ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b40484e52ef0eef1b47062c01c759518c8c541c0
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The CloudComputingChain Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mining RPCs - getmininginfo - getblocktemplate proposal mode - submitblock""" import copy from binascii import b2a_hex from decimal import Decimal from test_framework.blocktools import create_coinbase from test_framework.mininode import CBlock from test_framework.test_framework import CloudComputingChainTestFramework from test_framework.util import assert_equal, assert_raises_rpc_error def b2x(b): return b2a_hex(b).decode('ascii') def assert_template(node, block, expect, rehash=True): if rehash: block.hashMerkleRoot = block.calc_merkle_root() rsp = node.getblocktemplate({'data': b2x(block.serialize()), 'mode': 'proposal'}) assert_equal(rsp, expect) class MiningTest(CloudComputingChainTestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = False def run_test(self): node = self.nodes[0] self.log.info('getmininginfo') mining_info = node.getmininginfo() assert_equal(mining_info['blocks'], 200) assert_equal(mining_info['chain'], 'regtest') assert_equal(mining_info['currentblocktx'], 0) assert_equal(mining_info['currentblockweight'], 0) assert_equal(mining_info['difficulty'], Decimal('4.656542373906925E-10')) assert_equal(mining_info['networkhashps'], Decimal('0.003333333333333334')) assert_equal(mining_info['pooledtx'], 0) # Mine a block to leave initial block download node.generate(1) tmpl = node.getblocktemplate() self.log.info("getblocktemplate: Test capability advertised") assert 'proposal' in tmpl['capabilities'] assert 'coinbasetxn' not in tmpl coinbase_tx = create_coinbase(height=int(tmpl["height"]) + 1) # sequence numbers must not be max for nLockTime to have effect coinbase_tx.vin[0].nSequence = 2 ** 32 - 2 coinbase_tx.rehash() block = CBlock() block.nVersion = tmpl["version"] block.hashPrevBlock = int(tmpl["previousblockhash"], 16) block.nTime = tmpl["curtime"] block.nBits = int(tmpl["bits"], 16) block.nNonce = 0 block.vtx = [coinbase_tx] self.log.info("getblocktemplate: Test valid block") assert_template(node, block, None) self.log.info("submitblock: Test block decode failure") assert_raises_rpc_error(-22, "Block decode failed", node.submitblock, b2x(block.serialize()[:-15])) self.log.info("getblocktemplate: Test bad input hash for coinbase transaction") bad_block = copy.deepcopy(block) bad_block.vtx[0].vin[0].prevout.hash += 1 bad_block.vtx[0].rehash() assert_template(node, bad_block, 'bad-cb-missing') self.log.info("submitblock: Test invalid coinbase transaction") assert_raises_rpc_error(-22, "Block does not start with a coinbase", node.submitblock, b2x(bad_block.serialize())) self.log.info("getblocktemplate: Test truncated final transaction") assert_raises_rpc_error(-22, "Block decode failed", node.getblocktemplate, {'data': b2x(block.serialize()[:-1]), 'mode': 'proposal'}) self.log.info("getblocktemplate: Test duplicate transaction") bad_block = copy.deepcopy(block) bad_block.vtx.append(bad_block.vtx[0]) assert_template(node, bad_block, 'bad-txns-duplicate') self.log.info("getblocktemplate: Test invalid transaction") bad_block = copy.deepcopy(block) bad_tx = copy.deepcopy(bad_block.vtx[0]) bad_tx.vin[0].prevout.hash = 255 bad_tx.rehash() bad_block.vtx.append(bad_tx) assert_template(node, bad_block, 'bad-txns-inputs-missingorspent') self.log.info("getblocktemplate: Test nonfinal transaction") bad_block = copy.deepcopy(block) bad_block.vtx[0].nLockTime = 2 ** 32 - 1 bad_block.vtx[0].rehash() assert_template(node, bad_block, 'bad-txns-nonfinal') self.log.info("getblocktemplate: Test bad tx count") # The tx count is immediately after the block header TX_COUNT_OFFSET = 80 bad_block_sn = bytearray(block.serialize()) assert_equal(bad_block_sn[TX_COUNT_OFFSET], 1) bad_block_sn[TX_COUNT_OFFSET] += 1 assert_raises_rpc_error(-22, "Block decode failed", node.getblocktemplate, {'data': b2x(bad_block_sn), 'mode': 'proposal'}) self.log.info("getblocktemplate: Test bad bits") bad_block = copy.deepcopy(block) bad_block.nBits = 469762303 # impossible in the real world assert_template(node, bad_block, 'bad-diffbits') self.log.info("getblocktemplate: Test bad merkle root") bad_block = copy.deepcopy(block) bad_block.hashMerkleRoot += 1 assert_template(node, bad_block, 'bad-txnmrklroot', False) self.log.info("getblocktemplate: Test bad timestamps") bad_block = copy.deepcopy(block) bad_block.nTime = 2 ** 31 - 1 assert_template(node, bad_block, 'time-too-new') bad_block.nTime = 0 assert_template(node, bad_block, 'time-too-old') self.log.info("getblocktemplate: Test not best block") bad_block = copy.deepcopy(block) bad_block.hashPrevBlock = 123 assert_template(node, bad_block, 'inconclusive-not-best-prevblk') if __name__ == '__main__': MiningTest().main()
py
b4048595a52fa4f91b405d5437548ed12b913a93
# math2d_line.py import math from math2d_vector import Vector class Line(object): SIDE_NEITHER = 0 SIDE_FRONT = 1 SIDE_BACK = 2 # Unlike a ray, the normal points orthogonal (perpendicular) to the line, not parallel to it. # Unlike a line-segment, these have infinite length, like a ray. Rays are for hitting, while # these are the 2-dimensional analog of planes in 3D space that have front and back spaces. def __init__(self, center=None, normal=None): self.center = center if center is not None else Vector(0.0, 0.0) self.normal = normal if normal is not None else Vector(1.0, 0.0) def MakeForPoints(self, point_a, point_b): self.normal = (point_b - point_a).Normalized().RotatedCCW90() self.center = point_a.Copy() def SignedDistance(self, point): vector = point - self.center return self.normal.Dot(vector) def Distance(self, point): return math.fabs(self.SignedDistance(point)) def CalcSide(self, point, epsilon=1e-7): distance = self.SignedDistance(point) if math.fabs(distance) <= epsilon: return Line.SIDE_NEITHER if distance < 0.0: return Line.SIDE_BACK return Line.SIDE_FRONT
py
b4048935150c2bfe130d84166105cf9f3e96e7fb
# Copyright 2012 Nebula, Inc. # Copyright (c) 2012 X.commerce, a business unit of eBay Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging from django.conf import settings from django.core.urlresolvers import reverse from django import shortcuts from django.utils.http import urlencode from django.utils.translation import pgettext_lazy from django.utils.translation import string_concat # noqa from django.utils.translation import ugettext_lazy as _ from django.utils.translation import ungettext_lazy from horizon import exceptions from horizon import messages from horizon import tables from horizon.utils.functions import check_account_is_frozen from openstack_dashboard import api from openstack_dashboard.usage import quotas from openstack_dashboard.utils import filters LOG = logging.getLogger(__name__) POLICY_CHECK = getattr(settings, "POLICY_CHECK_FUNCTION", lambda p, r: True) class AllocateIP(tables.LinkAction): name = "allocate" verbose_name = _("Allocate IP To Project") classes = ("ajax-modal",) icon = "link" url = "horizon:network:floating_ips:allocate" def single(self, data_table, request, *args): return shortcuts.redirect('horizon:network:floating_ips:index') def allowed(self, request, fip=None): usages = quotas.tenant_quota_usages(request) if usages['floating_ips']['available'] <= 0: if "disabled" not in self.classes: self.classes = [c for c in self.classes] + ['disabled'] self.verbose_name = string_concat(self.verbose_name, ' ', _("(Quota exceeded)")) else: self.verbose_name = _("Allocate IP To Project") classes = [c for c in self.classes if c != "disabled"] self.classes = classes if api.base.is_service_enabled(request, "network"): policy = (("network", "create_floatingip"),) else: policy = (("compute", "compute_extension:floating_ips"), ("compute", "network:allocate_floating_ip"),) account_is_frozen = check_account_is_frozen(request) if account_is_frozen: if "disabled" not in self.classes: self.classes = [c for c in self.classes] + ['disabled'] else: if not (usages['floating_ips']['available'] <= 0): self.classes = [c for c in self.classes if c != "disabled"] return POLICY_CHECK(policy, request) class ReleaseIPs(tables.BatchAction): name = "release" classes = ('btn-danger',) icon = "unlink" help_text = _("Once a floating IP is released, there is" " no guarantee the same IP can be allocated again.") @staticmethod def action_present(count): return ungettext_lazy( u"Release Floating IP", u"Release Floating IPs", count ) @staticmethod def action_past(count): return ungettext_lazy( u"Released Floating IP", u"Released Floating IPs", count ) def allowed(self, request, fip=None): if api.base.is_service_enabled(request, "network"): policy = (("network", "delete_floatingip"),) else: policy = (("compute", "compute_extension:floating_ips"), ("compute", "network:release_floating_ip"),) return POLICY_CHECK(policy, request) def action(self, request, obj_id): api.network.tenant_floating_ip_release(request, obj_id) # operation log config = _('Floating IP ID: %s') %obj_id api.logger.Logger(request).create(resource_type='floatip', action_name='Release Floating Ip', resource_name='Floating IP', config=config, status='Success') class AssociateIP(tables.LinkAction): name = "associate" verbose_name = _("Associate") url = "horizon:network:floating_ips:associate" classes = ("ajax-modal",) icon = "link" def allowed(self, request, fip): if api.base.is_service_enabled(request, "network"): policy = (("network", "update_floatingip"),) else: policy = (("compute", "compute_extension:floating_ips"), ("compute", "network:associate_floating_ip"),) account_is_frozen = check_account_is_frozen(request) if account_is_frozen: if "disabled" not in self.classes: self.classes = [c for c in self.classes] + ['disabled'] else: self.classes = [c for c in self.classes if c != "disabled"] return not fip.port_id and POLICY_CHECK(policy, request) def get_link_url(self, datum): base_url = reverse(self.url) params = urlencode({"ip_id": self.table.get_object_id(datum)}) return "?".join([base_url, params]) class DisassociateIP(tables.Action): name = "disassociate" verbose_name = _("Disassociate") classes = ("btn-disassociate", "btn-danger") icon = "unlink" def allowed(self, request, fip): if api.base.is_service_enabled(request, "network"): policy = (("network", "update_floatingip"),) else: policy = (("compute", "compute_extension:floating_ips"), ("compute", "network:disassociate_floating_ip"),) return fip.port_id and POLICY_CHECK(policy, request) def single(self, table, request, obj_id): try: fip = table.get_object_by_id(filters.get_int_or_uuid(obj_id)) api.network.floating_ip_disassociate(request, fip.id) LOG.info('Disassociating Floating IP "%s".' % obj_id) messages.success(request, _('Successfully disassociated Floating IP: %s') % fip.ip) # operation log config = _('Floating IP ID: %s') %obj_id api.logger.Logger(request).create(resource_type='floatip', action_name='Disassociate Floating IP', resource_name='Floating IP', config=config, status='Success') except Exception: exceptions.handle(request, _('Unable to disassociate floating IP.')) # operation log api.logger.Logger(request).create(resource_type='floatip', action_name='Disassociate Floating IP', resource_name='Floating IP', config= _('Unable to disassociate floating IP.'), status='Error') return shortcuts.redirect('horizon:network:floating_ips:index') class UpdateFloatingIP(tables.LinkAction): name = "updatefloatingip" verbose_name = _("Update Floating IP") url = "horizon:network:floating_ips:update" classes = ("ajax-modal",) icon = "link" def get_link_url(self, datum): base_url = reverse(self.url) params = urlencode({"floating_ip_id": self.table.get_object_id(datum)}) return "?".join([base_url, params]) def allowed(self, request, fip): account_is_frozen = check_account_is_frozen(request) if account_is_frozen: if "disabled" not in self.classes: self.classes = [c for c in self.classes] + ['disabled'] else: self.classes = [c for c in self.classes if c != "disabled"] return super(UpdateFloatingIP, self).allowed(request, fip) def get_instance_info(fip): if fip.instance_type == 'compute': return (_("%(instance_name)s %(fixed_ip)s") % {'instance_name': getattr(fip, "instance_name", ''), 'fixed_ip': fip.fixed_ip}) elif fip.instance_type == 'loadbalancer': return _("Load Balancer VIP %s") % fip.fixed_ip elif fip.instance_type: return fip.fixed_ip else: return None def get_instance_link(datum): if datum.instance_type == 'compute': return reverse("horizon:instances:instances:detail", args=(datum.instance_id,)) else: return None STATUS_DISPLAY_CHOICES = ( ("active", pgettext_lazy("Current status of a Floating IP", u"Active")), ("down", pgettext_lazy("Current status of a Floating IP", u"Down")), ("error", pgettext_lazy("Current status of a Floating IP", u"Error")), ) class FloatingIPsTable(tables.DataTable): STATUS_CHOICES = ( ("active", True), ("down", True), ("error", False) ) ip = tables.Column("ip", verbose_name=_("IP Address"), attrs={'data-type': "ip"}) fixed_ip = tables.Column(get_instance_info, link=get_instance_link, verbose_name=_("Mapped Fixed IP Address")) limit_speed = tables.Column("limit_speed", verbose_name=_("Limit Speed(Mbps)")) pool = tables.Column("pool_name", verbose_name=_("Pool")) status = tables.Column("status", verbose_name=_("Status"), status=True, status_choices=STATUS_CHOICES, display_choices=STATUS_DISPLAY_CHOICES) def __init__(self, request, data=None, needs_form_wrapper=None, **kwargs): super(FloatingIPsTable, self).__init__( request, data=data, needs_form_wrapper=needs_form_wrapper, **kwargs) if not api.base.is_service_enabled(request, 'network'): del self.columns['status'] def sanitize_id(self, obj_id): return filters.get_int_or_uuid(obj_id) def get_object_display(self, datum): return datum.ip class Meta(object): name = "floating_ips" verbose_name = _("Floating IPs") table_actions = (AllocateIP, ReleaseIPs) row_actions = (AssociateIP, DisassociateIP, UpdateFloatingIP, ReleaseIPs)
py
b404894ab78a50217cdf65775ed220c34bbf423a
#!/usr/bin/env python3 import argparse from src.data_processor import lstm_data_processor parser = argparse.ArgumentParser() parser.add_argument('-x', '--xtal', type=int, default=54000, help='Input XTAL Id; default = 54000') parser.add_argument('-y', '--year', type=int, default=2018, help='List of the years used for making predictions; default = 2018') parser.add_argument('--period', type=int, default=35, help='Period of the LSTMs used for making predictions; default=35') parser.add_argument('-i', '--input_folder', type=str, default='./data/interim', help='Path to the input folder; default=\'data/interim\'') parser.add_argument('-o', '--output_folder', type=str, default='./data/processed', help='Path to output for storing the plots; default=data/processed') parser.add_argument('-s', '--data_scaler', type=str, default='./src/preprocessing/scaler_2017_all_xtals.pickle', help='Pickle file containing scaler object.') args = parser.parse_args() XTAL = args.xtal YEAR = args.year PERIOD = args.period SCALER = args.data_scaler prsr = lstm_data_processor(XTAL, YEAR, PERIOD) prsr.prepare_dataset_from_csv(args.input_folder, SCALER) prsr.save_to_pickle(args.output_folder)
py
b404898568bf8e5e98b2cad8321066a88ddf1f00
__version__ = 0.3 __title__ = "pymerra2" __description__ = "A tool for downloading and subsetting NASA MERRA-2 Data" __url__ = "https://github.com/Ouranosinc/pymerra2" __author__ = "Trevor James Smith" __author_email__ = "[email protected]" __license__ = "Apache 2.0" __copyright__ = "Copyright 2018 Ouranos Inc." from pymerra2 import download, variables
py
b40489baca8f4859e0a3625792bf88d05c425255
############################################################################### # # XMLwriter - A base class for XlsxWriter classes. # # Used in conjunction with XlsxWriter. # # Copyright 2013, John McNamara, [email protected] # # Standard packages. import re import sys class XMLwriter(object): """ Simple XML writer class. """ def __init__(self): self.fh = None self.escapes = re.compile('["&<>]') self.internal_fh = False def _set_filehandle(self, filehandle): # Set the writer filehandle directly. Mainly for testing. self.fh = filehandle self.internal_fh = False def _set_xml_writer(self, filename): # Set the XML writer filehandle for the object. This can either be # done using _set_filehandle(), usually for testing, or later via # this method, when assembling the xlsx file. self.internal_fh = True if sys.version_info >= (3, 0): self.fh = open(filename, 'w', encoding='utf-8') else: self.fh = open(filename, 'w') def _xml_close(self): # Close the XML filehandle if we created it. if self.internal_fh: self.fh.close() def _xml_declaration(self): # Write the XML declaration. self.fh.write( """<?xml version="1.0" encoding="UTF-8" standalone="yes"?>\n""") def _xml_start_tag(self, tag, attributes=[]): # Write an XML start tag with optional attributes. for key, value in attributes: value = self._escape_attributes(value) tag = tag + ' %s="%s"' % (key, value) self.fh.write("<%s>" % tag) def _xml_start_tag_unencoded(self, tag, attributes=[]): # Write an XML start tag with optional, unencoded, attributes. # This is a minor speed optimisation for elements that don't # need encoding. for key, value in attributes: tag = tag + ' %s="%s"' % (key, value) self.fh.write("<%s>" % tag) def _xml_end_tag(self, tag): # Write an XML end tag. self.fh.write("</%s>" % tag) def _xml_empty_tag(self, tag, attributes=[]): # Write an empty XML tag with optional attributes. for key, value in attributes: value = self._escape_attributes(value) tag = tag + ' %s="%s"' % (key, value) self.fh.write("<%s/>" % tag) def _xml_empty_tag_unencoded(self, tag, attributes=[]): # Write an XML start tag with optional, unencoded, attributes. # This is a minor speed optimisation for elements that don't # need encoding. for key, value in attributes: tag = tag + ' %s="%s"' % (key, value) self.fh.write("<%s/>" % tag) def _xml_data_element(self, tag, data, attributes=[]): # Write an XML element containing data with optional attributes. end_tag = tag for key, value in attributes: value = self._escape_attributes(value) tag = tag + ' %s="%s"' % (key, value) data = self._escape_data(data) self.fh.write("<%s>%s</%s>" % (tag, data, end_tag)) def _xml_string_element(self, index, attributes=[]): # Optimised tag writer for <c> cell string elements in the inner loop. attr = '' for key, value in attributes: value = self._escape_attributes(value) attr = attr + ' %s="%s"' % (key, value) self.fh.write("""<c%s t="s"><v>%d</v></c>""" % (attr, index)) def _xml_si_element(self, string, attributes=[]): # Optimised tag writer for shared strings <si> elements. attr = '' for key, value in attributes: value = self._escape_attributes(value) attr = attr + ' %s="%s"' % (key, value) string = self._escape_data(string) self.fh.write("""<si><t%s>%s</t></si>""" % (attr, string)) def _xml_rich_si_element(self, string): # Optimised tag writer for shared strings <si> rich string elements. self.fh.write("""<si>%s</si>""" % string) def _xml_number_element(self, number, attributes=[]): # Optimised tag writer for <c> cell number elements in the inner loop. attr = '' for key, value in attributes: value = self._escape_attributes(value) attr = attr + ' %s="%s"' % (key, value) self.fh.write("""<c%s><v>%.15g</v></c>""" % (attr, number)) def _xml_formula_element(self, formula, result, attributes=[]): # Optimised tag writer for <c> cell formula elements in the inner loop. attr = '' for key, value in attributes: value = self._escape_attributes(value) attr = attr + ' %s="%s"' % (key, value) self.fh.write("""<c%s><f>%s</f><v>%s</v></c>""" % (attr, self._escape_data(formula), self._escape_data(str(result)))) def _xml_inline_string(self, string, preserve, attributes=[]): # Optimised tag writer for inlineStr cell elements in the inner loop. attr = '' t_attr = '' # Set the <t> attribute to preserve whitespace. if preserve: t_attr = ' xml:space="preserve"' for key, value in attributes: value = self._escape_attributes(value) attr = attr + ' %s="%s"' % (key, value) string = self._escape_data(string) self.fh.write("""<c%s t="inlineStr"><is><t%s>%s</t></is></c>""" % (attr, t_attr, string)) def _xml_rich_inline_string(self, string, attributes=[]): # Optimised tag writer for rich inlineStr in the inner loop. attr = '' for key, value in attributes: value = self._escape_attributes(value) attr = attr + ' %s="%s"' % (key, value) self.fh.write("""<c%s t="inlineStr"><is>%s</is></c>""" % (attr, string)) def _escape_attributes(self, attribute): # Escape XML characters in attributes. try: if not self.escapes.search(attribute): return attribute except TypeError: return attribute attribute = attribute.replace('&', '&amp;') attribute = attribute.replace('"', '&quot;') attribute = attribute.replace('<', '&lt;') attribute = attribute.replace('>', '&gt;') return attribute def _escape_data(self, data): # Escape XML characters in data sections of tags. Note, this # is different from _escape_attributes() in that double quotes # are not escaped by Excel. try: if not self.escapes.search(data): return data except TypeError: return data data = data.replace('&', '&amp;') data = data.replace('<', '&lt;') data = data.replace('>', '&gt;') return data
py
b4048aa59e1f99a8453e8a21b4f96bf2102d6038
import os import pickle import numpy as np import random as rnd import matplotlib.pyplot as plt import torch from PIL import Image, ImageColor from collections import namedtuple import warnings from trdg.handwritten_model.handwritten import HandwritingSynthesisNetwork from trdg.handwritten_model import params as pr import os # import params as pr os.environ['KMP_DUPLICATE_LIB_OK']='TRUE' warnings.filterwarnings("ignore") # # vocab = np.load(pr.vocab_path) # print("Vocab: ", vocab) # char2idx = {x: i for i, x in enumerate(vocab)} # device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # # model = HandwritingSynthesisNetwork( # len(vocab), # pr.dec_hidden_size, pr.dec_n_layers, # pr.n_mixtures_attention, pr.n_mixtures_output, # device # ) # model.load_state_dict(torch.load(pr.load_path, map_location=torch.device('cpu'))) # model = model.to(device) def _sample(e, mu1, mu2, std1, std2, rho): cov = np.array([[std1 * std1, std1 * std2 * rho], [std1 * std2 * rho, std2 * std2]]) mean = np.array([mu1, mu2]) x, y = np.random.multivariate_normal(mean, cov) end = np.random.binomial(1, e) return np.array([x, y, end]) def _split_strokes(points): points = np.array(points) strokes = [] b = 0 for e in range(len(points)): if points[e, 2] == 1.0: strokes += [points[b : e + 1, :2].copy()] b = e + 1 return strokes def _cumsum(points): sums = np.cumsum(points[:, :2], axis=0) return np.concatenate([sums, points[:, 2:]], axis=1) def preprocessing_str(sent, vocab): chars = list(sent) chars = [c for c in chars if c in vocab] return "".join(chars) def sent2idx(sent, char2idx): return np.asarray([char2idx[c] for c in sent]) def _sample_text_v2(model, text, vocab, char2idx): device = model.device string_processed = preprocessing_str(text, vocab) # print("Processed: ", string_processed) chars = torch.from_numpy( sent2idx(string_processed, char2idx) ).long()[None].to(device) chars_mask = torch.ones_like(chars).float().to(device) with torch.no_grad(): coords = model.sample(chars, chars_mask, maxlen=pr.MAX_STROKE_LENGTH)[0].cpu().numpy() coords = coords[:, [1, 2, 0]] # [x, y, e] return coords def _crop_white_borders(image): image_data = np.asarray(image) grey_image_data = np.asarray(image.convert("L")) # plt.imshow(grey_image_data) # plt.show() non_empty_columns = np.where(grey_image_data.min(axis=0) < 255)[0] non_empty_rows = np.where(grey_image_data.min(axis=1) < 255)[0] # from IPython import embed; embed() cropBox = ( min(non_empty_rows), max(non_empty_rows), min(non_empty_columns), max(non_empty_columns), ) image_data_new = image_data[ cropBox[0] : cropBox[1] + 1, cropBox[2] : cropBox[3] + 1, : ] # plt.imshow(image_data_new) # plt.show() return Image.fromarray(image_data_new) def _join_images(images, padding_size=35): widths, heights = zip(*(i.size for i in images)) total_width = sum(widths) + padding_size * (len(images)-1) max_height = max(heights) compound_image = Image.new("RGBA", (total_width, max_height)) x_offset = 0 for im in images: compound_image.paste(im, (x_offset, 0)) x_offset += im.size[0] + padding_size return compound_image def align_strokes(coords): """ corrects for global slant/offset in handwriting strokes """ coords = np.copy(coords) X, Y = coords[:, 0].reshape(-1, 1), coords[:, 1].reshape(-1, 1) X = np.concatenate([np.ones([X.shape[0], 1]), X], axis=1) offset, slope = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(Y).squeeze() theta = np.arctan(slope) rotation_matrix = np.array( [[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]] ) coords[:, :2] = np.dot(coords[:, :2], rotation_matrix) - offset return coords def generate(model, vocab, char2idx, text, text_color=None, align=True): images = [] # colors = [ImageColor.getrgb(c) for c in text_color.split(",")] # c1, c2 = colors[0], colors[-1] # # color = "#{:02x}{:02x}{:02x}".format( # rnd.randint(min(c1[0], c2[0]), max(c1[0], c2[0])), # rnd.randint(min(c1[1], c2[1]), max(c1[1], c2[1])), # rnd.randint(min(c1[2], c2[2]), max(c1[2], c2[2])), # ) for word in text.split(" "): # print("Word: ", word) word += " " coords = _sample_text_v2( model, word, vocab, char2idx ) # print(coords) # break fig, ax = plt.subplots(1, 1) fig.patch.set_visible(False) ax.axis("off") strokes = np.concatenate( [coords[:, 2:3], np.cumsum(coords[:, :2], axis=0)], axis=1 ) if align: strokes[:, 1:] = align_strokes(strokes[:, 1:]) stroke = [] color_pen = rnd.choice(['blue', 'black', 'red']) linewidth = rnd.choice([2,3, 4,5, 8, 12]) # linewidth = for eos, x, y in strokes: stroke.append((x, y)) if eos == 1: xs, ys = zip(*stroke) ys = np.array(ys) plt.plot(xs, ys, 'k', c=color_pen, linewidth=linewidth) stroke = [] if stroke: xs, ys = zip(*stroke) ys = np.array(ys) plt.plot(xs, ys, 'k', c=color_pen, linewidth=linewidth) # plt.show() # for stroke in _split_strokes(_cumsum(np.array(coords))): # plt.plot(stroke[:, 0], -stroke[:, 1], color=color) fig.patch.set_alpha(0) fig.patch.set_facecolor("none") # plt.show() canvas = plt.get_current_fig_manager().canvas canvas.draw() s, (width, height) = canvas.print_to_buffer() image = Image.frombytes("RGBA", (width, height), s) mask = Image.new("RGB", (width, height), (0, 0, 0)) # plt.imshow(image) images.append(_crop_white_borders(image)) # plt.show() plt.close() return _join_images(images), mask if __name__ == "__main__": img, _ = generate(model, vocab, device, char2idx, "nghiêng", text_color="#000000") print('mask', _) plt.imshow(np.asarray(img)) plt.show()
py
b4048b34d2bd538ed5be8688fba4043db72233a1
import os import csv import rows_to_columns as rtc import statistics import collections def extract( directory = './data/BFs_logan/spectral_new', prefix = 'spectral_raw - '): data_dict = {} mode = 'w' for filename in os.listdir(directory): filepath=directory+'/'+filename fn_listchar = list(filename[:-4]) pf_listchar = list(prefix) for char in pf_listchar: fn_listchar.remove(char) bird_ID = '' for char in fn_listchar: bird_ID += char data_dict[bird_ID]={} with open(filepath) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') data = list(csv_reader) inventory = data[0][-1] data_reformatted=[] for row in data: syllable = inventory[int(row[0])-1] bird_ID_syllable = bird_ID+'_'+syllable if inventory in row: row.remove(inventory) if '' in row: row.remove('') row_data = [float(value) for value in row[1:6]] row_data.append(bird_ID_syllable) data_reformatted.append(row_data) data_dict[bird_ID]['inventory'] = inventory data_dict[bird_ID]['data'] = data_reformatted return data_dict def syllable_medians( directory = './data/BFs_logan/spectral_new', prefix = 'spectral_raw - ', feats = ['MeanFreq', 'SpecDense', 'Duration', 'LoudEnt', 'SpecTempEnt', 'Label']): out_dict = {} extracted_dict = extract(directory, prefix) for bird_ID, bird_data in extracted_dict.items(): bird_medians_dict = {} inventory = bird_data['inventory'] inventory_with_IDs = [] for syllable in inventory: inventory_with_IDs.append(bird_ID + '_' + syllable) data = bird_data['data'] for syllable in inventory_with_IDs: relevant_rows = [] for row in data: if row[-1] == syllable: relevant_rows.append(row) columns = rtc.rtc(relevant_rows).items() syl_dict = {} for i,column in columns: if i in range(0,len(feats)-1): new_column = [float(item) for item in column] syl_dict[feats[i]] = statistics.median(new_column) bird_medians_dict[syllable] = syl_dict ordered_bird_dict = dict(collections.OrderedDict(sorted(bird_medians_dict.items()))) out_dict[bird_ID] = ordered_bird_dict return out_dict ''' def reformat_medians(): previous_result=syllable_medians() with open("./output/spectral_MK.csv", 'w') as output_file: writer = csv.writer(output_file) for birdID,bird_dict in previous_result.items(): row = [] row.append(birdID) for syllable, syl_dict in bird_dict.items(): row.append(syllable) for feature in syl_dict.values(): row.append(feature) row.append('') writer.writerow(row) ''' def reformat_PCA(): previous_result=syllable_medians() with open("./output/spectral_MK_PCA.csv", 'w') as output_file: writer = csv.writer(output_file) for birdID,bird_dict in previous_result.items(): for syllable, syl_dict in bird_dict.items(): row=[] for feature in list(syl_dict.values()): row.append(feature) row.append(syllable) writer.writerow(row) def PCA_tokens(directory = './data/BFs_logan/spectral_new'): birds_dict = extract(directory=directory) with open('./output/PCA_tokens.csv', 'w') as output_file: writer = csv.writer(output_file) for value in birds_dict.values(): for row in value['data']: writer.writerow(row)
py
b4048c3a8f2e82c421401d56c5c7b84a0e03879d
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * __all__ = [ 'AssetItemResponse', 'BlobLocationResponse', 'ColumnSpecificationResponse', 'CommitmentPlanResponse', 'DiagnosticsConfigurationResponse', 'ExampleRequestResponse', 'GraphEdgeResponse', 'GraphNodeResponse', 'GraphPackageResponse', 'GraphParameterLinkResponse', 'GraphParameterResponse', 'InputPortResponse', 'MachineLearningWorkspaceResponse', 'ModeValueInfoResponse', 'ModuleAssetParameterResponse', 'OutputPortResponse', 'RealtimeConfigurationResponse', 'ServiceInputOutputSpecificationResponse', 'StorageAccountResponse', 'TableSpecificationResponse', 'WebServiceKeysResponse', 'WebServiceParameterResponse', 'WebServicePropertiesForGraphResponse', ] @pulumi.output_type class AssetItemResponse(dict): """ Information about an asset associated with the web service. """ @staticmethod def __key_warning(key: str): suggest = None if key == "locationInfo": suggest = "location_info" elif key == "inputPorts": suggest = "input_ports" elif key == "outputPorts": suggest = "output_ports" if suggest: pulumi.log.warn(f"Key '{key}' not found in AssetItemResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: AssetItemResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: AssetItemResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, location_info: 'outputs.BlobLocationResponse', name: str, type: str, id: Optional[str] = None, input_ports: Optional[Mapping[str, 'outputs.InputPortResponse']] = None, metadata: Optional[Mapping[str, str]] = None, output_ports: Optional[Mapping[str, 'outputs.OutputPortResponse']] = None, parameters: Optional[Sequence['outputs.ModuleAssetParameterResponse']] = None): """ Information about an asset associated with the web service. :param 'BlobLocationResponse' location_info: Access information for the asset. :param str name: Asset's friendly name. :param str type: Asset's type. :param str id: Asset's Id. :param Mapping[str, 'InputPortResponse'] input_ports: Information about the asset's input ports. :param Mapping[str, str] metadata: If the asset is a custom module, this holds the module's metadata. :param Mapping[str, 'OutputPortResponse'] output_ports: Information about the asset's output ports. :param Sequence['ModuleAssetParameterResponse'] parameters: If the asset is a custom module, this holds the module's parameters. """ pulumi.set(__self__, "location_info", location_info) pulumi.set(__self__, "name", name) pulumi.set(__self__, "type", type) if id is not None: pulumi.set(__self__, "id", id) if input_ports is not None: pulumi.set(__self__, "input_ports", input_ports) if metadata is not None: pulumi.set(__self__, "metadata", metadata) if output_ports is not None: pulumi.set(__self__, "output_ports", output_ports) if parameters is not None: pulumi.set(__self__, "parameters", parameters) @property @pulumi.getter(name="locationInfo") def location_info(self) -> 'outputs.BlobLocationResponse': """ Access information for the asset. """ return pulumi.get(self, "location_info") @property @pulumi.getter def name(self) -> str: """ Asset's friendly name. """ return pulumi.get(self, "name") @property @pulumi.getter def type(self) -> str: """ Asset's type. """ return pulumi.get(self, "type") @property @pulumi.getter def id(self) -> Optional[str]: """ Asset's Id. """ return pulumi.get(self, "id") @property @pulumi.getter(name="inputPorts") def input_ports(self) -> Optional[Mapping[str, 'outputs.InputPortResponse']]: """ Information about the asset's input ports. """ return pulumi.get(self, "input_ports") @property @pulumi.getter def metadata(self) -> Optional[Mapping[str, str]]: """ If the asset is a custom module, this holds the module's metadata. """ return pulumi.get(self, "metadata") @property @pulumi.getter(name="outputPorts") def output_ports(self) -> Optional[Mapping[str, 'outputs.OutputPortResponse']]: """ Information about the asset's output ports. """ return pulumi.get(self, "output_ports") @property @pulumi.getter def parameters(self) -> Optional[Sequence['outputs.ModuleAssetParameterResponse']]: """ If the asset is a custom module, this holds the module's parameters. """ return pulumi.get(self, "parameters") @pulumi.output_type class BlobLocationResponse(dict): """ Describes the access location for a blob. """ def __init__(__self__, *, uri: str, credentials: Optional[str] = None): """ Describes the access location for a blob. :param str uri: The URI from which the blob is accessible from. For example, aml://abc for system assets or https://xyz for user assets or payload. :param str credentials: Access credentials for the blob, if applicable (e.g. blob specified by storage account connection string + blob URI) """ pulumi.set(__self__, "uri", uri) if credentials is not None: pulumi.set(__self__, "credentials", credentials) @property @pulumi.getter def uri(self) -> str: """ The URI from which the blob is accessible from. For example, aml://abc for system assets or https://xyz for user assets or payload. """ return pulumi.get(self, "uri") @property @pulumi.getter def credentials(self) -> Optional[str]: """ Access credentials for the blob, if applicable (e.g. blob specified by storage account connection string + blob URI) """ return pulumi.get(self, "credentials") @pulumi.output_type class ColumnSpecificationResponse(dict): """ Swagger 2.0 schema for a column within the data table representing a web service input or output. See Swagger specification: http://swagger.io/specification/ """ @staticmethod def __key_warning(key: str): suggest = None if key == "xMsIsnullable": suggest = "x_ms_isnullable" elif key == "xMsIsordered": suggest = "x_ms_isordered" if suggest: pulumi.log.warn(f"Key '{key}' not found in ColumnSpecificationResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ColumnSpecificationResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ColumnSpecificationResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, type: str, enum: Optional[Sequence[Any]] = None, format: Optional[str] = None, x_ms_isnullable: Optional[bool] = None, x_ms_isordered: Optional[bool] = None): """ Swagger 2.0 schema for a column within the data table representing a web service input or output. See Swagger specification: http://swagger.io/specification/ :param str type: Data type of the column. :param Sequence[Any] enum: If the data type is categorical, this provides the list of accepted categories. :param str format: Additional format information for the data type. :param bool x_ms_isnullable: Flag indicating if the type supports null values or not. :param bool x_ms_isordered: Flag indicating whether the categories are treated as an ordered set or not, if this is a categorical column. """ pulumi.set(__self__, "type", type) if enum is not None: pulumi.set(__self__, "enum", enum) if format is not None: pulumi.set(__self__, "format", format) if x_ms_isnullable is not None: pulumi.set(__self__, "x_ms_isnullable", x_ms_isnullable) if x_ms_isordered is not None: pulumi.set(__self__, "x_ms_isordered", x_ms_isordered) @property @pulumi.getter def type(self) -> str: """ Data type of the column. """ return pulumi.get(self, "type") @property @pulumi.getter def enum(self) -> Optional[Sequence[Any]]: """ If the data type is categorical, this provides the list of accepted categories. """ return pulumi.get(self, "enum") @property @pulumi.getter def format(self) -> Optional[str]: """ Additional format information for the data type. """ return pulumi.get(self, "format") @property @pulumi.getter(name="xMsIsnullable") def x_ms_isnullable(self) -> Optional[bool]: """ Flag indicating if the type supports null values or not. """ return pulumi.get(self, "x_ms_isnullable") @property @pulumi.getter(name="xMsIsordered") def x_ms_isordered(self) -> Optional[bool]: """ Flag indicating whether the categories are treated as an ordered set or not, if this is a categorical column. """ return pulumi.get(self, "x_ms_isordered") @pulumi.output_type class CommitmentPlanResponse(dict): """ Information about the machine learning commitment plan associated with the web service. """ def __init__(__self__, *, id: str): """ Information about the machine learning commitment plan associated with the web service. :param str id: Specifies the Azure Resource Manager ID of the commitment plan associated with the web service. """ pulumi.set(__self__, "id", id) @property @pulumi.getter def id(self) -> str: """ Specifies the Azure Resource Manager ID of the commitment plan associated with the web service. """ return pulumi.get(self, "id") @pulumi.output_type class DiagnosticsConfigurationResponse(dict): """ Diagnostics settings for an Azure ML web service. """ def __init__(__self__, *, level: str, expiry: Optional[str] = None): """ Diagnostics settings for an Azure ML web service. :param str level: Specifies the verbosity of the diagnostic output. Valid values are: None - disables tracing; Error - collects only error (stderr) traces; All - collects all traces (stdout and stderr). :param str expiry: Specifies the date and time when the logging will cease. If null, diagnostic collection is not time limited. """ pulumi.set(__self__, "level", level) if expiry is not None: pulumi.set(__self__, "expiry", expiry) @property @pulumi.getter def level(self) -> str: """ Specifies the verbosity of the diagnostic output. Valid values are: None - disables tracing; Error - collects only error (stderr) traces; All - collects all traces (stdout and stderr). """ return pulumi.get(self, "level") @property @pulumi.getter def expiry(self) -> Optional[str]: """ Specifies the date and time when the logging will cease. If null, diagnostic collection is not time limited. """ return pulumi.get(self, "expiry") @pulumi.output_type class ExampleRequestResponse(dict): """ Sample input data for the service's input(s). """ @staticmethod def __key_warning(key: str): suggest = None if key == "globalParameters": suggest = "global_parameters" if suggest: pulumi.log.warn(f"Key '{key}' not found in ExampleRequestResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ExampleRequestResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ExampleRequestResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, global_parameters: Optional[Mapping[str, Any]] = None, inputs: Optional[Mapping[str, Sequence[Sequence[Any]]]] = None): """ Sample input data for the service's input(s). :param Mapping[str, Any] global_parameters: Sample input data for the web service's global parameters :param Mapping[str, Sequence[Sequence[Any]]] inputs: Sample input data for the web service's input(s) given as an input name to sample input values matrix map. """ if global_parameters is not None: pulumi.set(__self__, "global_parameters", global_parameters) if inputs is not None: pulumi.set(__self__, "inputs", inputs) @property @pulumi.getter(name="globalParameters") def global_parameters(self) -> Optional[Mapping[str, Any]]: """ Sample input data for the web service's global parameters """ return pulumi.get(self, "global_parameters") @property @pulumi.getter def inputs(self) -> Optional[Mapping[str, Sequence[Sequence[Any]]]]: """ Sample input data for the web service's input(s) given as an input name to sample input values matrix map. """ return pulumi.get(self, "inputs") @pulumi.output_type class GraphEdgeResponse(dict): """ Defines an edge within the web service's graph. """ @staticmethod def __key_warning(key: str): suggest = None if key == "sourceNodeId": suggest = "source_node_id" elif key == "sourcePortId": suggest = "source_port_id" elif key == "targetNodeId": suggest = "target_node_id" elif key == "targetPortId": suggest = "target_port_id" if suggest: pulumi.log.warn(f"Key '{key}' not found in GraphEdgeResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: GraphEdgeResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: GraphEdgeResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, source_node_id: Optional[str] = None, source_port_id: Optional[str] = None, target_node_id: Optional[str] = None, target_port_id: Optional[str] = None): """ Defines an edge within the web service's graph. :param str source_node_id: The source graph node's identifier. :param str source_port_id: The identifier of the source node's port that the edge connects from. :param str target_node_id: The destination graph node's identifier. :param str target_port_id: The identifier of the destination node's port that the edge connects into. """ if source_node_id is not None: pulumi.set(__self__, "source_node_id", source_node_id) if source_port_id is not None: pulumi.set(__self__, "source_port_id", source_port_id) if target_node_id is not None: pulumi.set(__self__, "target_node_id", target_node_id) if target_port_id is not None: pulumi.set(__self__, "target_port_id", target_port_id) @property @pulumi.getter(name="sourceNodeId") def source_node_id(self) -> Optional[str]: """ The source graph node's identifier. """ return pulumi.get(self, "source_node_id") @property @pulumi.getter(name="sourcePortId") def source_port_id(self) -> Optional[str]: """ The identifier of the source node's port that the edge connects from. """ return pulumi.get(self, "source_port_id") @property @pulumi.getter(name="targetNodeId") def target_node_id(self) -> Optional[str]: """ The destination graph node's identifier. """ return pulumi.get(self, "target_node_id") @property @pulumi.getter(name="targetPortId") def target_port_id(self) -> Optional[str]: """ The identifier of the destination node's port that the edge connects into. """ return pulumi.get(self, "target_port_id") @pulumi.output_type class GraphNodeResponse(dict): """ Specifies a node in the web service graph. The node can either be an input, output or asset node, so only one of the corresponding id properties is populated at any given time. """ @staticmethod def __key_warning(key: str): suggest = None if key == "assetId": suggest = "asset_id" elif key == "inputId": suggest = "input_id" elif key == "outputId": suggest = "output_id" if suggest: pulumi.log.warn(f"Key '{key}' not found in GraphNodeResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: GraphNodeResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: GraphNodeResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, asset_id: Optional[str] = None, input_id: Optional[str] = None, output_id: Optional[str] = None, parameters: Optional[Mapping[str, 'outputs.WebServiceParameterResponse']] = None): """ Specifies a node in the web service graph. The node can either be an input, output or asset node, so only one of the corresponding id properties is populated at any given time. :param str asset_id: The id of the asset represented by this node. :param str input_id: The id of the input element represented by this node. :param str output_id: The id of the output element represented by this node. :param Mapping[str, 'WebServiceParameterResponse'] parameters: If applicable, parameters of the node. Global graph parameters map into these, with values set at runtime. """ if asset_id is not None: pulumi.set(__self__, "asset_id", asset_id) if input_id is not None: pulumi.set(__self__, "input_id", input_id) if output_id is not None: pulumi.set(__self__, "output_id", output_id) if parameters is not None: pulumi.set(__self__, "parameters", parameters) @property @pulumi.getter(name="assetId") def asset_id(self) -> Optional[str]: """ The id of the asset represented by this node. """ return pulumi.get(self, "asset_id") @property @pulumi.getter(name="inputId") def input_id(self) -> Optional[str]: """ The id of the input element represented by this node. """ return pulumi.get(self, "input_id") @property @pulumi.getter(name="outputId") def output_id(self) -> Optional[str]: """ The id of the output element represented by this node. """ return pulumi.get(self, "output_id") @property @pulumi.getter def parameters(self) -> Optional[Mapping[str, 'outputs.WebServiceParameterResponse']]: """ If applicable, parameters of the node. Global graph parameters map into these, with values set at runtime. """ return pulumi.get(self, "parameters") @pulumi.output_type class GraphPackageResponse(dict): """ Defines the graph of modules making up the machine learning solution. """ @staticmethod def __key_warning(key: str): suggest = None if key == "graphParameters": suggest = "graph_parameters" if suggest: pulumi.log.warn(f"Key '{key}' not found in GraphPackageResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: GraphPackageResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: GraphPackageResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, edges: Optional[Sequence['outputs.GraphEdgeResponse']] = None, graph_parameters: Optional[Mapping[str, 'outputs.GraphParameterResponse']] = None, nodes: Optional[Mapping[str, 'outputs.GraphNodeResponse']] = None): """ Defines the graph of modules making up the machine learning solution. :param Sequence['GraphEdgeResponse'] edges: The list of edges making up the graph. :param Mapping[str, 'GraphParameterResponse'] graph_parameters: The collection of global parameters for the graph, given as a global parameter name to GraphParameter map. Each parameter here has a 1:1 match with the global parameters values map declared at the WebServiceProperties level. :param Mapping[str, 'GraphNodeResponse'] nodes: The set of nodes making up the graph, provided as a nodeId to GraphNode map """ if edges is not None: pulumi.set(__self__, "edges", edges) if graph_parameters is not None: pulumi.set(__self__, "graph_parameters", graph_parameters) if nodes is not None: pulumi.set(__self__, "nodes", nodes) @property @pulumi.getter def edges(self) -> Optional[Sequence['outputs.GraphEdgeResponse']]: """ The list of edges making up the graph. """ return pulumi.get(self, "edges") @property @pulumi.getter(name="graphParameters") def graph_parameters(self) -> Optional[Mapping[str, 'outputs.GraphParameterResponse']]: """ The collection of global parameters for the graph, given as a global parameter name to GraphParameter map. Each parameter here has a 1:1 match with the global parameters values map declared at the WebServiceProperties level. """ return pulumi.get(self, "graph_parameters") @property @pulumi.getter def nodes(self) -> Optional[Mapping[str, 'outputs.GraphNodeResponse']]: """ The set of nodes making up the graph, provided as a nodeId to GraphNode map """ return pulumi.get(self, "nodes") @pulumi.output_type class GraphParameterLinkResponse(dict): """ Association link for a graph global parameter to a node in the graph. """ @staticmethod def __key_warning(key: str): suggest = None if key == "nodeId": suggest = "node_id" elif key == "parameterKey": suggest = "parameter_key" if suggest: pulumi.log.warn(f"Key '{key}' not found in GraphParameterLinkResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: GraphParameterLinkResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: GraphParameterLinkResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, node_id: str, parameter_key: str): """ Association link for a graph global parameter to a node in the graph. :param str node_id: The graph node's identifier :param str parameter_key: The identifier of the node parameter that the global parameter maps to. """ pulumi.set(__self__, "node_id", node_id) pulumi.set(__self__, "parameter_key", parameter_key) @property @pulumi.getter(name="nodeId") def node_id(self) -> str: """ The graph node's identifier """ return pulumi.get(self, "node_id") @property @pulumi.getter(name="parameterKey") def parameter_key(self) -> str: """ The identifier of the node parameter that the global parameter maps to. """ return pulumi.get(self, "parameter_key") @pulumi.output_type class GraphParameterResponse(dict): """ Defines a global parameter in the graph. """ def __init__(__self__, *, links: Sequence['outputs.GraphParameterLinkResponse'], type: str, description: Optional[str] = None): """ Defines a global parameter in the graph. :param Sequence['GraphParameterLinkResponse'] links: Association links for this parameter to nodes in the graph. :param str type: Graph parameter's type. :param str description: Description of this graph parameter. """ pulumi.set(__self__, "links", links) pulumi.set(__self__, "type", type) if description is not None: pulumi.set(__self__, "description", description) @property @pulumi.getter def links(self) -> Sequence['outputs.GraphParameterLinkResponse']: """ Association links for this parameter to nodes in the graph. """ return pulumi.get(self, "links") @property @pulumi.getter def type(self) -> str: """ Graph parameter's type. """ return pulumi.get(self, "type") @property @pulumi.getter def description(self) -> Optional[str]: """ Description of this graph parameter. """ return pulumi.get(self, "description") @pulumi.output_type class InputPortResponse(dict): """ Asset input port """ def __init__(__self__, *, type: Optional[str] = None): """ Asset input port :param str type: Port data type. """ if type is None: type = 'Dataset' if type is not None: pulumi.set(__self__, "type", type) @property @pulumi.getter def type(self) -> Optional[str]: """ Port data type. """ return pulumi.get(self, "type") @pulumi.output_type class MachineLearningWorkspaceResponse(dict): """ Information about the machine learning workspace containing the experiment that is source for the web service. """ def __init__(__self__, *, id: str): """ Information about the machine learning workspace containing the experiment that is source for the web service. :param str id: Specifies the workspace ID of the machine learning workspace associated with the web service """ pulumi.set(__self__, "id", id) @property @pulumi.getter def id(self) -> str: """ Specifies the workspace ID of the machine learning workspace associated with the web service """ return pulumi.get(self, "id") @pulumi.output_type class ModeValueInfoResponse(dict): """ Nested parameter definition. """ @staticmethod def __key_warning(key: str): suggest = None if key == "interfaceString": suggest = "interface_string" if suggest: pulumi.log.warn(f"Key '{key}' not found in ModeValueInfoResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ModeValueInfoResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ModeValueInfoResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, interface_string: Optional[str] = None, parameters: Optional[Sequence['outputs.ModuleAssetParameterResponse']] = None): """ Nested parameter definition. :param str interface_string: The interface string name for the nested parameter. :param Sequence['ModuleAssetParameterResponse'] parameters: The definition of the parameter. """ if interface_string is not None: pulumi.set(__self__, "interface_string", interface_string) if parameters is not None: pulumi.set(__self__, "parameters", parameters) @property @pulumi.getter(name="interfaceString") def interface_string(self) -> Optional[str]: """ The interface string name for the nested parameter. """ return pulumi.get(self, "interface_string") @property @pulumi.getter def parameters(self) -> Optional[Sequence['outputs.ModuleAssetParameterResponse']]: """ The definition of the parameter. """ return pulumi.get(self, "parameters") @pulumi.output_type class ModuleAssetParameterResponse(dict): """ Parameter definition for a module asset. """ @staticmethod def __key_warning(key: str): suggest = None if key == "modeValuesInfo": suggest = "mode_values_info" elif key == "parameterType": suggest = "parameter_type" if suggest: pulumi.log.warn(f"Key '{key}' not found in ModuleAssetParameterResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ModuleAssetParameterResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ModuleAssetParameterResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, mode_values_info: Optional[Mapping[str, 'outputs.ModeValueInfoResponse']] = None, name: Optional[str] = None, parameter_type: Optional[str] = None): """ Parameter definition for a module asset. :param Mapping[str, 'ModeValueInfoResponse'] mode_values_info: Definitions for nested interface parameters if this is a complex module parameter. :param str name: Parameter name. :param str parameter_type: Parameter type. """ if mode_values_info is not None: pulumi.set(__self__, "mode_values_info", mode_values_info) if name is not None: pulumi.set(__self__, "name", name) if parameter_type is not None: pulumi.set(__self__, "parameter_type", parameter_type) @property @pulumi.getter(name="modeValuesInfo") def mode_values_info(self) -> Optional[Mapping[str, 'outputs.ModeValueInfoResponse']]: """ Definitions for nested interface parameters if this is a complex module parameter. """ return pulumi.get(self, "mode_values_info") @property @pulumi.getter def name(self) -> Optional[str]: """ Parameter name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="parameterType") def parameter_type(self) -> Optional[str]: """ Parameter type. """ return pulumi.get(self, "parameter_type") @pulumi.output_type class OutputPortResponse(dict): """ Asset output port """ def __init__(__self__, *, type: Optional[str] = None): """ Asset output port :param str type: Port data type. """ if type is None: type = 'Dataset' if type is not None: pulumi.set(__self__, "type", type) @property @pulumi.getter def type(self) -> Optional[str]: """ Port data type. """ return pulumi.get(self, "type") @pulumi.output_type class RealtimeConfigurationResponse(dict): """ Holds the available configuration options for an Azure ML web service endpoint. """ @staticmethod def __key_warning(key: str): suggest = None if key == "maxConcurrentCalls": suggest = "max_concurrent_calls" if suggest: pulumi.log.warn(f"Key '{key}' not found in RealtimeConfigurationResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: RealtimeConfigurationResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: RealtimeConfigurationResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, max_concurrent_calls: Optional[int] = None): """ Holds the available configuration options for an Azure ML web service endpoint. :param int max_concurrent_calls: Specifies the maximum concurrent calls that can be made to the web service. Minimum value: 4, Maximum value: 200. """ if max_concurrent_calls is not None: pulumi.set(__self__, "max_concurrent_calls", max_concurrent_calls) @property @pulumi.getter(name="maxConcurrentCalls") def max_concurrent_calls(self) -> Optional[int]: """ Specifies the maximum concurrent calls that can be made to the web service. Minimum value: 4, Maximum value: 200. """ return pulumi.get(self, "max_concurrent_calls") @pulumi.output_type class ServiceInputOutputSpecificationResponse(dict): """ The swagger 2.0 schema describing the service's inputs or outputs. See Swagger specification: http://swagger.io/specification/ """ def __init__(__self__, *, properties: Mapping[str, 'outputs.TableSpecificationResponse'], type: str, description: Optional[str] = None, title: Optional[str] = None): """ The swagger 2.0 schema describing the service's inputs or outputs. See Swagger specification: http://swagger.io/specification/ :param Mapping[str, 'TableSpecificationResponse'] properties: Specifies a collection that contains the column schema for each input or output of the web service. For more information, see the Swagger specification. :param str type: The type of the entity described in swagger. Always 'object'. :param str description: The description of the Swagger schema. :param str title: The title of your Swagger schema. """ pulumi.set(__self__, "properties", properties) if type is None: type = 'object' pulumi.set(__self__, "type", type) if description is not None: pulumi.set(__self__, "description", description) if title is not None: pulumi.set(__self__, "title", title) @property @pulumi.getter def properties(self) -> Mapping[str, 'outputs.TableSpecificationResponse']: """ Specifies a collection that contains the column schema for each input or output of the web service. For more information, see the Swagger specification. """ return pulumi.get(self, "properties") @property @pulumi.getter def type(self) -> str: """ The type of the entity described in swagger. Always 'object'. """ return pulumi.get(self, "type") @property @pulumi.getter def description(self) -> Optional[str]: """ The description of the Swagger schema. """ return pulumi.get(self, "description") @property @pulumi.getter def title(self) -> Optional[str]: """ The title of your Swagger schema. """ return pulumi.get(self, "title") @pulumi.output_type class StorageAccountResponse(dict): """ Access information for a storage account. """ def __init__(__self__, *, key: Optional[str] = None, name: Optional[str] = None): """ Access information for a storage account. :param str key: Specifies the key used to access the storage account. :param str name: Specifies the name of the storage account. """ if key is not None: pulumi.set(__self__, "key", key) if name is not None: pulumi.set(__self__, "name", name) @property @pulumi.getter def key(self) -> Optional[str]: """ Specifies the key used to access the storage account. """ return pulumi.get(self, "key") @property @pulumi.getter def name(self) -> Optional[str]: """ Specifies the name of the storage account. """ return pulumi.get(self, "name") @pulumi.output_type class TableSpecificationResponse(dict): """ The swagger 2.0 schema describing a single service input or output. See Swagger specification: http://swagger.io/specification/ """ def __init__(__self__, *, type: str, description: Optional[str] = None, format: Optional[str] = None, properties: Optional[Mapping[str, 'outputs.ColumnSpecificationResponse']] = None, title: Optional[str] = None): """ The swagger 2.0 schema describing a single service input or output. See Swagger specification: http://swagger.io/specification/ :param str type: The type of the entity described in swagger. :param str description: Swagger schema description. :param str format: The format, if 'type' is not 'object' :param Mapping[str, 'ColumnSpecificationResponse'] properties: The set of columns within the data table. :param str title: Swagger schema title. """ if type is None: type = 'object' pulumi.set(__self__, "type", type) if description is not None: pulumi.set(__self__, "description", description) if format is not None: pulumi.set(__self__, "format", format) if properties is not None: pulumi.set(__self__, "properties", properties) if title is not None: pulumi.set(__self__, "title", title) @property @pulumi.getter def type(self) -> str: """ The type of the entity described in swagger. """ return pulumi.get(self, "type") @property @pulumi.getter def description(self) -> Optional[str]: """ Swagger schema description. """ return pulumi.get(self, "description") @property @pulumi.getter def format(self) -> Optional[str]: """ The format, if 'type' is not 'object' """ return pulumi.get(self, "format") @property @pulumi.getter def properties(self) -> Optional[Mapping[str, 'outputs.ColumnSpecificationResponse']]: """ The set of columns within the data table. """ return pulumi.get(self, "properties") @property @pulumi.getter def title(self) -> Optional[str]: """ Swagger schema title. """ return pulumi.get(self, "title") @pulumi.output_type class WebServiceKeysResponse(dict): """ Access keys for the web service calls. """ def __init__(__self__, *, primary: Optional[str] = None, secondary: Optional[str] = None): """ Access keys for the web service calls. :param str primary: The primary access key. :param str secondary: The secondary access key. """ if primary is not None: pulumi.set(__self__, "primary", primary) if secondary is not None: pulumi.set(__self__, "secondary", secondary) @property @pulumi.getter def primary(self) -> Optional[str]: """ The primary access key. """ return pulumi.get(self, "primary") @property @pulumi.getter def secondary(self) -> Optional[str]: """ The secondary access key. """ return pulumi.get(self, "secondary") @pulumi.output_type class WebServiceParameterResponse(dict): """ Web Service Parameter object for node and global parameter """ @staticmethod def __key_warning(key: str): suggest = None if key == "certificateThumbprint": suggest = "certificate_thumbprint" if suggest: pulumi.log.warn(f"Key '{key}' not found in WebServiceParameterResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: WebServiceParameterResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: WebServiceParameterResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, certificate_thumbprint: Optional[str] = None, value: Optional[Any] = None): """ Web Service Parameter object for node and global parameter :param str certificate_thumbprint: If the parameter value in 'value' field is encrypted, the thumbprint of the certificate should be put here. :param Any value: The parameter value """ if certificate_thumbprint is not None: pulumi.set(__self__, "certificate_thumbprint", certificate_thumbprint) if value is not None: pulumi.set(__self__, "value", value) @property @pulumi.getter(name="certificateThumbprint") def certificate_thumbprint(self) -> Optional[str]: """ If the parameter value in 'value' field is encrypted, the thumbprint of the certificate should be put here. """ return pulumi.get(self, "certificate_thumbprint") @property @pulumi.getter def value(self) -> Optional[Any]: """ The parameter value """ return pulumi.get(self, "value") @pulumi.output_type class WebServicePropertiesForGraphResponse(dict): """ Properties specific to a Graph based web service. """ @staticmethod def __key_warning(key: str): suggest = None if key == "createdOn": suggest = "created_on" elif key == "modifiedOn": suggest = "modified_on" elif key == "packageType": suggest = "package_type" elif key == "provisioningState": suggest = "provisioning_state" elif key == "swaggerLocation": suggest = "swagger_location" elif key == "commitmentPlan": suggest = "commitment_plan" elif key == "exampleRequest": suggest = "example_request" elif key == "exposeSampleData": suggest = "expose_sample_data" elif key == "machineLearningWorkspace": suggest = "machine_learning_workspace" elif key == "payloadsInBlobStorage": suggest = "payloads_in_blob_storage" elif key == "payloadsLocation": suggest = "payloads_location" elif key == "readOnly": suggest = "read_only" elif key == "realtimeConfiguration": suggest = "realtime_configuration" elif key == "storageAccount": suggest = "storage_account" if suggest: pulumi.log.warn(f"Key '{key}' not found in WebServicePropertiesForGraphResponse. