ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
7dfc9ff63d343956b2cd4ec172c0cc6a0bc6b667
import random import sys print(sys.path) from locust import HttpUser, TaskSet, task, HttpLocust, between class QuickstartUser(HttpUser): wait_time = between(5, 9) @task def index_page(self): self.client.get("/")
py
7dfca07ce6b754f6c74a4b42961c25e16d2edecd
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Basic HTML parser for anchor links only. Intended for use on a specific style of output produced by the third-party `wikiextractor`. """ import collections from html import parser as html_parser import re import urllib from absl import logging # from dense_representations_for_entity_retrieval.mel.wikinews_extractor import constants from . import constants _ANCHOR_EXCLUDE_REGEX = re.compile( "|".join(constants._ANCHOR_EXCLUDE_PATTERNS), re.UNICODE | re.IGNORECASE ) # Regex to detect and parse wiki link targets that point to Wikipedia. # Breakdown of the expression: # Optional initial colon. # Required "w". # Optionally write out "wikipedia". # Required colon. # Optional language spec of the form "LANG:", capturing the LANG part. # Required non-zero length title. # Example strings (square brackets just for display here): # [[w:title] / [[:w:title]] / [[:w:de:title]] / [[:wikipedia:de:title]] # TODO(jabot): Consider also exploiting the d: prefixes that point to WikiData. _WIKIPEDIA_TITLE_REGEX = re.compile( r":?w(?:ikipedia)?:(?:(%s):)?(.+)" % "|".join(constants.WIKI_LANG_CODES), re.IGNORECASE, ) def parse_title_if_wikipedia(title): """Require wikipedia prefix and parse title into language and title.""" m = _WIKIPEDIA_TITLE_REGEX.match(title) if m: # Two capturing groups even if the first one was empty; hence language will # be None here if the language spec was absent. language, title = m.groups() if language: language = language.lower() return language, title else: return None, None # Regex to detect blocked terms in link prefixes. The terms appear in a context # like "[[term:foobar]]". _LINK_PREFIX_BLOCKLIST_REGEX = re.compile( "(?:%s):.+" % "|".join(constants.LINK_PREFIX_BLOCKLIST), re.UNICODE | re.IGNORECASE ) def exclude_link_by_prefix(unqouted_url): """Returns whether this URL is in the exclusion list.""" return _LINK_PREFIX_BLOCKLIST_REGEX.match(unqouted_url.lstrip()) class WikiExtractorHTMLParser(html_parser.HTMLParser): """Light-weight parser to extract text and linked mentions. Targets the wiki-extractor's output, which should only have <a> tags. Parsing will throw an exception when those tags are nested. The class is stateful, so use a new instance for each next document. It only handles unnested <a> tags. It drops any other tags. Usage: parser = WikiExtractorHTMLParser() try: parser.feed(wiki_doc) output = parser.output mentions = parser.mentions except ValueError: pass # parse failure """ def __init__(self): super(WikiExtractorHTMLParser, self).__init__() # Cleaned output text. self._output = "" # List of mention dicts extracted. self._mentions = [] # State information. # This indicates whether we are inside an <a> tag. self._in_a_tag = False # The href attribute for the <a> tag we are inside of. self._href = "" # The anchor text for the <a> tag we are inside of. self._anchor_text = "" # The character position in output where the <a> tag started. self._last_pos = 0 # Counter of observed tags; for diagnostics. self._tags = collections.Counter() self._found_end = False @property def mentions(self): """Returns list of mentions extracted so far, as a `dict` per mention.""" return self._mentions def handle_starttag(self, tag, attrs): logging.debug( "Encountered a start tag %s (%s):", tag, ",".join(["{}={}".format(k, v) for (k, v) in attrs]), ) if tag == "a": # Fail on nested a-tags for simplicity. if self._in_a_tag: raise ValueError("Handling of nested <a>-tags is not implemented.") self._in_a_tag = True self._reset() # Extract hyperlink target. for name, value in attrs: if name == "href": self._href = urllib.parse.unquote(value) def handle_data(self, data): logging.debug("Encountered data: '%s'", data) # Normalize whitespace by eliminating trailing whitespace and more than # two consecutive newlines. self._output = re.sub(r" *\n", r"\n", self._output) self._output = re.sub(r"\n\n\n*", r"\n\n", self._output) # Remove preceding whitespace when starting a new line. if self._output and self._output[-1] == "\n": data = data.lstrip() # Capture anchor text if inside an a-tag and track position. if self._in_a_tag and self._href: # Completely drop certain anchor texts based on a blocklist. if _ANCHOR_EXCLUDE_REGEX.search(data): return _, title = parse_title_if_wikipedia(self._href) self._anchor_text = "" if title: # If this is a wikipedia link, keep the anchor text and extract # mention. mention_text = data.replace(" \n", " ").replace("\n", " ") self._anchor_text = mention_text self._last_pos = len(self._output) self._output += mention_text logging.debug("Keep link, keep contents: %s", self._href) elif exclude_link_by_prefix(self._href): # If link matches exclusion list, do not append it's anchor text. logging.debug("Drop link, drop contents: %s", self._href) pass else: # For all other links, ignore the hyperlink but keep the anchor text. logging.debug("Drop link, keep contents: %s", self._href) self._output += data else: # Just append output. self._output += data def _reset(self): self._anchor_text = "" # reset self._href = "" def handle_endtag(self, tag): logging.debug("Encountered an end tag: '%s'", tag) self._tags.update((tag,)) if tag == "a": if not self._in_a_tag: raise ValueError("Spurious end tag.") self._in_a_tag = False # Extract mention if we got a well-formed link with anchor text. if self._href and self._anchor_text: self._mentions.append( { "mention": self._anchor_text, "position": self._last_pos, "length": len(self._anchor_text), "target": self._href, } ) self._reset() @property def output(self): """Returns output text extracted so far.""" self._output = self._output.rstrip() return self._output
py
7dfca0ace54abb00223fecd203660ecdb19ed9c9
class Character(): """Class for representing a COC character.""" def __init__(self): """Constructs an empty character.""" self.basic_info = { "Name": "", "Player": "", "Occupation": "", "Age": 0, "Sex": "", "Residence": "", "Birthplace": "" } self.characteristics = { "STR": 0, "DEX": 0, "INT": 0, "CON": 0, "APP": 0, "POW": 0, "SIZ": 0, "EDU": 0, "Move Rate": 0} self.status = { "HP": 0, "Sanity": 0, "Luck": 0, "MP": 0} self.combact_stat = {"Damage Bonus": "", "Build": 0, "Dodge": 0} self.skills = {} self.weapons = {} self.backstory = {"Personal Description": [], "Ideology/Beliefs": [], "Significant People": [], "Meaningful Locations": [], "Treasured Possessions": [], "Traits": [], "Injuries & Scars": [], "Phobias & Manias": [], "Arcane Tomes, Spells & Artifacts":[], "Encounters with Strange Entities": []} self.inventory = [] self.financial_status = {"Spending Level": 0, "Cash": 0, "Unspecified Assets": 0, "Assets": []} def update(self): """Update stats according to their dependencies.""" pass def generate(self, generator): """Use generator to generate stats. generator: a generator object, must implement generate_* functions in class Generator.""" generator.generate_char(self) def dump(self, f, fmt="json"): """Dump to file.""" pass def load(self, f, fmt="json"): """Load from file.""" pass def dumps(self, fmt="json"): """Dump to string.""" pass def loads(self, string, fmt="json"): """Load from string.""" pass
py
7dfca1550aa9b125654f4fffafd5454b17bc8b6c
""" Visualize cumulative SHAP values.""" from __future__ import division, unicode_literals import warnings from typing import Union import numpy as np try: import matplotlib.cm as cm import matplotlib.pyplot as pl import matplotlib except ImportError: warnings.warn("matplotlib could not be loaded!") pass from . import colors, labels from ..common import convert_to_link, hclust_ordering, LogitLink def __change_shap_base_value(base_value, new_base_value, shap_values) -> np.ndarray: """Shift SHAP base value to a new value. This function assumes that `base_value` and `new_base_value` are scalars and that `shap_values` is a two or three dimensional array. """ # matrix of shap_values if shap_values.ndim == 2: return shap_values + (base_value - new_base_value) / shap_values.shape[1] # cube of shap_interaction_values main_effects = shap_values.shape[1] all_effects = main_effects * (main_effects + 1) // 2 temp = (base_value - new_base_value) / all_effects / 2 # divided by 2 because interaction effects are halved shap_values = shap_values + temp # Add the other half to the main effects on the diagonal idx = np.diag_indices_from(shap_values[0]) shap_values[:, idx[0], idx[1]] += temp return shap_values def __decision_plot_matplotlib( base_value, cumsum, ascending, feature_display_count, features, feature_names, highlight, plot_color, axis_color, y_demarc_color, xlim, alpha, color_bar, auto_size_plot, title, show, legend_labels, legend_location, ): """matplotlib rendering for decision_plot()""" # image size row_height = 0.4 if auto_size_plot: pl.gcf().set_size_inches(8, feature_display_count * row_height + 1.5) # draw vertical line indicating center pl.axvline(x=base_value, color="#999999", zorder=-1) # draw horizontal dashed lines for each feature contribution for i in range(1, feature_display_count): pl.axhline(y=i, color=y_demarc_color, lw=0.5, dashes=(1, 5), zorder=-1) # initialize highlighting linestyle = np.array("-", dtype=np.object) linestyle = np.repeat(linestyle, cumsum.shape[0]) linewidth = np.repeat(1, cumsum.shape[0]) if highlight is not None: linestyle[highlight] = "-." linewidth[highlight] = 2 # plot each observation's cumulative SHAP values. ax = pl.gca() ax.set_xlim(xlim) m = cm.ScalarMappable(cmap=plot_color) m.set_clim(xlim) y_pos = np.arange(0, feature_display_count + 1) lines = [] for i in range(cumsum.shape[0]): o = pl.plot( cumsum[i, :], y_pos, color=m.to_rgba(cumsum[i, -1], alpha), linewidth=linewidth[i], linestyle=linestyle[i] ) lines.append(o[0]) # determine font size. if ' *\n' character sequence is found (as in interaction labels), use a smaller # font. we don't shrink the font for all interaction plots because if an interaction term is not # in the display window there is no need to shrink the font. s = next((s for s in feature_names if " *\n" in s), None) fontsize = 13 if s is None else 9 # if there is a single observation and feature values are supplied, print them. if (cumsum.shape[0] == 1) and (features is not None): renderer = pl.gcf().canvas.get_renderer() inverter = pl.gca().transData.inverted() y_pos = y_pos + 0.5 for i in range(feature_display_count): v = features[0, i] if isinstance(v, str): v = "({})".format(str(v).strip()) else: v = "({})".format("{0:,.3f}".format(v).rstrip("0").rstrip(".")) t = ax.text(np.max(cumsum[0, i:(i + 2)]), y_pos[i], " " + v, fontsize=fontsize, horizontalalignment="left", verticalalignment="center_baseline", color="#666666") bb = inverter.transform_bbox(t.get_window_extent(renderer=renderer)) if bb.xmax > xlim[1]: t.set_text(v + " ") t.set_x(np.min(cumsum[0, i:(i + 2)])) t.set_horizontalalignment("right") bb = inverter.transform_bbox(t.get_window_extent(renderer=renderer)) if bb.xmin < xlim[0]: t.set_text(v) t.set_x(xlim[0]) t.set_horizontalalignment("left") # style axes ax.xaxis.set_ticks_position("both") ax.yaxis.set_ticks_position("none") ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) ax.tick_params(color=axis_color, labelcolor=axis_color, labeltop=True) pl.yticks(np.arange(feature_display_count) + 0.5, feature_names, fontsize=fontsize) ax.tick_params("x", labelsize=11) pl.ylim(0, feature_display_count) pl.xlabel(labels["MODEL_OUTPUT"], fontsize=13) # draw the color bar - must come after axes styling if color_bar: m = cm.ScalarMappable(cmap=plot_color) m.set_array(np.array([0, 1])) # place the colorbar pl.ylim(0, feature_display_count + 0.25) ax_cb = ax.inset_axes([xlim[0], feature_display_count, xlim[1] - xlim[0], 0.25], transform=ax.transData) cb = pl.colorbar(m, ticks=[0, 1], orientation="horizontal", cax=ax_cb) cb.set_ticklabels([]) cb.ax.tick_params(labelsize=11, length=0) cb.set_alpha(alpha) cb.outline.set_visible(False) # re-activate the main axis for drawing. pl.sca(ax) if title: # TODO decide on style/size pl.title(title) if ascending: pl.gca().invert_yaxis() if legend_labels is not None: ax.legend(handles=lines, labels=legend_labels, loc=legend_location) if show: pl.show() class DecisionPlotResult: """The optional return value of decision_plot. The class attributes can be used to create multiple decision plots with the same scale and feature ordering. """ def __init__(self, base_value, shap_values, feature_names, feature_idx, xlim): """ Example ------- Plot two decision plots using the same feature order and x-axis. >>> range1, range2 = range(20), range(20, 40) >>> r = decision_plot(base, shap_values[range1], features[range1], return_objects=True) >>> decision_plot(base, shap_values[range2], features[range2], feature_order=r.feature_idx, xlim=r.xlim) Parameters ---------- base_value : float The base value used in the plot. For multioutput models, this will be the mean of the base values. This will inherit `new_base_value` if specified. shap_values : numpy.ndarray The `shap_values` passed to decision_plot re-ordered based on `feature_order`. If SHAP interaction values are passed to decision_plot, `shap_values` is a 2D (matrix) representation of the interactions. See `feature_names` to locate the feature positions. If `new_base_value` is specified, the SHAP values are relative to the new base value. feature_names : list of str The feature names used in the plot in the order specified in the decision_plot parameter `feature_order`. feature_idx : numpy.ndarray The index used to order `shap_values` based on `feature_order`. This attribute can be used to specify identical feature ordering in multiple decision plots. xlim : tuple[float, float] The x-axis limits. This attributed can be used to specify the same x-axis in multiple decision plots. """ self.base_value = base_value self.shap_values = shap_values self.feature_names = feature_names self.feature_idx = feature_idx self.xlim = xlim def decision_plot( base_value, shap_values, features=None, feature_names=None, feature_order="importance", feature_display_range=None, highlight=None, link="identity", plot_color=None, axis_color="#333333", y_demarc_color="#333333", alpha=None, color_bar=True, auto_size_plot=True, title=None, xlim=None, show=True, return_objects=False, ignore_warnings=False, new_base_value=None, legend_labels=None, legend_location="best", ) -> Union[DecisionPlotResult, None]: """Visualize model decisions using cumulative SHAP values. Each colored line in the plot represents the model prediction for a single observation. Note that plotting too many samples at once can make the plot unintelligible. Parameters ---------- base_value : float or numpy.ndarray This is the reference value that the feature contributions start from. Usually, this is explainer.expected_value. shap_values : numpy.ndarray Matrix of SHAP values (# features) or (# samples x # features) from explainer.shap_values(). Or cube of SHAP interaction values (# samples x # features x # features) from explainer.shap_interaction_values(). features : numpy.array or pandas.Series or pandas.DataFrame or numpy.ndarray or list Matrix of feature values (# features) or (# samples x # features). This provides the values of all the features and, optionally, the feature names. feature_names : list or numpy.ndarray List of feature names (# features). If None, names may be derived from the features argument if a Pandas object is provided. Otherwise, numeric feature names will be generated. feature_order : str or None or list or numpy.ndarray Any of "importance" (the default), "hclust" (hierarchical clustering), "none", or a list/array of indices. feature_display_range: slice or range The slice or range of features to plot after ordering features by feature_order. A step of 1 or None will display the features in ascending order. A step of -1 will display the features in descending order. If feature_display_range=None, slice(-1, -21, -1) is used (i.e. show the last 20 features in descending order). If shap_values contains interaction values, the number of features is automatically expanded to include all possible interactions: N(N + 1)/2 where N = shap_values.shape[1]. highlight : Any Specify which observations to draw in a different line style. All numpy indexing methods are supported. For example, list of integer indices, or a bool array. link : str Use "identity" or "logit" to specify the transformation used for the x-axis. The "logit" link transforms log-odds into probabilities. plot_color : str or matplotlib.colors.ColorMap Color spectrum used to draw the plot lines. If str, a registered matplotlib color name is assumed. axis_color : str or int Color used to draw plot axes. y_demarc_color : str or int Color used to draw feature demarcation lines on the y-axis. alpha : float Alpha blending value in [0, 1] used to draw plot lines. color_bar : bool Whether to draw the color bar. auto_size_plot : bool Whether to automatically size the matplotlib plot to fit the number of features displayed. If `False`, specify the plot size using matplotlib before calling this function. title : str Title of the plot. xlim: tuple[float, float] The extents of the x-axis (e.g. (-1.0, 1.0)). If not specified, the limits are determined by the maximum/minimum predictions centered around base_value when link='identity'. When link='logit', the x-axis extents are (0, 1) centered at 0.5. x_lim values are not transformed by the link function. This argument is provided to simplify producing multiple plots on the same scale for comparison. show : bool Whether to automatically display the plot. return_objects : bool Whether to return a DecisionPlotResult object containing various plotting features. This can be used to generate multiple decision plots using the same feature ordering and scale. ignore_warnings : bool Plotting many data points or too many features at a time may be slow, or may create very large plots. Set this argument to `True` to override hard-coded limits that prevent plotting large amounts of data. new_base_value : float SHAP values are relative to a base value; by default, the expected value of the model's raw predictions. Use `new_base_value` to shift the base value to an arbitrary value (e.g. the cutoff point for a binary classification task). legend_labels : list of str List of legend labels. If `None`, legend will not be shown. legend_location : str Legend location. Any of "best", "upper right", "upper left", "lower left", "lower right", "right", "center left", "center right", "lower center", "upper center", "center". Returns ------- Returns a DecisionPlotResult object if `return_objects=True`. Returns `None` otherwise (the default). Example ------- Plot two decision plots using the same feature order and x-axis. >>> range1, range2 = range(20), range(20, 40) >>> r = decision_plot(base, shap_values[range1], features[range1], return_objects=True) >>> decision_plot(base, shap_values[range2], features[range2], feature_order=r.feature_idx, xlim=r.xlim) """ # code taken from force_plot. auto unwrap the base_value if type(base_value) == np.ndarray and len(base_value) == 1: base_value = base_value[0] if isinstance(base_value, list) or isinstance(shap_values, list): raise TypeError("Looks like multi output. Try base_value[i] and shap_values[i], " "or use shap.multioutput_decision_plot().") # validate shap_values if not isinstance(shap_values, np.ndarray): raise TypeError("The shap_values arg is the wrong type. Try explainer.shap_values().") # calculate the various dimensions involved (observations, features, interactions, display, etc. if shap_values.ndim == 1: shap_values = shap_values.reshape(1, -1) observation_count = shap_values.shape[0] feature_count = shap_values.shape[1] # code taken from force_plot. convert features from other types. if str(type(features)) == "<class 'pandas.core.frame.DataFrame'>": if feature_names is None: feature_names = features.columns.to_list() features = features.values elif str(type(features)) == "<class 'pandas.core.series.Series'>": if feature_names is None: feature_names = features.index.to_list() features = features.values elif isinstance(features, list): if feature_names is None: feature_names = features features = None elif features is not None and features.ndim == 1 and feature_names is None: feature_names = features.tolist() features = None # the above code converts features to either None or np.ndarray. if features is something else at this point, # there's a problem. if not isinstance(features, (np.ndarray, type(None))): raise TypeError("The features arg uses an unsupported type.") if (features is not None) and (features.ndim == 1): features = features.reshape(1, -1) # validate/generate feature_names. at this point, feature_names does not include interactions. if feature_names is None: feature_names = [labels['FEATURE'] % str(i) for i in range(feature_count)] elif len(feature_names) != feature_count: raise ValueError("The feature_names arg must include all features represented in shap_values.") elif not isinstance(feature_names, list): raise TypeError("The feature_names arg requires a list or numpy array.") # transform interactions cube to a matrix and generate interaction names. if shap_values.ndim == 3: # flatten triu_count = feature_count * (feature_count - 1) // 2 idx_diag = np.diag_indices_from(shap_values[0]) idx_triu = np.triu_indices_from(shap_values[0], 1) a = np.ndarray((observation_count, feature_count + triu_count), shap_values.dtype) a[:, :feature_count] = shap_values[:, idx_diag[0], idx_diag[1]] a[:, feature_count:] = shap_values[:, idx_triu[0], idx_triu[1]] * 2 shap_values = a # names a = [None] * shap_values.shape[1] a[:feature_count] = feature_names for i, row, col in zip(range(feature_count, shap_values.shape[1]), idx_triu[0], idx_triu[1]): a[i] = "{0} *\n{1}".format(feature_names[row], feature_names[col]) feature_names = a feature_count = shap_values.shape[1] features = None # Can't use feature values for interactions... # determine feature order if isinstance(feature_order, list): feature_idx = np.array(feature_order) elif isinstance(feature_order, np.ndarray): feature_idx = feature_order elif (feature_order is None) or (feature_order.lower() == "none"): feature_idx = np.arange(feature_count) elif feature_order is "importance": feature_idx = np.argsort(np.sum(np.abs(shap_values), axis=0)) elif feature_order is "hclust": feature_idx = np.array(hclust_ordering(shap_values.transpose())) else: raise ValueError("The feature_order arg requires 'importance', 'hclust', 'none', or an integer list/array " "of feature indices.") if (feature_idx.shape != (feature_count, )) or (not np.issubdtype(feature_idx.dtype, np.integer)): raise ValueError("A list or array has been specified for the feature_order arg. The length must match the " "feature count and the data type must be integer.") # validate and convert feature_display_range to a slice. prevents out of range errors later. if feature_display_range is None: feature_display_range = slice(-1, -21, -1) # show last 20 features in descending order. elif not isinstance(feature_display_range, (slice, range)): raise TypeError("The feature_display_range arg requires a slice or a range.") elif feature_display_range.step not in (-1, 1, None): raise ValueError("The feature_display_range arg supports a step of 1, -1, or None.") elif isinstance(feature_display_range, range): # Negative values in a range are not the same as negs in a slice. Consider range(2, -1, -1) == [2, 1, 0], # but slice(2, -1, -1) == [] when len(features) > 2. However, range(2, -1, -1) == slice(2, -inf, -1) after # clipping. a = np.iinfo(np.integer).min feature_display_range = slice( feature_display_range.start if feature_display_range.start >= 0 else a, # should never happen, but... feature_display_range.stop if feature_display_range.stop >= 0 else a, feature_display_range.step ) # apply new_base_value if new_base_value is not None: shap_values = __change_shap_base_value(base_value, new_base_value, shap_values) base_value = new_base_value # use feature_display_range to determine which features will be plotted. convert feature_display_range to # ascending indices and expand by one in the negative direction. why? we are plotting the change in prediction # for every feature. this requires that we include the value previous to the first displayed feature # (i.e. i_0 - 1 to i_n). a = feature_display_range.indices(feature_count) ascending = True if a[2] == -1: # The step ascending = False a = (a[1] + 1, a[0] + 1, 1) feature_display_count = a[1] - a[0] shap_values = shap_values[:, feature_idx] if a[0] == 0: cumsum = np.ndarray((observation_count, feature_display_count + 1), shap_values.dtype) cumsum[:, 0] = base_value cumsum[:, 1:] = base_value + np.nancumsum(shap_values[:, 0:a[1]], axis=1) else: cumsum = base_value + np.nancumsum(shap_values, axis=1)[:, (a[0] - 1):a[1]] # Select and sort feature names and features according to the range selected above feature_names = np.array(feature_names) feature_names_display = feature_names[feature_idx[a[0]:a[1]]].tolist() feature_names = feature_names[feature_idx].tolist() features_display = None if features is None else features[:, feature_idx[a[0]:a[1]]] # throw large data errors if not ignore_warnings: if observation_count > 2000: raise RuntimeError("Plotting {} observations may be slow. Consider subsampling or set " "ignore_warnings=True to ignore this message.".format(observation_count)) if feature_display_count > 200: raise RuntimeError("Plotting {} features may create a very large plot. Set " "ignore_warnings=True to ignore this " "message.".format(feature_display_count)) if feature_count * observation_count > 100000000: raise RuntimeError("Processing SHAP values for {} features over {} observations may be slow. Set " "ignore_warnings=True to ignore this " "message.".format(feature_count, observation_count)) # convert values based on link and update x-axis extents create_xlim = xlim is None link = convert_to_link(link) base_value_saved = base_value if isinstance(link, LogitLink): base_value = link.finv(base_value) cumsum = link.finv(cumsum) if create_xlim: # Expand [0, 1] limits a little for a visual margin xlim = (-0.02, 1.02) elif create_xlim: xmin = np.min((cumsum.min(), base_value)) xmax = np.max((cumsum.max(), base_value)) # create a symmetric axis around base_value a, b = (base_value - xmin), (xmax - base_value) if a > b: xlim = (base_value - a, base_value + a) else: xlim = (base_value - b, base_value + b) # Adjust xlim to include a little visual margin. a = (xlim[1] - xlim[0]) * 0.02 xlim = (xlim[0] - a, xlim[1] + a) # Initialize style arguments if alpha is None: alpha = 1.0 if plot_color is None: plot_color = colors.red_blue __decision_plot_matplotlib( base_value, cumsum, ascending, feature_display_count, features_display, feature_names_display, highlight, plot_color, axis_color, y_demarc_color, xlim, alpha, color_bar, auto_size_plot, title, show, legend_labels, legend_location, ) if not return_objects: return None return DecisionPlotResult(base_value_saved, shap_values, feature_names, feature_idx, xlim) def multioutput_decision_plot(base_values, shap_values, row_index, **kwargs) -> Union[DecisionPlotResult, None]: """Decision plot for multioutput models. Plots all outputs for a single observation. By default, the plotted base value will be the mean of base_values unless new_base_value is specified. Supports both SHAP values and SHAP interaction values. Parameters ---------- base_values : list of float This is the reference value that the feature contributions start from. Use explainer.expected_value. shap_values : list of numpy.ndarray A multioutput list of SHAP matrices or SHAP cubes from explainer.shap_values() or explainer.shap_interaction_values(), respectively. row_index : int The integer index of the row to plot. **kwargs : Any Arguments to be passed on to decision_plot(). Returns ------- Returns a DecisionPlotResult object if `return_objects=True`. Returns `None` otherwise (the default). """ if not (isinstance(base_values, list) and isinstance(shap_values, list)): raise ValueError("The base_values and shap_values args expect lists.") # convert arguments to arrays for simpler handling base_values = np.array(base_values) if not ((base_values.ndim == 1) or (np.issubdtype(base_values.dtype, np.number))): raise ValueError("The base_values arg should be a list of scalars.") shap_values = np.array(shap_values) if shap_values.ndim not in [3, 4]: raise ValueError("The shap_values arg should be a list of two or three dimensional SHAP arrays.") if shap_values.shape[0] != base_values.shape[0]: raise ValueError("The base_values output length is different than shap_values.") # shift shap base values to mean of base values base_values_mean = base_values.mean() for i in range(shap_values.shape[0]): shap_values[i] = __change_shap_base_value(base_values[i], base_values_mean, shap_values[i]) # select the feature row corresponding to row_index if (kwargs is not None) and ("features" in kwargs): features = kwargs["features"] if isinstance(features, np.ndarray) and (features.ndim == 2): kwargs["features"] = features[[row_index]] elif str(type(features)) == "<class 'pandas.core.frame.DataFrame'>": kwargs["features"] = features.iloc[row_index] return decision_plot(base_values_mean, shap_values[:, row_index, :], **kwargs)
py
7dfca2ba228587e03d8f645ab5e652dbd755fdfb
#!/usr/bin/python from Token import Token from Queues import SQueue class Dijkstra( ): """ A simple implementation of the Dijkstra shortest path algorithm. No queue optimization. No checking the closed queue for better options. """ def __init__( self, graph ): self.graph = graph self.o_queue = SQueue() def dijkstra_path( self ): #Initialize the open queue with the start state #Note: assumes start state is part of a valid path self.o_queue.add( Token(0,0.,0.,None) ) #Repeatedly check the queue while self.o_queue.head().state not in self.graph['F']: current = self.o_queue.pop( ) for arc in self.graph[current.state]: score = current.score + arc.score if arc.nextstate in self.o_queue and \ score < self.o_queue.states[arc.nextstate].score: self.o_queue.remove(arc.nextstate) if arc.nextstate not in self.o_queue: heur = score #For a-star this would be different self.o_queue.add( Token(arc.nextstate, score, heur, current) ) return def compute_traceback( self ): """ Reconstruct the traceback, yielding the actual shortest path, in order. """ head = self.o_queue.head() traceback = [head] while head.parent: head = head.parent traceback.append(head) traceback.reverse() return traceback if __name__=="__main__": from graphs import wiki_graph_dijkstra as graph import sys, argparse example = "{0}".format(sys.argv[0]) parser = argparse.ArgumentParser( description=example ) parser.add_argument( "--verbose", "-v", help="Verbose mode.", default=False, action="store_true" ) args = parser.parse_args( ) #Instantiate a searcher, and run search, compute traceback searcher = Dijkstra( graph, defaultHeuristic ) searcher.dijkstra_path( ) traceback = searcher.compute_traceback( ) for tok in traceback: print tok.state, tok.score
py
7dfca2ee3034c2f531c5d6f22a8ac9f644f28f44
from collections import Counter from string import punctuation def load_text(input_file): """Load text from a text file and return as a string. Parameters ---------- input_file : str Path to text file. Returns ------- str Text file contents. Examples -------- >>> load_text("text.txt") """ with open(input_file, "r") as file: text = file.read() return text def clean_text(text): """Lowercase and remove punctuation from a string. Parameters ---------- text : str Text to clean. Returns ------- str Cleaned text. Examples -------- >>> clean_text("Early optimization is the root of all evil!") 'early optimization is the root of all evil' """ text = text.lower() for p in punctuation: text = text.replace(p, "") return text def count_words(input_file): """Count words in a text file. Words are made lowercase and punctuation is removed before counting. Parameters ---------- input_file : str Path to text file. Returns ------- collections.Counter dict-like object where keys are words and values are counts. Examples -------- >>> count_words("text.txt") """ text = load_text(input_file) text = clean_text(text) words = text.split() return Counter(words)
py
7dfca378233a18987d5d95bd2db80caeb92206e6
from robot.api.deco import keyword class MockLibrary(object): def no_args(self): pass @keyword(types={'arg1': str, 'arg2': int}) def positional_args(self, arg1, arg2): """Some documentation Multi line docs """ pass @keyword(types=None) def types_disabled(self, arg=False): pass @keyword def positional_and_default(self, arg1, arg2, named1='string1', named2=123): pass def default_only(self, named1='string1', named2=123): pass def varargs_kwargs(self, *vargs, **kwargs): pass
py
7dfca3fbdf79ab2d7a98d7c64932228e16c3b6c2
import math import sys def convert_size(size_bytes): if size_bytes == 0: return "0B" size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") i = int(math.floor(math.log(size_bytes, 1024))) p = math.pow(1024, i) s = round(size_bytes / p, 2) return "%s %s" % (s, size_name[i]) def get_object_size(obj, seen=None): """Recursively finds size of objects""" # https://goshippo.com/blog/measure-real-size-any-python-object/ size = sys.getsizeof(obj) if seen is None: seen = set() obj_id = id(obj) if obj_id in seen: return 0 # Important mark as seen *before* entering recursion to gracefully handle # self-referential objects seen.add(obj_id) if isinstance(obj, dict): size += sum([get_object_size(v, seen) for v in obj.values()]) size += sum([get_object_size(k, seen) for k in obj.keys()]) elif hasattr(obj, '__dict__'): size += get_object_size(obj.__dict__, seen) elif hasattr(obj, '__iter__') and not isinstance(obj, (str, bytes, bytearray)): size += sum([get_object_size(i, seen) for i in obj]) return size
py
7dfca4beb919f14ea36edc61e3093cd20cd9f9bf
from __future__ import annotations from typing import Generator, NoReturn class StdReader: def __init__( self, ) -> NoReturn: import sys self.buf = sys.stdin.buffer self.lines = ( self.async_readlines() ) self.chunks: Generator def async_readlines( self, ) -> Generator: while True: gen = self.line_chunks() yield gen def line_chunks( self, ) -> Generator: ln = self.buf.readline() for chunk in ln.split(): yield chunk def __call__( self, ) -> bytes: try: chunk = next(self.chunks) except: self.chunks = next( self.lines, ) chunk = self() return chunk def str( self, ) -> str: b = self() return b.decode() def int( self, ) -> int: return int(self.str()) from abc import ABC, abstractmethod class Solver(ABC): def __init__(self): self.reader = StdReader() def __call__( self, ): self.prepare() self.solve() @abstractmethod def prepare(self): ... @abstractmethod def solve(self): ... import numpy as np class Problem( Solver, ): def prepare(self): reader = self.reader a = reader.int() b = reader.int() c = reader.int() self.a = a self.b = b self.c = c def solve(self): a = self.a b = self.b c = self.c l = a ** 2 + b ** 2 r = c ** 2 ans = ( 'Yes' if l < r else 'No' ) print(ans) def main(): t = 1 # t = StdReader().int() for _ in range(t): Problem()() if __name__ == '__main__': main()
py
7dfca54fbc9be6800adc4412b74a5792dc8a380b
from unittest import TestCase from deepsweet_models import DeepSweetRF, DeepSweetDNN, DeepSweetTextCNN from ensemble import Ensemble class TestEnsemble(TestCase): def test_ensemble(self): models_folder_path = "../resources/models/" molecules = ["CN1CCC[C@H]1C2=CN=CC=C2", "CN1C=NC2=C1C(=O)N(C(=O)N2C)C"] list_of_models = [] list_of_models.append(DeepSweetRF(models_folder_path, "2d", "SelectFromModelFS")) list_of_models.append(DeepSweetDNN(models_folder_path, "rdk", "all")) ensemble = Ensemble(list_of_models, models_folder_path) predictions, dataset, not_converted_molecules = ensemble.predict(molecules)
py
7dfca5d10436a333852371f7a06981426f474916
from distutils.core import setup setup(name='oc_screenshots', version='0.9', description='OwnCloud Auto Screenshots Uploader', author='Simon Slangen', requires=['pyocclient', 'pyperclip', 'pync', 'watchdog'], )
py
7dfca6a4054213ba92b9fc5297523385a231d54e
from os import sep from dash import dcc from dash import html from datetime import datetime, timedelta import helpers from website_component import Website_Component SHOW_HISTORIC_DAYS = 90 USE_DATA = [ 'hospitalizations_nl', 'hospitalizations_il', 'hospitalizations_nsw', 'vaccinations_nl', 'vaccinations_il', 'vaccinations_nsw', 'cases_nl', 'cases_il', 'cases_nsw' ] # Defines wich df to load for this component class CurrentSituation(Website_Component): # Uses the store_required_data from Website_component def __init__(self, data): start_date = datetime.today() - timedelta(days=SHOW_HISTORIC_DAYS) self.store_required_data(data, USE_DATA, start_date=start_date) # fills self.data with required data def get_html(self): """ Creates the HTML for the element. Graphs use the data in self.data """ return [ html.Div( className="container", children=[ html.Div( className="titleBar", children=[ html.H3('Current Situation'), html.Hr() ]), html.Div( className="situationBox negativeColors", children=[ html.Div( className="fiveGrid", children= html.H4('Cases') ), html.Div( className="fiveGrid cs_graph", children=dcc.Graph(id="cs_cases_graph", className="cs_graph", figure={ 'data': [ { 'x': self.data['cases_nl']['date'], 'y': self.data['cases_nl']['cases'], 'type': 'line', 'marker': {'symbol': 'circle'}, 'hovertemplate': '<b>%{y} Cases</b><extra></extra>' } ], 'layout': { 'xaxis': { 'showgrid': False, 'zeroline': False, 'visible': False, 'showticklabels': False }, 'yaxis': { 'showgrid': False, 'zeroline': False, 'visible': False, 'showticklabels': False, 'automargin': False }, 'autosize': True, 'plot_bgcolor': 'rgba(255, 255, 255, 0)', 'margin': { 'b': 0, 't': 0, 'r': 0, 'l': 0 }, 'marker': False, 'fillcolor':'#000000', 'hovermode': 'x unified', 'hoverlabel': { 'bordercolor': 'rgb(229 229 229)', 'bgcolor': 'white', 'font': { 'color': 'black' } } }, }, config={ 'staticPlot': False }) ), html.Div( className="fiveGrid", children= [ html.Div( className="counter", children= [ html.H5(children= helpers.get_latest_kpi_value(self.data['cases_nl'], 'cases_per_100k')), html.P("per 100k"), html.P("since yesterday") ] ) ] ), html.Div( className="fiveGrid", children= helpers.get_kpi_trend(self.data['cases_nl'], 'cases') ), html.Div( className="fiveGrid", children= [ html.Div( className="compairedCountries", children= [ html.Span(children= [ html.P("Israël:"), html.P(className="lightpar", children=helpers.get_latest_kpi_value(self.data['cases_il'], 'cases_per_100k')), helpers.get_kpi_trend_arrow(self.data['cases_il'], 'cases') ]), html.Span(children= [ html.P("Australia (NSW):"), html.P(className="lightpar", children=helpers.get_latest_kpi_value(self.data['cases_nsw'], 'cases_per_100k')), helpers.get_kpi_trend_arrow(self.data['cases_nsw'], 'cases') ]), ] ) ] ) ]), html.Div( className="situationBox negativeColors", children=[ html.Div( className="fiveGrid", children= html.H4('Hospitalizations') ), html.Div( className="fiveGrid cs_graph", children=dcc.Graph(id="cs_hosp_graph", className="cs_graph", figure={ 'data': [ { 'x': self.data['hospitalizations_nl']['date'], 'y': self.data['hospitalizations_nl']['hospitalizations'], 'type': 'line', 'marker': {'symbol': 'circle'}, 'hovertemplate': '<b>%{y} Hospitalizations</b><extra></extra>' } ], 'layout': { 'xaxis': { 'showgrid': False, 'zeroline': False, 'visible': False, 'showticklabels': False }, 'yaxis': { 'showgrid': False, 'zeroline': False, 'visible': False, 'showticklabels': False, 'automargin': False }, 'autosize': True, 'plot_bgcolor': 'rgba(255, 255, 255, 0)', 'margin': { 'b': 0, 't': 0, 'r': 0, 'l': 0 }, 'marker': False, 'hovermode': 'x unified', 'hoverlabel': { 'bordercolor': 'rgb(229 229 229)', 'bgcolor': 'white', 'font': { 'color': 'black' } } } }, config={ 'staticPlot': False }) ), html.Div( className="fiveGrid", children= [ html.Div( className="counter", children= [ html.H5(children= helpers.get_latest_kpi_value(self.data['hospitalizations_nl'], 'hospitalizations_per_100k')), html.P("per 100k"), html.P("since yesterday") ] ) ] ), html.Div( className="fiveGrid", children= helpers.get_kpi_trend(self.data['cases_nl'], 'cases') ), html.Div( className="fiveGrid", children= [ html.Div( className="compairedCountries", children= [ html.Span(children= [ html.P("Israël:"), html.P(className="lightpar", children=helpers.get_latest_kpi_value(self.data['hospitalizations_il'], 'hospitalizations_per_100k')), helpers.get_kpi_trend_arrow(self.data['hospitalizations_il'], 'hospitalizations') ]), html.Span(children= [ html.P("Australia (NSW):"), html.P(className="lightpar", children=helpers.get_latest_kpi_value(self.data['hospitalizations_nsw'], 'hospitalizations_per_100k')), helpers.get_kpi_trend_arrow(self.data['hospitalizations_nsw'], 'hospitalizations') ]), ] ) ] ) ]), html.Div( className="situationBox positiveColors", children=[ html.Div( className="fiveGrid", children= html.H4('Vaccination') ), html.Div( className="fiveGrid cs_graph", children=dcc.Graph(id="cs_vac_graph", className="cs_graph", figure={ 'data': [ { 'x': self.data['vaccinations_nl']['date'], 'y': self.data['vaccinations_nl']['vaccinations'], 'type': 'line', 'marker': {'symbol': 'circle'}, 'hovertemplate': '<b>%{y} Vaccinations</b><extra></extra>' } ], 'layout': { 'xaxis': { 'showgrid': False, 'zeroline': False, 'visible': False, 'showticklabels': False }, 'yaxis': { 'showgrid': False, 'zeroline': False, 'visible': False, 'showticklabels': False, 'automargin': False }, 'autosize': True, 'plot_bgcolor': 'rgba(255, 255, 255, 0)', 'margin': { 'b': 0, 't': 0, 'r': 0, 'l': 0 }, 'marker': False, 'hovermode': 'x unified', 'hoverlabel': { 'bordercolor': 'rgb(229 229 229)', 'bgcolor': 'white', 'font': { 'color': 'black' } } } }, config={ 'staticPlot': False }) ), html.Div( className="fiveGrid", children= [ html.Div( className="counter", children= [ html.H5(children= helpers.get_latest_kpi_value(self.data['vaccinations_nl'], 'vaccinations_per_100k')), html.P("per 100k"), html.P("since last week") ] ) ] ), html.Div( className="fiveGrid", children= helpers.get_kpi_trend(self.data['vaccinations_nl'], 'vaccinations') ), html.Div( className="fiveGrid", children= [ html.Div( className="compairedCountries", children= [ html.Span(children= [ html.P("Israël:"), html.P(className="lightpar", children=helpers.get_latest_kpi_value(self.data['vaccinations_il'], 'vaccinations_per_100k')), helpers.get_kpi_trend_arrow(self.data['vaccinations_il'], 'vaccinations') ]), html.Span(children= [ html.P("Australia (NSW):"), html.P(className="lightpar", children=helpers.get_latest_kpi_value(self.data['vaccinations_nsw'], 'vaccinations_per_100k')), helpers.get_kpi_trend_arrow(self.data['vaccinations_nsw'], 'vaccinations') ]), ] ) ] ) ]) ] )]
py
7dfca6b6ce045352a985a99e92b6eafb4151e53b
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class KoubeiMerchantDeviceCrashinfoUploadResponse(AlipayResponse): def __init__(self): super(KoubeiMerchantDeviceCrashinfoUploadResponse, self).__init__() self._error_code = None self._error_msg = None self._retry = None self._success = None @property def error_code(self): return self._error_code @error_code.setter def error_code(self, value): self._error_code = value @property def error_msg(self): return self._error_msg @error_msg.setter def error_msg(self, value): self._error_msg = value @property def retry(self): return self._retry @retry.setter def retry(self, value): self._retry = value @property def success(self): return self._success @success.setter def success(self, value): self._success = value def parse_response_content(self, response_content): response = super(KoubeiMerchantDeviceCrashinfoUploadResponse, self).parse_response_content(response_content) if 'error_code' in response: self.error_code = response['error_code'] if 'error_msg' in response: self.error_msg = response['error_msg'] if 'retry' in response: self.retry = response['retry'] if 'success' in response: self.success = response['success']
py
7dfca76229964567685e44c3e5107aa41ae9dfa4
# -*- coding: utf-8 -*- # # Cilium documentation build configuration file, created by # sphinx-quickstart on Sun Feb 12 18:34:43 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os # import sys import re # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.ifconfig', 'sphinx.ext.githubpages', 'sphinxcontrib.openapi', 'sphinx_tabs.tabs'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = ['.rst', '.md'] source_parsers = { '.md': 'recommonmark.parser.CommonMarkParser', } # The master toctree document. master_doc = 'index' # General information about the project. project = u'Cilium' copyright = u'2017, Cilium Authors' author = u'Cilium Authors' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. release = open("../VERSION", "r").read().strip() # Asume the current branch is master but check with VERSION file. branch = "master" if not release.endswith(".90"): semver = release.split(".") branch = "v{}.{}".format(semver[0], semver[1]) githubusercontent = 'https://raw.githubusercontent.com/cilium/cilium/' scm_web = githubusercontent + branch # Store variables in the epilogue so they are globally available. rst_epilog = """ .. |SCM_WEB| replace:: \{s} """.format(s = scm_web) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '_themes/**/*.rst'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" html_theme_path = ["_themes", ] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images', '_static'] # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'Ciliumdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', 'extraclassoptions': 'openany', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'Cilium.tex', u'Cilium Documentation', u'Cilium Authors', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'cilium', u'Cilium Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Cilium', u'Cilium Documentation', author, 'Cilium', 'One line description of project.', 'Miscellaneous'), ] http_strict_mode = False # Try as hard as possible to find references default_role = 'any' def setup(app): app.add_stylesheet('parsed-literal.css')
py
7dfca840e6848fcd6477c0f5b746d7bd8fd2fa65
#!/usr/bin/env python import os import sys from pathlib import Path if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.local") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django # noqa except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise # This allows easy placement of apps within the interior # openapi_documentor directory. current_path = Path(__file__).parent.resolve() sys.path.append(str(current_path / "openapi_documentor")) execute_from_command_line(sys.argv)
py
7dfca95dc1779cfc8b6c63b0f48e2e4552a374d3
import warnings from ._cma import CMA __all__ = ["CMA"] warnings.warn( "This module is deprecated. Please import CMA class from the " "package root (ex: from cmaes import CMA).", FutureWarning, )
py
7dfca9ddec7b224c8eb907c55eb40d1488eb1710
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import unittest import flowvision as vision import flowvision.transforms as transforms import oneflow.unittest import oneflow as flow import oneflow.nn as nn from data_utils import load_data_mnist data_dir = os.path.join( os.getenv("ONEFLOW_TEST_CACHE_DIR", "./data-test"), "mnist-dataset" ) train_iter, test_iter = load_data_mnist( batch_size=128, download=True, root=data_dir, source_url="https://oneflow-public.oss-cn-beijing.aliyuncs.com/datasets/mnist/MNIST/", ) def evaluate_accuracy(data_iter, net, device=None): n_correct, n_samples = 0.0, 0 net.to(device) net.eval() with flow.no_grad(): for images, labels in data_iter: images = images.reshape(-1, 28 * 28) images = images.to(device=device) labels = labels.to(device=device) n_correct += (net(images).argmax(dim=1).numpy() == labels.numpy()).sum() n_samples += images.shape[0] net.train() return n_correct / n_samples class Net(nn.Module): def __init__( self, input_size=784, hidden_size1=128, hidden_size2=64, num_classes=10 ): super(Net, self).__init__() self.l1 = nn.Linear(input_size, hidden_size1) self.relu1 = nn.ReLU() self.l2 = nn.Linear(hidden_size1, hidden_size2) self.relu2 = nn.ReLU() self.l3 = nn.Linear(hidden_size2, num_classes) def forward(self, x): out = self.l1(x) out = self.relu1(out) out = self.l2(out) out = self.relu2(out) out = self.l3(out) return out def test_train_and_eval(test_case): if os.getenv("ONEFLOW_TEST_CPU_ONLY"): device = flow.device("cpu") else: device = flow.device("cuda") model = Net() model.to(device) loss = nn.CrossEntropyLoss().to(device) optimizer = flow.optim.SGD(model.parameters(), lr=0.10) num_epochs = 1 for epoch in range(num_epochs): train_loss, n_correct, n_samples = 0.0, 0.0, 0 for images, labels in train_iter: images = images.reshape(-1, 28 * 28) images = images.to(device=device) labels = labels.to(device=device) features = model(images) l = loss(features, labels).sum() optimizer.zero_grad() l.backward() optimizer.step() train_loss += l.numpy() n_correct += (features.argmax(dim=1).numpy() == labels.numpy()).sum() n_samples += images.shape[0] if n_samples > 2000: break test_acc = evaluate_accuracy(test_iter, model, device) train_acc = n_correct / n_samples print( "epoch %d, train loss %.4f, train acc %.3f, test acc %.3f" % (epoch + 1, train_loss / n_samples, train_acc, test_acc) ) # test_case.assertLess(0.8, test_acc) @flow.unittest.skip_unless_1n1d() class TestMnistDataset(flow.unittest.TestCase): def test_mnist_dataset(test_case): test_train_and_eval(test_case) if __name__ == "__main__": unittest.main()
py
7dfca9ef50e5151b40b0be0a2e15c61b138db625
import zlib import brotli import pytest import httpx from httpx._decoders import ( BrotliDecoder, DeflateDecoder, GZipDecoder, IdentityDecoder, LineDecoder, TextDecoder, ) def test_deflate(): """ Deflate encoding may use either 'zlib' or 'deflate' in the wild. https://stackoverflow.com/questions/1838699/how-can-i-decompress-a-gzip-stream-with-zlib#answer-22311297 """ body = b"test 123" compressor = zlib.compressobj(9, zlib.DEFLATED, -zlib.MAX_WBITS) compressed_body = compressor.compress(body) + compressor.flush() headers = [(b"Content-Encoding", b"deflate")] response = httpx.Response( 200, headers=headers, content=compressed_body, ) assert response.content == body def test_zlib(): """ Deflate encoding may use either 'zlib' or 'deflate' in the wild. https://stackoverflow.com/questions/1838699/how-can-i-decompress-a-gzip-stream-with-zlib#answer-22311297 """ body = b"test 123" compressed_body = zlib.compress(body) headers = [(b"Content-Encoding", b"deflate")] response = httpx.Response( 200, headers=headers, content=compressed_body, ) assert response.content == body def test_gzip(): body = b"test 123" compressor = zlib.compressobj(9, zlib.DEFLATED, zlib.MAX_WBITS | 16) compressed_body = compressor.compress(body) + compressor.flush() headers = [(b"Content-Encoding", b"gzip")] response = httpx.Response( 200, headers=headers, content=compressed_body, ) assert response.content == body def test_brotli(): body = b"test 123" compressed_body = brotli.compress(body) headers = [(b"Content-Encoding", b"br")] response = httpx.Response( 200, headers=headers, content=compressed_body, ) assert response.content == body def test_multi(): body = b"test 123" deflate_compressor = zlib.compressobj(9, zlib.DEFLATED, -zlib.MAX_WBITS) compressed_body = deflate_compressor.compress(body) + deflate_compressor.flush() gzip_compressor = zlib.compressobj(9, zlib.DEFLATED, zlib.MAX_WBITS | 16) compressed_body = ( gzip_compressor.compress(compressed_body) + gzip_compressor.flush() ) headers = [(b"Content-Encoding", b"deflate, gzip")] response = httpx.Response( 200, headers=headers, content=compressed_body, ) assert response.content == body def test_multi_with_identity(): body = b"test 123" compressed_body = brotli.compress(body) headers = [(b"Content-Encoding", b"br, identity")] response = httpx.Response( 200, headers=headers, content=compressed_body, ) assert response.content == body headers = [(b"Content-Encoding", b"identity, br")] response = httpx.Response( 200, headers=headers, content=compressed_body, ) assert response.content == body @pytest.mark.asyncio async def test_streaming(): body = b"test 123" compressor = zlib.compressobj(9, zlib.DEFLATED, zlib.MAX_WBITS | 16) async def compress(body): yield compressor.compress(body) yield compressor.flush() headers = [(b"Content-Encoding", b"gzip")] response = httpx.Response( 200, headers=headers, content=compress(body), ) assert not hasattr(response, "body") assert await response.aread() == body @pytest.mark.parametrize("header_value", (b"deflate", b"gzip", b"br", b"identity")) def test_empty_content(header_value): headers = [(b"Content-Encoding", header_value)] response = httpx.Response( 200, headers=headers, content=b"", ) assert response.content == b"" @pytest.mark.parametrize( "decoder", (BrotliDecoder, DeflateDecoder, GZipDecoder, IdentityDecoder) ) def test_decoders_empty_cases(decoder): response = httpx.Response(content=b"", status_code=200) instance = decoder() assert instance.decode(response.content) == b"" assert instance.flush() == b"" @pytest.mark.parametrize("header_value", (b"deflate", b"gzip", b"br")) def test_decoding_errors(header_value): headers = [(b"Content-Encoding", header_value)] body = b"test 123" compressed_body = brotli.compress(body)[3:] with pytest.raises(httpx.DecodingError): request = httpx.Request("GET", "https://example.org") httpx.Response(200, headers=headers, content=compressed_body, request=request) with pytest.raises(ValueError): httpx.Response(200, headers=headers, content=compressed_body) @pytest.mark.parametrize( ["data", "encoding"], [ ((b"Hello,", b" world!"), "ascii"), ((b"\xe3\x83", b"\x88\xe3\x83\xa9", b"\xe3", b"\x83\x99\xe3\x83\xab"), "utf-8"), ((b"\x83g\x83\x89\x83x\x83\x8b",) * 64, "shift-jis"), ((b"\x83g\x83\x89\x83x\x83\x8b",) * 600, "shift-jis"), ( (b"\xcb\xee\xf0\xe5\xec \xe8\xef\xf1\xf3\xec \xe4\xee\xeb\xee\xf0",) * 64, "MacCyrillic", ), ( (b"\xa5\xa6\xa5\xa7\xa5\xd6\xa4\xce\xb9\xf1\xba\xdd\xb2\xbd",) * 512, "euc-jp", ), ], ) @pytest.mark.asyncio async def test_text_decoder(data, encoding): async def iterator(): nonlocal data for chunk in data: yield chunk # Accessing `.text` on a read response. response = httpx.Response( 200, content=iterator(), ) await response.aread() assert response.text == (b"".join(data)).decode(encoding) # Streaming `.aiter_text` iteratively. response = httpx.Response( 200, content=iterator(), ) text = "".join([part async for part in response.aiter_text()]) assert text == (b"".join(data)).decode(encoding) @pytest.mark.asyncio async def test_text_decoder_known_encoding(): async def iterator(): yield b"\x83g" yield b"\x83" yield b"\x89\x83x\x83\x8b" response = httpx.Response( 200, headers=[(b"Content-Type", b"text/html; charset=shift-jis")], content=iterator(), ) await response.aread() assert "".join(response.text) == "トラベル" def test_text_decoder_empty_cases(): decoder = TextDecoder() assert decoder.flush() == "" decoder = TextDecoder() assert decoder.decode(b"") == "" assert decoder.flush() == "" def test_line_decoder_nl(): decoder = LineDecoder() assert decoder.decode("") == [] assert decoder.decode("a\n\nb\nc") == ["a\n", "\n", "b\n"] assert decoder.flush() == ["c"] decoder = LineDecoder() assert decoder.decode("") == [] assert decoder.decode("a\n\nb\nc\n") == ["a\n", "\n", "b\n", "c\n"] assert decoder.flush() == [] # Issue #1033 decoder = LineDecoder() assert decoder.decode("") == [] assert decoder.decode("12345\n") == ["12345\n"] assert decoder.decode("foo ") == [] assert decoder.decode("bar ") == [] assert decoder.decode("baz\n") == ["foo bar baz\n"] assert decoder.flush() == [] def test_line_decoder_cr(): decoder = LineDecoder() assert decoder.decode("") == [] assert decoder.decode("a\r\rb\rc") == ["a\n", "\n", "b\n"] assert decoder.flush() == ["c"] decoder = LineDecoder() assert decoder.decode("") == [] assert decoder.decode("a\r\rb\rc\r") == ["a\n", "\n", "b\n"] assert decoder.flush() == ["c\n"] # Issue #1033 decoder = LineDecoder() assert decoder.decode("") == [] assert decoder.decode("12345\r") == [] assert decoder.decode("foo ") == ["12345\n"] assert decoder.decode("bar ") == [] assert decoder.decode("baz\r") == [] assert decoder.flush() == ["foo bar baz\n"] def test_line_decoder_crnl(): decoder = LineDecoder() assert decoder.decode("") == [] assert decoder.decode("a\r\n\r\nb\r\nc") == ["a\n", "\n", "b\n"] assert decoder.flush() == ["c"] decoder = LineDecoder() assert decoder.decode("") == [] assert decoder.decode("a\r\n\r\nb\r\nc\r\n") == ["a\n", "\n", "b\n", "c\n"] assert decoder.flush() == [] decoder = LineDecoder() assert decoder.decode("") == [] assert decoder.decode("a\r") == [] assert decoder.decode("\n\r\nb\r\nc") == ["a\n", "\n", "b\n"] assert decoder.flush() == ["c"] # Issue #1033 decoder = LineDecoder() assert decoder.decode("") == [] assert decoder.decode("12345\r\n") == ["12345\n"] assert decoder.decode("foo ") == [] assert decoder.decode("bar ") == [] assert decoder.decode("baz\r\n") == ["foo bar baz\n"] assert decoder.flush() == [] def test_invalid_content_encoding_header(): headers = [(b"Content-Encoding", b"invalid-header")] body = b"test 123" response = httpx.Response( 200, headers=headers, content=body, ) assert response.content == body
