ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b404ca972ee32f1417ba60efb542b613167b8334
from itertools import combinations class MotionSimulator: def main(self, coord): coord = [list(map(lambda x: int(x.strip()[2:]), x[1:-1].split(','))) for x in coord.strip().split("\n")] velocity = [[0, 0, 0] for _ in range(len(coord))] for _ in range(1000): # update velocity for i, j in combinations(range(len(coord)), 2): for k in range(3): step = (coord[j][k] - coord[i][k]) and (1, -1)[(coord[j][k] - coord[i][k]) < 0] velocity[i][k] += step velocity[j][k] -= step # update position coord = [[a+b for a, b in zip(x, velocity[i])] for i, x in enumerate(coord)] # compute total energy return sum([sum(map(abs, coord[i])) * sum(map(abs, velocity[i])) for i in range(len(coord))]) if __name__ == "__main__": with open("input.txt", "r") as f: coord = f.read() print(MotionSimulator().main(coord))
py
b404caa143c3b60337599528cec11a3959503c87
from django.conf import * def event_processor(event, hint): # skip specified exceptions if event.get('exception', {}).get('values', [{}])[-1].get('type') in [ # 'Http404', 'NotAuthenticated', 'AuthenticationFailed', 'NotFound', 'XMLSyntaxError', # 'FileUpload.DoesNotExist', 'Forbidden', 'KeyboardInterrupt', 'LabelStudioErrorSentryIgnored', 'LabelStudioAPIExceptionSentryIgnored', 'LabelStudioValidationErrorSentryIgnored' ]: return None # special flag inside of logger.error(..., extra={'sentry_skip': True}) to skip error message if event.get('extra', {}).get('sentry_skip', False): return None # skip transactions by urls if event.get("transaction") in [ '/static/{path}', '/dm/{path}', '/react-app/{path}', '/label-studio-frontend/{path}', '/favicon.ico', '/health' ]: return None return event # to return all other events def init_sentry(release_name, release_version): if settings.SENTRY_DSN: import sentry_sdk from sentry_sdk.integrations.django import DjangoIntegration if settings.SENTRY_REDIS_ENABLED: from sentry_sdk.integrations.redis import RedisIntegration from sentry_sdk.integrations.rq import RqIntegration advanced = [RedisIntegration(), RqIntegration()] else: advanced = [] # define the event processor, this runs before before_send if enabled sentry_sdk.scope.add_global_event_processor(event_processor) sentry_sdk.init( dsn=settings.SENTRY_DSN, integrations=[DjangoIntegration()] + advanced, traces_sample_rate=settings.SENTRY_RATE, send_default_pii=True, environment=settings.SENTRY_ENVIRONMENT, release=release_name + '@' + str(release_version) )
py
b404cb35139ea1710f07c71e26691a1de80581ff
# pylint:disable-msg=C0103 """ho ho ho""" __revision__ = 'toto' import sys e = 1 e2 = 'yo' e3 = None try: raise e, 'toto' except Exception, ex: print ex _, _, tb = sys.exc_info() raise e2 def func(): """bla bla bla""" raise e3 def reraise(): """reraise a catched exception instance""" try: raise Exception() except Exception, exc: print exc raise exc raise e3
py
b404cbec002e896c982f450200d0a0ab229c5ebd
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # [START gae_python37_app] from datetime import datetime from flask import Flask from flask import render_template from flask import request from flask import redirect from flask import url_for from scraper import RedditScraper import random import numpy as np import matplotlib.pyplot as plt import base64 # If `entrypoint` is not defined in app.yaml, App Engine will look for an app # called `app` in `main.py`. app = Flask(__name__) @app.route('/update_time') def update_time(): with open('time.txt', 'w') as outfile: outfile.write(str(datetime.now())) return 'success' @app.route('/time') def time(): with open('time.txt') as infile: time = infile.read() return time @app.route('/', methods=['GET','POST']) def index(): """Return a friendly HTTP greeting.""" # has_user_submitted = ping storage DB to see if called for this week, need to send user? # has_user_submitted = False # if has_user_submitted: # return redirect(url_for('already_submitted')) image_url = reddit_scraper.get_top_meme() # return reddit_scraper.get_top_meme() return render_template('index.html', image_url=image_url) @app.route('/submitted', methods=['GET','POST']) def submitted(): if request.method == 'POST': comment = request.form['comment'] print(comment) return render_template('submitted.html') @app.route('/voting', methods=['GET','POST']) def voting(): # has_user_submitted = ping storage DB to see if called for this week, need to send user? # has_user_submitted = False # if has_user_submitted: # return redirect(url_for('already_submitted')) comments = ['1','2','3','4','5','6'] # connect with sherif image_url = reddit_scraper.get_top_meme() return render_template('voting.html', comments=comments, image_url=image_url) @app.route('/voted', methods=['GET','POST']) def voted(): # has_user_submitted = ping storage DB to see if called for this week, need to send user? # has_user_submitted = False # if has_user_submitted: # return redirect(url_for('already_submitted')) print(request.form) if request.method == 'POST': best = request.form['best'] comments = [] for i in range(1, 7): comment = request.form.get(f'bots{i}', None) if comment is not None: comments.append(comment) print(comments) return render_template('voted.html') @app.route('/results') def results(): count = 500 xScale = np.linspace(0, 100, count) yScale = np.random.randn(count) graph_file = 'score_history.png' plt.clf() plt.scatter(xScale,yScale) plt.savefig(graph_file) with open(graph_file, 'rb') as infile: string = base64.b64encode(infile.read()).decode("utf-8") # graphJSON = json.dumps(data, cls=plotly.utils.PlotlyJSONEncoder) return render_template('results.html', plot=string) if __name__ == '__main__': # This is used when running locally only. When deploying to Google App # Engine, a webserver process such as Gunicorn will serve the app. This # can be configured by adding an `entrypoint` to app.yaml. reddit_scraper = RedditScraper() app.run(host='127.0.0.1', port=8080, debug=True) # [END gae_python37_app]
py
b404ccc7a1281179293365aaa6b5bdafdb400d9c
# -*- coding: utf-8 -*- # # MINST Mlops 2022 documentation build configuration file, created by # sphinx-quickstart. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = u"MINST Mlops 2022" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "0.1" # The full version, including alpha/beta/rc tags. release = "0.1" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build"] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "default" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = "minist-mlops-2022doc" # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ( "index", "minist-mlops-2022.tex", u"MINST Mlops 2022 Documentation", u"Abdulstar Kousa", "manual", ), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ( "index", "minist-mlops-2022", u"MINST Mlops 2022 Documentation", [u"Abdulstar Kousa"], 1, ) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( "index", "minist-mlops-2022", u"MINST Mlops 2022 Documentation", u"Abdulstar Kousa", "MINST Mlops 2022", "MINST Mlops 2022", "Miscellaneous", ), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
py
b404cd68207a057bf79b2e1c4fb1bedd0a6fc7ee
import pytest from arraystack import Stack def test_lifo(): stack = Stack() stack.push(5) stack.push(6) assert stack.pop() == 6 assert stack.pop() == 5 def test_push_pop_empty(): stack = Stack() assert stack.empty() stack.push(5) assert stack.pop() == 5 assert stack.empty() def test_pop(): stack = Stack() with pytest.raises(TypeError) as e_info: stack.pop() def test_capacity(): # Create a stack that can hold a single element only. stack = Stack(1) assert stack.empty() stack.push(5) # Attempting to push an additional item should fail. with pytest.raises(TypeError) as e_info: stack.push(6)
py
b404ce22a92fbc12abd03ad49a1f9cbd76cdcb00
from unittest.mock import MagicMock import pytest import trio from elro.device import create_device_from_data, WindowSensor, AlarmSensor, DeviceType from elro.command import Command @pytest.fixture def update_data(): data = {"data": {"cmdId": Command.DEVICE_STATUS_UPDATE.value, "device_name": DeviceType.DOOR_WINDOW_SENSOR.value, "device_ID": "vader", "device_status": " 2AAA "}} return data @pytest.fixture def device(update_data): device = create_device_from_data(update_data) return device @pytest.fixture def alarm_device(): data = {"data": {"cmdId": Command.DEVICE_STATUS_UPDATE.value, "device_name": DeviceType.CO_ALARM.value, "device_ID": "vader", "device_status": " 2AAA "}} device = create_device_from_data(data) return device def test_factory_creates_the_right_type_for_window_sensor(): data = {"data": {"cmdId": Command.DEVICE_STATUS_UPDATE.value, "device_name": DeviceType.DOOR_WINDOW_SENSOR.value, "device_ID": "vader", "device_status": " 2AAA "}} device = create_device_from_data(data) assert isinstance(device, WindowSensor) def test_factory_creates_the_right_type_for_water_sensor(): data = {"data": {"cmdId": Command.DEVICE_STATUS_UPDATE.value, "device_name": DeviceType.WATER_ALARM.value, "device_ID": "vader", "device_status": " 2AAA "}} device = create_device_from_data(data) assert isinstance(device, AlarmSensor) def test_factory_creates_the_right_type_for_co_sensor(): data = {"data": {"cmdId": Command.DEVICE_STATUS_UPDATE.value, "device_name": DeviceType.CO_ALARM.value, "device_ID": "vader", "device_status": " 2AAA "}} device = create_device_from_data(data) assert isinstance(device, AlarmSensor) def test_factory_creates_the_right_type_for_heat_sensor(): data = {"data": {"cmdId": Command.DEVICE_STATUS_UPDATE.value, "device_name": DeviceType.HEAT_ALARM.value, "device_ID": "vader", "device_status": " 2AAA "}} device = create_device_from_data(data) assert isinstance(device, AlarmSensor) def test_factory_creates_the_right_type_for_fire_sensor(): data = {"data": {"cmdId": Command.DEVICE_STATUS_UPDATE.value, "device_name": DeviceType.FIRE_ALARM.value, "device_ID": "vader", "device_status": " 2AAA "}} device = create_device_from_data(data) assert isinstance(device, AlarmSensor) def test_calling_update_fires_updated_event(device, update_data): event_set = MagicMock() device.updated.set = event_set device.update(update_data) event_set.assert_called_once_with() assert isinstance(device.updated, trio.Event) assert device.updated.is_set() is False def test_setting_device_state_fires_updated_event(device, update_data): event_set = MagicMock() device.updated.set = event_set device.device_state = "anakin" event_set.assert_called_once_with() def test_setting_battery_level_fires_updated_event(device, update_data): event_set = MagicMock() device.updated.set = event_set device.battery_level = 42 event_set.assert_called_once_with() def test_update_window_sensor_to_open_sets_correct_state(device, update_data): device.device_state = "leia" update_data['data']['device_status'] = ' 2A55 ' device.update_specifics(update_data) assert device.device_state == "Open" def test_update_window_sensor_to_closed_sets_correct_state(device, update_data): device.device_state = "leia" update_data['data']['device_status'] = ' 2AAA ' device.update_specifics(update_data) assert device.device_state == "Closed" def test_update_alarm_sensor_to_normal_sets_correct_state(alarm_device, update_data): alarm_device.device_state = 'leia' update_data['data']['device_status'] = ' 2AAA ' alarm_device.update_specifics(update_data) assert alarm_device.device_state == "Normal" def test_update_alarm_sensor_to_alarm_sets_correct_state(alarm_device, update_data): alarm_device.device_state = 'leia' update_data['data']['device_status'] = ' 2ABB ' alarm_device.update_specifics(update_data) assert alarm_device.device_state == "Test Alarm"
py
b404ceb6052fe9fdeab1e86ffd0a2468765685a9
import requests, html print(html.parse("<body>")) html = requests.get("https://example.com/") ## bad: overwrites imported package name print(html)
py
b404cf01493c765a9aacf1fdf448368308fd0010
import asyncio import sys from motor import motor_asyncio from pymongo import MongoClient from pymongo.errors import ServerSelectionTimeoutError from KilluaRobot import MONGO_DB_URI from KilluaRobot.configure import get_int_key, get_str_key MONGO_PORT = get_int_key("27017") MONGO_DB_URI = get_str_key("MONGO_DB_URI") MONGO_DB = "KilluaRobot" client = MongoClient() client = MongoClient(MONGO_DB_URI, MONGO_PORT)[MONGO_DB] motor = motor_asyncio.AsyncIOMotorClient(MONGO_DB_URI, MONGO_PORT) db = motor[MONGO_DB] db = client["emiexrobot"] try: asyncio.get_event_loop().run_until_complete(motor.server_info()) except ServerSelectionTimeoutError: sys.exit(log.critical("Can't connect to mongodb! Exiting..."))
py
b404d038cdc48398b2cc077e434cc22532fad758
from opentrons import types metadata = { 'protocolName': 'Testosaur', 'author': 'Opentrons <[email protected]>', 'description': 'A variant on "Dinosaur" for testing', 'source': 'Opentrons Repository' } def run(ctx): ctx.home() tr = ctx.load_labware('opentrons_96_tiprack_300ul', 1) right = ctx.load_instrument('p300_single', types.Mount.RIGHT, [tr]) lw = ctx.load_labware('corning_96_wellplate_360ul_flat', 2) right.pick_up_tip() right.aspirate(10, lw.wells()[0].bottom()) right.dispense(10, lw.wells()[1].bottom()) right.drop_tip(tr.wells()[-1].top())
py
b404d0fd412c40111722693e60fc92b6a3c7a52b
#// #//------------------------------------------------------------------------------ #// Copyright 2007-2011 Mentor Graphics Corporation #// Copyright 2007-2011 Cadence Design Systems, Inc. #// Copyright 2010-2011 Synopsys, Inc. #// Copyright 2013 NVIDIA Corporation #// Copyright 2019-2020 Tuomas Poikela (tpoikela) #// All Rights Reserved Worldwide #// #// Licensed under the Apache License, Version 2.0 (the #// "License"); you may not use this file except in #// compliance with the License. You may obtain a copy of #// the License at #// #// http://www.apache.org/licenses/LICENSE-2.0 #// #// Unless required by applicable law or agreed to in #// writing, software distributed under the License is #// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR #// CONDITIONS OF ANY KIND, either express or implied. See #// the License for the specific language governing #// permissions and limitations under the License. #//------------------------------------------------------------------------------ from typing import List, Dict import cocotb from cocotb.triggers import Timer from .uvm_report_object import UVMReportObject from .uvm_object_globals import (UVM_NONE, UVM_MEDIUM, UVM_PHASE_DONE, UVM_INFO, UVM_CHECK_FIELDS, UVM_PHASE_SCHEDULE, UVM_WARNING, UVM_ERROR, UVM_FATAL) from .uvm_common_phases import UVMBuildPhase from .uvm_domain import UVMDomain from .uvm_debug import uvm_debug from .uvm_object import UVMObject from .uvm_queue import UVMQueue from .uvm_pool import UVMEventPool from .sv import sv, uvm_split_string from ..macros import uvm_info, uvm_fatal, uvm_warning, uvm_error from .uvm_recorder import UVMRecorder from .uvm_globals import (uvm_is_match, uvm_string_to_action, uvm_string_to_severity, uvm_zero_delay) from .uvm_factory import UVMObjectWrapper from .uvm_links import (UVMRelatedLink, UVMParentChildLink) INV_WARN1 = ("+uvm_set_action requires 4 arguments, but %0d given for command " + "+uvm_set_action=%s, Usage: +uvm_set_action=<comp>,<id>,<severity>,<action[|action]>") INV_WARN2 = ("Bad severity argument \"%s\" given to command +uvm_set_action=%s," + "Usage: +uvm_set_action=<comp>,<id>,<severity>,<action[|action]>") INV_WARN3 = ("Bad action argument \"%s\" given to command +uvm_set_action=%s, " + "Usage: +uvm_set_action=<comp>,<id>,<severity>,<action[|action]>") INV_WARN4 = ("+uvm_set_severity requires 4 arguments, but %0d given for command " + "+uvm_set_severity=%s, Usage: +uvm_set_severity=<comp>,<id>,<orig_severity>,<new_severity>") INV_WARN5 = ("Bad severity argument \"%s\" given to command +uvm_set_severity=%s," + " Usage: +uvm_set_severity=<comp>,<id>,<orig_severity>,<new_severity>") INV_WARN6 = ("Bad severity argument \"%s\" given to command +uvm_set_severity=%s, " + "Usage: +uvm_set_severity=<comp>,<id>,<orig_severity>,<new_severity>") class VerbositySetting: """ The verbosity settings may have a specific phase to start at. We will do this work in the phase_started callback. :ivar UVMComponent comp: Component related to the settings :ivar UVMPhase phase: Phase in which settings apply. :ivar int id: ID for verbosity setting :ivar int offset: Time offset for verbosity setting :ivar int verbosity: Verbosity level of the setting. """ def __init__(self): self.comp = "" self.phase = "" self.id = "" self.offset = 0 self.verbosity = UVM_MEDIUM def convert2string(self): return "Comp: {}, phase: {}, ID: {}, offset: {}, verb: {}".format( self.comp, self.phase, self.id, self.offset, self.verbosity) CLONE_ERR = ("Attempting to clone '%s'. Clone cannot be called on a uvm_component. " + " The clone target variable will be set to None.") class uvm_cmdline_parsed_arg_t: """ Class used to return arguments and associated data parsed from cmd line arguments. These are usually plusargs given with +ARG_NAME=ARG_VALUE :ivar str arg: Argument name :ivar list args: Values of given argument. :ivar int used: Logs how many times arg is used. """ def __init__(self): self.arg = "" self.args = [] self.used = 0 class UVMComponent(UVMReportObject): """ Base class for defining UVM components The uvm_component class is the root base class for UVM components. In addition to the features inherited from `UVMObject` and `UVMReportObject`, uvm_component provides the following interfaces: Hierarchy: provides methods for searching and traversing the component hierarchy. Phasing defines a phased test flow that all components follow, with a group of standard phase methods and an API for custom phases and multiple independent phasing domains to mirror DUT behavior e.g. power Reporting provides a convenience interface to the `UVMReportHandler`. All messages, warnings, and errors are processed through this interface. Transaction recording provides methods for recording the transactions produced or consumed by the component to a transaction database (vendor specific). Factory provides a convenience interface to the `UVMFactory`. The factory is used to create new components and other objects based on type-wide and instance-specific configuration. The `UVMComponent` is automatically seeded during construction using UVM seeding, if enabled. All other objects must be manually reseeded, if appropriate. See `UVMObject.reseed` for more information. Most local methods within the class are prefixed with m_, indicating they are not user-level methods. :cvar bool print_config_matches: Setting this static variable causes `UVMConfigDb.get` to print info about matching configuration settings as they are being applied. :ivar UVMTrDatabase tr_database: Specifies the `UVMTrDatabase` object to use for `begin_tr` and other methods in the <Recording Interface>. Default is `UVMCoreService.get_default_tr_database`. """ print_config_matches = False m_time_settings: List[VerbositySetting] = [] def __init__(self, name, parent): """ Creates a new component with the given leaf instance `name` and handle to its `parent`. If the component is a top-level component (i.e. it is created in a static module or interface), `parent` should be `None`. The component will be inserted as a child of the `parent` object, if any. If `parent` already has a child by the given `name`, an error is produced. If `parent` is `None`, then the component will become a child of the implicit top-level component, `uvm_top`. All classes derived from uvm_component must call super.new(name,parent). Args: name (str): Name of the component. parent (UVMComponent): Parent component. """ super().__init__(name) self.m_children: Dict[str, 'UVMComponent'] = {} # uvm_component[string] #// Variable: print_enabled #// #// This bit determines if this component should automatically be printed as a #// child of its parent object. #// #// By default, all children are printed. However, this bit allows a parent #// component to disable the printing of specific children. self.print_enabled = True self.m_current_phase = None # the most recently executed phase self.m_parent = None self.m_children_by_handle: Dict['UVMComponent', 'UVMComponent'] = {} self.m_children_ordered: List['UVMComponent'] = [] self.m_build_done = False self.m_phasing_active = 0 self.recording_detail = UVM_NONE self.m_name = "" self.m_verbosity_settings = [] self.m_main_stream = None # functors to override uvm_root defaults self.m_phase_imps = {} # uvm_phase[uvm_phase] self.child_ptr = -1 self.m_tr_h = {} # uvm_recorder m_tr_h[uvm_transaction] self.m_run_process = None self.tr_database = None # uvm_tr_database self.m_domain = None self.m_phase_process = None # process self.event_pool: UVMEventPool = UVMEventPool("evt_pool") self.m_streams = {} # uvm_tr_stream [string][string] # If uvm_top, reset name to "" so it doesn't show in full paths then return if parent is None and name == "__top__": self.set_name("") #UVMReportObject.set_name(self, name) #self.m_name = self.get_name() return from .uvm_coreservice import UVMCoreService cs = UVMCoreService.get() top = cs.get_root() # Check that we're not in or past end_of_elaboration common = UVMDomain.get_common_domain() bld = common.find(UVMBuildPhase.get()) if bld is None: uvm_fatal("COMP/INTERNAL", "attempt to find build phase object failed") if bld.get_state() == UVM_PHASE_DONE: parent_name = top.get_full_name() if parent is not None: parent_name = parent.get_full_name() uvm_fatal("ILLCRT", ("It is illegal to create a component ('" + name + "' under '" + parent_name + "') after the build phase has ended.")) if name == "": name = "COMP_" + str(UVMObject.m_inst_count) if parent == self: uvm_fatal("THISPARENT", "cannot set the parent of a component to itself") if parent is None: parent = top if self.uvm_report_enabled(UVM_MEDIUM+1, UVM_INFO, "NEWCOMP"): nname = parent.get_full_name() if parent == top: nname = "uvm_top" uvm_info("NEWCOMP", "Creating " + nname + "." + name, UVM_MEDIUM+1) if parent.has_child(name) and self != parent.get_child(name): if parent == top: error_str = ("Name '" + name + "' is not unique to other top-level " + "instances. If parent is a module, build a unique name by combining the " + "the module name and component name: $sformatf('%m.%s','" + name + "').") uvm_fatal("CLDEXT", error_str) else: uvm_fatal("CLDEXT", sv.sformatf("Cannot set '%s' as a child of '%s', %s", name, parent.get_full_name(), "which already has a child by that name.")) return self.m_parent = parent self.set_name(name) if self.m_parent.m_add_child(self) is False: self.m_parent = None self.m_domain = parent.m_domain # by default, inherit domains from parents # Now that inst name is established, reseed (if use_uvm_seeding is set) self.reseed() # Do local configuration settings arr = [] from .uvm_config_db import UVMConfigDb if UVMConfigDb.get(self, "", "recording_detail", arr): self.recording_detail = arr[0] self.m_rh.set_name(self.get_full_name()) self.set_report_verbosity_level(parent.get_report_verbosity_level()) self.m_set_cl_msg_args() """ Group: Hierarchy Interface These methods provide user access to information about the component hierarchy, i.e., topology. """ def get_parent(self): """ Function: get_parent Returns a handle to this component's parent, or `None` if it has no parent. Returns: UVMComponent: Parent of this component. """ return self.m_parent def get_full_name(self) -> str: """ Returns the full hierarchical name of this object. The default implementation concatenates the hierarchical name of the parent, if any, with the leaf name of this object, as given by `UVMObject.get_name`. Returns: str: Full hierarchical name of this component. """ if self.m_name == "": return self.get_name() else: return self.m_name def get_children(self, children): """ This function populates the end of the `children` array with the list of this component's children. .. code-block:: python array = [] my_comp.get_children(array) for comp in array: do_something(comp) Args: children (list): List into which child components are appended """ for name in self.m_children: children.append(self.m_children[name]) def get_child(self, name): """ Args: name (str): Name of desired child Returns: UVMComponent: Child component matching name. """ if name in self.m_children: return self.m_children[name] def get_next_child(self): """ Returns: UVMComponent: Next child component. """ self.child_ptr += 1 if (self.child_ptr < len(self.m_children_ordered)): return self.m_children_ordered[self.child_ptr] return None def get_first_child(self): """ These methods are used to iterate through this component's children, if any. For example, given a component with an object handle, `comp`, the following code calls `UVMObject.print` for each child: .. code-block:: python name = "" child = comp.get_first_child() while child is not None: child.print() child = comp.get_next_child() Returns: UVMComponent: First child component. """ self.child_ptr = 0 if len(self.m_children_ordered) > 0: return self.m_children_ordered[0] return None def get_num_children(self): """ Returns: int: The number of this component's children. """ return len(self.m_children_ordered) def has_child(self, name): """ Args: name (str): Desired child component name. Returns: bool: True if this component has a child with the given `name`, False otherwise. """ return name in self.m_children def set_name(self, name): """ Renames this component to `name` and recalculates all descendants' full names. This is an internal function for now. Args: name (str): New name """ if self.m_name != "": uvm_error("INVSTNM", ("It is illegal to change the name of a component." + "The component name will not be changed to \"{}\"".format(name))) return super().set_name(name) self.m_set_full_name() def lookup(self, name): """ Looks for a component with the given hierarchical `name` relative to this component. If the given `name` is preceded with a '.' (dot), then the search begins relative to the top level (absolute lookup). The handle of the matching component is returned, else `None`. The name must not contain wildcards. Args: name: Returns: UVMComponent: Matching component, or None is no match is found. """ leaf = "" remainder = "" comp = None from .uvm_coreservice import UVMCoreService cs = UVMCoreService.get() top = cs.get_root() comp = self [leaf, remainder] = self.m_extract_name(name, leaf, remainder) if leaf == "": comp = top # absolute lookup [leaf, remainder] = self.m_extract_name(remainder, leaf, remainder) if comp.has_child(leaf) is False: uvm_warning("Lookup Error", sv.sformatf("Cannot find child %0s from comp %s",leaf, comp.get_name())) return None if remainder != "": return comp.m_children[leaf].lookup(remainder) return comp.m_children[leaf] def get_depth(self) -> int: """ Returns the component's depth from the root level. uvm_top has a depth of 0. The test and any other top level components have a depth of 1, and so on. Returns: int: The component's depth from the root level """ if self.m_name == "": return 0 get_depth = 1 for i in range(len(self.m_name)): if (self.m_name[i] == "."): get_depth += 1 return get_depth #---------------------------------------------------------------------------- # Group: Phasing Interface #---------------------------------------------------------------------------- # # These methods implement an interface which allows all components to step # through a standard schedule of phases, or a customized schedule, and # also an API to allow independent phase domains which can jump like state # machines to reflect behavior e.g. power domains on the DUT in different # portions of the testbench. The phase tasks and functions are the phase # name with the _phase suffix. For example, the build phase function is # <build_phase>. # # All processes associated with a task-based phase are killed when the phase # ends. See <uvm_task_phase> for more details. #---------------------------------------------------------------------------- def build_phase(self, phase): """ The `UVMBuildPhase` phase implementation method. Any override should call super().build_phase(phase) to execute the automatic configuration of fields registered in the component by calling `apply_config_settings`. To turn off automatic configuration for a component, do not call super().build_phase(phase). This method should never be called directly. Args: phase (UVMPhase): """ self.m_build_done = True self.build() def build(self): """ For backward compatibility the base `build_phase` method calls `build`. """ self.m_build_done = True self.apply_config_settings(UVMComponent.print_config_matches) if self.m_phasing_active == 0: uvm_warning("UVM_DEPRECATED", "build()/build_phase() has been called explicitly") def connect_phase(self, phase): """ The `UVMConnectPhase` phase implementation method. This method should never be called directly. Args: phase (UVMPhase): """ pass # For backward compatibility the base connect_phase method calls connect. # extern virtual function void connect() def end_of_elaboration_phase(self, phase): """ The `UVMEndOfElaborationPhase` phase implementation method. This method should never be called directly. Args: phase (UVMPhase): """ pass # For backward compatibility the base <end_of_elaboration_phase> method calls <end_of_elaboration>. # extern virtual function void end_of_elaboration() def start_of_simulation_phase(self, phase): """ The `UVMStartOfSimulationPhase` phase implementation method. This method should never be called directly. Args: phase (UVMPhase): """ self.start_of_simulation() return def start_of_simulation(self): """ For backward compatibility the base `start_of_simulation_phase` method calls `start_of_simulation`. extern virtual function void start_of_simulation() """ return async def run_phase(self, phase): """ Task: run_phase The `UVMRunPhase` phase implementation method. This task returning or not does not indicate the end or persistence of this phase. Thus the phase will automatically end once all objections are dropped using ~phase.drop_objection()~. Any processes forked by this task continue to run after the task returns, but they will be killed once the phase ends. The run_phase task should never be called directly. """ uvm_debug(self, 'run_phase', self.get_name() + ' yielding self.run()') # self.m_run_process = cocotb.fork(self.run()) # yield self.m_run_process await self.run() # For backward compatibility the base <run_phase> method calls <run>. # extern virtual task run() async def run(self): uvm_debug(self, 'run', self.get_name() + ' yield Timer(0) in self.run()') await uvm_zero_delay() async def pre_reset_phase(self, phase): """ Task: pre_reset_phase The `uvm_pre_reset_phase` phase implementation method. This task returning or not does not indicate the end or persistence of this phase. It is necessary to raise an objection using ~phase.raise_objection()~ to cause the phase to persist. Once all components have dropped their respective objection using ~phase.drop_objection()~, or if no components raises an objection, the phase is ended. Any processes forked by this task continue to run after the task returns, but they will be killed once the phase ends. This method should not be called directly. Args: phase: """ await uvm_zero_delay() async def reset_phase(self, phase): """ Task: reset_phase The `uvm_reset_phase` phase implementation method. This task returning or not does not indicate the end or persistence of this phase. It is necessary to raise an objection using ~phase.raise_objection()~ to cause the phase to persist. Once all components have dropped their respective objection using ~phase.drop_objection()~, or if no components raises an objection, the phase is ended. Any processes forked by this task continue to run after the task returns, but they will be killed once the phase ends. This method should not be called directly. Args: phase: """ await uvm_zero_delay() async def post_reset_phase(self, phase): """ Task: post_reset_phase The `uvm_post_reset_phase` phase implementation method. This task returning or not does not indicate the end or persistence of this phase. It is necessary to raise an objection using ~phase.raise_objection()~ to cause the phase to persist. Once all components have dropped their respective objection using ~phase.drop_objection()~, or if no components raises an objection, the phase is ended. Any processes forked by this task continue to run after the task returns, but they will be killed once the phase ends. This method should not be called directly. Args: phase: """ await uvm_zero_delay() async def pre_configure_phase(self, phase): """ Task: pre_configure_phase The `uvm_pre_configure_phase` phase implementation method. This task returning or not does not indicate the end or persistence of this phase. It is necessary to raise an objection using ~phase.raise_objection()~ to cause the phase to persist. Once all components have dropped their respective objection using ~phase.drop_objection()~, or if no components raises an objection, the phase is ended. Any processes forked by this task continue to run after the task returns, but they will be killed once the phase ends. This method should not be called directly. Args: phase: """ await uvm_zero_delay() async def configure_phase(self, phase): """ Task: configure_phase The `uvm_configure_phase` phase implementation method. This task returning or not does not indicate the end or persistence of this phase. It is necessary to raise an objection using ~phase.raise_objection()~ to cause the phase to persist. Once all components have dropped their respective objection using ~phase.drop_objection()~, or if no components raises an objection, the phase is ended. Any processes forked by this task continue to run after the task returns, but they will be killed once the phase ends. This method should not be called directly. Args: phase: """ await uvm_zero_delay() async def post_configure_phase(self, phase): """ Task: post_configure_phase The `uvm_post_configure_phase` phase implementation method. This task returning or not does not indicate the end or persistence of this phase. It is necessary to raise an objection using ~phase.raise_objection()~ to cause the phase to persist. Once all components have dropped their respective objection using ~phase.drop_objection()~, or if no components raises an objection, the phase is ended. Any processes forked by this task continue to run after the task returns, but they will be killed once the phase ends. This method should not be called directly. Args: phase: """ await uvm_zero_delay() async def pre_main_phase(self, phase): """ Task: pre_main_phase The `uvm_pre_main_phase` phase implementation method. This task returning or not does not indicate the end or persistence of this phase. It is necessary to raise an objection using ~phase.raise_objection()~ to cause the phase to persist. Once all components have dropped their respective objection using ~phase.drop_objection()~, or if no components raises an objection, the phase is ended. Any processes forked by this task continue to run after the task returns, but they will be killed once the phase ends. This method should not be called directly. Args: phase: """ await uvm_zero_delay() async def main_phase(self, phase): """ Task: main_phase The `uvm_main_phase` phase implementation method. This task returning or not does not indicate the end or persistence of this phase. It is necessary to raise an objection using ~phase.raise_objection()~ to cause the phase to persist. Once all components have dropped their respective objection using ~phase.drop_objection()~, or if no components raises an objection, the phase is ended. Any processes forked by this task continue to run after the task returns, but they will be killed once the phase ends. This method should not be called directly. Args: phase: """ await uvm_zero_delay() async def post_main_phase(self, phase): """ Task: post_main_phase The `uvm_post_main_phase` phase implementation method. This task returning or not does not indicate the end or persistence of this phase. It is necessary to raise an objection using ~phase.raise_objection()~ to cause the phase to persist. Once all components have dropped their respective objection using ~phase.drop_objection()~, or if no components raises an objection, the phase is ended. Any processes forked by this task continue to run after the task returns, but they will be killed once the phase ends. This method should not be called directly. Args: phase: """ await uvm_zero_delay() async def pre_shutdown_phase(self, phase): """ Task: pre_shutdown_phase The `uvm_pre_shutdown_phase` phase implementation method. This task returning or not does not indicate the end or persistence of this phase. It is necessary to raise an objection using ~phase.raise_objection()~ to cause the phase to persist. Once all components have dropped their respective objection using ~phase.drop_objection()~, or if no components raises an objection, the phase is ended. Any processes forked by this task continue to run after the task returns, but they will be killed once the phase ends. This method should not be called directly. Args: phase: """ await uvm_zero_delay() async def shutdown_phase(self, phase): """ Task: shutdown_phase The `uvm_shutdown_phase` phase implementation method. This task returning or not does not indicate the end or persistence of this phase. It is necessary to raise an objection using ~phase.raise_objection()~ to cause the phase to persist. Once all components have dropped their respective objection using ~phase.drop_objection()~, or if no components raises an objection, the phase is ended. Any processes forked by this task continue to run after the task returns, but they will be killed once the phase ends. This method should not be called directly. Args: phase: """ await uvm_zero_delay() async def post_shutdown_phase(self, phase): """ Task: post_shutdown_phase The `uvm_post_shutdown_phase` phase implementation method. This task returning or not does not indicate the end or persistence of this phase. It is necessary to raise an objection using ~phase.raise_objection()~ to cause the phase to persist. Once all components have dropped their respective objection using ~phase.drop_objection()~, or if no components raises an objection, the phase is ended. Any processes forked by this task continue to run after the task returns, but they will be killed once the phase ends. This method should not be called directly. Args: phase: """ await uvm_zero_delay() def extract_phase(self, phase): """ The `UVMExtractPhase` phase implementation method. This method should never be called directly. Args: phase: """ pass #// For backward compatibility the base extract_phase method calls extract. #extern virtual function void extract() def check_phase(self, phase): """ The `UVMCheckPhase` phase implementation method. This method should never be called directly. Args: phase: """ pass #// For backward compatibility the base check_phase method calls check. #extern virtual function void check() def report_phase(self, phase): """ The `UVMReportPhase` phase implementation method. This method should never be called directly. Args: phase: """ pass def final_phase(self, phase): """ The `UVMFinalPhase` phase implementation method. This method should never be called directly. Args: phase: """ # self.m_rh._close_files() pass def phase_started(self, phase): """ Invoked at the start of each phase. The `phase` argument specifies the phase being started. Any threads spawned in this callback are not affected when the phase ends. Args: phase: """ pass def phase_ended(self, phase): """ Invoked at the end of each phase. The `phase` argument specifies the phase that is ending. Any threads spawned in this callback are not affected when the phase ends. Args: phase: """ pass def phase_ready_to_end(self, phase): """ Function: phase_ready_to_end Invoked when all objections to ending the given `phase` and all sibling phases have been dropped, thus indicating that `phase` is ready to begin a clean exit. Sibling phases are any phases that have a common successor phase in the schedule plus any phases that sync'd to the current phase. Components needing to consume delta cycles or advance time to perform a clean exit from the phase may raise the phase's objection. .. code-block:: python phase.raise_objection(self, "Reason") It is the responsibility of this component to drop the objection once it is ready for this phase to end (and processes killed). If no objection to the given `phase` or sibling phases are raised, then phase_ended() is called after a delta cycle. If any objection is raised, then when all objections to ending the given `phase` and siblings are dropped, another iteration of phase_ready_to_end is called. To prevent endless iterations due to coding error, after 20 iterations, phase_ended() is called regardless of whether previous iteration had any objections raised. """ pass #//-------------------------------------------------------------------- #// phase / schedule / domain API #//-------------------------------------------------------------------- def set_domain(self, domain, hier=True): """ Apply a phase domain to this component and, if `hier` is set, recursively to all its children. Calls the virtual `define_domain` method, which derived components can override to augment or replace the domain definition of its base class. Assigns this component [tree] to a domain. adds required schedules into graph If called from build, `hier` won't recurse into all chilren (which don't exist yet) If we have components inherit their parent's domain by default, then `hier` isn't needed and we need a way to prevent children from inheriting this component's domain Args: domain: hier: """ # build and store the custom domain self.m_domain = domain self.define_domain(domain) if hier is True: for c in self.m_children: self.m_children[c].set_domain(domain) def get_domain(self): """ Return handle to the phase domain set on this component Returns: """ return self.m_domain def define_domain(self, domain): """ Builds custom phase schedules into the provided `domain` handle. This method is called by `set_domain`, which integrators use to specify this component belongs in a domain apart from the default 'uvm' domain. Custom component base classes requiring a custom phasing schedule can augment or replace the domain definition they inherit by overriding their `defined_domain`. To augment, overrides would call super.define_domain(). To replace, overrides would not call super.define_domain(). The default implementation adds a copy of the `uvm` phasing schedule to the given `domain`, if one doesn't already exist, and only if the domain is currently empty. Calling `set_domain` with the default `uvm` domain (i.e. <uvm_domain::get_uvm_domain> ) on a component with no `define_domain` override effectively reverts the that component to using the default `uvm` domain. This may be useful if a branch of the testbench hierarchy defines a custom domain, but some child sub-branch should remain in the default `uvm` domain, call `set_domain` with a new domain instance handle with `hier` set. Then, in the sub-branch, call `set_domain` with the default `uvm` domain handle, obtained via <uvm_domain::get_uvm_domain>. Alternatively, the integrator may define the graph in a new domain externally, then call `set_domain` to apply it to a component. Args: domain: """ from .uvm_phase import UVMPhase from .uvm_common_phases import UVMRunPhase schedule = None # uvm_phase # //schedule = domain.find(uvm_domain::get_uvm_schedule()) schedule = domain.find_by_name("uvm_sched") if schedule is None: # uvm_domain common schedule = UVMPhase("uvm_sched", UVM_PHASE_SCHEDULE) UVMDomain.add_uvm_phases(schedule) domain.add(schedule) common = UVMDomain.get_common_domain() if common.find(domain,0) is None: common.add(domain, with_phase=UVMRunPhase.get()) def set_phase_imp(self, phase, imp, hier=1): """ Override the default implementation for a phase on this component (tree) with a custom one, which must be created as a singleton object extending the default one and implementing required behavior in exec and traverse methods The `hier` specifies whether to apply the custom functor to the whole tree or just this component. Args: phase: imp: hier: """ self.m_phase_imps[phase] = imp if hier: for c in self.m_children: self.m_children[c].set_phase_imp(phase,imp,hier) #// Task: suspend #// #// Suspend this component. #// #// This method must be implemented by the user to suspend the #// component according to the protocol and functionality it implements. #// A suspended component can be subsequently resumed using <resume()>. #extern virtual task suspend () #// Task: resume #// #// Resume this component. #// #// This method must be implemented by the user to resume a component #// that was previously suspended using <suspend()>. #// Some component may start in the suspended state and #// may need to be explicitly resumed. #extern virtual task resume () def resolve_bindings(self) -> None: """ Processes all port, export, and imp connections. Checks whether each port's min and max connection requirements are met. It is called just before the end_of_elaboration phase. Users should not call directly. """ return #extern function string massage_scope(string scope) def massage_scope(self, scope: str) -> str: # uvm_top if scope == "": return "^$" if scope == "*": return self.get_full_name() + ".