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: WebServicePropertiesForGraphResponse.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: WebServicePropertiesForGraphResponse.__key_warning(key) return super().get(key, default) def __init__(__self__, *, created_on: str, modified_on: str, package_type: str, provisioning_state: str, swagger_location: str, assets: Optional[Mapping[str, 'outputs.AssetItemResponse']] = None, commitment_plan: Optional['outputs.CommitmentPlanResponse'] = None, description: Optional[str] = None, diagnostics: Optional['outputs.DiagnosticsConfigurationResponse'] = None, example_request: Optional['outputs.ExampleRequestResponse'] = None, expose_sample_data: Optional[bool] = None, input: Optional['outputs.ServiceInputOutputSpecificationResponse'] = None, keys: Optional['outputs.WebServiceKeysResponse'] = None, machine_learning_workspace: Optional['outputs.MachineLearningWorkspaceResponse'] = None, output: Optional['outputs.ServiceInputOutputSpecificationResponse'] = None, package: Optional['outputs.GraphPackageResponse'] = None, parameters: Optional[Mapping[str, 'outputs.WebServiceParameterResponse']] = None, payloads_in_blob_storage: Optional[bool] = None, payloads_location: Optional['outputs.BlobLocationResponse'] = None, read_only: Optional[bool] = None, realtime_configuration: Optional['outputs.RealtimeConfigurationResponse'] = None, storage_account: Optional['outputs.StorageAccountResponse'] = None, title: Optional[str] = None): """ Properties specific to a Graph based web service. :param str created_on: Read Only: The date and time when the web service was created. :param str modified_on: Read Only: The date and time when the web service was last modified. :param str package_type: Specifies the package type. Valid values are Graph (Specifies a web service published through the Machine Learning Studio) and Code (Specifies a web service published using code such as Python). Note: Code is not supported at this time. Expected value is 'Graph'. :param str provisioning_state: Read Only: The provision state of the web service. Valid values are Unknown, Provisioning, Succeeded, and Failed. :param str swagger_location: Read Only: Contains the URI of the swagger spec associated with this web service. :param Mapping[str, 'AssetItemResponse'] assets: Contains user defined properties describing web service assets. Properties are expressed as Key/Value pairs. :param 'CommitmentPlanResponse' commitment_plan: Contains the commitment plan associated with this web service. Set at creation time. Once set, this value cannot be changed. Note: The commitment plan is not returned from calls to GET operations. :param str description: The description of the web service. :param 'DiagnosticsConfigurationResponse' diagnostics: Settings controlling the diagnostics traces collection for the web service. :param 'ExampleRequestResponse' example_request: Defines sample input data for one or more of the service's inputs. :param bool expose_sample_data: When set to true, sample data is included in the web service's swagger definition. The default value is true. :param 'ServiceInputOutputSpecificationResponse' input: Contains the Swagger 2.0 schema describing one or more of the web service's inputs. For more information, see the Swagger specification. :param 'WebServiceKeysResponse' keys: Contains the web service provisioning keys. If you do not specify provisioning keys, the Azure Machine Learning system generates them for you. Note: The keys are not returned from calls to GET operations. :param 'MachineLearningWorkspaceResponse' machine_learning_workspace: Specifies the Machine Learning workspace containing the experiment that is source for the web service. :param 'ServiceInputOutputSpecificationResponse' output: Contains the Swagger 2.0 schema describing one or more of the web service's outputs. For more information, see the Swagger specification. :param 'GraphPackageResponse' package: The definition of the graph package making up this web service. :param Mapping[str, 'WebServiceParameterResponse'] parameters: The set of global parameters values defined for the web service, given as a global parameter name to default value map. If no default value is specified, the parameter is considered to be required. :param bool payloads_in_blob_storage: When set to true, indicates that the payload size is larger than 3 MB. Otherwise false. If the payload size exceed 3 MB, the payload is stored in a blob and the PayloadsLocation parameter contains the URI of the blob. Otherwise, this will be set to false and Assets, Input, Output, Package, Parameters, ExampleRequest are inline. The Payload sizes is determined by adding the size of the Assets, Input, Output, Package, Parameters, and the ExampleRequest. :param 'BlobLocationResponse' payloads_location: The URI of the payload blob. This parameter contains a value only if the payloadsInBlobStorage parameter is set to true. Otherwise is set to null. :param bool read_only: When set to true, indicates that the web service is read-only and can no longer be updated or patched, only removed. Default, is false. Note: Once set to true, you cannot change its value. :param 'RealtimeConfigurationResponse' realtime_configuration: Contains the configuration settings for the web service endpoint. :param 'StorageAccountResponse' storage_account: Specifies the storage account that Azure Machine Learning uses to store information about the web service. Only the name of the storage account is returned from calls to GET operations. When updating the storage account information, you must ensure that all necessary assets are available in the new storage account or calls to your web service will fail. :param str title: The title of the web service. """ pulumi.set(__self__, "created_on", created_on) pulumi.set(__self__, "modified_on", modified_on) pulumi.set(__self__, "package_type", 'Graph') pulumi.set(__self__, "provisioning_state", provisioning_state) pulumi.set(__self__, "swagger_location", swagger_location) if assets is not None: pulumi.set(__self__, "assets", assets) if commitment_plan is not None: pulumi.set(__self__, "commitment_plan", commitment_plan) if description is not None: pulumi.set(__self__, "description", description) if diagnostics is not None: pulumi.set(__self__, "diagnostics", diagnostics) if example_request is not None: pulumi.set(__self__, "example_request", example_request) if expose_sample_data is not None: pulumi.set(__self__, "expose_sample_data", expose_sample_data) if input is not None: pulumi.set(__self__, "input", input) if keys is not None: pulumi.set(__self__, "keys", keys) if machine_learning_workspace is not None: pulumi.set(__self__, "machine_learning_workspace", machine_learning_workspace) if output is not None: pulumi.set(__self__, "output", output) if package is not None: pulumi.set(__self__, "package", package) if parameters is not None: pulumi.set(__self__, "parameters", parameters) if payloads_in_blob_storage is not None: pulumi.set(__self__, "payloads_in_blob_storage", payloads_in_blob_storage) if payloads_location is not None: pulumi.set(__self__, "payloads_location", payloads_location) if read_only is not None: pulumi.set(__self__, "read_only", read_only) if realtime_configuration is not None: pulumi.set(__self__, "realtime_configuration", realtime_configuration) if storage_account is not None: pulumi.set(__self__, "storage_account", storage_account) if title is not None: pulumi.set(__self__, "title", title) @property @pulumi.getter(name="createdOn") def created_on(self) -> str: """ Read Only: The date and time when the web service was created. """ return pulumi.get(self, "created_on") @property @pulumi.getter(name="modifiedOn") def modified_on(self) -> str: """ Read Only: The date and time when the web service was last modified. """ return pulumi.get(self, "modified_on") @property @pulumi.getter(name="packageType") def package_type(self) -> str: """ Specifies the package type. Valid values are Graph (Specifies a web service published through the Machine Learning Studio) and Code (Specifies a web service published using code such as Python). Note: Code is not supported at this time. Expected value is 'Graph'. """ return pulumi.get(self, "package_type") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ Read Only: The provision state of the web service. Valid values are Unknown, Provisioning, Succeeded, and Failed. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="swaggerLocation") def swagger_location(self) -> str: """ Read Only: Contains the URI of the swagger spec associated with this web service. """ return pulumi.get(self, "swagger_location") @property @pulumi.getter def assets(self) -> Optional[Mapping[str, 'outputs.AssetItemResponse']]: """ Contains user defined properties describing web service assets. Properties are expressed as Key/Value pairs. """ return pulumi.get(self, "assets") @property @pulumi.getter(name="commitmentPlan") def commitment_plan(self) -> Optional['outputs.CommitmentPlanResponse']: """ Contains the commitment plan associated with this web service. Set at creation time. Once set, this value cannot be changed. Note: The commitment plan is not returned from calls to GET operations. """ return pulumi.get(self, "commitment_plan") @property @pulumi.getter def description(self) -> Optional[str]: """ The description of the web service. """ return pulumi.get(self, "description") @property @pulumi.getter def diagnostics(self) -> Optional['outputs.DiagnosticsConfigurationResponse']: """ Settings controlling the diagnostics traces collection for the web service. """ return pulumi.get(self, "diagnostics") @property @pulumi.getter(name="exampleRequest") def example_request(self) -> Optional['outputs.ExampleRequestResponse']: """ Defines sample input data for one or more of the service's inputs. """ return pulumi.get(self, "example_request") @property @pulumi.getter(name="exposeSampleData") def expose_sample_data(self) -> Optional[bool]: """ When set to true, sample data is included in the web service's swagger definition. The default value is true. """ return pulumi.get(self, "expose_sample_data") @property @pulumi.getter def input(self) -> Optional['outputs.ServiceInputOutputSpecificationResponse']: """ Contains the Swagger 2.0 schema describing one or more of the web service's inputs. For more information, see the Swagger specification. """ return pulumi.get(self, "input") @property @pulumi.getter def keys(self) -> Optional['outputs.WebServiceKeysResponse']: """ Contains the web service provisioning keys. If you do not specify provisioning keys, the Azure Machine Learning system generates them for you. Note: The keys are not returned from calls to GET operations. """ return pulumi.get(self, "keys") @property @pulumi.getter(name="machineLearningWorkspace") def machine_learning_workspace(self) -> Optional['outputs.MachineLearningWorkspaceResponse']: """ Specifies the Machine Learning workspace containing the experiment that is source for the web service. """ return pulumi.get(self, "machine_learning_workspace") @property @pulumi.getter def output(self) -> Optional['outputs.ServiceInputOutputSpecificationResponse']: """ Contains the Swagger 2.0 schema describing one or more of the web service's outputs. For more information, see the Swagger specification. """ return pulumi.get(self, "output") @property @pulumi.getter def package(self) -> Optional['outputs.GraphPackageResponse']: """ The definition of the graph package making up this web service. """ return pulumi.get(self, "package") @property @pulumi.getter def parameters(self) -> Optional[Mapping[str, 'outputs.WebServiceParameterResponse']]: """ The set of global parameters values defined for the web service, given as a global parameter name to default value map. If no default value is specified, the parameter is considered to be required. """ return pulumi.get(self, "parameters") @property @pulumi.getter(name="payloadsInBlobStorage") def payloads_in_blob_storage(self) -> Optional[bool]: """ When set to true, indicates that the payload size is larger than 3 MB. Otherwise false. If the payload size exceed 3 MB, the payload is stored in a blob and the PayloadsLocation parameter contains the URI of the blob. Otherwise, this will be set to false and Assets, Input, Output, Package, Parameters, ExampleRequest are inline. The Payload sizes is determined by adding the size of the Assets, Input, Output, Package, Parameters, and the ExampleRequest. """ return pulumi.get(self, "payloads_in_blob_storage") @property @pulumi.getter(name="payloadsLocation") def payloads_location(self) -> Optional['outputs.BlobLocationResponse']: """ The URI of the payload blob. This parameter contains a value only if the payloadsInBlobStorage parameter is set to true. Otherwise is set to null. """ return pulumi.get(self, "payloads_location") @property @pulumi.getter(name="readOnly") def read_only(self) -> Optional[bool]: """ When set to true, indicates that the web service is read-only and can no longer be updated or patched, only removed. Default, is false. Note: Once set to true, you cannot change its value. """ return pulumi.get(self, "read_only") @property @pulumi.getter(name="realtimeConfiguration") def realtime_configuration(self) -> Optional['outputs.RealtimeConfigurationResponse']: """ Contains the configuration settings for the web service endpoint. """ return pulumi.get(self, "realtime_configuration") @property @pulumi.getter(name="storageAccount") def storage_account(self) -> Optional['outputs.StorageAccountResponse']: """ Specifies the storage account that Azure Machine Learning uses to store information about the web service. Only the name of the storage account is returned from calls to GET operations. When updating the storage account information, you must ensure that all necessary assets are available in the new storage account or calls to your web service will fail. """ return pulumi.get(self, "storage_account") @property @pulumi.getter def title(self) -> Optional[str]: """ The title of the web service. """ return pulumi.get(self, "title")
py
b4048c9fcee7c0ec952c599db8a5033603d9614a
from fastapi import FastAPI, Body, status, HTTPException from fastapi.encoders import jsonable_encoder from app.settings import configs from app.model import CommentSchema, UpdateCommentSchema app = FastAPI( title=configs.API_TITLE, version=configs.API_VERSION, description=configs.API_DESCRIPTION ) @app.get("/", tags=["Home"]) def get_root() -> dict: return { "message": configs.API_WELCOME_MESSAGE } comments = [ { "id": 1, "name": "Michael", "ingredients": ["Let's start a discussion, What is the best API framework in your opinion?"] } ] @app.get("/comment", tags=["Comment"], status_code=status.HTTP_200_OK) def get_comments() -> dict: return { "data": comments } @app.get("/comment/{id}", tags=["Comment"], status_code=status.HTTP_200_OK) def get_comment(id: int) -> dict: if id > len(comments) or id < 1: raise HTTPException(status_code=status.HTTP_409_CONFLICT, detail= "Invalid ID passed.") for comment in comments: if comment['id'] == id: return { "data": [ comment ] } raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="No such comment with ID {} exist".format(id)) @app.post("/comment", tags=["Comment"], status_code=status.HTTP_201_CREATED) def add_comment(comment: CommentSchema = Body(...)) -> dict: comment.id = len(comments) + 1 comments.append(comment.dict()) return { "message": "Comment added successfully." } @app.put("/comment", tags=["Comment"], status_code=status.HTTP_202_ACCEPTED) def update_comment(id: int, comment_data: UpdateCommentSchema) -> dict: stored_comment = {} for comment in comments: if comment["id"] == id: stored_comment = comment if not stored_comment: raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="No such comment exists.") stored_comment_model = CommentSchema(**stored_comment) updated_comment = comment_data.dict(exclude_unset=True) updated_comment = stored_comment_model.copy(update=update_comment) comments[comments.index(stored_comment_model)] = jsonable_encoder(updated_comment) return { "message": "Comment updated successfully." } @app.delete("/comment/{id}", tags=["Comment"], status_code=status.HTTP_202_ACCEPTED) def delete_comment(id: int) -> dict: if id > len(comments) or id < 1: raise HTTPException(status_code=status.HTTP_409_CONFLICT, detail= "Invalid ID passed.") for comment in comments: if comment['id'] == id: comments.remove(comment) return { "message": "Comment deleted successfully." } raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="No such comment with ID {} exist".format(id))
py
b4048d9e146a7fd3e0f46647ed53439a621e9d17
from __future__ import print_function import distutils.spawn import shlex import subprocess import sys from setuptools import find_packages from setuptools import setup version = "3.12.4" if sys.argv[1] == "release": if not distutils.spawn.find_executable("twine"): print( "Please install twine:\n\n\tpip install twine\n", file=sys.stderr ) sys.exit(1) commands = [ "git pull origin master", "git tag v{:s}".format(version), "git push origin master --tag", "python setup.py sdist", "twine upload dist/gdown-{:s}.tar.gz".format(version), ] for cmd in commands: subprocess.check_call(shlex.split(cmd)) sys.exit(0) def get_long_description(): with open("README.md") as f: long_description = f.read() try: import github2pypi return github2pypi.replace_url( slug="wkentaro/gdown", content=long_description ) except Exception: return long_description setup( name="gdown", version=version, packages=find_packages(exclude=["github2pypi"]), install_requires=["filelock", "requests[socks]", "six", "tqdm"], description="Google Drive direct download of big files.", long_description=get_long_description(), long_description_content_type="text/markdown", author="Kentaro Wada", author_email="[email protected]", url="http://github.com/wkentaro/gdown", license="MIT", keywords="Data Download", classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Natural Language :: English", "Programming Language :: Python", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: Implementation :: CPython", ], entry_points={"console_scripts": ["gdown=gdown.cli:main"]}, )
py
b4048e2dd7127c16fc894f221c380c956a8ae5ce
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from brainiak.isc import isc from statsmodels.stats.multitest import multipletests from statistical_tests import bootstrap_test, fisher_mean from coupling_metrics import lagged_isc # Load in PCA-reduced LSTMS k = 100 lstms_pca = np.load(f'results/lstms_tanh-z_pca-k{k}.npy') # Compute simple ISC and save n_matchups = 4 n_repeats = 8 n_players = 4 n_pairs = n_players * (n_players - 1) // 2 iscs = np.full((n_matchups, n_repeats, n_pairs, k), np.nan) for matchup in np.arange(n_matchups): for repeat in np.arange(n_repeats): lstms_rep = np.moveaxis(lstms_pca[matchup, repeat], 0, 2) iscs[matchup, repeat] = isc(lstms_rep, pairwise=True) print("Finished computing ISC for" f"matchup {matchup} repeat {repeat}") np.save(f'results/iscs_tanh-z_pca-k{k}.npy', iscs) # Plot cooperative/competitive ISC for top 10 PCs matchup = 0 n_repeats = 8 pcs = np.arange(10) sns.set_context('notebook', font_scale=1.2) fig, axs = plt.subplots(2, 5, figsize=(25, 8)) for pc, ax in zip(pcs, axs.ravel()): corr = fisher_mean([np.corrcoef(lstms_pca[matchup, r, ..., pc]) for r in np.arange(n_repeats)], axis=0) sns.heatmap(corr, square=True, annot=True, vmin=-1, vmax=1, cmap='RdBu_r', xticklabels=False, yticklabels=False, fmt='.2f', ax=ax) ax.set_title(f'PC{pc + 1}') plt.savefig(f'figures/isc_coop-comp_tanh-z_pca-k{k}_m{matchup}.png', dpi=300, bbox_inches='tight') # Difference in cooperative/competitive ISC across PCs matchup = 0 n_repeats = 8 n_pcs = 100 # Compute differences between cooperative and competitive ISCs isc_diffs = [] isc_diffs_df = {'difference': [], 'PC': [], 'repeat': []} for pc in np.arange(n_pcs): corrs = [np.corrcoef(lstms_pca[matchup, r, ..., pc]) for r in np.arange(n_repeats)] diffs = [np.mean(c[[0, 3], [1, 2]]) - np.mean(c[0:2, 2:4]) for c in corrs] isc_pc_diffs = [] for r, diff in enumerate(diffs): isc_diffs_df['difference'].append(diff) isc_diffs_df['PC'].append(pc + 1) isc_diffs_df['repeat'].append(r) isc_pc_diffs.append(diff) isc_diffs.append(isc_pc_diffs) isc_diffs_df = pd.DataFrame(isc_diffs_df) isc_diffs = np.array(isc_diffs).T # Bootstrap test for significance of difference observed, ci, p, distribution = bootstrap_test(isc_diffs, bootstrap_axis=0, n_bootstraps=1000, estimator=fisher_mean, ci_percentile=95, side='two-sided') # FDR correction of p-values _, fdr_p, _, _ = multipletests(p, method='fdr_bh') # Plot ISCs for 100 PCs with significance markers sig_pos = ((fdr_p < .05) & (observed > 0)).nonzero()[0] sig_neg = ((fdr_p < .05) & (observed < 0)).nonzero()[0] sns.set_context('notebook', font_scale=1.2) fig, ax = plt.subplots(figsize=(16, 4)) sns.barplot(x='PC', y='difference', data=isc_diffs_df, ax=ax, color='.6', estimator=fisher_mean) #ax.set_ylim(-.375, .325) # for matchup = 3 (sig y = -.01) ax.set_ylim(-.3, 1) # for matchup = 0 ax.set_xticks([0, 19, 39, 59, 79, 99]) for sig_pc in sig_pos: ax.annotate('.', (sig_pc, -.02), color='tab:red', size=40, xycoords=('data', 'axes fraction'), ha='center', va='bottom') for sig_pc in sig_neg: ax.annotate('.', (sig_pc, -.02), color='tab:blue', size=40, xycoords=('data', 'axes fraction'), ha='center', va='bottom') ax.set_ylabel('cooperative – competitive ISC') ax.set_title(f'difference in cooperative vs. competitive ISC for 100 PCs'); sns.despine() plt.savefig(f'figures/isc_diff-bars_tanh-z_pca-k{k}_m{matchup}.png', dpi=300, bbox_inches='tight') # Load in PCA-reduced LSTMs with confounds regressed out reg = 'com' # 'pre', 'hud', 'act', or 'com' lstms_pca_reg = np.load(f'results/lstms_tanh-z_pca-k{k}_reg-{reg}.npy') # Compute simple ISC and save n_matchups = 4 n_repeats = 8 n_players = 4 n_pairs = n_players * (n_players - 1) // 2 iscs = np.full((n_matchups, n_repeats, n_pairs, k), np.nan) for matchup in np.arange(n_matchups): for repeat in np.arange(n_repeats): lstms_rep = np.moveaxis(lstms_pca_reg[matchup, repeat], 0, 2) iscs[matchup, repeat] = isc(lstms_rep, pairwise=True) print("Finished computing ISC for" f"matchup {matchup} repeat {repeat}") np.save(f'results/iscs_tanh-z_pca-k{k}_reg-{reg}.npy', iscs) # Plot cooperative/competitive ISC for top 10 PCs matchup = 0 n_repeats = 8 pcs = np.arange(10) sns.set_context('notebook', font_scale=1.2) fig, axs = plt.subplots(2, 5, figsize=(25, 8)) for pc, ax in zip(pcs, axs.ravel()): corr = fisher_mean([np.corrcoef(lstms_pca_reg[matchup, r, ..., pc]) for r in np.arange(n_repeats)], axis=0) sns.heatmap(corr, square=True, annot=True, vmin=-1, vmax=1, cmap='RdBu_r', xticklabels=False, yticklabels=False, fmt='.2f', ax=ax) ax.set_title(f'PC{pc + 1}') plt.savefig(f'figures/isc_coop-comp_tanh-z_pca-k{k}_reg-{reg}_m{matchup}.png', dpi=300, bbox_inches='tight') # Compute differences between cooperative and competitive ISCs matchup = 0 n_repeats = 8 n_pcs = 100 isc_diffs, isc_coops = [], [] isc_diffs_df = {'difference': [], 'PC': [], 'repeat': []} for pc in np.arange(n_pcs): corrs = [np.corrcoef(lstms_pca_reg[matchup, r, ..., pc]) for r in np.arange(n_repeats)] coops = [np.mean(c[[0, 3], [1, 2]]) for c in corrs] diffs = [np.mean(c[[0, 3], [1, 2]]) - np.mean(c[0:2, 2:4]) for c in corrs] isc_coops.append(coops) isc_diffs.append(diffs) isc_pc_diffs = [] for r, diff in enumerate(diffs): isc_diffs_df['difference'].append(diff) isc_diffs_df['PC'].append(pc + 1) isc_diffs_df['repeat'].append(r) isc_pc_diffs.append(diff) isc_diffs_df = pd.DataFrame(isc_diffs_df) isc_coops = np.array(isc_coops).T isc_diffs = np.array(isc_diffs).T # Get PCs with largest difference between cooperative/competitive n_top = 10 isc_diff_means = fisher_mean(isc_diffs, axis=0) top_diffs = np.argpartition(isc_diff_means, -n_top)[-n_top:] top_diffs = top_diffs[np.argsort(isc_diff_means[top_diffs])[::-1]] # Get PCs with largest cooperative ISC (irrespective of competitive ISC) n_top = 10 isc_coop_means = fisher_mean(isc_coops, axis=0) top_coops = np.argpartition(isc_coop_means, -n_top)[-n_top:] top_coops = top_coops[np.argsort(isc_coop_means[top_coops])[::-1]] # Find overlap between top PCs top_both = list(set(top_diffs) & set(top_coops)) # For matchup 0: [2, 7, 9, 23, 24] # Bootstrap test for significance of difference observed, ci, p, distribution = bootstrap_test(isc_diffs, bootstrap_axis=0, n_bootstraps=1000, estimator=fisher_mean, ci_percentile=95, side='two-sided') # FDR correction of p-values _, fdr_p, _, _ = multipletests(p, method='fdr_bh') # Plot ISCs for 100 PCs with significance markers sig_pos = ((fdr_p < .05) & (observed > 0)).nonzero()[0] sig_neg = ((fdr_p < .05) & (observed < 0)).nonzero()[0] sns.set_context('notebook', font_scale=1.2) fig, ax = plt.subplots(figsize=(16, 4)) sns.barplot(x='PC', y='difference', data=isc_diffs_df, ax=ax, color='.6', estimator=fisher_mean) #ax.set_ylim(-.375, .325) # for matchup = 3 ax.set_ylim(-.3, 1) # for matchup = 0 ax.set_xticks([0, 19, 39, 59, 79, 99]) for sig_pc in sig_pos: ax.annotate('.', (sig_pc, -.02), color='tab:red', size=40, xycoords=('data', 'axes fraction'), ha='center', va='bottom') for sig_pc in sig_neg: ax.annotate('.', (sig_pc, -.02), color='tab:blue', size=40, xycoords=('data', 'axes fraction'), ha='center', va='bottom') ax.set_ylabel('cooperative – competitive ISC') ax.set_title(f'difference in cooperative vs. competitive ISC for 100 PCs'); sns.despine() plt.savefig('figures/isc_diff-bars_tanh-z_' f'pca-k{k}_reg-{reg}_m{matchup}.png', dpi=300, bbox_inches='tight') # Zoom in and replot to highlight top PCs from matplotlib.patches import Patch colors = np.array(['.7'] * k, dtype='object') colors[top_coops] = 'tab:red' colors[top_diffs] = 'tab:blue' colors[top_both] = 'tab:purple' np.save('figures/colors_top-bars_tanh-z_' f'pca-k{k}_reg-{reg}_m{matchup}.npy', colors) sns.set_context('notebook', font_scale=1.2) fig, ax = plt.subplots(figsize=(16, 4)) sns.barplot(x='PC', y='difference', data=isc_diffs_df, ax=ax, color='.6', estimator=fisher_mean, palette=colors) #ax.set_ylim(-.375, .325) # for matchup = 3 ax.set_ylim(-.05, .4) # for matchup = 0 ax.set_xticks([0, 19, 39, 59, 79, 99]) ax.set_ylabel('cooperative – competitive ISC') ax.set_title(f'difference in cooperative vs. competitive ISC for 100 PCs') sns.despine() legend_elements = [Patch(facecolor='tab:red'), Patch(facecolor='tab:blue'), Patch(facecolor='tab:purple'), Patch(facecolor='tab:purple')] ax.legend(handles=legend_elements, loc='upper right', labels=['', '', 'top 10 cooperative PCs', 'top 10 difference PCs'], ncol=2, handletextpad=0.5, handlelength=1.0, columnspacing=-0.5) plt.savefig('figures/isc_top-bars_tanh-z_' f'pca-k{k}_reg-{reg}_m{matchup}.png', dpi=300, bbox_inches='tight') # Plot cooperative/competitive ISC for top 10 PCs matchup = 0 n_repeats = 8 pcs = top_both fig, axs = plt.subplots(1, 5, figsize=(18, 8)) for pc, ax in zip(pcs, axs.ravel()): corr = fisher_mean([np.corrcoef(lstms_pca_reg[matchup, r, ..., pc]) for r in np.arange(n_repeats)], axis=0) sns.heatmap(corr, square=True, annot=True, vmin=-1, vmax=1, cmap='RdBu_r', xticklabels=False, yticklabels=False, fmt='.2f', ax=ax, cbar_kws={'shrink': .32}) ax.set_title(f'PC{pc + 1}') plt.savefig(f'figures/isc_top-coop_tanh-z_pca-k{k}_reg-{reg}_m{matchup}.png', dpi=300, bbox_inches='tight') # Lagged ISC for selected PCs matchup = 0 n_repeats = 8 n_lags = 900 pc_ids = np.arange(10) # Compute lagged ISC for each repeat lagged_iscs = [] for repeat in np.arange(n_repeats): # Slicing with array seems to shift axis? lstms_rep = np.moveaxis(lstms_pca[matchup, repeat, ..., pc_ids], 2, 0) lagged_rep, lags = lagged_isc(lstms_rep, n_lags=n_lags, circular=True) lagged_iscs.append(lagged_rep) print(f"Finished computing lagged ISC for repeat {repeat}") lagged_iscs = np.stack(lagged_iscs, axis=0) # Get lagged ISCs for cooperative pairs coop_ids, comp_ids = [0, 5], [1, 2, 3, 4] lagged_coop = np.mean(lagged_iscs[:, coop_ids, ...], axis=1) lagged_comp = np.mean(lagged_iscs[:, coop_ids, ...], axis=1) # Bootstrap test to assess significance observed, ci, ps, distribution = bootstrap_test(lagged_coop, bootstrap_axis=0, n_bootstraps=1000, estimator=fisher_mean, ci_percentile=95, side='right') # FDR correction across lags fdr_ps = [] for p in ps: _, fdr_p, _, _ = multipletests(p, method='fdr_bh') fdr_ps.append(fdr_p) fdr_ps = np.array(fdr_ps) # Plot lagged ISC with significance indicator n_rows, n_cols = 5, 2 fig, axs = plt.subplots(n_rows, n_cols, figsize=(9, 8)) pc_ids = np.arange(10) threshold = .02 sig_ids = (fdr_ps[pc_id] <= threshold).nonzero()[0] for i, (pc_id, ax) in enumerate(zip(pc_ids, axs.ravel())): ax.plot(lags, np.concatenate(lagged_iscs[:, coop_ids, pc_id]).T, color='.8', alpha=.5, zorder=1); ax.plot(lags, np.mean(lagged_coop[:, pc_id, :], axis=0), color='.4', zorder=2); if i not in [8, 9]: ax.xaxis.set_ticks([]) else: ax.set_xticks(lags[::15 * 10]) ax.set_xticklabels(np.unique(lags // 15)[::10]) ax.set_xlabel('lag (seconds)') if i % 2 != 0: ax.yaxis.set_ticks([]) ax.set_ylim(-.3, .7) ax.set_xlim(-n_lags, n_lags) ax.set_title(f'PC{pc_id + 1} cooperative ISC', loc='left', va='top', x=.02, y=.95) sns.despine() plt.tight_layout() plt.savefig('figures/isc_lag-60s_tanh-z_' f'pca-k{k}_m{matchup}.png', dpi=300, bbox_inches='tight') #plt.scatter(lags[sig_ids], np.mean(lagged_coop[:, pc_id], axis=0)[sig_ids], # color='tab:red', marker='.', zorder=3) # Load in PCA-reduced LSTMs with confounds regressed out reg = 'com' # 'pre', 'hud', 'act', or 'com' lstms_pca_reg = np.load(f'results/lstms_tanh-z_pca-k{k}_reg-{reg}.npy') # Lagged ISC for selected PCs matchup = 0 n_repeats = 8 n_lags = 900 pc_ids = np.arange(10) # Compute lagged ISC for each repeat lagged_iscs = [] for repeat in np.arange(n_repeats): # Slicing with array seems to shift axis? lstms_rep = np.moveaxis(lstms_pca_reg[matchup, repeat, ..., pc_ids], 2, 0) lagged_rep, lags = lagged_isc(lstms_rep, n_lags=n_lags, circular=True) lagged_iscs.append(lagged_rep) print(f"Finished computing lagged ISC for repeat {repeat}") lagged_iscs = np.stack(lagged_iscs, axis=0) # Get lagged ISCs for cooperative pairs coop_ids, comp_ids = [0, 5], [1, 2, 3, 4] lagged_coop = np.mean(lagged_iscs[:, coop_ids, ...], axis=1) lagged_comp = np.mean(lagged_iscs[:, coop_ids, ...], axis=1) # Bootstrap test to assess significance observed, ci, ps, distribution = bootstrap_test(lagged_coop, bootstrap_axis=0, n_bootstraps=1000, estimator=fisher_mean, ci_percentile=95, side='right') # FDR correction across lags fdr_ps = [] for p in ps: _, fdr_p, _, _ = multipletests(p, method='fdr_bh') fdr_ps.append(fdr_p) fdr_ps = np.array(fdr_ps) # Plot lagged ISC with significance indicator n_rows, n_cols = 5, 2 fig, axs = plt.subplots(n_rows, n_cols, figsize=(9, 8)) pc_ids = np.arange(10) threshold = .02 sig_ids = (fdr_ps[pc_id] <= threshold).nonzero()[0] for i, (pc_id, ax) in enumerate(zip(pc_ids, axs.ravel())): ax.plot(lags, np.concatenate(lagged_iscs[:, coop_ids, pc_id]).T, color='.8', alpha=.5, zorder=1); ax.plot(lags, np.mean(lagged_coop[:, pc_id, :], axis=0), color='.4', zorder=2); if i not in [8, 9]: ax.xaxis.set_ticks([]) else: ax.set_xticks(lags[::15 * 10]) ax.set_xticklabels(np.unique(lags // 15)[::10]) ax.set_xlabel('lag (seconds)') if i % 2 != 0: ax.yaxis.set_ticks([]) ax.set_ylim(-.3, .7) ax.set_xlim(-n_lags, n_lags) ax.set_title(f'PC{pc_id + 1} cooperative ISC', loc='left', va='top', x=.02, y=.95) sns.despine() plt.tight_layout() plt.savefig('figures/isc_lag-60s_tanh-z_' f'pca-k{k}_reg-{reg}_m{matchup}.png', dpi=300, bbox_inches='tight') #plt.scatter(lags[sig_ids], np.mean(lagged_coop[:, pc_id], axis=0)[sig_ids], # color='tab:red', marker='.', zorder=3)
py
b4048e7ebd98005e6e6b0dff80f9e8783b471667
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "query.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
py
b4048ecbe8d04527d184c762085210192ae7b9dc
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ """ class DeployError(Exception): def __init__(self, msg: str, module: str = 'system', model: str = ''): super().__init__(self) self.msg = msg self.module = module self.model = model def __str__(self): text = '' if self.module: text += '[%s]' % self.module if self.model: text += '<%s>' % self.model return text + ' ' + self.msg
py
b404908f55b11ca38f989253dbfbb6ffbab804bd
from Jumpscale import j class LoggerFactory(j.application.JSBaseClass): __jslocation__ = "j.tools.logger" # _CHILDCLASS = LoggerBase # _LoggerInstance = LoggerInstance @property def debug(self): return j.core.myenv.config["DEBUG"] @debug.setter def debug(self, value): assert j.data.types.bool.check(value) config = {} config["DEBUG"] = value self.config = config @property def config(self): res = {} for name in j.core.myenv.config.keys(): if name.startswith("LOGGER") or name == "DEBUG": res[name] = j.core.myenv.config[name] return res @config.setter def config(self, value): """ default : {'DEBUG': True, 'LOGGER_INCLUDE': ['*'], 'LOGGER_EXCLUDE': ['sal.fs'], 'LOGGER_LEVEL': 15, 'LOGGER_CONSOLE': False, 'LOGGER_REDIS': True 'LOGGER_REDIS_ADDR': None #NOT USED YET, std on the core redis 'LOGGER_REDIS_PORT': None 'LOGGER_REDIS_SECRET': None } :param value: dict with config properties, can be all or some of the above :return: """ assert j.data.types.dict.check(value) changed = False for name in j.core.myenv.config.keys(): if name.startswith("LOGGER") or name == "DEBUG": if name in value: if j.core.myenv.config[name] != value[name]: changed = True self._log_debug("changed in config: %s:%s" % (name, value[name])) j.core.myenv.config[name] = value[name] if changed: j.core.myenv.config_save() self.reload() def reload(self): """ kosmos 'j.tools.logger.reload()' will walk over jsbase classes & reload the logging config :return: """ for obj in j.application._iterate_rootobj(): obj._logger_set(children=True) # self._print(obj._key) def test(self, name="base"): """ kosmos 'j.tools.logger.test()' """ self._test_run(name=name)
py
b40490df4989cdf221fb7754f4580e3e2614d84c
class DummyCharDisplayDriver(object): """Class used in tests""" def __init__(self): pass @property def display_type(self): return "char" def home(self): """Move the cursor back to its home (first line and first column).""" print("dummy lcd: home") def clear(self): """Clear the LCD.""" print("dummy lcd: clear") def set_cursor(self, col, row): """Move the cursor to an explicit column and row position.""" print("dummy lcd: set_cursor", col, row) def enable_display(self, enable): """Enable or disable the display. Set enable to True to enable.""" print("dummy lcd: enable", enable) def show_cursor(self, show): """Show or hide the cursor. Cursor is shown if show is True.""" print("dummy lcd: show_cursor", show) def blink(self, blink): """Turn on or off cursor blinking. Set blink to True to enable blinking.""" print("dummy lcd: blink", blink) def move_left(self): """Move display left one position.""" print("dummy lcd: move_left") def move_right(self): """Move display right one position.""" print("dummy lcd: right") def set_left_to_right(self): """Set text direction left to right.""" print("dummy lcd: set_left_right") def set_right_to_left(self): """Set text direction right to left.""" print("dummy lcd: set_right_to_Left") def autoscroll(self, autoscroll): """Autoscroll will 'right justify' text from the cursor if set True, otherwise it will 'left justify' the text. """ print("dummy lcd: autoscroll") def message(self, text): """Write text to display. Note that text can include newlines.""" print("dummy lcd: message", text) def set_backlight(self, backlight): """Enable or disable the backlight. If PWM is not enabled (default), a non-zero backlight value will turn on the backlight and a zero value will turn it off. If PWM is enabled, backlight can be any value from 0.0 to 1.0, with 1.0 being full intensity backlight. """ print("dummy lcd: backlight", backlight) def create_char(self, location, pattern): """Fill one of the first 8 CGRAM locations with custom characters. The location parameter should be between 0 and 7 and pattern should provide an array of 8 bytes containing the pattern. E.g. you can easyly design your custom character at http://www.quinapalus.com/hd44780udg.html To show your custom character use eg. lcd.message('\x01') """ print("dummy lcd: create_char", location, pattern) class DummyBitmapDisplayDriver(object): """Base class for SSD1306-based OLED displays. Implementors should subclass and provide an implementation for the _initialize function. """ def __init__(self, width, height): self.width = width self.height = height self._pages = height//8 self._buffer = [0]*(width*self._pages) @property def display_type(self): return "bitmap" def reset(self): """Reset the display.""" print("bitmap display: reset") def display(self): """Write display buffer to physical display.""" print("bitmap display: display") def image(self, image): """Set buffer to value of Python Imaging Library image. The image should be in 1 bit mode and a size equal to the display size. """ if image.mode != '1': raise ValueError('Image must be in mode 1.') imwidth, imheight = image.size if imwidth != self.width or imheight != self.height: raise ValueError('Image must be same dimensions as display ({0}x{1}).' \ .format(self.width, self.height)) print("bitmap display: image") image.save("dummydisplay.bmp") def clear(self): """Clear contents of image buffer.""" print("bitmap display: clear") def set_contrast(self, contrast): """Sets the contrast of the display. Contrast should be a value between 0 and 255.""" print("bitmap display: set_contrast", contrast) def dim(self, dim): """Adjusts contrast to dim the display if dim is True, otherwise sets the contrast to normal brightness if dim is False. """ print("bitmap display: dim", dim)
py
b4049106d655c76bec08d59c86f1f0b01ca7ef6c
""" SE-PreResNet for ImageNet-1K, implemented in PyTorch. Original paper: 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. """ __all__ = ['SEPreResNet', 'sepreresnet10', 'sepreresnet12', 'sepreresnet14', 'sepreresnet16', 'sepreresnet18', 'sepreresnet26', 'sepreresnetbc26b', 'sepreresnet34', 'sepreresnetbc38b', 'sepreresnet50', 'sepreresnet50b', 'sepreresnet101', 'sepreresnet101b', 'sepreresnet152', 'sepreresnet152b', 'sepreresnet200', 'sepreresnet200b', 'SEPreResUnit'] import os import torch.nn as nn import torch.nn.init as init from .common import conv1x1, SEBlock from .preresnet import PreResBlock, PreResBottleneck, PreResInitBlock, PreResActivation class SEPreResUnit(nn.Module): """ SE-PreResNet unit. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int Strides of the convolution. bottleneck : bool Whether to use a bottleneck or simple block in units. conv1_stride : bool Whether to use stride in the first or the second convolution layer of the block. """ def __init__(self, in_channels, out_channels, stride, bottleneck, conv1_stride): super(SEPreResUnit, self).__init__() self.resize_identity = (in_channels != out_channels) or (stride != 1) if bottleneck: self.body = PreResBottleneck( in_channels=in_channels, out_channels=out_channels, stride=stride, conv1_stride=conv1_stride) else: self.body = PreResBlock( in_channels=in_channels, out_channels=out_channels, stride=stride) self.se = SEBlock(channels=out_channels) if self.resize_identity: self.identity_conv = conv1x1( in_channels=in_channels, out_channels=out_channels, stride=stride) def forward(self, x): identity = x x, x_pre_activ = self.body(x) x = self.se(x) if self.resize_identity: identity = self.identity_conv(x_pre_activ) x = x + identity return x class SEPreResNet(nn.Module): """ SE-PreResNet model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. bottleneck : bool Whether to use a bottleneck or simple block in units. conv1_stride : bool Whether to use stride in the first or the second convolution layer in units. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (224, 224) Spatial size of the expected input image. num_classes : int, default 1000 Number of classification classes. """ def __init__(self, channels, init_block_channels, bottleneck, conv1_stride, in_channels=3, in_size=(224, 224), num_classes=1000): super(SEPreResNet, self).__init__() self.in_size = in_size self.num_classes = num_classes self.features = nn.Sequential() self.features.add_module("init_block", PreResInitBlock( in_channels=in_channels, out_channels=init_block_channels)) in_channels = init_block_channels for i, channels_per_stage in enumerate(channels): stage = nn.Sequential() for j, out_channels in enumerate(channels_per_stage): stride = 1 if (i == 0) or (j != 0) else 2 stage.add_module("unit{}".format(j + 1), SEPreResUnit( in_channels=in_channels, out_channels=out_channels, stride=stride, bottleneck=bottleneck, conv1_stride=conv1_stride)) in_channels = out_channels self.features.add_module("stage{}".format(i + 1), stage) self.features.add_module("post_activ", PreResActivation(in_channels=in_channels)) self.features.add_module("final_pool", nn.AvgPool2d( kernel_size=7, stride=1)) self.output = nn.Linear( in_features=in_channels, out_features=num_classes) self._init_params() def _init_params(self): for name, module in self.named_modules(): if isinstance(module, nn.Conv2d): init.kaiming_uniform_(module.weight) if module.bias is not None: init.constant_(module.bias, 0) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.output(x) return x def get_sepreresnet(blocks, bottleneck=None, conv1_stride=True, model_name=None, pretrained=False, root=os.path.join("~", ".torch", "models"), **kwargs): """ Create SE-PreResNet model with specific parameters. Parameters: ---------- blocks : int Number of blocks. bottleneck : bool, default None Whether to use a bottleneck or simple block in units. conv1_stride : bool, default True Whether to use stride in the first or the second convolution layer in units. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ if bottleneck is None: bottleneck = (blocks >= 50) if blocks == 10: layers = [1, 1, 1, 1] elif blocks == 12: layers = [2, 1, 1, 1] elif blocks == 14 and not bottleneck: layers = [2, 2, 1, 1] elif (blocks == 14) and bottleneck: layers = [1, 1, 1, 1] elif blocks == 16: layers = [2, 2, 2, 1] elif blocks == 18: layers = [2, 2, 2, 2] elif (blocks == 26) and not bottleneck: layers = [3, 3, 3, 3] elif (blocks == 26) and bottleneck: layers = [2, 2, 2, 2] elif blocks == 34: layers = [3, 4, 6, 3] elif (blocks == 38) and bottleneck: layers = [3, 3, 3, 3] elif blocks == 50: layers = [3, 4, 6, 3] elif blocks == 101: layers = [3, 4, 23, 3] elif blocks == 152: layers = [3, 8, 36, 3] elif blocks == 200: layers = [3, 24, 36, 3] elif blocks == 269: layers = [3, 30, 48, 8] else: raise ValueError("Unsupported SE-PreResNet with number of blocks: {}".format(blocks)) if bottleneck: assert (sum(layers) * 3 + 2 == blocks) else: assert (sum(layers) * 2 + 2 == blocks) init_block_channels = 64 channels_per_layers = [64, 128, 256, 512] if bottleneck: bottleneck_factor = 4 channels_per_layers = [ci * bottleneck_factor for ci in channels_per_layers] channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)] net = SEPreResNet( channels=channels, init_block_channels=init_block_channels, bottleneck=bottleneck, conv1_stride=conv1_stride, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import download_model download_model( net=net, model_name=model_name, local_model_store_dir_path=root) return net def sepreresnet10(**kwargs): """ SE-PreResNet-10 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=10, model_name="sepreresnet10", **kwargs) def sepreresnet12(**kwargs): """ SE-PreResNet-12 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=12, model_name="sepreresnet12", **kwargs) def sepreresnet14(**kwargs): """ SE-PreResNet-14 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=14, model_name="sepreresnet14", **kwargs) def sepreresnet16(**kwargs): """ SE-PreResNet-16 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=16, model_name="sepreresnet16", **kwargs) def sepreresnet18(**kwargs): """ SE-PreResNet-18 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=18, model_name="sepreresnet18", **kwargs) def sepreresnet26(**kwargs): """ SE-PreResNet-26 from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=26, bottleneck=False, model_name="sepreresnet26", **kwargs) def sepreresnetbc26b(**kwargs): """ SE-PreResNet-BC-26b model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=26, bottleneck=True, conv1_stride=False, model_name="sepreresnetbc26b", **kwargs) def sepreresnet34(**kwargs): """ SE-PreResNet-34 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=34, model_name="sepreresnet34", **kwargs) def sepreresnetbc38b(**kwargs): """ SE-PreResNet-BC-38b model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=38, bottleneck=True, conv1_stride=False, model_name="sepreresnetbc38b", **kwargs) def sepreresnet50(**kwargs): """ SE-PreResNet-50 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=50, model_name="sepreresnet50", **kwargs) def sepreresnet50b(**kwargs): """ SE-PreResNet-50 model with stride at the second convolution in bottleneck block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=50, conv1_stride=False, model_name="sepreresnet50b", **kwargs) def sepreresnet101(**kwargs): """ SE-PreResNet-101 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=101, model_name="sepreresnet101", **kwargs) def sepreresnet101b(**kwargs): """ SE-PreResNet-101 model with stride at the second convolution in bottleneck block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=101, conv1_stride=False, model_name="sepreresnet101b", **kwargs) def sepreresnet152(**kwargs): """ SE-PreResNet-152 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=152, model_name="sepreresnet152", **kwargs) def sepreresnet152b(**kwargs): """ SE-PreResNet-152 model with stride at the second convolution in bottleneck block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=152, conv1_stride=False, model_name="sepreresnet152b", **kwargs) def sepreresnet200(**kwargs): """ SE-PreResNet-200 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. It's an experimental model. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=200, model_name="sepreresnet200", **kwargs) def sepreresnet200b(**kwargs): """ SE-PreResNet-200 model with stride at the second convolution in bottleneck block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. It's an experimental model. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=200, conv1_stride=False, model_name="sepreresnet200b", **kwargs) def _calc_width(net): import numpy as np net_params = filter(lambda p: p.requires_grad, net.parameters()) weight_count = 0 for param in net_params: weight_count += np.prod(param.size()) return weight_count def _test(): import torch pretrained = False models = [ sepreresnet10, sepreresnet12, sepreresnet14, sepreresnet16, sepreresnet18, sepreresnet26, sepreresnetbc26b, sepreresnet34, sepreresnetbc38b, sepreresnet50, sepreresnet50b, sepreresnet101, sepreresnet101b, sepreresnet152, sepreresnet152b, sepreresnet200, sepreresnet200b, ] for model in models: net = model(pretrained=pretrained) # net.train() net.eval() weight_count = _calc_width(net) print("m={}, {}".format(model.__name__, weight_count)) assert (model != sepreresnet10 or weight_count == 5461668) assert (model != sepreresnet12 or weight_count == 5536232) assert (model != sepreresnet14 or weight_count == 5833840) assert (model != sepreresnet16 or weight_count == 7022976) assert (model != sepreresnet18 or weight_count == 11776928) assert (model != sepreresnet26 or weight_count == 18092188) assert (model != sepreresnetbc26b or weight_count == 17388424) assert (model != sepreresnet34 or weight_count == 21957204) assert (model != sepreresnetbc38b or weight_count == 24019064) assert (model != sepreresnet50 or weight_count == 28080472) assert (model != sepreresnet50b or weight_count == 28080472) assert (model != sepreresnet101 or weight_count == 49319320) assert (model != sepreresnet101b or weight_count == 49319320) assert (model != sepreresnet152 or weight_count == 66814296) assert (model != sepreresnet152b or weight_count == 66814296) assert (model != sepreresnet200 or weight_count == 71828312) assert (model != sepreresnet200b or weight_count == 71828312) x = torch.randn(1, 3, 224, 224) y = net(x) y.sum().backward() assert (tuple(y.size()) == (1, 1000)) if __name__ == "__main__": _test()
py
b4049168b843d4798c42d2c44c30cf64274bb583
# Generated by Django 3.1.4 on 2021-11-17 20:43 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('morad', '0001_initial'), ] operations = [ migrations.AddField( model_name='car', name='price', field=models.FloatField(default=0, max_length=32), ), ]
py
b4049258dcfe3c84596f76e66b6fcbf7b73928da
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "rrsx.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
py
b4049290c2ae8d5f39f084ee3f32cbebde914e0f
#!/usr/bin/env python import sys, time data_in = sys.argv[1] if len(sys.argv[1:]) > 0 else 'inputs/set01/aoc23.in' def load(file): with open(file) as x: output = x.read() return [line for line in output.split('\n') if line] def solve(data, regs): ip = 0 while(ip < len(data)): tokens = [x.replace(',','') for x in data[ip].split()] if (tokens[0] == 'hlf'): regs[tokens[1]]/=2 ip+=1 elif (tokens[0] == 'tpl'): regs[tokens[1]]*=3 ip+=1 elif (tokens[0] == 'inc'): regs[tokens[1]]+=1 ip+=1 elif (tokens[0] == 'jmp'): ip+=int(tokens[1].replace('+','')) elif (tokens[0] == 'jio'): ip+=int(tokens[2].replace('+','')) if regs[tokens[1]] == 1 else 1 elif (tokens[0] == 'jie'): ip+=1 if regs[tokens[1]] % 2 else int(tokens[2].replace('+','')) return regs data=load(data_in) print "Pt1: {}\nPt2: {}".format(solve(data, {'a': 0, 'b': 0})['b'],solve(data, {'a': 1, 'b': 0})['b'])
py
b40492e041488d4edde7dcc20bbfb05c530c5ee6
from django.urls import path from bargain.views import show_purchases, create_purchase, remove_purchase urlpatterns = ( path('<int:pk>/', show_purchases, name='purchases'), path('<int:user_pk>/<int:product_pk>', remove_purchase, name='remove purchase'), path('add_purchase/<int:user_pk>/<int:watch_pk>', create_purchase, name='create purchase'), )
py
b40493185d4e8e2935e68c96d7412e5c7aa7140a
# Bootstrap installation of Distribute import distribute_setup distribute_setup.use_setuptools() from setuptools import setup, find_packages from hyde.version import __version__ from distutils.util import convert_path from fnmatch import fnmatchcase import os import sys PROJECT = 'hyde' try: long_description = open('README.rst', 'rt').read() except IOError: long_description = '' ################################################################################ # find_package_data is an Ian Bicking creation. # Provided as an attribute, so you can append to these instead # of replicating them: standard_exclude = ('*.py', '*.pyc', '*~', '.*', '*.bak', '*.swp*') standard_exclude_directories = ('.*', 'CVS', '_darcs', './build', './dist', 'EGG-INFO', '*.egg-info') def find_package_data( where='.', package='', exclude=standard_exclude, exclude_directories=standard_exclude_directories, only_in_packages=True, show_ignored=False): """ Return a dictionary suitable for use in ``package_data`` in a distutils ``setup.py`` file. The dictionary looks like:: {'package': [files]} Where ``files`` is a list of all the files in that package that don't match anything in ``exclude``. If ``only_in_packages`` is true, then top-level directories that are not packages won't be included (but directories under packages will). Directories matching any pattern in ``exclude_directories`` will be ignored; by default directories with leading ``.``, ``CVS``, and ``_darcs`` will be ignored. If ``show_ignored`` is true, then all the files that aren't included in package data are shown on stderr (for debugging purposes). Note patterns use wildcards, or can be exact paths (including leading ``./``), and all searching is case-insensitive. This function is by Ian Bicking. """ out = {} stack = [(convert_path(where), '', package, only_in_packages)] while stack: where, prefix, package, only_in_packages = stack.pop(0) for name in os.listdir(where): fn = os.path.join(where, name) if os.path.isdir(fn): bad_name = False for pattern in exclude_directories: if (fnmatchcase(name, pattern) or fn.lower() == pattern.lower()): bad_name = True if show_ignored: print >> sys.stderr, ( "Directory %s ignored by pattern %s" % (fn, pattern)) break if bad_name: continue if os.path.isfile(os.path.join(fn, '__init__.py')): if not package: new_package = name else: new_package = package + '.' + name stack.append((fn, '', new_package, False)) else: stack.append((fn, prefix + name + '/', package, only_in_packages)) elif package or not only_in_packages: # is a file bad_name = False for pattern in exclude: if (fnmatchcase(name, pattern) or fn.lower() == pattern.lower()): bad_name = True if show_ignored: print >> sys.stderr, ( "File %s ignored by pattern %s" % (fn, pattern)) break if bad_name: continue out.setdefault(package, []).append(prefix+name) return out ################################################################################ setup(name=PROJECT, version=__version__, description='hyde is a static website generator', long_description = long_description, author='Lakshmi Vyas', author_email='[email protected]', url='http://hyde.github.com', packages=find_packages(), requires=['python (>= 2.7)'], install_requires=( 'fswrap==0.1.2', 'commando==0.3.4', 'PyYAML==3.10', 'Markdown==2.3.1', 'MarkupSafe==0.18', 'Pygments==1.6', 'typogrify==2.0.0', 'smartypants<1.8', 'Jinja2==2.7.1' ), tests_require=( 'nose', 'mock' ), test_suite='nose.collector', include_package_data = True, # Scan the input for package information # to grab any data files (text, images, etc.) # associated with sub-packages. package_data = find_package_data(PROJECT, package=PROJECT, only_in_packages=False, ), entry_points={ 'console_scripts': [ 'hyde = hyde.main:main' ] }, license='MIT', classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: MIT License', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Unix', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Software Development :: Build Tools', 'Topic :: Software Development :: Code Generators', 'Topic :: Internet', 'Topic :: Internet :: WWW/HTTP :: Site Management', ], zip_safe=False, )
py
b40493a38c9289ceae327dd3c17936e677e34d4a
# -*- coding: utf-8 -*- """ Created on Sun Apr 4 23:32:46 2021 @author: orkun """ import sys from PyQt5 import uic from PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog from PyQt5.QtGui import QStandardItemModel from import_file import File_GET from process_steps import processes import random class pre_process_ui(QMainWindow): def __init__(self, *args): QMainWindow.__init__(self, *args) uic.loadUi('design/PreProcess.ui', self) self.model = QStandardItemModel(self) self.tview.setModel(self.model) self.selectmodel = self.tview.selectionModel() self.btnPrev.setEnabled(False) self.tabWidget.currentChanged.connect(self.tab_change) self.btnLoad.clicked.connect(self.open_filename) self.btnNext.clicked.connect(self.next_tab) self.btnPrev.clicked.connect(self.prev_tab) self.btndata.clicked.connect(self.load_data) self.delimeter = ";" self.cmblist = [";", ",", ":", "-"] self.cbSep.addItems(self.cmblist) self.cbSep.currentTextChanged.connect(self.on_combobox_changed) self.miss_formats = 'n.a.,NA,na,--,NAN,nan' self.leMissing.setText(self.miss_formats) self.leMissing.textChanged.connect(self.on_label_changed) self.selectmodel.selectionChanged.connect(self.on_selectionChanged) self.btnProcess.clicked.connect(self.do_process) self.show() def open_filename(self): fileName, _ = QFileDialog.getOpenFileName( self, "Select (.csv) File", "", "All Files (*);;csv Files (*.csv)") if fileName: self.leFileName.setText(fileName) def next_tab(self): cur_index = self.tabWidget.currentIndex() if cur_index < len(self.tabWidget)-1: self.tabWidget.setCurrentIndex(cur_index+1) def prev_tab(self): cur_index = self.tabWidget.currentIndex() if cur_index > 0: self.tabWidget.setCurrentIndex(cur_index-1) def tab_change(self): cur_index = self.tabWidget.currentIndex() if cur_index == len(self.tabWidget)-1: self.btnNext.setEnabled(False) self.btnPrev.setEnabled(True) elif cur_index < len(self.tabWidget)-1 and cur_index > 0: self.btnNext.setEnabled(True) self.btnPrev.setEnabled(True) elif cur_index == 0: self.btnPrev.setEnabled(False) self.btnNext.setEnabled(True) def on_combobox_changed(self): self.delimeter = self.cbSep.currentText() def on_label_changed(self): self.miss_formats = self.leMissing.text() def on_selectionChanged(self): self.lblcolhead.setText("Selected Columns :" + str([col.data() for col in self.selectmodel.selectedColumns()])) self.col_list = list(col.data() for col in self.selectmodel.selectedColumns()) def load_data(self): file_class = File_GET(self.model, self.leFileName.text(), self.delimeter, self.miss_formats) self.df = file_class.file_import_csv() def do_process(self): process_list = [self.chkmiss.isChecked(), self.chkoutlier.isChecked(), self.chkscale.isChecked()] export_list = [self.chkfile.isChecked(), self.chkgraph.isChecked()] if any(export_list): process_class = processes(process_list, export_list, self.df, self.col_list, self.miss_formats) data_get = process_class.process_steps() if export_list[0]: if data_get is not None: # ----Export File try: fileName, selectedFilter = QFileDialog.getSaveFileName(self, "Save File", str(random.randint(0, 10000)) + "_documentView", "CSV Files (*.csv)") if fileName: data_get.to_csv(fileName, index=False, header=True) # return True except IOError: print("Write Error:", fileName) # return False if __name__ == "__main__": app = QApplication.instance() if app is None: app = QApplication(sys.argv) window = pre_process_ui() sys.exit(app.exec_())
py