py
7dfcaad92ea6cec661a88c986bfd36b126ab4b68
from functools import partial from concurrent.futures import ThreadPoolExecutor import traceback import threading import time InitFunctions = [] stopped = False ThreadPool = ThreadPoolExecutor(max_workers=64) def delay_pyle_command(timer, fun): def timed_cmd(): time.sleep(timer) fun() ThreadPool.submit(timed_cmd) def queue_pyle_command(fun): ThreadPool.submit(fun) class PyleCommand: @staticmethod def Threaded(func): cmd = PyleCommand(func) cmd.threaded = True return cmd def __init__(self, func): self.func = func self.threaded = False def __call__(self, *args, **kwargs): cmd = PyleCommand( partial(self.func, *args, **kwargs) ) cmd.threaded = self.threaded return cmd def execute_on_thread(self): try: self.func() except Exception as ex: traceback.print_exc() def run(self): if self.threaded: ThreadPool.submit(self.execute_on_thread) else: self.func() def run_pyle_command(fun): if isinstance(fun, PyleCommand): fun.run() else: fun() def PyleInit(fun): InitFunctions.append(fun) return fun def PyleThread(timer): def TickDecorator(func): def TickThread(): global stopped while not stopped: func() time.sleep(timer) def ThreadInit(): threading.Thread(target=TickThread, daemon=True).start() InitFunctions.append(ThreadInit) return TickDecorator class CommandQueue: def __init__(self): self.queuedFunctions = [] self.queue_lock = threading.RLock() self.queue_event = threading.Event() self.stopped = False threading.Thread(target=self.process_commands_thread, daemon=True).start() def stop(self): self.stopped = True self.queue_event.set() def queue_command(self, fun): with self.queue_lock: self.queuedFunctions.append(fun) self.queue_event.set() def process_commands_thread(self): global stopped while not stopped and not self.stopped: self.queue_event.wait() run = None with self.queue_lock: run = list(self.queuedFunctions) self.queuedFunctions = [] self.queue_event.clear() try: for cmd in run: run_pyle_command(cmd) except Exception as ex: traceback.print_exc()
py
7dfcab46a79386501d0b3398a7d8a2145610ea67
# encoding: utf8 import os import sys import unittest import tkinter as tk import tkinter.ttk as ttk pygubu_basedir = os.path.abspath(os.path.dirname( os.path.dirname(os.path.realpath(sys.argv[0])))) if pygubu_basedir not in sys.path: sys.path.insert(0, pygubu_basedir) import pygubu import support class TestTtkComobox(unittest.TestCase): def setUp(self): support.root_deiconify() xmldata = 'test_ttkcombobox.ui' self.builder = builder = pygubu.Builder() builder.add_from_file(xmldata) self.mainwindow = builder.get_object('mainwindow') self.widget = builder.get_object('combobox1') def tearDown(self): support.root_withdraw() def test_class(self): self.assertIsInstance(self.widget, ttk.Combobox) self.widget.destroy() def test_validate(self): prop = 'validate' expected_value = 'key' tclobj = self.widget.cget(prop) value = str(tclobj) self.assertEqual(expected_value, value) self.widget.destroy() def test_validate_command(self): valid_values = ('option1', 'option2', 'option3') def cbox_validate(action, newvalue): valid = False if action == '1': # 1: insert 0: delete if newvalue in valid_values: valid = True else: valid = True return valid def cbox_invalid(newvalue): pass callback = {'cbox_validate': cbox_validate, 'cbox_invalid': cbox_invalid} self.builder.connect_callbacks(callback) self.widget.delete('0', tk.END) self.assertEqual('', self.widget.get()) self.widget.insert('0', valid_values[0]) self.assertEqual(valid_values[0], self.widget.get()) self.widget.delete('0', tk.END) self.widget.insert('0', 'Invalid value') self.assertEqual('', self.widget.get()) self.widget.destroy() def test_invalid_command(self): invalid_text = [] def cbox_validate(action, newvalue): valid = False if action == '1': # 1: insert 0: delete if newvalue == 'Allowed': valid = True else: valid = True return valid def cbox_invalid(newvalue): invalid_text.append(newvalue) callback = { 'cbox_validate': cbox_validate, 'cbox_invalid': cbox_invalid } self.widget.delete('0', tk.END) self.builder.connect_callbacks(callback) self.widget.insert('0', 'Not Allowed') self.assertEqual(invalid_text[0], 'Not Allowed') self.widget.destroy()
py
7dfcab6c47a2061132ca57247c5eabcb67328928
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc from typing import Awaitable, Callable, Dict, Optional, Sequence, Union import packaging.version import pkg_resources import google.auth # type: ignore import google.api_core # type: ignore from google.api_core import exceptions as core_exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.api_core import operations_v1 # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.oauth2 import service_account # type: ignore from google.cloud.workflows_v1beta.types import workflows from google.longrunning import operations_pb2 # type: ignore try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( 'google-cloud-workflows', ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() try: # google.auth.__version__ was added in 1.26.0 _GOOGLE_AUTH_VERSION = google.auth.__version__ except AttributeError: try: # try pkg_resources if it is available _GOOGLE_AUTH_VERSION = pkg_resources.get_distribution("google-auth").version except pkg_resources.DistributionNotFound: # pragma: NO COVER _GOOGLE_AUTH_VERSION = None class WorkflowsTransport(abc.ABC): """Abstract transport class for Workflows.""" AUTH_SCOPES = ( 'https://www.googleapis.com/auth/cloud-platform', ) DEFAULT_HOST: str = 'workflows.googleapis.com' def __init__( self, *, host: str = DEFAULT_HOST, credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, **kwargs, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A list of scopes. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ':' not in host: host += ':443' self._host = host scopes_kwargs = self._get_scopes_kwargs(self._host, scopes) # Save the scopes. self._scopes = scopes # If no credentials are provided, then determine the appropriate # defaults. if credentials and credentials_file: raise core_exceptions.DuplicateCredentialArgs("'credentials_file' and 'credentials' are mutually exclusive") if credentials_file is not None: credentials, _ = google.auth.load_credentials_from_file( credentials_file, **scopes_kwargs, quota_project_id=quota_project_id ) elif credentials is None: credentials, _ = google.auth.default(**scopes_kwargs, quota_project_id=quota_project_id) # If the credentials are service account credentials, then always try to use self signed JWT. if always_use_jwt_access and isinstance(credentials, service_account.Credentials) and hasattr(service_account.Credentials, "with_always_use_jwt_access"): credentials = credentials.with_always_use_jwt_access(True) # Save the credentials. self._credentials = credentials # TODO(busunkim): This method is in the base transport # to avoid duplicating code across the transport classes. These functions # should be deleted once the minimum required versions of google-auth is increased. # TODO: Remove this function once google-auth >= 1.25.0 is required @classmethod def _get_scopes_kwargs(cls, host: str, scopes: Optional[Sequence[str]]) -> Dict[str, Optional[Sequence[str]]]: """Returns scopes kwargs to pass to google-auth methods depending on the google-auth version""" scopes_kwargs = {} if _GOOGLE_AUTH_VERSION and ( packaging.version.parse(_GOOGLE_AUTH_VERSION) >= packaging.version.parse("1.25.0") ): scopes_kwargs = {"scopes": scopes, "default_scopes": cls.AUTH_SCOPES} else: scopes_kwargs = {"scopes": scopes or cls.AUTH_SCOPES} return scopes_kwargs def _prep_wrapped_messages(self, client_info): # Precompute the wrapped methods. self._wrapped_methods = { self.list_workflows: gapic_v1.method.wrap_method( self.list_workflows, default_timeout=None, client_info=client_info, ), self.get_workflow: gapic_v1.method.wrap_method( self.get_workflow, default_timeout=None, client_info=client_info, ), self.create_workflow: gapic_v1.method.wrap_method( self.create_workflow, default_timeout=None, client_info=client_info, ), self.delete_workflow: gapic_v1.method.wrap_method( self.delete_workflow, default_timeout=None, client_info=client_info, ), self.update_workflow: gapic_v1.method.wrap_method( self.update_workflow, default_timeout=None, client_info=client_info, ), } def close(self): """Closes resources associated with the transport. .. warning:: Only call this method if the transport is NOT shared with other clients - this may cause errors in other clients! """ raise NotImplementedError() @property def operations_client(self) -> operations_v1.OperationsClient: """Return the client designed to process long-running operations.""" raise NotImplementedError() @property def list_workflows(self) -> Callable[ [workflows.ListWorkflowsRequest], Union[ workflows.ListWorkflowsResponse, Awaitable[workflows.ListWorkflowsResponse] ]]: raise NotImplementedError() @property def get_workflow(self) -> Callable[ [workflows.GetWorkflowRequest], Union[ workflows.Workflow, Awaitable[workflows.Workflow] ]]: raise NotImplementedError() @property def create_workflow(self) -> Callable[ [workflows.CreateWorkflowRequest], Union[ operations_pb2.Operation, Awaitable[operations_pb2.Operation] ]]: raise NotImplementedError() @property def delete_workflow(self) -> Callable[ [workflows.DeleteWorkflowRequest], Union[ operations_pb2.Operation, Awaitable[operations_pb2.Operation] ]]: raise NotImplementedError() @property def update_workflow(self) -> Callable[ [workflows.UpdateWorkflowRequest], Union[ operations_pb2.Operation, Awaitable[operations_pb2.Operation] ]]: raise NotImplementedError() __all__ = ( 'WorkflowsTransport', )
py
7dfcae3eca0e9adccb4770d6d38d3913a35c96aa
""" Implementing Publisher """ from typing import (TYPE_CHECKING, TypeVar, Type, Tuple, Callable, Optional, overload) from broqer import NONE, Disposable import broqer if TYPE_CHECKING: # pylint: disable=cyclic-import from typing import List from broqer import Subscriber class SubscriptionError(ValueError): """ Special exception raised when subscription is failing (subscriber already subscribed) or on unsubscribe when subscriber is not subscribed """ TInherit = TypeVar('TInherit') # Type to inherited behavior from TValue = TypeVar('TValue') # Type of publisher state and emitted value SubscriptionCBT = Callable[[bool], None] class Publisher: """ In broqer a subscriber can subscribe to a publisher. After subscription the subscriber is notified about emitted values from the publisher ( starting with the current state). In other frameworks *publisher*/*subscriber* are referenced as *observable*/*observer*. broqer.NONE is used as default initialisation. .get() will always return the internal state (even when it's broqer.NONE). .subscribe() will emit the actual state to the new subscriber only if it is something else than broqer.NONE . To receive information use following methods to interact with Publisher: - ``.subscribe(subscriber)`` to subscribe for events on this publisher - ``.unsubscribe(subscriber)`` to unsubscribe - ``.get()`` to get the current state When implementing a Publisher use the following methods: - ``.notify(value)`` calls .emit(value) on all subscribers :param init: the initial state. :ivar _state: state of the publisher :ivar _inherited_type: type class for method lookup :ivar _subscriptions: holding a list of subscribers :ivar _on_subscription_cb: callback with boolean as argument, telling if at least one subscription exists :ivar _dependencies: list with publishers this publisher is (directly or indirectly) dependent on. """ @overload # noqa: F811 def __init__(self, *, type_: Type[TValue] = None): pass @overload # noqa: F811 def __init__(self, init: TValue, type_: Type[TValue] = None): # noqa: F811 pass def __init__(self, init=NONE, type_=None): # noqa: F811 self._state = init if type_: self._inherited_type = type_ # type: Optional[Type] elif init is not NONE: self._inherited_type = type(init) else: self._inherited_type = None self._subscriptions = list() # type: List[Subscriber] self._on_subscription_cb = None # type: Optional[SubscriptionCBT] self._dependencies = () # type: Tuple[Publisher, ...] def subscribe(self, subscriber: 'Subscriber', prepend: bool = False) -> 'SubscriptionDisposable': """ Subscribing the given subscriber. :param subscriber: subscriber to add :param prepend: For internal use - usually the subscribers will be added at the end of a list. When prepend is True, it will be added in front of the list. This will habe an effect in the order the subscribers are called. :raises SubscriptionError: if subscriber already subscribed """ # `subscriber in self._subscriptions` is not working because # tuple.__contains__ is using __eq__ which is overwritten and returns # a new publisher - not helpful here if any(subscriber is s for s in self._subscriptions): raise SubscriptionError('Subscriber already registered') if not self._subscriptions and self._on_subscription_cb: self._on_subscription_cb(True) if prepend: self._subscriptions.insert(0, subscriber) else: self._subscriptions.append(subscriber) disposable_obj = SubscriptionDisposable(self, subscriber) if self._state is not NONE: subscriber.emit(self._state, who=self) return disposable_obj def unsubscribe(self, subscriber: 'Subscriber') -> None: """ Unsubscribe the given subscriber :param subscriber: subscriber to unsubscribe :raises SubscriptionError: if subscriber is not subscribed (anymore) """ # here is a special implementation which is replacing the more # obvious one: self._subscriptions.remove(subscriber) - this will not # work because list.remove(x) is doing comparison for equality. # Applied to publishers this will return another publisher instead of # a boolean result for i, _s in enumerate(self._subscriptions): if _s is subscriber: self._subscriptions.pop(i) if not self._subscriptions and self._on_subscription_cb: self._on_subscription_cb(False) return raise SubscriptionError('Subscriber is not registered') def get(self) -> TValue: """ Return the state of the publisher. """ return self._state def notify(self, value: TValue) -> None: """ Calling .emit(value) on all subscribers and store state. :param value: value to be emitted to subscribers """ self._state = value for subscriber in tuple(self._subscriptions): subscriber.emit(value, who=self) def reset_state(self) -> None: """ Resets the state. Calling this method will not trigger a notification, but will call .reset_state for all subscribers """ self._state = NONE for subscriber in tuple(self._subscriptions): subscriber.reset_state() @property def subscriptions(self) -> Tuple['Subscriber', ...]: """ Property returning a tuple with all current subscribers """ return tuple(self._subscriptions) def register_on_subscription_callback(self, callback: SubscriptionCBT) -> None: """ This callback will be called, when the subscriptions are changing. When a subscription is done and no subscription was present the callback is called with True as argument. When after unsubscribe no subscription is left, it will be called with False. :param callback: callback(subscription: bool) to be called. when `callback` is None the callback will be reset :raises ValueError: when a callback is already registrered """ if callback is None: self._on_subscription_cb = None return if self._on_subscription_cb is not None: raise ValueError('A callback is already registered') self._on_subscription_cb = callback if self._subscriptions: callback(True) def __await__(self): """ Makes publisher awaitable. When publisher has a state it will immediatly return its state as result. Otherwise it will wait forever until it will change its state. """ future = self.as_future(timeout=None, omit_subscription=False) return future.__await__() def as_future(self, timeout: float, omit_subscription: bool = True, loop=None): """ Returns a asyncio.Future which will be done on first change of this publisher. :param timeout: timeout in seconds. Use None for infinite waiting :param omit_subscription: if True the first emit (which can be on the subscription) will be ignored. :param loop: asyncio loop to be used :returns: a future returning the emitted value """ return broqer.OnEmitFuture(self, timeout, omit_subscription, loop) def __bool__(self): """ A new Publisher is the result of a comparision between a publisher and something else (may also be a second publisher). This result should never be used in a boolean sense (e.g. in `if p1 == p2:`). To prevent this __bool__ is overwritten to raise a ValueError. """ raise ValueError('Evaluation of comparison of publishers is not ' 'supported') def __iter__(self): """ To prevent iterating over a publisher this method is implemented to throw an exception. Otherwise it will fallback to __getitem__. """ raise ValueError('Iteration over a publisher is not possible') def inherit_type(self, type_cls: Optional[Type]) -> None: """ Enables the usage of method and attribute overloading for this publisher. """ self._inherited_type = type_cls @property def inherited_type(self) -> Optional[Type]: """ Property inherited_type returns used type class (or None) """ return self._inherited_type @property def dependencies(self) -> Tuple['Publisher', ...]: """ Returning a list of publishers this publisher is dependent on. """ return self._dependencies def add_dependencies(self, *publishers: 'Publisher') -> None: """ Add publishers which are directly or indirectly controlling the behavior of this publisher :param *publishers: variable argument list with publishers """ self._dependencies = self._dependencies + publishers def __dir__(self): """ Extending __dir__ with inherited type """ attrs = set(super().__dir__()) if self._inherited_type: attrs.update(set(dir(self._inherited_type))) return tuple(attrs) class SubscriptionDisposable(Disposable): """ This disposable is returned on Publisher.subscribe(subscriber). :param publisher: publisher the subscription is made to :param subscriber: subscriber used for subscription """ def __init__(self, publisher: 'Publisher', subscriber: 'Subscriber') \ -> None: self._publisher = publisher self._subscriber = subscriber def dispose(self) -> None: self._publisher.unsubscribe(self._subscriber) @property def publisher(self) -> 'Publisher': """ Subscripted publisher """ return self._publisher @property def subscriber(self) -> 'Subscriber': """ Subscriber used in this subscription """ return self._subscriber
py
7dfcaf016dec6c0556eafb48a3fb346b7b80fb8e
# Generated by Django 2.0.6 on 2018-06-22 05:55 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('puskesmas_app', '0005_auto_20180622_1346'), ] operations = [ migrations.AlterField( model_name='pemeriksaan', name='dari_file', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='puskesmas_app.DataPemeriksaan'), ), migrations.AlterField( model_name='pemeriksaan', name='pasien', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='puskesmas_app.Pasien'), ), migrations.AlterField( model_name='pemeriksaan', name='tanggal', field=models.DateField(null=True), ), ]
py
7dfcafdb0fd33db3c5e7de9f9e06d941dbd91c18
""" Material Balance Plots @author: Yohanes Nuwara @email: [email protected] """ def initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs): """ Calculate OOIP and OGIP from Nfoi and Gfgi And output the result to labels in the plot """ import matplotlib.patches as mpl_patches Rvi, Rsi = Rv[0], Rs[0] OOIP = Nfoi + Gfgi * Rvi OGIP = Gfgi + Nfoi * Rsi labels = [] labels.append("Nfoi = {0:.4g} STB".format(Nfoi)) labels.append("Gfgi = {0:.4g} SCF".format(Gfgi)) labels.append("OOIP = {0:.4g} STB".format(OOIP)) labels.append("OGIP = {0:.4g} SCF".format(OGIP)) handles = [mpl_patches.Rectangle((0, 0), 1, 1, fc="white", ec="white", lw=0, alpha=0)] * 4 return labels, handles, OOIP, OGIP class drygas(): """ Dry-Gas Material Balance Plot """ def calculate_params(self, p, Bg, Gp, cf, cw, swi): """ Calculate Material Balance Paramaters for Dry-Gas Reservoir Output: F, Btg, Efw, Eg """ import numpy as np pi = p[0] Bgi = Bg[0] # total gas FVF equals the gas FVF itself (for dry-gas) Btg = Bg # calculate Efw Efw = ((cf + cw * swi) / (1 - swi)) * (pi - p) F = []; Eg = [] for i in range(len(p)): F_ = Bg[i] * Gp[i] Eg_ = Btg[i] - Bgi F.append(F_); Eg.append(Eg_) F = np.array(F); Eg = np.array(Eg) return F, Btg, Efw, Eg def plot(self, p, z, Gp, F, Btg, Efw, Eg): """Create Material Balance Plots for Dry-Gas Reservoir""" import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit # no volatile and vapor component, define Rv as zeros Rv, Rs = np.zeros(len(p)), np.zeros(len(p)) # plot attributes title_size = 12 title_pad = 10 # linear function for curve-fit def linear_zero_intercept(x, m): y = m * x return y def linear_with_intercept(x, m, c): y = m * x + c return y # Plot 1: F vs Eg plt.subplot(3,2,1) x1, y1 = Eg, F plt.plot(x1, y1, '.-') plt.title('Plot 1: F vs Eg', size=title_size, pad=title_pad) plt.xlabel('Eg (RB/scf)') plt.ylabel('F (res ft3)') ## curve-fitting to calculate the slope as OGIP x1_norm = x1 / max(x1) # normalize x y1_norm = y1 / max(y1) # normalize y popt, pcov = curve_fit(linear_zero_intercept, x1_norm, y1_norm) m = popt[0] Gfgi = m * max(y1) / max(x1) # denormalize the slope, hence the OGIP ## Output results into text in plot Nfoi = 0 labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x1_fit = np.linspace(min(x1), max(x1), 5) y1_fit = linear_zero_intercept(x1_fit, Gfgi) plt.plot(x1_fit, y1_fit) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) # Plot 2: p/z vs Gp plt.subplot(3,2,2) x2, y2 = Gp, (p / z) plt.plot(x2, y2, '.-') plt.title('Plot 2: p/z vs Gp', size=title_size, pad=title_pad) plt.xlabel('Gp (scf)') plt.ylabel('p/z (psia)') ## curve-fitting to calculate the slope as OGIP x2_norm = x2 / max(x2) # normalize x y2_norm = y2 / max(y2) # normalize y popt, pcov = curve_fit(linear_with_intercept, x2_norm, y2_norm) m, c = popt[0], popt[1] Gfgi = (-c / m) * max(x2) # OGIP is the intercept at x-axis, and denormalized m = m * max(y2) / max(x2) # denormalize the slope c = c * max(y2) # denormalize the intercept ## Output results into text in plot Nfoi = 0 labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x2_fit = np.linspace(min(x2), max(x2), 5) y2_fit = linear_with_intercept(x2_fit, m, c) plt.plot(x2_fit, y2_fit) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) # Plot 3: F/Eg vs Gp plt.subplot(3,2,3) x3, y3 = Gp, (F / Eg) plt.plot(x3, y3, '.-') plt.title('Plot 3: Waterdrive Diagnostic Plot', size=title_size, pad=title_pad) plt.xlabel('Gp (scf)') plt.ylabel('F/Eg (scf)') ## curve-fitting to calculate the slope as OGIP, here [1:] because NaN is removed x3_norm = x3[1:] / max(x3[1:]) # normalize x y3_norm = y3[1:] / max(y3[1:]) # normalize y popt, pcov = curve_fit(linear_with_intercept, x3_norm, y3_norm) m, c = popt[0], popt[1] m = m * max(y3[1:]) / max(x3[1:]) # denormalize the slope Gfgi = c * max(y3[1:]) # denormalize the intercept, hence the OGIP ## Output results into text in plot Nfoi = 0 labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x3_fit = np.linspace(min(x3[1:]), max(x3[1:]), 5) y3_fit = linear_with_intercept(x3_fit, m, Gfgi) plt.plot(x3_fit, y3_fit) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) # Plot 6: F vs (Eg+Bgi*Efw) plt.subplot(3,2,4) Bgi = Btg[0] x6, y6 = (Eg + Bgi * Efw), F plt.plot(x6, y6, '.-') plt.title('Plot 6: F vs (Eg+Bgi*Efw)', size=title_size, pad=title_pad) plt.xlabel('Eg+Bgi*Efw (res ft3/scf)') plt.ylabel('F (res ft3)') ## curve-fitting to calculate the slope as OGIP x6_norm = x6 / max(x6) # normalize x y6_norm = y6 / max(y6) # normalize y popt, pcov = curve_fit(linear_zero_intercept, x6_norm, y6_norm) m = popt[0] Gfgi = m * max(y6) / max(x6) # denormalize the slope, hence the OGIP ## Output results into text in plot Nfoi = 0 labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x6_fit = np.linspace(min(x6), max(x6), 5) y6_fit = linear_zero_intercept(x6_fit, Gfgi) plt.plot(x6_fit, y6_fit) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) # Plot 7: ((p/z)*(1-Efw)) vs Gp plt.subplot(3,2,5) x7, y7 = Gp, ((p / z) * (1 - Efw)) plt.plot(x7, y7, '.-') plt.title('Plot 7: ((p/z)*(1-Efw)) vs Gp', size=title_size, pad=title_pad) plt.xlabel('Gp (scf)') plt.ylabel('(p/z)*(1-Efw) (psia)') ## curve-fitting to calculate the slope as OGIP x7_norm = x7 / max(x7) # normalize x y7_norm = y7 / max(y7) # normalize y popt, pcov = curve_fit(linear_with_intercept, x7_norm, y7_norm) m, c = popt[0], popt[1] Gfgi = (-c / m) * max(x7) # OGIP is the intercept at x-axis, and denormalized m = m * max(y7) / max(x7) # denormalize the slope c = c * max(y7) # denormalize the intercept ## Output results into text in plot Nfoi = 0 labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x7_fit = np.linspace(min(x7), max(x7), 5) y7_fit = linear_with_intercept(x7_fit, m, c) plt.plot(x7_fit, y7_fit) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) plt.tight_layout(pad=1.5) plt.show() return F, Eg, Efw class gascondensate(): """ Gas-Condensate Material Balance Plot """ def calculate_params(self, p, pdew, Bg, Bo, Np, Gp, Gi, cf, cw, swi, Rs, Rv): """ Calculate Material Balance Paramaters for Gas-Condensate Reservoir Output: F, Btg, Efw, Eg """ import numpy as np pi = p[0] Rvi = Rv[0] Bgi = Bg[0] # calculate Efw Efw = ((cf + cw * swi) / (1 - swi)) * (pi - p) # calculate F and Btg F = []; Btg = []; Eg = [] for i in range(len(p)): if p[i] >= pdew: # gas-condensate above dewpoint pressure F_ = Bg[i] * Gp[i] Btg_ = Bg[i] Eg_ = Btg_ - Bgi if p[i] < pdew: # gas-condensate below dewpoint pressure F_ = (Np[i] * ((Bo[i] - (Rs[i] * Bg[i])) / (1 - (Rv[i] * Rs[i])))) + ((Gp[i] - Gi[i]) * ((Bg[i] - (Rv[i] * Bo[i])) / (1 - (Rv[i] * Rs[i])))) Btg_ = ((Bg[i] * (1 - (Rs[i] * Rvi))) + (Bo[i] * (Rvi - Rv[i]))) / (1 - (Rv[i] * Rs[i])) # in RB/STB Eg_ = Btg_ - Bgi F.append(F_); Btg.append(Btg_); Eg.append(Eg_) F, Btg, Eg = np.array(F), np.array(Btg), np.array(Eg) return F, Btg, Efw, Eg def plot(self, p, z, Gp, F, Btg, Efw, Eg, Rv): """Create Material Balance Plots for Dry-Gas Reservoir""" import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit # no vapor component, define Rs as zeros Rs = np.zeros(len(p)) # plot attributes title_size = 12 title_pad = 10 # linear function for curve-fit def linear_zero_intercept(x, m): y = m * x return y def linear_with_intercept(x, m, c): y = m * x + c return y # Plot 1: F vs Eg plt.subplot(3,2,1) x1, y1 = Eg, F plt.plot(x1, y1, '.-') plt.title('Plot 1: F vs Eg', size=title_size, pad=title_pad) plt.xlabel('Eg (RB/scf)') plt.ylabel('F (res ft3)') ## curve-fitting to calculate the slope as OGIP x1_norm = x1 / max(x1) # normalize x y1_norm = y1 / max(y1) # normalize y popt, pcov = curve_fit(linear_zero_intercept, x1_norm, y1_norm) m = popt[0] Gfgi = m * max(y1) / max(x1) # denormalize the slope, hence the OGIP ## Output results into text in plot Nfoi = 0 labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x1_fit = np.linspace(min(x1), max(x1), 5) y1_fit = linear_zero_intercept(x1_fit, Gfgi) plt.plot(x1_fit, y1_fit) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) # Plot 2: p/z vs Gp plt.subplot(3,2,2) plt.title('Plot 2: p/z vs Gp', size=title_size, pad=title_pad) plt.xlabel('Gp (scf)') plt.ylabel('p/z (psia)') if np.all(z==0) == False: x2, y2 = Gp, (p / z) plt.plot(x2, y2, '.-') ## curve-fitting to calculate the slope as OGIP x2_norm = x2 / max(x2) # normalize x y2_norm = y2 / max(y2) # normalize y popt, pcov = curve_fit(linear_with_intercept, x2_norm, y2_norm) m, c = popt[0], popt[1] Gfgi = (-c / m) * max(x2) # OGIP is the intercept at x-axis, and denormalized m = m * max(y2) / max(x2) # denormalize the slope c = c * max(y2) # denormalize the intercept ## Output results into text in plot Nfoi = 0 labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x2_fit = np.linspace(min(x2), max(x2), 5) y2_fit = linear_with_intercept(x2_fit, m, c) plt.plot(x2_fit, y2_fit) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) # Plot 3: F/Eg vs Gp plt.subplot(3,2,3) x3, y3 = Gp, (F / Eg) plt.plot(x3, y3, '.-') plt.title('Plot 3: Waterdrive Diagnostic Plot', size=title_size, pad=title_pad) plt.xlabel('Gp (scf)') plt.ylabel('F/Eg (scf)') ## curve-fitting to calculate the slope as OGIP, here [1:] because NaN is removed x3_norm = x3[1:] / max(x3[1:]) # normalize x y3_norm = y3[1:] / max(y3[1:]) # normalize y popt, pcov = curve_fit(linear_with_intercept, x3_norm, y3_norm) m, c = popt[0], popt[1] m = m * max(y3[1:]) / max(x3[1:]) # denormalize the slope Gfgi = c * max(y3[1:]) # denormalize the intercept, hence the OGIP ## Output results into text in plot Nfoi = 0 labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x3_fit = np.linspace(min(x3[1:]), max(x3[1:]), 5) y3_fit = linear_with_intercept(x3_fit, m, Gfgi) plt.plot(x3_fit, y3_fit) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) # Plot 6: F vs (Eg+Bgi*Efw) plt.subplot(3,2,4) Bgi = Btg[0] x6, y6 = (Eg + Bgi * Efw), F plt.plot(x6, y6, '.-') plt.title('Plot 6: F vs (Eg+Bgi*Efw)', size=title_size, pad=title_pad) plt.xlabel('Eg+Bgi*Efw (res ft3/scf)') plt.ylabel('F (res ft3)') ## curve-fitting to calculate the slope as OGIP x6_norm = x6 / max(x6) # normalize x y6_norm = y6 / max(y6) # normalize y popt, pcov = curve_fit(linear_zero_intercept, x6_norm, y6_norm) m = popt[0] Gfgi = m * max(y6) / max(x6) # denormalize the slope, hence the OGIP ## Output results into text in plot Nfoi = 0 labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x6_fit = np.linspace(min(x6), max(x6), 5) y6_fit = linear_zero_intercept(x6_fit, Gfgi) plt.plot(x6_fit, y6_fit) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) # Plot 7: ((p/z)*(1-Efw)) vs Gp plt.subplot(3,2,5) plt.title('Plot 7: ((p/z)*(1-Efw)) vs Gp', size=title_size, pad=title_pad) plt.xlabel('Gp (scf)') plt.ylabel('(p/z)*(1-Efw) (psia)') if np.all(z==0) == False: x7, y7 = Gp, ((p / z) * (1 - Efw)) plt.plot(x7, y7, '.-') ## curve-fitting to calculate the slope as OGIP x7_norm = x7 / max(x7) # normalize x y7_norm = y7 / max(y7) # normalize y popt, pcov = curve_fit(linear_with_intercept, x7_norm, y7_norm) m, c = popt[0], popt[1] Gfgi = (-c / m) * max(x7) # OGIP is the intercept at x-axis, and denormalized m = m * max(y7) / max(x7) # denormalize the slope c = c * max(y7) # denormalize the intercept ## Output results into text in plot Nfoi = 0 labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x7_fit = np.linspace(min(x7), max(x7), 5) y7_fit = linear_with_intercept(x7_fit, m, c) plt.plot(x7_fit, y7_fit) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) plt.tight_layout(pad=1.5) plt.show() return F, Eg, Efw class oil(): """ Oil (Undersaturated and saturated; Volatile and Non-volatile) Material Balance Plot """ def calculate_params(self, p, Bo, Bg, Rv, Rs, Np, Gp, Gi, cf, cw, swi): """ Calculate Material Balance Paramaters for Oil Reservoir Output: F, Bto, Btg, Efw, Eo, Eg """ pi = p[0] Rsi = Rs[0] Rvi = Rv[0] Boi = Bo[0] Bgi = Bg[0] # calculate Efw Efw = ((cf + cw * swi) / (1 - swi)) * (pi - p) # calculate F, Bto, and Btg F = (Np * ((Bo - (Rs * Bg)) / (1 - (Rv * Rs)))) + ((Gp - Gi) * ((Bg - (Rv * Bo)) / (1 - (Rv * Rs)))) Btg = ((Bg * (1 - (Rs * Rvi))) + (Bo * (Rvi - Rv))) / (1 - (Rv * Rs)) # in RB/STB Bto = ((Bo * (1 - (Rv * Rsi))) + (Bg * (Rsi - Rs))) / (1 - (Rv * Rs)) # in RB/scf # calculate Eo and Eg Eo = Bto - Boi Eg = Btg - Bgi return F, Bto, Btg, Efw, Eo, Eg def gascap(self, Gfgi, Nfoi, Bg, Bo): """ Calculate Total Oil+Gas Expansion Factor from known Gas Cap ratio Gfgi and Nfoi known from volumetrics """ Bgi, Boi = Bg[0], Bo[0] m = (Gfgi * Bgi) / (Nfoi * Boi) return m def plot(self, oil_type, F, Bto, Btg, Efw, Eo, Eg, Np, Bo, Rs, Rv, start=0, end=-1, figsize=(10,5)): """ Create Material Balance Plots for Oil Reservoir Input: oil_type: 'undersaturated' or 'saturated' """ import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit import matplotlib.patches as mpl_patches # plot attributes title_size = 15 title_pad = 14 # linear function for curve-fit def linear_zero_intercept(x, m): y = m * x return y def linear_with_intercept(x, m, c): y = m * x + c return y if oil_type == 'undersaturated': plt.figure(figsize=figsize) " Plot 1: F vs (Eg+Boi*Efw) " plt.subplot(1,2,1) Boi = Bo[0] x1, y1 = (Eg + Boi * Efw), F plt.plot(x1, y1, '.-') plt.title(r'Plot 1: $F$ vs $(E_o+B_{oi}*E_{fw})$', size=title_size, pad=title_pad) plt.xlabel(r'$E_o+B_{oi}E_{fw}$ (RB/STB)', size=15) plt.ylabel(r'$F$ (res bbl)', size=15) ## curve-fitting to calculate the slope as OOIP x1_norm = x1 / max(x1) # normalize x y1_norm = y1 / max(y1) # normalize y x1_norm = x1_norm[start:end] y1_norm = y1_norm[start:end] popt, pcov = curve_fit(linear_zero_intercept, x1_norm, y1_norm) m = popt[0] Nfoi = m * max(y1) / max(x1) # denormalize the slope, hence the OGIP ## Calculate OOIP and OGIP from Nfoi Rsi = Rs[0] Gfgi = 0 # no free gas phase in undersaturated oil OOIP = Nfoi OGIP = Nfoi * Rsi ## Output results into text in plot labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x1_fit = np.linspace(min(x1), max(x1), 5) y1_fit = linear_zero_intercept(x1_fit, Nfoi) plt.plot(x1_fit, y1_fit, label='{} MMSTB'.format(np.round(Nfoi * 1E-6, 3))) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) " Plot 2: F/(Eg+Boi*Efw) vs Np (Waterdrive Diagnostic Plot) " plt.subplot(1,2,2) x2, y2 = Np, F / (Eg + Boi * Efw) plt.plot(x2, y2, '.-') plt.title('Plot 2: Waterdrive Diagnostic Plot', size=title_size, pad=title_pad) plt.xlabel(r'$N_p$ (STB)', size=15) plt.ylabel(r'$\frac{F}{(E_o+B_{oi}E_{fw})}$ (STB)', size=15) ## curve-fitting to calculate the slope as OOIP, here [1:] because NaN is removed x2_norm = x2[1:] / max(x2[1:]) # normalize x y2_norm = y2[1:] / max(y2[1:]) # normalize y popt, pcov = curve_fit(linear_with_intercept, x2_norm, y2_norm) m, c = popt[0], popt[1] m = m * max(y2[1:]) / max(x2[1:]) # denormalize the slope Nfoi = c * max(y2[1:]) # denormalize the intercept, hence the OGIP ## Calculate OOIP and OGIP from Nfoi Rsi = Rs[0] Gfgi = 0 # no free gas phase in undersaturated oil OOIP = Nfoi OGIP = Nfoi * Rsi ## Output results into text in plot labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x2_fit = np.linspace(min(x2[1:]), max(x2[1:]), 5) y2_fit = linear_with_intercept(x2_fit, m, Nfoi) plt.plot(x2_fit, y2_fit, label='{} MMSTB'.format(np.round(Nfoi * 1E-6, 3))) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) plt.tight_layout(1) plt.show() if oil_type == 'saturated': plt.figure(figsize=figsize) " Plot 1: F/Eo vs Eg/Eo " plt.subplot(1,3,1) x1, y1 = (Eg / Eo), (F / Eo) plt.plot(x1, y1, '.-') plt.title('Plot 1: F/Eo vs Eg/Eo', size=title_size, pad=title_pad) plt.xlabel(r'$\frac{Eg}{Eo}$ (STB/scf)', size=15) plt.ylabel(r'$\frac{F}{Eo}$ (STB)', size=15) ## curve-fitting to calculate the slope as Gfgi, intercept as Nfoi x1_norm = x1[1:] / max(x1[1:]) # normalize x y1_norm = y1[1:] / max(y1[1:]) # normalize y popt, pcov = curve_fit(linear_with_intercept, x1_norm, y1_norm) m, c = popt[0], popt[1] Gfgi = m = m * max(y1[1:]) / max(x1[1:]) # denormalize the slope Nfoi = c = c * max(y1[1:]) # denormalize the intercept ## calculate OOIP and OGIP from Nfoi and Gfgi Rsi, Rvi = Rs[0], Rv[0] OOIP = Nfoi + Gfgi * Rvi OGIP = Gfgi + Nfoi * Rsi ## Output results into text in plot labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x1_fit = np.linspace(min(x1[1:]), max(x1[1:]), 5) y1_fit = linear_with_intercept(x1_fit, m, c) plt.plot(x1_fit, y1_fit) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) " Plot 2: p/z vs Gp " plt.subplot(1,3,2) x2, y2 = (Eo / Eg), (F / Eg) plt.plot(x2, y2, '.-') plt.title('Plot 2: F/Eg vs Eo/Eg', size=title_size, pad=title_pad) plt.xlabel(r'$\frac{Eo}{Eg}$ (scf/STB)', size=15) plt.ylabel(r'$\frac{F}{Eg}$ (scf)', size=15) ## curve-fitting to calculate the slope as Nfoi, intercept as Gfgi x2_norm = x2[1:] / max(x2[1:]) # normalize x y2_norm = y2[1:] / max(y2[1:]) # normalize y popt, pcov = curve_fit(linear_with_intercept, x2_norm, y2_norm) m, c = popt[0], popt[1] Nfoi = m = m * max(y2[1:]) / max(x2[1:]) # denormalize the slope Gfgi = c = c * max(y2[1:]) # denormalize the intercept ## calculate OOIP and OGIP from Nfoi and Gfgi Rsi, Rvi = Rs[0], Rv[0] OOIP = Nfoi + Gfgi * Rvi OGIP = Gfgi + Nfoi * Rsi ## Output results into text in plot labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) ## plot the regression line x2_fit = np.linspace(min(x2[1:]), max(x2[1:]), 5) y2_fit = linear_with_intercept(x2_fit, m, c) plt.plot(x2_fit, y2_fit) plt.legend(handles, labels, loc='best', fontsize='small', fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) plt.tight_layout(1) plt.show() # def plot(self, oil_type, F, Bto, Btg, Efw, Eo, Eg, Np, Bo, Rs, Rv, figsize=(10,5)): # """ # Create Material Balance Plots for Oil Reservoir # Input: # oil_type: 'undersaturated' or 'saturated' # """ # import numpy as np # import matplotlib.pyplot as plt # from scipy.optimize import curve_fit # import matplotlib.patches as mpl_patches # # plot attributes # title_size = 15 # title_pad = 14 # # linear function for curve-fit # def linear_zero_intercept(x, m): # y = m * x # return y # def linear_with_intercept(x, m, c): # y = m * x + c # return y # if oil_type == 'undersaturated': # plt.figure(figsize=figsize) # " Plot 1: F vs (Eg+Boi*Efw) " # plt.subplot(1,2,1) # Boi = Bo[0] # x1, y1 = (Eg + Boi * Efw), F # plt.plot(x1, y1, '.-') # plt.title(r'Plot 1: $F$ vs $(E_o+B_{oi}*E_{fw})$', size=title_size, pad=title_pad) # plt.xlabel(r'$E_o+B_{oi}E_{fw}$ (RB/STB)', size=15) # plt.ylabel(r'$F$ (res bbl)', size=15) # ## curve-fitting to calculate the slope as OOIP # x1_norm = x1 / max(x1) # normalize x # y1_norm = y1 / max(y1) # normalize y # popt, pcov = curve_fit(linear_zero_intercept, x1_norm, y1_norm) # m = popt[0] # Nfoi = m * max(y1) / max(x1) # denormalize the slope, hence the OGIP # ## Calculate OOIP and OGIP from Nfoi # Rsi = Rs[0] # Gfgi = 0 # no free gas phase in undersaturated oil # OOIP = Nfoi # OGIP = Nfoi * Rsi # ## Output results into text in plot # labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) # ## plot the regression line # x1_fit = np.linspace(min(x1), max(x1), 5) # y1_fit = linear_zero_intercept(x1_fit, Nfoi) # plt.plot(x1_fit, y1_fit, label='{} MMSTB'.format(np.round(Nfoi * 1E-6, 3))) # plt.legend(handles, labels, loc='best', fontsize='small', # fancybox=True, framealpha=0.7, # handlelength=0, handletextpad=0) # " Plot 2: F/(Eg+Boi*Efw) vs Np (Waterdrive Diagnostic Plot) " # plt.subplot(1,2,2) # x2, y2 = Np, F / (Eg + Boi * Efw) # plt.plot(x2, y2, '.-') # plt.title('Plot 2: Waterdrive Diagnostic Plot', size=title_size, pad=title_pad) # plt.xlabel(r'$N_p$ (STB)', size=15) # plt.ylabel(r'$\frac{F}{(E_o+B_{oi}E_{fw})}$ (STB)', size=15) # ## curve-fitting to calculate the slope as OOIP, here [1:] because NaN is removed # x2_norm = x2[1:] / max(x2[1:]) # normalize x # y2_norm = y2[1:] / max(y2[1:]) # normalize y # popt, pcov = curve_fit(linear_with_intercept, x2_norm, y2_norm) # m, c = popt[0], popt[1] # m = m * max(y2[1:]) / max(x2[1:]) # denormalize the slope # Nfoi = c * max(y2[1:]) # denormalize the intercept, hence the OGIP # ## Calculate OOIP and OGIP from Nfoi # Rsi = Rs[0] # Gfgi = 0 # no free gas phase in undersaturated oil # OOIP = Nfoi # OGIP = Nfoi * Rsi # ## Output results into text in plot # labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) # ## plot the regression line # x2_fit = np.linspace(min(x2[1:]), max(x2[1:]), 5) # y2_fit = linear_with_intercept(x2_fit, m, Nfoi) # plt.plot(x2_fit, y2_fit, label='{} MMSTB'.format(np.round(Nfoi * 1E-6, 3))) # plt.legend(handles, labels, loc='best', fontsize='small', # fancybox=True, framealpha=0.7, # handlelength=0, handletextpad=0) # plt.tight_layout(1) # plt.show() # if oil_type == 'saturated': # plt.figure(figsize=figsize) # " Plot 1: F/Eo vs Eg/Eo " # plt.subplot(1,3,1) # x1, y1 = (Eg / Eo), (F / Eo) # plt.plot(x1, y1, '.-') # plt.title('Plot 1: F/Eo vs Eg/Eo', size=title_size, pad=title_pad) # plt.xlabel(r'$\frac{Eg}{Eo}$ (STB/scf)', size=15) # plt.ylabel(r'$\frac{F}{Eo}$ (STB)', size=15) # ## curve-fitting to calculate the slope as Gfgi, intercept as Nfoi # x1_norm = x1[1:] / max(x1[1:]) # normalize x # y1_norm = y1[1:] / max(y1[1:]) # normalize y # popt, pcov = curve_fit(linear_with_intercept, x1_norm, y1_norm) # m, c = popt[0], popt[1] # Gfgi = m = m * max(y1[1:]) / max(x1[1:]) # denormalize the slope # Nfoi = c = c * max(y1[1:]) # denormalize the intercept # ## calculate OOIP and OGIP from Nfoi and Gfgi # Rsi, Rvi = Rs[0], Rv[0] # OOIP = Nfoi + Gfgi * Rvi # OGIP = Gfgi + Nfoi * Rsi # ## Output results into text in plot # labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) # ## plot the regression line # x1_fit = np.linspace(min(x1[1:]), max(x1[1:]), 5) # y1_fit = linear_with_intercept(x1_fit, m, c) # plt.plot(x1_fit, y1_fit) # plt.legend(handles, labels, loc='best', fontsize='small', # fancybox=True, framealpha=0.7, # handlelength=0, handletextpad=0) # " Plot 2: p/z vs Gp " # plt.subplot(1,3,2) # x2, y2 = (Eo / Eg), (F / Eg) # plt.plot(x2, y2, '.-') # plt.title('Plot 2: F/Eg vs Eo/Eg', size=title_size, pad=title_pad) # plt.xlabel(r'$\frac{Eo}{Eg}$ (scf/STB)', size=15) # plt.ylabel(r'$\frac{F}{Eg}$ (scf)', size=15) # ## curve-fitting to calculate the slope as Nfoi, intercept as Gfgi # x2_norm = x2[1:] / max(x2[1:]) # normalize x # y2_norm = y2[1:] / max(y2[1:]) # normalize y # popt, pcov = curve_fit(linear_with_intercept, x2_norm, y2_norm) # m, c = popt[0], popt[1] # Nfoi = m = m * max(y2[1:]) / max(x2[1:]) # denormalize the slope # Gfgi = c = c * max(y2[1:]) # denormalize the intercept # ## calculate OOIP and OGIP from Nfoi and Gfgi # Rsi, Rvi = Rs[0], Rv[0] # OOIP = Nfoi + Gfgi * Rvi # OGIP = Gfgi + Nfoi * Rsi # ## Output results into text in plot # labels, handles, OOIP, OGIP = initial_hydrocarbon_in_place(Nfoi, Gfgi, Rv, Rs) # ## plot the regression line # x2_fit = np.linspace(min(x2[1:]), max(x2[1:]), 5) # y2_fit = linear_with_intercept(x2_fit, m, c) # plt.plot(x2_fit, y2_fit) # plt.legend(handles, labels, loc='best', fontsize='small', # fancybox=True, framealpha=0.7, # handlelength=0, handletextpad=0) # plt.tight_layout(1) # plt.show()
py
7dfcb092608d4549478cddde96b34eb5df203eb7
from django.db import models from datetime import datetime # 用户信息模型 class Users(models.Model): username = models.CharField(max_length=32) # 唯一性约束 password = models.CharField(max_length=32) addtime = models.DateTimeField(default=datetime.now) def toDict(self): return {'id':self.id,'username':self.username,'password':self.password} class Meta: db_table = "users" # 更改表名 # 主机信息模型 class Host(models.Model): uid = models.CharField(max_length=32) #登录用户的用户名 host_user = models.CharField(max_length=32) # 唯一性约束 host_password = models.CharField(max_length=32) tag = models.CharField(max_length=32) ip = models.CharField(max_length=32) cpu = models.IntegerField() vir_mem = models.IntegerField() mem = models.IntegerField() host_status = models.CharField(max_length=32) addtime = models.DateTimeField(default=datetime.now) class Meta: db_table = "host" # 更改表名 # 主机实时信息模型 class Monitor(models.Model): host_id = models.CharField(max_length=32) #登录用户的用户名 cpu_used = models.CharField(max_length=32) vir_mem_used = models.CharField(max_length=32) mem_used = models.CharField(max_length=32) addtime = models.DateTimeField(default=datetime.now) time = models.CharField(max_length=50) class Meta: db_table = "monitor" # 更改表名
py
7dfcb0ab11ccae2a992c21e7f672a8e2b1882878
import posixpath import subprocess import uuid import pytest @pytest.fixture def empty_hdfs_root(onefs_client): """Create a temporary directory and make it the HDFS root.""" old_hdfs_root = onefs_client.hdfs_settings()['root_directory'] new_root_name = str(uuid.uuid4()) onefs_client.mkdir(new_root_name, 0o755) onefs_client.update_hdfs_settings({ 'root_directory': posixpath.join(onefs_client.zone_settings()['path'], new_root_name), }) yield onefs_client.update_hdfs_settings({'root_directory': old_hdfs_root}) onefs_client.rmdir(new_root_name, recursive=True) @pytest.mark.usefixtures('empty_hdfs_root') @pytest.mark.parametrize('script', ['isilon_create_users', 'isilon_create_directories']) @pytest.mark.parametrize('dist', ['cdh', 'cdp', 'hdp']) def test_dry_run(script, onefs_client, dist): subprocess.check_call([ script, '--append-cluster-name', str(uuid.uuid4()), '--dist', dist, '--dry', '--no-verify', '--onefs-password', onefs_client.password, '--onefs-user', onefs_client.username, '--zone', 'System', onefs_client.address, ])
py
7dfcb0ad58942624e29d357c503278044bfa89c5
import gettext class _(str): observers = set() lang = None def __new__(cls, s): if _.lang is None: _.switch_lang('en') t = _.translate(s) o = super(_, cls).__new__(cls, t) o.source_text = s return o @staticmethod def translate(s, *args, **kwargs): return _.lang(s) @staticmethod def bind(label): try: _.observers.add(label) except: pass # garbage collection new = set() for label in _.observers: try: new.add(label) except: pass _.observers = new @staticmethod def switch_lang(lang): # get the right locales directory, and instantiate a gettext from electrum_blk.i18n import LOCALE_DIR, set_language locales = gettext.translation('electrum', LOCALE_DIR, languages=[lang], fallback=True) _.lang = locales.gettext for label in _.observers: try: label.text = _(label.text.source_text) except: pass # Note that all invocations of _() inside the core electrum library # use electrum.i18n instead of electrum.gui.kivy.i18n, so we should update the # language there as well: set_language(lang)
py
7dfcb2535ca831bfe79c12d7f4d9b7904a39b9cd
import time from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler from pathlib import PurePath import os import jinja2 import sys import getopt import math arguments = "d:i:t:D:" long_arguments = [ "directory=", "index-name=", "index-template=", # "depth=" ] opts, extraparams = getopt.getopt(sys.argv[1:], arguments, long_arguments) args = dict(opts) SLEEP_SECONDS = 1 INDEX = args["-i"] if "-i" in args else 'index.html' BASE = os.path.abspath(args["-d"]) INDEX_TEMPLATE = args["-t"] if "-t" in args else (BASE + '/' + 'index.jinja') # DEPTH = int(args["-D"]) if "-D" in args else None DEPTH = None # TODO depth to fix env = jinja2.Environment(loader=jinja2.FileSystemLoader(searchpath='/')) template = env.get_template( INDEX_TEMPLATE ) class Item(): def __init__(self): self.is_dir = False self.path = "" self.name = "" self.base = "" def __unicode__(self): self.path def convert_size(size_bytes): if size_bytes == 0: return "0B" size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") i = int(math.floor(math.log(size_bytes, 1024))) p = math.pow(1024, i) s = round(size_bytes / p, 2) return "%s %s" % (s, size_name[i]) def generate(dirname, depth=None): items = [] base = dirname[len(BASE):] PARENT = PurePath(base).parent for item in os.listdir(dirname): if ( item.startswith('.') or item == INDEX or item == INDEX_TEMPLATE ): continue item_obj = Item() item_obj.name = item item_obj.path = os.path.join(dirname, item) item_obj.size = convert_size(os.path.getsize(item_obj.path)) item_obj.base = base items.append(item_obj) if os.path.isdir(item_obj.path): item_obj.is_dir = True if depth != 0: current_depth = depth if depth: current_depth = depth - 1 generate(item_obj.path, current_depth) html = template.render( { 'parent': PARENT, 'base': base, 'dirname': dirname, 'items': items, } ) index = os.path.join(dirname, INDEX) with open(index, 'w') as f: f.write(html) class IndexerHandler(FileSystemEventHandler): def on_modified(self, event): generate(BASE, DEPTH) if __name__ == "__main__": generate(BASE, DEPTH) event_handler = IndexerHandler() observer = Observer() # observer.schedule(event_handler, path=BASE, recursive=False) observer.schedule(event_handler, path=BASE, recursive=True) observer.start() try: while True: time.sleep(SLEEP_SECONDS) except KeyboardInterrupt: observer.stop() observer.join()
py
7dfcb379b403382249f9d58fca31fc23986a56a0
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'about.ui' # # Created by: PyQt5 UI code generator 5.9 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName("Dialog") Dialog.resize(555, 605) Dialog.setMaximumSize(QtCore.QSize(555, 605)) self.pushButton = QtWidgets.QPushButton(Dialog) self.pushButton.setGeometry(QtCore.QRect(230, 570, 85, 27)) self.pushButton.setObjectName("pushButton") self.label = QtWidgets.QLabel(Dialog) self.label.setGeometry(QtCore.QRect(20, 10, 511, 41)) font = QtGui.QFont() font.setPointSize(20) font.setBold(True) font.setItalic(True) font.setWeight(75) self.label.setFont(font) self.label.setAlignment(QtCore.Qt.AlignCenter) self.label.setObjectName("label") self.line = QtWidgets.QFrame(Dialog) self.line.setGeometry(QtCore.QRect(10, 150, 531, 20)) self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.line_2 = QtWidgets.QFrame(Dialog) self.line_2.setGeometry(QtCore.QRect(10, 540, 531, 20)) self.line_2.setFrameShape(QtWidgets.QFrame.HLine) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setObjectName("line_2") self.label_2 = QtWidgets.QLabel(Dialog) self.label_2.setGeometry(QtCore.QRect(160, 90, 251, 41)) font = QtGui.QFont() font.setPointSize(20) font.setBold(True) font.setItalic(True) font.setWeight(75) self.label_2.setFont(font) self.label_2.setAlignment(QtCore.Qt.AlignCenter) self.label_2.setObjectName("label_2") self.textBrowser = QtWidgets.QTextBrowser(Dialog) self.textBrowser.setGeometry(QtCore.QRect(20, 180, 511, 351)) self.textBrowser.setObjectName("textBrowser") self.label_3 = QtWidgets.QLabel(Dialog) self.label_3.setGeometry(QtCore.QRect(30, 80, 111, 61)) self.label_3.setText("") self.label_3.setPixmap(QtGui.QPixmap("../img/icon.png")) self.label_3.setObjectName("label_3") self.retranslateUi(Dialog) self.pushButton.clicked.connect(Dialog.close) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "Dialog")) self.pushButton.setText(_translate("Dialog", "Закрыть")) self.label.setText(_translate("Dialog", "Добро пожаловать в чат-флудилку")) self.label_2.setText(_translate("Dialog", "\"Finger Balabolka\"")) self.textBrowser.setHtml(_translate("Dialog", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'Noto Sans\'; font-size:9pt; font-weight:400; font-style:normal;\">\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"> <span style=\" font-size:14pt;\">Автор, он же разработчик, он же великдушный диктатор данной флудилки: </span> </p>\n" "<p style=\" margin-top:12px; margin-bottom:12px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"> <span style=\" font-size:14pt; font-weight:600;\">Сухаренко А.Н. </span> <a href=\"https://github.com/Cyxapic\"><span style=\" text-decoration: underline; color:#0000ff;\"> </span></a><a href=\"https://github.com/Cyxapic\"><span style=\" font-size:14pt; font-weight:600; text-decoration: underline; color:#0000ff;\">HTTP: github</span></a></p>\n" "<p style=\"-qt-paragraph-type:empty; margin-top:12px; margin-bottom:12px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><br /></p>\n" "<p style=\"-qt-paragraph-type:empty; margin-top:12px; margin-bottom:12px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><br /></p>\n" "<p style=\" margin-top:12px; margin-bottom:12px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-size:14pt; text-decoration: underline; color:#000000;\">Программа разработа под руководством преподователя Geekbrains - </span><span style=\" font-family:\'Roboto,San Francisco,Helvetica Neue,Helvetica,Arial\'; font-size:14pt; text-decoration: underline; color:#3c4144; background-color:#ffffff;\">Леонид Орлов, </span><span style=\" font-family:\'Roboto,San Francisco,Helvetica Neue,Helvetica,Arial\'; font-size:14pt; font-weight:600; text-decoration: underline; color:#00aa00; background-color:#ffffff;\">за что ему отдельная благодарность!</span> </p></body></html>"))
py
7dfcb3ec7660c2335dc40a4f5bb5fcfe2a3943f4