*" # absolute path to the top-level test if(scope == "uvm_test_top"): return "uvm_test_top" # absolute path to uvm_root if(scope[0] == "."): return self.get_full_name() + scope return self.get_full_name() + "." + scope #//---------------------------------------------------------------------------- #// Group: Configuration Interface #//---------------------------------------------------------------------------- #// #// Components can be designed to be user-configurable in terms of its #// topology (the type and number of children it has), mode of operation, and #// run-time parameters (knobs). The configuration interface accommodates #// this common need, allowing component composition and state to be modified #// without having to derive new classes or new class hierarchies for #// every configuration scenario. #// #//---------------------------------------------------------------------------- def check_config_usage(self, recurse=1) -> None: """ Check all configuration settings in a components configuration table to determine if the setting has been used, overridden or not used. When `recurse` is 1 (default), configuration for this and all child components are recursively checked. This function is automatically called in the check phase, but can be manually called at any time. To get all configuration information prior to the run phase, do something like this in your top object: .. code-block:: python def start_of_simulation_phase(self, phase): self.check_config_usage() Args: recurse: """ from .uvm_resource import UVMResourcePool rp = UVMResourcePool.get() rq = rp.find_unused_resources() if len(rq) == 0: return uvm_info("CFGNRD"," ::: The following resources have at least one write and no reads :::",UVM_INFO) rp.print_resources(rq, 1) def apply_config_settings(self, verbose=0): """ Searches for all config settings matching this component's instance path. For each match, the appropriate set_*_local method is called using the matching config setting's field_name and value. Provided the set_*_local method is implemented, the component property associated with the field_name is assigned the given value. This function is called by <uvm_component::build_phase>. The apply_config_settings method determines all the configuration settings targeting this component and calls the appropriate set_*_local method to set each one. To work, you must override one or more set_*_local methods to accommodate setting of your component's specific properties. Any properties registered with the optional `uvm_*_field macros do not require special handling by the set_*_local methods; the macros provide the set_*_local functionality for you. If you do not want apply_config_settings to be called for a component, then the build_phase() method should be overloaded and you should not call super.build_phase(phase). Likewise, apply_config_settings can be overloaded to customize automated configuration. When the `verbose` bit is set, all overrides are printed as they are applied. If the component's `print_config_matches` property is set, then apply_config_settings is automatically called with `verbose` = 1. Args: verbose (bool): If true, prints more verbose information """ from .uvm_resource import UVMResourcePool rp = UVMResourcePool.get() # uvm_resource_pool rq = UVMQueue() # uvm_queue#(uvm_resource_base) rq r = None # uvm_resource_base r name = "" search_name = "" i = 0 j = 0 # populate an internal 'field_array' with list of # fields declared with `uvm_field macros (checking # that there aren't any duplicates along the way) self._m_uvm_field_automation(None, UVM_CHECK_FIELDS, "") T_cont = UVMObject._m_uvm_status_container # if no declared fields, nothing to do. if len(T_cont.field_array) == 0: return if verbose: uvm_info("CFGAPL","applying configuration settings", UVM_NONE) # // The following is VERY expensive. Needs refactoring. Should # // get config only for the specific field names in 'field_array'. # // That's because the resource pool is organized first by field name. # // Can further optimize by encoding the value for each 'field_array' # // entry to indicate string, uvm_bitstream_t, or object. That way, # // we call 'get' for specific fields of specific types rather than # // the search-and-cast approach here. rq = rp.lookup_scope(self.get_full_name()) rq = UVMResourcePool.sort_by_precedence(rq) # // rq is in precedence order now, so we have to go through in reverse # // order to do the settings. # for(int i=rq.size()-1; i>=0; --i): for i in range(len(rq)): r = rq[i] name = r.get_name() # // does name have brackets [] in it? while j < len(name): if (name[j] == "[" or name[j] == "."): break j += 1 # // If it does have brackets then we'll use the name # // up to the brackets to search __m_uvm_status_container.field_array if j < len(name): search_name = name[0:j] else: search_name = name if search_name not in T_cont.field_array and search_name != "recording_detail": continue if verbose: uvm_info("CFGAPL",sv.sformatf("applying configuration to field %s", name),UVM_NONE) val = r.read(self) if isinstance(val, int): self.set_int_local(name, val) elif isinstance(val, UVMObject): self.set_object_local(name, val, 0) elif isinstance(val, UVMObjectWrapper): self.set_object_local(name, val.obj, val.clone) elif isinstance(val, str): self.set_string_local(name, val) elif verbose: uvm_info("CFGAPL", sv.sformatf("field %s has an unsupported type", name), UVM_NONE) T_cont.field_array.clear() def print_config_settings(self, field="", comp=None, recurse=False): """ Function: print_config_settings Called without arguments, print_config_settings prints all configuration information for this component, as set by previous calls to <uvm_config_db::set()>. The settings are printing in the order of their precedence. If `field` is specified and non-empty, then only configuration settings matching that field, if any, are printed. The field may not contain wildcards. If `comp` is specified and non-`None`, then the configuration for that component is printed. If `recurse` is set, then configuration information for all `comp`'s children and below are printed as well. This function has been deprecated. Use print_config instead. Args: field (str): Print all config related to given field, comp (UVMComponent): If given, print config only for that component. recurse (bool): If true, recurse to all children """ UVMComponent.have_been_warned = False if not UVMComponent.have_been_warned: uvm_warning("deprecated", "uvm_component::print_config_settings has been deprecated. Use print_config() instead") UVMComponent.have_been_warned = True self.print_config(recurse, 1) def print_config(self, recurse=False, audit=False) -> None: """ Function: print_config Print_config prints all configuration information for this component, as set by previous calls to `UVMConfigDb.set` and exports to the resources pool. The settings are printing in the order of their precedence. If `recurse` is set, then configuration information for all children and below are printed as well. if `audit` is set then the audit trail for each resource is printed along with the resource name and value Args: recurse (bool): If true, recurse to child components audit (bool): If true, print audit trail for each resource. """ from .uvm_resource import UVMResourcePool rp = UVMResourcePool.get() uvm_info("CFGPRT","visible resources:", UVM_INFO) rp.print_resources(rp.lookup_scope(self.get_full_name()), audit) if recurse: for key in self.m_children: c = self.m_children[key] c.print_config(recurse, audit) def print_config_with_audit(self, recurse=0): """ Function: print_config_with_audit Operates the same as print_config except that the audit bit is forced to 1. This interface makes user code a bit more readable as it avoids multiple arbitrary bit settings in the argument list. If `recurse` is set, then configuration information for all children and below are printed as well. """ self.print_config(recurse, 1) """ Group: Objection Interface These methods provide object level hooks into the `UVMObjection` mechanism. """ def raised(self, objection, source_obj, description, count): """ Function: raised The `raised` callback is called when this or a descendant of this component instance raises the specified `objection`. The `source_obj` is the object that originally raised the objection. The `description` is optionally provided by the `source_obj` to give a reason for raising the objection. The `count` indicates the number of objections raised by the `source_obj`. """ pass def dropped(self, objection, source_obj, description, count): """ The `dropped` callback is called when this or a descendant of this component instance drops the specified `objection`. The `source_obj` is the object that originally dropped the objection. The `description` is optionally provided by the `source_obj` to give a reason for dropping the objection. The `count` indicates the number of objections dropped by the `source_obj`. Args: objection (UVMObjection): source_obj (UVMObject): description (str): count (int): """ pass async def all_dropped(self, objection, source_obj, description, count): """ The `all_droppped` callback is called when all objections have been dropped by this component and all its descendants. The `source_obj` is the object that dropped the last objection. The `description` is optionally provided by the `source_obj` to give a reason for raising the objection. The `count` indicates the number of objections dropped by the `source_obj`. Args: objection: source_obj: description: count: """ pass #//---------------------------------------------------------------------------- #// Group: Factory Interface #//---------------------------------------------------------------------------- #// #// The factory interface provides convenient access to a portion of UVM's #// <uvm_factory> interface. For creating new objects and components, the #// preferred method of accessing the factory is via the object or component #// wrapper (see <uvm_component_registry #(T,Tname)> and #// <uvm_object_registry #(T,Tname)>). The wrapper also provides functions #// for setting type and instance overrides. #// #//---------------------------------------------------------------------------- #// Function: create_component #// #// A convenience function for <uvm_factory::create_component_by_name>, #// this method calls upon the factory to create a new child component #// whose type corresponds to the preregistered type name, `requested_type_name`, #// and instance name, `name`. This method is equivalent to: #// #//| factory.create_component_by_name(requested_type_name, #//| get_full_name(), name, this) #// #// If the factory determines that a type or instance override exists, the type #// of the component created may be different than the requested type. See #// <set_type_override> and <set_inst_override>. See also <uvm_factory> for #// details on factory operation. def create_component(self, requested_type_name, name): factory = _get_factory() return factory.create_component_by_name(requested_type_name, self.get_full_name(), name, self) #// Function: create_object #// #// A convenience function for <uvm_factory::create_object_by_name>, #// this method calls upon the factory to create a new object #// whose type corresponds to the preregistered type name, #// `requested_type_name`, and instance name, `name`. This method is #// equivalent to: #// #//| factory.create_object_by_name(requested_type_name, #//| get_full_name(), name) #// #// If the factory determines that a type or instance override exists, the #// type of the object created may be different than the requested type. See #// <uvm_factory> for details on factory operation. def create_object(self, requested_type_name, name=""): factory = _get_factory() return factory.create_object_by_name(requested_type_name, self.get_full_name(), name) #// Function: set_type_override_by_type #// #// A convenience function for `UVMFactory.set_type_override_by_type`, this #// method registers a factory override for components and objects created at #// this level of hierarchy or below. This method is equivalent to: #// #//| factory.set_type_override_by_type(original_type, override_type,replace) #// #// The `relative_inst_path` is relative to this component and may include #// wildcards. The `original_type` represents the type that is being overridden. #// In subsequent calls to `UVMFactory.create_object_by_type` or #// `UVMFactory.create_component_by_type`, if the requested_type matches the #// `original_type` and the instance paths match, the factory will produce #// the `override_type`. #// #// The original and override type arguments are lightweight proxies to the #// types they represent. See <set_inst_override_by_type> for information #// on usage. #extern static function void set_type_override_by_type # (uvm_object_wrapper original_type, # uvm_object_wrapper override_type, # bit replace=1) @classmethod def set_type_override_by_type(cls, original_type, override_type, replace=1): factory = _get_factory() factory.set_type_override_by_type(original_type, override_type, replace) #// Function: set_inst_override_by_type #// #// A convenience function for <uvm_factory::set_inst_override_by_type>, this #// method registers a factory override for components and objects created at #// this level of hierarchy or below. In typical usage, this method is #// equivalent to: #// #//| factory.set_inst_override_by_type( original_type, #//| override_type, #//| {get_full_name(),".", #//| relative_inst_path}) #// #// The `relative_inst_path` is relative to this component and may include #// wildcards. The `original_type` represents the type that is being overridden. #// In subsequent calls to `UVMFactory.create_object_by_type` or #// `UVMFactory.create_component_by_type`, if the requested_type matches the #// `original_type` and the instance paths match, the factory will produce the #// `override_type`. #// #// The original and override types are lightweight proxies to the types they #// represent. They can be obtained by calling ~type::get_type()~, if #// implemented by `type`, or by directly calling ~type::type_id::get()~, where #// `type` is the user type and `type_id` is the name of the typedef to #// <uvm_object_registry #(T,Tname)> or <uvm_component_registry #(T,Tname)>. #// #// If you are employing the `uvm_*_utils macros, the typedef and the get_type #// method will be implemented for you. For details on the utils macros #// refer to <Utility and Field Macros for Components and Objects>. #// #// The following example shows `uvm_*_utils usage: #// #//| class comp extends uvm_component #//| `uvm_component_utils(comp) #//| ... #//| endclass #//| #//| class mycomp extends uvm_component #//| `uvm_component_utils(mycomp) #//| ... #//| endclass #//| #//| class block extends uvm_component #//| `uvm_component_utils(block) #//| comp c_inst #//| virtual function void build_phase(uvm_phase phase) #//| set_inst_override_by_type("c_inst",comp::get_type(), #//| mycomp::get_type()) #//| endfunction #//| ... #//| endclass #extern function void set_inst_override_by_type(string relative_inst_path, # uvm_object_wrapper original_type, # uvm_object_wrapper override_type) #function void uvm_component::set_inst_override_by_type (string relative_inst_path, # uvm_object_wrapper original_type, # uvm_object_wrapper override_type) # string full_inst_path # uvm_coreservice_t cs = uvm_coreservice_t::get() # uvm_factory factory=cs.get_factory() # # if (relative_inst_path == "") # full_inst_path = get_full_name() # else # full_inst_path = {get_full_name(), ".", relative_inst_path} # # factory.set_inst_override_by_type(original_type, override_type, full_inst_path) # #endfunction #// Function: set_type_override #// #// A convenience function for <uvm_factory::set_type_override_by_name>, #// this method configures the factory to create an object of type #// `override_type_name` whenever the factory is asked to produce a type #// represented by `original_type_name`. This method is equivalent to: #// #//| factory.set_type_override_by_name(original_type_name, #//| override_type_name, replace) #// #// The `original_type_name` typically refers to a preregistered type in the #// factory. It may, however, be any arbitrary string. Subsequent calls to #// create_component or create_object with the same string and matching #// instance path will produce the type represented by override_type_name. #// The `override_type_name` must refer to a preregistered type in the factory. @classmethod def set_type_override(cls, original_type_name, override_type_name, replace=1): factory = _get_factory() factory.set_type_override_by_name(original_type_name,override_type_name, replace) #// Function: set_inst_override #// #// A convenience function for <uvm_factory::set_inst_override_by_name>, this #// method registers a factory override for components created at this level #// of hierarchy or below. In typical usage, this method is equivalent to: #// #//| factory.set_inst_override_by_name(original_type_name, #//| override_type_name, #//| {get_full_name(),".", #//| relative_inst_path} #//| ) #// #// The `relative_inst_path` is relative to this component and may include #// wildcards. The `original_type_name` typically refers to a preregistered type #// in the factory. It may, however, be any arbitrary string. Subsequent calls #// to create_component or create_object with the same string and matching #// instance path will produce the type represented by `override_type_name`. #// The `override_type_name` must refer to a preregistered type in the factory. #extern function void set_inst_override(string relative_inst_path, # string original_type_name, # string override_type_name) #// Function: print_override_info #// #// This factory debug method performs the same lookup process as create_object #// and create_component, but instead of creating an object, it prints #// information about what type of object would be created given the #// provided arguments. def print_override_info(self, requested_type_name, name=""): factory = _get_factory() factory.debug_create_by_name(requested_type_name, self.get_full_name(), name) #//---------------------------------------------------------------------------- #// Group: Hierarchical Reporting Interface #//---------------------------------------------------------------------------- #// #// This interface provides versions of the set_report_* methods in the #// <uvm_report_object> base class that are applied recursively to this #// component and all its children. #// #// When a report is issued and its associated action has the LOG bit set, the #// report will be sent to its associated FILE descriptor. #//---------------------------------------------------------------------------- #// Function: set_report_id_verbosity_hier def set_report_id_verbosity_hier(self, id, verbosity): self.set_report_id_verbosity(id, verbosity) for c in self.m_children: self.m_children[c].set_report_id_verbosity_hier(id, verbosity) #// Function: set_report_severity_id_verbosity_hier #// #// These methods recursively associate the specified verbosity with reports of #// the given `severity`, `id`, or ~severity-id~ pair. A verbosity associated #// with a particular severity-id pair takes precedence over a verbosity #// associated with id, which takes precedence over a verbosity associated #// with a severity. #// #// For a list of severities and their default verbosities, refer to #// `UVMReportHandler`. def set_report_severity_id_verbosity_hier(self, severity, id, verbosity): self.set_report_severity_id_verbosity(severity, id, verbosity) for c in self.m_children: self.m_children[c].set_report_severity_id_verbosity_hier(severity, id, verbosity) def set_report_severity_action_hier(self, severity, action): """ Args: severity: action: """ self.set_report_severity_action(severity, action) for c in self.m_children: self.m_children[c].set_report_severity_action_hier(severity, action) def set_report_severity_id_action_hier(self, severity, id, action): self.set_report_severity_id_action(severity, id, action) for c in self.m_children: self.m_children[c].set_report_severity_id_action_hier(severity, id, action) def set_report_id_action_hier(self, id, action): """ These methods recursively associate the specified action with reports of the given `severity`, `id`, or ~severity-id~ pair. An action associated with a particular severity-id pair takes precedence over an action associated with id, which takes precedence over an action associated with a severity. For a list of severities and their default actions, refer to `UVMReportHandler`. Args: id (str): Message ID to use ('' = all) action: """ self.set_report_id_action(id, action) for c in self.m_children: self.m_children[c].set_report_id_action_hier(id, action) def set_report_default_file_hier(self, file): """ Sets default report file hierarchically. All `UVM_LOG` actions are written into this file, unless more specific file is set. Args: file: """ self.set_report_default_file(file) for c in self.m_children: self.m_children[c].set_report_default_file_hier(file) #// Function: set_report_severity_file_hier def set_report_severity_file_hier(self, severity, file): self.set_report_severity_file(severity, file) for c in self.m_children: self.m_children[c].set_report_severity_file_hier(severity, file) #// Function: set_report_id_file_hier def set_report_id_file_hier(self, id, file): self.set_report_id_file(id, file) for c in self.m_children: self.m_children[c].set_report_id_file_hier(id, file) #// Function: set_report_severity_id_file_hier #// #// These methods recursively associate the specified FILE descriptor with #// reports of the given `severity`, `id`, or ~severity-id~ pair. A FILE #// associated with a particular severity-id pair takes precedence over a FILE #// associated with id, which take precedence over an a FILE associated with a #// severity, which takes precedence over the default FILE descriptor. #// #// For a list of severities and other information related to the report #// mechanism, refer to `UVMReportHandler`. def set_report_severity_id_file_hier(self, severity, id, file): self.set_report_severity_id_file(severity, id, file) for c in self.m_children: self.m_children[c].set_report_severity_id_file_hier(severity, id, file) def set_report_verbosity_level_hier(self, verbosity): """ This method recursively sets the maximum verbosity level for reports for this component and all those below it. Any report from this component subtree whose verbosity exceeds this maximum will be ignored. See `UVMReportHandler` for a list of predefined message verbosity levels and their meaning. Args: verbosity: """ self.set_report_verbosity_level(verbosity) for c in self.m_children: self.m_children[c].set_report_verbosity_level_hier(verbosity) def pre_abort(self): """ This callback is executed when the message system is executing a `UVM_EXIT` action. The exit action causes an immediate termination of the simulation, but the pre_abort callback hook gives components an opportunity to provide additional information to the user before the termination happens. For example, a test may want to executed the report function of a particular component even when an error condition has happened to force a premature termination you would write a function like: .. code-block:: python def pre_abort(self): self.report() The pre_abort() callback hooks are called in a bottom-up fashion. """ pass def m_do_pre_abort(self): for child in self.m_children: self.m_children[child].m_do_pre_abort() self.pre_abort() #//---------------------------------------------------------------------------- #// Group: Recording Interface #//---------------------------------------------------------------------------- #// These methods comprise the component-based transaction recording #// interface. The methods can be used to record the transactions that #// this component "sees", i.e. produces or consumes. #// #// The API and implementation are subject to change once a vendor-independent #// use-model is determined. #//---------------------------------------------------------------------------- def accept_tr(self, tr, accept_time=0): """ This function marks the acceptance of a transaction, `tr`, by this component. Specifically, it performs the following actions: - Calls the `tr`'s <uvm_transaction::accept_tr> method, passing to it the `accept_time` argument. - Calls this component's <do_accept_tr> method to allow for any post-begin action in derived classes. - Triggers the component's internal accept_tr event. Any processes waiting on this event will resume in the next delta cycle. Args: tr: accept_time: """ e = None tr.accept_tr(accept_time) self.do_accept_tr(tr) e = self.event_pool.get("accept_tr") if e is not None: e.trigger() def do_accept_tr(self, tr): """ The `accept_tr` method calls this function to accommodate any user-defined post-accept action. Implementations should call super.do_accept_tr to ensure correct operation. #extern virtual protected function void do_accept_tr (uvm_transaction tr) Args: tr: """ return def begin_tr(self, tr, stream_name="main", label="", desc="", begin_time=0, parent_handle=0): """ This function marks the start of a transaction, `tr`, by this component. Specifically, it performs the following actions: - Calls `tr`'s <uvm_transaction::begin_tr> method, passing to it the `begin_time` argument. The `begin_time` should be greater than or equal to the accept time. By default, when `begin_time` = 0, the current simulation time is used. If recording is enabled (recording_detail != UVM_OFF), then a new database-transaction is started on the component's transaction stream given by the stream argument. No transaction properties are recorded at this time. - Calls the component's <do_begin_tr> method to allow for any post-begin action in derived classes. - Triggers the component's internal begin_tr event. Any processes waiting on this event will resume in the next delta cycle. A handle to the transaction is returned. The meaning of this handle, as well as the interpretation of the arguments `stream_name`, `label`, and `desc` are vendor specific. Args: tr: stream_name: label: desc: begin_time: parent_handle: Returns: """ return self.m_begin_tr(tr, parent_handle, stream_name, label, desc, begin_time) def begin_child_tr(self, tr, parent_handle=0, stream_name="main", label="", desc="", begin_time=0): """ This function marks the start of a child transaction, `tr`, by this component. Its operation is identical to that of <begin_tr>, except that an association is made between this transaction and the provided parent transaction. This association is vendor-specific. Args: tr: parent_handle: stream_name: label: desc: begin_time: Returns: """ return self.m_begin_tr(tr, parent_handle, stream_name, label, desc, begin_time) def do_begin_tr(self, tr, stream_name, tr_handle): """ The <begin_tr> and <begin_child_tr> methods call this function to accommodate any user-defined post-begin action. Implementations should call super.do_begin_tr to ensure correct operation. Args: tr: stream_name: tr_handle: """ return def end_tr(self, tr, end_time=0, free_handle=1): """ Function: end_tr This function marks the end of a transaction, `tr`, by this component. Specifically, it performs the following actions: - Calls `tr`'s <uvm_transaction::end_tr> method, passing to it the `end_time` argument. The `end_time` must at least be greater than the begin time. By default, when `end_time` = 0, the current simulation time is used. The transaction's properties are recorded to the database-transaction on which it was started, and then the transaction is ended. Only those properties handled by the transaction's do_record method (and optional `uvm_*_field macros) are recorded. - Calls the component's <do_end_tr> method to accommodate any post-end action in derived classes. - Triggers the component's internal end_tr event. Any processes waiting on this event will resume in the next delta cycle. The `free_handle` bit indicates that this transaction is no longer needed. The implementation of free_handle is vendor-specific. Args: tr: end_time: free_handle: """ e = None # uvm_event#(uvm_object) e recorder = None # uvm_recorder recorder # db: uvm_tr_database = self.m_get_tr_database() if tr is None: return tr.end_tr(end_time, free_handle) if self.recording_detail != UVM_NONE: if tr in self.m_tr_h: recorder = self.m_tr_h[tr] self.do_end_tr(tr, recorder.get_handle()) # callback del self.m_tr_h[tr] tr.record(recorder) recorder.close(end_time) if free_handle: recorder.free() else: self.do_end_tr(tr, 0) # callback e = self.event_pool.get("end_tr") if e is not None: e.trigger() def do_end_tr(self, tr, tr_handle): """ The <end_tr> method calls this function to accommodate any user-defined post-end action. Implementations should call super.do_end_tr to ensure correct operation. Args: tr: tr_handle: """ return #// Function: record_error_tr #// #// This function marks an error transaction by a component. Properties of the #// given uvm_object, `info`, as implemented in its <uvm_object::do_record> method, #// are recorded to the transaction database. #// #// An `error_time` of 0 indicates to use the current simulation time. The #// `keep_active` bit determines if the handle should remain active. If 0, #// then a zero-length error transaction is recorded. A handle to the #// database-transaction is returned. #// #// Interpretation of this handle, as well as the strings `stream_name`, #// `label`, and `desc`, are vendor-specific. #extern function integer record_error_tr (string stream_name="main", # uvm_object info=None, # string label="error_tr", # string desc="", # time error_time=0, # bit keep_active=0) def record_error_tr(self, stream_name="main", info=None, label="error_tr", desc="", error_time=0, keep_active=0): recorder = None # uvm_recorder etype = "" handle = 0 stream = None # uvm_tr_stream db = self.m_get_tr_database() # uvm_tr_database if keep_active: etype = "Event, Link" else: etype = "Event" if error_time == 0: error_time = sv.realtime() if (stream_name == "" or stream_name == "main"): if self.m_main_stream is None: self.m_main_stream = self.tr_database.open_stream("main", self.get_full_name(), "TVM") stream = self.m_main_stream else: stream = self.get_tr_stream(stream_name) handle = 0 if stream is not None: recorder = stream.open_recorder(label, error_time, etype) if recorder is not None: if label != "": recorder.record_string("label", label) if desc != "": recorder.record_string("desc", desc) if info is not None: info.record(recorder) recorder.close(error_time) if keep_active == 0: recorder.free() else: handle = recorder.get_handle() return handle #// Function: record_event_tr #// #// This function marks an event transaction by a component. #// #// An `event_time` of 0 indicates to use the current simulation time. #// #// A handle to the transaction is returned. The `keep_active` bit determines #// if the handle may be used for other vendor-specific purposes. #// #// The strings for `stream_name`, `label`, and `desc` are vendor-specific #// identifiers for the transaction. #extern function integer record_event_tr (string stream_name="main", # uvm_object info=None, # string label="event_tr", # string desc="", # time event_time=0, # bit keep_active=0) def record_event_tr(self, stream_name="main", info=None, label="event_tr", desc="", event_time=0,keep_active=0): recorder = None # uvm_recorder etype = "" handle = 0 stream = None # uvm_tr_stream db = self.m_get_tr_database() # uvm_tr_database if keep_active: etype = "Event, Link" else: etype = "Event" if event_time == 0: event_time = sv.realtime() if (stream_name == "" or stream_name=="main"): if self.m_main_stream is None: self.m_main_stream = self.tr_database.open_stream("main", self.get_full_name(), "TVM") stream = self.m_main_stream else: stream = self.get_tr_stream(stream_name) handle = 0 if stream is not None: recorder = stream.open_recorder(label, event_time, etype) if recorder is not None: if label != "": recorder.record_string("label", label) if desc != "": recorder.record_string("desc", desc) if info is not None: info.record(recorder) recorder.close(event_time) if keep_active == 0: recorder.free() else: handle = recorder.get_handle() return handle def get_tr_stream(self, name, stream_type_name=""): """ Streams which are retrieved via this method will be stored internally, such that later calls to `get_tr_stream` will return the same stream reference. The stream can be removed from the internal storage via a call to `free_tr_stream`. Args: name (str):Name for the stream stream_type_name: Type name for the stream (Default = "") Returns: UVMTrStream: Stream with this component's full name as scope. """ db = self.m_get_tr_database() # uvm_tr_database if name not in self.m_streams: self.m_streams[name] = {} if stream_type_name not in self.m_streams[name]: self.m_streams[name][stream_type_name] = db.open_stream(name, self.get_full_name(), stream_type_name) return self.m_streams[name][stream_type_name] #// Function: free_tr_stream #// Frees the internal references associated with `stream`. #// #// The next call to <get_tr_stream> will result in a newly created #// <uvm_tr_stream>. If the current stream is open (or closed), #// then it will be freed. #extern virtual function void free_tr_stream(uvm_tr_stream stream) def free_tr_stream(self, stream): # Check the None case... if stream is None: return str_name = stream.get_name() str_type_name = stream.get_stream_type_name() # Then make sure this name/type_name combo exists if (str_name not in self.m_streams or str_type_name not in self.m_streams[str_name]): return # Then make sure this name/type_name combo is THIS stream if self.m_streams[str_name][str_type_name] != stream: return # Then delete it from the arrays del self.m_streams[str_name][str_type_name] if len(self.m_streams[str_name]) == 0: del self.m_streams[str_name] # Finally, free the stream if necessary if stream.is_open() or stream.is_closed(): stream.free() def m_get_tr_database(self): """ Returns: """ if self.tr_database is None: from .uvm_coreservice import UVMCoreService cs = UVMCoreService.get() self.tr_database = cs.get_default_tr_database() return self.tr_database def set_int_local(self, field_name, value, recurse=1): """ Args: field_name: value: recurse: """ # call the super function to get child recursion and any registered fields super().set_int_local(field_name, value, recurse) # set the local properties if uvm_is_match(field_name, "recording_detail"): self.recording_detail = value def m_set_full_name(self): """ m_set_full_name --------------- """ #if self.m_parent is None: # uvm_fatal("Should not be called with uvm_root") from .uvm_root import UVMRoot #top = UVMRoot.get() # top = None top = [] if sv.cast(top, self.m_parent, UVMRoot) or self.m_parent is None: self.m_name = self.get_name() else: self.m_name = self.m_parent.get_full_name() + "." + self.get_name() for c in self.m_children: tmp = self.m_children[c] tmp.m_set_full_name() def do_resolve_bindings(self): """ do_resolve_bindings ------------------- """ for s in self.m_children: self.m_children[s].do_resolve_bindings() self.resolve_bindings() #extern function void do_flush() def do_flush(self): for c in self.m_children: self.m_children[c].do_flush() self.flush() #extern virtual function void flush () def flush(self): pass def m_extract_name(self, name, leaf, remainder): """ Args: name: leaf: remainder: Returns: """ _len = len(name) i = 0 for i in range(len(name)): if name[i] == ".": break if i == _len - 1: leaf = name remainder = "" return [leaf, remainder] leaf = name[0:i] remainder = name[i + 1: _len] return [leaf, remainder] #endfunction def create(self, name=""): """ Overridden to disable component creation using this method. Args: name (str): Name of the component. Returns: None - Create cannot be called on `UVMComponent` """ uvm_error("ILLCRT", "create cannot be called on a uvm_component. Use create_component instead.") return None def clone(self): """ Components cannot be cloned. Added this to show `uvm_error` whenever a cloning is attempted. Returns: None - Components cannot be cloned. """ uvm_error("ILLCLN", sv.sformatf(CLONE_ERR, self.get_full_name())) return None def m_begin_tr(self, tr, parent_handle=0, stream_name="main", label="", desc="", begin_time=0): """ Args: tr (UVMTransaction): parent_handle: stream_name (str): label (str): desc (str): begin_time (int): Returns: """ e = None # uvm_event#(uvm_object) e name = "" kind = "" db = None # uvm_tr_database db handle = 0 link_handle = 0 stream = None # uvm_tr_stream # uvm_recorder recorder = None parent_recorder = None link_recorder = None if tr is None: return 0 db = self.m_get_tr_database() if parent_handle != 0: parent_recorder = UVMRecorder.get_recorder_from_handle(parent_handle) if parent_recorder is None: seq = [] # uvm_sequence_item from ..seq.uvm_sequence_item import UVMSequenceItem if (sv.cast(seq,tr, UVMSequenceItem)): seq = seq[0] parent_seq = seq.get_parent_sequence() if (parent_seq is not None): parent_recorder = parent_seq.m_tr_recorder if parent_recorder is not None: link_handle = tr.begin_child_tr(begin_time, parent_recorder.get_handle()) else: link_handle = tr.begin_tr(begin_time) if link_handle != 0: link_recorder = UVMRecorder.get_recorder_from_handle(link_handle) if tr.get_name() != "": name = tr.get_name() else: name = tr.get_type_name() # TODO needed for recording only if self.recording_detail != UVM_NONE: if (stream_name == "") or (stream_name == "main"): if self.m_main_stream is None: self.m_main_stream = db.open_stream("main", self.get_full_name(), "TVM") stream = self.m_main_stream else: stream = self.get_tr_stream(stream_name) if stream is not None: kind = "Begin_End, Link" if parent_recorder is None: kind = "Begin_No_Parent, Link" recorder = stream.open_recorder(name, begin_time, kind) if recorder is not None: if label != "": recorder.record_string("label", label) if desc != "": recorder.record_string("desc", desc) if parent_recorder is not None: self.tr_database.establish_link(UVMParentChildLink.get_link(parent_recorder, recorder)) if link_recorder is not None: self.tr_database.establish_link(UVMRelatedLink.get_link(recorder, link_recorder)) self.m_tr_h[tr] = recorder handle = 0 if recorder is not None: handle = recorder.get_handle() self.do_begin_tr(tr, stream_name, handle) e = self.event_pool.get("begin_tr") if e is not None: e.trigger(tr) return handle #type_name = "uvm_component" #def get_type_name(self): # return UVMComponent.type_name #extern function void do_print(uvm_printer printer) def m_set_cl_msg_args(self): """ Internal methods for setting up command line messaging stuff #extern function void m_set_cl_msg_args """ self.m_set_cl_verb() self.m_set_cl_action() self.m_set_cl_sev() first_m_set_cl_verb = 1 def m_set_cl_verb(self): """ #extern function void m_set_cl_verb """ # // _ALL_ can be used for ids # // +uvm_set_verbosity=<comp>,<id>,<verbosity>,<phase|time>,<offset> # // +uvm_set_verbosity=uvm_test_top.env0.agent1.*,_ALL_,UVM_FULL,time,800 from .uvm_coreservice import UVMCoreService cs = UVMCoreService.get() from .uvm_cmdline_processor import UVMCmdlineProcessor values = [] # static string values[$] args = [] # string args[$] clp = UVMCmdlineProcessor.get_inst() cs = UVMCoreService.get() top = cs.get_root() if len(values) == 0: clp.get_arg_values("+uvm_set_verbosity=", values) for i in range(len(values)): setting = VerbositySetting() args.clear() uvm_split_string(values[i], ",", args) # Warning is already issued in uvm_root, so just don't keep it len_match = len(args) not in [4, 5] setting.verbosity = clp.m_convert_verb(args[2]) if UVMComponent.first_m_set_cl_verb and (len_match or setting.verbosity == -1): del values[i] else: setting.comp = args[0] setting.id = args[1] setting.verbosity = clp.m_convert_verb(args[2]) setting.phase = args[3] setting.offset = 0 if len(args) == 5: setting.offset = int(args[4]) if ((setting.phase == "time") and (self == top)): UVMComponent.m_time_settings.append(setting) if uvm_is_match(setting.comp, self.get_full_name()): if((setting.phase == "" or setting.phase == "build" or setting.phase == "time") and setting.offset == 0): if setting.id == "_ALL_": self.set_report_verbosity_level(setting.verbosity) else: self.set_report_id_verbosity(setting.id, setting.verbosity) else: if setting.phase != "time": self.m_verbosity_settings.append(setting) if self == top: cocotb.fork(self.m_fork_time_settings(top)) UVMComponent.first_m_set_cl_verb = 0 async def m_fork_time_settings(self, top): m_time_settings = UVMComponent.m_time_settings #fork begin last_time = 0 if len(m_time_settings) > 0: m_time_settings.sort(key=lambda item: item.offset) for i in range(len(m_time_settings)): comps = [] top.find_all(m_time_settings[i].comp, comps) duration = m_time_settings[i].offset - last_time last_time = m_time_settings[i].offset cocotb.fork(self.m_set_comp_settings(i, comps.copy(), duration)) #end join_none // fork begin async def m_set_comp_settings(self, i, comps, dur): m_time_settings = UVMComponent.m_time_settings await Timer(dur) if m_time_settings[i].id == "_ALL_": for comp in comps: comp.set_report_verbosity_level(m_time_settings[i].verbosity) else: for comp in comps: comp.set_report_id_verbosity(m_time_settings[i].id, m_time_settings[i].verbosity) initialized_m_set_cl_action = 0 #extern function void m_set_cl_action def m_set_cl_action(self): # _ALL_ can be used for ids or severities # +uvm_set_action=<comp>,<id>,<severity>,<action[|action]> # +uvm_set_action=uvm_test_top.env0.*,_ALL_,UVM_ERROR,UVM_NO_ACTION sev = 0 action = 0 if not UVMComponent.initialized_m_set_cl_action: from .uvm_cmdline_processor import UVMCmdlineProcessor values = [] UVMCmdlineProcessor.uvm_cmdline_proc.get_arg_values("+uvm_set_action=", values) for idx in range(len(values)): t = uvm_cmdline_parsed_arg_t() args = [] uvm_split_string(values[idx], ",", args) if len(args) != 4: uvm_warning("INVLCMDARGS", sv.sformatf(INV_WARN1, len(args), values[idx])) if((args[2] != "_ALL_") and not uvm_string_to_severity(args[2], sev)): uvm_warning("INVLCMDARGS", sv.sformatf(INV_WARN2, args[2], values[idx])) continue if not uvm_string_to_action(args[3], action): uvm_warning("INVLCMDARGS", sv.sformatf(INV_WARN3, args[3], values[idx])) continue t.args = args t.arg = values[idx] UVMComponent.m_uvm_applied_cl_action.append(t) UVMComponent.initialized_m_set_cl_action = 1 for i in range(len(UVMComponent.m_uvm_applied_cl_action)): args = UVMComponent.m_uvm_applied_cl_action[i].args if not uvm_is_match(args[0], self.get_full_name()): continue sev = uvm_string_to_severity(args[2], sev) action = uvm_string_to_action(args[3], action) UVMComponent.m_uvm_applied_cl_action[i].used += 1 if args[1] == "_ALL_": if args[2] == "_ALL_": self.set_report_severity_action(UVM_INFO, action) self.set_report_severity_action(UVM_WARNING, action) self.set_report_severity_action(UVM_ERROR, action) self.set_report_severity_action(UVM_FATAL, action) else: self.set_report_severity_action(sev, action) else: if args[2] == "_ALL_": self.set_report_id_action(args[1], action) else: self.set_report_severity_id_action(sev, args[1], action) initialized_m_set_cl_sev = 0 #extern function void m_set_cl_sev def m_set_cl_sev(self): # // _ALL_ can be used for ids or severities # // +uvm_set_severity=<comp>,<id>,<orig_severity>,<new_severity> # // +uvm_set_severity=uvm_test_top.env0.*,BAD_CRC,UVM_ERROR,UVM_WARNING orig_sev = 0 sev = 0 if not UVMComponent.initialized_m_set_cl_sev: values = [] from .uvm_cmdline_processor import UVMCmdlineProcessor UVMCmdlineProcessor.uvm_cmdline_proc.get_arg_values("+uvm_set_severity=",values) for idx in range(len(values)): t = uvm_cmdline_parsed_arg_t() args = [] # string[$] uvm_split_string(values[idx], ",", args) if len(args) != 4: uvm_warning("INVLCMDARGS", sv.sformatf(INV_WARN4, len(args), values[idx])) continue if args[2] != "_ALL_" and not uvm_string_to_severity(args[2], orig_sev): uvm_warning("INVLCMDARGS", sv.sformatf(INV_WARN5, args[2], values[idx])) continue if uvm_string_to_severity(args[3], sev) == -1: uvm_warning("INVLCMDARGS", sv.sformatf(INV_WARN6, args[3], values[idx])) continue t.args = args t.arg = values[idx] UVMComponent.m_uvm_applied_cl_sev.append(t) UVMComponent.initialized_m_set_cl_sev = 1 m_uvm_applied_cl_sev = UVMComponent.m_uvm_applied_cl_sev for i in range(len(m_uvm_applied_cl_sev)): args = m_uvm_applied_cl_sev[i].args if not uvm_is_match(args[0], self.get_full_name()): continue orig_sev = uvm_string_to_severity(args[2], orig_sev) sev = uvm_string_to_severity(args[3], sev) m_uvm_applied_cl_sev[i].used += 1 if (args[1] == "_ALL_" and args[2] == "_ALL_"): self.set_report_severity_override(UVM_INFO,sev) self.set_report_severity_override(UVM_WARNING,sev) self.set_report_severity_override(UVM_ERROR,sev) self.set_report_severity_override(UVM_FATAL,sev) elif (args[1] == "_ALL_"): self.set_report_severity_override(orig_sev,sev) elif (args[2] == "_ALL_"): self.set_report_severity_id_override(UVM_INFO,args[1],sev) self.set_report_severity_id_override(UVM_WARNING,args[1],sev) self.set_report_severity_id_override(UVM_ERROR,args[1],sev) self.set_report_severity_id_override(UVM_FATAL,args[1],sev) else: self.set_report_severity_id_override(orig_sev,args[1],sev) m_uvm_applied_cl_action: List[uvm_cmdline_parsed_arg_t] = [] m_uvm_applied_cl_sev: List[uvm_cmdline_parsed_arg_t] = [] def m_add_child(self, child): if child.get_name() in self.m_children: old_child = self.m_children[child.get_name()] uvm_warning("BDCLD", "A child with name {} (type={}) exists" .format(child.get_name(), old_child.get_type_name())) return False self.m_children[child.get_name()] = child self.m_children_ordered.append(child) self.m_children_by_handle[child] = child return True def has_first_child(self): return len(self.m_children_ordered) > 0 def has_next_child(self): return len(self.m_children_ordered) > (self.child_ptr + 1) def m_apply_verbosity_settings(self, phase): """ #extern function void m_apply_verbosity_settings(uvm_phase phase) Args: phase: """ pass for i in self.m_verbosity_settings: if phase.get_name() == self.m_verbosity_settings[i].phase: if self.m_verbosity_settings[i].offset == 0: if self.m_verbosity_settings[i].id == "_ALL_": self.set_report_verbosity_level(self.m_verbosity_settings[i].verbosity) else: self.set_report_id_verbosity(self.m_verbosity_settings[i].id, self.m_verbosity_settings[i].verbosity) else: #process p = process::self() #string p_rand = p.get_randstate() #fork begin setting = self.m_verbosity_settings[i] #setting.offset if setting.id == "_ALL_": self.set_report_verbosity_level(setting.verbosity) else: self.set_report_id_verbosity(setting.id, setting.verbosity) #end join_none #p.set_randstate(p_rand) # Remove after use del self.m_verbosity_settings[i] def kill(self): """ Kill internal run process of this component. """ if self.m_run_process is not None: if hasattr(self.m_run_process, 'kill'): self.m_run_process.kill() else: print("No kill() available") #//------------------------------------------------------------------------------ #// #// Factory Methods #// #//------------------------------------------------------------------------------ # # #// set_inst_override #// ----------------- # #function void uvm_component::set_inst_override (string relative_inst_path, # string original_type_name, # string override_type_name) # full_inst_path = "" # factory= _get_factory() # # if (relative_inst_path == "") # full_inst_path = get_full_name() # else # full_inst_path = {get_full_name(), ".", relative_inst_path} # # factory.set_inst_override_by_name( # original_type_name, # override_type_name, # full_inst_path) #endfunction # # # # #//------------------------------------------------------------------------------ #// #// Phase interface #// #//------------------------------------------------------------------------------ # # #// phase methods #//-------------- #// these are prototypes for the methods to be implemented in user components #// build_phase() has a default implementation, the others have an empty default # #// these phase methods are common to all components in UVM. For backward #// compatibility, they call the old style name (without the _phse) # #function void uvm_component::connect_phase(uvm_phase phase) # connect() # return #endfunction #function void uvm_component::end_of_elaboration_phase(uvm_phase phase) # end_of_elaboration() # return #endfunction #function void uvm_component::extract_phase(uvm_phase phase) # extract() # return #endfunction #function void uvm_component::check_phase(uvm_phase phase) # check() # return #endfunction #function void uvm_component::report_phase(uvm_phase phase) # report() # return #endfunction # # #// These are the old style phase names. In order for runtime phase names #// to not conflict with user names, the _phase postfix was added. # #function void uvm_component::connect(); return; endfunction #function void uvm_component::end_of_elaboration(); return; endfunction #function void uvm_component::extract(); return; endfunction #function void uvm_component::check(); return; endfunction #function void uvm_component::report(); return; endfunction #function void uvm_component::final_phase(uvm_phase phase); return; endfunction # #// these runtime phase methods are only called if a set_domain() is done # #//------------------------------ #// phase / schedule / domain API #//------------------------------ #// methods for VIP creators and integrators to use to set up schedule domains #// - a schedule is a named, organized group of phases for a component base type #// - a domain is a named instance of a schedule in the master phasing schedule # # #// suspend #// ------- # #task uvm_component::suspend() # `uvm_warning("COMP/SPND/UNIMP", "suspend() not implemented") #endtask # # #// resume #// ------ # #task uvm_component::resume() # `uvm_warning("COMP/RSUM/UNIMP", "resume() not implemented") #endtask # # # # # # #//------------------------------------------------------------------------------ #// #// Configuration interface #// #//------------------------------------------------------------------------------ # # #// Undocumented struct for storing clone bit along w/ #// object on set_config_object(...) calls #class uvm_config_object_wrapper # uvm_object obj # bit clone #endclass : uvm_config_object_wrapper # # #// do_print (override) #// -------- # #function void uvm_component::do_print(uvm_printer printer) # string v # super.do_print(printer) # # // It is printed only if its value is other than the default (UVM_NONE) # if(uvm_verbosity'(recording_detail) != UVM_NONE) # case (recording_detail) # UVM_LOW : printer.print_generic("recording_detail", "uvm_verbosity", # $bits(recording_detail), "UVM_LOW") # UVM_MEDIUM : printer.print_generic("recording_detail", "uvm_verbosity", # $bits(recording_detail), "UVM_MEDIUM") # UVM_HIGH : printer.print_generic("recording_detail", "uvm_verbosity", # $bits(recording_detail), "UVM_HIGH") # UVM_FULL : printer.print_generic("recording_detail", "uvm_verbosity", # $bits(recording_detail), "UVM_FULL") # default : printer.print_field_int("recording_detail", recording_detail, # $bits(recording_detail), UVM_DEC, , "integral") # endcase # #endfunction def _get_factory(): from .uvm_coreservice import UVMCoreService cs = UVMCoreService.get() factory = cs.get_factory() return factory
