ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
7df9096b9492233450b5c182a6490a95993016bd
import praw reddit = praw.Reddit(client_id='CLIENT_ID', client_secret='CLIENT_SECRET', user_agent='USER_AGENT') def redditScraper(subReddit, amountOfPosts=None, topOfWhat='week'): listOfPosts = [] for submission in reddit.subreddit(subReddit).top(topOfWhat, limit=amountOfPosts): urlAndTitle = {} urlAndTitle["url"] = submission.url urlAndTitle["title"] = submission.title listOfPosts.append(urlAndTitle) print ("Grabing " + str(len(listOfPosts)) + " posts from r/" + subReddit) print ("") return listOfPosts
py
7df90a1efae3485b4e79eec22070e54f4d6200bf
import mimetypes from django.contrib.contenttypes.models import ContentType from django.templatetags.static import static from django.http.response import HttpResponse from django.urls import reverse from django.utils.html import format_html, mark_safe from django.utils.translation import gettext_lazy as _ from wagtail.core import hooks from wagtail.core.models import UserPagePermissionsProxy, get_page_models from wagtailcache.cache import clear_cache from coderedcms.wagtail_flexible_forms.wagtail_hooks import FormAdmin, SubmissionAdmin @hooks.register('insert_global_admin_css') def global_admin_css(): return format_html( '<link rel="stylesheet" type="text/css" href="{}">', static('coderedcms/css/codered-admin.css') ) @hooks.register('insert_editor_css') def editor_css(): return format_html( '<link rel="stylesheet" type="text/css" href="{}">', static('coderedcms/css/codered-editor.css') ) @hooks.register('insert_editor_js') def collapsible_js(): return format_html('<script src="{}"></script>', static('coderedcms/js/codered-editor.js')) @hooks.register('after_create_page') @hooks.register('after_edit_page') def clear_wagtailcache(request, page): if page.live: clear_cache() @hooks.register('filter_form_submissions_for_user') def codered_forms(user, editable_forms): from coderedcms.models import CoderedFormMixin """ Add our own CoderedFormPage to editable_forms, since wagtail is unaware of its existence. Essentially this is a fork of wagtail.contrib.forms.get_forms_for_user() and wagtail.contrib.forms.get_form_types() """ form_models = [ model for model in get_page_models() if issubclass(model, CoderedFormMixin) ] form_types = list( ContentType.objects.get_for_models(*form_models).values() ) editable_forms = UserPagePermissionsProxy(user).editable_pages() editable_forms = editable_forms.filter(content_type__in=form_types) return editable_forms @hooks.register('before_serve_document') def serve_document_directly(document, request): """ This hook prevents documents from being downloaded unless specified by an <a> tag with the download attribute. """ content_type, content_encoding = mimetypes.guess_type(document.filename) response = HttpResponse(document.file.read(), content_type=content_type) response['Content-Disposition'] = 'inline;filename="{0}"'.format(document.filename) response['Content-Encoding'] = content_encoding return response class CoderedSubmissionAdmin(SubmissionAdmin): def __init__(self, parent=None): from coderedcms.models import CoderedSessionFormSubmission self.model = CoderedSessionFormSubmission super().__init__(parent=parent) class CoderedFormAdmin(FormAdmin): list_display = ('title', 'action_links') def all_submissions_link(self, obj, label=_('See all submissions'), url_suffix=''): return '<a href="%s?page_id=%s%s">%s</a>' % ( reverse(CoderedSubmissionAdmin().url_helper.get_action_url_name('index')), obj.pk, url_suffix, label) all_submissions_link.short_description = '' all_submissions_link.allow_tags = True def action_links(self, obj): from coderedcms.models import CoderedFormPage, CoderedStreamFormPage actions = [] if issubclass(type(obj.specific), CoderedFormPage): actions.append( '<a href="{0}">{1}</a>'.format(reverse( 'wagtailforms:list_submissions', args=(obj.pk,)), _('See all Submissions') ) ) actions.append( '<a href="{0}">{1}</a>'.format( reverse("wagtailadmin_pages:edit", args=(obj.pk,)), _("Edit this form page") ) ) elif issubclass(type(obj.specific), CoderedStreamFormPage): actions.append(self.unprocessed_submissions_link(obj)) actions.append(self.all_submissions_link(obj)) actions.append(self.edit_link(obj)) return mark_safe("<br />".join(actions)) # modeladmin_register(CoderedFormAdmin) # modeladmin_register(CoderedSubmissionAdmin)
py
7df90a8806c9cba8ab0a806ad501866c53624f02
from requests import get from os import mkdir,path,remove from tqdm import tqdm from hashlib import md5 import colorama as col """ freshlybuiltimagebol library model downloader status_code for checking the execution status code meaning 1000 - model already exist 1001 - model name incorrect 1002 - download interupted 1003 - successful download 1004 - http error 1005 - connection error 1006 - timeout error 1007 - miscellanious error 1008 - building models directory 1009 - signature mismatch """ class imagebol_model_downloader: status_code=0000 def __init__(self,model_name,status_code=0000): self.download_model(model_name,status_code) def download_model(self,model_name,status_code): dir_path = path.dirname(path.realpath(__file__)) available_models={ "F_est":["frozen_east_text_detection","94.4MB","8a9b7f2ebd9bcf8212bfa856b065e6f0"] } if path.isdir(dir_path+"models/")==False: try: mkdir(dir_path+"/models") except: print("models directory found") if model_name in available_models: model_name=available_models[model_name] if path.isfile(dir_path+"/models/"+model_name[0]+".pb")==False: try: print('starting model download') print("don't quit until downlaoding completes") print('download can take time depending upon your internet conection') print(Fore.BLUE+model_name[0]+" is of "+model_name[1]) choice=input(Fore.YELLOW+"do you wish to download type 'y':") if (choice=='y'): return self.start_downloading(model_name,dir_path,status_code) else: print('download canceled') status_code=0000 return status_code print('model download successful') self.status_code=1003 return status_code except: print('download interrupted') try: remove(dir_path+"/models/"+model_name[0] +".pb") self.status_code=1002 return status_code except: self.status_code=1002 return status_code else: print('model found') print('checking encryption signature') self.hash_signature_match(model_name,available_models,dir_path,status_code) if self.status_code==1000: return self.status_code else: print(self.status_code) print(Fore.CYAN+model_name[0]+" is of "+model_name[1]) re_choice=input(Fore.YELLOW+"press 'y' to start re-downloading: ") if re_choice =='y': remove(dir_path+"/models/"+model_name[0] +".pb") self.start_downloading(model_name,dir_path,status_code) self.hash_signature_match(model_name,available_models,dir_path,status_code) return self.status_code else: print("no reference found for "+model_name) self.status_code=1001 return status_code def start_downloading(self,model_name,dir_path,status_code): model_url= "https://raw.githubusercontent.com/FreshlyBuilt/freshlybuiltimagebol/master/freshlybuiltimagebol/models/" response = get(model_url+model_name[0]+".pb", stream=True) try: response.raise_for_status() except response.exceptions.HTTPError as errh: print ("Http Error:",errh) self.status_code=1004 return self.status_code except response.exceptions.ConnectionError as errc: print ("Error Connecting:",errc) self.status_code=1005 return self.status_code except response.exceptions.Timeout as errt: print ("Timeout Error:",errt) self.status_code=1006 return self.status_code except response.exceptions.RequestException as err: print ("OOps: Something Else",err) self.status_code=1007 return self.status_code with open(dir_path+"/models/"+model_name[0] +".pb", "wb") as f: total_length = int(response.headers.get('content-length')) if total_length is None: f.write(response.content) else: chunk_size=1024 for data in tqdm(iterable = response.iter_content(chunk_size),total=total_length/chunk_size, unit = 'KB'): try: f.write(data) except: pass def hash_signature_match(self,model_name,available_models,dir_path,status_code): model_checksum=dir_path+"/models/"+model_name[0]+".pb" md5_hash=md5() model_handler=open(model_checksum,"rb").read() md5_hash.update(model_handler) hash_code=md5_hash.hexdigest() if hash_code == model_name[2]: col.init(autoreset=True) print(col.Fore.GREEN+"signature matched") col.deinit() self.status_code=1000 return status_code else: col.init(autoreset=True) print(Fore.RED+"warning signature mismatched, model may not work properly ") col.deinit() self.status_code=1009 return status_code """downloader_debugger""" #model_name=input("model name: ") #print(imagebol_model_downloader(model_name).status_code)
py
7df90ad0d47813956bdf7b797af3e3b63345004d
"""users table Revision ID: 2dd5da4ccf72 Revises: Create Date: 2020-06-29 12:57:15.566032 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '2dd5da4ccf72' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('user', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=128), nullable=True), sa.Column('email', sa.String(length=128), nullable=True), sa.Column('password', sa.String(length=128), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_user_email'), 'user', ['email'], unique=True) op.create_index(op.f('ix_user_username'), 'user', ['username'], unique=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_user_username'), table_name='user') op.drop_index(op.f('ix_user_email'), table_name='user') op.drop_table('user') # ### end Alembic commands ###
py
7df90ad72fa42bee8766f5861e4af07bc6e0f099
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helpers to manipulate a tensor graph in python. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import re from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import node_def_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.platform import tf_logging as logging _VARIABLE_OPS = { "Assign", "AssignAdd", "AssignSub", "Queue", "ScatterAdd", "ScatterSub", "ScatterUpdate", "TruncatedNormal", "Variable", "VariableV2", } def _is_variable_op(op): """Returns true if 'op' refers to a Variable node.""" return op in _VARIABLE_OPS def must_run_on_cpu(node, pin_variables_on_cpu=False): """Returns True if the given node_def must run on CPU, otherwise False. Args: node: The node to be assigned to a device. Could be either an ops.Operation or NodeDef. pin_variables_on_cpu: If True, this function will return False if node_def represents a variable-related op. Returns: True if the given node must run on CPU, otherwise False. """ if isinstance(node, ops.Operation): node_def = node.node_def else: assert isinstance(node, node_def_pb2.NodeDef) node_def = node # If the op is a variable-related op, should we pin it on CPU? if pin_variables_on_cpu and _is_variable_op(node_def.op): return True # Constant operations producing a string or int32 must run on CPU. if node_def.op == "Const": # Get the value of the 'dtype' attr dtype = node_def.attr["dtype"].type if dtype == dtypes.string or dtype == dtypes.int32: return True if node_def.op in ["DynamicStitch", "ParallelDynamicStitch"]: dtype = node_def.attr["T"].type if dtype == dtypes.int32: # DynamicStitch on GPU only works for int32 values. return True if node_def.op in ["Cast"]: dtype = node_def.attr["SrcT"].type if dtype == dtypes.int32: # Cast on GPU does not works for int32 values. return True return False ################################################################################ # # device functions for use in with g.device(...) # ################################################################################ def _node_name(n): if n.startswith("^"): return n[1:] else: return n.split(":")[0] def extract_sub_graph(graph_def, dest_nodes): """Extract the subgraph that can reach any of the nodes in 'dest_nodes'. Args: graph_def: A graph_pb2.GraphDef proto. dest_nodes: A list of strings specifying the destination node names. Returns: The GraphDef of the sub-graph. Raises: TypeError: If 'graph_def' is not a graph_pb2.GraphDef proto. """ if not isinstance(graph_def, graph_pb2.GraphDef): raise TypeError("graph_def must be a graph_pb2.GraphDef proto.") edges = {} # Keyed by the dest node name. name_to_node_map = {} # Keyed by node name. # Keeps track of node sequences. It is important to still output the # operations in the original order. node_seq = {} # Keyed by node name. seq = 0 for node in graph_def.node: n = _node_name(node.name) name_to_node_map[n] = node edges[n] = [_node_name(x) for x in node.input] node_seq[n] = seq seq += 1 for d in dest_nodes: assert d in name_to_node_map, "%s is not in graph" % d nodes_to_keep = set() # Breadth first search to find all the nodes that we should keep. next_to_visit = dest_nodes[:] while next_to_visit: n = next_to_visit[0] del next_to_visit[0] if n in nodes_to_keep: # Already visited this node. continue nodes_to_keep.add(n) next_to_visit += edges[n] nodes_to_keep_list = sorted(list(nodes_to_keep), key=lambda n: node_seq[n]) # Now construct the output GraphDef out = graph_pb2.GraphDef() for n in nodes_to_keep_list: out.node.extend([copy.deepcopy(name_to_node_map[n])]) out.library.CopyFrom(graph_def.library) out.versions.CopyFrom(graph_def.versions) return out def tensor_shape_from_node_def_name(graph, input_name): """Convenience function to get a shape from a NodeDef's input string.""" # To get a tensor, the name must be in the form <input>:<port>, for example # 'Mul:0'. The GraphDef input strings don't always have the port specified # though, so if there isn't a colon we need to add a default ':0' to the end. if ":" not in input_name: canonical_name = input_name + ":0" else: canonical_name = input_name tensor = graph.get_tensor_by_name(canonical_name) shape = tensor.get_shape() return shape def convert_variables_to_constants(sess, input_graph_def, output_node_names, variable_names_whitelist=None, variable_names_blacklist=None): """Replaces all the variables in a graph with constants of the same values. If you have a trained graph containing Variable ops, it can be convenient to convert them all to Const ops holding the same values. This makes it possible to describe the network fully with a single GraphDef file, and allows the removal of a lot of ops related to loading and saving the variables. Args: sess: Active TensorFlow session containing the variables. input_graph_def: GraphDef object holding the network. output_node_names: List of name strings for the result nodes of the graph. variable_names_whitelist: The set of variable names to convert (by default, all variables are converted). variable_names_blacklist: The set of variable names to omit converting to constants. Returns: GraphDef containing a simplified version of the original. """ # This graph only includes the nodes needed to evaluate the output nodes, and # removes unneeded nodes like those involved in saving and assignment. inference_graph = extract_sub_graph(input_graph_def, output_node_names) found_variables = {} variable_names = [] variable_dict_names = [] for node in inference_graph.node: if node.op in ["Variable", "VariableV2"]: variable_name = node.name if ((variable_names_whitelist is not None and variable_name not in variable_names_whitelist) or (variable_names_blacklist is not None and variable_name in variable_names_blacklist)): continue variable_dict_names.append(variable_name) variable_names.append(variable_name + ":0") if variable_names: returned_variables = sess.run(variable_names) else: returned_variables = [] found_variables = dict(zip(variable_dict_names, returned_variables)) logging.info("Froze %d variables.", len(returned_variables)) output_graph_def = graph_pb2.GraphDef() how_many_converted = 0 for input_node in inference_graph.node: output_node = node_def_pb2.NodeDef() if input_node.name in found_variables: output_node.op = "Const" output_node.name = input_node.name dtype = input_node.attr["dtype"] data = found_variables[input_node.name] output_node.attr["dtype"].CopyFrom(dtype) output_node.attr["value"].CopyFrom(attr_value_pb2.AttrValue( tensor=tensor_util.make_tensor_proto(data, dtype=dtype.type, shape=data.shape))) how_many_converted += 1 else: output_node.CopyFrom(input_node) output_graph_def.node.extend([output_node]) output_graph_def.library.CopyFrom(inference_graph.library) print("Converted %d variables to const ops." % how_many_converted) return output_graph_def def remove_training_nodes(input_graph, protected_nodes=None): """Prunes out nodes that aren't needed for inference. There are nodes like Identity and CheckNumerics that are only useful during training, and can be removed in graphs that will be used for nothing but inference. Here we identify and remove them, returning an equivalent graph. To be specific, CheckNumerics nodes are always removed, and Identity nodes that aren't involved in control edges are spliced out so that their input and outputs are directly connected. Args: input_graph: Model to analyze and prune. protected_nodes: An optional list of names of nodes to be kept unconditionally. This is for example useful to preserve Identity output nodes. Returns: A list of nodes with the unnecessary ones removed. """ if not protected_nodes: protected_nodes = [] types_to_remove = {"CheckNumerics": True} input_nodes = input_graph.node names_to_remove = {} for node in input_nodes: if node.op in types_to_remove and node.name not in protected_nodes: names_to_remove[node.name] = True nodes_after_removal = [] for node in input_nodes: if node.name in names_to_remove: continue new_node = node_def_pb2.NodeDef() new_node.CopyFrom(node) input_before_removal = node.input del new_node.input[:] for full_input_name in input_before_removal: input_name = re.sub(r"^\^", "", full_input_name) if input_name in names_to_remove: continue new_node.input.append(full_input_name) nodes_after_removal.append(new_node) types_to_splice = {"Identity": True} names_to_splice = {} for node in nodes_after_removal: if node.op in types_to_splice and node.name not in protected_nodes: # We don't want to remove nodes that have control edge inputs, because # they might be involved in subtle dependency issues that removing them # will jeopardize. has_control_edge = False for input_name in node.input: if re.match(r"^\^", input_name): has_control_edge = True if not has_control_edge: names_to_splice[node.name] = node.input[0] nodes_after_splicing = [] for node in nodes_after_removal: if node.name in names_to_splice: continue new_node = node_def_pb2.NodeDef() new_node.CopyFrom(node) input_before_removal = node.input del new_node.input[:] for full_input_name in input_before_removal: input_name = re.sub(r"^\^", "", full_input_name) while input_name in names_to_splice: full_input_name = names_to_splice[input_name] input_name = re.sub(r"^\^", "", full_input_name) new_node.input.append(full_input_name) nodes_after_splicing.append(new_node) output_graph = graph_pb2.GraphDef() output_graph.node.extend(nodes_after_splicing) return output_graph
py
7df90b29899fae1725345b81c781e24018ab7bfc
import pytest from amortization.amount import calculate_amortization_amount from amortization.schedule import amortization_schedule def test_amortization_amount() -> None: principal = 150000 period = 36 interest_rate = 0.1 amortization = calculate_amortization_amount(principal, interest_rate, period) assert pytest.approx(4840.08, 0.002) == amortization def test_amortization_schedule() -> None: principal: float = 150000 period = 36 interest_rate = 0.1 expected = ( (1, 4840.08, 1250.00, 3590.08, 146409.92), (2, 4840.08, 1220.08, 3620.00, 142789.92), (3, 4840.08, 1189.92, 3650.16, 139139.76), (4, 4840.08, 1159.50, 3680.58, 135459.18), (5, 4840.08, 1128.83, 3711.25, 131747.93), (6, 4840.08, 1097.90, 3742.18, 128005.75), (7, 4840.08, 1066.71, 3773.37, 124232.38), (8, 4840.08, 1035.27, 3804.81, 120427.57), (9, 4840.08, 1003.56, 3836.52, 116591.05), (10, 4840.08, 971.59, 3868.49, 112722.56), (11, 4840.08, 939.35, 3900.73, 108821.83), (12, 4840.08, 906.85, 3933.23, 104888.60), (13, 4840.08, 874.07, 3966.01, 100922.59), (14, 4840.08, 841.02, 3999.06, 96923.53), (15, 4840.08, 807.70, 4032.38, 92891.15), (16, 4840.08, 774.09, 4065.99, 88825.16), (17, 4840.08, 740.21, 4099.87, 84725.29), (18, 4840.08, 706.04, 4134.04, 80591.25), (19, 4840.08, 671.59, 4168.49, 76422.76), (20, 4840.08, 636.86, 4203.22, 72219.54), (21, 4840.08, 601.83, 4238.25, 67981.29), (22, 4840.08, 566.51, 4273.57, 63707.72), (23, 4840.08, 530.90, 4309.18, 59398.54), (24, 4840.08, 494.99, 4345.09, 55053.45), (25, 4840.08, 458.78, 4381.30, 50672.15), (26, 4840.08, 422.27, 4417.81, 46254.34), (27, 4840.08, 385.45, 4454.63, 41799.71), (28, 4840.08, 348.33, 4491.75, 37307.96), (29, 4840.08, 310.90, 4529.18, 32778.78), (30, 4840.08, 273.16, 4566.92, 28211.86), (31, 4840.08, 235.10, 4604.98, 23606.88), (32, 4840.08, 196.72, 4643.36, 18963.52), (33, 4840.08, 158.03, 4682.05, 14281.47), (34, 4840.08, 119.01, 4721.07, 9560.40), (35, 4840.08, 79.67, 4760.41, 4799.99), (36, 4839.99, 40.00, 4799.99, 0.00), ) result = amortization_schedule(principal, interest_rate, period) for e, r in zip(expected, result): assert pytest.approx(e) == r
py
7df90bd6c9a955fb698c7011250fdf8b6f7f9d93
# # Copyright (C) 2014-2015 UAVCAN Development Team <uavcan.org> # # This software is distributed under the terms of the MIT License. # # Author: Pavel Kirienko <[email protected]> # Ben Dyer <[email protected]> # from __future__ import division, absolute_import, print_function, unicode_literals import os import re from logging import getLogger from io import StringIO from .signature import Signature, compute_signature from .common import DsdlException, pretty_filename, bytes_from_crc64 from .type_limits import get_unsigned_integer_range, get_signed_integer_range, get_float_range # Python 2.7 compatibility try: # noinspection PyUnresolvedReferences,PyShadowingBuiltins str = unicode # @ReservedAssignment @UndefinedVariable except NameError: pass try: # noinspection PyUnresolvedReferences,PyUnboundLocalVariable long(1) # @UndefinedVariable except NameError: long = int # @ReservedAssignment MAX_FULL_TYPE_NAME_LEN = 80 SERVICE_DATA_TYPE_ID_MAX = 255 MESSAGE_DATA_TYPE_ID_MAX = 65535 logger = getLogger(__name__) class Type: """ Common type description. The specialized type description classes inherit from this one. Fields: full_name Full type name string, e.g. "uavcan.protocol.NodeStatus" category Any CATEGORY_* """ CATEGORY_PRIMITIVE = 0 CATEGORY_ARRAY = 1 CATEGORY_COMPOUND = 2 CATEGORY_VOID = 3 def __init__(self, full_name, category): self.full_name = str(full_name) self.category = category def __str__(self): return self.get_normalized_definition() def get_data_type_signature(self): return None def get_normalized_definition(self): raise NotImplementedError('Pure virtual method') def get_max_bitlen(self): raise NotImplementedError('Pure virtual method') def get_min_bitlen(self): raise NotImplementedError('Pure virtual method') __repr__ = __str__ class PrimitiveType(Type): """ Primitive type description, e.g. bool or float16. Fields: kind Any KIND_* bitlen Bit length, 1 to 64 cast_mode Any CAST_MODE_* value_range Tuple containing min and max values: (min, max) """ KIND_BOOLEAN = 0 KIND_UNSIGNED_INT = 1 KIND_SIGNED_INT = 2 KIND_FLOAT = 3 CAST_MODE_SATURATED = 0 CAST_MODE_TRUNCATED = 1 def __init__(self, kind, bitlen, cast_mode): self.kind = kind self.bitlen = bitlen self.cast_mode = cast_mode Type.__init__(self, self.get_normalized_definition(), Type.CATEGORY_PRIMITIVE) self.value_range = { PrimitiveType.KIND_BOOLEAN: get_unsigned_integer_range, PrimitiveType.KIND_UNSIGNED_INT: get_unsigned_integer_range, PrimitiveType.KIND_SIGNED_INT: get_signed_integer_range, PrimitiveType.KIND_FLOAT: get_float_range }[self.kind](bitlen) def get_normalized_definition(self): """Please refer to the specification for details about normalized definitions.""" cast_mode = 'saturated' if self.cast_mode == PrimitiveType.CAST_MODE_SATURATED else 'truncated' primary_type = { PrimitiveType.KIND_BOOLEAN: 'bool', PrimitiveType.KIND_UNSIGNED_INT: 'uint' + str(self.bitlen), PrimitiveType.KIND_SIGNED_INT: 'int' + str(self.bitlen), PrimitiveType.KIND_FLOAT: 'float' + str(self.bitlen) }[self.kind] return cast_mode + ' ' + primary_type def validate_value_range(self, value): """ Args: value: Throws DsdlException if this value cannot be represented by this type. """ low, high = self.value_range if not low <= value <= high: error('Value [%s] is out of range %s', value, self.value_range) def get_max_bitlen(self): """Returns type bit length.""" return self.bitlen def get_min_bitlen(self): """Returns type bit length.""" return self.bitlen class ArrayType(Type): """ Array type description, e.g. float32[8], uint12[<34]. Fields: value_type Description of the array value type; the type of this field inherits Type, e.g. PrimitiveType mode Any MODE_* max_size Maximum number of elements in the array """ MODE_STATIC = 0 MODE_DYNAMIC = 1 def __init__(self, value_type, mode, max_size): self.value_type = value_type self.mode = mode self.max_size = max_size Type.__init__(self, self.get_normalized_definition(), Type.CATEGORY_ARRAY) def get_normalized_definition(self): """Please refer to the specification for details about normalized definitions.""" typedef = self.value_type.get_normalized_definition() return ('%s[<=%d]' if self.mode == ArrayType.MODE_DYNAMIC else '%s[%d]') % (typedef, self.max_size) def get_max_bitlen(self): """Returns total maximum bit length of the array, including length field if applicable.""" payload_max_bitlen = self.max_size * self.value_type.get_max_bitlen() return { self.MODE_DYNAMIC: payload_max_bitlen + self.max_size.bit_length(), self.MODE_STATIC: payload_max_bitlen }[self.mode] def get_min_bitlen(self): if self.mode == self.MODE_STATIC: return self.value_type.get_min_bitlen() * self.max_size else: return 0 # Considering TAO def get_data_type_signature(self): return self.value_type.get_data_type_signature() @property def is_string_like(self): return self.mode == self.MODE_DYNAMIC and \ self.value_type.category == Type.CATEGORY_PRIMITIVE and \ self.value_type.bitlen == 8 # noinspection PyAbstractClass class CompoundType(Type): """ Compound type description, e.g. uavcan.protocol.NodeStatus. Fields: source_file Path to the DSDL definition file for this type default_dtid Default Data Type ID, if specified, None otherwise version The version number of the dsdl definition as a tuple (e.g. (1,7)) kind Any KIND_* source_text Raw DSDL definition text (as is, with comments and the original formatting) Fields if kind == KIND_SERVICE: request_fields Request struct field list, the type of each element is Field response_fields Response struct field list request_constants Request struct constant list, the type of each element is Constant response_constants Response struct constant list request_union Boolean indicating whether the request struct is a union response_union Boolean indicating whether the response struct is a union Fields if kind == KIND_MESSAGE: fields Field list, the type of each element is Field constants Constant list, the type of each element is Constant union Boolean indicating whether the message struct is a union Extra methods if kind == KIND_SERVICE: get_max_bitlen_request() Returns maximum total bit length of the serialized request struct get_max_bitlen_response() Same for the response struct get_min_bitlen_request() Returns minimum total bit length of the serialized request struct get_min_bitlen_response() Same for the response struct Extra methods if kind == KIND_MESSAGE: get_max_bitlen() Returns maximum total bit length of the serialized struct get_min_bitlen() Returns minimum total bit length of the serialized struct """ KIND_SERVICE = 0 KIND_MESSAGE = 1 def __init__(self, full_name, kind, source_file, default_dtid, version, source_text): Type.__init__(self, full_name, Type.CATEGORY_COMPOUND) self.source_file = source_file self.default_dtid = default_dtid self.version = version self.kind = kind self.source_text = source_text self._data_type_signature = None def compute_max_bitlen(flds, union): if len(flds) == 0: return 0 lens = [x.type.get_max_bitlen() for x in flds] if union: return max(lens) + max(len(flds) - 1, 1).bit_length() else: return sum(lens) def compute_min_bitlen(flds, union): if len(flds) == 0: return 0 lens = [x.type.get_min_bitlen() for x in flds] if union: return min(lens) + max(len(flds) - 1, 1).bit_length() else: return sum(lens) if kind == CompoundType.KIND_SERVICE: self.request_fields = [] self.response_fields = [] self.request_constants = [] self.response_constants = [] self.get_max_bitlen_request = lambda: compute_max_bitlen(self.request_fields, self.request_union) self.get_max_bitlen_response = lambda: compute_max_bitlen(self.response_fields, self.response_union) self.get_min_bitlen_request = lambda: compute_min_bitlen(self.request_fields, self.request_union) self.get_min_bitlen_response = lambda: compute_min_bitlen(self.response_fields, self.response_union) self.request_union = False self.response_union = False elif kind == CompoundType.KIND_MESSAGE: self.fields = [] self.constants = [] self.get_max_bitlen = lambda: compute_max_bitlen(self.fields, self.union) self.get_min_bitlen = lambda: compute_min_bitlen(self.fields, self.union) self.union = False else: error('Compound type of unknown kind [%s]', kind) def _instantiate(self, *args, **kwargs): # This is a stub pass def __call__(self, *args, **kwargs): return self._instantiate(*args, **kwargs) def get_dsdl_signature_source_definition(self): """ Returns normalized DSDL definition text. Please refer to the specification for details about normalized DSDL definitions. """ txt = StringIO() txt.write(self.full_name + '\n') def adjoin(attrs): return txt.write('\n'.join(x.get_normalized_definition() for x in attrs) + '\n') if self.kind == CompoundType.KIND_SERVICE: if self.request_union: txt.write('\n@union\n') adjoin(self.request_fields) txt.write('\n---\n') if self.response_union: txt.write('\n@union\n') adjoin(self.response_fields) elif self.kind == CompoundType.KIND_MESSAGE: if self.union: txt.write('\n@union\n') adjoin(self.fields) else: error('Compound type of unknown kind [%s]', self.kind) return txt.getvalue().strip().replace('\n\n\n', '\n').replace('\n\n', '\n') def get_dsdl_signature(self): """ Computes DSDL signature of this type. Please refer to the specification for details about signatures. """ return compute_signature(self.get_dsdl_signature_source_definition()) def get_normalized_definition(self): """Returns full type name string, e.g. 'uavcan.protocol.NodeStatus'""" return self.full_name def get_data_type_signature(self): """ Computes data type signature of this type. The data type signature is guaranteed to match only if all nested data structures are compatible. Please refer to the specification for details about signatures. """ if self._data_type_signature is None: sig = Signature(self.get_dsdl_signature()) fields = self.request_fields + self.response_fields if self.kind == CompoundType.KIND_SERVICE else self.fields for field in fields: field_sig = field.type.get_data_type_signature() if field_sig is not None: sig_value = sig.get_value() sig.add(bytes_from_crc64(field_sig)) sig.add(bytes_from_crc64(sig_value)) self._data_type_signature = sig.get_value() return self._data_type_signature class VoidType(Type): """ Void type description, e.g. void2. Fields: bitlen Bit length, 1 to 64 """ def __init__(self, bitlen): self.bitlen = bitlen Type.__init__(self, self.get_normalized_definition(), Type.CATEGORY_VOID) def get_normalized_definition(self): """Please refer to the specification for details about normalized definitions.""" return 'void' + str(self.bitlen) def get_max_bitlen(self): """Returns type bit length.""" return self.bitlen def get_min_bitlen(self): """Returns type bit length.""" return self.bitlen class Attribute: """ Base class of an attribute description. Fields: type Attribute type description, the type of this field inherits the class Type, e.g. PrimitiveType name Attribute name string """ # noinspection PyShadowingBuiltins def __init__(self, type, name): # @ReservedAssignment self.type = type self.name = name def __str__(self): return self.get_normalized_definition() def get_normalized_definition(self): raise NotImplementedError('Pure virtual method') __repr__ = __str__ class Field(Attribute): """ Field description. Does not add new fields to Attribute. If type is void, the name will be None. """ def get_normalized_definition(self): if self.type.category == self.type.CATEGORY_VOID: return self.type.get_normalized_definition() else: return '%s %s' % (self.type.get_normalized_definition(), self.name) class Constant(Attribute): """ Constant description. Fields: init_expression Constant initialization expression string, e.g. "2+2" or "'\x66'" value Computed result of the initialization expression in the final type (e.g. int, float) string_value Computed result of the initialization expression as string """ # noinspection PyShadowingBuiltins def __init__(self, type, name, init_expression, value): # @ReservedAssignment Attribute.__init__(self, type, name) self.init_expression = init_expression self.value = value self.string_value = repr(value) if isinstance(value, long): self.string_value = self.string_value.replace('L', '') def get_normalized_definition(self): return '%s %s = %s' % (self.type.get_normalized_definition(), self.name, self.init_expression) class Parser: """ DSDL parser logic. Do not use this class directly; use the helper function instead. """ def __init__(self, search_dirs): self.search_dirs = validate_search_directories(search_dirs) def _namespace_from_filename(self, filename): search_dirs = sorted(map(os.path.abspath, self.search_dirs)) # Nested last filename = os.path.abspath(filename) for dirname in search_dirs: root_ns = dirname.split(os.path.sep)[-1] if filename.startswith(dirname): dir_len = len(dirname) basename_len = len(os.path.basename(filename)) ns = filename[dir_len:-basename_len] ns = (root_ns + '.' + ns.replace(os.path.sep, '.').strip('.')).strip('.') validate_namespace_name(ns) return ns error('File [%s] was not found in search directories', filename) def _full_typename_version_and_dtid_from_filename(self, filename): basename = os.path.basename(filename) items = basename.split('.') if (len(items) != 2 and len(items) != 3 and len(items) != 4 and len(items) != 5) or items[-1] != 'uavcan': error('Invalid file name [%s]; expected pattern: [<default-dtid>.]<short-type-name>.[<major-version>.<minor-version>.]uavcan', basename) if len(items) == 2 or len(items) == 4: default_dtid, name = None, items[0] else: default_dtid, name = items[0], items[1] try: default_dtid = int(default_dtid) except ValueError: error('Invalid default data type ID [%s]', default_dtid) if len(items) == 2 or len(items) == 3: version = None else: major_version, minor_version = items[-3], items[-2] try: version = (int(major_version), int(minor_version)) except ValueError: error('Invalid version number [%s]', major_version, minor_version) full_name = self._namespace_from_filename(filename) + '.' + name validate_compound_type_full_name(full_name) return full_name, version, default_dtid def _locate_compound_type_definition(self, referencing_filename, typename): def locate_namespace_directories(ns): namespace_dirs = [] namespace_components = ns.split('.') root_namespace, sub_namespace_components = namespace_components[0], namespace_components[1:] for d in self.search_dirs: if d.split(os.path.sep)[-1] == root_namespace: namespace_dirs.append(os.path.join(d, *sub_namespace_components)) if len(namespace_dirs) == 0: error('Unknown namespace [%s]', ns) return namespace_dirs if '.' not in typename: current_namespace = self._namespace_from_filename(referencing_filename) full_typename = current_namespace + '.' + typename else: full_typename = typename namespace = '.'.join(full_typename.split('.')[:-1]) directories = locate_namespace_directories(namespace) for directory in directories: logger.debug('Searching for [%s] in [%s]', full_typename, directory) if not os.path.isdir(directory): continue for fn in os.listdir(directory): fn = os.path.join(directory, fn) if os.path.isfile(fn): try: fn_full_typename, _version, _dtid = self._full_typename_version_and_dtid_from_filename(fn) if full_typename == fn_full_typename: return fn except Exception as ex: logger.debug('Unknown file [%s], skipping... [%s]', pretty_filename(fn), ex) error('Type definition not found [%s]', typename) # noinspection PyUnusedLocal @staticmethod def _parse_void_type(filename, bitlen): enforce(1 <= bitlen <= 64, 'Invalid void bit length [%d]', bitlen) return VoidType(bitlen) def _parse_array_type(self, filename, value_typedef, size_spec, cast_mode): logger.debug('Parsing the array value type [%s]...', value_typedef) value_type = self._parse_type(filename, value_typedef, cast_mode) enforce(value_type.category != value_type.CATEGORY_ARRAY, 'Multidimensional arrays are not allowed (protip: use nested types)') try: if size_spec.startswith('<='): max_size = int(size_spec[2:], 0) mode = ArrayType.MODE_DYNAMIC elif size_spec.startswith('<'): max_size = int(size_spec[1:], 0) - 1 mode = ArrayType.MODE_DYNAMIC else: max_size = int(size_spec, 0) mode = ArrayType.MODE_STATIC except ValueError: error('Invalid array size specifier [%s] (valid patterns: [<=X], [<X], [X])', size_spec) else: enforce(max_size > 0, 'Array size must be positive, not %d', max_size) return ArrayType(value_type, mode, max_size) # noinspection PyUnusedLocal @staticmethod def _parse_primitive_type(filename, base_name, bitlen, cast_mode): if cast_mode is None or cast_mode == 'saturated': cast_mode = PrimitiveType.CAST_MODE_SATURATED elif cast_mode == 'truncated': cast_mode = PrimitiveType.CAST_MODE_TRUNCATED else: error('Invalid cast mode [%s]', cast_mode) if base_name == 'bool': return PrimitiveType(PrimitiveType.KIND_BOOLEAN, 1, cast_mode) try: kind = { 'uint': PrimitiveType.KIND_UNSIGNED_INT, 'int': PrimitiveType.KIND_SIGNED_INT, 'float': PrimitiveType.KIND_FLOAT, }[base_name] except KeyError: error('Unknown primitive type (note: compound types should be in CamelCase)') # noinspection PyUnboundLocalVariable if kind == PrimitiveType.KIND_FLOAT: enforce(bitlen in (16, 32, 64), 'Invalid bit length for float type [%d]', bitlen) else: enforce(2 <= bitlen <= 64, 'Invalid bit length [%d] (note: use bool instead of uint1)', bitlen) return PrimitiveType(kind, bitlen, cast_mode) def _parse_compound_type(self, filename, typedef): definition_filename = self._locate_compound_type_definition(filename, typedef) logger.debug('Nested type [%s] is defined in [%s], parsing...', typedef, pretty_filename(definition_filename)) t = self.parse(definition_filename) if t.kind == t.KIND_SERVICE: error('A service type can not be nested into another compound type') return t def _parse_type(self, filename, typedef, cast_mode): typedef = typedef.strip() void_match = re.match(r'void(\d{1,2})$', typedef) array_match = re.match(r'(.+?)\[([^\]]*)\]$', typedef) primitive_match = re.match(r'([a-z]+)(\d{1,2})$|(bool)$', typedef) if void_match: size_spec = void_match.group(1).strip() return self._parse_void_type(filename, int(size_spec)) elif array_match: assert not primitive_match value_typedef = array_match.group(1).strip() size_spec = array_match.group(2).strip() return self._parse_array_type(filename, value_typedef, size_spec, cast_mode) elif primitive_match: if primitive_match.group(0) == 'bool': return self._parse_primitive_type(filename, 'bool', 1, cast_mode) else: base_name = primitive_match.group(1) bitlen = int(primitive_match.group(2)) return self._parse_primitive_type(filename, base_name, bitlen, cast_mode) else: enforce(cast_mode is None, 'Cast mode specifier is not applicable for compound types [%s]', cast_mode) return self._parse_compound_type(filename, typedef) @staticmethod def _make_constant(attrtype, name, init_expression): enforce(attrtype.category == attrtype.CATEGORY_PRIMITIVE, 'Invalid type for constant [%d]', attrtype.category) init_expression = ''.join(init_expression.split()) # Remove spaces value = evaluate_expression(init_expression) if isinstance(value, str) and len(value) == 1: # ASCII character value = ord(value) elif isinstance(value, (float, int, bool, long)): # Numeric literal value = { attrtype.KIND_UNSIGNED_INT: long, attrtype.KIND_SIGNED_INT: long, attrtype.KIND_BOOLEAN: int, # Not bool because we need to check range attrtype.KIND_FLOAT: float }[attrtype.kind](value) else: error('Invalid type of constant initialization expression [%s]', type(value).__name__) logger.debug('Constant initialization expression evaluated as: [%s] --> %s', init_expression, repr(value)) attrtype.validate_value_range(value) return Constant(attrtype, name, init_expression, value) def _parse_line(self, filename, tokens): cast_mode = None if tokens[0] == 'saturated' or tokens[0] == 'truncated': cast_mode, tokens = tokens[0], tokens[1:] if len(tokens) < 2 and not tokens[0].startswith('void'): error('Invalid attribute definition') if len(tokens) == 1: typename, attrname, tokens = tokens[0], None, [] else: typename, attrname, tokens = tokens[0], tokens[1], tokens[2:] validate_attribute_name(attrname) attrtype = self._parse_type(filename, typename, cast_mode) if len(tokens) > 0: if len(tokens) < 2 or tokens[0] != '=': error('Constant assignment expected') expression = ' '.join(tokens[1:]) return self._make_constant(attrtype, attrname, expression) else: return Field(attrtype, attrname) @staticmethod def _tokenize(text): for idx, line in enumerate(text.splitlines()): line = re.sub('#.*', '', line).strip() # Remove comments and leading/trailing whitespaces if line: tokens = [tk for tk in line.split() if tk] yield idx + 1, tokens def parse_source(self, filename, source_text): try: full_typename, version, default_dtid = self._full_typename_version_and_dtid_from_filename(filename) numbered_lines = list(self._tokenize(source_text)) all_attributes_names = set() fields, constants, resp_fields, resp_constants = [], [], [], [] union, resp_union = False, False response_part = False for num, tokens in numbered_lines: try: if tokens == ['---']: enforce(not response_part, 'Duplicate response mark') response_part = True all_attributes_names = set() continue if tokens == ['@union']: if response_part: enforce(not resp_union, 'Response data structure has already been declared as union') resp_union = True else: enforce(not union, 'Data structure has already been declared as union') union = True continue attr = self._parse_line(filename, tokens) if attr.name and attr.name in all_attributes_names: error('Duplicated attribute name [%s]', attr.name) all_attributes_names.add(attr.name) if isinstance(attr, Constant): (resp_constants if response_part else constants).append(attr) elif isinstance(attr, Field): (resp_fields if response_part else fields).append(attr) else: error('Unknown attribute type - internal error') except DsdlException as ex: if not ex.line: ex.line = num raise ex except Exception as ex: logger.error('Internal error', exc_info=True) raise DsdlException('Internal error: %s' % str(ex), line=num) if response_part: t = CompoundType(full_typename, CompoundType.KIND_SERVICE, filename, default_dtid, version, source_text) t.request_fields = fields t.request_constants = constants t.response_fields = resp_fields t.response_constants = resp_constants t.request_union = union t.response_union = resp_union max_bitlen = t.get_max_bitlen_request(), t.get_max_bitlen_response() max_bytelen = tuple(map(bitlen_to_bytelen, max_bitlen)) else: t = CompoundType(full_typename, CompoundType.KIND_MESSAGE, filename, default_dtid, version, source_text) t.fields = fields t.constants = constants t.union = union max_bitlen = t.get_max_bitlen() max_bytelen = bitlen_to_bytelen(max_bitlen) validate_union(t) validate_data_type_id(t) logger.debug('Type [%s], default DTID: %s, signature: %08x, maxbits: %s, maxbytes: %s, DSSD:', full_typename, default_dtid, t.get_dsdl_signature(), max_bitlen, max_bytelen) for ln in t.get_dsdl_signature_source_definition().splitlines(): logger.debug(' %s', ln) return t except DsdlException as ex: if not ex.file: ex.file = filename raise ex def parse(self, filename): try: filename = os.path.abspath(filename) with open(filename) as f: source_text = f.read() return self.parse_source(filename, source_text) except IOError as ex: raise DsdlException('IO error: %s' % str(ex), file=filename) except Exception as ex: logger.error('Internal error', exc_info=True) raise DsdlException('Internal error: %s' % str(ex), file=filename) def error(fmt, *args): raise DsdlException(fmt % args) def enforce(cond, fmt, *args): if not cond: error(fmt, *args) def bitlen_to_bytelen(x): return int((x + 7) / 8) def evaluate_expression(expression): try: env = { 'locals': None, 'globals': None, '__builtins__': None, 'true': 1, 'false': 0 } return eval(expression, env) except Exception as ex: error('Cannot evaluate expression: %s', str(ex)) def validate_search_directories(dirnames): dirnames = set(dirnames) dirnames = list(map(os.path.abspath, dirnames)) for d1 in dirnames: for d2 in dirnames: if d1 == d2: continue enforce(not d1.startswith(d2), 'Nested search directories are not allowed [%s] [%s]', d1, d2) return dirnames def validate_namespace_name(name): for component in name.split('.'): enforce(re.match(r'[a-z][a-z0-9_]*$', component), 'Invalid namespace name [%s]', name) enforce(len(name) <= MAX_FULL_TYPE_NAME_LEN, 'Namespace name is too long [%s]', name) def validate_compound_type_full_name(name): enforce('.' in name, 'Full type name must explicitly specify its namespace [%s]', name) short_name = name.split('.')[-1] namespace = '.'.join(name.split('.')[:-1]) validate_namespace_name(namespace) enforce(re.match(r'[A-Z][A-Za-z0-9_]*$', short_name), 'Invalid type name [%s]', name) enforce(len(name) <= MAX_FULL_TYPE_NAME_LEN, 'Type name is too long [%s]', name) def validate_attribute_name(name): enforce(re.match(r'[a-zA-Z][a-zA-Z0-9_]*$', name), 'Invalid attribute name [%s]', name) def validate_data_type_id(t): if t.default_dtid is None: return if t.kind == t.KIND_MESSAGE: enforce(0 <= t.default_dtid <= MESSAGE_DATA_TYPE_ID_MAX, 'Invalid data type ID for message [%s]', t.default_dtid) elif t.kind == t.KIND_SERVICE: enforce(0 <= t.default_dtid <= SERVICE_DATA_TYPE_ID_MAX, 'Invalid data type ID for service [%s]', t.default_dtid) else: error('Invalid kind: %s', t.kind) def validate_union(t): def check_fields(fields): enforce(len(fields) > 1, 'Union contains less than 2 fields') enforce(not any(_.type.category == _.type.CATEGORY_VOID for _ in fields), 'Union must not contain void fields') if t.kind == t.KIND_MESSAGE: if t.union: check_fields(t.fields) elif t.kind == t.KIND_SERVICE: if t.request_union: check_fields(t.request_fields) if t.response_union: check_fields(t.response_fields) else: error('Invalid kind: %s', t.kind) def parse_namespaces(source_dirs, search_dirs=None): """ Use only this function to parse DSDL definitions. This function takes a list of root namespace directories (containing DSDL definition files to parse) and an optional list of search directories (containing DSDL definition files that can be referenced from the types that are going to be parsed). Returns the list of parsed type definitions, where type of each element is CompoundType. Args: source_dirs: List of root namespace directories to parse. search_dirs: List of root namespace directories with referenced types (optional). This list is automatically extended with source_dirs. Example: >>> import uavcan >>> a = uavcan.dsdl.parse_namespaces(['../dsdl/uavcan']) >>> len(a) 77 >>> a[0] uavcan.Timestamp >>> a[0].fields [truncated uint48 husec] >>> a[0].constants [saturated uint48 UNKNOWN = 0, saturated uint48 USEC_PER_LSB = 100] """ # noinspection PyShadowingNames def walk(): import fnmatch from functools import partial def on_walk_error(directory, ex): raise DsdlException('OS error in [%s]: %s' % (directory, str(ex))) for source_dir in source_dirs: walker = os.walk(source_dir, onerror=partial(on_walk_error, source_dir), followlinks=True) for root, _dirnames, filenames in walker: for filename in fnmatch.filter(filenames, '*.uavcan'): filename = os.path.join(root, filename) yield filename all_default_dtid = {} # (kind, dtid) : filename # noinspection PyShadowingNames def ensure_unique_dtid(t, filename): if t.default_dtid is None: return key = t.kind, t.default_dtid if key in all_default_dtid: value = all_default_dtid[key] first = pretty_filename(value[0]) second = pretty_filename(filename) if t.get_dsdl_signature() != value[1].get_dsdl_signature(): error('Redefinition of data type ID: [%s] [%s]', first, second) else: logger.debug('ignoring duplicate definition of %s', t.full_name) return all_default_dtid[key] = (filename, t) parser = Parser(source_dirs + (search_dirs or [])) output_types = [] for filename in walk(): t = parser.parse(filename) ensure_unique_dtid(t, filename) output_types.append(t) return output_types
py
7df90ca370832e17c229dbcc7e7994c3c2fa269f
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: networking/v1alpha3/virtual_service.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import duration_pb2 as google_dot_protobuf_dot_duration__pb2 from google.protobuf import wrappers_pb2 as google_dot_protobuf_dot_wrappers__pb2 from networking.v1alpha3 import service_dependency_pb2 as networking_dot_v1alpha3_dot_service__dependency__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='networking/v1alpha3/virtual_service.proto', package='istio.networking.v1alpha3', syntax='proto3', serialized_pb=_b('\n)networking/v1alpha3/virtual_service.proto\x12\x19istio.networking.v1alpha3\x1a\x1egoogle/protobuf/duration.proto\x1a\x1egoogle/protobuf/wrappers.proto\x1a,networking/v1alpha3/service_dependency.proto\"\x87\x02\n\x0eVirtualService\x12\r\n\x05hosts\x18\x01 \x03(\t\x12\x10\n\x08gateways\x18\x02 \x03(\t\x12\x32\n\x04http\x18\x03 \x03(\x0b\x32$.istio.networking.v1alpha3.HTTPRoute\x12\x30\n\x03tls\x18\x05 \x03(\x0b\x32#.istio.networking.v1alpha3.TLSRoute\x12\x30\n\x03tcp\x18\x04 \x03(\x0b\x32#.istio.networking.v1alpha3.TCPRoute\x12<\n\x0c\x63onfig_scope\x18\x06 \x01(\x0e\x32&.istio.networking.v1alpha3.ConfigScope\"b\n\x0b\x44\x65stination\x12\x0c\n\x04host\x18\x01 \x01(\t\x12\x0e\n\x06subset\x18\x02 \x01(\t\x12\x35\n\x04port\x18\x03 \x01(\x0b\x32\'.istio.networking.v1alpha3.PortSelector\"\xf9\x08\n\tHTTPRoute\x12:\n\x05match\x18\x01 \x03(\x0b\x32+.istio.networking.v1alpha3.HTTPMatchRequest\x12>\n\x05route\x18\x02 \x03(\x0b\x32/.istio.networking.v1alpha3.HTTPRouteDestination\x12\x39\n\x08redirect\x18\x03 \x01(\x0b\x32\'.istio.networking.v1alpha3.HTTPRedirect\x12\x37\n\x07rewrite\x18\x04 \x01(\x0b\x32&.istio.networking.v1alpha3.HTTPRewrite\x12\x19\n\x11websocket_upgrade\x18\x05 \x01(\x08\x12*\n\x07timeout\x18\x06 \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x35\n\x07retries\x18\x07 \x01(\x0b\x32$.istio.networking.v1alpha3.HTTPRetry\x12<\n\x05\x66\x61ult\x18\x08 \x01(\x0b\x32-.istio.networking.v1alpha3.HTTPFaultInjection\x12\x36\n\x06mirror\x18\t \x01(\x0b\x32&.istio.networking.v1alpha3.Destination\x12:\n\x0b\x63ors_policy\x18\n \x01(\x0b\x32%.istio.networking.v1alpha3.CorsPolicy\x12S\n\x0e\x61ppend_headers\x18\x0b \x03(\x0b\x32\x37.istio.networking.v1alpha3.HTTPRoute.AppendHeadersEntryB\x02\x18\x01\x12#\n\x17remove_response_headers\x18\x0c \x03(\tB\x02\x18\x01\x12\x64\n\x17\x61ppend_response_headers\x18\r \x03(\x0b\x32?.istio.networking.v1alpha3.HTTPRoute.AppendResponseHeadersEntryB\x02\x18\x01\x12\"\n\x16remove_request_headers\x18\x0e \x03(\tB\x02\x18\x01\x12\x62\n\x16\x61ppend_request_headers\x18\x0f \x03(\x0b\x32>.istio.networking.v1alpha3.HTTPRoute.AppendRequestHeadersEntryB\x02\x18\x01\x12\x33\n\x07headers\x18\x10 \x01(\x0b\x32\".istio.networking.v1alpha3.Headers\x1a\x34\n\x12\x41ppendHeadersEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\x1a<\n\x1a\x41ppendResponseHeadersEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\x1a;\n\x19\x41ppendRequestHeadersEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\xa9\x03\n\x07Headers\x12\x44\n\x07request\x18\x01 \x01(\x0b\x32\x33.istio.networking.v1alpha3.Headers.HeaderOperations\x12\x45\n\x08response\x18\x02 \x01(\x0b\x32\x33.istio.networking.v1alpha3.Headers.HeaderOperations\x1a\x90\x02\n\x10HeaderOperations\x12I\n\x03set\x18\x01 \x03(\x0b\x32<.istio.networking.v1alpha3.Headers.HeaderOperations.SetEntry\x12I\n\x03\x61\x64\x64\x18\x02 \x03(\x0b\x32<.istio.networking.v1alpha3.Headers.HeaderOperations.AddEntry\x12\x0e\n\x06remove\x18\x03 \x03(\t\x1a*\n\x08SetEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\x1a*\n\x08\x41\x64\x64\x45ntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\x84\x01\n\x08TLSRoute\x12<\n\x05match\x18\x01 \x03(\x0b\x32-.istio.networking.v1alpha3.TLSMatchAttributes\x12:\n\x05route\x18\x02 \x03(\x0b\x32+.istio.networking.v1alpha3.RouteDestination\"\x83\x01\n\x08TCPRoute\x12;\n\x05match\x18\x01 \x03(\x0b\x32,.istio.networking.v1alpha3.L4MatchAttributes\x12:\n\x05route\x18\x02 \x03(\x0b\x32+.istio.networking.v1alpha3.RouteDestination\"\xc0\x04\n\x10HTTPMatchRequest\x12\x33\n\x03uri\x18\x01 \x01(\x0b\x32&.istio.networking.v1alpha3.StringMatch\x12\x36\n\x06scheme\x18\x02 \x01(\x0b\x32&.istio.networking.v1alpha3.StringMatch\x12\x36\n\x06method\x18\x03 \x01(\x0b\x32&.istio.networking.v1alpha3.StringMatch\x12\x39\n\tauthority\x18\x04 \x01(\x0b\x32&.istio.networking.v1alpha3.StringMatch\x12I\n\x07headers\x18\x05 \x03(\x0b\x32\x38.istio.networking.v1alpha3.HTTPMatchRequest.HeadersEntry\x12\x0c\n\x04port\x18\x06 \x01(\r\x12T\n\rsource_labels\x18\x07 \x03(\x0b\x32=.istio.networking.v1alpha3.HTTPMatchRequest.SourceLabelsEntry\x12\x10\n\x08gateways\x18\x08 \x03(\t\x1aV\n\x0cHeadersEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x35\n\x05value\x18\x02 \x01(\x0b\x32&.istio.networking.v1alpha3.StringMatch:\x02\x38\x01\x1a\x33\n\x11SourceLabelsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\xbc\x04\n\x14HTTPRouteDestination\x12;\n\x0b\x64\x65stination\x18\x01 \x01(\x0b\x32&.istio.networking.v1alpha3.Destination\x12\x0e\n\x06weight\x18\x02 \x01(\x05\x12#\n\x17remove_response_headers\x18\x03 \x03(\tB\x02\x18\x01\x12o\n\x17\x61ppend_response_headers\x18\x04 \x03(\x0b\x32J.istio.networking.v1alpha3.HTTPRouteDestination.AppendResponseHeadersEntryB\x02\x18\x01\x12\"\n\x16remove_request_headers\x18\x05 \x03(\tB\x02\x18\x01\x12m\n\x16\x61ppend_request_headers\x18\x06 \x03(\x0b\x32I.istio.networking.v1alpha3.HTTPRouteDestination.AppendRequestHeadersEntryB\x02\x18\x01\x12\x33\n\x07headers\x18\x07 \x01(\x0b\x32\".istio.networking.v1alpha3.Headers\x1a<\n\x1a\x41ppendResponseHeadersEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\x1a;\n\x19\x41ppendRequestHeadersEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"_\n\x10RouteDestination\x12;\n\x0b\x64\x65stination\x18\x01 \x01(\x0b\x32&.istio.networking.v1alpha3.Destination\x12\x0e\n\x06weight\x18\x02 \x01(\x05\"\xf3\x01\n\x11L4MatchAttributes\x12\x1b\n\x13\x64\x65stination_subnets\x18\x01 \x03(\t\x12\x0c\n\x04port\x18\x02 \x01(\r\x12\x15\n\rsource_subnet\x18\x03 \x01(\t\x12U\n\rsource_labels\x18\x04 \x03(\x0b\x32>.istio.networking.v1alpha3.L4MatchAttributes.SourceLabelsEntry\x12\x10\n\x08gateways\x18\x05 \x03(\t\x1a\x33\n\x11SourceLabelsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\x88\x02\n\x12TLSMatchAttributes\x12\x11\n\tsni_hosts\x18\x01 \x03(\t\x12\x1b\n\x13\x64\x65stination_subnets\x18\x02 \x03(\t\x12\x0c\n\x04port\x18\x03 \x01(\r\x12\x15\n\rsource_subnet\x18\x04 \x01(\t\x12V\n\rsource_labels\x18\x05 \x03(\x0b\x32?.istio.networking.v1alpha3.TLSMatchAttributes.SourceLabelsEntry\x12\x10\n\x08gateways\x18\x06 \x03(\t\x1a\x33\n\x11SourceLabelsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\".\n\x0cHTTPRedirect\x12\x0b\n\x03uri\x18\x01 \x01(\t\x12\x11\n\tauthority\x18\x02 \x01(\t\"-\n\x0bHTTPRewrite\x12\x0b\n\x03uri\x18\x01 \x01(\t\x12\x11\n\tauthority\x18\x02 \x01(\t\"O\n\x0bStringMatch\x12\x0f\n\x05\x65xact\x18\x01 \x01(\tH\x00\x12\x10\n\x06prefix\x18\x02 \x01(\tH\x00\x12\x0f\n\x05regex\x18\x03 \x01(\tH\x00\x42\x0c\n\nmatch_type\"c\n\tHTTPRetry\x12\x10\n\x08\x61ttempts\x18\x01 \x01(\x05\x12\x32\n\x0fper_try_timeout\x18\x02 \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x10\n\x08retry_on\x18\x03 \x01(\t\"\xcb\x01\n\nCorsPolicy\x12\x14\n\x0c\x61llow_origin\x18\x01 \x03(\t\x12\x15\n\rallow_methods\x18\x02 \x03(\t\x12\x15\n\rallow_headers\x18\x03 \x03(\t\x12\x16\n\x0e\x65xpose_headers\x18\x04 \x03(\t\x12*\n\x07max_age\x18\x05 \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x35\n\x11\x61llow_credentials\x18\x06 \x01(\x0b\x32\x1a.google.protobuf.BoolValue\"\x9a\x04\n\x12HTTPFaultInjection\x12\x42\n\x05\x64\x65lay\x18\x01 \x01(\x0b\x32\x33.istio.networking.v1alpha3.HTTPFaultInjection.Delay\x12\x42\n\x05\x61\x62ort\x18\x02 \x01(\x0b\x32\x33.istio.networking.v1alpha3.HTTPFaultInjection.Abort\x1a\xd1\x01\n\x05\x44\x65lay\x12\x13\n\x07percent\x18\x01 \x01(\x05\x42\x02\x18\x01\x12\x30\n\x0b\x66ixed_delay\x18\x02 \x01(\x0b\x32\x19.google.protobuf.DurationH\x00\x12\x36\n\x11\x65xponential_delay\x18\x03 \x01(\x0b\x32\x19.google.protobuf.DurationH\x00\x12\x36\n\npercentage\x18\x05 \x01(\x0b\x32\".istio.networking.v1alpha3.PercentB\x11\n\x0fhttp_delay_type\x1a\xa7\x01\n\x05\x41\x62ort\x12\x13\n\x07percent\x18\x01 \x01(\x05\x42\x02\x18\x01\x12\x15\n\x0bhttp_status\x18\x02 \x01(\x05H\x00\x12\x15\n\x0bgrpc_status\x18\x03 \x01(\tH\x00\x12\x15\n\x0bhttp2_error\x18\x04 \x01(\tH\x00\x12\x36\n\npercentage\x18\x05 \x01(\x0b\x32\".istio.networking.v1alpha3.PercentB\x0c\n\nerror_type\"8\n\x0cPortSelector\x12\x10\n\x06number\x18\x01 \x01(\rH\x00\x12\x0e\n\x04name\x18\x02 \x01(\tH\x00\x42\x06\n\x04port\"\x18\n\x07Percent\x12\r\n\x05value\x18\x01 \x01(\x01\x42\"Z istio.io/api/networking/v1alpha3b\x06proto3') , dependencies=[google_dot_protobuf_dot_duration__pb2.DESCRIPTOR,google_dot_protobuf_dot_wrappers__pb2.DESCRIPTOR,networking_dot_v1alpha3_dot_service__dependency__pb2.DESCRIPTOR,]) _VIRTUALSERVICE = _descriptor.Descriptor( name='VirtualService', full_name='istio.networking.v1alpha3.VirtualService', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='hosts', full_name='istio.networking.v1alpha3.VirtualService.hosts', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='gateways', full_name='istio.networking.v1alpha3.VirtualService.gateways', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='http', full_name='istio.networking.v1alpha3.VirtualService.http', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tls', full_name='istio.networking.v1alpha3.VirtualService.tls', index=3, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tcp', full_name='istio.networking.v1alpha3.VirtualService.tcp', index=4, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='config_scope', full_name='istio.networking.v1alpha3.VirtualService.config_scope', index=5, number=6, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=183, serialized_end=446, ) _DESTINATION = _descriptor.Descriptor( name='Destination', full_name='istio.networking.v1alpha3.Destination', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='host', full_name='istio.networking.v1alpha3.Destination.host', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='subset', full_name='istio.networking.v1alpha3.Destination.subset', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='port', full_name='istio.networking.v1alpha3.Destination.port', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=448, serialized_end=546, ) _HTTPROUTE_APPENDHEADERSENTRY = _descriptor.Descriptor( name='AppendHeadersEntry', full_name='istio.networking.v1alpha3.HTTPRoute.AppendHeadersEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='istio.networking.v1alpha3.HTTPRoute.AppendHeadersEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='istio.networking.v1alpha3.HTTPRoute.AppendHeadersEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1519, serialized_end=1571, ) _HTTPROUTE_APPENDRESPONSEHEADERSENTRY = _descriptor.Descriptor( name='AppendResponseHeadersEntry', full_name='istio.networking.v1alpha3.HTTPRoute.AppendResponseHeadersEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='istio.networking.v1alpha3.HTTPRoute.AppendResponseHeadersEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='istio.networking.v1alpha3.HTTPRoute.AppendResponseHeadersEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1573, serialized_end=1633, ) _HTTPROUTE_APPENDREQUESTHEADERSENTRY = _descriptor.Descriptor( name='AppendRequestHeadersEntry', full_name='istio.networking.v1alpha3.HTTPRoute.AppendRequestHeadersEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='istio.networking.v1alpha3.HTTPRoute.AppendRequestHeadersEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='istio.networking.v1alpha3.HTTPRoute.AppendRequestHeadersEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1635, serialized_end=1694, ) _HTTPROUTE = _descriptor.Descriptor( name='HTTPRoute', full_name='istio.networking.v1alpha3.HTTPRoute', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='match', full_name='istio.networking.v1alpha3.HTTPRoute.match', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='route', full_name='istio.networking.v1alpha3.HTTPRoute.route', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='redirect', full_name='istio.networking.v1alpha3.HTTPRoute.redirect', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rewrite', full_name='istio.networking.v1alpha3.HTTPRoute.rewrite', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='websocket_upgrade', full_name='istio.networking.v1alpha3.HTTPRoute.websocket_upgrade', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='timeout', full_name='istio.networking.v1alpha3.HTTPRoute.timeout', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='retries', full_name='istio.networking.v1alpha3.HTTPRoute.retries', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fault', full_name='istio.networking.v1alpha3.HTTPRoute.fault', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mirror', full_name='istio.networking.v1alpha3.HTTPRoute.mirror', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cors_policy', full_name='istio.networking.v1alpha3.HTTPRoute.cors_policy', index=9, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='append_headers', full_name='istio.networking.v1alpha3.HTTPRoute.append_headers', index=10, number=11, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='remove_response_headers', full_name='istio.networking.v1alpha3.HTTPRoute.remove_response_headers', index=11, number=12, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='append_response_headers', full_name='istio.networking.v1alpha3.HTTPRoute.append_response_headers', index=12, number=13, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='remove_request_headers', full_name='istio.networking.v1alpha3.HTTPRoute.remove_request_headers', index=13, number=14, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='append_request_headers', full_name='istio.networking.v1alpha3.HTTPRoute.append_request_headers', index=14, number=15, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='headers', full_name='istio.networking.v1alpha3.HTTPRoute.headers', index=15, number=16, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_HTTPROUTE_APPENDHEADERSENTRY, _HTTPROUTE_APPENDRESPONSEHEADERSENTRY, _HTTPROUTE_APPENDREQUESTHEADERSENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=549, serialized_end=1694, ) _HEADERS_HEADEROPERATIONS_SETENTRY = _descriptor.Descriptor( name='SetEntry', full_name='istio.networking.v1alpha3.Headers.HeaderOperations.SetEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='istio.networking.v1alpha3.Headers.HeaderOperations.SetEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='istio.networking.v1alpha3.Headers.HeaderOperations.SetEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2036, serialized_end=2078, ) _HEADERS_HEADEROPERATIONS_ADDENTRY = _descriptor.Descriptor( name='AddEntry', full_name='istio.networking.v1alpha3.Headers.HeaderOperations.AddEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='istio.networking.v1alpha3.Headers.HeaderOperations.AddEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='istio.networking.v1alpha3.Headers.HeaderOperations.AddEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2080, serialized_end=2122, ) _HEADERS_HEADEROPERATIONS = _descriptor.Descriptor( name='HeaderOperations', full_name='istio.networking.v1alpha3.Headers.HeaderOperations', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='set', full_name='istio.networking.v1alpha3.Headers.HeaderOperations.set', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='add', full_name='istio.networking.v1alpha3.Headers.HeaderOperations.add', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='remove', full_name='istio.networking.v1alpha3.Headers.HeaderOperations.remove', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_HEADERS_HEADEROPERATIONS_SETENTRY, _HEADERS_HEADEROPERATIONS_ADDENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1850, serialized_end=2122, ) _HEADERS = _descriptor.Descriptor( name='Headers', full_name='istio.networking.v1alpha3.Headers', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='request', full_name='istio.networking.v1alpha3.Headers.request', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='response', full_name='istio.networking.v1alpha3.Headers.response', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_HEADERS_HEADEROPERATIONS, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1697, serialized_end=2122, ) _TLSROUTE = _descriptor.Descriptor( name='TLSRoute', full_name='istio.networking.v1alpha3.TLSRoute', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='match', full_name='istio.networking.v1alpha3.TLSRoute.match', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='route', full_name='istio.networking.v1alpha3.TLSRoute.route', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2125, serialized_end=2257, ) _TCPROUTE = _descriptor.Descriptor( name='TCPRoute', full_name='istio.networking.v1alpha3.TCPRoute', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='match', full_name='istio.networking.v1alpha3.TCPRoute.match', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='route', full_name='istio.networking.v1alpha3.TCPRoute.route', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2260, serialized_end=2391, ) _HTTPMATCHREQUEST_HEADERSENTRY = _descriptor.Descriptor( name='HeadersEntry', full_name='istio.networking.v1alpha3.HTTPMatchRequest.HeadersEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='istio.networking.v1alpha3.HTTPMatchRequest.HeadersEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='istio.networking.v1alpha3.HTTPMatchRequest.HeadersEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2831, serialized_end=2917, ) _HTTPMATCHREQUEST_SOURCELABELSENTRY = _descriptor.Descriptor( name='SourceLabelsEntry', full_name='istio.networking.v1alpha3.HTTPMatchRequest.SourceLabelsEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='istio.networking.v1alpha3.HTTPMatchRequest.SourceLabelsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='istio.networking.v1alpha3.HTTPMatchRequest.SourceLabelsEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2919, serialized_end=2970, ) _HTTPMATCHREQUEST = _descriptor.Descriptor( name='HTTPMatchRequest', full_name='istio.networking.v1alpha3.HTTPMatchRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='uri', full_name='istio.networking.v1alpha3.HTTPMatchRequest.uri', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scheme', full_name='istio.networking.v1alpha3.HTTPMatchRequest.scheme', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='method', full_name='istio.networking.v1alpha3.HTTPMatchRequest.method', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='authority', full_name='istio.networking.v1alpha3.HTTPMatchRequest.authority', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='headers', full_name='istio.networking.v1alpha3.HTTPMatchRequest.headers', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='port', full_name='istio.networking.v1alpha3.HTTPMatchRequest.port', index=5, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='source_labels', full_name='istio.networking.v1alpha3.HTTPMatchRequest.source_labels', index=6, number=7, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='gateways', full_name='istio.networking.v1alpha3.HTTPMatchRequest.gateways', index=7, number=8, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_HTTPMATCHREQUEST_HEADERSENTRY, _HTTPMATCHREQUEST_SOURCELABELSENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2394, serialized_end=2970, ) _HTTPROUTEDESTINATION_APPENDRESPONSEHEADERSENTRY = _descriptor.Descriptor( name='AppendResponseHeadersEntry', full_name='istio.networking.v1alpha3.HTTPRouteDestination.AppendResponseHeadersEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='istio.networking.v1alpha3.HTTPRouteDestination.AppendResponseHeadersEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='istio.networking.v1alpha3.HTTPRouteDestination.AppendResponseHeadersEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1573, serialized_end=1633, ) _HTTPROUTEDESTINATION_APPENDREQUESTHEADERSENTRY = _descriptor.Descriptor( name='AppendRequestHeadersEntry', full_name='istio.networking.v1alpha3.HTTPRouteDestination.AppendRequestHeadersEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='istio.networking.v1alpha3.HTTPRouteDestination.AppendRequestHeadersEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='istio.networking.v1alpha3.HTTPRouteDestination.AppendRequestHeadersEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1635, serialized_end=1694, ) _HTTPROUTEDESTINATION = _descriptor.Descriptor( name='HTTPRouteDestination', full_name='istio.networking.v1alpha3.HTTPRouteDestination', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='destination', full_name='istio.networking.v1alpha3.HTTPRouteDestination.destination', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight', full_name='istio.networking.v1alpha3.HTTPRouteDestination.weight', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='remove_response_headers', full_name='istio.networking.v1alpha3.HTTPRouteDestination.remove_response_headers', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='append_response_headers', full_name='istio.networking.v1alpha3.HTTPRouteDestination.append_response_headers', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='remove_request_headers', full_name='istio.networking.v1alpha3.HTTPRouteDestination.remove_request_headers', index=4, number=5, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='append_request_headers', full_name='istio.networking.v1alpha3.HTTPRouteDestination.append_request_headers', index=5, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='headers', full_name='istio.networking.v1alpha3.HTTPRouteDestination.headers', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_HTTPROUTEDESTINATION_APPENDRESPONSEHEADERSENTRY, _HTTPROUTEDESTINATION_APPENDREQUESTHEADERSENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2973, serialized_end=3545, ) _ROUTEDESTINATION = _descriptor.Descriptor( name='RouteDestination', full_name='istio.networking.v1alpha3.RouteDestination', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='destination', full_name='istio.networking.v1alpha3.RouteDestination.destination', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight', full_name='istio.networking.v1alpha3.RouteDestination.weight', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3547, serialized_end=3642, ) _L4MATCHATTRIBUTES_SOURCELABELSENTRY = _descriptor.Descriptor( name='SourceLabelsEntry', full_name='istio.networking.v1alpha3.L4MatchAttributes.SourceLabelsEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='istio.networking.v1alpha3.L4MatchAttributes.SourceLabelsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='istio.networking.v1alpha3.L4MatchAttributes.SourceLabelsEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2919, serialized_end=2970, ) _L4MATCHATTRIBUTES = _descriptor.Descriptor( name='L4MatchAttributes', full_name='istio.networking.v1alpha3.L4MatchAttributes', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='destination_subnets', full_name='istio.networking.v1alpha3.L4MatchAttributes.destination_subnets', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='port', full_name='istio.networking.v1alpha3.L4MatchAttributes.port', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='source_subnet', full_name='istio.networking.v1alpha3.L4MatchAttributes.source_subnet', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='source_labels', full_name='istio.networking.v1alpha3.L4MatchAttributes.source_labels', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='gateways', full_name='istio.networking.v1alpha3.L4MatchAttributes.gateways', index=4, number=5, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_L4MATCHATTRIBUTES_SOURCELABELSENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3645, serialized_end=3888, ) _TLSMATCHATTRIBUTES_SOURCELABELSENTRY = _descriptor.Descriptor( name='SourceLabelsEntry', full_name='istio.networking.v1alpha3.TLSMatchAttributes.SourceLabelsEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='istio.networking.v1alpha3.TLSMatchAttributes.SourceLabelsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='istio.networking.v1alpha3.TLSMatchAttributes.SourceLabelsEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2919, serialized_end=2970, ) _TLSMATCHATTRIBUTES = _descriptor.Descriptor( name='TLSMatchAttributes', full_name='istio.networking.v1alpha3.TLSMatchAttributes', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='sni_hosts', full_name='istio.networking.v1alpha3.TLSMatchAttributes.sni_hosts', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='destination_subnets', full_name='istio.networking.v1alpha3.TLSMatchAttributes.destination_subnets', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='port', full_name='istio.networking.v1alpha3.TLSMatchAttributes.port', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='source_subnet', full_name='istio.networking.v1alpha3.TLSMatchAttributes.source_subnet', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='source_labels', full_name='istio.networking.v1alpha3.TLSMatchAttributes.source_labels', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='gateways', full_name='istio.networking.v1alpha3.TLSMatchAttributes.gateways', index=5, number=6, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_TLSMATCHATTRIBUTES_SOURCELABELSENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=3891, serialized_end=4155, ) _HTTPREDIRECT = _descriptor.Descriptor( name='HTTPRedirect', full_name='istio.networking.v1alpha3.HTTPRedirect', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='uri', full_name='istio.networking.v1alpha3.HTTPRedirect.uri', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='authority', full_name='istio.networking.v1alpha3.HTTPRedirect.authority', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4157, serialized_end=4203, ) _HTTPREWRITE = _descriptor.Descriptor( name='HTTPRewrite', full_name='istio.networking.v1alpha3.HTTPRewrite', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='uri', full_name='istio.networking.v1alpha3.HTTPRewrite.uri', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='authority', full_name='istio.networking.v1alpha3.HTTPRewrite.authority', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4205, serialized_end=4250, ) _STRINGMATCH = _descriptor.Descriptor( name='StringMatch', full_name='istio.networking.v1alpha3.StringMatch', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='exact', full_name='istio.networking.v1alpha3.StringMatch.exact', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='prefix', full_name='istio.networking.v1alpha3.StringMatch.prefix', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='regex', full_name='istio.networking.v1alpha3.StringMatch.regex', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='match_type', full_name='istio.networking.v1alpha3.StringMatch.match_type', index=0, containing_type=None, fields=[]), ], serialized_start=4252, serialized_end=4331, ) _HTTPRETRY = _descriptor.Descriptor( name='HTTPRetry', full_name='istio.networking.v1alpha3.HTTPRetry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='attempts', full_name='istio.networking.v1alpha3.HTTPRetry.attempts', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='per_try_timeout', full_name='istio.networking.v1alpha3.HTTPRetry.per_try_timeout', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='retry_on', full_name='istio.networking.v1alpha3.HTTPRetry.retry_on', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4333, serialized_end=4432, ) _CORSPOLICY = _descriptor.Descriptor( name='CorsPolicy', full_name='istio.networking.v1alpha3.CorsPolicy', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='allow_origin', full_name='istio.networking.v1alpha3.CorsPolicy.allow_origin', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='allow_methods', full_name='istio.networking.v1alpha3.CorsPolicy.allow_methods', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='allow_headers', full_name='istio.networking.v1alpha3.CorsPolicy.allow_headers', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='expose_headers', full_name='istio.networking.v1alpha3.CorsPolicy.expose_headers', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_age', full_name='istio.networking.v1alpha3.CorsPolicy.max_age', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='allow_credentials', full_name='istio.networking.v1alpha3.CorsPolicy.allow_credentials', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4435, serialized_end=4638, ) _HTTPFAULTINJECTION_DELAY = _descriptor.Descriptor( name='Delay', full_name='istio.networking.v1alpha3.HTTPFaultInjection.Delay', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='percent', full_name='istio.networking.v1alpha3.HTTPFaultInjection.Delay.percent', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fixed_delay', full_name='istio.networking.v1alpha3.HTTPFaultInjection.Delay.fixed_delay', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='exponential_delay', full_name='istio.networking.v1alpha3.HTTPFaultInjection.Delay.exponential_delay', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='percentage', full_name='istio.networking.v1alpha3.HTTPFaultInjection.Delay.percentage', index=3, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='http_delay_type', full_name='istio.networking.v1alpha3.HTTPFaultInjection.Delay.http_delay_type', index=0, containing_type=None, fields=[]), ], serialized_start=4800, serialized_end=5009, ) _HTTPFAULTINJECTION_ABORT = _descriptor.Descriptor( name='Abort', full_name='istio.networking.v1alpha3.HTTPFaultInjection.Abort', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='percent', full_name='istio.networking.v1alpha3.HTTPFaultInjection.Abort.percent', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='http_status', full_name='istio.networking.v1alpha3.HTTPFaultInjection.Abort.http_status', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='grpc_status', full_name='istio.networking.v1alpha3.HTTPFaultInjection.Abort.grpc_status', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='http2_error', full_name='istio.networking.v1alpha3.HTTPFaultInjection.Abort.http2_error', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='percentage', full_name='istio.networking.v1alpha3.HTTPFaultInjection.Abort.percentage', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='error_type', full_name='istio.networking.v1alpha3.HTTPFaultInjection.Abort.error_type', index=0, containing_type=None, fields=[]), ], serialized_start=5012, serialized_end=5179, ) _HTTPFAULTINJECTION = _descriptor.Descriptor( name='HTTPFaultInjection', full_name='istio.networking.v1alpha3.HTTPFaultInjection', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='delay', full_name='istio.networking.v1alpha3.HTTPFaultInjection.delay', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='abort', full_name='istio.networking.v1alpha3.HTTPFaultInjection.abort', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_HTTPFAULTINJECTION_DELAY, _HTTPFAULTINJECTION_ABORT, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=4641, serialized_end=5179, ) _PORTSELECTOR = _descriptor.Descriptor( name='PortSelector', full_name='istio.networking.v1alpha3.PortSelector', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='number', full_name='istio.networking.v1alpha3.PortSelector.number', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='istio.networking.v1alpha3.PortSelector.