b40493db892c4820e308b0b7e4f6760fcc83f761
#!/usr/bin/env python import sys import os.path import cv2 import numpy import utils HAAR_CASCADE_CLASSIFIER = 'config/haarcascade_frontalface_default.xml' class FaceDetector: def __init__(self, classifier_file=HAAR_CASCADE_CLASSIFIER): self.classifier_file = classifier_file self.face_cascade = cv2.CascadeClassifier(classifier_file) def detect(self, image): """ Convert the image to grayscale as OpenCV face detector expects gray images. """ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = self.face_cascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30) ) if len(faces) == 0: return None, None # FIXME assumes there will be only one face # Extract the face area (x, y, w, h) = faces[0] # Return only the face part of the image return gray[y:y+w, x:x+h], faces[0] class FaceRecogniser: def __init__(self): self.face_detector = FaceDetector() self.face_recogniser = cv2.face.LBPHFaceRecognizer_create() self.subject_to_label = {} def train(self, training_data_path): faces = [] labels = [] #cv2.namedWindow('Training...', cv2.WND_PROP_FULLSCREEN) #cv2.setWindowProperty('Training...', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) #screen_width, screen_height = utils.get_screen_resolution() #window_width = int(screen_width * 0.8) #window_height = int(screen_height * 0.8) #cv2.namedWindow('Training...', cv2.WINDOW_NORMAL) #cv2.resizeWindow('Training...', window_width, window_height) cv2.namedWindow('Training...') cv2.moveWindow('Training...', 0, 0) dirs = os.listdir(training_data_path) print dirs label = 0 for dir_name in dirs: if dir_name.startswith('.'): continue subject = dir_name print subject, label subject_path = os.path.join(training_data_path, dir_name) subject_image_files = os.listdir(subject_path) # Read each image, detect the face, add the detected face to the # subject's list of faces for image_name in subject_image_files: # Ignore system files like .DS_Store if image_name.startswith('.') or image_name == 'name.txt': continue print image_name image_path = os.path.join(subject_path, image_name) image = cv2.imread(image_path) # Display an image window to show the image #cv2.imshow('Training...', image) small_image = cv2.resize(image, None, fx = 0.1, fy = 0.1) cv2.imshow('Training...', small_image) cv2.waitKey(100) # Detect and record face face, rect = self.face_detector.detect(image) if face is not None: small_rectangle_coordinates = utils.scale_coordinates(rect, 0.1) utils.draw_rectangle(small_image, small_rectangle_coordinates) cv2.imshow('Training...', small_image) cv2.waitKey(100) faces.append(face) labels.append(label) label += 1 # Clean up after ourselves cv2.destroyWindow('Training...') cv2.waitKey(1) cv2.destroyAllWindows() self.face_recogniser.train(faces, numpy.array(labels)) def main(): face_recogniser = FaceRecogniser() face_recogniser.train(sys.argv[1]) if __name__ == '__main__': main()
py
b4049445e75f58063741ce50b3979cd699ac0c45
#!/usr/bin/env python # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Unit tests for git_common.py""" import binascii import collections import os import shutil import signal import sys import tempfile import time import unittest DEPOT_TOOLS_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, DEPOT_TOOLS_ROOT) from testing_support import coverage_utils from testing_support import git_test_utils class GitCommonTestBase(unittest.TestCase): @classmethod def setUpClass(cls): super(GitCommonTestBase, cls).setUpClass() import git_common cls.gc = git_common cls.gc.TEST_MODE = True class Support(GitCommonTestBase): def _testMemoizeOneBody(self, threadsafe): calls = collections.defaultdict(int) def double_if_even(val): calls[val] += 1 return val * 2 if val % 2 == 0 else None # Use this explicitly as a wrapper fn instead of a decorator. Otherwise # pylint crashes (!!) double_if_even = self.gc.memoize_one(threadsafe=threadsafe)(double_if_even) self.assertEqual(4, double_if_even(2)) self.assertEqual(4, double_if_even(2)) self.assertEqual(None, double_if_even(1)) self.assertEqual(None, double_if_even(1)) self.assertDictEqual({1: 2, 2: 1}, calls) double_if_even.set(10, 20) self.assertEqual(20, double_if_even(10)) self.assertDictEqual({1: 2, 2: 1}, calls) double_if_even.clear() self.assertEqual(4, double_if_even(2)) self.assertEqual(4, double_if_even(2)) self.assertEqual(None, double_if_even(1)) self.assertEqual(None, double_if_even(1)) self.assertEqual(20, double_if_even(10)) self.assertDictEqual({1: 4, 2: 2, 10: 1}, calls) def testMemoizeOne(self): self._testMemoizeOneBody(threadsafe=False) def testMemoizeOneThreadsafe(self): self._testMemoizeOneBody(threadsafe=True) def testOnce(self): testlist = [] # This works around a bug in pylint once = self.gc.once @once def add_to_list(): testlist.append('dog') add_to_list() add_to_list() add_to_list() add_to_list() self.assertEquals(testlist, ['dog']) def slow_square(i): """Helper for ScopedPoolTest. Must be global because non top-level functions aren't pickleable. """ return i ** 2 class ScopedPoolTest(GitCommonTestBase): CTRL_C = signal.CTRL_C_EVENT if sys.platform == 'win32' else signal.SIGINT def testThreads(self): result = [] with self.gc.ScopedPool(kind='threads') as pool: result = list(pool.imap(slow_square, xrange(10))) self.assertEqual([0, 1, 4, 9, 16, 25, 36, 49, 64, 81], result) def testThreadsCtrlC(self): result = [] with self.assertRaises(KeyboardInterrupt): with self.gc.ScopedPool(kind='threads') as pool: # Make sure this pool is interrupted in mid-swing for i in pool.imap(slow_square, xrange(20)): if i > 32: os.kill(os.getpid(), self.CTRL_C) result.append(i) self.assertEqual([0, 1, 4, 9, 16, 25], result) def testProcs(self): result = [] with self.gc.ScopedPool() as pool: result = list(pool.imap(slow_square, xrange(10))) self.assertEqual([0, 1, 4, 9, 16, 25, 36, 49, 64, 81], result) def testProcsCtrlC(self): result = [] with self.assertRaises(KeyboardInterrupt): with self.gc.ScopedPool() as pool: # Make sure this pool is interrupted in mid-swing for i in pool.imap(slow_square, xrange(20)): if i > 32: os.kill(os.getpid(), self.CTRL_C) result.append(i) self.assertEqual([0, 1, 4, 9, 16, 25], result) class ProgressPrinterTest(GitCommonTestBase): class FakeStream(object): def __init__(self): self.data = set() self.count = 0 def write(self, line): self.data.add(line) def flush(self): self.count += 1 @unittest.expectedFailure def testBasic(self): """This test is probably racy, but I don't have a better alternative.""" fmt = '%(count)d/10' stream = self.FakeStream() pp = self.gc.ProgressPrinter(fmt, enabled=True, fout=stream, period=0.01) with pp as inc: for _ in xrange(10): time.sleep(0.02) inc() filtered = {x.strip() for x in stream.data} rslt = {fmt % {'count': i} for i in xrange(11)} self.assertSetEqual(filtered, rslt) self.assertGreaterEqual(stream.count, 10) class GitReadOnlyFunctionsTest(git_test_utils.GitRepoReadOnlyTestBase, GitCommonTestBase): REPO_SCHEMA = """ A B C D B E D """ COMMIT_A = { 'some/files/file1': {'data': 'file1'}, 'some/files/file2': {'data': 'file2'}, 'some/files/file3': {'data': 'file3'}, 'some/other/file': {'data': 'otherfile'}, } COMMIT_C = { 'some/files/file2': { 'mode': 0755, 'data': 'file2 - vanilla\n'}, } COMMIT_E = { 'some/files/file2': {'data': 'file2 - merged\n'}, } COMMIT_D = { 'some/files/file2': {'data': 'file2 - vanilla\nfile2 - merged\n'}, } def testHashes(self): ret = self.repo.run( self.gc.hash_multi, *[ 'master', 'master~3', self.repo['E']+'~', self.repo['D']+'^2', 'tag_C^{}', ] ) self.assertEqual([ self.repo['D'], self.repo['A'], self.repo['B'], self.repo['E'], self.repo['C'], ], ret) self.assertEquals( self.repo.run(self.gc.hash_one, 'branch_D'), self.repo['D'] ) self.assertTrue(self.repo['D'].startswith( self.repo.run(self.gc.hash_one, 'branch_D', short=True))) def testStream(self): items = set(self.repo.commit_map.itervalues()) def testfn(): for line in self.gc.run_stream('log', '--format=%H').xreadlines(): line = line.strip() self.assertIn(line, items) items.remove(line) self.repo.run(testfn) def testStreamWithRetcode(self): items = set(self.repo.commit_map.itervalues()) def testfn(): with self.gc.run_stream_with_retcode('log', '--format=%H') as stdout: for line in stdout.xreadlines(): line = line.strip() self.assertIn(line, items) items.remove(line) self.repo.run(testfn) def testStreamWithRetcodeException(self): import subprocess2 with self.assertRaises(subprocess2.CalledProcessError): with self.gc.run_stream_with_retcode('checkout', 'unknown-branch'): pass def testCurrentBranch(self): def cur_branch_out_of_git(): os.chdir('..') return self.gc.current_branch() self.assertIsNone(self.repo.run(cur_branch_out_of_git)) self.repo.git('checkout', 'branch_D') self.assertEqual(self.repo.run(self.gc.current_branch), 'branch_D') def testBranches(self): # This check fails with git 2.4 (see crbug.com/487172) self.assertEqual(self.repo.run(set, self.gc.branches()), {'master', 'branch_D', 'root_A'}) def testDiff(self): # Get the names of the blobs being compared (to avoid hard-coding). c_blob_short = self.repo.git('rev-parse', '--short', 'tag_C:some/files/file2').stdout.strip() d_blob_short = self.repo.git('rev-parse', '--short', 'tag_D:some/files/file2').stdout.strip() expected_output = [ 'diff --git a/some/files/file2 b/some/files/file2', 'index %s..%s 100755' % (c_blob_short, d_blob_short), '--- a/some/files/file2', '+++ b/some/files/file2', '@@ -1 +1,2 @@', ' file2 - vanilla', '+file2 - merged'] self.assertEqual(expected_output, self.repo.run(self.gc.diff, 'tag_C', 'tag_D').split('\n')) def testDormant(self): self.assertFalse(self.repo.run(self.gc.is_dormant, 'master')) self.repo.git('config', 'branch.master.dormant', 'true') self.assertTrue(self.repo.run(self.gc.is_dormant, 'master')) def testBlame(self): def get_porcelain_for_commit(commit_name, lines): format_string = ('%H {}\nauthor %an\nauthor-mail <%ae>\nauthor-time %at\n' 'author-tz +0000\ncommitter %cn\ncommitter-mail <%ce>\n' 'committer-time %ct\ncommitter-tz +0000\nsummary {}') format_string = format_string.format(lines, commit_name) info = self.repo.show_commit(commit_name, format_string=format_string) return info.split('\n') # Expect to blame line 1 on C, line 2 on E. c_short = self.repo['C'][:8] c_author = self.repo.show_commit('C', format_string='%an %ai') e_short = self.repo['E'][:8] e_author = self.repo.show_commit('E', format_string='%an %ai') expected_output = ['%s (%s 1) file2 - vanilla' % (c_short, c_author), '%s (%s 2) file2 - merged' % (e_short, e_author)] self.assertEqual(expected_output, self.repo.run(self.gc.blame, 'some/files/file2', 'tag_D').split('\n')) # Test porcelain. expected_output = [] expected_output.extend(get_porcelain_for_commit('C', '1 1 1')) expected_output.append('previous %s some/files/file2' % self.repo['B']) expected_output.append('filename some/files/file2') expected_output.append('\tfile2 - vanilla') expected_output.extend(get_porcelain_for_commit('E', '1 2 1')) expected_output.append('previous %s some/files/file2' % self.repo['B']) expected_output.append('filename some/files/file2') expected_output.append('\tfile2 - merged') self.assertEqual(expected_output, self.repo.run(self.gc.blame, 'some/files/file2', 'tag_D', porcelain=True).split('\n')) def testParseCommitrefs(self): ret = self.repo.run( self.gc.parse_commitrefs, *[ 'master', 'master~3', self.repo['E']+'~', self.repo['D']+'^2', 'tag_C^{}', ] ) self.assertEqual(ret, map(binascii.unhexlify, [ self.repo['D'], self.repo['A'], self.repo['B'], self.repo['E'], self.repo['C'], ])) with self.assertRaisesRegexp(Exception, r"one of \('master', 'bananas'\)"): self.repo.run(self.gc.parse_commitrefs, 'master', 'bananas') def testRepoRoot(self): def cd_and_repo_root(path): print(os.getcwd()) os.chdir(path) return self.gc.repo_root() self.assertEqual(self.repo.repo_path, self.repo.run(self.gc.repo_root)) # cd to a subdirectory; repo_root should still return the root dir. self.assertEqual(self.repo.repo_path, self.repo.run(cd_and_repo_root, 'some/files')) def testTags(self): self.assertEqual(set(self.repo.run(self.gc.tags)), {'tag_'+l for l in 'ABCDE'}) def testTree(self): tree = self.repo.run(self.gc.tree, 'master:some/files') file1 = self.COMMIT_A['some/files/file1']['data'] file2 = self.COMMIT_D['some/files/file2']['data'] file3 = self.COMMIT_A['some/files/file3']['data'] self.assertEquals( tree['file1'], ('100644', 'blob', git_test_utils.git_hash_data(file1))) self.assertEquals( tree['file2'], ('100755', 'blob', git_test_utils.git_hash_data(file2))) self.assertEquals( tree['file3'], ('100644', 'blob', git_test_utils.git_hash_data(file3))) tree = self.repo.run(self.gc.tree, 'master:some') self.assertEquals(len(tree), 2) # Don't check the tree hash because we're lazy :) self.assertEquals(tree['files'][:2], ('040000', 'tree')) tree = self.repo.run(self.gc.tree, 'master:wat') self.assertEqual(tree, None) def testTreeRecursive(self): tree = self.repo.run(self.gc.tree, 'master:some', recurse=True) file1 = self.COMMIT_A['some/files/file1']['data'] file2 = self.COMMIT_D['some/files/file2']['data'] file3 = self.COMMIT_A['some/files/file3']['data'] other = self.COMMIT_A['some/other/file']['data'] self.assertEquals( tree['files/file1'], ('100644', 'blob', git_test_utils.git_hash_data(file1))) self.assertEquals( tree['files/file2'], ('100755', 'blob', git_test_utils.git_hash_data(file2))) self.assertEquals( tree['files/file3'], ('100644', 'blob', git_test_utils.git_hash_data(file3))) self.assertEquals( tree['other/file'], ('100644', 'blob', git_test_utils.git_hash_data(other))) class GitMutableFunctionsTest(git_test_utils.GitRepoReadWriteTestBase, GitCommonTestBase): REPO_SCHEMA = '' def _intern_data(self, data): with tempfile.TemporaryFile() as f: f.write(data) f.seek(0) return self.repo.run(self.gc.intern_f, f) def testInternF(self): data = 'CoolBobcatsBro' data_hash = self._intern_data(data) self.assertEquals(git_test_utils.git_hash_data(data), data_hash) self.assertEquals(data, self.repo.git('cat-file', 'blob', data_hash).stdout) def testMkTree(self): tree = {} for i in 1, 2, 3: name = 'file%d' % i tree[name] = ('100644', 'blob', self._intern_data(name)) tree_hash = self.repo.run(self.gc.mktree, tree) self.assertEquals('37b61866d6e061c4ba478e7eb525be7b5752737d', tree_hash) def testConfig(self): self.repo.git('config', '--add', 'happy.derpies', 'food') self.assertEquals(self.repo.run(self.gc.config_list, 'happy.derpies'), ['food']) self.assertEquals(self.repo.run(self.gc.config_list, 'sad.derpies'), []) self.repo.git('config', '--add', 'happy.derpies', 'cat') self.assertEquals(self.repo.run(self.gc.config_list, 'happy.derpies'), ['food', 'cat']) self.assertEquals('cat', self.repo.run(self.gc.config, 'dude.bob', 'cat')) self.repo.run(self.gc.set_config, 'dude.bob', 'dog') self.assertEquals('dog', self.repo.run(self.gc.config, 'dude.bob', 'cat')) self.repo.run(self.gc.del_config, 'dude.bob') # This should work without raising an exception self.repo.run(self.gc.del_config, 'dude.bob') self.assertEquals('cat', self.repo.run(self.gc.config, 'dude.bob', 'cat')) self.assertEquals('origin/master', self.repo.run(self.gc.root)) self.repo.git('config', 'depot-tools.upstream', 'catfood') self.assertEquals('catfood', self.repo.run(self.gc.root)) def testUpstream(self): self.repo.git('commit', '--allow-empty', '-am', 'foooooo') self.assertEquals(self.repo.run(self.gc.upstream, 'bobly'), None) self.assertEquals(self.repo.run(self.gc.upstream, 'master'), None) self.repo.git('checkout', '-tb', 'happybranch', 'master') self.assertEquals(self.repo.run(self.gc.upstream, 'happybranch'), 'master') def testNormalizedVersion(self): self.assertTrue(all( isinstance(x, int) for x in self.repo.run(self.gc.get_git_version))) def testGetBranchesInfo(self): self.repo.git('commit', '--allow-empty', '-am', 'foooooo') self.repo.git('checkout', '-tb', 'happybranch', 'master') self.repo.git('commit', '--allow-empty', '-am', 'foooooo') self.repo.git('checkout', '-tb', 'child', 'happybranch') self.repo.git('checkout', '-tb', 'to_delete', 'master') self.repo.git('checkout', '-tb', 'parent_gone', 'to_delete') self.repo.git('branch', '-D', 'to_delete') supports_track = ( self.repo.run(self.gc.get_git_version) >= self.gc.MIN_UPSTREAM_TRACK_GIT_VERSION) actual = self.repo.run(self.gc.get_branches_info, supports_track) expected = { 'happybranch': ( self.repo.run(self.gc.hash_one, 'happybranch', short=True), 'master', 1 if supports_track else None, None ), 'child': ( self.repo.run(self.gc.hash_one, 'child', short=True), 'happybranch', None, None ), 'master': ( self.repo.run(self.gc.hash_one, 'master', short=True), '', None, None ), '': None, 'parent_gone': ( self.repo.run(self.gc.hash_one, 'parent_gone', short=True), 'to_delete', None, None ), 'to_delete': None } self.assertEquals(expected, actual) class GitMutableStructuredTest(git_test_utils.GitRepoReadWriteTestBase, GitCommonTestBase): REPO_SCHEMA = """ A B C D E F G B H I J K J L X Y Z CAT DOG """ COMMIT_B = {'file': {'data': 'B'}} COMMIT_H = {'file': {'data': 'H'}} COMMIT_I = {'file': {'data': 'I'}} COMMIT_J = {'file': {'data': 'J'}} COMMIT_K = {'file': {'data': 'K'}} COMMIT_L = {'file': {'data': 'L'}} def setUp(self): super(GitMutableStructuredTest, self).setUp() self.repo.git('branch', '--set-upstream-to', 'root_X', 'branch_Z') self.repo.git('branch', '--set-upstream-to', 'branch_G', 'branch_K') self.repo.git('branch', '--set-upstream-to', 'branch_K', 'branch_L') self.repo.git('branch', '--set-upstream-to', 'root_A', 'branch_G') self.repo.git('branch', '--set-upstream-to', 'root_X', 'root_A') def testTooManyBranches(self): for i in xrange(30): self.repo.git('branch', 'a'*i) _, rslt = self.repo.capture_stdio(list, self.gc.branches()) self.assertIn('too many branches (39/20)', rslt) self.repo.git('config', 'depot-tools.branch-limit', 'cat') _, rslt = self.repo.capture_stdio(list, self.gc.branches()) self.assertIn('too many branches (39/20)', rslt) self.repo.git('config', 'depot-tools.branch-limit', '100') # should not raise # This check fails with git 2.4 (see crbug.com/487172) self.assertEqual(38, len(self.repo.run(list, self.gc.branches()))) def testMergeBase(self): self.repo.git('checkout', 'branch_K') self.assertEqual( self.repo['B'], self.repo.run(self.gc.get_or_create_merge_base, 'branch_K', 'branch_G') ) self.assertEqual( self.repo['J'], self.repo.run(self.gc.get_or_create_merge_base, 'branch_L', 'branch_K') ) self.assertEqual( self.repo['B'], self.repo.run(self.gc.config, 'branch.branch_K.base') ) self.assertEqual( 'branch_G', self.repo.run(self.gc.config, 'branch.branch_K.base-upstream') ) # deadbeef is a bad hash, so this will result in repo['B'] self.repo.run(self.gc.manual_merge_base, 'branch_K', 'deadbeef', 'branch_G') self.assertEqual( self.repo['B'], self.repo.run(self.gc.get_or_create_merge_base, 'branch_K', 'branch_G') ) # but if we pick a real ancestor, then it'll work self.repo.run(self.gc.manual_merge_base, 'branch_K', self.repo['I'], 'branch_G') self.assertEqual( self.repo['I'], self.repo.run(self.gc.get_or_create_merge_base, 'branch_K', 'branch_G') ) self.assertEqual({'branch_K': self.repo['I'], 'branch_L': self.repo['J']}, self.repo.run(self.gc.branch_config_map, 'base')) self.repo.run(self.gc.remove_merge_base, 'branch_K') self.repo.run(self.gc.remove_merge_base, 'branch_L') self.assertEqual(None, self.repo.run(self.gc.config, 'branch.branch_K.base')) self.assertEqual({}, self.repo.run(self.gc.branch_config_map, 'base')) # if it's too old, then it caps at merge-base self.repo.run(self.gc.manual_merge_base, 'branch_K', self.repo['A'], 'branch_G') self.assertEqual( self.repo['B'], self.repo.run(self.gc.get_or_create_merge_base, 'branch_K', 'branch_G') ) # If the user does --set-upstream-to something else, then we discard the # base and recompute it. self.repo.run(self.gc.run, 'branch', '-u', 'root_A') self.assertEqual( self.repo['A'], self.repo.run(self.gc.get_or_create_merge_base, 'branch_K') ) self.assertIsNone( self.repo.run(self.gc.get_or_create_merge_base, 'branch_DOG')) def testGetBranchTree(self): skipped, tree = self.repo.run(self.gc.get_branch_tree) # This check fails with git 2.4 (see crbug.com/487172) self.assertEqual(skipped, {'master', 'root_X', 'branch_DOG', 'root_CAT'}) self.assertEqual(tree, { 'branch_G': 'root_A', 'root_A': 'root_X', 'branch_K': 'branch_G', 'branch_L': 'branch_K', 'branch_Z': 'root_X' }) topdown = list(self.gc.topo_iter(tree)) bottomup = list(self.gc.topo_iter(tree, top_down=False)) self.assertEqual(topdown, [ ('branch_Z', 'root_X'), ('root_A', 'root_X'), ('branch_G', 'root_A'), ('branch_K', 'branch_G'), ('branch_L', 'branch_K'), ]) self.assertEqual(bottomup, [ ('branch_L', 'branch_K'), ('branch_Z', 'root_X'), ('branch_K', 'branch_G'), ('branch_G', 'root_A'), ('root_A', 'root_X'), ]) def testIsGitTreeDirty(self): self.assertEquals(False, self.repo.run(self.gc.is_dirty_git_tree, 'foo')) self.repo.open('test.file', 'w').write('test data') self.repo.git('add', 'test.file') self.assertEquals(True, self.repo.run(self.gc.is_dirty_git_tree, 'foo')) def testSquashBranch(self): self.repo.git('checkout', 'branch_K') self.assertEquals(True, self.repo.run(self.gc.squash_current_branch, 'cool message')) lines = ['cool message', ''] for l in 'HIJK': lines.extend((self.repo[l], l, '')) lines.pop() msg = '\n'.join(lines) self.assertEquals(self.repo.run(self.gc.run, 'log', '-n1', '--format=%B'), msg) self.assertEquals( self.repo.git('cat-file', 'blob', 'branch_K:file').stdout, 'K' ) def testSquashBranchEmpty(self): self.repo.git('checkout', 'branch_K') self.repo.git('checkout', 'branch_G', '.') self.repo.git('commit', '-m', 'revert all changes no branch') # Should return False since the quash would result in an empty commit stdout = self.repo.capture_stdio(self.gc.squash_current_branch)[0] self.assertEquals(stdout, 'Nothing to commit; squashed branch is empty\n') def testRebase(self): self.assertSchema(""" A B C D E F G B H I J K J L X Y Z CAT DOG """) rslt = self.repo.run( self.gc.rebase, 'branch_G', 'branch_K~4', 'branch_K') self.assertTrue(rslt.success) self.assertSchema(""" A B C D E F G H I J K B H I J L X Y Z CAT DOG """) rslt = self.repo.run( self.gc.rebase, 'branch_K', 'branch_L~1', 'branch_L', abort=True) self.assertFalse(rslt.success) self.assertFalse(self.repo.run(self.gc.in_rebase)) rslt = self.repo.run( self.gc.rebase, 'branch_K', 'branch_L~1', 'branch_L', abort=False) self.assertFalse(rslt.success) self.assertTrue(self.repo.run(self.gc.in_rebase)) self.assertEqual(self.repo.git('status', '--porcelain').stdout, 'UU file\n') self.repo.git('checkout', '--theirs', 'file') self.repo.git('add', 'file') self.repo.git('rebase', '--continue') self.assertSchema(""" A B C D E F G H I J K L X Y Z CAT DOG """) class GitFreezeThaw(git_test_utils.GitRepoReadWriteTestBase): @classmethod def setUpClass(cls): super(GitFreezeThaw, cls).setUpClass() import git_common cls.gc = git_common cls.gc.TEST_MODE = True REPO_SCHEMA = """ A B C D B E D """ COMMIT_A = { 'some/files/file1': {'data': 'file1'}, 'some/files/file2': {'data': 'file2'}, 'some/files/file3': {'data': 'file3'}, 'some/other/file': {'data': 'otherfile'}, } COMMIT_C = { 'some/files/file2': { 'mode': 0755, 'data': 'file2 - vanilla'}, } COMMIT_E = { 'some/files/file2': {'data': 'file2 - merged'}, } COMMIT_D = { 'some/files/file2': {'data': 'file2 - vanilla\nfile2 - merged'}, } def testNothing(self): self.assertIsNotNone(self.repo.run(self.gc.thaw)) # 'Nothing to thaw' self.assertIsNotNone(self.repo.run(self.gc.freeze)) # 'Nothing to freeze' def testAll(self): def inner(): with open('some/files/file2', 'a') as f2: print >> f2, 'cool appended line' os.mkdir('some/other_files') with open('some/other_files/subdir_file', 'w') as f3: print >> f3, 'new file!' with open('some/files/file5', 'w') as f5: print >> f5, 'New file!1!one!' STATUS_1 = '\n'.join(( ' M some/files/file2', 'A some/files/file5', '?? some/other_files/' )) + '\n' self.repo.git('add', 'some/files/file5') # Freeze group 1 self.assertEquals(self.repo.git('status', '--porcelain').stdout, STATUS_1) self.assertIsNone(self.gc.freeze()) self.assertEquals(self.repo.git('status', '--porcelain').stdout, '') # Freeze group 2 with open('some/files/file2', 'a') as f2: print >> f2, 'new! appended line!' self.assertEquals(self.repo.git('status', '--porcelain').stdout, ' M some/files/file2\n') self.assertIsNone(self.gc.freeze()) self.assertEquals(self.repo.git('status', '--porcelain').stdout, '') # Thaw it out! self.assertIsNone(self.gc.thaw()) self.assertIsNotNone(self.gc.thaw()) # One thaw should thaw everything self.assertEquals(self.repo.git('status', '--porcelain').stdout, STATUS_1) self.repo.run(inner) class GitMakeWorkdir(git_test_utils.GitRepoReadOnlyTestBase, GitCommonTestBase): def setUp(self): self._tempdir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self._tempdir) REPO_SCHEMA = """ A """ def testMakeWorkdir(self): if not hasattr(os, 'symlink'): return workdir = os.path.join(self._tempdir, 'workdir') self.gc.make_workdir(os.path.join(self.repo.repo_path, '.git'), os.path.join(workdir, '.git')) EXPECTED_LINKS = [ 'config', 'info', 'hooks', 'logs/refs', 'objects', 'refs', ] for path in EXPECTED_LINKS: self.assertTrue(os.path.islink(os.path.join(workdir, '.git', path))) self.assertEqual(os.path.realpath(os.path.join(workdir, '.git', path)), os.path.join(self.repo.repo_path, '.git', path)) self.assertFalse(os.path.islink(os.path.join(workdir, '.git', 'HEAD'))) class GitTestUtilsTest(git_test_utils.GitRepoReadOnlyTestBase): REPO_SCHEMA = """ A B """ COMMIT_A = { 'file1': {'data': 'file1'}, } COMMIT_B = { 'file1': {'data': 'file1 changed'}, } def testAutomaticCommitDates(self): # The dates should start from 1970-01-01 and automatically increment. They # must be in UTC (otherwise the tests are system-dependent, and if your # local timezone is positive, timestamps will be <0 which causes bizarre # behaviour in Git; http://crbug.com/581895). self.assertEquals('Author McAuthorly 1970-01-01 00:00:00 +0000', self.repo.show_commit('A', format_string='%an %ai')) self.assertEquals('Charles Committish 1970-01-02 00:00:00 +0000', self.repo.show_commit('A', format_string='%cn %ci')) self.assertEquals('Author McAuthorly 1970-01-03 00:00:00 +0000', self.repo.show_commit('B', format_string='%an %ai')) self.assertEquals('Charles Committish 1970-01-04 00:00:00 +0000', self.repo.show_commit('B', format_string='%cn %ci')) if __name__ == '__main__': sys.exit(coverage_utils.covered_main( os.path.join(DEPOT_TOOLS_ROOT, 'git_common.py')))
py
b40495c3a8bc79d2675c995e72a45dc24462ea68
#from within a working, case-specific subdirectory of the directory containing autorun, export PYTHONPATH=$PYTHONPATH:`cd ..; pwd` #Edit vary_params.py python vary_params.py #Edit path in examine_big_run.py python examine_big_run.py
py
b4049649c7f6a709cbe4ff9bfc8a58179fb32470
"""Plot utilities and functions """ def cm2inch(*tupl): """Convert from cm to inches. Matplotlib uses inches as default unit. Conversion supports tuples as the figsize option for figure. """ inch = 2.54 if isinstance(tupl[0], tuple): return tuple(i/inch for i in tupl[0]) else: return tuple(i/inch for i in tupl)
py
b404966462ba479afd7a4f92b3abc980739905bf
# coding: utf-8 """ Pure Storage FlashBlade REST 1.10 Python SDK Pure Storage FlashBlade REST 1.10 Python SDK. Compatible with REST API versions 1.0 - 1.10. Developed by [Pure Storage, Inc](http://www.purestorage.com/). Documentations can be found at [purity-fb.readthedocs.io](http://purity-fb.readthedocs.io/). OpenAPI spec version: 1.10 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class LogsApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def list_logs(self, **kwargs): """ Download logs This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_logs(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int end_time: Time to end sample in milliseconds since epoch. :param int start_time: Time to start sample in milliseconds since epoch. :return: LogDownloadResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.list_logs_with_http_info(**kwargs) else: (data) = self.list_logs_with_http_info(**kwargs) return data def list_logs_with_http_info(self, **kwargs): """ Download logs This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.list_logs_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int end_time: Time to end sample in milliseconds since epoch. :param int start_time: Time to start sample in milliseconds since epoch. :return: LogDownloadResponse If the method is called asynchronously, returns the request thread. """ all_params = ['end_time', 'start_time'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list_logs" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'end_time' in params: query_params.append(('end_time', params['end_time'])) if 'start_time' in params: query_params.append(('start_time', params['start_time'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/octet-stream', 'text/plain', 'application/json']) # Authentication setting auth_settings = ['AuthTokenHeader'] return self.api_client.call_api('/1.10/logs', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='LogDownloadResponse', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
py
b404981129bd321b9e3059a88ab8d5a789042b55
from flask import Flask, redirect, url_for, render_template, request, flash, session, jsonify import datetime import mysql.connector as mysql from functools import wraps from app.constants import Colors, Manufacturer, VehicleTypes from app.sql import * from app import app MANAGER = "Manager" INVENTORY_CLERK = "InverntoryClerk" SALESPERSON = "Salesperson" SERVICE_WRITER = "ServiceWriter" ANONYMOUS = "anonymous" ROLAND_AROUND = "Owner" db_connection = mysql.connect(host='50.87.253.41', database='charljl4_jj', user='charljl4_team007', password='team007', port=3306) # https://github.com/ashishsarkar/UserLogin/blob/master/app.py # check if user logged in """ Christie """ def is_logged_in(f): @wraps(f) def wrap(*args, **kwargs): if 'logged_in' in session: return f(*args, **kwargs) else: flash('Unauthorized, Please Login with correct credential', 'danger') return redirect(url_for('login')) return wrap def roland_login_as_other(session, r): cur_role = session['role'] next_role = session.get('switch_to_role', None) return cur_role == ROLAND_AROUND and next_role and next_role == r def calculate_available_vehicles(): db_connection.reconnect() cursor = db_connection.cursor() cursor.execute(AvailableVehicles) available_vehicles = cursor.fetchone() return available_vehicles[0] """ Christie """ def load_vehicles(): d = {} db_connection.reconnect() print("Connected to:", db_connection.get_server_info()) cursor = db_connection.cursor() cursor.execute("SELECT * FROM Vehicle;") vehicles = cursor.fetchall() for i, vehicle in enumerate(vehicles): v = { 'id': vehicle[0], 'price': vehicle[1], 'manufacturer': vehicle[2] } d[i] = v return d """ Christie """ @app.route("/monthly_drilldown/<yyyymm>", methods=["GET"]) def monthly_drilldown_reports(yyyymm): # FirstName-LastName-TaxID year, month = yyyymm.split("-")[0], yyyymm.split("-")[1] db_connection.reconnect() cursor = db_connection.cursor() cursor.execute(DrilldownReport, (year, month)) detail_records = cursor.fetchall() return render_template('reports/drilldown_reports.html', records=detail_records) """ Christie """ @app.route("/sales_by_manufacturer", methods=["GET"]) def sales_by_manufacturer_reports(): db_connection.reconnect() cursor = db_connection.cursor() cursor.execute(SalesByManufacturer) sales_by_manufacturer = cursor.fetchall() return render_template('reports/sales_by_manufacturer.html', records=sales_by_manufacturer) """ Christie """ @app.route("/sales_by_type", methods=["GET"]) def sales_by_type_reports(): db_connection.reconnect() cursor = db_connection.cursor() cursor.execute(SalesByType) sales_by_type = cursor.fetchall() return render_template('reports/sales_by_type.html', records=sales_by_type) """ Christie """ @app.route("/part_stats", methods=["GET"]) def part_stats_reports(): db_connection.reconnect() cursor = db_connection.cursor() cursor.execute(PartStatistics) part_stats = cursor.fetchall() return render_template('reports/part_stats.html', records=part_stats) """ Christie """ @app.route("/below_cost", methods=["GET"]) def below_cost_reports(): db_connection.reconnect() cursor = db_connection.cursor() cursor.execute(BelowCost) below_cost = cursor.fetchall() return render_template('reports/below_cost.html', records=below_cost) """ Christie """ # TODO: add two queries together @app.route("/gross_income", methods=["GET"]) def gross_income_reports(): db_connection.reconnect() cursor = db_connection.cursor() cursor.execute(GrossIncome) gross_income = cursor.fetchall() return render_template('reports/gross_income.html', records=gross_income) """ Christie """ @app.route("/monthly_sale", methods=["GET"]) def monthly_sale_reports(): db_connection.reconnect() cursor = db_connection.cursor() cursor.execute(MonthlySale) monthly_sale = cursor.fetchall() return render_template('reports/monthly_sale.html', records=monthly_sale) """ Christie """ @app.route("/repair_reports", methods=["GET"]) def repair_reports(): db_connection.reconnect() cursor = db_connection.cursor() cursor.execute(RepairByType, ('SUV')) repair_by_type = cursor.fetchall() cursor.execute(RepairByManufacturer, ('Honda')) repair_by_manufacturer = cursor.fetchall() return render_template('reports/repair_reports.html', records=repair_by_manufacturer) """ Christie """ @app.route("/avg_inventory", methods=["GET"]) def avg_inventory_reports(): db_connection.reconnect() cursor = db_connection.cursor() cursor.execute(AverageInventoryTime) avg_inventory = cursor.fetchall() return render_template('reports/avg_inventory.html', records=avg_inventory) """ Christie """ @app.route("/sales_by_color", methods=["GET"]) def sales_by_color_reports(): db_connection.reconnect() cursor = db_connection.cursor() cursor.execute(SalesByColor) sales_by_color = cursor.fetchall() return render_template('reports/sales_by_color.html', records=sales_by_color) """ Christie """ @app.route("/login", methods=["POST", "GET"]) def login(): db_connection.reconnect() if request.method == "POST": username = request.form["username"] password = request.form["password"] cur = db_connection.cursor() cur.execute("SELECT * FROM RegisteredUser WHERE username=%s AND user_password=%s", (username, password)) data = cur.fetchone() if data: session['logged_in'] = True session['username'] = data[0] session['role'] = data[4] flash('Login Successfully', 'success') return redirect('home') else: flash('Invalid Login. Try Again', 'danger') return render_template("login.html") else: return render_template("login.html") """ Christie """ # logout @app.route("/logout") def logout(): if 'switch_to_role' in session: session.pop('switch_to_role') return redirect('home') else: session.clear() flash('You are now logged out', 'success') return redirect(url_for('login')) """ Christie """ @app.route('/register', methods=['POST', 'GET']) def register(): status = False if request.method == 'POST': name = request.form["username"] email = request.form["email"] password = request.form["password"] # cur = mysql.connection.cursor() # cur.execute("insert into users(UNAME,UPASS,EMAIL) values(%s,%s,%s)", (name, pwd, email)) # mysql.connection.commit() # cur.close() flash('Registration Successfully. Login Here...', 'success') return redirect('login') return render_template("register.html", status=status) """ Christie """ @app.route('/add_vehicle', methods=['POST']) def add_vehicle(): if request.method == 'POST': vin = request.form["vin"] invoice_price = request.form["invoice_price"] manu_name = request.form["manu_name"] inbound_date = request.form["inbound_date"] model_year = request.form["model_year"] model_name = request.form["model_name"] optional_description = request.form["optional_description"] vehicleTypeID = request.form["vehicleTypeID"] vehicleInputterID = request.form["vehicleInputterID"] session['vin'] = vin cur = db_connection.cursor() cur.execute("insert into Vehicle(VIN, invoice_price, manu_name, inbound_date, model_year, model_name, optional_description, vehicleTypeID, vehicleInputterID)\ values(%s,%s,%s,%s,%s,%s,%s,%s,%s)", ( vin, invoice_price, manu_name, inbound_date, model_year, model_name, optional_description, vehicleTypeID, vehicleInputterID)) db_connection.commit() cur.close() flash('Registration Successfully. Login Here...', 'success') return redirect('view_vehicle') return render_template("vehicle.html") """ Christie """ @app.route('/add_customer', methods=['POST', 'GET']) def add_customer(): if request.method == 'POST': street_address = request.form["street_address"] city = request.form["city"] state = request.form["state"] postal_code = request.form["postal_code"] email_address = request.form["email_address"] phone_number = request.form["phone_number"] is_individual = request.form['is_individual'] cur = db_connection.cursor() cur.execute("INSERT INTO Customer(street_address, city, state, postal_code, email_address, phone_number, is_individual)\ values(%s,%s,%s,%s,%s,%s,%s)", (street_address, city, state, postal_code, email_address, phone_number, is_individual)) db_connection.commit() cur.close() flash('Registration Successfully.', 'success') if is_individual == "1": return redirect('add_individual') else: return redirect('add_business') return render_template('register_customer.html') """ Christie """ @app.route('/add_individual', methods=['POST', 'GET']) def add_individual(): if request.method == 'POST': db_connection.reconnect() cur = db_connection.cursor() driver_license = request.form["driver_license"] ind_first_name = request.form['ind_first_name'] ind_last_name = request.form['ind_last_name'] cur.execute("SELECT COUNT(*) FROM Customer") customer_count = cur.fetchone() cur.execute(InsertIndividual, (driver_license, str(customer_count[0]), ind_first_name, ind_last_name)) db_connection.commit() cur.close() flash('Individual {} {} has been added successfully'.format(ind_first_name, ind_last_name), 'success') return render_template('register_individual.html') """ Christie """ @app.route('/add_business', methods=['POST', 'GET']) def add_business(): if request.method == 'POST': db_connection.reconnect() cur = db_connection.cursor() tax_id = request.form['tax_id'] business_name = request.form['business_name'] title = request.form['title'] contact_name = request.form['contact_name'] cur.execute("SELECT COUNT(*) FROM Customer") customer_count = cur.fetchone() cur.execute(InsertBusiness, (tax_id, str(customer_count[0]), business_name, title, contact_name)) db_connection.commit() cur.close() flash('Business {} {} has been added successfully'.format(business_name, title), 'success') return render_template('register_business.html') """ Christie """ @app.route('/view_vehicle', methods=['GET']) def view_vehicle(): db_connection.reconnect() cursor = db_connection.cursor() vin = session['vin'] cursor.execute("SELECT * FROM Vehicle WHERE VIN=%s", (vin,)) row_of_car = cursor.fetchone() info = { 'vin': row_of_car[0], 'invoice_price': row_of_car[1], 'manu_name': row_of_car[2], 'inbound_date': row_of_car[3], 'model_year': row_of_car[4], 'model_name': row_of_car[5], 'optional_description': row_of_car[6], 'vehicle_type': row_of_car[7], 'vehicle_type_id': row_of_car[8] } return render_template("vehicle_details.html", params=info) """ Christie """ @app.route("/search_data", methods=["POST", "GET"]) def public_search(): if request.method == 'POST': print(request.form) # vin = request.form['vin'] # vehicle_type = request.form['vehicle_type'] # manufacturer = request.form['manufacturer'] # model_year = request.form['model_year'] # color = request.form['color'] # list_price = request.form['list_price'] # key_word = request.form['key_word'] # db_connection.reconnect() # cursor = db_connection.cursor() # cursor.execute("SELECT * FROM Vehicle WHERE VIN=%s", (vin,)) # matches = cursor.fetchall() # records = [] # for m in matches: # info = { # 'vin': m[0], # 'invoice_price': m[1], # 'manu_name': m[2], # 'inbound_date': m[3], # 'model_year': m[4], # 'model_name': m[5], # 'optional_description': m[6], # 'vehicle_type': m[7], # 'vehicle_type_id': m[8] # } # records.append(info) records = [] if session['role'] == SALESPERSON: return render_template("salesperson_filter_results.html", records=records) return render_template("manager_filter_results.html", records=records) """ Christie """ @app.route("/search_customer", methods=["POST", "GET"]) def search_customer(): db_connection.reconnect() if request.method == 'POST': driver_license = request.form['driver_license'] tax_id = request.form['tax_id'] cursor = db_connection.cursor() cursor.execute(FilterCustomer, (driver_license,)) customers = cursor.fetchall() print("[Search Customer]: driver license: {}, tax_id: {}".format(driver_license, tax_id)) records = [] for customer in customers: info = { 'customer_id': customer[0], 'street_address': customer[1], 'city': customer[2], 'state': customer[3], 'postal_code': customer[4], 'email': customer[5], 'phone': customer[6], 'is_individual': customer[7] } records.append(info) if session['role'] == SALESPERSON: return render_template("salesperson_customer_filter_results.html", records=records, vin=session['propose_to_sale']) return render_template("customer_filter_results.html", records=records) @app.route("/sale_vehicle/<select_vin>", methods=["POST"]) def sale_vehicle(select_vin): session['propose_to_sale'] = select_vin return render_template("salesperson_customer_search.html") @app.route('/add_order/<vin>/<customer_id>', methods=['GET']) def add_order(vin, customer_id): current_date = datetime.datetime.now() return render_template("order.html", vin=vin, customer_id=customer_id, role='dyu', current_date=current_date) # sold_price > 95% * invoice_price @app.route('/submit_order', methods=['POST']) def submit_order(): current_date = datetime.datetime.now() if request.method == 'POST': vin = request.form['vin'] sales_inputter_id = request.form['sales_inputter_id'] sold_price = request.form['sold_price'] customer_id = request.form['customer_id'] db_connection.reconnect() cur = db_connection.cursor() cur.execute(InsertPurchase, (sales_inputter_id, vin, customer_id, current_date, sold_price)) db_connection.commit() cur.close() flash('Order Submitted Correctly!', 'info') return redirect('home') @app.route("/switch_role", methods=["POST"]) def switch_role(): session['switch_to_role'] = request.form['switch'] print(session) return redirect(request.referrer) """ Christie """ def dynamic_dropdown(): db_connection.reconnect() cursor = db_connection.cursor() cursor.execute(SelectDistinctVIN) vin = cursor.fetchall() cursor.execute(SelectDistinctTypeName) vehicles_types = cursor.fetchall() cursor.execute(SelectDistinctModelYear) model_years = cursor.fetchall() cursor.execute(SelectDistinctColor) colors = cursor.fetchall() cursor.execute(SelectDistinctManufacturer) manufacturers = cursor.fetchall() list_vin = map(lambda x: x[0], vin) list_vehicles_types = map(lambda x: x[0], vehicles_types) list_model_year = map(lambda x: x[0], model_years) list_of_colors = map(lambda x: x[0], colors) list_of_manufacturers = map(lambda x: x[0], manufacturers) d = { 'vin' : list_vin, 'vehicles_types' : list_vehicles_types, 'model_year': list_model_year, 'colors': list_of_colors, 'manufacturers': list_of_manufacturers } return d @app.route('/home', methods=['GET']) @is_logged_in def index(): role = session['role'] dropdown_data = dynamic_dropdown() if role == MANAGER or roland_login_as_other(session, MANAGER): available_car_amount = calculate_available_vehicles() return render_template("manager.html", vin=dropdown_data.get('vin', []), colors=dropdown_data.get('colors', []), manufacturers=dropdown_data.get('manufacturers', []), vehicles_types=dropdown_data.get('vehicles_types', []), model_year=dropdown_data.get('model_year', []), available_car_amount=available_car_amount) elif role == INVENTORY_CLERK or roland_login_as_other(session, INVENTORY_CLERK): return render_template("clerk.html", params=role) elif role == SERVICE_WRITER or roland_login_as_other(session, SERVICE_WRITER): return render_template("writer.html", params=role) elif role == SALESPERSON or roland_login_as_other(session, SALESPERSON): return render_template("salesperson.html", params=role, colors=Colors, manufacturers=Manufacturer, vehicles_types=VehicleTypes) elif role == ROLAND_AROUND: return render_template('roland.html', colors=Colors, manufacturers=Manufacturer, vehicles_types=VehicleTypes)
py
b40498ee6e779130b2eb114b26c26f888308176b
import requests from pytest import fixture, mark, raises from scanapi.errors import InvalidPythonCodeError from scanapi.evaluators import CodeEvaluator @mark.describe("code evaluator") @mark.describe("evaluate") class TestEvaluate: @fixture def response(self, requests_mock): requests_mock.get("http://test.com", text="abcde") return requests.get("http://test.com") test_data = ["no code", "${CODE}", "${code}", "{{code}}", 10, []] @mark.context("when sequence does not match the pattern") @mark.it("should return sequence") @mark.parametrize("sequence", test_data) def test_should_return_sequence(self, sequence): assert CodeEvaluator.evaluate(sequence, {}) == sequence test_data = [ ("${{1 == 1}}", (True, None)), ("${{1 == 4}}", (False, "1 == 4")), ] @mark.context("when sequence matches the pattern") @mark.context("when it is a test case") @mark.context("when code does not contain pre saved response") @mark.it("should return assert results") @mark.parametrize("sequence, expected", test_data) def test_should_return_assert_results(self, sequence, expected): assert ( CodeEvaluator.evaluate(sequence, {}, is_a_test_case=True) == expected ) test_data = [ ("${{response.text == 'abcde'}}", (True, None)), ("${{response.url == 'http://test.com/'}}", (True, None),), ( "${{response.status_code == 300}}", (False, "response.status_code == 300"), ), ("${{response.url == 'abc'}}", (False, "response.url == 'abc'"),), ] @mark.context("when sequence matches the pattern") @mark.context("when it is a test case") @mark.context("when code contains pre saved response") @mark.it("should return assert results") @mark.parametrize("sequence, expected", test_data) def test_should_return_assert_results_2(self, sequence, expected, response): assert ( CodeEvaluator.evaluate( sequence, {"response": response}, is_a_test_case=True, ) == expected ) test_data = [ ("${{1/0}}", {}, True), ("${{response.url == 'abc'}}", {}, True), ("${{foo = 'abc'}}", {}, True), ] @mark.context("when sequence matches the pattern") @mark.context("when it is a test case") @mark.context("when code breaks") @mark.it("should raises invalid python code error") @mark.parametrize("sequence, spec_vars, is_a_test_case", test_data) def test_should_raises_invalid_python_code_error( self, sequence, spec_vars, is_a_test_case ): with raises(InvalidPythonCodeError) as excinfo: CodeEvaluator.evaluate(sequence, spec_vars, is_a_test_case) assert isinstance(excinfo.value, InvalidPythonCodeError) test_data = [("${{1 + 1}}", "2"), ("${{'hi'*4}}", "hihihihi")] @mark.context("when sequence matches the pattern") @mark.context("when it is not a test case") @mark.context("when code does not contain pre saved response") @mark.it("should return evaluated code") @mark.parametrize("sequence, expected", test_data) def test_should_return_evaluated_code(self, sequence, expected): assert CodeEvaluator.evaluate(sequence, {}) == expected test_data = [ ("${{response.text}}", "abcde"), ("${{response.status_code}}", "200"), ("${{response.text + 'xpto'}}", "abcdexpto"), ("${{'xpto' + response.text}}", "xptoabcde"), ("${{1+1}}", "2"), ] @mark.context("when sequence matches the pattern") @mark.context("when it is not a test case") @mark.context("when code contains pre saved response") @mark.it("should return evaluated code") @mark.parametrize("sequence, expected", test_data) def test_should_return_evaluated_code_2(self, sequence, expected, response): assert ( CodeEvaluator.evaluate(sequence, {"response": response}) == expected )
py
b4049905657d926fb4dd1ba79886578e6b691dcc
""" Module that interacts with the orchestrator CLI. Provide the interfaces to ceph orch and in turn manage the orchestration engine. """ import logging from datetime import datetime, timedelta from json import loads from time import sleep from typing import List from ceph.ceph import ResourceNotFoundError from .ceph import CephCLI from .ls import LSMixin from .ps import PSMixin from .remove import RemoveMixin LOG = logging.getLogger() class Orch(LSMixin, PSMixin, RemoveMixin, CephCLI): """Represent ceph orch command.""" direct_calls = ["ls", "ps"] def check_service_exists( self, service_name: str, ids: List[str], timeout: int = 300, interval: int = 5 ) -> bool: """ Verify the provided service is running for the given list of ids. Args: service_name: The name of the service to be checked. ids: The list of daemons to be checked for that service. timeout: In seconds, the maximum allowed time. By default 5 minutes interval: In seconds, the polling interval time. Returns: True if the service and the list of daemons are running else False. """ end_time = datetime.now() + timedelta(seconds=timeout) while end_time > datetime.now(): sleep(interval) out, err = self.ps({"base_cmd_args": {"format": "json"}}) out = loads(out) daemons = [d for d in out if d.get("daemon_type") == service_name] count = 0 for _id in ids: for daemon in daemons: if ( _id in daemon["daemon_id"] and daemon["status_desc"] == "running" ): count += 1 LOG.info("%s/%s %s daemon(s) up... retrying", count, len(ids), service_name) if count == len(ids): return True # Identify the failure out, err = self.ls({"base_cmd_args": {"format": "json"}}) for item in loads(out): if ( service_name in item.get("service_type") and item["status"].get("running") == 0 ): LOG.error("Service status(es): %s", item) LOG.error("Service event(s): %s", item["events"]) return False def get_role_service(self, service_name: str) -> str: """ Get service info by name. Args: service_name: service name Returns: service Raises: ResourceNotFound: when no resource with the provided is matched. """ out, _ = self.ls() for svc in loads(out): if service_name in svc.get("service_name"): return svc raise ResourceNotFoundError(f"No service names matched {service_name}") def check_service( self, service_name: str, timeout: int = 300, interval: int = 5, exist=True ) -> bool: """ check service existence based on the exist parameter if exist is set, then validate its presence. otherwise, for its removal. Args: service_name: service name timeout: timeout in seconds interval: interval in seconds exist: boolean Returns: service """ end_time = datetime.now() + timedelta(seconds=timeout) while end_time > datetime.now(): sleep(interval) out, err = self.ls({"base_cmd_args": {"format": "json"}}) out = loads(out) service = [d for d in out if d.get("service_name") == service_name] if service_name not in service and not exist: return True elif service_name in service and exist: return True LOG.info("[%s] check for existence: %s, retrying" % (service_name, exist)) return False
py
b40499d55d31928d5a2cba9778e3acd073e6c615
import torch from torchvision import models class resnet18(torch.nn.Module): def __init__(self, pretrained=True): super().__init__() self.features = models.resnet18(pretrained=pretrained) self.conv1 = self.features.conv1 self.bn1 = self.features.bn1 self.relu = self.features.relu self.maxpool1 = self.features.maxpool self.layer1 = self.features.layer1 self.layer2 = self.features.layer2 self.layer3 = self.features.layer3 self.layer4 = self.features.layer4 def forward(self, input): x = self.conv1(input) # 1 / 2 x = self.relu(self.bn1(x)) x = self.maxpool1(x) feature1 = self.layer1(x) # 1 / 4 feature2 = self.layer2(feature1) # 1 / 8 feature3 = self.layer3(feature2) # 1 / 16 feature4 = self.layer4(feature3) # 1 / 32 # global average pooling to build tail tail = torch.mean(feature4, 3, keepdim=True) tail = torch.mean(tail, 2, keepdim=True) return feature3, feature4, tail class resnet50(torch.nn.Module): def __init__(self, pretrained=True): super().__init__() self.features = models.resnet50(pretrained=pretrained) self.conv1 = self.features.conv1 self.bn1 = self.features.bn1 self.relu = self.features.relu self.maxpool1 = self.features.maxpool self.layer1 = self.features.layer1 self.layer2 = self.features.layer2 self.layer3 = self.features.layer3 self.layer4 = self.features.layer4 def forward(self, input): x = self.conv1(input) # 1 / 2 x = self.relu(self.bn1(x)) x = self.maxpool1(x) feature1 = self.layer1(x) # 1 / 4 feature2 = self.layer2(feature1) # 1 / 8 feature3 = self.layer3(feature2) # 1 / 16 feature4 = self.layer4(feature3) # 1 / 32 # global average pooling to build tail tail = torch.mean(feature4, 3, keepdim=True) tail = torch.mean(tail, 2, keepdim=True) return feature3, feature4, tail class resnet101(torch.nn.Module): def __init__(self, pretrained=True): super().__init__() self.features = models.resnet101(pretrained=pretrained) self.conv1 = self.features.conv1 self.bn1 = self.features.bn1 self.relu = self.features.relu self.maxpool1 = self.features.maxpool self.layer1 = self.features.layer1 self.layer2 = self.features.layer2 self.layer3 = self.features.layer3 self.layer4 = self.features.layer4 def forward(self, input): x = self.conv1(input) x = self.relu(self.bn1(x)) x = self.maxpool1(x) feature1 = self.layer1(x) # 1 / 4 feature2 = self.layer2(feature1) # 1 / 8 feature3 = self.layer3(feature2) # 1 / 16 feature4 = self.layer4(feature3) # 1 / 32 # global average pooling to build tail # https://paperswithcode.com/method/global-average-pooling # from (n,d,r,c) to (n,d,1,1) tail = torch.mean(feature4, 3, keepdim=True) tail = torch.mean(tail, 2, keepdim=True) return feature3, feature4, tail def build_contextpath(name): model = { "resnet18": resnet18(pretrained=True), "resnet50": resnet50(pretrained=True), # "resnet101": resnet101(pretrained=True), } return model[name] if __name__ == "__main__": # model_18 = build_contextpath("resnet18") model_50 = build_contextpath("resnet50") x = torch.rand(1, 3, 256, 256) y_50 = model_50(x) print(y_50)
py
b4049a25c4dea25e177e6ce069e34094942d55de
