ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
7df8c2369223f86ecf5c8e0734a87951bacfbdf0
#!/usr/bin/env python # @Time : 2019-06-01 # @Author : cayun import sys import argparse import asyncio from tawsocks.tcp_relay import TcpRelayHandler from tawsocks.udp_relay import UdpRelayHandler def _parse_args(args): arg_parser = argparse.ArgumentParser() arg_parser.add_argument('-lp', '--local-port', dest='client_port', type=int, required=True, help='本地监听端口') arg_parser.add_argument('-rh', '--remote-host', dest='server_host', required=True, help='服务器地址') arg_parser.add_argument('-rp', '--remote-port', dest='server_port', type=int, required=True, help='服务器端口') arg_parser.add_argument('-P', '--password', dest='password', required=True, help='密码') return arg_parser.parse_args(args) def main(): config = _parse_args(sys.argv[1:]) loop = asyncio.get_event_loop() tcp_relay_handler = TcpRelayHandler(True, config, loop) udp_relay_handler = UdpRelayHandler(True, config, loop) tasks = [ asyncio.ensure_future(tcp_relay_handler.start()), asyncio.ensure_future(udp_relay_handler.start()) ] loop.run_until_complete(asyncio.wait(tasks)) try: loop.run_forever() finally: loop.close() if __name__ == '__main__': main()
py
7df8c39817d99eb94ca76ab648e5ecbf2eab3bb8
from schemas.user import User
py
7df8c42eb9d4b24d5c3e6fae79f3f8b190b4cd83
"""Monte Carlo based sampling.""" import numpy as np from equadratures.sampling_methods.sampling_template import Sampling class Montecarlo(Sampling): """ The class defines a Montecarlo object. Samples are generated from the given distribution. :param list parameters: A list of parameters, where each element of the list is an instance of the Parameter class. :param Basis basis: An instance of the Basis class corresponding to the multi-index set used. :param Correlations corr: An instance of Correlations object if input is correlated. """ def __init__(self, parameters, basis, corr=None, oversampling=7.0): self.parameters = parameters self.basis = basis self.dimensions = len(self.parameters) number_of_samples = int(self.basis.cardinality * oversampling) self.points = self._set_points(number_of_samples, corr) super(Montecarlo, self).__init__(self.parameters, self.basis, self.points) def _set_points(self, number_of_samples, corr=None): """ Sets the quadrature points and weights. :param Sampling self: An instance of the sampling class. """ if not(corr is None): self.points = corr.get_correlated_samples(number_of_samples) else: self.points = np.zeros((number_of_samples, self.dimensions)) for i in range(0, self.dimensions): univariate_samples = self.parameters[i].get_samples(number_of_samples) self.points[:, i] = univariate_samples[:] return self.points
py
7df8c50a0d630537c6b8ad4e59c0e27f1c90b78d
import os from django.conf import settings from django.contrib.staticfiles import finders, storage from django.core.exceptions import ImproperlyConfigured from django.test import SimpleTestCase, override_settings from .cases import StaticFilesTestCase from .settings import TEST_ROOT class TestFinders: """ Base finder test mixin. On Windows, sometimes the case of the path we ask the finders for and the path(s) they find can differ. Compare them using os.path.normcase() to avoid false negatives. """ def test_find_first(self): src, dst = self.find_first found = self.finder.find(src) self.assertEqual(os.path.normcase(found), os.path.normcase(dst)) def test_find_all(self): src, dst = self.find_all found = self.finder.find(src, all=True) found = [os.path.normcase(f) for f in found] dst = [os.path.normcase(d) for d in dst] self.assertEqual(found, dst) class TestFileSystemFinder(TestFinders, StaticFilesTestCase): """ Test FileSystemFinder. """ def setUp(self): super(TestFileSystemFinder, self).setUp() self.finder = finders.FileSystemFinder() test_file_path = os.path.join(TEST_ROOT, 'project', 'documents', 'test', 'file.txt') self.find_first = (os.path.join('test', 'file.txt'), test_file_path) self.find_all = (os.path.join('test', 'file.txt'), [test_file_path]) class TestAppDirectoriesFinder(TestFinders, StaticFilesTestCase): """ Test AppDirectoriesFinder. """ def setUp(self): super(TestAppDirectoriesFinder, self).setUp() self.finder = finders.AppDirectoriesFinder() test_file_path = os.path.join(TEST_ROOT, 'apps', 'test', 'static', 'test', 'file1.txt') self.find_first = (os.path.join('test', 'file1.txt'), test_file_path) self.find_all = (os.path.join('test', 'file1.txt'), [test_file_path]) class TestDefaultStorageFinder(TestFinders, StaticFilesTestCase): """ Test DefaultStorageFinder. """ def setUp(self): super(TestDefaultStorageFinder, self).setUp() self.finder = finders.DefaultStorageFinder( storage=storage.StaticFilesStorage(location=settings.MEDIA_ROOT)) test_file_path = os.path.join(settings.MEDIA_ROOT, 'media-file.txt') self.find_first = ('media-file.txt', test_file_path) self.find_all = ('media-file.txt', [test_file_path]) @override_settings( STATICFILES_FINDERS=['django.contrib.staticfiles.finders.FileSystemFinder'], STATICFILES_DIRS=[os.path.join(TEST_ROOT, 'project', 'documents')], ) class TestMiscFinder(SimpleTestCase): """ A few misc finder tests. """ def test_get_finder(self): self.assertIsInstance(finders.get_finder( 'django.contrib.staticfiles.finders.FileSystemFinder'), finders.FileSystemFinder) def test_get_finder_bad_classname(self): with self.assertRaises(ImportError): finders.get_finder('django.contrib.staticfiles.finders.FooBarFinder') def test_get_finder_bad_module(self): with self.assertRaises(ImportError): finders.get_finder('foo.bar.FooBarFinder') def test_cache(self): finders.get_finder.cache_clear() for n in range(10): finders.get_finder('django.contrib.staticfiles.finders.FileSystemFinder') cache_info = finders.get_finder.cache_info() self.assertEqual(cache_info.hits, 9) self.assertEqual(cache_info.currsize, 1) def test_searched_locations(self): finders.find('spam') self.assertEqual( finders.searched_locations, [os.path.join(TEST_ROOT, 'project', 'documents')] ) @override_settings(STATICFILES_DIRS='a string') def test_non_tuple_raises_exception(self): """ We can't determine if STATICFILES_DIRS is set correctly just by looking at the type, but we can determine if it's definitely wrong. """ with self.assertRaises(ImproperlyConfigured): finders.FileSystemFinder() @override_settings(MEDIA_ROOT='') def test_location_empty(self): with self.assertRaises(ImproperlyConfigured): finders.DefaultStorageFinder()
py
7df8c51f9378c82a672e16d4c1a90d468ab3b304
from flask import g, abort, redirect, url_for from app.instances import db from app.models.Answer import Answer from app.models.Notification import Notification, NotificationType from app.notifications.send_notification import send_notification from app.helpers.answers import get_outgolfed_answers from app.models.Post import Post from app.controllers import codepage from app.models.Language import Language from config import posts def create_answer(post_id, code, commentary, lang_id=None, lang_name=None, encoding='utf-8'): """ Creates an answer on a given post. You may provide `lang_id` if you have a known language, or `lang_name` instead if you have a non-native language. Do NOT provide both. This will emit a notification too. - `401` when not logged in - `400` when a bad `lang_id` is provided. """ if g.user is None: return abort(401) normalized_encoding = codepage.get_normalized_encoding(encoding) if normalized_encoding is None: return abort(400) # Ensure language exists if lang_id is not None and not Language.exists(lang_id): return abort(400) new_answer = Answer(post_id=post_id, language_name=lang_name, language_id=lang_id, binary_code=code.decode('utf8').encode(normalized_encoding), commentary=commentary, encoding=normalized_encoding) g.user.answers.append(new_answer) post = Post.query.filter_by(id=post_id).first() post.answers.append(new_answer) db.session.add(new_answer) db.session.commit() # Dispatch notification to post owner. Only dispatch if the post # user isn't the same as the answer owner. if post.user_id != new_answer.user_id: send_notification(Notification( recipient=post.user, target_id=new_answer.id, sender=new_answer.user, source_id=post_id, notification_type=NotificationType.NEW_ANSWER )) # Dispatch notifications to outgolfed users outgolfed_answers = get_outgolfed_answers(new_answer) for outgolfed_answer in outgolfed_answers: send_notification(Notification( sender=new_answer.user, target_id=new_answer.id, recipient=outgolfed_answer.user, source_id=outgolfed_answer.id, notification_type=NotificationType.OUTGOLFED )) return url_for('get_answer', answer_id=new_answer.id) def get_answers(post_id, page): page = Answer.query. \ filter_by(post_id=post_id, deleted=False) \ .order_by(Answer.score.desc(), Answer.date_created.desc()) \ .paginate(page, per_page=posts['per_page'], error_out=False) return page def get_answer(answer_id): answer = Answer.query.filter_by(id=answer_id).first() return answer def get_page(answer, order_by=(Answer.score.desc(), Answer.date_created.desc()), per_page=posts.get('per_page', 10)): if answer is None: raise ValueError # this is inefficient but it works answers = Answer.query.filter_by(post_id=answer.post_id, deleted=False) \ .order_by(*order_by).all() idx = [answer.id for answer in answers].index(answer.id) page = (idx // per_page) + 1 return page def revise_answer(answer_id, data): answer = get_answer(answer_id) if answer.user_id != g.user.id: raise PermissionError answer, revision = answer.revise(g.user, **data) db.session.add(revision) db.session.commit() return answer
py
7df8c5ef4fad2550d2fca5e5e012bd2062f7eb24
# coding=utf-8 # Copyright 2021 The Edward2 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tracing operations. This file collects common tracing operations, i.e., traces that each control the execution of programs in a specific manner. For example, 'condition' traces a program and fixes the value of random variables; and 'tape' traces the program and records the executed random variables onto an ordered dictionary. """ import collections import contextlib from edward2.trace import trace from edward2.trace import traceable @contextlib.contextmanager def condition(**model_kwargs): """Context manager for setting the values of random variables. Args: **model_kwargs: dict of str to Tensor. Keys are the names of random variable in the model. Values are Tensors to set their corresponding value to. Yields: None. #### Examples `condition` is typically used for binding observations to random variables in the model, or equivalently binding posterior samples to random variables in the model. This lets one compute likelihoods or prior densities. ```python import edward2 as ed def probabilistic_matrix_factorization(): users = ed.Normal(0., 1., sample_shape=[5000, 128], name="users") items = ed.Normal(0., 1., sample_shape=[7500, 128], name="items") ratings = ed.Normal(loc=tf.matmul(users, items, transpose_b=True), scale=0.1, name="ratings") return ratings users = tf.zeros([5000, 128]) items = tf.zeros([7500, 128]) with ed.condition(users=users, items=items): ratings = probabilistic_matrix_factorization() # Compute the likelihood given latent user preferences and item attributes set # to zero matrices, p(data | users=0, items=0). ratings.distribution.log_prob(data) ``` """ def _condition(f, *args, **kwargs): """Sets random variable values to its aligned value.""" name = kwargs.get("name") if name in model_kwargs: kwargs["value"] = model_kwargs[name] return traceable(f)(*args, **kwargs) with trace(_condition): yield @contextlib.contextmanager def tape(): """Context manager for recording traceable executions onto a tape. Similar to `tf.GradientTape`, operations are recorded if they are executed within this context manager. In addition, the operation must be registered (decorated) as `ed.traceable`. Yields: tape: OrderedDict where operations are recorded in sequence. Keys are the `name` keyword argument to the operation (typically, a random variable's `name`) and values are the corresponding output of the operation. If the operation has no name, it is not recorded. #### Examples ```python import edward2 as ed def probabilistic_matrix_factorization(): users = ed.Normal(0., 1., sample_shape=[5000, 128], name="users") items = ed.Normal(0., 1., sample_shape=[7500, 128], name="items") ratings = ed.Normal(loc=tf.matmul(users, items, transpose_b=True), scale=0.1, name="ratings") return ratings with ed.tape() as model_tape: ratings = probabilistic_matrix_factorization() assert model_tape["users"].shape == (5000, 128) assert model_tape["items"].shape == (7500, 128) assert model_tape["ratings"] == ratings ``` """ tape_data = collections.OrderedDict({}) def record(f, *args, **kwargs): """Records execution to a tape.""" name = kwargs.get("name") output = traceable(f)(*args, **kwargs) if name: tape_data[name] = output return output with trace(record): yield tape_data
py
7df8c727d384a33d0e9d59c8457075745cf6dfde
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging log = logging.getLogger(__name__) discord_edge = { 'color': { 'color': '#7289da' }, 'title': 'Discord Snowflake', 'label': '❄' } def parse_discord_snowflake(unfurl, node): try: snowflake = int(node.value) # Some non-integer values can appear here (like @me) instead; abandon parsing except ValueError: return try: # Ref: https://discordapp.com/developers/docs/reference#snowflakes timestamp = (snowflake >> 22) + 1420070400000 worker_id = (snowflake & 0x3E0000) >> 17 internal_process_id = (snowflake & 0x1F000) >> 17 increment = snowflake & 0xFFF except Exception as e: log.exception(f'Exception parsing Discord snowflake: {e}') return node.hover = 'Discord Snowflakes are unique, time-based IDs. ' \ '<a href="https://discordapp.com/developers/docs/reference#snowflakes" target="_blank">[ref]</a>' unfurl.add_to_queue( data_type='epoch-milliseconds', key=None, value=timestamp, label=f'Timestamp:\n{timestamp}', hover='The first value in a Discord Snowflake is a timestamp associated with object creation', parent_id=node.node_id, incoming_edge_config=discord_edge) unfurl.add_to_queue( data_type='integer', key=None, value=worker_id, label=f'Worker ID: {worker_id}', hover='The second value in a Discord Snowflake is the internal worker ID', parent_id=node.node_id, incoming_edge_config=discord_edge) unfurl.add_to_queue( data_type='integer', key=None, value=internal_process_id, label=f'Process ID: {internal_process_id}', hover='The third value in a Discord Snowflake is the internal process ID', parent_id=node.node_id, incoming_edge_config=discord_edge) unfurl.add_to_queue( data_type='integer', key=None, value=increment, label=f'Increment: {increment}', hover='For every ID that is generated on that process, this number is incremented', parent_id=node.node_id, incoming_edge_config=discord_edge) def run(unfurl, node): # Known patterns from main Discord site discord_domains = ['discordapp.com', 'discordapp.net'] if any(discord_domain in unfurl.find_preceding_domain(node) for discord_domain in discord_domains): if node.data_type == 'url.path.segment': # Viewing a channel on a server # Ex: https://discordapp.com/channels/427876741990711298/551531058039095296 if unfurl.check_sibling_nodes(node, data_type='url.path.segment', key=1, value='channels'): if node.key == 2: unfurl.add_to_queue( data_type='description', key=None, value=None, label='Server ID', hover='The timestamp in the associated Discord Snowflake is the time of Server creation', parent_id=node.node_id, incoming_edge_config=discord_edge) parse_discord_snowflake(unfurl, node) elif node.key == 3: unfurl.add_to_queue( data_type='description', key=None, value=None, label='Channel ID', hover='The timestamp in the associated Discord Snowflake is the time of Channel creation ' 'on the given Server', parent_id=node.node_id, incoming_edge_config=discord_edge) parse_discord_snowflake(unfurl, node) # Linking to a specific message # Ex: https://discordapp.com/channels/427876741990711298/537760691302563843/643183730227281931 elif node.key == 4: unfurl.add_to_queue( data_type='description', key=None, value=None, label='Message ID', hover='The timestamp in the associated Discord Snowflake is the time the Message was sent', parent_id=node.node_id, incoming_edge_config=discord_edge) parse_discord_snowflake(unfurl, node) # File Attachment URLs # Ex: https://cdn.discordapp.com/attachments/622136585277931532/626893414490832918/asdf.png elif unfurl.check_sibling_nodes(node, data_type='url.path.segment', key=1, value='attachments'): if node.key == 2: unfurl.add_to_queue( data_type='description', key=None, value=None, label='Channel ID', hover='The timestamp in the associated Discord Snowflake is the time of channel creation', parent_id=node.node_id, incoming_edge_config=discord_edge) parse_discord_snowflake(unfurl, node) elif node.key == 3: unfurl.add_to_queue( data_type='description', key=None, value=None, label='File ID', hover='The timestamp in the associated Discord Snowflake is the time the attachment ' 'was uploaded.', parent_id=node.node_id, incoming_edge_config=discord_edge) parse_discord_snowflake(unfurl, node) elif node.key == 4: unfurl.add_to_queue( data_type='description', key=None, value=None, label='Attachment File Name', parent_id=node.node_id, incoming_edge_config=discord_edge) # Check if the node's value would correspond to a Snowflake with timestamp between 2015-02 and 2022-07 elif unfurl.check_if_int_between(node.value, 15000000000000000, 1000000000000000001): parse_discord_snowflake(unfurl, node)
py
7df8c72dd54e4198816ba3734c15d2b942ff4448
# Copyright (c) 2012 The Cloudscaling Group, Inc. # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from nova import db from nova.scheduler import filters class TypeAffinityFilter(filters.BaseHostFilter): """TypeAffinityFilter doesn't allow more then one VM type per host. Note: this works best with ram_weight_multiplier (spread) set to 1 (default). """ def host_passes(self, host_state, filter_properties): """Dynamically limits hosts to one instance type Return False if host has any instance types other then the requested type. Return True if all instance types match or if host is empty. """ instance_type = filter_properties.get('instance_type') context = filter_properties['context'].elevated() instances_other_type = db.instance_get_all_by_host_and_not_type( context, host_state.host, instance_type['id']) return len(instances_other_type) == 0 class AggregateTypeAffinityFilter(filters.BaseHostFilter): """AggregateTypeAffinityFilter limits instance_type by aggregate return True if no instance_type key is set or if the aggregate metadata key 'instance_type' has the instance_type name as a value """ # Aggregate data does not change within a request run_filter_once_per_request = True def host_passes(self, host_state, filter_properties): instance_type = filter_properties.get('instance_type') context = filter_properties['context'].elevated() metadata = db.aggregate_metadata_get_by_host( context, host_state.host, key='instance_type') return (len(metadata) == 0 or instance_type['name'] in metadata['instance_type'])
py
7df8c79a91651caf4dd14b5708daa43d5b0e918d
# Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M. # Symbol Value # I 1 # V 5 # X 10 # L 50 # C 100 # D 500 # M 1000 # For example, two is written as II in Roman numeral, just two one's added together. Twelve is written as, XII, which is simply X + II. The number twenty seven is written as XXVII, which is XX + V + II. # Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII. Instead, the number four is written as IV. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX. There are six instances where subtraction is used: # I can be placed before V (5) and X (10) to make 4 and 9. # X can be placed before L (50) and C (100) to make 40 and 90. # C can be placed before D (500) and M (1000) to make 400 and 900. # Given a roman numeral, convert it to an integer. Input is guaranteed to be within the range from 1 to 3999. # Example 1: # Input: "III" # Output: 3 # Example 2: # Input: "IV" # Output: 4 # Example 3: # Input: "IX" # Output: 9 # Example 4: # Input: "LVIII" # Output: 58 # Explanation: L = 50, V= 5, III = 3. # Example 5: # Input: "MCMXCIV" # Output: 1994 # Explanation: M = 1000, CM = 900, XC = 90 and IV = 4. class Solution: def romanToInt(self, s): cache = { 'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000 } count = 0 for i in range(len(s)): # print(s[i]) if i == 0: count += cache[s[i]] elif s[i] == 'V' and s[i - 1] == 'I': count += 3 elif s[i] == 'X' and s[i - 1] == 'I': count += 8 elif s[i] == 'L' and s[i - 1] == 'X': count += 30 elif s[i] == 'C' and s[i - 1] == 'X': count += 80 elif s[i] == 'D' and s[i - 1] == 'C': count += 300 elif s[i] == 'M' and s[i - 1] == 'C': count += 800 else: count += cache[s[i]] return count s = "MCMXCIV" print(Solution().romanToInt(s))
py
7df8c7a48989855e62ad4e5c96c8609ecbbc06dd
# 进行验证 import itertools import hashlib import time import sys url = "http://127.0.0.1/dz3.3/" idstring = "vnY6nW" uid = 2 sign = "af3b937d0132a06b" f_name = 'd.txt' str_list = "0123456789abcdef" def dsign(authkey): uurl = "{}member.php?mod=getpasswd&uid={}&id={}".format(url, uid, idstring) url_md5 = hashlib.md5(uurl + authkey) return url_md5.hexdigest()[:16] def main(): cnt = 0 with open(f_name) as f: ranlist = [s[:-1] for s in f] s_list = sorted(set(ranlist), key=ranlist.index) r_list = itertools.product(str_list, repeat=6) print "[!] start running...." s_time = time.time() for s in s_list: for j in r_list: prefix = "".join(j) authkey = prefix + s # print authkey # time.sleep(1) sys.stdout.flush() if dsign(authkey) == sign: print "[*] found used time: " + str(time.time() - s_time) return "[*] authkey found: " + authkey cnt +=1 print cnt print main()
py
7df8c845e802b7c91e01bb1af5c461792b03621d
# Copyright 2015-2018 Yelp # Copyright 2019 Yelp # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Minimal utilities to make Python work for 2.7+ and 3.4+ Strategies for making `mrjob` work across Python versions: Bytes vs. Unicode ----------------- It's tempting to use `from __future__ import unicode_literals` and require that all non-byte strings be unicode. But that doesn't really make sense for Python 2, where str (bytes) and unicode can be used interchangeably. So really our string datatypes fall into two categories, bytes, and "strings", which means either ``unicode``\\s or ASCII ``str``\\s in Python 2, and ``str``\\s (i.e. unicode) in Python 3. These things should always be bytes: - input data files - use ``'b'`` when opening files: ``open(..., 'rb')`` - read data from ``sys.stdin.buffer`` in Python 3, not ``sys.stdin`` - data encoded by protocols - data from subprocesses (this already happens by default) - log files parsed by mrjob - file content from our filesystem interfaces. Instead of using ``StringIO`` to deal with these, use ``io.BytesIO``. Note that both Python 2.6+ and Python 3.3+ have the ``bytes`` type and ``b''`` constants built-in. These things should always be strings: - streams that you print() to (e.g. ``sys.stdout`` if you mock it out) - streams that you log to - paths on filesystem - URIs - arguments to commands - option names - Hadoop counter names and groups - Hadoop status messages - anything else we parse out of log files These things are strings because it makes for simpler code: - contents of config files - contents of scripts output by mrjob (e.g. the setup wrapper script) - contents of empty files Use the ``StringIO`` from this module to deal with strings (it's ``StringIO.StringIO`` in Python 2 and ``io.StringIO`` in Python 3). Please use ``%`` for format strings and not ``format()``, which is much more picky about mixing unicode and bytes. We don't provide a ``unicode`` type: - Use ``isinstance(..., string_types)`` to check if something is a string - Use ``not isinstance(..., bytes)`` to check if a string is Unicode - To convert ``bytes`` to ``unicode``, use ``.decode('utf_8')`. - Python 3.3+ has ``u''`` literals; please use sparingly If you need to convert bytes of unknown encoding to a string (e.g. to ``print()`` or log them), use ``to_unicode()`` from this module. Iterables --------- Using ``.iteritems()`` or ``.itervalues()`` in Python 2 to iterate over a dictionary when you don't need a list is best practice, but it's also (in most cases) an over-optimization. We'd prefer clean code; just use ``.items()`` and ``.values()``. If you *do* have concerns about memory usage, ``for k in some_dict`` does not create a list in either version of Python. Same goes for ``xrange``; plain-old `range`` is almost always fine. Miscellany ---------- We provide an ``integer_types`` tuple so you can check if something is an integer: ``isinstance(..., integer_types)``. Any standard library function that deals with URLs (e.g. ``urlparse()``) should probably be imported from this module. You *usually* want to do ``from __future__ import print_function`` in modules where you use ``print()``. ``print(...)`` works fine, but ``print(..., file=...)`` doesn't, and ``print()`` prints ``()`` on Python 2. You shouldn't need any other ``__future__`` imports. """ import sys # use this to check if we're in Python 2 PY2 = (sys.version_info[0] == 2) # ``string_types``, for ``isinstance(..., string_types)`` if PY2: string_types = (basestring,) else: string_types = (str,) string_types # ``integer_types``, for ``isinstance(..., integer_types)`` if PY2: integer_types = (int, long) else: integer_types = (int,) integer_types # ``StringIO``. Useful for mocking out ``sys.stdout``, etc. if PY2: from StringIO import StringIO else: from io import StringIO StringIO # quiet, pyflakes # ``xrange``. Plain old ``range`` is almost always fine if PY2: xrange = xrange else: xrange = range xrange # quiet, pyflakes # urllib stuff # in most cases you should use ``mrjob.parse.urlparse()`` if PY2: from urlparse import ParseResult from urllib import pathname2url from urlparse import urljoin from urllib2 import urlopen from urlparse import urlparse else: from urllib.parse import ParseResult from urllib.request import pathname2url from urllib.parse import urljoin from urllib.request import urlopen from urllib.parse import urljoin from urllib.parse import urlparse ParseResult pathname2url urljoin urlopen urlparse def to_unicode(s): """Convert ``bytes`` to unicode. Use this if you need to ``print()`` or log bytes of an unknown encoding, or to parse strings out of bytes of unknown encoding (e.g. a log file). This hopes that your bytes are UTF-8 decodable, but if not, falls back to latin-1, which always works. """ if isinstance(s, bytes): try: return s.decode('utf_8') except UnicodeDecodeError: return s.decode('latin_1') elif isinstance(s, string_types): # e.g. is unicode return s else: raise TypeError
py
7df8c936bdc024da27ce618c6069a7118927edaa
/home/runner/.cache/pip/pool/c6/4f/6c/4418d4c8d4c7b3f4ef11679b556b3519f2cf376d3c333a525ebf4e93f0
py
7df8ca1a17631c5c18e4aa60d6a53a32b03de5ff
# -*- coding: utf-8 -*- """Global settings for the project""" import os.path from tornado.options import define define("port", default=8000, help="run on the given port", type=int) define("config", default=None, help="tornado config file") define("debug", default=False, help="debug mode") __BASE_PACKAGE__ = "tornado_test" settings = {} settings["debug"] = True settings["cookie_secret"] = "gB9jYwVv0aodH51judoGwroWP" settings["login_url"] = "/login" settings["static_path"] = os.path.join(os.path.dirname(__file__), __BASE_PACKAGE__, "static") settings["template_path"] = os.path.join(os.path.dirname(__file__), __BASE_PACKAGE__, "templates") settings["xsrf_cookies"] = False
py
7df8ca4c570295bb9b2df6d8571218a41b90664e
# Copyright (c) Django Software Foundation and individual contributors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of Django nor the names of its contributors may be # used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # The following code was copied from the Django project, and only lightly # modified. Please adhere to the above copyright and license for the code # in this file. # Note: Nothing is covered here because this file is imported before nose and # coverage take over.. and so its a false positive that nothing is covered. import datetime # pragma: nocover import os # pragma: nocover import platform # pragma: nocover import subprocess # pragma: nocover import sys # pragma: nocover from cement.core.backend import VERSION # pragma: nocover def get_version(version=VERSION): # pragma: nocover "Returns a PEP 386-compliant version number from VERSION." assert len(version) == 5 assert version[3] in ("alpha", "beta", "rc", "final") # Now build the two parts of the version number: # main = X.Y[.Z] # sub = .devN - for pre-alpha releases # | {a|b|c}N - for alpha, beta and rc releases # We want to explicitly include all three version/release numbers # parts = 2 if version[2] == 0 else 3 parts = 3 main = ".".join(str(x) for x in version[:parts]) sub = "" if version[3] == "alpha" and version[4] == 0: git_changeset = get_git_changeset() if git_changeset: sub = ".dev%s" % git_changeset elif version[3] != "final": mapping = {"alpha": "a", "beta": "b", "rc": "c"} sub = mapping[version[3]] + str(version[4]) return main + sub def get_version_banner(): cement_ver = get_version() python_ver = ".".join([str(x) for x in sys.version_info[0:3]]) plat = platform.platform() banner = ( "Cement Framework %s\n" % cement_ver + "Python %s\n" % python_ver + "Platform %s" % plat ) return banner def get_git_changeset(): # pragma: nocover """Returns a numeric identifier of the latest git changeset. The result is the UTC timestamp of the changeset in YYYYMMDDHHMMSS format. This value isn't guaranteed to be unique, but collisions are very unlikely, so it's sufficient for generating the development version numbers. """ repo_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) git_log = subprocess.Popen( "git log --pretty=format:%ct --quiet -1 HEAD", stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, cwd=repo_dir, universal_newlines=True, ) timestamp = git_log.communicate()[0] try: timestamp = datetime.datetime.utcfromtimestamp(int(timestamp)) except ValueError: # pragma: nocover return None # pragma: nocover return timestamp.strftime("%Y%m%d%H%M%S")
py
7df8ca54e453d171c8c8e14a0066328c6ab65338
''' This interface is using YOLOX-Darknet to inference the bounding box information for SPIN, it will generate the json file to store the bounding box information. Or you can also use this interface to get the list type of the boundingbox information. You need to download this file https://pan.baidu.com/s/1WOGfN284hKZnAjYZcnLfHQ by using password:af1f and put the file into the root folder. You also need to setup the environment of yolox by https://github.com/Megvii-BaseDetection/YOLOX. ''' import os import time import cv2 import torch from yolox.data.data_augment import ValTransform from yolox.data.datasets import COCO_CLASSES from yolox.exp import get_exp from yolox.utils import postprocess import json IMAGE_EXT = [".jpg", ".jpeg", ".webp", ".bmp", ".png"] #load the file under the defined path def get_image_list(path): image_names = [] for maindir, subdir, file_name_list in os.walk(path): for filename in file_name_list: apath = os.path.join(maindir, filename) ext = os.path.splitext(apath)[1] if ext in IMAGE_EXT: image_names.append(apath) return image_names #this class is for inference class Predictor(object): def __init__( self, model, cls_names=COCO_CLASSES, trt_file=None, decoder=None, device="cpu", ): self.model = model self.cls_names = cls_names self.decoder = decoder self.num_classes = 80 self.confthre = 0.5 self.nmsthre = 0.65 self.test_size = 640 self.device = device self.preproc = ValTransform(legacy=False) if trt_file is not None: from torch2trt import TRTModule model_trt = TRTModule() model_trt.load_state_dict(torch.load(trt_file)) x = torch.ones(1, 3, test_standard_imgsize[0], test_standard_imgsize[1]).cuda() self.model(x) self.model = model_trt #This is main part for inference. We need to resize the image to put it into the YOLOX model def inference(self, img): img_info = {"id": 0} if isinstance(img, str): img_info["file_name"] = os.path.basename(img) img = cv2.imread(img) else: img_info["file_name"] = None height, width = img.shape[:2] img_info["height"] = height img_info["width"] = width img_info["raw_img"] = img ratio = min(self.test_size / img.shape[0], self.test_size / img.shape[1]) img_info["ratio"] = ratio img, _ = self.preproc(img, None, [self.test_size, self.test_size]) img = torch.from_numpy(img).unsqueeze(0) img = img.float() if self.device == "gpu": img = img.cuda() with torch.no_grad(): t0 = time.time() outputs = self.model(img) if self.decoder is not None: outputs = self.decoder(outputs, dtype=outputs.type()) outputs = postprocess( outputs, self.num_classes, self.confthre, self.nmsthre, class_agnostic=True ) return outputs, img_info #after we get the detection results, we should do some filter to these results. We pick the human detecion result #and hight confidence results to return and store. def visual(self, output, img_info, cls_conf=0.5): ratio = img_info["ratio"] img = img_info["raw_img"] if output is None: return img output = output.cpu() bboxes = output[:, 0:4] # preprocessing: resize bboxes /= ratio cls = output[:, 6] scores = output[:, 4] * output[:, 5] bboxall = [] for i in range(len(bboxes)): score = scores[i] if score < cls_conf: continue if cls[i] != 0: continue box = bboxes[i] bx = box.tolist() #we should set [x_min, y_min, x_max, y_max] into form [x_min, y_min, weight, height] bx[2] = bx[2] - bx[0] bx[3] = bx[3] - bx[1] bboxall.append(bx) return bboxall # This function use the above method to get a whole pipeline of the inference def image_inference(predictor, path, current_time): #get whole images list if os.path.isdir(path): files = get_image_list(path) else: files = [path] files.sort() #Iterative processing of all pictures for image_name in files: outputs, img_info = predictor.inference(image_name) bboxes = predictor.visual(outputs[0], img_info, predictor.confthre) return bboxes # This is the method which can be used by import in orther file, it will store the json file and return the boundingbox result def get_bboxes(path = 'test_img2.png', pretrained_model = 'yolox_darknet.pth', exp = get_exp('yolov3.py', None)): model_name = 'yolov3' model = exp.get_model() model.cuda() model.eval() inference_model = torch.load(pretrained_model, map_location="cpu") # load the model state dict model.load_state_dict(inference_model["model"]) #logger.info("loaded checkpoint done.") trt_file = None decoder = None predictor = Predictor(model, COCO_CLASSES, trt_file, decoder, 'gpu') current_time = time.localtime() bboxes = image_inference(predictor, path, current_time) #we use json package to store the bounding box information dic_bbox = {'bbox': bboxes} with open("bbox.json", "w") as f: json.dump(dic_bbox, f) return bboxes if __name__ == "__main__": get_bboxes()
py
7df8cb7d9851b696115e21599317e3c3cdccbc1f
import warnings import json from typing import Any, List import requests from prefect import Task from prefect.client import Secret from prefect.utilities.tasks import defaults_from_attrs class GetRepoInfo(Task): """ Task for retrieving GitHub repository information using the v3 version of the GitHub REST API. Args: - repo (str, optional): the name of the repository to open the issue in; must be provided in the form `organization/repo_name` or `user/repo_name`; can also be provided to the `run` method - info_keys (List[str], optional): a list of repo attributes to pull (e.g., `["stargazers_count", "subscribers_count"]`). A full list of available keys can be found in the official [GitHub documentation](https://developer.github.com/v3/repos/) - token_secret (str, optional, DEPRECATED): the name of the Prefect Secret containing your GitHub Access Token; - **kwargs (Any, optional): additional keyword arguments to pass to the standard Task init method """ def __init__( self, repo: str = None, info_keys: List[str] = None, token_secret: str = None, **kwargs: Any ): self.repo = repo self.info_keys = info_keys or [] if token_secret is not None: warnings.warn( "The `token` argument is deprecated. Use a `Secret` task " "to pass the credentials value at runtime instead.", UserWarning, ) self.token_secret = token_secret super().__init__(**kwargs) @defaults_from_attrs("repo", "info_keys") def run( self, repo: str = None, info_keys: List[str] = None, token: str = None ) -> None: """ Run method for this Task. Invoked by calling this Task after initialization within a Flow context, or by using `Task.bind`. Args: - repo (str, optional): the name of the repository to open the issue in; must be provided in the form `organization/repo_name`; defaults to the one provided at initialization - info_keys (List[str], optional): a list of repo attributes to pull (e.g., `["stargazers_count", "subscribers_count"]`). A full list of available keys can be found in the official [GitHub documentation](https://developer.github.com/v3/repos/) - token (str): a GitHub access token Raises: - ValueError: if a `repo` was never provided - HTTPError: if the GET request returns a non-200 status code Returns: - dict: dictionary of the requested information """ if repo is None: raise ValueError("A GitHub repository must be provided.") ## prepare the request if token is None: warnings.warn( "The `token` argument is deprecated. Use a `Secret` task " "to pass the credentials value at runtime instead.", UserWarning, ) token = Secret(self.token_secret).get() url = "https://api.github.com/repos/{}".format(repo) headers = { "AUTHORIZATION": "token {}".format(token), "Accept": "application/vnd.github.v3+json", } ## send the request resp = requests.get(url, headers=headers) resp.raise_for_status() data = resp.json() return {key: data[key] for key in info_keys} class CreateBranch(Task): """ Task for creating new branches using the v3 version of the GitHub REST API. Args: - repo (str, optional): the name of the repository to create the branch in; must be provided in the form `organization/repo_name` or `user/repo_name`; can also be provided to the `run` method - base (str, optional): the name of the branch you want to branch off; can also be provided to the `run` method. Defaults to "master". - branch_name (str, optional): the name of the new branch; can also be provided to the `run` method - token_secret (str, optional, DEPRECATED): the name of the Prefect Secret containing your GitHub Access Token; - **kwargs (Any, optional): additional keyword arguments to pass to the standard Task init method """ def __init__( self, repo: str = None, base: str = "master", branch_name: str = None, token_secret: str = None, **kwargs: Any ): self.repo = repo self.base = base self.branch_name = branch_name if token_secret is not None: warnings.warn( "The `token` argument is deprecated. Use a `Secret` task " "to pass the credentials value at runtime instead.", UserWarning, ) self.token_secret = token_secret super().__init__(**kwargs) @defaults_from_attrs("repo", "base", "branch_name") def run( self, repo: str = None, base: str = None, branch_name: str = None, token: str = None, ) -> dict: """ Run method for this Task. Invoked by calling this Task after initialization within a Flow context, or by using `Task.bind`. Args: - repo (str, optional): the name of the repository to open the issue in; must be provided in the form `organization/repo_name`; defaults to the one provided at initialization - base (str, optional): the name of the branch you want to branch off; if not provided here, defaults to the one set at initialization - branch_name (str, optional): the name of the new branch; if not provided here, defaults to the one set at initialization - token (str): a GitHub access token Raises: - ValueError: if a `repo` or `branch_name` was never provided, or if the base branch wasn't found - HTTPError: if the GET request returns a non-200 status code Returns: - dict: dictionary of the response (includes commit hash, etc.) """ if branch_name is None: raise ValueError("A branch name must be provided.") if repo is None: raise ValueError("A GitHub repository must be provided.") ## prepare the request if token is None: warnings.warn( "The `token` argument is deprecated. Use a `Secret` task " "to pass the credentials value at runtime instead.", UserWarning, ) token = Secret(self.token_secret).get() url = "https://api.github.com/repos/{}/git/refs".format(repo) headers = { "AUTHORIZATION": "token {}".format(token), "Accept": "application/vnd.github.v3+json", } ## gather branch information resp = requests.get(url + "/heads", headers=headers) resp.raise_for_status() branch_data = resp.json() commit_sha = None for branch in branch_data: if branch.get("ref") == "refs/heads/{}".format(base): commit_sha = branch.get("object", {}).get("sha") break if commit_sha is None: raise ValueError("Base branch {} not found.".format(base)) ## create new branch new_branch = {"ref": "refs/heads/{}".format(branch_name), "sha": commit_sha} resp = requests.post(url, headers=headers, json=new_branch) resp.raise_for_status() return resp.json()
py
7df8cbc17febc53af5c05b61030d03b30d4fa8ce
# -*- coding: utf-8 -*- from hostlist.models import HostList, Dzhuser import logging log = logging.getLogger('dzhops') def clearUpMinionKyes(idlist, dc, eg): ''' 对Minion id进行整理,返回对应状态、机房、维护人员的minion id; :param idlist: acp/pre/rej(分别表示已经接受、未接受、已拒绝三个状态) :param dc: 机房英文简称 :param eg: 维护人员用户名,英文简称; :return: 过滤后的minion id 组成的列表; ''' if dc == 'DC_ALL' and eg == 'EG_ALL': result = idlist elif dc != 'DC_ALL' and eg == 'EG_ALL': result = [] for id in idlist: id_dcen = id.split("_") if id_dcen[3] == dc: result.append(id) elif dc == 'DC_ALL' and eg != 'EG_ALL': eg_id_list = [] engi_result = Dzhuser.objects.get(username=eg) data = HostList.objects.filter(engineer=engi_result.engineer) for row in data: eg_id_list.append(row.minionid) result = list(set(idlist).intersection(set(eg_id_list))) elif dc != 'DC_ALL' and eg != 'EG_ALL': dc_id_list = [] eg_id_list = [] for id in idlist: id_dcen = id.split("_") if id_dcen[3] == dc: dc_id_list.append(id) engi_result = Dzhuser.objects.get(username=eg) data = HostList.objects.filter(engineer=engi_result.engineer) for row in data: eg_id_list.append(row.minionid) result = list(set(dc_id_list).intersection(set(eg_id_list))) else: result = [] log.error("Unexpected execution here.") return result
py
7df8ccb58396cdd77e97a985c938302218fa4588
""" Unit test for `start-api` CLI """ from unittest import TestCase from unittest.mock import patch, Mock from parameterized import parameterized from samcli.commands.local.start_api.cli import do_cli as start_api_cli from samcli.commands.local.lib.exceptions import NoApisDefined, InvalidIntermediateImageError from samcli.lib.providers.exceptions import InvalidLayerReference from samcli.commands.exceptions import UserException from samcli.commands.validate.lib.exceptions import InvalidSamDocumentException from samcli.commands.local.lib.exceptions import OverridesNotWellDefinedError from samcli.local.docker.exceptions import ContainerNotStartableException from samcli.local.docker.lambda_debug_settings import DebuggingNotSupported class TestCli(TestCase): def setUp(self): self.template = "template" self.env_vars = "env-vars" self.debug_ports = [123] self.debug_args = "args" self.debugger_path = "/test/path" self.container_env_vars = "container-env-vars" self.docker_volume_basedir = "basedir" self.docker_network = "network" self.log_file = "logfile" self.skip_pull_image = True self.parameter_overrides = {} self.layer_cache_basedir = "/some/layers/path" self.force_image_build = True self.shutdown = True self.region_name = "region" self.profile = "profile" self.warm_containers = None self.debug_function = None self.ctx_mock = Mock() self.ctx_mock.region = self.region_name self.ctx_mock.profile = self.profile self.host = "host" self.port = 123 self.static_dir = "staticdir" self.iac = Mock() self.project = Mock() @patch("samcli.commands.local.cli_common.invoke_context.InvokeContext") @patch("samcli.commands.local.lib.local_api_service.LocalApiService") def test_cli_must_setup_context_and_start_service(self, local_api_service_mock, invoke_context_mock): # Mock the __enter__ method to return a object inside a context manager context_mock = Mock() invoke_context_mock.return_value.__enter__.return_value = context_mock service_mock = Mock() local_api_service_mock.return_value = service_mock self.warm_containers = None self.debug_function = None self.call_cli() invoke_context_mock.assert_called_with( template_file=self.template, function_identifier=None, env_vars_file=self.env_vars, docker_volume_basedir=self.docker_volume_basedir, docker_network=self.docker_network, log_file=self.log_file, skip_pull_image=self.skip_pull_image, debug_ports=self.debug_ports, debug_args=self.debug_args, debugger_path=self.debugger_path, container_env_vars_file=self.container_env_vars, parameter_overrides=self.parameter_overrides, layer_cache_basedir=self.layer_cache_basedir, force_image_build=self.force_image_build, aws_region=self.region_name, aws_profile=self.profile, warm_container_initialization_mode=self.warm_containers, debug_function=self.debug_function, shutdown=self.shutdown, iac=self.iac, project=self.project, ) local_api_service_mock.assert_called_with( lambda_invoke_context=context_mock, port=self.port, host=self.host, static_dir=self.static_dir ) service_mock.start.assert_called_with() @patch("samcli.commands.local.cli_common.invoke_context.InvokeContext") @patch("samcli.commands.local.lib.local_api_service.LocalApiService") def test_must_raise_if_no_api_defined(self, local_api_service_mock, invoke_context_mock): # Mock the __enter__ method to return a object inside a context manager context_mock = Mock() invoke_context_mock.return_value.__enter__.return_value = context_mock service_mock = Mock() local_api_service_mock.return_value = service_mock service_mock.start.side_effect = NoApisDefined("no apis") with self.assertRaises(UserException) as context: self.call_cli() msg = str(context.exception) expected = "Template does not have any APIs connected to Lambda functions" self.assertEqual(msg, expected) @parameterized.expand( [ (InvalidSamDocumentException("bad template"), "bad template"), ( InvalidLayerReference(), "Layer References need to be of type " "'AWS::Serverless::LayerVersion' or 'AWS::Lambda::LayerVersion'", ), (DebuggingNotSupported("Debugging not supported"), "Debugging not supported"), ] ) @patch("samcli.commands.local.cli_common.invoke_context.InvokeContext") def test_must_raise_user_exception_on_invalid_sam_template( self, exeception_to_raise, execption_message, invoke_context_mock ): invoke_context_mock.side_effect = exeception_to_raise with self.assertRaises(UserException) as context: self.call_cli() msg = str(context.exception) expected = execption_message self.assertEqual(msg, expected) @patch("samcli.commands.local.cli_common.invoke_context.InvokeContext") def test_must_raise_user_exception_on_invalid_env_vars(self, invoke_context_mock): invoke_context_mock.side_effect = OverridesNotWellDefinedError("bad env vars") with self.assertRaises(UserException) as context: self.call_cli() msg = str(context.exception) expected = "bad env vars" self.assertEqual(msg, expected) @patch("samcli.commands.local.cli_common.invoke_context.InvokeContext") def test_must_raise_user_exception_on_no_free_ports(self, invoke_context_mock): invoke_context_mock.side_effect = ContainerNotStartableException("no free ports on host to bind with container") with self.assertRaises(UserException) as context: self.call_cli() msg = str(context.exception) expected = "no free ports on host to bind with container" self.assertEqual(msg, expected) @patch("samcli.commands.local.cli_common.invoke_context.InvokeContext") def test_must_raise_user_exception_on_invalid_imageuri(self, invoke_context_mock): invoke_context_mock.side_effect = InvalidIntermediateImageError("invalid imageuri") with self.assertRaises(UserException) as context: self.call_cli() msg = str(context.exception) expected = "invalid imageuri" self.assertEqual(msg, expected) def call_cli(self): start_api_cli( ctx=self.ctx_mock, host=self.host, port=self.port, static_dir=self.static_dir, template=self.template, env_vars=self.env_vars, debug_port=self.debug_ports, debug_args=self.debug_args, debugger_path=self.debugger_path, container_env_vars=self.container_env_vars, docker_volume_basedir=self.docker_volume_basedir, docker_network=self.docker_network, log_file=self.log_file, skip_pull_image=self.skip_pull_image, parameter_overrides=self.parameter_overrides, layer_cache_basedir=self.layer_cache_basedir, force_image_build=self.force_image_build, warm_containers=self.warm_containers, debug_function=self.debug_function, shutdown=self.shutdown, project_type="CFN", iac=self.iac, project=self.project, )
py
7df8cceb59a2bcfb8715aedd4215b42ada0971fd
import bpy import math import numpy as np #=== add scripts dir to path import sys import os #=== define path of scripts dir libDir=bpy.path.abspath("//../../scripts/") # version1: relative to current file #libDir="/where/you/placed/blenderCadCam/scripts/" #version 2: usa an absolute path if not libDir in sys.path: sys.path.append(libDir) #=== add local dir to path dir = os.path.dirname(bpy.data.filepath) if not dir in sys.path: sys.path.append(dir) #print(sys.path) #=== blender imports only once even if the file change. if we edit outsde, we need to force a reload from importlib import reload #=== import scripts modules import wingLib reload(wingLib) #=================================================================================================== #=== #=================================================================================================== if 0: import ipdb ipdb.set_trace() ipdb.set_trace(context=5) if 1: #=== delete all but camera and lamp to start from a clean scene collection wingLib.deleteAllButNames(['outl','outl2','myWing1','myWing2']) #=================================================================================================== #=== basic geometry definition #=================================================================================================== foilwidth=1.6 chAdditive=0.06 #we add this additive as constant to the chordlength to generate an (towrds tip) increasing over-elliptic ch chordlength=0.17 nSec=41*2 halfSpan=foilwidth/2.0 if 1: #============================================================= #=== prepare profiles #============================================================= f=libDir+'/AG25_resampled.dat' cAG25, leAG25=wingLib.foilImport(f,'auto') f=libDir+'/AG26_resampled.dat' cAG26, leAG26=wingLib.foilImport(f,'auto') f=libDir+'/AG14_resampled.dat' cAG14, leAG14=wingLib.foilImport(f,'auto') #f=libDir+'/AG27_resampled.dat' #cAG27, leAG27=wingLib.foilImport(f,'auto') #=== downsampling of the root profile - we don't nee a too fine resolution for the CAM model nPoints=100 cAG25r, leAG25r=wingLib.foildDataReduceToNpoints(cAG25,nPoints, True) #True: save trailing edge (kep 1st and last point) pAG25r=wingLib.curveBezierFromPoints(cAG25r,'PAG25r',True,True) #=== get & interpolate the outer profile on the root (necessary for morphing) pAG26=wingLib.curveBezierFromPoints(cAG26,'PAG26',True,True) pAG14=wingLib.curveBezierFromPoints(cAG14,'PAG14',True,True) #pAG27=wingLib.curveBezierFromPoints(cAG27,'PAG27',True,True) cAG14r=wingLib.interpolateBezier2on1(pAG25r, pAG14, leAG25r, leAG14, 40) cAG26r=wingLib.interpolateBezier2on1(pAG25r, pAG26, leAG25r, leAG26, 40) #cAG27_=wingLib.interpolateBezier2on1(pAG25, pAG27, leAG25, leAG27, 40) #=== plot for check: if 0: pAG25=wingLib.curveBezierFromPoints(cAG25,'PAG25',True,True) pAG14r=wingLib.curveBezierFromPoints(cAG14_,'PG14r',True,True) pAG26r=wingLib.curveBezierFromPoints(cAG26_,'ProfileAG26r',True,True) #=== clean-up if 1: wingLib.deleteByName('PAG25r') wingLib.deleteByName('PAG14') wingLib.deleteByName('PAG26') # compile the coord dict for easy access cDict={ "AG25": cAG25r, "AG26": cAG26r, "AG14": cAG14r, #"AG27": cAG27_, } #============================================================= #=== prepare base sections settings #============================================================= baseSectionsL=[] baseSectionsL.append({"p":'AG25', "s":0.00*halfSpan, "tA":0.0, "tMorph":True, "morphT":'lCh'}) baseSectionsL.append({"p":'AG25', "s":0.05*halfSpan, "tA":0.0, "tMorph":True, "morphT":'lCh'}) baseSectionsL.append({"p":'AG26', "s":0.40*halfSpan, "tA":0.0, "tMorph":True, "morphT":'lCh'}) baseSectionsL.append({"p":'AG14', "s":0.95*halfSpan, "tA":0.0, "tMorph":False, "morphT":'lCh'}) baseSectionsL.append({"p":'AG14', "s":1.00*halfSpan, "tA":0.0, "tMorph":False, "morphT":'lCh'}) #============================================================= #=== chordlength distribution #============================================================= #=== define section-wise ch extension dChL=[] dChL.append({"s": 0.00*halfSpan, "dy": chAdditive}) dChL.append({"s": 0.40*halfSpan, "dy": chAdditive}) dChL.append({"s": 0.95*halfSpan, "dy": chAdditive}) dChL.append({"s": 1.00*halfSpan, "dy": chAdditive}) #=== ellipse parameters a=halfSpan b=(chordlength-chAdditive)/2.0 #=== get/init the wing Data object # for morphed profiles, le is the same wingData=wingLib.WingFromSections(cDict, leAG25r, baseSectionsL, halfSpan, a, b, dChL) if 1: #=== get data for indivudual CAM sections # get basic ellipse arc points in 1st and 2nd quadrant (the unshifted leading edge) and chordlength x,y=wingLib.ellipseParamV(a,b,nSec) ch=np.multiply(y,2.0)# #==adapted chordlength ch=wingLib.chordExtensionLinear(ch, x, dChL) #shellthickness #thickness=1.0 #=== set 2d profile to be used (gives us a function reference used later) func4coords=wingData.coords quality='none' #plot Re(span) if 0: v=8.0# determined from stall velocity, see e.g. https://alexpgh.github.io/foss-toolchain-mpcnc/blenderKissSlope/#wing-loading-and-re v2=9.7 #v3=15.0 #v4=30.0 #v5=45.0 nu=1.52E-05 outFile=bpy.path.abspath("//Fig_ReSpan_fast.png") Re=[] Re.append(np.multiply(ch,v/nu)) Re.append(np.multiply(ch,v2/nu)) #Re.append(np.multiply(ch,v3/nu)) #Re.append(np.multiply(ch,v4/nu)) #Re.append(np.multiply(ch,v5/nu)) numpy_array = np.array(Re) transpose = numpy_array.T #legend=[str(v)+' m/s', str(v2), str(v3),str(v4),str(v5)] legend=[] #n=int(len(Re)/2)+1 n=int(transpose.shape[0]/2)+1 #import ipdb #ipdb.set_trace() #ipdb.set_trace(context=5) #wingLib.plotArray(x[0:n],Re[0:n],'Re(span)',outFile) #wingLib.plotArray(x,Re,'Re(span)',outFile) wingLib.plotArray(x[0:n],transpose[0:n,:],'Re(span)', legend, outFile) import ipdb ipdb.set_trace() ipdb.set_trace(context=5) #=== leading edge shift definition LeShiftL=[] LeShiftL.append(wingLib.LeShift('elliptic',0.04, 0.5, 1.0,foilwidth/2.0)) ysh=wingLib.applyLeShifts(x,y, LeShiftL) #placeSections(x,ysh,ch) sectionNames=wingLib.placeSectionsMinLimited(x,ysh,ch,0.001,func4coords,quality) if 1: wingLib.bridgeListOfEdgeLoopsCloseOuterWithFace(sectionNames,'myWing') #shift to origin bpy.context.object.location[1] = -chordlength/2.0 bpy.context.object.location[2] = 0.0
