ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b405ecd5e305bde38a974663b2c1ad9fa928da90
import pandas as pd import numpy as np from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split, GridSearchCV np.random.seed(0) # Read data from Titanic dataset. titanic_url = ('https://raw.githubusercontent.com/amueller/' 'scipy-2017-sklearn/091d371/notebooks/datasets/titanic3.csv') data = pd.read_csv(titanic_url) # We will train our classifier with the following features: # Numeric Features: # - age: float. # - fare: float. # Categorical Features: # - embarked: categories encoded as strings {'C', 'S', 'Q'}. # - sex: categories encoded as strings {'female', 'male'}. # - pclass: ordinal integers {1, 2, 3}. # We create the preprocessing pipelines for both numeric and categorical data. numeric_features = ['age', 'fare'] numeric_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) categorical_features = ['embarked', 'sex', 'pclass'] # Replacing missing values with Modal value and then one-hot encoding. categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) # Final preprocessor object set up with ColumnTransformer... preprocess = ColumnTransformer( transformers=[ ('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features)]) X = data.drop('survived', axis=1) X = data.drop('name', axis=1) y = data['survived'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) preprocess = preprocess.fit(X_train) def preprocessor(data): import sklearn preprocessed_data=preprocess.transform(data) return preprocessed_data
py
b405ecf3c933fa49cb6e9df5051c715859fae114
# Copyright 2021, Autonomous Space Robotics Lab (ASRL) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import threading import rclpy from geometry_msgs.msg import Pose2D from vtr_messages.msg import GraphPin from vtr_messages.srv import GraphRelaxation, GraphCalibration, GraphPinning # A thread lock for ROS to avoid synchronization issues ros_rlock = threading.RLock() def ros_service_request(node, path, mtype, request): ros_service = node.create_client(mtype, path) while not ros_service.wait_for_service(timeout_sec=1.0): node.get_logger().info('service not available, waiting again...') with ros_rlock: # (yuchen) isn't this equivalent to call(request)? response = ros_service.call_async(request) rclpy.spin_until_future_complete(node, response) return response.result() def get_graph(node, seq): """Get the relaxed pose graph from the map server""" request = GraphRelaxation.Request() request.seq = int(seq) request.update_graph = False # TODO not used? request.project = True # TODO always True? return ros_service_request(node, "relaxed_graph", GraphRelaxation, request) def move_graph(node, x, y, theta, scale): """Update lat lng of the pose graph shown on map""" request = GraphCalibration.Request() request.t_delta = Pose2D(x=x, y=y, theta=theta) request.scale_delta = scale return ros_service_request(node, "update_calib", GraphCalibration, request) def pin_graph(node, pins): """Add vertex to latlng correspondence pins""" request = GraphPinning.Request() for pin in pins: pin_msg = GraphPin() pin_msg.id = int(pin["id"]) pin_msg.lat = float(pin["latLng"]["lat"]) pin_msg.lng = float(pin["latLng"]["lng"]) pin_msg.weight = float(pin["weight"]) request.pins.append(pin_msg) return ros_service_request(node, "pin_graph", GraphPinning, request)
py
b405ecf3ea1cbb2972db3f724a7787412514677a
"""Code examples for using the Ouster SDK. These modules are provided for documentation and testing purposes only, and should not be considered a stable public API. """
py
b405ee6a0a81bcae62b16a96142827a1b7ab7983
#!/usr/bin/env python from importlib import import_module import os from flask import Flask, render_template, Response # import camera driver if os.environ.get('CAMERA'): Camera = import_module('base.camera_' + os.environ['CAMERA']).Camera else: from base.camera import Camera app = Flask(__name__) @app.route('/') def index(): """Video streaming home page.""" return render_template('index.html') def gen(camera): """Video streaming generator function.""" while True: frame = camera.get_frame() yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') @app.route('/video_feed') def video_feed(): """Video streaming route. Put this in the src attribute of an img tag.""" return Response(gen(Camera()), mimetype='multipart/x-mixed-replace; boundary=frame') if __name__ == '__main__': app.run(host='0.0.0.0', threaded=True)
py
b405eebdb29606a696feb9f4c604fff9bdaaa090
class Layout(object): def __init__(self): self.components = [] self.width = 128 # epd2in13.EPD_WIDTH self.height = 250 # epd2in13.EPD_HEIGHT def add(self, component): if isinstance(component, (list,)): self.components.extend( component ) else: self.components.append( component ) def round_to(self, value, res): """ Round to e.g., 0.5, 0.02, 10, etc. """ if res == 0: return round(value) return res * (round(value/res))
py
b405efe270a03d44a0e5e4080b1a8befa070f6d9
#!/usr/bin/env python # encode: utf8 from scipy.io import loadmat from scipy.signal import freqresp import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set_style('ticks') plt.close('all') f = loadmat('data/tf.mat')['f'][0, :] rawdata = loadmat('data/tf.mat')['h0'][0, :] A,B,C,D = np.load('data/ss_param.npy') _, Hfit = freqresp((A,B,C,D), 2*np.pi*f) plt.figure(figsize=(4,3)) plt.plot(f, abs(rawdata), '-b', label='Data') plt.plot(f, abs(Hfit), '-r', label='Fitted data') plt.ylabel('Amplitude [in mm/A]') plt.xlabel('Frequency [in Hz]') plt.yscale('log') plt.xscale('log') plt.grid(which='both') plt.ylim([min(abs(rawdata)),11]) plt.xlim([0.3,f[-1]]) plt.legend(loc='best', frameon=True, fancybox=True) sns.despine() plt.tight_layout() plt.savefig('ctl_id_amplitude.pdf') plt.figure(figsize=(4,3)) plt.plot(f, np.unwrap(np.angle(rawdata))*180/np.pi, '-b', label='Data') plt.plot(f, np.unwrap(np.angle(Hfit))*180/np.pi, '-r', label='Fitted data') plt.ylabel('Phase [in deg]') plt.xlabel('Frequency [in Hz]') plt.xscale('log') plt.grid(which='both') plt.ylim(80,200) plt.xlim([0.3,f[-1]]) plt.legend(loc='best', frameon=True, fancybox=True) sns.despine() plt.tight_layout() plt.savefig('ctl_id_phase.pdf') plt.show()
py
b405f0169d6ed6d905b72162f3ad3127b0a95b5d
import contextlib import sys import os import unittest from test import support import time resource = support.import_module('resource') # This test is checking a few specific problem spots with the resource module. class ResourceTest(unittest.TestCase): def test_args(self): self.assertRaises(TypeError, resource.getrlimit) self.assertRaises(TypeError, resource.getrlimit, 42, 42) self.assertRaises(TypeError, resource.setrlimit) self.assertRaises(TypeError, resource.setrlimit, 42, 42, 42) def test_fsize_ismax(self): try: (cur, max) = resource.getrlimit(resource.RLIMIT_FSIZE) except AttributeError: pass else: # RLIMIT_FSIZE should be RLIM_INFINITY, which will be a really big # number on a platform with large file support. On these platforms, # we need to test that the get/setrlimit functions properly convert # the number to a C long long and that the conversion doesn't raise # an error. self.assertEqual(resource.RLIM_INFINITY, max) resource.setrlimit(resource.RLIMIT_FSIZE, (cur, max)) def test_fsize_enforced(self): try: (cur, max) = resource.getrlimit(resource.RLIMIT_FSIZE) except AttributeError: pass else: # Check to see what happens when the RLIMIT_FSIZE is small. Some # versions of Python were terminated by an uncaught SIGXFSZ, but # pythonrun.c has been fixed to ignore that exception. If so, the # write() should return EFBIG when the limit is exceeded. # At least one platform has an unlimited RLIMIT_FSIZE and attempts # to change it raise ValueError instead. try: try: resource.setrlimit(resource.RLIMIT_FSIZE, (1024, max)) limit_set = True except ValueError: limit_set = False f = open(support.TESTFN, "wb") try: f.write(b"X" * 1024) try: f.write(b"Y") f.flush() # On some systems (e.g., Ubuntu on hppa) the flush() # doesn't always cause the exception, but the close() # does eventually. Try flushing several times in # an attempt to ensure the file is really synced and # the exception raised. for i in range(5): time.sleep(.1) f.flush() except OSError: if not limit_set: raise if limit_set: # Close will attempt to flush the byte we wrote # Restore limit first to avoid getting a spurious error resource.setrlimit(resource.RLIMIT_FSIZE, (cur, max)) finally: f.close() finally: if limit_set: resource.setrlimit(resource.RLIMIT_FSIZE, (cur, max)) support.unlink(support.TESTFN) def test_fsize_toobig(self): # Be sure that setrlimit is checking for really large values too_big = 10**50 try: (cur, max) = resource.getrlimit(resource.RLIMIT_FSIZE) except AttributeError: pass else: try: resource.setrlimit(resource.RLIMIT_FSIZE, (too_big, max)) except (OverflowError, ValueError): pass try: resource.setrlimit(resource.RLIMIT_FSIZE, (max, too_big)) except (OverflowError, ValueError): pass def test_getrusage(self): self.assertRaises(TypeError, resource.getrusage) self.assertRaises(TypeError, resource.getrusage, 42, 42) usageself = resource.getrusage(resource.RUSAGE_SELF) usagechildren = resource.getrusage(resource.RUSAGE_CHILDREN) # May not be available on all systems. try: usageboth = resource.getrusage(resource.RUSAGE_BOTH) except (ValueError, AttributeError): pass try: usage_thread = resource.getrusage(resource.RUSAGE_THREAD) except (ValueError, AttributeError): pass # Issue 6083: Reference counting bug def test_setrusage_refcount(self): try: limits = resource.getrlimit(resource.RLIMIT_CPU) except AttributeError: pass else: class BadSequence: def __len__(self): return 2 def __getitem__(self, key): if key in (0, 1): return len(tuple(range(1000000))) raise IndexError resource.setrlimit(resource.RLIMIT_CPU, BadSequence()) def test_pagesize(self): pagesize = resource.getpagesize() self.assertIsInstance(pagesize, int) self.assertGreaterEqual(pagesize, 0) @unittest.skipUnless(sys.platform == 'linux', 'test requires Linux') def test_linux_constants(self): for attr in ['MSGQUEUE', 'NICE', 'RTPRIO', 'RTTIME', 'SIGPENDING']: with contextlib.suppress(AttributeError): self.assertIsInstance(getattr(resource, 'RLIMIT_' + attr), int) @support.requires_freebsd_version(9) def test_freebsd_contants(self): for attr in ['SWAP', 'SBSIZE', 'NPTS']: with contextlib.suppress(AttributeError): self.assertIsInstance(getattr(resource, 'RLIMIT_' + attr), int) @unittest.skipUnless(hasattr(resource, 'prlimit'), 'no prlimit') @support.requires_linux_version(2, 6, 36) def test_prlimit(self): self.assertRaises(TypeError, resource.prlimit) self.assertRaises(ProcessLookupError, resource.prlimit, -1, resource.RLIMIT_AS) limit = resource.getrlimit(resource.RLIMIT_AS) self.assertEqual(resource.prlimit(0, resource.RLIMIT_AS), limit) self.assertEqual(resource.prlimit(0, resource.RLIMIT_AS, limit), limit) # Issue 20191: Reference counting bug @unittest.skipUnless(hasattr(resource, 'prlimit'), 'no prlimit') @support.requires_linux_version(2, 6, 36) def test_prlimit_refcount(self): class BadSeq: def __len__(self): return 2 def __getitem__(self, key): return limits[key] - 1 # new reference limits = resource.getrlimit(resource.RLIMIT_AS) self.assertEqual(resource.prlimit(0, resource.RLIMIT_AS, BadSeq()), limits) def test_main(verbose=None): support.run_unittest(ResourceTest) if __name__ == "__main__": test_main()
py
b405f180c94994c1adac56a5d302fc7f7769a343
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Tests for the Chrome Cache files parser.""" import unittest from plaso.parsers import chrome_cache from tests.parsers import test_lib class ChromeCacheParserTest(test_lib.ParserTestCase): """Tests for the Chrome Cache files parser.""" def testParse(self): """Tests the Parse function.""" parser = chrome_cache.ChromeCacheParser() storage_writer = self._ParseFile(['chrome_cache', 'index'], parser) number_of_events = storage_writer.GetNumberOfAttributeContainers('event') self.assertEqual(number_of_events, 217) number_of_warnings = storage_writer.GetNumberOfAttributeContainers( 'extraction_warning') self.assertEqual(number_of_warnings, 0) number_of_warnings = storage_writer.GetNumberOfAttributeContainers( 'recovery_warning') self.assertEqual(number_of_warnings, 0) events = list(storage_writer.GetEvents()) expected_event_values = { 'data_type': 'chrome:cache:entry', 'date_time': '2014-04-30 16:44:36.226091', 'original_url': ( 'https://s.ytimg.com/yts/imgbin/player-common-vfliLfqPT.webp')} self.CheckEventValues(storage_writer, events[0], expected_event_values) if __name__ == '__main__': unittest.main()
py
b405f2705b11ef9b74437837c9fb82cfd88fbceb
import fluidity_tools def pznd(state, parameters): '''Calculate sources and sinks for a simple PZND model''' if not check_pznd_parameters(parameters): raise TypeError("Missing Parameter") P=state.scalar_fields["Phytoplankton"] Z=state.scalar_fields["Zooplankton"] N=state.scalar_fields["Nutrient"] D=state.scalar_fields["Detritus"] I=state.scalar_fields["_PAR"] # Note: *NOT* PhotosyntheticRadation field, but the internal _PAR field, which # has been projected onto the same mesh as phytoplankton and has been converted from # incident radiation to just the active part. Pnew=state.scalar_fields["IteratedPhytoplankton"] Znew=state.scalar_fields["IteratedZooplankton"] Nnew=state.scalar_fields["IteratedNutrient"] Dnew=state.scalar_fields["IteratedDetritus"] coords=state.vector_fields["Coordinate"] P_source=state.scalar_fields["PhytoplanktonSource"] Z_source=state.scalar_fields["ZooplanktonSource"] N_source=state.scalar_fields["NutrientSource"] D_source=state.scalar_fields["DetritusSource"] N_abs=state.scalar_fields["NutrientAbsorption"] try: PP=state.scalar_fields["PrimaryProduction"] except KeyError: PP=None try: PG=state.scalar_fields["PhytoplanktonGrazing"] except KeyError: PG=None alpha=parameters["alpha"] beta=parameters["beta"] gamma=parameters["gamma"] g=parameters["g"] k_N=parameters["k_N"] k=parameters["k"] v=parameters["v"] mu_P=parameters["mu_P"] mu_Z=parameters["mu_Z"] mu_D=parameters["mu_D"] p_P=parameters["p_P"] p_D=1-p_P for n in range(P.node_count): # Values of fields on this node. P_n=max(.5*(P.node_val(n)+Pnew.node_val(n)), 0.0) Z_n=max(.5*(Z.node_val(n)+Znew.node_val(n)), 0.0) N_n=max(.5*(N.node_val(n)+Nnew.node_val(n)), 0.0) D_n=max(.5*(D.node_val(n)+Dnew.node_val(n)), 0.0) I_n=max(I.node_val(n), 0.0) if (I_n < 0.0001): I_n = 0.0 # Light limited phytoplankton growth rate. J=(v*alpha*I_n)/(v**2+alpha**2*I_n**2)**0.5 # Nitrate limiting factor. Q=N_n/(k_N+N_n) # Total phytoplankton growth rate. R_P=J*P_n*Q # Zooplankton grazing of phytoplankton. G_P=(g * p_P * P_n**2 * Z_n)/(k**2 + p_P*P_n**2 + p_D*D_n**2) # Zooplankton grazing of detritus. G_D=(g * (1-p_P) * D_n**2 * Z_n)/(k**2 + p_P*P_n**2 + p_D*D_n**2) # Death rate of phytoplankton. De_P=mu_P*P_n*P_n/(P_n+0.2) # Death rate of zooplankton. De_Z=mu_Z*Z_n*Z_n*Z_n/(Z_n+3) # Detritus remineralisation. De_D=mu_D*D_n P_source.set(n, R_P - G_P - De_P) if PP: PP.set(n, R_P) if PG: PG.set(n, G_P) Z_source.set(n, gamma*beta*(G_P+G_D) - De_Z) N_source.set(n, -R_P + De_D + (1-gamma)*beta*(G_P+G_D)) D_source.set(n, -De_D + De_P + De_Z +(1-beta)*G_P - beta*G_D) def check_pznd_parameters(parameters): from sys import stderr valid=True if not parameters.has_key("alpha"): stderr.write("PZND parameter alpha missing.\n") stderr.write("alpha is this initial slope of the P-I curve.\n\n") valid = False if not parameters.has_key("beta"): stderr.write("PZND parameter beta missing.\n") stderr.write("beta is the assimilation efficiency of zooplankton.\n\n") valid = False if not parameters.has_key("gamma"): stderr.write("PZND parameter gamma missing.\n") stderr.write("gamma is the zooplankton excretion parameter.\n\n") valid = False if not parameters.has_key("g"): stderr.write("PZND parameter g missing.\n") stderr.write("g is the zooplankton maximum growth rate.\n\n") valid = False if not parameters.has_key("k_N"): stderr.write("PZND parameter k_N missing.\n") stderr.write("k_N is the half-saturation constant for nutrient.\n\n") valid = False if not parameters.has_key("k"): stderr.write("PZND parameter k missing.\n") stderr.write("k is the zooplankton grazing parameter.\n\n") valid = False if not parameters.has_key("mu_P"): stderr.write("PZND parameter mu_P missing.\n") stderr.write("mu_P is the phytoplankton mortality rate.\n\n") valid = False if not parameters.has_key("mu_Z"): stderr.write("PZND parameter mu_Z missing.\n") stderr.write("mu_Z is the zooplankton mortality rate.\n\n") valid = False if not parameters.has_key("mu_D"): stderr.write("PZND parameter mu_D missing.\n") stderr.write("mu_D is the detritus remineralisation rate.\n\n") valid = False if not parameters.has_key("p_P"): stderr.write("PZND parameter p_P missing.\n") stderr.write("p_P is the relative grazing preference of zooplankton for phytoplankton.\n\n") valid = False if not parameters.has_key("v"): stderr.write("PZND parameter v missing.\n") stderr.write("v is the maximum phytoplankton growth rate.\n\n") valid = False return valid def lotka_volterra(state,parameters): if not check_lotka_volterra_parameters(parameters): raise TypeError("Missing Parameter") P=state.scalar_fields["Phytoplankton"] Z=state.scalar_fields["Zooplankton"] Pnew=state.scalar_fields["IteratedPhytoplankton"] Znew=state.scalar_fields["IteratedZooplankton"] P_source=state.scalar_fields["PhytoplanktonSource"] Z_source=state.scalar_fields["ZooplanktonSource"] alpha=parameters["alpha"] beta=parameters["beta"] gamma=parameters["gamma"] delta=parameters["delta"] for n in range(P.node_count): # Values of fields on this node. P_n=.5*(P.node_val(n)+Pnew.node_val(n)) Z_n=.5*(Z.node_val(n)+Znew.node_val(n)) P_source.set(n, P_n*(alpha-beta*Z_n)) Z_source.set(n, -Z_n*(gamma-delta*P_n)) def check_lotka_volterra_parameters(parameters): from sys import stderr valid=True if not parameters.has_key("alpha"): stderr.write("Lotka Voltera parameter alpha missing.\n") valid = False if not parameters.has_key("beta"): stderr.write("Lotka Voltera parameter beta missing.\n") valid = False if not parameters.has_key("gamma"): stderr.write("Lotka Voltera parameter gamma missing.\n") valid = False if not parameters.has_key("delta"): stderr.write("Lotka Voltera parameter delta missing.