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='port', full_name='istio.networking.v1alpha3.PortSelector.port', index=0, containing_type=None, fields=[]), ], serialized_start=5181, serialized_end=5237, ) _PERCENT = _descriptor.Descriptor( name='Percent', full_name='istio.networking.v1alpha3.Percent', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='value', full_name='istio.networking.v1alpha3.Percent.value', index=0, number=1, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=5239, serialized_end=5263, ) _VIRTUALSERVICE.fields_by_name['http'].message_type = _HTTPROUTE _VIRTUALSERVICE.fields_by_name['tls'].message_type = _TLSROUTE _VIRTUALSERVICE.fields_by_name['tcp'].message_type = _TCPROUTE _VIRTUALSERVICE.fields_by_name['config_scope'].enum_type = networking_dot_v1alpha3_dot_service__dependency__pb2._CONFIGSCOPE _DESTINATION.fields_by_name['port'].message_type = _PORTSELECTOR _HTTPROUTE_APPENDHEADERSENTRY.containing_type = _HTTPROUTE _HTTPROUTE_APPENDRESPONSEHEADERSENTRY.containing_type = _HTTPROUTE _HTTPROUTE_APPENDREQUESTHEADERSENTRY.containing_type = _HTTPROUTE _HTTPROUTE.fields_by_name['match'].message_type = _HTTPMATCHREQUEST _HTTPROUTE.fields_by_name['route'].message_type = _HTTPROUTEDESTINATION _HTTPROUTE.fields_by_name['redirect'].message_type = _HTTPREDIRECT _HTTPROUTE.fields_by_name['rewrite'].message_type = _HTTPREWRITE _HTTPROUTE.fields_by_name['timeout'].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _HTTPROUTE.fields_by_name['retries'].message_type = _HTTPRETRY _HTTPROUTE.fields_by_name['fault'].message_type = _HTTPFAULTINJECTION _HTTPROUTE.fields_by_name['mirror'].message_type = _DESTINATION _HTTPROUTE.fields_by_name['cors_policy'].message_type = _CORSPOLICY _HTTPROUTE.fields_by_name['append_headers'].message_type = _HTTPROUTE_APPENDHEADERSENTRY _HTTPROUTE.fields_by_name['append_response_headers'].message_type = _HTTPROUTE_APPENDRESPONSEHEADERSENTRY _HTTPROUTE.fields_by_name['append_request_headers'].message_type = _HTTPROUTE_APPENDREQUESTHEADERSENTRY _HTTPROUTE.fields_by_name['headers'].message_type = _HEADERS _HEADERS_HEADEROPERATIONS_SETENTRY.containing_type = _HEADERS_HEADEROPERATIONS _HEADERS_HEADEROPERATIONS_ADDENTRY.containing_type = _HEADERS_HEADEROPERATIONS _HEADERS_HEADEROPERATIONS.fields_by_name['set'].message_type = _HEADERS_HEADEROPERATIONS_SETENTRY _HEADERS_HEADEROPERATIONS.fields_by_name['add'].message_type = _HEADERS_HEADEROPERATIONS_ADDENTRY _HEADERS_HEADEROPERATIONS.containing_type = _HEADERS _HEADERS.fields_by_name['request'].message_type = _HEADERS_HEADEROPERATIONS _HEADERS.fields_by_name['response'].message_type = _HEADERS_HEADEROPERATIONS _TLSROUTE.fields_by_name['match'].message_type = _TLSMATCHATTRIBUTES _TLSROUTE.fields_by_name['route'].message_type = _ROUTEDESTINATION _TCPROUTE.fields_by_name['match'].message_type = _L4MATCHATTRIBUTES _TCPROUTE.fields_by_name['route'].message_type = _ROUTEDESTINATION _HTTPMATCHREQUEST_HEADERSENTRY.fields_by_name['value'].message_type = _STRINGMATCH _HTTPMATCHREQUEST_HEADERSENTRY.containing_type = _HTTPMATCHREQUEST _HTTPMATCHREQUEST_SOURCELABELSENTRY.containing_type = _HTTPMATCHREQUEST _HTTPMATCHREQUEST.fields_by_name['uri'].message_type = _STRINGMATCH _HTTPMATCHREQUEST.fields_by_name['scheme'].message_type = _STRINGMATCH _HTTPMATCHREQUEST.fields_by_name['method'].message_type = _STRINGMATCH _HTTPMATCHREQUEST.fields_by_name['authority'].message_type = _STRINGMATCH _HTTPMATCHREQUEST.fields_by_name['headers'].message_type = _HTTPMATCHREQUEST_HEADERSENTRY _HTTPMATCHREQUEST.fields_by_name['source_labels'].message_type = _HTTPMATCHREQUEST_SOURCELABELSENTRY _HTTPROUTEDESTINATION_APPENDRESPONSEHEADERSENTRY.containing_type = _HTTPROUTEDESTINATION _HTTPROUTEDESTINATION_APPENDREQUESTHEADERSENTRY.containing_type = _HTTPROUTEDESTINATION _HTTPROUTEDESTINATION.fields_by_name['destination'].message_type = _DESTINATION _HTTPROUTEDESTINATION.fields_by_name['append_response_headers'].message_type = _HTTPROUTEDESTINATION_APPENDRESPONSEHEADERSENTRY _HTTPROUTEDESTINATION.fields_by_name['append_request_headers'].message_type = _HTTPROUTEDESTINATION_APPENDREQUESTHEADERSENTRY _HTTPROUTEDESTINATION.fields_by_name['headers'].message_type = _HEADERS _ROUTEDESTINATION.fields_by_name['destination'].message_type = _DESTINATION _L4MATCHATTRIBUTES_SOURCELABELSENTRY.containing_type = _L4MATCHATTRIBUTES _L4MATCHATTRIBUTES.fields_by_name['source_labels'].message_type = _L4MATCHATTRIBUTES_SOURCELABELSENTRY _TLSMATCHATTRIBUTES_SOURCELABELSENTRY.containing_type = _TLSMATCHATTRIBUTES _TLSMATCHATTRIBUTES.fields_by_name['source_labels'].message_type = _TLSMATCHATTRIBUTES_SOURCELABELSENTRY _STRINGMATCH.oneofs_by_name['match_type'].fields.append( _STRINGMATCH.fields_by_name['exact']) _STRINGMATCH.fields_by_name['exact'].containing_oneof = _STRINGMATCH.oneofs_by_name['match_type'] _STRINGMATCH.oneofs_by_name['match_type'].fields.append( _STRINGMATCH.fields_by_name['prefix']) _STRINGMATCH.fields_by_name['prefix'].containing_oneof = _STRINGMATCH.oneofs_by_name['match_type'] _STRINGMATCH.oneofs_by_name['match_type'].fields.append( _STRINGMATCH.fields_by_name['regex']) _STRINGMATCH.fields_by_name['regex'].containing_oneof = _STRINGMATCH.oneofs_by_name['match_type'] _HTTPRETRY.fields_by_name['per_try_timeout'].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _CORSPOLICY.fields_by_name['max_age'].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _CORSPOLICY.fields_by_name['allow_credentials'].message_type = google_dot_protobuf_dot_wrappers__pb2._BOOLVALUE _HTTPFAULTINJECTION_DELAY.fields_by_name['fixed_delay'].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _HTTPFAULTINJECTION_DELAY.fields_by_name['exponential_delay'].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _HTTPFAULTINJECTION_DELAY.fields_by_name['percentage'].message_type = _PERCENT _HTTPFAULTINJECTION_DELAY.containing_type = _HTTPFAULTINJECTION _HTTPFAULTINJECTION_DELAY.oneofs_by_name['http_delay_type'].fields.append( _HTTPFAULTINJECTION_DELAY.fields_by_name['fixed_delay']) _HTTPFAULTINJECTION_DELAY.fields_by_name['fixed_delay'].containing_oneof = _HTTPFAULTINJECTION_DELAY.oneofs_by_name['http_delay_type'] _HTTPFAULTINJECTION_DELAY.oneofs_by_name['http_delay_type'].fields.append( _HTTPFAULTINJECTION_DELAY.fields_by_name['exponential_delay']) _HTTPFAULTINJECTION_DELAY.fields_by_name['exponential_delay'].containing_oneof = _HTTPFAULTINJECTION_DELAY.oneofs_by_name['http_delay_type'] _HTTPFAULTINJECTION_ABORT.fields_by_name['percentage'].message_type = _PERCENT _HTTPFAULTINJECTION_ABORT.containing_type = _HTTPFAULTINJECTION _HTTPFAULTINJECTION_ABORT.oneofs_by_name['error_type'].fields.append( _HTTPFAULTINJECTION_ABORT.fields_by_name['http_status']) _HTTPFAULTINJECTION_ABORT.fields_by_name['http_status'].containing_oneof = _HTTPFAULTINJECTION_ABORT.oneofs_by_name['error_type'] _HTTPFAULTINJECTION_ABORT.oneofs_by_name['error_type'].fields.append( _HTTPFAULTINJECTION_ABORT.fields_by_name['grpc_status']) _HTTPFAULTINJECTION_ABORT.fields_by_name['grpc_status'].containing_oneof = _HTTPFAULTINJECTION_ABORT.oneofs_by_name['error_type'] _HTTPFAULTINJECTION_ABORT.oneofs_by_name['error_type'].fields.append( _HTTPFAULTINJECTION_ABORT.fields_by_name['http2_error']) _HTTPFAULTINJECTION_ABORT.fields_by_name['http2_error'].containing_oneof = _HTTPFAULTINJECTION_ABORT.oneofs_by_name['error_type'] _HTTPFAULTINJECTION.fields_by_name['delay'].message_type = _HTTPFAULTINJECTION_DELAY _HTTPFAULTINJECTION.fields_by_name['abort'].message_type = _HTTPFAULTINJECTION_ABORT _PORTSELECTOR.oneofs_by_name['port'].fields.append( _PORTSELECTOR.fields_by_name['number']) _PORTSELECTOR.fields_by_name['number'].containing_oneof = _PORTSELECTOR.oneofs_by_name['port'] _PORTSELECTOR.oneofs_by_name['port'].fields.append( _PORTSELECTOR.fields_by_name['name']) _PORTSELECTOR.fields_by_name['name'].containing_oneof = _PORTSELECTOR.oneofs_by_name['port'] DESCRIPTOR.message_types_by_name['VirtualService'] = _VIRTUALSERVICE DESCRIPTOR.message_types_by_name['Destination'] = _DESTINATION DESCRIPTOR.message_types_by_name['HTTPRoute'] = _HTTPROUTE DESCRIPTOR.message_types_by_name['Headers'] = _HEADERS DESCRIPTOR.message_types_by_name['TLSRoute'] = _TLSROUTE DESCRIPTOR.message_types_by_name['TCPRoute'] = _TCPROUTE DESCRIPTOR.message_types_by_name['HTTPMatchRequest'] = _HTTPMATCHREQUEST DESCRIPTOR.message_types_by_name['HTTPRouteDestination'] = _HTTPROUTEDESTINATION DESCRIPTOR.message_types_by_name['RouteDestination'] = _ROUTEDESTINATION DESCRIPTOR.message_types_by_name['L4MatchAttributes'] = _L4MATCHATTRIBUTES DESCRIPTOR.message_types_by_name['TLSMatchAttributes'] = _TLSMATCHATTRIBUTES DESCRIPTOR.message_types_by_name['HTTPRedirect'] = _HTTPREDIRECT DESCRIPTOR.message_types_by_name['HTTPRewrite'] = _HTTPREWRITE DESCRIPTOR.message_types_by_name['StringMatch'] = _STRINGMATCH DESCRIPTOR.message_types_by_name['HTTPRetry'] = _HTTPRETRY DESCRIPTOR.message_types_by_name['CorsPolicy'] = _CORSPOLICY DESCRIPTOR.message_types_by_name['HTTPFaultInjection'] = _HTTPFAULTINJECTION DESCRIPTOR.message_types_by_name['PortSelector'] = _PORTSELECTOR DESCRIPTOR.message_types_by_name['Percent'] = _PERCENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) VirtualService = _reflection.GeneratedProtocolMessageType('VirtualService', (_message.Message,), dict( DESCRIPTOR = _VIRTUALSERVICE, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.VirtualService) )) _sym_db.RegisterMessage(VirtualService) Destination = _reflection.GeneratedProtocolMessageType('Destination', (_message.Message,), dict( DESCRIPTOR = _DESTINATION, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.Destination) )) _sym_db.RegisterMessage(Destination) HTTPRoute = _reflection.GeneratedProtocolMessageType('HTTPRoute', (_message.Message,), dict( AppendHeadersEntry = _reflection.GeneratedProtocolMessageType('AppendHeadersEntry', (_message.Message,), dict( DESCRIPTOR = _HTTPROUTE_APPENDHEADERSENTRY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPRoute.AppendHeadersEntry) )) , AppendResponseHeadersEntry = _reflection.GeneratedProtocolMessageType('AppendResponseHeadersEntry', (_message.Message,), dict( DESCRIPTOR = _HTTPROUTE_APPENDRESPONSEHEADERSENTRY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPRoute.AppendResponseHeadersEntry) )) , AppendRequestHeadersEntry = _reflection.GeneratedProtocolMessageType('AppendRequestHeadersEntry', (_message.Message,), dict( DESCRIPTOR = _HTTPROUTE_APPENDREQUESTHEADERSENTRY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPRoute.AppendRequestHeadersEntry) )) , DESCRIPTOR = _HTTPROUTE, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPRoute) )) _sym_db.RegisterMessage(HTTPRoute) _sym_db.RegisterMessage(HTTPRoute.AppendHeadersEntry) _sym_db.RegisterMessage(HTTPRoute.AppendResponseHeadersEntry) _sym_db.RegisterMessage(HTTPRoute.AppendRequestHeadersEntry) Headers = _reflection.GeneratedProtocolMessageType('Headers', (_message.Message,), dict( HeaderOperations = _reflection.GeneratedProtocolMessageType('HeaderOperations', (_message.Message,), dict( SetEntry = _reflection.GeneratedProtocolMessageType('SetEntry', (_message.Message,), dict( DESCRIPTOR = _HEADERS_HEADEROPERATIONS_SETENTRY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.Headers.HeaderOperations.SetEntry) )) , AddEntry = _reflection.GeneratedProtocolMessageType('AddEntry', (_message.Message,), dict( DESCRIPTOR = _HEADERS_HEADEROPERATIONS_ADDENTRY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.Headers.HeaderOperations.AddEntry) )) , DESCRIPTOR = _HEADERS_HEADEROPERATIONS, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.Headers.HeaderOperations) )) , DESCRIPTOR = _HEADERS, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.Headers) )) _sym_db.RegisterMessage(Headers) _sym_db.RegisterMessage(Headers.HeaderOperations) _sym_db.RegisterMessage(Headers.HeaderOperations.SetEntry) _sym_db.RegisterMessage(Headers.HeaderOperations.AddEntry) TLSRoute = _reflection.GeneratedProtocolMessageType('TLSRoute', (_message.Message,), dict( DESCRIPTOR = _TLSROUTE, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.TLSRoute) )) _sym_db.RegisterMessage(TLSRoute) TCPRoute = _reflection.GeneratedProtocolMessageType('TCPRoute', (_message.Message,), dict( DESCRIPTOR = _TCPROUTE, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.TCPRoute) )) _sym_db.RegisterMessage(TCPRoute) HTTPMatchRequest = _reflection.GeneratedProtocolMessageType('HTTPMatchRequest', (_message.Message,), dict( HeadersEntry = _reflection.GeneratedProtocolMessageType('HeadersEntry', (_message.Message,), dict( DESCRIPTOR = _HTTPMATCHREQUEST_HEADERSENTRY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPMatchRequest.HeadersEntry) )) , SourceLabelsEntry = _reflection.GeneratedProtocolMessageType('SourceLabelsEntry', (_message.Message,), dict( DESCRIPTOR = _HTTPMATCHREQUEST_SOURCELABELSENTRY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPMatchRequest.SourceLabelsEntry) )) , DESCRIPTOR = _HTTPMATCHREQUEST, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPMatchRequest) )) _sym_db.RegisterMessage(HTTPMatchRequest) _sym_db.RegisterMessage(HTTPMatchRequest.HeadersEntry) _sym_db.RegisterMessage(HTTPMatchRequest.SourceLabelsEntry) HTTPRouteDestination = _reflection.GeneratedProtocolMessageType('HTTPRouteDestination', (_message.Message,), dict( AppendResponseHeadersEntry = _reflection.GeneratedProtocolMessageType('AppendResponseHeadersEntry', (_message.Message,), dict( DESCRIPTOR = _HTTPROUTEDESTINATION_APPENDRESPONSEHEADERSENTRY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPRouteDestination.AppendResponseHeadersEntry) )) , AppendRequestHeadersEntry = _reflection.GeneratedProtocolMessageType('AppendRequestHeadersEntry', (_message.Message,), dict( DESCRIPTOR = _HTTPROUTEDESTINATION_APPENDREQUESTHEADERSENTRY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPRouteDestination.AppendRequestHeadersEntry) )) , DESCRIPTOR = _HTTPROUTEDESTINATION, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPRouteDestination) )) _sym_db.RegisterMessage(HTTPRouteDestination) _sym_db.RegisterMessage(HTTPRouteDestination.AppendResponseHeadersEntry) _sym_db.RegisterMessage(HTTPRouteDestination.AppendRequestHeadersEntry) RouteDestination = _reflection.GeneratedProtocolMessageType('RouteDestination', (_message.Message,), dict( DESCRIPTOR = _ROUTEDESTINATION, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.RouteDestination) )) _sym_db.RegisterMessage(RouteDestination) L4MatchAttributes = _reflection.GeneratedProtocolMessageType('L4MatchAttributes', (_message.Message,), dict( SourceLabelsEntry = _reflection.GeneratedProtocolMessageType('SourceLabelsEntry', (_message.Message,), dict( DESCRIPTOR = _L4MATCHATTRIBUTES_SOURCELABELSENTRY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.L4MatchAttributes.SourceLabelsEntry) )) , DESCRIPTOR = _L4MATCHATTRIBUTES, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.L4MatchAttributes) )) _sym_db.RegisterMessage(L4MatchAttributes) _sym_db.RegisterMessage(L4MatchAttributes.SourceLabelsEntry) TLSMatchAttributes = _reflection.GeneratedProtocolMessageType('TLSMatchAttributes', (_message.Message,), dict( SourceLabelsEntry = _reflection.GeneratedProtocolMessageType('SourceLabelsEntry', (_message.Message,), dict( DESCRIPTOR = _TLSMATCHATTRIBUTES_SOURCELABELSENTRY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.TLSMatchAttributes.SourceLabelsEntry) )) , DESCRIPTOR = _TLSMATCHATTRIBUTES, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.TLSMatchAttributes) )) _sym_db.RegisterMessage(TLSMatchAttributes) _sym_db.RegisterMessage(TLSMatchAttributes.SourceLabelsEntry) HTTPRedirect = _reflection.GeneratedProtocolMessageType('HTTPRedirect', (_message.Message,), dict( DESCRIPTOR = _HTTPREDIRECT, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPRedirect) )) _sym_db.RegisterMessage(HTTPRedirect) HTTPRewrite = _reflection.GeneratedProtocolMessageType('HTTPRewrite', (_message.Message,), dict( DESCRIPTOR = _HTTPREWRITE, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPRewrite) )) _sym_db.RegisterMessage(HTTPRewrite) StringMatch = _reflection.GeneratedProtocolMessageType('StringMatch', (_message.Message,), dict( DESCRIPTOR = _STRINGMATCH, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.StringMatch) )) _sym_db.RegisterMessage(StringMatch) HTTPRetry = _reflection.GeneratedProtocolMessageType('HTTPRetry', (_message.Message,), dict( DESCRIPTOR = _HTTPRETRY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPRetry) )) _sym_db.RegisterMessage(HTTPRetry) CorsPolicy = _reflection.GeneratedProtocolMessageType('CorsPolicy', (_message.Message,), dict( DESCRIPTOR = _CORSPOLICY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.CorsPolicy) )) _sym_db.RegisterMessage(CorsPolicy) HTTPFaultInjection = _reflection.GeneratedProtocolMessageType('HTTPFaultInjection', (_message.Message,), dict( Delay = _reflection.GeneratedProtocolMessageType('Delay', (_message.Message,), dict( DESCRIPTOR = _HTTPFAULTINJECTION_DELAY, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPFaultInjection.Delay) )) , Abort = _reflection.GeneratedProtocolMessageType('Abort', (_message.Message,), dict( DESCRIPTOR = _HTTPFAULTINJECTION_ABORT, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPFaultInjection.Abort) )) , DESCRIPTOR = _HTTPFAULTINJECTION, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.HTTPFaultInjection) )) _sym_db.RegisterMessage(HTTPFaultInjection) _sym_db.RegisterMessage(HTTPFaultInjection.Delay) _sym_db.RegisterMessage(HTTPFaultInjection.Abort) PortSelector = _reflection.GeneratedProtocolMessageType('PortSelector', (_message.Message,), dict( DESCRIPTOR = _PORTSELECTOR, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.PortSelector) )) _sym_db.RegisterMessage(PortSelector) Percent = _reflection.GeneratedProtocolMessageType('Percent', (_message.Message,), dict( DESCRIPTOR = _PERCENT, __module__ = 'networking.v1alpha3.virtual_service_pb2' # @@protoc_insertion_point(class_scope:istio.networking.v1alpha3.Percent) )) _sym_db.RegisterMessage(Percent) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('Z istio.io/api/networking/v1alpha3')) _HTTPROUTE_APPENDHEADERSENTRY.has_options = True _HTTPROUTE_APPENDHEADERSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _HTTPROUTE_APPENDRESPONSEHEADERSENTRY.has_options = True _HTTPROUTE_APPENDRESPONSEHEADERSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _HTTPROUTE_APPENDREQUESTHEADERSENTRY.has_options = True _HTTPROUTE_APPENDREQUESTHEADERSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _HTTPROUTE.fields_by_name['append_headers'].has_options = True _HTTPROUTE.fields_by_name['append_headers']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')) _HTTPROUTE.fields_by_name['remove_response_headers'].has_options = True _HTTPROUTE.fields_by_name['remove_response_headers']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')) _HTTPROUTE.fields_by_name['append_response_headers'].has_options = True _HTTPROUTE.fields_by_name['append_response_headers']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')) _HTTPROUTE.fields_by_name['remove_request_headers'].has_options = True _HTTPROUTE.fields_by_name['remove_request_headers']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')) _HTTPROUTE.fields_by_name['append_request_headers'].has_options = True _HTTPROUTE.fields_by_name['append_request_headers']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')) _HEADERS_HEADEROPERATIONS_SETENTRY.has_options = True _HEADERS_HEADEROPERATIONS_SETENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _HEADERS_HEADEROPERATIONS_ADDENTRY.has_options = True _HEADERS_HEADEROPERATIONS_ADDENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _HTTPMATCHREQUEST_HEADERSENTRY.has_options = True _HTTPMATCHREQUEST_HEADERSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _HTTPMATCHREQUEST_SOURCELABELSENTRY.has_options = True _HTTPMATCHREQUEST_SOURCELABELSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _HTTPROUTEDESTINATION_APPENDRESPONSEHEADERSENTRY.has_options = True _HTTPROUTEDESTINATION_APPENDRESPONSEHEADERSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _HTTPROUTEDESTINATION_APPENDREQUESTHEADERSENTRY.has_options = True _HTTPROUTEDESTINATION_APPENDREQUESTHEADERSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _HTTPROUTEDESTINATION.fields_by_name['remove_response_headers'].has_options = True _HTTPROUTEDESTINATION.fields_by_name['remove_response_headers']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')) _HTTPROUTEDESTINATION.fields_by_name['append_response_headers'].has_options = True _HTTPROUTEDESTINATION.fields_by_name['append_response_headers']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')) _HTTPROUTEDESTINATION.fields_by_name['remove_request_headers'].has_options = True _HTTPROUTEDESTINATION.fields_by_name['remove_request_headers']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')) _HTTPROUTEDESTINATION.fields_by_name['append_request_headers'].has_options = True _HTTPROUTEDESTINATION.fields_by_name['append_request_headers']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')) _L4MATCHATTRIBUTES_SOURCELABELSENTRY.has_options = True _L4MATCHATTRIBUTES_SOURCELABELSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _TLSMATCHATTRIBUTES_SOURCELABELSENTRY.has_options = True _TLSMATCHATTRIBUTES_SOURCELABELSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _HTTPFAULTINJECTION_DELAY.fields_by_name['percent'].has_options = True _HTTPFAULTINJECTION_DELAY.fields_by_name['percent']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')) _HTTPFAULTINJECTION_ABORT.fields_by_name['percent'].has_options = True _HTTPFAULTINJECTION_ABORT.fields_by_name['percent']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')) # @@protoc_insertion_point(module_scope)
py
7df90ccd8df8ae0542743bf0e0883331ac5143d0
import os is_arch_valid = 1 #python_lt_27 = 1 flags_arch = '-O3' flags_link = '-pgf90libs' cc = 'pgcc' f90 = 'pgf90' libpath_fortran = '' libs_fortran = [] flags_prec_single = '-Mr4' flags_prec_double = '-Mr8' home = os.environ['HOME'] libpath_fortran = '' libs_fortran = ['gfortran'] home = os.environ["HOME"] charm_path = home + '/Charm/charm' papi_path = home hdf5_path = os.environ['HDF5HOME'] hdf5_inc = hdf5_path + '/include' hdf5_lib = hdf5_path + '/lib' mpi_path = os.environ['MPIHOME'] png_path = '/usr/lib64' grackle_path = home + '/Grackle/src/clib'
py
7df90cd6e8aac37917b061166e7533f6a2360da2
# Copyright (c) 2012, Machinalis S.R.L. # # Author: Rafael Carrascosa <[email protected]> # # This file is part of REfO and is distributed under the Modified BSD License. # You should have received a copy of license in the LICENSE.txt file. from .instructions import Atom, Accept, Split, Save class Pattern(object): def _compile(self): raise NotImplementedError def compile(self): return self._compile(Accept()) def __or__(self, other): return Disjunction(self, other) def __add__(self, other): xs = [] for item in [self, other]: if isinstance(item, Concatenation): xs.extend(item.xs) else: xs.append(item) return Concatenation(*xs) def __mul__(self, x): if isinstance(x, int): mn = x mx = x else: assert isinstance(x, tuple) mn, mx = x if mn is None: mn = 0 return Repetition(self, mn=mn, mx=mx) def __str__(self): return str(self.arg) def __repr__(self): return "{1}({0!r})".format(self.arg, self.__class__.__name__) class Predicate(Pattern): def __init__(self, f): self.f = f self.arg = f def _compile(self, cont): x = Atom(self.f, succ=cont) return x class Any(Predicate): def __init__(self): super(Any, self).__init__(lambda x: True) def __str__(self): return "Any()" def __repr__(self): return "Any()" class Literal(Predicate): def __init__(self, x): super(Literal, self).__init__(lambda y: x == y) self.x = x self.arg = x class Disjunction(Pattern): def __init__(self, a, b): self.a = a self.b = b def _compile(self, cont): a = self.a._compile(cont) b = self.b._compile(cont) return Split(a, b) def __str__(self): return "(" + " | ".join(map(str, [self.a, self.b])) + ")" def __repr__(self): return "(" + " | ".join(map(repr, [self.a, self.b])) + ")" class Concatenation(Pattern): def __init__(self, *patterns): self.xs = list(patterns) assert len(self.xs) != 0 def _compile(self, cont): code = cont for x in reversed(self.xs): code = x._compile(code) return code def __str__(self): return "(" + " + ".join(map(str, self.xs)) + ")" def __repr__(self): return "(" + " + ".join(map(repr, self.xs)) + ")" class Star(Pattern): def __init__(self, pattern, greedy=True): self.x = pattern self.greedy = greedy self.arg = pattern def _compile(self, cont): # In words: split to (`x` and return to split) and `cont` split = Split() x = self.x._compile(split) if self.greedy: split.succ = x split.split = cont else: split.succ = cont split.split = x # `Plus` would return `x` return split def __str__(self): return str(self.x) + "*" class Plus(Pattern): def __init__(self, pattern, greedy=True): self.x = pattern self.greedy = greedy self.arg = pattern def _compile(self, cont): # In words: take `x` and split to `x` and `cont` split = Split() x = self.x._compile(split) if self.greedy: split.succ = x split.split = cont else: split.succ = cont split.split = x # `Star` would return `split` return x def __str__(self): return str(self.x) + "+" class Question(Pattern): def __init__(self, pattern, greedy=True): self.x = pattern self.greedy = greedy self.arg = pattern def _compile(self, cont): xcode = self.x._compile(cont) if self.greedy: return Split(xcode, cont) else: return Split(cont, xcode) def __str__(self): return str(self.x) + "?" class Group(Pattern): def __init__(self, pattern, key): self.x = pattern self.key = key def _compile(self, cont): start = Save(_start(self.key)) end = Save(_end(self.key)) code = self.x._compile(end) start.succ = code end.succ = cont return start def __str__(self): return "Group({0!s}, {1!s})".format(self.x, self.key) def __repr__(self): return "Group({0!r}, {1!r})".format(self.x, self.key) class Repetition(Pattern): def __init__(self, pattern, mn=0, mx=None, greedy=True): assert mn is not None or mx is not None or mn <= mx self.x = pattern self.mn = mn self.mx = mx self.greedy = greedy def _compile(self, cont): code = cont if self.mx is not None: q = Question(self.x, self.greedy) for _ in range(self.mx - self.mn): code = q._compile(code) else: code = Star(self.x, greedy=self.greedy)._compile(code) for _ in range(self.mn): code = self.x._compile(code) return code def __str__(self): return self._tostring("{0!s}") def __repr__(self): return self._tostring("{0!r}") def _tostring(self, s): base = "(" + s + ")*" if self.mn == 0 and self.mx is None: return base.format(self.x) if self.mn == self.mx: return (base + "{1}").format(self.x, self.mn) return (base + "*({1},{2})").format(self.x, self.mn, self.mx) def _start(key): return (key, 0) def _end(key): return (key, 1)
py
7df90cf7c53354758ac521cd744350805f2572c2
"""Eager mode TF policy built using build_tf_policy(). It supports both traced and non-traced eager execution modes.""" import functools import logging import threading from typing import Dict, List, Optional, Tuple from ray.util.debug import log_once from ray.rllib.models.catalog import ModelCatalog from ray.rllib.models.repeated_values import RepeatedValues from ray.rllib.policy.policy import Policy, LEARNER_STATS_KEY from ray.rllib.policy.rnn_sequencing import pad_batch_to_sequences_of_same_size from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils import add_mixins, force_list from ray.rllib.utils.annotations import override from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.tf_ops import convert_to_non_tf_type from ray.rllib.utils.threading import with_lock from ray.rllib.utils.tracking_dict import UsageTrackingDict from ray.rllib.utils.typing import TensorType tf1, tf, tfv = try_import_tf() logger = logging.getLogger(__name__) def _convert_to_tf(x, dtype=None): if isinstance(x, SampleBatch): x = {k: v for k, v in x.items() if k != SampleBatch.INFOS} return tf.nest.map_structure(_convert_to_tf, x) elif isinstance(x, Policy): return x # Special handling of "Repeated" values. elif isinstance(x, RepeatedValues): return RepeatedValues( tf.nest.map_structure(_convert_to_tf, x.values), x.lengths, x.max_len) if x is not None: d = dtype x = tf.nest.map_structure( lambda f: tf.convert_to_tensor(f, d) if f is not None else None, x) return x def _convert_to_numpy(x): def _map(x): if isinstance(x, tf.Tensor): return x.numpy() return x try: return tf.nest.map_structure(_map, x) except AttributeError: raise TypeError( ("Object of type {} has no method to convert to numpy.").format( type(x))) def convert_eager_inputs(func): @functools.wraps(func) def _func(*args, **kwargs): if tf.executing_eagerly(): args = [_convert_to_tf(x) for x in args] # TODO: (sven) find a way to remove key-specific hacks. kwargs = { k: _convert_to_tf( v, dtype=tf.int32 if k == "timestep" else None) for k, v in kwargs.items() if k not in {"info_batch", "episodes"} } return func(*args, **kwargs) return _func def convert_eager_outputs(func): @functools.wraps(func) def _func(*args, **kwargs): out = func(*args, **kwargs) if tf.executing_eagerly(): out = tf.nest.map_structure(_convert_to_numpy, out) return out return _func def _disallow_var_creation(next_creator, **kw): v = next_creator(**kw) raise ValueError("Detected a variable being created during an eager " "forward pass. Variables should only be created during " "model initialization: {}".format(v.name)) def traced_eager_policy(eager_policy_cls): """Wrapper that enables tracing for all eager policy methods. This is enabled by the --trace / "eager_tracing" config.""" class TracedEagerPolicy(eager_policy_cls): def __init__(self, *args, **kwargs): self._traced_learn_on_batch = None self._traced_compute_actions = None self._traced_compute_gradients = None self._traced_apply_gradients = None super(TracedEagerPolicy, self).__init__(*args, **kwargs) @override(eager_policy_cls) @convert_eager_inputs @convert_eager_outputs def _learn_on_batch_eager(self, samples): if self._traced_learn_on_batch is None: self._traced_learn_on_batch = tf.function( super(TracedEagerPolicy, self)._learn_on_batch_eager, autograph=False, experimental_relax_shapes=True) return self._traced_learn_on_batch(samples) @override(Policy) @convert_eager_inputs @convert_eager_outputs def compute_actions(self, obs_batch, state_batches=None, prev_action_batch=None, prev_reward_batch=None, info_batch=None, episodes=None, explore=None, timestep=None, **kwargs): obs_batch = tf.convert_to_tensor(obs_batch) state_batches = _convert_to_tf(state_batches) prev_action_batch = _convert_to_tf(prev_action_batch) prev_reward_batch = _convert_to_tf(prev_reward_batch) if self._traced_compute_actions is None: self._traced_compute_actions = tf.function( super(TracedEagerPolicy, self).compute_actions, autograph=False, experimental_relax_shapes=True) return self._traced_compute_actions( obs_batch, state_batches, prev_action_batch, prev_reward_batch, info_batch, episodes, explore, timestep, **kwargs) @override(eager_policy_cls) @convert_eager_inputs @convert_eager_outputs def _compute_gradients_eager(self, samples): if self._traced_compute_gradients is None: self._traced_compute_gradients = tf.function( super(TracedEagerPolicy, self).compute_gradients, autograph=False, experimental_relax_shapes=True) return self._traced_compute_gradients(samples) @override(Policy) @convert_eager_inputs @convert_eager_outputs def apply_gradients(self, grads): if self._traced_apply_gradients is None: self._traced_apply_gradients = tf.function( super(TracedEagerPolicy, self).apply_gradients, autograph=False, experimental_relax_shapes=True) return self._traced_apply_gradients(grads) TracedEagerPolicy.__name__ = eager_policy_cls.__name__ TracedEagerPolicy.__qualname__ = eager_policy_cls.__qualname__ return TracedEagerPolicy def build_eager_tf_policy(name, loss_fn, get_default_config=None, postprocess_fn=None, stats_fn=None, optimizer_fn=None, gradients_fn=None, apply_gradients_fn=None, grad_stats_fn=None, extra_learn_fetches_fn=None, extra_action_fetches_fn=None, validate_spaces=None, before_init=None, before_loss_init=None, after_init=None, make_model=None, action_sampler_fn=None, action_distribution_fn=None, mixins=None, obs_include_prev_action_reward=True, get_batch_divisibility_req=None): """Build an eager TF policy. An eager policy runs all operations in eager mode, which makes debugging much simpler, but has lower performance. You shouldn't need to call this directly. Rather, prefer to build a TF graph policy and use set {"framework": "tfe"} in the trainer config to have it automatically be converted to an eager policy. This has the same signature as build_tf_policy().""" base = add_mixins(Policy, mixins) class eager_policy_cls(base): def __init__(self, observation_space, action_space, config): assert tf.executing_eagerly() self.framework = config.get("framework", "tfe") Policy.__init__(self, observation_space, action_space, config) self._is_training = False self._loss_initialized = False self._sess = None self._loss = loss_fn self.batch_divisibility_req = get_batch_divisibility_req(self) if \ callable(get_batch_divisibility_req) else \ (get_batch_divisibility_req or 1) self._max_seq_len = config["model"]["max_seq_len"] if get_default_config: config = dict(get_default_config(), **config) if validate_spaces: validate_spaces(self, observation_space, action_space, config) if before_init: before_init(self, observation_space, action_space, config) self.config = config self.dist_class = None if action_sampler_fn or action_distribution_fn: if not make_model: raise ValueError( "`make_model` is required if `action_sampler_fn` OR " "`action_distribution_fn` is given") else: self.dist_class, logit_dim = ModelCatalog.get_action_dist( action_space, self.config["model"]) if make_model: self.model = make_model(self, observation_space, action_space, config) else: self.model = ModelCatalog.get_model_v2( observation_space, action_space, logit_dim, config["model"], framework=self.framework, ) # Lock used for locking some methods on the object-level. # This prevents possible race conditions when calling the model # first, then its value function (e.g. in a loss function), in # between of which another model call is made (e.g. to compute an # action). self._lock = threading.RLock() # Auto-update model's inference view requirements, if recurrent. self._update_model_view_requirements_from_init_state() self.exploration = self._create_exploration() self._state_inputs = self.model.get_initial_state() self._is_recurrent = len(self._state_inputs) > 0 # Combine view_requirements for Model and Policy. self.view_requirements.update(self.model.view_requirements) if before_loss_init: before_loss_init(self, observation_space, action_space, config) if optimizer_fn: optimizers = optimizer_fn(self, config) else: optimizers = tf.keras.optimizers.Adam(config["lr"]) optimizers = force_list(optimizers) if getattr(self, "exploration", None): optimizers = self.exploration.get_exploration_optimizer( optimizers) # TODO: (sven) Allow tf policy to have more than 1 optimizer. # Just like torch Policy does. self._optimizer = optimizers[0] if optimizers else None self._initialize_loss_from_dummy_batch( auto_remove_unneeded_view_reqs=True, stats_fn=stats_fn, ) self._loss_initialized = True if after_init: after_init(self, observation_space, action_space, config) # Got to reset global_timestep again after fake run-throughs. self.global_timestep = 0 @override(Policy) def postprocess_trajectory(self, sample_batch, other_agent_batches=None, episode=None): assert tf.executing_eagerly() # Call super's postprocess_trajectory first. sample_batch = Policy.postprocess_trajectory(self, sample_batch) if postprocess_fn: return postprocess_fn(self, sample_batch, other_agent_batches, episode) return sample_batch @with_lock @override(Policy) def learn_on_batch(self, postprocessed_batch): # Callback handling. self.callbacks.on_learn_on_batch( policy=self, train_batch=postprocessed_batch) pad_batch_to_sequences_of_same_size( postprocessed_batch, shuffle=False, max_seq_len=self._max_seq_len, batch_divisibility_req=self.batch_divisibility_req, view_requirements=self.view_requirements, ) self._is_training = True postprocessed_batch["is_training"] = True return self._learn_on_batch_eager(postprocessed_batch) @convert_eager_inputs @convert_eager_outputs def _learn_on_batch_eager(self, samples): with tf.variable_creator_scope(_disallow_var_creation): grads_and_vars, stats = self._compute_gradients(samples) self._apply_gradients(grads_and_vars) return stats @override(Policy) def compute_gradients(self, samples): pad_batch_to_sequences_of_same_size( samples, shuffle=False, max_seq_len=self._max_seq_len, batch_divisibility_req=self.batch_divisibility_req) self._is_training = True samples["is_training"] = True return self._compute_gradients_eager(samples) @convert_eager_inputs @convert_eager_outputs def _compute_gradients_eager(self, samples): with tf.variable_creator_scope(_disallow_var_creation): grads_and_vars, stats = self._compute_gradients(samples) grads = [g for g, v in grads_and_vars] return grads, stats @override(Policy) def compute_actions(self, obs_batch, state_batches=None, prev_action_batch=None, prev_reward_batch=None, info_batch=None, episodes=None, explore=None, timestep=None, **kwargs): self._is_training = False self._is_recurrent = \ state_batches is not None and state_batches != [] if not tf1.executing_eagerly(): tf1.enable_eager_execution() input_dict = { SampleBatch.CUR_OBS: tf.convert_to_tensor(obs_batch), "is_training": tf.constant(False), } if obs_include_prev_action_reward: if prev_action_batch is not None: input_dict[SampleBatch.PREV_ACTIONS] = \ tf.convert_to_tensor(prev_action_batch) if prev_reward_batch is not None: input_dict[SampleBatch.PREV_REWARDS] = \ tf.convert_to_tensor(prev_reward_batch) return self._compute_action_helper(input_dict, state_batches, episodes, explore, timestep) @override(Policy) def compute_actions_from_input_dict( self, input_dict: Dict[str, TensorType], explore: bool = None, timestep: Optional[int] = None, **kwargs ) -> Tuple[TensorType, List[TensorType], Dict[str, TensorType]]: if not tf1.executing_eagerly(): tf1.enable_eager_execution() # Pass lazy (torch) tensor dict to Model as `input_dict`. input_dict = self._lazy_tensor_dict(input_dict) # Pack internal state inputs into (separate) list. state_batches = [ input_dict[k] for k in input_dict.keys() if "state_in" in k[:8] ] return self._compute_action_helper(input_dict, state_batches, None, explore, timestep) @with_lock @convert_eager_inputs @convert_eager_outputs def _compute_action_helper(self, input_dict, state_batches, episodes, explore, timestep): explore = explore if explore is not None else \ self.config["explore"] timestep = timestep if timestep is not None else \ self.global_timestep if isinstance(timestep, tf.Tensor): timestep = int(timestep.numpy()) self._is_training = False self._state_in = state_batches or [] # Calculate RNN sequence lengths. batch_size = input_dict[SampleBatch.CUR_OBS].shape[0] seq_lens = tf.ones(batch_size, dtype=tf.int32) if state_batches \ else None # Use Exploration object. with tf.variable_creator_scope(_disallow_var_creation): if action_sampler_fn: dist_inputs = None state_out = [] actions, logp = action_sampler_fn( self, self.model, input_dict[SampleBatch.CUR_OBS], explore=explore, timestep=timestep, episodes=episodes) else: # Exploration hook before each forward pass. self.exploration.before_compute_actions( timestep=timestep, explore=explore) if action_distribution_fn: dist_inputs, self.dist_class, state_out = \ action_distribution_fn( self, self.model, input_dict[SampleBatch.CUR_OBS], explore=explore, timestep=timestep, is_training=False) else: dist_inputs, state_out = self.model( input_dict, state_batches, seq_lens) action_dist = self.dist_class(dist_inputs, self.model) # Get the exploration action from the forward results. actions, logp = self.exploration.get_exploration_action( action_distribution=action_dist, timestep=timestep, explore=explore) # Add default and custom fetches. extra_fetches = {} # Action-logp and action-prob. if logp is not None: extra_fetches[SampleBatch.ACTION_PROB] = tf.exp(logp) extra_fetches[SampleBatch.ACTION_LOGP] = logp # Action-dist inputs. if dist_inputs is not None: extra_fetches[SampleBatch.ACTION_DIST_INPUTS] = dist_inputs # Custom extra fetches. if extra_action_fetches_fn: extra_fetches.update(extra_action_fetches_fn(self)) # Update our global timestep by the batch size. self.global_timestep += int(batch_size) return actions, state_out, extra_fetches @with_lock @override(Policy) def compute_log_likelihoods(self, actions, obs_batch, state_batches=None, prev_action_batch=None, prev_reward_batch=None): if action_sampler_fn and action_distribution_fn is None: raise ValueError("Cannot compute log-prob/likelihood w/o an " "`action_distribution_fn` and a provided " "`action_sampler_fn`!") seq_lens = tf.ones(len(obs_batch), dtype=tf.int32) input_dict = { SampleBatch.CUR_OBS: tf.convert_to_tensor(obs_batch), "is_training": tf.constant(False), } if obs_include_prev_action_reward: if prev_action_batch is not None: input_dict[SampleBatch.PREV_ACTIONS] = \ tf.convert_to_tensor(prev_action_batch) if prev_reward_batch is not None: input_dict[SampleBatch.PREV_REWARDS] = \ tf.convert_to_tensor(prev_reward_batch) # Exploration hook before each forward pass. self.exploration.before_compute_actions(explore=False) # Action dist class and inputs are generated via custom function. if action_distribution_fn: dist_inputs, dist_class, _ = action_distribution_fn( self, self.model, input_dict[SampleBatch.CUR_OBS], explore=False, is_training=False) # Default log-likelihood calculation. else: dist_inputs, _ = self.model(input_dict, state_batches, seq_lens) dist_class = self.dist_class action_dist = dist_class(dist_inputs, self.model) log_likelihoods = action_dist.logp(actions) return log_likelihoods @override(Policy) def apply_gradients(self, gradients): self._apply_gradients( zip([(tf.convert_to_tensor(g) if g is not None else None) for g in gradients], self.model.trainable_variables())) @override(Policy) def get_exploration_info(self): return _convert_to_numpy(self.exploration.get_info()) @override(Policy) def get_weights(self, as_dict=False): variables = self.variables() if as_dict: return {v.name: v.numpy() for v in variables} return [v.numpy() for v in variables] @override(Policy) def set_weights(self, weights): variables = self.variables() assert len(weights) == len(variables), (len(weights), len(variables)) for v, w in zip(variables, weights): v.assign(w) @override(Policy) def get_state(self): state = {"_state": super().get_state()} state["_optimizer_variables"] = self._optimizer.variables() return state @override(Policy) def set_state(self, state): state = state.copy() # shallow copy # Set optimizer vars first. optimizer_vars = state.pop("_optimizer_variables", None) if optimizer_vars and self._optimizer.variables(): logger.warning( "Cannot restore an optimizer's state for tf eager! Keras " "is not able to save the v1.x optimizers (from " "tf.compat.v1.train) since they aren't compatible with " "checkpoints.") for opt_var, value in zip(self._optimizer.variables(), optimizer_vars): opt_var.assign(value) # Then the Policy's (NN) weights. super().set_state(state["_state"]) def variables(self): """Return the list of all savable variables for this policy.""" return self.model.variables() @override(Policy) def is_recurrent(self): return self._is_recurrent @override(Policy) def num_state_tensors(self): return len(self._state_inputs) @override(Policy) def get_initial_state(self): if hasattr(self, "model"): return self.model.get_initial_state() return [] def get_session(self): return None # None implies eager def get_placeholder(self, ph): raise ValueError( "get_placeholder() is not allowed in eager mode. Try using " "rllib.utils.tf_ops.make_tf_callable() to write " "functions that work in both graph and eager mode.") def loss_initialized(self): return self._loss_initialized @override(Policy) def export_model(self, export_dir): pass @override(Policy) def export_checkpoint(self, export_dir): pass def _get_is_training_placeholder(self): return tf.convert_to_tensor(self._is_training) def _apply_gradients(self, grads_and_vars): if apply_gradients_fn: apply_gradients_fn(self, self._optimizer, grads_and_vars) else: self._optimizer.apply_gradients( [(g, v) for g, v in grads_and_vars if g is not None]) @with_lock def _compute_gradients(self, samples): """Computes and returns grads as eager tensors.""" with tf.GradientTape(persistent=gradients_fn is not None) as tape: loss = loss_fn(self, self.model, self.dist_class, samples) variables = self.model.trainable_variables() if gradients_fn: class OptimizerWrapper: def __init__(self, tape): self.tape = tape def compute_gradients(self, loss, var_list): return list( zip(self.tape.gradient(loss, var_list), var_list)) grads_and_vars = gradients_fn(self, OptimizerWrapper(tape), loss) else: grads_and_vars = list( zip(tape.gradient(loss, variables), variables)) if log_once("grad_vars"): for _, v in grads_and_vars: logger.info("Optimizing variable {}".format(v.name)) grads = [g for g, v in grads_and_vars] stats = self._stats(self, samples, grads) return grads_and_vars, stats def _stats(self, outputs, samples, grads): fetches = {} if stats_fn: fetches[LEARNER_STATS_KEY] = { k: v for k, v in stats_fn(outputs, samples).items() } else: fetches[LEARNER_STATS_KEY] = {} if extra_learn_fetches_fn: fetches.update( {k: v for k, v in extra_learn_fetches_fn(self).items()}) if grad_stats_fn: fetches.update({ k: v for k, v in grad_stats_fn(self, samples, grads).items() }) return fetches def _lazy_tensor_dict(self, postprocessed_batch): train_batch = UsageTrackingDict(postprocessed_batch) train_batch.set_get_interceptor(_convert_to_tf) return train_batch def _lazy_numpy_dict(self, postprocessed_batch): train_batch = UsageTrackingDict(postprocessed_batch) train_batch.set_get_interceptor(convert_to_non_tf_type) return train_batch @classmethod def with_tracing(cls): return traced_eager_policy(cls) eager_policy_cls.__name__ = name + "_eager" eager_policy_cls.__qualname__ = name + "_eager" return eager_policy_cls
py
7df90d44792ffb2f5cb1ee8000cb70aae65d270b
#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: import sys import os.path as op def main(): sys.path.insert(0, op.abspath('.')) from templateflow.__about__ import __version__ print(__version__) if __name__ == '__main__': main()
py
7df90e2d37c02a476004482653eb58d8665afa1f
from dataclasses import dataclass from typing import Any, Dict, Optional import pytest from fastapi import FastAPI from pydantic import BaseModel from ray.serve.utils import register_custom_serializers import ray @pytest.fixture(scope="session") def start_ray(): ray.init(ignore_reinit_error=True) register_custom_serializers() def test_serialize_cls(start_ray): class User(BaseModel): name: str ray.get(ray.put(User)) def test_serialize_instance(start_ray): class User(BaseModel): name: str ray.get(ray.put(User(name="a"))) def test_serialize_imported_cls(start_ray): from pydantic_module import User ray.get(ray.put(User)) def test_serialize_imported_instance(start_ray): from pydantic_module import user ray.get(ray.put(user)) def test_serialize_app_no_route(start_ray): app = FastAPI() ray.get(ray.put(app)) def test_serialize_app_no_validation(start_ray): app = FastAPI() @app.get("/") def hello() -> str: return "hi" ray.get(ray.put(app)) def test_serialize_app_primitive_type(start_ray): app = FastAPI() @app.get("/") def hello(v: str) -> str: return "hi" ray.get(ray.put(app)) def test_serialize_app_pydantic_type_imported(start_ray): from pydantic_module import User app = FastAPI() @app.get("/") def hello(v: str, u: User) -> str: return "hi" ray.get(ray.put(app)) def test_serialize_app_pydantic_type_inline(start_ray): class User(BaseModel): name: str app = FastAPI() @app.get("/") def hello(v: str, u: User) -> str: return "hi" ray.get(ray.put(app)) def test_serialize_app_imported(start_ray): from pydantic_module import app ray.get(ray.put(app)) def test_serialize_app_pydantic_type_closure_ref(start_ray): class User(BaseModel): name: str def make(): app = FastAPI() @app.get("/") def hello(v: str, u: User) -> str: return "hi" return app ray.get(ray.put(make)) def test_serialize_app_pydantic_type_closure_ref_import(start_ray): from pydantic_module import User def make(): app = FastAPI() @app.get("/") def hello(v: str, u: User) -> str: return "hi" return app ray.get(ray.put(make)) def test_serialize_app_pydantic_type_closure(start_ray): def make(): class User(BaseModel): name: str app = FastAPI() @app.get("/") def hello(v: str, u: User) -> str: return "hi" return app ray.get(ray.put(make)) def test_serialize_app_imported_closure(start_ray): from pydantic_module import closure ray.get(ray.put(closure)) def test_serialize_serve_dataclass(start_ray): @dataclass class BackendMetadata: accepts_batches: bool = False is_blocking: bool = True autoscaling_config: Optional[Dict[str, Any]] = None class BackendConfig(BaseModel): internal_metadata: BackendMetadata = BackendMetadata() ray.get(ray.put(BackendConfig())) @ray.remote def consume(f): pass ray.get(consume.remote(BackendConfig())) if __name__ == "__main__": import sys sys.exit(pytest.main(["-v", "-s", __file__]))
py
7df90e528c54ce70a49eb8142102f3e1827144c9
from ViewportPainter import * ''' This is an example of the implementation of a custom interactive tool. The example creates a context where a user draws lines on a surface which will be converted into a lofted polygonal mesh. When you initialize an instance of "Example" class, press CTRL and then Left Mouse Button to start drawing curves on a surface. As soon as you release Left Mouse Button it will create a curve. Draw several curves and only then release CTRL key to get a lofted polyMesh. ''' class Example(ViewportPainter): def __init__(self): self.hitPoint = None self.hitFace = None self.hitObject = None self.hitObjectDag = None self.editing = True self.closestX = None self.closestY = None self.closestIndex = None self.structData = [] # DagPath | HitFaceID | [U,V] | HitPoint self.controlPoints = [] self.curveList = [] super(Example, self).__init__() def drawRect2D(self, worldPoint, radius = 5): """Draws a 2D rectangle based on a 3D point in a space @param[in] worldPoint which is MPoint @param[in] radius of the rectangle """ point = worldPoint xPtrInit = OpenMaya.MScriptUtil() yPtrInit = OpenMaya.MScriptUtil() xPtr = xPtrInit.asShortPtr() yPtr = yPtrInit.asShortPtr() pointFix = OpenMaya.MPoint(worldPoint.x, worldPoint.y, worldPoint.z) self.view3D.worldToView(pointFix, xPtr, yPtr) xcoord = OpenMaya.MScriptUtil().getShort(xPtr) ycoord = OpenMaya.MScriptUtil().getShort(yPtr) # self.view3D.beginGL() # self.glFT.glPushAttrib(OpenMayaRender.MGL_ALL_ATTRIB_BITS ) self.glFT.glPushMatrix() # self.glFT.glDrawBuffer( OpenMayaRender.MGL_FRONT ) self.glFT.glDisable( OpenMayaRender.MGL_DEPTH_TEST ) # Setup the Orthographic projection Matrix. self.glFT.glMatrixMode( OpenMayaRender.MGL_PROJECTION ) self.glFT.glLoadIdentity() self.glFT.glOrtho( 0.0, float(self.view3D.portWidth()), 0.0, float(self.view3D.portHeight()), -1.0, 1.0 ) self.glFT.glMatrixMode( OpenMayaRender.MGL_MODELVIEW ) self.glFT.glLoadIdentity() self.glFT.glTranslatef(0.0, 0.375, 0.0) self.glFT.glColor4f(1, 0, 0, 1) #0.2 self.glFT.glBegin(OpenMayaRender.MGL_POLYGON) self.glFT.glVertex2f(xcoord - radius, ycoord - radius) self.glFT.glVertex2f(xcoord - radius, ycoord + radius) self.glFT.glVertex2f(xcoord + radius, ycoord + radius) self.glFT.glVertex2f(xcoord + radius, ycoord - radius) self.glFT.glEnd() # Restore the state of the matrix from stack self.glFT.glMatrixMode( OpenMayaRender.MGL_MODELVIEW ) self.glFT.glPopMatrix() # Restore the previous state of these attributes self.glFT.glPopAttrib() def draw(self): """The main draw OpenGL method """ self.glFT.glPushAttrib(OpenMayaRender.MGL_ALL_ATTRIB_BITS) #save all stackable states self.view3D.beginGL() #setup port for drawing native OpenGL calls self.glFT.glClearDepth(0.0) self.glFT.glDepthFunc(OpenMayaRender.MGL_ALWAYS) self.glFT.glEnable( OpenMayaRender.MGL_BLEND ) self.glFT.glBlendFunc( OpenMayaRender.MGL_SRC_ALPHA, OpenMayaRender.MGL_ONE_MINUS_SRC_ALPHA ) fnMesh = None self.controlPoints = [] #recreate control points for every callback if len(self.structData) > 0: for i in self.structData: fnMesh = OpenMaya.MFnMesh(i[0]) point = OpenMaya.MPoint(0,0,0) u = i[2][0] v = i[2][1] util = OpenMaya.MScriptUtil() util.createFromList([u, v], 2) uvFloat2Ptr = util.asFloat2Ptr() fnMesh.getPointAtUV(i[1], point, uvFloat2Ptr, OpenMaya.MSpace.kWorld) self.controlPoints.append(point) if self.controlPoints: self.glFT.glColor4f(1, 1, 0, 1) for i in range(len(self.controlPoints) - 1): p1 = self.controlPoints[i] p2 = self.controlPoints[i+1] self.glFT.glBegin(OpenMayaRender.MGL_LINES) self.glFT.glVertex3f(p1.x, p1.y, p1.z) self.glFT.glVertex3f(p2.x, p2.y, p2.z) self.glFT.glEnd() #Draw Locators by control points if self.controlPoints: for i in self.controlPoints: self.drawRect2D(i, 3) self.view3D.endGL()#eng openGL drawings self.glFT.glPopAttrib() #restores values of state variables, changed by glPushAttrib #Overwritten update method def update(self, *args): """ A Method that is called for every refresh of Maya viewport """ if self.userKeyboardEvents.K_Esc: self.uninitializeCallback() return if self.userKeyboardEvents.K_Ctrl: self.userMouseEvents.editMode = True '''Mouse press''' if self.userMouseEvents.M_Button_Left: self.hitPoint, self.hitFace, self.hitObject = self.getMouseIntersect() if self.hitObject: #intersection was successfull #get UV at hitPoint dagPath = OpenMaya.MDagPath() selectionList = OpenMaya.MSelectionList() selectionList.clear() selectionList.add(self.hitObject) selectionList.getDagPath(0, dagPath) self.hitObjectDag = dagPath fnMesh = OpenMaya.MFnMesh(dagPath) util = OpenMaya.MScriptUtil() util.createFromList([0.0, 0.0], 2) uvPoint = util.asFloat2Ptr() fnMesh.getUVAtPoint(OpenMaya.MPoint(self.hitPoint.x, self.hitPoint.y, self.hitPoint.z), uvPoint, OpenMaya.MSpace.kWorld, "map1", None) u = OpenMaya.MScriptUtil.getFloat2ArrayItem(uvPoint, 0, 0) v = OpenMaya.MScriptUtil.getFloat2ArrayItem(uvPoint, 0, 1) #fill up StructData with a New Element uv = [] uv.append(u) uv.append(v) data = [] data.append(dagPath) data.append(self.hitFace) data.append(uv) data.append(self.hitPoint) # if self.editing == False and self.closestIndex == None and not self.userKeyboardEvents.K_Alt: if self.editing == False: self.structData.append(data) #we add a new element to StructData else: lastPoint = self.structData[-1][3] vector = OpenMaya.MVector(self.hitPoint.x - lastPoint.x, self.hitPoint.y - lastPoint.y, self.hitPoint.z - lastPoint.z) if vector.length() > 0.5: self.structData.append(data) #we add a new element to StructData self.editing = True '''Mouse release''' if not self.userMouseEvents.M_Button_Left: self.editing = False #stop editing, next time we will add a new element self.userMouseEvents.editMode = False if self.structData and self.controlPoints: curveCV = [] for i in self.controlPoints: point = [] point.append(i.x) point.append(i.y) point.append(i.z) curveCV.append(point) if len(curveCV) >= 4: curve = cmds.curve( p=curveCV ) cmds.rebuildCurve(curve, ch=0, rpo=1, rt=0, end=1, kr=0, kcp=0, kep=1, kt=0, s=6, d=3, tol=0) self.curveList.append(curve) self.structData = [] if not self.userKeyboardEvents.K_Ctrl: if len(self.curveList) >= 2: surface = cmds.loft(self.curveList, ch=0, u=1, c=0, ar=0, d=3, ss=1, rn=1, po=0, rsn = True)[0] poly = cmds.nurbsToPoly(surface, mnd=1, ch=0, f=0, pt=1, pc=200, chr=0.9, ft=0.01, mel = 0.001, d=0.1, ut=1, un=3, vt=1, vn=3, uch=0, ucr=0, cht=0.2, es=0, ntr=0, mrt=0, uss=1) cmds.delete(self.curveList) cmds.delete(surface) cmds.polyNormal(poly[0], normalMode = 0, userNormalMode = 0, ch=0) self.uninitializeCallback() if len(self.structData) == 0: return self.draw() def main(): instance = Example()
py
7df90eef6a0c4e32f736bc77cccc9492f1368a6f
#!/usr/bin/env python3 #-*- coding: utf-8 -*- import sys import math n = int(sys.argv[1]) def eratosthenes(n): if (n >= 3): list1 = [] for i in range(n): list1.append(( i + 1 )) a = 2 for x in range(int(math.ceil(math.sqrt(n)))): for i in list1: if ( i != a and ( i % a == 0 ) and i > 1): list1.remove(i) a = a + 1 del list1[0] print list1 else: print("There are no primes less than your number.") eratosthenes(n)
py
7df90f2d5c0b157ff80b767bdce5e054509be8bc
from setuptools import setup, find_packages import os from io import open import versioneer packagename = 'ltd-mason' description = 'LSST the Docs build tool' author = 'Jonathan Sick' author_email = '[email protected]' license = 'MIT' url = 'https://github.com/lsst-sqre/ltd-mason' def read(filename): full_filename = os.path.join( os.path.abspath(os.path.dirname(__file__)), filename) return open(full_filename, mode='r', encoding='utf-8').read() long_description = read('README.rst') setup( name=packagename, version=versioneer.get_version(), description=description, long_description=long_description, url=url, author=author, author_email=author_email, license=license, classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', ], keywords='lsst', packages=find_packages(exclude=['docs', 'tests*', 'data']), cmdclass=versioneer.get_cmdclass(), install_requires=['ruamel.yaml', 'sh', 'boto3', 'jsonschema', 'requests'], # package_data={}, entry_points={ 'console_scripts': [ 'ltd-mason = ltdmason.cli:run_ltd_mason', 'ltd-mason-travis = ltdmason.traviscli:run', 'ltd-mason-make-redirects = ltdmason.redirectdircli:run', ] } )
py
7df90fc8584f4c4551f402d14564e2f0195a12a4
import repo CREDENTIALS = "credentials" def getCredentials(): return repo.getRepo(CREDENTIALS) def add(username, password): if not username: print("Username cannot be empty.") return False if exists(username): print("Username", username, "is already taken.") return False if not password: print("Passowrd cannot be empty.") return False repo.addOrUpdate(CREDENTIALS, username, password) return True def updatePassword(username, password): if not password: print("Password cannot be empty.") return False repo.addOrUpdate(CREDENTIALS, username, password) def getPassword(username): return getCredentials()[username] def exists(username): return repo.exists(CREDENTIALS, username)
py
7df90fe0662f6e3da917f91b1d5e67d2ade62cde
from decimal import Decimal from django.utils.translation import ugettext_lazy as _ from app.models import DefaultQuerySet, TimestampedModel, models class PromoCodeQuerySet(DefaultQuerySet): def active(self): return self.filter(active=True) def get_or_nothing(self, name): try: return self.active().get(name__iexact=name) except PromoCode.DoesNotExist: return None class PromoCode(TimestampedModel): objects = PromoCodeQuerySet.as_manager() name = models.CharField(_('Promo Code'), max_length=32, unique=True, db_index=True) discount_percent = models.IntegerField(_('Discount percent')) active = models.BooleanField(_('Active'), default=True) comment = models.TextField(_('Comment'), blank=True, null=True) class Meta: verbose_name = _('Promo Code') verbose_name_plural = _('Promo Codes') def apply(self, price: Decimal) -> Decimal: return Decimal(price * (100 - self.discount_percent) / 100)
py
7df910d8548214ae0e3aca22259ad883fa4cc51e
import mne from pyriemann.classification import MDM from pyriemann.estimation import XdawnCovariances, ERPCovariances from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np from sklearn.externals import joblib import sys sys.path.append('.') from braininvaders2014b.dataset import BrainInvaders2014b #filename = 'classification_scores.pkl' #scores = joblib.load(filename) dataset = BrainInvaders2014b() # loop on list of subjects for pair in dataset.pair_list: print('treating pair', str(pair).zfill(2)) # get the raw object sessions = dataset._get_single_pair_data(pair=pair) raw_solo1 = sessions['solo_1']['run_1'] raw_solo2 = sessions['solo_2']['run_1'] raw_colab = sessions['collaborative']['run_1'] chname2idx = {} for i, chn in enumerate(raw_colab.ch_names): chname2idx[chn] = i # filter data and resample fmin = 1 fmax = 20 raw_solo1.filter(fmin, fmax, verbose=False) raw_solo2.filter(fmin, fmax, verbose=False) raw_colab.filter(fmin, fmax, verbose=False) # detect the events and cut the signal into epochs event_id = {'NonTarget': 1, 'Target': 2} events_solo1 = mne.find_events(raw=raw_solo1, shortest_event=1, verbose=False) epochs_solo1 = mne.Epochs(raw_solo1, events_solo1, event_id, tmin=0.0, tmax=0.8, baseline=None, verbose=False, preload=True) epochs_solo1.pick_types(eeg=True) events_solo2 = mne.find_events(raw=raw_solo2, shortest_event=1, verbose=False) epochs_solo2 = mne.Epochs(raw_solo2, events_solo2, event_id, tmin=0.0, tmax=0.8, baseline=None, verbose=False, preload=True) epochs_solo2.pick_types(eeg=True) events_colab = mne.find_events(raw=raw_colab, shortest_event=1, verbose=False) epochs_colab = mne.Epochs(raw_colab, events_colab, event_id, tmin=0.0, tmax=0.8, baseline=None, verbose=False, preload=True) epochs_colab.pick_types(eeg=True) # plot the figure fig, ax = plt.subplots(facecolor='white', figsize=(17.00, 12.30), nrows=2, ncols=2) for i, epochs, Cz in zip([0, 1], [epochs_solo1, epochs_solo2], ['Cz_1', 'Cz_2']): evkTarget = epochs['Target'].average().data[chname2idx[Cz],:] evkNonTarget = epochs['NonTarget'].average().data[chname2idx[Cz],:] t = np.arange(len(evkTarget)) / epochs_solo1.info['sfreq'] ax[0][i].plot(t, evkTarget, c='#2166ac', lw=3.0, label='Target (' + str(len(epochs['Target'])) + ' trials)') ax[0][i].plot(t, evkNonTarget, c='#b2182b', lw=3.0, label='NonTarget (' + str(len(epochs['NonTarget'])) + ' trials)') ax[0][i].plot([0, 0.8], [0, 0], c='#CDCDCD', lw=2.0, ls='--') ax[0][i].set_xlim(0, 0.8) ax[0][i].set_title('subject ' + str(i+1) + ' on solo', fontsize=12) ax[0][i].set_ylabel(r'amplitude ($\mu$V)', fontsize=10) ax[0][i].set_xlabel('time after stimulus (s)', fontsize=10) ax[0][i].legend() for i, Cz in zip([0, 1], ['Cz_1', 'Cz_2']): evkTarget = epochs_colab['Target'].average().data[chname2idx[Cz],:] evkNonTarget = epochs_colab['NonTarget'].average().data[chname2idx[Cz],:] t = np.arange(len(evkTarget)) / epochs_solo1.info['sfreq'] ax[1][i].plot(t, evkTarget, c='#2166ac', lw=3.0, label='Target (' + str(len(epochs['Target'])) + ' trials)') ax[1][i].plot(t, evkNonTarget, c='#b2182b', lw=3.0, label='NonTarget (' + str(len(epochs['NonTarget'])) + ' trials)') ax[1][i].plot([0, 0.8], [0, 0], c='#CDCDCD', lw=2.0, ls='--') ax[1][i].set_xlim(0, 0.8) ax[1][i].set_title('subject ' + str(i+1) + ' on collaborative', fontsize=12) ax[1][i].set_ylabel(r'amplitude ($\mu$V)', fontsize=10) ax[1][i].set_xlabel('time after stimulus (s)', fontsize=10) ax[1][i].legend() fig.suptitle('Average evoked potentials at electrode Cz for pair ' + str(pair), fontsize=14) filename = './evoked_potentials/evoked_potentials_pair_' + str(pair).zfill(2) + '.pdf' fig.savefig(filename, format='pdf')
py
7df91183cdccff6a02fcca7ad780df08aca0d15d
""" Week 3 class exercises Warmups, non-graded assignments, and practice 9/29/2020 Andrew Nalundasan """ #n = int(input('Enter number: ')) #while n > 0: # print('hello') # n -= 1 #x = int(input('Enter number: ')) #while x != 100: # print(x) # x += 1 #print('Done') #num = int(input('enter a positive odd integer: ')) #while not (num > 0 and num % 2 != 0): # num = int(input('must be positive and odd: ')) #print('enter number to multiply, 1 to end') #product = 1.0 #num = float(input('enter num: ')) #while num != 1: # product *= num # num = float(input('enter num: ')) #print(product) #x = range(1000, 100, -5) #for n in x: # print(n) #for letter in 'Can\'t say': # print(letter) # While Loop - Some String #s = 'some string' #i = 0 #while i < len(s): # letter = s[i] # print(letter) # i += 1 # For Loop - Some String #s = 'some string' #for letter in s: # print(letter) # While Loop - n times #n = int(input('n: ')) #i = 0 #while i < n: # print('hello') # i += 1 # For Loop - n times #n = int(input('n: ')) #for i in range(n): # print('hello') # While Loop - low/high #lo = int(input('low: ')) #hi = int(input('high: ')) #i = lo #while i <= hi: # print(i) # i += 3 # For Loop - low/high #lo = int(input('low: ')) #hi = int(input('high: ')) #for i in range(lo,hi + 1, 3): # print(i) #r = range(3, 10, 2) # a - range(3, 10, 2) # b - 4 # c - 7 # d - 9 # e - range(5, 9, 2) # f - range(3, 7, 2) # g - True # h #for i in r: # print(i) # PQ2 alphabet = 'abcdefg' k = 3 i = 2 #print(alphabet[0]) #print(alphabet[3]) #print(alphabet[i]) #print(alphabet[(i + k) // 2]) #print(alphabet[2:5]) #print(alphabet[i:i + 3]) #print(alphabet[i:i + k]) #for i in range(5): # print(i, i + k) #for i in range(len(alphabet) - k + 1): # print(i) for i in range(len(alphabet) - k + 1): print(alphabet[i:i + k])
py
7df915323c1a1fbf99a6ae24a1fc2021e4fe70f9
# -*- coding: utf-8 -*- import pytest from maestral.config.main import DEFAULTS_CONFIG, CONF_VERSION from maestral.config.user import UserConfig @pytest.fixture def config(tmp_path): config_path = tmp_path / "test-update-config.ini" # Create an initial config on disk. conf = UserConfig( str(config_path), defaults=DEFAULTS_CONFIG, version=CONF_VERSION, backup=True, remove_obsolete=True, ) yield conf conf.cleanup()
py
7df91543313c468156f9eb02665bb907f802f626
import logging import json from typing import List from fastapi import Depends, Query from sqlalchemy import or_, orm, func, desc from sqlalchemy_filters import apply_pagination, apply_sort, apply_filters from dispatch.auth.models import DispatchUser from dispatch.auth.service import get_current_user from dispatch.search.fulltext.composite_search import CompositeSearch from dispatch.enums import Visibility from dispatch.feedback.models import Feedback from dispatch.task.models import Task from dispatch.project.models import Project from dispatch.plugin.models import Plugin, PluginInstance from dispatch.incident.models import Incident from dispatch.incident_type.models import IncidentType from dispatch.individual.models import IndividualContact from dispatch.participant.models import Participant from .core import ( Base, get_class_by_tablename, get_model_name_by_tablename, get_db, ) log = logging.getLogger(__file__) def restricted_incident_filter(query: orm.Query, current_user: DispatchUser): """Adds additional incident filters to query (usually for permissions).""" query = ( query.join(Participant, Incident.id == Participant.incident_id) .join(IndividualContact) .filter( or_( Incident.visibility == Visibility.open.value, IndividualContact.email == current_user.email, ) ) .distinct() ) return query def restricted_incident_type_filter(query: orm.Query, current_user: DispatchUser): """Adds additional incident type filters to query (usually for permissions).""" if current_user: query = query.filter(IncidentType.visibility == Visibility.open.value) return query def apply_model_specific_filters(model: Base, query: orm.Query, current_user: DispatchUser): """Applies any model specific filter as it pertains to the given user.""" model_map = { Incident: [restricted_incident_filter], # IncidentType: [restricted_incident_type_filter], } filters = model_map.get(model, []) for f in filters: query = f(query, current_user) return query def apply_model_specific_joins(model: Base, query: orm.query): """Applies any model specific implicity joins.""" model_map = { Feedback: [(Incident, False), (Project, False)], Task: [(Incident, False), (Project, False)], PluginInstance: [(Plugin, False)], Incident: [(Incident.tags, True), (Incident.terms, True)], DispatchUser: [(DispatchUser.organizations, True)], } joined_models = model_map.get(model, []) for model, is_outer in joined_models: query = query.join(model, isouter=is_outer) return query def paginate(query: orm.Query, page: int, items_per_page: int): # Never pass a negative OFFSET value to SQL. offset_adj = 0 if page <= 0 else page - 1 items = query.limit(items_per_page).offset(offset_adj * items_per_page).all() total = query.order_by(None).count() return items, total def composite_search(*, db_session, query_str: str, models: List[Base], current_user: DispatchUser): """Perform a multi-table search based on the supplied query.""" s = CompositeSearch(db_session, models) query = s.build_query(query_str, sort=True) # TODO can we do this with composite filtering? # for model in models: # query = apply_model_specific_filters(model, query, current_user) return s.search(query=query) def search(*, query_str: str, query: Query, model: str, sort=False): """Perform a search based on the query.""" search_model = get_class_by_tablename(model) if not query_str.strip(): return query vector = search_model.search_vector query = query.filter(vector.op("@@")(func.tsq_parse(query_str))) if sort: query = query.order_by(desc(func.ts_rank_cd(vector, func.tsq_parse(query_str)))) return query.params(term=query_str) def create_sort_spec(model, sort_by, descending): """Creates sort_spec.""" sort_spec = [] if sort_by and descending: for field, direction in zip(sort_by, descending): direction = "desc" if direction else "asc" # we have a complex field, we may need to join if "." in field: complex_model, complex_field = field.split(".")[-2:] sort_spec.append( { "model": get_model_name_by_tablename(complex_model), "field": complex_field, "direction": direction, } ) else: sort_spec.append({"model": model, "field": field, "direction": direction}) log.debug(f"Sort Spec: {json.dumps(sort_spec, indent=2)}") return sort_spec def get_all(*, db_session, model): """Fetches a query object based on the model class name.""" return db_session.query(get_class_by_tablename(model)) def common_parameters( db_session: orm.Session = Depends(get_db), page: int = 1, items_per_page: int = Query(5, alias="itemsPerPage"), query_str: str = Query(None, alias="q"), filter_spec: str = Query([], alias="filter"), sort_by: List[str] = Query([], alias="sortBy[]"), descending: List[bool] = Query([], alias="descending[]"), current_user: DispatchUser = Depends(get_current_user), ): if filter_spec: filter_spec = json.loads(filter_spec) return { "db_session": db_session, "page": page, "items_per_page": items_per_page, "query_str": query_str, "filter_spec": filter_spec, "sort_by": sort_by, "descending": descending, "current_user": current_user, } def search_filter_sort_paginate( db_session, model, query_str: str = None, filter_spec: List[dict] = None, page: int = 1, items_per_page: int = 5, sort_by: List[str] = None, descending: List[bool] = None, current_user: DispatchUser = None, ): """Common functionality for searching, filtering, sorting, and pagination.""" model_cls = get_class_by_tablename(model) sort_spec = create_sort_spec(model, sort_by, descending) query = db_session.query(model_cls) query = apply_model_specific_joins(model_cls, query) if query_str: sort = False if sort_by else True query = search(query_str=query_str, query=query, model=model, sort=sort) query = apply_model_specific_filters(model_cls, query, current_user) if filter_spec: query = apply_filters(query, filter_spec) query = apply_sort(query, sort_spec) if items_per_page == -1: items_per_page = None query, pagination = apply_pagination(query, page_number=page, page_size=items_per_page) return { "items": query.all(), "itemsPerPage": pagination.page_size, "page": pagination.page_number, "total": pagination.total_results, }
py
7df9168f01ed7663300314c06c2577f573c7b7e5
import os import sys from subprocess import call, check_call, PIPE, STDOUT, Popen, CalledProcessError def run_ppiclf(cwd, rea_file, ifmpi, log_suffix='', n_procs=1, verbose=False): # Paths to executables, files test = os.path.join(cwd, 'test.out') logfile = os.path.join(cwd, '{0}.log.{1}{2}'.format(rea_file, n_procs, log_suffix)) if ifmpi: command = ['mpiexec', '-np', str(n_procs), test] else: command = [test] print("Running test...") print(' Using command "{0}"'.format(' '.join(command))) print(' Using working directory "{0}"'.format(cwd)) # Any error here is unexepected try: if verbose: with open(logfile, 'w') as f: proc =Popen(command, cwd=cwd, stderr=STDOUT, stdout=PIPE) for line in proc.stdout: sys.stdout.write(line) f.write(line) else: with open(logfile, 'w') as f: call(command, cwd=cwd, stdout=f) except Exception as E: # TODO: Change to warnings.warn() print('Could not successfully run test! Caught error: {0}'.format(E)) else: print('Finished running test!')