py
b404d173bff2499b29045598a31749a9a7369fb8
import csv import requests import json fires = [] with open('fire.csv') as f: reader = csv.DictReader(f) counter = 0 f = open('processed.csv', 'a') for row in reader: if(row["STAT_CAUSE_DESCR"] != "Miscellaneous" and row["STAT_CAUSE_DESCR"] != "Missing/Undefined" and row["DISCOVERY_DOY"] != "" and row["FIRE_SIZE"] != "" and row["LATITUDE"] != "" and row["LONGITUDE"] != ""): if counter > 0: fire = [] fire.append(row["STAT_CAUSE_DESCR"]) fire.append(row["DISCOVERY_DOY"]) fire.append(row["CONT_DOY"]) fire.append(row["FIRE_SIZE"]) fire.append(row["LATITUDE"]) fire.append(row["LONGITUDE"]) fire.append(row["NWCG_REPORTING_AGENCY"]) fire.append(row["FIRE_YEAR"]) fire.append(row["OWNER_DESCR"]) # url = 'http://data.fcc.gov/api/block/find?format=json&latitude=' + row["LATITUDE"] + '&longitude=' + row["LONGITUDE"] + '&showall=true' # headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'} # result = requests.get(url, headers=headers) # parsed = (result.content.decode()) # data = json.loads(parsed) # fire.append(data["State"]["name"]) # fire.append(data["County"]["name"]) fires.append(fire) line = str(fire[0]) + "," + str(fire[1]) + "," + str(fire[2]) + "," + str(fire[3]) + "," + str(fire[4]) + "," + str(fire[5]) + "," + str(fire[6]) + "," + str(fire[7]) + "," + str(fire[8]) + "\n" f.write(str(line)) #print(fire) counter+=1 if(counter%100 == 0): print(counter)
py
b404d1d16006d1f5e7a8c88cec8284c33e6327c8
#!/usr/bin/python # coding=utf-8 ################################################################################ from test import CollectorTestCase from test import get_collector_config from test import unittest from test import run_only from mock import MagicMock from mock import patch from diamond.collector import Collector from mongodb import MongoDBCollector ################################################################################ def run_only_if_pymongo_is_available(func): try: import pymongo pymongo # workaround for pyflakes issue #13 except ImportError: pymongo = None pred = lambda: pymongo is not None return run_only(func, pred) class TestMongoDBCollector(CollectorTestCase): def setUp(self): config = get_collector_config('MongoDBCollector', { 'host': 'localhost:27017', }) self.collector = MongoDBCollector(config, None) self.connection = MagicMock() def test_import(self): self.assertTrue(MongoDBCollector) @run_only_if_pymongo_is_available @patch('pymongo.Connection') @patch.object(Collector, 'publish') def test_should_publish_nested_keys_for_server_stats(self, publish_mock, connector_mock): data = {'more_keys': {'nested_key': 1}, 'key': 2, 'string': 'str'} self._annotate_connection(connector_mock, data) self.collector.collect() self.connection.db.command.assert_called_once_with('serverStatus') self.assertPublishedMany(publish_mock, { 'more_keys.nested_key': 1, 'key': 2 }) @run_only_if_pymongo_is_available @patch('pymongo.Connection') @patch.object(Collector, 'publish') def test_should_publish_nested_keys_for_db_stats(self, publish_mock, connector_mock): data = {'db_keys': {'db_nested_key': 1}, 'dbkey': 2, 'dbstring': 'str'} self._annotate_connection(connector_mock, data) self.collector.collect() self.connection['db1'].command.assert_called_once_with('dbStats') metrics = { 'db_keys.db_nested_key': 1, 'dbkey': 2 } self.setDocExample(collector=self.collector.__class__.__name__, metrics=metrics, defaultpath=self.collector.config['path']) self.assertPublishedMany(publish_mock, metrics) @run_only_if_pymongo_is_available @patch('pymongo.Connection') @patch.object(Collector, 'publish') def test_should_publish_stats_with_long_type(self, publish_mock, connector_mock): data = {'more_keys': long(1), 'key': 2, 'string': 'str'} self._annotate_connection(connector_mock, data) self.collector.collect() self.connection.db.command.assert_called_once_with('serverStatus') self.assertPublishedMany(publish_mock, { 'more_keys': 1, 'key': 2 }) def _annotate_connection(self, connector_mock, data): connector_mock.return_value = self.connection self.connection.db.command.return_value = data self.connection.database_names.return_value = ['db1'] ################################################################################ if __name__ == "__main__": unittest.main()
py
b404d2074ae4a382ff39e7b36729b2fb88b839d9
from ipaddress import IPv6Address, IPv4Address class SocksReply: rep = 0 def __init__(self, bind_addr=IPv4Address("0.0.0.0"), bind_port=0): self.ver = 5 self.rsv = 0 if isinstance(bind_addr, IPv4Address): self.atyp = 1 elif isinstance(bind_addr, IPv6Address): self.atyp = 4 else: self.atyp = 3 self.bind_addr = bind_addr self.bind_port = bind_port def __bytes__(self): return self.ver.to_bytes(1, byteorder='big') + \ self.rep.to_bytes(1, byteorder='big') + \ self.rsv.to_bytes(1, byteorder='big') + \ self.atyp.to_bytes(1, byteorder='big') + \ int(self.bind_addr).to_bytes(4, byteorder='big') + \ self.bind_port.to_bytes(2, byteorder='big') class Success(SocksReply): pass class Failure(SocksReply): rep = 1 class ConnectionNotAllowed(SocksReply): rep = 2 class NetworkUnreachable(SocksReply): rep = 3 class HostUnreachable(SocksReply): rep = 4 class ConnectionRefused(SocksReply): rep = 5 class TTLExpired(SocksReply): rep = 6 class CommandNotSupported(SocksReply): rep = 7 class AddressTypeNotSupported(SocksReply): rep = 8
py
b404d2955fd0a7b565b9b46312e63e9d936d96cf
import numpyro.distributions as dist from jax import numpy as np from jax import random from ramsey.covariance_functions import exponentiated_quadratic # pylint: disable=too-many-locals,invalid-name def sample_from_sinus_function(key, batch_size=10, num_observations=100): x = np.linspace(-np.pi, np.pi, num_observations).reshape( (num_observations, 1) ) ys = [] fs = [] for _ in range(batch_size): key, sample_key1, sample_key2, sample_key3 = random.split(key, 4) a = 2 * random.uniform(sample_key1) - 1 b = random.uniform(sample_key2) - 0.5 f = a * np.sin(x - b) y = f + random.normal(sample_key3, shape=(num_observations, 1)) * 0.10 fs.append(f.reshape((1, num_observations, 1))) ys.append(y.reshape((1, num_observations, 1))) x = np.tile(x, [batch_size, 1, 1]) y = np.vstack(np.array(ys)) f = np.vstack(np.array(fs)) return (x, y), f # pylint: disable=too-many-locals,invalid-name def sample_from_gaussian_process( key, batch_size=10, num_observations=100, num_dim=1 ): x = random.normal(key, shape=(num_observations * num_dim,)).reshape( (num_observations, num_dim) ) ys = [] fs = [] for _ in range(batch_size): key, sample_key1, sample_key2, sample_key3, sample_key4 = random.split( key, 5 ) rho = dist.InverseGamma(1, 1).sample(sample_key1) sigma = dist.InverseGamma(5, 5).sample(sample_key2) K = exponentiated_quadratic(x, x, rho, sigma) f = random.multivariate_normal( sample_key3, mean=np.zeros(num_observations), cov=K + np.diag(np.ones(num_observations)) * 1e-5, ) y = random.multivariate_normal( sample_key4, mean=f, cov=np.eye(num_observations) * 0.05 ) fs.append(f.reshape((1, num_observations, 1))) ys.append(y.reshape((1, num_observations, 1))) x = np.tile(x, [batch_size, 1, 1]) y = np.vstack(np.array(ys)) f = np.vstack(np.array(fs)) return (x, y), f
py
b404d32a3bff7eb8a7178f0c4a9422d1a27cddd1
# -*- coding: utf-8 -*- # Copyright 2019 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """The test service unit tests.""" from __future__ import print_function import contextlib import os import shutil import mock from chromite.api.gen.chromiumos import common_pb2 from chromite.cbuildbot import commands from chromite.cbuildbot import goma_util from chromite.lib import build_target_lib from chromite.lib import chroot_lib from chromite.lib import constants from chromite.lib import cros_build_lib from chromite.lib import cros_test_lib from chromite.lib import failures_lib from chromite.lib import image_lib from chromite.lib import moblab_vm from chromite.lib import osutils from chromite.lib import portage_util from chromite.lib import sysroot_lib from chromite.lib.parser import package_info from chromite.service import test class PartialDict: """Used as key value matcher in a mocked call.""" def __init__(self, key, value): self.key = key self.value = value def __eq__(self, other): return other[self.key] == self.value class BuildTargetUnitTestResultTest(cros_test_lib.TestCase): """BuildTargetUnitTestResult tests.""" def testSuccess(self): """Test success case.""" result = test.BuildTargetUnitTestResult(0, None) self.assertTrue(result.success) def testPackageFailure(self): """Test packages failed.""" # Supposed to be CPVs, but not actually necessary at the moment. packages = ['a', 'b'] # Should have a non-zero return code when packages fail. result = test.BuildTargetUnitTestResult(1, packages) self.assertFalse(result.success) # Make sure failed packages alone are enough. result = test.BuildTargetUnitTestResult(0, packages) self.assertFalse(result.success) def testScriptFailure(self): """Test non-package failure.""" # Should have a non-zero return code when packages fail. result = test.BuildTargetUnitTestResult(1, None) self.assertFalse(result.success) class BuildTargetUnitTestTest(cros_test_lib.RunCommandTempDirTestCase): """BuildTargetUnitTest tests.""" def setUp(self): self.board = 'board' self.build_target = build_target_lib.BuildTarget(self.board) self.chroot = chroot_lib.Chroot(path=self.tempdir) # Make the chroot's tmp directory, used for the parallel emerge status file. tempdir = os.path.join(self.tempdir, 'tmp') osutils.SafeMakedirs(tempdir) def testSuccess(self): """Test simple success case.""" result = test.BuildTargetUnitTest(self.build_target, self.chroot) self.assertCommandContains(['cros_run_unit_tests', '--board', self.board]) self.assertTrue(result.success) def testPackages(self): """Test the packages argument.""" packages = ['foo/bar', 'cat/pkg'] test.BuildTargetUnitTest(self.build_target, self.chroot, packages=packages) self.assertCommandContains(['--packages', 'foo/bar cat/pkg']) def testBlocklist(self): """Test the blocklist argument.""" blocklist = ['foo/bar', 'cat/pkg'] test.BuildTargetUnitTest(self.build_target, self.chroot, blocklist=blocklist) self.assertCommandContains(['--blacklist_packages', 'foo/bar cat/pkg']) def testTestablePackagesOptional(self): """Test the testable packages optional argument.""" test.BuildTargetUnitTest( self.build_target, self.chroot, testable_packages_optional=True) self.assertCommandContains(['--no-testable-packages-ok']) def testFailure(self): """Test non-zero return code and failed package handling.""" packages = ['foo/bar', 'cat/pkg'] cpvs = [package_info.SplitCPV(p, strict=False) for p in packages] self.PatchObject(portage_util, 'ParseDieHookStatusFile', return_value=cpvs) expected_rc = 1 self.rc.SetDefaultCmdResult(returncode=expected_rc) result = test.BuildTargetUnitTest(self.build_target, self.chroot) self.assertFalse(result.success) self.assertEqual(expected_rc, result.return_code) self.assertCountEqual(cpvs, result.failed_cpvs) def testCodeCoverage(self): """Test adding use flags for coverage when requested.""" result = test.BuildTargetUnitTest(self.build_target, self.chroot, code_coverage=True) self.assertCommandContains(['cros_run_unit_tests', '--board', self.board], extra_env=PartialDict('USE', 'coverage')) self.assertTrue(result.success) def testCodeCoverageExistingFlags(self): """Test adding use flags for coverage when existing flags.""" chroot = chroot_lib.Chroot(path=self.tempdir, env={'USE': 'foo bar'}) result = test.BuildTargetUnitTest(self.build_target, chroot, code_coverage=True) self.assertCommandContains(['cros_run_unit_tests', '--board', self.board], extra_env=PartialDict('USE', 'foo bar coverage')) self.assertTrue(result.success) def testCodeCoverageExistingCoverageFlag(self): """Test adding use flags for coverage when already has coverage flag.""" chroot = chroot_lib.Chroot(path=self.tempdir, env={'USE': 'coverage bar'}) result = test.BuildTargetUnitTest(self.build_target, chroot, code_coverage=True) self.assertCommandContains(['cros_run_unit_tests', '--board', self.board], extra_env=PartialDict('USE', 'coverage bar')) self.assertTrue(result.success) class BuildTargetUnitTestTarballTest(cros_test_lib.MockTempDirTestCase): """BuildTargetUnitTestTarball tests.""" def setUp(self): self.chroot = chroot_lib.Chroot( path=os.path.join(self.tempdir, 'chroot/path')) self.sysroot = sysroot_lib.Sysroot('/sysroot/path') test_dir = os.path.join( self.chroot.full_path(self.sysroot.path, constants.UNITTEST_PKG_PATH)) osutils.SafeMakedirs(test_dir) self.result_path = os.path.join(self.tempdir, 'result') def testSuccess(self): """Test success handling.""" result = cros_build_lib.CommandResult(returncode=0) self.PatchObject(cros_build_lib, 'CreateTarball', return_value=result) self.PatchObject(os.path, 'exists', return_value=True) path = test.BuildTargetUnitTestTarball(self.chroot, self.sysroot, self.result_path) self.assertStartsWith(path, self.result_path) def testNotExists(self): """Test creating the tarball for a path that doesn't exist.""" path = test.BuildTargetUnitTestTarball( self.chroot, sysroot_lib.Sysroot('/invalid/sysroot'), self.result_path) self.assertIsNone(path) def testFailure(self): """Test failure creating tarball.""" result = cros_build_lib.CommandResult(returncode=1) self.PatchObject(cros_build_lib, 'CreateTarball', return_value=result) path = test.BuildTargetUnitTestTarball(self.chroot, self.sysroot, self.result_path) self.assertIsNone(path) class DebugInfoTestTest(cros_test_lib.RunCommandTestCase): """DebugInfoTest tests.""" def testSuccess(self): """Test command success.""" self.assertTrue(test.DebugInfoTest('/sysroot/path')) self.assertCommandContains(['debug_info_test', '/sysroot/path/usr/lib/debug']) def testFailure(self): """Test command failure.""" self.rc.SetDefaultCmdResult(returncode=1) self.assertFalse(test.DebugInfoTest('/sysroot/path')) class MoblabVmTestCase(cros_test_lib.RunCommandTempDirTestCase): """Tests for the SetupBoardRunConfig class.""" def MockDirectory(self, path): """Create an empty directory. Args: path (str): Relative path for the directory. Returns: str: Path to the directory. """ path = os.path.join(self.tempdir, path) osutils.SafeMakedirs(path) return path def setUp(self): self.builder = 'moblab-generic-vm/R12-3.4.5-67-890' self.image_dir = self.MockDirectory('files/image') self.payload_dir = self.MockDirectory('files/payload') self.results_dir = self.MockDirectory('results') self.vms = moblab_vm.MoblabVm(self.tempdir) self.chroot = chroot_lib.Chroot(path=self.tempdir) class CreateMoblabVmTest(MoblabVmTestCase): """Unit tests for CreateMoblabVm.""" def setUp(self): self.mock_vm_create = self.PatchObject(moblab_vm.MoblabVm, 'Create') def testBasic(self): vms = test.CreateMoblabVm(self.tempdir, self.chroot.path, self.image_dir) self.assertEqual(vms.workspace, self.tempdir) self.assertEqual(vms.chroot, self.chroot.path) self.assertEqual( self.mock_vm_create.call_args_list, [mock.call(self.image_dir, dut_image_dir=self.image_dir, create_vm_images=False)]) class PrepareMoblabVmImageCacheTest(MoblabVmTestCase): """Unit tests for PrepareMoblabVmImageCache.""" def setUp(self): @contextlib.contextmanager def MountedMoblabDiskContextMock(*_args, **_kwargs): yield self.tempdir self.PatchObject(moblab_vm.MoblabVm, 'MountedMoblabDiskContext', MountedMoblabDiskContextMock) self.payload_file_name = 'payload.bin' self.payload_file = os.path.join(self.payload_dir, self.payload_file_name) self.payload_file_content = 'A Lannister always pays his debts.' osutils.WriteFile(os.path.join(self.payload_dir, self.payload_file_name), self.payload_file_content) def testBasic(self): """PrepareMoblabVmImageCache loads all payloads into the vm.""" image_cache_dir = test.PrepareMoblabVmImageCache(self.vms, self.builder, [self.payload_dir]) expected_cache_dir = 'static/prefetched/moblab-generic-vm/R12-3.4.5-67-890' self.assertEqual(image_cache_dir, os.path.join('/mnt/moblab/', expected_cache_dir)) copied_payload_file = os.path.join(self.tempdir, expected_cache_dir, self.payload_file_name) self.assertExists(copied_payload_file) self.assertEqual(osutils.ReadFile(copied_payload_file), self.payload_file_content) class RunMoblabVmTestTest(MoblabVmTestCase): """Unit tests for RunMoblabVmTestTest.""" def setUp(self): self.image_cache_dir = '/mnt/moblab/whatever' self.PatchObject(moblab_vm.MoblabVm, 'Start') self.PatchObject(moblab_vm.MoblabVm, 'Stop') def testBasic(self): """RunMoblabVmTest calls test_that with correct args.""" test.RunMoblabVmTest(self.chroot, self.vms, self.builder, self.image_cache_dir, self.results_dir) self.assertCommandContains([ 'test_that', '--no-quickmerge', '--results_dir', self.results_dir, '-b', 'moblab-generic-vm', 'moblab_DummyServerNoSspSuite', '--args', 'services_init_timeout_m=10 ' 'target_build="%s" ' 'test_timeout_hint_m=90 ' 'clear_devserver_cache=False ' 'image_storage_server="%s"' % (self.builder, self.image_cache_dir + '/'), ], enter_chroot=True, chroot_args=self.chroot.get_enter_args()) class SimpleChromeWorkflowTestTest(cros_test_lib.MockTempDirTestCase): """Unit tests for SimpleChromeWorkflowTest.""" def setUp(self): self.chrome_root = '/path/to/chrome/root' self.sysroot_path = '/chroot/path/sysroot/path' self.build_target = 'board' self.goma_mock = self.PatchObject(goma_util, 'Goma') self.chrome_sdk_run_mock = self.PatchObject(commands.ChromeSDK, 'Run') # SimpleChromeTest workflow creates directories based on objects that are # mocked for this test, so patch osutils.WriteFile self.write_mock = self.PatchObject(osutils, 'WriteFile') self.PatchObject(cros_build_lib, 'CmdToStr', return_value='CmdToStr value') self.PatchObject(shutil, 'copy2') def testSimpleChromeWorkflowTest(self): goma_test_dir = os.path.join(self.tempdir, 'goma_test_dir') goma_test_json_string = os.path.join(self.tempdir, 'goma_json_string.txt') chromeos_goma_dir = os.path.join(self.tempdir, 'chromeos_goma_dir') goma_config = common_pb2.GomaConfig(goma_dir=goma_test_dir, goma_client_json=goma_test_json_string) osutils.SafeMakedirs(goma_test_dir) osutils.SafeMakedirs(chromeos_goma_dir) osutils.Touch(goma_test_json_string) goma = goma_util.Goma( goma_config.goma_dir, goma_config.goma_client_json, stage_name='BuildApiTestSimpleChrome', chromeos_goma_dir=chromeos_goma_dir) mock_goma_log_dir = os.path.join(self.tempdir, 'goma_log_dir') osutils.SafeMakedirs(mock_goma_log_dir) goma.goma_log_dir = mock_goma_log_dir # For this test, we avoid running test._VerifySDKEnvironment because use of # other mocks prevent creating the SDK dir that _VerifySDKEnvironment checks # for self.PatchObject(test, '_VerifySDKEnvironment') self.PatchObject(os.path, 'exists', return_value=True) ninja_cmd = self.PatchObject(commands.ChromeSDK, 'GetNinjaCommand', return_value='ninja command') test.SimpleChromeWorkflowTest(self.sysroot_path, self.build_target, self.chrome_root, goma) # Verify ninja_cmd calls. ninja_calls = [mock.call(), mock.call(debug=False)] ninja_cmd.assert_has_calls(ninja_calls) # Verify calls with args to chrome_sdk_run made by service/test.py. gn_dir = os.path.join(self.chrome_root, 'buildtools/linux64/gn') board_out_dir = os.path.join(self.chrome_root, 'out_board/Release') self.chrome_sdk_run_mock.assert_any_call(['gclient', 'runhooks']) self.chrome_sdk_run_mock.assert_any_call(['true']) self.chrome_sdk_run_mock.assert_any_call( ['bash', '-c', ('%s gen "%s" --args="$GN_ARGS"' % (gn_dir, board_out_dir))]) self.chrome_sdk_run_mock.assert_any_call( ['env', '--null'], run_args=mock.ANY) self.chrome_sdk_run_mock.assert_any_call('ninja command', run_args=mock.ANY) # Create expected paths from constants so that the tests work inside or # outside the SDK. deploy_chrome_path = os.path.join(constants.SOURCE_ROOT, constants.CHROMITE_BIN_SUBDIR, 'deploy_chrome') image_dir_symlink = image_lib.GetLatestImageLink(self.build_target) image_path = os.path.join(image_dir_symlink, constants.VM_IMAGE_BIN) self.chrome_sdk_run_mock.assert_any_call( [deploy_chrome_path, '--build-dir', board_out_dir, '--staging-only', '--staging-dir', mock.ANY]) self.chrome_sdk_run_mock.assert_any_call( ['cros_run_test', '--copy-on-write', '--deploy', '--board=board', ('--image-path=%s' % (image_path)), '--build-dir=out_board/Release']) # Verify goma mock was started and stopped. # TODO(crbug/1065172): Invalid assertions that had previously been mocked. # self.goma_mock.Start.assert_called_once() # self.goma_mock.Stop.assert_called_once() class ValidateMoblabVmTestTest(MoblabVmTestCase): """Unit tests for ValidateMoblabVmTest.""" def setUp(self): self.logs_dir = os.path.join(self.results_dir, 'debug') osutils.SafeMakedirs(self.logs_dir) self.logs_file = os.path.join(self.logs_dir, 'test_that.INFO') def testValidateMoblabVmTestSuccess(self): """ValidateMoblabVmTest does not die when tests succeeded.""" osutils.WriteFile(self.logs_file, 'dummy_PassServer [PASSED]') test.ValidateMoblabVmTest(self.results_dir) def testValidateMoblabVmTestNoLogs(self): """ValidateMoblabVmTest dies when test_that logs not present.""" self.assertRaises(failures_lib.TestFailure, test.ValidateMoblabVmTest, self.results_dir) def testValidateMoblabVmTestFailure(self): """ValidateMoblabVmTest dies when tests failed.""" osutils.WriteFile(self.logs_file, 'dummy_PassServer [FAILED]') self.assertRaises(failures_lib.TestFailure, test.ValidateMoblabVmTest, self.results_dir)
py
b404d3b871ab3d026567438c5841fa0e555eb504
# Copyright 2020 The Flax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # Copyright 2020 The Flax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Machine Translation example. This script trains a Transformer on a WMT dataset. """ import collections import functools import os import time from absl import app from absl import flags from absl import logging from flax import jax_utils from flax import nn from flax import optim import bleu import decode import input_pipeline import models from flax.metrics import tensorboard from flax.training import checkpoints from flax.training import common_utils import jax from jax import random import jax.nn import jax.numpy as jnp import numpy as np import tensorflow.compat.v2 as tf FLAGS = flags.FLAGS flags.DEFINE_string( 'model_dir', default=None, help='Directory to store model data.') flags.DEFINE_string( 'data_dir', default=None, help='Tensorflow datasets directory.') flags.DEFINE_string( 'vocab_path', default=None, help='Path to load or store sentencepiece vocab file.') flags.DEFINE_integer( 'vocab_size', default=32000, help='Vocabulary size if `vocab_path` is not given.') flags.DEFINE_string( 'dataset_name', default='wmt17_translate/de-en', help='Name of TFDS translation dataset to use.') flags.DEFINE_string( 'eval_dataset_name', default='wmt14_translate/de-en:test', help='Optional name of TFDS translation dataset to use for evaluation.') flags.DEFINE_bool( 'reverse_translation', default=False, help='Reverse the direction of translation.') flags.DEFINE_integer( 'batch_size', default=256, help='Per host batch size for training.') flags.DEFINE_integer( 'beam_size', default=4, help='Beam size for inference.') flags.DEFINE_integer( 'eval_frequency', default=1000, help='Frequency of eval during training, e.g. every 1000 steps.') flags.DEFINE_integer( 'num_train_steps', default=500000, help='Number of train steps.') flags.DEFINE_integer( 'num_eval_steps', default=20, help='Number of steps to take during evaluation.') flags.DEFINE_float( 'learning_rate', default=0.0625, help='Base learning rate.') flags.DEFINE_integer( 'warmup_steps', default=1000, help='Linear learning rate warmup.') flags.DEFINE_float( 'label_smoothing', default=0.1, help='Cross entropy loss label smoothing.') flags.DEFINE_float( 'weight_decay', default=0.0, help='Decay factor for AdamW style weight decay.') flags.DEFINE_integer( 'max_target_length', default=256, help='Maximum length cutoff for training examples.') flags.DEFINE_integer( 'max_eval_target_length', default=256, help='Maximum length cutoff for eval examples.') flags.DEFINE_integer( 'max_predict_length', default=256, help='Maximum length cutoff for predicted tokens.') flags.DEFINE_bool( 'share_embeddings', default=True, help='Inputs and targets share embedding.') flags.DEFINE_bool( 'logits_via_embedding', default=True, help='Final logit transform uses embedding matrix transpose.') flags.DEFINE_integer( 'num_layers', default=6, help='Number of transformer layers.') flags.DEFINE_integer( 'qkv_dim', default=1024, help='Size of query/key/value for attention.') flags.DEFINE_integer( 'emb_dim', default=1024, help='Size of embeddings.') flags.DEFINE_integer( 'mlp_dim', default=4096, help='Size of the MLP.') flags.DEFINE_integer( 'num_heads', default=16, help='Number of attention heads.') flags.DEFINE_float( 'dropout_rate', default=0.1, help='Dropout rate.') flags.DEFINE_float( 'attention_dropout_rate', default=0.1, help='Attention dropout rate.') flags.DEFINE_integer( 'random_seed', default=0, help='Integer for PRNG random seed.') flags.DEFINE_bool( 'save_checkpoints', default=True, help='Whether to save model checkpoints.') flags.DEFINE_bool( 'restore_checkpoints', default=True, help='Whether to restore from existing model checkpoints.') flags.DEFINE_integer( 'checkpoint_freq', default=10000, help='Save a checkpoint every these number of steps.') flags.DEFINE_bool( 'use_bfloat16', default=True, help=('Use bfloat16 mixed precision training instead of float32.')) flags.DEFINE_string( 'jax_backend_target', default=None, help=('TPU grpc target for use with cloud TPUs.' ' e.g. grpc://192.168.0.2:8470')) def create_learning_rate_scheduler( factors='constant * linear_warmup * rsqrt_decay', base_learning_rate=0.5, warmup_steps=1000, decay_factor=0.5, steps_per_decay=20000, steps_per_cycle=100000): """Creates learning rate schedule. Interprets factors in the factors string which can consist of: * constant: interpreted as the constant value, * linear_warmup: interpreted as linear warmup until warmup_steps, * rsqrt_decay: divide by square root of max(step, warmup_steps) * rsqrt_normalized_decay: divide by square root of max(step/warmup_steps, 1) * decay_every: Every k steps decay the learning rate by decay_factor. * cosine_decay: Cyclic cosine decay, uses steps_per_cycle parameter. Args: factors: string, factors separated by '*' that defines the schedule. base_learning_rate: float, the starting constant for the lr schedule. warmup_steps: int, how many steps to warm up for in the warmup schedule. decay_factor: float, the amount to decay the learning rate by. steps_per_decay: int, how often to decay the learning rate. steps_per_cycle: int, steps per cycle when using cosine decay. Returns: a function learning_rate(step): float -> {'learning_rate': float}, the step-dependent lr. """ factors = [n.strip() for n in factors.split('*')] def step_fn(step): """Step to learning rate function.""" ret = 1.0 for name in factors: if name == 'constant': ret *= base_learning_rate elif name == 'linear_warmup': ret *= jnp.minimum(1.0, step / warmup_steps) elif name == 'rsqrt_decay': ret /= jnp.sqrt(jnp.maximum(step, warmup_steps)) elif name == 'rsqrt_normalized_decay': ret *= jnp.sqrt(warmup_steps) ret /= jnp.sqrt(jnp.maximum(step, warmup_steps)) elif name == 'decay_every': ret *= (decay_factor**(step // steps_per_decay)) elif name == 'cosine_decay': progress = jnp.maximum(0.0, (step - warmup_steps) / float(steps_per_cycle)) ret *= jnp.maximum(0.0, 0.5 * (1.0 + jnp.cos(jnp.pi * (progress % 1.0)))) else: raise ValueError('Unknown factor %s.' % name) return jnp.asarray(ret, dtype=jnp.float32) return step_fn @functools.partial(jax.jit, static_argnums=(1, 2, 3)) def create_model(key, input_shape, target_shape, model_kwargs): """Instantiate transformer model and associated autoregressive cache def.""" model_def = models.Transformer.partial(**model_kwargs) with nn.attention.Cache().mutate() as cache_def: _, initial_params = model_def.init_by_shape( key, [(input_shape, jnp.float32), (target_shape, jnp.float32)], cache=cache_def) model = nn.Model(model_def, initial_params) return model, cache_def def create_optimizer(model, learning_rate, weight_decay): optimizer_def = optim.Adam( learning_rate, beta1=0.9, beta2=0.98, eps=1e-9, weight_decay=weight_decay) optimizer = optimizer_def.create(model) return optimizer def compute_weighted_cross_entropy(logits, targets, weights=None, label_smoothing=0.0): """Compute weighted cross entropy and entropy for log probs and targets. Args: logits: [batch, length, num_classes] float array. targets: categorical targets [batch, length] int array. weights: None or array of shape [batch, length]. label_smoothing: label smoothing constant, used to determine the on and off values. Returns: Tuple of scalar loss and batch normalizing factor. """ if logits.ndim != targets.ndim + 1: raise ValueError('Incorrect shapes. Got shape %s logits and %s targets' % (str(logits.shape), str(targets.shape))) vocab_size = logits.shape[-1] confidence = 1.0 - label_smoothing low_confidence = (1.0 - confidence) / (vocab_size - 1) normalizing_constant = -( confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)) soft_targets = common_utils.onehot( targets, vocab_size, on_value=confidence, off_value=low_confidence) loss = -jnp.sum(soft_targets * nn.log_softmax(logits), axis=-1) loss = loss - normalizing_constant normalizing_factor = jnp.prod(targets.shape) if weights is not None: loss = loss * weights normalizing_factor = weights.sum() return loss.sum(), normalizing_factor def compute_weighted_accuracy(logits, targets, weights=None): """Compute weighted accuracy for log probs and targets. Args: logits: [batch, length, num_classes] float array. targets: categorical targets [batch, length] int array. weights: None or array of shape [batch, length] Returns: Tuple of scalar loss and batch normalizing factor. """ if logits.ndim != targets.ndim + 1: raise ValueError('Incorrect shapes. Got shape %s logits and %s targets' % (str(logits.shape), str(targets.shape))) loss = jnp.equal(jnp.argmax(logits, axis=-1), targets) normalizing_factor = jnp.prod(logits.shape[:-1]) if weights is not None: loss = loss * weights normalizing_factor = weights.sum() return loss.sum(), normalizing_factor def compute_metrics(logits, labels, weights, label_smoothing=0.0): """Compute summary metrics.""" loss, weight_sum = compute_weighted_cross_entropy(logits, labels, weights, label_smoothing) acc, _ = compute_weighted_accuracy(logits, labels, weights) metrics = { 'loss': loss, 'accuracy': acc, 'denominator': weight_sum, } metrics = jax.lax.psum(metrics, axis_name='batch') return metrics def train_step(optimizer, batch, learning_rate_fn, label_smoothing=0.0, use_bfloat16=False, dropout_rng=None): """Perform a single training step.""" # X_position and X_segmentation are needed only when using 'packed examples' # where multiple sequences are packed into the same example with this # metadata. # if such features are not present they are ignored and the example is treated # like a normal, unpacked sequence example. train_keys = ['inputs', 'targets', 'inputs_position', 'targets_position', 'inputs_segmentation', 'targets_segmentation'] (inputs, targets, inputs_positions, targets_positions, inputs_segmentation, targets_segmentation) = [ batch.get(k, None) for k in train_keys] weights = jnp.where(targets > 0, 1, 0).astype(jnp.float32) # We handle PRNG splitting inside the top pmap to improve efficiency. dropout_rng, new_dropout_rng = random.split(dropout_rng) def loss_fn(model): """loss function used for training.""" with nn.stochastic(dropout_rng): logits = model( inputs, targets, use_bfloat16=use_bfloat16, inputs_positions=inputs_positions, targets_positions=targets_positions, inputs_segmentation=inputs_segmentation, targets_segmentation=targets_segmentation, train=True, cache=None) loss, weight_sum = compute_weighted_cross_entropy(logits, targets, weights, label_smoothing) mean_loss = loss / weight_sum return mean_loss, logits step = optimizer.state.step lr = learning_rate_fn(step) grad_fn = jax.value_and_grad(loss_fn, has_aux=True) (_, logits), grad = grad_fn(optimizer.target) grad = jax.lax.pmean(grad, 'batch') new_optimizer = optimizer.apply_gradient(grad, learning_rate=lr) metrics = compute_metrics(logits, targets, weights) metrics['learning_rate'] = lr return new_optimizer, metrics, new_dropout_rng def eval_step(model, batch, label_smoothing=0.0, use_bfloat16=False): """Calculate evaluation metrics on a batch.""" inputs, targets = batch['inputs'], batch['targets'] weights = jnp.where(targets > 0, 1.0, 0.0) logits = model(inputs, targets, use_bfloat16=use_bfloat16, train=False, cache=None) return compute_metrics(logits, targets, weights, label_smoothing) def predict_step(inputs, model, cache, eos_id, max_decode_len, use_bfloat16=False, beam_size=4): """Predict translation with fast decoding beam search on a batch.""" batch_size = inputs.shape[0] # Prepare transformer fast-decoder call for beam search: for beam search, we # need to set up our decoder model to handle a batch size equal to # batch_size * beam_size, where each batch item's data is expanded in-place # rather than tiled. # i.e. if we denote each batch element subtensor as el[n]: # [el0, el1, el2] --> beamsize=2 --> [el0,el0,el1,el1,el2,el2] src_padding_mask = decode.flat_batch_beam_expand( (inputs > 0)[..., None], beam_size) tgt_padding_mask = decode.flat_batch_beam_expand( jnp.ones((batch_size, 1, 1)), beam_size) encoded_inputs = decode.flat_batch_beam_expand( model.encode(inputs, use_bfloat16=use_bfloat16, train=False, cache=None), beam_size) def tokens_ids_to_logits(flat_ids, flat_cache): """Token slice to logits from decoder model.""" # --> [batch * beam, 1, vocab] with flat_cache.mutate() as new_flat_cache: flat_logits = model.decode(encoded_inputs, src_padding_mask, flat_ids, cache=new_flat_cache, shift=False, train=False, use_bfloat16=use_bfloat16, tgt_padding_mask=tgt_padding_mask) # Remove singleton sequence-length dimension: # [batch * beam, 1, vocab] --> [batch * beam, vocab] flat_logits = flat_logits.squeeze(axis=1) return flat_logits, new_flat_cache # Using the above-defined single-step decoder function, run a # beam search over possible sequences given input encoding. beam_seqs, _ = decode.beam_search( inputs, cache, tokens_ids_to_logits, beam_size=beam_size, alpha=0.6, eos_id=eos_id, max_decode_len=max_decode_len) # Beam search returns [n_batch, n_beam, n_length + 1] with beam dimension # sorted in increasing order of log-probability. # Return the highest scoring beam sequence, drop first dummy 0 token. return beam_seqs[:, -1, 1:] def pad_examples(x, desired_batch_size): """Expand batch to desired size by repeating last slice.""" batch_pad = desired_batch_size - x.shape[0] return np.concatenate([x, np.tile(x[-1], (batch_pad, 1))], axis=0) def per_host_sum_pmap(in_tree): """Execute psum on in_tree's leaves over one device per host.""" host2devices = collections.defaultdict(list) for d in jax.devices(): host2devices[d.host_id].append(d) devices = [host2devices[k][0] for k in host2devices] host_psum = jax.pmap(lambda x: jax.lax.psum(x, 'i'), 'i', devices=devices) def pre_pmap(xs): return jax.tree_map(lambda x: jnp.broadcast_to(x, (1,) + x.shape), xs) def post_pmap(xs): return jax.tree_map(lambda x: x[0], xs) return post_pmap(host_psum(pre_pmap(in_tree))) def tohost(x): """Collect batches from all devices to host and flatten batch dimensions.""" n_device, n_batch, *remaining_dims = x.shape return np.array(x).reshape((n_device * n_batch,) + tuple(remaining_dims)) def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') if FLAGS.jax_backend_target: jax.config.FLAGS.jax_xla_backend = 'tpu_driver' jax.config.FLAGS.jax_backend_target = FLAGS.jax_backend_target # This seems to be necessary even when importing TF2? tf.enable_v2_behavior() # Number of local devices for this host. n_devices = jax.local_device_count() if jax.host_id() == 0: tf.io.gfile.makedirs(FLAGS.model_dir) train_summary_writer = tensorboard.SummaryWriter( os.path.join(FLAGS.model_dir, 'train')) eval_summary_writer = tensorboard.SummaryWriter( os.path.join(FLAGS.model_dir, 'eval')) if FLAGS.batch_size % n_devices: raise ValueError('Batch size must be divisible by the number of devices') vocab_path = FLAGS.vocab_path if vocab_path is None: vocab_path = os.path.join(FLAGS.model_dir, 'sentencepiece_model') tf.io.gfile.makedirs(os.path.split(vocab_path)[0]) # Load Dataset logging.info('Initializing dataset.') train_ds, eval_ds, predict_ds, encoder = input_pipeline.get_wmt_datasets( n_devices=n_devices, dataset_name=FLAGS.dataset_name, eval_dataset_name=FLAGS.eval_dataset_name, shard_idx=jax.host_id(), shard_count=jax.host_count(), data_dir=FLAGS.data_dir, vocab_path=vocab_path, target_vocab_size=FLAGS.vocab_size, batch_size=FLAGS.batch_size, max_length=FLAGS.max_target_length, max_eval_length=FLAGS.max_eval_target_length) train_iter = iter(train_ds) vocab_size = int(encoder.vocab_size()) eos_id = decode.EOS_ID # Default Sentencepiece EOS token. def decode_tokens(toks): valid_toks = toks[:np.argmax(toks == eos_id) + 1].astype(np.int32) return encoder.detokenize(valid_toks).numpy().decode('utf-8') logging.info('Initializing model, optimizer, and step functions.') # Build Model and Optimizer transformer_kwargs = { 'vocab_size': vocab_size, 'output_vocab_size': vocab_size, 'emb_dim': FLAGS.emb_dim, 'num_heads': FLAGS.num_heads, 'num_layers': FLAGS.num_layers, 'qkv_dim': FLAGS.qkv_dim, 'mlp_dim': FLAGS.mlp_dim, 'max_len': max(FLAGS.max_target_length, FLAGS.max_eval_target_length), 'share_embeddings': FLAGS.share_embeddings, 'logits_via_embedding': FLAGS.logits_via_embedding, } start_step = 0 rng = random.PRNGKey(FLAGS.random_seed) rng, init_rng = random.split(rng) input_shape = (FLAGS.batch_size, FLAGS.max_target_length) target_shape = (FLAGS.batch_size, FLAGS.max_target_length) model, cache_def = create_model(init_rng, input_shape, target_shape, transformer_kwargs) optimizer = create_optimizer(model, FLAGS.learning_rate, FLAGS.weight_decay) # We access model only from optimizer below via optimizer.target. del model if FLAGS.restore_checkpoints: # Restore unreplicated optimizer + model state from last checkpoint. optimizer = checkpoints.restore_checkpoint(FLAGS.model_dir, optimizer) # Grab last step. start_step = int(optimizer.state.step) # Replicate optimizer. optimizer = jax_utils.replicate(optimizer) learning_rate_fn = create_learning_rate_scheduler( base_learning_rate=FLAGS.learning_rate, warmup_steps=FLAGS.warmup_steps) p_train_step = jax.pmap( functools.partial( train_step, learning_rate_fn=learning_rate_fn, label_smoothing=FLAGS.label_smoothing, use_bfloat16=FLAGS.use_bfloat16), axis_name='batch') p_eval_step = jax.pmap( functools.partial( eval_step, label_smoothing=FLAGS.label_smoothing, use_bfloat16=FLAGS.use_bfloat16), axis_name='batch') p_pred_step = jax.pmap( functools.partial(predict_step, use_bfloat16=FLAGS.use_bfloat16, beam_size=FLAGS.beam_size), axis_name='batch', static_broadcasted_argnums=(3, 4)) # eos token, max_length are constant # We init the first set of dropout PRNG keys, but update it afterwards inside # the main pmap'd training update for performance. dropout_rngs = random.split(rng, n_devices) logging.info('Starting training loop.') metrics_all = [] t_loop_start = time.time() for step, batch in zip(range(start_step, FLAGS.num_train_steps), train_iter): # Shard data to devices and do a training step. batch = common_utils.shard(jax.tree_map(lambda x: x._numpy(), batch)) # pylint: disable=protected-access optimizer, metrics, dropout_rngs = p_train_step( optimizer, batch, dropout_rng=dropout_rngs) metrics_all.append(metrics) # Save a checkpoint on one host after every checkpoint_freq steps. if (FLAGS.save_checkpoints and step % FLAGS.checkpoint_freq == 0 and step > 0 and jax.host_id() == 0): checkpoints.save_checkpoint(FLAGS.model_dir, jax_utils.unreplicate(optimizer), step) # Periodic metric handling. if step % FLAGS.eval_frequency != 0 and step > 0: continue logging.info('Gathering training metrics.') # Training Metrics metrics_all = common_utils.get_metrics(metrics_all) lr = metrics_all.pop('learning_rate').mean() metrics_sums = jax.tree_map(jnp.sum, metrics_all) denominator = metrics_sums.pop('denominator') summary = jax.tree_map(lambda x: x / denominator, metrics_sums) # pylint: disable=cell-var-from-loop summary['learning_rate'] = lr steps_per_eval = FLAGS.eval_frequency if step != 0 else 1 steps_per_sec = steps_per_eval / (time.time() - t_loop_start) t_loop_start = time.time() if jax.host_id() == 0: train_summary_writer.scalar('steps per second', steps_per_sec, step) for key, val in summary.items(): train_summary_writer.scalar(key, val, step) train_summary_writer.flush() metrics_all = [] logging.info('train in step: %d, loss: %.4f', step, summary['loss']) # Eval Metrics logging.info('Gathering evaluation metrics.') t_eval_start = time.time() eval_metrics = [] eval_iter = iter(eval_ds) for _, eval_batch in zip(range(FLAGS.num_eval_steps), eval_iter): eval_batch = jax.tree_map(lambda x: x._numpy(), eval_batch) # pylint: disable=protected-access eval_batch = common_utils.shard(eval_batch) metrics = p_eval_step(optimizer.target, eval_batch) eval_metrics.append(metrics) eval_metrics = common_utils.get_metrics(eval_metrics) eval_metrics_sums = jax.tree_map(jnp.sum, eval_metrics) eval_denominator = eval_metrics_sums.pop('denominator') eval_summary = jax.tree_map( lambda x: x / eval_denominator, # pylint: disable=cell-var-from-loop eval_metrics_sums) if jax.host_id() == 0: for key, val in eval_summary.items(): eval_summary_writer.scalar(key, val, step) eval_summary_writer.flush() logging.info('eval in step: %d, loss: %.4f', step, eval_summary['loss']) logging.info('eval time: %.4f s step %d', time.time()-t_eval_start, step) # Translation and BLEU Score. logging.info('Translating evaluation dataset.') t_inference_start = time.time() predict_iter = iter(predict_ds) sources, references, predictions = [], [], [] for _, pred_batch in enumerate(predict_iter): pred_batch = jax.tree_map(lambda x: x._numpy(), pred_batch) # pylint: disable=protected-access # Handle final odd-sized batch by padding instead of dropping it. cur_pred_batch_size = pred_batch['inputs'].shape[0] if cur_pred_batch_size % n_devices: padded_size = int( np.ceil(cur_pred_batch_size / n_devices) * n_devices) pred_batch = jax.tree_map( lambda x: pad_examples(x, padded_size), pred_batch) # pylint: disable=cell-var-from-loop pred_batch = common_utils.shard(pred_batch) per_device_batchsize = pred_batch['inputs'].shape[1] cache_dtype = jnp.bfloat16 if FLAGS.use_bfloat16 else jnp.float32 cache = jax_utils.replicate( cache_def.initialize_cache((per_device_batchsize, FLAGS.max_predict_length), dtype=cache_dtype)) predicted = p_pred_step(pred_batch['inputs'], optimizer.target, cache, eos_id, FLAGS.max_predict_length) predicted = tohost(predicted) inputs = tohost(pred_batch['inputs']) targets = tohost(pred_batch['targets']) # Iterate through non-padding examples of batch. for i, s in enumerate(predicted[:cur_pred_batch_size]): sources.append(decode_tokens(inputs[i])) references.append(decode_tokens(targets[i])) predictions.append(decode_tokens(s)) logging.info('Translation: %d predictions %d references %d sources.', len(predictions), len(references), len(sources)) logging.info('Translation time: %.4f s step %d.', time.time() - t_inference_start, step) # Calculate BLEU score for translated eval corpus against reference. bleu_matches = bleu.bleu_partial(references, predictions) all_bleu_matches = per_host_sum_pmap(bleu_matches) bleu_score = bleu.complete_bleu(*all_bleu_matches) # Save translation samples for tensorboard. exemplars = '' for n in np.random.choice(np.arange(len(predictions)), 8): exemplars += f'{sources[n]}\n\n{references[n]}\n\n{predictions[n]}\n\n' if jax.host_id() == 0: eval_summary_writer.scalar('bleu', bleu_score, step) eval_summary_writer.text('samples', exemplars, step) eval_summary_writer.flush() logging.info('Translation BLEU Score %.4f', bleu_score) if __name__ == '__main__': app.run(main)
py