\n") valid = False if not valid: stderr.write(" dP/dt = P*(alpha-beta * Z)") stderr.write(" dZ/dt = - Z*(gamma-delta * P)") return valid ############################################################# # # # pczdna model # # # ############################################################# def six_component(state, parameters): '''Calculate sources and sinks for pczdna biology model''' # Based on the equations in # Popova, E. E.; Coward, A. C.; Nurser, G. A.; de Cuevas, B.; Fasham, M. J. R. & Anderson, T. R. # Mechanisms controlling primary and new production in a global ecosystem model - Part I: # Validation of the biological simulation Ocean Science, 2006, 2, 249-266. # DOI: 10.5194/os-2-249-2006 import math if not check_six_component_parameters(parameters): raise TypeError("Missing Parameter") P=state.scalar_fields["Phytoplankton"] C=state.scalar_fields["Chlorophyll"] Z=state.scalar_fields["Zooplankton"] N=state.scalar_fields["Nutrient"] A=state.scalar_fields["Ammonium"] D=state.scalar_fields["Detritus"] I=state.scalar_fields["_PAR"] # Note: *NOT* PhotosyntheticRadation field, but the internal _PAR field, which # has been projected onto the same mesh as phytoplankton and has been converted from # incident radiation to just the active part. Pnew=state.scalar_fields["IteratedPhytoplankton"] Cnew=state.scalar_fields["IteratedChlorophyll"] Znew=state.scalar_fields["IteratedZooplankton"] Nnew=state.scalar_fields["IteratedNutrient"] Anew=state.scalar_fields["IteratedAmmonium"] Dnew=state.scalar_fields["IteratedDetritus"] coords=state.vector_fields["Coordinate"] P_source=state.scalar_fields["PhytoplanktonSource"] C_source=state.scalar_fields["ChlorophyllSource"] Z_source=state.scalar_fields["ZooplanktonSource"] N_source=state.scalar_fields["NutrientSource"] N_abs=state.scalar_fields["NutrientAbsorption"] A_source=state.scalar_fields["AmmoniumSource"] D_source=state.scalar_fields["DetritusSource"] try: PP=state.scalar_fields["PrimaryProduction"] except KeyError: PP=None try: PG=state.scalar_fields["PhytoplanktonGrazing"] except KeyError: PG=None alpha_c=parameters["alpha_c"] beta_P=parameters["beta_p"] beta_D=parameters["beta_d"] delta=parameters["delta"] gamma=parameters["gamma"] zeta=parameters["zeta"] epsilon=parameters["epsilon"] psi=parameters["psi"] g=parameters["g"] k_N=parameters["k_N"] k_A=parameters["k_A"] k_p=parameters["k_p"] k_z=parameters["k_z"] v=parameters["v"] mu_P=parameters["mu_P"] mu_Z=parameters["mu_Z"] mu_D=parameters["mu_D"] p_P=parameters["p_P"] theta_m=parameters["theta_m"] lambda_bio=parameters["lambda_bio"] lambda_A=parameters["lambda_A"] photicZoneLimit=parameters["photic_zone_limit"] p_D=1-p_P for n in range(P.node_count): # Values of fields on this node. P_n=max(.5*(P.node_val(n)+Pnew.node_val(n)), 0.0) Z_n=max(.5*(Z.node_val(n)+Znew.node_val(n)), 0.0) N_n=max(.5*(N.node_val(n)+Nnew.node_val(n)), 0.0) A_n=max(.5*(A.node_val(n)+Anew.node_val(n)), 0.0) C_n=max(.5*(C.node_val(n)+Cnew.node_val(n)), 0.0) D_n=max(.5*(D.node_val(n)+Dnew.node_val(n)), 0.0) I_n=max(I.node_val(n), 0.0) depth=abs(coords.node_val(n)[2]) if (I_n < 0.0001): I_n =0 # In the continuous model we start calculating Chl-a related # properties at light levels close to zero with a potential /0. # It seems that assuming theta = zeta at very low P and Chl takes # care of this most effectively if (P_n < 1e-7 or C_n < 1e-7): theta = zeta else: theta = C_n/P_n*zeta # C=P_n*zeta alpha = alpha_c * theta # Light limited phytoplankton growth rate. J=(v*alpha*I_n)/(v**2+alpha**2*I_n**2)**0.5 # Nitrate limiting factor. Q_N=(N_n*math.exp(-psi * A_n))/(k_N+N_n) # Ammonium limiting factor Q_A=A_n/(k_A+A_n) # Chl growth scaling factor # R_P=(theta_m/theta)*J*(Q_N+Q_A)/(alpha*I_n+1e-7) R_P=(theta_m/theta)*(Q_N+Q_A)*v/(v**2+alpha**2*I_n**2)**0.5 # Primary production X_P=J*(Q_N+Q_A)*P_n # Zooplankton grazing of phytoplankton. # It looks a bit different from the original version, however # it is the same function with differently normalised parameters to # simplify tuning # G_P=(g * epsilon * p_P * P_n**2 * Z_n)/(g+epsilon*(p_P*P_n**2 + p_D*D_n**2)) G_P=(g * p_P * P_n**2 * Z_n)/(epsilon + (p_P*P_n**2 + p_D*D_n**2)) # Zooplankton grazing of detritus. (p_D - 1-p_P) # G_D=(g * epsilon * (1-p_P) * D_n**2 * Z_n)/(g+epsilon*(p_P*P_n**2 + p_D*D_n**2)) G_D=(g * (1-p_P) * D_n**2 * Z_n)/(epsilon + (p_P*P_n**2 + p_D*D_n**2)) # Death rate of phytoplankton. # There is an additional linear term because we have a unified model # (no below/above photoc zone distinction) De_P=mu_P*P_n*P_n/(P_n+k_p)+lambda_bio*P_n # Death rate of zooplankton. # There is an additional linear term because we have a unified model # (no below/above photoc zone distinction) De_Z=mu_Z*Z_n**3/(Z_n+k_z)+lambda_bio*Z_n # Detritus remineralisation. De_D=mu_D*D_n+lambda_bio*P_n+lambda_bio*Z_n # Ammonium nitrification (only below the photic zone) # This is the only above/below term De_A=lambda_A*A_n*(1-photic_zone(depth,100,20)) P_source.set(n, J*(Q_N+Q_A)*P_n - G_P - De_P) C_source.set(n, (R_P*J*(Q_N+Q_A)*P_n + (-G_P-De_P))*theta/zeta) Z_source.set(n, delta*(beta_P*G_P+beta_D*G_D) - De_Z) D_source.set(n, -De_D + De_P + gamma*De_Z +(1-beta_P)*G_P - beta_D*G_D) N_source.set(n, -J*P_n*Q_N+De_A) A_source.set(n, -J*P_n*Q_A + De_D + (1 - delta)*(beta_P*G_P + beta_D*G_D) + (1-gamma)*De_Z-De_A) if PP: PP.set(n, X_P) if PG: PG.set(n, G_P) def check_six_component_parameters(parameters): from sys import stderr valid=True if not parameters.has_key("alpha_c"): stderr.write("PCZNDA parameter alpha_c missing.\n") stderr.write("alpha is the chlorophyll-specific inital slope of P-I curve.\n\n") valid = False if not parameters.has_key("beta_p"): stderr.write("PCZNDA parameter beta_p missing.\n") stderr.write("beta is the assimilation efficiency of zooplankton for plankton.\n\n") valid = False if not parameters.has_key("beta_d"): stderr.write("PCZNDA parameter beta_d missing.\n") stderr.write("beta is the assimilation efficiency of zooplankton for detritus.\n\n") valid = False if not parameters.has_key("delta"): stderr.write("PCZNDA parameter delta missing.\n") stderr.write("delta is the zooplankton excretion parameter.\n\n") valid = False if not parameters.has_key("gamma"): stderr.write("PCZNDA parameter gamma missing.\n") stderr.write("gamma is the zooplankton excretion parameter.\n\n") valid = False if not parameters.has_key("epsilon"): stderr.write("PCZNDA parameter epsilon missing.\n") stderr.write("epsilon is the grazing parameter relating the rate of prey item to prey density.\n\n") valid = False if not parameters.has_key("g"): stderr.write("PCZNDA parameter g missing.\n") stderr.write("g is the zooplankton maximum growth rate.\n\n") valid = False if not parameters.has_key("k_A"): stderr.write("PCZNDA parameter k_A missing.\n") stderr.write("k_A is the half-saturation constant for ammonium.\n\n") valid = False if not parameters.has_key("k_p"): stderr.write("PCZNDA parameter k_p missing.\n") stderr.write("k_ is something to do with mortatility rate of phytoplankton") if not parameters.has_key("k_z"): stderr.write("PCZNDA parameter k_z missing.\n") stderr.write("k_z is something to do with te mortality rate of zooplankton\n\n") valid = False if not parameters.has_key("k_N"): stderr.write("PCZNDA parameter k_N missing.\n") stderr.write("k_N is the half-saturation constant for nutrient.\n\n") valid = False if not parameters.has_key("mu_P"): stderr.write("PCZNDA parameter mu_P missing.\n") stderr.write("mu_P is the phytoplankton mortality rate.\n\n") valid = False if not parameters.has_key("mu_Z"): stderr.write("PCZNDA parameter mu_Z missing.\n") stderr.write("mu_Z is the zooplankton mortality rate.\n\n") valid = False if not parameters.has_key("mu_D"): stderr.write("PCZNDA parameter mu_D missing.\n") stderr.write("mu_D is the detritus remineralisation rate.\n\n") valid = False if not parameters.has_key("psi"): stderr.write("PCZNDA parameter psi missing.\n") stderr.write("psi is the strength of ammonium inibition of nitrate uptake\n\n") valid = False if not parameters.has_key("p_P"): stderr.write("PCZNDA parameter p_P missing.\n") stderr.write("p_P is the relative grazing preference of zooplankton for phytoplankton.\n\n") valid = False if not parameters.has_key("v"): stderr.write("PCZNDA parameter v missing.\n") stderr.write("v is the maximum phytoplankton growth rate.\n\n") valid = False if not parameters.has_key("theta_m"): stderr.write("PCZNDA parameter theta_m missing.\n") stderr.write("theta_m is the maximum Chlorophyll to C ratio.\n\n") valid = False if not parameters.has_key("zeta"): stderr.write("PCZNDA parameter zeta missing.\n") stderr.write("zeta is the conversion factor from gC to mmolN on C:N ratio of 6.5\n\n") valid = False if not parameters.has_key("lambda_bio"): stderr.write("PCZNDA parameter lambda_bio missing.\n") stderr.write("lambda_bio is rate which plankton turn to detritus below photic zone\n\n") valid = False if not parameters.has_key("lambda_A"): stderr.write("PCZNDA parameter lambda_A missing.\n") stderr.write("lambda_A nitrification rate below photic zone\n\n") valid = False if not parameters.has_key("photic_zone_limit"): stderr.write("PCZNDA parameter photic_zone_limit missing.\n") stderr.write("photic_zone_limit defines the base of the photic zone in W/m2\n\n") valid = False return valid def photic_zone(z,limit,transition_length): depth = abs(z) if (depth < limit): return 1. elif (depth < limit+transition_length): return 1.-(depth-limit)/float(transition_length) else: return 0.0
py
b405f2c64f4195c6f5e812cbf1dbf36d2d7335d9
#!/usr/bin/python # encoding=utf-8 ''' 1. install sas3ircu 2. run as root ''' import re import commands import json ARRAYINFO = [ 'DG/VD', # 'id', 'State', # Status of volume 'TYPE', # RAID level 'raid_level', 'Size', 'disks', ] DISKINFO = [ 'DID', # device id 'EID:SID', # EnclosureID:SlotID 'Size', # size 'Intf', # Protocol 'Model', # Model Number 'SN', # Serial No 'State', 'Med', # Drive Type 'Firmware Revision', # Firmware Revision ] SAS_CMD = "/usr/local/bin/sas3ircu" def get_controllers(): cmd = SAS_CMD + " LIST" return_code, out = commands.getstatusoutput(cmd) if return_code != 0: return [] controllers = [] for line in out.split('\n'): if re.match(r'^\s+[0-9]+\s+\w+.*', line): ctl_index, ctl_type = line.split()[0], line.split()[1] controllers.append((ctl_index, ctl_type)) return controllers def get_arrays(): res = [] _ctl_list = get_controllers() for ctl in _ctl_list: res.extend( [dict(zip(ARRAYINFO, a)) for a in _get_array(ctl[0])] ) return res def _get_array(ctrlnmbr): cmd = SAS_CMD+' '+ctrlnmbr+' DISPLAY' return_code, res = commands.getstatusoutput(cmd) if return_code != 0: return [] array_list = [] arrayid = None state = '' _type = '' size = '' disklist = [] skipped = False for line in res.split('\n'): if re.match('^IR Volume information.*$', line): skipped = True if re.match('^IR volume [0-9]+.*$', line): skipped = False if arrayid is not None: array_list.append((arrayid, state, _type, size, disklist)) disklist = [] arrayid = re.match('^IR volume ([0-9]+).*$', line).group(1) if not skipped: if re.match(r'^\s*Status of volume.*$', line): state = line.split(':')[1].strip() if re.match(r'^\s*RAID level.*$', line): _type = line.split(':')[1].strip() if re.match(r'^\s*Size \(in MB\)\s+.*$', line): size = line.split(':')[1].strip() size = str(int(round((float(size) / 1000))))+'G' if re.match(r'^\s*PHY\[[0-9]+\] Enclosure#/Slot#.*$', line): disksid = ':'.join(line.split(':')[1:]).strip() disklist.append(disksid) if arrayid is not None: array_list.append((arrayid, state, _type, size, disklist)) # ie: [0, 'Okay (OKY)', 'RAID1', '1800G', [['1', '0'], ['1', '1']]] return array_list def get_disks(): res = [] _ctl_list = get_controllers() for ctl in _ctl_list: for d in _get_disks(ctl[0]): _disk = dict(zip(DISKINFO, d)) res.append(_disk) return res def _get_disks(ctrlnmbr): cmd = SAS_CMD+' '+ctrlnmbr+' DISPLAY' return_code, res = commands.getstatusoutput(cmd) if return_code != 0: return [] disk_list = [] diskid = -1 enclid = '' slotid = '' realid = ['', ''] disksize = '' interface = '' diskmodel = '' diskserial = '' state = '' dirvetype = '' firmwarerevision = '' skipped = False for line in res.split('\n'): if re.match('^Device is a Enclosure services device.*$', line): skipped = True if re.match('^Device is a Hard disk.*$', line): skipped = False if diskid == -1: diskid = diskid+1 else: disk_list.append((str(diskid), realid, disksize, interface, diskmodel, diskserial, state, dirvetype, firmwarerevision)) diskid = diskid+1 if not skipped: if re.match(r'^\s*Enclosure #.*$', line): enclid = line.split(':')[1].strip() if re.match(r'^\s*Slot #.*$', line): slotid = line.split(':')[1].strip() realid = ':'.join([enclid, slotid]) if re.match(r'^\s*State.*$', line): state = line.split(':')[1].strip() if re.match(r'^\s*Size.*$', line): disksize = line.split(':')[1].split('/')[0].strip() disksize = str(int(round((float(disksize) / 1000))))+'G' if re.match(r'^\s*Model Number.*$', line): diskmodel = line.split(':')[1].strip() if re.match(r'^\s*Firmware Revision.*$', line): firmwarerevision = line.split(':')[1].strip() if re.match(r'^\s*Serial No.*$', line): diskserial = line.split(':')[1].strip() if re.match(r'^\s*Protocol.*$', line): interface = line.split(':')[1].strip() if re.match(r'^\s*Drive Type.*$', line): dirvetype = line.split(':')[1].strip() """ ie: { "DID": "8", "EID:SID": "2:6", "Firmware Revision": "TAF0", "Intf": "SATA", "Med": "SATA_HDD", "Model": "HGST HUS726060AL", "SN": "NCHRVW4S", "Size": "5723G", "State": "Ready (RDY)" }, """ if diskid != -1: disk_list.append((str(diskid), realid, disksize, interface, diskmodel, diskserial, state, dirvetype, firmwarerevision)) return disk_list def get_sas_storage_info(): import collections res = collections.defaultdict(dict) for _r in get_controllers(): _idx = _r[0] res[_idx]['type'] = _r[1] res[_idx]['arrays'] = {} res[_idx]['disks'] = {} for _array in _get_array(_idx): _array_id = _array[0] res[_idx]['arrays'][_array_id] = {} res[_idx]['arrays'][_array_id].update(zip(ARRAYINFO, _array)) for _disk in _get_disks(_idx): _disk_id = _disk[0] res[_idx]['disks'][_disk_id] = {} res[_idx]['disks'][_disk_id].update(zip(DISKINFO, _disk)) return dict(res) def get_vdpd_storcli_format(): _return = [] vd_list = get_arrays() pd_list = get_disks() _return.append( { 'PD LIST': pd_list, 'VD LIST': vd_list, 'Physical Drives': len(pd_list), 'Virtual Drives': len(vd_list), } ) return _return if __name__ == '__main__': try: print json.dumps( get_vdpd_storcli_format(), default=repr, indent=4, sort_keys=True) except Exception as ex: print ex import sys sys.exit(1)
py
b405f3cf97a2e078f55acd6449b1ac31a9a54d85
class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def reverse(self, head, k): current = head next = None prev = None count = 0 while current is not None and count < k: next = current.next current.next = prev prev = current current = next count += 1 if next is not None: head.next = self.reverse(next, k) return prev def push(self, new_data): new_node = Node(new_data) new_node.next = self.head self.head = new_node def printList(self): temp = self.head while temp: print(temp.data) temp = temp.next if __name__ == "__main__": """ from timeit import timeit llist = LinkedList() llist.push(9) llist.push(8) llist.push(7) llist.push(6) llist.push(5) llist.push(4) llist.push(3) llist.push(2) llist.push(1) print(timeit(lambda: llist.printList(), number=10000)) # 0.35493226000107825 llist.head = llist.reverse(llist.head, 3) print(timeit(lambda: llist.printList(), number=10000)) # 0.412117505000424 """
py
b405f58962fb3c791d1f8b5ee3f823506169ea5c
#!/usr/bin/env python3 import time import unittest import numpy as np import cereal.messaging as messaging from selfdrive.test.helpers import with_processes from selfdrive.camerad.snapshot.snapshot import get_snapshots # only tests for EON and TICI from selfdrive.hardware import EON, TICI TEST_TIMESPAN = 30 # random.randint(60, 180) # seconds SKIP_FRAME_TOLERANCE = 0 LAG_FRAME_TOLERANCE = 2 # ms FPS_BASELINE = 20 CAMERAS = { "frame": FPS_BASELINE, "frontFrame": FPS_BASELINE // 2, } if TICI: CAMERAS["frontFrame"] = FPS_BASELINE CAMERAS["wideFrame"] = FPS_BASELINE class TestCamerad(unittest.TestCase): @classmethod def setUpClass(cls): if not (EON or TICI): raise unittest.SkipTest # assert "SEND_REAR" in os.environ # assert "SEND_FRONT" in os.environ def _numpy_bgr2gray(self, im): ret = np.clip(im[:,:,0] * 0.114 + im[:,:,1] * 0.587 + im[:,:,2] * 0.299, 0, 255).astype(np.uint8) return ret def _numpy_lap(self, im): ret = np.zeros(im.shape) ret += -4 * im ret += np.concatenate([np.zeros((im.shape[0],1)),im[:,:-1]], axis=1) ret += np.concatenate([im[:,1:],np.zeros((im.shape[0],1))], axis=1) ret += np.concatenate([np.zeros((1,im.shape[1])),im[:-1,:]], axis=0) ret += np.concatenate([im[1:,:],np.zeros((1,im.shape[1]))], axis=0) ret = np.clip(ret, 0, 255).astype(np.uint8) return ret def _is_really_sharp(self, i, threshold=800, roi_max=np.array([8,6]), roi_xxyy=np.array([1,6,2,3])): i = self._numpy_bgr2gray(i) x_pitch = i.shape[1] // roi_max[0] y_pitch = i.shape[0] // roi_max[1] lap = self._numpy_lap(i) lap_map = np.zeros((roi_max[1], roi_max[0])) for r in range(lap_map.shape[0]): for c in range(lap_map.shape[1]): selected_lap = lap[r*y_pitch:(r+1)*y_pitch, c*x_pitch:(c+1)*x_pitch] lap_map[r][c] = 5*selected_lap.var() + selected_lap.max() print(lap_map[roi_xxyy[2]:roi_xxyy[3]+1,roi_xxyy[0]:roi_xxyy[1]+1]) if (lap_map[roi_xxyy[2]:roi_xxyy[3]+1,roi_xxyy[0]:roi_xxyy[1]+1] > threshold).sum() > \ (roi_xxyy[1]+1-roi_xxyy[0]) * (roi_xxyy[3]+1-roi_xxyy[2]) * 0.9: return True else: return False def _is_exposure_okay(self, i, med_ex=np.array([0.2,0.4]), mean_ex=np.array([0.2,0.6])): i = self._numpy_bgr2gray(i) i_median = np.median(i) / 256 i_mean = np.mean(i) / 256 print([i_median, i_mean]) return med_ex[0] < i_median < med_ex[1] and mean_ex[0] < i_mean < mean_ex[1] @unittest.skip # skip for now @with_processes(['camerad']) def test_camera_operation(self): print("checking image outputs") if EON: # run checks similar to prov time.sleep(15) # wait for startup and AF pic, fpic = get_snapshots() self.assertTrue(self._is_really_sharp(pic)) self.assertTrue(self._is_exposure_okay(pic)) self.assertTrue(self._is_exposure_okay(fpic)) time.sleep(30) # check again for consistency pic, fpic = get_snapshots() self.assertTrue(self._is_really_sharp(pic)) self.assertTrue(self._is_exposure_okay(pic)) self.assertTrue(self._is_exposure_okay(fpic)) elif TICI: raise unittest.SkipTest # TBD else: raise unittest.SkipTest @with_processes(['camerad']) def test_frame_packets(self): print("checking frame pkts continuity") print(TEST_TIMESPAN) sm = messaging.SubMaster([socket_name for socket_name in CAMERAS]) last_frame_id = dict.fromkeys(CAMERAS, None) last_ts = dict.fromkeys(CAMERAS, None) start_time_sec = time.time() while time.time()- start_time_sec < TEST_TIMESPAN: sm.update() for camera in CAMERAS: if sm.updated[camera]: ct = (sm[camera].timestampEof if not TICI else sm[camera].timestampSof) / 1e6 if last_frame_id[camera] is None: last_frame_id[camera] = sm[camera].frameId last_ts[camera] = ct continue dfid = sm[camera].frameId - last_frame_id[camera] self.assertTrue(abs(dfid - 1) <= SKIP_FRAME_TOLERANCE, "%s frame id diff is %d" % (camera, dfid)) dts = ct - last_ts[camera] self.assertTrue(abs(dts - (1000/CAMERAS[camera])) < LAG_FRAME_TOLERANCE, "%s frame t(ms) diff is %f" % (camera, dts)) last_frame_id[camera] = sm[camera].frameId last_ts[camera] = ct time.sleep(0.01) if __name__ == "__main__": unittest.main()