py
7df916bff3e4b9a1b11bed6f0f98dfb6248a774f
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2021, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Models for displaying maps in Bokeh plots. ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import annotations import logging # isort:skip log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Bokeh imports from ..core.enums import MapType from ..core.has_props import abstract from ..core.properties import ( JSON, Base64String, Bool, Enum, Float, Instance, Int, NonNullable, Override, String, ) from ..core.validation import error, warning from ..core.validation.errors import INCOMPATIBLE_MAP_RANGE_TYPE, MISSING_GOOGLE_API_KEY, REQUIRED_RANGE from ..core.validation.warnings import MISSING_RENDERERS from ..model import Model from ..models.ranges import Range1d from .plots import Plot #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- __all__ = ( 'GMapOptions', 'GMapPlot', 'MapOptions', 'MapPlot', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- @abstract class MapOptions(Model): ''' Abstract base class for map options' models. ''' lat = NonNullable(Float, help=""" The latitude where the map should be centered. """) lng = NonNullable(Float, help=""" The longitude where the map should be centered. """) zoom = Int(12, help=""" The initial zoom level to use when displaying the map. """) @abstract class MapPlot(Plot): ''' Abstract base class for map plot models. ''' def __init__(self, *args, **kw) -> None: from ..models.ranges import Range1d for r in ('x_range', 'y_range'): if r in kw and not isinstance(kw.get(r), Range1d): raise ValueError('Invalid value for %r, MapPlot ranges may only be Range1d, not data ranges' % r) super().__init__(*args, **kw) @error(INCOMPATIBLE_MAP_RANGE_TYPE) def _check_incompatible_map_range_type(self): from ..models.ranges import Range1d if self.x_range is not None and not isinstance(self.x_range, Range1d): return "%s.x_range" % str(self) if self.y_range is not None and not isinstance(self.y_range, Range1d): return "%s.y_range" % str(self) class GMapOptions(MapOptions): ''' Options for ``GMapPlot`` objects. ''' map_type = Enum(MapType, default="roadmap", help=""" The `map type`_ to use for the ``GMapPlot``. .. _map type: https://developers.google.com/maps/documentation/javascript/reference#MapTypeId """) scale_control = Bool(default=False, help=""" Whether the Google map should display its distance scale control. """) styles = NonNullable(JSON, help=""" A JSON array of `map styles`_ to use for the ``GMapPlot``. Many example styles can `be found here`_. .. _map styles: https://developers.google.com/maps/documentation/javascript/reference#MapTypeStyle .. _be found here: https://snazzymaps.com """) tilt = Int(default=45, help=""" `Tilt`_ angle of the map. The only allowed values are 0 and 45. Only has an effect on 'satellite' and 'hybrid' map types. A value of 0 causes the map to always use a 0 degree overhead view. A value of 45 causes the tilt angle to switch to 45 imagery if available. .. _Tilt: https://developers.google.com/maps/documentation/javascript/reference/3/map#MapOptions.tilt """) class GMapPlot(MapPlot): ''' A Bokeh Plot with a `Google Map`_ displayed underneath. Data placed on this plot should be specified in decimal lat/lon coordinates e.g. ``(37.123, -122.404)``. It will be automatically converted into the web mercator projection to display properly over google maps tiles. The ``api_key`` property must be configured with a Google API Key in order for ``GMapPlot`` to function. The key will be stored in the Bokeh Document JSON. Note that Google Maps exert explicit control over aspect ratios at all times, which imposes some limitations on ``GMapPlot``: * Only ``Range1d`` ranges are supported. Attempting to use other range types will result in an error. * Usage of ``BoxZoomTool`` is incompatible with ``GMapPlot``. Adding a ``BoxZoomTool`` will have no effect. .. _Google Map: https://www.google.com/maps/ ''' # TODO (bev) map plot might not have these @error(REQUIRED_RANGE) def _check_required_range(self): pass @warning(MISSING_RENDERERS) def _check_missing_renderers(self): pass @error(MISSING_GOOGLE_API_KEY) def _check_missing_google_api_key(self): if self.api_key is None: return str(self) map_options = Instance(GMapOptions, help=""" Options for displaying the plot. """) border_fill_color = Override(default="#ffffff") api_key = NonNullable(Base64String, help=""" Google Maps API requires an API key. See https://developers.google.com/maps/documentation/javascript/get-api-key for more information on how to obtain your own. """) api_version = String(default="3.43", help=""" The version of Google Maps API to use. See https://developers.google.com/maps/documentation/javascript/versions for more information. .. note:: Changing this value may result in broken map rendering. """) x_range = Override(default=lambda: Range1d()) y_range = Override(default=lambda: Range1d()) #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
py
7df9177e01eb7b776d7d2f81d300dc5ac82dccad
from __future__ import print_function import numpy as np import pickle as pkl def train_vald_split(y, train, rng, classes=10): inds = [None]*classes sinds = [None]*classes num_train = [None]*classes for i in range(classes): inds[i] = np.where(y==i)[0] sinds[i] = inds[i][rng.permutation(len(inds[i]))] num_train[i] = int(len(inds[i])* train) itrain = np.concatenate([ind[:num_train[i]] for i,ind in enumerate(sinds)]) ivalid = np.concatenate([ind[num_train[i]:] for i,ind in enumerate(sinds)]) return itrain, ivalid def confusey(y, noise, rng, classes=10): ret = np.copy(y) if noise == 0: return ret inds = [None]*classes sinds = [None]*classes sels = [None]*classes for i in range(classes): inds[i] = np.where(y==i)[0] sinds[i] = inds[i][rng.permutation(len(inds[i]))] for i in range(classes): num = max((int(len(sinds[i])* noise / 100.0), classes-1)) iinds = sinds[i][:num] chs = np.arange(classes) chs = np.delete(chs, i) ret[iinds] = rng.choice(chs, (num,)) return ret def load(path): with open(path, 'rb') as ofs: data= pkl.load(ofs) return data['trainx'], data['trainy'], data['testx'], data['testy'] def dump(path, trainx, trainy, trainry, validx, validy, validry, testx, testy, ishalf=True): if ishalf: trainx = trainx.astype('float16') validx = validx.astype('float16') testx = testx.astype('float16') with open(path, 'wb') as ofs: pkl.dump({'trainx':trainx, 'trainy':np.reshape(trainy, (-1,)), 'trainry':np.reshape(trainry, (-1,)), 'validx':validx, 'validy':np.reshape(validy, (-1,)), 'validry':np.reshape(validry, (-1,)), 'testx': testx, 'testy': np.reshape(testy, (-1,))}, ofs) datadir = 'data/' dataset = 'cifar10_transfer_binary' exps = 20 trainp = 0.9 c1 = 0 #airplance c2 = 8 #ship randstates = np.arange(exps, dtype=np.int) x_train, y_train, x_test, y_test = load('data/cifar10_transfer.pkl') inds1 = np.where(y_train==c1)[0] inds2 = np.where(y_train==c2)[0] x_train = np.concatenate((x_train[inds1], x_train[inds2]), 0) y_train = np.concatenate((np.ones((len(inds1),), np.int32), np.zeros((len(inds1),), np.int32)), 0) inds3 = np.where(y_test==c1)[0] inds4 = np.where(y_test==c2)[0] x_test = np.concatenate((x_test[inds3], x_test[inds4]), 0) y_test = np.concatenate((np.ones((len(inds3),), np.int32), np.zeros((len(inds4),), np.int32)), 0) print(dataset, ',', np.shape(y_train)[0], ',', np.shape(y_test)[0]) for noise in [0, 5, 10, 15, 20, 25]: for exp in range(exps): pklfile = datadir + dataset + '/' + dataset.lower() + '_exp' + str(exp) + '_noise' + str(noise) + '.pkl' rng = np.random.RandomState(exp) itrain, ivalid = train_vald_split(y_train, trainp, rng, 2) rng.shuffle(itrain) rng.shuffle(ivalid) trainx = x_train[itrain] validx = x_train[ivalid] trainry = y_train[itrain] validry = y_train[ivalid] trainny = confusey(trainry, noise, rng, 2) validny = confusey(validry, noise, rng, 2) print('train acc=', np.mean(np.equal(trainny, trainry).astype(np.float))) print('valid acc=', np.mean(np.equal(validny, validry).astype(np.float))) print(np.shape(trainx)) print(np.shape(trainry)) print(np.shape(trainny)) print(np.shape(validx)) print(np.shape(validry)) print(np.shape(validny)) print(np.shape(x_test)) print(np.shape(y_test)) dump(pklfile, trainx, trainny, trainry, validx, validny, validry, x_test, y_test) print(pklfile, ' saved')
py
7df917a1da8c29ddf1a9e71143b9eaaa382db372
from django.template import Library register = Library() from bs4 import BeautifulSoup from django.conf import settings from django.template import defaultfilters from dolweb.blog.models import BlogSeries @register.inclusion_tag('blog_chunk_series.html') def get_recent_blog_series(number=5): """Return the most recent visible blog series""" return { 'recent_series': BlogSeries.objects.filter(visible=True)[:number], } @register.filter def cuthere_excerpt(content): try: cut_here = BeautifulSoup(content).find('a', id='cuthere') return ''.join(map(str, reversed(cut_here.parent.find_previous_siblings()))) except AttributeError: return defaultfilters.truncatewords(content, 100)
py
7df9187e18e59ed9353682df8da2a4c1e8efe118
from search import Problem, breadth_first_graph_search class MissionariesAndCannibals(Problem): """""" def __init__(self, initial, goal=(3, 3, 0, 0, 0)): """ Define goal state and initialize a problem (3, 3, 0, 0, 0) (M, C, M, C, B) """ self.goal = goal Problem.__init__(self, initial, goal) def actions(self, state): possible_actions = ['ML', 'MR', 'CL', 'CR', 'MML', 'MMR', 'CCL', 'CCR', 'MCL', 'MCR'] is_right_side = (state[-1] == 1) if is_right_side: possible_actions.remove('ML') possible_actions.remove('CL') possible_actions.remove('MML') possible_actions.remove('CCL') possible_actions.remove('MCL') # MR if (state[2] - 1 < 0) or (0 < state[2] - 1 < state[3]) or (0 < state[0] + 1 < state[1]): possible_actions.remove('MR') # MMR if (state[2] - 2 < 0) or (0 < state[2] - 2 < state[3]) or (0 < state[0] + 2 < state[1]): possible_actions.remove('MMR') # MCR if (state[2] - 1 < 0) or (state[3] - 1 < 0) or (0 < state[0] + 1 < state[1] + 1): possible_actions.remove('MCR') # CR if (state[3] - 1 < 0) or (0 < state[0] < state[1] + 1): possible_actions.remove('CR') # CCR if (state[3] - 2 < 0) or (0 < state[0] < state[1] + 2): possible_actions.remove('CCR') else: possible_actions.remove('MR') possible_actions.remove('CR') possible_actions.remove('MMR') possible_actions.remove('CCR') possible_actions.remove('MCR') # ML if (state[0] - 1 < 0) or (0 < state[0] - 1 < state[1]) or (0 < state[2] + 1 < state[3]): possible_actions.remove('ML') # MML if (state[0] - 2 < 0) or (0 < state[0] - 2 < state[1]) or (0 < state[2] + 2 < state[3]): possible_actions.remove('MML') # MCL if (state[0] - 1 < 0) or (state[1] - 1 < 0) or (0 < state[2] + 1 < state[3] + 1): possible_actions.remove('MCL') # CL if (state[1] - 1 < 0) or (0 < state[2] < state[3] + 1): possible_actions.remove('CL') # CCL if (state[1] - 2 < 0) or (0 < state[2] < state[3] + 2): possible_actions.remove('CCL') return possible_actions def result(self, state, action): new_state = list(state) if action == 'ML': new_state[0] = new_state[0] - 1 new_state[2] = new_state[2] + 1 elif action == 'MML': new_state[0] = new_state[0] - 2 new_state[2] = new_state[2] + 2 elif action == 'MCL': new_state[0] = new_state[0] - 1 new_state[1] = new_state[1] - 1 new_state[2] = new_state[2] + 1 new_state[3] = new_state[3] + 1 elif action == 'CL': new_state[1] = new_state[1] - 1 new_state[3] = new_state[3] + 1 elif action == 'CCL': new_state[1] = new_state[1] - 2 new_state[3] = new_state[3] + 2 elif action == 'MR': new_state[0] = new_state[0] + 1 new_state[2] = new_state[2] - 1 elif action == 'MMR': new_state[0] = new_state[0] + 2 new_state[2] = new_state[2] - 2 elif action == 'MCR': new_state[0] = new_state[0] + 1 new_state[1] = new_state[1] + 1 new_state[2] = new_state[2] - 1 new_state[3] = new_state[3] - 1 elif action == 'CR': new_state[1] = new_state[1] + 1 new_state[3] = new_state[3] - 1 elif action == 'CCR': new_state[1] = new_state[1] + 2 new_state[3] = new_state[3] - 2 new_state[4] = 1 - new_state[4] return tuple(new_state) def value(self, state): pass def goal_test(self, state): """ Given a state, return True if state is a goal state or False, otherwise """ return state == self.goal def solve(): missionaries_and_cannibals = MissionariesAndCannibals((0, 0, 3, 3, 1)) return breadth_first_graph_search(missionaries_and_cannibals).solution()
py
7df918b55c1b6fd50cec266ccdd1991f4de7023c
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import os import random import shutil import sys import tempfile import time import unittest if sys.version >= '3': unicode = str from datetime import date, datetime from decimal import Decimal from distutils.version import LooseVersion from pyspark.rdd import PythonEvalType from pyspark.sql import Column from pyspark.sql.functions import array, col, expr, lit, sum, struct, udf, pandas_udf from pyspark.sql.types import Row from pyspark.sql.types import * from pyspark.sql.utils import AnalysisException from pyspark.testing.sqlutils import ReusedSQLTestCase, test_compiled,\ test_not_compiled_message, have_pandas, have_pyarrow, pandas_requirement_message, \ pyarrow_requirement_message from pyspark.testing.utils import QuietTest @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) class ScalarPandasUDFTests(ReusedSQLTestCase): @classmethod def setUpClass(cls): ReusedSQLTestCase.setUpClass() # Synchronize default timezone between Python and Java cls.tz_prev = os.environ.get("TZ", None) # save current tz if set tz = "America/Los_Angeles" os.environ["TZ"] = tz time.tzset() cls.sc.environment["TZ"] = tz cls.spark.conf.set("spark.sql.session.timeZone", tz) @classmethod def tearDownClass(cls): del os.environ["TZ"] if cls.tz_prev is not None: os.environ["TZ"] = cls.tz_prev time.tzset() ReusedSQLTestCase.tearDownClass() @property def nondeterministic_vectorized_udf(self): import pandas as pd import numpy as np @pandas_udf('double') def random_udf(v): return pd.Series(np.random.random(len(v))) random_udf = random_udf.asNondeterministic() return random_udf def test_pandas_udf_tokenize(self): tokenize = pandas_udf(lambda s: s.apply(lambda str: str.split(' ')), ArrayType(StringType())) self.assertEqual(tokenize.returnType, ArrayType(StringType())) df = self.spark.createDataFrame([("hi boo",), ("bye boo",)], ["vals"]) result = df.select(tokenize("vals").alias("hi")) self.assertEqual([Row(hi=[u'hi', u'boo']), Row(hi=[u'bye', u'boo'])], result.collect()) def test_pandas_udf_nested_arrays(self): tokenize = pandas_udf(lambda s: s.apply(lambda str: [str.split(' ')]), ArrayType(ArrayType(StringType()))) self.assertEqual(tokenize.returnType, ArrayType(ArrayType(StringType()))) df = self.spark.createDataFrame([("hi boo",), ("bye boo",)], ["vals"]) result = df.select(tokenize("vals").alias("hi")) self.assertEqual([Row(hi=[[u'hi', u'boo']]), Row(hi=[[u'bye', u'boo']])], result.collect()) def test_vectorized_udf_basic(self): df = self.spark.range(10).select( col('id').cast('string').alias('str'), col('id').cast('int').alias('int'), col('id').alias('long'), col('id').cast('float').alias('float'), col('id').cast('double').alias('double'), col('id').cast('decimal').alias('decimal'), col('id').cast('boolean').alias('bool'), array(col('id')).alias('array_long')) f = lambda x: x str_f = pandas_udf(f, StringType()) int_f = pandas_udf(f, IntegerType()) long_f = pandas_udf(f, LongType()) float_f = pandas_udf(f, FloatType()) double_f = pandas_udf(f, DoubleType()) decimal_f = pandas_udf(f, DecimalType()) bool_f = pandas_udf(f, BooleanType()) array_long_f = pandas_udf(f, ArrayType(LongType())) res = df.select(str_f(col('str')), int_f(col('int')), long_f(col('long')), float_f(col('float')), double_f(col('double')), decimal_f('decimal'), bool_f(col('bool')), array_long_f('array_long')) self.assertEquals(df.collect(), res.collect()) def test_register_nondeterministic_vectorized_udf_basic(self): random_pandas_udf = pandas_udf( lambda x: random.randint(6, 6) + x, IntegerType()).asNondeterministic() self.assertEqual(random_pandas_udf.deterministic, False) self.assertEqual(random_pandas_udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) nondeterministic_pandas_udf = self.spark.catalog.registerFunction( "randomPandasUDF", random_pandas_udf) self.assertEqual(nondeterministic_pandas_udf.deterministic, False) self.assertEqual(nondeterministic_pandas_udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) [row] = self.spark.sql("SELECT randomPandasUDF(1)").collect() self.assertEqual(row[0], 7) def test_vectorized_udf_null_boolean(self): data = [(True,), (True,), (None,), (False,)] schema = StructType().add("bool", BooleanType()) df = self.spark.createDataFrame(data, schema) bool_f = pandas_udf(lambda x: x, BooleanType()) res = df.select(bool_f(col('bool'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_null_byte(self): data = [(None,), (2,), (3,), (4,)] schema = StructType().add("byte", ByteType()) df = self.spark.createDataFrame(data, schema) byte_f = pandas_udf(lambda x: x, ByteType()) res = df.select(byte_f(col('byte'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_null_short(self): data = [(None,), (2,), (3,), (4,)] schema = StructType().add("short", ShortType()) df = self.spark.createDataFrame(data, schema) short_f = pandas_udf(lambda x: x, ShortType()) res = df.select(short_f(col('short'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_null_int(self): data = [(None,), (2,), (3,), (4,)] schema = StructType().add("int", IntegerType()) df = self.spark.createDataFrame(data, schema) int_f = pandas_udf(lambda x: x, IntegerType()) res = df.select(int_f(col('int'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_null_long(self): data = [(None,), (2,), (3,), (4,)] schema = StructType().add("long", LongType()) df = self.spark.createDataFrame(data, schema) long_f = pandas_udf(lambda x: x, LongType()) res = df.select(long_f(col('long'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_null_float(self): data = [(3.0,), (5.0,), (-1.0,), (None,)] schema = StructType().add("float", FloatType()) df = self.spark.createDataFrame(data, schema) float_f = pandas_udf(lambda x: x, FloatType()) res = df.select(float_f(col('float'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_null_double(self): data = [(3.0,), (5.0,), (-1.0,), (None,)] schema = StructType().add("double", DoubleType()) df = self.spark.createDataFrame(data, schema) double_f = pandas_udf(lambda x: x, DoubleType()) res = df.select(double_f(col('double'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_null_decimal(self): data = [(Decimal(3.0),), (Decimal(5.0),), (Decimal(-1.0),), (None,)] schema = StructType().add("decimal", DecimalType(38, 18)) df = self.spark.createDataFrame(data, schema) decimal_f = pandas_udf(lambda x: x, DecimalType(38, 18)) res = df.select(decimal_f(col('decimal'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_null_string(self): data = [("foo",), (None,), ("bar",), ("bar",)] schema = StructType().add("str", StringType()) df = self.spark.createDataFrame(data, schema) str_f = pandas_udf(lambda x: x, StringType()) res = df.select(str_f(col('str'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_string_in_udf(self): import pandas as pd df = self.spark.range(10) str_f = pandas_udf(lambda x: pd.Series(map(str, x)), StringType()) actual = df.select(str_f(col('id'))) expected = df.select(col('id').cast('string')) self.assertEquals(expected.collect(), actual.collect()) def test_vectorized_udf_datatype_string(self): df = self.spark.range(10).select( col('id').cast('string').alias('str'), col('id').cast('int').alias('int'), col('id').alias('long'), col('id').cast('float').alias('float'), col('id').cast('double').alias('double'), col('id').cast('decimal').alias('decimal'), col('id').cast('boolean').alias('bool')) f = lambda x: x str_f = pandas_udf(f, 'string') int_f = pandas_udf(f, 'integer') long_f = pandas_udf(f, 'long') float_f = pandas_udf(f, 'float') double_f = pandas_udf(f, 'double') decimal_f = pandas_udf(f, 'decimal(38, 18)') bool_f = pandas_udf(f, 'boolean') res = df.select(str_f(col('str')), int_f(col('int')), long_f(col('long')), float_f(col('float')), double_f(col('double')), decimal_f('decimal'), bool_f(col('bool'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_null_binary(self): import pyarrow as pa if LooseVersion(pa.__version__) < LooseVersion("0.10.0"): with QuietTest(self.sc): with self.assertRaisesRegexp( NotImplementedError, 'Invalid returnType.*scalar Pandas UDF.*BinaryType'): pandas_udf(lambda x: x, BinaryType()) else: data = [(bytearray(b"a"),), (None,), (bytearray(b"bb"),), (bytearray(b"ccc"),)] schema = StructType().add("binary", BinaryType()) df = self.spark.createDataFrame(data, schema) str_f = pandas_udf(lambda x: x, BinaryType()) res = df.select(str_f(col('binary'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_array_type(self): data = [([1, 2],), ([3, 4],)] array_schema = StructType([StructField("array", ArrayType(IntegerType()))]) df = self.spark.createDataFrame(data, schema=array_schema) array_f = pandas_udf(lambda x: x, ArrayType(IntegerType())) result = df.select(array_f(col('array'))) self.assertEquals(df.collect(), result.collect()) def test_vectorized_udf_null_array(self): data = [([1, 2],), (None,), (None,), ([3, 4],), (None,)] array_schema = StructType([StructField("array", ArrayType(IntegerType()))]) df = self.spark.createDataFrame(data, schema=array_schema) array_f = pandas_udf(lambda x: x, ArrayType(IntegerType())) result = df.select(array_f(col('array'))) self.assertEquals(df.collect(), result.collect()) def test_vectorized_udf_struct_type(self): import pandas as pd import pyarrow as pa df = self.spark.range(10) return_type = StructType([ StructField('id', LongType()), StructField('str', StringType())]) def func(id): return pd.DataFrame({'id': id, 'str': id.apply(unicode)}) f = pandas_udf(func, returnType=return_type) expected = df.select(struct(col('id'), col('id').cast('string').alias('str')) .alias('struct')).collect() actual = df.select(f(col('id')).alias('struct')).collect() self.assertEqual(expected, actual) g = pandas_udf(func, 'id: long, str: string') actual = df.select(g(col('id')).alias('struct')).collect() self.assertEqual(expected, actual) struct_f = pandas_udf(lambda x: x, return_type) actual = df.select(struct_f(struct(col('id'), col('id').cast('string').alias('str')))) if LooseVersion(pa.__version__) < LooseVersion("0.10.0"): with QuietTest(self.sc): from py4j.protocol import Py4JJavaError with self.assertRaisesRegexp( Py4JJavaError, 'Unsupported type in conversion from Arrow'): self.assertEqual(expected, actual.collect()) else: self.assertEqual(expected, actual.collect()) def test_vectorized_udf_struct_complex(self): import pandas as pd df = self.spark.range(10) return_type = StructType([ StructField('ts', TimestampType()), StructField('arr', ArrayType(LongType()))]) @pandas_udf(returnType=return_type) def f(id): return pd.DataFrame({'ts': id.apply(lambda i: pd.Timestamp(i)), 'arr': id.apply(lambda i: [i, i + 1])}) actual = df.withColumn('f', f(col('id'))).collect() for i, row in enumerate(actual): id, f = row self.assertEqual(i, id) self.assertEqual(pd.Timestamp(i).to_pydatetime(), f[0]) self.assertListEqual([i, i + 1], f[1]) def test_vectorized_udf_nested_struct(self): nested_type = StructType([ StructField('id', IntegerType()), StructField('nested', StructType([ StructField('foo', StringType()), StructField('bar', FloatType()) ])) ]) with QuietTest(self.sc): with self.assertRaisesRegexp( Exception, 'Invalid returnType with scalar Pandas UDFs'): pandas_udf(lambda x: x, returnType=nested_type) def test_vectorized_udf_complex(self): df = self.spark.range(10).select( col('id').cast('int').alias('a'), col('id').cast('int').alias('b'), col('id').cast('double').alias('c')) add = pandas_udf(lambda x, y: x + y, IntegerType()) power2 = pandas_udf(lambda x: 2 ** x, IntegerType()) mul = pandas_udf(lambda x, y: x * y, DoubleType()) res = df.select(add(col('a'), col('b')), power2(col('a')), mul(col('b'), col('c'))) expected = df.select(expr('a + b'), expr('power(2, a)'), expr('b * c')) self.assertEquals(expected.collect(), res.collect()) def test_vectorized_udf_exception(self): df = self.spark.range(10) raise_exception = pandas_udf(lambda x: x * (1 / 0), LongType()) with QuietTest(self.sc): with self.assertRaisesRegexp(Exception, 'division( or modulo)? by zero'): df.select(raise_exception(col('id'))).collect() def test_vectorized_udf_invalid_length(self): import pandas as pd df = self.spark.range(10) raise_exception = pandas_udf(lambda _: pd.Series(1), LongType()) with QuietTest(self.sc): with self.assertRaisesRegexp( Exception, 'Result vector from pandas_udf was not the required length'): df.select(raise_exception(col('id'))).collect() def test_vectorized_udf_chained(self): df = self.spark.range(10) f = pandas_udf(lambda x: x + 1, LongType()) g = pandas_udf(lambda x: x - 1, LongType()) res = df.select(g(f(col('id')))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_chained_struct_type(self): import pandas as pd df = self.spark.range(10) return_type = StructType([ StructField('id', LongType()), StructField('str', StringType())]) @pandas_udf(return_type) def f(id): return pd.DataFrame({'id': id, 'str': id.apply(unicode)}) g = pandas_udf(lambda x: x, return_type) expected = df.select(struct(col('id'), col('id').cast('string').alias('str')) .alias('struct')).collect() actual = df.select(g(f(col('id'))).alias('struct')).collect() self.assertEqual(expected, actual) def test_vectorized_udf_wrong_return_type(self): with QuietTest(self.sc): with self.assertRaisesRegexp( NotImplementedError, 'Invalid returnType.*scalar Pandas UDF.*MapType'): pandas_udf(lambda x: x * 1.0, MapType(LongType(), LongType())) def test_vectorized_udf_return_scalar(self): df = self.spark.range(10) f = pandas_udf(lambda x: 1.0, DoubleType()) with QuietTest(self.sc): with self.assertRaisesRegexp(Exception, 'Return.*type.*Series'): df.select(f(col('id'))).collect() def test_vectorized_udf_decorator(self): df = self.spark.range(10) @pandas_udf(returnType=LongType()) def identity(x): return x res = df.select(identity(col('id'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_empty_partition(self): df = self.spark.createDataFrame(self.sc.parallelize([Row(id=1)], 2)) f = pandas_udf(lambda x: x, LongType()) res = df.select(f(col('id'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_struct_with_empty_partition(self): df = self.spark.createDataFrame(self.sc.parallelize([Row(id=1)], 2))\ .withColumn('name', lit('John Doe')) @pandas_udf("first string, last string") def split_expand(n): return n.str.split(expand=True) result = df.select(split_expand('name')).collect() self.assertEqual(1, len(result)) row = result[0] self.assertEqual('John', row[0]['first']) self.assertEqual('Doe', row[0]['last']) def test_vectorized_udf_varargs(self): df = self.spark.createDataFrame(self.sc.parallelize([Row(id=1)], 2)) f = pandas_udf(lambda *v: v[0], LongType()) res = df.select(f(col('id'))) self.assertEquals(df.collect(), res.collect()) def test_vectorized_udf_unsupported_types(self): with QuietTest(self.sc): with self.assertRaisesRegexp( NotImplementedError, 'Invalid returnType.*scalar Pandas UDF.*MapType'): pandas_udf(lambda x: x, MapType(StringType(), IntegerType())) with self.assertRaisesRegexp( NotImplementedError, 'Invalid returnType.*scalar Pandas UDF.*ArrayType.StructType'): pandas_udf(lambda x: x, ArrayType(StructType([StructField('a', IntegerType())]))) def test_vectorized_udf_dates(self): schema = StructType().add("idx", LongType()).add("date", DateType()) data = [(0, date(1969, 1, 1),), (1, date(2012, 2, 2),), (2, None,), (3, date(2100, 4, 4),), (4, date(2262, 4, 12),)] df = self.spark.createDataFrame(data, schema=schema) date_copy = pandas_udf(lambda t: t, returnType=DateType()) df = df.withColumn("date_copy", date_copy(col("date"))) @pandas_udf(returnType=StringType()) def check_data(idx, date, date_copy): import pandas as pd msgs = [] is_equal = date.isnull() for i in range(len(idx)): if (is_equal[i] and data[idx[i]][1] is None) or \ date[i] == data[idx[i]][1]: msgs.append(None) else: msgs.append( "date values are not equal (date='%s': data[%d][1]='%s')" % (date[i], idx[i], data[idx[i]][1])) return pd.Series(msgs) result = df.withColumn("check_data", check_data(col("idx"), col("date"), col("date_copy"))).collect() self.assertEquals(len(data), len(result)) for i in range(len(result)): self.assertEquals(data[i][1], result[i][1]) # "date" col self.assertEquals(data[i][1], result[i][2]) # "date_copy" col self.assertIsNone(result[i][3]) # "check_data" col def test_vectorized_udf_timestamps(self): schema = StructType([ StructField("idx", LongType(), True), StructField("timestamp", TimestampType(), True)]) data = [(0, datetime(1969, 1, 1, 1, 1, 1)), (1, datetime(2012, 2, 2, 2, 2, 2)), (2, None), (3, datetime(2100, 3, 3, 3, 3, 3))] df = self.spark.createDataFrame(data, schema=schema) # Check that a timestamp passed through a pandas_udf will not be altered by timezone calc f_timestamp_copy = pandas_udf(lambda t: t, returnType=TimestampType()) df = df.withColumn("timestamp_copy", f_timestamp_copy(col("timestamp"))) @pandas_udf(returnType=StringType()) def check_data(idx, timestamp, timestamp_copy): import pandas as pd msgs = [] is_equal = timestamp.isnull() # use this array to check values are equal for i in range(len(idx)): # Check that timestamps are as expected in the UDF if (is_equal[i] and data[idx[i]][1] is None) or \ timestamp[i].to_pydatetime() == data[idx[i]][1]: msgs.append(None) else: msgs.append( "timestamp values are not equal (timestamp='%s': data[%d][1]='%s')" % (timestamp[i], idx[i], data[idx[i]][1])) return pd.Series(msgs) result = df.withColumn("check_data", check_data(col("idx"), col("timestamp"), col("timestamp_copy"))).collect() # Check that collection values are correct self.assertEquals(len(data), len(result)) for i in range(len(result)): self.assertEquals(data[i][1], result[i][1]) # "timestamp" col self.assertEquals(data[i][1], result[i][2]) # "timestamp_copy" col self.assertIsNone(result[i][3]) # "check_data" col def test_vectorized_udf_return_timestamp_tz(self): import pandas as pd df = self.spark.range(10) @pandas_udf(returnType=TimestampType()) def gen_timestamps(id): ts = [pd.Timestamp(i, unit='D', tz='America/Los_Angeles') for i in id] return pd.Series(ts) result = df.withColumn("ts", gen_timestamps(col("id"))).collect() spark_ts_t = TimestampType() for r in result: i, ts = r ts_tz = pd.Timestamp(i, unit='D', tz='America/Los_Angeles').to_pydatetime() expected = spark_ts_t.fromInternal(spark_ts_t.toInternal(ts_tz)) self.assertEquals(expected, ts) def test_vectorized_udf_check_config(self): import pandas as pd with self.sql_conf({"spark.sql.execution.arrow.maxRecordsPerBatch": 3}): df = self.spark.range(10, numPartitions=1) @pandas_udf(returnType=LongType()) def check_records_per_batch(x): return pd.Series(x.size).repeat(x.size) result = df.select(check_records_per_batch(col("id"))).collect() for (r,) in result: self.assertTrue(r <= 3) def test_vectorized_udf_timestamps_respect_session_timezone(self): import pandas as pd schema = StructType([ StructField("idx", LongType(), True), StructField("timestamp", TimestampType(), True)]) data = [(1, datetime(1969, 1, 1, 1, 1, 1)), (2, datetime(2012, 2, 2, 2, 2, 2)), (3, None), (4, datetime(2100, 3, 3, 3, 3, 3))] df = self.spark.createDataFrame(data, schema=schema) f_timestamp_copy = pandas_udf(lambda ts: ts, TimestampType()) internal_value = pandas_udf( lambda ts: ts.apply(lambda ts: ts.value if ts is not pd.NaT else None), LongType()) timezone = "America/New_York" with self.sql_conf({ "spark.sql.execution.pandas.respectSessionTimeZone": False, "spark.sql.session.timeZone": timezone}): df_la = df.withColumn("tscopy", f_timestamp_copy(col("timestamp"))) \ .withColumn("internal_value", internal_value(col("timestamp"))) result_la = df_la.select(col("idx"), col("internal_value")).collect() # Correct result_la by adjusting 3 hours difference between Los Angeles and New York diff = 3 * 60 * 60 * 1000 * 1000 * 1000 result_la_corrected = \ df_la.select(col("idx"), col("tscopy"), col("internal_value") + diff).collect() with self.sql_conf({ "spark.sql.execution.pandas.respectSessionTimeZone": True, "spark.sql.session.timeZone": timezone}): df_ny = df.withColumn("tscopy", f_timestamp_copy(col("timestamp"))) \ .withColumn("internal_value", internal_value(col("timestamp"))) result_ny = df_ny.select(col("idx"), col("tscopy"), col("internal_value")).collect() self.assertNotEqual(result_ny, result_la) self.assertEqual(result_ny, result_la_corrected) def test_nondeterministic_vectorized_udf(self): # Test that nondeterministic UDFs are evaluated only once in chained UDF evaluations @pandas_udf('double') def plus_ten(v): return v + 10 random_udf = self.nondeterministic_vectorized_udf df = self.spark.range(10).withColumn('rand', random_udf(col('id'))) result1 = df.withColumn('plus_ten(rand)', plus_ten(df['rand'])).toPandas() self.assertEqual(random_udf.deterministic, False) self.assertTrue(result1['plus_ten(rand)'].equals(result1['rand'] + 10)) def test_nondeterministic_vectorized_udf_in_aggregate(self): df = self.spark.range(10) random_udf = self.nondeterministic_vectorized_udf with QuietTest(self.sc): with self.assertRaisesRegexp(AnalysisException, 'nondeterministic'): df.groupby(df.id).agg(sum(random_udf(df.id))).collect() with self.assertRaisesRegexp(AnalysisException, 'nondeterministic'): df.agg(sum(random_udf(df.id))).collect() def test_register_vectorized_udf_basic(self): df = self.spark.range(10).select( col('id').cast('int').alias('a'), col('id').cast('int').alias('b')) original_add = pandas_udf(lambda x, y: x + y, IntegerType()) self.assertEqual(original_add.deterministic, True) self.assertEqual(original_add.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) new_add = self.spark.catalog.registerFunction("add1", original_add) res1 = df.select(new_add(col('a'), col('b'))) res2 = self.spark.sql( "SELECT add1(t.a, t.b) FROM (SELECT id as a, id as b FROM range(10)) t") expected = df.select(expr('a + b')) self.assertEquals(expected.collect(), res1.collect()) self.assertEquals(expected.collect(), res2.collect()) # Regression test for SPARK-23314 def test_timestamp_dst(self): # Daylight saving time for Los Angeles for 2015 is Sun, Nov 1 at 2:00 am dt = [datetime(2015, 11, 1, 0, 30), datetime(2015, 11, 1, 1, 30), datetime(2015, 11, 1, 2, 30)] df = self.spark.createDataFrame(dt, 'timestamp').toDF('time') foo_udf = pandas_udf(lambda x: x, 'timestamp') result = df.withColumn('time', foo_udf(df.time)) self.assertEquals(df.collect(), result.collect()) @unittest.skipIf(sys.version_info[:2] < (3, 5), "Type hints are supported from Python 3.5.") def test_type_annotation(self): from pyspark.sql.functions import pandas_udf # Regression test to check if type hints can be used. See SPARK-23569. # Note that it throws an error during compilation in lower Python versions if 'exec' # is not used. Also, note that we explicitly use another dictionary to avoid modifications # in the current 'locals()'. # # Hyukjin: I think it's an ugly way to test issues about syntax specific in # higher versions of Python, which we shouldn't encourage. This was the last resort # I could come up with at that time. _locals = {} exec( "import pandas as pd\ndef noop(col: pd.Series) -> pd.Series: return col", _locals) df = self.spark.range(1).select(pandas_udf(f=_locals['noop'], returnType='bigint')('id')) self.assertEqual(df.first()[0], 0) def test_mixed_udf(self): import pandas as pd df = self.spark.range(0, 1).toDF('v') # Test mixture of multiple UDFs and Pandas UDFs. @udf('int') def f1(x): assert type(x) == int return x + 1 @pandas_udf('int') def f2(x): assert type(x) == pd.Series return x + 10 @udf('int') def f3(x): assert type(x) == int return x + 100 @pandas_udf('int') def f4(x): assert type(x) == pd.Series return x + 1000 # Test single expression with chained UDFs df_chained_1 = df.withColumn('f2_f1', f2(f1(df['v']))) df_chained_2 = df.withColumn('f3_f2_f1', f3(f2(f1(df['v'])))) df_chained_3 = df.withColumn('f4_f3_f2_f1', f4(f3(f2(f1(df['v']))))) df_chained_4 = df.withColumn('f4_f2_f1', f4(f2(f1(df['v'])))) df_chained_5 = df.withColumn('f4_f3_f1', f4(f3(f1(df['v'])))) expected_chained_1 = df.withColumn('f2_f1', df['v'] + 11) expected_chained_2 = df.withColumn('f3_f2_f1', df['v'] + 111) expected_chained_3 = df.withColumn('f4_f3_f2_f1', df['v'] + 1111) expected_chained_4 = df.withColumn('f4_f2_f1', df['v'] + 1011) expected_chained_5 = df.withColumn('f4_f3_f1', df['v'] + 1101) self.assertEquals(expected_chained_1.collect(), df_chained_1.collect()) self.assertEquals(expected_chained_2.collect(), df_chained_2.collect()) self.assertEquals(expected_chained_3.collect(), df_chained_3.collect()) self.assertEquals(expected_chained_4.collect(), df_chained_4.collect()) self.assertEquals(expected_chained_5.collect(), df_chained_5.collect()) # Test multiple mixed UDF expressions in a single projection df_multi_1 = df \ .withColumn('f1', f1(col('v'))) \ .withColumn('f2', f2(col('v'))) \ .withColumn('f3', f3(col('v'))) \ .withColumn('f4', f4(col('v'))) \ .withColumn('f2_f1', f2(col('f1'))) \ .withColumn('f3_f1', f3(col('f1'))) \ .withColumn('f4_f1', f4(col('f1'))) \ .withColumn('f3_f2', f3(col('f2'))) \ .withColumn('f4_f2', f4(col('f2'))) \ .withColumn('f4_f3', f4(col('f3'))) \ .withColumn('f3_f2_f1', f3(col('f2_f1'))) \ .withColumn('f4_f2_f1', f4(col('f2_f1'))) \ .withColumn('f4_f3_f1', f4(col('f3_f1'))) \ .withColumn('f4_f3_f2', f4(col('f3_f2'))) \ .withColumn('f4_f3_f2_f1', f4(col('f3_f2_f1'))) # Test mixed udfs in a single expression df_multi_2 = df \ .withColumn('f1', f1(col('v'))) \ .withColumn('f2', f2(col('v'))) \ .withColumn('f3', f3(col('v'))) \ .withColumn('f4', f4(col('v'))) \ .withColumn('f2_f1', f2(f1(col('v')))) \ .withColumn('f3_f1', f3(f1(col('v')))) \ .withColumn('f4_f1', f4(f1(col('v')))) \ .withColumn('f3_f2', f3(f2(col('v')))) \ .withColumn('f4_f2', f4(f2(col('v')))) \ .withColumn('f4_f3', f4(f3(col('v')))) \ .withColumn('f3_f2_f1', f3(f2(f1(col('v'))))) \ .withColumn('f4_f2_f1', f4(f2(f1(col('v'))))) \ .withColumn('f4_f3_f1', f4(f3(f1(col('v'))))) \ .withColumn('f4_f3_f2', f4(f3(f2(col('v'))))) \ .withColumn('f4_f3_f2_f1', f4(f3(f2(f1(col('v')))))) expected = df \ .withColumn('f1', df['v'] + 1) \ .withColumn('f2', df['v'] + 10) \ .withColumn('f3', df['v'] + 100) \ .withColumn('f4', df['v'] + 1000) \ .withColumn('f2_f1', df['v'] + 11) \ .withColumn('f3_f1', df['v'] + 101) \ .withColumn('f4_f1', df['v'] + 1001) \ .withColumn('f3_f2', df['v'] + 110) \ .withColumn('f4_f2', df['v'] + 1010) \ .withColumn('f4_f3', df['v'] + 1100) \ .withColumn('f3_f2_f1', df['v'] + 111) \ .withColumn('f4_f2_f1', df['v'] + 1011) \ .withColumn('f4_f3_f1', df['v'] + 1101) \ .withColumn('f4_f3_f2', df['v'] + 1110) \ .withColumn('f4_f3_f2_f1', df['v'] + 1111) self.assertEquals(expected.collect(), df_multi_1.collect()) self.assertEquals(expected.collect(), df_multi_2.collect()) def test_mixed_udf_and_sql(self): import pandas as pd df = self.spark.range(0, 1).toDF('v') # Test mixture of UDFs, Pandas UDFs and SQL expression. @udf('int') def f1(x): assert type(x) == int return x + 1 def f2(x): assert type(x) == Column return x + 10 @pandas_udf('int') def f3(x): assert type(x) == pd.Series return x + 100 df1 = df.withColumn('f1', f1(df['v'])) \ .withColumn('f2', f2(df['v'])) \ .withColumn('f3', f3(df['v'])) \ .withColumn('f1_f2', f1(f2(df['v']))) \ .withColumn('f1_f3', f1(f3(df['v']))) \ .withColumn('f2_f1', f2(f1(df['v']))) \ .withColumn('f2_f3', f2(f3(df['v']))) \ .withColumn('f3_f1', f3(f1(df['v']))) \ .withColumn('f3_f2', f3(f2(df['v']))) \ .withColumn('f1_f2_f3', f1(f2(f3(df['v'])))) \ .withColumn('f1_f3_f2', f1(f3(f2(df['v'])))) \ .withColumn('f2_f1_f3', f2(f1(f3(df['v'])))) \ .withColumn('f2_f3_f1', f2(f3(f1(df['v'])))) \ .withColumn('f3_f1_f2', f3(f1(f2(df['v'])))) \ .withColumn('f3_f2_f1', f3(f2(f1(df['v'])))) expected = df.withColumn('f1', df['v'] + 1) \ .withColumn('f2', df['v'] + 10) \ .withColumn('f3', df['v'] + 100) \ .withColumn('f1_f2', df['v'] + 11) \ .withColumn('f1_f3', df['v'] + 101) \ .withColumn('f2_f1', df['v'] + 11) \ .withColumn('f2_f3', df['v'] + 110) \ .withColumn('f3_f1', df['v'] + 101) \ .withColumn('f3_f2', df['v'] + 110) \ .withColumn('f1_f2_f3', df['v'] + 111) \ .withColumn('f1_f3_f2', df['v'] + 111) \ .withColumn('f2_f1_f3', df['v'] + 111) \ .withColumn('f2_f3_f1', df['v'] + 111) \ .withColumn('f3_f1_f2', df['v'] + 111) \ .withColumn('f3_f2_f1', df['v'] + 111) self.assertEquals(expected.collect(), df1.collect()) # SPARK-24721 @unittest.skipIf(not test_compiled, test_not_compiled_message) def test_datasource_with_udf(self): # Same as SQLTests.test_datasource_with_udf, but with Pandas UDF # This needs to a separate test because Arrow dependency is optional import pandas as pd import numpy as np path = tempfile.mkdtemp() shutil.rmtree(path) try: self.spark.range(1).write.mode("overwrite").format('csv').save(path) filesource_df = self.spark.read.option('inferSchema', True).csv(path).toDF('i') datasource_df = self.spark.read \ .format("org.apache.spark.sql.sources.SimpleScanSource") \ .option('from', 0).option('to', 1).load().toDF('i') datasource_v2_df = self.spark.read \ .format("org.apache.spark.sql.sources.v2.SimpleDataSourceV2") \ .load().toDF('i', 'j') c1 = pandas_udf(lambda x: x + 1, 'int')(lit(1)) c2 = pandas_udf(lambda x: x + 1, 'int')(col('i')) f1 = pandas_udf(lambda x: pd.Series(np.repeat(False, len(x))), 'boolean')(lit(1)) f2 = pandas_udf(lambda x: pd.Series(np.repeat(False, len(x))), 'boolean')(col('i')) for df in [filesource_df, datasource_df, datasource_v2_df]: result = df.withColumn('c', c1) expected = df.withColumn('c', lit(2)) self.assertEquals(expected.collect(), result.collect()) for df in [filesource_df, datasource_df, datasource_v2_df]: result = df.withColumn('c', c2) expected = df.withColumn('c', col('i') + 1) self.assertEquals(expected.collect(), result.collect()) for df in [filesource_df, datasource_df, datasource_v2_df]: for f in [f1, f2]: result = df.filter(f) self.assertEquals(0, result.count()) finally: shutil.rmtree(path) if __name__ == "__main__": from pyspark.sql.tests.test_pandas_udf_scalar import * try: import xmlrunner testRunner = xmlrunner.XMLTestRunner(output='target/test-reports') except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
py
7df91b11252856f2fc01a573ce58b37e4ddcce82
import pytest from nebullvm.base import DeepLearningFramework from nebullvm.inference_learners.tvm import TVM_INFERENCE_LEARNERS from nebullvm.optimizers import ApacheTVMOptimizer from nebullvm.optimizers.tests.utils import get_onnx_model @pytest.mark.parametrize("output_library", [DeepLearningFramework.PYTORCH]) def test_tvm(output_library: DeepLearningFramework): model_path, model_params = get_onnx_model() optimizer = ApacheTVMOptimizer() model = optimizer.optimize(model_path, output_library, model_params) assert isinstance(model, TVM_INFERENCE_LEARNERS[output_library]) res = model.predict(*model.get_inputs_example()) assert res is not None
py
7df91ba65d0feaa96d9b10a242d0c2ccc0982793
#int(number) : returns only the integer part #round(number, ndigits) : returns number rounded to ndigits after the decimal points. If ndigits is not given, it returns nearest integer to its input. def roundOffNumber(number): integerNumber = int(number) roundNumber = round(number) print("Number", number, "can be converted to integer in two ways as ",integerNumber,"and ",roundNumber) roundNumber = round(number,3) print("Number",number,"rounded off number after 3 digits is: ",roundNumber) realNumber = float(input("Enter a real Number: ")) roundOffNumber(realNumber)
py
7df91d15ec7f83b9277e8ba2def350f499cfbfd0
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """process dataset""" import numpy as np from PIL import Image, ImageOps def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h): """locate crop location""" w_step = (image_w - crop_w) // 4 h_step = (image_h - crop_h) // 4 ret = list() ret.append((0, 0)) # upper left ret.append((4 * w_step, 0)) # upper right ret.append((0, 4 * h_step)) # lower left ret.append((4 * w_step, 4 * h_step)) # lower right ret.append((2 * w_step, 2 * h_step)) # center if more_fix_crop: ret.append((0, 2 * h_step)) # center left ret.append((4 * w_step, 2 * h_step)) # center right ret.append((2 * w_step, 4 * h_step)) # lower center ret.append((2 * w_step, 0 * h_step)) # upper center ret.append((1 * w_step, 1 * h_step)) # upper left quarter ret.append((3 * w_step, 1 * h_step)) # upper right quarter ret.append((1 * w_step, 3 * h_step)) # lower left quarter ret.append((3 * w_step, 3 * h_step)) # lower righ quarter return ret class GroupCenterCrop: """GroupCenterCrop""" def __init__(self, size): self.size = size def __call__(self, img_group): images = [] for img in img_group: width, height = img.size left = (width - self.size)/2 top = (height - self.size)/2 right = (width + self.size)/2 bottom = (height + self.size)/2 images.append(img.crop((left, top, right, bottom))) return images class GroupNormalize: """GroupNormalize""" def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): rep_mean = self.mean * (tensor.shape[0]//len(self.mean)) rep_std = self.std * (tensor.shape[0]//len(self.std)) # TODO: make efficient for i, _ in enumerate(tensor): tensor[i] = (tensor[i]-rep_mean[i])/rep_std[i] return tensor class GroupScale: """ Rescales the input PIL.Image to the given 'size'. 'size' will be the size of the smaller edge. For example, if height > width, then image will be rescaled to (size * height / width, size) size: size of the smaller edge interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, interpolation=Image.BILINEAR): self.size = size self.interpolation = interpolation def __call__(self, img_group): images = [] for img in img_group: w, h = img.size if w > h: s = (int(self.size * w / h), self.size) else: s = (self.size, int(self.size * h / w)) images.append(img.resize(s, self.interpolation)) return images class GroupOverSample: """GroupOverSample""" def __init__(self, crop_size, scale_size=None): self.crop_size = crop_size if not isinstance(crop_size, int) else (crop_size, crop_size) if scale_size is not None: self.scale_worker = GroupScale(scale_size) else: self.scale_worker = None def __call__(self, img_group): if self.scale_worker is not None: img_group = self.scale_worker(img_group) image_w, image_h = img_group[0].size crop_w, crop_h = self.crop_size offsets = fill_fix_offset(False, image_w, image_h, crop_w, crop_h) #print(offsets) oversample_group = list() for o_w, o_h in offsets: normal_group = list() flip_group = list() for i, img in enumerate(img_group): crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h)) normal_group.append(crop) flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT) if img.mode == 'L' and i % 2 == 0: flip_group.append(ImageOps.invert(flip_crop)) else: flip_group.append(flip_crop) oversample_group.extend(normal_group) oversample_group.extend(flip_group) return oversample_group class Stack: """Stack""" def __init__(self, roll=False): self.roll = roll def __call__(self, img_group): output = [] if img_group[0].mode == 'L': output = np.concatenate([np.expand_dims(x, 2) for x in img_group], axis=2) elif img_group[0].mode == 'RGB': if self.roll: output = np.concatenate([np.array(x)[:, :, ::-1] for x in img_group], axis=2) else: output = np.concatenate(img_group, axis=2) return output class ToTorchFormatTensor: """ Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """ def __init__(self, div=True): self.div_sign = div def __call__(self, pic): if isinstance(pic, np.ndarray): # handle numpy array pic = np.array(pic, np.float32) pic = np.ascontiguousarray(pic) img = pic.transpose((2, 0, 1)) else: # handle PIL Image pic = np.array(pic, np.float32) pic = np.ascontiguousarray(pic) img = pic.reshape(pic.size[1], pic.size[0], len(pic.mode)) img = img.transpose((2, 0, 1)) return img/255. if self.div_sign else img
py
7df91e6e4feb61bde3a3f03fb9709be1ff5d7490
# coding: utf-8 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Samplers. They define how the samples in a dataset will be iterated (e.g. in the order sorted by length). They can also be used to perform bucketing for speeding up the processing of variable-length sequences.""" __all__ = ['SortedSampler', 'FixedBucketSampler', 'SortedBucketSampler'] import warnings import numpy as np from mxnet.gluon.data import Sampler def _match_bucket_keys(bucket_keys, seq_lengths): bucket_key_npy = np.array(bucket_keys, dtype=np.int32) bucket_sample_ids = [list() for _ in range(len(bucket_keys))] batch_size = 10000 bucket_key_npy = bucket_key_npy.reshape((1,) + bucket_key_npy.shape) for begin in range(0, len(seq_lengths), batch_size): end = min(begin + batch_size, len(seq_lengths)) diff = bucket_key_npy - np.expand_dims(seq_lengths[begin:end], axis=1) if diff.ndim == 3: is_valid_bucket = np.prod(diff >= 0, axis=2) pad_val = np.sum(diff, axis=2) else: is_valid_bucket = diff >= 0 pad_val = diff seq_ids_not_found = np.nonzero(is_valid_bucket.sum(axis=1) == 0)[0].tolist() masked_pad_val = np.ma.array(pad_val, mask=1 - is_valid_bucket) batch_bucket_id = masked_pad_val.argmin(axis=1).tolist() if len(seq_ids_not_found) > 0: raise ValueError('Find elements in seq_lengths that cannot fit in the ' 'given buckets, seq_length=%s, bucket_keys=%s. ' \ 'You must increase the bucket size.' % (str(seq_lengths[seq_ids_not_found]), str(bucket_keys))) for i, bucket_id in enumerate(batch_bucket_id): bucket_sample_ids[bucket_id].append(i + begin) return bucket_sample_ids def _bucket_average_lengths(bucket_sample_ids, seq_lengths): bucket_average_lengths = [] for sample_ids in bucket_sample_ids: if len(sample_ids) > 0: bucket_average_lengths.append(np.mean(seq_lengths[sample_ids])) else: bucket_average_lengths.append(0) return bucket_average_lengths class SortedSampler(Sampler): r"""Sort the samples based on the sort key and then sample sequentially. Parameters ---------- sort_keys : list-like object List of the sort keys. reverse : bool, default True Whether to sort by descending order. """ def __init__(self, sort_keys, reverse=True): assert len(sort_keys) > 0 self._sorted_ids = sorted(range(len(sort_keys)), key=lambda i: sort_keys[i], reverse=reverse) def __iter__(self): return iter(self._sorted_ids) def __len__(self): return len(self._sorted_ids) class FixedBucketSampler(Sampler): r"""Assign each data sample to a fixed bucket based on its length. The bucket keys are either given or generated from the input sequence lengths. Parameters ---------- lengths : list of int or list of tuple/list of int The length of the sequences in the input data sample. batch_size : int The batch size of the sampler. num_buckets : int or None, default 10 The number of buckets. This will not be used if bucket_keys is set. bucket_keys : None or list of int or list of tuple, default None The keys that will be used to create the buckets. It should usually be the lengths of the sequences. If it is None, the bucket_keys will be generated based on the maximum lengths of the data. ratio : float, default 0 Ratio to scale up the batch size of smaller buckets. Assume the :math:`i` th key is :math:`K_i` , the default batch size is :math:`B` , the ratio to scale the batch size is :math:`\alpha` and the batch size corresponds to the :math:`i` th bucket is :math:`B_i` . We have: .. math:: B_i = \max(\alpha B \times \frac{\max_j sum(K_j)}{sum(K_i)}, B) Thus, setting this to a value larger than 0, like 0.5, will scale up the batch size of the smaller buckets. shuffle : bool, default False Whether to shuffle the batches. use_average_length : bool, default False False: each batch contains batch_size sequences, number of sequence elements varies. True: each batch contains batch_size elements, number of sequences varies. In this case, ratio option is ignored. Examples -------- >>> from gluonnlp.data import FixedBucketSampler >>> import numpy as np >>> lengths = [np.random.randint(1, 100) for _ in range(1000)] >>> sampler = FixedBucketSampler(lengths, 8) >>> print(sampler.stats()) FixedBucketSampler: sample_num=1000, batch_num=128 key=[9, 19, 29, 39, 49, 59, 69, 79, 89, 99] cnt=[95, 103, 91, 97, 86, 79, 102, 100, 128, 119] batch_size=[8, 8, 8, 8, 8, 8, 8, 8, 8, 8] >>> sampler = FixedBucketSampler(lengths, 8, ratio=0.5) >>> print(sampler.stats()) FixedBucketSampler: sample_num=1000, batch_num=104 key=[9, 19, 29, 39, 49, 59, 69, 79, 89, 99] cnt=[95, 103, 91, 97, 86, 79, 102, 100, 128, 119] batch_size=[44, 20, 13, 10, 8, 8, 8, 8, 8, 8] """ def __init__(self, lengths, batch_size, num_buckets=10, bucket_keys=None, ratio=0, shuffle=False, use_average_length=False): assert len(lengths) > 0, 'FixedBucketSampler does not support empty lengths.' assert batch_size > 0, 'Batch size must be larger than 0.' assert ratio >= 0, 'batch size scaling ratio cannot be negative.' self._batch_size = batch_size self._ratio = ratio self._lengths = np.array(lengths, dtype=np.int32) if self._lengths.ndim == 1: self._single_element = True attr_num = 1 else: assert self._lengths.ndim == 2, \ 'Elements in lengths must be either int or tuple/list of int. ' \ 'Received lengths=%s' % str(lengths) self._single_element = False attr_num = self._lengths.shape[1] self._shuffle = shuffle max_lengths = self._lengths.max(axis=0) min_lengths = self._lengths.min(axis=0) if self._single_element: assert min_lengths > 0, 'Sequence lengths must all be larger than 0.' else: for _, ele in enumerate(min_lengths): assert ele > 0, 'Sequence lengths must all be larger than 0.' # Generate the buckets if bucket_keys is None: assert num_buckets > 0, 'num_buckets must be set when bucket_keys is None. Received ' \ 'num_buckets=%d' % num_buckets if not self._single_element: bucket_width_l = [max((max_len - min_len) // num_buckets, 1) for max_len, min_len in zip(max_lengths, min_lengths)] bucket_keys =\ [tuple(max(max_len - i * width, min_len) for max_len, min_len, width in zip(max_lengths, min_lengths, bucket_width_l)) for i in range(num_buckets)] else: bucket_width = max((max_lengths - min_lengths) // num_buckets, 1) bucket_keys = [max(max_lengths - i * bucket_width, min_lengths) for i in range(num_buckets)] else: if num_buckets is not None: warnings.warn('num_buckets will not be used if bucket_keys is not None. ' 'bucket_keys=%s, num_buckets=%d' % (str(bucket_keys), num_buckets)) assert len(bucket_keys) > 0 if self._single_element: assert isinstance(bucket_keys[0], int) else: assert isinstance(bucket_keys[0], tuple) assert len(bucket_keys[0]) == attr_num bucket_keys = sorted(set(bucket_keys)) # Assign instances to buckets bucket_sample_ids = _match_bucket_keys(bucket_keys, self._lengths) unused_bucket_keys = [key for key, sample_ids in zip(bucket_keys, bucket_sample_ids) if len(sample_ids) == 0] if len(unused_bucket_keys) > 0: warnings.warn('Some buckets are empty and will be removed. Unused bucket keys=%s' % str(unused_bucket_keys)) # Remove empty buckets self._bucket_keys = [key for key, sample_ids in zip(bucket_keys, bucket_sample_ids) if len(sample_ids) > 0] self._bucket_sample_ids = [sample_ids for sample_ids in bucket_sample_ids if len(sample_ids) > 0] if not use_average_length: scale_up_keys = [key if self._single_element else sum(key) for key in self._bucket_keys] max_scale_up_key = max(scale_up_keys) self._bucket_batch_sizes = [max(int(max_scale_up_key / float(scale_up_key) * self._ratio * batch_size), batch_size) for scale_up_key in scale_up_keys] else: if ratio > 0.: warnings.warn('ratio=%f is ignored when use_average_length is True' % self._ratio) bucket_average_lengths = _bucket_average_lengths(self._bucket_sample_ids, self._lengths) self._bucket_batch_sizes = [max(int(batch_size / float(average_length)), 1) for average_length in bucket_average_lengths] self._batch_infos = [] for bucket_id, sample_ids, bucket_batch_size in\ zip(range(len(self._bucket_keys) - 1, -1, -1), self._bucket_sample_ids[::-1], self._bucket_batch_sizes[::-1]): for i in range(0, len(sample_ids), bucket_batch_size): self._batch_infos.append((bucket_id, i)) def __iter__(self): if self._shuffle: np.random.shuffle(self._batch_infos) for bucket_id in range(len(self._bucket_keys)): np.random.shuffle(self._bucket_sample_ids[bucket_id]) for bucket_id, batch_begin in self._batch_infos: batch_size = self._bucket_batch_sizes[bucket_id] batch_end = min(batch_begin + batch_size, len(self._bucket_sample_ids[bucket_id])) yield self._bucket_sample_ids[bucket_id][batch_begin:batch_end] def __len__(self): return len(self._batch_infos) def stats(self): """Return a string representing the statistics of the bucketing sampler. Returns ------- ret : str String representing the statistics of the buckets. """ ret = '{name}:\n' \ ' sample_num={sample_num}, batch_num={batch_num}\n' \ ' key={bucket_keys}\n' \ ' cnt={bucket_counts}\n' \ ' batch_size={bucket_batch_sizes}'\ .format(name=self.__class__.__name__, sample_num=len(self._lengths), batch_num=len(self._batch_infos), bucket_keys=self._bucket_keys, bucket_counts=[len(sample_ids) for sample_ids in self._bucket_sample_ids], bucket_batch_sizes=self._bucket_batch_sizes) return ret class SortedBucketSampler(Sampler): r"""Batches are samled from sorted buckets of data. First, partition data in buckets of size `batch_size * mult`. Each bucket contains `batch_size * mult` elements. The samples inside each bucket are sorted based on sort_key and then batched. Parameters ---------- sort_keys : list-like object The keys to sort the samples. batch_size : int Batch size of the sampler. mult : int or float, default 100 The multiplier to determine the bucket size. Each bucket will have size `mult * batch_size`. reverse : bool, default True Whether to sort in descending order. shuffle : bool, default False Whether to shuffle the data. Examples -------- >>> from gluonnlp.data import SortedBucketSampler >>> import numpy as np >>> lengths = [np.random.randint(1, 1000) for _ in range(1000)] >>> sampler = SortedBucketSampler(lengths, 16) >>> # The sequence lengths within the batch will be sorted >>> for i, indices in enumerate(sampler): ... if i == 0: ... print([lengths[ele] for ele in indices]) [999, 999, 999, 997, 997, 996, 995, 993, 991, 991, 989, 989, 987, 987, 986, 985] """ def __init__(self, sort_keys, batch_size, mult=100, reverse=True, shuffle=False): assert len(sort_keys) > 0 assert batch_size > 0 assert mult >= 1, 'Bucket size multiplier must be larger than 1' self._sort_keys = sort_keys self._batch_size = batch_size self._mult = mult self._total_sample_num = len(self._sort_keys) self._reverse = reverse self._shuffle = shuffle def __iter__(self): if self._shuffle: sample_ids = np.random.permutation(self._total_sample_num) else: sample_ids = list(range(self._total_sample_num)) bucket_size = int(self._mult * self._batch_size) for bucket_begin in range(0, self._total_sample_num, bucket_size): bucket_end = min(bucket_begin + bucket_size, self._total_sample_num) sorted_sample_ids = sorted(sample_ids[bucket_begin:bucket_end], key=lambda i: self._sort_keys[i], reverse=self._reverse) batch_begins = list(range(0, len(sorted_sample_ids), self._batch_size)) if self._shuffle: np.random.shuffle(batch_begins) for batch_begin in batch_begins: batch_end = min(batch_begin + self._batch_size, len(sorted_sample_ids)) yield sorted_sample_ids[batch_begin:batch_end] def __len__(self): return (len(self._sort_keys) + self._batch_size - 1) // self._batch_size
py
7df91eab100e81530c3af145934cbf4362d4ddc9
import warnings import numpy as np from keras.callbacks import History from rl.callbacks import TestLogger, TrainEpisodeLogger, TrainIntervalLogger, Visualizer, CallbackList class Agent(object): def __init__(self): self.training = False self.step = 0 def get_config(self): return {} def fit(self, env, nb_steps, action_repetition=1, callbacks=None, verbose=1, visualize=False, nb_max_start_steps=0, start_step_policy=None, log_interval=10000, nb_max_episode_steps=None): if not self.compiled: raise RuntimeError('Your tried to fit your agent but it hasn\'t been compiled yet. Please call `compile()` before `fit()`.') if action_repetition < 1: raise ValueError('action_repetition must be >= 1, is {}'.format(action_repetition)) self.training = True callbacks = [] if not callbacks else callbacks[:] if verbose == 1: callbacks += [TrainIntervalLogger(interval=log_interval)] elif verbose > 1: callbacks += [TrainEpisodeLogger()] if visualize: callbacks += [Visualizer()] history = History() callbacks += [history] callbacks = CallbackList(callbacks) callbacks._set_model(self) callbacks._set_env(env) callbacks._set_params({ 'nb_steps': nb_steps, }) self._on_train_begin() callbacks.on_train_begin() episode = 0 self.step = 0 observation = None episode_reward = None episode_step = None did_abort = False try: while self.step < nb_steps: if observation is None: # start of a new episode callbacks.on_episode_begin(episode) episode_step = 0 episode_reward = 0. # Obtain the initial observation by resetting the environment. self.reset_states() observation = env.reset() assert observation is not None # Perform random starts at beginning of episode and do not record them into the experience. # This slightly changes the start position between games. nb_random_start_steps = 0 if nb_max_start_steps == 0 else np.random.randint(nb_max_start_steps) for _ in range(nb_random_start_steps): if start_step_policy is None: action = env.action_space.sample() else: action = start_step_policy(observation) callbacks.on_action_begin(action) observation, _, done, _ = env.step(action) callbacks.on_action_end(action) if done: warnings.warn('Env ended before {} random steps could be performed at the start. You should probably lower the `nb_max_start_steps` parameter.'.format(nb_random_start_steps)) observation = env.reset() break # At this point, we expect to be fully initialized. assert episode_reward is not None assert episode_step is not None assert observation is not None # Run a single step. callbacks.on_step_begin(episode_step) # This is were all of the work happens. We first perceive and compute the action # (forward step) and then use the reward to improve (backward step). action = self.forward(observation) reward = 0. accumulated_info = {} done = False for _ in range(action_repetition): callbacks.on_action_begin(action) observation, r, done, info = env.step(action) for key, value in info.items(): if not np.isreal(value): continue if key not in accumulated_info: accumulated_info[key] = np.zeros_like(value) accumulated_info[key] += value callbacks.on_action_end(action) reward += r if done: break if nb_max_episode_steps and episode_step >= nb_max_episode_steps - 1: # Force a terminal state. done = True metrics = self.backward(reward, terminal=done) episode_reward += reward step_logs = { 'action': action, 'observation': observation, 'reward': reward, 'metrics': metrics, 'episode': episode, 'info': accumulated_info, } callbacks.on_step_end(episode_step, step_logs) episode_step += 1 self.step += 1 if done: # We are in a terminal state but the agent hasn't yet seen it. We therefore # perform one more forward-backward call and simply ignore the action before # resetting the environment. We need to pass in `terminal=False` here since # the *next* state, that is the state of the newly reset environment, is # always non-terminal by convention. self.forward(observation) self.backward(0., terminal=False) # This episode is finished, report and reset. episode_logs = { 'episode_reward': episode_reward, 'nb_episode_steps': episode_step, 'nb_steps': self.step, } callbacks.on_episode_end(episode, episode_logs) episode += 1 observation = None episode_step = None episode_reward = None except KeyboardInterrupt: # We catch keyboard interrupts here so that training can be be safely aborted. # This is so common that we've built this right into this function, which ensures that # the `on_train_end` method is properly called. did_abort = True callbacks.on_train_end(logs={'did_abort': did_abort}) self._on_train_end() return history def _on_train_begin(self): pass def _on_train_end(self): pass def test(self, env, nb_episodes=1, action_repetition=1, callbacks=None, visualize=True, nb_max_episode_steps=None, nb_max_start_steps=0, start_step_policy=None, verbose=1): if not self.compiled: raise RuntimeError('Your tried to test your agent but it hasn\'t been compiled yet. Please call `compile()` before `test()`.') if action_repetition < 1: raise ValueError('action_repetition must be >= 1, is {}'.format(action_repetition)) self.training = False self.step = 0 callbacks = [] if not callbacks else callbacks[:] if verbose >= 1: callbacks += [TestLogger()] if visualize: callbacks += [Visualizer()] history = History() callbacks += [history] callbacks = CallbackList(callbacks) callbacks._set_model(self) callbacks._set_env(env) callbacks._set_params({ 'nb_episodes': nb_episodes, }) self._on_test_begin() callbacks.on_train_begin() for episode in range(nb_episodes): callbacks.on_episode_begin(episode) episode_reward = 0. episode_step = 0 # Obtain the initial observation by resetting the environment. self.reset_states() observation = env.reset() assert observation is not None # Perform random starts at beginning of episode and do not record them into the experience. # This slightly changes the start position between games. nb_random_start_steps = 0 if nb_max_start_steps == 0 else np.random.randint(nb_max_start_steps) for _ in range(nb_random_start_steps): if start_step_policy is None: action = env.action_space.sample() else: action = start_step_policy(observation) callbacks.on_action_begin(action) observation, _, done, _ = env.step(action) callbacks.on_action_end(action) if done: warnings.warn('Env ended before {} random steps could be performed at the start. You should probably lower the `nb_max_start_steps` parameter.'.format(nb_random_start_steps)) observation = env.reset() break # Run the episode until we're done. done = False while not done: callbacks.on_step_begin(episode_step) action = self.forward(observation) reward = 0. accumulated_info = {} for _ in range(action_repetition): callbacks.on_action_begin(action) observation, r, d, info = env.step(action) callbacks.on_action_end(action) reward += r for key, value in info.items(): if not np.isreal(value): continue if key not in accumulated_info: accumulated_info[key] = np.zeros_like(value) accumulated_info[key] += value if d: done = True break if nb_max_episode_steps and episode_step >= nb_max_episode_steps - 1: done = True self.backward(reward, terminal=done) episode_reward += reward step_logs = { 'action': action, 'observation': observation, 'reward': reward, 'episode': episode, 'info': accumulated_info, } callbacks.on_step_end(episode_step, step_logs) episode_step += 1 self.step += 1 # We are in a terminal state but the agent hasn't yet seen it. We therefore # perform one more forward-backward call and simply ignore the action before # resetting the environment. We need to pass in `terminal=False` here since # the *next* state, that is the state of the newly reset environment, is # always non-terminal by convention. self.forward(observation) self.backward(0., terminal=False) # Report end of episode. episode_logs = { 'episode_reward': episode_reward, 'nb_steps': episode_step, } callbacks.on_episode_end(episode, episode_logs) callbacks.on_train_end() self._on_test_end() return history def _on_test_begin(self): pass def _on_test_end(self): pass def reset_states(self): pass def forward(self, observation): raise NotImplementedError() def backward(self, reward, terminal): raise NotImplementedError() def compile(self, optimizer, metrics=[]): raise NotImplementedError() def load_weights(self, filepath): raise NotImplementedError() def save_weights(self, filepath, overwrite=False): raise NotImplementedError() @property def metrics_names(self): return [] class Processor(object): def process_observation(self, observation): """Processed observation will be stored in memory """ return observation def process_state_batch(self, batch): """Process for input into NN """ return batch def process_action(self, action): return action def process_reward(self, reward): return reward @property def metrics_names(self): return [] @property def metrics(self): return [] # Note: the API of the `Env` and `Space` classes are taken from the OpenAI Gym implementation. # https://github.com/openai/gym/blob/master/gym/core.py class Env(object): """The abstract environment class that is used by all agents. This class has the exact same API that OpenAI Gym uses so that integrating with it is trivial. In contrast to the OpenAI Gym implementation, this class only defines the abstract methods without any actual implementation. """ reward_range = (-np.inf, np.inf) action_space = None observation_space = None def step(self, action): """Run one timestep of the environment's dynamics. When end of episode is reached, you are responsible for calling `reset()` to reset this environment's state. Accepts an action and returns a tuple (observation, reward, done, info). Args: action (object): an action provided by the environment Returns: observation (object): agent's observation of the current environment reward (float) : amount of reward returned after previous action done (boolean): whether the episode has ended, in which case further step() calls will return undefined results info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning) """ raise NotImplementedError() def reset(self): """ Resets the state of the environment and returns an initial observation. Returns: observation (object): the initial observation of the space. (Initial reward is assumed to be 0.) """ raise NotImplementedError() def render(self, mode='human', close=False): """Renders the environment. The set of supported modes varies per environment. (And some environments do not support rendering at all.) By convention, if mode is: - human: render to the current display or terminal and return nothing. Usually for human consumption. - rgb_array: Return an numpy.ndarray with shape (x, y, 3), representing RGB values for an x-by-y pixel image, suitable for turning into a video. - ansi: Return a string (str) or StringIO.StringIO containing a terminal-style text representation. The text can include newlines and ANSI escape sequences (e.g. for colors). Note: Make sure that your class's metadata 'render.modes' key includes the list of supported modes. It's recommended to call super() in implementations to use the functionality of this method. Args: mode (str): the mode to render with close (bool): close all open renderings """ raise NotImplementedError() def close(self): """Override in your subclass to perform any necessary cleanup. Environments will automatically close() themselves when garbage collected or when the program exits. """ raise NotImplementedError() def seed(self, seed=None): """Sets the seed for this env's random number generator(s). Note: Some environments use multiple pseudorandom number generators. We want to capture all such seeds used in order to ensure that there aren't accidental correlations between multiple generators. Returns: list<bigint>: Returns the list of seeds used in this env's random number generators. The first value in the list should be the "main" seed, or the value which a reproducer should pass to 'seed'. Often, the main seed equals the provided 'seed', but this won't be true if seed=None, for example. """ raise NotImplementedError() def configure(self, *args, **kwargs): """Provides runtime configuration to the environment. This configuration should consist of data that tells your environment how to run (such as an address of a remote server, or path to your ImageNet data). It should not affect the semantics of the environment. """ raise NotImplementedError() def __del__(self): self.close() def __str__(self): return '<{} instance>'.format(type(self).__name__) class Space(object): """Abstract model for a space that is used for the state and action spaces. This class has the exact same API that OpenAI Gym uses so that integrating with it is trivial. """ def sample(self, seed=None): """Uniformly randomly sample a random element of this space. """ raise NotImplementedError() def contains(self, x): """Return boolean specifying if x is a valid member of this space """ raise NotImplementedError()