py
7df8cda2a9d1cfde2a273d9e31bb0bb5810da95a
import glob import numpy as np import os from urllib.request import urlretrieve import pkg_resources import pandas as pd from multiprocessing import Pool from functools import partial from itertools import repeat import pickle def get_matrix(self,subject): """ Child of dataset.load_matrices ---------- Parameters ---------- subject: either a single subject, or ** for all subjects """ if self.parcels == 'schaefer': n_parcels = 400 if self.parcels == 'gordon': n_parcels = 333 if self.source == 'pnc': if self.matrix_type == 'rest': if self.parcels == 'gordon': matrix_path = '/{0}/neuroimaging/rest/restNetwork_gordon/GordonPNCNetworks/{1}_GordonPNC_network.txt'.format(self.data_path,subject) if self.parcels == 'schaefer': matrix_path = '/{0}//neuroimaging/rest/restNetwork_schaefer400/Schaefer400Networks/{1}_Schaefer400_network.txt'.format(self.data_path,subject) if self.source == 'hcp': matrix_path = '/{0}/matrices/{1}_{2}.npy'.format(self.data_path,subject,self.matrix_type) if self.source == 'pnc': try: m = np.loadtxt(matrix_path) except: m = np.zeros((n_parcels,n_parcels)) m[:,:] = np.nan if self.source == 'hcp': try: m = np.load(matrix_path) except: m = np.zeros((n_parcels,n_parcels)) m[:,:] = np.nan np.fill_diagonal(m,np.nan) #idiot proof return m def load_dataset(name): return pickle.load(open("{0}".format(name), "rb")) class dataset: """ This is the main object to use to load a dataset """ def __init__(self, source='pnc',cores=1): self.source = source self.cores = cores if self.source == 'pnc': self.data_path = '/project/deid_bblrepo1/n1601_dataFreeze/' self.subject_column = 'scanid' self.measures = pd.read_csv('{0}/demographics/n1601_demographics_go1_20161212.csv'.format(self.data_path)) self.subject_column = {'scanid':'subject'} self.measures = self.measures.rename(columns=self.subject_column) clinical = pd.read_csv('{0}/clinical/n1601_goassess_itemwise_bifactor_scores_20161219.csv'.format(self.data_path)).rename(columns=self.subject_column) self.measures = self.measures.merge(clinical,how='outer',on='subject') clinical_dict = pd.read_csv('{0}/clinical/goassess_clinical_factor_scores_dictionary.txt'.format(self.data_path),sep='\t')[24:29].drop(columns=['variablePossibleValues','source', 'notes']) self.data_dict = {} for k,i in zip(clinical_dict.variableName.values,clinical_dict.variableDefinition.values): self.data_dict[k.strip(' ')] = i.strip(' ') cognitive = pd.read_csv('{0}/cnb/n1601_cnb_factor_scores_tymoore_20151006.csv'.format(self.data_path)).rename(columns=self.subject_column) self.measures = self.measures.merge(cognitive,how='outer',on='subject') cognitive_dict = pd.read_csv('{0}/cnb/cnb_factor_scores_dictionary.txt'.format(self.data_path),sep='\t').drop(columns=['source']) for k,i in zip(cognitive_dict.variableName.values,cognitive_dict.variableDefinition.values): self.data_dict[k.strip(' ')] = i.strip(' ') cog_factors = pd.read_csv('{0}/cnb/cog_factors.csv'.format(self.data_path)).rename(columns=self.subject_column) self.measures = self.measures.merge(cog_factors,how='outer',on='subject') if self.source == 'hcp': self.data_path = '/home/mb3152/hcp/' self.subject_column = 'Subject' self.measures = pd.read_csv('{0}/unrestricted_mb3152_2_25_2021_8_59_45.csv'.format(self.data_path)) self.subject_column = {'Subject':'subject'} self.measures = self.measures.rename(columns=self.subject_column) def update_subjects(self,subjects): self.measures = self.measures[self.measures.subject.isin(subjects)] def methods(self): resource_package = 'pennlinckit' resource_path = '{0}_boiler.txt'.format(self.source) path = pkg_resources.resource_stream(resource_package, resource_path) f = open(path.name, 'r').read() print (f) def asl(self): self.asl = 0 def imaging_qc(self): if self.source == 'pnc': if self.matrix_type == 'rest': qc = pd.read_csv('{0}/neuroimaging/rest/n1601_RestQAData_20170714.csv'.format(self.data_path)).rename(columns=self.subject_column) qa_dict = pd.read_csv('{0}/neuroimaging/rest/restQADataDictionary_20161010.csv'.format(self.data_path)) for k,i in zip(qa_dict.columnName.values,qa_dict.columnDescription.values): self.data_dict[k] = i if self.matrix_type == 'diffusion_pr': 1/0 return qc def load_matrices(self, matrix_type, parcels='schaefer'): """ get a matrix from this dataset ---------- parameters ---------- matrix_type: what type of matrix do you want? can be a task, resting-state, diffusion parcels: schaefer or gordon ---------- returns ---------- out : mean numpy matrix, fisher-z transformed before meaning, np.nan down the diagonal ---------- pnc examples ---------- dataset.get_matrix('nback') dataset.get_matrix('nback',parcels='gordon') dataset.get_matrix('diffusion_pr') """ self.matrix_type = matrix_type self.parcels = parcels qc = self.imaging_qc() self.measures = self.measures.merge(qc,how='inner',on='subject') self.matrix = [] for subject in self.measures.subject: self.matrix.append(get_matrix(self,subject)) self.matrix = np.array(self.matrix) def filter(self,way,value=None,column=None): if way == '==': self.matrix = self.matrix[self.measures[column]==value] self.measures = self.measures[self.measures[column]==value] if way == '!=': self.matrix = self.matrix[self.measures[column]!=value] self.measures = self.measures[self.measures[column]!=value] if way == 'np.nan': self.matrix = self.matrix[np.isnan(self.measures[column])==False] self.measures = self.measures[np.isnan(self.measures[column])==False] if way == '>': self.matrix = self.matrix[self.measures[column]>value] self.measures = self.measures[self.measures[column]>value] if way == '<': self.matrix = self.matrix[self.measures[column]<value] self.measures = self.measures[self.measures[column]<value] if way == 'matrix': mask = np.isnan(self.matrix).sum(axis=1).sum(axis=1) == self.matrix.shape[-1] self.measures = self.measures[mask] self.matrix = self.matrix[mask] if way == 'cognitive': factors = ['F1_Exec_Comp_Res_Accuracy_RESIDUALIZED','F2_Social_Cog_Accuracy_RESIDUALIZED','F3_Memory_Accuracy_RESIDUALIZED'] mask = np.isnan(self.measures[factors]).sum(axis=1) == 0 self.measures = self.measures[mask] self.matrix = self.matrix[mask] def save(self,name): pickle.dump(self, open("{0}".format(name), "wb")) # save it into a file named save.p class allen_brain_institute: def __init__(self): """ Allen Gene Expression data in the Scheafer 400 parcels. ---------- Returns ---------- out : left hemisphere expression, right hemisphere expression, names of the genes """ self.data_home = os.path.expanduser('~/allen/') self.data_home = os.path.join(self.data_home) if os.path.exists(self.data_home) == False: print ("Gemme a sec, I am downloading allen gene expression to: %s" %(self.data_home)) os.makedirs(self.data_home) urlretrieve('https://www.dropbox.com/s/1zahnd0k0jpk0xf/allen_expression_genes.npy?dl=1',self.data_home + 'allen_expression_genes.npy') urlretrieve('https://www.dropbox.com/s/879cuel80nntipq/allen_expression_lh.npy?dl=1',self.data_home + 'allen_expression_lh.npy') urlretrieve('https://www.dropbox.com/s/cnb6aacerdhhd4p/allen_expression_rh.npy?dl=1',self.data_home + 'allen_expression_rh.npy') names = np.load(self.data_home + 'allen_expression_genes.npy',allow_pickle=True) final_names = [] for n in names:final_names.append(n[0][0]) np.save(self.data_home + 'allen_expression_genes.npy',final_names) print ("Okay, done, I won't have to do this again!") self.names = np.load(self.data_home + 'allen_expression_genes.npy') self.expression= np.zeros((400,len(self.names))) self.expression[:200] = np.load(self.data_home + 'allen_expression_lh.npy')[:200] self.expression[200:] = np.load(self.data_home + 'allen_expression_rh.npy')[200:] class evo_expansion: def __init__(self): resource_package = 'pennlinckit' resource_path = 'schaefer400x17_rescaled_regional_evoExpansion_LHfixed.npy' path = pkg_resources.resource_stream(resource_package, resource_path) self.data = np.load(path.name) class gradient: def __init__(self): resource_package = 'pennlinckit' resource_path = 'schaefer400x17_mean_regional_margulies_gradient.txt' path = pkg_resources.resource_stream(resource_package, resource_path) self.data = np.loadtxt(path.name)
py
7df8cde210f5a4d97e840a2553e8567d13760ac0
# -*- coding: utf-8 -*- """Box layout vertical.""" import gi gi.require_version(namespace='Gtk', version='3.0') from gi.repository import Gtk # @Gtk.Template(string, filename, resource_path) @Gtk.Template(filename='box_vertical.glade') class MainWindow(Gtk.ApplicationWindow): __gtype_name__ = 'MainWindow' if __name__ == '__main__': win = MainWindow() win.connect('destroy', Gtk.main_quit) win.show_all() Gtk.main()
py
7df8ce95d0d33b44386effbe4960d10bb3b59320
#! Python 3.4 import logging import requests from multiprocessing import Queue # cx_freeze is dumb from datetime import datetime from tkinter import * from tkinter import ttk from tkinter.filedialog import askopenfilename # Logging to file so we can track down failed distributions logging.basicConfig(filename="log.txt", level=logging.INFO, filemode='w', format='%(message)s') logging.info("PGrant log file") # Logging everything into info level because formatting is disabled anyway logging.info(datetime.now()) # Defining core components GRANT_ITEM_URL = 'https://api.steampowered.com/ITFPromos_440/GrantItem/v0001/' def grant_medals(idarray, promo_id, api_key): steam_ids = idarray print("Granting {} to:".format(promo_id)) logging.info("Granting {} to:".format(promo_id)) for steam_id in steam_ids: print(" {} ".format(steam_id), end='') logging.info(" {} ".format(steam_id)) grant_item(steam_id, promo_id, api_key) Reset() logging.info("--------------------------") print("--------------------------") logging.info("Finished file processing") print("Finished file processing") def grant_item(steam_id, promo_id, api_key): data = { 'SteamID': steam_id, 'PromoID': promo_id, 'Key': api_key, } response = requests.post(GRANT_ITEM_URL, data = data) try: json = response.json() except ValueError: print('[FAIL: request error/not authorized]') logging.info('[FAIL: request error/not authorized]') return if 'result' not in json: print('[FAIL: response error/invalid promo id]') logging.info('[FAIL: response error/invalid promo id]') return result = json['result'] if int(result['status']) != 1: print("[FAIL: {}]".format(result['statusDetail'])) logging.info("[FAIL: {}]".format(result['statusDetail'])) else: print("[SUCCESS!]") logging.info("[SUCCESS!]") # Defining GUI components root = Tk() fileopened = False def OpenFile(): name = askopenfilename(filetypes =(("Text File", "*.txt"),("All Files","*.*")), title = "Choose a list of SteamIDs" ) try: with open(name,'r') as UseFile: global steamids steamids = UseFile.read().splitlines() print(name) print("Found " + str(len(steamids)) + " potential SteamIDs") logging.info("--------------------------") logging.info("Loaded file: " + name) logging.info("Found " + str(len(steamids)) + " potential SteamIDs") global fileopened fileopened = True BtnCheck(fileopened) global filelabel filelabel['text'] = name filelabel['foreground'] = "black" except: print("Invalid file") def About(): window = Toplevel(root) window.title( "About PGrant") window.geometry( "400x250") version = Label(window, text ="v. 0.4", foreground="grey", font=(4)) version.pack(padx=6, pady = 2, side=TOP) aboutt = Label(window, text ="This tool is designed to distribute promotional TF2 items, parsing multiple SteamID64s from a file, one per line. Be sure to keep your console output visible so you can keep track of the progress.", wraplength=180, font=(6)) aboutt.pack(padx=6, pady = 2, side=LEFT) aboutp = Label(window, text ="The software is licensed under the Apache License 2.0. A major part of the original code was generously provided by Benjamin Schaaf.", wraplength=180, font=(6)) aboutp.pack(padx=6, pady = 6, side=LEFT) def BtnCheck(event): if (len(apitoken.get()) != 0)&(len(promoid.get()) != 0)&fileopened: global runbutton runbutton['state'] = 'normal' runbutton['text'] = 'Grant' else: runbutton['state'] = 'disabled' runbutton['text'] = 'Grant' def Reset(): global fileopened fileopened = False BtnCheck(fileopened) global apitoken apitoken.delete(0, END) global promoid promoid.delete(0, END) global filelabel filelabel['text'] = "No file loaded." filelabel['foreground'] = "grey" # Window properties root.title( "PGrant 0.4") root.geometry( "350x400") # Packing GUI elements apilabel = Label(root, text ="Steam API key:", font=(14)) apilabel.pack(padx=6, pady = 2) apitoken = Entry(root, width = 37) apitoken.bind("<KeyRelease>", BtnCheck) apitoken.pack(padx=6, pady = 2) apitoken.focus_set() promolabel = Label(root, text ="Promo ID:",font=(14)) promolabel.pack(padx=6, pady = 2) promoid = Entry(root, width = 37) promoid.bind("<KeyRelease>", BtnCheck) promoid.pack(padx=6, pady = 2) runbutton = Button(root, text="Grant", width=14, state=DISABLED, command=lambda: grant_medals(steamids, promoid.get(), apitoken.get())) runbutton.pack(padx=6, pady = 10) filelabel = Label(root, text ="No file loaded.", wraplength=300, foreground="grey",font=(12)) filelabel.pack(side = BOTTOM, padx=6, pady = 14) # Menu Bar menu = Menu(root) root.config(menu=menu) menu.add_command(label = 'Load a file', command = OpenFile) menu.add_command(label = 'About', command = About) root.mainloop()
py
7df8cefaf98a6352ad80143d60ca2fb3deb072bd
# Copyright 2018 Jetperch LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from PySide2 import QtGui, QtCore import logging log = logging.getLogger(__name__) def comboBoxConfig(comboBox, values, default=None): """Configure (or reconfigure) a QT combo box. :param comboBox: The combo box to configure. :param values: The list of value strings for the combo box. :param default: The default value for the combo box which must also be in values. If None, then attempt to keep the current value of the combo box if at all possible. If not, then just select the first item. :return: The new text value for the combobox. """ if default is not None and default not in values: log.warning('Ignoring default value "%s" since it is not in values: %s' % (default, values)) default = None if default is None and comboBox.count(): # attempt to keep the previous value currentValue = str(comboBox.currentText()) if currentValue in values: default = currentValue d1 = set(values) d0 = set([str(comboBox.itemText(idx)) for idx in range(comboBox.count())]) deleted = d0 - d1 added = [x for x in values if x not in d0] # keep ordered for value in deleted: idx = comboBox.findText(value) comboBox.removeItem(idx) for value in added: comboBox.addItem(value) if default: default = str(default) idx = comboBox.findText(default) if idx < 0: log.warning('Could not find default entry') elif str(comboBox.currentText()) != default: comboBox.setCurrentIndex(idx) return str(comboBox.currentText()) def comboBoxDecrement(box): idx = box.currentIndex() if idx > 0: box.setCurrentIndex(idx - 1) return True return False def comboBoxIncrement(box): idx = box.currentIndex() idx += 1 if idx < box.count(): box.setCurrentIndex(idx) return True return False def confirmDiscard(parent): msgBox = QtGui.QMessageBox(parent) msgBox.setText('Existing data has not been saved.') msgBox.setInformativeText('Discard data?') msgBox.setStandardButtons(QtGui.QMessageBox.Discard | QtGui.QMessageBox.Cancel) msgBox.setDefaultButton(QtGui.QMessageBox.Cancel) rv = msgBox.exec_() if rv != QtGui.QMessageBox.Discard: return False return True def confirmOverwrite(parent, targetName=None): targetName = 'file' if targetName is None else targetName msgBox = QtGui.QMessageBox(parent) msgBox.setText('%s already exists.' % targetName.title()) msgBox.setInformativeText('Overwrite %s?' % targetName) msgBox.setStandardButtons(QtGui.QMessageBox.Ok | QtGui.QMessageBox.Cancel) msgBox.setDefaultButton(QtGui.QMessageBox.Cancel) rv = msgBox.exec_() if rv != QtGui.QMessageBox.Ok: return False return True def clear_layout(layout): """Clear and delete all widgets from a layout. :param layout: The QT layout. """ # https://stackoverflow.com/questions/9374063/remove-widgets-and-layout-as-well if layout is not None: while layout.count(): item = layout.takeAt(0) widget = item.widget() if widget is not None: widget.deleteLater() else: clear_layout(item.layout())
py
7df8cfc9e31937b7f6d9394b752cb945e54dc212
from bs4 import BeautifulSoup import requests response = requests.get("https://news.ycombinator.com/news") yc_web_page = response.text soup = BeautifulSoup(yc_web_page, "html.parser") articles = soup.find_all(name="a", class_="storylink") article_texts = [] article_links = [] for article_tag in articles: text = article_tag.getText() article_texts.append(text) link = article_tag.get("href") article_links.append(link) article_upvotes = [int(score.getText().split()[0]) for score in soup.find_all(name="span", class_="score")] # print(article_texts) # print(article_links) # print(article_upvotes) largest_number = max(article_upvotes) largest_index = article_upvotes.index(largest_number) print(article_texts[largest_index]) print(article_links[largest_index]) print(article_upvotes[largest_index]) # with open('website.html', 'r') as file: # contents = file.read() # # soup = BeautifulSoup(contents, 'html.parser') # # # print(soup.title) # # print(soup.title.name) # # print(soup.title.string) # # print(soup.prettify()) # # print(soup) # # print(soup.li.string) # # # print(soup.find_all(name="li")) # # # all_anchor_tags = soup.find_all(name="a") # # # # for tag in all_anchor_tags: # # # print(tag.getText()) # # print(tag.get("href")) # # # heading = soup.find(name="h1", id="name") # # print(heading.getText()) # # # section_heading = soup.find(name="h3", class_="heading") # # print(section_heading.getText()) # # print(section_heading.get("class")) # # company_url = soup.select_one(selector="p a") # print(company_url) # # h3_heading = soup.find_all("h3", class_="heading") # print(h3_heading) # # name = soup.select_one("#name") # print(name) # # headings = soup.select(".heading") # print(headings)
py
7df8d1080269445a4e93fc0dbfd94e1d85d90395
""" Django settings for ganzige project. Generated by 'django-admin startproject' using Django 1.8.2. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'j!o@k8hjlc0-(fapg8zomi%++8s^5^wrfbf$-3rh3t5i8ymj(5' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = ( 'bootstrap_admin', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'webhook', 'blog', 'home', 'photo', 'data', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'ganzige.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'ganzige.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'ganzige', 'USER': 'root', 'PASSWORD': 'password', 'HOST': 'localhost', 'PORT': '3306', } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') CKEDITOR_UPLOAD_PATH = 'upload'
py
7df8d17585ac0fbae7e0d76ad82219d8f108ad89
import os import unittest import numpy as np import torch from pytorch_common import utils from pytorch_common.additional_configs import BaseModelConfig from pytorch_common.models import create_model from pytorch_common.types import Callable, Dict, List, Optional, Tuple, Union, _Batch class TestUtils(unittest.TestCase): def test_file_handling(self): """ Test saving/loading of different files (pickle, dill, yaml). """ def _test_module_file_handling( data: Union[np.ndarray, Dict], primary_path: str, file_name: Optional[str] = None, module: Optional[str] = "pickle", ) -> None: """ Test saving/loading of a file with a given `module`. """ # Save the file utils.save_object(data, primary_path, file_name, module=module) # Load saved file loaded_data = utils.load_object(primary_path, file_name, module=module) # Ensure results match result = data == loaded_data if not isinstance(result, bool): result = result.all() self.assertTrue(result) # Delete saved file if file_name is None: utils.remove_object(primary_path) self.assertFalse(os.path.isfile(primary_path)) else: utils.remove_object(primary_path, file_name) self.assertFalse(os.path.isfile(utils.get_file_path(primary_path, file_name))) # Initialize dummy directory and data primary_path = "dummy_dir" dummy_np_data = np.random.randn(10, 10) dummy_yaml_data = {"x": 1, "y": 2, "z": 3} # Test file handling for all file types for data, file_name, module in zip( [dummy_np_data, dummy_np_data, dummy_yaml_data], ["dummy_data.pkl", "dummy_data.pkl", "dummy_data.yaml"], ["pickle", "dill", "yaml"], ): # Test directly with `file_name` _test_module_file_handling(data, file_name, module=module) # Test with `file_name` inside `primary_path` utils.make_dirs(primary_path) _test_module_file_handling(data, primary_path, file_name=file_name, module=module) # Delete created directories utils.remove_dir(primary_path) self.assertFalse(os.path.isdir(primary_path)) def test_get_string_from_dict(self): """ Test correct generation of string from config dictionary. """ # Test output for empty inputs self.assertEqual(utils.get_string_from_dict(), "") self.assertEqual(utils.get_string_from_dict({}), "") # Test output dictionary = {"size": 100, "lr": 1e-3} self.assertEqual(utils.get_string_from_dict(dictionary), "lr_0.001-size_100") # Test same output regardless of order dictionary = {"lr": 1e-3, "size": 100} self.assertEqual(utils.get_string_from_dict(dictionary), "lr_0.001-size_100") def test_get_string_from_dict(self): """ Test correct generation of unique string from config dictionary. """ primary_name = "dummy" # Test unique string dictionary = {"size": 100, "lr": 1e-3} unique_str1 = utils.get_unique_config_name(primary_name, dictionary) self.assertTrue(unique_str1.startswith("dummy-")) # Test same string regardless of order dictionary = {"lr": 1e-3, "size": 100} unique_str2 = utils.get_unique_config_name(primary_name, dictionary) self.assertEqual(unique_str1, unique_str2) def test_send_model_to_device(self): """ Test sending of model to different devices. """ # Create model config = BaseModelConfig({"in_dim": 1, "num_classes": 1}) model = create_model("single_layer_classifier", config) # Test sending model to CPU model_cpu = utils.send_model_to_device(model.copy(), "cpu") self.assertFalse(utils.is_model_on_gpu(model_cpu)) self.assertFalse(utils.is_model_on_gpu(model)) self.assertFalse(model_cpu.is_cuda) self.assertFalse(model.is_cuda) if torch.cuda.is_available(): # Test sending model to GPU model_cuda = utils.send_model_to_device(model_cpu.copy(), "cuda") self.assertTrue(utils.is_model_on_gpu(model_cuda)) self.assertTrue(model_cuda.is_cuda) # Ensure original models unchanged self.assertFalse(utils.is_model_on_gpu(model_cpu)) self.assertFalse(utils.is_model_on_gpu(model)) self.assertFalse(model_cpu.is_cuda) self.assertFalse(model.is_cuda) n_gpu = torch.cuda.device_count() if n_gpu > 1: # Test sending model to multiple GPUs model_parallel = utils.send_model_to_device(model_cuda.copy(), "cuda", range(n_gpu)) self.assertTrue(utils.is_model_on_gpu(model_parallel)) self.assertTrue(utils.is_model_parallelized(model_parallel)) self.assertTrue(model_parallel.is_cuda) self.assertTrue(model_parallel.is_parallelized) # Ensure original single-GPU model unchanged self.assertTrue(utils.is_model_on_gpu(model_cuda)) self.assertFalse(utils.is_model_parallelized(model_cuda)) self.assertTrue(model_cuda.is_cuda) self.assertFalse(model_cuda.is_parallelized) # Ensure original model unchanged self.assertFalse(utils.is_model_on_gpu(model)) self.assertFalse(utils.is_model_parallelized(model)) self.assertFalse(model.is_cuda) self.assertFalse(model.is_parallelized) # Test sending of multi-GPU model to CPU model_cpu = utils.send_model_to_device(model_parallel, "cpu") self.assertFalse(utils.is_model_on_gpu(model_cpu)) self.assertFalse(utils.is_model_parallelized(model_cpu)) self.assertFalse(model_cpu.is_cuda) self.assertFalse(model_cpu.is_parallelized) # Test sending of single-GPU model to CPU model_cpu = utils.send_model_to_device(model_cuda, "cpu") self.assertFalse(utils.is_model_on_gpu(model_cpu)) self.assertFalse(utils.is_model_parallelized(model_cpu)) self.assertFalse(model_cpu.is_cuda) self.assertFalse(model_cpu.is_parallelized) def test_send_batch_to_device(self): """ Test sending of batch to different devices. """ # Define batch a, b, c = [1, 2, 3], [4, 5, 6], [7, 8, 9] batch = self._get_batch(a, b, c, batch_type=torch.tensor, device="cpu") if torch.cuda.is_available(): # Test sending batch to GPU batch_cuda = utils.send_batch_to_device(batch, "cuda") self.assertTrue(utils.compare_tensors_or_arrays(batch_cuda, batch)) self.assertFalse(utils.is_batch_on_gpu(batch)) self.assertTrue(utils.is_batch_on_gpu(batch_cuda)) # Test sending batch to CPU batch_cpu = utils.send_batch_to_device(batch, "cpu") self.assertTrue(utils.compare_tensors_or_arrays(batch_cpu, batch)) self.assertFalse(utils.is_batch_on_gpu(batch_cpu)) self.assertTrue(utils.is_batch_on_gpu(batch_cuda)) def test_convert_tensor_to_numpy(self): """ Test converting a batch of torch tensor(s) to numpy array(s). """ # Define numpy and torch batches a, b, c = [1.5, 2, 3], [4, -5, 6], [7, 0, 9] batch_np = self._get_batch(a, b, c, batch_type=np.array) batch_torch = self._get_batch(a, b, c, batch_type=torch.tensor, device="cpu") # Compare contents of both batches self.assertTrue(utils.compare_tensors_or_arrays(batch_np, utils.convert_tensor_to_numpy(batch_torch))) if torch.cuda.is_available(): # Compare contents of both batches when tensor is on GPU batch_torch_cuda = utils.send_batch_to_device(batch_torch, "cuda") self.assertTrue(utils.compare_tensors_or_arrays(batch_np, utils.convert_tensor_to_numpy(batch_torch_cuda))) def test_convert_numpy_to_tensor(self): """ Test converting a batch of numpy array(s) to torch tensor(s). """ # Define numpy and torch batches a, b, c = [1.5, 2, 3], [4, -5, 6], [7, 0, 9] batch_np = self._get_batch(a, b, c, batch_type=np.array) batch_torch = self._get_batch(a, b, c, batch_type=torch.tensor, device="cpu") # Compare contents of both batches self.assertTrue(utils.compare_tensors_or_arrays(batch_torch, utils.convert_numpy_to_tensor(batch_np))) if torch.cuda.is_available(): # Compare contents of both batches when tensor is on GPU batch_torch_cuda = utils.convert_numpy_to_tensor(batch_np, "cuda") self.assertTrue(utils.compare_tensors_or_arrays(batch_torch, batch_torch_cuda)) self.assertTrue(utils.is_batch_on_gpu(batch_torch_cuda)) def _get_batch( self, a: List[float], b: List[float], c: List[float], batch_type: Callable[[List[float]], Union[np.ndarray, torch.Tensor]], **kwargs, ) -> _Batch: """ Construct a numpy/torch batch of shape which forces recursion in type conversion. """ a_ = batch_type(a, **kwargs) b_ = batch_type(b, **kwargs) c_ = batch_type(c, **kwargs) return ((a_, b_), c_) if __name__ == "__main__": unittest.main()
py
7df8d1822280df0178bc00428ced69506f45bbd5
import json import logging import os import re import sys import unicodedata from datetime import datetime from enum import Enum, auto from time import sleep from typing import Optional, Tuple import emoji import yaml from colorama import Fore, Style from langdetect import detect from AllInOneInstagramBot.core.device_facade import Timeout from AllInOneInstagramBot.core.resources import ResourceID as resources from AllInOneInstagramBot.core.utils import random_sleep from AllInOneInstagramBot.core.views import FollowStatus, ProfileView logger = logging.getLogger(__name__) FIELD_SKIP_BUSINESS = "skip_business" FIELD_SKIP_NON_BUSINESS = "skip_non_business" FIELD_SKIP_FOLLOWING = "skip_following" FIELD_SKIP_FOLLOWER = "skip_follower" FIELD_SKIP_IF_LINK_IN_BIO = "skip_if_link_in_bio" FIELD_SKIP_PRIVATE = "skip_if_private" FIELD_SKIP_PUBLIC = "skip_if_public" FIELD_MIN_FOLLOWERS = "min_followers" FIELD_MAX_FOLLOWERS = "max_followers" FIELD_MIN_FOLLOWINGS = "min_followings" FIELD_MAX_FOLLOWINGS = "max_followings" FIELD_MIN_POTENCY_RATIO = "min_potency_ratio" FIELD_MAX_POTENCY_RATIO = "max_potency_ratio" FIELD_FOLLOW_PRIVATE_OR_EMPTY = "follow_private_or_empty" FIELD_PM_TO_PRIVATE_OR_EMPTY = "pm_to_private_or_empty" FIELD_COMMENT_PHOTOS = "comment_photos" FIELD_COMMENT_VIDEOS = "comment_videos" FIELD_COMMENT_CAROUSELS = "comment_carousels" FIELD_BLACKLIST_WORDS = "blacklist_words" FIELD_MANDATORY_WORDS = "mandatory_words" FIELD_SPECIFIC_ALPHABET = "specific_alphabet" FIELD_BIO_LANGUAGE = "biography_language" FIELD_BIO_BANNED_LANGUAGE = "biography_banned_language" FIELD_MIN_POSTS = "min_posts" FIELD_MIN_LIKERS = "min_likers" FIELD_MAX_LIKERS = "max_likers" FIELD_MUTUAL_FRIENDS = "mutual_friends" IGNORE_CHARSETS = ["MATHEMATICAL"] def load_config(config): global args global configs global ResourceID args = config.args configs = config ResourceID = resources(config.args.app_id) class SkipReason(Enum): YOU_FOLLOW = auto() FOLLOW_YOU = auto() IS_PRIVATE = auto() IS_PUBLIC = auto() UNKNOWN_PRIVACY = auto() LT_FOLLOWERS = auto() GT_FOLLOWERS = auto() LT_FOLLOWINGS = auto() GT_FOLLOWINGS = auto() POTENCY_RATIO = auto() HAS_BUSINESS = auto() HAS_NON_BUSINESS = auto() NOT_ENOUGH_POSTS = auto() BLACKLISTED_WORD = auto() MISSING_MANDATORY_WORDS = auto() ALPHABET_NOT_MATCH = auto() ALPHABET_NAME_NOT_MATCH = auto() BIOGRAPHY_LANGUAGE_NOT_MATCH = auto() NOT_LOADED = auto() RESTRICTED = auto() HAS_LINK_IN_BIO = auto() LT_MUTUAL = auto() BIOGRAPHY_IS_EMPTY = auto() class Profile(object): def __init__( self, mutual_friends, follow_button_text, is_restricted, is_private, has_business_category, posts_count, biography, link_in_bio, fullname, ): self.datetime = str(datetime.now()) self.followers = 0 self.followings = 0 self.mutual_friends = mutual_friends self.follow_button_text = follow_button_text self.is_restricted = is_restricted self.is_private = is_private self.has_business_category = has_business_category self.posts_count = posts_count self.biography = biography self.link_in_bio = link_in_bio self.fullname = fullname def set_followers_and_following( self, followers: Optional[int], followings: Optional[int] ) -> None: self.followers = followers self.followings = followings if followers is not None or followings is not None: self.potency_ratio = ( 0 if self.followings == 0 else self.followers / self.followings ) else: self.potency_ratio = None class Filter: conditions = None def __init__(self, storage=None): filter_path = storage.filter_path if configs.args.disable_filters: logger.warning("Filters are disabled!") elif os.path.exists(filter_path) and filter_path.endswith(".yml"): with open(filter_path, "r", encoding="utf-8") as stream: try: self.conditions = yaml.safe_load(stream) except Exception as e: logger.error(f"Error: {e}") elif os.path.exists(filter_path): with open(filter_path, "r", encoding="utf-8") as json_file: try: self.conditions = json.load(json_file) logger.warning( "Using filter.json is deprecated from version 2.3.0 and will stop working very soon, use filters.yml instead!" ) sleep(5) except Exception as e: logger.error( f"Please check {json_file.name}, it contains this error: {e}" ) sys.exit(2) self.storage = storage if self.conditions is not None: logger.info("-" * 70, extra={"color": f"{Fore.YELLOW}{Style.BRIGHT}"}) logger.info( f"{'Filters recap (no spell check!)':<35} Value", extra={"color": f"{Fore.YELLOW}{Style.BRIGHT}"}, ) logger.info("-" * 70, extra={"color": f"{Fore.YELLOW}{Style.BRIGHT}"}) for k, v in self.conditions.items(): if isinstance(v, bool): logger.info( f"{k:<35} {v}", extra={"color": f"{Fore.GREEN if v else Fore.RED}"}, ) else: logger.info(f"{k:<35} {v}", extra={"color": f"{Fore.WHITE}"}) else: logger.warning( "The filters file doesn't exists in your account folder. Download and use it from https://github.com/AllInOneInstagramBot/bot/blob/08e1d7aff39ec47543fa78aadd7a2f034b9ae34d/config-examples/filters.yml and place it in your account folder!" ) def is_num_likers_in_range(self, likes_on_post: str) -> bool: if self.conditions is not None and likes_on_post is not None: if likes_on_post == -1: logger.debug("We don't know how many likers this post has.") return True else: field_min_likers = self.conditions.get(FIELD_MIN_LIKERS, 1) field_max_likers = self.conditions.get(FIELD_MAX_LIKERS, 1000000) if likes_on_post in range(field_min_likers, field_max_likers): logger.info( f"Post has likes in range: {field_min_likers}-{field_max_likers}." ) return True else: logger.info( f"Post has not likes in range: {field_min_likers}-{field_max_likers}." ) return False else: logger.debug("filters.yml not loaded!") return True def return_check_profile(self, username, profile_data, skip_reason=None) -> bool: if self.storage is not None: self.storage.add_filter_user(username, profile_data, skip_reason) return skip_reason is not None def check_profile(self, device, username): """ This method assumes being on someone's profile already. """ if self.conditions is not None: field_skip_business = self.conditions.get(FIELD_SKIP_BUSINESS, False) field_skip_non_business = self.conditions.get( FIELD_SKIP_NON_BUSINESS, False ) field_skip_following = self.conditions.get(FIELD_SKIP_FOLLOWING, False) field_skip_follower = self.conditions.get(FIELD_SKIP_FOLLOWER, False) field_min_followers = self.conditions.get(FIELD_MIN_FOLLOWERS) field_max_followers = self.conditions.get(FIELD_MAX_FOLLOWERS) field_min_followings = self.conditions.get(FIELD_MIN_FOLLOWINGS) field_max_followings = self.conditions.get(FIELD_MAX_FOLLOWINGS) field_min_potency_ratio = self.conditions.get(FIELD_MIN_POTENCY_RATIO, 0) field_max_potency_ratio = self.conditions.get(FIELD_MAX_POTENCY_RATIO, 999) field_blacklist_words = self.conditions.get(FIELD_BLACKLIST_WORDS, []) field_mandatory_words = self.conditions.get(FIELD_MANDATORY_WORDS, []) field_specific_alphabet = self.conditions.get(FIELD_SPECIFIC_ALPHABET) field_bio_language = self.conditions.get(FIELD_BIO_LANGUAGE) field_bio_banned_language = self.conditions.get(FIELD_BIO_BANNED_LANGUAGE) field_min_posts = self.conditions.get(FIELD_MIN_POSTS) field_mutual_friends = self.conditions.get(FIELD_MUTUAL_FRIENDS, -1) field_skip_if_link_in_bio = self.conditions.get( FIELD_SKIP_IF_LINK_IN_BIO, False ) field_skip_if_private = self.conditions.get(FIELD_SKIP_PRIVATE, False) field_skip_if_public = self.conditions.get(FIELD_SKIP_PUBLIC, False) profile_data = self.get_all_data(device) if profile_data.is_restricted: logger.info( "This is a restricted profile, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.RESTRICTED ) if profile_data.follow_button_text == FollowStatus.NONE or None in ( profile_data.followers, profile_data.followings, profile_data.posts_count, ): logger.info( "Profile was not fully loaded, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.NOT_LOADED ) if self.conditions is None: logger.debug("filters.yml not loaded!") return profile_data, False if ( field_skip_following and profile_data.follow_button_text == FollowStatus.FOLLOWING ): logger.info( f"You follow @{username}, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.YOU_FOLLOW ) if ( field_skip_follower and profile_data.follow_button_text == FollowStatus.FOLLOW_BACK ): logger.info( f"@{username} follows you, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.FOLLOW_YOU ) logger.debug( f"This account is {'private' if profile_data.is_private else 'public'}." ) if profile_data.is_private and field_skip_if_public: logger.info( f"@{username} has public account and you want to interract only private, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.IS_PUBLIC ) elif profile_data.is_private and field_skip_if_private: logger.info( f"@{username} has private account and you want to interract only public, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.IS_PRIVATE ) elif profile_data.is_private is None: logger.info( f"Could not determine if @{username} is public or private, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.UNKNOWN_PRIVACY ) logger.debug("Checking if account is within follower/following parameters...") if field_min_followers is not None and profile_data.followers < int( field_min_followers ): logger.info( f"@{username} has less than {field_min_followers} followers, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.LT_FOLLOWERS ) if field_max_followers is not None and profile_data.followers > int( field_max_followers ): logger.info( f"@{username} has more than {field_max_followers} followers, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.GT_FOLLOWERS ) if field_min_followings is not None and profile_data.followings < int( field_min_followings ): logger.info( f"@{username} has less than {field_min_followings} followings, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.LT_FOLLOWINGS ) if field_max_followings is not None and profile_data.followings > int( field_max_followings ): logger.info( f"@{username} has more than {field_max_followings} followings, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.GT_FOLLOWINGS ) if (field_min_potency_ratio != 0 or field_max_potency_ratio != 999) and ( ( int(profile_data.followings) == 0 or profile_data.followers / profile_data.followings < float(field_min_potency_ratio) or profile_data.followers / profile_data.followings > float(field_max_potency_ratio) ) ): logger.info( f"@{username}'s potency ratio is not between {field_min_potency_ratio} and {field_max_potency_ratio}, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.POTENCY_RATIO ) if field_mutual_friends != -1: logger.debug( f"Checking if that user has at least {field_mutual_friends} mutual friends." ) if profile_data.mutual_friends < field_mutual_friends: logger.info( f"@{username} has less then {field_mutual_friends} mutual friends, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.LT_MUTUAL ) if field_skip_if_link_in_bio: logger.debug("Checking if account has link in bio...") if profile_data.link_in_bio is not None: logger.info( f"@{username} has a link in bio, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.HAS_LINK_IN_BIO ) if field_skip_business or field_skip_non_business: logger.debug("Checking if account is a business...") if field_skip_business and profile_data.has_business_category is True: logger.info( f"@{username} has business account, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.HAS_BUSINESS ) if field_skip_non_business and profile_data.has_business_category is False: logger.info( f"@{username} has non business account, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.HAS_NON_BUSINESS ) if field_min_posts is not None and field_min_posts > profile_data.posts_count: logger.info( f"@{username} doesn't have enough posts ({profile_data.posts_count}), skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.NOT_ENOUGH_POSTS ) cleaned_biography = " ".join( emoji.get_emoji_regexp() .sub("", profile_data.biography.replace("\n", "")) .lower() .split() ) if not cleaned_biography and ( len(field_mandatory_words) > 0 or field_bio_language is not None or field_specific_alphabet is not None ): logger.info( f"@{username} has an empty biography, that means there isn't any mandatory things that can be checked. Skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.BIOGRAPHY_IS_EMPTY ) if ( len(field_blacklist_words) > 0 or len(field_mandatory_words) > 0 or field_specific_alphabet is not None or field_bio_language is not None or field_bio_banned_language is not None ): logger.debug("Pulling biography...") if len(field_blacklist_words) > 0: logger.debug( "Checking if account has blacklisted words in biography..." ) # If we found a blacklist word return False for w in field_blacklist_words: blacklist_words = re.compile( r"\b({0})\b".format(w), flags=re.IGNORECASE ).search(cleaned_biography) if blacklist_words is not None: logger.info( f"@{username} found a blacklisted word '{w}' in biography, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.BLACKLISTED_WORD ) if len(field_mandatory_words) > 0: logger.debug("Checking if account has mandatory words in biography...") mandatory_words = [ w for w in field_mandatory_words if re.compile(r"\b({0})\b".format(w), flags=re.IGNORECASE).search( cleaned_biography ) is not None ] if mandatory_words == []: logger.info( f"@{username} mandatory words not found in biography, skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.MISSING_MANDATORY_WORDS ) if field_specific_alphabet is not None: logger.debug("Checking primary character set of account biography...") alphabet = self._find_alphabet(cleaned_biography) if alphabet not in field_specific_alphabet and alphabet != "": logger.info( f"@{username}'s biography alphabet is not in {', '.join(field_specific_alphabet)}. ({alphabet}), skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.ALPHABET_NOT_MATCH ) if field_bio_language is not None or field_bio_banned_language is not None: skip_1 = skip_2 = False logger.debug("Checking main language of account biography...") language = self._find_language(cleaned_biography) if ( field_bio_banned_language and language in field_bio_banned_language and language != "" ): logger.info( f"@{username}'s biography language is in the banned list: {', '.join(field_bio_banned_language)}. ({language}), skip.", extra={"color": f"{Fore.CYAN}"}, ) skip_1 = True if ( not skip_1 and field_bio_language and language not in field_bio_language and language != "" ): logger.info( f"@{username}'s biography language is not in the list: {', '.join(field_bio_language)}. ({language}), skip.", extra={"color": f"{Fore.CYAN}"}, ) skip_2 = True if skip_1 or skip_2: return profile_data, self.return_check_profile( username, profile_data, SkipReason.BIOGRAPHY_LANGUAGE_NOT_MATCH, ) if field_specific_alphabet is not None: logger.debug("Checking primary character set of name...") if profile_data.fullname != "": alphabet = self._find_alphabet(profile_data.fullname) if alphabet not in field_specific_alphabet and alphabet != "": logger.info( f"@{username}'s name alphabet is not in {', '.join(field_specific_alphabet)}. ({alphabet}), skip.", extra={"color": f"{Fore.CYAN}"}, ) return profile_data, self.return_check_profile( username, profile_data, SkipReason.ALPHABET_NAME_NOT_MATCH, ) # If no filters return false, we are good to proceed return profile_data, self.return_check_profile(username, profile_data, None) def can_follow_private_or_empty(self) -> bool: if self.conditions is None: return False field_follow_private_or_empty = self.conditions.get( FIELD_FOLLOW_PRIVATE_OR_EMPTY ) return field_follow_private_or_empty is not None and bool( field_follow_private_or_empty ) def can_pm_to_private_or_empty(self) -> bool: if self.conditions is None: return False field_pm_to_private_or_empty = self.conditions.get(FIELD_PM_TO_PRIVATE_OR_EMPTY) return field_pm_to_private_or_empty is not None and bool( field_pm_to_private_or_empty ) def can_comment(self, current_mode) -> Tuple[bool, bool, bool, bool]: if self.conditions is not None: return ( self.conditions.get(FIELD_COMMENT_PHOTOS, True), self.conditions.get(FIELD_COMMENT_VIDEOS, True), self.conditions.get(FIELD_COMMENT_CAROUSELS, True), self.conditions.get("comment_" + current_mode.replace("-", "_"), False), ) else: logger.debug("filters.yml (or legacy filter.json) is not loaded!") return False, False, False, False def get_all_data(self, device): profile_picture = device.find( resourceIdMatches=ResourceID.PROFILE_HEADER_AVATAR_CONTAINER_TOP_LEFT_STUB ) restricted_profile = device.find( resourceIdMatches=ResourceID.RESTRICTED_ACCOUNT_TITLE ) is_restricted = False if not profile_picture.exists(Timeout.LONG): if restricted_profile.exists(): is_restricted = True else: logger.warning( "Looks like this profile hasn't loaded yet! Wait a little bit more.." ) if profile_picture.exists(Timeout.LONG): logger.info("Profile loaded!") else: logger.warning( "Profile not fully loaded after 16s. Is your connection ok? Let's sleep for 1-2 minutes." ) random_sleep(60, 120, modulable=False) if profile_picture.exists(): logger.warning( "Profile won't load! Maybe you're soft-banned or you've lost your connection!" ) profileView = ProfileView(device) if not is_restricted: profile = Profile( mutual_friends=self._get_mutual_friends(device, profileView), follow_button_text=self._get_follow_button_text(device, profileView), is_restricted=is_restricted, is_private=self._is_private_account(device, profileView), has_business_category=self._has_business_category(device, profileView), posts_count=self._get_posts_count(device, profileView), biography=self._get_profile_biography(device, profileView), link_in_bio=self._get_link_in_bio(device, profileView), fullname=self._get_fullname(device, profileView), ) followers, following = self._get_followers_and_followings(device) profile.set_followers_and_following(followers, following) else: profile = Profile( mutual_friends=None, follow_button_text=None, is_restricted=is_restricted, is_private=None, has_business_category=None, posts_count=None, biography=None, link_in_bio=None, fullname=None, ) profile.set_followers_and_following(None, None) return profile @staticmethod def _get_followers_and_followings( device, profileView: ProfileView = None ) -> Tuple[int, int]: followers = 0 profileView = ProfileView(device) if profileView is None else profileView try: followers = profileView.getFollowersCount() except Exception as e: logger.error(f"Cannot find followers count view, default is {followers}.") logger.debug(f"Error: {e}") followings = 0 try: followings = profileView.getFollowingCount() except Exception as e: logger.error(f"Cannot find followings count view, default is {followings}.") logger.debug(f"Error: {e}") if followers is not None and followings is not None: return followers, followings else: return 0, 1 @staticmethod def _has_business_category(device, ProfileView=None) -> bool: business_category_view = device.find( resourceId=ResourceID.PROFILE_HEADER_BUSINESS_CATEGORY, ) return business_category_view.exists() @staticmethod def _is_private_account(device, profileView: ProfileView = None) -> Optional[bool]: private = None profileView = ProfileView(device) if profileView is None else profileView try: private = profileView.isPrivateAccount() except Exception as e: logger.error("Cannot find whether it is private or not") logger.debug(f"Error: {e}") return private @staticmethod def _get_profile_biography(device, profileView: ProfileView = None) -> str: profileView = ProfileView(device) if profileView is None else profileView return profileView.getProfileBiography() @staticmethod def _find_alphabet(biography: str) -> str: a_dict = {} max_alph = "UNKNOWN" try: for x in range(len(biography)): if biography[x].isalpha(): a = unicodedata.name(biography[x]).split(" ")[0] if a not in IGNORE_CHARSETS: if a in a_dict: a_dict[a] += 1 else: a_dict[a] = 1 if bool(a_dict): max_alph = max(a_dict, key=lambda k: a_dict[k]) except Exception as e: logger.error(f"Cannot determine primary alphabet. Error: {e}") return max_alph @staticmethod def _find_language(biography: str) -> str: """Language detection algorithm is non-deterministic, which means that if you try to run it on a text which is either too short or too ambiguous, you might get different results everytime you run it.""" language = "" results = [] try: for _ in range(5): # we do a BO5, that would mitigate the inconsistency a little bit results.append(detect(biography)) language = max(results, key=results.count) except Exception as e: logger.error(f"Cannot determine primary language. Error: {e}") return language @staticmethod def _get_fullname(device, profileView: ProfileView = None) -> str: profileView = ProfileView(device) if profileView is None else profileView fullname = "" try: fullname = profileView.getFullName() except Exception as e: logger.error("Cannot find full name.") logger.debug(f"Error: {e}") return fullname @staticmethod def _get_posts_count(device, profileView: ProfileView = None) -> int: profileView = ProfileView(device) if profileView is None else profileView posts_count = 0 try: posts_count = profileView.getPostsCount() except Exception as e: logger.error("Cannot find posts count. Default is 0.") logger.debug(f"Error: {e}") return posts_count @staticmethod def _get_follow_button_text(device, profileView: ProfileView = None) -> str: profileView = ProfileView(device) if profileView is None else profileView _, text = profileView.getFollowButton() return text @staticmethod def _get_mutual_friends(device, profileView: ProfileView = None) -> int: profileView = ProfileView(device) if profileView is None else profileView return profileView.getMutualFriends() @staticmethod def _get_link_in_bio(device, profileView: ProfileView = None) -> str: profileView = ProfileView(device) if profileView is None else profileView return profileView.getLinkInBio()
py
7df8d41723701cb64ac218891fb6a44d97b575f6
#!/usr/bin/env python3 # Copyright (c) 2014-2017 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Script to generate list of seed nodes for chainparams.cpp. This script expects two text files in the directory that is passed as an argument: nodes_main.txt nodes_test.txt These files must consist of lines in the format <ip> <ip>:<port> [<ipv6>] [<ipv6>]:<port> <onion>.onion 0xDDBBCCAA (IPv4 little-endian old pnSeeds format) The output will be two data structures with the peers in binary format: static SeedSpec6 pnSeed6_main[]={ ... } static SeedSpec6 pnSeed6_test[]={ ... } These should be pasted into `src/chainparamsseeds.h`. ''' from base64 import b32decode from binascii import a2b_hex import sys, os import re # ipv4 in ipv6 prefix pchIPv4 = bytearray([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff]) # tor-specific ipv6 prefix pchOnionCat = bytearray([0xFD,0x87,0xD8,0x7E,0xEB,0x43]) def name_to_ipv6(addr): if len(addr)>6 and addr.endswith('.onion'): vchAddr = b32decode(addr[0:-6], True) if len(vchAddr) != 16-len(pchOnionCat): raise ValueError('Invalid onion %s' % s) return pchOnionCat + vchAddr elif '.' in addr: # IPv4 return pchIPv4 + bytearray((int(x) for x in addr.split('.'))) elif ':' in addr: # IPv6 sub = [[], []] # prefix, suffix x = 0 addr = addr.split(':') for i,comp in enumerate(addr): if comp == '': if i == 0 or i == (len(addr)-1): # skip empty component at beginning or end continue x += 1 # :: skips to suffix assert(x < 2) else: # two bytes per component val = int(comp, 16) sub[x].append(val >> 8) sub[x].append(val & 0xff) nullbytes = 16 - len(sub[0]) - len(sub[1]) assert((x == 0 and nullbytes == 0) or (x == 1 and nullbytes > 0)) return bytearray(sub[0] + ([0] * nullbytes) + sub[1]) elif addr.startswith('0x'): # IPv4-in-little-endian return pchIPv4 + bytearray(reversed(a2b_hex(addr[2:]))) else: raise ValueError('Could not parse address %s' % addr) def parse_spec(s, defaultport): match = re.match('\[([0-9a-fA-F:]+)\](?::([0-9]+))?$', s) if match: # ipv6 host = match.group(1) port = match.group(2) elif s.count(':') > 1: # ipv6, no port host = s port = '' else: (host,_,port) = s.partition(':') if not port: port = defaultport else: port = int(port) host = name_to_ipv6(host) return (host,port) def process_nodes(g, f, structname, defaultport): g.write('static SeedSpec6 %s[] = {\n' % structname) first = True for line in f: comment = line.find('#') if comment != -1: line = line[0:comment] line = line.strip() if not line: continue if not first: g.write(',\n') first = False (host,port) = parse_spec(line, defaultport) hoststr = ','.join(('0x%02x' % b) for b in host) g.write(' {{%s}, %i}' % (hoststr, port)) g.write('\n};\n') def main(): if len(sys.argv)<2: print(('Usage: %s <path_to_nodes_txt>' % sys.argv[0]), file=sys.stderr) exit(1) g = sys.stdout indir = sys.argv[1] g.write('#ifndef BITCOIN_CHAINPARAMSSEEDS_H\n') g.write('#define BITCOIN_CHAINPARAMSSEEDS_H\n') g.write('/**\n') g.write(' * List of fixed seed nodes for the bitcoin network\n') g.write(' * AUTOGENERATED by contrib/seeds/generate-seeds.py\n') g.write(' *\n') g.write(' * Each line contains a 16-byte IPv6 address and a port.\n') g.write(' * IPv4 as well as onion addresses are wrapped inside a IPv6 address accordingly.\n') g.write(' */\n') with open(os.path.join(indir,'nodes_main.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_main', 29328) g.write('\n') with open(os.path.join(indir,'nodes_test.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_test', 51474) g.write('#endif // BITCOIN_CHAINPARAMSSEEDS_H\n') if __name__ == '__main__': main()