py
b405f62acbe689922567f2762085def8986b8cdd
import time import json import os import unittest from web3 import Web3 from uniswap.uniswap import UniswapV2Client, UniswapV2Utils class BaseTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.factory = Web3.toChecksumAddress("0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f") cls.link_token = Web3.toChecksumAddress("0x20fe562d797a42dcb3399062ae9546cd06f63280") cls.weth_token = Web3.toChecksumAddress("0xc778417E063141139Fce010982780140Aa0cD5Ab") cls.link_weth_pair = Web3.toChecksumAddress("0x98A608D3f29EebB496815901fcFe8eCcC32bE54a") with open(os.path.abspath(f"{os.path.dirname(os.path.abspath(__file__))}/config.json")) as f: raw_json = json.load(f) cls.address = Web3.toChecksumAddress(raw_json["account"]["address"]) cls.private_key = raw_json["account"]["private-key"] cls.provider = raw_json["provider"] cls.token_0 = raw_json["tokens"][0] # Token A for the ERC20-ERC20 pair cls.token_1 = raw_json["tokens"][1] # Token B for the ERC20-ERC20 pair cls.token_2 = raw_json["tokens"][2] # Token for the ERC20-WETH pair uniswap = UniswapV2Client(cls.address, cls.private_key, provider=cls.provider) # create a pair for token_0/token_1 if not already created cls.token_pair = uniswap.get_pair(cls.token_0["address"], cls.token_1["address"]) if cls.token_pair == "0x0000000000000000000000000000000000000000": print("Creating ERC20-ERC20 pair...") token_tx = uniswap.add_liquidity( token_a=cls.token_0["address"], token_b=cls.token_1["address"], amount_a=int(cls.token_0["supply"] * 10 ** -1), # 1/10 of the total supply of A amount_b=int(cls.token_1["supply"] * 10 ** -1), # 1/10 of the total supply of B min_a=int(cls.token_1["supply"] / cls.token_0["supply"] * 1.01), # allow 1% slippage on B/A min_b=int(cls.token_0["supply"] / cls.token_1["supply"] * 1.01), # allow 1% slippage on B/A to=cls.address, deadline=int(time.time() + 10 ** 3)) uniswap.conn.eth.waitForTransactionReceipt(token_tx, timeout=2000) cls.token_pair = uniswap.get_pair(cls.token_0["address"], cls.token_1["address"]) # create a pair for token_2/weth if not already created cls.weth_pair = uniswap.get_pair(cls.token_2["address"], uniswap.get_weth_address()) if cls.weth_pair == "0x0000000000000000000000000000000000000000": print("Creating ERC20-WETH pair...") weth_tx = uniswap.add_liquidity_eth( token=cls.token_2["address"], amount_token=int(cls.token_2["supply"] * 10 ** -1), # 1/10 of the total supply of the token amount_eth=100, # 100 wei min_token=int(1000 / cls.token_2["supply"] * 1.01), # allow 1% slippage on B/A min_eth=int(cls.token_2["supply"] / 1000 * 1.01), # allow 1% slippage on B/A to=cls.address, deadline=int(time.time() + 10 ** 3)) uniswap.conn.eth.waitForTransactionReceipt(weth_tx, timeout=2000) cls.weth_pair = uniswap.get_pair(cls.token_2["address"], uniswap.get_weth_address()) class UniswapV2ClientTest(BaseTest): def setUp(self): self.uniswap = UniswapV2Client(self.address, self.private_key, self.provider) def test_get_pair(self): pair = self.uniswap.get_pair(self.token_0["address"], self.token_1["address"]) self.assertEqual(pair, self.token_pair) def test_get_pair_swapped_order(self): pair = self.uniswap.get_pair(self.token_1["address"], self.token_0["address"]) self.assertEqual(pair, self.token_pair) def test_get_pair_not_found(self): rand_token = Web3.toChecksumAddress("0xAE14A3B9F6B333BfF64bEAe1C70a93c0781D6A3F") pair = self.uniswap.get_pair(self.token_0["address"], rand_token) self.assertEqual(pair, "0x0000000000000000000000000000000000000000") def test_get_num_pairs(self): num_pairs = self.uniswap.get_num_pairs() self.assertGreaterEqual(num_pairs, 50) def test_get_pair_by_index(self): pair = self.uniswap.get_pair_by_index(51) self.assertEqual(pair, self.token_pair) def test_get_pair_by_index_not_found(self): pair = self.uniswap.get_pair_by_index(99999) self.assertEqual(pair, "0x0000000000000000000000000000000000000000") def test_get_fee(self): fee = self.uniswap.get_fee() self.assertEqual(fee, "0x0000000000000000000000000000000000000000") def test_get_fee_setter(self): fee_setter = self.uniswap.get_fee() self.assertEqual(fee_setter, "0x0000000000000000000000000000000000000000") def test_get_weth_address(self): address = self.uniswap.get_weth_address() self.assertEqual(address, self.weth_token) def test_add_liquidity(self): amount_a = int(self.token_0["supply"] * 10 ** -3) # 1/1000 of the total supply of A amount_b = int(self.token_1["supply"] * 10 ** -3) # 1/1000 of the total supply of B min_a = 0 # int((amount_b / amount_a) * 1.01) # allow 1% slippage on B/A min_b = 0 # int((amount_a / amount_b) * 1.01) # allow 1% slippage on A/B deadline = int(time.time()) + 1000 tx = self.uniswap.add_liquidity( self.token_0["address"], self.token_1["address"], amount_a, amount_b, min_a, min_b, self.address, deadline) receipt = self.uniswap.conn.eth.waitForTransactionReceipt(tx, timeout=2000) self.assertIsNotNone(receipt) self.assertTrue(receipt["status"]) def test_add_liquidity_eth(self): token = self.token_2["address"] amount_token = int(self.token_2["supply"] * 10 ** -3) # 1/1000 of the total supply of the token amount_eth = 1 # 1 wei deadline = int(time.time()) + 1000 tx = self.uniswap.add_liquidity_eth( token, amount_token, amount_eth, min_token=0, min_eth=0, to=self.address, deadline=deadline) receipt = self.uniswap.conn.eth.waitForTransactionReceipt(tx, timeout=2000) self.assertIsNotNone(receipt) self.assertTrue(receipt["status"]) # FIXME add way to retrieve current liquidity balance for a par """def test_remove_liquidity(self): tx = self.uniswap.remove_liquidity( token_a=self.token_0["address"], token_b=self.token_1["address"], liquidity=100, min_a=0, min_b=0, to=self.address, deadline=int(time.time()) + 1000 ) receipt = self.uniswap.conn.eth.waitForTransactionReceipt(tx, timeout=2000) self.assertIsNotNone(receipt) self.assertTrue(receipt["status"]) def test_remove_liquidity_eth(self): token = Web3.toChecksumAddress("0x20fe562d797a42dcb3399062ae9546cd06f63280") liquidity = 1 * 10 ** 15 min_token = 1 * 10 ** 15 min_eth = 2 * 10 ** 13 deadline = int(time.time()) + 1000 tx = self.uniswap.remove_liquidity_eth( token=self.token_2["address"], liquidity=1, min_token=0, min_eth=0, to=self.address, deadline=int(time.time()) + 1000 ) receipt = self.uniswap.conn.eth.waitForTransactionReceipt(tx, timeout=2000) self.assertIsNotNone(receipt) self.assertTrue(receipt["status"])""" def test_remove_liquidity_with_permit(self): pass # TODO def test_remove_liquidity_eth_with_permit(self): pass # TODO def test_swap_exact_tokens_for_tokens(self): amount = int(self.token_0["supply"] * 10 ** -3) min_out = int(self.token_1["supply"] * 10 ** -5) path = [self.token_0["address"], self.token_1["address"]] deadline = int(time.time()) + 1000 tx = self.uniswap.swap_exact_tokens_for_tokens(amount, min_out, path, to=self.address, deadline=deadline) receipt = self.uniswap.conn.eth.waitForTransactionReceipt(tx, timeout=2000) self.assertIsNotNone(receipt) self.assertTrue(receipt["status"]) def test_swap_tokens_for_exact_tokens(self): amount_out = int(self.token_1["supply"] * 10 ** -5) amount_in_max = int(self.token_0["supply"] * 10 ** -3) path = [self.token_0["address"], self.token_1["address"]] deadline = int(time.time()) + 1000 tx = self.uniswap.swap_tokens_for_exact_tokens(amount_out, amount_in_max, path, self.address, deadline) receipt = self.uniswap.conn.eth.waitForTransactionReceipt(tx, timeout=2000) self.assertIsNotNone(receipt) self.assertTrue(receipt["status"]) def test_swap_exact_eth_for_tokens(self): amount = 10 # 10 wei min_out = int(self.token_2["supply"] * 10 ** -5) path = [self.uniswap.get_weth_address(), self.token_2["address"]] deadline = int(time.time()) + 1000 tx = self.uniswap.swap_exact_eth_for_tokens(amount, min_out, path, self.address, deadline) receipt = self.uniswap.conn.eth.waitForTransactionReceipt(tx, timeout=2000) self.assertIsNotNone(receipt) self.assertTrue(receipt["status"]) def test_swap_tokens_for_exact_eth(self): amount_out = 1 # 1 wei amount_in_max = int(self.token_2["supply"] * 10 ** -3) path = [self.token_2["address"], self.uniswap.get_weth_address()] deadline = int(time.time()) + 1000 tx = self.uniswap.swap_tokens_for_exact_eth(amount_out, amount_in_max, path, self.address, deadline) receipt = self.uniswap.conn.eth.waitForTransactionReceipt(tx, timeout=2000) self.assertIsNotNone(receipt) self.assertTrue(receipt["status"]) def test_swap_exact_tokens_for_eth(self): amount = int(self.token_2["supply"] * 10 ** -3) min_out = 1 # 1 wei path = [self.token_2["address"], self.uniswap.get_weth_address()] deadline = int(time.time()) + 1000 tx = self.uniswap.swap_exact_tokens_for_eth(amount, min_out, path, self.address, deadline) receipt = self.uniswap.conn.eth.waitForTransactionReceipt(tx, timeout=2000) self.assertIsNotNone(receipt) self.assertTrue(receipt["status"]) def test_swap_eth_for_exact_tokens(self): amount_out = int(self.token_2["supply"] * 10 ** -5) amount = 100 # 100 wei path = [self.uniswap.get_weth_address(), self.token_2["address"]] deadline = int(time.time()) + 1000 tx = self.uniswap.swap_eth_for_exact_tokens(amount_out, amount, path, self.address, deadline) receipt = self.uniswap.conn.eth.waitForTransactionReceipt(tx, timeout=2000) self.assertIsNotNone(receipt) self.assertTrue(receipt["status"]) class UniswapV2UtilsTest(BaseTest): def setup(self): self.w3 = Web3(Web3.HTTPProvider(self.provider, request_kwargs={"timeout": 60})) def test_sort_tokens_1(self): token_0, token_1 = UniswapV2Utils.sort_tokens(self.link_token, self.weth_token) self.assertEqual(token_0, self.link_token) self.assertEqual(token_1, self.weth_token) def test_sort_tokens_2(self): token_0, token_1 = UniswapV2Utils.sort_tokens(self.weth_token, self.link_token) self.assertEqual(token_0, self.link_token) self.assertEqual(token_1, self.weth_token) def test_sort_tokens_equal(self): with self.assertRaises(AssertionError): UniswapV2Utils.sort_tokens(self.link_token, self.link_token) def test_sort_tokens_zero(self): with self.assertRaises(AssertionError): UniswapV2Utils.sort_tokens(Web3.toHex(0x0), self.link_token) def test_pair_for_1(self): pair = UniswapV2Utils.pair_for(self.factory, self.link_token, self.weth_token) self.assertEqual(pair, self.link_weth_pair) def test_pair_for_2(self): pair = UniswapV2Utils.pair_for(self.factory, self.weth_token, self.link_token) self.assertEqual(pair, self.link_weth_pair) def test_get_reserves(self): pass # TODO def calculate_quote(self): pass # TODO def test_get_amount_out(self): pass # TODO def test_get_amount_in(self): pass # TODO def test_get_amounts_out(self): pass # TODO def test_get_amounts_in(self): pass # TODO
py
b405f64a0bd5206aaa42caa201fabc7322ff67cd
import numpy as np x = np.array([[42,22,12],[44,53,66]], order='F') y = x.copy() x[0,0] = 1001 print(x) print(y)
py
b405f7493fec205724255df2e26a1176c42bf041
from rest_framework import routers from django.urls import path from .views import SleepViewSet router = routers.DefaultRouter() router.register(r'api/sleep', SleepViewSet, 'sleep') urlpatterns = router.urls
py
b405f75aa63a2cb5180ec609e44cc7386111ecf9
import matplotlib import numpy from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas class MyMplCanvas(FigureCanvas): """Ultimately, this is a QWidget (as well as a FigureCanvasAgg, etc.).""" def __init__(self, parent=None, width=5, height=4, dpi=100): # figure out how to set this # plt.style.use('seaborn-darkgrid') matplotlib.rcParams.update({'font.size': 8}) self.fig = matplotlib.figure.Figure(figsize=(width, height), dpi=dpi) FigureCanvas.__init__(self, self.fig) self.setParent(parent) # not sure if this is necessary # FigureCanvas.setSizePolicy(self, # QtWidgets.QSizePolicy.Expanding, # QtWidgets.QSizePolicy.Expanding) # FigureCanvas.updateGeometry(self) class PhysiologicalPlot(MyMplCanvas): """Simple canvas with a sine plot.""" def __init__(self, parent=None, width=5, height=4, dpi=100): super().__init__(parent, width, height, dpi) self.aspan = None self.plot = None self.all_y_values = None def set_y_values(self, y_values, start_pos, end_pos): self.all_y_values = y_values self.start_pos = start_pos self.end_pos = end_pos self.update_plot() def update_plot(self, current_time=0, span=1200, highlight_span=50, full_plot=False): self.figure.clf() ax1 = self.figure.add_subplot(111) if full_plot: self.draw_full_plot(ax1) else: minimum = self.start_pos + current_time - span maximum = self.start_pos + current_time + span if minimum < 0: minimum = 0 plot_y_values = self.all_y_values[minimum:maximum] y_values_mask = numpy.isfinite(plot_y_values) if len(plot_y_values) < (maximum - minimum): maximum = len(plot_y_values) + minimum x_axis = numpy.arange(minimum, maximum, 1) self.plot = ax1.plot(x_axis[y_values_mask], plot_y_values[y_values_mask]) # todo evaluate adding a horizontal line for average condition and/or average of entire session # add backgrounds for condition visualization task_start = minimum if self.start_pos > minimum: task_start = self.start_pos task_end = maximum if maximum > self.end_pos: task_end = self.end_pos self.aspan = ax1.axvspan(task_start, task_end, color='blue', alpha=0.05) # highlight current time self.aspan = ax1.axvspan(self.start_pos + current_time - highlight_span, self.start_pos + current_time + highlight_span, color='red', alpha=0.2) ax1.set_ylim(min(self.all_y_values), max(self.all_y_values)) self.fig.canvas.draw_idle() def draw_full_plot(self, ax1): y_values_mask = numpy.isfinite(self.all_y_values) x_axis = numpy.arange(0, len(self.all_y_values), 1) self.plot = ax1.plot(x_axis[y_values_mask], self.all_y_values[y_values_mask])
py
b405f7c0922aa0c8996992e8ed51e41c1c772e29
# Importing the Kratos Library import KratosMultiphysics # Import applications import KratosMultiphysics.FluidDynamicsApplication as KratosCFD # Import base class file from KratosMultiphysics.compute_drag_process import ComputeDragProcess def Factory(settings, model): if(type(settings) != KratosMultiphysics.Parameters): raise Exception("expected input shall be a Parameters object, encapsulating a json string") return ComputeEmbeddedDragProcess(model, settings["Parameters"]) class ComputeEmbeddedDragProcess(ComputeDragProcess): """ The specific implementation for the output of embedded drag forces over obstacles in fluid dynamics problems. """ def _GetFileHeader(self): header = '# Embedded drag for model part ' + self.params["model_part_name"].GetString() + '\n' header += '# Time Fx Fy Fz\n' return header def _PrintToScreen(self, result_msg): KratosMultiphysics.Logger.PrintInfo("ComputeEmbeddedDragProcess","EMBEDDED DRAG RESULTS:") KratosMultiphysics.Logger.PrintInfo("ComputeEmbeddedDragProcess","Current time: " + result_msg) def _GetCorrespondingDragForce(self): return KratosCFD.DragUtilities().CalculateEmbeddedDrag(self.model_part)
py
b405f8407aec367b8685392e71e8699df854a679
import pandas as pd import oneparams.config as config from datetime import time from oneparams.utils import get_bool, get_float, get_time from oneparams.utils import get_cel, wprint, check_email def check_types(self, data): excel = self.excel types = data["types"] length = data["length"] if types == "string": excel = excel.apply(lambda x: check_string(self, x, data, x.name), axis=1) elif types == "time": excel = excel.apply(lambda x: check_time(self, x, data, x.name), axis=1) elif types == "float": excel = excel.apply(lambda x: check_float(self, x, data, x.name), axis=1) elif types == "bool": excel = excel.apply(lambda x: check_bool(self, x, data, x.name), axis=1) elif types == "cel": excel = excel.apply(lambda x: check_cel(self, x, data, x.name), axis=1) elif types == "email": excel = excel.apply(lambda x: check_mail(self, x, data, x.name), axis=1) if length not in (0, None): excel = excel.apply( lambda x: check_length(self, x, data, x.name, length), axis=1) return excel def check_string(self, values, data, row): """ Verificações de tipo string """ key = data["key"] if check_default(self, values, data): values[key] = data["default"] return values values[key] = str(values[key]).strip() return values def check_float(self, values, data, row): """ Verificações de tipo float """ key = data["key"] value = values[key] if check_default(self, values, data): if not pd.notnull(values[key]): wprint("WARNING! in line {}, Column {}: number used will be {}".format( self.row(row), key, data["default"])) values[key] = data["default"] return values try: value = get_float(value) values[key] = value except ValueError as exp: print("ERROR! In line {}, Column {}: {}".format( self.row(row), key, exp)) self.erros = True finally: return values def check_time(self, values, data, row): # antes de fazer a verificação do tipo, # passa pela verificação padrão, se a função retornar # True, continua, Falso retorna os valores sem alteração key = data["key"] if check_default(self, values, data): if not pd.notnull(values[key]): wprint("WARNING! In line {}, Column {}: Time used will be {}".format( self.row(row), key, data["default"])) values[key] = data["default"] return values value = values[key] try: index_value = get_time(value) value = str(time(*index_value[:3])) except TypeError as exp: print("ERROR! In line {}, Column {}: {}".format( self.row(row), key, exp)) self.erros = True else: values[key] = value return values def check_bool(self, values, data, row): """ Verifica se o valor pode ser convertido em booleano retorna os mesmo valores com as devidas alterações, se der algum problema coloca True em self.erros da class Excel """ # antes de fazer a verificação do tipo, # passa pela verificação padrão, se a função retornar # True, continua, Falso retorna os valores sem alteração key = data["key"] if check_default(self, values, data): values[key] = data["default"] return values value = values[key] value = str(value).strip() value = get_bool(value) if value is None: print("ERROR! in line {}: not possible change value to bool".format( self.row(row))) self.erros = True values[key] = value return values def check_cel(self, values, data, row): """ Verificações de telefone, retira caracteres especiais deixando apenas números caso não for valido, retorna None no campo """ key = data["key"] value = values[key] try: value = get_cel(value) except ValueError as exp: if not pd.notnull(value): wprint( f'WARNING! in line {self.row(row)}, Column {key}: empty phone') elif not config.RESOLVE_ERROS: print(f'ERROR! in line {self.row(row)}, Column {key}: {exp}') self.erros = True else: wprint( f'WARNING! in line {self.row(row)}: Column {key}: {exp}' ) value = data["default"] values[key] = value return values def check_mail(self, values, data, row): key = data["key"] value = values[key] if not check_email(value): if not config.RESOLVE_ERROS: print(f'ERROR! in line {self.row(row)}: Email {value} not valid') self.erros = True else: wprint( f'WARNING! in line {self.row(row)}: Email {value} not valid') value = data["default"] values[key] = value return values def check_length(self, values, data, row, length): """ Verifica se o tamanho do texto é menor que a quantidade máxima permitida (length) """ key = data["key"] if values[key] is None: return values if len(values[key]) > length and not config.RESOLVE_ERROS: print( f'ERROR! in line {self.row(row)}: Column {key} string {values[key]} size {len(values[key])}/{length}' ) self.erros = True elif len(values[key]) > length: wprint( f'WARNING: in line {self.row(row)}: Column {key} string {values[key]} size {len(values[key])}/{length}' ) values[key] = values[key].strip()[:length] return values def check_default(self, value, data): """ Verifica se o valor é igual ao valor padrão, se for retorna True, se não retorna False """ key = data["key"] if not pd.notnull(value[key]): return True if value[key] == data["default"]: return True return False