""" Source.py Author: Jordan Mirocha Affiliation: University of Colorado at Boulder Created on: Sun Jul 22 16:28:08 2012 Description: Initialize a radiation source. """ import re, os import numpy as np from scipy.integrate import quad from ..util import ParameterFile from ..physics.Hydrogen import Hydrogen from ..physics.Cosmology import Cosmology from ..physics.Constants import erg_per_ev, E_LL from ..static.IntegralTables import IntegralTable from ..static.InterpolationTables import LookupTable from ..util.SetDefaultParameterValues import SourceParameters, \ CosmologyParameters from ..physics.CrossSections import PhotoIonizationCrossSection as sigma_E try: import h5py except ImportError: pass np.seterr(all='ignore') # exp overflow occurs when integrating BB # will return 0 as it should for x large cosmo_pars = CosmologyParameters() class Source(object): def __init__(self, grid=None, logN=None, init_tabs=True): """ Initialize a radiation source object. ..note:: This is inherited by all other ares.sources classes. Parameters ---------- grid: rt1d.static.Grid.Grid instance logN: column densities over which to tabulate integral quantities """ # Update cosmological parameters # Why is this necessary? J.M.12.27.2015 for par in cosmo_pars: if par in self.pf: continue self.pf[par] = cosmo_pars[par] # Modify parameter file if spectrum_file provided #self._load_spectrum() # Correct emission limits if none were provided self.Emin = self.pf['source_Emin'] self.Emax = self.pf['source_Emax'] self.logEmin = np.log10(self.Emin) self.logEmax = np.log10(self.Emax) if self.pf['source_EminNorm'] == None: self.pf['source_EminNorm'] = self.pf['source_Emin'] if self.pf['source_EmaxNorm'] == None: self.pf['source_EmaxNorm'] = self.pf['source_Emax'] self.EminNorm = self.pf['source_EminNorm'] self.EmaxNorm = self.pf['source_EmaxNorm'] # Number of frequencies #if self.discrete: # self.E = np.array(self.pf['source_E']) # self.LE = np.array(self.pf['source_LE']) # self.Nfreq = len(self.E) # #if self.src._name == 'DiffuseSource': # self.ionization_rate = self.src.ionization_rate # self.secondary_ionization_rate = self.src.secondary_ionization_rate # self.heating_rate = self.src.heating_rate # #self.Lbol = self.Lbol0 = self.BolometricLuminosity(0.0) # Create lookup tables for integral quantities if init_tabs and grid is not None: self._create_integral_table(logN=logN) @property def cosm(self): if not hasattr(self, '_cosm'): if self.grid is None: self._cosm = Cosmology( omega_m_0=self.pf['omega_m_0'], omega_l_0=self.pf['omega_l_0'], omega_b_0=self.pf['omega_b_0'], hubble_0=self.pf['hubble_0'], helium_by_number=self.pf['helium_by_number'], cmb_temp_0=self.pf['cmb_temp_0'], approx_highz=self.pf['approx_highz'], sigma_8=self.pf['sigma_8'], primordial_index=self.pf['primordial_index']) else: self._cosm = self.grid.cosm return self._cosm @property def multi_freq(self): if not hasattr(self, '_multi_freq'): self._multi_freq = self.discrete and not self.pf['source_multigroup'] return self._multi_freq @property def multi_group(self): if not hasattr(self, '_multi_group'): self._multi_group = self.discrete and self.pf['source_multigroup'] return self._multi_group @property def ionizing(self): # See if source emits ionizing photons # Should also be function of absorbers if not hasattr(self, '_ionizing'): self._ionizing = self.pf['source_Emax'] > E_LL return self._ionizing @property def grid(self): if not hasattr(self, '_grid'): self._grid = None return self._grid @grid.setter def grid(self, value): self._grid = value @property def discrete(self): if not hasattr(self, '_discrete'): self._discrete = (self.pf['source_E'] != None) #\ #or self.pf['optically_thin'] return self._discrete @property def continuous(self): if not hasattr(self, '_continuous'): self._continuous = not self.discrete return self._continuous @property def hydr(self): if not hasattr(self, '_hydr'): self._hydr = None return self._hydr @hydr.setter def hydr(self, value): self._hydr = value @property def frec(self): """ Compute average recycling fraction (i.e., spectrum-weighted frec). """ if self.hydr is None: return None n = np.arange(2, self.hydr.nmax) En = np.array(map(self.hydr.ELyn, n)) In = np.array(map(self.Spectrum, En)) / En fr = np.array(map(self.hydr.frec, n)) return np.sum(fr * In) / np.sum(In) @property def intrinsic_hardening(self): if not hasattr(self, '_intrinsic_hardening'): if 'source_hardening' in self.pf: self._intrinsic_hardening = \ self.pf['source_hardening'] == 'intrinsic' else: self._intrinsic_hardening = False return self._intrinsic_hardening def _hardening_factor(self, E): return np.exp(-10.**self.logN \ * (sigma_E(E, 0) + self.cosm.y * sigma_E(E, 1))) @property def logN(self): if not hasattr(self, '_logN'): if 'source_logN' in self.pf: self._logN = self.pf['source_logN'] else: self._logN = -np.inf return self._logN @property def _normL(self): if not hasattr(self, '_normL_'): if self.intrinsic_hardening: self._normL_ = 1. / quad(self._Intensity, self.pf['source_EminNorm'], self.pf['source_EmaxNorm'])[0] else: integrand = lambda EE: self._Intensity(EE) / self._hardening_factor(EE) self._normL_ = 1. / quad(integrand, self.pf['source_EminNorm'], self.pf['source_EmaxNorm'])[0] return self._normL_ #def _load_spectrum(self): # """ Modify a few parameters if spectrum_file provided. """ # # fn = self.pf['spectrum_file'] # # if fn is None: # return # # # Read spectrum - expect hdf5 with (at least) E, LE, and t datasets. # if re.search('.hdf5', fn): # f = h5py.File(fn) # try: # self.pf['tables_times'] = f['t'].value # except: # self.pf['tables_times'] = None # self.pf['spectrum_evolving'] = False # # self.pf['spectrum_E'] = f['E'].value # self.pf['spectrum_LE'] = f['LE'].value # f.close() # # if len(self.pf['spectrum_LE'].shape) > 1 \ # and not self.pf['spectrum_evolving']: # self.pf['spectrum_LE'] = self.pf['spectrum_LE'][0] # else: # spec = readtab(fn) # if len(spec) == 2: # self.pf['spectrum_E'], self.pf['spectrum_LE'] = spec # else: # self.pf['spectrum_E'], self.pf['spectrum_LE'], \ # self.pf['spectrum_t'] = spec @property def tables(self): if not hasattr(self, '_tables'): self._create_integral_table() return self._tables @property def tab(self): if not hasattr(self, '_tab'): self._create_integral_table() return self._tab @property def tabs(self): if not hasattr(self, '_tabs'): self._create_integral_table() return self._tabs def _create_integral_table(self, logN=None): """ Take tables and create interpolation functions. """ if self.discrete: return if self._name == 'diffuse': return if self.pf['source_table'] is None: # Overide defaults if supplied - this is dangerous if logN is not None: self.pf.update({'tables_dlogN': [np.diff(tmp) for tmp in logN]}) self.pf.update({'tables_logNmin': [np.min(tmp) for tmp in logN]}) self.pf.update({'tables_logNmax': [np.max(tmp) for tmp in logN]}) # Tabulate away! self._tab = IntegralTable(self.pf, self, self.grid, logN) self._tabs = self.tab.TabulateRateIntegrals() else: self._tab = IntegralTable(self.pf, self, self.grid, logN) self._tabs = self.tab.load(self.pf['source_table']) self._setup_interp() def _setup_interp(self): self._tables = {} for tab in self.tabs: self._tables[tab] = \ LookupTable(self.pf, tab, self.tab.logN, self.tabs[tab], self.tab.logx, self.tab.t) @property def sigma(self): """ Compute bound-free absorption cross-section for all frequencies. """ if not self.discrete: return None if not hasattr(self, '_sigma_all'): self._sigma_all = np.array(map(sigma_E, self.E)) return self._sigma_all @property def Qdot(self): """ Returns number of photons emitted (s^-1) at all frequencies. """ if not hasattr(self, '_Qdot_all'): self._Qdot_all = self.Lbol * self.LE / self.E / erg_per_ev return self._Qdot_all @property def hnu_bar(self): """ Average ionizing (per absorber) photon energy in eV. """ if not hasattr(self, '_hnu_bar_all'): self._hnu_bar_all = np.zeros_like(self.grid.zeros_absorbers) self._qdot_bar_all = np.zeros_like(self.grid.zeros_absorbers) for i, absorber in enumerate(self.grid.absorbers): self._hnu_bar_all[i], self._qdot_bar_all[i] = \ self._FrequencyAveragedBin(absorber=absorber) return self._hnu_bar_all def AveragePhotonEnergy(self, Emin, Emax): """ Return average photon energy in supplied band. """ integrand = lambda EE: self.Spectrum(EE) * EE norm = lambda EE: self.Spectrum(EE) return quad(integrand, Emin, Emax)[0] / quad(norm, Emin, Emax)[0] @property def qdot_bar(self): """ Average ionizing photon luminosity (per absorber) in s^-1. """ if not hasattr(self, '_qdot_bar_all'): hnu_bar = self.hnu_bar return self._qdot_bar_all @property def sigma_bar(self): """ Frequency averaged cross section (single bandpass). """ if not hasattr(self, '_sigma_bar_all'): self._sigma_bar_all = np.zeros_like(self.grid.zeros_absorbers) for i, absorber in enumerate(self.grid.absorbers): integrand = lambda x: self.Spectrum(x) \ * self.grid.bf_cross_sections[absorber](x) / x self._sigma_bar_all[i] = self.Lbol \ * quad(integrand, self.grid.ioniz_thresholds[absorber], self.Emax)[0] / self.qdot_bar[i] / erg_per_ev return self._sigma_bar_all @property def sigma_tilde(self): if not hasattr(self, '_sigma_tilde_all'): self._sigma_tilde_all = np.zeros_like(self.grid.zeros_absorbers) for i, absorber in enumerate(self.grid.absorbers): integrand = lambda x: self.Spectrum(x) \ * self.grid.bf_cross_sections[absorber](x) self._sigma_tilde_all[i] = quad(integrand, self.grid.ioniz_thresholds[absorber], self.Emax)[0] \ / self.fLbol_ionizing[i] return self._sigma_tilde_all @property def fLbol_ionizing(self): """ Fraction of bolometric luminosity emitted above all ionization thresholds. """ if not hasattr(self, '_fLbol_ioniz_all'): self._fLbol_ioniz_all = np.zeros_like(self.grid.zeros_absorbers) for i, absorber in enumerate(self.grid.absorbers): self._fLbol_ioniz_all[i] = quad(self.Spectrum, self.grid.ioniz_thresholds[absorber], self.Emax)[0] return self._fLbol_ioniz_all @property def Gamma_bar(self): """ Return ionization rate (as a function of radius) assuming optical depth to cells and of cells is small. """ if not hasattr(self, '_Gamma_bar_all'): self._Gamma_bar_all = \ np.zeros([self.grid.dims, self.grid.N_absorbers]) for i, absorber in enumerate(self.grid.absorbers): self._Gamma_bar_all[..., i] = self.Lbol * self.sigma_bar[i] \ * self.fLbol_ionizing[i] / 4. / np.pi / self.grid.r_mid**2 \ / self.hnu_bar[i] / erg_per_ev return self._Gamma_bar_all @property def gamma_bar(self): """ Return ionization rate (as a function of radius) assuming optical depth to cells and of cells is small. """ if not hasattr(self, '_gamma_bar_all'): self._gamma_bar_all = \ np.zeros([self.grid.dims, self.grid.N_absorbers, self.grid.N_absorbers]) if not self.pf['secondary_ionization']: return self._gamma_bar_all for i, absorber in enumerate(self.grid.absorbers): for j, otherabsorber in enumerate(self.grid.absorbers): self._gamma_bar_all[..., i, j] = self.Gamma_bar[j] \ * (self.hnu_bar[j] * self.sigma_tilde[j] \ / self.hnu_bar[i] / self.sigma_bar[j] \ - self.grid.ioniz_thresholds[otherabsorber] \ / self.grid.ioniz_thresholds[absorber]) return self._gamma_bar_all @property def Heat_bar(self): """ Return ionization rate (as a function of radius) assuming optical depth to cells and of cells is small. """ if not hasattr(self, '_Heat_bar_all'): self._Heat_bar_all = \ np.zeros([self.grid.dims, self.grid.N_absorbers]) for i, absorber in enumerate(self.grid.absorbers): self._Heat_bar_all[..., i] = self.Gamma_bar[..., i] \ * erg_per_ev * (self.hnu_bar[i] * self.sigma_tilde[i] \ / self.sigma_bar[i] - self.grid.ioniz_thresholds[absorber]) return self._Heat_bar_all def IonizingPhotonLuminosity(self, t=0, bin=None): """ Return Qdot (photons / s) for this source at energy E. """ if self.pf['source_type'] in [0, 1, 2]: return self.Qdot[bin] else: # Currently only BHs have a time-varying bolometric luminosity return self.BolometricLuminosity(t) * self.LE[bin] / self.E[bin] / erg_per_ev #def _Intensity(self, E, i, Type, t=0, absorb=True): # """ # Return quantity *proportional* to fraction of bolometric luminosity emitted # at photon energy E. Normalization handled separately. # """ # # Lnu = self.src._Intensity(E, i, Type, t=t) # # # Apply absorbing column # if self.SpectrumPars['logN'][i] > 0 and absorb: # return Lnu * np.exp(-10.**self.SpectrumPars['logN'][i] \ # * (sigma_E(E, 0) + y * sigma_E(E, 1))) # else: # return Lnu # def Spectrum(self, E, t=0.0): r""" Return fraction of bolometric luminosity emitted at energy E. Elsewhere denoted as :math:`I_{\nu}`, normalized such that :math:`\int I_{\nu} d\nu = 1` Parameters ---------- E: float Emission energy in eV t: float Time in seconds since source turned on. i: int Index of component to include. If None, includes contribution from all components. Returns ------- Fraction of bolometric luminosity emitted at E in units of eV\ :sup:`-1`\. """ return self._normL * self._Intensity(E, t=t) def BolometricLuminosity(self, t=0.0, M=None): """ Returns the bolometric luminosity of a source in units of erg/s. For accreting black holes, the bolometric luminosity will increase with time, hence the optional 't' and 'M' arguments. """ if self._name == 'bh': return self.Luminosity(t, M) else: return self.Luminosity(t) def _FrequencyAveragedBin(self, absorber='h_1', Emin=None, Emax=None, energy_weighted=False): """ Bolometric luminosity / number of ionizing photons in spectrum in bandpass spanning interval (Emin, Emax). Returns mean photon energy and number of ionizing photons in band. """ if Emin is None: Emin = max(self.grid.ioniz_thresholds[absorber], self.Emin) if Emax is None: Emax = self.Emax if energy_weighted: f = lambda x: x else: f = lambda x: 1.0 L = self.Lbol * quad(lambda x: self.Spectrum(x) * f(x), Emin, Emax)[0] Q = self.Lbol * quad(lambda x: self.Spectrum(x) * f(x) / x, Emin, Emax)[0] / erg_per_ev return L / Q / erg_per_ev, Q def dump(self, fn, E, clobber=False): """ Write SED out to file. Parameters ---------- fn : str Filename, suffix determines type. If 'hdf5' or 'h5' will write to HDF5 file, otherwise, to ASCII. E : np.ndarray Array of photon energies at which to sample SED. Units = eV. """ if os.path.exists(fn) and (clobber == False): raise OSError('%s exists!') if re.search('.hdf5', fn) or re.search('.h5', fn): out = 'hdf5' else: out = 'ascii' LE = map(self.Spectrum, E) if out == 'hdf5': f = h5py.File(fn, 'w') f.create_dataset('E', data=E) f.create_dataset('LE', data=LE) f.close() else: f = open(fn, 'w') print >> f, "# E LE" for i, nrg in enumerate(E): print >> f, "%.8e %.8e" % (nrg, LE[i]) f.close() print "Wrote %s." % fn def sed_name(self, i=0): """ Return name of output file based on SED properties. """ name = '%s_logM_%.2g_Gamma_%.3g_fsc_%.3g_logE_%.2g-%.2g' % \ (self.SpectrumPars['type'][i], np.log10(self.src.M0), self.src.spec_pars['alpha'][i], self.src.spec_pars['fsc'][i], self.logEmin, self.logEmax) return name
py
b4049a6c43d63551e7cff2562b057568e67922cf
# -*- coding: utf-8 -*- # ***************************************************************************** # NICOS, the Networked Instrument Control System of the MLZ # Copyright (c) 2009-2021 by the NICOS contributors (see AUTHORS) # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # Mark Koennecke <[email protected]> # # ***************************************************************************** import time from datetime import datetime import numpy as np from nicos import session from nicos.core.device import Readable from nicos.core.errors import NicosError class NexusElementBase: """Interface class to define NeXus elements. All NeXus elements ought to supply four methods: - create() which is called when the NeXus structure is created and static data is written - update() for in place updating of already created items in the NeXus file - append() increments the np counter when a new scan point is started - results() saves the result of a scan points data The default implementations of create(), results() and update() do nothing. Overload when this is not sufficient. """ dtype = None def __init__(self): self.doAppend = False self.np = 0 def create(self, name, h5parent, sinkhandler): raise NotImplementedError() def update(self, name, h5parent, sinkhandler, values): pass def results(self, name, h5parent, sinkhandler, results): pass def append(self, name, h5parent, sinkhandler, subset): self.np = self.np + 1 def resize_dataset(self, dset): idx = self.np + 1 if len(dset) < idx: dset.resize((idx,)) def testAppend(self, sinkhandler): self.doAppend = bool((hasattr(sinkhandler.startdataset, 'npoints') and sinkhandler.startdataset.npoints > 1) or hasattr(session, '_manualscan')) self.np = 0 def determineType(self): if self.dtype is None: if isinstance(self.value, tuple): if isinstance(self.value[0], int): if self.value[0] < 2**32: self.dtype = "int32" else: self.dtype = "int64" elif isinstance(self.value[0], float): self.dtype = "double" elif isinstance(self.value[0], str): self.dtype = "string" if isinstance(self.value, str): self.dtype = 'string' def createAttributes(self, h5obj, sinkhandler): if not hasattr(self, 'attrs'): return for key, val in self.attrs.items(): if isinstance(val, str): val = NXAttribute(val, 'string') val.create(key, h5obj, sinkhandler) def scanlink(self, name, sinkhandler, h5parent, linkroot): pass class NXAttribute(NexusElementBase): """Placeholder for a NeXus Attribute.""" def __init__(self, value, dtype): self.dtype = dtype self.value = value NexusElementBase.__init__(self) def create(self, name, h5parent, sinkhandler): if self.dtype == 'string': h5parent.attrs[name] = np.string_(self.value) else: h5parent.attrs.create(name, self.value, dtype=self.dtype) class ConstDataset(NexusElementBase): """Placeholder for a Dataset with a constant value.""" def __init__(self, value, dtype, **attrs): self.value = value self.dtype = dtype self.attrs = {} for key, val in attrs.items(): if not isinstance(val, NXAttribute): val = NXAttribute(val, 'string') self.attrs[key] = val NexusElementBase.__init__(self) def create(self, name, h5parent, sinkhandler): if self.dtype == 'string': dtype = 'S%d' % (len(self.value.encode('utf-8')) + 1) dset = h5parent.create_dataset(name, (1,), dtype) dset[0] = np.array(self.value.encode('utf-8'), dtype=dtype) else: dset = h5parent.create_dataset(name, (1,), dtype=self.dtype) dset[0] = self.value self.createAttributes(dset, sinkhandler) class DeviceAttribute(NXAttribute): """Placeholder for a device attribute. This creates a NeXus group or dataset attribute from the value or parameter of the device. """ def __init__(self, device, parameter='value', dtype=None, defaultval=None): NXAttribute.__init__(self, defaultval, dtype) self.device = device self.parameter = parameter self.dtype = dtype self.defaultval = defaultval self.np = 0 self.doAppend = False def create(self, name, h5parent, sinkhandler): if (self.device, self.parameter) in sinkhandler.dataset.metainfo: self.value = \ sinkhandler.dataset.metainfo[(self.device, self.parameter)][0] else: self.value = self.defaultval if self.value is not None: self.determineType() NXAttribute.create(self, name, h5parent, sinkhandler) class DeviceDataset(NexusElementBase): """Placeholder for a device.# This creates a NeXus dataset from the value or a parameter of a device. """ def __init__(self, device, parameter='value', dtype=None, defaultval=None, **attr): self.device = device self.parameter = parameter self.dtype = dtype self.defaultval = defaultval self.attrs = {} self.doAppend = False for key, val in attr.items(): if not isinstance(val, NXAttribute): val = NXAttribute(val, 'string') self.attrs[key] = val NexusElementBase.__init__(self) def create(self, name, h5parent, sinkhandler): if (self.device, self.parameter) in sinkhandler.dataset.metainfo: self.value = sinkhandler.dataset.metainfo[ (self.device, self.parameter)] else: self.value = (self.defaultval,) if self.value[0] is not None: self.determineType() else: try: dev = session.getDevice(self.device) self.value = (getattr(dev, self.parameter, self.defaultval),) self.determineType() except Exception as e: session.log.warning( 'Warning: failed to locate data for %s %s in NICOS (%s)', self.device, self.parameter, e) return if self.parameter == 'value': self.testAppend(sinkhandler) if self.dtype == 'string': dtype = 'S%d' % (len(self.value[0].encode('utf-8')) + 1) dset = h5parent.create_dataset(name, (1,), dtype=dtype) dset[0] = np.array(self.value[0].encode('utf-8'), dtype=dtype) else: if self.doAppend: dset = h5parent.create_dataset(name, (1,), maxshape=(None,), dtype=self.dtype) else: dset = h5parent.create_dataset(name, (1,), dtype=self.dtype) dset[0] = self.value[0] if 'units' not in self.attrs: if self.parameter in ['target']: try: inf = session.getDevice(self.device).info() self.attrs['units'] = NXAttribute(inf[0][3], 'string') except NicosError: pass elif len(self.value) > 2: dset.attrs['units'] = np.string_(self.value[2]) self.createAttributes(dset, sinkhandler) def update(self, name, h5parent, sinkhandler, values): if (self.device, self.parameter) in sinkhandler.dataset.metainfo: self.value = sinkhandler.dataset.metainfo[ (self.device, self.parameter)] dset = h5parent[name] if self.dtype != 'string': self.resize_dataset(dset) dset[self.np] = self.value[0] else: # This data missing is normal pass def results(self, name, h5parent, sinkhandler, results): if name not in h5parent: # can happen, when we cannot find the device on creation return dset = h5parent[name] for dev in sinkhandler.dataset.devices: if dev.name == self.device: value = dev.read() if self.doAppend: self.resize_dataset(dset) dset[self.np] = value def scanlink(self, name, sinkhandler, h5parent, linkroot): for dev in sinkhandler.dataset.devices: if dev.name == self.device: dset = h5parent[name] parent = sinkhandler.h5file[linkroot] parent[name] = dset dset.attrs['target'] = np.string_(dset.name) class DetectorDataset(NexusElementBase): """Placeholder for a detector data dataset.""" def __init__(self, nicosname, dtype, **attr): self.nicosname = nicosname self.dtype = dtype # Hack for countmode which is a short text if self.dtype == 'string': self.dtype = 'S30' self.attrs = {} for key, val in attr.items(): if not isinstance(val, NXAttribute): val = NXAttribute(val, 'string') self.attrs[key] = val NexusElementBase.__init__(self) # At creation time, I do not yet have a value for detector data. This is # why the dtype needs to be specified. Values can only get written on # update() def create(self, name, h5parent, sinkhandler): self.testAppend(sinkhandler) if self.doAppend: dset = h5parent.create_dataset(name, (1,), maxshape=(None,), dtype=self.dtype) else: dset = h5parent.create_dataset(name, (1,), dtype=self.dtype) self.createAttributes(dset, sinkhandler) def update(self, name, h5parent, sinkhandler, values): dset = h5parent[name] if self.nicosname == 'mode': m = list(sinkhandler.startdataset.preset.keys())[0] if m == 't': mode = 'timer' else: mode = 'monitor' dset[0] = np.string_(mode) elif self.nicosname == 'preset': mp = sinkhandler.startdataset.preset.values() self.resize_dataset(dset) dset[0] = list(mp)[0] else: try: val = sinkhandler.dataset.values[self.nicosname] self.resize_dataset(dset) dset[self.np] = val except Exception: # This is normal: the dataset called with # SinkHandler.updateValues() # does not necessarily contain all the data pass def results(self, name, h5parent, sinkhandler, results): dset = h5parent[name] if self.nicosname == 'mode': m = list(sinkhandler.startdataset.preset.keys())[0] if m == 't': mode = 'timer' else: mode = 'monitor' dset[0] = np.string_(mode) elif self.nicosname == 'preset': mp = sinkhandler.startdataset.preset.values() dset[0] = list(mp)[0] else: try: val = sinkhandler.dataset.values[self.nicosname] if self.doAppend: self.resize_dataset(dset) dset[self.np] = val except Exception: session.log.warning('failed to find result for %s', self.nicosname) class ImageDataset(NexusElementBase): """Placeholder for a detector image.""" def __init__(self, detectorIDX, imageIDX, **attrs): self.detectorIDX = detectorIDX self.imageIDX = imageIDX self.attrs = {} self.doAppend = False self.np = 0 self.valid = True for key, val in attrs.items(): if not isinstance(val, NXAttribute): val = NXAttribute(val, 'string') self.attrs[key] = val NexusElementBase.__init__(self) def create(self, name, h5parent, sinkhandler): self.testAppend(sinkhandler) if len(sinkhandler.dataset.detectors) <= self.detectorIDX: session.log.warning('Cannot find detector with ID %d', self.detectorIDX) self.valid = False return det = sinkhandler.dataset.detectors[self.detectorIDX] arinfo = det.arrayInfo() myDesc = arinfo[self.imageIDX] rawshape = myDesc.shape if self.doAppend: shape = list(rawshape) shape.insert(0, 1) maxshape = list(rawshape) maxshape.insert(0, None) chonk = list(rawshape) chonk.insert(0, 1) dset = h5parent.create_dataset(name, shape, maxshape=maxshape, chunks=tuple(chonk), dtype=myDesc.dtype, compression='gzip') else: dset = h5parent.create_dataset(name, rawshape, chunks=tuple(rawshape), dtype=myDesc.dtype, compression='gzip') self.createAttributes(dset, sinkhandler) def resize_dataset(self, dset, sinkhandler): det = sinkhandler.dataset.detectors[self.detectorIDX] arinfo = det.arrayInfo() myDesc = arinfo[self.imageIDX] rawshape = myDesc.shape idx = self.np + 1 shape = list(rawshape) shape.insert(0, idx) dset.resize(shape) def results(self, name, h5parent, sinkhandler, results): dset = h5parent[name] det = sinkhandler.dataset.detectors[self.detectorIDX] data = results.get(det.name) if data is not None: array = data[1][self.imageIDX] if self.doAppend: idx = self.np + 1 if len(dset) < idx: self.resize_dataset(dset, sinkhandler) dset[self.np] = array else: h5parent[name][...] = array class NamedImageDataset(ImageDataset): """Placeholder for a detector image identified by name.""" def __init__(self, image_name, **attrs): self._image_name = image_name ImageDataset.__init__(self, -1, -1, **attrs) def create(self, name, h5parent, sinkhandler): detID = 0 imageID = 0 for det in sinkhandler.dataset.detectors: arList = det.arrayInfo() for ar in arList: if ar.name == self._image_name: self.detectorIDX = detID self.imageIDX = imageID break imageID += 1 detID += 1 if self.detectorIDX == -1 or self.imageIDX == -1: self.log.warning('Cannot find named image %s', self._image_name) self.valid = False return ImageDataset.create(self, name, h5parent, sinkhandler) class NXLink(NexusElementBase): """Placeholder for a NeXus link. I can only create it on update because the order of tree traversal is undefined and in create() the object to link against may not have been created yet. """ def __init__(self, target): self.target = target self.linkCreated = False NexusElementBase.__init__(self) def create(self, name, h5parent, sinkhandler): # The __init__() linkCreated is only initialised at template # initialisation time! self.linkCreated = False def update(self, name, h5parent, sinkhandler, values): if not self.linkCreated: try: other = sinkhandler.h5file[self.target] except KeyError: session.log.warning( 'Cannot link %s to %s, target does not exist', name, self.target) return h5parent[name] = other other.attrs['target'] = np.string_(self.target) self.linkCreated = True class NXScanLink(NexusElementBase): """Placeholder to identify where the scan devices ought to be linked to.""" def __init__(self): NexusElementBase.__init__(self) def create(self, name, h5parent, sinkhandler): pass class NXTime(NexusElementBase): """Placeholder for a NeXus compatible time entry.""" def formatTime(self): return datetime.now().isoformat(sep=' ', timespec='seconds') def create(self, name, h5parent, sinkhandler): time_str = self.formatTime() dtype = 'S%d' % (len(time_str) + 5) dset = h5parent.create_dataset(name, (1,), dtype=dtype) dset[0] = np.string_(time_str) def update(self, name, h5parent, sinkhandler, values): if name.find('end') >= 0: dset = h5parent[name] dset[0] = np.string_(self.formatTime()) class StartTime(NXTime): """Place holder for the start time of a measurement.""" def __init__(self): NXTime.__init__(self) self.time = 0 def formatTime(self): return datetime.fromtimestamp(self.time).isoformat(timespec='seconds') def create(self, name, h5parent, sinkhandler): self.time = sinkhandler.dataset.started NXTime.create(self, name, h5parent, sinkhandler) class EndTime(StartTime): """Place holder for the end time of a measurement.""" def create(self, name, h5parent, sinkhandler): self.time = sinkhandler.dataset.finished or time.time() NXTime.create(self, name, h5parent, sinkhandler) def update(self, name, h5parent, sinkhandler, values): self.time = sinkhandler.dataset.finished or time.time() dset = h5parent[name] dset[0] = np.string_(self.formatTime()) class NexusSampleEnv(NexusElementBase): """Placeholder for storing sample environment data. It looks at the dataset.environment field and creates a NXlog structure with the sample environment devices name. To this NXlog structure, incoming data is appended whenever data can be found. """ def __init__(self, update_interval=10): self._update_interval = update_interval self._last_update = {} NexusElementBase.__init__(self) def createNXlog(self, h5parent, dev): loggroup = h5parent.create_group(dev.name) loggroup.attrs['NX_class'] = np.string_('NXlog') dset = loggroup.create_dataset('time', (1,), maxshape=(None,), dtype='float32') dset[0] = .0 dset.attrs['start'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.starttime)) dset = loggroup.create_dataset('value', (1,), maxshape=(None,), dtype='float32') dset[0] = dev.read() self._last_update[dev.name] = time.time() def create(self, name, h5parent, sinkhandler): self.starttime = time.time() for dev in sinkhandler.dataset.environment: # There can be DeviceStatistics in the environment. # We do not know how to write those if isinstance(dev, Readable): self.createNXlog(h5parent, dev) def updatelog(self, h5parent, dataset): current_time = time.time() for devidx, dev in enumerate(dataset.environment): if not isinstance(dev, Readable): continue loggroup = h5parent[dev.name] dset = loggroup['value'] val = dataset.envvaluelist[devidx] if val is None: return idx = len(dset) # We need to control the amount of data written as update # gets called frequently. This tests: # - The value has changed at all # - Against a maximum update interval if val != dset[idx - 1] and \ current_time > self._last_update[dev.name] + self._update_interval: dset.resize((idx + 1,)) dset[idx] = val dset = loggroup['time'] dset.resize((idx + 1,)) dset[idx] = current_time - self.starttime self._last_update[dev.name] = current_time def update(self, name, h5parent, sinkhandler, values): self.updatelog(h5parent, sinkhandler.dataset) def results(self, name, h5parent, sinkhandler, results): self.updatelog(h5parent, sinkhandler.dataset) class CalcData(NexusElementBase): """ Place holder base class for all classes which calculate data for the NeXus file. Derived classes have to implement two methods: - _shape(dataset) which returns the shape of the calculate data as a tuple - _calcData(dataset) which actually calculates the data value. The return value must be a numpy array. Derived classes also must make sure that self.dtype points to a sensible value. The default is float32. """ def __init__(self, **attrs): self.attrs = {} self.doAppend = False self.np = 0 self.valid = True for key, val in attrs.items(): if not isinstance(val, NXAttribute): val = NXAttribute(val, 'string') self.attrs[key] = val self.dtype = "float32" NexusElementBase.__init__(self) def create(self, name, h5parent, sinkhandler): self.testAppend(sinkhandler) if not self.valid: return rawshape = self._shape(sinkhandler.dataset) if self.doAppend: shape = list(rawshape) shape.insert(0, 1) maxshape = list(rawshape) maxshape.insert(0, None) chonk = list(rawshape) chonk.insert(0, 1) dset = h5parent.create_dataset(name, shape, maxshape=maxshape, chunks=tuple(chonk), dtype=self.dtype, compression='gzip') else: dset = h5parent.create_dataset(name, rawshape, chunks=tuple(rawshape), dtype=self.dtype, compression='gzip') self.createAttributes(dset, sinkhandler) def results(self, name, h5parent, sinkhandler, _results): if not self.valid: return data = self._calcData(sinkhandler.dataset) if data is not None: dset = h5parent[name] if self.doAppend: if len(dset) < self.np + 1: self.resize_dataset(dset, sinkhandler) dset[self.np] = data else: h5parent[name][...] = data def resize_dataset(self, dset, sinkhandler): rawshape = self._shape(dset) idx = self.np + 1 shape = list(rawshape) shape.insert(0, idx) dset.resize(shape) def _shape(self, dataset): raise NotImplementedError("Derived class must implement _shape(dset)") def _calcData(self, dataset): raise NotImplementedError("Derived class must implement " "_calcData(dset)")
py
b4049bedbdc55bb2084cc99ef592609d04f3861b
def split_by_position(linked_promotions, context): """ Split the list of promotions into separate lists, grouping by position, and write these lists to the passed context. """ for linked_promotion in linked_promotions: promotion = linked_promotion.content_object if not promotion: continue key = 'promotions_%s' % linked_promotion.position.lower() if key not in context: context[key] = [] context[key].append(promotion)
py
b4049c38307da862b6b1f1c89734c377ce7efac2
# The usage of __init__.py file is it indicates that the files in this dir are part of python package. # Without an __init__.py file, you cannot import files from another directory in a Python project. #__init__ can be empty but can also be used to set up imports. There are 3 kinds of imports: # 1. example_package/__init__.py and explicit imports: # from .example import sample_funciton # Where sample_function is the name of the function and .file1 is the name of the module/file #Now in main.py I can direcly improt this function # 2.main_package/__init__.py and standard import: # import example_package # This imports the entire package # 3. main_package/__init__.py and wild card import # In __init__.py, set an __all__ variable to a list of the modules/files in the package. # __all__ = ["file1", "file2", "file3"]
py
b4049d2a637dd4532963cd00dc88b3aa8b11af49
import yaml def get_gsize_from_igenomes(igenomes, build): if build: with open(igenomes) as f: igenomes = yaml.load(f, Loader=yaml.FullLoader) if igenomes: if igenomes["params"]["genomes"][build]: if "macs_gsize" in igenomes["params"]["genomes"][build]: return igenomes["params"]["genomes"][build]["macs_gsize"] return "" igenomes = snakemake.input[0] gsize_out = snakemake.output[0] config_gsize = snakemake.params.get("extra", "") build = snakemake.params.get("build", "") if config_gsize: with open(gsize_out, 'w') as f: f.write("-g {}".format(config_gsize)) else: with open(gsize_out, 'w') as f: macs_gsize = get_gsize_from_igenomes(igenomes, build) if macs_gsize: f.write("-g {}".format(macs_gsize)) else: f.write("")
py
b4049d2b59afe7aac53f17441e447e2a7d3e796b
# @Time : 2020/6/26 # @Author : Shanlei Mu # @Email : [email protected] # UPDATE: # @Time : 2020/8/7 # @Author : Shanlei Mu # @Email : [email protected] """ recbole.model.loss ####################### Common Loss in recommender system """ import torch import torch.nn as nn class BPRLoss(nn.Module): """ BPRLoss, based on Bayesian Personalized Ranking Args: - gamma(float): Small value to avoid division by zero Shape: - Pos_score: (N) - Neg_score: (N), same shape as the Pos_score - Output: scalar. Examples:: >>> loss = BPRLoss() >>> pos_score = torch.randn(3, requires_grad=True) >>> neg_score = torch.randn(3, requires_grad=True) >>> output = loss(pos_score, neg_score) >>> output.backward() """ def __init__(self, gamma=1e-10): super(BPRLoss, self).__init__() self.gamma = gamma def forward(self, pos_score, neg_score):#pos_score,neg_score都是tensor数组,不是一个数 loss = -torch.log(self.gamma + torch.sigmoid(pos_score - neg_score)).mean() return loss class RegLoss(nn.Module): """ RegLoss, L2 regularization on model parameters """ def __init__(self): super(RegLoss, self).__init__() def forward(self, parameters): reg_loss = None for W in parameters: if reg_loss is None: reg_loss = W.norm(2) else: reg_loss = reg_loss + W.norm(2) return reg_loss class EmbLoss(nn.Module): """ EmbLoss, regularization on embeddings """ def __init__(self, norm=2): super(EmbLoss, self).__init__() self.norm = norm def forward(self, *embeddings): emb_loss = torch.zeros(1).to(embeddings[-1].device) for embedding in embeddings: emb_loss += torch.norm(embedding, p=self.norm) emb_loss /= embeddings[-1].shape[0] return emb_loss class EmbMarginLoss(nn.Module): """ EmbMarginLoss, regularization on embeddings """ def __init__(self, power=2): super(EmbMarginLoss, self).__init__() self.power = power def forward(self, *embeddings): dev = embeddings[-1].device cache_one = torch.tensor(1.0).to(dev) cache_zero = torch.tensor(0.0).to(dev) emb_loss = torch.tensor(0.).to(dev) for embedding in embeddings: norm_e = torch.sum(embedding ** self.power, dim=1, keepdim=True) emb_loss += torch.sum(torch.max(norm_e - cache_one, cache_zero)) return emb_loss
py
b4049d482697de3fb25219c4a80199a40fbca76b
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.cloud.aiplatform_v1beta1.types import index_endpoint as gca_index_endpoint from google.cloud.aiplatform_v1beta1.types import operation from google.protobuf import field_mask_pb2 # type: ignore __protobuf__ = proto.module( package="google.cloud.aiplatform.v1beta1", manifest={ "CreateIndexEndpointRequest", "CreateIndexEndpointOperationMetadata", "GetIndexEndpointRequest", "ListIndexEndpointsRequest", "ListIndexEndpointsResponse", "UpdateIndexEndpointRequest", "DeleteIndexEndpointRequest", "DeployIndexRequest", "DeployIndexResponse", "DeployIndexOperationMetadata", "UndeployIndexRequest", "UndeployIndexResponse", "UndeployIndexOperationMetadata", }, ) class CreateIndexEndpointRequest(proto.Message): r"""Request message for [IndexEndpointService.CreateIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.CreateIndexEndpoint]. Attributes: parent (str): Required. The resource name of the Location to create the IndexEndpoint in. Format: ``projects/{project}/locations/{location}`` index_endpoint (google.cloud.aiplatform_v1beta1.types.IndexEndpoint): Required. The IndexEndpoint to create. """ parent = proto.Field(proto.STRING, number=1,) index_endpoint = proto.Field( proto.MESSAGE, number=2, message=gca_index_endpoint.IndexEndpoint, ) class CreateIndexEndpointOperationMetadata(proto.Message): r"""Runtime operation information for [IndexEndpointService.CreateIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.CreateIndexEndpoint]. Attributes: generic_metadata (google.cloud.aiplatform_v1beta1.types.GenericOperationMetadata): The operation generic information. """ generic_metadata = proto.Field( proto.MESSAGE, number=1, message=operation.GenericOperationMetadata, ) class GetIndexEndpointRequest(proto.Message): r"""Request message for [IndexEndpointService.GetIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.GetIndexEndpoint] Attributes: name (str): Required. The name of the IndexEndpoint resource. Format: ``projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}`` """ name = proto.Field(proto.STRING, number=1,) class ListIndexEndpointsRequest(proto.Message): r"""Request message for [IndexEndpointService.ListIndexEndpoints][google.cloud.aiplatform.v1beta1.IndexEndpointService.ListIndexEndpoints]. Attributes: parent (str): Required. The resource name of the Location from which to list the IndexEndpoints. Format: ``projects/{project}/locations/{location}`` filter (str): Optional. An expression for filtering the results of the request. For field names both snake_case and camelCase are supported. - ``index_endpoint`` supports = and !=. ``index_endpoint`` represents the IndexEndpoint ID, ie. the last segment of the IndexEndpoint's [resourcename][google.cloud.aiplatform.v1beta1.IndexEndpoint.name]. - ``display_name`` supports =, != and regex() (uses `re2 <https://github.com/google/re2/wiki/Syntax>`__ syntax) - ``labels`` supports general map functions that is: ``labels.key=value`` - key:value equality ``labels.key:* or labels:key - key existence A key including a space must be quoted.``\ labels."a key"`. Some examples: - ``index_endpoint="1"`` - ``display_name="myDisplayName"`` - \`regex(display_name, "^A") -> The display name starts with an A. - ``labels.myKey="myValue"`` page_size (int): Optional. The standard list page size. page_token (str): Optional. The standard list page token. Typically obtained via [ListIndexEndpointsResponse.next_page_token][google.cloud.aiplatform.v1beta1.ListIndexEndpointsResponse.next_page_token] of the previous [IndexEndpointService.ListIndexEndpoints][google.cloud.aiplatform.v1beta1.IndexEndpointService.ListIndexEndpoints] call. read_mask (google.protobuf.field_mask_pb2.FieldMask): Optional. Mask specifying which fields to read. """ parent = proto.Field(proto.STRING, number=1,) filter = proto.Field(proto.STRING, number=2,) page_size = proto.Field(proto.INT32, number=3,) page_token = proto.Field(proto.STRING, number=4,) read_mask = proto.Field(proto.MESSAGE, number=5, message=field_mask_pb2.FieldMask,) class ListIndexEndpointsResponse(proto.Message): r"""Response message for [IndexEndpointService.ListIndexEndpoints][google.cloud.aiplatform.v1beta1.IndexEndpointService.ListIndexEndpoints]. Attributes: index_endpoints (Sequence[google.cloud.aiplatform_v1beta1.types.IndexEndpoint]): List of IndexEndpoints in the requested page. next_page_token (str): A token to retrieve next page of results. Pass to [ListIndexEndpointsRequest.page_token][google.cloud.aiplatform.v1beta1.ListIndexEndpointsRequest.page_token] to obtain that page. """ @property def raw_page(self): return self index_endpoints = proto.RepeatedField( proto.MESSAGE, number=1, message=gca_index_endpoint.IndexEndpoint, ) next_page_token = proto.Field(proto.STRING, number=2,) class UpdateIndexEndpointRequest(proto.Message): r"""Request message for [IndexEndpointService.UpdateIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.UpdateIndexEndpoint]. Attributes: index_endpoint (google.cloud.aiplatform_v1beta1.types.IndexEndpoint): Required. The IndexEndpoint which replaces the resource on the server. update_mask (google.protobuf.field_mask_pb2.FieldMask): Required. The update mask applies to the resource. See [google.protobuf.FieldMask][google.protobuf.FieldMask]. """ index_endpoint = proto.Field( proto.MESSAGE, number=1, message=gca_index_endpoint.IndexEndpoint, ) update_mask = proto.Field( proto.MESSAGE, number=2, message=field_mask_pb2.FieldMask, ) class DeleteIndexEndpointRequest(proto.Message): r"""Request message for [IndexEndpointService.DeleteIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.DeleteIndexEndpoint]. Attributes: name (str): Required. The name of the IndexEndpoint resource to be deleted. Format: ``projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}`` """ name = proto.Field(proto.STRING, number=1,) class DeployIndexRequest(proto.Message): r"""Request message for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.DeployIndex]. Attributes: index_endpoint (str): Required. The name of the IndexEndpoint resource into which to deploy an Index. Format: ``projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}`` deployed_index (google.cloud.aiplatform_v1beta1.types.DeployedIndex): Required. The DeployedIndex to be created within the IndexEndpoint. """ index_endpoint = proto.Field(proto.STRING, number=1,) deployed_index = proto.Field( proto.MESSAGE, number=2, message=gca_index_endpoint.DeployedIndex, ) class DeployIndexResponse(proto.Message): r"""Response message for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.DeployIndex]. Attributes: deployed_index (google.cloud.aiplatform_v1beta1.types.DeployedIndex): The DeployedIndex that had been deployed in the IndexEndpoint. """ deployed_index = proto.Field( proto.MESSAGE, number=1, message=gca_index_endpoint.DeployedIndex, ) class DeployIndexOperationMetadata(proto.Message): r"""Runtime operation information for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.DeployIndex]. Attributes: generic_metadata (google.cloud.aiplatform_v1beta1.types.GenericOperationMetadata): The operation generic information. deployed_index_id (str): The unique index id specified by user """ generic_metadata = proto.Field( proto.MESSAGE, number=1, message=operation.GenericOperationMetadata, ) deployed_index_id = proto.Field(proto.STRING, number=2,) class UndeployIndexRequest(proto.Message): r"""Request message for [IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.UndeployIndex]. Attributes: index_endpoint (str): Required. The name of the IndexEndpoint resource from which to undeploy an Index. Format: ``projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}`` deployed_index_id (str): Required. The ID of the DeployedIndex to be undeployed from the IndexEndpoint. """ index_endpoint = proto.Field(proto.STRING, number=1,) deployed_index_id = proto.Field(proto.STRING, number=2,) class UndeployIndexResponse(proto.Message): r"""Response message for [IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.UndeployIndex]. """ class UndeployIndexOperationMetadata(proto.Message): r"""Runtime operation information for [IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.UndeployIndex]. Attributes: generic_metadata (google.cloud.aiplatform_v1beta1.types.GenericOperationMetadata): The operation generic information. """ generic_metadata = proto.Field( proto.MESSAGE, number=1, message=operation.GenericOperationMetadata, ) __all__ = tuple(sorted(__protobuf__.manifest))
py
b4049ebd41bba8075869ec9d02972a69eb9d05dd
# container-service-extension # Copyright (c) 2017 VMware, Inc. All Rights Reserved. # SPDX-License-Identifier: BSD-2-Clause import click from container_service_extension.cluster import load_from_metadata from container_service_extension.cluster import TYPE_MASTER from container_service_extension.cluster import TYPE_NODE import logging from pyvcloud.vcd.client import _WellKnownEndpoint from pyvcloud.vcd.client import BasicLoginCredentials from pyvcloud.vcd.client import Client from pyvcloud.vcd.client import TaskStatus from pyvcloud.vcd.org import Org from pyvcloud.vcd.task import Task from pyvcloud.vcd.vapp import VApp from pyvcloud.vcd.vdc import VDC from pyvcloud.vcd.vsphere import VSphere import re import requests import threading import time import traceback import uuid LOGGER = logging.getLogger(__name__) OK = 200 CREATED = 201 ACCEPTED = 202 INTERNAL_SERVER_ERROR = 500 OP_CREATE_CLUSTER = 'create_cluster' OP_DELETE_CLUSTER = 'delete_cluster' MAX_HOST_NAME_LENGTH = 25 - 4 def get_new_broker(config): if config['broker']['type'] == 'default': return DefaultBroker(config) else: return None def spinning_cursor(): while True: for cursor in '|/-\\': yield cursor spinner = spinning_cursor() def task_callback(task): message = '\x1b[2K\r{}: {}, status: {}'.format( task.get('operationName'), task.get('operation'), task.get('status') ) if hasattr(task, 'Progress'): message += ', progress: %s%%' % task.Progress if task.get('status').lower() in [TaskStatus.QUEUED.value, TaskStatus.PENDING.value, TaskStatus.PRE_RUNNING.value, TaskStatus.RUNNING.value]: message += ' %s ' % spinner.next() click.secho(message) class DefaultBroker(threading.Thread): def __init__(self, config): threading.Thread.__init__(self) self.config = config self.host = config['vcd']['host'] self.username = config['vcd']['username'] self.password = config['vcd']['password'] self.version = config['vcd']['api_version'] self.verify = config['vcd']['verify'] self.log = config['vcd']['log'] def _connect_sysadmin(self): if not self.verify: LOGGER.warning('InsecureRequestWarning: ' 'Unverified HTTPS request is being made. ' 'Adding certificate verification is strongly ' 'advised.') requests.packages.urllib3.disable_warnings() self.client_sysadmin = Client(uri=self.host, api_version=self.version, verify_ssl_certs=self.verify, log_file='sysadmin.log', log_headers=True, log_bodies=True ) self.client_sysadmin.set_credentials( BasicLoginCredentials(self.username, 'System', self.password)) def _connect_tenant(self, headers): token = headers.get('x-vcloud-authorization') accept_header = headers.get('Accept') version = accept_header.split('version=')[1] self.client_tenant = Client(uri=self.host, api_version=version, verify_ssl_certs=self.verify, log_file='tenant.log', log_headers=True, log_bodies=True ) session = self.client_tenant.rehydrate_from_token(token) return {'user_name': session.get('user'), 'user_id': session.get('userId'), 'org_name': session.get('org'), 'org_href': self.client_tenant._get_wk_endpoint( _WellKnownEndpoint.LOGGED_IN_ORG) } def is_valid_name(self, name): """Validates that the cluster name against the pattern. """ if len(name) > MAX_HOST_NAME_LENGTH: return False if name[-1] == '.': name = name[:-1] allowed = re.compile("(?!-)[A-Z\d-]{1,63}(?<!-)$", re.IGNORECASE) return all(allowed.match(x) for x in name.split(".")) def run(self): LOGGER.debug('thread started op=%s' % self.op) if self.op == OP_CREATE_CLUSTER: self.create_cluster_thread() elif self.op == OP_DELETE_CLUSTER: self.delete_cluster_thread() def list_clusters(self, headers, body): result = {} try: result['body'] = [] result['status_code'] = OK self._connect_tenant(headers) clusters = load_from_metadata(self.client_tenant, get_leader_ip=True) for cluster in clusters: names = [] for node in cluster['master_nodes']: names.append(node['name']) cluster['master_nodes'] = names names = [] for node in cluster['nodes']: names.append(node['name']) cluster['nodes'] = names result['body'] = clusters except Exception: LOGGER.error(traceback.format_exc()) result['body'] = [] result['status_code'] = INTERNAL_SERVER_ERROR result['message'] = traceback.format_exc() return result def create_cluster(self, headers, body): result = {} result['body'] = {} cluster_name = body['name'] vdc_name = body['vdc'] node_count = body['node_count'] LOGGER.debug('about to create cluster %s on %s with %s nodes', cluster_name, vdc_name, node_count) result['body'] = {'message': 'can\'t create cluster'} result['status_code'] = INTERNAL_SERVER_ERROR try: if not self.is_valid_name(cluster_name): raise Exception('Invalid cluster name') self.tenant_info = self._connect_tenant(headers) self.headers = headers self.body = body self.cluster_id = str(uuid.uuid4()) self.op = OP_CREATE_CLUSTER self._connect_sysadmin() task = Task(self.client_sysadmin) self.t = task.update( TaskStatus.RUNNING.value, 'vcloud.cse', 'Creating cluster %s(%s)' % (cluster_name, self.cluster_id), self.op, '', None, 'urn:cse:cluster:%s' % self.cluster_id, cluster_name, 'application/vcloud.cse.cluster+xml', self.tenant_info['user_id'], self.tenant_info['user_name'], org_href=self.tenant_info['org_href'] ) self.daemon = True self.start() response_body = {} response_body['name'] = cluster_name response_body['cluster_id'] = self.cluster_id response_body['task_href'] = self.t.get('href') result['body'] = response_body result['status_code'] = ACCEPTED except Exception as e: result['body'] = {'message': e.message} LOGGER.error(traceback.format_exc()) return result def create_cluster_thread(self): cluster_name = self.body['name'] task = Task(self.client_sysadmin) try: clusters = load_from_metadata(self.client_tenant, name=cluster_name) LOGGER.debug(clusters) if len(clusters) != 0: raise Exception('Cluster already exists.') self.t = task.update( TaskStatus.RUNNING.value, 'vcloud.cse', 'Creating nodes %s(%s)' % (cluster_name, self.cluster_id), self.op, '', None, 'urn:cse:cluster:%s' % self.cluster_id, cluster_name, 'application/vcloud.cse.cluster+xml', self.tenant_info['user_id'], self.tenant_info['user_name'], org_href=self.tenant_info['org_href'], task_href=self.t.get('href')) org_resource = self.client_tenant.get_org() org = Org(self.client_tenant, org_resource=org_resource) vdc_resource = org.get_vdc(self.body['vdc']) master_count = 1 node_count = int(self.body['node_count']) catalog = self.config['broker']['catalog'] master_template = self.config['broker']['master_template'] node_template = self.config['broker']['node_template'] master_cpu = self.config['broker']['master_cpu'] master_mem = self.config['broker']['master_mem'] node_cpu = self.config['broker']['node_cpu'] node_mem = self.config['broker']['node_mem'] vdc = VDC(self.client_tenant, vdc_resource=vdc_resource) masters = [] for n in range(master_count): time.sleep(1) name = cluster_name + '-m%s' % str(n+1) masters.append(vdc.instantiate_vapp(name, catalog, master_template, memory=master_mem, cpu=master_cpu)) nodes = [] for n in range(node_count): time.sleep(1) name = cluster_name + '-n%s' % str(n+1) nodes.append(vdc.instantiate_vapp(name, catalog, node_template, memory=node_mem, cpu=node_cpu)) tagged = set([]) while len(tagged) < (master_count + node_count): node = None node_type = None for n in masters: if n.get('name') not in tagged: node = n node_type = TYPE_MASTER break if node is None: for n in nodes: if n.get('name') not in tagged: node = n node_type = TYPE_NODE break time.sleep(15) if node is not None: LOGGER.debug('about to tag %s, href=%s', node.get('name'), node.get('href')) try: tags = {} tags['cse.cluster.id'] = self.cluster_id tags['cse.node.type'] = node_type tags['cse.cluster.name'] = cluster_name vapp = VApp(self.client_tenant, vapp_href=node.get('href')) for k, v in tags.items(): task = vapp.set_metadata('GENERAL', 'READWRITE', k, v) self.client_tenant.get_task_monitor().\ wait_for_status( task=task, timeout=600, poll_frequency=5, fail_on_status=None, expected_target_statuses=[TaskStatus.SUCCESS], # NOQA callback=None) tagged.update([node.get('name')]) LOGGER.debug('tagged %s', node.get('name')) except Exception: LOGGER.error( 'can''t tag %s at this moment, will retry later', node.get('name')) LOGGER.error(traceback.format_exc()) time.sleep(1) time.sleep(4) self.customize_nodes() except Exception as e: LOGGER.error(traceback.format_exc()) self.t = task.update( TaskStatus.ERROR.value, 'vcloud.cse', self.op, 'create cluster', '', None, 'urn:cse:cluster:%s' % self.cluster_id, cluster_name, 'application/vcloud.cse.cluster+xml', self.tenant_info['user_id'], self.tenant_info['user_name'], org_href=self.tenant_info['org_href'], task_href=self.t.get('href'), error_message=str(e)) def delete_cluster(self, cluster_name, headers, body): result = {} result['body'] = {} LOGGER.debug('about to delete cluster with name: %s', cluster_name) result['status_code'] = INTERNAL_SERVER_ERROR try: self.cluster_name = cluster_name self.tenant_info = self._connect_tenant(headers) self.headers = headers self.body = body self.op = OP_DELETE_CLUSTER self.cluster_id = '' self._connect_sysadmin() task = Task(self.client_sysadmin) self.t = task.update( TaskStatus.RUNNING.value, 'vcloud.cse', 'Deleting cluster %s(%s)' % (self.cluster_name, self.cluster_id), self.op, '', None, 'urn:cse:cluster:%s' % self.cluster_id, self.cluster_name, 'application/vcloud.cse.cluster+xml', self.tenant_info['user_id'], self.tenant_info['user_name'], org_href=self.tenant_info['org_href'] ) self.daemon = True self.start() response_body = {} response_body['cluster_name'] = self.cluster_name response_body['task_href'] = self.t.get('href') result['body'] = response_body result['status_code'] = ACCEPTED except Exception as e: result['body'] = {'message': e.message} LOGGER.error(traceback.format_exc()) return result def delete_cluster_thread(self): LOGGER.debug('about to delete cluster with name: %s', self.cluster_name) task = Task(self.client_sysadmin) try: clusters = load_from_metadata(self.client_tenant, name=self.cluster_name) LOGGER.debug(clusters) if len(clusters) != 1: raise Exception('Cluster not found.') cluster = clusters[0] # self.cluster_id = cluster['cluster_id'] vdc = None tasks = [] for node in cluster['master_nodes']+cluster['nodes']: if vdc is None: vdc = VDC(self.client_tenant, vdc_href=cluster['vdc_href']) LOGGER.debug('about to delete vapp %s', node['name']) try: tasks.append(vdc.delete_vapp(node['name'], force=True)) except Exception: pass time.sleep(1) # TODO(wait until all nodes are deleted) self.t = task.update( TaskStatus.SUCCESS.value, 'vcloud.cse', self.op, 'delete cluster', '', None, 'urn:cse:cluster:%s' % self.cluster_id, self.cluster_name, 'application/vcloud.cse.cluster+xml', self.tenant_info['user_id'], self.tenant_info['user_name'], org_href=self.tenant_info['org_href'], task_href=self.t.get('href')) except Exception as e: LOGGER.error(traceback.format_exc()) self.t = task.update( TaskStatus.ERROR.value, 'vcloud.cse', self.op, 'delete cluster', '', None, 'urn:cse:cluster:%s' % self.cluster_id, self.cluster_name, 'application/vcloud.cse.cluster+xml', self.tenant_info['user_id'], self.tenant_info['user_name'], org_href=self.tenant_info['org_href'], task_href=self.t.get('href'), error_message=str(e)) def customize_nodes(self, max_retries=60): cluster_name = self.body['name'] node_count = int(self.body['node_count']) task = Task(self.client_sysadmin) self.t = task.update( TaskStatus.RUNNING.value, 'vcloud.cse', 'Customizing nodes %s(%s)' % (cluster_name, self.cluster_id), self.op, '', None, 'urn:cse:cluster:%s' % self.cluster_id, cluster_name, 'application/vcloud.cse.cluster+xml', self.tenant_info['user_id'], self.tenant_info['user_name'], org_href=self.tenant_info['org_href'], task_href=self.t.get('href')) nodes = [] n = 0 all_nodes_configured = False while n < max_retries: try: nodes = [] clusters = load_from_metadata(self.client_tenant, cluster_id=self.cluster_id) LOGGER.debug(clusters) assert len(clusters) == 1 cluster = clusters[0] for cluster_node in cluster['master_nodes'] + cluster['nodes']: node = {'name': cluster_node['name']} vapp = VApp(self.client_tenant, vapp_href=cluster_node['href']) node['ip'] = vapp.get_primary_ip(cluster_node['name']) node['moid'] = vapp.get_vm_moid(cluster_node['name']) if cluster_node['name'].endswith('-m1'): node['node_type'] = TYPE_MASTER else: node['node_type'] = TYPE_NODE nodes.append(node) for node in nodes: if 'ip' in node.keys() and len(node['ip']) > 0: pass else: n += 1 raise Exception('missing ip, retry %s', n) all_nodes_configured = True break except Exception as e: LOGGER.error(e.message) time.sleep(5) if not all_nodes_configured: LOGGER.error('ip not configured in at least one node') return LOGGER.debug('ip configured in all nodes') vs = VSphere(self.config['vcs']['host'], self.config['vcs']['username'], self.config['vcs']['password'], port=int(self.config['vcs']['port'])) vs.connect() master_node = None for node in nodes: vm = vs.get_vm_by_moid(node['moid']) commands = [ ['/bin/echo', '\'127.0.0.1 localhost\' | sudo tee /etc/hosts'], # NOQA ['/bin/echo', '\'127.0.1.1 %s\' | sudo tee -a /etc/hosts' % node['name']], # NOQA ['/bin/echo', '\'::1 localhost ip6-localhost ip6-loopback\' | sudo tee -a /etc/hosts'], # NOQA ['/bin/echo', '\'ff02::1 ip6-allnodes\' | sudo tee -a /etc/hosts'], # NOQA ['/bin/echo', '\'ff02::2 ip6-allrouters\' | sudo tee -a /etc/hosts'], # NOQA ['/usr/bin/sudo', 'hostnamectl set-hostname %s' % node['name']], # NOQA ['/bin/mkdir', '$HOME/.ssh'], ['/bin/chmod', 'go-rwx $HOME/.ssh'], ['/bin/echo', '\'ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQDFS5HL4CBlWrZscohhqdVwUa815Pi3NaCijfdvs0xCNF2oP458Xb3qYdEmuFWgtl3kEM4hR60/Tzk7qr3dmAfY7GPqdGhQsZEnvUJq0bfDAh0KqhdrqiIqx9zlKWnR65gl/u7Qkck2jiKkqjfxZwmJcuVCu+zQZCRC80XKwpyOudLKd/zJz9tzJxJ7+yltu9rNdshCEfP+OR1QoY2hFRH1qaDHTIbDdlF/m0FavapH7+ScufOY/HNSSYH7/SchsxK3zywOwGV1e1z//HHYaj19A3UiNdOqLkitKxFQrtSyDfClZ/0SwaVxh4jqrKuJ5NT1fbN2bpDWMgffzD9WWWZbDvtYQnl+dBjDnzBZGo8miJ87lYiYH9N9kQfxXkkyPziAjWj8KZ8bYQWJrEQennFzsbbreE8NtjsM059RXz0kRGeKs82rHf0mTZltokAHjoO5GmBZb8sZTdZyjfo0PTgaNCENe0bRDTrAomM99LhW2sJ5ZjK7SIqpWFaU+P+qgj4s88btCPGSqnh0Fea1foSo5G57l5YvfYpJalW0IeiynrO7TRuxEVV58DJNbYyMCvcZutuyvNq0OpEQYXRM2vMLQX3ZX3YhHMTlSXXcriqvhOJ7aoNae5aiPSlXvgFi/wP1x1aGYMEsiqrjNnrflGk9pIqniXsJ/9TFwRh9m4GktQ== [email protected]\' > $HOME/.ssh/authorized_keys'], # NOQA ['/bin/chmod', 'go-rwx $HOME/.ssh/authorized_keys'] ] if node['node_type'] == TYPE_MASTER: master_node = node commands.append(['/bin/rm', '-f /tmp/kubeadm-init.out']) commands.append(['/usr/bin/sudo', '/usr/bin/kubeadm init --pod-network-cidr=10.244.0.0/16 --apiserver-advertise-address={ip} > /tmp/kubeadm-init.out'.format(ip=node['ip'])]) # NOQA for command in commands: LOGGER.debug('executing %s %s on %s', command[0], command[1], vm) result = vs.execute_program_in_guest( vm, self.config['broker']['username'], self.config['broker']['password'], command[0], command[1], wait_for_completion=True) LOGGER.debug('executed %s %s on %s: %s', command[0], command[1], vm, result) if master_node is not None: vm = vs.get_vm_by_moid(master_node['moid']) response = vs.download_file_from_guest( vm, self.config['broker']['username'], self.config['broker']['password'], '/tmp/kubeadm-init.out' ) token = [x for x in response.content.splitlines() if x.strip().startswith('[token] Using token: ')][0].split()[-1] # NOQA cmd = '/usr/bin/sudo' args = '/usr/bin/kubeadm join --token %s %s:6443' % (token, master_node['ip']) # NOQA for node in nodes: vm = vs.get_vm_by_moid(node['moid']) if node['node_type'] == TYPE_NODE: LOGGER.debug('executing %s %s on %s', cmd, args, vm) cmd = '/usr/bin/sudo' result = vs.execute_program_in_guest( vm, self.config['broker']['username'], self.config['broker']['password'], cmd, args, wait_for_completion=True ) LOGGER.debug('executed %s %s on %s: %s', cmd, args, vm, result) elif node['node_type'] == TYPE_MASTER: commands = [ # ['/usr/bin/sudo', 'kubectl --kubeconfig=/etc/kubernetes/admin.conf taint nodes --all node-role.kubernetes.io/master-'], # NOQA ['/usr/bin/sudo', 'kubectl --kubeconfig=/etc/kubernetes/admin.conf apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel-rbac.yml'], # NOQA ['/usr/bin/sudo', 'kubectl --kubeconfig=/etc/kubernetes/admin.conf create -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml'] # NOQA ] if node_count == 0: commands.append(['/usr/bin/sudo', 'kubectl --kubeconfig=/etc/kubernetes/admin.conf taint nodes --all node-role.kubernetes.io/master-']) # NOQA for command in commands: LOGGER.debug('executing %s %s on %s', command[0], command[1], vm) result = vs.execute_program_in_guest( vm, self.config['broker']['username'], self.config['broker']['password'], command[0], command[1], wait_for_completion=True) LOGGER.debug('executed %s %s on %s: %s', command[0], command[1], vm, result) task = Task(self.client_sysadmin) self.t = task.update( TaskStatus.SUCCESS.value, 'vcloud.cse', self.op, 'create cluster', '', None, 'urn:cse:cluster:%s' % self.cluster_id, cluster_name, 'application/vcloud.cse.cluster+xml', self.tenant_info['user_id'], self.tenant_info['user_name'], org_href=self.tenant_info['org_href'], task_href=self.t.get('href')) def get_cluster_config(self, cluster_name, headers, body): result = {} result['body'] = {} result['status_code'] = INTERNAL_SERVER_ERROR try: self._connect_tenant(headers) self.headers = headers self.cluster_name = cluster_name clusters = load_from_metadata(self.client_tenant, name=self.cluster_name, get_leader_ip=True) LOGGER.debug(clusters) assert len(clusters) == 1 cluster = clusters[0] assert len(cluster['master_nodes']) == 1 result['body'] = {'cluster_config': '\'%s\'' % cluster_name} vs = VSphere(self.config['vcs']['host'], self.config['vcs']['username'], self.config['vcs']['password'], port=int(self.config['vcs']['port'])) vs.connect() vm = vs.get_vm_by_moid(cluster['leader_moid']) commands = [ ['/usr/bin/sudo', 'chmod a+r /etc/kubernetes/admin.conf'] # NOQA ] for command in commands: LOGGER.debug('executing %s on %s', command[0], vm) r = vs.execute_program_in_guest( vm, self.config['broker']['username'], self.config['broker']['password'], command[0], command[1] ) time.sleep(1) LOGGER.debug('executed %s on %s: %s', command[0], vm, r) response = vs.download_file_from_guest( vm, self.config['broker']['username'], self.config['broker']['password'], '/etc/kubernetes/admin.conf') result['body'] = response.content result['status_code'] = response.status_code except Exception as e: LOGGER.error(traceback.format_exc()) result['body'] = {'message': e.message} return result
py
b4049f10e4d1dca0d8c3abc233db6f79b2523661
__author__ = "Qianli Wang und Nazar Sopiha" __copyright__ = "Copyright (c) 2019 qiaw99" # https://github.com/qiaw99/WS2019-20/blob/master/LICENSE #!/usr/bin/env python # -*- coding: utf-8 -*- import random import numpy as np import matplotlib.pyplot as plt # Aufgabe a) def bubblesort(ls): temp = 0 swap = True stop = len(ls) - 1 while swap: swap = False for i in range(stop): if(ls[i] > ls[i + 1]): temp += 1 ls[i], ls[i + 1] = ls[i + 1], ls[i] swap = True stop = stop - 1 return (ls, temp) # Aufgabe b) #implementiert mithilfe einer Hilfeliste, damit wir auf die Rekursion verzichten können def hilfeArray_mergesort(A): N = len(A) partsLength = 1 while partsLength < N: for i in range(0, N // partsLength, 2): hilfeArray_merge(A, i * partsLength, (i + 1) * partsLength) partsLength <<= 1 return (A, counter) def hilfeArray_merge(A, firstPartlowerIndex, secondPartlowerIndex): global counter counter = 0 firstPartIndex = firstPartlowerIndex secondPartIndex = secondPartlowerIndex rightBoundary = min(2 * secondPartlowerIndex - firstPartlowerIndex - 1, len(A) - 1) mergedList = [] while secondPartlowerIndex - 1 - firstPartIndex >= 0 and rightBoundary - secondPartIndex >= 0: counter += 2 if A[firstPartIndex] <= A[secondPartIndex]: counter += 1 mergedList.append(A[firstPartIndex]) firstPartIndex += 1 else: counter += 1 mergedList.append(A[secondPartIndex]) secondPartIndex += 1 while secondPartlowerIndex - 1 - firstPartIndex >= 0: counter += 1 mergedList.append(A[firstPartIndex]) firstPartIndex += 1 while rightBoundary - secondPartIndex >= 0: counter += 1 mergedList.append(A[secondPartIndex]) secondPartIndex += 1 for i in range(firstPartlowerIndex, rightBoundary + 1): A[i] = mergedList[i - firstPartlowerIndex] def main(): for k in range(1, 5): ls = [] #lists which store counters for each sort-algorithms helper1 = [] helper2 = [] maximum1 = [] minimum1 = [] durchschnitt1 = [] maximum2 = [] minimum2 = [] durchschnitt2 = [] for i in range(100): temp = [random.random() for j in range(10**k)] ls.append(temp) ###### a, b = bubblesort(temp) helper1.append(b / 10**k) maximum1.append(max(helper1)) minimum1.append(min(helper1)) durchschnitt1.append(sum(helper1) / len(helper1)) ###### x, y = hilfeArray_mergesort(temp) helper2.append(y / 10**k) maximum2.append(max(helper2)) minimum2.append(min(helper2)) durchschnitt2.append(sum(helper2) / len(helper2)) print("Waiting for the result... with length ", 10**k) print(len(maximum1)) x1 = np.arange(0, 100) y1 = np.array(maximum1) plt.title("Bubblesort") #plt.subplot(1, 1, 1) plt.plot(x1, y1, 'r', label = "maximum") y2 = np.array(minimum1) plt.plot(x1, y2, 'b', label = "minimum") y3 = np.array(durchschnitt1) plt.plot(x1, y3, 'g', label = "durchschnitt") plt.legend(loc = 'upper right') plt.show() x2 = np.arange(0, 100) y4 = np.array(maximum2) plt.title("Mergsort") #plt.subplot(1, 1, 1) plt.plot(x2, y4, 'r', label = "maximum") y5 = np.array(minimum2) plt.plot(x1, y5, 'b', label = "minimum") y6 = np.array(durchschnitt2) plt.plot(x1, y6, 'g', label = "durchschnitt") plt.legend(loc = 'upper right') plt.show() if __name__ == "__main__": main()
py
b4049f8d24dfa12c5a3a4993e95788e1e69491de
from .model_spec import ModelSpec __all__ = [ModelSpec]
py
b404a22f0c55d3133bb42f242448a7a37cf17b6e
