl/includes/wglext.h:401 # ARB_pbuffer (http://developer.download.nvidia.com/opengl/includes/wglext.h:404) WGL_ARB_pbuffer = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:405 # http://developer.download.nvidia.com/opengl/includes/wglext.h:407 wglCreatePbufferARB = _link_function('wglCreatePbufferARB', HPBUFFERARB, [HDC, c_int, c_int, c_int, POINTER(c_int)], 'ARB_pbuffer') # http://developer.download.nvidia.com/opengl/includes/wglext.h:408 wglGetPbufferDCARB = _link_function('wglGetPbufferDCARB', HDC, [HPBUFFERARB], 'ARB_pbuffer') # http://developer.download.nvidia.com/opengl/includes/wglext.h:409 wglReleasePbufferDCARB = _link_function('wglReleasePbufferDCARB', c_int, [HPBUFFERARB, HDC], 'ARB_pbuffer') # http://developer.download.nvidia.com/opengl/includes/wglext.h:410 wglDestroyPbufferARB = _link_function('wglDestroyPbufferARB', BOOL, [HPBUFFERARB], 'ARB_pbuffer') # http://developer.download.nvidia.com/opengl/includes/wglext.h:411 wglQueryPbufferARB = _link_function('wglQueryPbufferARB', BOOL, [HPBUFFERARB, c_int, POINTER(c_int)], 'ARB_pbuffer') PFNWGLCREATEPBUFFERARBPROC = CFUNCTYPE(HPBUFFERARB, HDC, c_int, c_int, c_int, POINTER(c_int)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:413 PFNWGLGETPBUFFERDCARBPROC = CFUNCTYPE(HDC, HPBUFFERARB) # http://developer.download.nvidia.com/opengl/includes/wglext.h:414 PFNWGLRELEASEPBUFFERDCARBPROC = CFUNCTYPE(c_int, HPBUFFERARB, HDC) # http://developer.download.nvidia.com/opengl/includes/wglext.h:415 PFNWGLDESTROYPBUFFERARBPROC = CFUNCTYPE(BOOL, HPBUFFERARB) # http://developer.download.nvidia.com/opengl/includes/wglext.h:416 PFNWGLQUERYPBUFFERARBPROC = CFUNCTYPE(BOOL, HPBUFFERARB, c_int, POINTER(c_int)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:417 # ARB_render_texture (http://developer.download.nvidia.com/opengl/includes/wglext.h:420) WGL_ARB_render_texture = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:421 # http://developer.download.nvidia.com/opengl/includes/wglext.h:423 wglBindTexImageARB = _link_function('wglBindTexImageARB', BOOL, [HPBUFFERARB, c_int], 'ARB_render_texture') # http://developer.download.nvidia.com/opengl/includes/wglext.h:424 wglReleaseTexImageARB = _link_function('wglReleaseTexImageARB', BOOL, [HPBUFFERARB, c_int], 'ARB_render_texture') # http://developer.download.nvidia.com/opengl/includes/wglext.h:425 wglSetPbufferAttribARB = _link_function('wglSetPbufferAttribARB', BOOL, [HPBUFFERARB, POINTER(c_int)], 'ARB_render_texture') PFNWGLBINDTEXIMAGEARBPROC = CFUNCTYPE(BOOL, HPBUFFERARB, c_int) # http://developer.download.nvidia.com/opengl/includes/wglext.h:427 PFNWGLRELEASETEXIMAGEARBPROC = CFUNCTYPE(BOOL, HPBUFFERARB, c_int) # http://developer.download.nvidia.com/opengl/includes/wglext.h:428 PFNWGLSETPBUFFERATTRIBARBPROC = CFUNCTYPE(BOOL, HPBUFFERARB, POINTER(c_int)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:429 # ARB_pixel_format_float (http://developer.download.nvidia.com/opengl/includes/wglext.h:432) WGL_ARB_pixel_format_float = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:433 # EXT_display_color_table (http://developer.download.nvidia.com/opengl/includes/wglext.h:436) WGL_EXT_display_color_table = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:437 GLboolean = c_ubyte # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:18 GLushort = c_ushort # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:25 # http://developer.download.nvidia.com/opengl/includes/wglext.h:439 wglCreateDisplayColorTableEXT = _link_function('wglCreateDisplayColorTableEXT', GLboolean, [GLushort], 'EXT_display_color_table') GLuint = c_uint # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:26 # http://developer.download.nvidia.com/opengl/includes/wglext.h:440 wglLoadDisplayColorTableEXT = _link_function('wglLoadDisplayColorTableEXT', GLboolean, [POINTER(GLushort), GLuint], 'EXT_display_color_table') # http://developer.download.nvidia.com/opengl/includes/wglext.h:441 wglBindDisplayColorTableEXT = _link_function('wglBindDisplayColorTableEXT', GLboolean, [GLushort], 'EXT_display_color_table') # http://developer.download.nvidia.com/opengl/includes/wglext.h:442 wglDestroyDisplayColorTableEXT = _link_function('wglDestroyDisplayColorTableEXT', VOID, [GLushort], 'EXT_display_color_table') PFNWGLCREATEDISPLAYCOLORTABLEEXTPROC = CFUNCTYPE(GLboolean, GLushort) # http://developer.download.nvidia.com/opengl/includes/wglext.h:444 PFNWGLLOADDISPLAYCOLORTABLEEXTPROC = CFUNCTYPE(GLboolean, POINTER(GLushort), GLuint) # http://developer.download.nvidia.com/opengl/includes/wglext.h:445 PFNWGLBINDDISPLAYCOLORTABLEEXTPROC = CFUNCTYPE(GLboolean, GLushort) # http://developer.download.nvidia.com/opengl/includes/wglext.h:446 PFNWGLDESTROYDISPLAYCOLORTABLEEXTPROC = CFUNCTYPE(VOID, GLushort) # http://developer.download.nvidia.com/opengl/includes/wglext.h:447 # EXT_extensions_string (http://developer.download.nvidia.com/opengl/includes/wglext.h:450) WGL_EXT_extensions_string = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:451 # http://developer.download.nvidia.com/opengl/includes/wglext.h:453 wglGetExtensionsStringEXT = _link_function('wglGetExtensionsStringEXT', c_char_p, [], 'EXT_extensions_string') PFNWGLGETEXTENSIONSSTRINGEXTPROC = CFUNCTYPE(c_char_p) # http://developer.download.nvidia.com/opengl/includes/wglext.h:455 # EXT_make_current_read (http://developer.download.nvidia.com/opengl/includes/wglext.h:458) WGL_EXT_make_current_read = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:459 # http://developer.download.nvidia.com/opengl/includes/wglext.h:461 wglMakeContextCurrentEXT = _link_function('wglMakeContextCurrentEXT', BOOL, [HDC, HDC, HGLRC], 'EXT_make_current_read') # http://developer.download.nvidia.com/opengl/includes/wglext.h:462 wglGetCurrentReadDCEXT = _link_function('wglGetCurrentReadDCEXT', HDC, [], 'EXT_make_current_read') PFNWGLMAKECONTEXTCURRENTEXTPROC = CFUNCTYPE(BOOL, HDC, HDC, HGLRC) # http://developer.download.nvidia.com/opengl/includes/wglext.h:464 PFNWGLGETCURRENTREADDCEXTPROC = CFUNCTYPE(HDC) # http://developer.download.nvidia.com/opengl/includes/wglext.h:465 # EXT_pbuffer (http://developer.download.nvidia.com/opengl/includes/wglext.h:468) WGL_EXT_pbuffer = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:469 # http://developer.download.nvidia.com/opengl/includes/wglext.h:471 wglCreatePbufferEXT = _link_function('wglCreatePbufferEXT', HPBUFFEREXT, [HDC, c_int, c_int, c_int, POINTER(c_int)], 'EXT_pbuffer') # http://developer.download.nvidia.com/opengl/includes/wglext.h:472 wglGetPbufferDCEXT = _link_function('wglGetPbufferDCEXT', HDC, [HPBUFFEREXT], 'EXT_pbuffer') # http://developer.download.nvidia.com/opengl/includes/wglext.h:473 wglReleasePbufferDCEXT = _link_function('wglReleasePbufferDCEXT', c_int, [HPBUFFEREXT, HDC], 'EXT_pbuffer') # http://developer.download.nvidia.com/opengl/includes/wglext.h:474 wglDestroyPbufferEXT = _link_function('wglDestroyPbufferEXT', BOOL, [HPBUFFEREXT], 'EXT_pbuffer') # http://developer.download.nvidia.com/opengl/includes/wglext.h:475 wglQueryPbufferEXT = _link_function('wglQueryPbufferEXT', BOOL, [HPBUFFEREXT, c_int, POINTER(c_int)], 'EXT_pbuffer') PFNWGLCREATEPBUFFEREXTPROC = CFUNCTYPE(HPBUFFEREXT, HDC, c_int, c_int, c_int, POINTER(c_int)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:477 PFNWGLGETPBUFFERDCEXTPROC = CFUNCTYPE(HDC, HPBUFFEREXT) # http://developer.download.nvidia.com/opengl/includes/wglext.h:478 PFNWGLRELEASEPBUFFERDCEXTPROC = CFUNCTYPE(c_int, HPBUFFEREXT, HDC) # http://developer.download.nvidia.com/opengl/includes/wglext.h:479 PFNWGLDESTROYPBUFFEREXTPROC = CFUNCTYPE(BOOL, HPBUFFEREXT) # http://developer.download.nvidia.com/opengl/includes/wglext.h:480 PFNWGLQUERYPBUFFEREXTPROC = CFUNCTYPE(BOOL, HPBUFFEREXT, c_int, POINTER(c_int)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:481 # EXT_pixel_format (http://developer.download.nvidia.com/opengl/includes/wglext.h:484) WGL_EXT_pixel_format = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:485 # http://developer.download.nvidia.com/opengl/includes/wglext.h:487 wglGetPixelFormatAttribivEXT = _link_function('wglGetPixelFormatAttribivEXT', BOOL, [HDC, c_int, c_int, UINT, POINTER(c_int), POINTER(c_int)], 'EXT_pixel_format') # http://developer.download.nvidia.com/opengl/includes/wglext.h:488 wglGetPixelFormatAttribfvEXT = _link_function('wglGetPixelFormatAttribfvEXT', BOOL, [HDC, c_int, c_int, UINT, POINTER(c_int), POINTER(FLOAT)], 'EXT_pixel_format') # http://developer.download.nvidia.com/opengl/includes/wglext.h:489 wglChoosePixelFormatEXT = _link_function('wglChoosePixelFormatEXT', BOOL, [HDC, POINTER(c_int), POINTER(FLOAT), UINT, POINTER(c_int), POINTER(UINT)], 'EXT_pixel_format') PFNWGLGETPIXELFORMATATTRIBIVEXTPROC = CFUNCTYPE(BOOL, HDC, c_int, c_int, UINT, POINTER(c_int), POINTER(c_int)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:491 PFNWGLGETPIXELFORMATATTRIBFVEXTPROC = CFUNCTYPE(BOOL, HDC, c_int, c_int, UINT, POINTER(c_int), POINTER(FLOAT)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:492 PFNWGLCHOOSEPIXELFORMATEXTPROC = CFUNCTYPE(BOOL, HDC, POINTER(c_int), POINTER(FLOAT), UINT, POINTER(c_int), POINTER(UINT)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:493 # EXT_swap_control (http://developer.download.nvidia.com/opengl/includes/wglext.h:496) WGL_EXT_swap_control = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:497 # http://developer.download.nvidia.com/opengl/includes/wglext.h:499 wglSwapIntervalEXT = _link_function('wglSwapIntervalEXT', BOOL, [c_int], 'EXT_swap_control') # http://developer.download.nvidia.com/opengl/includes/wglext.h:500 wglGetSwapIntervalEXT = _link_function('wglGetSwapIntervalEXT', c_int, [], 'EXT_swap_control') PFNWGLSWAPINTERVALEXTPROC = CFUNCTYPE(BOOL, c_int) # http://developer.download.nvidia.com/opengl/includes/wglext.h:502 PFNWGLGETSWAPINTERVALEXTPROC = CFUNCTYPE(c_int) # http://developer.download.nvidia.com/opengl/includes/wglext.h:503 # EXT_depth_float (http://developer.download.nvidia.com/opengl/includes/wglext.h:506) WGL_EXT_depth_float = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:507 # NV_vertex_array_range (http://developer.download.nvidia.com/opengl/includes/wglext.h:510) WGL_NV_vertex_array_range = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:511 GLsizei = c_int # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:23 GLfloat = c_float # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:27 # http://developer.download.nvidia.com/opengl/includes/wglext.h:513 wglAllocateMemoryNV = _link_function('wglAllocateMemoryNV', POINTER(c_void), [GLsizei, GLfloat, GLfloat, GLfloat], 'NV_vertex_array_range') # http://developer.download.nvidia.com/opengl/includes/wglext.h:514 wglFreeMemoryNV = _link_function('wglFreeMemoryNV', None, [POINTER(None)], 'NV_vertex_array_range') PFNWGLALLOCATEMEMORYNVPROC = CFUNCTYPE(POINTER(c_void), GLsizei, GLfloat, GLfloat, GLfloat) # http://developer.download.nvidia.com/opengl/includes/wglext.h:516 PFNWGLFREEMEMORYNVPROC = CFUNCTYPE(None, POINTER(None)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:517 # 3DFX_multisample (http://developer.download.nvidia.com/opengl/includes/wglext.h:520) WGL_3DFX_multisample = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:521 # EXT_multisample (http://developer.download.nvidia.com/opengl/includes/wglext.h:524) WGL_EXT_multisample = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:525 # OML_sync_control (http://developer.download.nvidia.com/opengl/includes/wglext.h:528) WGL_OML_sync_control = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:529 INT64 = c_longlong # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:42 # http://developer.download.nvidia.com/opengl/includes/wglext.h:531 wglGetSyncValuesOML = _link_function('wglGetSyncValuesOML', BOOL, [HDC, POINTER(INT64), POINTER(INT64), POINTER(INT64)], 'OML_sync_control') INT32 = c_int # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:35 # http://developer.download.nvidia.com/opengl/includes/wglext.h:532 wglGetMscRateOML = _link_function('wglGetMscRateOML', BOOL, [HDC, POINTER(INT32), POINTER(INT32)], 'OML_sync_control') # http://developer.download.nvidia.com/opengl/includes/wglext.h:533 wglSwapBuffersMscOML = _link_function('wglSwapBuffersMscOML', INT64, [HDC, INT64, INT64, INT64], 'OML_sync_control') # http://developer.download.nvidia.com/opengl/includes/wglext.h:534 wglSwapLayerBuffersMscOML = _link_function('wglSwapLayerBuffersMscOML', INT64, [HDC, c_int, INT64, INT64, INT64], 'OML_sync_control') # http://developer.download.nvidia.com/opengl/includes/wglext.h:535 wglWaitForMscOML = _link_function('wglWaitForMscOML', BOOL, [HDC, INT64, INT64, INT64, POINTER(INT64), POINTER(INT64), POINTER(INT64)], 'OML_sync_control') # http://developer.download.nvidia.com/opengl/includes/wglext.h:536 wglWaitForSbcOML = _link_function('wglWaitForSbcOML', BOOL, [HDC, INT64, POINTER(INT64), POINTER(INT64), POINTER(INT64)], 'OML_sync_control') PFNWGLGETSYNCVALUESOMLPROC = CFUNCTYPE(BOOL, HDC, POINTER(INT64), POINTER(INT64), POINTER(INT64)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:538 PFNWGLGETMSCRATEOMLPROC = CFUNCTYPE(BOOL, HDC, POINTER(INT32), POINTER(INT32)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:539 PFNWGLSWAPBUFFERSMSCOMLPROC = CFUNCTYPE(INT64, HDC, INT64, INT64, INT64) # http://developer.download.nvidia.com/opengl/includes/wglext.h:540 PFNWGLSWAPLAYERBUFFERSMSCOMLPROC = CFUNCTYPE(INT64, HDC, c_int, INT64, INT64, INT64) # http://developer.download.nvidia.com/opengl/includes/wglext.h:541 PFNWGLWAITFORMSCOMLPROC = CFUNCTYPE(BOOL, HDC, INT64, INT64, INT64, POINTER(INT64), POINTER(INT64), POINTER(INT64)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:542 PFNWGLWAITFORSBCOMLPROC = CFUNCTYPE(BOOL, HDC, INT64, POINTER(INT64), POINTER(INT64), POINTER(INT64)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:543 # I3D_digital_video_control (http://developer.download.nvidia.com/opengl/includes/wglext.h:546) WGL_I3D_digital_video_control = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:547 # http://developer.download.nvidia.com/opengl/includes/wglext.h:549 wglGetDigitalVideoParametersI3D = _link_function('wglGetDigitalVideoParametersI3D', BOOL, [HDC, c_int, POINTER(c_int)], 'I3D_digital_video_control') # http://developer.download.nvidia.com/opengl/includes/wglext.h:550 wglSetDigitalVideoParametersI3D = _link_function('wglSetDigitalVideoParametersI3D', BOOL, [HDC, c_int, POINTER(c_int)], 'I3D_digital_video_control') PFNWGLGETDIGITALVIDEOPARAMETERSI3DPROC = CFUNCTYPE(BOOL, HDC, c_int, POINTER(c_int)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:552 PFNWGLSETDIGITALVIDEOPARAMETERSI3DPROC = CFUNCTYPE(BOOL, HDC, c_int, POINTER(c_int)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:553 # I3D_gamma (http://developer.download.nvidia.com/opengl/includes/wglext.h:556) WGL_I3D_gamma = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:557 # http://developer.download.nvidia.com/opengl/includes/wglext.h:559 wglGetGammaTableParametersI3D = _link_function('wglGetGammaTableParametersI3D', BOOL, [HDC, c_int, POINTER(c_int)], 'I3D_gamma') # http://developer.download.nvidia.com/opengl/includes/wglext.h:560 wglSetGammaTableParametersI3D = _link_function('wglSetGammaTableParametersI3D', BOOL, [HDC, c_int, POINTER(c_int)], 'I3D_gamma') USHORT = c_ushort # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:49 # http://developer.download.nvidia.com/opengl/includes/wglext.h:561 wglGetGammaTableI3D = _link_function('wglGetGammaTableI3D', BOOL, [HDC, c_int, POINTER(USHORT), POINTER(USHORT), POINTER(USHORT)], 'I3D_gamma') # http://developer.download.nvidia.com/opengl/includes/wglext.h:562 wglSetGammaTableI3D = _link_function('wglSetGammaTableI3D', BOOL, [HDC, c_int, POINTER(USHORT), POINTER(USHORT), POINTER(USHORT)], 'I3D_gamma') PFNWGLGETGAMMATABLEPARAMETERSI3DPROC = CFUNCTYPE(BOOL, HDC, c_int, POINTER(c_int)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:564 PFNWGLSETGAMMATABLEPARAMETERSI3DPROC = CFUNCTYPE(BOOL, HDC, c_int, POINTER(c_int)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:565 PFNWGLGETGAMMATABLEI3DPROC = CFUNCTYPE(BOOL, HDC, c_int, POINTER(USHORT), POINTER(USHORT), POINTER(USHORT)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:566 PFNWGLSETGAMMATABLEI3DPROC = CFUNCTYPE(BOOL, HDC, c_int, POINTER(USHORT), POINTER(USHORT), POINTER(USHORT)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:567 # I3D_genlock (http://developer.download.nvidia.com/opengl/includes/wglext.h:570) WGL_I3D_genlock = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:571 # http://developer.download.nvidia.com/opengl/includes/wglext.h:573 wglEnableGenlockI3D = _link_function('wglEnableGenlockI3D', BOOL, [HDC], 'I3D_genlock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:574 wglDisableGenlockI3D = _link_function('wglDisableGenlockI3D', BOOL, [HDC], 'I3D_genlock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:575 wglIsEnabledGenlockI3D = _link_function('wglIsEnabledGenlockI3D', BOOL, [HDC, POINTER(BOOL)], 'I3D_genlock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:576 wglGenlockSourceI3D = _link_function('wglGenlockSourceI3D', BOOL, [HDC, UINT], 'I3D_genlock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:577 wglGetGenlockSourceI3D = _link_function('wglGetGenlockSourceI3D', BOOL, [HDC, POINTER(UINT)], 'I3D_genlock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:578 wglGenlockSourceEdgeI3D = _link_function('wglGenlockSourceEdgeI3D', BOOL, [HDC, UINT], 'I3D_genlock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:579 wglGetGenlockSourceEdgeI3D = _link_function('wglGetGenlockSourceEdgeI3D', BOOL, [HDC, POINTER(UINT)], 'I3D_genlock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:580 wglGenlockSampleRateI3D = _link_function('wglGenlockSampleRateI3D', BOOL, [HDC, UINT], 'I3D_genlock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:581 wglGetGenlockSampleRateI3D = _link_function('wglGetGenlockSampleRateI3D', BOOL, [HDC, POINTER(UINT)], 'I3D_genlock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:582 wglGenlockSourceDelayI3D = _link_function('wglGenlockSourceDelayI3D', BOOL, [HDC, UINT], 'I3D_genlock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:583 wglGetGenlockSourceDelayI3D = _link_function('wglGetGenlockSourceDelayI3D', BOOL, [HDC, POINTER(UINT)], 'I3D_genlock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:584 wglQueryGenlockMaxSourceDelayI3D = _link_function('wglQueryGenlockMaxSourceDelayI3D', BOOL, [HDC, POINTER(UINT), POINTER(UINT)], 'I3D_genlock') PFNWGLENABLEGENLOCKI3DPROC = CFUNCTYPE(BOOL, HDC) # http://developer.download.nvidia.com/opengl/includes/wglext.h:586 PFNWGLDISABLEGENLOCKI3DPROC = CFUNCTYPE(BOOL, HDC) # http://developer.download.nvidia.com/opengl/includes/wglext.h:587 PFNWGLISENABLEDGENLOCKI3DPROC = CFUNCTYPE(BOOL, HDC, POINTER(BOOL)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:588 PFNWGLGENLOCKSOURCEI3DPROC = CFUNCTYPE(BOOL, HDC, UINT) # http://developer.download.nvidia.com/opengl/includes/wglext.h:589 PFNWGLGETGENLOCKSOURCEI3DPROC = CFUNCTYPE(BOOL, HDC, POINTER(UINT)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:590 PFNWGLGENLOCKSOURCEEDGEI3DPROC = CFUNCTYPE(BOOL, HDC, UINT) # http://developer.download.nvidia.com/opengl/includes/wglext.h:591 PFNWGLGETGENLOCKSOURCEEDGEI3DPROC = CFUNCTYPE(BOOL, HDC, POINTER(UINT)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:592 PFNWGLGENLOCKSAMPLERATEI3DPROC = CFUNCTYPE(BOOL, HDC, UINT) # http://developer.download.nvidia.com/opengl/includes/wglext.h:593 PFNWGLGETGENLOCKSAMPLERATEI3DPROC = CFUNCTYPE(BOOL, HDC, POINTER(UINT)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:594 PFNWGLGENLOCKSOURCEDELAYI3DPROC = CFUNCTYPE(BOOL, HDC, UINT) # http://developer.download.nvidia.com/opengl/includes/wglext.h:595 PFNWGLGETGENLOCKSOURCEDELAYI3DPROC = CFUNCTYPE(BOOL, HDC, POINTER(UINT)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:596 PFNWGLQUERYGENLOCKMAXSOURCEDELAYI3DPROC = CFUNCTYPE(BOOL, HDC, POINTER(UINT), POINTER(UINT)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:597 # I3D_image_buffer (http://developer.download.nvidia.com/opengl/includes/wglext.h:600) WGL_I3D_image_buffer = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:601 LPVOID = POINTER(None) # C:\cygwin\home\alex\projects\pyglet\tools\wgl.h:45 # http://developer.download.nvidia.com/opengl/includes/wglext.h:603 wglCreateImageBufferI3D = _link_function('wglCreateImageBufferI3D', LPVOID, [HDC, DWORD, UINT], 'I3D_image_buffer') # http://developer.download.nvidia.com/opengl/includes/wglext.h:604 wglDestroyImageBufferI3D = _link_function('wglDestroyImageBufferI3D', BOOL, [HDC, LPVOID], 'I3D_image_buffer') # http://developer.download.nvidia.com/opengl/includes/wglext.h:605 wglAssociateImageBufferEventsI3D = _link_function('wglAssociateImageBufferEventsI3D', BOOL, [HDC, POINTER(HANDLE), POINTER(LPVOID), POINTER(DWORD), UINT], 'I3D_image_buffer') # http://developer.download.nvidia.com/opengl/includes/wglext.h:606 wglReleaseImageBufferEventsI3D = _link_function('wglReleaseImageBufferEventsI3D', BOOL, [HDC, POINTER(LPVOID), UINT], 'I3D_image_buffer') PFNWGLCREATEIMAGEBUFFERI3DPROC = CFUNCTYPE(LPVOID, HDC, DWORD, UINT) # http://developer.download.nvidia.com/opengl/includes/wglext.h:608 PFNWGLDESTROYIMAGEBUFFERI3DPROC = CFUNCTYPE(BOOL, HDC, LPVOID) # http://developer.download.nvidia.com/opengl/includes/wglext.h:609 PFNWGLASSOCIATEIMAGEBUFFEREVENTSI3DPROC = CFUNCTYPE(BOOL, HDC, POINTER(HANDLE), POINTER(LPVOID), POINTER(DWORD), UINT) # http://developer.download.nvidia.com/opengl/includes/wglext.h:610 PFNWGLRELEASEIMAGEBUFFEREVENTSI3DPROC = CFUNCTYPE(BOOL, HDC, POINTER(LPVOID), UINT) # http://developer.download.nvidia.com/opengl/includes/wglext.h:611 # I3D_swap_frame_lock (http://developer.download.nvidia.com/opengl/includes/wglext.h:614) WGL_I3D_swap_frame_lock = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:615 # http://developer.download.nvidia.com/opengl/includes/wglext.h:617 wglEnableFrameLockI3D = _link_function('wglEnableFrameLockI3D', BOOL, [], 'I3D_swap_frame_lock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:618 wglDisableFrameLockI3D = _link_function('wglDisableFrameLockI3D', BOOL, [], 'I3D_swap_frame_lock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:619 wglIsEnabledFrameLockI3D = _link_function('wglIsEnabledFrameLockI3D', BOOL, [POINTER(BOOL)], 'I3D_swap_frame_lock') # http://developer.download.nvidia.com/opengl/includes/wglext.h:620 wglQueryFrameLockMasterI3D = _link_function('wglQueryFrameLockMasterI3D', BOOL, [POINTER(BOOL)], 'I3D_swap_frame_lock') PFNWGLENABLEFRAMELOCKI3DPROC = CFUNCTYPE(BOOL) # http://developer.download.nvidia.com/opengl/includes/wglext.h:622 PFNWGLDISABLEFRAMELOCKI3DPROC = CFUNCTYPE(BOOL) # http://developer.download.nvidia.com/opengl/includes/wglext.h:623 PFNWGLISENABLEDFRAMELOCKI3DPROC = CFUNCTYPE(BOOL, POINTER(BOOL)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:624 PFNWGLQUERYFRAMELOCKMASTERI3DPROC = CFUNCTYPE(BOOL, POINTER(BOOL)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:625 # I3D_swap_frame_usage (http://developer.download.nvidia.com/opengl/includes/wglext.h:628) WGL_I3D_swap_frame_usage = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:629 # http://developer.download.nvidia.com/opengl/includes/wglext.h:631 wglGetFrameUsageI3D = _link_function('wglGetFrameUsageI3D', BOOL, [POINTER(c_float)], 'I3D_swap_frame_usage') # http://developer.download.nvidia.com/opengl/includes/wglext.h:632 wglBeginFrameTrackingI3D = _link_function('wglBeginFrameTrackingI3D', BOOL, [], 'I3D_swap_frame_usage') # http://developer.download.nvidia.com/opengl/includes/wglext.h:633 wglEndFrameTrackingI3D = _link_function('wglEndFrameTrackingI3D', BOOL, [], 'I3D_swap_frame_usage') # http://developer.download.nvidia.com/opengl/includes/wglext.h:634 wglQueryFrameTrackingI3D = _link_function('wglQueryFrameTrackingI3D', BOOL, [POINTER(DWORD), POINTER(DWORD), POINTER(c_float)], 'I3D_swap_frame_usage') PFNWGLGETFRAMEUSAGEI3DPROC = CFUNCTYPE(BOOL, POINTER(c_float)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:636 PFNWGLBEGINFRAMETRACKINGI3DPROC = CFUNCTYPE(BOOL) # http://developer.download.nvidia.com/opengl/includes/wglext.h:637 PFNWGLENDFRAMETRACKINGI3DPROC = CFUNCTYPE(BOOL) # http://developer.download.nvidia.com/opengl/includes/wglext.h:638 PFNWGLQUERYFRAMETRACKINGI3DPROC = CFUNCTYPE(BOOL, POINTER(DWORD), POINTER(DWORD), POINTER(c_float)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:639 # ATI_pixel_format_float (http://developer.download.nvidia.com/opengl/includes/wglext.h:642) WGL_ATI_pixel_format_float = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:643 # NV_render_depth_texture (http://developer.download.nvidia.com/opengl/includes/wglext.h:646) WGL_NV_render_depth_texture = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:647 # NV_render_texture_rectangle (http://developer.download.nvidia.com/opengl/includes/wglext.h:650) WGL_NV_render_texture_rectangle = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:651 # NV_float_buffer (http://developer.download.nvidia.com/opengl/includes/wglext.h:654) WGL_NV_float_buffer = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:655 # NV_swap_group (http://developer.download.nvidia.com/opengl/includes/wglext.h:658) WGL_NV_swap_group = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:659 # http://developer.download.nvidia.com/opengl/includes/wglext.h:661 wglJoinSwapGroupNV = _link_function('wglJoinSwapGroupNV', BOOL, [HDC, GLuint], 'NV_swap_group') # http://developer.download.nvidia.com/opengl/includes/wglext.h:662 wglBindSwapBarrierNV = _link_function('wglBindSwapBarrierNV', BOOL, [GLuint, GLuint], 'NV_swap_group') # http://developer.download.nvidia.com/opengl/includes/wglext.h:663 wglQuerySwapGroupNV = _link_function('wglQuerySwapGroupNV', BOOL, [HDC, POINTER(GLuint), POINTER(GLuint)], 'NV_swap_group') # http://developer.download.nvidia.com/opengl/includes/wglext.h:664 wglQueryMaxSwapGroupsNV = _link_function('wglQueryMaxSwapGroupsNV', BOOL, [HDC, POINTER(GLuint), POINTER(GLuint)], 'NV_swap_group') # http://developer.download.nvidia.com/opengl/includes/wglext.h:665 wglQueryFrameCountNV = _link_function('wglQueryFrameCountNV', BOOL, [HDC, POINTER(GLuint)], 'NV_swap_group') # http://developer.download.nvidia.com/opengl/includes/wglext.h:666 wglResetFrameCountNV = _link_function('wglResetFrameCountNV', BOOL, [HDC], 'NV_swap_group') PFNWGLJOINSWAPGROUPNVPROC = CFUNCTYPE(BOOL, HDC, GLuint) # http://developer.download.nvidia.com/opengl/includes/wglext.h:668 PFNWGLBINDSWAPBARRIERNVPROC = CFUNCTYPE(BOOL, GLuint, GLuint) # http://developer.download.nvidia.com/opengl/includes/wglext.h:669 PFNWGLQUERYSWAPGROUPNVPROC = CFUNCTYPE(BOOL, HDC, POINTER(GLuint), POINTER(GLuint)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:670 PFNWGLQUERYMAXSWAPGROUPSNVPROC = CFUNCTYPE(BOOL, HDC, POINTER(GLuint), POINTER(GLuint)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:671 PFNWGLQUERYFRAMECOUNTNVPROC = CFUNCTYPE(BOOL, HDC, POINTER(GLuint)) # http://developer.download.nvidia.com/opengl/includes/wglext.h:672 PFNWGLRESETFRAMECOUNTNVPROC = CFUNCTYPE(BOOL, HDC) # http://developer.download.nvidia.com/opengl/includes/wglext.h:673 # NV_gpu_affinity (http://developer.download.nvidia.com/opengl/includes/wglext.h:676) WGL_NV_gpu_affinity = 1 # http://developer.download.nvidia.com/opengl/includes/wglext.h:677 # http://developer.download.nvidia.com/opengl/includes/wglext.h:679 wglEnumGpusNV = _link_function('wglEnumGpusNV', BOOL, [UINT, POINTER(HGPUNV)], 'NV_gpu_affinity') # http://developer.download.nvidia.com/opengl/includes/wglext.h:680 wglEnumGpuDevicesNV = _link_function('wglEnumGpuDevicesNV', BOOL, [HGPUNV, UINT, PGPU_DEVICE], 'NV_gpu_affinity') # http://developer.download.nvidia.com/opengl/includes/wglext.h:681 wglCreateAffinityDCNV = _link_function('wglCreateAffinityDCNV', HDC, [POINTER(HGPUNV)], 'NV_gpu_affinity') # http://developer.download.nvidia.com/opengl/includes/wglext.h:682 wglEnumGpusFromAffinityDCNV = _link_function('wglEnumGpusFromAffinityDCNV', BOOL, [HDC, UINT, POINTER(HGPUNV)], 'NV_gpu_affinity') # http://developer.download.nvidia.com/opengl/includes/wglext.h:683 wglDeleteDCNV = _link_function('wglDeleteDCNV', BOOL, [HDC], 'NV_gpu_affinity') __all__ = ['WIN32_LEAN_AND_MEAN', 'WGL_WGLEXT_VERSION', 'WGL_FRONT_COLOR_BUFFER_BIT_ARB', 'WGL_BACK_COLOR_BUFFER_BIT_ARB', 'WGL_DEPTH_BUFFER_BIT_ARB', 'WGL_STENCIL_BUFFER_BIT_ARB', 'WGL_SAMPLE_BUFFERS_ARB', 'WGL_SAMPLES_ARB', 'WGL_NUMBER_PIXEL_FORMATS_ARB', 'WGL_DRAW_TO_WINDOW_ARB', 'WGL_DRAW_TO_BITMAP_ARB', 'WGL_ACCELERATION_ARB', 'WGL_NEED_PALETTE_ARB', 'WGL_NEED_SYSTEM_PALETTE_ARB', 'WGL_SWAP_LAYER_BUFFERS_ARB', 'WGL_SWAP_METHOD_ARB', 'WGL_NUMBER_OVERLAYS_ARB', 'WGL_NUMBER_UNDERLAYS_ARB', 'WGL_TRANSPARENT_ARB', 'WGL_TRANSPARENT_RED_VALUE_ARB', 'WGL_TRANSPARENT_GREEN_VALUE_ARB', 'WGL_TRANSPARENT_BLUE_VALUE_ARB', 'WGL_TRANSPARENT_ALPHA_VALUE_ARB', 'WGL_TRANSPARENT_INDEX_VALUE_ARB', 'WGL_SHARE_DEPTH_ARB', 'WGL_SHARE_STENCIL_ARB', 'WGL_SHARE_ACCUM_ARB', 'WGL_SUPPORT_GDI_ARB', 'WGL_SUPPORT_OPENGL_ARB', 'WGL_DOUBLE_BUFFER_ARB', 'WGL_STEREO_ARB', 'WGL_PIXEL_TYPE_ARB', 'WGL_COLOR_BITS_ARB', 'WGL_RED_BITS_ARB', 'WGL_RED_SHIFT_ARB', 'WGL_GREEN_BITS_ARB', 'WGL_GREEN_SHIFT_ARB', 'WGL_BLUE_BITS_ARB', 'WGL_BLUE_SHIFT_ARB', 'WGL_ALPHA_BITS_ARB', 'WGL_ALPHA_SHIFT_ARB', 'WGL_ACCUM_BITS_ARB', 'WGL_ACCUM_RED_BITS_ARB', 'WGL_ACCUM_GREEN_BITS_ARB', 'WGL_ACCUM_BLUE_BITS_ARB', 'WGL_ACCUM_ALPHA_BITS_ARB', 'WGL_DEPTH_BITS_ARB', 'WGL_STENCIL_BITS_ARB', 'WGL_AUX_BUFFERS_ARB', 'WGL_NO_ACCELERATION_ARB', 'WGL_GENERIC_ACCELERATION_ARB', 'WGL_FULL_ACCELERATION_ARB', 'WGL_SWAP_EXCHANGE_ARB', 'WGL_SWAP_COPY_ARB', 'WGL_SWAP_UNDEFINED_ARB', 'WGL_TYPE_RGBA_ARB', 'WGL_TYPE_COLORINDEX_ARB', 'ERROR_INVALID_PIXEL_TYPE_ARB', 'ERROR_INCOMPATIBLE_DEVICE_CONTEXTS_ARB', 'WGL_DRAW_TO_PBUFFER_ARB', 'WGL_MAX_PBUFFER_PIXELS_ARB', 'WGL_MAX_PBUFFER_WIDTH_ARB', 'WGL_MAX_PBUFFER_HEIGHT_ARB', 'WGL_PBUFFER_LARGEST_ARB', 'WGL_PBUFFER_WIDTH_ARB', 'WGL_PBUFFER_HEIGHT_ARB', 'WGL_PBUFFER_LOST_ARB', 'WGL_BIND_TO_TEXTURE_RGB_ARB', 'WGL_BIND_TO_TEXTURE_RGBA_ARB', 'WGL_TEXTURE_FORMAT_ARB', 'WGL_TEXTURE_TARGET_ARB', 'WGL_MIPMAP_TEXTURE_ARB', 'WGL_TEXTURE_RGB_ARB', 'WGL_TEXTURE_RGBA_ARB', 'WGL_NO_TEXTURE_ARB', 'WGL_TEXTURE_CUBE_MAP_ARB', 'WGL_TEXTURE_1D_ARB', 'WGL_TEXTURE_2D_ARB', 'WGL_MIPMAP_LEVEL_ARB', 'WGL_CUBE_MAP_FACE_ARB', 'WGL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB', 'WGL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB', 'WGL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB', 'WGL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB', 'WGL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB', 'WGL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB', 'WGL_FRONT_LEFT_ARB', 'WGL_FRONT_RIGHT_ARB', 'WGL_BACK_LEFT_ARB', 'WGL_BACK_RIGHT_ARB', 'WGL_AUX0_ARB', 'WGL_AUX1_ARB', 'WGL_AUX2_ARB', 'WGL_AUX3_ARB', 'WGL_AUX4_ARB', 'WGL_AUX5_ARB', 'WGL_AUX6_ARB', 'WGL_AUX7_ARB', 'WGL_AUX8_ARB', 'WGL_AUX9_ARB', 'WGL_TYPE_RGBA_FLOAT_ARB', 'ERROR_INVALID_PIXEL_TYPE_EXT', 'WGL_NUMBER_PIXEL_FORMATS_EXT', 'WGL_DRAW_TO_WINDOW_EXT', 'WGL_DRAW_TO_BITMAP_EXT', 'WGL_ACCELERATION_EXT', 'WGL_NEED_PALETTE_EXT', 'WGL_NEED_SYSTEM_PALETTE_EXT', 'WGL_SWAP_LAYER_BUFFERS_EXT', 'WGL_SWAP_METHOD_EXT', 'WGL_NUMBER_OVERLAYS_EXT', 'WGL_NUMBER_UNDERLAYS_EXT', 'WGL_TRANSPARENT_EXT', 'WGL_TRANSPARENT_VALUE_EXT', 'WGL_SHARE_DEPTH_EXT', 'WGL_SHARE_STENCIL_EXT', 'WGL_SHARE_ACCUM_EXT', 'WGL_SUPPORT_GDI_EXT', 'WGL_SUPPORT_OPENGL_EXT', 'WGL_DOUBLE_BUFFER_EXT', 'WGL_STEREO_EXT', 'WGL_PIXEL_TYPE_EXT', 'WGL_COLOR_BITS_EXT', 'WGL_RED_BITS_EXT', 'WGL_RED_SHIFT_EXT', 'WGL_GREEN_BITS_EXT', 'WGL_GREEN_SHIFT_EXT', 'WGL_BLUE_BITS_EXT', 'WGL_BLUE_SHIFT_EXT', 'WGL_ALPHA_BITS_EXT', 'WGL_ALPHA_SHIFT_EXT', 'WGL_ACCUM_BITS_EXT', 'WGL_ACCUM_RED_BITS_EXT', 'WGL_ACCUM_GREEN_BITS_EXT', 'WGL_ACCUM_BLUE_BITS_EXT', 'WGL_ACCUM_ALPHA_BITS_EXT', 'WGL_DEPTH_BITS_EXT', 'WGL_STENCIL_BITS_EXT', 'WGL_AUX_BUFFERS_EXT', 'WGL_NO_ACCELERATION_EXT', 'WGL_GENERIC_ACCELERATION_EXT', 'WGL_FULL_ACCELERATION_EXT', 'WGL_SWAP_EXCHANGE_EXT', 'WGL_SWAP_COPY_EXT', 'WGL_SWAP_UNDEFINED_EXT', 'WGL_TYPE_RGBA_EXT', 'WGL_TYPE_COLORINDEX_EXT', 'WGL_DRAW_TO_PBUFFER_EXT', 'WGL_MAX_PBUFFER_PIXELS_EXT', 'WGL_MAX_PBUFFER_WIDTH_EXT', 'WGL_MAX_PBUFFER_HEIGHT_EXT', 'WGL_OPTIMAL_PBUFFER_WIDTH_EXT', 'WGL_OPTIMAL_PBUFFER_HEIGHT_EXT', 'WGL_PBUFFER_LARGEST_EXT', 'WGL_PBUFFER_WIDTH_EXT', 'WGL_PBUFFER_HEIGHT_EXT', 'WGL_DEPTH_FLOAT_EXT', 'WGL_SAMPLE_BUFFERS_3DFX', 'WGL_SAMPLES_3DFX', 'WGL_SAMPLE_BUFFERS_EXT', 'WGL_SAMPLES_EXT', 'WGL_DIGITAL_VIDEO_CURSOR_ALPHA_FRAMEBUFFER_I3D', 'WGL_DIGITAL_VIDEO_CURSOR_ALPHA_VALUE_I3D', 'WGL_DIGITAL_VIDEO_CURSOR_INCLUDED_I3D', 'WGL_DIGITAL_VIDEO_GAMMA_CORRECTED_I3D', 'WGL_GAMMA_TABLE_SIZE_I3D', 'WGL_GAMMA_EXCLUDE_DESKTOP_I3D', 'WGL_GENLOCK_SOURCE_MULTIVIEW_I3D', 'WGL_GENLOCK_SOURCE_EXTENAL_SYNC_I3D', 'WGL_GENLOCK_SOURCE_EXTENAL_FIELD_I3D', 'WGL_GENLOCK_SOURCE_EXTENAL_TTL_I3D', 'WGL_GENLOCK_SOURCE_DIGITAL_SYNC_I3D', 'WGL_GENLOCK_SOURCE_DIGITAL_FIELD_I3D', 'WGL_GENLOCK_SOURCE_EDGE_FALLING_I3D', 'WGL_GENLOCK_SOURCE_EDGE_RISING_I3D', 'WGL_GENLOCK_SOURCE_EDGE_BOTH_I3D', 'WGL_IMAGE_BUFFER_MIN_ACCESS_I3D', 'WGL_IMAGE_BUFFER_LOCK_I3D', 'WGL_BIND_TO_TEXTURE_DEPTH_NV', 'WGL_BIND_TO_TEXTURE_RECTANGLE_DEPTH_NV', 'WGL_DEPTH_TEXTURE_FORMAT_NV', 'WGL_TEXTURE_DEPTH_COMPONENT_NV', 'WGL_DEPTH_COMPONENT_NV', 'WGL_BIND_TO_TEXTURE_RECTANGLE_RGB_NV', 'WGL_BIND_TO_TEXTURE_RECTANGLE_RGBA_NV', 'WGL_TEXTURE_RECTANGLE_NV', 'WGL_TYPE_RGBA_FLOAT_ATI', 'WGL_RGBA_FLOAT_MODE_ATI', 'WGL_COLOR_CLEAR_UNCLAMPED_VALUE_ATI', 'WGL_FLOAT_COMPONENTS_NV', 'WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_R_NV', 'WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RG_NV', 'WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGB_NV', 'WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGBA_NV', 'WGL_TEXTURE_FLOAT_R_NV', 'WGL_TEXTURE_FLOAT_RG_NV', 'WGL_TEXTURE_FLOAT_RGB_NV', 'WGL_TEXTURE_FLOAT_RGBA_NV', 'WGL_ERROR_INCOMPATIBLE_AFFINITY_MASKS_NV', 'WGL_ERROR_MISSING_AFFINITY_MASK_NV', 'HPBUFFERARB', 'HPBUFFEREXT', 'HGPUNV', 'GPU_DEVICE', 'PGPU_DEVICE', 'WGL_ARB_buffer_region', 'wglCreateBufferRegionARB', 'wglDeleteBufferRegionARB', 'wglSaveBufferRegionARB', 'wglRestoreBufferRegionARB', 'PFNWGLCREATEBUFFERREGIONARBPROC', 'PFNWGLDELETEBUFFERREGIONARBPROC', 'PFNWGLSAVEBUFFERREGIONARBPROC', 'PFNWGLRESTOREBUFFERREGIONARBPROC', 'WGL_ARB_multisample', 'WGL_ARB_extensions_string', 'wglGetExtensionsStringARB', 'PFNWGLGETEXTENSIONSSTRINGARBPROC', 'WGL_ARB_pixel_format', 'wglGetPixelFormatAttribivARB', 'wglGetPixelFormatAttribfvARB', 'wglChoosePixelFormatARB', 'PFNWGLGETPIXELFORMATATTRIBIVARBPROC', 'PFNWGLGETPIXELFORMATATTRIBFVARBPROC', 'PFNWGLCHOOSEPIXELFORMATARBPROC', 'WGL_ARB_make_current_read', 'wglMakeContextCurrentARB', 'wglGetCurrentReadDCARB', 'PFNWGLMAKECONTEXTCURRENTARBPROC', 'PFNWGLGETCURRENTREADDCARBPROC', 'WGL_ARB_pbuffer', 'wglCreatePbufferARB', 'wglGetPbufferDCARB', 'wglReleasePbufferDCARB', 'wglDestroyPbufferARB', 'wglQueryPbufferARB', 'PFNWGLCREATEPBUFFERARBPROC', 'PFNWGLGETPBUFFERDCARBPROC', 'PFNWGLRELEASEPBUFFERDCARBPROC', 'PFNWGLDESTROYPBUFFERARBPROC', 'PFNWGLQUERYPBUFFERARBPROC', 'WGL_ARB_render_texture', 'wglBindTexImageARB', 'wglReleaseTexImageARB', 'wglSetPbufferAttribARB', 'PFNWGLBINDTEXIMAGEARBPROC', 'PFNWGLRELEASETEXIMAGEARBPROC', 'PFNWGLSETPBUFFERATTRIBARBPROC', 'WGL_ARB_pixel_format_float', 'WGL_EXT_display_color_table', 'wglCreateDisplayColorTableEXT', 'wglLoadDisplayColorTableEXT', 'wglBindDisplayColorTableEXT', 'wglDestroyDisplayColorTableEXT', 'PFNWGLCREATEDISPLAYCOLORTABLEEXTPROC', 'PFNWGLLOADDISPLAYCOLORTABLEEXTPROC', 'PFNWGLBINDDISPLAYCOLORTABLEEXTPROC', 'PFNWGLDESTROYDISPLAYCOLORTABLEEXTPROC', 'WGL_EXT_extensions_string', 'wglGetExtensionsStringEXT', 'PFNWGLGETEXTENSIONSSTRINGEXTPROC', 'WGL_EXT_make_current_read', 'wglMakeContextCurrentEXT', 'wglGetCurrentReadDCEXT', 'PFNWGLMAKECONTEXTCURRENTEXTPROC', 'PFNWGLGETCURRENTREADDCEXTPROC', 'WGL_EXT_pbuffer', 'wglCreatePbufferEXT', 'wglGetPbufferDCEXT', 'wglReleasePbufferDCEXT', 'wglDestroyPbufferEXT', 'wglQueryPbufferEXT', 'PFNWGLCREATEPBUFFEREXTPROC', 'PFNWGLGETPBUFFERDCEXTPROC', 'PFNWGLRELEASEPBUFFERDCEXTPROC', 'PFNWGLDESTROYPBUFFEREXTPROC', 'PFNWGLQUERYPBUFFEREXTPROC', 'WGL_EXT_pixel_format', 'wglGetPixelFormatAttribivEXT', 'wglGetPixelFormatAttribfvEXT', 'wglChoosePixelFormatEXT', 'PFNWGLGETPIXELFORMATATTRIBIVEXTPROC', 'PFNWGLGETPIXELFORMATATTRIBFVEXTPROC', 'PFNWGLCHOOSEPIXELFORMATEXTPROC', 'WGL_EXT_swap_control', 'wglSwapIntervalEXT', 'wglGetSwapIntervalEXT', 'PFNWGLSWAPINTERVALEXTPROC', 'PFNWGLGETSWAPINTERVALEXTPROC', 'WGL_EXT_depth_float', 'WGL_NV_vertex_array_range', 'wglAllocateMemoryNV', 'wglFreeMemoryNV', 'PFNWGLALLOCATEMEMORYNVPROC', 'PFNWGLFREEMEMORYNVPROC', 'WGL_3DFX_multisample', 'WGL_EXT_multisample', 'WGL_OML_sync_control', 'wglGetSyncValuesOML', 'wglGetMscRateOML', 'wglSwapBuffersMscOML', 'wglSwapLayerBuffersMscOML', 'wglWaitForMscOML', 'wglWaitForSbcOML', 'PFNWGLGETSYNCVALUESOMLPROC', 'PFNWGLGETMSCRATEOMLPROC', 'PFNWGLSWAPBUFFERSMSCOMLPROC', 'PFNWGLSWAPLAYERBUFFERSMSCOMLPROC', 'PFNWGLWAITFORMSCOMLPROC', 'PFNWGLWAITFORSBCOMLPROC', 'WGL_I3D_digital_video_control', 'wglGetDigitalVideoParametersI3D', 'wglSetDigitalVideoParametersI3D', 'PFNWGLGETDIGITALVIDEOPARAMETERSI3DPROC', 'PFNWGLSETDIGITALVIDEOPARAMETERSI3DPROC', 'WGL_I3D_gamma', 'wglGetGammaTableParametersI3D', 'wglSetGammaTableParametersI3D', 'wglGetGammaTableI3D', 'wglSetGammaTableI3D', 'PFNWGLGETGAMMATABLEPARAMETERSI3DPROC', 'PFNWGLSETGAMMATABLEPARAMETERSI3DPROC', 'PFNWGLGETGAMMATABLEI3DPROC', 'PFNWGLSETGAMMATABLEI3DPROC', 'WGL_I3D_genlock', 'wglEnableGenlockI3D', 'wglDisableGenlockI3D', 'wglIsEnabledGenlockI3D', 'wglGenlockSourceI3D', 'wglGetGenlockSourceI3D', 'wglGenlockSourceEdgeI3D', 'wglGetGenlockSourceEdgeI3D', 'wglGenlockSampleRateI3D', 'wglGetGenlockSampleRateI3D', 'wglGenlockSourceDelayI3D', 'wglGetGenlockSourceDelayI3D', 'wglQueryGenlockMaxSourceDelayI3D', 'PFNWGLENABLEGENLOCKI3DPROC', 'PFNWGLDISABLEGENLOCKI3DPROC', 'PFNWGLISENABLEDGENLOCKI3DPROC', 'PFNWGLGENLOCKSOURCEI3DPROC', 'PFNWGLGETGENLOCKSOURCEI3DPROC', 'PFNWGLGENLOCKSOURCEEDGEI3DPROC', 'PFNWGLGETGENLOCKSOURCEEDGEI3DPROC', 'PFNWGLGENLOCKSAMPLERATEI3DPROC', 'PFNWGLGETGENLOCKSAMPLERATEI3DPROC', 'PFNWGLGENLOCKSOURCEDELAYI3DPROC', 'PFNWGLGETGENLOCKSOURCEDELAYI3DPROC', 'PFNWGLQUERYGENLOCKMAXSOURCEDELAYI3DPROC', 'WGL_I3D_image_buffer', 'wglCreateImageBufferI3D', 'wglDestroyImageBufferI3D', 'wglAssociateImageBufferEventsI3D', 'wglReleaseImageBufferEventsI3D', 'PFNWGLCREATEIMAGEBUFFERI3DPROC', 'PFNWGLDESTROYIMAGEBUFFERI3DPROC', 'PFNWGLASSOCIATEIMAGEBUFFEREVENTSI3DPROC', 'PFNWGLRELEASEIMAGEBUFFEREVENTSI3DPROC', 'WGL_I3D_swap_frame_lock', 'wglEnableFrameLockI3D', 'wglDisableFrameLockI3D', 'wglIsEnabledFrameLockI3D', 'wglQueryFrameLockMasterI3D', 'PFNWGLENABLEFRAMELOCKI3DPROC', 'PFNWGLDISABLEFRAMELOCKI3DPROC', 'PFNWGLISENABLEDFRAMELOCKI3DPROC', 'PFNWGLQUERYFRAMELOCKMASTERI3DPROC', 'WGL_I3D_swap_frame_usage', 'wglGetFrameUsageI3D', 'wglBeginFrameTrackingI3D', 'wglEndFrameTrackingI3D', 'wglQueryFrameTrackingI3D', 'PFNWGLGETFRAMEUSAGEI3DPROC', 'PFNWGLBEGINFRAMETRACKINGI3DPROC', 'PFNWGLENDFRAMETRACKINGI3DPROC', 'PFNWGLQUERYFRAMETRACKINGI3DPROC', 'WGL_ATI_pixel_format_float', 'WGL_NV_render_depth_texture', 'WGL_NV_render_texture_rectangle', 'WGL_NV_float_buffer', 'WGL_NV_swap_group', 'wglJoinSwapGroupNV', 'wglBindSwapBarrierNV', 'wglQuerySwapGroupNV', 'wglQueryMaxSwapGroupsNV', 'wglQueryFrameCountNV', 'wglResetFrameCountNV', 'PFNWGLJOINSWAPGROUPNVPROC', 'PFNWGLBINDSWAPBARRIERNVPROC', 'PFNWGLQUERYSWAPGROUPNVPROC', 'PFNWGLQUERYMAXSWAPGROUPSNVPROC', 'PFNWGLQUERYFRAMECOUNTNVPROC', 'PFNWGLRESETFRAMECOUNTNVPROC', 'WGL_NV_gpu_affinity', 'wglEnumGpusNV', 'wglEnumGpuDevicesNV', 'wglCreateAffinityDCNV', 'wglEnumGpusFromAffinityDCNV', 'wglDeleteDCNV'] # END GENERATED CONTENT (do not edit above this line)
py
7df84dccc8801cffaf495995d614334b121de9a2
# Copyright 2018 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from adapt.context import ContextManager from adapt.engine import IntentDeterminationEngine from adapt.intent import IntentBuilder __author__ = "seanfitz" import unittest class ContextManagerIntegrationTest(unittest.TestCase): def setUp(self): self.context_manager = ContextManager() self.engine = IntentDeterminationEngine() def testBasicContextualFollowup(self): intent1 = IntentBuilder("TimeQueryIntent")\ .require("TimeQuery")\ .require("Location")\ .build() intent2 = IntentBuilder("WeatherQueryIntent")\ .require("WeatherKeyword")\ .require("Location")\ .build() self.engine.register_intent_parser(intent1) self.engine.register_intent_parser(intent2) self.engine.register_entity("what time is it", "TimeQuery") self.engine.register_entity("seattle", "Location") self.engine.register_entity("miami", "Location") self.engine.register_entity("weather", "WeatherKeyword") utterance1 = "what time is it in seattle" intent = next(self.engine.determine_intent(utterance1, include_tags=True, context_manager=self.context_manager)) assert intent assert intent['intent_type'] == 'TimeQueryIntent' assert '__tags__' in intent for tag in intent['__tags__']: context_entity = tag.get('entities')[0] self.context_manager.inject_context(context_entity) utterance2 = "what's the weather like?" intent = next(self.engine.determine_intent(utterance2, context_manager=self.context_manager)) assert intent assert intent['intent_type'] == 'WeatherQueryIntent' def testContextOnlyUsedOnce(self): intent_parser = IntentBuilder("DummyIntent")\ .require("Foo")\ .optionally("Foo", "Foo2")\ .build() context_entity = {'confidence': 1.0, 'data': [('foo', 'Foo')], 'match': 'foo', 'key': 'foo'} self.context_manager.inject_context(context_entity) self.engine.register_intent_parser(intent_parser) self.engine.register_entity("foo", "Foo") self.engine.register_entity("fop", "Foo") intent = next(self.engine.determine_intent("foo", include_tags=True, context_manager=self.context_manager)) assert intent assert intent['intent_type'] == "DummyIntent" assert not (intent.get("Foo") and intent.get("Foo2"))
py
7df84de08742730913a548085dfcef16c3b40d6f
import textwrap import validation mywidth = 70 myindent = ' '*4 wrapper = textwrap.TextWrapper(initial_indent=myindent, subsequent_indent=myindent, width=mywidth) rsthdr = ['*','#','=','-','^','~','%'] def get_type_string(indict): outstr = '' if indict['type'] == 'number': outstr = 'Float' if 'unit' in indict.keys() and indict['unit'].lower() != 'none': outstr+=', '+indict['unit'] elif 'units' in indict.keys() and indict['units'].lower() != 'none': outstr+=', '+indict['units'] elif indict['type'] == 'integer': outstr = 'Integer' elif indict['type'] == 'boolean': outstr = 'Boolean' elif indict['type'] == 'string': if 'enum' in indict.keys(): outstr = 'String from, '+str(indict['enum']) else: outstr = 'String' elif indict['type'] == 'array': outstr = 'Array of ' if indict['items']['type'] == 'number': outstr += 'Floats' if 'unit' in indict['items'].keys() and indict['items']['unit'].lower() != 'none': outstr+=', '+indict['items']['unit'] elif 'units' in indict['items'].keys() and indict['items']['units'].lower() != 'none': outstr+=', '+indict['items']['units'] elif indict['items']['type'] == 'integer': outstr += 'Integers' elif indict['items']['type'] == 'string': outstr += 'Strings' elif indict['items']['type'] == 'boolean': outstr += 'Booleans' return outstr def get_description_string(indict): outstr = '' if 'description' in indict.keys(): outstr += wrapper.fill(indict['description']) if 'default' in indict.keys(): outstr += '\n\n'+myindent + '*Default* = '+str(indict['default']) if 'minimum' in indict.keys(): outstr += '\n\n'+myindent + '*Minimum* = '+str(indict['minimum']) elif (indict['type'] == 'array' and 'minimum' in indict['items'].keys()): outstr += '\n\n'+myindent + '*Minimum* = '+str(indict['items']['minimum']) if 'maximum' in indict.keys(): outstr += myindent + '*Maximum* = '+str(indict['maximum'])+'\n' elif (indict['type'] == 'array' and 'maximum' in indict['items'].keys()): outstr += '\n\n'+myindent + '*Maximum* = '+str(indict['items']['maximum']) outstr += '\n' return outstr class Schema2RST(object): def __init__(self, fname): self.fname = fname self.fout = fname.replace('.yaml','.rst') self.yaml = validation.load_yaml( fname ) self.f = None def write_rst(self): self.f = open(self.fout, 'w') self.write_header() self.write_loop(self.yaml['properties'], 0, self.fname.replace('yaml','')) self.f.close() def write_header(self): self.f.write('*'*30+'\n') self.f.write(self.fname+'\n') self.f.write('*'*30+'\n') if 'description' in self.yaml.keys(): self.f.write(self.yaml['description']+'\n') def write_loop(self, rv, idepth, name, desc=None): self.f.write('\n') self.f.write('\n') self.f.write(name+'\n') print(idepth) if idepth > 0: self.f.write(rsthdr[idepth-1]*40+'\n') self.f.write('\n') if not desc is None: self.f.write(desc+'\n') for k in rv.keys(): print(k) try: if 'type' in rv[k]: if rv[k]['type'] == 'object' and 'properties' in rv[k].keys(): k_desc = None if not 'description' in rv[k] else rv[k]['description'] self.write_loop(rv[k]['properties'], idepth+1, k, k_desc) elif rv[k]['type'].lower() in ['number','integer','string','boolean']: self.f.write(':code:`'+k+'` : '+get_type_string( rv[k] )+'\n') self.f.write( get_description_string( rv[k] )+'\n') elif (rv[k]['type'].lower() == 'array' and rv[k]['items']['type'] == 'object' and 'properties' in rv[k]['items'].keys() ): k_desc = None if not 'description' in rv[k]['items'] else rv[k]['items']['description'] self.write_loop(rv[k]['items']['properties'], idepth+1, k, k_desc) elif (rv[k]['type'].lower() == 'array' and rv[k]['items']['type'] in ['number','integer','string','boolean']): self.f.write(':code:`'+k+'` : '+get_type_string( rv[k] )+'\n') self.f.write( get_description_string( rv[k] )+'\n') except: print('Error reading,',k,'in',name,', depth',idepth) continue if __name__ == '__main__': for ifile in ['geometry_schema.yaml','modeling_schema.yaml','analysis_schema.yaml']: myobj = Schema2RST(ifile) myobj.write_rst()