py
b405f8517179bd00a713a73dd1afccd2340b3f2d
''' Project: PayU Turkey Token v2 Services - Create Token with Ref No Python3 Sample Code Author: Göktürk Enez ''' import hmac import hashlib from urllib.parse import urlencode from urllib.request import Request, urlopen import time import collections url = 'https://secure.payu.com.tr/order/token/v2/merchantToken/' merchant = 'OPU_TEST' secret = 'SECRET_KEY' refNo = 57039798 TimeStamp = str(time.time()).split('.')[0] array = collections.OrderedDict() array['merchant'] = merchant array['refNo'] = refNo array['timestamp'] = TimeStamp hashstring = '' for k, v in array.items(): hashstring += str(v) print(hashstring) signature = hmac.new(secret.encode('utf-8'), hashstring.encode('utf-8'), hashlib.sha256).hexdigest() array['signature'] = signature print(signature) request = Request(url, urlencode(array).encode()) response = urlopen(request).read().decode() print(response)
py
b405f8807bf799b070a5abfe3eea9429daf46a66
class DinnerPlates: def __init__(self, capacity: int): self.capacity = capacity self.stack = [] def push(self, val: int) -> None: if len(self.stack[-1]) < self.capacity: self.stack[-1].append(val) else: self.stack.append([val]) def pop(self) -> int: self.popAtStack(-1) def popAtStack(self, index: int) -> int: res = self.stack[index].pop() if len(self.stack[index]) == 0: self.stack.pop(index) return res ''' [[373, 86], [395, 306], [370], [41, 17], [387], [66], [27], [252, 6], [269, 231], [35, 346]] [[373, 86], [395, 306], [41, 17], [387], [66], [27], [252, 6], [269, 231], [35, 346]] [[373, 86], [395, 306], [41], [387], [66], [27], [252, 6], [269, 231], [35, 346]] [[373, 86], [395, 306], [41], [387], [66], [27], [252, 6], [269], [35, 346]] [[373, 86], [395, 306], [41], [387], [66], [27], [252, 6], [269], [35, 346]] [[373, 86], [395, 306], [41], [387], [66], [27], [252, 6], [269], [35]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365, 338], [331, 134], [1, 250], [19]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365, 338], [331, 134], [1, 250]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365, 338], [331, 134], [1]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365, 338], [331, 134]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365, 338], [331]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365, 338]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11]] '''
py
b405f99cd7442a2261fd29a3b1eb12d348df694c
from base import DataSourceCollection, DataSourceBase # we have to import these modules for them to register as valid data sources import cfn_datasource import yaml_datasource import file_datasource __all__ = ['DataSourceBase', 'DataSourceCollection']
py
b405fa4be52f55a302d279260d6f98b2954c1724
import numpy as np try: from matplotlib.path import Path except ImportError: Path = None from .grid import Grid, CachedData from ..utils.geometry import is_clockwise class VertexGrid(Grid): """ class for a vertex model grid Parameters ---------- vertices list of vertices that make up the grid cell2d list of cells and their vertices Properties ---------- vertices returns list of vertices that make up the grid cell2d returns list of cells and their vertices Methods ---------- get_cell_vertices(cellid) returns vertices for a single cell at cellid. """ def __init__(self, vertices=None, cell2d=None, top=None, botm=None, idomain=None, lenuni=None, epsg=None, proj4=None, prj=None, xoff=0.0, yoff=0.0, angrot=0.0, nlay=None, ncpl=None, cell1d=None): super(VertexGrid, self).__init__('vertex', top, botm, idomain, lenuni, epsg, proj4, prj, xoff, yoff, angrot) self._vertices = vertices self._cell1d = cell1d self._cell2d = cell2d self._top = top self._botm = botm self._idomain = idomain if botm is None: self._nlay = nlay self._ncpl = ncpl else: self._nlay = None self._ncpl = None @property def is_valid(self): if self._vertices is not None and (self._cell2d is not None or self._cell1d is not None): return True return False @property def is_complete(self): if self._vertices is not None and (self._cell2d is not None or self._cell1d is not None) and \ super(VertexGrid, self).is_complete: return True return False @property def nlay(self): if self._cell1d is not None: return 1 elif self._botm is not None: return len(self._botm) else: return self._nlay @property def ncpl(self): if self._cell1d is not None: return len(self._cell1d) if self._botm is not None: return len(self._botm[0]) else: return self._ncpl @property def nnodes(self): return self.nlay * self.ncpl @property def shape(self): return self.nlay, self.ncpl @property def extent(self): self._copy_cache = False xvertices = np.hstack(self.xvertices) yvertices = np.hstack(self.yvertices) self._copy_cache = True return (np.min(xvertices), np.max(xvertices), np.min(yvertices), np.max(yvertices)) @property def grid_lines(self): """ Creates a series of grid line vertices for drawing a model grid line collection Returns: list: grid line vertices """ self._copy_cache = False xgrid = self.xvertices ygrid = self.yvertices lines = [] for ncell, verts in enumerate(xgrid): for ix, vert in enumerate(verts): lines.append([(xgrid[ncell][ix - 1], ygrid[ncell][ix - 1]), (xgrid[ncell][ix], ygrid[ncell][ix])]) self._copy_cache = True return lines @property def xyzcellcenters(self): """ Method to get cell centers and set to grid """ cache_index = 'cellcenters' if cache_index not in self._cache_dict or \ self._cache_dict[cache_index].out_of_date: self._build_grid_geometry_info() if self._copy_cache: return self._cache_dict[cache_index].data else: return self._cache_dict[cache_index].data_nocopy @property def xyzvertices(self): """ Method to get all grid vertices in a layer, arranged per cell Returns: list of size sum(nvertices per cell) """ cache_index = 'xyzgrid' if cache_index not in self._cache_dict or \ self._cache_dict[cache_index].out_of_date: self._build_grid_geometry_info() if self._copy_cache: return self._cache_dict[cache_index].data else: return self._cache_dict[cache_index].data_nocopy def intersect(self, x, y, local=False, forgive=False): """ Get the CELL2D number of a point with coordinates x and y When the point is on the edge of two cells, the cell with the lowest CELL2D number is returned. Parameters ---------- x : float The x-coordinate of the requested point y : float The y-coordinate of the requested point local: bool (optional) If True, x and y are in local coordinates (defaults to False) forgive: bool (optional) Forgive x,y arguments that fall outside the model grid and return NaNs instead (defaults to False - will throw exception) Returns ------- icell2d : int The CELL2D number """ if Path is None: s = 'Could not import matplotlib. Must install matplotlib ' + \ ' in order to use VertexGrid.intersect() method' raise ImportError(s) if local: # transform x and y to real-world coordinates x, y = super(VertexGrid, self).get_coords(x,y) xv, yv, zv = self.xyzvertices for icell2d in range(self.ncpl): xa = np.array(xv[icell2d]) ya = np.array(yv[icell2d]) # x and y at least have to be within the bounding box of the cell if np.any(x <= xa) and np.any(x >= xa) and \ np.any(y <= ya) and np.any(y >= ya): path = Path(np.stack((xa, ya)).transpose()) # use a small radius, so that the edge of the cell is included if is_clockwise(xa, ya): radius = -1e-9 else: radius = 1e-9 if path.contains_point((x, y), radius=radius): return icell2d if forgive: icell2d = np.nan return icell2d raise Exception('x, y point given is outside of the model area') def get_cell_vertices(self, cellid): """ Method to get a set of cell vertices for a single cell used in the Shapefile export utilities :param cellid: (int) cellid number :return: list of x,y cell vertices """ self._copy_cache = False cell_verts = list(zip(self.xvertices[cellid], self.yvertices[cellid])) self._copy_cache = True return cell_verts def plot(self, **kwargs): """ Plot the grid lines. Parameters ---------- kwargs : ax, colors. The remaining kwargs are passed into the the LineCollection constructor. Returns ------- lc : matplotlib.collections.LineCollection """ from flopy.plot import PlotMapView mm = PlotMapView(modelgrid=self) return mm.plot_grid(**kwargs) def _build_grid_geometry_info(self): cache_index_cc = 'cellcenters' cache_index_vert = 'xyzgrid' xcenters = [] ycenters = [] xvertices = [] yvertices = [] if self._cell1d is not None: zcenters = [] zvertices = [] vertexdict = {v[0]: [v[1], v[2], v[3]] for v in self._vertices} for cell1d in self._cell1d: cell1d = tuple(cell1d) xcenters.append(cell1d[1]) ycenters.append(cell1d[2]) zcenters.append(cell1d[3]) vert_number = [] for i in cell1d[3:]: if i is not None: vert_number.append(int(i)) xcellvert = [] ycellvert = [] zcellvert = [] for ix in vert_number: xcellvert.append(vertexdict[ix][0]) ycellvert.append(vertexdict[ix][1]) zcellvert.append(vertexdict[ix][2]) xvertices.append(xcellvert) yvertices.append(ycellvert) zvertices.append(zcellvert) else: vertexdict = {v[0]: [v[1], v[2]] for v in self._vertices} # build xy vertex and cell center info for cell2d in self._cell2d: cell2d = tuple(cell2d) xcenters.append(cell2d[1]) ycenters.append(cell2d[2]) vert_number = [] for i in cell2d[4:]: if i is not None: vert_number.append(int(i)) xcellvert = [] ycellvert = [] for ix in vert_number: xcellvert.append(vertexdict[ix][0]) ycellvert.append(vertexdict[ix][1]) xvertices.append(xcellvert) yvertices.append(ycellvert) # build z cell centers zvertices, zcenters = self._zcoords() if self._has_ref_coordinates: # transform x and y xcenters, ycenters = self.get_coords(xcenters, ycenters) xvertxform = [] yvertxform = [] # vertices are a list within a list for xcellvertices, ycellvertices in zip(xvertices, yvertices): xcellvertices, \ ycellvertices = self.get_coords(xcellvertices, ycellvertices) xvertxform.append(xcellvertices) yvertxform.append(ycellvertices) xvertices = xvertxform yvertices = yvertxform self._cache_dict[cache_index_cc] = CachedData([xcenters, ycenters, zcenters]) self._cache_dict[cache_index_vert] = CachedData([xvertices, yvertices, zvertices]) if __name__ == "__main__": import os import flopy as fp ws = "../../examples/data/mf6/test003_gwfs_disv" name = "mfsim.nam" sim = fp.mf6.modflow.MFSimulation.load(sim_name=name, sim_ws=ws) print(sim.model_names) ml = sim.get_model("gwf_1") dis = ml.dis t = VertexGrid(dis.vertices.array, dis.cell2d.array, top=dis.top.array, botm=dis.botm.array, idomain=dis.idomain.array, epsg=26715, xoff=0, yoff=0, angrot=45) sr_x = t.xvertices sr_y = t.yvertices sr_xc = t.xcellcenters sr_yc = t.ycellcenters sr_lc = t.grid_lines sr_e = t.extent t.use_ref_coords = False x = t.xvertices y = t.yvertices z = t.zvertices xc = t.xcellcenters yc = t.ycellcenters zc = t.zcellcenters lc = t.grid_lines e = t.extent
py
b405fa5559137871c09e8d2ec3bf11885c55cdb9
import os from datetime import datetime import gzip from cStringIO import StringIO import requests from csvkit.unicsv import UnicodeCSVReader from sqlalchemy import Boolean, Float, Date, String, Column, \ Integer, Table, text, func, select, and_, cast, UniqueConstraint, \ join, outerjoin, BigInteger, MetaData from sqlalchemy.dialects.postgresql import TIMESTAMP, ARRAY, TIME from sqlalchemy.exc import NoSuchTableError from geoalchemy2.shape import from_shape from shapely.geometry import box from boto.s3.connection import S3Connection, S3ResponseError from boto.s3.key import Key from ede.database import task_session as session, task_engine as engine from ede.models import MetaTable, MasterTable from ede.utils.helpers import slugify, iter_column from ede.settings import AWS_ACCESS_KEY, AWS_SECRET_KEY, S3_BUCKET, DATA_DIR COL_TYPES = { 'boolean': Boolean, 'integer': Integer, 'big_integer': BigInteger, 'float': Float, 'string': String, 'date': Date, 'time': TIME, 'timestamp': TIMESTAMP, 'datetime': TIMESTAMP, } class EDE_ETLError(Exception): def __init__(self, message): Exception.__init__(self, message) self.message = message class EDE_ETL(object): def __init__(self, meta, data_types=None): """ Initializes with a dictionary representation of a row from the meta_master table. If you include keys for all of the columns in the meta_master table, it doesn't hurt anything but the only keys that are required are: dataset_name: Machine version of the dataset name. This is used to name the primary key field of the data table for the dataset as well as the table itself. Should be lowercase with words seperated by underscores. Truncated to the first 50 characters. source_url: This is used to download the raw data. business_key: Name of the user identified business key from the source data. AKA unique ID. observed_date: Name of the user identified observed date column from the source data latitude: Name of the user identified latitude column from the source data logitude: Name of the user identified longitude column from the source data location: Name of the user identified location column from from the source data. The values in this column should be formatted like so "(<latitude decimal degrees>, <longitude decimal degrees>)" You can also optionally supply a list of dicts with the names of the fields from the source data and the data type of the fields like so: [ { 'field_name': 'A field name', 'data_type': 'integer', }, { 'field_name': 'Another field name', 'data_type': 'string', }, { 'field_name': 'Last field name', 'data_type': 'float' }, ] 'data_type' can be one of 'boolean' 'integer' 'big_integer' 'float' 'string' 'date' 'time' 'timestamp' """ # Add init parameters to EDE_ETL object for k, v in meta.items(): setattr(self, k, v) if data_types: self.data_types = data_types self.s3_key = None self.metadata = MetaData() # AWS_ACCESS_KEY as empty string is signal to operate locally. if AWS_ACCESS_KEY != '': # Name of file in S3 bucket will be dataset name appended with current time. s3_path = '%s/%s.csv.gz' % (self.dataset_name, datetime.now().strftime('%Y-%m-%dT%H:%M:%S')) try: s3conn = S3Connection(AWS_ACCESS_KEY, AWS_SECRET_KEY) bucket = s3conn.get_bucket(S3_BUCKET) self.s3_key = Key(bucket) self.s3_key.key = s3_path except S3ResponseError, e: # XX: When this happens, we should log a more serious message print "Failed to connect to S3 for filename '%s', trying to init locally" % self.dataset_name self._init_local(self.dataset_name) else: self._init_local(self.dataset_name) def _init_local(self, dataset_name): """ Set directory to download and process data file as DATA_DIR/dataset_name.csv.gz """ print "EDE_ETL._init_local('%s')" % dataset_name self.fname = '%s.csv.gz' % dataset_name self.data_dir = DATA_DIR def add(self, s3_path=None): if s3_path and s3_key: # It looks like s3_key is unresolved, so this branch should never be taken? self.s3_key.key = s3_path else: self._download_csv() self._get_or_create_data_table() self._make_src_table() self._insert_src_data() self._make_new_and_dup_table() self._find_dup_data() self._insert_new_data(added=True) self._insert_data_table() self._update_master() self._update_meta(added=True) self._update_geotags() self._cleanup_temp_tables() def update(self, s3_path=None): if s3_path and s3_key: self.s3_key.key = s3_path else: self._download_csv() self._get_or_create_data_table() self._make_src_table() self._insert_src_data() self._make_new_and_dup_table() self._find_dup_data() new = self._insert_new_data() if new: self._insert_data_table() self._update_master() self._update_meta() self._update_geotags() self._cleanup_temp_tables() def _download_csv(self): """ If self.s3_key is set, download CSV to S3 bucket. Else, download to local directory. """ r = requests.get(self.source_url, stream=True) if self.s3_key: s = StringIO() with gzip.GzipFile(fileobj=s, mode='wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) f.flush() s.seek(0) self.s3_key.set_contents_from_file(s) self.s3_key.make_public() else: # write out a la shapefile_helpers self.fpath = os.path.join(self.data_dir, self.fname) # If file already exists locally, don't perform copy. if not os.path.exists(self.fpath): gz_f = gzip.open(self.fpath, 'wb') for chunk in r.iter_content(chunk_size=1024): if chunk: gz_f.write(chunk) gz_f.flush() gz_f.close() # Explicitly close before re-opening to read. def _cleanup_temp_tables(self): self.src_table.drop(bind=engine, checkfirst=True) self.new_table.drop(bind=engine, checkfirst=True) self.dup_table.drop(bind=engine, checkfirst=True) try: self.chg_table.drop(bind=engine, checkfirst=True) except AttributeError: pass def _get_or_create_data_table(self): """ Step One: Make a table where the data will eventually live True after this function: self.dat_table refers to a (possibly empty) table in the database. """ try: # Maybe this table already exists in the database. self.dat_table = Table('dat_%s' % self.dataset_name, self.metadata, autoload=True, autoload_with=engine, extend_existing=True) except NoSuchTableError: # Nope, we'll need to create it. s = StringIO() # If reading from AWS... if self.s3_key: # ...dump the contents into s. self.s3_key.get_contents_to_file(s) # If reading locally... else: # ... read the file out of DATA_DIR. with open(self.fpath, 'r') as f: s.write(f.read()) # Go to start of file. s.seek(0) # Find out what types of columns we'll need to store the data. with gzip.GzipFile(fileobj=s, mode='rb') as f: reader = UnicodeCSVReader(f) header = map(slugify, reader.next()) col_types = [] # Will be list of pairs: (column_type, is_nullable) try: # Were data_types specified at init? types = getattr(self, 'data_types') col_map = {c['field_name']: c['data_type'] for c in types} for col in header: t = col_map[col] col_types.append((COL_TYPES[t], True)) # always nullable except AttributeError: # Try to infer column types. for col in range(len(header)): col_types.append(iter_column(col, f)) # Create rows that will be used to