py
7df9202589ea4daf7a87b04ab3b6617a58e01eb7
from .lion import Lion from .tiger import Tiger from .cheetah import Cheetah from .keeper import Keeper from .caretaker import Caretaker from .vet import Vet class Zoo: def __init__(self, name, budget, animlal_capacity, workers_capacity): self.name = name self.__budget = budget self.__animal_capacity = animlal_capacity self.__workers_capacity = workers_capacity self.animals = [] self.workers = [] def add_animal(self, animal, price): if not self.__budget - price < 0 and not self.__animal_capacity - (len(self.animals) + 1) < 0: self.__budget -= price self.animals.append(animal) return f'{animal.name} the {animal.__class__.__name__} added to the zoo' elif self.__budget - price < 0: return 'Not enough budget' return 'Not enough space for animal' def hire_worker(self, worker): if self.__workers_capacity - (len(self.workers) + 1) < 0: return 'Not enough space for worker' self.workers.append(worker) return f'{worker.name} the {worker.__class__.__name__} hired successfully' def fire_worker(self, worker_name): for worker in self.workers: if worker.name == worker_name: self.workers.remove(worker) self.__workers_capacity += 1 return f"{worker_name} fired successfully" return f'There is no {worker_name} in the zoo' def pay_workers(self): salaries = sum([worker.salary for worker in self.workers]) if self.__budget - salaries < 0: return 'You have no budget to pay your workers. They are unhappy' self.__budget -= salaries return f'You payed your workers. They are happy. Budget left: {self.__budget}' def tend_animals(self): animals_needs = sum([animal.get_needs() for animal in self.animals]) if self.__budget - animals_needs < 0: return 'You have no budget to tend the animals. They are unhappy.' self.__budget -= animals_needs return f'You tended all the animals. They are happy. Budget left: {self.__budget}' def profit(self, amount): self.__budget += amount def animals_status(self): lions = [animal for animal in self.animals if isinstance(animal, Lion)] tigers = [animal for animal in self.animals if isinstance(animal, Tiger)] cheetahs = [animal for animal in self.animals if isinstance(animal, Cheetah)] result = f'You have {len(self.animals)} animals\n' result += f'----- {len(lions)} Lions:\n' result += '\n'.join(str(l) for l in lions) result += f'\n----- {len(tigers)} Tigers:\n' result += '\n'.join(str(t) for t in tigers) result += f'\n----- {len(cheetahs)} Cheetahs:\n' result += '\n'.join(str(c) for c in cheetahs) return result def workers_status(self): caretakers = [str(worker) for worker in self.workers if isinstance(worker, Caretaker)] vet = [str(worker) for worker in self.workers if isinstance(worker, Vet)] keeper = [str(worker) for worker in self.workers if isinstance(worker, Keeper)] result = f'You have {len(self.workers)} workers\n' result += f'----- {len(keeper)} Keepers:\n' result += '\n'.join(keeper) result += f'\n----- {len(caretakers)} Caretakers:\n' result += '\n'.join(caretakers) result += f'\n----- {len(vet)} Vets:\n' result += '\n'.join(vet) return result
py
7df920399ace7a6356a95b80cb61e3997e4c7d8f
import pygame from os import listdir, getcwd from sys import exit from pygame.constants import KEYDOWN, QUIT pygame.init() tela = pygame.display.set_mode((640, 480)) pygame.display.set_caption('Sprites do Cable') path = f'{getcwd()}/sprites/cable/' filesList = listdir(path) filesList.sort() CurrentSprite = 0 sprite = pygame.image.load(path + filesList[CurrentSprite]) spriteRect = sprite.get_rect() relogio = pygame.time.Clock() while True: relogio.tick(16) for event in pygame.event.get(): if event.type == QUIT: exit() tela.fill((0, 0, 0)) tela.blit(sprite, spriteRect) CurrentSprite += 1 if CurrentSprite > len(filesList) - 1: CurrentSprite = 0 sprite = pygame.image.load(path + filesList[CurrentSprite]) # sprite = pygame.transform.scale(sprite, (640*2, 480*2)) spriteRect = sprite.get_rect() pygame.display.flip()
py
7df922138ea332fd46ebd8dab2e45d747f52e75a
# -*- coding: utf-8 -*- # Copyright 2015 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Turbinia jobs.""" from turbinia.jobs import grep from turbinia.jobs import hadoop from turbinia.jobs import http_access_logs from turbinia.jobs import jenkins from turbinia.jobs import hindsight from turbinia.jobs import plaso from turbinia.jobs import psort from turbinia.jobs import sshd from turbinia.jobs import strings from turbinia.jobs import tomcat from turbinia.jobs import volatility from turbinia.jobs import worker_stat
py
7df923933d4886dbc59d3b29f3c46f35d9a7486b
# Random Forest folder created pass
py
7df924be6a79226ee6f2ec76ce255f493f5e5f31
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### # pylint: disable=import-error,no-name-in-module,no-self-use """Test object relationships in the database.""" import warnings import pytest from sqlalchemy import exc as sa_exc from aiida.common.links import LinkType from aiida.common.utils import get_new_uuid from aiida.manage import get_manager from aiida.orm import CalculationNode, Data from aiida.storage.psql_dos.models.node import DbNode from aiida.storage.psql_dos.models.user import DbUser @pytest.mark.usefixtures('aiida_profile_clean') class TestRelationshipsSQLA: """Class of tests concerning the schema and the correct implementation of relationships within the AiiDA ORM The genereal naming convention is the following: 1)tests on one-to-many relationships: test_<Parent>_<child> (Parent class is capitalized). 2)tests on many-to-many relationships: test_<peer>_<peer> (none is capitalized).""" def test_outputs_children_relationship(self): """This test checks that the outputs_q, children_q relationship and the corresponding properties work as expected.""" n_1 = Data().store() n_2 = CalculationNode() n_3 = Data().store() # Create a link between these 2 nodes n_2.add_incoming(n_1, link_type=LinkType.INPUT_CALC, link_label='N1') n_2.store() n_3.add_incoming(n_2, link_type=LinkType.CREATE, link_label='N2') # Check that the result of outputs is a list assert isinstance(n_1.backend_entity.bare_model.outputs, list), 'This is expected to be a list' # Check that the result of outputs_q is a query from sqlalchemy.orm.dynamic import AppenderQuery assert isinstance( n_1.backend_entity.bare_model.outputs_q, AppenderQuery ), 'This is expected to be an AppenderQuery' # Check that the result of outputs is correct out = {_.pk for _ in n_1.backend_entity.bare_model.outputs} assert out == set([n_2.pk]) def test_inputs_parents_relationship(self): """This test checks that the inputs_q, parents_q relationship and the corresponding properties work as expected.""" n_1 = Data().store() n_2 = CalculationNode() n_3 = Data().store() # Create a link between these 2 nodes n_2.add_incoming(n_1, link_type=LinkType.INPUT_CALC, link_label='N1') n_2.store() n_3.add_incoming(n_2, link_type=LinkType.CREATE, link_label='N2') # Check that the result of outputs is a list assert isinstance(n_1.backend_entity.bare_model.inputs, list), 'This is expected to be a list' # Check that the result of outputs_q is a query from sqlalchemy.orm.dynamic import AppenderQuery assert isinstance( n_1.backend_entity.bare_model.inputs_q, AppenderQuery ), 'This is expected to be an AppenderQuery' # Check that the result of inputs is correct out = {_.pk for _ in n_3.backend_entity.bare_model.inputs} assert out == set([n_2.pk]) def test_user_node_1(self): """Test that when a user and a node having that user are created, storing NODE induces storage of the USER Assert the correct storage of user and node.""" # Create user dbu1 = DbUser('test1@schema', 'spam', 'eggs', 'monty') # Creat node node_dict = dict(user=dbu1) dbn_1 = DbNode(**node_dict) # Check that the two are neither flushed nor committed assert dbu1.id is None assert dbn_1.id is None session = get_manager().get_profile_storage().get_session() # Add only the node and commit session.add(dbn_1) session.commit() # Check that a pk has been assigned, which means that things have # been flushed into the database assert dbn_1.id is not None assert dbu1.id is not None def test_user_node_2(self): """Test that when a user and a node having that user are created, storing USER does NOT induce storage of the NODE Assert the correct storage of user and node.""" # Create user dbu1 = DbUser('tests2@schema', 'spam', 'eggs', 'monty') # Creat node node_dict = dict(user=dbu1) dbn_1 = DbNode(**node_dict) # Check that the two are neither flushed nor committed assert dbu1.id is None assert dbn_1.id is None session = get_manager().get_profile_storage().get_session() # Catch all the SQLAlchemy warnings generated by the following code with warnings.catch_warnings(): # pylint: disable=no-member warnings.simplefilter('ignore', category=sa_exc.SAWarning) # pylint: disable=no-member # Add only the user and commit session.add(dbu1) session.commit() # Check that a pk has been assigned (or not), which means that things # have been flushed into the database assert dbu1.id is not None assert dbn_1.id is None def test_user_node_3(self): """Test that when a user and two nodes having that user are created, storing only ONE NODE induces storage of that node, of the user but not of the other node Assert the correct storage of the user and node. Assert the non-storage of the other node.""" # Create user dbu1 = DbUser('tests3@schema', 'spam', 'eggs', 'monty') # Creat node node_dict = dict(user=dbu1) dbn_1 = DbNode(**node_dict) dbn_2 = DbNode(**node_dict) # Check that the two are neither flushed nor committed assert dbu1.id is None assert dbn_1.id is None assert dbn_2.id is None session = get_manager().get_profile_storage().get_session() # Add only first node and commit session.add(dbn_1) with warnings.catch_warnings(): # suppress known SAWarning that we have not added dbn_2 warnings.simplefilter('ignore', category=sa_exc.SAWarning) session.commit() # Check for which object a pk has been assigned, which means that # things have been at least flushed into the database assert dbu1.id is not None assert dbn_1.id is not None assert dbn_2.id is None def test_user_node_4(self): """Test that when several nodes are created with the same user and each of them is assigned to the same name, storage of last node object associated to that node does not trigger storage of all objects. Assert the correct storage of the user and node. Assert the non-storage of the other nodes.""" # Create user dbu1 = DbUser('tests4@schema', 'spam', 'eggs', 'monty') # Creat node objects assigningd them to the same name # Check https://docs.python.org/2/tutorial/classes.html subsec. 9.1 for _ in range(5): # It is important to change the uuid each time (or any other # variable) so that a different objects (with a different pointer) # is actually created in this scope. dbn_1 = DbNode(user=dbu1, uuid=get_new_uuid()) # Check that the two are neither flushed nor committed assert dbu1.id is None assert dbn_1.id is None session = get_manager().get_profile_storage().get_session() # Add only first node and commit session.add(dbn_1) with warnings.catch_warnings(): # suppress known SAWarning that we have not add the other nodes warnings.simplefilter('ignore', category=sa_exc.SAWarning) session.commit() # Check for which object a pk has been assigned, which means that # things have been at least flushed into the database assert dbu1.id is not None assert dbn_1.id is not None
py
7df927b9a4a5497270841fe78fab00812e56fe40
#!/usr/bin/env python import parmed as pmd import random import sys import os if not (len(sys.argv) == 5 or len(sys.argv) == 6): print "Usage: strip_random.py [-O] <prmtop> <inpcrd> <first_strippable_water> <remaining_wats>" exit(1) overwrite = False arg_shift = 0 if sys.argv[1] == "-O": overwrite = True arg_shift = 1 prmtop = sys.argv[1+arg_shift] inpcrd = sys.argv[2+arg_shift] first_wat = int(sys.argv[3+arg_shift]) remaining_wats = int(sys.argv[4+arg_shift]) p = pmd.load_file(prmtop) p.load_rst7(inpcrd) wats = p[":WAT"] prmtop_watcnt = len(wats.residues) if prmtop_watcnt <= remaining_wats: print "Warning: Number of Remaining wates lower than present waters." exit(1) wat_list = list() no_strip = list() # Get water resids for wat_idx in range(prmtop_watcnt): #Add 1 because parmed internal resiude numbering starts at 1 if wats.residues[wat_idx].number+1 >= first_wat: wat_list.append(wats.residues[wat_idx].number+1) else: no_strip.append(wats.residues[wat_idx].number+1) random.shuffle(wat_list) random.shuffle(wat_list) strip_mask = ":" rm_mask = "" for strip_count, wat_resid in enumerate(wat_list): if strip_count < prmtop_watcnt-remaining_wats-1: strip_mask += "%s," %wat_resid #Assuming that the final unit is called 'complex' rm_mask += "remove complex complex.%s \n" %wat_resid else: strip_mask += "%s" %wat_resid rm_mask += "remove complex complex.%s \n" %wat_resid break o = open("strip.cpptraj", "w") o.write("parm %s \n" %prmtop) o.write("trajin %s \n" %inpcrd) o.write("strip %s \n" %strip_mask) if overwrite: o.write("trajout %s restart \n" %inpcrd) o.write("trajout %s pdb \n" %inpcrd.replace("inpcrd", "pdb").replace("incrd", "pdb").replace("rst", "pdb").replace("rst7", "pdb")) else: o.write("trajout strip.inpcrd restart \n") o.write("trajout strip.pdb pdb \n") o.write("go \n") o.write("clear all \n") o.write("parm %s \n" %prmtop) o.write("parmstrip %s \n" %strip_mask) if overwrite: o.write("parmwrite out %s \n" %prmtop) else: o.write("parmwrite out strip.prmtop \n") o.write("go \n") o.close() if os.path.exists("strip.cpptraj"): print "Wrote strip.cpptraj. Please run >> cpptraj -i strip.cpptraj << to complete random water strip." else: print "strip.cpptraj not written. Something went wrong." exit(1) o = open("strip.leap", "w") o.write(rm_mask) if not overwrite: o.write("saveAmberParm complex strip.prmtop strip.inpcrd \n") o.write("savePdb complex strip.pdb \n") o.close() if os.path.exists("strip.leap"): print "Wrote strip.leap. Please source strip.lib into your leap file right before you save the prmtop inpcrd files" print "Note: cpptraj and leap actions should both have the same effect. Use just one of them, NOT both." exit(0) else: print "strip.leap not written. Something went wrong." exit(1)
py
7df927c490959fb5c795499f6122e01a1e1e8329
# Copyright 2020 Curtin University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Author: Aniek Roelofs, Richard Hosking, James Diprose from __future__ import annotations import gzip import io import json import logging import os import pathlib import random import shutil import subprocess import xml.etree.ElementTree as ET from typing import Dict, List, Tuple import jsonlines import pendulum import requests from airflow.exceptions import AirflowException from airflow.models.taskinstance import TaskInstance from google.cloud.bigquery import SourceFormat from observatory.dags.config import schema_path from observatory.platform.utils.airflow_utils import AirflowVariable as Variable, AirflowVars, check_variables from observatory.platform.utils.config_utils import (find_schema) from observatory.platform.utils.gc_utils import (bigquery_partitioned_table_id, bigquery_table_exists, create_bigquery_dataset, load_bigquery_table, upload_file_to_cloud_storage) from observatory.platform.utils.proc_utils import wait_for_process from observatory.platform.utils.template_utils import SubFolder, blob_name, telescope_path, test_data_path from observatory.platform.utils.url_utils import retry_session from pendulum import Pendulum def list_releases(start_date: Pendulum, end_date: Pendulum) -> List[FundrefRelease]: """ List all available fundref releases :param start_date: :param end_date: :return: list of FundrefRelease instances. """ # A selection of headers to prevent 403/forbidden error. headers_list = [{ 'authority': 'gitlab.com', 'upgrade-insecure-requests': '1', 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/84.0.4147.89 Safari/537.36', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,' '*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'sec-fetch-site': 'none', 'sec-fetch-mode': 'navigate', 'sec-fetch-dest': 'document', 'accept-language': 'en-GB,en-US;q=0.9,en;q=0.8' }, { 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Language': 'en-US,en;q=0.5', 'DNT': '1', 'Connection': 'keep-alive', 'Upgrade-Insecure-Requests': '1' }] releases_list = [] headers = random.choice(headers_list) current_page = 1 while True: # Fetch page url = f'{FundrefTelescope.TELESCOPE_URL}?per_page=100&page={current_page}' response = retry_session().get(url, headers=headers) # Check if correct response code if response is not None and response.status_code == 200: # Parse json num_pages = int(response.headers['X-Total-Pages']) json_response = json.loads(response.text) # Parse release information for release in json_response: version = float(release['tag_name'].strip('v')) for source in release['assets']['sources']: if source['format'] == 'tar.gz': # Parse release date if version == 0.1: release_date = pendulum.datetime(year=2014, month=3, day=1) elif version < 1.0: date_string = release['description'].split('\n')[0] release_date = pendulum.parse('01' + date_string) else: release_date = pendulum.parse(release['released_at']) # Only include release if it is within start and end dates if start_date <= release_date < end_date: release = FundrefRelease(source['url'], release_date) releases_list.append(release) # Check if we should exit or get the next page if num_pages <= current_page: break current_page += 1 else: logging.error(f"Error retrieving response") exit(os.EX_DATAERR) return releases_list def download_release(release: FundrefRelease) -> str: """ Downloads release from url. :param release: Instance of FundrefRelease class """ file_path = release.filepath_download logging.info(f"Downloading file: {file_path}, url: {release.url}") # A selection of headers to prevent 403/forbidden error. headers_list = [{ 'authority': 'gitlab.com', 'upgrade-insecure-requests': '1', 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/83.0.4103.116 Safari/537.36', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,' '*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'sec-fetch-site': 'none', 'sec-fetch-mode': 'navigate', 'sec-fetch-dest': 'document', 'accept-language': 'en-GB,en-US;q=0.9,en;q=0.8' }, { 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0', 'Accept': '*/*', 'Accept-Language': 'en-US,en;q=0.5', 'Referer': 'https://gitlab.com/' }] # Download release with requests.get(release.url, headers=random.choice(headers_list), stream=True) as response: with open(file_path, 'wb') as file: shutil.copyfileobj(response.raw, file) return file_path def extract_release(release: FundrefRelease) -> str: """ Extract release. :param release: Instance of FundrefRelease class """ logging.info(f"Extracting file: {release.filepath_download}") # Tar file contains both README.md and registry.rdf, use tar -ztf to get path of 'registry.rdf' # Use this path to extract only registry.rdf to a new file. cmd = f"registry_path=$(tar -ztf {release.filepath_download} | grep -m1 '/registry.rdf'); " \ f"tar -xOzf {release.filepath_download} $registry_path > {release.filepath_extract}" p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, executable='/bin/bash') stdout, stderr = wait_for_process(p) if stdout: logging.info(stdout) if stderr: raise AirflowException(f"bash command failed for {release.url}: {stderr}") logging.info(f"File extracted to: {release.filepath_extract}") return release.filepath_extract def strip_whitespace(file_path: str): """ Strip leading white space from the first line of the file. This is present in fundref release 2019-06-01. If not removed it will give a XML ParseError. :param file_path: Path to file from which to trim leading white space. :return: None. """ with open(file_path, 'r') as f_in, open(file_path + '.tmp', 'w') as f_out: first_line = True for line in f_in: if first_line and not line.startswith(' '): os.remove(file_path + '.tmp') return elif first_line and line.startswith(' '): line = line.lstrip() f_out.write(line) first_line = False os.rename(file_path + '.tmp', file_path) def transform_release(release: FundrefRelease) -> str: """ Transform release by parsing the raw rdf file, transforming it into a json file and replacing geoname associated ids with their geoname name. :param release: Instance of FundrefRelease class """ # Strip leading whitespace from first line if present. strip_whitespace(release.filepath_extract) # Parse RDF funders data funders, funders_by_key = parse_fundref_registry_rdf(release.filepath_extract) funders = add_funders_relationships(funders, funders_by_key) # Transform FundRef release into JSON Lines format saving in memory buffer # Save in memory buffer to gzipped file with io.BytesIO() as bytes_io: with gzip.GzipFile(fileobj=bytes_io, mode='w') as gzip_file: with jsonlines.Writer(gzip_file) as writer: writer.write_all(funders) with open(release.filepath_transform, 'wb') as jsonl_gzip_file: jsonl_gzip_file.write(bytes_io.getvalue()) logging.info(f'Success transforming release: {release.url}') return release.filepath_transform class FundrefRelease: """ Used to store info on a given fundref release """ def __init__(self, url: str, date: Pendulum): self.url = url self.date = date self.filepath_download = self.get_filepath(SubFolder.downloaded) self.filepath_extract = self.get_filepath(SubFolder.extracted) self.filepath_transform = self.get_filepath(SubFolder.transformed) def get_filepath(self, sub_folder: SubFolder) -> str: """ Gets complete path of file for download/extract/transform directory :param sub_folder: name of subfolder :return: path of file. """ date_str = self.date.strftime("%Y_%m_%d") if sub_folder == SubFolder.downloaded: file_name = f"{FundrefTelescope.DAG_ID}_{date_str}.tar.gz" elif sub_folder == SubFolder.extracted: file_name = f"{FundrefTelescope.DAG_ID}_{date_str}.rdf" else: file_name = f"{FundrefTelescope.DAG_ID}_{date_str}.jsonl.gz" file_dir = telescope_path(sub_folder, FundrefTelescope.DAG_ID) path = os.path.join(file_dir, file_name) return path def get_blob_name(self, sub_folder: SubFolder) -> str: """ Gives blob name that is used to determine path inside storage bucket :param sub_folder: name of subfolder :return: blob name """ file_name = os.path.basename(self.get_filepath(sub_folder)) blob_name = f'telescopes/{FundrefTelescope.DAG_ID}/{file_name}' return blob_name def new_funder_template(): """ Helper Function for creating a new Funder. :return: a blank funder object. """ return { 'funder': None, 'pre_label': None, 'alt_label': [], 'narrower': [], 'broader': [], 'modified': None, 'created': None, 'funding_body_type': None, 'funding_body_sub_type': None, 'region': None, 'country': None, 'country_code': None, 'state': None, 'tax_id': None, 'continuation_of': [], 'renamed_as': [], 'replaces': [], 'affil_with': [], 'merged_with': [], 'incorporated_into': [], 'is_replaced_by': [], 'incorporates': [], 'split_into': [], 'status': None, 'merger_of': [], 'split_from': None, 'formly_known_as': None, 'notation': None } def parse_fundref_registry_rdf(registry_file_path: str) -> Tuple[List, Dict]: """ Helper function to parse a fundref registry rdf file and to return a python list containing each funder. :param registry_file_path: the filename of the registry.rdf file to be parsed. :return: funders list containing all the funders parsed from the input rdf and dictionary of funders with their id as key. """ funders = [] funders_by_key = {} tree = ET.parse(registry_file_path) root = tree.getroot() tag_prefix = root.tag.split('}')[0] + '}' for record in root: tag = record.tag.split('}')[-1] if tag == "ConceptScheme": for nested in record: tag = nested.tag.split('}')[-1] if tag == 'hasTopConcept': funder_id = nested.attrib[tag_prefix + 'resource'] funders_by_key[funder_id] = new_funder_template() if tag == "Concept": funder_id = record.attrib[tag_prefix + 'about'] funder = funders_by_key[funder_id] funder['funder'] = funder_id for nested in record: tag = nested.tag.split('}')[-1] if tag == 'inScheme': continue elif tag == 'prefLabel': funder['pre_label'] = nested[0][0].text elif tag == 'altLabel': alt_label = nested[0][0].text if alt_label is not None: funder['alt_label'].append(alt_label) elif tag == 'narrower': funder['narrower'].append(nested.attrib[tag_prefix + 'resource']) elif tag == 'broader': funder['broader'].append(nested.attrib[tag_prefix + 'resource']) elif tag == 'modified': funder['modified'] = nested.text elif tag == 'created': funder['created'] = nested.text elif tag == 'fundingBodySubType': funder['funding_body_type'] = nested.text elif tag == 'fundingBodyType': funder['funding_body_sub_type'] = nested.text elif tag == 'region': funder['region'] = nested.text elif tag == 'country': funder['country'] = nested.text elif tag == 'state': funder['state'] = nested.text elif tag == 'address': funder['country_code'] = nested[0][0].text elif tag == 'taxId': funder['tax_id'] = nested.text elif tag == 'continuationOf': funder['continuation_of'].append(nested.attrib[tag_prefix + 'resource']) elif tag == 'renamedAs': funder['renamed_as'].append(nested.attrib[tag_prefix + 'resource']) elif tag == 'replaces': funder['replaces'].append(nested.attrib[tag_prefix + 'resource']) elif tag == 'affilWith': funder['affil_with'].append(nested.attrib[tag_prefix + 'resource']) elif tag == 'mergedWith': funder['merged_with'].append(nested.attrib[tag_prefix + 'resource']) elif tag == 'incorporatedInto': funder['incorporated_into'].append(nested.attrib[tag_prefix + 'resource']) elif tag == 'isReplacedBy': funder['is_replaced_by'].append(nested.attrib[tag_prefix + 'resource']) elif tag == 'incorporates': funder['incorporates'].append(nested.attrib[tag_prefix + 'resource']) elif tag == 'splitInto': funder['split_into'].append(nested.attrib[tag_prefix + 'resource']) elif tag == 'status': funder['status'] = nested.attrib[tag_prefix + 'resource'] elif tag == 'mergerOf': funder['merger_of'].append(nested.attrib[tag_prefix + 'resource']) elif tag == 'splitFrom': funder['split_from'] = nested.attrib[tag_prefix + 'resource'] elif tag == 'formerlyKnownAs': funder['formly_known_as'] = nested.attrib[tag_prefix + 'resource'] elif tag == 'notation': funder['notation'] = nested.text else: print(f"Unrecognized tag for element: {nested}") funders.append(funder) return funders, funders_by_key def add_funders_relationships(funders: List, funders_by_key: Dict) -> List: """ Adds any children/parent relationships to funder instances in the funders list. :param funders: List of funders :param funders_by_key: Dictionary of funders with their id as key. :return: funders with added relationships. """ for funder in funders: children, returned_depth = recursive_funders(funders_by_key, funder, 0, 'narrower', []) funder["children"] = children funder['bottom'] = len(children) > 0 parent, returned_depth = recursive_funders(funders_by_key, funder, 0, 'broader', []) funder["parents"] = parent funder['top'] = len(parent) > 0 return funders def recursive_funders(funders_by_key: Dict, funder: Dict, depth: int, direction: str, parents: List) -> Tuple[ List, int]: """ Recursively goes through a funder/sub_funder dict. The funder properties can be looked up with the funders_by_key dictionary that stores the properties per funder id. Any children/parents for the funder are already given in the xml element with the 'narrower' and 'broader' tags. For each funder in the list, it will recursively add any children/parents for those funders in 'narrower'/'broader' and their funder properties. :param funders_by_key: dictionary with id as key and funders object as value :param funder: dictionary of a given funder containing 'narrower' and 'broader' info :param depth: keeping track of nested depth :param direction: either 'narrower' or 'broader' to get 'children' or 'parents' :param parents: list to keep track of which funder ids are parents :return: list of children and current depth """ starting_depth = depth children = [] for funder_id in funder[direction]: if funder_id in parents: print(f"funder {funder_id} is it's own parent/child, skipping..") name = 'NA' returned = [] returned_depth = depth else: try: sub_funder = funders_by_key[funder_id] parents.append(sub_funder['funder']) name = sub_funder['pre_label'] returned, returned_depth = recursive_funders(funders_by_key, sub_funder, starting_depth + 1, direction, parents) except KeyError: print(f'Could not find funder by id: {funder_id}, skipping..') name = 'NA' returned = [] returned_depth = depth if direction == "narrower": child = { 'funder': funder_id, 'name': name, 'children': returned } else: child = { 'funder': funder_id, 'name': name, 'parent': returned } children.append(child) parents = [] if returned_depth > depth: depth = returned_depth return children, depth def pull_releases(ti: TaskInstance): """ Pull a list of MagRelease instances with xcom. :param ti: the Apache Airflow task instance. :return: the list of MagRelease instances. """ return ti.xcom_pull(key=FundrefTelescope.RELEASES_TOPIC_NAME, task_ids=FundrefTelescope.TASK_ID_LIST, include_prior_dates=False) class FundrefTelescope: """ A container for holding the constants and static functions for the Fundref telescope. """ DAG_ID = 'fundref' DESCRIPTION = 'The Funder Registry dataset: https://www.crossref.org/services/funder-registry/' DATASET_ID = 'crossref' RELEASES_TOPIC_NAME = "releases" QUEUE = "default" TELESCOPE_URL = 'https://gitlab.com/api/v4/projects/crossref%2Fopen_funder_registry/releases' TELESCOPE_DEBUG_URL = 'debug_fundref_url' # DEBUG_FILE_PATH = os.path.join(test_data_path(), 'telescopes', 'fundref.tar.gz') RETRIES = 3 TASK_ID_CHECK_DEPENDENCIES = "check_dependencies" TASK_ID_LIST = f"list_releases" TASK_ID_DOWNLOAD = f"download" TASK_ID_UPLOAD_DOWNLOADED = 'upload_downloaded' TASK_ID_EXTRACT = f"extract" TASK_ID_TRANSFORM = f"transform_releases" TASK_ID_UPLOAD_TRANSFORMED = 'upload_transformed' TASK_ID_BQ_LOAD = f"bq_load" TASK_ID_CLEANUP = f"cleanup" @staticmethod def check_dependencies(**kwargs): """ Check that all variables exist that are required to run the DAG. :param kwargs: the context passed from the PythonOperator. See https://airflow.apache.org/docs/stable/macros-ref.html for a list of the keyword arguments that are passed to this argument. :return: None. """ vars_valid = check_variables(AirflowVars.DATA_PATH, AirflowVars.PROJECT_ID, AirflowVars.DATA_LOCATION, AirflowVars.DOWNLOAD_BUCKET, AirflowVars.TRANSFORM_BUCKET) if not vars_valid: raise AirflowException('Required variables are missing') @staticmethod def list_releases(**kwargs): """ Based on a list of all releases, checks which ones were released between this and the next execution date of the DAG. If the release falls within the time period mentioned above, checks if a bigquery table doesn't exist yet for the release. A list of releases that passed both checks is passed to the next tasks. If the list is empty the workflow will stop. :param kwargs: the context passed from the PythonOperator. See https://airflow.apache.org/docs/stable/macros-ref.html for a list of the keyword arguments that are passed to this argument. :return: None. """ # Get variables project_id = Variable.get(AirflowVars.PROJECT_ID) # List releases between a start date and an end date execution_date = kwargs['execution_date'] next_execution_date = kwargs['next_execution_date'] releases_list = list_releases(execution_date, next_execution_date) logging.info(f'Releases between current ({execution_date}) and next ({next_execution_date}) execution date:') print(*releases_list, sep='\n') # Check if the BigQuery table for each release already exists and only process release if the table # doesn't exist releases_list_out = [] for release in releases_list: table_id = bigquery_partitioned_table_id(FundrefTelescope.DAG_ID, release.date) logging.info('Checking if bigquery table already exists:') if bigquery_table_exists(project_id, FundrefTelescope.DATASET_ID, table_id): logging.info(f'Skipping as table exists for {release.url}: ' f'{project_id}.{FundrefTelescope.DATASET_ID}.{table_id}') else: logging.info(f"Table doesn't exist yet, processing {release.url} in this workflow") releases_list_out.append(release) # If releases_list_out contains items then the DAG will continue (return True) otherwise it will # stop (return False) continue_dag = len(releases_list_out) if continue_dag: ti: TaskInstance = kwargs['ti'] ti.xcom_push(FundrefTelescope.RELEASES_TOPIC_NAME, releases_list_out, execution_date) return continue_dag @staticmethod def download(**kwargs): """ Download release to file. If develop environment, copy debug file from this repository to the right location. Else download from url. :param kwargs: the context passed from the PythonOperator. See https://airflow.apache.org/docs/stable/macros-ref.html for a list of the keyword arguments that are passed to this argument. :return: None. """ # Pull releases ti: TaskInstance = kwargs['ti'] releases_list = pull_releases(ti) # Get variables environment = Variable.get(AirflowVars.ENVIRONMENT) # Download each release for release in releases_list: if environment == 'test': shutil.copy(test_data_path(), release.filepath_download) else: download_release(release) @staticmethod def upload_downloaded(**kwargs): """ Upload the downloaded files to a Google Cloud Storage bucket. :param kwargs: the context passed from the PythonOperator. See https://airflow.apache.org/docs/stable/macros-ref.html for a list of the keyword arguments that are passed to this argument. :return: None. """ # Pull releases ti: TaskInstance = kwargs['ti'] releases_list = pull_releases(ti) # Get variables bucket_name = Variable.get(AirflowVars.DOWNLOAD_BUCKET) # Upload each release for release in releases_list: upload_file_to_cloud_storage(bucket_name, blob_name(release.filepath_download), file_path=release.filepath_download) @staticmethod def extract(**kwargs): """ Extract release to new file. :param kwargs: the context passed from the PythonOperator. See https://airflow.apache.org/docs/stable/macros-ref.html for a list of the keyword arguments that are passed to this argument. :return: None. """ # Pull releases ti: TaskInstance = kwargs['ti'] releases_list = pull_releases(ti) # Extract each release for release in releases_list: extract_release(release) @staticmethod def transform(**kwargs): """ Transform release by parsing the raw rdf file, transforming it into a json file and replacing geoname associated ids with their geoname name. :param kwargs: the context passed from the PythonOperator. See https://airflow.apache.org/docs/stable/macros-ref.html for a list of the keyword arguments that are passed to this argument. :return: None. """ # Pull releases ti: TaskInstance = kwargs['ti'] releases_list = pull_releases(ti) # Transform each release for release in releases_list: transform_release(release) @staticmethod def upload_transformed(**kwargs): """ Upload the transformed release to a Google Cloud Storage bucket. :param kwargs: the context passed from the PythonOperator. See https://airflow.apache.org/docs/stable/macros-ref.html for a list of the keyword arguments that are passed to this argument. :return: None. """ # Pull releases ti: TaskInstance = kwargs['ti'] releases_list = pull_releases(ti) # Get variables bucket_name = Variable.get(AirflowVars.TRANSFORM_BUCKET) # Upload each release for release in releases_list: upload_file_to_cloud_storage(bucket_name, blob_name(release.filepath_transform), file_path=release.filepath_transform) @staticmethod def bq_load(**kwargs): """ Upload transformed release to a bigquery table. :param kwargs: the context passed from the PythonOperator. See https://airflow.apache.org/docs/stable/macros-ref.html for a list of the keyword arguments that are passed to this argument. :return: None. """ # Pull releases ti: TaskInstance = kwargs['ti'] releases_list = pull_releases(ti) # Get variables project_id = Variable.get(AirflowVars.PROJECT_ID) data_location = Variable.get(AirflowVars.DATA_LOCATION) bucket_name = Variable.get(AirflowVars.TRANSFORM_BUCKET) dataset_id = FundrefTelescope.DATASET_ID # Create dataset create_bigquery_dataset(project_id, dataset_id, data_location, FundrefTelescope.DESCRIPTION) # Load each release into BigQuery for release in releases_list: table_id = bigquery_partitioned_table_id(FundrefTelescope.DAG_ID, release.date) # Select schema file based on release date analysis_schema_path = schema_path() schema_file_path = find_schema(analysis_schema_path, FundrefTelescope.DAG_ID, release.date) if schema_file_path is None: logging.error(f'No schema found with search parameters: analysis_schema_path={analysis_schema_path}, ' f'table_name={FundrefTelescope.DAG_ID}, release_date={release.date}') exit(os.EX_CONFIG) # Load BigQuery table uri = f"gs://{bucket_name}/{blob_name(release.filepath_transform)}" logging.info(f"URI: {uri}") load_bigquery_table(uri, dataset_id, data_location, table_id, schema_file_path, SourceFormat.NEWLINE_DELIMITED_JSON) @staticmethod def cleanup(**kwargs): """ Delete files of downloaded, extracted and transformed releases. :param kwargs: the context passed from the PythonOperator. See https://airflow.apache.org/docs/stable/macros-ref.html for a list of the keyword arguments that are passed to this argument. :return: None. """ # Pull releases ti: TaskInstance = kwargs['ti'] releases_list = pull_releases(ti) # Delete files for each release for release in releases_list: try: pathlib.Path(release.filepath_download).unlink() except FileNotFoundError as e: logging.warning(f"No such file or directory {release.filepath_download}: {e}") try: pathlib.Path(release.filepath_extract).unlink() except FileNotFoundError as e: logging.warning(f"No such file or directory {release.filepath_extract}: {e}") try: pathlib.Path(release.filepath_transform).unlink() except FileNotFoundError as e: logging.warning(f"No such file or directory {release.filepath_transform}: {e}")
py
7df928d19792f13449aa6447f2e80fe52cc40933
from onadata.apps.logger.models import Project from rest_framework import serializers from rest_framework.fields import SkipField class ProjectRelatedField(serializers.RelatedField): """A custom field to represent the content_object generic relationship""" def get_attribute(self, instance): # xform is not an attribute of the MetaData object if instance and isinstance(instance.content_object, Project): return instance.content_object raise SkipField() def to_internal_value(self, data): try: return Project.objects.get(pk=data) except ValueError: raise Exception("project id should be an integer") def to_representation(self, instance): """Serialize project object""" return instance.pk
py
7df928f0cf049118348518c9d6a63a69114f6996
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """CategoricalToDiscrete bijector. This bijector is hidden from public API for now because it is only valid for categorical distribution. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import bijector from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import tensorshape_util __all__ = [ 'CategoricalToDiscrete', ] class CategoricalToDiscrete(bijector.Bijector): """Bijector which computes `Y = g(X) = values[X]`. Example Usage: ```python bijector = CategoricalToDiscrete(values=[0.01, 0.1, 1., 10.]) bijector.forward([1, 3, 2, 1, 0]) = [1., 10., 1., 0.1, 0.01] bijector.inverse([1., 10., 1., 0.1, 0.01]) = [1, 3, 2, 1, 0] ``` """ def __init__(self, map_values, validate_args=False, name='categorical_to_discrete'): """Instantiates `CategoricalToDiscrete` bijector. Args: map_values: 1D numerical tensor of discrete values to map to, sorted in strictly increasing order. validate_args: Python `bool` indicating whether arguments should be checked for correctness. name: Python `str` name given to ops managed by this object. """ with tf.name_scope(name): map_values = tf.convert_to_tensor(map_values, name='map_values') assertions = _maybe_check_valid_map_values(map_values, validate_args) if assertions: with tf.control_dependencies(assertions): map_values = tf.identity(map_values) self._map_values = map_values super(CategoricalToDiscrete, self).__init__( graph_parents=[map_values], forward_min_event_ndims=0, is_constant_jacobian=True, validate_args=validate_args, name=name) def _forward(self, x): if self.validate_args: with tf.control_dependencies([ assert_util.assert_equal( (0 <= x) & (x < tf.size(self.map_values)), True, message='indices out of bound') ]): x = tf.identity(x) # If we want batch dims in self.map_values, we can (after broadcasting), # use: # tf.gather(self.map_values, x, batch_dims=-1, axis=-1) return tf.gather(self.map_values, indices=x) def _inverse(self, y): flat_y = tf.reshape(y, shape=[-1]) # Search for the indices of self.map_values that are closest to flat_y. # Since self.map_values is strictly increasing, the closest is either the # first one that is strictly greater than flat_y, or the one before it. upper_candidates = tf.minimum( tf.size(self.map_values) - 1, tf.searchsorted(self.map_values, values=flat_y, side='right')) lower_candidates = tf.maximum(0, upper_candidates - 1) candidates = tf.stack([lower_candidates, upper_candidates], axis=-1) lower_cand_diff = tf.abs(flat_y - self._forward(lower_candidates)) upper_cand_diff = tf.abs(flat_y - self._forward(upper_candidates)) if self.validate_args: with tf.control_dependencies([ assert_util.assert_near( tf.minimum(lower_cand_diff, upper_cand_diff), 0, message='inverse value not found') ]): candidates = tf.identity(candidates) candidate_selector = tf.stack([ tf.range(tf.size(flat_y), dtype=tf.int32), tf.argmin([lower_cand_diff, upper_cand_diff], output_type=tf.int32) ], axis=-1) return tf.reshape( tf.gather_nd(candidates, candidate_selector), shape=y.shape) def _inverse_log_det_jacobian(self, y): return tf.constant(0., dtype=y.dtype) @property def map_values(self): return self._map_values def _maybe_check_valid_map_values(map_values, validate_args): """Validate `map_values` if `validate_args`==True.""" assertions = [] message = 'Rank of map_values must be 1.' if tensorshape_util.rank(map_values.shape) is not None: if tensorshape_util.rank(map_values.shape) != 1: raise ValueError(message) elif validate_args: assertions.append(assert_util.assert_rank(map_values, 1, message=message)) message = 'Size of map_values must be greater than 0.' if tensorshape_util.num_elements(map_values.shape) is not None: if tensorshape_util.num_elements(map_values.shape) == 0: raise ValueError(message) elif validate_args: assertions.append( assert_util.assert_greater(tf.size(map_values), 0, message=message)) if validate_args: assertions.append( assert_util.assert_equal( tf.math.is_strictly_increasing(map_values), True, message='map_values is not strictly increasing.')) return assertions
py
7df92910692ef56444d51e9d6b2c5048c8173449
# Copyright (c) 2017 Microsoft Corporation. # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of # the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO # THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================================================================== from __future__ import division import sys import time from collections import namedtuple from tkinter import ttk, Canvas, W import numpy as np from common import visualize_training, Entity, ENV_TARGET_NAMES, ENV_ENTITIES, ENV_AGENT_NAMES, \ ENV_ACTIONS, ENV_CAUGHT_REWARD, ENV_BOARD_SHAPE from six.moves import range from malmopy.agent import AStarAgent from malmopy.agent import QLearnerAgent, BaseAgent, RandomAgent from malmopy.agent.gui import GuiAgent P_FOCUSED = .75 CELL_WIDTH = 33 class PigChaseQLearnerAgent(QLearnerAgent): """A thin wrapper around QLearnerAgent that normalizes rewards to [-1,1]""" def act(self, state, reward, done, is_training=False): reward /= ENV_CAUGHT_REWARD return super(PigChaseQLearnerAgent, self).act(state, reward, done, is_training) class PigChaseChallengeAgent(BaseAgent): """Pig Chase challenge agent - behaves focused or random.""" def __init__(self, name, visualizer=None): nb_actions = len(ENV_ACTIONS) super(PigChaseChallengeAgent, self).__init__(name, nb_actions, visualizer = visualizer) self._agents = [] self._agents.append(FocusedAgent(name, ENV_TARGET_NAMES[0], visualizer = visualizer)) self._agents.append(RandomAgent(name, nb_actions, visualizer = visualizer)) self.current_agent_id = 0 self.current_agent = self._select_agent(P_FOCUSED) def _select_agent(self, p_focused): self.current_agent_id = np.random.choice(range(len(self._agents)), p = [p_focused, 1. - p_focused]) return self._agents[self.current_agent_id] def act(self, new_state, reward, done, is_training=False): if done: self.current_agent = self._select_agent(P_FOCUSED) return self.current_agent.act(new_state, reward, done, is_training) def save(self, out_dir): self.current_agent.save(out_dir) def load(self, out_dir): self.current_agent(out_dir) def inject_summaries(self, idx): self.current_agent.inject_summaries(idx) class FocusedAgent(AStarAgent): ACTIONS = ENV_ACTIONS Neighbour = namedtuple('Neighbour', ['cost', 'x', 'z', 'direction', 'action']) def __init__(self, name, target, visualizer = None): super(FocusedAgent, self).__init__(name, len(FocusedAgent.ACTIONS), visualizer = visualizer) self._target = str(target) self._previous_target_pos = None self._action_list = [] def act(self, state, reward, done, is_training=False): if done: self._action_list = [] self._previous_target_pos = None if state is None: return np.random.randint(0, self.nb_actions) entities = state[1] state = state[0] me = [(j, i) for i, v in enumerate(state) for j, k in enumerate(v) if self.name in k] me_details = [e for e in entities if e['name'] == self.name][0] yaw = int(me_details['yaw']) direction = ((((yaw - 45) % 360) // 90) - 1) % 4 # convert Minecraft yaw to 0=north, 1=east etc. target = [(j, i) for i, v in enumerate(state) for j, k in enumerate(v) if self._target in k] # Get agent and target nodes me = FocusedAgent.Neighbour(1, me[0][0], me[0][1], direction, "") target = FocusedAgent.Neighbour(1, target[0][0], target[0][1], 0, "") # If distance to the pig is one, just turn and wait if self.heuristic(me, target) == 1: return FocusedAgent.ACTIONS.index("turn 1") # substitutes for a no-op command if not self._previous_target_pos == target: # Target has moved, or this is the first action of a new mission - calculate a new action list self._previous_target_pos = target path, costs = self._find_shortest_path(me, target, state=state) self._action_list = [] for point in path: self._action_list.append(point.action) if self._action_list is not None and len(self._action_list) > 0: action = self._action_list.pop(0) return FocusedAgent.ACTIONS.index(action) # reached end of action list - turn on the spot return FocusedAgent.ACTIONS.index("turn 1") # substitutes for a no-op command def neighbors(self, pos, state=None): state_width = state.shape[1] state_height = state.shape[0] dir_north, dir_east, dir_south, dir_west = range(4) neighbors = [] inc_x = lambda x, dir, delta: x + delta if dir == dir_east else x - delta if dir == dir_west else x inc_z = lambda z, dir, delta: z + delta if dir == dir_south else z - delta if dir == dir_north else z # add a neighbour for each potential action; prune out the disallowed states afterwards for action in FocusedAgent.ACTIONS: if action.startswith("turn"): neighbors.append( FocusedAgent.Neighbour(1, pos.x, pos.z, (pos.direction + int(action.split(' ')[1])) % 4, action)) if action.startswith("move "): # note the space to distinguish from movemnorth etc sign = int(action.split(' ')[1]) weight = 1 if sign == 1 else 1.5 neighbors.append( FocusedAgent.Neighbour(weight, inc_x(pos.x, pos.direction, sign), inc_z(pos.z, pos.direction, sign), pos.direction, action)) if action == "movenorth": neighbors.append(FocusedAgent.Neighbour(1, pos.x, pos.z - 1, pos.direction, action)) elif action == "moveeast": neighbors.append(FocusedAgent.Neighbour(1, pos.x + 1, pos.z, pos.direction, action)) elif action == "movesouth": neighbors.append(FocusedAgent.Neighbour(1, pos.x, pos.z + 1, pos.direction, action)) elif action == "movewest": neighbors.append(FocusedAgent.Neighbour(1, pos.x - 1, pos.z, pos.direction, action)) # now prune: valid_neighbours = [n for n in neighbors if n.x >= 0 and n.x < state_width and n.z >= 0 and n.z < state_height and state[ n.z, n.x] != 'sand'] return valid_neighbours def heuristic(self, a, b, state=None): (x1, y1) = (a.x, a.z) (x2, y2) = (b.x, b.z) return abs(x1 - x2) + abs(y1 - y2) def matches(self, a, b): return a.x == b.x and a.z == b.z # don't worry about dir and action class PigChaseHumanAgent(GuiAgent): def __init__(self, name, environment, keymap, max_episodes, max_actions, visualizer, quit): self._max_episodes = max_episodes self._max_actions = max_actions self._action_taken = 0 self._episode = 1 self._scores = [] self._rewards = [] self._episode_has_ended = False self._episode_has_started = False self._quit_event = quit super(PigChaseHumanAgent, self).__init__(name, environment, keymap, visualizer=visualizer) def _build_layout(self, root): # Left part of the GUI, first person view self._first_person_header = ttk.Label(root, text='First Person View', font=(None, 14, 'bold')) \ .grid(row=0, column=0) self._first_person_view = ttk.Label(root) self._first_person_view.grid(row=1, column=0, rowspan=10) # Right part, top self._first_person_header = ttk.Label(root, text='Symbolic View', font=(None, 14, 'bold')) \ .grid(row=0, column=1) self._symbolic_view = Canvas(root) self._symbolic_view.configure(width=ENV_BOARD_SHAPE[0]*CELL_WIDTH, height=ENV_BOARD_SHAPE[1]*CELL_WIDTH) self._symbolic_view.grid(row=1, column=1) # Bottom information self._information_panel = ttk.Label(root, text='Game stats', font=(None, 14, 'bold')) self._current_episode_lbl = ttk.Label(root, text='Episode: 0', font=(None, 12)) self._cum_reward_lbl = ttk.Label(root, text='Score: 0', font=(None, 12, 'bold')) self._last_action_lbl = ttk.Label(root, text='Previous action: None', font=(None, 12)) self._action_done_lbl = ttk.Label(root, text='Actions taken: 0', font=(None, 12)) self._action_remaining_lbl = ttk.Label(root, text='Actions remaining: 0', font=(None, 12)) self._information_panel.grid(row=2, column=1) self._current_episode_lbl.grid(row=3, column=1, sticky=W, padx=20) self._cum_reward_lbl.grid(row=4, column=1, sticky=W, padx=20) self._last_action_lbl.grid(row=5, column=1, sticky=W, padx=20) self._action_done_lbl.grid(row=6, column=1, sticky=W, padx=20) self._action_remaining_lbl.grid(row=7, column=1, sticky=W, padx=20) self._overlay = None # Main rendering callback self._pressed_binding = root.bind('<Key>', self._on_key_pressed) self._user_pressed_enter = False # UI Update callback root.after(self._tick, self._poll_frame) root.after(1000, self._on_episode_start) root.focus() def _draw_arrow(self, yaw, x, y, cell_width, colour): if yaw == 0.: x1, y1 = (x + .15) * cell_width, (y + .15) * cell_width x2, y2 = (x + .5) * cell_width, (y + .4) * cell_width x3, y3 = (x + .85) * cell_width, (y + .85) * cell_width self._symbolic_view.create_polygon(x1, y1, x2, y3, x3, y1, x2, y2, fill=colour) elif yaw == 90.: x1, y1 = (x + .15) * cell_width, (y + .15) * cell_width x2, y2 = (x + .6) * cell_width, (y + .5) * cell_width x3, y3 = (x + .85) * cell_width, (y + .85) * cell_width self._symbolic_view.create_polygon(x1, y2, x3, y1, x2, y2, x3, y3, fill=colour) elif yaw == 180.: x1, y1 = (x + .15) * cell_width, (y + .15) * cell_width x2, y2 = (x + .5) * cell_width, (y + .6) * cell_width x3, y3 = (x + .85) * cell_width, (y + .85) * cell_width self._symbolic_view.create_polygon(x1, y3, x2, y1, x3, y3, x2, y2, fill=colour) else: x1, y1 = (x + .15) * cell_width, (y + .15) * cell_width x2, y2 = (x + .4) * cell_width, (y + .5) * cell_width x3, y3 = (x + .85) * cell_width, (y + .85) * cell_width self._symbolic_view.create_polygon(x1, y3, x2, y2, x1, y1, x3, y2, fill=colour) def _poll_frame(self): """ Main callback for UI rendering. Called at regular intervals. The method will ask the environment to provide a frame if available (not None). :return: """ cell_width = CELL_WIDTH circle_radius = 10 # are we done? if self._env.done and not self._episode_has_ended: self._on_episode_end() # build symbolic view board = None if self._env is not None: board, _ = self._env._internal_symbolic_builder.build(self._env) if board is not None: board = board.T self._symbolic_view.delete('all') # Remove all previous items from Tkinter tracking width, height = board.shape for x in range(width): for y in range(height): cell_contents = str.split(str(board[x][y]), '/') for block in cell_contents: if block == 'sand': self._symbolic_view.create_rectangle(x * cell_width, y * cell_width, (x + 1) * cell_width, (y + 1) * cell_width, outline="black", fill="orange", tags="square") elif block == 'grass': self._symbolic_view.create_rectangle(x * cell_width, y * cell_width, (x + 1) * cell_width, (y + 1) * cell_width, outline="black", fill="lawn green", tags="square") elif block == 'lapis_block': self._symbolic_view.create_rectangle(x * cell_width, y * cell_width, (x + 1) * cell_width, (y + 1) * cell_width, outline="black", fill="black", tags="square") elif block == ENV_TARGET_NAMES[0]: self._symbolic_view.create_oval((x + .5) * cell_width - circle_radius, (y + .5) * cell_width - circle_radius, (x + .5) * cell_width + circle_radius, (y + .5) * cell_width + circle_radius, fill='pink') elif block == self.name: yaw = self._env._world_obs['Yaw'] % 360 self._draw_arrow(yaw, x, y, cell_width, 'red') elif block == ENV_AGENT_NAMES[0]: # Get yaw of other agent: entities = self._env._world_obs[ENV_ENTITIES] other_agent = list( map(Entity.create, filter(lambda e: e['name'] == ENV_AGENT_NAMES[0], entities))) if len(other_agent) == 1: other_agent = other_agent.pop() yaw = other_agent.yaw % 360 self._draw_arrow(yaw, x, y, cell_width, 'blue') # display the most recent frame frame = self._env.frame if frame is not None: from PIL import ImageTk self._first_person_view.image = ImageTk.PhotoImage(image=frame) self._first_person_view.configure(image=self._first_person_view.image) self._first_person_view.update() self._first_person_view.update() # process game state (e.g., has the episode started?) if self._episode_has_started and time.time() - self._episode_start_time < 3: if not hasattr(self, "_init_overlay") or not self._init_overlay: self._create_overlay() self._init_overlay.delete("all") self._init_overlay.create_rectangle( 10, 10, 590, 290, fill="white", outline="red", width="5") self._init_overlay.create_text( 300, 80, text="Get ready to catch the pig!", font=('Helvetica', '18')) self._init_overlay.create_text( 300, 140, text=str(3 - int(time.time() - self._episode_start_time)), font=('Helvetica', '18'), fill="red") self._init_overlay.create_text( 300, 220, width=460, text="How to play: \nUse the left/right arrow keys to turn, " "forward/back to move. The pig is caught if it is " "cornered without a free block to escape to.", font=('Helvetica', '14'), fill="black") self._root.update() elif self._episode_has_ended: if not hasattr(self, "_init_overlay") or not self._init_overlay: self._create_overlay() self._init_overlay.delete("all") self._init_overlay.create_rectangle( 10, 10, 590, 290, fill="white", outline="red", width="5") self._init_overlay.create_text( 300, 80, text='Finished episode %d of %d' % (self._episode, self._max_episodes), font=('Helvetica', '18')) self._init_overlay.create_text( 300, 120, text='Score: %d' % sum(self._rewards), font=('Helvetica', '18')) if self._episode > 1: self._init_overlay.create_text( 300, 160, text='Average over %d episodes: %.2f' % (self._episode, np.mean(self._scores)), font=('Helvetica', '18')) self._init_overlay.create_text( 300, 220, width=360, text="Press RETURN to start the next episode, ESC to exit.", font=('Helvetica', '14'), fill="black") self._root.update() elif hasattr(self, "_init_overlay") and self._init_overlay: self._destroy_overlay() # trigger the next update self._root.after(self._tick, self._poll_frame) def _create_overlay(self): self._init_overlay = Canvas(self._root, borderwidth=0, highlightthickness=0, width=600, height=300, bg="gray") self._init_overlay.place(relx=0.5, rely=0.5, anchor='center') def _destroy_overlay(self): self._init_overlay.destroy() self._init_overlay = None def _on_key_pressed(self, e): """ Main callback for keyboard events :param e: :return: """ if e.keysym == 'Escape': self._quit() if e.keysym == 'Return' and self._episode_has_ended: if self._episode >= self._max_episodes: self._quit() # start the next episode self._action_taken = 0 self._rewards = [] self._episode += 1 self._env.reset() self._on_episode_start() print('Starting episode %d' % self._episode) if self._episode_has_started and time.time() - self._episode_start_time >= 3: if e.keysym in self._keymap: mapped_action = self._keymap.index(e.keysym) _, reward, done = self._env.do(mapped_action) self._action_taken += 1 self._rewards.append(reward) self._on_experiment_updated(mapped_action, reward, done) def _on_episode_start(self): self._episode_has_ended = False self._episode_has_started = True self._episode_start_time = time.time() self._on_experiment_updated(None, 0, self._env.done) def _on_episode_end(self): # do a turn to ensure we get the final reward and observation no_op_action = 0 _, reward, done = self._env.do(no_op_action) self._action_taken += 1 self._rewards.append(reward) self._on_experiment_updated(no_op_action, reward, done) # report scores self._scores.append(sum(self._rewards)) self.visualize(self._episode, 'Reward', sum(self._rewards)) # set flags to start a new episode self._episode_has_started = False self._episode_has_ended = True def _on_experiment_updated(self, action, reward, is_done): self._current_episode_lbl.config(text='Episode: %d' % self._episode) self._cum_reward_lbl.config(text='Score: %d' % sum(self._rewards)) self._last_action_lbl.config(text='Previous action: %s' % action) self._action_done_lbl.config(text='Actions taken: {0}'.format(self._action_taken)) self._action_remaining_lbl.config(text='Actions remaining: %d' % (self._max_actions - self._action_taken)) self._first_person_view.update() def _quit(self): self._quit_event.set() self._root.quit() sys.exit()
py
7df9293fb0b73dd1d253d6bf7012be34d7488fbd
# -*- coding:utf-8 -*- import unittest import mock import decimal from ..models import Coupon class CouponManagerTestCase(unittest.TestCase): @mock.patch('membership.models.models.Manager.get_queryset') def test_is_valid_should_call_filter_with_coupon_code_and_claimed_by_as_none_then_call_count_and_return_boolean( self, get_queryset): # setup manager = Coupon.objects coupon_code = 'acouponcode' manager_filter = get_queryset.return_value.filter count = manager_filter.return_value.count count.return_value = 1 # action returned_value = manager.is_valid(coupon_code) # assert self.assertDictEqual(dict(code=coupon_code, claimed_by__isnull=True), manager_filter.call_args[1]) self.assertEqual(1, count.call_count) self.assertTrue(returned_value) @mock.patch('membership.models.models.Manager.get_queryset') def test_is_valid_should_return_false_when_coupon_code_is_none( self, get_queryset): # setup manager = Coupon.objects # action returned_value = manager.is_valid(None) # assert self.assertFalse(returned_value) @mock.patch('membership.models.models.Manager.get_queryset') def test_is_valid_should_return_false_when_coupon_code_is_none( self, get_queryset): # setup manager = Coupon.objects # action returned_value = manager.is_valid('') # assert self.assertFalse(returned_value) @mock.patch('membership.models.models.Manager.get_queryset') def test_get_discount_should_return_decimal_discount_from_coupon( self, get_queryset): # setup manager = Coupon.objects coupon_code = 'acouponcode' discount = decimal.Decimal(10.24) get = get_queryset.return_value.get coupon = get.return_value coupon.configure_mock(discount=discount) # action returned_value = manager.get_discount(coupon_code) # assert self.assertDictEqual(dict(code=coupon_code), get.call_args[1]) self.assertEqual(id(discount), id(returned_value))
py
7df92a245c82e864413dab4fe6a785d371344d42
import smtplib from imap_tools import MailBox, Q from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.mime.application import MIMEApplication from os.path import basename import os class Mail: def __init__(self, email, password): self.username = email self.password = password def send(self, send_to, subject, text=None, html=None, files=None): msg = MIMEMultipart() msg['From'] = self.username msg['To'] = ', '.join(send_to) msg['Subject'] = subject if text is not None: msg.attach(MIMEText(text + "\n\n\n", 'plain')) if html is not None: msg.attach(MIMEText(html + "\n\n\n", 'html')) for f in files or []: with open(f, "rb") as fil: ext = f.split('.')[-1:] attachedfile = MIMEApplication(fil.read(), _subtype=ext) attachedfile.add_header( 'content-disposition', 'attachment', filename=basename(f)) msg.attach(attachedfile) smtp = smtplib.SMTP_SSL('smtp.' + self.username.split("@")[1], 465) smtp.ehlo() smtp.login(self.username, self.password) smtp.sendmail(self.username, send_to, msg.as_string()) smtp.close() def fetchBox(self, folder=None, Query=None): if folder is None: folder = 'INBOX' if Query is None: Query = Q(all=True) server = 'imap.' + self.username.split("@")[1] mailbox = MailBox(server) mailbox.login(self.username, self.password, initial_folder=folder) # or mailbox.folder.set instead 3d arg message_list = [] for mail in mailbox.fetch(Query): message_list.append(mail) return message_list mailbox.logout() @staticmethod def save_attachments(email, download_folder): msg = email.obj att_path = "No attachment found." for part in msg.walk(): if part.get_content_maintype() == 'multipart': continue if part.get('Content-Disposition') is None: continue filename = part.get_filename() att_path = os.path.join(download_folder, filename) if not os.path.isfile(att_path): fp = open(att_path, 'wb') fp.write(part.get_payload(decode=True)) fp.close() return att_path '''import win32com import win32com.client def folders(): outlook = win32com.client.Dispatch("Outlook.Application").GetNamespace('MAPI') Folders={} fList = [3,4,5,6,23] for i in fList: try: folder = outlook.GetDefaultFolder(i) Folders[folder.name] = i except: pass return(Folders) def accounts(): outlook = win32com.client.Dispatch("Outlook.Application").GetNamespace('MAPI') for account in outlook.Folders: return account.name class outlook: def __init__ (self): self.outlook = win32com.client.Dispatch("Outlook.Application").GetNamespace("MAPI") self.folders = folders() self.accounts = accounts() def emails(self,folder): i= folders()[folder] Folder= self.outlook.GetDefaultFolder(i) messages = Folder.Items MessageList=[] for message in messages: MessageList.append(message) return MessageList def DownloadAttachments(self, email, folder, extension = None): Attachments= email.Attachments AttachmentNum = Attachments.Count if AttachmentNum > 0: try: for i in range(1,int(AttachmentNum)): fileType = str(Attachments.item(i)).split(".")[1] fileType = fileType.lower() if extension == None: if fileType != "png" and fileType != "jpg" and fileType != "jpeg" and fileType != "gif": Attachments.Item(i).SaveASFile(folder + str(Attachments.item(i))) else: if fileType == extension.replace(".",""): Attachments.Item(i).SaveASFile(folder + str(Attachments.item(i))) except: pass def SendEmail(self,To,Subject,Body, Attachment= None): outlook = win32com.client.Dispatch('outlook.application') mail = outlook.CreateItem(0) mail.To = To mail.Subject = Subject mail.Body = Body #mail.HTMLBody = '<h2>HTML Message body</h2>' #this field is optional if Attachment != None: attachment = Attachment mail.Attachments.Add(attachment) mail.Send() '''
py
7df92a7f6bbbe22962a38bed15d28cdc2ab11153