py
7df8d43c6488495bf76fef17bd52a9cc02e8e4fd
#!/usr/bin/python3 import os from formula import formula user = os.environ.get("GIT_USERNAME") key = os.environ.get("GIT_TOKEN") repository = os.environ.get("RIT_GITHUB_REPOSITORY") contribution = os.environ.get("CONTRIBUTION") formula.Run(user, key, repository, contribution)
py
7df8d4a7b829a079831bf8cacc228e7760fae655
# %% [markdown] """ # Drawing polygons with matplotlib I want to draw tilings as collections of polygons to able to color/emphasize certain polygons. Here I explore using matplotlib and shapely to draw polygons. """ # %% tags=['hide-cell'] from IPython import get_ipython if get_ipython() is not None: get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') # %% import matplotlib.pyplot as plt from tilings import base as b from tilings import utils as u import shapely.geometry as sg import shapely.affinity as sa import numpy as np from descartes import PolygonPatch # %% if get_ipython() is not None: get_ipython().run_line_magic('matplotlib', 'inline') # %% [markdown] """ ## matplotlib Testing the fill function: """ # %% fig, ax = plt.subplots(figsize=(5, 5)) ax.fill([0, 1, 2, 0], [1, 1, 0, 1], c=plt.cm.Dark2.colors[0]) # %% [markdown] """ ## shapely I think shapely will be useful to check that polygons don't overlap. """ # %% polygon1 = sg.Polygon([[0, 0], [1, 0], [0.5, np.sqrt(3)/2]]) polygon2 = sg.Polygon([[1, 0], [0.5, np.sqrt(3)/2], [1.5, np.sqrt(3)/2]]) fig, ax = plt.subplots(figsize=(5, 5)) ax.set_ylim(bottom=0, top=2) ax.set_xlim(left=0, right=2) ax.add_patch(PolygonPatch(polygon1, fc=plt.cm.Dark2.colors[0])) ax.add_patch(PolygonPatch(polygon2, fc=plt.cm.Dark2.colors[1])) # %% polygon1.overlaps(polygon2) # %% polygon1.touches(polygon2) # %% [markdown] """ Testing drawing a simple tiling: """ # %% verts = [b.Vertex(xy=[0,0]), b.Vertex(xy=[0,1])] t = b.Tiling(vertices=verts) # %% fig, ax = plt.subplots(figsize=(5, 5)) t.draw(ax) # %% [markdown] """ Adding a square to an edge """ # %% edge = [sg.Point([-1,1]), sg.Point([1,-1])] fig, ax = u.setup_plot(5) new_pts = [ sa.rotate(edge[1], angle=-90, origin=[edge[0].x,edge[0].y]), sa.rotate(edge[0], angle=90, origin=[edge[1].x,edge[1].y]), ] u.draw_pts(ax, edge + new_pts) # %% c = u.complete(edge) fig, ax = u.setup_plot(5) for p in c: ax.add_patch(PolygonPatch(p, alpha=0.25)) # %%
py
7df8d4d958e76b33e765b420159ea5bf4b9bc72a
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from iam import Action, Subject, Request from iam.exceptions import AuthFailedException from gcloud.iam_auth import IAMMeta from gcloud.iam_auth import get_iam_client from gcloud.iam_auth.intercept import ViewInterceptor iam = get_iam_client() class AdminSingleActionViewInpterceptor(ViewInterceptor): def process(self, request, *args, **kwargs): subject = Subject("user", request.user.username) action = Action(self.action) request = Request(IAMMeta.SYSTEM_ID, subject, action, [], {}) allowed = iam.is_allowed(request) if not allowed: raise AuthFailedException(IAMMeta.SYSTEM_ID, subject, action, []) class AdminViewViewInterceptor(AdminSingleActionViewInpterceptor): action = IAMMeta.ADMIN_VIEW_ACTION class AdminEditViewInterceptor(AdminSingleActionViewInpterceptor): action = IAMMeta.ADMIN_EDIT_ACTION
py
7df8d577fb2f31366be23a47f1703d69024644cc
""" Django settings for instaProject project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os import dj_database_url from decouple import config import cloudinary import cloudinary.uploader import cloudinary.api import django.conf.global_settings as DEFAULT_SETTINGS # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = config('DEBUG', default=False, cast=bool) # cloudinary # cloudinary.config( # cloud_name = "sample", # api_key = "874837483274837", # api_secret = "a676b67565c6767a6767d6767f676fe1" # ) ALLOWED_HOSTS = ['*'] # Email configurations remember to install python-decouple EMAIL_USE_TLS = config('EMAIL_USE_TLS') EMAIL_HOST = config('EMAIL_HOST') EMAIL_PORT = config('EMAIL_PORT') EMAIL_HOST_USER = config('EMAIL_HOST_USER') EMAIL_HOST_PASSWORD = config('EMAIL_HOST_PASSWORD') # HMAC ACCOUNT_ACTIVATION_DAYS = 7 # One-week activation window; you may, of course, use a different value. # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'instaApp', 'bootstrap3', 'tinymce', 'cloudinary' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'instaProject.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.media', ], }, }, ] WSGI_APPLICATION = 'instaProject.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'instaclone', 'USER': 'sami_mai', 'PASSWORD': 'SmaiDB', } } db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Nairobi' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_STORAGE = 'whitenoise.django.GzipManifestStaticFilesStorage' # Media MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # Login redirect LOGIN_REDIRECT_URL = '/'
py
7df8d6480cf34d1f626610354841238cc27ba57c
# flake8: noqa import warnings __version__ = '0.34.0' # explainers from .explainers.kernel import KernelExplainer, kmeans from .explainers.sampling import SamplingExplainer from .explainers.tree import TreeExplainer, Tree from .explainers.deep import DeepExplainer from .explainers.gradient import GradientExplainer from .explainers.linear import LinearExplainer from .explainers.partition import PartitionExplainer from .explainers.bruteforce import BruteForceExplainer from .explainers.permutation import PermutationExplainer from .explainers.additive import AdditiveExplainer from .explainers import other # plotting (only loaded if matplotlib is present) def unsupported(*args, **kwargs): warnings.warn("matplotlib is not installed so plotting is not available! Run `pip install matplotlib` to fix this.") try: import matplotlib have_matplotlib = True except ImportError: have_matplotlib = False if have_matplotlib: from .plots.summary import summary_plot from .plots.decision import decision_plot, multioutput_decision_plot from .plots.dependence import dependence_plot from .plots.force import force_plot, initjs, save_html from .plots.image import image_plot from .plots.monitoring import monitoring_plot from .plots.embedding import embedding_plot from .plots.partial_dependence import partial_dependence_plot from .plots.bar import bar_plot from .plots.waterfall import waterfall_plot else: summary_plot = unsupported decision_plot = unsupported multioutput_decision_plot = unsupported dependence_plot = unsupported force_plot = unsupported initjs = unsupported save_html = unsupported image_plot = unsupported monitoring_plot = unsupported embedding_plot = unsupported partial_dependence_plot = unsupported bar_plot = unsupported # other stuff :) from . import datasets #from . import benchmark from .common import approximate_interactions, hclust_ordering, sample
py
7df8d74aedd52f5af7302871a88888f0fac59e61
# Copyright 2021 The NetKet Authors - All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Tuple, Optional, Union, Iterator from textwrap import dedent import numpy as np from .abstract_hilbert import AbstractHilbert max_states = np.iinfo(np.int32).max """int: Maximum number of states that can be indexed""" def _is_indexable(shape): """ Returns whether a discrete Hilbert space of shape `shape` is indexable (i.e., its total number of states is below the maximum). """ log_max = np.log(max_states) return np.sum(np.log(shape)) <= log_max class NoneTypeT: pass NoneType = NoneTypeT() legacy_warn_str = ( "This choice of arguments for `hilbert.random_state` is deprecated and " "will be removed in a future version.\n" "The new syntax is\n" " hilbert.random_state(prngkey, size=1, dtype=jnp.float32)\n" "and, like in `jax.random`, the first argument is mandatory and must be a valid jax `PRNGKey`." "Results may differ between the states generated by the legacy, " "deprecated code and the new one. Note that the old code does not " "support defining custom methods." ) class DiscreteHilbert(AbstractHilbert): """Abstract class for an hilbert space defined on a lattice. This class definese the common interface that can be used to interact with hilbert spaces on lattices. """ def __init__(self, shape: Tuple[int, ...]): """ Initializes a discrete Hilbert space with a basis of given shape. Args: shape: The local dimension of the Hilbert space for each degree of freedom. """ self._shape = shape super().__init__() @property def shape(self) -> Tuple[int, ...]: r"""The size of the hilbert space on every site.""" return self._shape @property def is_finite(self) -> bool: r"""Whether the local hilbert space is finite.""" raise NotImplementedError( # pragma: no cover dedent( f""" `is_finite` is not implemented for discrete hilbert space {type(self)}. """ ) ) @property def n_states(self) -> int: r"""The total dimension of the many-body Hilbert space. Throws an exception iff the space is not indexable.""" raise NotImplementedError( # pragma: no cover dedent( f""" `n_states` is not implemented for discrete hilbert space {type(self)}. """ ) ) def size_at_index(self, i: int) -> int: r"""Size of the local degrees of freedom for the i-th variable. Args: i: The index of the desired site Returns: The number of degrees of freedom at that site """ return self.shape[i] # pragma: no cover def states_at_index(self, i: int) -> Optional[List[float]]: r"""A list of discrete local quantum numbers at the site i. If the local states are infinitely many, None is returned. Args: i: The index of the desired site. Returns: A list of values or None if there are infintely many. """ raise NotImplementedError() # pragma: no cover def numbers_to_states( self, numbers: Union[int, np.ndarray], out: Optional[np.ndarray] = None ) -> np.ndarray: r"""Returns the quantum numbers corresponding to the n-th basis state for input n. n is an array of integer indices such that :code:`numbers[k]=Index(states[k])`. Throws an exception iff the space is not indexable. Args: numbers (numpy.array): Batch of input numbers to be converted into arrays of quantum numbers. out: Optional Array of quantum numbers corresponding to numbers. """ if out is None: out = np.empty((np.atleast_1d(numbers).shape[0], self.size)) if np.any(numbers >= self.n_states): raise ValueError("numbers outside the range of allowed states") if np.isscalar(numbers): return self._numbers_to_states(np.atleast_1d(numbers), out=out)[0, :] else: return self._numbers_to_states(numbers, out=out) def states_to_numbers( self, states: np.ndarray, out: Optional[np.ndarray] = None ) -> Union[int, np.ndarray]: r"""Returns the basis state number corresponding to given quantum states. The states are given in a batch, such that states[k] has shape (hilbert.size). Throws an exception iff the space is not indexable. Args: states: Batch of states to be converted into the corresponding integers. out: Array of integers such that out[k]=Index(states[k]). If None, memory is allocated. Returns: numpy.darray: Array of integers corresponding to out. """ if states.shape[-1] != self.size: raise ValueError( f"Size of this state ({states.shape[-1]}) not" f"corresponding to this hilbert space {self.size}" ) states_r = np.asarray(np.reshape(states, (-1, states.shape[-1]))) if out is None: out = np.empty(states_r.shape[:-1], dtype=np.int64) out = self._states_to_numbers(states_r, out=out.reshape(-1)) if states.ndim == 1: return out[0] else: return out.reshape(states.shape[:-1]) def states(self) -> Iterator[np.ndarray]: r"""Returns an iterator over all valid configurations of the Hilbert space. Throws an exception iff the space is not indexable. Iterating over all states with this method is typically inefficient, and ```all_states``` should be prefered. """ for i in range(self.n_states): yield self.numbers_to_states(i).reshape(-1) def all_states(self, out: Optional[np.ndarray] = None) -> np.ndarray: r"""Returns all valid states of the Hilbert space. Throws an exception if the space is not indexable. Args: out: an optional pre-allocated output array Returns: A (n_states x size) batch of statess. this corresponds to the pre-allocated array if it was passed. """ numbers = np.arange(0, self.n_states, dtype=np.int64) return self.numbers_to_states(numbers, out) @property def is_indexable(self) -> bool: """Whever the space can be indexed with an integer""" if not self.is_finite: return False return _is_indexable(self.shape) def __mul__(self, other: "DiscreteHilbert"): if self == other: return self ** 2 else: from .tensor_hilbert import TensorHilbert if type(self) == type(other): res = self._mul_sametype_(other) if res is not NotImplemented: return res return TensorHilbert(self) * other
py
7df8d785809908ce021e7d12f0d032b33a9592fb
from django.contrib import admin from apps.heeds.models import Heed admin.site.register(Heed)
py
7df8d91162731b64e06316dc02d829436559c923
import pyaf.Bench.TS_datasets as tsds import pyaf.tests.artificial.process_artificial_dataset as art art.process_dataset(N = 1024 , FREQ = 'D', seed = 0, trendtype = "PolyTrend", cycle_length = 12, transform = "Quantization", sigma = 0.0, exog_count = 0, ar_order = 12);
py
7df8d9225533d0cef073442a54d22e33dd382b03
#!/usr/bin/env python3 # Copyright (c) 2012-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Extract _("...") strings for translation and convert to Qt stringdefs so that they can be picked up by Qt linguist. ''' from subprocess import Popen, PIPE import operator import os import sys OUT_CPP="qt/nexolstrings.cpp" EMPTY=['""'] def parse_po(text): """ Parse 'po' format produced by xgettext. Return a list of (msgid,msgstr) tuples. """ messages = [] msgid = [] msgstr = [] in_msgid = False in_msgstr = False for line in text.split('\n'): line = line.rstrip('\r') if line.startswith('msgid '): if in_msgstr: messages.append((msgid, msgstr)) in_msgstr = False # message start in_msgid = True msgid = [line[6:]] elif line.startswith('msgstr '): in_msgid = False in_msgstr = True msgstr = [line[7:]] elif line.startswith('"'): if in_msgid: msgid.append(line) if in_msgstr: msgstr.append(line) if in_msgstr: messages.append((msgid, msgstr)) return messages files = sys.argv[1:] # xgettext -n --keyword=_ $FILES XGETTEXT=os.getenv('XGETTEXT', 'xgettext') if not XGETTEXT: print('Cannot extract strings: xgettext utility is not installed or not configured.',file=sys.stderr) print('Please install package "gettext" and re-run \'./configure\'.',file=sys.stderr) sys.exit(1) child = Popen([XGETTEXT,'--output=-','-n','--keyword=_'] + files, stdout=PIPE) (out, err) = child.communicate() messages = parse_po(out.decode('utf-8')) f = open(OUT_CPP, 'w') f.write(""" #include <QtGlobal> // Automatically generated by extract_strings_qt.py #ifdef __GNUC__ #define UNUSED __attribute__((unused)) #else #define UNUSED #endif """) f.write('static const char UNUSED *nexol_strings[] = {\n') f.write('QT_TRANSLATE_NOOP("nexolcore", "%s"),\n' % (os.getenv('PACKAGE_NAME'),)) f.write('QT_TRANSLATE_NOOP("nexolcore", "%s"),\n' % (os.getenv('COPYRIGHT_HOLDERS'),)) if os.getenv('COPYRIGHT_HOLDERS_SUBSTITUTION') != os.getenv('PACKAGE_NAME'): f.write('QT_TRANSLATE_NOOP("nexolcore", "%s"),\n' % (os.getenv('COPYRIGHT_HOLDERS_SUBSTITUTION'),)) messages.sort(key=operator.itemgetter(0)) for (msgid, msgstr) in messages: if msgid != EMPTY: f.write('QT_TRANSLATE_NOOP("nexolcore", %s),\n' % ('\n'.join(msgid))) f.write('};\n') f.close()
py
7df8da077cfdaf7846ff3ecdc1275aeda51eb77b
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ============================================================================= # Created By : Simon Schaefer # Description : Task aware image downscaling autoencoder model - SCALING. # Convolutional layers only (no resblocks). # ============================================================================= import torch from torch import nn from tar.modules import _Resblock_, _ReversePixelShuffle_ def build_net(): return CONV_ONLY_LARGE() class CONV_ONLY_LARGE(nn.Module): def __init__(self): super(CONV_ONLY_LARGE, self).__init__() # Build encoding part. self._downscaling = nn.Sequential( nn.Conv2d(3, 8, 3, stride=1, padding=1), nn.Conv2d(8, 16, 3, stride=1, padding=1), _ReversePixelShuffle_(downscale_factor=2), ) self._conv_en1 = nn.Conv2d(64, 64, 3, stride=1, padding=1) self._conv_en2 = nn.Conv2d(64, 64, 3, stride=1, padding=1) self._conv_en3 = nn.Conv2d(64, 64, 3, stride=1, padding=1) self._conv_en4 = nn.Conv2d(64, 64, 3, stride=1, padding=1) self._conv_en5 = nn.Conv2d(64, 3, 3, stride=1, padding=1) # Build decoding part. self._conv_de1 = nn.Conv2d(3, 64, 3, stride=1, padding=1) self._conv_de2 = nn.Conv2d(64, 64, 3, stride=1, padding=1) self._conv_de3 = nn.Conv2d(64, 64, 3, stride=1, padding=1) self._conv_de4 = nn.Conv2d(64, 64, 3, stride=1, padding=1) self._conv_de5 = nn.Conv2d(64, 64, 3, stride=1, padding=1) self._upscaling = nn.Sequential( nn.Conv2d(64, 256, 3, stride=1, padding=1), nn.PixelShuffle(upscale_factor=2), nn.Conv2d(64, 3, 3, stride=1, padding=1) ) def encode(self, x: torch.Tensor) -> torch.Tensor: # b, 3, p, p x = self._downscaling(x) # b, 64, p/2, p/2 residual = x x = self._conv_en1(x) # b, 64, p/2, p/2 x = self._conv_en2(x) # b, 64, p/2, p/2 x = torch.add(residual, x) # b, 64, p/2, p/2 x = self._conv_en3(x) # b, 64, p/2, p/2 x = self._conv_en4(x) # b, 64, p/2, p/2 x = torch.add(residual, x) # b, 64, p/2, p/2 x = self._conv_en5(x) # b, 3, p/2, p/2 return x def decode(self, x: torch.Tensor) -> torch.Tensor: x = self._conv_de1(x) # b, 64, p/2, p/2 residual = x x = self._conv_de2(x) # b, 64, p/2, p/2 x = self._conv_de3(x) # b, 64, p/2, p/2 x = torch.add(residual, x) # b, 64, p/2, p/2 x = self._conv_de4(x) # b, 64, p/2, p/2 x = self._conv_de5(x) # b, 64, p/2, p/2 x = torch.add(residual, x) # b, 64, p/2, p/2 x = self._upscaling(x) # b, 3, p, p return x def forward(self, x: torch.Tensor) -> torch.Tensor: return self.decode(self.encode(x))
py
7df8da09c7147a0737e86745bbe0c69010be33f0
import numpy as np import tensorflow as tf import utils as ut a = np.zeros([1,13,13,5,4]) a[0,0,0,0] = [0.5,0.5,1,1] # Square with centroid at (0.5,0.5) # and shape (1,1) -> (w,h) b = np.zeros([1,13,13,5,4]) b[0,0,0,0] = [-0.5,-0.5,2,2] # Square with centroid at (-0.5,-0.5) # and shape (2,2) -> (w,h) bb1 = tf.placeholder(tf.float32,shape=[None,13,13,5,4]) bb2 = tf.placeholder(tf.float32,shape=[None,13,13,5,4]) iou_res = ut.iou(bb1,bb2) sess = tf.Session() iou = sess.run(iou_res,feed_dict={bb1:a,bb2:b}) print(iou[0,0,0,0]) # IoU will be ~0.052631
py
7df8da6b066a5fa87d81717343c8cb3aa36a7444
# -*- coding: utf-8 -*- # Copyright 2018 The Blueoil Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from easydict import EasyDict import tensorflow as tf from lmnet.common import Tasks from lmnet.networks.object_detection.yolo_v2_quantize import YoloV2Quantize from lmnet.datasets.lm_things_on_a_table import LmThingsOnATable from lmnet.data_processor import Sequence from lmnet.pre_processor import ( ResizeWithGtBoxes, DivideBy255, ) from lmnet.post_processor import ( FormatYoloV2, ExcludeLowScoreBox, NMS, ) from lmnet.data_augmentor import ( Brightness, Color, Contrast, FlipLeftRight, Hue, SSDRandomCrop, ) from lmnet.quantizations import ( binary_channel_wise_mean_scaling_quantizer, linear_mid_tread_half_quantizer, ) IS_DEBUG = False NETWORK_CLASS = YoloV2Quantize DATASET_CLASS = LmThingsOnATable IMAGE_SIZE = [128, 128] BATCH_SIZE = 8 DATA_FORMAT = "NCHW" TASK = Tasks.OBJECT_DETECTION CLASSES = DATASET_CLASS.classes KEEP_CHECKPOINT_MAX = 5 MAX_EPOCHS = 1 SAVE_CHECKPOINT_STEPS = 100 TEST_STEPS = 100 SUMMARISE_STEPS = 10 # pretrain IS_PRETRAIN = False PRETRAIN_VARS = [] PRETRAIN_DIR = "" PRETRAIN_FILE = "" PRE_PROCESSOR = Sequence([ ResizeWithGtBoxes(size=IMAGE_SIZE), DivideBy255() ]) anchors = [ (1.3221, 1.73145), (3.19275, 4.00944), (5.05587, 8.09892), (9.47112, 4.84053), (11.2364, 10.0071) ] score_threshold = 0.05 nms_iou_threshold = 0.5 nms_max_output_size = 100 POST_PROCESSOR = Sequence([ FormatYoloV2( image_size=IMAGE_SIZE, classes=CLASSES, anchors=anchors, data_format=DATA_FORMAT, ), ExcludeLowScoreBox(threshold=score_threshold), NMS(iou_threshold=nms_iou_threshold, max_output_size=nms_max_output_size, classes=CLASSES,), ]) NETWORK = EasyDict() NETWORK.OPTIMIZER_CLASS = tf.train.MomentumOptimizer NETWORK.OPTIMIZER_KWARGS = {"momentum": 0.9} NETWORK.LEARNING_RATE_FUNC = tf.train.piecewise_constant _epoch_steps = int(16551 / BATCH_SIZE) NETWORK.LEARNING_RATE_KWARGS = { "values": [1e-6, 1e-4, 1e-5, 1e-6, 1e-7], "boundaries": [_epoch_steps, _epoch_steps * 10, _epoch_steps * 60, _epoch_steps * 90], } NETWORK.IMAGE_SIZE = IMAGE_SIZE NETWORK.BATCH_SIZE = BATCH_SIZE NETWORK.DATA_FORMAT = DATA_FORMAT NETWORK.ANCHORS = anchors NETWORK.OBJECT_SCALE = 5.0 NETWORK.NO_OBJECT_SCALE = 1.0 NETWORK.CLASS_SCALE = 1.0 NETWORK.COORDINATE_SCALE = 1.0 NETWORK.LOSS_IOU_THRESHOLD = 0.6 NETWORK.WEIGHT_DECAY_RATE = 0.0005 NETWORK.SCORE_THRESHOLD = score_threshold NETWORK.NMS_IOU_THRESHOLD = nms_iou_threshold NETWORK.NMS_MAX_OUTPUT_SIZE = nms_max_output_size NETWORK.LOSS_WARMUP_STEPS = int(1280 / BATCH_SIZE) # quantization NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer NETWORK.ACTIVATION_QUANTIZER_KWARGS = { 'bit': 2, 'max_value': 2.0 } NETWORK.WEIGHT_QUANTIZER = binary_channel_wise_mean_scaling_quantizer NETWORK.WEIGHT_QUANTIZER_KWARGS = {} NETWORK.QUANTIZE_FIRST_CONVOLUTION = True NETWORK.QUANTIZE_LAST_CONVOLUTION = False # dataset DATASET = EasyDict() DATASET.BATCH_SIZE = BATCH_SIZE DATASET.DATA_FORMAT = DATA_FORMAT DATASET.PRE_PROCESSOR = PRE_PROCESSOR DATASET.AUGMENTOR = Sequence([ FlipLeftRight(), Brightness((0.75, 1.25)), Color((0.75, 1.25)), Contrast((0.75, 1.25)), Hue((-10, 10)), SSDRandomCrop(min_crop_ratio=0.7), ])
py
7df8dbd5f1a10c8d9822bf22b35f198638cac35f
from unittest import TestCase, skip from pymongo import MongoClient from passerine.db.driver.mongodriver import Driver from passerine.db.session import Session class DbTestCase(TestCase): default_collection_name = 't3test' verify_data = False connection = MongoClient() # used for setup-cleanup operation session = None driver = None def collection_name(self): return self.default_collection_name def open_driver(self): self.driver = Driver({'name': self.collection_name()}) self.driver.connect() def close_driver(self): del self.driver def setUp(self): self._setUp() def _setUp(self): self.connection.drop_database(self.collection_name()) self.open_driver() self.session = Session(self.driver) def tearDown(self): if not self.verify_data: self.connection.drop_database(self.collection_name()) self.close_driver() del self.session def _reset_db(self, data_set): for data in data_set: cls = data['class'] repo = self.session.repository(cls) self.driver.drop_indexes(repo.name) self.driver.drop(repo.name) repo.setup_index() for fixture in data['fixtures']: self.driver.insert(repo.name, fixture) if self.verify_data: for fixture in self.driver.find(repo.name, {}): print('{}: {}'.format(repo.name, fixture)) def _get_first(self, cls): repo = self.session.repository(cls) query = repo.new_criteria('e') query.limit(1) return repo.find(query) def _get_all(self, cls): repo = self.session.repository(cls) query = repo.new_criteria('e') return repo.find(query) def _find_one_by_name(self, cls, name): repo = self.session.repository(cls) query = repo.new_criteria('e') query.expect('e.name = :name') query.define('name', name) query.limit(1) return repo.find(query)
py
7df8dc5ccc0bec1efbad636db0beddb9ef545fc5
import torch import torch.nn as nn import torch.nn.functional as F import math, copy import reformer import util from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence from torch.autograd import Variable """ CS224N course project model implementation: Transformer """ def clones(module, N): "Produce N identical layers." return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) def attention(query, key, value, mask=None, dropout=0.0): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) p_attn = F.softmax(scores, dim = -1) # (Dropout described below) p_attn = F.dropout(p_attn, p=dropout) return torch.matmul(p_attn, value), p_attn class LayerNorm(nn.Module): "Construct a layernorm module (See citation for details)." def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity we apply the norm first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer function that maintains the same size." return x + self.dropout(sublayer(self.norm(x))) class PositionwiseFeedForward(nn.Module): "Implements FFN equation." def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() # Torch linears have a `b` by default. self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.p = dropout self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None def forward(self, query, key, value, mask=None): "Implements Figure 2" if mask is not None: # Same mask applied to all h heads. mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask=mask, dropout=self.p) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x) class PositionalEncoding(nn.Module): "Implement the PE function." def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False) return self.dropout(x) class EncoderLayer(nn.Module): """ Encoder is made up of two sublayers, self-attn and feed forward (defined below) b blocks of cnn sublayers, each with c Conv1d """ # N=6, d_model=512, d_ff=2048, h=8, dropout=0.1 def __init__(self, size=512, d_ff=2048, h=8, dropout=0.1, kernel = 7, c = 4): super(EncoderLayer, self).__init__() self.c = c self.conv1d = nn.Sequential( nn.Conv1d(size, size, kernel, bias=True, padding=kernel//2), nn.ReLU() ) self.self_attn = MultiHeadedAttention(h, size, dropout) self.feed_forward = PositionwiseFeedForward(size, d_ff, dropout) self.sublayer = clones(SublayerConnection(size, dropout), self.c + 2) self.size = size def forward(self, x, mask): "Follow Figure 1 (left) for connections." # convolution for i in range(self.c): x = self.conv1d(x.transpose(1,2)) #x = torch.max(x, dim=2) x = x.transpose(1,2) x = self.sublayer[i](x, lambda x: x) x = self.sublayer[self.c](x, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[self.c+1](x, self.feed_forward) class TransformerEncoder(nn.Module): """ The transformer encoder part described in 'Attention is all you need' b blocks of cnn sublayers, each with c Conv1d """ def __init__(self, hidden_size, N = 1, c = 4): super(TransformerEncoder, self).__init__() self.layer = EncoderLayer(size = hidden_size, c = c) self.layers = clones(self.layer, N) self.norm = LayerNorm(self.layer.size) def forward(self, x, mask): """ Pass the input (and mask) through each layer in turn. """ # haroldmei mask = torch.unsqueeze(mask, 1) for layer in self.layers: x = layer(x, mask) return self.norm(x) # just copied from BiDAFOutput class Transformer_Output(nn.Module): """ """ def __init__(self, hidden_size, drop_prob): super(Transformer_Output, self).__init__() self.transformer = TransformerEncoder(hidden_size, N = 3) self.att_linear_1 = nn.Linear(4 * hidden_size, 1) self.mod_linear_1 = nn.Linear(hidden_size, 1) self.att_linear_2 = nn.Linear(4 * hidden_size, 1) self.mod_linear_2 = nn.Linear(hidden_size, 1) def forward(self, att, mod, mask): # Shapes: (batch_size, seq_len, 1) logits_1 = self.att_linear_1(att) + self.mod_linear_1(mod) mod_2 = self.transformer(mod, mask) logits_2 = self.att_linear_2(att) + self.mod_linear_2(mod_2) # Shapes: (batch_size, seq_len) log_p1 = util.masked_softmax(logits_1.squeeze(), mask, log_softmax=True) log_p2 = util.masked_softmax(logits_2.squeeze(), mask, log_softmax=True) return log_p1, log_p2 class TransformerEncoderLayerEx(nn.Module): def __init__(self, d_model, dropout=0.1, c = 4, kernel = 7): super(TransformerEncoderLayerEx, self).__init__() self.c = c self.conv1d = [nn.Sequential( nn.Conv1d(d_model, d_model, kernel, bias=True, padding=kernel//2).cuda(), nn.ReLU() )] * self.c self.norm3 = [nn.modules.transformer.LayerNorm(d_model)] * self.c self.dropout3 = [nn.modules.transformer.Dropout(dropout)] * self.c def forward(self, src, src_mask=None, src_key_padding_mask=None): for i in range(self.c): src2 = self.conv1d[i](src.transpose(1,2)).transpose(1,2) src = src + self.dropout3[i](src2) src = self.norm3[i](src) return src # just copied from BiDAFOutput class Transformer_OutputEx(nn.Module): """ """ def __init__(self, hidden_size, mod_layers, drop_prob): super(Transformer_OutputEx, self).__init__() self.cnn = TransformerEncoderLayerEx(hidden_size,c=2) self.transformer = nn.modules.transformer.TransformerEncoder( nn.modules.transformer.TransformerEncoderLayer(hidden_size, 8, dropout=drop_prob), mod_layers, nn.modules.transformer.LayerNorm(hidden_size) ) self.att_linear_1 = nn.Linear(4 * hidden_size, 1) self.mod_linear_1 = nn.Linear(hidden_size, 1) self.att_linear_2 = nn.Linear(4 * hidden_size, 1) self.mod_linear_2 = nn.Linear(hidden_size, 1) def forward(self, att, mod, mask): # Shapes: (batch_size, seq_len, 1) logits_1 = self.att_linear_1(att) + self.mod_linear_1(mod) mod_2 = self.transformer(self.cnn(mod)) #, mask) logits_2 = self.att_linear_2(att) + self.mod_linear_2(mod_2) # Shapes: (batch_size, seq_len) log_p1 = util.masked_softmax(logits_1.squeeze(), mask, log_softmax=True) log_p2 = util.masked_softmax(logits_2.squeeze(), mask, log_softmax=True) return log_p1, log_p2 """ CS224N course project model implementation: Reformer """ class ReformerEncoder(nn.Module): """ The Reformer encoder part described in '' """ def __init__(self, hidden_size, depth = 12, drop_prob=0.1, bucket_size = 16, max_seq_len=512): super(ReformerEncoder, self).__init__() self.reformer = reformer.Reformer( dim = hidden_size, depth = depth, bucket_size = bucket_size, max_seq_len = max_seq_len, heads = 8, lsh_dropout = drop_prob, causal = False ).cuda() self.bucket_size = bucket_size def forward(self, x, mask): x = self.reformer(x) return x # just copied from BiDAFOutput class Reformer_Output(nn.Module): """ """ def __init__(self, hidden_size, drop_prob): super(Reformer_Output, self).__init__() self.transformer = ReformerEncoder(hidden_size, depth = 1) self.att_linear_1 = nn.Linear(4 * hidden_size, 1) self.mod_linear_1 = nn.Linear(hidden_size, 1) self.att_linear_2 = nn.Linear(4 * hidden_size, 1) self.mod_linear_2 = nn.Linear(hidden_size, 1) def forward(self, att, mod, mask): # Shapes: (batch_size, seq_len, 1) logits_1 = self.att_linear_1(att) + self.mod_linear_1(mod) mod_2 = self.transformer(mod, mask) logits_2 = self.att_linear_2(att) + self.mod_linear_2(mod_2) # Shapes: (batch_size, seq_len) log_p1 = util.masked_softmax(logits_1.squeeze(), mask, log_softmax=True) log_p2 = util.masked_softmax(logits_2.squeeze(), mask, log_softmax=True) return log_p1, log_p2
py
7df8de143602185ca5796b8f45cc9cbd84a11965
#!/usr/bin/env python # coding: utf-8 """ File Name: eval_knn.py Author: Wan Ji E-mail: [email protected] Created on: Mon Jan 4 10:36:31 2016 CST """ DESCRIPTION = """ """ import os import argparse import logging import numpy as np from scipy.io import loadmat from bottleneck import argpartsort def runcmd(cmd): """ Run command. """ logging.info("%s" % cmd) os.system(cmd) def getargs(): """ Parse program arguments. """ parser = argparse.ArgumentParser( description=DESCRIPTION, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('train_feat', type=str, help='training features') parser.add_argument('test_feat', type=str, help='test features') parser.add_argument('train_label', type=str, help='training features') parser.add_argument('test_label', type=str, help='test features') parser.add_argument("--Ks", type=int, nargs='+', default=[1], help="Ks") parser.add_argument("--num_test", type=int, help="number of test images") parser.add_argument("--dist_type", type=str, default='euclidean', help="type of distance (euclidean, cosine, dotproduct)") parser.add_argument("--log", type=str, default="INFO", help="log level") return parser.parse_args() def normalization(feat): """ Feature normalization """ feat = feat.reshape(feat.shape[0], -1) return feat / np.sqrt(np.sum(feat**2, axis=1)).reshape((feat.shape[0], 1)) def knn_classifer(knn_label): # if knn_label.shape[1] is 1: # return knn_label[:, 0] num_label = knn_label.max() + 1 num_test = knn_label.shape[0] pred = np.empty(num_test, np.int) for i in xrange(num_test): label_hist = np.histogram(knn_label[i], range(num_label+1)) pred[i] = label_hist[0].argmax() return pred def DotProduct(feat, query): """ dot product distance. """ return -query.dot(feat.T) def Euclidean(feat, query): """ Euclidean distance. """ (nQ, D) = query.shape (N, D) = feat.shape dotprod = query.dot(feat.T) qryl2norm = (query ** 2).sum(1).reshape(-1, 1) featl2norm = (feat ** 2).sum(1).reshape(1, -1) return qryl2norm + featl2norm - 2 * dotprod def load_feat(feat_path, norm=False): feat = loadmat(feat_path)['feat'] feat = feat.reshape(feat.shape[0], -1) if norm: feat = normalization(feat) return feat def main(args): """ Main entry. """ logging.info("Loading features") # trn_feat = normalization(loadmat(args.train_feat)['feat']) # tst_feat = normalization(loadmat(args.test_feat)['feat']) trn_feat = load_feat(args.train_feat).astype(np.float) tst_feat = load_feat(args.test_feat).astype(np.float) logging.info("\tDone!") logging.info("Loading labels") with open(args.train_label, 'r') as lbf: trn_label = np.array([int(line.split()[1]) for line in lbf]) with open(args.test_label, 'r') as lbf: tst_label = np.array([int(line.split()[1]) for line in lbf]) logging.info("\tDone!") # print trn_feat.shape # print tst_feat.shape # print trn_label.shape # print tst_label.shape num_test = tst_feat.shape[0] if args.num_test is not None and args.num_test < tst_feat.shape[0]: num_test = args.num_test tst_feat = tst_feat[:num_test] tst_label = tst_label[:num_test] logging.info("Computing `{}` distances".format(args.dist_type)) if args.dist_type == "euclidean": dist = Euclidean(trn_feat, tst_feat) elif args.dist_type == "cosine": trn_feat = normalization(trn_feat) tst_feat = normalization(tst_feat) dist = DotProduct(trn_feat, tst_feat) elif args.dist_type == "dotproduct": dist = DotProduct(trn_feat, tst_feat) else: raise Exception("Invalid distance type.") logging.info("\tDone!") maxK = min(max(args.Ks), trn_feat.shape[0]) logging.info("Sorting") idxs = np.empty((num_test, maxK), np.int) for i in xrange(num_test): cur_idxs = argpartsort(dist[i], maxK)[:maxK] idxs[i, :] = cur_idxs[dist[i][cur_idxs].argsort()] logging.info("\tDone!") logging.info("Labeling") knn_label = np.empty((num_test, maxK), np.int) for i in xrange(num_test): knn_label[i, :] = trn_label[idxs[i]] logging.info("\tDone!") logging.info("Evaluating") for k in args.Ks: pred = knn_classifer(knn_label[:, :k]) accy = (pred == tst_label).sum() * 100.0 / tst_label.shape[0] logging.info("\t%4d-NN classifier: %.2f" % (k, accy)) logging.info("\tDone") if __name__ == '__main__': args = getargs() numeric_level = getattr(logging, args.log.upper(), None) if not isinstance(numeric_level, int): raise ValueError("Invalid log level: " + args.log) logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s", level=numeric_level) main(args)
py
7df8de9869cf328d81e180907df0b8283e405c39
import pytest def test_tmpdir(tmpdir): a_dir = tmpdir.mkdir('mytmpdir') a_file = a_dir.join('tmpfile.txt') a_file.write('hello, pytest!') assert a_file.read() == 'hello, pytest!' @pytest.fixture(scope='module') def my_tmpdir_factory(tmpdir_factory): a_dir = tmpdir_factory.mktemp('mytmpdir') a_file = a_dir.join('tmpfile.txt') a_file.write('hello, pytest!') return a_file
py
7df8df401d3e430c29784c8d8c3cf499a6a5bb4d
from os import environ ENVIRONMENT_SETTINGS = [ "DATABASE_PASSWORD", "VIRTUALENV_NAME", ] def env_settings(): d = {} for s in ENVIRONMENT_SETTINGS: if s in environ: d[s] = environ[s] return d
py
7df8e0fa0f31bd1bfb08fce73a3ae84a3fa24ac6
import boto3 import json import os # Global variables are reused across execution contexts (if available) session = boto3.Session() def lambda_handler(event, context): """ AWS Lambda handler Parameters ---------- context: object, required Lambda Context runtime methods and attributes Attributes ---------- context.aws_request_id: str Lambda request ID context.client_context: object Additional context when invoked through AWS Mobile SDK context.function_name: str Lambda function name context.function_version: str Function version identifier context.get_remaining_time_in_millis: function Time in milliseconds before function times out context.identity: Cognito identity provider context when invoked through AWS Mobile SDK context.invoked_function_arn: str Function ARN context.log_group_name: str Cloudwatch Log group name context.log_stream_name: str Cloudwatch Log stream name context.memory_limit_in_mb: int Function memory https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html event: dict, required API Gateway Lambda Proxy Input Format { "resource": "Resource path", "path": "Path parameter", "httpMethod": "Incoming request's method name" "headers": {Incoming request headers} "queryStringParameters": {query string parameters } "pathParameters": {path parameters} "stageVariables": {Applicable stage variables} "requestContext": {Request context, including authorizer-returned key-value pairs} "body": "A JSON string of the request payload." "isBase64Encoded": "A boolean flag to indicate if the applicable request payload is Base64-encode" } https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html#api-gateway-simple-proxy-for-lambda-input-format Returns ------ API Gateway Lambda Proxy Output Format: dict 'statusCode' and 'body' are required { "isBase64Encoded": true | false, "statusCode": httpStatusCode, "headers": {"headerName": "headerValue", ...}, "body": "..." } # api-gateway-simple-proxy-for-lambda-output-format https: // docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html """ message = get_message() return { "statusCode": 200, "body": json.dumps(message) } def get_message(): return {"hello": "world"}
py
7df8e254c21afe736806699847d02f1408c89d00
import os import time from os.path import dirname, join import shutil import json import numpy as np from scipy.cluster.hierarchy import fcluster from scipy.spatial.distance import squareform, pdist import pandas as pd try: import matplotlib import seaborn as sns sns.set(context="paper", font="monospace") MATPLOTLIB_INSTALLED = True except: MATPLOTLIB_INSTALLED = False try: import requests REQUESTS_INSTALLED = True except: REQUESTS_INSTALLED = False from clustermatch.utils.misc import get_temp_file_name RESULTS_DIR = 'results' def _get_condensed_distance_matrix(ensemble): return pdist(ensemble.T, lambda u, v: (u != v).sum() / len(u)) def get_timestamp(): return time.strftime('%Y%m%d_%H%M%S') def setup_results_dir(func): def func_wrapper(*args, **kwargs): results_dir = os.path.join(RESULTS_DIR, kwargs['timestamp']) if not os.path.isdir(results_dir): os.makedirs(results_dir) return func(*args, **kwargs) return func_wrapper def get_clustergrammer_link(square_matrix, names): if not REQUESTS_INSTALLED: raise ValueError('requests is not installed') # save sim matrix as csv and get clustergrammer visualization df = pd.DataFrame(square_matrix) df['names'] = names df = df.set_index('names') df.columns = names square_matrix_file = get_temp_file_name('txt') df.to_csv(square_matrix_file, sep='\t', encoding='utf-8') clustergrammer_link = '' try: upload_url = 'http://amp.pharm.mssm.edu/clustergrammer/matrix_upload/' r = requests.post(upload_url, files={'file': open(square_matrix_file, 'rb')}) clustergrammer_link = r.text except: pass return clustergrammer_link @setup_results_dir def to_binary(data, file_name, timestamp): file_path = os.path.join(RESULTS_DIR, timestamp, file_name + '.pkl') pd.to_pickle(data, file_path) def from_binary(file_name): return pd.read_pickle(file_name) @setup_results_dir def create_partition_plot_html(partition, timestamp, sources=None): results_dir = os.path.join(RESULTS_DIR, timestamp) html_dir = join(dirname(__file__), 'html') for afile in os.listdir(html_dir): afile_path = join(html_dir, afile) shutil.copy(afile_path, results_dir) if sources is not None: sources = np.array(sources) else: sources = np.array([''] * len(partition)) # FIXME: create json and copy json_path = os.path.join(RESULTS_DIR, timestamp, 'data' + '.json') cluster_children = [] k_values = np.unique(partition) for cluster_number in k_values: idx = (partition == cluster_number).values cluster_objects = partition[idx].index.tolist() cluster_objects_sources = sources[idx] cluster_children.append( {'name': '', 'children': [{'name': obj_name, 'source': obj_source, 'size': 1} for obj_name, obj_source in zip(cluster_objects, cluster_objects_sources)] } ) partition_json = {'name': '', 'children': cluster_children} with open(json_path, 'w') as jf: json.dump(partition_json, jf) return join(results_dir, 'index.html') @setup_results_dir def save_ensembles(ensembles, timestamp): for ens_name, ens in ensembles.items(): ensemble_path = os.path.join(RESULTS_DIR, timestamp, ens_name + '_ensemble' + '.xls') ens.to_excel(ensemble_path, encoding='utf-8') @setup_results_dir def append_data_description(text, timestamp): filepath = os.path.join(RESULTS_DIR, timestamp, 'README.txt') with open(filepath, 'a') as f: f.write('\n') f.write(text + '\n') @setup_results_dir def write_text_file(text_content, file_name, timestamp): filepath = os.path.join(RESULTS_DIR, timestamp, file_name) with open(filepath, 'w') as f: f.write(text_content) @setup_results_dir def write_data_description(data_files, merged_sources, feature_names, sources_names, timestamp): filepath = os.path.join(RESULTS_DIR, timestamp, 'README.txt') with open(filepath, 'w') as f: f.write('Data files included:\n') for afile in data_files: f.write(' - {}\n'.format(afile)) f.write('\n') f.write('Merged sources shape: {}\n'.format(merged_sources.shape)) f.write('Number of features: {} ({} unique)\n'.format(len(feature_names), len(set(feature_names)))) f.write('Number of sources: {}\n'.format(len(set(sources_names)))) @setup_results_dir def save_excel(dataframe, filename, timestamp): filepath = os.path.join(RESULTS_DIR, timestamp, filename + '.xlsx') dataframe.to_excel(filepath, encoding='utf-8') def save_partitions_simple(partitions, partitions_path, extra_columns=None, columns_order=None, sort_by_columns=None): if extra_columns is not None: extra_df = pd.DataFrame(extra_columns, index=partitions.index) partitions = pd.concat([partitions, extra_df], axis=1) if columns_order is not None: partitions = partitions[columns_order] if sort_by_columns is not None: partitions = partitions.sort_values(sort_by_columns) partitions.to_excel(partitions_path, encoding='utf-8') @setup_results_dir def save_partitions(partitions, timestamp, **kwargs): partitions_path = os.path.join(RESULTS_DIR, timestamp, 'partitions' + '.xls') save_partitions_simple(partitions, partitions_path, **kwargs) return partitions_path @setup_results_dir def save_coassociation_matrix(ensemble, partition, timestamp, columns_order=None, image_format='pdf'): if not MATPLOTLIB_INSTALLED: raise ValueError('matplotlib is not installed') condensed_matrix = _get_condensed_distance_matrix(ensemble) full_matrix = squareform(condensed_matrix) full_matrix = 1 - full_matrix np.fill_diagonal(full_matrix, 0.0) tomato_accessions = ensemble.columns if columns_order is None: ordering_partition = partition.columns[0] else: ordering_partition = columns_order[0] partition_idxs_sorted = np.argsort(partition[ordering_partition]) sim_matrix_sorted = full_matrix[partition_idxs_sorted, :] sim_matrix_sorted = sim_matrix_sorted[:, partition_idxs_sorted] tomato_accessions_sorted = [tomato_accessions[idx] for idx in partition_idxs_sorted] df = pd.DataFrame(sim_matrix_sorted, index=tomato_accessions_sorted, columns=tomato_accessions_sorted) # fig = sns.plt.figure(figsize=(100, 100)) ax = sns.heatmap(df, square=True, linewidths=.05, cmap='Blues', cbar=None) sns.plt.yticks(rotation=0) sns.plt.xticks(rotation=90) font_scale = (35.0 / len(tomato_accessions)) for label in (ax.get_xticklabels() + ax.get_yticklabels()): label.set_fontsize(label.get_fontsize() * font_scale) sim_matrix_path = os.path.join(RESULTS_DIR, timestamp, 'coasociation_matrix.' + image_format) sns.plt.savefig(sim_matrix_path, dpi=300, bbox_inches='tight') sns.plt.close() sim_matrix_csv_path = os.path.join(RESULTS_DIR, timestamp, 'coasociation_matrix.csv') df.to_csv(sim_matrix_csv_path) return sim_matrix_path, full_matrix, sim_matrix_csv_path @setup_results_dir def save_similarity_matrix(partition, feature_names, sim_matrix, timestamp, image_format='pdf'): if not MATPLOTLIB_INSTALLED: raise ValueError('matplotlib is not installed') partition_idxs_sorted = np.argsort(partition) sim_matrix_sorted = sim_matrix[partition_idxs_sorted, :] sim_matrix_sorted = sim_matrix_sorted[:, partition_idxs_sorted] feature_names_sorted = [feature_names[idx] for idx in partition_idxs_sorted] df = pd.DataFrame(sim_matrix_sorted, index=feature_names_sorted, columns=feature_names_sorted) ax = sns.heatmap(df, square=True, linewidths=.05) sns.plt.yticks(rotation=0) sns.plt.xticks(rotation=90) for label in (ax.get_xticklabels() + ax.get_yticklabels()): label.set_fontsize(1.5) sim_matrix_path = os.path.join(RESULTS_DIR, timestamp, 'similarity_matrix.' + image_format) sns.plt.savefig(sim_matrix_path, dpi=300, bbox_inches='tight') return sim_matrix_path @setup_results_dir def save_reps_comparison(reps_comparison, timestamp): reps_comparison_csv = os.path.join(RESULTS_DIR, timestamp, 'reps_comparison.csv') reps_comparison.to_csv(reps_comparison_csv) return reps_comparison_csv @setup_results_dir def save_clustermap(sim_matrix, feature_names, sources_names, partition_linkage, timestamp, image_format='pdf'): if not MATPLOTLIB_INSTALLED: raise ValueError('matplotlib is not installed') font_scale = (50.0 / len(feature_names)) # sns.set(font_scale=font_scale) fig = sns.plt.figure(figsize=(100, 100)) df = pd.DataFrame(sim_matrix, index=feature_names, columns=feature_names) part00_k = 4 part00 = fcluster(partition_linkage, part00_k, criterion='maxclust') - 1 part01_k = 10 part01 = fcluster(partition_linkage, part01_k, criterion='maxclust') - 1 part02_k = 15 part02 = fcluster(partition_linkage, part02_k, criterion='maxclust') - 1 part03_k = 20 part03 = fcluster(partition_linkage, part03_k, criterion='maxclust') - 1 part00_colors = sns.color_palette('pastel', len(np.unique(part00))) part01_colors = sns.color_palette('pastel', len(np.unique(part01))) part02_colors = sns.color_palette('pastel', len(np.unique(part02))) part03_colors = sns.color_palette('pastel', len(np.unique(part03))) df_colors = pd.DataFrame(index=df.index) df_colors['$k$={0}'.format(part00_k)] = [part00_colors[i] for i in part00] df_colors['$k$={0}'.format(part01_k)] = [part01_colors[i] for i in part01] df_colors['$k$={0}'.format(part02_k)] = [part02_colors[i] for i in part02] df_colors['$k$={0}'.format(part03_k)] = [part03_colors[i] for i in part03] cm = sns.clustermap(df, col_linkage=partition_linkage, row_linkage=partition_linkage, row_colors=df_colors, col_colors=df_colors) sns.plt.setp(cm.ax_heatmap.xaxis.get_majorticklabels(), rotation=90) sns.plt.setp(cm.ax_heatmap.yaxis.get_majorticklabels(), rotation=0) ax = cm.cax pos1 = ax.get_position() # get the original position pos2 = [pos1.x0 + 0.79, pos1.y0 - 0.02, pos1.width, pos1.height] ax.set_position(pos2) # set a new position unique_sources = list(set(sources_names)) sources_colors = sns.color_palette('hls', len(unique_sources)) ylabels = [x for x in cm.ax_heatmap.get_yticklabels()] ylabels_text = [x.get_text() for x in ylabels] leg_fig = cm.ax_heatmap.get_yticklabels()[0].figure for label in cm.ax_heatmap.get_xticklabels(): label_idx = feature_names.index(label.get_text()) label_source = sources_names[label_idx] color_idx = unique_sources.index(label_source) label.set_color(sources_colors[color_idx]) label.set_fontsize(label.get_fontsize() * font_scale) ylabel = ylabels[ylabels_text.index(label.get_text())] ylabel.set_color(sources_colors[color_idx]) ylabel.set_fontsize(ylabel.get_fontsize() * font_scale) legend_labels = unique_sources legend_patches = [matplotlib.patches.Patch(color=C, label=L) for C, L in zip(sources_colors, legend_labels)] leg_fig.legend(handles=legend_patches, labels=legend_labels, loc='lower right', bbox_to_anchor=(0.970, 0.05)) clustermap_path = os.path.join(RESULTS_DIR, timestamp, 'clustermap.' + image_format) cm.savefig(clustermap_path, dpi=300, bbox_inches='tight') sns.plt.close() clustermap_csv_path = os.path.join(RESULTS_DIR, timestamp, 'clustermap.' + 'csv') df.to_csv(clustermap_csv_path) return clustermap_path, clustermap_csv_path
py
7df8e40c0ca8d6db423853b6fccd01dc28f10f48