keep track of the version of the source dataset # that each particular row came from. cols = [ Column('%s_row_id' % self.dataset_name, Integer, primary_key=True), Column('start_date', TIMESTAMP, server_default=text('CURRENT_TIMESTAMP')), Column('end_date', TIMESTAMP, server_default=text('NULL')), Column('current_flag', Boolean, server_default=text('TRUE')), Column('dup_ver', Integer) ] # Generate columns for each column in the source dataset. for col_name, d_type in zip(header, col_types): dt, nullable = d_type cols.append(Column(col_name, dt, nullable=nullable)) # Final column has columns whose values must be unique. # Generated from business_key, dup_ver, and dataset_name. cols.append(UniqueConstraint(slugify(self.business_key), 'dup_ver', name='%s_ix' % self.dataset_name[:50])) # Assemble data table from the columns... self.dat_table = Table('dat_%s' % self.dataset_name, self.metadata, *cols, extend_existing=True) # ... and load it into the database. self.dat_table.create(engine, checkfirst=True) def _make_src_table(self): """ Step Two Creates a table that is a simple copy of the source data. (That is, it doesn't have the fancy extra columns like start_date that dat_table has) True after this function: self.src_table refers to an empty table in the database. """ cols = [] skip_cols = ['%s_row_id' % self.dataset_name, 'start_date', 'end_date', 'current_flag', 'dup_ver'] for col in self.dat_table.columns: if col.name not in skip_cols: # Is there a default value that we need to give the coumn? kwargs = {} if col.server_default: kwargs['server_default'] = col.server_default # Add the column as it was in dat_table cols.append(Column(col.name, col.type, **kwargs)) # Use the source CSV's line numbers as primary key. cols.append(Column('line_num', Integer, primary_key=True)) self.src_table = Table('src_%s' % self.dataset_name, self.metadata, *cols, extend_existing=True) # If there is an old version of this raw dataset in the DB, kick it out. self.src_table.drop(bind=engine, checkfirst=True) # Add the table to the database. self.src_table.create(bind=engine) def _insert_src_data(self): """ Step Three: Insert data directly from CSV True after this function: self.src_data is populated with the original dataset's values or a EDE_ETLError is triggered that brings the process to a halt. """ skip_cols = ['line_num'] names = [c.name for c in self.src_table.columns] # Create the COPY statement... creatively. copy_st = 'COPY src_%s (' % self.dataset_name for idx, name in enumerate(names): if name not in skip_cols: if idx < len(names) - len(skip_cols) - 1: copy_st += '%s, ' % name else: copy_st += '%s)' % name else: copy_st += "FROM STDIN WITH (FORMAT CSV, HEADER TRUE, DELIMITER ',')" # Load the raw file from S3 or a local drive. s = StringIO() if self.s3_key: self.s3_key.get_contents_to_file(s) else: with open(self.fpath, 'r') as f: s.write(f.read()) # Dump the contents into the src_table we've created. s.seek(0) conn = engine.raw_connection() with gzip.GzipFile(fileobj=s, mode='rb') as f: try: cursor = conn.cursor() cursor.copy_expert(copy_st, f) cursor.close() conn.commit() except Exception, e: # When the bulk copy fails on _any_ row, roll back the entire operation. conn.rollback() raise EDE_ETLError(e) finally: conn.close() # The following code sets lat/lng to NULL when the given coordinate is (0,0) (e.g. off the coast of Africa). # This was a problem for: http://plenario-dev.s3.amazonaws.com/sfpd_incident_all_datetime.csv if self.latitude and self.longitude: upd_st = """ UPDATE src_%s SET %s = NULL , %s = NULL FROM (SELECT %s FROM src_%s WHERE %s=0 and %s =0) AS ids WHERE src_%s.%s=ids.%s """ % (self.dataset_name, slugify(self.latitude), slugify(self.longitude), slugify(self.business_key), self.dataset_name, slugify(self.latitude), slugify(self.longitude), self.dataset_name, slugify(self.business_key), slugify(self.business_key)) with engine.begin() as conn: conn.execute(upd_st) elif self.location: upd_st = """ UPDATE src_%s SET %s=NULL FROM (select %s, FLOAT8((regexp_matches(%s, '\((.*),(.*)\)'))[1]) as l1, FLOAT8((regexp_matches(%s, '\((.*),(.*)\)'))[2]) as l2 from src_%s) as foo WHERE foo.l1=0 and foo.l2 = 0 AND src_%s.%s = foo.%s """ % (self.dataset_name, slugify(self.location), slugify(self.business_key), slugify(self.location), slugify(self.location), self.dataset_name, self.dataset_name, slugify(self.business_key), slugify(self.business_key)) with engine.begin() as conn: conn.execute(upd_st) # Also need to remove rows that have an empty business key # There might be a better way to do this... del_st = """ DELETE FROM src_%s WHERE %s IS NULL """ % (self.dataset_name, slugify(self.business_key)) with engine.begin() as conn: conn.execute(del_st) def _make_new_and_dup_table(self): """ True after this function: self.new_table and self.dup_table are created with columns for line_num, dup_ver, and business_key. """ # Grab the data table's business key column. bk_col = self.dat_table.c[slugify(self.business_key)] # TODO: DRY cols = [ Column(slugify(self.business_key), bk_col.type, primary_key=True), Column('line_num', Integer), Column('dup_ver', Integer, primary_key=True) ] self.new_table = Table('new_%s' % self.dataset_name, self.metadata, *cols, extend_existing=True) self.new_table.drop(bind=engine, checkfirst=True) self.new_table.create(bind=engine) cols = [ Column(slugify(self.business_key), bk_col.type, primary_key=True), Column('line_num', Integer), Column('dup_ver', Integer, primary_key=True) ] self.dup_table = Table('dup_%s' % self.dataset_name, self.metadata, *cols, extend_existing=True) self.dup_table.drop(bind=engine, checkfirst=True) self.dup_table.create(bind=engine) def _find_dup_data(self): """ Step Five Construct dup_ver column of dup_table and populate dup_table. """ # Taking the business key and line numbers of the source data... cols = [ self.src_table.c[slugify(self.business_key)], self.src_table.c['line_num'], ] cols.append(func.rank() # ... group by business key, .over(partition_by=getattr(self.src_table.c, slugify(self.business_key)), # ... and rank by line number. order_by=self.src_table.columns['line_num'].desc()) # Call this our dup_ver column. .label('dup_ver')) # Make these three columns our dup_table. sel = select(cols, from_obj=self.src_table) ins = self.dup_table.insert()\ .from_select(self.dup_table.columns, sel) with engine.begin() as conn: conn.execute(ins) def _insert_new_data(self, added=False): """ Step Six Find which rows in dup_table aren't present in dat_table. Add those new rows to new_table. """ bk = slugify(self.business_key) # Align on line_num and bk (Shouldn't that include every entry of both tables?) j = join(self.src_table, self.dup_table, and_(self.src_table.c['line_num'] == self.dup_table.c['line_num'], self.src_table.c[bk] == self.dup_table.c[bk])) dup_tablename = self.dup_table.name # Where possible, find where bk's and dup_ver's line up outer = outerjoin(j, self.dat_table, and_(self.dat_table.c[bk] == j.c['%s_%s' % (dup_tablename, bk)], self.dat_table.c['dup_ver'] == j.c['%s_dup_ver' % dup_tablename])) sel_cols = [ self.src_table.c[bk], self.src_table.c['line_num'], self.dup_table.c['dup_ver'] ] # If we are adding this dataset for the first time, bring in all of the deup_ver info sel = select(sel_cols).select_from(outer) if not added: # If we are updating, (not adding) # only grab the dup_ver info not found in dat_table sel = sel.where(self.dat_table.c['%s_row_id' % self.dataset_name] == None) # Insert the new dup_ver info into new_table. ins = self.new_table.insert()\ .from_select([c for c in self.new_table.columns], sel) try: with engine.begin() as conn: conn.execute(ins) return True except TypeError: # There are no new records return False def _insert_data_table(self): """ Step Seven Insert the new data we identified in new_table into dat_table by joining the references in new_table to the actual data living in src_table. """ # Take all columns from src_table (excluding most of the 'meta' columns) skip_cols = ['%s_row_id' % self.dataset_name, 'end_date', 'current_flag', 'line_num'] from_vals = [] from_vals.append(text("'%s' AS start_date" % datetime.now().isoformat())) from_vals.append(self.new_table.c.dup_ver) for c_src in self.src_table.columns: if c_src.name not in skip_cols: from_vals.append(c_src) sel = select(from_vals, from_obj=self.src_table) bk = slugify(self.business_key) ins = self.dat_table.insert()\ .from_select( [c for c in self.dat_table.columns if c.name not in skip_cols], sel.select_from(self.src_table.join(self.new_table, and_( self.src_table.c.line_num == self.new_table.c.line_num, getattr(self.src_table.c, bk) == getattr(self.new_table.c, bk), ) )) ) with engine.begin() as conn: conn.execute(ins) def _update_master(self, added=False): """ Step Eight: Insert new records into master table """ # Enumerate all the columns we'll be populating from dat_table dat_cols = [ self.dat_table.c.start_date, self.dat_table.c.end_date, self.dat_table.c.current_flag, ] if self.location: dat_cols.append(getattr(self.dat_table.c, slugify(self.location))\ .label('location')) else: dat_cols.append(text("NULL as location")) if self.latitude and self.longitude: dat_cols.append(getattr(self.dat_table.c, slugify(self.latitude))\ .label('latitude')) dat_cols.append(getattr(self.dat_table.c, slugify(self.longitude))\ .label('longitude')) else: dat_cols.append(text("NULL AS latitude")) dat_cols.append(text("NULL AS longitude")) dat_cols.append(func.cast(getattr(self.dat_table.c, slugify(self.observed_date)), TIMESTAMP)\ .label('obs_date')) dat_cols.append(text("NULL AS weather_station_id")) dat_cols.append(text("NULL AS geotag2")) dat_cols.append(text("NULL AS geotag3")) dat_cols.append(text("'%s' AS dataset_name" % self.dataset_name)) dat_pk = '%s_row_id' % self.dataset_name dat_cols.append(getattr(self.dat_table.c, dat_pk)) # Derive point in space from either lat/long columns or single location column if self.latitude and self.longitude: dat_cols.append(text( "ST_PointFromText('POINT(' || dat_%s.%s || ' ' || dat_%s.%s || ')', 4326) \ as location_geom" % ( self.dataset_name, slugify(self.longitude), self.dataset_name, slugify(self.latitude), ))) elif self.location: dat_cols.append(text( """ ( SELECT ST_PointFromText('POINT(' || subq.longitude || ' ' || subq.latitude || ')', 4326) \ FROM ( SELECT FLOAT8((regexp_matches(%s, '\((.*),.*\)'))[1]) AS latitude, \ FLOAT8((regexp_matches(%s, '\(.*,(.*)\)'))[1]) AS longitude \ FROM dat_%s as d where d."%s" = dat_%s."%s") AS subq) AS location_geom """ % ( slugify(self.location), slugify(self.location), self.dataset_name, dat_pk, self.dataset_name, dat_pk, ))) # Insert the data mt = MasterTable.__table__ bk = slugify(self.business_key) # If we're adding the dataset for the first time, if added: # just throw everything in. ins = mt.insert()\ .from_select( [c for c in mt.columns.keys() if c != 'master_row_id'], select(dat_cols) ) else: # If we're updating, # just add the new stuff by joining on new_table. ins = mt.insert()\ .from_select( [c for c in mt.columns.keys() if c != 'master_row_id'], select(dat_cols)\ .select_from(self.dat_table.join(self.new_table, and_( getattr(self.dat_table.c, bk) == getattr(self.new_table.c, bk), self.dat_table.c.dup_ver == self.new_table.c.dup_ver ) ) ) ) with engine.begin() as conn: conn.execute(ins) def _add_weather_info(self): """ This is just adding the weather observation id to the master table right now. In the future we can modify it to do all the geo tagging we need for the master table. The update below assumes the weather stations table has already been created and populated. I have no idea how to do it in SQLAlchemy, mainly because of the geometry distance operator ('<->') """ # Yo dawg, I heard you like subqueries. # I put a subquery in your subquery. date_type = str(getattr(self.dat_table.c, slugify(self.observed_date)).type) if 'timestamp' in date_type.lower(): weather_table = 'dat_weather_observations_hourly' date_col_name = 'datetime' temp_col = 'drybulb_fahrenheit' else: weather_table = 'dat_weather_observations_daily' date_col_name = 'date' temp_col = 'temp_avg' upd = text( """ UPDATE dat_master SET weather_observation_id=subq.weather_id FROM ( SELECT DISTINCT ON (d.master_row_id) d.master_row_id AS master_id, w.id as weather_id, abs(extract(epoch from d.obs_date) - extract(epoch from w.%s)) as diff FROM dat_master AS d JOIN %s as w ON w.wban_code = ( SELECT b.wban_code FROM weather_stations AS b ORDER BY d.location_geom <-> b.location LIMIT 1 ) WHERE d.location_geom IS NOT NULL AND d.weather_observation_id IS NULL AND d.dataset_name = :dname AND d.obs_date > ( SELECT MIN(%s) FROM %s WHERE %s IS NOT NULL ) AND d.obs_date < ( SELECT MAX(%s) FROM %s WHERE %s IS NOT NULL ) ORDER BY d.master_row_id, diff ) as subq WHERE dat_master.master_row_id = subq.master_id """ % (date_col_name, weather_table, date_col_name, weather_table, temp_col, date_col_name, weather_table, temp_col,) ) with engine.begin() as conn: conn.execute(upd, dname=self.dataset_name) def _add_census_block(self): """ Adds a census block geoid to entries in the master table """ upd = text(""" UPDATE dat_master SET census_block=subq.census_block FROM ( SELECT d.master_row_id as master_id, c.geoid10 as census_block FROM dat_master as d JOIN census_blocks as c ON ST_Within(d.location_geom, c.geom) WHERE d.census_block IS NULL AND d.location_geom IS NOT NULL AND d.dataset_name = :dname ) as subq WHERE dat_master.master_row_id = subq.master_id """) with engine.begin() as conn: conn.execute(upd, dname=self.dataset_name) def _update_geotags(self): # self._add_weather_info() # self._add_weather_stations() self._add_census_block() def _update_meta(self, added=False): """ Update the meta_master table with obs_from, obs_to, updated_date, bbox, and (when appropriate) date_added """ md = session.query(MetaTable)\ .filter(MetaTable.source_url_hash == self.source_url_hash)\ .first() # Update time columns now = datetime.now() md.last_update = now if added: md.date_added = now obs_date_col = getattr(self.dat_table.c, slugify(self.observed_date)) obs_from, obs_to = session.query( func.min(obs_date_col), func.max(obs_date_col))\ .first() md.obs_from = obs_from md.obs_to = obs_to # Calculate bounding box if self.latitude and self.longitude: lat_col = getattr(self.dat_table.c, slugify(self.latitude)) lon_col = getattr(self.dat_table.c, slugify(self.longitude)) xmin, ymin, xmax, ymax = session.query( func.min(lon_col), func.min(lat_col), func.max(lon_col), func.max(lat_col))\ .first() elif self.location: loc_col = getattr(self.dat_table.c, slugify(self.location)) subq = session.query( cast(func.regexp_matches(loc_col, '\((.*),.*\)'), ARRAY(Float)).label('lat'), cast(func.regexp_matches(loc_col, '\(.*,(.*)\)'), ARRAY(Float)).label('lon'))\ .subquery() try: xmin, ymin, xmax, ymax = session.query(func.min(subq.c.lon), func.min(subq.c.lat), func.max(subq.c.lon), func.max(subq.c.lat))\ .first() xmin, ymin, xmax, ymax = xmin[0], ymin[0], xmax[0], ymax[0] except: session.rollback() xmin, ymin, xmax, ymax = 0, 0, 0, 0 bbox = from_shape(box(xmin, ymin, xmax, ymax), srid=4326) md.bbox = bbox try: session.add(md) session.commit() except: session.rollback() session.add(md) session.commit()
py
b405fafaff331475f09744bd8d1291fd67e44a82
#!/usr/bin/python import os import subprocess repo_name = "operepo" tag = "release" save_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "volumes/app_images") # Ensure the app_images folder exists try: os.makedirs(save_path) except: pass # Should have an exception if it already exists # Get the digest of the docker image def get_app_digest(app_name): global save_path, repo_name, tag proc = subprocess.Popen(["/usr/bin/docker", "images", repo_name + "/" + app_name + ":" + tag], stdout=subprocess.PIPE) lines = proc.stdout.readlines() ret = "..." for line in lines: # Go through each line and find the digest for the latest tagged item parts = line.split() if parts[0] == repo_name + "/" + app_name and parts[1] == tag: #print "\tFound digest: " + parts[2] + " for: " + repo_name + "/" + app_name + ":" + tag ret = parts[2] return ret def save_app_digest(app_name, digest): global save_path, repo_name # Store the digest in the app path digest_path = os.path.join(save_path, app_name + ".digest") try: f = open(digest_path, "w") f.write(digest) f.close() except: # Unable to save? pass def get_tar_digest(app_name): global save_path, repo_name tar_digest = "." digest_path = os.path.join(save_path, app_name + ".digest") # Open the file and read the digest of the currently saved tar file try: f = open(digest_path, "r") tmp = f.read().strip() if tmp != "": tar_digest = tmp f.close() except: # Unable to load last digest, just leave it empty tar_digest = "." return tar_digest def load_app(app_name): global save_path, repo_name, tag img_path = os.path.join(save_path, app_name + ".tar.gz") # Load the last saved tar digest tar_digest = get_tar_digest(app_name) # Load the current docker digest app_digest = get_app_digest(app_name) print "Digests (tar/app): " + tar_digest + "/" + app_digest if app_digest != tar_digest or app_digest == "..." or tar_digest == "..": # Save the binary print "\tApp modified, importing with docker load from: " + img_path os.system("docker load -i " + img_path) # Update the digest app_digest = get_app_digest(app_name) save_app_digest(app_name, app_digest) else: # App hasn't changed print "\tApp hasn't changed, skipping." def processFolder(cwd=""): global save_path, repo_name ret = "" if (os.path.isdir(cwd) != True): #print "Not a folder, skipping..." return ret enabled = os.path.join(cwd, ".enabled") if (os.path.isfile(enabled) != True): #print "Not enabled, skipping " + cwd return ret dname = os.path.basename(cwd) print "============================================" print " Processing Image " + dname print "============================================" load_app(dname) return ret # Find enabled images and export them to the images folder # def processFolder(cwd=""): # global save_path, repo_name # ret = "" # if (os.path.isfile(cwd) != True): #print "Not a file, skipping..." # return ret # dname = os.path.basename(cwd) # if (dname.startswith("ope-")): # print "\t============================================" # print "\tProcessing Image " + dname # print "\t============================================" # img_path = os.path.join(save_path, dname) # os.system("docker load -i " + img_path) # return ret if __name__ == "__main__": # Loop through the folders and find containers with .enabled files. pwd = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "docker_build_files") for folder in os.listdir(pwd): processFolder(os.path.join(pwd, folder))
py
b405fcbf8404bdd419b17868402541d85460e678
from django.contrib import admin from . models import Student # Register your models here. admin.site.register(Student)