from copy import copy import re import pytest from app import create_app from config import Config from modules.user_account.schema_public import UserAccountSchema from modules.users.model import User from fixtures import Fixtures @pytest.fixture def app(request): config = copy(Config) config.TESTING = True config.APP_TYPE = 'admin' if 'admin_api' in request.keywords else 'public' app = create_app(config) if 'unit' in request.keywords: yield app else: fixtures = Fixtures(app) fixtures.setup() yield app fixtures.teardown() # INTEGRATION TESTS @pytest.mark.integration @pytest.mark.admin_api def test_user_account_admin_schema_dump(app): re_datetime = re.compile(r"^\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\+\d{4}$") user2 = User.query.get(2) output = { 'id': user2.id, 'username': user2.username, 'email': user2.email, 'password_changed_at': user2.password_changed_at, 'is_verified': user2.is_verified, 'first_name': user2.profile.first_name, 'last_name': user2.profile.last_name, 'joined_at': user2.profile.joined_at, } result = UserAccountSchema().dump(output) assert len(result) == 8 assert result['id'] == 2 assert result['username'] == 'user2' assert result['email'] == '[email protected]' assert result['first_name'] == 'Lynne' assert result['last_name'] == 'Harford' assert bool(re_datetime.match(result['password_changed_at'])) assert result['joined_at'] == '2018-12-07T00:00:00+0000' assert result['is_verified'] is True
py
7dfcb40f19f97a94298532e93911413b0b5a7c16
"""Test Fill-in-the-blank module""" import unittest from pororo import Pororo class PororoBlankTester(unittest.TestCase): def test_modules(self): fill = Pororo(task="fib", lang="ko") fill_res = fill("아 그거 __으로 보내줘 ㅋㅋ") self.assertIsInstance(fill_res, list) fill = Pororo(task="fib", lang="zh") fill_res = fill("三__男子在街上做同样的舞蹈。") self.assertIsInstance(fill_res, list) fill = Pororo(task="fib", lang="ja") fill_res = fill("文在寅は__の大統領だ。") self.assertIsInstance(fill_res, list) if __name__ == "__main__": unittest.main()
py
7dfcb6ba2f94d6cdb3e4d61ac725c294951c4b6a
#!/usr/bin/env python3 # Pretty print 9p simpletrace log # Usage: ./analyse-9p-simpletrace <trace-events> <trace-pid> # # Author: Harsh Prateek Bora import os import simpletrace symbol_9p = { 6 : 'TLERROR', 7 : 'RLERROR', 8 : 'TSTATFS', 9 : 'RSTATFS', 12 : 'TLOPEN', 13 : 'RLOPEN', 14 : 'TLCREATE', 15 : 'RLCREATE', 16 : 'TSYMLINK', 17 : 'RSYMLINK', 18 : 'TMKNOD', 19 : 'RMKNOD', 20 : 'TRENAME', 21 : 'RRENAME', 22 : 'TREADLINK', 23 : 'RREADLINK', 24 : 'TGETATTR', 25 : 'RGETATTR', 26 : 'TSETATTR', 27 : 'RSETATTR', 30 : 'TXATTRWALK', 31 : 'RXATTRWALK', 32 : 'TXATTRCREATE', 33 : 'RXATTRCREATE', 40 : 'TREADDIR', 41 : 'RREADDIR', 50 : 'TFSYNC', 51 : 'RFSYNC', 52 : 'TLOCK', 53 : 'RLOCK', 54 : 'TGETLOCK', 55 : 'RGETLOCK', 70 : 'TLINK', 71 : 'RLINK', 72 : 'TMKDIR', 73 : 'RMKDIR', 74 : 'TRENAMEAT', 75 : 'RRENAMEAT', 76 : 'TUNLINKAT', 77 : 'RUNLINKAT', 100 : 'TVERSION', 101 : 'RVERSION', 102 : 'TAUTH', 103 : 'RAUTH', 104 : 'TATTACH', 105 : 'RATTACH', 106 : 'TERROR', 107 : 'RERROR', 108 : 'TFLUSH', 109 : 'RFLUSH', 110 : 'TWALK', 111 : 'RWALK', 112 : 'TOPEN', 113 : 'ROPEN', 114 : 'TCREATE', 115 : 'RCREATE', 116 : 'TREAD', 117 : 'RREAD', 118 : 'TWRITE', 119 : 'RWRITE', 120 : 'TCLUNK', 121 : 'RCLUNK', 122 : 'TREMOVE', 123 : 'RREMOVE', 124 : 'TSTAT', 125 : 'RSTAT', 126 : 'TWSTAT', 127 : 'RWSTAT' } class VirtFSRequestTracker(simpletrace.Analyzer): def begin(self): print("Pretty printing 9p simpletrace log ...") def v9fs_rerror(self, tag, id, err): print("RERROR (tag =", tag, ", id =", symbol_9p[id], ", err = \"", os.strerror(err), "\")") def v9fs_version(self, tag, id, msize, version): print("TVERSION (tag =", tag, ", msize =", msize, ", version =", version, ")") def v9fs_version_return(self, tag, id, msize, version): print("RVERSION (tag =", tag, ", msize =", msize, ", version =", version, ")") def v9fs_attach(self, tag, id, fid, afid, uname, aname): print("TATTACH (tag =", tag, ", fid =", fid, ", afid =", afid, ", uname =", uname, ", aname =", aname, ")") def v9fs_attach_return(self, tag, id, type, version, path): print("RATTACH (tag =", tag, ", qid={type =", type, ", version =", version, ", path =", path, "})") def v9fs_stat(self, tag, id, fid): print("TSTAT (tag =", tag, ", fid =", fid, ")") def v9fs_stat_return(self, tag, id, mode, atime, mtime, length): print("RSTAT (tag =", tag, ", mode =", mode, ", atime =", atime, ", mtime =", mtime, ", length =", length, ")") def v9fs_getattr(self, tag, id, fid, request_mask): print("TGETATTR (tag =", tag, ", fid =", fid, ", request_mask =", hex(request_mask), ")") def v9fs_getattr_return(self, tag, id, result_mask, mode, uid, gid): print("RGETATTR (tag =", tag, ", result_mask =", hex(result_mask), ", mode =", oct(mode), ", uid =", uid, ", gid =", gid, ")") def v9fs_walk(self, tag, id, fid, newfid, nwnames): print("TWALK (tag =", tag, ", fid =", fid, ", newfid =", newfid, ", nwnames =", nwnames, ")") def v9fs_walk_return(self, tag, id, nwnames, qids): print("RWALK (tag =", tag, ", nwnames =", nwnames, ", qids =", hex(qids), ")") def v9fs_open(self, tag, id, fid, mode): print("TOPEN (tag =", tag, ", fid =", fid, ", mode =", oct(mode), ")") def v9fs_open_return(self, tag, id, type, version, path, iounit): print("ROPEN (tag =", tag, ", qid={type =", type, ", version =", version, ", path =", path, "}, iounit =", iounit, ")") def v9fs_lcreate(self, tag, id, dfid, flags, mode, gid): print("TLCREATE (tag =", tag, ", dfid =", dfid, ", flags =", oct(flags), ", mode =", oct(mode), ", gid =", gid, ")") def v9fs_lcreate_return(self, tag, id, type, version, path, iounit): print("RLCREATE (tag =", tag, ", qid={type =", type, ", version =", version, ", path =", path, "}, iounit =", iounit, ")") def v9fs_fsync(self, tag, id, fid, datasync): print("TFSYNC (tag =", tag, ", fid =", fid, ", datasync =", datasync, ")") def v9fs_clunk(self, tag, id, fid): print("TCLUNK (tag =", tag, ", fid =", fid, ")") def v9fs_read(self, tag, id, fid, off, max_count): print("TREAD (tag =", tag, ", fid =", fid, ", off =", off, ", max_count =", max_count, ")") def v9fs_read_return(self, tag, id, count, err): print("RREAD (tag =", tag, ", count =", count, ", err =", err, ")") def v9fs_readdir(self, tag, id, fid, offset, max_count): print("TREADDIR (tag =", tag, ", fid =", fid, ", offset =", offset, ", max_count =", max_count, ")") def v9fs_readdir_return(self, tag, id, count, retval): print("RREADDIR (tag =", tag, ", count =", count, ", retval =", retval, ")") def v9fs_write(self, tag, id, fid, off, count, cnt): print("TWRITE (tag =", tag, ", fid =", fid, ", off =", off, ", count =", count, ", cnt =", cnt, ")") def v9fs_write_return(self, tag, id, total, err): print("RWRITE (tag =", tag, ", total =", total, ", err =", err, ")") def v9fs_create(self, tag, id, fid, name, perm, mode): print("TCREATE (tag =", tag, ", fid =", fid, ", perm =", oct(perm), ", name =", name, ", mode =", oct(mode), ")") def v9fs_create_return(self, tag, id, type, version, path, iounit): print("RCREATE (tag =", tag, ", qid={type =", type, ", version =", version, ", path =", path, "}, iounit =", iounit, ")") def v9fs_symlink(self, tag, id, fid, name, symname, gid): print("TSYMLINK (tag =", tag, ", fid =", fid, ", name =", name, ", symname =", symname, ", gid =", gid, ")") def v9fs_symlink_return(self, tag, id, type, version, path): print("RSYMLINK (tag =", tag, ", qid={type =", type, ", version =", version, ", path =", path, "})") def v9fs_flush(self, tag, id, flush_tag): print("TFLUSH (tag =", tag, ", flush_tag =", flush_tag, ")") def v9fs_link(self, tag, id, dfid, oldfid, name): print("TLINK (tag =", tag, ", dfid =", dfid, ", oldfid =", oldfid, ", name =", name, ")") def v9fs_remove(self, tag, id, fid): print("TREMOVE (tag =", tag, ", fid =", fid, ")") def v9fs_wstat(self, tag, id, fid, mode, atime, mtime): print("TWSTAT (tag =", tag, ", fid =", fid, ", mode =", oct(mode), ", atime =", atime, "mtime =", mtime, ")") def v9fs_mknod(self, tag, id, fid, mode, major, minor): print("TMKNOD (tag =", tag, ", fid =", fid, ", mode =", oct(mode), ", major =", major, ", minor =", minor, ")") def v9fs_lock(self, tag, id, fid, type, start, length): print("TLOCK (tag =", tag, ", fid =", fid, "type =", type, ", start =", start, ", length =", length, ")") def v9fs_lock_return(self, tag, id, status): print("RLOCK (tag =", tag, ", status =", status, ")") def v9fs_getlock(self, tag, id, fid, type, start, length): print("TGETLOCK (tag =", tag, ", fid =", fid, "type =", type, ", start =", start, ", length =", length, ")") def v9fs_getlock_return(self, tag, id, type, start, length, proc_id): print("RGETLOCK (tag =", tag, "type =", type, ", start =", start, ", length =", length, ", proc_id =", proc_id, ")") def v9fs_mkdir(self, tag, id, fid, name, mode, gid): print("TMKDIR (tag =", tag, ", fid =", fid, ", name =", name, ", mode =", mode, ", gid =", gid, ")") def v9fs_mkdir_return(self, tag, id, type, version, path, err): print("RMKDIR (tag =", tag, ", qid={type =", type, ", version =", version, ", path =", path, "}, err =", err, ")") def v9fs_xattrwalk(self, tag, id, fid, newfid, name): print("TXATTRWALK (tag =", tag, ", fid =", fid, ", newfid =", newfid, ", xattr name =", name, ")") def v9fs_xattrwalk_return(self, tag, id, size): print("RXATTRWALK (tag =", tag, ", xattrsize =", size, ")") def v9fs_xattrcreate(self, tag, id, fid, name, size, flags): print("TXATTRCREATE (tag =", tag, ", fid =", fid, ", name =", name, ", xattrsize =", size, ", flags =", flags, ")") def v9fs_readlink(self, tag, id, fid): print("TREADLINK (tag =", tag, ", fid =", fid, ")") def v9fs_readlink_return(self, tag, id, target): print("RREADLINK (tag =", tag, ", target =", target, ")") simpletrace.run(VirtFSRequestTracker())
py
7dfcb73be5f4b00d2228108cf287c45c3b48d5e6
import sqlalchemy import zeeguu_core from datetime import datetime, timedelta from zeeguu_core.model.user import User db = zeeguu_core.db # Parameter that controls after how much time (in seconds) the session is expired EXERCISE_SESSION_TIMEOUT = 21 VERY_FAR_IN_THE_PAST = '2000-01-01T00:00:00' VERY_FAR_IN_THE_FUTURE = '9999-12-31T23:59:59' class UserExerciseSession(db.Model): """ This class keeps track of the user's exercise sessions. So we can study how much time and when the user has done exercises. """ __table_args__ = dict(mysql_collate="utf8_bin") __tablename__ = 'user_exercise_session' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.Integer, db.ForeignKey(User.id)) user = db.relationship(User) start_time = db.Column(db.DateTime) duration = db.Column(db.Integer) # Duration time in miliseconds last_action_time = db.Column(db.DateTime) is_active = db.Column(db.Boolean) def __init__(self, user_id, start_time, current_time=None): self.user_id = user_id self.is_active = True # When we want to emulate an event happening in a particular moment in the past or in the future, # we can provide the current_time variable to override the datetime.now() if current_time is None: current_time = datetime.now() self.start_time = start_time self.last_action_time = current_time duration = self.last_action_time - self.start_time self.duration = duration.total_seconds() * 1000 @classmethod def get_exercise_session_timeout(cls): return EXERCISE_SESSION_TIMEOUT @classmethod def _find_most_recent_session(cls, user_id, db_session): """ Queries and returns if there is an open exercise session for that user Parameters: user_id = user identifier db_session = database session returns: the active exercise_session record for the specific user or None if none is found """ query = cls.query query = query.filter(cls.user_id == user_id) query = query.filter(cls.is_active == True) try: return query.one() except sqlalchemy.orm.exc.MultipleResultsFound: # Close all open sessions except last one query.order_by(cls.last_action_time) open_sessions = query.with_for_update().all() for exercise_session in open_sessions[:-1]: exercise_session._close_exercise_session(db_session) return open_sessions[-1] except sqlalchemy.orm.exc.NoResultFound: return None def _is_still_active(self, current_time=datetime.now()): """ Validates if the exercise session is still valid (according to the exercise_session_timeout control variable) Parameters: current_time = when this parameter is sent, instead of using the datetime.now() value for the current time we use the provided value as the system time (only used for filling in historical data) returns: True if the time between the exercise session's last action and the current time is less or equal than the exercise_session_timeout """ time_difference = current_time - self.last_action_time w_exercise_session_timeout = timedelta(seconds=EXERCISE_SESSION_TIMEOUT) return time_difference <= w_exercise_session_timeout @staticmethod def _create_new_session(db_session, user_id, start_time, current_time=None): """ Creates a new exercise session Parameters: db_session = database session user_id = user identifier start_time = the time when the user opened the exercise current_time = when this parameter is sent, instead of using the datetime.now() value for the current time we use the provided value as the system time (only used for filling in historical data) returns: The new exercise session """ # If the user left the exercise open for very long, we set the duration of the session to the timeout value time_difference = current_time - start_time if time_difference > timedelta(seconds=EXERCISE_SESSION_TIMEOUT): start_time = current_time - timedelta(seconds=EXERCISE_SESSION_TIMEOUT) exercise_session = UserExerciseSession(user_id, start_time, current_time) db_session.add(exercise_session) db_session.commit() return exercise_session def _update_last_action_time(self, db_session, current_time=datetime.now()): """ Updates the last_action_time field and computes the duration of the exercise session Parameters: db_session = database session current_time = when this parameter is sent, instead of using the datetime.now() value for the current time we use the provided value as the system time (only used for filling in historical data) returns: The exercise session """ # Update duration current_session_length = current_time - self.start_time self.duration = current_session_length.total_seconds() * 1000 # Convert to miliseconds self.last_action_time = current_time db_session.add(self) db_session.commit() return self def _close_exercise_session(self, db_session): """ Sets the is_active field to False Parameters: db_session = database session returns: The exercise session if everything went well otherwise probably exceptions related to the DB """ self.is_active = False db_session.add(self) db_session.commit() return self @classmethod def update_exercise_session(cls, exercise, db_session): """ Main callable method that keeps track of the exercise sessions. It does: If there is an open session for the user and article and the elapsed time is within the session_timeout range, it updates the session to the current time, otherwise, it closes and creates a new one Parameters: user_exercise = exercise instance db_session = database session returns: The exercise session or None when no user is found """ user_id = exercise.find_user_id(db.session) if user_id: current_time = exercise.time start_time = current_time - timedelta(minutes=(exercise.solving_speed / 60000)) most_recent_exercise_session = cls._find_most_recent_session(user_id, db_session) if most_recent_exercise_session: if most_recent_exercise_session._is_still_active( current_time): # Verify if the session is not expired (according to session timeout) return most_recent_exercise_session._update_last_action_time(db_session, current_time=current_time) else: # If the session is expired, close it and create a new one most_recent_exercise_session._close_exercise_session(db_session) return cls._create_new_session(db_session, user_id, start_time, current_time=current_time) else: return cls._create_new_session(db_session, user_id, start_time, current_time=current_time) else: return None @classmethod def find_by_user(cls, user_id, from_date: str = VERY_FAR_IN_THE_PAST, to_date: str = VERY_FAR_IN_THE_FUTURE, is_active: bool = None): """ Get exercise sessions by user return: object or None if not found """ query = cls.query query = query.filter(cls.user_id == user_id) query = query.filter(cls.start_time >= from_date) query = query.filter(cls.start_time <= to_date) if is_active is not None: query = query.filter(cls.is_active == is_active) query = query.order_by('start_time') sessions = query.all() return sessions @classmethod def find_by_cohort(cls, cohort_id, from_date: str = VERY_FAR_IN_THE_PAST, to_date: str = VERY_FAR_IN_THE_FUTURE, is_active: bool = None): """ Get exercise sessions by cohort return: object or None if not found """ query = cls.query.join(User).filter(User.cohort_id == cohort_id) query = query.filter(cls.start_time >= from_date) query = query.filter(cls.start_time <= to_date) if is_active is not None: query = query.filter(cls.is_active == is_active) query = query.order_by('start_time') sessions = query.all() return sessions
py
7dfcb8a657784262292b5f4dc1c719d29f92844d
from django.contrib.contenttypes.models import ContentType import test_utils from access.helpers import has_perm, has_perm_or_owns from access.tests import permission from forums.tests import ForumTestCase, forum, thread from sumo.urlresolvers import reverse from users.tests import user, group class ForumTestPermissions(ForumTestCase): """Make sure access helpers work on the forums.""" def setUp(self): url = reverse('forums.threads', args=[u'test-forum']) self.context = {'request': test_utils.RequestFactory().get(url)} self.group = group(save=True) # Set up forum_1 f = self.forum_1 = forum(save=True) ct = ContentType.objects.get_for_model(self.forum_1) permission(codename='forums_forum.thread_edit_forum', content_type=ct, object_id=f.id, group=self.group, save=True) permission(codename='forums_forum.post_edit_forum', content_type=ct, object_id=f.id, group=self.group, save=True) permission(codename='forums_forum.post_delete_forum', content_type=ct, object_id=f.id, group=self.group, save=True) permission(codename='forums_forum.thread_delete_forum', content_type=ct, object_id=f.id, group=self.group, save=True) permission(codename='forums_forum.thread_sticky_forum', content_type=ct, object_id=f.id, group=self.group, save=True) permission(codename='forums_forum.thread_move_forum', content_type=ct, object_id=f.id, group=self.group, save=True) # Set up forum_2 f = self.forum_2 = forum(save=True) permission(codename='forums_forum.thread_move_forum', content_type=ct, object_id=f.id, group=self.group, save=True) def test_has_perm_thread_edit(self): """User in group can edit thread in forum_1, but not in forum_2.""" u = user(save=True) self.group.user_set.add(u) self.context['request'].user = u assert has_perm(self.context, 'forums_forum.thread_edit_forum', self.forum_1) assert not has_perm(self.context, 'forums_forum.thread_edit_forum', self.forum_2) def test_has_perm_or_owns_thread_edit(self): """Users can edit their own threads.""" my_t = thread(save=True) me = my_t.creator other_t = thread(save=True) self.context['request'].user = me perm = 'forums_forum.thread_edit_forum' assert has_perm_or_owns(self.context, perm, my_t, self.forum_1) assert not has_perm_or_owns(self.context, perm, other_t, self.forum_1) def test_has_perm_thread_delete(self): """User in group can delete thread in forum_1, but not in forum_2.""" u = user(save=True) self.group.user_set.add(u) self.context['request'].user = u assert has_perm(self.context, 'forums_forum.thread_delete_forum', self.forum_1) assert not has_perm(self.context, 'forums_forum.thread_delete_forum', self.forum_2) def test_has_perm_thread_sticky(self): """ User in group can change sticky status of thread in forum_1, but not in forum_2. """ u = user(save=True) self.group.user_set.add(u) self.context['request'].user = u assert has_perm(self.context, 'forums_forum.thread_sticky_forum', self.forum_1) assert not has_perm(self.context, 'forums_forum.thread_sticky_forum', self.forum_2) def test_has_perm_thread_locked(self): """ Sanity check: user in group has no permission to change locked status in forum_1. """ u = user(save=True) self.group.user_set.add(u) self.context['request'].user = u assert not has_perm(self.context, 'forums_forum.thread_locked_forum', self.forum_1) def test_has_perm_post_edit(self): """User in group can edit any post in forum_1, but not in forum_2.""" u = user(save=True) self.group.user_set.add(u) self.context['request'].user = u assert has_perm(self.context, 'forums_forum.post_edit_forum', self.forum_1) assert not has_perm(self.context, 'forums_forum.post_edit_forum', self.forum_2) def test_has_perm_post_delete(self): """User in group can delete posts in forum_1, but not in forum_2.""" u = user(save=True) self.group.user_set.add(u) self.context['request'].user = u assert has_perm(self.context, 'forums_forum.post_delete_forum', self.forum_1) assert not has_perm(self.context, 'forums_forum.post_delete_forum', self.forum_2) def test_no_perm_thread_delete(self): """ User not in group cannot delete thread in any forum. """ self.context['request'].user = user(save=True) assert not has_perm(self.context, 'forums_forum.thread_delete_forum', self.forum_1) assert not has_perm(self.context, 'forums_forum.thread_delete_forum', self.forum_2)
py
7dfcb8a9adde78446a5e9d13c2bc25d8651e0d9a
from base_plugin import BasePlugin class GoodPlugin(BasePlugin): name = "test_plugin_1"
py
7dfcb8ce2a273cae786cb4b785895974e4ed6ba5
import numpy as np import torch import torch.nn.functional as F from decision_transformer.training.trainer import Trainer import torch_semiring_einsum EQUATION = torch_semiring_einsum.compile_equation("iaj,bj->iabj") def kmeans_cosine_max_loss(centers, seq, mean=False): assert centers.device == seq.device # loss = -(torch.einsum("iaj,bj->iabj", [seq, centers]).max(2).values.mean()) if mean: loss = -( torch_semiring_einsum.einsum(EQUATION, seq, centers, block_size=5).mean() ) else: loss = -( torch_semiring_einsum.einsum(EQUATION, seq, centers, block_size=5) .max(2) .values.mean() ) return loss kmeans_anneal = lambda x: 1 / (1 + np.exp(-(((5000 - x) / (5000 / 10)) - 5))) class SequenceTrainer(Trainer): def train_step(self): ( states, actions, rewards, dones, rtg, timesteps, attention_mask, ) = self.get_batch(self.batch_size) action_target = torch.clone(actions) state_preds, action_preds, reward_preds, all_embs = self.model.forward( states, actions, rewards, rtg[:, :-1], timesteps, attention_mask=attention_mask, ) self.step += 1 act_dim = action_preds.shape[2] action_preds = action_preds.reshape(-1, act_dim)[attention_mask.reshape(-1) > 0] action_target = action_target.reshape(-1, act_dim)[ attention_mask.reshape(-1) > 0 ] loss = self.loss_fn( None, action_preds, None, None, action_target, None, ) if self.args["gpt_kmeans"]: loss += ( self.args["gpt_kmeans_const"] * kmeans_anneal(self.step) * kmeans_cosine_max_loss( F.normalize(self.model.cluster_centers, dim=-1), F.normalize(all_embs, dim=-1), mean=self.args["kmeans_mean"], ) ) self.optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), 0.25) self.optimizer.step() with torch.no_grad(): self.diagnostics["training/action_error"] = ( torch.mean((action_preds - action_target) ** 2).detach().cpu().item() ) return loss.detach().cpu().item()
py
7dfcb9538f77de9a14e2f355284acbbfb4180b0f
# Exemple given. # numbers = [10, 15, 3, 7] # k = 17 numbers = [] numbersString = input("Type a list of numbers (separated by a comma): ") numbersStringList = numbersString.split() for n in numbersStringList: numbers.append(int(n)) k = int(input("Type target number: ")) result = False for i in range(len(numbers)): for j in range(i+1, len(numbers)): if (numbers[i] + numbers[j]) == k: result = True print(result)
py
7dfcb9e4a9d9f5155aa25c3a260bae7cef283b75
## ## Copyright (c) 2016-2019 Genomics England Ltd. ## ## This file is part of PanelApp ## (see https://panelapp.genomicsengland.co.uk). ## ## Licensed to the Apache Software Foundation (ASF) under one ## or more contributor license agreements. See the NOTICE file ## distributed with this work for additional information ## regarding copyright ownership. The ASF licenses this file ## to you under the Apache License, Version 2.0 (the ## "License"); you may not use this file except in compliance ## with the License. You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, ## software distributed under the License is distributed on an ## "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY ## KIND, either express or implied. See the License for the ## specific language governing permissions and limitations ## under the License. ## import csv import sys import djclick as click from panels.models import GenePanelSnapshot from panels.models import Evidence @click.command() def command(): """ Generate CSV to check which expert reviews need to be updated :return: """ header = [ "Panel Name", "Panel ID", "Panel Version", "Panel Status", "Entity Type", "Entity", "Status", "Sources", "Change Required", "Expert Review", ] writer = csv.writer(sys.stdout) writer.writerow(header) for gps in ( GenePanelSnapshot.objects.get_active_annotated(True, True, True) .exclude(is_super_panel=True) .iterator() ): panel_info = [gps.panel.name, gps.panel.id, gps.version, gps.panel.status] for entity in gps.get_all_entities_extra: status = entity.saved_gel_status sources = entity.evidence.values_list("name", flat=True) expert_reviews = [s for s in sources if s in Evidence.EXPERT_REVIEWS] change_required = len(expert_reviews) > 1 expert_review = "" if status == 0 and "Expert Review Removed" in expert_reviews: expert_review = "Expert Review Removed" elif status == 1 and "Expert Review Red" in expert_reviews: expert_review = "Expert Review Red" elif status == 2 and "Expert Review Amber" in expert_reviews: expert_review = "Expert Review Amber" elif status > 2 and "Expert Review Green" in expert_reviews: expert_review = "Expert Review Green" item = [ *panel_info, entity.entity_type, entity.entity_name, status, ";".join(sources), change_required, expert_review, ] if change_required: writer.writerow(item)
py
7dfcba62ba779004959cebf2010d283fd8e344cc
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) 2009- Spyder Project Contributors # # Distributed under the terms of the MIT License # (see spyder/__init__.py for details) # ----------------------------------------------------------------------------- """ Tests for the spyder.config.base module. """ # Standard library imports import os.path as osp try: from importlib import reload except ImportError: # A builtin on Python 2 pass # Third party imports import pytest # Local imports import spyder.config.base # ============================================================================ # ---- Tests # ============================================================================ def test_is_stable_version(): """Test that stable and non-stable versions are recognized correctly.""" for stable_version in ['3.3.0', '2', ('0', '5')]: assert spyder.config.base.is_stable_version(stable_version) for not_stable_version in ['4.0.0b1', '3.3.2.dev0', 'beta', ('2', '0', 'alpha')]: assert not spyder.config.base.is_stable_version(not_stable_version) @pytest.mark.parametrize('use_dev_config_dir', [True, False]) def test_get_conf_path(monkeypatch, use_dev_config_dir): """Test that the config dir path is set under dev and release builds.""" monkeypatch.setenv('SPYDER_USE_DEV_CONFIG_DIR', str(use_dev_config_dir)) reload(spyder.config.base) conf_path = spyder.config.base.get_conf_path() assert conf_path assert ((osp.basename(conf_path).split('-')[-1] == 'dev') == use_dev_config_dir) assert osp.isdir(conf_path) monkeypatch.undo() reload(spyder.config.base) if __name__ == '__main__': pytest.main()
py
7dfcbb04af64c13e83c2c685c1eaa5a5e9d2846d
# coding: utf-8 from __future__ import print_function from __future__ import division from __future__ import absolute_import from __future__ import unicode_literals DA_HP = dict( archi_name=["L4"] , n_steps=[15000, 25000] , n_units=[200, 500] , batch_size=[10000] , tolerance=[100.0] ) FF_HP = dict( feature_id=list(range(28)) , tolerance=[100.0] ) GB_HP = dict( max_depth=[3, 6] , n_estimators=[300, 800] , learning_rate=[0.1, 0.01] , tolerance=[100.0] ) INF_HP = dict( archi_name=["L4"] , n_steps=[2000] , n_units=[200, 500] , sample_size=[10000] , tolerance=[100.0] ) NN_HP = dict( archi_name=["L4"] , n_steps=[15000, 25000] , n_units=[200, 500] , batch_size=[200, 10000] , tolerance=[100.0] ) PIVOT_HP = dict( archi_name=["L4"] , n_steps=[15000, 25000] , n_units=[200, 500] , trade_off=[1.0, 0.1] , batch_size=[1000, 10000] , tolerance=[100.0] ) REG_HP = dict( archi_name=["EA3ML3"] , n_steps=[15000, 25000] , n_units=[200, 500] , sample_size=[10000, 50000] ) FREG_HP = dict( archi_name=["EA3ML3"] , n_steps=[15000, 25000] , n_units=[200, 500] , sample_size=[10000, 50000] ) REG_M_HP = dict( archi_name=["A3ML3"] , n_steps=[15000, 25000] , n_units=[100, 200, 500] , sample_size=[10000, 50000] ) TP_HP = dict( archi_name=["L4"] , n_steps=[15000, 25000] , n_units=[200, 500] , trade_off=[1.0, 0.1] , batch_size=[200] , tolerance=[100.0] )
py
7dfcbb39906c0e8d103a608b1225737788440104
""" Textnet network visualization: draw the Network json file. NOTE: this requires pydot>=1.0. """ import json import pydot import argparse import re # Internal layer and blob styles. LAYER_STYLE_DEFAULT = {'shape': 'record', 'fillcolor': '#6495ED', 'style': 'filled'} NEURON_LAYER_STYLE = {'shape': 'record', 'fillcolor': '#90EE90', 'style': 'filled'} BLOB_STYLE = {'shape': 'octagon', 'fillcolor': '#E0E0E0', 'style': 'filled'} Layer2Name = { 0: 'UnkonwnLayer', # Activation Layer 1-10 1: 'RectifiedLinear', 2: 'Sigmoid', 3: 'Tanh', # Common Layer 11-50 11: 'FullConnect', 12: 'Flatten', 13: 'Dropout', 14: 'Conv', 15: 'MaxPooling', 16: 'SumPooling', 17: 'AvgPooling', 18: 'Concat', 19: 'ChConcat', 20: 'Split', 21: 'Embedding', 22: 'Cross', 23: 'Match', 24: 'Lstm', 25: 'WholePooling', 26: 'ConvolutionalLstm', 27: 'Recurrent', 28: 'SequenceDimReduction', 29: 'ConvLstmSplit', 30: 'TensorFullConnect', 31: 'MaxRecurrent', 32: 'ConvResultTransform', 33: 'Gate', 34: 'GateAlldim', 35: 'Product', 36: 'TopkPooling', 37: 'SoftmaxFunc', 38: 'SoftmaxFuncVarLen', 39: 'SumByAxis', 40: 'Gating', 41: 'Lr2softmax', 42: 'SwapAxis', 43: 'DynamicPooling', 44: 'DiagRecurrent', 45: 'Dup4lstm', 46: 'PosPredRep', 47: 'LstmAutoencoder', 48: 'NbpGenLstmInput', 49: 'PhraseAveRep', 1000: 'OneHot', 1001: 'MatchTensor', 1002: 'MatchWeightedDot', 1003: 'MatchTensorFact', 1004: 'MatchMulti', 1005: 'BatchCombine', 1006: 'Gru', 1007: 'BatchSelect', 1008: 'BatchSplit', 1009: 'BatchConcat', 1010: 'BatchDuplicate', 10001: 'kMaxDynamicPooling', # Loss Layer 51-70 51: 'Softmax', 52: 'L2Loss', 53: 'MultiLogistic', 54: 'HingeLoss', 55: 'PairHingeLoss', 56: 'Accuracy', 57: 'CrossEntropyLoss', 58: 'NegativeSampleLoss', 59: 'WordClassSoftmaxLoss', 60: 'LstmAutoencoderSoftmaxLoss', 61: 'ListwiseMeasure', # Input Layer 71- 71: 'TextData', 72: 'SequenceClassificationData', 73: 'NextBasketData', 74: 'NegativeSample', 75: 'WordClassInput', 76: 'LabelFeatValue', 77: 'LstmAutoencoderInput', 78: 'MatchPhraseRep', 79: 'PairTextData', 80: 'ListTextData', 81: 'QATextData', } def parse_args(): """Parse input arguments """ parser = argparse.ArgumentParser(description='Draw a network graph') parser.add_argument('input_net_json_file', help='Input network json file') parser.add_argument('output_image_file', help='Output image file') parser.add_argument('--details', help='Need details of each layer.', default='True') parser.add_argument('--rankdir', help=('One of TB (top-bottom, i.e., vertical), ' 'RL (right-left, i.e., horizontal), or another' 'valid dot option; see' 'http://www.graphviz.org/doc/info/attrs.html#k:rankdir' '(default: LR)'), default='LR') args = parser.parse_args() return args def get_layer_type_name(layer_name): if type(layer_name) == int: if layer_name in Layer2Name: return Layer2Name[layer_name] else: return str(layer_name) else: return str(layer_name) def determine_edge_label_by_layertype(layer, layertype): """Define edge label based on layer type """ edge_label = '""' return edge_label def determine_node_label_by_layertype(layer, layertype, rankdir, need_details = True): """Define node label based on layer type """ if rankdir in ('TB', 'BT'): # If graph orientation is vertical, horizontal space is free and # vertical space is not; separate words with spaces separator = ' ' else: # If graph orientation is horizontal, vertical space is free and # horizontal space is not; separate words with newlines separator = '\n' node_label = '%s %s [%s] %s' % \ (layer["layer_name"], separator, get_layer_type_name(layer["layer_type"]), separator) if need_details: if layer["setting"] == None: layer["setting"] = {} node_label += separator.join(['%s: %s' % p for p in layer['setting'].items()]) node_label = '"%s"' % node_label return node_label def choose_color_by_layertype(layertype): """Define colors for nodes based on the layer type """ color = '#6495ED' # Default if layertype == 'Conv': color = '#FF5050' elif layertype == 'Embedding': color = '#FF9900' elif layertype == 'FullConnect': color = '#CC33FF' elif layertype == 'MaxPooling' or layertype == 'AvgPooling' or layertype == 'DynamicPooling': color = '#66CC66' elif layertype == 'Lstm' or layertype == 'Gru': color = '#B5E61D' return color def get_pydot_graph(text_net, rankdir, label_edges=True, need_details=True): pydot_graph = pydot.Dot(text_net["net_name"], graph_type='digraph', rankdir=rankdir) pydot_nodes = {} pydot_edges = [] for layer in text_net["layers"]: name = layer["layer_name"] # TODO - need convert to layer type name layertype = get_layer_type_name(layer["layer_type"]) node_label = determine_node_label_by_layertype(layer, layertype, rankdir, need_details) # set None to 0 list if layer["bottom_nodes"] == None: layer["bottom_nodes"] = [] if layer["top_nodes"] == None: layer["top_nodes"] = [] if (len(layer["bottom_nodes"]) == 1 and len(layer["top_nodes"]) == 1 and layer["bottom_nodes"][0] == layer["top_nodes"][0]): # We have an in-place neuron layer. pydot_nodes[name + '_' + layertype] = pydot.Node( node_label, **NEURON_LAYER_STYLE) else: layer_style = LAYER_STYLE_DEFAULT layer_style['fillcolor'] = choose_color_by_layertype(layertype) pydot_nodes[name + '_' + layertype] = pydot.Node( node_label, **layer_style) for bottom_node in layer["bottom_nodes"]: pydot_nodes[bottom_node + '_blob'] = pydot.Node( '%s' % (bottom_node), **BLOB_STYLE) edge_label = '""' pydot_edges.append({'src': bottom_node + '_blob', 'dst': name + '_' + layertype, 'label': edge_label}) for top_node in layer["top_nodes"]: pydot_nodes[top_node + '_blob'] = pydot.Node( '%s' % (top_node)) if label_edges: edge_label = determine_edge_label_by_layertype(layer, layertype) else: edge_label = '""' pydot_edges.append({'src': name + '_' + layertype, 'dst': top_node + '_blob', 'label': edge_label}) # Now, add the nodes and edges to the graph. for node in pydot_nodes.values(): pydot_graph.add_node(node) for edge in pydot_edges: pydot_graph.add_edge( pydot.Edge(pydot_nodes[edge['src']], pydot_nodes[edge['dst']], label=edge['label'])) return pydot_graph def draw_net(text_net, rankdir, ext='png', need_details=True): return get_pydot_graph(text_net, rankdir, False, need_details).create(format=ext) def draw_net_to_file(text_net, filename, rankdir='LR', need_details=True): ext = filename[filename.rfind('.')+1:] with open(filename, 'wb') as fid: fid.write(draw_net(text_net, rankdir, ext, need_details)) if __name__ == "__main__": args = parse_args() json_file = open(args.input_net_json_file) json_str = '' # Remove json comment comment_ptn = r"//.*" for line in json_file: line = re.sub(comment_ptn, '', line) json_str += line text_net = json.loads(json_str) print('Drawing net to %s' % args.output_image_file) need_details = True if args.details.lower() == 'true': need_details = True elif args.details.lower() == 'false': need_details = False draw_net_to_file(text_net, args.output_image_file, args.rankdir, need_details)
py
7dfcbb509cc379effee22d570c35dc6f355f88f1
# Copyright (c) 2021, Soohwan Kim. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class JasperEncoderConfig: def _init__(self) -> None: self.num_blocks = None self.num_sub_blocks = None self.preprocess_block = None self.block = None class Jasper10x5EncoderConfig(JasperEncoderConfig): def __init__(self, num_blocks: int, num_sub_blocks: int) -> None: super(JasperEncoderConfig, self).__init__() self.num_blocks = num_blocks self.num_sub_blocks = num_sub_blocks self.preprocess_block = { 'in_channels': 80, 'out_channels': 256, 'kernel_size': 11, 'stride': 2, 'dilation': 1, 'dropout_p': 0.2, } self.block = { 'in_channels': (256, 256, 256, 384, 384, 512, 512, 640, 640, 768), 'out_channels': (256, 256, 384, 384, 512, 512, 640, 640, 768, 768), 'kernel_size': (11, 11, 13, 13, 17, 17, 21, 21, 25, 25), 'dilation': [1] * 10, 'dropout_p': (0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.3), } class Jasper5x3EncoderConfig(JasperEncoderConfig): def __init__(self, num_blocks: int, num_sub_blocks: int) -> None: super(JasperEncoderConfig, self).__init__() self.num_blocks = num_blocks self.num_sub_blocks = num_sub_blocks self.preprocess_block = { 'in_channels': 80, 'out_channels': 256, 'kernel_size': 11, 'stride': 2, 'dilation': 1, 'dropout_p': 0.2, } self.block = { 'in_channels': (256, 256, 384, 512, 640), 'out_channels': (256, 384, 512, 640, 768), 'kernel_size': (11, 13, 17, 21, 25), 'dilation': [1] * 5, 'dropout_p': (0.2, 0.2, 0.2, 0.3, 0.3), } class JasperDecoderConfig: def __init__(self, num_classes: int) -> None: super(JasperDecoderConfig, self).__init__() self.num_classes = num_classes self.block = { 'in_channels': (768, 896, 1024), 'out_channels': (896, 1024, num_classes), 'kernel_size': (29, 1, 1), 'dilation': (2, 1, 1), 'dropout_p': (0.4, 0.4, 0.0) } from jasper.model import Jasper
py
7dfcbba664ae9128847ccb5e04f4c815307a1b35
################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # ################################################## import torch, copy, random import torch.utils.data as data class SearchDataset(data.Dataset): def __init__(self, name, data, train_split, valid_split, check=True): self.datasetname = name self.data = data self.train_split = train_split.copy() self.valid_split = valid_split.copy() print(len(train_split),len(valid_split)) if check: intersection = set(train_split).intersection(set(valid_split)) assert len(intersection) == 0, 'the splitted train and validation sets should have no intersection' self.length = len(self.train_split) def __repr__(self): return ('{name}(name={datasetname}, train={tr_L}, valid={val_L})'.format(name=self.__class__.__name__, datasetname=self.datasetname, tr_L=len(self.train_split), val_L=len(self.valid_split))) def __len__(self): return self.length def __getitem__(self, index): assert index >= 0 and index < self.length, 'invalid index = {:}'.format(index) train_index = self.train_split[index] valid_index = random.choice( self.valid_split ) train_image, train_label = self.data[train_index] valid_image, valid_label = self.data[valid_index] return train_image, train_label, valid_image, valid_label
py
7dfcbbc35d3bce78f3c739479b4013ee6f41ec16
import logging from flask_restful import Resource from mtv import model LOGGER = logging.getLogger(__name__) def get_dataset(dataset_doc): return { 'id': str(dataset_doc.id), 'insert_time': dataset_doc.insert_time.isoformat(), 'name': dataset_doc.name, 'entity_id': dataset_doc.entity_id } class Dataset(Resource): def get(self, dataset_name): """ @api {get} /datasets/:dataset_name/ Get dataset by name @apiName GetDataset @apiGroup Dataset @apiVersion 1.0.0 @apiParam {String} dataset_name Dataset name. @apiSuccess {String} id Dataset ID. @apiSuccess {String} insert_time Dataset creation time. @apiSuccess {String} name Dataset name. @apiSuccess {String} entity_id Dataset entity_id. """ document = model.Dataset.find_one(name=dataset_name) if document is None: LOGGER.exception('Error getting dataset. ' 'Dataset %s does not exist.', dataset_name) return { 'message': 'Dataset {} does not exist'.format(dataset_name) }, 400 try: res = get_dataset(document) except Exception as e: LOGGER.exception(e) return {'message': str(e)}, 500 else: return res class Datasets(Resource): def get(self): """ @api {get} /datasets/ Get datasets @apiName GetDatasets @apiGroup Dataset @apiVersion 1.0.0 @apiSuccess {Object[]} datasets Dataset list. @apiSuccess {String} datasets.id Dataset ID. @apiSuccess {String} datasets.insert_time Dataset creation time. @apiSuccess {String} datasets.name Dataset name. @apiSuccess {String} datasets.entity_id Dataset entity_id. """ documents = model.Dataset.find() try: datasets = [get_dataset(document) for document in documents] except Exception as e: LOGGER.exception(e) return {'message': str(e)}, 500 else: return {'datasets': datasets}
py
7dfcbc7767fb6f6729e2d9d4f43e95a29792fcda
from django.db import models from django.contrib.auth.models import AbstractUser, Group from django.contrib.contenttypes.fields import GenericForeignKey from django.contrib.contenttypes.models import ContentType from django.db.models.signals import post_save from django.dispatch import receiver class Organization(models.Model): code = models.CharField(max_length=10, unique=True) displayName = models.CharField(max_length=200) sn_name = models.CharField(max_length=200, null=True, blank=True) tm_name = models.CharField(max_length=200, null=True, blank=True) organization_type = models.CharField(max_length=50, null=True, blank=True) logo = models.FileField(upload_to='organization/', null=True, blank=True) created_date = models.DateTimeField(auto_now_add=True) def __str__(self): return '%s' % (self.displayName) class Division(models.Model): code = models.CharField(max_length=100) organization = models.ForeignKey(Organization, on_delete=models.DO_NOTHING) division_type = models.CharField(max_length=50) name = models.CharField(max_length=200) sn_name = models.CharField(max_length=200, null=True, blank=True) tm_name = models.CharField(max_length=200, null=True, blank=True) is_default_division = models.BooleanField(default=False) is_hq = models.BooleanField(default=False) created_date = models.DateTimeField(auto_now_add=True) def __str__(self): return '%s - %s: %s' % (self.organization, self.division_type, self.name) class UserLevel(models.Model): code = models.CharField(max_length=100) displayName = models.CharField(max_length=100) organization = models.ForeignKey(Organization, on_delete=models.DO_NOTHING) parent = models.ForeignKey('UserLevel', on_delete=models.DO_NOTHING, null=True, blank=True) role = models.ForeignKey(Group, on_delete=models.DO_NOTHING, null=True, blank=True) created_date = models.DateTimeField(auto_now_add=True) def __str__(self): return '%s: %s' % (self.organization, self.displayName) # custom user model class User(AbstractUser): id = models.BigAutoField(primary_key=True) class Profile(models.Model): id = models.BigAutoField(primary_key=True) user = models.OneToOneField(User, on_delete=models.CASCADE, related_name='profile') organization = models.ForeignKey(Organization, on_delete=models.DO_NOTHING, null=True, blank=True) division = models.ForeignKey(Division, on_delete=models.DO_NOTHING, null=True, blank=True) level = models.ForeignKey(UserLevel, on_delete=models.DO_NOTHING, null=True, blank=True) def __str__(self): return '%s' % (self.user) @receiver(post_save, sender=User) def create_user_profile(sender, **kwargs): user = kwargs['instance'] if hasattr(user, 'profile') and user.profile is not None: return profile = Profile() profile.user = user profile.save()
py
7dfcbd815fd05a5d1b34b9e53e2abda20546a018
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ Topic: 爬取链接的蜘蛛 Desc : """ import logging from coolscrapy.items import HuxiuItem import scrapy from scrapy.spiders import CrawlSpider, Rule from scrapy.linkextractors import LinkExtractor class CrawlSpider(CrawlSpider): name = "crawl" allowed_domains = ["huxiu.com"] start_urls = [ "http://www.huxiu.com/index.php" ] rules = ( # 提取匹配正则式'/group?f=index_group'链接 (但是不能匹配'deny.html') # 并且会递归爬取(如果没有定义callback,默认follow=True). Rule(LinkExtractor(allow=('/group?f=index_group', ), deny=('deny\.html', ))), # 提取匹配'/article/\d+/\d+.html'的链接,并使用parse_item来解析它们下载后的内容,不递归 Rule(LinkExtractor(allow=('/article/\d+/\d+\.html', )), callback='parse_item'), ) def parse_item(self, response): self.logger.info('Hi, this is an item page! %s', response.url) detail = response.xpath('//div[@class="article-wrap"]') item = HuxiuItem() item['title'] = detail.xpath('h1/text()')[0].extract() item['link'] = response.url item['published'] = detail.xpath( 'div[@class="article-author"]/span[@class="article-time"]/text()')[0].extract() logging.info(item['title'],item['link'],item['published']) yield item
py
7dfcbdac529221e2e1a79ff067cce04556df6fc7
from duckrun.process_result import ProcessResult import sys from io import StringIO import contextlib # source: https://stackoverflow.com/questions/3906232 @contextlib.contextmanager def stdoutIO(stdout=None): old = sys.stdout if stdout is None: stdout = StringIO() sys.stdout = stdout yield stdout sys.stdout = old class PyProcessor: def execute_process(self, generic_process): process_result = ProcessResult() generic_process.process_result = process_result with stdoutIO() as s: try: exec(generic_process.command_text) process_result.set_end_time() process_result.output = s.getvalue() except Exception as e: print("handled user python script exception", e) return process_result def __init__(self): pass
py
7dfcbe63c06761795a62e823fbb0edac10165987
import re from django import forms from django.utils.translation import ugettext_lazy as _ from computes.models import Compute class ComputeAddTcpForm(forms.Form): name = forms.CharField(error_messages={'required': _('No hostname has been entered')}, max_length=20) hostname = forms.CharField(error_messages={'required': _('No IP / Domain name has been entered')}, max_length=100) login = forms.CharField(error_messages={'required': _('No login has been entered')}, max_length=100) password = forms.CharField(error_messages={'required': _('No password has been entered')}, max_length=100) def clean_name(self): name = self.cleaned_data['name'] have_symbol = re.match('[^a-zA-Z0-9._-]+', name) if have_symbol: raise forms.ValidationError(_('The host name must not contain any special characters')) elif len(name) > 20: raise forms.ValidationError(_('The host name must not exceed 20 characters')) try: Compute.objects.get(name=name) except Compute.DoesNotExist: return name raise forms.ValidationError(_('This host is already connected')) def clean_hostname(self): hostname = self.cleaned_data['hostname'] have_symbol = re.match('[^a-z0-9.-]+', hostname) wrong_ip = re.match('^0.|^255.', hostname) if have_symbol: raise forms.ValidationError(_('Hostname must contain only numbers, or the domain name separated by "."')) elif wrong_ip: raise forms.ValidationError(_('Wrong IP address')) try: Compute.objects.get(hostname=hostname) except Compute.DoesNotExist: return hostname raise forms.ValidationError(_('This host is already connected')) class ComputeAddSshForm(forms.Form): name = forms.CharField(error_messages={'required': _('No hostname has been entered')}, max_length=20) hostname = forms.CharField(error_messages={'required': _('No IP / Domain name has been entered')}, max_length=100) login = forms.CharField(error_messages={'required': _('No login has been entered')}, max_length=20) def clean_name(self): name = self.cleaned_data['name'] have_symbol = re.match('[^a-zA-Z0-9._-]+', name) if have_symbol: raise forms.ValidationError(_('The name of the host must not contain any special characters')) elif len(name) > 20: raise forms.ValidationError(_('The name of the host must not exceed 20 characters')) try: Compute.objects.get(name=name) except Compute.DoesNotExist: return name raise forms.ValidationError(_('This host is already connected')) def clean_hostname(self): hostname = self.cleaned_data['hostname'] have_symbol = re.match('[^a-zA-Z0-9._-]+', hostname) wrong_ip = re.match('^0.|^255.', hostname) if have_symbol: raise forms.ValidationError(_('Hostname must contain only numbers, or the domain name separated by "."')) elif wrong_ip: raise forms.ValidationError(_('Wrong IP address')) try: Compute.objects.get(hostname=hostname) except Compute.DoesNotExist: return hostname raise forms.ValidationError(_('This host is already connected')) class ComputeAddTlsForm(forms.Form): name = forms.CharField(error_messages={'required': _('No hostname has been entered')}, max_length=20) hostname = forms.CharField(error_messages={'required': _('No IP / Domain name has been entered')}, max_length=100) login = forms.CharField(error_messages={'required': _('No login has been entered')}, max_length=100) password = forms.CharField(error_messages={'required': _('No password has been entered')}, max_length=100) def clean_name(self): name = self.cleaned_data['name'] have_symbol = re.match('[^a-zA-Z0-9._-]+', name) if have_symbol: raise forms.ValidationError(_('The host name must not contain any special characters')) elif len(name) > 20: raise forms.ValidationError(_('The host name must not exceed 20 characters')) try: Compute.objects.get(name=name) except Compute.DoesNotExist: return name raise forms.ValidationError(_('This host is already connected')) def clean_hostname(self): hostname = self.cleaned_data['hostname'] have_symbol = re.match('[^a-z0-9.-]+', hostname) wrong_ip = re.match('^0.|^255.', hostname) if have_symbol: raise forms.ValidationError(_('Hostname must contain only numbers, or the domain name separated by "."')) elif wrong_ip: raise forms.ValidationError(_('Wrong IP address')) try: Compute.objects.get(hostname=hostname) except Compute.DoesNotExist: return hostname raise forms.ValidationError(_('This host is already connected')) class ComputeEditHostForm(forms.Form): host_id = forms.CharField() name = forms.CharField(error_messages={'required': _('No hostname has been entered')}, max_length=20) hostname = forms.CharField(error_messages={'required': _('No IP / Domain name has been entered')}, max_length=100) login = forms.CharField(error_messages={'required': _('No login has been entered')}, max_length=100) password = forms.CharField(max_length=100) def clean_name(self): name = self.cleaned_data['name'] have_symbol = re.match('[^a-zA-Z0-9._-]+', name) if have_symbol: raise forms.ValidationError(_('The name of the host must not contain any special characters')) elif len(name) > 20: raise forms.ValidationError(_('The name of the host must not exceed 20 characters')) return name def clean_hostname(self): hostname = self.cleaned_data['hostname'] have_symbol = re.match('[^a-zA-Z0-9._-]+', hostname) wrong_ip = re.match('^0.|^255.', hostname) if have_symbol: raise forms.ValidationError(_('Hostname must contain only numbers, or the domain name separated by "."')) elif wrong_ip: raise forms.ValidationError(_('Wrong IP address')) return hostname class ComputeAddSocketForm(forms.Form): name = forms.CharField(error_messages={'required': _('No hostname has been entered')}, max_length=20) details = forms.CharField(error_messages={'required': _('No details has been entred')}, max_length=50) def clean_name(self): name = self.cleaned_data['name'] have_symbol = re.match('[^a-zA-Z0-9._-]+', name) if have_symbol: raise forms.ValidationError(_('The host name must not contain any special characters')) elif len(name) > 20: raise forms.ValidationError(_('The host name must not exceed 20 characters')) try: Compute.objects.get(name=name) except Compute.DoesNotExist: return name raise forms.ValidationError(_('This host is already connected'))
py
7dfcbf2fdcba38c8f9d1430415a95507defaa0be
# importing "collections" for namedtuple() from collections import namedtuple # Declaring namedtuple() Student = namedtuple('Student',['name','age','DOB']) # Adding values S = Student('Nancy','19','2541997') # using _fields to display all the keynames of namedtuple() print ("All the fields of students are : ") print (S._fields) # using _replace() to change the attribute values of namedtuple print ("The modified namedtuple is : ") print(S._replace(name = 'Nick'))
py
7dfcbf70a030a2f66d262d99a6dda35e799e134c
#! /usr/bin/env python # -*- coding: utf-8 -*- # # vim: fenc=utf-8 # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # # """ File name: math.py Version: 0.1 Author: dhilipsiva <[email protected]> Date created: 2015-06-09 """ __author__ = "dhilipsiva" __status__ = "development" """ """ def add(num1, num2): """ docstring for add """ return num1 + num1
py
7dfcc04956b3c176acddbdee39d03480975cb82d
from urllib.parse import urljoin import threading import webbrowser import http.server from typing import Tuple ADDRESS : Tuple[str, int] = ('127.0.0.1', 8137) def start_daemon(doc_root : str) -> None: class Handler(http.server.SimpleHTTPRequestHandler): def __init__(self, *args, **kwargs) -> None: kwargs['directory'] = doc_root http.server.SimpleHTTPRequestHandler.__init__(self, *args, **kwargs) httpd = http.server.HTTPServer(ADDRESS, Handler) thread = threading.Thread(target=httpd.serve_forever, daemon=True) thread.start() # TODO: try several ports in case the user runs several instances of Prest def open_in_browser(rel_url : str) -> None: host, port = ADDRESS url = urljoin(f'http://{host}:{port}/', rel_url) webbrowser.open(url, new=2, autoraise=True) # new=2 -> new tab
py
7dfcc1cebf1626c735a0dcd277038b8dd55cc3ef