#!/usr/bin/env python # pylint: disable=invalid-name,bare-except # A tool to perform various operations on Jira import os import io import sys import re import csv import argparse import netrc import logging import textwrap import pprint from collections import Counter from tabulate import tabulate import json from utils import get_jira_client, get_login_credentials FIELD_SPRINT = 'customfield_12310940' FIELD_CONTRIBUTORS = 'customfield_12315950' MAX_RESULTS = 100 TRIAGE_MAX_RESULTS = 300 SEARCH_QUERY_EPICS = 'project = MGMT AND component = "MGMT OCP Metal" AND type = Epic AND filter = ' CURRENT_VERSION_FILTER = '12347072' NEXT_VERSION_FILTER = '12347073' VALID_PRINT_FIELDS = ['key', 'summary', 'component', 'priority', 'status', 'assignee', 'fixVersion', 'sprint'] DEFAULT_PRINT_FIELDS = ['component', 'priority', 'status', 'assignee'] PERMENANT_PRINT_FIELDS = ['key', 'summary'] TEAM_COMPONENT_PREFIX = 'AI-Team' NONE_EDGE_COMPONENTS = ['MGMT Integration'] PROJECT_LABELS = ['KNI-EDGE-4.8', 'KNI-EDGE-4.8-DAY2'] ADMIN_ROLE_ID = '10002' logging.basicConfig(level=logging.WARN, format='%(levelname)-10s %(message)s') logger = logging.getLogger(__name__) logging.getLogger("__main__").setLevel(logging.INFO) isVerbose = False isDryRun = False def log_exception(msg): if isVerbose: logger.exception(msg) else: logger.error(msg) def jira_netrc_login(server, netrcFile): cred = netrc.netrc(os.path.expanduser(netrcFile)) username, _, password = cred.authenticators(server) logger.info("log-in with username: %s", username) return username, password def get_raw_field(issue, fieldName): try: return issue.fields.__dict__[fieldName] except Exception: return None def get_sprint_name(issue): sprint_str = get_raw_field(issue, FIELD_SPRINT) if not sprint_str: return None m = re.findall(r',name=([^,]+),', sprint_str[0]) if not m: return None return m[0] def get_sprint_id(issue): sprint_str = get_raw_field(issue, FIELD_SPRINT) if not sprint_str: return None m = re.findall(r',sequence=([0-9]+),', sprint_str[0]) if not m: return None return int(m[0]) def get_assignee(issue): try: return issue.fields.assignee.displayName except Exception: try: return issue.raw['fields']['assignee']['displayName'] except Exception: return "Unassigned" def format_key_for_print(key, isMarkdown): if not isMarkdown: return key return f"[{key}](https://issues.redhat.com/browse/{key})" def get_data_for_print(issues, issues_count=None, print_fields=None): if not print_fields: print_fields = DEFAULT_PRINT_FIELDS headers = PERMENANT_PRINT_FIELDS + print_fields if issues_count: headers.append('count') table = [] for i in issues: row = {} if 'key' in headers: row['key'] = i.key if 'summary' in headers: row['summary'] = i.fields.summary if 'component' in headers: row['component'] = [c.name for c in i.fields.components] if 'priority' in headers: try: row['priority'] = i.fields.priority.name except Exception: row['priority'] = i.fields.priority if 'status' in headers: row['status'] = str(i.fields.status) if 'fixVersion' in headers: row['fixVersion'] = "" if len(i.fields.fixVersions) == 0 else i.fields.fixVersions[0].name if 'assignee' in headers: assignee = get_assignee(i) row['assignee'] = assignee if 'sprint' in headers: sid = get_sprint_id(i) if sid: row['sprint'] = "({}) {}".format(sid, get_sprint_name(i)) else: row['sprint'] = "" if issues_count: row['count'] = issues_count[i.key] table.append(row) return headers, table def print_report_csv(issues, issues_count=None, print_fields=None): headers, data = get_data_for_print(issues, issues_count=issues_count, print_fields=print_fields) output = io.StringIO() csvout = csv.DictWriter(output, delimiter='|', fieldnames=headers) csvout.writeheader() for row in data: csvout.writerow(row) return output.getvalue() def print_report_json(issues, issues_count=None, print_fields=None): _, data = get_data_for_print(issues, issues_count=issues_count, print_fields=print_fields) return json.dumps(data) def print_report_table(issues, isMarkdown=False, issues_count=None, print_fields=None): _, data = get_data_for_print(issues, issues_count=issues_count, print_fields=print_fields) fmt = "github" if isMarkdown else "psql" return tabulate(data, headers="keys", tablefmt=fmt) def print_raw(issues): for i in issues: pprint.pprint(i.raw) class JiraTool(): def __init__(self, j, maxResults=MAX_RESULTS): self._jira = j self._maxResults = maxResults self._admin_in_projects = {} def jira(self): return self._jira def is_admin_in_project(self, project): try: return self._admin_in_projects[project] except Exception: pass is_admin = False try: is_admin = self._jira.my_permissions(project)['permissions']['PROJECT_ADMIN']['havePermission'] except Exception: log_exception("Cannot get permissions for project {}".format(project)) self._admin_in_projects[project] = is_admin return is_admin def link_tickets(self, ticket, to_ticket): try: logger.info("linking %s to %s", to_ticket.key, ticket.key) res = self._jira.create_issue_link("relates to", ticket, to_ticket) res.raise_for_status() except Exception: logger.exceptio("Error linking to %s", to_ticket.key) def update_issue_fields(self, issue, fields_dict): if isDryRun: print("Updating issue {} with fields: {}".format(issue.key, fields_dict)) else: issue.update(fields=fields_dict, notify=self.is_admin_in_project(issue.fields.project.key)) def add_assignee_as_contributor(self, ticket): try: assignee = ticket.fields.assignee if not assignee: logger.debug("Ticket %s is not assigned", ticket.key) return contributors = get_raw_field(ticket, FIELD_CONTRIBUTORS) if not contributors: contributors = [] contributor_names = [u.name for u in contributors] if assignee.name in contributor_names: logger.debug("%s is already contributor of %s", assignee.name, ticket.key) return contributor_names.append(assignee.name) logger.info("Adding %s as contributor to %s", assignee.name, ticket.key) self.update_issue_fields(ticket, {FIELD_CONTRIBUTORS: [{'name': u} for u in contributor_names]}) except Exception: logger.exception("Error adding contributor to %s", ticket.key) def add_watchers(self, ticket, watchers): try: for watcher in watchers: logger.info("Adding %s as watcher to %s", watcher, ticket.key) self._jira.add_watcher(ticket.key, watcher) except Exception: logger.exception("Error adding watcher to %s", ticket.key) def remove_watchers(self, ticket, watchers): try: for watcher in watchers: logger.info("removing %s as watcher from %s", watcher, ticket.key) self._jira.remove_watcher(ticket.key, watcher) except Exception: logger.exception("Error removing watcher to %s", ticket.key) @staticmethod def get_team_component(issue): for c in issue.fields.components: if c.name.startswith(TEAM_COMPONENT_PREFIX): return c return None @staticmethod # Returns True if one of the components provided is assigend to the issue def get_existing_components(issue, components): existing = [] for c in issue.fields.components: for rc in components: if rc == c.name: existing.append(rc) return existing @staticmethod def get_project_labels(issue): labels = [] for label in issue.fields.labels: if label in PROJECT_LABELS: labels.append(label) return labels # There can only be one team component for an issue, so adding # a team component, will replace the previous team component def add_component(self, issue, component): is_team_component = False if component.startswith(TEAM_COMPONENT_PREFIX): is_team_component = True names = [] for c in issue.fields.components: if c.name == component: logger.debug("%s, is already in %s", component, issue.key) return if is_team_component and c.name.startswith(TEAM_COMPONENT_PREFIX): logger.info("Removing team component %s from %s", c.name, issue.key) else: names.append({'name': c.name}) names.append({'name': component}) logger.info("add_component: updating %s with components: %s", issue.key, names) self.update_issue_fields(issue, {"components": names}) def remove_component(self, issue, component): was_found = False names = [] for c in issue.fields.components: if c.name == component: logger.info("removing %s from %s", component, issue.key) was_found = True else: names.append({'name': c.name}) if not was_found: logger.debug("remove_component: component %s not found in %s", component, issue.key) else: logger.info("remove_component: updating %s with components: %s", issue.key, names) self.update_issue_fields(issue, {"components": names}) def add_labels(self, issue, labels): new_labels = labels.copy() for label in issue.fields.labels: if label in labels: logger.debug("%s, is already in %s", label, issue.key) else: new_labels.append(label) if new_labels != issue.fields.labels: logger.info("add_labels: updating %s with labels: %s", issue.key, new_labels) self.update_issue_fields(issue, {"labels": new_labels}) def remove_labels(self, issue, labels): was_found = False new_labels = [] for label in issue.fields.labels: if label in labels: logger.info("removing %s from %s", label, issue.key) was_found = True else: new_labels.append(label) if not was_found: logger.debug("remove_labels: labels %s not found in %s", labels, issue.key) else: logger.info("remove_labels: updating %s with labels: %s", issue.key, new_labels) self.update_issue_fields(issue, {"labels": new_labels}) def remove_comment(self, issue, identifying_string): was_found = False comments = self._jira.comments(issue.key) for comment in comments: if identifying_string in comment.body: was_found = True comment.delete() logger.info("remove_comment: removing comment '%s' from %s", identifying_string, issue.key) print("Removing comment: {}".format(comment.body)) if not was_found: logger.debug("remove_comment: comment '%s' not found in %s", identifying_string, issue.key) def get_selected_linked_issues(self, issues): linked_issue_keys = [] linked_issues = [] for i in issues: for label in i.fields.issuelinks: linked_issue_keys.append(self.extract_linked_issue(label).key) issue_keys_count = Counter(linked_issue_keys) if linked_issue_keys: linked_issues = self._jira.search_issues("project != AITRIAGE AND issue in (%s)" % (",".join(set(linked_issue_keys))), maxResults=self._maxResults) # remove triaging tickets from the list filtered_linked_issues = [] for i in linked_issues: if "Assisted-installer Triage" not in [c.name for c in i.fields.components]: filtered_linked_issues.append(i) return filtered_linked_issues, issue_keys_count def get_selected_issues(self, issues, isEpicTasks=False, onlyMgmtIssues=False): if not isEpicTasks: return issues extra_filter = "" if onlyMgmtIssues: extra_filter = ' and project = MGMT' return self._jira.search_issues("\"Epic Link\" in (%s) %s" % (",".join([i.key for i in issues]), extra_filter), maxResults=self._maxResults) @staticmethod def extract_linked_issue(issue_link): try: return issue_link.outwardIssue except Exception: return issue_link.inwardIssue def remove_links(self, ticket, to_remove): for link in ticket.fields.issuelinks: key = self.extract_linked_issue(link).key if key == to_remove.key: try: logger.info("removing link %s", key) link.delete() except Exception: log_exception("Error removing link {}".format(key)) def get_issues_in_epic(self, key): issues = self._jira.search_issues("\"Epic Link\" in (%s)" % key, maxResults=self._maxResults) if len(issues) == 0: epic = self._jira.issue(key) issues = [self._jira.issue(s.key) for s in epic.fields.subtasks] return issues class buildEpicFilterAction(argparse.Action): def __init__(self, option_strings, dest, nargs=None, **kwargs): if nargs is not None: raise ValueError("nargs not allowed") super().__init__(option_strings, dest, nargs, **kwargs) def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, SEARCH_QUERY_EPICS + values) def filter_issue_status(issues, statuses): if not statuses: return issues filtered_issues = [] for i in issues: if i.fields.status.name in statuses: filtered_issues.append(i) return filtered_issues def epic_fixup(jtool, epic_list): for epic in epic_list: if epic.fields.issuetype.name != 'Epic': logger.debug("Issue %s is not an Epic", epic.key) continue logger.info("Fixing epic %s", epic.key) jtool.add_assignee_as_contributor(epic) team = jtool.get_team_component(epic) project_labels = jtool.get_project_labels(epic) epic_issues = jtool.get_selected_issues([epic], isEpicTasks=True, onlyMgmtIssues=True) if team: for i in epic_issues: if not jtool.get_existing_components(i, NONE_EDGE_COMPONENTS): jtool.add_component(i, team.name) else: # should remove any Team Component from the epic tasks? pass if project_labels: for i in epic_issues: jtool.add_labels(i, project_labels) missing_project_labels = [label for label in PROJECT_LABELS if label not in project_labels] if missing_project_labels: for i in epic_issues: jtool.remove_labels(i, missing_project_labels) def handle_component_update(args, jiraTool, issues): if args.add_component is not None: for i in jiraTool.get_selected_issues(issues, args.epic_tasks): jiraTool.add_component(i, args.add_component) if args.remove_component is not None: for i in jiraTool.get_selected_issues(issues, args.epic_tasks): jiraTool.remove_component(i, args.remove_component) def handle_labels_update(args, jiraTool, issues): if args.add_labels is not None: for i in jiraTool.get_selected_issues(issues, args.epic_tasks): jiraTool.add_labels(i, args.add_labels) if args.remove_labels is not None: for i in jiraTool.get_selected_issues(issues, args.epic_tasks): jiraTool.remove_labels(i, args.remove_labels) def handle_remove_comment(args, jiraTool, issues): for i in jiraTool.get_selected_issues(issues, args.epic_tasks): jiraTool.remove_comment(i, args.remove_comment) def handle_watchers_update(args, jiraTool, issues): if args.add_watchers is not None: for i in jiraTool.get_selected_issues(issues, args.epic_tasks): jiraTool.add_watchers(i, args.add_watchers) if args.remove_watchers is not None: for i in jiraTool.get_selected_issues(issues, args.epic_tasks): jiraTool.remove_watchers(i, args.remove_watchers) def handle_link_update(args, jiraTool, issues): if args.link_to is not None: to_ticket = jiraTool.jira().issue(args.link_to) logger.info("Linking search result to %s", to_ticket.key) for i in jiraTool.get_selected_issues(issues, args.epic_tasks): jiraTool.link_tickets(i, to_ticket) if args.remove_link is not None: to_remove = jiraTool.jira().issue(args.remove_link) logger.info("Removing link to %s from search result to: ", to_remove) for i in jiraTool.get_selected_issues(issues, args.epic_tasks): jiraTool.remove_links(i, to_remove) def handle_fix_version_update(args, jiraTool, issues): for i in jiraTool.get_selected_issues(issues, args.epic_tasks): if len(i.fields.fixVersions) != 1 or args.fix_version != i.fields.fixVersions[0].name: if i.fields.status.name in ["Closed"]: logger.info("Not changing fixVersion of %s because it is %s", i.key, i.fields.status) continue logger.info("setting fixVersion %s to issue %s", args.fix_version, i.key) i.fields.fixVersions = [{'name': args.fix_version}] try: jiraTool.update_issue_fields(i, {'fixVersions': i.fields.fixVersions}) except Exception: log_exception("Could not set fixVersion of {}".format(i.key)) else: logger.info("issue %s is already at fixVersion %s", i.key, args.fix_version) def handle_sprint_update(args, jiraTool, issues): for i in jiraTool.get_selected_issues(issues, args.epic_tasks): sprint_value = get_sprint_id(i) if sprint_value == args.sprint: logger.debug("Issue %s is already at sprint %s", i.key, args.sprint) continue logger.info("setting sprint %s to issue %s", args.sprint, i.key) try: jiraTool.update_issue_fields(i, {FIELD_SPRINT: args.sprint}) except Exception: log_exception("Could not set sprint of {}".format(i.key)) def main(args): username, password = get_login_credentials(args.user_password) j = get_jira_client( access_token=args.jira_access_token, username=username, password=password, netrc_file=args.netrc, ) max_results = args.max_results if args.max_results == MAX_RESULTS and args.linked_issues: logger.debug("Increasing the Jira maxResults param to %s", TRIAGE_MAX_RESULTS) max_results = TRIAGE_MAX_RESULTS jiraTool = JiraTool(j, maxResults=max_results) if args.issue is not None: issues = [jiraTool.jira().issue(args.issue)] elif args.bz_issue is not None: issues = jiraTool.jira().search_issues('project = OCPBUGSM AND component = assisted-installer and summary ~ "{}"'.format(args.bz_issue)) else: issues = jiraTool.jira().search_issues(args.search_query, maxResults=args.max_results) if args.sprint: handle_sprint_update(args, jiraTool, issues) sys.exit() if args.epic_fixup: epic_fixup(jiraTool, jiraTool.get_selected_issues(issues)) sys.exit() if args.update_contributors: for i in jiraTool.get_selected_issues(issues, args.epic_tasks): jiraTool.add_assignee_as_contributor(i) sys.exit() if args.add_labels is not None or args.remove_labels is not None: handle_labels_update(args, jiraTool, issues) sys.exit() if args.remove_comment is not None: handle_remove_comment(args, jiraTool, issues) if args.add_component is not None or args.remove_component is not None: handle_component_update(args, jiraTool, issues) sys.exit() if args.add_watchers is not None or args.remove_watchers is not None: handle_watchers_update(args, jiraTool, issues) sys.exit() if args.link_to is not None or args.remove_link is not None: handle_link_update(args, jiraTool, issues) sys.exit() if args.fix_version is not None: handle_fix_version_update(args, jiraTool, issues) sys.exit() issues_count = None if args.linked_issues: issues, issues_count = jiraTool.get_selected_linked_issues(issues) else: issues = jiraTool.get_selected_issues(issues, args.epic_tasks) if args.print_raw: print_raw(issues) if args.print_report: return print_report_table(filter_issue_status(issues, args.include_status), issues_count=issues_count, print_fields=args.print_field) elif args.print_markdown_report: return print_report_table(filter_issue_status(issues, args.include_status), isMarkdown=True, issues_count=issues_count, print_fields=args.print_field) elif args.print_json: return print_report_json(filter_issue_status(issues, args.include_status), issues_count=issues_count, print_fields=args.print_field) elif args.print_csv_report: return print_report_csv(filter_issue_status(issues, args.include_status), issues_count=issues_count, print_fields=args.print_field) return "" def build_parser(): VALID_STATUS = ['QE Review', 'To Do', 'Done', 'Obsolete', 'Code Review', 'In Progress'] helpDescription = textwrap.dedent(""" Tool to help perform common operations on Jira tickets Use it to select Jirat ticket using one of the selection arguments, then perform one of the supported operations on the selected ticket. """) helpEpilog = textwrap.dedent(""" Usage examples: \tChange the fixVersion of STOR-1111 to v1.1.1: \t\tjira_cmd.py -i STOR-1111 -f v1.1.1 \tIf STOR-1111 is an Epic, change fixVersion of tickets in the Epic to v1.1.1 \t\tjira_cmd.py -i STOR-1111 -et -f v1.1.1 \tPrint all Epics for current relase \t\tjira_cmd.py -ce -p \tPrint all tickets that belong to Epics for current relase \t\tjira_cmd.py -ce -et -p """) parser = argparse.ArgumentParser(epilog=helpEpilog, description=helpDescription, formatter_class=argparse.RawDescriptionHelpFormatter) loginGroup = parser.add_argument_group(title="Jira login options") loginArgs = loginGroup.add_mutually_exclusive_group() loginArgs.add_argument("--netrc", default="~/.netrc", help="netrc file") loginArgs.add_argument("-up", "--user-password", required=False, help="Username and password in the format of user:pass") loginArgs.add_argument("--jira-access-token", default=os.environ.get("JIRA_ACCESS_TOKEN"), required=False, help="PAT (personal access token) for accessing Jira") selectorsGroup = parser.add_argument_group(title="Issues selection") selectors = selectorsGroup.add_mutually_exclusive_group(required=True) selectors.add_argument("-s", "--search-query", required=False, help="Search query to use") selectors.add_argument("-i", "--issue", required=False, help="Issue key") selectors.add_argument("-bz", "--bz-issue", required=False, help="BZ issue key") selectors.add_argument("-crepics", "--current-release-epics-filter", action=buildEpicFilterAction, dest="search_query", help="Search for Epics matching the given named filter") selectors.add_argument("-nf", "--named-filter", action=buildEpicFilterAction, dest="search_query", help="Search for Epics matching the given named filter") selectors.add_argument("-cre", "--current-release-epics", action='store_const', dest="search_query", const='filter in ("AI sprint planning current epics")', help="Search for current release epics") selectors.add_argument("-eff", "--epics-for-fixup", action='store_const', dest="search_query", const='filter = "AI epics for fixup"', help="Search for epics for fixup operation") selectors.add_argument("-tt", "--triaging-tickets", action='store_const', dest="search_query", const='project = AITRIAGE AND component = "Cloud-Triage" ORDER BY key DESC', help="Search for Assisted Installer triaging tickets") selectors.add_argument("-rtt", "--recent-triaging-tickets", action='store_const', dest="search_query", const='project = AITRIAGE AND component = "Cloud-Triage" AND created > -7d', help="Search for Assisted Installer triaging tickets") selectors.add_argument("-ce", "--current-version-epics", action='store_const', dest="search_query", const=SEARCH_QUERY_EPICS + CURRENT_VERSION_FILTER, help="Search for Epics planned for current version") selectors.add_argument("-ne", "--next-version-epics", action="store_const", dest="search_query", const=SEARCH_QUERY_EPICS + NEXT_VERSION_FILTER, help="Search for Epics planned for next version") parser.add_argument("-li", "--linked-issues", action="store_true", help="Output the issues linked to selected issues") parser.add_argument("-m", "--max-results", default=MAX_RESULTS, help="Maximum results to return for search query") parser.add_argument("-v", "--verbose", action="store_true", help="Output verbose logging") parser.add_argument("-d", "--dry-run", action="store_true", help="Do not update tickets") parser.add_argument("-et", "--epic-tasks", action="store_true", help="Operate on tickets that belong to epics in selection, " + "instead of the selected tickets themselves") parser.add_argument("-is", "--include-status", action='append', choices=VALID_STATUS, help="filter issues based on supplied statuses when printing the issues details") parser.add_argument("-pf", "--print-field", action='append', choices=VALID_PRINT_FIELDS, help="Add provided fields to the output") opsGroup = parser.add_argument_group(title="Operations to perform on selected issues") ops = opsGroup.add_mutually_exclusive_group(required=True) ops.add_argument("-p", "--print-report", action="store_true", help="Print issues details") ops.add_argument("-pr", "--print-raw", action="store_true", help="Print raw issues details") ops.add_argument("-pc", "--print-csv-report", action="store_true", help="Print issues details") ops.add_argument("-pj", "--print-json", action="store_true", help="Print issues details") ops.add_argument("-pmd", "--print-markdown-report", action="store_true", help="Print issues details") ops.add_argument("-al", "--link-to", default=None, help="Link tickets from search result to provided ticket") ops.add_argument("-rl", "--remove-link", default=None, help="Remove the provided ticket tickets in search results") ops.add_argument("-sp", "--sprint", default=None, type=int, help="Assigne the tickets in search results to the provided sprint") ops.add_argument("-aw", "--add-watchers", default=None, nargs="+", help="Add the watcher to the selected tickets") ops.add_argument("-rw", "--remove-watchers", default=None, nargs="+", help="Remove the watcher from the selected tickets") ops.add_argument("-ac", "--add-component", default=None, help="Add the component to the selected tickets") ops.add_argument("-rc", "--remove-component", default=None, help="Remove the component from the selected tickets") ops.add_argument("-ala", "--add-labels", default=None, nargs="+", help="Add the label to the selected tickets") ops.add_argument("-rla", "--remove-labels", nargs="+", default=None, help="Remove the label from the selected tickets") ops.add_argument("--remove-comment", help="Remove comments that have the provided text") ops.add_argument("-f", "--fix-version", help="Set the fixVersion of selected tickets") ops.add_argument("-uc", "--update-contributors", action="store_true", help="Add assignee to contributors") ops.add_argument("-ef", "--epic-fixup", action="store_true", help=textwrap.dedent(""" Operate on epics. Will perform some common epic related fixups such as: add assignee to the contributor field, add epic's Team component to all tasks. if epic has a project-related label, will add it to all tasks """)) return parser if __name__ == "__main__": cmdline_args = build_parser().parse_args() if cmdline_args.print_json: logging.getLogger("__main__").setLevel(logging.WARN) if cmdline_args.verbose: isVerbose = True logging.getLogger("__main__").setLevel(logging.DEBUG) if cmdline_args.dry_run: isDryRun = True print(main(cmdline_args))
py
7df8e57c2ca213ebb1e8c54768571b83ff9f7cc8
import os, json print("Content-type:text/html\r\n\r\n") print print("<title>Test CGI</title>") print("<p>Hello World!</p>") print(os.environ) for param in os.environ.keys(): #print(param) if(param=="QUERY_STRING"): print(param) for param in os.environ.keys(): #print(param) if(param=="HTTP_USER_AGENT"): print(param)
py
7df8e5b03e98819bc02cd5f6d752ee107950db4a
# -*- coding: utf-8 -*- ## ! DO NOT MANUALLY INVOKE THIS setup.py, USE CATKIN INSTEAD from distutils.core import setup from catkin_pkg.python_setup import generate_distutils_setup # fetch values from package.xml setup_args = generate_distutils_setup( packages=['voltaware_collector'], package_dir={'': 'src'}) setup(**setup_args)
py
7df8e695e58e0889e57e04b0c01a8e9fb8496e29
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.14.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1StatefulSetUpdateStrategy(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'rolling_update': 'V1RollingUpdateStatefulSetStrategy', 'type': 'str' } attribute_map = { 'rolling_update': 'rollingUpdate', 'type': 'type' } def __init__(self, rolling_update=None, type=None): """ V1StatefulSetUpdateStrategy - a model defined in Swagger """ self._rolling_update = None self._type = None self.discriminator = None if rolling_update is not None: self.rolling_update = rolling_update if type is not None: self.type = type @property def rolling_update(self): """ Gets the rolling_update of this V1StatefulSetUpdateStrategy. RollingUpdate is used to communicate parameters when Type is RollingUpdateStatefulSetStrategyType. :return: The rolling_update of this V1StatefulSetUpdateStrategy. :rtype: V1RollingUpdateStatefulSetStrategy """ return self._rolling_update @rolling_update.setter def rolling_update(self, rolling_update): """ Sets the rolling_update of this V1StatefulSetUpdateStrategy. RollingUpdate is used to communicate parameters when Type is RollingUpdateStatefulSetStrategyType. :param rolling_update: The rolling_update of this V1StatefulSetUpdateStrategy. :type: V1RollingUpdateStatefulSetStrategy """ self._rolling_update = rolling_update @property def type(self): """ Gets the type of this V1StatefulSetUpdateStrategy. Type indicates the type of the StatefulSetUpdateStrategy. Default is RollingUpdate. :return: The type of this V1StatefulSetUpdateStrategy. :rtype: str """ return self._type @type.setter def type(self, type): """ Sets the type of this V1StatefulSetUpdateStrategy. Type indicates the type of the StatefulSetUpdateStrategy. Default is RollingUpdate. :param type: The type of this V1StatefulSetUpdateStrategy. :type: str """ self._type = type def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1StatefulSetUpdateStrategy): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
py
7df8e6db7cfb19af695ee5756e7c4176dd93dc7f
from fltk import * import copy import numpy as np import math import sys if '../..' not in sys.path: sys.path.append('../..') from PyCommon.modules.Math import mmMath as mm from PyCommon.modules.Resource import ysMotionLoader as yf from PyCommon.modules.Renderer import ysRenderer as yr from PyCommon.modules.Simulator import csVpWorld as cvw from PyCommon.modules.Simulator import csVpModel as cvm # from PyCommon.modules.GUI import ysSimpleViewer as ysv from PyCommon.modules.GUI import hpSimpleViewer as hsv from PyCommon.modules.Optimization import ysAnalyticConstrainedOpt as yac from PyCommon.modules.Util import ysPythonEx as ype from PyCommon.modules.ArticulatedBody import ysReferencePoints as yrp from PyCommon.modules.ArticulatedBody import ysMomentum as ymt from PyCommon.modules.ArticulatedBody import ysControl as yct from PyCommon.modules.ArticulatedBody import hpInvKineDart as hik from MomentumProject.foot_example_segfoot_constraint import mtOptimize as mot from MomentumProject.foot_example_segfoot_constraint import mtInitialize as mit from MomentumProject.foot_example_segfoot_constraint.foot_window import FootWindow from PyCommon.modules.ArticulatedBody import hpFootIK as hfi # from scipy.spatial import Delaunay # import pydart2 as pydart # from PyCommon.modules.Simulator import csDartModel as cdm # from OpenGL.GL import * # from OpenGL.GLUT import * g_initFlag = 0 forceShowTime = 0 JsysPre = 0 JsupPreL = 0 JsupPreR = 0 JconstPre = 0 contactChangeCount = 0 contactChangeType = 0 contact = 0 maxContactChangeCount = 30 preFootCenter = [None] DART_CONTACT_ON = False SKELETON_ON = True def main(): # np.set_printoptions(precision=4, linewidth=200) np.set_printoptions(precision=5, threshold=np.inf, suppress=True, linewidth=3000) motionFile = 'wd2_tiptoe.bvh' motionFile = 'wd2_tiptoe_zygote.bvh' # motion, mcfg, wcfg, stepsPerFrame, config, frame_rate = mit.create_biped(motionFile, SEGMENT_FOOT_RAD=0.008) motion, mcfg, wcfg, stepsPerFrame, config, frame_rate = mit.create_biped(motionFile, SEGMENT_FOOT_MAG=0.01, SEGMENT_FOOT_RAD=0.008) # motion, mcfg, wcfg, stepsPerFrame, config, frame_rate = mit.create_biped() # motion, mcfg, wcfg, stepsPerFrame, config = mit.create_jump_biped() vpWorld = cvw.VpWorld(wcfg) vpWorld.SetGlobalDamping(0.999) motionModel = cvm.VpMotionModel(vpWorld, motion[0], mcfg) controlModel = cvm.VpControlModel(vpWorld, motion[0], mcfg) # controlModel_shadow_for_ik = cvm.VpControlModel(vpWorld, motion[0], mcfg) vpWorld.initialize() controlModel.initializeHybridDynamics() # controlToMotionOffset = (1.5, -0.02, 0) controlToMotionOffset = (1.5, 0., 0) controlModel.translateByOffset(controlToMotionOffset) # controlModel_shadow_for_ik.set_q(controlModel.get_q()) # controlModel_shadow_for_ik.computeJacobian(0, np.array([0., 0., 0.])) wcfg_ik = copy.deepcopy(wcfg) vpWorld_ik = cvw.VpWorld(wcfg_ik) controlModel_ik = cvm.VpControlModel(vpWorld_ik, motion[0], mcfg) vpWorld_ik.initialize() controlModel_ik.set_q(np.zeros_like(controlModel.get_q())) totalDOF = controlModel.getTotalDOF() DOFs = controlModel.getDOFs() foot_dofs = [] left_foot_dofs = [] right_foot_dofs = [] foot_seg_dofs = [] left_foot_seg_dofs = [] right_foot_seg_dofs = [] # for joint_idx in range(motion[0].skeleton.getJointNum()): for joint_idx in range(controlModel.getJointNum()): joint_name = controlModel.index2name(joint_idx) # joint_name = motion[0].skeleton.getJointName(joint_idx) if 'Foot' in joint_name: foot_dofs_temp = controlModel.getJointDOFIndexes(joint_idx) foot_dofs.extend(foot_dofs_temp) if 'Left' in joint_name: left_foot_dofs.extend(foot_dofs_temp) elif 'Right' in joint_name: right_foot_dofs.extend(foot_dofs_temp) if 'foot' in joint_name: foot_dofs_temp = controlModel.getJointDOFIndexes(joint_idx) foot_seg_dofs.extend(foot_dofs_temp) if 'Left' in joint_name: left_foot_seg_dofs.extend(foot_dofs_temp) elif 'Right' in joint_name: right_foot_seg_dofs.extend(foot_dofs_temp) # parameter Kt = config['Kt']; Dt = config['Dt'] # tracking gain Kl = config['Kl']; Dl = config['Dl'] # linear balance gain Kh = config['Kh']; Dh = config['Dh'] # angular balance gain Ks = config['Ks']; Ds = config['Ds'] # penalty force spring gain Bt = config['Bt'] Bl = config['Bl'] Bh = config['Bh'] selectedBody = motion[0].skeleton.getJointIndex(config['end']) constBody = motion[0].skeleton.getJointIndex('RightFoot') supL = motion[0].skeleton.getJointIndex('LeftFoot') supR = motion[0].skeleton.getJointIndex('RightFoot') # momentum matrix linkMasses = controlModel.getBodyMasses() totalMass = controlModel.getTotalMass() TO = ymt.make_TO(linkMasses) dTO = ymt.make_dTO(len(linkMasses)) # optimization problem = yac.LSE(totalDOF, 12) # a_sup = (0,0,0, 0,0,0) #ori # a_sup = (0,0,0, 0,0,0) #L CP_old = [mm.v3(0., 0., 0.)] # penalty method bodyIDsToCheck = list(range(vpWorld.getBodyNum())) # mus = [1.]*len(bodyIDsToCheck) mus = [.5]*len(bodyIDsToCheck) # flat data structure ddth_des_flat = ype.makeFlatList(totalDOF) dth_flat = ype.makeFlatList(totalDOF) ddth_sol = ype.makeNestedList(DOFs) # viewer rd_footCenter = [None] rd_footCenter_ref = [None] rd_footCenterL = [None] rd_footCenterR = [None] rd_CM_plane = [None] rd_CM = [None] rd_CP = [None] rd_CP_des = [None] rd_dL_des_plane = [None] rd_dH_des = [None] rd_grf_des = [None] rd_exf_des = [None] rd_exfen_des = [None] rd_root_des = [None] rd_foot_ori = [None] rd_foot_pos = [None] rd_root_ori = [None] rd_root_pos = [None] rd_CF = [None] rd_CF_pos = [None] rootPos = [None] selectedBodyId = [selectedBody] extraForce = [None] extraForcePos = [None] rightFootVectorX = [None] rightFootVectorY = [None] rightFootVectorZ = [None] rightFootPos = [None] rightVectorX = [None] rightVectorY = [None] rightVectorZ = [None] rightPos = [None] def makeEmptyBasicSkeletonTransformDict(init=None): Ts = dict() Ts['pelvis'] = init Ts['spine_ribs'] = init Ts['head'] = init Ts['thigh_R'] = init Ts['shin_R'] = init Ts['foot_heel_R'] = init Ts['foot_R'] = init Ts['heel_R'] = init Ts['outside_metatarsal_R'] = init Ts['outside_phalanges_R'] = init Ts['inside_metatarsal_R'] = init Ts['inside_phalanges_R'] = init Ts['upper_limb_R'] = init Ts['lower_limb_R'] = init Ts['thigh_L'] = init Ts['shin_L'] = init Ts['foot_heel_L'] = init Ts['foot_L'] = init Ts['heel_L'] = init Ts['outside_metatarsal_L'] = init Ts['outside_phalanges_L'] = init Ts['inside_metatarsal_L'] = init Ts['inside_phalanges_L'] = init Ts['upper_limb_L'] = init Ts['lower_limb_L'] = init return Ts # viewer = ysv.SimpleViewer() # viewer = hsv.hpSimpleViewer(rect=[0, 0, 1024, 768], viewForceWnd=False) viewer = hsv.hpSimpleViewer(rect=[0, 0, 960+300, 1+1080+55], viewForceWnd=False) # viewer.record(False) # viewer.doc.addRenderer('motion', yr.JointMotionRenderer(motion, (0,255,255), yr.LINK_BONE)) viewer.doc.addObject('motion', motion) viewer.doc.addRenderer('motionModel', yr.VpModelRenderer(motionModel, (150,150,255), yr.POLYGON_FILL)) viewer.doc.setRendererVisible('motionModel', False) viewer.doc.addRenderer('ikModel', yr.VpModelRenderer(controlModel_ik, (150,150,255), yr.POLYGON_LINE)) viewer.doc.setRendererVisible('ikModel', False) # viewer.doc.addRenderer('controlModel', cvr.VpModelRenderer(controlModel, (255,240,255), yr.POLYGON_LINE)) control_model_renderer = yr.VpModelRenderer(controlModel, (255,240,255), yr.POLYGON_FILL) viewer.doc.addRenderer('controlModel', control_model_renderer) skeleton_renderer = None if SKELETON_ON: # skeleton_renderer = yr.BasicSkeletonRenderer(makeEmptyBasicSkeletonTransformDict(np.eye(4)), offset_Y=-0.08) # skeleton_renderer = yr.BasicSkeletonRenderer(makeEmptyBasicSkeletonTransformDict(np.eye(4)), color=(230, 230, 230), offset_draw=(0.8, -0.02, 0.)) skeleton_renderer = yr.BasicSkeletonRenderer(makeEmptyBasicSkeletonTransformDict(np.eye(4)), color=(230, 230, 230), offset_draw=(0., -0.0, 0.)) viewer.doc.addRenderer('skeleton', skeleton_renderer) viewer.doc.addRenderer('rd_footCenter', yr.PointsRenderer(rd_footCenter)) viewer.doc.setRendererVisible('rd_footCenter', False) viewer.doc.addRenderer('rd_footCenter_ref', yr.PointsRenderer(rd_footCenter_ref)) viewer.doc.setRendererVisible('rd_footCenter_ref', False) viewer.doc.addRenderer('rd_CM_plane', yr.PointsRenderer(rd_CM_plane, (255,255,0))) viewer.doc.setRendererVisible('rd_CM_plane', False) viewer.doc.addRenderer('rd_CP', yr.PointsRenderer(rd_CP, (0,255,0))) viewer.doc.setRendererVisible('rd_CP', False) viewer.doc.addRenderer('rd_CP_des', yr.PointsRenderer(rd_CP_des, (255,0,255))) viewer.doc.setRendererVisible('rd_CP_des', False) viewer.doc.addRenderer('rd_dL_des_plane', yr.VectorsRenderer(rd_dL_des_plane, rd_CM, (255,255,0))) viewer.doc.setRendererVisible('rd_dL_des_plane', False) viewer.doc.addRenderer('rd_dH_des', yr.VectorsRenderer(rd_dH_des, rd_CM, (0,255,0))) viewer.doc.setRendererVisible('rd_dH_des', False) # viewer.doc.addRenderer('rd_grf_des', yr.ForcesRenderer(rd_grf_des, rd_CP_des, (0,255,0), .001)) viewer.doc.addRenderer('rd_CF', yr.VectorsRenderer(rd_CF, rd_CF_pos, (255,255,0))) viewer.doc.setRendererVisible('rd_CF', False) viewer.doc.addRenderer('rd_foot_ori', yr.OrientationsRenderer(rd_foot_ori, rd_foot_pos, (255,255,0))) viewer.doc.setRendererVisible('rd_foot_ori', False) viewer.doc.addRenderer('rd_root_ori', yr.OrientationsRenderer(rd_root_ori, rd_root_pos, (255,255,0))) viewer.doc.setRendererVisible('rd_root_ori', False) viewer.doc.addRenderer('extraForce', yr.VectorsRenderer(rd_exf_des, extraForcePos, (0,255,0))) viewer.doc.setRendererVisible('extraForce', False) viewer.doc.addRenderer('extraForceEnable', yr.VectorsRenderer(rd_exfen_des, extraForcePos, (255,0,0))) # viewer.doc.addRenderer('right_foot_oriX', yr.VectorsRenderer(rightFootVectorX, rightFootPos, (255,0,0))) # viewer.doc.addRenderer('right_foot_oriY', yr.VectorsRenderer(rightFootVectorY, rightFootPos, (0,255,0))) # viewer.doc.addRenderer('right_foot_oriZ', yr.VectorsRenderer(rightFootVectorZ, rightFootPos, (0,0,255))) # viewer.doc.addRenderer('right_oriX', yr.VectorsRenderer(rightVectorX, rightPos, (255,0,0))) # viewer.doc.addRenderer('right_oriY', yr.VectorsRenderer(rightVectorY, rightPos, (0,255,0))) # viewer.doc.addRenderer('right_oriZ', yr.VectorsRenderer(rightVectorZ, rightPos, (0,0,255))) # foot_viewer = FootWindow(viewer.x() + viewer.w() + 20, viewer.y(), 300, 400, 'foot contact modifier', controlModel) foot_viewer = None # type: FootWindow initKt = 25. # initKt = 60. initKl = 100. initKh = 100. initBl = .1 initBh = .13 # initSupKt = 17 initSupKt = 22 initFm = 50.0 initComX = 0. initComY = 0. initComZ = 0. viewer.objectInfoWnd.add1DSlider("Kt", 0., 300., 1., initKt) viewer.objectInfoWnd.add1DSlider("Kl", 0., 300., 1., initKl) viewer.objectInfoWnd.add1DSlider("Kh", 0., 300., 1., initKh) viewer.objectInfoWnd.add1DSlider("Bl", 0., 1., .001, initBl) viewer.objectInfoWnd.add1DSlider("Bh", 0., 1., .001, initBh) viewer.objectInfoWnd.add1DSlider("SupKt", 0., 300., 0.1, initSupKt) viewer.objectInfoWnd.add1DSlider("Fm", 0., 1000., 10., initFm) viewer.objectInfoWnd.add1DSlider("com X offset", -1., 1., 0.01, initComX) viewer.objectInfoWnd.add1DSlider("com Y offset", -1., 1., 0.01, initComY) viewer.objectInfoWnd.add1DSlider("com Z offset", -1., 1., 0.01, initComZ) viewer.objectInfoWnd.add1DSlider("tiptoe angle", -0.5, .5, 0.001, 0.) viewer.objectInfoWnd.add1DSlider("left tilt angle", -0.5, .5, 0.001, 0.) viewer.objectInfoWnd.add1DSlider("right tilt angle", -0.5, .5, 0.001, 0.) viewer.force_on = False def viewer_SetForceState(object): viewer.force_on = True def viewer_GetForceState(): return viewer.force_on def viewer_ResetForceState(): viewer.force_on = False viewer.objectInfoWnd.addBtn('Force on', viewer_SetForceState) viewer_ResetForceState() offset = 60 viewer.objectInfoWnd.begin() viewer.objectInfoWnd.labelForceX = Fl_Value_Input(20, 30+offset*9, 40, 20, 'X') viewer.objectInfoWnd.labelForceX.value(0) viewer.objectInfoWnd.labelForceY = Fl_Value_Input(80, 30+offset*9, 40, 20, 'Y') viewer.objectInfoWnd.labelForceY.value(0) viewer.objectInfoWnd.labelForceZ = Fl_Value_Input(140, 30+offset*9, 40, 20, 'Z') viewer.objectInfoWnd.labelForceZ.value(1) viewer.objectInfoWnd.labelForceDur = Fl_Value_Input(220, 30+offset*9, 40, 20, 'Dur') viewer.objectInfoWnd.labelForceDur.value(0.1) viewer.objectInfoWnd.end() # self.sliderFm = Fl_Hor_Nice_Slider(10, 42+offset*6, 250, 10) def getParamVal(paramname): return viewer.objectInfoWnd.getVal(paramname) def getParamVals(paramnames): return (getParamVal(name) for name in paramnames) def setParamVal(paramname, val): viewer.objectInfoWnd.setVal(paramname, val) idDic = dict() for i in range(motion[0].skeleton.getJointNum()): idDic[motion[0].skeleton.getJointName(i)] = i # extendedFootName = ['Foot_foot_0_0', 'Foot_foot_0_1', 'Foot_foot_0_0_0', 'Foot_foot_0_1_0', 'Foot_foot_1_0'] extendedFootName = ['Foot_foot_0_0', 'Foot_foot_0_0_0', 'Foot_foot_0_1_0', 'Foot_foot_1_0'] lIDdic = {'Left'+name: motion[0].skeleton.getJointIndex('Left'+name) for name in extendedFootName} rIDdic = {'Right'+name: motion[0].skeleton.getJointIndex('Right'+name) for name in extendedFootName} footIdDic = lIDdic.copy() footIdDic.update(rIDdic) lIDlist = [motion[0].skeleton.getJointIndex('Left'+name) for name in extendedFootName] rIDlist = [motion[0].skeleton.getJointIndex('Right'+name) for name in extendedFootName] footIdlist = [] footIdlist.extend(lIDlist) footIdlist.extend(rIDlist) foot_left_idx = motion[0].skeleton.getJointIndex('LeftFoot') foot_right_idx = motion[0].skeleton.getJointIndex('RightFoot') foot_left_idx_temp = motion[0].skeleton.getJointIndex('LeftFoot_foot_1_0') foot_right_idx_temp = motion[0].skeleton.getJointIndex('RightFoot_foot_1_0') # ik_solver = hik.numIkSolver(dartIkModel) # ik_solver.clear() # bodyIDsToCheck = rIDlist.copy() joint_names = [motion[0].skeleton.getJointName(i) for i in range(motion[0].skeleton.getJointNum())] def fix_dofs(_DOFs, nested_dof_values, _mcfg, _joint_names): fixed_nested_dof_values = list() fixed_nested_dof_values.append(nested_dof_values[0]) for i in range(1, len(_DOFs)): dof = _DOFs[i] if dof == 1: node = _mcfg.getNode(_joint_names[i]) axis = mm.unitZ() if node.jointAxes[0] == 'X': axis = mm.unitX() elif node.jointAxes[0] == 'Y': axis = mm.unitY() fixed_nested_dof_values.append(np.array([np.dot(nested_dof_values[i], axis)])) else: fixed_nested_dof_values.append(nested_dof_values[i]) return fixed_nested_dof_values start_frame = 100 up_vec_in_each_link = dict() for foot_id in footIdlist: up_vec_in_each_link[foot_id] = controlModel_ik.getBodyOrientationGlobal(foot_id)[1, :] controlModel_ik.set_q(controlModel.get_q()) ################################### # simulate ################################### def simulateCallback(frame): # print(frame) # print(motion[frame].getJointOrientationLocal(footIdDic['RightFoot_foot_0_1_0'])) if True: if frame == 200: if motionFile == 'wd2_tiptoe.bvh': setParamVal('tiptoe angle', 0.3) if motionFile == 'wd2_tiptoe_zygote.bvh': setParamVal('tiptoe angle', 0.3) # elif 210 < frame < 240: # if motionFile == 'wd2_tiptoe_zygote.bvh': # setParamVal('com Y offset', 0.01/30. * (frame-110)) elif frame == 400: setParamVal('com Y offset', 0.) setParamVal('tiptoe angle', 0.) elif frame == 430: foot_viewer.check_all_seg() # setParamVal('SupKt', 30.) # elif frame == 400: # setParamVal('SupKt', 17.) # hfi.footAdjust(motion[frame], idDic, SEGMENT_FOOT_MAG=.03, SEGMENT_FOOT_RAD=.015, baseHeight=0.02) if abs(getParamVal('tiptoe angle')) > 0.001: tiptoe_angle = getParamVal('tiptoe angle') motion[frame].mulJointOrientationLocal(idDic['LeftFoot_foot_0_0_0'], mm.exp(mm.unitX(), -math.pi * tiptoe_angle)) motion[frame].mulJointOrientationLocal(idDic['LeftFoot_foot_0_1_0'], mm.exp(mm.unitX(), -math.pi * tiptoe_angle)) motion[frame].mulJointOrientationLocal(idDic['RightFoot_foot_0_0_0'], mm.exp(mm.unitX(), -math.pi * tiptoe_angle)) motion[frame].mulJointOrientationLocal(idDic['RightFoot_foot_0_1_0'], mm.exp(mm.unitX(), -math.pi * tiptoe_angle)) # motion[frame].mulJointOrientationLocal(idDic['LeftFoot'], mm.exp(mm.unitX(), math.pi * tiptoe_angle * 0.95)) # motion[frame].mulJointOrientationLocal(idDic['RightFoot'], mm.exp(mm.unitX(), math.pi * tiptoe_angle * 0.95)) motion[frame].mulJointOrientationLocal(idDic['LeftFoot'], mm.exp(mm.unitX(), math.pi * tiptoe_angle)) motion[frame].mulJointOrientationLocal(idDic['RightFoot'], mm.exp(mm.unitX(), math.pi * tiptoe_angle)) if getParamVal('left tilt angle') > 0.001: left_tilt_angle = getParamVal('left tilt angle') if motion[0].skeleton.getJointIndex('LeftFoot_foot_0_1') is not None: motion[frame].mulJointOrientationLocal(idDic['LeftFoot_foot_0_1'], mm.exp(mm.unitZ(), -math.pi * left_tilt_angle)) else: motion[frame].mulJointOrientationLocal(idDic['LeftFoot_foot_0_1_0'], mm.exp(mm.unitZ(), -math.pi * left_tilt_angle)) motion[frame].mulJointOrientationLocal(idDic['LeftFoot'], mm.exp(mm.unitZ(), math.pi * left_tilt_angle)) elif getParamVal('left tilt angle') < -0.001: left_tilt_angle = getParamVal('left tilt angle') motion[frame].mulJointOrientationLocal(idDic['LeftFoot_foot_0_0'], mm.exp(mm.unitZ(), -math.pi * left_tilt_angle)) if motion[0].skeleton.getJointIndex('LeftFoot_foot_0_1') is not None: motion[frame].mulJointOrientationLocal(idDic['LeftFoot_foot_0_1'], mm.exp(mm.unitZ(), math.pi * left_tilt_angle)) else: motion[frame].mulJointOrientationLocal(idDic['LeftFoot_foot_0_1_0'], mm.exp(mm.unitZ(), math.pi * left_tilt_angle)) motion[frame].mulJointOrientationLocal(idDic['LeftFoot'], mm.exp(mm.unitZ(), math.pi * left_tilt_angle)) if getParamVal('right tilt angle') > 0.001: right_tilt_angle = getParamVal('right tilt angle') if motion[0].skeleton.getJointIndex('RightFoot_foot_0_1') is not None: motion[frame].mulJointOrientationLocal(idDic['RightFoot_foot_0_1'], mm.exp(mm.unitZ(), math.pi * right_tilt_angle)) else: motion[frame].mulJointOrientationLocal(idDic['RightFoot_foot_0_1_0'], mm.exp(mm.unitZ(), math.pi * right_tilt_angle)) motion[frame].mulJointOrientationLocal(idDic['RightFoot'], mm.exp(mm.unitZ(), -math.pi * right_tilt_angle)) elif getParamVal('right tilt angle') < -0.001: right_tilt_angle = getParamVal('right tilt angle') motion[frame].mulJointOrientationLocal(idDic['RightFoot_foot_0_0'], mm.exp(mm.unitZ(), math.pi * right_tilt_angle)) if motion[0].skeleton.getJointIndex('RightFoot_foot_0_1') is not None: motion[frame].mulJointOrientationLocal(idDic['RightFoot_foot_0_1'], mm.exp(mm.unitZ(), -math.pi * right_tilt_angle)) # else: # motion[frame].mulJointOrientationLocal(idDic['RightFoot_foot_0_1_0'], mm.exp(mm.unitZ(), -math.pi * right_tilt_angle)) motion[frame].mulJointOrientationLocal(idDic['RightFoot'], mm.exp(mm.unitZ(), -math.pi * right_tilt_angle)) motionModel.update(motion[frame]) motionModel.translateByOffset(np.array([getParamVal('com X offset'), getParamVal('com Y offset'), getParamVal('com Z offset')])) controlModel_ik.set_q(controlModel.get_q()) global g_initFlag global forceShowTime global JsysPre global JsupPreL global JsupPreR global JconstPre global preFootCenter global maxContactChangeCount global contactChangeCount global contact global contactChangeType Kt, Kl, Kh, Bl, Bh, kt_sup = getParamVals(['Kt', 'Kl', 'Kh', 'Bl', 'Bh', 'SupKt']) Dt = 2*(Kt**.5) Dl = 2*(Kl**.5) Dh = 2*(Kh**.5) dt_sup = 2*(kt_sup**.5) # tracking th_r = motion.getDOFPositions(frame) th = controlModel.getDOFPositions() dth_r = motion.getDOFVelocities(frame) dth = controlModel.getDOFVelocities() ddth_r = motion.getDOFAccelerations(frame) ddth_des = yct.getDesiredDOFAccelerations(th_r, th, dth_r, dth, ddth_r, Kt, Dt) # ype.flatten(fix_dofs(DOFs, ddth_des, mcfg, joint_names), ddth_des_flat) # ype.flatten(fix_dofs(DOFs, dth, mcfg, joint_names), dth_flat) ype.flatten(ddth_des, ddth_des_flat) ype.flatten(dth, dth_flat) ################################################# # jacobian ################################################# contact_des_ids = list() # desired contact segments if foot_viewer.check_om_l.value(): contact_des_ids.append(motion[0].skeleton.getJointIndex('LeftFoot_foot_0_0')) if foot_viewer.check_op_l.value(): contact_des_ids.append(motion[0].skeleton.getJointIndex('LeftFoot_foot_0_0_0')) if foot_viewer.check_im_l is not None and foot_viewer.check_im_l.value(): contact_des_ids.append(motion[0].skeleton.getJointIndex('LeftFoot_foot_0_1')) if foot_viewer.check_ip_l.value(): contact_des_ids.append(motion[0].skeleton.getJointIndex('LeftFoot_foot_0_1_0')) if foot_viewer.check_h_l.value(): contact_des_ids.append(motion[0].skeleton.getJointIndex('LeftFoot_foot_1_0')) if foot_viewer.check_om_r.value(): contact_des_ids.append(motion[0].skeleton.getJointIndex('RightFoot_foot_0_0')) if foot_viewer.check_op_r.value(): contact_des_ids.append(motion[0].skeleton.getJointIndex('RightFoot_foot_0_0_0')) if foot_viewer.check_im_r is not None and foot_viewer.check_im_r.value(): contact_des_ids.append(motion[0].skeleton.getJointIndex('RightFoot_foot_0_1')) if foot_viewer.check_ip_r.value(): contact_des_ids.append(motion[0].skeleton.getJointIndex('RightFoot_foot_0_1_0')) if foot_viewer.check_h_r.value(): contact_des_ids.append(motion[0].skeleton.getJointIndex('RightFoot_foot_1_0')) contact_ids = list() # temp idx for balancing contact_ids.extend(contact_des_ids) contact_joint_ori = list(map(controlModel.getJointOrientationGlobal, contact_ids)) contact_joint_pos = list(map(controlModel.getJointPositionGlobal, contact_ids)) contact_body_ori = list(map(controlModel.getBodyOrientationGlobal, contact_ids)) contact_body_pos = list(map(controlModel.getBodyPositionGlobal, contact_ids)) contact_body_vel = list(map(controlModel.getBodyVelocityGlobal, contact_ids)) contact_body_angvel = list(map(controlModel.getBodyAngVelocityGlobal, contact_ids)) ref_joint_ori = list(map(motion[frame].getJointOrientationGlobal, contact_ids)) ref_joint_pos = list(map(motion[frame].getJointPositionGlobal, contact_ids)) ref_joint_vel = [motion.getJointVelocityGlobal(joint_idx, frame) for joint_idx in contact_ids] ref_joint_angvel = [motion.getJointAngVelocityGlobal(joint_idx, frame) for joint_idx in contact_ids] ref_body_ori = list(map(motionModel.getBodyOrientationGlobal, contact_ids)) ref_body_pos = list(map(motionModel.getBodyPositionGlobal, contact_ids)) # ref_body_vel = list(map(controlModel.getBodyVelocityGlobal, contact_ids)) ref_body_angvel = [motion.getJointAngVelocityGlobal(joint_idx, frame) for joint_idx in contact_ids] ref_body_vel = [ref_joint_vel[i] + np.cross(ref_joint_angvel[i], ref_body_pos[i] - ref_joint_pos[i]) for i in range(len(ref_joint_vel))] is_contact = [1] * len(contact_ids) contact_right = len(set(contact_des_ids).intersection(rIDlist)) > 0 contact_left = len(set(contact_des_ids).intersection(lIDlist)) > 0 contMotionOffset = th[0][0] - th_r[0][0] linkPositions = controlModel.getBodyPositionsGlobal() linkVelocities = controlModel.getBodyVelocitiesGlobal() linkAngVelocities = controlModel.getBodyAngVelocitiesGlobal() linkInertias = controlModel.getBodyInertiasGlobal() CM = yrp.getCM(linkPositions, linkMasses, totalMass) dCM = yrp.getCM(linkVelocities, linkMasses, totalMass) CM_plane = copy.copy(CM) CM_plane[1] = 0. dCM_plane = copy.copy(dCM) dCM_plane[1] = 0. P = ymt.getPureInertiaMatrix(TO, linkMasses, linkPositions, CM, linkInertias) dP = ymt.getPureInertiaMatrixDerivative(dTO, linkMasses, linkVelocities, dCM, linkAngVelocities, linkInertias) # calculate jacobian Jsys, dJsys = controlModel.computeCom_J_dJdq() J_contacts = [] # type: list[np.ndarray] dJ_contacts = [] # type: list[np.ndarray] for contact_id in contact_ids: J_contacts.append(Jsys[6*contact_id:6*contact_id + 6, :]) dJ_contacts.append(dJsys[6*contact_id:6*contact_id + 6]) # calculate footCenter footCenter = sum(contact_body_pos) / len(contact_body_pos) if len(contact_body_pos) > 0 \ else .5 * (controlModel.getBodyPositionGlobal(supL) + controlModel.getBodyPositionGlobal(supR)) footCenter[1] = 0. # if len(contact_body_pos) > 2: # hull = ConvexHull(contact_body_pos) footCenter_ref = sum(ref_body_pos) / len(ref_body_pos) if len(ref_body_pos) > 0 \ else .5 * (motionModel.getBodyPositionGlobal(supL) + motionModel.getBodyPositionGlobal(supR)) footCenter_ref = footCenter_ref + contMotionOffset # if len(ref_body_pos) > 2: # hull = ConvexHull(ref_body_pos) footCenter_ref[1] = 0. # footCenter[0] = footCenter[0] + getParamVal('com X offset') # footCenter[1] = footCenter[0] + getParamVal('com Y offset') # footCenter[2] = footCenter[2] + getParamVal('com Z offset') # initialization if g_initFlag == 0: preFootCenter[0] = footCenter.copy() g_initFlag = 1 # if contactChangeCount == 0 and np.linalg.norm(footCenter - preFootCenter[0]) > 0.01: # contactChangeCount += 30 if contactChangeCount > 0: # change footcenter gradually footCenter = preFootCenter[0] + (maxContactChangeCount - contactChangeCount)*(footCenter-preFootCenter[0])/maxContactChangeCount else: preFootCenter[0] = footCenter.copy() # linear momentum # TODO: # We should consider dCM_ref, shouldn't we? # add getBodyPositionGlobal and getBodyPositionsGlobal in csVpModel! # to do that, set joint velocities to vpModel CM_ref_plane = footCenter # CM_ref_plane = footCenter_ref CM_ref = footCenter + np.array([getParamVal('com X offset'), motionModel.getCOM()[1] + getParamVal('com Y offset'), getParamVal('com Z offset')]) dL_des_plane = Kl * totalMass * (CM_ref - CM) - Dl * totalMass * dCM # dL_des_plane = Kl * totalMass * (CM_ref_plane - CM_plane) - Dl * totalMass * dCM_plane # dL_des_plane[1] = 0. # print('dCM_plane : ', np.linalg.norm(dCM_plane)) # angular momentum CP_ref = footCenter # CP_ref = footCenter_ref bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(bodyIDsToCheck, mus, Ks, Ds) CP = yrp.getCP(contactPositions, contactForces) if CP_old[0] is None or CP is None: dCP = None else: dCP = (CP - CP_old[0])/(1/30.) CP_old[0] = CP if CP is not None and dCP is not None: ddCP_des = Kh*(CP_ref - CP) - Dh * dCP dCP_des = dCP + ddCP_des * (1/30.) CP_des = CP + dCP_des * (1/30.) # CP_des = footCenter CP_des = CP + dCP*(1/30.) + .5*ddCP_des*((1/30.)**2) dH_des = np.cross((CP_des - CM), (dL_des_plane + totalMass * mm.s2v(wcfg.gravity))) if contactChangeCount > 0: # and contactChangeType == 'DtoS': dH_des *= (maxContactChangeCount - contactChangeCount)/maxContactChangeCount else: dH_des = None # convex hull contact_pos_2d = np.asarray([np.array([contactPosition[0], contactPosition[2]]) for contactPosition in contactPositions]) p = np.array([CM_plane[0], CM_plane[2]]) # hull = None # type: Delaunay # if contact_pos_2d.shape[0] > 0: # hull = Delaunay(contact_pos_2d) # print(hull.find_simplex(p) >= 0) # set up equality constraint # TODO: # logSO3 is just q'', not acceleration. # To make a_oris acceleration, q'' -> a will be needed # body_ddqs = list(map(mm.logSO3, [mm.getSO3FromVectors(np.dot(body_ori, mm.unitY()), mm.unitY()) for body_ori in contact_body_ori])) # body_ddqs = list(map(mm.logSO3, [np.dot(contact_body_ori[i].T, np.dot(ref_body_ori[i], mm.getSO3FromVectors(np.dot(ref_body_ori[i], mm.unitY()), mm.unitY()))) for i in range(len(contact_body_ori))])) body_ddqs = list(map(mm.logSO3, [np.dot(contact_body_ori[i].T, np.dot(ref_body_ori[i], mm.getSO3FromVectors(np.dot(ref_body_ori[i], up_vec_in_each_link[contact_ids[i]]), mm.unitY()))) for i in range(len(contact_body_ori))])) body_qs = list(map(mm.logSO3, contact_body_ori)) body_angs = [np.dot(contact_body_ori[i], contact_body_angvel[i]) for i in range(len(contact_body_ori))] body_dqs = [mm.vel2qd(body_angs[i], body_qs[i]) for i in range(len(body_angs))] a_oris = [np.dot(contact_body_ori[i], mm.qdd2accel(body_ddqs[i], body_dqs[i], body_qs[i])) for i in range(len(contact_body_ori))] a_oris = list(map(mm.logSO3, [np.dot(np.dot(ref_body_ori[i], mm.getSO3FromVectors(np.dot(ref_body_ori[i], up_vec_in_each_link[contact_ids[i]]), mm.unitY())), contact_body_ori[i].T) for i in range(len(contact_body_ori))])) # body_ddq = body_ddqs[0] # body_ori = contact_body_ori[0] # body_ang = np.dot(body_ori.T, contact_body_angvel[0]) # # body_q = mm.logSO3(body_ori) # body_dq = mm.vel2qd(body_ang, body_q) # a_ori = np.dot(body_ori, mm.qdd2accel(body_ddq, body_dq, body_q)) KT_SUP = np.diag([kt_sup/5., kt_sup, kt_sup/5.]) # a_oris = list(map(mm.logSO3, [mm.getSO3FromVectors(np.dot(body_ori, mm.unitY()), mm.unitY()) for body_ori in contact_body_ori])) # a_sups = [np.append(kt_sup*(ref_body_pos[i] - contact_body_pos[i] + contMotionOffset) + dt_sup*(ref_body_vel[i] - contact_body_vel[i]), # kt_sup*a_oris[i]+dt_sup*(ref_body_angvel[i]-contact_body_angvel[i])) for i in range(len(a_oris))] # a_sups = [np.append(kt_sup*(ref_body_pos[i] - contact_body_pos[i] + contMotionOffset) - dt_sup * contact_body_vel[i], # kt_sup*a_oris[i] - dt_sup * contact_body_angvel[i]) for i in range(len(a_oris))] a_sups = [np.append(np.dot(KT_SUP, (ref_body_pos[i] - contact_body_pos[i] + contMotionOffset)) - dt_sup * contact_body_vel[i], kt_sup*a_oris[i] - dt_sup * contact_body_angvel[i]) for i in range(len(a_oris))] # momentum matrix RS = np.dot(P, Jsys) R, S = np.vsplit(RS, 2) # rs = np.dot((np.dot(dP, Jsys) + np.dot(P, dJsys)), dth_flat) rs = np.dot(dP, np.dot(Jsys, dth_flat)) + np.dot(P, dJsys) r_bias, s_bias = np.hsplit(rs, 2) ####################################################### # optimization ####################################################### # if contact == 2 and footCenterR[1] > doubleTosingleOffset/2: if contact_left and not contact_right: config['weightMap']['RightUpLeg'] = .8 config['weightMap']['RightLeg'] = .8 config['weightMap']['RightFoot'] = .8 else: config['weightMap']['RightUpLeg'] = .1 config['weightMap']['RightLeg'] = .25 config['weightMap']['RightFoot'] = .2 # if contact == 1 and footCenterL[1] > doubleTosingleOffset/2: if contact_right and not contact_left: config['weightMap']['LeftUpLeg'] = .8 config['weightMap']['LeftLeg'] = .8 config['weightMap']['LeftFoot'] = .8 else: config['weightMap']['LeftUpLeg'] = .1 config['weightMap']['LeftLeg'] = .25 config['weightMap']['LeftFoot'] = .2 w = mot.getTrackingWeight(DOFs, motion[0].skeleton, config['weightMap']) mot.addTrackingTerms(problem, totalDOF, Bt, w, ddth_des_flat) if dH_des is not None: mot.addLinearTerms(problem, totalDOF, Bl, dL_des_plane, R, r_bias) mot.addAngularTerms(problem, totalDOF, Bh, dH_des, S, s_bias) if True: for c_idx in range(len(contact_ids)): mot.addConstraint2(problem, totalDOF, J_contacts[c_idx], dJ_contacts[c_idx], dth_flat, a_sups[c_idx]) if contactChangeCount > 0: contactChangeCount = contactChangeCount - 1 if contactChangeCount == 0: maxContactChangeCount = 30 contactChangeType = 0 r = problem.solve() problem.clear() ddth_sol_flat = np.asarray(r['x']) # ddth_sol_flat[foot_seg_dofs] = np.array(ddth_des_flat)[foot_seg_dofs] ype.nested(ddth_sol_flat, ddth_sol) rootPos[0] = controlModel.getBodyPositionGlobal(selectedBody) localPos = [[0, 0, 0]] for i in range(stepsPerFrame): # apply penalty force bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(bodyIDsToCheck, mus, Ks, Ds) # bodyIDs, contactPositions, contactPositionLocals, contactForces, contactVelocities = vpWorld.calcManyPenaltyForce(0, bodyIDsToCheck, mus, Ks, Ds) vpWorld.applyPenaltyForce(bodyIDs, contactPositionLocals, contactForces) controlModel.setDOFAccelerations(ddth_sol) # controlModel.setDOFAccelerations(ddth_des) # controlModel.set_ddq(ddth_sol_flat) # controlModel.set_ddq(ddth_des_flat) controlModel.solveHybridDynamics() if forceShowTime > viewer.objectInfoWnd.labelForceDur.value(): forceShowTime = 0 viewer_ResetForceState() forceforce = np.array([viewer.objectInfoWnd.labelForceX.value(), viewer.objectInfoWnd.labelForceY.value(), viewer.objectInfoWnd.labelForceZ.value()]) extraForce[0] = getParamVal('Fm') * mm.normalize2(forceforce) if viewer_GetForceState(): forceShowTime += wcfg.timeStep vpWorld.applyPenaltyForce(selectedBodyId, localPos, extraForce) vpWorld.step() controlModel_ik.set_q(controlModel.get_q()) # rendering bodyIDs, geomIDs, positionLocalsForGeom = vpWorld.getContactInfoForcePlate(bodyIDsToCheck) for foot_seg_id in footIdlist: control_model_renderer.body_colors[foot_seg_id] = (255, 240, 255) control_model_renderer.geom_colors[foot_seg_id] = [(255, 240, 255)] * controlModel.getBodyGeomNum(foot_seg_id) for i in range(len(geomIDs)): control_model_renderer.geom_colors[bodyIDs[i]][geomIDs[i]] = (255, 0, 0) # for foot_seg_id in footIdlist: # control_model_renderer.body_colors[foot_seg_id] = (255, 240, 255) # # for contact_id in contact_ids: # control_model_renderer.body_colors[contact_id] = (255, 0, 0) rd_footCenter[0] = footCenter rd_footCenter_ref[0] = footCenter_ref rd_CM[0] = CM rd_CM_plane[0] = CM.copy() rd_CM_plane[0][1] = 0. if CP is not None and dCP is not None: rd_CP[0] = CP rd_CP_des[0] = CP_des rd_dL_des_plane[0] = [dL_des_plane[0]/100, dL_des_plane[1]/100, dL_des_plane[2]/100] rd_dH_des[0] = dH_des rd_grf_des[0] = dL_des_plane - totalMass * mm.s2v(wcfg.gravity) del rd_foot_ori[:] del rd_foot_pos[:] # for seg_foot_id in footIdlist: # rd_foot_ori.append(controlModel.getJointOrientationGlobal(seg_foot_id)) # rd_foot_pos.append(controlModel.getJointPositionGlobal(seg_foot_id)) rd_foot_ori.append(controlModel.getJointOrientationGlobal(supL)) rd_foot_ori.append(controlModel.getJointOrientationGlobal(supR)) rd_foot_pos.append(controlModel.getJointPositionGlobal(supL)) rd_foot_pos.append(controlModel.getJointPositionGlobal(supR)) rd_root_des[0] = rootPos[0] rd_root_ori[0] = controlModel.getBodyOrientationGlobal(0) rd_root_pos[0] = controlModel.getBodyPositionGlobal(0) del rd_CF[:] del rd_CF_pos[:] for i in range(len(contactPositions)): rd_CF.append(contactForces[i]/400) rd_CF_pos.append(contactPositions[i].copy()) if viewer_GetForceState(): rd_exfen_des[0] = [extraForce[0][0]/100, extraForce[0][1]/100, extraForce[0][2]/100] rd_exf_des[0] = [0, 0, 0] else: rd_exf_des[0] = [extraForce[0][0]/100, extraForce[0][1]/100, extraForce[0][2]/100] rd_exfen_des[0] = [0, 0, 0] extraForcePos[0] = controlModel.getBodyPositionGlobal(selectedBody) # render contact_ids # render skeleton if SKELETON_ON: Ts = dict() Ts['pelvis'] = controlModel.getJointTransform(idDic['Hips']) Ts['thigh_R'] = controlModel.getJointTransform(idDic['RightUpLeg']) Ts['shin_R'] = controlModel.getJointTransform(idDic['RightLeg']) Ts['foot_R'] = controlModel.getJointTransform(idDic['RightFoot']) Ts['foot_heel_R'] = controlModel.getJointTransform(idDic['RightFoot']) Ts['heel_R'] = np.eye(4) Ts['outside_metatarsal_R'] = controlModel.getJointTransform(idDic['RightFoot_foot_0_0']) Ts['outside_phalanges_R'] = controlModel.getJointTransform(idDic['RightFoot_foot_0_0_0']) # Ts['inside_metatarsal_R'] = controlModel.getJointTransform(idDic['RightFoot_foot_0_1']) Ts['inside_metatarsal_R'] = np.eye(4) Ts['inside_phalanges_R'] = controlModel.getJointTransform(idDic['RightFoot_foot_0_1_0']) Ts['spine_ribs'] = controlModel.getJointTransform(idDic['Spine']) Ts['head'] = controlModel.getJointTransform(idDic['Spine1']) Ts['upper_limb_R'] = controlModel.getJointTransform(idDic['RightArm']) Ts['lower_limb_R'] = controlModel.getJointTransform(idDic['RightForeArm']) Ts['thigh_L'] = controlModel.getJointTransform(idDic['LeftUpLeg']) Ts['shin_L'] = controlModel.getJointTransform(idDic['LeftLeg']) Ts['foot_L'] = controlModel.getJointTransform(idDic['LeftFoot']) Ts['foot_heel_L'] = controlModel.getJointTransform(idDic['LeftFoot']) Ts['heel_L'] = np.eye(4) Ts['outside_metatarsal_L'] = controlModel.getJointTransform(idDic['LeftFoot_foot_0_0']) Ts['outside_phalanges_L'] = controlModel.getJointTransform(idDic['LeftFoot_foot_0_0_0']) # Ts['inside_metatarsal_L'] = controlModel.getJointTransform(idDic['LeftFoot_foot_0_1']) Ts['inside_metatarsal_L'] = np.eye(4) Ts['inside_phalanges_L'] = controlModel.getJointTransform(idDic['LeftFoot_foot_0_1_0']) Ts['upper_limb_L'] = controlModel.getJointTransform(idDic['LeftArm']) Ts['lower_limb_L'] = controlModel.getJointTransform(idDic['LeftForeArm']) skeleton_renderer.appendFrameState(Ts) def postFrameCallback_Always(frame): if foot_viewer is not None: foot_viewer.foot_pressure_gl_window.refresh_foot_contact_info(frame, vpWorld, bodyIDsToCheck, mus, Ks, Ds) foot_viewer.foot_pressure_gl_window.goToFrame(frame) viewer.setPostFrameCallback_Always(postFrameCallback_Always) viewer.setSimulateCallback(simulateCallback) viewer.startTimer(1/30.) # viewer.play() viewer.show() foot_viewer = FootWindow(viewer.x() + viewer.w() + 20, viewer.y(), 300, 500, 'foot contact modifier', controlModel) foot_viewer.show() foot_viewer.check_op_l.value(True) foot_viewer.check_ip_l.value(True) foot_viewer.check_op_r.value(True) foot_viewer.check_ip_r.value(True) viewer.motionViewWnd.goToFrame(0) Fl.run() main()