b404d40eb8e4f8ecbfa43fe3e29accff8a4ef487
import pyvista plotter = pyvista.Plotter() actor = plotter.add_mesh(pyvista.Sphere()) plotter.store_image = True plotter.show() zval = plotter.get_image_depth()
py
b404d44cbe3c915a08d2385c39be1359cef3d1da
# Copyright (c) FULIUCANSHENG. # Licensed under the MIT License. # pretrained infos pretrained_bart_infos = { "default-bart": { "config": "https://huggingface.co/facebook/bart-base/resolve/main/config.json", "vocab": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "merge": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", }, "bart-base": { "config": "https://huggingface.co/facebook/bart-base/resolve/main/config.json", "vocab": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "merge": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "weight": "https://huggingface.co/facebook/bart-base/resolve/main/pytorch_model.bin", }, "bart-large": { "config": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", "vocab": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "merge": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "weight": "https://huggingface.co/facebook/bart-large/resolve/main/pytorch_model.bin", }, } import unitorch.cli.models.bart.modeling import unitorch.cli.models.bart.processing
py
b404d45e17c349164ce428ce9820a9751b8b90fc
import torch import torch.fx.experimental.fx_acc.acc_ops as acc_ops import torch.nn as nn from caffe2.torch.fb.fx2trt.tests.test_utils import AccTestCase, InputTensorSpec from parameterized import parameterized, param class TestLayerNormConverter(AccTestCase): @parameterized.expand( [ param("1d_normalized_shape", [10], [2, 10]), param("2d_normalized_shape", [5, 10], [2, 5, 10]), param("4d_input_shape", [5, 10], [2, 8, 5, 10]), ] ) def test_layer_norm(self, _, normalized_shape, input_shape): class LayerNorm(nn.Module): def __init__(self, normalized_shape): super().__init__() self.mod = nn.LayerNorm(normalized_shape, eps=1e-02) def forward(self, x): return self.mod(x) inputs = [torch.randn(input_shape)] self.run_test( LayerNorm(normalized_shape), inputs, expected_ops={acc_ops.layer_norm}, ) @parameterized.expand( [ param("1d_normalized_shape", [10], (10,)), param("2d_normalized_shape", [5, 10], (5, 10)), param("4d_input_shape", [5, 10], (8, 5, 10)), ] ) def test_layer_norm_with_dynamic_shape(self, _, normalized_shape, input_shape): class LayerNorm(nn.Module): def __init__(self, normalized_shape): super().__init__() self.mod = nn.LayerNorm(normalized_shape, eps=1e-02) def forward(self, x): return self.mod(x) input_specs = [ InputTensorSpec( shape=(-1,) + input_shape, dtype=torch.float32, shape_ranges=[ ((1,) + input_shape, (4,) + input_shape, (10,) + input_shape) ], ), ] self.run_test_with_dynamic_shape( LayerNorm(normalized_shape), input_specs, expected_ops={acc_ops.layer_norm} )
py
b404d4dd8b10ed0ca83bef56eb9ec13dbe48a0d8
#!/usr/bin/python # -*- coding: utf-8 -*- # thumbor imaging service # https://github.com/thumbor/thumbor/wiki # Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license # Copyright (c) 2011 globo.com [email protected] from os.path import abspath, dirname, join from preggy import expect from shutil import which from tests.base import TestCase from thumbor.config import Config from thumbor.context import RequestParameters, ServerParameters from thumbor.engines.gif import Engine from thumbor.importer import Importer STORAGE_PATH = abspath(join(dirname(__file__), "../fixtures/images/")) class GitEngineTestCase(TestCase): def get_config(self): return Config( SECURITY_KEY="ACME-SEC", ENGINE="thumbor.engines.gif", IMAGE_METADATA_READ_FORMATS="exif,xmp", LOADER="thumbor.loaders.file_loader", FILE_LOADER_ROOT_PATH=STORAGE_PATH, STORAGE="thumbor.storages.no_storage", USE_GIFSICLE_ENGINE=True, RESPECT_ORIENTATION=True, ) def get_importer(self): return Importer(self.config) def get_server(self): server = ServerParameters(8889, "localhost", "thumbor.conf", None, "info", None) server.security_key = "ACME-SEC" server.gifsicle_path = which("gifsicle") return server def get_context(self): context = super(GitEngineTestCase, self).get_context() req = RequestParameters(url="/foo/bar.gif") context.request = req return context def test_create_engine(self): engine = Engine(self.context) expect(engine).to_be_instance_of(Engine) def test_load_image(self): engine = Engine(self.context) with open(join(STORAGE_PATH, "animated.gif"), "rb") as image_file: buffer = image_file.read() image = engine.create_image(buffer) expect(image.format).to_equal("GIF") def test_errors_on_gifsicle_should_not_raises_errors_when_output(self): engine = Engine(self.context) with open(join(STORAGE_PATH, "SmallFullColourGIF.gif"), "rb") as image_file: buffer = image_file.read() engine.load(buffer, ".gif") result = engine.run_gifsicle("--some-invalid-opt") expect(result).Not.to_be_null() def test_is_multiple_should_returns_true_if_gif_has_many_frames(self): engine = Engine(self.context) with open(join(STORAGE_PATH, "animated.gif"), "rb") as image_file: buffer = image_file.read() engine.load(buffer, ".gif") expect(engine.is_multiple()).to_be_true() def test_is_multiple_should_returns_false_if_gif_has_one_frame(self): engine = Engine(self.context) with open(join(STORAGE_PATH, "animated-one-frame.gif"), "rb") as image_file: buffer = image_file.read() engine.load(buffer, ".gif") expect(engine.is_multiple()).to_be_false() def test_convert_to_grayscale_should_update_image(self): engine = Engine(self.context) with open(join(STORAGE_PATH, "animated.gif"), "rb") as image_file: buffer = image_file.read() engine.load(buffer, ".gif") buffer = engine.read() engine.convert_to_grayscale() expect(buffer).not_to_equal(engine.read()) def test_convert_to_grayscale_should_not_update_image(self): engine = Engine(self.context) with open(join(STORAGE_PATH, "animated.gif"), "rb") as image_file: buffer = image_file.read() engine.load(buffer, ".gif") buffer = engine.read() engine.convert_to_grayscale(False) expect(buffer).to_equal(engine.read())
py
b404d651d864ecfb7ba8e8448f228cc80e183130
import sqlite3 import pytest from sonoser.db import get_db def test_get_close_db(app): with app.app_context(): db = get_db() assert db is get_db() with pytest.raises(sqlite3.ProgrammingError) as e: db.execute('SELECT 1') assert 'closed' in str(e.value) def test_init_db_command(runner, monkeypatch): class Recorder(object): called = False def fake_init_db(): Recorder.called = True monkeypatch.setattr('sonoser.db.init_db', fake_init_db) result = runner.invoke(args=['init-db']) assert 'Initialized' in result.output assert Recorder.called
py
b404d696aff1de25253055404181b8e30cf60b43
# # Transmission Line Simulator # # Author(s): Jiacong Xu # Created: Jun-27-2017 #
py
b404d733b36a1438f20b6256346cf82a74f0f4ce
# -*- coding: utf-8 -*- import json from collections import defaultdict from datetime import datetime import sqlalchemy from dnsdb.constant.constant import NORMAL_TO_CNAME from .models import DnsSerial from .models import ViewDomainNameState from .models import ViewIspStatus from .models import ViewIsps from .models import ViewMigrateDetail from .models import ViewMigrateHistory from .models import ViewRecords from ..dal import commit_on_success, db from ..library.exception import DnsdbException, BadParam from ..library.log import setup, getLogger setup("dnsdb") log = getLogger(__name__) A_RECORDS = ('A', 'AAAA') class MigrateDal(object): @staticmethod @commit_on_success def increase_serial_num(zone_list): log.info('increase_serial_num: %s', zone_list) for zone_name in zone_list: serials = DnsSerial.query.filter_by(zone_name=zone_name).all() if len(serials) != 1: raise BadParam('Zone serial should be unique: %s' % zone_name, msg_ch=u'zone serial记录不存在或者不唯一') serial = serials[0] serial.serial_num += 1 @staticmethod def get_isp_trans(): return {record.name_in_english: record.name_in_chinese for record in ViewIsps.query} @staticmethod def get_all_abnormal_isps(key=None, value=None): if key is None: return ViewIspStatus.query.filter_by(closed=False).order_by(ViewIspStatus.id.desc()).all() result_dict = {} for status in ViewIspStatus.query.filter_by(closed=False): k_v = getattr(status, key) v_v = getattr(status, value) result_dict.setdefault(k_v, set()) result_dict[k_v].add(v_v) return result_dict @staticmethod def get_view_domain_rooms(): domain_rooms = {} query = ViewRecords.query.filter(ViewRecords.record_type.in_(A_RECORDS)) for result in query.all(): domain_rooms.setdefault(result.domain_name, set()) domain_rooms[result.domain_name].add(result.property) return domain_rooms @staticmethod def get_history_info(history_id): return ViewMigrateHistory.query.get(history_id) @staticmethod def get_migrated_history(): return ViewMigrateHistory.query.filter_by(state='migrated').all() @staticmethod def get_last_few_history(limit): return ViewMigrateHistory.query.order_by(ViewMigrateHistory.id.desc()).limit(limit).all() @staticmethod def add_migrate_history(migrate_rooms, migrate_isps, dst_rooms, state, cur, length, rtx_id): with db.session.begin(subtransactions=True): history = ViewMigrateHistory(migrate_rooms, migrate_isps, dst_rooms, state, cur, length, rtx_id) db.session.add(history) return history.id @staticmethod def delete_history_by_id(history_id): session = db.session with session.begin(subtransactions=True): history = session.query(ViewMigrateHistory).get(history_id) if history is None: log.error('delete_history_by_id error: no ViewMigrateHistory to Delete: %s' % history_id) return False, 'No ViewMigrateHistory to Delete: %s' % history_id session.delete(history) return True, '' @staticmethod @commit_on_success def update_history_total(history_id, length): history = ViewMigrateHistory.query.filter( ViewMigrateHistory.id == history_id).with_for_update(of=ViewMigrateHistory).first() history.all += length @staticmethod @commit_on_success def update_history_count(history_id, count): history = ViewMigrateHistory.query.filter( ViewMigrateHistory.id == history_id).with_for_update(of=ViewMigrateHistory).first() history.cur += count if history.all == history.cur: history.state = 'migrated' history.update_at = datetime.now() @staticmethod @commit_on_success def update_history_by_id(history_id, **kwargs): count = ViewMigrateHistory.query.filter_by(id=history_id).update(kwargs) return count @staticmethod @commit_on_success def add_or_update_abnormal_isp(user, isp, room): count = ViewIspStatus.query.filter_by(isp=isp, room=room, closed=False).update({ 'is_health': False }) if count: return True, 'update' db.session.add(ViewIspStatus(isp=isp, room=room, update_user=user)) return True, 'add' @staticmethod @commit_on_success def add_batch_abnormal_isp(user, isp_rooms_dict): for isp, rooms in isp_rooms_dict.items(): for room in rooms: MigrateDal.add_or_update_abnormal_isp(user, isp, room) @staticmethod def list_migrate_domain_by_isp(to_migrate_dict, dst_rooms): isp_migrate_domains = {} # 得到所有域名与对应机房的结果 domain_rooms = MigrateDal.get_view_domain_rooms() # 符合迁移条件的域名与机房的结果 for isp, migrate_rooms in to_migrate_dict.items(): migrate_domains_list = [] rules = set() # 只迁移A记录 q = (ViewDomainNameState.query. filter_by(isp=isp, state='A'). order_by(ViewDomainNameState.domain_name)) for result in q: origin_enabled_rooms = set(json.loads(result.enabled_rooms)) actual_migrate_rooms = origin_enabled_rooms & migrate_rooms if not actual_migrate_rooms: continue # 根据迁移规则得到迁移机房列表 domain = result.domain_name after_rooms = [dst_room for dst_room in dst_rooms if dst_room in domain_rooms[domain] and dst_room not in migrate_rooms] migrate_domains_list.append({ 'domain_name': domain, 'cur': ','.join(sorted(actual_migrate_rooms)), 'after': ','.join(sorted(after_rooms)), 'after_enabled_rooms': after_rooms, 'eisps': isp }) isp_migrate_domains[isp] = migrate_domains_list return isp_migrate_domains @staticmethod def list_migrate_domain(src_rooms, dst_rooms, to_migrate_isps): migrated_isp_rooms = MigrateDal.get_all_abnormal_isps(key='isp', value='room') to_migrate_dict = {isp: set(src_rooms) | migrated_isp_rooms.get(isp, set()) for isp in to_migrate_isps} isp_migrate_domains = MigrateDal.list_migrate_domain_by_isp(to_migrate_dict, dst_rooms) domains_cur_after_isps = {} for isp, domains in isp_migrate_domains.items(): for domain_info in domains: if not domain_info['cur']: continue domain = domain_info['domain_name'] domains_cur_after_isps.setdefault(domain, defaultdict(list)) domains_cur_after_isps[domain][(domain_info['cur'], domain_info['after'])].append(domain_info['eisps']) domain_isps = [] trans = MigrateDal.get_isp_trans() for domain, rule_isps in domains_cur_after_isps.items(): for (cur, after), isps in rule_isps.items(): domain_isps.append({ 'domain_name': domain, 'cur': cur, 'after': after, 'isps': sorted([trans[eisp] for eisp in isps if eisp]) }) return sorted(domain_isps, key=lambda x: x['domain_name']) @staticmethod def create_migrage_history(username): history_id = MigrateDal.add_migrate_history('', '', '', 'migrating', 1, 1, username) try: ing_count = ViewMigrateHistory.query.filter( ViewMigrateHistory.state.in_(ViewMigrateHistory.check_states)).count() if ing_count > 1: raise DnsdbException('migrate running', msg_ch=u'有正在进行的迁移,请稍后重试') except Exception: # 删掉占位的历史记录 MigrateDal.delete_history_by_id(history_id) raise return history_id @staticmethod @commit_on_success def migrate_domains(domain_infos, history_id): # tb_view_domain_name_state 主键 (domain_name, isp) for domain_info in domain_infos: enabled_rooms = domain_info['after_enabled_rooms'] cur_state = (ViewDomainNameState.query. filter_by(domain_name=domain_info['domain_name'], isp=domain_info['eisps'])).first() # 记录历史状态信息 migrate_state = ViewMigrateDetail(migrate_id=history_id, domain_name=cur_state.domain_name, before_enabled_server_rooms=cur_state.enabled_rooms, after_enabled_server_rooms=json.dumps(enabled_rooms), isp=cur_state.isp, before_state=cur_state.state, after_state='A') db.session.add(migrate_state) cur_state.enabled_rooms = json.dumps(enabled_rooms) cur_state.state = 'A' MigrateDal.update_history_count(history_id, len(domain_infos)) @staticmethod @commit_on_success def onekey_recover_rooms(): with db.session.begin(subtransactions=True): (ViewIspStatus.query.filter_by(closed=False). update({"closed": True, "is_health": True})) ViewMigrateHistory.query.filter_by(state='migrated').update({'state': 'recovered'}) q = ViewDomainNameState.query.filter(sqlalchemy.or_( ViewDomainNameState.origin_enabled_rooms != ViewDomainNameState.enabled_rooms, ViewDomainNameState.origin_state != ViewDomainNameState.state )) if q.count() == 0: raise BadParam('no domain to recover', msg_ch=u'没有可恢复的域名') for item in q: item.enabled_rooms = item.origin_enabled_rooms item.state = item.origin_state MigrateDal.increase_serial_num(NORMAL_TO_CNAME.values()) @staticmethod def get_view_migrate_detail(migrate_id, domain, page, page_size): detail_list = [] migrate_rules = ViewMigrateHistory.query.filter( ViewMigrateHistory.id == migrate_id).first().dst_rooms query = ViewMigrateDetail.query.filter(ViewMigrateDetail.migrate_id == migrate_id) if domain != '': query = query.filter(ViewMigrateDetail.domain_name.like('%{}%'.format(domain))) total = query.count() details = query.order_by(ViewMigrateDetail.domain_name).offset(page_size * (page - 1)).limit(page_size).all() trans = MigrateDal.get_isp_trans() for detail in details: detail_list.append({ 'domain_name': detail.domain_name, 'isp': trans[detail.isp], 'before_enabled_server_rooms': ','.join(sorted(json.loads(detail.before_enabled_server_rooms))), 'after_enabled_server_rooms': ','.join(sorted(json.loads(detail.after_enabled_server_rooms))) }) return {'total': total, 'migrate_rules': ','.join(sorted(json.loads(migrate_rules))), 'detail': detail_list}
py
b404d76ffd86275ab57f111331bffc6fc70d6864
from django.apps import AppConfig class CardapioConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'cardapio'
py
b404d95b1481eabf0c1d28ef7a2df9a424116bb1
import numpy class module_template: def __init__(self): pass def module_processor(self, in_data: numpy.ndarray, frame_count: int, time_info: dict, flag: int) -> (numpy.ndarray, int): return in_data
py
b404da779452215e7957c7aa504474dc6fd09eaa
from functools import wraps, partial, update_wrapper from flask import current_app, request from jsonschema.validators import validator_for class JsonValidationError(Exception): def __init__(self, message, errors): self.message = message self.errors = errors class JsonSchema(object): def __init__(self, app=None): self.app = app self.config = {} self.validator_cls = None if app is not None: self.init_app(app) def init_app(self, app): self.app = app self.config = app.config.copy() self.config.setdefault('JSON_SCHEMA_METHODS', ['POST', 'PUT', 'PATCH']) self.config.setdefault('JSON_SCHEMA_FORMAT_CHECKER', None) def validate(self, schema, methods=None, format_checker=None): def wrapper(fn): @wraps(fn) def decorated(methods=None, format_checker=None, *args, **kwargs): validator_kwargs = { 'schema': schema, 'format_checker': format_checker if format_checker else self.config.get('JSON_SCHEMA_FORMAT_CHECKER') } # use default methods if not supplied as arguments to decorator if not methods: methods = self.config.get('JSON_SCHEMA_METHODS') # check jsonschema if request.method in methods: validator_cls = self.validator_cls if self.validator_cls else validator_for(schema) validator = validator_cls(**validator_kwargs) errors = list(validator.iter_errors(request.get_json())) if errors: raise JsonValidationError('Error validating against schema', errors) return fn(*args, **kwargs) # the wrapper() func ctx has access to format_checker & methods, but the decorator # won't, so we use partial, where those args are passed in pfunc = partial(decorated, format_checker=format_checker, methods=methods) # this is needed because partial() doesn't add in __name__ attribute to the created # partial function, which Flask requires update_wrapper(pfunc, decorated) return pfunc return wrapper
py
b404db16bec750bd2320849bf3341c9f057640b0
from .apps import Apps from .dbs import Dbs from .servers import Servers from .sysusers import Sysusers
py
b404db48027f898543617260b70ec3b75925da0d
from django.shortcuts import render, redirect from django.views.generic import View import os # Create your views here. class SetupView(View): def get(self, request): context = {} return render(request, 'setup/index.html', context) class SetupProceedView(View): def get(self, request): os.system("python manage.py migrate") #os.system("python manage.py collectstatic") return redirect('/sys_console/init_setup/')
py
b404db9394afec7677247fb0e1b9290302380d38
def test_two_runs_no_clean(): """ >>> report_fixture = getfixture('allure_report_with_params') >>> allure_report_first_run = report_fixture(cache=False) >>> allure_report_second_run = report_fixture(cache=False) >>> assert_that(allure_report_second_run, ... has_only_n_test_cases('test_two_runs_no_clean', 2) ... ) """ assert True
py
b404dc5a5d286d7222b3b34e6a827a840d49e295
# Copyright (c) 2020 DDN. All rights reserved. # Use of this source code is governed by a MIT-style # license that can be found in the LICENSE file. from textwrap import fill class ApiException(Exception): pass class InvalidApiResource(ApiException): def __init__(self, name): self.error_str = "Invalid API Resource: %s" % name super(InvalidApiResource, self).__init__() def __str__(self): return self.error_str class UnsupportedFormat(ApiException): pass class TooManyMatches(ApiException): """ Too many matches returned during a fuzzy-id lookup. """ def __init__(self, msg=None): self.msg = msg super(TooManyMatches, self).__init__() def __str__(self): if not self.msg: return "The query matched more than one record." else: return self.msg class InvalidVolumeNode(ApiException): def __init__(self, input): self.input = input super(InvalidVolumeNode, self).__init__() def __str__(self): return "Invalid VolumeNode spec: %s (malformed or bad path?)" % self.input class BadUserInput(ApiException): """ Generic exception for bad user input detected post-argparse. """ pass class BadRequest(ApiException): """ Represents a failed TastyPie validation or other 400-level error. """ def __init__(self, value): self.error_dict = value super(BadRequest, self).__init__() def __str__(self): lines = ["The server rejected the request with the following error(s):"] try: for field, errors in self.error_dict.items(): try: lines.extend([" %s: %s" % (field, ", ".join(errors.values()[0]))]) except (AttributeError, IndexError): if isinstance(errors, basestring): errors = [errors] for error in errors: if error: lines.extend([" %s: %s" % (field, error)]) except AttributeError: # Sometimes what comes back is just a string. lines.append(self.error_dict) return "\n".join(lines) class InternalError(ApiException): """ HTTP 500 """ def __init__(self, backtrace): self.backtrace = backtrace super(InternalError, self).__init__() def __str__(self): return self.backtrace class NotFound(ApiException): """ HTTP 404 """ pass class UnauthorizedRequest(ApiException): """ HTTP 401 """ pass class AuthenticationFailure(ApiException): """ HTTP 401 after trying to authenticate. """ def __str__(self): return "Authentication failed. Check username/password." class ApiConnectionError(ApiException): def __init__(self, api_url): self.api_url = api_url super(ApiConnectionError, self).__init__() def __str__(self): return "Failed to connect to %s (is --api_url correct?)" % self.api_url class InvalidStateChange(ApiException): def __init__(self, requested_state, available_states): self.requested_state = requested_state self.available_states = available_states def __str__(self): return "The requested state (%s) is not one of the available states: %s" % ( self.requested_state, ", ".join(self.available_states), ) class InvalidJobError(ApiException): def __init__(self, requested_job, available_jobs): self.requested_job = requested_job self.available_jobs = available_jobs def __str__(self): return "The requested job (%s) is not one of the available jobs: %s" % ( self.requested_job, ", ".join(self.available_jobs), ) class AbnormalCommandCompletion(Exception): def __init__(self, command, status): self.status = status self.command = command super(AbnormalCommandCompletion, self).__init__() def __str__(self): return "Command completed with abnormal status: %s (%s)" % (self.status, self.command["message"]) class UserConfirmationRequired(ApiException): skip_argument = "force" def __str__(self): return "Confirmation required." class JobConfirmationRequired(UserConfirmationRequired): def __init__(self, verb, subject, confirmation): self.verb = verb self.subject = subject self.confirmation = confirmation def __str__(self): return "Running %s on %s requires confirmation of the following:\n%s" % ( self.verb, self.subject, fill(self.confirmation, initial_indent=" ", subsequent_indent=" "), ) class StateChangeConfirmationRequired(UserConfirmationRequired): def __init__(self, report): self.report = report @property def consequences(self): return sorted([j["description"] for j in self.report["dependency_jobs"] + [self.report["transition_job"]]]) def __str__(self): return """ This action (%s) has the following consequences: %s """ % ( self.report["transition_job"]["description"], "\n".join([" * %s" % c for c in self.consequences]), ) class ReformatVolumesConfirmationRequired(UserConfirmationRequired): skip_argument = "reformat" def __init__(self, volumes): self.volumes = volumes def __str__(self): return """ One or more of the selected volumes already contains a filesystem, but may not actually be in use. Please check the following list of volumes and verify that they are suitable for use as Lustre targets: %s """ % "\n".join( [" %s" % v for v in self.volumes] )
py
b404dd3c523b84869a58a5ff2d9cdd2a4a8f5b0a
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) # -- Project information ----------------------------------------------------- project = 'Speech Emotion Recognition' copyright = '2019, Hemanth Kumar Veeranki' author = 'Hemanth Kumar Veeranki' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '1.0' # -- General configuration --------------------------------------------------- autosummary_generate = True # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.napoleon', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', 'm2r', ] # Napoleon related configs. napoleon_google_docstring = True napoleon_numpy_docstring = True napoleon_include_init_with_doc = True napoleon_include_private_with_doc = False napoleon_include_special_with_doc = True napoleon_use_admonition_for_examples = False napoleon_use_admonition_for_notes = False napoleon_use_admonition_for_references = False napoleon_use_ivar = False napoleon_use_param = True napoleon_use_rtype = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] # source_suffix = '.rst' # The master toctree document. master_doc = 'main' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'SpeechEmotionRecognitiondoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'SpeechEmotionRecognition.tex', 'Speech Emotion Recognition Documentation', 'Hemanth Kumar Veeranki', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'speechemotionrecognition', 'Speech Emotion Recognition Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'SpeechEmotionRecognition', 'Speech Emotion Recognition Documentation', author, 'SpeechEmotionRecognition', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration -------------------------------------------------
py
b404dd5c9eb271d008e15e3f2be350f1280061e2
import click import pytest from catacomb import entry_points from catacomb.common import constants from click.testing import CliRunner # Fixtures. @pytest.fixture(scope="module", params=[["-h"], ["--help"]]) def help_flag(request): return request.param class TestTombHelp(object): """Testing various scenarios that should show the help view. """ def test_tomb_help_view(self, help_flag): result = CliRunner().invoke(entry_points.tomb_entry, help_flag) # No failure. assert result.exit_code == 0 # Correct help text. assert "Usage:" in result.output assert "Options:" in result.output assert "Commands:" in result.output def test_add_help_view(self, help_flag): result = CliRunner().invoke( entry_points.tomb_entry, ["add", help_flag[0]]) assert result.exit_code == 0 # Correct description present. assert constants.CMD_ADD_DESC in result.output assert "Usage:" in result.output assert "Options:" in result.output # There aren't any subcommands for this command. assert "Commands:" not in result.output def test_clean_help_view(self, help_flag): result = CliRunner().invoke( entry_points.tomb_entry, ["clean", help_flag[0]]) assert result.exit_code == 0 # Correct description present. assert constants.CMD_CLEAN_DESC in result.output assert "Usage:" in result.output assert "Options:" in result.output # There aren't any subcommands for this command. assert "Commands:" not in result.output def test_list_help_view(self, help_flag): result = CliRunner().invoke( entry_points.tomb_entry, ["list", help_flag[0]]) assert result.exit_code == 0 # Correct description present. assert constants.CMD_LIST_DESC in result.output assert "Usage:" in result.output assert "Options:" in result.output # There aren't any subcommands for this command. assert "Commands:" not in result.output def test_rm_help_view(self, help_flag): result = CliRunner().invoke( entry_points.tomb_entry, ["rm", help_flag[0]]) assert result.exit_code == 0 # Correct description present. assert constants.CMD_RM_DESC in result.output assert "Usage:" in result.output assert "Options:" in result.output # There aren't any subcommands for this command. assert "Commands:" not in result.output def test_status_help_view(self, help_flag): result = CliRunner().invoke( entry_points.tomb_entry, ["status", help_flag[0]]) assert result.exit_code == 0 # Correct description present. assert constants.CMD_STATUS_DESC in result.output assert "Usage:" in result.output assert "Options:" in result.output # There aren't any subcommands for this command. assert "Commands:" not in result.output def test_use_help_view(self, help_flag): result = CliRunner().invoke( entry_points.tomb_entry, ["use", help_flag[0]]) assert result.exit_code == 0 # Correct description present. assert constants.CMD_USE_DESC in result.output assert "Usage:" in result.output assert "Options:" in result.output # There aren't any subcommands for this command. assert "Commands:" not in result.output
py
b404dda51bd16378e90014756cbc77c1babcd74b
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pipeline.param.base_param import BaseParam class PearsonParam(BaseParam): def __init__(self, column_names=None, column_indexes=None, cross_parties=True, need_run=True, use_mix_rand=False): super().__init__() self.column_names = column_names self.column_indexes = column_indexes self.cross_parties = cross_parties self.need_run = need_run self.use_mix_rand = use_mix_rand if column_names is None: self.column_names = [] if column_indexes is None: self.column_indexes = [] def check(self): if not isinstance(self.use_mix_rand, bool): raise ValueError(f"use_mix_rand accept bool type only, {type(self.use_mix_rand)} got") if self.cross_parties and (not self.need_run): raise ValueError(f"need_run should be True(which is default) when cross_parties is True.") if not isinstance(self.column_names, list): raise ValueError(f"type mismatch, column_names with type {type(self.column_names)}") for name in self.column_names: if not isinstance(name, str): raise ValueError(f"type mismatch, column_names with element {name}(type is {type(name)})") if isinstance(self.column_indexes, list): for idx in self.column_indexes: if not isinstance(idx, int): raise ValueError(f"type mismatch, column_indexes with element {idx}(type is {type(idx)})") if isinstance(self.column_indexes, int) and self.column_indexes != -1: raise ValueError(f"column_indexes with type int and value {self.column_indexes}(only -1 allowed)") if self.need_run: if isinstance(self.column_indexes, list) and isinstance(self.column_names, list): if len(self.column_indexes) == 0 and len(self.column_names) == 0: raise ValueError(f"provide at least one column")
py
b404ddd2196524d9438b9a38096a634e33df0f53
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from typing import Any, Dict, Optional, Tuple import torch import torch.nn.functional as F from torch import nn import poptorch from optimum.utils import logging from transformers import AutoConfig, PreTrainedModel from transformers.modeling_outputs import ModelOutput from .ipu_configuration import IPUConfig logger = logging.get_logger(__name__) _PRETRAINED_TO_PIPELINED_REGISTRY = {} def register(transformers_cls=None): def wrapper(cls): orig_cls = transformers_cls if orig_cls is None: found = False for base_cls in cls.__bases__: if base_cls != PipelineMixin: orig_cls = base_cls found = True break if not found: raise ValueError(f"Was not able to find original transformers class for {cls}") _PRETRAINED_TO_PIPELINED_REGISTRY[orig_cls] = cls return cls return wrapper def to_pipelined(model: nn.Module, ipu_config: IPUConfig, force: bool = False): model_cls = model.__class__ pipelined_cls = _PRETRAINED_TO_PIPELINED_REGISTRY.get(model_cls, None) if pipelined_cls is not None: return pipelined_cls.from_transformers(model, ipu_config) else: if force: logger.warning( f"No pipelined version exists for {model_cls.__name__}, creating it dynamically, it might not work as expected." ) pipelined_cls = type(f"Pipelined{model_cls.__name__}", (model_cls, PipelineMixin), {}) return pipelined_cls.from_model(model) else: raise KeyError(f"{model_cls.__name__} pipelined version not found in registry.") class PipelineMixin: @classmethod def from_transformers(cls, model: PreTrainedModel, ipu_config: IPUConfig): config = copy.deepcopy(model.config) pipelined_model = cls(config) pipelined_model.load_state_dict(model.state_dict()) pipelined_model.ipu_config = copy.deepcopy(ipu_config) return pipelined_model @classmethod def from_pretrained_transformers(cls, model_name_or_path: str, ipu_config: IPUConfig): config = AutoConfig.from_pretrained(model_name_or_path) pipelined_model = cls.from_pretrained(model_name_or_path, config=config) pipelined_model.ipu_config = copy.deepcopy(ipu_config) return pipelined_model @classmethod def from_model(cls, model: nn.Module): clone = copy.deepcopy(model) clone.__class__ = cls # Just needed so that .parallelize() does not throw an error clone.ipu_config = IPUConfig() return clone def _has_ipu_config_check(self): _ipu_config = getattr(self, "_ipu_config", None) if _ipu_config is None: raise AttributeError("No IPUConfig was found, please set the ipu_config attribute") @property def ipu_config(self): self._has_ipu_config_check() return self._ipu_config @ipu_config.setter def ipu_config(self, value: IPUConfig): if not isinstance(value, IPUConfig): raise TypeError(f"ipu_config must be an instance of IPUConfig, but {type(value)} was provided") self._ipu_config = value def parallelize(self): """Transform the model to run in an IPU pipeline.""" self._hooks = [] self._has_ipu_config_check() return self def deparallelize(self): """ Undo the changes to the model done by `parallelize`. You should call this before doing `save_pretrained` so that the `model.state_dict` is fully compatible with the original model. """ # Remove hooks if hasattr(self, "_hooks"): for h in self._hooks: h.remove() # Remove poptorch Blocks for m in self.modules(): if m is not self: poptorch.removeBlocks(m) return self def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int: """ Get number of (optionally, trainable or non-embeddings) parameters in the module. Args: only_trainable (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return only the number of trainable parameters exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return only the number of non-embeddings parameters Returns: :obj:`int`: The number of parameters. """ # TODO: actually overwrite this to handle SerializedEmbedding. if exclude_embeddings: embedding_param_names = [ f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding) ] non_embedding_parameters = [ parameter for name, parameter in self.named_parameters() if name not in embedding_param_names ] return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable) else: return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable) def _prepare_encoder_decoder_kwargs_for_generation( self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str] = None ) -> Dict[str, Any]: # 2. prepare encoder args and encoder kwargs from model kwargs irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } model_input_name = model_input_name if model_input_name is not None else self.main_input_name encoder_kwargs["return_dict"] = True encoder_kwargs[model_input_name] = inputs_tensor # 1. get encoder compiled_encoder = getattr(self, "_compiled_encoder", None) if compiled_encoder is None: encoder = self.get_encoder() # TODO: how to pass the poptorch options? compiled_encoder = poptorch.inferenceModel(encoder.eval()) compiled_encoder.compile(**encoder_kwargs) # 3. make sure that encoder returns `ModelOutput` model_input_name = model_input_name if model_input_name is not None else self.main_input_name encoder_kwargs["return_dict"] = True encoder_kwargs[model_input_name] = inputs_tensor model_kwargs["encoder_outputs"]: "ModelOutput" = compiled_encoder(**encoder_kwargs) return model_kwargs def get_layer_ipu(layers_per_ipu): # List of the IPU Id for each encoder layer layer_ipu = [] for ipu, n_layers in enumerate(layers_per_ipu): layer_ipu += [ipu] * n_layers return layer_ipu def recomputation_checkpoint(module: nn.Module): """Annotates the output of a module to be checkpointed instead of recomputed""" def recompute_outputs(module, inputs, outputs): return tuple(poptorch.recomputationCheckpoint(y) for y in outputs) return module.register_forward_hook(recompute_outputs) def outline_attribute(module: nn.Module, value: str): """Adds an attribute to a module. This attribute will be used when comparing operation equivalence in outlining. For example: layer1 = nn.Linear(...) layer2 = nn.Linear(...) layer3 = nn.Linear(...) layer4 = nn.Linear(...) outline_attribute(layer1, "A") outline_attribute(layer2, "A") outline_attribute(layer3, "B") The code for layer1 can be reused for layer2. But it can't be used for layer3 or layer4. """ context = poptorch.Attribute(__outline={"layer": value}) def enable(*args): context.__enter__() def disable(*args): context.__exit__(None, None, None) handles = [] handles.append(module.register_forward_pre_hook(enable)) handles.append(module.register_forward_hook(disable)) return handles class SerializedEmbedding(nn.Module): """ Wrapper for `nn.Embedding` layer that performs the embedding look-up into smaller serialized steps in order to reduce memory in the embedding gradient calculation. Args: embedding: A `nn.Embedding` to wrap serialization_factor: The number of serialized embedding look-ups """ def __init__(self, embedding: nn.Embedding, serialization_factor: int): super().__init__() self.serialization_factor = serialization_factor self.num_embeddings = embedding.num_embeddings # Num embeddings should be divisible by the serialization factor assert self.num_embeddings % self.serialization_factor == 0 self.split_size = self.num_embeddings // self.serialization_factor self.split_embeddings = nn.ModuleList( [ nn.Embedding.from_pretrained( embedding.weight[i * self.split_size : (i + 1) * self.split_size, :].detach(), freeze=False, padding_idx=embedding.padding_idx if i == 0 else None, ) for i in range(self.serialization_factor) ] ) def deserialize(self): """ Deserialize the internal wrapped embedding layer and return it as a `nn.Embedding` object. Returns: `nn.Embedding` layer """ return nn.Embedding.from_pretrained(torch.vstack([l.weight for l in self.split_embeddings]), padding_idx=0) def forward(self, indices): # iterate through the splits x_sum = None for i in range(self.serialization_factor): # mask out the indices not in this split split_indices = indices - i * self.split_size mask = (split_indices >= 0) * (split_indices < self.split_size) mask = mask.detach() split_indices *= mask # do the embedding lookup x = self.split_embeddings[i](split_indices) # multiply the output by mask x *= mask.unsqueeze(-1) # add to partial if x_sum is not None: x_sum += x else: x_sum = x return x_sum class SerializedLinear(nn.Linear): """ Exactly equivalent to `nn.Linear` layer, but with the matrix multiplication replaced with a serialized matrix multiplication: `poptorch.serializedMatMul`. The matrix multiplication is split into separate smaller multiplications, calculated one after the other, to reduce the memory requirements of the multiplication and its gradient calculation. Args: in_features: Size of each input sample out_features: Size of each output sample factor: Number of serialized multiplications. Must be a factor of the dimension to serialize on. bias: If set to False, the layer will not learn an additive bias. Default: True mode: Which dimension of the matmul to serialize on: for matrix A (m by n) multiplied by matrix B (n by p). * InputChannels: Split across the input channels (dimension m). * ReducingDim: Split across the reducing dimension (n). * OutputChannels: Split across the output channels (dimension p). * Disabled: Same as an ordinary matrix multiplication. """ def __init__( self, in_features, out_features, factor, bias=False, mode=poptorch.MatMulSerializationMode.OutputChannels ): super().__init__(in_features, out_features, bias) self.mode = mode self.factor = factor def forward(self, x): output = poptorch.serializedMatMul(x, self.weight.t(), self.mode, self.factor) if self.bias is not None: output += self.bias return output class SharedEmbedding(nn.Module): """Wrapper around the shared embedding between the encoder and the decoder stacks. Attributes: shared: The shared embedding layer. """ def __init__(self, shared: nn.Embedding): super().__init__() self.shared = shared def _combine_inputs(self, input_ids: torch.Tensor, decoder_input_ids: torch.Tensor) -> Tuple[int, torch.Tensor]: idx = input_ids.size(1) return idx, torch.cat([input_ids, decoder_input_ids], dim=1) def _separate_inputs(self, idx: int, embeds: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: return embeds[:, :idx, :], embeds[:, idx:, :] def forward( self, input_ids: torch.Tensor, decoder_input_ids: torch.Tensor, encoder_embed_scale: Optional[float] = None, decoder_embed_scale: Optional[float] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # TODO: use this once the TiedGather pattern issue is solved. # encoder_inputs_embeds, decoder_inputs_embeds = None, None # if input_ids is not None and encoder_embed_scale is not None: # encoder_inputs_embeds = self.shared(input_ids) * encoder_embed_scale # if decoder_input_ids is not None and decoder_embed_scale is not None: # decoder_inputs_embeds = self.shared(decoder_input_ids) * decoder_embed_scale # combined, n1, n2 = self._combine_inputs(input_ids, decoder_input_ids) # encoder_inputs_embeds, decoder_inputs_embeds = self._separate_inputs(self.shared(combined), n1, n2) idx, combined = self._combine_inputs(input_ids, decoder_input_ids) encoder_inputs_embeds, decoder_inputs_embeds = self._separate_inputs(idx, self.shared(combined)) if encoder_embed_scale: encoder_inputs_embeds = encoder_inputs_embeds * encoder_embed_scale if decoder_embed_scale: decoder_inputs_embeds = decoder_inputs_embeds * decoder_embed_scale return encoder_inputs_embeds, decoder_inputs_embeds class OnehotGather(nn.Module): """ Gathers selected indices from a tensor by transforming the list of indices into a one-hot matrix and then multiplying the tensor by that matrix. """ def __init__(self): super().__init__() self._is_half = False def half(self): super().half() # Tracing is always executed in float as there are missing # implementations of operations in half on the CPU. # So we cannot query the inputs to know if we are running # with a model that has had .half() called on it. # To work around it nn.Module::half is overridden self._is_half = True def forward(self, sequence, positions): """ Gather the vectors at the specific positions over a batch. """ num_classes = int(sequence.shape[1]) one_hot_positions = F.one_hot(positions, num_classes) if self._is_half: one_hot_positions = one_hot_positions.half() else: one_hot_positions = one_hot_positions.float() return torch.matmul(one_hot_positions.detach(), sequence)