"""Group (a.k.a Classroom) management.""" import base64 import csv import io import string import api from api import ( block_before_competition, check_csrf, PicoException, rate_limit, require_login, require_teacher, ) from bs4 import UnicodeDammit from flask import jsonify from flask_restplus import Namespace, Resource from marshmallow import ( fields, post_load, pre_load, RAISE, Schema, validate, validates_schema, ValidationError, ) from .schemas import ( batch_registration_req, group_invite_req, group_modify_team_req, group_patch_req, group_req, score_progressions_req, scoreboard_page_req, ) ns = Namespace("groups", description="Group management") @ns.route("") class GroupList(Resource): """Get the list of your groups, or create a new group.""" @require_login @ns.response(200, "Success") @ns.response(401, "Not logged in") def get(self): """Get the groups of which you are a member.""" curr_tid = api.user.get_user()["tid"] return jsonify(api.team.get_groups(curr_tid)) @check_csrf @require_teacher @rate_limit(limit=20, duration=10) @ns.response(201, "Classroom added") @ns.response(400, "Error parsing request") @ns.response(401, "Not logged in") @ns.response( 403, "You do not have permission to create a classroom " + "or CSRF token invalid", ) @ns.response(409, "You already have a classroom with that name") @ns.response(429, "Too many requests, slow down!") @ns.expect(group_req) def post(self): """Create a new group.""" req = group_req.parse_args(strict=True) req["name"] = req["name"].strip() curr_user = api.user.get_user() # Don't create group if teacher already has one with same name if ( api.group.get_group(name=req["name"], owner_tid=curr_user["tid"]) is not None ): raise PicoException("You already have a classroom with that name", 409) if not all( [ c in string.digits + string.ascii_lowercase + " ()-,#'&" for c in req["name"].lower() ] ): raise PicoException( "Classroom names cannot contain special characters other " + "than ()-,#'&", status_code=400, ) # Make sure this teacher hasn't already created the max no. of groups db = api.db.get_conn() created_group_count = db.groups.count_documents({"owner": curr_user["tid"]}) settings = api.config.get_settings() if created_group_count >= settings["group_limit"] and not curr_user.get( "admin", False ): raise PicoException( "You have created the maximum number of classrooms. " + "Please contact an administrator for assistance.", status_code=403, ) gid = api.group.create_group(curr_user["tid"], req["name"]) res = jsonify({"success": True, "gid": gid}) res.status_code = 201 return res @ns.response(200, "Success") @ns.response(401, "Not logged in") @ns.response(403, "Permission denied") @ns.response(404, "Classroom not found") @ns.route("/<string:group_id>") class Group(Resource): """Get a specific group.""" def get(self, group_id): """Get a specific group.""" group = api.group.get_group(gid=group_id) if not group: raise PicoException("Classroom not found", 404) group_members = [group["owner"]] + group["members"] + group["teachers"] group_teachers = [group["owner"]] + group["teachers"] if not api.user.is_logged_in(): # Return group name and settings even if not a member. # Used for group invite links. return jsonify({"name": group["name"], "settings": group["settings"]}) curr_user = api.user.get_user() if curr_user["tid"] not in group_members and not curr_user["admin"]: return jsonify({"name": group["name"], "settings": group["settings"]}) # Replace the team ids with full team objects if teacher, else remove if curr_user["tid"] in group_teachers: full_teachers = [] for tid in group["teachers"]: full_teachers.append(api.team.get_team_information(tid)) group["teachers"] = full_teachers full_members = [] for tid in group["members"]: full_members.append(api.team.get_team_information(tid)) group["members"] = full_members else: group.pop("teachers") group.pop("members") return jsonify(group) @ns.response(400, "Error parsing request") @ns.response(403, "CSRF token incorrect") @ns.response(422, "Cannot make a previously hidden classroom public") @ns.expect(group_patch_req) def patch(self, group_id): """Modify a group's settings (other fields are not available).""" req = group_patch_req.parse_args(strict=True) group = api.group.get_group(gid=group_id) if not group: raise PicoException("Classroom not found", 404) curr_user = api.user.get_user() if ( curr_user["tid"] not in ([group["owner"]] + group["teachers"]) and not curr_user["admin"] ): raise PicoException( "You do not have permission to modify this classroom.", 403 ) api.group.change_group_settings(group_id, req["settings"]) return jsonify({"success": True}) @check_csrf def delete(self, group_id): """Delete a group. Must be the owner of the group.""" group = api.group.get_group(gid=group_id) if not group: raise PicoException("Classroom not found", 404) curr_user = api.user.get_user() if curr_user["tid"] != group["owner"] and not curr_user["admin"]: raise PicoException( "You do not have permission to delete this classroom.", 403 ) tids_in_group = set() tids_in_group.update(group["members"]) tids_in_group.update(group["teachers"]) tids_in_group.add(group["owner"]) for tid in tids_in_group: api.cache.invalidate(api.team.get_groups, tid) api.group.delete_group(group_id) return jsonify({"success": True}) @ns.response(200, "Success") @ns.response(401, "Not logged in") @ns.response(403, "Permission denied or CSRF token invalid") @ns.response(404, "Classroom not found") @ns.response(422, "Specified team is not a member of the classroom") @ns.route("/<string:group_id>/elevate_team") class ElevateTeamResponse(Resource): """Elevate a team the teacher role within a group.""" @check_csrf @require_login @ns.expect(group_modify_team_req) def post(self, group_id): """ Elevate a specified team within a group to the teacher role. Requires teacher role within the group. """ req = group_modify_team_req.parse_args(strict=True) group = api.group.get_group(group_id) if not group: raise PicoException("Classroom not found", 404) group_teachers = [group["owner"]] + group["teachers"] eligible_for_elevation = group["members"] curr_tid = api.user.get_user()["tid"] # Ensure the current user has a teacher role within the group if curr_tid not in group_teachers: raise PicoException( "You must be a teacher in this classroom to remove a team.", status_code=403, ) # Ensure the specified tid is eligible for elevation if req["team_id"] not in eligible_for_elevation: raise PicoException( "Team is not eligible for elevation to teacher role", status_code=422 ) api.group.elevate_team(group_id, req["team_id"]) return jsonify({"success": True}) @ns.response(200, "Success") @ns.response(401, "Not logged in") @ns.response(403, "Permission denied or CSRF token invalid") @ns.response(404, "Classroom not found") @ns.response(422, "Specified team is not a member of the classroom") @ns.route("/<string:group_id>/remove_team") class RemoveTeamResponse(Resource): """ Remove a team from a group. If the specified team is not your own, requires teacher role within the group. """ @check_csrf @require_login def get(self, group_id): """Remove your own team from this group.""" group = api.group.get_group(group_id) if not group: raise PicoException("Classroom not found", 404) eligible_for_removal = group["members"] + group["teachers"] curr_tid = api.user.get_user()["tid"] if curr_tid not in eligible_for_removal: raise PicoException( "Team is not eligible for removal from this classroom", status_code=422 ) api.group.leave_group(group_id, curr_tid) return jsonify({"success": True}) @check_csrf @require_login @ns.expect(group_modify_team_req) def post(self, group_id): """ Remove a specified team from a group. Requires teacher role within the group. """ req = group_modify_team_req.parse_args(strict=True) group = api.group.get_group(group_id) if not group: raise PicoException("Classroom not found", 404) group_teachers = [group["owner"]] + group["teachers"] eligible_for_removal = group["members"] + group["teachers"] curr_tid = api.user.get_user()["tid"] # Ensure the user has a teacher role within the group if curr_tid not in group_teachers: raise PicoException( "You must be a teacher in this classroom to remove a team.", status_code=403, ) # Ensure the specified tid is a member of the group if req["team_id"] not in eligible_for_removal: raise PicoException( "Team is not eligible for removal from this classroom", status_code=422 ) api.group.leave_group(group_id, req["team_id"]) return jsonify({"success": True}) @ns.response(200, "Success") @ns.response(401, "Not logged in") @ns.response(403, "Permission denied") @ns.response(404, "Classroom not found") @ns.route("/<string:group_id>/invite") class InviteResponse(Resource): """Send an email invite to join this group.""" @rate_limit(limit=1, duration=30) @ns.response(429, "Too many requests, slow down!") @ns.expect(group_invite_req) def post(self, group_id): """Send an email invite to join this group.""" req = group_invite_req.parse_args(strict=True) group = api.group.get_group(gid=group_id) if not group: raise PicoException("Classroom not found", 404) curr_user = api.user.get_user() if ( curr_user["tid"] not in (group["teachers"] + [group["owner"]]) and not curr_user["admin"] ): raise PicoException( "You do not have permission to invite members to " + "this classroom.", status_code=403, ) api.email.send_email_invite(group_id, req["email"], req["as_teacher"]) return jsonify({"success": True}) @ns.route("/<string:group_id>/batch_registration") class BatchRegistrationResponse(Resource): """ Register multiple student accounts and assign them to this group. Demographics for the registered accounts are provided via CSV upload. """ @rate_limit(limit=1, duration=30) @ns.response(200, "Success") @ns.response(400, "Error parsing CSV") @ns.response(401, "Not logged in") @ns.response(403, "Permission denied") @ns.response(404, "Classroom not found") @ns.response(429, "Too many requests, slow down!") @ns.expect(batch_registration_req) def post(self, group_id): """Automatically registers several student accounts based on a CSV.""" group = api.group.get_group(gid=group_id) if not group: raise PicoException("Classroom not found", 404) curr_user = api.user.get_user() if ( curr_user["tid"] not in (group["teachers"] + [group["owner"]]) and not curr_user["admin"] ): raise PicoException( "You do not have permission to batch-register students into " + "this classroom.", status_code=403, ) # Load in student demographics from CSV req = batch_registration_req.parse_args(strict=True) students = [] unicoded_csv = UnicodeDammit(req["csv"].read()) # Forcibly unicodify csv_reader = csv.DictReader(unicoded_csv.unicode_markup.split("\n")) try: for row in csv_reader: row = {k: v.strip() for k, v in row.items()} # Trim whitespace students.append(row) except csv.Error as e: raise PicoException( f"Error reading CSV at line {csv_reader.line_num}: {e}", status_code=400 ) # Check whether registering these students would exceed maximum # batch registrations per teacher account config = api.config.get_settings() teacher_metadata = api.token.find_key({"uid": api.user.get_user()["uid"]}) if not teacher_metadata: existing_batch_count = 0 else: existing_batch_count = teacher_metadata.get("tokens", {}).get( "batch_registered_students", 0 ) potential_batch_count = existing_batch_count + len(students) if potential_batch_count > config["max_batch_registrations"]: raise PicoException( "You have exceeded the maximum number of batch-registered " + "student accounts. Please contact an administrator.", 403, ) # Validate demographics def validate_current_year(s): try: n = int(s) if not (1 <= n <= 12): raise ValueError except ValueError: raise ValidationError(f"Grade must be between 1 and 12 (provided {s})") class BatchRegistrationUserSchema(Schema): # Convert empty strings to Nones when doing validation # to allow optional parent_email value for age 18+, # but back to '' before storing in database. @pre_load def empty_to_none(self, in_data, **kwargs): for k, v in in_data.items(): if v == "": in_data[k] = None return in_data @post_load def none_to_empty(self, in_data, **kwargs): for k, v in in_data.items(): if v is None: in_data[k] = "" return in_data current_year = fields.Str( data_key="Grade (1-12)", required=True, validate=validate_current_year ) age = fields.Str( data_key="Age (13-17 or 18+)", required=True, validate=validate.OneOf(choices=["13-17", "18+"]), ) gender = fields.Str( data_key="Gender", required=False, allow_none=True, validate=validate.OneOf( ["male", "female", "nb/gf", "nl/no"], [ "Male", "Female", "Non-Binary/Gender-Fluid", "Not listed/Prefer not to answer", ], error="If specified, must be one of {labels}. Please use " "the corresponding code from: {choices}.", ), ) parent_email = fields.Email( data_key="Parent Email (if under 18)", required=True, allow_none=True ) @validates_schema def validate_parent_email(self, data, **kwargs): if data["age"] == "13-17" and data["parent_email"] is None: raise ValidationError( "Parent email must be specified for students under 18" ) try: students = BatchRegistrationUserSchema().load( students, many=True, unknown=RAISE ) except ValidationError as err: raise PicoException(err.messages, status_code=400) # Batch-register accounts curr_teacher = api.user.get_user() created_accounts = api.group.batch_register(students, curr_teacher, group_id) if len(created_accounts) != len(students): raise PicoException( "An error occurred while adding student accounts. " + f"The first {len(created_accounts)} were created. " + "Please contact an administrator." ) output = [] for i in range(len(students)): output.append( { "Grade (1-12)": students[i]["current_year"], "Age (13-17 or 18+)": students[i]["age"], "Gender": students[i]["gender"], "Parent Email (if under 18)": students[i]["parent_email"], "Username": created_accounts[i]["username"], "Password": created_accounts[i]["password"], } ) buffer = io.StringIO() csv_writer = csv.DictWriter( buffer, [ "Grade (1-12)", "Age (13-17 or 18+)", "Gender", "Parent Email (if under 18)", "Username", "Password", ], ) csv_writer.writeheader() csv_writer.writerows(output) output_csv_bytes = buffer.getvalue().encode("utf-8") return jsonify( { "success": True, "accounts": created_accounts, "as_csv": base64.b64encode(output_csv_bytes).decode("utf-8"), } ) @ns.route("/<string:group_id>/scoreboard") class ScoreboardPage(Resource): """ Get a scoreboard page for a group. If a page is not specified, will attempt to return the page containing the current team, falling back to the first page if neccessary. """ @block_before_competition @ns.response(200, "Success") @ns.response(403, "Permission denied") @ns.response(404, "Classroom not found") @ns.response(422, "Competition has not started") @ns.expect(scoreboard_page_req) def get(self, group_id): """Retrieve a scoreboard page for a group.""" group = api.group.get_group(gid=group_id) if not group: raise PicoException("Classroom not found", 404) group_members = [group["owner"]] + group["members"] + group["teachers"] curr_user = api.user.get_user() if not curr_user or ( curr_user["tid"] not in group_members and not curr_user["admin"] ): raise PicoException( "You do not have permission to " + "view this classroom's scoreboard.", 403, ) req = scoreboard_page_req.parse_args(strict=True) if req["search"] is not None: page = api.stats.get_filtered_scoreboard_page( {"group_id": group_id}, req["search"], req["page"] or 1 ) else: page = api.stats.get_scoreboard_page({"group_id": group_id}, req["page"]) return jsonify( {"scoreboard": page[0], "current_page": page[1], "total_pages": page[2]} ) @ns.route("/<string:group_id>/score_progressions") class ScoreProgressionsResult(Resource): """Get a list of score progressions for the top n teams in a group.""" @block_before_competition @ns.response(200, "Success") @ns.response(403, "Permission denied") @ns.response(404, "Classroom not found") @ns.response(422, "Competition has not started") @ns.expect(score_progressions_req) def get(self, group_id): """Get a list of teams' score progressions.""" req = score_progressions_req.parse_args(strict=True) group = api.group.get_group(gid=group_id) if not group: raise PicoException("Classroom not found", 404) group_members = [group["owner"]] + group["members"] + group["teachers"] if not api.user.is_logged_in() or ( api.user.get_user()["tid"] not in group_members and not api.user.get_user()["admin"] ): raise PicoException( "You do not have permission to view this " + "classroom's score progressions.", 403, ) if req["limit"] and ( not api.user.is_logged_in() or not api.user.get_user()["admin"] ): raise PicoException("Must be admin to specify limit", 403) return jsonify( api.stats.get_top_teams_score_progressions( limit=(req["limit"] or 5), group_id=group_id ) )
py
7dfcc20494bd9604f1b591f4c4fbf34ca60a013b
import sys import os import platform import fnmatch import setuptools with open("README.md", "r", encoding='utf-8') as fh: long_description = fh.read() # Replace relative image path with github-hosted one long_description = long_description.replace( "docs/img/overview.svg", "https://raw.githubusercontent.com/SystemRDL/systemrdl-compiler/master/docs/img/overview.svg?sanitize=true" ) with open(os.path.join("systemrdl", "__about__.py"), encoding='utf-8') as f: v_dict = {} exec(f.read(), v_dict) rdl_version = v_dict['__version__'] target = platform.system().lower() PLATFORMS = {'windows', 'linux', 'darwin', 'cygwin'} for known in PLATFORMS: if target.startswith(known): target = known def run_setup(with_binary): if with_binary: extra_compile_args = { 'windows': ['/DANTLR4CPP_STATIC', '/Zc:__cplusplus'], 'linux': ['-std=c++11'], 'darwin': ['-std=c++11'], 'cygwin': ['-std=c++11'], } # Define an Extension object that describes the Antlr accelerator parser_ext = setuptools.Extension( name='systemrdl.parser.sa_systemrdl_cpp_parser', # Add the Antlr runtime source directory to the include search path include_dirs=["systemrdl/parser/ext/antlr4-cpp-runtime"], # Rather than listing each C++ file (Antlr has a lot!), discover them automatically sources=get_files("systemrdl/parser/ext", "*.cpp"), depends=get_files("systemrdl/parser/ext", "*.h"), extra_compile_args=extra_compile_args.get(target, []) ) ext_modules = [parser_ext] else: ext_modules = [] setuptools.setup( name="systemrdl-compiler", version=rdl_version, author="Alex Mykyta", author_email="[email protected]", description="Parse and elaborate front-end for SystemRDL 2.0", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/SystemRDL/systemrdl-compiler", packages=setuptools.find_packages(exclude=["test"]), include_package_data=True, ext_modules=ext_modules, cmdclass={"build_ext": ve_build_ext}, python_requires='>=3.5.2', install_requires=[ "antlr4-python3-runtime >= 4.9, < 4.10", "colorama", "markdown", ], classifiers=( "Development Status :: 5 - Production/Stable", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3 :: Only", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Topic :: Scientific/Engineering :: Electronic Design Automation (EDA)", "Topic :: Software Development :: Compilers", "Topic :: Software Development :: Code Generators", ), project_urls={ "Documentation": "http://systemrdl-compiler.readthedocs.io", "Source": "https://github.com/SystemRDL/systemrdl-compiler", "Tracker": "https://github.com/SystemRDL/systemrdl-compiler/issues", }, ) #=============================================================================== from setuptools.command.build_ext import build_ext from distutils.errors import CCompilerError, DistutilsExecError, DistutilsPlatformError def get_files(path, pattern): """ Recursive file search that is compatible with python3.4 and older """ matches = [] for root, _, filenames in os.walk(path): for filename in fnmatch.filter(filenames, pattern): matches.append(os.path.join(root, filename)) return matches class BuildFailed(Exception): pass class ve_build_ext(build_ext): """ This class extends setuptools to fail with a common BuildFailed exception if a build fails """ def run(self): try: build_ext.run(self) except DistutilsPlatformError: raise BuildFailed() def build_extension(self, ext): try: build_ext.build_extension(self, ext) except (CCompilerError, DistutilsExecError, DistutilsPlatformError): raise BuildFailed() except ValueError: # this can happen on Windows 64 bit, see Python issue 7511 if "'path'" in str(sys.exc_info()[1]): # works with Python 2 and 3 raise BuildFailed() raise # Detect if an alternate interpreter is being used is_jython = "java" in sys.platform is_pypy = hasattr(sys, "pypy_version_info") # Force using fallback if using an alternate interpreter using_fallback = is_jython or is_pypy if not using_fallback: try: run_setup(with_binary=True) except BuildFailed: if 'SYSTEMRDL_REQUIRE_BINARY_BUILD' in os.environ: # Force failure if binary build is required raise else: using_fallback = True if using_fallback: run_setup(with_binary=False)
py
7dfcc25becdc58a7a3ab5587d7999c095c2f0644
#!/usr/bin/env python2 # # from gppylib.testold.testDriver import TestDriver from gppylib.programs.clsRecoverSegment import * from gppylib.operations.buildMirrorSegments import * from gppylib.mainUtils import * from gppylib.testold.testUtils import * from gppylib.system import fileSystemImplTest, fileSystemInterface from gppylib.gplog import get_default_logger programName = sys.argv[0] parserFn = GpRecoverSegmentProgram.createParser commandFn = GpRecoverSegmentProgram.createProgram driver = TestDriver() logger = get_default_logger() ############### # # Now the tests: # #################################### # # def testPortAssigner(args): driver.initTwoSegmentOneFailedMirrorConfiguration() confProvider = configInterface.getConfigurationProvider().initializeProvider(5432) gpArray = confProvider.loadSystemConfig(useUtilityMode=False) masterSeg = [seg for seg in gpArray.getDbList() if not seg.isSegmentQE()][0] masterSeg.setSegmentPort(35001) # to make sure master is avoided when assigning ports masterSeg.setSegmentHostName("first-host") # to make sure master is avoided when assigning ports portAssigner = PortAssigner(gpArray) testOutput("") for (host, replPortOrRegular) in args: testOutput( portAssigner.findAndReservePort(replPortOrRegular, host, host)) testOutput("") simple_test("testPortAssigner_0", testPortAssigner, [ ("first-host", True), ("first-host", True), ("first-host", True), ("first-host", False), ("first-host", True), ("first-host", False), ], """ 35002 35003 35004 30001 35005 30002 """ ) simple_test("testPortAssigner_0", testPortAssigner, [ ("first-host", True), ("second-host", True), ("third-host", True), ("fourth-host", True), ("fifth-host", True), ("sixth-host", True), ("fourth-host", True), ("fifth-host", True), ("sixth-host", True), ], """ 35002 35003 35001 35001 35001 35001 35002 35002 35002 """ ) # # Test that recovering from a config file that tells us to recover something that can't be recovered fails # def testRecoverFromConfigFileChecksWhetherRecoveryIsPossible(args): driver.initTwoSegmentOneFailedMirrorConfiguration() confProvider = configInterface.getConfigurationProvider().initializeProvider(5432) gpArray = confProvider.loadSystemConfig(useUtilityMode=False) seg = recoverFrom = None if args[0] == 0: seg = [seg for seg in gpArray.getSegDbList() if seg.isSegmentUp()][0] elif args[0] == 1: seg = [seg for seg in gpArray.getSegDbList() if seg.isSegmentPrimary(current_role=True)][0] seg.setSegmentStatus(gparray.STATUS_DOWN) elif args[0] == 2: seg = [seg for seg in gpArray.getDbList() if not seg.isSegmentQE()][0] recoverFrom = seg # dummy just to get further along if recoverFrom is None: recoverFrom = gpArray.getDbIdToPeerMap()[seg.getSegmentDbId()] try: toBuild = [GpMirrorToBuild(seg, recoverFrom, None, False)] mirrorBuilder = GpMirrorListToBuild(toBuild, pool=None, quiet=False, parallelDegree=1) except Exception, e: testOutput("Validation Error: %s" % e) simple_test("testRecoverFromConfigFileChecksWhetherRecoveryIsPossible_0", testRecoverFromConfigFileChecksWhetherRecoveryIsPossible, [0], """Validation Error: Segment to recover from for content 0 is not a primary""" ) simple_test("testRecoverFromConfigFileChecksWhetherRecoveryIsPossible_1", testRecoverFromConfigFileChecksWhetherRecoveryIsPossible, [1], """Validation Error: Segment to recover from for content 0 is not a primary""" ) simple_test("testRecoverFromConfigFileChecksWhetherRecoveryIsPossible_2", testRecoverFromConfigFileChecksWhetherRecoveryIsPossible, [2], """Validation Error: Segment to recover from for content -1 is not a correct segment (it is a master or standby master)""" ) def testRecoveryWarningsWhenRecoveringToSameHost(args): """ Test the function that checks for recovering so that a mirror and primary are on the same machine """ driver.initTwoSegmentOneFailedMirrorConfiguration() confProvider = configInterface.getConfigurationProvider().initializeProvider(5432) gpArray = confProvider.loadSystemConfig(useUtilityMode=False) toBuild = [] if args[0] == 0: pass elif args[0] == 1: seg = [seg for seg in gpArray.getSegDbList() if not seg.isSegmentUp()][0] recoverFrom = gpArray.getDbIdToPeerMap()[seg.getSegmentDbId()] failoverTarget = seg.copy() failoverTarget.setSegmentAddress("different-address") failoverTarget.setSegmentHostName(recoverFrom.getSegmentHostName()) toBuild.append(GpMirrorToBuild(seg, recoverFrom, failoverTarget, False)) else: raise Exception("invalid test option") mirrorBuilder = GpMirrorListToBuild(toBuild, pool=None, quiet=False, parallelDegree=1) program = GpRecoverSegmentProgram({}) warnings = program._getRecoveryWarnings(mirrorBuilder) if warnings: for w in warnings: testOutput(w) else: testOutput("No warnings") simple_test("testRecoveryWarningsWhenRecoveringToSameHost_0", testRecoveryWarningsWhenRecoveringToSameHost, [0], """No warnings""" ) simple_test("testRecoveryWarningsWhenRecoveringToSameHost_1", testRecoveryWarningsWhenRecoveringToSameHost, [1], """Segment is being recovered to the same host as its primary: primary second-host:/second/datadirpathdbfast2/gp1 failover target: different-address:/datadirpathdbfast4/gp1""" ) # All done tests printTestResults()
py
7dfcc32592c586db28cca4257fb83e127e6442bd
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MeltingPotEnv as a MultiAgentEnv wrapper to interface with RLLib.""" import dm_env import dmlab2d from gym import spaces import numpy as np from ray.rllib.env import multi_agent_env import tree PLAYER_STR_FORMAT = "player_{index}" def _timestep_to_observations(timestep: dm_env.TimeStep): gym_observations = {} for index, observation in enumerate(timestep.observation): gym_observations[PLAYER_STR_FORMAT.format(index=index)] = { key: value for key, value in observation.items() if "WORLD" not in key } return gym_observations def _remove_world_observations_from_space(observation: spaces.Dict) -> spaces.Dict: return spaces.Dict( {key: observation[key] for key in observation if "WORLD" not in key} ) def _spec_to_space(spec: tree.Structure[dm_env.specs.Array]) -> spaces.Space: """Converts a dm_env nested structure of specs to a Gym Space. BoundedArray is converted to Box Gym spaces. DiscreteArray is converted to Discrete Gym spaces. Using Tuple and Dict spaces recursively as needed. Args: spec: The nested structure of specs Returns: The Gym space corresponding to the given spec. """ if isinstance(spec, dm_env.specs.DiscreteArray): return spaces.Discrete(spec.num_values) elif isinstance(spec, dm_env.specs.BoundedArray): return spaces.Box(spec.minimum, spec.maximum, spec.shape, spec.dtype) elif isinstance(spec, dm_env.specs.Array): if np.issubdtype(spec.dtype, np.floating): info = np.finfo(spec.dtype) else: info = np.iinfo(spec.dtype) return spaces.Box(info.min, info.max, spec.shape, spec.dtype) elif isinstance(spec, (list, tuple)): return spaces.Tuple([_spec_to_space(s) for s in spec]) elif isinstance(spec, dict): return spaces.Dict({key: _spec_to_space(s) for key, s in spec.items()}) else: raise ValueError("Unexpected spec: {}".format(spec)) class MeltingPotEnv(multi_agent_env.MultiAgentEnv): """An adapter between the Melting Pot substrates and RLLib MultiAgentEnv.""" def __init__(self, env: dmlab2d.Environment): self._env = env self._num_players = len(self._env.observation_spec()) def reset(self): """See base class.""" timestep = self._env.reset() return _timestep_to_observations(timestep) def step(self, action): """See base class.""" actions = [ action[PLAYER_STR_FORMAT.format(index=index)] for index in range(self._num_players) ] timestep = self._env.step(actions) rewards = { PLAYER_STR_FORMAT.format(index=index): timestep.reward[index] for index in range(self._num_players) } done = {"__all__": True if timestep.last() else False} info = {} observations = _timestep_to_observations(timestep) return observations, rewards, done, info def close(self): """See base class.""" self._env.close() def single_player_observation_space(self) -> spaces.Space: """The observation space for a single player in this environment.""" return _remove_world_observations_from_space( _spec_to_space(self._env.observation_spec()[0]) ) def single_player_action_space(self): """The action space for a single player in this environment.""" return _spec_to_space(self._env.action_spec()[0])
py
7dfcc338b7e591d0a3d24d7340d2c9417530f983
import getopt import logging import os import sys import time from app.hello import __version__ from app.hello.hello_cfg import HelloConfig from base.data_source_config import DataSourceConfig from base.log_handle import LogHandle from component.table_user import TableUser from dao.dao_user import DaoUser def parse_args(): if len(sys.argv) == 2 and \ (sys.argv[1] == "--version" or sys.argv[1] == "-v"): print("{}".format(__version__.__version__)) sys.exit(0) opts, args = getopt.getopt(sys.argv[1:], "f:", ["config"]) config_file = None for opt, arg in opts: if opt in ("-f", "--config"): config_file = arg if config_file is None: print("usage: {} -f config_file".format(sys.argv[0])) sys.exit(1) return config_file def new_users(source, batch): """ 插入测试用户 :param source: :param batch: :return: """ users = [ DaoUser(name="foo0", user_type=1, status=1), DaoUser(name="foo1", user_type=1, status=1), DaoUser(name="foo2", user_type=1, status=1), DaoUser(name="foo3", user_type=1, status=1), DaoUser(name="foo4", user_type=1, status=1), DaoUser(name="foo5", user_type=1, status=1), DaoUser(name="foo6", user_type=1, status=1), DaoUser(name="foo7", user_type=1, status=1), DaoUser(name="foo8", user_type=1, status=1), DaoUser(name="foo9", user_type=1, status=1), ] table_user = TableUser(table_name="t_user") table_user.insert(source=source, daos=users, batch_cnt=batch) def sync(source_from, source_to): """ 同步两张表 :param source_from: :param source_to: :return: """ table_user = TableUser(table_name="t_user") daos = table_user.fetch_all(source=source_from) backup_table_user = TableUser(table_name="t_backup_user") backup_table_user.insert(source=source_to, daos=daos, batch_cnt=cfg.options_batch) if __name__ == "__main__": # 获取配置文件路径 config_filepath = parse_args() if not os.path.exists(config_filepath): print("error - failed find config file: {}".format(config_filepath)) sys.exit(1) # 读取配置文件 cfg = HelloConfig() cfg.load(filepath=config_filepath) # 初始化日志 log_filepath = os.path.join(cfg.log_path, "hello.log") LogHandle.init_log(log_filepath, console_level=cfg.log_console_level, file_level=cfg.log_file_level) logging.info("-----------------------------") logging.info("start hello example") # 加载数据源 datasource_config = DataSourceConfig() datasource_config.load(filepath=cfg.data_source_cfg) # 数据源名称 source_product = cfg.db_map["product"] source_backup = cfg.db_map["backup"] db_product = datasource_config.get(source=source_product) if db_product is None: logging.error("failed get product data source: name='product', source='{}'".format(db_product)) db_backup = datasource_config.get(source=source_backup) if db_backup is None: logging.error("failed get backup data source: name='backup', source='{}'".format(db_backup)) # 往product中插入用户 new_users(source=source_product, batch=cfg.options_batch) # 从product中读出所有用户并插入backup中 sync(source_from=source_product, source_to=source_backup)
py
7dfcc3466cefc70d8504925701716529fb0e807a
"""Base classes for Builders.""" import logging import os import shutil from functools import wraps from readthedocs.projects.models import Feature log = logging.getLogger(__name__) def restoring_chdir(fn): # XXX:dc: This would be better off in a neutral module @wraps(fn) def decorator(*args, **kw): try: path = os.getcwd() return fn(*args, **kw) finally: os.chdir(path) return decorator class BaseBuilder: """ The Base for all Builders. Defines the API for subclasses. Expects subclasses to define ``old_artifact_path``, which points at the directory where artifacts should be copied from. """ _force = False ignore_patterns = [] old_artifact_path = None def __init__(self, build_env, python_env, force=False): self.build_env = build_env self.python_env = python_env self.version = build_env.version self.project = build_env.project self.config = python_env.config if python_env else None self._force = force self.project_path = self.project.checkout_path(self.version.slug) self.target = self.project.artifact_path( version=self.version.slug, type_=self.type, ) def get_final_doctype(self): """Some builders may have a different doctype at build time.""" return self.config.doctype def force(self, **__): """An optional step to force a build even when nothing has changed.""" log.info('Forcing a build') self._force = True def append_conf(self): """Set custom configurations for this builder.""" pass def build(self): """Do the actual building of the documentation.""" raise NotImplementedError def move(self, **__): """Move the generated documentation to its artifact directory.""" if os.path.exists(self.old_artifact_path): if os.path.exists(self.target): shutil.rmtree(self.target) log.info('Copying %s on the local filesystem', self.type) log.debug('Ignoring patterns %s', self.ignore_patterns) shutil.copytree( self.old_artifact_path, self.target, ignore=shutil.ignore_patterns(*self.ignore_patterns), ) else: log.warning('Not moving docs, because the build dir is unknown.') def clean(self, **__): """Clean the path where documentation will be built.""" if os.path.exists(self.old_artifact_path): shutil.rmtree(self.old_artifact_path) log.info('Removing old artifact path: %s', self.old_artifact_path) def docs_dir(self, docs_dir=None, **__): """Handle creating a custom docs_dir if it doesn't exist.""" if docs_dir: return docs_dir for doc_dir_name in ['docs', 'doc', 'Doc', 'book']: possible_path = os.path.join(self.project_path, doc_dir_name) if os.path.exists(possible_path): return possible_path return self.project_path def create_index(self, extension='md', **__): """Create an index file if it needs it.""" docs_dir = self.docs_dir() index_filename = os.path.join( docs_dir, 'index.{ext}'.format(ext=extension), ) if not os.path.exists(index_filename): readme_filename = os.path.join( docs_dir, 'README.{ext}'.format(ext=extension), ) if os.path.exists(readme_filename): return 'README' if not self.project.has_feature(Feature.DONT_CREATE_INDEX): index_file = open(index_filename, 'w+') index_text = """ Welcome to Read the Docs ------------------------ This is an autogenerated index file. Please create an ``index.{ext}`` or ``README.{ext}`` file with your own content under the root (or ``/docs``) directory in your repository. If you want to use another markup, choose a different builder in your settings. Check out our `Getting Started Guide <https://docs.readthedocs.io/en/latest/getting_started.html>`_ to become more familiar with Read the Docs. """ index_file.write(index_text.format(dir=docs_dir, ext=extension)) index_file.close() return 'index' def run(self, *args, **kwargs): """Proxy run to build environment.""" return self.build_env.run(*args, **kwargs)
py
7dfcc39722a1452bfbeb230edad7cbce34d4d114
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Manta(CMakePackage): """Structural variant and indel caller for mapped sequencing data""" homepage = "https://github.com/Illumina/manta" url = "https://github.com/Illumina/manta/releases/download/v1.3.2/manta-1.3.2.release_src.tar.bz2" version('1.6.0', sha256='c846d61b02483265c09d58bd85dacf5326a94f38179b5ae4f70694be96e1368f') version('1.5.0', sha256='9aa1a59c9cb8d2dd33724a42959c9398aff7840c5bf3c895d2483a8093b3d2dc') version('1.4.0', sha256='4f8f827485e3ad9a12318bfcbf62fa622263378767514eb938bc02ad5ad74f10') version('1.3.2', sha256='eb346d1a44aff1180732dcd03864b89efc1245652e1993107fb60da4ad739f79') version('1.3.1', sha256='9ba943623088e552a4b45bccea48125a0553905f4cc7ea86a9de567e155a5888') version('1.3.0', sha256='3db4b5475c33e3aeeb5435969c74364af9d2d77dd3bcf8dc70bf44a851e450dd') depends_on('[email protected]:', type='build') depends_on('[email protected]:2.7.999', type=('build', 'run')) depends_on('zlib') patch('for_aarch64.patch', when='target=aarch64:')
py
7dfcc3ab143a2a900074f70918020213bac37623
import ud, wizards, usuario
py
7dfcc3cee04014f6d59818d0f1b09e0a01a30308
"""This module contains the general information for VersionApplication ManagedObject.""" import sys, os from ...ucsmo import ManagedObject from ...ucscoremeta import UcsVersion, MoPropertyMeta, MoMeta from ...ucsmeta import VersionMeta class VersionApplicationConsts(): pass class VersionApplication(ManagedObject): """This is VersionApplication class.""" consts = VersionApplicationConsts() naming_props = set([]) mo_meta = MoMeta("VersionApplication", "versionApplication", "application", VersionMeta.Version211a, "InputOutput", 0x1f, [], ["read-only"], [u'versionEp'], [], [None]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version211a, MoPropertyMeta.INTERNAL, 0x2, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "detail": MoPropertyMeta("detail", "detail", "string", VersionMeta.Version211a, MoPropertyMeta.READ_ONLY, None, 0, 510, None, [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version211a, MoPropertyMeta.READ_ONLY, 0x4, 0, 256, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version211a, MoPropertyMeta.READ_ONLY, 0x8, 0, 256, None, [], []), "sacl": MoPropertyMeta("sacl", "sacl", "string", VersionMeta.Version302a, MoPropertyMeta.READ_ONLY, None, None, None, r"""((none|del|mod|addchild|cascade),){0,4}(none|del|mod|addchild|cascade){0,1}""", [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version211a, MoPropertyMeta.READ_WRITE, 0x10, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), "time": MoPropertyMeta("time", "time", "string", VersionMeta.Version211a, MoPropertyMeta.READ_ONLY, None, 0, 510, None, [], []), "version": MoPropertyMeta("version", "version", "string", VersionMeta.Version211a, MoPropertyMeta.READ_ONLY, None, 0, 510, None, [], []), } prop_map = { "childAction": "child_action", "detail": "detail", "dn": "dn", "rn": "rn", "sacl": "sacl", "status": "status", "time": "time", "version": "version", } def __init__(self, parent_mo_or_dn, **kwargs): self._dirty_mask = 0 self.child_action = None self.detail = None self.sacl = None self.status = None self.time = None self.version = None ManagedObject.__init__(self, "VersionApplication", parent_mo_or_dn, **kwargs)
py
7dfcc3d9c75cae9f425849220bd08e32cfad67ca
# Generated by Django 2.1.15 on 2021-12-19 11:58 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0003_ingredient'), ] operations = [ migrations.CreateModel( name='Recipe', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255)), ('time_minutes', models.IntegerField()), ('price', models.DecimalField(decimal_places=2, max_digits=5)), ('link', models.CharField(blank=True, max_length=255)), ('ingredient', models.ManyToManyField(to='core.Ingredient')), ('tag', models.ManyToManyField(to='core.Tag')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
py
7dfcc3e8f05ff06fb477be5b0a76ea8b2a0e5b78
""" Django settings for app project. Generated by 'django-admin startproject' using Django 2.1.15. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'btjbp90vz-^=m(==oz1q8s1cwi%!w6w9=0*fv_7_cjl(l^$wod' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'core', 'user', 'recipe', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'HOST': os.environ.get('DB_HOST'), 'NAME': os.environ.get('DB_NAME'), 'USER': os.environ.get('DB_USER'), 'PASSWORD': os.environ.get('DB_PASS') } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' MEDIA_URL = '/media/' STATIC_ROOT = 'vol/web/static' MEDIA_ROOT = '/vol/web/media' AUTH_USER_MODEL = 'core.User'
py
7dfcc3fba81948f820e732bc9b12666811b1018e
"""Adds constants for SQL integration.""" import re from homeassistant.const import Platform DOMAIN = "sql" PLATFORMS = [Platform.SENSOR] CONF_COLUMN_NAME = "column" CONF_QUERIES = "queries" CONF_QUERY = "query" DB_URL_RE = re.compile("//.*:.*@")
py
7dfcc513827578670f1dbe97d6a8ae743b7cbcdb
import logging from asyncio import ( sleep, ) from collections.abc import ( Hashable, ) from typing import ( Optional, ) import aiopg from aiomisc.pool import ( ContextManager, ) from aiopg import ( Connection, ) from psycopg2 import ( OperationalError, ) from ..injections import ( Injectable, ) from ..locks import ( LockPool, ) from ..pools import ( Pool, ) from .locks import ( PostgreSqlLock, ) logger = logging.getLogger(__name__) @Injectable("postgresql_pool") class PostgreSqlPool(Pool[ContextManager]): """Postgres Pool class.""" def __init__( self, database: str, host: Optional[str] = None, port: Optional[int] = None, user: Optional[str] = None, password: Optional[str] = None, *args, **kwargs, ): super().__init__(*args, **kwargs) if host is None: host = "localhost" if port is None: port = 5432 if user is None: user = "postgres" if password is None: password = "" self.database = database self.host = host self.port = port self.user = user self.password = password @classmethod def _from_config(cls, *args, config, **kwargs): return cls(*args, **config.get_default_database(), **kwargs) async def _create_instance(self) -> Optional[Connection]: try: connection = await aiopg.connect( host=self.host, port=self.port, dbname=self.database, user=self.user, password=self.password ) except OperationalError as exc: logger.warning(f"There was an {exc!r} while trying to get a database connection.") await sleep(1) return None logger.info(f"Created {self.database!r} database connection identified by {id(connection)}!") return connection async def _destroy_instance(self, instance: Connection): if not instance.closed: await instance.close() logger.info(f"Destroyed {self.database!r} database connection identified by {id(instance)}!") async def _check_instance(self, instance: Optional[Connection]) -> bool: if instance is None: return False try: # This operation connects to the database and raises an exception if something goes wrong. instance.isolation_level except OperationalError: return False return not instance.closed class PostgreSqlLockPool(LockPool, PostgreSqlPool): """Postgres Locking Pool class.""" def acquire(self, key: Hashable, *args, **kwargs) -> PostgreSqlLock: """Acquire a new lock. :param key: The key to be used for locking. :return: A ``PostgreSqlLock`` instance. """ return PostgreSqlLock(super().acquire(), key, *args, **kwargs)
py
7dfcc52fb85de09d22ee8c38e0e99aa1d46e1f74
import komand from .schema import SubmitInput, SubmitOutput # Custom imports below import requests import base64 import io import magic class Submit(komand.Action): def __init__(self): super(self.__class__, self).__init__( name="submit", description="Submit a malicious file or hash", input=SubmitInput(), output=SubmitOutput(), ) def run(self, params={}): # noqa: MC0001 _type = None url = "https://submit.symantec.com/websubmit/bcs.cgi" # Formatted with None and tuples so requests sends form-data properly # Request Payload # ------WebKitFormBoundaryEczE3Txu7oImEgyU # Content-Disposition: form-data; name="mode" # # 2 # ------WebKitFormBoundaryEczE3Txu7oImEgyU # Content-Disposition: form-data; name="fname" # # Jon # ------WebKitFormBoundaryEczE3Txu7oImEgyU # Content-Disposition: form-data; name="lname" # # Schipp # ------WebKitFormBoundaryEczE3Txu7oImEgyU # Content-Disposition: form-data; name="cname" # # Rapid7 # ------WebKitFormBoundaryEczE3Txu7oImEgyU # Content-Disposition: form-data; name="email" # # [email protected] # ------WebKitFormBoundaryEczE3Txu7oImEgyU # Content-Disposition: form-data; name="email2" # # [email protected] # ------WebKitFormBoundaryEczE3Txu7oImEgyU # Content-Disposition: form-data; name="pin" # # 12345 # ------WebKitFormBoundaryEczE3Txu7oImEgyU # Content-Disposition: form-data; name="stype" # # upfile # ------WebKitFormBoundaryEczE3Txu7oImEgyU # Content-Disposition: form-data; name="upfile"; filename="setup.exe" # Content-Type: application/x-msdownload stype = params.get("stype") headers = { "Origin": "https://submit.symantec.com", "Referer": "https://submit.symantec.com/websubmit/bcs.cgi", } req = { "mode": (None, "2"), "fname": (None, params.get("fname")), "lname": (None, params.get("lname")), "cname": (None, params.get("cname")), "email": (None, params.get("email")), "email2": (None, params.get("email")), "pin": (None, params.get("pin")), "stype": (None, stype), "comments": (None, params.get("comments")), } if params.get("critical") == True: req["critical"] = (None, "on") data = params.get("data", "") if stype == "url": self.logger.info("URL specified") if not data.startswith("http://") and not data.startswith("https://") and not data.startswith("ftp://"): self.logger.error("The URLs must start with http:// or https:// or ftp://") raise Exception("Invalid URL format") req["url"] = (None, data) else: req["url"] = (None, "") if stype == "hash": self.logger.info("Hash specified") if len(data) != 32 and len(data) != 64: self.logger.error("The hash provided should be in the MD5 or SHA256 format only") raise Exception("Invalid hash format") req["hash"] = (None, data) else: req["hash"] = (None, "") if stype == "upfile": self.logger.info("File specified") filename = params.get("filename") if not filename: filename = "komand-uploaded.file" self.logger.info("Filename: %s", filename) try: fisle = io.BytesIO(base64.b64decode(data)) except: self.logger.error("Invalid file bytes input") raise try: _type = magic.Magic(mime=True).from_buffer(fisle.read(1024)) self.logger.info("MIME Content Type: %s", _type) except: self.logger.info("Unable to determine MIME Content Type of file, using %s:", _type) _type = "application/octet-stream" pass # Reset file counter to beginning of file since read 1024 bytes for magic number above fisle.seek(0) f = fisle.read() if len(f) > 0: req["upfile"] = (filename, f, _type) else: req["upfile"] = ("", "", _type) else: req["upfile"] = (None, "") try: r = requests.post(url, headers=headers, files=req) r.raise_for_status() out = base64.b64encode(r.content) except requests.exceptions.HTTPError as e: self.logger.error("HTTP error occurred. Error: " + str(e)) raise except requests.exceptions.ConnectionError as e: self.logger.error("A network problem occurred. Error: " + str(e)) raise except requests.exceptions.Timeout as e: self.logger.error("Timeout occurred. Error: " + str(e)) raise except requests.exceptions.TooManyRedirects as e: self.logger.error("Too many redirects! Error: " + str(e)) raise except Exception as e: self.logger.error("Error: " + str(e)) raise # Debugging # self.logger.info(r.request.headers) # self.logger.info(r.request.body) return {"response": out.decode()} def test(self): url = "https://submit.symantec.com/websubmit/bcs.cgi" try: r = requests.get(url) r.raise_for_status() out = base64.b64encode(r.content) except requests.exceptions.HTTPError as e: self.logger.error("HTTP error occurred. Error: " + str(e)) raise except requests.exceptions.ConnectionError as e: self.logger.error("A network problem occurred. Error: " + str(e)) raise except requests.exceptions.Timeout as e: self.logger.error("Timeout occurred. Error: " + str(e)) raise except requests.exceptions.TooManyRedirects as e: self.logger.error("Too many redirects! Error: " + str(e)) raise except Exception as e: self.logger.error("Error: " + str(e)) raise return {"response": out.decode()}
py
7dfcc5d7ce80192f624983439ca768736be13c12
import commands from time import sleep syn_recv_num = [] for i in range(70): x = commands.getoutput("netstat -n | grep SYN_RECV | wc -l") #num = commands.getoutput("netstat -n | grep ESTA | wc -l") print("time: %s, utilization of syn queue: %s") %(i,str(float(int(x)/5.0)*100)) #syn_recv_num.append([x,num]) sleep(1) # f = open('esta1.txt','w') # for item in syn_recv_num: # #f.write(str(float(int(item)/5.0))) # f.write(item[0]) # f.write(" ") # f.write(item[1]) # f.write("\n") # f.close()
py
7dfcc62b8b26ea384ba251c9c3d3a5d692f93182
def print_test(): print('print_test')
py
7dfcc664c442c3a77f8ee21ac02781d9bd5f1aa1