py
b405fcf09bc19e15ebb7b865b2b09a0d06ac0c70
from bgl import * from mathutils import Vector class Rectangle: def __init__(self, x1 = 0, y1 = 0, x2 = 0, y2 = 0): self.x1 = float(x1) self.y1 = float(y1) self.x2 = float(x2) self.y2 = float(y2) self.color = (0.8, 0.8, 0.8, 1.0) self.border_color = (0.1, 0.1, 0.1, 1.0) self.border_thickness = 0 @property def width(self): return abs(self.x1 - self.x2) @property def height(self): return abs(self.y1 - self.y2) @property def left(self): return min(self.x1, self.x2) @property def right(self): return max(self.x1, self.x2) @property def top(self): return max(self.y1, self.y2) @property def bottom(self): return min(self.y1, self.y2) @property def center(self): return Vector((self.center_x, self.center_y)) @property def center_x(self): return (self.x1 + self.x2) / 2 @property def center_y(self): return (self.y1 + self.y2) / 2 def contains(self, point): return self.left <= point[0] <= self.right and self.bottom <= point[1] <= self.top def draw(self): glColor4f(*self.color) glEnable(GL_BLEND) glBegin(GL_POLYGON) glVertex2f(self.x1, self.y1) glVertex2f(self.x2, self.y1) glVertex2f(self.x2, self.y2) glVertex2f(self.x1, self.y2) glEnd() if self.border_thickness != 0: self.drawBorder() def drawBorder(self): thickness = self.border_thickness thickness = min(abs(self.x1 - self.x2) / 2, abs(self.y1 - self.y2) / 2, thickness) left, right = sorted([self.x1, self.x2]) bottom, top = sorted([self.y1, self.y2]) if thickness > 0: topBorder = Rectangle(left, top, right, top - thickness) bottomBorder = Rectangle(left, bottom + thickness, right, bottom) else: topBorder = Rectangle(left + thickness, top, right - thickness, top - thickness) bottomBorder = Rectangle(left + thickness, bottom + thickness, right - thickness, bottom) leftBorder = Rectangle(left, top, left + thickness, bottom) rightBorder = Rectangle(right - thickness, top, right, bottom) for border in (topBorder, bottomBorder, leftBorder, rightBorder): border.color = self.border_color border.draw() def __repr__(self): return "({}, {}) - ({}, {})".format(self.x1, self.y1, self.x2, self.y2)
py
b405fd096500c955b6d77accf50311e636f281d4
#!/usr/bin/env python import setuptools long_desc = open('README.rst').read() setuptools.setup( name="warmup4ie", version='0.1.3', description='client library for 4IE thermostat sold by warmup', long_description=long_desc, license='Apache', author='Alexander Hinz', author_email='[email protected]', url='https://github.com/alex-0103/warmup4IE', packages=setuptools.find_packages(), classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License ', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Operating System :: OS Independent', 'Topic :: Home Automation', 'Topic :: Software Development :: Libraries', ], )
py
b405fdbb80e0aaaa141ec9b25a48bcd7349ae6dd
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file './ui/src/MainForm.ui' # # Created by: PyQt5 UI core generator 5.13.1 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtWidgets class Ui_MainForm(object): def setupUi(self, MainForm): MainForm.setObjectName("MainForm") MainForm.resize(600, 400) self.horizontalLayout = QtWidgets.QHBoxLayout(MainForm) self.horizontalLayout.setObjectName("horizontalLayout") self.widget = QtWidgets.QWidget(MainForm) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.widget.sizePolicy().hasHeightForWidth()) self.widget.setSizePolicy(sizePolicy) self.widget.setMinimumSize(QtCore.QSize(250, 0)) self.widget.setMaximumSize(QtCore.QSize(250, 16777215)) self.widget.setObjectName("widget") self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.widget) self.verticalLayout_2.setContentsMargins(0, 0, 0, 0) self.verticalLayout_2.setObjectName("verticalLayout_2") self.building_params_group_box = QtWidgets.QGroupBox(self.widget) self.building_params_group_box.setObjectName("building_params_group_box") self.formLayout_2 = QtWidgets.QFormLayout(self.building_params_group_box) self.formLayout_2.setLabelAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter) self.formLayout_2.setObjectName("formLayout_2") self.label = QtWidgets.QLabel(self.building_params_group_box) self.label.setObjectName("label") self.formLayout_2.setWidget(0, QtWidgets.QFormLayout.LabelRole, self.label) self.evolution_step_spin = QtWidgets.QSpinBox(self.building_params_group_box) self.evolution_step_spin.setMinimum(1) self.evolution_step_spin.setMaximum(12) self.evolution_step_spin.setObjectName("evolution_step_spin") self.formLayout_2.setWidget(0, QtWidgets.QFormLayout.FieldRole, self.evolution_step_spin) self.label_3 = QtWidgets.QLabel(self.building_params_group_box) self.label_3.setObjectName("label_3") self.formLayout_2.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.label_3) self.horizontalLayout_3 = QtWidgets.QHBoxLayout() self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.init_x_spin = QtWidgets.QSpinBox(self.building_params_group_box) self.init_x_spin.setMinimum(1) self.init_x_spin.setMaximum(10000) self.init_x_spin.setObjectName("init_x_spin") self.horizontalLayout_3.addWidget(self.init_x_spin) self.init_y_spin = QtWidgets.QSpinBox(self.building_params_group_box) self.init_y_spin.setMinimum(1) self.init_y_spin.setMaximum(10000) self.init_y_spin.setObjectName("init_y_spin") self.horizontalLayout_3.addWidget(self.init_y_spin) self.formLayout_2.setLayout(1, QtWidgets.QFormLayout.FieldRole, self.horizontalLayout_3) self.label_4 = QtWidgets.QLabel(self.building_params_group_box) self.label_4.setObjectName("label_4") self.formLayout_2.setWidget(2, QtWidgets.QFormLayout.LabelRole, self.label_4) self.step_length_spin = QtWidgets.QSpinBox(self.building_params_group_box) self.step_length_spin.setMinimum(1) self.step_length_spin.setMaximum(1000) self.step_length_spin.setProperty("value", 10) self.step_length_spin.setObjectName("step_length_spin") self.formLayout_2.setWidget(2, QtWidgets.QFormLayout.FieldRole, self.step_length_spin) self.verticalLayout_2.addWidget(self.building_params_group_box) self.definition_group_box = QtWidgets.QGroupBox(self.widget) self.definition_group_box.setObjectName("definition_group_box") self.verticalLayout_3 = QtWidgets.QVBoxLayout(self.definition_group_box) self.verticalLayout_3.setObjectName("verticalLayout_3") self.formLayout_3 = QtWidgets.QFormLayout() self.formLayout_3.setObjectName("formLayout_3") self.label_5 = QtWidgets.QLabel(self.definition_group_box) self.label_5.setObjectName("label_5") self.formLayout_3.setWidget(0, QtWidgets.QFormLayout.LabelRole, self.label_5) self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.file_name_edit = QtWidgets.QLineEdit(self.definition_group_box) self.file_name_edit.setReadOnly(True) self.file_name_edit.setObjectName("file_name_edit") self.horizontalLayout_2.addWidget(self.file_name_edit) self.open_file_button = QtWidgets.QToolButton(self.definition_group_box) self.open_file_button.setObjectName("open_file_button") self.horizontalLayout_2.addWidget(self.open_file_button) self.formLayout_3.setLayout(0, QtWidgets.QFormLayout.FieldRole, self.horizontalLayout_2) self.verticalLayout_3.addLayout(self.formLayout_3) self.definition_text = QtWidgets.QPlainTextEdit(self.definition_group_box) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.definition_text.sizePolicy().hasHeightForWidth()) self.definition_text.setSizePolicy(sizePolicy) self.definition_text.setDocumentTitle("") self.definition_text.setReadOnly(True) self.definition_text.setObjectName("definition_text") self.verticalLayout_3.addWidget(self.definition_text) self.verticalLayout_3.setStretch(1, 1) self.verticalLayout_2.addWidget(self.definition_group_box) self.verticalLayout_2.setStretch(1, 1) self.horizontalLayout.addWidget(self.widget) self.paint_frame = LSystemPaintWidget(MainForm) self.paint_frame.setAutoFillBackground(False) self.paint_frame.setFrameShape(QtWidgets.QFrame.Box) self.paint_frame.setFrameShadow(QtWidgets.QFrame.Raised) self.paint_frame.setObjectName("paint_frame") self.horizontalLayout.addWidget(self.paint_frame) self.retranslateUi(MainForm) QtCore.QMetaObject.connectSlotsByName(MainForm) MainForm.setTabOrder(self.evolution_step_spin, self.init_x_spin) MainForm.setTabOrder(self.init_x_spin, self.init_y_spin) MainForm.setTabOrder(self.init_y_spin, self.step_length_spin) MainForm.setTabOrder(self.step_length_spin, self.open_file_button) MainForm.setTabOrder(self.open_file_button, self.file_name_edit) MainForm.setTabOrder(self.file_name_edit, self.definition_text) def retranslateUi(self, MainForm): _translate = QtCore.QCoreApplication.translate MainForm.setWindowTitle(_translate("MainForm", "L-системы")) self.building_params_group_box.setTitle(_translate("MainForm", "Параметры построения")) self.label.setText(_translate("MainForm", "Этап эволюции:")) self.label_3.setText(_translate("MainForm", "Начальная точка (X ; Y):")) self.label_4.setText(_translate("MainForm", "Длина шага построения:")) self.definition_group_box.setTitle(_translate("MainForm", "Определение L-системы")) self.label_5.setText(_translate("MainForm", "Файл определения:")) self.open_file_button.setText(_translate("MainForm", "...")) from ui.widgets.lsystem_paint_widget import LSystemPaintWidget
py
b405fe2592678e2272fec686f2c71307ab7c398a
#!/usr/bin/env python import os __all__ = ["package_dir","py_modules"] # repo/ # repo/py_modules/ # repo/py_modules/modname1.py # repo/py_modules/modname2.py # known-issues: # 1) 'package_dir' used with 'packages' and 'py_modules' (merge required) cwd = os.getcwd() def listnames(path): listdir = os.listdir(path) for l in listdir: if os.path.splitext(l)[1] != ".py": continue fullpath = os.path.join(path, l) if not os.path.isfile(fullpath): continue yield l.replace(".py", "") path = os.path.join(cwd, "py_modules") if os.path.exists(path) and os.path.isdir(path): py_modules = list(listnames(path)) if py_modules: package_dir = {'': "py_modules"}
py
b405ffcd40eeec2d037fa8815332d41658c2a2f1
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Flask-Generic-Views documentation build configuration file, created by # sphinx-quickstart on Wed Dec 30 04:16:44 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import ast import os import re import shlex import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'Flask-Generic-Views' copyright = '2015, Daniel Knell' author = 'Daniel Knell' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The full version, including alpha/beta/rc tags. _version_re = re.compile(r'__version__\s+=\s+(.*)') with open('../flask_generic_views/__init__.py', 'rb') as f: release = str(ast.literal_eval(_version_re.search( f.read().decode('utf-8')).group(1))) # The short X.Y version. version=release.split('-')[0] # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'Flask-Generic-Viewsdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'Flask-Generic-Views.tex', 'Flask-Generic-Views Documentation', 'Daniel Knell', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'flask-generic-views', 'Flask-Generic-Views Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Flask-Generic-Views', 'Flask-Generic-Views Documentation', author, 'Flask-Generic-Views', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'python': ('https://docs.python.org/dev', None), 'werkzeug': ('http://werkzeug.pocoo.org/docs/', None), 'flask': ('http://flask.pocoo.org/docs/', None), 'jinja': ('http://jinja.pocoo.org/docs/', None), 'sqlalchemy': ('http://www.sqlalchemy.org/docs/', None), 'wtforms': ('https://wtforms.readthedocs.org/en/latest/', None), 'flaskwtf': ('https://flask-wtf.readthedocs.org/en/latest/', None), 'flasksqlalchemy': ('http://flask-sqlalchemy.pocoo.org/', None)}
py
b406005aad9ecd0f1fde900c21942cf18bc4b208
#!/usr/bin/env python def temp_dir(id): path = "/tmp/px4_sitl_files" if id: path += "/id_" + str(id) return path def udp_config(id): px4_id = id-1 config = {} config["gcs_url"] = "udp://@127.0.0.1:" + str(18570+px4_id) config["simulator_tcp_port"] = 4560+px4_id config["simulator_udp_port"] = 14560+px4_id config["udp_offboard_port_local"] = 14580+px4_id config["udp_offboard_port_remote"] = 14540+px4_id config["udp_onboard_payload_port_local"] = 14280+px4_id config["udp_onboard_payload_port_remote"] = 14030+px4_id return config def check_unknown_args(unknown): for arg in unknown: if arg[0] == '-': raise SyntaxWarning("Unexpected argument " + arg) # def fcu_url(id, mode) if __name__ == "__main__": print "This is a utils collection, not a script!"
py
b406015a2aa58ef3414f570ecf86faa479f69226
#!/usr/bin/env python # coding: utf-8 # # Desafio 3 # # Neste desafio, iremos praticar nossos conhecimentos sobre distribuições de probabilidade. Para isso, # dividiremos este desafio em duas partes: # # 1. A primeira parte contará com 3 questões sobre um *data set* artificial com dados de uma amostra normal e # uma binomial. # 2. A segunda parte será sobre a análise da distribuição de uma variável do _data set_ [Pulsar Star](https://archive.ics.uci.edu/ml/datasets/HTRU2), contendo 2 questões. # # > Obs.: Por favor, não modifique o nome das funções de resposta. # ## _Setup_ geral # In[3]: import pandas as pd import matplotlib.pyplot as plt import numpy as np import scipy.stats as sct import seaborn as sns from statsmodels.distributions.empirical_distribution import ECDF # In[4]: '''%matplotlib inline from IPython.core.pylabtools import figsize figsize(12, 8) sns.set()''' # ## Parte 1 # ### _Setup_ da parte 1 # In[5]: np.random.seed(42) dataframe = pd.DataFrame({"normal": sct.norm.rvs(20, 4, size=10000), "binomial": sct.binom.rvs(100, 0.2, size=10000)}) # ## Inicie sua análise a partir da parte 1 a partir daqui # In[6]: # Sua análise da parte 1 começa aqui. dataframe.head() # ## Questão 1 # # Qual a diferença entre os quartis (Q1, Q2 e Q3) das variáveis `normal` e `binomial` de `dataframe`? Responda como uma tupla de três elementos arredondados para três casas decimais. # # Em outra palavras, sejam `q1_norm`, `q2_norm` e `q3_norm` os quantis da variável `normal` e `q1_binom`, `q2_binom` e `q3_binom` os quantis da variável `binom`, qual a diferença `(q1_norm - q1 binom, q2_norm - q2_binom, q3_norm - q3_binom)`? # In[7]: def q1(): q1_norm, q2_norm, q3_norm = dataframe['normal'].quantile([0.25,0.5,0.75]) q1_binom, q2_binom, q3_binom = dataframe['binomial'].quantile([0.25,0.5,0.75]) return (round(q1_norm - q1_binom,3), round(q2_norm - q2_binom,3), round(q3_norm - q3_binom,3)) q1() # Para refletir: # # * Você esperava valores dessa magnitude? # # * Você é capaz de explicar como distribuições aparentemente tão diferentes (discreta e contínua, por exemplo) conseguem dar esses valores? # ## Questão 2 # # Considere o intervalo $[\bar{x} - s, \bar{x} + s]$, onde $\bar{x}$ é a média amostral e $s$ é o desvio padrão. Qual a probabilidade nesse intervalo, calculada pela função de distribuição acumulada empírica (CDF empírica) da variável `normal`? Responda como uma único escalar arredondado para três casas decimais. # In[20]: def q2(): dataframe.sort_values(by='normal', inplace=True) media = dataframe['normal'].mean() std = dataframe['normal'].std() ecdf = ECDF(dataframe["normal"]) return float(round((ecdf(media + std) - ecdf(media - std)), 3)) q2() # Para refletir: # # * Esse valor se aproxima do esperado teórico? # * Experimente também para os intervalos $[\bar{x} - 2s, \bar{x} + 2s]$ e $[\bar{x} - 3s, \bar{x} + 3s]$. # ## Questão 3 # # Qual é a diferença entre as médias e as variâncias das variáveis `binomial` e `normal`? Responda como uma tupla de dois elementos arredondados para três casas decimais. # # Em outras palavras, sejam `m_binom` e `v_binom` a média e a variância da variável `binomial`, e `m_norm` e `v_norm` a média e a variância da variável `normal`. Quais as diferenças `(m_binom - m_norm, v_binom - v_norm)`? # In[13]: def q3(): m_binom = dataframe['binomial'].mean() v_binom = dataframe['binomial'].var() m_norm = dataframe['normal'].mean() v_norm = dataframe['normal'].var() return (round(m_binom - m_norm,3), round(v_binom - v_norm,3)) q3() # Para refletir: # # * Você esperava valore dessa magnitude? # * Qual o efeito de aumentar ou diminuir $n$ (atualmente 100) na distribuição da variável `binomial`? # ## Parte 2 # ### _Setup_ da parte 2 # In[15]: stars = pd.read_csv("pulsar_stars.csv") stars.rename({old_name: new_name for (old_name, new_name) in zip(stars.columns, ["mean_profile", "sd_profile", "kurt_profile", "skew_profile", "mean_curve", "sd_curve", "kurt_curve", "skew_curve", "target"]) }, axis=1, inplace=True) stars.loc[:, "target"] = stars.target.astype(bool) # ## Inicie sua análise da parte 2 a partir daqui # In[16]: # Sua análise da parte 2 começa aqui. stars.head() # ## Questão 4 # # Considerando a variável `mean_profile` de `stars`: # # 1. Filtre apenas os valores de `mean_profile` onde `target == 0` (ou seja, onde a estrela não é um pulsar). # 2. Padronize a variável `mean_profile` filtrada anteriormente para ter média 0 e variância 1. # # Chamaremos a variável resultante de `false_pulsar_mean_profile_standardized`. # # Encontre os quantis teóricos para uma distribuição normal de média 0 e variância 1 para 0.80, 0.90 e 0.95 através da função `norm.ppf()` disponível em `scipy.stats`. # # Quais as probabilidade associadas a esses quantis utilizando a CDF empírica da variável `false_pulsar_mean_profile_standardized`? Responda como uma tupla de três elementos arredondados para três casas decimais. # In[36]: # Filtrar valores para questão 4 e 5 mean_profile = stars.loc[stars['target'] == False ,'mean_profile'] # Padronizar false_pulsar_mean_profile_standardized = (mean_profile - mean_profile.mean())/mean_profile.std() # In[31]: def q4(): # Quartis teoricos quartis = sct.norm.ppf([0.80, 0.90, 0.95], loc=0, scale=1) #Empirical CDF ecdf = ECDF(false_pulsar_mean_profile_standardized) return tuple(ecdf(quartis).round(3)) q4() # Para refletir: # # * Os valores encontrados fazem sentido? # * O que isso pode dizer sobre a distribuição da variável `false_pulsar_mean_profile_standardized`? # ## Questão 5 # # Qual a diferença entre os quantis Q1, Q2 e Q3 de `false_pulsar_mean_profile_standardized` e os mesmos quantis teóricos de uma distribuição normal de média 0 e variância 1? Responda como uma tupla de três elementos arredondados para três casas decimais. # In[41]: def q5(): # Quartis teoricos quartis = sct.norm.ppf([0.25, 0.50, 0.75], loc=0, scale=1) # Quartis de false_pulsar_mean_profile_standardized q1, q2, q3 = false_pulsar_mean_profile_standardized.quantile([0.25,0.5,0.75]) return (round(q1-quartis[0],3), round(q2-quartis[1],3), round(q3-quartis[2],3)) q5() # Para refletir: # # * Os valores encontrados fazem sentido? # * O que isso pode dizer sobre a distribuição da variável `false_pulsar_mean_profile_standardized`? # * Curiosidade: alguns testes de hipóteses sobre normalidade dos dados utilizam essa mesma abordagem.