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE import pytest # noqa: F401 import numpy as np # noqa: F401 import awkward as ak # noqa: F401 def test_UnmaskedArray(): content_float64 = ak.layout.NumpyArray( np.array([0.25, 0.5, 3.5, 4.5, 5.5], dtype=np.float64) ) array_float64 = ak.layout.UnmaskedArray(content_float64) assert ak.to_list(array_float64) == [0.25, 0.5, 3.5, 4.5, 5.5] assert str(ak.type(content_float64)) == "float64" assert str(ak.type(ak.Array(content_float64))) == "5 * float64" assert str(ak.type(array_float64)) == "?float64" assert str(ak.type(ak.Array(array_float64))) == "5 * ?float64" assert np.can_cast(np.float32, np.float64) is True assert np.can_cast(np.float64, np.float32, "unsafe") is True assert np.can_cast(np.float64, np.int8, "unsafe") is True content_float32 = ak.values_astype(content_float64, "float32", highlevel=False) array_float32 = ak.layout.UnmaskedArray(content_float32) assert ak.to_list(array_float32) == [0.25, 0.5, 3.5, 4.5, 5.5] assert str(ak.type(content_float32)) == "float32" assert str(ak.type(ak.Array(content_float32))) == "5 * float32" assert str(ak.type(array_float32)) == "?float32" assert str(ak.type(ak.Array(array_float32))) == "5 * ?float32" content_int8 = ak.values_astype(content_float64, "int8", highlevel=False) array_int8 = ak.layout.UnmaskedArray(content_int8) assert ak.to_list(array_int8) == [0, 0, 3, 4, 5] assert str(ak.type(content_int8)) == "int8" assert str(ak.type(ak.Array(content_int8))) == "5 * int8" assert str(ak.type(array_int8)) == "?int8" assert str(ak.type(ak.Array(array_int8))) == "5 * ?int8" content_from_int8 = ak.values_astype(content_int8, "float64", highlevel=False) array_from_int8 = ak.layout.UnmaskedArray(content_from_int8) assert ak.to_list(array_from_int8) == [0, 0, 3, 4, 5] assert str(ak.type(content_from_int8)) == "float64" assert str(ak.type(ak.Array(content_from_int8))) == "5 * float64" assert str(ak.type(array_from_int8)) == "?float64" assert str(ak.type(ak.Array(array_from_int8))) == "5 * ?float64" def test_RegularArray_and_ListArray(): content = ak.layout.NumpyArray( np.array([0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9]) ) offsets = ak.layout.Index64(np.array([0, 3, 3, 5, 6, 10, 10])) listoffsetarray = ak.layout.ListOffsetArray64(offsets, content) regulararray = ak.layout.RegularArray(listoffsetarray, 2, zeros_length=0) starts = ak.layout.Index64(np.array([0, 1])) stops = ak.layout.Index64(np.array([2, 3])) listarray = ak.layout.ListArray64(starts, stops, regulararray) assert str(ak.type(content)) == "float64" assert str(ak.type(regulararray)) == "2 * var * float64" assert str(ak.type(listarray)) == "var * 2 * var * float64" regulararray_int8 = ak.values_astype(regulararray, "int8", highlevel=False) assert str(ak.type(regulararray_int8)) == "2 * var * int8" listarray_bool = ak.values_astype(listarray, "bool", highlevel=False) assert str(ak.type(listarray_bool)) == "var * 2 * var * bool" def test_ufunc_afterward(): assert ( ak.values_astype(ak.Array([{"x": 1.1}, {"x": 3.3}]), np.float32)["x"] + 1 ).tolist() == [2.0999999046325684, 4.300000190734863] def test_string(): assert ak.values_astype( ak.Array([{"x": 1.1, "y": "hello"}]), np.float32 ).tolist() == [{"x": 1.100000023841858, "y": "hello"}]
py
b404a2cc273173f7f5864ebce63ad4e2fb82ef80
from common_fixtures import * # NOQA def test_zone_list(admin_client, client): zones = admin_client.list_zone() assert len(zones) > 0 zones = client.list_zone() assert len(zones) >= 0
py
b404a38e79108f034eeacd7a85b929da2f79f94d
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Useful tools for running commands.""" import contextlib import os import shlex import shutil import stat import subprocess import sys from functools import lru_cache from pathlib import Path from typing import Dict, List, Mapping, Optional from airflow_breeze.utils.console import console from airflow_breeze.utils.path_utils import AIRFLOW_SOURCES_ROOT def run_command( cmd: List[str], *, check: bool = True, verbose: bool = False, dry_run: bool = False, no_output_dump_on_exception: bool = False, env: Optional[Mapping[str, str]] = None, cwd: Optional[Path] = None, input: Optional[str] = None, **kwargs, ) -> Optional[subprocess.CompletedProcess]: """ Runs command passed as list of strings with some extra functionality over POpen (kwargs from PoPen can be used in this command even if not explicitly specified). It prints diagnostics when requested, also allows to "dry_run" the commands rather than actually execute them. An important factor for having this command running tool is to be able (in verbose mode) to directly copy&paste the verbose output and run the command manually - including all the environment variables needed to run the command. :param cmd: command to run :param check: whether to check status value and run exception (same as POpem) :param verbose: print commands when running :param dry_run: do not execute "the" command - just print what would happen :param no_output_dump_on_exception: whether to suppress printing logs from output when command fails :param env: mapping of environment variables to set for the run command :param cwd: working directory to set for the command :param input: input string to pass to stdin of the process :param kwargs: kwargs passed to POpen """ workdir: str = str(cwd) if cwd else os.getcwd() if verbose or dry_run: command_to_print = ' '.join(shlex.quote(c) for c in cmd) # if we pass environment variables to execute, then env_to_print = ' '.join(f'{key}="{val}"' for (key, val) in env.items()) if env else '' if env_to_print: env_to_print += ' ' console.print(f"\n[bright_blue]Working directory {workdir} [/]\n") # Soft wrap allows to copy&paste and run resulting output as it has no hard EOL console.print(f"\n[bright_blue]{env_to_print}{command_to_print}[/]\n", soft_wrap=True) if dry_run: return None try: cmd_env = os.environ.copy() if env: cmd_env.update(env) return subprocess.run(cmd, input=input, check=check, env=cmd_env, cwd=workdir, **kwargs) except subprocess.CalledProcessError as ex: if not no_output_dump_on_exception: if ex.stdout: console.print("[blue]========================= OUTPUT start ============================[/]") console.print(ex.stdout) console.print("[blue]========================= OUTPUT end ==============================[/]") if ex.stderr: console.print("[red]========================= STDERR start ============================[/]") console.print(ex.stderr) console.print("[red]========================= STDERR end ==============================[/]") if not check: raise return None def check_pre_commit_installed(verbose: bool) -> bool: """ Check if pre-commit is installed in the right version. :param verbose: print commands when running :return: True is the pre-commit is installed in the right version. """ # Local import to make autocomplete work import yaml from pkg_resources import parse_version pre_commit_config = yaml.safe_load((AIRFLOW_SOURCES_ROOT / ".pre-commit-config.yaml").read_text()) min_pre_commit_version = pre_commit_config["minimum_pre_commit_version"] pre_commit_name = "pre-commit" is_installed = False if shutil.which(pre_commit_name) is not None: process = run_command( [pre_commit_name, "--version"], verbose=verbose, check=True, capture_output=True, text=True ) if process and process.stdout: pre_commit_version = process.stdout.split(" ")[-1].strip() if parse_version(pre_commit_version) >= parse_version(min_pre_commit_version): console.print( f"\n[green]Package {pre_commit_name} is installed. " f"Good version {pre_commit_version} (>= {min_pre_commit_version})[/]\n" ) is_installed = True else: console.print( f"\n[red]Package name {pre_commit_name} version is wrong. It should be" f"aat least {min_pre_commit_version} and is {pre_commit_version}.[/]\n\n" ) else: console.print( "\n[bright_yellow]Could not determine version of pre-commit. " "You might need to update it![/]\n" ) is_installed = True else: console.print(f"\n[red]Error: Package name {pre_commit_name} is not installed.[/]") if not is_installed: console.print("\nPlease install using https://pre-commit.com/#install to continue\n") return is_installed def get_filesystem_type(filepath): """ Determine the type of filesystem used - we might want to use different parameters if tmpfs is used. :param filepath: path to check :return: type of filesystem """ # We import it locally so that click autocomplete works import psutil root_type = "unknown" for part in psutil.disk_partitions(): if part.mountpoint == '/': root_type = part.fstype continue if filepath.startswith(part.mountpoint): return part.fstype return root_type def instruct_build_image(python: str): """Print instructions to the user that they should build the image""" console.print(f'[bright_yellow]\nThe CI image for ' f'python version {python} may be outdated[/]\n') console.print('Please run this command at earliest convenience:\n') console.print(f' `./breeze build-image --python {python}`\n') @contextlib.contextmanager def working_directory(source_path: Path): """ # Equivalent of pushd and popd in bash script. # https://stackoverflow.com/a/42441759/3101838 :param source_path: :return: """ prev_cwd = Path.cwd() os.chdir(source_path) try: yield finally: os.chdir(prev_cwd) def change_file_permission(file_to_fix: Path): """Update file permissions to not be group-writeable. Needed to solve cache invalidation problems.""" if file_to_fix.exists(): current = stat.S_IMODE(os.stat(file_to_fix).st_mode) new = current & ~stat.S_IWGRP & ~stat.S_IWOTH # Removes group/other write permission os.chmod(file_to_fix, new) def change_directory_permission(directory_to_fix: Path): """Update directory permissions to not be group-writeable. Needed to solve cache invalidation problems.""" if directory_to_fix.exists(): current = stat.S_IMODE(os.stat(directory_to_fix).st_mode) new = current & ~stat.S_IWGRP & ~stat.S_IWOTH # Removes group/other write permission new = ( new | stat.S_IXGRP | stat.S_IXOTH ) # Add group/other execute permission (to be able to list directories) os.chmod(directory_to_fix, new) @working_directory(AIRFLOW_SOURCES_ROOT) def fix_group_permissions(): """Fixes permissions of all the files and directories that have group-write access.""" console.print("[bright_blue]Fixing group permissions[/]") files_to_fix_result = run_command(['git', 'ls-files', './'], capture_output=True, text=True) if files_to_fix_result.returncode == 0: files_to_fix = files_to_fix_result.stdout.strip().split('\n') for file_to_fix in files_to_fix: change_file_permission(Path(file_to_fix)) directories_to_fix_result = run_command( ['git', 'ls-tree', '-r', '-d', '--name-only', 'HEAD'], capture_output=True, text=True ) if directories_to_fix_result.returncode == 0: directories_to_fix = directories_to_fix_result.stdout.strip().split('\n') for directory_to_fix in directories_to_fix: change_directory_permission(Path(directory_to_fix)) def is_repo_rebased(repo: str, branch: str): """Returns True if the local branch contains latest remote SHA (i.e. if it is rebased)""" # We import it locally so that click autocomplete works import requests gh_url = f"https://api.github.com/repos/{repo}/commits/{branch}" headers_dict = {"Accept": "application/vnd.github.VERSION.sha"} latest_sha = requests.get(gh_url, headers=headers_dict).text.strip() rebased = False process = run_command(['git', 'log', '--format=format:%H'], capture_output=True, text=True) output = process.stdout.strip().splitlines() if process is not None else "missing" if latest_sha in output: rebased = True return rebased def check_if_buildx_plugin_installed(verbose: bool) -> bool: """ Checks if buildx plugin is locally available. :param verbose: print commands when running :return True if the buildx plugin is installed. """ is_buildx_available = False check_buildx = ['docker', 'buildx', 'version'] docker_buildx_version_process = run_command( check_buildx, verbose=verbose, no_output_dump_on_exception=True, capture_output=True, text=True, ) if ( docker_buildx_version_process and docker_buildx_version_process.returncode == 0 and docker_buildx_version_process.stdout != '' ): is_buildx_available = True return is_buildx_available def prepare_build_command(prepare_buildx_cache: bool, verbose: bool) -> List[str]: """ Prepare build command for docker build. Depending on whether we have buildx plugin installed or not, and whether we run cache preparation, there might be different results: * if buildx plugin is installed - `docker buildx` command is returned - using regular or cache builder depending on whether we build regular image or cache * if no buildx plugin is installed, and we do not prepare cache, regular docker `build` command is used. * if no buildx plugin is installed, and we prepare cache - we fail. Cache can only be done with buildx :param prepare_buildx_cache: whether we are preparing buildx cache. :param verbose: print commands when running :return: command to use as docker build command """ build_command_param = [] is_buildx_available = check_if_buildx_plugin_installed(verbose=verbose) if is_buildx_available: if prepare_buildx_cache: build_command_param.extend(["buildx", "build", "--builder", "airflow_cache", "--progress=tty"]) cmd = ['docker', 'buildx', 'inspect', 'airflow_cache'] process = run_command(cmd, verbose=True, text=True) if process and process.returncode != 0: next_cmd = ['docker', 'buildx', 'create', '--name', 'airflow_cache'] run_command(next_cmd, verbose=True, text=True, check=False) else: build_command_param.extend(["buildx", "build", "--builder", "default", "--progress=tty"]) else: if prepare_buildx_cache: console.print( '\n[red] Buildx cli plugin is not available and you need it to prepare buildx cache. \n' ) console.print( '[red] Please install it following https://docs.docker.com/buildx/working-with-buildx/ \n' ) sys.exit(1) build_command_param.append("build") return build_command_param @lru_cache(maxsize=None) def commit_sha(): """Returns commit SHA of current repo. Cached for various usages.""" return run_command( ['git', 'rev-parse', 'HEAD'], capture_output=True, text=True, check=False ).stdout.strip() def filter_out_none(**kwargs) -> Dict[str, str]: """Filters out all None values from parameters passed.""" for key in list(kwargs): if kwargs[key] is None: kwargs.pop(key) return kwargs
py
b404a3cad84e894653dc3348d7113593610fd6a9
# Generated by Django 3.1.1 on 2020-10-01 04:07 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Blog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('pub_date', models.DateTimeField(verbose_name='date published')), ('body', models.TextField()), ], ), ]
py
b404a4dff92897d85f7f47dba49704049826fe9a
from .mocks import MockWeatherClient __all__ = ["MockWeatherClient"]
py
b404a565c0e8824e7d019d65e5b5cb76e40f91eb
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing concatenate op """ import numpy as np import pytest import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as data_trans def test_concatenate_op_all(): def gen(): yield (np.array([5., 6., 7., 8.], dtype=np.float),) prepend_tensor = np.array([1.4, 2., 3., 4., 4.5], dtype=np.float) append_tensor = np.array([9., 10.3, 11., 12.], dtype=np.float) data = ds.GeneratorDataset(gen, column_names=["col"]) concatenate_op = data_trans.Concatenate(0, prepend_tensor, append_tensor) data = data.map(input_columns=["col"], operations=concatenate_op) expected = np.array([1.4, 2., 3., 4., 4.5, 5., 6., 7., 8., 9., 10.3, 11., 12.]) for data_row in data: np.testing.assert_array_equal(data_row[0], expected) def test_concatenate_op_none(): def gen(): yield (np.array([5., 6., 7., 8.], dtype=np.float),) data = ds.GeneratorDataset(gen, column_names=["col"]) concatenate_op = data_trans.Concatenate() data = data.map(input_columns=["col"], operations=concatenate_op) for data_row in data: np.testing.assert_array_equal(data_row[0], np.array([5., 6., 7., 8.], dtype=np.float)) def test_concatenate_op_string(): def gen(): yield (np.array(["ss", "ad"], dtype='S'),) prepend_tensor = np.array(["dw", "df"], dtype='S') append_tensor = np.array(["dwsdf", "df"], dtype='S') data = ds.GeneratorDataset(gen, column_names=["col"]) concatenate_op = data_trans.Concatenate(0, prepend_tensor, append_tensor) data = data.map(input_columns=["col"], operations=concatenate_op) expected = np.array(["dw", "df", "ss", "ad", "dwsdf", "df"], dtype='S') for data_row in data: np.testing.assert_array_equal(data_row[0], expected) def test_concatenate_op_multi_input_string(): prepend_tensor = np.array(["dw", "df"], dtype='S') append_tensor = np.array(["dwsdf", "df"], dtype='S') data = ([["1", "2", "d"]], [["3", "4", "e"]]) data = ds.NumpySlicesDataset(data, column_names=["col1", "col2"]) concatenate_op = data_trans.Concatenate(0, prepend=prepend_tensor, append=append_tensor) data = data.map(input_columns=["col1", "col2"], column_order=["out1"], output_columns=["out1"], operations=concatenate_op) expected = np.array(["dw", "df", "1", "2", "d", "3", "4", "e", "dwsdf", "df"], dtype='S') for data_row in data: np.testing.assert_array_equal(data_row[0], expected) def test_concatenate_op_multi_input_numeric(): prepend_tensor = np.array([3, 5]) data = ([[1, 2]], [[3, 4]]) data = ds.NumpySlicesDataset(data, column_names=["col1", "col2"]) concatenate_op = data_trans.Concatenate(0, prepend=prepend_tensor) data = data.map(input_columns=["col1", "col2"], column_order=["out1"], output_columns=["out1"], operations=concatenate_op) expected = np.array([3, 5, 1, 2, 3, 4]) for data_row in data: np.testing.assert_array_equal(data_row[0], expected) def test_concatenate_op_type_mismatch(): def gen(): yield (np.array([3, 4], dtype=np.float),) prepend_tensor = np.array(["ss", "ad"], dtype='S') data = ds.GeneratorDataset(gen, column_names=["col"]) concatenate_op = data_trans.Concatenate(0, prepend_tensor) data = data.map(input_columns=["col"], operations=concatenate_op) with pytest.raises(RuntimeError) as error_info: for _ in data: pass assert "Tensor types do not match" in str(error_info.value) def test_concatenate_op_type_mismatch2(): def gen(): yield (np.array(["ss", "ad"], dtype='S'),) prepend_tensor = np.array([3, 5], dtype=np.float) data = ds.GeneratorDataset(gen, column_names=["col"]) concatenate_op = data_trans.Concatenate(0, prepend_tensor) data = data.map(input_columns=["col"], operations=concatenate_op) with pytest.raises(RuntimeError) as error_info: for _ in data: pass assert "Tensor types do not match" in str(error_info.value) def test_concatenate_op_incorrect_dim(): def gen(): yield (np.array([["ss", "ad"], ["ss", "ad"]], dtype='S'),) prepend_tensor = np.array(["ss", "ss"], dtype='S') concatenate_op = data_trans.Concatenate(0, prepend_tensor) data = ds.GeneratorDataset(gen, column_names=["col"]) data = data.map(input_columns=["col"], operations=concatenate_op) with pytest.raises(RuntimeError) as error_info: for _ in data: pass assert "Only 1D tensors supported" in str(error_info.value) def test_concatenate_op_wrong_axis(): with pytest.raises(ValueError) as error_info: data_trans.Concatenate(2) assert "only 1D concatenation supported." in str(error_info.value) def test_concatenate_op_negative_axis(): def gen(): yield (np.array([5., 6., 7., 8.], dtype=np.float),) prepend_tensor = np.array([1.4, 2., 3., 4., 4.5], dtype=np.float) append_tensor = np.array([9., 10.3, 11., 12.], dtype=np.float) data = ds.GeneratorDataset(gen, column_names=["col"]) concatenate_op = data_trans.Concatenate(-1, prepend_tensor, append_tensor) data = data.map(input_columns=["col"], operations=concatenate_op) expected = np.array([1.4, 2., 3., 4., 4.5, 5., 6., 7., 8., 9., 10.3, 11., 12.]) for data_row in data: np.testing.assert_array_equal(data_row[0], expected) def test_concatenate_op_incorrect_input_dim(): prepend_tensor = np.array([["ss", "ad"], ["ss", "ad"]], dtype='S') with pytest.raises(ValueError) as error_info: data_trans.Concatenate(0, prepend_tensor) assert "can only prepend 1D arrays." in str(error_info.value) if __name__ == "__main__": test_concatenate_op_all() test_concatenate_op_none() test_concatenate_op_string() test_concatenate_op_multi_input_string() test_concatenate_op_multi_input_numeric() test_concatenate_op_type_mismatch() test_concatenate_op_type_mismatch2() test_concatenate_op_incorrect_dim() test_concatenate_op_negative_axis() test_concatenate_op_wrong_axis() test_concatenate_op_incorrect_input_dim()
py
b404a6453015efdafb08f7e926a18d518e04dcd6
from datetime import datetime, timezone import pandas as pd import numpy as np FILE = 'https://raw.githubusercontent.com/AstroMatt/book-python/master/numerical-analysis/data/iris-dirty.csv' iris = pd.read_csv(FILE, encoding='utf-8') iris.columns = [ 'Sepal length', 'Sepal width', 'Petal length', 'Petal width', 'Species', ] iris.where(iris['Petal length'] > 2.0, inplace=True) iris.dropna(how='all', inplace=True) iris['datetime'] = datetime.now(tz=timezone.utc) iris['big_enough'] = np.where(iris['Petal width'] > 1.0, True, False) columns = ['Sepal length', 'Sepal width', 'Species'] iris = iris[columns] iris.describe()
py
b404a70e7dc272f2ee71a5c99f4226879351975c
#!/usr/bin/env python3 # Copyright (c) 2017-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the -uacomment option.""" import re from test_framework.test_framework import BitcoinTestFramework from test_framework.test_node import ErrorMatch from test_framework.util import assert_equal class UacommentTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True def run_test(self): self.log.info("test multiple -uacomment") test_uacomment = self.nodes[0].getnetworkinfo()["subversion"][-12:-1] assert_equal(test_uacomment, "(testnode0)") self.restart_node(0, ["-uacomment=foo"]) foo_uacomment = self.nodes[0].getnetworkinfo()["subversion"][-17:-1] assert_equal(foo_uacomment, "(testnode0; foo)") self.log.info("test -uacomment max length") self.stop_node(0) expected = "Error: Total length of network version string \([0-9]+\) exceeds maximum length \(256\). Reduce the number or size of uacomments." self.nodes[0].assert_start_raises_init_error(["-uacomment=" + 'a' * 256], expected, match=ErrorMatch.FULL_REGEX) self.log.info("test -uacomment unsafe characters") for unsafe_char in ['/', ':', '(', ')']: expected = "Error: User Agent comment \(" + re.escape(unsafe_char) + "\) contains unsafe characters." self.nodes[0].assert_start_raises_init_error(["-uacomment=" + unsafe_char], expected, match=ErrorMatch.FULL_REGEX) if __name__ == '__main__': UacommentTest().main()
py
b404a8072afa9aa467f50ee312455bfe05cff665
# coding: utf-8 import pprint import re import six class SessionPersistence: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'cookie_name': 'str', 'type': 'str', 'persistence_timeout': 'int' } attribute_map = { 'cookie_name': 'cookie_name', 'type': 'type', 'persistence_timeout': 'persistence_timeout' } def __init__(self, cookie_name=None, type=None, persistence_timeout=None): """SessionPersistence - a model defined in huaweicloud sdk""" self._cookie_name = None self._type = None self._persistence_timeout = None self.discriminator = None if cookie_name is not None: self.cookie_name = cookie_name self.type = type if persistence_timeout is not None: self.persistence_timeout = persistence_timeout @property def cookie_name(self): """Gets the cookie_name of this SessionPersistence. cookie名称。 只有当type为APP_COOKIE时才支持。 格式要求:仅支持字母数字-_. :return: The cookie_name of this SessionPersistence. :rtype: str """ return self._cookie_name @cookie_name.setter def cookie_name(self, cookie_name): """Sets the cookie_name of this SessionPersistence. cookie名称。 只有当type为APP_COOKIE时才支持。 格式要求:仅支持字母数字-_. :param cookie_name: The cookie_name of this SessionPersistence. :type: str """ self._cookie_name = cookie_name @property def type(self): """Gets the type of this SessionPersistence. 描述:类型,可以为SOURCE_IP、HTTP_COOKIE、APP_COOKIE。 约束: 1、当pool的protocol为TCP、UDP、QUIC时,只按SOURCE_IP生效; 2、当pool的protocol为HTTP、HTTPS时,只按HTTP_COOKIE、APP_COOKIE生效。 :return: The type of this SessionPersistence. :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this SessionPersistence. 描述:类型,可以为SOURCE_IP、HTTP_COOKIE、APP_COOKIE。 约束: 1、当pool的protocol为TCP、UDP、QUIC时,只按SOURCE_IP生效; 2、当pool的protocol为HTTP、HTTPS时,只按HTTP_COOKIE、APP_COOKIE生效。 :param type: The type of this SessionPersistence. :type: str """ self._type = type @property def persistence_timeout(self): """Gets the persistence_timeout of this SessionPersistence. 会话保持的时间。当type为APP_COOKIE时不生效。 适用范围:如果pool的protocol为TCP、UDP和QUIC则范围为[1,60](分钟),默认值1;如果pool的protocol为HTTP和HTTPS则范围为[1,1440](分钟),默认值1440。 :return: The persistence_timeout of this SessionPersistence. :rtype: int """ return self._persistence_timeout @persistence_timeout.setter def persistence_timeout(self, persistence_timeout): """Sets the persistence_timeout of this SessionPersistence. 会话保持的时间。当type为APP_COOKIE时不生效。 适用范围:如果pool的protocol为TCP、UDP和QUIC则范围为[1,60](分钟),默认值1;如果pool的protocol为HTTP和HTTPS则范围为[1,1440](分钟),默认值1440。 :param persistence_timeout: The persistence_timeout of this SessionPersistence. :type: int """ self._persistence_timeout = persistence_timeout def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SessionPersistence): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
b404a830988e1fc84bec40cb81e4d64080326716
# -*- coding: utf-8 -*- from __future__ import unicode_literals import os import sys import unittest from django import template from django.contrib.auth.models import Group from django.core import urlresolvers from django.template import (base as template_base, loader, Context, RequestContext, Template, TemplateSyntaxError) from django.template.engine import Engine from django.template.loaders import app_directories, filesystem from django.test import RequestFactory, SimpleTestCase from django.test.utils import extend_sys_path, ignore_warnings, override_settings from django.utils.deprecation import RemovedInDjango20Warning from django.utils._os import upath TESTS_DIR = os.path.dirname(os.path.dirname(os.path.abspath(upath(__file__)))) TEMPLATES_DIR = os.path.join(TESTS_DIR, 'templates') class TemplateLoaderTests(SimpleTestCase): def test_loaders_security(self): ad_loader = app_directories.Loader(Engine.get_default()) fs_loader = filesystem.Loader(Engine.get_default()) def test_template_sources(path, template_dirs, expected_sources): if isinstance(expected_sources, list): # Fix expected sources so they are abspathed expected_sources = [os.path.abspath(s) for s in expected_sources] # Test the two loaders (app_directores and filesystem). func1 = lambda p, t: list(ad_loader.get_template_sources(p, t)) func2 = lambda p, t: list(fs_loader.get_template_sources(p, t)) for func in (func1, func2): if isinstance(expected_sources, list): self.assertEqual(func(path, template_dirs), expected_sources) else: self.assertRaises(expected_sources, func, path, template_dirs) template_dirs = ['/dir1', '/dir2'] test_template_sources('index.html', template_dirs, ['/dir1/index.html', '/dir2/index.html']) test_template_sources('/etc/passwd', template_dirs, []) test_template_sources('etc/passwd', template_dirs, ['/dir1/etc/passwd', '/dir2/etc/passwd']) test_template_sources('../etc/passwd', template_dirs, []) test_template_sources('../../../etc/passwd', template_dirs, []) test_template_sources('/dir1/index.html', template_dirs, ['/dir1/index.html']) test_template_sources('../dir2/index.html', template_dirs, ['/dir2/index.html']) test_template_sources('/dir1blah', template_dirs, []) test_template_sources('../dir1blah', template_dirs, []) # UTF-8 bytestrings are permitted. test_template_sources(b'\xc3\x85ngstr\xc3\xb6m', template_dirs, ['/dir1/Ångström', '/dir2/Ångström']) # Unicode strings are permitted. test_template_sources('Ångström', template_dirs, ['/dir1/Ångström', '/dir2/Ångström']) test_template_sources('Ångström', [b'/Stra\xc3\x9fe'], ['/Straße/Ångström']) test_template_sources(b'\xc3\x85ngstr\xc3\xb6m', [b'/Stra\xc3\x9fe'], ['/Straße/Ångström']) # Invalid UTF-8 encoding in bytestrings is not. Should raise a # semi-useful error message. test_template_sources(b'\xc3\xc3', template_dirs, UnicodeDecodeError) # Case insensitive tests (for win32). Not run unless we're on # a case insensitive operating system. if os.path.normcase('/TEST') == os.path.normpath('/test'): template_dirs = ['/dir1', '/DIR2'] test_template_sources('index.html', template_dirs, ['/dir1/index.html', '/DIR2/index.html']) test_template_sources('/DIR1/index.HTML', template_dirs, ['/DIR1/index.HTML']) @override_settings(TEMPLATES=[{ 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATES_DIR], }]) # Turn TEMPLATE_DEBUG on, so that the origin file name will be kept with # the compiled templates. @override_settings(TEMPLATE_DEBUG=True) def test_loader_debug_origin(self): load_name = 'login.html' # We rely on the fact the file system and app directories loaders both # inherit the load_template method from the base Loader class, so we # only need to test one of them. template = loader.get_template(load_name).template template_name = template.nodelist[0].source[0].name self.assertTrue(template_name.endswith(load_name), 'Template loaded by filesystem loader has incorrect name for debug page: %s' % template_name) @override_settings(TEMPLATES=[{ 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATES_DIR], 'OPTIONS': { 'loaders': [ ('django.template.loaders.cached.Loader', [ 'django.template.loaders.filesystem.Loader', ]), ], }, }]) @override_settings(TEMPLATE_DEBUG=True) def test_cached_loader_debug_origin(self): load_name = 'login.html' # Test the cached loader separately since it overrides load_template. template = loader.get_template(load_name).template template_name = template.nodelist[0].source[0].name self.assertTrue(template_name.endswith(load_name), 'Template loaded through cached loader has incorrect name for debug page: %s' % template_name) template = loader.get_template(load_name).template template_name = template.nodelist[0].source[0].name self.assertTrue(template_name.endswith(load_name), 'Cached template loaded through cached loader has incorrect name for debug page: %s' % template_name) @override_settings(TEMPLATE_DEBUG=True) def test_loader_origin(self): template = loader.get_template('login.html') self.assertEqual(template.origin.loadname, 'login.html') @override_settings(TEMPLATE_DEBUG=True) def test_string_origin(self): template = Template('string template') self.assertEqual(template.origin.source, 'string template') def test_debug_false_origin(self): template = loader.get_template('login.html') self.assertEqual(template.origin, None) # TEMPLATE_DEBUG must be true, otherwise the exception raised # during {% include %} processing will be suppressed. @override_settings(TEMPLATE_DEBUG=True) # Test the base loader class via the app loader. load_template # from base is used by all shipped loaders excepting cached, # which has its own test. @override_settings(TEMPLATES=[{ 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'APP_DIRS': True, }]) def test_include_missing_template(self): """ Tests that the correct template is identified as not existing when {% include %} specifies a template that does not exist. """ load_name = 'test_include_error.html' r = None try: tmpl = loader.select_template([load_name]) r = tmpl.render(template.Context({})) except template.TemplateDoesNotExist as e: self.assertEqual(e.args[0], 'missing.html') self.assertEqual(r, None, 'Template rendering unexpectedly succeeded, produced: ->%r<-' % r) # TEMPLATE_DEBUG must be true, otherwise the exception raised # during {% include %} processing will be suppressed. @override_settings(TEMPLATE_DEBUG=True) # Test the base loader class via the app loader. load_template # from base is used by all shipped loaders excepting cached, # which has its own test. @override_settings(TEMPLATES=[{ 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'APP_DIRS': True, }]) def test_extends_include_missing_baseloader(self): """ Tests that the correct template is identified as not existing when {% extends %} specifies a template that does exist, but that template has an {% include %} of something that does not exist. See #12787. """ load_name = 'test_extends_error.html' tmpl = loader.get_template(load_name) r = None try: r = tmpl.render(template.Context({})) except template.TemplateDoesNotExist as e: self.assertEqual(e.args[0], 'missing.html') self.assertEqual(r, None, 'Template rendering unexpectedly succeeded, produced: ->%r<-' % r) @override_settings(TEMPLATES=[{ 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'OPTIONS': { 'loaders': [ ('django.template.loaders.cached.Loader', [ 'django.template.loaders.app_directories.Loader', ]), ], }, }]) @override_settings(TEMPLATE_DEBUG=True) def test_extends_include_missing_cachedloader(self): """ Same as test_extends_include_missing_baseloader, only tests behavior of the cached loader instead of base loader. """ load_name = 'test_extends_error.html' tmpl = loader.get_template(load_name) r = None try: r = tmpl.render(template.Context({})) except template.TemplateDoesNotExist as e: self.assertEqual(e.args[0], 'missing.html') self.assertEqual(r, None, 'Template rendering unexpectedly succeeded, produced: ->%r<-' % r) # For the cached loader, repeat the test, to ensure the first attempt did not cache a # result that behaves incorrectly on subsequent attempts. tmpl = loader.get_template(load_name) try: tmpl.render(template.Context({})) except template.TemplateDoesNotExist as e: self.assertEqual(e.args[0], 'missing.html') self.assertEqual(r, None, 'Template rendering unexpectedly succeeded, produced: ->%r<-' % r) def test_include_template_argument(self): """ Support any render() supporting object """ ctx = Context({ 'tmpl': Template('This worked!'), }) outer_tmpl = Template('{% include tmpl %}') output = outer_tmpl.render(ctx) self.assertEqual(output, 'This worked!') @override_settings(TEMPLATE_DEBUG=True) def test_include_immediate_missing(self): """ Regression test for #16417 -- {% include %} tag raises TemplateDoesNotExist at compile time if TEMPLATE_DEBUG is True Test that an {% include %} tag with a literal string referencing a template that does not exist does not raise an exception at parse time. """ tmpl = Template('{% include "this_does_not_exist.html" %}') self.assertIsInstance(tmpl, Template) @override_settings(TEMPLATE_DEBUG=True) def test_include_recursive(self): comments = [ { 'comment': 'A1', 'children': [ {'comment': 'B1', 'children': []}, {'comment': 'B2', 'children': []}, {'comment': 'B3', 'children': [ {'comment': 'C1', 'children': []} ]}, ] } ] t = loader.get_template('recursive_include.html') self.assertEqual( "Recursion! A1 Recursion! B1 B2 B3 Recursion! C1", t.render(Context({'comments': comments})).replace(' ', '').replace('\n', ' ').strip(), ) class TemplateRegressionTests(SimpleTestCase): def test_token_smart_split(self): # Regression test for #7027 token = template_base.Token(template_base.TOKEN_BLOCK, 'sometag _("Page not found") value|yesno:_("yes,no")') split = token.split_contents() self.assertEqual(split, ["sometag", '_("Page not found")', 'value|yesno:_("yes,no")']) @override_settings(SETTINGS_MODULE=None, TEMPLATE_DEBUG=True) def test_url_reverse_no_settings_module(self): # Regression test for #9005 t = Template('{% url will_not_match %}') c = Context() with self.assertRaises(urlresolvers.NoReverseMatch): t.render(c) @override_settings( TEMPLATES=[{ 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'OPTIONS': {'string_if_invalid': '%s is invalid'}, }], SETTINGS_MODULE='also_something', ) def test_url_reverse_view_name(self): # Regression test for #19827 t = Template('{% url will_not_match %}') c = Context() try: t.render(c) except urlresolvers.NoReverseMatch: tb = sys.exc_info()[2] depth = 0 while tb.tb_next is not None: tb = tb.tb_next depth += 1 self.assertGreater(depth, 5, "The traceback context was lost when reraising the traceback. See #19827") @override_settings(DEBUG=True, TEMPLATE_DEBUG=True) def test_no_wrapped_exception(self): """ The template system doesn't wrap exceptions, but annotates them. Refs #16770 """ c = Context({"coconuts": lambda: 42 / 0}) t = Template("{{ coconuts }}") with self.assertRaises(ZeroDivisionError) as cm: t.render(c) self.assertEqual(cm.exception.django_template_source[1], (0, 14)) def test_invalid_block_suggestion(self): # See #7876 try: Template("{% if 1 %}lala{% endblock %}{% endif %}") except TemplateSyntaxError as e: self.assertEqual(e.args[0], "Invalid block tag: 'endblock', expected 'elif', 'else' or 'endif'") def test_ifchanged_concurrency(self): # Tests for #15849 template = Template('[0{% for x in foo %},{% with var=get_value %}{% ifchanged %}{{ var }}{% endifchanged %}{% endwith %}{% endfor %}]') # Using generator to mimic concurrency. # The generator is not passed to the 'for' loop, because it does a list(values) # instead, call gen.next() in the template to control the generator. def gen(): yield 1 yield 2 # Simulate that another thread is now rendering. # When the IfChangeNode stores state at 'self' it stays at '3' and skip the last yielded value below. iter2 = iter([1, 2, 3]) output2 = template.render(Context({'foo': range(3), 'get_value': lambda: next(iter2)})) self.assertEqual(output2, '[0,1,2,3]', 'Expected [0,1,2,3] in second parallel template, got {}'.format(output2)) yield 3 gen1 = gen() output1 = template.render(Context({'foo': range(3), 'get_value': lambda: next(gen1)})) self.assertEqual(output1, '[0,1,2,3]', 'Expected [0,1,2,3] in first template, got {}'.format(output1)) def test_cache_regression_20130(self): t = Template('{% load cache %}{% cache 1 regression_20130 %}foo{% endcache %}') cachenode = t.nodelist[1] self.assertEqual(cachenode.fragment_name, 'regression_20130') @override_settings(CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'default', }, 'template_fragments': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'fragments', }, }) def test_cache_fragment_cache(self): """ When a cache called "template_fragments" is present, the cache tag will use it in preference to 'default' """ t1 = Template('{% load cache %}{% cache 1 fragment %}foo{% endcache %}') t2 = Template('{% load cache %}{% cache 1 fragment using="default" %}bar{% endcache %}') ctx = Context() o1 = t1.render(ctx) o2 = t2.render(ctx) self.assertEqual(o1, 'foo') self.assertEqual(o2, 'bar') def test_cache_missing_backend(self): """ When a cache that doesn't exist is specified, the cache tag will raise a TemplateSyntaxError '""" t = Template('{% load cache %}{% cache 1 backend using="unknown" %}bar{% endcache %}') ctx = Context() with self.assertRaises(TemplateSyntaxError): t.render(ctx) def test_ifchanged_render_once(self): """ Test for ticket #19890. The content of ifchanged template tag was rendered twice.""" template = Template('{% ifchanged %}{% cycle "1st time" "2nd time" %}{% endifchanged %}') output = template.render(Context({})) self.assertEqual(output, '1st time') def test_super_errors(self): """ Test behavior of the raise errors into included blocks. See #18169 """ t = loader.get_template('included_content.html') with self.assertRaises(urlresolvers.NoReverseMatch): t.render(Context({})) def test_debug_tag_non_ascii(self): """ Test non-ASCII model representation in debug output (#23060). """ Group.objects.create(name="清風") c1 = Context({"objs": Group.objects.all()}) t1 = Template('{% debug %}') self.assertIn("清風", t1.render(c1)) class TemplateTagLoading(SimpleTestCase): def setUp(self): self.egg_dir = '%s/eggs' % os.path.dirname(upath(__file__)) def test_load_error(self): ttext = "{% load broken_tag %}" self.assertRaises(template.TemplateSyntaxError, template.Template, ttext) try: template.Template(ttext) except template.TemplateSyntaxError as e: self.assertIn('ImportError', e.args[0]) self.assertIn('Xtemplate', e.args[0]) def test_load_error_egg(self): ttext = "{% load broken_egg %}" egg_name = '%s/tagsegg.egg' % self.egg_dir with extend_sys_path(egg_name): with self.assertRaises(template.TemplateSyntaxError): with self.settings(INSTALLED_APPS=['tagsegg']): template.Template(ttext) try: with self.settings(INSTALLED_APPS=['tagsegg']): template.Template(ttext) except template.TemplateSyntaxError as e: self.assertIn('ImportError', e.args[0]) self.assertIn('Xtemplate', e.args[0]) def test_load_working_egg(self): ttext = "{% load working_egg %}" egg_name = '%s/tagsegg.egg' % self.egg_dir with extend_sys_path(egg_name): with self.settings(INSTALLED_APPS=['tagsegg']): template.Template(ttext) class RequestContextTests(unittest.TestCase): def setUp(self): self.fake_request = RequestFactory().get('/') @override_settings(TEMPLATES=[{ 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'OPTIONS': { 'loaders': [ ('django.template.loaders.locmem.Loader', { 'child': '{{ var|default:"none" }}', }), ], }, }]) def test_include_only(self): """ Regression test for #15721, ``{% include %}`` and ``RequestContext`` not playing together nicely. """ ctx = RequestContext(self.fake_request, {'var': 'parent'}) self.assertEqual( template.Template('{% include "child" %}').render(ctx), 'parent' ) self.assertEqual( template.Template('{% include "child" only %}').render(ctx), 'none' ) def test_stack_size(self): """ Regression test for #7116, Optimize RequetsContext construction """ ctx = RequestContext(self.fake_request, {}) # The stack should now contain 3 items: # [builtins, supplied context, context processor] self.assertEqual(len(ctx.dicts), 3) def test_context_comparable(self): # Create an engine without any context processors. engine = Engine() test_data = {'x': 'y', 'v': 'z', 'd': {'o': object, 'a': 'b'}} # test comparing RequestContext to prevent problems if somebody # adds __eq__ in the future request = RequestFactory().get('/') self.assertEqual( RequestContext(request, dict_=test_data, engine=engine), RequestContext(request, dict_=test_data, engine=engine)) @ignore_warnings(category=RemovedInDjango20Warning) class SSITests(SimpleTestCase): def setUp(self): self.this_dir = os.path.dirname(os.path.abspath(upath(__file__))) self.ssi_dir = os.path.join(self.this_dir, "templates", "first") self.engine = Engine(allowed_include_roots=(self.ssi_dir,)) def render_ssi(self, path): # the path must exist for the test to be reliable self.assertTrue(os.path.exists(path)) return self.engine.from_string('{%% ssi "%s" %%}' % path).render(Context({})) def test_allowed_paths(self): acceptable_path = os.path.join(self.ssi_dir, "..", "first", "test.html") self.assertEqual(self.render_ssi(acceptable_path), 'First template\n') def test_relative_include_exploit(self): """ May not bypass allowed_include_roots with relative paths e.g. if allowed_include_roots = ("/var/www",), it should not be possible to do {% ssi "/var/www/../../etc/passwd" %} """ disallowed_paths = [ os.path.join(self.ssi_dir, "..", "ssi_include.html"), os.path.join(self.ssi_dir, "..", "second", "test.html"), ] for disallowed_path in disallowed_paths: self.assertEqual(self.render_ssi(disallowed_path), '')
py
b404a89bc295eddde0450aac967fc382475b570a
# qubit number=4 # total number=14 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += H(0) # number=1 prog += Z(3) # number=7 prog += Z(1) # number=8 prog += H(2) # number=3 prog += H(3) # number=4 prog += SWAP(3,0) # number=5 prog += SWAP(3,0) # number=6 prog += CNOT(0,3) # number=11 prog += X(3) # number=12 prog += CNOT(0,3) # number=13 prog += X(3) # number=10 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('4q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil700.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
py
b404a945077db61cd742ea6219081d47c502fd7a
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. def print_color(code: int, message: str) -> None: print(f"\033[{code}m{message}\033[00m") def print_green(message: str) -> None: print_color(92, message) def print_yellow(message: str) -> None: print_color(93, message) def print_cyan(message: str) -> None: print_color(96, message) def print_red(message: str) -> None: print_color(91, message) def snake_to_camelcase(name: str) -> str: """Convert snake-case string to camel-case string.""" return "".join(n.capitalize() for n in name.split("_"))
py
b404a9703288f073e3a64f4e6f8d13e3a4716992
# -*- coding:utf-8 -*- # @Date: "2021-07-14" # @Description: 排行数据Dict import sys import random from typing import Hashable SKIPLIST_P = 0.25 MAX_LEVEL = 32 def skRandomLevel(): lvl = 1 while(random.random() < SKIPLIST_P and lvl < MAX_LEVEL): lvl += 1 return lvl class SkipListLevel(object): def __init__(self): super(SkipListLevel, self).__init__() self.forward = None self.span = 0 class SkipListNode(object): def __init__(self, level, value): super(SkipListNode, self).__init__() self.value = value self.backward = None self.levels = [SkipListLevel() for _ in level] class SkipList(object): def __init__(self): super(SkipList, self).__init__() self._head = SkipListNode(MAX_LEVEL, None) self._tail = None self._lenth = 0 self._level = 0 class RankDict(object): def __init__(self): super(RankDict, self).__init__() def insert(self, searchKey, value): ''' @param k : 可重复 @param v : 不可重复 ''' if not Hashable(searchKey): raise KeyError('@key must be hashable.') pass def update(self, k, v): pass def rank(self, k): pass def rankByVal(self, val): pass def range(self, start, stop): pass def rangeByVal(self, start, stop): pass if __name__ == '__main__': cnt = 1000000 sd = {} for _ in range(cnt): r = skRandomLevel() if r not in sd: sd[r] = 1 else: sd[r] += 1 print(sd) for k, v in sd.items(): sd[k] = v*1.0/cnt print(sd)
py
b404aaf863681a70005ef32f2c7f62dc4e5d1f7a
import socket s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((socket.gethostname(), 1234)) #s.connect(('10.84.14.54', 1234)) msg = s.recv(1024) print(msg.decode("utf-8"))
py
b404ad4e2a492f334947798388c0cef0b6e46b80
import json import logging from io import SEEK_END, BytesIO import attr from zope.interface import implementer from twisted.internet import address, threads, udp from twisted.internet._resolver import SimpleResolverComplexifier from twisted.internet.defer import Deferred, fail, succeed from twisted.internet.error import DNSLookupError from twisted.internet.interfaces import ( IReactorPluggableNameResolver, IReactorTCP, IResolverSimple, ) from twisted.python.failure import Failure from twisted.test.proto_helpers import AccumulatingProtocol, MemoryReactorClock from twisted.web.http import unquote from twisted.web.http_headers import Headers from twisted.web.server import Site from synapse.http.site import SynapseRequest from synapse.util import Clock from tests.utils import setup_test_homeserver as _sth logger = logging.getLogger(__name__) class TimedOutException(Exception): """ A web query timed out. """ @attr.s class FakeChannel: """ A fake Twisted Web Channel (the part that interfaces with the wire). """ site = attr.ib(type=Site) _reactor = attr.ib() result = attr.ib(default=attr.Factory(dict)) _producer = None @property def json_body(self): if not self.result: raise Exception("No result yet.") return json.loads(self.result["body"].decode("utf8")) @property def code(self): if not self.result: raise Exception("No result yet.") return int(self.result["code"]) @property def headers(self): if not self.result: raise Exception("No result yet.") h = Headers() for i in self.result["headers"]: h.addRawHeader(*i) return h def writeHeaders(self, version, code, reason, headers): self.result["version"] = version self.result["code"] = code self.result["reason"] = reason self.result["headers"] = headers def write(self, content): assert isinstance(content, bytes), "Should be bytes! " + repr(content) if "body" not in self.result: self.result["body"] = b"" self.result["body"] += content def registerProducer(self, producer, streaming): self._producer = producer self.producerStreaming = streaming def _produce(): if self._producer: self._producer.resumeProducing() self._reactor.callLater(0.1, _produce) if not streaming: self._reactor.callLater(0.0, _produce) def unregisterProducer(self): if self._producer is None: return self._producer = None def requestDone(self, _self): self.result["done"] = True def getPeer(self): # We give an address so that getClientIP returns a non null entry, # causing us to record the MAU return address.IPv4Address("TCP", "127.0.0.1", 3423) def getHost(self): return None @property def transport(self): return self class FakeSite: """ A fake Twisted Web Site, with mocks of the extra things that Synapse adds. """ server_version_string = b"1" site_tag = "test" access_logger = logging.getLogger("synapse.access.http.fake") def make_request( reactor, method, path, content=b"", access_token=None, request=SynapseRequest, shorthand=True, federation_auth_origin=None, content_is_form=False, ): """ Make a web request using the given method and path, feed it the content, and return the Request and the Channel underneath. Args: method (bytes/unicode): The HTTP request method ("verb"). path (bytes/unicode): The HTTP path, suitably URL encoded (e.g. escaped UTF-8 & spaces and such). content (bytes or dict): The body of the request. JSON-encoded, if a dict. shorthand: Whether to try and be helpful and prefix the given URL with the usual REST API path, if it doesn't contain it. federation_auth_origin (bytes|None): if set to not-None, we will add a fake Authorization header pretenting to be the given server name. content_is_form: Whether the content is URL encoded form data. Adds the 'Content-Type': 'application/x-www-form-urlencoded' header. Returns: Tuple[synapse.http.site.SynapseRequest, channel] """ if not isinstance(method, bytes): method = method.encode("ascii") if not isinstance(path, bytes): path = path.encode("ascii") # Decorate it to be the full path, if we're using shorthand if ( shorthand and not path.startswith(b"/_matrix") and not path.startswith(b"/_synapse") ): path = b"/_matrix/client/r0/" + path path = path.replace(b"//", b"/") if not path.startswith(b"/"): path = b"/" + path if isinstance(content, str): content = content.encode("utf8") site = FakeSite() channel = FakeChannel(site, reactor) req = request(channel) req.process = lambda: b"" req.content = BytesIO(content) # Twisted expects to be at the end of the content when parsing the request. req.content.seek(SEEK_END) req.postpath = list(map(unquote, path[1:].split(b"/"))) if access_token: req.requestHeaders.addRawHeader( b"Authorization", b"Bearer " + access_token.encode("ascii") ) if federation_auth_origin is not None: req.requestHeaders.addRawHeader( b"Authorization", b"X-Matrix origin=%s,key=,sig=" % (federation_auth_origin,), ) if content: if content_is_form: req.requestHeaders.addRawHeader( b"Content-Type", b"application/x-www-form-urlencoded" ) else: # Assume the body is JSON req.requestHeaders.addRawHeader(b"Content-Type", b"application/json") req.requestReceived(method, path, b"1.1") return req, channel def wait_until_result(clock, request, timeout=100): """ Wait until the request is finished. """ clock.run() x = 0 while not request.finished: # If there's a producer, tell it to resume producing so we get content if request._channel._producer: request._channel._producer.resumeProducing() x += 1 if x > timeout: raise TimedOutException("Timed out waiting for request to finish.") clock.advance(0.1) def render(request, resource, clock): request.render(resource) wait_until_result(clock, request) @implementer(IReactorPluggableNameResolver) class ThreadedMemoryReactorClock(MemoryReactorClock): """ A MemoryReactorClock that supports callFromThread. """ def __init__(self): self.threadpool = ThreadPool(self) self._tcp_callbacks = {} self._udp = [] lookups = self.lookups = {} @implementer(IResolverSimple) class FakeResolver: def getHostByName(self, name, timeout=None): if name not in lookups: return fail(DNSLookupError("OH NO: unknown %s" % (name,))) return succeed(lookups[name]) self.nameResolver = SimpleResolverComplexifier(FakeResolver()) super().__init__() def listenUDP(self, port, protocol, interface="", maxPacketSize=8196): p = udp.Port(port, protocol, interface, maxPacketSize, self) p.startListening() self._udp.append(p) return p def callFromThread(self, callback, *args, **kwargs): """ Make the callback fire in the next reactor iteration. """ d = Deferred() d.addCallback(lambda x: callback(*args, **kwargs)) self.callLater(0, d.callback, True) return d def getThreadPool(self): return self.threadpool def add_tcp_client_callback(self, host, port, callback): """Add a callback that will be invoked when we receive a connection attempt to the given IP/port using `connectTCP`. Note that the callback gets run before we return the connection to the client, which means callbacks cannot block while waiting for writes. """ self._tcp_callbacks[(host, port)] = callback def connectTCP(self, host, port, factory, timeout=30, bindAddress=None): """Fake L{IReactorTCP.connectTCP}. """ conn = super().connectTCP( host, port, factory, timeout=timeout, bindAddress=None ) callback = self._tcp_callbacks.get((host, port)) if callback: callback() return conn class ThreadPool: """ Threadless thread pool. """ def __init__(self, reactor): self._reactor = reactor def start(self): pass def stop(self): pass def callInThreadWithCallback(self, onResult, function, *args, **kwargs): def _(res): if isinstance(res, Failure): onResult(False, res) else: onResult(True, res) d = Deferred() d.addCallback(lambda x: function(*args, **kwargs)) d.addBoth(_) self._reactor.callLater(0, d.callback, True) return d def setup_test_homeserver(cleanup_func, *args, **kwargs): """ Set up a synchronous test server, driven by the reactor used by the homeserver. """ server = _sth(cleanup_func, *args, **kwargs) database = server.config.database.get_single_database() # Make the thread pool synchronous. clock = server.get_clock() for database in server.get_datastores().databases: pool = database._db_pool def runWithConnection(func, *args, **kwargs): return threads.deferToThreadPool( pool._reactor, pool.threadpool, pool._runWithConnection, func, *args, **kwargs ) def runInteraction(interaction, *args, **kwargs): return threads.deferToThreadPool( pool._reactor, pool.threadpool, pool._runInteraction, interaction, *args, **kwargs ) pool.runWithConnection = runWithConnection pool.runInteraction = runInteraction pool.threadpool = ThreadPool(clock._reactor) pool.running = True return server def get_clock(): clock = ThreadedMemoryReactorClock() hs_clock = Clock(clock) return clock, hs_clock @attr.s(cmp=False) class FakeTransport: """ A twisted.internet.interfaces.ITransport implementation which sends all its data straight into an IProtocol object: it exists to connect two IProtocols together. To use it, instantiate it with the receiving IProtocol, and then pass it to the sending IProtocol's makeConnection method: server = HTTPChannel() client.makeConnection(FakeTransport(server, self.reactor)) If you want bidirectional communication, you'll need two instances. """ other = attr.ib() """The Protocol object which will receive any data written to this transport. :type: twisted.internet.interfaces.IProtocol """ _reactor = attr.ib() """Test reactor :type: twisted.internet.interfaces.IReactorTime """ _protocol = attr.ib(default=None) """The Protocol which is producing data for this transport. Optional, but if set will get called back for connectionLost() notifications etc. """ disconnecting = False disconnected = False connected = True buffer = attr.ib(default=b"") producer = attr.ib(default=None) autoflush = attr.ib(default=True) def getPeer(self): return None def getHost(self): return None def loseConnection(self, reason=None): if not self.disconnecting: logger.info("FakeTransport: loseConnection(%s)", reason) self.disconnecting = True if self._protocol: self._protocol.connectionLost(reason) # if we still have data to write, delay until that is done if self.buffer: logger.info( "FakeTransport: Delaying disconnect until buffer is flushed" ) else: self.connected = False self.disconnected = True def abortConnection(self): logger.info("FakeTransport: abortConnection()") if not self.disconnecting: self.disconnecting = True if self._protocol: self._protocol.connectionLost(None) self.disconnected = True def pauseProducing(self): if not self.producer: return self.producer.pauseProducing() def resumeProducing(self): if not self.producer: return self.producer.resumeProducing() def unregisterProducer(self): if not self.producer: return self.producer = None def registerProducer(self, producer, streaming): self.producer = producer self.producerStreaming = streaming def _produce(): d = self.producer.resumeProducing() d.addCallback(lambda x: self._reactor.callLater(0.1, _produce)) if not streaming: self._reactor.callLater(0.0, _produce) def write(self, byt): if self.disconnecting: raise Exception("Writing to disconnecting FakeTransport") self.buffer = self.buffer + byt # always actually do the write asynchronously. Some protocols (notably the # TLSMemoryBIOProtocol) get very confused if a read comes back while they are # still doing a write. Doing a callLater here breaks the cycle. if self.autoflush: self._reactor.callLater(0.0, self.flush) def writeSequence(self, seq): for x in seq: self.write(x) def flush(self, maxbytes=None): if not self.buffer: # nothing to do. Don't write empty buffers: it upsets the # TLSMemoryBIOProtocol return if self.disconnected: return if getattr(self.other, "transport") is None: # the other has no transport yet; reschedule if self.autoflush: self._reactor.callLater(0.0, self.flush) return if maxbytes is not None: to_write = self.buffer[:maxbytes] else: to_write = self.buffer logger.info("%s->%s: %s", self._protocol, self.other, to_write) try: self.other.dataReceived(to_write) except Exception as e: logger.exception("Exception writing to protocol: %s", e) return self.buffer = self.buffer[len(to_write) :] if self.buffer and self.autoflush: self._reactor.callLater(0.0, self.flush) if not self.buffer and self.disconnecting: logger.info("FakeTransport: Buffer now empty, completing disconnect") self.disconnected = True def connect_client(reactor: IReactorTCP, client_id: int) -> AccumulatingProtocol: """ Connect a client to a fake TCP transport. Args: reactor factory: The connecting factory to build. """ factory = reactor.tcpClients[client_id][2] client = factory.buildProtocol(None) server = AccumulatingProtocol() server.makeConnection(FakeTransport(client, reactor)) client.makeConnection(FakeTransport(server, reactor)) reactor.tcpClients.pop(client_id) return client, server
py
b404add57bc4ba29ce7f0a16c4d69eb20ad03f75
from __future__ import division, absolute_import import copy import numpy as np import random from collections import defaultdict from torch.utils.data.sampler import Sampler, RandomSampler, SequentialSampler AVAI_SAMPLERS = ['RandomIdentitySampler', 'SequentialSampler', 'RandomSampler'] class RandomIdentitySampler(Sampler): """Randomly samples N identities each with K instances. Args: data_source (list): contains tuples of (img_path(s), pid, camid). batch_size (int): batch size. num_instances (int): number of instances per identity in a batch. """ def __init__(self, data_source, batch_size, num_instances): if batch_size < num_instances: raise ValueError( 'batch_size={} must be no less ' 'than num_instances={}'.format(batch_size, num_instances) ) self.data_source = data_source self.batch_size = batch_size self.num_instances = num_instances self.num_pids_per_batch = self.batch_size // self.num_instances self.index_dic = defaultdict(list) for index, (_, pid, _) in enumerate(self.data_source): self.index_dic[pid].append(index) self.pids = list(self.index_dic.keys()) # estimate number of examples in an epoch # TODO: improve precision self.length = 0 for pid in self.pids: idxs = self.index_dic[pid] num = len(idxs) if num < self.num_instances: num = self.num_instances self.length += num - num % self.num_instances def __iter__(self): batch_idxs_dict = defaultdict(list) for pid in self.pids: idxs = copy.deepcopy(self.index_dic[pid]) if len(idxs) < self.num_instances: idxs = np.random.choice( idxs, size=self.num_instances, replace=True ) random.shuffle(idxs) batch_idxs = [] for idx in idxs: batch_idxs.append(idx) if len(batch_idxs) == self.num_instances: batch_idxs_dict[pid].append(batch_idxs) batch_idxs = [] avai_pids = copy.deepcopy(self.pids) final_idxs = [] while len(avai_pids) >= self.num_pids_per_batch: selected_pids = random.sample(avai_pids, self.num_pids_per_batch) for pid in selected_pids: batch_idxs = batch_idxs_dict[pid].pop(0) final_idxs.extend(batch_idxs) if len(batch_idxs_dict[pid]) == 0: avai_pids.remove(pid) return iter(final_idxs) def __len__(self): return self.length def build_train_sampler( data_source, train_sampler, batch_size=32, num_instances=4, **kwargs ): """Builds a training sampler. Args: data_source (list): contains tuples of (img_path(s), pid, camid). train_sampler (str): sampler name (default: ``RandomSampler``). batch_size (int, optional): batch size. Default is 32. num_instances (int, optional): number of instances per identity in a batch (when using ``RandomIdentitySampler``). Default is 4. """ assert train_sampler in AVAI_SAMPLERS, \ 'train_sampler must be one of {}, but got {}'.format(AVAI_SAMPLERS, train_sampler) if train_sampler == 'RandomIdentitySampler': sampler = RandomIdentitySampler(data_source, batch_size, num_instances) elif train_sampler == 'SequentialSampler': sampler = SequentialSampler(data_source) elif train_sampler == 'RandomSampler': sampler = RandomSampler(data_source) return sampler