py
7df84e3f4f4dd7272ddd5d3b582eb7351123f7f1
#!/usr/bin/env python # -*- coding: utf-8 -*- """The nmap wrapper is used to easily and efficiently perform nmap scans with python-nmap. It wraps the relevant scan functions of nmap's `PortScanner`. The scan results are stored locally to make them accessable later if needed. And this class also provides a way to scan asynchronously for network devices at a specific address or subnet. """ import os import threading import typing import warnings try: import nmap _NMAP_IMPORTED = True except (ImportError, ModuleNotFoundError): _NMAP_IMPORTED = False warnings.warn("python-nmap is not installed. Without this package you may not find all " "ethernet devices in your local network. When installing python-nmap, do not " "forget to install the nmap executable as well, if it is not installed, yet. And " "make sure it is also included in the PATH environmental variable.") from ..device import LANDevice __all__ = ["NMAPWrapper"] #################################################################################################### class NMAPWrapper: # pragma: no cover """Wrapper class for `nmap.PortScanner`. It class manages network scans via nmap and converts the results in `Device`s. Args: notify_parent_done: An optional function object which is called after this scan is performed. The function needs to accept one argument of type bool. This argument will be True, if the scan succeeded and False, if not. **kwargs: - nmap_search_path: One or multiple paths where to search for the nmap executable. """ def __init__(self, notify_parent_done: typing.Optional[typing.Callable[[bool], typing.Any]] = None, **kwargs): super().__init__() self._nmap = None if _NMAP_IMPORTED: nmap_kwargs = {} if "nmap_search_path" in kwargs: nmap_kwargs["nmap_search_path"] = kwargs["nmap_search_path"] try: self._nmap = nmap.PortScanner(**nmap_kwargs) except nmap.PortScannerError: # An error is raised, if the nmap-executable was not found warnings.warn("Could not create a nmap.PortScanner instance. Maybe nmap is not " "installed on your machine or it is not specified in PATH. If nmap " "is already installed try specifying its path with the " "'nmap_search_path'-parameter.") self._nmap_results = [] self._nmap_thread = None self._notify_parent_done = notify_parent_done @property def valid(self) -> bool: """Returns True, if the nmap.PortScanner could be instantiated""" return self._nmap is not None @property def raw_devices(self) -> typing.Sequence[typing.Dict]: """The raw search results as they are returned by a scan with nmap. The results of all previous scans are included. """ return tuple(self._nmap_results) @property def devices(self) -> typing.Sequence[LANDevice]: """The results of all previous scans with namp. The raw results are converted into `Device`- objects. """ raw_devices = self.raw_devices devices = {} for raw_device in raw_devices: try: # Extract ip addresses and mac address addresses = raw_device["addresses"] mac_address = addresses["mac"] except KeyError: continue ip_addresses = [] # Append all IPv4 and IPv6 addresses for key in ["ipv4", "ipv6"]: try: ip_addresses.append(addresses[key]) except KeyError: continue # If there is already a device for this mac address, just update the device's addresses if mac_address in devices: address_aliases = [ip_address for ip_address in ip_addresses if ip_address not in devices[mac_address].all_addresses] # Append unknown addresses to aliases if len(address_aliases) > 0: devices[mac_address].address_aliases = [*devices[mac_address].address_aliases, address_aliases] else: dev = LANDevice() dev.mac_address = mac_address dev.address = ip_addresses[0] if len(ip_addresses) > 1: # If multiple addresses were found, add the others as aliases dev.address_aliases = ip_addresses[1:] devices[mac_address] = dev return tuple(devices.values()) def clear_devices(self) -> None: """Deletes all previous scan results.""" self._nmap_results.clear() def scan(self, hosts: typing.Union[str, typing.Iterable[str]]) -> bool: """Performs a network scan with nmap (synchronously). Args: hosts: One host as string or multiple hosts as iterable of strings. Multiple hosts can also be written as single string with a space as separator. A host can use one of the following formats to scan a single host: - ip address (e.g. 192.168.1.10) - hostname (e.g. localhost) - domain (e.g. mydevice.company.com) Or to scan a whole subnet of a local network: - ip subnet (e.g. 192.168.1.0/24 for a 24bit netmask) """ return self._scan(hosts, None) def scan_async(self, hosts: typing.Union[str, typing.Iterable[str]], on_done: typing.Optional[typing.Callable[[bool], None]] = None) -> bool: """Performs a network scan with nmap asynchronously. Args: hosts: One host as string or multiple hosts as iterable of strings. Multiple hosts can also be written as single string with a space as separator. A host can use one of the following formats to scan a single host: - ip address (e.g. 192.168.1.10) - hostname (e.g. localhost) - domain (e.g. mydevice.company.com) Or to scan a whole subnet of a local network: - ip subnet (e.g. 192.168.1.0/24 for a 24bit netmask) on_done: An optional function object which is called after this scan is performed. The function needs to accept one argument of type bool. This argument will be True, if the scan succeeded and False, if not. Returns: bool: True, if the asynchronous scan was started. False, if a scan is already running. """ if self.is_scan_alive(): return False self._nmap_thread = threading.Thread(target=self._scan, args=(hosts, on_done)) self._nmap_thread.start() return True def is_scan_alive(self) -> bool: """Checks if an asynchronous scan is still running. Returns: bool: True, if an asynchronous scan is running. Otherwise, false. """ if self._nmap_thread is None: return False elif self._nmap_thread.is_alive(): return True else: # If the thread is not alive, but not None, set it to None, because it is not needed # anymore. self._nmap_thread = None return False def wait_for_scan(self, timeout: typing.Optional[float] = None) -> bool: """If an asynchronous scan is running, this function waits until the scan is finished. Args: timeout: A floating point number specifying a timeout (maximum time to wait) in seconds. If timeout is None, this function will block until the scan is completed. Returns: bool: True, if the scan is completed or not running at all. False, if the timeout happened. """ # If no scan thread is alive, there is nothing to wait for if not self.is_scan_alive(): return True self._nmap_thread.join(timeout=timeout) return self.is_scan_alive() def _scan(self, hosts: typing.Union[str, typing.Iterable[str]], on_done: typing.Optional[typing.Callable[[bool], None]]) -> bool: """Performs a network scan with nmap (synchronously). Args: hosts: One host as string or multiple hosts as iterable of strings. Multiple hosts can also be written as single string with a space as separator. A host can use one of the following formats to scan a single host: - ip address (e.g. 192.168.1.10) - hostname (e.g. localhost) - domain (e.g. mydevice.company.com) Or to scan a whole subnet of a local network: - ip subnet (e.g. 192.168.1.0/24 for a 24bit netmask) on_done: An optional function object which is called after this scan is performed. The function needs to accept one argument of type bool. This argument will be True, if the scan succeeded and False, if not. """ if self._nmap is None: # The nmap-PortScanner could not be instantiated. So, either nmap or python-nmap are not # installed. warnings.warn("Could not perform a network scan with nmap. Either \"nmap\" is not " "installed on your system or \"python-nmap\" is missing in your python " "environment. To use the nmap features, make sure both are installed.") return False result = False if not isinstance(hosts, str): # nmap expects a single string as host-argument, multiple hosts are separated by spaces hosts = " ".join(hosts) try: exception = None for arguments in ["-sA -F --min-parallelism 1024 --privileged", "-sT -F --min-parallelism 1024"]: try: # Try to perform a TCP-ACK scan, which seems to be the fastest one, but it # requires admin privileges on linux. If the user has the requires privileges it # should work. self._nmap.scan(hosts, arguments=arguments) scan_info = self._nmap.scaninfo() if "error" in scan_info: # The scan terminated correctly, but an stderr contained some outputs raise nmap.PortScannerError(os.linesep.join(scan_info["error"])) break # Success except nmap.PortScannerError as exc: # If an error occurs, this could be due to missing admin privileges. So the next # element from the arguments is tried which needs less privileges. exception = exc else: if exception is not None: raise exception # Append all new scan results for host in self._nmap.all_hosts(): device = self._nmap[host] # If the same device is already known, there is no need to add it again if device not in self._nmap_results: self._nmap_results.append(device) result = True except (UnicodeDecodeError, nmap.PortScannerError): # Some error messages containing special characters cannot be decoded on windows. That # is why the UnicodeDecodeError is caught here pass # result = False finally: # Call the functions, because the scan is finished if self._notify_parent_done is not None: # If a callable was provided in the constructor, call it now self._notify_parent_done(result) if on_done is not None: # Additionally, a callable can be passed in this function. If such a function was # passed, call it now on_done(result) return result
py
7df84ee122dd9ba9101b33460c828b5c6c12386d
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT from ..stats import ActivationCount def test_ActivationCount_inputs(): input_map = dict( in_files=dict( mandatory=True, ), threshold=dict( mandatory=True, ), ) inputs = ActivationCount.input_spec() for key, metadata in list(input_map.items()): for metakey, value in list(metadata.items()): assert getattr(inputs.traits()[key], metakey) == value def test_ActivationCount_outputs(): output_map = dict( acm_neg=dict( extensions=None, ), acm_pos=dict( extensions=None, ), out_file=dict( extensions=None, ), ) outputs = ActivationCount.output_spec() for key, metadata in list(output_map.items()): for metakey, value in list(metadata.items()): assert getattr(outputs.traits()[key], metakey) == value
py
7df84f88538e297dec961774c40ef1a7fc90583b
r""" .. _sec-autoregressive: Autoregressive model change ==================================================================================================== Description ---------------------------------------------------------------------------------------------------- Let :math:`0<t_1<t_2<\dots<n` be unknown change points indexes. Consider the following piecewise autoregressive model .. math:: y_t = z_t' \delta_j + \varepsilon_t, \quad \forall t=t_j,\dots,t_{j+1}-1 where :math:`j>1` is the segment number, :math:`z_t=[y_{t-1}, y_{t-2},\dots,y_{t-p}]` is the lag vector,and :math:`p>0` is the order of the process. The least-squares estimates of the break dates is obtained by minimizing the sum of squared residuals :cite:`ar-Bai2000`. Formally, the associated cost function on an interval :math:`I` is .. math:: c(y_{I}) = \min_{\delta\in\mathbb{R}^p} \sum_{t\in I} \|y_t - \delta' z_t \|_2^2 Usage ---------------------------------------------------------------------------------------------------- Start with the usual imports and create a signal with piecewise linear trends. .. code-block:: python from itertools import cycle import numpy as np import matplotlib.pylab as plt import ruptures as rpt # creation of data n = 2000 n_bkps, sigma = 4, 0.5 # number of change points, noise standart deviation bkps = [400, 1000, 1300, 1800, n] f1 = np.array([0.075, 0.1]) f2 = np.array([0.1, 0.125]) freqs = np.zeros((n, 2)) for sub, val in zip(np.split(freqs, bkps[:-1]), cycle([f1, f2])): sub += val tt = np.arange(n) signal = np.sum((np.sin(2*np.pi*tt*f) for f in freqs.T)) signal += np.random.normal(scale=sigma, size=signal.shape) # display signal rpt.show.display(signal, bkps, figsize=(10, 6)) plt.show() Then create a :class:`CostAR` instance and print the cost of the sub-signal :code:`signal[50:150]`. The autoregressive order can be specified through the keyword ``'order'``. .. code-block:: python c = rpt.costs.CostAR(order=10).fit(signal) print(c.error(50, 150)) You can also compute the sum of costs for a given list of change points. .. code-block:: python print(c.sum_of_costs(bkps)) print(c.sum_of_costs([10, 100, 200, 250, n])) In order to use this cost class in a change point detection algorithm (inheriting from :class:`BaseEstimator`), either pass a :class:`CostAR` instance (through the argument ``'custom_cost'``) or set :code:`model="ar"`. Additional parameters can be passed to the cost instance through the keyword ``'params'``. .. code-block:: python c = rpt.costs.CostAR(order=10); algo = rpt.Dynp(custom_cost=c) # is equivalent to algo = rpt.Dynp(model="ar", params={"order": 10}) Code explanation ---------------------------------------------------------------------------------------------------- .. autoclass:: ruptures.costs.CostAR :members: :special-members: __init__ .. rubric:: References .. bibliography:: ../biblio.bib :style: alpha :cited: :labelprefix: AR :keyprefix: ar- """ import numpy as np from numpy.lib.stride_tricks import as_strided from numpy.linalg import lstsq from ruptures.base import BaseCost from ruptures.costs import NotEnoughPoints class CostAR(BaseCost): r""" Least-squares estimate for changes in autoregressive coefficients. """ model = "ar" def __init__(self, order=4): self.signal = None self.covar = None self.min_size = max(5, order + 1) self.order = order def fit(self, signal): """Set parameters of the instance. The signal must be 1D. Args: signal (array): 1d signal. Shape (n_samples, 1) or (n_samples,). Returns: self """ if signal.ndim == 1: self.signal = signal.reshape(-1, 1) else: self.signal = signal # lagged covariates n_samples, _ = self.signal.shape strides = (self.signal.itemsize, self.signal.itemsize) shape = (n_samples - self.order, self.order) lagged = as_strided(self.signal, shape=shape, strides=strides) # pad the first columns lagged_after_padding = np.pad(lagged, ((self.order, 0), (0, 0)), mode="edge") # add intercept self.covar = np.c_[lagged_after_padding, np.ones(n_samples)] # pad signal on the edges self.signal[: self.order] = self.signal[self.order] return self def error(self, start, end): """Return the approximation cost on the segment [start:end]. Args: start (int): start of the segment end (int): end of the segment Returns: float: segment cost Raises: NotEnoughPoints: when the segment is too short (less than ``'min_size'`` samples). """ if end - start < self.min_size: raise NotEnoughPoints y, X = self.signal[start:end], self.covar[start:end] _, residual, _, _ = lstsq(X, y, rcond=None) return residual.sum()
py
7df84fda35c6f2f40215965947662350ceb2fa4a
from .keyboards import TestKeyboardLayout
py
7df84fffd4f623d5b10510a685d39cb12e8f68ba
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import pickle import sys import os if len(sys.argv) < 4: exit("USAGE: python tools/extract_detectron_weights.py \ weights_file out_dir feat_name [feat_name]") wgts_file = sys.argv[1] out_dir = sys.argv[2] with open(wgts_file, 'rb') as f: wgts = pickle.load(f, encoding='latin1')['blobs'] for i in range(3, len(sys.argv)): feat_name = sys.argv[i] wgt = wgts[feat_name] out_file = os.path.join(out_dir, feat_name + ".pkl") with open(out_file, 'wb') as w: pickle.dump(wgt, w)
py
7df8506e83a078e3ba181a3bce665e9bff6ab771
from django.db import models from django.conf import settings # Create your models here. User = settings.AUTH_USER_MODEL class Unit(models.Model): name = models.CharField(max_length=100) price = models.DecimalField(max_digits=10, decimal_places=2) occupied = models.BooleanField(default=False) image = models.ImageField( upload_to='musonge/', blank=True, null=True) date_added = models.DateTimeField(auto_now_add=True) owner = models.ForeignKey( User, related_name='units', on_delete=models.CASCADE) def __str__(self): return self.name
py
7df85189bbd76fd9aaf49fb32e668044d3707faa
#!/usr/bin/env python3 #-*- coding:utf-8 -*- # 识别图片验证码。 from PIL import Image import hashlib import time import os import math class VectorCompare: def magnitude(self, concordance): total = 0 for word,count in concordance.items(): total += count ** 2 return math.sqrt(total) def relation(self, concordance1, concordance2): relevance = 0 topvalue = 0 for word, count in concordance1.items(): if word in concordance2:#concordance2.has_key(word): topvalue += count * concordance2[word] return topvalue / (self.magnitude(concordance1) * self.magnitude(concordance2)) def buildvector(im): d1 = {} count = 0 for i in im.getdata(): d1[count] = i count += 1 return d1 v = VectorCompare() iconset = ['0','1','2','3','4','5','6','7','8','9','0','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] imageset = [] for letter in iconset: # print(letter) # print(os.listdir('./iconset/%s/' % (letter))) for img in os.listdir('./iconset/%s/'%(letter)): temp = [] if img != 'Thumbs.db' and img != '.DS_Store': temp.append(buildvector(Image.open('./iconset/%s/%s' %(letter, img)))) imageset.append({letter:temp}) #print(imageset) im = Image.open("captcha.gif") #将图片转换为8位像素模式 im = im.convert("P") im2 = Image.new("P", im.size, 255) temp = {} # 打印颜色直方图 #print(im.histogram()) for x in range(im.size[1]): for y in range(im.size[0]): pix = im.getpixel((y,x)) temp[pix] = pix if pix == 220 or pix == 227: im2.putpixel((y,x), 0) inletter = False foundletter = False start = 0 end = 0 letters = [] for y in range(im2.size[0]): for x in range(im2.size[1]): pix = im2.getpixel((y,x)) if pix != 255: inletter = True if foundletter == False and inletter == True: foundletter = True start = y if foundletter == True and inletter == False: foundletter = False end = y letters.append((start, end)) inletter = False count = 0 for letter in letters: m = hashlib.md5() im3 = im2.crop((letter[0], 0, letter[1], im2.size[1])) guess = [] for image in imageset: #print (image) for x,y in image.items(): if len(y) != 0: guess.append((v.relation(y[0], buildvector(im3)), x)) guess.sort(reverse=True) print(guess[0]) #print ("", guess[0]) count += 1 ''' his = im.histogram() values = {} for i in range(256): values[i] = his[i] for j,k in sorted(values.items(), key=lambda x:x[1], reverse=True)[:10]: print(j, k) im2.show() '''
py
7df851ae5480fe9459e7b0f4a5c70a27a4c746d4
""" ================================= Plot topographies for MEG sensors ================================= """ # Author: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) print __doc__ import pylab as pl from mne import fiff from mne.layouts import Layout from mne.viz import plot_topo from mne.datasets import sample data_path = sample.data_path('.') fname = data_path + '/MEG/sample/sample_audvis-ave.fif' # Reading evoked = fiff.read_evoked(fname, setno=0, baseline=(None, 0)) layout = Layout('Vectorview-all') ############################################################################### # Show topography plot_topo(evoked, layout) title = 'MNE sample data (condition : %s)' % evoked.comment pl.figtext(0.03, 0.93, title, color='w', fontsize=18) pl.show()
py
7df853da80769e4c42e7faf885370168174fc98e
""" WSGI config for BerlinCheckers project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'BerlinCheckers.settings') application = get_wsgi_application()
py
7df854869479c970f9348a9ced2413360fb8da1b
"""Optimize a design according to preferences.""" import scipy.optimize from physprog import classfunctions from physprog import objective from physprog import plots def optimize(model, preferences, plot=False): """Optimize the given problem to specified preferences.""" constraints = get_constraints(model, preferences) aggregate = objective.build_objective(model, preferences) initial_performance = model.evaluate() print('Optimizing design starting at value: {:.2f}\n{}' ''.format(aggregate(model.design), initial_performance)) scipy.optimize.minimize( aggregate, model.design, constraints=constraints, options={'disp': False}) final_performance = model.evaluate() print('Optimal design input: {}\nParams: {}\nValue: {}' ''.format(model.design, final_performance, aggregate( model.design))) if plot: plots.plot_optimization_results( preferences, initial_performance, final_performance) def get_constraints(problem, preferences): """ Extract constraints given a set of class functions. Scipy needs a sequence of dicts describing inequalities that will be forced to be >=0. """ print('Building constraints') constraints = [] for funcname, func in preferences.items(): if isinstance(func, classfunctions.MustBeAbove): # param >= cutoff implies param-cutoff>=0 def constraint(x, prob, funcname): """Evaluate a greater-than constraint for optimizer.""" prob.design = x return getattr(prob, funcname)() - func.bounds.cutoff # pylint: disable=cell-var-from-loop elif isinstance(func, classfunctions.MustBeBelow): # param <= cutoff implies cutoff - param>=0 def constraint(x, prob, funcname): """Evaluate a less-than constraint for optimizer.""" prob.design = x return func.bounds.cutoff - getattr(prob, funcname)() # pylint: disable=cell-var-from-loop else: constraint = None if constraint is not None: constraints.append({ 'type': 'ineq', 'fun': constraint, 'args': (problem, funcname) }) return constraints
py
7df85519b446ff6e7cdb9a4ec37949ca4d871b67
# # InternetRadio E2 # # Coded by Dr.Best (c) 2012 # Support: www.dreambox-tools.info # E-Mail: [email protected] # # This plugin is open source but it is NOT free software. # # This plugin may only be distributed to and executed on hardware which # is licensed by Dream Property GmbH. # In other words: # It's NOT allowed to distribute any parts of this plugin or its source code in ANY way # to hardware which is NOT licensed by Dream Property GmbH. # It's NOT allowed to execute this plugin and its source code or even parts of it in ANY way # on hardware which is NOT licensed by Dream Property GmbH. # # If you want to use or modify the code or parts of it, # you have to keep MY license and inform me about the modifications by mail. # from Plugins.Plugin import PluginDescriptor from Tools.HardwareInfo import HardwareInfo from Components.config import config, ConfigSubsection, ConfigSelection, ConfigDirectory, ConfigYesNo, Config, ConfigText from InternetRadioScreen import InternetRadioScreen config.plugins.internetradio = ConfigSubsection() config.plugins.internetradio.showinextensions = ConfigYesNo(default = True) config.plugins.internetradio.dirname = ConfigDirectory(default = "/media/hdd/streamripper/") config.plugins.internetradio.riptosinglefile = ConfigYesNo(default = False) config.plugins.internetradio.createdirforeachstream = ConfigYesNo(default = True) config.plugins.internetradio.addsequenceoutputfile = ConfigYesNo(default = False) config.plugins.internetradio.filter = ConfigText(default=_("Countries")) if HardwareInfo().get_device_name() == "dm500hd": config.plugins.internetradio.visualization = ConfigSelection(choices = [("2", _("On")), ("3", _("Off"))], default = "2") else: config.plugins.internetradio.visualization = ConfigSelection(choices = [("0", _("Screen and OLED")), ("1", _("OLED only")), ("2", _("Screen only")), ("3", _("Off"))], default = "2") config.plugins.internetradio.googlecover = ConfigYesNo(default = False) config.plugins.internetradio.startupname = ConfigText(default = "") config.plugins.internetradio.startuptext = ConfigText(default = "") config.plugins.internetradio.fullscreenautoactivation = ConfigSelection(choices = [("30", _("30 seconds")), ("60", _("1 minutes")), ("180", _("3 minutes")), ("-1", _("Off"))], default = "30") config.plugins.internetradio.fullscreenlayout = ConfigSelection(choices = [("0", _("Visualization and Text")), ("1", _("Text only")), ("2", _("Blank"))], default = "0") def sessionstart(reason, **kwargs): if reason == 0 and "session" in kwargs: try: from Plugins.Extensions.WebInterface.WebChilds.Toplevel import addExternalChild from Plugins.Extensions.WebInterface.WebChilds.Screenpage import ScreenPage from twisted.python import util from twisted.web import static if hasattr(static.File, 'render_GET'): class File(static.File): def render_POST(self, request): return self.render_GET(request) else: File = static.File session = kwargs["session"] root = File(util.sibpath(__file__, "web-data")) root.putChild("web", ScreenPage(session, util.sibpath(__file__, "web"), True)) addExternalChild( ("internetradio", root, "Internet-Radio", "1", True) ) except ImportError: pass # pah! def main(session,**kwargs): session.open(InternetRadioScreen) def Plugins(**kwargs): list = [PluginDescriptor(name="Internet-Radio", description=_("listen to internet-radio"), where = [PluginDescriptor.WHERE_PLUGINMENU], icon="plugin.png", fnc=main)] # always show in plugin menu if config.plugins.internetradio.showinextensions.value: list.append (PluginDescriptor(name="Internet-Radio", description=_("listen to internet-radio"), where = [PluginDescriptor.WHERE_EXTENSIONSMENU], fnc=main)) list.append (PluginDescriptor(where=PluginDescriptor.WHERE_SESSIONSTART, fnc=sessionstart, needsRestart=False)) return list
py
7df85581725a34ba1fecaad271be8725c87c116a
# cmd.py # Copyright (C) 2008, 2009 Michael Trier ([email protected]) and contributors # # This module is part of GitPython and is released under # the BSD License: http://www.opensource.org/licenses/bsd-license.php from contextlib import contextmanager import io import logging import os import signal from subprocess import ( call, Popen, PIPE ) import subprocess import sys import threading from textwrap import dedent from git.compat import ( defenc, force_bytes, safe_decode, is_posix, is_win, ) from git.exc import CommandError from git.util import is_cygwin_git, cygpath, expand_path, remove_password_if_present from .exc import ( GitCommandError, GitCommandNotFound ) from .util import ( LazyMixin, stream_copy, ) # typing --------------------------------------------------------------------------- from typing import (Any, AnyStr, BinaryIO, Callable, Dict, IO, List, Mapping, Sequence, TYPE_CHECKING, TextIO, Tuple, Union, cast, overload) from git.types import PathLike, Literal, TBD if TYPE_CHECKING: from git.repo.base import Repo from git.diff import DiffIndex # --------------------------------------------------------------------------------- execute_kwargs = {'istream', 'with_extended_output', 'with_exceptions', 'as_process', 'stdout_as_string', 'output_stream', 'with_stdout', 'kill_after_timeout', 'universal_newlines', 'shell', 'env', 'max_chunk_size'} log = logging.getLogger(__name__) log.addHandler(logging.NullHandler()) __all__ = ('Git',) # ============================================================================== ## @name Utilities # ------------------------------------------------------------------------------ # Documentation ## @{ def handle_process_output(process: subprocess.Popen, stdout_handler: Union[None, Callable[[AnyStr], None], Callable[[List[AnyStr]], None], Callable[[bytes, 'Repo', 'DiffIndex'], None]], stderr_handler: Union[None, Callable[[AnyStr], None], Callable[[List[AnyStr]], None]], finalizer: Union[None, Callable[[subprocess.Popen], None]] = None, decode_streams: bool = True) -> None: """Registers for notifications to learn that process output is ready to read, and dispatches lines to the respective line handlers. This function returns once the finalizer returns :return: result of finalizer :param process: subprocess.Popen instance :param stdout_handler: f(stdout_line_string), or None :param stderr_handler: f(stderr_line_string), or None :param finalizer: f(proc) - wait for proc to finish :param decode_streams: Assume stdout/stderr streams are binary and decode them before pushing \ their contents to handlers. Set it to False if `universal_newline == True` (then streams are in text-mode) or if decoding must happen later (i.e. for Diffs). """ # Use 2 "pump" threads and wait for both to finish. def pump_stream(cmdline: str, name: str, stream: Union[BinaryIO, TextIO], is_decode: bool, handler: Union[None, Callable[[Union[bytes, str]], None]]) -> None: try: for line in stream: if handler: if is_decode: assert isinstance(line, bytes) line_str = line.decode(defenc) handler(line_str) else: handler(line) except Exception as ex: log.error("Pumping %r of cmd(%s) failed due to: %r", name, remove_password_if_present(cmdline), ex) raise CommandError(['<%s-pump>' % name] + remove_password_if_present(cmdline), ex) from ex finally: stream.close() cmdline = getattr(process, 'args', '') # PY3+ only if not isinstance(cmdline, (tuple, list)): cmdline = cmdline.split() pumps = [] if process.stdout: pumps.append(('stdout', process.stdout, stdout_handler)) if process.stderr: pumps.append(('stderr', process.stderr, stderr_handler)) threads = [] for name, stream, handler in pumps: t = threading.Thread(target=pump_stream, args=(cmdline, name, stream, decode_streams, handler)) t.daemon = True t.start() threads.append(t) ## FIXME: Why Join?? Will block if `stdin` needs feeding... # for t in threads: t.join() if finalizer: return finalizer(process) else: return None def dashify(string: str) -> str: return string.replace('_', '-') def slots_to_dict(self, exclude: Sequence[str] = ()) -> Dict[str, Any]: return {s: getattr(self, s) for s in self.__slots__ if s not in exclude} def dict_to_slots_and__excluded_are_none(self, d: Mapping[str, Any], excluded: Sequence[str] = ()) -> None: for k, v in d.items(): setattr(self, k, v) for k in excluded: setattr(self, k, None) ## -- End Utilities -- @} # value of Windows process creation flag taken from MSDN CREATE_NO_WINDOW = 0x08000000 ## CREATE_NEW_PROCESS_GROUP is needed to allow killing it afterwards, # see https://docs.python.org/3/library/subprocess.html#subprocess.Popen.send_signal PROC_CREATIONFLAGS = (CREATE_NO_WINDOW | subprocess.CREATE_NEW_PROCESS_GROUP # type: ignore[attr-defined] if is_win else 0) class Git(LazyMixin): """ The Git class manages communication with the Git binary. It provides a convenient interface to calling the Git binary, such as in:: g = Git( git_dir ) g.init() # calls 'git init' program rval = g.ls_files() # calls 'git ls-files' program ``Debugging`` Set the GIT_PYTHON_TRACE environment variable print each invocation of the command to stdout. Set its value to 'full' to see details about the returned values. """ __slots__ = ("_working_dir", "cat_file_all", "cat_file_header", "_version_info", "_git_options", "_persistent_git_options", "_environment") _excluded_ = ('cat_file_all', 'cat_file_header', '_version_info') def __getstate__(self) -> Dict[str, Any]: return slots_to_dict(self, exclude=self._excluded_) def __setstate__(self, d) -> None: dict_to_slots_and__excluded_are_none(self, d, excluded=self._excluded_) # CONFIGURATION git_exec_name = "git" # default that should work on linux and windows # Enables debugging of GitPython's git commands GIT_PYTHON_TRACE = os.environ.get("GIT_PYTHON_TRACE", False) # If True, a shell will be used when executing git commands. # This should only be desirable on Windows, see https://github.com/gitpython-developers/GitPython/pull/126 # and check `git/test_repo.py:TestRepo.test_untracked_files()` TC for an example where it is required. # Override this value using `Git.USE_SHELL = True` USE_SHELL = False # Provide the full path to the git executable. Otherwise it assumes git is in the path _git_exec_env_var = "GIT_PYTHON_GIT_EXECUTABLE" _refresh_env_var = "GIT_PYTHON_REFRESH" GIT_PYTHON_GIT_EXECUTABLE = None # note that the git executable is actually found during the refresh step in # the top level __init__ @classmethod def refresh(cls, path: Union[None, PathLike] = None) -> bool: """This gets called by the refresh function (see the top level __init__). """ # discern which path to refresh with if path is not None: new_git = os.path.expanduser(path) new_git = os.path.abspath(new_git) else: new_git = os.environ.get(cls._git_exec_env_var, cls.git_exec_name) # keep track of the old and new git executable path old_git = cls.GIT_PYTHON_GIT_EXECUTABLE cls.GIT_PYTHON_GIT_EXECUTABLE = new_git # test if the new git executable path is valid # - a GitCommandNotFound error is spawned by ourselves # - a PermissionError is spawned if the git executable provided # cannot be executed for whatever reason has_git = False try: cls().version() has_git = True except (GitCommandNotFound, PermissionError): pass # warn or raise exception if test failed if not has_git: err = dedent("""\ Bad git executable. The git executable must be specified in one of the following ways: - be included in your $PATH - be set via $%s - explicitly set via git.refresh() """) % cls._git_exec_env_var # revert to whatever the old_git was cls.GIT_PYTHON_GIT_EXECUTABLE = old_git if old_git is None: # on the first refresh (when GIT_PYTHON_GIT_EXECUTABLE is # None) we only are quiet, warn, or error depending on the # GIT_PYTHON_REFRESH value # determine what the user wants to happen during the initial # refresh we expect GIT_PYTHON_REFRESH to either be unset or # be one of the following values: # 0|q|quiet|s|silence # 1|w|warn|warning # 2|r|raise|e|error mode = os.environ.get(cls._refresh_env_var, "raise").lower() quiet = ["quiet", "q", "silence", "s", "none", "n", "0"] warn = ["warn", "w", "warning", "1"] error = ["error", "e", "raise", "r", "2"] if mode in quiet: pass elif mode in warn or mode in error: err = dedent("""\ %s All git commands will error until this is rectified. This initial warning can be silenced or aggravated in the future by setting the $%s environment variable. Use one of the following values: - %s: for no warning or exception - %s: for a printed warning - %s: for a raised exception Example: export %s=%s """) % ( err, cls._refresh_env_var, "|".join(quiet), "|".join(warn), "|".join(error), cls._refresh_env_var, quiet[0]) if mode in warn: print("WARNING: %s" % err) else: raise ImportError(err) else: err = dedent("""\ %s environment variable has been set but it has been set with an invalid value. Use only the following values: - %s: for no warning or exception - %s: for a printed warning - %s: for a raised exception """) % ( cls._refresh_env_var, "|".join(quiet), "|".join(warn), "|".join(error)) raise ImportError(err) # we get here if this was the init refresh and the refresh mode # was not error, go ahead and set the GIT_PYTHON_GIT_EXECUTABLE # such that we discern the difference between a first import # and a second import cls.GIT_PYTHON_GIT_EXECUTABLE = cls.git_exec_name else: # after the first refresh (when GIT_PYTHON_GIT_EXECUTABLE # is no longer None) we raise an exception raise GitCommandNotFound("git", err) return has_git @classmethod def is_cygwin(cls) -> bool: return is_cygwin_git(cls.GIT_PYTHON_GIT_EXECUTABLE) @overload @classmethod def polish_url(cls, url: str, is_cygwin: Literal[False] = ...) -> str: ... @overload @classmethod def polish_url(cls, url: str, is_cygwin: Union[None, bool] = None) -> str: ... @classmethod def polish_url(cls, url: str, is_cygwin: Union[None, bool] = None) -> PathLike: if is_cygwin is None: is_cygwin = cls.is_cygwin() if is_cygwin: url = cygpath(url) else: """Remove any backslahes from urls to be written in config files. Windows might create config-files containing paths with backslashed, but git stops liking them as it will escape the backslashes. Hence we undo the escaping just to be sure. """ url = os.path.expandvars(url) if url.startswith('~'): url = os.path.expanduser(url) url = url.replace("\\\\", "\\").replace("\\", "/") return url class AutoInterrupt(object): """Kill/Interrupt the stored process instance once this instance goes out of scope. It is used to prevent processes piling up in case iterators stop reading. Besides all attributes are wired through to the contained process object. The wait method was overridden to perform automatic status code checking and possibly raise.""" __slots__ = ("proc", "args") def __init__(self, proc: Union[None, subprocess.Popen], args: Any) -> None: self.proc = proc self.args = args def __del__(self) -> None: if self.proc is None: return proc = self.proc self.proc = None if proc.stdin: proc.stdin.close() if proc.stdout: proc.stdout.close() if proc.stderr: proc.stderr.close() # did the process finish already so we have a return code ? try: if proc.poll() is not None: return None except OSError as ex: log.info("Ignored error after process had died: %r", ex) # can be that nothing really exists anymore ... if os is None or getattr(os, 'kill', None) is None: return None # try to kill it try: proc.terminate() proc.wait() # ensure process goes away except OSError as ex: log.info("Ignored error after process had died: %r", ex) except AttributeError: # try windows # for some reason, providing None for stdout/stderr still prints something. This is why # we simply use the shell and redirect to nul. Its slower than CreateProcess, question # is whether we really want to see all these messages. Its annoying no matter what. if is_win: call(("TASKKILL /F /T /PID %s 2>nul 1>nul" % str(proc.pid)), shell=True) # END exception handling def __getattr__(self, attr: str) -> Any: return getattr(self.proc, attr) # TODO: Bad choice to mimic `proc.wait()` but with different args. def wait(self, stderr: Union[None, bytes] = b'') -> int: """Wait for the process and return its status code. :param stderr: Previously read value of stderr, in case stderr is already closed. :warn: may deadlock if output or error pipes are used and not handled separately. :raise GitCommandError: if the return status is not 0""" if stderr is None: stderr = b'' stderr = force_bytes(data=stderr, encoding='utf-8') if self.proc is not None: status = self.proc.wait() def read_all_from_possibly_closed_stream(stream): try: return stderr + force_bytes(stream.read()) except ValueError: return stderr or b'' if status != 0: errstr = read_all_from_possibly_closed_stream(self.proc.stderr) log.debug('AutoInterrupt wait stderr: %r' % (errstr,)) raise GitCommandError(remove_password_if_present(self.args), status, errstr) # END status handling return status # END auto interrupt class CatFileContentStream(object): """Object representing a sized read-only stream returning the contents of an object. It behaves like a stream, but counts the data read and simulates an empty stream once our sized content region is empty. If not all data is read to the end of the objects's lifetime, we read the rest to assure the underlying stream continues to work""" __slots__: Tuple[str, ...] = ('_stream', '_nbr', '_size') def __init__(self, size: int, stream: IO[bytes]) -> None: self._stream = stream self._size = size self._nbr = 0 # num bytes read # special case: if the object is empty, has null bytes, get the # final newline right away. if size == 0: stream.read(1) # END handle empty streams def read(self, size: int = -1) -> bytes: bytes_left = self._size - self._nbr if bytes_left == 0: return b'' if size > -1: # assure we don't try to read past our limit size = min(bytes_left, size) else: # they try to read all, make sure its not more than what remains size = bytes_left # END check early depletion data = self._stream.read(size) self._nbr += len(data) # check for depletion, read our final byte to make the stream usable by others if self._size - self._nbr == 0: self._stream.read(1) # final newline # END finish reading return data def readline(self, size: int = -1) -> bytes: if self._nbr == self._size: return b'' # clamp size to lowest allowed value bytes_left = self._size - self._nbr if size > -1: size = min(bytes_left, size) else: size = bytes_left # END handle size data = self._stream.readline(size) self._nbr += len(data) # handle final byte if self._size - self._nbr == 0: self._stream.read(1) # END finish reading return data def readlines(self, size: int = -1) -> List[bytes]: if self._nbr == self._size: return [] # leave all additional logic to our readline method, we just check the size out = [] nbr = 0 while True: line = self.readline() if not line: break out.append(line) if size > -1: nbr += len(line) if nbr > size: break # END handle size constraint # END readline loop return out # skipcq: PYL-E0301 def __iter__(self) -> 'Git.CatFileContentStream': return self def __next__(self) -> bytes: return self.next() def next(self) -> bytes: line = self.readline() if not line: raise StopIteration return line def __del__(self) -> None: bytes_left = self._size - self._nbr if bytes_left: # read and discard - seeking is impossible within a stream # includes terminating newline self._stream.read(bytes_left + 1) # END handle incomplete read def __init__(self, working_dir: Union[None, PathLike] = None): """Initialize this instance with: :param working_dir: Git directory we should work in. If None, we always work in the current directory as returned by os.getcwd(). It is meant to be the working tree directory if available, or the .git directory in case of bare repositories.""" super(Git, self).__init__() self._working_dir = expand_path(working_dir) self._git_options = () # type: Union[List[str], Tuple[str, ...]] self._persistent_git_options = [] # type: List[str] # Extra environment variables to pass to git commands self._environment = {} # type: Dict[str, str] # cached command slots self.cat_file_header = None self.cat_file_all = None def __getattr__(self, name: str) -> Any: """A convenience method as it allows to call the command as if it was an object. :return: Callable object that will execute call _call_process with your arguments.""" if name[0] == '_': return LazyMixin.__getattr__(self, name) return lambda *args, **kwargs: self._call_process(name, *args, **kwargs) def set_persistent_git_options(self, **kwargs: Any) -> None: """Specify command line options to the git executable for subsequent subcommand calls :param kwargs: is a dict of keyword arguments. these arguments are passed as in _call_process but will be passed to the git command rather than the subcommand. """ self._persistent_git_options = self.transform_kwargs( split_single_char_options=True, **kwargs) def _set_cache_(self, attr: str) -> None: if attr == '_version_info': # We only use the first 4 numbers, as everything else could be strings in fact (on windows) process_version = self._call_process('version') # should be as default *args and **kwargs used version_numbers = process_version.split(' ')[2] self._version_info = tuple( int(n) for n in version_numbers.split('.')