py
b40603212070a6a7c90825452f2c6bdb57a98dd3
# Copyright 2014 Cloudera Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import types import ibis.compat as compat from ibis.config import options def guid(): try: from ibis.comms import uuid4_hex return uuid4_hex() except ImportError: from uuid import uuid4 guid = uuid4() return guid.hex if compat.PY3 else guid.get_hex() def bytes_to_uint8_array(val, width=70): """ Formats a byte string for use as a uint8_t* literal in C/C++ """ if len(val) == 0: return '{}' lines = [] line = '{' + str(ord(val[0])) for x in val[1:]: token = str(ord(x)) if len(line) + len(token) > width: lines.append(line + ',') line = token else: line += ',%s' % token lines.append(line) return '\n'.join(lines) + '}' def unique_by_key(values, key): id_to_table = {} for x in values: id_to_table[key(x)] = x return compat.dict_values(id_to_table) def indent(text, spaces): block = ' ' * spaces return '\n'.join(block + x for x in text.split('\n')) def any_of(values, t): for x in values: if isinstance(x, t): return True return False def all_of(values, t): for x in values: if not isinstance(x, t): return False return True def promote_list(val): if not isinstance(val, list): val = [val] return val class IbisSet(object): def __init__(self, keys=None): self.keys = keys or [] @classmethod def from_list(cls, keys): return IbisSet(keys) def __contains__(self, obj): for other in self.keys: if obj.equals(other): return True return False def add(self, obj): self.keys.append(obj) class IbisMap(object): def __init__(self): self.keys = [] self.values = [] def __contains__(self, obj): for other in self.keys: if obj.equals(other): return True return False def set(self, key, value): self.keys.append(key) self.values.append(value) def get(self, key): for k, v in zip(self.keys, self.values): if key.equals(k): return v raise KeyError(key) def is_function(v): return isinstance(v, (types.FunctionType, types.LambdaType)) def adjoin(space, *lists): """ Glues together two sets of strings using the amount of space requested. The idea is to prettify. Brought over from from pandas """ out_lines = [] newLists = [] lengths = [max(map(len, x)) + space for x in lists[:-1]] # not the last one lengths.append(max(map(len, lists[-1]))) maxLen = max(map(len, lists)) for i, lst in enumerate(lists): nl = [x.ljust(lengths[i]) for x in lst] nl.extend([' ' * lengths[i]] * (maxLen - len(lst))) newLists.append(nl) toJoin = zip(*newLists) for lines in toJoin: out_lines.append(_join_unicode(lines)) return _join_unicode(out_lines, sep='\n') def _join_unicode(lines, sep=''): try: return sep.join(lines) except UnicodeDecodeError: sep = compat.unicode_type(sep) return sep.join([x.decode('utf-8') if isinstance(x, str) else x for x in lines]) def deprecate(f, message): def g(*args, **kwargs): print(message) return f(*args, **kwargs) return g def to_stdout(x): print(x) def log(msg): if options.verbose: (options.verbose_log or to_stdout)(msg) class cache_readonly(object): def __init__(self, func=None, allow_setting=False): if func is not None: self.func = func self.name = func.__name__ self.allow_setting = allow_setting def __call__(self, func, doc=None): self.func = func self.name = func.__name__ return self def __get__(self, obj, typ): # Get the cache or set a default one if needed cache = getattr(obj, '_cache', None) if cache is None: try: cache = obj._cache = {} except (AttributeError): return if self.name in cache: val = cache[self.name] else: val = self.func(obj) cache[self.name] = val return val def __set__(self, obj, value): if not self.allow_setting: raise Exception("cannot set values for [%s]" % self.name) # Get the cache or set a default one if needed cache = getattr(obj, '_cache', None) if cache is None: try: cache = obj._cache = {} except (AttributeError): return cache[self.name] = value def approx_equal(a, b, eps): assert abs(a - b) < eps def implements(f): def decorator(g): g.__doc__ = f.__doc__ return g return decorator
py
b40604374e89bfc18aba02788018704e9ea6a492
## # File: PharosTargetCofactorProviderTests.py # Author: J. Westbrook # Date: 15-Jun-2021 # Version: 0.001 # # Update: # # ## """ Tests for utilities managing Pharos target cofactor data. """ __docformat__ = "google en" __author__ = "John Westbrook" __email__ = "[email protected]" __license__ = "Apache 2.0" import logging import os import platform import resource import time import unittest from rcsb.utils.targets.PharosTargetCofactorProvider import PharosTargetCofactorProvider HERE = os.path.abspath(os.path.dirname(__file__)) TOPDIR = os.path.dirname(os.path.dirname(HERE)) logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s]-%(module)s.%(funcName)s: %(message)s") logger = logging.getLogger() class PharosTargetCofactorProviderTests(unittest.TestCase): def setUp(self): self.__cachePath = os.path.join(HERE, "test-output", "CACHE") # self.__seqMatchResultsPath = os.path.join(HERE, "test-data", "pharos-vs-pdbprent-filtered-results.json.gz") self.__startTime = time.time() logger.info("Starting %s at %s", self.id(), time.strftime("%Y %m %d %H:%M:%S", time.localtime())) def tearDown(self): unitS = "MB" if platform.system() == "Darwin" else "GB" rusageMax = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss logger.info("Maximum resident memory size %.4f %s", rusageMax / 10 ** 6, unitS) endTime = time.time() logger.info("Completed %s at %s (%.4f seconds)", self.id(), time.strftime("%Y %m %d %H:%M:%S", time.localtime()), endTime - self.__startTime) def testBuildPharosTargetsCofactors(self): stfP = PharosTargetCofactorProvider(cachePath=self.__cachePath, useCache=False) ok = stfP.testCache() self.assertFalse(ok) ok = stfP.buildCofactorList(self.__seqMatchResultsPath) self.assertTrue(ok) stfP = PharosTargetCofactorProvider(cachePath=self.__cachePath, useCache=True) ok = stfP.testCache() self.assertTrue(ok) ok = stfP.hasTarget("5fn7_1") self.assertTrue(ok) aL = stfP.getTargets("5fn7_1") self.assertGreaterEqual(len(aL[0]["cofactors"]), 5) def buildPharosTargetCofactors(): suiteSelect = unittest.TestSuite() suiteSelect.addTest(PharosTargetCofactorProviderTests("testBuildPharosTargetsCofactors")) return suiteSelect if __name__ == "__main__": mySuite = buildPharosTargetCofactors() unittest.TextTestRunner(verbosity=2).run(mySuite)
py
b406046e85bf22701fb8f82d6c6b80e0c8dde06e
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class KoubeiMarketingDataRetailDmQueryModel(object): def __init__(self): self._content_id = None self._shop_ids = None @property def content_id(self): return self._content_id @content_id.setter def content_id(self, value): self._content_id = value @property def shop_ids(self): return self._shop_ids @shop_ids.setter def shop_ids(self, value): if isinstance(value, list): self._shop_ids = list() for i in value: self._shop_ids.append(i) def to_alipay_dict(self): params = dict() if self.content_id: if hasattr(self.content_id, 'to_alipay_dict'): params['content_id'] = self.content_id.to_alipay_dict() else: params['content_id'] = self.content_id if self.shop_ids: if isinstance(self.shop_ids, list): for i in range(0, len(self.shop_ids)): element = self.shop_ids[i] if hasattr(element, 'to_alipay_dict'): self.shop_ids[i] = element.to_alipay_dict() if hasattr(self.shop_ids, 'to_alipay_dict'): params['shop_ids'] = self.shop_ids.to_alipay_dict() else: params['shop_ids'] = self.shop_ids return params @staticmethod def from_alipay_dict(d): if not d: return None o = KoubeiMarketingDataRetailDmQueryModel() if 'content_id' in d: o.content_id = d['content_id'] if 'shop_ids' in d: o.shop_ids = d['shop_ids'] return o
py
b40604b4f4a16ef17f7c57df99f75f9fd6cff2d6
from datetime import time import numpy as np import pytest from pandas import DataFrame, date_range import pandas._testing as tm class TestBetweenTime: def test_between_time(self, close_open_fixture): rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) inc_start, inc_end = close_open_fixture filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 assert len(filtered) == exp_len for rs in filtered.index: t = rs.time() if inc_start: assert t >= stime else: assert t > stime if inc_end: assert t <= etime else: assert t < etime result = ts.between_time("00:00", "01:00") expected = ts.between_time(stime, etime) tm.assert_frame_equal(result, expected) # across midnight rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 assert len(filtered) == exp_len for rs in filtered.index: t = rs.time() if inc_start: assert (t >= stime) or (t <= etime) else: assert (t > stime) or (t <= etime) if inc_end: assert (t <= etime) or (t >= stime) else: assert (t < etime) or (t >= stime) def test_between_time_raises(self): # GH#20725 df = DataFrame([[1, 2, 3], [4, 5, 6]]) with pytest.raises(TypeError): # index is not a DatetimeIndex df.between_time(start_time="00:00", end_time="12:00") def test_between_time_axis(self, axis): # GH#8839 rng = date_range("1/1/2000", periods=100, freq="10min") ts = DataFrame(np.random.randn(len(rng), len(rng))) stime, etime = ("08:00:00", "09:00:00") exp_len = 7 if axis in ["index", 0]: ts.index = rng assert len(ts.between_time(stime, etime)) == exp_len assert len(ts.between_time(stime, etime, axis=0)) == exp_len if axis in ["columns", 1]: ts.columns = rng selected = ts.between_time(stime, etime, axis=1).columns assert len(selected) == exp_len def test_between_time_axis_raises(self, axis): # issue 8839 rng = date_range("1/1/2000", periods=100, freq="10min") mask = np.arange(0, len(rng)) rand_data = np.random.randn(len(rng), len(rng)) ts = DataFrame(rand_data, index=rng, columns=rng) stime, etime = ("08:00:00", "09:00:00") msg = "Index must be DatetimeIndex" if axis in ["columns", 1]: ts.index = mask with pytest.raises(TypeError, match=msg): ts.between_time(stime, etime) with pytest.raises(TypeError, match=msg): ts.between_time(stime, etime, axis=0) if axis in ["index", 0]: ts.columns = mask with pytest.raises(TypeError, match=msg): ts.between_time(stime, etime, axis=1)
py
b406050c9ce7ebfc6e38409e389b9a17e58c79e1
import datetime import re from city_scrapers_core.constants import COMMISSION from city_scrapers_core.items import Meeting from city_scrapers_core.spiders import CityScrapersSpider class ChiSsa16Spider(CityScrapersSpider): name = "chi_ssa_16" agency = "Chicago Special Service Area #16" timezone = "America/Chicago" start_urls = ["https://greektownchicago.org/about/ssa-16/"] def parse(self, response): """ Meeting entries are contained in a list item without any specific class or id designation. Because of this, I filtered the present list items on the page with the ", 20" string (every meeting li has this in the present text from the year listed), which indicates the meeting occurred or is scheduled to occur and therefore contains relevant information to document. """ for item in response.xpath('//li[contains(text(), ", 20")]'): meeting = Meeting( title=self._parse_title(item), description=self._parse_description(item), classification=self._parse_classification(item), start=self._parse_start(item), end=self._parse_end(item), all_day=self._parse_all_day(item), time_notes=self._parse_time_notes(item), location=self._parse_location(item), links=self._parse_links(item), source=self._parse_source(response), ) meeting["status"] = self._get_status(meeting) meeting["id"] = self._get_id(meeting) yield meeting def _parse_title(self, item): # There was no variation in types of meetings, so this was applicable for all. return "Tax Commission" def _parse_description(self, item): return "" def _parse_classification(self, item): return COMMISSION def _parse_start(self, item): # Extracted all alphanumeric characters from the text of each meeting, # which contained the dates of the meeting, then split into list containing M, # D, Y date = re.sub(r"[^a-zA-Z0-9]+", " ", item.xpath("text()").get()).split() # Extracted just alphabetical characters from month, then used built-in strptime # function in datetime to parse numeric month from string month = re.sub(r"[^a-zA-Z]+", " ", date[0]) month = datetime.datetime.strptime(month, "%B").month # Extracted numbers from day and year entries of date list to remove any errant # characters (i.e. one entry said January 28th where all others read January 28) day = int(re.sub(r"[^0-9]+", " ", date[1])) year = int(re.sub(r"[^0-9]+", " ", date[2])) # Extracts accompanying meeting information to extract meeting time time = item.xpath( 'ancestor::div[@class="gdc_row"]' '/descendant::p[contains(text(), "60661")]/text()' ).get() time = re.sub(r"[^a-zA-Z0-9:]+", "", time) time = re.findall(r"\d{1,2}:\d{2}(?:AM|PM|am|pm)", time)[0].upper() hour = datetime.datetime.strptime(time, "%I:%M%p").hour minute = datetime.datetime.strptime(time, "%I:%M%p").minute return datetime.datetime(year, month, day, hour, minute) def _parse_end(self, item): """ Meeting adjournment information contained in files present in Minutes documents attached to each meeting that are un-optimized scanned docs. """ return None def _parse_time_notes(self, item): # No other details present return "" def _parse_all_day(self, item): return False def _parse_location(self, item): # Meetings occurred at same location for all years documented return { "address": "306 S. Halsted St, 2nd Floor, Chicago, IL 60661", "name": "SSA #16 Office", } def _parse_links(self, item): """ Most entries contained a Minutes document, but some not yet posted or otherwise have not occurred. When no anchor tag found, returns empty JSON element. """ if item.xpath("a/@href").get() is None: return [] return [ {"href": item.xpath("a/@href").get(), "title": item.xpath("a/text()").get()} ] def _parse_source(self, response): return response.url
py
b4060845588ddb11c143707e65ebca61c336f9b8
import os import shutil from mojo.compile import executeCommand woff2_compress = os.path.join(os.path.dirname(__file__), "woff2_compress") os.chmod(woff2_compress, 0o0777) def generateWOFF2(source, dest): cmds = [woff2_compress, source] result = executeCommand(cmds) resultWoff = os.path.splitext(source)[0] + ".woff2" shutil.move(resultWoff, dest) return result def WOFF2Builder(sourcePath, destinationPath): fileName, ext = os.path.splitext(sourcePath) if ext.lower() not in [".ttf", ".otf"]: return result = generateWOFF2(sourcePath, destinationPath) return result def WOFF2BuilderFromFolder(sourceDir, destinationDir): for fileName in os.listdir(sourceDir): name, ext = os.path.splitext(fileName) path = os.path.join(sourceDir, fileName) destinationPath = os.path.join(destinationDir, name+".woff2") WOFF2Builder(path, destinationPath)
py
b40608ce06f88257c0e5a5f1c46c24124b848f19
#!/usr/bin/env python3 # # Script to convert Gaussian output to ASE-extxyz trajectory # by Patrick Melix # 2018/03/13 # # You can import the module and then call .main() or use it as a script from ase import io import os def main(inFile,outFile): if not os.path.isfile(inFile): raise ValueError('File {:} does not exist'.format(str(inFile))) #if output exists mv to .bak if os.path.isfile(outFile): print('ATTENTION: {:} exists, moving to *.bak'.format(outFile)) os.rename(outFile, outFile+'.bak') mol = io.read(inFile, format='gaussian-out', quantity='structures') for frame in mol: frame.write(outFile,append=True) return if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Convert Gaussian output to ASE-extxyz trajectory') parser.add_argument('input', type=str, help='input xyz file') parser.add_argument('output', type=str, help='output file') args = parser.parse_args() main(args.input,args.output)
py
b40609703f582f3e2eb3a05ec33847a3905d70f0
from django.shortcuts import render, redirect, reverse from django.contrib.auth import login, logout from .forms import LoginForm, ProfileForm, EmailForm from .models import ManagerUser from shipmanage.models import Ship, Order, Berth # Create your views here. def user_login(request): if request.user.is_authenticated: return redirect('/') else: if request.method == 'POST': login_form = LoginForm(request.POST) if login_form.is_valid(): user = login_form.cleaned_data['user'] login(request, user) return redirect('/') else: login_form = LoginForm() context = {'login_form':login_form, } return render(request, "login.html", context) def home_page(request): if request.user.is_authenticated: ship = Ship.objects.all() order = Order.objects.all() berth = Berth.objects.all() context = {'ship_count':ship.count, 'order_time':order, 'berth_count':berth.count} return render(request, "index.html", context) else: return redirect('login') def user_logout(request): logout(request) return redirect(request.GET.get('from', reverse('login'))) def forget_password(request): return render(request, "forgot.html") def user_profile(request): if not request.user.is_authenticated: return redirect('login') else: if request.method == 'POST': Profile_form = ProfileForm(request.POST, user=request.user) if Profile_form.is_valid(): user = request.user new_pass = Profile_form.cleaned_data['new_password'] user.set_password(new_pass) user.save() logout(request) return redirect('login') else: Profile_form = ProfileForm() context = {'Profile_form': Profile_form, } return render(request, "profiles.html", context) def change_email(request): if not request.user.is_authenticated: return redirect('login') else: if request.method == 'POST': Email_Form = EmailForm(request.POST, user=request.user) if Email_Form.is_valid(): user = request.user new_email = Email_Form.cleaned_data['email'] user.set_password(new_email) user.save() else: Email_Form = EmailForm() context = {'Email_Form': Email_Form, } return render(request,"change_email.html", context)
py
b4060a21d5c460500cec9ae8003579e9f460ada6
from PIL import Image from . import _files def draw_quadmesh(data, obj): """Returns the PGFPlots code for an graphics environment holding a rendering of the object. """ content = [] # Generate file name for current object filepath, rel_filepath = _files.new_filepath(data, "img", ".png") # Get the dpi for rendering and store the original dpi of the figure dpi = data["dpi"] fig_dpi = obj.figure.get_dpi() obj.figure.set_dpi(dpi) # Render the object and save as png file from matplotlib.backends.backend_agg import RendererAgg cbox = obj.get_clip_box() width = int(round(cbox.extents[2])) height = int(round(cbox.extents[3])) ren = RendererAgg(width, height, dpi) obj.draw(ren) # Generate a image from the render buffer image = Image.frombuffer( "RGBA", ren.get_canvas_width_height(), ren.buffer_rgba(), "raw", "RGBA", 0, 1 ) # Crop the image to the actual content (removing the the regions otherwise # used for axes, etc.) # 'image.crop' expects the crop box to specify the left, upper, right, and # lower pixel. 'cbox.extents' gives the left, lower, right, and upper # pixel. box = ( int(round(cbox.extents[0])), 0, int(round(cbox.extents[2])), int(round(cbox.extents[3] - cbox.extents[1])), ) cropped = image.crop(box) cropped.save(filepath) # Restore the original dpi of the figure obj.figure.set_dpi(fig_dpi) # write the corresponding information to the TikZ file extent = obj.axes.get_xlim() + obj.axes.get_ylim() # Explicitly use \pgfimage as includegrapics command, as the default # \includegraphics fails unexpectedly in some cases ff = data["float format"] posix_filepath = rel_filepath.as_posix() content.append( "\\addplot graphics [includegraphics cmd=\\pgfimage," f"xmin={extent[0]:{ff}}, xmax={extent[1]:{ff}}, " f"ymin={extent[2]:{ff}}, ymax={extent[3]:{ff}}] {{{posix_filepath}}};\n" ) return data, content
py
b4060c25d893e50f6650dfdb712b29aea65bbe3c
#!/usr/bin/env python2.6 ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from unittest import TestCase from ambari_agent.ActionQueue import ActionQueue from ambari_agent.AmbariConfig import AmbariConfig from ambari_agent.FileUtil import getFilePath from ambari_agent.UpgradeExecutor import UpgradeExecutor from ambari_agent.StackVersionsFileHandler import StackVersionsFileHandler import os, errno, time, pprint, tempfile, threading import TestStackVersionsFileHandler from mock.mock import patch, MagicMock, call class TestActionQueue(TestCase): def test_ActionQueueStartStop(self): actionQueue = ActionQueue(AmbariConfig().getConfig()) actionQueue.IDLE_SLEEP_TIME = 0.01 actionQueue.start() actionQueue.stop() actionQueue.join() self.assertEqual(actionQueue.stopped(), True, 'Action queue is not stopped.') #This feature is not yet implemented in ActionQueue def test_RetryAction(self): pass def test_command_in_progress(self): config = AmbariConfig().getConfig() tmpfile = tempfile.gettempdir() config.set('agent', 'prefix', tmpfile) actionQueue = ActionQueue(config) actionQueue.IDLE_SLEEP_TIME = 0.01 executor_started_event = threading.Event() end_executor_event = threading.Event() actionQueue.puppetExecutor = FakeExecutor(executor_started_event, end_executor_event) before_start_result = actionQueue.result() command = { 'commandId': 17, 'role' : "role", 'taskId' : "taskId", 'clusterName' : "clusterName", 'serviceName' : "serviceName", 'status' : 'IN_PROGRESS', 'hostname' : "localhost.localdomain", 'hostLevelParams': "hostLevelParams", 'clusterHostInfo': "clusterHostInfo", 'roleCommand': "roleCommand", 'configurations': "configurations", 'commandType': "EXECUTION_COMMAND", 'configurations':{'global' : {}} } actionQueue.put(command) actionQueue.start() executor_started_event.wait() #print ("ii: " + pprint.pformat(actionQueue.commandInProgress)) in_progress_result = actionQueue.result() end_executor_event.set() actionQueue.stop() actionQueue.join() after_start_result = actionQueue.result() self.assertEquals(len(before_start_result['componentStatus']), 0) self.assertEquals(len(before_start_result['reports']), 0) self.assertEquals(len(in_progress_result['componentStatus']), 0) self.assertEquals(len(in_progress_result['reports']), 1) self.assertEquals(in_progress_result['reports'][0]['status'], "IN_PROGRESS") self.assertEquals(in_progress_result['reports'][0]['stdout'], "Dummy output") self.assertEquals(in_progress_result['reports'][0]['exitCode'], 777) self.assertEquals(in_progress_result['reports'][0]['stderr'], 'Dummy err') self.assertEquals(len(after_start_result['componentStatus']), 0) self.assertEquals(len(after_start_result['reports']), 1) self.assertEquals(after_start_result['reports'][0]['status'], "COMPLETED") self.assertEquals(after_start_result['reports'][0]['stdout'], "returned stdout") self.assertEquals(after_start_result['reports'][0]['exitCode'], 0) self.assertEquals(after_start_result['reports'][0]['stderr'], 'returned stderr') #print("tmpout: " + pprint.pformat(actionQueue.tmpdir)) #print("before: " + pprint.pformat(before_start_result)) #print("in_progress: " + pprint.pformat(in_progress_result)) #print("after: " + pprint.pformat(after_start_result)) def test_configtags(self): config = AmbariConfig().getConfig() tmpfile = tempfile.gettempdir() config.set('agent', 'prefix', tmpfile) actionQueue = ActionQueue(config) actionQueue.IDLE_SLEEP_TIME = 0.01 executor_started_event = threading.Event() end_executor_event = threading.Event() actionQueue.puppetExecutor = FakeExecutor(executor_started_event, end_executor_event) command = { 'commandId': 17, 'role' : "role", 