py
b404addf0a98f590183f48a232fc59f1e28a7a6c
# This file is dual licensed under the terms of the Apache License, Version # 2.0, and the BSD License. See the LICENSE file in the root of this repository # for complete details. from __future__ import absolute_import, division, print_function INCLUDES = """ #include <openssl/obj_mac.h> """ TYPES = """ static const int NID_undef; static const int NID_dsa; static const int NID_dsaWithSHA; static const int NID_dsaWithSHA1; static const int NID_md2; static const int NID_md4; static const int NID_md5; static const int NID_mdc2; static const int NID_ripemd160; static const int NID_sha; static const int NID_sha1; static const int NID_sha256; static const int NID_sha384; static const int NID_sha512; static const int NID_sha224; static const int NID_sha; static const int NID_ecdsa_with_SHA1; static const int NID_ecdsa_with_SHA224; static const int NID_ecdsa_with_SHA256; static const int NID_ecdsa_with_SHA384; static const int NID_ecdsa_with_SHA512; static const int NID_pbe_WithSHA1And3_Key_TripleDES_CBC; static const int NID_X9_62_c2pnb163v1; static const int NID_X9_62_c2pnb163v2; static const int NID_X9_62_c2pnb163v3; static const int NID_X9_62_c2pnb176v1; static const int NID_X9_62_c2tnb191v1; static const int NID_X9_62_c2tnb191v2; static const int NID_X9_62_c2tnb191v3; static const int NID_X9_62_c2onb191v4; static const int NID_X9_62_c2onb191v5; static const int NID_X9_62_c2pnb208w1; static const int NID_X9_62_c2tnb239v1; static const int NID_X9_62_c2tnb239v2; static const int NID_X9_62_c2tnb239v3; static const int NID_X9_62_c2onb239v4; static const int NID_X9_62_c2onb239v5; static const int NID_X9_62_c2pnb272w1; static const int NID_X9_62_c2pnb304w1; static const int NID_X9_62_c2tnb359v1; static const int NID_X9_62_c2pnb368w1; static const int NID_X9_62_c2tnb431r1; static const int NID_X9_62_prime192v1; static const int NID_X9_62_prime192v2; static const int NID_X9_62_prime192v3; static const int NID_X9_62_prime239v1; static const int NID_X9_62_prime239v2; static const int NID_X9_62_prime239v3; static const int NID_X9_62_prime256v1; static const int NID_secp112r1; static const int NID_secp112r2; static const int NID_secp128r1; static const int NID_secp128r2; static const int NID_secp160k1; static const int NID_secp160r1; static const int NID_secp160r2; static const int NID_sect163k1; static const int NID_sect163r1; static const int NID_sect163r2; static const int NID_secp192k1; static const int NID_secp224k1; static const int NID_secp224r1; static const int NID_secp256k1; static const int NID_secp384r1; static const int NID_secp521r1; static const int NID_sect113r1; static const int NID_sect113r2; static const int NID_sect131r1; static const int NID_sect131r2; static const int NID_sect193r1; static const int NID_sect193r2; static const int NID_sect233k1; static const int NID_sect233r1; static const int NID_sect239k1; static const int NID_sect283k1; static const int NID_sect283r1; static const int NID_sect409k1; static const int NID_sect409r1; static const int NID_sect571k1; static const int NID_sect571r1; static const int NID_wap_wsg_idm_ecid_wtls1; static const int NID_wap_wsg_idm_ecid_wtls3; static const int NID_wap_wsg_idm_ecid_wtls4; static const int NID_wap_wsg_idm_ecid_wtls5; static const int NID_wap_wsg_idm_ecid_wtls6; static const int NID_wap_wsg_idm_ecid_wtls7; static const int NID_wap_wsg_idm_ecid_wtls8; static const int NID_wap_wsg_idm_ecid_wtls9; static const int NID_wap_wsg_idm_ecid_wtls10; static const int NID_wap_wsg_idm_ecid_wtls11; static const int NID_wap_wsg_idm_ecid_wtls12; static const int NID_ipsec3; static const int NID_ipsec4; static const char *const SN_X9_62_c2pnb163v1; static const char *const SN_X9_62_c2pnb163v2; static const char *const SN_X9_62_c2pnb163v3; static const char *const SN_X9_62_c2pnb176v1; static const char *const SN_X9_62_c2tnb191v1; static const char *const SN_X9_62_c2tnb191v2; static const char *const SN_X9_62_c2tnb191v3; static const char *const SN_X9_62_c2onb191v4; static const char *const SN_X9_62_c2onb191v5; static const char *const SN_X9_62_c2pnb208w1; static const char *const SN_X9_62_c2tnb239v1; static const char *const SN_X9_62_c2tnb239v2; static const char *const SN_X9_62_c2tnb239v3; static const char *const SN_X9_62_c2onb239v4; static const char *const SN_X9_62_c2onb239v5; static const char *const SN_X9_62_c2pnb272w1; static const char *const SN_X9_62_c2pnb304w1; static const char *const SN_X9_62_c2tnb359v1; static const char *const SN_X9_62_c2pnb368w1; static const char *const SN_X9_62_c2tnb431r1; static const char *const SN_X9_62_prime192v1; static const char *const SN_X9_62_prime192v2; static const char *const SN_X9_62_prime192v3; static const char *const SN_X9_62_prime239v1; static const char *const SN_X9_62_prime239v2; static const char *const SN_X9_62_prime239v3; static const char *const SN_X9_62_prime256v1; static const char *const SN_secp112r1; static const char *const SN_secp112r2; static const char *const SN_secp128r1; static const char *const SN_secp128r2; static const char *const SN_secp160k1; static const char *const SN_secp160r1; static const char *const SN_secp160r2; static const char *const SN_sect163k1; static const char *const SN_sect163r1; static const char *const SN_sect163r2; static const char *const SN_secp192k1; static const char *const SN_secp224k1; static const char *const SN_secp224r1; static const char *const SN_secp256k1; static const char *const SN_secp384r1; static const char *const SN_secp521r1; static const char *const SN_sect113r1; static const char *const SN_sect113r2; static const char *const SN_sect131r1; static const char *const SN_sect131r2; static const char *const SN_sect193r1; static const char *const SN_sect193r2; static const char *const SN_sect233k1; static const char *const SN_sect233r1; static const char *const SN_sect239k1; static const char *const SN_sect283k1; static const char *const SN_sect283r1; static const char *const SN_sect409k1; static const char *const SN_sect409r1; static const char *const SN_sect571k1; static const char *const SN_sect571r1; static const char *const SN_wap_wsg_idm_ecid_wtls1; static const char *const SN_wap_wsg_idm_ecid_wtls3; static const char *const SN_wap_wsg_idm_ecid_wtls4; static const char *const SN_wap_wsg_idm_ecid_wtls5; static const char *const SN_wap_wsg_idm_ecid_wtls6; static const char *const SN_wap_wsg_idm_ecid_wtls7; static const char *const SN_wap_wsg_idm_ecid_wtls8; static const char *const SN_wap_wsg_idm_ecid_wtls9; static const char *const SN_wap_wsg_idm_ecid_wtls10; static const char *const SN_wap_wsg_idm_ecid_wtls11; static const char *const SN_wap_wsg_idm_ecid_wtls12; static const char *const SN_ipsec3; static const char *const SN_ipsec4; static const int NID_subject_key_identifier; static const int NID_authority_key_identifier; static const int NID_policy_constraints; static const int NID_ext_key_usage; static const int NID_info_access; static const int NID_key_usage; static const int NID_subject_alt_name; static const int NID_issuer_alt_name; static const int NID_basic_constraints; static const int NID_issuing_distribution_point; static const int NID_certificate_issuer; static const int NID_name_constraints; static const int NID_crl_distribution_points; static const int NID_certificate_policies; static const int NID_inhibit_any_policy; static const int NID_private_key_usage_period; static const int NID_crl_number; static const int NID_crl_reason; static const int NID_invalidity_date; static const int NID_delta_crl; static const int NID_any_policy; static const int NID_policy_mappings; static const int NID_target_information; static const int NID_no_rev_avail; static const int NID_commonName; static const int NID_countryName; static const int NID_localityName; static const int NID_stateOrProvinceName; static const int NID_organizationName; static const int NID_organizationalUnitName; static const int NID_serialNumber; static const int NID_surname; static const int NID_givenName; static const int NID_title; static const int NID_generationQualifier; static const int NID_dnQualifier; static const int NID_pseudonym; static const int NID_domainComponent; static const int NID_pkcs9_emailAddress; """ FUNCTIONS = """ """ MACROS = """ """ CUSTOMIZATIONS = """ """
py
b404ae746d685317c6e9ac4c453eb9366f6268f7
import imutils import cv2 cap = cv2.VideoCapture(0) cap.set(cv2.CAP_PROP_FRAME_WIDTH,300) cap.set(cv2.CAP_PROP_FRAME_HEIGHT,300) cap1 = cv2.VideoCapture(1) cap1.set(cv2.CAP_PROP_FRAME_WIDTH,300) cap1.set(cv2.CAP_PROP_FRAME_HEIGHT,300) cap2 = cv2.VideoCapture(2) cap2.set(cv2.CAP_PROP_FRAME_WIDTH,300) cap2.set(cv2.CAP_PROP_FRAME_HEIGHT,300) cap3 = cv2.VideoCapture(3) cap3.set(cv2.CAP_PROP_FRAME_WIDTH,300) cap3.set(cv2.CAP_PROP_FRAME_HEIGHT,300) def read_frame(): webCameShow(cap.read(),display1) webCameShow(cap1.read(),display2) webCameShow(cap2.read(),display6) webCameShow(cap3.read(),display7) window.after(10, read_frame) def webCameShow(N,Display): _, frameXX = N cv2imageXX = cv2.cvtColor(frameXX, cv2.COLOR_BGR2RGBA) imgXX = Image.fromarray(cv2imageXX) #imgtkXX = ImageTk.PhotoImage(image=imgXX) Display.imgtk = imgtkXX Display.configure(image=imgtkXX) def main(): read_frame() if __name__ == '__main__': main()
py
b404aea1dfc6512b6d9824bdbad38a6f97399f09
import ipaddress import os import pathlib from copy import copy from typing import List, Optional, TypeVar, Union import six import yaml from .domain import Domain from .encrypted_string import EncryptedString from .get_my_ip import get_my_ipv4, get_my_ipv6 from .record import Record, RecordType T = TypeVar('T') if hasattr(os, 'getenvb'): def _getenvb(varname: str, value: T = None) -> Union[Optional[T], bytes]: return os.getenvb(varname.encode(), value) else: def _getenvb(varname: str, value: T = None) -> Union[Optional[T], bytes]: res = os.getenv(varname, value) if res is value: return value return res.encode() if isinstance(res, str) else res class Config(dict): def __init__(self, src="freenom.yml", **kwargs): super().__init__(**kwargs) if isinstance(src, pathlib.Path): src = str(src) self._records = None self._password: EncryptedString = EncryptedString(b"") self.reload(src) self.file = src def reload(self, src): if isinstance(src, dict): content = src elif hasattr(src, 'read'): content = yaml.safe_load(src) else: with open(src) as f: content = yaml.safe_load(f) self.clear() self._password = EncryptedString(content.pop("password", ""), key=_getenvb("FDU_KEY"), iv=_getenvb("FDU_IV")).ensure_encrypted() self.update(content) self._records = None def save(self, file=None): file = file or self.file if isinstance(file, six.string_types): with open(file, 'w') as f: d = dict(self) d["password"] = self._password.str() yaml.dump(d, f) return True return False @property def login(self) -> str: return self['login'] @property def password(self) -> str: return self._password.str() def __eq__(self, other): if self.password != other.password: return False return super().__eq__(other) def __ne__(self, other): return not self == other @property def records(self) -> List[Record]: if self._records is not None: return self._records records = self['record'] if isinstance(records, dict): records = [records] ret = [] ipv4 = None ipv6 = None if records: ipv4 = get_my_ipv4() try: ipv6 = get_my_ipv6() except Exception: ipv6 = None for rec in records: ret += self._parse_record(rec, str(ipv4), str(ipv6) if ipv6 else None) self._records = ret return ret def _parse_record(self, raw_record: dict, ipv4: Optional[str], ipv6: Optional[str]) -> List[Record]: domain_name = raw_record['domain'] if not isinstance(domain_name, six.string_types): raise TypeError("domain's name must be a string") domain_name = domain_name.strip().lower() if not domain_name: raise ValueError("empty domain name") domain = Domain() domain.name = domain_name record = Record(domain=domain) optional_record = None tmp = raw_record.get('name') if tmp is not None: record.name = str(tmp) if not record.name: raise ValueError("empty record name") type_given = False if 'type' in raw_record: record.type = raw_record['type'] type_given = True target_given = False tmp = raw_record.get('target') if tmp is not None: record.target = str(tmp).strip() target_given = True if 'ttl' in raw_record: record.ttl = raw_record['ttl'] if target_given and record.target != 'auto': try: addr = ipaddress.ip_address(six.u(record.target)) except ValueError: pass else: if isinstance(addr, ipaddress.IPv4Address): if type_given: if record.type == RecordType.AAAA: raise ValueError("cannot use ipv4 for AAAA record") else: record.type = RecordType.A elif isinstance(addr, ipaddress.IPv6Address): if type_given: if record.type == RecordType.A: raise ValueError("cannot use ipv6 for A record") else: record.type = RecordType.AAAA else: # target not given or target is 'auto' if type_given: if record.type == RecordType.AAAA: if not ipv6: raise ValueError("empty ipv6") record.target = ipv6 elif record.type == RecordType.A: if not ipv4: raise ValueError("empty ipv4") record.target = ipv4 else: # type not given if not ipv4: raise ValueError("empty ipv4") record.type = RecordType.A record.target = ipv4 if ipv6 is not None: optional_record = copy(record) optional_record.type = RecordType.AAAA optional_record.target = ipv6 return [record] if optional_record is None else [record, optional_record]
py
b404b1a2d57439c85a253dd1c392078131caae34
from datetime import datetime from unittest import TestCase from unittest.mock import MagicMock from test.base import ClientBaseCase from linode_api4 import LongviewSubscription, LinodeClient, ApiError class LinodeClientGeneralTest(ClientBaseCase): """ Tests methods of the LinodeClient class that do not live inside of a group. """ def test_get_no_empty_body(self): """ Tests that a valid JSON body is passed for a GET call """ with self.mock_get('linode/instances') as m: self.client.regions() self.assertEqual(m.call_data_raw, None) def test_get_account(self): a = self.client.account() self.assertEqual(a._populated, True) self.assertEqual(a.first_name, 'Test') self.assertEqual(a.last_name, 'Guy') self.assertEqual(a.email, '[email protected]') self.assertEqual(a.phone, '123-456-7890') self.assertEqual(a.company, 'Linode') self.assertEqual(a.address_1, '3rd & Arch St') self.assertEqual(a.address_2, '') self.assertEqual(a.city, 'Philadelphia') self.assertEqual(a.state, 'PA') self.assertEqual(a.country, 'US') self.assertEqual(a.zip, '19106') self.assertEqual(a.tax_id, '') self.assertEqual(a.balance, 0) self.assertEqual(a.capabilities, ["Linodes","NodeBalancers","Block Storage","Object Storage"]) def test_get_regions(self): r = self.client.regions() self.assertEqual(len(r), 11) for region in r: self.assertTrue(region._populated) self.assertIsNotNone(region.id) self.assertIsNotNone(region.country) if region.id in ('us-east', 'eu-central', 'ap-south'): self.assertEqual(region.capabilities, ["Linodes","NodeBalancers","Block Storage","Object Storage"]) else: self.assertEqual(region.capabilities, ["Linodes","NodeBalancers","Block Storage"]) self.assertEqual(region.status, "ok") self.assertIsNotNone(region.resolvers) self.assertIsNotNone(region.resolvers.ipv4) self.assertIsNotNone(region.resolvers.ipv6) def test_get_images(self): r = self.client.images() self.assertEqual(len(r), 4) for image in r: self.assertTrue(image._populated) self.assertIsNotNone(image.id) def test_get_domains(self): """ Tests that domains can be retrieved and are marshalled properly """ r = self.client.domains() self.assertEqual(len(r), 1) domain = r.first() self.assertEqual(domain.domain, 'example.org') self.assertEqual(domain.type, 'master') self.assertEqual(domain.id, 12345) self.assertEqual(domain.axfr_ips, []) self.assertEqual(domain.retry_sec, 0) self.assertEqual(domain.ttl_sec, 300) self.assertEqual(domain.status, 'active') self.assertEqual(domain.master_ips, [],) self.assertEqual(domain.description, "",) self.assertEqual(domain.group, "",) self.assertEqual(domain.expire_sec, 0,) self.assertEqual(domain.soa_email, "[email protected]",) self.assertEqual(domain.refresh_sec, 0) def test_image_create(self): """ Tests that an Image can be created successfully """ with self.mock_post('images/private/123') as m: i = self.client.image_create(654, 'Test-Image', 'This is a test') self.assertIsNotNone(i) self.assertEqual(i.id, 'private/123') self.assertEqual(m.call_url, '/images') self.assertEqual(m.call_data, { "disk_id": 654, "label": "Test-Image", "description": "This is a test", }) def test_get_volumes(self): v = self.client.volumes() self.assertEqual(len(v), 3) self.assertEqual(v[0].label, 'block1') self.assertEqual(v[0].region.id, 'us-east-1a') self.assertEqual(v[1].label, 'block2') self.assertEqual(v[1].size, 100) self.assertEqual(v[2].size, 200) self.assertEqual(v[2].label, 'block3') assert v[0].tags == ["something"] assert v[1].tags == [] assert v[2].tags == ["attached"] def test_get_tags(self): """ Tests that a list of Tags can be retrieved as expected """ t = self.client.tags() self.assertEqual(len(t), 2) self.assertEqual(t[0].label, 'nothing') self.assertEqual(t[1].label, 'something') def test_tag_create(self): """ Tests that creating a tag works as expected """ # tags don't work like a normal RESTful collection, so we have to do this with self.mock_post({'label':'nothing'}) as m: t = self.client.tag_create('nothing') self.assertIsNotNone(t) self.assertEqual(t.label, 'nothing') self.assertEqual(m.call_url, '/tags') self.assertEqual(m.call_data, { 'label': 'nothing', }) def test_tag_create_with_ids(self): """ Tests that creating a tag with IDs sends the correct request """ instance1, instance2 = self.client.linode.instances()[:2] domain1 = self.client.domains().first() nodebalancer1, nodebalancer2 = self.client.nodebalancers()[:2] volume1, volume2 = self.client.volumes()[:2] # tags don't work like a normal RESTful collection, so we have to do this with self.mock_post({'label':'pytest'}) as m: t = self.client.tag_create('pytest', instances=[instance1.id, instance2], nodebalancers=[nodebalancer1.id, nodebalancer2], domains=[domain1.id], volumes=[volume1.id, volume2]) self.assertIsNotNone(t) self.assertEqual(t.label, 'pytest') self.assertEqual(m.call_url, '/tags') self.assertEqual(m.call_data, { 'label': 'pytest', 'linodes': [instance1.id, instance2.id], 'domains': [domain1.id], 'nodebalancers': [nodebalancer1.id, nodebalancer2.id], 'volumes': [volume1.id, volume2.id], }) def test_tag_create_with_entities(self): """ Tests that creating a tag with entities sends the correct request """ instance1, instance2 = self.client.linode.instances()[:2] domain = self.client.domains().first() nodebalancer = self.client.nodebalancers().first() volume = self.client.volumes().first() # tags don't work like a normal RESTful collection, so we have to do this with self.mock_post({'label':'pytest'}) as m: t = self.client.tag_create('pytest', entities=[instance1, domain, nodebalancer, volume, instance2]) self.assertIsNotNone(t) self.assertEqual(t.label, 'pytest') self.assertEqual(m.call_url, '/tags') self.assertEqual(m.call_data, { 'label': 'pytest', 'linodes': [instance1.id, instance2.id], 'domains': [domain.id], 'nodebalancers': [nodebalancer.id], 'volumes': [volume.id], }) class AccountGroupTest(ClientBaseCase): """ Tests methods of the AccountGroup """ def test_get_settings(self): """ Tests that account settings can be retrieved. """ s = self.client.account.settings() self.assertEqual(s._populated, True) self.assertEqual(s.network_helper, False) self.assertEqual(s.managed, False) self.assertEqual(type(s.longview_subscription), LongviewSubscription) self.assertEqual(s.longview_subscription.id, 'longview-100') self.assertEqual(s.object_storage, "active") def test_get_invoices(self): """ Tests that invoices can be retrieved """ i = self.client.account.invoices() self.assertEqual(len(i), 1) invoice = i[0] self.assertEqual(invoice.id, 123456) self.assertEqual(invoice.date, datetime(2015, 1, 1, 5, 1, 2)) self.assertEqual(invoice.label, 'Invoice #123456') self.assertEqual(invoice.total, 9.51) class LinodeGroupTest(ClientBaseCase): """ Tests methods of the LinodeGroup """ def test_instance_create(self): """ Tests that a Linode Instance can be created successfully """ with self.mock_post('linode/instances/123') as m: l = self.client.linode.instance_create('g5-standard-1', 'us-east-1a') self.assertIsNotNone(l) self.assertEqual(l.id, 123) self.assertEqual(m.call_url, '/linode/instances') self.assertEqual(m.call_data, { "region": "us-east-1a", "type": "g5-standard-1" }) def test_instance_create_with_image(self): """ Tests that a Linode Instance can be created with an image, and a password generated """ with self.mock_post('linode/instances/123') as m: l, pw = self.client.linode.instance_create( 'g5-standard-1', 'us-east-1a', image='linode/debian9') self.assertIsNotNone(l) self.assertEqual(l.id, 123) self.assertEqual(m.call_url, '/linode/instances') self.assertEqual(m.call_data, { "region": "us-east-1a", "type": "g5-standard-1", "image": "linode/debian9", "root_pass": pw, }) class LongviewGroupTest(ClientBaseCase): """ Tests methods of the LongviewGroup """ def test_get_clients(self): """ Tests that a list of LongviewClients can be retrieved """ r = self.client.longview.clients() self.assertEqual(len(r), 2) self.assertEqual(r[0].label, "test_client_1") self.assertEqual(r[0].id, 1234) self.assertEqual(r[1].label, "longview5678") self.assertEqual(r[1].id, 5678) def test_client_create(self): """ Tests that creating a client calls the api correctly """ with self.mock_post('longview/clients/5678') as m: client = self.client.longview.client_create() self.assertIsNotNone(client) self.assertEqual(client.id, 5678) self.assertEqual(client.label, 'longview5678') self.assertEqual(m.call_url, '/longview/clients') self.assertEqual(m.call_data, {}) def test_client_create_with_label(self): """ Tests that creating a client with a label calls the api correctly """ with self.mock_post('longview/clients/1234') as m: client = self.client.longview.client_create(label='test_client_1') self.assertIsNotNone(client) self.assertEqual(client.id, 1234) self.assertEqual(client.label, 'test_client_1') self.assertEqual(m.call_url, '/longview/clients') self.assertEqual(m.call_data, {"label": "test_client_1"}) def test_get_subscriptions(self): """ Tests that Longview subscriptions can be retrieved """ r = self.client.longview.subscriptions() self.assertEqual(len(r), 4) expected_results = ( ("longview-10", "Longview Pro 10 pack"), ("longview-100", "Longview Pro 100 pack"), ("longview-3", "Longview Pro 3 pack"), ("longview-40", "Longview Pro 40 pack"), ) for result, (expected_id, expected_label) in zip(r, expected_results): self.assertEqual(result.id, expected_id) self.assertEqual(result.label, expected_label) class LKEGroupTest(ClientBaseCase): """ Tests methods of the LKEGroupTest """ def test_kube_version(self): """ Tests that KubeVersions can be retrieved """ versions = self.client.lke.versions() self.assertEqual(len(versions), 3) self.assertEqual(versions[0].id, "1.19") self.assertEqual(versions[1].id, "1.18") self.assertEqual(versions[2].id, "1.17") def test_cluster_create_with_api_objects(self): """ Tests clusters can be created using api objects """ region = self.client.regions().first() node_type = self.client.linode.types()[0] version = self.client.lke.versions()[0] node_pools = self.client.lke.node_pool(node_type, 3) with self.mock_post("lke/clusters") as m: cluster = self.client.lke.cluster_create( region, "example-cluster", node_pools, version ) self.assertEqual(m.call_data["region"], "ap-west") self.assertEqual(m.call_data["node_pools"], [{"type": "g5-nanode-1", "count": 3}]) self.assertEqual(m.call_data["k8s_version"], "1.19") self.assertEqual(cluster.id, 18881) self.assertEqual(cluster.region.id, "ap-west") self.assertEqual(cluster.k8s_version.id, "1.19") def test_cluster_create_with_string_repr(self): """ Tests clusters can be created using string representations """ with self.mock_post("lke/clusters") as m: cluster = self.client.lke.cluster_create( "ap-west", "example-cluster", {"type": "g6-standard-1", "count": 3}, "1.19" ) self.assertEqual(m.call_data["region"], "ap-west") self.assertEqual(m.call_data["node_pools"], [{"type": "g6-standard-1", "count": 3}]) self.assertEqual(m.call_data["k8s_version"], "1.19") self.assertEqual(cluster.id, 18881) self.assertEqual(cluster.region.id, "ap-west") self.assertEqual(cluster.k8s_version.id, "1.19") class ProfileGroupTest(ClientBaseCase): """ Tests methods of the ProfileGroup """ def test_get_sshkeys(self): """ Tests that a list of SSH Keys can be retrieved """ r = self.client.profile.ssh_keys() self.assertEqual(len(r), 2) key1, key2 = r self.assertEqual(key1.label, 'Home Ubuntu PC') self.assertEqual(key1.created, datetime(year=2018, month=9, day=14, hour=13, minute=0, second=0)) self.assertEqual(key1.id, 22) self.assertEqual( key1.ssh_key, "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQDe9NlKepJsI/S98" "ISBJmG+cpEARtM0T1Qa5uTOUB/vQFlHmfQW07ZfA++ybPses0vRCD" "eWyYPIuXcV5yFrf8YAW/Am0+/60MivT3jFY0tDfcrlvjdJAf1NpWO" "TVlzv0gpsHFO+XIZcfEj3V0K5+pOMw9QGVf6Qbg8qzHVDPFdYKu3i" "muc9KHY8F/b4DN/Wh17k3xAJpspCZEFkn0bdaYafJj0tPs0k78JRo" "F2buc3e3M6dlvHaoON1votmrri9lut65OIpglOgPwE3QU8toGyyoC" "MGaT4R7kIRjXy3WSyTMAi0KTAdxRK+IlDVMXWoE5TdLovd0a9L7qy" "nZungKhKZUgFma7r9aTFVHXKh29Tzb42neDTpQnZ/Et735sDC1vfz" "/YfgZNdgMUXFJ3+uA4M/36/Vy3Dpj2Larq3qY47RDFitmwSzwUlfz" "tUoyiQ7e1WvXHT4N4Z8K2FPlTvNMg5CSjXHdlzcfiRFPwPn13w36v" "TvAUxPvTa84P1eOLDp/JzykFbhHNh8Cb02yrU28zDeoTTyjwQs0eH" "d1wtgIXJ8wuUgcaE4LgcgLYWwiKTq4/FnX/9lfvuAiPFl6KLnh23b" "cKwnNA7YCWlb1NNLb2y+mCe91D8r88FGvbnhnOuVjd/SxQWDHtxCI" "CmhW7erNJNVxYjtzseGpBLmRRUTsT038w== dorthu@dorthu-command") def test_client_create(self): """ Tests that creating a client calls the api correctly """ with self.mock_post('longview/clients/5678') as m: client = self.client.longview.client_create() self.assertIsNotNone(client) self.assertEqual(client.id, 5678) self.assertEqual(client.label, 'longview5678') self.assertEqual(m.call_url, '/longview/clients') self.assertEqual(m.call_data, {}) def test_ssh_key_create(self): """ Tests that creating an ssh key works as expected """ with self.mock_post('profile/sshkeys/72') as m: key = self.client.profile.ssh_key_upload( "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQDe9NlKepJsI/S98" "ISBJmG+cpEARtM0T1Qa5uTOUB/vQFlHmfQW07ZfA++ybPses0vRCD" "eWyYPIuXcV5yFrf8YAW/Am0+/60MivT3jFY0tDfcrlvjdJAf1NpWO" "TVlzv0gpsHFO+XIZcfEj3V0K5+pOMw9QGVf6Qbg8qzHVDPFdYKu3i" "muc9KHY8F/b4DN/Wh17k3xAJpspCZEFkn0bdaYafJj0tPs0k78JRo" "F2buc3e3M6dlvHaoON1votmrri9lut65OIpglOgPwE3QU8toGyyoC" "MGaT4R7kIRjXy3WSyTMAi0KTAdxRK+IlDVMXWoE5TdLovd0a9L7qy" "nZungKhKZUgFma7r9aTFVHXKh29Tzb42neDTpQnZ/Et735sDC1vfz" "/YfgZNdgMUXFJ3+uA4M/36/Vy3Dpj2Larq3qY47RDFitmwSzwUlfz" "tUoyiQ7e1WvXHT4N4Z8K2FPlTvNMg5CSjXHdlzcfiRFPwPn13w36v" "TvAUxPvTa84P1eOLDp/JzykFbhHNh8Cb02yrU28zDeoTTyjwQs0eH" "d1wtgIXJ8wuUgcaE4LgcgLYWwiKTq4/FnX/9lfvuAiPFl6KLnh23b" "cKwnNA7YCWlb1NNLb2y+mCe91D8r88FGvbnhnOuVjd/SxQWDHtxCI" "CmhW7erNJNVxYjtzseGpBLmRRUTsT038w==dorthu@dorthu-command", 'Work Laptop') self.assertIsNotNone(key) self.assertEqual(key.id, 72) self.assertEqual(key.label, 'Work Laptop') self.assertEqual(m.call_url, '/profile/sshkeys') self.assertEqual(m.call_data, { "ssh_key": "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQDe9NlKepJsI/S98" "ISBJmG+cpEARtM0T1Qa5uTOUB/vQFlHmfQW07ZfA++ybPses0vRCD" "eWyYPIuXcV5yFrf8YAW/Am0+/60MivT3jFY0tDfcrlvjdJAf1NpWO" "TVlzv0gpsHFO+XIZcfEj3V0K5+pOMw9QGVf6Qbg8qzHVDPFdYKu3i" "muc9KHY8F/b4DN/Wh17k3xAJpspCZEFkn0bdaYafJj0tPs0k78JRo" "F2buc3e3M6dlvHaoON1votmrri9lut65OIpglOgPwE3QU8toGyyoC" "MGaT4R7kIRjXy3WSyTMAi0KTAdxRK+IlDVMXWoE5TdLovd0a9L7qy" "nZungKhKZUgFma7r9aTFVHXKh29Tzb42neDTpQnZ/Et735sDC1vfz" "/YfgZNdgMUXFJ3+uA4M/36/Vy3Dpj2Larq3qY47RDFitmwSzwUlfz" "tUoyiQ7e1WvXHT4N4Z8K2FPlTvNMg5CSjXHdlzcfiRFPwPn13w36v" "TvAUxPvTa84P1eOLDp/JzykFbhHNh8Cb02yrU28zDeoTTyjwQs0eH" "d1wtgIXJ8wuUgcaE4LgcgLYWwiKTq4/FnX/9lfvuAiPFl6KLnh23b" "cKwnNA7YCWlb1NNLb2y+mCe91D8r88FGvbnhnOuVjd/SxQWDHtxCI" "CmhW7erNJNVxYjtzseGpBLmRRUTsT038w==dorthu@dorthu-command", "label": "Work Laptop" }) class ObjectStorageGroupTest(ClientBaseCase): """ Tests for the ObjectStorageGroup """ def test_get_clusters(self): """ Tests that Object Storage Clusters can be retrieved """ clusters = self.client.object_storage.clusters() self.assertEqual(len(clusters), 1) cluster = clusters[0] self.assertEqual(cluster.id, 'us-east-1') self.assertEqual(cluster.region.id, 'us-east') self.assertEqual(cluster.domain, 'us-east-1.linodeobjects.com') self.assertEqual(cluster.static_site_domain, 'website-us-east-1.linodeobjects.com') def test_get_keys(self): """ Tests that you can retrieve Object Storage Keys """ keys = self.client.object_storage.keys() self.assertEqual(len(keys), 2) key1 = keys[0] key2 = keys[1] self.assertEqual(key1.id, 1) self.assertEqual(key1.label, 'object-storage-key-1') self.assertEqual(key1.access_key, 'testAccessKeyHere123') self.assertEqual(key1.secret_key, '[REDACTED]') self.assertEqual(key2.id, 2) self.assertEqual(key2.label, 'object-storage-key-2') self.assertEqual(key2.access_key, 'testAccessKeyHere456') self.assertEqual(key2.secret_key, '[REDACTED]') def test_keys_create(self): """ Tests that you can create Object Storage Keys """ with self.mock_post('object-storage/keys/1') as m: keys = self.client.object_storage.keys_create('object-storage-key-1') self.assertIsNotNone(keys) self.assertEqual(keys.id, 1) self.assertEqual(keys.label, 'object-storage-key-1') self.assertEqual(m.call_url, '/object-storage/keys') self.assertEqual(m.call_data, {"label":"object-storage-key-1"}) class NetworkingGroupTest(ClientBaseCase): """ Tests for the NetworkingGroup """ def test_get_vlans(self): """ Tests that Object Storage Clusters can be retrieved """ vlans = self.client.networking.vlans() self.assertEqual(len(vlans), 1) self.assertEqual(vlans[0].label, 'vlan-test') self.assertEqual(vlans[0].region.id, 'us-southeast') self.assertEqual(len(vlans[0].linodes), 2) self.assertEqual(vlans[0].linodes[0], 111) self.assertEqual(vlans[0].linodes[1], 222) def test_firewall_create(self): with self.mock_post('networking/firewalls/123') as m: rules = { 'outbound': [], 'outbound_policy': 'DROP', 'inbound': [], 'inbound_policy': 'DROP' } f = self.client.networking.firewall_create('test-firewall-1', rules, status='enabled') self.assertIsNotNone(f) self.assertEqual(m.call_url, '/networking/firewalls') self.assertEqual(m.method, 'post') self.assertEqual(f.id, 123) self.assertEqual(m.call_data, { 'label': 'test-firewall-1', 'status': 'enabled', 'rules': rules }) def test_get_firewalls(self): """ Tests that firewalls can be retrieved """ f = self.client.networking.firewalls() self.assertEqual(len(f), 1) firewall = f[0] self.assertEqual(firewall.id, 123) class LinodeClientRateLimitRetryTest(TestCase): """ Tests for rate limiting errors. .. warning:: This test class _does not_ follow normal testing conventions for this project, as requests are not automatically mocked. Only add tests to this class if they pertain to the 429 retry logic, and make sure you mock the requests calls yourself (or else they will make real requests and those won't work). """ def setUp(self): self.client = LinodeClient("testing", base_url="/", retry_rate_limit_interval=1) # sidestep the validation to do immediate retries so tests aren't slow self.client.retry_rate_limit_interval = 0.1 def _get_mock_response(self, response_code): """ Helper function to return a mock response """ ret = MagicMock() ret.status_code = response_code ret.json.return_value = {} return ret def test_retry_429s(self): """ Tests that 429 responses are automatically retried """ called = 0 def test_method(*args, **kwargs): nonlocal called called += 1 if called < 2: return self._get_mock_response(429) return self._get_mock_response(200) response = self.client._api_call('/test', method=test_method) # it retried once, got the empty object assert called == 2 assert response == {}, response def test_retry_max_attempts(self): """ Tests that a request will fail after 5 429 responses in a row """ called = 0 def test_method(*args, **kwargs): nonlocal called called += 1 return self._get_mock_response(429) try: response = self.client._api_call('/test', method=test_method) assert False, "Unexpectedly did not raise ApiError!" except ApiError as e: assert e.status == 429 # it tried 5 times assert called == 5 def test_api_error_with_retry(self): """ Tests that a 300+ response still raises an ApiError even if retries are enabled """ called = 0 def test_method(*args, **kwargs): nonlocal called called += 1 return self._get_mock_response(400) try: response = self.client._api_call('/test', method=test_method) assert False, "Unexpectedly did not raise ApiError!" except ApiError as e: assert e.status == 400 # it tried 5 times assert called == 1 def test_api_error_on_retry(self): """ Tests that we'll stop retrying and raise immediately if we get a 300+ response after a 429 """ called = 0 def test_method(*args, **kwargs): nonlocal called called += 1 if called < 2: return self._get_mock_response(429) return self._get_mock_response(400) try: response = self.client._api_call('/test', method=test_method) assert False, "Unexpectedly did not raise ApiError!" except ApiError as e: assert e.status == 400 # it tried 5 times assert called == 2 def test_works_first_time(self): """ Tests that the response is handled correctly if we got a 200 on the first try """ called = 0 def test_method(*args, **kwargs): nonlocal called called += 1 return self._get_mock_response(200) response = self.client._api_call('/test', method=test_method) # it tried 5 times assert called == 1 assert response == {}
py
b404b21dc8cd8cdbcb36aba6498e19f015a7b7b7
SCRIPT_ID = "XXXXXXXXXXXXXXXXXXXXXXX" DEPLOYMENT_ID = "YYYYYYYYYYYYYYYYYYYY" CORE_APP_ID = SCRIPT_ID devMode = True
py
b404b242f723722de7ec6e1656a3ef7fb4223d86
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.6 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_6 import models class AdminPatch(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'name': 'str', 'api_token': 'ApiToken', 'is_local': 'bool', 'locked': 'bool', 'lockout_remaining': 'int', 'password': 'str', 'public_key': 'str', 'role': 'AdminRole', 'old_password': 'str' } attribute_map = { 'name': 'name', 'api_token': 'api_token', 'is_local': 'is_local', 'locked': 'locked', 'lockout_remaining': 'lockout_remaining', 'password': 'password', 'public_key': 'public_key', 'role': 'role', 'old_password': 'old_password' } required_args = { } def __init__( self, name=None, # type: str api_token=None, # type: models.ApiToken is_local=None, # type: bool locked=None, # type: bool lockout_remaining=None, # type: int password=None, # type: str public_key=None, # type: str role=None, # type: models.AdminRole old_password=None, # type: str ): """ Keyword args: name (str): A user-specified name. The name must be locally unique and cannot be changed. api_token (ApiToken) is_local (bool): Returns a value of `true` if the user is local to the machine, otherwise `false`. locked (bool): Returns a value of `true` if the user is currently locked out, otherwise `false`. Can be patched to `false` to unlock a user. This field is only visible to `array_admin` roles. For all other users, the value is always `null`. lockout_remaining (int): The remaining lockout period, in milliseconds, if the user is locked out. This field is only visible to `array_admin` roles. For all other users, the value is always `null`. password (str): Password associated with the account. public_key (str): Public key for SSH access. role (AdminRole) old_password (str): The current password. """ if name is not None: self.name = name if api_token is not None: self.api_token = api_token if is_local is not None: self.is_local = is_local if locked is not None: self.locked = locked if lockout_remaining is not None: self.lockout_remaining = lockout_remaining if password is not None: self.password = password if public_key is not None: self.public_key = public_key if role is not None: self.role = role if old_password is not None: self.old_password = old_password def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `AdminPatch`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(AdminPatch, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AdminPatch): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
b404b33fb279a3aa85c21bc69f97181b4d18a55b
import cv2 import numpy as np import matplotlib.image as mpimg import matplotlib.pyplot as plt # Load our image - this should be a new frame since last time! binary_warped = mpimg.imread('warped_example.jpg') # Polynomial fit values from the previous frame # Make sure to grab the actual values from the previous step in your project! left_fit = np.array([ 2.13935315e-04, -3.77507980e-01, 4.76902175e+02]) right_fit = np.array([4.17622148e-04, -4.93848953e-01, 1.11806170e+03]) def fit_poly(img_shape, leftx, lefty, rightx, righty): ### TO-DO: Fit a second order polynomial to each with np.polyfit() ### left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) # Generate x and y values for plotting ploty = np.linspace(0, img_shape[0]-1, img_shape[0]) ### TO-DO: Calc both polynomials using ploty, left_fit and right_fit ### left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] return left_fitx, right_fitx, ploty def search_around_poly(binary_warped): # HYPERPARAMETER # Choose the width of the margin around the previous polynomial to search # The quiz grader expects 100 here, but feel free to tune on your own! margin = 100 # Grab activated pixels nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) ### TO-DO: Set the area of search based on activated x-values ### ### within the +/- margin of our polynomial function ### ### Hint: consider the window areas for the similarly named variables ### ### in the previous quiz, but change the windows to our new search area ### left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin))) right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin))) # Again, extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # Fit new polynomials left_fitx, right_fitx, ploty = fit_poly(binary_warped.shape, leftx, lefty, rightx, righty) ## Visualization ## # Create an image to draw on and an image to show the selection window out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255 window_img = np.zeros_like(out_img) # Color in left and right line pixels out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] # Generate a polygon to illustrate the search window area # And recast the x and y points into usable format for cv2.fillPoly() left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))]) left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin, ploty])))]) left_line_pts = np.hstack((left_line_window1, left_line_window2)) right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))]) right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin, ploty])))]) right_line_pts = np.hstack((right_line_window1, right_line_window2)) # Draw the lane onto the warped blank image cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0)) cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0)) result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0) # Plot the polynomial lines onto the image plt.plot(left_fitx, ploty, color='yellow') plt.plot(right_fitx, ploty, color='yellow') ## End visualization steps ## return result # Run image through the pipeline # Note that in your project, you'll also want to feed in the previous fits result = search_around_poly(binary_warped) # View your output plt.imshow(result)
py
b404b396b84282068d0bb01eba273b6fad6f1563
from warcio.utils import to_native_str from six.moves.urllib.parse import unquote_plus from io import BytesIO import base64 import cgi # ============================================================================ def append_post_query(req, resp): len_ = req.http_headers.get_header('Content-Length') content_type = req.http_headers.get_header('Content-Type') stream = req.buffered_stream stream.seek(0) post_query = post_query_extract(content_type, len_, stream) if not post_query: return url = req.rec_headers.get_header('WARC-Target-URI') if '?' not in url: url += '?' else: url += '&' url += post_query return url # ============================================================================ def post_query_extract(mime, length, stream): """ Extract a url-encoded form POST/PUT from stream content length, return None Attempt to decode application/x-www-form-urlencoded or multipart/*, otherwise read whole block and b64encode """ post_query = b'' try: length = int(length) except (ValueError, TypeError): return if length <= 0: return while length > 0: buff = stream.read(length) length -= len(buff) if not buff: break post_query += buff if not mime: mime = '' if mime.startswith('application/x-www-form-urlencoded'): post_query = to_native_str(post_query) post_query = unquote_plus(post_query) elif mime.startswith('multipart/'): env = {'REQUEST_METHOD': 'POST', 'CONTENT_TYPE': mime, 'CONTENT_LENGTH': len(post_query)} args = dict(fp=BytesIO(post_query), environ=env, keep_blank_values=True) if six.PY3: args['encoding'] = 'utf-8' data = cgi.FieldStorage(**args) values = [] for item in data.list: values.append((item.name, item.value)) post_query = urlencode(values, True) else: post_query = base64.b64encode(post_query) post_query = to_native_str(post_query) post_query = '__warc_post_data=' + post_query return post_query
py
b404b5684906ca762ba7a979264c1c1b83f56e4a
class Point4d(object,ISerializable,IEquatable[Point4d],IEpsilonComparable[Point4d]): """ Point4d(x: float,y: float,z: float,w: float) Point4d(point: Point3d) """ @staticmethod def Add(point1,point2): """ Add(point1: Point4d,point2: Point4d) -> Point4d """ pass def EpsilonEquals(self,other,epsilon): """ EpsilonEquals(self: Point4d,other: Point4d,epsilon: float) -> bool """ pass def Equals(self,*__args): """ Equals(self: Point4d,point: Point4d) -> bool Equals(self: Point4d,obj: object) -> bool """ pass def GetHashCode(self): """ GetHashCode(self: Point4d) -> int """ pass @staticmethod def Multiply(point,d): """ Multiply(point: Point4d,d: float) -> Point4d """ pass @staticmethod def Subtract(point1,point2): """ Subtract(point1: Point4d,point2: Point4d) -> Point4d """ pass def __add__(self,*args): """ x.__add__(y) <==> x+y """ pass def __eq__(self,*args): """ x.__eq__(y) <==> x==y """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __mul__(self,*args): """ x.__mul__(y) <==> x*yx.__mul__(y) <==> x*y """ pass @staticmethod def __new__(self,*__args): """ __new__[Point4d]() -> Point4d __new__(cls: type,x: float,y: float,z: float,w: float) __new__(cls: type,point: Point3d) """ pass def __ne__(self,*args): pass def __radd__(self,*args): """ __radd__(point1: Point4d,point2: Point4d) -> Point4d """ pass def __reduce_ex__(self,*args): pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass def __rmul__(self,*args): """ __rmul__(point1: Point4d,point2: Point4d) -> float """ pass def __rsub__(self,*args): """ __rsub__(point1: Point4d,point2: Point4d) -> Point4d """ pass def __str__(self,*args): pass def __sub__(self,*args): """ x.__sub__(y) <==> x-y """ pass W=property(lambda self: object(),lambda self,v: None,lambda self: None) """Get: W(self: Point4d) -> float Set: W(self: Point4d)=value """ X=property(lambda self: object(),lambda self,v: None,lambda self: None) """Get: X(self: Point4d) -> float Set: X(self: Point4d)=value """ Y=property(lambda self: object(),lambda self,v: None,lambda self: None) """Get: Y(self: Point4d) -> float Set: Y(self: Point4d)=value """ Z=property(lambda self: object(),lambda self,v: None,lambda self: None) """Get: Z(self: Point4d) -> float Set: Z(self: Point4d)=value """ Unset=None
py
b404b6c4252541fcf9085d67f08d4bbd306a6e08
import torch from torch.nn import functional from audio_zen.acoustics.feature import drop_band from audio_zen.model.base_model import BaseModel from audio_zen.model.module.sequence_model import SequenceModel class Model(BaseModel): def __init__(self, num_freqs, look_ahead, sequence_model, fb_num_neighbors, sb_num_neighbors, fb_output_activate_function, sb_output_activate_function, fb_model_hidden_size, sb_model_hidden_size, norm_type="offline_laplace_norm", num_groups_in_drop_band=2, weight_init=True, variation=None, ): """ FullSubNet model (cIRM mask) Args: num_freqs: Frequency dim of the input sb_num_neighbors: Number of the neighbor frequencies in each side look_ahead: Number of use of the future frames sequence_model: Chose one sequence model as the basic model (GRU, LSTM) """ super().__init__() assert sequence_model in ("GRU", "LSTM"), f"{self.__class__.__name__} only support GRU and LSTM." self.fb_model = SequenceModel( input_size=num_freqs, output_size=num_freqs, hidden_size=fb_model_hidden_size, num_layers=2, bidirectional=False, sequence_model=sequence_model, output_activate_function=fb_output_activate_function ) self.sb_model = SequenceModel( input_size=(sb_num_neighbors * 2 + 1) + (fb_num_neighbors * 2 + 1), output_size=2, hidden_size=sb_model_hidden_size, num_layers=2, bidirectional=False, sequence_model=sequence_model, output_activate_function=sb_output_activate_function ) self.sb_num_neighbors = sb_num_neighbors self.fb_num_neighbors = fb_num_neighbors self.look_ahead = look_ahead self.norm = self.norm_wrapper(norm_type) self.num_groups_in_drop_band = num_groups_in_drop_band self.variation=variation if weight_init: self.apply(self.weight_init) def forward(self, noisy_mag, bgm_mag): """ Args: noisy_mag: noisy magnitude spectrogram Returns: The real part and imag part of the enhanced spectrogram Shapes: noisy_mag: [B, 1, F, T] return: [B, 2, F, T] """ assert noisy_mag.shape == bgm_mag.shape #when this is assured, we can check derive the below info just from noisy_mag assert noisy_mag.dim() == 4 bgm_mag = functional.pad(bgm_mag, [0, self.look_ahead]) # Pad the look ahead noisy_mag = functional.pad(noisy_mag, [0, self.look_ahead]) # Pad the look ahead batch_size, num_channels, num_freqs, num_frames = noisy_mag.size() assert num_channels == 1, f"{self.__class__.__name__} takes the mag feature as inputs." if self.variation==None: # Fullband model #BGM_MAG HERE! #num_channels*num_freqs == num_freqs fb_input = self.norm(bgm_mag).reshape(batch_size, num_channels * num_freqs, num_frames) elif self.variation=="summed_input": fb_input = self.norm(bgm_mag+noisy_mag).reshape(batch_size, num_channels * num_freqs, num_frames) fb_output = self.fb_model(fb_input).reshape(batch_size, 1, num_freqs, num_frames) # Unfold the output of the fullband model, [B, N=F, C, F_f, T] fb_output_unfolded = self.unfold(fb_output, num_neighbor=self.fb_num_neighbors) fb_output_unfolded = fb_output_unfolded.reshape(batch_size, num_freqs, self.fb_num_neighbors * 2 + 1, num_frames) # Unfold noisy input, [B, N=F, C, F_s, T] noisy_mag_unfolded = self.unfold(noisy_mag, num_neighbor=self.sb_num_neighbors) noisy_mag_unfolded = noisy_mag_unfolded.reshape(batch_size, num_freqs, self.sb_num_neighbors * 2 + 1, num_frames) # Concatenation, [B, F, (F_s + F_f), T] sb_input = torch.cat([noisy_mag_unfolded, fb_output_unfolded], dim=2) sb_input = self.norm(sb_input) # Speeding up training without significant performance degradation. These will be updated to the paper later. if batch_size > 1: sb_input = drop_band(sb_input.permute(0, 2, 1, 3), num_groups=self.num_groups_in_drop_band) # [B, (F_s + F_f), F//num_groups, T] num_freqs = sb_input.shape[2] sb_input = sb_input.permute(0, 2, 1, 3) # [B, F//num_groups, (F_s + F_f), T] sb_input = sb_input.reshape( batch_size * num_freqs, (self.sb_num_neighbors * 2 + 1) + (self.fb_num_neighbors * 2 + 1), num_frames ) # [B * F, (F_s + F_f), T] => [B * F, 2, T] => [B, F, 2, T] sb_mask = self.sb_model(sb_input) sb_mask = sb_mask.reshape(batch_size, num_freqs, 2, num_frames).permute(0, 2, 1, 3).contiguous() output = sb_mask[:, :, :, self.look_ahead:] return output if __name__ == "__main__": import datetime with torch.no_grad(): model = Model( sb_num_neighbors=15, fb_num_neighbors=0, num_freqs=257, look_ahead=2, sequence_model="LSTM", fb_output_activate_function="ReLU", sb_output_activate_function=None, fb_model_hidden_size=512, sb_model_hidden_size=384, weight_init=False, norm_type="offline_laplace_norm", num_groups_in_drop_band=2, ) # ipt = torch.rand(3, 800) # 1.6s # ipt_len = ipt.shape[-1] # # 1000 frames (16s) - 5.65s (35.31%,纯模型) - 5.78s # # 500 frames (8s) - 3.05s (38.12%,纯模型) - 3.04s # # 200 frames (3.2s) - 1.19s (37.19%,纯模型) - 1.20s # # 100 frames (1.6s) - 0.62s (38.75%,纯模型) - 0.65s # start = datetime.datetime.now() # # complex_tensor = torch.stft(ipt, n_fft=512, hop_length=256) # mag = (complex_tensor.pow(2.).sum(-1) + 1e-8).pow(0.5 * 1.0).unsqueeze(1) # print(f"STFT: {datetime.datetime.now() - start}, {mag.shape}") # # enhanced_complex_tensor = model(mag).detach().permute(0, 2, 3, 1) # print(enhanced_complex_tensor.shape) # print(f"Model Inference: {datetime.datetime.now() - start}") # # enhanced = torch.istft(enhanced_complex_tensor, 512, 256, length=ipt_len) # print(f"iSTFT: {datetime.datetime.now() - start}") # # print(f"{datetime.datetime.now() - start}") ipt = torch.rand(3, 1, 257, 200) print(model(ipt).shape)
py
b404b805779664fa5a3caacba1f70a3c8c75d10c
#testall.py - run all unittests test cexcept the ones in the test directory ... import unittest # ensure coverage sees even modules without tests import hudjango.auth.backends import hudjango.auth.decorators import hudjango.fields.testdefaulting import hudjango.fields.testscalingimagefield import hudjango.middleware.clienttrack import hudjango.middleware.testthreadlocals # need to figure out huImages dependency #import hudjango.storage #import hudjango.templatetags.hudjango tests = [hudjango.middleware.testthreadlocals.suite, hudjango.fields.testdefaulting.suite, hudjango.fields.testscalingimagefield.suite] suite = unittest.TestSuite(tests) if __name__ == '__main__': unittest.TextTestRunner(verbosity=3).run(suite)
py
b404b83aa6eae4a541881e6aec6017f554489bc7
""" Assorted utilities for working with neural networks in AllenNLP. """ from typing import List, Optional, Sequence, TypeVar import torch T = TypeVar('T') def combine_tensors(combination: str, tensors: List[torch.Tensor]) -> torch.Tensor: """ Combines a list of tensors using element-wise operations and concatenation, specified by a ``combination`` string. The string refers to (1-indexed) positions in the input tensor list, and looks like ``"1,2,1+2,3-1"``. We allow the following kinds of combinations: ``x``, ``x*y``, ``x+y``, ``x-y``, and ``x/y``, where ``x`` and ``y`` are positive integers less than or equal to ``len(tensors)``. Each of the binary operations is performed elementwise. You can give as many combinations as you want in the ``combination`` string. For example, for the input string ``"1,2,1*2"``, the result would be ``[1;2;1*2]``, as you would expect, where ``[;]`` is concatenation along the last dimension. If you have a fixed, known way to combine tensors that you use in a model, you should probably just use something like ``torch.cat([x_tensor, y_tensor, x_tensor * y_tensor])``. This function adds some complexity that is only necessary if you want the specific combination used to be `configurable`. If you want to do any element-wise operations, the tensors involved in each element-wise operation must have the same shape. This function also accepts ``x`` and ``y`` in place of ``1`` and ``2`` in the combination string. """ combination = combination.replace('x', '1').replace('y', '2') to_concatenate = [_get_combination(piece, tensors) for piece in combination.split(',')] return torch.cat(to_concatenate, dim=-1) def _rindex(sequence: Sequence[T], obj: T) -> int: """ Return zero-based index in the sequence of the last item whose value is equal to obj. Raises a ValueError if there is no such item. Parameters ---------- sequence : ``Sequence[T]`` obj : ``T`` Returns ------- zero-based index associated to the position of the last item equal to obj """ for i in range(len(sequence) - 1, -1, -1): if sequence[i] == obj: return i raise ValueError(f"Unable to find {obj} in sequence {sequence}.") def _get_combination(combination: str, tensors: List[torch.Tensor]) -> torch.Tensor: if combination.isdigit(): index = int(combination) - 1 return tensors[index] else: first_tensor = _get_combination(combination[0], tensors) second_tensor = _get_combination(combination[2], tensors) operation = combination[1] if operation == '*': return first_tensor * second_tensor elif operation == '/': return first_tensor / second_tensor elif operation == '+': return first_tensor + second_tensor elif operation == '-': return first_tensor - second_tensor def combine_tensors_and_multiply(combination: str, tensors: List[torch.Tensor], weights: torch.nn.Parameter) -> torch.Tensor: """ Like :func:`combine_tensors`, but does a weighted (linear) multiplication while combining. This is a separate function from ``combine_tensors`` because we try to avoid instantiating large intermediate tensors during the combination, which is possible because we know that we're going to be multiplying by a weight vector in the end. Parameters ---------- combination : ``str`` Same as in :func:`combine_tensors` tensors : ``List[torch.Tensor]`` A list of tensors to combine, where the integers in the ``combination`` are (1-indexed) positions in this list of tensors. These tensors are all expected to have either three or four dimensions, with the final dimension being an embedding. If there are four dimensions, one of them must have length 1. weights : ``torch.nn.Parameter`` A vector of weights to use for the combinations. This should have shape (combined_dim,), as calculated by :func:`get_combined_dim`. """ combination = combination.replace('x', '1').replace('y', '2') pieces = combination.split(',') tensor_dims = [tensor.size(-1) for tensor in tensors] combination_dims = [_get_combination_dim(piece, tensor_dims) for piece in pieces] dims_so_far = 0 to_sum = [] for piece, combination_dim in zip(pieces, combination_dims): weight = weights[dims_so_far:(dims_so_far + combination_dim)] dims_so_far += combination_dim to_sum.append(_get_combination_and_multiply(piece, tensors, weight)) result = to_sum[0] for result_piece in to_sum[1:]: result = result + result_piece return result def _get_combination_and_multiply(combination: str, tensors: List[torch.Tensor], weight: torch.nn.Parameter) -> torch.Tensor: if combination.isdigit(): index = int(combination) - 1 return torch.matmul(tensors[index], weight) else: first_tensor = _get_combination(combination[0], tensors) second_tensor = _get_combination(combination[2], tensors) operation = combination[1] if operation == '*': if first_tensor.dim() > 4 or second_tensor.dim() > 4: raise ValueError("Tensors with dim > 4 not currently supported") desired_dim = max(first_tensor.dim(), second_tensor.dim()) - 1 if first_tensor.dim() == 4: expanded_dim = _rindex(first_tensor.size(), 1) first_tensor = first_tensor.squeeze(expanded_dim) if second_tensor.dim() == 4: expanded_dim = _rindex(second_tensor.size(), 1) second_tensor = second_tensor.squeeze(expanded_dim) intermediate = first_tensor * weight result = torch.matmul(intermediate, second_tensor.transpose(-1, -2)) if result.dim() == desired_dim + 1: result = result.squeeze(-1) return result elif operation == '/': if first_tensor.dim() > 4 or second_tensor.dim() > 4: raise ValueError("Tensors with dim > 4 not currently supported") desired_dim = max(first_tensor.dim(), second_tensor.dim()) - 1 if first_tensor.dim() == 4: expanded_dim = _rindex(first_tensor.size(), 1) first_tensor = first_tensor.squeeze(expanded_dim) if second_tensor.dim() == 4: expanded_dim = _rindex(second_tensor.size(), 1) second_tensor = second_tensor.squeeze(expanded_dim) intermediate = first_tensor * weight result = torch.matmul(intermediate, second_tensor.pow(-1).transpose(-1, -2)) if result.dim() == desired_dim + 1: result = result.squeeze(-1) return result elif operation == '+': return torch.matmul(first_tensor, weight) + torch.matmul(second_tensor, weight) elif operation == '-': return torch.matmul(first_tensor, weight) - torch.matmul(second_tensor, weight) def get_combined_dim(combination: str, tensor_dims: List[int]) -> int: """ For use with :func:`combine_tensors`. This function computes the resultant dimension when calling ``combine_tensors(combination, tensors)``, when the tensor dimension is known. This is necessary for knowing the sizes of weight matrices when building models that use ``combine_tensors``. Parameters ---------- combination : ``str`` A comma-separated list of combination pieces, like ``"1,2,1*2"``, specified identically to ``combination`` in :func:`combine_tensors`. tensor_dims : ``List[int]`` A list of tensor dimensions, where each dimension is from the `last axis` of the tensors that will be input to :func:`combine_tensors`. """ combination = combination.replace('x', '1').replace('y', '2') return sum([_get_combination_dim(piece, tensor_dims) for piece in combination.split(',')]) def _get_combination_dim(combination: str, tensor_dims: List[int]) -> int: if combination.isdigit(): index = int(combination) - 1 return tensor_dims[index] else: first_tensor_dim = _get_combination_dim(combination[0], tensor_dims) second_tensor_dim = _get_combination_dim(combination[2], tensor_dims) operation = combination[1] return first_tensor_dim
py
b404b971de24123d3f889a372de2b59a70174ef9
from .calibrate import calibrate_data from .truncate import truncate_outliers
py
b404ba4a0b2a695956039b183823ee6fe6ed92b1
########################################################################## # # pgAdmin 4 - PostgreSQL Tools # # Copyright (C) 2013 - 2020, The pgAdmin Development Team # This software is released under the PostgreSQL Licence # ########################################################################## from __future__ import print_function import json import uuid from pgadmin.browser.server_groups.servers.databases.schemas.tests import \ utils as schema_utils from pgadmin.browser.server_groups.servers.databases.tests import \ utils as database_utils from pgadmin.utils.route import BaseTestGenerator from regression import parent_node_dict from regression.python_test_utils import test_utils as utils from . import utils as fts_temp_utils class FtsTemplatePutTestCase(BaseTestGenerator): """ This class will update new FTS template under schema node. """ scenarios = [ # Fetching default URL for FTS template node. ('Fetch FTS template Node URL', dict(url='/browser/fts_template/obj/')) ] def setUp(self): self.schema_data = parent_node_dict['schema'][-1] self.schema_name = self.schema_data['schema_name'] self.schema_id = self.schema_data['schema_id'] self.server_id = self.schema_data['server_id'] self.db_id = self.schema_data['db_id'] self.db_name = parent_node_dict["database"][-1]["db_name"] self.fts_temp_name = "fts_temp_%s" % str(uuid.uuid4())[1:8] self.fts_temp_id = fts_temp_utils.create_fts_template( self.server, self.db_name, self.schema_name, self.fts_temp_name) def runTest(self): """ This function will update FTS template present under test schema. """ db_con = database_utils.connect_database(self, utils.SERVER_GROUP, self.server_id, self.db_id) if not db_con["info"] == "Database connected.": raise Exception("Could not connect to database.") schema_response = schema_utils.verify_schemas(self.server, self.db_name, self.schema_name) if not schema_response: raise Exception("Could not find the schema.") fts_response = fts_temp_utils.verify_fts_template(self.server, self.db_name, self.fts_temp_name) if not fts_response: raise Exception("Could not find the FTS template.") data = \ { "description": "This is FTS template update comment", "id": self.fts_temp_id } put_response = self.tester.put( self.url + str(utils.SERVER_GROUP) + '/' + str(self.server_id) + '/' + str(self.db_id) + '/' + str(self.schema_id) + '/' + str(self.fts_temp_id), data=json.dumps(data), follow_redirects=True) self.assertEquals(put_response.status_code, 200) def tearDown(self): """This function delete the fts_template and disconnect the test database.""" fts_temp_utils.delete_fts_template(self.server, self.db_name, self.schema_name, self.fts_temp_name) database_utils.disconnect_database(self, self.server_id, self.db_id)
py
b404bb3baea480e5cd07aae5008f1ebe8b184627