# -*- coding: utf-8 -*- import six import itertools import os import shutil import requests import pytest from verta.registry.entities import RegisteredModels from verta.tracking.entities._deployable_entity import _CACHE_DIR from . import utils import verta from verta._internal_utils import _utils import json from verta.external.six.moves.urllib.parse import urlparse # pylint: disable=import-error, no-name-in-module KWARGS = { 'desc': [None, "A test."], 'tags': [None, ['test']], 'attrs': [None, {'is_test': True}], } KWARGS_COMBOS = [dict(zip(KWARGS.keys(), values)) for values in itertools.product(*KWARGS.values()) if values.count(None) != len(values)] # for `tags` typecheck tests TAG = "my-tag" class TestClient: @pytest.mark.skipif(not all(env_var in os.environ for env_var in ('VERTA_HOST', 'VERTA_EMAIL', 'VERTA_DEV_KEY')), reason="insufficient Verta credentials") def test_config_file(self): self.config_file_with_type_util(connect = False) @pytest.mark.skipif(not all(env_var in os.environ for env_var in ('VERTA_HOST', 'VERTA_EMAIL', 'VERTA_DEV_KEY')), reason="insufficient Verta credentials") def test_config_file_connect(self): self.config_file_with_type_util(connect = True) def config_file_with_type_util(self, connect): PROJECT_NAME = _utils.generate_default_name() DATASET_NAME = _utils.generate_default_name() EXPERIMENT_NAME = _utils.generate_default_name() CONFIG_FILENAME = "verta_config.json" HOST_KEY, EMAIL_KEY, DEV_KEY_KEY = "VERTA_HOST", "VERTA_EMAIL", "VERTA_DEV_KEY" HOST, EMAIL, DEV_KEY = os.environ[HOST_KEY], os.environ[EMAIL_KEY], os.environ[DEV_KEY_KEY] try: del os.environ[HOST_KEY], os.environ[EMAIL_KEY], os.environ[DEV_KEY_KEY] try: with open(CONFIG_FILENAME, 'w') as f: json.dump( { 'host': HOST, 'email': EMAIL, 'dev_key': DEV_KEY, 'project': PROJECT_NAME, 'experiment': EXPERIMENT_NAME, 'dataset': DATASET_NAME, }, f, ) client = verta.Client(_connect=connect) conn = client._conn back_end_url = urlparse(HOST) socket = back_end_url.netloc + back_end_url.path.rstrip('/') assert conn.socket == socket assert conn.auth['Grpc-Metadata-email'] == EMAIL assert conn.auth['Grpc-Metadata-developer_key'] == DEV_KEY assert conn.auth['Grpc-Metadata-developer-key'] == DEV_KEY if connect: try: assert client.set_experiment_run() assert client.proj.name == PROJECT_NAME assert client.expt.name == EXPERIMENT_NAME finally: if client.proj is not None: client.proj.delete() dataset = client.set_dataset() try: assert dataset.name == DATASET_NAME finally: dataset.delete() else: assert client._set_from_config_if_none(None, "project") == PROJECT_NAME assert client._set_from_config_if_none(None, "experiment") == EXPERIMENT_NAME assert client._set_from_config_if_none(None, "dataset") == DATASET_NAME finally: if os.path.exists(CONFIG_FILENAME): os.remove(CONFIG_FILENAME) finally: os.environ[HOST_KEY], os.environ[EMAIL_KEY], os.environ[DEV_KEY_KEY] = HOST, EMAIL, DEV_KEY class TestEntities: def test_cache(self, client, strs): client.set_project() client.set_experiment() entities = ( client.set_experiment_run(), ) for entity in entities: filename = strs[0] filepath = os.path.join(_CACHE_DIR, filename) contents = six.ensure_binary(strs[1]) assert not os.path.isfile(filepath) assert not entity._get_cached_file(filename) try: assert entity._cache_file(filename, contents) == filepath assert os.path.isfile(filepath) assert entity._get_cached_file(filename) with open(filepath, 'rb') as f: assert f.read() == contents finally: shutil.rmtree(_CACHE_DIR, ignore_errors=True) def test_context(self, client, strs): strs = iter(strs) def assert_new_run_in_proj(): assert client.get_or_create_experiment_run()._msg.project_id == proj.id assert client.create_experiment_run()._msg.project_id == proj.id proj = client.create_project() assert_new_run_in_proj() client.get_or_create_registered_model().delete() client.create_registered_model().delete() assert_new_run_in_proj() client.get_or_create_dataset().delete() client.create_dataset().delete() assert_new_run_in_proj() assert client.get_or_create_experiment()._msg.project_id == proj.id assert client.create_experiment()._msg.project_id == proj.id assert_new_run_in_proj() class TestProject: def test_create(self, client): assert client.set_project() assert client.proj is not None name = _utils.generate_default_name() assert client.create_project(name) assert client.proj is not None with pytest.raises(requests.HTTPError) as excinfo: assert client.create_project(name) excinfo_value = str(excinfo.value).strip() assert "409" in excinfo_value assert "already exists" in excinfo_value with pytest.warns(UserWarning, match='.*already exists.*'): client.get_or_create_project(name=name, tags=["tag1", "tag2"]) def test_get(self, client): name = _utils.generate_default_name() with pytest.raises(ValueError): client.get_project(name) proj = client.set_project(name) assert proj.id == client.get_project(proj.name).id assert proj.id == client.get_project(id=proj.id).id def test_get_by_name(self, client): proj = client.set_project() client.set_project() # in case get erroneously fetches latest assert proj.id == client.set_project(proj.name).id def test_get_by_id(self, client): proj = client.set_project() client.set_project() # in case get erroneously fetches latest assert proj.id == client.set_project(id=proj.id).id def test_get_nonexistent_id(self, client): with pytest.raises(ValueError): client.set_project(id="nonexistent_id") @pytest.mark.parametrize("tags", [TAG, [TAG]]) def test_tags_is_list_of_str(self, client, tags): proj = client.set_project(tags=tags) endpoint = "{}://{}/api/v1/modeldb/project/getProjectTags".format( client._conn.scheme, client._conn.socket, ) response = _utils.make_request("GET", endpoint, client._conn, params={'id': proj.id}) _utils.raise_for_http_error(response) assert response.json().get('tags', []) == [TAG] class TestExperiment: def test_create(self, client): client.set_project() assert client.set_experiment() assert client.expt is not None name = _utils.generate_default_name() assert client.create_experiment(name) assert client.expt is not None with pytest.raises(requests.HTTPError) as excinfo: assert client.create_experiment(name) excinfo_value = str(excinfo.value).strip() assert "409" in excinfo_value assert "already exists" in excinfo_value with pytest.warns(UserWarning, match='.*already exists.*'): client.set_experiment(name=name, attrs={"a": 123}) def test_get(self, client): proj = client.set_project() name = _utils.generate_default_name() with pytest.raises(ValueError): client.get_experiment(name) expt = client.set_experiment(name) assert expt.id == client.get_experiment(expt.name).id assert expt.id == client.get_experiment(id=expt.id).id # test parents are restored client.set_project() client.get_experiment(id=expt.id) assert client.proj.id == proj.id assert client.expt.id == expt.id def test_get_by_name(self, client): client.set_project() expt = client.set_experiment() client.set_experiment() # in case get erroneously fetches latest assert expt.id == client.set_experiment(expt.name).id def test_get_by_id(self, client): proj = client.set_project() expt = client.set_experiment() client.set_experiment() # in case get erroneously fetches latest assert expt.id == client.set_experiment(id=expt.id).id assert proj.id == client.proj.id def test_get_nonexistent_id_error(self, client): with pytest.raises(ValueError): client.set_experiment(id="nonexistent_id") @pytest.mark.parametrize("tags", [TAG, [TAG]]) def test_tags_is_list_of_str(self, client, tags): client.set_project() expt = client.set_experiment(tags=tags) endpoint = "{}://{}/api/v1/modeldb/experiment/getExperimentTags".format( client._conn.scheme, client._conn.socket, ) response = _utils.make_request("GET", endpoint, client._conn, params={'id': expt.id}) _utils.raise_for_http_error(response) assert response.json().get('tags', []) == [TAG] class TestExperimentRun: def test_create(self, client): client.set_project() client.set_experiment() assert client.set_experiment_run() name = _utils.generate_default_name() assert client.create_experiment_run(name) with pytest.raises(requests.HTTPError) as excinfo: assert client.create_experiment_run(name) excinfo_value = str(excinfo.value).strip() assert "409" in excinfo_value assert "already exists" in excinfo_value with pytest.warns(UserWarning, match='.*already exists.*'): client.set_experiment_run(name=name, attrs={"a": 123}) def test_get(self, client): proj = client.set_project() expt = client.set_experiment() name = _utils.generate_default_name() with pytest.raises(ValueError): client.get_experiment_run(name) run = client.set_experiment_run(name) assert run.id == client.get_experiment_run(run.name).id assert run.id == client.get_experiment_run(id=run.id).id # test parents are restored by first setting new, unrelated ones client.set_project() client.set_experiment() client.get_experiment_run(id=run.id) assert client.proj.id == proj.id assert client.expt.id == expt.id def test_get_by_name(self, client): client.set_project() client.set_experiment() run = client.set_experiment_run() client.set_experiment_run() # in case get erroneously fetches latest assert run.id == client.set_experiment_run(run.name).id def test_get_by_id(self, client): proj = client.set_project() expt = client.set_experiment() expt_run = client.set_experiment_run() client.set_experiment_run() # in case get erroneously fetches latest assert expt_run.id == client.set_experiment_run(id=expt_run.id).id assert proj.id == client.proj.id assert expt.id == client.expt.id def test_get_nonexistent_id_error(self, client): with pytest.raises(ValueError): client.set_experiment_run(id="nonexistent_id") def test_no_experiment_error(self, client): with pytest.raises(AttributeError): client.set_experimennt_run() @pytest.mark.parametrize("tags", [TAG, [TAG]]) def test_tags_is_list_of_str(self, client, tags): client.set_project() client.set_experiment() run = client.set_experiment_run(tags=tags) endpoint = "{}://{}/api/v1/modeldb/experiment-run/getExperimentRunTags".format( client._conn.scheme, client._conn.socket, ) response = _utils.make_request("GET", endpoint, client._conn, params={'id': run.id}) _utils.raise_for_http_error(response) assert response.json().get('tags', []) == [TAG] def test_clone(self, experiment_run): expt_run = experiment_run expt_run._conf.use_git = False expt_run.log_hyperparameters({"hpp1" : 1, "hpp2" : 2, "hpp3" : "hpp3"}) expt_run.log_metrics({"metric1" : 0.5, "metric2" : 0.6}) expt_run.log_tags(["tag1", "tag2"]) expt_run.log_attributes({"attr1" : 10, "attr2" : {"abc": 1}}) expt_run.log_artifact("my-artifact", "README.md") expt_run.log_code() # set various things in the run new_run_no_art = expt_run.clone() old_run_msg = expt_run._get_proto_by_id(expt_run._conn, expt_run.id) new_run_no_art_msg = new_run_no_art._get_proto_by_id(new_run_no_art._conn, new_run_no_art.id) # ensure basic data is the same assert expt_run.id != new_run_no_art_msg.id assert old_run_msg.description == new_run_no_art_msg.description assert old_run_msg.tags == new_run_no_art_msg.tags assert old_run_msg.metrics == new_run_no_art_msg.metrics assert old_run_msg.hyperparameters == new_run_no_art_msg.hyperparameters assert old_run_msg.observations == new_run_no_art_msg.observations assert old_run_msg.artifacts == new_run_no_art_msg.artifacts def test_clone_into_expt(self, client): expt1 = client.set_experiment() expt2 = client.set_experiment() assert expt1.id != expt2.id # of course, but just to be sure old_run = client.set_experiment_run() assert old_run._msg.experiment_id == expt2.id # of course, but just to be sure old_run.log_hyperparameters({"hpp1" : 1, "hpp2" : 2, "hpp3" : "hpp3"}) old_run.log_metrics({"metric1" : 0.5, "metric2" : 0.6}) old_run.log_tags(["tag1", "tag2"]) old_run.log_attributes({"attr1" : 10, "attr2" : {"abc": 1}}) old_run.log_artifact("my-artifact", "README.md") new_run = old_run.clone(experiment_id=expt1.id) old_run_msg = old_run._get_proto_by_id(old_run._conn, old_run.id) new_run_msg = new_run._get_proto_by_id(new_run._conn, new_run.id) assert old_run_msg.id != new_run_msg.id assert new_run_msg.experiment_id == expt1.id assert old_run_msg.description == new_run_msg.description assert old_run_msg.tags == new_run_msg.tags assert old_run_msg.metrics == new_run_msg.metrics assert old_run_msg.hyperparameters == new_run_msg.hyperparameters assert old_run_msg.observations == new_run_msg.observations assert old_run_msg.artifacts == new_run_msg.artifacts def test_log_attribute_overwrite(self, client): initial_attrs = {"str-attr": "attr", "int-attr": 4, "float-attr": 0.5} new_attrs = {"str-attr": "new-attr", "int-attr": 5, "float-attr": 0.3, "bool-attr": False} single_new_attr = new_attrs.popitem() experiment_run = client.set_experiment_run(attrs=initial_attrs) with pytest.raises(ValueError) as excinfo: experiment_run.log_attribute("str-attr", "some-attr") assert "already exists" in str(excinfo.value) experiment_run.log_attribute(*single_new_attr, overwrite=True) experiment_run.log_attributes(new_attrs, True) expected_attrs = initial_attrs.copy() expected_attrs.update([single_new_attr]) expected_attrs.update(new_attrs) assert experiment_run.get_attributes() == expected_attrs class TestExperimentRuns: def test_getitem(self, client): client.set_project() expt_runs = client.set_experiment().expt_runs local_run_ids = set(client.set_experiment_run().id for _ in range(3)) assert expt_runs[1].id in local_run_ids def test_negative_indexing(self, client): client.set_project() expt_runs = client.set_experiment().expt_runs local_run_ids = set(client.set_experiment_run().id for _ in range(3)) assert expt_runs[-1].id in local_run_ids def test_index_out_of_range_error(self, client): client.set_project() expt_runs = client.set_experiment().expt_runs [client.set_experiment_run() for _ in range(3)] with pytest.raises(IndexError): expt_runs[6] with pytest.raises(IndexError): expt_runs[-6] def test_iter(self, client): client.set_project() expt_runs = client.set_experiment().expt_runs expt_runs._ITER_PAGE_LIMIT = 3 local_run_ids = set(client.set_experiment_run().id for _ in range(6)) # iterate through all 6 runs assert local_run_ids == set(run.id for run in expt_runs) # don't fail ungracefully while runs are added for i, _ in enumerate(expt_runs): if i == 4: [client.set_experiment_run() for _ in range(3)] def test_len(self, client): client.set_project() expt_runs = client.set_experiment().expt_runs assert len([client.set_experiment_run().id for _ in range(3)]) == len(expt_runs) def test_as_dataframe(self, client, strs): np = pytest.importorskip("numpy") pytest.importorskip("pandas") # initialize entities client.set_project() expt = client.set_experiment() for _ in range(3): client.set_experiment_run() # log metadata hpp1, hpp2, metric1, metric2 = strs[:4] for run in expt.expt_runs: run.log_hyperparameters({ hpp1: np.random.random(), hpp2: np.random.random(), }) run.log_metrics({ metric1: np.random.random(), metric2: np.random.random(), }) # verify that DataFrame matches df = expt.expt_runs.as_dataframe() assert set(df.index) == set(run.id for run in expt.expt_runs) for run in expt.expt_runs: row = df.loc[run.id] assert row['hpp.'+hpp1] == run.get_hyperparameter(hpp1) assert row['hpp.'+hpp2] == run.get_hyperparameter(hpp2) assert row['metric.'+metric1] == run.get_metric(metric1) assert row['metric.'+metric2] == run.get_metric(metric2) def test_find(self, client): client.set_project() expt = client.set_experiment() tag = "some-tag" diff_tag = "diff-tag" run_with_diff_tag = client.set_experiment_run("run-with-diff-tag") run_with_diff_tag.log_tag(diff_tag) runs_with_tag = [] for _ in range(5): runs_with_tag.append(client.set_experiment_run()) runs_with_tag[-1].log_tag(tag) found_runs = expt.expt_runs.find("tags ~= {}".format(tag)) assert len(found_runs) == len(runs_with_tag) runs_with_tag[-1].log_hyperparameter("some-hyper", 1) # compound conditions: assert len(expt.expt_runs.find(["tags ~= {}".format(tag), "hyperparameters.some-hyper == 1"])) == 1 # old syntax assert len(expt.expt_runs.find("tags ~= {}".format(tag), "hyperparameters.some-hyper == 1")) == 1 # new syntax # if any predicate is not string, should fail: with pytest.raises(TypeError, match="predicates must all be strings"): expt.expt_runs.find("tag ~= {}".format(tag), 1234) @pytest.mark.skip("functionality removed") def test_add(self, client): client.set_project() expt1 = client.set_experiment() local_expt1_run_ids = set(client.set_experiment_run().id for _ in range(3)) expt2 = client.set_experiment() local_expt2_run_ids = set(client.set_experiment_run().id for _ in range(3)) # simple concatenation assert local_expt1_run_ids | local_expt2_run_ids == set(run.id for run in expt1.expt_runs + expt2.expt_runs) # ignore duplicates assert local_expt1_run_ids == set(run.id for run in expt1.expt_runs + expt1.expt_runs)
py
7dfcc6b9fcae64da553434e4ddc5a4f4908f293c
import pytest import os from great_expectations.data_context.util import safe_mmkdir from great_expectations.datasource.generator import SubdirReaderGenerator from great_expectations.exceptions import BatchKwargsError def test_subdir_reader_path_partitioning(tmp_path_factory): base_directory = str(tmp_path_factory.mktemp("test_folder_connection_path")) mock_files = [ "asset_1/20190101__asset_1.csv", "asset_1/20190102__asset_1.csv", "asset_1/20190103__asset_1.csv", "asset_2/20190101__asset_2.csv", "asset_2/20190102__asset_2.csv" ] for file in mock_files: safe_mmkdir(os.path.join(base_directory, file.split("/")[0])) open(os.path.join(base_directory, file), "w").close() subdir_reader_generator = SubdirReaderGenerator("test_generator", base_directory=base_directory) # We should see two assets known_assets = subdir_reader_generator.get_available_data_asset_names() # Use set in test to avoid order issues assert set(known_assets) == {"asset_1", "asset_2"} # We should see three partitions for the first: known_partitions = subdir_reader_generator.get_available_partition_ids("asset_1") assert set(known_partitions) == { "20190101__asset_1", "20190102__asset_1", "20190103__asset_1" } asset_1_kwargs = [kwargs for kwargs in subdir_reader_generator.get_iterator("asset_1")] asset_2_kwargs = [kwargs for kwargs in subdir_reader_generator.get_iterator("asset_2")] with pytest.raises(BatchKwargsError): not_an_asset_kwargs = [kwargs for kwargs in subdir_reader_generator.get_iterator("not_an_asset")] assert len(asset_1_kwargs) == 3 paths = [kwargs["path"] for kwargs in asset_1_kwargs] assert set(paths) == { os.path.join(base_directory, "asset_1/20190101__asset_1.csv"), os.path.join(base_directory, "asset_1/20190102__asset_1.csv"), os.path.join(base_directory, "asset_1/20190103__asset_1.csv") } partitions = [kwargs["partition_id"] for kwargs in asset_1_kwargs] # SubdirReaderGenerator uses filenames from subdirectories to generate partition names assert set(partitions) == { "20190101__asset_1", "20190102__asset_1", "20190103__asset_1" } assert len(asset_1_kwargs[0].keys()) == 3 assert len(asset_2_kwargs) == 2 paths = [kwargs["path"] for kwargs in asset_2_kwargs] assert set(paths) == { os.path.join(base_directory, "asset_2/20190101__asset_2.csv"), os.path.join(base_directory, "asset_2/20190102__asset_2.csv") } partitions = [kwargs["partition_id"] for kwargs in asset_2_kwargs] assert set(partitions) == { "20190101__asset_2", "20190102__asset_2" } assert len(asset_2_kwargs[0].keys()) == 3 def test_subdir_reader_file_partitioning(tmp_path_factory): base_directory = str(tmp_path_factory.mktemp("test_folder_connection_path")) mock_files = [ "20190101__asset_1.csv", "20190102__asset_1.csv", "20190103__asset_1.csv", "asset_2/20190101__asset_2.csv", "asset_2/20190102__asset_2.csv" ] for file in mock_files: if "/" in file: safe_mmkdir(os.path.join(base_directory, file.split("/")[0])) open(os.path.join(base_directory, file), "w").close() # If we have files, we should see them as individual assets subdir_reader_generator = SubdirReaderGenerator("test_generator", base_directory=base_directory) known_assets = subdir_reader_generator.get_available_data_asset_names() assert set(known_assets) == { "20190101__asset_1", "20190102__asset_1", "20190103__asset_1", "asset_2" } # SubdirReaderGenerator uses the filename as partition name for root files known_partitions = subdir_reader_generator.get_available_partition_ids("20190101__asset_1") assert set(known_partitions) == {"20190101__asset_1"} kwargs = subdir_reader_generator.build_batch_kwargs_from_partition_id("20190101__asset_1", "20190101__asset_1") assert kwargs["path"] == os.path.join(base_directory, "20190101__asset_1.csv") # We should also be able to pass a limit kwargs = subdir_reader_generator.build_batch_kwargs_from_partition_id("20190101__asset_1", "20190101__asset_1", limit=10) assert kwargs["path"] == os.path.join(base_directory, "20190101__asset_1.csv") assert kwargs["limit"] == 10 def test_subdir_reader_configurable_reader_method(tmp_path_factory): base_directory = str(tmp_path_factory.mktemp("test_folder_connection_path")) mock_files = [ "20190101__asset_1.dat", "20190102__asset_1.dat", "20190103__asset_1.dat", "asset_2/20190101__asset_2.dat", "asset_2/20190102__asset_2.dat" ] for file in mock_files: if "/" in file: safe_mmkdir(os.path.join(base_directory, file.split("/")[0])) open(os.path.join(base_directory, file), "w").close() # If we have files, we should see them as individual assets subdir_reader_generator = SubdirReaderGenerator("test_generator", base_directory=base_directory, reader_method='csv', known_extensions=['.dat']) batch_kwargs = next(subdir_reader_generator.get_iterator('asset_2')) assert batch_kwargs['reader_method'] == 'csv'
py
7dfcc70bbb5cf1a1896cb87ea5163d7f17e189c0
import sqlalchemy as sa from sqlalchemy import CheckConstraint from sqlalchemy import event from sqlalchemy import exc from sqlalchemy import ForeignKey from sqlalchemy import ForeignKeyConstraint from sqlalchemy import Index from sqlalchemy import inspect from sqlalchemy import Integer from sqlalchemy import MetaData from sqlalchemy import String from sqlalchemy import testing from sqlalchemy import UniqueConstraint from sqlalchemy import util from sqlalchemy.ext import declarative as decl from sqlalchemy.ext.declarative import declared_attr from sqlalchemy.ext.declarative import synonym_for from sqlalchemy.ext.declarative.base import _DeferredMapperConfig from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy.orm import backref from sqlalchemy.orm import class_mapper from sqlalchemy.orm import clear_mappers from sqlalchemy.orm import close_all_sessions from sqlalchemy.orm import column_property from sqlalchemy.orm import composite from sqlalchemy.orm import configure_mappers from sqlalchemy.orm import create_session from sqlalchemy.orm import deferred from sqlalchemy.orm import descriptor_props from sqlalchemy.orm import exc as orm_exc from sqlalchemy.orm import joinedload from sqlalchemy.orm import mapper from sqlalchemy.orm import relationship from sqlalchemy.orm import Session from sqlalchemy.orm.events import MapperEvents from sqlalchemy.testing import assert_raises from sqlalchemy.testing import assert_raises_message from sqlalchemy.testing import assertions from sqlalchemy.testing import eq_ from sqlalchemy.testing import expect_warnings from sqlalchemy.testing import fixtures from sqlalchemy.testing import is_ from sqlalchemy.testing import mock from sqlalchemy.testing.schema import Column from sqlalchemy.testing.schema import Table from sqlalchemy.util import with_metaclass Base = None User = Address = None class DeclarativeTestBase( fixtures.TestBase, testing.AssertsExecutionResults, testing.AssertsCompiledSQL, ): __dialect__ = "default" def setup(self): global Base Base = decl.declarative_base(testing.db) def teardown(self): close_all_sessions() clear_mappers() Base.metadata.drop_all() class DeclarativeTest(DeclarativeTestBase): def test_basic(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) addresses = relationship("Address", backref="user") class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) email = Column(String(50), key="_email") user_id = Column( "user_id", Integer, ForeignKey("users.id"), key="_user_id" ) Base.metadata.create_all() eq_(Address.__table__.c["id"].name, "id") eq_(Address.__table__.c["_email"].name, "email") eq_(Address.__table__.c["_user_id"].name, "user_id") u1 = User( name="u1", addresses=[Address(email="one"), Address(email="two")] ) sess = create_session() sess.add(u1) sess.flush() sess.expunge_all() eq_( sess.query(User).all(), [ User( name="u1", addresses=[Address(email="one"), Address(email="two")], ) ], ) a1 = sess.query(Address).filter(Address.email == "two").one() eq_(a1, Address(email="two")) eq_(a1.user, User(name="u1")) def test_deferred_reflection_default_error(self): class MyExt(object): @classmethod def prepare(cls): "sample prepare method" to_map = _DeferredMapperConfig.classes_for_base(cls) for thingy in to_map: thingy.map() @classmethod def _sa_decl_prepare(cls): pass class User(MyExt, Base): __tablename__ = "user" id = Column(Integer, primary_key=True) assert_raises_message( orm_exc.UnmappedClassError, "Class test.ext.declarative.test_basic.User has a deferred " "mapping on it. It is not yet usable as a mapped class.", Session().query, User, ) User.prepare() self.assert_compile( Session().query(User), 'SELECT "user".id AS user_id FROM "user"' ) def test_unicode_string_resolve(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) addresses = relationship(util.u("Address"), backref="user") class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) email = Column(String(50), key="_email") user_id = Column( "user_id", Integer, ForeignKey("users.id"), key="_user_id" ) assert User.addresses.property.mapper.class_ is Address def test_unicode_string_resolve_backref(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) email = Column(String(50), key="_email") user_id = Column( "user_id", Integer, ForeignKey("users.id"), key="_user_id" ) user = relationship( User, backref=backref("addresses", order_by=util.u("Address.email")), ) assert Address.user.property.mapper.class_ is User def test_no_table(self): def go(): class User(Base): id = Column("id", Integer, primary_key=True) assert_raises_message( sa.exc.InvalidRequestError, "does not have a __table__", go ) def test_table_args_empty_dict(self): class MyModel(Base): __tablename__ = "test" id = Column(Integer, primary_key=True) __table_args__ = {} def test_table_args_empty_tuple(self): class MyModel(Base): __tablename__ = "test" id = Column(Integer, primary_key=True) __table_args__ = () def test_cant_add_columns(self): t = Table( "t", Base.metadata, Column("id", Integer, primary_key=True), Column("data", String), ) def go(): class User(Base): __table__ = t foo = Column(Integer, primary_key=True) # can't specify new columns not already in the table assert_raises_message( sa.exc.ArgumentError, "Can't add additional column 'foo' when " "specifying __table__", go, ) # regular re-mapping works tho class Bar(Base): __table__ = t some_data = t.c.data assert ( class_mapper(Bar).get_property("some_data").columns[0] is t.c.data ) def test_lower_case_c_column_warning(self): with assertions.expect_warnings( r"Attribute 'x' on class <class .*Foo.* appears to be a " r"non-schema 'sqlalchemy.sql.column\(\)' object; " ): class Foo(Base): __tablename__ = "foo" id = Column(Integer, primary_key=True) x = sa.sql.expression.column(Integer) y = Column(Integer) class MyMixin(object): x = sa.sql.expression.column(Integer) y = Column(Integer) with assertions.expect_warnings( r"Attribute 'x' on class <class .*MyMixin.* appears to be a " r"non-schema 'sqlalchemy.sql.column\(\)' object; " ): class Foo2(MyMixin, Base): __tablename__ = "foo2" id = Column(Integer, primary_key=True) with assertions.expect_warnings( r"Attribute 'x' on class <class .*Foo3.* appears to be a " r"non-schema 'sqlalchemy.sql.column\(\)' object; " ): class Foo3(Base): __tablename__ = "foo3" id = Column(Integer, primary_key=True) @declared_attr def x(cls): return sa.sql.expression.column(Integer) y = Column(Integer) with assertions.expect_warnings( r"Attribute 'x' on class <class .*Foo4.* appears to be a " r"non-schema 'sqlalchemy.sql.column\(\)' object; " ): class MyMixin2(object): @declared_attr def x(cls): return sa.sql.expression.column(Integer) y = Column(Integer) class Foo4(MyMixin2, Base): __tablename__ = "foo4" id = Column(Integer, primary_key=True) def test_column_named_twice(self): def go(): class Foo(Base): __tablename__ = "foo" id = Column(Integer, primary_key=True) x = Column("x", Integer) y = Column("x", Integer) assert_raises_message( sa.exc.SAWarning, "On class 'Foo', Column object 'x' named directly multiple times, " "only one will be used: x, y", go, ) def test_column_repeated_under_prop(self): def go(): class Foo(Base): __tablename__ = "foo" id = Column(Integer, primary_key=True) x = Column("x", Integer) y = column_property(x) z = Column("x", Integer) assert_raises_message( sa.exc.SAWarning, "On class 'Foo', Column object 'x' named directly multiple times, " "only one will be used: x, y, z", go, ) def test_using_explicit_prop_in_schema_objects(self): class Foo(Base): __tablename__ = "foo" id = Column(Integer, primary_key=True) cprop = column_property(Column(Integer)) __table_args__ = (UniqueConstraint(cprop),) uq = [ c for c in Foo.__table__.constraints if isinstance(c, UniqueConstraint) ][0] is_(uq.columns.cprop, Foo.__table__.c.cprop) class Bar(Base): __tablename__ = "bar" id = Column(Integer, primary_key=True) cprop = deferred(Column(Integer)) __table_args__ = (CheckConstraint(cprop > sa.func.foo()),) ck = [ c for c in Bar.__table__.constraints if isinstance(c, CheckConstraint) ][0] is_(ck.columns.cprop, Bar.__table__.c.cprop) if testing.requires.python3.enabled: # test the existing failure case in case something changes def go(): class Bat(Base): __tablename__ = "bat" id = Column(Integer, primary_key=True) cprop = deferred(Column(Integer)) # we still can't do an expression like # "cprop > 5" because the column property isn't # a full blown column __table_args__ = (CheckConstraint(cprop > 5),) assert_raises(TypeError, go) def test_relationship_level_msg_for_invalid_callable(self): class A(Base): __tablename__ = "a" id = Column(Integer, primary_key=True) class B(Base): __tablename__ = "b" id = Column(Integer, primary_key=True) a_id = Column(Integer, ForeignKey("a.id")) a = relationship("a") assert_raises_message( sa.exc.ArgumentError, "relationship 'a' expects a class or a mapper " "argument .received: .*Table", configure_mappers, ) def test_relationship_level_msg_for_invalid_object(self): class A(Base): __tablename__ = "a" id = Column(Integer, primary_key=True) class B(Base): __tablename__ = "b" id = Column(Integer, primary_key=True) a_id = Column(Integer, ForeignKey("a.id")) a = relationship(A.__table__) assert_raises_message( sa.exc.ArgumentError, "relationship 'a' expects a class or a mapper " "argument .received: .*Table", configure_mappers, ) def test_difficult_class(self): """test no getattr() errors with a customized class""" # metaclass to mock the way zope.interface breaks getattr() class BrokenMeta(type): def __getattribute__(self, attr): if attr == "xyzzy": raise AttributeError("xyzzy") else: return object.__getattribute__(self, attr) # even though this class has an xyzzy attribute, getattr(cls,"xyzzy") # fails class BrokenParent(with_metaclass(BrokenMeta)): xyzzy = "magic" # _as_declarative() inspects obj.__class__.__bases__ class User(BrokenParent, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) decl.instrument_declarative(User, {}, Base.metadata) def test_reserved_identifiers(self): def go1(): class User1(Base): __tablename__ = "user1" id = Column(Integer, primary_key=True) metadata = Column(Integer) def go2(): class User2(Base): __tablename__ = "user2" id = Column(Integer, primary_key=True) metadata = relationship("Address") for go in (go1, go2): assert_raises_message( exc.InvalidRequestError, "Attribute name 'metadata' is reserved " "for the MetaData instance when using a " "declarative base class.", go, ) def test_undefer_column_name(self): # TODO: not sure if there was an explicit # test for this elsewhere foo = Column(Integer) eq_(str(foo), "(no name)") eq_(foo.key, None) eq_(foo.name, None) decl.base._undefer_column_name("foo", foo) eq_(str(foo), "foo") eq_(foo.key, "foo") eq_(foo.name, "foo") def test_recompile_on_othermapper(self): """declarative version of the same test in mappers.py""" from sqlalchemy.orm import mapperlib class User(Base): __tablename__ = "users" id = Column("id", Integer, primary_key=True) name = Column("name", String(50)) class Address(Base): __tablename__ = "addresses" id = Column("id", Integer, primary_key=True) email = Column("email", String(50)) user_id = Column("user_id", Integer, ForeignKey("users.id")) user = relationship( "User", primaryjoin=user_id == User.id, backref="addresses" ) assert mapperlib.Mapper._new_mappers is True u = User() # noqa assert User.addresses assert mapperlib.Mapper._new_mappers is False def test_string_dependency_resolution(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) name = Column(String(50)) addresses = relationship( "Address", order_by="desc(Address.email)", primaryjoin="User.id==Address.user_id", foreign_keys="[Address.user_id]", backref=backref( "user", primaryjoin="User.id==Address.user_id", foreign_keys="[Address.user_id]", ), ) class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) email = Column(String(50)) user_id = Column(Integer) # note no foreign key Base.metadata.create_all() sess = create_session() u1 = User( name="ed", addresses=[ Address(email="abc"), Address(email="def"), Address(email="xyz"), ], ) sess.add(u1) sess.flush() sess.expunge_all() eq_( sess.query(User).filter(User.name == "ed").one(), User( name="ed", addresses=[ Address(email="xyz"), Address(email="def"), Address(email="abc"), ], ), ) class Foo(Base, fixtures.ComparableEntity): __tablename__ = "foo" id = Column(Integer, primary_key=True) rel = relationship("User", primaryjoin="User.addresses==Foo.id") assert_raises_message( exc.InvalidRequestError, "'addresses' is not an instance of " "ColumnProperty", configure_mappers, ) def test_string_dependency_resolution_synonym(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) name = Column(String(50)) Base.metadata.create_all() sess = create_session() u1 = User(name="ed") sess.add(u1) sess.flush() sess.expunge_all() eq_(sess.query(User).filter(User.name == "ed").one(), User(name="ed")) class Foo(Base, fixtures.ComparableEntity): __tablename__ = "foo" id = Column(Integer, primary_key=True) _user_id = Column(Integer) rel = relationship( "User", uselist=False, foreign_keys=[User.id], primaryjoin="Foo.user_id==User.id", ) @synonym_for("_user_id") @property def user_id(self): return self._user_id foo = Foo() foo.rel = u1 assert foo.rel == u1 def test_string_dependency_resolution_orm_descriptor(self): from sqlalchemy.ext.hybrid import hybrid_property class User(Base): __tablename__ = "user" id = Column(Integer, primary_key=True) firstname = Column(String(50)) lastname = Column(String(50)) game_id = Column(Integer, ForeignKey("game.id")) @hybrid_property def fullname(self): return self.firstname + " " + self.lastname class Game(Base): __tablename__ = "game" id = Column(Integer, primary_key=True) name = Column(String(50)) users = relationship("User", order_by="User.fullname") s = Session() self.assert_compile( s.query(Game).options(joinedload(Game.users)), "SELECT game.id AS game_id, game.name AS game_name, " "user_1.id AS user_1_id, user_1.firstname AS user_1_firstname, " "user_1.lastname AS user_1_lastname, " "user_1.game_id AS user_1_game_id " 'FROM game LEFT OUTER JOIN "user" AS user_1 ON game.id = ' "user_1.game_id ORDER BY " "user_1.firstname || :firstname_1 || user_1.lastname", ) def test_string_dependency_resolution_asselectable(self): class A(Base): __tablename__ = "a" id = Column(Integer, primary_key=True) b_id = Column(ForeignKey("b.id")) d = relationship( "D", secondary="join(B, D, B.d_id == D.id)." "join(C, C.d_id == D.id)", primaryjoin="and_(A.b_id == B.id, A.id == C.a_id)", secondaryjoin="D.id == B.d_id", ) class B(Base): __tablename__ = "b" id = Column(Integer, primary_key=True) d_id = Column(ForeignKey("d.id")) class C(Base): __tablename__ = "c" id = Column(Integer, primary_key=True) a_id = Column(ForeignKey("a.id")) d_id = Column(ForeignKey("d.id")) class D(Base): __tablename__ = "d" id = Column(Integer, primary_key=True) s = Session() self.assert_compile( s.query(A).join(A.d), "SELECT a.id AS a_id, a.b_id AS a_b_id FROM a JOIN " "(b AS b_1 JOIN d AS d_1 ON b_1.d_id = d_1.id " "JOIN c AS c_1 ON c_1.d_id = d_1.id) ON a.b_id = b_1.id " "AND a.id = c_1.a_id JOIN d ON d.id = b_1.d_id", ) def test_string_dependency_resolution_no_table(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) name = Column(String(50)) class Bar(Base, fixtures.ComparableEntity): __tablename__ = "bar" id = Column(Integer, primary_key=True) rel = relationship("User", primaryjoin="User.id==Bar.__table__.id") assert_raises_message( AttributeError, "does not have a mapped column named " "'__table__'", configure_mappers, ) def test_string_w_pj_annotations(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) name = Column(String(50)) class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) email = Column(String(50)) user_id = Column(Integer) user = relationship( "User", primaryjoin="remote(User.id)==foreign(Address.user_id)" ) eq_( Address.user.property._join_condition.local_remote_pairs, [(Address.__table__.c.user_id, User.__table__.c.id)], ) def test_string_dependency_resolution_no_magic(self): """test that full tinkery expressions work as written""" class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column(Integer, primary_key=True) addresses = relationship( "Address", primaryjoin="User.id==Address.user_id.prop.columns[0]", ) class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey("users.id")) configure_mappers() eq_( str(User.addresses.prop.primaryjoin), "users.id = addresses.user_id", ) def test_string_dependency_resolution_module_qualified(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column(Integer, primary_key=True) addresses = relationship( "%s.Address" % __name__, primaryjoin="%s.User.id==%s.Address.user_id.prop.columns[0]" % (__name__, __name__), ) class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey("users.id")) configure_mappers() eq_( str(User.addresses.prop.primaryjoin), "users.id = addresses.user_id", ) def test_string_dependency_resolution_in_backref(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column(Integer, primary_key=True) name = Column(String(50)) addresses = relationship( "Address", primaryjoin="User.id==Address.user_id", backref="user", ) class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column(Integer, primary_key=True) email = Column(String(50)) user_id = Column(Integer, ForeignKey("users.id")) configure_mappers() eq_( str(User.addresses.property.primaryjoin), str(Address.user.property.primaryjoin), ) def test_string_dependency_resolution_tables(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column(Integer, primary_key=True) name = Column(String(50)) props = relationship( "Prop", secondary="user_to_prop", primaryjoin="User.id==user_to_prop.c.u" "ser_id", secondaryjoin="user_to_prop.c.prop_id=" "=Prop.id", backref="users", ) class Prop(Base, fixtures.ComparableEntity): __tablename__ = "props" id = Column(Integer, primary_key=True) name = Column(String(50)) user_to_prop = Table( "user_to_prop", Base.metadata, Column("user_id", Integer, ForeignKey("users.id")), Column("prop_id", Integer, ForeignKey("props.id")), ) configure_mappers() assert ( class_mapper(User).get_property("props").secondary is user_to_prop ) def test_string_dependency_resolution_schemas(self): Base = decl.declarative_base() class User(Base): __tablename__ = "users" __table_args__ = {"schema": "fooschema"} id = Column(Integer, primary_key=True) name = Column(String(50)) props = relationship( "Prop", secondary="fooschema.user_to_prop", primaryjoin="User.id==fooschema.user_to_prop.c.user_id", secondaryjoin="fooschema.user_to_prop.c.prop_id==Prop.id", backref="users", ) class Prop(Base): __tablename__ = "props" __table_args__ = {"schema": "fooschema"} id = Column(Integer, primary_key=True) name = Column(String(50)) user_to_prop = Table( "user_to_prop", Base.metadata, Column("user_id", Integer, ForeignKey("fooschema.users.id")), Column("prop_id", Integer, ForeignKey("fooschema.props.id")), schema="fooschema", ) configure_mappers() assert ( class_mapper(User).get_property("props").secondary is user_to_prop ) def test_string_dependency_resolution_annotations(self): Base = decl.declarative_base() class Parent(Base): __tablename__ = "parent" id = Column(Integer, primary_key=True) name = Column(String) children = relationship( "Child", primaryjoin="Parent.name==" "remote(foreign(func.lower(Child.name_upper)))", ) class Child(Base): __tablename__ = "child" id = Column(Integer, primary_key=True) name_upper = Column(String) configure_mappers() eq_( Parent.children.property._calculated_foreign_keys, set([Child.name_upper.property.columns[0]]), ) def test_shared_class_registry(self): reg = {} Base1 = decl.declarative_base(testing.db, class_registry=reg) Base2 = decl.declarative_base(testing.db, class_registry=reg) class A(Base1): __tablename__ = "a" id = Column(Integer, primary_key=True) class B(Base2): __tablename__ = "b" id = Column(Integer, primary_key=True) aid = Column(Integer, ForeignKey(A.id)) as_ = relationship("A") assert B.as_.property.mapper.class_ is A def test_uncompiled_attributes_in_relationship(self): class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) email = Column(String(50)) user_id = Column(Integer, ForeignKey("users.id")) class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) name = Column(String(50)) addresses = relationship( "Address", order_by=Address.email, foreign_keys=Address.user_id, remote_side=Address.user_id, ) # get the mapper for User. User mapper will compile, # "addresses" relationship will call upon Address.user_id for # its clause element. Address.user_id is a _CompileOnAttr, # which then calls class_mapper(Address). But ! We're already # "in compilation", but class_mapper(Address) needs to # initialize regardless, or COA's assertion fails and things # generally go downhill from there. class_mapper(User) Base.metadata.create_all() sess = create_session() u1 = User( name="ed", addresses=[ Address(email="abc"), Address(email="xyz"), Address(email="def"), ], ) sess.add(u1) sess.flush() sess.expunge_all() eq_( sess.query(User).filter(User.name == "ed").one(), User( name="ed", addresses=[ Address(email="abc"), Address(email="def"), Address(email="xyz"), ], ), ) def test_nice_dependency_error(self): class User(Base): __tablename__ = "users" id = Column("id", Integer, primary_key=True) addresses = relationship("Address") class Address(Base): __tablename__ = "addresses" id = Column(Integer, primary_key=True) foo = sa.orm.column_property(User.id == 5) # this used to raise an error when accessing User.id but that's # no longer the case since we got rid of _CompileOnAttr. assert_raises(sa.exc.ArgumentError, configure_mappers) def test_nice_dependency_error_works_with_hasattr(self): class User(Base): __tablename__ = "users" id = Column("id", Integer, primary_key=True) addresses = relationship("Address") # hasattr() on a compile-loaded attribute try: hasattr(User.addresses, "property") except exc.InvalidRequestError: assert sa.util.compat.py3k # the exception is preserved. Remains the # same through repeated calls. for i in range(3): assert_raises_message( sa.exc.InvalidRequestError, "^One or more mappers failed to initialize" " - can't proceed with initialization of other mappers. " r"Triggering mapper: 'mapped class User->users'. " "Original exception was: When initializing.*", configure_mappers, ) def test_custom_base(self): class MyBase(object): def foobar(self): return "foobar" Base = decl.declarative_base(cls=MyBase) assert hasattr(Base, "metadata") assert Base().foobar() == "foobar" def test_uses_get_on_class_col_fk(self): # test [ticket:1492] class Master(Base): __tablename__ = "master" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) class Detail(Base): __tablename__ = "detail" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) master_id = Column(None, ForeignKey(Master.id)) master = relationship(Master) Base.metadata.create_all() configure_mappers() assert class_mapper(Detail).get_property("master").strategy.use_get m1 = Master() d1 = Detail(master=m1) sess = create_session() sess.add(d1) sess.flush() sess.expunge_all() d1 = sess.query(Detail).first() m1 = sess.query(Master).first() def go(): assert d1.master self.assert_sql_count(testing.db, go, 0) def test_index_doesnt_compile(self): class User(Base): __tablename__ = "users" id = Column("id", Integer, primary_key=True) name = Column("name", String(50)) error = relationship("Address") i = Index("my_index", User.name) # compile fails due to the nonexistent Addresses relationship assert_raises(sa.exc.InvalidRequestError, configure_mappers) # index configured assert i in User.__table__.indexes assert User.__table__.c.id not in set(i.columns) assert User.__table__.c.name in set(i.columns) # tables create fine Base.metadata.create_all() def test_add_prop(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) User.name = Column("name", String(50)) User.addresses = relationship("Address", backref="user") class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) Address.email = Column(String(50), key="_email") Address.user_id = Column( "user_id", Integer, ForeignKey("users.id"), key="_user_id" ) Base.metadata.create_all() eq_(Address.__table__.c["id"].name, "id") eq_(Address.__table__.c["_email"].name, "email") eq_(Address.__table__.c["_user_id"].name, "user_id") u1 = User( name="u1", addresses=[Address(email="one"), Address(email="two")] ) sess = create_session() sess.add(u1) sess.flush() sess.expunge_all() eq_( sess.query(User).all(), [ User( name="u1", addresses=[Address(email="one"), Address(email="two")], ) ], ) a1 = sess.query(Address).filter(Address.email == "two").one() eq_(a1, Address(email="two")) eq_(a1.user, User(name="u1")) def test_alt_name_attr_subclass_column_inline(self): # [ticket:2900] class A(Base): __tablename__ = "a" id = Column("id", Integer, primary_key=True) data = Column("data") class ASub(A): brap = A.data assert ASub.brap.property is A.data.property assert isinstance( ASub.brap.original_property, descriptor_props.SynonymProperty ) def test_alt_name_attr_subclass_relationship_inline(self): # [ticket:2900] class A(Base): __tablename__ = "a" id = Column("id", Integer, primary_key=True) b_id = Column(Integer, ForeignKey("b.id")) b = relationship("B", backref="as_") class B(Base): __tablename__ = "b" id = Column("id", Integer, primary_key=True) configure_mappers() class ASub(A): brap = A.b assert ASub.brap.property is A.b.property assert isinstance( ASub.brap.original_property, descriptor_props.SynonymProperty ) ASub(brap=B()) def test_alt_name_attr_subclass_column_attrset(self): # [ticket:2900] class A(Base): __tablename__ = "a" id = Column("id", Integer, primary_key=True) data = Column("data") A.brap = A.data assert A.brap.property is A.data.property assert isinstance( A.brap.original_property, descriptor_props.SynonymProperty ) def test_alt_name_attr_subclass_relationship_attrset(self): # [ticket:2900] class A(Base): __tablename__ = "a" id = Column("id", Integer, primary_key=True) b_id = Column(Integer, ForeignKey("b.id")) b = relationship("B", backref="as_") A.brap = A.b class B(Base): __tablename__ = "b" id = Column("id", Integer, primary_key=True) assert A.brap.property is A.b.property assert isinstance( A.brap.original_property, descriptor_props.SynonymProperty ) A(brap=B()) def test_eager_order_by(self): class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) email = Column("email", String(50)) user_id = Column("user_id", Integer, ForeignKey("users.id")) class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) addresses = relationship("Address", order_by=Address.email) Base.metadata.create_all() u1 = User( name="u1", addresses=[Address(email="two"), Address(email="one")] ) sess = create_session() sess.add(u1) sess.flush() sess.expunge_all() eq_( sess.query(User).options(joinedload(User.addresses)).all(), [ User( name="u1", addresses=[Address(email="one"), Address(email="two")], ) ], ) def test_order_by_multi(self): class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) email = Column("email", String(50)) user_id = Column("user_id", Integer, ForeignKey("users.id")) class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) addresses = relationship( "Address", order_by=(Address.email, Address.id) ) Base.metadata.create_all() u1 = User( name="u1", addresses=[Address(email="two"), Address(email="one")] ) sess = create_session() sess.add(u1) sess.flush() sess.expunge_all() u = sess.query(User).filter(User.name == "u1").one() u.addresses def test_as_declarative(self): class User(fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) addresses = relationship("Address", backref="user") class Address(fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) email = Column("email", String(50)) user_id = Column("user_id", Integer, ForeignKey("users.id")) reg = {} decl.instrument_declarative(User, reg, Base.metadata) decl.instrument_declarative(Address, reg, Base.metadata) Base.metadata.create_all() u1 = User( name="u1", addresses=[Address(email="one"), Address(email="two")] ) sess = create_session() sess.add(u1) sess.flush() sess.expunge_all() eq_( sess.query(User).all(), [ User( name="u1", addresses=[Address(email="one"), Address(email="two")], ) ], ) def test_custom_mapper_attribute(self): def mymapper(cls, tbl, **kwargs): m = sa.orm.mapper(cls, tbl, **kwargs) m.CHECK = True return m base = decl.declarative_base() class Foo(base): __tablename__ = "foo" __mapper_cls__ = mymapper id = Column(Integer, primary_key=True) eq_(Foo.__mapper__.CHECK, True) def test_custom_mapper_argument(self): def mymapper(cls, tbl, **kwargs): m = sa.orm.mapper(cls, tbl, **kwargs) m.CHECK = True return m base = decl.declarative_base(mapper=mymapper) class Foo(base): __tablename__ = "foo" id = Column(Integer, primary_key=True) eq_(Foo.__mapper__.CHECK, True) def test_no_change_to_all_descriptors(self): base = decl.declarative_base() class Foo(base): __tablename__ = "foo" id = Column(Integer, primary_key=True) eq_(Foo.__mapper__.all_orm_descriptors.keys(), ["id"]) def test_oops(self): with testing.expect_warnings( "Ignoring declarative-like tuple value of " "attribute 'name'" ): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column("id", Integer, primary_key=True) name = (Column("name", String(50)),) def test_table_args_no_dict(self): class Foo1(Base): __tablename__ = "foo" __table_args__ = (ForeignKeyConstraint(["id"], ["foo.bar"]),) id = Column("id", Integer, primary_key=True) bar = Column("bar", Integer) assert Foo1.__table__.c.id.references(Foo1.__table__.c.bar) def test_table_args_type(self): def err(): class Foo1(Base): __tablename__ = "foo" __table_args__ = ForeignKeyConstraint(["id"], ["foo.id"]) id = Column("id", Integer, primary_key=True) assert_raises_message( sa.exc.ArgumentError, "__table_args__ value must be a tuple, ", err ) def test_table_args_none(self): class Foo2(Base): __tablename__ = "foo" __table_args__ = None id = Column("id", Integer, primary_key=True) assert Foo2.__table__.kwargs == {} def test_table_args_dict_format(self): class Foo2(Base): __tablename__ = "foo" __table_args__ = {"mysql_engine": "InnoDB"} id = Column("id", Integer, primary_key=True) assert Foo2.__table__.kwargs["mysql_engine"] == "InnoDB" def test_table_args_tuple_format(self): class Foo2(Base): __tablename__ = "foo" __table_args__ = {"mysql_engine": "InnoDB"} id = Column("id", Integer, primary_key=True) class Bar(Base): __tablename__ = "bar" __table_args__ = ( ForeignKeyConstraint(["id"], ["foo.id"]), {"mysql_engine": "InnoDB"}, ) id = Column("id", Integer, primary_key=True) assert Bar.__table__.c.id.references(Foo2.__table__.c.id) assert Bar.__table__.kwargs["mysql_engine"] == "InnoDB" def test_table_cls_attribute(self): class Foo(Base): __tablename__ = "foo" @classmethod def __table_cls__(cls, *arg, **kw): name = arg[0] return Table(name + "bat", *arg[1:], **kw) id = Column(Integer, primary_key=True) eq_(Foo.__table__.name, "foobat") def test_table_cls_attribute_return_none(self): from sqlalchemy.schema import Column, PrimaryKeyConstraint class AutoTable(object): @declared_attr def __tablename__(cls): return cls.__name__ @classmethod def __table_cls__(cls, *arg, **kw): for obj in arg[1:]: if ( isinstance(obj, Column) and obj.primary_key ) or isinstance(obj, PrimaryKeyConstraint): return Table(*arg, **kw) return None class Person(AutoTable, Base): id = Column(Integer, primary_key=True) class Employee(Person): employee_name = Column(String) is_(inspect(Employee).local_table, Person.__table__) def test_expression(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) addresses = relationship("Address", backref="user") class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) email = Column("email", String(50)) user_id = Column("user_id", Integer, ForeignKey("users.id")) User.address_count = sa.orm.column_property( sa.select([sa.func.count(Address.id)]) .where(Address.user_id == User.id) .scalar_subquery() ) Base.metadata.create_all() u1 = User( name="u1", addresses=[Address(email="one"), Address(email="two")] ) sess = create_session() sess.add(u1) sess.flush() sess.expunge_all() eq_( sess.query(User).all(), [ User( name="u1", address_count=2, addresses=[Address(email="one"), Address(email="two")], ) ], ) def test_useless_declared_attr(self): class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) email = Column("email", String(50)) user_id = Column("user_id", Integer, ForeignKey("users.id")) class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) addresses = relationship("Address", backref="user") @declared_attr def address_count(cls): # this doesn't really gain us anything. but if # one is used, lets have it function as expected... return sa.orm.column_property( sa.select([sa.func.count(Address.id)]) .where(Address.user_id == cls.id) .scalar_subquery() ) Base.metadata.create_all() u1 = User( name="u1", addresses=[Address(email="one"), Address(email="two")] ) sess = create_session() sess.add(u1) sess.flush() sess.expunge_all() eq_( sess.query(User).all(), [ User( name="u1", address_count=2, addresses=[Address(email="one"), Address(email="two")], ) ], ) def test_declared_on_base_class(self): class MyBase(Base): __tablename__ = "foo" id = Column(Integer, primary_key=True) @declared_attr def somecol(cls): return Column(Integer) class MyClass(MyBase): __tablename__ = "bar" id = Column(Integer, ForeignKey("foo.id"), primary_key=True) # previously, the 'somecol' declared_attr would be ignored # by the mapping and would remain unused. now we take # it as part of MyBase. assert "somecol" in MyBase.__table__.c assert "somecol" not in MyClass.__table__.c def test_decl_cascading_warns_non_mixin(self): with expect_warnings( "Use of @declared_attr.cascading only applies to " "Declarative 'mixin' and 'abstract' classes. " "Currently, this flag is ignored on mapped class " "<class '.*.MyBase'>" ): class MyBase(Base): __tablename__ = "foo" id = Column(Integer, primary_key=True) @declared_attr.cascading def somecol(cls): return Column(Integer) def test_column(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) User.a = Column("a", String(10)) User.b = Column(String(10)) Base.metadata.create_all() u1 = User(name="u1", a="a", b="b") eq_(u1.a, "a") eq_(User.a.get_history(u1), (["a"], (), ())) sess = create_session() sess.add(u1) sess.flush() sess.expunge_all() eq_(sess.query(User).all(), [User(name="u1", a="a", b="b")]) def test_column_properties(self): class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) email = Column(String(50)) user_id = Column(Integer, ForeignKey("users.id")) class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) adr_count = sa.orm.column_property( sa.select( [sa.func.count(Address.id)], Address.user_id == id ).scalar_subquery() ) addresses = relationship(Address) Base.metadata.create_all() u1 = User( name="u1", addresses=[Address(email="one"), Address(email="two")] ) sess = create_session() sess.add(u1) sess.flush() sess.expunge_all() eq_( sess.query(User).all(), [ User( name="u1", adr_count=2, addresses=[Address(email="one"), Address(email="two")], ) ], ) def test_column_properties_2(self): class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column(Integer, primary_key=True) email = Column(String(50)) user_id = Column(Integer, ForeignKey("users.id")) class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column("id", Integer, primary_key=True) name = Column("name", String(50)) # this is not "valid" but we want to test that Address.id # doesn't get stuck into user's table adr_count = Address.id eq_(set(User.__table__.c.keys()), set(["id", "name"])) eq_(set(Address.__table__.c.keys()), set(["id", "email", "user_id"])) def test_deferred(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) name = sa.orm.deferred(Column(String(50))) Base.metadata.create_all() sess = create_session() sess.add(User(name="u1")) sess.flush() sess.expunge_all() u1 = sess.query(User).filter(User.name == "u1").one() assert "name" not in u1.__dict__ def go(): eq_(u1.name, "u1") self.assert_sql_count(testing.db, go, 1) def test_composite_inline(self): class AddressComposite(fixtures.ComparableEntity): def __init__(self, street, state): self.street = street self.state = state def __composite_values__(self): return [self.street, self.state] class User(Base, fixtures.ComparableEntity): __tablename__ = "user" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) address = composite( AddressComposite, Column("street", String(50)), Column("state", String(2)), ) Base.metadata.create_all() sess = Session() sess.add(User(address=AddressComposite("123 anywhere street", "MD"))) sess.commit() eq_( sess.query(User).all(), [User(address=AddressComposite("123 anywhere street", "MD"))], ) def test_composite_separate(self): class AddressComposite(fixtures.ComparableEntity): def __init__(self, street, state): self.street = street self.state = state def __composite_values__(self): return [self.street, self.state] class User(Base, fixtures.ComparableEntity): __tablename__ = "user" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) street = Column(String(50)) state = Column(String(2)) address = composite(AddressComposite, street, state) Base.metadata.create_all() sess = Session() sess.add(User(address=AddressComposite("123 anywhere street", "MD"))) sess.commit() eq_( sess.query(User).all(), [User(address=AddressComposite("123 anywhere street", "MD"))], ) def test_mapping_to_join(self): users = Table( "users", Base.metadata, Column("id", Integer, primary_key=True) ) addresses = Table( "addresses", Base.metadata, Column("id", Integer, primary_key=True), Column("user_id", Integer, ForeignKey("users.id")), ) usersaddresses = sa.join( users, addresses, users.c.id == addresses.c.user_id ) class User(Base): __table__ = usersaddresses __table_args__ = {"primary_key": [users.c.id]} # need to use column_property for now user_id = column_property(users.c.id, addresses.c.user_id) address_id = addresses.c.id assert User.__mapper__.get_property("user_id").columns[0] is users.c.id assert ( User.__mapper__.get_property("user_id").columns[1] is addresses.c.user_id ) def test_synonym_inline(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) _name = Column("name", String(50)) def _set_name(self, name): self._name = "SOMENAME " + name def _get_name(self): return self._name name = sa.orm.synonym( "_name", descriptor=property(_get_name, _set_name) ) Base.metadata.create_all() sess = create_session() u1 = User(name="someuser") eq_(u1.name, "SOMENAME someuser") sess.add(u1) sess.flush() eq_( sess.query(User).filter(User.name == "SOMENAME someuser").one(), u1 ) def test_synonym_no_descriptor(self): from sqlalchemy.orm.properties import ColumnProperty class CustomCompare(ColumnProperty.Comparator): __hash__ = None def __eq__(self, other): return self.__clause_element__() == other + " FOO" class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) _name = Column("name", String(50)) name = sa.orm.synonym("_name", comparator_factory=CustomCompare) Base.metadata.create_all() sess = create_session() u1 = User(name="someuser FOO") sess.add(u1) sess.flush() eq_(sess.query(User).filter(User.name == "someuser").one(), u1) def test_synonym_added(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) _name = Column("name", String(50)) def _set_name(self, name): self._name = "SOMENAME " + name def _get_name(self): return self._name name = property(_get_name, _set_name) User.name = sa.orm.synonym("_name", descriptor=User.name) Base.metadata.create_all() sess = create_session() u1 = User(name="someuser") eq_(u1.name, "SOMENAME someuser") sess.add(u1) sess.flush() eq_( sess.query(User).filter(User.name == "SOMENAME someuser").one(), u1 ) def test_reentrant_compile_via_foreignkey(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) addresses = relationship("Address", backref="user") class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) email = Column("email", String(50)) user_id = Column("user_id", Integer, ForeignKey(User.id)) # previous versions would force a re-entrant mapper compile via # the User.id inside the ForeignKey but this is no longer the # case sa.orm.configure_mappers() eq_( list(Address.user_id.property.columns[0].foreign_keys)[0].column, User.__table__.c.id, ) Base.metadata.create_all() u1 = User( name="u1", addresses=[Address(email="one"), Address(email="two")] ) sess = create_session() sess.add(u1) sess.flush() sess.expunge_all() eq_( sess.query(User).all(), [ User( name="u1", addresses=[Address(email="one"), Address(email="two")], ) ], ) def test_relationship_reference(self): class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) email = Column("email", String(50)) user_id = Column("user_id", Integer, ForeignKey("users.id")) class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) addresses = relationship( "Address", backref="user", primaryjoin=id == Address.user_id ) User.address_count = sa.orm.column_property( sa.select([sa.func.count(Address.id)]) .where(Address.user_id == User.id) .scalar_subquery() ) Base.metadata.create_all() u1 = User( name="u1", addresses=[Address(email="one"), Address(email="two")] ) sess = create_session() sess.add(u1) sess.flush() sess.expunge_all() eq_( sess.query(User).all(), [ User( name="u1", address_count=2, addresses=[Address(email="one"), Address(email="two")], ) ], ) def test_pk_with_fk_init(self): class Bar(Base): __tablename__ = "bar" id = sa.Column( sa.Integer, sa.ForeignKey("foo.id"), primary_key=True ) ex = sa.Column(sa.Integer, primary_key=True) class Foo(Base): __tablename__ = "foo" id = sa.Column(sa.Integer, primary_key=True) bars = sa.orm.relationship(Bar) assert Bar.__mapper__.primary_key[0] is Bar.__table__.c.id assert Bar.__mapper__.primary_key[1] is Bar.__table__.c.ex def test_with_explicit_autoloaded(self): meta = MetaData(testing.db) t1 = Table( "t1", meta, Column("id", String(50), primary_key=True), Column("data", String(50)), ) meta.create_all() try: class MyObj(Base): __table__ = Table("t1", Base.metadata, autoload=True) sess = create_session() m = MyObj(id="someid", data="somedata") sess.add(m) sess.flush() eq_(t1.select().execute().fetchall(), [("someid", "somedata")]) finally: meta.drop_all() def test_synonym_for(self): class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ) name = Column("name", String(50)) @decl.synonym_for("name") @property def namesyn(self): return self.name Base.metadata.create_all() sess = create_session() u1 = User(name="someuser") eq_(u1.name, "someuser") eq_(u1.namesyn, "someuser") sess.add(u1) sess.flush() rt = sess.query(User).filter(User.namesyn == "someuser").one() eq_(rt, u1) def test_duplicate_classes_in_base(self): class Test(Base): __tablename__ = "a" id = Column(Integer, primary_key=True) assert_raises_message( sa.exc.SAWarning, "This declarative base already contains a class with ", lambda: type(Base)( "Test", (Base,), dict(__tablename__="b", id=Column(Integer, primary_key=True)), ), ) @testing.teardown_events(MapperEvents) def test_instrument_class_before_instrumentation(self): # test #3388 canary = mock.Mock() @event.listens_for(mapper, "instrument_class") def instrument_class(mp, cls): canary.instrument_class(mp, cls) @event.listens_for(object, "class_instrument") def class_instrument(cls): canary.class_instrument(cls) class Test(Base): __tablename__ = "test" id = Column(Integer, primary_key=True) eq_( canary.mock_calls, [ mock.call.instrument_class(Test.__mapper__, Test), mock.call.class_instrument(Test), ], ) def test_cls_docstring(self): class MyBase(object): """MyBase Docstring""" Base = decl.declarative_base(cls=MyBase) eq_(Base.__doc__, MyBase.__doc__) def test_delattr_mapped_raises(self): Base = decl.declarative_base() class Foo(Base): __tablename__ = "foo" id = Column(Integer, primary_key=True) data = Column(String) def go(): del Foo.data assert_raises_message( NotImplementedError, "Can't un-map individual mapped attributes on a mapped class.", go, ) def test_delattr_hybrid_fine(self): Base = decl.declarative_base() class Foo(Base): __tablename__ = "foo" id = Column(Integer, primary_key=True) data = Column(String) @hybrid_property def data_hybrid(self): return self.data assert "data_hybrid" in Foo.__mapper__.all_orm_descriptors.keys() del Foo.data_hybrid assert "data_hybrid" not in Foo.__mapper__.all_orm_descriptors.keys() assert not hasattr(Foo, "data_hybrid") def test_setattr_hybrid_updates_descriptors(self): Base = decl.declarative_base() class Foo(Base): __tablename__ = "foo" id = Column(Integer, primary_key=True) data = Column(String) assert "data_hybrid" not in Foo.__mapper__.all_orm_descriptors.keys() @hybrid_property def data_hybrid(self): return self.data Foo.data_hybrid = data_hybrid assert "data_hybrid" in Foo.__mapper__.all_orm_descriptors.keys() del Foo.data_hybrid assert "data_hybrid" not in Foo.__mapper__.all_orm_descriptors.keys() assert not hasattr(Foo, "data_hybrid") def _produce_test(inline, stringbased): class ExplicitJoinTest(fixtures.MappedTest): @classmethod def define_tables(cls, metadata): global User, Address Base = decl.declarative_base(metadata=metadata) class User(Base, fixtures.ComparableEntity): __tablename__ = "users" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) name = Column(String(50)) class Address(Base, fixtures.ComparableEntity): __tablename__ = "addresses" id = Column( Integer, primary_key=True, test_needs_autoincrement=True ) email = Column(String(50)) user_id = Column(Integer, ForeignKey("users.id")) if inline: if stringbased: user = relationship( "User", primaryjoin="User.id==Address.user_id", backref="addresses", ) else: user = relationship( User, primaryjoin=User.id == user_id, backref="addresses", ) if not inline: configure_mappers() if stringbased: Address.user = relationship( "User", primaryjoin="User.id==Address.user_id", backref="addresses", ) else: Address.user = relationship( User, primaryjoin=User.id == Address.user_id, backref="addresses", ) @classmethod def insert_data(cls, connection): params = [ dict(list(zip(("id", "name"), column_values))) for column_values in [ (7, "jack"), (8, "ed"), (9, "fred"), (10, "chuck"), ] ] connection.execute(User.__table__.insert(), params) connection.execute( Address.__table__.insert(), [ dict(list(zip(("id", "user_id", "email"), column_values))) for column_values in [ (1, 7, "[email protected]"), (2, 8, "[email protected]"), (3, 8, "[email protected]"), (4, 8, "[email protected]"), (5, 9, "[email protected]"), ] ], ) def test_aliased_join(self): # this query will screw up if the aliasing enabled in # query.join() gets applied to the right half of the join # condition inside the any(). the join condition inside of # any() comes from the "primaryjoin" of the relationship, # and should not be annotated with _orm_adapt. # PropertyLoader.Comparator will annotate the left side with # _orm_adapt, though. sess = create_session() eq_( sess.query(User) .join(User.addresses, aliased=True) .filter(Address.email == "[email protected]") .filter(User.addresses.any(Address.email == "[email protected]")) .all(), [], ) ExplicitJoinTest.__name__ = "ExplicitJoinTest%s%s" % ( inline and "Inline" or "Separate", stringbased and "String" or "Literal", ) return ExplicitJoinTest for inline in True, False: for stringbased in True, False: testclass = _produce_test(inline, stringbased) exec("%s = testclass" % testclass.__name__) del testclass