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'dw_inputs_fields.ui' # # Created: Thu Dec 13 17:14:04 2018 # by: pyside-uic 0.2.15 running on PySide 1.2.2 # # WARNING! All changes made in this file will be lost! from PySide import QtCore, QtGui class Ui_DockWidget(object): def setupUi(self, DockWidget): DockWidget.setObjectName("DockWidget") DockWidget.resize(703, 557) self.dockWidgetContents = QtGui.QWidget() self.dockWidgetContents.setObjectName("dockWidgetContents") self.gridLayout = QtGui.QGridLayout(self.dockWidgetContents) self.gridLayout.setObjectName("gridLayout") self.label = QtGui.QLabel(self.dockWidgetContents) font = QtGui.QFont() font.setWeight(75) font.setBold(True) self.label.setFont(font) self.label.setObjectName("label") self.gridLayout.addWidget(self.label, 0, 1, 1, 1) self.label_2 = QtGui.QLabel(self.dockWidgetContents) font = QtGui.QFont() font.setWeight(75) font.setBold(True) self.label_2.setFont(font) self.label_2.setObjectName("label_2") self.gridLayout.addWidget(self.label_2, 0, 2, 1, 1) self.label_12 = QtGui.QLabel(self.dockWidgetContents) self.label_12.setMinimumSize(QtCore.QSize(0, 0)) self.label_12.setMaximumSize(QtCore.QSize(16777215, 16777215)) font = QtGui.QFont() font.setWeight(75) font.setBold(True) self.label_12.setFont(font) self.label_12.setObjectName("label_12") self.gridLayout.addWidget(self.label_12, 1, 0, 1, 1) self.fontComboBox = QtGui.QFontComboBox(self.dockWidgetContents) self.fontComboBox.setMinimumSize(QtCore.QSize(0, 0)) self.fontComboBox.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.fontComboBox.setObjectName("fontComboBox") self.gridLayout.addWidget(self.fontComboBox, 1, 1, 1, 1) self.fontComboBoxDis = QtGui.QFontComboBox(self.dockWidgetContents) self.fontComboBoxDis.setEnabled(False) self.fontComboBoxDis.setMinimumSize(QtCore.QSize(0, 0)) self.fontComboBoxDis.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.fontComboBoxDis.setObjectName("fontComboBoxDis") self.gridLayout.addWidget(self.fontComboBoxDis, 1, 2, 1, 1) self.label_3 = QtGui.QLabel(self.dockWidgetContents) self.label_3.setObjectName("label_3") self.gridLayout.addWidget(self.label_3, 2, 0, 1, 1) self.comboBoxEdit = QtGui.QComboBox(self.dockWidgetContents) self.comboBoxEdit.setEditable(True) self.comboBoxEdit.setObjectName("comboBoxEdit") self.comboBoxEdit.addItem("") self.comboBoxEdit.addItem("") self.comboBoxEdit.addItem("") self.comboBoxEdit.setItemText(2, "") self.gridLayout.addWidget(self.comboBoxEdit, 2, 1, 1, 1) self.comboBoxEditDis = QtGui.QComboBox(self.dockWidgetContents) self.comboBoxEditDis.setEnabled(False) self.comboBoxEditDis.setEditable(True) self.comboBoxEditDis.setObjectName("comboBoxEditDis") self.comboBoxEditDis.addItem("") self.comboBoxEditDis.addItem("") self.comboBoxEditDis.addItem("") self.comboBoxEditDis.setItemText(2, "") self.gridLayout.addWidget(self.comboBoxEditDis, 2, 2, 1, 1) self.label_13 = QtGui.QLabel(self.dockWidgetContents) self.label_13.setMinimumSize(QtCore.QSize(0, 0)) self.label_13.setMaximumSize(QtCore.QSize(16777215, 16777215)) font = QtGui.QFont() font.setWeight(75) font.setBold(True) self.label_13.setFont(font) self.label_13.setObjectName("label_13") self.gridLayout.addWidget(self.label_13, 3, 0, 1, 1) self.lineEdit = QtGui.QLineEdit(self.dockWidgetContents) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lineEdit.sizePolicy().hasHeightForWidth()) self.lineEdit.setSizePolicy(sizePolicy) self.lineEdit.setMinimumSize(QtCore.QSize(0, 0)) self.lineEdit.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.lineEdit.setObjectName("lineEdit") self.gridLayout.addWidget(self.lineEdit, 3, 1, 1, 1) self.lineEditDis = QtGui.QLineEdit(self.dockWidgetContents) self.lineEditDis.setEnabled(False) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lineEditDis.sizePolicy().hasHeightForWidth()) self.lineEditDis.setSizePolicy(sizePolicy) self.lineEditDis.setMinimumSize(QtCore.QSize(0, 0)) self.lineEditDis.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.lineEditDis.setObjectName("lineEditDis") self.gridLayout.addWidget(self.lineEditDis, 3, 2, 1, 1) self.label_14 = QtGui.QLabel(self.dockWidgetContents) self.label_14.setMinimumSize(QtCore.QSize(0, 0)) self.label_14.setMaximumSize(QtCore.QSize(16777215, 16777215)) font = QtGui.QFont() font.setWeight(75) font.setBold(True) self.label_14.setFont(font) self.label_14.setObjectName("label_14") self.gridLayout.addWidget(self.label_14, 4, 0, 1, 1) self.textEdit = QtGui.QTextEdit(self.dockWidgetContents) self.textEdit.setMinimumSize(QtCore.QSize(0, 0)) self.textEdit.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.textEdit.setObjectName("textEdit") self.gridLayout.addWidget(self.textEdit, 4, 1, 1, 1) self.textEditDis = QtGui.QTextEdit(self.dockWidgetContents) self.textEditDis.setEnabled(False) self.textEditDis.setMinimumSize(QtCore.QSize(0, 0)) self.textEditDis.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.textEditDis.setObjectName("textEditDis") self.gridLayout.addWidget(self.textEditDis, 4, 2, 1, 1) self.label_15 = QtGui.QLabel(self.dockWidgetContents) self.label_15.setMinimumSize(QtCore.QSize(0, 0)) self.label_15.setMaximumSize(QtCore.QSize(16777215, 16777215)) font = QtGui.QFont() font.setWeight(75) font.setBold(True) self.label_15.setFont(font) self.label_15.setObjectName("label_15") self.gridLayout.addWidget(self.label_15, 5, 0, 1, 1) self.plainTextEdit = QtGui.QPlainTextEdit(self.dockWidgetContents) self.plainTextEdit.setMinimumSize(QtCore.QSize(0, 0)) self.plainTextEdit.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.plainTextEdit.setObjectName("plainTextEdit") self.gridLayout.addWidget(self.plainTextEdit, 5, 1, 1, 1) self.plainTextEditDis = QtGui.QPlainTextEdit(self.dockWidgetContents) self.plainTextEditDis.setEnabled(False) self.plainTextEditDis.setMinimumSize(QtCore.QSize(0, 0)) self.plainTextEditDis.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.plainTextEditDis.setObjectName("plainTextEditDis") self.gridLayout.addWidget(self.plainTextEditDis, 5, 2, 1, 1) self.label_16 = QtGui.QLabel(self.dockWidgetContents) self.label_16.setMinimumSize(QtCore.QSize(0, 0)) self.label_16.setMaximumSize(QtCore.QSize(16777215, 16777215)) font = QtGui.QFont() font.setWeight(75) font.setBold(True) self.label_16.setFont(font) self.label_16.setObjectName("label_16") self.gridLayout.addWidget(self.label_16, 6, 0, 1, 1) self.spinBox = QtGui.QSpinBox(self.dockWidgetContents) self.spinBox.setMinimumSize(QtCore.QSize(0, 0)) self.spinBox.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.spinBox.setObjectName("spinBox") self.gridLayout.addWidget(self.spinBox, 6, 1, 1, 1) self.spinBoxDis = QtGui.QSpinBox(self.dockWidgetContents) self.spinBoxDis.setEnabled(False) self.spinBoxDis.setMinimumSize(QtCore.QSize(0, 0)) self.spinBoxDis.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.spinBoxDis.setObjectName("spinBoxDis") self.gridLayout.addWidget(self.spinBoxDis, 6, 2, 1, 1) self.label_17 = QtGui.QLabel(self.dockWidgetContents) self.label_17.setMinimumSize(QtCore.QSize(0, 0)) self.label_17.setMaximumSize(QtCore.QSize(16777215, 16777215)) font = QtGui.QFont() font.setWeight(75) font.setBold(True) self.label_17.setFont(font) self.label_17.setObjectName("label_17") self.gridLayout.addWidget(self.label_17, 7, 0, 1, 1) self.doubleSpinBox = QtGui.QDoubleSpinBox(self.dockWidgetContents) self.doubleSpinBox.setMinimumSize(QtCore.QSize(0, 0)) self.doubleSpinBox.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.doubleSpinBox.setObjectName("doubleSpinBox") self.gridLayout.addWidget(self.doubleSpinBox, 7, 1, 1, 1) self.doubleSpinBoxDis = QtGui.QDoubleSpinBox(self.dockWidgetContents) self.doubleSpinBoxDis.setEnabled(False) self.doubleSpinBoxDis.setMinimumSize(QtCore.QSize(0, 0)) self.doubleSpinBoxDis.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.doubleSpinBoxDis.setObjectName("doubleSpinBoxDis") self.gridLayout.addWidget(self.doubleSpinBoxDis, 7, 2, 1, 1) self.label_18 = QtGui.QLabel(self.dockWidgetContents) self.label_18.setMinimumSize(QtCore.QSize(0, 0)) self.label_18.setMaximumSize(QtCore.QSize(16777215, 16777215)) font = QtGui.QFont() font.setWeight(75) font.setBold(True) self.label_18.setFont(font) self.label_18.setObjectName("label_18") self.gridLayout.addWidget(self.label_18, 8, 0, 1, 1) self.timeEdit = QtGui.QTimeEdit(self.dockWidgetContents) self.timeEdit.setMinimumSize(QtCore.QSize(0, 0)) self.timeEdit.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.timeEdit.setObjectName("timeEdit") self.gridLayout.addWidget(self.timeEdit, 8, 1, 1, 1) self.timeEditDis = QtGui.QTimeEdit(self.dockWidgetContents) self.timeEditDis.setEnabled(False) self.timeEditDis.setMinimumSize(QtCore.QSize(0, 0)) self.timeEditDis.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.timeEditDis.setObjectName("timeEditDis") self.gridLayout.addWidget(self.timeEditDis, 8, 2, 1, 1) self.label_19 = QtGui.QLabel(self.dockWidgetContents) self.label_19.setMinimumSize(QtCore.QSize(0, 0)) self.label_19.setMaximumSize(QtCore.QSize(16777215, 16777215)) font = QtGui.QFont() font.setWeight(75) font.setBold(True) self.label_19.setFont(font) self.label_19.setObjectName("label_19") self.gridLayout.addWidget(self.label_19, 9, 0, 1, 1) self.dateEdit = QtGui.QDateEdit(self.dockWidgetContents) self.dateEdit.setMinimumSize(QtCore.QSize(0, 0)) self.dateEdit.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.dateEdit.setObjectName("dateEdit") self.gridLayout.addWidget(self.dateEdit, 9, 1, 1, 1) self.dateEditDis = QtGui.QDateEdit(self.dockWidgetContents) self.dateEditDis.setEnabled(False) self.dateEditDis.setMinimumSize(QtCore.QSize(0, 0)) self.dateEditDis.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.dateEditDis.setObjectName("dateEditDis") self.gridLayout.addWidget(self.dateEditDis, 9, 2, 1, 1) self.label_20 = QtGui.QLabel(self.dockWidgetContents) self.label_20.setMinimumSize(QtCore.QSize(0, 0)) self.label_20.setMaximumSize(QtCore.QSize(16777215, 16777215)) font = QtGui.QFont() font.setWeight(75) font.setBold(True) self.label_20.setFont(font) self.label_20.setObjectName("label_20") self.gridLayout.addWidget(self.label_20, 10, 0, 1, 1) self.dateTimeEdit = QtGui.QDateTimeEdit(self.dockWidgetContents) self.dateTimeEdit.setMinimumSize(QtCore.QSize(0, 0)) self.dateTimeEdit.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.dateTimeEdit.setObjectName("dateTimeEdit") self.gridLayout.addWidget(self.dateTimeEdit, 10, 1, 1, 1) self.dateTimeEditDis = QtGui.QDateTimeEdit(self.dockWidgetContents) self.dateTimeEditDis.setEnabled(False) self.dateTimeEditDis.setMinimumSize(QtCore.QSize(0, 0)) self.dateTimeEditDis.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.dateTimeEditDis.setObjectName("dateTimeEditDis") self.gridLayout.addWidget(self.dateTimeEditDis, 10, 2, 1, 1) spacerItem = QtGui.QSpacerItem(20, 40, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) self.gridLayout.addItem(spacerItem, 11, 0, 1, 1) self.label_51 = QtGui.QLabel(self.dockWidgetContents) self.label_51.setAlignment(QtCore.Qt.AlignCenter) self.label_51.setObjectName("label_51") self.gridLayout.addWidget(self.label_51, 12, 0, 1, 3) DockWidget.setWidget(self.dockWidgetContents) self.retranslateUi(DockWidget) QtCore.QObject.connect(self.fontComboBox, QtCore.SIGNAL("editTextChanged(QString)"), self.fontComboBoxDis.setEditText) QtCore.QObject.connect(self.lineEdit, QtCore.SIGNAL("textEdited(QString)"), self.lineEditDis.setText) QtCore.QObject.connect(self.spinBox, QtCore.SIGNAL("valueChanged(int)"), self.spinBoxDis.setValue) QtCore.QObject.connect(self.doubleSpinBox, QtCore.SIGNAL("valueChanged(double)"), self.doubleSpinBoxDis.setValue) QtCore.QObject.connect(self.timeEdit, QtCore.SIGNAL("timeChanged(QTime)"), self.timeEditDis.setTime) QtCore.QObject.connect(self.dateEdit, QtCore.SIGNAL("dateTimeChanged(QDateTime)"), self.dateEditDis.setDateTime) QtCore.QObject.connect(self.dateTimeEdit, QtCore.SIGNAL("dateTimeChanged(QDateTime)"), self.dateTimeEditDis.setDateTime) QtCore.QMetaObject.connectSlotsByName(DockWidget) def retranslateUi(self, DockWidget): DockWidget.setWindowTitle(QtGui.QApplication.translate("DockWidget", "Inputs - Fields", None, QtGui.QApplication.UnicodeUTF8)) self.label.setText(QtGui.QApplication.translate("DockWidget", "Enabled", None, QtGui.QApplication.UnicodeUTF8)) self.label_2.setText(QtGui.QApplication.translate("DockWidget", "Disabled", None, QtGui.QApplication.UnicodeUTF8)) self.label_12.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_12.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_12.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_12.setText(QtGui.QApplication.translate("DockWidget", "FontComboBox", None, QtGui.QApplication.UnicodeUTF8)) self.fontComboBox.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.fontComboBox.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.fontComboBox.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.fontComboBoxDis.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.fontComboBoxDis.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.fontComboBoxDis.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_3.setText(QtGui.QApplication.translate("DockWidget", "<html><head/><body><p><span style=\" font-weight:600;\">ComboBox</span></p></body></html>", None, QtGui.QApplication.UnicodeUTF8)) self.comboBoxEdit.setItemText(0, QtGui.QApplication.translate("DockWidget", "ComboBoxEditable", None, QtGui.QApplication.UnicodeUTF8)) self.comboBoxEdit.setItemText(1, QtGui.QApplication.translate("DockWidget", "Second option", None, QtGui.QApplication.UnicodeUTF8)) self.comboBoxEditDis.setItemText(0, QtGui.QApplication.translate("DockWidget", "ComboBoxEditable", None, QtGui.QApplication.UnicodeUTF8)) self.comboBoxEditDis.setItemText(1, QtGui.QApplication.translate("DockWidget", "Second option", None, QtGui.QApplication.UnicodeUTF8)) self.label_13.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_13.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_13.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_13.setText(QtGui.QApplication.translate("DockWidget", "LineEdit", None, QtGui.QApplication.UnicodeUTF8)) self.lineEdit.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.lineEdit.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.lineEdit.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.lineEdit.setText(QtGui.QApplication.translate("DockWidget", "LineEdit", None, QtGui.QApplication.UnicodeUTF8)) self.lineEditDis.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.lineEditDis.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.lineEditDis.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.lineEditDis.setText(QtGui.QApplication.translate("DockWidget", "LineEdit", None, QtGui.QApplication.UnicodeUTF8)) self.label_14.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_14.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_14.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_14.setText(QtGui.QApplication.translate("DockWidget", "TextEdit", None, QtGui.QApplication.UnicodeUTF8)) self.textEdit.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.textEdit.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.textEdit.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.textEdit.setHtml(QtGui.QApplication.translate("DockWidget", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'Cantarell\'; font-size:11pt; font-weight:400; font-style:normal;\">\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\">TextEdit</p></body></html>", None, QtGui.QApplication.UnicodeUTF8)) self.textEditDis.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.textEditDis.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.textEditDis.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.textEditDis.setHtml(QtGui.QApplication.translate("DockWidget", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'Cantarell\'; font-size:11pt; font-weight:400; font-style:normal;\">\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\">TextEdit</p></body></html>", None, QtGui.QApplication.UnicodeUTF8)) self.label_15.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_15.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_15.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_15.setText(QtGui.QApplication.translate("DockWidget", "PlainTextEdit", None, QtGui.QApplication.UnicodeUTF8)) self.plainTextEdit.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.plainTextEdit.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.plainTextEdit.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.plainTextEdit.setPlainText(QtGui.QApplication.translate("DockWidget", "PlainTextEdit", None, QtGui.QApplication.UnicodeUTF8)) self.plainTextEditDis.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.plainTextEditDis.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.plainTextEditDis.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.plainTextEditDis.setPlainText(QtGui.QApplication.translate("DockWidget", "PlainTextEdit", None, QtGui.QApplication.UnicodeUTF8)) self.label_16.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_16.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_16.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_16.setText(QtGui.QApplication.translate("DockWidget", "SpinBox", None, QtGui.QApplication.UnicodeUTF8)) self.spinBox.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.spinBox.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.spinBox.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.spinBoxDis.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.spinBoxDis.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.spinBoxDis.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_17.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_17.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_17.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_17.setText(QtGui.QApplication.translate("DockWidget", "DoubleSpinBox", None, QtGui.QApplication.UnicodeUTF8)) self.doubleSpinBox.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.doubleSpinBox.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.doubleSpinBox.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.doubleSpinBoxDis.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.doubleSpinBoxDis.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.doubleSpinBoxDis.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_18.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_18.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_18.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_18.setText(QtGui.QApplication.translate("DockWidget", "TimeEdit", None, QtGui.QApplication.UnicodeUTF8)) self.timeEdit.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.timeEdit.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.timeEdit.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.timeEditDis.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.timeEditDis.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.timeEditDis.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_19.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_19.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_19.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_19.setText(QtGui.QApplication.translate("DockWidget", "DateEdit", None, QtGui.QApplication.UnicodeUTF8)) self.dateEdit.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.dateEdit.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.dateEdit.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.dateEditDis.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.dateEditDis.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.dateEditDis.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_20.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_20.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_20.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_20.setText(QtGui.QApplication.translate("DockWidget", "TimeDateEdit", None, QtGui.QApplication.UnicodeUTF8)) self.dateTimeEdit.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.dateTimeEdit.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.dateTimeEdit.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.dateTimeEditDis.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.dateTimeEditDis.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.dateTimeEditDis.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_51.setToolTip(QtGui.QApplication.translate("DockWidget", "This is a tool tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_51.setStatusTip(QtGui.QApplication.translate("DockWidget", "This is a status tip", None, QtGui.QApplication.UnicodeUTF8)) self.label_51.setWhatsThis(QtGui.QApplication.translate("DockWidget", "This is \"what is this\"", None, QtGui.QApplication.UnicodeUTF8)) self.label_51.setText(QtGui.QApplication.translate("DockWidget", "Inside DockWidget", None, QtGui.QApplication.UnicodeUTF8))
py
7df92aa3d2f00e6a51997c00b270ff1cdc167086
from micropython import const from machine import Pin from abutton import Pushbutton PIN_ANTENNA = const(14) PIN_SOCKET = const(12) def __btn(num): return Pushbutton( pin=Pin(num, Pin.IN, Pin.PULL_UP), # Don't call release handler after long press. suppress=True ) class Panel: def __init__(self, client): self.client = client # Initialise async handling of buttons. self.antenna = __btn(PIN_ANTENNA) self.socket = __btn(PIN_SOCKET) # Bind the button input to controller handlers. self.antenna.release_func(self.on_antenna_short) self.socket.release_func(self.on_socket_short) self.antenna.long_func(self.on_antenna_long) self.socket.long_func(self.on_socket_long) async def on_antenna_short(self): print("Volume up") await self.client.send('mopidy/c/vol', '+5') async def on_socket_short(self): print("Volume down") await self.client.send('mopidy/c/vol', '-5') async def on_antenna_long(self): print("Speakers toggle") await self.client.send('cmnd/speakers/power', 'toggle') async def on_socket_long(self): print("Playback toggle") await self.client.send('mopidy/c/plb', 'toggle')
py
7df92af57a6e16af92c1e9fa7974751239a6122e
from collections import Counter from heapq import heappush, heappushpop, heappop class Solution: def topKFrequent(self, nums: List[int], k: int) -> List[int]: cnt = Counter(nums) cnt = [(v[1], v[0]) for v in cnt.items()] pq = [] for v in cnt: if len(pq) < k: heappush(pq, v) else: heappushpop(pq, v) result = [] while pq: result.append(heappop(pq)[1]) return result[::-1]
py
7df92c32b57b9f19b62a4dd5bba0deb97ef0e3aa
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class YoloLoss(nn.Module): def __init__(self,S,B,l_coord,l_noobj): super(YoloLoss,self).__init__() self.S = S self.B = B self.l_coord = l_coord self.l_noobj = l_noobj def compute_iou(self, box1, box2): '''Compute the intersection over union of two set of boxes, each box is [x1,y1,x2,y2]. Args: box1: (tensor) bounding boxes, sized [N,4]. box2: (tensor) bounding boxes, sized [M,4]. Return: (tensor) iou, sized [N,M]. ''' N = box1.size(0) M = box2.size(0) lt = torch.max( box1[:,:2].unsqueeze(1).expand(N,M,2), # [N,2] -> [N,1,2] -> [N,M,2] box2[:,:2].unsqueeze(0).expand(N,M,2), # [M,2] -> [1,M,2] -> [N,M,2] ) rb = torch.min( box1[:,2:].unsqueeze(1).expand(N,M,2), # [N,2] -> [N,1,2] -> [N,M,2] box2[:,2:].unsqueeze(0).expand(N,M,2), # [M,2] -> [1,M,2] -> [N,M,2] ) wh = rb - lt # [N,M,2] wh[wh<0] = 0 # clip at 0 inter = wh[:,:,0] * wh[:,:,1] # [N,M] area1 = (box1[:,2]-box1[:,0]) * (box1[:,3]-box1[:,1]) # [N,] area2 = (box2[:,2]-box2[:,0]) * (box2[:,3]-box2[:,1]) # [M,] area1 = area1.unsqueeze(1).expand_as(inter) # [N,] -> [N,1] -> [N,M] area2 = area2.unsqueeze(0).expand_as(inter) # [M,] -> [1,M] -> [N,M] iou = inter / (area1 + area2 - inter) return iou def get_class_prediction_loss(self, classes_pred, classes_target): """ Parameters: classes_pred : (tensor) size (batch_size, S, S, 20) classes_target : (tensor) size (batch_size, S, S, 20) Returns: class_loss : scalar """ ##### CODE ##### # Measures the Binary Cross Entropy between the target and the output. class_loss = F.mse_loss(classes_pred,classes_target, reduction = 'sum') return class_loss def get_regression_loss(self, box_pred_response, box_target_response): """ Parameters: box_pred_response : (tensor) size (-1, 5) box_target_response : (tensor) size (-1, 5) Note : -1 corresponds to ravels the tensor into the dimension specified See : https://pytorch.org/docs/stable/tensors.html#torch.Tensor.view_as Returns: reg_loss : scalar """ ##### CODE ##### # Calculate Mean square Error for x, y, sqrt(w), sqrt(h) loss_xy = F.mse_loss(box_pred_response[:, :2], box_target_response[:, :2], reduction = "sum") loss_wh = F.mse_loss(torch.sqrt(box_pred_response[:, 2:4]), torch.sqrt(box_target_response[:, 2:4]), reduction = "sum") reg_loss = loss_xy + loss_wh return reg_loss def get_contain_conf_loss(self, box_pred_response, box_target_response_iou): """ Parameters: box_pred_response : (tensor) size ( -1 , 5) box_target_response_iou : (tensor) size ( -1 , 5) Note : -1 corresponds to ravels the tensor into the dimension specified See : https://pytorch.org/docs/stable/tensors.html#torch.Tensor.view_as Returns: contain_loss : scalar """ ##### CODE ##### pred = box_pred_response[:, 4] target = Variable(box_target_response_iou[:, 4].detach()) # target = box_target_response_iou[:, 4] contain_loss = F.mse_loss(pred, target, reduction = "sum") return contain_loss def get_no_object_loss(self, target_tensor, pred_tensor, no_object_mask): """ Parameters: target_tensor : (tensor) size (batch_size, S , S, 30) pred_tensor : (tensor) size (batch_size, S , S, 30) no_object_mask : (tensor) size (batch_size, S , S, 30) Returns: no_object_loss : scalar Hints: 1) Create a 2 tensors no_object_prediction and no_object_target which only have the values which have no object. 2) Have another tensor no_object_prediction_mask of the same size such that mask with respect to both confidences of bounding boxes set to 1. 3) Create 2 tensors which are extracted from no_object_prediction and no_object_target using the mask created above to find the loss. """ ##### CODE ##### no_object_prediction = pred_tensor[no_object_mask.bool()].view((-1, 30)) no_object_target = target_tensor[no_object_mask.bool()].view((-1, 30)) no_object_prediction_mask = torch.zeros(no_object_target.size()) no_object_prediction_mask[:, 4] = 1 no_object_prediction_mask[:, 9] = 1 pred = no_object_prediction[no_object_prediction_mask.bool()] target = no_object_target[no_object_prediction_mask.bool()] no_object_loss = F.mse_loss(pred, target, reduction = "sum") return no_object_loss def find_best_iou_boxes(self, box_target, box_pred): """ Parameters: box_target : (tensor) size (-1, 5) box_pred : (tensor) size (-1, 5) Note : -1 corresponds to ravels the tensor into the dimension specified See : https://pytorch.org/docs/stable/tensors.html#torch.Tensor.view_as Returns: box_target_iou: (tensor) contains_object_response_mask : (tensor) Hints: 1) Find the iou's of each of the 2 bounding boxes of each grid cell of each image. 2) Set the corresponding contains_object_response_mask of the bounding box with the max iou of the 2 bounding boxes of each grid cell to 1. 3) For finding iou's use the compute_iou function 4) Before using compute preprocess the bounding box coordinates in such a way that if for a Box b the coordinates are represented by [x, y, w, h] then x, y = x/S - 0.5*w, y/S - 0.5*h ; w, h = x/S + 0.5*w, y/S + 0.5*h Note: Over here initially x, y are the center of the box and w,h are width and height. We perform this transformation to convert the correct coordinates into bounding box coordinates. 5) Set the confidence of the box_target_iou of the bounding box to the maximum iou """ ##### CODE ##### b1 = torch.zeros(box_pred.size()) b2 = torch.zeros(box_target.size()) b1[:, :2] = box_pred[:, :2] / self.S - 0.5 * box_pred[:, 2:4] b1[:, 2:4] = box_pred[:, :2] / self.S + 0.5 * box_pred[:, 2:4] b2[:, :2] = box_target[:, :2] / self.S - 0.5 * box_target[:, 2:4] b2[:, 2:4] = box_target[:, :2] / self.S + 0.5 * box_target[:, 2:4] iou = self.compute_iou(b1[:, :4], b2[:, :4]) coo_response_mask = torch.cuda.ByteTensor(box_target.size()) coo_response_mask.zero_() box_target_iou = torch.zeros(box_target.size(), requires_grad = True).cuda() for i in range(iou.size(0) // 2): iou1 = iou[i * 2][i * 2] iou2 = iou[i * 2 + 1][i * 2 + 1] if iou1 > iou2: box_target_iou[i * 2, 4] = Variable(iou1.detach()) coo_response_mask[i * 2] = 1 else: box_target_iou[i * 2 + 1, 4] = Variable(iou2.detach()) coo_response_mask[i * 2 + 1] = 1 # print(box_target_iou) return box_target_iou, coo_response_mask def forward(self, pred_tensor,target_tensor): ''' pred_tensor: (tensor) size(batchsize,S,S,Bx5+20=30) where B - number of bounding boxes this grid cell is a part of = 2 5 - number of bounding box values corresponding to [x, y, w, h, c] where x - x_coord, y - y_coord, w - width, h - height, c - confidence of having an object 20 - number of classes target_tensor: (tensor) size(batchsize,S,S,30) Returns: Total Loss ''' N = pred_tensor.size()[0] total_loss = None # Create 2 tensors contains_object_mask and no_object_mask # of size (Batch_size, S, S) such that each value corresponds to if the confidence of having # an object > 0 in the target tensor. ##### CODE ##### # target_tensor = target_tensor.reshape((-1, 30)) # pred_tensor = pred_tensor.reshape((-1, 30)) contains_object_mask = target_tensor[:,:,:,4] contains_object_mask = contains_object_mask.unsqueeze(-1).expand_as(target_tensor) no_object_mask = target_tensor[:,:,:,4] == 0 no_object_mask = no_object_mask.unsqueeze(-1).expand_as(target_tensor) # Create a tensor contains_object_pred that corresponds to # to all the predictions which seem to confidence > 0 for having an object # Split this tensor into 2 tensors : # 1) bounding_box_pred : Contains all the Bounding box predictions of all grid cells of all images # 2) classes_pred : Contains all the class predictions for each grid cell of each image # Hint : Use contains_object_mask ##### CODE ##### # pred_tensor = pred_tensor.view((-1, 30)) # target_tensor = target_tensor.view((-1, 30)) contains_object_pred = pred_tensor[contains_object_mask.bool()].reshape(-1,30) bounding_box_pred = contains_object_pred[:, :10].reshape(-1, 5) classes_pred = contains_object_pred[:, 10:] # Similarly as above create 2 tensors bounding_box_target and # classes_target. ##### CODE ##### contains_object_target = target_tensor[contains_object_mask.bool()].reshape(-1,30) bounding_box_target = contains_object_target[:, :10].reshape(-1, 5) classes_target = contains_object_target[:, 10:] # Compute the No object loss here ##### CODE ##### no_object_loss = self.get_no_object_loss(target_tensor, pred_tensor, no_object_mask) # Compute the iou's of all bounding boxes and the mask for which bounding box # of 2 has the maximum iou the bounding boxes for each grid cell of each image. ##### CODE ##### box_target_iou, coo_response_mask = self.find_best_iou_boxes(bounding_box_target, bounding_box_pred) # Create 3 tensors : # 1) box_prediction_response - bounding box predictions for each grid cell which has the maximum iou # 2) box_target_response_iou - bounding box target ious for each grid cell which has the maximum iou # 3) box_target_response - bounding box targets for each grid cell which has the maximum iou # Hint : Use contains_object_response_mask box_prediction_response = bounding_box_pred[coo_response_mask[:, 4].bool()].reshape(-1,5) box_target_response = bounding_box_target[coo_response_mask[:, 4].bool()].reshape(-1,5) box_target_response_iou = box_target_iou[box_target_iou[:, 4].bool()].reshape(-1,5) ##### CODE ##### # Find the class_loss, containing object loss and regression loss ##### CODE ##### class_loss = self.get_class_prediction_loss(classes_pred, classes_target) regression_loss = self.get_regression_loss(box_prediction_response, box_target_response) contain_object_loss = self.get_contain_conf_loss(box_prediction_response, box_target_response_iou) total_loss = self.l_coord * regression_loss + self.l_noobj * no_object_loss + contain_object_loss + class_loss total_loss /= N return total_loss
py
7df92c597c20efa3513994b49ee52d8bd6d104fc
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example adds a text ad with ad parameters. To get ad groups, run get_ad_groups.py. To get keywords, run add_keywords.py. Tags: AdGroupAdService.mutate, AdParamService.mutate Api: AdWordsOnly """ __author__ = '[email protected] (Kevin Winter)' import os import sys sys.path.insert(0, os.path.join('..', '..', '..', '..', '..')) # Import appropriate classes from the client library. from adspygoogle import AdWordsClient ad_group_id = 'INSERT_AD_GROUP_ID_HERE' criterion_id = 'INSERT_KEYWORD_CRITERION_ID_HERE' def main(client, ad_group_id, criterion_id): # Initialize appropriate service. ad_group_ad_service = client.GetAdGroupAdService( 'https://adwords-sandbox.google.com', 'v201109_1') ad_param_service = client.GetAdParamService( 'https://adwords-sandbox.google.com', 'v201109_1') # Construct operations for adding text ad object and add to an ad group. operations = [{ 'operator': 'ADD', 'operand': { 'xsi_type': 'AdGroupAd', 'adGroupId': ad_group_id, 'ad': { 'xsi_type': 'TextAd', 'url': 'http://www.example.com', 'displayUrl': 'example.com', 'description1': 'Low-gravity fun for {param1:cheap}.', 'description2': 'Only {param2:a few} seats left!', 'headline': 'Luxury Mars Cruises' }, 'status': 'ENABLED' } }] ads = ad_group_ad_service.Mutate(operations)[0]['value'] # Display results. for ad in ads: print ('Text ad with id \'%s\' was successfully added to an ad group with ' 'id \'%s\'.' % (ad['adGroupId'], ad['ad']['id'])) # Construct operations for setting ad parameters. operations = [ { 'operator': 'SET', 'operand': { 'adGroupId': ad_group_id, 'criterionId': criterion_id, 'insertionText': '£100', 'paramIndex': '1' } }, { 'operator': 'SET', 'operand': { 'adGroupId': ad_group_id, 'criterionId': criterion_id, 'insertionText': '50', 'paramIndex': '2' } } ] ad_params = ad_param_service.Mutate(operations) # Display results. for ad_param in ad_params: print ('Ad parameter with text \'%s\' was successfully set for criterion ' 'with id \'%s\' and ad group id \'%s\'.' % (ad_param['insertionText'], ad_param['criterionId'], ad_param['adGroupId'])) print print ('Usage: %s units, %s operations' % (client.GetUnits(), client.GetOperations())) if __name__ == '__main__': # Initialize client object. client = AdWordsClient(path=os.path.join('..', '..', '..', '..', '..')) main(client, ad_group_id, criterion_id)
py
7df92c6e0a52c34bdc2aa3d0339a122913d7c3df
#!/usr/bin/env python """ simple-nasbench.py - Reproduce random search results from NASBENCH paper - https://arxiv.org/pdf/1902.09635.pdf - Simple NAS algorithm, which appears to strongly outperform algorithms from paper - Train LinearSVR on small random sample of architectures - Rank remaining architectures - Train in order """ import numpy as np import pandas as pd from tqdm import tqdm, trange from sklearn.pipeline import make_pipeline from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder from sklearn.svm import LinearSVR from nasbench.api import NASBench from rsub import * from matplotlib import pyplot as plt # -- # Helpers cummin = np.minimum.accumulate cummax = np.maximum.accumulate cumsum = np.cumsum def cumargmax(x): z = np.arange(x.shape[0], dtype=np.float) z[x != cummax(x)] = np.nan z = pd.Series(z).fillna(method='ffill') return z.values.astype(int) def make_edge_sel(num_nodes=7): edges = [] for idx in range(num_nodes ** 2): row = idx // num_nodes col = idx % num_nodes if row < col: edges.append(idx) return np.array(edges) def sample_one_column(x): i = np.arange(x.shape[0]) j = np.random.choice(x.shape[1], x.shape[0], replace=True) return x[(i, j)] max_nodes = 7 edge_sel = make_edge_sel(num_nodes=max_nodes) # -- # IO path = 'data/nasbench_only108.tfrecord' api = NASBench(path) # -- # ETL hashes = np.array(list(api.hash_iterator())) feats = [None] * len(hashes) results = [None] * len(hashes) test_acc = [None] * len(hashes) valid_acc = [None] * len(hashes) cost = [None] * len(hashes) for i, h in tqdm(enumerate(hashes), total=len(hashes)): spec, result = api.get_metrics_from_hash(h) # -- # Clean + featurize architecture num_nodes = spec['module_adjacency'].shape[0] padding = max_nodes - num_nodes if padding > 0: spec['module_adjacency'] = np.pad(spec['module_adjacency'], ((0,padding), (0,padding)), mode='constant') spec['module_operations'] += (['__noop__'] * padding) edge_feat = list(np.hstack(spec['module_adjacency'])[edge_sel].astype(np.float64)) node_feat = spec['module_operations'] feats[i] = edge_feat + node_feat # -- # Store results result = result[108] valid_acc[i] = [r['final_validation_accuracy'] for r in result] test_acc[i] = [r['final_test_accuracy'] for r in result] cost[i] = [r['final_training_time'] for r in result] valid_acc = np.vstack(valid_acc) test_acc = np.vstack(test_acc) cost = np.vstack(cost) mean_valid_acc = valid_acc.mean(axis=-1) mean_test_acc = test_acc.mean(axis=-1) mean_cost = cost.mean(axis=-1) # -- # Featurize num_edges = np.arange(max_nodes).sum() nominal_indices = np.arange(num_edges, num_edges + num_nodes) featurizer = make_pipeline( ColumnTransformer( transformers=[ ('nominal', make_pipeline( OneHotEncoder(handle_unknown='ignore'), ), nominal_indices) ], remainder='passthrough', ) ) Xf = featurizer.fit_transform(feats) Xf = Xf.astype(np.float64) / Xf.shape[1] # -- # Reproducing random baseline def run_simple_random(valid_acc, test_acc, cost, models_per_run=1e4, n_repeats=1000, valid_mode='mean'): n_models = len(valid_acc) models_per_run = min(int(models_per_run), n_models) cum_valid_acc = [None] * n_repeats cum_test_acc = [None] * n_repeats cum_costs = [None] * n_repeats for i in trange(n_repeats): sel = np.random.choice(n_models, models_per_run, replace=False) valid_acc_sel = valid_acc[sel] test_acc_sel = test_acc[sel] cost_sel = cost[sel] if valid_mode == 'mean': valid_acc_sel = valid_acc_sel.mean(axis=-1) cost_mult = 3 elif valid_mode == 'sample_one': valid_acc_sel = sample_one_column(valid_acc_sel) cost_mult = 1 else: raise Exception test_acc_sel = test_acc_sel.mean(axis=-1) cost_sel = cost_mult * cost_sel.mean(axis=-1) cum_valid_acc[i] = cummax(valid_acc_sel) cum_test_acc[i] = test_acc_sel[cumargmax(valid_acc_sel)] cum_costs[i] = cumsum(cost_sel) return ( np.stack(cum_valid_acc), np.stack(cum_test_acc), np.stack(cum_costs), ) randm_cum_valid_acc, randm_cum_test_acc, randm_cum_costs = run_simple_random( valid_acc=valid_acc, test_acc=test_acc, cost=cost, valid_mode='mean', ) mean_randm_cum_valid_acc = randm_cum_valid_acc.mean(axis=0) mean_randm_cum_test_acc = randm_cum_test_acc.mean(axis=0) mean_randm_cum_costs = randm_cum_costs.mean(axis=0) rand1_cum_valid_acc, rand1_cum_test_acc, rand1_cum_costs = run_simple_random( valid_acc=valid_acc, test_acc=test_acc, cost=cost, valid_mode='sample_one' ) mean_rand1_cum_valid_acc = rand1_cum_valid_acc.mean(axis=0) mean_rand1_cum_test_acc = rand1_cum_test_acc.mean(axis=0) mean_rand1_cum_costs = rand1_cum_costs.mean(axis=0) # This agrees roughly w/ Fig7 in the paper _ = plt.plot(mean_randm_cum_costs, mean_test_acc.max() - mean_randm_cum_test_acc, c='red', label='randm') # for i in range(256): # _ = plt.plot(randm_cum_costs[i], mean_test_acc.max() - randm_cum_test_acc[i], c='red', alpha=0.01) _ = plt.plot(mean_rand1_cum_costs, mean_test_acc.max() - mean_rand1_cum_test_acc, c='orange', label='rand1') # for i in range(256): # _ = plt.plot(rand1_cum_costs[i], mean_test_acc.max() - rand1_cum_test_acc[i], c='orange', alpha=0.01) _ = plt.xscale('log') _ = plt.yscale('log') _ = plt.ylim(1e-3, 1e-1) _ = plt.legend() _ = plt.grid(which='both', alpha=0.5) show_plot() # -- # Model baseline def run_svr(Xf, valid_acc, test_acc, cost, train_samples=100, n_repeats=32, C=1, valid_mode='mean'): n_models = len(valid_acc) cum_valid_acc = [None] * n_repeats cum_test_acc = [None] * n_repeats cum_costs = [None] * n_repeats for i in trange(n_repeats): perm = np.random.permutation(Xf.shape[0]) train_sel, test_sel = perm[:train_samples], perm[train_samples:] Xf_train, Xf_test = Xf[train_sel], Xf[test_sel] valid_acc_train, valid_acc_test = valid_acc[train_sel], valid_acc[test_sel] test_acc_train, test_acc_test = test_acc[train_sel], test_acc[test_sel] cost_train, cost_test = cost[train_sel], cost[test_sel] # >> if valid_mode == 'mean': valid_acc_train = valid_acc_train.mean(axis=-1) valid_acc_test = valid_acc_test.mean(axis=-1) cost_mult = 3 elif valid_mode == 'sample_one': valid_acc_train = sample_one_column(valid_acc_train) valid_acc_test = sample_one_column(valid_acc_test) cost_mult = 1 # << test_acc_train = test_acc_train.mean(axis=-1) test_acc_test = test_acc_test.mean(axis=-1) cost_train = cost_train.mean(axis=-1) cost_test = cost_test.mean(axis=-1) model = LinearSVR(C=C, max_iter=int(1e5)).fit(Xf_train, valid_acc_train) pred_test = model.predict(Xf_test) rank_test = np.argsort(-pred_test) valid_acc_sel = np.concatenate([valid_acc_train, valid_acc_test[rank_test]]) test_acc_sel = np.concatenate([test_acc_train, test_acc_test[rank_test]]) cost_sel = np.concatenate([cost_train, cost_test[rank_test]]) cum_valid_acc[i] = cummax(valid_acc_sel) cum_test_acc[i] = test_acc_sel[cumargmax(valid_acc_sel)] cum_costs[i] = cost_mult * cumsum(cost_sel) return ( np.stack(cum_valid_acc), np.stack(cum_test_acc), np.stack(cum_costs), ) svr1_cum_valid_acc, svr1_cum_test_acc, svr1_cum_costs = run_svr( Xf=Xf, valid_acc=valid_acc, test_acc=test_acc, cost=cost, valid_mode='sample_one', C=1 ) mean_svr1_cum_valid_acc = svr1_cum_valid_acc.mean(axis=0) mean_svr1_cum_test_acc = svr1_cum_test_acc.mean(axis=0) mean_svr1_cum_costs = svr1_cum_costs.mean(axis=0) svrm_cum_valid_acc, svrm_cum_test_acc, svrm_cum_costs = run_svr( Xf=Xf, valid_acc=valid_acc, test_acc=test_acc, cost=cost, valid_mode='mean', C=1 ) mean_svrm_cum_valid_acc = svrm_cum_valid_acc.mean(axis=0) mean_svrm_cum_test_acc = svrm_cum_test_acc.mean(axis=0) mean_svrm_cum_costs = svrm_cum_costs.mean(axis=0) # plot random (same as above) _ = plt.plot(mean_rand_cum_costs, mean_test_acc.max() - mean_rand_cum_test_acc, c='red', label='rand') # for i in range(rand_cum_test_acc.shape[0]): # _ = plt.plot(rand_cum_costs[i], mean_test_acc.max() - rand_cum_test_acc[i], c='red', alpha=0.01) # plot svr _ = plt.plot(mean_svr1_cum_costs, mean_test_acc.max() - mean_svr1_cum_test_acc, c='blue', label='svr1') # for i in range(svr_cum_test_acc.shape[0]): # _ = plt.plot(svr_cum_costs[i], mean_test_acc.max() - svr_cum_test_acc[i], c='blue', alpha=0.1) _ = plt.plot(mean_svrm_cum_costs, mean_test_acc.max() - mean_svrm_cum_test_acc, c='green', label='svrm') _ = plt.xscale('log') _ = plt.yscale('log') _ = plt.ylim(5e-4, 1e-1) _ = plt.legend() _ = plt.grid(which='both', alpha=0.5) show_plot()
py
7df92e5218551a0f0516a001bbb2dbcba03dd697
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import scoped_session, sessionmaker from config import config import os import sys sys.path.append(os.getcwd()) config_name = os.getenv('APP_SETTINGS') database_uri = config.get(config_name).SQLALCHEMY_DATABASE_URI engine = create_engine(database_uri, convert_unicode=True) db_session = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=engine)) Base = declarative_base() Base.query = db_session.query_property()
py
7df92edcc3ddc458aeacdbaafa9b6d384bef988e
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import numpy as np def test_const(): x = tvm.const(1, "int32") print(x.dtype) assert x.dtype == tvm.int32 assert isinstance(x, tvm.expr.IntImm) def test_scalar_dtype_inference(): for data in [True, np.bool(1), np.uint8(1), np.uint16(1), np.uint32(1), np.uint64(1), np.int8(1), np.int16(1), np.int32(1), np.int64(1), np.float16(1), np.float32(1), np.float64(1)]: assert tvm.const(data).dtype == str(np.array(data).dtype) assert tvm.const(1).dtype == 'int32' assert tvm.const(1.0).dtype == 'float32' for data in [True, np.bool(1), np.uint8(1), np.uint16(1), np.uint32(1), np.uint64(1), np.int8(1), np.int16(1), np.int32(1), np.int64(1), np.float16(1), np.float32(1), np.float64(1)]: assert tvm.convert(data).dtype == str(np.array(data).dtype) assert tvm.convert(1).dtype == 'int32' assert tvm.convert(1.0).dtype == 'float32' def test_make(): x = tvm.const(1, "int32") y = tvm.var("x") z = x + y assert isinstance(tvm.max(x, y), tvm.expr.Max) assert isinstance(tvm.min(x, y), tvm.expr.Min) def test_ir(): x = tvm.const(1, "int32") y = tvm.make.IntImm('int32', 1) z = x + y stmt = tvm.make.Evaluate(z) assert isinstance(stmt, tvm.stmt.Evaluate) def test_ir2(): x = tvm.var("n") a = tvm.var("array", tvm.handle) st = tvm.make.Store(a, x + 1, 1) assert isinstance(st, tvm.stmt.Store) assert(st.buffer_var == a) def test_let(): x = tvm.var('x') y = tvm.var('y') stmt = tvm.make.LetStmt( x, 10, tvm.make.Evaluate(x + 1)); def test_cast(): x = tvm.var('x', dtype="float32") y = x.astype("int32") z = x.astype("float32x4") assert isinstance(y, tvm.expr.Cast) assert isinstance(z, tvm.expr.Broadcast) assert z.lanes == 4 def test_attr(): x = tvm.var('x') y = tvm.var('y') stmt = tvm.make.AttrStmt( y, "stride", 10, tvm.make.Evaluate(x + 1)); assert stmt.node == y a = tvm.convert(1) assert a.value == 1 try: a.no_field assert False except AttributeError: pass def test_basic(): a = tvm.var('a') b = tvm.var('b') c = a + b assert str(c) == '(%s + %s)' % (a.name, b.name) def test_stmt(): x = tvm.make.Evaluate(0) tvm.make.For(tvm.var('i'), 0, 1, tvm.stmt.For.Serial, 0, x) def test_dir(): x = tvm.var('x') dir(x) def test_dtype(): x = tvm.var('x') assert x.dtype == 'int32' y = tvm.var('y') assert (x > y).dtype == 'bool' def test_any(): x = tvm.var('x') y = tvm.var('y') z = tvm.var('z') try: t = x or x assert False except ValueError: pass try: tvm.any() assert False except ValueError: pass assert str(tvm.any(x < y)) == '(%s < %s)' % (x.name, y.name) assert str(tvm.any(x < y, x > z)) == '((%s < %s) || (%s > %s))' % ( x.name, y.name, x.name, z.name) assert str(tvm.any(x < y, y > z + 1, x < z * 2)) == \ '(((%s < %s) || (%s > (%s + 1))) || (%s < (%s*2)))' % ( x.name, y.name, y.name, z.name, x.name, z.name) def test_all(): x = tvm.var('x') y = tvm.var('y') z = tvm.var('z') try: t = x and x assert False except ValueError: pass try: tvm.all() assert False except ValueError: pass assert str(tvm.all(x < y)) == '(%s < %s)' % (x.name, y.name) assert str(tvm.all(x < y, x > z)) == '((%s < %s) && (%s > %s))' % ( x.name, y.name, x.name, z.name) assert str(tvm.all(x < y, y > z + 1, x < z * 2)) == \ '(((%s < %s) && (%s > (%s + 1))) && (%s < (%s*2)))' % ( x.name, y.name, y.name, z.name, x.name, z.name) def test_bitwise(): x = tvm.var('x') y = tvm.var('y') assert str(x << y) == 'shift_left(x, y)' assert str(x >> y) == 'shift_right(x, y)' assert str(x & y) == 'bitwise_and(x, y)' assert str(x | y) == 'bitwise_or(x, y)' assert str(x ^ y) == 'bitwise_xor(x, y)' assert str(~x) == 'bitwise_not(x)' assert(tvm.const(1, "int8x2") >> 1).dtype == "int8x2" assert(x >> tvm.const(1, "int32x2")).dtype == "int32x2" assert(tvm.var("z", "int8x2") << tvm.const(1, "int8x2")).dtype == "int8x2" def test_equality(): a = tvm.var('a') b = tvm.var('b') c = (a == b) assert not c d = (c != c) assert not d def test_equality_string_imm(): x = 'a' y = tvm.make.StringImm(x) x == y.value x == y if __name__ == "__main__": test_cast() test_attr() test_const() test_scalar_dtype_inference() test_make() test_ir() test_basic() test_stmt() test_let() test_dir() test_dtype() test_any() test_all() test_bitwise() test_equality() test_equality_string_imm()
py
7df92faac10f2c51d855b2d51f70b7c865f2e9be
''' Add a single slider In the previous exercise, you added a single plot to the "current document" of your application. In this exercise, you'll practice adding a layout to your current document. Your job here is to create a single slider, use it to create a widgetbox layout, and then add this layout to the current document. The slider you create here cannot be used for much, but in the later exercises, you'll use it to update your plots! INSTRUCTIONS 100XP Import curdoc from bokeh.io, widgetbox from bokeh.layouts, and Slider from bokeh.models. Create a slider called slider by using the Slider() function and specifying the parameters title, start, end, step, and value. Use the slider to create a widgetbox layout called layout. Add the layout to the current document using curdoc().add_root(). It needs to be passed in as an argument to add_root(). ''' # Perform the necessary imports from bokeh.io import curdoc from bokeh.layouts import widgetbox from bokeh.models import Slider # Create a slider: slider slider = Slider(title='my slider', start=0, end=10, step=0.1, value=2) # Create a widgetbox layout: layout layout = widgetbox(slider) # Add the layout to the current document curdoc().add_root(layout)
py
7df9318e61748a12c4217f03f35ff298c5addbd3
#! /usr/bin/env python3 # -*- coding: utf-8 -*- """Doc String """ __author__ = "[:VIM_EVAL:]jaskeleton_user[:END_EVAL:]" __email__ = "[:VIM_EVAL:]jaskeleton_email[:END_EVAL:]" __created__ = "[:VIM_EVAL:]jaskeleton_date[:END_EVAL:]" __modified__ = "[:VIM_EVAL:]jaskeleton_date[:END_EVAL:]" if __name__ == '__main__': pass
py
7df932ce18a754059d84d6b53284042bffb040e0
class MXL7ApplicationCategories(object): def __init__(self, session): super(MXL7ApplicationCategories, self).__init__() self._session = session def getNetworkL7FirewallRulesApplicationCategories(self, networkId: str): """ **Return the L7 firewall application categories and their associated applications for an MX network** https://developer.cisco.com/docs/meraki-api-v0/#!get-network-l-7-firewall-rules-application-categories - networkId (string) """ metadata = { 'tags': ['MX L7 application categories'], 'operation': 'getNetworkL7FirewallRulesApplicationCategories', } resource = f'/networks/{networkId}/l7FirewallRules/applicationCategories' return self._session.get(metadata, resource)
py
7df9347cc1cd48b5a1262e169421661e6deacef2
import os import re import shutil from textwrap import dedent from traitlets import Bool, List, Unicode from typing import Optional from .base import BasePlugin from ..utils import unzip class ExtractorPlugin(BasePlugin): """Submission archive files extractor plugin for the :class:`~nbgrader.apps.zipcollectapp.ZipCollectApp`. Extractor plugin subclasses MUST inherit from this class. """ force = Bool( default_value=False, help="Force overwrite of existing files." ).tag(config=True) zip_ext = List( ['.zip', '.gz'], help=dedent( """ List of valid archive (zip) filename extensions to extract. Any archive (zip) files with an extension not in this list are copied to the `extracted_directory`. """ ) ).tag(config=True) def extract(self, archive_path: str, extracted_path: str) -> None: """Extract archive (zip) files and submission files in the `archive_directory`. Files are extracted to the `extracted_directory`. Non-archive (zip) files found in the `archive_directory` are copied to the `extracted_directory`. This is the main function called by the :class:`~nbgrader.apps.zipcollectapp.ZipCollectApp` for each archive file to be extracted. Arguments --------- archive_path: Absolute path to the `archive_directory`. extracted_path: Absolute path to the `extracted_directory`. """ if not os.listdir(archive_path): self.log.warning( "No files found in directory: {}".format(archive_path)) return for root, _, archive_files in os.walk(archive_path): if not archive_files: continue extract_to = os.path.normpath(os.path.join( extracted_path, os.path.relpath(root, archive_path) )) if not os.path.isdir(extract_to): os.makedirs(extract_to) for zfile in archive_files: zfile = os.path.join(root, zfile) filename, ext = os.path.splitext(os.path.basename(zfile)) # unzip (tree) each archive file in archive_path if ext in self.zip_ext: # double splitext for .tar.gz fname, ext = os.path.splitext(os.path.basename(filename)) if ext == '.tar': filename = fname self.log.info("Extracting from: {}".format(zfile)) self.log.info(" Extracting to: {}".format( os.path.join(extract_to, filename))) unzip( zfile, extract_to, zip_ext=self.zip_ext, create_own_folder=True, tree=True ) # move each non-archive file in archive_path else: dest = os.path.join(extract_to, os.path.basename(zfile)) self.log.info("Copying from: {}".format(zfile)) self.log.info(" Copying to: {}".format(dest)) shutil.copy(zfile, dest) class FileNameCollectorPlugin(BasePlugin): """Submission filename collector plugin for the :class:`~nbgrader.apps.zipcollectapp.ZipCollectApp`. Collect plugin subclasses MUST inherit from this class. """ named_regexp = Unicode( default_value='', help=dedent( r""" This regular expression is applied to each submission filename and MUST be supplied by the instructor. This regular expression MUST provide the `(?P<student_id>...)` and `(?P<file_id>...)` named group expressions. Optionally this regular expression can also provide the `(?P<first_name>...)`, `(?P<last_name>...)`, `(?P<email>...)`, and `(?P<timestamp>...)` named group expressions. For example if the filename is: `ps1_bitdiddle_attempt_2016-01-30-15-00-00_problem1.ipynb` then this `named_regexp` could be: ".*_(?P<student_id>\w+)_attempt_(?P<timestamp>[0-9\-]+)_(?P<file_id>\w+)" For named group regular expression examples see https://docs.python.org/3/howto/regex.html """ ) ).tag(config=True) valid_ext = List( default_value=['.ipynb'], help=dedent( """ List of valid submission filename extensions to collect. Any submitted file with an extension not in this list is skipped. """ ) ).tag(config=True) def _match(self, filename: str) -> Optional[dict]: """Match the named group regular expression to the beginning of the filename and return the match groupdict or None if no match. """ if not self.named_regexp: self.log.warning( "Regular expression not provided for plugin. Run with " "`--help-all` flag for more information." ) return None match = re.match(self.named_regexp, filename) if not match or not match.groups(): self.log.warning( "Regular expression '{}' did not match anything in: {}" "".format(self.named_regexp, filename) ) return None gd = match.groupdict() self.log.debug( "Regular expression '{}' matched\n'{}' in: {}" "".format(self.named_regexp, gd, filename) ) return gd def collect(self, submitted_file: str) -> Optional[dict]: """This is the main function called by the :class:`~nbgrader.apps.zipcollectapp.ZipCollectApp` for each submitted file. Note this function must also return a dictionary or None for sub-classed plugins. Arguments --------- submitted_file: Each submitted file in the ``extracted_directory`` (absolute path). Returns ------- groupdict: Collected data from the filename or None if the file should be skipped. Collected data is a dict of the form:: { file_id: file_id, # MUST be provided student_id: student_id, # MUST be provided timestamp: timestamp # Can optional be provided } Note: ``file_id`` MUST include the the relative path to the assignment if you are collecting files in assignment sub-folders. """ _, ext = os.path.splitext(submitted_file) # Skip any files without the correct extension if ext not in self.valid_ext: self.log.debug("Invalid file extension {}: {}".format(ext, submitted_file)) return None groupdict = self._match(submitted_file) if not groupdict: return None return groupdict
py
7df93494363c789de56f8722fc9a4ba921e27557
# -*- coding: utf-8 -*- # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import google.api_core.grpc_helpers from google.ads.google_ads.v6.proto.services import shopping_performance_view_service_pb2_grpc class ShoppingPerformanceViewServiceGrpcTransport(object): """gRPC transport class providing stubs for google.ads.googleads.v6.services ShoppingPerformanceViewService API. The transport provides access to the raw gRPC stubs, which can be used to take advantage of advanced features of gRPC. """ # The scopes needed to make gRPC calls to all of the methods defined # in this service. _OAUTH_SCOPES = ( 'https://www.googleapis.com/auth/adwords', ) def __init__(self, channel=None, credentials=None, address='googleads.googleapis.com:443'): """Instantiate the transport class. Args: channel (grpc.Channel): A ``Channel`` instance through which to make calls. This argument is mutually exclusive with ``credentials``; providing both will raise an exception. credentials (google.auth.credentials.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. address (str): The address where the service is hosted. """ # If both `channel` and `credentials` are specified, raise an # exception (channels come with credentials baked in already). if channel is not None and credentials is not None: raise ValueError( 'The `channel` and `credentials` arguments are mutually ' 'exclusive.', ) # Create the channel. if channel is None: channel = self.create_channel( address=address, credentials=credentials, options={ 'grpc.max_send_message_length': -1, 'grpc.max_receive_message_length': -1, }.items(), ) self._channel = channel # gRPC uses objects called "stubs" that are bound to the # channel and provide a basic method for each RPC. self._stubs = { 'shopping_performance_view_service_stub': shopping_performance_view_service_pb2_grpc.ShoppingPerformanceViewServiceStub(channel), } @classmethod def create_channel( cls, address='googleads.googleapis.com:443', credentials=None, **kwargs): """Create and return a gRPC channel object. Args: address (str): The host for the channel to use. credentials (~.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. kwargs (dict): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. """ return google.api_core.grpc_helpers.create_channel( address, credentials=credentials, scopes=cls._OAUTH_SCOPES, **kwargs ) @property def channel(self): """The gRPC channel used by the transport. Returns: grpc.Channel: A gRPC channel object. """ return self._channel @property def get_shopping_performance_view(self): """Return the gRPC stub for :meth:`ShoppingPerformanceViewServiceClient.get_shopping_performance_view`. Returns the requested Shopping performance view in full detail. Returns: Callable: A callable which accepts the appropriate deserialized request object and returns a deserialized response object. """ return self._stubs['shopping_performance_view_service_stub'].GetShoppingPerformanceView
py
7df935de21261e1cc99454dc30d28c4451714690
import os from string import Template import numpy as np import aesara from aesara import Apply from aesara.tensor import as_tensor_variable from aesara.tensor.sort import TopKOp from .basic_ops import ( GpuKernelBase, Kernel, as_gpuarray_variable, gpuarray_helper_inc_dir, infer_context_name, ) from .opt import op_lifter, register_opt, register_opt2 from .type import GpuArrayType try: import pygpu import pygpu.gpuarray as ga except ImportError: # To make sure aesara is importable pass # TODO GPU sort / argsort class GpuTopKOp(GpuKernelBase, TopKOp): """Implements TopKOp on gpu Currently the output seem sorted, but we do not test it. So as on the CPU, we only support sorted=False for now. """ __props__ = TopKOp.__props__ _f16_ok = True def __init__( self, axis=-1, sorted=True, idx_dtype="int64", return_values=True, return_indices=True, ): if sorted: raise NotImplementedError( "GpuTopK currently is not sure to give sorted output even if they look sorted.." ) GpuKernelBase.__init__(self) TopKOp.__init__( self, axis=axis, sorted=sorted, idx_dtype=idx_dtype, return_values=return_values, return_indices=return_indices, ) def perform(self, node, inputs, output_storage, params): raise NotImplementedError() def c_headers(self): return ["gpuarray_api.h", "gpuarray_helper.h", "numpy_compat.h"] def c_header_dirs(self): return [ os.path.dirname(__file__), gpuarray_helper_inc_dir(), pygpu.get_include(), ] def c_code_cache_version(self): return (4,) def gpu_kernels(self, node, nodename): # load kernel source device_type = node.inputs[0].type.context.kind kernel_ext = {b"cuda": ".cu", b"opencl": ".cl"}[device_type] common_ext = {b"cuda": ".cuh", b"opencl": ".h"}[device_type] # prepare "$" macros if device_type == b"cuda": ndim = node.inputs[0].ndim dstv_strides_code = "".join( "ssize_t dstv_strides_%d, " % i for i in range(ndim) ) dsti_strides_code = "".join( "ssize_t dsti_strides_%d, " % i for i in range(ndim) ) src_strides_code = "".join( "ssize_t src_strides_%d, " % i for i in range(ndim) ) set_slice_code = """ gidx = gid %% dims_%(i)d; gid /= dims_%(i)d; {dstv}; {dsti}; src = ptr_add(src, gidx*src_strides_%(i)d);\n""".format( dstv="dstv = ptr_add(dstv, gidx*dstv_strides_%(i)d)" if self.return_values else "", dsti="dsti = ptr_add(dsti, gidx*dsti_strides_%(i)d)" if self.return_indices else "", ) set_slice_code = "".join(set_slice_code % dict(i=j) for j in range(1, ndim)) if self.return_values: set_slice_code += """ dstv = ptr_add(dstv, dstv_offset); """ if self.return_indices: set_slice_code += """ dsti = ptr_add(dsti, dsti_offset); """ set_slice_code += """ src = ptr_add(src, src_offset); """ flags = Kernel.get_flags(node.inputs[0].dtype) subs = dict( inp_t=ga.dtype_to_ctype(node.inputs[0].dtype), out_t=ga.dtype_to_ctype(self.idx_dtype), dims="".join("size_t dims_%d, " % i for i in range(1, ndim)), dstv="INPUT_TYPE *dstv," if self.return_values else "", dstv_offset="size_t dstv_offset," if self.return_values else "", dsti="INDEX_TYPE *dsti," if self.return_indices else "", dsti_offset="size_t dsti_offset," if self.return_indices else "", dstv_strides=dstv_strides_code if self.return_values else "", dsti_strides=dsti_strides_code if self.return_indices else "", src_strides=src_strides_code, set_slice=set_slice_code, write_value=int(self.return_values), write_index=int(self.return_indices), ndim=str(ndim), ) elif device_type == b"opencl": raise NotImplementedError() # setup parameters param_types = [ga.SIZE] * (ndim - 1) # dims for _ in range(self.return_values + self.return_indices): param_types.append(ga.GpuArray) # dst* param_types.append(ga.SIZE) # offset param_types.extend([ga.SSIZE] * ndim) # dst*_strides param_types.append(ga.SIZE) # k param_types.append(ga.GpuArray) # src param_types.append(ga.SIZE) # offset param_types.extend([ga.SSIZE] * ndim) # src_strides param_types.append(ga.SIZE) # size # load and compile kernels with open( os.path.join( os.path.dirname(__file__), "c_code", "topk_common" + common_ext ) ) as f: common_src = f.read() kernels = [] def build_kernel(fname, kname, subs): with open(os.path.join(os.path.dirname(__file__), "c_code", fname)) as f: kernel_src = f.read() ker = Kernel( code=( "#include <cluda.h>\n" + Template(common_src + kernel_src).substitute(**subs) ), name=kname, params=param_types, flags=flags, objvar=kname + nodename, ) return ker subs["count_t"] = "int" kernels.append(build_kernel("topk_dense" + kernel_ext, "k_topk_dense", subs)) subs["kname"] = "k_topk_dense_large" kernels.append( build_kernel("topk_dense_large" + kernel_ext, "k_topk_dense_large", subs) ) subs["count_t"] = "long long" subs["kname"] = "k_topk_dense_xlarge" kernels.append( build_kernel("topk_dense_large" + kernel_ext, "k_topk_dense_xlarge", subs) ) return kernels def c_code(self, node, nodename, inps, outs, sub): context = node.inputs[0].type.context if context.kind != b"cuda": raise NotImplementedError( "%s: We only have CUDA " "implementation so far." % self.__class__.__name__ ) x, k = inps inp_dtc = ga.dtype_to_typecode(node.inputs[0].dtype) if not self.return_indices: (yv,) = outs elif self.return_values: yv, yi = outs else: (yi,) = outs out_dtype_s = self.idx_dtype out_dtc = ga.dtype_to_typecode(out_dtype_s) fail = sub["fail"] ctx = sub["params"] k_dtype = node.inputs[1].type.dtype_specs()[1] # max threads per block MAX_TPB = context.maxlsize0 # max blocks per grid MAX_BPG = context.maxgsize0 WARP_SIZE = 32 ndim = node.inputs[0].ndim reordered_axes = list(range(ndim)) axis = self.axis % ndim del reordered_axes[axis] reordered_axes = [axis] + reordered_axes dims = "".join("dims[%d], " % i for i in reordered_axes[1:]) prep_output = "" if self.return_values: def_dvstrides = "const ssize_t *dvstrides = PyGpuArray_STRIDES(%s)" % yv params_dv = "{}->ga.data, {}->ga.offset,\n".format(yv, yv) params_dv += "".join("dvstrides[%d], " % i for i in reordered_axes) prep_output += ( """ if (0 != aesara_prep_output( &%(yv)s, %(ndim)d, odims, %(inp_dtc)s, GA_C_ORDER, %(ctx)s)) { %(fail)s; }\n""" % locals() ) else: def_dvstrides = params_dv = "" if self.return_indices: def_distrides = "const ssize_t *distrides = PyGpuArray_STRIDES(%s)" % yi params_di = "{}->ga.data, {}->ga.offset,\n".format(yi, yi) params_di += "".join("distrides[%d], " % i for i in reordered_axes) prep_output += ( """ if (0 != aesara_prep_output( &%(yi)s, %(ndim)d, odims, %(out_dtc)s, GA_C_ORDER, %(ctx)s)) { %(fail)s; }\n""" % locals() ) else: def_distrides = params_di = "" sstrides = ", ".join("sstrides[%d]" % i for i in reordered_axes) code = """ { const ssize_t k_ = ((%(k_dtype)s*)(PyArray_DATA(%(k)s)))[0]; const size_t *dims = PyGpuArray_DIMS(%(x)s); size_t odims[%(ndim)d]; for (int i=0; i<%(ndim)d; i++) odims[i] = dims[i]; odims[%(axis)d] = k_>=0 ? k_ : -k_; if (0 == odims[%(axis)d]) { PyErr_SetString( PyExc_ValueError, "topk: kth must not be zero"); %(fail)s; } else if (dims[%(axis)d] < odims[%(axis)d]) { PyErr_SetString( PyExc_ValueError, "topk: kth cannot be larger than the size of specified axis %(axis)d"); %(fail)s; } %(prep_output)s size_t grid_size=1, block_size=1; for (int i=0; i<%(ndim)d; ++i) { if (i!=%(axis)d) grid_size *= dims[i]; else block_size = dims[i]; } // round up to multiples of warp size block_size = ((block_size + %(WARP_SIZE)d - 1) / %(WARP_SIZE)d) * %(WARP_SIZE)d; if (grid_size > %(MAX_BPG)d) { PyErr_SetString( PyExc_ValueError, "topk: too many slices to work with, expected <= %(MAX_BPG)d"); %(fail)s; } %(def_dvstrides)s; %(def_distrides)s; const ssize_t *sstrides = PyGpuArray_STRIDES(%(x)s); int err; if (dims[%(axis)d] > (1u << 31)) { block_size = %(MAX_TPB)d; err = k_topk_dense_xlarge_call( 1, &grid_size, &block_size, 0, %(dims)s %(params_dv)s %(params_di)s k_, %(x)s->ga.data, %(x)s->ga.offset, %(sstrides)s, dims[%(axis)d] ); } else if (block_size > %(MAX_TPB)d) { block_size = %(MAX_TPB)d; err = k_topk_dense_large_call( 1, &grid_size, &block_size, 0, %(dims)s %(params_dv)s %(params_di)s k_, %(x)s->ga.data, %(x)s->ga.offset, %(sstrides)s, dims[%(axis)d] ); } else { err = k_topk_dense_call( 1, &grid_size, &block_size, 0, %(dims)s %(params_dv)s %(params_di)s k_, %(x)s->ga.data, %(x)s->ga.offset, %(sstrides)s, dims[%(axis)d] ); } if (err != GA_NO_ERROR) { PyErr_SetString( PyExc_RuntimeError, "topk: gpu kernel failed to execute"); %(fail)s; } } """ return code % locals() def make_node(self, inp, kth): ctx_name = infer_context_name(inp) inp = as_gpuarray_variable(inp, ctx_name) kth = as_tensor_variable(kth) bcast = inp.type.broadcastable outs = [] if self.return_values: outs.append(inp.type()) if self.return_indices: outs.append( GpuArrayType( dtype=self.idx_dtype, broadcastable=bcast, context_name=ctx_name )() ) return Apply(self, [inp, kth], outs) def get_params(self, node): return node.inputs[0].type.context class ValuesEqApproxNoOrder: """ We ignore the order of elements on a given axis during the comparison. """ def __init__(self, axis): self.axis = axis def __call__(self, val1, val2): v1 = np.sort(val1, axis=self.axis) v2 = np.sort(val2, axis=self.axis) ret = aesara.tensor.type.values_eq_approx(v1, v2) return ret @register_opt("fast_compile") @op_lifter([TopKOp], cuda_only=True) @register_opt2([TopKOp], "fast_compile") def local_gpua_topkop(op, ctx_name, inputs, outputs): axis = op.axis rv = op.return_values ri = op.return_indices x, k = inputs x = as_gpuarray_variable(x, ctx_name) if op.sorted: return gpu_op = GpuTopKOp( axis=axis, sorted=op.sorted, idx_dtype=op.idx_dtype, return_values=rv, return_indices=ri, ) rets = gpu_op(x, k, return_list=True) c = ValuesEqApproxNoOrder(axis) for r in rets: r.tag.values_eq_approx = c return rets
py
7df93607cfcd46c931b878f23d7a58ab150ae921
# coding: utf-8 """ CloudEndure API documentation © 2017 CloudEndure All rights reserved # General Request authentication in CloudEndure's API is done using session cookies. A session cookie is returned upon successful execution of the \"login\" method. This value must then be provided within the request headers of all subsequent API requests. ## Errors Some errors are not specifically written in every method since they may always return. Those are: 1) 401 (Unauthorized) - for unauthenticated requests. 2) 405 (Method Not Allowed) - for using a method that is not supported (POST instead of GET). 3) 403 (Forbidden) - request is authenticated, but the user is not allowed to access. 4) 422 (Unprocessable Entity) - for invalid input. ## Formats All strings with date-time format are according to RFC3339. All strings with \"duration\" format are according to ISO8601. For example, a full day duration can be specified with \"PNNNND\". # noqa: E501 OpenAPI spec version: 5 Contact: https://bit.ly/2T54hSc Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class CloudEndureError: """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = {"message": "str", "code": "str"} attribute_map = {"message": "message", "code": "code"} def __init__(self, message=None, code=None): # noqa: E501 """CloudEndureError - a model defined in Swagger""" # noqa: E501 self._message = None self._code = None self.discriminator = None if message is not None: self.message = message if code is not None: self.code = code @property def message(self): """Gets the message of this CloudEndureError. # noqa: E501 :return: The message of this CloudEndureError. # noqa: E501 :rtype: str """ return self._message @message.setter def message(self, message): """Sets the message of this CloudEndureError. :param message: The message of this CloudEndureError. # noqa: E501 :type: str """ self._message = message @property def code(self): """Gets the code of this CloudEndureError. # noqa: E501 :return: The code of this CloudEndureError. # noqa: E501 :rtype: str """ return self._code @code.setter def code(self, code): """Sets the code of this CloudEndureError. :param code: The code of this CloudEndureError. # noqa: E501 :type: str """ self._code = code def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list( map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value) ) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value if issubclass(CloudEndureError, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CloudEndureError): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
7df936ea92372c43878204ef7a92c35dd8dc3f7c
r, g, b = map(int, input().split()) if (100 * r + g * 10 + b) % 4 == 0: print("YES") else: print("NO")
py
7df9370f6697b4e7862b8778bd119966d76768d7
import pytest from tri_struct import merged from iommi._db_compat import field_defaults_factory @pytest.mark.django def test_field_defaults_factory(): from django.db import models base = dict(parse_empty_string_as_none=True, required=True, display_name=None) assert field_defaults_factory(models.CharField(null=False, blank=False)) == merged( base, dict(parse_empty_string_as_none=False) ) assert field_defaults_factory(models.CharField(null=False, blank=True)) == merged( base, dict(parse_empty_string_as_none=False, required=False) ) assert field_defaults_factory(models.CharField(null=True, blank=False)) == merged(base, dict(required=False)) assert field_defaults_factory(models.CharField(null=True, blank=True)) == merged(base, dict(required=False)) @pytest.mark.django def test_field_defaults_factory_boolean(): from django.db import models django_null_default = not models.BooleanField().null base = dict(parse_empty_string_as_none=django_null_default, display_name=None) assert field_defaults_factory(models.BooleanField(null=False, blank=False)) == merged( base, dict(parse_empty_string_as_none=False) ) assert field_defaults_factory(models.BooleanField(null=False, blank=True)) == merged( base, dict(parse_empty_string_as_none=False) ) assert field_defaults_factory(models.BooleanField(null=True, blank=False)) == base assert field_defaults_factory(models.BooleanField(null=True, blank=True)) == base
py
7df9377ffcc55402d32a700d90d2a635b001ea27
# coding: utf-8 # ----------------------------------------------------------------------------------- # <copyright company="Aspose Pty Ltd" file="DocxConvertOptions.py"> # Copyright (c) 2003-2021 Aspose Pty Ltd # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # </summary> # ----------------------------------------------------------------------------------- import pprint import re # noqa: F401 import six from groupdocs_conversion_cloud.models import WordProcessingConvertOptions class DocxConvertOptions(WordProcessingConvertOptions): """ Docx convert options """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { } attribute_map = { } def __init__(self, **kwargs): # noqa: E501 """Initializes new instance of DocxConvertOptions""" # noqa: E501 base = super(DocxConvertOptions, self) base.__init__(**kwargs) self.swagger_types.update(base.swagger_types) self.attribute_map.update(base.attribute_map) def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DocxConvertOptions): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
7df938f3fd4d2242ccfe5f7e693c14a6ada44fa1
#!/usr/bin/env python # encoding: utf-8 """ @author: zhanghe @software: PyCharm @file: sale_order.py @time: 2018-07-24 16:59 """ from __future__ import unicode_literals from flask import jsonify, make_response from flask_restful import Resource, marshal, reqparse from web_api.yonyou.outputs.sale_order import fields_item_sale_order, fields_item_sale_order_cn from web_api.yonyou.reqparsers.sale_order import ( structure_key_item, structure_key_items, structure_key_item_cn, structure_key_items_cn, ) from web_api.commons.exceptions import BadRequest, NotFound from web_api.yonyou.apis.sale_order import ( get_sale_order_row_by_id, edit_sale_order, delete_sale_order, get_sale_order_limit_rows_by_last_id, add_sale_order, get_sale_order_pagination, ) from web_api.commons.http_token_auth import token_auth from web_api import app SUCCESS_MSG = app.config['SUCCESS_MSG'] FAILURE_MSG = app.config['FAILURE_MSG'] class SaleOrderResource(Resource): """ SaleOrderResource """ decorators = [token_auth.login_required] def get(self, pk): """ Example: curl http://0.0.0.0:5000/yonyou/sale_order/1 :param pk: :return: """ data = get_sale_order_row_by_id(pk) if not data: raise NotFound result = marshal(data, fields_item_sale_order_cn, envelope=structure_key_item_cn) return jsonify(result) def delete(self, pk): """ Example: curl http://0.0.0.0:5000/yonyou/sale_order/1 -X DELETE :param pk: :return: """ result = delete_sale_order(pk) if result: success_msg = SUCCESS_MSG.copy() return make_response(jsonify(success_msg), 204) else: failure_msg = FAILURE_MSG.copy() return make_response(jsonify(failure_msg), 400) class SaleOrderListResource(Resource): """ SaleOrderListResource """ decorators = [token_auth.login_required] def get(self): """ Example: curl http://0.0.0.0:5000/yonyou/sale_orders curl http://0.0.0.0:5000/yonyou/sale_orders?last_pk=1000&limit_num=2 :return: """ # 条件参数 filter_parser = reqparse.RequestParser(bundle_errors=True) filter_parser.add_argument('last_pk', type=int, default=0, location='args') filter_parser.add_argument('limit_num', type=int, default=20, location='args') filter_parser_args = filter_parser.parse_args() # data = get_sale_order_rows() data = get_sale_order_limit_rows_by_last_id(**filter_parser_args) result = marshal(data, fields_item_sale_order_cn, envelope=structure_key_items_cn) return jsonify(result) class SaleOrderPaginationResource(Resource): """ SaleOrderPaginationResource """ decorators = [token_auth.login_required] def get(self): """ Example: curl http://0.0.0.0:5000/yonyou/sale_orders/pagination curl http://0.0.0.0:5000/yonyou/sale_orders/pagination?page=2000&per_page=2 :return: """ # 条件参数 filter_parser = reqparse.RequestParser(bundle_errors=True) filter_parser.add_argument('page', type=int, default=1, location='args') filter_parser.add_argument('per_page', type=int, default=20, location='args') filter_parser_args = filter_parser.parse_args() pagination_obj = get_sale_order_pagination(**filter_parser_args) result = marshal(pagination_obj.items, fields_item_sale_order, envelope=structure_key_items) result['total'] = pagination_obj.total return jsonify(result)
py
7df939a2865f522cc1bad5f90ae56bdc4705ba62
import ctypes import re import signal import subprocess import winreg from ctypes.wintypes import BYTE, DWORD, WCHAR, WORD import psutil import wmi kernel32 = ctypes.WinDLL(str("kernel32"), use_last_error=True) def kill_proc(pid): try: parent = psutil.Process(pid) children = parent.children(recursive=True) children.append(parent) for p in children: p.send_signal(signal.SIGTERM) gone, alive = psutil.wait_procs(children, timeout=20, callback=None) except: pass def enable_rdp(): with winreg.CreateKeyEx( winreg.HKEY_LOCAL_MACHINE, "SYSTEM\\CurrentControlSet\\Control\\Terminal Server", 0, winreg.KEY_ALL_ACCESS, ) as key: winreg.SetValueEx(key, "fDenyTSConnections", 0, winreg.REG_DWORD, 0) subprocess.run( 'netsh advfirewall firewall set rule group="remote desktop" new enable=Yes', capture_output=True, shell=True, timeout=15, ) def disable_sleep_hibernate(): with winreg.CreateKeyEx( winreg.HKEY_LOCAL_MACHINE, "SYSTEM\\CurrentControlSet\\Control\\Session Manager\\Power", 0, winreg.KEY_ALL_ACCESS, ) as key: winreg.SetValueEx(key, "HiberbootEnabled", 0, winreg.REG_DWORD, 0) commands = [ lambda x: f"powercfg /set{x}valueindex scheme_current sub_buttons lidaction 0", lambda x: f"powercfg /x -standby-timeout-{x} 0", lambda x: f"powercfg /x -hibernate-timeout-{x} 0", lambda x: f"powercfg /x -disk-timeout-{x} 0", lambda x: f"powercfg /x -monitor-timeout-{x} 0", lambda x: f"powercfg /x -standby-timeout-{x} 0", ] for x in ["ac", "dc"]: for i in commands: subprocess.run(i(x), capture_output=True, shell=True) subprocess.run("powercfg -S SCHEME_CURRENT", capture_output=True, shell=True) def enable_ping(): subprocess.run( 'netsh advfirewall firewall add rule name="ICMP Allow incoming V4 echo request" protocol=icmpv4:8,any dir=in action=allow', capture_output=True, shell=True, ) def bytes2human(n): # http://code.activestate.com/recipes/578019 symbols = ("K", "M", "G", "T", "P", "E", "Z", "Y") prefix = {} for i, s in enumerate(symbols): prefix[s] = 1 << (i + 1) * 10 for s in reversed(symbols): if n >= prefix[s]: value = float(n) / prefix[s] return "%.1f%s" % (value, s) return "%sB" % n # source: https://github.com/saltstack/salt/blob/master/salt/grains/core.py def os_version_info_ex(): class OSVersionInfo(ctypes.Structure): _fields_ = ( ("dwOSVersionInfoSize", DWORD), ("dwMajorVersion", DWORD), ("dwMinorVersion", DWORD), ("dwBuildNumber", DWORD), ("dwPlatformId", DWORD), ("szCSDVersion", WCHAR * 128), ) def __init__(self, *args, **kwds): super(OSVersionInfo, self).__init__(*args, **kwds) self.dwOSVersionInfoSize = ctypes.sizeof(self) kernel32.GetVersionExW(ctypes.byref(self)) class OSVersionInfoEx(OSVersionInfo): _fields_ = ( ("wServicePackMajor", WORD), ("wServicePackMinor", WORD), ("wSuiteMask", WORD), ("wProductType", BYTE), ("wReserved", BYTE), ) return OSVersionInfoEx() def get_os_version_info(): info = os_version_info_ex() c = wmi.WMI() c_info = c.Win32_OperatingSystem()[0] ret = { "MajorVersion": info.dwMajorVersion, "MinorVersion": info.dwMinorVersion, "BuildNumber": info.dwBuildNumber, "PlatformID": info.dwPlatformId, "ServicePackMajor": info.wServicePackMajor, "ServicePackMinor": info.wServicePackMinor, "SuiteMask": info.wSuiteMask, "ProductType": info.wProductType, "Caption": c_info.Caption, "Arch": c_info.OSArchitecture, "Version": c_info.Version, } return ret # source: https://github.com/saltstack/salt/blob/master/salt/grains/core.py def get_windows_os_release_grain(caption, product_type): version = "Unknown" release = "" if "Server" in caption: for item in caption.split(" "): if re.match(r"\d+", item): version = item if re.match(r"^R\d+$", item): release = item os_release = f"{version}Server{release}" else: for item in caption.split(" "): if re.match(r"^(\d+(\.\d+)?)|Thin|Vista|XP$", item): version = item os_release = version if os_release in ["Unknown"]: os_release = platform.release() server = { "Vista": "2008Server", "7": "2008ServerR2", "8": "2012Server", "8.1": "2012ServerR2", "10": "2016Server", } # (Product Type 1 is Desktop, Everything else is Server) if product_type > 1 and os_release in server: os_release = server[os_release] return os_release