#!/usr/bin/env python """The setup script.""" from __future__ import annotations from setuptools import find_packages, setup with open("README.rst", encoding="utf-8") as readme_file: readme = readme_file.read() with open("HISTORY.rst", encoding="utf-8") as history_file: history = history_file.read() requirements: list[str] = [] requirements_dev = [ "actions-toolkit>=0.0.5", "black>=21.5b0", "bump2version>=1.0.1", "codecov>=2.1.11", "coverage>=5.5", "dunamai>=1.5.5", "flake8>=3.9.1", "isort>=5.8.0", "mypy>=0.812", "pip-tools>=6.1.0", "pre-commit>=2.12.1", "pylint>=2.8.2", "pytest>=6.2.4", "pytest-cov>=2.11.1", "pytest-xdist>=2.2.1", ] requirements_docs = [ "Sphinx>=3.5.4", "sphinx-autoapi>=1.8.1", ] requirements_dev += requirements_docs setup( author="Sheypex", author_email="[email protected]", python_requires=">=3.8", classifiers=[ "Development Status :: 2 - Pre-Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Natural Language :: English", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ], description="Higher level controlls for searching (a collection of) sklearn models for best parameters.", # noqa: E501 setup_requires=[ "setuptools-git", ], install_requires=requirements, extras_require={ "dev": requirements_dev, "docs": requirements_docs, }, license="BSD-3-Clause", long_description=readme + "\n\n" + history, name="sklearn_tournament", packages=find_packages(include=["sklearn_tournament", "sklearn_tournament.*"]), include_package_data=True, test_suite="tests", url="https://github.com/sheypex/sklearn-tournament", version="0.1.0", zip_safe=False, )
py
b404bb97abe7818bf5e2f175d6e001973bf7d546
from types import StringTypes from sfa.util.faults import * from sfa.util.xrn import urn_to_hrn from sfa.util.method import Method from sfa.util.parameter import Parameter, Mixed from sfa.trust.auth import Auth from sfa.server.registry import Registries class get_registries(Method): """ Get a list of connection information for all known registries. @param cred credential string specifying the rights of the caller @param a Human readable name (hrn or urn), or list of names or None @return list of dictionaries with aggregate information. """ interfaces = ['registry', 'aggregate', 'slicemgr'] accepts = [ Parameter(str, "Credential string"), Mixed(Parameter(str, "Human readable name (hrn or urn)"), Parameter(None, "hrn not specified")) ] returns = [Parameter(dict, "Registry interface information")] def call(self, cred, xrn = None): hrn, type = urn_to_hrn(xrn) self.api.auth.check(cred, 'list') registries = Registries(self.api).interfaces.values() if hrn: registries = [reg for reg in registries if reg['hrn'] == hrn] return registries
py
b404bcd22bfe6f1fbabf89833cd830cff36ff72e
# Generated by Django 2.2.5 on 2019-10-04 03:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('database', '0031_auto_20190920_0427'), ] operations = [ migrations.AlterModelOptions( name='tag', options={'ordering': ('order',)}, ), migrations.AddField( model_name='goal', name='attained_carbon_footprint_reduction', field=models.PositiveIntegerField(default=0), ), migrations.AddField( model_name='goal', name='attained_number_of_actions', field=models.PositiveIntegerField(default=0), ), migrations.AddField( model_name='goal', name='attained_number_of_households', field=models.PositiveIntegerField(default=0), ), migrations.AddField( model_name='goal', name='target_carbon_footprint_reduction', field=models.PositiveIntegerField(default=0), ), migrations.AddField( model_name='goal', name='target_number_of_actions', field=models.PositiveIntegerField(default=0), ), migrations.AddField( model_name='goal', name='target_number_of_households', field=models.PositiveIntegerField(default=0), ), ]
py
b404bcf138e269bcfd2f1168c24472664bf755bb
# Copyright (c) 2021 Mira Geoscience Ltd. # # This file is part of geoapps. # # geoapps is distributed under the terms and conditions of the MIT License # (see LICENSE file at the root of this source code package). import numpy as np from geoh5py.io import H5Writer from geoh5py.objects import Curve, Grid2D from geoh5py.workspace import Workspace from ipywidgets import ( FloatSlider, HBox, IntSlider, Layout, Text, ToggleButton, VBox, interactive_output, ) from matplotlib import collections from skimage.feature import canny from skimage.transform import probabilistic_hough_line from geoapps.plotting import PlotSelection2D from geoapps.utils import filter_xy class EdgeDetectionApp(PlotSelection2D): """ Widget for Grid2D objects for the automated detection of line features. The application relies on the Canny and Hough trandforms from the Scikit-Image library. :param grid: Grid2D object :param data: Children data object for the provided grid Optional -------- :param sigma [Canny]: standard deviation of the Gaussian filter :param threshold [Hough]: Value threshold :param line_length [Hough]: Minimum accepted pixel length of detected lines :param line_gap [Hough]: Maximum gap between pixels to still form a line. """ defaults = { "h5file": "../../assets/FlinFlon.geoh5", "objects": "Gravity_Magnetics_drape60m", "data": "Airborne_Gxx", "resolution": 50, "sigma": 0.5, "compute": True, "window": { "azimuth": -20, }, "ga_group_name": "Edges", } object_types = (Grid2D,) def __init__(self, **kwargs): self._compute = ToggleButton( value=False, description="Compute", button_style="warning", tooltip="Description", icon="check", ) self._export_as = Text( value="Edges", description="Save as:", disabled=False, ) self._line_length = IntSlider( min=1, max=100, step=1, value=1, continuous_update=False, description="Line Length", ) self._line_gap = IntSlider( min=1, max=100, step=1, value=1, continuous_update=False, description="Line Gap", ) self._sigma = FloatSlider( min=0.0, max=10, step=0.1, value=1.0, continuous_update=False, description="Sigma", ) self._threshold = IntSlider( min=1, max=100, step=1, value=1, continuous_update=False, description="Threshold", ) self._window_size = IntSlider( min=16, max=512, value=64, continuous_update=False, description="Window size", ) super().__init__(**kwargs) out = interactive_output( self.compute_trigger, {"compute": self.compute}, ) def save_trigger(_): self.save_trigger() # Make changes to trigger warning color self.trigger.description = "Save to GA" self.trigger.on_click(save_trigger) self.trigger.button_style = "success" def update_name(_): self.update_name() self.data.observe(update_name, names="value") self.update_name() self._main = VBox( [ self.project_panel, HBox( [ self.main, VBox( [ self.sigma, self.threshold, self.line_length, self.line_gap, self.window_size, self.compute, self.export_as, self.output_panel, ], layout=Layout(width="50%"), ), out, ] ), ] ) @property def compute(self): """ToggleButton""" return self._compute @property def export_as(self): """Text""" return self._export_as @property def line_length(self): """IntSlider""" return self._line_length @property def line_gap(self): """IntSlider""" return self._line_gap @property def sigma(self): """FloatSlider""" return self._sigma @property def threshold(self): """IntSlider""" return self._threshold @property def window_size(self): """IntSlider""" return self._window_size def save_trigger(self): entity, _ = self.get_selected_entities() if getattr(self.trigger, "vertices", None) is not None: curves = [ child for child in self.ga_group.children if child.name == self.export_as.value ] if any(curves): curve = curves[0] curve._children = [] curve.vertices = self.trigger.vertices curve.cells = np.vstack(self.trigger.cells).astype("uint32") # Remove directly on geoh5 project_handle = H5Writer.fetch_h5_handle(self.h5file, entity) base = list(project_handle.keys())[0] obj_handle = project_handle[base]["Objects"] for key in obj_handle[H5Writer.uuid_str(curve.uid)]["Data"].keys(): del project_handle[base]["Data"][key] del obj_handle[H5Writer.uuid_str(curve.uid)] H5Writer.save_entity(curve) else: curve = Curve.create( self.workspace, name=self.export_as.value, vertices=self.trigger.vertices, cells=self.trigger.cells, parent=self.ga_group, ) if self.live_link.value: self.live_link_output(self.ga_group) self.workspace.finalize() def update_name(self): if self.data.value is not None: self.export_as.value = self.data.value else: self.export_as.value = "Edges" def compute_trigger(self, compute): if compute: grid, data = self.get_selected_entities() x = grid.centroids[:, 0].reshape(grid.shape, order="F") y = grid.centroids[:, 1].reshape(grid.shape, order="F") z = grid.centroids[:, 2].reshape(grid.shape, order="F") grid_data = data[0].values.reshape(grid.shape, order="F") indices = self.indices ind_x, ind_y = ( np.any(indices, axis=1), np.any(indices, axis=0), ) x = x[ind_x, :][:, ind_y] y = y[ind_x, :][:, ind_y] z = z[ind_x, :][:, ind_y] grid_data = grid_data[ind_x, :][:, ind_y] grid_data -= grid_data.min() grid_data /= grid_data.max() if np.any(grid_data): # Find edges edges = canny(grid_data, sigma=self.sigma.value, use_quantiles=True) shape = edges.shape # Cycle through tiles of square size max_l = np.min([self.window_size.value, shape[0], shape[1]]) half = np.floor(max_l / 2) overlap = 1.25 n_cell_y = (shape[0] - 2 * half) * overlap / max_l n_cell_x = (shape[1] - 2 * half) * overlap / max_l if n_cell_x > 0: cnt_x = np.linspace( half, shape[1] - half, 2 + int(np.round(n_cell_x)), dtype=int ).tolist() half_x = half else: cnt_x = [np.ceil(shape[1] / 2)] half_x = np.ceil(shape[1] / 2) if n_cell_y > 0: cnt_y = np.linspace( half, shape[0] - half, 2 + int(np.round(n_cell_y)), dtype=int ).tolist() half_y = half else: cnt_y = [np.ceil(shape[0] / 2)] half_y = np.ceil(shape[0] / 2) coords = [] for cx in cnt_x: for cy in cnt_y: i_min, i_max = int(cy - half_y), int(cy + half_y) j_min, j_max = int(cx - half_x), int(cx + half_x) lines = probabilistic_hough_line( edges[i_min:i_max, j_min:j_max], line_length=self.line_length.value, threshold=self.threshold.value, line_gap=self.line_gap.value, seed=0, ) if np.any(lines): coord = np.vstack(lines) coords.append( np.c_[ x[i_min:i_max, j_min:j_max][ coord[:, 1], coord[:, 0] ], y[i_min:i_max, j_min:j_max][ coord[:, 1], coord[:, 0] ], z[i_min:i_max, j_min:j_max][ coord[:, 1], coord[:, 0] ], ] ) if coords: coord = np.vstack(coords) self.objects.lines = coord self.plot_store_lines() else: self.objects.lines = None self.compute.value = False def plot_store_lines(self): xy = self.objects.lines indices_1 = filter_xy( xy[1::2, 0], xy[1::2, 1], self.resolution.value, window={ "center": [ self.center_x.value, self.center_y.value, ], "size": [ self.width.value, self.height.value, ], "azimuth": self.azimuth.value, }, ) indices_2 = filter_xy( xy[::2, 0], xy[::2, 1], self.resolution.value, window={ "center": [ self.center_x.value, self.center_y.value, ], "size": [ self.width.value, self.height.value, ], "azimuth": self.azimuth.value, }, ) indices = np.kron( np.any(np.c_[indices_1, indices_2], axis=1), np.ones(2), ).astype(bool) xy = self.objects.lines[indices, :2] self.collections = [ collections.LineCollection( np.reshape(xy, (-1, 2, 2)), colors="k", linewidths=2 ) ] self.refresh.value = False self.refresh.value = True # Trigger refresh if np.any(xy): vertices = np.vstack(self.objects.lines[indices, :]) cells = np.arange(vertices.shape[0]).astype("uint32").reshape((-1, 2)) if np.any(cells): self.trigger.vertices = vertices self.trigger.cells = cells else: self.trigger.vertices = None self.trigger.cells = None
py
b404bd20e47dd819830fd9ad1b448f693e547adc
from __future__ import with_statement try: import cProfile as profile except ImportError: # pragma: no cover try: import profile except ImportError: # pragma: no cover profile = None try: import resource except ImportError: # pragma: no cover resource = None # Will fail on Win32 systems try: import pstats except ImportError: # pragma: no cover pstats = None # will fail on braindead Debian systems that package pstats # separately from python for god-knows-what-reason import threading import time from pyramid_debugtoolbar.panels import DebugPanel from pyramid_debugtoolbar.utils import format_fname _ = lambda x: x lock = threading.Lock() class PerformanceDebugPanel(DebugPanel): """ Panel that looks at the performance of a request. It will display the time a request took and, optionally, the cProfile output. """ name = 'performance' user_activate = True stats = None function_calls = None has_resource = bool(resource) has_content = bool(pstats and profile) template = 'pyramid_debugtoolbar.panels:templates/performance.dbtmako' title = _('Performance') nav_title = title def __init__(self, request): if profile is not None: self.profiler = profile.Profile() def _wrap_timer_handler(self, handler): if self.has_resource: def resource_timer_handler(request): _start_time = time.time() self._start_rusage = resource.getrusage(resource.RUSAGE_SELF) try: result = handler(request) except: raise finally: self._end_rusage = resource.getrusage(resource.RUSAGE_SELF) self.total_time = (time.time() - _start_time) * 1000 return result return resource_timer_handler def noresource_timer_handler(request): _start_time = time.time() try: result = handler(request) except: raise finally: self.total_time = (time.time() - _start_time) * 1000 return result return noresource_timer_handler def _wrap_profile_handler(self, handler): if not self.is_active: return handler def profile_handler(request): with lock: try: result = self.profiler.runcall(handler, request) except: raise finally: stats = pstats.Stats(self.profiler) function_calls = [] flist = stats.sort_stats('cumulative').fcn_list for func in flist: current = {} info = stats.stats[func] # Number of calls if info[0] != info[1]: current['ncalls'] = '%d/%d' % (info[1], info[0]) else: current['ncalls'] = info[1] # Total time current['tottime'] = info[2] * 1000 # Quotient of total time divided by number of calls if info[1]: current['percall'] = info[2] * 1000 / info[1] else: current['percall'] = 0 # Cumulative time current['cumtime'] = info[3] * 1000 # Quotient of the cumulative time divded by the number # of primitive calls. if info[0]: current['percall_cum'] = info[3] * 1000 / info[0] else: current['percall_cum'] = 0 # Filename filename = pstats.func_std_string(func) current['filename_long'] = filename current['filename'] = format_fname(filename) function_calls.append(current) self.stats = stats self.function_calls = function_calls return result return profile_handler def wrap_handler(self, handler): handler = self._wrap_profile_handler(handler) handler = self._wrap_timer_handler(handler) return handler @property def nav_subtitle(self): return '%0.2fms' % (self.total_time) def _elapsed_ru(self, name): return getattr(self._end_rusage, name) - getattr(self._start_rusage, name) def process_response(self, response): vars = {'timing_rows': None, 'stats': None, 'function_calls': []} if self.has_resource: utime = 1000 * self._elapsed_ru('ru_utime') stime = 1000 * self._elapsed_ru('ru_stime') vcsw = self._elapsed_ru('ru_nvcsw') ivcsw = self._elapsed_ru('ru_nivcsw') # minflt = self._elapsed_ru('ru_minflt') # majflt = self._elapsed_ru('ru_majflt') # these are documented as not meaningful under Linux. If you're # running BSD feel free to enable them, and add any others that I # hadn't gotten to before I noticed that I was getting nothing but # zeroes and that the docs agreed. :-( # blkin = self._elapsed_ru('ru_inblock') # blkout = self._elapsed_ru('ru_oublock') # swap = self._elapsed_ru('ru_nswap') # rss = self._end_rusage.ru_maxrss # srss = self._end_rusage.ru_ixrss # urss = self._end_rusage.ru_idrss # usrss = self._end_rusage.ru_isrss # TODO l10n on values rows = ( (_('User CPU time'), '%0.3f msec' % utime), (_('System CPU time'), '%0.3f msec' % stime), (_('Total CPU time'), '%0.3f msec' % (utime + stime)), (_('Elapsed time'), '%0.3f msec' % self.total_time), (_('Context switches'), '%d voluntary, %d involuntary' % ( vcsw, ivcsw)), # (_('Memory use'), '%d max RSS, %d shared, %d unshared' % ( # rss, srss, urss + usrss)), # (_('Page faults'), '%d no i/o, %d requiring i/o' % ( # minflt, majflt)), # (_('Disk operations'), '%d in, %d out, %d swapout' % ( # blkin, blkout, swap)), ) vars['timing_rows'] = rows if self.is_active: vars['stats'] = self.stats vars['function_calls'] = self.function_calls self.data = vars def includeme(config): config.add_debugtoolbar_panel(PerformanceDebugPanel)
py
b404bd2f0c78dce57642841e67039c17d2bdaffe
#!/bin/env python ''' Convert macOS keyboard layout files (.keylayout) to equivalent Windows files (.klc). ''' import os import re import sys import time import argparse import codecs import unicodedata import xml.etree.ElementTree as ET # local modules from data.klc_data import ( win_to_mac_keycodes, win_keycodes, klc_keynames, klc_prologue_dummy, klc_epilogue_dummy ) from data.locale_data import ( locale_id, locale_id_long, locale_tag, locale_name, locale_name_long, ) error_msg_conversion = ( 'Could not convert composed character {}, ' 'inserting replacement character ({}).' ) error_msg_filename = ( 'Too many digits for a Windows-style (8+3) filename. ' 'Please rename the source file.') error_msg_macwin_mismatch = ( "// No equivalent macOS code for Windows code {} ('{}'). Skipping.") error_msg_winmac_mismatch = ( "// Could not match Windows code {} ('{}') to Mac OS code {}. Skipping.") # Change the line separator. # This is important, as the output klc file must be UTF-16 LE with # Windows-style line breaks. os.linesep = '\r\n' # Placeholder character for replacing 'ligatures' (more than one character # mapped to one key), which are not supported by this conversion script. replacement_char = '007E' class KeylayoutParser(object): def __init__(self, tree): # raw keys as they are in the layout XML self.key_list = [] # raw list of actions collected from layout XML self.action_list = [] # key output when state is None self.output_list = [] # action IDs and actual base keys (e.g. 'a', 'c' etc.) self.action_basekeys = {} # {states: deadkeys} self.deadkeys = {} # {deadkey: (basekey, output)} self.deadkey_dict = {} # A dict of dicts, collecting the outputs of every key # in each individual state. self.output_dict = {} # Actions that do not yield immediate output, but shift to a new state. self.empty_actions = [] # {keymap ID: modifier key} self.keymap_assignments = {} self.number_of_keymaps = 0 self.parse(tree) self.find_deadkeys() self.match_actions() self.find_outputs() self.make_deadkey_dict() self.make_output_dict() def check_states(self, states, keymap, maxset, minset, mod_name): ''' Assign index numbers to the different shift states, by comparing them to the minimum and maximum possible modifier configurations. This is necessary as the arrangement in the Mac keyboard layout is arbitrary. ''' if maxset.issuperset(states) and minset.issubset(states): self.keymap_assignments[mod_name] = int(keymap) def parse(self, tree): keymap_idx_list = [] # Find the number of keymap indexes. default_max = {'command?', 'caps?'} default_min = set() alt_max = {'anyOption', 'caps?', 'command?'} alt_min = {'anyOption'} shift_max = {'anyShift', 'caps?', 'command?'} shift_min = {'anyShift'} altshift_max = {'anyShift', 'anyOption', 'caps?', 'command?'} altshift_min = {'anyShift', 'anyOption'} cmd_max = {'command', 'caps?', 'anyShift?', 'anyOption?'} cmd_min = {'command'} caps_max = {'caps', 'anyShift?', 'command?'} caps_min = {'caps'} cmdcaps_max = {'command', 'caps', 'anyShift?'} cmdcaps_min = {'command', 'caps'} shiftcaps_max = {'anyShift', 'caps', 'anyOption?'} shiftcaps_min = {'anyShift', 'caps'} for parent in tree.iter(): if parent.tag == 'keyMapSelect': for modifier in parent: keymap_index = int(parent.get('mapIndex')) keymap_idx_list.append(keymap_index) keymap = parent.get('mapIndex') states = set(modifier.get('keys').split()) self.check_states( states, keymap, default_max, default_min, 'default') self.check_states( states, keymap, shift_max, shift_min, 'shift') self.check_states( states, keymap, alt_max, alt_min, 'alt') self.check_states( states, keymap, altshift_max, altshift_min, 'altshift') self.check_states( states, keymap, cmd_max, cmd_min, 'cmd') self.check_states( states, keymap, caps_max, caps_min, 'caps') self.check_states( states, keymap, cmdcaps_max, cmdcaps_min, 'cmdcaps') self.check_states( states, keymap, shiftcaps_max, shiftcaps_min, 'shiftcaps') if parent.tag == 'keyMapSet': keymapset_id = parent.attrib['id'] for keymap in parent: keymap_index = int(keymap.attrib['index']) for key in keymap: key_code = int(key.attrib['code']) if key.get('action') is None: key_type = 'output' else: key_type = 'action' output = key.get(key_type) self.key_list.append([ keymapset_id, keymap_index, key_code, key_type, output]) if parent.tag == 'actions': for action in parent: action_id = action.get('id') for action_trigger in action: if action_trigger.get('next') is None: action_type = 'output' else: action_type = 'next' state = action_trigger.get('state') # result can be a code point or another state result = action_trigger.get(action_type) self.action_list.append([ action_id, state, action_type, result]) # Make a dictionary for key id to output. # On the Mac keyboard, the 'a' for example is often # matched to an action, as it can produce # agrave, aacute, etc. if [state, action_type] == ['none', 'output']: self.action_basekeys[action_id] = result # Yield the highest index assigned to a shift state - thus, the # number of shift states in the layout. self.number_of_keymaps = max(keymap_idx_list) def find_deadkeys(self): ''' Populate dictionary self.deadkeys which contains the state ID and the code point of an actual dead key. (for instance, '3': '02c6' state 3: circumflex) Populate list of IDs for 'empty' actions, for finding IDs of all key inputs that have no immediate output. This list is used later when an '@' is appended to the code points, a Windows convention to mark dead keys. ''' deadkey_id = 0 key_list = [] for [key_id, state, key_type, result] in self.action_list: if [state, key_type, result] == ['none', 'output', '0020']: deadkey_id = key_id if key_id == deadkey_id and result != '0020': self.deadkeys[state] = result if [state, key_type] == ['none', 'next']: key_list.append([key_id, result]) self.empty_actions.append(key_id) key_list_2 = [] for state, result_state in key_list: if result_state in self.deadkeys.keys(): cp_result = self.deadkeys[result_state] key_list_2.append((state, cp_result)) # Add the actual deadkeys (grave, acute etc) # to the dict action_basekeys self.action_basekeys.update(dict(key_list_2)) def match_actions(self): ''' Extend self.action_list is extended by the base character, e.g. [ '6', # action id 's1', # state 'output', # type '00c1', # Á '0041', # A ] Populate self.action_basekeys -- all the glyphs that can be combined with a dead key, e.g. A,E,I etc. ''' for action_data in self.action_list: key_id, state, key_type, result = action_data if [state, key_type] == ['none', 'output']: self.action_basekeys[key_id] = result if key_id in self.action_basekeys.keys(): action_data.append(self.action_basekeys[key_id]) def find_outputs(self): ''' Find the real output values of all the keys, e.g. replacing the action IDs in the XML keyboard layout with the code points they return in their standard state. ''' for key_data in self.key_list: output = key_data[4] if output in self.empty_actions: # If the key is a real dead key, mark it. # This mark is used in 'make_output_dict'. key_data.append('@') if output in self.action_basekeys: key_data[3] = 'output' key_data[4] = self.action_basekeys[output] self.output_list.append(key_data) else: self.output_list.append(key_data) def make_deadkey_dict(self): ''' Populate self.deadkey_dict, which maps a deadkey e.g. (02dc, circumflex) to (base character, accented character) tuples e.g. 0041, 00c3 = A, Ã ''' for action in self.action_list: if action[1] in self.deadkeys.keys(): action.append(self.deadkeys[action[1]]) if len(action) == 6: deadkey = action[5] basekey = action[4] result = action[3] if deadkey in self.deadkey_dict: self.deadkey_dict[deadkey].append((basekey, result)) else: self.deadkey_dict[deadkey] = [(basekey, result)] def make_output_dict(self): ''' This script is configurated to work for the first keymap set of an XML keyboard layout only. Here, the filtering occurs: ''' first_keymapset = self.output_list[0][0] for key_data in self.output_list: keymap_set = key_data[0] keymap_id = key_data[1] key_id = key_data[2] if keymap_set != first_keymapset: self.output_list.remove(key_data) # filling the key ID output dict with dummy output li = [] for i in range(self.number_of_keymaps + 1): li.append([i, '-1']) self.output_dict[key_id] = dict(li) for key_data in self.output_list: keymap_set = key_data[0] keymap_id = key_data[1] key_id = key_data[2] if len(key_data) == 5: output = key_data[4] else: # The @ is marking this key as a deadkey in .klc files. output = key_data[4] + '@' self.output_dict[key_id][keymap_id] = output def get_key_output(self, key_output_dict, state): ''' Used to find output per state, for every key. If no output, return '-1' (a.k.a. not defined). ''' try: output = key_output_dict[self.keymap_assignments[state]] except KeyError: output = '-1' return output def get_key_table(self): kt_output = [] for win_kc_hex, win_kc_name in sorted(win_keycodes.items()): win_kc_int = int(win_kc_hex, 16) if win_kc_int not in win_to_mac_keycodes: print(error_msg_macwin_mismatch.format( win_kc_int, win_keycodes[win_kc_hex])) continue mac_kc = win_to_mac_keycodes[win_kc_int] if mac_kc not in self.output_dict: print(error_msg_winmac_mismatch.format( win_kc_int, win_keycodes[win_kc_hex], mac_kc)) continue outputs = self.output_dict[mac_kc] # The key_table follows the syntax of the .klc file. # The columns are as follows: # key_table[0]: scan code # key_table[1]: virtual key # key_table[2]: spacer (empty) # key_table[3]: caps (on or off, or SGCaps flag) # key_table[4]: output for default state # key_table[5]: output for shift # key_table[6]: output for ctrl (= cmd on mac) # key_table[7]: output for ctrl-shift (= cmd-caps lock on mac) # key_table[8]: output for altGr (= ctrl-alt) # key_table[9]: output for altGr-shift (= ctrl-alt-shift) # key_table[10]: descriptions. key_table = list((win_kc_hex, win_kc_name)) + ([""] * 9) default_output = self.get_key_output(outputs, 'default') shift_output = self.get_key_output(outputs, 'shift') alt_output = self.get_key_output(outputs, 'alt') altshift_output = self.get_key_output(outputs, 'altshift') caps_output = self.get_key_output(outputs, 'caps') cmd_output = self.get_key_output(outputs, 'cmd') cmdcaps_output = self.get_key_output(outputs, 'cmdcaps') shiftcaps_output = self.get_key_output(outputs, 'shiftcaps') # Check if the caps lock output equals the shift key, # to set the caps lock status. if caps_output == default_output: key_table[3] = '0' elif caps_output == shift_output: key_table[3] = '1' else: # SGCaps are a Windows speciality, necessary if the caps lock # state is different from shift. # Usually, they accommodate an alternate writing system. # SGCaps + Shift is possible, boosting the available # shift states to 6. key_table[3] = 'SGCap' key_table[4] = default_output key_table[5] = shift_output key_table[6] = cmd_output key_table[7] = cmdcaps_output key_table[8] = alt_output key_table[9] = altshift_output key_table[10] = ( f'// {char_description(default_output)}, ' f'{char_description(shift_output)}, ' f'{char_description(cmd_output)}, ' f'{char_description(alt_output)}, ' f'{char_description(altshift_output)}') # key descriptions kt_output.append('\t'.join(key_table)) if key_table[3] == 'SGCap': kt_output.append(( f'-1\t-1\t\t0\t{caps_output}\t' f'{shiftcaps_output}\t\t\t\t\t' f'// {char_description(caps_output)}, ' f'{char_description(shiftcaps_output)}')) return kt_output def get_deadkey_table(self): ''' Summary of dead keys, and their results in all intended combinations. ''' dk_table = [''] for cp_dead, base_result_list in self.deadkey_dict.items(): # we want the space character to be last in the list, # otherwise MSKLC complains (not sure if consequential) sorted_base_result_list = sorted( base_result_list, key=lambda x: int(x[0], 16), reverse=True) dk_table.extend(['']) dk_table.append(f'DEADKEY\t{cp_dead}') dk_table.append('') for cp_base, cp_result in sorted_base_result_list: char_base = char_from_hex(cp_base) char_result = char_from_hex(cp_result) line = ( f'{cp_base}\t{cp_result}\t' f'// {char_base} -> {char_result}') dk_table.append(line) return dk_table def get_keyname_dead(self): ''' List of dead keys contained in the klc keyboard layout. ''' list_keyname_dead = ['', 'KEYNAME_DEAD', ''] # for codepoint in sorted(self.deadkeys.values()): for codepoint in self.deadkeys.values(): list_keyname_dead.append( f'{codepoint}\t"{char_description(codepoint)}"') list_keyname_dead.append('') if len(list_keyname_dead) == 4: # no deadkeys, no KEYNAME_DEAD list return ['', ''] else: return list_keyname_dead def read_file(path): ''' Read a file, make list of the lines, close the file. ''' with open(path, 'r', encoding='utf-8') as f: data = f.read().splitlines() return data def codepoint_from_char(character): ''' Return a 4 or 5-digit Unicode hex string for the passed character. ''' try: return '{0:04x}'.format(ord(character)) # For now, 'ligatures' (2 or more code points assigned to one key) # are not supported in this conversion script. # Ligature support on Windows keyboards is spotty (no ligatures in # Caps Lock states, for instance), and limited to four code points # per key. Used in very few keyboard layouts only, the decision was # made to insert a placeholder instead. except TypeError: print(error_msg_conversion.format( character, char_description(replacement_char))) return replacement_char def char_from_hex(hex_string): ''' Return character from a Unicode code point. ''' return chr(int(hex_string, 16)) def char_description(hex_string): ''' Return description of characters, e.g. 'DIGIT ONE', 'EXCLAMATION MARK' etc. ''' if hex_string in ['-1', '']: return '<none>' hex_string = hex_string.rstrip('@') try: return unicodedata.name(char_from_hex(hex_string)) except ValueError: return 'PUA {}'.format(hex_string) def filter_xml(input_keylayout): ''' Filter xml-based .keylayout file. Unicode entities (&#x0000;) make the ElementTree xml parser choke, that’s why some replacement operations are necessary. Also, all literal output characters are converted to code points (0000, ffff, 1ff23 etc) for easier handling downstream. ''' rx_uni_lig = re.compile(r'((&#x[a-fA-F0-9]{4};){2,})') rx_hex_escape = re.compile(r'&#x([a-fA-F0-9]{4,6});') rx_output_line = re.compile(r'(output=[\"\'])(.+?)([\"\'])') # Fixing the first line to make ElementTree not stumble # over a capitalized XML tag filtered_xml = ['<?xml version="1.0" encoding="UTF-8"?>'] for line in read_file(input_keylayout)[1:]: if re.search(rx_output_line, line): if re.search(rx_uni_lig, line): # More than 1 output character. # Not supported, so fill in replacement char instead. lig_characters = re.search(rx_uni_lig, line).group(1) print(error_msg_conversion.format( lig_characters, char_description(replacement_char))) line = re.sub(rx_uni_lig, replacement_char.lower(), line) elif re.search(rx_hex_escape, line): # Escaped code point, e.g. &#x0020; # Remove everything except the code point. query = re.search(rx_hex_escape, line) codepoint = query.group(1).lower() line = re.sub(rx_hex_escape, codepoint, line) else: # Normal character output. # Replace the character by a code point query = re.search(rx_output_line, line) char_pre = query.group(1) # output=" character = query.group(2) codepoint = codepoint_from_char(character).lower() char_suff = query.group(3) # " replacement_line = ''.join((char_pre, codepoint, char_suff)) line = re.sub(rx_output_line, replacement_line, line) filtered_xml.append(line) return '\n'.join(filtered_xml) def make_klc_filename(keyboard_name): ''' Windows .dll files allow for 8-character file names only, which is why the output file name is truncated. If the input file name contains a number (being part of a series), this number is appended to the end of the output file name. If this number is longer than 8 digits, the script will gently ask to modify the input file name. Periods and spaces in the file name are not supported; MSKLC will not build the .dll if the .klc has any. This is why they are stripped here. ''' # strip periods and spaces filename = re.sub(r'[. ]', '', keyboard_name) # find digit(s) at tail of file name rx_digit = re.compile(r'(\d+?)$') match_digit = rx_digit.search(filename) if match_digit: trunc = 8 - len(match_digit.group(1)) - 1 if trunc < 0: print(error_msg_filename) sys.exit(-1) else: filename = '{}_{}.klc'.format( filename[:trunc], match_digit.group(1)) else: filename = '{}.klc'.format(filename[:8]) return filename def process_input_keylayout(input_keylayout): filtered_xml = filter_xml(input_keylayout) tree = ET.XML(filtered_xml) keyboard_data = KeylayoutParser(tree) return keyboard_data def make_keyboard_name(input_path): ''' Return the base name of the .keylayout file ''' input_file = os.path.basename(input_path) return os.path.splitext(input_file)[0] def verify_input_file(parser, input_file): ''' Check if the input file exists, and if the suffix is .keylayout https://stackoverflow.com/a/15203955 ''' if not os.path.exists(input_file): parser.error('This input file does not exist') suffix = os.path.splitext(input_file)[-1] if suffix.lower() != '.keylayout': parser.error('Please use a xml-based .keylayout file') return input_file def make_klc_prologue(keyboard_name): # company = 'Adobe Systems Incorporated' company = 'myCompany' year = time.localtime()[0] return klc_prologue_dummy.format( locale_tag, keyboard_name, year, company, company, locale_name, locale_id_long) def make_klc_epilogue(keyboard_name): return klc_epilogue_dummy.format( locale_id, keyboard_name, locale_id, locale_name_long) def make_klc_data(keyboard_name, keyboard_data): klc_prologue = make_klc_prologue(keyboard_name) klc_epilogue = make_klc_epilogue(keyboard_name) klc_data = [] klc_data.extend(klc_prologue.splitlines()) klc_data.extend(keyboard_data.get_key_table()) klc_data.extend(keyboard_data.get_deadkey_table()) klc_data.extend(klc_keynames) klc_data.extend(keyboard_data.get_keyname_dead()) klc_data.extend(klc_epilogue.splitlines()) return klc_data def get_args(args=None): parser = argparse.ArgumentParser( description=__doc__) parser.add_argument( 'input', type=lambda input_file: verify_input_file(parser, input_file), help='input .keylayout file' ) parser.add_argument( '-o', '--output_dir', help='output directory', metavar='DIR', ) return parser.parse_args(args) def run(args): input_file = args.input if args.output_dir: output_dir = args.output_dir else: output_dir = os.path.abspath(os.path.dirname(input_file)) keyboard_data = process_input_keylayout(input_file) keyboard_name = make_keyboard_name(input_file) klc_filename = make_klc_filename(keyboard_name) klc_data = make_klc_data(keyboard_name, keyboard_data) output_path = os.sep.join((output_dir, klc_filename)) with codecs.open(output_path, 'w', 'utf-16') as output_file: for line in klc_data: output_file.write(line) output_file.write(os.linesep) print(f'{keyboard_name} written to {klc_filename}') if __name__ == '__main__': args = get_args() run(args)
py
b404bdd3c2bf165e4fef8a9d13610fefdf848036
import pandas as pd import numpy as np import librosa import glob import os from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_log_error import requests import threading import traceback import time from aiy.board import Board, Led from aiy.voice.audio import AudioFormat, record_file, play_wav from scipy.stats import mode moodDic = {'alarm': 0, 'cry': 1, 'glass': 2, "gun": 3, "water": 4} tree = {} class TreeNode: def __init__(self, left=None, right=None, split_fn=None, leaf_evaluate=None): self.left = left self.right = right self.split_fn = split_fn self.leaf_evaluate = leaf_evaluate def is_leaf(self): return self.left == None and self.right == None def evaluate(self, X_i): if self.is_leaf(): return self.leaf_evaluate() if self.split_fn(X_i): return self.left.evaluate(X_i) else: return self.right.evaluate(X_i) class Leaf(TreeNode): def __init__(self, label): TreeNode.__init__(self, leaf_evaluate=lambda: label) def H(y): def proportion(val, y): return (y == val).sum() / len(y) unique = set(y) return sum(-1 * proportion(val, y) * np.log2(proportion(val, y)) for val in unique) def weighted_entropy(yes, no): total_size = len(yes) + len(no) return (len(yes) / total_size) * H(yes) + (len(no) / total_size) * H(no) def train(X_train, Y_train, max_depth=None): if len(Y_train) == 0: return Leaf(0) if len(set(Y_train)) == 1 or max_depth == 1: return Leaf(mode(Y_train).mode) def split_weighted_entropy(feature_idx, feature_value): """Calculate the weighted entropy of the split on feature <feature_idx>, and on value <feature_value> """ feature = X_train[:, feature_idx] yes = Y_train[feature > feature_value] no = Y_train[feature <= feature_value] return weighted_entropy(yes, no) splits = np.zeros(X_train.shape) for feature_idx in range(X_train.shape[1]): # try to split on each X-value, no reason to try others for i, feature_value in enumerate(X_train[:, feature_idx]): splits[i, feature_idx] = split_weighted_entropy( feature_idx, feature_value) # find best split max_idxs = X_train.argmax(axis=0) for col, max_idx in enumerate(max_idxs): splits[max_idx, col] = float('inf') i = np.argmin(splits) best_feature_idx = i % splits.shape[1] best_feature_value = X_train[i // splits.shape[1], best_feature_idx] yes = X_train[:, best_feature_idx] > best_feature_value no = X_train[:, best_feature_idx] <= best_feature_value # recurse and make decision trees on the yes and no sets tree = TreeNode( split_fn=lambda X_i: X_i[best_feature_idx] > best_feature_value, left=train(X_train[yes], Y_train[yes], max_depth=max_depth - 1 if max_depth is not None else None), right=train(X_train[no], Y_train[no], max_depth=max_depth - 1 if max_depth is not None else None) ) return tree def accuracy(y_pred, y_true): return (y_pred == y_true).sum() / y_true.shape[0] def predict(X, tree): if len(X.shape) == 1: X = X.reshape(1, -1) preds = np.zeros(X.shape[0]) for i in range(X.shape[0]): preds[i] = tree.evaluate(X[i]) return preds def parser(label, fileName): # function to load files and extract features file_name = os.path.join('./sound-downloader/'+ str(label) + '/' + str(fileName)) # handle exception to check if there isn't a file which is corrupted try: # here kaiser_fast is a technique used for faster extraction X, sample_rate = librosa.load(file_name, res_type='kaiser_fast') # we extract mfcc feature from data mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T, axis=0) feature = mfccs except Exception as e: print("Error encountered while parsing file: ", fileName) return [] feature = [moodDic[label]] + list(feature) return feature def getFiles(mood): filePath = os.path.join("./sound-downloader", str(mood)) files = list() for i in os.listdir(filePath): if i.endswith('.wav'): files.append(i) return files def doTrainRoutine(): nonlocal tree fullData = [] for j in moodDic.keys(): fList = getFiles(str(j)) fullData.append((j,fList)) baby = pd.DataFrame(fullData, columns = ['type', 'file']).set_index('type') #curFile = baby.loc['belly_pain']['file'][0] #x1 = parser('belly_pain', '549a46d8-9c84-430e-ade8-97eae2bef787-1430130772174-1.7-m-48-bp.wav') #print(x1) fileNum = 0 soundDic = {} for label in baby.index: for lst in baby.loc[label]: for soundFile in lst: features = parser(label, soundFile) soundDic[fileNum] = features fileNum += 1 sound = pd.DataFrame.from_dict(data = soundDic, orient = 'index',columns=['type'] + list(range(0, 40))) X = sound.iloc[:, 1:].values Y = sound.iloc[:, 0].values X_train_sound, X_test_sound, Y_train_sound, Y_test_sound = train_test_split( X, Y, test_size=0.2, random_state=0) print(sound) print(len(X_train_sound), len(Y_train_sound)) tree = train(X_train_sound, Y_train_sound) preds = predict(X_test_sound, tree) print(accuracy(preds,Y_test_sound)) def predictor(fileN): file_name = os.path.join('./sound-downloader/testing/' + str(fileN)) # handle exception to check if there isn't a file which is corrupted try: # here kaiser_fast is a technique used for faster extraction X, sample_rate = librosa.load(file_name, res_type='kaiser_fast') # we extract mfcc feature from data mfccs = np.mean(librosa.feature.mfcc( y=X, sr=sample_rate, n_mfcc=40).T, axis=0) feature = mfccs except Exception as e: print("Error encountered while parsing file: ", fileN) return [] return predict(feature, tree) # print('actual: gun, predicted:', predictor('gun2.wav')) ######################################################### TEST_SOUND = '/usr/share/sounds/alsa/Front_Center.wav' FILENAME = 'recording.wav' def main(): print('Beginning training...') doTrainRoutine() print('TRAINING COMPLETE') print('Playing test sound...') play_wav(TEST_SOUND) with Board() as board: while True: board.led.state = Led.OFF print('Press button to start recording...') board.button.wait_for_press() board.led.state = Led.ON done = threading.Event() board.button.when_pressed = done.set # def wait(): # start = time.monotonic() # while not done.is_set(): # duration = time.monotonic() - start # print('Recording: %.02f seconds [Press button to stop]' % duration) # time.sleep(0.5) record_file(AudioFormat.CD, filename=FILENAME, wait=wait(done), filetype='wav') # run classifier stateNum = predictor(FILENAME) state = 'none' for name, num in moodDic.items(): if num == stateNum: state = name print(state) payload = {'type': state} headers = {'Accept': 'application/json', 'Content-Type': 'application/json'} r = requests.post('http://bigrip.ocf.berkeley.edu:5000/notify', json=payload, headers=headers) print(r.status_code) def wait(done): def _helper(): start = time.monotonic() while not done.is_set(): duration = time.monotonic() - start print('Recording: %.02f seconds [Press button to stop]' % duration) time.sleep(0.5) return _helper def loop(): print('Starting training:') doTrainRoutine() print('Training complete. Accepting audio...') audioLoop() def audioLoop(): threading.Timer(10.0, audioLoop).start() print("Accepting audio...") if(os.path.exists('./sound-downloader/testing/recording.wav')): print('File found. Processing...') print(predictor('recording.wav')) printit() if __name__ == '__main__': try: main() except Exception: traceback.print_exc()
py
b404be9a98dc315787fae9cdbf271271801d703f
# -*- coding: utf-8 -*- # Scrapy settings for weiboZ project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html USER_AGENTS = [ "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)", "Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.5; AOLBuild 4337.35; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)", "Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)", "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)", "Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)", "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)", "Mozilla/5.0 (X11; U; Linux; en-US) AppleWebKit/527+ (KHTML, like Gecko, Safari/419.3) Arora/0.6", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0", "Mozilla/5.0 (X11; Linux i686; U;) Gecko/20070322 Kazehakase/0.4.5", "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.8) Gecko Fedora/1.9.0.8-1.fc10 Kazehakase/0.5.6", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20", "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52", ] # 代理地址,可以去http://www.ip181.com/找,及时更新验证 PROXIES = ["http://202.44.109.56:8080", "http://101.4.138.34:8888", "http://202.105.131.231:80", "http://192.169.175.145:8080", "http://119.115.79.1:8080", "http://59.37.161.126:80", "http://160.202.41.138:8080", "http://118.144.154.253:3128", "http://218.92.220.64:8080", "http://5.189.169.210:8080", "http://218.24.17.5:8888", "http://211.35.179.37:8080", "http://187.95.116.10:3128", "http://103.28.160.86:8081", "http://103.214.173.191:8080", "http://125.39.78.132:8888", "http://27.148.151.178:80", "http://175.181.118.143:8080", "http://36.42.32.117:8080", "http://210.13.73.133:8080", "http://46.232.165.223:8080", "http://149.56.13.5:5555", "http://210.150.90.210:8080", "http://210.51.35.209:80", "http://201.204.47.70:8080", "http://212.174.6.68:3128", "http://210.242.179.103:8080", "http://218.14.121.229:9000", "http://115.217.251.4:8888", "http://200.29.191.149:3128", "http://200.123.9.123:8080", "http://210.175.248.164:8080", "http://187.108.32.75:3128", "http://110.77.234.105:8080", "http://190.63.172.206:8080", "http://95.80.98.41:8080", "http://197.33.174.217:8080", "http://27.148.151.175:80", "http://210.136.117.169:8080", "http://210.116.112.109:80", ] BOT_NAME = 'weiboZ' SPIDER_MODULES = ['weiboZ.spiders'] NEWSPIDER_MODULE = 'weiboZ.spiders' LOG_LEVEL = 'INFO' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'weiboZ (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False MONGO_URI = 'mongodb://localhost:27017/' MONGO_DATABASE = { 'db': 'weibo', # db name 'col': 'house' # collection name } # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs DOWNLOAD_DELAY = 1 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: DEFAULT_REQUEST_HEADERS = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'zh-CN,zh;q=0.8,en-US;q=0.5,en;q=0.3', 'User-Agent:': "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20", } # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html # SPIDER_MIDDLEWARES = { # 'weiboZ.middlewares.MyCustomSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html DOWNLOADER_MIDDLEWARES = { 'weiboZ.middlewares.DBDownloaderMiddleware.RandomUserAgent': 543, 'scrapy.downloadermiddleware.useragent.UserAgentMiddleware': None, # 代理,默认关闭 #'weiboZ.middlewares.DBDownloaderMiddleware.ProxyMiddleware': 543 } # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html # EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { #'weiboZ.pipelines.weiboMongoPipeline': 300, #'weiboZ.pipelines.JsonPipeline': 300, 'weiboZ.pipelines.dbMongoPipeline': 300 } # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
py
b404bead4616cb754c902ad7c4af7175c97daf98
""" Nyzo String for publicIdentifier """ from nyzostrings.nyzostring import NyzoString __version__ = "0.0.1" class NyzoStringPublicIdentifier(NyzoString): def __init__(self, identifier: bytes) -> None: super().__init__('id__', identifier) def get_identifier(self) -> bytes: return self.bytes_content @classmethod def from_hex(cls, hex_string: str) -> "NyzoStringPublicIdentifier": filtered_string = hex_string.replace('-', '')[:64] return NyzoStringPublicIdentifier(bytes.fromhex(filtered_string))
py
b404befca034ac7a35c572d36962c690f05253e1
def randIndex(truth, predicted): """ The function is to measure similarity between two label assignments truth: ground truth labels for the dataset (1 x 1496) predicted: predicted labels (1 x 1496) """ if len(truth) != len(predicted): print "different sizes of the label assignments" return -1 elif (len(truth) == 1): return 1 sizeLabel = len(truth) agree_same = 0 disagree_same = 0 count = 0 for i in range(sizeLabel-1): for j in range(i+1,sizeLabel): if ((truth[i] == truth[j]) and (predicted[i] == predicted[j])): agree_same += 1 elif ((truth[i] != truth[j]) and (predicted[i] != predicted[j])): disagree_same +=1 count += 1 return (agree_same+disagree_same)/float(count) # Code Sample import scipy.cluster.hierarchy as sch import numpy as np import pylab as pl # Plot dendogram and cut the tree to find resulting clusters fig = pl.figure() data = np.array([[1,2,3],[1,1,1],[5,5,5]]) datalable = ['first','second','third'] hClsMat = sch.linkage(data, method='complete') # Complete clustering sch.dendrogram(hClsMat, labels= datalable, leaf_rotation = 45) fig.savefig("thing.pdf") resultingClusters = sch.fcluster(hClsMat,t= 3, criterion = 'distance') print resultingClusters # Your code starts from here .... # 1. # Scaling min max # STUDENT CODE TODO # 2. # K-means http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html # STUDENT CODE TODO # 3. # Compute Rand Index # STUDENT CODE TODO # 4. # Examining K-mean objective # STUDENT CODE TODO # 5. # Dendogram plot # Dendogram - http://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.cluster.hierarchy.dendrogram.html # Linkage - http://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.cluster.hierarchy.linkage.html # STUDENT CODE TODO # 6. # Hierarchical clustering # SciPy's Cluster - http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html#scipy.cluster.hierarchy.fcluster # STUDENT CODE TODO # 7. # K-means for Sub-cluster # STUDENT CODE TODO
py
b404c0a8505647a61b86f036f2e567cedf31c996
# Copyright (C) 2016 Nokia Corporation and/or its subsidiary(-ies). import json from unittest import TestCase from deployment.websocket import DeployerWebSocket, WebSocketEvent, WebSocketWorker, ServerStopped try: import unittest.mock as mock except ImportError as e: import mock class _MockWebSocketMessage(object): def __init__(self, data, is_binary): self.data = data self.is_binary = is_binary class TestDeployerWebsocket(TestCase): def setUp(self): self.ws = DeployerWebSocket(mock.MagicMock()) self.server = mock.MagicMock() self.ws.register_observer(self.server) def test_received_message(self): data = {"data": "data"} self.ws.received_message(_MockWebSocketMessage(json.dumps(data), False)) self.server.notify.assert_called_with(data, self.ws) def test_notify(self): event = WebSocketEvent("event.type", {'key': 'value'}) event_2 = WebSocketEvent("event.type", {'environment_id': 1}) with mock.patch.object(self.ws, 'send') as send_method: self.ws.notify(event) self.ws.notify(event_2) self.assertEquals(0, send_method.call_count) self.ws.forward_events_matching(1) self.ws.notify(event_2) send_method.assert_called_with(json.dumps(event_2.to_dict())) def test_stop_forwarding_events(self): event = WebSocketEvent("event.type", {'environment_id': 1}) with mock.patch.object(self.ws, 'send') as send_method: self.ws.forward_events_matching(1) self.ws.stop_forwarding_events_matching(1) self.ws.notify(event) self.assertEquals(0, send_method.call_count)
py
b404c0d48a157bd1af286d83627cdb770482db9b
# coding: utf-8 """ UbiOps Client Library to interact with the UbiOps API. # noqa: E501 The version of the OpenAPI document: v2.1 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from ubiops.configuration import Configuration class DeploymentVersionCreate(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'version': 'str', 'language': 'str', 'memory_allocation': 'int', 'instance_type': 'str', 'maximum_instances': 'int', 'minimum_instances': 'int', 'maximum_idle_time': 'int', 'description': 'str', 'labels': 'dict(str, str)', 'monitoring': 'str', 'request_retention_time': 'int', 'request_retention_mode': 'str', 'deployment_mode': 'str', 'default_notification_group': 'str' } attribute_map = { 'version': 'version', 'language': 'language', 'memory_allocation': 'memory_allocation', 'instance_type': 'instance_type', 'maximum_instances': 'maximum_instances', 'minimum_instances': 'minimum_instances', 'maximum_idle_time': 'maximum_idle_time', 'description': 'description', 'labels': 'labels', 'monitoring': 'monitoring', 'request_retention_time': 'request_retention_time', 'request_retention_mode': 'request_retention_mode', 'deployment_mode': 'deployment_mode', 'default_notification_group': 'default_notification_group' } def __init__(self, version=None, language='python3.7', memory_allocation=None, instance_type=None, maximum_instances=None, minimum_instances=None, maximum_idle_time=None, description=None, labels=None, monitoring=None, request_retention_time=None, request_retention_mode='full', deployment_mode='express', default_notification_group=None, local_vars_configuration=None): # noqa: E501 """DeploymentVersionCreate - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._version = None self._language = None self._memory_allocation = None self._instance_type = None self._maximum_instances = None self._minimum_instances = None self._maximum_idle_time = None self._description = None self._labels = None self._monitoring = None self._request_retention_time = None self._request_retention_mode = None self._deployment_mode = None self._default_notification_group = None self.discriminator = None self.version = version if language is not None: self.language = language if memory_allocation is not None: self.memory_allocation = memory_allocation if instance_type is not None: self.instance_type = instance_type if maximum_instances is not None: self.maximum_instances = maximum_instances if minimum_instances is not None: self.minimum_instances = minimum_instances if maximum_idle_time is not None: self.maximum_idle_time = maximum_idle_time if description is not None: self.description = description self.labels = labels self.monitoring = monitoring if request_retention_time is not None: self.request_retention_time = request_retention_time if request_retention_mode is not None: self.request_retention_mode = request_retention_mode if deployment_mode is not None: self.deployment_mode = deployment_mode self.default_notification_group = default_notification_group @property def version(self): """Gets the version of this DeploymentVersionCreate. # noqa: E501 :return: The version of this DeploymentVersionCreate. # noqa: E501 :rtype: str """ return self._version @version.setter def version(self, version): """Sets the version of this DeploymentVersionCreate. :param version: The version of this DeploymentVersionCreate. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and version is None: # noqa: E501 raise ValueError("Invalid value for `version`, must not be `None`") # noqa: E501 if (self.local_vars_configuration.client_side_validation and version is not None and not isinstance(version, str)): raise ValueError("Parameter `version` must be a string") # noqa: E501 if (self.local_vars_configuration.client_side_validation and version is not None and len(version) < 1): raise ValueError("Invalid value for `version`, length must be greater than or equal to `1`") # noqa: E501 self._version = version @property def language(self): """Gets the language of this DeploymentVersionCreate. # noqa: E501 :return: The language of this DeploymentVersionCreate. # noqa: E501 :rtype: str """ return self._language @language.setter def language(self, language): """Sets the language of this DeploymentVersionCreate. :param language: The language of this DeploymentVersionCreate. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and language is not None and not isinstance(language, str)): raise ValueError("Parameter `language` must be a string") # noqa: E501 if (self.local_vars_configuration.client_side_validation and language is not None and len(language) < 1): raise ValueError("Invalid value for `language`, length must be greater than or equal to `1`") # noqa: E501 self._language = language @property def memory_allocation(self): """Gets the memory_allocation of this DeploymentVersionCreate. # noqa: E501 :return: The memory_allocation of this DeploymentVersionCreate. # noqa: E501 :rtype: int """ return self._memory_allocation @memory_allocation.setter def memory_allocation(self, memory_allocation): """Sets the memory_allocation of this DeploymentVersionCreate. :param memory_allocation: The memory_allocation of this DeploymentVersionCreate. # noqa: E501 :type: int """ if (self.local_vars_configuration.client_side_validation and memory_allocation is not None and not isinstance(memory_allocation, int)): raise ValueError("Parameter `memory_allocation` must be an integer") # noqa: E501 self._memory_allocation = memory_allocation @property def instance_type(self): """Gets the instance_type of this DeploymentVersionCreate. # noqa: E501 :return: The instance_type of this DeploymentVersionCreate. # noqa: E501 :rtype: str """ return self._instance_type @instance_type.setter def instance_type(self, instance_type): """Sets the instance_type of this DeploymentVersionCreate. :param instance_type: The instance_type of this DeploymentVersionCreate. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and instance_type is not None and not isinstance(instance_type, str)): raise ValueError("Parameter `instance_type` must be a string") # noqa: E501 if (self.local_vars_configuration.client_side_validation and instance_type is not None and len(instance_type) < 1): raise ValueError("Invalid value for `instance_type`, length must be greater than or equal to `1`") # noqa: E501 self._instance_type = instance_type @property def maximum_instances(self): """Gets the maximum_instances of this DeploymentVersionCreate. # noqa: E501 :return: The maximum_instances of this DeploymentVersionCreate. # noqa: E501 :rtype: int """ return self._maximum_instances @maximum_instances.setter def maximum_instances(self, maximum_instances): """Sets the maximum_instances of this DeploymentVersionCreate. :param maximum_instances: The maximum_instances of this DeploymentVersionCreate. # noqa: E501 :type: int """ if (self.local_vars_configuration.client_side_validation and maximum_instances is not None and not isinstance(maximum_instances, int)): raise ValueError("Parameter `maximum_instances` must be an integer") # noqa: E501 self._maximum_instances = maximum_instances @property def minimum_instances(self): """Gets the minimum_instances of this DeploymentVersionCreate. # noqa: E501 :return: The minimum_instances of this DeploymentVersionCreate. # noqa: E501 :rtype: int """ return self._minimum_instances @minimum_instances.setter def minimum_instances(self, minimum_instances): """Sets the minimum_instances of this DeploymentVersionCreate. :param minimum_instances: The minimum_instances of this DeploymentVersionCreate. # noqa: E501 :type: int """ if (self.local_vars_configuration.client_side_validation and minimum_instances is not None and not isinstance(minimum_instances, int)): raise ValueError("Parameter `minimum_instances` must be an integer") # noqa: E501 self._minimum_instances = minimum_instances @property def maximum_idle_time(self): """Gets the maximum_idle_time of this DeploymentVersionCreate. # noqa: E501 :return: The maximum_idle_time of this DeploymentVersionCreate. # noqa: E501 :rtype: int """ return self._maximum_idle_time @maximum_idle_time.setter def maximum_idle_time(self, maximum_idle_time): """Sets the maximum_idle_time of this DeploymentVersionCreate. :param maximum_idle_time: The maximum_idle_time of this DeploymentVersionCreate. # noqa: E501 :type: int """ if (self.local_vars_configuration.client_side_validation and maximum_idle_time is not None and not isinstance(maximum_idle_time, int)): raise ValueError("Parameter `maximum_idle_time` must be an integer") # noqa: E501 self._maximum_idle_time = maximum_idle_time @property def description(self): """Gets the description of this DeploymentVersionCreate. # noqa: E501 :return: The description of this DeploymentVersionCreate. # noqa: E501 :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this DeploymentVersionCreate. :param description: The description of this DeploymentVersionCreate. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and description is not None and not isinstance(description, str)): raise ValueError("Parameter `description` must be a string") # noqa: E501 self._description = description @property def labels(self): """Gets the labels of this DeploymentVersionCreate. # noqa: E501 :return: The labels of this DeploymentVersionCreate. # noqa: E501 :rtype: dict(str, str) """ return self._labels @labels.setter def labels(self, labels): """Sets the labels of this DeploymentVersionCreate. :param labels: The labels of this DeploymentVersionCreate. # noqa: E501 :type: dict(str, str) """ if (self.local_vars_configuration.client_side_validation and labels is not None and not isinstance(labels, dict)): raise ValueError("Parameter `labels` must be a dictionary") # noqa: E501 self._labels = labels @property def monitoring(self): """Gets the monitoring of this DeploymentVersionCreate. # noqa: E501 :return: The monitoring of this DeploymentVersionCreate. # noqa: E501 :rtype: str """ return self._monitoring @monitoring.setter def monitoring(self, monitoring): """Sets the monitoring of this DeploymentVersionCreate. :param monitoring: The monitoring of this DeploymentVersionCreate. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and monitoring is not None and not isinstance(monitoring, str)): raise ValueError("Parameter `monitoring` must be a string") # noqa: E501 if (self.local_vars_configuration.client_side_validation and monitoring is not None and len(monitoring) < 1): raise ValueError("Invalid value for `monitoring`, length must be greater than or equal to `1`") # noqa: E501 self._monitoring = monitoring @property def request_retention_time(self): """Gets the request_retention_time of this DeploymentVersionCreate. # noqa: E501 :return: The request_retention_time of this DeploymentVersionCreate. # noqa: E501 :rtype: int """ return self._request_retention_time @request_retention_time.setter def request_retention_time(self, request_retention_time): """Sets the request_retention_time of this DeploymentVersionCreate. :param request_retention_time: The request_retention_time of this DeploymentVersionCreate. # noqa: E501 :type: int """ if (self.local_vars_configuration.client_side_validation and request_retention_time is not None and not isinstance(request_retention_time, int)): raise ValueError("Parameter `request_retention_time` must be an integer") # noqa: E501 if (self.local_vars_configuration.client_side_validation and request_retention_time is not None and request_retention_time > 2.4192E+6): # noqa: E501 raise ValueError("Invalid value for `request_retention_time`, must be a value less than or equal to `2.4192E+6`") # noqa: E501 if (self.local_vars_configuration.client_side_validation and request_retention_time is not None and request_retention_time < 3.6E+3): # noqa: E501 raise ValueError("Invalid value for `request_retention_time`, must be a value greater than or equal to `3.6E+3`") # noqa: E501 self._request_retention_time = request_retention_time @property def request_retention_mode(self): """Gets the request_retention_mode of this DeploymentVersionCreate. # noqa: E501 :return: The request_retention_mode of this DeploymentVersionCreate. # noqa: E501 :rtype: str """ return self._request_retention_mode @request_retention_mode.setter def request_retention_mode(self, request_retention_mode): """Sets the request_retention_mode of this DeploymentVersionCreate. :param request_retention_mode: The request_retention_mode of this DeploymentVersionCreate. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and request_retention_mode is not None and not isinstance(request_retention_mode, str)): raise ValueError("Parameter `request_retention_mode` must be a string") # noqa: E501 allowed_values = ["none", "metadata", "full"] # noqa: E501 if self.local_vars_configuration.client_side_validation and request_retention_mode not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `request_retention_mode` ({0}), must be one of {1}" # noqa: E501 .format(request_retention_mode, allowed_values) ) self._request_retention_mode = request_retention_mode @property def deployment_mode(self): """Gets the deployment_mode of this DeploymentVersionCreate. # noqa: E501 :return: The deployment_mode of this DeploymentVersionCreate. # noqa: E501 :rtype: str """ return self._deployment_mode @deployment_mode.setter def deployment_mode(self, deployment_mode): """Sets the deployment_mode of this DeploymentVersionCreate. :param deployment_mode: The deployment_mode of this DeploymentVersionCreate. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and deployment_mode is not None and not isinstance(deployment_mode, str)): raise ValueError("Parameter `deployment_mode` must be a string") # noqa: E501 allowed_values = ["express", "batch"] # noqa: E501 if self.local_vars_configuration.client_side_validation and deployment_mode not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `deployment_mode` ({0}), must be one of {1}" # noqa: E501 .format(deployment_mode, allowed_values) ) self._deployment_mode = deployment_mode @property def default_notification_group(self): """Gets the default_notification_group of this DeploymentVersionCreate. # noqa: E501 :return: The default_notification_group of this DeploymentVersionCreate. # noqa: E501 :rtype: str """ return self._default_notification_group @default_notification_group.setter def default_notification_group(self, default_notification_group): """Sets the default_notification_group of this DeploymentVersionCreate. :param default_notification_group: The default_notification_group of this DeploymentVersionCreate. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and default_notification_group is not None and not isinstance(default_notification_group, str)): raise ValueError("Parameter `default_notification_group` must be a string") # noqa: E501 if (self.local_vars_configuration.client_side_validation and default_notification_group is not None and len(default_notification_group) < 1): raise ValueError("Invalid value for `default_notification_group`, length must be greater than or equal to `1`") # noqa: E501 self._default_notification_group = default_notification_group def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeploymentVersionCreate): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, DeploymentVersionCreate): return True return self.to_dict() != other.to_dict()
py