py
7dfcc8960e6fdf3fe62b72445b561791571df24b
from django.apps import AppConfig class UsersAppConfig(AppConfig): name = "outpass.users" verbose_name = "Users" def ready(self): try: import users.signals # noqa F401 except ImportError: pass
py
7dfcc8ff27ffcb2aae9277870cfc970f9ecf8745
import datetime from cal_setup import get_calendar_service def main(): service = get_calendar_service() # Call the Calendar API now = datetime.datetime.utcnow().isoformat() + "Z" # 'Z' indicates UTC time print("Getting List o 10 events") events_result = ( service.events() .list(calendarId="primary", timeMin=now, maxResults=10, singleEvents=True, orderBy="startTime") .execute() ) events = events_result.get("items", []) if not events: print("No upcoming events found.") for event in events: start = event["start"].get("dateTime", event["start"].get("date")) print(start, event["summary"]) if __name__ == "__main__": main()
py
7dfcc975eab66c9cc8ded5da283bc35c55c71bce
# -*- coding: utf-8 -*- # Author: Henry Lin <[email protected]> # Tom Dupré la Tour # License: BSD import numbers import numpy as np import warnings from . import OneHotEncoder from ..base import BaseEstimator, TransformerMixin from ..utils.validation import check_array from ..utils.validation import check_is_fitted from ..utils.validation import check_random_state from ..utils.validation import _check_feature_names_in from ..utils.validation import check_scalar from ..utils.validation import _check_sample_weight from ..utils.stats import _weighted_percentile from ..utils import _safe_indexing class KBinsDiscretizer(TransformerMixin, BaseEstimator): """ Bin continuous data into intervals. Read more in the :ref:`User Guide <preprocessing_discretization>`. .. versionadded:: 0.20 Parameters ---------- n_bins : int or array-like of shape (n_features,), default=5 The number of bins to produce. Raises ValueError if ``n_bins < 2``. encode : {'onehot', 'onehot-dense', 'ordinal'}, default='onehot' Method used to encode the transformed result. - 'onehot': Encode the transformed result with one-hot encoding and return a sparse matrix. Ignored features are always stacked to the right. - 'onehot-dense': Encode the transformed result with one-hot encoding and return a dense array. Ignored features are always stacked to the right. - 'ordinal': Return the bin identifier encoded as an integer value. strategy : {'uniform', 'quantile', 'kmeans'}, default='quantile' Strategy used to define the widths of the bins. - 'uniform': All bins in each feature have identical widths. - 'quantile': All bins in each feature have the same number of points. - 'kmeans': Values in each bin have the same nearest center of a 1D k-means cluster. dtype : {np.float32, np.float64}, default=None The desired data-type for the output. If None, output dtype is consistent with input dtype. Only np.float32 and np.float64 are supported. .. versionadded:: 0.24 subsample : int or None (default='warn') Maximum number of samples, used to fit the model, for computational efficiency. Used when `strategy="quantile"`. `subsample=None` means that all the training samples are used when computing the quantiles that determine the binning thresholds. Since quantile computation relies on sorting each column of `X` and that sorting has an `n log(n)` time complexity, it is recommended to use subsampling on datasets with a very large number of samples. .. deprecated:: 1.1 In version 1.3 and onwards, `subsample=2e5` will be the default. random_state : int, RandomState instance or None, default=None Determines random number generation for subsampling. Pass an int for reproducible results across multiple function calls. See the `subsample` parameter for more details. See :term:`Glossary <random_state>`. .. versionadded:: 1.1 Attributes ---------- bin_edges_ : ndarray of ndarray of shape (n_features,) The edges of each bin. Contain arrays of varying shapes ``(n_bins_, )`` Ignored features will have empty arrays. n_bins_ : ndarray of shape (n_features,), dtype=np.int_ Number of bins per feature. Bins whose width are too small (i.e., <= 1e-8) are removed with a warning. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- Binarizer : Class used to bin values as ``0`` or ``1`` based on a parameter ``threshold``. Notes ----- In bin edges for feature ``i``, the first and last values are used only for ``inverse_transform``. During transform, bin edges are extended to:: np.concatenate([-np.inf, bin_edges_[i][1:-1], np.inf]) You can combine ``KBinsDiscretizer`` with :class:`~sklearn.compose.ColumnTransformer` if you only want to preprocess part of the features. ``KBinsDiscretizer`` might produce constant features (e.g., when ``encode = 'onehot'`` and certain bins do not contain any data). These features can be removed with feature selection algorithms (e.g., :class:`~sklearn.feature_selection.VarianceThreshold`). Examples -------- >>> from sklearn.preprocessing import KBinsDiscretizer >>> X = [[-2, 1, -4, -1], ... [-1, 2, -3, -0.5], ... [ 0, 3, -2, 0.5], ... [ 1, 4, -1, 2]] >>> est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform') >>> est.fit(X) KBinsDiscretizer(...) >>> Xt = est.transform(X) >>> Xt # doctest: +SKIP array([[ 0., 0., 0., 0.], [ 1., 1., 1., 0.], [ 2., 2., 2., 1.], [ 2., 2., 2., 2.]]) Sometimes it may be useful to convert the data back into the original feature space. The ``inverse_transform`` function converts the binned data into the original feature space. Each value will be equal to the mean of the two bin edges. >>> est.bin_edges_[0] array([-2., -1., 0., 1.]) >>> est.inverse_transform(Xt) array([[-1.5, 1.5, -3.5, -0.5], [-0.5, 2.5, -2.5, -0.5], [ 0.5, 3.5, -1.5, 0.5], [ 0.5, 3.5, -1.5, 1.5]]) """ def __init__( self, n_bins=5, *, encode="onehot", strategy="quantile", dtype=None, subsample="warn", random_state=None, ): self.n_bins = n_bins self.encode = encode self.strategy = strategy self.dtype = dtype self.subsample = subsample self.random_state = random_state def fit(self, X, y=None, sample_weight=None): """ Fit the estimator. Parameters ---------- X : array-like of shape (n_samples, n_features) Data to be discretized. y : None Ignored. This parameter exists only for compatibility with :class:`~sklearn.pipeline.Pipeline`. sample_weight : array-like shape (n_samples,) default = None Weights for each sample, used to calculate quantiles if 'strategy = "quantile"' else ignored. Returns ------- self : object Returns the instance itself. """ X = self._validate_data(X, dtype="numeric") supported_dtype = (np.float64, np.float32) if self.dtype in supported_dtype: output_dtype = self.dtype elif self.dtype is None: output_dtype = X.dtype else: raise ValueError( "Valid options for 'dtype' are " f"{supported_dtype + (None,)}. Got dtype={self.dtype} " " instead." ) n_samples, n_features = X.shape if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) if self.strategy != "quantile" and sample_weight is not None: warnings.warn( "sample_weight parameter is ignored when the strategy is not `quantile`" ) if self.strategy == "quantile" and self.subsample is not None: if self.subsample == "warn": if n_samples > 2e5: warnings.warn( "In version 1.3 onwards, subsample=2e5 " "will be used by default. Set subsample explicitly to " "silence this warning in the mean time. Set " "subsample=None to disable subsampling explicitly.", FutureWarning, ) else: self.subsample = check_scalar( self.subsample, "subsample", numbers.Integral, min_val=1 ) rng = check_random_state(self.random_state) if n_samples > self.subsample: subsample_idx = rng.choice( n_samples, size=self.subsample, replace=False ) X = _safe_indexing(X, subsample_idx) elif self.strategy != "quantile" and isinstance( self.subsample, numbers.Integral ): raise ValueError( f"Invalid parameter for `strategy`: {self.strategy}. " '`subsample` must be used with `strategy="quantile"`.' ) valid_encode = ("onehot", "onehot-dense", "ordinal") if self.encode not in valid_encode: raise ValueError( "Valid options for 'encode' are {}. Got encode={!r} instead.".format( valid_encode, self.encode ) ) valid_strategy = ("uniform", "quantile", "kmeans") if self.strategy not in valid_strategy: raise ValueError( "Valid options for 'strategy' are {}. " "Got strategy={!r} instead.".format(valid_strategy, self.strategy) ) n_features = X.shape[1] n_bins = self._validate_n_bins(n_features) bin_edges = np.zeros(n_features, dtype=object) for jj in range(n_features): column = X[:, jj] col_min, col_max = column.min(), column.max() if col_min == col_max: warnings.warn( "Feature %d is constant and will be replaced with 0." % jj ) n_bins[jj] = 1 bin_edges[jj] = np.array([-np.inf, np.inf]) continue if self.strategy == "uniform": bin_edges[jj] = np.linspace(col_min, col_max, n_bins[jj] + 1) elif self.strategy == "quantile": quantiles = np.linspace(0, 100, n_bins[jj] + 1) if sample_weight is None: percentile = np.percentile(column, quantiles) else: percentile = np.array( [ _weighted_percentile(column, sample_weight, quantile) for quantile in quantiles ] ) bin_edges[jj] = np.asarray(percentile) elif self.strategy == "kmeans": from ..cluster import KMeans # fixes import loops # Deterministic initialization with uniform spacing uniform_edges = np.linspace(col_min, col_max, n_bins[jj] + 1) init = (uniform_edges[1:] + uniform_edges[:-1])[:, None] * 0.5 # 1D k-means procedure km = KMeans(n_clusters=n_bins[jj], init=init, n_init=1) centers = km.fit(column[:, None]).cluster_centers_[:, 0] # Must sort, centers may be unsorted even with sorted init centers.sort() bin_edges[jj] = (centers[1:] + centers[:-1]) * 0.5 bin_edges[jj] = np.r_[col_min, bin_edges[jj], col_max] # Remove bins whose width are too small (i.e., <= 1e-8) if self.strategy in ("quantile", "kmeans"): mask = np.ediff1d(bin_edges[jj], to_begin=np.inf) > 1e-8 bin_edges[jj] = bin_edges[jj][mask] if len(bin_edges[jj]) - 1 != n_bins[jj]: warnings.warn( "Bins whose width are too small (i.e., <= " "1e-8) in feature %d are removed. Consider " "decreasing the number of bins." % jj ) n_bins[jj] = len(bin_edges[jj]) - 1 self.bin_edges_ = bin_edges self.n_bins_ = n_bins if "onehot" in self.encode: self._encoder = OneHotEncoder( categories=[np.arange(i) for i in self.n_bins_], sparse=self.encode == "onehot", dtype=output_dtype, ) # Fit the OneHotEncoder with toy datasets # so that it's ready for use after the KBinsDiscretizer is fitted self._encoder.fit(np.zeros((1, len(self.n_bins_)))) return self def _validate_n_bins(self, n_features): """Returns n_bins_, the number of bins per feature.""" orig_bins = self.n_bins if isinstance(orig_bins, numbers.Number): if not isinstance(orig_bins, numbers.Integral): raise ValueError( "{} received an invalid n_bins type. " "Received {}, expected int.".format( KBinsDiscretizer.__name__, type(orig_bins).__name__ ) ) if orig_bins < 2: raise ValueError( "{} received an invalid number " "of bins. Received {}, expected at least 2.".format( KBinsDiscretizer.__name__, orig_bins ) ) return np.full(n_features, orig_bins, dtype=int) n_bins = check_array(orig_bins, dtype=int, copy=True, ensure_2d=False) if n_bins.ndim > 1 or n_bins.shape[0] != n_features: raise ValueError("n_bins must be a scalar or array of shape (n_features,).") bad_nbins_value = (n_bins < 2) | (n_bins != orig_bins) violating_indices = np.where(bad_nbins_value)[0] if violating_indices.shape[0] > 0: indices = ", ".join(str(i) for i in violating_indices) raise ValueError( "{} received an invalid number " "of bins at indices {}. Number of bins " "must be at least 2, and must be an int.".format( KBinsDiscretizer.__name__, indices ) ) return n_bins def transform(self, X): """ Discretize the data. Parameters ---------- X : array-like of shape (n_samples, n_features) Data to be discretized. Returns ------- Xt : {ndarray, sparse matrix}, dtype={np.float32, np.float64} Data in the binned space. Will be a sparse matrix if `self.encode='onehot'` and ndarray otherwise. """ check_is_fitted(self) # check input and attribute dtypes dtype = (np.float64, np.float32) if self.dtype is None else self.dtype Xt = self._validate_data(X, copy=True, dtype=dtype, reset=False) bin_edges = self.bin_edges_ for jj in range(Xt.shape[1]): Xt[:, jj] = np.searchsorted(bin_edges[jj][1:-1], Xt[:, jj], side="right") if self.encode == "ordinal": return Xt dtype_init = None if "onehot" in self.encode: dtype_init = self._encoder.dtype self._encoder.dtype = Xt.dtype try: Xt_enc = self._encoder.transform(Xt) finally: # revert the initial dtype to avoid modifying self. self._encoder.dtype = dtype_init return Xt_enc def inverse_transform(self, Xt): """ Transform discretized data back to original feature space. Note that this function does not regenerate the original data due to discretization rounding. Parameters ---------- Xt : array-like of shape (n_samples, n_features) Transformed data in the binned space. Returns ------- Xinv : ndarray, dtype={np.float32, np.float64} Data in the original feature space. """ check_is_fitted(self) if "onehot" in self.encode: Xt = self._encoder.inverse_transform(Xt) Xinv = check_array(Xt, copy=True, dtype=(np.float64, np.float32)) n_features = self.n_bins_.shape[0] if Xinv.shape[1] != n_features: raise ValueError( "Incorrect number of features. Expecting {}, received {}.".format( n_features, Xinv.shape[1] ) ) for jj in range(n_features): bin_edges = self.bin_edges_[jj] bin_centers = (bin_edges[1:] + bin_edges[:-1]) * 0.5 Xinv[:, jj] = bin_centers[np.int_(Xinv[:, jj])] return Xinv def get_feature_names_out(self, input_features=None): """Get output feature names. Parameters ---------- input_features : array-like of str or None, default=None Input features. - If `input_features` is `None`, then `feature_names_in_` is used as feature names in. If `feature_names_in_` is not defined, then names are generated: `[x0, x1, ..., x(n_features_in_)]`. - If `input_features` is an array-like, then `input_features` must match `feature_names_in_` if `feature_names_in_` is defined. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. """ input_features = _check_feature_names_in(self, input_features) return self._encoder.get_feature_names_out(input_features)
py
7dfcca58e862213c0c066adbe21472529f198235
# # DRAGONS # # mappers.recipeMapper.py # ------------------------------------------------------------------------------ import pkgutil from importlib import import_module from .baseMapper import Mapper from ..utils.errors import ModeError from ..utils.errors import RecipeNotFound from ..utils.mapper_utils import dotpath from ..utils.mapper_utils import find_user_recipe from ..utils.mapper_utils import RECIPEMARKER # ------------------------------------------------------------------------------ class RecipeMapper(Mapper): """ Retrieve the appropriate recipe for a dataset, using all defined defaults: >>> ad = astrodata.open(<fitsfile>) >>> dtags = set(list(ad.tags)[:]) >>> instpkg = ad.instrument(generic=True).lower() >>> rm = RecipeMapper(dtags, instpkg) >>> recipe = rm.get_applicable_recipe() >>> recipe.__name__ 'qaReduce' """ def get_applicable_recipe(self): recipefn = find_user_recipe(self.recipename) if recipefn is None: tag_match, recipefn = self._retrieve_recipe() if recipefn is None: raise RecipeNotFound("Recipe '{}' not found.".format(self.recipename)) return recipefn # -------------------------------------------------------------------------- # Recipe search cascade def _retrieve_recipe(self): """ Start of the recipe library search cascade. Returns ------- TagSet Best matched tagset. function Recipe with the associated best matched TagSet. """ matched_set = (set(), None) for rlib in self._get_tagged_recipes(): if rlib is None: break if hasattr(rlib, 'recipe_tags'): if self.tags.issuperset(rlib.recipe_tags): isect = rlib.recipe_tags l1 = len(isect) l2 = len(matched_set[0]) matched_set = (isect, rlib) if l1 > l2 else matched_set else: continue else: continue isection, rlib = matched_set try: recipe_actual = getattr(rlib, self.recipename) except AttributeError: recipe_actual = None return isection, recipe_actual def _get_tagged_recipes(self): try: loaded_pkg = import_module(self.dotpackage) except Exception: yield None return for rmod, ispkg in self._generate_recipe_modules(loaded_pkg): if not ispkg: importmod = dotpath(self.dotpackage, rmod) yield import_module(importmod) else: continue def _generate_recipe_modules(self, pkg, recipedir=RECIPEMARKER): ppath = pkg.__path__[0] pkg_importer = pkgutil.ImpImporter(ppath) for pkgname, ispkg in pkg_importer.iter_modules(): if ispkg and pkgname == recipedir: break else: continue loaded_pkg = import_module(dotpath(self.dotpackage, pkgname)) for mode_pkg, ispkg in self._generate_mode_pkg(loaded_pkg): yield dotpath(pkgname, mode_pkg), ispkg def _generate_mode_pkg(self, pkg): found = False ppath = pkg.__path__[0] pkg_importer = pkgutil.ImpImporter(ppath) for pkgname, ispkg in pkg_importer.iter_modules(): if ispkg and pkgname in self.mode: found = True break else: continue if not found: cerr = "No recipe mode package matched '{}'" raise ModeError(cerr.format(self.mode)) loaded_pkg = import_module(dotpath(pkg.__name__, pkgname)) for mod, ispkg in self._generate_mode_libs(loaded_pkg): yield dotpath(pkgname, mod), ispkg def _generate_mode_libs(self, pkg): ppath = pkg.__path__[0] pkg_importer = pkgutil.ImpImporter(ppath) for pkgname, ispkg in pkg_importer.iter_modules(): if not ispkg: yield pkgname, ispkg else: continue
py
7dfccafc3726186012e4b980324994ddfa7538f8
#!/usr/bin/env python # # Copyright (C) 2013 Umea Universitet, Sweden # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re import sys from io import open from setuptools import setup from setuptools.command.test import test as TestCommand __author__ = 'rohe0002' class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): # import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(self.test_args) sys.exit(errno) tests_requires = ['responses', 'testfixtures', 'pytest', 'freezegun'] with open('src/oic/__init__.py', 'r') as fd: version = re.search(r'^__version__\s*=\s*[\'"]([^\'"]*)[\'"]', fd.read(), re.MULTILINE).group(1) setup( name="oic", version=version, description="Python implementation of OAuth2 and OpenID Connect", long_description=open('README.rst', encoding='utf-8').read(), author="Roland Hedberg", author_email="[email protected]", license="Apache 2.0", url='https://github.com/OpenIDC/pyoidc/', packages=[ "oic", "oic/oauth2", "oic/oic", "oic/utils", "oic/utils/authn", "oic/utils/userinfo", 'oic/utils/rp', 'oic/extension' ], entry_points={ 'console_scripts': [ 'oic-client-management = oic.utils.client_management:run' ] }, package_dir={"": "src"}, package_data={"oic": ["py.typed"]}, include_package_data=True, classifiers=[ "Development Status :: 4 - Beta", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Topic :: Software Development :: Libraries :: Python Modules"], python_requires='~=3.5', extras_require={ 'develop': ["cherrypy==3.2.4", "pyOpenSSL"], 'testing': tests_requires, 'docs': ['Sphinx', 'sphinx-autobuild', 'alabaster'], 'quality': ['pylama', 'isort', 'eradicate', 'mypy', 'black', 'bandit', 'readme_renderer[md]'], 'types': ['types-requests'], 'ldap_authn': ['pyldap'], }, install_requires=[ "requests", "pycryptodomex", "pyjwkest>=1.3.6", "mako", "beaker", "cryptography", "defusedxml", "typing_extensions", ], tests_require=tests_requires, long_description_content_type="text/x-rst", zip_safe=False, cmdclass={'test': PyTest}, )
py
7dfccbd569d515ef20a0ae0a5a0942d32199839c
"""Utility functions for arithmetic operations.""" __all__ = ["clip", "frange", "discretize", "counter"] import itertools import math from typing import Generator from ..typing import Literal def clip( value: float, minimum: float = None, maximum: float = None, *, absmax: float = None ) -> float: """Limit the ``value`` to the range [``minimum``, ``maximum``]. Parameters ---------- value Arbitrary parameter. minimum Lower limit of ``value``. maximum Upper limit of ``value``. absmax Upper limit of absolute value of ``value``. Examples -------- >>> neclib.utils.clip(1.2, 0, 1) 1 >>> neclib.utils.clip(41, 0, 100) 41 >>> neclib.utils.clip(-4, absmax=3) -3 """ if absmax is not None: minimum, maximum = -1 * abs(absmax), abs(absmax) if minimum > maximum: raise ValueError("Minimum should be less than maximum.") return min(max(minimum, value), maximum) def frange( start: float, stop: float, step: float = 1.0, *, inclusive: bool = False ) -> Generator[float, None, None]: """Float version of built-in ``range``, with support for including stop value. Parameters ---------- start First value to be yielded. stop Last value to be yielded never exceeds this limit. step Difference between successive 2 values to be yielded. inclusive If ``True``, ``stop`` value can be yielded when ``stop - start`` is multiple of ``step``. Notes ----- Because of floating point overflow, errors may appear when ``print``-ing the result, but it's the same as almost equivalent function ``numpy.arange``. Examples -------- >>> list(neclib.utils.frange(0, 1, 0.2)) [0, 0.2, 0.4, 0.6, 0.8] >>> list(neclib.utils.frange(0, 1, 0.2, inclusive=True)) [0, 0.2, 0.4, 0.6, 0.8, 1] """ if inclusive: num = -1 * math.ceil((start - stop) / step) + 1 # HACK: ``-1 * ceil(x) + 1`` is ceiling function, but if ``x`` is integer, # return ``ceil(x) + 1``, so no ``x`` satisfies ``quasi_ceil(x) == x``. else: num = math.ceil((stop - start) / step) for i in range(num): yield start + (step * i) def discretize( value: float, start: float = 0.0, step: float = 1.0, *, method: Literal["nearest", "ceil", "floor"] = "nearest", ) -> float: """Convert ``value`` to nearest element of arithmetic sequence. Parameters ---------- value Parameter to discretize. start First element of element of arithmetic sequence. step Difference between the consecutive 2 elements of the sequence. method Discretizing method. Examples -------- >>> neclib.utils.discretize(3.141592) 3 >>> neclib.utils.discretize(3.141592, step=10) 0 >>> neclib.utils.discretize(3.141592, method="ceil") 4 >>> neclib.utils.discretize(3.141592, start=2.5, step=0.7) 3.2 """ discretizer = {"nearest": round, "ceil": math.ceil, "floor": math.floor} return discretizer[method]((value - start) / step) * step + start def counter(stop: int = None, allow_infty: bool = False) -> Generator[int, None, None]: """Generate integers from 0 to ``stop``. Parameters ---------- stop Number of yielded values. allow_infty If ``True``, the counter counts up to infinity. Listing such object will cause memory leak, so use caution. Examples -------- >>> list(neclib.utils.counter(5)) [0, 1, 2, 3, 4] >>> list(neclib.utils.counter()) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...] # -> memory leak """ if (stop is None) and (not allow_infty): raise ValueError("Specify ``stop`` value, unless ``allow_infty`` is set True.") elif stop is None: yield from itertools.count() elif stop < 0: raise ValueError("Stop value should be non-negative.") else: yield from range(stop)
py
7dfccd70c9c95b59c5974f9ce67986183958c9cf
"""Tests for the SQLFluff integration with the "diff-quality" tool.""" import sys import pytest try: from sqlfluff import diff_quality_plugin except ImportError: pass @pytest.mark.parametrize( "sql_path,expected_violations_lines", [ ("linter/indentation_errors.sql", list(range(2, 7))), ("linter/parse_error.sql", {1}), # NB: This version of the file is in a directory configured # to ignore parsing errors. ("linter/diffquality/parse_error.sql", []), ], ) @pytest.mark.skipif( sys.version_info[:2] == (3, 4), reason="requires diff_cover package, which does not support python3.4", ) def test_diff_quality_plugin(sql_path, expected_violations_lines, monkeypatch): """Test the plugin at least finds errors on the expected lines.""" monkeypatch.chdir("test/fixtures/") violation_reporter = diff_quality_plugin.diff_cover_report_quality() violations = violation_reporter.violations(sql_path) assert isinstance(violations, list) if expected_violations_lines: assert len(violations) > 0 violations_lines = {v.line for v in violations} for expected_line in expected_violations_lines: assert expected_line in violations_lines else: assert len(violations) == 0
py
7dfcce12914a399d2009959de5f5f988246fcd48
from setuptools import find_packages, setup setup( name='src', packages=find_packages(), version='0.1.0', description='Ai/Machine Learning/Python course project', author='Kalesh Kaladharan', license='MIT', )
py
7dfcce9857adc479a1d5994b748e7ac8ec4edeb5
import numpy as np import pytest import pykooh from . import DATA_PATH try: import Cython # noqa: F401 has_cython = True except ImportError: has_cython = False use_cython = ( [True, False] if has_cython else [ False, ] ) # Load test data data = np.load(str(DATA_PATH / "test_data.npz")) freqs = data["freqs"] raw_amps = data["fourier_amps"] smooth_amps = data["ko_amps"] b = data["b"] @pytest.mark.parametrize("use_cython", use_cython) def test_smooth(use_cython): calculated = pykooh.smooth(freqs, freqs, raw_amps, b, use_cython=True) np.testing.assert_allclose(calculated, smooth_amps, rtol=1e-3)
py
7dfccefc16719d72824a791f689402370197ed3a
# # Copyright (c) 2019. Asutosh Nayak ([email protected]) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # from collections import deque import threading import os import time class Logger: LOG_QUEUE_SIZE = 50 def __init__(self, log_file_path, log_file_name_prefix, log_queue_size=LOG_QUEUE_SIZE): if not os.path.exists(log_file_path): os.makedirs(log_file_path) LOG_QUEUE_SIZE = log_queue_size self.LOGGING_LEVELS = {0: "INFO", 1: "DEBUG", 2: "WARN", 3: "ERROR", 4: "CRITICAL"} self.init_file_writing(log_file_path, log_file_name_prefix) def init_file_writing(self, LOG_PATH, LOG_FILE_NAME_PREFIX): self.file_path = self.cleanup_file_path(LOG_PATH+os.sep+LOG_FILE_NAME_PREFIX+ "_"+self.get_readable_ctime()+".log") self.log_queue = deque([]) self.append_log("Initialized logging at path {}".format(self.file_path), self.LOGGING_LEVELS[0]) def cleanup_file_path(self, path): return path.replace('\\', '/').replace(" ", "_").replace(':', '_') def get_log_prefix_format(self, level=None): level = self.LOGGING_LEVELS[1] if level is None else level return " ".join([self.get_readable_ctime(), threading.current_thread().name, level]) def append_log(self, text, level=None): level = self.LOGGING_LEVELS[1] if level is None else level log_str = self.get_log_prefix_format(level)+r"\ "+text self.log_queue.append(log_str) print(len(self.log_queue), ")",log_str) if len(self.log_queue) >= self.LOG_QUEUE_SIZE: log_file = open(self.cleanup_file_path(self.file_path), "a+") while len(self.log_queue) > 0: log_file.write(self.log_queue.popleft()+"\n") log_file.close() print("logs written...") def flush(self): print("test", (self.cleanup_file_path(self.file_path))) log_file = open(self.cleanup_file_path(self.file_path), "a+") while len(self.log_queue) > 0: log_file.write(self.log_queue.popleft()+"\n") log_file.close() print("logs flushed...") def get_readable_ctime(self): return time.strftime("%d-%m-%Y %H_%M_%S")
py
7dfcd0301897b16c2c4dd23a1aa40dca22a65d32
from abc import ABC class Shape(ABC): def __str__(self): return "" class Circle(Shape): def __init__(self, radius=0.0): self.radius = radius def resize(self, factor): self.radius *= factor def __str__(self): return f"A circle of radius {self.radius}" class Square(Shape): def __init__(self, side): self.side = side def __str__(self): return f"A square with side {self.side}" class ColoredShape(Shape): def __init__(self, shape, color): if isinstance(shape, ColoredShape): raise Exception("Cannot apply ColoredDecorator twice") self.shape = shape self.color = color def __str__(self): return f"{self.shape} has the color {self.color}" class TransparentShape(Shape): def __init__(self, shape, transparency): self.shape = shape self.transparency = transparency def __str__(self): return f"{self.shape} has {self.transparency * 100.0}% transparency" if __name__ == "__main__": circle = Circle(2) print(circle) red_circle = ColoredShape(circle, "red") print(red_circle) # ColoredShape doesn't have resize() # red_circle.resize(3) red_half_transparent_square = TransparentShape(red_circle, 0.5) print(red_half_transparent_square) # nothing prevents double application mixed = ColoredShape(ColoredShape(Circle(3), "red"), "blue") print(mixed)
py
7dfcd06e9b7d393182f128d8fc0b9c64f57233b5
def much(x): return x+1
py
7dfcd15e1991e1e1c12d64d31e2c392aacec7b88
class TolValidtor: def __init__(self, profile_id, fields, data, errors, warnings, flag, **kwargs): self.profile_id = profile_id self.fields = fields self.data = data self.errors = errors self.warnings = warnings self.flag = flag self.kwargs = kwargs def validate(self): raise NotImplemented
py
7dfcd182a962401bb43d8d8305ec4157cc04509b
import json, os import requests CONFIG_FILE = "{0}/.okta_cmd".format(os.getenv("HOME")) REQUIRED_LIST = ['url', 'token'] def get_config(): with open(CONFIG_FILE) as f: data = json.load(f) check_config(data) return data def set_config(data): with open(CONFIG_FILE, 'w+') as f: json.dump(data, f) def check_config(data): for name in REQUIRED_LIST: if not data.get(name): raise Exception("Config File missing parameter: {0}, Please use the init command to initialize".format(name)) def request_session(session, url, method, **kwargs): result = getattr(session, method)(url, **kwargs) if result.status_code >= 400: raise requests.HTTPError(json.dumps(result.json())) return result
py
7dfcd1c32e291ea7d49ac02f655da6d809a28ccb
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from marshmallow import fields class UUID(fields.UUID): """A UUID field.""" def _serialize(self, value, attr, obj, **kwargs): validated = str(self._validated(value).hex) if value is not None else None return super(fields.String, self)._serialize(validated, attr, obj) # noqa
py
7dfcd285660d6d3c42496f1c174c9573d5645f0c
# Copyright 2014 The LUCI Authors. All rights reserved. # Use of this source code is governed under the Apache License, Version 2.0 # that can be found in the LICENSE file. """NDB model classes used to model AuthDB relations. Overview -------- Models defined here are used by central authentication service (that stores all groups and secrets) and by services that implement some concrete functionality protected with ACLs (like isolate and swarming services). Applications that use auth component may work in 3 modes: 1. Standalone. Application is self contained and manages its own groups. Useful when developing a new service or for simple installations. 2. Replica. Application uses a central authentication service. An application can be dynamically switched from Standalone to Replica mode. 3. Primary. Application IS a central authentication service. Only 'auth' service is running in this mode. 'configure_as_primary' call during startup switches application to that mode. Central authentication service (Primary) holds authoritative copy of all auth related information (groups, secrets, etc.) and acts as a single source of truth for it. All other services (Replicas) hold copies of a relevant subset of this information (that they use to perform authorization checks). Primary service is responsible for updating replicas' configuration via service-to-service push based replication protocol. AuthDB holds a list of groups. Each group has a unique name and is defined as union of 3 sets: 1) Explicit enumeration of particular Identities e.g. 'user:[email protected]' 2) Set of glob-like identity patterns e.g. 'user:*@example.com' 3) Set of nested Groups. Identity defines an actor making an action (it can be a real person, a bot, an AppEngine application or special 'anonymous' identity). In addition to that, AuthDB stores small amount of authentication related configuration data, such as OAuth2 client_id and client_secret and various secret keys. Audit trail ----------- Each change to AuthDB has an associated revision number (that monotonically increases with each change). All entities modified by a change are copied to append-only log under an entity key associated with the revision (see historical_revision_key below). Removals are marked by special auth_db_deleted flag in entites in the log. This is enough to recover a snapshot of all groups at some specific moment in time, or to produce a diff between two revisions. Note that entities in the historical log are not used by online queries. At any moment in time most recent version of an AuthDB entity exists in two copies: 1) Main copy used for online queries. It is mutated in-place with each change. 2) Most recent record in the historical log. Read only. To reduce a possibility of misuse of historical copies in online transactions, history log entity classes are suffixied with 'History' suffix. They also have all indexes stripped. This mechanism is enabled only on services in Standalone or Primary mode. Replicas do not keep track of AuthDB revisions and do not keep any historical log. """ import collections import logging import os import re from google.appengine.api import app_identity from google.appengine.ext import ndb from components import datastore_utils from components import utils from . import globmatch from . import ipaddr from .proto import realms_pb2 # Part of public API of 'auth' component, exposed by this module. __all__ = [ 'ADMIN_GROUP', 'Anonymous', 'bootstrap_group', 'bootstrap_ip_whitelist', 'bootstrap_loopback_ips', 'bots_ip_whitelist', 'configure_as_primary', 'find_group_dependency_cycle', 'find_referencing_groups', 'get_auth_db_revision', 'get_missing_groups', 'get_service_self_identity', 'group_key', 'Identity', 'IDENTITY_ANONYMOUS', 'IDENTITY_BOT', 'IDENTITY_PROJECT', 'IDENTITY_SERVICE', 'IDENTITY_USER', 'IdentityGlob', 'IdentityProperty', 'ip_whitelist_key', 'IP_WHITELISTED_BOT_ID', 'is_empty_group', 'is_external_group_name', 'is_primary', 'is_replica', 'is_standalone', 'is_valid_group_name', 'is_valid_ip_whitelist_name', 'replicate_auth_db', ] # Name of a group whose members have access to Group management UI. It's the # only group needed to bootstrap everything else. ADMIN_GROUP = 'administrators' # No identity information is provided. Identity name is always 'anonymous'. IDENTITY_ANONYMOUS = 'anonymous' # Using bot credentials. Used primary by Swarming. Identity encodes bot's id. IDENTITY_BOT = 'bot' # Using X-Luci-Project header in an internal RPC. Identity name is project name. IDENTITY_PROJECT = 'project' # Using App Engine X-Appengine-Inbound-Appid header. Identity name is app name. IDENTITY_SERVICE = 'service' # Using user credentials (cookies or access tokens). Identity name is email. IDENTITY_USER = 'user' # All allowed identity kinds + regexps to validate identity name. ALLOWED_IDENTITY_KINDS = { IDENTITY_ANONYMOUS: re.compile(r'^anonymous$'), IDENTITY_BOT: re.compile(r'^[0-9a-zA-Z_\-\.@]+$'), # See also PROJECT_ID_RGX in components/config/common.py. IDENTITY_PROJECT: re.compile(r'^[a-z0-9\-_]+$'), IDENTITY_SERVICE: re.compile(r'^[0-9a-zA-Z_\-\:\.]+$'), IDENTITY_USER: re.compile(r'^[0-9a-zA-Z_\-\.\+\%]+@[0-9a-zA-Z_\-\.]+$'), } # Regular expression that matches group names. Lowercase ASCII only plus some # special symbols to allow imported google groups. GROUP_NAME_RE = re.compile(r'^([a-z\-]+/)?[0-9a-z_\-\.@]{1,100}$') # Special group name that means 'All possible users' (including anonymous!). GROUP_ALL = '*' # Regular expression for IP whitelist name. IP_WHITELIST_NAME_RE = re.compile(r'^[0-9a-zA-Z_\-\+\.\ ]{2,200}$') # Configuration of Primary service, set by 'configure_as_primary'. _replication_callback = None # Root ndb keys of various models. They can't be defined as a module level # constants because ndb.Key implicitly includes current APPLICATION_ID. And in # testing environment it is '_' during module loading time. Trying to use such # key from within a testbed test case results in the following error: # BadRequestError: app "testbed-test" cannot access app "_"'s data def root_key(): """Global root key of auth models entity group.""" return ndb.Key('AuthGlobalConfig', 'root') def replication_state_key(): """Key of AuthReplicationState entity.""" return ndb.Key('AuthReplicationState', 'self', parent=root_key()) def ip_whitelist_assignments_key(): """Key of AuthIPWhitelistAssignments entity.""" return ndb.Key('AuthIPWhitelistAssignments', 'default', parent=root_key()) def historical_revision_key(auth_db_rev): """Key for entity subgroup that holds changes done in a concrete revision.""" return ndb.Key('Rev', auth_db_rev, parent=root_key()) ################################################################################ ## Identity & IdentityGlob. class Identity( datastore_utils.BytesSerializable, collections.namedtuple('Identity', 'kind, name')): """Represents a caller that makes requests. Immutable. A tuple of (kind, name) where 'kind' is one of IDENTITY_* constants and meaning of 'name' depends on a kind (see comments for IDENTITY_*). It generalizes accounts of real people, bot accounts and service-to-service accounts. It's a pure identity information. Any additional information that may be related to an identity (e.g. registration date, last access time, etc.) should be stored elsewhere using Identity.to_bytes() as a key. """ # Inheriting from tuple requires use of __new__ instead of __init__. __init__ # is called with object already 'frozen', so it's not possible to modify its # attributes in __init__. # See http://docs.python.org/2/reference/datamodel.html#object.__new__ def __new__(cls, kind, name): if isinstance(name, unicode): try: name = name.encode('ascii') except UnicodeEncodeError: raise ValueError('Identity has invalid format: only ASCII is allowed') if (kind not in ALLOWED_IDENTITY_KINDS or not ALLOWED_IDENTITY_KINDS[kind].match(name)): raise ValueError('Identity has invalid format: %s' % name) return super(Identity, cls).__new__(cls, str(kind), name) def to_bytes(self): """Serializes this identity to byte buffer.""" return '%s:%s' % (self.kind, self.name) @classmethod def from_bytes(cls, byte_buf): """Given a byte buffer returns corresponding Identity object.""" kind, sep, name = byte_buf.partition(':') if not sep: raise ValueError('Missing \':\' separator in Identity string') return cls(kind, name) @property def is_anonymous(self): """True if this object represents anonymous identity.""" return self.kind == IDENTITY_ANONYMOUS @property def is_bot(self): """True if this object represents bot account.""" return self.kind == IDENTITY_BOT @property def is_project(self): """True if this object represents a LUCI project.""" return self.kind == IDENTITY_PROJECT @property def is_service(self): """True if this object represents an appengine app.""" return self.kind == IDENTITY_SERVICE @property def is_user(self): """True if this object represents user account.""" return self.kind == IDENTITY_USER # Predefined Anonymous identity. Anonymous = Identity(IDENTITY_ANONYMOUS, 'anonymous') # Identity assigned to callers that make unauthenticated calls from IPs # belonging to '<appid>-bots' IP whitelist. Note that same bot may appear to use # different IP addresses (happens with some NATs), thus we can't put IP # address into the bot identity string and instead hardcode some arbitrary # name (defined here). # # TODO(vadimsh): Get rid of this. Blocked on Swarming and Isolate switching # to service accounts. IP_WHITELISTED_BOT_ID = Identity(IDENTITY_BOT, 'whitelisted-ip') class IdentityProperty(datastore_utils.BytesSerializableProperty): """NDB model property for Identity values. Identities are stored as indexed short blobs internally. """ _value_type = Identity _indexed = True class IdentityGlob( datastore_utils.BytesSerializable, collections.namedtuple('IdentityGlob', 'kind, pattern')): """Glob-like pattern that matches subset of identities. Immutable. Tuple (kind, glob) where 'kind' is is one of IDENTITY_* constants and 'glob' defines pattern that identity names' should match. For example, IdentityGlob that matches all bots is (IDENTITY_BOT, '*') which is also can be written as 'bot:*'. The pattern language only supports '*' currently. """ # See comment for Identity.__new__ regarding use of __new__ here. def __new__(cls, kind, pattern): if isinstance(pattern, unicode): try: pattern = pattern.encode('ascii') except UnicodeEncodeError: raise ValueError('Invalid IdentityGlob pattern: only ASCII is allowed') if not pattern: raise ValueError('No pattern is given') if '\n' in pattern: raise ValueError('Multi-line patterns are not allowed') if kind not in ALLOWED_IDENTITY_KINDS: raise ValueError('Invalid Identity kind: %s' % kind) return super(IdentityGlob, cls).__new__(cls, str(kind), pattern) def to_bytes(self): """Serializes this identity glob to byte buffer.""" return '%s:%s' % (self.kind, self.pattern) @classmethod def from_bytes(cls, byte_buf): """Given a byte buffer returns corresponding IdentityGlob object.""" kind, sep, pattern = byte_buf.partition(':') if not sep: raise ValueError('Missing \':\' separator in IdentityGlob string') return cls(kind, pattern) def match(self, identity): """Return True if |identity| matches this pattern.""" if identity.kind != self.kind: return False return globmatch.match(identity.name, self.pattern) class IdentityGlobProperty(datastore_utils.BytesSerializableProperty): """NDB model property for IdentityGlob values. IdentityGlobs are stored as short indexed blobs internally. """ _value_type = IdentityGlob _indexed = True ################################################################################ ## Singleton entities and replication related models. def configure_as_primary(replication_callback): """Registers a callback to be called when AuthDB changes. Should be called during Primary application startup. The callback will be called as 'replication_callback(AuthReplicationState)' from inside transaction on root_key() entity group whenever replicate_auth_db() is called (i.e. on every change to auth db that should be replication to replicas). """ global _replication_callback _replication_callback = replication_callback def is_primary(): """Returns True if current application was configured as Primary.""" return bool(_replication_callback) def is_replica(): """Returns True if application is in Replica mode.""" return not is_primary() and not is_standalone() def is_standalone(): """Returns True if application is in Standalone mode.""" ent = get_replication_state() return not ent or not ent.primary_id def get_replication_state(): """Returns AuthReplicationState singleton entity if it exists.""" return replication_state_key().get() def get_auth_db_revision(): """Returns current revision of AuthDB, it increases with each change.""" state = get_replication_state() return state.auth_db_rev if state else 0 def get_service_self_identity(): """Returns Identity that correspond to the current GAE app itself.""" return Identity(IDENTITY_SERVICE, app_identity.get_application_id()) class AuthVersionedEntityMixin(object): """Mixin class for entities that keep track of when they change. Entities that have this mixin are supposed to be updated in get()\put() or get()\delete() transactions. Caller must call record_revision(...) sometime during the transaction (but before put()). Similarly a call to record_deletion(...) is expected sometime before delete(). replicate_auth_db will store a copy of the entity in the revision log when committing a transaction. A pair of properties auth_db_rev and auth_db_prev_rev are used to implement a linked list of versions of this entity (e.g. one can take most recent entity version and go back in time by following auth_db_prev_rev links). """ # When the entity was modified last time. Do not use 'auto_now' property since # such property overrides any explicitly set value with now() during put. It's # undesired when storing a copy of entity received from Primary (Replica # should have modified_ts to be same as on Primary). modified_ts = ndb.DateTimeProperty() # Who modified the entity last time. modified_by = IdentityProperty() # Revision of Auth DB at which this entity was updated last time. auth_db_rev = ndb.IntegerProperty() # Revision of Auth DB of previous version of this entity or None. auth_db_prev_rev = ndb.IntegerProperty() def record_revision(self, modified_by, modified_ts=None, comment=None): """Updates the entity to record Auth DB revision of the current transaction. Stages the entity to be copied to historical log. Must be called sometime before 'put' (not necessary right before it). Note that NDB hooks are not used because they are buggy. See docstring for replicate_auth_db for more info. Args: modified_by: Identity that made the change. modified_ts: datetime when the change was made (or None for current time). comment: optional comment to put in the revision log. """ _get_pending_auth_db_transaction().record_change( entity=self, deletion=False, modified_by=modified_by, modified_ts=modified_ts or utils.utcnow(), comment=comment) def record_deletion(self, modified_by, modified_ts=None, comment=None): """Marks entity as being deleted in the current transaction. Stages the entity to be copied to historical log (with 'auth_db_deleted' flag set). The entity must not be mutated between 'get' and AuthDB commit. Must be called sometime before 'delete' (not necessary right before it). Note that NDB hooks are not used because they are buggy. See docstring for replicate_auth_db for more info. Args: modified_by: Identity that made the change. modified_ts: datetime when the change was made (or None for current time). comment: optional comment to put in the revision log. """ _get_pending_auth_db_transaction().record_change( entity=self, deletion=True, modified_by=modified_by, modified_ts=modified_ts or utils.utcnow(), comment=comment) ## Internal interface. Do not use directly unless you know what you are doing. @classmethod def get_historical_copy_class(cls): """Returns entity class for historical copies of original entity. Has all the same properties, but unindexed (not needed), unvalidated (original entity is already validated) and not cached. The name of the new entity class is "<original name>History" (to make sure it doesn't show up in indexes for original entity class). """ existing = getattr(cls, '_auth_db_historical_copy_cls', None) if existing: return existing props = {} for name, prop in cls._properties.items(): # Whitelist supported property classes. Better to fail loudly when # encountering something new, rather than silently produce (possibly) # incorrect result. Note that all AuthDB classes are instantiated in # unit tests, so there should be no unexpected asserts in production. assert prop.__class__ in ( datastore_utils.ProtobufProperty, IdentityGlobProperty, IdentityProperty, ndb.BlobProperty, ndb.BooleanProperty, ndb.DateTimeProperty, ndb.IntegerProperty, ndb.LocalStructuredProperty, ndb.StringProperty, ndb.TextProperty, ), prop.__class__ kwargs = { 'name': prop._name, 'indexed': False, 'required': False, 'repeated': prop._repeated, } if prop.__class__ == datastore_utils.ProtobufProperty: kwargs.update({ 'message_class': prop._message_class, 'compressed': prop._compressed, }) elif prop.__class__ == ndb.LocalStructuredProperty: kwargs['modelclass'] = prop._modelclass props[name] = prop.__class__(**kwargs) new_cls = type( '%sHistory' % cls.