[:4] if n.isdigit() ) # type: Tuple[int, int, int, int] # type: ignore else: super(Git, self)._set_cache_(attr) # END handle version info @property def working_dir(self) -> Union[None, PathLike]: """:return: Git directory we are working on""" return self._working_dir @property def version_info(self) -> Tuple[int, int, int, int]: """ :return: tuple(int, int, int, int) tuple with integers representing the major, minor and additional version numbers as parsed from git version. This value is generated on demand and is cached""" return self._version_info @overload def execute(self, command: Union[str, Sequence[Any]], *, as_process: Literal[True] ) -> 'AutoInterrupt': ... @overload def execute(self, command: Union[str, Sequence[Any]], *, as_process: Literal[False] = False, stdout_as_string: Literal[True] ) -> Union[str, Tuple[int, str, str]]: ... @overload def execute(self, command: Union[str, Sequence[Any]], *, as_process: Literal[False] = False, stdout_as_string: Literal[False] = False ) -> Union[bytes, Tuple[int, bytes, str]]: ... @overload def execute(self, command: Union[str, Sequence[Any]], *, with_extended_output: Literal[False], as_process: Literal[False], stdout_as_string: Literal[True] ) -> str: ... @overload def execute(self, command: Union[str, Sequence[Any]], *, with_extended_output: Literal[False], as_process: Literal[False], stdout_as_string: Literal[False] ) -> bytes: ... def execute(self, command: Union[str, Sequence[Any]], istream: Union[None, BinaryIO] = None, with_extended_output: bool = False, with_exceptions: bool = True, as_process: bool = False, output_stream: Union[None, BinaryIO] = None, stdout_as_string: bool = True, kill_after_timeout: Union[None, int] = None, with_stdout: bool = True, universal_newlines: bool = False, shell: Union[None, bool] = None, env: Union[None, Mapping[str, str]] = None, max_chunk_size: int = io.DEFAULT_BUFFER_SIZE, **subprocess_kwargs: Any ) -> Union[str, bytes, Tuple[int, Union[str, bytes], str], AutoInterrupt]: """Handles executing the command on the shell and consumes and returns the returned information (stdout) :param command: The command argument list to execute. It should be a string, or a sequence of program arguments. The program to execute is the first item in the args sequence or string. :param istream: Standard input filehandle passed to subprocess.Popen. :param with_extended_output: Whether to return a (status, stdout, stderr) tuple. :param with_exceptions: Whether to raise an exception when git returns a non-zero status. :param as_process: Whether to return the created process instance directly from which streams can be read on demand. This will render with_extended_output and with_exceptions ineffective - the caller will have to deal with the details himself. It is important to note that the process will be placed into an AutoInterrupt wrapper that will interrupt the process once it goes out of scope. If you use the command in iterators, you should pass the whole process instance instead of a single stream. :param output_stream: If set to a file-like object, data produced by the git command will be output to the given stream directly. This feature only has any effect if as_process is False. Processes will always be created with a pipe due to issues with subprocess. This merely is a workaround as data will be copied from the output pipe to the given output stream directly. Judging from the implementation, you shouldn't use this flag ! :param stdout_as_string: if False, the commands standard output will be bytes. Otherwise, it will be decoded into a string using the default encoding (usually utf-8). The latter can fail, if the output contains binary data. :param env: A dictionary of environment variables to be passed to `subprocess.Popen`. :param max_chunk_size: Maximum number of bytes in one chunk of data passed to the output_stream in one invocation of write() method. If the given number is not positive then the default value is used. :param subprocess_kwargs: Keyword arguments to be passed to subprocess.Popen. Please note that some of the valid kwargs are already set by this method, the ones you specify may not be the same ones. :param with_stdout: If True, default True, we open stdout on the created process :param universal_newlines: if True, pipes will be opened as text, and lines are split at all known line endings. :param shell: Whether to invoke commands through a shell (see `Popen(..., shell=True)`). It overrides :attr:`USE_SHELL` if it is not `None`. :param kill_after_timeout: To specify a timeout in seconds for the git command, after which the process should be killed. This will have no effect if as_process is set to True. It is set to None by default and will let the process run until the timeout is explicitly specified. This feature is not supported on Windows. It's also worth noting that kill_after_timeout uses SIGKILL, which can have negative side effects on a repository. For example, stale locks in case of git gc could render the repository incapable of accepting changes until the lock is manually removed. :return: * str(output) if extended_output = False (Default) * tuple(int(status), str(stdout), str(stderr)) if extended_output = True if output_stream is True, the stdout value will be your output stream: * output_stream if extended_output = False * tuple(int(status), output_stream, str(stderr)) if extended_output = True Note git is executed with LC_MESSAGES="C" to ensure consistent output regardless of system language. :raise GitCommandError: :note: If you add additional keyword arguments to the signature of this method, you must update the execute_kwargs tuple housed in this module.""" # Remove password for the command if present redacted_command = remove_password_if_present(command) if self.GIT_PYTHON_TRACE and (self.GIT_PYTHON_TRACE != 'full' or as_process): log.info(' '.join(redacted_command)) # Allow the user to have the command executed in their working dir. cwd = self._working_dir or os.getcwd() # Start the process inline_env = env env = os.environ.copy() # Attempt to force all output to plain ascii english, which is what some parsing code # may expect. # According to stackoverflow (http://goo.gl/l74GC8), we are setting LANGUAGE as well # just to be sure. env["LANGUAGE"] = "C" env["LC_ALL"] = "C" env.update(self._environment) if inline_env is not None: env.update(inline_env) if is_win: cmd_not_found_exception = OSError if kill_after_timeout: raise GitCommandError(redacted_command, '"kill_after_timeout" feature is not supported on Windows.') else: if sys.version_info[0] > 2: cmd_not_found_exception = FileNotFoundError # NOQA # exists, flake8 unknown @UndefinedVariable else: cmd_not_found_exception = OSError # end handle stdout_sink = (PIPE if with_stdout else getattr(subprocess, 'DEVNULL', None) or open(os.devnull, 'wb')) istream_ok = "None" if istream: istream_ok = "<valid stream>" log.debug("Popen(%s, cwd=%s, universal_newlines=%s, shell=%s, istream=%s)", redacted_command, cwd, universal_newlines, shell, istream_ok) try: proc = Popen(command, env=env, cwd=cwd, bufsize=-1, stdin=istream, stderr=PIPE, stdout=stdout_sink, shell=shell is not None and shell or self.USE_SHELL, close_fds=is_posix, # unsupported on windows universal_newlines=universal_newlines, creationflags=PROC_CREATIONFLAGS, **subprocess_kwargs ) except cmd_not_found_exception as err: raise GitCommandNotFound(redacted_command, err) from err else: proc = cast(Popen, proc) proc.stdout = cast(BinaryIO, proc.stdout) proc.stderr = cast(BinaryIO, proc.stderr) if as_process: return self.AutoInterrupt(proc, command) def _kill_process(pid: int) -> None: """ Callback method to kill a process. """ p = Popen(['ps', '--ppid', str(pid)], stdout=PIPE, creationflags=PROC_CREATIONFLAGS) child_pids = [] if p.stdout is not None: for line in p.stdout: if len(line.split()) > 0: local_pid = (line.split())[0] if local_pid.isdigit(): child_pids.append(int(local_pid)) try: # Windows does not have SIGKILL, so use SIGTERM instead sig = getattr(signal, 'SIGKILL', signal.SIGTERM) os.kill(pid, sig) for child_pid in child_pids: try: os.kill(child_pid, sig) except OSError: pass kill_check.set() # tell the main routine that the process was killed except OSError: # It is possible that the process gets completed in the duration after timeout # happens and before we try to kill the process. pass return # end if kill_after_timeout: kill_check = threading.Event() watchdog = threading.Timer(kill_after_timeout, _kill_process, args=(proc.pid,)) # Wait for the process to return status = 0 stdout_value = b'' # type: Union[str, bytes] stderr_value = b'' # type: Union[str, bytes] newline = "\n" if universal_newlines else b"\n" try: if output_stream is None: if kill_after_timeout: watchdog.start() stdout_value, stderr_value = proc.communicate() if kill_after_timeout: watchdog.cancel() if kill_check.is_set(): stderr_value = ('Timeout: the command "%s" did not complete in %d ' 'secs.' % (" ".join(redacted_command), kill_after_timeout)) if not universal_newlines: stderr_value = stderr_value.encode(defenc) # strip trailing "\n" if stdout_value.endswith(newline): # type: ignore stdout_value = stdout_value[:-1] if stderr_value.endswith(newline): # type: ignore stderr_value = stderr_value[:-1] status = proc.returncode else: max_chunk_size = max_chunk_size if max_chunk_size and max_chunk_size > 0 else io.DEFAULT_BUFFER_SIZE stream_copy(proc.stdout, output_stream, max_chunk_size) stdout_value = proc.stdout.read() stderr_value = proc.stderr.read() # strip trailing "\n" if stderr_value.endswith(newline): # type: ignore stderr_value = stderr_value[:-1] status = proc.wait() # END stdout handling finally: proc.stdout.close() proc.stderr.close() if self.GIT_PYTHON_TRACE == 'full': cmdstr = " ".join(redacted_command) def as_text(stdout_value): return not output_stream and safe_decode(stdout_value) or '<OUTPUT_STREAM>' # end if stderr_value: log.info("%s -> %d; stdout: '%s'; stderr: '%s'", cmdstr, status, as_text(stdout_value), safe_decode(stderr_value)) elif stdout_value: log.info("%s -> %d; stdout: '%s'", cmdstr, status, as_text(stdout_value)) else: log.info("%s -> %d", cmdstr, status) # END handle debug printing if with_exceptions and status != 0: raise GitCommandError(redacted_command, status, stderr_value, stdout_value) if isinstance(stdout_value, bytes) and stdout_as_string: # could also be output_stream stdout_value = safe_decode(stdout_value) # Allow access to the command's status code if with_extended_output: return (status, stdout_value, safe_decode(stderr_value)) else: return stdout_value def environment(self): return self._environment def update_environment(self, **kwargs): """ Set environment variables for future git invocations. Return all changed values in a format that can be passed back into this function to revert the changes: ``Examples``:: old_env = self.update_environment(PWD='/tmp') self.update_environment(**old_env) :param kwargs: environment variables to use for git processes :return: dict that maps environment variables to their old values """ old_env = {} for key, value in kwargs.items(): # set value if it is None if value is not None: old_env[key] = self._environment.get(key) self._environment[key] = value # remove key from environment if its value is None elif key in self._environment: old_env[key] = self._environment[key] del self._environment[key] return old_env @contextmanager def custom_environment(self, **kwargs): """ A context manager around the above ``update_environment`` method to restore the environment back to its previous state after operation. ``Examples``:: with self.custom_environment(GIT_SSH='/bin/ssh_wrapper'): repo.remotes.origin.fetch() :param kwargs: see update_environment """ old_env = self.update_environment(**kwargs) try: yield finally: self.update_environment(**old_env) def transform_kwarg(self, name: str, value: Any, split_single_char_options: bool) -> List[str]: if len(name) == 1: if value is True: return ["-%s" % name] elif value not in (False, None): if split_single_char_options: return ["-%s" % name, "%s" % value] else: return ["-%s%s" % (name, value)] else: if value is True: return ["--%s" % dashify(name)] elif value is not False and value is not None: return ["--%s=%s" % (dashify(name), value)] return [] def transform_kwargs(self, split_single_char_options: bool = True, **kwargs: Any) -> List[str]: """Transforms Python style kwargs into git command line options.""" args = [] for k, v in kwargs.items(): if isinstance(v, (list, tuple)): for value in v: args += self.transform_kwarg(k, value, split_single_char_options) else: args += self.transform_kwarg(k, v, split_single_char_options) return args @classmethod def __unpack_args(cls, arg_list: Sequence[str]) -> List[str]: if not isinstance(arg_list, (list, tuple)): return [str(arg_list)] outlist = [] for arg in arg_list: if isinstance(arg_list, (list, tuple)): outlist.extend(cls.__unpack_args(arg)) # END recursion else: outlist.append(str(arg)) # END for each arg return outlist def __call__(self, **kwargs: Any) -> 'Git': """Specify command line options to the git executable for a subcommand call :param kwargs: is a dict of keyword arguments. these arguments are passed as in _call_process but will be passed to the git command rather than the subcommand. ``Examples``:: git(work_tree='/tmp').difftool()""" self._git_options = self.transform_kwargs( split_single_char_options=True, **kwargs) return self @overload def _call_process(self, method: str, *args: None, **kwargs: None ) -> str: ... # if no args given, execute called with all defaults @overload def _call_process(self, method: str, *args: Any, **kwargs: Any ) -> Union[str, bytes, Tuple[int, Union[str, bytes], str], 'Git.AutoInterrupt']: ... def _call_process(self, method: str, *args: Any, **kwargs: Any ) -> Union[str, bytes, Tuple[int, Union[str, bytes], str], 'Git.AutoInterrupt']: """Run the given git command with the specified arguments and return the result as a String :param method: is the command. Contained "_" characters will be converted to dashes, such as in 'ls_files' to call 'ls-files'. :param args: is the list of arguments. If None is included, it will be pruned. This allows your commands to call git more conveniently as None is realized as non-existent :param kwargs: It contains key-values for the following: - the :meth:`execute()` kwds, as listed in :var:`execute_kwargs`; - "command options" to be converted by :meth:`transform_kwargs()`; - the `'insert_kwargs_after'` key which its value must match one of ``*args``, and any cmd-options will be appended after the matched arg. Examples:: git.rev_list('master', max_count=10, header=True) turns into:: git rev-list max-count 10 --header master :return: Same as ``execute`` if no args given used execute default (esp. as_process = False, stdout_as_string = True) and return str """ # Handle optional arguments prior to calling transform_kwargs # otherwise these'll end up in args, which is bad. exec_kwargs = {k: v for k, v in kwargs.items() if k in execute_kwargs} opts_kwargs = {k: v for k, v in kwargs.items() if k not in execute_kwargs} insert_after_this_arg = opts_kwargs.pop('insert_kwargs_after', None) # Prepare the argument list opt_args = self.transform_kwargs(**opts_kwargs) ext_args = self.__unpack_args([a for a in args if a is not None]) if insert_after_this_arg is None: args_list = opt_args + ext_args else: try: index = ext_args.index(insert_after_this_arg) except ValueError as err: raise ValueError("Couldn't find argument '%s' in args %s to insert cmd options after" % (insert_after_this_arg, str(ext_args))) from err # end handle error args_list = ext_args[:index + 1] + opt_args + ext_args[index + 1:] # end handle opts_kwargs call = [self.GIT_PYTHON_GIT_EXECUTABLE] # add persistent git options call.extend(self._persistent_git_options) # add the git options, then reset to empty # to avoid side_effects call.extend(self._git_options) self._git_options = () call.append(dashify(method)) call.extend(args_list) return self.execute(call, **exec_kwargs) def _parse_object_header(self, header_line: str) -> Tuple[str, str, int]: """ :param header_line: <hex_sha> type_string size_as_int :return: (hex_sha, type_string, size_as_int) :raise ValueError: if the header contains indication for an error due to incorrect input sha""" tokens = header_line.split() if len(tokens) != 3: if not tokens: raise ValueError("SHA could not be resolved, git returned: %r" % (header_line.strip())) else: raise ValueError("SHA %s could not be resolved, git returned: %r" % (tokens[0], header_line.strip())) # END handle actual return value # END error handling if len(tokens[0]) != 40: raise ValueError("Failed to parse header: %r" % header_line) return (tokens[0], tokens[1], int(tokens[2])) def _prepare_ref(self, ref: AnyStr) -> bytes: # required for command to separate refs on stdin, as bytes if isinstance(ref, bytes): # Assume 40 bytes hexsha - bin-to-ascii for some reason returns bytes, not text refstr = ref.decode('ascii') # type: str elif not isinstance(ref, str): refstr = str(ref) # could be ref-object else: refstr = ref if not refstr.endswith("\n"): refstr += "\n" return refstr.encode(defenc) def _get_persistent_cmd(self, attr_name: str, cmd_name: str, *args: Any, **kwargs: Any ) -> Union['Git.AutoInterrupt', TBD]: cur_val = getattr(self, attr_name) if cur_val is not None: return cur_val options = {"istream": PIPE, "as_process": True} options.update(kwargs) cmd = self._call_process(cmd_name, *args, **options) setattr(self, attr_name, cmd) return cmd def __get_object_header(self, cmd, ref: AnyStr) -> Tuple[str, str, int]: cmd.stdin.write(self._prepare_ref(ref)) cmd.stdin.flush() return self._parse_object_header(cmd.stdout.readline()) def get_object_header(self, ref: str) -> Tuple[str, str, int]: """ Use this method to quickly examine the type and size of the object behind the given ref. :note: The method will only suffer from the costs of command invocation once and reuses the command in subsequent calls. :return: (hexsha, type_string, size_as_int)""" cmd = self._get_persistent_cmd("cat_file_header", "cat_file", batch_check=True) return self.__get_object_header(cmd, ref) def get_object_data(self, ref: str) -> Tuple[str, str, int, bytes]: """ As get_object_header, but returns object data as well :return: (hexsha, type_string, size_as_int,data_string) :note: not threadsafe""" hexsha, typename, size, stream = self.stream_object_data(ref) data = stream.read(size) del(stream) return (hexsha, typename, size, data) def stream_object_data(self, ref: str) -> Tuple[str, str, int, 'Git.CatFileContentStream']: """ As get_object_header, but returns the data as a stream :return: (hexsha, type_string, size_as_int, stream) :note: This method is not threadsafe, you need one independent Command instance per thread to be safe !""" cmd = self._get_persistent_cmd("cat_file_all", "cat_file", batch=True) hexsha, typename, size = self.__get_object_header(cmd, ref) return (hexsha, typename, size, self.CatFileContentStream(size, cmd.stdout)) def clear_cache(self) -> 'Git': """Clear all kinds of internal caches to release resources. Currently persistent commands will be interrupted. :return: self""" for cmd in (self.cat_file_all, self.cat_file_header): if cmd: cmd.__del__() self.cat_file_all = None self.cat_file_header = None return self
py
7df8575e40a37e8b18e5fe9fb7b8ac13e21dedb0
#!/usr/bin/env python # Make all randomness deterministic import random import argparse import torch import os import numpy as np random.seed(1337) torch.manual_seed(1337) np.random.seed(1337) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False from shlex import split from .yolo_train import prepare_training_loop from . import yolo_train from .yolo_models import * # set ONNX_EXPORT in models.py from .yolo_utils.datasets import * from .yolo_utils.utils import * from pathlib import Path from ...util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION class Model(BenchmarkModel): task = COMPUTER_VISION.SEGMENTATION def __init__(self, device=None, jit=False): super().__init__() self.device = device self.jit = jit def get_module(self): if self.jit: raise NotImplementedError() parser = argparse.ArgumentParser() root = str(Path(yolo_train.__file__).parent.absolute()) parser.add_argument('--cfg', type=str, default=f'{root}/cfg/yolov3-spp.cfg', help='*.cfg path') parser.add_argument('--names', type=str, default=f'{root}/data/coco.names', help='*.names path') parser.add_argument('--weights', type=str, default='weights/yolov3-spp-ultralytics.pt', help='weights path') parser.add_argument('--source', type=str, default='data/samples', help='source') # input file/folder, 0 for webcam parser.add_argument('--output', type=str, default='output', help='output folder') # output folder parser.add_argument('--img-size', type=int, default=512, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS') parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)') parser.add_argument('--half', action='store_true', help='half precision FP16 inference') parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu') parser.add_argument('--view-img', action='store_true', help='display results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--classes', nargs='+', type=int, help='filter by class') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') opt = parser.parse_args(['--device', self.device]) opt.cfg = check_file(opt.cfg) # check file opt.names = check_file(opt.names) # check file model = Darknet(opt.cfg, opt.img_size) model.to(opt.device).eval() input = (torch.rand(1, 3, 384, 512).to(opt.device),) return model, input def set_train(self): # another model instance is used for training # and the train mode is on by default pass def train(self, niterations=1): # the training process is not patched to use scripted models if self.jit: raise NotImplementedError() if self.device == 'cpu': raise NotImplementedError("Disabled due to excessively slow runtime - see GH Issue #100") root = str(Path(yolo_train.__file__).parent.absolute()) train_args = split(f"--data {root}/data/coco128.data --img 416 --batch 8 --nosave --notest --epochs 1 --device {self.device} --weights ''") print(train_args) training_loop = prepare_training_loop(train_args) return training_loop(niterations) def eval(self, niterations=1): model, example_inputs = self.get_module() img = example_inputs[0] im0s_shape = (480, 640, 3) for i in range(niterations): pred = model(img, augment=False)[0] # Apply NMS pred = non_max_suppression(pred, 0.3, 0.6, multi_label=False, classes=None, agnostic=False) if __name__ == '__main__': m = Model(device='cpu', jit=False) model, example_inputs = m.get_module() model(*example_inputs) m.train() m.eval()
py
7df858cda696e66d5e84cb08aaf4e5c4cd119379
"""Auto-generated file, do not edit by hand. SM metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_SM = PhoneMetadata(id='SM', country_code=378, international_prefix='00', general_desc=PhoneNumberDesc(national_number_pattern='[05-7]\\d{7,9}', possible_length=(8, 10), possible_length_local_only=(6,)), fixed_line=PhoneNumberDesc(national_number_pattern='0549(?:8[0157-9]|9\\d)\\d{4}', example_number='0549886377', possible_length=(10,), possible_length_local_only=(6,)), mobile=PhoneNumberDesc(national_number_pattern='6[16]\\d{6}', example_number='66661212', possible_length=(8,)), premium_rate=PhoneNumberDesc(national_number_pattern='7[178]\\d{6}', example_number='71123456', possible_length=(8,)), voip=PhoneNumberDesc(national_number_pattern='5[158]\\d{6}', example_number='58001110', possible_length=(8,)), national_prefix_for_parsing='(?:0549)?([89]\\d{5})', national_prefix_transform_rule='0549\\1', number_format=[NumberFormat(pattern='(\\d{2})(\\d{2})(\\d{2})(\\d{2})', format='\\1 \\2 \\3 \\4', leading_digits_pattern=['[5-7]']), NumberFormat(pattern='(0549)(\\d{6})', format='\\1 \\2', leading_digits_pattern=['054', '0549']), NumberFormat(pattern='(\\d{6})', format='0549 \\1', leading_digits_pattern=['[89]'])], intl_number_format=[NumberFormat(pattern='(\\d{2})(\\d{2})(\\d{2})(\\d{2})', format='\\1 \\2 \\3 \\4', leading_digits_pattern=['[5-7]']), NumberFormat(pattern='(0549)(\\d{6})', format='(\\1) \\2', leading_digits_pattern=['054', '0549']), NumberFormat(pattern='(\\d{6})', format='(0549) \\1', leading_digits_pattern=['[89]'])])
py
7df858f06714210e36f3b0607fda8120567d2d95
import numpy as np from typing import Callable, Type, NamedTuple, Optional import copy import logging import ConfigSpace as CS from .debug_log import DebugLogPrinter from .gp_profiling import GPMXNetSimpleProfiler from .hp_ranges import HyperparameterRanges_CS from ..datatypes.common import CandidateEvaluation, Candidate, candidate_for_print, PendingEvaluation from ..datatypes.hp_ranges import HyperparameterRanges from ..datatypes.tuning_job_state import TuningJobState from ..models.gp_model import GaussProcSurrogateModel, GPModel from ..models.gpmodel_skipopt import SkipOptimizationPredicate from ..models.gpmodel_transformers import GPModelPendingCandidateStateTransformer, GPModelArgs from ..tuning_algorithms.base_classes import LocalOptimizer, AcquisitionFunction, ScoringFunction from ..tuning_algorithms.bo_algorithm import BayesianOptimizationAlgorithm from ..tuning_algorithms.bo_algorithm_components import IndependentThompsonSampling from ..tuning_algorithms.common import RandomStatefulCandidateGenerator, compute_blacklisted_candidates from ..tuning_algorithms.default_algorithm import dictionarize_objective, \ DEFAULT_METRIC, DEFAULT_LOCAL_OPTIMIZER_CLASS, \ DEFAULT_NUM_INITIAL_CANDIDATES, DEFAULT_NUM_INITIAL_RANDOM_EVALUATIONS from ..utils.duplicate_detector import DuplicateDetectorIdentical logger = logging.getLogger(__name__) GET_CONFIG_RANDOM_RETRIES = 50 class MapReward(NamedTuple): forward: Callable[[float], float] reverse: Callable[[float], float] def __call__(self, x: float) -> float: return self.forward(x) def accumulate_profiling_record( cum_records: dict, profiler: GPMXNetSimpleProfiler, pick_random: bool): # Pull out profiling data from this block block_id = profiler.id_counter - 1 curr_record = { r.tag: r.duration for r in profiler.records if r.id == block_id} if pick_random: curr_record['num_random'] = 1 curr_record['total_all'] = curr_record['random'] else: curr_record['num_model'] = 1 # Sum up entries for k, v in curr_record.items(): if k in cum_records: cum_records[k] += v else: cum_records[k] = v SUPPORTED_INITIAL_SCORING = { 'thompson_indep', 'acq_func'} DEFAULT_INITIAL_SCORING = 'thompson_indep' def create_initial_candidates_scorer( initial_scoring: str, model: GaussProcSurrogateModel, acquisition_class: Type[AcquisitionFunction], random_state: np.random.RandomState) -> ScoringFunction: if initial_scoring == 'thompson_indep': return IndependentThompsonSampling(model, random_state=random_state) else: return acquisition_class(model) def check_initial_candidates_scorer(initial_scoring: str) -> str: if initial_scoring is None: return DEFAULT_INITIAL_SCORING else: assert initial_scoring in SUPPORTED_INITIAL_SCORING, \ "initial_scoring = '{}' is not supported".format( initial_scoring) return initial_scoring class GPFIFOSearcher(object): """ Supports standard GP-based hyperparameter optimization, when used with a FIFO scheduler. """ def __init__( self, hp_ranges: HyperparameterRanges, random_seed: int, gpmodel: GPModel, model_args: GPModelArgs, map_reward: MapReward, acquisition_class: Type[AcquisitionFunction], init_state: TuningJobState = None, local_minimizer_class: Type[LocalOptimizer] = DEFAULT_LOCAL_OPTIMIZER_CLASS, skip_optimization: SkipOptimizationPredicate = None, num_initial_candidates: int = DEFAULT_NUM_INITIAL_CANDIDATES, num_initial_random_choices: int = DEFAULT_NUM_INITIAL_RANDOM_EVALUATIONS, initial_scoring: Optional[str] = None, profiler: Optional[GPMXNetSimpleProfiler] = None, first_is_default: bool = True, debug_log: Optional[DebugLogPrinter] = None): """ Note that the SurrogateModel is created on demand (by the state transformer) in get_config, along with components needed for the BO algorithm. The searcher is supposed to maximize reward, while internally, the criterion is minimized. map_reward maps reward to internal criterion, it must be strictly decreasing. :param hp_ranges: Configuration space without resource attribute :param random_seed: :param gpmodel: GP regression model :param model_args: Arguments for GPMXNet model creation :param map_reward: Function mapping reward to criterion to be minimized :param acquisition_class: Type for acquisition function :param init_state: TuningJobState to start from (default is empty) :param local_minimizer_class: Type for local minimizer :param skip_optimization: Predicate, see GPMXNetPendingCandidateStateTransformer :param num_initial_candidates: See BayesianOptimizationAlgorithm :param num_initial_random_choices: Configs are sampled at random until this many candidates received label feedback :param initial_scoring: Scoring function to rank initial candidates. Default: thompson_indep (independent Thompson sampling) :param profiler: If given, HPO computations are profiled :param first_is_default: If true, the first config to be evaluated is the default of the search space. Otherwise, the first is sampled at random :param debug_log: DebugLogPrinter for debug logging (optional) """ self.hp_ranges = hp_ranges self.random_seed = random_seed self.num_initial_candidates = num_initial_candidates self.num_initial_random_choices = num_initial_random_choices self.map_reward = map_reward self.local_minimizer_class = local_minimizer_class self.acquisition_class = acquisition_class self.debug_log = debug_log self.initial_scoring = check_initial_candidates_scorer(initial_scoring) # Create state transformer # Initial state is empty (note that the state is mutable) if init_state is None: init_state = TuningJobState( hp_ranges=hp_ranges, candidate_evaluations=[], failed_candidates=[], pending_evaluations=[]) else: assert hp_ranges is init_state.hp_ranges, \ "hp_ranges and init_state.hp_ranges must be same object" self.state_transformer = GPModelPendingCandidateStateTransformer( gpmodel=gpmodel, init_state=init_state, model_args=model_args, skip_optimization=skip_optimization, profiler=profiler, debug_log=debug_log) self.random_state = np.random.RandomState(random_seed) self.random_generator = RandomStatefulCandidateGenerator( hp_ranges, random_state=self.random_state) self.profiler = profiler self.do_profile = (profiler is not None) self.first_is_default = first_is_default if first_is_default: assert isinstance(hp_ranges, HyperparameterRanges_CS), \ "If first_is_default, must have hp_ranges of HyperparameterRanges_CS type" if debug_log is not None: assert isinstance(hp_ranges, HyperparameterRanges_CS), \ "If debug_log is given, must have hp_ranges of HyperparameterRanges_CS type" # Sums up profiling records across all get_config calls self._profile_record = dict() if debug_log is not None: deb_msg = "[GPFIFOSearcher.__init__]\n" deb_msg += ("- acquisition_class = {}\n".format(acquisition_class)) deb_msg += ("- local_minimizer_class = {}\n".format(local_minimizer_class)) deb_msg += ("- num_initial_candidates = {}\n".format(num_initial_candidates)) deb_msg += ("- num_initial_random_choices = {}\n".format(num_initial_random_choices)) deb_msg += ("- initial_scoring = {}\n".format(self.initial_scoring)) deb_msg += ("- first_is_default = {}".format(first_is_default)) logger.info(deb_msg) def update(self, config: Candidate, reward: float): """ Registers new datapoint at config, with reward reward. Note that in general, config should previously have been registered as pending (register_pending). If so, it is switched from pending to labeled. If not, it is considered directly labeled. :param config: :param reward: """ crit_val = self.map_reward(reward) self.state_transformer.label_candidate(CandidateEvaluation( candidate=copy.deepcopy(config), metrics=dictionarize_objective(crit_val))) if self.debug_log is not None: config_id = self.debug_log.config_id(config) msg = "Update for config_id {}: reward = {}, crit_val = {}".format( config_id, reward, crit_val) logger.info(msg) def register_pending(self, config: Candidate): """ Registers config as pending. This means the corresponding evaluation task is running. Once it finishes, update is called for config. """ # It is OK for the candidate already to be registered as pending, in # which case we do nothing state = self.state_transformer.state if config not in state.pending_candidates: if config in (x.candidate for x in state.candidate_evaluations): evals = state.candidate_evaluations num_labeled = len(evals) pos_cand = next( i for i, x in enumerate(evals) if x.candidate == config) error_msg = """ This configuration is already registered as labeled: Position of labeled candidate: {} of {} Label value: {} """.format( pos_cand, num_labeled, evals[pos_cand].metrics[DEFAULT_METRIC]) assert False, error_msg self.state_transformer.append_candidate(config) def get_config(self) -> Candidate: """ Runs Bayesian optimization in order to suggest the next config to evaluate. :return: Next config to evaluate at """ state = self.state_transformer.state if self.do_profile: fit_hyperparams = not self.state_transformer.skip_optimization( state) self.profiler.set_state(state, fit_hyperparams) blacklisted_candidates = compute_blacklisted_candidates(state) pick_random = (len(blacklisted_candidates) < self.num_initial_random_choices) or \ (not state.candidate_evaluations) if self.debug_log is not None: self.debug_log.start_get_config('random' if pick_random else 'BO') if pick_random: config = None if self.first_is_default and (not blacklisted_candidates): # Use default configuration if there is one specified default_config = self.hp_ranges.config_space.get_default_configuration() if default_config and len(default_config.get_dictionary()) > 0: config = default_config if self.debug_log is not None: logger.info("Start with default config:\n{}".format( candidate_for_print(config))) if config is None: if self.do_profile: self.profiler.start('random') for _ in range(GET_CONFIG_RANDOM_RETRIES): _config = self.hp_ranges.random_candidate(self.random_state) if _config not in blacklisted_candidates: config = _config break if config is None: raise AssertionError( "Failed to sample a configuration not already chosen " "before. Maybe there are no free configurations left? " "The blacklist size is {}".format(len(blacklisted_candidates))) if self.do_profile: self.profiler.stop('random') else: # Obtain current SurrogateModel from state transformer. Based on # this, the BO algorithm components can be constructed state = self.state_transformer.state if self.do_profile: self.profiler.start('total_all') self.profiler.start('total_update') # Note: Asking for the model triggers the posterior computation model = self.state_transformer.model() if self.do_profile: self.profiler.stop('total_update') # Create BO algorithm initial_candidates_scorer = create_initial_candidates_scorer( self.initial_scoring, model, self.acquisition_class, self.random_state) local_optimizer = self.local_minimizer_class( state, model, self.acquisition_class) # Make sure not to use the same random seed for each call: #random_seed = compute_random_seed({'0': state}, self.random_seed) bo_algorithm = BayesianOptimizationAlgorithm( initial_candidates_generator=self.random_generator, initial_candidates_scorer=initial_candidates_scorer, num_initial_candidates=self.num_initial_candidates, local_optimizer=local_optimizer, pending_candidate_state_transformer=None, blacklisted_candidates=blacklisted_candidates, num_requested_candidates=1, greedy_batch_selection=False, duplicate_detector=DuplicateDetectorIdentical(), profiler=self.profiler, sample_unique_candidates=False, debug_log=self.debug_log) # Next candidate decision if self.do_profile: self.profiler.start('total_nextcand') _config = bo_algorithm.next_candidates() if len(_config) == 0: raise AssertionError( "Failed to find a configuration not already chosen " "before. Maybe there are no free configurations left? " "The blacklist size is {}".format(len(blacklisted_candidates))) config = _config[0] if self.do_profile: self.profiler.stop('total_nextcand') if self.do_profile: self.profiler.stop('total_all') if self.debug_log is not None: self.debug_log.set_final_config(config) # All get_config debug log info is only written here self.debug_log.write_block() if self.do_profile: self.profiler.clear() # Pull out profiling data from this block, add to _profile_record accumulate_profiling_record( self._profile_record, self.profiler, pick_random) return config def evaluation_failed(self, config: Candidate): # Remove pending candidate self.state_transformer.drop_candidate(config) # Mark config as failed (which means it will be blacklisted in # future get_config calls) self.state_transformer.mark_candidate_failed(config) def dataset_size(self): return len(self.state_transformer.state.candidate_evaluations) def cumulative_profile_record(self): """ If profiling is activated, we sum up the profiling blocks for each call of get_config and return it as dict. See get_config for what is recorded: - num_random: Number of get_config calls with random selection - num_model: Number of get_config calls with model-based selection - total_all: Sum of total times for all get_config calls """ return self._profile_record def get_params(self): """ Note: Once MCMC is supported, this method will have to be refactored. :return: Dictionary with current hyperparameter values """ return self.state_transformer.get_params() def set_params(self, param_dict): self.state_transformer.set_params(param_dict) def get_state(self): """ The mutable state consists of the GP model parameters, the TuningJobState, and the skip_optimization predicate (which can have a mutable state). We assume that skip_optimization can be pickled. """ state = { 'model_params': self.get_params(), 'state': encode_state(self.state_transformer.state), 'skip_optimization': self.state_transformer.skip_optimization, 'random_state': self.random_state} if self.debug_log is not None: state['debug_log'] = self.debug_log.get_mutable_state() return state def clone_from_state(self, state): # Create clone with mutable state taken from 'state' model_args = self.state_transformer._model_args init_state = decode_state(state['state'], self.hp_ranges) skip_optimization = state['skip_optimization'] new_searcher = GPFIFOSearcher( hp_ranges=self.hp_ranges, random_seed=self.random_seed, gpmodel=self.state_transformer._gpmodel, model_args=model_args, map_reward=self.map_reward, acquisition_class=self.acquisition_class, init_state=init_state, local_minimizer_class=self.local_minimizer_class, skip_optimization=skip_optimization, num_initial_candidates=self.num_initial_candidates, num_initial_random_choices=self.num_initial_random_choices, initial_scoring=self.initial_scoring, profiler=self.profiler, first_is_default=self.first_is_default, debug_log=self.debug_log) new_searcher.state_transformer.set_params(state['model_params']) new_searcher.random_state = state['random_state'] new_searcher.random_generator.random_state = \ state['random_state'] if self.debug_log and 'debug_log' in state: new_searcher.debug_log.set_mutable_state(state['debug_log']) # Invalidate self (must not be used afterwards) self.state_transformer = None return new_searcher def encode_state(state: TuningJobState) -> dict: assert isinstance(state.hp_ranges, HyperparameterRanges_CS), \ "Must have hp_ranges of HyperparameterRanges_CS type" candidate_evaluations = [ {'candidate': eval.candidate.get_dictionary(), 'metrics': eval.metrics} for eval in state.candidate_evaluations] failed_candidates = [x.get_dictionary() for x in state.failed_candidates] pending_evaluations = [ eval.candidate.get_dictionary() for eval in state.pending_evaluations] return { 'candidate_evaluations': candidate_evaluations, 'failed_candidates': failed_candidates, 'pending_evaluations': pending_evaluations} def decode_state(enc_state: dict, hp_ranges: HyperparameterRanges_CS) \ -> TuningJobState: assert isinstance(hp_ranges, HyperparameterRanges_CS), \ "Must have hp_ranges of HyperparameterRanges_CS type" config_space = hp_ranges.config_space def to_cs(x): return CS.Configuration(config_space, values=x) candidate_evaluations = [ CandidateEvaluation(to_cs(x['candidate']), x['metrics']) for x in enc_state['candidate_evaluations']] failed_candidates = [to_cs(x) for x in enc_state['failed_candidates']] pending_evaluations = [ PendingEvaluation(to_cs(x)) for x in enc_state['pending_evaluations']] return TuningJobState( hp_ranges=hp_ranges, candidate_evaluations=candidate_evaluations, failed_candidates=failed_candidates, pending_evaluations=pending_evaluations) def map_reward(const=1.0) -> MapReward: """ Factory for map_reward argument in GPMultiFidelitySearcher. """ def const_minus_x(x): return const - x return MapReward(forward=const_minus_x, reverse=const_minus_x)
py
7df85953a2c844ecaeb741d9732cbe75540729f9
# -*- coding: utf-8 -*- import os from conans import tools, ConanFile, CMake from conans import __version__ as conan_version from conans.model.version import Version from conans.errors import ConanInvalidConfiguration, NotFoundException, ConanException available_versions = ["3.16.3", "3.16.2", "3.16.1", "3.16.0", "3.15.5", "3.15.4", "3.15.3", "3.15.2", "3.15.1", "3.15.0", "3.14.7", "3.14.6", "3.14.5", "3.14.4", "3.14.3", "3.14.2", "3.14.1", "3.14.0", "3.13.4", "3.13.3", "3.13.2", "3.13.1", "3.13.0", "3.12.4", "3.12.3", "3.12.2", "3.12.1", "3.12.0", "3.11.4", "3.11.3", "3.11.2", "3.11.1", "3.11.0", "3.10.3", "3.10.2", "3.10.1", "3.10.0", "3.9.6", "3.9.5", "3.9.4", "3.9.3", "3.9.2", "3.9.1", "3.9.0", "3.8.2", "3.8.1", "3.8.0", "3.7.2", "3.7.1", "3.7.0", "3.6.3", "3.6.2", "3.6.1", "3.6.0", "3.5.2", "3.5.1", "3.5.0", "3.4.3", "3.4.2", "3.4.1", "3.4.0", "3.3.2", "3.3.1", "3.3.0", "3.2.3", "3.2.2", "3.2.1", "3.2.0", "3.1.3", "3.1.2", "3.1.1", "3.1.0", "3.0.2", "3.0.1", "3.0.0", "2.8.12"] class CMakeInstallerConan(ConanFile): name = "cmake_installer" description = "creates cmake binaries package" license = "BSD-3-clause" url = "https://github.com/conan-community/conan-cmake-installer" author = "Conan Community" homepage = "https://github.com/Kitware/CMake" topics = ("conan", "cmake", "build", "installer") settings = "os_build", "arch_build", "compiler", "arch" options = {"version": available_versions} default_options = {"version": [v for v in available_versions if "-" not in v][0]} exports = "LICENSE" @property def _source_subfolder(self): return "source_subfolder" @property def _arch(self): return self.settings.get_safe("arch_build") or self.settings.get_safe("arch") @property def _os(self): return self.settings.get_safe("os_build") or self.settings.get_safe("os") @property def _cmake_version(self): if "version" in self.options: return str(self.options.version) else: return self.version def _minor_version(self): return ".".join(str(self._cmake_version).split(".")[:2]) def _get_filename(self): os_id = {"Macos": "Darwin", "Windows": "win32"}.get(str(self._os), str(self._os)) arch_id = {"x86": "i386"}.get(self._arch, self._arch) if self._os != "Windows" else "x86" if self._os == "Linux" and self._cmake_version in ("2.8.12", "3.0.2") and \ self._arch == "x86_64": arch_id = "i386" if self._os == "Macos" and self._cmake_version == "2.8.12": arch_id = "universal" return "cmake-%s-%s-%s" % (self._cmake_version, os_id, arch_id) def _get_filename_src(self): return "cmake-%s" % self._cmake_version def _build_from_source(self): return os.path.exists(os.path.join(self.build_folder, self._source_subfolder, "configure")) def config_options(self): if self.version >= Version("2.8"): # Means CMake version del self.options.version def configure(self): if self._os == "Macos" and self._arch == "x86": raise ConanInvalidConfiguration("Not supported x86 for OSx") def _download_source(self): minor = self._minor_version() ext = "tar.gz" if not self._os == "Windows" else "zip" dest_file = "file.tgz" if self._os != "Windows" else "file.zip" unzip_folder = self._get_filename() def download_cmake(url, dest_file, unzip_folder): self.output.info("Downloading: %s" % url) tools.get(url, filename=dest_file, verify=False) os.rename(unzip_folder, self._source_subfolder) try: url = "https://cmake.org/files/v%s/%s.%s" % (minor, self._get_filename(), ext) download_cmake(url, dest_file, unzip_folder) except NotFoundException: if self.settings.get_safe("os_build") == "Windows": raise ConanInvalidConfiguration("Building from sources under Windows is not supported") url = "https://cmake.org/files/v%s/%s.%s" % (minor, self._get_filename_src(), ext) unzip_folder = self._get_filename_src() download_cmake(url, dest_file, unzip_folder) def _configure_cmake(self): cmake = CMake(self) cmake.definitions["CMAKE_BOOTSTRAP"] = False cmake.configure(source_dir=self._source_subfolder) return cmake def build(self): self._download_source() if self._build_from_source(): self.settings.arch = self.settings.arch_build # workaround for cross-building to get the correct arch during the build cmake = self._configure_cmake() cmake.build() def package_id(self): self.info.include_build_settings() if self.settings.os_build == "Windows": del self.info.settings.arch_build # same build is used for x86 and x86_64 del self.info.settings.arch del self.info.settings.compiler def package(self): if self._build_from_source(): self.copy("Copyright.txt", dst="licenses", src=self._source_subfolder) cmake = self._configure_cmake() cmake.install() else: if self._os == "Macos": appname = "CMake.app" if self._cmake_version != "2.8.12" else "CMake 2.8-12.app" self.copy("*", dst="", src=os.path.join(self._source_subfolder, appname, "Contents")) else: self.copy("*", dst="", src=self._source_subfolder) self.copy("Copyright.txt", dst="licenses", src=os.path.join(self._source_subfolder, "doc", "cmake")) def package_info(self): if self.package_folder is not None: minor = self._minor_version() self.env_info.PATH.append(os.path.join(self.package_folder, "bin")) self.env_info.CMAKE_ROOT = self.package_folder mod_path = os.path.join(self.package_folder, "share", "cmake-%s" % minor, "Modules") self.env_info.CMAKE_MODULE_PATH = mod_path if not os.path.exists(mod_path): raise ConanException("Module path not found: %s" % mod_path) else: self.output.warn("No package folder have been created.")