py
7df8e7a47ca3845a8d3dd48f1eafc72dbc103575
from typing import Tuple import torch import torch.nn as nn import numpy as np import torch.nn.functional as F class Dot(nn.Module): """Learn from """ def __init__(self): super().__init__() def forward(self, left: torch.Tensor, right: torch.Tensor, mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ compute attention weights and apply it to `right` tensor Parameters ---------- left: `torch.Tensor` of shape (B, D) right: `torch.Tensor` of shape (B, L, D) mask: `torch.Tensor` of shape (B, L), binary value, 0 is for pad Returns ------- """ assert left.size(0) == right.size(0) and left.size(-1) == right.size(-1), "Must same dimensions" assert len(left.size()) == 2 and len(right.size()) == 3 left = left.unsqueeze(1) # (B, 1, D) tmp = torch.bmm(left, right.permute(0, 2, 1)) # (B, 1, D) * (B, D, L) => (B, 1, L) tmp = tmp.squeeze(1) doc_mask = (mask == 0) out = tmp.masked_fill(doc_mask, -np.inf) attention_weights = F.softmax(out, dim=1) # (B, L) avg = right * attention_weights.unsqueeze(-1) # (B, L, D) * (B, L, 1) => (B, L, D) assert len(avg.size()) == 3 avg = torch.sum(avg, dim = 1) # dim = 1 compute on middel dimension return avg, attention_weights class BiLinear(nn.Module): def __init__(self, dim: int): super().__init__() self.W = nn.Linear(dim, dim) def forward(self, left: torch.Tensor, right: torch.Tensor, mask: torch.Tensor) \ -> Tuple[torch.Tensor, torch.Tensor]: """ compute attention weights and apply it to `right` tensor Parameters ---------- left: `torch.Tensor` of shape (B, D) right: `torch.Tensor` of shape (B, L, D) mask: `torch.Tensor` of shape (B, L), binary value, 0 is for pad Returns ------- """ assert left.size(0) == right.size(0) and left.size(-1) == right.size(-1), "Must same dimensions" assert len(left.size()) == 2 and len(right.size()) == 3 left = self.W(left) # (B, D) left = left.unsqueeze(1) # (B, 1, D) tmp = torch.bmm(left, right.permute(0, 2, 1)) # (B, 1, D) * (B, D, L) => (B, 1, L) tmp = tmp.squeeze(1) doc_mask = (mask == 0) out = tmp.masked_fill(doc_mask, -np.inf) attention_weights = F.softmax(out, dim=1) # (B, L) avg = right * attention_weights.unsqueeze(-1) # (B, L, D) * (B, L, 1) => (B, L, D) avg = torch.sum(avg, dim = 1) # dim = 1 compute on middel dimension return avg, attention_weights class ConcatSelfAtt(nn.Module): def __init__(self, inp_dim: int, out_dim: int, num_heads: int = 1): super().__init__() self.inp_dim = inp_dim self.out_dim = out_dim self.num_heads = num_heads self.linear1 = nn.Linear(inp_dim, out_dim, bias=False) self.linear2 = nn.Linear(out_dim, num_heads, bias=False) def forward(self, left: torch.Tensor, right: torch.Tensor, mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ compute attention weights and apply it to `right` tensor Parameters ---------- left: `torch.Tensor` of shape (B, X) X is not necessarily equal to D right: `torch.Tensor` of shape (B, L, D) mask: `torch.Tensor` of shape (B, L), binary value, 0 is for pad Returns ------- """ assert left.size(0) == right.size(0), "Must same dimensions" assert len(left.size()) == 2 and len(right.size()) == 3 assert self.inp_dim == (left.size(-1) + right.size(-1)) # due to concat B, L, D = right.size() left_tmp = left.unsqueeze(1).expand(B, L, -1) # (B, 1, D) tsr = torch.cat([left_tmp, right], dim=-1) # (B, L, 2D) # start computing multi-head self-attention tmp = torch.tanh(self.linear1(tsr)) # (B, L, out_dim) linear_out = self.linear2(tmp) # (B, L, C) doc_mask = (mask == 0) # (B, L) real tokens will be zeros and pad will have non zero (this is for softmax) doc_mask = doc_mask.unsqueeze(-1).expand(B, L, self.num_heads) # (B, L, C) linear_out = linear_out.masked_fill(doc_mask, -np.inf) # I learned from Attention is all you need # we now can ensure padding tokens will not contribute to softmax attention_weights = F.softmax(linear_out, dim=1) # (B, L, C) attended = torch.bmm(right.permute(0, 2, 1), attention_weights) # (B, D, L) * (B, L, C) => (B, D, C) return attended, attention_weights class ConcatNotEqualSelfAtt(nn.Module): def __init__(self, inp_dim: int, out_dim: int, num_heads: int = 1): super().__init__() self.inp_dim = inp_dim self.out_dim = out_dim self.num_heads = num_heads self.linear1 = nn.Linear(inp_dim, out_dim, bias=False) self.linear2 = nn.Linear(out_dim, num_heads, bias=False) def forward(self, left: torch.Tensor, right: torch.Tensor, mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ compute attention weights and apply it to `right` tensor Parameters ---------- left: `torch.Tensor` of shape (B, X) X is not necessarily equal to D right: `torch.Tensor` of shape (B, L, D) mask: `torch.Tensor` of shape (B, L), binary value, 0 is for pad Returns ------- """ assert left.size(0) == right.size(0), "Must same dimensions" assert len(left.size()) == 2 and len(right.size()) == 3 assert self.inp_dim == (left.size(-1) + right.size(-1)) # due to concat B, L, D = right.size() left_tmp = left.unsqueeze(1).expand(B, L, -1) # (B, 1, X) tsr = torch.cat([left_tmp, right], dim=-1) # (B, L, 2D) # start computing multi-head self-attention tmp = torch.tanh(self.linear1(tsr)) # (B, L, out_dim) linear_out = self.linear2(tmp) # (B, L, C) doc_mask = (mask == 0) # (B, L) real tokens will be zeros and pad will have non zero (this is for softmax) doc_mask = doc_mask.unsqueeze(-1).expand(B, L, self.num_heads) # (B, L, C) linear_out = linear_out.masked_fill(doc_mask, -np.inf) # I learned from Attention is all you need # we now can ensure padding tokens will not contribute to softmax attention_weights = F.softmax(linear_out, dim=1) # (B, L, C) attended = torch.bmm(right.permute(0, 2, 1), attention_weights) # (B, D, L) * (B, L, C) => (B, D, C) return attended, attention_weights class BiLinearTanh(nn.Module): def __init__(self, left_dim: int, right_dim: int, out_dim: int): """ Implementation of equation v_s^T \tanh(W_1 * h_{ij} + W_s * x + b_s) Parameters ---------- left_dim: `int` dimension of left tensor right_dim: `int` dimesion of right tensor out_dim """ super().__init__() self.left_linear = nn.Linear(left_dim, out_dim, bias=True) self.right_linear = nn.Linear(right_dim, out_dim, bias=False) self.combine = nn.Linear(out_dim, 1, bias=False) def forward(self, left_tsr: torch.Tensor, right_tsr: torch.Tensor, mask: torch.Tensor): """ compute attention weights on left tensor based on the right tensor. Parameters ---------- left_tsr: `torch.Tensor` of shape (B, L, H) right_tsr: `torch.Tensor` of shape (B, D) mask: `torch.Tensor` of shape (B, L) 1 is for real, 0 is for pad Returns ------- """ assert len(left_tsr.size()) == 3 and len(mask.size()) == 2 left = self.left_linear(left_tsr) # (B, L, O) right = self.right_linear(right_tsr).unsqueeze(1) # (B, O) tmp = torch.tanh(left + right) # (B, L, O) linear_out = self.combine(tmp).squeeze(-1) # (B, L) it is equal to v_s^T \tanh(W_1 * h_{ij} + W_2 * a + b_s) doc_mask = (mask == 0) linear_out = linear_out.masked_fill(doc_mask, -np.inf) # we now can ensure padding tokens will not contribute to softmax attention_weights = F.softmax(linear_out, dim = -1) # (B, L) attended = left_tsr * attention_weights.unsqueeze(-1) # (B, L, H) attended = torch.sum(attended, dim = 1) # (B, H) return attended, attention_weights class MultiHeadAttentionSimple(nn.Module): def __init__(self, num_heads: int, d_model: int, d_key: int, d_value: int, # attention_type: int = AttentionType.ConcatNotEqual, init_weights: bool = False, use_layer_norm: bool = False): """ Simple multi-head attention and customizable with layer-norm Parameters ---------- num_heads: `int` the number of heads. how many aspects of the evidences you want to see d_model: `int` input embedding size d_key: `int` dimension of keys. We will set d_key = d_model d_value: `int` dimensions of key, d_value = d_model init_weights: `bool` whether we should init linear layers. use_layer_norm: `bool` whether we should use layer-norm """ super().__init__() self.num_heads = num_heads self.d_model, self.d_key, self.d_value = d_model, d_key, d_value assert d_model == d_key == d_value self.use_layer_norm = use_layer_norm self.w_qs = nn.Linear(d_model, num_heads * d_key) # gom tat ca head vo 1 matrix de nhan co de self.w_ks = nn.Linear(d_model, num_heads * d_key) self.w_vs = nn.Linear(d_model, num_heads * d_value) if init_weights: nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_key))) nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_key))) nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_value))) # if attention_type == AttentionType.ConcatNotEqual: self.attention_func = ConcatNotEqualSelfAttTransFormer(inp_dim=(d_key + d_key), out_dim=d_key) # else: # self.attention_func = ScaledDotProductAttention(temperature=np.power(d_key, 0.5)) self.fc = nn.Linear(num_heads * d_value, d_model) if init_weights: nn.init.xavier_normal_(self.fc.weight) if use_layer_norm: self.layer_norm = nn.LayerNorm(d_model) def forward(self, left: torch.Tensor, right: torch.Tensor, mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ compute attention weights and apply it to `right` tensor Parameters ---------- left: `torch.Tensor` of shape (B, X) X is not necessarily equal to D right: `torch.Tensor` of shape (B, L, D) mask: `torch.Tensor` of shape (B, L), binary value, 0 is for pad Returns ------- """ assert left.size(0) == right.size(0), "Must same dimensions" assert len(left.size()) == 2 and len(right.size()) == 3 B, L, D = right.size() assert D == self.d_model == self.d_key, "Must have same shape" len_q = 1 # transform query = self.w_qs(left).view(B, len_q, self.num_heads, self.d_key) # (B, 1, num_heads, d_key) key = self.w_ks(right).view(B, L, self.num_heads, self.d_key) # (B, L, num_heads, d_key) value = self.w_vs(right).view(B, L, self.num_heads, self.d_value) # (B, L, num_heads, d_value) # reshape q = query.permute(2, 0, 1, 3).contiguous().view(-1, len_q, self.d_key) # (num_heads * B) x 1 x dk k = key.permute(2, 0, 1, 3).contiguous().view(-1, L, self.d_key) # (num_heads * B) x L x dk v = value.permute(2, 0, 1, 3).contiguous().view(-1, L, self.d_value) # (num_heads * B) x L x dv # compute attention weights mask = (mask == 0) mask = mask.unsqueeze(1).repeat(self.num_heads, 1, 1) # (B * num_heads, 1, L) attended, attention_weights = self.attention_func(query=q, key=k, value=v, mask=mask) # concat all heads and push to MLP followed by optional layer_norm output = attended.view(self.num_heads, B, len_q, self.d_value) output = output.permute(1, 2, 0, 3).contiguous().view(B, len_q, -1) # b x lq x (n*dv) tmp = self.fc(output) if self.use_layer_norm: tmp = self.layer_norm(tmp) return tmp, attention_weights class MultiHeadAttentionOriginal(nn.Module): ''' Multi-Head Attention module copied from PyTorch Transformer ''' def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): """ Parameters ---------- n_head: `int` number of attention layers or heads d_model: `int` what the fuck is d_model? is it word embedding size? d_k d_v dropout """ super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k) # gom tat ca head vo 1 matrix de nhan co de self.w_ks = nn.Linear(d_model, n_head * d_k) self.w_vs = nn.Linear(d_model, n_head * d_v) # nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) # nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) # nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v))) # self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5)) self.attention = ScaledDotProductAttention(temperature=np.power(1, 1)) self.layer_norm = nn.LayerNorm(d_model) self.fc = nn.Linear(n_head * d_v, d_model) # nn.init.xavier_normal_(self.fc.weight) # self.dropout = nn.Dropout(dropout) def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, mask: torch.Tensor = None): """ Parameters ---------- q: `torch.Tensor` of shape (B, L, D) k: `torch.Tensor` of shape (B, R, D) v: `torch.Tensor` of shape (B, R, D) mask: `torch.Tensor` of shape (B, L, R) (very important, 1 is for Returns ------- """ d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, _ = q.size() sz_b, len_k, _ = k.size() sz_b, len_v, _ = v.size() residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x .. (quite redundant here) output, _ = self.attention(q, k, v, mask = mask) output = output.view(n_head, sz_b, len_q, d_v) output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) # b x lq x (n*dv) # output = self.dropout(self.fc(output)) output = self.fc(output) output = self.layer_norm(output + residual) return output, None class ConcatNotEqualSelfAttTransFormer(nn.Module): def __init__(self, inp_dim: int, out_dim: int): super().__init__() self.inp_dim = inp_dim self.out_dim = out_dim # self.num_heads = num_heads self.linear1 = nn.Linear(inp_dim, out_dim, bias=False) self.linear2 = nn.Linear(out_dim, 1, bias=False) def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: torch.Tensor) \ -> Tuple[torch.Tensor, torch.Tensor]: """ compute attention weights and apply it to `right` tensor Parameters ---------- query: `torch.Tensor` of shape (B, 1, X) X is not necessarily equal to D key: `torch.Tensor` of shape (B, L, D) value: `torch.Tensor` of shape (B, L, D) mask: `torch.Tensor` of shape (B, L), binary value, 0 is for pad Returns ------- """ assert query.size(0) == key.size(0), "Must same dimensions" # assert len(query.size()) == 2 and len(key.size()) == 3 assert self.inp_dim == (query.size(-1) + key.size(-1)) # due to concat B, L, D = key.size() left_tmp = query.expand(B, L, -1) # (B, 1, X) tsr = torch.cat([left_tmp, key], dim=-1) # (B, L, 2D) # start computing multi-head self-attention tmp = torch.tanh(self.linear1(tsr)) # (B, L, out_dim) linear_out = self.linear2(tmp) # (B, L, C) doc_mask = mask.squeeze(1).unsqueeze(-1) # (B, L) real tokens will be zeros and pad will have non zero (this is for softmax) # doc_mask = doc_mask.unsqueeze(-1).expand(B, L, 1) # (B, L, C) linear_out = linear_out.masked_fill(doc_mask, -np.inf) # I learned from Attention is all you need # we now can ensure padding tokens will not contribute to softmax attention_weights = F.softmax(linear_out, dim=1) # (B, L, C) attended = torch.bmm(value.permute(0, 2, 1), attention_weights) # (B, D, L) * (B, L, C) => (B, D, C) return attended, attention_weights class ScaledDotProductAttention(nn.Module): ''' Scaled Dot-Product Attention ''' def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature # self.dropout = nn.Dropout(attn_dropout) # self.softmax = nn.Softmax(dim=-1) # are you sure the dimension is correct? def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask=None): """ Parameters ---------- query: `torch.Tensor` (n_heads * B, L, d_k) key: `torch.Tensor` (n_heads * B, L, d_k) value: `torch.Tensor` (n_heads * B, L, d_k) mask (n_heads * B, L, L) (this is I guess to remove padding tokens Returns ------- """ attn = torch.bmm(query, key.transpose(1, 2)) # attn = attn / self.temperature if mask is not None: attn = attn.masked_fill(mask, -np.inf) attn = F.softmax(attn, dim = -1) # exp of -np.inf would be zero (checked) attn = attn.masked_fill(mask, 0) # reset nan # attn = self.dropout(attn) # why there is a fucking shit dropout here???? (I've never seen this before) output = torch.bmm(attn, value) return output, attn class CoDaAttention(nn.Module): def __init__(self, dim: int): super().__init__() def forward(self, *input): pass
py
7df8e8e3b0a4dbd9c5acfcbc4087b2f97e1f2bb0
# -*- coding: utf-8 -*- # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Accesses the google.ads.googleads.v6.services OperatingSystemVersionConstantService API.""" import pkg_resources import warnings from google.oauth2 import service_account import google.api_core.client_options import google.api_core.gapic_v1.client_info import google.api_core.gapic_v1.config import google.api_core.gapic_v1.method import google.api_core.gapic_v1.routing_header import google.api_core.grpc_helpers import google.api_core.path_template from google.ads.google_ads.v6.services import operating_system_version_constant_service_client_config from google.ads.google_ads.v6.services.transports import operating_system_version_constant_service_grpc_transport from google.ads.google_ads.v6.proto.services import operating_system_version_constant_service_pb2 _GAPIC_LIBRARY_VERSION = pkg_resources.get_distribution( 'google-ads', ).version class OperatingSystemVersionConstantServiceClient(object): """Service to fetch Operating System Version constants.""" SERVICE_ADDRESS = 'googleads.googleapis.com:443' """The default address of the service.""" # The name of the interface for this client. This is the key used to # find the method configuration in the client_config dictionary. _INTERFACE_NAME = 'google.ads.googleads.v6.services.OperatingSystemVersionConstantService' @classmethod def from_service_account_file(cls, filename, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: OperatingSystemVersionConstantServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename) kwargs['credentials'] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @classmethod def operating_system_version_constant_path(cls, criterion_id): """Return a fully-qualified operating_system_version_constant string.""" return google.api_core.path_template.expand( 'operatingSystemVersionConstants/{criterion_id}', criterion_id=criterion_id, ) def __init__(self, transport=None, channel=None, credentials=None, client_config=None, client_info=None, client_options=None): """Constructor. Args: transport (Union[~.OperatingSystemVersionConstantServiceGrpcTransport, Callable[[~.Credentials, type], ~.OperatingSystemVersionConstantServiceGrpcTransport]): A transport instance, responsible for actually making the API calls. The default transport uses the gRPC protocol. This argument may also be a callable which returns a transport instance. Callables will be sent the credentials as the first argument and the default transport class as the second argument. channel (grpc.Channel): DEPRECATED. A ``Channel`` instance through which to make calls. This argument is mutually exclusive with ``credentials``; providing both will raise an exception. credentials (google.auth.credentials.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. This argument is mutually exclusive with providing a transport instance to ``transport``; doing so will raise an exception. client_config (dict): DEPRECATED. A dictionary of call options for each method. If not specified, the default configuration is used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. client_options (Union[dict, google.api_core.client_options.ClientOptions]): Client options used to set user options on the client. API Endpoint should be set through client_options. """ # Raise deprecation warnings for things we want to go away. if client_config is not None: warnings.warn('The `client_config` argument is deprecated.', PendingDeprecationWarning, stacklevel=2) else: client_config = operating_system_version_constant_service_client_config.config if channel: warnings.warn('The `channel` argument is deprecated; use ' '`transport` instead.', PendingDeprecationWarning, stacklevel=2) api_endpoint = self.SERVICE_ADDRESS if client_options: if type(client_options) == dict: client_options = google.api_core.client_options.from_dict(client_options) if client_options.api_endpoint: api_endpoint = client_options.api_endpoint # Instantiate the transport. # The transport is responsible for handling serialization and # deserialization and actually sending data to the service. if transport: if callable(transport): self.transport = transport( credentials=credentials, default_class=operating_system_version_constant_service_grpc_transport.OperatingSystemVersionConstantServiceGrpcTransport, address=api_endpoint, ) else: if credentials: raise ValueError( 'Received both a transport instance and ' 'credentials; these are mutually exclusive.' ) self.transport = transport else: self.transport = operating_system_version_constant_service_grpc_transport.OperatingSystemVersionConstantServiceGrpcTransport( address=api_endpoint, channel=channel, credentials=credentials, ) if client_info is None: client_info = google.api_core.gapic_v1.client_info.ClientInfo( gapic_version=_GAPIC_LIBRARY_VERSION, ) else: client_info.gapic_version = _GAPIC_LIBRARY_VERSION self._client_info = client_info # Parse out the default settings for retry and timeout for each RPC # from the client configuration. # (Ordinarily, these are the defaults specified in the `*_config.py` # file next to this one.) self._method_configs = google.api_core.gapic_v1.config.parse_method_configs( client_config['interfaces'][self._INTERFACE_NAME], ) # Save a dictionary of cached API call functions. # These are the actual callables which invoke the proper # transport methods, wrapped with `wrap_method` to add retry, # timeout, and the like. self._inner_api_calls = {} # Service calls def get_operating_system_version_constant( self, resource_name, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None): """ Returns the requested OS version constant in full detail. Example: >>> from google.ads import googleads_v6 >>> >>> client = googleads_v6.OperatingSystemVersionConstantServiceClient() >>> >>> resource_name = client.operating_system_version_constant_path('[CRITERION_ID]') >>> >>> response = client.get_operating_system_version_constant(resource_name) Args: resource_name (str): Required. Resource name of the OS version to fetch. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will be retried using a default configuration. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.ads.googleads_v6.types.OperatingSystemVersionConstant` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if 'get_operating_system_version_constant' not in self._inner_api_calls: self._inner_api_calls['get_operating_system_version_constant'] = google.api_core.gapic_v1.method.wrap_method( self.transport.get_operating_system_version_constant, default_retry=self._method_configs['GetOperatingSystemVersionConstant'].retry, default_timeout=self._method_configs['GetOperatingSystemVersionConstant'].timeout, client_info=self._client_info, ) request = operating_system_version_constant_service_pb2.GetOperatingSystemVersionConstantRequest( resource_name=resource_name, ) if metadata is None: metadata = [] metadata = list(metadata) try: routing_header = [('resource_name', resource_name)] except AttributeError: pass else: routing_metadata = google.api_core.gapic_v1.routing_header.to_grpc_metadata(routing_header) metadata.append(routing_metadata) return self._inner_api_calls['get_operating_system_version_constant'](request, retry=retry, timeout=timeout, metadata=metadata)
py
7df8e8f631ce2fafac3ad6c603cc55f3a73e0ec5
#!/usr/bin/env python3 # Copyright (c) 2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test RPC misc output.""" import xml.etree.ElementTree as ET from test_framework.test_framework import RuvchainTestFramework from test_framework.util import ( assert_raises_rpc_error, assert_equal, assert_greater_than, assert_greater_than_or_equal, ) from test_framework.authproxy import JSONRPCException class RpcMiscTest(RuvchainTestFramework): def set_test_params(self): self.num_nodes = 1 self.supports_cli = False def run_test(self): node = self.nodes[0] self.log.info("test CHECK_NONFATAL") assert_raises_rpc_error( -1, 'Internal bug detected: \'request.params[9].get_str() != "trigger_internal_bug"\'', lambda: node.echo(arg9='trigger_internal_bug'), ) self.log.info("test getmemoryinfo") memory = node.getmemoryinfo()['locked'] assert_greater_than(memory['used'], 0) assert_greater_than(memory['free'], 0) assert_greater_than(memory['total'], 0) # assert_greater_than_or_equal() for locked in case locking pages failed at some point assert_greater_than_or_equal(memory['locked'], 0) assert_greater_than(memory['chunks_used'], 0) assert_greater_than(memory['chunks_free'], 0) assert_equal(memory['used'] + memory['free'], memory['total']) self.log.info("test mallocinfo") try: mallocinfo = node.getmemoryinfo(mode="mallocinfo") self.log.info('getmemoryinfo(mode="mallocinfo") call succeeded') tree = ET.fromstring(mallocinfo) assert_equal(tree.tag, 'malloc') except JSONRPCException: self.log.info('getmemoryinfo(mode="mallocinfo") not available') assert_raises_rpc_error(-8, 'mallocinfo is only available when compiled with glibc 2.10+', node.getmemoryinfo, mode="mallocinfo") assert_raises_rpc_error(-8, "unknown mode foobar", node.getmemoryinfo, mode="foobar") self.log.info("test logging") assert_equal(node.logging()['qt'], True) node.logging(exclude=['qt']) assert_equal(node.logging()['qt'], False) node.logging(include=['qt']) assert_equal(node.logging()['qt'], True) self.log.info("test getindexinfo") # Without any indices running the RPC returns an empty object assert_equal(node.getindexinfo(), {}) # Restart the node with indices and wait for them to sync self.restart_node(0, ["-txindex", "-blockfilterindex"]) self.wait_until(lambda: all(i["synced"] for i in node.getindexinfo().values())) # Returns a list of all running indices by default assert_equal( node.getindexinfo(), { "txindex": {"synced": True, "best_block_height": 200}, "basic block filter index": {"synced": True, "best_block_height": 200} } ) # Specifying an index by name returns only the status of that index assert_equal( node.getindexinfo("txindex"), { "txindex": {"synced": True, "best_block_height": 200}, } ) # Specifying an unknown index name returns an empty result assert_equal(node.getindexinfo("foo"), {}) if __name__ == '__main__': RpcMiscTest().main()
py
7df8e92698322c7b81fef20d7c5ba4ea52aeea8d
import datetime import math import re from django.utils.html import strip_tags def count_words(html_string): # html_string = """ # <h1>This is a title</h1> # """ word_string = strip_tags(html_string) matching_words = re.findall(r'\w+', word_string) count = len(matching_words) #joincfe.com/projects/ return count def get_read_time(html_string): count = count_words(html_string) read_time_min = math.ceil(count/200.0) #assuming 200wpm reading # read_time_sec = read_time_min * 60 # read_time = str(datetime.timedelta(seconds=read_time_sec)) # read_time = str(datetime.timedelta(minutes=read_time_min)) return int(read_time_min)
py
7df8ebfd47999defa755a04cfd67b2e3863a47a8
""" Django settings for reactify project. Generated by 'django-admin startproject' using Django 2.0.6. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'ksy0*&5)&=lxwj-7g+$zepz3#2*vt#os^nbi5o&2#k_s5s6ee@' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'corsheaders', 'rest_framework', 'posts', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'reactify.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'reactify.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'staticfiles'), ] STATIC_ROOT = os.path.join(os.path.dirname(BASE_DIR), 'static-cdn-local') CORS_URLS_REGEX = r'^/api.*' CORS_ORIGIN_ALLOW_ALL = True CORS_ORIGIN_WHITELIST = ( '*', 'your-domain.com', 'your-bucket-here.s3-us-west-2.amazonaws.com', ) REST_FRAMEWORK = { 'DEFAULT_PERMISSION_CLASSES': ( 'rest_framework.permissions.IsAuthenticatedOrReadOnly', ) }
py
7df8ec0eca393eba7b3291ef57db4fb9d8c2f3d9
''' Test SERVER_VERIFY_HOOK ''' # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os Test.Summary = ''' Test different combinations of TLS handshake hooks to ensure they are applied consistently. ''' ts = Test.MakeATSProcess("ts", select_ports=True, enable_tls=True) server = Test.MakeOriginServer("server", ssl=True) request_header = {"headers": "GET / HTTP/1.1\r\nHost: www.example.com\r\n\r\n", "timestamp": "1469733493.993", "body": ""} # desired response form the origin server response_header = {"headers": "HTTP/1.1 200 OK\r\nConnection: close\r\n\r\n", "timestamp": "1469733493.993", "body": ""} server.addResponse("sessionlog.json", request_header, response_header) ts.addSSLfile("ssl/server.pem") ts.addSSLfile("ssl/server.key") ts.Disk.records_config.update({ 'proxy.config.diags.debug.enabled': 1, 'proxy.config.diags.debug.tags': 'ssl_verify_test', 'proxy.config.ssl.server.cert.path': '{0}'.format(ts.Variables.SSLDir), 'proxy.config.ssl.server.private_key.path': '{0}'.format(ts.Variables.SSLDir), 'proxy.config.ssl.client.verify.server.policy': 'ENFORCED', 'proxy.config.ssl.client.verify.server.properties': 'NONE', 'proxy.config.url_remap.pristine_host_hdr': 1 }) ts.Disk.ssl_multicert_config.AddLine( 'dest_ip=* ssl_cert_name=server.pem ssl_key_name=server.key' ) ts.Disk.remap_config.AddLine( 'map https://foo.com:{1}/ https://127.0.0.1:{0}'.format(server.Variables.SSL_Port, ts.Variables.ssl_port) ) ts.Disk.remap_config.AddLine( 'map https://bar.com:{1}/ https://127.0.0.1:{0}'.format(server.Variables.SSL_Port, ts.Variables.ssl_port) ) ts.Disk.remap_config.AddLine( 'map https://random.com:{1}/ https://127.0.0.1:{0}'.format(server.Variables.SSL_Port, ts.Variables.ssl_port) ) ts.Disk.sni_yaml.AddLine( 'sni:') ts.Disk.sni_yaml.AddLine( '- fqdn: bar.com') ts.Disk.sni_yaml.AddLine( ' verify_server_policy: PERMISSIVE') Test.PrepareTestPlugin(os.path.join(Test.Variables.AtsTestPluginsDir, 'ssl_verify_test.so'), ts, '-count=2 -bad=random.com -bad=bar.com') tr = Test.AddTestRun("request good name") tr.Processes.Default.StartBefore(server) tr.Processes.Default.StartBefore(Test.Processes.ts) tr.StillRunningAfter = ts tr.StillRunningAfter = server tr.Processes.Default.Command = "curl --resolve \"foo.com:{0}:127.0.0.1\" -k https://foo.com:{0}".format(ts.Variables.ssl_port) tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Streams.stdout = Testers.ExcludesExpression("Could Not Connect", "Curl attempt should have failed") tr2 = Test.AddTestRun("request bad name") tr2.StillRunningAfter = ts tr2.StillRunningAfter = server tr2.Processes.Default.Command = "curl --resolve \"random.com:{0}:127.0.0.1\" -k https://random.com:{0}".format( ts.Variables.ssl_port) tr2.Processes.Default.ReturnCode = 0 tr2.Processes.Default.Streams.stdout = Testers.ContainsExpression("Could Not Connect", "Curl attempt should have failed") tr3 = Test.AddTestRun("request bad name permissive") tr3.StillRunningAfter = ts tr3.StillRunningAfter = server tr3.Processes.Default.Command = "curl --resolve \"bar.com:{0}:127.0.0.1\" -k https://bar.com:{0}".format(ts.Variables.ssl_port) tr3.Processes.Default.ReturnCode = 0 tr3.Processes.Default.Streams.stdout = Testers.ExcludesExpression("Could Not Connect", "Curl attempt should have failed") # Overriding the built in ERROR check since we expect tr2 to fail ts.Disk.diags_log.Content = Testers.ContainsExpression( "WARNING: TS_EVENT_SSL_VERIFY_SERVER plugin failed the origin certificate check for 127.0.0.1. Action=Terminate SNI=random.com", "random.com should fail") ts.Disk.diags_log.Content += Testers.ContainsExpression( "WARNING: TS_EVENT_SSL_VERIFY_SERVER plugin failed the origin certificate check for 127.0.0.1. Action=Continue SNI=bar.com", "bar.com should fail but continue") ts.Disk.diags_log.Content += Testers.ExcludesExpression("SNI=foo.com", "foo.com should not fail in any way") ts.Streams.All += Testers.ContainsExpression( "Server verify callback 0 [\da-fx]+? - event is good SNI=foo.com good HS", "verify callback happens 2 times") ts.Streams.All += Testers.ContainsExpression( "Server verify callback 1 [\da-fx]+? - event is good SNI=foo.com good HS", "verify callback happens 2 times") ts.Streams.All += Testers.ContainsExpression( "Server verify callback 0 [\da-fx]+? - event is good SNI=random.com error HS", "verify callback happens 2 times") ts.Streams.All += Testers.ContainsExpression( "Server verify callback 1 [\da-fx]+? - event is good SNI=random.com error HS", "verify callback happens 2 times") ts.Streams.All += Testers.ContainsExpression( "Server verify callback 0 [\da-fx]+? - event is good SNI=bar.com error HS", "verify callback happens 2 times") ts.Streams.All += Testers.ContainsExpression( "Server verify callback 1 [\da-fx]+? - event is good SNI=bar.com error HS", "verify callback happens 2 times") ts.Streams.All += Testers.ContainsExpression("Server verify callback SNI APIs match=true", "verify SNI names match")
py
7df8edf539aa1c0395a53e225a3f756d3c214486
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for the "ml-pipelines-sdk" package. Core TFX pipeline authoring SDK, with a minimal set of dependencies. """ PACKAGE_NAME = 'ml-pipelines-sdk'
py
7df8ef5ce013238b3e16110887a95f7a16f9c422
import pytest from pymultisig.btc_utils import (estimate_transaction_fees, parse_redeem_script) class TestEstimateTransactionFees(object): def test_returns_fees(self): assert(estimate_transaction_fees(1, 1, 15) == 5115) assert(estimate_transaction_fees(1, 2, 15) == 5625) assert(estimate_transaction_fees(1, 3, 15) == 6135) assert(estimate_transaction_fees(2, 1, 15) == 9570) assert(estimate_transaction_fees(2, 2, 15) == 10080) assert(estimate_transaction_fees(2, 3, 15) == 10590) assert(estimate_transaction_fees(3, 1, 15) == 14025) assert(estimate_transaction_fees(3, 2, 15) == 14535) assert(estimate_transaction_fees(3, 3, 15) == 15045) assert(estimate_transaction_fees(1, 3, 30) == 12270) assert(estimate_transaction_fees(3, 1, 30) == 28050) class TestParseRedeemScript(object): def test_invalid_hex_raises_error(self): with pytest.raises(ValueError): parse_redeem_script("zzzz") def test_invalid_script_raises_error(self): with pytest.raises(ValueError): parse_redeem_script("deadbeef") def test_non_2of3_multisig_raises_error(self): # 1-of-1 multisig from tx: # 7edb32d4ffd7a385b763c7a8e56b6358bcd729e747290624e18acdbe6209fc45 rs = "5141042f90074d7a5bf30c72cf3a8dfd1381bdbd30407010e878f3"\ "a11269d5f74a58788505cdca22ea6eab7cfb40dc0e07aba200424a"\ "b0d79122a653ad0c7ec9896bdf51ae" with pytest.raises(ValueError): parse_redeem_script(rs) def test_vectors(self, valid_vectors): for vector in valid_vectors: result = parse_redeem_script(vector['redeem_script']) expected = vector['parsed_redeem_script'] assert(result == expected)
py
7df8ef8b98c791a57ccdcff4d95044e2b0019a96
from flask import Flask, render_template, request, flash ,session,send_file from database import users, db_init, db import re import csv from werkzeug.utils import secure_filename from csrlc import replace_csv import os import pytesseract from io import TextIOWrapper import xlrd import openpyxl from openpyxl.utils.cell import get_column_letter import os #import urllib.urlopen from urllib.request import urlopen from json import load import json import requests #from xlrd import open_workbook import base64 app = Flask(__name__) app.secret_key="1258suy" app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///users.sqlite" app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False db_init(app) @app.route('/') def index(): return render_template('index.html') @app.route('/typein.html',methods=['GET','POST']) def typein(): #if request.method=='POST': #txt=request.form['text'] #else: return render_template('typein.html') return render_template('typein.html') @app.route('/xlsx.html') def xlsx(): return render_template('xlsx.html') @app.route('/csv.html') def csv(): return render_template('csv.html') @app.route('/text.html') def text(): return render_template('text.html') @app.route('/typein-find.html',methods=['GET','POST']) def find(): if request.method=='POST': check=request.form['find'] txt=request.form['text'] #a = users( txt, check,"") x=re.search(check, txt) #print(x.span()) #db.session.add(a) #db.session.commit() if x: flash(f"Word is found at the position {x.span()}") #print('Y') #return render_template('typein-find.html') else: flash("Word is not found") #return render_template('typein-find.html') return render_template("typein-find.html") @app.route('/typein-replace.html',methods=['GET','POST']) def replace(): if request.method=='POST': check1=request.form['find'] txt1=request.form['text'] rlc=request.form['replace'] new_string = re.sub(check1,rlc,txt1) flash(new_string) return render_template("typein-replace.html") @app.route('/typein-number.html',methods=['GET','POST']) def number(): if request.method=='POST': txt1=request.form['text'] pattern = '\d+' result = re.findall(pattern, txt1) flash(result) return render_template("typein-number.html") @app.route('/typein-https.html',methods=['GET','POST']) def https(): if request.method=='POST': txt1=request.form['text'] obj1 = re.findall('(\w+)://',txt1) flash(f'Protocol:{obj1}') obj2 = re.findall('://([\w\-\.]+)',txt1) flash(f'Host:{obj2}') return render_template("typein-https.html") @app.route('/typein-ip.html',methods=['GET','POST']) def ip(): if request.method=='POST': txt1=request.form['text'] regex = '''^(25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)\.( 25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)\.( 25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)\.( 25[0-5]|2[0-4][0-9]|[0-1]?[0-9][0-9]?)$''' if(re.search(regex, txt1)): flash("Valid Ip address") else: flash("Invalid Ip address") return render_template("typein-ip.html") @app.route('/typein-mail.html',methods=['GET','POST']) def mail(): if request.method=='POST': txt1=request.form['text'] regex = '^[a-z0-9]+[\._]?[a-z0-9]+[@]\w+[.]\w{2,3}$' if(re.search(regex,txt1)): flash("Valid Email") else: flash("Invalid Email") return render_template("typein-mail.html") @app.route('/typein-quotedword.html',methods=['GET','POST']) def quotedword(): if request.method=='POST': txt1=request.form['text'] flash(re.findall(r'"(.*?)"', txt1)) return render_template("typein-quotedword.html") @app.route('/IP_location.html',methods=['GET','POST']) def ip_location(): if request.method=='POST': while True: txt1=request.form['text'] url="http://ip-api.com/json/" response=urlopen(url+txt1) data=response.read() values=json.loads(data) flash(" IP: " + values['query']) flash(" City: " + values['city']) flash(" ISP: " + values['isp']) flash(" Country: " + values['country']) flash(" Region: " + values['region']) flash(" Time zone: " + values['timezone']) break return render_template("IP_location.html") @app.route('/mobile_location.html',methods=['GET','POST']) def mobile_location(): import phonenumbers from phonenumbers import timezone from phonenumbers import geocoder from phonenumbers import carrier if request.method=='POST': countrycode = request.form['text2'] phonenumber = request.form['text'] num = countrycode+phonenumber number = phonenumbers.parse(num) flash(geocoder.description_for_number(number,'en',region="GB")) flash(carrier.name_for_number(number, 'en')) timeZone = timezone.time_zones_for_number(number) flash(timeZone) return render_template("mobile_location.html") #for text @app.route('/text-find.html',methods=['GET','POST']) def text_find(): return render_template("text-find.html") @app.route('/text-replace.html',methods=['GET','POST']) def text_replace(): return render_template("text-replace.html") #for csv @app.route('/csv-find.html',methods=['GET','POST']) def cv_find(): import csv if request.method=='POST': ls=[] find=request.form['find'] text=request.files['actual-btn'] #filename=text.split(".") text = TextIOWrapper(text, encoding='utf-8') cv_reader1= csv.reader(text) for line in cv_reader1: for word in line: a=word.split(';') ls=ls+a for item in ls: if item in find: flash('Found') break else: flash('Not Found') return render_template("csv-find.html") @app.route('/csv-replace.html',methods=['GET','POST']) def csv_replace(): import csv text = b"" if request.method=='POST': org_wrd=request.form['Replace'] rlc_wrd=request.form['nwwrd'] txt= request.files['actual-btn'] txt = TextIOWrapper(txt, encoding='utf-8') csv_reader=csv.reader(txt) text = ''.join([str(i) for i in csv_reader]) text = text.replace('{}'.format(org_wrd),'{}'.format(rlc_wrd)) x = open("output.csv","w") x.writelines(text) x.close() '''text = bytes(text, 'utf-8')''' text = text.encode('utf-8') return render_template("csv-replace.html",op=text.decode('utf-8')) #return render_template("csv-replace.html",op=base64.b64encode(text).decode('utf-8')) @app.route('/xlsx-find.html',methods=['GET','POST']) def xlx_find(): import xlrd #from xlrd import open_workbook if request.method=='POST': find=request.form['find'] txt=request.files['actual-btn'] #filename=text.split(".") #txt = TextIOWrapper(txt, encoding='utf-8') #txt.save(os.path.join( secure_filename(txt.filename)) filename = secure_filename(txt.filename) new_path = os.path.abspath(filename) w = xlrd.open_workbook(new_path) sheet = w.sheet_by_index(0) count=0 for i in range(0,sheet.nrows): for j in range(0,sheet.ncols): if sheet.cell_value(i,j) == find: flash(f"Word Found at the position ,{i}*{j}") count=count+1 if count==0: flash("Word is not Found") return render_template("xlsx-find.html") from flask import send_file @app.route('/download/<filename>',methods=['GET']) def download(filename): return send_file(filename, as_attachment=True) @app.route('/xlsx-replace.html',methods=['GET','POST']) def xlx_replace(): filename = "" if request.method=='POST': org_wrd=request.form['Replace'] rlc_wrd=request.form['nwwrd'] txt= request.files['actual-btn'] #txt = TextIOWrapper(txt, encoding='utf-8') filename = secure_filename(txt.filename) new_path = os.path.abspath(filename) workbook = openpyxl.load_workbook(new_path) worksheet = workbook["Sheet1" ] number_of_rows = worksheet.max_row number_of_columns = worksheet.max_column replacementTextKeyPairs ={'{}'.format(org_wrd):'{}'.format(rlc_wrd)} for i in range(number_of_columns): for k in range(number_of_rows): cellValue = str(worksheet[get_column_letter(i+1)+str(k+1)].value) for key in replacementTextKeyPairs.keys(): if str(cellValue) == key: newCellValue = replacementTextKeyPairs.get(key) worksheet[get_column_letter(i+1)+str(k+1)] = str(newCellValue) workbook.save('o{}'.format(filename)) new_path1 = os.path.abspath("o" + filename) data = open(new_path1, 'rb').read() #base64_encoded = base64.b64encode(data).decode('UTF-8') #output = base64_encoded.encode('utf-8') #worksheet = bytes(worksheet, 'utf-8') return render_template("xlsx-replace.html",op=f"o{filename}") #return render_template("xlsx-replace.html",op='output.xlsx') if __name__ == '__main__': app.run(debug=True,port=80)
py
7df8efd61ae412980b0dcf474fc40f16665f2a62