b404c122427413eddd6df58a3a3bc0a46ab73fc4
import scrapy class Spider(scrapy.Spider): name = "learnopencv" start_urls = ['https://learnopencv.com/'] def parse(self, response): ARTICLE_SELECTOR = '.entry-title a ::attr(href)' for article_ref in response.css(ARTICLE_SELECTOR).extract(): yield scrapy.Request( response.urljoin(article_ref), callback=self.parse_article ) NEXT_PAGE_SELECTOR = '.pagination-next a ::attr(href)' next_page = response.css(NEXT_PAGE_SELECTOR).extract_first() if next_page: yield scrapy.Request( response.urljoin(next_page), callback=self.parse ) def parse_article(self, response): TITLE_SELECTOR = 'title ::text' title = response.css(TITLE_SELECTOR) CONTENT_SELECTOR = '.entry-content' content = response.css(CONTENT_SELECTOR) if content: yield { 'link': response.url, 'name': title.extract_first(), 'article': content.extract_first(), }
py
b404c1669dbfcba297e47fd8593606a3078ca576
# coding: utf-8 """ Onshape REST API The Onshape REST API consumed by all clients. # noqa: E501 The version of the OpenAPI document: 1.113 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 import sys # noqa: F401 import six # noqa: F401 import nulltype # noqa: F401 from onshape_client.oas.model_utils import ( # noqa: F401 ModelComposed, ModelNormal, ModelSimple, date, datetime, file_type, int, none_type, str, validate_get_composed_info, ) class BTBodyTypeFilter112AllOf(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ("body_type",): { "SOLID": "SOLID", "SHEET": "SHEET", "WIRE": "WIRE", "POINT": "POINT", "MATE_CONNECTOR": "MATE_CONNECTOR", "COMPOSITE": "COMPOSITE", "UNKNOWN": "UNKNOWN", }, } validations = {} additional_properties_type = None @staticmethod def openapi_types(): """ This must be a class method so a model may have properties that are of type self, this ensures that we don't create a cyclic import Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { "body_type": (str,), # noqa: E501 "bt_type": (str,), # noqa: E501 } @staticmethod def discriminator(): return None attribute_map = { "body_type": "bodyType", # noqa: E501 "bt_type": "btType", # noqa: E501 } @staticmethod def _composed_schemas(): return None required_properties = set( [ "_data_store", "_check_type", "_from_server", "_path_to_item", "_configuration", ] ) def __init__( self, _check_type=True, _from_server=False, _path_to_item=(), _configuration=None, **kwargs ): # noqa: E501 """bt_body_type_filter112_all_of.BTBodyTypeFilter112AllOf - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _from_server (bool): True if the data is from the server False if the data is from the client (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. body_type (str): [optional] # noqa: E501 bt_type (str): [optional] # noqa: E501 """ self._data_store = {} self._check_type = _check_type self._from_server = _from_server self._path_to_item = _path_to_item self._configuration = _configuration for var_name, var_value in six.iteritems(kwargs): if ( var_name not in self.attribute_map and self._configuration is not None and self._configuration.discard_unknown_keys and self.additional_properties_type is None ): # discard variable. continue setattr(self, var_name, var_value)
py
b404c16d30f4e0ab4aaa2aab6c95ccb4eba16d92
__author__ = 'schlitzer' # stdlib import codecs import copy import json import json.decoder import logging import os import re import threading import time class Worker(threading.Thread): def __init__( self, file, msgqueue, tags, regex, template, syslog_facility, syslog_tag, syslog_severity, encoding ): super().__init__(name='Worker:'+file) self.log = logging.getLogger('pylogchop') self._fd = None self._file = file self._data = None self._encoding = None self._msgqueue = msgqueue self._st_ino = None self._st_dev = None self._st_size = None self._pos = None self._regex = None self._tags = None self._tags_dict = None self._template = None self.encoding = encoding self.template = template self.regex = regex self.syslog_facility = syslog_facility self.syslog_tag = syslog_tag self.syslog_severity = syslog_severity self.tags = tags self.tags_dict = tags self.terminate = False @property def encoding(self): return self._encoding @encoding.setter def encoding(self, encoding): self._encoding = encoding @property def regex(self): return self._regex @regex.setter def regex(self, regex): if regex == '': self._regex = None else: self._regex = re.compile(regex) @property def template(self): return self._template @template.setter def template(self, template): try: with open(template, 'r') as f: try: self._template = json.load(f) except json.decoder.JSONDecodeError as err: self.log.fatal("could not parse template".format(err)) except OSError as err: self.log.fatal("could not read template: {0}".format(err)) @property def tags(self): return self._tags @tags.setter def tags(self, tags): self._tags = tags.split(',') self.tags_dict = tags @property def tags_dict(self): return self._tags_dict @tags_dict.setter def tags_dict(self, tags): tags_dict = {} tags = tags.split(',') for tag in tags: tag = tag.split(':', 1) if len(tag) != 2: self.log.error("cannot create k,v from tag {0}".format(tag)) continue key, value = tag tags_dict[key] = value self._tags_dict = tags_dict def _build_message(self, msg): for key, value in msg.items(): if isinstance(value, dict): self._build_message(msg[key]) elif isinstance(value, str): if value == "$FIRST_LINE": msg[key] = self._data['first_line'] elif value == "$OTHER_LINES": msg[key] = self._data['other_lines'] elif value == "$TAGS": msg[key] = self.tags elif value == "$TAGS_DICT": msg[key] = self.tags_dict elif value.startswith('$RE_'): value = value.split('_') if not len(value) == 3: continue try: grp_num = int(value[1]) except ValueError: continue grp_type = value[2] if grp_type == u'INT': try: msg[key] = int(self._data['match'].group(grp_num)) except IndexError: self.log.error("no match group {0}".format(grp_num)) except ValueError: self.log.error("cannot transform {0} to integer".format(self._data['match'].group(grp_num))) elif grp_type == u'FLOAT': try: msg[key] = float(self._data['match'].group(grp_num)) except IndexError: self.log.error("no match group {0}".format(grp_num)) except ValueError: self.log.error("cannot transform {0} to float".format(self._data['match'].group(grp_num))) elif grp_type == u'STR': try: msg[key] = self._data['match'].group(grp_num) except IndexError: self.log.error("no match group {0}".format(grp_num)) def build_message(self): msg = { "tag": self.syslog_tag, "severity": self.syslog_severity, "facility": self.syslog_facility } payload = copy.deepcopy(self.template) self._build_message(payload) msg["payload"] = payload self._msgqueue.append(msg) self._data = None def process_line(self, line): if self.regex: match = self.regex.match(line) if match and self._data: self.log.debug("submitting previous message") self.build_message() self.log.debug("detected new log message") self.process_first_line(line, match) elif match and not self._data: self.log.debug("detected new log message") self.process_first_line(line, match) elif self._data and not match: self.log.debug("got new line for multiline payload") self._data['other_lines'].append(line) self._data['starving'] = False else: self.log.error("got line that is not matching regex, and not part of a multiline log message") self.log.error("{0}".format(line)) pass else: self.log.debug("got new plan log message") self.process_first_line(line, None) self.build_message() def process_first_line(self, line, match): self.log.debug("creating new message") self._data = { "starving": False, "facility": self.syslog_facility, "tag": self.syslog_tag, "severity": self.syslog_severity, "first_line": line, "other_lines": [], "match": match } def close(self): if self._fd: self.log.debug("closing log file") self._fd.close() self._fd = None self.log.debug("done closing log file") def follow(self): while not self.terminate: if self._fd: self.chk_stat() if not self._fd: self.open() if not self._fd: continue self._pos = self._fd.tell() line = self._fd.readline() if line: yield line else: self._fd.seek(self._pos, 0) if self._data: if self._data['starving']: self.build_message() else: self._data['starving'] = True time.sleep(1) def chk_stat(self): try: stat = os.stat(self._file) except OSError as err: self.log.error("could not stat file: {0}".format(err)) self.close() return if self._pos > stat.st_size: self.log.info("truncate detected, reopening") self.close() elif self._st_dev != stat.st_dev: self.log.info("underling device changed, reopening") self.close() elif self._st_ino != stat.st_ino: self.log.info("inode has changed, reopening") self.close() def _open(self): if self._fd: self.close() self.log.debug("open logfile") try: self._fd = codecs.open(self._file, mode='r', encoding=self.encoding, errors='ignore') self._fd.seek(0, 2) stat = os.stat(self._file) self._st_dev = stat.st_dev self._st_ino = stat.st_ino self._pos = self._fd.tell() except OSError as err: self.log.error("could not open logfile: {0}".format(err)) return False self.log.debug("done open logfile") return True def open(self): sleep = 0 while not self.terminate: if sleep == 0: if self._open(): return sleep = 10 self.log.error("retrying opening in 10 seconds") else: time.sleep(1) sleep -= 1 def run(self): self.log.info("i am up") for line in self.follow(): if self.terminate: break self.process_line(line) self.log.info("i am going down") self.close() self.log.info("gone")
py
b404c17ae771782a0a50f395f274cb56ceb10425
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'djindahaus.settings.shell') try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
py
b404c21b07719cf69416fa904f6f2c1407e5b4f8
from __future__ import absolute_import from sentry.models import ExternalIssue, Group, GroupLink, GroupStatus, Integration, User from sentry.integrations.exceptions import IntegrationError from sentry.tasks.base import instrumented_task, retry @instrumented_task( name='sentry.tasks.integrations.post_comment', queue='integrations', default_retry_delay=60 * 5, max_retries=5 ) # TODO(jess): Add more retry exclusions once ApiClients have better error handling @retry(exclude=(ExternalIssue.DoesNotExist, Integration.DoesNotExist)) def post_comment(external_issue_id, data, **kwargs): # sync Sentry comments to an external issue external_issue = ExternalIssue.objects.get(id=external_issue_id) integration = Integration.objects.get(id=external_issue.integration_id) integration.get_installation( organization_id=external_issue.organization_id).create_comment( external_issue.key, data['text']) @instrumented_task( name='sentry.tasks.integrations.jira.sync_metadata', queue='integrations', default_retry_delay=20, max_retries=5 ) @retry(on=(IntegrationError,)) def sync_metadata(installation): installation.sync_metadata() @instrumented_task( name='sentry.tasks.integrations.sync_assignee_outbound', queue='integrations', default_retry_delay=60 * 5, max_retries=5 ) @retry(exclude=(ExternalIssue.DoesNotExist, Integration.DoesNotExist, User.DoesNotExist)) def sync_assignee_outbound(external_issue_id, user_id, assign, **kwargs): # sync Sentry assignee to an external issue external_issue = ExternalIssue.objects.get(id=external_issue_id) integration = Integration.objects.get(id=external_issue.integration_id) # assume unassign if None if user_id is None: user = None else: user = User.objects.get(id=user_id) integration.get_installation().sync_assignee_outbound(external_issue, user, assign=assign) @instrumented_task( name='sentry.tasks.integrations.sync_status_outbound', queue='integrations', default_retry_delay=60 * 5, max_retries=5 ) @retry(exclude=(ExternalIssue.DoesNotExist, Integration.DoesNotExist)) def sync_status_outbound(group_id, external_issue_id, **kwargs): try: group_status = Group.objects.filter( id=group_id, status__in=[GroupStatus.UNRESOLVED, GroupStatus.RESOLVED], ).values_list('status', flat=True)[0] except IndexError: return external_issue = ExternalIssue.objects.get(id=external_issue_id) integration = Integration.objects.get(id=external_issue.integration_id) integration.get_installation().sync_status_outbound( external_issue, group_status == GroupStatus.RESOLVED, ) @instrumented_task( name='sentry.tasks.integrations.kick_off_status_syncs', queue='integrations', default_retry_delay=60 * 5, max_retries=5 ) @retry() def kick_off_status_syncs(project_id, group_id, **kwargs): # doing this in a task since this has to go in the event manager # and didn't want to introduce additional queries there external_issue_ids = GroupLink.objects.filter( project_id=project_id, group_id=group_id, linked_type=GroupLink.LinkedType.issue, ).values_list('linked_id', flat=True) for external_issue_id in external_issue_ids: sync_status_outbound.apply_async( kwargs={ 'group_id': group_id, 'external_issue_id': external_issue_id, } )
py
b404c23ee969940801e886baf151cf8b24ec9b3a
import pandas as pd from sklearn import preprocessing from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS from sklearn.feature_extraction.text import TfidfVectorizer import os from sklearn.decomposition import TruncatedSVD from sklearn.metrics import f1_score from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import KFold from sklearn.metrics import auc from sklearn.metrics import plot_roc_curve from numpy import interp #Load train data X_origin = pd.read_csv("train_gossipcop_vol2.csv", ",") Y = X_origin['label'].values X_origin = X_origin['text'].values print("Train set read.") #Load dev data # X_dev = pd.read_csv("dev_gossipcop_vol2.csv", ",") # Y_dev = X_dev['label'].values # X_dev = X_dev['text'].values # print("Dev set read.") stopwords = set(ENGLISH_STOP_WORDS) svm_vectorizer = TfidfVectorizer(sublinear_tf = True, max_df = 0.29, stop_words=stopwords) X = svm_vectorizer.fit_transform(X_origin) print("Vectorized.") svd = TruncatedSVD(n_components=150, algorithm='arpack', random_state=42) print("SVD prepared.") X = svd.fit_transform(X) print("SVD finished.") score_f = 0 score_a = 0 kf = KFold(n_splits=5,random_state=42, shuffle=True) for i, (train, test) in enumerate(kf.split(X)): X_train = X[train] X_test = X[test] Y_train = Y[train] Y_test = Y[test] #clf = SVC(random_state=42) clf = SVC(C=10, gamma='scale', kernel='rbf', random_state=42, probability=True) clf.fit(X_train,Y_train) Y_predicted = clf.predict(X_test) score_f += f1_score(Y_test,Y_predicted) score_a += accuracy_score(Y_test,Y_predicted) score_f /= 5 score_a /= 5 print("SVM Accuracy: " + str(score_a)) print("SVM F1 score: " + str(score_f)) knn_vectorizer = TfidfVectorizer(sublinear_tf = True, max_df = 0.56, stop_words=stopwords) X = knn_vectorizer.fit_transform(X_origin) print("Vectorized.") svd = TruncatedSVD(n_components=150, algorithm='arpack', random_state=42) print("SVD prepared.") X = svd.fit_transform(X) print("SVD finished.") score_f = 0 score_a = 0 kf = KFold(n_splits=5,random_state=42, shuffle=True) for train, test in kf.split(X): X_train = X[train] X_test = X[test] Y_train = Y[train] Y_test = Y[test] clf = KNeighborsClassifier() #clf = KNeighborsClassifier(n_neighbors=7, weights='distance', metric='euclidean') clf.fit(X_train,Y_train) Y_predicted = clf.predict(X_test) score_f += f1_score(Y_test,Y_predicted) score_a += accuracy_score(Y_test,Y_predicted) score_f /= 5 score_a /= 5 print("KNN Accuracy: " + str(score_a)) print("KNN F1 score: " + str(score_f)) LR_vectorizer = TfidfVectorizer(sublinear_tf = True, max_df = 0.65, stop_words=stopwords) X = LR_vectorizer.fit_transform(X_origin) print("Vectorized.") svd = TruncatedSVD(n_components=150, algorithm='arpack', random_state=42) print("SVD prepared.") X = svd.fit_transform(X) print("SVD finished.") score_f = 0 score_a = 0 kf = KFold(n_splits=5,random_state=42, shuffle=True) for train, test in kf.split(X): X_train = X[train] X_test = X[test] Y_train = Y[train] Y_test = Y[test] clf = LogisticRegression(random_state=42) #clf = LogisticRegression(C = 100, penalty='l1', solver='liblinear', max_iter=1000, random_state=42) clf.fit(X_train,Y_train) Y_predicted = clf.predict(X_test) score_f += f1_score(Y_test,Y_predicted) score_a += accuracy_score(Y_test,Y_predicted) score_f /= 5 score_a /= 5 print("LR Accuracy: " + str(score_a)) print("LR F1 score: " + str(score_f)) DT_vectorizer = TfidfVectorizer(sublinear_tf = True, max_df = 0.25, stop_words=stopwords) X = DT_vectorizer.fit_transform(X_origin) print("Vectorized.") svd = TruncatedSVD(n_components=150, algorithm='arpack', random_state=42) print("SVD prepared.") X = svd.fit_transform(X) print("SVD finished.") score_f = 0 score_a = 0 kf = KFold(n_splits=5,random_state=42, shuffle=True) for train, test in kf.split(X): X_train = X[train] X_test = X[test] Y_train = Y[train] Y_test = Y[test] clf = DecisionTreeClassifier(random_state=42) #clf = DecisionTreeClassifier(criterion='entropy', max_depth=7, min_samples_split=420, random_state=42) clf.fit(X_train,Y_train) Y_predicted = clf.predict(X_test) score_f += f1_score(Y_test,Y_predicted) score_a += accuracy_score(Y_test,Y_predicted) score_f /= 5 score_a /= 5 print("DT Accuracy: " + str(score_a)) print("DT F1 score: " + str(score_f)) RF_vectorizer = TfidfVectorizer(sublinear_tf = True, max_df = 0.21, stop_words=stopwords) X = RF_vectorizer.fit_transform(X_origin) print("Vectorized.") svd = TruncatedSVD(n_components=150, algorithm='arpack', random_state=42) print("SVD prepared.") X = svd.fit_transform(X) print("SVD finished.") score_f = 0 score_a = 0 kf = KFold(n_splits=5,random_state=42, shuffle=True) for train, test in kf.split(X): X_train = X[train] X_test = X[test] Y_train = Y[train] Y_test = Y[test] clf = RandomForestClassifier(random_state=42) #clf = RandomForestClassifier(criterion='gini', max_depth=None, min_samples_split=2, n_estimators=180, random_state=42) clf.fit(X_train,Y_train) Y_predicted = clf.predict(X_test) score_f += f1_score(Y_test,Y_predicted) score_a += accuracy_score(Y_test,Y_predicted) score_f /= 5 score_a /= 5 print("RF Accuracy: " + str(score_a)) print("RF F1 score: " + str(score_f))
py
b404c27c40716e68db37f7e1a31e9289d05a926f
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt from LLC_Membranes.analysis.markov_state_dependent_dynamics import States from LLC_Membranes.llclib import file_rw from scipy.stats import levy_stable import matplotlib.pyplot as plt import numpy as np res = 'URE' path = "/home/bcoscia/Documents/Gromacs/Transport/NaGA3C11/%s/10wt/states.pl" % res states = file_rw.load_object(path) alpha, mu, sigma = states.fit_params[-1] bins, edges = np.histogram(states.emissions[-1], bins=200, range=(-1.75, 1.75), density=True) bin_width = edges[1] - edges[0] centers = edges[:-1] + bin_width / 2 ratio = [bins[i] / levy_stable.pdf(x, alpha=alpha, beta=0, loc=mu, scale=sigma) for i, x in enumerate(centers)] plt.figure(figsize=(10, 6)) plt.bar(centers, bins, bin_width, align='center', alpha=0.5, label='Empirical Disribution', color='xkcd:blue') plt.plot(centers, levy_stable.pdf(centers, alpha=alpha, beta=0, loc=mu, scale=sigma), '--', lw=2, color='xkcd:orange', label='Analytical PDF') plt.plot(centers, ratio, label='Ratio of Empirical:Analytical PDF', color='red', lw=2) plt.plot(np.linspace(-1.75, 1.75, 3), np.ones([3]), '--', color='black', label='Exact agreement') plt.gcf().get_axes()[0].tick_params(labelsize=14) plt.legend(fontsize=14) plt.ylabel('Probability Density', fontsize=14) plt.tight_layout() plt.show()
py
b404c2e2e3607d5345fb0fabe1d491ac0b5085e2
# Import flask and template operators from flask import Flask, render_template from flask_sqlalchemy import SQLAlchemy # Define the WSGI application object app = Flask(__name__) app.url_map.strict_slashes = False # Configurations app.config.from_object("config") app.config["JSONIFY_PRETTYPRINT_REGULAR"] = False db = SQLAlchemy(app) import halal.api import halal.views import halal.models import halal.database # Sample HTTP error handling @app.errorhandler(404) def not_found(error): return "Error, 404", 404
py
b404c2f8684e8a66ba4b7be4c27c70ffc794ff6a
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on 22/11/18 @author: Maurizio Ferrari Dacrema """ import numpy as np import time, sys, os from Base.Recommender_utils import check_matrix import scipy.sparse as sps def split_big_CSR_in_columns(sparse_matrix_to_split, num_split = 2): """ The function returns a list of split for the given matrix :param sparse_matrix_to_split: :param num_split: :return: """ assert sparse_matrix_to_split.shape[1]>0, "split_big_CSR_in_columns: sparse_matrix_to_split has no columns" assert num_split>=1 and num_split <= sparse_matrix_to_split.shape[1], "split_big_CSR_in_columns: num_split parameter not valid, value must be between 1 and {}, provided was {}".format(sparse_matrix_to_split.shape[1], num_split) if num_split == 1: return [sparse_matrix_to_split] n_column_split = int(sparse_matrix_to_split.shape[1]/num_split) sparse_matrix_split_list = [] for num_current_split in range(num_split): start_col = n_column_split*num_current_split if num_current_split +1 == num_split: end_col = sparse_matrix_to_split.shape[1] else: end_col = n_column_split*(num_current_split + 1) print("split_big_CSR_in_columns: Split {}, columns: {}-{}".format(num_current_split, start_col, end_col)) sparse_matrix_split_list.append(sparse_matrix_to_split[:,start_col:end_col]) return sparse_matrix_split_list def remove_empty_rows_and_cols(URM, ICM = None): URM = check_matrix(URM, "csr") rows = URM.indptr numRatings = np.ediff1d(rows) user_mask = numRatings >= 1 URM = URM[user_mask,:] cols = URM.tocsc().indptr numRatings = np.ediff1d(cols) item_mask = numRatings >= 1 URM = URM[:,item_mask] removedUsers = np.arange(0, len(user_mask))[np.logical_not(user_mask)] removedItems = np.arange(0, len(item_mask))[np.logical_not(item_mask)] if ICM is not None: ICM = ICM[item_mask,:] return URM.tocsr(), ICM.tocsr(), removedUsers, removedItems return URM.tocsr(), removedUsers, removedItems from Data_manager.IncrementalSparseMatrix import IncrementalSparseMatrix, IncrementalSparseMatrix_FilterIDs import pandas as pd def remove_Dataframe_duplicates(dataframe, unique_values_in_columns = ['UserID', 'ItemID'], keep_highest_value_in_col ="timestamp"): """ :param dataframe: :param unique_values_in_columns: List of column headers. The combination of the two will occur only once :param keep_highest_value_in_col: Column where the max value will be selected if a duplicate will be removed :return: """ # # Remove duplicates. # This way of removing the duplicates keeping the last timemstamp without removing other columns # would be the simplest, but it is so slow to the point of being unusable on any dataset but ML100k # idxs = df_original.groupby(by=['UserID', 'ItemID'], as_index=False)["timestamp"].idxmax() # df_original = df_original.loc[idxs] # Alternative faster way: # 1 - Sort in ascending order so that the last (bigger) timestamp is in the last position. Set Nan to be in the first position, to remove them if possible # 2 - Then remove duplicates for user-item keeping the last row, which will be the last timestamp. sort_by = unique_values_in_columns.copy() sort_by.extend([keep_highest_value_in_col]) dataframe.sort_values(by=sort_by, ascending=True, inplace=True, kind="quicksort", na_position="first") dataframe.drop_duplicates(unique_values_in_columns, keep='last', inplace=True) n_data_points = len(dataframe[unique_values_in_columns[0]].values) n_unique_data_points = dataframe.drop_duplicates(unique_values_in_columns, keep='first', inplace=False).shape[0] assert n_unique_data_points == n_data_points, "remove_Dataframe_duplicates: duplicate values found" return dataframe def load_CSV_into_Dataframe (filePath, header = False, separator="::", timestamp = False, remove_duplicates = False, custom_user_item_rating_columns = None): """ The function loads a CSV file into a Dataframe :param filePath: :param header: True/False the file does have a header :param separator: :param timestamp: True/False load the timestamp as well :param remove_duplicates: Remove row/column duplicates, if the timestamp is provided it kees the most recent one, otherwise the highest rating or interaction value. :param custom_user_item_rating_columns: Column names for the user_id, item_id and rating value as in the file header :return: """ if timestamp: dtype={0:str, 1:str, 2:float, 3:float} columns = ['UserID', 'ItemID', 'interaction', 'timestamp'] else: dtype={0:str, 1:str, 2:float} columns = ['UserID', 'ItemID', 'interaction'] df_original = pd.read_csv(filepath_or_buffer=filePath, sep=separator, header= 0 if header else None, dtype=dtype, usecols=custom_user_item_rating_columns) # If the original file has more columns, keep them but ignore them df_original.columns = columns user_id_list = df_original['UserID'].values # Check if duplicates exist num_unique_user_item_ids = df_original.drop_duplicates(['UserID', 'ItemID'], keep='first', inplace=False).shape[0] contains_duplicates_flag = num_unique_user_item_ids != len(user_id_list) if contains_duplicates_flag: if remove_duplicates: df_original = remove_Dataframe_duplicates(df_original, unique_values_in_columns= ['UserID', 'ItemID'], keep_highest_value_in_col = "timestamp" if timestamp else "interaction") else: assert num_unique_user_item_ids == len(user_id_list), "load_CSV_into_SparseBuilder: duplicate (user, item) values found" return df_original def load_CSV_into_SparseBuilder (filePath, header = False, separator="::", timestamp = False, remove_duplicates = False, custom_user_item_rating_columns = None, create_mapper = True, preinitialized_row_mapper = None, preinitialized_col_mapper = None, on_new_col = "add", on_new_row = "add"): """ The function loads a CSV file into a URM :param filePath: :param header: True/False the file does have a header :param separator: :param timestamp: True/False load the timestamp as well :param remove_duplicates: Remove row/column duplicates, if the timestamp is provided it kees the most recent one, otherwise the highest rating or interaction value. :param custom_user_item_rating_columns: Column names for the user_id, item_id and rating value as in the file header :param create_mapper: True map the IDs into a new interger value, False use the original value :param preinitialized_row_mapper: Dictionary {originalID: matrix index} to translate rowIDs into row indices (e.g., userID into user index) :param preinitialized_col_mapper: Dictionary {originalID: matrix index} to translate rowIDs into row indices (e.g., ItemID into item index) :return: """ if preinitialized_row_mapper is not None or preinitialized_col_mapper is not None: URM_all_builder = IncrementalSparseMatrix_FilterIDs(preinitialized_col_mapper = preinitialized_col_mapper, preinitialized_row_mapper = preinitialized_row_mapper, on_new_col = on_new_col, on_new_row = on_new_row) URM_timestamp_builder = IncrementalSparseMatrix_FilterIDs(preinitialized_col_mapper = preinitialized_col_mapper, preinitialized_row_mapper = preinitialized_row_mapper, on_new_col = on_new_col, on_new_row = on_new_row) else: URM_all_builder = IncrementalSparseMatrix(auto_create_col_mapper = create_mapper, auto_create_row_mapper = create_mapper) URM_timestamp_builder = IncrementalSparseMatrix(auto_create_col_mapper = create_mapper, auto_create_row_mapper = create_mapper) if timestamp: dtype={0:str, 1:str, 2:float, 3:float} columns = ['userId', 'itemId', 'interaction', 'timestamp'] else: dtype={0:str, 1:str, 2:float} columns = ['userId', 'itemId', 'interaction'] df_original = pd.read_csv(filepath_or_buffer=filePath, sep=separator, header= 0 if header else None, dtype=dtype, usecols=custom_user_item_rating_columns) # If the original file has more columns, keep them but ignore them df_original.columns = columns user_id_list = df_original['userId'].values item_id_list = df_original['itemId'].values interaction_list = df_original['interaction'].values # Check if duplicates exist num_unique_user_item_ids = df_original.drop_duplicates(['userId', 'itemId'], keep='first', inplace=False).shape[0] contains_duplicates_flag = num_unique_user_item_ids != len(user_id_list) if contains_duplicates_flag: if remove_duplicates: # # Remove duplicates. # This way of removing the duplicates keeping the last tiemstamp without removing other columns # would be the simplest, but it is so slow to the point of being unusable on any dataset but ML100k # idxs = df_original.groupby(by=['userId', 'itemId'], as_index=False)["timestamp"].idxmax() # df_original = df_original.loc[idxs] # Alternative faster way: # 1 - Sort in ascending order so that the last (bigger) timestamp is in the last position. Set Nan to be in the first position, to remove them if possible # 2 - Then remove duplicates for user-item keeping the last row, which will be the last timestamp. if timestamp: sort_by = ["userId", "itemId", "timestamp"] else: sort_by = ["userId", "itemId", 'interaction'] df_original.sort_values(by=sort_by, ascending=True, inplace=True, kind="quicksort", na_position="first") df_original.drop_duplicates(["userId", "itemId"], keep='last', inplace=True) user_id_list = df_original['userId'].values item_id_list = df_original['itemId'].values interaction_list = df_original['interaction'].values assert num_unique_user_item_ids == len(user_id_list), "load_CSV_into_SparseBuilder: duplicate (user, item) values found" else: assert num_unique_user_item_ids == len(user_id_list), "load_CSV_into_SparseBuilder: duplicate (user, item) values found" URM_all_builder.add_data_lists(user_id_list, item_id_list, interaction_list) if timestamp: timestamp_list = df_original['timestamp'].values URM_timestamp_builder.add_data_lists(user_id_list, item_id_list, timestamp_list) return URM_all_builder.get_SparseMatrix(), URM_timestamp_builder.get_SparseMatrix(), \ URM_all_builder.get_column_token_to_id_mapper(), URM_all_builder.get_row_token_to_id_mapper() return URM_all_builder.get_SparseMatrix(), \ URM_all_builder.get_column_token_to_id_mapper(), URM_all_builder.get_row_token_to_id_mapper() def merge_ICM(ICM1, ICM2, mapper_ICM1, mapper_ICM2): ICM_all = sps.hstack([ICM1, ICM2], format='csr') mapper_ICM_all = mapper_ICM1.copy() for key in mapper_ICM2.keys(): mapper_ICM_all[key] = mapper_ICM2[key] + len(mapper_ICM1) return ICM_all, mapper_ICM_all def compute_density(URM): n_users, n_items = URM.shape n_interactions = URM.nnz # This avoids the fixed bit representation of numpy preventing # an overflow when computing the product n_items = float(n_items) n_users = float(n_users) if n_interactions == 0: return 0.0 return n_interactions/(n_items*n_users) def remove_features(ICM, min_occurrence = 5, max_percentage_occurrence = 0.30, reconcile_mapper = None): """ The function eliminates the values associated to feature occurring in less than the minimal percentage of items or more then the max. Shape of ICM is reduced deleting features. :param ICM: :param minPercOccurrence: :param max_percentage_occurrence: :param reconcile_mapper: DICT mapper [token] -> index :return: ICM :return: deletedFeatures :return: DICT mapper [token] -> index """ ICM = check_matrix(ICM, 'csc') n_items = ICM.shape[0] cols = ICM.indptr numOccurrences = np.ediff1d(cols) feature_mask = np.logical_and(numOccurrences >= min_occurrence, numOccurrences <= n_items * max_percentage_occurrence) ICM = ICM[:,feature_mask] deletedFeatures = np.arange(0, len(feature_mask))[np.logical_not(feature_mask)] print("RemoveFeatures: removed {} features with less then {} occurrences, removed {} features with more than {} occurrencies".format( sum(numOccurrences < min_occurrence), min_occurrence, sum(numOccurrences > n_items * max_percentage_occurrence), int(n_items * max_percentage_occurrence) )) if reconcile_mapper is not None: reconcile_mapper = reconcile_mapper_with_removed_tokens(reconcile_mapper, deletedFeatures) return ICM, deletedFeatures, reconcile_mapper return ICM, deletedFeatures def reconcile_mapper_with_removed_tokens(key_to_value_dict, values_to_remove): """ :param mapper_dict: must be a mapper of [token] -> index :param indices_to_remove: :return: """ # When an index has to be removed: # - Delete the corresponding key # - Decrement all greater indices # Get all values of the mapper into an array to speed-up the decrementing process # We need a 1-to-1 association between the mapper key and the array position # Assumptions: in dictionary mapper_dict there is a 1-to-1 association to an index assert len(set(key_to_value_dict.values())) == len(key_to_value_dict), "mapper_dict values do not have a 1-to-1 correspondance with the key" # The value is an index, so we can use it to be both the value and the index of an array. # We do not assume values to be contiguous, the missing ones will be -np.inf mapper_values_array = np.ones(max(key_to_value_dict.values())+1, dtype=np.int) * -np.inf value_to_key = invert_dictionary(key_to_value_dict) # Set all old indices for key, old_index in key_to_value_dict.items(): mapper_values_array[old_index] = old_index # Set to -np.inf all indices to be removed # Remove keys in original dictionary for value_to_remove in values_to_remove: mapper_values_array[value_to_remove] = -np.inf assert value_to_remove in value_to_key, "Value to be removed from dictionary is not in dictionary" key_to_remove = value_to_key[value_to_remove] del key_to_value_dict[key_to_remove] # To update the indices, start from 0 and allocate the index n to the n-th finite value in mapper_values_array # Use cumulative sum, each cell is equals to the number of finite (e.g. valid) cells before # Ensure the first index is 0 and not 1 mapper_values_array_finite = np.isfinite(mapper_values_array) mapper_values_array_new_indices = np.cumsum(mapper_values_array_finite) mapper_values_array_new_indices -= 1 # Replace old value with new for key, old_index in key_to_value_dict.items(): new_index = mapper_values_array_new_indices[old_index] key_to_value_dict[key] = new_index return key_to_value_dict def download_from_URL(URL, folder_path, file_name): import urllib from urllib.request import urlretrieve # If directory does not exist, create if not os.path.exists(folder_path): os.makedirs(folder_path) print("Downloading: {}".format(URL)) print("In folder: {}".format(folder_path + file_name)) try: urlretrieve (URL, folder_path + file_name, reporthook=urllretrieve_reporthook) except urllib.request.URLError as urlerror: print("Unable to complete automatic download, network error") raise urlerror sys.stdout.write("\n") sys.stdout.flush() def urllretrieve_reporthook(count, block_size, total_size): global start_time_urllretrieve if count == 0: start_time_urllretrieve = time.time() return if total_size < 0 or not np.isfinite(total_size): total_size = np.nan duration = time.time() - start_time_urllretrieve + 1 progress_size = int(count * block_size) speed = int(progress_size / (1024 * duration)) percent = min(float(count*block_size*100/total_size),100) sys.stdout.write("\rDataReader: Downloaded {:.2f}%, {:.2f} MB, {:.0f} KB/s, {:.0f} seconds passed".format( percent, progress_size / (1024 * 1024), speed, duration)) sys.stdout.flush() def invert_dictionary(id_to_index): index_to_id = {} for id in id_to_index.keys(): index = id_to_index[id] assert index not in index_to_id, "Dictionary is not invertible as it contains duplicate values." index_to_id[index] = id return index_to_id def add_boolean_matrix_iterator(original_data_dict): output_data_dict = {} for matrix_name, matrix_object in original_data_dict.items(): output_data_dict[matrix_name] = matrix_object if np.max(matrix_object.data) != 1.0 or np.min(matrix_object.data) != 1.0: matrix_object_implicit = matrix_object.copy() matrix_object_implicit.astype(np.bool, copy=True) matrix_object_implicit.data = np.ones_like(matrix_object.data) output_data_dict[matrix_name + "_bool"] = matrix_object_implicit return output_data_dict
py
b404c6257a94d1ca974a44703423b3b8d536637d
#!/usr/bin/env python3 import sys import shutil # For git import subprocess # For git from datetime import datetime # For date import getpass # For username import socket # For hostname class BuildObj: """ Build Obj will generate an string representing the current release The output file should be in the format: "ESBMC built from <git-hash> <date> by <username>@<hostname> (dirty-tree)?" """ STR_ESBMC_BUILT_FROM = "ESBMC built from " STR_BY = "by" STR_AT = "@" STR_DIRTY = "(dirty tree)" STR_NOT_GIT = "no-hash" @staticmethod def get_last_hash() -> str: """Return the hash of the latest commit""" git = shutil.which("git") if git is None: return BuildObj.STR_NOT_GIT return subprocess.check_output([git, "rev-parse", "HEAD"]).decode().strip() @staticmethod def get_datetime() -> str: """Try to simulate the `date` command""" output = datetime.now() return str(output) @staticmethod def get_username() -> str: return str(getpass.getuser()) @staticmethod def get_hostname() -> str: return str(socket.gethostname()) @staticmethod def is_dirty_tree() -> bool: git = shutil.which("git") if git is None: return True output = subprocess.check_output( [git, "status", "-s"]).decode().splitlines() for x in output: if '??' not in x: return True return False @staticmethod def run(output): with open(output, 'w') as f: f.write(f'{BuildObj.STR_ESBMC_BUILT_FROM} ') f.write(f'{BuildObj.get_last_hash()} ') f.write(f'{BuildObj.get_datetime()} ') f.write(f'{BuildObj.STR_BY} ') f.write(f'{BuildObj.get_username()}') f.write(f'{BuildObj.STR_AT}') f.write(f'{BuildObj.get_hostname()}') if BuildObj.is_dirty_tree(): f.write(f' {BuildObj.STR_DIRTY}') def main(): if len(sys.argv) != 2: raise ValueError("Program expects <output>") output = sys.argv[1] BuildObj.run(output) if __name__ == "__main__": main()
py
b404c7015e204ac51979d55d5408fd41bba13d54
#import the libraries import PIL.Image import PIL.ImageDraw import numpy as np import face_recognition import datetime, imageio,argparse, imutils, time, dlib, cv2, PIL,os from imutils.video import VideoStream from imutils import face_utils from testing.utils import smoothL1, relu6, DepthwiseConv2D, mask_weights from testing.mark_detector import MarkDetector print(dir(imutils.skeletonize)) def landmark_image(image_file_path): # on image # Load the jpg file into a NumPy array image = face_recognition.load_image_file(image_file_path) # Find all the faces in the image face_locations_list = face_recognition.face_locations(image) face_landmarks_list = face_recognition.face_landmarks(image) face_encodings_list = face_recognition.api.face_encodings(image, known_face_locations=face_locations_list) # for face_location in face_locations_list: # face_encoded = face_recognition.api.face_encodings(image, known_face_locations=face_location) # face_recognition.api.compare_faces(face_encodings_list, face_encoded) # print(face_compaired) number_of_faces = len(face_locations_list) print("I found {} face(s) in this photograph.".format(number_of_faces)) number_of_landmarks = len(face_landmarks_list) print("I found {} landmarkset(s) in this photograph.".format(number_of_landmarks)) number_of_encodings = len(face_encodings_list) print("I encoded {} face(s) in this photograph.".format(number_of_encodings)) # Load the image into a Python Image Library object so that we can draw on top of it and display it pil_image = PIL.Image.fromarray(image) for face_location in face_locations_list: # Print the location of each face in this image. Each face is a list of co-ordinates in (top, right, bottom, left) order. top, right, bottom, left = face_location print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right)) # Let's draw a box around the face draw = PIL.ImageDraw.Draw(pil_image) draw.rectangle([left, top, right, bottom], outline="red") print(face_landmarks_list) for face_landmarks in face_landmarks_list: # print(face_landmarks) # Loop over each facial feature (eye, nose, mouth, lips, etc) for name, list_of_points in face_landmarks.items(): # print(list_of_points) hull = np.array(face_landmarks[name]) hull_landmark = cv2.convexHull(hull) cv2.drawContours(image, hull_landmark, -1, (0, 255, 0), 3) # draw.rectangle([left, top, right, bottom], outline="red") print(name) print(face_landmarks[name][0]) cv2.circle(image, face_landmarks[name][0], 10, (0, 255, 0), 3) # Display the image on screen pil_image.show() def landmark_video(): #videostream cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() frame = cv2.resize(frame, (0,0), fx=1, fy=1) # Find all facial features in all the faces in the video face_landmarks_list = face_recognition.face_landmarks(frame) for face_landmarks in face_landmarks_list: # Loop over each facial feature (eye, nose, mouth, lips, etc) for name, list_of_points in face_landmarks.items(): hull = np.array(face_landmarks[name]) hull_landmark = cv2.convexHull(hull) cv2.drawContours(frame, hull_landmark, -1, (0, 255, 0), 3) cv2.imshow("Frame", frame) ch = cv2.waitKey(1) if ch & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() if __name__ == '__main__': #######################householdings: remove old frame images#################################### os.system('sudo rm -r test_images/*') #######################Input parse############################################################### # constructing the argument parse and parsing the arguments ap = argparse.ArgumentParser() # --shape-predictor : The path to dlib’s pre-trained facial landmark detector.' ap.add_argument("-p", "--shape-predictor",default = 'shape_predictor_68_face_landmarks.dat', help = "path to facial landmark detector") # --video-file input the video file to predict on ap.add_argument("-c", "--camera", type = bool, default = True, help = "bool switch wheather videofile or camera should be used") # --camera : True = Use Camera ,False = --video-file input ap.add_argument("-v", "--video-file", type = bool, default = None, help = "if --camera is set to False we need to define the input video file.") # parse args = vars(ap.parse_args()) ################################################### landmark_image('samples/oega.jpg')
py
b404c8a8f6c5b2a14186c0a6afe9c0d8e51c6611
import logging log = logging.getLogger(__name__) from Top import Top import Parsers.XYZ class Geom(Top): def __init__(self): self.comment = '' self.coord = [] self.header_natoms = 0 self.props = [] self.atprops = [] self.to_kcalmol = 1. def __nonzero__(self): """ Is nonzero if has at least one atom """ if self.coord: return True return False def __len__(self): """ Returns number of atoms in a structure """ return len(self.coord) def __getitem__(self,item): """ Return an atom by index """ return self.coord[item] # It was not a good realization of __str__, so I blocked it def _str__(self): """ Print short text information """ s = '%i atoms; Comment=\'%s\' ' % (len(self.coord),self.comment) s += self.propsToString() + '\n' return s def addProp(self,a,v): if not a in self.props: self.props.append(a) setattr(self,a,v) def addAtProp(self,ap,visible=True): """ :param v: object of class AtomicProps """ an = ap.attrname if visible and not an in self.atprops: self.atprops.append(an) setattr(self,an,ap) def propsToString(self,ShowComment = False): """ Returns string representation of properties """ if ShowComment: s = self.comment else: s = '' for a in self.props: s += '%s= %s ' % (a,getattr(self,a)) return s def parseComment(self,s): """ Fetches parameters from a string. Delimiter between fields is space, and format is 'Arg = Value' with any number of spaces before/afer equal sign """ result = {} new_comment = s # Add some aliases syn = { 'e' : ('en','energy'), 'grad' : ('gradient',) } #delimiters = ('=',':') delimiters = ('=') for delim in delimiters: s2 = s.replace(delim,' '+delim+' ').split() for i in range(1,len(s2)-1): if s2[i] == delim: arg,val = s2[i-1],s2[i+1] arl = str(arg).lower() # Try to make value float try: val = float(val) except ValueError: pass # Look for synonyms for a in syn: if arl in syn[a]: arl = a # Set new attribute setattr(self,arl,val) if not arl in self.props: self.props.append(arl) # Remove parsed parameter from comment #new_comment = re.sub('%s\s*%s\s*%s'%(arg,delim,val),'',new_comment).strip() # TODO figure out later how to make it work with variables containing parentheses self.comment = '' #self.comment += new_comment.strip() def write(self,fname,vectors=None): """ The actual function that writes coords is in the XYZ parser, and it takes an object of class ListGeoms as an argument. Here, we have only one geometry, so we supposed to create an instance of ListGeoms. However, we can make a trick by providing a simple list instead of ListGeoms to write coords """ c = Parsers.XYZ.XYZ() webpath = c.write(fname,geoms=[self],vectors=vectors) return webpath
py
b404c9879cd29ffec9825fefeaebdf0b129a8939
import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.policy import DQNPolicy from tianshou.env import SubprocVectorEnv from tianshou.utils.net.discrete import DQN from tianshou.trainer import offpolicy_trainer from tianshou.data import Collector, ReplayBuffer from atari import create_atari_environment, preprocess_fn def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='Pong') parser.add_argument('--seed', type=int, default=1626) parser.add_argument('--eps-test', type=float, default=0.05) parser.add_argument('--eps-train', type=float, default=0.1) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--gamma', type=float, default=0.9) parser.add_argument('--n-step', type=int, default=1) parser.add_argument('--target-update-freq', type=int, default=320) parser.add_argument('--epoch', type=int, default=100) parser.add_argument('--step-per-epoch', type=int, default=1000) parser.add_argument('--collect-per-step', type=int, default=10) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument('--layer-num', type=int, default=3) parser.add_argument('--training-num', type=int, default=8) parser.add_argument('--test-num', type=int, default=8) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') args = parser.parse_known_args()[0] return args def test_dqn(args=get_args()): env = create_atari_environment(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.env.action_space.shape or env.env.action_space.n # train_envs = gym.make(args.task) train_envs = SubprocVectorEnv([ lambda: create_atari_environment(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = SubprocVectorEnv([ lambda: create_atari_environment(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = DQN( args.state_shape[0], args.state_shape[1], args.action_shape, args.device) net = net.to(args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) policy = DQNPolicy( net, optim, args.gamma, args.n_step, target_update_freq=args.target_update_freq) # collector train_collector = Collector( policy, train_envs, ReplayBuffer(args.buffer_size), preprocess_fn=preprocess_fn) test_collector = Collector(policy, test_envs, preprocess_fn=preprocess_fn) # policy.set_eps(1) train_collector.collect(n_step=args.batch_size * 4) print(len(train_collector.buffer)) # log writer = SummaryWriter(args.logdir + '/' + 'dqn') def stop_fn(x): if env.env.spec.reward_threshold: return x >= env.spec.reward_threshold else: return False def train_fn(x): policy.set_eps(args.eps_train) def test_fn(x): policy.set_eps(args.eps_test) # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, writer=writer) train_collector.close() test_collector.close() if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = create_atari_environment(args.task) collector = Collector(policy, env, preprocess_fn=preprocess_fn) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}') collector.close() if __name__ == '__main__': test_dqn(get_args())
py
b404ca2c4e5e4128a75e34d28b8af2c62f5ce8e2
from fastai import * #get_transforms, imagenet_stats ,ClassificationInterpretation #from fastai.models import resnet50 from fastai.vision import * #ImageList , cnn_learner import pandas as pd import numpy as np from utilities import get_data BASE_PATH = "./model_data" def train(): # prep data df = pd.read_csv("./LABELS/all.txt" , names = ["name", "label",'Cond', 'date', 'camid', 'file'], sep =" ") df[["Cond","date","camid","file"]] = df["name"].str.split("/", n = 4,expand = True) df["name"] = df["name"].apply(lambda x : "./PATCHES/"+x) df_sh = df[["name", "label"]] src= (ImageList.from_df( df_sh,".",) #Where to find the data? -> in path and its subfolders .split_by_rand_pct() #How to split in train/valid? -> use the folders .label_from_df(cols='label') ) data = (src.transform(get_transforms(), size=128) #Data augmentation? -> use tfms with a size of 64 .databunch() .normalize(imagenet_stats)) learn = cnn_learner(data, model.resnet50, model_dir=BASE_PATH).to_fp16() learn.lr_find() learn.recorder.plot() lr = 0.01 learn.fit_one_cycle(2, slice(lr)) learn.recorder.plot_losses() learn.save(BASE_PATH+"resnet_cars.h5") interp = ClassificationInterpretation.from_learner(learn) interp.plot_confusion_matrix() return learn class PREDICT: def __init__(self): exists = os. path. isfile(BASE_PATH+"resnet_cars.h5") if not exists : train() self.learn = cnn_learner(data, resnet50, model_dir=BASE_PATH).to_fp16() self.learn.load(BASE_PATH+"resnet_cars.h5") def occupied(self, image): im = Image(pil2tensor(image,np.float32 ).div_(255)) log_preds_single = self.learn.predict(im) # Predict Imag return log_preds_single[0].obj def find_cars_in_slots(self, park_slots, image, plot=False, k=0) : found = np.zeros(len(park_slots)).astype(int) font = ImageFont.truetype(font='font/FiraMono-Medium.otf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = (image.size[0] + image.size[1]) // 300 colors =["green","red"] for i in range(len(park_slots)) : outbox =park_slots.loc[i,["x2","y1","x1","y2"]].values.astype(int) crop = image.crop(outbox) found[i] = int(self.occupied(crop)) if plot : draw = ImageDraw.Draw(image) label = str(park_slots.at[i,"labels"]) label_size = draw.textsize(label, font) left, top, right, bottom = outbox # top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(image.size[0], np.floor(right + 0.5).astype('int32')) #print(label, (left, top), (right, bottom)) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) for it in range(thickness): draw.rectangle( [left + it, top + it, right - it, bottom - it], outline=colors[found[i]],)# linestyle = style[c]) draw.rectangle( [tuple(text_origin), tuple(text_origin + label_size)], fill="white") draw.text(text_origin, label, fill=(0, 0, 0), font=font, color="b") del draw if plot: plt.figure(figsize = (20,20)) plt.imshow(image) plt.show() plt.close() return found class DETECTION : def __init__(self) : self.image_data = get_data() self.camera = str self.predict = PREDICT() def process_images(self,camera = "camera9"): image_data = self.image_data images = image_data[image_data["camera"] == self.camera ]["path"].values images = np.sort(images) park_slots = pd.read_csv("./parkings/"+camera+".csv") occpancy = np.zeros((len(park_slots), len(images))) for i, image in enumerate(images ): occpancy[:,i] = self.predict.find_cars_in_slots( park_slots, image, plot=False, k=0) return occpancy
py
b404ca555bffa464aaa2bebc3a9f0f92a4e07282
#! /usr/bin/env nix-shell #! nix-shell -i python -p python3 nix nix-prefetch-git import csv import json import re import subprocess import sys from codecs import iterdecode from collections import OrderedDict from datetime import datetime from os.path import abspath, dirname from urllib.request import urlopen HISTORY_URL = 'https://omahaproxy.appspot.com/history?os=linux' DEB_URL = 'https://dl.google.com/linux/chrome/deb/pool/main/g' BUCKET_URL = 'https://commondatastorage.googleapis.com/chromium-browser-official' JSON_PATH = dirname(abspath(__file__)) + '/upstream-info.json' def load_json(path): with open(path, 'r') as f: return json.load(f) def nix_prefetch_url(url, algo='sha256'): print(f'nix-prefetch-url {url}') out = subprocess.check_output(['nix-prefetch-url', '--type', algo, url]) return out.decode('utf-8').rstrip() def nix_prefetch_git(url, rev): print(f'nix-prefetch-git {url} {rev}') out = subprocess.check_output(['nix-prefetch-git', '--quiet', '--url', url, '--rev', rev]) return json.loads(out) def get_file_revision(revision, file_path): url = f'https://raw.githubusercontent.com/chromium/chromium/{revision}/{file_path}' with urlopen(url) as http_response: return http_response.read() def get_channel_dependencies(channel): deps = get_file_revision(channel['version'], 'DEPS') gn_pattern = b"'gn_version': 'git_revision:([0-9a-f]{40})'" gn_commit = re.search(gn_pattern, deps).group(1).decode() gn = nix_prefetch_git('https://gn.googlesource.com/gn', gn_commit) return { 'gn': { 'version': datetime.fromisoformat(gn['date']).date().isoformat(), 'url': gn['url'], 'rev': gn['rev'], 'sha256': gn['sha256'] } } channels = {} last_channels = load_json(JSON_PATH) print(f'GET {HISTORY_URL}', file=sys.stderr) with urlopen(HISTORY_URL) as resp: builds = csv.DictReader(iterdecode(resp, 'utf-8')) for build in builds: channel_name = build['channel'] # If we've already found a newer build for this channel, we're # no longer interested in it. if channel_name in channels: continue # If we're back at the last build we used, we don't need to # keep going -- there's no new version available, and we can # just reuse the info from last time. if build['version'] == last_channels[channel_name]['version']: channels[channel_name] = last_channels[channel_name] continue channel = {'version': build['version']} suffix = 'unstable' if channel_name == 'dev' else channel_name try: channel['sha256'] = nix_prefetch_url(f'{BUCKET_URL}/chromium-{build["version"]}.tar.xz') channel['sha256bin64'] = nix_prefetch_url(f'{DEB_URL}/google-chrome-{suffix}/google-chrome-{suffix}_{build["version"]}-1_amd64.deb') except subprocess.CalledProcessError: # This build isn't actually available yet. Continue to # the next one. continue channel['deps'] = get_channel_dependencies(channel) channels[channel_name] = channel with open(JSON_PATH, 'w') as out: def get_channel_key(item): channel_name = item[0] if channel_name == 'stable': return 0 elif channel_name == 'beta': return 1 elif channel_name == 'dev': return 2 else: print(f'Error: Unexpected channel: {channel_name}', file=sys.stderr) sys.exit(1) sorted_channels = OrderedDict(sorted(channels.items(), key=get_channel_key)) json.dump(sorted_channels, out, indent=2) out.write('\n')
py
b404ca8528baaac423b950271ff48dc9748f85b4
import math # number1 import operator def maximum_of_three_numbers(): print("get the maximum number of three numbers") print(max(int(input("enter 1st numb: ")), int(input("enter 2nd numb: ")), int(input("enter 3rd numb: ")))) # number2 def sum_number(list_): sum_total = 0 for numb in list_: sum_total += numb print(numb) # number3 def multiple(list_): print(math.prod(list_)) # number4 def reverse_a_string(name): print(name[::-1]) # number5 def factorial(number): print(math.factorial(number)) # number 6 def number_fall(list_): for numb in range(1, 7): if 3 in list_: print(list_[numb]) # number 7 def string_uppercase_lowercase(): global c name = input("Enter name: ") d = {"UPPER_CASE": 0, "LOWER_CASE": 0} for c in name: if c.isupper(): d["UPPER_CASE"] += 1 elif c.islower(): d["LOWER_CASE"] += 1 print("the original input is: ", c, "\n", "the number of upper case is: ", d["UPPER_CASE"], "\n", "the number of lower case is: ", d["LOWER_CASE"]) # number 8 def unique_element(list_): unique_list = [] for numb in list_: if numb not in unique_list: unique_list.append(numb) result = f"sample list is {list_}, the unique list is: {unique_list}" print(result) # number 9 def prime_number(number): number_divisors = [] for numb in range(1, number): if number % numb == 0: number_divisors.append(numb) if len(number_divisors) == 1: print("number is a prime number") else: print("number is not a prime number") print(number_divisors) # number 10 def even_number(list_): even_number_list = [] for numb in list_: if numb % 2 == 0: even_number_list.append(numb) print(even_number_list) # print(numb if numb % 2 == 0 else "", end='') # even_number_list = [str(numb) for numb in list_ if numb % 2 == 0] # print("-".join(even_number_list)) # number 11 def perfect_number(number): perfect_number_list = [] for numb in range(1, number): if number % numb == 0: perfect_number_list.append(numb) if sum(perfect_number_list) == number: print("Perfect number") else: print("number is not a perfect number") # number 12 def string_palindrome(list_): print(True if list_ == list_[::-1] else False) # number 14 def pangram(string): # strings = input("Enter words: ") alphabet = ["abcdefghijklmnopqrstuvwxyz"] for i in alphabet: if i in string.lower().split(): print("pass") else: print("fail") break # number 15 def hyphen_separated_sequence(word): sequence = word.split('-') sequence.sort() print("-".join(sequence)) # number 16 def value_square_numbers(): number = [] for i in range(1, 31): if type(math.sqrt(i)) == type(1): number.append(i) print(number)