py
7df859b7c48ef48c5fdd2e5e214142c5b2592f3f
def add_collation(conn): conn.create_collation('BILL_FIRST', BILL_FIRST) def BILL_FIRST(left, right): if 'bill' in left and 'bill' in right: if left == right == min(left, right): return 0 elif left == min(left, right): return -1 else: return 1 if 'bill' in left and 'bill' not in right: return -1 if 'bill' not in left and 'bill' in right: return 1 if 'bill' not in left and 'bill' not in right: if left == right == min(left, right): return 0 elif left == min(left, right): return -1 else: return 1
py
7df859d7a2a124ba27637fc872a3071b3cfec1c0
# coding: utf-8 """ Purity//FB REST Client Client for Purity//FB REST API (1.0 - 1.2), developed by [Pure Storage, Inc](http://www.purestorage.com/). Documentations can be found at [purity-fb.readthedocs.io](http://purity-fb.readthedocs.io/). OpenAPI spec version: 1.2 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class SmbRule(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'enabled': 'bool', 'acl_mode': 'str' } attribute_map = { 'enabled': 'enabled', 'acl_mode': 'acl-mode' } def __init__(self, enabled=None, acl_mode=None): """ SmbRule - a model defined in Swagger """ self._enabled = None self._acl_mode = None if enabled is not None: self.enabled = enabled if acl_mode is not None: self.acl_mode = acl_mode @property def enabled(self): """ Gets the enabled of this SmbRule. is the protocol enabled? Default false when creating a new rule :return: The enabled of this SmbRule. :rtype: bool """ return self._enabled @enabled.setter def enabled(self, enabled): """ Sets the enabled of this SmbRule. is the protocol enabled? Default false when creating a new rule :param enabled: The enabled of this SmbRule. :type: bool """ self._enabled = enabled @property def acl_mode(self): """ Gets the acl_mode of this SmbRule. SMB ACL mode. Default shared when creating a new file system. Possible values are shared and native. :return: The acl_mode of this SmbRule. :rtype: str """ return self._acl_mode @acl_mode.setter def acl_mode(self, acl_mode): """ Sets the acl_mode of this SmbRule. SMB ACL mode. Default shared when creating a new file system. Possible values are shared and native. :param acl_mode: The acl_mode of this SmbRule. :type: str """ self._acl_mode = acl_mode def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, SmbRule): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
py
7df85a80709105842c7ace471bd0ef753376ca20
import os, sys, argparse, subprocess, signal # Project defaults FLASK_APP = 'server/__init__.py' DEFAULT_IP = '0.0.0.0:3334' SPOTIPY_CLIENT_ID = "07babcfeaea747f0967bb1d5145fc21f" SPOTIPY_CLIENT_SECRET = "45e1dbda55da450b808e50aaf728365b" SPOTIPY_REDIRECT_URI = "https://spotify-stats.mybluemix.net/" class Command: def __init__(self, name, descr, runcmd, env={}): self.name = name self.descr = descr self.runcmd = runcmd self.env = env self.env["SPOTIPY_CLIENT_ID"] = "07babcfeaea747f0967bb1d5145fc21f" self.env["SPOTIPY_CLIENT_SECRET"] = "45e1dbda55da450b808e50aaf728365b" self.env["SPOTIPY_REDIRECT_URI"] = "https://spotify-stats.mybluemix.net/" def run(self, conf): cmd = self.runcmd(conf) env = os.environ env.update(conf) env.update(self.env) subprocess.call(cmd, env=env, shell=True) env["SPOTIPY_CLIENT_ID"] = "07babcfeaea747f0967bb1d5145fc21f" env["SPOTIPY_CLIENT_SECRET"] = "45e1dbda55da450b808e50aaf728365b" env["SPOTIPY_REDIRECT_URI"] = "https://spotify-stats.mybluemix.net/" class CommandManager: def __init__(self): self.commands = {} def add(self, command): self.commands[command.name] = command def configure(self, conf): self.conf = conf def run(self, command): if command in self.commands: self.commands[command].run(self.conf) else: print("invalid command specified\n") print(self.availableCommands()) def availableCommands(self): commands = sorted(self.commands.values(), key=lambda c: c.name) space = max([len(c.name) for c in commands]) + 2 description = 'available subcommands:\n' for c in commands: description += ' ' + c.name + ' ' * (space - len(c.name)) + c.descr + '\n' return description cm = CommandManager() cm.add(Command( "build", "compiles python files in project into .pyc binaries", lambda c: 'python -m compileall .')) cm.add(Command( "start", "runs server with gunicorn in a production setting", lambda c: 'gunicorn -b {0}:{1} server:app'.format(c['host'], c['port']), { 'FLASK_APP': FLASK_APP, 'FLASK_DEBUG': 'false' })) cm.add(Command( "run", "runs dev server using Flask's native debugger & backend reloader", lambda c: 'python -m flask run --host={0} --port={1} --debugger --reload'.format(c['host'], c['port']), { 'FLASK_APP': FLASK_APP, 'FLASK_DEBUG': 'true' })) cm.add(Command( "livereload", "runs dev server using livereload for dynamic webpage reloading", lambda c: 'python -m flask run', { 'FLASK_APP': FLASK_APP, 'FLASK_LIVE_RELOAD': 'true', })) cm.add(Command( "debug", "runs dev server in debug mode; use with an IDE's remote debugger", lambda c: 'python -m flask run --host={0} --port={1} --no-debugger --no-reload'.format(c['host'], c['port']), { 'FLASK_APP': FLASK_APP, 'FLASK_DEBUG': 'true' })) cm.add(Command( "test", "runs all tests inside of `tests` directory", lambda c: 'python -m unittest discover -s tests -p "*.py"')) # Create and format argument parser for CLI parser = argparse.ArgumentParser(description=cm.availableCommands(), formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument("subcommand", help="subcommand to run (see list above)") parser.add_argument("ipaddress", nargs='?', default=DEFAULT_IP, help="address and port to run on (i.e. {0})".format(DEFAULT_IP)) def livereload_check(): check = subprocess.call("lsof -n -i4TCP:3334", shell=True) if (check == 0): output = subprocess.check_output("pgrep Python", shell=True) pypid = int(output) os.kill(pypid, signal.SIGKILL) print("Discovered rogue Python process: {0}".format(pypid)) print("Killing PID {0}...".format(pypid)) else: print(" No rogue Python process running") # Take in command line input for configuration try: args = parser.parse_args() cmd = args.subcommand addr = args.ipaddress.split(':') cm.configure({ 'host': addr[0], 'port': addr[1], }) cm.run(cmd) except KeyboardInterrupt: if 'FLASK_LIVE_RELOAD' in os.environ and os.environ['FLASK_LIVE_RELOAD'] == 'true': livereload_check() except: if len(sys.argv) == 1: print(cm.availableCommands()) sys.exit(0)
py
7df85b35797bac4fea86691d9061bb8e8ece2dc0
#!/usr/bin/env python3.6 import datetime import discord from discord.ext import commands class Misc: """ Miscellaneous commands """ def __init__(self, bot): self.bot = bot print("{} addon loaded.".format(self.__class__.__name__)) @commands.command(pass_context=True) async def ping(self, ctx): """Pong!""" # https://github.com/appu1232/Discord-Selfbot/blob/master/cogs/misc.py#L595 msgtime = ctx.message.created_at.now() await (await self.bot.ws.ping()) now = datetime.datetime.now() ping = now - msgtime return await ctx.send(":ping_pong:! Response Time: {} ms".format(str(ping.microseconds / 1000.0))) @commands.command(pass_context=True, aliases=['mc']) async def membercount(self, ctx): """Prints current member count""" return await ctx.send(str(self.bot.guild.name)+" currently has " + str(len(self.bot.guild.members)) + " members!") @commands.command() async def about(self, ctx): """About Link.""" return await ctx.send("View my source code here: https://github.com/T3CHNOLOG1C/Link") def setup(bot): bot.add_cog(Misc(bot))
py
7df85b7c47945fed88e3fa6ff228e7e6b3da871b
# Copyright (c) 2018, 2019, Oracle and/or its affiliates. # Copyright (c) 2013, Regents of the University of California # # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are # permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of # conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # conditions and the following disclaimer in the documentation and/or other materials provided # with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # OF THE POSSIBILITY OF SUCH DAMAGE. def test_add_long_overflow(): # max long value is written as long primitive val = 0x7fffffffffffffff assert val + 128 == 0x800000000000007f def test_mul_long_overflow(): # max long value is written as long primitive val = 0x7fffffffffffffff assert val * 2 == 0xfffffffffffffffe def test_add_bool(): assert True.__add__(True) == 2, "True.__add__(True)" assert True.__add__(False) == 1, "True.__add__(False)" assert False.__add__(True) == 1, "False.__add__(True)" assert False.__add__(False) == 0, "False.__add__(False)" assert False.__add__(0) == 0, "False.__add__(0)" assert True.__add__(0) == 1, "True.__add__(0)" assert False.__add__(1) == 1, "False.__add__(1)" assert True.__add__(1) == 2, "True.__add__(1)" assert False.__add__(0x7fffffff) == 0x7fffffff, "False.__add__(0x7fffffff)" assert True.__add__(0x7fffffff) == 0x80000000, "True.__add__(0x7fffffff)" assert False.__add__(0x7fffffffffffffff) == 0x7fffffffffffffff, "False.__add__(0x7fffffffffffffff)" assert True.__add__(0x7fffffffffffffff) == 0x8000000000000000, "True.__add__(0x7fffffffffffffff)" assert True.__add__(0.0) == NotImplemented, "True.__add__(0.0)" def test_mul_bool(): assert False.__mul__(False) == 0, "False.__mul__(False)" assert False.__mul__(True) == 0, "False.__mul__(True)" assert False.__mul__(1) == 0, "False.__mul__(1)" assert False.__mul__(0) == 0, "False.__mul__(0)" assert True.__mul__(0) == 0, "True.__mul__(0)" assert True.__mul__(1) == 1, "True.__mul__(1)" assert True.__mul__(0x7fffffff) == 0x7fffffff, "True.__mul__(0x7fffffff)" assert True.__mul__(0x7fffffffffffffff) == 0x7fffffffffffffff, "True.__mul__(0x7fffffffffffffff)" assert True.__mul__(0.0) == NotImplemented, "True.__mul__(0.0)" assert True * 1.0 == 1.0, "True * 1.0" assert False * 1.0 == 0.0, "False * 0.0" def expectError(callable): try: callable() return False except TypeError as e: return True def test_bin_comparison(): class A: pass class B: def __gt__(self, other): return True def __ge__(self, other): return True def __lt__(self, other): return True def __le__(self, other): return True a = A() b = B() assert a > b, "Comparison 'a > b' failed" assert a >= b, "Comparison 'a >= b' failed" assert a < b, "Comparison 'a < b' failed" assert a <= b, "Comparison 'a <= b' failed" assert b > a, "Comparison 'b > a' failed" assert b >= a, "Comparison 'b >= a' failed" assert b < a, "Comparison 'b < a' failed" assert b <= a, "Comparison 'b <= a' failed" def test_bin_comparison_wo_eq_ne(): class A(): def __eq__(self, o): return NotImplemented assert A() != A() a = A() assert a == a try: assert a <= a except TypeError: pass else: assert False def test_floor_div(): assert True // True == True assert True // 2 == 0 assert True // 2.0 == 0.0 assert 0 // True == 0 assert 3 // 2 == 1 assert 15 // 5 == 3 assert 0 // 1 == 0 assert 15.5 // True == 15.0 assert 15.5 // 5 == 3.0 assert 16.5 // 5.5 == 3.0 assert 16.5 // 3.2 == 5.0 assert_exception(lambda: True // False, ZeroDivisionError) assert_exception(lambda: True // 0, ZeroDivisionError) assert_exception(lambda: True // 0.0, ZeroDivisionError) assert_exception(lambda: 3 // False, ZeroDivisionError) assert_exception(lambda: 3 // 0, ZeroDivisionError) assert_exception(lambda: 3 // 0.0, ZeroDivisionError) assert_exception(lambda: 3.0 // False, ZeroDivisionError) assert_exception(lambda: 5.4 // 0, ZeroDivisionError) assert_exception(lambda: 5.4 // 0.0, ZeroDivisionError) def test_divmod(): class Floatable: def __init__(self, val): self.val = val def __float__(self): return self.val def doDivmod(a, b): return divmod(a, b) argList = [(Floatable(3), Floatable(4)), (complex(1,2), complex(3,4))] for args in argList: assert_exception(lambda: doDivmod(*args), TypeError) def test_subclass_ordered_binop(): class A(int): def __add__(self, other): return 0xa class B(A): def __add__(self, other): return 0xb class C(B): __radd__ = B.__add__ assert A(1) + A(1) == 0xa assert 1 + A(10) == 11 assert A(10) + 1 == 0xa # TODO: we're doing this wrong right now # assert A(1) + B(1) == 0xa assert B(1) + A(2) == 0xb assert A(1) + C(3) == 0xb assert C(3) + A(1) == 0xb def assert_exception(op, ex_type): try: op() assert False, "expected exception %s" % ex_type except BaseException as e: if type(e) == AssertionError: raise e else: assert type(e) == ex_type, "expected exception %s but got %s" % (ex_type, type(e))
py
7df85bc5c662ed053401f7ccc9ef9fdba453291e
## ! DO NOT MANUALLY INVOKE THIS setup.py, USE CATKIN INSTEAD from distutils.core import setup from catkin_pkg.python_setup import generate_distutils_setup # fetch values from package.xml setup_args = generate_distutils_setup( packages=['augmented_vr_module'], package_dir={'': 'src'}) setup(**setup_args)
py
7df85e4ba7abd9b9de1198a89c1751161040b082
import re import os import glob from maya import cmds import pyblish.api from pype.hosts.maya import lib SHAPE_ATTRS = ["castsShadows", "receiveShadows", "motionBlur", "primaryVisibility", "smoothShading", "visibleInReflections", "visibleInRefractions", "doubleSided", "opposite"] SHAPE_ATTRS = set(SHAPE_ATTRS) def get_look_attrs(node): """Returns attributes of a node that are important for the look. These are the "changed" attributes (those that have edits applied in the current scene). Returns: list: Attribute names to extract """ # When referenced get only attributes that are "changed since file open" # which includes any reference edits, otherwise take *all* user defined # attributes is_referenced = cmds.referenceQuery(node, isNodeReferenced=True) result = cmds.listAttr(node, userDefined=True, changedSinceFileOpen=is_referenced) or [] # `cbId` is added when a scene is saved, ignore by default if "cbId" in result: result.remove("cbId") # For shapes allow render stat changes if cmds.objectType(node, isAType="shape"): attrs = cmds.listAttr(node, changedSinceFileOpen=True) or [] for attr in attrs: if attr in SHAPE_ATTRS: result.append(attr) elif attr.startswith('ai'): result.append(attr) return result def node_uses_image_sequence(node): """Return whether file node uses an image sequence or single image. Determine if a node uses an image sequence or just a single image, not always obvious from its file path alone. Args: node (str): Name of the Maya node Returns: bool: True if node uses an image sequence """ # useFrameExtension indicates an explicit image sequence node_path = get_file_node_path(node).lower() # The following tokens imply a sequence patterns = ["<udim>", "<tile>", "<uvtile>", "u<u>_v<v>", "<frame0"] return (cmds.getAttr('%s.useFrameExtension' % node) or any(pattern in node_path for pattern in patterns)) def seq_to_glob(path): """Takes an image sequence path and returns it in glob format, with the frame number replaced by a '*'. Image sequences may be numerical sequences, e.g. /path/to/file.1001.exr will return as /path/to/file.*.exr. Image sequences may also use tokens to denote sequences, e.g. /path/to/texture.<UDIM>.tif will return as /path/to/texture.*.tif. Args: path (str): the image sequence path Returns: str: Return glob string that matches the filename pattern. """ if path is None: return path # If any of the patterns, convert the pattern patterns = { "<udim>": "<udim>", "<tile>": "<tile>", "<uvtile>": "<uvtile>", "#": "#", "u<u>_v<v>": "<u>|<v>", "<frame0": "<frame0\d+>", "<f>": "<f>" } lower = path.lower() has_pattern = False for pattern, regex_pattern in patterns.items(): if pattern in lower: path = re.sub(regex_pattern, "*", path, flags=re.IGNORECASE) has_pattern = True if has_pattern: return path base = os.path.basename(path) matches = list(re.finditer(r'\d+', base)) if matches: match = matches[-1] new_base = '{0}*{1}'.format(base[:match.start()], base[match.end():]) head = os.path.dirname(path) return os.path.join(head, new_base) else: return path def get_file_node_path(node): """Get the file path used by a Maya file node. Args: node (str): Name of the Maya file node Returns: str: the file path in use """ # if the path appears to be sequence, use computedFileTextureNamePattern, # this preserves the <> tag if cmds.attributeQuery('computedFileTextureNamePattern', node=node, exists=True): plug = '{0}.computedFileTextureNamePattern'.format(node) texture_pattern = cmds.getAttr(plug) patterns = ["<udim>", "<tile>", "u<u>_v<v>", "<f>", "<frame0", "<uvtile>"] lower = texture_pattern.lower() if any(pattern in lower for pattern in patterns): return texture_pattern if cmds.nodeType(node) == 'aiImage': return cmds.getAttr('{0}.filename'.format(node)) # otherwise use fileTextureName return cmds.getAttr('{0}.fileTextureName'.format(node)) def get_file_node_files(node): """Return the file paths related to the file node Note: Will only return existing files. Returns an empty list if not valid existing files are linked. Returns: list: List of full file paths. """ path = get_file_node_path(node) path = cmds.workspace(expandName=path) if node_uses_image_sequence(node): glob_pattern = seq_to_glob(path) return glob.glob(glob_pattern) elif os.path.exists(path): return [path] else: return [] class CollectLook(pyblish.api.InstancePlugin): """Collect look data for instance. For the shapes/transforms of the referenced object to collect look for retrieve the user-defined attributes (like V-ray attributes) and their values as they were created in the current scene. For the members of the instance collect the sets (shadingEngines and other sets, e.g. VRayDisplacement) they are in along with the exact membership relations. Collects: lookAttribtutes (list): Nodes in instance with their altered attributes lookSetRelations (list): Sets and their memberships lookSets (list): List of set names included in the look """ order = pyblish.api.CollectorOrder + 0.2 families = ["look"] label = "Collect Look" hosts = ["maya"] maketx = True def process(self, instance): """Collect the Look in the instance with the correct layer settings""" with lib.renderlayer(instance.data["renderlayer"]): self.collect(instance) def collect(self, instance): self.log.info("Looking for look associations " "for %s" % instance.data['name']) # Discover related object sets self.log.info("Gathering sets..") sets = self.collect_sets(instance) # Lookup set (optimization) instance_lookup = set(cmds.ls(instance, long=True)) self.log.info("Gathering set relations..") # Ensure iteration happen in a list so we can remove keys from the # dict within the loop for objset in list(sets): self.log.debug("From %s.." % objset) # Get all nodes of the current objectSet (shadingEngine) for member in cmds.ls(cmds.sets(objset, query=True), long=True): member_data = self.collect_member_data(member, instance_lookup) if not member_data: continue # Add information of the node to the members list sets[objset]["members"].append(member_data) # Remove sets that didn't have any members assigned in the end # Thus the data will be limited to only what we need. self.log.info("objset {}".format(sets[objset])) if not sets[objset]["members"] or (not objset.endswith("SG")): self.log.info("Removing redundant set information: " "%s" % objset) sets.pop(objset, None) self.log.info("Gathering attribute changes to instance members..") attributes = self.collect_attributes_changed(instance) # Store data on the instance instance.data["lookData"] = {"attributes": attributes, "relationships": sets} # Collect file nodes used by shading engines (if we have any) files = list() looksets = sets.keys() shaderAttrs = [ "surfaceShader", "volumeShader", "displacementShader", "aiSurfaceShader", "aiVolumeShader"] materials = list() if looksets: for look in looksets: for at in shaderAttrs: try: con = cmds.listConnections("{}.{}".format(look, at)) except ValueError: # skip attributes that are invalid in current # context. For example in the case where # Arnold is not enabled. continue if con: materials.extend(con) self.log.info("Found materials:\n{}".format(materials)) self.log.info("Found the following sets:\n{}".format(looksets)) # Get the entire node chain of the look sets # history = cmds.listHistory(looksets) history = list() for material in materials: history.extend(cmds.listHistory(material)) files = cmds.ls(history, type="file", long=True) files.extend(cmds.ls(history, type="aiImage", long=True)) self.log.info("Collected file nodes:\n{}".format(files)) # Collect textures if any file nodes are found instance.data["resources"] = [] for n in files: instance.data["resources"].append(self.collect_resource(n)) self.log.info("Collected resources: {}".format(instance.data["resources"])) # Log a warning when no relevant sets were retrieved for the look. if not instance.data["lookData"]["relationships"]: self.log.warning("No sets found for the nodes in the instance: " "%s" % instance[:]) # Ensure unique shader sets # Add shader sets to the instance for unify ID validation instance.extend(shader for shader in looksets if shader not in instance_lookup) self.log.info("Collected look for %s" % instance) def collect_sets(self, instance): """Collect all objectSets which are of importance for publishing It checks if all nodes in the instance are related to any objectSet which need to be Args: instance (list): all nodes to be published Returns: dict """ sets = dict() for node in instance: related_sets = lib.get_related_sets(node) if not related_sets: continue for objset in related_sets: if objset in sets: continue sets[objset] = {"uuid": lib.get_id(objset), "members": list()} return sets def collect_member_data(self, member, instance_members): """Get all information of the node Args: member (str): the name of the node to check instance_members (set): the collected instance members Returns: dict """ node, components = (member.rsplit(".", 1) + [None])[:2] # Only include valid members of the instance if node not in instance_members: return node_id = lib.get_id(node) if not node_id: self.log.error("Member '{}' has no attribute 'cbId'".format(node)) return member_data = {"name": node, "uuid": node_id} if components: member_data["components"] = components return member_data def collect_attributes_changed(self, instance): """Collect all userDefined attributes which have changed Each node gets checked for user defined attributes which have been altered during development. Each changes gets logged in a dictionary [{name: node, uuid: uuid, attributes: {attribute: value}}] Args: instance (list): all nodes which will be published Returns: list """ attributes = [] for node in instance: # Collect changes to "custom" attributes node_attrs = get_look_attrs(node) self.log.info( "Node \"{0}\" attributes: {1}".format(node, node_attrs) ) # Only include if there are any properties we care about if not node_attrs: continue node_attributes = {} for attr in node_attrs: if not cmds.attributeQuery(attr, node=node, exists=True): continue attribute = "{}.{}".format(node, attr) node_attributes[attr] = cmds.getAttr(attribute) attributes.append({"name": node, "uuid": lib.get_id(node), "attributes": node_attributes}) return attributes def collect_resource(self, node): """Collect the link to the file(s) used (resource) Args: node (str): name of the node Returns: dict """ self.log.debug("processing: {}".format(node)) if cmds.nodeType(node) == 'file': self.log.debug(" - file node") attribute = "{}.fileTextureName".format(node) computed_attribute = "{}.computedFileTextureNamePattern".format(node) elif cmds.nodeType(node) == 'aiImage': self.log.debug("aiImage node") attribute = "{}.filename".format(node) computed_attribute = attribute source = cmds.getAttr(attribute) self.log.info(" - file source: {}".format(source)) color_space_attr = "{}.colorSpace".format(node) color_space = cmds.getAttr(color_space_attr) # Compare with the computed file path, e.g. the one with the <UDIM> # pattern in it, to generate some logging information about this # difference # computed_attribute = "{}.computedFileTextureNamePattern".format(node) computed_source = cmds.getAttr(computed_attribute) if source != computed_source: self.log.debug("Detected computed file pattern difference " "from original pattern: {0} " "({1} -> {2})".format(node, source, computed_source)) # We replace backslashes with forward slashes because V-Ray # can't handle the UDIM files with the backslashes in the # paths as the computed patterns source = source.replace("\\", "/") files = get_file_node_files(node) if len(files) == 0: self.log.error("No valid files found from node `%s`" % node) self.log.info("collection of resource done:") self.log.info(" - node: {}".format(node)) self.log.info(" - attribute: {}".format(attribute)) self.log.info(" - source: {}".format(source)) self.log.info(" - file: {}".format(files)) self.log.info(" - color space: {}".format(color_space)) # Define the resource return {"node": node, "attribute": attribute, "source": source, # required for resources "files": files, "color_space": color_space} # required for resources
py
7df85e4d5b76e4c94237bff4b553241ec938b3b1
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Class for stompd node under test""" import decimal import errno import http.client import json import logging import os import re import subprocess import time from .authproxy import JSONRPCException from .util import ( assert_equal, delete_cookie_file, get_rpc_proxy, rpc_url, wait_until, p2p_port, ) # For Python 3.4 compatibility JSONDecodeError = getattr(json, "JSONDecodeError", ValueError) BITCOIND_PROC_WAIT_TIMEOUT = 600 class TestNode(): """A class for representing a stompd node under test. This class contains: - state about the node (whether it's running, etc) - a Python subprocess.Popen object representing the running process - an RPC connection to the node - one or more P2P connections to the node To make things easier for the test writer, any unrecognised messages will be dispatched to the RPC connection.""" def __init__(self, i, dirname, extra_args, rpchost, timewait, binary, stderr, mocktime, coverage_dir, use_cli=False): self.index = i self.datadir = os.path.join(dirname, "node" + str(i)) self.rpchost = rpchost if timewait: self.rpc_timeout = timewait else: # Wait for up to 60 seconds for the RPC server to respond self.rpc_timeout = 600 if binary is None: self.binary = os.getenv("BITCOIND", "stompd") else: self.binary = binary self.stderr = stderr self.coverage_dir = coverage_dir # Most callers will just need to add extra args to the standard list below. For those callers that need more flexibity, they can just set the args property directly. self.extra_args = extra_args self.args = [self.binary, "-datadir=" + self.datadir, "-server", "-keypool=1", "-discover=0", "-rest", "-logtimemicros", "-debug", "-debugexclude=libevent", "-debugexclude=leveldb", "-mocktime=" + str(mocktime), "-uacomment=testnode%d" % i] self.cli = TestNodeCLI(os.getenv("BITCOINCLI", "stomp-cli"), self.datadir) self.use_cli = use_cli self.running = False self.process = None self.rpc_connected = False self.rpc = None self.url = None self.log = logging.getLogger('TestFramework.node%d' % i) self.cleanup_on_exit = True # Whether to kill the node when this object goes away self.p2ps = [] def __del__(self): # Ensure that we don't leave any bitcoind processes lying around after # the test ends if self.process and self.cleanup_on_exit: # Should only happen on test failure # Avoid using logger, as that may have already been shutdown when # this destructor is called. print("Cleaning up leftover process") self.process.kill() def __getattr__(self, name): """Dispatches any unrecognised messages to the RPC connection or a CLI instance.""" if self.use_cli: return getattr(self.cli, name) else: assert self.rpc_connected and self.rpc is not None, "Error: no RPC connection" return getattr(self.rpc, name) def start(self, extra_args=None, stderr=None, *args, **kwargs): """Start the node.""" if extra_args is None: extra_args = self.extra_args if stderr is None: stderr = self.stderr # Delete any existing cookie file -- if such a file exists (eg due to # unclean shutdown), it will get overwritten anyway by bitcoind, and # potentially interfere with our attempt to authenticate delete_cookie_file(self.datadir) self.process = subprocess.Popen(self.args + extra_args, stderr=stderr, *args, **kwargs) self.running = True self.log.debug("stompd started, waiting for RPC to come up") def wait_for_rpc_connection(self): """Sets up an RPC connection to the stompd process. Returns False if unable to connect.""" # Poll at a rate of four times per second poll_per_s = 4 time.sleep(5) for _ in range(poll_per_s * self.rpc_timeout): assert self.process.poll() is None, "stompd exited with status %i during initialization" % self.process.returncode try: self.rpc = get_rpc_proxy(rpc_url(self.datadir, self.index, self.rpchost), self.index, timeout=self.rpc_timeout, coveragedir=self.coverage_dir) while self.rpc.getblockcount() < 0: time.sleep(1) # If the call to getblockcount() succeeds then the RPC connection is up self.rpc_connected = True self.url = self.rpc.url self.log.debug("RPC successfully started") return except IOError as e: if e.errno != errno.ECONNREFUSED: # Port not yet open? raise # unknown IO error except JSONRPCException as e: # Initialization phase if e.error['code'] != -28: # RPC in warmup? raise # unknown JSON RPC exception except ValueError as e: # cookie file not found and no rpcuser or rpcassword. bitcoind still starting if "No RPC credentials" not in str(e): raise time.sleep(1.0 / poll_per_s) raise AssertionError("Unable to connect to stompd") def get_wallet_rpc(self, wallet_name): if self.use_cli: return self.cli("-rpcwallet={}".format(wallet_name)) else: assert self.rpc_connected assert self.rpc wallet_path = "wallet/%s" % wallet_name return self.rpc / wallet_path def stop_node(self): """Stop the node.""" if not self.running: return self.log.debug("Stopping node") try: self.stop() except http.client.CannotSendRequest: self.log.exception("Unable to stop node.") del self.p2ps[:] def is_node_stopped(self): """Checks whether the node has stopped. Returns True if the node has stopped. False otherwise. This method is responsible for freeing resources (self.process).""" time.sleep(20) if not self.running: return True return_code = self.process.poll() if return_code is None: return False # process has stopped. Assert that it didn't return an error code. assert_equal(return_code, 0) self.running = False self.process = None self.rpc_connected = False self.rpc = None self.log.debug("Node stopped") return True def wait_until_stopped(self, timeout=BITCOIND_PROC_WAIT_TIMEOUT): wait_until(self.is_node_stopped, timeout=timeout) def node_encrypt_wallet(self, passphrase): """"Encrypts the wallet. This causes stompd to shutdown, so this method takes care of cleaning up resources.""" self.encryptwallet(passphrase) self.wait_until_stopped() def add_p2p_connection(self, p2p_conn, *args, **kwargs): """Add a p2p connection to the node. This method adds the p2p connection to the self.p2ps list and also returns the connection to the caller.""" if 'dstport' not in kwargs: kwargs['dstport'] = p2p_port(self.index) if 'dstaddr' not in kwargs: kwargs['dstaddr'] = '127.0.0.1' p2p_conn.peer_connect(*args, **kwargs) self.p2ps.append(p2p_conn) return p2p_conn @property def p2p(self): """Return the first p2p connection Convenience property - most tests only use a single p2p connection to each node, so this saves having to write node.p2ps[0] many times.""" assert self.p2ps, "No p2p connection" return self.p2ps[0] def disconnect_p2ps(self): """Close all p2p connections to the node.""" for p in self.p2ps: p.peer_disconnect() del self.p2ps[:] class TestNodeCLIAttr: def __init__(self, cli, command): self.cli = cli self.command = command def __call__(self, *args, **kwargs): return self.cli.send_cli(self.command, *args, **kwargs) def get_request(self, *args, **kwargs): return lambda: self(*args, **kwargs) class TestNodeCLI(): """Interface to stomp-cli for an individual node""" def __init__(self, binary, datadir): self.options = [] self.binary = binary self.datadir = datadir self.input = None self.log = logging.getLogger('TestFramework.bitcoincli') def __call__(self, *options, input=None): # TestNodeCLI is callable with stomp-cli command-line options cli = TestNodeCLI(self.binary, self.datadir) cli.options = [str(o) for o in options] cli.input = input return cli def __getattr__(self, command): return TestNodeCLIAttr(self, command) def batch(self, requests): results = [] for request in requests: try: results.append(dict(result=request())) except JSONRPCException as e: results.append(dict(error=e)) return results def send_cli(self, command=None, *args, **kwargs): """Run stomp-cli command. Deserializes returned string as python object.""" pos_args = [str(arg) for arg in args] named_args = [str(key) + "=" + str(value) for (key, value) in kwargs.items()] assert not (pos_args and named_args), "Cannot use positional arguments and named arguments in the same stomp-cli call" p_args = [self.binary, "-datadir=" + self.datadir] + self.options if named_args: p_args += ["-named"] if command is not None: p_args += [command] p_args += pos_args + named_args self.log.debug("Running bitcoin-cli command: %s" % command) process = subprocess.Popen(p_args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) cli_stdout, cli_stderr = process.communicate(input=self.input) returncode = process.poll() if returncode: match = re.match(r'error code: ([-0-9]+)\nerror message:\n(.*)', cli_stderr) if match: code, message = match.groups() raise JSONRPCException(dict(code=int(code), message=message)) # Ignore cli_stdout, raise with cli_stderr raise subprocess.CalledProcessError(returncode, self.binary, output=cli_stderr) try: return json.loads(cli_stdout, parse_float=decimal.Decimal) except JSONDecodeError: return cli_stdout.rstrip("\n")
py
7df85eaf1c2028216789a9d0b8de5ada6b34df4c
from chill import * source('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/polybench/polybench-code/stencils/jacobi-2d/kernel.c') destination('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/experiments/jacobi-2d/tmp_files/8677.c') procedure('kernel_jacobi_1d') loop(0) known(' n > 2 ') tile(0,2,16,2) tile(0,4,16,4) tile(1,2,16,2) tile(1,4,16,4)
py
7df85ed1b1f6ce99c2d5df71097b731dee68912f
#!/usr/bin/env python ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import base64 import os import socket import urllib2 from contextlib import closing import time from ambari_commons.exceptions import FatalException, NonFatalException from ambari_commons.logging_utils import get_verbose, print_info_msg, get_debug_mode from ambari_commons.os_check import OSConst from ambari_commons.os_family_impl import OsFamilyFuncImpl, OsFamilyImpl from ambari_commons.os_utils import run_os_command # simplejson is much faster comparing to Python 2.6 json module and has the same functions set. import ambari_simplejson as json from ambari_server.resourceFilesKeeper import ResourceFilesKeeper, KeeperException from ambari_server.serverConfiguration import configDefaults, PID_NAME, get_resources_location, \ get_stack_location, CLIENT_API_PORT, CLIENT_API_PORT_PROPERTY, \ SSL_API, DEFAULT_SSL_API_PORT, SSL_API_PORT from ambari_server.userInput import get_validated_string_input # Ambari server API properties SERVER_API_HOST = '127.0.0.1' SERVER_API_PROTOCOL = 'http' SERVER_API_SSL_PROTOCOL = 'https' @OsFamilyFuncImpl(OsFamilyImpl.DEFAULT) def is_server_runing(): pid_file_path = os.path.join(configDefaults.PID_DIR, PID_NAME) if os.path.exists(pid_file_path): try: f = open(pid_file_path, "r") except IOError, ex: raise FatalException(1, str(ex)) pid = f.readline().strip() if not pid.isdigit(): err = "'%s' is incorrect PID value. %s is corrupt. Removing" % (pid, pid_file_path) f.close() run_os_command("rm -f " + pid_file_path) raise NonFatalException(err) f.close() retcode, out, err = run_os_command("ps -p " + pid) if retcode == 0: return True, int(pid) else: return False, None else: return False, None def wait_for_server_to_stop(wait_timeout): start_time = time.time() is_timeout = lambda: time.time() - start_time > wait_timeout while is_server_runing()[0] and not is_timeout(): time.sleep(0.1) return not is_timeout() @OsFamilyFuncImpl(OSConst.WINSRV_FAMILY) def is_server_runing(): from ambari_commons.os_windows import SERVICE_STATUS_STARTING, SERVICE_STATUS_RUNNING, \ SERVICE_STATUS_STOPPING, \ SERVICE_STATUS_STOPPED, SERVICE_STATUS_NOT_INSTALLED from ambari_windows_service import AmbariServerService statusStr = AmbariServerService.QueryStatus() if statusStr in (SERVICE_STATUS_STARTING, SERVICE_STATUS_RUNNING, SERVICE_STATUS_STOPPING): return True, "" elif statusStr == SERVICE_STATUS_STOPPED: return False, SERVICE_STATUS_STOPPED elif statusStr == SERVICE_STATUS_NOT_INSTALLED: return False, SERVICE_STATUS_NOT_INSTALLED else: return False, None # # Performs HDP stack housekeeping # def refresh_stack_hash(properties): resources_location = get_resources_location(properties) stacks_location = get_stack_location(properties) resource_files_keeper = ResourceFilesKeeper(resources_location, stacks_location) try: print "Organizing resource files at {0}...".format(resources_location, verbose=get_verbose()) resource_files_keeper.perform_housekeeping() except KeeperException, ex: msg = "Can not organize resource files at {0}: {1}".format( resources_location, str(ex)) raise FatalException(-1, msg) # # Builds ambari-server API base url # Reads server protocol/port from configuration # And returns something like # http://127.0.0.1:8080/api/v1/ # or if using ssl https://hostname.domain:8443/api/v1 # def get_ambari_server_api_base(properties): api_host = SERVER_API_HOST api_protocol = SERVER_API_PROTOCOL api_port = CLIENT_API_PORT api_port_prop = properties.get_property(CLIENT_API_PORT_PROPERTY) if api_port_prop is not None and api_port_prop != '': api_port = api_port_prop api_ssl = False api_ssl_prop = properties.get_property(SSL_API) if api_ssl_prop is not None: api_ssl = api_ssl_prop.lower() == "true" if api_ssl: api_host = socket.getfqdn() api_protocol = SERVER_API_SSL_PROTOCOL api_port = DEFAULT_SSL_API_PORT api_port_prop = properties.get_property(SSL_API_PORT) if api_port_prop is not None: api_port = api_port_prop return '{0}://{1}:{2!s}/api/v1/'.format(api_protocol, api_host, api_port) def get_ambari_admin_username_password_pair(options): """ Returns the Ambari administrator credential. If not supplied via command line options, the user is queried for the username and password. :param options: the collected command line options :return: the Ambari admin credentials """ admin_login = options.ambari_admin_username \ if hasattr(options, 'ambari_admin_username') and options.ambari_admin_username is not None \ else get_validated_string_input("Enter Ambari Admin login: ", None, None, None, False, False) admin_password = options.ambari_admin_password \ if hasattr(options, 'ambari_admin_password') and options.ambari_admin_password is not None \ else get_validated_string_input("Enter Ambari Admin password: ", None, None, None, True, False) return admin_login, admin_password def get_cluster_name(properties, admin_login, admin_password): """ Fetches the name of the first cluster (in case there are more) from the response of host:port/api/v1/clusters call """ print_info_msg('Fetching cluster name') cluster_name = None response_code, json_data = get_json_via_rest_api(properties, admin_login, admin_password, "clusters") if json_data and 'items' in json_data: items = json_data['items'] if len(items) > 0: cluster_name = items[0]['Clusters']['cluster_name'] print_info_msg('Found cluster name: %s' % cluster_name) return cluster_name def get_json_via_rest_api(properties, admin_login, admin_password, entry_point): """ Fetches the data from a given REST API entry point :param properties: the properties from the ambari.properties file :param admin_login: an administrator's username used to log in to Ambari :param admin_password: an administrator's password used to log in to Ambari :param entry_point: the relative entry point to query (the base URL will be generated using the ambari.properties data) :return: HTTP status, JSON data """ url = get_ambari_server_api_base(properties) + entry_point admin_auth = base64.encodestring('%s:%s' % (admin_login, admin_password)).replace('\n', '') request = urllib2.Request(url) request.add_header('Authorization', 'Basic %s' % admin_auth) request.add_header('X-Requested-By', 'ambari') request.get_method = lambda: 'GET' print_info_msg("Fetching information from Ambari's REST API") with closing(urllib2.urlopen(request)) as response: response_status_code = response.getcode() json_data = None print_info_msg( "Received HTTP %s while fetching information from Ambari's REST API" % response_status_code) if response_status_code == 200: json_data = json.loads(response.read()) if (get_debug_mode()): print_info_msg("Received JSON:\n" + json_data) return response_status_code, json_data def perform_changes_via_rest_api(properties, admin_login, admin_password, url_postfix, get_method, request_data=None): url = get_ambari_server_api_base(properties) + url_postfix admin_auth = base64.encodestring('%s:%s' % (admin_login, admin_password)).replace('\n', '') request = urllib2.Request(url) request.add_header('Authorization', 'Basic %s' % admin_auth) request.add_header('X-Requested-By', 'ambari') if request_data is not None: request.add_data(json.dumps(request_data)) request.get_method = lambda: get_method with closing(urllib2.urlopen(request)) as response: response_status_code = response.getcode() if response_status_code not in (200, 201): err = 'Error while performing changes via Ambari REST API. Http status code - ' + str( response_status_code) raise FatalException(1, err)
py
7df860c8160e6ace95a73c683ad71fee59ba041a
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from gaiatest import GaiaTestCase class TestResources(GaiaTestCase): filename = 'IMG_0001.jpg' destination = 'DCIM/100MZLLA' def test_push_resource(self): self.push_resource('IMG_0001.jpg', destination=self.destination) # A fully qualified path is returned from the api remote_filepath = '/'.join(['/sdcard', self.destination, self.filename]) self.assertTrue(remote_filepath in self.data_layer.media_files) def test_push_multiple_resources(self): count = 5 self.push_resource(self.filename, count, destination=self.destination) for i in range(1, count + 1): remote_filename = '_%s.'.join(iter(self.filename.split('.'))) % i # A fully qualified path is returned from the api remote_filepath = '/'.join(['/sdcard', self.destination, remote_filename]) self.assertTrue(remote_filepath in self.data_layer.media_files)
py
7df8622e34cb8b5f81944b59bd1911f2aafc185d
import json from flask_restplus import Namespace, Resource, fields from flask import request from core import ClasseExemplo api = Namespace( 'Exemplo', description='Este é um exemplo de API' ) # modelo de JSON a ser seguido exemplo_modelo = api.model( 'Exemplo', { 'nome': fields.String( required=True, description='Nome da pessoa' ) } ) @api.route('/consulta') class FazerConsulta(Resource): @api.response(200, '{"status": "Ok"}') @api.response(500, '{"erro": "Tente novamente mais tarde"}') def get(self): '''Explicação específica deste endpoint. ''' try: return dict(status='Ok'), 200 except Exception as e: return dict( erro='Tente novamente mais tarde', mensagem=e ), 500 @api.route('/consulta/<string:nome>') class FazerConsultaComParam(Resource): @api.param('nome', 'O nome da pessoa') @api.response(200, '{"status": "Ip público"}') @api.response(400, '{"erro": "Não conseguimos nos conectar"}') def get(self, nome): '''Explicação específica deste endpoint. ''' try: controlador = Classe_exemplo() response, status = controlador.consulta_com_nome() if status: return dict(status=response), 200 return dict(erro=response) except Exception as e: return dict( erro='Tente novamente mais tarde', mensagem=e ), 500 @api.route('/enviar_dados') class EnviarDados(Resource): @api.expect(exemplo_modelo) @api.response(200, '{"status": "Ok"}') @api.response(500, '{"erro": "Tente novamente mais tarde"}') @api.response(400, '{"erro": "requisição inválida"}') def post(self): try: if request.is_json and len(request.data) > 0: req = request.get_json() print(req) return dict(status='Ok'), 200 return dict(erro='requisição inválida'), 400 except Exception as e: return dict( erro='Tente novamente mais tarde', mensagem=e ), 500
py
7df8637e32f47c3e5a73f152161cc4e8bb3b1aaf
from flask_wtf import Form from wtforms import StringField, PasswordField, BooleanField, SubmitField,ValidationError from wtforms.validators import DataRequired, Length, Email,Regexp,EqualTo from ..models import User class LoginForm(Form): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) password = PasswordField('Password', validators=[DataRequired()]) remember_me = BooleanField('Keep me logged in') submit = SubmitField('Log In') class RegistrationForm(Form): email = StringField('Email', validators=[DataRequired(),Length(1,64),Email()]) username = StringField('Username', validators=[DataRequired(),Length(1,64), Regexp('^[A-Za-z][A-Za-z0-9_.]*$', 0,'Usernames must have only letters, ' 'numbers, dots or underscores')]) password = PasswordField('Password', validators=[DataRequired(), EqualTo('password2', message='Password must match')]) password2 = PasswordField('Confirm password', validators=[DataRequired()]) submit = SubmitField('Register') def validate_email(self,field): if User.query.filter_by(email=field.data).first(): raise ValidationError('Email already registered.') def validate_username(self,field): if User.query.filter_by(username=field.data).first(): raise ValidationError('Username already in use.') class ChangePasswordForm(Form): old_password = PasswordField('Old password', validators=[DataRequired()]) password = PasswordField('New password', validators=[ DataRequired(), EqualTo('password2', message='Passwords must match')]) password2 = PasswordField('Confirm new password', validators=[DataRequired()]) submit = SubmitField('Update Password') class PasswordResetRequestForm(Form): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) submit = SubmitField('Reset Password') class PasswordResetForm(Form): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) password = PasswordField('New Password', validators=[ DataRequired(), EqualTo('password2', message='Passwords must match')]) password2 = PasswordField('Confirm password', validators=[DataRequired()]) submit = SubmitField('Reset Password') def validate_email(self, field): if User.query.filter_by(email=field.data).first() is None: raise ValidationError('Unknown email address.') class ChangeEmailForm(Form): email = StringField('New Email', validators=[DataRequired(), Length(1, 64), Email()]) password = PasswordField('Password', validators=[DataRequired()]) submit = SubmitField('Update Email Address') def validate_email(self, field): if User.query.filter_by(email=field.data).first(): raise ValidationError('Email already registered.')
py
7df86567b944ca6872ca7cce5b1f0df3f6d50413
from typing import TYPE_CHECKING, Dict, List, Optional, Union from modules.base import AWSIamAssembler, AWSK8sModuleProcessor, K8sServiceModuleProcessor from modules.linker_helper import LinkerHelper from opta.core.kubernetes import ( create_namespace_if_not_exists, get_manual_secrets, list_namespaces, ) from opta.exceptions import UserErrors if TYPE_CHECKING: from opta.layer import Layer from opta.module import Module class AwsK8sServiceProcessor( AWSK8sModuleProcessor, K8sServiceModuleProcessor, AWSIamAssembler ): FLAG_MULTIPLE_PORTS_SUPPORTED = True def __init__(self, module: "Module", layer: "Layer"): if (module.aliased_type or module.type) != "aws-k8s-service": raise Exception( f"The module {module.name} was expected to be of type aws k8s service" ) super(AwsK8sServiceProcessor, self).__init__(module, layer) def pre_hook(self, module_idx: int) -> None: list_namespaces() create_namespace_if_not_exists(self.layer.name) manual_secrets = get_manual_secrets(self.layer.name) for secret_name in self.module.data.get("secrets", []): if secret_name not in manual_secrets: raise UserErrors( f"Secret {secret_name} has not been set via opta secret update! Please do so before applying the " f"K8s service w/ a new secret." ) super(AwsK8sServiceProcessor, self).pre_hook(module_idx) def post_hook(self, module_idx: int, exception: Optional[Exception]) -> None: self._extra_ports_controller() super().post_hook(module_idx, exception) def process(self, module_idx: int) -> None: # Update the secrets self.module.data["manual_secrets"] = self.module.data.get("secrets", []) self.module.data["link_secrets"] = self.module.data.get("link_secrets", []) current_envars: Union[List, Dict[str, str]] = self.module.data.get("env_vars", []) if isinstance(current_envars, dict): self.module.data["env_vars"] = [ {"name": x, "value": y} for x, y in current_envars.items() ] # Handle links for link_data in self.module.data.get("links", []): if type(link_data) is str: target_module_name = link_data link_permissions = [] elif type(link_data) is dict: target_module_name = list(link_data.keys())[0] link_permissions = list(link_data.values())[0] else: raise UserErrors( f"Link data {link_data} must be a string or map holding the permissions" ) module = self.layer.get_module(target_module_name, module_idx) if module is None: raise Exception( f"Did not find the desired module {target_module_name} " "make sure that the module you're referencing is listed before the k8s " "app one" ) module_type = module.aliased_type or module.type if module_type == "aws-postgres": LinkerHelper.handle_link( module=self.module, linked_module=module, link_permissions=link_permissions, required_vars=["db_user", "db_name", "db_password", "db_host"], ) elif module_type == "aws-mysql": LinkerHelper.handle_link( module=self.module, linked_module=module, link_permissions=link_permissions, required_vars=["db_user", "db_name", "db_password", "db_host"], ) elif module_type == "aws-redis": LinkerHelper.handle_link( module=self.module, linked_module=module, link_permissions=link_permissions, required_vars=["cache_host", "cache_auth_token"], ) elif module_type == "aws-documentdb": LinkerHelper.handle_link( module=self.module, linked_module=module, link_permissions=link_permissions, required_vars=["db_user", "db_host", "db_password"], ) elif module_type == "aws-s3": self.handle_s3_link(module, link_permissions) elif module_type == "aws-sqs": self.handle_sqs_link(module, link_permissions) elif module_type == "aws-sns": self.handle_sns_link(module, link_permissions) elif module_type == "aws-dynamodb": self.handle_dynamodb_link(module, link_permissions) elif module_type == "mongodb-atlas": LinkerHelper.handle_link( module=self.module, linked_module=module, link_permissions=link_permissions, required_vars=[ "db_password", "db_user", "mongodb_atlas_connection_string", ], ) else: raise Exception( f"Unsupported module type for k8s service link: {module_type}" ) iam_statements = [ { "Sid": "DescribeCluster", "Action": ["eks:DescribeCluster"], "Effect": "Allow", "Resource": ["*"], } ] iam_statements += self.prepare_iam_statements() self.module.data["iam_policy"] = { "Version": "2012-10-17", "Statement": iam_statements, } if "image_tag" in self.layer.variables: self.module.data["tag"] = self.layer.variables["image_tag"] if "image_digest" in self.layer.variables: self.module.data["digest"] = self.layer.variables["image_digest"] seen = set() self.module.data["link_secrets"] = [ seen.add(obj["name"]) or obj # type: ignore for obj in self.module.data["link_secrets"] if obj["name"] not in seen ] super(AwsK8sServiceProcessor, self).process(module_idx)
py
7df865abc6e3ee1e3b150141862875df0924d359
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField from wtforms.validators import ValidationError, DataRequired, Email, EqualTo from app.models import User class LoginForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired()]) remember_me = BooleanField('Remember Me') submit = SubmitField('Sign In') class RegistrationForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) email = StringField('Email', validators=[DataRequired(), Email()]) password = PasswordField('Password', validators=[DataRequired()]) password2 = PasswordField( 'Repeat Password', validators=[DataRequired(), EqualTo('password')]) submit = SubmitField('Register') def validate_username(self, username): user = User.query.filter_by(username=username.data).first() if user is not None: raise ValidationError('Please use a different username.') def validate_email(self, email): user = User.query.filter_by(email=email.data).first() if user is not None: raise ValidationError('Please use a different email address.')