__name__, (_AuthDBHistoricalEntity,), props) cls._auth_db_historical_copy_cls = new_cls return new_cls def make_historical_copy(self, deleted, comment): """Returns an entity to put in the historical log. It's a copy of the original entity, but stored under another key and with indexes removed. It also has a bunch of additional properties (defined in _AuthDBHistoricalEntity). See 'get_historical_copy_class'. The key is derived from auth_db_rev and class and ID of the original entity. For example, AuthGroup "admins" modified at rev 123 will be copied to the history as ('AuthGlobalConfig', 'root', 'Rev', 123, 'AuthGroupHistory', 'admins'), where the key prefix (first two pairs) is obtained with historical_revision_key(...). """ assert self.key.parent() == root_key() or self.key == root_key(), self.key cls = self.get_historical_copy_class() entity = cls( id=self.key.id(), parent=historical_revision_key(self.auth_db_rev)) for prop in self._properties: setattr(entity, prop, getattr(self, prop)) entity.auth_db_deleted = deleted entity.auth_db_change_comment = comment entity.auth_db_app_version = utils.get_app_version() return entity class AuthGlobalConfig(ndb.Model, AuthVersionedEntityMixin): """Acts as a root entity for auth models. There should be only one instance of this model in Datastore, with a key set to root_key(). A change to an entity group rooted at this key is a signal that AuthDB has to be refetched (see 'fetch_auth_db' in api.py). Entities that change often or associated with particular bot or user MUST NOT be in this entity group. Content of this particular entity is replicated from Primary service to all Replicas. Entities that belong to this entity group are: * AuthGroup * AuthIPWhitelist * AuthIPWhitelistAssignments * AuthReplicationState * AuthSecret """ # Disable useless in-process per-request cache. _use_cache = False # OAuth2 client_id to use to mint new OAuth2 tokens. oauth_client_id = ndb.StringProperty(indexed=False, default='') # OAuth2 client secret. Not so secret really, since it's passed to clients. oauth_client_secret = ndb.StringProperty(indexed=False, default='') # Additional OAuth2 client_ids allowed to access the services. oauth_additional_client_ids = ndb.StringProperty(repeated=True, indexed=False) # URL of a token server to use to generate delegation tokens. token_server_url = ndb.StringProperty(indexed=False, default='') # Serialized security_config_pb2.SecurityConfig, see security_config.proto. security_config = ndb.BlobProperty() class AuthReplicationState(ndb.Model, datastore_utils.SerializableModelMixin): """Contains state used to control Primary -> Replica replication. It's a singleton entity with key replication_state_key() (in same entity groups as root_key()). This entity should be small since it is updated (auth_db_rev is incremented) whenever AuthDB changes. Exists in any AuthDB (on Primary and Replicas). Primary updates it whenever changes to AuthDB are made, Replica updates it whenever it receives a push from Primary. """ # How to convert this entity to or from serializable dict. serializable_properties = { 'primary_id': datastore_utils.READABLE, 'primary_url': datastore_utils.READABLE, 'auth_db_rev': datastore_utils.READABLE, 'modified_ts': datastore_utils.READABLE, } # For services in Standalone mode it is None. # For services in Primary mode: own GAE application ID. # For services in Replica mode it is a GAE application ID of Primary. primary_id = ndb.StringProperty(indexed=False) # For services in Replica mode, root URL of Primary, i.e https://<host>. primary_url = ndb.StringProperty(indexed=False) # Revision of auth DB. Increased by 1 with every change that should be # propagate to replicas. Only services in Standalone or Primary mode # update this property by themselves. Replicas receive it from Primary. auth_db_rev = ndb.IntegerProperty(default=0, indexed=False) # Time when auth_db_rev was created (by Primary clock). For informational # purposes only. See comment at AuthGroup.modified_ts for explanation why # auto_now is not used. modified_ts = ndb.DateTimeProperty(auto_now_add=True, indexed=False) # For services in Replica mode, contains IDs of AuthDBSnapshotShard entities # that together (when concatenated) hold a deflated AuthDB proto message with # all groups, IP whitelists, etc. This property is used together with # primary_url and auth_db_rev to reconstruct full keys of AuthDBSnapshotShard # entities. See replication.py for code that deals with this property. shard_ids = ndb.StringProperty(repeated=True, indexed=False) class AuthDBSnapshotShard(ndb.Model): """Entity with a blob that contains a portion of deflated AuthDB message. Services in Replica mode cache "fully assembled" AuthDB in such entities, so that processes can fetch it all via a few memcache calls instead of doing a bunch of expensive transactional datastore queries. The parent key is AuthDBShapshotRoot(id="<primary_url>,<auth_db_rev>"), i.e. all shards of some single auth_db_rev live in a single entity group. Note that AuthDBShapshotRoot itself doesn't exist (nor even defined as an ndb.Model). Entity ID is "<hex_sha256(blob)[:16]>". See replication.py for code that deals with this entity. Immutable. """ # Disable useless in-process per-request cache. _use_cache = False # A shard of zlib-deflated serialized AuthDB proto. # # Note that 'blob' by itself is not a valid zlib-deflated data. We compress # AuthDB first, and then split it into shards. Thus compressed=True is not # used here. blob = ndb.BlobProperty() def snapshot_shard_key(primary_url, auth_db_rev, shard_id): """Returns ndb.Key of some AuthDBSnapshotShard entity.""" return ndb.Key( 'AuthDBShapshotRoot', '%s,%d' % (primary_url, auth_db_rev), AuthDBSnapshotShard, shard_id) def replicate_auth_db(): """Increments auth_db_rev, updates historical log, triggers replication. Must be called once from inside a transaction (right before exiting it). Should only be called for services in Standalone or Primary modes. Will raise ValueError if called on Replica. When called for service in Standalone mode, will update auth_db_rev but won't kick any replication. For services in Primary mode will also initiate replication by calling callback set in 'configure_as_primary'. The callback usually transactionally enqueues a task (to gracefully handle transaction rollbacks). WARNING: This function relies on a valid transaction context. NDB hooks and asynchronous operations are known to be buggy in this regard: NDB hook for an async operation in a transaction may be called with a wrong context (main event loop context instead of transaction context). One way to work around that is to monkey patch NDB (as done here: https://goo.gl/1yASjL). Another is to not use hooks at all. There's no way to differentiate between sync and async modes of an NDB operation from inside a hook. And without a strict assert it's very easy to forget about "Do not use put_async" warning. For that reason _post_put_hook is NOT used and replicate_auth_db() should be called explicitly whenever relevant part of root_key() entity group is updated. Returns: New AuthDB revision number. """ assert ndb.in_transaction() txn = _get_pending_auth_db_transaction() txn.commit() if is_primary(): _replication_callback(txn.replication_state) return txn.replication_state.auth_db_rev ################################################################################ ## Auth DB transaction details (used for historical log of changes). _commit_callbacks = [] def commit_callback(cb): """Adds a callback that's called before AuthDB transaction is committed. Can be used as decorator. Adding a callback second time is noop. Args: cb: function that takes single auth_db_rev argument as input. """ if cb not in _commit_callbacks: _commit_callbacks.append(cb) return cb def _get_pending_auth_db_transaction(): """Used internally to keep track of changes done in the transaction. Returns: Instance of _AuthDBTransaction (stored in the transaction context). """ # Use transaction context to store the object. Note that each transaction # retry gets its own new transaction context which is what we need, # see ndb/context.py, 'transaction' tasklet, around line 982 (for SDK 1.9.6). assert ndb.in_transaction() ctx = ndb.get_context() txn = getattr(ctx, '_auth_db_transaction', None) if txn: return txn # Prepare next AuthReplicationState (auth_db_rev +1). state = replication_state_key().get() if not state: primary_id = app_identity.get_application_id() if is_primary() else None state = AuthReplicationState( key=replication_state_key(), primary_id=primary_id, auth_db_rev=0) # Assert Primary or Standalone. Replicas can't increment auth db revision. if not is_primary() and state.primary_id: raise ValueError('Can\'t modify Auth DB on Replica') state.auth_db_rev += 1 state.modified_ts = utils.utcnow() # Store the state in the transaction context. Used in replicate_auth_db(...) # later. txn = _AuthDBTransaction(state) ctx._auth_db_transaction = txn return txn class _AuthDBTransaction(object): """Keeps track of entities updated or removed in current transaction.""" _Change = collections.namedtuple('_Change', 'entity deletion comment') def __init__(self, replication_state): self.replication_state = replication_state self.changes = [] # list of _Change tuples self.committed = False def record_change(self, entity, deletion, modified_by, modified_ts, comment): assert not self.committed assert isinstance(entity, AuthVersionedEntityMixin) assert all(entity.key != c.entity.key for c in self.changes) # Mutate the main entity (the one used to serve online requests). entity.modified_by = modified_by entity.modified_ts = modified_ts entity.auth_db_prev_rev = entity.auth_db_rev # can be None for new entities entity.auth_db_rev = self.replication_state.auth_db_rev # Keep a historical copy. Delay make_historical_copy call until the commit. # Here (in 'record_change') entity may not have all the fields updated yet. self.changes.append(self._Change(entity, deletion, comment)) def commit(self): assert not self.committed puts = [ c.entity.make_historical_copy(c.deletion, c.comment) for c in self.changes ] ndb.put_multi(puts + [self.replication_state]) for cb in _commit_callbacks: cb(self.replication_state.auth_db_rev) self.committed = True class _AuthDBHistoricalEntity(ndb.Model): """Base class for *History magic class in AuthVersionedEntityMixin. In addition to properties defined here the child classes (*History) also always inherit (for some definition of "inherit") properties from AuthVersionedEntityMixin. See get_historical_copy_class(). """ # Historical entities are not intended to be read often, and updating the # cache will make AuthDB transactions only slower. _use_cache = False _use_memcache = False # True if entity was deleted in the given revision. auth_db_deleted = ndb.BooleanProperty(indexed=False) # Comment string passed to record_revision or record_deletion. auth_db_change_comment = ndb.StringProperty(indexed=False) # A GAE module version that committed the change. auth_db_app_version = ndb.StringProperty(indexed=False) def get_previous_historical_copy_key(self): """Returns ndb.Key of *History entity matching auth_db_prev_rev revision.""" if self.auth_db_prev_rev is None: return None return ndb.Key( self.__class__, self.key.id(), parent=historical_revision_key(self.auth_db_prev_rev)) ################################################################################ ## Groups. class AuthGroup( ndb.Model, AuthVersionedEntityMixin, datastore_utils.SerializableModelMixin): """A group of identities, entity id is a group name. Parent is AuthGlobalConfig entity keyed at root_key(). Primary service holds authoritative list of Groups, that gets replicated to all Replicas. """ # Disable useless in-process per-request cache. _use_cache = False # How to convert this entity to or from serializable dict. serializable_properties = { 'members': datastore_utils.READABLE | datastore_utils.WRITABLE, 'globs': datastore_utils.READABLE | datastore_utils.WRITABLE, 'nested': datastore_utils.READABLE | datastore_utils.WRITABLE, 'description': datastore_utils.READABLE | datastore_utils.WRITABLE, 'owners': datastore_utils.READABLE | datastore_utils.WRITABLE, 'created_ts': datastore_utils.READABLE, 'created_by': datastore_utils.READABLE, 'modified_ts': datastore_utils.READABLE, 'modified_by': datastore_utils.READABLE, } # List of members that are explicitly in this group. Indexed. members = IdentityProperty(repeated=True) # List of identity-glob expressions (like 'user:*@example.com'). Indexed. globs = IdentityGlobProperty(repeated=True) # List of nested group names. Indexed. nested = ndb.StringProperty(repeated=True) # Human readable description. description = ndb.TextProperty(default='') # A name of the group that can modify or delete this group. owners = ndb.StringProperty(default=ADMIN_GROUP) # When the group was created. created_ts = ndb.DateTimeProperty() # Who created the group. created_by = IdentityProperty() def group_key(group): """Returns ndb.Key for AuthGroup entity.""" return ndb.Key(AuthGroup, group, parent=root_key()) def is_empty_group(group): """Returns True if group is missing or completely empty.""" group = group_key(group).get() return not group or not(group.members or group.globs or group.nested) def is_valid_group_name(name): """True if string looks like a valid group name.""" return bool(GROUP_NAME_RE.match(name)) def is_external_group_name(name): """True if group is imported from outside and is not writable.""" return is_valid_group_name(name) and '/' in name @ndb.transactional def bootstrap_group(group, identities, description=''): """Makes a group (if not yet exists) and adds |identities| to it as members. Returns True if modified the group, False if identities are already there. """ key = group_key(group) entity = key.get() if entity and all(i in entity.members for i in identities): return False now = utils.utcnow() if not entity: entity = AuthGroup( key=key, description=description, created_ts=now, created_by=get_service_self_identity()) for i in identities: if i not in entity.members: entity.members.append(i) entity.record_revision( modified_by=get_service_self_identity(), modified_ts=now, comment='Bootstrap') entity.put() replicate_auth_db() return True def find_referencing_groups(group): """Finds groups that reference the specified group as nested group or owner. Used to verify that |group| is safe to delete, i.e. no other group is depending on it. Returns: Set of names of referencing groups. """ nesting_groups = AuthGroup.query( AuthGroup.nested == group, ancestor=root_key()).fetch_async(keys_only=True) owned_groups = AuthGroup.query( AuthGroup.owners == group, ancestor=root_key()).fetch_async(keys_only=True) refs = set() refs.update(key.id() for key in nesting_groups.get_result()) refs.update(key.id() for key in owned_groups.get_result()) return refs def get_missing_groups(groups): """Given a list of group names, returns a list of groups that do not exist.""" # We need to iterate over |groups| twice. It won't work if |groups| # is a generator. So convert to list first. groups = list(groups) entities = ndb.get_multi(group_key(name) for name in groups) return [name for name, ent in zip(groups, entities) if not ent] def find_group_dependency_cycle(group): """Searches for dependency cycle between nested groups. Traverses the dependency graph starting from |group|, fetching all necessary groups from datastore along the way. Args: group: instance of AuthGroup to start traversing from. It doesn't have to be committed to Datastore itself (but all its nested groups should be there already). Returns: List of names of groups that form a cycle or empty list if no cycles. """ # It is a depth-first search on a directed graph with back edge detection. # See http://www.cs.nyu.edu/courses/summer04/G22.1170-001/6a-Graphs-More.pdf # Cache of already fetched groups. groups = {group.key.id(): group} # List of groups that are completely explored (all subtree is traversed). visited = [] # Stack of groups that are being explored now. In case cycle is detected # it would contain that cycle. visiting = [] def visit(group): """Recursively explores |group| subtree, returns True if finds a cycle.""" assert group not in visiting assert group not in visited # Load bodies of nested groups not seen so far into |groups|. entities = ndb.get_multi( group_key(name) for name in group.nested if name not in groups) groups.update({entity.key.id(): entity for entity in entities if entity}) visiting.append(group) for nested in group.nested: obj = groups.get(nested) # Do not crash if non-existent group is referenced somehow. if not obj: continue # Cross edge. Can happen in diamond-like graph, not a cycle. if obj in visited: continue # Back edge: |group| references its own ancestor -> cycle. if obj in visiting: return True # Explore subtree. if visit(obj): return True visiting.pop() visited.append(group) return False visit(group) return [group.key.id() for group in visiting] ################################################################################ ## Secrets store. # TODO(vadimsh): Move secrets outside of AuthGlobalConfig entity group and # encrypt them. class AuthSecretScope(ndb.Model): """Entity to act as parent entity for AuthSecret. Parent is AuthGlobalConfig entity keyed at root_key(). Id of this entity defines scope of secret keys that have this entity as a parent. Always 'local' currently. """ class AuthSecret(ndb.Model): """Some service-wide named secret blob. Parent entity is always Key(AuthSecretScope, 'local', parent=root_key()) now. There should be only very limited number of AuthSecret entities around. AuthDB fetches them all at once. Do not use this entity for per-user secrets. Holds most recent value of a secret as well as several previous values. Most recent value is used to generate new tokens, previous values may be used to validate existing tokens. That way secret can be rotated without invalidating any existing outstanding tokens. """ # Disable useless in-process per-request cache. _use_cache = False # Last several values of a secret, with current value in front. values = ndb.BlobProperty(repeated=True, indexed=False) # When secret was modified last time. modified_ts = ndb.DateTimeProperty(auto_now_add=True) # Who modified the secret last time. modified_by = IdentityProperty() @classmethod def bootstrap(cls, name, length=32): """Creates a secret if it doesn't exist yet. Args: name: name of the secret. length: length of the secret to generate if secret doesn't exist yet. Returns: Instance of AuthSecret (creating it if necessary) with random secret set. """ # Note that 'get_or_insert' is a bad fit here. With 'get_or_insert' we'd # have to call os.urandom every time we want to get a key. It's a waste of # time and entropy. key = ndb.Key( cls, name, parent=ndb.Key(AuthSecretScope, 'local', parent=root_key())) entity = key.get() if entity is not None: return entity @ndb.transactional def create(): entity = key.get() if entity is not None: return entity logging.info('Creating new secret key %s', name) entity = cls( key=key, values=[os.urandom(length)], modified_by=get_service_self_identity()) entity.put() return entity return create() ################################################################################ ## IP whitelist. class AuthIPWhitelistAssignments(ndb.Model, AuthVersionedEntityMixin): """A singleton entity with "identity -> AuthIPWhitelist to use" mapping. Entity key is ip_whitelist_assignments_key(). Parent entity is root_key(). See AuthIPWhitelist for more info about IP whitelists. """ # Disable useless in-process per-request cache. _use_cache = False class Assignment(ndb.Model): # Identity name to limit by IP whitelist. Unique key in 'assignments' list. identity = IdentityProperty() # Name of IP whitelist to use (see AuthIPWhitelist). ip_whitelist = ndb.StringProperty() # Why the assignment was created. comment = ndb.StringProperty() # When the assignment was created. created_ts = ndb.DateTimeProperty() # Who created the assignment. created_by = IdentityProperty() # Holds all the assignments. assignments = ndb.LocalStructuredProperty(Assignment, repeated=True) class AuthIPWhitelist( ndb.Model, AuthVersionedEntityMixin, datastore_utils.SerializableModelMixin): """A named set of whitelisted IPv4 and IPv6 subnets. Can be assigned to individual user accounts to forcibly limit them only to particular IP addresses, e.g. it can be used to enforce that specific service account is used only from some known IP range. The mapping between accounts and IP whitelists is stored in AuthIPWhitelistAssignments. Entity id is a name of the whitelist. Parent entity is root_key(). """ # Disable useless in-process per-request cache. _use_cache = False # How to convert this entity to or from serializable dict. serializable_properties = { 'subnets': datastore_utils.READABLE | datastore_utils.WRITABLE, 'description': datastore_utils.READABLE | datastore_utils.WRITABLE, 'created_ts': datastore_utils.READABLE, 'created_by': datastore_utils.READABLE, 'modified_ts': datastore_utils.READABLE, 'modified_by': datastore_utils.READABLE, } # The list of subnets. The validator is used only as a last measure. JSON API # handler should do validation too. subnets = ndb.StringProperty( repeated=True, validator=lambda _, val: ipaddr.normalize_subnet(val)) # Human readable description. description = ndb.TextProperty(default='') # When the list was created. created_ts = ndb.DateTimeProperty() # Who created the list. created_by = IdentityProperty() def ip_whitelist_key(name): """Returns ndb.Key for AuthIPWhitelist entity given its name.""" return ndb.Key(AuthIPWhitelist, name, parent=root_key()) def is_valid_ip_whitelist_name(name): """True if string looks like a valid IP whitelist name.""" return bool(IP_WHITELIST_NAME_RE.match(name)) def bots_ip_whitelist(): """Returns a name of a special IP whitelist that controls IP-based auth. Requests without authentication headers coming from IPs in this whitelist are authenticated as coming from IP_WHITELISTED_BOT_ID ('bot:whitelisted-ip'). DEPRECATED. """ return '%s-bots' % app_identity.get_application_id() @ndb.transactional def bootstrap_ip_whitelist(name, subnets, description=''): """Adds subnets to an IP whitelist if not there yet. Can be used on local dev appserver to add 127.0.0.1 to IP whitelist during startup. Should not be used from request handlers. Args: name: IP whitelist name to add a subnet to. subnets: IP subnet to add (as a list of strings). description: description of IP whitelist (if new entity is created). Returns: True if entry was added, False if it is already there or subnet is invalid. """ assert isinstance(subnets, (list, tuple)) try: subnets = [ipaddr.normalize_subnet(s) for s in subnets] except ValueError: return False key = ip_whitelist_key(name) entity = key.get() if entity and all(s in entity.subnets for s in subnets): return False now = utils.utcnow() if not entity: entity = AuthIPWhitelist( key=key, description=description, created_ts=now, created_by=get_service_self_identity()) for s in subnets: if s not in entity.subnets: entity.subnets.append(s) entity.record_revision( modified_by=get_service_self_identity(), modified_ts=now, comment='Bootstrap') entity.put() replicate_auth_db() return True def bootstrap_loopback_ips(): """Adds 127.0.0.1 and ::1 to '<appid>-bots' IP whitelist. Useful on local dev server and in tests. Must not be used in production. Returns list of corresponding bot Identities. """ # See api.py, AuthDB.verify_ip_whitelisted for IP -> Identity conversion. assert utils.is_local_dev_server() bootstrap_ip_whitelist( bots_ip_whitelist(), ['127.0.0.1', '::1'], 'Local bots') return [IP_WHITELISTED_BOT_ID] @ndb.transactional def bootstrap_ip_whitelist_assignment(identity, ip_whitelist, comment=''): """Sets a mapping "identity -> IP whitelist to use" for some account. Replaces existing assignment. Can be used on local dev appserver to configure IP whitelist assignments during startup or in tests. Should not be used from request handlers. Args: identity: Identity to modify. ip_whitelist: name of AuthIPWhitelist to assign. comment: comment to set. Returns: True if IP whitelist assignment was modified, False if it was already set. """ entity = ( ip_whitelist_assignments_key().get() or AuthIPWhitelistAssignments(key=ip_whitelist_assignments_key())) found = False for assignment in entity.assignments: if assignment.identity == identity: if assignment.ip_whitelist == ip_whitelist: return False assignment.ip_whitelist = ip_whitelist assignment.comment = comment found = True break now = utils.utcnow() if not found: entity.assignments.append( AuthIPWhitelistAssignments.Assignment( identity=identity, ip_whitelist=ip_whitelist, comment=comment, created_ts=now, created_by=get_service_self_identity())) entity.record_revision( modified_by=get_service_self_identity(), modified_ts=now, comment='Bootstrap') entity.put() replicate_auth_db() return True def fetch_ip_whitelists(): """Fetches AuthIPWhitelistAssignments and all AuthIPWhitelist entities. Returns: (AuthIPWhitelistAssignments, list of AuthIPWhitelist). """ assign_fut = ip_whitelist_assignments_key().get_async() whitelists_fut = AuthIPWhitelist.query(ancestor=root_key()).fetch_async() assignments = ( assign_fut.get_result() or AuthIPWhitelistAssignments(key=ip_whitelist_assignments_key())) whitelists = sorted(whitelists_fut.get_result(), key=lambda x: x.key.id()) return assignments, whitelists ################################################################################ ## Realms entities. class AuthRealmsGlobals(ndb.Model, AuthVersionedEntityMixin): """A singleton entity with global portions of realms configuration. Data here does not relate to any individual realm or project. Currently contains a list of all defined permissions (with their metadata). Entity key is realms_globals_key(). Parent entity is root_key(). """ # Disable useless in-process per-request cache. _use_cache = False # All globally defined permissions, in alphabetical order. permissions = datastore_utils.ProtobufProperty( realms_pb2.Permission, repeated=True) class AuthProjectRealms(ndb.Model, AuthVersionedEntityMixin): """All realms of some single LUCI project. They are defined as realms_pb2.Realms proto message reduced to a single project: * Only project's realms are listed in `realms` field. * Only permissions used by the project are listed in `permissions` field. * Permissions have their metadata stripped, they have only names. Entity key is project_realms_key(...). Parent entity is root_key(). """ # Disable useless in-process per-request cache. _use_cache = False # All realms of a project, see the AuthProjectRealms doc string above. realms = datastore_utils.ProtobufProperty(realms_pb2.Realms, compressed=True) # The git revision the config was picked up from. config_rev = ndb.StringProperty(indexed=False) # Revision of permissions DB used to expand roles. perms_rev = ndb.StringProperty(indexed=False) def realms_globals_key(): """The key of AuthRealmsGlobals singleton entity.""" return ndb.Key(AuthRealmsGlobals, 'globals', parent=root_key()) def project_realms_key(project_id): """An ndb.Key for an AuthProjectRealms entity.""" return ndb.Key(AuthProjectRealms, project_id, parent=root_key()) ################################################################################ ## Dev config. Used only on dev server or '-dev' instances. class AuthDevConfig(ndb.Model): """Authentication related configuration for development or tests. Meant to be updated via Cloud Console Datastore UI. ID is 'dev_config'. """ # Disable memcache to simplify editing of this entity through datastore UI. _use_cache = False _use_memcache = False # A custom endpoint to validate OAuth tokens to use as a fallback. # # E.g. "https://www.googleapis.com/oauth2/v1/tokeninfo". token_info_endpoint = ndb.StringProperty(indexed=False, default='') @utils.cache_with_expiration(60) def get_dev_config(): """Returns an instance of AuthDevConfig (possibly uninitialized). Asserts that it is used only on dev instance. """ assert utils.is_local_dev_server() or utils.is_dev() k = ndb.Key('AuthDevConfig', 'dev_config') e = k.get() if not e: logging.warning('Initializing AuthDevConfig entity') e = AuthDevConfig(key=k) e.put() # there's a race condition here, but we don't care return e
py
7dfcd2f5d59cd84622234aca9bba2ab690cad0f4
############################# ## Onion Skinning Operators ############################# import bpy from bpy.app.handlers import persistent from bpy.types import Operator, PropertyGroup import gpu import bgl from gpu_extras.batch import batch_for_shader import numpy as np from mathutils import Vector, Matrix # ########################################################## # # Data (stroring it in the object or scene doesnt work well) # # ########################################################## # shader = gpu.shader.from_builtin('3D_UNIFORM_COLOR') frame_data = dict([]) batches = dict([]) extern_data = dict([]) # ################ # # Functions # # ################ # def frame_get_set(_obj, frame): scn = bpy.context.scene anmx = scn.anmx_data # Show from viewport > keep off this allows in_front to work # if "_animextras" in scn.collection.children: # vlayer = scn.view_layers['View Layer'] # vlayer.layer_collection.children['_animextras'].hide_viewport = False if _obj.type == 'EMPTY': if anmx.is_linked: bpy.ops.object.duplicate_move_linked(OBJECT_OT_duplicate={"linked":True}) # Hide original but keep it able to render _obj.hide_viewport = True if "_animextras" in scn.collection.children: bpy.data.collections['_animextras'].objects.link(bpy.data.objects[anmx.onion_object]) # bpy.ops.object.move_to_collection(collection_index=0, is_new=True, new_collection_name="_animextras") _obj = bpy.context.active_object if not "_animextras" in scn.collection.children: bpy.ops.object.move_to_collection(collection_index=0, is_new=True, new_collection_name="_animextras") # bpy.data.collections['_animextras'].hide_viewport = True # bpy.data.scenes["Scene"].view_layers[0].layer_collection.collection.children["_animextras"].hide_viewport = False bpy.data.collections['_animextras'].hide_render = True _obj = bpy.context.selected_objects[0] # print("_obj %s" % _obj) if anmx.is_linked: bpy.ops.object.make_override_library() for i in bpy.data.collections['_animextras'].children[0].objects: if i.type == 'MESH': new_onion = i.name i.hide_render = True scn.anmx_data.onion_object = new_onion anmx.is_linked = False # Return duplicated linked rig made local _obj = bpy.data.objects[anmx.onion_object] # Make object active so panel shows bpy.context.view_layer.objects.active = _obj # Select active # bpy.context.scene.objects["Body"].select_set(True) # Gets all of the data from a mesh on a certain frame tmpobj = _obj # Setting the frame to get an accurate reading of the object on the selected frame scn = bpy.context.scene scn.frame_set(frame) # Getting the Depenency Graph and the evaluated object depsgraph = bpy.context.evaluated_depsgraph_get() eval = tmpobj.evaluated_get(depsgraph) # Making a new mesh from the object. mesh = eval.to_mesh() mesh.update() # Getting the object's world matrix mat = Matrix(_obj.matrix_world) # This moves the mesh by the object's world matrix, thus making everything global space. This is much faster than getting each vertex individually and doing a matrix multiplication on it mesh.transform(mat) mesh.update() # loop triangles are needed to properly draw the mesh on screen mesh.calc_loop_triangles() mesh.update() # Creating empties so that all of the verts and indices can be gathered all at once in the next step vertices = np.empty((len(mesh.vertices), 3), 'f') indices = np.empty((len(mesh.loop_triangles), 3), 'i') # Getting all of the vertices and incices all at once (from: https://docs.blender.org/api/current/gpu.html#mesh-with-random-vertex-colors) mesh.vertices.foreach_get( "co", np.reshape(vertices, len(mesh.vertices) * 3)) mesh.loop_triangles.foreach_get( "vertices", np.reshape(indices, len(mesh.loop_triangles) * 3)) args = [vertices, indices] # Hide from viewport > keep off this allows in_front to work # if "_animextras" in scn.collection.children: # vlayer = scn.view_layers['View Layer'] # vlayer.layer_collection.children['_animextras'].hide_viewport = True return args def set_to_active(_obj): """ Sets the object that is being used for the onion skinning """ scn = bpy.context.scene anmx = scn.anmx_data # Clear all data > caused double drawing with mode switch # Old clear method caused issues when using a rig # Still see handler issue frame_data.clear() batches.clear() extern_data.clear() # skip clear if we are linked if hasattr(anmx,"link_parent"): if not anmx.link_parent == "": clear_active(clrRig=False) anmx.onion_object = _obj.name anmx.is_linked = True if _obj.type == 'EMPTY' else False if anmx.is_linked: if hasattr(anmx,"link_parent"): if not anmx.link_parent: anmx.link_parent = _obj.name bake_frames() make_batches() def clear_active(clrRig): """ clrRig will do complete clear, sued with linked Rigs, allows to update it without deleting everuthing """ """ Clears the active object """ scn = bpy.context.scene anmx = scn.anmx_data name = anmx.onion_object # Clears all the data needed to store onion skins on the previously selected object frame_data.clear() batches.clear() extern_data.clear() # Clear localzed rigs & overrides linked items if clrRig: if hasattr(anmx,"link_parent"): if not anmx.link_parent == "": bpy.data.collections["_animextras"].children[0].objects.unlink(bpy.data.objects[name]) bpy.data.collections.remove(bpy.data.collections[anmx.link_parent]) bpy.data.collections.remove(bpy.data.collections["_animextras"]) # Show original linked rig again bpy.data.objects[anmx.link_parent].hide_viewport = False anmx.link_parent = "" # Gets rid of the selected object anmx.onion_object = "" def make_batches(): # Custom OSL shader could be set here scn = bpy.context.scene anmx = scn.anmx_data _obj = bpy.data.objects[anmx.onion_object] for key in frame_data: arg = frame_data[key] # Dictionaries are used rather than lists or arrays so that frame numbers are a given vertices = arg[0] indices = arg[1] batch = batch_for_shader(shader, 'TRIS', {"pos": vertices}, indices=indices) batches[key] = batch def bake_frames(): # Needs to do the following: # 1. Bake the data for every frame and store it in the objects "["frame_data"]" items scn = bpy.context.scene anmx = scn.anmx_data _obj = bpy.data.objects[anmx.onion_object] curr = scn.frame_current step = anmx.skin_step # Getting the first and last frame of the animation keyobj = _obj if _obj.parent is not None: keyobj = _obj.parent # Check if obj is linked rig elif hasattr(_obj.instance_collection, "all_objects"): keyobj = _obj.instance_collection.all_objects[_obj.name] # print(keyobj) # keyobj = _obj.parent keyframes = [] for fc in keyobj.animation_data.action.fcurves: for k in fc.keyframe_points: keyframes.append(int(k.co[0])) keyframes = np.unique(keyframes) start = int(np.min(keyframes)) end = int(np.max(keyframes)) + 1 if anmx.onion_mode == "PF": for f in range(start, end): arg = frame_get_set(_obj, f) frame_data[str(f)] = arg extern_data.clear() elif anmx.onion_mode == "PFS": for f in range(start, end, step): arg = frame_get_set(_obj, f) frame_data[str(f)] = arg extern_data.clear() elif anmx.onion_mode == "DC": for fkey in keyframes: arg = frame_get_set(_obj, fkey) frame_data[str(fkey)] = arg extern_data.clear() elif anmx.onion_mode == "INB": for f in range(start, end): arg = frame_get_set(_obj, f) frame_data[str(f)] = arg extern_data.clear() for fkey in keyframes: extern_data[str(fkey)] = fkey scn.frame_set(curr) # ################ # # Properties # # ################ # class ANMX_data(PropertyGroup): # Custom update function for the toggle def toggle_update(self, context): if self.toggle: bpy.ops.anim_extras.draw_meshes('INVOKE_DEFAULT') return def inFront(self,context): scn = bpy.context.scene if self.onion_object: obj = bpy.context.view_layer.objects.active = bpy.data.objects[self.onion_object] obj.show_in_front = True if scn["anmx_data"]["in_front"] else False if "use_xray" in scn["anmx_data"]: if scn["anmx_data"]["use_xray"]: scn["anmx_data"]["use_xray"] = False if scn["anmx_data"]["in_front"] else True return modes = [ ("PF", "Per-Frame", "Shows the amount of frames in the future and past", 1), ("PFS", "Per-Frame Stepped", "Shows the amount of frames in the future and past with option to step-over frames. This allows to see futher but still have a clear overview what is happening", 2), ("DC", "Direct Keys", "Show onion only on inserted keys using amount as frame when keys are visible", 3), ("INB", "Inbetweening", " Inbetweening, lets you see frames with direct keyframes in a different color than interpolated frames", 4) ] # Onion Skinning Properties skin_count: bpy.props.IntProperty(name="Count", description="Number of frames we see in past and future", default=1, min=1) skin_step: bpy.props.IntProperty(name="Step", description="Number of frames to skip in conjuction with Count", default=1, min=1) onion_object: bpy.props.StringProperty(name="Onion Object", default="") onion_mode: bpy.props.EnumProperty(name="", get=None, set=None, items=modes) use_xray: bpy.props.BoolProperty(name="Use X-Ray", description="Draws the onion visible through the object", default=False) use_flat: bpy.props.BoolProperty(name="Flat Colors", description="Colors while not use opacity showing 100% of the color", default=False) in_front: bpy.props.BoolProperty(name="In Front", description="Draws the selected object in front of the onion skinning", default=False, update=inFront) toggle: bpy.props.BoolProperty(name="Draw", description="Toggles onion skinning on or off", default=False, update=toggle_update) # Linked settings is_linked: bpy.props.BoolProperty(name="Is linked", default=False) link_parent: bpy.props.StringProperty(name="Link Parent", default="") # Past settings past_color: bpy.props.FloatVectorProperty(name="Past Color", min=0, max=1, size=3, default=(1., .1, .1), subtype='COLOR') past_opacity_start: bpy.props.FloatProperty(name="Starting Opacity", min=0, max=1, precision=2, default=0.5) past_opacity_end: bpy.props.FloatProperty(name="Ending Opacity", min=0, max=1, precision=2, default=0.1) past_enabled: bpy.props.BoolProperty(name="Enabled?", default=True) # Future settings future_color: bpy.props.FloatVectorProperty(name="Future Color", min=0, max=1, size=3, default=(.1, .4, 1.), subtype='COLOR') future_opacity_start: bpy.props.FloatProperty(name="Starting Opacity", min=0, max=1,precision=2, default=0.5) future_opacity_end: bpy.props.FloatProperty(name="Ending Opacity", min=0, max=1,precision=2, default=0.1) future_enabled: bpy.props.BoolProperty(name="Enabled?", default=True) # ################ # # Operators # # ################ # def check_selected(context): obj = context.active_object return context.selected_objects != [] # return True # Need workaround so we can pose and still do updates # return ((obj.type == 'MESH') and hasattr(obj.animation_data,"action") or (obj.type=='EMPTY') or (obj.type == 'MESH') and hasattr(obj.parent.animation_data,"action")) # if ((obj.type == 'MESH') and hasattr(obj.animation_data,"action") or (obj.type=='EMPTY')): # return True # else: # return False class ANMX_set_onion(Operator): bl_idname = "anim_extras.set_onion" bl_label = "Set Onion To Selected" bl_description = "Sets the selected object to be the onion object" bl_options = {'REGISTER', 'UNDO' } @classmethod def poll(cls, context): obj = context.active_object if context.selected_objects != []: if (hasattr(obj.parent,"animation_data") and (obj.type == 'MESH')): if (hasattr(obj.parent.animation_data,"action")): return True if hasattr(obj.animation_data,"action"): if hasattr(obj.animation_data.action,"fcurves"): return ((obj.type == 'MESH') and hasattr(obj.animation_data,"action") or (obj.type=='EMPTY')) if hasattr(obj.instance_collection, "all_objects"): return True def execute(self, context): obj = context.active_object scn = context.scene anmx = scn.anmx_data #Extra check for the shortcuts if not check_selected(context): self.report({'INFO'}, "Onion needs animated active selection ") return {'CANCELLED'} anmx.toggle = False if anmx.toggle else True if obj == None: return {"CANCELLED"} if obj.parent is None: try: obj.animation_data.action.fcurves except AttributeError: pass # return {"CANCELLED"} else: try: # This right here needs to change for allowing linked rigs # obj.parent.animation_data.action.fcurves dObj = bpy.data.objects[obj.name] hasattr(dObj.instance_collection, "all_objects") except AttributeError: return {"CANCELLED"} # Or check if it is linked empty if ((obj.type == 'MESH') or (obj.type=='EMPTY')): set_to_active(obj) return {"FINISHED"} class ANMX_clear_onion(Operator): bl_idname = "anim_extras.clear_onion" bl_label = "Clear Selected Onion" bl_description = "Clears the path of the onion object" bl_options = {'REGISTER', 'UNDO' } def execute(self, context): #Extra check for the shortcuts if not check_selected(context): self.report({'INFO'}, "Onion needs animated active selection") return {'CANCELLED'} clear_active(clrRig=True) return {"FINISHED"} class ANMX_toggle_onion(Operator): """ Operator for toggling the onion object so we can shortcut it""" bl_idname = "anim_extras.toggle_onion" bl_label = "Toggle Onion" bl_description = "Toggles onion ON/OFF" bl_options = {'REGISTER', 'UNDO' } def execute(self, context): context.scene.anmx_data.toggle = False if context.scene.anmx_data.toggle else True return {"FINISHED"} class ANMX_add_clear_onion(Operator): """ Toggle for clearing and adding""" bl_idname = "anim_extras.add_clear_onion" bl_label = "Add/Toggle Onion" bl_description = "Add/Toggles onion ON/OFF" bl_options = {'REGISTER', 'UNDO' } def execute(self, context): #Extra check for the shortcuts if not check_selected(context): self.report({'INFO'}, "Onion needs animated active selection") return {'CANCELLED'} anmx = context.scene.anmx_data if anmx.onion_object=="": bpy.ops.anim_extras.set_onion() else: bpy.ops.anim_extras.clear_onion() return {"FINISHED"} class ANMX_update_onion(Operator): bl_idname = "anim_extras.update_onion" bl_label = "Update Selected Onion" bl_description = "Updates the path of the onion object" bl_options = {'REGISTER', 'UNDO' } def execute(self, context): #Extra check for the shortcuts if not check_selected(context): self.report({'INFO'}, "Onion needs active selection") return {'CANCELLED'} # This allows to update, also pose mode if context.scene.anmx_data.onion_object in bpy.data.objects: set_to_active(bpy.data.objects[context.scene.anmx_data.onion_object]) return {"FINISHED"} # Uses a list formatted in the following way to draw the meshes: # [[vertices, indices, colors], [vertices, indices, colors]] class ANMX_draw_meshes(Operator): bl_idname = "anim_extras.draw_meshes" bl_label = "Draw" bl_description = "Draws a set of meshes without creating objects" bl_options = {'REGISTER', 'UNDO' } def __init__(self): print("#### __INIT__ DRAW MESHES ####") self.handler = None self.timer = None self.mode = None def __del__(self): """ unregister when done, helps when reopening other scenes """ print("#### UNREGISTER HANDLERS ####") self.finish(bpy.context) print("#### HANDLER %s ####" % self.handler) def invoke(self, context, event): self.register_handlers(context) context.window_manager.modal_handler_add(self) self.mode = context.scene.anmx_data.onion_mode return {'RUNNING_MODAL'} def register_handlers(self, context): self.timer = context.window_manager.event_timer_add(0.1, window=context.window) self.handler = bpy.types.SpaceView3D.draw_handler_add(self.draw_callback, (context,), 'WINDOW', 'POST_VIEW') def unregister_handlers(self, context): context.scene.anmx_data.toggle = False context.window_manager.event_timer_remove(self.timer) if self.handler != None: bpy.types.SpaceView3D.draw_handler_remove(self.handler, 'WINDOW') self.handler = None def modal(self, context, event): if context.scene.anmx_data.onion_object not in bpy.data.objects: self.unregister_handlers(context) return {'CANCELLED'} if context.scene.anmx_data.toggle is False or self.mode != context.scene.anmx_data.onion_mode: self.unregister_handlers(context) return {'CANCELLED'} return {'PASS_THROUGH'} def finish(self, context): self.unregister_handlers(context) return {'FINISHED'} def draw_callback(self, context): scn = context.scene ac = scn.anmx_data f = scn.frame_current pc = ac.past_color fc = ac.future_color override = False color = (0, 0, 0, 0) threshold = ac.skin_count if context.space_data.overlay.show_overlays == False: return for key in batches: f_dif = abs(f-int(key)) # Getting the color if the batch is in the past if len(extern_data) == 0: if f > int(key): if ac.past_enabled: color = (pc[0], pc[1], pc[2], ac.past_opacity_start-((ac.past_opacity_start-ac.past_opacity_end)/ac.skin_count) * f_dif) else: override = True # Getting the color if the batch is in the future else: if ac.future_enabled: color = (fc[0], fc[1], fc[2], ac.future_opacity_start-((ac.future_opacity_start-ac.future_opacity_end)/ac.skin_count) * f_dif) else: override = True else: if key in extern_data: color = (fc[0], fc[1], fc[2], ac.future_opacity_start-((ac.future_opacity_start-ac.future_opacity_end)/ac.skin_count) * f_dif) else: color = (pc[0], pc[1], pc[2], ac.past_opacity_start-((ac.past_opacity_start-ac.past_opacity_end)/ac.skin_count) * f_dif) # Only draws if the frame is not the current one, it is within the skin limits, and there has not been an override if f != int(key) and f_dif <= ac.skin_count and not override: shader.bind() shader.uniform_float("color", color) # Theres gotta be a better way to do this. Seems super inefficient if not ac.use_flat: bgl.glEnable(bgl.GL_BLEND) bgl.glEnable(bgl.GL_CULL_FACE) if not ac.use_xray: bgl.glEnable(bgl.GL_DEPTH_TEST) batches[key].draw(shader) bgl.glDisable(bgl.GL_BLEND) bgl.glDisable(bgl.GL_CULL_FACE) bgl.glDisable(bgl.GL_DEPTH_TEST) override = False
py
7dfcd360f743dc3303d3c7e71f4a4a9562725517
import numpy as np from ndfinance.brokers.base import OHLCVT def apply_n_percent_rule(value, n_percent=5, loss_cut_percent=20): return (value * n_percent / 100) / (loss_cut_percent / 100) class Universe(object): def __init__(self, broker=None, data_provider=None): self.broker = broker self.data_provider = data_provider def set_broker(self, broker): self.broker = broker self.data_provider = broker.data_provider def __call__(self): return self.broker.assets class AvailableStockUniverse(Universe): def __init__(self, *args, **kwargs): super(AvailableStockUniverse, self).__init__(*args, **kwargs) def set_broker(self, *args, **kwargs): super(AvailableStockUniverse, self).__init__(*args, **kwargs) self.indexer = self.broker.indexer def __call__(self): ret = {} for ticker in self.broker.assets.keys(): timestamp = self.broker.data_provider.get_ohlcvt_current(ticker, OHLCVT.timestamp) if timestamp is None: continue ret[ticker] = self.broker.assets[ticker] return ret
py
7dfcd3b08107c6bf01de67311b706432a98c29b8
dataset_defaults = { 'amazon': { 'split_scheme': 'official', 'model': 'distilbert-base-uncased', 'transform': 'bert', 'max_token_length': 512, 'loss_function': 'cross_entropy', 'algo_log_metric': 'accuracy', 'batch_size': 8, 'unlabeled_batch_size': 8, 'lr': 1e-5, 'weight_decay': 0.01, 'n_epochs': 3, 'n_groups_per_batch': 2, 'irm_lambda': 1.0, 'coral_penalty_weight': 1.0, 'loader_kwargs': { 'num_workers': 1, 'pin_memory': True, }, 'process_outputs_function': 'multiclass_logits_to_pred', }, 'bdd100k': { 'split_scheme': 'official', 'model': 'resnet50', 'model_kwargs': {'pretrained': True}, 'loss_function': 'multitask_bce', 'val_metric': 'acc_all', 'val_metric_decreasing': False, 'optimizer': 'SGD', 'optimizer_kwargs': {'momentum': 0.9}, 'batch_size': 32, 'lr': 0.001, 'weight_decay': 0.0001, 'n_epochs': 10, 'algo_log_metric': 'multitask_binary_accuracy', 'transform': 'image_base', 'process_outputs_function': 'binary_logits_to_pred', }, 'camelyon17': { 'split_scheme': 'official', 'model': 'densenet121', 'model_kwargs': {'pretrained': False}, 'transform': 'image_base', 'target_resolution': (96, 96), 'loss_function': 'cross_entropy', 'groupby_fields': ['hospital'], 'val_metric': 'acc_avg', 'val_metric_decreasing': False, 'optimizer': 'SGD', 'optimizer_kwargs': {'momentum': 0.9}, 'scheduler': None, 'batch_size': 32, 'unlabeled_batch_size': 32, 'lr': 0.001, 'weight_decay': 0.01, 'n_epochs': 5, 'n_groups_per_batch': 2, 'irm_lambda': 1.0, 'coral_penalty_weight': 0.1, 'algo_log_metric': 'accuracy', 'process_outputs_function': 'multiclass_logits_to_pred', }, 'celebA': { 'split_scheme': 'official', 'model': 'resnet50', 'transform': 'image_base', 'eval_transform': 'image_base', 'loss_function': 'cross_entropy', 'groupby_fields': ['male', 'y'], 'val_metric': 'acc_wg', 'val_metric_decreasing': False, 'optimizer': 'SGD', 'optimizer_kwargs': {'momentum': 0.9}, 'scheduler': None, 'batch_size': 64, 'lr': 0.001, 'weight_decay': 0.0, 'n_epochs': 200, 'algo_log_metric': 'accuracy', 'process_outputs_function': 'multiclass_logits_to_pred', }, 'civilcomments': { 'split_scheme': 'official', 'model': 'distilbert-base-uncased', 'transform': 'bert', 'loss_function': 'cross_entropy', 'groupby_fields': ['black', 'y'], 'val_metric': 'acc_wg', 'val_metric_decreasing': False, 'batch_size': 16, 'unlabeled_batch_size': 16, 'lr': 1e-5, 'weight_decay': 0.01, 'n_epochs': 5, 'n_groups_per_batch': 1, 'algo_log_metric': 'accuracy', 'max_token_length': 300, 'irm_lambda': 1.0, 'coral_penalty_weight': 10.0, 'loader_kwargs': { 'num_workers': 1, 'pin_memory': True, }, 'process_outputs_function': 'multiclass_logits_to_pred', }, 'fmow': { 'split_scheme': 'official', 'dataset_kwargs': { 'seed': 111 }, 'model': 'densenet121', 'model_kwargs': {'pretrained': True}, 'transform': 'image_base', 'loss_function': 'cross_entropy', 'groupby_fields': ['year',], 'val_metric': 'acc_worst_region', 'val_metric_decreasing': False, 'optimizer': 'Adam', 'scheduler': 'StepLR', 'scheduler_kwargs': {'gamma': 0.96}, 'batch_size': 32, 'unlabeled_batch_size': 32, 'lr': 0.0001, 'weight_decay': 0.0, 'n_epochs': 50, 'n_groups_per_batch': 8, 'irm_lambda': 1.0, 'coral_penalty_weight': 0.1, 'algo_log_metric': 'accuracy', 'process_outputs_function': 'multiclass_logits_to_pred', }, 'iwildcam': { 'loss_function': 'cross_entropy', 'val_metric': 'F1-macro_all', 'model_kwargs': {'pretrained': True}, 'transform': 'image_base', 'target_resolution': (448, 448), 'val_metric_decreasing': False, 'algo_log_metric': 'accuracy', 'model': 'resnet50', 'lr': 3e-5, 'weight_decay': 0.0, 'batch_size': 16, 'unlabeled_batch_size': 16, 'n_epochs': 12, 'optimizer': 'Adam', 'split_scheme': 'official', 'scheduler': None, 'groupby_fields': ['location',], 'n_groups_per_batch': 2, 'irm_lambda': 1., 'coral_penalty_weight': 10., 'no_group_logging': True, 'process_outputs_function': 'multiclass_logits_to_pred' }, 'ogb-molpcba': { 'split_scheme': 'official', 'model': 'gin-virtual', 'model_kwargs': {'dropout':0.5}, # include pretrained 'loss_function': 'multitask_bce', 'groupby_fields': ['scaffold',], 'val_metric': 'ap', 'val_metric_decreasing': False, 'optimizer': 'Adam', 'batch_size': 32, 'unlabeled_batch_size': 32, 'lr': 1e-03, 'weight_decay': 0., 'n_epochs': 100, 'n_groups_per_batch': 4, 'irm_lambda': 1., 'coral_penalty_weight': 0.1, 'no_group_logging': True, 'process_outputs_function': None, 'algo_log_metric': 'multitask_binary_accuracy', }, 'py150': { 'split_scheme': 'official', 'model': 'code-gpt-py', 'loss_function': 'lm_cross_entropy', 'val_metric': 'acc', 'val_metric_decreasing': False, 'optimizer': 'AdamW', 'optimizer_kwargs': {'eps':1e-8}, 'lr': 8e-5, 'weight_decay': 0., 'n_epochs': 3, 'batch_size': 6, 'groupby_fields': ['repo',], 'n_groups_per_batch': 2, 'irm_lambda': 1., 'coral_penalty_weight': 1., 'no_group_logging': True, 'algo_log_metric': 'multitask_accuracy', 'process_outputs_function': 'multiclass_logits_to_pred', }, 'poverty': { 'split_scheme': 'official', 'dataset_kwargs': { 'no_nl': False, 'fold': 'A' }, 'model': 'resnet18_ms', 'model_kwargs': {'num_channels': 8}, 'transform': 'poverty', 'loss_function': 'mse', 'groupby_fields': ['country',], 'val_metric': 'r_wg', 'val_metric_decreasing': False, 'algo_log_metric': 'mse', 'optimizer': 'Adam', 'scheduler': 'StepLR', 'scheduler_kwargs': {'gamma': 0.96}, 'batch_size': 64, 'unlabeled_batch_size': 64, 'lr': 0.001, 'weight_decay': 0.0, 'n_epochs': 200, 'n_groups_per_batch': 8, 'irm_lambda': 1.0, 'coral_penalty_weight': 0.1, 'process_outputs_function': None, }, 'waterbirds': { 'split_scheme': 'official', 'model': 'resnet50', 'transform': 'image_resize_and_center_crop', 'resize_scale': 256.0/224.0, 'model_kwargs': {'pretrained': True}, 'loss_function': 'cross_entropy', 'groupby_fields': ['background', 'y'], 'val_metric': 'acc_wg', 'val_metric_decreasing': False, 'algo_log_metric': 'accuracy', 'optimizer': 'SGD', 'optimizer_kwargs': {'momentum':0.9}, 'scheduler': None, 'batch_size': 128, 'lr': 1e-5, 'weight_decay': 1.0, 'n_epochs': 300, 'process_outputs_function': 'multiclass_logits_to_pred', }, 'yelp': { 'split_scheme': 'official', 'model': 'bert-base-uncased', 'transform': 'bert', 'max_token_length': 512, 'loss_function': 'cross_entropy', 'algo_log_metric': 'accuracy', 'batch_size': 8, 'lr': 2e-6, 'weight_decay': 0.01, 'n_epochs': 3, 'n_groups_per_batch': 2, 'process_outputs_function': 'multiclass_logits_to_pred', }, 'sqf': { 'split_scheme': 'all_race', 'model': 'logistic_regression', 'transform': None, 'model_kwargs': {'in_features': 104}, 'loss_function': 'cross_entropy', 'groupby_fields': ['y'], 'val_metric': 'precision_at_global_recall_all', 'val_metric_decreasing': False, 'algo_log_metric': 'accuracy', 'optimizer': 'Adam', 'optimizer_kwargs': {}, 'scheduler': None, 'batch_size': 4, 'lr': 5e-5, 'weight_decay': 0, 'n_epochs': 4, 'process_outputs_function': None, }, } ########################################## ### Split-specific defaults for Amazon ### ########################################## amazon_split_defaults = { 'official':{ 'groupby_fields': ['user'], 'val_metric': '10th_percentile_acc', 'val_metric_decreasing': False, 'no_group_logging': True, }, 'user':{ 'groupby_fields': ['user'], 'val_metric': '10th_percentile_acc', 'val_metric_decreasing': False, 'no_group_logging': True, }, 'time':{ 'groupby_fields': ['year'], 'val_metric': 'acc_avg', 'val_metric_decreasing': False, }, 'time_baseline':{ 'groupby_fields': ['year'], 'val_metric': 'acc_avg', 'val_metric_decreasing': False, }, } user_baseline_splits = [ 'A1CNQTCRQ35IMM_baseline', 'A1NE43T0OM6NNX_baseline', 'A1UH21GLZTYYR5_baseline', 'A20EEWWSFMZ1PN_baseline', 'A219Y76LD1VP4N_baseline', 'A37BRR2L8PX3R2_baseline', 'A3JVZY05VLMYEM_baseline', 'A9Q28YTLYREO7_baseline', 'ASVY5XSYJ1XOE_baseline', 'AV6QDP8Q0ONK4_baseline' ] for split in user_baseline_splits: amazon_split_defaults[split] = { 'groupby_fields': ['user'], 'val_metric': 'acc_avg', 'val_metric_decreasing': False, } category_splits = [ 'arts_crafts_and_sewing_generalization', 'automotive_generalization', 'books,movies_and_tv,home_and_kitchen,electronics_generalization', 'books_generalization', 'category_subpopulation', 'cds_and_vinyl_generalization', 'cell_phones_and_accessories_generalization', 'clothing_shoes_and_jewelry_generalization', 'digital_music_generalization', 'electronics_generalization', 'grocery_and_gourmet_food_generalization', 'home_and_kitchen_generalization', 'industrial_and_scientific_generalization', 'kindle_store_generalization', 'luxury_beauty_generalization', 'movies_and_tv,books,home_and_kitchen_generalization', 'movies_and_tv,books_generalization', 'movies_and_tv_generalization', 'musical_instruments_generalization', 'office_products_generalization', 'patio_lawn_and_garden_generalization', 'pet_supplies_generalization', 'prime_pantry_generalization', 'sports_and_outdoors_generalization', 'tools_and_home_improvement_generalization', 'toys_and_games_generalization', 'video_games_generalization', ] for split in category_splits: amazon_split_defaults[split] = { 'groupby_fields': ['category'], 'val_metric': 'acc_avg', 'val_metric_decreasing': False, } ######################################## ### Split-specific defaults for Yelp ### ######################################## yelp_split_defaults = { 'official':{ 'groupby_fields': ['year'], 'val_metric': 'acc_avg', 'val_metric_decreasing': False, }, 'user':{ 'groupby_fields': ['user'], 'val_metric': '10th_percentile_acc', 'val_metric_decreasing': False, 'no_group_logging': True, }, 'time':{ 'groupby_fields': ['year'], 'val_metric': 'acc_avg', 'val_metric_decreasing': False, }, 'time_baseline':{ 'groupby_fields': ['year'], 'val_metric': 'acc_avg', 'val_metric_decreasing': False, }, } ############################### ### Split-specific defaults ### ############################### split_defaults = { 'amazon': amazon_split_defaults, 'yelp': yelp_split_defaults, }