py
b404de4d07ec52e416cdf5725ef5ff3704609823
## -*- coding: utf-8 -*- ## (C) 2021 Muthiah Annamalai import subprocess import re try: from tamilsandhi import check_sandhi SKIP_SANDHI_CHECKER = False except ModuleNotFoundError: SKIP_SANDHI_CHECKER = True NL = re.compile('\n+') SPC = re.compile('\s+') class ASpell: """ run GNU Aspell or ispell via pipe. Ref: http://aspell.net/man-html/Through-A-Pipe.html """ PIPE_CMD = re.split('\s+', "aspell -l ta --encoding UTF-8 -a --suggest") def __init__(self, command=PIPE_CMD): self.command = command self.text = "" self.result = {} def spellcheck(self, text, timeout=60): self.text = text pipe = subprocess.Popen(self.command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) output, _ = pipe.communicate(bytes(text, 'utf-8'), timeout) ASpell.parse_result(self.result, output.decode('utf-8')) if SKIP_SANDHI_CHECKER: return self.result prev_word = '' for line in re.split(NL, text): for word in re.split(SPC, line): if prev_word != '': if prev_word not in self.result: # if a word is in error we don't/can't do a sandhi-check sandhi_result, _ = check_sandhi([prev_word, word]) if sandhi_result[0] != prev_word: self.result[prev_word] = [sandhi_result[0], prev_word] if word.endswith('.'): prev_word = '' else: prev_word = word return self.result @staticmethod def parse_result(result, output): # Syntax of ASpell pipe # OK: * # Suggestions: & original count offset: miss, miss, … # None: # original offset for line in re.split('\n+', output): if not line.startswith('&'): continue word, suggestions = line.split(':') word = word.replace('&', '').strip().split(' ')[0] suggestions = [word.strip() for word in suggestions.split(',')] result[word] = suggestions return result
py
b404de7d816fb3de513076d9f9133a44110c376d
from rrutil import * send_gdb('c') expect_gdb('exited normally') restart_replay() expect_gdb('exited normally') ok()
py
b404e044c7d8ad18c4310e3469abb6aa1c58fdc7
import numpy as np ####################################### def init_matrix(size, init, std=None): input_size, output_size = size if init == 'zero': weights = np.zeros(shape=(input_size, output_size)) elif init == 'sqrt_fan_in': sqrt_fan_in = np.sqrt(input_size) weights = np.random.uniform(low=-1.0/sqrt_fan_in, high=1.0/sqrt_fan_in, size=(input_size, output_size)) elif init == 'glorot_uniform': limit = np.sqrt(6. / (input_size + output_size)) weights = np.random.uniform(low=-limit, high=limit, size=(input_size, output_size)) elif init == 'glorot_normal': scale = np.sqrt(2. / (input_size + output_size)) weights = np.random.normal(loc=0.0, scale=scale, size=(input_size, output_size)) elif init == 'alexnet': weights = np.random.normal(loc=0.0, scale=0.01, size=(input_size, output_size)) elif init == 'normal': scale = std weights = np.random.normal(loc=0.0, scale=scale, size=(input_size, output_size)) else: weights = np.random.normal(loc=0.0, scale=1.0, size=(input_size, output_size)) return weights ####################################### def init_filters(size, init, std=None): fh, fw, fin, fout = size if init == 'zero': weights = np.zeros(shape=(fh, fw, fin, fout)) elif init == 'sqrt_fan_in': assert (False) elif init == 'glorot_uniform': limit = np.sqrt(6. / (fh*fw*fin + fh*fw*fout)) weights = np.random.uniform(low=-limit, high=limit, size=(fh, fw, fin, fout)) elif init == 'glorot_normal': scale = np.sqrt(2. / (fh*fw*fin + fh*fw*fout)) weights = np.random.normal(loc=0.0, scale=scale, size=(fh, fw, fin, fout)) elif init == 'alexnet': weights = np.random.normal(loc=0.0, scale=0.01, size=(fh, fw, fin, fout)) elif init == 'normal': scale = std weights = np.random.normal(loc=0.0, scale=scale, size=(fh, fw, fin, fout)) else: assert (False) return weights ####################################### def init_local_filters(size, init, std=None): h, w, fh, fw, fin, fout = size if init == 'zero': weights = np.zeros(shape=(h, w, fh*fw*fin, fout)) elif init == 'sqrt_fan_in': assert (False) elif init == 'glorot_uniform': limit = np.sqrt(6. / (fh*fw*fin + fh*fw*fout)) weights = np.random.uniform(low=-limit, high=limit, size=(h, w, fh*fw*fin, fout)) elif init == 'glorot_normal': scale = np.sqrt(2. / (fh*fw*fin + fh*fw*fout)) weights = np.random.normal(loc=0.0, scale=scale, size=(h, w, fh*fw*fin, fout)) elif init == 'alexnet': weights = np.random.normal(loc=0.0, scale=0.01, size=(h, w, fh*fw*fin, fout)) elif init == 'normal': scale = std weights = np.random.normal(loc=0.0, scale=scale, size=(h, w, fh*fw*fin, fout)) else: assert (False) return weights #######################################
py
b404e13923b1b39cf882662be548277c293555d6
# -*- coding: utf-8 -*- # Scrapy settings for armus1 project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'armus1' SPIDER_MODULES = ['armus1.spiders'] NEWSPIDER_MODULE = 'armus1.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent USER_AGENT = ' Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36' # Obey robots.txt rules ROBOTSTXT_OBEY = False #默认为True,自设置为False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs DOWNLOAD_DELAY = 0.5 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'armus1.middlewares.Armus1SpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'armus1.middlewares.Armus1DownloaderMiddleware': 543, #} # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'armus1.pipelines.ArmusPipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
py
b404e1a9db66da1607470e6044ac4764a157d497
""" Visualizing AoLP image with the addition of modulation by DoLP """ import cv2 import numpy as np import os import polanalyser as pa def main(): # Read and Demosaicing image filepath = "dataset/dragon.png" img_raw = cv2.imread(filepath, 0) img_demosaiced = pa.demosaicing(img_raw) # Calculate Stokes vector radians = np.array([0, np.pi/4, np.pi/2, np.pi*3/4]) img_stokes = pa.calcStokes(img_demosaiced, radians) # Convert Stokes vector to DoLP and AoLP img_DoLP = pa.cvtStokesToDoLP(img_stokes) # 0~1 img_AoLP = pa.cvtStokesToAoLP(img_stokes) # 0~pi name, ext = os.path.splitext(filepath) # Apply the HSV color map on the AoLP image img_AoLP_color = pa.applyColorToAoLP(img_AoLP) cv2.imwrite(name+"_AoLP"+".png", img_AoLP_color) # Set saturation to DoLP # As a result, the image is lighter and has color only at the polarized area img_AoLP_light = pa.applyColorToAoLP(img_AoLP, saturation=img_DoLP) cv2.imwrite(name+"_AoLP_saturation"+".png", img_AoLP_light) # Set value to DoLP # As a result, the image is darker and has color only at the polarized area img_AoLP_dark = pa.applyColorToAoLP(img_AoLP, value=img_DoLP) cv2.imwrite(name+"_AoLP_value"+".png", img_AoLP_dark) if __name__=="__main__": main()
py
b404e1bea05597791500c8b91b03ebea37b65713
X = 99 def setX(new): global X X = new
py
b404e460f93573f5a99552c88a071e2b7982448a
import torchvision.models as models import numpy as np import foolbox from cnns.nnlib.datasets.imagenet.imagenet_pytorch import imagenet_min from cnns.nnlib.datasets.imagenet.imagenet_pytorch import imagenet_max from cnns.nnlib.datasets.imagenet.imagenet_pytorch import imagenet_mean_array from cnns.nnlib.datasets.imagenet.imagenet_pytorch import imagenet_std_array # instantiate the model resnet18 = models.resnet18( pretrained=True).cuda().eval() # for CPU, remove cuda() model = foolbox.models.PyTorchModel(resnet18, bounds=(0, 1), num_classes=1000, preprocessing=(imagenet_mean_array, imagenet_std_array)) for index in range(20): print("\n image index: ", index) image, label = foolbox.utils.samples("imagenet", index=index, data_format="channels_first") image = image / 255 # map from [0,255] to [0,1] # no batch dimension image = image[0] label = label[0] print("true prediction: ", label) # Original prediction of the model (without any adversarial changes or noise). original_predictions = model.predictions(image) print("original prediction: ", np.argmax(original_predictions)) # Attack the image. attack = foolbox.attacks.FGSM(model) adversarial_image = attack(image, label) adversarial_predictions = model.predictions(adversarial_image) print("adversarial prediction: ", np.argmax(adversarial_predictions)) # Add uniform noise. noiser = foolbox.attacks.AdditiveUniformNoiseAttack() noise = noiser._sample_noise( epsilon=0.009, image=image, bounds=(imagenet_min, imagenet_max)) randomized_image = adversarial_image + noise noise_predictions = model.predictions(randomized_image) print("uniform noise prediction: ", np.argmax(noise_predictions)) images, labels = foolbox.utils.samples(dataset='imagenet', batchsize=20, shape=(224, 224), data_format='channels_last') print(image.shape) images = np.transpose(images, (0, 3, 1, 2)) print(image.shape) images = images / 255 predictions = model.batch_predictions(images) print("predictions: ", predictions.shape) print(np.argmax(predictions, axis=1), labels)
py
b404e5dead68d183f2897e153ba286fcbd2fbdc2
# coding: utf-8 import sys # In[ ]: from tadnet import TADNet as SunNet import torch import numpy as np import torch.nn.functional as F from torch.utils.data import Dataset,DataLoader,TensorDataset import visdom import copy # In[ ]: class Processor: def __init__(self): self.dilation_depth=9 #网络有多少层 self.out_len_redce=2**self.dilation_depth-1 #输出减少了多少 self.model = SunNet(self.dilation_depth).cuda() self.model.load_state_dict(torch.load(r"models/net9_20.pth")) def eval(self,input_x): input_x=torch.tensor(input_x) input_x=input_x.float().unsqueeze(0).to('cuda') self.model.eval() #print("input_x",input_x.size()) with torch.no_grad(): output = self.model(input_x) output=output[-1] _, predict_label = torch.max(output.data, 0) output = F.softmax(output,dim=0) #print(predict_label,output) return int(predict_label),float(output[predict_label]) # In[ ]:
py
b404e6dec42b794c75c6e0da25304224e134eb26
from datetime import datetime, date from marqeta.response_models.gatewaylog import Gatewaylog from marqeta.response_models import datetime_object import json import re class Gatewaylog(object): def __init__(self, json_response): self.json_response = json_response def __str__(self): return json.dumps(self.json_response, default=self.json_serial) @staticmethod def json_serial(o): if isinstance(o, datetime) or isinstance(o, date): return o.__str__() @property def id(self): return self.json_response.get('id', None) @property def traceNumber(self): return self.json_response.get('traceNumber', None) @property def paymentTypeCode(self): return self.json_response.get('paymentTypeCode', None) @property def achTransactionType(self): return self.json_response.get('achTransactionType', None) @property def memo(self): return self.json_response.get('memo', None) @property def gatewayVersion(self): return self.json_response.get('gatewayVersion', None) @property def gatewayResponse(self): return self.json_response.get('gatewayResponse', None) @property def timedOut(self): return self.json_response.get('timedOut', None) @property def deal_Id(self): return self.json_response.get('deal_Id', None) @property def order_Id(self): return self.json_response.get('order_Id', None) @property def request_method(self): return self.json_response.get('request_method', None) @property def response_code(self): return self.json_response.get('response_code', None) @property def response_subcode(self): return self.json_response.get('response_subcode', None) @property def response_reasoncode(self): return self.json_response.get('response_reasoncode', None) @property def response_message(self): return self.json_response.get('response_message', None) @property def status(self): return self.json_response.get('status', None) @property def fraud_avs(self): return self.json_response.get('fraud_avs', None) @property def fraud_auth(self): return self.json_response.get('fraud_auth', None) @property def fraud_cvv(self): return self.json_response.get('fraud_cvv', None) @property def gateway_transactionId(self): return self.json_response.get('gateway_transactionId', None) @property def original_gateway(self): if 'original_gateway' in self.json_response: return Gatewaylog(self.json_response['original_gateway']) @property def amount(self): return self.json_response.get('amount', None) @property def duplicate(self): return self.json_response.get('duplicate', None) @property def post_date(self): if 'post_date' in self.json_response: return datetime_object('post_date', self.json_response) @property def response_time(self): if 'response_time' in self.json_response: return datetime_object('response_time', self.json_response) @property def api_duration(self): return self.json_response.get('api_duration', None) @property def gateway_duration(self): return self.json_response.get('gateway_duration', None) @property def ach_status(self): return self.json_response.get('ach_status', None) @property def created(self): if 'created' in self.json_response: return datetime_object('created', self.json_response) @property def modified(self): if 'modified' in self.json_response: return datetime_object('modified', self.json_response) def __repr__(self): return '<Marqeta.response_models.gatewaylog.Gatewaylog>' + self.__str__()
py
b404e71abddd9996fc3d7acd5cf58877e26be5ba
# BSD 3-Clause License # # Copyright (c) 2021., Redis Labs Modules # All rights reserved. # import datetime from redis_benchmarks_specification.__common__.env import ( GH_REDIS_SERVER_HOST, GH_TOKEN, GH_REDIS_SERVER_PORT, GH_REDIS_SERVER_AUTH, GH_REDIS_SERVER_USER, ) from redisbench_admin.run.common import get_start_time_vars START_TIME_NOW_UTC, _, _ = get_start_time_vars() START_TIME_LAST_YEAR_UTC = START_TIME_NOW_UTC - datetime.timedelta(days=7) def spec_cli_args(parser): parser.add_argument("--redis_host", type=str, default=GH_REDIS_SERVER_HOST) parser.add_argument("--branch", type=str, default="unstable") parser.add_argument("--gh_token", type=str, default=GH_TOKEN) parser.add_argument("--redis_port", type=int, default=GH_REDIS_SERVER_PORT) parser.add_argument("--redis_pass", type=str, default=GH_REDIS_SERVER_AUTH) parser.add_argument("--redis_user", type=str, default=GH_REDIS_SERVER_USER) parser.add_argument( "--from-date", type=lambda s: datetime.datetime.strptime(s, "%Y-%m-%d"), default=START_TIME_LAST_YEAR_UTC, ) parser.add_argument( "--to-date", type=lambda s: datetime.datetime.strptime(s, "%Y-%m-%d"), default=START_TIME_NOW_UTC, ) parser.add_argument("--redis_repo", type=str, default=None) parser.add_argument("--trigger-unstable-commits", type=bool, default=True) parser.add_argument( "--use-tags", default=False, action="store_true", help="Iterate over the git tags.", ) parser.add_argument( "--tags-regexp", type=str, default=".*", help="Interpret PATTERN as a regular expression to filter tag names", ) parser.add_argument( "--use-branch", default=False, action="store_true", help="Iterate over the git commits.", ) parser.add_argument( "--dry-run", default=False, action="store_true", help="Only check how many benchmarks we would trigger. Don't request benchmark runs at the end.", ) return parser
py
b404e7a002e693206a9f3b4f428730ac5ad38157
# This is a template for the settings.py file used in this project # pylint: disable=unused-wildcard-import from .settings_public import * # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '' if DEBUG: ALLOWED_HOSTS = ['127.0.0.1'] else: ALLOWED_HOSTS = ['127.0.0.1'] # Logging configuration # LOGGING = { # 'version': 1, # 'disable_existing_loggers': False, # 'handlers': { # 'file': { # 'level': 'DEBUG', # 'class': 'logging.FileHandler', # 'filename': f'/var/log/django/urlshort/debug.log', # }, # }, # 'loggers': { # 'django': { # 'handlers': ['file'], # 'level': 'DEBUG', # 'propagate': True, # }, # }, # } # Email config EMAIL_USE_TLS = True EMAIL_HOST = 'smtp.example.com' EMAIL_HOST_USER = '[email protected]' DEFAULT_FROM_EMAIL = EMAIL_HOST_USER EMAIL_HOST_PASSWORD = '******' EMAIL_PORT = 587 EMAIL_USE_SSL = False EMAIL_ADMIN_USER = '[email protected]' # VirusTotal VIRUSTOTAL_API_KEY = '' # reCAPTChA RECAPTCHA_PUBLIC_KEY = '' RECAPTCHA_PRIVATE_KEY = ''
py
b404e8f289a55d736ee8aaa0a187b5a8e84eea13
from band import expose, cleanup, worker, settings as cfg, logger, response from facebook_business.api import FacebookAdsApi from facebook_business.adobjects.adaccount import AdAccount from facebook_business.adobjects.adset import AdSet my_app_id = cfg.fb_app_id my_app_secret = cfg.fb_app_secret my_access_token = cfg.fb_token auth_url = f"https://graph.facebook.com/oauth/access_token?client_id={cfg.fb_app_id}&client_secret={my_app_secret}&redirect_uri={cfg.redirect}&grant_type=client_credentials" logger.info(f'auth url: {auth_url}') FacebookAdsApi.init(my_app_id, my_app_secret, my_access_token) id = 'act_207528810141959' account = AdAccount(id) adsets = account.get_ad_sets(fields=[AdSet.Field.name]) for adset in adsets: print(adset[AdSet.Field.name]) # my_accounts = list(me.get_ad_accounts()) # print(my_accounts) # campaigns = my_account # print(campaigns)
py
b404e91736d8bf2560e90aeea32352bbc17c73e1
# Generated by Django 3.0.6 on 2020-10-14 02:52 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('base', '0035_schedule_patient'), ] operations = [ migrations.AlterField( model_name='schedule', name='duration', field=models.IntegerField(choices=[(15, '15 min'), (30, '30 min'), (45, '45 min'), (60, '60 min'), (75, '75 min'), (90, '90 min'), (105, '105 min'), (120, '120 min')], default=60), ), migrations.AlterField( model_name='schedule', name='hour', field=models.IntegerField(choices=[(0, '0 h'), (1, '1 h'), (2, '2 h'), (3, '3 h'), (4, '4 h'), (5, '5 h'), (6, '6 h'), (7, '7 h'), (8, '8 h'), (9, '9 h'), (10, '10 h'), (11, '11 h'), (12, '12 h'), (13, '13 h'), (14, '14 h'), (15, '15 h'), (16, '16 h'), (17, '17 h'), (18, '18 h'), (19, '19 h'), (20, '20 h'), (21, '21 h'), (22, '22 h'), (23, '23 h')], default=8), ), migrations.AlterField( model_name='schedule', name='min', field=models.IntegerField(choices=[(0, '0 min'), (15, '15 min'), (30, '30 min'), (45, '45 min')], default=0), ), migrations.AlterField( model_name='schedule', name='professional', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='base.Professional'), ), ]
py
b404ea09f3940efb5534e0d9df083e4855bc9304
#!/usr/bin/python # # linearize-data.py: Construct a linear, no-fork version of the chain. # # Copyright (c) 2013-2014 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # from __future__ import print_function, division import json import struct import re import os import os.path import base64 import httplib import sys import hashlib import RPWN_hash import datetime import time from collections import namedtuple settings = {} def uint32(x): return x & 0xffffffffL def bytereverse(x): return uint32(( ((x) << 24) | (((x) << 8) & 0x00ff0000) | (((x) >> 8) & 0x0000ff00) | ((x) >> 24) )) def bufreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): word = struct.unpack('@I', in_buf[i:i+4])[0] out_words.append(struct.pack('@I', bytereverse(word))) return ''.join(out_words) def wordreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): out_words.append(in_buf[i:i+4]) out_words.reverse() return ''.join(out_words) def calc_hdr_hash(blk_hdr): #hash1 = hashlib.sha256() #hash1.update(blk_hdr) #hash1_o = hash1.digest() #hash2 = hashlib.sha256() #hash2.update(hash1_o) #hash2_o = hash2.digest() #return hash2_o pow_hash = RPWN_hash.getPoWHash(blk_hdr) return pow_hash def calc_hash_str(blk_hdr): hash = calc_hdr_hash(blk_hdr) hash = bufreverse(hash) hash = wordreverse(hash) hash_str = hash.encode('hex') return hash_str def get_blk_dt(blk_hdr): members = struct.unpack("<I", blk_hdr[68:68+4]) nTime = members[0] dt = datetime.datetime.fromtimestamp(nTime) dt_ym = datetime.datetime(dt.year, dt.month, 1) return (dt_ym, nTime) def get_block_hashes(settings): blkindex = [] f = open(settings['hashlist'], "r") for line in f: line = line.rstrip() blkindex.append(line) print("Read " + str(len(blkindex)) + " hashes") return blkindex def mkblockmap(blkindex): blkmap = {} for height,hash in enumerate(blkindex): blkmap[hash] = height return blkmap # Block header and extent on disk BlockExtent = namedtuple('BlockExtent', ['fn', 'offset', 'inhdr', 'blkhdr', 'size']) class BlockDataCopier: def __init__(self, settings, blkindex, blkmap): self.settings = settings self.blkindex = blkindex self.blkmap = blkmap self.inFn = 0 self.inF = None self.outFn = 0 self.outsz = 0 self.outF = None self.outFname = None self.blkCountIn = 0 self.blkCountOut = 0 self.lastDate = datetime.datetime(2000, 1, 1) self.highTS = 1408893517 - 315360000 self.timestampSplit = False self.fileOutput = True self.setFileTime = False self.maxOutSz = settings['max_out_sz'] if 'output' in settings: self.fileOutput = False if settings['file_timestamp'] != 0: self.setFileTime = True if settings['split_timestamp'] != 0: self.timestampSplit = True # Extents and cache for out-of-order blocks self.blockExtents = {} self.outOfOrderData = {} self.outOfOrderSize = 0 # running total size for items in outOfOrderData def writeBlock(self, inhdr, blk_hdr, rawblock): blockSizeOnDisk = len(inhdr) + len(blk_hdr) + len(rawblock) if not self.fileOutput and ((self.outsz + blockSizeOnDisk) > self.maxOutSz): self.outF.close() if self.setFileTime: os.utime(outFname, (int(time.time()), highTS)) self.outF = None self.outFname = None self.outFn = self.outFn + 1 self.outsz = 0 (blkDate, blkTS) = get_blk_dt(blk_hdr) if self.timestampSplit and (blkDate > self.lastDate): print("New month " + blkDate.strftime("%Y-%m") + " @ " + hash_str) lastDate = blkDate if outF: outF.close() if setFileTime: os.utime(outFname, (int(time.time()), highTS)) self.outF = None self.outFname = None self.outFn = self.outFn + 1 self.outsz = 0 if not self.outF: if self.fileOutput: outFname = self.settings['output_file'] else: outFname = os.path.join(self.settings['output'], "blk%05d.dat" % self.outFn) print("Output file " + outFname) self.outF = open(outFname, "wb") self.outF.write(inhdr) self.outF.write(blk_hdr) self.outF.write(rawblock) self.outsz = self.outsz + len(inhdr) + len(blk_hdr) + len(rawblock) self.blkCountOut = self.blkCountOut + 1 if blkTS > self.highTS: self.highTS = blkTS if (self.blkCountOut % 1000) == 0: print('%i blocks scanned, %i blocks written (of %i, %.1f%% complete)' % (self.blkCountIn, self.blkCountOut, len(self.blkindex), 100.0 * self.blkCountOut / len(self.blkindex))) def inFileName(self, fn): return os.path.join(self.settings['input'], "blk%05d.dat" % fn) def fetchBlock(self, extent): '''Fetch block contents from disk given extents''' with open(self.inFileName(extent.fn), "rb") as f: f.seek(extent.offset) return f.read(extent.size) def copyOneBlock(self): '''Find the next block to be written in the input, and copy it to the output.''' extent = self.blockExtents.pop(self.blkCountOut) if self.blkCountOut in self.outOfOrderData: # If the data is cached, use it from memory and remove from the cache rawblock = self.outOfOrderData.pop(self.blkCountOut) self.outOfOrderSize -= len(rawblock) else: # Otherwise look up data on disk rawblock = self.fetchBlock(extent) self.writeBlock(extent.inhdr, extent.blkhdr, rawblock) def run(self): while self.blkCountOut < len(self.blkindex): if not self.inF: fname = self.inFileName(self.inFn) print("Input file " + fname) try: self.inF = open(fname, "rb") except IOError: print("Premature end of block data") return inhdr = self.inF.read(8) if (not inhdr or (inhdr[0] == "\0")): self.inF.close() self.inF = None self.inFn = self.inFn + 1 continue inMagic = inhdr[:4] if (inMagic != self.settings['netmagic']): print("Invalid magic: " + inMagic.encode('hex')) return inLenLE = inhdr[4:] su = struct.unpack("<I", inLenLE) inLen = su[0] - 80 # length without header blk_hdr = self.inF.read(80) inExtent = BlockExtent(self.inFn, self.inF.tell(), inhdr, blk_hdr, inLen) hash_str = calc_hash_str(blk_hdr) if not hash_str in blkmap: print("Skipping unknown block " + hash_str) self.inF.seek(inLen, os.SEEK_CUR) continue blkHeight = self.blkmap[hash_str] self.blkCountIn += 1 if self.blkCountOut == blkHeight: # If in-order block, just copy rawblock = self.inF.read(inLen) self.writeBlock(inhdr, blk_hdr, rawblock) # See if we can catch up to prior out-of-order blocks while self.blkCountOut in self.blockExtents: self.copyOneBlock() else: # If out-of-order, skip over block data for now self.blockExtents[blkHeight] = inExtent if self.outOfOrderSize < self.settings['out_of_order_cache_sz']: # If there is space in the cache, read the data # Reading the data in file sequence instead of seeking and fetching it later is preferred, # but we don't want to fill up memory self.outOfOrderData[blkHeight] = self.inF.read(inLen) self.outOfOrderSize += inLen else: # If no space in cache, seek forward self.inF.seek(inLen, os.SEEK_CUR) print("Done (%i blocks written)" % (self.blkCountOut)) if __name__ == '__main__': if len(sys.argv) != 2: print("Usage: linearize-data.py CONFIG-FILE") sys.exit(1) f = open(sys.argv[1]) for line in f: # skip comment lines m = re.search('^\s*#', line) if m: continue # parse key=value lines m = re.search('^(\w+)\s*=\s*(\S.*)$', line) if m is None: continue settings[m.group(1)] = m.group(2) f.close() if 'netmagic' not in settings: settings['netmagic'] = 'cee2caff' if 'genesis' not in settings: settings['genesis'] = '00000bafbc94add76cb75e2ec92894837288a481e5c005f6563d91623bf8bc2c' if 'input' not in settings: settings['input'] = 'input' if 'hashlist' not in settings: settings['hashlist'] = 'hashlist.txt' if 'file_timestamp' not in settings: settings['file_timestamp'] = 0 if 'split_timestamp' not in settings: settings['split_timestamp'] = 0 if 'max_out_sz' not in settings: settings['max_out_sz'] = 1000L * 1000 * 1000 if 'out_of_order_cache_sz' not in settings: settings['out_of_order_cache_sz'] = 100 * 1000 * 1000 settings['max_out_sz'] = long(settings['max_out_sz']) settings['split_timestamp'] = int(settings['split_timestamp']) settings['file_timestamp'] = int(settings['file_timestamp']) settings['netmagic'] = settings['netmagic'].decode('hex') settings['out_of_order_cache_sz'] = int(settings['out_of_order_cache_sz']) if 'output_file' not in settings and 'output' not in settings: print("Missing output file / directory") sys.exit(1) blkindex = get_block_hashes(settings) blkmap = mkblockmap(blkindex) if not settings['genesis'] in blkmap: print("Genesis block not found in hashlist") else: BlockDataCopier(settings, blkindex, blkmap).run()
py
b404ea41aaf92ab6ace7344113ec075318ed1e49
import torch from torch import nn, Tensor from typing import Union, Tuple, List, Iterable, Dict from ..SentenceTransformer import SentenceTransformer import logging logger = logging.getLogger(__name__) class SoftmaxLoss(nn.Module): """ This loss was used in our SBERT publication (https://arxiv.org/abs/1908.10084) to train the SentenceTransformer model on NLI data. It adds a softmax classifier on top of the output of two transformer networks. :param model: SentenceTransformer model :param sentence_embedding_dimension: Dimension of your sentence embeddings :param num_labels: Number of different labels :param concatenation_sent_rep: Concatenate vectors u,v for the softmax classifier? :param concatenation_sent_difference: Add abs(u-v) for the softmax classifier? :param concatenation_sent_multiplication: Add u*v for the softmax classifier? Example:: from sentence_transformers import SentenceTransformer, SentencesDataset, losses from sentence_transformers.readers import InputExample model = SentenceTransformer('distilbert-base-nli-mean-tokens') train_examples = [InputExample(InputExample(texts=['First pair, sent A', 'First pair, sent B'], label=0), InputExample(texts=['Second Pair, sent A', 'Second Pair, sent B'], label=3)] train_dataset = SentencesDataset(train_examples, model) train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size) train_loss = losses.SoftmaxLoss(model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=train_num_labels) """ def __init__(self, model: SentenceTransformer, sentence_embedding_dimension: int, num_labels: int, concatenation_sent_rep: bool = True, concatenation_sent_difference: bool = True, concatenation_sent_multiplication: bool = False): super(SoftmaxLoss, self).__init__() self.model = model self.num_labels = num_labels self.concatenation_sent_rep = concatenation_sent_rep self.concatenation_sent_difference = concatenation_sent_difference self.concatenation_sent_multiplication = concatenation_sent_multiplication num_vectors_concatenated = 0 if concatenation_sent_rep: num_vectors_concatenated += 2 if concatenation_sent_difference: num_vectors_concatenated += 1 if concatenation_sent_multiplication: num_vectors_concatenated += 1 logger.info("Softmax loss: #Vectors concatenated: {}".format(num_vectors_concatenated)) self.classifier = nn.Linear(num_vectors_concatenated * sentence_embedding_dimension, num_labels) def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): reps = [self.model(sentence_feature)['sentence_embedding'] for sentence_feature in sentence_features] rep_a, rep_b = reps vectors_concat = [] if self.concatenation_sent_rep: vectors_concat.append(rep_a) vectors_concat.append(rep_b) if self.concatenation_sent_difference: vectors_concat.append(torch.abs(rep_a - rep_b)) if self.concatenation_sent_multiplication: vectors_concat.append(rep_a * rep_b) features = torch.cat(vectors_concat, 1) output = self.classifier(features) loss_fct = nn.CrossEntropyLoss() if labels is not None: return loss_fct(output, labels.view(-1)) else: return reps, output
py
b404ed5c71c19ecf98ac139d864009726ecec73f
# Crie um programa que leia quanto dinheiro uma pessoa tem na carteira e mostre quantos dólares ela pode comprar #x = float(input('O valor que você possui: R$')) #dolar = x / 5.37 #euros = x / 6.44 #libras = x / 7.46 #print('Com R${:.2f} você poderá comprar US${:.2f} de doláres '.format(x, dolar)) #print('Com R${:.2f} você podera comprar {:.2f} Euros'.format(x, euros)) #print('Com R${:.2f} você podera comprar {:.2f} Libras'.format(x, libras)) x = float(input('O valor que você possui: R$')) dolar = x / 5.37 euros = x / 6.44 libras = x / 7.46 print('Com \033[32m R${:.2F}\033[m você poderá comprar \033[32m US${:.2f}\033[m de doláres'.format(x, dolar)) print('Com \033[32m R${:.2f}\033[m você poderá comprar \033[32m{:.2f}\033[m Euros'.format(x, euros)) print('Com \033[32m R${:.2f}\033[m você poderá comprar \033[32m{:.2f}\033[m Libras'.format(x, libras))
py
b404ee730067e978742eee2c515b7539e75a11b1
from datetime import datetime, timedelta import unittest from app import app, db from app.models import Student, CommunityComment class UserModelCase(unittest.TestCase): def setUp(self): app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite://' db.create_all() def tearDown(self): db.session.remove() db.drop_all() def test_password_hashing(self): u = Student(student_full_name='susan') u.set_password('cat') self.assertFalse(u.check_password('dog')) self.assertTrue(u.check_password('cat')) def test_avatar(self): u = Student( student_full_name='john', student_email='[email protected]' ) self.assertEqual( u.avatar_student(128), ('https://www.gravatar.com/avatar/' 'd4c74594d841139328695756648b6bd6' '?d=identicon&s=128') ) def test_follow(self): u1 = Student( student_full_name='john', student_email='[email protected]' ) u2 = Student( student_full_name='susan', student_email='[email protected]' ) db.session.add(u1) db.session.add(u2) db.session.commit() self.assertEqual(u1.followed.all(), []) self.assertEqual(u1.followers.all(), []) u1.follow(u2) db.session.commit() self.assertTrue(u1.is_following(u2)) self.assertEqual(u1.followed.count(), 1) self.assertEqual(u1.followed.first().student_full_name, 'susan') self.assertEqual(u2.followers.count(), 1) self.assertEqual(u2.followers.first().student_full_name, 'john') u1.unfollow(u2) db.session.commit() self.assertFalse(u1.is_following(u2)) self.assertEqual(u1.followed.count(), 0) self.assertEqual(u2.followers.count(), 0) def test_follow_posts(self): # create four users u1 = Student( student_full_name='john', student_email='[email protected]' ) u2 = Student( student_full_name='susan', student_email='[email protected]' ) u3 = Student( student_full_name='mary', student_email='[email protected]' ) u4 = Student( student_full_name='david', student_email='[email protected]' ) db.session.add_all([u1, u2, u3, u4]) # create four posts now = datetime.utcnow() p1 = CommunityComment( body="post from john", author=u1, timestamp=now + timedelta(seconds=1) ) p2 = CommunityComment( body="post from susan", author=u2, timestamp=now + timedelta(seconds=4) ) p3 = CommunityComment( body="post from mary", author=u3, timestamp=now + timedelta(seconds=3) ) p4 = CommunityComment( body="post from david", author=u4, timestamp=now + timedelta(seconds=2) ) db.session.add_all([p1, p2, p3, p4]) db.session.commit() # setup the followers u1.follow(u2) # john follows susan u1.follow(u4) # john follows david u2.follow(u3) # susan follows mary u3.follow(u4) # mary follows david db.session.commit() # check the followed posts of each user f1 = u1.followed_comments().all() f2 = u2.followed_comments().all() f3 = u3.followed_comments().all() f4 = u4.followed_comments().all() self.assertEqual(f1, [p2, p4, p1]) self.assertEqual(f2, [p2, p3]) self.assertEqual(f3, [p3, p4]) self.assertEqual(f4, [p4]) if __name__ == '__main__': unittest.main(verbosity=2)
py
b404ef6b2373abc39c94a5df2c0a1bc6c085b2f6
from django.db import models from django.utils.translation import ugettext_lazy as _ # Create your models here. class Location(models.Model): latitude = models.DecimalField(_("Latitude"), max_digits=15, decimal_places=10, null=True, blank=True) longitude = models.DecimalField(_("Longitude"), max_digits=15, decimal_places=10, null=True, blank=True) device_id = models.CharField(_("Device Serial Number"), max_length=80, unique=True) created_at = models.DateField(_("Created At"), auto_now_add=True) updated_at = models.DateTimeField(_("Updated At"), auto_now_add=True)
py
b404f0322a0c939ec9228ecb18bc49705954df9d
import math from django.db.models import F, Func, Sum, Count, Case, When, ExpressionWrapper, FloatField from django.shortcuts import render from calcs import models from calcs import forms # Create your views here. def show_events(request): return render(request, 'events.html', {"events": models.Event.objects.all()}) def create_event(request): return render(request, 'create_event.html', {"form": forms.EventForm()}) def event(request, eventId): event = models.Event.objects.get(pk=eventId) meals = list(models.MealsInEvent.objects \ .filter(FkEvent=eventId) \ .annotate(num_components=Count('FkMeal__mealcomponent__id')) \ .values('id', 'FkMeal__Name', 'num_components', 'AttendeeCount') \ ) ingredient_costs = models.PurchaseableItem.objects.filter(mealcomponent__Meal__event__id=eventId)\ .distinct()\ .annotate(quantity_needed = Sum(F('mealcomponent__AmountPerPerson') * F('mealcomponent__Meal__mealsinevent__AttendeeCount'), output_field=FloatField())) \ .annotate(num_packages = Case(When(AlreadyHave__gt= F('quantity_needed') / F('QuantityProvided'), then=0), default=Func(0.49 - F('AlreadyHave') + (F('quantity_needed') / F('QuantityProvided')), output_field=FloatField(), function='ROUND'))) \ .annotate(total_cost = ExpressionWrapper(F('num_packages') * F('UnitPrice'), output_field=FloatField())) \ .values('quantity_needed', 'num_packages', 'total_cost', 'ItemName', 'AlreadyHave', 'QuantityProvided', 'PurchaseLink', 'QuantityUnits__Name', 'id') total_cost = 0 for i in ingredient_costs: if i['total_cost'] > 0: total_cost += i['total_cost'] return render(request, 'event.html', { "event": event, "meals": meals, "total_cost": total_cost, "ingredient_costs": ingredient_costs, }) def mealcost(request, mealInEventId): mie = models.MealsInEvent.objects.select_related('FkMeal').get(pk=mealInEventId) scaledComponents = [] totalCost = 0 for comp in models.MealComponent.objects.filter(Meal=mie.FkMeal).select_related('Ingredient', 'Ingredient__QuantityUnits'): total = comp.AmountForGroup + (comp.AmountPerPerson * mie.AttendeeCount) purchaseIncrement = comp.Ingredient.QuantityProvided numToPurchase = math.ceil(total / purchaseIncrement) itemCost = numToPurchase * comp.Ingredient.UnitPrice totalCost += itemCost scaledComponents.append({ "Name": comp.Ingredient.ItemName, "AmountPerPerson": comp.AmountPerPerson, "AmountForGroup": comp.AmountForGroup, "Units": comp.Units.Name, "TotalAmount": total, "PurchaseIncrement": purchaseIncrement, "NumberToPurchase": numToPurchase, "ItemCost": itemCost, }) return render(request, 'cost.html', { "mealInEvent": mie, "scaledComponents": scaledComponents, "TotalCost": totalCost, }) def ingredient(request, ingredientId, eventId): event = models.Event.objects.select_related('MealsInEvent__AttendeeCount').get(pk=eventId) ingredient = models.PurchaseableItem.objects.get(pk=ingredientId) in_meals = models.MealComponent.objects.select_related('Ingredient').select_related('Meal').select_related('Ingredient__QuantityUnits').filter(Ingredient=ingredientId) # print(in_meals) return render(request, 'ingredient.html', {"in_meals": in_meals, "ingredient": ingredient, "event": event})
py
b404f0464ca91ab00edbd0ca9410bd30d246a07d
import os.path from parameterized import parameterized import pytest from unittest import TestCase from samtranslator.yaml_helper import yaml_parse from samtranslator.validator.validator import SamTemplateValidator from tests.validator.test_validator import TestValidatorBase BASE_PATH = os.path.dirname(__file__) INPUT_FOLDER = os.path.join(BASE_PATH, "input", "root") OUTPUT_FOLDER = os.path.join(BASE_PATH, "output", "root") class TestValidatorRoot(TestValidatorBase): @parameterized.expand( [ "error_awstemplateformatversion_unknown", "error_empty_template", "error_resources_empty", "error_resources_missing", "error_resources_not_object", "error_resources", "error_transform_empty", ], ) def test_errors(self, template): self._test_validator_error(os.path.join(INPUT_FOLDER, template), os.path.join(OUTPUT_FOLDER, template)) @parameterized.expand( [ "success_minimal_template", ], ) def test_success(self, template): self._test_validator_success(os.path.join(INPUT_FOLDER, template))
py
b404f0af974ea43f82c5e81208a0d6be64d6d9cf
# Copyright Contributors to the Amundsen project. # SPDX-License-Identifier: Apache-2.0 import importlib from typing import ( Any, Dict, List, Optional, ) from gremlin_python.process.graph_traversal import GraphTraversalSource, __ from gremlin_python.process.traversal import ( Order, T, TextP, ) from pyhocon import ConfigTree from databuilder import Scoped from databuilder.clients.neptune_client import NeptuneSessionClient from databuilder.extractor.base_extractor import Extractor from databuilder.models.cluster.cluster_constants import CLUSTER_REVERSE_RELATION_TYPE from databuilder.models.column_usage_model import ColumnUsageModel from databuilder.models.dashboard.dashboard_chart import DashboardChart from databuilder.models.dashboard.dashboard_metadata import DashboardMetadata from databuilder.models.dashboard.dashboard_query import DashboardQuery from databuilder.models.owner_constants import OWNER_OF_OBJECT_RELATION_TYPE from databuilder.models.schema.schema_constant import SCHEMA_REVERSE_RELATION_TYPE from databuilder.models.table_metadata import DescriptionMetadata, TableMetadata from databuilder.models.timestamp.timestamp_constants import LASTUPDATED_RELATION_TYPE, TIMESTAMP_PROPERTY from databuilder.models.usage.usage_constants import READ_RELATION_COUNT_PROPERTY, READ_REVERSE_RELATION_TYPE from databuilder.models.user import User from databuilder.serializers.neptune_serializer import METADATA_KEY_PROPERTY_NAME def _table_search_query(graph: GraphTraversalSource, tag_filter: str) -> List[Dict]: traversal = graph.V().hasLabel(TableMetadata.TABLE_NODE_LABEL) if tag_filter: traversal = traversal.has('published_tag', tag_filter) traversal = traversal.project( 'database', 'cluster', 'schema', 'schema_description', 'name', 'key', 'description', 'last_updated_timestamp', 'column_names', 'column_descriptions', 'total_usage', 'unique_usage', 'tags', 'badges', 'programmatic_descriptions' ) traversal = traversal.by( __.out( TableMetadata.TABLE_SCHEMA_RELATION_TYPE ).out(SCHEMA_REVERSE_RELATION_TYPE).out(CLUSTER_REVERSE_RELATION_TYPE).values('name') ) # database traversal = traversal.by( __.out(TableMetadata.TABLE_SCHEMA_RELATION_TYPE).out(SCHEMA_REVERSE_RELATION_TYPE).values('name') ) # cluster traversal = traversal.by(__.out(TableMetadata.TABLE_SCHEMA_RELATION_TYPE).values('name')) # schema traversal = traversal.by(__.coalesce( __.out(TableMetadata.TABLE_SCHEMA_RELATION_TYPE).out( DescriptionMetadata.DESCRIPTION_RELATION_TYPE ).values('description'), __.constant('') )) # schema_description traversal = traversal.by('name') # name traversal = traversal.by(T.id) # key traversal = traversal.by(__.coalesce( __.out(DescriptionMetadata.DESCRIPTION_RELATION_TYPE).values('description'), __.constant('') )) # description traversal = traversal.by( __.coalesce(__.out(LASTUPDATED_RELATION_TYPE).values(TIMESTAMP_PROPERTY), __.constant('')) ) # last_updated_timestamp traversal = traversal.by(__.out(TableMetadata.TABLE_COL_RELATION_TYPE).values('name').fold()) # column_names traversal = traversal.by( __.out(TableMetadata.TABLE_COL_RELATION_TYPE).out( DescriptionMetadata.DESCRIPTION_RELATION_TYPE ).values('description').fold() ) # column_descriptions traversal = traversal.by(__.coalesce( __.outE(ColumnUsageModel.TABLE_USER_RELATION_TYPE).values('read_count'), __.constant(0)).sum() ) # total_usage traversal = traversal.by(__.outE(ColumnUsageModel.TABLE_USER_RELATION_TYPE).count()) # unique_usage traversal = traversal.by( __.inE(TableMetadata.TAG_TABLE_RELATION_TYPE).outV().values(METADATA_KEY_PROPERTY_NAME).fold() ) # tags traversal = traversal.by( __.out('HAS_BADGE').values('keys').dedup().fold() ) # badges traversal = traversal.by( __.out(DescriptionMetadata.PROGRAMMATIC_DESCRIPTION_NODE_LABEL).values('description').fold() ) # programmatic_descriptions traversal = traversal.order().by(__.select('name'), Order.asc) return traversal.toList() def _user_search_query(graph: GraphTraversalSource, tag_filter: str) -> List[Dict]: traversal = graph.V().hasLabel(User.USER_NODE_LABEL) traversal = traversal.has(User.USER_NODE_FULL_NAME) if tag_filter: traversal = traversal.where('published_tag', tag_filter) traversal = traversal.project( 'email', 'first_name', 'last_name', 'full_name', 'github_username', 'team_name', 'employee_type', 'manager_email', 'slack_id', 'is_active', 'role_name', 'total_read', 'total_own', 'total_follow' ) traversal = traversal.by('email') # email traversal = traversal.by('first_name') # first_name traversal = traversal.by('last_name') # last_name traversal = traversal.by('full_name') # full_name traversal = traversal.by('github_username') # github_username traversal = traversal.by('team_name') # team_name traversal = traversal.by('employee_type') # employee_type traversal = traversal.by(__.coalesce( __.out(User.USER_MANAGER_RELATION_TYPE).values('email'), __.constant('')) ) # manager_email traversal = traversal.by('slack_id') # slack_id traversal = traversal.by('is_active') # is_active traversal = traversal.by('role_name') # role_name traversal = traversal.by(__.coalesce( __.outE(ColumnUsageModel.USER_TABLE_RELATION_TYPE).values('read_count'), __.constant(0) ).sum()) # total_read traversal = traversal.by(__.outE(OWNER_OF_OBJECT_RELATION_TYPE).fold().count()) # total_own traversal = traversal.by(__.outE('FOLLOWED_BY').fold().count()) # total_follow traversal = traversal.order().by(__.select('email'), Order.asc) return traversal.toList() def _dashboard_search_query(graph: GraphTraversalSource, tag_filter: str) -> List[Dict]: traversal = graph.V().hasLabel(DashboardMetadata.DASHBOARD_NODE_LABEL) traversal = traversal.has('name') if tag_filter: traversal = traversal.where('published_tag', tag_filter) traversal = traversal.project( 'group_name', 'name', 'cluster', 'description', 'group_description', 'group_url', 'url', 'uri', 'last_successful_run_timestamp', 'query_names', 'chart_names', 'total_usage', 'tags', 'badges' ) traversal = traversal.by( __.out(DashboardMetadata.DASHBOARD_DASHBOARD_GROUP_RELATION_TYPE).values('name') ) # group_name traversal = traversal.by('name') # name traversal = traversal.by( __.out( DashboardMetadata.DASHBOARD_DASHBOARD_GROUP_RELATION_TYPE ).out( DashboardMetadata.DASHBOARD_GROUP_CLUSTER_RELATION_TYPE ).values('name') ) # cluster traversal = traversal.by(__.coalesce( __.out(DashboardMetadata.DASHBOARD_DESCRIPTION_RELATION_TYPE).values('description'), __.constant('') )) # description traversal = traversal.by(__.coalesce( __.out(DashboardMetadata.DASHBOARD_DASHBOARD_GROUP_RELATION_TYPE).out( DashboardMetadata.DASHBOARD_DESCRIPTION_RELATION_TYPE ).values('description'), __.constant('') )) # group_description traversal = traversal.by( __.out(DashboardMetadata.DASHBOARD_DASHBOARD_GROUP_RELATION_TYPE).values('dashboard_group_url') ) # group_url traversal = traversal.by('dashboard_url') # dashboard_url traversal = traversal.by('key') # uri traversal = traversal.by( __.coalesce( __.out('EXECUTED').has('key', TextP.endingWith('_last_successful_execution')).values('timestamp'), __.constant('') ) ) # last_successful_run_timestamp traversal = traversal.by( __.out(DashboardQuery.DASHBOARD_QUERY_RELATION_TYPE).values('name').dedup().fold() ) # query_names traversal = traversal.by( __.out( DashboardQuery.DASHBOARD_QUERY_RELATION_TYPE ).out(DashboardChart.CHART_RELATION_TYPE).values('name').dedup().fold() ) # chart_names traversal = traversal.by(__.coalesce( __.outE(READ_REVERSE_RELATION_TYPE).values(READ_RELATION_COUNT_PROPERTY), __.constant(0) ).sum()) # total_usage traversal = traversal.by( __.out('TAGGED_BY').has('tag_type', 'default').values('keys').dedup().fold() ) # tags traversal = traversal.by( __.out('HAS_BADGE').values('keys').dedup().fold() ) # badges traversal = traversal.order().by(__.select('name'), Order.asc) dashboards = traversal.toList() for dashboard in dashboards: dashboard['product'] = dashboard['uri'].split('_')[0] return dashboards class NeptuneSearchDataExtractor(Extractor): """ Extractor to fetch data required to support search from Neptune's graph database """ QUERY_FUNCTION_CONFIG_KEY = 'query_function' QUERY_FUNCTION_KWARGS_CONFIG_KEY = 'query_function_kwargs' ENTITY_TYPE_CONFIG_KEY = 'entity_type' JOB_PUBLISH_TAG_CONFIG_KEY = 'job_publish_tag' MODEL_CLASS_CONFIG_KEY = 'model_class' DEFAULT_QUERY_BY_ENTITY = { 'table': _table_search_query, 'user': _user_search_query, 'dashboard': _dashboard_search_query } def init(self, conf: ConfigTree) -> None: self.conf = conf self.entity = conf.get_string(NeptuneSearchDataExtractor.ENTITY_TYPE_CONFIG_KEY, default='table').lower() if NeptuneSearchDataExtractor.QUERY_FUNCTION_CONFIG_KEY in conf: self.query_function = conf.get(NeptuneSearchDataExtractor.QUERY_FUNCTION_CONFIG_KEY) else: self.query_function = NeptuneSearchDataExtractor.DEFAULT_QUERY_BY_ENTITY[self.entity] self.job_publish_tag = conf.get_string(NeptuneSearchDataExtractor.JOB_PUBLISH_TAG_CONFIG_KEY, '') self.neptune_client = NeptuneSessionClient() neptune_client_conf = Scoped.get_scoped_conf(conf, self.neptune_client.get_scope()) self.neptune_client.init(neptune_client_conf) model_class = conf.get(NeptuneSearchDataExtractor.MODEL_CLASS_CONFIG_KEY, None) if model_class: module_name, class_name = model_class.rsplit(".", 1) mod = importlib.import_module(module_name) self.model_class = getattr(mod, class_name) self._extract_iter: Optional[Any] = None def close(self) -> None: self.neptune_client.close() def extract(self) -> Optional[Any]: if not self._extract_iter: self._extract_iter = self._get_extract_iter() try: return next(self._extract_iter) except StopIteration: return None def _get_extract_iter(self) -> Any: if not hasattr(self, 'results'): self.results = self.query_function(self.neptune_client.get_graph(), tag_filter=self.job_publish_tag) for result in self.results: if hasattr(self, 'model_class'): obj = self.model_class(**result) yield obj else: yield result def get_scope(self) -> str: return 'extractor.neptune_search_data'
py