py
7df865f39c8db3800b98c14d5b3860a757c224da
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ """ Case Type : 工具-GS_BASEBACKUP Case Name : 备份过程中,备份用户的备份权限被收回 Description : 1.开始备份:gs_basebackup -D /usr2/chenchen/basebackup/bak_a -Fp -Xstream -p 18333 -h ip -c fast -l gauss_30.bak -P -v -U sysadmin -w 2.备份结束之前停掉数据库 Expect : 1.备份失败,备份异常结束。 2.无法使用备份目录恢复数据库 History : """ import os import time import unittest from yat.test import Node from yat.test import macro from testcase.utils.Logger import Logger from testcase.utils.CommonSH import CommonSH from testcase.utils.Constant import Constant from testcase.utils.ComThread import ComThread class GsBaseBackUpCase33(unittest.TestCase): def setUp(self): self.Primary_User_Node = Node('PrimaryDbUser') self.Primary_Root_Node = Node('PrimaryRoot') self.LOG = Logger() self.Constant = Constant() self.Primary_SH = CommonSH('PrimaryDbUser') self.U_NAME = 'u_basebackup_33' self.gs_basebackup_bak_path = os.path.join(macro.DB_BACKUP_PATH, 'gs_basebackup') self.gs_basebackup_bak_name = 'gs_basebackup_Case0033.bak' self.Gs_Basebackup_Expect_Msg = 'gs_basebackup: could not connect ' \ 'to server: FATAL: Normal user is not allowed to use HA channel!' self.LOG.info( '----Opengauss_Function_Tools_gs_basebackup_Case0033 start----') def test_server_tools(self): self.LOG.info('----创建备份目录----') is_dir_exists_cmd = f'''if [ ! -d "{self.gs_basebackup_bak_path}" ] then mkdir -p {self.gs_basebackup_bak_path} fi''' result = self.Primary_User_Node.sh(is_dir_exists_cmd).result() self.LOG.info(result) self.assertEqual(result, '') self.LOG.info('----修改备份目录权限700,以免权限有误----') chmod_cmd = f"chmod 700 -R {self.gs_basebackup_bak_path}" self.LOG.info(chmod_cmd) chmod_msg = self.Primary_Root_Node.sh(chmod_cmd).result() self.LOG.info(chmod_msg) self.assertEqual(chmod_msg, '') self.LOG.info('----查看备份目录----') ls_cmd = f"ls -l {os.path.dirname(self.gs_basebackup_bak_path)}" self.LOG.info(ls_cmd) ls_msg = self.Primary_User_Node.sh(ls_cmd).result() self.LOG.info(ls_msg) self.LOG.info('----创建用户并赋权----') sql_cmd = f"create user {self.U_NAME} " \ f"with password '{macro.COMMON_PASSWD}'; " \ f"alter user {self.U_NAME} with createrole; " \ f"alter user {self.U_NAME} with createdb; " \ f"alter user {self.U_NAME} with replication;" self.LOG.info(sql_cmd) result = self.Primary_SH.execut_db_sql(sql_cmd) self.LOG.info(result) self.assertIn(self.Constant.CREATE_ROLE_SUCCESS_MSG, result) self.assertIn(self.Constant.ALTER_ROLE_SUCCESS_MSG, result) self.LOG.info('----执行备份----') gs_basebackup_cmd = f"gs_basebackup " \ f"-D {self.gs_basebackup_bak_path} " \ f"-Fp " \ f"-Xstream " \ f"-p {self.Primary_User_Node.db_port} " \ f"-c fast " \ f"-l {self.gs_basebackup_bak_name} " \ f"-P " \ f"-v " \ f"-U {self.U_NAME} " \ f"-w" backup_cmd = f"source {macro.DB_ENV_PATH}; {gs_basebackup_cmd}" self.LOG.info(backup_cmd) gs_basebackup_thread = ComThread(self.Primary_User_Node.sh, args=(backup_cmd,)) gs_basebackup_thread.setDaemon(True) gs_basebackup_thread.start() time.sleep(2) self.LOG.info("----回收用户权限----") sql_cmd = f"alter user {self.U_NAME} with noreplication;" self.LOG.info(sql_cmd) result = self.Primary_SH.execut_db_sql(sql_cmd) self.LOG.info(result) self.assertIn(self.Constant.ALTER_ROLE_SUCCESS_MSG, result) self.LOG.info("----获取gs_basebackup执行结果----") gs_basebackup_thread.join(300) gs_basebackup_result = gs_basebackup_thread.get_result() self.LOG.info(gs_basebackup_result.result()) self.assertIn(self.Gs_Basebackup_Expect_Msg, gs_basebackup_result.result()) def tearDown(self): self.LOG.info('----删除备份文件----') rm_cmd = f'''rm -rf {self.gs_basebackup_bak_path}''' primary_result = self.Primary_User_Node.sh(rm_cmd).result() self.LOG.info(primary_result) self.LOG.info("----删除用户----") sql_cmd = f"drop user if exists {self.U_NAME}" self.LOG.info(sql_cmd) result = self.Primary_SH.execut_db_sql(sql_cmd) self.LOG.info(result) self.LOG.info( '----Opengauss_Function_Tools_gs_basebackup_Case0033 end----')
py
7df8666f83616edb6fcfb07729acd11d41ae0681
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-12-08 09:03 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('konfera', '0018_auto_20161203_2305'), ] operations = [ migrations.AddField( model_name='talk', name='language', field=models.CharField(choices=[('SK', 'Slovak'), ('CZ', 'Czech'), ('EN', 'English')], default='EN', max_length=2), ), ]
py
7df8668ee9450b3490ffaad18f753a59335d3973
from enum import Enum from typing import Optional import archspec.cpu from pydantic import BaseModel as PydanticBaseModel from pydantic import Field, validator from pydantic.types import PositiveInt # Use the CPU families from archspec as the base CPU architecture CPUArch = Enum( # type: ignore # Ref: python/mypy#529, #535 and #5317 "CPUArch", {name: name for name, march in archspec.cpu.TARGETS.items() if not march.parents}, type=str, ) # For the Microarchitecture, use the non-generic, non-family entries CPUMicroArch = Enum( # type: ignore # Ref: python/mypy#529, #535 and #5317 "CPUMicroArch", { name: name for name, march in archspec.cpu.TARGETS.items() if march.parents and march.vendor != "generic" }, type=str, ) class CPU(PydanticBaseModel): arch: CPUArch = Field(..., description="CPU architecture") # Overlap of arch with microarch is intended since Docker classifies compatibility # into broader categories rather than microarchitectures. microarch: Optional[CPUMicroArch] = Field( description="Microarchitecture, must match the architecture if specified" ) ncores: PositiveInt = Field(..., description="Number of cores per CPU") nthreads: PositiveInt = Field(1, description="Number of threads (per core)") @validator("microarch") def microarch_matches_arch(cls, v, values, **kwargs): # noqa: B902 if not (archspec.cpu.TARGETS[values["arch"]] < archspec.cpu.TARGETS[v]): raise ValueError( f"invalid microarchitecture '{v}' for architecture '{values['arch']}'" ) return v
py
7df867f464619c23136b4e9442b892db3ebee238
from sqlalchemy import * from base import Base class SampleMediumCV(Base): __tablename__ = 'SampleMediumCV' term = Column('Term', String(255), primary_key=True) definition = Column('Definition', String(255)) def __repr__(self): return "<SampleMedium('%s', '%s')>" % (self.term, self.definition)
py
7df86858e5fe3e1113e0b862525f762ac986a2cf
#!/usr/bin/env python3 # Copyright 2022 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import collections from doctest import SKIP import os import re import subprocess import sys import tempfile # find our home ROOT = os.path.abspath(os.path.join(os.path.dirname(sys.argv[0]), '../..')) os.chdir(ROOT) vendors = collections.defaultdict(list) scores = collections.defaultdict(int) avoidness = collections.defaultdict(int) consumes = {} no_update = set() buildozer_commands = [] needs_codegen_base_src = set() original_deps = {} original_external_deps = {} # TODO(ctiller): ideally we wouldn't hardcode a bunch of paths here. # We can likely parse out BUILD files from dependencies to generate this index. EXTERNAL_DEPS = { 'absl/base/attributes.h': 'absl/base:core_headers', 'absl/base/call_once.h': 'absl/base', # TODO(ctiller) remove this 'absl/base/internal/endian.h': 'absl-base', 'absl/base/thread_annotations.h': 'absl/base:core_headers', 'absl/container/flat_hash_map.h': 'absl/container:flat_hash_map', 'absl/container/flat_hash_set.h': 'absl/container:flat_hash_set', 'absl/container/inlined_vector.h': 'absl/container:inlined_vector', 'absl/functional/bind_front.h': 'absl/functional:bind_front', 'absl/functional/function_ref.h': 'absl/functional:function_ref', 'absl/hash/hash.h': 'absl/hash', 'absl/memory/memory.h': 'absl/memory', 'absl/meta/type_traits.h': 'absl/meta:type_traits', 'absl/random/random.h': 'absl/random', 'absl/status/status.h': 'absl/status', 'absl/status/statusor.h': 'absl/status:statusor', 'absl/strings/ascii.h': 'absl/strings', 'absl/strings/cord.h': 'absl/strings:cord', 'absl/strings/escaping.h': 'absl/strings', 'absl/strings/match.h': 'absl/strings', 'absl/strings/numbers.h': 'absl/strings', 'absl/strings/str_cat.h': 'absl/strings', 'absl/strings/str_format.h': 'absl/strings:str_format', 'absl/strings/str_join.h': 'absl/strings', 'absl/strings/str_replace.h': 'absl/strings', 'absl/strings/str_split.h': 'absl/strings', 'absl/strings/string_view.h': 'absl/strings', 'absl/strings/strip.h': 'absl/strings', 'absl/strings/substitute.h': 'absl/strings', 'absl/synchronization/mutex.h': 'absl/synchronization', 'absl/synchronization/notification.h': 'absl/synchronization', 'absl/time/clock.h': 'absl/time', 'absl/time/time.h': 'absl/time', 'absl/types/optional.h': 'absl/types:optional', 'absl/types/span.h': 'absl/types:span', 'absl/types/variant.h': 'absl/types:variant', 'absl/utility/utility.h': 'absl/utility', 'address_sorting/address_sorting.h': 'address_sorting', 'ares.h': 'cares', 'gmock/gmock.h': 'gtest', 'gtest/gtest.h': 'gtest', 'opencensus/trace/context_util.h': 'opencensus-trace-context_util', 'opencensus/trace/propagation/grpc_trace_bin.h': 'opencensus-trace-propagation', 'opencensus/tags/context_util.h': 'opencensus-tags-context_util', 'openssl/bio.h': 'libssl', 'openssl/bn.h': 'libcrypto', 'openssl/buffer.h': 'libcrypto', 'openssl/crypto.h': 'libcrypto', 'openssl/engine.h': 'libcrypto', 'openssl/err.h': 'libcrypto', 'openssl/evp.h': 'libcrypto', 'openssl/hmac.h': 'libcrypto', 'openssl/pem.h': 'libcrypto', 'openssl/rsa.h': 'libcrypto', 'openssl/sha.h': 'libcrypto', 'openssl/ssl.h': 'libssl', 'openssl/tls1.h': 'libssl', 'openssl/x509.h': 'libcrypto', 'openssl/x509v3.h': 'libcrypto', 're2/re2.h': 're2', 'upb/def.h': 'upb_lib', 'upb/json_encode.h': 'upb_json_lib', 'upb/text_encode.h': 'upb_textformat_lib', 'upb/def.hpp': 'upb_reflection', 'upb/upb.h': 'upb_lib', 'upb/upb.hpp': 'upb_lib', 'xxhash.h': 'xxhash', 'zlib.h': 'madler_zlib', } INTERNAL_DEPS = { 'google/rpc/status.upb.h': 'google_rpc_status_upb', 'google/protobuf/any.upb.h': 'protobuf_any_upb', 'google/protobuf/duration.upb.h': 'protobuf_duration_upb', 'google/protobuf/struct.upb.h': 'protobuf_struct_upb', 'google/protobuf/timestamp.upb.h': 'protobuf_timestamp_upb', 'google/protobuf/wrappers.upb.h': 'protobuf_wrappers_upb', 'grpc/status.h': 'grpc_public_hdrs', 'src/proto/grpc/channelz/channelz.grpc.pb.h': '//src/proto/grpc/channelz:channelz_proto', 'src/proto/grpc/core/stats.pb.h': '//src/proto/grpc/core:stats_proto', 'src/proto/grpc/health/v1/health.upb.h': 'grpc_health_upb', 'src/proto/grpc/lb/v1/load_reporter.grpc.pb.h': '//src/proto/grpc/lb/v1:load_reporter_proto', 'src/proto/grpc/lb/v1/load_balancer.upb.h': 'grpc_lb_upb', 'src/proto/grpc/reflection/v1alpha/reflection.grpc.pb.h': '//src/proto/grpc/reflection/v1alpha:reflection_proto', 'src/proto/grpc/gcp/transport_security_common.upb.h': 'alts_upb', 'src/proto/grpc/gcp/altscontext.upb.h': 'alts_upb', 'src/proto/grpc/lookup/v1/rls.upb.h': 'rls_upb', 'src/proto/grpc/lookup/v1/rls_config.upb.h': 'rls_config_upb', 'src/proto/grpc/lookup/v1/rls_config.upbdefs.h': 'rls_config_upbdefs', 'src/proto/grpc/testing/xds/v3/csds.grpc.pb.h': '//src/proto/grpc/testing/xds/v3:csds_proto', 'xds/data/orca/v3/orca_load_report.upb.h': 'xds_orca_upb', 'xds/service/orca/v3/orca.upb.h': 'xds_orca_service_upb', 'xds/type/v3/typed_struct.upb.h': 'xds_type_upb', } SKIP_DEPS = {'google/api/expr/v1alpha1/syntax.upb.h'} class FakeSelects: def config_setting_group(self, **kwargs): pass def grpc_cc_library(name, hdrs=[], public_hdrs=[], srcs=[], select_deps=None, tags=[], deps=[], external_deps=[], **kwargs): if select_deps or 'nofixdeps' in tags or 'grpc-autodeps' not in tags: no_update.add(name) scores[name] = len(public_hdrs + hdrs) # avoid_dep is the internal way of saying prefer something else # we add grpc_avoid_dep to allow internal grpc-only stuff to avoid each # other, whilst not biasing dependent projects if 'avoid_dep' in tags or 'grpc_avoid_dep' in tags: avoidness[name] += 10 if 'nofixdeps' in tags: avoidness[name] += 1 for hdr in hdrs + public_hdrs: vendors[hdr].append(name) inc = set() original_deps[name] = frozenset(deps) original_external_deps[name] = frozenset(external_deps) for src in hdrs + public_hdrs + srcs: for line in open(src): m = re.search(r'#include <(.*)>', line) if m: inc.add(m.group(1)) m = re.search(r'#include "(.*)"', line) if m: inc.add(m.group(1)) if 'grpc::g_glip' in line or 'grpc:g_core_codegen_interface' in line: needs_codegen_base_src.add(name) consumes[name] = list(inc) def buildozer(cmd, target): buildozer_commands.append('%s|%s' % (cmd, target)) def buildozer_set_list(name, values, target, via=""): if not values: buildozer('remove %s' % name, target) return adjust = via if via else name buildozer('set %s %s' % (adjust, ' '.join('"%s"' % s for s in values)), target) if via: buildozer('remove %s' % name, target) buildozer('rename %s %s' % (via, name), target) def score_edit_distance(proposed, existing): """Score a proposed change primarily by edit distance""" sum = 0 for p in proposed: if p not in existing: sum += 1 for e in existing: if e not in proposed: sum += 1 return sum def total_score(proposal): return sum(scores[dep] for dep in proposal) def total_avoidness(proposal): return sum(avoidness[dep] for dep in proposal) def score_list_size(proposed, existing): """Score a proposed change primarily by number of dependencies""" return len(proposed) def score_best(proposed, existing): """Score a proposed change primarily by dependency score""" return 0 SCORERS = { 'edit_distance': score_edit_distance, 'list_size': score_list_size, 'best': score_best, } parser = argparse.ArgumentParser(description='Fix build dependencies') parser.add_argument('targets', nargs='*', default=[], help='targets to fix (empty => all)') parser.add_argument('--score', type=str, default='edit_distance', help='scoring function to use: one of ' + ', '.join(SCORERS.keys())) args = parser.parse_args() exec( open('BUILD', 'r').read(), { 'load': lambda filename, *args: None, 'licenses': lambda licenses: None, 'package': lambda **kwargs: None, 'exports_files': lambda files: None, 'config_setting': lambda **kwargs: None, 'selects': FakeSelects(), 'python_config_settings': lambda **kwargs: None, 'grpc_cc_library': grpc_cc_library, 'select': lambda d: d["//conditions:default"], 'grpc_upb_proto_library': lambda name, **kwargs: None, 'grpc_upb_proto_reflection_library': lambda name, **kwargs: None, 'grpc_generate_one_off_targets': lambda: None, 'filegroup': lambda name, **kwargs: None, }, {}) # Keeps track of all possible sets of dependencies that could satify the # problem. (models the list monad in Haskell!) class Choices: def __init__(self): self.choices = set() self.choices.add(frozenset()) def add_one_of(self, choices): if not choices: return new_choices = set() for append_choice in choices: for choice in self.choices: new_choices.add(choice.union([append_choice])) self.choices = new_choices def add(self, choice): self.add_one_of([choice]) def remove(self, remove): new_choices = set() for choice in self.choices: new_choices.add(choice.difference([remove])) self.choices = new_choices def best(self, scorer): best = None final_scorer = lambda x: (total_avoidness(x), scorer(x), total_score(x)) for choice in self.choices: if best is None or final_scorer(choice) < final_scorer(best): best = choice return best error = False for library in sorted(consumes.keys()): if library in no_update: continue if args.targets and library not in args.targets: continue hdrs = sorted(consumes[library]) deps = Choices() external_deps = Choices() for hdr in hdrs: if hdr == 'src/core/lib/profiling/stap_probes.h': continue if hdr in INTERNAL_DEPS: deps.add(INTERNAL_DEPS[hdr]) continue if hdr in vendors: deps.add_one_of(vendors[hdr]) continue if 'include/' + hdr in vendors: deps.add_one_of(vendors['include/' + hdr]) continue if '.' not in hdr: # assume a c++ system include continue if hdr in EXTERNAL_DEPS: external_deps.add(EXTERNAL_DEPS[hdr]) continue if hdr.startswith('opencensus/'): trail = hdr[len('opencensus/'):] trail = trail[:trail.find('/')] external_deps.add('opencensus-' + trail) continue if hdr.startswith('envoy/'): path, file = os.path.split(hdr) file = file.split('.') path = path.split('/') dep = '_'.join(path[:-1] + [file[1]]) deps.add(dep) continue if hdr.startswith('google/protobuf/') and not hdr.endswith('.upb.h'): external_deps.add('protobuf_headers') continue if '/' not in hdr: # assume a system include continue is_sys_include = False for sys_path in [ 'sys', 'arpa', 'netinet', 'linux', 'android', 'mach', 'net', 'CoreFoundation', ]: if hdr.startswith(sys_path + '/'): is_sys_include = True break if is_sys_include: # assume a system include continue if hdr in SKIP_DEPS: continue print("# ERROR: can't categorize header: %s" % hdr) error = True if library in needs_codegen_base_src: deps.add('grpc++_codegen_base_src') deps.remove(library) deps = sorted( deps.best(lambda x: SCORERS[args.score](x, original_deps[library]))) external_deps = sorted( external_deps.best(lambda x: SCORERS[args.score] (x, original_external_deps[library]))) target = ':' + library buildozer_set_list('external_deps', external_deps, target, via='deps') buildozer_set_list('deps', deps, target) if buildozer_commands: ok_statuses = (0, 3) temp = tempfile.NamedTemporaryFile() open(temp.name, 'w').write('\n'.join(buildozer_commands)) c = ['tools/distrib/buildozer.sh', '-f', temp.name] r = subprocess.call(c) if r not in ok_statuses: print('{} failed with status {}'.format(c, r)) sys.exit(1) if error: sys.exit(1)
py
7df868c3d2695a50fb8d42fcdc7fa2c14f85b47a
#!/usr/bin/env python ''' @Author: Balasubramanyam Evani Manipal University Jaipur ''' ## Importing necessary libraries import rospy from dynamic_reconfigure.server import Server from laser_onto_kinect.cfg import configConfig import tf import math ## class containig methods for implementing dynamic reconfigure and sending the transform class dynamicTF(object): def __init__(self): self.parent_name = rospy.get_param('~parent' , 'camera_rgb_frame') ## parameter specifying the parent frame self.child_name = rospy.get_param('~child' , 'laser') ## parameter specifying the child frame self.linear = [0 ,0, 0] ## initializing translation self.rot = [0 , 0, 0] ## initializing rotation self.br = tf.TransformBroadcaster() ## Transform Broadcaster object def run(self): ## Run at 10Hz rospy.Rate(10) config = Server(configConfig , self.callback) ## dynamic configure callback self.send_transform() ## sending the tf rospy.spin() ## stops from exiting def callback(self , config , level): self.linear = [ float("{x}".format(**config)) , float("{y}".format(**config)) , float("{z}".format(**config))] self.rot = [float("{roll}".format(**config)), float("{pitch}".format(**config)), float("{yaw}".format(**config))] return config def send_transform(self): rospy.Rate(10) while not rospy.is_shutdown(): self.br.sendTransform((self.linear[0] , self.linear[1] , self.linear[2]), tf.transformations.quaternion_from_euler(self.rot[0] * math.pi/180.0 , self.rot[1] * math.pi/180.0 ,self.rot[2]* math.pi/180.0) , rospy.Time.now() , self.child_name , self.parent_name) ## converting degrees to rads and sendign the tranform b/w parent and child ## Main Function Call if __name__ == '__main__': rospy.init_node("TF_broadcaster" , anonymous = True) ## initialization of node TF = dynamicTF() ## Creating object of class dynamicTF TF.run() ## running the process
py
7df869a055d59871bb54a53a013e405b826e8698
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from adcm.settings import * # pylint: disable=wildcard-import,unused-wildcard-import DEBUG = True
py
7df869a15e76c28afb609fa4dbc059144ad70161
print("Hello, World!")
py
7df869a9e1b2e003f3dda19c95d6eed2ead330c2
from django.utils.translation import ugettext_lazy as _ from mayan.apps.navigation.classes import Link from mayan.apps.navigation.utils import factory_condition_queryset_access from .icons import ( icon_document_file_content, icon_document_file_content_delete_single, icon_document_file_content_delete_multiple, icon_document_file_content_download, icon_document_file_page_content, icon_document_file_parsing_errors_list, icon_document_file_submit, icon_document_type_parsing_settings, icon_document_type_submit, icon_error_list ) from .permissions import ( permission_document_file_content_view, permission_document_type_parsing_setup, permission_document_file_parse ) # Document file link_document_file_content = Link( args='resolved_object.id', icon=icon_document_file_content, permissions=(permission_document_file_content_view,), text=_('Content'), view='document_parsing:document_file_content_view' ) link_document_file_content_delete_single = Link( args='resolved_object.id', icon=icon_document_file_content_delete_single, permissions=(permission_document_file_parse,), text=_('Delete parsed content'), view='document_parsing:document_file_content_delete_single', ) link_document_file_content_delete_multiple = Link( icon=icon_document_file_content_delete_multiple, text=_('Delete parsed content'), view='document_parsing:document_file_content_delete_multiple', ) link_document_file_content_download = Link( args='resolved_object.id', icon=icon_document_file_content_download, permissions=(permission_document_file_content_view,), text=_('Download content'), view='document_parsing:document_file_content_download' ) link_document_file_page_content = Link( args='resolved_object.id', icon=icon_document_file_page_content, permissions=(permission_document_file_content_view,), text=_('Content'), view='document_parsing:document_file_page_content_view' ) link_document_file_parsing_errors_list = Link( args='resolved_object.id', icon=icon_document_file_parsing_errors_list, permissions=(permission_document_file_parse,), text=_('Parsing errors'), view='document_parsing:document_file_parsing_error_list' ) link_document_file_metadata_submit_multiple = Link( icon=icon_document_file_submit, text=_('Submit for parsing'), view='document_parsing:document_file_multiple_submit' ) link_document_file_metadata_submit_single = Link( args='resolved_object.id', icon=icon_document_file_submit, permissions=(permission_document_file_parse,), text=_('Submit for parsing'), view='document_parsing:document_file_submit' ) # Document type link_document_type_parsing_settings = Link( args='resolved_object.id', icon=icon_document_type_parsing_settings, permissions=(permission_document_type_parsing_setup,), text=_('Setup parsing'), view='document_parsing:document_type_parsing_settings' ) link_document_type_submit = Link( condition=factory_condition_queryset_access( app_label='documents', model_name='DocumentType', object_permission=permission_document_type_parsing_setup ), icon=icon_document_type_submit, text=_('Parse documents per type'), view='document_parsing:document_type_submit' ) # Errors link_error_list = Link( icon=icon_error_list, permissions=(permission_document_file_parse,), text=_('Parsing errors'), view='document_parsing:error_list' )
py
7df869c282ee9240794859aa64afb584ded88563
#!/usr/bin/env python3 """ itio: Interactive Twinleaf I/O License: MIT Author: Thomas Kornack <[email protected]> """ import tldevice import argparse parser = argparse.ArgumentParser(prog='itio', description='Interactive Twinleaf I/O.') parser.add_argument("url", nargs='?', default='tcp://localhost/', help='URL: tcp://localhost') parser.add_argument("--rpc", action='append', default=[], type=lambda kv: kv.split(":"), help='Commands to be sent on start; rpc:type:val') parser.add_argument('-v', action="store_true", default=False, help='Verbose output for debugging') parser.add_argument('-r', action="store_false", default=True, help='Ignore and rebuild rpc/stream cache') parser.add_argument('-t', action="store_true", default=False, help='Quit after 1 second network socket timeout') args = parser.parse_args() device = tldevice.Device(url=args.url, verbose=args.v, rpcs=args.rpc, stateCache=args.r, timeout=args.t) device._interact()
py
7df86a75c14f981589322bbddaf6dcdd609be417
# Generated by Django 3.1.2 on 2020-10-27 22:23 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('email', models.EmailField(max_length=255, unique=True)), ('name', models.CharField(max_length=255)), ('is_active', models.BooleanField(default=True)), ('is_staff', models.BooleanField(default=False)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'abstract': False, }, ), ]
py
7df86af4e43cdd103dffb6337fa249a86927903a
import discord from redbot.core import commands from redbot.core.utils.chat_formatting import box, humanize_list from .events import main class gsettings(main): def __init__(self, bot): super().__init__(bot) @commands.group( name="giveawaysettings", aliases=["gset", "giveawaysetting"], invoke_without_command=True, ) @commands.admin_or_permissions(administrator=True) async def gset(self, ctx): """ Customize giveaways to how you want them. All subcommands represent a separate settings.""" await ctx.send_help("gset") @gset.command(name="giveaway_message", aliases=["gmsg"], usage="<message>") @commands.admin_or_permissions(administrator=True) async def gmsg(self, ctx, *, message): """ Set a custom giveaway message. This message shows above the giveaway embed.""" await self.config.set_guild_msg(ctx.guild, message) await ctx.reply(f"The new giveaway message has been set to \n```\n{message}\n```") @gset.command(name="thank_message", aliases=["tmsg"]) @commands.admin_or_permissions(administrator=True) async def tmsg(self, ctx, *, message): """ Set a custom message for giveaways. This message gets sent in an embed when you use the `--thank` flag while starting a giveaway. Usable variables: - donor : donor.mention donor.display_name donor.name - prize Use these variables within curly brackets. For Example: `[p]gset tmsg Donated by: {donor.mention} Prize: **{prize}** Please thank **{donor.name}** in #general`""" await self.config.set_guild_tmsg(ctx.guild, message) await ctx.reply(f"The new giveaway message has been set to \n```\n{message}\n```") @gset.command(name="emoji", usage="<emoji>") @commands.admin_or_permissions(administrator=True) async def emoji(self, ctx, emoji: discord.Emoji): """ Set a custom giveaway emoji that the bot reacts with on giveaway embeds. The bot must have access to the emoji to be used.""" await self.config.set_guild_emoji(ctx.guild, emoji) await ctx.reply(f"The new giveaway emoji has been set to {emoji}") @gset.command(name="winnerdm", usage="<status>") @commands.admin_or_permissions(administrator=True) async def winnerdm(self, ctx, status: bool): """ Set whether the bot dms the winners when the giveaway ends. This won't be able to dm if the winners have their dms closed.""" await self.config.set_guild_windm(ctx.guild, status) await ctx.reply( "The winner will be dm'ed when the giveaway ends now." if status == True else "The winner will not be dm'ed when the giveaway ends." ) @gset.command(name="hostdm", usage="<status>") @commands.admin_or_permissions(administrator=True) async def hostdm(self, ctx, status: bool): """ Set whether the bot dms the host when the giveaway ends. This won't be able to dm if the host has their dms closed.""" await self.config.set_guild_hostdm(ctx.guild, status) await ctx.reply( "The host will be dm'ed when the giveaway ends now." if status == True else "The host will not be dm'ed when the giveaway ends." ) @gset.command(name="end_message", aliases=["endmsg"], usage="<message>") @commands.admin_or_permissions(administrator=True) async def endmsg(self, ctx, *, message): """ Set the message that gets sent when a giveaway ends. Usable variables: - prize : The prize of the giveaway - winner : The winner(s) of the giveaway - link : The jumplink to the giveaway. For example: `[p]gset endmsg Congratulations {winner}! You have won the givaway for **{prize}**. {link}`""" await self.config.set_guild_endmsg(ctx.guild, message) await ctx.reply(f"The ending message has been changed to\n```\n{message}\n```") @gset.command(name="manager", usage="<role>") @commands.admin_or_permissions(administrator=True) async def manager(self, ctx, *roles: discord.Role): """ Set roles that can manage giveaways in your server. If you dont set this up, users will need either manage messages permission or the server's bot mod role.""" await self.config.set_manager(ctx.guild, [role.id for role in roles]) await ctx.reply( f"{humanize_list(role.mention for role in roles)} have been set as the giveaway managers!", allowed_mentions=discord.AllowedMentions(roles=False, replied_user=False), ) @gset.command(name="pingrole", usage="<role>") @commands.admin_or_permissions(administrator=True) async def pingrole(self, ctx, role: discord.Role): """ Set which role gets pinged in giveaways. This only takes effect when the `--ping` is used in giveaways.""" await self.config.set_guild_pingrole(ctx.guild, role.id) await ctx.reply( f"{role.mention} has been set as the pingrole!", allowed_mentions=discord.AllowedMentions(roles=False, replied_user=False), ) @gset.command(name="autodelete", aliases=["autodel"]) @commands.guild_only() @commands.admin_or_permissions(administrator=True) async def auto(self, ctx, toggle: bool): """ Set whether giveaway command invocations get automatically deleted or not. Pass true to delete and false to not.""" await self.config.set_guild_autodelete(ctx.guild, toggle) await ctx.reply( "Giveaway commands will automatically delete now." if toggle == True else "Giveaway commands will retain." ) @gset.command(name="blacklist", aliases=["bl"]) @commands.guild_only() @commands.admin_or_permissions(administrator=True) @commands.bot_has_permissions(embed_links=True) async def bl_role(self, ctx, roles: commands.Greedy[discord.Role] = None): """ Blacklist roles from giveaway permanently without having to pass them as requirements each time. You can send multiple role ids or mentions. Sending nothing will show a list of blacklisted roles.""" if not roles: roles = await self.config.all_blacklisted_roles(ctx.guild, False) return await ctx.send( embed=discord.Embed( title=f"Giveaway Blacklisted Roles in `{ctx.guild.name}`!", description="\n\n".join([str(role.mention) for role in roles]) if roles else "No roles have been blacklisted from giveaways permanently.", color=discord.Color.green(), ) ) roles = await self.config.blacklist_role(ctx.guild, roles) await ctx.send(roles) @gset.command(name="unblacklist", aliases=["ubl"]) @commands.guild_only() @commands.admin_or_permissions(administrator=True) @commands.bot_has_permissions(embed_links=True) async def ubl_role(self, ctx, roles: commands.Greedy[discord.Role]): """ Unblacklist previously blacklisted roles from giveaways.""" roles = await self.config.unblacklist_role(ctx.guild, roles) return await ctx.send(roles) @gset.command(name="bypass", aliases=["by"]) @commands.guild_only() @commands.admin_or_permissions(administrator=True) @commands.bot_has_permissions(embed_links=True) async def by_role( self, ctx, add_or_remove=None, roles: commands.Greedy[discord.Role] = None, ): """ Set roles to bypass all giveaways in your server. Passing no parameters will show a list of all roles set to bypass. 1st argument should be either of add or remove 2nd should be role ids or mentions separated by spaces.""" if not add_or_remove and not roles: roles = await self.config.all_bypass_roles(ctx.guild, False) return await ctx.send( embed=discord.Embed( title=f"Role Bypasses for `{ctx.guild.name}`!", description="\n\n".join([str(role.mention) for role in roles]) if roles else "No role bypasses set in this server.", color=discord.Color.green(), ) ) if not add_or_remove.lower() in ["add", "remove"]: return await ctx.send_help("gset bypass") if add_or_remove.lower() == "add": roles = await self.config.bypass_role(ctx.guild, roles) return await ctx.send(roles) roles = await self.config.unbypass_role(ctx.guild, roles) return await ctx.send(roles) @gset.command(name="multi", aliases=["rolemulti", "rm"]) @commands.guild_only() @commands.admin_or_permissions(administrator=True) @commands.bot_has_permissions(embed_links=True) async def role_multi( self, ctx, add_or_remove=None, role: discord.Role = None, multi: int = None, ): """ Add role multipliers for giveaways. This multiplier gives extra entries to users with that role in giveaways. If a user has multiple roles each with its separate multiplier, all of them will apply to him. A role's multiplier can not be greater than 5. Passing no parameters will shpow you the current multipliers of the server. [add_or_remove] takes either of 'add' or 'remove'. [role] is the role name, id or mention and [multi] is the multiplier amount. This is not required when you are removing.""" if not add_or_remove and not role and not multi: roles = await self.config.get_all_roles_multi(ctx.guild) return await ctx.send( embed=discord.Embed( title=f"Role Multipliers for `{ctx.guild.name}`'s giveaways!", description=box( "\n\n".join( [ f"@{k.name:<10} {'<'+'-'*15+'>':>5} {v:>5}" for k, v in roles.items() ] ) if roles else "No role multipliers set in this server." ), color=discord.Color.green(), ) ) if not add_or_remove.lower() in ["add", "remove"]: return await ctx.send_help("gset multi") if add_or_remove.lower() == "add": if multi > 5: return await ctx.send("Multipliers must be under 5x.") role = await self.config.set_role_multi(role, multi) return await ctx.send(role) else: role = await self.config.reset_role_multi(role) return await ctx.send(role) @gset.command(name="showsettings", aliases=["ss", "show", "showset"]) @commands.admin_or_permissions(administrator=True) @commands.bot_has_permissions(embed_links=True) async def show(self, ctx): """ See giveaway settings configured for your server""" message = await self.config.get_guild_msg(ctx.guild) emoji = await self.config.get_guild_emoji(ctx.guild) winnerdm = await self.config.dm_winner(ctx.guild) hostdm = await self.config.dm_host(ctx.guild) endmsg = await self.config.get_guild_endmsg(ctx.guild) managers = await self.config.get_managers(ctx.guild) autodelete = await self.config.config.guild(ctx.guild).autodelete() embed = discord.Embed( title=f"Giveaway Settings for **__{ctx.guild.name}__**", description=f""" **Giveaway Managers:** {humanize_list([manager.mention for manager in managers if manager]) if managers else "No managers set. Requires manage message permission or bot's mod role."} **Message:** {message} **Reaction Emoji:** {emoji} **Will the winner be dm'ed?:** {winnerdm} **Will the host be dm'ed?:** {hostdm} **Auto delete Giveaway Commands?:** {autodelete} **Giveaway Ending message:** \n```\n{endmsg}\n```\n """, color=discord.Color.green(), ) embed.set_footer(text=ctx.guild.name, icon_url=ctx.guild.icon.url) embed.set_thumbnail(url=ctx.author.avatar.url) await ctx.send(embed=embed)
py
7df86b284691fc15aadbc603c06946f579413db9
# -*- coding: utf-8 -*- """Test epoch_ms and utc datetime conversions.""" from dsdk.utils import ( epoch_ms_from_utc_datetime, now_utc_datetime, utc_datetime_from_epoch_ms, ) def test_conversions(): """Test conversions.""" expected = now_utc_datetime() epoch_ms = epoch_ms_from_utc_datetime(expected) actual = utc_datetime_from_epoch_ms(epoch_ms) assert expected == actual
py
7df86bad312c920fce947b96eb8ad3d58ca3aeca
""" Created on February 16 2021 @author: Andreas Spanopoulos Script used to train an Alpha Zero agent. Example usage: python3 train.py --train-config ../configurations/training_hyperparams.ini --nn-config ../configurations/neural_network_architecture.ini --nn-checkpoints ../models/checkpoints --mcts-config ../configurations/mcts_hyperparams.ini --device cpu """ import logging import torch from src.utils.main_utils import parse_train_input from src.utils.config_parsing_utils import parse_config_file from src.environment.variants.racing_kings import RacingKingsEnv from src.environment.actions.racing_kings_actions import RacingKingsActions from src.neural_network.network import NeuralNetwork from src.neural_network.generic_network import GenericNeuralNetwork from src.agent.chess_agent import AlphaZeroChessAgent def main(args): """ main() driver function """ # set logging format fmt = "(%(filename)s:%(lineno)d) [%(levelname)s]: %(message)s" logging.basicConfig(level=logging.INFO, format=fmt) # create the environment and an API used to translate actions into their corresponding IDs env = RacingKingsEnv() mvt = RacingKingsActions() # parse the specific configuration files in order to start building the class objects model_configuration = parse_config_file(args.nn_config, _type='nn_architecture') mcts_configuration = parse_config_file(args.mcts_config, _type='mcts_hyperparams') train_configuration = parse_config_file(args.train_config, _type='training') # add the checkpoints dictionary path to the training configuration dictionary train_configuration['checkpoints_directory'] = args.nn_checkpoints # determine the device on which to build and train the NN device = torch.device(args.device) # add additional information to the NN configuration and initialize it model_configuration['input_shape'] = torch.Tensor(env.current_state_representation).shape model_configuration['num_actions'] = mvt.num_actions if args.generic: model = GenericNeuralNetwork(model_configuration, device).to(device) else: model = NeuralNetwork(model_configuration, device).to(device) # finally create the Chess agent chess_agent = AlphaZeroChessAgent(env=env, mvt=mvt, nn=model, device=device, mcts_config=mcts_configuration, train_config=train_configuration, pretrained_w=args.pre_trained_weights) # train the Chess agent using self play chess_agent.train_agent() if __name__ == "__main__": print() arg = parse_train_input() main(arg)
py
7df86c212be8dda944ed4b4ed0e23299f498d4a6
import os cwd = os.getcwd() service_text = """ [Unit] Description=PyFilter After=network.target [Service] WorkingDirectory={} ExecStart={}/run.sh [Install] WantedBy=multi-user.target """.format(cwd, cwd) with open("PyFilter.service", "w") as f: f.write(service_text)
py
7df86cb198f37a44af6a3378f8cb50a7ab61ca62
from abc import ABC, abstractmethod class Annotator(ABC): def __init__(self): super().__init__() @abstractmethod def annotate(self, string_of_text): pass
py
7df86d086cba81a2850eeacbd9d371441842a596
import numpy as np from faker import Faker import random from tqdm import tqdm from babel.dates import format_date from keras.utils import to_categorical import keras.backend as K import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt from matplotlib.pyplot import imshow matplotlib.pyplot.ion() fake = Faker() fake.seed(12345) random.seed(12345) # Define format of the data we would like to generate FORMATS = ['short', 'medium', 'long', 'full', 'full', 'full', 'full', 'full', 'full', 'full', 'full', 'full', 'full', 'd MMM YYY', 'd MMMM YYY', 'dd MMM YYY', 'd MMM, YYY', 'd MMMM, YYY', 'dd, MMM YYY', 'd MM YY', 'd MMMM YYY', 'MMMM d YYY', 'MMMM d, YYY', 'dd.MM.YY'] # change this if you want it to work with another language LOCALES = ['en_US'] def load_date(): """ Loads some fake dates :returns: tuple containing human readable string, machine readable string, and date object """ dt = fake.date_object() try: human_readable = format_date(dt, format=random.choice(FORMATS), locale=random.choice(LOCALES)) human_readable = human_readable.lower() human_readable = human_readable.replace(',','') machine_readable = dt.isoformat() except AttributeError as e: return None, None, None return human_readable, machine_readable, dt def load_dataset(m): """ Loads a dataset with m examples and vocabularies :m: the number of examples to generate """ human_vocab = set() machine_vocab = set() dataset = [] Tx = 30 for i in tqdm(range(m)): h, m, _ = load_date() if h is not None: dataset.append((h, m)) human_vocab.update(tuple(h)) machine_vocab.update(tuple(m)) human = dict(zip( sorted(human_vocab) + ['<unk>', '<pad>'], list(range(len(human_vocab) + 2)) )) inv_machine = dict(enumerate(sorted(machine_vocab))) machine = { v:k for k,v in inv_machine.items() } return dataset, human, machine, inv_machine def preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty): X, Y = zip(*dataset) X = np.array([string_to_int(i, Tx, human_vocab) for i in X]) # X = [string_to_int(i, Tx, human_vocab) for i in X] Y = np.array([string_to_int(t, Ty, machine_vocab) for t in Y]) # Y = [string_to_int(t, Ty, machine_vocab) for t in Y] Xoh = np.array(list(map(lambda x: to_categorical(x, num_classes=len(human_vocab)), X))) Yoh = np.array(list(map(lambda x: to_categorical(x, num_classes=len(machine_vocab)), Y))) return X, Y, Xoh, Yoh def string_to_int(string, length, vocab): """ Converts all strings in the vocabulary into a list of integers representing the positions of the input string's characters in the "vocab" Arguments: string -- input string, e.g. 'Wed 10 Jul 2007' length -- the number of time steps you'd like, determines if the output will be padded or cut vocab -- vocabulary, dictionary used to index every character of your "string" Returns: rep -- list of integers (or '<unk>') (size = length) representing the position of the string's character in the vocabulary """ #make lower to standardize string = string.lower() string = string.replace(',','') if len(string) > length: string = string[:length] rep = list(map(lambda x: vocab.get(x, '<unk>'), string)) if len(string) < length: rep += [vocab['<pad>']] * (length - len(string)) #print (rep) return rep def int_to_string(ints, inv_vocab): """ Output a machine readable list of characters based on a list of indexes in the machine's vocabulary Arguments: ints -- list of integers representing indexes in the machine's vocabulary inv_vocab -- dictionary mapping machine readable indexes to machine readable characters Returns: l -- list of characters corresponding to the indexes of ints thanks to the inv_vocab mapping """ l = [inv_vocab[i] for i in ints] return l EXAMPLES = ['3 May 1979', '5 Apr 09', '20th February 2016', 'Wed 10 Jul 2007'] def run_example(model, input_vocabulary, inv_output_vocabulary, text): encoded = string_to_int(text, TIME_STEPS, input_vocabulary) prediction = model.predict(np.array([encoded])) prediction = np.argmax(prediction[0], axis=-1) return int_to_string(prediction, inv_output_vocabulary) def run_examples(model, input_vocabulary, inv_output_vocabulary, examples=EXAMPLES): predicted = [] for example in examples: predicted.append(''.join(run_example(model, input_vocabulary, inv_output_vocabulary, example))) print('input:', example) print('output:', predicted[-1]) return predicted def softmax(x, axis=1): """Softmax activation function. # Arguments x : Tensor. axis: Integer, axis along which the softmax normalization is applied. # Returns Tensor, output of softmax transformation. # Raises ValueError: In case `dim(x) == 1`. """ ndim = K.ndim(x) if ndim == 2: return K.softmax(x) elif ndim > 2: e = K.exp(x - K.max(x, axis=axis, keepdims=True)) s = K.sum(e, axis=axis, keepdims=True) return e / s else: raise ValueError('Cannot apply softmax to a tensor that is 1D') def plot_attention_map(model, input_vocabulary, inv_output_vocabulary, text, n_s = 128, num = 6, Tx = 30, Ty = 10): """ Plot the attention map. """ attention_map = np.zeros((10, 30)) Ty, Tx = attention_map.shape s0 = np.zeros((1, n_s)) c0 = np.zeros((1, n_s)) layer = model.layers[num] encoded = np.array(string_to_int(text, Tx, input_vocabulary)).reshape((1, 30)) encoded = np.array(list(map(lambda x: to_categorical(x, num_classes=len(input_vocabulary)), encoded))) f = K.function(model.inputs, [layer.get_output_at(t) for t in range(Ty)]) r = f([encoded, s0, c0]) for t in range(Ty): for t_prime in range(Tx): attention_map[t][t_prime] = r[t][0,t_prime,0] # Normalize attention map # row_max = attention_map.max(axis=1) # attention_map = attention_map / row_max[:, None] prediction = model.predict([encoded, s0, c0]) predicted_text = [] for i in range(len(prediction)): predicted_text.append(int(np.argmax(prediction[i], axis=1))) predicted_text = list(predicted_text) predicted_text = int_to_string(predicted_text, inv_output_vocabulary) text_ = list(text) # get the lengths of the string input_length = len(text) output_length = Ty # Plot the attention_map plt.clf() f = plt.figure(figsize=(8, 8.5)) ax = f.add_subplot(1, 1, 1) # add image i = ax.imshow(attention_map, interpolation='nearest', cmap='Blues') # add colorbar cbaxes = f.add_axes([0.2, 0, 0.6, 0.03]) cbar = f.colorbar(i, cax=cbaxes, orientation='horizontal') cbar.ax.set_xlabel('Alpha value (Probability output of the "softmax")', labelpad=2) # add labels ax.set_yticks(range(output_length)) ax.set_yticklabels(predicted_text[:output_length]) ax.set_xticks(range(input_length)) ax.set_xticklabels(text_[:input_length], rotation=45) ax.set_xlabel('Input Sequence') ax.set_ylabel('Output Sequence') # add grid and legend ax.grid() #f.show() return attention_map
py
7df86d0cbd44d4fff1e5665839d4bb915a1a32ca
#!/usr/bin/python3 # -*- coding:utf-8 -*- # Project: http://plankton-toolbox.org # Copyright (c) 2010-2018 SMHI, Swedish Meteorological and Hydrological Institute # License: MIT License (see LICENSE.txt or http://opensource.org/licenses/mit). from PyQt5 import QtGui from PyQt5 import QtWidgets #from PyQt5 import QtCore from abc import abstractmethod class ActivityBase(QtWidgets.QWidget): """ Abstract base class for activities. """ def __init__(self, name, parentwidget): """ """ # Initialize parent. super(ActivityBase, self).__init__(parentwidget) self._parent = parentwidget self._mainmenubutton = None # self._write_to_status_bar('Loading ' + name + '...') # self.setObjectName(name) # Add specific content. Abstract, implemented by subclasses. self._create_content() # self._write_to_status_bar('') def set_main_menu_button(self, button): """ """ self._mainmenubutton = button def get_main_menu_button(self): """ """ return self._mainmenubutton def show_in_main_window(self): """ """ self._parent.showActivity(self) @abstractmethod def _create_content(self): """ Used to create the content of the activity window. Note: Abstract. Should be implemented by subclasses. """ pass def _create_scrollable_content(self): """ Creates the scrollable part of the activity content. Used by subclasses, if needed. """ content = QtWidgets.QWidget() # Add scroll. mainscroll = QtWidgets.QScrollArea() ### mainscroll.setFrameShape(QtWidgets.QFrame.NoFrame) mainscroll.setWidget(content) mainscroll.setWidgetResizable(True) mainlayout = QtWidgets.QVBoxLayout() mainlayout.setContentsMargins(0, 0, 0, 0) mainlayout.setSpacing(0) mainlayout.addWidget(mainscroll) self.setLayout(mainlayout) return content def _write_to_status_bar(self, message): """ Used to write short messages to the main window status bar. """ self._parent.statusBar().showMessage(message) def _write_to_log(self, message): """ Used to write log messages. Depending on the main window settings they will appear on different locations, for example in log file and/or in the Log tool window. """ self._parent.write_to_log(message)
py
7df86d3e886ba90d75403585f7713849757fcf36