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy from neutron_lib.api.definitions import port as port_def from neutron_lib.api.definitions import portbindings from neutron_lib.callbacks import events from neutron_lib.callbacks import registry from neutron_lib.callbacks import resources from neutron_lib import context from neutron_lib.plugins import directory from neutron_lib.services import base as service_base from oslo_log import log as logging from oslo_utils import uuidutils from neutron.db import _resource_extend as resource_extend from neutron.db import api as db_api from neutron.db import common_db_mixin from neutron.db import db_base_plugin_common from neutron.objects import base as objects_base from neutron.objects import trunk as trunk_objects from neutron.services.trunk import callbacks from neutron.services.trunk import constants from neutron.services.trunk import drivers from neutron.services.trunk import exceptions as trunk_exc from neutron.services.trunk import rules from neutron.services.trunk.seg_types import validators LOG = logging.getLogger(__name__) @resource_extend.has_resource_extenders @registry.has_registry_receivers class TrunkPlugin(service_base.ServicePluginBase, common_db_mixin.CommonDbMixin): supported_extension_aliases = ["trunk", "trunk-details"] __native_pagination_support = True __native_sorting_support = True def __init__(self): self._rpc_backend = None self._drivers = [] self._segmentation_types = {} self._interfaces = set() self._agent_types = set() drivers.register() registry.subscribe(rules.enforce_port_deletion_rules, resources.PORT, events.BEFORE_DELETE) registry.publish(constants.TRUNK_PLUGIN, events.AFTER_INIT, self) for driver in self._drivers: LOG.debug('Trunk plugin loaded with driver %s', driver.name) self.check_compatibility() @staticmethod @resource_extend.extends([port_def.COLLECTION_NAME]) def _extend_port_trunk_details(port_res, port_db): """Add trunk details to a port.""" if port_db.trunk_port: subports = { x.port_id: {'segmentation_id': x.segmentation_id, 'segmentation_type': x.segmentation_type, 'port_id': x.port_id} for x in port_db.trunk_port.sub_ports } core_plugin = directory.get_plugin() ports = core_plugin.get_ports( context.get_admin_context(), filters={'id': subports}) for port in ports: subports[port['id']]['mac_address'] = port['mac_address'] trunk_details = {'trunk_id': port_db.trunk_port.id, 'sub_ports': [x for x in subports.values()]} port_res['trunk_details'] = trunk_details return port_res def check_compatibility(self): """Verify the plugin can load correctly and fail otherwise.""" self.check_driver_compatibility() self.check_segmentation_compatibility() def check_driver_compatibility(self): """Fail to load if no compatible driver is found.""" if not any([driver.is_loaded for driver in self._drivers]): raise trunk_exc.IncompatibleTrunkPluginConfiguration() def check_segmentation_compatibility(self): """Fail to load if segmentation type conflicts are found. In multi-driver deployments each loaded driver must support the same set of segmentation types consistently. """ # Get list of segmentation types for the loaded drivers. list_of_driver_seg_types = [ set(driver.segmentation_types) for driver in self._drivers if driver.is_loaded ] # If not empty, check that there is at least one we can use. compat_segmentation_types = set() if list_of_driver_seg_types: compat_segmentation_types = ( set.intersection(*list_of_driver_seg_types)) if not compat_segmentation_types: raise trunk_exc.IncompatibleDriverSegmentationTypes() # If there is at least one, make sure the validator is defined. try: for seg_type in compat_segmentation_types: self.add_segmentation_type( seg_type, validators.get_validator(seg_type)) except KeyError: raise trunk_exc.SegmentationTypeValidatorNotFound( seg_type=seg_type) def set_rpc_backend(self, backend): self._rpc_backend = backend def is_rpc_enabled(self): return self._rpc_backend is not None def register_driver(self, driver): """Register driver with trunk plugin.""" if driver.agent_type: self._agent_types.add(driver.agent_type) self._interfaces = self._interfaces | set(driver.interfaces) self._drivers.append(driver) @property def registered_drivers(self): """The registered drivers.""" return self._drivers @property def supported_interfaces(self): """A set of supported interfaces.""" return self._interfaces @property def supported_agent_types(self): """A set of supported agent types.""" return self._agent_types def add_segmentation_type(self, segmentation_type, id_validator): self._segmentation_types[segmentation_type] = id_validator LOG.debug('Added support for segmentation type %s', segmentation_type) def validate(self, context, trunk): """Return a valid trunk or raises an error if unable to do so.""" trunk_details = trunk trunk_validator = rules.TrunkPortValidator(trunk['port_id']) trunk_details['port_id'] = trunk_validator.validate(context) subports_validator = rules.SubPortsValidator( self._segmentation_types, trunk['sub_ports'], trunk['port_id']) trunk_details['sub_ports'] = subports_validator.validate(context) return trunk_details def get_plugin_description(self): return "Trunk port service plugin" @classmethod def get_plugin_type(cls): return "trunk" @db_base_plugin_common.filter_fields @db_base_plugin_common.convert_result_to_dict def get_trunk(self, context, trunk_id, fields=None): """Return information for the specified trunk.""" return self._get_trunk(context, trunk_id) @db_base_plugin_common.filter_fields @db_base_plugin_common.convert_result_to_dict def get_trunks(self, context, filters=None, fields=None, sorts=None, limit=None, marker=None, page_reverse=False): """Return information for available trunks.""" filters = filters or {} pager = objects_base.Pager(sorts=sorts, limit=limit, page_reverse=page_reverse, marker=marker) return trunk_objects.Trunk.get_objects(context, _pager=pager, **filters) @db_base_plugin_common.convert_result_to_dict def create_trunk(self, context, trunk): """Create a trunk.""" trunk = self.validate(context, trunk['trunk']) sub_ports = [trunk_objects.SubPort( context=context, port_id=p['port_id'], segmentation_id=p['segmentation_id'], segmentation_type=p['segmentation_type']) for p in trunk['sub_ports']] admin_state_up = trunk.get('admin_state_up', True) # NOTE(status_police): a trunk is created in DOWN status. Depending # on the nature of the create request, a driver may set the status # immediately to ACTIVE if no physical provisioning is required. # Otherwise a transition to BUILD (or ERROR) should be expected # depending on how the driver reacts. PRECOMMIT failures prevent the # trunk from being created altogether. trunk_description = trunk.get('description', "") trunk_obj = trunk_objects.Trunk(context=context, admin_state_up=admin_state_up, id=uuidutils.generate_uuid(), name=trunk.get('name', ""), description=trunk_description, project_id=trunk['tenant_id'], port_id=trunk['port_id'], status=constants.DOWN_STATUS, sub_ports=sub_ports) with db_api.autonested_transaction(context.session): trunk_obj.create() payload = callbacks.TrunkPayload(context, trunk_obj.id, current_trunk=trunk_obj) registry.notify( constants.TRUNK, events.PRECOMMIT_CREATE, self, payload=payload) registry.notify( constants.TRUNK, events.AFTER_CREATE, self, payload=payload) return trunk_obj @db_base_plugin_common.convert_result_to_dict def update_trunk(self, context, trunk_id, trunk): """Update information for the specified trunk.""" trunk_data = trunk['trunk'] with db_api.autonested_transaction(context.session): trunk_obj = self._get_trunk(context, trunk_id) original_trunk = copy.deepcopy(trunk_obj) # NOTE(status_police): a trunk status should not change during an # update_trunk(), even in face of PRECOMMIT failures. This is # because only name and admin_state_up are being affected, and # these are DB properties only. trunk_obj.update_fields(trunk_data, reset_changes=True) trunk_obj.update() payload = events.DBEventPayload( context, resource_id=trunk_id, states=(original_trunk,), desired_state=trunk_obj, request_body=trunk_data) registry.publish(constants.TRUNK, events.PRECOMMIT_UPDATE, self, payload=payload) registry.notify(constants.TRUNK, events.AFTER_UPDATE, self, payload=callbacks.TrunkPayload( context, trunk_id, original_trunk=original_trunk, current_trunk=trunk_obj)) return trunk_obj def delete_trunk(self, context, trunk_id): """Delete the specified trunk.""" with db_api.autonested_transaction(context.session): trunk = self._get_trunk(context, trunk_id) rules.trunk_can_be_managed(context, trunk) trunk_port_validator = rules.TrunkPortValidator(trunk.port_id) if not trunk_port_validator.is_bound(context): # NOTE(status_police): when a trunk is deleted, the logical # object disappears from the datastore, therefore there is no # status transition involved. If PRECOMMIT failures occur, # the trunk remains in the status where it was. trunk.delete() payload = callbacks.TrunkPayload(context, trunk_id, original_trunk=trunk) registry.notify(constants.TRUNK, events.PRECOMMIT_DELETE, self, payload=payload) else: raise trunk_exc.TrunkInUse(trunk_id=trunk_id) registry.notify(constants.TRUNK, events.AFTER_DELETE, self, payload=payload) @db_base_plugin_common.convert_result_to_dict def add_subports(self, context, trunk_id, subports): """Add one or more subports to trunk.""" with db_api.autonested_transaction(context.session): trunk = self._get_trunk(context, trunk_id) # Check for basic validation since the request body here is not # automatically validated by the API layer. subports = subports['sub_ports'] subports_validator = rules.SubPortsValidator( self._segmentation_types, subports, trunk['port_id']) subports = subports_validator.validate( context, basic_validation=True) added_subports = [] rules.trunk_can_be_managed(context, trunk) original_trunk = copy.deepcopy(trunk) # NOTE(status_police): the trunk status should transition to # DOWN (and finally in ACTIVE or ERROR), only if it is not in # ERROR status already. A user should attempt to resolve the ERROR # condition before adding more subports to the trunk. Should a # trunk be in DOWN or BUILD state (e.g. when dealing with # multiple concurrent requests), the status is still forced to # DOWN and thus can potentially overwrite an interleaving state # change to ACTIVE. Eventually the driver should bring the status # back to ACTIVE or ERROR. if trunk.status == constants.ERROR_STATUS: raise trunk_exc.TrunkInErrorState(trunk_id=trunk_id) else: trunk.update(status=constants.DOWN_STATUS) for subport in subports: obj = trunk_objects.SubPort( context=context, trunk_id=trunk_id, port_id=subport['port_id'], segmentation_type=subport['segmentation_type'], segmentation_id=subport['segmentation_id']) obj.create() trunk['sub_ports'].append(obj) added_subports.append(obj) payload = callbacks.TrunkPayload(context, trunk_id, current_trunk=trunk, original_trunk=original_trunk, subports=added_subports) if added_subports: registry.notify(constants.SUBPORTS, events.PRECOMMIT_CREATE, self, payload=payload) if added_subports: registry.notify( constants.SUBPORTS, events.AFTER_CREATE, self, payload=payload) return trunk @db_base_plugin_common.convert_result_to_dict def remove_subports(self, context, trunk_id, subports): """Remove one or more subports from trunk.""" subports = subports['sub_ports'] with db_api.autonested_transaction(context.session): trunk = self._get_trunk(context, trunk_id) original_trunk = copy.deepcopy(trunk) rules.trunk_can_be_managed(context, trunk) subports_validator = rules.SubPortsValidator( self._segmentation_types, subports) # the subports are being removed, therefore we do not need to # enforce any specific trunk rules, other than basic validation # of the request body. subports = subports_validator.validate( context, basic_validation=True, trunk_validation=False) current_subports = {p.port_id: p for p in trunk.sub_ports} removed_subports = [] for subport in subports: subport_obj = current_subports.pop(subport['port_id'], None) if not subport_obj: raise trunk_exc.SubPortNotFound(trunk_id=trunk_id, port_id=subport['port_id']) subport_obj.delete() removed_subports.append(subport_obj) del trunk.sub_ports[:] trunk.sub_ports.extend(current_subports.values()) # NOTE(status_police): the trunk status should transition to # DOWN irrespective of the status in which it is in to allow # the user to resolve potential conflicts due to prior add_subports # operations. # Should a trunk be in DOWN or BUILD state (e.g. when dealing # with multiple concurrent requests), the status is still forced # to DOWN. See add_subports() for more details. trunk.update(status=constants.DOWN_STATUS) payload = callbacks.TrunkPayload(context, trunk_id, current_trunk=trunk, original_trunk=original_trunk, subports=removed_subports) if removed_subports: registry.notify(constants.SUBPORTS, events.PRECOMMIT_DELETE, self, payload=payload) if removed_subports: registry.notify( constants.SUBPORTS, events.AFTER_DELETE, self, payload=payload) return trunk @db_base_plugin_common.filter_fields def get_subports(self, context, trunk_id, fields=None): """Return subports for the specified trunk.""" trunk = self.get_trunk(context, trunk_id) return {'sub_ports': trunk['sub_ports']} def _get_trunk(self, context, trunk_id): """Return the trunk object or raise if not found.""" obj = trunk_objects.Trunk.get_object(context, id=trunk_id) if obj is None: raise trunk_exc.TrunkNotFound(trunk_id=trunk_id) return obj # NOTE(tidwellr) Consider keying off of PRECOMMIT_UPDATE if we find # AFTER_UPDATE to be problematic for setting trunk status when a # a parent port becomes unbound. @registry.receives(resources.PORT, [events.AFTER_UPDATE]) def _trigger_trunk_status_change(self, resource, event, trigger, **kwargs): updated_port = kwargs['port'] trunk_details = updated_port.get('trunk_details') # If no trunk_details, the port is not the parent of a trunk. if not trunk_details: return context = kwargs['context'] original_port = kwargs['original_port'] orig_vif_type = original_port.get(portbindings.VIF_TYPE) new_vif_type = updated_port.get(portbindings.VIF_TYPE) vif_type_changed = orig_vif_type != new_vif_type if vif_type_changed and new_vif_type == portbindings.VIF_TYPE_UNBOUND: trunk_id = trunk_details['trunk_id'] # NOTE(status_police) Trunk status goes to DOWN when the parent # port is unbound. This means there are no more physical resources # associated with the logical resource. self.update_trunk(context, trunk_id, {'trunk': {'status': constants.DOWN_STATUS}})
py
7df8efdfbd6caa67c99c10f104a80072c82adfda
# Copyright 2009-2012 Yelp # Copyright 2013 David Marin # Copyright 2014 Shusen Liu # Copyright 2015-2016 Yelp # Copyright 2017 Yelp and Contributors # Copyright 2018 Yelp # Copyright 2019 Yelp # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test the hadoop job runner.""" import getpass import os import os.path from io import BytesIO from subprocess import check_call from subprocess import PIPE from unittest import skipIf import mrjob.step from mrjob.conf import combine_dicts from mrjob.fs.hadoop import HadoopFilesystem from mrjob.hadoop import HadoopJobRunner from mrjob.hadoop import fully_qualify_hdfs_path from mrjob.hadoop import pty from mrjob.step import StepFailedException from tests.mockhadoop import add_mock_hadoop_counters from tests.mockhadoop import add_mock_hadoop_output from tests.mockhadoop import get_mock_hadoop_cmd_args from tests.mockhadoop import get_mock_hdfs_root from tests.mockhadoop import MockHadoopTestCase from tests.mr_jar_and_streaming import MRJarAndStreaming from tests.mr_jar_with_generic_args import MRJarWithGenericArgs from tests.mr_just_a_jar import MRJustAJar from tests.mr_null_spark import MRNullSpark from tests.mr_spark_jar import MRSparkJar from tests.mr_spark_script import MRSparkScript from tests.mr_streaming_and_spark import MRStreamingAndSpark from tests.mr_two_step_hadoop_format_job import MRTwoStepJob from tests.mr_word_count import MRWordCount from tests.py2 import Mock from tests.py2 import call from tests.py2 import patch from tests.sandbox import BasicTestCase from tests.sandbox import EmptyMrjobConfTestCase from tests.sandbox import SandboxedTestCase from tests.test_bin import PYTHON_BIN if pty is None: # some tests should run even if pty is missing pty = Mock() class TestFullyQualifyHDFSPath(BasicTestCase): def test_empty(self): with patch('getpass.getuser') as getuser: getuser.return_value = 'dave' self.assertEqual(fully_qualify_hdfs_path(''), 'hdfs:///user/dave/') def test_relative_path(self): with patch('getpass.getuser') as getuser: getuser.return_value = 'dave' self.assertEqual(fully_qualify_hdfs_path('path/to/chocolate'), 'hdfs:///user/dave/path/to/chocolate') def test_absolute_path(self): self.assertEqual(fully_qualify_hdfs_path('/path/to/cheese'), 'hdfs:///path/to/cheese') def test_hdfs_uri(self): self.assertEqual(fully_qualify_hdfs_path('hdfs://host/path/'), 'hdfs://host/path/') def test_s3n_uri(self): self.assertEqual(fully_qualify_hdfs_path('s3n://bucket/oh/noes'), 's3n://bucket/oh/noes') def test_s3a_uri(self): self.assertEqual(fully_qualify_hdfs_path('s3a://bucket/oh/noes'), 's3a://bucket/oh/noes') def test_other_uri(self): self.assertEqual(fully_qualify_hdfs_path('foo://bar/baz'), 'foo://bar/baz') class RunnerFullyQualifiesOutputPathsTestCase(MockHadoopTestCase): def test_output_dir(self): runner = HadoopJobRunner(output_dir='/path/to/output') self.assertEqual(runner._output_dir, 'hdfs:///path/to/output') def test_step_output_dir(self): runner = HadoopJobRunner(output_dir='/path/to/step-output') self.assertEqual(runner._output_dir, 'hdfs:///path/to/step-output') class HadoopStreamingJarTestCase(SandboxedTestCase): def setUp(self): super(HadoopStreamingJarTestCase, self).setUp() self.mock_paths = [] def mock_ls(path): # don't bother to support globs return (p for p in sorted(self.mock_paths) if p.startswith(path)) self.start(patch('mrjob.fs.local.LocalFilesystem.ls', side_effect=mock_ls)) os.environ.clear() self.runner = HadoopJobRunner() def test_empty_fs(self): self.assertEqual(self.runner._find_hadoop_streaming_jar(), None) # tests of well-known environment variables def test_hadoop_prefix(self): os.environ['HADOOP_PREFIX'] = '/ha/do/op/prefix' self.mock_paths.append('/ha/do/op/prefix/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/prefix/hadoop-streaming.jar') def test_hadoop_prefix_beats_hadoop_home(self): os.environ['HADOOP_HOME'] = '/ha/do/op/home' self.mock_paths.append('/ha/do/op/home/hadoop-streaming.jar') self.test_hadoop_prefix() def test_hadoop_home(self): os.environ['HADOOP_HOME'] = '/ha/do/op/home' self.mock_paths.append('/ha/do/op/home/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/home/hadoop-streaming.jar') def test_hadoop_home_beats_hadoop_install(self): os.environ['HADOOP_INSTALL'] = '/ha/do/op/install' self.mock_paths.append('/ha/do/op/install/hadoop-streaming.jar') self.test_hadoop_home() def test_hadoop_install(self): os.environ['HADOOP_INSTALL'] = '/ha/do/op/install' self.mock_paths.append('/ha/do/op/install/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/install/hadoop-streaming.jar') def test_hadoop_install_beats_hadoop_mapred_home(self): os.environ['HADOOP_MAPRED_HOME'] = '/ha/do/op/mapred-home' self.mock_paths.append('/ha/do/op/mapred-home/hadoop-streaming.jar') self.test_hadoop_install() def test_hadoop_mapred_home(self): os.environ['HADOOP_MAPRED_HOME'] = '/ha/do/op/mapred-home' self.mock_paths.append('/ha/do/op/mapred-home/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/mapred-home/hadoop-streaming.jar') def test_hadoop_mapred_home_beats_infer_from_hadoop_bin(self): self.runner = HadoopJobRunner( hadoop_bin=['/ha/do/op/bin-parent/bin/hadoop']) self.mock_paths.append('/ha/do/op/bin-parent/hadoop-streaming.jar') self.test_hadoop_mapred_home() # infer from hadoop_bin def test_infer_from_hadoop_bin_parent_dir(self): self.runner = HadoopJobRunner( hadoop_bin=['/ha/do/op/bin-parent/bin/hadoop']) self.mock_paths.append('/ha/do/op/bin-parent/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/bin-parent/hadoop-streaming.jar') def test_hadoop_bin_beats_hadoop_anything_home(self): os.environ['HADOOP_ANYTHING_HOME'] = '/ha/do/op/anything-home' self.mock_paths.append('/ha/do/op/anything-home/hadoop-streaming.jar') self.test_infer_from_hadoop_bin_parent_dir() def test_dont_infer_from_bin_hadoop(self): self.runner = HadoopJobRunner(hadoop_bin=['/bin/hadoop']) self.mock_paths.append('/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), None) def test_dont_infer_from_usr_bin_hadoop(self): self.runner = HadoopJobRunner(hadoop_bin=['/usr/bin/hadoop']) self.mock_paths.append('/usr/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), None) def test_dont_infer_from_usr_local_bin_hadoop(self): self.runner = HadoopJobRunner(hadoop_bin=['/usr/local/bin/hadoop']) self.mock_paths.append('/usr/local/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), None) def test_infer_from_hadoop_bin_realpath(self): with patch('posixpath.realpath', return_value='/ha/do/op/bin'): self.runner = HadoopJobRunner(hadoop_bin=['/usr/bin/hadoop']) self.mock_paths.append('/ha/do/op/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/hadoop-streaming.jar') # tests of fallback environment variables ($HADOOP_*_HOME) def test_hadoop_anything_home(self): os.environ['HADOOP_WHATEVER_HOME'] = '/ha/do/op/whatever-home' self.mock_paths.append('/ha/do/op/whatever-home/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/whatever-home/hadoop-streaming.jar') # $HADOOP_ANYTHING_HOME comes before $HADOOP_WHATEVER_HOME os.environ['HADOOP_ANYTHING_HOME'] = '/ha/do/op/anything-home' self.mock_paths.append('/ha/do/op/anything-home/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/anything-home/hadoop-streaming.jar') def test_hadoop_anything_home_beats_hard_coded_paths(self): self.mock_paths.append('/home/hadoop/contrib/hadoop-streaming.jar') self.mock_paths.append( '/usr/lib/hadoop-mapreduce/hadoop-streaming.jar') self.test_hadoop_anything_home() # hard-coded paths (for Hadoop inside EMR) def test_hard_coded_emr_paths(self): self.mock_paths.append( '/usr/lib/hadoop-mapreduce/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/usr/lib/hadoop-mapreduce/hadoop-streaming.jar') # /home/hadoop/contrib takes precedence self.mock_paths.append('/home/hadoop/contrib/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/home/hadoop/contrib/hadoop-streaming.jar') # invalid environment variables def test_other_environment_variable(self): os.environ['HADOOP_YARN_MRJOB_DIR'] = '/ha/do/op/yarn-mrjob-dir' self.mock_paths.append( '/ha/do/op/yarn-mrjob-dir/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), None) # alternate jar names and paths def test_subdirs(self): os.environ['HADOOP_PREFIX'] = '/ha/do/op' self.mock_paths.append('/ha/do/op/contrib/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/contrib/hadoop-streaming.jar') def test_hadoop_streaming_jar_name_with_version(self): os.environ['HADOOP_PREFIX'] = '/ha/do/op' self.mock_paths.append('/ha/do/op/hadoop-streaming-2.6.0-amzn-0.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/hadoop-streaming-2.6.0-amzn-0.jar') def test_skip_hadoop_streaming_source_jar(self): os.environ['HADOOP_PREFIX'] = '/ha/do/op' # Googled it; it really is named *-sources.jar, not *-source.jar self.mock_paths.append( '/ha/do/op/hadoop-streaming-2.0.0-mr1-cdh4.3.1-sources.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), None) # multiple matching jars in same directory def test_pick_shortest_name(self): os.environ['HADOOP_PREFIX'] = '/ha/do/op' self.mock_paths.append('/ha/do/op/hadoop-streaming-1.0.3.jar') self.mock_paths.append('/ha/do/op/hadoop-streaming.jar') # hadoop-streaming-1.0.3.jar comes first in alphabetical order self.assertEqual(sorted(self.mock_paths), self.mock_paths) self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/hadoop-streaming.jar') def test_pick_shallowest_subpath(self): os.environ['HADOOP_PREFIX'] = '/ha/do/op' self.mock_paths.append('/ha/do/op/hadoop-streaming-1.0.3.jar') self.mock_paths.append('/ha/do/op/old/hadoop-streaming.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/hadoop-streaming-1.0.3.jar') def test_fall_back_to_alphabetical_order(self): os.environ['HADOOP_PREFIX'] = '/ha/do/op' self.mock_paths.append('/ha/do/op/hadoop-streaming-a.jar') self.mock_paths.append('/ha/do/op/hadoop-streaming-b.jar') self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/hadoop-streaming-a.jar') # sanity-check that directory order overrides path sort order def test_directory_order_overrides_path_sort_order(self): os.environ['HADOOP_HOME'] = '/ha/do/op/a' os.environ['HADOOP_PREFIX'] = '/ha/do/op/b' self.mock_paths.append('/ha/do/op/a/hadoop-streaming-a.jar') self.mock_paths.append('/ha/do/op/b/hadoop-streaming-b.jar') # $HADOOP_PREFIX takes precendence over $HADOOP_HOME, so sort # order doesn't matter self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/b/hadoop-streaming-b.jar') # now search in parent dir (/ha/do/op) to invoke sort order os.environ['HADOOP_PREFIX'] = '/ha/do/op' self.assertEqual(self.runner._find_hadoop_streaming_jar(), '/ha/do/op/a/hadoop-streaming-a.jar') class HadoopLogDirsTestCase(SandboxedTestCase): def setUp(self): super(HadoopLogDirsTestCase, self).setUp() os.environ.clear() self.mock_hadoop_version = '2.7.0' # the result of _hadoop_dir(). This handles non-log-specific # environment variables, such as $HADOOP_PREFIX, and also guesses # based on the path of the Hadoop binary self.mock_hadoop_dirs = [] def mock_get_hadoop_version(): return self.mock_hadoop_version def mock_hadoop_dirs_method(): return (d for d in self.mock_hadoop_dirs) self.start(patch('mrjob.hadoop.HadoopJobRunner.get_hadoop_version', side_effect=mock_get_hadoop_version)) self.start(patch('mrjob.hadoop.HadoopJobRunner._hadoop_dirs', side_effect=mock_hadoop_dirs_method)) self.runner = HadoopJobRunner() def test_empty(self): self.assertEqual(list(self.runner._hadoop_log_dirs()), ['hdfs:///tmp/hadoop-yarn/staging', '/var/log/hadoop-yarn', '/mnt/var/log/hadoop-yarn', '/var/log/hadoop', '/mnt/var/log/hadoop']) def test_precedence(self): os.environ['HADOOP_LOG_DIR'] = '/path/to/hadoop-log-dir' os.environ['YARN_LOG_DIR'] = '/path/to/yarn-log-dir' self.mock_hadoop_dirs = ['/path/to/hadoop-prefix', '/path/to/hadoop-home'] self.assertEqual( list(self.runner._hadoop_log_dirs(output_dir='hdfs:///output/')), ['/path/to/hadoop-log-dir', '/path/to/yarn-log-dir', 'hdfs:///tmp/hadoop-yarn/staging', 'hdfs:///output/_logs', '/path/to/hadoop-prefix/logs', '/path/to/hadoop-home/logs', '/var/log/hadoop-yarn', '/mnt/var/log/hadoop-yarn', '/var/log/hadoop', '/mnt/var/log/hadoop']) def test_hadoop_log_dirs_opt(self): self.runner = HadoopJobRunner(hadoop_log_dirs=['/logs1', '/logs2']) os.environ['HADOOP_LOG_DIR'] = '/path/to/hadoop-log-dir' # setting hadoop_log_dirs short-circuits automatic discovery of logs self.assertEqual( list(self.runner._hadoop_log_dirs()), ['/logs1', '/logs2']) def test_need_yarn_for_yarn_log_dir_and_hdfs_log_dir(self): os.environ['YARN_LOG_DIR'] = '/path/to/yarn-log-dir' self.mock_hadoop_version = '2.0.0' self.assertEqual(list(self.runner._hadoop_log_dirs()), ['/path/to/yarn-log-dir', 'hdfs:///tmp/hadoop-yarn/staging', '/var/log/hadoop-yarn', '/mnt/var/log/hadoop-yarn', '/var/log/hadoop', '/mnt/var/log/hadoop']) self.mock_hadoop_version = '1.0.3' self.assertEqual(list(self.runner._hadoop_log_dirs()), ['/var/log/hadoop', '/mnt/var/log/hadoop']) class StreamingLogDirsTestCase(SandboxedTestCase): # tests for the _stream_*_log_dirs() methods, mocking out # _hadoop_log_dirs(), which is tested above def setUp(self): super(StreamingLogDirsTestCase, self).setUp() self.log = self.start(patch('mrjob.hadoop.log')) self.runner = HadoopJobRunner() self.runner._hadoop_log_dirs = Mock(return_value=[]) self.runner.fs.exists = Mock(return_value=True) self.log.reset_mock() # ignore logging from HadoopJobRunner init class StreamHistoryLogDirsTestCase(StreamingLogDirsTestCase): def test_empty(self): results = self.runner._stream_history_log_dirs() self.assertFalse(self.log.info.called) self.assertRaises(StopIteration, next, results) def test_basic(self): self.runner._hadoop_log_dirs.return_value = [ '/mnt/var/logs/hadoop', 'hdfs:///logs'] results = self.runner._stream_history_log_dirs() self.assertFalse(self.log.info.called) self.assertEqual(next(results), ['/mnt/var/logs/hadoop']) self.assertEqual(self.log.info.call_count, 1) self.assertIn('/mnt/var/logs/hadoop', self.log.info.call_args[0][0]) self.assertEqual(next(results), ['hdfs:///logs']) self.assertEqual(self.log.info.call_count, 2) self.assertIn('hdfs:///logs', self.log.info.call_args[0][0]) self.assertRaises(StopIteration, next, results) def test_output_dir(self): output_dir = 'hdfs:///path/to/output' self.runner._hadoop_log_dirs.return_value = [output_dir] results = self.runner._stream_history_log_dirs(output_dir=output_dir) self.assertEqual(next(results), [output_dir]) self.runner._hadoop_log_dirs.assert_called_with(output_dir=output_dir) self.assertRaises(StopIteration, next, results) def test_fs_exists(self): self.runner._hadoop_log_dirs.return_value = [ '/mnt/var/logs/hadoop', 'hdfs:///logs'] self.runner.fs.exists.return_value = False results = self.runner._stream_history_log_dirs() self.assertRaises(StopIteration, next, results) def test_io_error_from_fs_exists(self): self.runner._hadoop_log_dirs.return_value = [ 'hdfs:///tmp/output/_logs', ] self.runner.fs.exists.side_effect = IOError results = self.runner._stream_history_log_dirs() self.assertRaises(StopIteration, next, results) def test_no_read_logs(self): self.runner._opts['read_logs'] = False self.runner._hadoop_log_dirs.return_value = [ '/mnt/var/logs/hadoop', 'hdfs:///logs'] results = self.runner._stream_history_log_dirs() self.assertRaises(StopIteration, next, results) self.assertFalse(self.log.info.called) self.assertFalse(self.runner._hadoop_log_dirs.called) class StreamTaskLogDirsTestCase(StreamingLogDirsTestCase): def test_empty(self): results = self.runner._stream_task_log_dirs() self.assertFalse(self.log.info.called) self.assertRaises(StopIteration, next, results) def test_basic(self): self.runner._hadoop_log_dirs.return_value = [ '/mnt/var/logs/hadoop', 'hdfs:///logs'] results = self.runner._stream_task_log_dirs() self.assertFalse(self.log.info.called) self.assertEqual(next(results), ['/mnt/var/logs/hadoop/userlogs']) self.assertEqual(self.log.info.call_count, 1) self.assertIn('/mnt/var/logs/hadoop', self.log.info.call_args[0][0]) self.assertEqual(next(results), ['hdfs:///logs/userlogs']) self.assertEqual(self.log.info.call_count, 2) self.assertIn('hdfs:///logs/userlogs', self.log.info.call_args[0][0]) self.assertRaises(StopIteration, next, results) def test_output_dir(self): output_dir = 'hdfs:///path/to/output' self.runner._hadoop_log_dirs.return_value = [output_dir] results = self.runner._stream_task_log_dirs(output_dir=output_dir) self.assertEqual(next(results), [output_dir + '/userlogs']) self.runner._hadoop_log_dirs.assert_called_with(output_dir=output_dir) self.assertRaises(StopIteration, next, results) def test_application_id(self): self.runner._hadoop_log_dirs.return_value = ['hdfs:///logs'] results = self.runner._stream_task_log_dirs(application_id='app_1') self.assertEqual(next(results), ['hdfs:///logs/userlogs/app_1']) def test_fs_exists(self): self.runner._hadoop_log_dirs.return_value = [ '/mnt/var/logs/hadoop', 'hdfs:///logs'] self.runner.fs.exists.return_value = False results = self.runner._stream_task_log_dirs() self.assertRaises(StopIteration, next, results) def test_io_error_from_fs_exists(self): self.runner._hadoop_log_dirs.return_value = [ 'hdfs:///tmp/output/_logs', ] self.runner.fs.exists.side_effect = IOError results = self.runner._stream_task_log_dirs() self.assertRaises(StopIteration, next, results) def test_no_read_logs(self): self.runner._opts['read_logs'] = False self.runner._hadoop_log_dirs.return_value = [ '/mnt/var/logs/hadoop', 'hdfs:///logs'] results = self.runner._stream_task_log_dirs() self.assertRaises(StopIteration, next, results) self.assertFalse(self.log.info.called) self.assertFalse(self.runner._hadoop_log_dirs.called) class GetHadoopVersionTestCase(MockHadoopTestCase): def test_get_hadoop_version(self): runner = HadoopJobRunner() self.assertEqual(runner.get_hadoop_version(), '1.2.0') def test_missing_hadoop_version(self): with patch.dict('os.environ', MOCK_HADOOP_VERSION=''): runner = HadoopJobRunner() self.assertRaises(Exception, runner.get_hadoop_version) class HadoopJobRunnerEndToEndTestCase(MockHadoopTestCase): def _test_end_to_end(self, args=()): # read from STDIN, a local file, and a remote file stdin = BytesIO(b'foo\nbar\n') local_input_path = os.path.join(self.tmp_dir, 'input') with open(local_input_path, 'w') as local_input_file: local_input_file.write('bar\nqux\n') input_to_upload = os.path.join(self.tmp_dir, 'remote_input') with open(input_to_upload, 'w') as input_to_upload_file: input_to_upload_file.write('foo\n') remote_input_path = 'hdfs:///data/foo' check_call([self.hadoop_bin, 'fs', '-put', input_to_upload, remote_input_path]) # add counters add_mock_hadoop_counters({'foo': {'bar': 23}}) add_mock_hadoop_counters({'baz': {'qux': 42}}) # doesn't matter what the intermediate output is; just has to exist. add_mock_hadoop_output([b'']) add_mock_hadoop_output([b'1\t"qux"\n2\t"bar"\n', b'2\t"foo"\n5\tnull\n']) mr_job = MRTwoStepJob([ '-r', 'hadoop', '-v', '--no-conf', '--libjars', 'containsJars.jar', '--hadoop-args=-verbose'] + list(args) + ['-', local_input_path, remote_input_path] + ['-D', 'x=y'] ) mr_job.sandbox(stdin=stdin) local_tmp_dir = None results = [] with mr_job.make_runner() as runner: assert isinstance(runner, HadoopJobRunner) runner.run() results.extend(mr_job.parse_output(runner.cat_output())) local_tmp_dir = runner._get_local_tmp_dir() # make sure cleanup hasn't happened yet assert os.path.exists(local_tmp_dir) assert any(runner.fs.ls(runner.get_output_dir())) # make sure we're writing to the correct path in HDFS hdfs_root = get_mock_hdfs_root() self.assertEqual(sorted(os.listdir(hdfs_root)), ['data', 'user']) home_dir = os.path.join(hdfs_root, 'user', getpass.getuser()) self.assertEqual(os.listdir(home_dir), ['tmp']) self.assertEqual(os.listdir(os.path.join(home_dir, 'tmp')), ['mrjob']) self.assertEqual(runner._opts['hadoop_extra_args'], ['-verbose']) # make sure mrjob.zip was uploaded self.assertTrue(os.path.exists(runner._mrjob_zip_path)) self.assertIn(runner._mrjob_zip_path, runner._upload_mgr.path_to_uri()) # make sure setup script exists, and that it adds mrjob.zip # to PYTHONPATH self.assertTrue(os.path.exists(runner._setup_wrapper_script_path)) self.assertIn(runner._setup_wrapper_script_path, runner._working_dir_mgr.paths()) mrjob_zip_name = runner._working_dir_mgr.name( 'file', runner._mrjob_zip_path) with open(runner._setup_wrapper_script_path) as wrapper: self.assertTrue(any( ('export PYTHONPATH' in line and mrjob_zip_name in line) for line in wrapper)) self.assertEqual(runner.counters(), [{'foo': {'bar': 23}}, {'baz': {'qux': 42}}]) self.assertEqual(sorted(results), [(1, 'qux'), (2, 'bar'), (2, 'foo'), (5, None)]) # make sure we called hadoop the way we expected hadoop_cmd_args = get_mock_hadoop_cmd_args() jar_cmd_args = [cmd_args for cmd_args in hadoop_cmd_args if cmd_args[:1] == ['jar']] self.assertEqual(len(jar_cmd_args), 2) step_0_args, step_1_args = jar_cmd_args # check input/output format self.assertIn('-inputformat', step_0_args) self.assertNotIn('-outputformat', step_0_args) self.assertNotIn('-inputformat', step_1_args) self.assertIn('-outputformat', step_1_args) # make sure extra arg (-verbose) comes before mapper for args in (step_0_args, step_1_args): self.assertIn('-verbose', args) self.assertIn('-mapper', args) self.assertLess(args.index('-verbose'), args.index('-mapper')) # make sure -libjars is set and comes before mapper for args in (step_0_args, step_1_args): self.assertIn('-libjars', args) self.assertIn('containsJars.jar', args) self.assertIn('-mapper', args) self.assertLess(args.index('-libjars'), args.index('-mapper')) # make sure -D (jobconf) made it through self.assertIn('-D', step_0_args) self.assertIn('x=y', step_0_args) self.assertIn('-D', step_1_args) # job overrides jobconf in step 1 self.assertIn('x=z', step_1_args) # make sure cleanup happens assert not os.path.exists(local_tmp_dir) assert not any(runner.fs.ls(runner.get_output_dir())) def test_end_to_end(self): self._test_end_to_end() def test_end_to_end_with_explicit_hadoop_bin(self): self._test_end_to_end(['--hadoop-bin', self.hadoop_bin]) def test_end_to_end_without_pty_fork(self): with patch.object(pty, 'fork', side_effect=OSError()): self._test_end_to_end() def test_end_to_end_with_disabled_input_path_check(self): self._test_end_to_end(['--no-check-input-paths']) def test_end_to_end_with_hadoop_2_0(self): with patch.dict('os.environ', MOCK_HADOOP_VERSION='2.0.0'): self._test_end_to_end() class StreamingArgsTestCase(EmptyMrjobConfTestCase): MRJOB_CONF_CONTENTS = {'runners': {'hadoop': { 'hadoop_streaming_jar': 'binks.jar.jar', }}} BASIC_HADOOP_ARGS = [ 'hadoop', 'jar', '<streaming jar>', '<upload args>', ] BASIC_JOB_ARGS = [ '<hadoop args for step>', '-input', '<hdfs step input files>', '-output', '<hdfs step output dir>', ] def setUp(self): super(StreamingArgsTestCase, self).setUp() self.runner = HadoopJobRunner( hadoop_bin='hadoop', hadoop_streaming_jar='<streaming jar>', mr_job_script='my_job.py', stdin=BytesIO()) self.runner._add_job_files_for_upload() self.start(patch.object(self.runner, '_upload_args', return_value=['<upload args>'])) self.start(patch.object(self.runner, '_hadoop_args_for_step', return_value=['<hadoop args for step>'])) self.start(patch.object(self.runner, '_step_input_uris', return_value=['<hdfs step input files>'])) self.start(patch.object(self.runner, '_step_output_uri', return_value='<hdfs step output dir>')) self.start(patch.object(HadoopFilesystem, 'get_hadoop_version', return_value='2.7.1')) self.runner._script_path = 'my_job.py' def _assert_streaming_step(self, step, args): self.runner._steps = [step] self.assertEqual( self.runner._args_for_streaming_step(0), self._new_basic_args + args) def test_basic_mapper(self): self.runner._steps = [ { 'type': 'streaming', 'mapper': { 'type': 'script', }, }, ] self.assertEqual( self.runner._args_for_streaming_step(0), (self.BASIC_HADOOP_ARGS + ['-D', 'mapreduce.job.reduces=0'] + self.BASIC_JOB_ARGS + [ '-mapper', PYTHON_BIN + ' my_job.py --step-num=0 --mapper'])) def test_basic_mapper_pre_yarn(self): # use a different jobconf (-D) on pre-YARN self.start(patch.object(HadoopFilesystem, 'get_hadoop_version', return_value='1.0.3')) self.runner._steps = [ { 'type': 'streaming', 'mapper': { 'type': 'script', }, }, ] self.assertEqual( self.runner._args_for_streaming_step(0), (self.BASIC_HADOOP_ARGS + ['-D', 'mapred.reduce.tasks=0'] + self.BASIC_JOB_ARGS + [ '-mapper', PYTHON_BIN + ' my_job.py --step-num=0 --mapper'])) def test_basic_reducer(self): self.runner._steps = [ { 'type': 'streaming', 'reducer': { 'type': 'script', }, }, ] self.assertEqual( self.runner._args_for_streaming_step(0), (self.BASIC_HADOOP_ARGS + self.BASIC_JOB_ARGS + [ '-mapper', 'cat', '-reducer', PYTHON_BIN + ' my_job.py --step-num=0 --reducer'])) def test_pre_filters(self): self.runner._steps = [ { 'type': 'streaming', 'mapper': { 'type': 'script', 'pre_filter': 'grep anything', }, 'combiner': { 'type': 'script', 'pre_filter': 'grep nothing', }, 'reducer': { 'type': 'script', 'pre_filter': 'grep something', }, }, ] self.assertEqual( self.runner._args_for_streaming_step(0), (self.BASIC_HADOOP_ARGS + self.BASIC_JOB_ARGS + [ '-mapper', "/bin/sh -ex -c 'grep anything | " + PYTHON_BIN + " my_job.py --step-num=0 --mapper'", '-combiner', "/bin/sh -ex -c 'grep nothing | " + PYTHON_BIN + " my_job.py --step-num=0 --combiner'", '-reducer', "/bin/sh -ex -c 'grep something | " + PYTHON_BIN + " my_job.py --step-num=0 --reducer'"])) def test_pre_filter_escaping(self): # ESCAPE ALL THE THINGS!!! self.runner._steps = [ { 'type': 'streaming', 'mapper': { 'type': 'script', 'pre_filter': "bash -c 'grep '\\''anything'\\'''", }, }, ] self.assertEqual( self.runner._args_for_streaming_step(0), (self.BASIC_HADOOP_ARGS + ['-D', 'mapreduce.job.reduces=0'] + self.BASIC_JOB_ARGS + [ '-mapper', "/bin/sh -ex -c 'bash -c '\\''grep" " '\\''\\'\\'''\\''anything'\\''\\'\\'''\\'''\\'' | " + PYTHON_BIN + " my_job.py --step-num=0 --mapper'"])) class ArgsForJarStepTestCase(MockHadoopTestCase): def test_local_jar(self): fake_jar = self.makefile('fake.jar') job = MRJustAJar(['-r', 'hadoop', '--jar', fake_jar]) job.sandbox() with job.make_runner() as runner: self.assertEqual( runner._args_for_jar_step(0), runner.get_hadoop_bin() + ['jar', fake_jar]) def test_hdfs_jar_uri(self): # this could change, but for now, we pass URIs straight through mock_hdfs_jar = os.path.join(get_mock_hdfs_root(), 'fake.jar') open(mock_hdfs_jar, 'w').close() jar_uri = 'hdfs:///fake.jar' job = MRJustAJar(['-r', 'hadoop', '--jar', jar_uri]) job.sandbox() with job.make_runner() as runner: self.assertEqual( runner._args_for_jar_step(0), runner.get_hadoop_bin() + ['jar', jar_uri]) def test_no_generic_args_by_default(self): # -D and --libjars are ignored unless you use GENERIC_ARGS. See #1863 fake_jar = self.makefile('fake.jar') fake_libjar = self.makefile('fake_lib.jar') job = MRJustAJar( ['-r', 'hadoop', '--jar', fake_jar, '-D', 'foo=bar', '--libjars', fake_libjar]) job.sandbox() with job.make_runner() as runner: self.assertEqual( runner._args_for_jar_step(0), runner.get_hadoop_bin() + ['jar', fake_jar]) def test_generic_args_interpolation(self): fake_jar = self.makefile('fake.jar') fake_libjar = self.makefile('fake_lib.jar') job = MRJarWithGenericArgs( ['-r', 'hadoop', '--jar', fake_jar, '-D', 'foo=bar', '--libjars', fake_libjar]) job.sandbox() with job.make_runner() as runner: self.assertEqual( runner._args_for_jar_step(0), runner.get_hadoop_bin() + ['jar', fake_jar, 'before', '-libjars', fake_libjar, '-D', 'foo=bar', 'after'] ) def test_input_output_interpolation(self): # TODO: rewrite this to just check the step args (see #1482) fake_jar = os.path.join(self.tmp_dir, 'fake.jar') open(fake_jar, 'w').close() input1 = os.path.join(self.tmp_dir, 'input1') open(input1, 'w').close() input2 = os.path.join(self.tmp_dir, 'input2') open(input2, 'w').close() job = MRJarAndStreaming( ['-r', 'hadoop', '--jar', fake_jar, input1, input2]) job.sandbox() add_mock_hadoop_output([b'']) # need this for streaming step with job.make_runner() as runner: runner.run() hadoop_cmd_args = get_mock_hadoop_cmd_args() hadoop_jar_cmd_args = [args for args in hadoop_cmd_args if args and args[0] == 'jar'] self.assertEqual(len(hadoop_jar_cmd_args), 2) jar_args, streaming_args = hadoop_jar_cmd_args self.assertEqual(len(jar_args), 5) self.assertEqual(jar_args[0], 'jar') self.assertEqual(jar_args[1], fake_jar) self.assertEqual(jar_args[2], 'stuff') # check input is interpolated input_arg = ','.join( runner._upload_mgr.uri(path) for path in (input1, input2)) self.assertEqual(jar_args[3], input_arg) # check output of jar is input of next step jar_output_arg = jar_args[4] streaming_input_arg = streaming_args[ streaming_args.index('-input') + 1] self.assertEqual(jar_output_arg, streaming_input_arg) class SparkStepArgsTestCase(SandboxedTestCase): MRJOB_CONF_CONTENTS = dict(runners=dict(hadoop=dict( spark_submit_bin='spark-submit'))) def setUp(self): super(SparkStepArgsTestCase, self).setUp() # _spark_submit_args() is tested elsewhere self.start(patch( 'mrjob.bin.MRJobBinRunner._spark_submit_args', return_value=['<spark submit args>'])) def add_files_for_upload(self, runner): # _args_for_step() needs both of these runner._add_input_files_for_upload() runner._add_job_files_for_upload() def test_spark_step(self): job = MRNullSpark([ '-r', 'hadoop', ]) job.sandbox() with job.make_runner() as runner: self.add_files_for_upload(runner) self.assertEqual(runner._args_for_step(0), [ 'spark-submit', '<spark submit args>', runner._script_path, '--step-num=0', '--spark', ','.join(runner._step_input_uris(0)), runner._step_output_uri(0) ]) def test_spark_streaming_step(self): job = MRSparkScript([ '-r', 'hadoop', '--script', '/path/to/spark_script.py', '--script-arg', 'foo', '--script-arg', mrjob.step.OUTPUT, '--script-arg', mrjob.step.INPUT, ]) job.sandbox() with job.make_runner() as runner: self.add_files_for_upload(runner) self.assertEqual(runner._args_for_step(0), [ 'spark-submit', '<spark submit args>', '/path/to/spark_script.py', 'foo', runner._step_output_uri(0), ','.join(runner._step_input_uris(0)), ]) class EnvForStepTestCase(MockHadoopTestCase): def setUp(self): super(EnvForStepTestCase, self).setUp() os.environ.clear() # for less noisy test failures def test_streaming_step(self): job = MRTwoStepJob(['-r', 'hadoop', '--cmdenv', 'FOO=bar']) job.sandbox() with job.make_runner() as runner: self.assertEqual( runner._env_for_step(0), dict(os.environ) ) def test_jar_step(self): job = MRJustAJar(['-r', 'hadoop', '--cmdenv', 'FOO=bar']) job.sandbox() with job.make_runner() as runner: self.assertEqual( runner._env_for_step(0), dict(os.environ) ) def test_spark_step(self): job = MRNullSpark(['-r', 'hadoop', '--cmdenv', 'FOO=bar']) job.sandbox() with job.make_runner() as runner: self.assertEqual( runner._env_for_step(0), combine_dicts(os.environ, dict(FOO='bar', PYSPARK_PYTHON=PYTHON_BIN)) ) def test_spark_jar_step(self): job = MRSparkJar(['-r', 'hadoop', '--cmdenv', 'FOO=bar']) job.sandbox() with job.make_runner() as runner: self.assertEqual( runner._env_for_step(0), combine_dicts(os.environ, dict(FOO='bar')) ) def test_spark_script_step(self): job = MRSparkScript(['-r', 'hadoop', '--cmdenv', 'FOO=bar']) job.sandbox() with job.make_runner() as runner: self.assertEqual( runner._env_for_step(0), combine_dicts(os.environ, dict(FOO='bar', PYSPARK_PYTHON=PYTHON_BIN)) ) class RunJobInHadoopUsesEnvTestCase(MockHadoopTestCase): def setUp(self): super(RunJobInHadoopUsesEnvTestCase, self).setUp() self.mock_args_for_step = self.start(patch( 'mrjob.hadoop.HadoopJobRunner._args_for_step', return_value=['args', 'for', 'step'])) self.mock_env_for_step = self.start(patch( 'mrjob.hadoop.HadoopJobRunner._env_for_step', return_value=dict(FOO='bar', BAZ='qux'))) self.mock_pty_fork = self.start(patch.object( pty, 'fork', return_value=(0, None))) # end test once we invoke Popen or execvpe() self.mock_Popen = self.start(patch( 'mrjob.hadoop.Popen', side_effect=StopIteration)) self.mock_execvpe = self.start(patch( 'os.execvpe', side_effect=StopIteration)) # don't actually hard-exit the child, since we're not actually forking self.mock_exit = self.start(patch('os._exit')) def test_with_pty(self): job = MRWordCount(['-r', 'hadoop']) job.sandbox() with job.make_runner() as runner: self.assertRaises(StopIteration, runner._run_job_in_hadoop) self.mock_execvpe.assert_called_once_with( 'args', ['args', 'for', 'step'], dict(FOO='bar', BAZ='qux')) self.assertFalse(self.mock_Popen.called) def test_without_pty(self): self.mock_pty_fork.side_effect = OSError job = MRWordCount(['-r', 'hadoop']) job.sandbox() with job.make_runner() as runner: self.assertRaises(StopIteration, runner._run_job_in_hadoop) self.mock_Popen.assert_called_once_with( ['args', 'for', 'step'], stdout=PIPE, stderr=PIPE, env=dict(FOO='bar', BAZ='qux')) self.assertFalse(self.mock_execvpe.called) @skipIf(not (pty and hasattr(pty, 'fork')), 'no pty.fork()') class BadHadoopBinAfterFork(MockHadoopTestCase): # test what happens if os.execvpe() fails (see #2024) # can't just set --hadoop-bin because this would break checking # Hadoop version and uploading files. Instead, patch _args_for_step() def patch_args_for_step(self, runner, bad_hadoop_bin): real_args_for_step = runner._args_for_step def args_for_step(*args, **kwargs): args = real_args_for_step(*args, **kwargs) return [bad_hadoop_bin] + args[1:] self.start(patch.object(runner, '_args_for_step', args_for_step)) def test_no_such_file(self): missing_hadoop_bin = os.path.join(self.tmp_dir, 'no-hadoop-here') job = MRTwoStepJob(['-r', 'hadoop']) job.sandbox() with job.make_runner() as runner: self.patch_args_for_step(runner, missing_hadoop_bin) self.assertRaises(StepFailedException, runner.run) def test_permissions_error(self): nonexecutable_hadoop_bin = self.makefile('not-really-hadoop') job = MRTwoStepJob(['-r', 'hadoop']) job.sandbox() with job.make_runner() as runner: self.patch_args_for_step(runner, nonexecutable_hadoop_bin) self.assertRaises(StepFailedException, runner.run) def test_non_oserror_exception(self): self.start(patch('os.execvpe', side_effect=KeyboardInterrupt)) job = MRTwoStepJob(['-r', 'hadoop']) job.sandbox() with job.make_runner() as runner: self.assertRaises(StepFailedException, runner.run) class SparkPyFilesTestCase(MockHadoopTestCase): def test_eggs(self): egg1_path = self.makefile('dragon.egg') egg2_path = self.makefile('horton.egg') job = MRNullSpark([ '-r', 'hadoop', '--py-files', '%s,%s' % (egg1_path, egg2_path)]) job.sandbox() with job.make_runner() as runner: runner._create_setup_wrapper_scripts() runner._add_job_files_for_upload() self.assertEqual( runner._py_files(), [egg1_path, egg2_path, runner._create_mrjob_zip()] ) # pass the URI of the *uploaded* py_files to Spark self.assertIn(egg1_path, runner._upload_mgr.path_to_uri()) self.assertIn(egg2_path, runner._upload_mgr.path_to_uri()) egg_uris = ','.join(runner._upload_mgr.uri(path) for path in runner._py_files()) self.assertIn(egg_uris, runner._spark_submit_args(0)) class SetupLineEncodingTestCase(MockHadoopTestCase): def test_setup_wrapper_script_uses_unix_line_endings(self): job = MRTwoStepJob(['-r', 'hadoop', '--setup', 'true']) job.sandbox() add_mock_hadoop_output([b'']) add_mock_hadoop_output([b'']) # tests #1071. Unfortunately, we mostly run these tests on machines # that use unix line endings anyway. So monitor open() instead with patch( 'mrjob.runner.open', create=True, side_effect=open) as m_open: with job.make_runner() as runner: runner.run() self.assertIn( call(runner._setup_wrapper_script_path, 'wb'), m_open.mock_calls) class PickErrorTestCase(MockHadoopTestCase): # integration tests for _pick_error() def setUp(self): super(PickErrorTestCase, self).setUp() os.environ['MOCK_HADOOP_VERSION'] = '2.7.0' self.runner = HadoopJobRunner() def test_empty(self): self.assertEqual(self.runner._pick_error({}, 'streaming'), None) def test_yarn_python_exception(self): APPLICATION_ID = 'application_1450486922681_0004' CONTAINER_ID = 'container_1450486922681_0005_01_000003' JOB_ID = 'job_1450486922681_0004' log_subdir = os.path.join( os.environ['HADOOP_HOME'], 'logs', 'userlogs', APPLICATION_ID, CONTAINER_ID) os.makedirs(log_subdir) syslog_path = os.path.join(log_subdir, 'syslog') with open(syslog_path, 'w') as syslog: syslog.write( '2015-12-21 14:06:17,707 INFO [main]' ' org.apache.hadoop.mapred.MapTask: Processing split:' ' hdfs://e4270474c8ee:9000/user/root/tmp/mrjob' '/mr_boom.root.20151221.190511.059097/files' '/bootstrap.sh:0+335\n') syslog.write( '2015-12-21 14:06:18,538 WARN [main]' ' org.apache.hadoop.mapred.YarnChild: Exception running child' ' : java.lang.RuntimeException:' ' PipeMapRed.waitOutputThreads(): subprocess failed with' ' code 1\n') syslog.write( ' at org.apache.hadoop.streaming.PipeMapRed' '.waitOutputThreads(PipeMapRed.java:322)\n') stderr_path = os.path.join(log_subdir, 'stderr') with open(stderr_path, 'w') as stderr: stderr.write('+ python mr_boom.py --mapper') stderr.write('Traceback (most recent call last):\n') stderr.write(' File "mr_boom.py", line 10, in <module>\n') stderr.write(' MRBoom.run()\n') stderr.write('Exception: BOOM\n') error = self.runner._pick_error( dict(step=dict(application_id=APPLICATION_ID, job_id=JOB_ID)), 'streaming', ) self.assertIsNotNone(error) self.assertEqual(error['hadoop_error']['path'], syslog_path) self.assertEqual(error['task_error']['path'], stderr_path) class HadoopExtraArgsTestCase(MockHadoopTestCase): # moved from tests.test_runner.HadoopArgsForStepTestCase because # hadoop_extra_args isn't defined in the base runner RUNNER = 'hadoop' def test_hadoop_extra_args(self): # hadoop_extra_args doesn't exist in default runner job = MRWordCount(['-r', self.RUNNER, '--hadoop-args=-foo']) with job.make_runner() as runner: self.assertEqual(runner._hadoop_args_for_step(0), ['-foo']) def test_hadoop_extra_args_comes_after_jobconf(self): job = MRWordCount( ['-r', self.RUNNER, '--cmdenv', 'FOO=bar', '--hadoop-args=-libjars qux.jar', '-D', 'baz=qux']) job.HADOOP_INPUT_FORMAT = 'FooInputFormat' job.HADOOP_OUTPUT_FORMAT = 'BarOutputFormat' with job.make_runner() as runner: hadoop_args = runner._hadoop_args_for_step(0) self.assertEqual( hadoop_args[:4], ['-D', 'baz=qux', '-libjars', 'qux.jar']) self.assertEqual(len(hadoop_args), 10) class LibjarsTestCase(MockHadoopTestCase): def add_files_for_upload(self, runner): # need both of these for _args_for_streaming_step() to work runner._add_input_files_for_upload() runner._add_job_files_for_upload() def test_empty(self): job = MRWordCount(['-r', 'hadoop']) job.sandbox() with job.make_runner() as runner: self.add_files_for_upload(runner) args = runner._args_for_streaming_step(0) self.assertNotIn('-libjars', args) def test_one_jar(self): job = MRWordCount([ '-r', 'hadoop', '--libjars', '/path/to/a.jar', ]) job.sandbox() with job.make_runner() as runner: self.add_files_for_upload(runner) args = runner._args_for_streaming_step(0) self.assertIn('-libjars', args) self.assertIn('/path/to/a.jar', args) def test_two_jars(self): job = MRWordCount([ '-r', 'hadoop', '--libjars', '/path/to/a.jar', '--libjars', '/path/to/b.jar', ]) job.sandbox() with job.make_runner() as runner: self.add_files_for_upload(runner) args = runner._args_for_streaming_step(0) self.assertIn('-libjars', args) self.assertIn('/path/to/a.jar,/path/to/b.jar', args) class FindBinariesAndJARsTestCase(SandboxedTestCase): def setUp(self): super(FindBinariesAndJARsTestCase, self).setUp() self.get_hadoop_version = self.start(patch( 'mrjob.hadoop.HadoopJobRunner.get_hadoop_version')) self.get_hadoop_streaming_jar = self.start(patch( 'mrjob.hadoop.HadoopJobRunner.get_hadoop_streaming_jar')) self.get_spark_submit_bin = self.start(patch( 'mrjob.hadoop.HadoopJobRunner.get_spark_submit_bin')) def test_always_call_get_hadoop_version(self): runner = HadoopJobRunner() runner._find_binaries_and_jars() self.assertTrue(self.get_hadoop_version.called) self.assertFalse(self.get_hadoop_streaming_jar.called) self.assertFalse(self.get_spark_submit_bin.called) def test_streaming_steps(self): job = MRTwoStepJob(['-r', 'hadoop']) job.sandbox() with job.make_runner() as runner: runner._find_binaries_and_jars() self.assertTrue(self.get_hadoop_version.called) self.assertTrue(self.get_hadoop_streaming_jar.called) self.assertFalse(self.get_spark_submit_bin.called) def test_spark_steps(self): job = MRNullSpark(['-r', 'hadoop']) job.sandbox() with job.make_runner() as runner: runner._find_binaries_and_jars() self.assertTrue(self.get_hadoop_version.called) self.assertFalse(self.get_hadoop_streaming_jar.called) self.assertTrue(self.get_spark_submit_bin.called) def test_streaming_and_spark(self): job = MRStreamingAndSpark(['-r', 'hadoop']) job.sandbox() with job.make_runner() as runner: runner._find_binaries_and_jars() self.assertTrue(self.get_hadoop_version.called) self.assertTrue(self.get_hadoop_streaming_jar.called) self.assertTrue(self.get_spark_submit_bin.called) class SparkMasterAndDeployModeTestCase(MockHadoopTestCase): def test_default(self): mr_job = MRNullSpark(['-r', 'hadoop']) mr_job.sandbox() with mr_job.make_runner() as runner: runner._add_job_files_for_upload() self.assertEqual( runner._spark_submit_args(0)[4:8], ['--master', 'yarn', '--deploy-mode', 'client'] ) def test_spark_master_opt(self): # these are hard-coded and always the same mr_job = MRNullSpark(['-r', 'hadoop', '--spark-master', 'local']) mr_job.sandbox() with mr_job.make_runner() as runner: runner._add_job_files_for_upload() self.assertEqual( runner._spark_submit_args(0)[2:6], ['--master', 'local', '--deploy-mode', 'client'] ) def test_spark_deploy_mode_opt(self): # these are hard-coded and always the same mr_job = MRNullSpark(['-r', 'hadoop', '--spark-deploy-mode', 'cluster']) mr_job.sandbox() with mr_job.make_runner() as runner: runner._add_job_files_for_upload() self.assertEqual( runner._spark_submit_args(0)[4:8], ['--master', 'yarn', '--deploy-mode', 'cluster'] ) class GetHadoopBinTestCase(MockHadoopTestCase): # mostly exists to test --hadoop-bin '' def test_default(self): job = MRTwoStepJob(['-r', 'hadoop']) job.sandbox() with job.make_runner() as runner: self.assertEqual(runner.get_hadoop_bin(), [self.hadoop_bin]) def test_custom_hadoop_bin(self): job = MRTwoStepJob(['-r', 'hadoop', '--hadoop-bin', 'hadoop -v']) job.sandbox() with job.make_runner() as runner: self.assertEqual(runner.get_hadoop_bin(), ['hadoop', '-v']) def test_empty_hadoop_bin_means_find_hadoop_bin(self): job = MRTwoStepJob(['-r', 'hadoop', '--hadoop-bin', '']) job.sandbox() with job.make_runner() as runner: self.assertEqual(runner.get_hadoop_bin(), [self.hadoop_bin])
py