b404f11cacc8426426417807b46e00e1b3d4323b
from RLTest import Env from test_helper_classes import ALLOWED_ERROR, _insert_data, _get_ts_info def test_simple_dump_restore(self): with Env().getClusterConnectionIfNeeded() as r: r.execute_command('ts.create', 'test_key', 'UNCOMPRESSED') r.execute_command('ts.add', 'test_key', 1, 1) dump = r.execute_command('dump', 'test_key') r.execute_command('del', 'test_key') r.execute_command('restore', 'test_key', 0, dump) def test_rdb(): start_ts = 1511885909 samples_count = 1500 data = None key_name = 'tester{abc}' with Env().getClusterConnectionIfNeeded() as r: assert r.execute_command('TS.CREATE', key_name, 'RETENTION', '0', 'CHUNK_SIZE', '360', 'LABELS', 'name', 'brown', 'color', 'pink') assert r.execute_command('TS.CREATE', '{}_agg_avg_10'.format(key_name)) assert r.execute_command('TS.CREATE', '{}_agg_max_10'.format(key_name)) assert r.execute_command('TS.CREATE', '{}_agg_sum_10'.format(key_name)) assert r.execute_command('TS.CREATE', '{}_agg_stds_10'.format(key_name)) assert r.execute_command('TS.CREATERULE', key_name, '{}_agg_avg_10'.format(key_name), 'AGGREGATION', 'AVG', 10) assert r.execute_command('TS.CREATERULE', key_name, '{}_agg_max_10'.format(key_name), 'AGGREGATION', 'MAX', 10) assert r.execute_command('TS.CREATERULE', key_name, '{}_agg_sum_10'.format(key_name), 'AGGREGATION', 'SUM', 10) assert r.execute_command('TS.CREATERULE', key_name, '{}_agg_stds_10'.format(key_name), 'AGGREGATION', 'STD.S', 10) _insert_data(r, key_name, start_ts, samples_count, 5) data = r.execute_command('DUMP', key_name) avg_data = r.execute_command('DUMP', '{}_agg_avg_10'.format(key_name)) r.execute_command('DEL', key_name, '{}_agg_avg_10'.format(key_name)) r.execute_command('RESTORE', key_name, 0, data) r.execute_command('RESTORE', '{}_agg_avg_10'.format(key_name), 0, avg_data) expected_result = [[start_ts + i, b'5'] for i in range(samples_count)] actual_result = r.execute_command('TS.range', key_name, start_ts, start_ts + samples_count) assert expected_result == actual_result actual_result = r.execute_command('TS.range', key_name, start_ts, start_ts + samples_count, 'count', 3) assert expected_result[:3] == actual_result assert _get_ts_info(r, key_name).rules == [[bytes('{}_agg_avg_10'.format(key_name), encoding="ascii"), 10, b'AVG'], [bytes('{}_agg_max_10'.format(key_name), encoding="ascii"), 10, b'MAX'], [bytes('{}_agg_sum_10'.format(key_name), encoding="ascii"), 10, b'SUM'], [bytes('{}_agg_stds_10'.format(key_name), encoding="ascii"), 10, b'STD.S']] assert _get_ts_info(r, '{}_agg_avg_10'.format(key_name)).sourceKey == bytes(key_name, encoding="ascii") def test_rdb_aggregation_context(): """ Check that the aggregation context of the rules is saved in rdb. Write data with not a full bucket, then save it and restore, add more data to the bucket and check the rules results considered the previous data that was in that bucket in their calculation. Check on avg and min, since all the other rules use the same context as min. """ start_ts = 3 samples_count = 4 # 1 full bucket and another one with 1 value key_name = 'tester{abc}' with Env().getClusterConnectionIfNeeded() as r: assert r.execute_command('TS.CREATE', key_name) assert r.execute_command('TS.CREATE', '{}_agg_avg_3'.format(key_name)) assert r.execute_command('TS.CREATE', '{}_agg_min_3'.format(key_name)) assert r.execute_command('TS.CREATE', '{}_agg_sum_3'.format(key_name)) assert r.execute_command('TS.CREATE', '{}_agg_std_3'.format(key_name)) assert r.execute_command('TS.CREATERULE', key_name, '{}_agg_avg_3'.format(key_name), 'AGGREGATION', 'AVG', 3) assert r.execute_command('TS.CREATERULE', key_name, '{}_agg_min_3'.format(key_name), 'AGGREGATION', 'MIN', 3) assert r.execute_command('TS.CREATERULE', key_name, '{}_agg_sum_3'.format(key_name), 'AGGREGATION', 'SUM', 3) assert r.execute_command('TS.CREATERULE', key_name, '{}_agg_std_3'.format(key_name), 'AGGREGATION', 'STD.S', 3) _insert_data(r, key_name, start_ts, samples_count, list(range(samples_count))) data_tester = r.execute_command('dump', key_name) data_avg_tester = r.execute_command('dump', '{}_agg_avg_3'.format(key_name)) data_min_tester = r.execute_command('dump', '{}_agg_min_3'.format(key_name)) data_sum_tester = r.execute_command('dump', '{}_agg_sum_3'.format(key_name)) data_std_tester = r.execute_command('dump', '{}_agg_std_3'.format(key_name)) r.execute_command('DEL', key_name, '{}_agg_avg_3'.format(key_name), '{}_agg_min_3'.format(key_name), '{}_agg_sum_3'.format(key_name), '{}_agg_std_3'.format(key_name)) r.execute_command('RESTORE', key_name, 0, data_tester) r.execute_command('RESTORE', '{}_agg_avg_3'.format(key_name), 0, data_avg_tester) r.execute_command('RESTORE', '{}_agg_min_3'.format(key_name), 0, data_min_tester) r.execute_command('RESTORE', '{}_agg_sum_3'.format(key_name), 0, data_sum_tester) r.execute_command('RESTORE', '{}_agg_std_3'.format(key_name), 0, data_std_tester) assert r.execute_command('TS.ADD', key_name, start_ts + samples_count, samples_count) assert r.execute_command('TS.ADD', key_name, start_ts + samples_count + 10, 0) # closes the last time_bucket # if the aggregation context wasn't saved, the results were considering only the new value added expected_result_avg = [[start_ts, b'1'], [start_ts + 3, b'3.5']] expected_result_min = [[start_ts, b'0'], [start_ts + 3, b'3']] expected_result_sum = [[start_ts, b'3'], [start_ts + 3, b'7']] expected_result_std = [[start_ts, b'1'], [start_ts + 3, b'0.7071']] actual_result_avg = r.execute_command('TS.range', '{}_agg_avg_3'.format(key_name), start_ts, start_ts + samples_count) assert actual_result_avg == expected_result_avg actual_result_min = r.execute_command('TS.range', '{}_agg_min_3'.format(key_name), start_ts, start_ts + samples_count) assert actual_result_min == expected_result_min actual_result_sum = r.execute_command('TS.range', '{}_agg_sum_3'.format(key_name), start_ts, start_ts + samples_count) assert actual_result_sum == expected_result_sum actual_result_std = r.execute_command('TS.range', '{}_agg_std_3'.format(key_name), start_ts, start_ts + samples_count) assert actual_result_std[0] == expected_result_std[0] assert abs(float(actual_result_std[1][1]) - float(expected_result_std[1][1])) < ALLOWED_ERROR def test_dump_trimmed_series(self): with Env().getClusterConnectionIfNeeded() as r: samples = 120 start_ts = 1589461305983 r.execute_command('ts.create', 'test_key', 'RETENTION', 3000, 'CHUNK_SIZE', 160, 'UNCOMPRESSED') for i in range(1, samples): r.execute_command('ts.add', 'test_key', start_ts + i * 1000, i) assert r.execute_command('ts.range', 'test_key', 0, -1) == \ [[1589461421983, b'116'], [1589461422983, b'117'], [1589461423983, b'118'], [1589461424983, b'119']] before = r.execute_command('ts.range', 'test_key', '-', '+') dump = r.execute_command('dump', 'test_key') r.execute_command('del', 'test_key') r.execute_command('restore', 'test_key', 0, dump) assert r.execute_command('ts.range', 'test_key', '-', '+') == before def test_empty_series(): with Env().getClusterConnectionIfNeeded() as r: assert r.execute_command('TS.CREATE', 'tester') agg_list = ['avg', 'sum', 'min', 'max', 'range', 'first', 'last', 'std.p', 'std.s', 'var.p', 'var.s'] for agg in agg_list: assert [] == r.execute_command('TS.range', 'tester', 0, -1, 'aggregation', agg, 1000) assert r.execute_command('DUMP', 'tester')
py
b404f2060b02d485edcadf3935d35f0e9a9d6d57
import logging from celery.task import task from changesets.models import Changeset logger = logging.getLogger(__name__) @task def execute_changeset(changeset_pk): try: changeset = Changeset.objects.get(pk=changeset_pk) except Changeset.DoesNotExist: logger.error("No changeset with pk=%s", changeset_pk) else: try: changeset.execute() except Exception: # Catch any exception, to make sure it gets logged logger.exception("Error executing changeset %s", changeset)
py
b404f214caa1b5d7050f9e4acfcf338b290e3f54
import torch import numpy as np from torch.distributions import Categorical from models import PolicyConv class Agent(object): def __init__(self): self.train_device = "cuda" self.policy = PolicyConv(3, 128).to(self.train_device) self.prev_obs = None self.policy.eval() def replace_policy(self): self.old_policy.load_state_dict(self.policy.state_dict()) def get_action(self, observation): x = self.preprocess(observation).to(self.train_device) dist, value = self.policy.forward(x) action = torch.argmax(dist.probs) return action def reset(self): self.prev_obs = None def get_name(self): return "Some other agent" def load_model(self): weights = torch.load("model.mdl") self.policy.load_state_dict(weights, strict=False) def preprocess(self, observation): observation = observation[::2, ::2].mean(axis=-1) observation = np.expand_dims(observation, axis=-1) if self.prev_obs is None: self.prev_obs = observation stack_ob = np.concatenate((self.prev_obs, observation), axis=-1) stack_ob = torch.from_numpy(stack_ob).float().unsqueeze(0) stack_ob = stack_ob.transpose(1, 3) self.prev_obs = observation return stack_ob
py
b404f2bac8cf0d8123e855f88dc7c3fbc0c3f0d3
import django_rq import redis def new_account_sound(): r = redis.Redis() r.publish('sound', 'new_account') def deposit_sound(): r = redis.Redis() r.publish('sound', 'deposit') def withdraw_sound(): r = redis.Redis() r.publish('sound', 'withdraw') def logout_sound(): r = redis.Redis() r.publish('sound', 'logout') def login_sound(): r = redis.Redis() r.publish('sound','login')
py
b404f2db833604151ba196541211f8793b10d1c2
# Generated by Django 2.2 on 2020-09-25 14:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Zoo', '0002_auto_20200925_1156'), ] operations = [ migrations.AlterField( model_name='cuidador', name='horas', field=models.IntegerField(), ), migrations.AlterField( model_name='limpiador', name='horas', field=models.IntegerField(), ), migrations.AlterField( model_name='personal', name='age', field=models.IntegerField(), ), ]
py
b404f370500492a32d66c7d215ce482aaa8604b3
from PIL import Image def print_hello(): print("hello") def print_str(s): print(s) def print_img(img): print(img) # r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2] # img = img[::-1]
py
b404f42c16c1d3f10abd7ae37efeae92e082e0a2
# ------------------------------------------------------------------------------------------------------ # Copyright (c) Leo Hanisch and contributors. All rights reserved. # Licensed under the BSD 3-Clause License. See LICENSE.txt in the project root for license information. # ------------------------------------------------------------------------------------------------------ # pylint: disable-msg=too-many-locals from typing import Tuple import numpy as np from ..util.coordinate import Coordinate class Wolf(Coordinate): def step(self, a_parameter, alpha_pos: Tuple[float, float], beta_pos: Tuple[float, float], delta_pos: Tuple[float, float]) -> None: """ Execute a wolf step. Update the wolf's position and value. Arguments: alpha_pos {Tuple[float, float]} -- The alpha position beta_pos {Tuple[float, float]} -- The beta position delta_pos {Tuple[float, float]} -- The delta position """ r_1 = np.random.random() # r_1 is a random number in [0,1] r_2 = np.random.random() # r_2 is a random number in [0,1] a_1 = 2 * a_parameter * r_1 - a_parameter # Equation (3.3) c_1 = 2 * r_2 # Equation (3.4) d_alpha = abs(c_1 * alpha_pos - self._position) # Equation (3.5)-part 1 x_1 = alpha_pos - a_1 * d_alpha # Equation (3.6)-part 1 r_1 = np.random.random() r_2 = np.random.random() a_2 = 2 * a_parameter * r_1 - a_parameter # Equation (3.3) c_2 = 2 * r_2 # Equation (3.4) d_beta = abs(c_2 * beta_pos - self._position) # Equation (3.5)-part 2 x_2 = beta_pos - a_2 * d_beta # Equation (3.6)-part 2 r_1 = np.random.random() r_2 = np.random.random() a_3 = 2 * a_parameter * r_1 - a_parameter # Equation (3.3) c_3 = 2 * r_2 # Equation (3.4) d_delta = abs(c_3 * delta_pos - self._position) # Equation (3.5)-part 3 x_3 = delta_pos - a_3 * d_delta # Equation (3.5)-part 3 self._position = (x_1 + x_2 + x_3) / 3 # Equation (3.7)
py
b404f4cee03f40f1e1926b5d2a9db286e2d876a2
from proxypool.tester import Tester from proxypool.db import RedisClient from proxypool.crawler import Crawler from proxypool.setting import * import sys class Getter(): def __init__(self): self.redis = RedisClient() self.crawler = Crawler() def is_over_threshold(self): """ 判断是否达到了代理池限制 """ if self.redis.count() >= POOL_UPPER_THRESHOLD: return True else: return False def run(self): print('获取器开始执行') if not self.is_over_threshold(): for callback_label in range(self.crawler.__CrawlFuncCount__): callback = self.crawler.__CrawlFunc__[callback_label] # 获取代理 proxies = self.crawler.get_proxies(callback) sys.stdout.flush() try: for proxy in proxies: self.redis.add(proxy) except TypeError: print('请检查部分免费代理网站的响应页面,是否还有代理信息。')
py
b404f4d40f342b7ba3412300c694bfc6ac7f7f18
# Write a procedure, rotate which takes as its input a string of lower case # letters, a-z, and spaces, and an integer n, and returns the string constructed # by shifting each of the letters n steps, and leaving the spaces unchanged. # Note that 'a' follows 'z'. You can use an additional procedure if you # choose to as long as rotate returns the correct string. # Note that n can be positive, negative or zero. from ex20_shift import shift_n_letters from UnitaryTest.test_tools import TestTools def rotate_improved(string, n): return ''.join([chr(((ord(i)-97+n)%26)+97) if i != ' ' else ' ' for i in string]) def rotate(words, n): output = [] for i in words: if i == ' ': output.append(i) else: shifted = shift_n_letters(i, n) output.append(shifted) return ''.join(output) def main(): t = TestTools() t.new_test('test 1-->rotate') t.evaluate_result(rotate('sarah', 13), expected='fnenu') t.new_test('test 2-->rotate') t.evaluate_result(rotate('fnenu', 13), expected='sarah') t.new_test('test 3-->rotate') t.evaluate_result(rotate('dave', 5), expected='ifaj') t.new_test('test 4-->rotate') t.evaluate_result(rotate('ifaj',-5), expected='dave') t.new_test('test 5-->rotate') t.evaluate_result(rotate("zw pfli tfuv nfibj tfiivtkcp pfl jyflcu sv rscv kf ivru kyzj",-17), expected='if your code works correctly you should be able to read this') t.new_test('test 6-->rotate') t.evaluate_result(rotate('this course teaches you to code', 7), expected='aopz jvbyzl alhjolz fvb av jvkl') if __name__ == '__main__': main()
py
b404f5c538ddf7d51a2ad3b956af8ef578b2538e
from django.contrib.auth.models import AnonymousUser, Group, Permission from django.contrib.contenttypes.models import ContentType from django.test import TestCase from wagtail.documents.models import Document from wagtail.models import Collection, GroupCollectionPermission from wagtail.permission_policies.collections import ( CollectionMangementPermissionPolicy, CollectionOwnershipPermissionPolicy, CollectionPermissionPolicy, ) from wagtail.test.utils import WagtailTestUtils from wagtail.tests.test_permission_policies import PermissionPolicyTestUtils class PermissionPolicyTestCase(PermissionPolicyTestUtils, TestCase, WagtailTestUtils): def setUp(self): # Permissions document_content_type = ContentType.objects.get_for_model(Document) add_doc_permission = Permission.objects.get( content_type=document_content_type, codename="add_document" ) change_doc_permission = Permission.objects.get( content_type=document_content_type, codename="change_document" ) # Collections self.root_collection = Collection.get_first_root_node() self.reports_collection = self.root_collection.add_child(name="Reports") # Groups doc_changers_group = Group.objects.create(name="Document changers") GroupCollectionPermission.objects.create( group=doc_changers_group, collection=self.root_collection, permission=change_doc_permission, ) report_changers_group = Group.objects.create(name="Report changers") GroupCollectionPermission.objects.create( group=report_changers_group, collection=self.reports_collection, permission=change_doc_permission, ) report_adders_group = Group.objects.create(name="Report adders") GroupCollectionPermission.objects.create( group=report_adders_group, collection=self.reports_collection, permission=add_doc_permission, ) # Users self.superuser = self.create_superuser( "superuser", "[email protected]", "password" ) self.inactive_superuser = self.create_superuser( "inactivesuperuser", "[email protected]", "password" ) self.inactive_superuser.is_active = False self.inactive_superuser.save() # a user with change_document permission through the 'Document changers' group self.doc_changer = self.create_user( "docchanger", "[email protected]", "password" ) self.doc_changer.groups.add(doc_changers_group) # a user that has change_document permission, but is inactive self.inactive_doc_changer = self.create_user( "inactivedocchanger", "[email protected]", "password" ) self.inactive_doc_changer.groups.add(doc_changers_group) self.inactive_doc_changer.is_active = False self.inactive_doc_changer.save() # a user with change_document permission on reports via the report_changers group self.report_changer = self.create_user( "reportchanger", "[email protected]", "password" ) self.report_changer.groups.add(report_changers_group) # a user with add_document permission on reports via the report_adders group self.report_adder = self.create_user( "reportadder", "[email protected]", "password" ) self.report_adder.groups.add(report_adders_group) # a user with no permissions self.useless_user = self.create_user( "uselessuser", "[email protected]", "password" ) self.anonymous_user = AnonymousUser() # Documents # a document in the root owned by 'reportchanger' self.changer_doc = Document.objects.create( title="reportchanger's document", collection=self.root_collection, uploaded_by_user=self.report_changer, ) # a document in reports owned by 'reportchanger' self.changer_report = Document.objects.create( title="reportchanger's report", collection=self.reports_collection, uploaded_by_user=self.report_changer, ) # a document in reports owned by 'reportadder' self.adder_report = Document.objects.create( title="reportadder's report", collection=self.reports_collection, uploaded_by_user=self.report_adder, ) # a document in reports owned by 'uselessuser' self.useless_report = Document.objects.create( title="uselessuser's report", collection=self.reports_collection, uploaded_by_user=self.useless_user, ) # a document with no owner self.anonymous_report = Document.objects.create( title="anonymous report", collection=self.reports_collection ) class TestCollectionPermissionPolicy(PermissionPolicyTestCase): def setUp(self): super().setUp() self.policy = CollectionPermissionPolicy(Document) def test_user_has_permission(self): self.assertUserPermissionMatrix( [ (self.superuser, True, True, True, True), (self.inactive_superuser, False, False, False, False), (self.doc_changer, False, True, False, False), (self.inactive_doc_changer, False, False, False, False), (self.report_changer, False, True, False, False), (self.report_adder, True, False, False, False), (self.useless_user, False, False, False, False), (self.anonymous_user, False, False, False, False), ] ) def test_user_has_any_permission(self): self.assertTrue( self.policy.user_has_any_permission(self.superuser, ["add", "change"]) ) self.assertFalse( self.policy.user_has_any_permission( self.inactive_superuser, ["add", "change"] ) ) self.assertTrue( self.policy.user_has_any_permission(self.report_changer, ["add", "change"]) ) self.assertTrue( self.policy.user_has_any_permission(self.report_adder, ["add", "change"]) ) self.assertFalse( self.policy.user_has_any_permission(self.anonymous_user, ["add", "change"]) ) def test_users_with_any_permission(self): users_with_add_or_change_permission = self.policy.users_with_any_permission( ["add", "change"] ) self.assertResultSetEqual( users_with_add_or_change_permission, [ self.superuser, self.doc_changer, self.report_changer, self.report_adder, ], ) def test_users_with_permission(self): users_with_change_permission = self.policy.users_with_permission("change") self.assertResultSetEqual( users_with_change_permission, [ self.superuser, self.doc_changer, self.report_changer, ], ) users_with_custom_permission = self.policy.users_with_permission("frobnicate") self.assertResultSetEqual( users_with_custom_permission, [ self.superuser, ], ) def test_user_has_permission_for_instance(self): # document in the root is only editable by users with permissions # on the root collection self.assertUserInstancePermissionMatrix( self.changer_doc, [ (self.superuser, True, True, True), (self.inactive_superuser, False, False, False), (self.doc_changer, True, False, False), (self.inactive_doc_changer, False, False, False), (self.report_changer, False, False, False), (self.report_adder, False, False, False), (self.useless_user, False, False, False), (self.anonymous_user, False, False, False), ], ) # document in 'reports' is editable by users with permissions # on 'reports' or the root collection self.assertUserInstancePermissionMatrix( self.useless_report, [ (self.superuser, True, True, True), (self.inactive_superuser, False, False, False), (self.doc_changer, True, False, False), (self.inactive_doc_changer, False, False, False), (self.report_changer, True, False, False), (self.report_adder, False, False, False), (self.useless_user, False, False, False), (self.anonymous_user, False, False, False), ], ) def test_user_has_any_permission_for_instance(self): self.assertTrue( self.policy.user_has_any_permission_for_instance( self.report_changer, ["change", "delete"], self.useless_report ) ) self.assertFalse( self.policy.user_has_any_permission_for_instance( self.report_changer, ["change", "delete"], self.changer_doc ) ) self.assertFalse( self.policy.user_has_any_permission_for_instance( self.anonymous_user, ["change", "delete"], self.changer_doc ) ) def test_instances_user_has_permission_for(self): self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.superuser, "change", ), [ self.changer_doc, self.changer_report, self.adder_report, self.useless_report, self.anonymous_report, ], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.inactive_superuser, "change", ), [], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.doc_changer, "change", ), [ self.changer_doc, self.changer_report, self.adder_report, self.useless_report, self.anonymous_report, ], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.report_changer, "change", ), [ self.changer_report, self.useless_report, self.adder_report, self.anonymous_report, ], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.useless_user, "change", ), [], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.anonymous_user, "change", ), [], ) def test_instances_user_has_any_permission_for(self): self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.superuser, ["change", "delete"] ), [ self.changer_doc, self.changer_report, self.adder_report, self.useless_report, self.anonymous_report, ], ) self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.inactive_superuser, ["change", "delete"] ), [], ) self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.doc_changer, ["change", "delete"] ), [ self.changer_doc, self.changer_report, self.adder_report, self.useless_report, self.anonymous_report, ], ) self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.report_changer, ["change", "delete"] ), [ self.changer_report, self.adder_report, self.useless_report, self.anonymous_report, ], ) self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.useless_user, ["change", "delete"] ), [], ) self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.anonymous_user, ["change", "delete"] ), [], ) def test_users_with_permission_for_instance(self): self.assertResultSetEqual( self.policy.users_with_permission_for_instance("change", self.changer_doc), [self.superuser, self.doc_changer], ) self.assertResultSetEqual( self.policy.users_with_permission_for_instance("change", self.adder_report), [self.superuser, self.doc_changer, self.report_changer], ) self.assertResultSetEqual( self.policy.users_with_permission_for_instance( "change", self.changer_report ), [self.superuser, self.doc_changer, self.report_changer], ) self.assertResultSetEqual( self.policy.users_with_permission_for_instance( "change", self.useless_report ), [self.superuser, self.doc_changer, self.report_changer], ) self.assertResultSetEqual( self.policy.users_with_permission_for_instance( "change", self.anonymous_report ), [self.superuser, self.doc_changer, self.report_changer], ) def test_users_with_any_permission_for_instance(self): self.assertResultSetEqual( self.policy.users_with_any_permission_for_instance( ["change", "delete"], self.changer_doc ), [self.superuser, self.doc_changer], ) self.assertResultSetEqual( self.policy.users_with_any_permission_for_instance( ["change", "delete"], self.adder_report ), [self.superuser, self.doc_changer, self.report_changer], ) self.assertResultSetEqual( self.policy.users_with_any_permission_for_instance( ["change", "delete"], self.useless_report ), [self.superuser, self.doc_changer, self.report_changer], ) self.assertResultSetEqual( self.policy.users_with_any_permission_for_instance( ["delete", "frobnicate"], self.useless_report ), [self.superuser], ) def test_collections_user_has_permission_for(self): self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.superuser, "change", ), [self.root_collection, self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.inactive_superuser, "change", ), [], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.doc_changer, "change", ), [self.root_collection, self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.report_changer, "change", ), [self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.report_adder, "change", ), [], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.report_adder, "add", ), [self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.useless_user, "change", ), [], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.anonymous_user, "change", ), [], ) def test_collections_user_has_any_permission_for(self): self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.superuser, ["change", "delete"] ), [self.root_collection, self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.inactive_superuser, ["change", "delete"] ), [], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.doc_changer, ["change", "delete"] ), [self.root_collection, self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.report_changer, ["change", "delete"] ), [self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.report_adder, ["change", "delete"] ), [], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.report_adder, ["add", "delete"] ), [self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.useless_user, ["change", "delete"] ), [], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.anonymous_user, ["change", "delete"] ), [], ) class TestCollectionOwnershipPermissionPolicy(PermissionPolicyTestCase): def setUp(self): super().setUp() self.policy = CollectionOwnershipPermissionPolicy( Document, owner_field_name="uploaded_by_user", ) def test_user_has_permission(self): self.assertUserPermissionMatrix( [ (self.superuser, True, True, True, True), (self.inactive_superuser, False, False, False, False), (self.doc_changer, False, True, True, False), (self.inactive_doc_changer, False, False, False, False), (self.report_changer, False, True, True, False), (self.report_adder, True, True, True, False), (self.useless_user, False, False, False, False), (self.anonymous_user, False, False, False, False), ] ) def test_user_has_any_permission(self): self.assertTrue( self.policy.user_has_any_permission(self.superuser, ["add", "change"]) ) self.assertFalse( self.policy.user_has_any_permission( self.inactive_superuser, ["add", "change"] ) ) self.assertTrue( self.policy.user_has_any_permission(self.report_changer, ["add", "delete"]) ) self.assertTrue( self.policy.user_has_any_permission(self.report_adder, ["add", "change"]) ) self.assertTrue( self.policy.user_has_any_permission(self.report_adder, ["change", "delete"]) ) self.assertFalse( self.policy.user_has_any_permission(self.anonymous_user, ["add", "change"]) ) def test_users_with_any_permission(self): users_with_add_or_change_permission = self.policy.users_with_any_permission( ["add", "change"] ) self.assertResultSetEqual( users_with_add_or_change_permission, [ self.superuser, self.doc_changer, self.report_changer, self.report_adder, ], ) def test_users_with_permission(self): users_with_change_permission = self.policy.users_with_permission("change") self.assertResultSetEqual( users_with_change_permission, [ self.superuser, self.doc_changer, self.report_changer, self.report_adder, ], ) users_with_custom_permission = self.policy.users_with_permission("frobnicate") self.assertResultSetEqual( users_with_custom_permission, [ self.superuser, ], ) def test_user_has_permission_for_instance(self): # document in the root is only editable by users with permissions # on the root collection self.assertUserInstancePermissionMatrix( self.changer_doc, [ (self.superuser, True, True, True), (self.inactive_superuser, False, False, False), (self.doc_changer, True, True, False), (self.inactive_doc_changer, False, False, False), (self.report_changer, False, False, False), (self.report_adder, False, False, False), (self.useless_user, False, False, False), (self.anonymous_user, False, False, False), ], ) # document in 'reports' is editable by users with permissions # on 'reports' or the root collection self.assertUserInstancePermissionMatrix( self.useless_report, [ (self.superuser, True, True, True), (self.inactive_superuser, False, False, False), (self.doc_changer, True, True, False), (self.inactive_doc_changer, False, False, False), (self.report_changer, True, True, False), (self.report_adder, False, False, False), (self.useless_user, False, False, False), (self.anonymous_user, False, False, False), ], ) # adder_report is editable by its owner (who only has 'add' permission) self.assertUserInstancePermissionMatrix( self.adder_report, [ (self.superuser, True, True, True), (self.inactive_superuser, False, False, False), (self.doc_changer, True, True, False), (self.inactive_doc_changer, False, False, False), (self.report_changer, True, True, False), (self.report_adder, True, True, False), (self.useless_user, False, False, False), (self.anonymous_user, False, False, False), ], ) def test_user_has_any_permission_for_instance(self): self.assertTrue( self.policy.user_has_any_permission_for_instance( self.report_changer, ["change", "delete"], self.useless_report ) ) self.assertFalse( self.policy.user_has_any_permission_for_instance( self.report_changer, ["change", "delete"], self.changer_doc ) ) self.assertFalse( self.policy.user_has_any_permission_for_instance( self.report_adder, ["change", "delete"], self.changer_doc ) ) self.assertTrue( self.policy.user_has_any_permission_for_instance( self.report_adder, ["change", "delete"], self.adder_report ) ) self.assertFalse( self.policy.user_has_any_permission_for_instance( self.anonymous_user, ["change", "delete"], self.changer_doc ) ) def test_instances_user_has_permission_for(self): self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.superuser, "change", ), [ self.changer_doc, self.changer_report, self.adder_report, self.useless_report, self.anonymous_report, ], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.inactive_superuser, "change", ), [], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.doc_changer, "change", ), [ self.changer_doc, self.changer_report, self.adder_report, self.useless_report, self.anonymous_report, ], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.report_changer, "change", ), [ self.changer_report, self.useless_report, self.adder_report, self.anonymous_report, ], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.useless_user, "change", ), [], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.anonymous_user, "change", ), [], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.report_adder, "change", ), [ self.adder_report, ], ) def test_instances_user_has_any_permission_for(self): self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.superuser, ["change", "delete"] ), [ self.changer_doc, self.changer_report, self.adder_report, self.useless_report, self.anonymous_report, ], ) self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.inactive_superuser, ["change", "delete"] ), [], ) self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.doc_changer, ["change", "delete"] ), [ self.changer_doc, self.changer_report, self.adder_report, self.useless_report, self.anonymous_report, ], ) self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.report_changer, ["change", "delete"] ), [ self.changer_report, self.adder_report, self.useless_report, self.anonymous_report, ], ) self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.useless_user, ["change", "delete"] ), [], ) self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.anonymous_user, ["change", "delete"] ), [], ) self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.report_adder, ["change", "delete"], ), [ self.adder_report, ], ) def test_users_with_permission_for_instance(self): self.assertResultSetEqual( self.policy.users_with_permission_for_instance("change", self.changer_doc), [self.superuser, self.doc_changer], ) self.assertResultSetEqual( self.policy.users_with_permission_for_instance( "change", self.changer_report ), [self.superuser, self.doc_changer, self.report_changer], ) self.assertResultSetEqual( self.policy.users_with_permission_for_instance("change", self.adder_report), [self.superuser, self.doc_changer, self.report_changer, self.report_adder], ) self.assertResultSetEqual( self.policy.users_with_permission_for_instance( "change", self.useless_report ), [self.superuser, self.doc_changer, self.report_changer], ) self.assertResultSetEqual( self.policy.users_with_permission_for_instance( "change", self.anonymous_report ), [self.superuser, self.doc_changer, self.report_changer], ) def test_users_with_any_permission_for_instance(self): self.assertResultSetEqual( self.policy.users_with_any_permission_for_instance( ["change", "delete"], self.changer_doc ), [self.superuser, self.doc_changer], ) self.assertResultSetEqual( self.policy.users_with_any_permission_for_instance( ["change", "delete"], self.adder_report ), [self.superuser, self.doc_changer, self.report_changer, self.report_adder], ) self.assertResultSetEqual( self.policy.users_with_any_permission_for_instance( ["change", "delete"], self.useless_report ), [self.superuser, self.doc_changer, self.report_changer], ) self.assertResultSetEqual( self.policy.users_with_any_permission_for_instance( ["delete", "frobnicate"], self.useless_report ), [self.superuser, self.doc_changer, self.report_changer], ) def test_collections_user_has_permission_for(self): self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.superuser, "change", ), [self.root_collection, self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.inactive_superuser, "change", ), [], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.doc_changer, "change", ), [self.root_collection, self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.report_changer, "change", ), [self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.report_adder, "change", ), [self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.report_adder, "add", ), [self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.useless_user, "change", ), [], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.anonymous_user, "change", ), [], ) def test_collections_user_has_any_permission_for(self): self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.superuser, ["change", "delete"] ), [self.root_collection, self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.inactive_superuser, ["change", "delete"] ), [], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.doc_changer, ["change", "delete"] ), [self.root_collection, self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.report_changer, ["change", "delete"] ), [self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.report_adder, ["change", "delete"] ), [self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.report_adder, ["add", "delete"] ), [self.reports_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.useless_user, ["change", "delete"] ), [], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.anonymous_user, ["change", "delete"] ), [], ) class TestCollectionManagementPermission( PermissionPolicyTestUtils, TestCase, WagtailTestUtils ): def setUp(self): self.policy = CollectionMangementPermissionPolicy(Collection) # Permissions collection_content_type = ContentType.objects.get_for_model(Collection) add_collection_permission = Permission.objects.get( content_type=collection_content_type, codename="add_collection" ) change_collection_permission = Permission.objects.get( content_type=collection_content_type, codename="change_collection" ) delete_collection_permission = Permission.objects.get( content_type=collection_content_type, codename="delete_collection" ) # Collections self.root_collection = Collection.get_first_root_node() self.reports_collection = self.root_collection.add_child(name="Reports") self.reports_2020_collection = self.reports_collection.add_child( name="Reports 2020" ) # Users with their groups/permissions self.superuser = self.create_superuser( "superuser", "[email protected]", "password" ) self.inactive_superuser = self.create_superuser( "inactivesuperuser", "[email protected]", "password" ) self.inactive_superuser.is_active = False self.inactive_superuser.save() # a user with change collection permission on reports via the report_changers group report_changers_group = Group.objects.create(name="Report changers") GroupCollectionPermission.objects.create( group=report_changers_group, collection=self.reports_collection, permission=change_collection_permission, ) self.report_changer = self.create_user( "reportchanger", "[email protected]", "password" ) self.report_changer.groups.add(report_changers_group) # a user with add collection permission on reports via the report_adders group report_adders_group = Group.objects.create(name="Report adders") GroupCollectionPermission.objects.create( group=report_adders_group, collection=self.reports_collection, permission=add_collection_permission, ) self.report_adder = self.create_user( "reportadder", "[email protected]", "password" ) self.report_adder.groups.add(report_adders_group) # a user with delete collection permission on reports via the report_deleters group report_deleters_group = Group.objects.create(name="Report deleters") GroupCollectionPermission.objects.create( group=report_deleters_group, collection=self.reports_collection, permission=delete_collection_permission, ) self.report_deleter = self.create_user( "reportdeleter", "[email protected]", "password" ) self.report_deleter.groups.add(report_deleters_group) # a user with no permissions self.useless_user = self.create_user( "uselessuser", "[email protected]", "password" ) self.anonymous_user = AnonymousUser() def test_user_has_permission(self): self.assertUserPermissionMatrix( [ (self.superuser, True, True, True, True), (self.inactive_superuser, False, False, False, False), (self.report_changer, False, True, False, False), (self.report_adder, True, False, False, False), (self.report_deleter, False, False, True, False), (self.useless_user, False, False, False, False), (self.anonymous_user, False, False, False, False), ] ) def test_user_has_any_permission(self): users_with_permissions = [ self.superuser, self.report_changer, self.report_adder, self.report_deleter, ] users_without_permissions = [ self.inactive_superuser, self.useless_user, self.anonymous_user, ] for user in users_with_permissions: self.assertTrue( self.policy.user_has_any_permission(user, ["add", "change", "delete"]) ) for user in users_without_permissions: self.assertFalse( self.policy.user_has_any_permission(user, ["add", "change", "delete"]) ) def test_users_with_any_permission(self): users_with_add_or_change_or_delete_permission = ( self.policy.users_with_any_permission(["add", "change", "delete"]) ) self.assertResultSetEqual( users_with_add_or_change_or_delete_permission, [ self.superuser, self.report_changer, self.report_adder, self.report_deleter, ], ) def test_users_with_permission(self): users_with_change_permission = self.policy.users_with_permission("change") self.assertResultSetEqual( users_with_change_permission, [ self.superuser, self.report_changer, ], ) users_with_custom_permission = self.policy.users_with_permission("frobnicate") self.assertResultSetEqual( users_with_custom_permission, [ self.superuser, ], ) def test_only_superuser_has_permission_for_root_collection(self): self.assertUserInstancePermissionMatrix( self.root_collection, [ (self.superuser, True, True, True), (self.inactive_superuser, False, False, False), (self.report_changer, False, False, False), (self.report_adder, False, False, False), (self.report_deleter, False, False, False), (self.useless_user, False, False, False), (self.anonymous_user, False, False, False), ], ) def test_user_has_permission_for_instance(self): # Reports collection is editable - as are its children self.assertUserInstancePermissionMatrix( self.reports_collection, [ (self.superuser, True, True, True), (self.inactive_superuser, False, False, False), (self.report_changer, True, False, False), (self.report_deleter, False, True, False), (self.useless_user, False, False, False), (self.anonymous_user, False, False, False), ], ) self.assertUserInstancePermissionMatrix( self.reports_2020_collection, [ (self.superuser, True, True, True), (self.inactive_superuser, False, False, False), (self.report_changer, True, False, False), (self.report_deleter, False, True, False), (self.useless_user, False, False, False), (self.anonymous_user, False, False, False), ], ) def test_user_has_any_permission_for_instance(self): users_with_permissions = [ self.superuser, self.report_changer, self.report_adder, self.report_deleter, ] for user in users_with_permissions: self.assertTrue( self.policy.user_has_any_permission_for_instance( user, ["add", "change", "delete"], self.reports_collection ) ) self.assertFalse( self.policy.user_has_any_permission_for_instance( self.report_adder, ["add", "change", "delete"], self.root_collection ) ) self.assertTrue( self.policy.user_has_any_permission_for_instance( self.superuser, ["add", "change", "delete"], self.root_collection ) ) def test_instances_user_has_permission_for(self): self.assertResultSetEqual( self.policy.instances_user_has_permission_for(self.superuser, "change"), [ self.root_collection, self.reports_collection, self.reports_2020_collection, ], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for(self.report_adder, "add"), [self.reports_collection, self.reports_2020_collection], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for(self.report_adder, "change"), [], ) self.assertResultSetEqual( self.policy.instances_user_has_permission_for( self.inactive_superuser, "change" ), [], ) def test_instances_user_has_any_permission_for(self): self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.superuser, ["add", "change"] ), [ self.root_collection, self.reports_collection, self.reports_2020_collection, ], ) self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.report_adder, ["add", "change"] ), [self.reports_collection, self.reports_2020_collection], ) self.assertResultSetEqual( self.policy.instances_user_has_any_permission_for( self.inactive_superuser, ["add", "change"] ), [], ) def test_users_with_permission_for_instance(self): self.assertResultSetEqual( self.policy.users_with_permission_for_instance( "change", self.root_collection ), [self.superuser], ) self.assertResultSetEqual( self.policy.users_with_permission_for_instance( "change", self.reports_collection ), [self.superuser, self.report_changer], ) self.assertResultSetEqual( self.policy.users_with_permission_for_instance( "add", self.reports_collection ), [self.superuser, self.report_adder], ) def test_users_with_any_permission_for_instance(self): self.assertResultSetEqual( self.policy.users_with_any_permission_for_instance( ["add", "change", "delete"], self.reports_2020_collection ), [ self.superuser, self.report_adder, self.report_changer, self.report_deleter, ], ) def test_collections_user_has_permission_for(self): self.assertResultSetEqual( self.policy.collections_user_has_permission_for(self.superuser, "change"), [ self.root_collection, self.reports_collection, self.reports_2020_collection, ], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for(self.report_adder, "add"), [self.reports_collection, self.reports_2020_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.report_adder, "change" ), [], ) self.assertResultSetEqual( self.policy.collections_user_has_permission_for( self.inactive_superuser, "change" ), [], ) def test_collections_user_has_any_permission_for(self): self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.superuser, ["add", "change"] ), [ self.root_collection, self.reports_collection, self.reports_2020_collection, ], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.report_adder, ["add", "change"] ), [self.reports_collection, self.reports_2020_collection], ) self.assertResultSetEqual( self.policy.collections_user_has_any_permission_for( self.inactive_superuser, ["add", "change"] ), [], )