from typing import List # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def inorderTraversal(self, root: TreeNode) -> List[int]: """ Time complexity: O(N) since visit exactly N nodes once. Space complexity: O(N) for skew binary tree; O(log N) for balance binary tree. Space due to recursive depth stack space Runtime: 32 ms, faster than 92.54% of Python3 online submissions for Binary Tree Inorder Traversal. """ def values(node: TreeNode, nums: List[int]) -> List[int]: if not node: return nums values(node.left, nums) nums.append(node.val) values(node.right, nums) return nums return values(root, [])
py
7df86d4df1249adaaaf690aff50a56b57f459880
#---------------------------------------------------------------------- # Name: wxPython.lib.editor.Editor # Purpose: An intelligent text editor with colorization capabilities. # # Original # Authors: Dirk Holtwic, Robin Dunn # # New # Authors: Adam Feuer, Steve Howell # # History: # This code used to support a fairly complex subclass that did # syntax coloring and outliner collapse mode. Adam and Steve # inherited the code, and added a lot of basic editor # functionality that had not been there before, such as cut-and-paste. # # # Created: 15-Dec-1999 # RCS-ID: $Id: editor.py 51004 2008-01-03 08:17:39Z RD $ # Copyright: (c) 1999 by Dirk Holtwick, 1999 # Licence: wxWindows license #---------------------------------------------------------------------- # 12/14/2003 - Jeff Grimmett ([email protected]) # # o 2.5 compatability update. # # 12/21/2003 - Jeff Grimmett ([email protected]) # # o wxEditor -> Editor # import os import time import wx import selection import images #---------------------------- def ForceBetween(min, val, max): if val > max: return max if val < min: return min return val def LineTrimmer(lineOfText): if len(lineOfText) == 0: return "" elif lineOfText[-1] == '\r': return lineOfText[:-1] else: return lineOfText def LineSplitter(text): return map (LineTrimmer, text.split('\n')) #---------------------------- class Scroller: def __init__(self, parent): self.parent = parent self.ow = 0 self.oh = 0 self.ox = 0 self.oy = 0 def SetScrollbars(self, fw, fh, w, h, x, y): if (self.ow != w or self.oh != h or self.ox != x or self.oy != y): self.parent.SetScrollbars(fw, fh, w, h, x, y) self.ow = w self.oh = h self.ox = x self.oy = y #---------------------------------------------------------------------- class Editor(wx.ScrolledWindow): def __init__(self, parent, id, pos=wx.DefaultPosition, size=wx.DefaultSize, style=0): wx.ScrolledWindow.__init__(self, parent, id, pos, size, style|wx.WANTS_CHARS) self.isDrawing = False self.InitCoords() self.InitFonts() self.SetColors() self.MapEvents() self.LoadImages() self.InitDoubleBuffering() self.InitScrolling() self.SelectOff() self.SetFocus() self.SetText([""]) self.SpacesPerTab = 4 ##------------------ Init stuff def InitCoords(self): self.cx = 0 self.cy = 0 self.oldCx = 0 self.oldCy = 0 self.sx = 0 self.sy = 0 self.sw = 0 self.sh = 0 self.sco_x = 0 self.sco_y = 0 def MapEvents(self): self.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown) self.Bind(wx.EVT_LEFT_UP, self.OnLeftUp) self.Bind(wx.EVT_MOTION, self.OnMotion) self.Bind(wx.EVT_SCROLLWIN, self.OnScroll) self.Bind(wx.EVT_CHAR, self.OnChar) self.Bind(wx.EVT_PAINT, self.OnPaint) self.Bind(wx.EVT_SIZE, self.OnSize) self.Bind(wx.EVT_WINDOW_DESTROY, self.OnDestroy) self.Bind(wx.EVT_ERASE_BACKGROUND, self.OnEraseBackground) ##------------------- Platform-specific stuff def NiceFontForPlatform(self): if wx.Platform == "__WXMSW__": font = wx.Font(10, wx.MODERN, wx.NORMAL, wx.NORMAL) else: font = wx.Font(12, wx.MODERN, wx.NORMAL, wx.NORMAL, False) if wx.Platform == "__WXMAC__": font.SetNoAntiAliasing() return font def UnixKeyHack(self, key): # # this will be obsolete when we get the new wxWindows patch # # 12/14/03 - jmg # # Which patch? I don't know if this is needed, but I don't know # why it's here either. Play it safe; leave it in. # if key <= 26: key += ord('a') - 1 return key ##-------------------- UpdateView/Cursor code def OnSize(self, event): self.AdjustScrollbars() self.SetFocus() def SetCharDimensions(self): # TODO: We need a code review on this. It appears that Linux # improperly reports window dimensions when the scrollbar's there. self.bw, self.bh = self.GetClientSize() if wx.Platform == "__WXMSW__": self.sh = self.bh / self.fh self.sw = (self.bw / self.fw) - 1 else: self.sh = self.bh / self.fh if self.LinesInFile() >= self.sh: self.bw = self.bw - wx.SystemSettings_GetMetric(wx.SYS_VSCROLL_X) self.sw = (self.bw / self.fw) - 1 self.sw = (self.bw / self.fw) - 1 if self.CalcMaxLineLen() >= self.sw: self.bh = self.bh - wx.SystemSettings_GetMetric(wx.SYS_HSCROLL_Y) self.sh = self.bh / self.fh def UpdateView(self, dc = None): if dc is None: dc = wx.ClientDC(self) if dc.Ok(): self.SetCharDimensions() self.KeepCursorOnScreen() self.DrawSimpleCursor(0,0, dc, True) self.Draw(dc) def OnPaint(self, event): dc = wx.PaintDC(self) if self.isDrawing: return self.isDrawing = True self.UpdateView(dc) wx.CallAfter(self.AdjustScrollbars) self.isDrawing = False def OnEraseBackground(self, evt): pass ##-------------------- Drawing code def InitFonts(self): dc = wx.ClientDC(self) self.font = self.NiceFontForPlatform() dc.SetFont(self.font) self.fw = dc.GetCharWidth() self.fh = dc.GetCharHeight() def SetColors(self): self.fgColor = wx.NamedColour('black') self.bgColor = wx.NamedColour('white') self.selectColor = wx.Colour(238, 220, 120) # r, g, b = emacsOrange def InitDoubleBuffering(self): pass def DrawEditText(self, t, x, y, dc): dc.DrawText(t, x * self.fw, y * self.fh) def DrawLine(self, line, dc): if self.IsLine(line): l = line t = self.lines[l] dc.SetTextForeground(self.fgColor) fragments = selection.Selection( self.SelectBegin, self.SelectEnd, self.sx, self.sw, line, t) x = 0 for (data, selected) in fragments: if selected: dc.SetTextBackground(self.selectColor) if x == 0 and len(data) == 0 and len(fragments) == 1: data = ' ' else: dc.SetTextBackground(self.bgColor) self.DrawEditText(data, x, line - self.sy, dc) x += len(data) def Draw(self, odc=None): if not odc: odc = wx.ClientDC(self) dc = wx.BufferedDC(odc) if dc.IsOk(): dc.SetFont(self.font) dc.SetBackgroundMode(wx.SOLID) dc.SetTextBackground(self.bgColor) dc.SetTextForeground(self.fgColor) dc.Clear() for line in range(self.sy, self.sy + self.sh): self.DrawLine(line, dc) if len(self.lines) < self.sh + self.sy: self.DrawEofMarker(dc) self.DrawCursor(dc) ##------------------ eofMarker stuff def LoadImages(self): self.eofMarker = images.EofImage.GetBitmap() def DrawEofMarker(self,dc): x = 0 y = (len(self.lines) - self.sy) * self.fh hasTransparency = 1 dc.DrawBitmap(self.eofMarker, x, y, hasTransparency) ##------------------ cursor-related functions def DrawCursor(self, dc = None): if not dc: dc = wx.ClientDC(self) if (self.LinesInFile())<self.cy: #-1 ? self.cy = self.LinesInFile()-1 s = self.lines[self.cy] x = self.cx - self.sx y = self.cy - self.sy self.DrawSimpleCursor(x, y, dc) def DrawSimpleCursor(self, xp, yp, dc = None, old=False): if not dc: dc = wx.ClientDC(self) if old: xp = self.sco_x yp = self.sco_y szx = self.fw szy = self.fh x = xp * szx y = yp * szy dc.Blit(x,y, szx,szy, dc, x,y, wx.SRC_INVERT) self.sco_x = xp self.sco_y = yp ##-------- Enforcing screen boundaries, cursor movement def CalcMaxLineLen(self): """get length of longest line on screen""" maxlen = 0 for line in self.lines[self.sy:self.sy+self.sh]: if len(line) >maxlen: maxlen = len(line) return maxlen def KeepCursorOnScreen(self): self.sy = ForceBetween(max(0, self.cy-self.sh), self.sy, self.cy) self.sx = ForceBetween(max(0, self.cx-self.sw), self.sx, self.cx) self.AdjustScrollbars() def HorizBoundaries(self): self.SetCharDimensions() maxLineLen = self.CalcMaxLineLen() self.sx = ForceBetween(0, self.sx, max(self.sw, maxLineLen - self.sw + 1)) self.cx = ForceBetween(self.sx, self.cx, self.sx + self.sw - 1) def VertBoundaries(self): self.SetCharDimensions() self.sy = ForceBetween(0, self.sy, max(self.sh, self.LinesInFile() - self.sh + 1)) self.cy = ForceBetween(self.sy, self.cy, self.sy + self.sh - 1) def cVert(self, num): self.cy = self.cy + num self.cy = ForceBetween(0, self.cy, self.LinesInFile() - 1) self.sy = ForceBetween(self.cy - self.sh + 1, self.sy, self.cy) self.cx = min(self.cx, self.CurrentLineLength()) def cHoriz(self, num): self.cx = self.cx + num self.cx = ForceBetween(0, self.cx, self.CurrentLineLength()) self.sx = ForceBetween(self.cx - self.sw + 1, self.sx, self.cx) def AboveScreen(self, row): return row < self.sy def BelowScreen(self, row): return row >= self.sy + self.sh def LeftOfScreen(self, col): return col < self.sx def RightOfScreen(self, col): return col >= self.sx + self.sw ##----------------- data structure helper functions def GetText(self): return self.lines def SetText(self, lines): self.InitCoords() self.lines = lines self.UnTouchBuffer() self.SelectOff() self.AdjustScrollbars() self.UpdateView(None) def IsLine(self, lineNum): return (0<=lineNum) and (lineNum<self.LinesInFile()) def GetTextLine(self, lineNum): if self.IsLine(lineNum): return self.lines[lineNum] return "" def SetTextLine(self, lineNum, text): if self.IsLine(lineNum): self.lines[lineNum] = text def CurrentLineLength(self): return len(self.lines[self.cy]) def LinesInFile(self): return len(self.lines) def UnTouchBuffer(self): self.bufferTouched = False def BufferWasTouched(self): return self.bufferTouched def TouchBuffer(self): self.bufferTouched = True ##-------------------------- Mouse scroll timing functions def InitScrolling(self): # we don't rely on the windows system to scroll for us; we just # redraw the screen manually every time self.EnableScrolling(False, False) self.nextScrollTime = 0 self.SCROLLDELAY = 0.050 # seconds self.scrollTimer = wx.Timer(self) self.scroller = Scroller(self) def CanScroll(self): if time.time() > self.nextScrollTime: self.nextScrollTime = time.time() + self.SCROLLDELAY return True else: return False def SetScrollTimer(self): oneShot = True self.scrollTimer.Start(1000*self.SCROLLDELAY/2, oneShot) self.Bind(wx.EVT_TIMER, self.OnTimer) def OnTimer(self, event): screenX, screenY = wx.GetMousePosition() x, y = self.ScreenToClientXY(screenX, screenY) self.MouseToRow(y) self.MouseToCol(x) self.SelectUpdate() ##-------------------------- Mouse off screen functions def HandleAboveScreen(self, row): self.SetScrollTimer() if self.CanScroll(): row = self.sy - 1 row = max(0, row) self.cy = row def HandleBelowScreen(self, row): self.SetScrollTimer() if self.CanScroll(): row = self.sy + self.sh row = min(row, self.LinesInFile() - 1) self.cy = row def HandleLeftOfScreen(self, col): self.SetScrollTimer() if self.CanScroll(): col = self.sx - 1 col = max(0,col) self.cx = col def HandleRightOfScreen(self, col): self.SetScrollTimer() if self.CanScroll(): col = self.sx + self.sw col = min(col, self.CurrentLineLength()) self.cx = col ##------------------------ mousing functions def MouseToRow(self, mouseY): row = self.sy + (mouseY/ self.fh) if self.AboveScreen(row): self.HandleAboveScreen(row) elif self.BelowScreen(row): self.HandleBelowScreen(row) else: self.cy = min(row, self.LinesInFile() - 1) def MouseToCol(self, mouseX): col = self.sx + (mouseX / self.fw) if self.LeftOfScreen(col): self.HandleLeftOfScreen(col) elif self.RightOfScreen(col): self.HandleRightOfScreen(col) else: self.cx = min(col, self.CurrentLineLength()) def MouseToCursor(self, event): self.MouseToRow(event.GetY()) self.MouseToCol(event.GetX()) def OnMotion(self, event): if event.LeftIsDown() and self.HasCapture(): self.Selecting = True self.MouseToCursor(event) self.SelectUpdate() def OnLeftDown(self, event): self.MouseToCursor(event) self.SelectBegin = (self.cy, self.cx) self.SelectEnd = None self.UpdateView() self.CaptureMouse() self.SetFocus() def OnLeftUp(self, event): if not self.HasCapture(): return if self.SelectEnd is None: self.OnClick() else: self.Selecting = False self.SelectNotify(False, self.SelectBegin, self.SelectEnd) self.ReleaseMouse() self.scrollTimer.Stop() #------------------------- Scrolling def HorizScroll(self, event, eventType): maxLineLen = self.CalcMaxLineLen() if eventType == wx.EVT_SCROLLWIN_LINEUP: self.sx -= 1 elif eventType == wx.EVT_SCROLLWIN_LINEDOWN: self.sx += 1 elif eventType == wx.EVT_SCROLLWIN_PAGEUP: self.sx -= self.sw elif eventType == wx.EVT_SCROLLWIN_PAGEDOWN: self.sx += self.sw elif eventType == wx.EVT_SCROLLWIN_TOP: self.sx = self.cx = 0 elif eventType == wx.EVT_SCROLLWIN_BOTTOM: self.sx = maxLineLen - self.sw self.cx = maxLineLen else: self.sx = event.GetPosition() self.HorizBoundaries() def VertScroll(self, event, eventType): if eventType == wx.EVT_SCROLLWIN_LINEUP: self.sy -= 1 elif eventType == wx.EVT_SCROLLWIN_LINEDOWN: self.sy += 1 elif eventType == wx.EVT_SCROLLWIN_PAGEUP: self.sy -= self.sh elif eventType == wx.EVT_SCROLLWIN_PAGEDOWN: self.sy += self.sh elif eventType == wx.EVT_SCROLLWIN_TOP: self.sy = self.cy = 0 elif eventType == wx.EVT_SCROLLWIN_BOTTOM: self.sy = self.LinesInFile() - self.sh self.cy = self.LinesInFile() else: self.sy = event.GetPosition() self.VertBoundaries() def OnScroll(self, event): dir = event.GetOrientation() eventType = event.GetEventType() if dir == wx.HORIZONTAL: self.HorizScroll(event, eventType) else: self.VertScroll(event, eventType) self.UpdateView() def AdjustScrollbars(self): if self: for i in range(2): self.SetCharDimensions() self.scroller.SetScrollbars( self.fw, self.fh, self.CalcMaxLineLen()+3, max(self.LinesInFile()+1, self.sh), self.sx, self.sy) #------------ backspace, delete, return def BreakLine(self, event): if self.IsLine(self.cy): t = self.lines[self.cy] self.lines = self.lines[:self.cy] + [t[:self.cx],t[self.cx:]] + self.lines[self.cy+1:] self.cVert(1) self.cx = 0 self.TouchBuffer() def InsertChar(self,char): if self.IsLine(self.cy): t = self.lines[self.cy] t = t[:self.cx] + char + t[self.cx:] self.SetTextLine(self.cy, t) self.cHoriz(1) self.TouchBuffer() def JoinLines(self): t1 = self.lines[self.cy] t2 = self.lines[self.cy+1] self.cx = len(t1) self.lines = self.lines[:self.cy] + [t1 + t2] + self.lines[self.cy+2:] self.TouchBuffer() def DeleteChar(self,x,y,oldtext): newtext = oldtext[:x] + oldtext[x+1:] self.SetTextLine(y, newtext) self.TouchBuffer() def BackSpace(self, event): t = self.GetTextLine(self.cy) if self.cx>0: self.DeleteChar(self.cx-1,self.cy,t) self.cHoriz(-1) self.TouchBuffer() elif self.cx == 0: if self.cy > 0: self.cy -= 1 self.JoinLines() self.TouchBuffer() else: wx.Bell() def Delete(self, event): t = self.GetTextLine(self.cy) if self.cx<len(t): self.DeleteChar(self.cx,self.cy,t) self.TouchBuffer() else: if self.cy < len(self.lines) - 1: self.JoinLines() self.TouchBuffer() def Escape(self, event): self.SelectOff() def TabKey(self, event): numSpaces = self.SpacesPerTab - (self.cx % self.SpacesPerTab) self.SingleLineInsert(' ' * numSpaces) ##----------- selection routines def SelectUpdate(self): self.SelectEnd = (self.cy, self.cx) self.SelectNotify(self.Selecting, self.SelectBegin, self.SelectEnd) self.UpdateView() def NormalizedSelect(self): (begin, end) = (self.SelectBegin, self.SelectEnd) (bRow, bCol) = begin (eRow, eCol) = end if (bRow < eRow): return (begin, end) elif (eRow < bRow): return (end, begin) else: if (bCol < eCol): return (begin, end) else: return (end, begin) def FindSelection(self): if self.SelectEnd is None or self.SelectBegin is None: wx.Bell() return None (begin, end) = self.NormalizedSelect() (bRow, bCol) = begin (eRow, eCol) = end return (bRow, bCol, eRow, eCol) def SelectOff(self): self.SelectBegin = None self.SelectEnd = None self.Selecting = False self.SelectNotify(False,None,None) def CopySelection(self, event): selection = self.FindSelection() if selection is None: return (bRow, bCol, eRow, eCol) = selection if bRow == eRow: self.SingleLineCopy(bRow, bCol, eCol) else: self.MultipleLineCopy(bRow, bCol, eRow, eCol) def OnCopySelection(self, event): self.CopySelection(event) self.SelectOff() def CopyToClipboard(self, linesOfText): do = wx.TextDataObject() do.SetText(os.linesep.join(linesOfText)) wx.TheClipboard.Open() wx.TheClipboard.SetData(do) wx.TheClipboard.Close() def SingleLineCopy(self, Row, bCol, eCol): Line = self.GetTextLine(Row) self.CopyToClipboard([Line[bCol:eCol]]) def MultipleLineCopy(self, bRow, bCol, eRow, eCol): bLine = self.GetTextLine(bRow)[bCol:] eLine = self.GetTextLine(eRow)[:eCol] self.CopyToClipboard([bLine] + [l for l in self.lines[bRow + 1:eRow]] + [eLine]) def OnDeleteSelection(self, event): selection = self.FindSelection() if selection is None: return (bRow, bCol, eRow, eCol) = selection if bRow == eRow: self.SingleLineDelete(bRow, bCol, eCol) else: self.MultipleLineDelete(bRow, bCol, eRow, eCol) self.TouchBuffer() self.cy = bRow self.cx = bCol self.SelectOff() self.UpdateView() def SingleLineDelete(self, Row, bCol, eCol): ModLine = self.GetTextLine(Row) ModLine = ModLine[:bCol] + ModLine[eCol:] self.SetTextLine(Row,ModLine) def MultipleLineDelete(self, bRow, bCol, eRow, eCol): bLine = self.GetTextLine(bRow) eLine = self.GetTextLine(eRow) ModLine = bLine[:bCol] + eLine[eCol:] self.lines[bRow:eRow + 1] = [ModLine] def OnPaste(self, event): do = wx.TextDataObject() wx.TheClipboard.Open() success = wx.TheClipboard.GetData(do) wx.TheClipboard.Close() if success: pastedLines = LineSplitter(do.GetText()) else: wx.Bell() return if len(pastedLines) == 0: wx.Bell() return elif len(pastedLines) == 1: self.SingleLineInsert(pastedLines[0]) else: self.MultipleLinePaste(pastedLines) def SingleLineInsert(self, newText): ModLine = self.GetTextLine(self.cy) ModLine = ModLine[:self.cx] + newText + ModLine[self.cx:] self.SetTextLine(self.cy, ModLine) self.cHoriz(len(newText)) self.TouchBuffer() self.UpdateView() def MultipleLinePaste(self, pastedLines): FirstLine = LastLine = self.GetTextLine(self.cy) FirstLine = FirstLine[:self.cx] + pastedLines[0] LastLine = pastedLines[-1] + LastLine[self.cx:] NewSlice = [FirstLine] NewSlice += [l for l in pastedLines[1:-1]] NewSlice += [LastLine] self.lines[self.cy:self.cy + 1] = NewSlice self.cy = self.cy + len(pastedLines)-1 self.cx = len(pastedLines[-1]) self.TouchBuffer() self.UpdateView() def OnCutSelection(self,event): self.CopySelection(event) self.OnDeleteSelection(event) #-------------- Keyboard movement implementations def MoveDown(self, event): self.cVert(+1) def MoveUp(self, event): self.cVert(-1) def MoveLeft(self, event): if self.cx == 0: if self.cy == 0: wx.Bell() else: self.cVert(-1) self.cx = self.CurrentLineLength() else: self.cx -= 1 def MoveRight(self, event): linelen = self.CurrentLineLength() if self.cx == linelen: if self.cy == len(self.lines) - 1: wx.Bell() else: self.cx = 0 self.cVert(1) else: self.cx += 1 def MovePageDown(self, event): self.cVert(self.sh) def MovePageUp(self, event): self.cVert(-self.sh) def MoveHome(self, event): self.cx = 0 def MoveEnd(self, event): self.cx = self.CurrentLineLength() def MoveStartOfFile(self, event): self.cy = 0 self.cx = 0 def MoveEndOfFile(self, event): self.cy = len(self.lines) - 1 self.cx = self.CurrentLineLength() #-------------- Key handler mapping tables def SetMoveSpecialFuncs(self, action): action[wx.WXK_DOWN] = self.MoveDown action[wx.WXK_UP] = self.MoveUp action[wx.WXK_LEFT] = self.MoveLeft action[wx.WXK_RIGHT] = self.MoveRight action[wx.WXK_NEXT] = self.MovePageDown action[wx.WXK_PRIOR] = self.MovePageUp action[wx.WXK_HOME] = self.MoveHome action[wx.WXK_END] = self.MoveEnd def SetMoveSpecialControlFuncs(self, action): action[wx.WXK_HOME] = self.MoveStartOfFile action[wx.WXK_END] = self.MoveEndOfFile def SetAltFuncs(self, action): # subclass implements pass def SetControlFuncs(self, action): action['c'] = self.OnCopySelection action['d'] = self.OnDeleteSelection action['v'] = self.OnPaste action['x'] = self.OnCutSelection def SetSpecialControlFuncs(self, action): action[wx.WXK_INSERT] = self.OnCopySelection def SetShiftFuncs(self, action): action[wx.WXK_DELETE] = self.OnCutSelection action[wx.WXK_INSERT] = self.OnPaste def SetSpecialFuncs(self, action): action[wx.WXK_BACK] = self.BackSpace action[wx.WXK_DELETE] = self.Delete action[wx.WXK_RETURN] = self.BreakLine action[wx.WXK_ESCAPE] = self.Escape action[wx.WXK_TAB] = self.TabKey ##-------------- Logic for key handlers def Move(self, keySettingFunction, key, event): action = {} keySettingFunction(action) if not action.has_key(key): return False if event.ShiftDown(): if not self.Selecting: self.Selecting = True self.SelectBegin = (self.cy, self.cx) action[key](event) self.SelectEnd = (self.cy, self.cx) else: action[key](event) if self.Selecting: self.Selecting = False self.SelectNotify(self.Selecting, self.SelectBegin, self.SelectEnd) self.UpdateView() return True def MoveSpecialKey(self, event, key): return self.Move(self.SetMoveSpecialFuncs, key, event) def MoveSpecialControlKey(self, event, key): if not event.ControlDown(): return False return self.Move(self.SetMoveSpecialControlFuncs, key, event) def Dispatch(self, keySettingFunction, key, event): action = {} keySettingFunction(action) if action.has_key(key): action[key](event) self.UpdateView() return True return False def ModifierKey(self, key, event, modifierKeyDown, MappingFunc): if not modifierKeyDown: return False key = self.UnixKeyHack(key) try: key = chr(key) except: return False if not self.Dispatch(MappingFunc, key, event): wx.Bell() return True def ControlKey(self, event, key): return self.ModifierKey(key, event, event.ControlDown(), self.SetControlFuncs) def AltKey(self, event, key): return self.ModifierKey(key, event, event.AltDown(), self.SetAltFuncs) def SpecialControlKey(self, event, key): if not event.ControlDown(): return False if not self.Dispatch(self.SetSpecialControlFuncs, key, event): wx.Bell() return True def ShiftKey(self, event, key): if not event.ShiftDown(): return False return self.Dispatch(self.SetShiftFuncs, key, event) def NormalChar(self, event, key): self.SelectOff() # regular ascii if not self.Dispatch(self.SetSpecialFuncs, key, event): if (key>31) and (key<256): self.InsertChar(chr(key)) else: wx.Bell() return self.UpdateView() self.AdjustScrollbars() def OnChar(self, event): key = event.GetKeyCode() filters = [self.AltKey, self.MoveSpecialControlKey, self.ControlKey, self.SpecialControlKey, self.MoveSpecialKey, self.ShiftKey, self.NormalChar] for filter in filters: if filter(event,key): break return 0 #----------------------- Eliminate memory leaks def OnDestroy(self, event): self.mdc = None self.odc = None self.bgColor = None self.fgColor = None self.font = None self.selectColor = None self.scrollTimer = None self.eofMarker = None #-------------------- Abstract methods for subclasses def OnClick(self): pass def SelectNotify(self, Selecting, SelectionBegin, SelectionEnd): pass
py
7df86d8730019f216995c529e6360434759fb2bf
import os import functools import yaml import numpy as np import math import torch import shutil import torchvision.transforms as transforms from torch.autograd import Variable from collections import namedtuple class MyDumper(yaml.Dumper): def increase_indent(self, flow=False, indentless=False): return super(MyDumper, self).increase_indent(flow, False) Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat') PRIMITIVES = [ 'none', 'noise', 'max_pool_3x3', 'avg_pool_3x3', 'skip_connect', 'sep_conv_3x3', 'sep_conv_5x5', 'dil_conv_3x3', 'dil_conv_5x5' ] def singleton(cls, *args, **kw): instances = dict() @functools.wraps(cls) def _fun(*clsargs, **clskw): if cls not in instances: instances[cls] = cls(*clsargs, **clskw) return instances[cls] _fun.cls = cls # make sure cls can be obtained return _fun class EVLocalAvg(object): def __init__(self, window=5, ev_freq=2, total_epochs=50): """ Keep track of the eigenvalues local average. Args: window (int): number of elements used to compute local average. Default: 5 ev_freq (int): frequency used to compute eigenvalues. Default: every 2 epochs total_epochs (int): total number of epochs that DARTS runs. Default: 50 """ self.window = window self.ev_freq = ev_freq self.epochs = total_epochs self.stop_search = False self.stop_epoch = total_epochs - 1 self.stop_genotype = None self.ev = [] self.ev_local_avg = [] self.genotypes = {} self.la_epochs = {} # start and end index of the local average window self.la_start_idx = 0 self.la_end_idx = self.window def reset(self): self.ev = [] self.ev_local_avg = [] self.genotypes = {} self.la_epochs = {} def update(self, epoch, ev, genotype): """ Method to update the local average list. Args: epoch (int): current epoch ev (float): current dominant eigenvalue genotype (namedtuple): current genotype """ self.ev.append(ev) self.genotypes.update({epoch: genotype}) # set the stop_genotype to the current genotype in case the early stop # procedure decides not to early stop self.stop_genotype = genotype # since the local average computation starts after the dominant # eigenvalue in the first epoch is already computed we have to wait # at least until we have 3 eigenvalues in the list. if (len(self.ev) >= int(np.ceil(self.window/2))) and (epoch < self.epochs - 1): # start sliding the window as soon as the number of eigenvalues in # the list becomes equal to the window size if len(self.ev) < self.window: self.ev_local_avg.append(np.mean(self.ev)) else: assert len(self.ev[self.la_start_idx: self.la_end_idx]) == self.window self.ev_local_avg.append(np.mean(self.ev[self.la_start_idx: self.la_end_idx])) self.la_start_idx += 1 self.la_end_idx += 1 # keep track of the offset between the current epoch and the epoch # corresponding to the local average. NOTE: in the end the size of # self.ev and self.ev_local_avg should be equal self.la_epochs.update({epoch: int(epoch - int(self.ev_freq*np.floor(self.window/2)))}) elif len(self.ev) < int(np.ceil(self.window/2)): self.la_epochs.update({epoch: -1}) # since there is an offset between the current epoch and the local # average epoch, loop in the last epoch to compute the local average of # these number of elements: window, window - 1, window - 2, ..., ceil(window/2) elif epoch == self.epochs - 1: for i in range(int(np.ceil(self.window/2))): assert len(self.ev[self.la_start_idx: self.la_end_idx]) == self.window - i self.ev_local_avg.append(np.mean(self.ev[self.la_start_idx: self.la_end_idx + 1])) self.la_start_idx += 1 def early_stop(self, epoch, factor=1.3, es_start_epoch=10, delta=4): """ Early stopping criterion Args: epoch (int): current epoch factor (float): threshold factor for the ration between the current and prefious eigenvalue. Default: 1.3 es_start_epoch (int): until this epoch do not consider early stopping. Default: 20 delta (int): factor influencing which previous local average we consider for early stopping. Default: 2 """ if int(self.la_epochs[epoch] - self.ev_freq*delta) >= es_start_epoch: # the current local average corresponds to # epoch - int(self.ev_freq*np.floor(self.window/2)) current_la = self.ev_local_avg[-1] # by default take the local average corresponding to epoch # delta*self.ev_freq previous_la = self.ev_local_avg[-1 - delta] self.stop_search = current_la / previous_la > factor if self.stop_search: self.stop_epoch = int(self.la_epochs[epoch] - self.ev_freq*delta) self.stop_genotype = self.genotypes[self.stop_epoch] class AverageMeter(object): def __init__(self): self.reset() def reset(self): self.avg = 0 self.sum = 0 self.cnt = 0 def update(self, val, n=1): self.sum += val * n self.cnt += n self.avg = self.sum / self.cnt @singleton class DecayScheduler(object): def __init__(self, base_lr=1.0, last_iter=-1, T_max=50, T_start=0, T_stop=50, decay_type='cosine'): self.base_lr = base_lr self.T_max = T_max self.T_start = T_start self.T_stop = T_stop self.cnt = 0 self.decay_type = decay_type self.decay_rate = 1.0 def step(self, epoch): if epoch >= self.T_start: if self.decay_type == "cosine": self.decay_rate = self.base_lr * (1 + math.cos(math.pi * epoch / (self.T_max - self.T_start))) / 2.0 if epoch <= self.T_stop else self.decay_rate elif self.decay_type == "slow_cosine": self.decay_rate = self.base_lr * math.cos((math.pi/2) * epoch / (self.T_max - self.T_start)) if epoch <= self.T_stop else self.decay_rate elif self.decay_type == "linear": self.decay_rate = self.base_lr * (self.T_max - epoch) / (self.T_max - self.T_start) if epoch <= self.T_stop else self.decay_rate else: self.decay_rate = self.base_lr else: self.decay_rate = self.base_lr def accuracy(output, target, topk=(1,)): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0) res.append(correct_k.mul_(100.0/batch_size)) return res def write_yaml_results_eval(args, results_file, result_to_log): setting = '_'.join([args.space, args.dataset]) regularization = '_'.join( [str(args.search_dp), str(args.search_wd)] ) results_file = os.path.join(args._save, results_file+'.yaml') try: with open(results_file, 'r') as f: result = yaml.load(f) if setting in result.keys(): if regularization in result[setting].keys(): if args.search_task_id in result[setting][regularization]: result[setting][regularization][args.search_task_id].append(result_to_log) else: result[setting][regularization].update({args.search_task_id: [result_to_log]}) else: result[setting].update({regularization: {args.search_task_id: [result_to_log]}}) else: result.update({setting: {regularization: {args.search_task_id: [result_to_log]}}}) with open(results_file, 'w') as f: yaml.dump(result, f, Dumper=MyDumper, default_flow_style=False) except (AttributeError, FileNotFoundError) as e: result = { setting: { regularization: { args.search_task_id: [result_to_log] } } } with open(results_file, 'w') as f: yaml.dump(result, f, Dumper=MyDumper, default_flow_style=False) def write_yaml_results(args, results_file, result_to_log): setting = '_'.join([args.space, args.dataset]) regularization = '_'.join( [str(args.drop_path_prob), str(args.weight_decay)] ) results_file = os.path.join(args._save, results_file+'.yaml') try: with open(results_file, 'r') as f: result = yaml.load(f) if setting in result.keys(): if regularization in result[setting].keys(): result[setting][regularization].update({args.task_id: result_to_log}) else: result[setting].update({regularization: {args.task_id: result_to_log}}) else: result.update({setting: {regularization: {args.task_id: result_to_log}}}) with open(results_file, 'w') as f: yaml.dump(result, f, Dumper=MyDumper, default_flow_style=False) except (AttributeError, FileNotFoundError) as e: result = { setting: { regularization: { args.task_id: result_to_log } } } with open(results_file, 'w') as f: yaml.dump(result, f, Dumper=MyDumper, default_flow_style=False) class Cutout(object): def __init__(self, length, prob=1.0): self.length = length self.prob = prob def __call__(self, img): if np.random.binomial(1, self.prob): h, w = img.size(1), img.size(2) mask = np.ones((h, w), np.float32) y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h) y2 = np.clip(y + self.length // 2, 0, h) x1 = np.clip(x - self.length // 2, 0, w) x2 = np.clip(x + self.length // 2, 0, w) mask[y1: y2, x1: x2] = 0. mask = torch.from_numpy(mask) mask = mask.expand_as(img) img *= mask return img def _data_transforms_svhn(args): SVHN_MEAN = [0.4377, 0.4438, 0.4728] SVHN_STD = [0.1980, 0.2010, 0.1970] train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(SVHN_MEAN, SVHN_STD), ]) if args.cutout: train_transform.transforms.append(Cutout(args.cutout_length, args.cutout_prob)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(SVHN_MEAN, SVHN_STD), ]) return train_transform, valid_transform def _data_transforms_cifar100(args): CIFAR_MEAN = [0.5071, 0.4865, 0.4409] CIFAR_STD = [0.2673, 0.2564, 0.2762] train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) if args.cutout: train_transform.transforms.append(Cutout(args.cutout_length, args.cutout_prob)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) return train_transform, valid_transform def _data_transforms_cifar10(args): CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124] CIFAR_STD = [0.24703233, 0.24348505, 0.26158768] train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) if args.cutout: train_transform.transforms.append(Cutout(args.cutout_length, args.cutout_prob)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) return train_transform, valid_transform def count_parameters_in_MB(model): return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name)/1e6 def save(model, model_path): torch.save(model.state_dict(), model_path) def load(model, model_path): model.load_state_dict(torch.load(model_path)) def save_checkpoint(state, is_best, save, epoch, task_id): filename = "checkpoint_{}_{}.pth.tar".format(task_id, epoch) filename = os.path.join(save, filename) torch.save(state, filename) if is_best: best_filename = os.path.join(save, 'model_best.pth.tar') shutil.copyfile(filename, best_filename) def load_checkpoint(model, optimizer, scheduler, architect, save, la_tracker, epoch, task_id): filename = "checkpoint_{}_{}.pth.tar".format(task_id, epoch) filename = os.path.join(save, filename) if not model.args.disable_cuda: checkpoint = torch.load(filename, map_location="cuda:{}".format(model.args.gpu)) else: checkpoint = torch.load(filename,map_location=torch.device('cpu')) model.load_state_dict(checkpoint['state_dict']) model.alphas_normal.data = checkpoint['alphas_normal'] model.alphas_reduce.data = checkpoint['alphas_reduce'] optimizer.load_state_dict(checkpoint['optimizer']) architect.optimizer.load_state_dict(checkpoint['arch_optimizer']) la_tracker.ev = checkpoint['ev'] la_tracker.ev_local_avg = checkpoint['ev_local_avg'] la_tracker.genotypes = checkpoint['genotypes'] la_tracker.la_epochs = checkpoint['la_epochs'] la_tracker.la_start_idx = checkpoint['la_start_idx'] la_tracker.la_end_idx = checkpoint['la_end_idx'] lr = checkpoint['lr'] return lr def drop_path(x, drop_prob): if drop_prob > 0.: keep_prob = 1.-drop_prob mask = Variable(torch.cuda.FloatTensor(x.size(0), 1, 1, 1).bernoulli_(keep_prob)) x.div_(keep_prob) x.mul_(mask) return x def create_exp_dir(path, scripts_to_save=None): if not os.path.exists(path): os.makedirs(path, exist_ok=True) print('Experiment dir : {}'.format(path)) if scripts_to_save is not None: os.mkdir(os.path.join(path, 'scripts')) for script in scripts_to_save: dst_file = os.path.join(path, 'scripts', os.path.basename(script)) shutil.copyfile(script, dst_file) def print_args(args): for arg, val in args.__dict__.items(): print(arg + '.' * (50 - len(arg) - len(str(val))) + str(val)) print() def get_one_hot(alphas): start = 0 n = 2 one_hot = torch.zeros(alphas.shape) for i in range(4): end = start + n w = torch.nn.functional.softmax(alphas[start:end], dim=-1).data.cpu().numpy().copy() edges = sorted(range(i+2), key=lambda x: -max(w[x][k] for k in range(len(w[x]))))[:2] for j in edges: k_best = None for k in range(len(w[j])): if k_best is None or w[j][k] > w[j][k_best]: k_best = k one_hot[start+j][k_best] = 1 start = end n += 1 return one_hot
py
7df86da37a8d934698f2612a1c25779fe7e4eeee
#!venv/bin/python """ Author: Bryce Drew """ import os import sys import subprocess sys.path.append(os.getcwd()+"/venv/lib/python2.7/site-packages") import superphy from superphy.shared import config config.import_env() #Debug allows the execution of arbitrary code. Do not use it with production def run(): """ This compiles files in the project, and restarts nessesary systems. After this is run, if you have installed properly you will have a working superphy """ os.system("bash superphy/database/scripts/start.sh") os.system("cd app/SuperPhy/static; bash compile.sh; cd ../../..") os.system("sudo /etc/init.d/apache2 reload") exit() def install(): """ . """ os.system("bash superphy/database/scripts/start.sh") config.install() exit() def uploader(): """ . """ superphy.upload.foo() exit() def shell(): """ . """ import code code.interact(local=dict(globals(), **locals())) def test(): """ . """ config.start_database("testing") from superphy.upload import main as upload upload.init() subprocess.call( "for f in superphy/src/*; do echo $f; nosetests $f -vv --exe; done", shell=True ) OPTIONS = { "install" : install, "run" : run, "upload" : uploader, "sparql" : superphy.shared.config.start_database, "shell" : shell, "test" : test } if __name__ == '__main__': if len(sys.argv) >= 2: if sys.argv[1] in OPTIONS: OPTIONS[sys.argv[1]]() else: print "OPTIONS:" for key in OPTIONS: print key else: #Default OPTIONS['run']()
py
7df86e5dd3a9c6e60d18f403c582d2bea4b788d8
import _plotly_utils.basevalidators class TicklenValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="ticklen", parent_name="barpolar.marker.colorbar", **kwargs ): super(TicklenValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), min=kwargs.pop("min", 0), **kwargs, )
py
7df86e9ae26efa563446c6b8af94e0817eba7166
# pylint: skip-file import numpy as np from absl.testing import parameterized from tensorflow.python.keras import keras_parameterized from tensorflow.keras.backend import floatx import tensorflow as tf from ..test_utils import layer_test, check_attributes from . import GenericBlock, TrendBlock, SeasonalityBlock, BaseBlock class ExampleBlock(BaseBlock): def __init__( self, label_width: int, n_neurons: int, drop_rate: float, g_trainable: bool = False, interpretable: bool = False, block_type: str = "BaseBlock", ): super().__init__( label_width=label_width, n_neurons=n_neurons, drop_rate=drop_rate, g_trainable=g_trainable, interpretable=interpretable, block_type=block_type, ) def coefficient_factory(self, *args: list, **kwargs: dict): pass def get_coefficients(self, output_last_dim: int, branch_name: str): return tf.constant([0, 0, 0]) @keras_parameterized.run_all_keras_modes class BlocksLayersTest(tf.test.TestCase, parameterized.TestCase): """ Unit tests for the nbeats model. """ @parameterized.parameters( [ # BaseBlock attributes test ( (10, 16, 0.5), BaseBlock, [ "label_width", "drop_rate", "is_interpretable", "is_g_trainable", "block_type", ], [10, 0.5, False, False, "BaseBlock"], ), # TrendBlock attributes test ( (1, 2, 3, 0.0), TrendBlock, [ "label_width", "p_degree", "drop_rate", "is_interpretable", "is_g_trainable", "block_type", ], [1, 2, 0.0, True, False, "TrendBlock"], ), # SeasonalityBlock attributes test ( (10, [10], [10], [10], [10], 16, 0.5), SeasonalityBlock, [ "label_width", "forecast_periods", "backcast_periods", "forecast_fourier_order", "backcast_fourier_order", "drop_rate", "is_interpretable", "is_g_trainable", "block_type", ], [10, [10], [10], [10], [10], 0.5, True, False, "SeasonalityBlock"], ), # GenericBlock attributes test ( (10, 10, 10, 16, 0.5), GenericBlock, [ "label_width", "g_forecast_neurons", "g_backcast_neurons", "drop_rate", "is_interpretable", "is_g_trainable", "block_type", ], [10, 10, 10, 0.5, False, True, "GenericBlock"], ), ] ) def test_attributes_and_property(self, args, cls, attributes, expected_values): if cls == BaseBlock: block = ExampleBlock(*args) else: block = cls(*args) check_attributes(self, block, attributes, expected_values) @parameterized.parameters( [ # BaseBlock attributes test ( (10, None, None, None, None, 16, 0.5), SeasonalityBlock, [ "label_width", "forecast_periods", "backcast_periods", "forecast_fourier_order", "backcast_fourier_order", "drop_rate", "is_interpretable", "is_g_trainable", "block_type", ], [10, 5, 2, 5, 2, 0.5, True, False, "SeasonalityBlock"], ), ] ) def test_attributes_and_property_after_build( self, args, cls, attributes, expected_values ): block = cls(*args) block(tf.constant([[0.0, 0.0, 0.0, 0.0]])) check_attributes(self, block, attributes, expected_values) @parameterized.parameters( [ ( (-10, 16, 0.5), BaseBlock, "`label_width` or its elements has to be greater or equal", ), ( (10, -10, 10, 16, 0.5), GenericBlock, "`g_forecast_neurons` or its elements has to be greater or equal", ), ( (10, 10, -10, 16, 0.5), GenericBlock, "`g_backcast_neurons` or its elements has to be greater or equal", ), ( (10, -16, 0.5), BaseBlock, "`n_neurons` or its elements has to be greater or equal", ), ( (10, 16, -0.5), BaseBlock, "`drop_rate` or its elements has to be between", ), ( (10, 16, 0.5, False, False, "base"), BaseBlock, "`name` has to contain `Block`", ), ( (10, -10, 16, 0.5), TrendBlock, "`p_degree` or its elements has to be greater or equal", ), ( (10, [10, 10], [10], [10], [10], 16, 0.5), SeasonalityBlock, "`forecast_periods` and `forecast_fourier_order` are expected to have the same length", ), ( (10, [10], [10, 10], [10], [10], 16, 0.5), SeasonalityBlock, "`backcast_periods` and `backcast_fourier_order` are expected to have the same length", ), ( (10, [-10], [10], [10], [10], 16, 0.5), SeasonalityBlock, "`forecast_periods` or its elements has to be greater or equal", ), ( (10, [10], [-10], [10], [10], 16, 0.5), SeasonalityBlock, "`backcast_periods` or its elements has to be greater or equal", ), ] ) def test_raises_error(self, args, cls, error): with self.assertRaisesRegexp(ValueError, error): with self.assertRaisesRegexp(AssertionError, error): if cls == BaseBlock: obj = ExampleBlock(*args) else: obj = cls(*args) obj.build(tf.TensorShape((None, args[0]))) raise ValueError(error) @parameterized.parameters( [(1, 2, 1, 3, 0.0), (1, 2, 1, 3, 0.01),] ) def test_trendblock(self, label_width, input_width, p_degree, n_neurons, drop_rate): trend_weights = [ np.zeros(shape=(input_width, n_neurons)), np.ones(shape=(1, n_neurons)), np.zeros(shape=(n_neurons, n_neurons)), np.ones(shape=(1, n_neurons,)), np.zeros(shape=(n_neurons, n_neurons)), np.ones(shape=(1, n_neurons,)), np.zeros(shape=(n_neurons, n_neurons)), np.ones(shape=(1, n_neurons,)), np.ones(shape=(n_neurons, p_degree + 1)), np.ones(shape=(n_neurons, p_degree + 1)), np.array([[1.0], [0.0]]), np.array([[1.0, 1.0], [0.0, 0.5]]), ] if drop_rate == 0.0: layer_test( TrendBlock, kwargs={ "label_width": label_width, "p_degree": p_degree, "n_neurons": n_neurons, "drop_rate": drop_rate, "weights": trend_weights, }, input_dtype=floatx(), input_shape=(2, 2), expected_output_shape=( tf.TensorShape((None, 2)), tf.TensorShape((None, 1)), ), expected_output_dtype=[floatx(), floatx()], expected_output=[ tf.constant([3.0, 4.5, 3.0, 4.5], shape=(2, 2)), tf.constant(3.0, shape=(2, 1)), ], custom_objects={"TrendBlock": TrendBlock}, ) elif drop_rate > 0: model = TrendBlock( label_width=label_width, p_degree=p_degree, n_neurons=30, drop_rate=drop_rate, ) actual_1 = model(tf.constant([[1.0, 8.0], [1.0, 2.0]])) actual_2 = model(tf.constant([[1.0, 8.0], [1.0, 2.0]])) np.testing.assert_raises( AssertionError, np.testing.assert_array_equal, actual_1[1], actual_2[1] ) @parameterized.parameters([(2, 3, [2], [3], [2], [3], 3, 0.0)]) def test_seasonalityblock( self, label_width, input_width, forecast_periods, backcast_periods, forecast_fourier_order, backcast_fourier_order, n_neurons, drop_rate, ): g_forecast_neurons = tf.reduce_sum(2 * forecast_periods) g_backcast_neurons = tf.reduce_sum(2 * backcast_periods) seasonality_weights = [ np.zeros(shape=(input_width, n_neurons)), np.ones(shape=(1, n_neurons,)), np.zeros(shape=(n_neurons, n_neurons)), np.ones(shape=(1, n_neurons,)), np.zeros(shape=(n_neurons, n_neurons)), np.ones(shape=(1, n_neurons,)), np.zeros(shape=(n_neurons, n_neurons)), np.ones(shape=(1, n_neurons,)), np.ones(shape=(n_neurons, g_forecast_neurons)), np.ones(shape=(n_neurons, g_backcast_neurons)), np.array([[1, 1], [1, tf.cos(np.pi)], [0, 0], [0, tf.sin(np.pi)]]), np.array( [ [1, 1, 1], [ 1, tf.cos(1 * (1 / 3) * 2 * np.pi), tf.cos(1 * (2 / 3) * 2 * np.pi), ], [ 1, tf.cos(2 * (1 / 3) * 2 * np.pi), tf.cos(2 * (2 / 3) * 2 * np.pi), ], [0, 0, 0], [ 0, tf.sin(1 * (1 / 3) * 2 * np.pi), tf.sin(1 * (2 / 3) * 2 * np.pi), ], [ 0, tf.sin(2 * (1 / 3) * 2 * np.pi), tf.sin(2 * (2 / 3) * 2 * np.pi), ], ] ), ] y1 = ( 3 * ( 1 + tf.cos(1 * (1 / 3) * 2 * np.pi) + tf.cos(2 * (1 / 3) * 2 * np.pi) + tf.sin(1 * (1 / 3) * 2 * np.pi) + tf.sin(2 * (1 / 3) * 2 * np.pi) ).numpy() ) y2 = ( 3 * ( 1 + tf.cos(1 * (2 / 3) * 2 * np.pi) + tf.cos(2 * (2 / 3) * 2 * np.pi) + tf.sin(1 * (2 / 3) * 2 * np.pi) + tf.sin(2 * (2 / 3) * 2 * np.pi) ).numpy() ) layer_test( SeasonalityBlock, kwargs={ "label_width": label_width, "forecast_periods": forecast_periods, "backcast_periods": backcast_periods, "forecast_fourier_order": forecast_fourier_order, "backcast_fourier_order": backcast_fourier_order, "n_neurons": n_neurons, "drop_rate": drop_rate, "weights": seasonality_weights, }, input_dtype=floatx(), input_shape=(2, 3), expected_output_shape=( tf.TensorShape((None, 3)), tf.TensorShape((None, 2)), ), expected_output_dtype=[floatx(), floatx()], expected_output=[ tf.constant([9.0, y1, y2, 9.0, y1, y2], shape=(2, 3)), tf.constant([6.0, 0.0, 6.0, 0.0], shape=(2, 2)), ], custom_objects={"SeasonalityBlock": SeasonalityBlock}, ) forecast_periods = [1, 2] backcast_periods = [2, 3] forecast_fourier_order = [1, 2] backcast_fourier_order = [2, 3] g_forecast_neurons = tf.reduce_sum(2 * forecast_periods) g_backcast_neurons = tf.reduce_sum(2 * backcast_periods) seasonality_weights[-4:] = [ np.ones(shape=(n_neurons, g_forecast_neurons)), np.ones(shape=(n_neurons, g_backcast_neurons)), np.array( [[1, 1], [0, 0], [1, 1], [1, tf.cos(np.pi)], [0, 0], [0, tf.sin(np.pi)]] ), np.array( [ [1, 1, 1], [ 1, tf.cos(1 * (1 / 2) * 2 * np.pi), tf.cos(1 * (2 / 2) * 2 * np.pi), ], [0, 0, 0], [ 0, tf.sin(1 * (1 / 2) * 2 * np.pi), tf.sin(1 * (2 / 2) * 2 * np.pi), ], [1, 1, 1], [ 1, tf.cos(1 * (1 / 3) * 2 * np.pi), tf.cos(1 * (2 / 3) * 2 * np.pi), ], [ 1, tf.cos(2 * (1 / 3) * 2 * np.pi), tf.cos(2 * (2 / 3) * 2 * np.pi), ], [0, 0, 0], [ 0, tf.sin(1 * (1 / 3) * 2 * np.pi), tf.sin(1 * (2 / 3) * 2 * np.pi), ], [ 0, tf.sin(2 * (1 / 3) * 2 * np.pi), tf.sin(2 * (2 / 3) * 2 * np.pi), ], ] ), ] y1 = ( 3 * ( 2 + tf.cos(1 * (1 / 2) * 2 * np.pi) + tf.sin(1 * (1 / 2) * 2 * np.pi) + tf.cos(1 * (1 / 3) * 2 * np.pi) + tf.cos(2 * (1 / 3) * 2 * np.pi) + tf.sin(1 * (1 / 3) * 2 * np.pi) + tf.sin(2 * (1 / 3) * 2 * np.pi) ).numpy() ) y2 = ( 3 * ( 2 + tf.cos(1 * (2 / 2) * 2 * np.pi) + tf.sin(1 * (2 / 2) * 2 * np.pi) + tf.cos(1 * (2 / 3) * 2 * np.pi) + tf.cos(2 * (2 / 3) * 2 * np.pi) + tf.sin(1 * (2 / 3) * 2 * np.pi) + tf.sin(2 * (2 / 3) * 2 * np.pi) ).numpy() ) layer_test( SeasonalityBlock, kwargs={ "label_width": label_width, "forecast_periods": forecast_periods, "backcast_periods": backcast_periods, "forecast_fourier_order": forecast_fourier_order, "backcast_fourier_order": backcast_fourier_order, "n_neurons": n_neurons, "drop_rate": drop_rate, "weights": seasonality_weights, }, input_dtype=floatx(), input_shape=(2, 3), expected_output_shape=( tf.TensorShape((None, 3)), tf.TensorShape((None, 2)), ), expected_output_dtype=[floatx(), floatx()], expected_output=[ tf.constant([15.0, y1, y2, 15.0, y1, y2], shape=(2, 3)), tf.constant([9.0, 3.0, 9.0, 3.0], shape=(2, 2)), ], custom_objects={"SeasonalityBlock": SeasonalityBlock}, ) @parameterized.parameters([(1, 5, 5, 3, 0.0)]) def test_genericblock( self, label_width, g_forecast_neurons, g_backcast_neurons, n_neurons, drop_rate, ): layer_test( GenericBlock, kwargs={ "label_width": label_width, "g_forecast_neurons": g_forecast_neurons, "g_backcast_neurons": g_backcast_neurons, "n_neurons": n_neurons, "drop_rate": drop_rate, }, input_dtype=floatx(), input_shape=(2, 2), expected_output_shape=( tf.TensorShape((None, 2)), tf.TensorShape((None, 1)), ), expected_output_dtype=[floatx(), floatx()], expected_output=None, custom_objects={"GenericBlock": GenericBlock}, )
py