py
7df939f8399d5f441d50b3905a77c195e2e5863d
# (C) Datadog, Inc. 2010-2017 # All rights reserved # Licensed under Simplified BSD License (see LICENSE) ''' HDFS NameNode Metrics --------------------- hdfs.namenode.capacity_total Total disk capacity in bytes hdfs.namenode.capacity_used Disk usage in bytes hdfs.namenode.capacity_remaining Remaining disk space left in bytes hdfs.namenode.total_load Total load on the file system hdfs.namenode.fs_lock_queue_length Lock queue length hdfs.namenode.blocks_total Total number of blocks hdfs.namenode.max_objects Maximum number of files HDFS supports hdfs.namenode.files_total Total number of files hdfs.namenode.pending_replication_blocks Number of blocks pending replication hdfs.namenode.under_replicated_blocks Number of under replicated blocks hdfs.namenode.scheduled_replication_blocks Number of blocks scheduled for replication hdfs.namenode.pending_deletion_blocks Number of pending deletion blocks hdfs.namenode.num_live_data_nodes Total number of live data nodes hdfs.namenode.num_dead_data_nodes Total number of dead data nodes hdfs.namenode.num_decom_live_data_nodes Number of decommissioning live data nodes hdfs.namenode.num_decom_dead_data_nodes Number of decommissioning dead data nodes hdfs.namenode.volume_failures_total Total volume failures hdfs.namenode.estimated_capacity_lost_total Estimated capacity lost in bytes hdfs.namenode.num_decommissioning_data_nodes Number of decommissioning data nodes hdfs.namenode.num_stale_data_nodes Number of stale data nodes hdfs.namenode.num_stale_storages Number of stale storages hdfs.namenode.missing_blocks Number of missing blocks hdfs.namenode.corrupt_blocks Number of corrupt blocks ''' # stdlib from urlparse import urljoin # 3rd party import requests from requests.exceptions import Timeout, HTTPError, InvalidURL, ConnectionError from simplejson import JSONDecodeError # Project from checks import AgentCheck # Service check names JMX_SERVICE_CHECK = 'hdfs.namenode.jmx.can_connect' # URL Paths JMX_PATH = 'jmx' # Namesystem state bean HDFS_NAME_SYSTEM_STATE_BEAN = 'Hadoop:service=NameNode,name=FSNamesystemState' # Namesystem bean HDFS_NAME_SYSTEM_BEAN = 'Hadoop:service=NameNode,name=FSNamesystem' # Metric types GAUGE = 'gauge' # HDFS metrics HDFS_NAME_SYSTEM_STATE_METRICS = { 'CapacityTotal' : ('hdfs.namenode.capacity_total', GAUGE), 'CapacityUsed' : ('hdfs.namenode.capacity_used', GAUGE), 'CapacityRemaining' : ('hdfs.namenode.capacity_remaining', GAUGE), 'TotalLoad' : ('hdfs.namenode.total_load', GAUGE), 'FsLockQueueLength' : ('hdfs.namenode.fs_lock_queue_length', GAUGE), 'BlocksTotal' : ('hdfs.namenode.blocks_total', GAUGE), 'MaxObjects' : ('hdfs.namenode.max_objects', GAUGE), 'FilesTotal' : ('hdfs.namenode.files_total', GAUGE), 'PendingReplicationBlocks' : ('hdfs.namenode.pending_replication_blocks', GAUGE), 'UnderReplicatedBlocks' : ('hdfs.namenode.under_replicated_blocks', GAUGE), 'ScheduledReplicationBlocks' : ('hdfs.namenode.scheduled_replication_blocks', GAUGE), 'PendingDeletionBlocks' : ('hdfs.namenode.pending_deletion_blocks', GAUGE), 'NumLiveDataNodes' : ('hdfs.namenode.num_live_data_nodes', GAUGE), 'NumDeadDataNodes' : ('hdfs.namenode.num_dead_data_nodes', GAUGE), 'NumDecomLiveDataNodes' : ('hdfs.namenode.num_decom_live_data_nodes', GAUGE), 'NumDecomDeadDataNodes' : ('hdfs.namenode.num_decom_dead_data_nodes', GAUGE), 'VolumeFailuresTotal' : ('hdfs.namenode.volume_failures_total', GAUGE), 'EstimatedCapacityLostTotal' : ('hdfs.namenode.estimated_capacity_lost_total', GAUGE), 'NumDecommissioningDataNodes' : ('hdfs.namenode.num_decommissioning_data_nodes', GAUGE), 'NumStaleDataNodes' : ('hdfs.namenode.num_stale_data_nodes', GAUGE), 'NumStaleStorages' : ('hdfs.namenode.num_stale_storages', GAUGE), } HDFS_NAME_SYSTEM_METRICS = { 'MissingBlocks' : ('hdfs.namenode.missing_blocks', GAUGE), 'CorruptBlocks' : ('hdfs.namenode.corrupt_blocks', GAUGE) } class HDFSNameNode(AgentCheck): def check(self, instance): jmx_address = instance.get('hdfs_namenode_jmx_uri') disable_ssl_validation = instance.get('disable_ssl_validation', False) tags = instance.get('tags', []) if jmx_address is None: raise Exception('The JMX URL must be specified in the instance configuration') tags.append('namenode_url:' + jmx_address) tags = list(set(tags)) # Get metrics from JMX self._hdfs_namenode_metrics(jmx_address, disable_ssl_validation, HDFS_NAME_SYSTEM_STATE_BEAN, HDFS_NAME_SYSTEM_STATE_METRICS, tags) self._hdfs_namenode_metrics(jmx_address, disable_ssl_validation, HDFS_NAME_SYSTEM_BEAN, HDFS_NAME_SYSTEM_METRICS, tags) self.service_check(JMX_SERVICE_CHECK, AgentCheck.OK, tags=tags, message='Connection to %s was successful' % jmx_address) def _hdfs_namenode_metrics(self, jmx_uri, disable_ssl_validation, bean_name, metrics, tags): ''' Get HDFS namenode metrics from JMX ''' response = self._rest_request_to_json(jmx_uri, disable_ssl_validation, JMX_PATH, query_params={'qry':bean_name}, tags=tags) beans = response.get('beans', []) if beans: bean = next(iter(beans)) bean_name = bean.get('name') if bean_name != bean_name: raise Exception("Unexpected bean name {0}".format(bean_name)) for metric, (metric_name, metric_type) in metrics.iteritems(): metric_value = bean.get(metric) if metric_value is not None: self._set_metric(metric_name, metric_type, metric_value, tags) if 'CapacityUsed' in bean and 'CapacityTotal' in bean: self._set_metric('hdfs.namenode.capacity_in_use', GAUGE, float(bean['CapacityUsed']) / float(bean['CapacityTotal']), tags) def _set_metric(self, metric_name, metric_type, value, tags=None): ''' Set a metric ''' if metric_type == GAUGE: self.gauge(metric_name, value, tags=tags) else: self.log.error('Metric type "%s" unknown' % (metric_type)) def _rest_request_to_json(self, address, disable_ssl_validation, object_path, query_params, tags=None): ''' Query the given URL and return the JSON response ''' response_json = None url = address if object_path: url = self._join_url_dir(url, object_path) # Add query_params as arguments if query_params: query = '&'.join(['{0}={1}'.format(key, value) for key, value in query_params.iteritems()]) url = urljoin(url, '?' + query) self.log.debug('Attempting to connect to "%s"' % url) try: response = requests.get(url, timeout=self.default_integration_http_timeout, verify=not disable_ssl_validation) response.raise_for_status() response_json = response.json() except Timeout as e: self.service_check(JMX_SERVICE_CHECK, AgentCheck.CRITICAL, tags=tags, message="Request timeout: {0}, {1}".format(url, e)) raise except (HTTPError, InvalidURL, ConnectionError) as e: self.service_check(JMX_SERVICE_CHECK, AgentCheck.CRITICAL, tags=tags, message="Request failed: {0}, {1}".format(url, e)) raise except JSONDecodeError as e: self.service_check(JMX_SERVICE_CHECK, AgentCheck.CRITICAL, tags=tags, message='JSON Parse failed: {0}, {1}'.format(url, e)) raise except ValueError as e: self.service_check(JMX_SERVICE_CHECK, AgentCheck.CRITICAL, tags=tags, message=str(e)) raise return response_json def _join_url_dir(self, url, *args): ''' Join a URL with multiple directories ''' for path in args: url = url.rstrip('/') + '/' url = urljoin(url, path.lstrip('/')) return url
py
7df93c773058c12be49249849e792e3f847eb9cd
import numpy as np from collections import OrderedDict from bokeh.charts import Area, show from bokeh.layouts import gridplot from bokeh.palettes import (Blues9, BrBG9, BuGn9, BuPu9, GnBu9, Greens9, Greys9, OrRd9, Oranges9, PRGn9, PiYG9, PuBu9, PuBuGn9, PuOr9, PuRd9, Purples9, RdBu9, RdGy9, RdPu9, RdYlBu9, RdYlGn9, Reds9, Spectral9, YlGn9, YlGnBu9, YlOrBr9, YlOrRd9, Inferno9, Magma9, Plasma9, Viridis9, Accent8, Dark2_8, Paired9, Pastel1_9, Pastel2_8, Set1_9, Set2_8, Set3_9) standard_palettes = OrderedDict([("Blues9", Blues9), ("BrBG9", BrBG9), ("BuGn9", BuGn9), ("BuPu9", BuPu9), ("GnBu9", GnBu9), ("Greens9", Greens9), ("Greys9", Greys9), ("OrRd9", OrRd9), ("Oranges9", Oranges9), ("PRGn9", PRGn9), ("PiYG9", PiYG9), ("PuBu9", PuBu9), ("PuBuGn9", PuBuGn9), ("PuOr9", PuOr9), ("PuRd9", PuRd9), ("Purples9", Purples9), ("RdBu9", RdBu9), ("RdGy9", RdGy9), ("RdPu9", RdPu9), ("RdYlBu9", RdYlBu9), ("RdYlGn9", RdYlGn9), ("Reds9", Reds9), ("Spectral9", Spectral9), ("YlGn9", YlGn9), ("YlGnBu9", YlGnBu9), ("YlOrBr9", YlOrBr9), ("YlOrRd9", YlOrRd9), ("Inferno9", Inferno9), ("Magma9", Magma9), ("Plasma9", Plasma9), ("Viridis9", Viridis9), ("Accent8", Accent8), ("Dark2_8", Dark2_8), ("Paired9", Paired9), ("Pastel1_9", Pastel1_9), ("Pastel2_8", Pastel2_8), ("Set1_9", Set1_9), ("Set2_8", Set2_8), ("Set3_9", Set3_9)]) def create_area_chart(data, palette): return Area(data, title=palette, stack=True, palette=standard_palettes.get(palette), legend=None, xlabel='', ylabel='', xgrid=False, ygrid=False, tools='') data = np.random.random_integers(low=5, high=13, size=[9, 20]) area_charts = [create_area_chart(data, palette) for palette in standard_palettes.keys()] grid = gridplot(area_charts, ncols=3, plot_width=300, plot_height=300) show(grid)
py
7df93cdaf0fddc84933cf0c55657e46c28b7000e
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Fast R-CNN config system. This file specifies default config options for Fast R-CNN. You should not change values in this file. Instead, you should write a config file (in yaml) and use cfg_from_file(yaml_file) to load it and override the default options. Most tools in $ROOT/tools take a --cfg option to specify an override file. - See tools/{train,test}_net.py for example code that uses cfg_from_file() - See experiments/cfgs/*.yml for example YAML config override files """ import os import os.path as osp import numpy as np # `pip install easydict` if you don't have it from easydict import EasyDict as edict __C = edict() # Consumers can get config by: # from fast_rcnn_config import cfg cfg = __C # # Training options # __C.TRAIN = edict() # Scales to use during training (can list multiple scales) # Each scale is the pixel size of an image's shortest side __C.TRAIN.SCALES = (576,) # Max pixel size of the longest side of a scaled input image __C.TRAIN.MAX_SIZE = 960 # Images to use per minibatch __C.TRAIN.IMS_PER_BATCH = 2 # Minibatch size (number of regions of interest [ROIs]) __C.TRAIN.BATCH_SIZE = 128 # Fraction of minibatch that is labeled foreground (i.e. class > 0) __C.TRAIN.FG_FRACTION = 0.25 # Overlap threshold for a ROI to be considered foreground (if >= FG_THRESH) __C.TRAIN.FG_THRESH = 0.5 # Overlap threshold for a ROI to be considered background (class = 0 if # overlap in [LO, HI)) __C.TRAIN.BG_THRESH_HI = 0.5 __C.TRAIN.BG_THRESH_LO = 0.1 # Use horizontally-flipped images during training? __C.TRAIN.USE_FLIPPED = True # Train bounding-box regressors __C.TRAIN.BBOX_REG = True # Overlap required between a ROI and ground-truth box in order for that ROI to # be used as a bounding-box regression training example __C.TRAIN.BBOX_THRESH = 0.5 # Iterations between snapshots __C.TRAIN.SNAPSHOT_ITERS = 10000 # solver.prototxt specifies the snapshot path prefix, this adds an optional # infix to yield the path: <prefix>[_<infix>]_iters_XYZ.caffemodel __C.TRAIN.SNAPSHOT_INFIX = '' # Use a prefetch thread in roi_data_layer.layer # So far I haven't found this useful; likely more engineering work is required __C.TRAIN.USE_PREFETCH = False # Normalize the targets (subtract empirical mean, divide by empirical stddev) __C.TRAIN.BBOX_NORMALIZE_TARGETS = True # Deprecated (inside weights) __C.TRAIN.BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # Normalize the targets using "precomputed" (or made up) means and stdevs # (BBOX_NORMALIZE_TARGETS must also be True) __C.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED = False __C.TRAIN.BBOX_NORMALIZE_MEANS = (0.0, 0.0, 0.0, 0.0) __C.TRAIN.BBOX_NORMALIZE_STDS = (0.1, 0.1, 0.2, 0.2) __C.TRAIN.RPN_NORMALIZE_TARGETS = False __C.TRAIN.RPN_NORMALIZE_MEANS = (0.0, 0.0, 0.0, 0.0) __C.TRAIN.RPN_NORMALIZE_STDS = (0.1, 0.1, 0.2, 0.2) # Train using these proposals __C.TRAIN.PROPOSAL_METHOD = 'selective_search' # Make minibatches from images that have similar aspect ratios (i.e. both # tall and thin or both short and wide) in order to avoid wasting computation # on zero-padding. __C.TRAIN.ASPECT_GROUPING = True # Use RPN to detect objects __C.TRAIN.HAS_RPN = False # IOU >= thresh: positive example __C.TRAIN.RPN_POSITIVE_OVERLAP = 0.7 # IOU < thresh: negative example __C.TRAIN.RPN_NEGATIVE_OVERLAP = 0.3 # If an anchor statisfied by positive and negative conditions set to negative __C.TRAIN.RPN_CLOBBER_POSITIVES = False # Max number of foreground examples __C.TRAIN.RPN_FG_FRACTION = 0.5 # Total number of examples __C.TRAIN.RPN_BATCHSIZE = 256 # NMS threshold used on RPN proposals __C.TRAIN.RPN_NMS_THRESH = 0.7 # Number of top scoring boxes to keep before apply NMS to RPN proposals __C.TRAIN.RPN_PRE_NMS_TOP_N = 12000 # Number of top scoring boxes to keep after applying NMS to RPN proposals __C.TRAIN.RPN_POST_NMS_TOP_N = 2000 # Proposal height and width both need to be greater than RPN_MIN_SIZE (at orig image scale) __C.TRAIN.RPN_MIN_SIZE = 16 # Deprecated (outside weights) __C.TRAIN.RPN_BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # Give the positive RPN examples weight of p * 1 / {num positives} # and give negatives a weight of (1 - p) # Set to -1.0 to use uniform example weighting __C.TRAIN.RPN_POSITIVE_WEIGHT = -1.0 # whether use class aware box or not __C.TRAIN.AGNOSTIC = False # # Testing options # __C.TEST = edict() # Scales to use during testing (can list multiple scales) # Each scale is the pixel size of an image's shortest side __C.TEST.SCALES = (576,) # Max pixel size of the longest side of a scaled input image __C.TEST.MAX_SIZE = 960 # Overlap threshold used for non-maximum suppression (suppress boxes with # IoU >= this threshold) __C.TEST.NMS = 0.3 # Experimental: treat the (K+1) units in the cls_score layer as linear # predictors (trained, eg, with one-vs-rest SVMs). __C.TEST.SVM = False # Test using bounding-box regressors __C.TEST.BBOX_REG = True # Propose boxes __C.TEST.HAS_RPN = False # Test using these proposals __C.TEST.PROPOSAL_METHOD = 'selective_search' ## NMS threshold used on RPN proposals __C.TEST.RPN_NMS_THRESH = 0.7 ## Number of top scoring boxes to keep before apply NMS to RPN proposals __C.TEST.RPN_PRE_NMS_TOP_N = 6000 ## Number of top scoring boxes to keep after applying NMS to RPN proposals __C.TEST.RPN_POST_NMS_TOP_N = 300 # Proposal height and width both need to be greater than RPN_MIN_SIZE (at orig image scale) __C.TEST.RPN_MIN_SIZE = 16 # whether use class aware box or not __C.TEST.AGNOSTIC = False # # MISC # # The mapping from image coordinates to feature map coordinates might cause # some boxes that are distinct in image space to become identical in feature # coordinates. If DEDUP_BOXES > 0, then DEDUP_BOXES is used as the scale factor # for identifying duplicate boxes. # 1/16 is correct for {Alex,Caffe}Net, VGG_CNN_M_1024, and VGG16 __C.DEDUP_BOXES = 1./16. # Pixel mean values (BGR order) as a (1, 1, 3) array # We use the same pixel mean for all networks even though it's not exactly what # they were trained with __C.PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]]) # For reproducibility __C.RNG_SEED = 3 # A small number that's used many times __C.EPS = 1e-14 # Root directory of project __C.ROOT_DIR = osp.abspath(osp.join(osp.dirname(__file__), '..', '..')) # Data directory __C.DATA_DIR = osp.abspath(osp.join(__C.ROOT_DIR, 'data')) # Model directory __C.MODELS_DIR = osp.abspath(osp.join(__C.ROOT_DIR, 'models', 'pascal_voc')) # Name (or path to) the matlab executable __C.MATLAB = 'matlab' # Place outputs under an experiments directory __C.EXP_DIR = 'default' # Use GPU implementation of non-maximum suppression __C.USE_GPU_NMS = True # Default GPU device id __C.GPU_ID = 0 def get_output_dir(imdb, net=None): """Return the directory where experimental artifacts are placed. If the directory does not exist, it is created. A canonical path is built using the name from an imdb and a network (if not None). """ outdir = osp.abspath(osp.join(__C.ROOT_DIR, 'output', __C.EXP_DIR, imdb.name)) if net is not None: outdir = osp.join(outdir, net.name) if not os.path.exists(outdir): os.makedirs(outdir) return outdir def _merge_a_into_b(a, b): """Merge config dictionary a into config dictionary b, clobbering the options in b whenever they are also specified in a. """ if type(a) is not edict: return for k, v in a.iteritems(): # a must specify keys that are in b if not b.has_key(k): raise KeyError('{} is not a valid config key'.format(k)) # the types must match, too old_type = type(b[k]) if old_type is not type(v): if isinstance(b[k], np.ndarray): v = np.array(v, dtype=b[k].dtype) else: raise ValueError(('Type mismatch ({} vs. {}) ' 'for config key: {}').format(type(b[k]), type(v), k)) # recursively merge dicts if type(v) is edict: try: _merge_a_into_b(a[k], b[k]) except: print('Error under config key: {}'.format(k)) raise else: b[k] = v def cfg_from_file(filename): """Load a config file and merge it into the default options.""" import yaml with open(filename, 'r') as f: yaml_cfg = edict(yaml.load(f)) _merge_a_into_b(yaml_cfg, __C) def cfg_from_list(cfg_list): """Set config keys via list (e.g., from command line).""" from ast import literal_eval assert len(cfg_list) % 2 == 0 for k, v in zip(cfg_list[0::2], cfg_list[1::2]): key_list = k.split('.') d = __C for subkey in key_list[:-1]: assert d.has_key(subkey) d = d[subkey] subkey = key_list[-1] assert d.has_key(subkey) try: value = literal_eval(v) except: # handle the case when v is a string literal value = v assert type(value) == type(d[subkey]), \ 'type {} does not match original type {}'.format( type(value), type(d[subkey])) d[subkey] = value
py
7df93d13df93f3f3b4be36be90e14fdc0b483b22
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Global max pooling 3D layer.""" # pylint: disable=g-classes-have-attributes,g-direct-tensorflow-import from keras import backend from keras.layers.pooling.base_global_pooling3d import GlobalPooling3D from tensorflow.python.util.tf_export import keras_export @keras_export('keras.layers.GlobalMaxPool3D', 'keras.layers.GlobalMaxPooling3D') class GlobalMaxPooling3D(GlobalPooling3D): """Global Max pooling operation for 3D data. Args: data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". keepdims: A boolean, whether to keep the spatial dimensions or not. If `keepdims` is `False` (default), the rank of the tensor is reduced for spatial dimensions. If `keepdims` is `True`, the spatial dimensions are retained with length 1. The behavior is the same as for `tf.reduce_max` or `np.max`. Input shape: - If `data_format='channels_last'`: 5D tensor with shape: `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - If `data_format='channels_first'`: 5D tensor with shape: `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` Output shape: - If `keepdims`=False: 2D tensor with shape `(batch_size, channels)`. - If `keepdims`=True: - If `data_format='channels_last'`: 5D tensor with shape `(batch_size, 1, 1, 1, channels)` - If `data_format='channels_first'`: 5D tensor with shape `(batch_size, channels, 1, 1, 1)` """ def call(self, inputs): if self.data_format == 'channels_last': return backend.max(inputs, axis=[1, 2, 3], keepdims=self.keepdims) else: return backend.max(inputs, axis=[2, 3, 4], keepdims=self.keepdims) # Alias GlobalMaxPool3D = GlobalMaxPooling3D
py
7df93d73df599f33b24f4d3e0bc981b9173d1240
#!/usr/bin/env python3 # _*_ coding: utf-8 _*_ import random import json # django 模块或方法 # HTTP 响应相关的函数和类 from django.shortcuts import render, redirect from django.http import JsonResponse, HttpResponse from django.urls import reverse from django.utils import timezone # 导入 django 的用户认证模块 from django.contrib.auth.backends import ModelBackend # 用户加密 from django.contrib.auth.hashers import make_password # 用户认证, 登入和登出方法 from django.contrib.auth import authenticate, login, logout # 导入 django 的数据库查询对象 from django.db.models import Q # 导入 django 的视图基类 from django.views.generic.base import View # 导入 django 的消息模块,可以用于后台向前端传送一些消息,并可以被模版标签识别 from django.contrib import messages # 导入自定的模型 from .models import UserProfiles, EmailVerifyCode, RecodeImage from .forms import LoginForm, RegisterForm, ForgetPasswordForm, ResetPasswordForm from assist_function.email.email import send_email_verify_record from food.models import FoodArticle, FoodImage from operation.models import UserMessage # 生成两个随机数字,并获取验证码图片 def create_numbers(request): a, b = random.randint(1, 9), random.randint(1, 9) recode_image = RecodeImage.objects.get(recode_number_a=a, recode_number_b=b) request.session["number_a"] = a request.session["number_b"] = b return recode_image class CustomBackend(ModelBackend): """ 自定义登录验证方式,实现用户名,邮箱均可登录 实现逻辑:将用户输入的数据进入后台查询,如果查询成功,则认证成功,出现异常或失败,认证失败 """ def authenticate(self, request, username=None, password=None, **kwargs): try: # 使用「Q」类实现「并集」查询 user = UserProfiles.objects.get(Q(username=username) | Q(email=username)) # 调用「UserProfiles」继承的方法「check_password」,将传入的明文密码进行加密,并与数据库中的密文密码进行对比 # 如果对比成功,则验证通过,返回「user」,对比失败或者出现异常,则返回「None」 if user.check_password(password): return user except Exception as e: return None class LoginView(View): """用户登录视图类""" def get(self, request): """用户 get 请求登录页面, 给出响应""" # 获取浏览器请求的前向页面,以便于用户登录完成后,返回登录前的页面 # 将获取到的信息保存到 request 的 session 中, 如果没有获取到,怎返回首页 request.session['login_reference_page'] = request.META.get("HTTP_REFERER", '/') # 获取验证码图片 recode_image = create_numbers(request) return render(request, "user/login.html", {"recode_image": recode_image}) def post(self, request): """post 方法的表单提交""" # 这里会的「login_form」实例会自动从「request.POST」获取相应的字段值 # 所以「LoginForm」中定义的「键名」一定要和「html」页面中「form」标签提交的「键名」对应起来,否则会获取失败 login_form = LoginForm(request.POST) if login_form.is_valid(): # 获取表单信息 username = request.POST.get('username', '') password = request.POST.get('password', '') recode = int(request.POST.get("recode", 0)) # 获取 session 中的验证码,并计算结果 if recode != request.session["number_a"] + request.session["number_b"]: # 验证码错误,重新获取图片 recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "recode", "recode_image": recode_image} # 这里出现先了很大的问题,具体的模型实例 json 化的问题 # 解决方案的是在模型中自定义一个函数 -- 将模型字段和值组成一个键值对方放入一个字典表 # 字典化的过程中,还出现了一个问题,就是 ImageField 字段的值需要调用 str() 函数字符串化 # 详见 RecodeImage 模型类中的定义 return JsonResponse(message, safe=False) # 用户名验证 verify_user_name = UserProfiles.objects.filter(Q(username=username) | Q(email=username)) if not verify_user_name: # 数据库中未查询到用户名 recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "username", "recode_image": recode_image} return JsonResponse(message, safe=False) # 用户密码验证 user = authenticate(username=username, password=password) # 如果验证未通过,user = None if not user: # 用户名与密码不匹配 recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "password", "recode_image": recode_image} return JsonResponse(message, safe=False) # 验证用户是否激活 if not user.is_active: # 用户未激活 send_email_verify_record(user.email) return JsonResponse({ "status": "fail", "fail_type": "not_active", "message": "用户未激活,已重发激活连接至注册邮箱,请前往邮箱激活..." }) else: login(request, user) # 通过全部验证,执行登录操作 # 页面重定向 refer_page = request.session.get("login_reference_page", '/') if refer_page in \ (reverse("user:login"), reverse("user:reset_password")): return JsonResponse({"status": "success", "url": reverse("home_page")}) else: return JsonResponse({"status": "success", "url": request.session["login_reference_page"]}) # 表单数据 form 验证失败 recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "form", "recode_image": recode_image} return JsonResponse(message, safe=False) # 实现用户的登出,并重定向到主页 def user_logout(request): logout(request) return redirect(request.META.get('HTTP_REFERER', '/')) class RegisterView(View): """用户注册视图类""" def get(self, request): """get 请求响应""" # 获取验证码图片 recode_image = create_numbers(request) return render(request, "user/register.html", {"recode_image": recode_image}) def post(self, request): """post 请求响应""" # form 验证 register_form = RegisterForm(request.POST) if register_form.is_valid(): # 获取用户的输入表单信息 username = request.POST.get("username") email = request.POST.get("email") password = request.POST.get("password") recode = int(request.POST.get("recode")) # 获取 session 中的验证码,并计算结果 if recode != request.session["number_a"] + request.session["number_b"]: # 验证码错误,重新获取图片 recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "recode", "recode_image": recode_image} return JsonResponse(message, safe=False) # 验证用户名是否已经被注册 verify_username = UserProfiles.objects.filter(username=username) if verify_username: # 用户名已被注册 recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "username", "recode_image": recode_image} return JsonResponse(message, safe=False) # 验证邮箱是否已被注册 verify_email = UserProfiles.objects.filter(email=email) if verify_email: # 邮箱已被注册 recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "email", "recode_image": recode_image} return JsonResponse(message, safe=False) # 自动发送邮件验证码至用户邮箱 send_status = send_email_verify_record(email) if send_status: # 通过验证,邮件发送成功,将新的用户数据写入数据库 new_user = UserProfiles() new_user.username = username new_user.email = email new_user.is_active = False # 设定为未激活状态 new_user.password = make_password(password) # 对密码进行加密 new_user.save() # 写入数据库 # 用户站内消息功能,添加欢迎注册消息 user_message = UserMessage() user_message.user = new_user user_message.message_title = '欢迎注册<凡肴网-fansfood.com>\n' user_message.message_content = f""" 嗨,{username}!很高兴您能注册<凡肴网-fansfood.com>。\n\n 这是一个关于美食的网站,网站提供了许多美食的制作教程和美食图片,希望您能够找到心仪的美食和图片!\n\n \t\t\t\t\t\t\t\t一个美食爱好者:nick\n \t\t\t\t\t\t\t\t{timezone.now().strftime('%Y-%m-%d %H:%M')}\n """ user_message.save() return JsonResponse({"status": "success"}) else: return JsonResponse({"status": "fail", "fail_type": "send_email"}) # 表单数据 form 验证失败 recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "form", "recode_image": recode_image} return JsonResponse(message, safe=False) class ActivationView(View): """用户激活视图类""" def get(self, request, active_code): email_verify_record = EmailVerifyCode.objects.filter(code=active_code) if email_verify_record: recode = email_verify_record[0] # (timezone.now() - recode.send_time) 是一个 datetime.timedelta 对象 # 使用 total_seconds() 方法获取秒数 if (timezone.now() - recode.send_time).total_seconds() < 600: # 验证码的有效时间是 600 s user = UserProfiles.objects.get(email=recode.email) user.is_active = True user.save() recode.delete() # 激活后,删除激活邮件验证码 messages.add_message(request, messages.INFO, "用户已激活,请重新登录") return redirect("user:login") # 返回用户登录页面 else: send_email_verify_record(recode.email) recode.delete() # 验证码超时,执行删除,重新发送验证码 messages.add_message(request, messages.INFO, "连接失效,已重发验证邮件,请前往邮箱重新激活") return redirect("user:login") # 验证失败,返回首页 messages.add_message( request, messages.INFO, "无效的激活验证,页面已重置,请输入邮箱信息,重新获取激活链接" ) return redirect("user:login") class Reactive(View): """新用户激活失败,重新获取激活链接的视图类""" def get(self, request): # 获取验证码图片 recode_image = create_numbers(request) return render(request, "user/reactive.html", {"recode_image": recode_image}) def post(self, request): reactive_form = ForgetPasswordForm(request.POST) if reactive_form.is_valid(): username = request.POST.get("username") email = request.POST.get("email") recode = int(request.POST.get("recode")) # 获取 session 中的验证码,并计算结果 if recode != request.session["number_a"] + request.session["number_b"]: # 验证码错误,重新获取图片 recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "recode", "recode_image": recode_image} return JsonResponse(message, safe=False) # 验证用户名与邮箱是否匹配 verify_user = UserProfiles.objects.filter(username=username) if not verify_user: recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "username", "recode_image": recode_image} return JsonResponse(message, safe=False) else: user = verify_user[0] if user.username != username or user.email != email: recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "email", "recode_image": recode_image} return JsonResponse(message, safe=False) else: send_email_verify_record(email, "register") # 发送重置密码的邮件激活码 return JsonResponse({"status": "success"}) # 表单验证失败 recode_image = create_numbers(request) message = {"status": "fail", "fail_type": "form", "recode_image": recode_image} return JsonResponse(message, safe=False) class ForgetPasswordView(View): """忘记密码的视图类""" def get(self, request): # 获取验证码图片 recode_image = create_numbers(request) return render(request, "user/forget_password.html", {"recode_image": recode_image}) def post(self, request): forget_password_form = ForgetPasswordForm(request.POST) if forget_password_form.is_valid(): username = request.POST.get("username") email = request.POST.get("email") recode = int(request.POST.get("recode")) # 获取 session 中的验证码,并计算结果 if recode != request.session["number_a"] + request.session["number_b"]: # 验证码错误,重新获取图片 recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "recode", "recode_image": recode_image} return JsonResponse(message, safe=False) # 验证用户名与邮箱是否匹配 verify_user = UserProfiles.objects.filter(username=username) if not verify_user: recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "username", "recode_image": recode_image} return JsonResponse(message, safe=False) else: user = verify_user[0] if user.username != username or user.email != email: recode_image = create_numbers(request).to_json() message = {"status": "fail", "fail_type": "email", "recode_image": recode_image} return JsonResponse(message, safe=False) else: send_email_verify_record(email, "forget") # 发送重置密码的邮件激活码 return JsonResponse({"status": "success"}) # 表单验证失败 recode_image = create_numbers(request) message = {"status": "fail", "fail_type": "form", "recode_image": recode_image} return JsonResponse(message, safe=False) class ResetPasswordCodeView(View): """用户重置密码的邮件链接响应的视图函数""" def get(self, request, reset_password_code): verify_code = EmailVerifyCode.objects.filter(code=reset_password_code) if verify_code: reset_code = verify_code[0] email = reset_code.email request.session["email"] = email # 将邮箱保存在 session 中 request.session["reset_password_code"] = reset_password_code return redirect("user:reset_password") messages.add_message(request, messages.INFO, "连接失效,页面已重置,请重新获取") return redirect("user:forget_password") class ResetPasswordView(View): """重置密码视图类""" def get(self, request): return render(request, 'user/reset_password.html') def post(self, request): reset_password_form = ResetPasswordForm(request.POST) if reset_password_form.is_valid(): password = request.POST.get("password") password2 = request.POST.get("password2") # 从 session 中获取 email 和 reset_password_code 信息,如果无法获取,表示无效 try: email = request.session["email"] # 从 session 中获取 email code = request.session["reset_password_code"] # 获取 reset_password_code except: return JsonResponse({"status": "fail", "fail_type": "email"}) # 验证两次密码输入是否一致 if password != password2: return JsonResponse({"status": "fail", "fail_type": "not_equal"}) # 密码一致性验证成功 user = UserProfiles.objects.get(email=email) # 根据 email 从用户数据库中提取用户 user.password = make_password(password) # 修改密码 user.save() # 数据更新 # 完成密码的修改,从数据库中删除验证码 verify_cord = EmailVerifyCode.objects.get(code=code) verify_cord.delete() del request.session["email"] # 删除 session 中的 email del request.session["reset_password_code"] # 删除 session 中的 reset_password_code # return redirect("user:login") # 重定向至登录页面 # 这里出现了一个问题,ajax 的请求,不会执行重定向操作 # 需要在 ajax 中执行操作 return JsonResponse({"status": "success"}) # 表单验证失败 return JsonResponse({"status": "fail", "fail_type": "form"}) class HomePageView(View): """主页视图""" def get(self, request): # 随机从数据库中获取 6 张图片 random_image = FoodImage.objects.order_by("?")[:6] # 随机从 mysql 数据库中提取 6 个数据 random_food = FoodArticle.objects.order_by("?")[:6] # 热门食物--做过的人最多 popular_food = FoodArticle.objects.order_by("-fav")[:3] return render(request, "home_page.html", { "random_food": random_food, "popular_food": popular_food, "random_image": random_image, "focus": "home", # 选中状态标志 }) class FlushRecodeImage(View): """刷新图片验证码""" def post(self, request): recode_image = create_numbers(request).to_json() message = {"status": "success", "recode_image": recode_image} return JsonResponse(message, safe=False) def about(request): return render(request, 'about.html', {'focus': 'about'})
py
7df93e72633ddad2eb99080b09ad996f025225e5
# Import numpy import numpy as np # Import matplotlib import matplotlib.pylab as plt # Configure plt.rcParams['xtick.direction'] = 'out' plt.rcParams['ytick.direction'] = 'out' # Optionally set font to Computer Modern to avoid common missing font errors params = { 'axes.labelsize': 24, 'legend.fontsize': 14, 'xtick.labelsize': 24, 'ytick.labelsize': 24, 'text.usetex': True} plt.rcParams.update(params) # Latex math plt.rcParams['text.latex.preamble'] = [r'\usepackage{sfmath}'] plt.rcParams['font.family'] = 'sans-serif' # plt.rcParams['font.sans-serif'] = 'courier' plt.rcParams['font.size'] = 18 plt.rcParams['font.weight'] = 'bold' plt.rcParams['lines.linewidth'] = 4 plt.rcParams['lines.color'] = 'r' # Make sure everything is within the frame plt.rcParams.update({'figure.autolayout': True}) # Set marker size markerSize = 11.0 # bar chart settings alpha = 0.8 # These are the "Tableau 20" colors as RGB. tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] # Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts. for i in range(len(tableau20)): r, g, b = tableau20[i] tableau20[i] = (r / 255., g / 255., b / 255.) mevery = 3 class PostOpt: """ Class to handle plotting """ @staticmethod def plot_solution(data1, data2, name): plt.figure() fig, ax = plt.subplots() # remove the upper and right borders ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.plot(data1[:,0], data1[:,1], '-D', label='(a) cg', ms=markerSize, mec='black', color=tableau20[0], markevery=mevery, alpha=alpha) ax.plot(data1[:,0], data1[:,2], '-v', label='(a) pcg', ms=markerSize, mec='black', color=tableau20[0], markevery=mevery, alpha=alpha) ax.plot(data1[:,0], data1[:,3], '-*', label='(a) exact', ms=markerSize, mec='black', color=tableau20[0], markevery=mevery, alpha=alpha) ax.plot(data2[:,0], data2[:,1], '-D', label='(b) cg', ms=markerSize, mec='black', color=tableau20[2], markevery=mevery, alpha=alpha) ax.plot(data2[:,0], data2[:,2], '-v', label='(b) pcg', ms=markerSize, mec='black', color=tableau20[2], markevery=mevery, alpha=alpha) ax.plot(data2[:,0], data2[:,3], '-*', label='(b) exact', ms=markerSize, mec='black', color=tableau20[2], markevery=mevery, alpha=alpha) ax.set_ylabel('Solution u(x)') ax.set_xlabel('Domain x') #niters_labl = [1, 20, 40, 60, 80, 100] #ax.set_yticks(np.logspace(-5, 0, 6, endpoint=True)) #ax.set_yticks(np.linspace(0, 1, 5, endpoint=True, dtype=np.int)) ax.set_yticks(np.linspace(0, 1.5, 4, endpoint=True)) ax.legend(loc='lower left', framealpha=0.0) plt.savefig(name, bbox_inches='tight', pad_inches=0.05) return if __name__ == "__main__": inpFile = open("dirichlet.dat", "r") fdirichlet = list(inpFile.readlines()) inpFile.close() inpFile = open("mixed.dat", "r") fmixed = list(inpFile.readlines()) inpFile.close() soldirichlet = [] for line in fdirichlet: entry = line.split() soldirichlet.append([float(entry[0]), float(entry[1]), float(entry[2]), float(entry[3])]) soldirichlet = np.array(soldirichlet) solmixed = [] for line in fmixed: entry = line.split() solmixed.append([float(entry[0]), float(entry[1]), float(entry[2]), float(entry[3])]) solmixed = np.array(solmixed) # Plot the solution in the profile PostOpt.plot_solution(soldirichlet, solmixed, "profile.pdf")
py
7df93ebe1be5969ab595cc2cf1303dbe63b7ae53
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "template_test.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
py
7df93fed3f2c71e664b5766e0979a42cbfaf8dd9
#!/bin/python3 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes from getpass import getpass from secrets import token_hex def enchachacry(data): nonce = bytes(token_hex(8), "UTF-8") salt = bytes(token_hex(8), "UTF-8") keyraw = salt+bytes(getpass(), "UTF-8") key = hashes.Hash(hashes.BLAKE2b(64), backend=default_backend()) key.update(keyraw) key = key.finalize() k3y = bytes() for bits in range(0,32,1): stream = [key[bits] ^ key[(bits+32)]] k3y = k3y + bytes(stream) if bits == 31: key = k3y algorithm = algorithms.ChaCha20(key, nonce) cipher = Cipher(algorithm, mode=None, backend=default_backend()) marker = bytes(b"\x8c\x14\xf6t\xea\xd5\xe3\x88Z\xa8~\xceE\x02w\\\xf4/w\xfa\xc6\xc5g}") encrypt = cipher.encryptor() return (marker+salt+nonce+encrypt.update(data)) def dechachacry(data, salt, nonce): keyraw = salt+bytes(getpass(), "UTF-8") key = hashes.Hash(hashes.BLAKE2b(64), backend=default_backend()) key.update(keyraw) key = key.finalize() k3y = bytes() for bits in range(0,32,1): stream = [key[bits] ^ key[(bits+32)]] k3y = k3y + bytes(stream) if bits == 31: key = k3y algorithm = algorithms.ChaCha20(key, nonce) cipher = Cipher(algorithm, mode=None, backend=default_backend()) decrypt = cipher.decryptor() return decrypt.update(data) print("Be aware that this program directly decrypts the given file on the hard drive and not on a temporary file system!") print("If the file's directory, or the physical hard drive, is not protected from external access, you should copy/move it to a temporary file system before decrypting (mount -t tmpfs -o size=<size> none /PATH/TO/MOUNT/TMPFS)") print("Enter the path including the file that has to be encrypted/decrypted! If there are more files, you can use tar (tar -cf <merged_file.tar> <file1> <file2>) to merge them. To quit the program, enter q") print() target = "" file = "" while 1: try: target = input() if target == "q": break with open(target, "b+r") as f: file = f.read() f.closed break except: print("File or path not existing, or cannot be accessed. Enter another /path/to/file or enter q for quit") print() if target != "q": pycry = "" if file[:24] == bytes(b"\x8c\x14\xf6t\xea\xd5\xe3\x88Z\xa8~\xceE\x02w\\\xf4/w\xfa\xc6\xc5g}"): file = file[24:] salt = file[0:16] file = file[16:] nonce = file[0:16] file = file[16:] pycry = dechachacry(file, salt, nonce) else: pycry = enchachacry(file) if pycry != "": with open(target, "b+w") as f: file = f.write(pycry) f.closed
py
7df94056de007b1110a910b2448d179ed64f6b5b
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for prefetching_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading from tensorflow.contrib.data.python.ops import prefetching_ops from tensorflow.core.protobuf import config_pb2 from tensorflow.python.compat import compat from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import iterator_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import function from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import test_util from tensorflow.python.ops import resource_variable_ops from tensorflow.python.platform import test class PrefetchingKernelsOpsTest(test.TestCase): def setUp(self): self._event = threading.Event() def _create_ds_and_iterator(self, device0, initializable=False): def gen(): for i in range(1, 10): yield [float(i)] if i == 6: self._event.set() with ops.device(device0): ds = dataset_ops.Dataset.from_generator(gen, (dtypes.float32)) if initializable: ds_iterator = ds.make_initializable_iterator() else: ds_iterator = ds.make_one_shot_iterator() return (ds, ds_iterator) def _create_ops(self, ds, ds_iterator, buffer_name, device0, device1): ds_iterator_handle = ds_iterator.string_handle() @function.Defun(dtypes.string) def _remote_fn(h): remote_iterator = iterator_ops.Iterator.from_string_handle( h, ds.output_types, ds.output_shapes) return remote_iterator.get_next() target = constant_op.constant(device0) with ops.device(device1): buffer_resource_handle = prefetching_ops.function_buffering_resource( f=_remote_fn, output_types=[dtypes.float32], target_device=target, string_arg=ds_iterator_handle, buffer_size=3, shared_name=buffer_name) with ops.device(device1): prefetch_op = prefetching_ops.function_buffering_resource_get_next( function_buffer_resource=buffer_resource_handle, output_types=[dtypes.float32]) reset_op = prefetching_ops.function_buffering_resource_reset( function_buffer_resource=buffer_resource_handle) destroy_op = resource_variable_ops.destroy_resource_op( buffer_resource_handle, ignore_lookup_error=True) return (prefetch_op, reset_op, destroy_op) def _prefetch_fn_helper_one_shot(self, buffer_name, device0, device1): worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) ds, ds_iterator = self._create_ds_and_iterator(device0, initializable=False) prefetch_op, _, destroy_op = self._create_ops(ds, ds_iterator, buffer_name, device0, device1) with self.test_session(config=worker_config) as sess: elem = sess.run(prefetch_op) self.assertEqual(elem, [1.0]) elem = sess.run(prefetch_op) self.assertEqual(elem, [2.0]) elem = sess.run(prefetch_op) self.assertEqual(elem, [3.0]) elem = sess.run(prefetch_op) self.assertEqual(elem, [4.0]) self._event.wait() elem = sess.run(prefetch_op) self.assertEqual(elem, [5.0]) sess.run(destroy_op) def testSameDeviceCPU(self): self._prefetch_fn_helper_one_shot("same_device_cpu", "/job:localhost/replica:0/task:0/cpu:0", "/job:localhost/replica:0/task:0/cpu:0") def testDifferentDeviceCPU(self): self._prefetch_fn_helper_one_shot("diff_device_cpu", "/job:localhost/replica:0/task:0/cpu:0", "/job:localhost/replica:0/task:0/cpu:1") def testDifferentDeviceCPUGPU(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") self._prefetch_fn_helper_one_shot("cpu_gpu", "/job:localhost/replica:0/task:0/cpu:0", "/job:localhost/replica:0/task:0/gpu:0") def testReinitialization(self): worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) device0 = "/job:localhost/replica:0/task:0/cpu:0" device1 = "/job:localhost/replica:0/task:0/cpu:1" ds, ds_iterator = self._create_ds_and_iterator(device0, initializable=True) prefetch_op, reset_op, destroy_op = self._create_ops( ds, ds_iterator, "reinit", device0, device1) with self.test_session(config=worker_config) as sess: sess.run(ds_iterator.initializer) elem = sess.run(prefetch_op) self.assertEqual(elem, [1.0]) elem = sess.run(prefetch_op) self.assertEqual(elem, [2.0]) elem = sess.run(prefetch_op) self.assertEqual(elem, [3.0]) elem = sess.run(prefetch_op) self.assertEqual(elem, [4.0]) self._event.wait() elem = sess.run(prefetch_op) self.assertEqual(elem, [5.0]) # Lets reset the function buffering resource and reinitialize the # iterator. Should be able to go through this again. self._event.clear() sess.run(reset_op) sess.run(ds_iterator.initializer) elem = sess.run(prefetch_op) self.assertEqual(elem, [1.0]) elem = sess.run(prefetch_op) self.assertEqual(elem, [2.0]) elem = sess.run(prefetch_op) self.assertEqual(elem, [3.0]) elem = sess.run(prefetch_op) self.assertEqual(elem, [4.0]) self._event.wait() elem = sess.run(prefetch_op) self.assertEqual(elem, [5.0]) sess.run(destroy_op) def testReinitializationOutOfRange(self): worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) device0 = "/job:localhost/replica:0/task:0/cpu:0" device1 = "/job:localhost/replica:0/task:0/cpu:1" ds, ds_iterator = self._create_ds_and_iterator(device0, initializable=True) prefetch_op, reset_op, destroy_op = self._create_ops( ds, ds_iterator, "reinit", device0, device1) with self.test_session(config=worker_config) as sess: sess.run(ds_iterator.initializer) for i in range(1, 10): elem = sess.run(prefetch_op) self.assertEqual(elem, [float(i)]) # Try fetching after its over twice to test out end of sequence. with self.assertRaises(errors.OutOfRangeError): sess.run(prefetch_op) with self.assertRaises(errors.OutOfRangeError): sess.run(prefetch_op) # Now reset everything and try it out again. self._event.clear() sess.run(reset_op) sess.run(ds_iterator.initializer) for i in range(1, 10): elem = sess.run(prefetch_op) self.assertEqual(elem, [float(i)]) # Try fetching after its over twice to test out end of sequence. with self.assertRaises(errors.OutOfRangeError): sess.run(prefetch_op) with self.assertRaises(errors.OutOfRangeError): sess.run(prefetch_op) sess.run(destroy_op) def testStringsGPU(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") device0 = "/job:localhost/replica:0/task:0/cpu:0" device1 = "/job:localhost/replica:0/task:0/gpu:0" ds = dataset_ops.Dataset.from_tensor_slices(["a", "b", "c"]) ds_iterator = ds.make_one_shot_iterator() ds_iterator_handle = ds_iterator.string_handle() @function.Defun(dtypes.string) def _remote_fn(h): remote_iterator = iterator_ops.Iterator.from_string_handle( h, ds.output_types, ds.output_shapes) return remote_iterator.get_next() target = constant_op.constant(device0) with ops.device(device1): buffer_resource_handle = prefetching_ops.function_buffering_resource( f=_remote_fn, output_types=[dtypes.string], target_device=target, string_arg=ds_iterator_handle, buffer_size=3, shared_name="strings") with ops.device(device1): prefetch_op = prefetching_ops.function_buffering_resource_get_next( function_buffer_resource=buffer_resource_handle, output_types=[dtypes.string]) destroy_op = resource_variable_ops.destroy_resource_op( buffer_resource_handle, ignore_lookup_error=True) with self.test_session() as sess: self.assertEqual([b"a"], sess.run(prefetch_op)) self.assertEqual([b"b"], sess.run(prefetch_op)) self.assertEqual([b"c"], sess.run(prefetch_op)) with self.assertRaises(errors.OutOfRangeError): sess.run(prefetch_op) sess.run(destroy_op) class PrefetchToDeviceTest(test.TestCase): def testPrefetchToDevice(self): host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.prefetch_to_device("/cpu:1")) # NOTE(mrry): This device block creates the "host" dataset and iterator on # /cpu:0, and ensures that the prefetching is across devices. In typical use # this would not be necessary, because the GPU device would not support any # of the dataset-related ops. with ops.device("/cpu:0"): iterator = device_dataset.make_one_shot_iterator() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) next_element = iterator.get_next() self.assertEqual(dtypes.int64, next_element.dtype) self.assertEqual([], next_element.shape) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testPrefetchToSameDevice(self): host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.prefetch_to_device( "/job:localhost/replica:0/task:0/device:CPU:0")) # NOTE(mrry): This device block creates the "host" dataset and iterator on # /cpu:0, and ensures that the prefetching is across devices. In typical use # this would not be necessary, because the GPU device would not support any # of the dataset-related ops. with ops.device("/cpu:0"): iterator = device_dataset.make_one_shot_iterator() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) next_element = iterator.get_next() self.assertEqual(dtypes.int64, next_element.dtype) self.assertEqual([], next_element.shape) with self.test_session() as sess: for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testPrefetchDictToDevice(self): host_dataset = dataset_ops.Dataset.range(10).map(lambda x: {"a": x}) device_dataset = host_dataset.apply( prefetching_ops.prefetch_to_device("/cpu:1")) # NOTE(mrry): This device block creates the "host" dataset and iterator on # /cpu:0, and ensures that the prefetching is across devices. In typical use # this would not be necessary, because the GPU device would not support any # of the dataset-related ops. with ops.device("/cpu:0"): iterator = device_dataset.make_one_shot_iterator() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) next_element = iterator.get_next() self.assertEqual(dtypes.int64, next_element["a"].dtype) self.assertEqual([], next_element["a"].shape) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: for i in range(10): self.assertEqual({"a": i}, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testPrefetchSparseTensorsToDevice(self): def make_tensor(i): return sparse_tensor.SparseTensorValue( indices=[[0, 0]], values=(i*[1]), dense_shape=[2, 2]) host_dataset = dataset_ops.Dataset.range(10).map(make_tensor) device_dataset = host_dataset.apply( prefetching_ops.prefetch_to_device("/cpu:1")) # NOTE(mrry): This device block creates the "host" dataset and iterator on # /cpu:0, and ensures that the prefetching is across devices. In typical use # this would not be necessary, because the GPU device would not support any # of the dataset-related ops. with ops.device("/cpu:0"): iterator = device_dataset.make_one_shot_iterator() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) next_element = iterator.get_next() self.assertEqual(dtypes.int64, next_element.dtype) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: for i in range(10): actual = sess.run(next_element) self.assertAllEqual([i], actual.values) self.assertAllEqual([[0, 0]], actual.indices) self.assertAllEqual([2, 2], actual.dense_shape) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testPrefetchToDeviceGpu(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.prefetch_to_device("/gpu:0")) iterator = device_dataset.make_one_shot_iterator() next_element = iterator.get_next() with self.test_session() as sess: for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testPrefetchToDeviceWithReInit(self): host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.prefetch_to_device("/cpu:1")) # NOTE(mrry): This device block creates the "host" dataset and iterator on # /cpu:0, and ensures that the prefetching is across devices. In typical use # this would not be necessary, because the GPU device would not support any # of the dataset-related ops. with ops.device("/cpu:0"): iterator = device_dataset.make_initializable_iterator() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) next_element = iterator.get_next() self.assertEqual(dtypes.int64, next_element.dtype) self.assertEqual([], next_element.shape) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: sess.run(iterator.initializer) for i in range(5): self.assertEqual(i, sess.run(next_element)) sess.run(iterator.initializer) for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testPrefetchToDeviceGpuWithReInit(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.prefetch_to_device("/gpu:0")) iterator = device_dataset.make_initializable_iterator() next_element = iterator.get_next() with self.test_session() as sess: sess.run(iterator.initializer) for i in range(5): self.assertEqual(i, sess.run(next_element)) sess.run(iterator.initializer) for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) class CopyToDeviceTest(test.TestCase): def testCopyToDevice(self): host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/cpu:1")) with ops.device("/cpu:1"): iterator = device_dataset.make_one_shot_iterator() next_element = iterator.get_next() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) self.assertEqual(dtypes.int64, next_element.dtype) self.assertEqual([], next_element.shape) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToDeviceInt32(self): host_dataset = dataset_ops.Dataset.from_tensors([0, 1, 2, 3]) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/cpu:1")) with ops.device("/cpu:1"): iterator = device_dataset.make_one_shot_iterator() next_element = iterator.get_next() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) self.assertEqual(dtypes.int32, next_element.dtype) self.assertEqual((4,), next_element.shape) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: self.assertAllEqual([0, 1, 2, 3], sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToSameDevice(self): host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/cpu:0")) with ops.device("/cpu:0"): iterator = device_dataset.make_one_shot_iterator() next_element = iterator.get_next() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) self.assertEqual(dtypes.int64, next_element.dtype) self.assertEqual([], next_element.shape) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToDeviceWithPrefetch(self): host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/cpu:1")).prefetch(1) with ops.device("/cpu:1"): iterator = device_dataset.make_one_shot_iterator() next_element = iterator.get_next() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) self.assertEqual(dtypes.int64, next_element.dtype) self.assertEqual([], next_element.shape) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyDictToDevice(self): host_dataset = dataset_ops.Dataset.range(10).map(lambda x: {"a": x}) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/cpu:1")) with ops.device("/cpu:1"): iterator = device_dataset.make_one_shot_iterator() next_element = iterator.get_next() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) self.assertEqual(dtypes.int64, next_element["a"].dtype) self.assertEqual([], next_element["a"].shape) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: for i in range(10): self.assertEqual({"a": i}, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyDictToDeviceWithPrefetch(self): host_dataset = dataset_ops.Dataset.range(10).map(lambda x: {"a": x}) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/cpu:1")).prefetch(1) with ops.device("/cpu:1"): iterator = device_dataset.make_one_shot_iterator() next_element = iterator.get_next() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) self.assertEqual(dtypes.int64, next_element["a"].dtype) self.assertEqual([], next_element["a"].shape) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: for i in range(10): self.assertEqual({"a": i}, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopySparseTensorsToDevice(self): def make_tensor(i): return sparse_tensor.SparseTensorValue( indices=[[0, 0]], values=(i * [1]), dense_shape=[2, 2]) host_dataset = dataset_ops.Dataset.range(10).map(make_tensor) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/cpu:1")) with ops.device("/cpu:1"): iterator = device_dataset.make_one_shot_iterator() next_element = iterator.get_next() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) self.assertEqual(dtypes.int64, next_element.dtype) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: for i in range(10): actual = sess.run(next_element) self.assertAllEqual([i], actual.values) self.assertAllEqual([[0, 0]], actual.indices) self.assertAllEqual([2, 2], actual.dense_shape) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopySparseTensorsToDeviceWithPrefetch(self): def make_tensor(i): return sparse_tensor.SparseTensorValue( indices=[[0, 0]], values=(i * [1]), dense_shape=[2, 2]) host_dataset = dataset_ops.Dataset.range(10).map(make_tensor) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/cpu:1")).prefetch(1) with ops.device("/cpu:1"): iterator = device_dataset.make_one_shot_iterator() next_element = iterator.get_next() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) self.assertEqual(dtypes.int64, next_element.dtype) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: for i in range(10): actual = sess.run(next_element) self.assertAllEqual([i], actual.values) self.assertAllEqual([[0, 0]], actual.indices) self.assertAllEqual([2, 2], actual.dense_shape) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToDeviceGpu(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/gpu:0")) with ops.device("/gpu:0"): iterator = device_dataset.make_initializable_iterator() next_element = iterator.get_next() with self.test_session() as sess: sess.run(iterator.initializer) for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToDeviceGpuWithPrefetch(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/gpu:0")).prefetch(1) with ops.device("/gpu:0"): iterator = device_dataset.make_initializable_iterator() next_element = iterator.get_next() with self.test_session() as sess: sess.run(iterator.initializer) for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToDeviceGpuInt32(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") host_dataset = dataset_ops.Dataset.from_tensors([0, 1, 2, 3]) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/gpu:0")) with ops.device("/gpu:0"): iterator = device_dataset.make_initializable_iterator() next_element = iterator.get_next() with self.test_session() as sess: sess.run(iterator.initializer) self.assertAllEqual([0, 1, 2, 3], sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToDeviceGpuInt32AndPrefetch(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") host_dataset = dataset_ops.Dataset.from_tensors([0, 1, 2, 3]) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/gpu:0")).prefetch(1) with ops.device("/gpu:0"): iterator = device_dataset.make_initializable_iterator() next_element = iterator.get_next() with self.test_session() as sess: sess.run(iterator.initializer) self.assertAllEqual([0, 1, 2, 3], sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToDeviceGpuStrings(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") host_dataset = dataset_ops.Dataset.from_tensors(["a", "b", "c"]) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/gpu:0")) with ops.device("/gpu:0"): iterator = device_dataset.make_initializable_iterator() next_element = iterator.get_next() with self.test_session() as sess: sess.run(iterator.initializer) self.assertAllEqual(["a", "b", "c"], sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToDeviceGpuStringsAndPrefetch(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") host_dataset = dataset_ops.Dataset.from_tensors(["a", "b", "c"]) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/gpu:0")) with ops.device("/gpu:0"): iterator = device_dataset.make_initializable_iterator() next_element = iterator.get_next() with self.test_session() as sess: sess.run(iterator.initializer) self.assertAllEqual(["a", "b", "c"], sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToDevicePingPongCPUGPU(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") with compat.forward_compatibility_horizon(2018, 8, 4): host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/gpu:0", source_device="/cpu:0")) back_to_cpu_dataset = device_dataset.apply( prefetching_ops.copy_to_device("/cpu:0", source_device="/gpu:0")) with ops.device("/cpu:0"): iterator = back_to_cpu_dataset.make_initializable_iterator() next_element = iterator.get_next() with self.test_session() as sess: sess.run(iterator.initializer) for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToDeviceWithReInit(self): host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/cpu:1")) with ops.device("/cpu:1"): iterator = device_dataset.make_initializable_iterator() next_element = iterator.get_next() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) self.assertEqual(dtypes.int64, next_element.dtype) self.assertEqual([], next_element.shape) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: sess.run(iterator.initializer) for i in range(5): self.assertEqual(i, sess.run(next_element)) sess.run(iterator.initializer) for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToDeviceWithReInitAndPrefetch(self): host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/cpu:1")).prefetch(1) with ops.device("/cpu:1"): iterator = device_dataset.make_initializable_iterator() next_element = iterator.get_next() self.assertEqual(host_dataset.output_types, device_dataset.output_types) self.assertEqual(host_dataset.output_types, iterator.output_types) self.assertEqual(host_dataset.output_shapes, device_dataset.output_shapes) self.assertEqual(host_dataset.output_shapes, iterator.output_shapes) self.assertEqual(host_dataset.output_classes, device_dataset.output_classes) self.assertEqual(host_dataset.output_classes, iterator.output_classes) self.assertEqual(dtypes.int64, next_element.dtype) self.assertEqual([], next_element.shape) worker_config = config_pb2.ConfigProto(device_count={"CPU": 2}) with self.test_session(config=worker_config) as sess: sess.run(iterator.initializer) for i in range(5): self.assertEqual(i, sess.run(next_element)) sess.run(iterator.initializer) for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToDeviceGpuWithReInit(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/gpu:0")) with ops.device("/gpu:0"): iterator = device_dataset.make_initializable_iterator() next_element = iterator.get_next() with self.test_session() as sess: sess.run(iterator.initializer) for i in range(5): self.assertEqual(i, sess.run(next_element)) sess.run(iterator.initializer) for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) def testCopyToDeviceGpuWithReInitAndPrefetch(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") host_dataset = dataset_ops.Dataset.range(10) device_dataset = host_dataset.apply( prefetching_ops.copy_to_device("/gpu:0")).prefetch(1) with ops.device("/gpu:0"): iterator = device_dataset.make_initializable_iterator() next_element = iterator.get_next() with self.test_session() as sess: sess.run(iterator.initializer) for i in range(5): self.assertEqual(i, sess.run(next_element)) sess.run(iterator.initializer) for i in range(10): self.assertEqual(i, sess.run(next_element)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_element) if __name__ == "__main__": test.main()
py
7df940cd1d7d9f27210461402eb876ceb7f5b78f
# https://leetcode.com/problems/minimum-path-sum/ class Solution: def minPathSum(self, grid: list[list[int]]) -> int: rows = len(grid) cols = len(grid[0]) inf = float('inf') for row_idx in range(rows): for col_idx in range(cols): if row_idx == col_idx == 0: continue left = inf if col_idx == 0 else grid[row_idx][col_idx - 1] top = inf if row_idx == 0 else grid[row_idx - 1][col_idx] grid[row_idx][col_idx] += min(left, top) return grid[-1][-1]
py
7df9410f2da2b2580faed621143d0b57799623b1
import socket import select import mysql.connector import sys HEADER_LENGTH = 100 IP = "127.0.0.1" PORT = 5000 # Create a socket server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_socket.settimeout(500) # SO_ - socket option ... Sets REUSEADDR (as a socket option) to 1 on socket server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # Bind, so server informs operating system that it's going to use given IP and port # For a server using 0.0.0.0 means to listen on all available interfaces, useful to connect locally to 127.0.0.1 and remotely to LAN interface IP server_socket.bind((IP, PORT)) # This makes server listen to new connections server_socket.listen() # List of sockets for select.select() sockets_list = [server_socket] # List of connected clients - socket as a key, user header and name as data clients = {} print(f'Listening for connections on {IP}:{PORT}...') # CONNECTING TO DB AND CREATING TABLE IF NOT EXIST def DBConnection(): try: db = mysql.connector.connect( host="localhost", user="root", passwd="mysql", database="Socket") print("DB CONNECTED SUCCESSFULLY") mycursor = db.cursor(buffered=True) mycursor.execute("CREATE TABLE IF NOT EXISTS CLIENTS(IP VARCHAR (255) NOT NULL PRIMARY KEY,PORT VARCHAR(255) NOT NULL , Dname VARCHAR(255),Mname VARCHAR(255),Lname VARCHAR(255),phone INT(50),mail VARCHAR(255) UNIQUE,Birth_date Date,Doctor_ID INT(150) UNIQUE,syndicate_number INT (100) UNIQUE,salary INT(50),gender VARCHAR(255),address text,job_rank VARCHAR(255),access_level int DEFAULT 2,image LONGBLOB,calendarid VARCHAR (600) UNIQUE )") db.commit() print("TABLE CREATED SUCCESSFULLY") #QMessageBox.about(self, 'Connection', 'Database Connected Successfully') except mysql.connector.Error as e: #QMessageBox.about(self, 'Connection', 'Failed To Connect Database') print("Failed To Connect Database") #sys.exit(1) def insert_data(ADDRESS,NAME): try: # CONNECTING TO DB AND CREATING TABLE IF NOT EXIST db = mysql.connector.connect( host="localhost", user="root", passwd="mysql", database="Socket") print("DB CONNECTED SUCCESSFULLY") mycursor = db.cursor() mycursor.execute("CREATE TABLE IF NOT EXISTS CLIENTS(IPPORT VARCHAR (255) NOT NULL , NAME VARCHAR(255), MSG VARCHAR(255))") #db.commit() print("TABLE CREATED SUCCESSFULLY") # INSERTING DATA IN THE TABLE sql = "INSERT INTO CLIENTS (IPPORT,NAME) VALUES (%s,%s)" val = (ADDRESS,NAME) mycursor.execute(sql, val) # COMMITING CHANGES TO THE DB db.commit() print("DATA INSERTED SUCCESSFULLY") except mysql.connector.Error as e: #self.labelResult.setText("Error Inserting Data") print(e.errno) def update_data(ADDRESS,MSG): try: db = mysql.connector.connect( host="localhost", user="root", passwd="mysql", database="Socket") mycursor = db.cursor() sql = "UPDATE CLIENTS SET MSG = %s WHERE IPPORT = %s" val = (MSG,ADDRESS) mycursor.execute(sql, val) db.commit() print(MSG) print("MESSAGE UPDATED SUCCESSFULLY") except mysql.connector.Error as e: print('An exception occurred... ',e) # Handles message receiving def receive_message(client_socket): try: # Receive our "header" containing message length, it's size is defined and constant message_header = client_socket.recv(HEADER_LENGTH) # If we received no data, client gracefully closed a connection, for example using socket.close() or socket.shutdown(socket.SHUT_RDWR) if not len(message_header): return False # Convert header to int value message_length = int(message_header.decode('utf-8').strip()) # Return an object of message header and message data return {'header': message_header, 'data': client_socket.recv(message_length)} except: # If we are here, client closed connection violently, for example by pressing ctrl+c on his script or just lost his connection # socket.close() also invokes socket.shutdown(socket.SHUT_RDWR) what sends information about closing the socket (shutdown read/write) and that's also a cause when we receive an empty message return False while True: # Calls Unix select() system call or Windows select() WinSock call with three parameters: # - rlist - sockets to be monitored for incoming data # - wlist - sockets for data to be send to (checks if for example buffers are not full and socket is ready to send some data) # - xlist - sockets to be monitored for exceptions (we want to monitor all sockets for errors, so we can use rlist) # Returns lists: # - reading - sockets we received some data on (that way we don't have to check sockets manually) # - writing - sockets ready for data to be send thru them # - errors - sockets with some exceptions # This is a blocking call, code execution will "wait" here and "get" notified in case any action should be taken read_sockets, _, exception_sockets = select.select(sockets_list, [], sockets_list) # Iterate over notified sockets for notified_socket in read_sockets: # If notified socket is a server socket - new connection, accept it if notified_socket == server_socket: # Accept new connection That gives us new socket - client socket, connected to this given client only, it's unique for that client # The other returned object is ip/port set client_socket, client_address = server_socket.accept() # Client should send his name right away, receive it user = receive_message(client_socket) # If False - client disconnected before he sent his name if user is False: continue # Add accepted socket to select.select() list sockets_list.append(client_socket) # Also save username and username header clients[client_socket] = user print('Accepted new connection from {}:{}, username: {}'.format(*client_address, user['data'].decode('utf-8'))) # print(client_socket) print("client_address: {}:{}".format(*client_address)) print("username: {}".format(user['data'].decode('utf-8'))) insert_data("{}:{}".format(*client_address),user['data'].decode('utf-8')) # Else existing socket is sending a message else: # Receive message message = receive_message(notified_socket) # If False, client disconnected, cleanup if message is False: print('Closed connection from: {}'.format(clients[notified_socket]['data'].decode('utf-8'))) # Remove from list for socket.socket() sockets_list.remove(notified_socket) # Remove from our list of users del clients[notified_socket] continue # Get user by notified socket, so we will know who sent the message user = clients[notified_socket] print(f'Received message from {user["data"].decode("utf-8")}: {message["data"].decode("utf-8")}') print("client_address: {}:{}".format(*client_address)) print("username: {}".format(user['data'].decode('utf-8'))) update_data("{}:{}".format(*client_address),message['data'].decode('utf-8')) # Iterate over connected clients and broadcast message for client_socket in clients: # But don't sent it to sender if client_socket != notified_socket: # Send user and message (both with their headers) # We are reusing here message header sent by sender, and saved username header send by user when he connected client_socket.send(user['header'] + user['data'] + message['header'] + message['data']) # mes = input('server: ') # for client_socket in clients: # # But don't sent it to sender # if client_socket != notified_socket: # # Send user and message (both with their headers) # # We are reusing here message header sent by sender, and saved username header send by user when he connected # client_socket.send(bytes(mes,'utf-8')) # It's not really necessary to have this, but will handle some socket exceptions just in case for notified_socket in exception_sockets: # Remove from list for socket.socket() sockets_list.remove(notified_socket) # Remove from our list of users del clients[notified_socket]
py
7df941257ae642f238dd0fbfd3491700c71a486a
from django.urls import path from allauth.socialaccount.providers.oauth2_provider.urls import default_urlpatterns from .provider import AppleProvider from .views import oauth2_finish_login urlpatterns = default_urlpatterns(AppleProvider) urlpatterns += [ path( AppleProvider.get_slug() + "/login/callback/finish/", oauth2_finish_login, name="apple_finish_callback", ), ]
py
7df94127bd0a68e3ba1c5cd140d3f5d8641e0cc9
from plugin import plugin, require import os voice_control_installed = True try: import speech_recognition as sr import pyaudio except ImportError: voice_control_installed = False if voice_control_installed: requirements = [] else: requirements = ['voice_control_requirements (install portaudio + re-run setup.sh)'] @require(native=requirements) @plugin("hear") def hear(jarvis, s): r = sr.Recognizer() # intializing the speech_recognition listen = False _jarvis = jarvis._jarvis # calling jarvis object. _jarvis.speech.text_to_speech("Say listen to start voice mode") while listen is False: try: with sr.Microphone() as source: os.system('reset') # for clearing the terminal. print("Say listen to start listening") r.adjust_for_ambient_noise(source) # Eleminating the noise. audio = r.listen(source) # Storing audio. pinger = r.recognize_google(audio) # Converting speech to text try: if (pinger.lower() == "listen"): listen = True _jarvis.speech.text_to_speech("Voice mode activated") print("Voice mode activated. Say something!") break else: continue except LookupError: continue # For ignoring if your are not speaking anything. except sr.UnknownValueError: continue # For ignoring the unreconized words error while listen is True: print("Say somthing") try: with sr.Microphone() as source: r.adjust_for_ambient_noise(source) audio = r.listen(source) pinger = r.recognize_google(audio).lower() if (pinger == "stop"): listen = False print("Listening stopped.") _jarvis.speech.text_to_speech("Listening stopped.") break else: print(pinger) if listen: line = pinger jarvis.eval(line) except LookupError: _jarvis.speech.text_to_speech('Audio cannot be read!') print("Could not understand audio") _jarvis.speech.text_to_speech("unable to recognize voice") except sr.UnknownValueError: continue except sr.RequestError: print("Could not request results from Google Recognition service") continue # It will ignore connecting server error.