7df8f06a602db573010292bc753313e80eda0274
# # Copyright (c) 2022 Airbyte, Inc., all rights reserved. # from setuptools import find_packages, setup MAIN_REQUIREMENTS = ["airbyte-cdk~=0.1"] TEST_REQUIREMENTS = [ "pytest~=6.1", "pytest-mock", "source-acceptance-test", ] setup( name="source_klaviyo", description="Source implementation for Klaviyo.", author="Airbyte", author_email="[email protected]", packages=find_packages(), install_requires=MAIN_REQUIREMENTS, package_data={"": ["*.json", "schemas/*.json"]}, extras_require={ "tests": TEST_REQUIREMENTS, }, )
py
7df8f0e1aa620c3ecd42e973e549594656b2e1fb
""" Flux for Home-Assistant. The idea was taken from https://github.com/KpaBap/hue-flux/ For more details about this component, please refer to the documentation at https://home-assistant.io/components/switch.flux/ """ import datetime import logging import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.components.light import ( is_on, turn_on, VALID_TRANSITION, ATTR_TRANSITION) from homeassistant.components.switch import DOMAIN, SwitchDevice from homeassistant.const import ( CONF_NAME, CONF_PLATFORM, CONF_LIGHTS, CONF_MODE) from homeassistant.helpers.event import track_time_change from homeassistant.helpers.sun import get_astral_event_date from homeassistant.util import slugify from homeassistant.util.color import ( color_temperature_to_rgb, color_RGB_to_xy_brightness, color_temperature_kelvin_to_mired) from homeassistant.util.dt import now as dt_now _LOGGER = logging.getLogger(__name__) CONF_START_TIME = 'start_time' CONF_STOP_TIME = 'stop_time' CONF_START_CT = 'start_colortemp' CONF_SUNSET_CT = 'sunset_colortemp' CONF_STOP_CT = 'stop_colortemp' CONF_BRIGHTNESS = 'brightness' CONF_DISABLE_BRIGHTNESS_ADJUST = 'disable_brightness_adjust' CONF_INTERVAL = 'interval' MODE_XY = 'xy' MODE_MIRED = 'mired' MODE_RGB = 'rgb' DEFAULT_MODE = MODE_XY DEPENDENCIES = ['light'] PLATFORM_SCHEMA = vol.Schema({ vol.Required(CONF_PLATFORM): 'flux', vol.Required(CONF_LIGHTS): cv.entity_ids, vol.Optional(CONF_NAME, default="Flux"): cv.string, vol.Optional(CONF_START_TIME): cv.time, vol.Optional(CONF_STOP_TIME): cv.time, vol.Optional(CONF_START_CT, default=4000): vol.All(vol.Coerce(int), vol.Range(min=1000, max=40000)), vol.Optional(CONF_SUNSET_CT, default=3000): vol.All(vol.Coerce(int), vol.Range(min=1000, max=40000)), vol.Optional(CONF_STOP_CT, default=1900): vol.All(vol.Coerce(int), vol.Range(min=1000, max=40000)), vol.Optional(CONF_BRIGHTNESS): vol.All(vol.Coerce(int), vol.Range(min=0, max=255)), vol.Optional(CONF_DISABLE_BRIGHTNESS_ADJUST): cv.boolean, vol.Optional(CONF_MODE, default=DEFAULT_MODE): vol.Any(MODE_XY, MODE_MIRED, MODE_RGB), vol.Optional(CONF_INTERVAL, default=30): cv.positive_int, vol.Optional(ATTR_TRANSITION, default=30): VALID_TRANSITION }) def set_lights_xy(hass, lights, x_val, y_val, brightness, transition): """Set color of array of lights.""" for light in lights: if is_on(hass, light): turn_on(hass, light, xy_color=[x_val, y_val], brightness=brightness, transition=transition, white_value=brightness) def set_lights_temp(hass, lights, mired, brightness, transition): """Set color of array of lights.""" for light in lights: if is_on(hass, light): turn_on(hass, light, color_temp=int(mired), brightness=brightness, transition=transition) def set_lights_rgb(hass, lights, rgb, transition): """Set color of array of lights.""" for light in lights: if is_on(hass, light): turn_on(hass, light, rgb_color=rgb, transition=transition) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the Flux switches.""" name = config.get(CONF_NAME) lights = config.get(CONF_LIGHTS) start_time = config.get(CONF_START_TIME) stop_time = config.get(CONF_STOP_TIME) start_colortemp = config.get(CONF_START_CT) sunset_colortemp = config.get(CONF_SUNSET_CT) stop_colortemp = config.get(CONF_STOP_CT) brightness = config.get(CONF_BRIGHTNESS) disable_brightness_adjust = config.get(CONF_DISABLE_BRIGHTNESS_ADJUST) mode = config.get(CONF_MODE) interval = config.get(CONF_INTERVAL) transition = config.get(ATTR_TRANSITION) flux = FluxSwitch(name, hass, lights, start_time, stop_time, start_colortemp, sunset_colortemp, stop_colortemp, brightness, disable_brightness_adjust, mode, interval, transition) add_devices([flux]) def update(call=None): """Update lights.""" flux.flux_update() service_name = slugify("{} {}".format(name, 'update')) hass.services.register(DOMAIN, service_name, update) class FluxSwitch(SwitchDevice): """Representation of a Flux switch.""" def __init__(self, name, hass, lights, start_time, stop_time, start_colortemp, sunset_colortemp, stop_colortemp, brightness, disable_brightness_adjust, mode, interval, transition): """Initialize the Flux switch.""" self._name = name self.hass = hass self._lights = lights self._start_time = start_time self._stop_time = stop_time self._start_colortemp = start_colortemp self._sunset_colortemp = sunset_colortemp self._stop_colortemp = stop_colortemp self._brightness = brightness self._disable_brightness_adjust = disable_brightness_adjust self._mode = mode self._interval = interval self._transition = transition self.unsub_tracker = None @property def name(self): """Return the name of the device if any.""" return self._name @property def is_on(self): """Return true if switch is on.""" return self.unsub_tracker is not None def turn_on(self, **kwargs): """Turn on flux.""" if self.is_on: return # Make initial update self.flux_update() self.unsub_tracker = track_time_change( self.hass, self.flux_update, second=[0, self._interval]) self.schedule_update_ha_state() def turn_off(self, **kwargs): """Turn off flux.""" if self.unsub_tracker is not None: self.unsub_tracker() self.unsub_tracker = None self.schedule_update_ha_state() def flux_update(self, now=None): """Update all the lights using flux.""" if now is None: now = dt_now() sunset = get_astral_event_date(self.hass, 'sunset', now.date()) start_time = self.find_start_time(now) stop_time = self.find_stop_time(now) if stop_time <= start_time: # stop_time does not happen in the same day as start_time if start_time < now: # stop time is tomorrow stop_time += datetime.timedelta(days=1) elif now < start_time: # stop_time was yesterday since the new start_time is not reached stop_time -= datetime.timedelta(days=1) if start_time < now < sunset: # Daytime time_state = 'day' temp_range = abs(self._start_colortemp - self._sunset_colortemp) day_length = int(sunset.timestamp() - start_time.timestamp()) seconds_from_start = int(now.timestamp() - start_time.timestamp()) percentage_complete = seconds_from_start / day_length temp_offset = temp_range * percentage_complete if self._start_colortemp > self._sunset_colortemp: temp = self._start_colortemp - temp_offset else: temp = self._start_colortemp + temp_offset else: # Night time time_state = 'night' if now < stop_time: if stop_time < start_time and stop_time.day == sunset.day: # we need to use yesterday's sunset time sunset_time = sunset - datetime.timedelta(days=1) else: sunset_time = sunset night_length = int(stop_time.timestamp() - sunset_time.timestamp()) seconds_from_sunset = int(now.timestamp() - sunset_time.timestamp()) percentage_complete = seconds_from_sunset / night_length else: percentage_complete = 1 temp_range = abs(self._sunset_colortemp - self._stop_colortemp) temp_offset = temp_range * percentage_complete if self._sunset_colortemp > self._stop_colortemp: temp = self._sunset_colortemp - temp_offset else: temp = self._sunset_colortemp + temp_offset rgb = color_temperature_to_rgb(temp) x_val, y_val, b_val = color_RGB_to_xy_brightness(*rgb) brightness = self._brightness if self._brightness else b_val if self._disable_brightness_adjust: brightness = None if self._mode == MODE_XY: set_lights_xy(self.hass, self._lights, x_val, y_val, brightness, self._transition) _LOGGER.info("Lights updated to x:%s y:%s brightness:%s, %s%% " "of %s cycle complete at %s", x_val, y_val, brightness, round( percentage_complete * 100), time_state, now) elif self._mode == MODE_RGB: set_lights_rgb(self.hass, self._lights, rgb, self._transition) _LOGGER.info("Lights updated to rgb:%s, %s%% " "of %s cycle complete at %s", rgb, round(percentage_complete * 100), time_state, now) else: # Convert to mired and clamp to allowed values mired = color_temperature_kelvin_to_mired(temp) set_lights_temp(self.hass, self._lights, mired, brightness, self._transition) _LOGGER.info("Lights updated to mired:%s brightness:%s, %s%% " "of %s cycle complete at %s", mired, brightness, round(percentage_complete * 100), time_state, now) def find_start_time(self, now): """Return sunrise or start_time if given.""" if self._start_time: sunrise = now.replace( hour=self._start_time.hour, minute=self._start_time.minute, second=0) else: sunrise = get_astral_event_date(self.hass, 'sunrise', now.date()) return sunrise def find_stop_time(self, now): """Return dusk or stop_time if given.""" if self._stop_time: dusk = now.replace( hour=self._stop_time.hour, minute=self._stop_time.minute, second=0) else: dusk = get_astral_event_date(self.hass, 'dusk', now.date()) return dusk
py
7df8f283e7c7085a6e1c12d81443ec3d2a3f7930
import sys import os import time import argparse import glob import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim as optim from torch import Tensor from PIL import Image import cv2 import numpy as np import craft_utils import imgproc import file_utils import json import zipfile import test from tqdm import tqdm from craft import CRAFT from dataset import CRAFTDataset from torch.utils.data import DataLoader from collections import OrderedDict def train(args): # load net net = CRAFT() # initialize if not os.path.exists(args.trained_model): args.trained_model = None if args.trained_model is not None: print('Loading weights from checkpoint (' + args.trained_model + ')') if args.cuda: net.load_state_dict(test.copyStateDict(torch.load(args.trained_model))) else: net.load_state_dict(test.copyStateDict(torch.load(args.trained_model, map_location='cpu'))) if args.cuda: net = net.cuda() net = torch.nn.DataParallel(net) cudnn.benchmark = False # # LinkRefiner # refine_net = None # if args.refine: # from refinenet import RefineNet # # refine_net = RefineNet() # print('Loading weights of refiner from checkpoint (' + args.refiner_model + ')') # if args.cuda: # refine_net.load_state_dict(test.copyStateDict(torch.load(args.refiner_model))) # refine_net = refine_net.cuda() # refine_net = torch.nn.DataParallel(refine_net) # else: # refine_net.load_state_dict(test.copyStateDict(torch.load(args.refiner_model, map_location='cpu'))) # # args.poly = True criterion = craft_utils.CRAFTLoss() optimizer = optim.Adam(net.parameters(), args.learning_rate) train_data = CRAFTDataset(args) dataloader = DataLoader(dataset=train_data, batch_size=args.batch_size, shuffle=True) t0 = time.time() for epoch in range(args.max_epoch): pbar = tqdm(enumerate(dataloader), total=len(dataloader), desc=f'Epoch {epoch}') running_loss = 0.0 for i, data in pbar: x, y_region, y_link, y_conf = data x = x.cuda() y_region = y_region.cuda() y_link = y_link.cuda() y_conf = y_conf.cuda() optimizer.zero_grad() y, feature = net(x) score_text = y[:, :, :, 0] score_link = y[:, :, :, 1] L = criterion(score_text, score_link, y_region, y_link, y_conf) L.backward() optimizer.step() running_loss += L.data.item() if i % 2000 == 1999 or i == len(dataloader) - 1: pbar.set_postfix_str('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / min(i + 1, 2000))) running_loss = 0.0 # Save trained model torch.save(net.state_dict(), args.weight) print(f'training finished\n {time.time() - t0} spent for {args.max_epoch} epochs')
py
7df8f38587b2b528c932373228e755f76c419855
# Generated by Django 3.1.3 on 2020-12-05 12:18 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='MyModelName', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('my_field_name', models.CharField(help_text='Enter Field Documentation', max_length=20)), ], options={ 'ordering': ['-my_field_name'], }, ), ]
py
7df8f3d11f6f7fa4feab14698f6c45a757af104e
# This is a Bokeh server app. To function, it must be run using the # Bokeh server ath the command line: # # bokeh serve --show patch_app.py # # Running "python patch_app.py" will NOT work. import numpy as np from bokeh.io import curdoc from bokeh.layouts import gridplot from bokeh.plotting import figure from bokeh.models import ColumnDataSource # CDS with "typical" scalar elements x = np.random.uniform(10, size=500) y = np.random.uniform(10, size=500) color = ["navy"]*500 color[:200] = ["firebrick"]*200 source = ColumnDataSource(data=dict(x=x, y=y, color=color)) p = figure(plot_width=400, plot_height=400) p.circle('x', 'y', alpha=0.6, size=8, color="color", source=source) # CDS with 1d array elements x = np.linspace(0, 10, 200) y0 = np.sin(x) y1 = np.cos(x) source1d = ColumnDataSource(data=dict(xs=[x, x], ys=[y0, y1], color=["olive", "navy"])) p1d = figure(plot_width=400, plot_height=400) p1d.multi_line('xs', 'ys', alpha=0.6, line_width=4, color="color", source=source1d) # CDS with 2d image elements N = 200 img = np.empty((N,N), dtype=np.uint32) view = img.view(dtype=np.uint8).reshape((N, N, 4)) for i in range(N): for j in range(N): view[i, j, :] = [int(j/N*255), int(i/N*255), 158, 255] source2d = ColumnDataSource(data=dict(img=[img])) p2d = figure(plot_width=400, plot_height=400, x_range=(0,10), y_range=(0,10)) p2d.image_rgba(image='img', x=0, y=0, dw=10, dh=10, source=source2d) def update(): # update some items in the "typical" CDS column s = slice(100) new_x = source.data['x'][s] + np.random.uniform(-0.1, 0.1, size=100) new_y = source.data['y'][s] + np.random.uniform(-0.2, 0.2, size=100) source.patch({ 'x' : [(s, new_x)], 'y' : [(s, new_y)] }) # update a single point of the 1d multi-line data i = np.random.randint(200) new_y = source1d.data['ys'][0][i] + (0.2 * np.random.random()-0.1) source1d.patch({ 'ys' : [([0, i], [new_y])]}) # update five rows of the 2d image data at a time s1, s2 = slice(50, 151, 20), slice(None) index = [0, s1, s2] new_data = np.roll(source2d.data['img'][0][s1, s2], 2, axis=1).flatten() source2d.patch({ 'img' : [(index, new_data)] }) curdoc().add_periodic_callback(update, 50) curdoc().add_root(gridplot([[p, p1d, p2d]]))
py
7df8f3e6ec4c299891a2a0d2466aa649ebe88fe4
from .responses import CognitoIdpResponse, CognitoIdpJsonWebKeyResponse url_bases = [r"https?://cognito-idp\.(.+)\.amazonaws.com"] url_paths = { "{0}/$": CognitoIdpResponse.dispatch, "{0}/(?P<user_pool_id>[^/]+)/.well-known/jwks.json$": CognitoIdpJsonWebKeyResponse().serve_json_web_key, }
py
7df8f40c2e4c3211ab37807107caffde18fdf719
########################################################################## # # Copyright (c) 2012, Image Engine Design Inc. All rights reserved. # Copyright (c) 2012, John Haddon. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import unittest import IECore import Gaffer import GafferTest class ClassLoaderPathTest( GafferTest.TestCase ) : def test( self ) : p = Gaffer.ClassLoaderPath( IECore.ClassLoader.defaultOpLoader(), "/" ) self.failUnless( p.isValid() ) self.failIf( p.isLeaf() ) p.append( "files" ) self.failUnless( p.isValid() ) self.failIf( p.isLeaf() ) p.append( "iDontExist" ) self.failIf( p.isValid() ) self.failIf( p.isLeaf() ) del p[-1] self.failUnless( p.isValid() ) self.failIf( p.isLeaf() ) p.setFromString( "/files/sequenceRenumber" ) self.failUnless( p.isValid() ) self.failUnless( p.isLeaf() ) p.setFromString( "/files" ) children = p.children() for child in children : self.failUnless( isinstance( child, Gaffer.ClassLoaderPath ) ) self.assertEqual( len( child ), len( p ) + 1 ) self.failUnless( child.isLeaf() ) children = [ str( x ) for x in children ] self.failUnless( "/files/sequenceCopy" in children ) self.failUnless( "/files/sequenceLs" in children ) self.failUnless( "/files/sequenceMove" in children ) p.setFromString( "/" ) children = p.children() for child in children : self.failUnless( isinstance( child, Gaffer.ClassLoaderPath ) ) self.assertEqual( len( child ), len( p ) + 1 ) p.setFromString( "/mesh/normals" ) versions = p.info()["classLoader:versions"] self.failUnless( isinstance( versions, list ) ) self.failUnless( len( versions ) ) def testRelative( self ) : p = Gaffer.ClassLoaderPath( IECore.ClassLoader.defaultOpLoader(), "files" ) self.assertEqual( str( p ), "files" ) self.assertEqual( p.root(), "" ) self.assertTrue( "files/sequenceRenumber" in [ str( c ) for c in p.children() ] ) p2 = p.copy() self.assertEqual( str( p2 ), "files" ) self.assertEqual( p2.root(), "" ) self.assertTrue( "files/sequenceRenumber" in [ str( c ) for c in p2.children() ] ) def testLoad( self ) : p = Gaffer.ClassLoaderPath( IECore.ClassLoader.defaultOpLoader(), "/mesh/normals" ) op = p.load()() self.failUnless( isinstance( op, IECore.Op ) ) if __name__ == "__main__": unittest.main()
py
7df8f426cbc4805bcdfb6c2a9ea142524287ee6d
# coding: utf-8 """ Uptrends API v4 This document describes Uptrends API version 4. This Swagger environment also lets you execute API methods directly. Please note that this is not a sandbox environment: these API methods operate directly on your actual Uptrends account. For more information, please visit https://www.uptrends.com/api. # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import uptrends from uptrends.api.monitor_check_api import MonitorCheckApi # noqa: E501 from uptrends.rest import ApiException class TestMonitorCheckApi(unittest.TestCase): """MonitorCheckApi unit test stubs""" def setUp(self): self.api = uptrends.api.monitor_check_api.MonitorCheckApi() # noqa: E501 def tearDown(self): pass def test_monitor_check_get_account_monitor_checks(self): """Test case for monitor_check_get_account_monitor_checks Returns all monitor check data. # noqa: E501 """ pass def test_monitor_check_get_http_details(self): """Test case for monitor_check_get_http_details Returns HTTP details for a monitor check. # noqa: E501 """ pass def test_monitor_check_get_monitor_check(self): """Test case for monitor_check_get_monitor_check Returns monitor check data for a specific monitor. # noqa: E501 """ pass def test_monitor_check_get_monitor_group_data(self): """Test case for monitor_check_get_monitor_group_data Returns monitor check data for a specific monitor group. # noqa: E501 """ pass def test_monitor_check_get_multistep_details(self): """Test case for monitor_check_get_multistep_details Returns Multi-Step API details for a monitor check. # noqa: E501 """ pass def test_monitor_check_get_screenshots(self): """Test case for monitor_check_get_screenshots Gets a specific screenshot for a specified monitor check # noqa: E501 """ pass def test_monitor_check_get_single_monitor_check(self): """Test case for monitor_check_get_single_monitor_check Returns a single monitor check. # noqa: E501 """ pass def test_monitor_check_get_transaction_details(self): """Test case for monitor_check_get_transaction_details Returns transaction step details for a monitor check. # noqa: E501 """ pass def test_monitor_check_get_waterfall_info(self): """Test case for monitor_check_get_waterfall_info Returns waterfall information for a monitor check. # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
py
7df8f483ef0f5152df4faab62109cdf077cfb1a9
# # Copyright (c) 2011-2014 Exxeleron GmbH # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from qpython import MetaData from qpython.qtype import * # @UnusedWildImport from numpy import longlong _MILLIS_PER_DAY = 24 * 60 * 60 * 1000 _MILLIS_PER_DAY_FLOAT = float(_MILLIS_PER_DAY) _QEPOCH_MS = long(10957 * _MILLIS_PER_DAY) _EPOCH_QTIMESTAMP_NS = _QEPOCH_MS * 1000000 _EPOCH_QMONTH = numpy.datetime64('2000-01', 'M') _EPOCH_QDATE = numpy.datetime64('2000-01-01', 'D') _EPOCH_QDATETIME = numpy.datetime64(_QEPOCH_MS, 'ms') _EPOCH_TIMESTAMP = numpy.datetime64(_EPOCH_QTIMESTAMP_NS, 'ns') _QMONTH_NULL = qnull(QMONTH) _QDATE_NULL = qnull(QDATE) _QDATETIME_NULL = qnull(QDATETIME) _QMINUTE_NULL = qnull(QMINUTE) _QSECOND_NULL = qnull(QSECOND) _QTIME_NULL = qnull(QTIME) _QTIMESTAMP_NULL = qnull(QTIMESTAMP) _QTIMESPAN_NULL = qnull(QTIMESPAN) class QTemporal(object): ''' Represents a q temporal value. The :class:`.QTemporal` wraps `numpy.datetime64` or `numpy.timedelta64` along with meta-information like qtype indicator. :Parameters: - `dt` (`numpy.datetime64` or `numpy.timedelta64`) - datetime to be wrapped ''' def __init__(self, dt): self._datetime = dt def _meta_init(self, **meta): self.meta = MetaData(**meta) @property def raw(self): '''Return wrapped datetime object. :returns: `numpy.datetime64` or `numpy.timedelta64` - wrapped datetime ''' return self._datetime def __str__(self): return '%s [%s]' % (self._datetime, self.meta) def __eq__(self, other): return (isinstance(other, self.__class__) and self.meta.qtype == other.meta.qtype and self._datetime == other._datetime) def __ne__(self, other): return not self.__eq__(other) def qtemporal(dt, **meta): '''Converts a `numpy.datetime64` or `numpy.timedelta64` to :class:`.QTemporal` and enriches object instance with given meta data. Examples: >>> qtemporal(numpy.datetime64('2001-01-01', 'D'), qtype=QDATE) 2001-01-01 [metadata(qtype=-14)] >>> qtemporal(numpy.timedelta64(43499123, 'ms'), qtype=QTIME) 43499123 milliseconds [metadata(qtype=-19)] >>> qtemporal(qnull(QDATETIME), qtype=QDATETIME) nan [metadata(qtype=-15)] :Parameters: - `dt` (`numpy.datetime64` or `numpy.timedelta64`) - datetime to be wrapped :Kwargs: - `qtype` (`integer`) - qtype indicator :returns: `QTemporal` - wrapped datetime ''' result = QTemporal(dt) result._meta_init(**meta) return result def from_raw_qtemporal(raw, qtype): ''' Converts raw numeric value to `numpy.datetime64` or `numpy.timedelta64` instance. Actual conversion applied to raw numeric value depends on `qtype` parameter. :Parameters: - `raw` (`integer`, `float`) - raw representation to be converted - `qtype` (`integer`) - qtype indicator :returns: `numpy.datetime64` or `numpy.timedelta64` - converted datetime ''' return _FROM_Q[qtype](raw) def to_raw_qtemporal(dt, qtype): ''' Converts datetime/timedelta instance to raw numeric value. Actual conversion applied to datetime/timedelta instance depends on `qtype` parameter. :Parameters: - `dt` (`numpy.datetime64` or `numpy.timedelta64`) - datetime/timedelta object to be converted - `qtype` (`integer`) - qtype indicator :returns: `integer`, `float` - raw numeric value ''' return _TO_Q[qtype](dt) def array_from_raw_qtemporal(raw, qtype): ''' Converts `numpy.array` containing raw q representation to ``datetime64``/``timedelta64`` array. Examples: >>> raw = numpy.array([366, 121, qnull(QDATE)]) >>> print(array_from_raw_qtemporal(raw, qtype = QDATE)) ['2001-01-01' '2000-05-01' 'NaT'] :Parameters: - `raw` (`numpy.array`) - numpy raw array to be converted - `qtype` (`integer`) - qtype indicator :returns: `numpy.array` - numpy array with ``datetime64``/``timedelta64`` :raises: `ValueError` ''' if not isinstance(raw, numpy.ndarray): raise ValueError('raw parameter is expected to be of type: numpy.ndarray. Was: %s' % type(raw)) qtype = -abs(qtype) conversion = _FROM_RAW_LIST[qtype] mask = raw == qnull(qtype) dtype = PY_TYPE[qtype] array = raw.astype(dtype) if dtype != raw.dtype else raw array = conversion(array) if conversion else array null = _NUMPY_NULL[qtype] array = numpy.where(mask, null, array) return array def array_to_raw_qtemporal(array, qtype): ''' Converts `numpy.array` containing ``datetime64``/``timedelta64`` to raw q representation. Examples: >>> na_dt = numpy.arange('1999-01-01', '2005-12-31', dtype='datetime64[D]') >>> print(array_to_raw_qtemporal(na_dt, qtype = QDATE_LIST)) [-365 -364 -363 ..., 2188 2189 2190] >>> array_to_raw_qtemporal(numpy.arange(-20, 30, dtype='int32'), qtype = QDATE_LIST) Traceback (most recent call last): ... ValueError: array.dtype is expected to be of type: datetime64 or timedelta64. Was: int32 :Parameters: - `array` (`numpy.array`) - numpy datetime/timedelta array to be converted - `qtype` (`integer`) - qtype indicator :returns: `numpy.array` - numpy array with raw values :raises: `ValueError` ''' if not isinstance(array, numpy.ndarray): raise ValueError('array parameter is expected to be of type: numpy.ndarray. Was: %s' % type(array)) if not array.dtype.type in (numpy.datetime64, numpy.timedelta64): raise ValueError('array.dtype is expected to be of type: datetime64 or timedelta64. Was: %s' % array.dtype) qtype = -abs(qtype) conversion = _TO_RAW_LIST[qtype] raw = array.view(numpy.int64).view(numpy.ndarray) mask = raw == numpy.int64(-2 ** 63) raw = conversion(raw) if conversion else raw null = qnull(qtype) raw = numpy.where(mask, null, raw) return raw def _from_qmonth(raw): if raw == _QMONTH_NULL: return _NUMPY_NULL[QMONTH] else: return _EPOCH_QMONTH + numpy.timedelta64(int(raw), 'M') def _to_qmonth(dt): t_dt = type(dt) if t_dt == numpy.int32: return dt elif t_dt == numpy.datetime64: return (dt - _EPOCH_QMONTH).astype(int) if not numpy.isnan(dt) else _QMONTH_NULL else: raise ValueError('Cannot convert %s of type %s to q value.' % (dt, type(dt))) def _from_qdate(raw): if raw == _QDATE_NULL: return _NUMPY_NULL[QDATE] else: return _EPOCH_QDATE + numpy.timedelta64(int(raw), 'D') def _to_qdate(dt): t_dt = type(dt) if t_dt == numpy.int32: return dt elif t_dt == numpy.datetime64: return (dt - _EPOCH_QDATE).astype(int) if not numpy.isnan(dt) else _QDATE_NULL else: raise ValueError('Cannot convert %s of type %s to q value.' % (dt, type(dt))) def _from_qdatetime(raw): if numpy.isnan(raw) or raw == _QDATETIME_NULL: return _NUMPY_NULL[QDATETIME] else: return _EPOCH_QDATETIME + numpy.timedelta64(long(_MILLIS_PER_DAY * raw), 'ms') def _to_qdatetime(dt): t_dt = type(dt) if t_dt == numpy.float64: return dt elif t_dt == numpy.datetime64: return (dt - _EPOCH_QDATETIME).astype(float) / _MILLIS_PER_DAY if not numpy.isnan(dt) else _QDATETIME_NULL else: raise ValueError('Cannot convert %s of type %s to q value.' % (dt, type(dt))) def _from_qminute(raw): if raw == _QMINUTE_NULL: return _NUMPY_NULL[QMINUTE] else: return numpy.timedelta64(int(raw), 'm') def _to_qminute(dt): t_dt = type(dt) if t_dt == numpy.int32: return dt elif t_dt == numpy.timedelta64: return dt.astype(int) if not numpy.isnan(dt) else _QMINUTE_NULL else: raise ValueError('Cannot convert %s of type %s to q value.' % (dt, type(dt))) def _from_qsecond(raw): if raw == _QSECOND_NULL: return _NUMPY_NULL[QSECOND] else: return numpy.timedelta64(int(raw), 's') def _to_qsecond(dt): t_dt = type(dt) if t_dt == numpy.int32: return dt elif t_dt == numpy.timedelta64: return dt.astype(int) if not numpy.isnan(dt) else _QSECOND_NULL else: raise ValueError('Cannot convert %s of type %s to q value.' % (dt, type(dt))) def _from_qtime(raw): if raw == _QTIME_NULL: return _NUMPY_NULL[QTIME] else: return numpy.timedelta64(int(raw), 'ms') def _to_qtime(dt): t_dt = type(dt) if t_dt == numpy.int32: return dt elif t_dt == numpy.timedelta64: return dt.astype(int) if not numpy.isnan(dt) else _QTIME_NULL else: raise ValueError('Cannot convert %s of type %s to q value.' % (dt, type(dt))) def _from_qtimestamp(raw): if raw == _QTIMESTAMP_NULL: return _NUMPY_NULL[QTIMESTAMP] else: return _EPOCH_TIMESTAMP + numpy.timedelta64(long(raw), 'ns') def _to_qtimestamp(dt): t_dt = type(dt) if t_dt == numpy.int64: return dt elif t_dt == numpy.datetime64: return (dt - _EPOCH_TIMESTAMP).astype(longlong) if not numpy.isnan(dt) else _QTIMESTAMP_NULL else: raise ValueError('Cannot convert %s of type %s to q value.' % (dt, type(dt))) def _from_qtimespan(raw): if raw == _QTIMESPAN_NULL: return _NUMPY_NULL[QTIMESPAN] else: return numpy.timedelta64(long(raw), 'ns') def _to_qtimespan(dt): t_dt = type(dt) if t_dt == numpy.int64: return dt elif t_dt == numpy.timedelta64: return dt.astype(longlong) if not numpy.isnan(dt) else _QTIMESTAMP_NULL else: raise ValueError('Cannot convert %s of type %s to q value.' % (dt, type(dt))) _FROM_Q = { QMONTH: _from_qmonth, QDATE: _from_qdate, QDATETIME: _from_qdatetime, QMINUTE: _from_qminute, QSECOND: _from_qsecond, QTIME: _from_qtime, QTIMESTAMP: _from_qtimestamp, QTIMESPAN: _from_qtimespan, } _TO_Q = { QMONTH: _to_qmonth, QDATE: _to_qdate, QDATETIME: _to_qdatetime, QMINUTE: _to_qminute, QSECOND: _to_qsecond, QTIME: _to_qtime, QTIMESTAMP: _to_qtimestamp, QTIMESPAN: _to_qtimespan, } _TO_RAW_LIST = { QMONTH: lambda a: (a - 360).astype(numpy.int32), QDATE: lambda a: (a - 10957).astype(numpy.int32), QDATETIME: lambda a: ((a - _QEPOCH_MS) / _MILLIS_PER_DAY_FLOAT).astype(numpy.float64), QMINUTE: lambda a: a.astype(numpy.int32), QSECOND: lambda a: a.astype(numpy.int32), QTIME: lambda a: a.astype(numpy.int32), QTIMESTAMP: lambda a: a - _EPOCH_QTIMESTAMP_NS, QTIMESPAN: None, } _FROM_RAW_LIST = { QMONTH: lambda a: numpy.array((a + 360), dtype = 'datetime64[M]'), QDATE: lambda a: numpy.array((a + 10957), dtype = 'datetime64[D]'), QDATETIME: lambda a: numpy.array((a * _MILLIS_PER_DAY + _QEPOCH_MS), dtype = 'datetime64[ms]'), QMINUTE: lambda a: numpy.array(a, dtype = 'timedelta64[m]'), QSECOND: lambda a: numpy.array(a, dtype = 'timedelta64[s]'), QTIME: lambda a: numpy.array(a, dtype = 'timedelta64[ms]'), QTIMESTAMP: lambda a: numpy.array((a + _EPOCH_QTIMESTAMP_NS), dtype = 'datetime64[ns]'), QTIMESPAN: lambda a: numpy.array(a, dtype = 'timedelta64[ns]'), } _NUMPY_NULL = { QMONTH: numpy.datetime64('NaT', 'M'), QDATE: numpy.datetime64('NaT', 'D'), QDATETIME: numpy.datetime64('NaT', 'ms'), QMINUTE: numpy.timedelta64('NaT', 'm'), QSECOND: numpy.timedelta64('NaT', 's'), QTIME: numpy.timedelta64('NaT', 'ms'), QTIMESTAMP: numpy.datetime64('NaT', 'ns'), QTIMESPAN: numpy.timedelta64('NaT', 'ns'), }
py
7df8f50d7ad2269ecde904548d83cf2e00adfaa3
import os setupargs = {} try: from setuptools import setup except ImportError: from distutils.core import setup setup( name='period', version='0.1', description='Python date/time/duration/recurring string parser.', long_description='', author='Christopher Grebs', author_email='[email protected]', url='https://github.com/EnTeQuAk/period', packages=['period'], package_data={'': ['LICENSE']}, include_package_data=True, install_requires=['pytz'], license='ISC', classifiers=( 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: ISC License (ISCL)', 'Programming Language :: Python', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', ), )
py
7df8f61c9526c3d5e386014bff75f138b3c4062b
"""Histograms of ranked posterior draws, plotted for each chain.""" from itertools import cycle import matplotlib.pyplot as plt from ..data import convert_to_dataset from ..labels import BaseLabeller from ..sel_utils import xarray_var_iter from ..rcparams import rcParams from ..stats.density_utils import _sturges_formula from ..utils import _var_names from .plot_utils import default_grid, filter_plotters_list, get_plotting_function def plot_rank( data, var_names=None, filter_vars=None, transform=None, coords=None, bins=None, kind="bars", colors="cycle", ref_line=True, labels=True, labeller=None, grid=None, figsize=None, ax=None, backend=None, ref_line_kwargs=None, bar_kwargs=None, vlines_kwargs=None, marker_vlines_kwargs=None, backend_kwargs=None, show=None, ): """Plot rank order statistics of chains. From the paper: Rank plots are histograms of the ranked posterior draws (ranked over all chains) plotted separately for each chain. If all of the chains are targeting the same posterior, we expect the ranks in each chain to be uniform, whereas if one chain has a different location or scale parameter, this will be reflected in the deviation from uniformity. If rank plots of all chains look similar, this indicates good mixing of the chains. This plot was introduced by Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, Paul-Christian Burkner (2019): Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC. arXiv preprint https://arxiv.org/abs/1903.08008 Parameters ---------- data: obj Any object that can be converted to an :class:`arviz.InferenceData` object. Refer to documentation of :func:`arviz.convert_to_dataset` for details var_names: string or list of variable names Variables to be plotted. Prefix the variables by ``~`` when you want to exclude them from the plot. filter_vars: {None, "like", "regex"}, optional, default=None If `None` (default), interpret var_names as the real variables names. If "like", interpret var_names as substrings of the real variables names. If "regex", interpret var_names as regular expressions on the real variables names. A la ``pandas.filter``. transform: callable Function to transform data (defaults to None i.e.the identity function) coords: mapping, optional Coordinates of var_names to be plotted. Passed to :meth:`xarray.Dataset.sel` bins: None or passed to np.histogram Binning strategy used for histogram. By default uses twice the result of Sturges' formula. See :func:`numpy.histogram` documentation for, other available arguments. kind: string If bars (defaults), ranks are represented as stacked histograms (one per chain). If vlines ranks are represented as vertical lines above or below ``ref_line``. colors: string or list of strings List with valid matplotlib colors, one color per model. Alternative a string can be passed. If the string is `cycle`, it will automatically choose a color per model from matplotlib's cycle. If a single color is passed, e.g. 'k', 'C2' or 'red' this color will be used for all models. Defaults to `cycle`. ref_line: boolean Whether to include a dashed line showing where a uniform distribution would lie labels: bool whether to plot or not the x and y labels, defaults to True labeller : labeller instance, optional Class providing the method ``make_label_vert`` to generate the labels in the plot titles. Read the :ref:`label_guide` for more details and usage examples. grid : tuple Number of rows and columns. Defaults to None, the rows and columns are automatically inferred. figsize: tuple Figure size. If None it will be defined automatically. ax: numpy array-like of matplotlib axes or bokeh figures, optional A 2D array of locations into which to plot the densities. If not supplied, ArviZ will create its own array of plot areas (and return it). backend: str, optional Select plotting backend {"matplotlib","bokeh"}. Default "matplotlib". ref_line_kwargs : dict, optional Reference line keyword arguments, passed to :meth:`mpl:matplotlib.axes.Axes.axhline` or :class:`bokeh:bokeh.models.Span`. bar_kwargs : dict, optional Bars keyword arguments, passed to :meth:`mpl:matplotlib.axes.Axes.bar` or :meth:`bokeh:bokeh.plotting.Figure.vbar`. vlines_kwargs : dict, optional Vlines keyword arguments, passed to :meth:`mpl:matplotlib.axes.Axes.vlines` or :meth:`bokeh:bokeh.plotting.Figure.multi_line`. marker_vlines_kwargs : dict, optional Marker for the vlines keyword arguments, passed to :meth:`mpl:matplotlib.axes.Axes.plot` or :meth:`bokeh:bokeh.plotting.Figure.circle`. backend_kwargs: bool, optional These are kwargs specific to the backend being used, passed to :func:`matplotlib.pyplot.subplots` or :func:`bokeh.plotting.figure`. For additional documentation check the plotting method of the backend. show: bool, optional Call backend show function. Returns ------- axes: matplotlib axes or bokeh figures See Also -------- plot_trace : Plot distribution (histogram or kernel density estimates) and sampled values or rank plot. Examples -------- Show a default rank plot .. plot:: :context: close-figs >>> import arviz as az >>> data = az.load_arviz_data('centered_eight') >>> az.plot_rank(data) Recreate Figure 13 from the arxiv preprint .. plot:: :context: close-figs >>> data = az.load_arviz_data('centered_eight') >>> az.plot_rank(data, var_names='tau') Use vlines to compare results for centered vs noncentered models .. plot:: :context: close-figs >>> import matplotlib.pyplot as plt >>> centered_data = az.load_arviz_data('centered_eight') >>> noncentered_data = az.load_arviz_data('non_centered_eight') >>> _, ax = plt.subplots(1, 2, figsize=(12, 3)) >>> az.plot_rank(centered_data, var_names="mu", kind='vlines', ax=ax[0]) >>> az.plot_rank(noncentered_data, var_names="mu", kind='vlines', ax=ax[1]) Change the aesthetics using kwargs .. plot:: :context: close-figs >>> az.plot_rank(noncentered_data, var_names="mu", kind="vlines", >>> vlines_kwargs={'lw':0}, marker_vlines_kwargs={'lw':3}); """ if transform is not None: data = transform(data) posterior_data = convert_to_dataset(data, group="posterior") if coords is not None: posterior_data = posterior_data.sel(**coords) var_names = _var_names(var_names, posterior_data, filter_vars) plotters = filter_plotters_list( list(xarray_var_iter(posterior_data, var_names=var_names, combined=True)), "plot_rank" ) length_plotters = len(plotters) if bins is None: bins = _sturges_formula(posterior_data, mult=2) if labeller is None: labeller = BaseLabeller() rows, cols = default_grid(length_plotters, grid=grid) chains = len(posterior_data.chain) if colors == "cycle": colors = [ prop for _, prop in zip( range(chains), cycle(plt.rcParams["axes.prop_cycle"].by_key()["color"]) ) ] elif isinstance(colors, str): colors = [colors] * chains rankplot_kwargs = dict( axes=ax, length_plotters=length_plotters, rows=rows, cols=cols, figsize=figsize, plotters=plotters, bins=bins, kind=kind, colors=colors, ref_line=ref_line, labels=labels, labeller=labeller, ref_line_kwargs=ref_line_kwargs, bar_kwargs=bar_kwargs, vlines_kwargs=vlines_kwargs, marker_vlines_kwargs=marker_vlines_kwargs, backend_kwargs=backend_kwargs, show=show, ) if backend is None: backend = rcParams["plot.backend"] backend = backend.lower() # TODO: Add backend kwargs plot = get_plotting_function("plot_rank", "rankplot", backend) axes = plot(**rankplot_kwargs) return axes
py
7df8f7f8be3f7d5401cffd84013f4487ef666f05
# -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function from __future__ import unicode_literals from .Input.LandUse.TotAreaMeters import TotAreaMeters from .MultiUse_Fxns.Discharge.StreamFlow_1 import StreamFlow_1_f from .MultiUse_Fxns.LossFactAdj import LossFactAdj_f from .MultiUse_Fxns.Runoff.UrbRunoffLiter import UrbRunoffLiter_f """ Imported from AFOS.bas """ import logging log = logging.getLogger(__name__) def AnimalOperations(z, Y): for i in range(12): z.NGLostManP[Y][i] = (z.NGAppManP[i] * z.NGAppPRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][i] * (1 - z.NGPctSoilIncRate[i])) if z.NGLostManP[Y][i] > z.NGAppManP[i]: z.NGLostManP[Y][i] = z.NGAppManP[i] if z.NGLostManP[Y][i] < 0: z.NGLostManP[Y][i] = 0 z.NGLostManFC[Y][i] = (z.NGAppManFC[i] * z.NGAppFCRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][i] * (1 - z.NGPctSoilIncRate[i])) if z.NGLostManFC[Y][i] > z.NGAppManFC[i]: z.NGLostManFC[Y][i] = z.NGAppManFC[i] if z.NGLostManFC[Y][i] < 0: z.NGLostManFC[Y][i] = 0 z.NGLostBarnP[Y][i] = (z.NGInitBarnP[i] * z.NGBarnPRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][i] - z.NGInitBarnP[i] * z.NGBarnPRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][ i] * z.AWMSNgPct * z.NgAWMSCoeffP + z.NGInitBarnP[i] * z.NGBarnPRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][ i] * z.RunContPct * z.RunConCoeffP) if z.NGLostBarnP[Y][i] > z.NGInitBarnP[i]: z.NGLostBarnP[Y][i] = z.NGInitBarnP[i] if z.NGLostBarnP[Y][i] < 0: z.NGLostBarnP[Y][i] = 0 z.NGLostBarnFC[Y][i] = (z.NGInitBarnFC[i] * z.NGBarnFCRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][i] - z.NGInitBarnFC[i] * z.NGBarnFCRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][ i] * z.AWMSNgPct * z.NgAWMSCoeffP + z.NGInitBarnFC[i] * z.NGBarnFCRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][ i] * z.RunContPct * z.RunConCoeffP) if z.NGLostBarnFC[Y][i] > z.NGInitBarnFC[i]: z.NGLostBarnFC[Y][i] = z.NGInitBarnFC[i] if z.NGLostBarnFC[Y][i] < 0: z.NGLostBarnFC[Y][i] = 0 # Grazing animal losses z.GRLostManP[Y][i] = (z.GRAppManP[i] * z.GRAppPRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][i] * (1 - z.GRPctSoilIncRate[i])) if z.GRLostManP[Y][i] > z.GRAppManP[i]: z.GRLostManP[Y][i] = z.GRAppManP[i] if z.GRLostManP[Y][i] < 0: z.GRLostManP[Y][i] = 0 z.GRLostManFC[Y][i] = (z.GRAppManFC[i] * z.GRAppFCRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][i] * (1 - z.GRPctSoilIncRate[i])) if z.GRLostManFC[Y][i] > z.GRAppManFC[i]: z.GRLostManFC[Y][i] = z.GRAppManFC[i] if z.GRLostManFC[Y][i] < 0: z.GRLostManFC[Y][i] = 0 z.GRLostBarnP[Y][i] = (z.GRInitBarnP[i] * z.GRBarnPRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][i] - z.GRInitBarnP[i] * z.GRBarnPRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][ i] * z.AWMSGrPct * z.GrAWMSCoeffP + z.GRInitBarnP[i] * z.GRBarnPRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][ i] * z.RunContPct * z.RunConCoeffP) if z.GRLostBarnP[Y][i] > z.GRInitBarnP[i]: z.GRLostBarnP[Y][i] = z.GRInitBarnP[i] if z.GRLostBarnP[Y][i] < 0: z.GRLostBarnP[Y][i] = 0 z.GRLostBarnFC[Y][i] = (z.GRInitBarnFC[i] * z.GRBarnFCRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][i] - z.GRInitBarnFC[i] * z.GRBarnFCRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][ i] * z.AWMSGrPct * z.GrAWMSCoeffP + z.GRInitBarnFC[i] * z.GRBarnFCRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][ i] * z.RunContPct * z.RunConCoeffP) if z.GRLostBarnFC[Y][i] > z.GRInitBarnFC[i]: z.GRLostBarnFC[Y][i] = z.GRInitBarnFC[i] if z.GRLostBarnFC[Y][i] < 0: z.GRLostBarnFC[Y][i] = 0 z.GRLossP[Y][i] = ((z.GrazingP[i] - z.GRStreamP[i]) * z.GrazingPRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][i]) if z.GRLossP[Y][i] > (z.GrazingP[i] - z.GRStreamP[i]): z.GRLossP[Y][i] = (z.GrazingP[i] - z.GRStreamP[i]) if z.GRLossP[Y][i] < 0: z.GRLossP[Y][i] = 0 z.GRLossFC[Y][i] = ((z.GrazingFC[i] - z.GRStreamFC[i]) * z.GrazingFCRate[i] * LossFactAdj_f(z.Prec, z.DaysMonth)[Y][i]) if z.GRLossFC[Y][i] > (z.GrazingFC[i] - z.GRStreamFC[i]): z.GRLossFC[Y][i] = (z.GrazingFC[i] - z.GRStreamFC[i]) if z.GRLossFC[Y][i] < 0: z.GRLossFC[Y][i] = 0 # Total animal related losses z.AnimalP[Y][i] = ((z.NGLostManP[Y][i] + z.GRLostManP[Y][i] + z.NGLostBarnP[Y][i] + z.GRLostBarnP[Y][i] + z.GRLossP[Y][i] + z.GRStreamP[i]) - ((z.NGLostManP[Y][i] + z.NGLostBarnP[Y][i]) * z.PhytasePct * z.PhytaseCoeff)) z.AnimalFC[Y][i] = (z.NGLostManFC[Y][i] + z.GRLostManFC[Y][i] + z.NGLostBarnFC[Y][i] + z.GRLostBarnFC[Y][i] + z.GRLossFC[Y][i] + z.GRStreamFC[i]) # CACULATE PATHOGEN LOADS z.ForestAreaTotalSqMi = 0 z.ForestAreaTotalSqMi = (z.ForestAreaTotal * 0.01) / 2.59 z.PtFlowLiters = (z.PointFlow[i] / 100) * TotAreaMeters(z.NRur, z.NUrb, z.Area) * 1000 # Get the wildlife orgs z.WWOrgs[Y][i] = z.PtFlowLiters * (z.WWTPConc * 10) * (1 - z.InstreamDieoff) z.SSOrgs[Y][i] = (z.SepticOrgsDay * z.SepticsDay[i] * z.DaysMonth[Y][i] * z.SepticFailure * (1 - z.InstreamDieoff)) if LossFactAdj_f(z.Prec, z.DaysMonth)[Y][i] * (1 - z.WuDieoff) > 1: z.UrbOrgs[Y][i] = (z.UrbRunoffLiter[Y][i] * (z.UrbEMC * 10) * (1 - z.InstreamDieoff)) z.WildOrgs[Y][i] = (z.WildOrgsDay * z.DaysMonth[Y][i] * z.WildDensity * z.ForestAreaTotalSqMi * (1 - z.InstreamDieoff)) else: z.UrbOrgs[Y][i] = ( UrbRunoffLiter_f(z.NYrs, z.DaysMonth, z.InitSnow_0, z.Temp, z.Prec, z.NRur, z.NUrb, z.Area, z.CNI_0, z.AntMoist_0, z.Grow_0, z.CNP_0, z.Imper, z.ISRR, z.ISRA)[Y][i] * (z.UrbEMC * 10) * (1 - z.WuDieoff) * (1 - z.InstreamDieoff)) z.WildOrgs[Y][i] = (z.WildOrgsDay * z.DaysMonth[Y][i] * z.WildDensity * z.ForestAreaTotalSqMi * (1 - z.WuDieoff) * (1 - z.InstreamDieoff)) # Get the total orgs z.TotalOrgs[Y][i] = (z.WWOrgs[Y][i] + z.SSOrgs[Y][i] + z.UrbOrgs[Y][i] + z.WildOrgs[Y][i] + z.AnimalFC[Y][i]) z.CMStream[Y][i] = (StreamFlow_1_f(z.NYrs, z.DaysMonth, z.Temp, z.InitSnow_0, z.Prec, z.NRur, z.NUrb, z.Area, z.CNI_0, z.AntMoist_0, z.Grow_0, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.CN, z.UnsatStor_0, z.KV, z.PcntET, z.DayHrs, z.MaxWaterCap, z.SatStor_0, z.RecessionCoef, z.SeepCoef)[Y][i] / 100) * TotAreaMeters( z.NRur, z.NUrb, z.Area) if z.CMStream[Y][i] > 0: z.OrgConc[Y][i] = (z.TotalOrgs[Y][i] / (z.CMStream[Y][i] * 1000)) / 10 else: z.OrgConc[Y][i] = 0
py
7df8f8c786268e4a268cdd30b3d25670a6f7d120
# -*- coding: utf-8 -*- # ***************************************************************************** # NICOS, the Networked Instrument Control System of the MLZ # Copyright (c) 2009-2021 by the NICOS contributors (see AUTHORS) # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # Georg Brandl <[email protected]> # Enrico Faulhaber <[email protected]> # Christian Felder <[email protected]> # # ***************************************************************************** """NICOS Sample device.""" from nicos import session from nicos.core import InvalidValueError, Moveable, Override, Param, anytype, \ dictof, none_or, oneof, status from nicos.utils import safeName class Sample(Moveable): """A special device to represent a sample. An instance of this class is used as the *sample* attached device of the `Experiment` object. It can be subclassed to add special sample properties, such as lattice and orientation calculations, or more parameters describing the sample. The device stores the collection of all currently defined samples in its `samples` parameter. When changing samples, it will overwrite the device's other parameters with these values. """ parameters = { 'samplename': Param('Current sample name', type=str, settable=True, category='sample'), 'samplenumber': Param('Current sample number: e.g. the position in ' 'a sample changer or the index of the sample ' 'among all defined samples', type=none_or(int), settable=True), 'samples': Param('Information about all defined samples', type=dictof(int, dictof(str, anytype)), settable=True, internal=True, preinit=True), } parameter_overrides = { 'unit': Override(mandatory=False, default=''), } valuetype = str def doRead(self, maxage=0): return self.samplename def doStatus(self, maxage=0): return status.OK, '' def doStart(self, target): self.select(target) def doIsAtTarget(self, pos, target): # never warn about self.target mismatch return True @property def filename(self): return safeName(self.samplename) def doWriteSamplename(self, name): if name: session.elogEvent('sample', name) def clear(self): """Clear experiment-specific information.""" self.samplename = '' self.samplenumber = None self.samples = {} def new(self, parameters): """Create and select a new sample.""" # In this simple base class, we expect the user to use only NewSample, # so we remove stored sample information every time to avoid a buildup # of unused sample information. self.samples = {0: parameters} self.select(0) def set(self, number, parameters): """Set sample information for sample no. *number*.""" if number is None: raise InvalidValueError(self, 'cannot use None as sample number') info = self.samples.copy() if number in info: self.log.warning('overwriting parameters for sample %s (%s)', number, info[number]['name']) info[number] = parameters self.samples = info def select(self, number_or_name): """Select sample with given number or name.""" number = self._findIdent(number_or_name) try: parameters = self.samples[number] except KeyError: raise InvalidValueError( self, 'cannot find sample with number or name %r' % number_or_name) from None self._applyParams(number, parameters) session.experiment.newSample(parameters) self.poll() def _findIdent(self, number_or_name): """Find sample number. Can be overridden in subclasses.""" # look by number if number_or_name in self.samples: return number_or_name # look by name found = None for (number, parameters) in self.samples.items(): if parameters['name'] == number_or_name: if found is not None: # two samples with same name found... raise InvalidValueError(self, 'two samples with name %r ' 'were found, please use the ' 'sample number (%s or %s)' % (number_or_name, found, number)) found = number return found def _applyParams(self, number, parameters): """Apply sample parameters. Override in subclasses. All parameters beside the name should be treated as optional by subclasses, since they will not be provided for the empty sample created by NewExperiment. """ self.samplenumber = number self.samplename = parameters['name'] self._setROParam('target', parameters['name']) def doUpdateSamples(self, info): self.valuetype = oneof(*(info[n]['name'] for n in sorted(info)))
py
7df8f8c7ff44784c628557eedaa6ef961e41a1bf
#!/usr/bin/env python3 # encoding: utf-8 from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_bootstrap import Bootstrap app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql://root:xxxxx@localhost:3306/trip?charset=utf8' app.config['SECRET_KEY'] = 'session_key' db = SQLAlchemy(app) Bootstrap(app) from app.views import *
py
7df8f8f131db4bbddc3e57e4424aa3cfdec25e3a
import numpy as np from LogisticRegression.Sigmoid import sigmoid from LogisticRegression.Cost import cost def optimize(X, y, lambdad, maxrun, alpha): m, n = X.shape X = np.hstack((X,np.ones((m, 1)))) theta = np.random.rand(n+1, 1) theta = np.concatenate((np.random.rand(n + 1, 1))) costs = [] for iter in range(0,maxrun): first_dev = np.zeros(n+1) for i in range(m): h_x = sigmoid(np.dot(X[i,:], theta)) first_dev = first_dev + (h_x - y[i])*X[i,:] first_dev[1:] = first_dev[1:] + lambdad * theta[1:] first_dev = (alpha/m) * first_dev theta_new = theta - first_dev diff = theta_new - theta theta = theta_new costs.append(cost(X, y, theta, lambdad)) if np.dot(diff, diff) < 10**(-6): break if iter == maxrun - 1: print("Failed to converge!") return theta, costs
py
7df8f93fd610ddc3cc770c64d9aacd4f706a443b
class Solution: def validMountainArray(self, A: List[int]) -> bool: if len(A) < 3 or A[0] >= A[1] or A[-2] <= A[-1]: return False i = len(A) while i > 1 and A[i - 1] < A[i - 2]: i -= 1 while i > 1 and A[i - 2] < A[i - 1]: i -= 1 return i == 1
py
7df8fa65eed63c1f029ecef588ce06563ae9d192
# flake8: noqa from allegro.search.crawler import search, crawl from allegro.search.product import Product, parse_products
py
7df8fc299618b37b8612d40d3114e8a8b0b2d983
import nltk def process_input(api_desc): ''' api_desc: is a description of some data capture needs, for instance : 'I would like to record the books borrowed by different users at all the libraries' ''' tokenized = nltk.word_tokenize(api_desc) nouns = [word for (word, pos) in nltk.pos_tag(tokenized) if(pos[:2] == 'NN')] return nouns def main(): api_desc = input("Enter a description of the data you wish to use :") print("") if api_desc.strip() == "": raise Exception("Description must be input") else: nouns=process_input(api_desc) if nouns: print(f'''Nouns found in text input : {api_desc}\n''') for n in nouns: print(n) else: print(f'''No nouns found in text input : {api_desc}''') print("") if __name__ == '''__main__''': main()
py
7df8fd0d5717bde723dd16fb58f07eaf6535acc5
import yaml import logging log = logging.getLogger(__name__) with open("config.yaml", "rb") as stream: log.info("load config from config.yaml") CONFIG = yaml.load(stream)
py
7df8fd68f62cfb91ef88bd7b66e39ead92642c96
import tornado import tornado.websocket from datetime import timedelta import datetime, sys, time from pprint import pprint import json import serial.tools.list_ports import serial clients = [] arduino_name = "SNR=95333353037351D071B0" ports = serial.tools.list_ports.comports() print(ports) arduino_port = "" for p in ports: print (p) if p[0] != "": print ("This is an Arduino!") print (p) arduino_port = p[0] if arduino_port == "": print ("Arduino not found") sys.exit("where is it?") # Establish the connection on a specific port ser = serial.Serial(arduino_port, 115200) #9600) class WebSocketHandler(tornado.websocket.WebSocketHandler): tt = datetime.datetime.now() def check_origin(self, origin): #print "origin: " + origin return True # the client connected def open(self): print ("New client connected") self.write_message("You are connected") clients.append(self) tornado.ioloop.IOLoop.instance().add_timeout(timedelta(seconds=1), self.test) def test(self): try: info = {} try: text = ser.readline() # Read the newest output from the Arduino print("TEXT: ") print(text) values = str(text).split(".") """ info = { "luz" : float(values[1]), "humedad" : float(values[2]), "temperatura" : float(values[3]), "tierra" : float(values[0]), "estado" : int(values[3]), "timestamp" : time.time() } """ info = { "luz" : float(values[0]), "humedad" : float(values[1]), "temperatura" : float(values[2]), #"tierra" : float(values[0]), "estado" : int(values[3]), "timestamp" : time.time() } print info except Exception as e: print("EXCEPTION IN TEST READ FROM READ SERIAL: ") print(e) #print(info) info = { "humedad" : float("0.0"), "temperatura" : float("0.0"), "tierra" : float("0.0"), "estado" : -1, "timestamp" : time.time() } #raise(e) print(info) self.write_message(info) except Exception as e: print ("restartplease") self.write_message("restartplease") print e #raise(e) else: tornado.ioloop.IOLoop.instance().add_timeout(timedelta(seconds=0.1), self.test) # the client sent the message def on_message(self, message): print ("message: " + message) try: message = json.loads(message) #pprint(message) except Exception as e: print ("cant send value to arduino") #raise(e) #self.write_message(message) # client disconnected def on_close(self): print ("Client disconnected") clients.remove(self) socket = tornado.web.Application([(r"/websocket", WebSocketHandler),]) if __name__ == "__main__": print("Trying to read data from serial: ") text = ser.readline() print("Data from serial: ") print(text) values = str(text).split(".") print values print("Opening port 8888") socket.listen(8888) tornado.ioloop.IOLoop.instance().start()