7df86f1f293188954036b87dd739764070251ebd
from electrum.plugin import hook from electrum.util import print_msg, raw_input, print_stderr from electrum.logging import get_logger from ..hw_wallet.cmdline import CmdLineHandler from .coldcard import ColdcardPlugin _logger = get_logger(__name__) class ColdcardCmdLineHandler(CmdLineHandler): def get_passphrase(self, msg, confirm): raise NotImplementedError def get_pin(self, msg): raise NotImplementedError def prompt_auth(self, msg): raise NotImplementedError def yes_no_question(self, msg): print_msg(msg) return raw_input() in 'yY' def stop(self): pass def show_message(self, msg, on_cancel=None): print_stderr(msg) def show_error(self, msg, blocking=False): print_stderr(msg) def update_status(self, b): _logger.info(f'hw device status {b}') def finished(self): pass class Plugin(ColdcardPlugin): handler = ColdcardCmdLineHandler() @hook def init_keystore(self, keystore): if not isinstance(keystore, self.keystore_class): return keystore.handler = self.handler def create_handler(self, window): return self.handler # EOF
py
7df86f35aa59a8cb9853bb56cc77d829e4f64aef
# -*- coding: utf-8 -*- __version__ = '0.12.0.dev' __description__ = 'Fully featured framework for fast, easy and documented API development with Flask'
py
7df86f5701d6580fb4ee8520bb9a5af4d49b6a1c
# coding=utf-8 # # Copyright (c) 2014-2015 First Flamingo Enterprise B.V. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # TSStationPosition.py # firstflamingo/treinenaapje # # Created by Berend Schotanus on 13-May-14. # """TSStationPosition represents the position of a station on a route""" import re import logging from google.appengine.ext import ndb from ffe.rest_resources import Resource class TSStationPosition(Resource): auto_creates_indexes = False publicly_visible = True station_key = ndb.KeyProperty(kind='TSStation') route_key = ndb.KeyProperty(kind='TSRoute') km = ndb.FloatProperty(default=0.0) geo_point = ndb.GeoPtProperty() platform_range = ndb.TextProperty() identifier_regex = re.compile('([a-z]{2})\.([a-z]{1,5})_([a-z]{2,4}[0-9]{1,2})$') # ------------ Object lifecycle ------------------------------------------------------------------------------------ @classmethod def new(cls, identifier=None, country='nl', station_code=None, route_code='xx00'): if station_code and not identifier: identifier = '%s.%s_%s' % (country, station_code, route_code) self = super(TSStationPosition, cls).new(identifier) station_id = '%s.%s' % (self.country, self.station_code) self.station_key = ndb.Key('TSStation', station_id) route_id = '%s.%s' % (self.country, self.route_code) self.route_key = ndb.Key('TSRoute', route_id) return self # ------------ Object metadata ------------------------------------------------------------------------------------- def __repr__(self): return "<%s %s = km %.3f on %s>" % (self.__class__.__name__, self.station_id, self.km, self.route_id) @property def country(self): return self.id_part(1) @property def station(self): return self.station_key.get() @property def station_code(self): return self.id_part(2) @property def station_id(self): return self.station_key.id() @property def route(self): return self.route_key.get() @property def route_code(self): return self.id_part(3) @property def route_id(self): return self.route_key.id() @property def coordinate(self): if self.geo_point is not None: return self.geo_point.lat, self.geo_point.lon else: return None, None @coordinate.setter def coordinate(self, coord): lat, lon = coord self.geo_point = ndb.GeoPt(lat, lon) def dictionary_from_object(self, perspective=None): dictionary = {'km': self.km, 'lat': self.coordinate[0], 'lon': self.coordinate[1]} if perspective != 'route': dictionary['route'] = self.route_id elif perspective != 'station': dictionary['station'] = self.station_id if self.platform_range is not None: dictionary['platforms'] = self.platform_range return dictionary
py
7df86f82bb62d67699e1ffdd9a58d603afeddc4e
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/type/money.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='google/type/money.proto', package='google.type', syntax='proto3', serialized_options=b'\n\017com.google.typeB\nMoneyProtoP\001Z6google.golang.org/genproto/googleapis/type/money;money\370\001\001\242\002\003GTP', create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x17google/type/money.proto\x12\x0bgoogle.type\"<\n\x05Money\x12\x15\n\rcurrency_code\x18\x01 \x01(\t\x12\r\n\x05units\x18\x02 \x01(\x03\x12\r\n\x05nanos\x18\x03 \x01(\x05\x42`\n\x0f\x63om.google.typeB\nMoneyProtoP\x01Z6google.golang.org/genproto/googleapis/type/money;money\xf8\x01\x01\xa2\x02\x03GTPb\x06proto3' ) _MONEY = _descriptor.Descriptor( name='Money', full_name='google.type.Money', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='currency_code', full_name='google.type.Money.currency_code', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='units', full_name='google.type.Money.units', index=1, number=2, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='nanos', full_name='google.type.Money.nanos', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=40, serialized_end=100, ) DESCRIPTOR.message_types_by_name['Money'] = _MONEY _sym_db.RegisterFileDescriptor(DESCRIPTOR) Money = _reflection.GeneratedProtocolMessageType('Money', (_message.Message,), { 'DESCRIPTOR' : _MONEY, '__module__' : 'google.type.money_pb2' # @@protoc_insertion_point(class_scope:google.type.Money) }) _sym_db.RegisterMessage(Money) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
py
7df86fd9dca73164af681a2eaec5004278b29c0e
#!/usr/bin/env python import rospy import actionlib from actionlib import GoalStatus from geometry_msgs.msg import Pose, Point, Quaternion, Twist from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal, MoveBaseActionFeedback from tf.transformations import quaternion_from_euler from visualization_msgs.msg import Marker from math import pi from collections import OrderedDict def setup_task_environment(self): # How big is the square we want the robot to patrol? self.square_size = rospy.get_param("~square_size", 1.0) # meters # Set the low battery threshold (between 0 and 100) self.low_battery_threshold = rospy.get_param('~low_battery_threshold', 50) # How many times should we execute the patrol loop self.n_patrols = rospy.get_param("~n_patrols", 2) # meters # How long do we have to get to each waypoint? self.move_base_timeout = rospy.get_param("~move_base_timeout", 10) #seconds # Initialize the patrol counter self.patrol_count = 0 # Subscribe to the move_base action server self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction) rospy.loginfo("Waiting for move_base action server...") # Wait up to 60 seconds for the action server to become available self.move_base.wait_for_server(rospy.Duration(60)) rospy.loginfo("Connected to move_base action server") # Create a list to hold the target quaternions (orientations) quaternions = list() # First define the corner orientations as Euler angles euler_angles = (pi/2, pi, 3*pi/2, 0) # Then convert the angles to quaternions for angle in euler_angles: q_angle = quaternion_from_euler(0, 0, angle, axes='sxyz') q = Quaternion(*q_angle) quaternions.append(q) # Create a list to hold the waypoint poses self.waypoints = list() # Append each of the four waypoints to the list. Each waypoint # is a pose consisting of a position and orientation in the map frame. self.waypoints.append(Pose(Point(0.0, 0.0, 0.0), quaternions[3])) self.waypoints.append(Pose(Point(self.square_size, 0.0, 0.0), quaternions[0])) self.waypoints.append(Pose(Point(self.square_size, self.square_size, 0.0), quaternions[1])) self.waypoints.append(Pose(Point(0.0, self.square_size, 0.0), quaternions[2])) # Create a mapping of room names to waypoint locations room_locations = (('hallway', self.waypoints[0]), ('living_room', self.waypoints[1]), ('kitchen', self.waypoints[2]), ('bathroom', self.waypoints[3])) # Store the mapping as an ordered dictionary so we can visit the rooms in sequence self.room_locations = OrderedDict(room_locations) # Where is the docking station? self.docking_station_pose = (Pose(Point(0.5, 0.5, 0.0), Quaternion(0.0, 0.0, 0.0, 1.0))) # Initialize the waypoint visualization markers for RViz init_waypoint_markers(self) # Set a visualization marker at each waypoint for waypoint in self.waypoints: p = Point() p = waypoint.position self.waypoint_markers.points.append(p) # Set a marker for the docking station init_docking_station_marker(self) # Publisher to manually control the robot (e.g. to stop it) self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=5) rospy.loginfo("Starting Tasks") # Publish the waypoint markers self.marker_pub.publish(self.waypoint_markers) rospy.sleep(1) self.marker_pub.publish(self.waypoint_markers) # Publish the docking station marker self.docking_station_marker_pub.publish(self.docking_station_marker) rospy.sleep(1) def init_waypoint_markers(self): # Set up our waypoint markers marker_scale = 0.2 marker_lifetime = 0 # 0 is forever marker_ns = 'waypoints' marker_id = 0 marker_color = {'r': 1.0, 'g': 0.7, 'b': 1.0, 'a': 1.0} # Define a marker publisher. self.marker_pub = rospy.Publisher('waypoint_markers', Marker, queue_size=5) # Initialize the marker points list. self.waypoint_markers = Marker() self.waypoint_markers.ns = marker_ns self.waypoint_markers.id = marker_id self.waypoint_markers.type = Marker.CUBE_LIST self.waypoint_markers.action = Marker.ADD self.waypoint_markers.lifetime = rospy.Duration(marker_lifetime) self.waypoint_markers.scale.x = marker_scale self.waypoint_markers.scale.y = marker_scale self.waypoint_markers.color.r = marker_color['r'] self.waypoint_markers.color.g = marker_color['g'] self.waypoint_markers.color.b = marker_color['b'] self.waypoint_markers.color.a = marker_color['a'] self.waypoint_markers.header.frame_id = 'odom' self.waypoint_markers.header.stamp = rospy.Time.now() self.waypoint_markers.points = list() def init_docking_station_marker(self): # Define a marker for the charging station marker_scale = 0.3 marker_lifetime = 0 # 0 is forever marker_ns = 'waypoints' marker_id = 0 marker_color = {'r': 0.7, 'g': 0.7, 'b': 0.0, 'a': 1.0} self.docking_station_marker_pub = rospy.Publisher('docking_station_marker', Marker, queue_size=5) self.docking_station_marker = Marker() self.docking_station_marker.ns = marker_ns self.docking_station_marker.id = marker_id self.docking_station_marker.type = Marker.CYLINDER self.docking_station_marker.action = Marker.ADD self.docking_station_marker.lifetime = rospy.Duration(marker_lifetime) self.docking_station_marker.scale.x = marker_scale self.docking_station_marker.scale.y = marker_scale self.docking_station_marker.scale.z = 0.02 self.docking_station_marker.color.r = marker_color['r'] self.docking_station_marker.color.g = marker_color['g'] self.docking_station_marker.color.b = marker_color['b'] self.docking_station_marker.color.a = marker_color['a'] self.docking_station_marker.header.frame_id = 'odom' self.docking_station_marker.header.stamp = rospy.Time.now() self.docking_station_marker.pose = self.docking_station_pose
py
7df86fdf095fbb348bbd3e58b06804d91863db11
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys # import django # sys.path.insert(0, os.path.abspath('..')) # os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.local") # django.setup() # -- Project information ----------------------------------------------------- project = "Logical Console" copyright = """2020, John Teague""" author = "John Teague" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "alabaster" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"]
py
7df86fe385da7418ae357dc2ccf251631c2d6ec5
# Generated by Django 2.2 on 2020-09-21 19:04 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ] operations = [ migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('email', models.EmailField(max_length=254, unique=True)), ('name', models.CharField(max_length=254)), ('is_active', models.BooleanField(default=True)), ('is_staff', models.BooleanField(default=False)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'abstract': False, }, ), ]
py
7df870f7ee42fc40f334859d523571bd24e7f0b1
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Unit tests for side inputs.""" import logging import unittest from nose.plugins.attrib import attr import apache_beam as beam from apache_beam.test_pipeline import TestPipeline from apache_beam.transforms import window from apache_beam.transforms.util import assert_that, equal_to class SideInputsTest(unittest.TestCase): def create_pipeline(self): return TestPipeline() def run_windowed_side_inputs(self, elements, main_window_fn, side_window_fn=None, side_input_type=beam.pvalue.AsList, combine_fn=None, expected=None): with self.create_pipeline() as p: pcoll = p | beam.Create(elements) | beam.Map( lambda t: window.TimestampedValue(t, t)) main = pcoll | 'WindowMain' >> beam.WindowInto(main_window_fn) side = pcoll | 'WindowSide' >> beam.WindowInto( side_window_fn or main_window_fn) kw = {} if combine_fn is not None: side |= beam.CombineGlobally(combine_fn).without_defaults() kw['default_value'] = 0 elif side_input_type == beam.pvalue.AsDict: side |= beam.Map(lambda x: ('k%s' % x, 'v%s' % x)) res = main | beam.Map(lambda x, s: (x, s), side_input_type(side, **kw)) if side_input_type in (beam.pvalue.AsIter, beam.pvalue.AsList): res |= beam.Map(lambda (x, s): (x, sorted(s))) assert_that(res, equal_to(expected)) def test_global_global_windows(self): self.run_windowed_side_inputs( [1, 2, 3], window.GlobalWindows(), expected=[(1, [1, 2, 3]), (2, [1, 2, 3]), (3, [1, 2, 3])]) def test_same_fixed_windows(self): self.run_windowed_side_inputs( [1, 2, 11], window.FixedWindows(10), expected=[(1, [1, 2]), (2, [1, 2]), (11, [11])]) def test_different_fixed_windows(self): self.run_windowed_side_inputs( [1, 2, 11, 21, 31], window.FixedWindows(10), window.FixedWindows(20), expected=[(1, [1, 2, 11]), (2, [1, 2, 11]), (11, [1, 2, 11]), (21, [21, 31]), (31, [21, 31])]) def test_fixed_global_window(self): self.run_windowed_side_inputs( [1, 2, 11], window.FixedWindows(10), window.GlobalWindows(), expected=[(1, [1, 2, 11]), (2, [1, 2, 11]), (11, [1, 2, 11])]) def test_sliding_windows(self): self.run_windowed_side_inputs( [1, 2, 4], window.SlidingWindows(size=6, period=2), window.SlidingWindows(size=6, period=2), expected=[ # Element 1 falls in three windows (1, [1]), # [-4, 2) (1, [1, 2]), # [-2, 4) (1, [1, 2, 4]), # [0, 6) # as does 2, (2, [1, 2]), # [-2, 4) (2, [1, 2, 4]), # [0, 6) (2, [2, 4]), # [2, 8) # and 4. (4, [1, 2, 4]), # [0, 6) (4, [2, 4]), # [2, 8) (4, [4]), # [4, 10) ]) def test_windowed_iter(self): self.run_windowed_side_inputs( [1, 2, 11], window.FixedWindows(10), side_input_type=beam.pvalue.AsIter, expected=[(1, [1, 2]), (2, [1, 2]), (11, [11])]) def test_windowed_singleton(self): self.run_windowed_side_inputs( [1, 2, 11], window.FixedWindows(10), side_input_type=beam.pvalue.AsSingleton, combine_fn=sum, expected=[(1, 3), (2, 3), (11, 11)]) def test_windowed_dict(self): self.run_windowed_side_inputs( [1, 2, 11], window.FixedWindows(10), side_input_type=beam.pvalue.AsDict, expected=[ (1, {'k1': 'v1', 'k2': 'v2'}), (2, {'k1': 'v1', 'k2': 'v2'}), (11, {'k11': 'v11'}), ]) @attr('ValidatesRunner') def test_empty_singleton_side_input(self): pipeline = self.create_pipeline() pcol = pipeline | 'start' >> beam.Create([1, 2]) side = pipeline | 'side' >> beam.Create([]) # Empty side input. def my_fn(k, s): # TODO(robertwb): Should this be an error as in Java? v = ('empty' if isinstance(s, beam.pvalue.EmptySideInput) else 'full') return [(k, v)] result = pcol | 'compute' >> beam.FlatMap( my_fn, beam.pvalue.AsSingleton(side)) assert_that(result, equal_to([(1, 'empty'), (2, 'empty')])) pipeline.run() # @attr('ValidatesRunner') # TODO(BEAM-1124): Temporarily disable it due to test failed running on # Dataflow service. def test_multi_valued_singleton_side_input(self): pipeline = self.create_pipeline() pcol = pipeline | 'start' >> beam.Create([1, 2]) side = pipeline | 'side' >> beam.Create([3, 4]) # 2 values in side input. pcol | 'compute' >> beam.FlatMap( # pylint: disable=expression-not-assigned lambda x, s: [x * s], beam.pvalue.AsSingleton(side)) with self.assertRaises(ValueError): pipeline.run() @attr('ValidatesRunner') def test_default_value_singleton_side_input(self): pipeline = self.create_pipeline() pcol = pipeline | 'start' >> beam.Create([1, 2]) side = pipeline | 'side' >> beam.Create([]) # 0 values in side input. result = pcol | beam.FlatMap( lambda x, s: [x * s], beam.pvalue.AsSingleton(side, 10)) assert_that(result, equal_to([10, 20])) pipeline.run() @attr('ValidatesRunner') def test_iterable_side_input(self): pipeline = self.create_pipeline() pcol = pipeline | 'start' >> beam.Create([1, 2]) side = pipeline | 'side' >> beam.Create([3, 4]) # 2 values in side input. result = pcol | 'compute' >> beam.FlatMap( lambda x, s: [x * y for y in s], beam.pvalue.AsIter(side)) assert_that(result, equal_to([3, 4, 6, 8])) pipeline.run() @attr('ValidatesRunner') def test_as_list_and_as_dict_side_inputs(self): a_list = [5, 1, 3, 2, 9] some_pairs = [('crouton', 17), ('supreme', None)] pipeline = self.create_pipeline() main_input = pipeline | 'main input' >> beam.Create([1]) side_list = pipeline | 'side list' >> beam.Create(a_list) side_pairs = pipeline | 'side pairs' >> beam.Create(some_pairs) results = main_input | 'concatenate' >> beam.FlatMap( lambda x, the_list, the_dict: [[x, the_list, the_dict]], beam.pvalue.AsList(side_list), beam.pvalue.AsDict(side_pairs)) def matcher(expected_elem, expected_list, expected_pairs): def match(actual): [[actual_elem, actual_list, actual_dict]] = actual equal_to([expected_elem])([actual_elem]) equal_to(expected_list)(actual_list) equal_to(expected_pairs)(actual_dict.iteritems()) return match assert_that(results, matcher(1, a_list, some_pairs)) pipeline.run() @attr('ValidatesRunner') def test_as_singleton_without_unique_labels(self): # This should succeed as calling beam.pvalue.AsSingleton on the same # PCollection twice with the same defaults will return the same # PCollectionView. a_list = [2] pipeline = self.create_pipeline() main_input = pipeline | 'main input' >> beam.Create([1]) side_list = pipeline | 'side list' >> beam.Create(a_list) results = main_input | beam.FlatMap( lambda x, s1, s2: [[x, s1, s2]], beam.pvalue.AsSingleton(side_list), beam.pvalue.AsSingleton(side_list)) def matcher(expected_elem, expected_singleton): def match(actual): [[actual_elem, actual_singleton1, actual_singleton2]] = actual equal_to([expected_elem])([actual_elem]) equal_to([expected_singleton])([actual_singleton1]) equal_to([expected_singleton])([actual_singleton2]) return match assert_that(results, matcher(1, 2)) pipeline.run() @attr('ValidatesRunner') def test_as_singleton_with_different_defaults_without_unique_labels(self): # This should fail as beam.pvalue.AsSingleton with distinct default values # should beam.Create distinct PCollectionViews with the same full_label. a_list = [2] pipeline = self.create_pipeline() main_input = pipeline | 'main input' >> beam.Create([1]) side_list = pipeline | 'side list' >> beam.Create(a_list) with self.assertRaises(RuntimeError) as e: _ = main_input | beam.FlatMap( lambda x, s1, s2: [[x, s1, s2]], beam.pvalue.AsSingleton(side_list), beam.pvalue.AsSingleton(side_list, default_value=3)) self.assertTrue( e.exception.message.startswith( 'Transform "ViewAsSingleton(side list.None)" does not have a ' 'stable unique label.')) @attr('ValidatesRunner') def test_as_singleton_with_different_defaults_with_unique_labels(self): a_list = [] pipeline = self.create_pipeline() main_input = pipeline | 'main input' >> beam.Create([1]) side_list = pipeline | 'side list' >> beam.Create(a_list) results = main_input | beam.FlatMap( lambda x, s1, s2: [[x, s1, s2]], beam.pvalue.AsSingleton(side_list, default_value=2, label='si1'), beam.pvalue.AsSingleton(side_list, default_value=3, label='si2')) def matcher(expected_elem, expected_singleton1, expected_singleton2): def match(actual): [[actual_elem, actual_singleton1, actual_singleton2]] = actual equal_to([expected_elem])([actual_elem]) equal_to([expected_singleton1])([actual_singleton1]) equal_to([expected_singleton2])([actual_singleton2]) return match assert_that(results, matcher(1, 2, 3)) pipeline.run() @attr('ValidatesRunner') def test_as_list_without_unique_labels(self): # This should succeed as calling beam.pvalue.AsList on the same # PCollection twice will return the same PCollectionView. a_list = [1, 2, 3] pipeline = self.create_pipeline() main_input = pipeline | 'main input' >> beam.Create([1]) side_list = pipeline | 'side list' >> beam.Create(a_list) results = main_input | beam.FlatMap( lambda x, ls1, ls2: [[x, ls1, ls2]], beam.pvalue.AsList(side_list), beam.pvalue.AsList(side_list)) def matcher(expected_elem, expected_list): def match(actual): [[actual_elem, actual_list1, actual_list2]] = actual equal_to([expected_elem])([actual_elem]) equal_to(expected_list)(actual_list1) equal_to(expected_list)(actual_list2) return match assert_that(results, matcher(1, [1, 2, 3])) pipeline.run() @attr('ValidatesRunner') def test_as_list_with_unique_labels(self): a_list = [1, 2, 3] pipeline = self.create_pipeline() main_input = pipeline | 'main input' >> beam.Create([1]) side_list = pipeline | 'side list' >> beam.Create(a_list) results = main_input | beam.FlatMap( lambda x, ls1, ls2: [[x, ls1, ls2]], beam.pvalue.AsList(side_list), beam.pvalue.AsList(side_list, label='label')) def matcher(expected_elem, expected_list): def match(actual): [[actual_elem, actual_list1, actual_list2]] = actual equal_to([expected_elem])([actual_elem]) equal_to(expected_list)(actual_list1) equal_to(expected_list)(actual_list2) return match assert_that(results, matcher(1, [1, 2, 3])) pipeline.run() @attr('ValidatesRunner') def test_as_dict_with_unique_labels(self): some_kvs = [('a', 1), ('b', 2)] pipeline = self.create_pipeline() main_input = pipeline | 'main input' >> beam.Create([1]) side_kvs = pipeline | 'side kvs' >> beam.Create(some_kvs) results = main_input | beam.FlatMap( lambda x, dct1, dct2: [[x, dct1, dct2]], beam.pvalue.AsDict(side_kvs), beam.pvalue.AsDict(side_kvs, label='label')) def matcher(expected_elem, expected_kvs): def match(actual): [[actual_elem, actual_dict1, actual_dict2]] = actual equal_to([expected_elem])([actual_elem]) equal_to(expected_kvs)(actual_dict1.iteritems()) equal_to(expected_kvs)(actual_dict2.iteritems()) return match assert_that(results, matcher(1, some_kvs)) pipeline.run() if __name__ == '__main__': logging.getLogger().setLevel(logging.DEBUG) unittest.main()
py
7df8710376727ff1b81bb169634bbcadec01fd3b
from __future__ import absolute_import, division, print_function __metaclass__ = type from .....plugins.module_utils.my_util import hello def test_hello(): assert hello('Ansibull') == 'Hello Ansibull'
py
7df87143afb779ce335b2e6d2783417cb1d20050
"""Test sunsynk library.""" from typing import Sequence from unittest.mock import AsyncMock import pytest # from sunsynk.definitions import serial from sunsynk import Sunsynk, pySunsynk, uSunsynk @pytest.fixture def sss() -> Sequence[Sunsynk]: res: Sequence[Sunsynk] = [] if uSunsynk: res.append(uSunsynk()) if pySunsynk: res.append(pySunsynk()) return res @pytest.mark.asyncio async def test_ss(): if pySunsynk: ss = pySunsynk() with pytest.raises(ConnectionError): await ss.connect() @pytest.mark.asyncio async def test_ss_tcp(): if pySunsynk: ss = pySunsynk() ss.port = "127.0.0.1:502" with pytest.raises(ConnectionError): await ss.connect() @pytest.mark.asyncio async def test_ss_read(sss): for ss in sss: if uSunsynk: ss = uSunsynk() ss.client = AsyncMock() if pySunsynk: ss = pySunsynk() ss.client = AsyncMock()
py
7df871aaf5fd211bfdf88d57b630d22d4fa0a0fc
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from inspect import getmembers, isfunction from unittest import mock from unittest.mock import ANY, PropertyMock import pytest import torch from torch.utils.data import DataLoader from pytorch_lightning import __version__, Callback, LightningDataModule, LightningModule, Trainer from tests.helpers import BoringDataModule, BoringModel, RandomDataset from tests.helpers.runif import RunIf @pytest.mark.parametrize('max_steps', [1, 2, 3]) def test_on_before_zero_grad_called(tmpdir, max_steps): class CurrentTestModel(BoringModel): on_before_zero_grad_called = 0 def on_before_zero_grad(self, optimizer): self.on_before_zero_grad_called += 1 model = CurrentTestModel() trainer = Trainer( default_root_dir=tmpdir, max_steps=max_steps, max_epochs=2, ) assert 0 == model.on_before_zero_grad_called trainer.fit(model) assert max_steps == model.on_before_zero_grad_called model.on_before_zero_grad_called = 0 trainer.test(model) assert 0 == model.on_before_zero_grad_called def test_training_epoch_end_metrics_collection(tmpdir): """ Test that progress bar metrics also get collected at the end of an epoch. """ num_epochs = 3 class CurrentModel(BoringModel): def training_step(self, *args, **kwargs): output = super().training_step(*args, **kwargs) self.log_dict({'step_metric': torch.tensor(-1), 'shared_metric': 100}, logger=False, prog_bar=True) return output def training_epoch_end(self, outputs): epoch = self.current_epoch # both scalar tensors and Python numbers are accepted self.log_dict( { f'epoch_metric_{epoch}': torch.tensor(epoch), 'shared_metric': 111 }, logger=False, prog_bar=True, ) model = CurrentModel() trainer = Trainer( max_epochs=num_epochs, default_root_dir=tmpdir, overfit_batches=2, ) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" metrics = trainer.progress_bar_dict # metrics added in training step should be unchanged by epoch end method assert metrics['step_metric'] == -1 # a metric shared in both methods gets overwritten by epoch_end assert metrics['shared_metric'] == 111 # metrics are kept after each epoch for i in range(num_epochs): assert metrics[f'epoch_metric_{i}'] == i def test_training_epoch_end_metrics_collection_on_override(tmpdir): """ Test that batch end metrics are collected when training_epoch_end is overridden at the end of an epoch. """ class OverriddenModel(BoringModel): def __init__(self): super().__init__() self.len_outputs = 0 def on_train_epoch_start(self): self.num_train_batches = 0 def training_epoch_end(self, outputs): self.len_outputs = len(outputs) def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx): self.num_train_batches += 1 class NotOverriddenModel(BoringModel): def on_train_epoch_start(self): self.num_train_batches = 0 def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx): self.num_train_batches += 1 overridden_model = OverriddenModel() not_overridden_model = NotOverriddenModel() not_overridden_model.training_epoch_end = None trainer = Trainer( max_epochs=1, default_root_dir=tmpdir, overfit_batches=2, ) trainer.fit(overridden_model) assert overridden_model.len_outputs == overridden_model.num_train_batches @RunIf(min_gpus=1) @mock.patch("pytorch_lightning.accelerators.accelerator.Accelerator.lightning_module", new_callable=PropertyMock) def test_apply_batch_transfer_handler(model_getter_mock): expected_device = torch.device('cuda', 0) class CustomBatch: def __init__(self, data): self.samples = data[0] self.targets = data[1] class CurrentTestModel(BoringModel): rank = 0 transfer_batch_to_device_hook_rank = None on_before_batch_transfer_hook_rank = None on_after_batch_transfer_hook_rank = None def on_before_batch_transfer(self, batch, dataloader_idx): assert dataloader_idx is None self.on_before_batch_transfer_hook_rank = self.rank self.rank += 1 batch.samples += 1 return batch def on_after_batch_transfer(self, batch, dataloader_idx): assert dataloader_idx is None assert batch.samples.device == batch.targets.device == expected_device self.on_after_batch_transfer_hook_rank = self.rank self.rank += 1 batch.targets *= 2 return batch def transfer_batch_to_device(self, batch, device, dataloader_idx): assert dataloader_idx is None self.transfer_batch_to_device_hook_rank = self.rank self.rank += 1 batch.samples = batch.samples.to(device) batch.targets = batch.targets.to(device) return batch model = CurrentTestModel() batch = CustomBatch((torch.zeros(5, 32), torch.ones(5, 1, dtype=torch.long))) trainer = Trainer(gpus=1) # running .fit() would require us to implement custom data loaders, we mock the model reference instead model_getter_mock.return_value = model batch_gpu = trainer.accelerator.batch_to_device(batch, expected_device) assert model.on_before_batch_transfer_hook_rank == 0 assert model.transfer_batch_to_device_hook_rank == 1 assert model.on_after_batch_transfer_hook_rank == 2 assert batch_gpu.samples.device == batch_gpu.targets.device == expected_device assert torch.allclose(batch_gpu.samples.cpu(), torch.ones(5, 32)) assert torch.allclose(batch_gpu.targets.cpu(), torch.ones(5, 1, dtype=torch.long) * 2) @RunIf(min_gpus=2, special=True) def test_transfer_batch_hook_ddp(tmpdir): """ Test custom data are properly moved to the right device using ddp """ class CustomBatch: def __init__(self, data): self.samples = data[0] def to(self, device, **kwargs): self.samples = self.samples.to(device, **kwargs) return self def collate_fn(batch): return CustomBatch(batch) class TestModel(BoringModel): def training_step(self, batch, batch_idx): assert batch.samples.device == self.device assert isinstance(batch_idx, int) def train_dataloader(self): return torch.utils.data.DataLoader(RandomDataset(32, 64), collate_fn=collate_fn) model = TestModel() model.validation_step = None model.training_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=0, max_epochs=1, weights_summary=None, accelerator="ddp", gpus=2, ) trainer.fit(model) def get_members(cls): return {h for h, _ in getmembers(cls, predicate=isfunction) if not h.startswith('_')} class HookedCallback(Callback): def __init__(self, called): def call(hook, *args, **kwargs): d = {'name': f'Callback.{hook}'} if args: d['args'] = args if kwargs: d['kwargs'] = kwargs called.append(d) for h in get_members(Callback): setattr(self, h, partial(call, h)) class HookedModel(BoringModel): def __init__(self, called): super().__init__() pl_module_hooks = get_members(LightningModule) # remove non-hooks pl_module_hooks.difference_update({'optimizers'}) # remove most `nn.Module` hooks module_hooks = get_members(torch.nn.Module) module_hooks.difference_update({'forward', 'zero_grad', 'train'}) pl_module_hooks.difference_update(module_hooks) def call(hook, fn, *args, **kwargs): out = fn(*args, **kwargs) d = {'name': hook} if args: d['args'] = args elif hook == 'train': # DeepSpeed calls `train(mode)` but we do not. Standardize # https://github.com/microsoft/DeepSpeed/pull/571 d['args'] = (True, ) if kwargs: d['kwargs'] = kwargs called.append(d) return out for h in pl_module_hooks: attr = getattr(self, h) setattr(self, h, partial(call, h, attr)) def validation_epoch_end(self, *args, **kwargs): # `BoringModel` does not have a return for `validation_step_end` so this would fail pass def test_epoch_end(self, *args, **kwargs): # `BoringModel` does not have a return for `test_step_end` so this would fail pass def _train_batch(self, *args, **kwargs): if self.automatic_optimization: return self._auto_train_batch(*args, **kwargs) return self._manual_train_batch(*args, **kwargs) @staticmethod def _auto_train_batch(trainer, model, batches, device=torch.device('cpu'), current_epoch=0, **kwargs): using_native_amp = kwargs.get('amp_backend') == 'native' using_deepspeed = kwargs.get('plugins') == 'deepspeed' out = [] on_before_optimizer_step = [ dict(name='Callback.on_before_optimizer_step', args=(trainer, model, ANY, 0)), dict(name='on_before_optimizer_step', args=(ANY, 0)), ] for i in range(batches): out.extend([ dict(name='on_before_batch_transfer', args=(ANY, 0)), dict(name='transfer_batch_to_device', args=(ANY, device, 0)), dict(name='on_after_batch_transfer', args=(ANY, 0)), # TODO: `on_batch_{start,end}` dict(name='Callback.on_batch_start', args=(trainer, model)), dict(name='Callback.on_train_batch_start', args=(trainer, model, ANY, i, 0)), dict(name='on_train_batch_start', args=(ANY, i, 0)), # these are before the training step because # they are not part of the `training_step_and_backward` closure, however, # with native amp, the closure is run first and then the optimizer step. *(on_before_optimizer_step if not using_native_amp else []), dict(name='forward', args=(ANY, )), dict(name='training_step', args=(ANY, i)), dict(name='training_step_end', args=(dict(loss=ANY), )), dict(name='Callback.on_before_zero_grad', args=(trainer, model, ANY)), dict(name='on_before_zero_grad', args=(ANY, )), dict(name='optimizer_zero_grad', args=(current_epoch, i, ANY, 0)), dict(name='Callback.on_before_backward', args=(trainer, model, ANY)), dict(name='on_before_backward', args=(ANY, )), # DeepSpeed handles backward internally *([dict(name='backward', args=(ANY, ANY, 0))] if not using_deepspeed else []), dict(name='Callback.on_after_backward', args=(trainer, model)), dict(name='on_after_backward'), *(on_before_optimizer_step if using_native_amp else []), dict( name='optimizer_step', args=(current_epoch, i, ANY, 0, ANY), kwargs=dict(on_tpu=False, using_lbfgs=False, using_native_amp=using_native_amp) ), dict(name='Callback.on_train_batch_end', args=(trainer, model, dict(loss=ANY), ANY, i, 0)), dict(name='on_train_batch_end', args=(dict(loss=ANY), ANY, i, 0)), dict(name='Callback.on_batch_end', args=(trainer, model)), ]) return out @staticmethod def _manual_train_batch(trainer, model, batches, device=torch.device('cpu'), **kwargs): using_deepspeed = kwargs.get('plugins') == 'deepspeed' out = [] for i in range(batches): out.extend([ dict(name='on_before_batch_transfer', args=(ANY, 0)), dict(name='transfer_batch_to_device', args=(ANY, device, 0)), dict(name='on_after_batch_transfer', args=(ANY, 0)), # TODO: `on_batch_{start,end}` dict(name='Callback.on_batch_start', args=(trainer, model)), dict(name='Callback.on_train_batch_start', args=(trainer, model, ANY, i, 0)), dict(name='on_train_batch_start', args=(ANY, i, 0)), dict(name='forward', args=(ANY, )), dict(name='Callback.on_before_backward', args=(trainer, model, ANY)), dict(name='on_before_backward', args=(ANY, )), # DeepSpeed handles backward internally *([dict(name='backward', args=(ANY, None, None))] if not using_deepspeed else []), dict(name='Callback.on_after_backward', args=(trainer, model)), dict(name='on_after_backward'), # `manual_backward` calls the previous 3 dict(name='manual_backward', args=(ANY, )), dict(name='Callback.on_before_optimizer_step', args=(trainer, model, ANY, 0)), dict(name='on_before_optimizer_step', args=(ANY, 0)), dict(name='training_step', args=(ANY, i)), dict(name='training_step_end', args=(dict(loss=ANY), )), dict(name='Callback.on_train_batch_end', args=(trainer, model, dict(loss=ANY), ANY, i, 0)), dict(name='on_train_batch_end', args=(dict(loss=ANY), ANY, i, 0)), dict(name='Callback.on_batch_end', args=(trainer, model)), ]) return out @staticmethod def _eval_epoch(fn, trainer, model, batches, key, device=torch.device('cpu')): outputs = {key: ANY} return [ dict(name='Callback.on_epoch_start', args=(trainer, model)), dict(name='on_epoch_start'), dict(name=f'Callback.on_{fn}_epoch_start', args=(trainer, model)), dict(name=f'on_{fn}_epoch_start'), *HookedModel._eval_batch(fn, trainer, model, batches, key, device=device), dict(name=f'{fn}_epoch_end', args=([outputs] * batches, )), dict(name=f'Callback.on_{fn}_epoch_end', args=(trainer, model)), dict(name=f'on_{fn}_epoch_end'), dict(name='Callback.on_epoch_end', args=(trainer, model)), dict(name='on_epoch_end'), ] @staticmethod def _eval_batch(fn, trainer, model, batches, key, device=torch.device('cpu')): out = [] outputs = {key: ANY} for i in range(batches): out.extend([ dict(name='on_before_batch_transfer', args=(ANY, 0)), dict(name='transfer_batch_to_device', args=(ANY, device, 0)), dict(name='on_after_batch_transfer', args=(ANY, 0)), # TODO: `{,Callback}.on_batch_{start,end}` dict(name=f'Callback.on_{fn}_batch_start', args=(trainer, model, ANY, i, 0)), dict(name=f'on_{fn}_batch_start', args=(ANY, i, 0)), dict(name='forward', args=(ANY, )), dict(name=f'{fn}_step', args=(ANY, i)), dict(name=f'{fn}_step_end', args=(outputs, )), dict(name=f'Callback.on_{fn}_batch_end', args=(trainer, model, outputs, ANY, i, 0)), dict(name=f'on_{fn}_batch_end', args=(outputs, ANY, i, 0)), ]) return out @staticmethod def _predict_batch(trainer, model, batches): out = [] for i in range(batches): out.extend([ dict(name='on_before_batch_transfer', args=(ANY, 0)), dict(name='transfer_batch_to_device', args=(ANY, torch.device('cpu'), 0)), dict(name='on_after_batch_transfer', args=(ANY, 0)), # TODO: `{,Callback}.on_batch_{start,end}` dict(name='Callback.on_predict_batch_start', args=(trainer, model, ANY, i, 0)), dict(name='on_predict_batch_start', args=(ANY, i, 0)), dict(name='forward', args=(ANY, )), dict(name='predict_step', args=(ANY, i)), # TODO: `predict_step_end` dict(name='Callback.on_predict_batch_end', args=(trainer, model, ANY, ANY, i, 0)), dict(name='on_predict_batch_end', args=(ANY, ANY, i, 0)), ]) return out @pytest.mark.parametrize( 'kwargs', [ {}, # these precision plugins modify the optimization flow, so testing them explicitly pytest.param(dict(gpus=1, precision=16, plugins='deepspeed'), marks=RunIf(deepspeed=True, min_gpus=1)), pytest.param(dict(gpus=1, precision=16, amp_backend='native'), marks=RunIf(amp_native=True, min_gpus=1)), pytest.param(dict(gpus=1, precision=16, amp_backend='apex'), marks=RunIf(amp_apex=True, min_gpus=1)), ] ) @pytest.mark.parametrize('automatic_optimization', (True, False)) def test_trainer_model_hook_system_fit(tmpdir, kwargs, automatic_optimization): called = [] class TestModel(HookedModel): def __init__(self, *args): super().__init__(*args) self.automatic_optimization = automatic_optimization def training_step(self, batch, batch_idx): if self.automatic_optimization: return super().training_step(batch, batch_idx) loss = self.step(batch[0]) opt = self.optimizers() opt.zero_grad() self.manual_backward(loss) opt.step() return {'loss': loss} model = TestModel(called) callback = HookedCallback(called) train_batches = 2 val_batches = 2 trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=train_batches, limit_val_batches=val_batches, progress_bar_refresh_rate=0, weights_summary=None, callbacks=[callback], **kwargs, ) assert called == [ dict(name='Callback.on_init_start', args=(trainer, )), dict(name='Callback.on_init_end', args=(trainer, )), ] trainer.fit(model) saved_ckpt = { 'callbacks': ANY, 'epoch': 1, 'global_step': train_batches, 'lr_schedulers': ANY, 'optimizer_states': ANY, 'pytorch-lightning_version': __version__, 'state_dict': ANY, } if kwargs.get('amp_backend') == 'native': saved_ckpt['native_amp_scaling_state'] = ANY elif kwargs.get('amp_backend') == 'apex': saved_ckpt['amp_scaling_state'] = ANY device = torch.device('cuda:0' if 'gpus' in kwargs else 'cpu') expected = [ dict(name='Callback.on_init_start', args=(trainer, )), dict(name='Callback.on_init_end', args=(trainer, )), dict(name='prepare_data'), dict(name='configure_callbacks'), dict(name='Callback.on_before_accelerator_backend_setup', args=(trainer, model)), # DeepSpeed needs the batch size to figure out throughput logging *([dict(name='train_dataloader')] if kwargs.get('plugins') == 'deepspeed' else []), dict(name='Callback.setup', args=(trainer, model), kwargs=dict(stage='fit')), dict(name='setup', kwargs=dict(stage='fit')), dict(name='configure_sharded_model'), dict(name='Callback.on_configure_sharded_model', args=(trainer, model)), # DeepSpeed skips initializing optimizers here as they are handled via config *([dict(name='configure_optimizers')] if kwargs.get('plugins') != 'deepspeed' else []), dict(name='Callback.on_fit_start', args=(trainer, model)), dict(name='on_fit_start'), # TODO: explore whether DeepSpeed can have the same flow for optimizers # DeepSpeed did not find any optimizer in the config so they are loaded here *([dict(name='configure_optimizers')] if kwargs.get('plugins') == 'deepspeed' else []), dict(name='Callback.on_pretrain_routine_start', args=(trainer, model)), dict(name='on_pretrain_routine_start'), dict(name='Callback.on_pretrain_routine_end', args=(trainer, model)), dict(name='on_pretrain_routine_end'), dict(name='Callback.on_sanity_check_start', args=(trainer, model)), dict(name='on_val_dataloader'), dict(name='val_dataloader'), dict(name='train', args=(False, )), dict(name='on_validation_model_eval'), dict(name='zero_grad'), dict(name='Callback.on_validation_start', args=(trainer, model)), dict(name='on_validation_start'), *model._eval_epoch('validation', trainer, model, val_batches, 'x', device=device), dict(name='Callback.on_validation_end', args=(trainer, model)), dict(name='on_validation_end'), dict(name='train', args=(True, )), dict(name='on_validation_model_train'), dict(name='Callback.on_sanity_check_end', args=(trainer, model)), # duplicate `train` because `_run_train` calls it again in case validation wasn't run dict(name='train', args=(True, )), dict(name='on_train_dataloader'), dict(name='train_dataloader'), dict(name='Callback.on_train_start', args=(trainer, model)), dict(name='on_train_start'), dict(name='Callback.on_epoch_start', args=(trainer, model)), dict(name='on_epoch_start'), dict(name='Callback.on_train_epoch_start', args=(trainer, model)), dict(name='on_train_epoch_start'), *model._train_batch(trainer, model, train_batches, device=device, **kwargs), dict(name='train', args=(False, )), dict(name='on_validation_model_eval'), dict(name='zero_grad'), dict(name='Callback.on_validation_start', args=(trainer, model)), dict(name='on_validation_start'), *model._eval_epoch('validation', trainer, model, val_batches, 'x', device=device), dict(name='Callback.on_validation_end', args=(trainer, model)), dict(name='on_validation_end'), dict(name='train', args=(True, )), dict(name='on_validation_model_train'), dict(name='training_epoch_end', args=([dict(loss=ANY)] * train_batches, )), dict(name='Callback.on_train_epoch_end', args=(trainer, model, [dict(loss=ANY)] * train_batches)), # `ModelCheckpoint.save_checkpoint` is called here from `Callback.on_train_epoch_end` dict(name='Callback.on_save_checkpoint', args=(trainer, model, saved_ckpt)), dict(name='on_save_checkpoint', args=(saved_ckpt, )), dict(name='on_train_epoch_end', args=([dict(loss=ANY)] * train_batches, )), dict(name='Callback.on_epoch_end', args=(trainer, model)), dict(name='on_epoch_end'), dict(name='Callback.on_train_end', args=(trainer, model)), dict(name='on_train_end'), dict(name='Callback.on_fit_end', args=(trainer, model)), dict(name='on_fit_end'), dict(name='Callback.teardown', args=(trainer, model), kwargs=dict(stage='fit')), dict(name='teardown', kwargs=dict(stage='fit')), ] assert called == expected def test_trainer_model_hook_system_fit_no_val_and_resume(tmpdir): # initial training to get a checkpoint model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, max_steps=1, limit_val_batches=0, progress_bar_refresh_rate=0, weights_summary=None, ) trainer.fit(model) best_model_path = trainer.checkpoint_callback.best_model_path # resume from checkpoint with HookedModel called = [] model = HookedModel(called) callback = HookedCallback(called) train_batches = 2 trainer = Trainer( default_root_dir=tmpdir, # already performed 1 step, now resuming to do an additional 2 max_steps=(1 + train_batches), limit_val_batches=0, progress_bar_refresh_rate=0, weights_summary=None, resume_from_checkpoint=best_model_path, callbacks=[callback] ) assert called == [ dict(name='Callback.on_init_start', args=(trainer, )), dict(name='Callback.on_init_end', args=(trainer, )), ] trainer.fit(model) saved_ckpt = { 'callbacks': ANY, 'epoch': 2, # TODO: wrong saved epoch 'global_step': (1 + train_batches), 'lr_schedulers': ANY, 'optimizer_states': ANY, 'pytorch-lightning_version': __version__, 'state_dict': ANY, } expected = [ dict(name='Callback.on_init_start', args=(trainer, )), dict(name='Callback.on_init_end', args=(trainer, )), dict(name='prepare_data'), dict(name='configure_callbacks'), dict(name='Callback.on_before_accelerator_backend_setup', args=(trainer, model)), dict(name='Callback.setup', args=(trainer, model), kwargs=dict(stage='fit')), dict(name='setup', kwargs=dict(stage='fit')), dict( name='on_load_checkpoint', args=({ 'callbacks': ANY, 'epoch': 1, 'global_step': 1, 'lr_schedulers': ANY, 'optimizer_states': ANY, 'pytorch-lightning_version': __version__, 'state_dict': ANY, }, ) ), dict(name='configure_sharded_model'), dict(name='Callback.on_configure_sharded_model', args=(trainer, model)), dict(name='configure_optimizers'), dict(name='Callback.on_fit_start', args=(trainer, model)), dict(name='on_fit_start'), dict(name='Callback.on_pretrain_routine_start', args=(trainer, model)), dict(name='on_pretrain_routine_start'), dict(name='Callback.on_pretrain_routine_end', args=(trainer, model)), dict(name='on_pretrain_routine_end'), dict(name='train', args=(True, )), dict(name='on_train_dataloader'), dict(name='train_dataloader'), # even though no validation runs, we initialize the val dataloader for properties like `num_val_batches` dict(name='on_val_dataloader'), dict(name='val_dataloader'), dict(name='Callback.on_train_start', args=(trainer, model)), dict(name='on_train_start'), dict(name='Callback.on_epoch_start', args=(trainer, model)), dict(name='on_epoch_start'), dict(name='Callback.on_train_epoch_start', args=(trainer, model)), dict(name='on_train_epoch_start'), # TODO: wrong current epoch after reload *model._train_batch(trainer, model, train_batches, current_epoch=1), dict(name='training_epoch_end', args=([dict(loss=ANY)] * train_batches, )), dict(name='Callback.on_train_epoch_end', args=( trainer, model, [dict(loss=ANY)] * train_batches, )), dict(name='Callback.on_save_checkpoint', args=(trainer, model, saved_ckpt)), dict(name='on_save_checkpoint', args=(saved_ckpt, )), dict(name='on_train_epoch_end', args=([dict(loss=ANY)] * train_batches, )), dict(name='Callback.on_epoch_end', args=(trainer, model)), dict(name='on_epoch_end'), dict(name='Callback.on_train_end', args=(trainer, model)), dict(name='on_train_end'), dict(name='Callback.on_fit_end', args=(trainer, model)), dict(name='on_fit_end'), dict(name='Callback.teardown', args=(trainer, model), kwargs=dict(stage='fit')), dict(name='teardown', kwargs=dict(stage='fit')), ] assert called == expected @pytest.mark.parametrize('batches', (0, 2)) @pytest.mark.parametrize(['verb', 'noun', 'dataloader', 'key'], [ ('validate', 'validation', 'val', 'x'), ('test', 'test', 'test', 'y'), ]) def test_trainer_model_hook_system_eval(tmpdir, batches, verb, noun, dataloader, key): called = [] model = HookedModel(called) callback = HookedCallback(called) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_val_batches=batches, limit_test_batches=batches, progress_bar_refresh_rate=0, weights_summary=None, callbacks=[callback], ) assert called == [ dict(name='Callback.on_init_start', args=(trainer, )), dict(name='Callback.on_init_end', args=(trainer, )), ] fn = getattr(trainer, verb) fn(model, verbose=False) hooks = [ dict(name='train', args=(False, )), dict(name=f'on_{noun}_model_eval'), dict(name='zero_grad'), dict(name=f'Callback.on_{noun}_start', args=(trainer, model)), dict(name=f'on_{noun}_start'), *model._eval_epoch(noun, trainer, model, batches, key), dict(name=f'Callback.on_{noun}_end', args=(trainer, model)), dict(name=f'on_{noun}_end'), dict(name='train', args=(True, )), dict(name=f'on_{noun}_model_train'), ] expected = [ dict(name='Callback.on_init_start', args=(trainer, )), dict(name='Callback.on_init_end', args=(trainer, )), dict(name='prepare_data'), dict(name='configure_callbacks'), dict(name='Callback.on_before_accelerator_backend_setup', args=(trainer, model)), dict(name='Callback.setup', args=(trainer, model), kwargs=dict(stage=verb)), dict(name='setup', kwargs=dict(stage=verb)), dict(name='configure_sharded_model'), dict(name='Callback.on_configure_sharded_model', args=(trainer, model)), dict(name=f'on_{dataloader}_dataloader'), dict(name=f'{dataloader}_dataloader'), *(hooks if batches else []), dict(name='Callback.teardown', args=(trainer, model), kwargs=dict(stage=verb)), dict(name='teardown', kwargs=dict(stage=verb)), ] assert called == expected def test_trainer_model_hook_system_predict(tmpdir): called = [] model = HookedModel(called) callback = HookedCallback(called) batches = 2 trainer = Trainer( default_root_dir=tmpdir, limit_predict_batches=batches, progress_bar_refresh_rate=0, callbacks=[callback], ) assert called == [ dict(name='Callback.on_init_start', args=(trainer, )), dict(name='Callback.on_init_end', args=(trainer, )), ] trainer.predict(model) expected = [ dict(name='Callback.on_init_start', args=(trainer, )), dict(name='Callback.on_init_end', args=(trainer, )), dict(name='prepare_data'), dict(name='configure_callbacks'), dict(name='Callback.on_before_accelerator_backend_setup', args=(trainer, model)), dict(name='Callback.setup', args=(trainer, model), kwargs=dict(stage='predict')), dict(name='setup', kwargs=dict(stage='predict')), dict(name='configure_sharded_model'), dict(name='Callback.on_configure_sharded_model', args=(trainer, model)), dict(name='on_predict_dataloader'), dict(name='predict_dataloader'), dict(name='train', args=(False, )), dict(name='on_predict_model_eval'), dict(name='zero_grad'), dict(name='Callback.on_predict_start', args=(trainer, model)), dict(name='on_predict_start'), # TODO: `{,Callback}.on_epoch_{start,end}` dict(name='Callback.on_predict_epoch_start', args=(trainer, model)), dict(name='on_predict_epoch_start'), *model._predict_batch(trainer, model, batches), # TODO: `predict_epoch_end` dict(name='Callback.on_predict_epoch_end', args=(trainer, model, [[ANY] * batches])), dict(name='on_predict_epoch_end', args=([[ANY] * batches], )), dict(name='Callback.on_predict_end', args=(trainer, model)), dict(name='on_predict_end'), # TODO: `on_predict_model_train` dict(name='Callback.teardown', args=(trainer, model), kwargs=dict(stage='predict')), dict(name='teardown', kwargs=dict(stage='predict')), ] assert called == expected # TODO: add test for tune def test_hooks_with_different_argument_names(tmpdir): """ Test that argument names can be anything in the hooks """ class CustomBoringModel(BoringModel): def assert_args(self, x, batch_nb): assert isinstance(x, torch.Tensor) assert x.size() == (1, 32) assert isinstance(batch_nb, int) def training_step(self, x1, batch_nb1): self.assert_args(x1, batch_nb1) return super().training_step(x1, batch_nb1) def validation_step(self, x2, batch_nb2): self.assert_args(x2, batch_nb2) return super().validation_step(x2, batch_nb2) def test_step(self, x3, batch_nb3, dl_idx3): self.assert_args(x3, batch_nb3) assert isinstance(dl_idx3, int) return super().test_step(x3, batch_nb3) def predict(self, x4, batch_nb4, dl_idx4): self.assert_args(x4, batch_nb4) assert isinstance(dl_idx4, int) return super().predict(x4, batch_nb4, dl_idx4) def test_dataloader(self): return [DataLoader(RandomDataset(32, 64)), DataLoader(RandomDataset(32, 64))] def predict_dataloader(self): return [DataLoader(RandomDataset(32, 64)), DataLoader(RandomDataset(32, 64))] model = CustomBoringModel() model.test_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=5, ) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" trainer.test(ckpt_path=None) preds = trainer.predict(model) assert len(preds) == 2 assert all(len(x) == 5 for x in preds) def test_trainer_datamodule_hook_system(tmpdir): """Test the LightningDataModule hook system.""" class HookedDataModule(BoringDataModule): def __init__(self, called): super().