py
b404f736ab019724d135df9fcdb32553c090510b
from allauth.account import app_settings from allauth.account.views import LoginView, SignupView from allauth.utils import get_form_class class LoginSignupView(LoginView): def get_context_data(self, **kwargs): data = super(LoginSignupView, self).get_context_data(**kwargs) signup_form_class = get_form_class( app_settings.FORMS, 'signup', SignupView.form_class) data['signup_form'] = signup_form_class() return data login_signup_view = LoginSignupView.as_view()
py
b404f817fb64d0dbdbce0d13b10b504b8a4e3ba7
#!/usr/bin/env python # coding: utf-8 # # Primitive Roots # ## About # In modular arithmetic, a branch of number theory, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is an integer k such that g<sup>k</sup> ≡ a (mod n). # ## Algorithm # # **x** is the **primitive root of q** if, # # **{x<sup>1</sup> mod q, x<sup>2</sup> mod q, x<sup>3</sup> mod q, ..., x<sup>q-1</sup> mod q} => {1, 2, 3, ..., q-1}** # # 1. Calculate value of **x<sup>i</sup> mod q**, for **x <= q-1 and i <= q-1** # 2. The value of x, for which the corresponding set(s), **{x<sup>1</sup> mod q, x<sup>2</sup> mod q, x<sup>3</sup> mod q, ..., x<sup>q-1</sup> mod q} => {1, 2, 3, ..., q-1}** , is a a **Primitive Root of q** # 3. Print the Primitive Root table. # 4. Print the list of Primitive roots. # In[122]: import random from termcolor import colored def primitiveRoot(q): setOfPR = [] a = 1 print("\nPrimitive Roots table for {} : \n".format(q)) print(colored("a\u2193 i\u2192|".format(q) , 'blue'), end=" ") for i in range(1, q): print(colored('a^{} mod {}'.format(i,q), 'blue'), end=" ") print("\n") for i in range(1, q+1): print(colored('------------', 'blue'), end="") print("\n") while a<q: rootSet= [] reqSet = [] for i in range(1, q): rootSet.append(int((a**i)%q)) #print(rootSet) print(colored("{} |".format(a) , 'blue'), end=" ") for j in range(1, q): reqSet.append(j) if set(rootSet) == set(reqSet): setOfPR.append(a) for k in rootSet: print(colored("{}".format(k), 'green'), end=" ") print("\n") a += 1 else: for k in rootSet: print("{}".format(k), end=" ") print("\n") a += 1 print("\nPrimitive Roots of {} are ".format(q), setOfPR, end="\n\n") q = int(input("Enter a prime number: ")) primitiveRoot(q) # #### Tanmoy Sen Gupta # [tanmoysg.com](http://tanmoysg.com) | +91 9864809029 | [email protected]
py
b404f9c6e84a57bdfd12da44e004168230596af6
class Solution: def findKthPositive(self, arr: List[int], k: int) -> int: ''' Number of missing element at index i = = arr[0] - 1 + arr[idx] - arr[0] - idx = = arr[idx] - idx - 1 For more description, see: 1060 Missing Element in Sorted Array T: O(log n) and O(1) ''' def countMissing(idx): return arr[idx] - idx - 1 if k < arr[0]: return k lo, hi = 0, len(arr) while lo < hi: mid = lo + (hi - lo) // 2 if countMissing(mid) >= k: hi = mid else: lo = mid + 1 return arr[lo - 1] + k - countMissing(lo - 1)
py
b404fb0de5aa2cf5e88967c791e3c0bccf34401b
from glob import glob import pyexcel as p ### Set the following variables for the directory of the files you're working with convertDirectory = ### for convertOldXls in glob(convertDirectory + '*.xls'): xlsMinusPath = convertOldXls[:-3] xlsFileNewExtension = xlsMinusPath + "xlsx" p.save_book_as(file_name=convertOldXls, dest_file_name=(newFileWithExtension)) print("The workbook processed was: %s" % xlsFileNewExtension) print("\n###\n" + "### The .xls TO .xlsx conversion was a success.\n" + "###\n")
py
b404fb28b4d93c89142547f9f2914abdcdcc8f6e
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Zenacoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ ZMQ example using python3's asyncio Zenacoin should be started with the command line arguments: zenacoind -testnet -daemon \ -zmqpubhashblock=tcp://127.0.0.1:29332 \ -zmqpubrawtx=tcp://127.0.0.1:29332 \ -zmqpubhashtx=tcp://127.0.0.1:29332 \ -zmqpubhashblock=tcp://127.0.0.1:29332 We use the asyncio library here. `self.handle()` installs itself as a future at the end of the function. Since it never returns with the event loop having an empty stack of futures, this creates an infinite loop. An alternative is to wrap the contents of `handle` inside `while True`. A blocking example using python 2.7 can be obtained from the git history: https://github.com/zenacoin/zenacoin/blob/37a7fe9e440b83e2364d5498931253937abe9294/contrib/zmq/zmq_sub.py """ import binascii import asyncio import zmq import zmq.asyncio import signal import struct import sys if not (sys.version_info.major >= 3 and sys.version_info.minor >= 5): print("This example only works with Python 3.5 and greater") exit(1) port = 29332 class ZMQHandler(): def __init__(self): self.loop = zmq.asyncio.install() self.zmqContext = zmq.asyncio.Context() self.zmqSubSocket = self.zmqContext.socket(zmq.SUB) self.zmqSubSocket.setsockopt_string(zmq.SUBSCRIBE, "hashblock") self.zmqSubSocket.setsockopt_string(zmq.SUBSCRIBE, "hashtx") self.zmqSubSocket.setsockopt_string(zmq.SUBSCRIBE, "rawblock") self.zmqSubSocket.setsockopt_string(zmq.SUBSCRIBE, "rawtx") self.zmqSubSocket.connect("tcp://127.0.0.1:%i" % port) async def handle(self) : msg = await self.zmqSubSocket.recv_multipart() topic = msg[0] body = msg[1] sequence = "Unknown" if len(msg[-1]) == 4: msgSequence = struct.unpack('<I', msg[-1])[-1] sequence = str(msgSequence) if topic == b"hashblock": print('- HASH BLOCK ('+sequence+') -') print(binascii.hexlify(body)) elif topic == b"hashtx": print('- HASH TX ('+sequence+') -') print(binascii.hexlify(body)) elif topic == b"rawblock": print('- RAW BLOCK HEADER ('+sequence+') -') print(binascii.hexlify(body[:80])) elif topic == b"rawtx": print('- RAW TX ('+sequence+') -') print(binascii.hexlify(body)) # schedule ourselves to receive the next message asyncio.ensure_future(self.handle()) def start(self): self.loop.add_signal_handler(signal.SIGINT, self.stop) self.loop.create_task(self.handle()) self.loop.run_forever() def stop(self): self.loop.stop() self.zmqContext.destroy() daemon = ZMQHandler() daemon.start()
py
b404fb4a7a36518a4321cd688699a3e626f4c318
""" OAuth 2.0 Client Credentials Plugin for HTTPie. """ import sys from httpie.plugins import AuthPlugin from oauthlib.oauth2 import BackendApplicationClient, WebApplicationClient, InsecureTransportError from requests_oauthlib import OAuth2Session from requests.auth import HTTPBasicAuth, AuthBase from httpie.cli.definition import parser from httpie.context import Environment __version__ = '0.1.0' __author__ = 'Brian Demers' __licence__ = 'BSD' class OAuth2Plugin(AuthPlugin): name = 'OAuth 2.0 Client Credentials' auth_type = 'oauth2' description = '' oauth = parser.add_argument_group(title='OAuth 2.0') oauth.add_argument( '--issuer-uri', default=None, metavar='ISSUER_URI', help=""" The OAuth 2.0 Issuer URI """, ) oauth.add_argument( '--scope', default=None, metavar='SCOPE', help=""" The OAuth 2.0 Scopes """, ) def get_auth(self, username, password): args = parser.args auth = HTTPBasicAuth(username, password) client = BackendApplicationClient(client_id=username) oauth = OAuth2Session(client=client) token = oauth.fetch_token(token_url=args.issuer_uri, auth=auth, scope=args.scope) return BearerAuth(token=token['access_token']) class BearerAuth(AuthBase): """Adds proof of authorization (Bearer token) to the request.""" def __init__(self, token): """Construct a new Bearer authorization object. :param token: bearer token to attach to request """ self.token = token def __call__(self, r): """Append an Bearer header to the request. """ r.headers['Authorization'] = 'Bearer %s' % self.token return r
py
b404fbc7d70f322f87e7711fcbfde63ea355080d
"""Gradients for operators defined in math_ops.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.framework import types from tensorflow.python.ops import array_ops from tensorflow.python.ops import constant_op from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import gen_math_ops from tensorflow.python.ops import math_ops def _ReductionGradAssist(op): """Reduction grads have much in common, so factor the commonality out.""" inp = op.inputs[0] # Example: input_shape = array_ops.shape(inp) # [2, 3, 5, 7] input_rank = array_ops.rank(inp) # 4 indices = op.inputs[1] # [1, 2] indices_shape = array_ops.shape(indices) # [2] new_output_shape = data_flow_ops.dynamic_stitch( # [2, 1, 1, 7] [math_ops.range(0, input_rank), # [0, 1, 2, 3] indices], # [1, 2] [input_shape, # [2, 3, 5, 7] array_ops.fill(indices_shape, 1)]) # [1, 1] return inp, new_output_shape, input_shape @ops.RegisterGradient("Sum") def _SumGrad(op, grad): """Gradient for Sum.""" _, new_output_shape, input_shape = _ReductionGradAssist(op) tile_scaling = input_shape // new_output_shape grad = array_ops.reshape(grad, new_output_shape) return [array_ops.tile(grad, tile_scaling), None] def _MinOrMaxGrad(op, grad): """Gradient for Max or Max. Amazingly it's precisely the same code.""" inp, new_output_shape, _ = _ReductionGradAssist(op) y = op.outputs[0] y = array_ops.reshape(y, new_output_shape) grad = array_ops.reshape(grad, new_output_shape) indicators = math_ops.cast(math_ops.equal(y, inp), grad.dtype) return [indicators * grad, None] @ops.RegisterGradient("Max") def _MaxGrad(op, grad): """Gradient for Max.""" return _MinOrMaxGrad(op, grad) @ops.RegisterGradient("Min") def _MinGrad(op, grad): return _MinOrMaxGrad(op, grad) @ops.RegisterGradient("Mean") def _MeanGrad(op, grad): """Gradient for Mean.""" sum_grad = _SumGrad(op, grad)[0] input_shape = array_ops.shape(op.inputs[0]) output_shape = array_ops.shape(op.outputs[0]) factor = (math_ops.reduce_prod(input_shape) // math_ops.reduce_prod(output_shape)) return sum_grad / math_ops.cast(factor, sum_grad.dtype), None @ops.RegisterGradient("Prod") def _ProdGrad(op, grad): """Gradient for Prod.""" # TODO(kearnes): this gives NaNs for 0s in the input tensor _, new_output_shape, input_shape = _ReductionGradAssist(op) tile_scaling = input_shape // new_output_shape grad = array_ops.reshape(grad * op.outputs[0], new_output_shape) grad = math_ops.div(array_ops.tile(grad, tile_scaling), op.inputs[0]) return grad, None @ops.RegisterGradient("SegmentSum") def _SegmentSumGrad(op, grad): """Gradient for SegmentSum.""" return array_ops.gather(grad, op.inputs[1]), None @ops.RegisterGradient("SegmentMean") def _SegmentMeanGrad(op, grad): """Gradient for SegmentMean.""" input_rank = array_ops.rank(op.inputs[0]) ones_shape = array_ops.concat( 0, [array_ops.shape(op.inputs[1]), array_ops.fill(array_ops.expand_dims(input_rank - 1, 0), 1)]) ones = array_ops.fill(ones_shape, constant_op.constant(1, dtype=grad.dtype)) scaled_grad = grad * math_ops.inv(math_ops.segment_sum(ones, op.inputs[1])) return array_ops.gather(scaled_grad, op.inputs[1]), None @ops.RegisterGradient("SparseSegmentSum") def _SparseSegmentSumGrad(op, grad): """Gradient for SparseSegmentSum.""" input_rows = array_ops.shape(op.inputs[0])[0] return (math_ops.unsorted_segment_sum( array_ops.gather(grad, op.inputs[2]), op.inputs[1], input_rows), None, None) @ops.RegisterGradient("SparseSegmentMean") def _SparseSegmentMeanGrad(op, grad): """Gradient for SparseSegmentMean.""" dim0 = array_ops.shape(op.inputs[0])[0] return (math_ops.sparse_segment_mean_grad(grad, op.inputs[1], op.inputs[2], dim0), None, None) @ops.RegisterGradient("SegmentMin") def _SegmentMinGrad(op, grad): """Gradient for SegmentMin.""" zeros = array_ops.zeros(array_ops.shape(op.inputs[0]), dtype=op.inputs[0].dtype) gathered_grads = array_ops.gather(grad, op.inputs[1]) gathered_outputs = array_ops.gather(op.outputs[0], op.inputs[1]) return math_ops.select(math_ops.greater(op.inputs[0], gathered_outputs), zeros, gathered_grads), None @ops.RegisterGradient("SegmentMax") def _SegmentMaxGrad(op, grad): """Gradient for SegmentMax.""" zeros = array_ops.zeros(array_ops.shape(op.inputs[0]), dtype=op.inputs[0].dtype) gathered_grads = array_ops.gather(grad, op.inputs[1]) gathered_outputs = array_ops.gather(op.outputs[0], op.inputs[1]) return math_ops.select(math_ops.less(op.inputs[0], gathered_outputs), zeros, gathered_grads), None @ops.RegisterGradient("UnsortedSegmentSum") def _UnsortedSegmentSumGrad(op, grad): """Gradient for SegmentSum.""" return array_ops.gather(grad, op.inputs[1]), None, None @ops.RegisterGradient("Abs") def _AbsGrad(op, grad): x = op.inputs[0] return grad * math_ops.sign(x) @ops.RegisterGradient("Neg") def _NegGrad(_, grad): """Returns -grad.""" return - grad @ops.RegisterGradient("Inv") def _InvGrad(op, grad): """Returns -grad * (1 / x^2).""" y = op.outputs[0] # y = 1 / x return grad * (- math_ops.square(y)) @ops.RegisterGradient("Square") def _SquareGrad(op, grad): x = op.inputs[0] return grad * (2.0 * x) @ops.RegisterGradient("Sqrt") def _SqrtGrad(op, grad): y = op.outputs[0] # y = x^(1/2) return grad * (.5 * math_ops.inv(y)) @ops.RegisterGradient("Rsqrt") def _RsqrtGrad(op, grad): x = op.inputs[0] y = op.outputs[0] # y = x^(-1/2) return grad * ((-0.5) * math_ops.inv(x) * y) @ops.RegisterGradient("Exp") def _ExpGrad(op, grad): """Returns grad * exp(x).""" y = op.outputs[0] # y = e^x return grad * y @ops.RegisterGradient("Log") def _LogGrad(op, grad): """Returns grad * (1/x).""" x = op.inputs[0] return grad * math_ops.inv(x) @ops.RegisterGradient("Tanh") def _TanhGrad(op, grad): """Returns grad * (1 - tanh(x) * tanh(x)).""" y = op.outputs[0] # y = tanh(x) return grad * (1 - math_ops.square(y)) @ops.RegisterGradient("Sigmoid") def _SigmoidGrad(op, grad): """Returns grad * sigmoid(x) * (1 - sigmoid(x)).""" y = op.outputs[0] # y = sigmoid(x) return grad * (y * (1 - y)) @ops.RegisterGradient("Sign") def _SignGrad(op, _): """Returns 0.""" x = op.inputs[0] return array_ops.zeros(array_ops.shape(x), dtype=x.dtype) @ops.RegisterGradient("Sin") def _SinGrad(op, grad): """Returns grad * cos(x).""" x = op.inputs[0] return grad * math_ops.cos(x) @ops.RegisterGradient("Cos") def _CosGrad(op, grad): """Returns grad * -sin(x).""" x = op.inputs[0] return -grad * math_ops.sin(x) @ops.RegisterGradient("AddN") def _AddNGrad(op, grad): """Copies the gradient to all inputs.""" # Not broadcasting. return [grad] * len(op.inputs) @ops.RegisterGradient("Add") def _AddGrad(op, grad): x = op.inputs[0] y = op.inputs[1] sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy) return (array_ops.reshape(math_ops.reduce_sum(grad, rx), sx), array_ops.reshape(math_ops.reduce_sum(grad, ry), sy)) @ops.RegisterGradient("Sub") def _SubGrad(op, grad): x = op.inputs[0] y = op.inputs[1] sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy) return (array_ops.reshape(math_ops.reduce_sum(grad, rx), sx), array_ops.reshape(-math_ops.reduce_sum(grad, ry), sy)) @ops.RegisterGradient("Mul") def _MulGrad(op, grad): x = op.inputs[0] y = op.inputs[1] assert x.dtype.base_dtype == y.dtype.base_dtype, (x.dtype, " vs. ", y.dtype) sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy) if x.dtype.base_dtype == types.complex64: return (array_ops.reshape(math_ops.reduce_sum(grad * math_ops.conj(y), rx), sx), array_ops.reshape(math_ops.reduce_sum(math_ops.conj(x) * grad, ry), sy)) else: return (array_ops.reshape(math_ops.reduce_sum(grad * y, rx), sx), array_ops.reshape(math_ops.reduce_sum(x * grad, ry), sy)) @ops.RegisterGradient("Div") def _DivGrad(op, grad): x = op.inputs[0] y = op.inputs[1] sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy) return (array_ops.reshape(math_ops.reduce_sum(grad / y, rx), sx), array_ops.reshape(math_ops.reduce_sum(grad * (-x / math_ops.square(y)), ry), sy)) @ops.RegisterGradient("Pow") def _PowGrad(op, grad): """Returns grad * (y*x^(y-1), z*log(x)).""" x = op.inputs[0] y = op.inputs[1] z = op.outputs[0] sx = array_ops.shape(x) sy = array_ops.shape(y) rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy) gx = array_ops.reshape(math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx) gy = array_ops.reshape(math_ops.reduce_sum(grad * z * math_ops.log(x), ry), sy) return gx, gy def _MaximumMinimumGrad(op, grad, selector_op): """Factor out the code for the gradient of Maximum or Minimum.""" x = op.inputs[0] y = op.inputs[1] gdtype = grad.dtype sx = array_ops.shape(x) sy = array_ops.shape(y) gradshape = array_ops.shape(grad) zeros = array_ops.zeros(gradshape, gdtype) xmask = selector_op(x, y) rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy) xgrad = math_ops.select(xmask, grad, zeros) ygrad = math_ops.select(math_ops.logical_not(xmask), grad, zeros) gx = array_ops.reshape(math_ops.reduce_sum(xgrad, rx), sx) gy = array_ops.reshape(math_ops.reduce_sum(ygrad, ry), sy) return (gx, gy) @ops.RegisterGradient("Maximum") def _MaximumGrad(op, grad): """Returns grad*(x > y, x <= y) with type of grad.""" return _MaximumMinimumGrad(op, grad, math_ops.greater_equal) @ops.RegisterGradient("Minimum") def _MinimumGrad(op, grad): """Returns grad*(x < y, x >= y) with type of grad.""" return _MaximumMinimumGrad(op, grad, math_ops.less_equal) # Logical operations have no gradients. ops.NoGradient("Less") ops.NoGradient("LessEqual") ops.NoGradient("Greater") ops.NoGradient("GreaterEqual") ops.NoGradient("Equal") ops.NoGradient("NotEqual") ops.NoGradient("LogicalAnd") ops.NoGradient("LogicalOr") ops.NoGradient("LogicalNot") @ops.RegisterGradient("Select") def _SelectGrad(op, grad): c = op.inputs[0] x = op.inputs[1] zeros = array_ops.zeros(array_ops.shape(c), dtype=x.dtype) return (None, math_ops.select(c, grad, zeros), math_ops.select(c, zeros, grad)) @ops.RegisterGradient("MatMul") def _MatMulGrad(op, grad): t_a = op.get_attr("transpose_a") t_b = op.get_attr("transpose_b") if not t_a and not t_b: return (math_ops.matmul(grad, op.inputs[1], transpose_b=True), math_ops.matmul(op.inputs[0], grad, transpose_a=True)) elif not t_a and t_b: return (math_ops.matmul(grad, op.inputs[1]), math_ops.matmul(grad, op.inputs[0], transpose_a=True)) elif t_a and not t_b: return (math_ops.matmul(op.inputs[1], grad, transpose_b=True), math_ops.matmul(op.inputs[0], grad)) elif t_a and t_b: return (math_ops.matmul(op.inputs[1], grad, transpose_a=True, transpose_b=True), math_ops.matmul(grad, op.inputs[0], transpose_a=True, transpose_b=True)) @ops.RegisterGradient("SparseMatMul") def _SparseMatMulGrad(op, grad): """Gradient for SparseMatMul.""" t_a = op.get_attr("transpose_a") t_b = op.get_attr("transpose_b") is_sparse = { op.inputs[0]: op.get_attr("a_is_sparse"), op.inputs[1]: op.get_attr("b_is_sparse"), # Use heuristic to figure out if grad might be sparse grad: (grad.op.type == "ReluGrad") } def _SparseMatMul(t1, t2, transpose_a=False, transpose_b=False): """Helper function to create SparseMatMul op.""" assert t1 in is_sparse and t2 in is_sparse t1_sparse = is_sparse[t1] t2_sparse = is_sparse[t2] if not t1_sparse and not t2_sparse: return math_ops.matmul(t1, t2, transpose_a=transpose_a, transpose_b=transpose_b) transpose_out = False if not t1_sparse: transpose_out = True t1, t2 = t2, t1 t1_sparse, t2_sparse = t2_sparse, t1_sparse assert t1_sparse transpose_a, transpose_b = not transpose_b, not transpose_a if transpose_b: t2 = array_ops.transpose(t2) transpose_b = False m = math_ops.matmul(t1, t2, transpose_a=transpose_a, transpose_b=transpose_b, a_is_sparse=t1_sparse, b_is_sparse=t2_sparse) if transpose_out: m = array_ops.transpose(m) return m if not t_a and not t_b: return (_SparseMatMul(grad, op.inputs[1], transpose_b=True), _SparseMatMul(op.inputs[0], grad, transpose_a=True)) elif not t_a and t_b: return (_SparseMatMul(grad, op.inputs[1]), _SparseMatMul(grad, op.inputs[0], transpose_a=True)) elif t_a and not t_b: return (_SparseMatMul(op.inputs[1], grad, transpose_b=True), _SparseMatMul(op.inputs[0], grad)) elif t_a and t_b: return (_SparseMatMul(op.inputs[1], grad, transpose_a=True, transpose_b=True), _SparseMatMul(grad, op.inputs[0], transpose_a=True, transpose_b=True)) @ops.RegisterGradient("Floor") def _FloorGrad(_, grad): return grad @ops.RegisterGradient("BatchMatMul") def _BatchMatMul(op, grad): """Returns the gradient of x and y given the gradient of x * y.""" x = op.inputs[0] y = op.inputs[1] adj_x = op.get_attr("adj_x") adj_y = op.get_attr("adj_y") if not adj_x: if not adj_y: grad_x = math_ops.batch_matmul(grad, y, False, True) grad_y = math_ops.batch_matmul(x, grad, True, False) else: grad_x = math_ops.batch_matmul(grad, y, False, False) grad_y = math_ops.batch_matmul(grad, x, True, False) else: if not adj_y: grad_x = math_ops.batch_matmul(y, grad, False, True) grad_y = math_ops.batch_matmul(x, grad, False, False) else: grad_x = math_ops.batch_matmul(y, grad, True, True) grad_y = math_ops.batch_matmul(grad, x, True, True) return grad_x, grad_y ops.NoGradient("Range") ops.NoGradient("LinSpace") @ops.RegisterGradient("Complex") def _ComplexGrad(_, grad): """Returns the real and imaginary components of 'grad', respectively.""" return math_ops.real(grad), math_ops.imag(grad) @ops.RegisterGradient("Real") def _RealGrad(_, grad): """Returns 'grad' as the real part and set the imaginary part 0.""" zero = constant_op.constant(0, dtype=grad.dtype) return math_ops.complex(grad, zero) @ops.RegisterGradient("Imag") def _ImagGrad(_, grad): """Returns 'grad' as the imaginary part and set the real part 0.""" zero = constant_op.constant(0, dtype=grad.dtype) return math_ops.complex(zero, grad) @ops.RegisterGradient("Conj") def _ConjGrad(_, grad): """Returns the complex conjugate of grad.""" return math_ops.conj(grad) @ops.RegisterGradient("Cast") def _CastGrad(op, grad): t = [types.float32, types.float64, types.bfloat16] src_type = op.inputs[0].dtype.base_dtype dst_type = grad.dtype.base_dtype if src_type in t and dst_type in t: return math_ops.cast(grad, src_type) else: return None
py
b404fcf6a85196114a2009975e9b2dca38bbd254
# -*- coding: utf-8 -*- # Copyright (c) 2015, Helio de Jesus and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest # test_records = frappe.get_test_records('Quartos') class TestQuartos(unittest.TestCase): pass
py
b404fd882ffb6ad64f118d0cf013deb9c2dc83f1
import os import joblib import re import numpy as np import tensorflow as tf from rllab.misc.logger import get_snapshot_dir class FusionDistrManager(object): def add_paths(self, paths): raise NotImplementedError() def sample_paths(self, n): raise NotImplementedError() class PathsReader(object): ITR_REG = re.compile(r"itr_(?P<itr_count>[0-9]+)\.pkl") def __init__(self, path_dir): self.path_dir = path_dir def get_path_files(self): itr_files = [] for i, filename in enumerate(os.listdir(self.path_dir)): m = PathsReader.ITR_REG.match(filename) if m: itr_count = m.group('itr_count') itr_files.append((itr_count, filename)) itr_files = sorted(itr_files, key=lambda x: int(x[0]), reverse=True) for itr_file_and_count in itr_files: fname = os.path.join(self.path_dir, itr_file_and_count[1]) yield fname def __len__(self): return len(list(self.get_path_files())) class DiskFusionDistr(FusionDistrManager): def __init__(self, path_dir=None): if path_dir is None: path_dir = get_snapshot_dir() self.path_dir = path_dir self.paths_reader = PathsReader(path_dir) def add_paths(self, paths): raise NotImplementedError() def sample_paths(self, n): # load from disk! fnames = list(self.paths_reader.get_path_files()) N = len(fnames) sample_files = np.random.randint(0, N, size=(n)) #sample_hist = np.histogram(sample_files, range=(0, N)) #print(sample_hist) unique, counts = np.unique(sample_files, return_counts=True) unique_dict = dict(zip(unique, counts)) all_paths = [] for fidx in unique_dict: fname = fnames[fidx] n_samp = unique_dict[fidx] print(fname, n_samp) config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Graph().as_default(): with tf.Session(config=config).as_default(): snapshot_dict = joblib.load(fname) paths = snapshot_dict['paths'] pidxs = np.random.randint(0, len(paths), size=(n_samp)) all_paths.extend([paths[pidx] for pidx in pidxs]) return all_paths class RamFusionDistr(FusionDistrManager): def __init__(self, buf_size, subsample_ratio=0.5): self.buf_size = buf_size self.buffer = [] self.subsample_ratio = subsample_ratio def add_paths(self, paths, subsample=True): if subsample: paths = paths[:int(len(paths)*self.subsample_ratio)] self.buffer.extend(paths) overflow = len(self.buffer)-self.buf_size while overflow > 0: #self.buffer = self.buffer[overflow:] N = len(self.buffer) probs = np.arange(N)+1 probs = probs/float(np.sum(probs)) pidx = np.random.choice(np.arange(N), p=probs) self.buffer.pop(pidx) overflow -= 1 def sample_paths(self, n): if len(self.buffer) == 0: return [] else: pidxs = np.random.randint(0, len(self.buffer), size=(n)) return [self.buffer[pidx] for pidx in pidxs] if __name__ == "__main__": #fm = DiskFusionDistr(path_dir='data_nobs/gridworld_random/gru1') #paths = fm.sample_paths(10) fm = RamFusionDistr(10) fm.add_paths([1,2,3,4,5,6,7,8,9,10,11,12,13]) print(fm.buffer) print(fm.sample_paths(5))
py
b404fe23ec592918754200b96ce306a8c41fdecf
import numpy as np import pathlib import cv2 import pandas as pd import copy class OpenImagesDataset: def __init__(self, root, transform=None, target_transform=None, dataset_type="train", balance_data=False): self.root = pathlib.Path(root) self.transform = transform self.target_transform = target_transform self.dataset_type = dataset_type.lower() self.data, self.class_names, self.class_dict = self._read_data() self.balance_data = balance_data self.min_image_num = -1 if self.balance_data: self.data = self._balance_data() self.ids = [info['image_id'] for info in self.data] self.class_stat = None def _getitem(self, index): image_info = self.data[index] image = self._read_image(image_info['image_id']) image = cv2.resize(image, (300,300)) #ハードコーディングやばい # duplicate boxes to prevent corruption of dataset boxes = copy.copy(image_info['boxes']) boxes[:, 0] *= image.shape[1] boxes[:, 1] *= image.shape[0] boxes[:, 2] *= image.shape[1] boxes[:, 3] *= image.shape[0] # duplicate labels to prevent corruption of dataset labels = copy.copy(image_info['labels']) if self.transform: image, boxes, labels = self.transform(image, boxes, labels) #print("real!", boxes, labels) if self.target_transform: boxes, labels = self.target_transform(boxes, labels) return image_info['image_id'], image, boxes, labels def __getitem__(self, index): _, image, boxes, labels = self._getitem(index) return image, boxes, labels def get_annotation(self, index): """To conform the eval_ssd implementation that is based on the VOC dataset.""" image_id, image, boxes, labels = self._getitem(index) is_difficult = np.zeros(boxes.shape[0], dtype=np.uint8) return image_id, (boxes, labels, is_difficult) def get_image(self, index): image_info = self.data[index] image = self._read_image(image_info['image_id']) if self.transform: image, _ = self.transform(image) return image #ここで参照してる def _read_data(self): annotation_file = f"{self.root}/sub-{self.dataset_type}-annotations-bbox.csv" annotations = pd.read_csv(annotation_file) annotations = annotations.dropna(how='any') print(list(annotations['ClassName'].unique())) class_names = ['BACKGROUND'] + sorted(list(annotations['ClassName'].unique())) class_dict = {class_name: i for i, class_name in enumerate(class_names)} data = [] for image_id, group in annotations.groupby("ImageID"): boxes = group.loc[:, ["XMin", "YMin", "XMax", "YMax"]].values.astype(np.float32) # make labels 64 bits to satisfy the cross_entropy function labels = np.array([class_dict[name] for name in group["ClassName"]], dtype='int64') data.append({ 'image_id': image_id, 'boxes': boxes, 'labels': labels }) return data, class_names, class_dict def __len__(self): return len(self.data) def __repr__(self): if self.class_stat is None: self.class_stat = {name: 0 for name in self.class_names[1:]} for example in self.data: for class_index in example['labels']: class_name = self.class_names[class_index] self.class_stat[class_name] += 1 content = ["Dataset Summary:" f"Number of Images: {len(self.data)}", f"Minimum Number of Images for a Class: {self.min_image_num}", "Label Distribution:"] for class_name, num in self.class_stat.items(): content.append(f"\t{class_name}: {num}") return "\n".join(content) def _read_image(self, image_id): #書き換え、アノテーションファイルから相対パスで読み取る #image_file = self.root / self.dataset_type / f"{image_id}.jpg" image_file = image_id image = cv2.imread(str(image_file)) if image.shape[2] == 1: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) else: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) return image def _balance_data(self): label_image_indexes = [set() for _ in range(len(self.class_names))] for i, image in enumerate(self.data): for label_id in image['labels']: label_image_indexes[label_id].add(i) label_stat = [len(s) for s in label_image_indexes] self.min_image_num = min(label_stat[1:]) sample_image_indexes = set() for image_indexes in label_image_indexes[1:]: image_indexes = np.array(list(image_indexes)) sub = np.random.permutation(image_indexes)[:self.min_image_num] sample_image_indexes.update(sub) sample_data = [self.data[i] for i in sample_image_indexes] return sample_data
py
b404febc96a6eb6098a62eeb350173f35ba239db
from .procedure_dict import SIM_PROCEDURES, SimProcedures from .definitions import SIM_LIBRARIES
py
b404ffeb629bdd099d99244b33e81bf466cfae0b
from io import StringIO import unittest from sphinx_action import status_check class TestStatusChecks(unittest.TestCase): def test_output_for_warning(self): output_file = StringIO() annotation = status_check.CheckAnnotation( path="index.rst", start_line=1, end_line=20, annotation_level=status_check.AnnotationLevel.WARNING, message="This is a test warning message", ) status_check.output_annotation(annotation, where_to_print=output_file) output_str = output_file.getvalue() self.assertEqual( output_str, "::warning file=index.rst,line=1::This is a test warning message\n", ) def test_output_for_error(self): output_file = StringIO() annotation = status_check.CheckAnnotation( path="index.rst", start_line=15, end_line=20, annotation_level=status_check.AnnotationLevel.FAILURE, message="This is a test error message", ) status_check.output_annotation(annotation, where_to_print=output_file) output_str = output_file.getvalue() self.assertEqual( output_str, "::error file=index.rst,line=15::This is a test error message\n", ) if __name__ == "__main__": unittest.main()
py
b405017ad7d2c411e6f05a4b7bba2c6adb6ee21b
# Copyright 2020 Dakewe Biotech Corporation. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from gan_pytorch.models import mnist model = mnist(pretrained=True) print(model)
py
b4050231f4725457778f61e93ac16f0ab4a2cffd
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.7.4, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from msrest import Serializer from .. import models as _models from .._vendor import _convert_request if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False # fmt: off def build_exchange_aad_access_token_for_acr_refresh_token_request( **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = kwargs.pop('api_version', "2021-07-01") # type: str content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/oauth2/exchange') # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_exchange_acr_refresh_token_for_acr_access_token_request( **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = kwargs.pop('api_version', "2021-07-01") # type: str content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/oauth2/token') # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) # fmt: on class AuthenticationOperations(object): """AuthenticationOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~container_registry.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def exchange_aad_access_token_for_acr_refresh_token( self, grant_type, # type: Union[str, "_models.PostContentSchemaGrantType"] service, # type: str tenant=None, # type: Optional[str] refresh_token=None, # type: Optional[str] access_token=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "_models.AcrRefreshToken" """Exchange AAD tokens for an ACR refresh Token. :param grant_type: Can take a value of access_token_refresh_token, or access_token, or refresh_token. :type grant_type: str or ~container_registry.models.PostContentSchemaGrantType :param service: Indicates the name of your Azure container registry. :type service: str :param tenant: AAD tenant associated to the AAD credentials. :type tenant: str :param refresh_token: AAD refresh token, mandatory when grant_type is access_token_refresh_token or refresh_token. :type refresh_token: str :param access_token: AAD access token, mandatory when grant_type is access_token_refresh_token or access_token. :type access_token: str :keyword callable cls: A custom type or function that will be passed the direct response :return: AcrRefreshToken, or the result of cls(response) :rtype: ~container_registry.models.AcrRefreshToken :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AcrRefreshToken"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', "2021-07-01") # type: str content_type = kwargs.pop('content_type', "application/x-www-form-urlencoded") # type: Optional[str] # Construct form data _data = { "grant_type": grant_type, "service": service, "tenant": tenant, "refresh_token": refresh_token, "access_token": access_token, } request = build_exchange_aad_access_token_for_acr_refresh_token_request( api_version=api_version, content_type=content_type, data=_data, template_url=self.exchange_aad_access_token_for_acr_refresh_token.metadata['url'], ) request = _convert_request(request) path_format_arguments = { "url": self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } request.url = self._client.format_url(request.url, **path_format_arguments) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.AcrErrors, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('AcrRefreshToken', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized exchange_aad_access_token_for_acr_refresh_token.metadata = {'url': '/oauth2/exchange'} # type: ignore @distributed_trace def exchange_acr_refresh_token_for_acr_access_token( self, service, # type: str scope, # type: str refresh_token, # type: str grant_type="refresh_token", # type: Union[str, "_models.TokenGrantType"] **kwargs # type: Any ): # type: (...) -> "_models.AcrAccessToken" """Exchange ACR Refresh token for an ACR Access Token. :param service: Indicates the name of your Azure container registry. :type service: str :param scope: Which is expected to be a valid scope, and can be specified more than once for multiple scope requests. You obtained this from the Www-Authenticate response header from the challenge. :type scope: str :param refresh_token: Must be a valid ACR refresh token. :type refresh_token: str :param grant_type: Grant type is expected to be refresh_token. :type grant_type: str or ~container_registry.models.TokenGrantType :keyword callable cls: A custom type or function that will be passed the direct response :return: AcrAccessToken, or the result of cls(response) :rtype: ~container_registry.models.AcrAccessToken :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AcrAccessToken"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = kwargs.pop('api_version', "2021-07-01") # type: str content_type = kwargs.pop('content_type', "application/x-www-form-urlencoded") # type: Optional[str] # Construct form data _data = { "service": service, "scope": scope, "refresh_token": refresh_token, "grant_type": grant_type, } request = build_exchange_acr_refresh_token_for_acr_access_token_request( api_version=api_version, content_type=content_type, data=_data, template_url=self.exchange_acr_refresh_token_for_acr_access_token.metadata['url'], ) request = _convert_request(request) path_format_arguments = { "url": self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } request.url = self._client.format_url(request.url, **path_format_arguments) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.AcrErrors, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('AcrAccessToken', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized exchange_acr_refresh_token_for_acr_access_token.metadata = {'url': '/oauth2/token'} # type: ignore
py
b405023deed77c7e065166cf31d4f7e2c4066320
import argparse from contextlib import closing import logging import os import sqlite3 from indra_db_lite.construction import get_sqlite_tables from indra_db_lite.construction import import_csv_into_sqlite from indra_db_lite.construction import query_to_csv logger = logging.getLogger(__name__) def agent_text_stmts_to_csv(outpath: str) -> None: query = """ SELECT id, db_id, stmt_id FROM raw_agents WHERE db_name = 'TEXT' AND stmt_id IS NOT NULL """ query_to_csv(query, outpath) def stmts_readings_to_csv(outpath: str) -> None: query = """ SELECT id, reading_id FROM raw_statements WHERE reading_id IS NOT NULL """ query_to_csv(query, outpath) def readings_content_to_csv(outpath: str) -> None: query = """ SELECT id, text_content_id FROM reading """ query_to_csv(query, outpath) def content_text_refs_to_csv(outpath: str) -> None: query = """ SELECT id, text_ref_id FROM text_content """ query_to_csv(query, outpath) def create_temp_agent_text_tables( agent_stmts_path: str, stmt_readings_path: str, reading_content_path: str, content_text_refs_path: str, sqlite_db_path: str, ) -> None: query1 = \ """-- CREATE TABLE IF NOT EXISTS agent_stmts ( id INTEGER PRIMARY KEY, agent_text TEXT, stmt_id INTEGER ); """ query2 = \ """-- CREATE TABLE IF NOT EXISTS stmt_readings ( stmt_id INTEGER PRIMARY KEY, reading_id INTEGER ); """ query3 = \ """-- CREATE TABLE IF NOT EXISTS reading_content ( reading_id INTEGER PRIMARY KEY, text_content_id INTEGER ); """ query4 = \ """-- CREATE TABLE IF NOT EXISTS content_text_refs ( text_content_id INTEGER PRIMARY KEY, text_ref_id INTEGER ); """ with closing(sqlite3.connect(sqlite_db_path)) as conn: with closing(conn.cursor()) as cur: for query in query1, query2, query3, query4: cur.execute(query) conn.commit() import_csv_into_sqlite(agent_stmts_path, 'agent_stmts', sqlite_db_path) import_csv_into_sqlite(stmt_readings_path, 'stmt_readings', sqlite_db_path) import_csv_into_sqlite( reading_content_path, 'reading_content', sqlite_db_path ) import_csv_into_sqlite( content_text_refs_path, 'content_text_refs', sqlite_db_path ) def add_indices_to_temp_agent_text_tables(sqlite_db_path: str) -> None: query1 = """-- CREATE INDEX IF NOT EXISTS agent_stmts_stmt_id_idx ON agent_stmts(stmt_id) """ query2 = """-- CREATE INDEX IF NOT EXISTS stmt_readings_reading_id_idx ON stmt_readings(reading_id) """ query3 = """-- CREATE INDEX IF NOT EXISTS reading_content_text_content_id_idx ON stmt_readings(reading_id) """ with closing(sqlite3.connect(sqlite_db_path)) as conn: with closing(conn.cursor()) as cur: for query in query1, query2, query3: cur.execute(query) conn.commit() def ensure_agent_texts_table(sqlite_db_path: str) -> None: query = """-- CREATE TABLE IF NOT EXISTS agent_texts ( id INTEGER PRIMARY KEY, agent_text TEXT, text_ref_id INTEGER ); """ with closing(sqlite3.connect(sqlite_db_path)) as conn: with closing(conn.cursor()) as cur: cur.execute(query) conn.commit() def create_agent_texts_table(sqlite_db_path: str) -> None: all_tables = get_sqlite_tables(sqlite_db_path) needed_tables = { 'agent_stmts', 'stmt_readings', 'reading_content', 'content_text_refs' } try: assert needed_tables <= set(all_tables) except AssertionError: logger.exception('Necessary temporary tables do not exist.') ensure_agent_texts_table(sqlite_db_path) query = """-- INSERT OR IGNORE INTO agent_texts SELECT NULL, agent_text, text_ref_id FROM ( SELECT DISTINCT ags.agent_text as agent_text, ct.text_ref_id as text_ref_id FROM agent_stmts ags JOIN stmt_readings sr ON ags.stmt_id = sr.stmt_id JOIN reading_content rc ON sr.reading_id = rc.reading_id JOIN content_text_refs ct ON rc.text_content_id = ct.text_content_id ) """ with closing(sqlite3.connect(sqlite_db_path)) as conn: with closing(conn.cursor()) as cur: cur.execute(query) conn.commit() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('outpath') args = parser.parse_args() outpath = args.outpath logging.basicConfig( filename=os.path.join(outpath, 'agent_texts.log'), filemode='a', format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', datefmt='%m-%d %H:%M', level=logging.DEBUG, force=True, ) logger = logging.getLogger(__name__) logger.info('Constructing agent texts table') csv_files = [ os.path.join(outpath, csv_file) for csv_file in [ 'agent_stmts.csv', 'stmt_readings.csv', 'reading_content.csv', 'content_text_refs.csv', ] ] agent_texts_db_path = os.path.join(outpath, 'agent_texts.db') for filepath, function in zip( csv_files, ( agent_text_stmts_to_csv, stmts_readings_to_csv, readings_content_to_csv, content_text_refs_to_csv, ) ): if os.path.exists(filepath): continue logger.info(f'Dumping to csv {function.__name__}') function(filepath) if not os.path.exists(agent_texts_db_path): logger.info('Loading csv files into temporary tables in sqlite.') create_temp_agent_text_tables(*csv_files, agent_texts_db_path) logger.info('Adding indices to temporary tables.') add_indices_to_temp_agent_text_tables(agent_texts_db_path) for filepath in csv_files: os.remove(filepath) if 'agent_texts' not in get_sqlite_tables(agent_texts_db_path): logger.info('Constructing agent texts table with one big join.') create_agent_texts_table(agent_texts_db_path)
py
b405026ccc4622cdc68ab378986a4bd263a34db8