py
7df8fe1e403e9f04652faf6aba76265b56f83070
# uncompyle6 version 3.2.0 # Python bytecode 2.4 (62061) # Decompiled from: Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:19:30) [MSC v.1500 32 bit (Intel)] # Embedded file name: pirates.friends.RelationshipChooser from direct.gui.DirectGui import * from pandac.PandaModules import * from direct.task.Task import Task from direct.fsm import ClassicFSM from direct.fsm import State from direct.directnotify import DirectNotifyGlobal from otp.otpbase import OTPLocalizer from otp.otpbase import OTPGlobals from otp.uberdog.RejectCode import RejectCode from pirates.piratesbase import PiratesGlobals from pirates.piratesbase import PLocalizer from pirates.piratesgui import GuiPanel from pirates.piratesgui import PiratesGuiGlobals from pirates.battle.DistributedBattleNPC import DistributedBattleNPC from pirates.friends import PirateFriendSecret from pirates.piratesgui import PirateButtonChain class RelationshipChooser(GuiPanel.GuiPanel): __module__ = __name__ notify = DirectNotifyGlobal.directNotify.newCategory('FriendInviter') def __init__(self, avId, avName, pId=None): self.avId = avId self.avName = avName self.pId = pId self.avDisableName = 'disable-%s' % avId if (not self.pId and self).avId: self.pId = base.cr.playerFriendsManager.findPlayerIdFromAvId(self.avId) if (not self.avId and self).pId: self.avId = base.cr.playerFriendsManager.findAvIdFromPlayerId(self.pId) GuiPanel.GuiPanel.__init__(self, PLocalizer.RelationshipChooserTitle % avName, 0.5, 0.25, True, 1) self.initialiseoptions(RelationshipChooser) self.setPos(0.15, 0, 0.25) self.chain = PirateButtonChain.PirateButtonChain(self.width, self) self.chain.setPos(0, 0, -0.03) self.load() self.determineButtonState() def load(self): self.avFriendButton = self.chain.premakeButton(PLocalizer.RelationshipChooserAvFriendsMake, self.__handleAvatarFriend) self.plFriendButton = self.chain.premakeButton(PLocalizer.RelationshipChooserPlFriendsMake, self.__handlePlayerFriend) self.secretsButton = self.chain.premakeButton(PLocalizer.RelationshipChooserPlSecrets, self.__handleSecrets) self.chain.makeButtons() def destroy(self): if hasattr(self, 'destroyed'): return self.destroyed = 1 self.chain.destroy() GuiPanel.GuiPanel.destroy(self) def __handleSecrets(self): PirateFriendSecret.showFriendSecret() self.destroy() def __handleAvatarFriend(self): base.localAvatar.guiMgr.handleAvatarFriendInvite(self.avId, self.avName) self.destroy() def __handlePlayerFriend(self): base.localAvatar.guiMgr.handlePlayerFriendInvite(self.avId, self.avName) self.destroy() def determineButtonState(self): isPlayerFriend = base.cr.playerFriendsManager.isPlayerFriend(self.pId) isAvatarFriend = base.cr.avatarFriendsManager.isAvatarFriend(self.avId) if isPlayerFriend: self.plFriendButton['text'] = PLocalizer.RelationshipChooserPlFriendsBreak else: self.plFriendButton['text'] = PLocalizer.RelationshipChooserPlFriendsMake if isAvatarFriend: self.avFriendButton['text'] = PLocalizer.RelationshipChooserAvFriendsBreak else: self.avFriendButton['text'] = PLocalizer.RelationshipChooserAvFriendsMake self.avFriendButton['state'] = DGG.DISABLED self.plFriendButton['state'] = DGG.DISABLED self.secretsButton['state'] = DGG.NORMAL if self.avId or self.pId: av = base.cr.doId2do.get(self.avId) print 'avId %s av %s' % (self.avId, av) if av: if av.commonChatFlags & base.localAvatar.commonChatFlags & OTPGlobals.CommonChat: self.plFriendButton['state'] = DGG.NORMAL self.avFriendButton['state'] = DGG.NORMAL if base.cr.avatarFriendsManager.checkIgnored(self.avId): self.avFriendButton['state'] = DGG.DISABLED self.plFriendButton['state'] = DGG.DISABLED self.secretsButton['state'] = DGG.DISABLED if isPlayerFriend: self.plFriendButton['state'] = DGG.NORMAL if isAvatarFriend: self.avFriendButton['state'] = DGG.NORMAL
py
7df8ff3ef6b83ad86b15b248c5b5444e35544315
#!/usr/bin/env python3 # Copyright 2014 BitPay Inc. # Copyright 2016-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test framework for pivx utils. Runs automatically during `make check`. Can also be run manually.""" from __future__ import division,print_function,unicode_literals import argparse import binascii try: import configparser except ImportError: import ConfigParser as configparser import difflib import json import logging import os import pprint import subprocess import sys def main(): config = configparser.ConfigParser() config.optionxform = str config.read_file(open(os.path.join(os.path.dirname(__file__), "../config.ini"), encoding="utf8")) env_conf = dict(config.items('environment')) parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() verbose = args.verbose if verbose: level = logging.DEBUG else: level = logging.ERROR formatter = '%(asctime)s - %(levelname)s - %(message)s' # Add the format/level to the logger logging.basicConfig(format=formatter, level=level) bctester(os.path.join(env_conf["SRCDIR"], "test", "util", "data"), "bitcoin-util-test.json", env_conf) def bctester(testDir, input_basename, buildenv): """ Loads and parses the input file, runs all tests and reports results""" input_filename = os.path.join(testDir, input_basename) raw_data = open(input_filename, encoding="utf8").read() input_data = json.loads(raw_data) failed_testcases = [] for testObj in input_data: try: bctest(testDir, testObj, buildenv) logging.info("PASSED: " + testObj["description"]) except: logging.info("FAILED: " + testObj["description"]) failed_testcases.append(testObj["description"]) if failed_testcases: error_message = "FAILED_TESTCASES:\n" error_message += pprint.pformat(failed_testcases, width=400) logging.error(error_message) sys.exit(1) else: sys.exit(0) def bctest(testDir, testObj, buildenv): """Runs a single test, comparing output and RC to expected output and RC. Raises an error if input can't be read, executable fails, or output/RC are not as expected. Error is caught by bctester() and reported. """ # Get the exec names and arguments execprog = os.path.join(buildenv["BUILDDIR"], "src", testObj["exec"] + buildenv["EXEEXT"]) execargs = testObj['args'] execrun = [execprog] + execargs # Read the input data (if there is any) stdinCfg = None inputData = None if "input" in testObj: filename = os.path.join(testDir, testObj["input"]) inputData = open(filename, encoding="utf8").read() stdinCfg = subprocess.PIPE # Read the expected output data (if there is any) outputFn = None outputData = None outputType = None if "output_cmp" in testObj: outputFn = testObj['output_cmp'] outputType = os.path.splitext(outputFn)[1][1:] # output type from file extension (determines how to compare) try: outputData = open(os.path.join(testDir, outputFn), encoding="utf8").read() except: logging.error("Output file " + outputFn + " can not be opened") raise if not outputData: logging.error("Output data missing for " + outputFn) raise Exception if not outputType: logging.error("Output file %s does not have a file extension" % outputFn) raise Exception # Run the test proc = subprocess.Popen(execrun, stdin=stdinCfg, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) try: outs = proc.communicate(input=inputData) except OSError: logging.error("OSError, Failed to execute " + execprog) raise if outputData: data_mismatch, formatting_mismatch = False, False # Parse command output and expected output try: a_parsed = parse_output(outs[0], outputType) except Exception as e: logging.error('Error parsing command output as %s: %s' % (outputType, e)) raise try: b_parsed = parse_output(outputData, outputType) except Exception as e: logging.error('Error parsing expected output %s as %s: %s' % (outputFn, outputType, e)) raise # Compare data if a_parsed != b_parsed: logging.error("Output data mismatch for " + outputFn + " (format " + outputType + ")") data_mismatch = True # Compare formatting if outs[0] != outputData: error_message = "Output formatting mismatch for " + outputFn + ":\n" error_message += "".join(difflib.context_diff(outputData.splitlines(True), outs[0].splitlines(True), fromfile=outputFn, tofile="returned")) logging.error(error_message) formatting_mismatch = True assert not data_mismatch and not formatting_mismatch # Compare the return code to the expected return code wantRC = 0 if "return_code" in testObj: wantRC = testObj['return_code'] if proc.returncode != wantRC: logging.error("Return code mismatch for " + outputFn) raise Exception if "error_txt" in testObj: want_error = testObj["error_txt"] # Compare error text # TODO: ideally, we'd compare the strings exactly and also assert # That stderr is empty if no errors are expected. However, pivx-tx # emits DISPLAY errors when running as a windows application on # linux through wine. Just assert that the expected error text appears # somewhere in stderr. if want_error not in outs[1]: logging.error("Error mismatch:\n" + "Expected: " + want_error + "\nReceived: " + outs[1].rstrip()) raise Exception def parse_output(a, fmt): """Parse the output according to specified format. Raise an error if the output can't be parsed.""" if fmt == 'json': # json: compare parsed data return json.loads(a) elif fmt == 'hex': # hex: parse and compare binary data return binascii.a2b_hex(a.strip()) else: raise NotImplementedError("Don't know how to compare %s" % fmt) if __name__ == '__main__': main()
py
7df8ff62de43fae2f133b58d98329548b41e77ca
from ..colors import WHITE_ON_BLACK from .widget import Widget from .widget_data_structures import Point, Size, Rect class ParticleField(Widget): """ A widget that only has `Particle` children. Notes ----- ParticleFields are an optimized way to render many 1x1 TUI elements. Raises ------ TypeError if `add_widget` argument is not an instance of `Particle`. """ def __init__(self, dim=Size(10, 10), pos=Point(0, 0), *, is_visible=True): self._dim = dim self.top, self.left = pos self.is_visible = is_visible self.parent = None self.children = [ ] def resize(self, dim: Size): self._dim = dim for child in self.children: child.update_geometry() def add_text(self, text, row=0, column=0): raise NotImplemented @property def get_view(self): raise NotImplemented def add_widget(self, widget): if not isinstance(widget, Particle): raise TypeError(f"expected Particle, got {type(widget).__name__}") super().add_widget(widget) def walk(self): yield self yield from self.children def render(self, canvas_view, colors_view, rect: Rect): """ Paint region given by rect into canvas_view and colors_view. """ t, l, _, _, h, w = rect for child in self.children: pos = top, left = child.top - t, child.left - l if ( child.is_visible and not (child.is_transparent and child.char == " ") and 0 <= top < h and 0 <= left < w ): canvas_view[pos] = child.char colors_view[pos] = child.color def dispatch_press(self, key_press): """ Dispatch key press to children. """ # Note this dispatching is in reverse order from widget base. return ( self.on_press(key_press) or any(particle.on_press(key_press) for particle in reversed(self.children)) ) def dispatch_click(self, mouse_event): """ Dispatch mouse event to children. """ # Note this dispatching is in reverse order from widget base. return ( self.on_click(mouse_event) or any(particle.on_click(mouse_event) for particle in reversed(self.children)) ) class Particle: """ A 1x1 TUI element that's Widget-like, except it has no render method. Particles require a `ParticleField` parent to be rendered. """ def __init__( self, pos=Point(0, 0), *, char=" ", color=WHITE_ON_BLACK, is_transparent=False, is_visible=True, ): self.char = char self.color = color self.top, self.left = pos self.is_transparent = is_transparent self.is_visible = is_visible self.parent = None def update_geometry(self): """ Update geometry due to a change in parent's size. """ @property def dim(self): return 1, 1 @property def pos(self): return self.top, self.left @property def height(self): return 1 @property def width(self): return 1 @property def bottom(self): return self.top + 1 @property def right(self): return self.left + 1 def absolute_to_relative_coords(self, coords): """ Convert absolute coordinates to relative coordinates. """ y, x = self.parent.absolute_to_relative_coords(coords) return y - self.top, x - self.left def on_press(self, key_press): """ Handle key press. (Handled key presses should return True else False or None). Notes ----- `key_press` is a `prompt_toolkit` `KeyPress`. """ def on_click(self, mouse_event): """ Handle mouse event. (Handled mouse events should return True else False or None). Notes ----- `mouse_event` is a `prompt_toolkit` MouseEvent`. """
py
7df8ffe2ce303737b32533988a8f9132d48e546c
import sys import re from numpy.distutils.fcompiler import FCompiler compilers = ['NAGFCompiler', 'NAGFORCompiler'] class BaseNAGFCompiler(FCompiler): version_pattern = r'NAG.* Release (?P<version>[^(\s]*)' def version_match(self, version_string): m = re.search(self.version_pattern, version_string) if m: return m.group('version') else: return None def get_flags_linker_so(self): return ["-Wl,-shared"] def get_flags_opt(self): return ['-O4'] def get_flags_arch(self): return [] class NAGFCompiler(BaseNAGFCompiler): compiler_type = 'nag' description = 'NAGWare Fortran 95 Compiler' executables = { 'version_cmd' : ["<F90>", "-V"], 'compiler_f77' : ["f95", "-fixed"], 'compiler_fix' : ["f95", "-fixed"], 'compiler_f90' : ["f95"], 'linker_so' : ["<F90>"], 'archiver' : ["ar", "-cr"], 'ranlib' : ["ranlib"] } def get_flags_linker_so(self): if sys.platform == 'darwin': return ['-unsharedf95', '-Wl,-bundle,-flat_namespace,-undefined,suppress'] return BaseNAGFCompiler.get_flags_linker_so(self) def get_flags_arch(self): version = self.get_version() if version and version < '5.1': return ['-target=native'] else: return BaseNAGFCompiler.get_flags_arch(self) def get_flags_debug(self): return ['-g', '-gline', '-g90', '-nan', '-C'] class NAGFORCompiler(BaseNAGFCompiler): compiler_type = 'nagfor' description = 'NAG Fortran Compiler' executables = { 'version_cmd' : ["nagfor", "-V"], 'compiler_f77' : ["nagfor", "-fixed"], 'compiler_fix' : ["nagfor", "-fixed"], 'compiler_f90' : ["nagfor"], 'linker_so' : ["nagfor"], 'archiver' : ["ar", "-cr"], 'ranlib' : ["ranlib"] } def get_flags_debug(self): version = self.get_version() if version and version > '6.1': return ['-g', '-u', '-nan', '-C=all', '-thread_safe', '-kind=unique', '-Warn=allocation', '-Warn=subnormal'] else: return ['-g', '-nan', '-C=all', '-u', '-thread_safe'] if __name__ == '__main__': from distutils import log log.set_verbosity(2) from numpy.distutils import customized_fcompiler compiler = customized_fcompiler(compiler='nagfor') print(compiler.get_version()) print(compiler.get_flags_debug())
py
7df90026b2e74127e65e3a16b907ff7380b156b8
# -*- coding: utf-8 -*- """ Created on 2018/10/31 @author: gaoan """ class Bar(object): def __init__(self): self.time = None self.open = None self.high = None self.low = None self.close = None self.volume = None def __repr__(self): """ String representation for this object. """ return "Bar(%s)" % self.__dict__
py
7df9007c41d629746c49756d66a1959caf8946f4
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "socialtenant.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
py
7df90083bc9213f855c4eaaa79adbcd7699db3a5
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "updown.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
py
7df90105f4d760f9f10a7ca69d420a71922450c4
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import testtools from tempest.api import compute from tempest.api.compute import base from tempest import clients from tempest.common.utils.data_utils import parse_image_id from tempest.common.utils.data_utils import rand_name from tempest import exceptions from tempest.test import attr class ImagesOneServerTestJSON(base.BaseComputeTest): _interface = 'json' def tearDown(self): """Terminate test instances created after a test is executed.""" for image_id in self.image_ids: self.client.delete_image(image_id) self.image_ids.remove(image_id) super(ImagesOneServerTestJSON, self).tearDown() @classmethod def setUpClass(cls): super(ImagesOneServerTestJSON, cls).setUpClass() cls.client = cls.images_client if not cls.config.service_available.glance: skip_msg = ("%s skipped as glance is not available" % cls.__name__) raise cls.skipException(skip_msg) try: resp, cls.server = cls.create_server(wait_until='ACTIVE') except Exception: cls.tearDownClass() raise cls.image_ids = [] if compute.MULTI_USER: if cls.config.compute.allow_tenant_isolation: creds = cls.isolated_creds.get_alt_creds() username, tenant_name, password = creds cls.alt_manager = clients.Manager(username=username, password=password, tenant_name=tenant_name) else: # Use the alt_XXX credentials in the config file cls.alt_manager = clients.AltManager() cls.alt_client = cls.alt_manager.images_client @testtools.skip("Skipped until the Bug #1006725 is resolved.") @attr(type=['negative', 'gate']) def test_create_image_specify_multibyte_character_image_name(self): # Return an error if the image name has multi-byte characters snapshot_name = rand_name('\xef\xbb\xbf') self.assertRaises(exceptions.BadRequest, self.client.create_image, self.server['id'], snapshot_name) @attr(type=['negative', 'gate']) def test_create_image_specify_invalid_metadata(self): # Return an error when creating image with invalid metadata snapshot_name = rand_name('test-snap-') meta = {'': ''} self.assertRaises(exceptions.BadRequest, self.client.create_image, self.server['id'], snapshot_name, meta) @attr(type=['negative', 'gate']) def test_create_image_specify_metadata_over_limits(self): # Return an error when creating image with meta data over 256 chars snapshot_name = rand_name('test-snap-') meta = {'a' * 260: 'b' * 260} self.assertRaises(exceptions.BadRequest, self.client.create_image, self.server['id'], snapshot_name, meta) def _get_default_flavor_disk_size(self, flavor_id): resp, flavor = self.flavors_client.get_flavor_details(flavor_id) return flavor['disk'] @testtools.skipUnless(compute.CREATE_IMAGE_ENABLED, 'Environment unable to create images.') @attr(type='smoke') def test_create_delete_image(self): # Create a new image name = rand_name('image') meta = {'image_type': 'test'} resp, body = self.client.create_image(self.server['id'], name, meta) self.assertEqual(202, resp.status) image_id = parse_image_id(resp['location']) self.client.wait_for_image_status(image_id, 'ACTIVE') # Verify the image was created correctly resp, image = self.client.get_image(image_id) self.assertEqual(name, image['name']) self.assertEqual('test', image['metadata']['image_type']) resp, original_image = self.client.get_image(self.image_ref) # Verify minRAM is the same as the original image self.assertEqual(image['minRam'], original_image['minRam']) # Verify minDisk is the same as the original image or the flavor size flavor_disk_size = self._get_default_flavor_disk_size(self.flavor_ref) self.assertIn(str(image['minDisk']), (str(original_image['minDisk']), str(flavor_disk_size))) # Verify the image was deleted correctly resp, body = self.client.delete_image(image_id) self.assertEqual('204', resp['status']) self.client.wait_for_resource_deletion(image_id) @attr(type=['negative', 'gate']) def test_create_second_image_when_first_image_is_being_saved(self): # Disallow creating another image when first image is being saved # Create first snapshot snapshot_name = rand_name('test-snap-') resp, body = self.client.create_image(self.server['id'], snapshot_name) self.assertEqual(202, resp.status) image_id = parse_image_id(resp['location']) self.image_ids.append(image_id) # Create second snapshot alt_snapshot_name = rand_name('test-snap-') self.assertRaises(exceptions.Duplicate, self.client.create_image, self.server['id'], alt_snapshot_name) self.client.wait_for_image_status(image_id, 'ACTIVE') @attr(type=['negative', 'gate']) def test_create_image_specify_name_over_256_chars(self): # Return an error if snapshot name over 256 characters is passed snapshot_name = rand_name('a' * 260) self.assertRaises(exceptions.BadRequest, self.client.create_image, self.server['id'], snapshot_name) @attr(type=['negative', 'gate']) def test_delete_image_that_is_not_yet_active(self): # Return an error while trying to delete an image what is creating snapshot_name = rand_name('test-snap-') resp, body = self.client.create_image(self.server['id'], snapshot_name) self.assertEqual(202, resp.status) image_id = parse_image_id(resp['location']) self.image_ids.append(image_id) # Do not wait, attempt to delete the image, ensure it's successful resp, body = self.client.delete_image(image_id) self.assertEqual('204', resp['status']) self.image_ids.remove(image_id) self.assertRaises(exceptions.NotFound, self.client.get_image, image_id) class ImagesOneServerTestXML(ImagesOneServerTestJSON): _interface = 'xml'
py
7df901a5ce97f1403f552425fa166517135e4a78
import numpy as np import pandas as pd import pytest from rulelist.search.iterative_rule_search import _fit_rulelist @pytest.fixture def constant_parameters(): input_n_cutpoints = 5 input_discretization = "static" input_target_model = "gaussian" input_max_depth = 5 input_beam_width = 10 input_iterative_beam_width = 1 input_task = "discovery" input_max_rules= 10 input_alpha_gain = 1 yield input_n_cutpoints, input_discretization, input_target_model,input_max_depth, input_beam_width,\ input_iterative_beam_width, input_task, input_max_rules, input_alpha_gain @pytest.fixture def generate_input_dataframe_two_target_normal(constant_parameters): input_n_cutpoints, input_discretization, input_target_model, input_max_depth, input_beam_width, \ input_iterative_beam_width, input_task, input_max_rules, input_alpha_gain = constant_parameters dictinput = {"attribute1": np.arange(100000), "attribute2": np.array(["below1000" if i < 1000 else "above999" for i in range(100000)])} input_input_data = pd.DataFrame(data=dictinput) dictoutput = {"target1": np.concatenate((np.random.normal(loc=20,scale=3,size=16666), np.random.normal(loc=100,scale=6,size=83334)), axis=None), "target2": np.concatenate((np.random.normal(loc=10,scale=2,size=16666), np.random.normal(loc=50,scale=5,size=83334)), axis=None)} input_output_data = pd.DataFrame(data=dictoutput) yield input_input_data, input_output_data class TestFitRuleList: def test_start(self,constant_parameters,generate_input_dataframe_two_target_normal): input_n_cutpoints, input_discretization, input_target_model, input_max_depth, input_beam_width, \ input_iterative_beam_width, input_task, input_max_rules, input_alpha_gain = constant_parameters input_input_data, input_output_data = generate_input_dataframe_two_target_normal output_rulelist = _fit_rulelist(input_input_data, input_output_data, input_target_model, input_max_depth, input_beam_width, input_iterative_beam_width,input_n_cutpoints, input_task, input_discretization, input_max_rules, input_alpha_gain)
py
7df901f7d73675f6e9170af47b5e121d41ee13d4
# %% # This cell is the unit test for Product. OFFICIAL! #### For importing files in the repo import sys sys.path.insert(0, '..//ocado_scraper') from product import Product from selenium import webdriver from selenium.webdriver.common.by import By import unittest from OcadoScraper import OcadoScraper import os class ProductTestCase(unittest.TestCase): @classmethod def setUpClass(cls): cls.chrome_options = webdriver.ChromeOptions() cls.chrome_options.add_argument("--start-maximized") cls.chrome_options.add_argument("--headless") cls.driver = webdriver.Chrome(options=cls.chrome_options) cls.driver.maximize_window() with open('product_urls_for_testing', 'r') as f: lines = f.readlines() urls_list = [] for line in lines: urls_list.append(line) cls.info_list = [] cls.sku_list = [] for i, url in enumerate(urls_list): print(f'{i/70*100}% done') product = Product(url) product.download_images info = product.scrape_product_data(cls.driver, product.download_images) cls.info_list.append(info) cls.sku_list.append(product.get_sku()) if i == 5: break def setUp(self): pass def test_scrape_product_data(self): ''' Tests scrape_product_data to find any missing information and counts the number of missing information ''' print('test_scrape_product_data') missing_keys = {key : 0 for key in self.info_list[0].keys()} for dict in self.info_list: counter = 0 for key, value in dict.items(): if value == None: missing_keys[key] += 1 print(dict['URL']) print(f'{dict["Name"]} has a missing value at {key}/n') elif value != None: counter += 1 self.assertGreaterEqual(counter, 1) print(missing_keys) def test_get_sku(self): ''' Tests get_sku to see if sku is bigger than 1 and if they are a string of numbers. ''' for sku in self.sku_list: print('test_get_sku') self.assertGreaterEqual(len(sku), 1) get_sku_int = int(sku) self.assertIsInstance(sku, str) self.assertIsInstance(get_sku_int, int) def test_download_images(self): ''' Tests to see if path to image file exists. ''' product = Product('https://www.ocado.com/products/clearwipe-microfibre-lens-wipes-544774011') product.download_images product.scrape_product_data(self.driver, product.download_images) path_pwd = os.path.abspath(os.getcwd()) # image_sku = url.split('-')[-1] image_path = os.path.isdir(f'{path_pwd}/data/images/544774011') self.assertTrue(image_path) def tearDown(self): pass # print('tearDown') # del self.product # OcadoScraper.delete_downloaded_images() @classmethod def tearDownClass(cls): print('tearDown') # del cls.product OcadoScraper.delete_downloaded_images() unittest.main(argv=[''], verbosity=2, exit=False)
py
7df903250da7e46bb68f157c8f947f3c8ac6d6e0
from typing import Dict import blspy from tad.full_node.bundle_tools import simple_solution_generator from tad.types.blockchain_format.coin import Coin from tad.types.blockchain_format.program import Program from tad.types.coin_solution import CoinSolution from tad.types.condition_opcodes import ConditionOpcode from tad.types.generator_types import BlockGenerator from tad.types.spend_bundle import SpendBundle from tad.util.ints import uint64 from tad.wallet.puzzles.p2_delegated_puzzle_or_hidden_puzzle import puzzle_for_pk, solution_for_conditions GROUP_ORDER = 0x73EDA753299D7D483339D80809A1D80553BDA402FFFE5BFEFFFFFFFF00000001 def int_to_public_key(index: int) -> blspy.G1Element: index = index % GROUP_ORDER private_key_from_int = blspy.PrivateKey.from_bytes(index.to_bytes(32, "big")) return private_key_from_int.get_g1() def puzzle_hash_for_index(index: int, puzzle_hash_db: dict) -> bytes: public_key = bytes(int_to_public_key(index)) puzzle = puzzle_for_pk(public_key) puzzle_hash = puzzle.get_tree_hash() puzzle_hash_db[puzzle_hash] = puzzle return puzzle_hash def make_fake_coin(index: int, puzzle_hash_db: dict) -> Coin: """ Make a fake coin with parent id equal to the index (ie. a genesis block coin) """ parent = index.to_bytes(32, "big") puzzle_hash = puzzle_hash_for_index(index, puzzle_hash_db) amount = 100000 return Coin(parent, puzzle_hash, uint64(amount)) def conditions_for_payment(coin) -> Program: d: Dict = {} # a throwaway db since we don't care new_puzzle_hash = puzzle_hash_for_index(int.from_bytes(coin.puzzle_hash, "big"), d) return Program.to([[ConditionOpcode.CREATE_COIN, new_puzzle_hash, coin.amount]]) def make_spend_bundle(count: int) -> SpendBundle: puzzle_hash_db: Dict = dict() coins = [make_fake_coin(_, puzzle_hash_db) for _ in range(count)] coin_solutions = [] for coin in coins: puzzle_reveal = puzzle_hash_db[coin.puzzle_hash] conditions = conditions_for_payment(coin) solution = solution_for_conditions(conditions) coin_solution = CoinSolution(coin, puzzle_reveal, solution) coin_solutions.append(coin_solution) spend_bundle = SpendBundle(coin_solutions, blspy.G2Element()) return spend_bundle def make_block_generator(count: int) -> BlockGenerator: spend_bundle = make_spend_bundle(count) return simple_solution_generator(spend_bundle)
py
7df904f7721d541f9325f74ae573c1e39694902b
from typing import Union, Callable, Generic, Tuple, List, Optional import numpy as np import ray from ray.util.annotations import PublicAPI from ray.data.dataset import Dataset from ray.data.impl import sort from ray.data.aggregate import AggregateFn, Count, Sum, Max, Min, \ Mean, Std, AggregateOnT from ray.data.impl.block_list import BlockList from ray.data.impl.remote_fn import cached_remote_fn from ray.data.impl.progress_bar import ProgressBar from ray.data.block import Block, BlockAccessor, BlockMetadata, \ T, U, KeyType GroupKeyBaseT = Union[Callable[[T], KeyType], str] GroupKeyT = Optional[Union[GroupKeyBaseT, List[GroupKeyBaseT]]] AggregateOnTs = Union[AggregateOnT, List[AggregateOnT]] @PublicAPI(stability="beta") class GroupedDataset(Generic[T]): """Represents a grouped dataset created by calling ``Dataset.groupby()``. The actual groupby is deferred until an aggregation is applied. """ def __init__(self, dataset: Dataset[T], key: GroupKeyT): """Construct a dataset grouped by key (internal API). The constructor is not part of the GroupedDataset API. Use the ``Dataset.groupby()`` method to construct one. """ self._dataset = dataset if isinstance(key, list): if len(key) > 1: # TODO(jjyao) Support multi-key groupby. raise NotImplementedError( "Multi-key groupby is not supported yet") else: self._key = key[0] else: self._key = key def aggregate(self, *aggs: AggregateFn) -> Dataset[U]: """Implements an accumulator-based aggregation. This is a blocking operation. Examples: >>> grouped_ds.aggregate(AggregateFn( ... init=lambda k: [], ... accumulate=lambda a, r: a + [r], ... merge=lambda a1, a2: a1 + a2, ... finalize=lambda a: a ... )) Args: aggs: Aggregations to do. Returns: If the input dataset is simple dataset then the output is a simple dataset of ``(k, v_1, ..., v_n)`` tuples where ``k`` is the groupby key and ``v_i`` is the result of the ith given aggregation. If the input dataset is an Arrow dataset then the output is an Arrow dataset of ``n + 1`` columns where the first column is the groupby key and the second through ``n + 1`` columns are the results of the aggregations. If groupby key is ``None`` then the key part of return is omitted. """ if len(aggs) == 0: raise ValueError("Aggregate requires at least one aggregation") # Handle empty dataset. if self._dataset.num_blocks() == 0: return self._dataset blocks = list(self._dataset._blocks.iter_blocks()) num_mappers = len(blocks) num_reducers = num_mappers if self._key is None: num_reducers = 1 boundaries = [] else: boundaries = sort.sample_boundaries( blocks, [(self._key, "ascending")] if isinstance(self._key, str) else self._key, num_reducers) partition_and_combine_block = cached_remote_fn( _partition_and_combine_block).options(num_returns=num_reducers) aggregate_combined_blocks = cached_remote_fn( _aggregate_combined_blocks, num_returns=2) map_results = np.empty((num_mappers, num_reducers), dtype=object) for i, block in enumerate(blocks): map_results[i, :] = partition_and_combine_block.remote( block, boundaries, self._key, aggs) map_bar = ProgressBar("GroupBy Map", len(map_results)) map_bar.block_until_complete([ret[0] for ret in map_results]) map_bar.close() blocks = [] metadata = [] for j in range(num_reducers): block, meta = aggregate_combined_blocks.remote( num_reducers, self._key, aggs, *map_results[:, j].tolist()) blocks.append(block) metadata.append(meta) reduce_bar = ProgressBar("GroupBy Reduce", len(blocks)) reduce_bar.block_until_complete(blocks) reduce_bar.close() metadata = ray.get(metadata) return Dataset(BlockList(blocks, metadata), self._dataset._epoch) def _aggregate_on(self, agg_cls: type, on: Optional[AggregateOnTs], *args, **kwargs): """Helper for aggregating on a particular subset of the dataset. This validates the `on` argument, and converts a list of column names or lambdas to a multi-aggregation. A null `on` results in a multi-aggregation on all columns for an Arrow Dataset, and a single aggregation on the entire row for a simple Dataset. """ aggs = self._dataset._build_multicolumn_aggs( agg_cls, on, *args, skip_cols=self._key, **kwargs) return self.aggregate(*aggs) def count(self) -> Dataset[U]: """Compute count aggregation. This is a blocking operation. Examples: >>> ray.data.range(100).groupby(lambda x: x % 3).count() >>> ray.data.from_items([ ... {"A": x % 3, "B": x} for x in range(100)]).groupby( ... "A").count() Returns: A simple dataset of ``(k, v)`` pairs or an Arrow dataset of ``[k, v]`` columns where ``k`` is the groupby key and ``v`` is the number of rows with that key. If groupby key is ``None`` then the key part of return is omitted. """ return self.aggregate(Count()) def sum(self, on: Optional[AggregateOnTs] = None) -> Dataset[U]: """Compute grouped sum aggregation. This is a blocking operation. Examples: >>> ray.data.range(100).groupby(lambda x: x % 3).sum() >>> ray.data.from_items([ ... (i % 3, i, i**2) ... for i in range(100)]) \ ... .groupby(lambda x: x[0] % 3) \ ... .sum(lambda x: x[2]) >>> ray.data.range_arrow(100).groupby("value").sum() >>> ray.data.from_items([ ... {"A": i % 3, "B": i, "C": i**2} ... for i in range(100)]) \ ... .groupby("A") \ ... .sum(["B", "C"]) Args: on: The data subset on which to compute the sum. - For a simple dataset: it can be a callable or a list thereof, and the default is to take a sum of all rows. - For an Arrow dataset: it can be a column name or a list thereof, and the default is to do a column-wise sum of all columns. Returns: The sum result. For a simple dataset, the output is: - ``on=None``: a simple dataset of ``(k, sum)`` tuples where ``k`` is the groupby key and ``sum`` is sum of all rows in that group. - ``on=[callable_1, ..., callable_n]``: a simple dataset of ``(k, sum_1, ..., sum_n)`` tuples where ``k`` is the groupby key and ``sum_i`` is sum of the outputs of the ith callable called on each row in that group. For an Arrow dataset, the output is: - ``on=None``: an Arrow dataset containing a groupby key column, ``"k"``, and a column-wise sum column for each original column in the dataset. - ``on=["col_1", ..., "col_n"]``: an Arrow dataset of ``n + 1`` columns where the first column is the groupby key and the second through ``n + 1`` columns are the results of the aggregations. If groupby key is ``None`` then the key part of return is omitted. """ return self._aggregate_on(Sum, on) def min(self, on: Optional[AggregateOnTs] = None) -> Dataset[U]: """Compute grouped min aggregation. This is a blocking operation. Examples: >>> ray.data.range(100).groupby(lambda x: x % 3).min() >>> ray.data.from_items([ ... (i % 3, i, i**2) ... for i in range(100)]) \ ... .groupby(lambda x: x[0] % 3) \ ... .min(lambda x: x[2]) >>> ray.data.range_arrow(100).groupby("value").min() >>> ray.data.from_items([ ... {"A": i % 3, "B": i, "C": i**2} ... for i in range(100)]) \ ... .groupby("A") \ ... .min(["B", "C"]) Args: on: The data subset on which to compute the min. - For a simple dataset: it can be a callable or a list thereof, and the default is to take a min of all rows. - For an Arrow dataset: it can be a column name or a list thereof, and the default is to do a column-wise min of all columns. Returns: The min result. For a simple dataset, the output is: - ``on=None``: a simple dataset of ``(k, min)`` tuples where ``k`` is the groupby key and min is min of all rows in that group. - ``on=[callable_1, ..., callable_n]``: a simple dataset of ``(k, min_1, ..., min_n)`` tuples where ``k`` is the groupby key and ``min_i`` is min of the outputs of the ith callable called on each row in that group. For an Arrow dataset, the output is: - ``on=None``: an Arrow dataset containing a groupby key column, ``"k"``, and a column-wise min column for each original column in the dataset. - ``on=["col_1", ..., "col_n"]``: an Arrow dataset of ``n + 1`` columns where the first column is the groupby key and the second through ``n + 1`` columns are the results of the aggregations. If groupby key is ``None`` then the key part of return is omitted. """ return self._aggregate_on(Min, on) def max(self, on: Optional[AggregateOnTs] = None) -> Dataset[U]: """Compute grouped max aggregation. This is a blocking operation. Examples: >>> ray.data.range(100).groupby(lambda x: x % 3).max() >>> ray.data.from_items([ ... (i % 3, i, i**2) ... for i in range(100)]) \ ... .groupby(lambda x: x[0] % 3) \ ... .max(lambda x: x[2]) >>> ray.data.range_arrow(100).groupby("value").max() >>> ray.data.from_items([ ... {"A": i % 3, "B": i, "C": i**2} ... for i in range(100)]) \ ... .groupby("A") \ ... .max(["B", "C"]) Args: on: The data subset on which to compute the max. - For a simple dataset: it can be a callable or a list thereof, and the default is to take a max of all rows. - For an Arrow dataset: it can be a column name or a list thereof, and the default is to do a column-wise max of all columns. Returns: The max result. For a simple dataset, the output is: - ``on=None``: a simple dataset of ``(k, max)`` tuples where ``k`` is the groupby key and ``max`` is max of all rows in that group. - ``on=[callable_1, ..., callable_n]``: a simple dataset of ``(k, max_1, ..., max_n)`` tuples where ``k`` is the groupby key and ``max_i`` is max of the outputs of the ith callable called on each row in that group. For an Arrow dataset, the output is: - ``on=None``: an Arrow dataset containing a groupby key column, ``"k"``, and a column-wise max column for each original column in the dataset. - ``on=["col_1", ..., "col_n"]``: an Arrow dataset of ``n + 1`` columns where the first column is the groupby key and the second through ``n + 1`` columns are the results of the aggregations. If groupby key is ``None`` then the key part of return is omitted. """ return self._aggregate_on(Max, on) def mean(self, on: Optional[AggregateOnTs] = None) -> Dataset[U]: """Compute grouped mean aggregation. This is a blocking operation. Examples: >>> ray.data.range(100).groupby(lambda x: x % 3).mean() >>> ray.data.from_items([ ... (i % 3, i, i**2) ... for i in range(100)]) \ ... .groupby(lambda x: x[0] % 3) \ ... .mean(lambda x: x[2]) >>> ray.data.range_arrow(100).groupby("value").mean() >>> ray.data.from_items([ ... {"A": i % 3, "B": i, "C": i**2} ... for i in range(100)]) \ ... .groupby("A") \ ... .mean(["B", "C"]) Args: on: The data subset on which to compute the mean. - For a simple dataset: it can be a callable or a list thereof, and the default is to take a mean of all rows. - For an Arrow dataset: it can be a column name or a list thereof, and the default is to do a column-wise mean of all columns. Returns: The mean result. For a simple dataset, the output is: - ``on=None``: a simple dataset of ``(k, mean)`` tuples where ``k`` is the groupby key and ``mean`` is mean of all rows in that group. - ``on=[callable_1, ..., callable_n]``: a simple dataset of ``(k, mean_1, ..., mean_n)`` tuples where ``k`` is the groupby key and ``mean_i`` is mean of the outputs of the ith callable called on each row in that group. For an Arrow dataset, the output is: - ``on=None``: an Arrow dataset containing a groupby key column, ``"k"``, and a column-wise mean column for each original column in the dataset. - ``on=["col_1", ..., "col_n"]``: an Arrow dataset of ``n + 1`` columns where the first column is the groupby key and the second through ``n + 1`` columns are the results of the aggregations. If groupby key is ``None`` then the key part of return is omitted. """ return self._aggregate_on(Mean, on) def std(self, on: Optional[AggregateOnTs] = None, ddof: int = 1) -> Dataset[U]: """Compute grouped standard deviation aggregation. This is a blocking operation. Examples: >>> ray.data.range(100).groupby(lambda x: x % 3).std() >>> ray.data.from_items([ ... (i % 3, i, i**2) ... for i in range(100)]) \ ... .groupby(lambda x: x[0] % 3) \ ... .std(lambda x: x[2]) >>> ray.data.range_arrow(100).groupby("value").std(ddof=0) >>> ray.data.from_items([ ... {"A": i % 3, "B": i, "C": i**2} ... for i in range(100)]) \ ... .groupby("A") \ ... .std(["B", "C"]) NOTE: This uses Welford's online method for an accumulator-style computation of the standard deviation. This method was chosen due to it's numerical stability, and it being computable in a single pass. This may give different (but more accurate) results than NumPy, Pandas, and sklearn, which use a less numerically stable two-pass algorithm. See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm Args: on: The data subset on which to compute the std. - For a simple dataset: it can be a callable or a list thereof, and the default is to take a std of all rows. - For an Arrow dataset: it can be a column name or a list thereof, and the default is to do a column-wise std of all columns. ddof: Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. Returns: The standard deviation result. For a simple dataset, the output is: - ``on=None``: a simple dataset of ``(k, std)`` tuples where ``k`` is the groupby key and ``std`` is std of all rows in that group. - ``on=[callable_1, ..., callable_n]``: a simple dataset of ``(k, std_1, ..., std_n)`` tuples where ``k`` is the groupby key and ``std_i`` is std of the outputs of the ith callable called on each row in that group. For an Arrow dataset, the output is: - ``on=None``: an Arrow dataset containing a groupby key column, ``"k"``, and a column-wise std column for each original column in the dataset. - ``on=["col_1", ..., "col_n"]``: an Arrow dataset of ``n + 1`` columns where the first column is the groupby key and the second through ``n + 1`` columns are the results of the aggregations. If groupby key is ``None`` then the key part of return is omitted. """ return self._aggregate_on(Std, on, ddof=ddof) def _partition_and_combine_block(block: Block[T], boundaries: List[KeyType], key: GroupKeyT, aggs: Tuple[AggregateFn]) -> List[Block]: """Partition the block and combine rows with the same key.""" if key is None: partitions = [block] else: partitions = BlockAccessor.for_block(block).sort_and_partition( boundaries, [(key, "ascending")] if isinstance(key, str) else key, descending=False) return [BlockAccessor.for_block(p).combine(key, aggs) for p in partitions] def _aggregate_combined_blocks( num_reducers: int, key: GroupKeyT, aggs: Tuple[AggregateFn], *blocks: Tuple[Block, ...]) -> Tuple[Block[U], BlockMetadata]: """Aggregate sorted and partially combined blocks.""" if num_reducers == 1: blocks = [b[0] for b in blocks] # Ray weirdness return BlockAccessor.for_block(blocks[0]).aggregate_combined_blocks( list(blocks), key, aggs)
py
7df9056461fc63c86143377720f8bcd7e0ef61f9
import pytest from starkware.starknet.testing.starknet import Starknet from utils import TestSigner, contract_path signer = TestSigner(123456789987654321) @pytest.fixture(scope='module') async def ownable_factory(): starknet = await Starknet.empty() owner = await starknet.deploy( contract_path("openzeppelin/account/Account.cairo"), constructor_calldata=[signer.public_key] ) ownable = await starknet.deploy( contract_path("tests/mocks/Ownable.cairo"), constructor_calldata=[owner.contract_address] ) return starknet, ownable, owner @pytest.mark.asyncio async def test_constructor(ownable_factory): _, ownable, owner = ownable_factory expected = await ownable.get_owner().call() assert expected.result.owner == owner.contract_address @pytest.mark.asyncio async def test_transfer_ownership(ownable_factory): _, ownable, owner = ownable_factory new_owner = 123 await signer.send_transaction(owner, ownable.contract_address, 'transfer_ownership', [new_owner]) executed_info = await ownable.get_owner().call() assert executed_info.result == (new_owner,)
py
7df906030122f734b37658b702c77d81fc594610
#@+leo-ver=5-thin #@+node:ekr.20040331151007: * @file ../plugins/niceNosent.py #@+<< docstring >> #@+node:ekr.20101112180523.5420: ** << docstring >> """ Ensures that all descendants of @file-nosent nodes end with exactly one newline, replaces all tabs with spaces, and adds a newline before class and functions in the derived file. """ #@-<< docstring >> #@@language python #@@tabwidth -4 __version__ = "0.3" #@+<< version history >> #@+node:ekr.20040909122647: ** << version history >> #@+at # # 0.2 EKR: # - Use isAtNoSentinelsFileNode and atNoSentinelsFileNodeName. # - Use g.os_path_x methods for better unicode support. # 0.3 EKR: # - Converted to 4.2 code base: # - Use keywords.get('c') instead of g.top(). # - Use explicit positions everywhere. # - removed reference to new_df. #@-<< version history >> #@+<< imports >> #@+node:ekr.20040909122647.1: ** << imports >> import leo.core.leoGlobals as g #@-<< imports >> NSPACES = ' '*4 nosentNodes = [] #@+others #@+node:ekr.20050917082031: ** init def init (): '''Return True if the plugin has loaded successfully.''' ok = not g.unitTesting if ok: g.registerHandler("save1",onPreSave) g.registerHandler("save2",onPostSave) g.plugin_signon(__name__) return ok #@+node:ekr.20040331151007.1: ** onPreSave def onPreSave(tag=None, keywords=None): """Before saving an @nosent file, make sure that all nodes have a blank line at the end.""" global nosentNodes c = keywords.get('c') if c: for p in c.all_positions(): if p.isAtNoSentinelsFileNode() and p.isDirty(): nosentNodes.append(p.copy()) for p2 in p.self_and_subtree(): s = p2.b lastline = s.split("\n")[-1] if lastline.strip(): c.setBodyString(p2,s+"\n") #@+node:ekr.20040331151007.2: ** onPostSave def onPostSave(tag=None, keywords=None): """After saving an @nosent file, replace all tabs with spaces.""" global nosentNodes c = keywords.get('c') if c: at = c.atFileCommands for p in nosentNodes: g.red("node %s found" % p.h) at.scanAllDirectives(p) name = p.atNoSentinelsFileNodeName() fname = g.os_path_join(at.default_directory,name) f = open(fname,"r") lines = f.readlines() f.close() #@+<< add a newline before def or class >> #@+node:ekr.20040331151007.3: *3* << add a newline before def or class >> for i, s in enumerate(lines): ls = s.lstrip() if ls.startswith("def ") or ls.startswith("class "): try: if lines[i-1].strip() != "": lines[i] = "\n" + lines[i] except IndexError: pass #@-<< add a newline before def or class >> #@+<< replace tabs with spaces >> #@+node:ekr.20040331151007.4: *3* << replace tabs with spaces >> s = ''.join(lines) fh = open(fname,"w") fh.write(s.replace("\t",NSPACES)) fh.close() #@-<< replace tabs with spaces >> nosentNodes = [] #@-others #@-leo
py
7df9065a64c8948f9b805c64f0a39369a70ba39f
import datetime import time import numpy as np import statistics as stat from numpoisson.numpoisson import NumPoissonGeometry npg = NumPoissonGeometry(3, 'x') P_sl2 = {(1, 2): '-x3', (1, 3): '-x2', (2, 3): 'x1'} h = '(x1**2)/2 + (x2**2)/2 - (x3**2)/2' num_hamiltonian_vf_res = dict() j = 2 for mesh_path in ['3Qmesh_10_2.npy', '3Qmesh_10_3.npy', '3Qmesh_10_4.npy', '3Qmesh_10_5.npy', '3Qmesh_10_6.npy', '3Qmesh_10_7.npy', '3Qmesh_10_8.npy']: print(f'step {j}') tiempos = dict() with open(mesh_path, 'rb') as f: mesh = np.load(f) for k in range(25): A = datetime.datetime.now() npg.num_hamiltonian_vf(P_sl2, h, mesh, pt_output=True) B = datetime.datetime.now() tiempos[k] = (B - A).total_seconds() promedio = stat.mean(tiempos.values()) desviacion = stat.pstdev(tiempos.values()) tiempos['promedios'] = promedio tiempos['desviacion'] = desviacion num_hamiltonian_vf_res[f'10**{j}'] = tiempos j = j + 1 print(num_hamiltonian_vf_res) print('Finish')
py
7df906c5c64f6dfec543a9fe12c05b818b4b0595
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup, find_packages VERSION_FILE = open('VERSION') VERSION = VERSION_FILE.read().strip() def readme(): """Helper function for long_description""" with open('README.rst') as readme_file: return readme_file.read() setup( name='string-scanner', version=VERSION, url='http://github.com/sanscore/py-string-scanner/', description='', long_description=readme(), keywords='', author='Grant Welch', author_email='gwelch925 at gmail.com', license='Apache License 2.0', packages=find_packages('src'), package_dir={'': 'src'}, install_requires=[ 'regex', ], setup_requires=[ 'pytest-runner', 'wheel', ], tests_require=[ 'pytest', 'mock', ], classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Operating System :: POSIX", "Operating System :: Microsoft :: Windows", "Operating System :: MacOS :: MacOS X", "Programming Language :: Python", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Topic :: Software Development :: Testing", "Topic :: Software Development :: Libraries", ], include_package_data=True, zip_safe=False, )
py
7df9079e3f4c0d43f675e3e34d97696b3fc7ffe7
import io import os import sys from subprocess import PIPE, Popen, STDOUT import six from conans.errors import ConanException from conans.unicode import get_cwd from conans.util.files import decode_text from conans.util.runners import pyinstaller_bundle_env_cleaned class _UnbufferedWrite(object): def __init__(self, stream): self._stream = stream def write(self, *args, **kwargs): self._stream.write(*args, **kwargs) self._stream.flush() class ConanRunner(object): def __init__(self, print_commands_to_output=False, generate_run_log_file=False, log_run_to_output=True, output=None): self._print_commands_to_output = print_commands_to_output self._generate_run_log_file = generate_run_log_file self._log_run_to_output = log_run_to_output self._output = output def __call__(self, command, output=True, log_filepath=None, cwd=None, subprocess=False): """ @param command: Command to execute @param output: Instead of print to sys.stdout print to that stream. Could be None @param log_filepath: If specified, also log to a file @param cwd: Move to directory to execute """ if output and isinstance(output, io.StringIO) and six.PY2: # in py2 writing to a StringIO requires unicode, otherwise it fails print("*** WARN: Invalid output parameter of type io.StringIO(), " "use six.StringIO() instead ***") stream_output = output if output and hasattr(output, "write") else self._output or sys.stdout if hasattr(output, "flush"): # We do not want output from different streams to get mixed (sys.stdout, os.system) stream_output = _UnbufferedWrite(stream_output) if not self._generate_run_log_file: log_filepath = None # Log the command call in output and logger call_message = "\n----Running------\n> %s\n-----------------\n" % command if self._print_commands_to_output and stream_output and self._log_run_to_output: stream_output.write(call_message) with pyinstaller_bundle_env_cleaned(): # No output has to be redirected to logs or buffer or omitted if (output is True and not self._output and not log_filepath and self._log_run_to_output and not subprocess): return self._simple_os_call(command, cwd) elif log_filepath: if stream_output: stream_output.write("Logging command output to file '%s'\n" % log_filepath) with open(log_filepath, "a+") as log_handler: if self._print_commands_to_output: log_handler.write(call_message) return self._pipe_os_call(command, stream_output, log_handler, cwd) else: return self._pipe_os_call(command, stream_output, None, cwd) def _pipe_os_call(self, command, stream_output, log_handler, cwd): try: # piping both stdout, stderr and then later only reading one will hang the process # if the other fills the pip. So piping stdout, and redirecting stderr to stdout, # so both are merged and use just a single get_stream_lines() call proc = Popen(command, shell=True, stdout=PIPE, stderr=STDOUT, cwd=cwd) except Exception as e: raise ConanException("Error while executing '%s'\n\t%s" % (command, str(e))) def get_stream_lines(the_stream): while True: line = the_stream.readline() if not line: break decoded_line = decode_text(line) if stream_output and self._log_run_to_output: try: stream_output.write(decoded_line) except UnicodeEncodeError: # be aggressive on text encoding decoded_line = decoded_line.encode("latin-1", "ignore").decode("latin-1", "ignore") stream_output.write(decoded_line) if log_handler: # Write decoded in PY2 causes some ASCII encoding problems # tried to open the log_handler binary but same result. log_handler.write(line if six.PY2 else decoded_line) get_stream_lines(proc.stdout) # get_stream_lines(proc.stderr) proc.communicate() ret = proc.returncode return ret def _simple_os_call(self, command, cwd): if not cwd: return os.system(command) else: try: old_dir = get_cwd() os.chdir(cwd) result = os.system(command) except Exception as e: raise ConanException("Error while executing" " '%s'\n\t%s" % (command, str(e))) finally: os.chdir(old_dir) return result