__init__() def call(hook, fn, *args, **kwargs): out = fn(*args, **kwargs) d = {'name': hook} if args: d['args'] = args if kwargs: d['kwargs'] = kwargs called.append(d) return out for h in get_members(LightningDataModule): attr = getattr(self, h) setattr(self, h, partial(call, h, attr)) model = BoringModel() batches = 2 trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=batches, limit_val_batches=batches, limit_test_batches=batches, limit_predict_batches=batches, progress_bar_refresh_rate=0, weights_summary=None, reload_dataloaders_every_epoch=True, ) called = [] dm = HookedDataModule(called) trainer.fit(model, datamodule=dm) batch_transfer = [ dict(name='on_before_batch_transfer', args=(ANY, 0)), dict(name='transfer_batch_to_device', args=(ANY, torch.device('cpu'), 0)), dict(name='on_after_batch_transfer', args=(ANY, 0)), ] expected = [ dict(name='prepare_data'), dict(name='setup', kwargs=dict(stage='fit')), dict(name='val_dataloader'), *batch_transfer * batches, dict(name='train_dataloader'), *batch_transfer * batches, dict(name='val_dataloader'), *batch_transfer * batches, dict( name='on_save_checkpoint', args=({ 'callbacks': ANY, 'epoch': 1, 'global_step': 2, 'lr_schedulers': ANY, 'optimizer_states': ANY, 'pytorch-lightning_version': __version__, 'state_dict': ANY, }, ) ), dict(name='teardown', kwargs=dict(stage='fit')), ] assert called == expected called = [] dm = HookedDataModule(called) trainer.validate(model, datamodule=dm, verbose=False) expected = [ dict(name='prepare_data'), dict(name='setup', kwargs=dict(stage='validate')), dict(name='val_dataloader'), *batch_transfer * batches, dict(name='teardown', kwargs=dict(stage='validate')), ] assert called == expected called = [] dm = HookedDataModule(called) trainer.test(model, datamodule=dm, verbose=False) expected = [ dict(name='prepare_data'), dict(name='setup', kwargs=dict(stage='test')), dict(name='test_dataloader'), *batch_transfer * batches, dict(name='teardown', kwargs=dict(stage='test')), ] assert called == expected called = [] dm = HookedDataModule(called) trainer.predict(model, datamodule=dm) expected = [ dict(name='prepare_data'), dict(name='setup', kwargs=dict(stage='predict')), dict(name='predict_dataloader'), *batch_transfer * batches, dict(name='teardown', kwargs=dict(stage='predict')), ] assert called == expected
py
7df871ce16a1eabbffc9a06511bff9d83a10fdf2
#!/usr/bin/env python3 """Module containing the PMX mutate class and the command line interface.""" import os from pathlib import Path import re import shutil import argparse from typing import Mapping from biobb_pmx.pmx.common import create_mutations_file, MUTATION_DICT from biobb_common.generic.biobb_object import BiobbObject from biobb_common.configuration import settings from biobb_common.tools import file_utils as fu from biobb_common.tools.file_utils import launchlogger from biobb_common.command_wrapper import cmd_wrapper class Pmxmutate(BiobbObject): """ | biobb_pmx Pmxmutate | Wrapper class for the `PMX mutate <https://github.com/deGrootLab/pmx>`_ module. Args: input_structure_path (str): Path to the input structure file. File type: input. `Sample file <https://github.com/bioexcel/biobb_pmx/raw/master/biobb_pmx/test/data/pmx/frame99.pdb>`_. Accepted formats: pdb (edam:format_1476), gro (edam:format_2033). output_structure_path (str): Path to the output structure file. File type: output. `Sample file <https://github.com/bioexcel/biobb_pmx/raw/master/biobb_pmx/test/reference/pmx/ref_output_structure.pdb>`_. Accepted formats: pdb (edam:format_1476), gro (edam:format_2033). input_b_structure_path (str) (Optional): Path to the mutated input structure file. File type: input. Accepted formats: pdb (edam:format_1476), gro (edam:format_2033). properties (dic): * **mutation_list** (*str*) - ("2Ala") Mutation list in the format "Chain:Resnum MUT_AA_Code" or "Chain:Resnum MUT_NA_Code" (no spaces between the elements) separated by commas. If no chain is provided as chain code all the chains in the pdb file will be mutated. ie: "A:15CYS". Possible MUT_AA_Code: 'ALA', 'ARG', 'ASN', 'ASP', 'ASPH', 'ASPP', 'ASH', 'CYS', 'CYS2', 'CYN', 'CYX', 'CYM', 'CYSH', 'GLU', 'GLUH', 'GLUP', 'GLH', 'GLN', 'GLY', 'HIS', 'HIE', 'HISE', 'HSE', 'HIP', 'HSP', 'HISH', 'HID', 'HSD', 'ILE', 'LEU', 'LYS', 'LYSH', 'LYP', 'LYN', 'LSN', 'MET', 'PHE', 'PRO', 'SER', 'SP1', 'SP2', 'THR', 'TRP', 'TYR', 'VAL'. Possible MUT_NA_Codes: 'A', 'T', 'C', 'G', 'U'. * **force_field** (*str*) - ("amber99sb-star-ildn-mut") Forcefield to use. * **resinfo** (*bool*) - (False) Show the list of 3-letter -> 1-letter residues. * **gmx_lib** (*str*) - ("$CONDA_PREFIX/lib/python3.7/site-packages/pmx/data/mutff45/") Path to the GMXLIB folder in your computer. * **pmx_path** (*str*) - ("pmx") Path to the PMX command line interface. * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files. * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist. * **container_path** (*str*) - (None) Path to the binary executable of your container. * **container_image** (*str*) - (None) Container Image identifier. * **container_volume_path** (*str*) - ("/inout") Path to an internal directory in the container. * **container_working_dir** (*str*) - (None) Path to the internal CWD in the container. * **container_user_id** (*str*) - (None) User number id to be mapped inside the container. * **container_shell_path** (*str*) - ("/bin/bash") Path to the binary executable of the container shell. Examples: This is a use example of how to use the building block from Python:: from biobb_pmx.pmx.pmxmutate import pmxmutate prop = { 'mutation_list': '2Ala, 3Val', 'gmx_lib': '/path/to/myGMXLIB/', 'force_field': 'amber99sb-star-ildn-mut' } pmxmutate(input_structure_path='/path/to/myStructure.pdb', output_structure_path='/path/to/newStructure.pdb', input_b_structure_path='/path/to/myStructureB.pdb' properties=prop) Info: * wrapped_software: * name: PMX mutate * version: >=1.0.1 * license: GNU * ontology: * name: EDAM * schema: http://edamontology.org/EDAM.owl """ def __init__(self, input_structure_path: str, output_structure_path: str, input_b_structure_path: str = None, properties: Mapping = None, **kwargs) -> None: properties = properties or {} # Call parent class constructor super().__init__(properties) # Input/Output files self.io_dict = { "in": {"input_structure_path": input_structure_path, "input_b_structure_path": input_b_structure_path}, "out": {"output_structure_path": output_structure_path} } # Properties specific for BB self.force_field = properties.get('force_field', "amber99sb-star-ildn-mut") self.resinfo = properties.get('resinfo', False) self.mutation_list = properties.get('mutation_list', '2Ala') self.input_mutations_file = properties.get('mutations_file') # Properties common in all PMX BB self.gmx_lib = properties.get('gmx_lib', None) if not self.gmx_lib and os.environ.get('CONDA_PREFIX'): self.gmx_lib = str( Path(os.environ.get('CONDA_PREFIX')).joinpath("lib/python3.7/site-packages/pmx/data/mutff45/")) if properties.get('container_path'): self.gmx_lib = str(Path('/usr/local/').joinpath("lib/python3.7/site-packages/pmx/data/mutff45/")) self.pmx_path = properties.get('pmx_path', 'pmx') # Check the properties self.check_properties(properties) @launchlogger def launch(self) -> int: """Execute the :class:`Pmxmutate <pmx.pmxmutate.Pmxmutate>` pmx.pmxmutate.Pmxmutate object.""" # Setup Biobb if self.check_restart(): return 0 self.stage_files() # Check if executable exists if not self.container_path: if not Path(self.pmx_path).is_file(): if not shutil.which(self.pmx_path): raise FileNotFoundError( 'Executable %s not found. Check if it is installed in your system and correctly defined in the properties' % self.pmx_path) # Generate mutations file mutations_dir = fu.create_unique_dir() self.input_mutations_file = create_mutations_file(input_mutations_path=str(Path(mutations_dir).joinpath('mutations.txt')), mutation_list=self.mutation_list, mutation_dict=MUTATION_DICT) # Copy extra files to container: mutations file if self.container_path: fu.log('Container execution enabled', self.out_log) shutil.copy2(self.input_mutations_file, self.stage_io_dict.get("unique_dir")) self.input_mutations_file = str(Path(self.container_volume_path).joinpath(Path(self.input_mutations_file).name)) self.cmd = [self.pmx_path, 'mutate', '-f', self.stage_io_dict["in"]["input_structure_path"], '-o', self.stage_io_dict["out"]["output_structure_path"], '-ff', self.force_field, '--script', self.input_mutations_file] if self.stage_io_dict["in"].get("input_b_structure_path"): self.cmd.append('-fB') self.cmd.append(self.stage_io_dict["in"]["input_b_structure_path"]) if self.resinfo: self.cmd.append('-resinfo') if self.gmx_lib: self.environment = os.environ.copy() self.environment['GMXLIB'] = self.gmx_lib # Run Biobb block self.run_biobb() # Copy files to host self.copy_to_host() self.tmp_files.append(self.stage_io_dict.get("unique_dir")) self.remove_tmp_files() return self.return_code def pmxmutate(input_structure_path: str, output_structure_path: str, input_b_structure_path: str = None, properties: dict = None, **kwargs) -> int: """Execute the :class:`Pmxmutate <pmx.pmxmutate.Pmxmutate>` class and execute the :meth:`launch() <pmx.pmxmutate.Pmxmutate.launch> method.""" return Pmxmutate(input_structure_path=input_structure_path, output_structure_path=output_structure_path, input_b_structure_path=input_b_structure_path, properties=properties, **kwargs).launch() def main(): """Command line execution of this building block. Please check the command line documentation.""" parser = argparse.ArgumentParser(description="Run PMX mutate module", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999)) parser.add_argument('-c', '--config', required=False, help="This file can be a YAML file, JSON file or JSON string") # Specific args of each building block required_args = parser.add_argument_group('required arguments') required_args.add_argument('--input_structure_path', required=True, help="Path to the input structure file") required_args.add_argument('--output_structure_path', required=True, help="Path to the output structure file") parser.add_argument('--input_b_structure_path', required=False, help="Path to the mutated input structure file") args = parser.parse_args() config = args.config if args.config else None properties = settings.ConfReader(config=config).get_prop_dic() # Specific call of each building block pmxmutate(input_structure_path=args.input_structure_path, output_structure_path=args.output_structure_path, input_b_structure_path=args.input_b_structure_path, properties=properties) if __name__ == '__main__': main()
py
7df871d43fb638214a4bf4d462ea8197e9c64552
import re import os import datetime import yaml import yamlordereddictloader from collections import defaultdict from yaml.representer import Representer # set up defaultdict representation yaml.add_representer(defaultdict, Representer.represent_dict) PHONE_RE = re.compile(r'''^ \D*(1?)\D* # prefix (\d{3})\D*(\d{3})\D*(\d{4}).*? # main 10 digits (?:(?:ext|Ext|EXT)\.?\s*\s*(\d{1,4}))? # extension $''', re.VERBOSE) def reformat_phone_number(phone): match = PHONE_RE.match(phone) if match: groups = match.groups() ext = groups[-1] if ext: ext = f' ext. {ext}' else: ext = '' if not groups[0]: groups = groups[1:-1] else: groups = groups[:-1] return '-'.join(groups) + ext else: return phone def reformat_address(address): return re.sub(r'\s+', ' ', re.sub(r'\s*\n\s*', ';', address)) def get_data_dir(abbr): return os.path.join(os.path.dirname(__file__), '../test/', abbr) def get_jurisdiction_id(abbr): if abbr == 'dc': return 'ocd-jurisdiction/country:us/district:dc/government' elif abbr in ('vi', 'pr'): return f'ocd-jurisdiction/country:us/territory:{abbr}/government' else: return f'ocd-jurisdiction/country:us/state:{abbr}/government' def load_yaml(file_obj): return yaml.load(file_obj, Loader=yamlordereddictloader.SafeLoader) def dump_obj(obj, *, output_dir=None, filename=None): if output_dir: filename = os.path.join(output_dir, get_filename(obj)) if not filename: raise ValueError('must provide output_dir or filename parameter') with open(filename, 'w') as f: yaml.dump(obj, f, default_flow_style=False, Dumper=yamlordereddictloader.SafeDumper) def get_filename(obj): id = obj['id'].split('/')[1] name = obj['name'] name = re.sub('\s+', '-', name) name = re.sub('[^a-zA-Z-]', '', name) return f'{name}-{id}.yml' def role_is_active(role): now = datetime.datetime.utcnow().date().strftime('%Y-%m-%d') return role.get('end_date') is None or role.get('end_date') > now
py
7df872a587e580ed68345543d2cee600f4d37a22
# # Copyright 2020 Logical Clocks AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import furl from abc import ABC, abstractmethod import requests import urllib3 from hsfs.client import exceptions, auth from hsfs.decorators import connected urllib3.disable_warnings(urllib3.exceptions.SecurityWarning) urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) class Client(ABC): TOKEN_FILE = "token.jwt" REST_ENDPOINT = "REST_ENDPOINT" DEFAULT_DATABRICKS_ROOT_VIRTUALENV_ENV = "DEFAULT_DATABRICKS_ROOT_VIRTUALENV_ENV" @abstractmethod def __init__(self): """To be implemented by clients.""" pass def _get_verify(self, verify, trust_store_path): """Get verification method for sending HTTP requests to Hopsworks. Credit to https://gist.github.com/gdamjan/55a8b9eec6cf7b771f92021d93b87b2c :param verify: perform hostname verification, 'true' or 'false' :type verify: str :param trust_store_path: path of the truststore locally if it was uploaded manually to the external environment such as AWS Sagemaker :type trust_store_path: str :return: if verify is true and the truststore is provided, then return the trust store location if verify is true but the truststore wasn't provided, then return true if verify is false, then return false :rtype: str or boolean """ if verify == "true": if trust_store_path is not None: return trust_store_path else: return True return False def _get_host_port_pair(self): """ Removes "http or https" from the rest endpoint and returns a list [endpoint, port], where endpoint is on the format /path.. without http:// :return: a list [endpoint, port] :rtype: list """ endpoint = self._base_url if "http" in endpoint: last_index = endpoint.rfind("/") endpoint = endpoint[last_index + 1 :] host, port = endpoint.split(":") return host, port def _read_jwt(self): """Retrieve jwt from local container.""" with open(self.TOKEN_FILE, "r") as jwt: return jwt.read() @connected def _send_request( self, method, path_params, query_params=None, headers=None, data=None, stream=False, ): """Send REST request to Hopsworks. Uses the client it is executed from. Path parameters are url encoded automatically. :param method: 'GET', 'PUT' or 'POST' :type method: str :param path_params: a list of path params to build the query url from starting after the api resource, for example `["project", 119, "featurestores", 67]`. :type path_params: list :param query_params: A dictionary of key/value pairs to be added as query parameters, defaults to None :type query_params: dict, optional :param headers: Additional header information, defaults to None :type headers: dict, optional :param data: The payload as a python dictionary to be sent as json, defaults to None :type data: dict, optional :param stream: Set if response should be a stream, defaults to False :type stream: boolean, optional :raises RestAPIError: Raised when request wasn't correctly received, understood or accepted :return: Response json :rtype: dict """ base_path_params = ["hopsworks-api", "api"] f_url = furl.furl(self._base_url) f_url.path.segments = base_path_params + path_params url = str(f_url) request = requests.Request( method, url=url, headers=headers, data=data, params=query_params, auth=self._auth, ) prepped = self._session.prepare_request(request) response = self._session.send(prepped, verify=self._verify, stream=stream) if response.status_code == 401 and self.REST_ENDPOINT in os.environ: # refresh token and retry request - only on hopsworks self._auth = auth.BearerAuth(self._read_jwt()) # Update request with the new token request.auth = self._auth prepped = self._session.prepare_request(request) response = self._session.send(prepped, verify=self._verify, stream=stream) if response.status_code // 100 != 2: raise exceptions.RestAPIError(url, response) if stream: return response else: # handle different success reponse codes if response.status_code == 204: return None return response.json() def _close(self): """Closes a client. Can be implemented for clean up purposes, not mandatory.""" self._connected = False
py
7df873ee4f191845e42ef141bd46e31316afd420
import os import tkinter as tk from tkinter import messagebox from tkinter import PhotoImage import datetime from customWidgets import CustomLabel, CustomFrame, CustomEntry, CustomButton if not os.path.exists('receipts/'): os.mkdir('receipts/') with open('receipts/orders.txt', 'w') as file: file.write('OrderN12121') class Application(tk.Frame): def __init__(self, master=None): super().__init__(master=master) self.master = master self.grid() self.draw_frames() self.draw_title_widgets() self.draw_body_widgets() self.itemCost = { 'Tea' : 10, 'Coffee' : 15, 'Pastery' : 80, 'Pizza' : 199, 'Fries' : 60, 'Burger' : 49, 'Pepsi' : 14, 'Cookies' : 4 } self.discount_dict = { 0:0, 100 : 1, 300 : 2, 500 : 3, 1000 : 5, 2000 : 8, 5000 : 15 } self.itemList = [item for item in self.itemCost.keys()] self.entryValues = [tk.StringVar() for item in self.itemList] self.expression = '' self.draw_item_frame_widgets() self.draw_bill_frame_widgets() self.draw_controller_frame_widgets() self.draw_calculator_frame_widgets() def draw_frames(self): self.title_frame = tk.Frame(self, width=800, height=105, bg='white') self.main_frame = tk.LabelFrame(self, width=800, height=280, bg='white') self.title_frame.grid(row=0, column=0) self.main_frame.grid(row=1, column=0, pady=5) self.title_frame.grid_propagate(False) self.main_frame.grid_propagate(False) def draw_title_widgets(self): self.icon = tk.Label(self.title_frame, image=coffee_icon1, bg='white') self.icon.grid(row=0, column=0, rowspan=2, padx=(10,3)) self.title = tk.Label(self.title_frame, width=24, height=2, text='Honest Bistro Cafe', font=('verdana',22,'bold'), fg="#248aa2", bg="white") self.title.grid(row=0, column=1, columnspan=3) self.l1 = tk.Label(self.title_frame, bg='#248aa2', width=25) self.l2 = tk.Label(self.title_frame, bg='#248aa2', width=5) self.l1.grid(row=1, column=1) self.l2.grid(row=1, column=3) self.date_time = tk.Label(self.title_frame, text=self.get_current_datetime(), fg='#fe4a49', font=('verdana', 12, 'bold')) self.date_time.after(1000, self.update_datetime_label) self.date_time.grid(row=1, column=2, padx=5) def draw_body_widgets(self): self.items_frame = CustomFrame(self.main_frame, text='Cafe Items', height=240, width=170) self.items_frame.grid(row=0, column=0, padx=(15,10), pady=15, rowspan=2, sticky='NW') self.bill_frame = CustomFrame(self.main_frame, text='Items Bill', height=200, width=192) self.bill_frame.grid(row=0, column=1, padx=10, pady=(15,0)) self.controller = CustomFrame(self.main_frame, width=192, height=30, borderwidth=0) self.controller.grid(row=1, column=1, padx=10, sticky='N') self.calculator = CustomFrame(self.main_frame, text='Calculator', height=200, width=168) self.calculator.grid(row=0, column=2, padx=5, pady=15, sticky='NW') self.contact = CustomFrame(self.main_frame, width=192, height=30, borderwidth=0) self.contact.grid(row=1, column=2, padx=10, sticky='N') l1 = tk.Label(self.contact, bg='#248aa2', width=25, height=2, text=' Opens 09:00 to 08:30 \n Contact : 876655444', font=('Verdana', 8, 'bold'), fg='white', anchor='w') l1.grid(row=0, column=0) self.items_frame.grid_propagate(False) self.bill_frame.grid_propagate(False) self.controller.grid_propagate(False) self.calculator.grid_propagate(False) def draw_item_frame_widgets(self): for row, item in enumerate(self.itemList): label = CustomLabel(self.items_frame, text=(' ' + item)) label.grid(row=row, column=0, pady=(4,0)) entry = CustomEntry(self.items_frame, textvariable=self.entryValues[row]) entry.grid(row=row, column=1, pady=(4,0)) def draw_bill_frame_widgets(self): self.chargeList = ['Items Cost', 'Service Charge', 'GST Charges','Discount', 'Total'] self.chargeValues = [tk.StringVar() for item in self.chargeList] for row, item in enumerate(self.chargeList): label = CustomLabel(self.bill_frame, text=item, width=12) label.grid(row=row, column=0, pady=(3,0)) entry = CustomEntry(self.bill_frame, textvariable=self.chargeValues[row]) entry.grid(row=row, column=1, pady=(3,0)) self.name_frame = tk.LabelFrame(self.bill_frame) self.name_frame.grid(row=5, column=0, columnspan=2, pady=(15,0), padx=3) self.customer_name = tk.StringVar() self.name = CustomLabel(self.name_frame, text='Name', width=7) self.name_entry = CustomEntry(self.name_frame, width=15, textvariable=self.customer_name) self.name.grid(row=0, column=0, pady=2, padx=1) self.name_entry.grid(row=0, column=1, pady=2, padx=1) def draw_controller_frame_widgets(self): self.total = CustomButton(self.controller, text='Calculate', command=self.calculate_payment) self.total.grid(row=0, column=0, padx=(2,0)) self.clear = CustomButton(self.controller, text='Clear', command=self.clear_all) self.clear.grid(row=0, column=1, padx=(2,0)) self.receipt = CustomButton(self.controller, text='Receipt', command=self.get_receipt) self.receipt.grid(row=0, column=2, padx=(2,0)) def draw_calculator_frame_widgets(self): self.input_string = tk.StringVar() self.calc_entry = CustomEntry(self.calculator, width=23, textvariable=self.input_string) self.calc_entry.grid(row=0, column=0, columnspan=4, pady=(5,3), padx=4) self.seven = self.create_button(self.calculator, '7', '#248aa2', "white", lambda : self.get('7'), 1, 0) self.eight = self.create_button(self.calculator, '8', '#248aa2', "white", lambda : self.get('8'), 1, 1) self.nine = self.create_button(self.calculator, '9', '#248aa2', "white", lambda : self.get('9'), 1, 2) self.plus = self.create_button(self.calculator, '+', 'white', "black", lambda : self.get('+'), 1, 3) self.four = self.create_button(self.calculator, '4', '#248aa2', "white", lambda : self.get('4'), 2, 0) self.five = self.create_button(self.calculator, '5', '#248aa2', "white", lambda : self.get('5'), 2, 1) self.six = self.create_button(self.calculator, '6', '#248aa2', "white", lambda : self.get('6'), 2, 2) self.minus = self.create_button(self.calculator, '-', 'white', "black", lambda : self.get('-'), 2, 3) self.one = self.create_button(self.calculator, '1', '#248aa2', "white", lambda : self.get('1'), 3, 0) self.two = self.create_button(self.calculator, '2', '#248aa2', "white", lambda : self.get('2'), 3, 1) self.three = self.create_button(self.calculator, '3', '#248aa2', "white", lambda : self.get('3'), 3, 2) self.mult = self.create_button(self.calculator, '*', 'white', "black", lambda : self.get('*'), 3, 3) self.clear = self.create_button(self.calculator, 'C', '#248aa2', "white", self.delete_calc_text, 4, 0) self.zero = self.create_button(self.calculator, '0', '#248aa2', "white", lambda : self.get('0'), 4, 1) self.equal = self.create_button(self.calculator, '=', '#248aa2', "white", self.evaluate_expression, 4, 2) self.div = self.create_button(self.calculator, '/', 'white', "black", lambda : self.get('/'), 4, 3) def create_button(self, parent, text, bg, fg, command, r, c): self.button = tk.Button(parent, bg=bg, fg=fg, font=('Arial',10, 'bold')) self.button['text'] = text self.button['command'] = command self.button.config(height=1, width=3) self.button.grid(row=r, column=c, pady=4) return self.button def get(self, value): ops = ['+', '-', '*', '/'] if self.expression == 'error': self.expression = '' if len(self.expression) == 0: if value in ['+', '-']: self.expression += value elif value in ['*', '/']: pass else: self.expression += value elif len(self.expression) > 0: if value in ops and self.expression[-1] in ops: self.expression = self.expression[:-1] + value else: self.expression += value self.input_string.set(self.expression) def evaluate_expression(self): if len(self.expression) > 0: try: self.expression = str(round(eval(self.expression), 2)) except: self.expression = 'error' self.input_string.set(self.expression) def delete_calc_text(self): self.expression = '' self.calc_entry.delete(0,'end') def get_current_datetime(self): dt = datetime.datetime.now() return dt.strftime('%b %d ,%Y %I:%M:%S %p') def update_datetime_label(self): dt = self.get_current_datetime() self.date_time['text'] = dt self.date_time.after(1000, self.update_datetime_label) def get_order_details(self): total_cost = 0 for index, item in enumerate(self.itemList): qty = self.entryValues[index].get() if qty: self.hasBought = True cost = int(qty) * self.itemCost[item] total_cost += cost if self.hasBought: service_charge = round(0.04 * total_cost, 2) gst = round(0.05 * total_cost, 2) total = total_cost + service_charge + gst disc = 0 for d in self.discount_dict.keys(): if total >= d: disc = d cut = self.discount_dict[disc] discount = round((cut / 100) * total_cost, 2) total = round(total - discount, 2) else: total_cost, service_charge, gst, discount, total = [0 for i in range(5)] return total_cost, service_charge, gst, discount, total def calculate_payment(self): self.hasBought = False total_cost, service_charge, gst, discount, total = self.get_order_details() if self.hasBought: self.chargeValues[0].set(str(total_cost)) self.chargeValues[1].set(str(service_charge)) self.chargeValues[2].set(str(gst)) self.chargeValues[3].set(str(discount)) self.chargeValues[4].set(str(total)) def get_receipt(self): if self.chargeValues[4].get() != '': total_cost, service_charge, gst, discount, total = [self.chargeValues[i].get() for i in range(5)] name = self.customer_name.get() if name: current = self.make_entry() with open(f'receipts/order_receipt_{current}.txt', 'w') as file: file.write('Order Summary\n') file.write(f'Customer Name : {name}\n') file.write(f'Order date time : {self.get_current_datetime()}\n\n') i, q, p, t = 'item', 'quantity', 'price', 'total cost' file.write(f' {i:<12} | {q:<8} | {p:<8} | {t:<12}\n') for index, item in enumerate(self.itemList): qty = self.entryValues[index].get() if qty: self.hasBought = True c = self.itemCost[item] cost = int(qty) * c file.write(f' {item.lower():<12}| {qty:<8} | {c:<8} | {cost:<12}\n') file.write('\n') file.write(f'SubCost : {total_cost}\n') file.write(f'Service Charge : {service_charge}\n') file.write(f'GST : {gst}\n') file.write(f'Discount : {discount}\n') file.write(f'Total Cost : {total}\n') messagebox.showinfo('Honest Bistro', 'Receipt Generated') else: messagebox.showerror('Honest Bistro', 'Customer Name is required.') else: messagebox.showerror('Honest Bistro', 'No items Bought') def make_entry(self): with open('receipts/orders.txt') as file: current = file.readline() current = int(current[6:]) + 1 with open('receipts/orders.txt', 'w') as file: file.write(('OrderN'+str(current))) return current def clear_all(self): for index, item in enumerate(self.itemList): self.entryValues[index].set('') for index, item in enumerate(self.chargeList): self.chargeValues[index].set('') self.customer_name.set('') self.hasBought = False if __name__ == '__main__': root = tk.Tk() root.geometry('600x390') root.title('Honest Bistro') root.resizable(0,0) coffee_icon1 = PhotoImage(file='icons/coffee.png') app = Application(master=root) app.mainloop()
py
7df87490c609300788b769a78364f21689d1cd90
"""Support for monitoring the Deluge BitTorrent client API.""" import logging from deluge_client import DelugeRPCClient, FailedToReconnectException import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( CONF_HOST, CONF_MONITORED_VARIABLES, CONF_NAME, CONF_PASSWORD, CONF_PORT, CONF_USERNAME, STATE_IDLE, ) from homeassistant.exceptions import PlatformNotReady import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) _THROTTLED_REFRESH = None DEFAULT_NAME = "Deluge" DEFAULT_PORT = 58846 DHT_UPLOAD = 1000 DHT_DOWNLOAD = 1000 SENSOR_TYPES = { "current_status": ["Status", None], "download_speed": ["Down Speed", "kB/s"], "upload_speed": ["Up Speed", "kB/s"], } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_HOST): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Required(CONF_USERNAME): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_MONITORED_VARIABLES, default=[]): vol.All( cv.ensure_list, [vol.In(SENSOR_TYPES)] ), } ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the Deluge sensors.""" name = config.get(CONF_NAME) host = config.get(CONF_HOST) username = config.get(CONF_USERNAME) password = config.get(CONF_PASSWORD) port = config.get(CONF_PORT) deluge_api = DelugeRPCClient(host, port, username, password) try: deluge_api.connect() except ConnectionRefusedError: _LOGGER.error("Connection to Deluge Daemon failed") raise PlatformNotReady dev = [] for variable in config[CONF_MONITORED_VARIABLES]: dev.append(DelugeSensor(variable, deluge_api, name)) add_entities(dev) class DelugeSensor(Entity): """Representation of a Deluge sensor.""" def __init__(self, sensor_type, deluge_client, client_name): """Initialize the sensor.""" self._name = SENSOR_TYPES[sensor_type][0] self.client = deluge_client self.type = sensor_type self.client_name = client_name self._state = None self._unit_of_measurement = SENSOR_TYPES[sensor_type][1] self.data = None self._available = False @property def name(self): """Return the name of the sensor.""" return f"{self.client_name} {self._name}" @property def state(self): """Return the state of the sensor.""" return self._state @property def available(self): """Return true if device is available.""" return self._available @property def unit_of_measurement(self): """Return the unit of measurement of this entity, if any.""" return self._unit_of_measurement def update(self): """Get the latest data from Deluge and updates the state.""" try: self.data = self.client.call( "core.get_session_status", [ "upload_rate", "download_rate", "dht_upload_rate", "dht_download_rate", ], ) self._available = True except FailedToReconnectException: _LOGGER.error("Connection to Deluge Daemon Lost") self._available = False return upload = self.data[b"upload_rate"] - self.data[b"dht_upload_rate"] download = self.data[b"download_rate"] - self.data[b"dht_download_rate"] if self.type == "current_status": if self.data: if upload > 0 and download > 0: self._state = "Up/Down" elif upload > 0 and download == 0: self._state = "Seeding" elif upload == 0 and download > 0: self._state = "Downloading" else: self._state = STATE_IDLE else: self._state = None if self.data: if self.type == "download_speed": kb_spd = float(download) kb_spd = kb_spd / 1024 self._state = round(kb_spd, 2 if kb_spd < 0.1 else 1) elif self.type == "upload_speed": kb_spd = float(upload) kb_spd = kb_spd / 1024 self._state = round(kb_spd, 2 if kb_spd < 0.1 else 1)
py
7df874f1ed5a471c24bfad12aa93f8c4c91bc7f8
# model settings model = dict( type='CascadeRCNN', pretrained=None, backbone=dict( type='SwinTransformer', embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, ape=False, patch_norm=True, out_indices=(0, 1, 2, 3), use_checkpoint=False), neck=dict( type='FPN', in_channels=[96, 192, 384, 768], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='CascadeRoIHead', num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=4, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=4, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=4, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], # mask_roi_extractor=dict( # type='SingleRoIExtractor', # roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), # out_channels=256, # featmap_strides=[4, 8, 16, 32]), # mask_head=dict( # type='FCNMaskHead', # num_convs=4, # in_channels=256, # conv_out_channels=256, # num_classes=3, # loss_mask=dict( # type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)) ), # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]), test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5)))
py
7df8750eb87d31161e534f95746000b398af658e
# !/usr/bin/python # -*- coding: utf-8 -*- from PySide.QtGui import * from PySide.QtCore import Qt class HeatMapWidget(QWidget): def __init__(self, parent=None): super(HeatMapWidget, self).__init__(parent) self.electrodesPosition = \ { "AF3": {"x": 82, "y": 57}, "AF4": {"x": 221, "y": 57}, "F7" : {"x": 35, "y": 104}, "F3" : {"x": 114, "y": 107}, "F4" : {"x": 190, "y": 107}, "F8" : {"x": 269, "y": 104}, "FC5": {"x": 67, "y": 149}, "FC6": {"x": 236, "y": 149}, "T7" : {"x": 18, "y": 197}, "T8" : {"x": 286, "y": 197}, "P7" : {"x": 67, "y": 317}, "P8" : {"x": 236, "y": 317}, "O1" : {"x": 113, "y": 375}, "O2" : {"x": 192, "y": 375} } self.headsetColors = \ [ (0, 0, 255), # Black (21, 0, 234), # Red (43, 0, 212), # Yellow (64, 0, 191), # Green (106, 0, 149), (128, 0, 128), (149, 0, 106), (170, 0, 85), (191, 0, 64), (212, 0, 43), (234, 0, 21), (255, 0, 0) ] layout = QHBoxLayout() self.headsetState = QLabel() layout.addWidget(self.headsetState) self.setLayout(layout) self.minValue = -607 self.maxValue = 3075 layout.setAlignment(Qt.AlignHCenter ) self.pixmap = QPixmap("../assets/headset.png") def updateHeatMapStatus(self, packet): painter = QPainter() if painter.begin(self.pixmap): painter.setFont(QFont('Decorative', 15)) painter.drawText(self.pixmap.rect(), Qt.AlignCenter, "Mapa de calor") painter.setFont(QFont('Decorative', 8)) for key in self.electrodesPosition: if key[0] == "O": painter.drawText(self.electrodesPosition[key]["x"] - 1, self.electrodesPosition[key]["y"] - 20, 30, 15, Qt.AlignCenter, key) elif key == "T7": painter.drawText(self.electrodesPosition[key]["x"] + 7, self.electrodesPosition[key]["y"] + 32, 30, 15, Qt.AlignCenter, key) elif key == "T8": painter.drawText(self.electrodesPosition[key]["x"] - 9, self.electrodesPosition[key]["y"] + 32, 30, 15, Qt.AlignCenter, key) else: painter.drawText( self.electrodesPosition[key]["x"] - 1, self.electrodesPosition[key]["y"] + 32, 30, 15, Qt.AlignCenter, key) if packet == None: color = self.headsetColors[0] painter.setBrush(QColor(0,0,0)) for item in self.electrodesPosition: painter.drawEllipse(self.electrodesPosition[item]["x"], self.electrodesPosition[item]["y"], 28, 28) else: for sensor in packet.sensors: if sensor in self.electrodesPosition: quality = ( packet.sensors[sensor]['value'] + -1*self.minValue ) // 307 color = self.headsetColors[ quality ] painter.setBrush(QColor(color[0], color[1], color[2])) painter.drawEllipse( self.electrodesPosition[sensor]["x"], self.electrodesPosition[sensor]["y"], 28, 28) painter.end() self.headsetState.setPixmap(self.pixmap)
py
7df8757c1cd514e1341dc261f10343a4167dfabb
# -*- coding: utf-8 -*- from __future__ import unicode_literals from transifex.native.django.tools.migrations.templatetags import \ DjangoTagMigrationBuilder DJANGO_TEMPLATE = """ {% extends 'base.html' %} {% load i18n %} {# Translators: This is an amazing comment #} {% trans "Hello!" %} {% comment %}Translators: This is another amazing comment{% endcomment %} {% trans "May" context "month name" %} {% with first=events.first %} {% with second=events.second %} {% blocktrans with third=events.third|title another='foo' %} The following events were found: 1. {{ first }} 2. {{ second }} 3. {{ third }} And this is {{ another }}. {% endblocktrans %} {% endwith %} {% endwith %} {% blocktrans count counter='something'|length %} There is only one {{ name }} object. {% plural %} There are {{ counter }} {{ name }} objects. {% endblocktrans %} {% blocktrans trimmed %} First sentence. Second paragraph. {% endblocktrans %} <a href="{{ url }}">Text</a> {{ _(some_other_var) }} {% trans some_other_var|some_filter %} {% trans "try as" as try %} {% trans "try with <xml>xml</xml>" %} {% blocktrans %} try with <xml>xml</xml> {% endblocktrans %} {% blocktrans with organization_name=organization.name %}Help "{{organization_name}}" translate content {% endblocktrans %} {% blocktrans %}To download, please click <a href="https://{{ site_domain }}{{ url }}">here</a>.{% endblocktrans %} {% comment "Optional note" %} <p>Commented out text with {{ create_date|date:"c" }}</p> {% endcomment %} {# This is not related to translations #} {% something %} {% comment %}This is a non-translator comment{% endcomment %} {% comment %}Translators: This is an orphan translator comment{% endcomment %} """ TRANSIFEX_TEMPLATE = """ {% extends 'base.html' %} {% load i18n %} {% load transifex %} {% t "Hello!" _comment="This is an amazing comment" %} {% t "May" _comment="This is another amazing comment" _context="month name" %} {% with first=events.first %} {% with second=events.second %} {% t another='foo' third=events.third|title %} The following events were found: 1. {first} 2. {second} 3. {third} And this is {another}. {% endt %} {% endwith %} {% endwith %} {% t counter='something'|length %} {counter, plural, one { There is only one {name} object. } other { There are {counter} {name} objects. }} {% endt %} {% t |trimmed %} First sentence. Second paragraph. {% endt %} <a href="{{ url }}">Text</a> {% t some_other_var %} {% t some_other_var|some_filter %} {% t "try as" as try %} {% ut "try with <xml>xml</xml>" %} {% ut %} try with <xml>xml</xml> {% endut %} {% ut 'Help "{organization_name}" translate content ' organization_name=organization.name %} {% ut 'To download, please click <a href="https://{site_domain}{url}">here</a>.' %} {% comment "Optional note" %} <p>Commented out text with {{ create_date|date:"c" }}</p> {% endcomment %} {# This is not related to translations #} {% something %} {% comment %}This is a non-translator comment{% endcomment %} """ def test_compiled_string_is_expected(): """Test all known migration cases.""" builder = DjangoTagMigrationBuilder() file_migration = builder.build_migration(DJANGO_TEMPLATE) compiled = file_migration.compile() assert compiled == TRANSIFEX_TEMPLATE # Make sure the migration is idempotent file_migration = builder.build_migration(compiled) assert file_migration.compile() == TRANSIFEX_TEMPLATE
py
7df875cb713d82a40483d469c74a8e611d54028d
# coding: utf-8 """ Argo Server API You can get examples of requests and responses by using the CLI with `--gloglevel=9`, e.g. `argo list --gloglevel=9` # noqa: E501 The version of the OpenAPI document: v2.12.2 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from argo.workflows.client.configuration import Configuration class V1alpha1SuspendTemplate(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'duration': 'str' } attribute_map = { 'duration': 'duration' } def __init__(self, duration=None, local_vars_configuration=None): # noqa: E501 """V1alpha1SuspendTemplate - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._duration = None self.discriminator = None if duration is not None: self.duration = duration @property def duration(self): """Gets the duration of this V1alpha1SuspendTemplate. # noqa: E501 Duration is the seconds to wait before automatically resuming a template # noqa: E501 :return: The duration of this V1alpha1SuspendTemplate. # noqa: E501 :rtype: str """ return self._duration @duration.setter def duration(self, duration): """Sets the duration of this V1alpha1SuspendTemplate. Duration is the seconds to wait before automatically resuming a template # noqa: E501 :param duration: The duration of this V1alpha1SuspendTemplate. # noqa: E501 :type: str """ self._duration = duration def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1alpha1SuspendTemplate): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1alpha1SuspendTemplate): return True return self.to_dict() != other.to_dict()
py
7df8765e4a67e6e2c0ade95c52af97c700d9e451
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup # https://github.com/pypa/setuptools_scm use_scm = {"write_to": "smart_microscopy_minimal/_version.py"} setup( # use_scm_version=use_scm, version = "0.1.1" )
py
7df876ffdcb7d5a2ec84c3327c80e87249655e4e
# -*- coding: utf-8 -*- # The MIT License (MIT) # # Copyright (c) 2014-2015 Haltu Oy, http://haltu.fi # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import string import factory import factory.fuzzy from selector import models class UserFactory(factory.django.DjangoModelFactory): class Meta: model = models.User first_name = factory.Sequence(lambda n: 'First{0}'.format(n)) last_name = factory.Sequence(lambda n: 'Last{0}'.format(n)) email = factory.LazyAttribute(lambda u: '{0}.{1}@example.com'.format(u.first_name, u.last_name)) username = factory.fuzzy.FuzzyText(length=11, chars=string.digits, prefix='1.2.246.562.24.') # vim: tabstop=2 expandtab shiftwidth=2 softtabstop=2
py
7df8773cf76c8e5529a8e160fc53104461a82a5d
from configparser import ConfigParser, ExtendedInterpolation from os import name, system, getcwd, chdir, path config = None def input_int_with_limits(message: str, lower_bound: int, upper_bound: int) -> int: while(True): try: option = int(input(message)) if ((option <= lower_bound) or (option >= upper_bound)): print(f"Please enter a number between {lower_bound+1} and {upper_bound-1}.") continue return(option) except ValueError as e: print("Please enter a positive integer.") def clear_terminal(): system('cls' if name == 'nt' else 'clear') def change_dir(): if(name == 'nt' and getcwd().endswith("\\blackjack")):#running from top-level directory chdir("src") def print_banner(): clear_terminal() change_dir() [print(line, end = "") for line in open("assets/.banner.txt", "r").readlines()] def read_config(config_filename: str) -> ConfigParser: global config if (not config): config = ConfigParser(interpolation=ExtendedInterpolation()) config.read(path.join('.', config_filename)) return config