# (C) Copyright 2021 ECMWF. # # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation # nor does it submit to any jurisdiction. # from climetlab.utils.bbox import BoundingBox, to_bounding_box CONVERT = { list: lambda x: x.as_list(), tuple: lambda x: x.as_tuple(), dict: lambda x: x.as_dict(), BoundingBox: lambda x: x, } class BoundingBoxNormaliser: def __init__(self, format=BoundingBox): self.format = format def normalise(self, bbox): bbox = to_bounding_box(bbox) return CONVERT[self.format](bbox)
py
b40504753eb92a5893f93f9ea6b671bcbe81e4de
# -*- coding: utf-8 -*- __version__ = '0.1.0' from .base import Statement, Name, Str, Num from .modules import Document from .callables import FunctionDef, DecoratorDef, ClassDef, Attribute, Call from .simple_statements import Return, Docstring, Assignment from .syntaxes import base_syntax, yaml_syntax from .parser import DefaultProcessor, YAMLProcessor
py
b40504da067daaede4f23e68404f6d0958a7cb6a
from .datastores import AbstractSynchronisedDatastore from .questions import AbstractQuestion, Question from .services import AbstractRegisteredService, RegisteredService __all__ = ( "AbstractRegisteredService", "AbstractSynchronisedDatastore", "AbstractQuestion", "RegisteredService", "Question", )
py
b40505483f00f23e0b0e5ebe28c3faf6abd564a9
# -*- coding: utf-8 -*- import os from setuptools import setup, find_packages here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, 'README.md'), 'rb') as f: long_description = f.read().decode('utf-8') setup( name='deployer-lite-core', version='0.0.1', packages=find_packages(exclude=['contrib', 'docs', 'tests*']), url='https://github.com/harnash/deployer-lite-core', license='Apache 2.0', author='Łukasz Harasimowicz', author_email='[email protected]', description='', long_description=long_description, test_suite='nose.collector', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Topic :: Software Development :: Build Tools', 'Topic :: System :: Clustering', 'Topic :: System :: Software Distribution', 'Topic :: System :: Systems Administration', 'License :: OSI Approved :: :: Apache Software License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], tests_require=[ 'nose==1.3.7', 'coverage==4.0b1', ], install_requires=[ 'pyzmq==14.7.0', 'layered-yaml-attrdict-config==15.5.2', 'deployer-lite-core', ] )
py
b40507b05e0b887443fd6d70a1bf0020514bacc1
from __future__ import absolute_import, division, print_function, unicode_literals from amaasutils.random_utils import random_string, random_decimal import random from amaascore.core.reference import Reference from amaascore.parties.asset_manager import AssetManager from amaascore.parties.broker import Broker from amaascore.parties.children import Address, Email from amaascore.parties.individual import Individual from amaascore.parties.party import Party def generate_common(asset_manager_id, party_id, party_status): common = {'asset_manager_id': asset_manager_id or random.randint(1, 1000), 'party_id': party_id or str(random.randint(1, 1000)), 'party_status': party_status or 'Active', 'display_name': random_string(10), 'legal_name': random_string(10), 'url': random_string(10) } return common def generate_party(asset_manager_id=None, party_id=None, party_status=None): references = {'PartyDB': Reference(random_string(10))} attributes = generate_common(asset_manager_id=asset_manager_id, party_id=party_id, party_status=party_status) party = Party(**attributes) # This is ok from a mutability perspective as the references collection doesn't trigger anything party.references.update(references) party.upsert_address('Registered', generate_address(address_primary=True)) party.upsert_email('Office', generate_email(email_primary=True)) return party def generate_asset_manager(asset_manager_id=None, party_id=None, party_status=None): references = {'LEI': Reference(random_string(10))} attributes = generate_common(asset_manager_id=asset_manager_id, party_id=party_id, party_status=party_status) asset_manager = AssetManager(**attributes) asset_manager.references.update(references) asset_manager.upsert_address('Registered', generate_address(address_primary=True)) asset_manager.upsert_email('Office', generate_email(email_primary=True)) return asset_manager def generate_broker(asset_manager_id=None, party_id=None, party_status=None): references = {'LEI': Reference(random_string(10))} attributes = generate_common(asset_manager_id=asset_manager_id, party_id=party_id, party_status=party_status) broker = Broker(**attributes) broker.references.update(references) broker.upsert_address('Registered', generate_address(address_primary=True)) broker.upsert_email('Office', generate_email(email_primary=True)) return broker def generate_individual(asset_manager_id=None, party_id=None, party_status=None): attributes = generate_common(asset_manager_id=asset_manager_id, party_id=party_id, party_status=party_status) individual = Individual(given_names=random_string(10), surname=random_string(10), **attributes) return individual def generate_address(country_id=None, address_primary=False): address = Address(line_one=random_string(20), line_two=random.choice([None, random_string(10)]), city=random_string(10), region=random_string(10), postal_code=random_string(6), country_id=country_id or random_string(3), # Make this a real country code address_primary=address_primary) return address def generate_email(email=None, email_primary=False): return Email(email=email or (random_string(10) + '@amaas.com'), email_primary=email_primary) def generate_parties(asset_manager_ids=[], number=5): parties = [] for i in range(number): party = generate_party(asset_manager_id=random.choice(asset_manager_ids)) parties.append(party) return parties
py
b40508141d4a292ef2fbeee27fb82a38e69965ae
import unittest import time from pwm_test_support.pwm_receiver_node import PwmReceiverNode class BasePwmTestFixture(unittest.TestCase): pwm_receiver = None def __init__(self, *args): super(BasePwmTestFixture, self).__init__(*args) self.pwm_receiver = PwmReceiverNode() def setUp(self): # Need to wait so that node connections can be established time.sleep(1.0) self.pwm_receiver.reset_data_received() def wait_and_assert_pwm_value(self, pwm_value): self.pwm_receiver.wait_for_data_received() self.assertEqual(self.pwm_receiver.pwm_out_received, pwm_value) def assert_positive_motor_direction(self): self.assertEqual(self.pwm_receiver.pwm_direction_1_received, 255) self.assertEqual(self.pwm_receiver.pwm_direction_2_received, 0) def assert_negative_motor_direction(self): self.assertEqual(self.pwm_receiver.pwm_direction_1_received, 0) self.assertEqual(self.pwm_receiver.pwm_direction_2_received, 255)
py
b40508bf06fdab03e49320f2e73d41a7cfed417f
#ARC050d def main(): import sys input=sys.stdin.readline sys.setrecursionlimit(10**6) if __name__ == '__main__': main()
py
b40508ee0776176d7458699437d552ef9893e28f
# These represents parts used within cmake commands such as Version for cmake_minimum_required from .IncludeDir import IncludeDir from .ScopeTypes import ScopeTypes from .Version import Version
py
b405098447eacb99ece8c6f97a0618d2b263e62a
import asyncio async def print_nums(): num = 1 while True: print(num) num += 1 await asyncio.sleep(0.1) async def print_time(): count = 0 while True: if count % 3 == 0: print('{} seconds passed'.format(count)) count += 1 await asyncio.sleep(1) async def main(): task1 = asyncio.create_task(print_nums()) task2 = asyncio.create_task(print_time()) await asyncio.gather(task1, task2) if __name__ == '__main__': asyncio.run(main())
py
b40509e4441bc82d9e354e18222f5b22d28168e1
# Copyright 2020 The MathWorks, Inc. import os import shlex import tempfile def setup_desktop(): # Get path to noVNC installation through environment variables NOVNC_PATH = os.getenv('NOVNC_PATH', '/opt/noVNC') # make a secure temporary directory for sockets # This is only readable, writeable & searchable by our uid sockets_dir = tempfile.mkdtemp() sockets_path = os.path.join(sockets_dir, 'vnc-socket') vnc_command = ' '.join((shlex.quote(p) for p in [ 'vncserver', '-verbose', '-xstartup', os.path.join(os.path.dirname(os.path.abspath(__file__)), 'resources', 'xstartup'), '-geometry', '1680x1050', '-SecurityTypes', 'None', '-rfbunixpath', sockets_path, '-fg', ':1', ])) return { 'command': [ 'websockify', '-v', '--web', NOVNC_PATH, '--heartbeat', '30', '5901', '--unix-target', sockets_path, '--', '/bin/sh', '-c', f'cd {os.getcwd()} && {vnc_command}' ], 'port': 5901, 'timeout': 30, 'mappath': {'/': '/mw_lite.html'}, 'new_browser_window': True, 'launcher_entry': { 'title': 'MATLAB VNC DESKTOP', 'icon_path': os.path.join(os.path.dirname(os.path.abspath(__file__)), 'resources', 'matlab_icon.svg') } }
py
b4050a3de7ecd6916ca9a24649df7898625dff59
"""Test file for numpy tracing""" import inspect import networkx as nx import numpy import pytest from concrete.common.data_types.dtypes_helpers import broadcast_shapes from concrete.common.data_types.floats import Float from concrete.common.data_types.integers import Integer from concrete.common.debugging import format_operation_graph from concrete.common.representation import intermediate as ir from concrete.common.values import ClearScalar, ClearTensor, EncryptedScalar, EncryptedTensor from concrete.numpy import tracing OPERATIONS_TO_TEST = [ir.Add, ir.Sub, ir.Mul] @pytest.mark.parametrize( "operation", OPERATIONS_TO_TEST, ) @pytest.mark.parametrize( "x", [ pytest.param(EncryptedScalar(Integer(64, is_signed=False)), id="x: Encrypted uint"), pytest.param( EncryptedScalar(Integer(64, is_signed=True)), id="x: Encrypted int", ), pytest.param( ClearScalar(Integer(64, is_signed=False)), id="x: Clear uint", ), pytest.param( ClearScalar(Integer(64, is_signed=True)), id="x: Clear int", ), ], ) @pytest.mark.parametrize( "y", [ pytest.param(EncryptedScalar(Integer(64, is_signed=False)), id="y: Encrypted uint"), pytest.param( EncryptedScalar(Integer(64, is_signed=True)), id="y: Encrypted int", ), pytest.param( ClearScalar(Integer(64, is_signed=False)), id="y: Clear uint", ), pytest.param( ClearScalar(Integer(64, is_signed=True)), id="y: Clear int", ), ], ) def test_numpy_tracing_binary_op(operation, x, y, test_helpers): "Test numpy tracing a binary operation (in the supported ops)" # Remark that the functions here have a common structure (which is # 2x op y), such that creating further the ref_graph is easy, by # hand def simple_add_function(x, y): z = x + x return z + y def simple_sub_function(x, y): z = x + x return z - y def simple_mul_function(x, y): z = x + x return z * y assert operation in OPERATIONS_TO_TEST, f"unknown operation {operation}" if operation == ir.Add: function_to_compile = simple_add_function elif operation == ir.Sub: function_to_compile = simple_sub_function elif operation == ir.Mul: function_to_compile = simple_mul_function op_graph = tracing.trace_numpy_function(function_to_compile, {"x": x, "y": y}) ref_graph = nx.MultiDiGraph() input_x = ir.Input(x, input_name="x", program_input_idx=0) input_y = ir.Input(y, input_name="y", program_input_idx=1) add_node_z = ir.Add( ( input_x.outputs[0], input_x.outputs[0], ) ) returned_final_node = operation( ( add_node_z.outputs[0], input_y.outputs[0], ) ) ref_graph.add_node(input_x) ref_graph.add_node(input_y) ref_graph.add_node(add_node_z) ref_graph.add_node(returned_final_node) ref_graph.add_edge(input_x, add_node_z, input_idx=0, output_idx=0) ref_graph.add_edge(input_x, add_node_z, input_idx=1, output_idx=0) ref_graph.add_edge(add_node_z, returned_final_node, input_idx=0, output_idx=0) ref_graph.add_edge(input_y, returned_final_node, input_idx=1, output_idx=0) assert test_helpers.digraphs_are_equivalent(ref_graph, op_graph.graph) def test_numpy_tracing_tensors(): "Test numpy tracing tensors" def all_operations(x): intermediate = x + numpy.array([[1, 2], [3, 4]]) intermediate = numpy.array([[5, 6], [7, 8]]) + intermediate intermediate = numpy.array([[100, 200], [300, 400]]) - intermediate intermediate = intermediate - numpy.array([[10, 20], [30, 40]]) intermediate = intermediate * numpy.array([[1, 2], [2, 1]]) intermediate = numpy.array([[2, 1], [1, 2]]) * intermediate return intermediate op_graph = tracing.trace_numpy_function( all_operations, {"x": EncryptedTensor(Integer(32, True), shape=(2, 2))} ) expected = """ %0 = [[2 1] [1 2]] # ClearTensor<uint2, shape=(2, 2)> %1 = [[1 2] [2 1]] # ClearTensor<uint2, shape=(2, 2)> %2 = [[10 20] [30 40]] # ClearTensor<uint6, shape=(2, 2)> %3 = [[100 200] [300 400]] # ClearTensor<uint9, shape=(2, 2)> %4 = [[5 6] [7 8]] # ClearTensor<uint4, shape=(2, 2)> %5 = x # EncryptedTensor<int32, shape=(2, 2)> %6 = [[1 2] [3 4]] # ClearTensor<uint3, shape=(2, 2)> %7 = add(%5, %6) # EncryptedTensor<int32, shape=(2, 2)> %8 = add(%4, %7) # EncryptedTensor<int32, shape=(2, 2)> %9 = sub(%3, %8) # EncryptedTensor<int32, shape=(2, 2)> %10 = sub(%9, %2) # EncryptedTensor<int32, shape=(2, 2)> %11 = mul(%10, %1) # EncryptedTensor<int32, shape=(2, 2)> %12 = mul(%0, %11) # EncryptedTensor<int32, shape=(2, 2)> return %12""" # noqa: E501 assert format_operation_graph(op_graph) == expected, format_operation_graph(op_graph) def test_numpy_explicit_tracing_tensors(): "Test numpy tracing tensors using explicit operations" def all_explicit_operations(x): intermediate = numpy.add(x, numpy.array([[1, 2], [3, 4]])) intermediate = numpy.add(numpy.array([[5, 6], [7, 8]]), intermediate) intermediate = numpy.subtract(numpy.array([[100, 200], [300, 400]]), intermediate) intermediate = numpy.subtract(intermediate, numpy.array([[10, 20], [30, 40]])) intermediate = numpy.multiply(intermediate, numpy.array([[1, 2], [2, 1]])) intermediate = numpy.multiply(numpy.array([[2, 1], [1, 2]]), intermediate) return intermediate op_graph = tracing.trace_numpy_function( all_explicit_operations, {"x": EncryptedTensor(Integer(32, True), shape=(2, 2))} ) expected = """ %0 = [[2 1] [1 2]] # ClearTensor<uint2, shape=(2, 2)> %1 = [[1 2] [2 1]] # ClearTensor<uint2, shape=(2, 2)> %2 = [[10 20] [30 40]] # ClearTensor<uint6, shape=(2, 2)> %3 = [[100 200] [300 400]] # ClearTensor<uint9, shape=(2, 2)> %4 = [[5 6] [7 8]] # ClearTensor<uint4, shape=(2, 2)> %5 = x # EncryptedTensor<int32, shape=(2, 2)> %6 = [[1 2] [3 4]] # ClearTensor<uint3, shape=(2, 2)> %7 = add(%5, %6) # EncryptedTensor<int32, shape=(2, 2)> %8 = add(%4, %7) # EncryptedTensor<int32, shape=(2, 2)> %9 = sub(%3, %8) # EncryptedTensor<int32, shape=(2, 2)> %10 = sub(%9, %2) # EncryptedTensor<int32, shape=(2, 2)> %11 = mul(%10, %1) # EncryptedTensor<int32, shape=(2, 2)> %12 = mul(%0, %11) # EncryptedTensor<int32, shape=(2, 2)> return %12""" # noqa: E501 assert format_operation_graph(op_graph) == expected @pytest.mark.parametrize( "x_shape,y_shape", [ pytest.param((), ()), pytest.param((3,), ()), pytest.param((3,), (1,)), pytest.param((3,), (2,), marks=pytest.mark.xfail(raises=AssertionError, strict=True)), pytest.param((3,), (3,)), pytest.param((2, 3), ()), pytest.param((2, 3), (1,)), pytest.param((2, 3), (2,), marks=pytest.mark.xfail(raises=AssertionError, strict=True)), pytest.param((2, 3), (3,)), pytest.param((2, 3), (1, 1)), pytest.param((2, 3), (2, 1)), pytest.param((2, 3), (3, 1), marks=pytest.mark.xfail(raises=AssertionError, strict=True)), pytest.param((2, 3), (1, 2), marks=pytest.mark.xfail(raises=AssertionError, strict=True)), pytest.param((2, 3), (2, 2), marks=pytest.mark.xfail(raises=AssertionError, strict=True)), pytest.param((2, 3), (3, 2), marks=pytest.mark.xfail(raises=AssertionError, strict=True)), pytest.param((2, 3), (1, 3)), pytest.param((2, 3), (2, 3)), pytest.param((2, 3), (3, 3), marks=pytest.mark.xfail(raises=AssertionError, strict=True)), pytest.param((2, 1, 3), (1, 1, 1)), pytest.param((2, 1, 3), (1, 4, 1)), pytest.param((2, 1, 3), (2, 4, 3)), ], ) def test_numpy_tracing_broadcasted_tensors(x_shape, y_shape): """Test numpy tracing broadcasted tensors""" def f(x, y): return x + y op_graph = tracing.trace_numpy_function( f, { "x": EncryptedTensor(Integer(3, True), shape=x_shape), "y": EncryptedTensor(Integer(3, True), shape=y_shape), }, ) assert op_graph.input_nodes[0].outputs[0].shape == x_shape assert op_graph.input_nodes[1].outputs[0].shape == y_shape assert op_graph.output_nodes[0].outputs[0].shape == broadcast_shapes(x_shape, y_shape) @pytest.mark.parametrize( "function_to_trace,op_graph_expected_output_type,input_and_expected_output_tuples", [ ( lambda x: x.astype(numpy.int32), Integer(32, is_signed=True), [ (14, numpy.int32(14)), (1.5, numpy.int32(1)), (2.0, numpy.int32(2)), (-1.5, numpy.int32(-1)), (2 ** 31 - 1, numpy.int32(2 ** 31 - 1)), (-(2 ** 31), numpy.int32(-(2 ** 31))), ], ), ( lambda x: x.astype(numpy.uint32), Integer(32, is_signed=False), [ (14, numpy.uint32(14)), (1.5, numpy.uint32(1)), (2.0, numpy.uint32(2)), (2 ** 32 - 1, numpy.uint32(2 ** 32 - 1)), ], ), ( lambda x: x.astype(numpy.int64), Integer(64, is_signed=True), [ (14, numpy.int64(14)), (1.5, numpy.int64(1)), (2.0, numpy.int64(2)), (-1.5, numpy.int64(-1)), (2 ** 63 - 1, numpy.int64(2 ** 63 - 1)), (-(2 ** 63), numpy.int64(-(2 ** 63))), ], ), ( lambda x: x.astype(numpy.uint64), Integer(64, is_signed=False), [ (14, numpy.uint64(14)), (1.5, numpy.uint64(1)), (2.0, numpy.uint64(2)), (2 ** 64 - 1, numpy.uint64(2 ** 64 - 1)), ], ), ( lambda x: x.astype(numpy.float64), Float(64), [ (14, numpy.float64(14.0)), (1.5, numpy.float64(1.5)), (2.0, numpy.float64(2.0)), (-1.5, numpy.float64(-1.5)), ], ), ( lambda x: x.astype(numpy.float32), Float(32), [ (14, numpy.float32(14.0)), (1.5, numpy.float32(1.5)), (2.0, numpy.float32(2.0)), (-1.5, numpy.float32(-1.5)), ], ), ], ) def test_tracing_astype( function_to_trace, op_graph_expected_output_type, input_and_expected_output_tuples ): """Test function for NPTracer.astype""" for input_, expected_output in input_and_expected_output_tuples: input_value = ( EncryptedScalar(Integer(64, is_signed=True)) if isinstance(input_, int) else EncryptedScalar(Float(64)) ) op_graph = tracing.trace_numpy_function(function_to_trace, {"x": input_value}) output_node = op_graph.output_nodes[0] assert op_graph_expected_output_type == output_node.outputs[0].dtype node_results = op_graph.evaluate({0: numpy.array(input_)}) evaluated_output = node_results[output_node] assert evaluated_output.dtype == expected_output.dtype assert expected_output == evaluated_output def test_tracing_astype_single_element_array_corner_case(check_array_equality): """Test corner case where an array could be transformed to its scalar element""" a = numpy.array([1], dtype=numpy.float64) op_graph = tracing.trace_numpy_function( lambda x: x.astype(numpy.int32), {"x": EncryptedTensor(Float(64), (1,))} ) eval_result = op_graph(a) check_array_equality(eval_result, numpy.array([1], dtype=numpy.int32)) @pytest.mark.parametrize( "function_to_trace,inputs,expected_output_node,expected_output_value", [ pytest.param( lambda x, y: numpy.dot(x, y), { "x": EncryptedTensor(Integer(7, is_signed=False), shape=(10,)), "y": EncryptedTensor(Integer(7, is_signed=False), shape=(10,)), }, ir.Dot, EncryptedScalar(Integer(32, False)), ), pytest.param( lambda x, y: numpy.dot(x, y), { "x": EncryptedTensor(Float(64), shape=(10,)), "y": EncryptedTensor(Float(64), shape=(10,)), }, ir.Dot, EncryptedScalar(Float(64)), ), pytest.param( lambda x, y: numpy.dot(x, y), { "x": ClearTensor(Integer(64, is_signed=True), shape=(6,)), "y": ClearTensor(Integer(64, is_signed=True), shape=(6,)), }, ir.Dot, ClearScalar(Integer(64, is_signed=True)), ), pytest.param( lambda x: numpy.dot(x, numpy.array([1, 2, 3, 4, 5], dtype=numpy.int64)), { "x": EncryptedTensor(Integer(64, is_signed=True), shape=(5,)), }, ir.Dot, EncryptedScalar(Integer(64, True)), ), pytest.param( lambda x: x.dot(numpy.array([1, 2, 3, 4, 5], dtype=numpy.int64)), { "x": EncryptedTensor(Integer(64, is_signed=True), shape=(5,)), }, ir.Dot, EncryptedScalar(Integer(64, True)), ), ], ) def test_trace_numpy_dot(function_to_trace, inputs, expected_output_node, expected_output_value): """Function to test dot tracing""" op_graph = tracing.trace_numpy_function(function_to_trace, inputs) assert len(op_graph.output_nodes) == 1 assert isinstance(op_graph.output_nodes[0], expected_output_node) assert len(op_graph.output_nodes[0].outputs) == 1 assert op_graph.output_nodes[0].outputs[0] == expected_output_value @pytest.mark.parametrize("np_function", tracing.NPTracer.LIST_OF_SUPPORTED_UFUNC) def test_nptracer_get_tracing_func_for_np_functions(np_function): """Test NPTracer get_tracing_func_for_np_function""" expected_tracing_func = tracing.NPTracer.UFUNC_ROUTING[np_function] assert tracing.NPTracer.get_tracing_func_for_np_function(np_function) == expected_tracing_func def test_nptracer_get_tracing_func_for_np_functions_not_implemented(): """Check NPTracer in case of not-implemented function""" with pytest.raises(NotImplementedError) as excinfo: tracing.NPTracer.get_tracing_func_for_np_function(numpy.conjugate) assert "NPTracer does not yet manage the following func: conjugate" in str(excinfo.value) @pytest.mark.parametrize( "operation,exception_type,match", [ pytest.param( lambda x: x + "fail", TypeError, "unsupported operand type(s) for +: 'NPTracer' and 'str'", ), pytest.param( lambda x: "fail" + x, TypeError, 'can only concatenate str (not "NPTracer") to str', ), pytest.param( lambda x: x - "fail", TypeError, "unsupported operand type(s) for -: 'NPTracer' and 'str'", ), pytest.param( lambda x: "fail" - x, TypeError, "unsupported operand type(s) for -: 'str' and 'NPTracer'", ), pytest.param( lambda x: x * "fail", TypeError, "can't multiply sequence by non-int of type 'NPTracer'", ), pytest.param( lambda x: "fail" * x, TypeError, "can't multiply sequence by non-int of type 'NPTracer'", ), pytest.param( lambda x: x / "fail", TypeError, "unsupported operand type(s) for /: 'NPTracer' and 'str'", ), pytest.param( lambda x: "fail" / x, TypeError, "unsupported operand type(s) for /: 'str' and 'NPTracer'", ), pytest.param( lambda x: x // "fail", TypeError, "unsupported operand type(s) for //: 'NPTracer' and 'str'", ), pytest.param( lambda x: "fail" // x, TypeError, "unsupported operand type(s) for //: 'str' and 'NPTracer'", ), pytest.param( lambda x, y: x / y, NotImplementedError, "Can't manage binary operator truediv" ), pytest.param( lambda x, y: x // y, NotImplementedError, "Can't manage binary operator floordiv" ), ], ) def test_nptracer_unsupported_operands(operation, exception_type, match): """Test cases where NPTracer cannot be used with other operands.""" tracers = [ tracing.NPTracer([], ir.Input(ClearScalar(Integer(32, True)), param_name, idx), 0) for idx, param_name in enumerate(inspect.signature(operation).parameters.keys()) ] with pytest.raises(exception_type) as exc_info: _ = operation(*tracers) assert match in str(exc_info) def subtest_tracing_calls( function_to_trace, input_value_input_and_expected_output_tuples, check_array_equality, ): """Test memory function managed by GenericFunction node of the form numpy.something""" for input_value, input_, expected_output in input_value_input_and_expected_output_tuples: op_graph = tracing.trace_numpy_function(function_to_trace, {"x": input_value}) output_node = op_graph.output_nodes[0] node_results = op_graph.evaluate({0: input_}) evaluated_output = node_results[output_node] assert isinstance(evaluated_output, type(expected_output)), type(evaluated_output) check_array_equality(evaluated_output, expected_output) @pytest.mark.parametrize( "function_to_trace,input_value_input_and_expected_output_tuples", [ ( lambda x: numpy.transpose(x), [ ( EncryptedTensor(Integer(4, is_signed=False), shape=(2, 2)), numpy.arange(4).reshape(2, 2), numpy.array([[0, 2], [1, 3]]), ), ( EncryptedTensor(Integer(4, is_signed=False), shape=(2, 2)), numpy.arange(4, 8).reshape(2, 2), numpy.array([[4, 6], [5, 7]]), ), ( EncryptedTensor(Integer(6, is_signed=False), shape=()), numpy.int64(42), numpy.int64(42), ), ], ), ( lambda x: numpy.transpose(x) + 42, [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(42, 57).reshape(3, 5).transpose(), ), ( EncryptedTensor(Integer(6, is_signed=False), shape=()), numpy.int64(42), numpy.int64(84), ), ], ), ( lambda x: numpy.ravel(x), [ ( EncryptedTensor(Integer(4, is_signed=False), shape=(2, 2)), numpy.arange(4), numpy.array([0, 1, 2, 3]), ), ( EncryptedTensor(Integer(4, is_signed=False), shape=(2, 2)), numpy.arange(4).reshape(2, 2), numpy.array([0, 1, 2, 3]), ), ( EncryptedTensor(Integer(6, is_signed=False), shape=()), numpy.int64(42), numpy.array([42], dtype=numpy.int64), ), ], ), ( lambda x: numpy.reshape(x, (5, 3)) + 42, [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(42, 57).reshape(5, 3), ), ], ), ], ) def test_tracing_numpy_calls( function_to_trace, input_value_input_and_expected_output_tuples, check_array_equality, ): """Test memory function managed by GenericFunction node of the form numpy.something""" subtest_tracing_calls( function_to_trace, input_value_input_and_expected_output_tuples, check_array_equality ) @pytest.mark.parametrize( "function_to_trace,input_value_input_and_expected_output_tuples", [ ( lambda x: x.transpose() + 42, [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(42, 57).reshape(3, 5).transpose(), ), ( EncryptedTensor(Integer(6, is_signed=False), shape=()), numpy.int64(42), numpy.int64(84), ), ], ), ( lambda x: x.ravel(), [ ( EncryptedTensor(Integer(4, is_signed=False), shape=(2, 2)), numpy.arange(4), numpy.array([0, 1, 2, 3]), ), ( EncryptedTensor(Integer(4, is_signed=False), shape=(2, 2)), numpy.arange(4).reshape(2, 2), numpy.array([0, 1, 2, 3]), ), ( EncryptedTensor(Integer(6, is_signed=False), shape=()), numpy.int64(42), numpy.array([42], dtype=numpy.int64), ), ], ), ( lambda x: x.reshape((5, 3)) + 42, [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(42, 57).reshape(5, 3), ), ], ), pytest.param( lambda x: x.reshape((5, 3)), [ ( EncryptedTensor(Integer(6, is_signed=False), shape=()), numpy.int64(42), None, ) ], marks=pytest.mark.xfail(strict=True, raises=ValueError), ), pytest.param( lambda x: x.flatten(), [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(15), ) ], ), pytest.param( lambda x: abs(x), [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(15).reshape(3, 5), ) ], ), pytest.param( lambda x: +x, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(15).reshape(3, 5), ) ], ), pytest.param( lambda x: -x, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), (numpy.arange(15).reshape(3, 5)) * (-1), ) ], ), pytest.param( lambda x: ~x, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(15).reshape(3, 5).__invert__(), ) ], ), pytest.param( lambda x: x << 3, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(15).reshape(3, 5) * 8, ) ], ), pytest.param( lambda x: x >> 1, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(15).reshape(3, 5) // 2, ) ], ), pytest.param( lambda x: 2 << x, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5) % 8, 2 << (numpy.arange(15).reshape(3, 5) % 8), ) ], ), pytest.param( lambda x: 256 >> x, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5) % 8, 256 >> (numpy.arange(15).reshape(3, 5) % 8), ) ], ), pytest.param( lambda x: x > 4, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(15).reshape(3, 5) > 4, ) ], ), pytest.param( lambda x: x < 5, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(15).reshape(3, 5) < 5, ) ], ), pytest.param( lambda x: x <= 7, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(15).reshape(3, 5) <= 7, ) ], ), pytest.param( lambda x: x >= 9, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(15).reshape(3, 5) >= 9, ) ], ), pytest.param( lambda x: x == 11, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(15).reshape(3, 5) == 11, ) ], ), pytest.param( lambda x: x != 12, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.arange(15).reshape(3, 5) != 12, ) ], ), # Remove misplaced-comparison-constant because precisely, we want to be sure it works fine # pylint: disable=misplaced-comparison-constant pytest.param( lambda x: 4 > x, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), 4 > numpy.arange(15).reshape(3, 5), ) ], ), pytest.param( lambda x: 5 < x, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), 5 < numpy.arange(15).reshape(3, 5), ) ], ), pytest.param( lambda x: 7 <= x, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), 7 <= numpy.arange(15).reshape(3, 5), ) ], ), pytest.param( lambda x: 9 >= x, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), 9 >= numpy.arange(15).reshape(3, 5), ) ], ), pytest.param( lambda x: 11 == x, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), 11 == numpy.arange(15).reshape(3, 5), ) ], ), pytest.param( lambda x: 12 != x, [ ( EncryptedTensor(Integer(32, is_signed=True), shape=(3, 5)), numpy.arange(15).reshape(3, 5), 12 != numpy.arange(15).reshape(3, 5), ) ], ), # pylint: enable=misplaced-comparison-constant ( lambda x: x & 11, [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.array([i & 11 for i in range(15)]).reshape(3, 5), ), ], ), ( lambda x: 13 & x, [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.array([i & 13 for i in range(15)]).reshape(3, 5), ), ], ), ( lambda x: x | 6, [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.array([i | 6 for i in range(15)]).reshape(3, 5), ), ], ), ( lambda x: 30 | x, [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.array([i | 30 for i in range(15)]).reshape(3, 5), ), ], ), ( lambda x: x ^ 91, [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.array([i ^ 91 for i in range(15)]).reshape(3, 5), ), ], ), ( lambda x: 115 ^ x, [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.array([i ^ 115 for i in range(15)]).reshape(3, 5), ), ], ), ( lambda x: x % 11, [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.array([i % 11 for i in range(15)]).reshape(3, 5), ), ], ), ( lambda x: 150 % (x + 1), [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.array([150 % (i + 1) for i in range(15)]).reshape(3, 5), ), ], ), ( lambda x: x ** 2, [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5), numpy.array([i ** 2 for i in range(15)]).reshape(3, 5), ), ], ), ( lambda x: 2 ** x, [ ( EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)), numpy.arange(15).reshape(3, 5) % 7, numpy.array([2 ** (i % 7) for i in range(15)]).reshape(3, 5), ), ], ), ], ) def test_tracing_ndarray_calls( function_to_trace, input_value_input_and_expected_output_tuples, check_array_equality, ): """Test memory function managed by GenericFunction node of the form ndarray.something""" subtest_tracing_calls( function_to_trace, input_value_input_and_expected_output_tuples, check_array_equality ) @pytest.mark.parametrize( "lambda_f,params", [ ( lambda x: numpy.reshape(x, (5, 3)), { "x": EncryptedTensor(Integer(2, is_signed=False), shape=(7, 5)), }, ), ], ) def test_errors_with_generic_function(lambda_f, params): "Test some errors with generic function" with pytest.raises(ValueError) as excinfo: tracing.trace_numpy_function(lambda_f, params) assert "shapes are not compatible (old shape (7, 5), new shape (5, 3))" in str(excinfo.value)
py
b4050a702ad8aeea87f304ec90fe15da7257390a
# Installing Libraries import uvicorn from fastapi import FastAPI from BankNotes import BankNote import pickle # Creating a FastAPI Instance app = FastAPI() # Reading in the Pickle File model = pickle.load(open('classifier.pkl', 'rb')) # Index Route @app.get('/') async def index(): return {'message': 'My First FastAPI ML Deployment Implementation!!'} # Route Path with Parameter @app.get('/{name}') async def hello(name: str): return {'message': f'Hello, {name}!'} # Predict Route Path with Parameter """ Will make a prediction from the passed JSON data and return the prediction with the confidence. """ @app.post('/predict') async def predict(data: BankNote): data = data.dict() variance = data['variance'] skewness = data['skewness'] curtosis = data['curtosis'] entropy = data['entropy'] predictedValue = model.predict_proba([[variance, skewness, curtosis, entropy]])[:, 1][0] if predictedValue < 0.5: prediction = "Fake Note" else: prediction = "Authentic Bank Note" return { 'prediction': prediction } # Run the API with `uvicorn` if __name__ == '__main__': # CLI: uvicorn app:app --reload --port 5000 uvicorn.run(app, host = '127.0.0.1', port = 5000, reload = True)
py
b4050ae3f0a3c202c44bc95f60472c04d14a4912
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys import re def trn_transcript(utterance_id, transcript): words = [] for token in transcript: words.append(trn_alternation(token)) words.append('(' + utterance_id + ')') return ' '.join(words) def trn_alternation(alternation): words = [] if type(alternation) is list: words.append('{') words.append(' / '.join([' '.join(x) for x in alternation])) words.append('}') else: words.append(alternation) return ' '.join(words) class Transcripts: ''' A transcript database. ''' def __init__(self): self.__transcripts = dict() def __iter__(self): for utterance_id, transcript in self.__transcripts.items(): yield utterance_id, transcript def read_trn(self, input_file): for line in input_file: utterance_end = line.index('(') id_start = utterance_end + 1 id_end = line.index(')', id_start) utterance = line[:utterance_end].strip() utterance_id = line[id_start:id_end].strip() self.set_utterance(utterance_id, utterance) def write_trn(self, output_file): for utterance_id, transcript in self.__transcripts.items(): line = trn_transcript(utterance_id, transcript) output_file.write(line.encode('utf-8') + '\n') def set_utterance(self, utterance_id, utterance): transcript = [] pos = 0 while pos < len(utterance): alt_pos = utterance.find('{', pos) if alt_pos == -1: transcript.extend(utterance[pos:].split()) break transcript.extend(utterance[pos:alt_pos].split()) alt_pos += 1 alt_end = utterance.find('}', alt_pos) alternation = utterance[alt_pos:alt_end].split('/') alternation = [x.split() for x in alternation] transcript.append(alternation) pos = alt_end + 1 self.__transcripts[utterance_id] = transcript def set_transcript(self, utterance_id, transcript): self.__transcripts[utterance_id] = transcript
py
b4050bf37d79716fd6fab488daec238243944fc6
from local_data_api.settings import setup def test_setup_mysql(mocker) -> None: mock_register_secret = mocker.patch('local_data_api.settings.register_secret') mock_register_resource = mocker.patch('local_data_api.settings.register_resource') setup() mock_register_secret.assert_called_with( 'root', 'example', 'arn:aws:secretsmanager:us-east-1:123456789012:secret:dummy' ) mock_register_resource.assert_called_with( 'arn:aws:rds:us-east-1:123456789012:cluster:dummy', 'MySQLJDBC', '127.0.0.1', 3306, 'root', 'example', {'JAR_PATH': '/usr/lib/jvm/mariadb-java-client.jar'}, ) def test_setup_postgres(mocker) -> None: mock_register_secret = mocker.patch('local_data_api.settings.register_secret') mock_register_resource = mocker.patch('local_data_api.settings.register_resource') import os os.environ['ENGINE'] = 'PostgreSQLJDBC' setup() mock_register_secret.assert_called_with( 'postgres', 'example', 'arn:aws:secretsmanager:us-east-1:123456789012:secret:dummy', ) mock_register_resource.assert_called_with( 'arn:aws:rds:us-east-1:123456789012:cluster:dummy', 'PostgreSQLJDBC', '127.0.0.1', 5432, 'postgres', 'example', {'JAR_PATH': '/usr/lib/jvm/postgresql-java-client.jar'}, )
py
b4050ca0b590d52b1fb489673192aa5bd03a24ea
import ujson from configuration import * from log import * state = {} # state entries contain tag info and values # source.measurement => value def build_state_entry(time, iteration): return { 'meta.time': time, 'meta.iteration': iteration, } def set_measurement(state_entry, sensor, measurement, value): state_entry[sensor +'.'+ measurement] = value def set_meta(state_entry, name, value): state_entry['meta.'+ name] = value def append_state_entry(state_entry): global state state['entries'].append(state_entry) def get_state_entries(): return state['entries'] def state_entry_count(): return len(state['entries']) def init_state(): log_debug('init state') truncate_state() def state_entry_to_string(state_entry): return ujson.dumps(state_entry) def truncate_state(): global state state['entries'] = [] # does not obey log setting def print_state(): global state print('state') print(ujson.dumps(state))
py
b4050d7b476c9fa57a45d0594322f2b31c672820
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A setup module for the Google Ads API client library.""" from setuptools import setup, find_packages import io install_requires = [ "dataclasses >= 0.6, < 1.0.0; python_version < '3.7'", "google-auth-oauthlib >= 0.3.0, < 1.0.0", "google-api-core >= 1.21.0, < 2.0.0", "googleapis-common-protos >= 1.5.8, < 2.0.0", "grpcio >= 1.33.2, < 2.0.0", "proto-plus >= 1.18.0, < 2.0.0", "PyYAML >= 5.1, < 6.0", "setuptools >= 40.3.0", "pep562 >= 1.0, < 2.0", "nox == 2020.12.31", ] with io.open("README.rst", "r", encoding="utf-8") as readme_file: long_description = readme_file.read() setup( name="google-ads", version="11.0.2", author="Google LLC", author_email="[email protected]", classifiers=[ "Intended Audience :: Developers", "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", ], description="Client library for the Google Ads API", include_package_data=True, python_requires=">=3.6", long_description=long_description, install_requires=install_requires, license="Apache 2.0", packages=find_packages( exclude=["examples", "examples.*", "tests", "tests.*"] ), namespace_packages=["google", "google.ads"], url="https://github.com/googleads/google-ads-python", zip_safe=False, )
py
b4050ed883d473a6c6d516ce9abfbf88cbdee0f0
"""pymoku example: Basic IIR Filter Box This example demonstrates how you can configure the IIR Filter instrument, configure real-time monitoring of the input and output signals. (c) 2019 Liquid Instruments Pty. Ltd. """ from pymoku import Moku from pymoku.instruments import IIRFilterBox # This script provides a basic example showing how to load coefficients from an # array into the IIRFilterBox. # The following example array produces an 8th order Direct-form 1 Chebyshev # type 2 IIR filter with a normalized stopband frequency of 0.2 pi rad/sample # and a stopband attenuation of 40 dB. Output gain is set to 1.0. See the # IIRFilterBox documentation for array dimension specifics. filt_coeff = [ [ 1.0 ], [ 1.0000000000, 0.6413900006, -1.0290561741, 0.6413900006, -1.6378425857, 0.8915664128 ], [ 1.0000000000, 0.5106751138, -0.7507394931, 0.5106751138, -1.4000444473, 0.6706551819 ], [ 1.0000000000, 0.3173108134, -0.3111365531, 0.3173108134, -1.0873085012, 0.4107935750 ], [ 1.0000000000, 0.1301131088, 0.1223154629, 0.1301131088, -0.7955572476, 0.1780989281 ] ] m = Moku.get_by_name('Moku') try: i = m.deploy_or_connect(IIRFilterBox) i.set_frontend(1, fiftyr=True, atten=False, ac=False) i.set_frontend(2, fiftyr=True, atten=False, ac=False) # Both filters have the same coefficients, but the different sampling rates # mean the resultant transfer functions will be different by a factor of # 128 (the ratio of sampling rates) i.set_filter(1, sample_rate='high', filter_coefficients=filt_coeff) i.set_filter(2, sample_rate='low', filter_coefficients=filt_coeff) # Offset filter channel 1 input by 0.1V i.set_gains_offsets(1, input_offset=0.1) # Filter channel 2 acts on sum of input 1 and 2 i.set_control_matrix(2, scale_in1=0.5, scale_in2=0.5) # Set the monitor timebase to +-1msec i.set_timebase(-1e-3, 1e-3) # Set up monitoring of the input and output of the second filter channel. i.set_monitor('a', 'in2') i.set_monitor('b', 'out2') # Capture and print one set of time-domain input and output points d = i.get_realtime_data() print(d.ch1, d.ch2) finally: m.close()
py
b4050f6ff522bdbbf4b7fb09fee6fe8d2f117012
# Copyright 2018 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """The intent service interface offers a unified wrapper class for the Intent Service. Including both adapt and padatious. """ from os.path import exists from adapt.intent import Intent from mycroft.messagebus.message import Message class IntentServiceInterface: """Interface to communicate with the Mycroft intent service. This class wraps the messagebus interface of the intent service allowing for easier interaction with the service. It wraps both the Adapt and Precise parts of the intent services. """ def __init__(self, bus=None): self.bus = bus self.registered_intents = [] def set_bus(self, bus): self.bus = bus def register_adapt_keyword(self, vocab_type, entity, aliases=None): """Send a message to the intent service to add an Adapt keyword. vocab_type(str): Keyword reference entity (str): Primary keyword aliases (list): List of alternative kewords """ aliases = aliases or [] self.bus.emit(Message("register_vocab", {'start': entity, 'end': vocab_type})) for alias in aliases: self.bus.emit(Message("register_vocab", { 'start': alias, 'end': vocab_type, 'alias_of': entity })) def register_adapt_regex(self, regex): """Register a regex with the intent service. Arguments: regex (str): Regex to be registered, (Adapt extracts keyword reference from named match group. """ self.bus.emit(Message("register_vocab", {'regex': regex})) def register_adapt_intent(self, name, intent_parser): """Register an Adapt intent parser object. Serializes the intent_parser and sends it over the messagebus to registered. """ self.bus.emit(Message("register_intent", intent_parser.__dict__)) self.registered_intents.append((name, intent_parser)) def detach_intent(self, intent_name): """Remove an intent from the intent service. Arguments: intent_name(str): Intent reference """ self.bus.emit(Message("detach_intent", {"intent_name": intent_name})) def set_adapt_context(self, context, word, origin): """Set an Adapt context. Arguments: context (str): context keyword name word (str): word to register origin (str): original origin of the context (for cross context) """ self.bus.emit(Message('add_context', {'context': context, 'word': word, 'origin': origin})) def remove_adapt_context(self, context): """Remove an active Adapt context. Arguments: context(str): name of context to remove """ self.bus.emit(Message('remove_context', {'context': context})) def register_padatious_intent(self, intent_name, filename): """Register a padatious intent file with Padatious. Arguments: intent_name(str): intent identifier filename(str): complete file path for entity file """ if not isinstance(filename, str): raise ValueError('Filename path must be a string') if not exists(filename): raise FileNotFoundError('Unable to find "{}"'.format(filename)) data = {"file_name": filename, "name": intent_name} self.bus.emit(Message("padatious:register_intent", data)) self.registered_intents.append((intent_name, data)) def register_padatious_entity(self, entity_name, filename): """Register a padatious entity file with Padatious. Arguments: entity_name(str): entity name filename(str): complete file path for entity file """ if not isinstance(filename, str): raise ValueError('Filename path must be a string') if not exists(filename): raise FileNotFoundError('Unable to find "{}"'.format(filename)) self.bus.emit(Message('padatious:register_entity', { 'file_name': filename, 'name': entity_name })) def __iter__(self): """Iterator over the registered intents. Returns an iterator returning name-handler pairs of the registered intent handlers. """ return iter(self.registered_intents) def __contains__(self, val): """Checks if an intent name has been registered.""" return val in [i[0] for i in self.registered_intents] def get_intent(self, intent_name): """Get intent from intent_name. Arguments: intent_name (str): name to find. Returns: Found intent or None if none were found. """ for name, intent in self: if name == intent_name: return intent else: return None def open_intent_envelope(message): """Convert dictionary received over messagebus to Intent.""" intent_dict = message.data return Intent(intent_dict.get('name'), intent_dict.get('requires'), intent_dict.get('at_least_one'), intent_dict.get('optional'))
py
b405127739ccc5d8151f0508183a90cda5c91ebf
#!/usr/bin/env python # -*- coding: utf-8; py-indent-offset:4 -*- ############################################################################### # # Copyright (C) 2016 Daniel Rodriguez # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### from __future__ import (absolute_import, division, print_function, unicode_literals) import datetime class WeekDaysFiller(object): '''Bar Filler to add missing calendar days to trading days''' # kickstart value for date comparisons lastdt = datetime.datetime.max.toordinal() def __init__(self, data, fillclose=False): self.fillclose = fillclose self.voidbar = [float('Nan')] * data.size() # init a void bar def __call__(self, data): '''Empty bars (NaN) or with last close price are added for weekdays with no data Params: - data: the data source to filter/process Returns: - True (always): bars are removed (even if put back on the stack) ''' dt = data.datetime.dt() # current date in int format lastdt = self.lastdt + 1 # move the last seen data once forward while lastdt < dt: # loop over gap bars if datetime.date.fromordinal(lastdt).isoweekday() < 6: # Mon-Fri # Fill in date and add new bar to the stack if self.fillclose: self.voidbar = [self.lastclose] * data.size() self.voidbar[-1] = float(lastdt) + data.sessionend data._add2stack(self.voidbar[:]) lastdt += 1 # move lastdt forward self.lastdt = dt # keep a record of the last seen date self.lastclose = data.close[0] data._save2stack(erase=True) # dt bar to the stack and out of stream return True # bars are on the stack (new and original)