py
7df94224ab9169904888f8968de54c70951be114
# ffgen0xx saves an array of filling factor that is an input for the magn0xx procedure # the final array ff is a 3 x N array, each slice of 3 elements is a combination of filling factors which sum is 100 # the final array is saved into a pickle file. # Only change the ff_increment variable, which sets the increment between two possible filling factor values. # for exemple ff_increment = 25 means ff0 = [0,25,50,75,100] import numpy as np import pickle import os as os print('[info] ffgen0xxx.py | generates filling factor combinations for magn0xx') print('[info] v1.0 | 2018-11-21 | [email protected]') # Variables ff_increment = 4 ff_max = 100 print('[info] generating a filling factor array with ff_increment={} & ff_max={}'.format(ff_increment,ff_max)) # Creating the filling factors arrays ff0 = np.arange(ff_max/ff_increment+1, dtype=int) * ff_increment ff1 = np.arange(ff_max/ff_increment+1, dtype=int) * ff_increment ff2 = np.arange(ff_max/ff_increment+1, dtype=int) * ff_increment # ff will store the final array of filling factor ff = np.empty((0,3), int) print('[info] entering the main loop') # looping through all the filling factor possibilities and checking in which cases # the sum of all filling factor is 100%: is yes -> store into ff array for ii0 in range(len(ff0)): for ii1 in range(len(ff1)): for ii2 in range(len(ff2)): if ff0[ii0] + ff1[ii1] + ff2[ii2] == 100: ff = np.append(ff, np.array([[ff0[ii0],ff1[ii1],ff2[ii2]]]), axis=0) # the main loop is done. ff = ff.T print('[result] generated a final array with shape {}'.format(ff.shape)) # Storing the ff array into a HDF5 file now if os.path.exists('./ff0xx.p'): os.remove('./ff0xx.p') print('[info] removed an existing "ff0xx.p" file') pickle.dump( ff, open( "ff0xx.p", "wb" ) ) print('[result] filling factor array saved to "ff0xx.p"')
py
7df9426a15476a83ec43574d9fc208a9ba3f1c51
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name='django_serverside_datatable', version='0.1.0', description="Simple Server-side Datatable processing view for Django", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/umesh-krishna/django_serverside_datatable", license="MIT", author="Umesh Krishna", author_email='[email protected]', install_requires=['Django>=1.8'], packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
py
7df942b78510327e969baff003bb011e75a60b1f
import argparse import os import shutil import time, math from collections import OrderedDict import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models import numpy as np import torch.utils.model_zoo as model_zoo from torch.autograd.variable import Variable ''' Pytorch model for the iTracker. Author: Petr Kellnhofer ( pkel_lnho (at) gmai_l.com // remove underscores and spaces), 2018. Website: http://gazecapture.csail.mit.edu/ Cite: Eye Tracking for Everyone K.Krafka*, A. Khosla*, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik and A. Torralba IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 @inproceedings{cvpr2016_gazecapture, Author = {Kyle Krafka and Aditya Khosla and Petr Kellnhofer and Harini Kannan and Suchendra Bhandarkar and Wojciech Matusik and Antonio Torralba}, Title = {Eye Tracking for Everyone}, Year = {2016}, Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)} } ''' class ItrackerImageModel(nn.Module): # Used for both eyes (with shared weights) and the face (with unqiue weights) def __init__(self): super(ItrackerImageModel, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=0), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.CrossMapLRN2d(size=5, alpha=0.0001, beta=0.75, k=1.0), nn.Conv2d(96, 256, kernel_size=5, stride=1, padding=2, groups=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.CrossMapLRN2d(size=5, alpha=0.0001, beta=0.75, k=1.0), nn.Conv2d(256, 384, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 64, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) return x class FaceImageModel(nn.Module): def __init__(self): super(FaceImageModel, self).__init__() self.conv = ItrackerImageModel() self.fc = nn.Sequential( nn.Linear(12*12*64, 128), nn.ReLU(inplace=True), nn.Linear(128, 64), nn.ReLU(inplace=True), ) def forward(self, x): x = self.conv(x) x = self.fc(x) return x class FaceGridModel(nn.Module): # Model for the face grid pathway def __init__(self, gridSize = 25): super(FaceGridModel, self).__init__() self.fc = nn.Sequential( nn.Linear(gridSize * gridSize, 256), nn.ReLU(inplace=True), nn.Linear(256, 128), nn.ReLU(inplace=True), ) def forward(self, x): x = x.view(x.size(0), -1) x = self.fc(x) return x class ITrackerModel(nn.Module): def __init__(self): super(ITrackerModel, self).__init__() self.eyeModel = ItrackerImageModel() self.faceModel = FaceImageModel() self.gridModel = FaceGridModel() # Joining both eyes self.eyesFC = nn.Sequential( nn.Linear(2*12*12*64, 128), nn.ReLU(inplace=True), ) # Joining everything self.fc = nn.Sequential( nn.Linear(128+64+128, 128), nn.ReLU(inplace=True), nn.Linear(128, 2), ) def forward(self, faces, eyesLeft, eyesRight, faceGrids): # Eye nets xEyeL = self.eyeModel(eyesLeft) xEyeR = self.eyeModel(eyesRight) # Cat and FC xEyes = torch.cat((xEyeL, xEyeR), 1) xEyes = self.eyesFC(xEyes) # Face net xFace = self.faceModel(faces) xGrid = self.gridModel(faceGrids) # Cat all x = torch.cat((xEyes, xFace, xGrid), 1) x = self.fc(x) return x
py
7df9454357f715a7cdded01bd27d65133db771ab
""" ============================== 2020/12/30 rkouhei ============================== """ # ライブラリのインポート from utility.handling_file_directory import read_file, make_directory from utility.handling_data import read_iteration, read_sep, check_length import os import re import statsmodels.api as sm import pandas as pd from tqdm import tqdm class method: # 変数 mode = 6 # モード番号 path = "" # 読み込み対象のファイルへのパス sep = "" # ファイルの区切り文字の種類 iteration = 0 # 計算回数指定用変数 def __init__(self, path): """ ファイルの読み込みを行う。一度に、複数ファイルの読み込みも可能。 相対パスと絶対パス、どちらでも可能。 Input ------ path : 読み込みたいのファイルへのパス(一括指定可) Raises ------ 計算回数で、数字以外を入力した時。 """ self.sep = read_sep() self.iteration = read_iteration() self.path = path def write_file(self, df, path, out_dir): """ 計算結果を出力する。 出力はindexの有無で、2種類存在する。 Input ------ df : 保存したい計算結果 path : 元データのファイルパス out_dir : 保存先のディレクトリ """ input_fname = re.split("/", path)[-1] # ファイルネームだけ取り出す ext = os.path.splitext(input_fname) # ファイル名と拡張子に分解 # index有りのファイル名 out_fname = ext[0] + "_" + str(self.iteration) + ext[1] out_path = out_dir + out_fname # indexなしのファイル名 out_fname_noindex = ext[0] + "_" + str(self.iteration) + "_noindex" + ext[1] out_path_noindex = out_dir + out_fname_noindex df.to_csv(out_path, sep=" ", header=False, encoding="utf-8") # index有り df.to_csv(out_path_noindex, sep=" ", header=False, encoding="utf-8", index=False) # indexなし def calc(self, df_array, path_array, out_dir): """ 自己相関係数の計算を行う。 Input ------ df_array : 読み込んだデータ群の配列 path_array : 元データのファイルパス配列 out_dir : 計算結果を保存先するディレクトリへのパス """ # プログレスバーの設定 bar = tqdm(total=len(path_array)) bar.set_description("calc_acf") for df, path in zip(df_array, path_array): df_data = pd.Series(df['data'], dtype='float') # 自己相関の計算のためにpd.Seriesに格納 part_df = df_data.copy() part_iterations = int(self.iteration) acf = sm.tsa.stattools.acf(part_df, nlags=part_iterations, fft=True) index = pd.Series([times*0.0002 for times in range(part_iterations)]) out_pd = pd.Series(acf[:part_iterations], index=['{:.4f}'.format(i) for i in index]) self.write_file(out_pd, path, out_dir) bar.update(1) # プログレスバーの更新 def fit(self): """ 計算の実行。 """ df_array, path_array = read_file(self.path, self.sep) # データの読み込み check_length(df_array, path_array, self.iteration) # ずらす回数とデータ数を比較しておく out_dir, _ = make_directory(self.mode) # 書き込みを行うディレクトリ self.calc(df_array, path_array, out_dir) # 計算の実行と保存
py
7df94566ff4a5025976282960a35271b2dbf6212
import json from asgiref.sync import async_to_sync from channels.generic.websocket import AsyncWebsocketConsumer class ChatConsumer(AsyncWebsocketConsumer): async def connect(self): self.room_name = self.scope['url_route']['kwargs']['room_name'] self.room_group_name = 'chat_%s' % self.room_name # Join room group await self.channel_layer.group_add( self.room_group_name, self.channel_name ) await self.accept() async def disconnect(self, close_code): await self.channel_layer.group_discard( self.room_group_name, self.channel_name ) async def receive(self, text_data): text_data_json = json.loads(text_data) message = text_data_json['message'] await self.channel_layer.group_send( self.room_group_name, { 'type': 'chat_message', 'message': message } ) async def chat_message(self, event): message = event['message'] # Send message to WebSocket await self.send(text_data=json.dumps({ 'message': message }))
py
7df94635ee66d2e68cea12a428b7a44f8b2b8c36
from .utils import match_affix class Context(object): def __init__(self, original_word, dictionary, visitor_provider): self.removals = [] self.original_word = original_word self.current_word = self.original_word self.dictionary = dictionary self.result = self.original_word self.visitor_provider = visitor_provider self.is_stopped = False self.init_visitors() def init_visitors(self): self.visitors = self.visitor_provider.visitors self.suffix_visitors = self.visitor_provider.suffix_visitors self.prefix_visitors = self.visitor_provider.prefix_visitors def stop_process(self): self.is_stopped = True def add_removal(self, removal): self.removals.append(removal) def execute(self): # step 1 - 5 self.start_stemming_process() # step 6 if self.current_word in self.dictionary: self.result = self.current_word else: self.result = self.original_word def precedence(self, word): """ Confix Stripping Rule Precedence Adjustment Specification. Asian J. (2007) "Effective Techniques for Indonesian Text Retrieval" Page 78-79. @link http://researchbank.rmit.edu.au/eserv/rmit:6312/Asian.pdf """ return True if any([ match_affix(word, 'be', 'lah'), match_affix(word, 'be', 'an'), match_affix(word, 'me', 'i'), match_affix(word, 'di', 'i'), match_affix(word, 'pe', 'i'), match_affix(word, 'ter', 'i'), ]) else False def start_stemming_process(self): # step 1 if self.current_word in self.dictionary: return self.accept_visitors(self.visitors) if self.current_word in self.dictionary: return # Confix Stripping # Try to remove prefix before suffix if the specification is met if self.precedence(self.original_word): # step 4, 5 self.remove_prefixes() if self.current_word in self.dictionary: return # step 2, 3 self.remove_suffixes() if self.current_word in self.dictionary: return else: # if the trial is failed, restore the original word # and continue to normal rule precedence (suffix first, prefix afterwards) self.current_word = self.original_word self.removals = [] # step 2, 3 self.remove_suffixes() if self.current_word in self.dictionary: return # step 4, 5 self.remove_prefixes() if self.current_word in self.dictionary: return # ECS loop pengembalian akhiran self.loop_pengembalian_akhiran() def remove_prefixes(self): for i in range(3): self.accept_prefix_visitors(self.prefix_visitors) if self.current_word in self.dictionary: return def remove_suffixes(self): self.accept_visitors(self.suffix_visitors) def accept(self, visitor): visitor.visit(self) def accept_visitors(self, visitors): for visitor in visitors: self.accept(visitor) if self.current_word in self.dictionary: return self.current_word if self.is_stopped: return self.current_word def accept_prefix_visitors(self, visitors): removal_count = len(self.removals) for visitor in visitors: self.accept(visitor) if self.current_word in self.dictionary: return self.current_word if self.is_stopped: return self.current_word if len(self.removals) > removal_count: return def loop_pengembalian_akhiran(self): """ECS Loop Pengembalian Akhiran""" self.restore_prefix() removals = self.removals reversed_removals = reversed(removals) current_word = self.current_word for removal in reversed_removals: if not self.is_suffix_removal(removal): continue if removal.removed_part == 'kan': self.current_word = removal.result + 'k' # step 4,5 self.remove_prefixes() if self.current_word in self.dictionary: return self.current_word = removal.result + 'kan' else: self.current_word = removal.subject # step 4,5 self.remove_prefixes() if self.current_word in self.dictionary: return self.removals = removals self.current_word = current_word def is_suffix_removal(self, removal): """Check wether the removed part is a suffix""" return removal.affix_type == 'DS' or \ removal.affix_type == 'PP' or \ removal.affix_type == 'P' def restore_prefix(self): """Restore prefix to proceed with ECS loop pengembalian akhiran""" for removal in self.removals: # return the word before precoding (the subject of first prefix removal) self.current_word = removal.subject break for removal in self.removals: if removal.affix_type == 'DP': self.removals.remove(removal)
py
7df946763a4bdb692a8f61144eacb45503c119d8
# -*- coding: utf-8 -*- import sys import os import errno import re import logging log = logging.getLogger(__name__) # global configuration import vprimer.glv as glv import vprimer.utils as utl import subprocess as sbp import pandas as pd class Blast(object): def __init__(self): pass @classmethod def primer_blast_check(cls, left_fasta_id, right_fasta_id, left_primer_seq, right_primer_seq): fasta_list = [">{}".format(left_fasta_id)] fasta_list += ["{}".format(left_primer_seq)] fasta_list += [">{}".format(right_fasta_id)] fasta_list += ["{}".format(right_primer_seq)] primer_fasta = '\n'.join(fasta_list) blast_check_result_list = cls._do_blastn_pipe(primer_fasta) return blast_check_result_list @classmethod def _do_blastn_pipe(cls, primer_fasta): # https://www.haya-programming.com/entry/2018/03/25/214957 blastn_short = ['blastn'] blastn_short += ['-db'] blastn_short += ["{}".format(glv.conf.blastdb)] blastn_short += ['-num_threads'] blastn_short += ["{}".format(glv.conf.blast_num_threads)] blastn_short += ['-word_size'] blastn_short += ["{}".format(glv.conf.blast_word_size)] blastn_short += ['-ungapped'] blastn_short += ['-task'] blastn_short += ['blastn-short'] blastn_short += ['-outfmt'] outfmt = '6 qseqid sseqid qlen pident length mismatch' outfmt += ' gapopen qstart qend sstart send evalue sstrand' blastn_short += [outfmt] blastn_short_p = sbp.Popen( blastn_short, stdin=sbp.PIPE, stdout=sbp.PIPE) blastn_out = blastn_short_p.communicate( primer_fasta.encode())[0].decode() blast_check_result_list = cls._check_alternate_alignment(blastn_out) return blast_check_result_list @classmethod def _check_alternate_alignment(cls, blastn_out): blast_check_result_list = list() #print("{}".format(blastn_out)) check_dict = dict() # 0 qseqid # 1 sseqid # 2 qlen # 3 pident # 4 length # 5 mismatch # 6 gapopen # 7 qstart # 8 qend # 9 sstart # 10 send # 11 evalue # 12 sstrand for row in blastn_out.split('\n'): if row == '': continue item = row.split('\t') #log.debug("") #log.debug("start row {}".format(row)) query_id, primer_chrom, primer_abs_stt_pos, \ primer_abs_end_pos, primer_strand, \ subject_id, query_length, alignment_length, \ mismatches, gap_opens, \ subject_abs_stt_pos, subject_abs_end_pos, \ subject_strand = \ cls._get_align_info(item) #log.debug("query_length={}, alignment_length={}".format( # query_length, alignment_length)) #log.debug("mismatches={}, gap_opens={}".format( # mismatches, gap_opens)) if query_length != alignment_length or \ mismatches != 0 or gap_opens != 0: #log.debug("found mismatch continue") #log.debug("") continue #else: # log.debug("not found mismatch continue") # log.debug("") # check own alignment if cls._check_own_alignment( primer_chrom, primer_abs_stt_pos, primer_abs_end_pos, primer_strand, subject_id, subject_abs_stt_pos, subject_abs_end_pos, \ subject_strand) == True: continue # 辞書を作成する align_info = "{}:{}:{}".format( subject_abs_stt_pos, subject_abs_end_pos, subject_strand) #log.debug("align_info {}".format(align_info)) # キーが存在しない場合は、 if not subject_id in check_dict: check_dict[subject_id] = dict() check_dict[subject_id]['plus'] = list() check_dict[subject_id]['minus'] = list() check_dict[subject_id][primer_strand].append(align_info) #log.debug("check_dict {}".format(check_dict)) # primerのdistanceを確認する blast_check_result_list = cls._primer_distance_check(check_dict) #log.debug("distance_result {}".format(blast_check_result_list)) return blast_check_result_list @classmethod def _check_own_alignment( cls, primer_chrom, primer_abs_stt_pos, primer_abs_end_pos, primer_strand, subject_id, subject_abs_stt_pos, subject_abs_end_pos, subject_strand): own = False check_stt = primer_abs_stt_pos check_end = primer_abs_end_pos #log.debug("{} {}".format(primer_strand, subject_strand)) if primer_strand != subject_strand: check_stt = primer_abs_end_pos check_end = primer_abs_stt_pos if primer_chrom == subject_id and \ check_stt == subject_abs_stt_pos and \ check_end == subject_abs_end_pos: #log.debug("Me next {} q {} == s {} and q {} == s {}".format( # primer_chrom, # check_stt, subject_abs_stt_pos, # check_end, subject_abs_end_pos)) own = True #else: # log.debug("NotMe {} q {} == {} s {} and q {} == s {}".format( # primer_chrom, # check_stt, # subject_id, # subject_abs_stt_pos, # check_end, subject_abs_end_pos)) return own @classmethod def _get_align_info(cls, item): query_id = str(item[0]) primer_chrom, primer_abs_stt_pos, \ primer_abs_end_pos, primer_strand = \ cls._separate_primer_name(query_id) subject_id = str(item[1]) query_length = int(item[2]) alignment_length = int(item[4]) mismatches = int(item[5]) gap_opens = int(item[6]) s_stt = int(item[9]) s_end = int(item[10]) subject_strand = str(item[12]) # chrom:small-big:strand small always small < big subject_abs_stt_pos = s_stt subject_abs_end_pos = s_end if subject_strand == 'minus': subject_abs_stt_pos = s_end subject_abs_end_pos = s_stt return \ query_id, primer_chrom, primer_abs_stt_pos, \ primer_abs_end_pos, primer_strand, \ subject_id, query_length, alignment_length, \ mismatches, gap_opens, \ subject_abs_stt_pos, subject_abs_end_pos, \ subject_strand @classmethod def _primer_distance_check(cls, check_dict): #log.debug("{}".format(check_dict)) # 指定の距離 alternate_distance = glv.conf.alternate_distance blast_check_result_list = list() # { # 'NC_028450.1': # { # 'plus': # [ # '9985:10009:plus', # '32680:32704:plus', # '56651:56675:plus', # '3033129:3033153:plus', # '3055745:3055769:plus', # '3067736:3067760:plus', # '3079717:3079741:plus' # ], # 'minus': # [ # '10365:10341:minus', # '33060:33036:minus', # '45056:45032:minus', # '57031:57007:minus', # '3033509:3033485:minus', # '3056125:3056101:minus', # '3068116:3068092:minus', # '3080097:3080073:minus' # ] # } # } # contigごとにplusのリストの方向と向かい合うminusのリストを調べて、 # 距離を測り適用になる場合にリストに入れる。 for contig in check_dict: #log.debug("(1) {}".format(contig)) for plus_primer in check_dict[contig]['plus']: #log.debug("{}".format(plus_primer)) p_stt, p_end, p_strand = plus_primer.split(':') p_stt = int(p_stt) p_end = int(p_end) #log.debug("(2) \t{} p_stt={} p_end={} p_strand={}".format( # plus_primer, p_stt, p_end, p_strand)) for minus_primer in check_dict[contig]['minus']: #log.debug("\t{}".format(minus_primer)) m_stt, m_end, m_strand = minus_primer.split(':') m_stt = int(m_stt) m_end = int(m_end) #log.debug( # "(3) \t\t{} m_stt={} m_end={} m_strand={}".format( # minus_primer, m_stt, m_end, m_strand)) if p_strand != m_strand: # 逆である。 # 向かい合っているかどうか #log.debug("(4) \t\t\t{} not {} p={} m={}".format( # p_strand, m_strand, plus_primer, minus_primer)) # (4) plus not minus p=9985:10009:plus # m=10365:10341:minus dist_start = 0 dist_end = alternate_distance + 1 if p_strand == 'plus': # p=p # p_end| |m_stt # +++++++++> <--------- ok if p_end < m_stt: # ok dist_start = p_stt dist_end = m_end else: # p=m # m_end| |p_stt # ---------> <+++++++++ ok if m_end < p_stt: # ok dist_start = m_stt dist_end = p_end distance = dist_end - dist_start if distance <= alternate_distance: alt = "{}:{}-{}({})".format( contig, dist_start, dist_end, distance) blast_check_result_list.append(alt) #log.debug("{}".format(alt)) return blast_check_result_list @classmethod def _separate_primer_name(cls, primer_name): # [NC_028450.1]44676.44700.plus #chrom_str, remain_str = primer_name.split('}') #chrom = chrom_str.lstrip('{') #abs_primer_stt_pos, abs_primer_end_pos, strand = \ #remain_str.split('.') #s = 'NC_0:28450.1:44676-44700:plus' m = re.match(r'^(.*):([0-9]+)-([0-9]+):([a-z]+)$', primer_name) #print(m.groups()) #('NC_0:28450.1', '44676', '44700', 'plus') #log.debug("{}".format(primer_name)) #log.debug("{}".format(m)) #log.debug("{}".format(m[0])) #log.debug("{}".format(m[1])) chrom = str(m[1]) abs_primer_stt_pos = int(m[2]) abs_primer_end_pos = int(m[3]) strand = str(m[4]) #log.debug("{}".format(type(m[1]))) #sys.exit(1) return \ chrom, \ abs_primer_stt_pos, \ abs_primer_end_pos, \ strand @classmethod def makeblastdb(cls): fobj_list = utl.check_for_files( "{}*.nsq".format(glv.conf.blastdb)) # exit blastdb if len(fobj_list) != 0: return root_ext_pair = os.path.splitext(glv.conf.ref_fasta) cmd1 = '' if root_ext_pair[1] == '.gz': bgzip = "bgzip -cd -@ {} {}" mkdb = "makeblastdb -in - -title {} -dbtype nucl -out {}" cmd1 = "{} | {}".format( bgzip.format( glv.conf.parallele_full_thread, glv.conf.ref_fasta), mkdb.format( glv.conf.blastdb_title, glv.conf.blastdb)) else: mkdb = "makeblastdb -in {} -title {} -dbtype nucl -out {}" cmd1 = "{}".format( mkdb.format( glv.conf.ref_fasta, glv.conf.blastdb_title, glv.conf.blastdb)) utl.try_exec(cmd1)
py
7df9467812e78b55041c73ff2d33a4dc602146b9
import sys from collections import deque, namedtuple import os from typing import List ArgFlag = namedtuple('ArgFlag', ('key', 'default'), defaults=(None, None)) ArgParameter = namedtuple('ArgOption', ('key', 'required', 'default'), defaults=(None, False, '')) def arg_parser(args, arg_desc: List[namedtuple], script_name=None): all_keys = {a.key for a in arg_desc} key_to_desc = {desc.key: desc for desc in arg_desc} required_keys = {a.key for a in arg_desc if isinstance(a, ArgParameter) and a.required} flag_keys = {a.key for a in arg_desc if isinstance(a, ArgFlag)} optional_keys = all_keys - required_keys - flag_keys script_name = script_name or os.path.basename(sys.argv[0]) def usage(error=None): arg_suggest = [] for key in flag_keys: arg_suggest.append(f'[--{key}]') for key in required_keys: arg_suggest.append(f'--{key} <{key}>') for key in optional_keys: arg_suggest.append(f'[--{key} <{key}>]') text_args_suggest = ' '.join(arg_suggest) if error: print(f'Error: {error}!') print('Usage:') print(f' python3 {script_name} {text_args_suggest}') exit(0) if not args: usage() args = deque(args) results = {} for key in flag_keys: results[key] = False is_key = lambda k: k.startswith('--') current_key = None while args: arg = args.popleft() if current_key is None: if is_key(arg): current_key = arg[2:] if not current_key: usage('empty key') if current_key not in all_keys: usage(f'unknown key {arg}') if current_key in flag_keys: results[current_key] = True current_key = None else: usage('expected key name staring with --') else: if is_key(arg): usage('expected value without --') results[current_key] = arg current_key = None if not all(key in results for key in required_keys): missing_keys = set(required_keys) - set(results.keys()) err_text = ', '.join(f'--{k}' for k in missing_keys) usage(f'not all required key filled: {err_text}') for key in optional_keys: if key not in results: results[key] = key_to_desc[key].default return results
py
7df9474c34e68081ea5b5cbb0c5daa7e4770869d
import os import rastervision as rv from .data import (get_rio_training_scene_info, get_rio_val_scene_info) AOI_URI = "s3://spacenet-dataset/AOI_1_Rio/srcData/buildingLabels/Rio_OUTLINE_Public_AOI.geojson" class ChipClassificationExperiments(rv.ExperimentSet): """Chip classificaiton experiments on SpaceNet Rio data. Be sure you've run the data prep notebook before running this experiment. """ def scene_maker(self, task): def f(x): (raster_uri, label_uri) = x id = os.path.splitext(os.path.basename(raster_uri))[0] label_source = rv.LabelSourceConfig.builder(rv.CHIP_CLASSIFICATION_GEOJSON) \ .with_uri(label_uri) \ .with_ioa_thresh(0.5) \ .with_use_intersection_over_cell(False) \ .with_pick_min_class_id(True) \ .with_background_class_id(2) \ .with_infer_cells(True) \ .build() return rv.SceneConfig.builder() \ .with_task(task) \ .with_id(id) \ .with_raster_source(raster_uri) \ .with_label_source(label_source) \ .with_aoi_uri(AOI_URI) \ .build() return f def exp_rio_resnet50_200chip(self, root_uri): task = rv.TaskConfig.builder(rv.CHIP_CLASSIFICATION) \ .with_chip_size(200) \ .with_classes({ "building": (1, "red"), "no_building": (2, "black") }) \ .build() backend = rv.BackendConfig.builder(rv.KERAS_CLASSIFICATION) \ .with_task(task) \ .with_model_defaults(rv.RESNET50_IMAGENET) \ .with_debug(True) \ .with_train_options(replace_model=True) \ .with_batch_size(16) \ .with_num_epochs(40) \ .with_config({ "trainer": { "options": { "saveBest": True, "lrSchedule": [ { "epoch": 0, "lr": 0.0005 }, { "epoch": 15, "lr": 0.0001 }, { "epoch": 30, "lr": 0.00001 } ] } } }, set_missing_keys=True) \ .build() make_scene = self.scene_maker(task) train_scenes = list(map(make_scene, get_rio_training_scene_info())) val_scenes = list(map(make_scene, get_rio_val_scene_info())) dataset = rv.DatasetConfig.builder() \ .with_train_scenes(train_scenes) \ .with_validation_scenes(val_scenes) \ .build() experiment = rv.ExperimentConfig.builder() \ .with_id('spacenet-rio-chip-classification') \ .with_root_uri(root_uri) \ .with_task(task) \ .with_backend(backend) \ .with_dataset(dataset) \ .build() return experiment if __name__ == '__main__': rv.main()
py
7df947ac61e1ec356cb778151ee3d69c52bf268c
import os import sys from setuptools import setup, find_packages from setuptools.command.install import install VERSION = "3.0.5" def readme(): readme_short = """ Quilt is a data management tool designed for data discoverability, data dependency management, and data version control using `data packages <https://blog.quiltdata.com/data-packages-for-fast-reproducible-python-analysis-c74b78015c7f>`_. The `quilt` PyPi package allows you to build, push, and pull data packages in Quilt using Python. Visit the `documentation quickstart <https://docs.quiltdata.com/quickstart>`_ for more information. """ return readme_short class VerifyVersionCommand(install): """Custom command to verify that the git tag matches our version""" description = 'verify that the git tag matches our version' def run(self): tag = os.getenv('CIRCLE_TAG') if tag != VERSION: info = "Git tag: {0} does not match the version of this app: {1}".format( tag, VERSION ) sys.exit(info) setup( name="quilt3", version=VERSION, packages=find_packages(), description='Quilt: where data comes together', long_description=readme(), python_requires='>=3.6', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], author='quiltdata', author_email='[email protected]', license='LICENSE', url='https://github.com/quiltdata/quilt', keywords='', install_requires=[ 'appdirs>=1.4.0', 'aws-requests-auth>=0.4.2', 'boto3>=1.8.0', 'elasticsearch~=6.3.1', 'jsonlines==1.2.0', 'numpy>=1.14.0', # required by pandas, but missing from its dependencies. 'packaging>=16.8', 'pandas>=0.19.2', 'pyarrow>=0.9.0,<0.14', # as of 7/5/19: linux/circleci bugs on 0.14 'requests>=2.12.4', 'ruamel.yaml<=0.15.70', 'tqdm>=4.26.0', 'urllib3<1.25,>=1.21.1', # required by requests 'xattr>=0.9.6; platform_system!="Windows"', 'humanize' ], extras_require={ 'tests': [ 'codecov', 'pytest', 'pytest-cov', 'responses', 'tox', 'detox', 'tox-pytest-summary', ], }, include_package_data=True, entry_points={ 'console_scripts': ['quilt3=quilt3.main:main'], }, cmdclass={ 'verify': VerifyVersionCommand, } )
py
7df949cada78aba1d801708de35dcf3b2c6daad2
""" A User model, used for authentication. """ from __future__ import annotations import datetime import hashlib import logging import secrets import typing as t from piccolo.columns import Boolean, Secret, Timestamp, Varchar from piccolo.columns.column_types import Serial from piccolo.columns.readable import Readable from piccolo.table import Table from piccolo.utils.sync import run_sync logger = logging.getLogger(__file__) class BaseUser(Table, tablename="piccolo_user"): """ Provides a basic user, with authentication support. """ id: Serial username = Varchar(length=100, unique=True) password = Secret(length=255) first_name = Varchar(null=True) last_name = Varchar(null=True) email = Varchar(length=255, unique=True) active = Boolean(default=False) admin = Boolean( default=False, help_text="An admin can log into the Piccolo admin GUI." ) superuser = Boolean( default=False, help_text=( "If True, this user can manage other users's passwords in the " "Piccolo admin GUI." ), ) last_login = Timestamp( null=True, default=None, required=False, help_text="When this user last logged in.", ) _min_password_length = 6 _max_password_length = 128 def __init__(self, **kwargs): # Generating passwords upfront is expensive, so might need reworking. password = kwargs.get("password", None) if password: if not password.startswith("pbkdf2_sha256"): kwargs["password"] = self.__class__.hash_password(password) super().__init__(**kwargs) @classmethod def get_salt(cls): return secrets.token_hex(16) @classmethod def get_readable(cls) -> Readable: """ Used to get a readable string, representing a table row. """ return Readable(template="%s", columns=[cls.username]) ########################################################################### @classmethod def update_password_sync(cls, user: t.Union[str, int], password: str): """ A sync equivalent of :meth:`update_password`. """ return run_sync(cls.update_password(user, password)) @classmethod async def update_password(cls, user: t.Union[str, int], password: str): """ The password is the raw password string e.g. ``'password123'``. The user can be a user ID, or a username. """ if isinstance(user, str): clause = cls.username == user elif isinstance(user, int): clause = cls.id == user else: raise ValueError( "The `user` arg must be a user id, or a username." ) password = cls.hash_password(password) await cls.update({cls.password: password}).where(clause).run() ########################################################################### @classmethod def hash_password( cls, password: str, salt: str = "", iterations: int = 10000 ) -> str: """ Hashes the password, ready for storage, and for comparing during login. :raises ValueError: If an excessively long password is provided. """ if len(password) > cls._max_password_length: logger.warning("Excessively long password provided.") raise ValueError("The password is too long.") if not salt: salt = cls.get_salt() hashed = hashlib.pbkdf2_hmac( "sha256", bytes(password, encoding="utf-8"), bytes(salt, encoding="utf-8"), iterations, ).hex() return f"pbkdf2_sha256${iterations}${salt}${hashed}" def __setattr__(self, name: str, value: t.Any): """ Make sure that if the password is set, it's stored in a hashed form. """ if name == "password" and not value.startswith("pbkdf2_sha256"): value = self.__class__.hash_password(value) super().__setattr__(name, value) @classmethod def split_stored_password(cls, password: str) -> t.List[str]: elements = password.split("$") if len(elements) != 4: raise ValueError("Unable to split hashed password") return elements ########################################################################### @classmethod def login_sync(cls, username: str, password: str) -> t.Optional[int]: """ A sync equivalent of :meth:`login`. """ return run_sync(cls.login(username, password)) @classmethod async def login(cls, username: str, password: str) -> t.Optional[int]: """ Make sure the user exists and the password is valid. If so, the ``last_login`` value is updated in the database. :returns: The id of the user if a match is found, otherwise ``None``. """ if len(username) > cls.username.length: logger.warning("Excessively long username provided.") return None if len(password) > cls._max_password_length: logger.warning("Excessively long password provided.") return None response = ( await cls.select(cls._meta.primary_key, cls.password) .where(cls.username == username) .first() .run() ) if not response: # No match found return None stored_password = response["password"] algorithm, iterations, salt, hashed = cls.split_stored_password( stored_password ) if ( cls.hash_password(password, salt, int(iterations)) == stored_password ): await cls.update({cls.last_login: datetime.datetime.now()}).where( cls.username == username ) return response["id"] else: return None ########################################################################### @classmethod def create_user_sync( cls, username: str, password: str, **extra_params ) -> BaseUser: """ A sync equivalent of :meth:`create_user`. """ return run_sync( cls.create_user( username=username, password=password, **extra_params ) ) @classmethod async def create_user( cls, username: str, password: str, **extra_params ) -> BaseUser: """ Creates a new user, and saves it in the database. It is recommended to use this rather than instantiating and saving ``BaseUser`` directly, as we add extra validation. :raises ValueError: If the username or password is invalid. :returns: The created ``BaseUser`` instance. """ if not username: raise ValueError("A username must be provided.") if not password: raise ValueError("A password must be provided.") if len(password) < cls._min_password_length: raise ValueError("The password is too short.") if len(password) > cls._max_password_length: raise ValueError("The password is too long.") if password.startswith("pbkdf2_sha256"): logger.warning( "Tried to create a user with an already hashed password." ) raise ValueError("Do not pass a hashed password.") user = cls(username=username, password=password, **extra_params) await user.save() return user
py
7df94b2cc3b192b41558e17c8a589749f8f8b6b7
# -*- coding:utf-8 -*- """ This program is designed to download all images of a page of https://www.mzitu.com/zipai/comment-page-1/#comments """ from bs4 import BeautifulSoup from hyper.contrib import HTTP20Adapter import requests import re import os folder = './imgs' # Folder to save images s = requests.Session() def getHeaders(url): return { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:43.0) Gecko/20100101 Firefox/43.0', 'Accept-Encoding': 'gzip, deflate', 'Referer': url, 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0' } def downloadFile(url): name = os.path.basename(url) if not os.path.exists(folder): os.mkdir(folder) path = os.path.join(folder, name) f = open(path, 'wb') f.write(s.get(url, headers=getHeaders(url)).content) f.close def getImgUrls(url): s.mount(url, HTTP20Adapter()) html_content = s.get(url, headers=getHeaders(url)).text soup = BeautifulSoup(html_content, "html.parser") img_urls = soup.findAll('img', class_='lazy') for i in img_urls: downloadFile(i['data-original']) def analysis(t): s = re.findall('http[s]?://', t) if len(s) == 1: getImgUrls(t) else: print('Invalid url') def main(): u = input('Please input target url') s = re.findall('http[s]?://', u) if len(s) == 1: analysis(u) else: print('Invalid url') if __name__ == '__main__': main()
py
7df94b5820e5d46a72e2b753fac500233ed9514c
from datetime import datetime from dateutil.tz import tzlocal import pytest from pandas.compat import IS64 from pandas import ( DateOffset, DatetimeIndex, Index, Series, bdate_range, date_range, ) import pandas._testing as tm from pandas.tseries.offsets import ( BDay, Day, Hour, ) START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps: def test_ops_properties_basic(self, datetime_series): # sanity check that the behavior didn't change # GH#7206 for op in ["year", "day", "second", "weekday"]: msg = f"'Series' object has no attribute '{op}'" with pytest.raises(AttributeError, match=msg): getattr(datetime_series, op) # attribute access should still work! s = Series({"year": 2000, "month": 1, "day": 10}) assert s.year == 2000 assert s.month == 1 assert s.day == 10 msg = "'Series' object has no attribute 'weekday'" with pytest.raises(AttributeError, match=msg): s.weekday @pytest.mark.parametrize( "freq,expected", [ ("A", "day"), ("Q", "day"), ("M", "day"), ("D", "day"), ("H", "hour"), ("T", "minute"), ("S", "second"), ("L", "millisecond"), ("U", "microsecond"), ], ) def test_resolution(self, request, tz_naive_fixture, freq, expected): tz = tz_naive_fixture if freq == "A" and not IS64 and isinstance(tz, tzlocal): request.node.add_marker( pytest.mark.xfail(reason="OverflowError inside tzlocal past 2038") ) idx = date_range(start="2013-04-01", periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_infer_freq(self, freq_sample): # GH 11018 idx = date_range("2011-01-01 09:00:00", freq=freq_sample, periods=10) result = DatetimeIndex(idx.asi8, freq="infer") tm.assert_index_equal(idx, result) assert result.freq == freq_sample @pytest.mark.parametrize("values", [["20180101", "20180103", "20180105"], []]) @pytest.mark.parametrize("freq", ["2D", Day(2), "2B", BDay(2), "48H", Hour(48)]) @pytest.mark.parametrize("tz", [None, "US/Eastern"]) def test_freq_setter(self, values, freq, tz): # GH 20678 idx = DatetimeIndex(values, tz=tz) # can set to an offset, converting from string if necessary idx._data.freq = freq assert idx.freq == freq assert isinstance(idx.freq, DateOffset) # can reset to None idx._data.freq = None assert idx.freq is None def test_freq_setter_errors(self): # GH 20678 idx = DatetimeIndex(["20180101", "20180103", "20180105"]) # setting with an incompatible freq msg = ( "Inferred frequency 2D from passed values does not conform to " "passed frequency 5D" ) with pytest.raises(ValueError, match=msg): idx._data.freq = "5D" # setting with non-freq string with pytest.raises(ValueError, match="Invalid frequency"): idx._data.freq = "foo" def test_freq_view_safe(self): # Setting the freq for one DatetimeIndex shouldn't alter the freq # for another that views the same data dti = date_range("2016-01-01", periods=5) dta = dti._data dti2 = DatetimeIndex(dta)._with_freq(None) assert dti2.freq is None # Original was not altered assert dti.freq == "D" assert dta.freq == "D" class TestBusinessDatetimeIndex: def setup_method(self, method): self.rng = bdate_range(START, END) def test_comparison(self): d = self.rng[10] comp = self.rng > d assert comp[11] assert not comp[9] def test_copy(self): cp = self.rng.copy() repr(cp) tm.assert_index_equal(cp, self.rng) def test_identical(self): t1 = self.rng.copy() t2 = self.rng.copy() assert t1.identical(t2) # name t1 = t1.rename("foo") assert t1.equals(t2) assert not t1.identical(t2) t2 = t2.rename("foo") assert t1.identical(t2) # freq t2v = Index(t2.values) assert t1.equals(t2v) assert not t1.identical(t2v) class TestCustomDatetimeIndex: def setup_method(self, method): self.rng = bdate_range(START, END, freq="C") def test_comparison(self): d = self.rng[10] comp = self.rng > d assert comp[11] assert not comp[9] def test_copy(self): cp = self.rng.copy() repr(cp) tm.assert_index_equal(cp, self.rng)
py
7df94be77e7b949e23eb709082b53f939c29d3da
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class FirewallPolicyRuleCollectionGroupsOperations: """FirewallPolicyRuleCollectionGroupsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_05_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, firewall_policy_name: str, rule_collection_group_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'firewallPolicyName': self._serialize.url("firewall_policy_name", firewall_policy_name, 'str'), 'ruleCollectionGroupName': self._serialize.url("rule_collection_group_name", rule_collection_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/firewallPolicies/{firewallPolicyName}/ruleCollectionGroups/{ruleCollectionGroupName}'} # type: ignore async def begin_delete( self, resource_group_name: str, firewall_policy_name: str, rule_collection_group_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified FirewallPolicyRuleCollectionGroup. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param firewall_policy_name: The name of the Firewall Policy. :type firewall_policy_name: str :param rule_collection_group_name: The name of the FirewallPolicyRuleCollectionGroup. :type rule_collection_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, firewall_policy_name=firewall_policy_name, rule_collection_group_name=rule_collection_group_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'firewallPolicyName': self._serialize.url("firewall_policy_name", firewall_policy_name, 'str'), 'ruleCollectionGroupName': self._serialize.url("rule_collection_group_name", rule_collection_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/firewallPolicies/{firewallPolicyName}/ruleCollectionGroups/{ruleCollectionGroupName}'} # type: ignore async def get( self, resource_group_name: str, firewall_policy_name: str, rule_collection_group_name: str, **kwargs ) -> "_models.FirewallPolicyRuleCollectionGroup": """Gets the specified FirewallPolicyRuleCollectionGroup. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param firewall_policy_name: The name of the Firewall Policy. :type firewall_policy_name: str :param rule_collection_group_name: The name of the FirewallPolicyRuleCollectionGroup. :type rule_collection_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FirewallPolicyRuleCollectionGroup, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_05_01.models.FirewallPolicyRuleCollectionGroup :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FirewallPolicyRuleCollectionGroup"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'firewallPolicyName': self._serialize.url("firewall_policy_name", firewall_policy_name, 'str'), 'ruleCollectionGroupName': self._serialize.url("rule_collection_group_name", rule_collection_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('FirewallPolicyRuleCollectionGroup', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/firewallPolicies/{firewallPolicyName}/ruleCollectionGroups/{ruleCollectionGroupName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, firewall_policy_name: str, rule_collection_group_name: str, parameters: "_models.FirewallPolicyRuleCollectionGroup", **kwargs ) -> "_models.FirewallPolicyRuleCollectionGroup": cls = kwargs.pop('cls', None) # type: ClsType["_models.FirewallPolicyRuleCollectionGroup"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'firewallPolicyName': self._serialize.url("firewall_policy_name", firewall_policy_name, 'str'), 'ruleCollectionGroupName': self._serialize.url("rule_collection_group_name", rule_collection_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'FirewallPolicyRuleCollectionGroup') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('FirewallPolicyRuleCollectionGroup', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('FirewallPolicyRuleCollectionGroup', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/firewallPolicies/{firewallPolicyName}/ruleCollectionGroups/{ruleCollectionGroupName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, firewall_policy_name: str, rule_collection_group_name: str, parameters: "_models.FirewallPolicyRuleCollectionGroup", **kwargs ) -> AsyncLROPoller["_models.FirewallPolicyRuleCollectionGroup"]: """Creates or updates the specified FirewallPolicyRuleCollectionGroup. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param firewall_policy_name: The name of the Firewall Policy. :type firewall_policy_name: str :param rule_collection_group_name: The name of the FirewallPolicyRuleCollectionGroup. :type rule_collection_group_name: str :param parameters: Parameters supplied to the create or update FirewallPolicyRuleCollectionGroup operation. :type parameters: ~azure.mgmt.network.v2020_05_01.models.FirewallPolicyRuleCollectionGroup :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either FirewallPolicyRuleCollectionGroup or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_05_01.models.FirewallPolicyRuleCollectionGroup] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.FirewallPolicyRuleCollectionGroup"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, firewall_policy_name=firewall_policy_name, rule_collection_group_name=rule_collection_group_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('FirewallPolicyRuleCollectionGroup', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'firewallPolicyName': self._serialize.url("firewall_policy_name", firewall_policy_name, 'str'), 'ruleCollectionGroupName': self._serialize.url("rule_collection_group_name", rule_collection_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/firewallPolicies/{firewallPolicyName}/ruleCollectionGroups/{ruleCollectionGroupName}'} # type: ignore def list( self, resource_group_name: str, firewall_policy_name: str, **kwargs ) -> AsyncIterable["_models.FirewallPolicyRuleCollectionGroupListResult"]: """Lists all FirewallPolicyRuleCollectionGroups in a FirewallPolicy resource. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param firewall_policy_name: The name of the Firewall Policy. :type firewall_policy_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either FirewallPolicyRuleCollectionGroupListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_05_01.models.FirewallPolicyRuleCollectionGroupListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FirewallPolicyRuleCollectionGroupListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-05-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'firewallPolicyName': self._serialize.url("firewall_policy_name", firewall_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('FirewallPolicyRuleCollectionGroupListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/firewallPolicies/{firewallPolicyName}/ruleCollectionGroups'} # type: ignore
py
7df94c577862d6b9eda6d928a8a94d9c89f3439d
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=C,R,W """This module contains the 'Viz' objects These objects represent the backend of all the visualizations that Superset can render. """ import copy import hashlib import inspect import logging import math import pickle as pkl import re import uuid from collections import defaultdict, OrderedDict from datetime import datetime, timedelta from itertools import product from typing import Any, Dict, List, Optional, Set, Tuple, TYPE_CHECKING import geohash import numpy as np import pandas as pd import polyline import simplejson as json from dateutil import relativedelta as rdelta from flask import request from flask_babel import lazy_gettext as _ from geopy.point import Point from markdown import markdown from pandas.tseries.frequencies import to_offset from superset import app, cache, get_manifest_files, security_manager from superset.constants import NULL_STRING from superset.exceptions import NullValueException, SpatialException from superset.models.helpers import QueryResult from superset.typing import VizData from superset.utils import core as utils from superset.utils.core import ( DTTM_ALIAS, JS_MAX_INTEGER, merge_extra_filters, to_adhoc, ) if TYPE_CHECKING: from superset.connectors.base.models import BaseDatasource config = app.config stats_logger = config["STATS_LOGGER"] relative_start = config["DEFAULT_RELATIVE_START_TIME"] relative_end = config["DEFAULT_RELATIVE_END_TIME"] logger = logging.getLogger(__name__) METRIC_KEYS = [ "metric", "metrics", "percent_metrics", "metric_2", "secondary_metric", "x", "y", "size", ] class BaseViz: """All visualizations derive this base class""" viz_type: Optional[str] = None verbose_name = "Base Viz" credits = "" is_timeseries = False cache_type = "df" enforce_numerical_metrics = True def __init__( self, datasource: "BaseDatasource", form_data: Dict[str, Any], force: bool = False, ): if not datasource: raise Exception(_("Viz is missing a datasource")) self.datasource = datasource self.request = request self.viz_type = form_data.get("viz_type") self.form_data = form_data self.query = "" self.token = self.form_data.get("token", "token_" + uuid.uuid4().hex[:8]) self.groupby = self.form_data.get("groupby") or [] self.time_shift = timedelta() self.status: Optional[str] = None self.error_msg = "" self.results: Optional[QueryResult] = None self.error_message: Optional[str] = None self.force = force # Keeping track of whether some data came from cache # this is useful to trigger the <CachedLabel /> when # in the cases where visualization have many queries # (FilterBox for instance) self._any_cache_key: Optional[str] = None self._any_cached_dttm: Optional[str] = None self._extra_chart_data: List[Tuple[str, pd.DataFrame]] = [] self.process_metrics() def process_metrics(self): # metrics in TableViz is order sensitive, so metric_dict should be # OrderedDict self.metric_dict = OrderedDict() fd = self.form_data for mkey in METRIC_KEYS: val = fd.get(mkey) if val: if not isinstance(val, list): val = [val] for o in val: label = utils.get_metric_name(o) self.metric_dict[label] = o # Cast to list needed to return serializable object in py3 self.all_metrics = list(self.metric_dict.values()) self.metric_labels = list(self.metric_dict.keys()) @staticmethod def handle_js_int_overflow(data): for d in data.get("records", dict()): for k, v in list(d.items()): if isinstance(v, int): # if an int is too big for Java Script to handle # convert it to a string if abs(v) > JS_MAX_INTEGER: d[k] = str(v) return data def run_extra_queries(self): """Lifecycle method to use when more than one query is needed In rare-ish cases, a visualization may need to execute multiple queries. That is the case for FilterBox or for time comparison in Line chart for instance. In those cases, we need to make sure these queries run before the main `get_payload` method gets called, so that the overall caching metadata can be right. The way it works here is that if any of the previous `get_df_payload` calls hit the cache, the main payload's metadata will reflect that. The multi-query support may need more work to become a first class use case in the framework, and for the UI to reflect the subtleties (show that only some of the queries were served from cache for instance). In the meantime, since multi-query is rare, we treat it with a bit of a hack. Note that the hack became necessary when moving from caching the visualization's data itself, to caching the underlying query(ies). """ pass def apply_rolling(self, df): fd = self.form_data rolling_type = fd.get("rolling_type") rolling_periods = int(fd.get("rolling_periods") or 0) min_periods = int(fd.get("min_periods") or 0) if rolling_type in ("mean", "std", "sum") and rolling_periods: kwargs = dict(window=rolling_periods, min_periods=min_periods) if rolling_type == "mean": df = df.rolling(**kwargs).mean() elif rolling_type == "std": df = df.rolling(**kwargs).std() elif rolling_type == "sum": df = df.rolling(**kwargs).sum() elif rolling_type == "cumsum": df = df.cumsum() if min_periods: df = df[min_periods:] return df def get_samples(self): query_obj = self.query_obj() query_obj.update( { "groupby": [], "metrics": [], "row_limit": 1000, "columns": [o.column_name for o in self.datasource.columns], } ) df = self.get_df(query_obj) return df.to_dict(orient="records") def get_df(self, query_obj: Optional[Dict[str, Any]] = None) -> pd.DataFrame: """Returns a pandas dataframe based on the query object""" if not query_obj: query_obj = self.query_obj() if not query_obj: return pd.DataFrame() self.error_msg = "" timestamp_format = None if self.datasource.type == "table": granularity_col = self.datasource.get_column(query_obj["granularity"]) if granularity_col: timestamp_format = granularity_col.python_date_format # The datasource here can be different backend but the interface is common self.results = self.datasource.query(query_obj) self.query = self.results.query self.status = self.results.status self.error_message = self.results.error_message df = self.results.df # Transform the timestamp we received from database to pandas supported # datetime format. If no python_date_format is specified, the pattern will # be considered as the default ISO date format # If the datetime format is unix, the parse will use the corresponding # parsing logic. if not df.empty: if DTTM_ALIAS in df.columns: if timestamp_format in ("epoch_s", "epoch_ms"): # Column has already been formatted as a timestamp. dttm_col = df[DTTM_ALIAS] one_ts_val = dttm_col[0] # convert time column to pandas Timestamp, but different # ways to convert depending on string or int types try: int(one_ts_val) is_integral = True except (ValueError, TypeError): is_integral = False if is_integral: unit = "s" if timestamp_format == "epoch_s" else "ms" df[DTTM_ALIAS] = pd.to_datetime( dttm_col, utc=False, unit=unit, origin="unix" ) else: df[DTTM_ALIAS] = dttm_col.apply(pd.Timestamp) else: df[DTTM_ALIAS] = pd.to_datetime( df[DTTM_ALIAS], utc=False, format=timestamp_format ) if self.datasource.offset: df[DTTM_ALIAS] += timedelta(hours=self.datasource.offset) df[DTTM_ALIAS] += self.time_shift if self.enforce_numerical_metrics: self.df_metrics_to_num(df) df.replace([np.inf, -np.inf], np.nan, inplace=True) return df def df_metrics_to_num(self, df): """Converting metrics to numeric when pandas.read_sql cannot""" metrics = self.metric_labels for col, dtype in df.dtypes.items(): if dtype.type == np.object_ and col in metrics: df[col] = pd.to_numeric(df[col], errors="coerce") def process_query_filters(self): utils.convert_legacy_filters_into_adhoc(self.form_data) merge_extra_filters(self.form_data) utils.split_adhoc_filters_into_base_filters(self.form_data) def query_obj(self) -> Dict[str, Any]: """Building a query object""" form_data = self.form_data self.process_query_filters() gb = form_data.get("groupby") or [] metrics = self.all_metrics or [] columns = form_data.get("columns") or [] groupby = list(set(gb + columns)) is_timeseries = self.is_timeseries if DTTM_ALIAS in groupby: groupby.remove(DTTM_ALIAS) is_timeseries = True granularity = form_data.get("granularity") or form_data.get("granularity_sqla") limit = int(form_data.get("limit") or 0) timeseries_limit_metric = form_data.get("timeseries_limit_metric") row_limit = int(form_data.get("row_limit") or config["ROW_LIMIT"]) # default order direction order_desc = form_data.get("order_desc", True) since, until = utils.get_since_until( relative_start=relative_start, relative_end=relative_end, time_range=form_data.get("time_range"), since=form_data.get("since"), until=form_data.get("until"), ) time_shift = form_data.get("time_shift", "") self.time_shift = utils.parse_past_timedelta(time_shift) from_dttm = None if since is None else (since - self.time_shift) to_dttm = None if until is None else (until - self.time_shift) if from_dttm and to_dttm and from_dttm > to_dttm: raise Exception(_("From date cannot be larger than to date")) self.from_dttm = from_dttm self.to_dttm = to_dttm # extras are used to query elements specific to a datasource type # for instance the extra where clause that applies only to Tables extras = { "druid_time_origin": form_data.get("druid_time_origin", ""), "having": form_data.get("having", ""), "having_druid": form_data.get("having_filters", []), "time_grain_sqla": form_data.get("time_grain_sqla"), "time_range_endpoints": form_data.get("time_range_endpoints"), "where": form_data.get("where", ""), } d = { "granularity": granularity, "from_dttm": from_dttm, "to_dttm": to_dttm, "is_timeseries": is_timeseries, "groupby": groupby, "metrics": metrics, "row_limit": row_limit, "filter": self.form_data.get("filters", []), "timeseries_limit": limit, "extras": extras, "timeseries_limit_metric": timeseries_limit_metric, "order_desc": order_desc, } return d @property def cache_timeout(self): if self.form_data.get("cache_timeout") is not None: return int(self.form_data.get("cache_timeout")) if self.datasource.cache_timeout is not None: return self.datasource.cache_timeout if ( hasattr(self.datasource, "database") and self.datasource.database.cache_timeout ) is not None: return self.datasource.database.cache_timeout return config["CACHE_DEFAULT_TIMEOUT"] def get_json(self): return json.dumps( self.get_payload(), default=utils.json_int_dttm_ser, ignore_nan=True ) def cache_key(self, query_obj, **extra): """ The cache key is made out of the key/values in `query_obj`, plus any other key/values in `extra`. We remove datetime bounds that are hard values, and replace them with the use-provided inputs to bounds, which may be time-relative (as in "5 days ago" or "now"). The `extra` arguments are currently used by time shift queries, since different time shifts wil differ only in the `from_dttm` and `to_dttm` values which are stripped. """ cache_dict = copy.copy(query_obj) cache_dict.update(extra) for k in ["from_dttm", "to_dttm"]: del cache_dict[k] cache_dict["time_range"] = self.form_data.get("time_range") cache_dict["datasource"] = self.datasource.uid cache_dict["extra_cache_keys"] = self.datasource.get_extra_cache_keys(query_obj) cache_dict["rls"] = security_manager.get_rls_ids(self.datasource) cache_dict["changed_on"] = self.datasource.changed_on json_data = self.json_dumps(cache_dict, sort_keys=True) return hashlib.md5(json_data.encode("utf-8")).hexdigest() def get_payload(self, query_obj=None): """Returns a payload of metadata and data""" self.run_extra_queries() payload = self.get_df_payload(query_obj) df = payload.get("df") if self.status != utils.QueryStatus.FAILED: payload["data"] = self.get_data(df) if "df" in payload: del payload["df"] return payload def get_df_payload(self, query_obj=None, **kwargs): """Handles caching around the df payload retrieval""" if not query_obj: query_obj = self.query_obj() cache_key = self.cache_key(query_obj, **kwargs) if query_obj else None logger.info("Cache key: {}".format(cache_key)) is_loaded = False stacktrace = None df = None cached_dttm = datetime.utcnow().isoformat().split(".")[0] if cache_key and cache and not self.force: cache_value = cache.get(cache_key) if cache_value: stats_logger.incr("loading_from_cache") try: cache_value = pkl.loads(cache_value) df = cache_value["df"] self.query = cache_value["query"] self._any_cached_dttm = cache_value["dttm"] self._any_cache_key = cache_key self.status = utils.QueryStatus.SUCCESS is_loaded = True stats_logger.incr("loaded_from_cache") except Exception as e: logger.exception(e) logger.error( "Error reading cache: " + utils.error_msg_from_exception(e) ) logger.info("Serving from cache") if query_obj and not is_loaded: try: df = self.get_df(query_obj) if self.status != utils.QueryStatus.FAILED: stats_logger.incr("loaded_from_source") if not self.force: stats_logger.incr("loaded_from_source_without_force") is_loaded = True except Exception as e: logger.exception(e) if not self.error_message: self.error_message = "{}".format(e) self.status = utils.QueryStatus.FAILED stacktrace = utils.get_stacktrace() if ( is_loaded and cache_key and cache and self.status != utils.QueryStatus.FAILED ): try: cache_value = dict(dttm=cached_dttm, df=df, query=self.query) cache_value = pkl.dumps(cache_value, protocol=pkl.HIGHEST_PROTOCOL) logger.info( "Caching {} chars at key {}".format(len(cache_value), cache_key) ) stats_logger.incr("set_cache_key") cache.set(cache_key, cache_value, timeout=self.cache_timeout) except Exception as e: # cache.set call can fail if the backend is down or if # the key is too large or whatever other reasons logger.warning("Could not cache key {}".format(cache_key)) logger.exception(e) cache.delete(cache_key) return { "cache_key": self._any_cache_key, "cached_dttm": self._any_cached_dttm, "cache_timeout": self.cache_timeout, "df": df, "error": self.error_message, "form_data": self.form_data, "is_cached": self._any_cache_key is not None, "query": self.query, "status": self.status, "stacktrace": stacktrace, "rowcount": len(df.index) if df is not None else 0, } def json_dumps(self, obj, sort_keys=False): return json.dumps( obj, default=utils.json_int_dttm_ser, ignore_nan=True, sort_keys=sort_keys ) def payload_json_and_has_error(self, payload): has_error = ( payload.get("status") == utils.QueryStatus.FAILED or payload.get("error") is not None ) return self.json_dumps(payload), has_error @property def data(self): """This is the data object serialized to the js layer""" content = { "form_data": self.form_data, "token": self.token, "viz_name": self.viz_type, "filter_select_enabled": self.datasource.filter_select_enabled, } return content def get_csv(self): df = self.get_df() include_index = not isinstance(df.index, pd.RangeIndex) return df.to_csv(index=include_index, **config["CSV_EXPORT"]) def get_data(self, df: pd.DataFrame) -> VizData: return df.to_dict(orient="records") @property def json_data(self): return json.dumps(self.data) class TableViz(BaseViz): """A basic html table that is sortable and searchable""" viz_type = "table" verbose_name = _("Table View") credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original' is_timeseries = False enforce_numerical_metrics = False def should_be_timeseries(self): fd = self.form_data # TODO handle datasource-type-specific code in datasource conditions_met = (fd.get("granularity") and fd.get("granularity") != "all") or ( fd.get("granularity_sqla") and fd.get("time_grain_sqla") ) if fd.get("include_time") and not conditions_met: raise Exception( _("Pick a granularity in the Time section or " "uncheck 'Include Time'") ) return fd.get("include_time") def query_obj(self): d = super().query_obj() fd = self.form_data if fd.get("all_columns") and ( fd.get("groupby") or fd.get("metrics") or fd.get("percent_metrics") ): raise Exception( _( "Choose either fields to [Group By] and [Metrics] and/or " "[Percentage Metrics], or [Columns], not both" ) ) sort_by = fd.get("timeseries_limit_metric") if fd.get("all_columns"): d["columns"] = fd.get("all_columns") d["groupby"] = [] order_by_cols = fd.get("order_by_cols") or [] d["orderby"] = [json.loads(t) for t in order_by_cols] elif sort_by: sort_by_label = utils.get_metric_name(sort_by) if sort_by_label not in utils.get_metric_names(d["metrics"]): d["metrics"] += [sort_by] d["orderby"] = [(sort_by, not fd.get("order_desc", True))] # Add all percent metrics that are not already in the list if "percent_metrics" in fd: d["metrics"].extend( m for m in fd["percent_metrics"] or [] if m not in d["metrics"] ) d["is_timeseries"] = self.should_be_timeseries() return d def get_data(self, df: pd.DataFrame) -> VizData: """ Transform the query result to the table representation. :param df: The interim dataframe :returns: The table visualization data The interim dataframe comprises of the group-by and non-group-by columns and the union of the metrics representing the non-percent and percent metrics. Note the percent metrics have yet to be transformed. """ non_percent_metric_columns = [] # Transform the data frame to adhere to the UI ordering of the columns and # metrics whilst simultaneously computing the percentages (via normalization) # for the percent metrics. if DTTM_ALIAS in df: if self.should_be_timeseries(): non_percent_metric_columns.append(DTTM_ALIAS) else: del df[DTTM_ALIAS] non_percent_metric_columns.extend( self.form_data.get("all_columns") or self.form_data.get("groupby") or [] ) non_percent_metric_columns.extend( utils.get_metric_names(self.form_data.get("metrics") or []) ) timeseries_limit_metric = utils.get_metric_name( self.form_data.get("timeseries_limit_metric") ) if timeseries_limit_metric: non_percent_metric_columns.append(timeseries_limit_metric) percent_metric_columns = utils.get_metric_names( self.form_data.get("percent_metrics") or [] ) df = pd.concat( [ df[non_percent_metric_columns], ( df[percent_metric_columns] .div(df[percent_metric_columns].sum()) .add_prefix("%") ), ], axis=1, ) data = self.handle_js_int_overflow( dict(records=df.to_dict(orient="records"), columns=list(df.columns)) ) return data def json_dumps(self, obj, sort_keys=False): return json.dumps( obj, default=utils.json_iso_dttm_ser, sort_keys=sort_keys, ignore_nan=True ) class TimeTableViz(BaseViz): """A data table with rich time-series related columns""" viz_type = "time_table" verbose_name = _("Time Table View") credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original' is_timeseries = True def query_obj(self): d = super().query_obj() fd = self.form_data if not fd.get("metrics"): raise Exception(_("Pick at least one metric")) if fd.get("groupby") and len(fd.get("metrics")) > 1: raise Exception( _("When using 'Group By' you are limited to use a single metric") ) return d def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None fd = self.form_data columns = None values = self.metric_labels if fd.get("groupby"): values = self.metric_labels[0] columns = fd.get("groupby") pt = df.pivot_table(index=DTTM_ALIAS, columns=columns, values=values) pt.index = pt.index.map(str) pt = pt.sort_index() return dict( records=pt.to_dict(orient="index"), columns=list(pt.columns), is_group_by=len(fd.get("groupby", [])) > 0, ) class PivotTableViz(BaseViz): """A pivot table view, define your rows, columns and metrics""" viz_type = "pivot_table" verbose_name = _("Pivot Table") credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original' is_timeseries = False def query_obj(self): d = super().query_obj() groupby = self.form_data.get("groupby") columns = self.form_data.get("columns") metrics = self.form_data.get("metrics") transpose = self.form_data.get("transpose_pivot") if not columns: columns = [] if not groupby: groupby = [] if not groupby: raise Exception(_("Please choose at least one 'Group by' field ")) if transpose and not columns: raise Exception( _( ( "Please choose at least one 'Columns' field when " "select 'Transpose Pivot' option" ) ) ) if not metrics: raise Exception(_("Please choose at least one metric")) if set(groupby) & set(columns): raise Exception(_("Group By' and 'Columns' can't overlap")) return d def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None if self.form_data.get("granularity") == "all" and DTTM_ALIAS in df: del df[DTTM_ALIAS] aggfunc = self.form_data.get("pandas_aggfunc") or "sum" # Ensure that Pandas's sum function mimics that of SQL. if aggfunc == "sum": aggfunc = lambda x: x.sum(min_count=1) groupby = self.form_data.get("groupby") columns = self.form_data.get("columns") if self.form_data.get("transpose_pivot"): groupby, columns = columns, groupby metrics = [utils.get_metric_name(m) for m in self.form_data["metrics"]] df = df.pivot_table( index=groupby, columns=columns, values=metrics, aggfunc=aggfunc, margins=self.form_data.get("pivot_margins"), ) # Re-order the columns adhering to the metric ordering. df = df[metrics] # Display metrics side by side with each column if self.form_data.get("combine_metric"): df = df.stack(0).unstack() return dict( columns=list(df.columns), html=df.to_html( na_rep="null", classes=( "dataframe table table-striped table-bordered " "table-condensed table-hover" ).split(" "), ), ) class MarkupViz(BaseViz): """Use html or markdown to create a free form widget""" viz_type = "markup" verbose_name = _("Markup") is_timeseries = False def query_obj(self): return None def get_df(self, query_obj: Optional[Dict[str, Any]] = None) -> pd.DataFrame: return pd.DataFrame() def get_data(self, df: pd.DataFrame) -> VizData: markup_type = self.form_data.get("markup_type") code = self.form_data.get("code", "") if markup_type == "markdown": code = markdown(code) return dict(html=code, theme_css=get_manifest_files("theme", "css")) class SeparatorViz(MarkupViz): """Use to create section headers in a dashboard, similar to `Markup`""" viz_type = "separator" verbose_name = _("Separator") class WordCloudViz(BaseViz): """Build a colorful word cloud Uses the nice library at: https://github.com/jasondavies/d3-cloud """ viz_type = "word_cloud" verbose_name = _("Word Cloud") is_timeseries = False def query_obj(self): d = super().query_obj() d["groupby"] = [self.form_data.get("series")] return d class TreemapViz(BaseViz): """Tree map visualisation for hierarchical data.""" viz_type = "treemap" verbose_name = _("Treemap") credits = '<a href="https://d3js.org">d3.js</a>' is_timeseries = False def _nest(self, metric, df): nlevels = df.index.nlevels if nlevels == 1: result = [{"name": n, "value": v} for n, v in zip(df.index, df[metric])] else: result = [ {"name": l, "children": self._nest(metric, df.loc[l])} for l in df.index.levels[0] ] return result def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None df = df.set_index(self.form_data.get("groupby")) chart_data = [ {"name": metric, "children": self._nest(metric, df)} for metric in df.columns ] return chart_data class CalHeatmapViz(BaseViz): """Calendar heatmap.""" viz_type = "cal_heatmap" verbose_name = _("Calendar Heatmap") credits = "<a href=https://github.com/wa0x6e/cal-heatmap>cal-heatmap</a>" is_timeseries = True def get_data(self, df: pd.DataFrame) -> VizData: form_data = self.form_data data = {} records = df.to_dict("records") for metric in self.metric_labels: values = {} for obj in records: v = obj[DTTM_ALIAS] if hasattr(v, "value"): v = v.value values[str(v / 10 ** 9)] = obj.get(metric) data[metric] = values start, end = utils.get_since_until( relative_start=relative_start, relative_end=relative_end, time_range=form_data.get("time_range"), since=form_data.get("since"), until=form_data.get("until"), ) if not start or not end: raise Exception("Please provide both time bounds (Since and Until)") domain = form_data.get("domain_granularity") diff_delta = rdelta.relativedelta(end, start) diff_secs = (end - start).total_seconds() if domain == "year": range_ = diff_delta.years + 1 elif domain == "month": range_ = diff_delta.years * 12 + diff_delta.months + 1 elif domain == "week": range_ = diff_delta.years * 53 + diff_delta.weeks + 1 elif domain == "day": range_ = diff_secs // (24 * 60 * 60) + 1 # type: ignore else: range_ = diff_secs // (60 * 60) + 1 # type: ignore return { "data": data, "start": start, "domain": domain, "subdomain": form_data.get("subdomain_granularity"), "range": range_, } def query_obj(self): d = super().query_obj() fd = self.form_data d["metrics"] = fd.get("metrics") return d class NVD3Viz(BaseViz): """Base class for all nvd3 vizs""" credits = '<a href="http://nvd3.org/">NVD3.org</a>' viz_type: Optional[str] = None verbose_name = "Base NVD3 Viz" is_timeseries = False class BoxPlotViz(NVD3Viz): """Box plot viz from ND3""" viz_type = "box_plot" verbose_name = _("Box Plot") sort_series = False is_timeseries = True def to_series(self, df, classed="", title_suffix=""): label_sep = " - " chart_data = [] for index_value, row in zip(df.index, df.to_dict(orient="records")): if isinstance(index_value, tuple): index_value = label_sep.join(index_value) boxes = defaultdict(dict) for (label, key), value in row.items(): if key == "nanmedian": key = "Q2" boxes[label][key] = value for label, box in boxes.items(): if len(self.form_data.get("metrics")) > 1: # need to render data labels with metrics chart_label = label_sep.join([index_value, label]) else: chart_label = index_value chart_data.append({"label": chart_label, "values": box}) return chart_data def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None form_data = self.form_data # conform to NVD3 names def Q1(series): # need to be named functions - can't use lambdas return np.nanpercentile(series, 25) def Q3(series): return np.nanpercentile(series, 75) whisker_type = form_data.get("whisker_options") if whisker_type == "Tukey": def whisker_high(series): upper_outer_lim = Q3(series) + 1.5 * (Q3(series) - Q1(series)) return series[series <= upper_outer_lim].max() def whisker_low(series): lower_outer_lim = Q1(series) - 1.5 * (Q3(series) - Q1(series)) return series[series >= lower_outer_lim].min() elif whisker_type == "Min/max (no outliers)": def whisker_high(series): return series.max() def whisker_low(series): return series.min() elif " percentiles" in whisker_type: # type: ignore low, high = whisker_type.replace(" percentiles", "").split( # type: ignore "/" ) def whisker_high(series): return np.nanpercentile(series, int(high)) def whisker_low(series): return np.nanpercentile(series, int(low)) else: raise ValueError("Unknown whisker type: {}".format(whisker_type)) def outliers(series): above = series[series > whisker_high(series)] below = series[series < whisker_low(series)] # pandas sometimes doesn't like getting lists back here return set(above.tolist() + below.tolist()) aggregate = [Q1, np.nanmedian, Q3, whisker_high, whisker_low, outliers] df = df.groupby(form_data.get("groupby")).agg(aggregate) chart_data = self.to_series(df) return chart_data class BubbleViz(NVD3Viz): """Based on the NVD3 bubble chart""" viz_type = "bubble" verbose_name = _("Bubble Chart") is_timeseries = False def query_obj(self): form_data = self.form_data d = super().query_obj() d["groupby"] = [form_data.get("entity")] if form_data.get("series"): d["groupby"].append(form_data.get("series")) # dedup groupby if it happens to be the same d["groupby"] = list(dict.fromkeys(d["groupby"])) self.x_metric = form_data.get("x") self.y_metric = form_data.get("y") self.z_metric = form_data.get("size") self.entity = form_data.get("entity") self.series = form_data.get("series") or self.entity d["row_limit"] = form_data.get("limit") d["metrics"] = [self.z_metric, self.x_metric, self.y_metric] if len(set(self.metric_labels)) < 3: raise Exception(_("Please use 3 different metric labels")) if not all(d["metrics"] + [self.entity]): raise Exception(_("Pick a metric for x, y and size")) return d def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None df["x"] = df[[utils.get_metric_name(self.x_metric)]] df["y"] = df[[utils.get_metric_name(self.y_metric)]] df["size"] = df[[utils.get_metric_name(self.z_metric)]] df["shape"] = "circle" df["group"] = df[[self.series]] series: Dict[Any, List[Any]] = defaultdict(list) for row in df.to_dict(orient="records"): series[row["group"]].append(row) chart_data = [] for k, v in series.items(): chart_data.append({"key": k, "values": v}) return chart_data class BulletViz(NVD3Viz): """Based on the NVD3 bullet chart""" viz_type = "bullet" verbose_name = _("Bullet Chart") is_timeseries = False def query_obj(self): form_data = self.form_data d = super().query_obj() self.metric = form_data.get("metric") def as_strings(field): value = form_data.get(field) return value.split(",") if value else [] def as_floats(field): return [float(x) for x in as_strings(field)] self.ranges = as_floats("ranges") self.range_labels = as_strings("range_labels") self.markers = as_floats("markers") self.marker_labels = as_strings("marker_labels") self.marker_lines = as_floats("marker_lines") self.marker_line_labels = as_strings("marker_line_labels") d["metrics"] = [self.metric] if not self.metric: raise Exception(_("Pick a metric to display")) return d def get_data(self, df: pd.DataFrame) -> VizData: df["metric"] = df[[utils.get_metric_name(self.metric)]] values = df["metric"].values return { "measures": values.tolist(), "ranges": self.ranges or [0, values.max() * 1.1], "rangeLabels": self.range_labels or None, "markers": self.markers or None, "markerLabels": self.marker_labels or None, "markerLines": self.marker_lines or None, "markerLineLabels": self.marker_line_labels or None, } class BigNumberViz(BaseViz): """Put emphasis on a single metric with this big number viz""" viz_type = "big_number" verbose_name = _("Big Number with Trendline") credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original' is_timeseries = True def query_obj(self): d = super().query_obj() metric = self.form_data.get("metric") if not metric: raise Exception(_("Pick a metric!")) d["metrics"] = [self.form_data.get("metric")] self.form_data["metric"] = metric return d def get_data(self, df: pd.DataFrame) -> VizData: df = df.pivot_table( index=DTTM_ALIAS, columns=[], values=self.metric_labels, dropna=False, aggfunc=np.min, # looking for any (only) value, preserving `None` ) df = self.apply_rolling(df) df[DTTM_ALIAS] = df.index return super().get_data(df) class BigNumberTotalViz(BaseViz): """Put emphasis on a single metric with this big number viz""" viz_type = "big_number_total" verbose_name = _("Big Number") credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original' is_timeseries = False def query_obj(self): d = super().query_obj() metric = self.form_data.get("metric") if not metric: raise Exception(_("Pick a metric!")) d["metrics"] = [self.form_data.get("metric")] self.form_data["metric"] = metric # Limiting rows is not required as only one cell is returned d["row_limit"] = None return d class NVD3TimeSeriesViz(NVD3Viz): """A rich line chart component with tons of options""" viz_type = "line" verbose_name = _("Time Series - Line Chart") sort_series = False is_timeseries = True pivot_fill_value: Optional[int] = None def to_series(self, df, classed="", title_suffix=""): cols = [] for col in df.columns: if col == "": cols.append("N/A") elif col is None: cols.append("NULL") else: cols.append(col) df.columns = cols series = df.to_dict("series") chart_data = [] for name in df.T.index.tolist(): ys = series[name] if df[name].dtype.kind not in "biufc": continue if isinstance(name, list): series_title = [str(title) for title in name] elif isinstance(name, tuple): series_title = tuple(str(title) for title in name) else: series_title = str(name) if ( isinstance(series_title, (list, tuple)) and len(series_title) > 1 and len(self.metric_labels) == 1 ): # Removing metric from series name if only one metric series_title = series_title[1:] if title_suffix: if isinstance(series_title, str): series_title = (series_title, title_suffix) elif isinstance(series_title, (list, tuple)): series_title = series_title + (title_suffix,) values = [] non_nan_cnt = 0 for ds in df.index: if ds in ys: d = {"x": ds, "y": ys[ds]} if not np.isnan(ys[ds]): non_nan_cnt += 1 else: d = {} values.append(d) if non_nan_cnt == 0: continue d = {"key": series_title, "values": values} if classed: d["classed"] = classed chart_data.append(d) return chart_data def process_data(self, df: pd.DataFrame, aggregate: bool = False) -> VizData: fd = self.form_data if fd.get("granularity") == "all": raise Exception(_("Pick a time granularity for your time series")) if df.empty: return df if aggregate: df = df.pivot_table( index=DTTM_ALIAS, columns=fd.get("groupby"), values=self.metric_labels, fill_value=0, aggfunc=sum, ) else: df = df.pivot_table( index=DTTM_ALIAS, columns=fd.get("groupby"), values=self.metric_labels, fill_value=self.pivot_fill_value, ) rule = fd.get("resample_rule") method = fd.get("resample_method") if rule and method: df = getattr(df.resample(rule), method)() if self.sort_series: dfs = df.sum() dfs.sort_values(ascending=False, inplace=True) df = df[dfs.index] df = self.apply_rolling(df) if fd.get("contribution"): dft = df.T df = (dft / dft.sum()).T return df def run_extra_queries(self): fd = self.form_data time_compare = fd.get("time_compare") or [] # backwards compatibility if not isinstance(time_compare, list): time_compare = [time_compare] for option in time_compare: query_object = self.query_obj() delta = utils.parse_past_timedelta(option) query_object["inner_from_dttm"] = query_object["from_dttm"] query_object["inner_to_dttm"] = query_object["to_dttm"] if not query_object["from_dttm"] or not query_object["to_dttm"]: raise Exception( _( "`Since` and `Until` time bounds should be specified " "when using the `Time Shift` feature." ) ) query_object["from_dttm"] -= delta query_object["to_dttm"] -= delta df2 = self.get_df_payload(query_object, time_compare=option).get("df") if df2 is not None and DTTM_ALIAS in df2: label = "{} offset".format(option) df2[DTTM_ALIAS] += delta df2 = self.process_data(df2) self._extra_chart_data.append((label, df2)) def get_data(self, df: pd.DataFrame) -> VizData: fd = self.form_data comparison_type = fd.get("comparison_type") or "values" df = self.process_data(df) if comparison_type == "values": # Filter out series with all NaN chart_data = self.to_series(df.dropna(axis=1, how="all")) for i, (label, df2) in enumerate(self._extra_chart_data): chart_data.extend( self.to_series( df2, classed="time-shift-{}".format(i), title_suffix=label ) ) else: chart_data = [] for i, (label, df2) in enumerate(self._extra_chart_data): # reindex df2 into the df2 index combined_index = df.index.union(df2.index) df2 = ( df2.reindex(combined_index) .interpolate(method="time") .reindex(df.index) ) if comparison_type == "absolute": diff = df - df2 elif comparison_type == "percentage": diff = (df - df2) / df2 elif comparison_type == "ratio": diff = df / df2 else: raise Exception( "Invalid `comparison_type`: {0}".format(comparison_type) ) # remove leading/trailing NaNs from the time shift difference diff = diff[diff.first_valid_index() : diff.last_valid_index()] chart_data.extend( self.to_series( diff, classed="time-shift-{}".format(i), title_suffix=label ) ) if not self.sort_series: chart_data = sorted(chart_data, key=lambda x: tuple(x["key"])) return chart_data class MultiLineViz(NVD3Viz): """Pile on multiple line charts""" viz_type = "line_multi" verbose_name = _("Time Series - Multiple Line Charts") is_timeseries = True def query_obj(self): return None def get_data(self, df: pd.DataFrame) -> VizData: fd = self.form_data # Late imports to avoid circular import issues from superset.models.slice import Slice from superset import db slice_ids1 = fd.get("line_charts") slices1 = db.session.query(Slice).filter(Slice.id.in_(slice_ids1)).all() slice_ids2 = fd.get("line_charts_2") slices2 = db.session.query(Slice).filter(Slice.id.in_(slice_ids2)).all() return { "slices": { "axis1": [slc.data for slc in slices1], "axis2": [slc.data for slc in slices2], } } class NVD3DualLineViz(NVD3Viz): """A rich line chart with dual axis""" viz_type = "dual_line" verbose_name = _("Time Series - Dual Axis Line Chart") sort_series = False is_timeseries = True def query_obj(self): d = super().query_obj() m1 = self.form_data.get("metric") m2 = self.form_data.get("metric_2") d["metrics"] = [m1, m2] if not m1: raise Exception(_("Pick a metric for left axis!")) if not m2: raise Exception(_("Pick a metric for right axis!")) if m1 == m2: raise Exception( _("Please choose different metrics" " on left and right axis") ) return d def to_series(self, df, classed=""): cols = [] for col in df.columns: if col == "": cols.append("N/A") elif col is None: cols.append("NULL") else: cols.append(col) df.columns = cols series = df.to_dict("series") chart_data = [] metrics = [self.form_data.get("metric"), self.form_data.get("metric_2")] for i, m in enumerate(metrics): m = utils.get_metric_name(m) ys = series[m] if df[m].dtype.kind not in "biufc": continue series_title = m d = { "key": series_title, "classed": classed, "values": [ {"x": ds, "y": ys[ds] if ds in ys else None} for ds in df.index ], "yAxis": i + 1, "type": "line", } chart_data.append(d) return chart_data def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None fd = self.form_data if self.form_data.get("granularity") == "all": raise Exception(_("Pick a time granularity for your time series")) metric = utils.get_metric_name(fd.get("metric")) metric_2 = utils.get_metric_name(fd.get("metric_2")) df = df.pivot_table(index=DTTM_ALIAS, values=[metric, metric_2]) chart_data = self.to_series(df) return chart_data class NVD3TimeSeriesBarViz(NVD3TimeSeriesViz): """A bar chart where the x axis is time""" viz_type = "bar" sort_series = True verbose_name = _("Time Series - Bar Chart") class NVD3TimePivotViz(NVD3TimeSeriesViz): """Time Series - Periodicity Pivot""" viz_type = "time_pivot" sort_series = True verbose_name = _("Time Series - Period Pivot") def query_obj(self): d = super().query_obj() d["metrics"] = [self.form_data.get("metric")] return d def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None fd = self.form_data df = self.process_data(df) freq = to_offset(fd.get("freq")) try: freq = type(freq)(freq.n, normalize=True, **freq.kwds) except ValueError: freq = type(freq)(freq.n, **freq.kwds) df.index.name = None df[DTTM_ALIAS] = df.index.map(freq.rollback) df["ranked"] = df[DTTM_ALIAS].rank(method="dense", ascending=False) - 1 df.ranked = df.ranked.map(int) df["series"] = "-" + df.ranked.map(str) df["series"] = df["series"].str.replace("-0", "current") rank_lookup = { row["series"]: row["ranked"] for row in df.to_dict(orient="records") } max_ts = df[DTTM_ALIAS].max() max_rank = df["ranked"].max() df[DTTM_ALIAS] = df.index + (max_ts - df[DTTM_ALIAS]) df = df.pivot_table( index=DTTM_ALIAS, columns="series", values=utils.get_metric_name(fd.get("metric")), ) chart_data = self.to_series(df) for serie in chart_data: serie["rank"] = rank_lookup[serie["key"]] serie["perc"] = 1 - (serie["rank"] / (max_rank + 1)) return chart_data class NVD3CompareTimeSeriesViz(NVD3TimeSeriesViz): """A line chart component where you can compare the % change over time""" viz_type = "compare" verbose_name = _("Time Series - Percent Change") class NVD3TimeSeriesStackedViz(NVD3TimeSeriesViz): """A rich stack area chart""" viz_type = "area" verbose_name = _("Time Series - Stacked") sort_series = True pivot_fill_value = 0 class DistributionPieViz(NVD3Viz): """Annoy visualization snobs with this controversial pie chart""" viz_type = "pie" verbose_name = _("Distribution - NVD3 - Pie Chart") is_timeseries = False def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None metric = self.metric_labels[0] df = df.pivot_table(index=self.groupby, values=[metric]) df.sort_values(by=metric, ascending=False, inplace=True) df = df.reset_index() df.columns = ["x", "y"] return df.to_dict(orient="records") class HistogramViz(BaseViz): """Histogram""" viz_type = "histogram" verbose_name = _("Histogram") is_timeseries = False def query_obj(self): """Returns the query object for this visualization""" d = super().query_obj() d["row_limit"] = self.form_data.get("row_limit", int(config["VIZ_ROW_LIMIT"])) numeric_columns = self.form_data.get("all_columns_x") if numeric_columns is None: raise Exception(_("Must have at least one numeric column specified")) self.columns = numeric_columns d["columns"] = numeric_columns + self.groupby # override groupby entry to avoid aggregation d["groupby"] = [] return d def labelify(self, keys, column): if isinstance(keys, str): keys = (keys,) # removing undesirable characters labels = [re.sub(r"\W+", r"_", k) for k in keys] if len(self.columns) > 1 or not self.groupby: # Only show numeric column in label if there are many labels = [column] + labels return "__".join(labels) def get_data(self, df: pd.DataFrame) -> VizData: """Returns the chart data""" if df.empty: return None chart_data = [] if len(self.groupby) > 0: groups = df.groupby(self.groupby) else: groups = [((), df)] for keys, data in groups: chart_data.extend( [ { "key": self.labelify(keys, column), "values": data[column].tolist(), } for column in self.columns ] ) return chart_data class DistributionBarViz(DistributionPieViz): """A good old bar chart""" viz_type = "dist_bar" verbose_name = _("Distribution - Bar Chart") is_timeseries = False def query_obj(self): d = super().query_obj() fd = self.form_data if len(d["groupby"]) < len(fd.get("groupby") or []) + len( fd.get("columns") or [] ): raise Exception(_("Can't have overlap between Series and Breakdowns")) if not fd.get("metrics"): raise Exception(_("Pick at least one metric")) if not fd.get("groupby"): raise Exception(_("Pick at least one field for [Series]")) return d def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None fd = self.form_data metrics = self.metric_labels columns = fd.get("columns") or [] # pandas will throw away nulls when grouping/pivoting, # so we substitute NULL_STRING for any nulls in the necessary columns filled_cols = self.groupby + columns df[filled_cols] = df[filled_cols].fillna(value=NULL_STRING) row = df.groupby(self.groupby).sum()[metrics[0]].copy() row.sort_values(ascending=False, inplace=True) pt = df.pivot_table(index=self.groupby, columns=columns, values=metrics) if fd.get("contribution"): pt = pt.T pt = (pt / pt.sum()).T pt = pt.reindex(row.index) chart_data = [] for name, ys in pt.items(): if pt[name].dtype.kind not in "biufc" or name in self.groupby: continue if isinstance(name, str): series_title = name else: offset = 0 if len(metrics) > 1 else 1 series_title = ", ".join([str(s) for s in name[offset:]]) values = [] for i, v in ys.items(): x = i if isinstance(x, (tuple, list)): x = ", ".join([str(s) for s in x]) else: x = str(x) values.append({"x": x, "y": v}) d = {"key": series_title, "values": values} chart_data.append(d) return chart_data class SunburstViz(BaseViz): """A multi level sunburst chart""" viz_type = "sunburst" verbose_name = _("Sunburst") is_timeseries = False credits = ( "Kerry Rodden " '@<a href="https://bl.ocks.org/kerryrodden/7090426">bl.ocks.org</a>' ) def get_data(self, df: pd.DataFrame) -> VizData: fd = self.form_data cols = fd.get("groupby") or [] cols.extend(["m1", "m2"]) metric = utils.get_metric_name(fd.get("metric")) secondary_metric = utils.get_metric_name(fd.get("secondary_metric")) if metric == secondary_metric or secondary_metric is None: df.rename(columns={df.columns[-1]: "m1"}, inplace=True) df["m2"] = df["m1"] else: df.rename(columns={df.columns[-2]: "m1"}, inplace=True) df.rename(columns={df.columns[-1]: "m2"}, inplace=True) # Re-order the columns as the query result set column ordering may differ from # that listed in the hierarchy. df = df[cols] return df.to_numpy().tolist() def query_obj(self): qry = super().query_obj() fd = self.form_data qry["metrics"] = [fd["metric"]] secondary_metric = fd.get("secondary_metric") if secondary_metric and secondary_metric != fd["metric"]: qry["metrics"].append(secondary_metric) return qry class SankeyViz(BaseViz): """A Sankey diagram that requires a parent-child dataset""" viz_type = "sankey" verbose_name = _("Sankey") is_timeseries = False credits = '<a href="https://www.npmjs.com/package/d3-sankey">d3-sankey on npm</a>' def query_obj(self): qry = super().query_obj() if len(qry["groupby"]) != 2: raise Exception(_("Pick exactly 2 columns as [Source / Target]")) qry["metrics"] = [self.form_data["metric"]] return qry def get_data(self, df: pd.DataFrame) -> VizData: df.columns = ["source", "target", "value"] df["source"] = df["source"].astype(str) df["target"] = df["target"].astype(str) recs = df.to_dict(orient="records") hierarchy: Dict[str, Set[str]] = defaultdict(set) for row in recs: hierarchy[row["source"]].add(row["target"]) def find_cycle(g): """Whether there's a cycle in a directed graph""" path = set() def visit(vertex): path.add(vertex) for neighbour in g.get(vertex, ()): if neighbour in path or visit(neighbour): return (vertex, neighbour) path.remove(vertex) for v in g: cycle = visit(v) if cycle: return cycle cycle = find_cycle(hierarchy) if cycle: raise Exception( _( "There's a loop in your Sankey, please provide a tree. " "Here's a faulty link: {}" ).format(cycle) ) return recs class DirectedForceViz(BaseViz): """An animated directed force layout graph visualization""" viz_type = "directed_force" verbose_name = _("Directed Force Layout") credits = 'd3noob @<a href="http://bl.ocks.org/d3noob/5141278">bl.ocks.org</a>' is_timeseries = False def query_obj(self): qry = super().query_obj() if len(self.form_data["groupby"]) != 2: raise Exception(_("Pick exactly 2 columns to 'Group By'")) qry["metrics"] = [self.form_data["metric"]] return qry def get_data(self, df: pd.DataFrame) -> VizData: df.columns = ["source", "target", "value"] return df.to_dict(orient="records") class ChordViz(BaseViz): """A Chord diagram""" viz_type = "chord" verbose_name = _("Directed Force Layout") credits = '<a href="https://github.com/d3/d3-chord">Bostock</a>' is_timeseries = False def query_obj(self): qry = super().query_obj() fd = self.form_data qry["groupby"] = [fd.get("groupby"), fd.get("columns")] qry["metrics"] = [fd.get("metric")] return qry def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None df.columns = ["source", "target", "value"] # Preparing a symetrical matrix like d3.chords calls for nodes = list(set(df["source"]) | set(df["target"])) matrix = {} for source, target in product(nodes, nodes): matrix[(source, target)] = 0 for source, target, value in df.to_records(index=False): matrix[(source, target)] = value m = [[matrix[(n1, n2)] for n1 in nodes] for n2 in nodes] return {"nodes": list(nodes), "matrix": m} class CountryMapViz(BaseViz): """A country centric""" viz_type = "country_map" verbose_name = _("Country Map") is_timeseries = False credits = "From bl.ocks.org By john-guerra" def query_obj(self): qry = super().query_obj() qry["metrics"] = [self.form_data["metric"]] qry["groupby"] = [self.form_data["entity"]] return qry def get_data(self, df: pd.DataFrame) -> VizData: fd = self.form_data cols = [fd.get("entity")] metric = self.metric_labels[0] cols += [metric] ndf = df[cols] df = ndf df.columns = ["country_id", "metric"] d = df.to_dict(orient="records") return d class WorldMapViz(BaseViz): """A country centric world map""" viz_type = "world_map" verbose_name = _("World Map") is_timeseries = False credits = 'datamaps on <a href="https://www.npmjs.com/package/datamaps">npm</a>' def query_obj(self): qry = super().query_obj() qry["groupby"] = [self.form_data["entity"]] return qry def get_data(self, df: pd.DataFrame) -> VizData: from superset.examples import countries fd = self.form_data cols = [fd.get("entity")] metric = utils.get_metric_name(fd.get("metric")) secondary_metric = utils.get_metric_name(fd.get("secondary_metric")) columns = ["country", "m1", "m2"] if metric == secondary_metric: ndf = df[cols] ndf["m1"] = df[metric] ndf["m2"] = ndf["m1"] else: if secondary_metric: cols += [metric, secondary_metric] else: cols += [metric] columns = ["country", "m1"] ndf = df[cols] df = ndf df.columns = columns d = df.to_dict(orient="records") for row in d: country = None if isinstance(row["country"], str): country = countries.get(fd.get("country_fieldtype"), row["country"]) if country: row["country"] = country["cca3"] row["latitude"] = country["lat"] row["longitude"] = country["lng"] row["name"] = country["name"] else: row["country"] = "XXX" return d class FilterBoxViz(BaseViz): """A multi filter, multi-choice filter box to make dashboards interactive""" viz_type = "filter_box" verbose_name = _("Filters") is_timeseries = False credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original' cache_type = "get_data" filter_row_limit = 1000 def query_obj(self): return None def run_extra_queries(self): qry = super().query_obj() filters = self.form_data.get("filter_configs") or [] qry["row_limit"] = self.filter_row_limit self.dataframes = {} for flt in filters: col = flt.get("column") if not col: raise Exception( _("Invalid filter configuration, please select a column") ) qry["groupby"] = [col] metric = flt.get("metric") qry["metrics"] = [metric] if metric else [] df = self.get_df_payload(query_obj=qry).get("df") self.dataframes[col] = df def get_data(self, df: pd.DataFrame) -> VizData: filters = self.form_data.get("filter_configs") or [] d = {} for flt in filters: col = flt.get("column") metric = flt.get("metric") df = self.dataframes.get(col) if df is not None: if metric: df = df.sort_values( utils.get_metric_name(metric), ascending=flt.get("asc") ) d[col] = [ {"id": row[0], "text": row[0], "metric": row[1]} for row in df.itertuples(index=False) ] else: df = df.sort_values(col, ascending=flt.get("asc")) d[col] = [ {"id": row[0], "text": row[0]} for row in df.itertuples(index=False) ] return d class IFrameViz(BaseViz): """You can squeeze just about anything in this iFrame component""" viz_type = "iframe" verbose_name = _("iFrame") credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original' is_timeseries = False def query_obj(self): return None def get_df(self, query_obj: Optional[Dict[str, Any]] = None) -> pd.DataFrame: return pd.DataFrame() def get_data(self, df: pd.DataFrame) -> VizData: return {"iframe": True} class ParallelCoordinatesViz(BaseViz): """Interactive parallel coordinate implementation Uses this amazing javascript library https://github.com/syntagmatic/parallel-coordinates """ viz_type = "para" verbose_name = _("Parallel Coordinates") credits = ( '<a href="https://syntagmatic.github.io/parallel-coordinates/">' "Syntagmatic's library</a>" ) is_timeseries = False def query_obj(self): d = super().query_obj() fd = self.form_data d["groupby"] = [fd.get("series")] return d def get_data(self, df: pd.DataFrame) -> VizData: return df.to_dict(orient="records") class HeatmapViz(BaseViz): """A nice heatmap visualization that support high density through canvas""" viz_type = "heatmap" verbose_name = _("Heatmap") is_timeseries = False credits = ( 'inspired from mbostock @<a href="http://bl.ocks.org/mbostock/3074470">' "bl.ocks.org</a>" ) def query_obj(self): d = super().query_obj() fd = self.form_data d["metrics"] = [fd.get("metric")] d["groupby"] = [fd.get("all_columns_x"), fd.get("all_columns_y")] return d def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None fd = self.form_data x = fd.get("all_columns_x") y = fd.get("all_columns_y") v = self.metric_labels[0] if x == y: df.columns = ["x", "y", "v"] else: df = df[[x, y, v]] df.columns = ["x", "y", "v"] norm = fd.get("normalize_across") overall = False max_ = df.v.max() min_ = df.v.min() if norm == "heatmap": overall = True else: gb = df.groupby(norm, group_keys=False) if len(gb) <= 1: overall = True else: df["perc"] = gb.apply( lambda x: (x.v - x.v.min()) / (x.v.max() - x.v.min()) ) df["rank"] = gb.apply(lambda x: x.v.rank(pct=True)) if overall: df["perc"] = (df.v - min_) / (max_ - min_) df["rank"] = df.v.rank(pct=True) return {"records": df.to_dict(orient="records"), "extents": [min_, max_]} class HorizonViz(NVD3TimeSeriesViz): """Horizon chart https://www.npmjs.com/package/d3-horizon-chart """ viz_type = "horizon" verbose_name = _("Horizon Charts") credits = ( '<a href="https://www.npmjs.com/package/d3-horizon-chart">' "d3-horizon-chart</a>" ) class MapboxViz(BaseViz): """Rich maps made with Mapbox""" viz_type = "mapbox" verbose_name = _("Mapbox") is_timeseries = False credits = "<a href=https://www.mapbox.com/mapbox-gl-js/api/>Mapbox GL JS</a>" def query_obj(self): d = super().query_obj() fd = self.form_data label_col = fd.get("mapbox_label") if not fd.get("groupby"): if fd.get("all_columns_x") is None or fd.get("all_columns_y") is None: raise Exception(_("[Longitude] and [Latitude] must be set")) d["columns"] = [fd.get("all_columns_x"), fd.get("all_columns_y")] if label_col and len(label_col) >= 1: if label_col[0] == "count": raise Exception( _( "Must have a [Group By] column to have 'count' as the " + "[Label]" ) ) d["columns"].append(label_col[0]) if fd.get("point_radius") != "Auto": d["columns"].append(fd.get("point_radius")) d["columns"] = list(set(d["columns"])) else: # Ensuring columns chosen are all in group by if ( label_col and len(label_col) >= 1 and label_col[0] != "count" and label_col[0] not in fd.get("groupby") ): raise Exception(_("Choice of [Label] must be present in [Group By]")) if fd.get("point_radius") != "Auto" and fd.get( "point_radius" ) not in fd.get("groupby"): raise Exception( _("Choice of [Point Radius] must be present in [Group By]") ) if fd.get("all_columns_x") not in fd.get("groupby") or fd.get( "all_columns_y" ) not in fd.get("groupby"): raise Exception( _( "[Longitude] and [Latitude] columns must be present in " + "[Group By]" ) ) return d def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None fd = self.form_data label_col = fd.get("mapbox_label") has_custom_metric = label_col is not None and len(label_col) > 0 metric_col = [None] * len(df.index) if has_custom_metric: if label_col[0] == fd.get("all_columns_x"): # type: ignore metric_col = df[fd.get("all_columns_x")] elif label_col[0] == fd.get("all_columns_y"): # type: ignore metric_col = df[fd.get("all_columns_y")] else: metric_col = df[label_col[0]] # type: ignore point_radius_col = ( [None] * len(df.index) if fd.get("point_radius") == "Auto" else df[fd.get("point_radius")] ) # limiting geo precision as long decimal values trigger issues # around json-bignumber in Mapbox GEO_PRECISION = 10 # using geoJSON formatting geo_json = { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": {"metric": metric, "radius": point_radius}, "geometry": { "type": "Point", "coordinates": [ round(lon, GEO_PRECISION), round(lat, GEO_PRECISION), ], }, } for lon, lat, metric, point_radius in zip( df[fd.get("all_columns_x")], df[fd.get("all_columns_y")], metric_col, point_radius_col, ) ], } x_series, y_series = df[fd.get("all_columns_x")], df[fd.get("all_columns_y")] south_west = [x_series.min(), y_series.min()] north_east = [x_series.max(), y_series.max()] return { "geoJSON": geo_json, "hasCustomMetric": has_custom_metric, "mapboxApiKey": config["MAPBOX_API_KEY"], "mapStyle": fd.get("mapbox_style"), "aggregatorName": fd.get("pandas_aggfunc"), "clusteringRadius": fd.get("clustering_radius"), "pointRadiusUnit": fd.get("point_radius_unit"), "globalOpacity": fd.get("global_opacity"), "bounds": [south_west, north_east], "renderWhileDragging": fd.get("render_while_dragging"), "tooltip": fd.get("rich_tooltip"), "color": fd.get("mapbox_color"), } class DeckGLMultiLayer(BaseViz): """Pile on multiple DeckGL layers""" viz_type = "deck_multi" verbose_name = _("Deck.gl - Multiple Layers") is_timeseries = False credits = '<a href="https://uber.github.io/deck.gl/">deck.gl</a>' def query_obj(self): return None def get_data(self, df: pd.DataFrame) -> VizData: fd = self.form_data # Late imports to avoid circular import issues from superset.models.slice import Slice from superset import db slice_ids = fd.get("deck_slices") slices = db.session.query(Slice).filter(Slice.id.in_(slice_ids)).all() return { "mapboxApiKey": config["MAPBOX_API_KEY"], "slices": [slc.data for slc in slices], } class BaseDeckGLViz(BaseViz): """Base class for deck.gl visualizations""" is_timeseries = False credits = '<a href="https://uber.github.io/deck.gl/">deck.gl</a>' spatial_control_keys: List[str] = [] def get_metrics(self): self.metric = self.form_data.get("size") return [self.metric] if self.metric else [] def process_spatial_query_obj(self, key, group_by): group_by.extend(self.get_spatial_columns(key)) def get_spatial_columns(self, key): spatial = self.form_data.get(key) if spatial is None: raise ValueError(_("Bad spatial key")) if spatial.get("type") == "latlong": return [spatial.get("lonCol"), spatial.get("latCol")] elif spatial.get("type") == "delimited": return [spatial.get("lonlatCol")] elif spatial.get("type") == "geohash": return [spatial.get("geohashCol")] @staticmethod def parse_coordinates(s): if not s: return None try: p = Point(s) return (p.latitude, p.longitude) # pylint: disable=no-member except Exception: raise SpatialException(_("Invalid spatial point encountered: %s" % s)) @staticmethod def reverse_geohash_decode(geohash_code): lat, lng = geohash.decode(geohash_code) return (lng, lat) @staticmethod def reverse_latlong(df, key): df[key] = [tuple(reversed(o)) for o in df[key] if isinstance(o, (list, tuple))] def process_spatial_data_obj(self, key, df): spatial = self.form_data.get(key) if spatial is None: raise ValueError(_("Bad spatial key")) if spatial.get("type") == "latlong": df[key] = list( zip( pd.to_numeric(df[spatial.get("lonCol")], errors="coerce"), pd.to_numeric(df[spatial.get("latCol")], errors="coerce"), ) ) elif spatial.get("type") == "delimited": lon_lat_col = spatial.get("lonlatCol") df[key] = df[lon_lat_col].apply(self.parse_coordinates) del df[lon_lat_col] elif spatial.get("type") == "geohash": df[key] = df[spatial.get("geohashCol")].map(self.reverse_geohash_decode) del df[spatial.get("geohashCol")] if spatial.get("reverseCheckbox"): self.reverse_latlong(df, key) if df.get(key) is None: raise NullValueException( _( "Encountered invalid NULL spatial entry, \ please consider filtering those out" ) ) return df def add_null_filters(self): fd = self.form_data spatial_columns = set() for key in self.spatial_control_keys: for column in self.get_spatial_columns(key): spatial_columns.add(column) if fd.get("adhoc_filters") is None: fd["adhoc_filters"] = [] line_column = fd.get("line_column") if line_column: spatial_columns.add(line_column) for column in sorted(spatial_columns): filter_ = to_adhoc({"col": column, "op": "IS NOT NULL", "val": ""}) fd["adhoc_filters"].append(filter_) def query_obj(self): fd = self.form_data # add NULL filters if fd.get("filter_nulls", True): self.add_null_filters() d = super().query_obj() gb = [] for key in self.spatial_control_keys: self.process_spatial_query_obj(key, gb) if fd.get("dimension"): gb += [fd.get("dimension")] if fd.get("js_columns"): gb += fd.get("js_columns") metrics = self.get_metrics() gb = list(set(gb)) if metrics: d["groupby"] = gb d["metrics"] = metrics d["columns"] = [] else: d["columns"] = gb return d def get_js_columns(self, d): cols = self.form_data.get("js_columns") or [] return {col: d.get(col) for col in cols} def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None # Processing spatial info for key in self.spatial_control_keys: df = self.process_spatial_data_obj(key, df) features = [] for d in df.to_dict(orient="records"): feature = self.get_properties(d) extra_props = self.get_js_columns(d) if extra_props: feature["extraProps"] = extra_props features.append(feature) return { "features": features, "mapboxApiKey": config["MAPBOX_API_KEY"], "metricLabels": self.metric_labels, } def get_properties(self, d): raise NotImplementedError() class DeckScatterViz(BaseDeckGLViz): """deck.gl's ScatterLayer""" viz_type = "deck_scatter" verbose_name = _("Deck.gl - Scatter plot") spatial_control_keys = ["spatial"] is_timeseries = True def query_obj(self): fd = self.form_data self.is_timeseries = bool(fd.get("time_grain_sqla") or fd.get("granularity")) self.point_radius_fixed = fd.get("point_radius_fixed") or { "type": "fix", "value": 500, } return super().query_obj() def get_metrics(self): self.metric = None if self.point_radius_fixed.get("type") == "metric": self.metric = self.point_radius_fixed.get("value") return [self.metric] return None def get_properties(self, d): return { "metric": d.get(self.metric_label), "radius": self.fixed_value if self.fixed_value else d.get(self.metric_label), "cat_color": d.get(self.dim) if self.dim else None, "position": d.get("spatial"), DTTM_ALIAS: d.get(DTTM_ALIAS), } def get_data(self, df: pd.DataFrame) -> VizData: fd = self.form_data self.metric_label = utils.get_metric_name(self.metric) if self.metric else None self.point_radius_fixed = fd.get("point_radius_fixed") self.fixed_value = None self.dim = self.form_data.get("dimension") if self.point_radius_fixed and self.point_radius_fixed.get("type") != "metric": self.fixed_value = self.point_radius_fixed.get("value") return super().get_data(df) class DeckScreengrid(BaseDeckGLViz): """deck.gl's ScreenGridLayer""" viz_type = "deck_screengrid" verbose_name = _("Deck.gl - Screen Grid") spatial_control_keys = ["spatial"] is_timeseries = True def query_obj(self): fd = self.form_data self.is_timeseries = fd.get("time_grain_sqla") or fd.get("granularity") return super().query_obj() def get_properties(self, d): return { "position": d.get("spatial"), "weight": d.get(self.metric_label) or 1, "__timestamp": d.get(DTTM_ALIAS) or d.get("__time"), } def get_data(self, df: pd.DataFrame) -> VizData: self.metric_label = utils.get_metric_name(self.metric) return super().get_data(df) class DeckGrid(BaseDeckGLViz): """deck.gl's DeckLayer""" viz_type = "deck_grid" verbose_name = _("Deck.gl - 3D Grid") spatial_control_keys = ["spatial"] def get_properties(self, d): return {"position": d.get("spatial"), "weight": d.get(self.metric_label) or 1} def get_data(self, df: pd.DataFrame) -> VizData: self.metric_label = utils.get_metric_name(self.metric) return super().get_data(df) def geohash_to_json(geohash_code): p = geohash.bbox(geohash_code) return [ [p.get("w"), p.get("n")], [p.get("e"), p.get("n")], [p.get("e"), p.get("s")], [p.get("w"), p.get("s")], [p.get("w"), p.get("n")], ] class DeckPathViz(BaseDeckGLViz): """deck.gl's PathLayer""" viz_type = "deck_path" verbose_name = _("Deck.gl - Paths") deck_viz_key = "path" is_timeseries = True deser_map = { "json": json.loads, "polyline": polyline.decode, "geohash": geohash_to_json, } def query_obj(self): fd = self.form_data self.is_timeseries = fd.get("time_grain_sqla") or fd.get("granularity") d = super().query_obj() self.metric = fd.get("metric") line_col = fd.get("line_column") if d["metrics"]: self.has_metrics = True d["groupby"].append(line_col) else: self.has_metrics = False d["columns"].append(line_col) return d def get_properties(self, d): fd = self.form_data line_type = fd.get("line_type") deser = self.deser_map[line_type] line_column = fd.get("line_column") path = deser(d[line_column]) if fd.get("reverse_long_lat"): path = [(o[1], o[0]) for o in path] d[self.deck_viz_key] = path if line_type != "geohash": del d[line_column] d["__timestamp"] = d.get(DTTM_ALIAS) or d.get("__time") return d def get_data(self, df: pd.DataFrame) -> VizData: self.metric_label = utils.get_metric_name(self.metric) return super().get_data(df) class DeckPolygon(DeckPathViz): """deck.gl's Polygon Layer""" viz_type = "deck_polygon" deck_viz_key = "polygon" verbose_name = _("Deck.gl - Polygon") def query_obj(self): fd = self.form_data self.elevation = fd.get("point_radius_fixed") or {"type": "fix", "value": 500} return super().query_obj() def get_metrics(self): metrics = [self.form_data.get("metric")] if self.elevation.get("type") == "metric": metrics.append(self.elevation.get("value")) return [metric for metric in metrics if metric] def get_properties(self, d): super().get_properties(d) fd = self.form_data elevation = fd["point_radius_fixed"]["value"] type_ = fd["point_radius_fixed"]["type"] d["elevation"] = ( d.get(utils.get_metric_name(elevation)) if type_ == "metric" else elevation ) return d class DeckHex(BaseDeckGLViz): """deck.gl's DeckLayer""" viz_type = "deck_hex" verbose_name = _("Deck.gl - 3D HEX") spatial_control_keys = ["spatial"] def get_properties(self, d): return {"position": d.get("spatial"), "weight": d.get(self.metric_label) or 1} def get_data(self, df: pd.DataFrame) -> VizData: self.metric_label = utils.get_metric_name(self.metric) return super(DeckHex, self).get_data(df) class DeckGeoJson(BaseDeckGLViz): """deck.gl's GeoJSONLayer""" viz_type = "deck_geojson" verbose_name = _("Deck.gl - GeoJSON") def query_obj(self): d = super().query_obj() d["columns"] += [self.form_data.get("geojson")] d["metrics"] = [] d["groupby"] = [] return d def get_properties(self, d): geojson = d.get(self.form_data.get("geojson")) return json.loads(geojson) class DeckArc(BaseDeckGLViz): """deck.gl's Arc Layer""" viz_type = "deck_arc" verbose_name = _("Deck.gl - Arc") spatial_control_keys = ["start_spatial", "end_spatial"] is_timeseries = True def query_obj(self): fd = self.form_data self.is_timeseries = bool(fd.get("time_grain_sqla") or fd.get("granularity")) return super().query_obj() def get_properties(self, d): dim = self.form_data.get("dimension") return { "sourcePosition": d.get("start_spatial"), "targetPosition": d.get("end_spatial"), "cat_color": d.get(dim) if dim else None, DTTM_ALIAS: d.get(DTTM_ALIAS), } def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None d = super().get_data(df) return { "features": d["features"], # type: ignore "mapboxApiKey": config["MAPBOX_API_KEY"], } class EventFlowViz(BaseViz): """A visualization to explore patterns in event sequences""" viz_type = "event_flow" verbose_name = _("Event flow") credits = 'from <a href="https://github.com/williaster/data-ui">@data-ui</a>' is_timeseries = True def query_obj(self): query = super().query_obj() form_data = self.form_data event_key = form_data.get("all_columns_x") entity_key = form_data.get("entity") meta_keys = [ col for col in form_data.get("all_columns") if col != event_key and col != entity_key ] query["columns"] = [event_key, entity_key] + meta_keys if form_data["order_by_entity"]: query["orderby"] = [(entity_key, True)] return query def get_data(self, df: pd.DataFrame) -> VizData: return df.to_dict(orient="records") class PairedTTestViz(BaseViz): """A table displaying paired t-test values""" viz_type = "paired_ttest" verbose_name = _("Time Series - Paired t-test") sort_series = False is_timeseries = True def get_data(self, df: pd.DataFrame) -> VizData: """ Transform received data frame into an object of the form: { 'metric1': [ { groups: ('groupA', ... ), values: [ {x, y}, ... ], }, ... ], ... } """ if df.empty: return None fd = self.form_data groups = fd.get("groupby") metrics = self.metric_labels df = df.pivot_table(index=DTTM_ALIAS, columns=groups, values=metrics) cols = [] # Be rid of falsey keys for col in df.columns: if col == "": cols.append("N/A") elif col is None: cols.append("NULL") else: cols.append(col) df.columns = cols data: Dict = {} series = df.to_dict("series") for nameSet in df.columns: # If no groups are defined, nameSet will be the metric name hasGroup = not isinstance(nameSet, str) Y = series[nameSet] d = { "group": nameSet[1:] if hasGroup else "All", "values": [{"x": t, "y": Y[t] if t in Y else None} for t in df.index], } key = nameSet[0] if hasGroup else nameSet if key in data: data[key].append(d) else: data[key] = [d] return data class RoseViz(NVD3TimeSeriesViz): viz_type = "rose" verbose_name = _("Time Series - Nightingale Rose Chart") sort_series = False is_timeseries = True def get_data(self, df: pd.DataFrame) -> VizData: if df.empty: return None data = super().get_data(df) result: Dict = {} for datum in data: # type: ignore key = datum["key"] for val in datum["values"]: timestamp = val["x"].value if not result.get(timestamp): result[timestamp] = [] value = 0 if math.isnan(val["y"]) else val["y"] result[timestamp].append( { "key": key, "value": value, "name": ", ".join(key) if isinstance(key, list) else key, "time": val["x"], } ) return result class PartitionViz(NVD3TimeSeriesViz): """ A hierarchical data visualization with support for time series. """ viz_type = "partition" verbose_name = _("Partition Diagram") def query_obj(self): query_obj = super().query_obj() time_op = self.form_data.get("time_series_option", "not_time") # Return time series data if the user specifies so query_obj["is_timeseries"] = time_op != "not_time" return query_obj def levels_for(self, time_op, groups, df): """ Compute the partition at each `level` from the dataframe. """ levels = {} for i in range(0, len(groups) + 1): agg_df = df.groupby(groups[:i]) if i else df levels[i] = ( agg_df.mean() if time_op == "agg_mean" else agg_df.sum(numeric_only=True) ) return levels def levels_for_diff(self, time_op, groups, df): # Obtain a unique list of the time grains times = list(set(df[DTTM_ALIAS])) times.sort() until = times[len(times) - 1] since = times[0] # Function describing how to calculate the difference func = { "point_diff": [pd.Series.sub, lambda a, b, fill_value: a - b], "point_factor": [pd.Series.div, lambda a, b, fill_value: a / float(b)], "point_percent": [ lambda a, b, fill_value=0: a.div(b, fill_value=fill_value) - 1, lambda a, b, fill_value: a / float(b) - 1, ], }[time_op] agg_df = df.groupby(DTTM_ALIAS).sum() levels = { 0: pd.Series( { m: func[1](agg_df[m][until], agg_df[m][since], 0) for m in agg_df.columns } ) } for i in range(1, len(groups) + 1): agg_df = df.groupby([DTTM_ALIAS] + groups[:i]).sum() levels[i] = pd.DataFrame( { m: func[0](agg_df[m][until], agg_df[m][since], fill_value=0) for m in agg_df.columns } ) return levels def levels_for_time(self, groups, df): procs = {} for i in range(0, len(groups) + 1): self.form_data["groupby"] = groups[:i] df_drop = df.drop(groups[i:], 1) procs[i] = self.process_data(df_drop, aggregate=True) self.form_data["groupby"] = groups return procs def nest_values(self, levels, level=0, metric=None, dims=()): """ Nest values at each level on the back-end with access and setting, instead of summing from the bottom. """ if not level: return [ { "name": m, "val": levels[0][m], "children": self.nest_values(levels, 1, m), } for m in levels[0].index ] if level == 1: return [ { "name": i, "val": levels[1][metric][i], "children": self.nest_values(levels, 2, metric, (i,)), } for i in levels[1][metric].index ] if level >= len(levels): return [] return [ { "name": i, "val": levels[level][metric][dims][i], "children": self.nest_values(levels, level + 1, metric, dims + (i,)), } for i in levels[level][metric][dims].index ] def nest_procs(self, procs, level=-1, dims=(), time=None): if level == -1: return [ {"name": m, "children": self.nest_procs(procs, 0, (m,))} for m in procs[0].columns ] if not level: return [ { "name": t, "val": procs[0][dims[0]][t], "children": self.nest_procs(procs, 1, dims, t), } for t in procs[0].index ] if level >= len(procs): return [] return [ { "name": i, "val": procs[level][dims][i][time], "children": self.nest_procs(procs, level + 1, dims + (i,), time), } for i in procs[level][dims].columns ] def get_data(self, df: pd.DataFrame) -> VizData: fd = self.form_data groups = fd.get("groupby", []) time_op = fd.get("time_series_option", "not_time") if not len(groups): raise ValueError("Please choose at least one groupby") if time_op == "not_time": levels = self.levels_for("agg_sum", groups, df) elif time_op in ["agg_sum", "agg_mean"]: levels = self.levels_for(time_op, groups, df) elif time_op in ["point_diff", "point_factor", "point_percent"]: levels = self.levels_for_diff(time_op, groups, df) elif time_op == "adv_anal": procs = self.levels_for_time(groups, df) return self.nest_procs(procs) else: levels = self.levels_for("agg_sum", [DTTM_ALIAS] + groups, df) return self.nest_values(levels) viz_types = { o.viz_type: o for o in globals().values() if ( inspect.isclass(o) and issubclass(o, BaseViz) and o.viz_type not in config["VIZ_TYPE_BLACKLIST"] ) }
py
7df94de94bb02d5147681b7425416d0fd0709317
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ============================================================================= # Created By : Simon Schaefer # Description : Build video from images using OpenCV. # Arguments : Path to images (directory) # Output video name # Image tag (optional, if multiple kinds of images in directory) # ============================================================================= import argparse import cv2 import glob import os import matplotlib matplotlib.use('Agg') import matplotlib.patches as patches import matplotlib.pyplot as plt # Read input arguments. parser = argparse.ArgumentParser(description="imgs_to_video") parser.add_argument("--directory", type=str, default="") parser.add_argument("--video_name", type=str, default="video.avi") parser.add_argument("--tag", type=str, default="") args = parser.parse_args() assert os.path.isdir(args.directory) tag = "_" + args.tag if args.tag != "" else None # Make list of images in img_dir having the tag. images = glob.glob(args.directory + "/*" + ".png") for x in range(0, len(images)): images[x] = args.directory+"/hr"+str(x)+"x4_x4b.png" #images = sorted(images) if tag is not None: images = [x for x in images if x.count(tag) > 0] # Create video using OpenCV functionalities. fps = 10 frame = cv2.imread(images[0]) height, width, _ = frame.shape video = cv2.VideoWriter(args.video_name, 0, fps, (width,height)) for image in images: print(image) video.write(cv2.imread(image)) cv2.destroyAllWindows() video.release()
py
7df94dee0dc5613c50fcc359e55c89a3829a88ef
""" This script tests the approach on the BUCC 2018 shared task on finding parallel sentences: https://comparable.limsi.fr/bucc2018/bucc2018-task.html You can download the necessary files from there. We have used it in our paper (https://arxiv.org/pdf/2004.09813.pdf) in Section 4.2 to evaluate different multilingual models. This script requires that you have FAISS installed: https://github.com/facebookresearch/faiss """ from sentence_transformers import SentenceTransformer, models from collections import defaultdict import os import pickle from sklearn.decomposition import PCA import torch from bitext_mining_utils import * #Model we want to use for bitext mining. LaBSE achieves state-of-the-art performance model_name = 'LaBSE' model = SentenceTransformer(model_name) #Intput files for BUCC2018 shared task source_file = "bucc2018/de-en/de-en.training.de" target_file = "bucc2018/de-en/de-en.training.en" labels_file = "bucc2018/de-en/de-en.training.gold" # We base the scoring on k nearest neighbors for each element knn_neighbors = 4 # Min score for text pairs. Note, score can be larger than 1 min_threshold = 1 #Do we want to use exact search of approximate nearest neighbor search (ANN) #Exact search: Slower, but we don't miss any parallel sentences #ANN: Faster, but the recall will be lower use_ann_search = True #Number of clusters for ANN. Optimal number depends on dataset size ann_num_clusters = 32768 #How many cluster to explorer for search. Higher number = better recall, slower ann_num_cluster_probe = 5 #To save memory, we can use PCA to reduce the dimensionality from 768 to for example 128 dimensions #The encoded embeddings will hence require 6 times less memory. However, we observe a small drop in performance. use_pca = False pca_dimensions = 128 #We store the embeddings on disc, so that they can later be loaded from disc source_embedding_file = '{}_{}_{}.emb'.format(model_name, os.path.basename(source_file), pca_dimensions if use_pca else model.get_sentence_embedding_dimension()) target_embedding_file = '{}_{}_{}.emb'.format(model_name, os.path.basename(target_file), pca_dimensions if use_pca else model.get_sentence_embedding_dimension()) #Use PCA to reduce the dimensionality of the sentence embedding model if use_pca: # We use a smaller number of training sentences to learn the PCA train_sent = [] num_train_sent = 20000 with open(source_file, encoding='utf8') as fSource, open(target_file, encoding='utf8') as fTarget: for line_source, line_target in zip(fSource, fTarget): id, sentence = line_source.strip().split("\t", maxsplit=1) train_sent.append(sentence) id, sentence = line_target.strip().split("\t", maxsplit=1) train_sent.append(sentence) if len(train_sent) >= num_train_sent: break print("Encode training embeddings for PCA") train_matrix = model.encode(train_sent, show_progress_bar=True, convert_to_numpy=True) pca = PCA(n_components=pca_dimensions) pca.fit(train_matrix) dense = models.Dense(in_features=model.get_sentence_embedding_dimension(), out_features=pca_dimensions, bias=False, activation_function=torch.nn.Identity()) dense.linear.weight = torch.nn.Parameter(torch.tensor(pca.components_)) model.add_module('dense', dense) print("Read source file") source = {} with open(source_file, encoding='utf8') as fIn: for line in fIn: id, sentence = line.strip().split("\t", maxsplit=1) source[id] = sentence print("Read target file") target = {} with open(target_file, encoding='utf8') as fIn: for line in fIn: id, sentence = line.strip().split("\t", maxsplit=1) target[id] = sentence labels = defaultdict(lambda: defaultdict(bool)) num_total_parallel = 0 with open(labels_file) as fIn: for line in fIn: src_id, trg_id = line.strip().split("\t") if src_id in source and trg_id in target: labels[src_id][trg_id] = True labels[trg_id][src_id] = True num_total_parallel += 1 print("Source Sentences:", len(source)) print("Target Sentences:", len(target)) print("Num Parallel:", num_total_parallel) ### Encode source sentences source_ids = list(source.keys()) source_sentences = [source[id] for id in source_ids] if not os.path.exists(source_embedding_file): print("Encode source sentences") source_embeddings = model.encode(source_sentences, show_progress_bar=True, convert_to_numpy=True) with open(source_embedding_file, 'wb') as fOut: pickle.dump(source_embeddings, fOut) else: with open(source_embedding_file, 'rb') as fIn: source_embeddings = pickle.load(fIn) ### Encode target sentences target_ids = list(target.keys()) target_sentences = [target[id] for id in target_ids] if not os.path.exists(target_embedding_file): print("Encode target sentences") target_embeddings = model.encode(target_sentences, show_progress_bar=True, convert_to_numpy=True) with open(target_embedding_file, 'wb') as fOut: pickle.dump(target_embeddings, fOut) else: with open(target_embedding_file, 'rb') as fIn: target_embeddings = pickle.load(fIn) ##### Now we start to search for parallel (translated) sentences # Normalize embeddings x = source_embeddings y = target_embeddings print("Shape Source:", x.shape) print("Shape Target:", y.shape) x = x / np.linalg.norm(x, axis=1, keepdims=True) y = y / np.linalg.norm(y, axis=1, keepdims=True) # Perform kNN in both directions x2y_sim, x2y_ind = kNN(x, y, knn_neighbors, use_ann_search, ann_num_clusters, ann_num_cluster_probe) x2y_mean = x2y_sim.mean(axis=1) y2x_sim, y2x_ind = kNN(y, x, knn_neighbors, use_ann_search, ann_num_clusters, ann_num_cluster_probe) y2x_mean = y2x_sim.mean(axis=1) # Compute forward and backward scores margin = lambda a, b: a / b fwd_scores = score_candidates(x, y, x2y_ind, x2y_mean, y2x_mean, margin) bwd_scores = score_candidates(y, x, y2x_ind, y2x_mean, x2y_mean, margin) fwd_best = x2y_ind[np.arange(x.shape[0]), fwd_scores.argmax(axis=1)] bwd_best = y2x_ind[np.arange(y.shape[0]), bwd_scores.argmax(axis=1)] indices = np.stack([np.concatenate([np.arange(x.shape[0]), bwd_best]), np.concatenate([fwd_best, np.arange(y.shape[0])])], axis=1) scores = np.concatenate([fwd_scores.max(axis=1), bwd_scores.max(axis=1)]) seen_src, seen_trg = set(), set() #Extact list of parallel sentences bitext_list = [] for i in np.argsort(-scores): src_ind, trg_ind = indices[i] src_ind = int(src_ind) trg_ind = int(trg_ind) if scores[i] < min_threshold: break if src_ind not in seen_src and trg_ind not in seen_trg: seen_src.add(src_ind) seen_trg.add(trg_ind) bitext_list.append([scores[i], source_ids[src_ind], target_ids[trg_ind]]) # Measure Performance by computing the threshold # that leads to the best F1 score performance bitext_list = sorted(bitext_list, key=lambda x: x[0], reverse=True) n_extract = n_correct = 0 threshold = 0 best_f1 = best_recall = best_precision = 0 average_precision = 0 for idx in range(len(bitext_list)): score, id1, id2 = bitext_list[idx] n_extract += 1 if labels[id1][id2] or labels[id2][id1]: n_correct += 1 precision = n_correct / n_extract recall = n_correct / num_total_parallel f1 = 2 * precision * recall / (precision + recall) average_precision += precision if f1 > best_f1: best_f1 = f1 best_precision = precision best_recall = recall threshold = (bitext_list[idx][0] + bitext_list[min(idx + 1, len(bitext_list)-1)][0]) / 2 print("Best Threshold:", threshold) print("Recall:", best_recall) print("Precision:", best_precision) print("F1:", best_f1)
py
7df94e072ab96e51b113d99ed1666064a8f84527
# Author: Mathieu Blondel # License: BSD 3 clause from ._stochastic_gradient import BaseSGDClassifier class Perceptron(BaseSGDClassifier): """Linear perceptron classifier. Read more in the :ref:`User Guide <perceptron>`. Parameters ---------- penalty : {'l2','l1','elasticnet'}, default=None The penalty (aka regularization term) to be used. alpha : float, default=0.0001 Constant that multiplies the regularization term if regularization is used. l1_ratio : float, default=0.15 The Elastic Net mixing parameter, with `0 <= l1_ratio <= 1`. `l1_ratio=0` corresponds to L2 penalty, `l1_ratio=1` to L1. Only used if `penalty='elasticnet'`. .. versionadded:: 0.24 fit_intercept : bool, default=True Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. max_iter : int, default=1000 The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the ``fit`` method, and not the :meth:`partial_fit` method. .. versionadded:: 0.19 tol : float, default=1e-3 The stopping criterion. If it is not None, the iterations will stop when (loss > previous_loss - tol). .. versionadded:: 0.19 shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. verbose : int, default=0 The verbosity level. eta0 : double, default=1 Constant by which the updates are multiplied. n_jobs : int, default=None The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. random_state : int, RandomState instance, default=None Used to shuffle the training data, when ``shuffle`` is set to ``True``. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. early_stopping : bool, default=False Whether to use early stopping to terminate training when validation. score is not improving. If set to True, it will automatically set aside a stratified fraction of training data as validation and terminate training when validation score is not improving by at least tol for n_iter_no_change consecutive epochs. .. versionadded:: 0.20 validation_fraction : float, default=0.1 The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if early_stopping is True. .. versionadded:: 0.20 n_iter_no_change : int, default=5 Number of iterations with no improvement to wait before early stopping. .. versionadded:: 0.20 class_weight : dict, {class_label: weight} or "balanced", default=None Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. warm_start : bool, default=False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See :term:`the Glossary <warm_start>`. Attributes ---------- classes_ : ndarray of shape (n_classes,) The unique classes labels. coef_ : ndarray of shape (1, n_features) if n_classes == 2 else \ (n_classes, n_features) Weights assigned to the features. intercept_ : ndarray of shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. loss_function_ : concrete LossFunction The function that determines the loss, or difference between the output of the algorithm and the target values. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_iter_ : int The actual number of iterations to reach the stopping criterion. For multiclass fits, it is the maximum over every binary fit. t_ : int Number of weight updates performed during training. Same as ``(n_iter_ * n_samples)``. See Also -------- sklearn.linear_model.SGDClassifier : Linear classifiers (SVM, logistic regression, etc.) with SGD training. Notes ----- ``Perceptron`` is a classification algorithm which shares the same underlying implementation with ``SGDClassifier``. In fact, ``Perceptron()`` is equivalent to `SGDClassifier(loss="perceptron", eta0=1, learning_rate="constant", penalty=None)`. References ---------- https://en.wikipedia.org/wiki/Perceptron and references therein. Examples -------- >>> from sklearn.datasets import load_digits >>> from sklearn.linear_model import Perceptron >>> X, y = load_digits(return_X_y=True) >>> clf = Perceptron(tol=1e-3, random_state=0) >>> clf.fit(X, y) Perceptron() >>> clf.score(X, y) 0.939... """ def __init__( self, *, penalty=None, alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=1e-3, shuffle=True, verbose=0, eta0=1.0, n_jobs=None, random_state=0, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False, ): super().__init__( loss="perceptron", penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, shuffle=shuffle, verbose=verbose, random_state=random_state, learning_rate="constant", eta0=eta0, early_stopping=early_stopping, validation_fraction=validation_fraction, n_iter_no_change=n_iter_no_change, power_t=0.5, warm_start=warm_start, class_weight=class_weight, n_jobs=n_jobs, )
py
7df94e17bb5389758924e59571888de083de7f20
# -*- coding: utf-8 -*- ''' This module is a central location for all salt exceptions ''' from __future__ import absolute_import # Import python libs import copy import logging import time # Import Salt libs import salt.defaults.exitcodes from salt.ext import six log = logging.getLogger(__name__) def _nested_output(obj): ''' Serialize obj and format for output ''' # Explicit late import to avoid circular import from salt.output import nested nested.__opts__ = {} ret = nested.output(obj).rstrip() return ret def get_error_message(error): ''' Get human readable message from Python Exception ''' return error.args[0] if error.args else u'' class SaltException(Exception): ''' Base exception class; all Salt-specific exceptions should subclass this ''' def __init__(self, message=u''): super(SaltException, self).__init__(message) self.strerror = message def pack(self): ''' Pack this exception into a serializable dictionary that is safe for transport via msgpack ''' if six.PY3: # The message should be a str type, not a unicode return {u'message': str(self), u'args': self.args} return dict(message=self.__unicode__(), args=self.args) class SaltClientError(SaltException): ''' Problem reading the master root key ''' class SaltMasterError(SaltException): ''' Problem reading the master root key ''' class SaltNoMinionsFound(SaltException): ''' An attempt to retrieve a list of minions failed ''' class SaltSyndicMasterError(SaltException): ''' Problem while proxying a request in the syndication master ''' class MasterExit(SystemExit): ''' Rise when the master exits ''' class AuthenticationError(SaltException): ''' If sha256 signature fails during decryption ''' class CommandNotFoundError(SaltException): ''' Used in modules or grains when a required binary is not available ''' class CommandExecutionError(SaltException): ''' Used when a module runs a command which returns an error and wants to show the user the output gracefully instead of dying ''' def __init__(self, message=u'', info=None): self.error = exc_str_prefix = message self.info = info if self.info: if exc_str_prefix: if exc_str_prefix[-1] not in u'.?!': exc_str_prefix += u'.' exc_str_prefix += u' ' exc_str_prefix += u'Additional info follows:\n\n' # NOTE: exc_str will be passed to the parent class' constructor and # become self.strerror. exc_str = exc_str_prefix + _nested_output(self.info) # For states, if self.info is a dict also provide an attribute # containing a nested output of the info dict without the changes # (since they will be in the 'changes' key of the state return and # this information would be redundant). if isinstance(self.info, dict): info_without_changes = copy.deepcopy(self.info) info_without_changes.pop(u'changes', None) if info_without_changes: self.strerror_without_changes = \ exc_str_prefix + _nested_output(info_without_changes) else: # 'changes' was the only key in the info dictionary. We no # longer have any additional info to display. Use the # original error message. self.strerror_without_changes = self.error else: self.strerror_without_changes = exc_str else: self.strerror_without_changes = exc_str = self.error super(CommandExecutionError, self).__init__(exc_str) class LoaderError(SaltException): ''' Problems loading the right renderer ''' class PublishError(SaltException): ''' Problems encountered when trying to publish a command ''' class MinionError(SaltException): ''' Minion problems reading uris such as salt:// or http:// ''' class FileserverConfigError(SaltException): ''' Used when invalid fileserver settings are detected ''' class FileLockError(SaltException): ''' Used when an error occurs obtaining a file lock ''' def __init__(self, msg, time_start=None, *args, **kwargs): super(FileLockError, self).__init__(msg, *args, **kwargs) if time_start is None: log.warning( u'time_start should be provided when raising a FileLockError. ' u'Defaulting to current time as a fallback, but this may ' u'result in an inaccurate timeout.' ) self.time_start = time.time() else: self.time_start = time_start class GitLockError(SaltException): ''' Raised when an uncaught error occurs in the midst of obtaining an update/checkout lock in salt.utils.gitfs. NOTE: While this uses the errno param similar to an OSError, this exception class is *not* as subclass of OSError. This is done intentionally, so that this exception class can be caught in a try/except without being caught as an OSError. ''' def __init__(self, errno, strerror, *args, **kwargs): super(GitLockError, self).__init__(strerror, *args, **kwargs) self.errno = errno self.strerror = strerror class GitRemoteError(SaltException): ''' Used by GitFS to denote a problem with the existence of the "origin" remote or part of its configuration ''' class SaltInvocationError(SaltException, TypeError): ''' Used when the wrong number of arguments are sent to modules or invalid arguments are specified on the command line ''' class PkgParseError(SaltException): ''' Used when of the pkg modules cannot correctly parse the output from the CLI tool (pacman, yum, apt, aptitude, etc) ''' class SaltRenderError(SaltException): ''' Used when a renderer needs to raise an explicit error. If a line number and buffer string are passed, get_context will be invoked to get the location of the error. ''' def __init__(self, message, line_num=None, buf=u'', marker=u' <======================', trace=None): self.error = message exc_str = copy.deepcopy(message) self.line_num = line_num self.buffer = buf self.context = u'' if trace: exc_str += u'\n{0}\n'.format(trace) if self.line_num and self.buffer: import salt.utils import salt.utils.stringutils self.context = salt.utils.get_context( self.buffer, self.line_num, marker=marker ) exc_str += '; line {0}\n\n{1}'.format( # future lint: disable=non-unicode-string self.line_num, salt.utils.stringutils.to_str(self.context), ) super(SaltRenderError, self).__init__(exc_str) class SaltClientTimeout(SaltException): ''' Thrown when a job sent through one of the Client interfaces times out Takes the ``jid`` as a parameter ''' def __init__(self, msg, jid=None, *args, **kwargs): super(SaltClientTimeout, self).__init__(msg, *args, **kwargs) self.jid = jid class SaltCacheError(SaltException): ''' Thrown when a problem was encountered trying to read or write from the salt cache ''' class SaltReqTimeoutError(SaltException): ''' Thrown when a salt master request call fails to return within the timeout ''' class TimedProcTimeoutError(SaltException): ''' Thrown when a timed subprocess does not terminate within the timeout, or if the specified timeout is not an int or a float ''' class EauthAuthenticationError(SaltException): ''' Thrown when eauth authentication fails ''' class TokenAuthenticationError(SaltException): ''' Thrown when token authentication fails ''' class AuthorizationError(SaltException): ''' Thrown when runner or wheel execution fails due to permissions ''' class SaltDaemonNotRunning(SaltException): ''' Throw when a running master/minion/syndic is not running but is needed to perform the requested operation (e.g., eauth). ''' class SaltRunnerError(SaltException): ''' Problem in runner ''' class SaltWheelError(SaltException): ''' Problem in wheel ''' class SaltConfigurationError(SaltException): ''' Configuration error ''' class SaltSystemExit(SystemExit): ''' This exception is raised when an unsolvable problem is found. There's nothing else to do, salt should just exit. ''' def __init__(self, code=0, msg=None): SystemExit.__init__(self, msg) class SaltCloudException(SaltException): ''' Generic Salt Cloud Exception ''' class SaltCloudSystemExit(SaltCloudException): ''' This exception is raised when the execution should be stopped. ''' def __init__(self, message, exit_code=salt.defaults.exitcodes.EX_GENERIC): SaltCloudException.__init__(self, message) self.message = message self.exit_code = exit_code class SaltCloudConfigError(SaltCloudException): ''' Raised when a configuration setting is not found and should exist. ''' class SaltCloudNotFound(SaltCloudException): ''' Raised when some cloud provider function cannot find what's being searched. ''' class SaltCloudExecutionTimeout(SaltCloudException): ''' Raised when too much time has passed while querying/waiting for data. ''' class SaltCloudExecutionFailure(SaltCloudException): ''' Raised when too much failures have occurred while querying/waiting for data. ''' class SaltCloudPasswordError(SaltCloudException): ''' Raise when virtual terminal password input failed ''' class NotImplemented(SaltException): ''' Used when a module runs a command which returns an error and wants to show the user the output gracefully instead of dying ''' class TemplateError(SaltException): ''' Used when a custom error is triggered in a template ''' # Validation related exceptions class InvalidConfigError(CommandExecutionError): ''' Used when the input is invalid ''' # VMware related exceptions class VMwareSaltError(CommandExecutionError): ''' Used when a VMware object cannot be retrieved ''' class VMwareRuntimeError(VMwareSaltError): ''' Used when a runtime error is encountered when communicating with the vCenter ''' class VMwareConnectionError(VMwareSaltError): ''' Used when the client fails to connect to a either a VMware vCenter server or to a ESXi host ''' class VMwareObjectRetrievalError(VMwareSaltError): ''' Used when a VMware object cannot be retrieved ''' class VMwareApiError(VMwareSaltError): ''' Used when representing a generic VMware API error ''' class VMwareSystemError(VMwareSaltError): ''' Used when representing a generic VMware system error '''
py
7df94eab56e026e707810a29c7437bd669399c9e
from datetime import datetime import pytest from autossl import ssl, exception from tests import util as tests_util @pytest.mark.parametrize('cert1,cert2,is_same', [ # fully identical ({'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, {'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, True), # fully identical but different san order ({'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, {'common_name': 'name1', 'sans': ['name3', 'name2'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, True), # fully common_name ({'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, {'common_name': 'name4', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, False), # different san ({'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, {'common_name': 'name1', 'sans': ['name2', 'name4'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, False), # different expiration ({'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, {'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2021, 2, 3, 14, 38, 21)}, False), ]) def test_ssl_blueprint___eq__(cert1, cert2, is_same): assert (ssl.SslCertificate(**cert1) == ssl.SslCertificate(**cert2)) is is_same def test_missing_blueprint(): with pytest.raises(IOError): ssl.SslBlueprint('dummy/path') def test_ssl_blueprint_no_server(): ssl_blueprint = ssl.SslBlueprint(tests_util.DATA_PATH / 'tst.ov.example.com_no-server.yaml') assert ssl_blueprint.name == 'auto_tst.autossl.example.com' assert ssl_blueprint.certificate.certificate_type == 'OV' assert ssl_blueprint.certificate.certificate_authority == 'Sectigo' assert ssl_blueprint.certificate.common_name == 'tst.autossl.example.com' assert len(ssl_blueprint.servers) == 0 def test_ov_ssl_blueprint(): ssl_blueprint = ssl.SslBlueprint(tests_util.DATA_PATH / 'tst.ov.example.com.yaml') assert ssl_blueprint.name == 'auto_tst.autossl.example.com' assert ssl_blueprint.certificate.certificate_type == 'OV' assert ssl_blueprint.certificate.certificate_authority == 'Sectigo' assert ssl_blueprint.certificate.common_name == 'tst.autossl.example.com' assert ssl_blueprint.certificate.renewal_delay == 30 assert len(ssl_blueprint.servers) == 1 assert len(ssl_blueprint.certificate.sans) == 5 assert ssl_blueprint.certificate.organization['company_name'] == 'Autossl corporation' assert ssl_blueprint.certificate.organization['street_address'] == 'Newbury street' assert ssl_blueprint.certificate.organization['city'] == 'Boston' assert ssl_blueprint.certificate.organization['state'] == 'Massachusetts' assert ssl_blueprint.certificate.organization['postal_code'] == '02115' assert ssl_blueprint.certificate.organization['country_code'] == 'US' def test_dv_ssl_blueprint(): ssl_blueprint = ssl.SslBlueprint(tests_util.DATA_PATH / 'tst.dv.example.com.yaml') assert ssl_blueprint.name == 'auto_tst.autossl.example.com' assert ssl_blueprint.certificate.certificate_type == 'DV' assert ssl_blueprint.certificate.certificate_authority == 'LetsEncrypt' assert ssl_blueprint.certificate.common_name == 'tst.autossl.example.com' assert ssl_blueprint.certificate.renewal_delay == 30 assert len(ssl_blueprint.servers) == 2 assert len(ssl_blueprint.certificate.sans) == 5 assert ssl_blueprint.certificate.organization is None def test_ssl_blueprint_with_global_config(): ssl_blueprint = ssl.SslBlueprint( yaml_path=tests_util.DATA_PATH / 'tst.ov.example.com_minimal.yaml', global_config_path=tests_util.DATA_PATH / 'global_config.yaml', ) assert ssl_blueprint.name == 'auto_tst.autossl.example.com' assert ssl_blueprint.certificate.certificate_type == 'DV' assert ssl_blueprint.certificate.certificate_authority == 'LetsEncrypt' assert ssl_blueprint.certificate.common_name == 'tst.autossl.example.com' assert ssl_blueprint.certificate.renewal_delay == 30 assert len(ssl_blueprint.servers) == 1 assert len(ssl_blueprint.certificate.sans) == 5 assert ssl_blueprint.certificate.organization['company_name'] == 'Autossl corporation' assert ssl_blueprint.certificate.organization['street_address'] == 'Newbury street' assert ssl_blueprint.certificate.organization['city'] == 'Boston' assert ssl_blueprint.certificate.organization['state'] == 'Massachusetts' assert ssl_blueprint.certificate.organization['postal_code'] == '02115' assert ssl_blueprint.certificate.organization['country_code'] == 'US' def test_ssl_blueprint_no_common_name(tmp_path): blueprint_content = u""" --- name: auto_tst.autossl.example.com servers: - type: autossl.server.local.LocalServer parameters: path: /etc/ssl/my_certificates certificate: type: DV certificate_authority: LetsEncrypt san: - tst.autossl.example.com - uat.tst.autossl.example.com - pit.tst.autossl.example.com ... """ blueprint_path = tmp_path / 'blueprint.yaml' blueprint_path.write_text(blueprint_content, encoding='utf-8') ssl_blueprint = ssl.SslBlueprint(str(blueprint_path)) assert ssl_blueprint.certificate.common_name is None assert len(ssl_blueprint.certificate.sans) == 3 def test_ssl_blueprint_no_san(tmp_path): blueprint_content = u""" --- name: auto_tst.autossl.example.com servers: - type: autossl.server.local.LocalServer parameters: path: /etc/ssl/my_certificates certificate: type: DV certificate_authority: LetsEncrypt common_name: tst.autossl.example.com ... """ blueprint_path = tmp_path / 'blueprint.yaml' blueprint_path.write_text(blueprint_content, encoding='utf-8') ssl_blueprint = ssl.SslBlueprint(str(blueprint_path)) assert ssl_blueprint.certificate.common_name == 'tst.autossl.example.com' assert len(ssl_blueprint.certificate.sans) == 0 def test_ssl_blueprint_no_commmon_name_no_san(tmp_path): blueprint_content = u""" --- name: auto_tst.autossl.example.com servers: - type: autossl.server.local.LocalServer parameters: path: /etc/ssl/my_certificates certificate: type: DV certificate_authority: LetsEncrypt ... """ blueprint_path = tmp_path / 'blueprint.yaml' blueprint_path.write_text(blueprint_content, encoding='utf-8') with pytest.raises(ValueError): ssl.SslBlueprint(str(blueprint_path)) @pytest.mark.parametrize('common_name,is_valid', [ ('test2_valid-test.example.com', True), ('*.example.com', True), (' test.example.com', False), ('test.example.com ', False), ('test.*.com', False), ('%1.example.com', False), ]) def test_ssl_blueprint_validate_common_name(tmp_path, common_name, is_valid): blueprint_content = u""" --- name: auto_tst.autossl.example.com servers: - type: autossl.server.local.LocalServer parameters: path: /etc/ssl/my_certificates certificate: type: DV certificate_authority: LetsEncrypt common_name: '{}' ... """.format(common_name) blueprint_path = tmp_path / 'blueprint.yaml' blueprint_path.write_text(blueprint_content, encoding='utf-8') if is_valid: ssl.SslBlueprint(str(blueprint_path)) else: with pytest.raises(ValueError): ssl.SslBlueprint(str(blueprint_path)) def test_get_domains(): ssl_blueprint = ssl.SslBlueprint(tests_util.DATA_PATH / 'tst.dv.example.com.yaml') assert ssl_blueprint.domains == { 'tst.autossl.example.com', 'uat.tst.autossl.example.com', 'pit.tst.autossl.example.com', 'cit.tst.autossl.example.com', 'mgt.tst.autossl.example.com' } def test_is_domain_matching(): assert ssl.is_domain_matching('test.example.com', 'test.example.com') assert ssl.is_domain_matching('test.example.com', 'test.example.com', True) assert ssl.is_domain_matching('test.example.com', 'test.example.com', False) assert ssl.is_domain_matching('test.example.com', 'test2.example.com') is False assert ssl.is_domain_matching('test.example.com', 'test2.example.com', True) is False assert ssl.is_domain_matching('test.example.com', 'test2.example.com', False) is False assert ssl.is_domain_matching('test.example.com', '*.example.com') is True assert ssl.is_domain_matching('test.example.com', '*.example.com', True) is False assert ssl.is_domain_matching('test.example.com', '*.example.com', False) is True def test_is_domain_list_matching(): assert ssl.is_domain_list_matching(['test.example.com'], ['test.example.com']) assert ssl.is_domain_list_matching(['test.example.com'], ['test.example.com', 'test2.example.com']) assert ssl.is_domain_list_matching(['test.example.com', 'test2.example.com'], ['test.example.com']) is False assert ssl.is_domain_list_matching(['test.example.com', 'test2.example.com'], ['*.example.com']) assert ssl.is_domain_list_matching( ['test.example.com', 'test2.example.com'], ['*.example.com'], exact_match=True) is False def test_get_config(): ssl_blueprint = ssl.SslBlueprint(tests_util.DATA_PATH / 'tst.dv.example.com.yaml') assert ssl_blueprint.get_config(name='tracking', path=['dummy_path'], default=[]) == [] assert ssl_blueprint.get_config(name='tracking', path=None, default=None) is None assert ssl_blueprint.get_config(name='storage', path=None, default=None) == { 'credentials': 'credential_1', 'data': [{'type': 'key'}, {'type': 'csr'}, {'type': 'crt'}], 'parameters': { 'git_url': 'https://git.autossl.com/git/scm/ssl/certificates.git', 'config_user_name': 'Test User', 'config_user_email': '[email protected]', }, 'type': 'autossl.storage.gitscm.GitStorage'} def test_check_chain_of_trust(tmp_path): crt_path = tmp_path / 'local.crt' ca_crt_path = tmp_path / 'local_ca.crt' ca_key_path = tmp_path / 'local_ca.key' # generate CA certificate key, crt = tests_util.create_ca_certificate(ca_name='Autossl') ca_crt_path.write_bytes(crt) ca_key_path.write_bytes(key) # sign a new certificate with the CA _, csr_path = ssl.generate_csr(name='autossl_cert', common_name='test.autossl.com', output_path=str(tmp_path)) crt_content = tests_util.create_signed_certificate( csr_path=csr_path, ca_crt_path=ca_crt_path, ca_key_path=ca_key_path, ) crt_path.write_bytes(crt_content) # valid trust chain should no raise any error ssl.check_chain_of_trust( chain_of_trust=[crt.decode('utf-8')], # Chain of trust comes normally from SSL blueprint so it not in bytes crt_path=crt_path, ) # generate self-signed certificate self_signed_key_path, self_signed_crt_path = tests_util.create_self_signed_certificate( crt_name="self_signed_local.crt", output_path=tmp_path, common_name='self_signed.test.autossl.com', ) # self signed certificate should not be validated by this CA with pytest.raises(exception.InvalidTrustChain): ssl.check_chain_of_trust( chain_of_trust=[crt.decode('utf-8')], # Chain of trust comes normally from SSL blueprint so it not in bytes crt_path=self_signed_crt_path, )
py
7df94fc037bcc66a3b8e933c0e0e1557087aa385
""" ----------------- Collapse Gaussfit ----------------- This was an early attempt to automate gaussian fitting over a data cube using (multiple) gaussian decomposition for each spectrum. It's reasonably effective, but the uses are somewhat minimal. I've tried shifting my cube-related work to `pyspeckit <pyspeckit.bitbucket.org>`_. """ try: import scipy from scipy import optimize,sqrt from scipy.optimize import leastsq #from scipy.stats.stats import nanmedian,nanmean,_nanmedian except ImportError: print "Scipy cold not be loaded. Collapse_gaussfit may fail" import numpy from numpy import vectorize,zeros,exp,median,where,asarray,array,nonzero,ma,arange,square import matplotlib #matplotlib.use('Agg') from pylab import indices,figure,clf,savefig,plot,legend,text,axes,title import pickle import pyfits import time from mad import MAD from ratosexagesimal import ratos,dectos def nanmedian(arr): """ nanmedian - this version is NOT capable of broadcasting (operating along axes) """ return median(arr[arr==arr]) def nanmean(arr): """ nanmean - this version is NOT capable of broadcasting (operating along axes) """ return (arr[arr==arr]).mean() # read in file # filename = sys.argv[1] # fitsfile = pyfits.open(filename) # cube = fitsfile[0].data # def gaussian(dx,sigma): # return lambda x: exp( - (x-dx)**2 / sigma**2 ) # def return_param(xarr,param): # errorfunction = lambda p:gaussian(*p)(*indices(xarr.shape))-xarr # pars, cov, infodict, errmsg, success = optimize.leastsq(errorfunction, [len(xarr)/2.,1], full_output=1) # print errmsg # if param == 'width': # return pars[1] # elif param == 'center': # return pars[0] # else: # return def gaussian(dx,sigma,a): return lambda x: a*exp( - (x-dx)**2 / sigma**2 ) def double_gaussian(dx1,dx2,sigma1,sigma2,a1,a2): return lambda x: a1*exp( - (x-dx1)**2 / sigma1**2 ) + a2*exp( - (x-dx2)**2 / sigma2**2 ) def triple_gaussian(dx1,dx2,dx3,sigma1,sigma2,sigma3,a1,a2,a3): return lambda x: abs(a1)*exp( - (x-dx1)**2 / sigma1**2 ) + abs(a2)*exp( - (x-dx2)**2 / sigma2**2 ) + abs(a3)*exp( - (x-dx3)**2 / sigma3**2 ) def n_gaussian(dx,sigma,a): def g(x): v = zeros(len(x)) for i in range(len(dx)): v += a[i] * exp( - ( x - dx[i] )**2 / sigma[i]**2 ) return v return g def gerr(xarr): return lambda p:xarr-gaussian(*p)(*indices(xarr.shape)) def double_gerr(xarr): return lambda p:xarr-double_gaussian(*p)(*indices(xarr.shape)) def triple_gerr(xarr): return lambda p:xarr-triple_gaussian(*p)(*indices(xarr.shape)) def return_param(xarr,params=None,negamp=False): if params == None: if negamp: params = [xarr.argmin(),5,xarr.min()] else: params = [xarr.argmax(),5,xarr.max()] pars, cov, infodict, errmsg, success = optimize.leastsq(gerr(xarr), params, full_output=1) return pars def return_double_param(xarr,params=None): if params == None: params = [xarr.argmax(),xarr.argmax()+3,4.2,2.3,xarr.max(),xarr.max()/2] pars, cov, infodict, errmsg, success = optimize.leastsq(double_gerr(xarr), params, full_output=1) return pars def return_triple_param(xarr,params=None): """ input parameters: center[1-3],width[1-3],amplitude[1-3] """ if params == None: params = [xarr.argmax(),xarr.argmax()+3,xarr.argmax(),4.2,2.3,10,xarr.max(),xarr.max()/2.,xarr.max()/5.] pars, cov, infodict, errmsg, success = optimize.leastsq(triple_gerr(xarr), params, full_output=1) return pars def adaptive_collapse_gaussfit(cube,axis=2,nsig=3,nrsig=4,prefix='interesting', vconv=lambda x: x,xtora=lambda x: x,ytodec=lambda x: x,doplot=True): """ Attempts to fit one or two Gaussians to each spectrum in a data cube and returns the parameters of the fits. Adaptively determines where to fit two Gaussian components based on residuals. Will fit 3 gaussians if a two-gaussian fit is not better than a certain threshold (specified by nsig), and those fits will be output to images with filename prefix+(coordinate).png. The 3-gaussian fit parameters will not be returned because the automated fitting is very unlikely to get that part right. inputs: cube - a data cube with two spatial and one spectral dimensions axis - the axis of the spectral dimension nsig - number of sigma over the mean residual to trigger double-gaussian fitting also, cutoff to do any fitting at all prefix - the prefix (including directory name) of the output images from 3-gaussian fitting doplot - option to turn off plotting of triple-gaussian fits vconv,xtora,ytodec - functions to convert the axes from pixel coordinates to ra/dec/velocity coordinates returns: width_arr1,width_arr2,chi2_arr,offset_arr1,offset_arr2,amp_arr1,amp_arr2 The Gaussian widths, line centers (in pixel units), amplitudes, and the chi-squared value, not in that order These returns are identical to the returns from double_gaussian, but all components will be zero for the second gaussian in the case of a single-gaussian fit the triple gaussian is guessed to be the double gaussian plus a broad, low-amplitude gaussian. Ideally this should fit outflows reasonably well, but who knows if it really will. Another option is to fit a negative-amplitude gaussian to account for self-absorption """ std_coll = cube.std(axis=axis) # standard deviation of each spectrum # mad_coll = MAD(cube,axis=axis) mean_std = median(std_coll.ravel()) # median standard deviation (to reject high-signal spectra that have high std) if axis > 0: # force spectral axis to first axis cube = cube.swapaxes(0,axis) width_arr = zeros(cube.shape[1:]) # define gaussian param arrays width_arr1 = zeros(cube.shape[1:]) # define gaussian param arrays width_arr2 = zeros(cube.shape[1:]) # define gaussian param arrays amp_arr = zeros(cube.shape[1:]) # define gaussian param arrays amp_arr1 = zeros(cube.shape[1:]) # define gaussian param arrays amp_arr2 = zeros(cube.shape[1:]) # define gaussian param arrays chi2_arr = zeros(cube.shape[1:]) # define gaussian param arrays resid_arr = zeros(cube.shape[1:]) # define gaussian param arrays offset_arr = zeros(cube.shape[1:]) # define gaussian param arrays offset_arr1 = zeros(cube.shape[1:]) # define gaussian param arrays offset_arr2 = zeros(cube.shape[1:]) # define gaussian param arrays ncarr = (cube.max(axis=0) > mean_std*nsig) # cutoff: don't fit no-signal spectra starttime = time.time() # timing for output print cube.shape print "Fitting a total of %i spectra with peak signal above %f" % (ncarr.sum(),mean_std*nsig) for i in xrange(cube.shape[1]): # Loop over all elements for t0 = time.time() nspec = (cube[:,i,:].max(axis=0) > mean_std*nsig).sum() print "Working on row %d with %d spectra to fit" % (i,nspec) , for j in xrange(cube.shape[2]): if cube[:,i,j].max() > mean_std*nsig: # if cube[:,i,j].max() > MAD(cube[:,i,j]): pars = return_param(cube[:,i,j]) width_arr[i,j] = pars[1] width_arr1[i,j] = pars[1] amp_arr[i,j] = pars[2] amp_arr1[i,j] = pars[2] # chi2_arr[i,j] = sum(( gerr(cube[:,i,j])(pars) )**2) resid_arr[i,j] = (gerr(cube[:,i,j])(pars)).sum() offset_arr[i,j] = pars[0] offset_arr1[i,j] = pars[0] else: width_arr1[i,j] = numpy.nan chi2_arr[i,j] = numpy.nan resid_arr[i,j] = numpy.nan offset_arr1[i,j] = numpy.nan dt = time.time()-t0 if nspec > 0: print "in %f seconds (average: %f)" % (dt,dt/float(nspec)) else: print chi2_arr = resid_arr**2 resids = ma.masked_where(numpy.isnan(chi2_arr),chi2_arr) # hide bad values # residcut = (resids.mean() + (resids.std() * nrsig) ) # Old versino - used standard deviation and mean residcut = (nanmedian(chi2_arr.ravel()) + (MAD(chi2_arr.ravel()) * nrsig) ) # New version: set cutoff by median + nrsig * MAD to_refit = (resids > residcut).astype('bool') # to_refit[numpy.isnan(to_refit)] = 0 inds = array(nonzero(to_refit)).transpose() dgc,tgc = 0,0 print "Refitting a total of %i spectra with peak residual above %f" % (to_refit.sum(),residcut) f=open("%s_triples.txt" % prefix,'w') # vconv = lambda x: (x-p3+1)*dv+v0 # convert to velocity frame vind = vconv(arange(cube[:,0,0].shape[0])) xind = arange(cube[:,0,0].shape[0]) for ind in inds: i,j = ind doublepars = return_double_param(cube[:,i,j]) old_chi2 = chi2_arr[i,j] new_chi2 = sum(square( double_gerr(cube[:,i,j])(doublepars) )) if new_chi2 < old_chi2: # if 2 gaussians is an improvement, use it! chi2_arr[i,j] = new_chi2 width_arr1[i,j] = doublepars[2] width_arr2[i,j] = doublepars[3] amp_arr1[i,j] = doublepars[4] amp_arr2[i,j] = doublepars[5] offset_arr1[i,j] = doublepars[0] offset_arr2[i,j] = doublepars[1] ncarr[i,j] += 1 if new_chi2 > residcut: # Even if double was better, see if a triple might be better yet [but don't store it in the params arrays!] print >>f,"Triple-gaussian fitting at %i,%i (%i'th double, %i'th triple)" % (i,j,dgc,tgc) if tgc % 100 == 0: print "Triple-gaussian fitting at %i,%i (%i'th double, %i'th triple)" % (i,j,dgc,tgc) tgc += 1 tpguess = [doublepars[0],doublepars[1],(doublepars[0]+doublepars[1])/2.,doublepars[2],doublepars[3],doublepars[2]*5.,doublepars[4],doublepars[5],doublepars[4]/5.] triplepars = return_triple_param(cube[:,i,j],params=tpguess) pars = [offset_arr[i,j],width_arr[i,j],amp_arr[i,j]] if doplot: # if you don't, there's really no point in fitting at all... ax = axes([.05,.05,.7,.9]) plot(vind,cube[:,i,j],color='black',linestyle='steps',linewidth='.5') plot(vind,gaussian(*pars)(xind),'r-.',label="Single %f" % ( (gerr(cube[:,i,j])(pars)).sum() ) ) plot(vind,double_gaussian(*doublepars)(xind),'g--',label="Double %f" % ( (double_gerr(cube[:,i,j])(doublepars)).sum() )) plot(vind,triple_gaussian(*triplepars)(xind),'b:',label="Triple %f" % ( (triple_gerr(cube[:,i,j])(triplepars)).sum() ),linewidth=2) pars[0] = vconv(pars[0]) text(1.05,.8,"c1 %3.2f w1 %3.2f a1 %3.2f" % tuple(pars),transform=ax.transAxes,size='smaller') dp = [ vconv(doublepars[0]) , doublepars[2], doublepars[4], vconv(doublepars[1]), doublepars[3], doublepars[5] ] text(1.05,.6,"c1 %3.2f w1 %3.2f a1 %3.2f\nc2 %3.2f w2 %3.2f a2 %3.2f" % tuple(dp),transform=ax.transAxes,size='smaller') tp = [ vconv(triplepars[0]) , triplepars[3], triplepars[6], vconv(triplepars[1]), triplepars[4], triplepars[7], vconv(triplepars[2]), triplepars[5], triplepars[8] ] text(1.05,.4,"c1 %3.2f w1 %3.2f a1 %3.2f\nc2 %3.2f w2 %3.2f a2 %3.2f\nc3 %3.2f w3 %3.2f a3 %3.2f" % tuple(tp),transform=ax.transAxes,size='smaller') title("Spectrum at %s %s" % (ratos(xtora(i)),dectos(ytodec(j))) ) legend(loc='best') savefig("%s_%s.%s.png" % (prefix,i,j)) clf() ncarr[i,j] += 1 print >>f,triplepars dgc += 1 f.close() print "Total time %f seconds for %i double and %i triple gaussians" % (time.time()-starttime,dgc,tgc) return width_arr1,width_arr2,chi2_arr,offset_arr1,offset_arr2,amp_arr1,amp_arr2,ncarr def collapse_gaussfit(cube,axis=2,negamp=False): std_coll = cube.std(axis=axis) mean_std = median(std_coll.ravel()) if axis > 0: cube = cube.swapaxes(0,axis) width_arr = zeros(cube.shape[1:]) amp_arr = zeros(cube.shape[1:]) chi2_arr = zeros(cube.shape[1:]) offset_arr = zeros(cube.shape[1:]) starttime = time.time() print cube.shape print "Fitting a total of %i spectra with peak signal above %f" % ((cube.max(axis=0) > mean_std).sum(),mean_std) for i in xrange(cube.shape[1]): t0 = time.time() nspec = (cube[:,i,:].max(axis=0) > mean_std).sum() print "Working on row %d with %d spectra to fit" % (i,nspec) , for j in xrange(cube.shape[2]): if not negamp and cube[:,i,j].max() > mean_std: pars = return_param(cube[:,i,j],negamp=negamp) width_arr[i,j] = pars[1] chi2_arr[i,j] = sum(( gerr(cube[:,i,j])(pars) )**2) offset_arr[i,j] = pars[0] amp_arr[i,j] = pars[2] elif negamp and cube[:,i,j].min() < -1*mean_std: pars = return_param(cube[:,i,j],negamp=negamp) width_arr[i,j] = pars[1] chi2_arr[i,j] = sum(( gerr(cube[:,i,j])(pars) )**2) offset_arr[i,j] = pars[0] amp_arr[i,j] = pars[2] else: width_arr[i,j] = numpy.nan chi2_arr[i,j] = numpy.nan offset_arr[i,j] = numpy.nan amp_arr[i,j] = numpy.nan dt = time.time()-t0 if nspec > 0: print "in %f seconds (average: %f)" % (dt,dt/float(nspec)) print "Total time %f seconds" % (time.time()-starttime) return width_arr,offset_arr,amp_arr,chi2_arr # next step: find 2-gaussian fits def collapse_double_gaussfit(cube,axis=2): std_coll = cube.std(axis=axis) mean_std = median(std_coll.ravel()) if axis > 0: cube = cube.swapaxes(0,axis) width_arr1 = zeros(cube.shape[1:]) width_arr2 = zeros(cube.shape[1:]) amp_arr1 = zeros(cube.shape[1:]) amp_arr2 = zeros(cube.shape[1:]) chi2_arr = zeros(cube.shape[1:]) offset_arr1 = zeros(cube.shape[1:]) offset_arr2 = zeros(cube.shape[1:]) starttime = time.time() print cube.shape print "Fitting a total of %i spectra with peak signal above %f" % ((cube.max(axis=0) > mean_std).sum(),mean_std) for i in xrange(cube.shape[1]): t0 = time.time() nspec = (cube[:,i,:].max(axis=0) > mean_std).sum() print "Working on row %d with %d spectra to fit" % (i,nspec) , for j in xrange(cube.shape[2]): if cube[:,i,j].max() > mean_std: pars = return_double_param(cube[:,i,j]) width_arr1[i,j] = pars[2] width_arr2[i,j] = pars[3] amp_arr1[i,j] = pars[4] amp_arr2[i,j] = pars[5] chi2_arr[i,j] = sum(( double_gerr(cube[:,i,j])(pars) )**2) offset_arr1[i,j] = pars[0] offset_arr2[i,j] = pars[1] else: width_arr1[i,j] = numpy.nan width_arr2[i,j] = numpy.nan chi2_arr[i,j] = numpy.nan offset_arr1[i,j] = numpy.nan offset_arr2[i,j] = numpy.nan dt = time.time()-t0 if nspec > 0: print "in %f seconds (average: %f)" % (dt,dt/float(nspec)) print "Total time %f seconds" % (time.time()-starttime) return width_arr1,width_arr2,chi2_arr,offset_arr1,offset_arr2,amp_arr1,amp_arr2 def wrap_collapse_gauss(filename,outprefix,redo='no'): """ redo - if not equal to 'no', then... if collapse_gaussfit succeeded (to the extent that the .pysav files were written), but some part of the file writing or successive procedures failed, re-do those procedures without redoing the whole collapse """ fitsfile = pyfits.open(filename) dv,v0,p3 = fitsfile[0].header['CD3_3'],fitsfile[0].header['CRVAL3'],fitsfile[0].header['CRPIX3'] cube = fitsfile[0].data cube = where(numpy.isnan(cube),0,cube) if redo=='no': doubleB = asarray(collapse_double_gaussfit(cube,axis=0)) doubleB[numpy.isnan(doubleB)] = 0 pickle.dump(doubleB,open('%s_doubleB.pysav' % outprefix,'w')) else: doubleB = pickle.load(open('%s_doubleB.pysav' % outprefix,'r')) db = doubleB gcd = double_gaussian(db[3],db[4],db[0],db[1],db[5],db[6])(indices(cube.shape)[0]) fitsfile[0].data = gcd fitsfile.writeto('%s_doublegausscube.fits' % outprefix,clobber=True) gcd[numpy.isnan(gcd)] = 0 doubleResids = cube-gcd fitsfile[0].data = doubleResids fitsfile.writeto('%s_doublegaussresids.fits' % outprefix,clobber=True) #doubleB[4] = (doubleB[4]-v0) / dv + p3-1 #doubleB[3] = (doubleB[3]-v0) / dv + p3-1 doubleB[4] = (doubleB[4]-p3+1) * dv + v0 doubleB[3] = (doubleB[3]-p3+1) * dv + v0 fitsfile[0].data = asarray(doubleB) fitsfile.writeto('%s_doublegausspars.fits' % outprefix,clobber=True) if redo=='no': singleB = asarray(collapse_gaussfit(cube,axis=0)) pickle.dump(singleB,open('%s_singleB.pysav' % outprefix,'w')) else: singleB = pickle.load(open('%s_singleB.pysav' % outprefix,'r')) gc = gaussian(singleB[1],singleB[0],singleB[2])(indices(cube.shape)[0]) singleB[1] = (singleB[1]-p3+1) * dv + v0 fitsfile[0].data = gc fitsfile.writeto('%s_singlegausscube.fits' % outprefix,clobber=True) gc[numpy.isnan(gc)]=0 singleResids = cube-gc fitsfile[0].data = singleResids fitsfile.writeto('%s_singlegaussresids.fits' % outprefix,clobber=True) fitsfile[0].data = asarray(singleB) fitsfile.writeto('%s_singlegausspars.fits' % outprefix,clobber=True) fitsfile[0].header.__delitem__('CD3_3') fitsfile[0].header.__delitem__('CRVAL3') fitsfile[0].header.__delitem__('CRPIX3') fitsfile[0].header.__delitem__('CUNIT3') fitsfile[0].header.__delitem__('CTYPE3') doubleResids[numpy.isnan(doubleResids)] = 0 totalDResids = doubleResids.sum(axis=0) fitsfile[0].data = totalDResids fitsfile.writeto('%s_doublegauss_totalresids.fits' % outprefix,clobber=True) singleResids[numpy.isnan(singleResids)] = 0 totalSResids = singleResids.sum(axis=0) fitsfile[0].data = totalSResids fitsfile.writeto('%s_singlegauss_totalresids.fits' % outprefix,clobber=True) return singleB,doubleB def wrap_collapse_adaptive(filename,outprefix,redo='no',nsig=5,nrsig=2,doplot=True): """ redo - if not equal to 'no', then... if collapse_gaussfit succeeded (to the extent that the .pysav files were written), but some part of the file writing or successive procedures failed, re-do those procedures without redoing the whole collapse """ fitsfile = pyfits.open(filename) dv,v0,p3 = fitsfile[0].header['CD3_3'],fitsfile[0].header['CRVAL3'],fitsfile[0].header['CRPIX3'] dr,r0,p1 = fitsfile[0].header['CD1_1'],fitsfile[0].header['CRVAL1'],fitsfile[0].header['CRPIX1'] dd,d0,p2 = fitsfile[0].header['CD2_2'],fitsfile[0].header['CRVAL2'],fitsfile[0].header['CRPIX2'] xtora = lambda x: (x-p1+1)*dr+r0 # convert pixel coordinates to RA/Dec/Velocity ytodec = lambda y: (y-p2+1)*dd+d0 vconv = lambda v: (v-p3+1)*dv+v0 cube = fitsfile[0].data cube = where(numpy.isnan(cube),0,cube) if redo=='no': adaptB = asarray(adaptive_collapse_gaussfit(cube,axis=0,prefix=outprefix+'_triple', nsig=nsig,nrsig=nrsig,vconv=vconv,xtora=xtora,ytodec=ytodec,doplot=doplot)) adaptB[numpy.isnan(adaptB)] = 0 pickle.dump(adaptB,open('%s_adaptB.pysav' % outprefix,'w')) else: adaptB = pickle.load(open('%s_adaptB.pysav' % outprefix,'r')) db = adaptB gcd = double_gaussian(db[3],db[4],db[0],db[1],db[5],db[6])(indices(cube.shape)[0]) fitsfile[0].data = gcd fitsfile.writeto('%s_adaptgausscube.fits' % outprefix,clobber=True) gcd[numpy.isnan(gcd)] = 0 adaptResids = cube-gcd fitsfile[0].data = adaptResids fitsfile.writeto('%s_adaptgaussresids.fits' % outprefix,clobber=True) #adaptB[4] = (adaptB[4]-v0) / dv + p3-1 #adaptB[3] = (adaptB[3]-v0) / dv + p3-1 adaptB[4] = (adaptB[4]-p3+1) * dv + v0 adaptB[3] = (adaptB[3]-p3+1) * dv + v0 fitsfile[0].data = asarray(adaptB) fitsfile.writeto('%s_adaptgausspars.fits' % outprefix,clobber=True) fitsfile[0].header.__delitem__('CD3_3') fitsfile[0].header.__delitem__('CRVAL3') fitsfile[0].header.__delitem__('CRPIX3') fitsfile[0].header.__delitem__('CUNIT3') fitsfile[0].header.__delitem__('CTYPE3') adaptResids[numpy.isnan(adaptResids)] = 0 totalDResids = adaptResids.sum(axis=0) fitsfile[0].data = totalDResids fitsfile.writeto('%s_adaptgauss_totalresids.fits' % outprefix,clobber=True) return adaptB
py
7df95062ae6d097697d29a88a3bab503fdc7abd5
from django.db import models from django.conf import settings # Create your models here. class AcademicYear(models.Model): year = models.CharField(max_length=50) active = models.BooleanField(default=False) def __str__(self): return self.year class Term(models.Model): name = models.CharField(max_length=30, null=True) active = models.BooleanField(default=False) def __str__(self): return self.name class Subject(models.Model): name = models.CharField(max_length=30, null=True) def __str__(self): return self.name class Grade(models.Model): first_test = models.FloatField(null=True) second_test = models.FloatField(null=True) exam = models.FloatField(null=True) term = models.ForeignKey(Term, on_delete=models.CASCADE, related_name='grade_term', null=True) user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='grade_user', null=True) subject = models.ForeignKey(Subject, related_name="grade_subject", on_delete=models.CASCADE, null=True) academic_year = models.ForeignKey(AcademicYear, on_delete=models.CASCADE, related_name="grade_academic_year", null=True) def __str__(self): return f"{self.user} grades for {self.subjects}, {self.term}" # class Result(models.Model): # pass