py
7dfcd450253b47c628d15d822a56414cacb4fca5
from typing import Optional from os import path import pygame from skyjump.widgets import XAlign, YAlign from skyjump.colors import WHITE from skyjump.config import DATA_DIR class Label: """a simple label""" def __init__( self, caption: str, x: float, y: float, width: float = 0.15, height: float = 0.1, textsize: float = 3, font_file: str = path.join(DATA_DIR, "fonts", "carobtn.TTF"), color: pygame.Color = WHITE, bg_color: Optional[pygame.Color] = None, xalign: XAlign = XAlign.CENTER, yalign: YAlign = YAlign.CENTER, line_spacing: float = 1.25, ): """create a new label :param caption: the caption of the label :param x: x position of the label, relative to the surface on render :param y: y position of the label, relative to the surface on render :param width: width of the label, relative to the surface on render :param height: height of the label, relative to the surface on render :param textsize: textsize (in percent) of the caption, relative to the surface on render :param font_file: file of the font :param color: color of the text :param bg_color: color of the background :param xalign: the x alignment of the text :param yalign: the x alignment of the text :param line_spacing: the spacing between two lines """ self.caption = caption self.x = x self.y = y self.width = width self.height = height self.font_file = font_file # textsize is given in percent self.textsize = textsize / 100 self.color = color self.bg_color = bg_color self.xalign = xalign self.yalign = yalign self.line_spacing = line_spacing # font rendering is a bottleneck in pygame # so cache the real size and font self._font: Optional[pygame.font.Font] = None self._fontsize: int = -1 def set_caption(self, caption: str): """set a new caption :param caption: the new caption of the label """ self.caption = caption def set_bg_color(self, bg_color: Optional[pygame.Color]): """set a new background color :param bg_color: the new background color of the label or None for a transparent background """ self.bg_color = bg_color def render(self, out_surface: pygame.Surface): """render the label :param out_surface: the surface on which the label should be rendered """ # create absolute position and size values x = round(self.x * out_surface.get_width()) y = round(self.y * out_surface.get_height()) width = round(self.width * out_surface.get_width()) height = round(self.height * out_surface.get_height()) # create a temporary surface surface = pygame.Surface((width, height), pygame.SRCALPHA) # fill the background if there is one if self.bg_color: surface.fill(self.bg_color) # calculate the fontsize fontsize = round(self.textsize * out_surface.get_width()) self._render_text(surface, width, height, fontsize) # blit the temporary surface out_surface.blit(surface, (x, y)) def _render_text( self, out_surface: pygame.Surface, width: int, height: int, fontsize: int, ): """render the text :param out_surface: the surface on which the text should be rendered :param width: the width of the label :param height: the height of the label :param fontsize: the textsize in px """ # if the window size changes, the fontsize will be changed as well if self._fontsize != fontsize: self._fontsize = fontsize self._font = pygame.font.Font(self.font_file, fontsize) # get all lines of the text lines = self.caption.splitlines() # create a temporary surface for the text # determine the height of the text from sample characters font_height = self._font.size("xX")[1] # calculate the full height of the text text_height = font_height * ((len(lines) - 1) * self.line_spacing + 1) surface = pygame.Surface((width, height), pygame.SRCALPHA) # render each line to the surface for i, line in enumerate(lines): # create the text from the font with the given caption and color text = self._font.render(line, True, self.color) # determine the width of the rendered text font_width = self._font.size(line)[0] # calculate the x position from the x alignment if self.xalign == XAlign.LEFT: font_x: int = 0 elif self.xalign == XAlign.CENTER: font_x: int = (width - font_width) // 2 else: font_x: int = width - font_width font_y = round(i * self.line_spacing * font_height) surface.blit(text, (font_x, font_y, font_width, font_height)) # calculate the y position from the y alignment if self.yalign == YAlign.TOP: font_y: int = 0 elif self.yalign == YAlign.CENTER: font_y: int = round((height - text_height) / 2) else: font_y: int = round(height - text_height) # blit the font to the temporary surface out_surface.blit(surface, (0, font_y, width, text_height))
py
7dfcd5013d51f708cd6b5d86c9ad49c20f62523a
from dataclasses import dataclass, field from datetime import datetime from typing import List, Optional from .allowance import Allowance from .allowance_limit_enforcement import AllowanceLimitEnforcement from .allowance_reset_type import AllowanceResetType from .instance_status import InstanceStatus @dataclass class AccountAllowance(Allowance): type: str = field(default="co.yellowdog.platform.model.AccountAllowance", init=False) id: Optional[str] = field(default=None, init=False) createdById: Optional[str] = field(default=None, init=False) effectiveFrom: datetime resetType: AllowanceResetType limitEnforcement: AllowanceLimitEnforcement monitoredStatuses: List[InstanceStatus] description: Optional[str] = None effectiveUntil: Optional[datetime] = None allowedHours: int = 0 remainingHours: float = 0 boostHours: Optional[int] = None resetInterval: Optional[int] = None hardLimitGraceMinutes: Optional[int] = None
py
7dfcd53478ab1ca2865ec5178e7d9e750cca29a4
"""============================================================= ~/fn_portal/fn_portal/tests/api/test_FN125LampreyReadonly.py Created: 07 Jun 2021 16:36:52 DESCRIPTION: The FN125Lamprey readonly endpoint should return a list of lamprey wounds that have either been observed on sampled fish. The fn125Lamprey_list end point accepts a large number of filters (url-parameters) assocaited with the lamprey wound, the sampled fish, the catch, effort, or attributes of the net and project. Only diet items matching those criteria should be returned when query parameters are provided. ============================================================= """ import pytest from django.urls import reverse from rest_framework import status from ...tests.fixtures import api_client from ...tests.factories import ( FN011Factory, FN121Factory, FN122Factory, FN123Factory, FN125Factory, FN125LampreyFactory, SpeciesFactory, ) @pytest.fixture def fn125lamprey_records(): fn011 = FN011Factory(prj_cd="LHA_IA10_123") fn121 = FN121Factory(project=fn011, sam=1) eff1 = FN122Factory(sample=fn121, eff="001") spc = SpeciesFactory( spc="331", spc_nmco="Yellow Perch", spc_nmsc="Perca flavescens" ) catch = FN123Factory(effort=eff1, species=spc, grp="55") fish = FN125Factory(catch=catch, flen=350, gon=10) lamprey1 = FN125LampreyFactory(fish=fish, lamijc_type="A1", lamijc_size=30) lamprey2 = FN125LampreyFactory(fish=fish, lamijc_type="B2", lamijc_size=25) return [lamprey1, lamprey2] @pytest.mark.django_db def test_FN125lampreyReadonly_list(api_client, fn125lamprey_records): """when we access the readonly endpoint for FN125lamprey objects, it should return a paginated list of lamprey wounds that includes all of the FN125lamprey objects in the database (ie. un-filtered). """ url = reverse("fn_portal_api:fn125lamprey_list") response = api_client.get(url) assert response.status_code == status.HTTP_200_OK payload = response.data["results"] assert len(payload) == 2 observed = set([x["slug"] for x in payload]) for record in fn125lamprey_records: assert record.slug in observed def test_FN125lampreyReadonly_only_get_allowed(api_client): """Only get requests are allowed on the FN125lamprey readonly endpoint. This test verifies taht other methods are denied. """ url = reverse("fn_portal_api:fn125lamprey_list") response = api_client.post(url, data={}) assert response.status_code == status.HTTP_403_FORBIDDEN response = api_client.put(url, data={}) assert response.status_code == status.HTTP_403_FORBIDDEN response = api_client.patch(url, data={}) assert response.status_code == status.HTTP_403_FORBIDDEN response = api_client.delete(url, data={}) assert response.status_code == status.HTTP_403_FORBIDDEN @pytest.mark.xfail def test_FN125lampreyReadonly_filters(): """The readonly api endpoint for FN125lamprey objects accepts a large number of potential parameters as filters. This test will verify that only lamprey matcing the specified criteria are returned. This test will be parameterized with a list of two element tuples, the filter to apply, and a list of the FN125lamprey slugs expected in the response. """ assert 0 == 1
py
7dfcd5b00f984e9d088fb3d910bf0ce45559317b
from gym_risk.envs.game.ai import AI import random import collections class RandomAI(AI): """ RandomAI: Plays a completely random game, randomly choosing and reinforcing territories, and attacking wherever it can without any considerations of wisdom. """ def initial_placement(self, empty): if empty: return random.choice(empty) else: t = random.choice(list(self.player.territories)) return t def attack(self): for t in self.player.territories: for a in self.player.world.connections[t]: if self.world.owners[a] != self.player: if self.world.forces[t] > self.world.forces[a]: yield (t, a, None, None) def reinforce(self, available): #todo .... territories if t.border : fix so it can work border = [t for t in self.player.territories] result = collections.defaultdict(int) for i in range(available): t = random.choice(border) result[t] += 1 return result
py
7dfcd5b4df746ffb7bf4c305f03efbacdf479d92
# Copyright (c) 2018 Arista Networks, Inc. # Use of this source code is governed by the Apache License 2.0 # that can be found in the LICENSE file. from .swisignature import prepareSwi, signSwi from .verifyswi import verifySwi
py
7dfcd5d80fddbaae2652901959529181e775c11b
#!/usr/bin/env python """Module that contains API to perform filesystem operations on a GRR client.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import io from typing import Text, Sequence from grr_api_client import client from grr_api_client import errors as api_errors from grr_colab import _timeout from grr_colab import errors from grr_colab import representer from grr_colab import vfs from grr_response_proto import flows_pb2 from grr_response_proto import jobs_pb2 class FileSystem(object): """Wrapper for filesystem operations on GRR Client. Attributes: id: Id of the client. cached: A VFS instance that allows to work with filesystem data saved on the server that may not be up-to-date but is a way faster. """ def __init__(self, client_, path_type): self._client = client_ self._path_type = path_type @property def id(self): return self._client.client_id @property def cached(self): return vfs.VFS(self._client, self._path_type) def ls(self, path, max_depth = 1): """Lists contents of a given directory. Args: path: A path to the directory to list the contents of. max_depth: Max depth of subdirectories to explore. If max_depth is >1, then the results will also include the contents of subdirectories (and sub-subdirectories and so on). Returns: A sequence of stat entries. """ if max_depth > 1: args = flows_pb2.RecursiveListDirectoryArgs() args.pathspec.path = path args.pathspec.pathtype = self._path_type args.max_depth = max_depth try: ls = self._client.CreateFlow(name='RecursiveListDirectory', args=args) except api_errors.AccessForbiddenError as e: raise errors.ApprovalMissingError(self.id, e) else: args = flows_pb2.ListDirectoryArgs() args.pathspec.path = path args.pathspec.pathtype = self._path_type try: ls = self._client.CreateFlow(name='ListDirectory', args=args) except api_errors.AccessForbiddenError as e: raise errors.ApprovalMissingError(self.id, e) _timeout.await_flow(ls) return representer.StatEntryList([_.payload for _ in ls.ListResults()]) def glob(self, path): """Globs for files on the given client. Args: path: A glob expression (that may include `*` and `**`). Returns: A sequence of stat entries to the found files. """ args = flows_pb2.GlobArgs() args.paths.append(path) args.pathtype = self._path_type try: glob = self._client.CreateFlow(name='Glob', args=args) except api_errors.AccessForbiddenError as e: raise errors.ApprovalMissingError(self.id, e) _timeout.await_flow(glob) return representer.StatEntryList([_.payload for _ in glob.ListResults()]) def grep(self, path, pattern): """Greps for given content on the specified path. Args: path: A path to a file to be searched. pattern: A regular expression on search for. Returns: A list of buffer references to the matched content. """ args = flows_pb2.FileFinderArgs() args.paths.append(path) args.pathtype = self._path_type cond = args.conditions.add() cond.condition_type = \ flows_pb2.FileFinderCondition.Type.CONTENTS_REGEX_MATCH cond.contents_regex_match.mode = \ flows_pb2.FileFinderContentsRegexMatchCondition.ALL_HITS cond.contents_regex_match.regex = pattern args.action.action_type = flows_pb2.FileFinderAction.Action.STAT try: ff = self._client.CreateFlow(name='FileFinder', args=args) except api_errors.AccessForbiddenError as e: raise errors.ApprovalMissingError(self.id, e) _timeout.await_flow(ff) return representer.BufferReferenceList( [list(_.payload.matches)[0] for _ in ff.ListResults()]) def fgrep(self, path, literal): """Greps for given content on the specified path. Args: path: A path to a file to be searched. literal: A literal expression on search for. Returns: A list of buffer references to the matched content. """ args = flows_pb2.FileFinderArgs() args.paths.append(path) args.pathtype = self._path_type cond = args.conditions.add() cond.condition_type = \ flows_pb2.FileFinderCondition.Type.CONTENTS_LITERAL_MATCH cond.contents_literal_match.mode = \ flows_pb2.FileFinderContentsLiteralMatchCondition.Mode.ALL_HITS cond.contents_literal_match.literal = literal args.action.action_type = flows_pb2.FileFinderAction.Action.STAT try: ff = self._client.CreateFlow(name='FileFinder', args=args) except api_errors.AccessForbiddenError as e: raise errors.ApprovalMissingError(self.id, e) _timeout.await_flow(ff) return representer.BufferReferenceList( [list(_.payload.matches)[0] for _ in ff.ListResults()]) def wget(self, path): """Downloads a file and returns a link to it. Args: path: A path to download. Returns: A link to the file. """ self._collect_file(path) return self.cached.wget(path) def open(self, path): """Opens a file object corresponding to the given path on the client. The returned file object is read-only. Args: path: A path to the file to open. Returns: A file-like object (implementing standard IO interface). """ self._collect_file(path) return self.cached.open(path) def _collect_file(self, path): """Save file from client to VFS. Args: path: A path to the file to collect. Returns: Nothing. """ args = flows_pb2.GetFileArgs() args.pathspec.path = path args.pathspec.pathtype = self._path_type try: gf = self._client.CreateFlow(name='GetFile', args=args) except api_errors.AccessForbiddenError as e: raise errors.ApprovalMissingError(self.id, e) _timeout.await_flow(gf)
py
7dfcd65f118036ea84c041693ff760c1ed9fa430
# coding: utf-8 n, x = [int(i) for i in input().split()] current = 1 ans = 0 for i in range(n): l, r = [int(i) for i in input().split()] ans += (l-current)%x + (r-l+1) current = r+1 print(ans)
py
7dfcd6c1a03869cdcaa53ffcdccf31c54502b590
# -*- coding: utf-8 -*- """ Created on Wed Dec 11 11:10:55 2019 Turns data (in JSON format) into a pandas DataFrame. This allows for easy reading, plotting, and writing of results. This script takes either the single node or multinode results and turns the results into a pandas DataFrame. A pandas DataFrame is a table of values. It can find some statistics such as the mean or max of specific values (similar to Excel Spreadsheets). You can plot the data, read it in, or write out the results themselves or any changes that you have done. The functions below perform behind-the-scenes data cleaning to prepare the data to be used elsewhere (i.e. creating analysis reports) @author: barn553 """ import numpy as np import json import pandas as pd from functools import reduce import sys import logging # Setting up logger logger = logging.getLogger(__name__) # Creating benchmarks dataframe. def make_dataframe1(json_results): """This function creates a meta data frame to be used for post-processing the single node benchmark Results. Args: json_file (file): json file to be used for creating a dataframe Returns: meta_df: a data frame of all benckmark information """ # TDH (2019-12-23): Doing some datatype checking to figure out if we were # passed in a json dictionary (in which case we really need to do little # else) or something else. I assume "something else" is a path as a string # to a JSON file that contains the results. logging.info('cheacking what "type" json_results is') if isinstance(json_results, dict): logging.info('json_results is a dictionary') dct = json_results else: logging.info('json_results is not a dictionary; changing it to one') with open(json_results, 'r') as f: dct = json.load(f) # Getting the benchmarks columns and creating a data frame. logging.info('concatenating all the benchmark results data') lists1 = [] columns1 = [ 'cpu_time', 'core_type', 'filter_location', 'iterations', 'name', 'real_time', 'repetition_index', 'repetitions', 'run_name', 'run_type', 'threads', 'time_unit', 'federate_count', 'interface_count', 'EvCount', 'message_count', 'message_size' ] for f, f_dict in dct.items(): for i, b_dict in enumerate(f_dict['benchmarks']): c_list1 = [] for c in columns1: # If any of the benchmark dictionaries don't have a # column in our columns list, then set the value to np.nan. v = b_dict.get(c, np.nan) # Append to the list of np.nans. c_list1.append(v) # Append to lists with our list of np.nans, and columns with # values that belong to our columns list; in other words, if # there IS a value in 'federate_count', append that to lists, # along with c_list. lists1.append(np.concatenate([[f, i], c_list1])) bmk_df = pd.DataFrame( lists1, columns=np.concatenate([['identifier_id', 'benchmark_id'], columns1])) # Getting the cache data and creating a data frame. logging.info('concatenating all the cache data') lists2 = [] columns2 = ['type', 'level', 'size', 'num_sharing'] for f, f_dict in dct.items(): for i, b_dict in enumerate(f_dict['caches']): # If any of the caches dictionaries don't have a column in # our columns list, then set the value to np.nan c_list2 = [] for c in columns2: # Append to the list of np.nans. v = b_dict.get(c, np.nan) c_list2.append(v) # Append to lists with our list of np.nans, and columns with # values that belong to our columns list; in other words, # if there IS a value in 'type', append that to lists, along # with c_list. lists2.append(np.concatenate([[f, i], c_list2])) cache_df = pd.DataFrame( lists2, columns=np.concatenate([['identifier_id', 'cache_id'], columns2])) # Getting the general benchmark info and creating a data frame. logging.info('concatenating all the meta-data') lists3 = [] columns3 = [ 'filename', 'zmq_version_string', 'benchmark', 'benchmark_type', 'helics_version_string', 'helics_version', 'zmq_version', 'path', 'compiler_info_string', 'generator', 'system', 'system_version', 'platform', 'cxx_compiler', 'cxx_compiler_version', 'load_avg', 'host_processor', 'host_processor_string', 'date', 'host_name', 'executable', 'num_cpus', 'mhz_per_cpu', 'cpu_scaling_enabled', 'library_build_type', 'run_id', 'build_flags_string' ] for f, f_dict in dct.items(): c_list3 = [] for c in columns3: # If any of the identifier dictionaries don't have a column # in our columns list, then set the value to np.nan. v = f_dict.get(c, np.nan) # Append to the list of np.nans. c_list3.append(v) # Append to lists with our list of np.nans, and columns with # values that belong to our columns list; in other words, # if there IS a value in 'date', append that to lists, along # with c_list. lists3.append(np.concatenate([[f, i], c_list3])) info_df = pd.DataFrame( lists3, columns=np.concatenate([['identifier_id', 'info_id'], columns3])) # Concatenating all three data frames into one meta data frame # and sending to csv. logging.info('condensing benchmark, cache, and meta data to one dataframe') meta_bmk_df = reduce(lambda x, y: pd.merge( x, y, on='identifier_id', how='outer'), [info_df, cache_df, bmk_df]) # Converting 'real_time' from nanoseconds or milliseconds to seconds. logging.info('changing values to the correct units or format') df1 = meta_bmk_df[meta_bmk_df.time_unit == 'ns'] df2 = meta_bmk_df[meta_bmk_df.time_unit == 'ms'] df3 = meta_bmk_df[meta_bmk_df.time_unit == 's'] df1.real_time = df1.real_time.apply(lambda x: float(x)*10**(-9)) df1.cpu_time = df1.cpu_time.apply(lambda x: float(x)*10**(-9)) df2.real_time = df2.real_time.apply(lambda x: float(x)*10**(-3)) df2.cpu_time = df2.cpu_time.apply(lambda x: float(x)*10**(-3)) df3.real_time = df3.real_time.apply(lambda x: float(x)*1) df3.cpu_time = df3.cpu_time.apply(lambda x: float(x)*1) meta_bmk_df = pd.concat([df1, df2, df3], axis=0, ignore_index=True) # Making sure results have the correct units and are the correct # data type meta_bmk_df = meta_bmk_df.replace({'time_unit': {'ns': 's', 'ms': 's'}}).reset_index() meta_bmk_df['date'] = pd.to_datetime(meta_bmk_df.date) meta_bmk_df['date'] = meta_bmk_df['date'].astype(str) meta_bmk_df['federate_count'] = meta_bmk_df['federate_count'].astype(float) meta_bmk_df['interface_count'] = meta_bmk_df[ 'interface_count'].astype(float) meta_bmk_df['EvCount'] = meta_bmk_df['EvCount'].astype(float) meta_bmk_df['message_size'] = meta_bmk_df['message_size'].astype(float) meta_bmk_df['message_count'] = meta_bmk_df['message_count'].astype(float) logging.info('successfully changed single node data into a dataframe.') return meta_bmk_df def make_dataframe2(json_results): """This function creates a meta data frame to be used for post-processing the multinode benchmark Results. Args: json_file (file): json file to be used for creating a dataframe Returns: meta_df: a data frame of all benckmark information """ logging.info('checking if json_results is a dictionary') if isinstance(json_results, dict): logging.info('json_results is a dictionary') dct = json_results else: logging.info('json_results is not a dictionary; changing it to one') with open(json_results, 'r') as f: dct = json.load(f) # Getting the general benchmark info and creating a data frame. logging.info('concatenating the meta and benchmark data') lists = [] columns = [ 'filename', 'zmq_version_string', 'mhz_per_cpu', 'cluster', 'topology', 'number_of_leaves', 'num_nodes', 'federate_count', 'message_size', 'message_count', 'benchmark', 'benchmark_type', 'helics_version_string', 'helics_version', 'zmq_version', 'path', 'compiler_info_string', 'generator', 'system', 'system_version', 'platform', 'core_type', 'cxx_compiler', 'cxx_compiler_version', 'build_flags_string', 'EvCount', 'host_processor_string', 'date', 'run_id', 'elapsed_time', 'time_unit', 'host_processor', 'feds_per_node' ] for f, f_dict in dct.items(): for d, d_dict in f_dict.items(): c_list = [] for c in columns: # If any of the identifier dictionaries don't have a # column in our columns list, then set the value to np.nan. v = d_dict.get(c, np.nan) # Append to the list of np.nans. c_list.append(v) # Append to lists with our list of np.nans, and columns # with values that belong to our columns list; in other words, # if there IS a value in 'date', append that to lists, along # with c_list. lists.append(np.concatenate([[f], c_list])) info_df = pd.DataFrame( lists, columns=np.concatenate([['identifier_id'], columns])) # Concatenating all three data frames into one meta data frame # and sending to csv. logging.info('converting data into a data frame') meta_bmk_df = reduce(lambda x, y: pd.merge( x, y, on='identifier_id', how='outer'), [info_df]) # Converting 'elapsed_time' from nanoseconds to seconds. logging.info('converting values to the correct units or format') meta_bmk_df['elapsed_time'] = meta_bmk_df['elapsed_time'].apply( lambda x: float(x)*10**(-9)) meta_bmk_df = meta_bmk_df.reset_index() meta_bmk_df['date'] = pd.to_datetime(meta_bmk_df.date.astype(str)) meta_bmk_df['date'] = meta_bmk_df['date'].astype(str) meta_bmk_df = meta_bmk_df.replace('nan', np.nan) meta_bmk_df = meta_bmk_df.replace( {'time_unit': {'ns': 's', 'nan': 's'}}) meta_bmk_df['EvCount'] = meta_bmk_df['EvCount'].astype(float) meta_bmk_df['federate_count'] = meta_bmk_df['federate_count'].astype( float) meta_bmk_df['message_size'] = meta_bmk_df['message_size'].astype(float) meta_bmk_df['message_count'] = meta_bmk_df['message_count'].astype(float) meta_bmk_df['elapsed_time'] = meta_bmk_df['elapsed_time'].astype(float) fill_cols = [ 'number_of_leaves', 'federate_count', 'num_nodes', 'feds_per_node', 'mhz_per_cpu'] meta_bmk_df[fill_cols] = meta_bmk_df[fill_cols].fillna( method='bfill') meta_bmk_df = meta_bmk_df.set_index('date') meta_bmk_df[ (meta_bmk_df.index >= '2020-06-15 00:00:00') & (meta_bmk_df.index < '2020-06-16 00:00:00')]['mhz_per_cpu'] = 1500.0 meta_bmk_df = meta_bmk_df.reset_index() my_list = [] # Creating a map from "summary.txt" files to the other # multinode benchmark results files. logging.info('filling in missing values') for g, df in meta_bmk_df.groupby(['path', 'benchmark', 'core_type']): a_df = df a_df = a_df.set_index('filename') try: values = { 'message_size': float( a_df.loc['summary.txt', 'message_size']), 'message_count': float( a_df.loc['summary.txt', 'message_count']), 'cluster': str(a_df.loc['summary.txt', 'cluster']), 'topology': str(a_df.loc['summary.txt', 'topology']), 'helics_version_string': a_df.loc['summary.txt', 'helics_version_string'], 'helics_version': a_df.loc['summary.txt', 'helics_version'], 'benchmark': a_df.loc['summary.txt', 'benchmark'], 'date': a_df.loc['summary.txt', 'date'], 'zmq_version_string': a_df.loc['summary.txt', 'zmq_version_string'], 'zmq_version': a_df.loc['summary.txt', 'zmq_version'], 'compiler_info_string': a_df.loc['summary.txt', 'compiler_info_string'], 'cxx_compiler': a_df.loc['summary.txt', 'cxx_compiler'], 'cxx_compiler_version': a_df.loc['summary.txt', 'cxx_compiler_version'], 'system': a_df.loc['summary.txt', 'system'], 'system_version': a_df.loc['summary.txt', 'system_version'], 'generator': a_df.loc['summary.txt', 'generator'], 'platform': a_df.loc['summary.txt', 'platform'], 'build_flags_string': a_df.loc['summary.txt', 'build_flags_string'], 'host_processor_string': a_df.loc['summary.txt', 'host_processor_string'], 'host_processor': a_df.loc['summary.txt', 'host_processor'], 'core_type': a_df.loc['summary.txt', 'core_type'], 'run_id': a_df.loc['summary.txt', 'run_id']} a_df = a_df.fillna(value=values) except Exception as e: print('{} does not exist for {} benchmark'.format( e, a_df.benchmark.values[0])) a_df = a_df.reset_index() my_list.append(a_df) main_df = pd.concat(my_list, axis=0, ignore_index=True) logging.info('successfully turn multinode data into a dataframe') return main_df # Testing that my function works if __name__ == '__main__': fileHandle = logging.FileHandler("make_dataframe.log", mode='w') fileHandle.setLevel(logging.DEBUG) streamHandle = logging.StreamHandler(sys.stdout) streamHandle.setLevel(logging.ERROR) logging.basicConfig(level=logging.INFO, handlers=[fileHandle, streamHandle]) # import os # json_file1 = 'bm_results.json' # final_meta_bmk_df = make_dataframe1(json_file1) # final_meta_bmk_df.to_csv(r'{}/bmk_df_test.csv'.format( # os.path.join(os.getcwd()))) # json_file2 = 'multinode_bm_results.json' # multi_bmk_df = make_dataframe2(json_file2) # multi_bmk_df.to_csv(r'{}/multi_bmk_df.csv'.format( # os.path.join(os.getcwd()))) # json_file3 = 'multinode_bm_results_test.json' # multi_bmk_df = make_dataframe2(json_file3) # print('COLUMNS:', multi_bmk_df.columns.unique()) # print(final_meta_bmk_df.columns) # print(final_meta_bmk_df.head()) # print(final_meta_bmk_df.shape)
py
7dfcd6cb631dd4fb29319713a2c92c52dc412cd9
# -*- coding: utf-8 -*- ''' Manage users with the useradd command ''' # Import python libs try: import grp import pwd except ImportError: pass import logging from copy import deepcopy # Import salt libs import salt.utils from salt._compat import string_types log = logging.getLogger(__name__) def __virtual__(): ''' Set the user module if the kernel is SunOS ''' return 'user' if __grains__['kernel'] == 'SunOS' else False def _get_gecos(name): ''' Retrieve GECOS field info and return it in dictionary form ''' gecos_field = pwd.getpwnam(name).pw_gecos.split(',', 3) if not gecos_field: return {} else: # Assign empty strings for any unspecified trailing GECOS fields while len(gecos_field) < 4: gecos_field.append('') return {'fullname': str(gecos_field[0]), 'roomnumber': str(gecos_field[1]), 'workphone': str(gecos_field[2]), 'homephone': str(gecos_field[3])} def _build_gecos(gecos_dict): ''' Accepts a dictionary entry containing GECOS field names and their values, and returns a full GECOS comment string, to be used with usermod. ''' return '{0},{1},{2},{3}'.format(gecos_dict.get('fullname', ''), gecos_dict.get('roomnumber', ''), gecos_dict.get('workphone', ''), gecos_dict.get('homephone', '')) def add(name, uid=None, gid=None, groups=None, home=None, shell=None, unique=True, fullname='', roomnumber='', workphone='', homephone='', createhome=True, **kwargs): ''' Add a user to the minion CLI Example: .. code-block:: bash salt '*' user.add name <uid> <gid> <groups> <home> <shell> ''' if salt.utils.is_true(kwargs.pop('system', False)): log.warning('solaris_user module does not support the \'system\' ' 'argument') if kwargs: log.warning('Invalid kwargs passed to user.add') if isinstance(groups, string_types): groups = groups.split(',') cmd = 'useradd ' if shell: cmd += '-s {0} '.format(shell) if uid: cmd += '-u {0} '.format(uid) if gid: cmd += '-g {0} '.format(gid) if groups: cmd += '-G {0} '.format(','.join(groups)) if home is None: if createhome: cmd += '-m ' else: if createhome: cmd += '-m -d {0} '.format(home) else: cmd += '-d {0} '.format(home) if not unique: cmd += '-o ' cmd += name ret = __salt__['cmd.retcode'](cmd) if ret != 0: return False else: # At this point, the user was successfully created, so return true # regardless of the outcome of the below functions. If there is a # problem wth changing any of the user's info below, it will be raised # in a future highstate call. If anyone has a better idea on how to do # this, feel free to change it, but I didn't think it was a good idea # to return False when the user was successfully created since A) the # user does exist, and B) running useradd again would result in a # nonzero exit status and be interpreted as a False result. if fullname: chfullname(name, fullname) if roomnumber: chroomnumber(name, roomnumber) if workphone: chworkphone(name, workphone) if homephone: chhomephone(name, homephone) return True def delete(name, remove=False, force=False): ''' Remove a user from the minion CLI Example: .. code-block:: bash salt '*' user.delete name remove=True force=True ''' if salt.utils.is_true(force): log.error('userdel does not support force-deleting user while ' 'user is logged in') cmd = 'userdel ' if remove: cmd += '-r ' cmd += name ret = __salt__['cmd.run_all'](cmd) return not ret['retcode'] def getent(): ''' Return the list of all info for all users CLI Example: .. code-block:: bash salt '*' user.getent ''' if 'user.getent' in __context__: return __context__['user.getent'] ret = [] for data in pwd.getpwall(): ret.append(info(data.pw_name)) __context__['user.getent'] = ret return ret def chuid(name, uid): ''' Change the uid for a named user CLI Example: .. code-block:: bash salt '*' user.chuid foo 4376 ''' pre_info = info(name) if uid == pre_info['uid']: return True cmd = 'usermod -u {0} {1}'.format(uid, name) __salt__['cmd.run'](cmd) post_info = info(name) if post_info['uid'] != pre_info['uid']: return post_info['uid'] == uid return False def chgid(name, gid): ''' Change the default group of the user CLI Example: .. code-block:: bash salt '*' user.chgid foo 4376 ''' pre_info = info(name) if gid == pre_info['gid']: return True cmd = 'usermod -g {0} {1}'.format(gid, name) __salt__['cmd.run'](cmd) post_info = info(name) if post_info['gid'] != pre_info['gid']: return post_info['gid'] == gid return False def chshell(name, shell): ''' Change the default shell of the user CLI Example: .. code-block:: bash salt '*' user.chshell foo /bin/zsh ''' pre_info = info(name) if shell == pre_info['shell']: return True cmd = 'usermod -s {0} {1}'.format(shell, name) __salt__['cmd.run'](cmd) post_info = info(name) if post_info['shell'] != pre_info['shell']: return post_info['shell'] == shell return False def chhome(name, home, persist=False): ''' Change the home directory of the user, pass true for persist to copy files to the new home dir CLI Example: .. code-block:: bash salt '*' user.chhome foo /home/users/foo True ''' pre_info = info(name) if home == pre_info['home']: return True cmd = 'usermod -d {0} '.format(home) if persist: cmd += ' -m ' cmd += name __salt__['cmd.run'](cmd) post_info = info(name) if post_info['home'] != pre_info['home']: return post_info['home'] == home return False def chgroups(name, groups, append=False): ''' Change the groups this user belongs to, add append to append the specified groups CLI Example: .. code-block:: bash salt '*' user.chgroups foo wheel,root True ''' if isinstance(groups, string_types): groups = groups.split(',') ugrps = set(list_groups(name)) if ugrps == set(groups): return True if append: groups += ugrps cmd = 'usermod -G {0} {1} '.format(','.join(groups), name) return not __salt__['cmd.retcode'](cmd) def chfullname(name, fullname): ''' Change the user's Full Name CLI Example: .. code-block:: bash salt '*' user.chfullname foo "Foo Bar" ''' fullname = str(fullname) pre_info = _get_gecos(name) if not pre_info: return False if fullname == pre_info['fullname']: return True gecos_field = deepcopy(pre_info) gecos_field['fullname'] = fullname cmd = 'usermod -c "{0}" {1}'.format(_build_gecos(gecos_field), name) __salt__['cmd.run'](cmd) post_info = info(name) if post_info['fullname'] != pre_info['fullname']: return post_info['fullname'] == fullname return False def chroomnumber(name, roomnumber): ''' Change the user's Room Number CLI Example: .. code-block:: bash salt '*' user.chroomnumber foo 123 ''' roomnumber = str(roomnumber) pre_info = _get_gecos(name) if not pre_info: return False if roomnumber == pre_info['roomnumber']: return True gecos_field = deepcopy(pre_info) gecos_field['roomnumber'] = roomnumber cmd = 'usermod -c "{0}" {1}'.format(_build_gecos(gecos_field), name) __salt__['cmd.run'](cmd) post_info = info(name) if post_info['roomnumber'] != pre_info['roomnumber']: return post_info['roomnumber'] == roomnumber return False def chworkphone(name, workphone): ''' Change the user's Work Phone CLI Example: .. code-block:: bash salt '*' user.chworkphone foo "7735550123" ''' workphone = str(workphone) pre_info = _get_gecos(name) if not pre_info: return False if workphone == pre_info['workphone']: return True gecos_field = deepcopy(pre_info) gecos_field['workphone'] = workphone cmd = 'usermod -c "{0}" {1}'.format(_build_gecos(gecos_field), name) __salt__['cmd.run'](cmd) post_info = info(name) if post_info['workphone'] != pre_info['workphone']: return post_info['workphone'] == workphone return False def chhomephone(name, homephone): ''' Change the user's Home Phone CLI Example: .. code-block:: bash salt '*' user.chhomephone foo "7735551234" ''' homephone = str(homephone) pre_info = _get_gecos(name) if not pre_info: return False if homephone == pre_info['homephone']: return True gecos_field = deepcopy(pre_info) gecos_field['homephone'] = homephone cmd = 'usermod -c "{0}" {1}'.format(_build_gecos(gecos_field), name) __salt__['cmd.run'](cmd) post_info = info(name) if post_info['homephone'] != pre_info['homephone']: return post_info['homephone'] == homephone return False def info(name): ''' Return user information CLI Example: .. code-block:: bash salt '*' user.info root ''' ret = {} try: data = pwd.getpwnam(name) ret['gid'] = data.pw_gid ret['groups'] = list_groups(name) ret['home'] = data.pw_dir ret['name'] = data.pw_name ret['passwd'] = data.pw_passwd ret['shell'] = data.pw_shell ret['uid'] = data.pw_uid # Put GECOS info into a list gecos_field = data.pw_gecos.split(',', 3) # Assign empty strings for any unspecified GECOS fields while len(gecos_field) < 4: gecos_field.append('') ret['fullname'] = gecos_field[0] ret['roomnumber'] = gecos_field[1] ret['workphone'] = gecos_field[2] ret['homephone'] = gecos_field[3] except KeyError: return {} return ret def list_groups(name): ''' Return a list of groups the named user belongs to CLI Example: .. code-block:: bash salt '*' user.list_groups foo ''' ugrp = set() # Add the primary user's group ugrp.add(grp.getgrgid(pwd.getpwnam(name).pw_gid).gr_name) # If we already grabbed the group list, it's overkill to grab it again if 'user.getgrall' in __context__: groups = __context__['user.getgrall'] else: groups = grp.getgrall() __context__['user.getgrall'] = groups # Now, all other groups the user belongs to for group in groups: if name in group.gr_mem: ugrp.add(group.gr_name) return sorted(list(ugrp))
py
7dfcd6d837099ecaea28fd3c952589465a6b269c
#!/usr/bin/env python """Metric implementations to collect statistics.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import abc from grr_response_core.lib.rdfvalues import stats as rdf_stats from grr_response_core.stats import stats_collector_instance from grr_response_core.stats import stats_utils class AbstractMetric(metaclass=abc.ABCMeta): """An abstract metric with a name, fields, and values. Refer to default_stats_collector._Metric and DefaultStatsCollector to see how StatsCollector handles the field definitions and values. Attributes: name: string containing the global metric name. """ def __init__(self, metadata): """Initializes a new metric and registers it with the StatsCollector.""" self.name = metadata.varname stats_collector_instance.RegisterMetric(metadata) def GetValue(self, fields=None): """Returns the value of a given metric for given field values.""" return stats_collector_instance.Get().GetMetricValue( self.name, fields=fields) def GetFields(self): """Returns all field values for the given metric.""" return stats_collector_instance.Get().GetMetricFields(self.name) class Counter(AbstractMetric): """A Counter metric that can be incremented. Refer to default_stats_collector._CounterMetric and DefaultStatsCollector to see how StatsCollector handles the field definitions and values. """ def __init__(self, name, fields=(), docstring=None, units=None): """Initializes a Counter metric and registers it with the StatsCollector.""" super().__init__( rdf_stats.MetricMetadata( varname=name, metric_type=rdf_stats.MetricMetadata.MetricType.COUNTER, value_type=rdf_stats.MetricMetadata.ValueType.INT, fields_defs=stats_utils.FieldDefinitionProtosFromTuples(fields), docstring=docstring, units=units)) def Increment(self, delta=1, fields=None): """Increments a counter metric by a given delta.""" stats_collector_instance.Get().IncrementCounter( self.name, delta, fields=fields) def Counted(self, fields=None): """Returns a decorator that counts function calls.""" return stats_utils.Counted(self, fields=fields) def SuccessesCounted(self, fields=None): """Returns a decorator that counts calls that don't raise an exception.""" return stats_utils.SuccessesCounted(self, fields=fields) def ErrorsCounted(self, fields=None): """Returns a decorator that counts calls that raise an exception.""" return stats_utils.ErrorsCounted(self, fields=fields) class Gauge(AbstractMetric): """A Gauge metric that can be set to a value. Refer to default_stats_collector._GaugeMetric and DefaultStatsCollector to see how StatsCollector handles the field definitions and values. """ def __init__(self, name, value_type, fields=(), docstring=None, units=None): """Initializes a Gauge metric and registers it with the StatsCollector.""" super().__init__( rdf_stats.MetricMetadata( varname=name, metric_type=rdf_stats.MetricMetadata.MetricType.GAUGE, value_type=stats_utils.MetricValueTypeFromPythonType(value_type), fields_defs=stats_utils.FieldDefinitionProtosFromTuples(fields), docstring=docstring, units=units)) def SetValue(self, value, fields=None): """Sets value of a given gauge metric.""" stats_collector_instance.Get().SetGaugeValue( self.name, value, fields=fields) def SetCallback(self, callback, fields=None): """Attaches a callback to the given gauge metric.""" stats_collector_instance.Get().SetGaugeCallback( self.name, callback, fields=fields) class Event(AbstractMetric): """An Event metric that records timings of events. Refer to default_stats_collector._EventMetric and DefaultStatsCollector to see how StatsCollector handles the field definitions and values. """ def __init__(self, name, bins=(), fields=(), docstring=None, units=None): """Initializes an Event metric and registers it with the StatsCollector.""" super().__init__( rdf_stats.MetricMetadata( varname=name, bins=bins, metric_type=rdf_stats.MetricMetadata.MetricType.EVENT, value_type=rdf_stats.MetricMetadata.ValueType.DISTRIBUTION, fields_defs=stats_utils.FieldDefinitionProtosFromTuples(fields), docstring=docstring, units=units)) def RecordEvent(self, value, fields=None): """Records value corresponding to the given event metric.""" stats_collector_instance.Get().RecordEvent(self.name, value, fields=fields) def Timed(self, fields=None): """Returns a decorator that records timing metrics for function calls.""" return stats_utils.Timed(self, fields=fields)
py
7dfcd7ed471f9c89538f93a63e393d4c9930d8ff
# Copyright 2004-2018 Davide Alberani <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ This module provides the Movie class, used to store information about a given movie. """ from __future__ import absolute_import, division, print_function, unicode_literals from copy import deepcopy from imdb import linguistics from imdb.utils import _Container from imdb.utils import analyze_title, build_title, canonicalTitle, cmpMovies, flatten class Movie(_Container): """A Movie. Every information about a movie can be accessed as:: movieObject['information'] to get a list of the kind of information stored in a Movie object, use the keys() method; some useful aliases are defined (as "casting" for the "casting director" key); see the keys_alias dictionary. """ # The default sets of information retrieved. default_info = ('main', 'plot') # Aliases for some not-so-intuitive keys. keys_alias = { 'tv schedule': 'airing', 'user rating': 'rating', 'plot summary': 'plot', 'plot summaries': 'plot', 'directed by': 'director', 'created by': 'creator', 'writing credits': 'writer', 'produced by': 'producer', 'original music by': 'original music', 'non-original music by': 'non-original music', 'music': 'original music', 'cinematography by': 'cinematographer', 'cinematography': 'cinematographer', 'film editing by': 'editor', 'film editing': 'editor', 'editing': 'editor', 'actors': 'cast', 'actresses': 'cast', 'casting by': 'casting director', 'casting': 'casting director', 'art direction by': 'art direction', 'set decoration by': 'set decoration', 'costume design by': 'costume designer', 'costume design': 'costume designer', 'makeup department': 'make up', 'makeup': 'make up', 'make-up': 'make up', 'production management': 'production manager', 'production company': 'production companies', 'second unit director or assistant director': 'assistant director', 'second unit director': 'assistant director', 'sound department': 'sound crew', 'costume and wardrobe department': 'costume department', 'special effects by': 'special effects', 'visual effects by': 'visual effects', 'special effects company': 'special effects companies', 'stunts': 'stunt performer', 'other crew': 'miscellaneous crew', 'misc crew': 'miscellaneous crew', 'miscellaneouscrew': 'miscellaneous crew', 'crewmembers': 'miscellaneous crew', 'crew members': 'miscellaneous crew', 'other companies': 'miscellaneous companies', 'misc companies': 'miscellaneous companies', 'miscellaneous company': 'miscellaneous companies', 'misc company': 'miscellaneous companies', 'other company': 'miscellaneous companies', 'aka': 'akas', 'also known as': 'akas', 'country': 'countries', 'production country': 'countries', 'production countries': 'countries', 'genre': 'genres', 'runtime': 'runtimes', 'lang': 'languages', 'color': 'color info', 'cover': 'cover url', 'full-size cover': 'full-size cover url', 'seasons': 'number of seasons', 'language': 'languages', 'certificate': 'certificates', 'certifications': 'certificates', 'certification': 'certificates', 'miscellaneous links': 'misc links', 'miscellaneous': 'misc links', 'soundclips': 'sound clips', 'videoclips': 'video clips', 'photographs': 'photo sites', 'distributor': 'distributors', 'distribution': 'distributors', 'distribution companies': 'distributors', 'distribution company': 'distributors', 'guest': 'guests', 'guest appearances': 'guests', 'tv guests': 'guests', 'notable tv guest appearances': 'guests', 'episodes cast': 'guests', 'episodes number': 'number of episodes', 'amazon review': 'amazon reviews', 'merchandising': 'merchandising links', 'merchandise': 'merchandising links', 'sales': 'merchandising links', 'faq': 'faqs', 'parental guide': 'parents guide', 'frequently asked questions': 'faqs' } keys_tomodify_list = ( 'plot', 'trivia', 'alternate versions', 'goofs', 'quotes', 'dvd', 'laserdisc', 'news', 'soundtrack', 'crazy credits', 'business', 'supplements', 'video review', 'faqs' ) _image_key = 'cover url' cmpFunct = cmpMovies def _init(self, **kwds): """Initialize a Movie object. *movieID* -- the unique identifier for the movie. *title* -- the title of the Movie, if not in the data dictionary. *myTitle* -- your personal title for the movie. *myID* -- your personal identifier for the movie. *data* -- a dictionary used to initialize the object. *currentRole* -- a Character instance representing the current role or duty of a person in this movie, or a Person object representing the actor/actress who played a given character in a Movie. If a string is passed, an object is automatically build. *roleID* -- if available, the characterID/personID of the currentRole object. *roleIsPerson* -- when False (default) the currentRole is assumed to be a Character object, otherwise a Person. *notes* -- notes for the person referred in the currentRole attribute; e.g.: '(voice)'. *accessSystem* -- a string representing the data access system used. *titlesRefs* -- a dictionary with references to movies. *namesRefs* -- a dictionary with references to persons. *charactersRefs* -- a dictionary with references to characters. *modFunct* -- function called returning text fields. """ title = kwds.get('title') if title and 'title' not in self.data: self.set_title(title) self.movieID = kwds.get('movieID', None) self.myTitle = kwds.get('myTitle', '') def _reset(self): """Reset the Movie object.""" self.movieID = None self.myTitle = '' def set_title(self, title): """Set the title of the movie.""" d_title = analyze_title(title) self.data.update(d_title) def _additional_keys(self): """Valid keys to append to the data.keys() list.""" addkeys = [] if 'title' in self.data: addkeys += ['canonical title', 'long imdb title', 'long imdb canonical title', 'smart canonical title', 'smart long imdb canonical title'] if 'episode of' in self.data: addkeys += ['long imdb episode title', 'series title', 'canonical series title', 'episode title', 'canonical episode title', 'smart canonical series title', 'smart canonical episode title'] if 'cover url' in self.data: addkeys += ['full-size cover url'] return addkeys def guessLanguage(self): """Guess the language of the title of this movie; returns None if there are no hints.""" lang = self.get('languages') if lang: lang = lang[0] else: country = self.get('countries') if country: lang = linguistics.COUNTRY_LANG.get(country[0]) return lang def smartCanonicalTitle(self, title=None, lang=None): """Return the canonical title, guessing its language. The title can be forces with the 'title' argument (internally used) and the language can be forced with the 'lang' argument, otherwise it's auto-detected.""" if title is None: title = self.data.get('title', '') if lang is None: lang = self.guessLanguage() return canonicalTitle(title, lang=lang) def _getitem(self, key): """Handle special keys.""" if 'episode of' in self.data: if key == 'long imdb episode title': return build_title(self.data) elif key == 'series title': return self.data['episode of']['title'] elif key == 'canonical series title': ser_title = self.data['episode of']['title'] return canonicalTitle(ser_title) elif key == 'smart canonical series title': ser_title = self.data['episode of']['title'] return self.smartCanonicalTitle(ser_title) elif key == 'episode title': return self.data.get('title', '') elif key == 'canonical episode title': return canonicalTitle(self.data.get('title', '')) elif key == 'smart canonical episode title': return self.smartCanonicalTitle(self.data.get('title', '')) if 'title' in self.data: if key == 'title': return self.data['title'] elif key == 'long imdb title': return build_title(self.data) elif key == 'canonical title': return canonicalTitle(self.data['title']) elif key == 'smart canonical title': return self.smartCanonicalTitle(self.data['title']) elif key == 'long imdb canonical title': return build_title(self.data, canonical=True) elif key == 'smart long imdb canonical title': return build_title(self.data, canonical=True, lang=self.guessLanguage()) if key == 'full-size cover url': return self.get_fullsizeURL() return None def getID(self): """Return the movieID.""" return self.movieID def __bool__(self): """The Movie is "false" if the self.data does not contain a title.""" # XXX: check the title and the movieID? return 'title' in self.data def isSameTitle(self, other): """Return true if this and the compared object have the same long imdb title and/or movieID. """ # XXX: obsolete? if not isinstance(other, self.__class__): return False if 'title' in self.data and 'title' in other.data and \ build_title(self.data, canonical=False) == build_title(other.data, canonical=False): return True if self.accessSystem == other.accessSystem and \ self.movieID is not None and self.movieID == other.movieID: return True return False isSameMovie = isSameTitle # XXX: just for backward compatiblity. def __contains__(self, item): """Return true if the given Person object is listed in this Movie, or if the the given Character is represented in this Movie.""" from .Person import Person from .Character import Character from .Company import Company if isinstance(item, Person): for p in flatten(self.data, yieldDictKeys=True, scalar=Person, toDescend=(list, dict, tuple, Movie)): if item.isSame(p): return True elif isinstance(item, Character): for p in flatten(self.data, yieldDictKeys=True, scalar=Person, toDescend=(list, dict, tuple, Movie)): if item.isSame(p.currentRole): return True elif isinstance(item, Company): for c in flatten(self.data, yieldDictKeys=True, scalar=Company, toDescend=(list, dict, tuple, Movie)): if item.isSame(c): return True elif isinstance(item, str): return item in self.data return False def __deepcopy__(self, memo): """Return a deep copy of a Movie instance.""" m = Movie(title='', movieID=self.movieID, myTitle=self.myTitle, myID=self.myID, data=deepcopy(self.data, memo), currentRole=deepcopy(self.currentRole, memo), roleIsPerson=self._roleIsPerson, notes=self.notes, accessSystem=self.accessSystem, titlesRefs=deepcopy(self.titlesRefs, memo), namesRefs=deepcopy(self.namesRefs, memo), charactersRefs=deepcopy(self.charactersRefs, memo)) m.current_info = list(self.current_info) m.set_mod_funct(self.modFunct) return m def __repr__(self): """String representation of a Movie object.""" # XXX: add also currentRole and notes, if present? if 'long imdb episode title' in self: title = self.get('long imdb episode title') else: title = self.get('long imdb title') return '<Movie id:%s[%s] title:_%s_>' % (self.movieID, self.accessSystem, title) def __str__(self): """Simply print the short title.""" return self.get('title', '') def summary(self): """Return a string with a pretty-printed summary for the movie.""" if not self: return '' def _nameAndRole(personList, joiner=', '): """Build a pretty string with name and role.""" nl = [] for person in personList: n = person.get('name', '') if person.currentRole: n += ' (%s)' % person.currentRole nl.append(n) return joiner.join(nl) s = 'Movie\n=====\nTitle: %s\n' % self.get('long imdb canonical title', '') genres = self.get('genres') if genres: s += 'Genres: %s.\n' % ', '.join(genres) director = self.get('director') if director: s += 'Director: %s.\n' % _nameAndRole(director) writer = self.get('writer') if writer: s += 'Writer: %s.\n' % _nameAndRole(writer) cast = self.get('cast') if cast: cast = cast[:5] s += 'Cast: %s.\n' % _nameAndRole(cast) runtime = self.get('runtimes') if runtime: s += 'Runtime: %s.\n' % ', '.join(runtime) countries = self.get('countries') if countries: s += 'Country: %s.\n' % ', '.join(countries) lang = self.get('languages') if lang: s += 'Language: %s.\n' % ', '.join(lang) rating = self.get('rating') if rating: s += 'Rating: %s' % rating nr_votes = self.get('votes') if nr_votes: s += ' (%s votes)' % nr_votes s += '.\n' plot = self.get('plot') if not plot: plot = self.get('plot summary') if plot: plot = [plot] if plot: plot = plot[0] i = plot.find('::') if i != -1: plot = plot[:i] s += 'Plot: %s' % plot return s