'taskId' : "taskId", 'clusterName' : "clusterName", 'serviceName' : "serviceName", 'status' : 'IN_PROGRESS', 'hostname' : "localhost.localdomain", 'hostLevelParams': "hostLevelParams", 'clusterHostInfo': "clusterHostInfo", 'roleCommand': "roleCommand", 'configurations': "configurations", 'commandType': "EXECUTION_COMMAND", 'configurations':{'global' : {}}, 'configurationTags':{'global' : { 'tag': 'v1' }} } actionQueue.put(command) actionQueue.start() executor_started_event.wait() end_executor_event.set() actionQueue.stop() actionQueue.join() after_start_result = actionQueue.result() configname = os.path.join(tmpfile, 'config.json') self.assertEquals(len(after_start_result['componentStatus']), 0) self.assertEquals(len(after_start_result['reports']), 1) self.assertEquals(after_start_result['reports'][0]['status'], "COMPLETED") self.assertEquals(after_start_result['reports'][0]['stdout'], "returned stdout") self.assertEquals(after_start_result['reports'][0]['exitCode'], 0) self.assertEquals(after_start_result['reports'][0]['stderr'], 'returned stderr') self.assertEquals(len(after_start_result['reports'][0]['configurationTags']), 1) self.assertEquals(True, os.path.isfile(configname)) os.remove(configname) @patch.object(ActionQueue, "executeCommand") @patch.object(ActionQueue, "stopped") def test_upgradeCommand_dispatching(self, stopped_method, executeCommand_method): queue = ActionQueue(config = MagicMock()) command = { 'commandId': 17, 'role' : "role", 'taskId' : "taskId", 'clusterName' : "clusterName", 'serviceName' : "serviceName", 'roleCommand' : 'UPGRADE', 'hostname' : "localhost.localdomain", 'hostLevelParams': "hostLevelParams", 'clusterHostInfo': "clusterHostInfo", 'configurations': "configurations", 'commandType': "EXECUTION_COMMAND", 'configurations':{'global' : {}}, 'roleParams': {}, 'commandParams' : { 'source_stack_version' : 'HDP-1.2.1', 'target_stack_version' : 'HDP-1.3.0' } } result = [{ 'exitcode' : 0, 'stdout' : 'abc', 'stderr' : 'def' }] executeCommand_method.return_value = result stopped_method.side_effect = [False, False, True, True, True] queue.stopped = stopped_method queue.IDLE_SLEEP_TIME = 0.001 queue.put(command) queue.run() self.assertTrue(executeCommand_method.called) self.assertEquals(queue.resultQueue.qsize(), 1) returned_result = queue.resultQueue.get() self.assertTrue(returned_result[1] is result[0]) @patch.object(UpgradeExecutor, "perform_stack_upgrade") def test_upgradeCommand_executeCommand(self, perform_stack_upgrade_method): queue = ActionQueue(config = MagicMock()) command = { 'commandId': 17, 'role' : "role", 'taskId' : "taskId", 'clusterName' : "clusterName", 'serviceName' : "serviceName", 'roleCommand' : 'UPGRADE', 'hostname' : "localhost.localdomain", 'hostLevelParams': "hostLevelParams", 'clusterHostInfo': "clusterHostInfo", 'configurations': "configurations", 'commandType': "EXECUTION_COMMAND", 'configurations':{'global' : {}}, 'roleParams': {}, 'commandParams' : { 'source_stack_version' : 'HDP-1.2.1', 'target_stack_version' : 'HDP-1.3.0' } } perform_stack_upgrade_method.return_value = { 'exitcode' : 0, 'stdout' : 'abc', 'stderr' : 'def' } result = queue.executeCommand(command) expected_result = [{'actionId': 17, 'clusterName': 'clusterName', 'exitCode': 0, 'role': 'role', 'serviceName': 'serviceName', 'status': 'COMPLETED', 'stderr': 'def', 'stdout': 'abc', 'taskId': 'taskId'}] self.assertEquals(result, expected_result) @patch.object(StackVersionsFileHandler, "read_stack_version") @patch.object(ActionQueue, "stopped") def test_status_command_without_globals_section(self, stopped_method, read_stack_version_method): config = AmbariConfig().getConfig() config.set('agent', 'prefix', TestStackVersionsFileHandler.dummyVersionsFile) queue = ActionQueue(config) statusCommand = { "serviceName" : 'HDFS', "commandType" : "STATUS_COMMAND", "clusterName" : "", "componentName" : "DATANODE", 'configurations':{} } queue.stopped = stopped_method stopped_method.side_effect = [False, False, True, True, True] read_stack_version_method.return_value="1.3.0" queue.IDLE_SLEEP_TIME = 0.001 queue.put(statusCommand) queue.run() returned_result = queue.resultQueue.get() returned_result[1]['status'] = 'INSTALLED' # Patch live value self.assertEquals(returned_result, ('STATUS_COMMAND', {'clusterName': '', 'componentName': 'DATANODE', 'msg': '', 'serviceName': 'HDFS', 'stackVersion': '1.3.0', 'status': 'INSTALLED'})) class FakeExecutor(): def __init__(self, executor_started_event, end_executor_event): self.executor_started_event = executor_started_event self.end_executor_event = end_executor_event pass def runCommand(self, command, tmpoutpath, tmperrpath): tmpout= open(tmpoutpath, 'w') tmpout.write("Dummy output") tmpout.flush() tmperr= open(tmperrpath, 'w') tmperr.write("Dummy err") tmperr.flush() self.executor_started_event.set() self.end_executor_event.wait() return { "exitcode": 0, "stdout": "returned stdout", "stderr": "returned stderr" }
py
b4060dc08eb6c2081468795955c97ec221674ff1
list=[] #to create a empty list i=input("enter the numbers seperated by comma").split(",") #take the input for m in i: list.append(int(m)) #to add the inputs into the list print(list) print(tuple(list))
py
b4060e4d1b1139635bdf9359b5aea9abf7ae29ea
# -*- coding: utf-8 -*- __author__ = "苦叶子" __modifier__ = "[email protected]" """ """ from flask import current_app, session, url_for from flask_restful import Resource, reqparse import json import os import codecs import threading from dateutil import tz from robot.api import ExecutionResult # done from utils.file import exists_path from utils.run import remove_robot from ..app import scheduler from utils.schedule import add_schedulejob from utils.mylogger import getlogger class TaskList(Resource): def __init__(self): self.parser = reqparse.RequestParser() self.parser.add_argument('method', type=str) self.parser.add_argument('user', type=str) self.parser.add_argument('project', type=str) self.parser.add_argument('task_name', type=str) self.parser.add_argument('schedule_type', type=str) self.parser.add_argument('year', type=str) self.parser.add_argument('mon', type=str) self.parser.add_argument('day', type=str) self.parser.add_argument('hour', type=str) self.parser.add_argument('min', type=str) self.parser.add_argument('sec', type=str) self.parser.add_argument('week', type=str) self.parser.add_argument('day_of_week', type=str) self.parser.add_argument('start_date', type=str) self.parser.add_argument('end_date', type=str) self.log = getlogger(__name__) self.app = current_app._get_current_object() def get(self): args = self.parser.parse_args() if args['method'] == 'get_tasklist': project = args["project"] return get_task_list(self.app, session['username'], project) if args['method'] == 'get_schedulejoblist': return get_schedulejob_list(self.app, args) def post(self): args = self.parser.parse_args() if args["method"] == "get_projecttask": return get_projecttask(self.app) elif args["method"] == "pause": (user,project,task_name) = (args['user'],args['project'],args['task_name']) job_id = "{}#{}#{}".format(user, project, task_name) if not user == session["username"]: self.app.config['DB'].insert_loginfo(session["username"],'schedulejob','pause',job_id,'auth fail') return {"status": "fail", "msg": "失败:不允许冻结其它人的任务!"} lock = threading.Lock() lock.acquire() try: scheduler.pause_job(job_id) except Exception as e: lock.release() return {"status": "fail", "msg": "失败:{}".format(e)} lock.release() self.app.config['DB'].insert_loginfo(session["username"], 'schedulejob', 'pause', job_id, 'success') return {"status": "success", "msg": "成功:冻结任务:{}".format(job_id)} elif args["method"] == "resume": (user,project,task_name) = (args['user'],args['project'],args['task_name']) job_id = "{}#{}#{}".format(user, project, task_name) if not user == session["username"]: self.app.config['DB'].insert_loginfo(session["username"],'schedulejob','resume',job_id,'auth fail') return {"status": "fail", "msg": "失败:不允许恢复其它人的任务!"} lock = threading.Lock() lock.acquire() try: scheduler.resume_job(job_id) except Exception as e: lock.release() return {"status": "fail", "msg": "失败: {}".format(e)} lock.release() self.app.config['DB'].insert_loginfo(session["username"], 'schedulejob', 'resume', job_id, 'success') return {"status": "success", "msg": "成功:恢复任务:{}".format(job_id)} elif args["method"] == "remove_schedulejob": (user,project,task_name) = (args['user'],args['project'],args['task_name']) job_id = "{}#{}#{}".format(user, project, task_name) if not user == session["username"]: self.app.config['DB'].insert_loginfo(session["username"],'schedulejob','remove_schedulejob',job_id,'auth fail') return {"status": "fail", "msg": "失败:不允许操作其它人的任务!"} lock = threading.Lock() lock.acquire() try: scheduler.remove_job(job_id) except Exception as e: lock.release() return {"status": "fail", "msg": "失败: {}".format(e)} lock.release() res = self.app.config['DB'].runsql("DELETE from schedule_job where user='{}' and project='{}' and task_name='{}';".format(user,project,task_name)) if res: self.app.config['DB'].insert_loginfo(session["username"], 'schedulejob', 'remove_schedulejob', job_id, 'success') else: self.app.config['DB'].insert_loginfo(session["username"], 'schedulejob', 'remove_schedulejob', job_id, 'DB Fail') return {"status": "fail", "msg": "失败:数据库操作失败:{}".format(job_id)} return {"status": "success", "msg": "成功:删除任务成功:{}".format(job_id)} elif args["method"] == "delete_allschedulejobs": if not session['username'] == 'Admin': return {"status": "fail", "msg": "失败:只有Admin可以进行此操作"} lock = threading.Lock() lock.acquire() try: scheduler.remove_all_jobs() except Exception as e: lock.release() return {"status": "fail", "msg": "失败: {}".format(e)} lock.release() res = self.app.config['DB'].runsql("DELETE from schedule_job;") if res: self.app.config['DB'].insert_loginfo(session["username"], 'schedulejob', 'delete_allschedulejobs', 'all', 'success') else: self.app.config['DB'].insert_loginfo(session["username"], 'schedulejob', 'delete_allschedulejobs', "all", 'DB Fail') return {"status": "fail", "msg": "失败:数据库操作失败:{}".format('all')} return {"status": "success", "msg": "成功:删除任务成功:{}".format('all')} elif args["method"] == "add_job2schedule": (user,project,task_name) = (args['user'],args['project'],args['task_name']) job_id = "{}#{}#{}".format(user, project, task_name) if not user == session["username"]: self.app.config['DB'].insert_loginfo(session["username"],'schedulejob','add_job2schedule',job_id,'auth fail') return {"status": "fail", "msg": "失败:不允许操作其它人的任务!"} job = scheduler.get_job(job_id) if job: job.resume() return {"status": "success", "msg": "任务已存在,开始调度!"} res = self.app.config['DB'].runsql("SELECT * from schedule_job where user='{}' and project='{}' and task_name='{}' limit 1;".format(user,project,task_name)) if not res: return {"status": "fail", "msg": "失败:找不到任务!"} else: (user,project,task_no,task_name,method,schedule_type,year,mon,day,hour,min,sec,week, day_of_week,start_date,end_date,sponsor) = res.fetchone() myargs = {'user': user, 'project': project, 'task_no': task_no, 'task_name': task_name, 'method': method, 'schedule_type': schedule_type, 'year': year, 'mon': mon, 'day': day, 'hour': hour, 'min': min, 'sec': sec, 'week': week, 'day_of_week': day_of_week, 'start_date': start_date, 'end_date': end_date, 'sponsor': sponsor } return add_schedulejob(self.app, scheduler, myargs) elif args["method"] == "edit_schedulejob": self.log.info("edit_schedulejob, args:{}".format(args)) splits = args["task_name"].split('_#') # user#project#task_name if len(splits) != 3: return {"status": "fail", "msg": "失败:任务名称的格式错误:{}".format(args["task_name"])} (user, project, task_name) = splits job_id = "{}#{}#{}".format(user, project, task_name) if not user == session["username"]: self.app.config['DB'].insert_loginfo(session["username"],'schedulejob','edit_schedulejob',job_id,'auth fail') return {"status": "fail", "msg": "失败:不允许操作其它人的任务!"} lock = threading.Lock() lock.acquire() try: job = scheduler.get_job(job_id) scheduler.remove_job(job_id) if job else None except Exception as e: lock.release() return {"status": "fail", "msg": "失败:清理调度任务失败 {}".format(e)} lock.release() res = self.app.config['DB'].runsql(''' UPDATE schedule_job set schedule_type='{}', year='{}', mon='{}', day='{}', hour='{}', min='{}', sec='{}', week='{}', day_of_week='{}', start_date='{}', end_date='{}' WHERE user='{}' and project='{}' and task_name='{}' ; '''.format(args['schedule_type'], args['year'], args['mon'], args['day'], args['hour'], args['min'], args['sec'], args['week'], args['day_of_week'], args['start_date'], args['end_date'], user, project, task_name)) if res: return {"status": "success", "msg": "成功:修改调度信息成功,可以加入调度任务"} else: return {"status": "fail", "msg": "失败:数据操作失败"} elif args["method"] == "add_schedulejob": user = session["username"] self.log.info("add_schedulejob, args:{}".format(args)) splits = args["task_name"].split('_#') # Project_#03Variables_#36 if len(splits) != 3: return {"status": "fail", "msg": "失败:任务名称的格式错误:{}".format(args["task_name"])} (project, task_name, task_no) = splits myargs = {'user': user, 'project':project, 'task_no':task_no, 'task_name': task_name, 'method': args['method'], 'schedule_type': args['schedule_type'], 'year': args['year'], 'mon': args['mon'], 'day': args['day'], 'hour': args['hour'], 'min': args['min'], 'sec': args['sec'], 'week': args['week'], 'day_of_week': args['day_of_week'], 'start_date': args['start_date'], 'end_date': args['end_date'], 'sponsor': 'user' } if self.app.config['DB'].add_chedulejob(myargs): return add_schedulejob(self.app, scheduler, myargs) else: return {"status": "fail", "msg": "失败:添加调度任务失败,插入数据库失败。"} elif args["method"] == "pause_scheduler": if not session['username'] == 'Admin': return {"status": "fail", "msg": "失败:只有Admin可以进行此操作"} lock = threading.Lock() lock.acquire() try: scheduler.pause() except Exception as e: lock.release() return {"status": "fail", "msg": "失败: {}".format(e)} lock.release() self.app.config['DB'].insert_loginfo(session["username"], 'schedulejob', 'pause_scheduler', "all", 'success') return {"status": "success", "msg": "成功:调度器已停止"} elif args["method"] == "resume_scheduler": if not session['username'] == 'Admin': return {"status": "fail", "msg": "失败:只有Admin可以进行此操作"} lock = threading.Lock() lock.acquire() try: scheduler.resume() except Exception as e: lock.release() return {"status": "fail", "msg": "失败: {}".format(e)} lock.release() self.app.config['DB'].insert_loginfo(session["username"], 'schedulejob', 'resume_scheduler', "all", 'success') return {"status": "success", "msg": "成功:调度器已恢复运行"} elif args['method'] == "remove_myschedulejobs": lock = threading.Lock() lock.acquire() try: for job in scheduler.get_jobs(): (user,project,task_name) = job.id.split('#') if user == session['username']: scheduler.remove_job(job.id) except Exception as e: lock.release() return {"status": "fail", "msg": "Fail: {}".format(e)} lock.release() res = self.app.config['DB'].runsql("DELETE from schedule_job where user='{}';".format(session['username'])) if res: self.app.config['DB'].insert_loginfo(session["username"], 'schedulejob', 'remove_myschedulejobs', 'all', 'success') else: self.app.config['DB'].insert_loginfo(session["username"], 'schedulejob', 'remove_myschedulejobs', 'all', 'DB Fail') return {"status": "fail", "msg": "数据库操作失败"} return {"status": "success", "msg": "删除任务成功"} def get_task_list(app, username, project): log = getlogger(__name__) job_path = app.config["AUTO_HOME"] + "/jobs/%s/%s" % (username, project) next_build = 0 task = [] if exists_path(job_path): next_build = get_next_build_number(job_path) if next_build != 0: # 遍历所有任务结果 # 判断最近一个任务状态 icons = { "running": url_for('static', filename='img/running.gif'), "success": url_for('static', filename='img/success.png'), "fail": url_for('static', filename='img/fail.png'), "exception": url_for('static', filename='img/exception.png')} #if exists_path(job_path + "/%s" % (next_build - 1)): running = False lock = threading.Lock() lock.acquire() remove_robot(app) for p in app.config["AUTO_ROBOT"]: if p["name"] == project: app.log.info("P name == project :{}".format(project)) running = True break lock.release() if running: task.append( { "status": icons["running"], "name": "%s_#%s" % (project, next_build-1), "success": "", "fail": "" } ) last = 1 if running: last = 2 for i in range(next_build-last, -1, -1): output_path = job_path + "/%s" % i if exists_path(output_path): if exists_path(output_path + "/output.xml"): # robot 的标志性输出 try: driver = get_taskdriver(output_path + "/cmd.txt") suite = ExecutionResult(output_path + "/output.xml").suite stat = suite.statistics name = suite.name if stat.failed != 0: status = icons["fail"] else: status = icons['success'] task.append({ "task_no": i, "status": status, "name": "<a href='/view_report/%s/%s_log' target='_blank'>%s_#%s_log</a>" % (project, i, name, i), "driver": driver, "success": stat.passed, "fail": stat.failed, "starttime": suite.starttime, "endtime": suite.endtime, "elapsedtime": suite.elapsedtime, "note": "<a href='/view_report/%s/%s_report' target='_blank'>%s_#%s_report</a>" % (project, i, name, i) }) except: status = icons["exception"] if i == next_build-last: status = icons["running"] task.append({ "task_no": i, "status": status, "name": "%s_#%s" % (project, i), "driver":driver, "success": "-", "fail": "-", "starttime": "-", "endtime": "-", "elapsedtime": "-", "note": "Abnormal" }) continue if exists_path(output_path + "/pytest_res.txt"): # pytest 的输出是 pytest_res.txt driver = get_taskdriver(job_path + "/%s/cmd.txt" % i) result = {} with open(output_path + "/pytest_res.txt", 'r') as rf: result = json.load(rf) success = result["success"] fail = result["fail"] elapsedtime = result["duration"] source = result["source"] name = os.path.basename(source) if result["fail"] > 0: status = icons["fail"] else: status = icons["success"] task.append({ "task_no": i, "status": status, "name": "<a href='/view_report/%s/%s_log' target='_blank'>%s_#%s_log</a>" % ( project, i, name, i), "driver": driver, "success": success, "fail": fail, "starttime": "unknown", "endtime": "unknown", "elapsedtime": elapsedtime, "note": "<a href='/view_report/%s/%s_report' target='_blank'>%s_#%s_report</a>" % ( project, i, source, i) }) else: status = icons["exception"] if i == next_build - last: status = icons["running"] task.append({ "task_no": i, "status": status, "name": "%s_#%s" % (project, i), "driver": "unknown", "success": "-", "fail": "-", "starttime": "-", "endtime": "-", "elapsedtime": "-", "note": "Abnormal" }) return {"total": next_build-1, "rows": task} def get_schedulejob_list(app, args): joblist = [] res = app.config['DB'].runsql('SELECT * from schedule_job;') for i in res: (user,project,task_no,task_name,method,schedule_type, year,mon,day,hour,min,sec,week, day_of_week,start_date,end_date,sponsor) = i joblist.append([user,project,task_name,task_no,method,schedule_type, year,mon,day,hour,min,sec,week, day_of_week,start_date,end_date,sponsor,'unScheduled','']) #job_id = "{}#{}#{}".format(user,project,task_name) jobs = scheduler.get_jobs() jobids = [x.id for x in jobs] for j in joblist: id = j[0]+'#'+j[1]+'#'+j[2] if id in jobids: jb = scheduler.get_job(id) j[18] = jb.next_run_time j[17] = 'running' if j[18] is not None else 'pause' jobids.remove(id) for i in jobids: (u,p,t) = i.split('#') jb = scheduler.get_job(i) joblist.append(u,p,t,'','','','','','','','','','','','','','', 'running' if jb.next_run_time is not None else 'pause', jb.next_run_time) icons = { "pause": url_for('static', filename='img/unknown.png'), "running": url_for('static', filename='img/success.png'), "unScheduled": url_for('static', filename='img/fail.png'), "schedulerPaused": url_for('static', filename='img/innormal.png') } rlist = [] for j in joblist: if j[17] == 'running': status = icons['running'] elif j[17] == 'pause': status = icons['pause'] else: status = icons['unScheduled'] if scheduler.state == 2: status = icons['schedulerPaused'] rlist.append( { "user": j[0], "project": j[1], "task_name": j[2], #"task_no": j[3], #"method": j[4], "schedule_type": j[5], "year": j[6], "mon": j[7], "day": j[8], "hour": j[9], "min": j[10], "sec": j[11], "week": j[12], "day_of_week": j[13], "start_date": j[14], "end_date": j[15], "sponsor": j[16], "status": status, "next_time": str(j[18]) } ) return {"total": 1, "rows": rlist} def get_last_task(app, username, project): icons = { "running": url_for('static', filename='img/running.gif'), "success": url_for('static', filename='img/success.png'), "fail": url_for('static', filename='img/fail.png'), "exception": url_for('static', filename='img/exception.png')} job_path = app.config["AUTO_HOME"] + "/jobs/%s/%s" % (username, project) status = icons["running"] if exists_path(job_path): next_build = get_next_build_number(job_path) last_job = next_build-1 if exists_path(job_path + "/%s" % last_job): try: suite = ExecutionResult(job_path + "/%s/output.xml" % last_job).suite stat = suite.statistics if stat.failed != 0: status = icons["fail"] else: status = icons['success'] except: status = icons["running"] else: status = icons["exception"] else: status = icons['success'] return status def get_projecttask(app): projects = app.config['DB'].get_allproject(session["username"]) task_list = {"total": len(projects), "rows": []} for op in projects: #p = op.split(':')[1] # projects = ["owner:project","o:p"] task = { # "status": status, "project": op, # "last_success": get_last_pass(job_path + "/lastPassed"), # "last_fail": get_last_fail(job_path + "/lastFail"), "enable": "Enalble", "next_time": get_next_time(app, op), "cron": "* * * * * *", "status": get_last_task(app, session["username"], op) } task_list["rows"].append(task) return task_list def get_last_pass(job_path): passed = "无" passed_path = job_path + "lastPassed" if exists_path(passed_path): f = codecs.open(passed_path, "r", "utf-8") passed = f.read() f.close() return passed def get_last_fail(job_path): fail = "无" fail_path = job_path + "lastFail" if exists_path(fail_path): f = codecs.open(fail_path, "r", "utf-8") fail = f.read() f.close() return fail def get_next_build_number(job_path): next_build_number = 1 next_path = job_path + "/nextBuildNumber" if exists_path(next_path): f = codecs.open(next_path, "r", "utf-8") next_build_number = int(f.read()) f.close() return next_build_number def get_next_time(app, name): job = scheduler.get_job("%s_%s" % (session["username"], name)) if job: to_zone = tz.gettz("CST") return job.next_run_time.astimezone(to_zone).strftime("%Y-%m-%d %H:%M:%S") else: return "-" def edit_cron(app, name, cron): user_path = app.config["AUTO_HOME"] + "/users/" + session["username"] if os.path.exists(user_path): config = json.load(codecs.open(user_path + '/config.json', 'r', 'utf-8')) index = 0 for p in config["data"]: if p["name"] == name: config["data"][index]["cron"] = cron break index += 1 json.dump(config, codecs.open(user_path + '/config.json', 'w', 'utf-8')) return True return False def get_projecttaskdir(app, project): #TODO : 适配多用户公用project projecttaskdir = app.config["AUTO_HOME"] + "/jobs/" + session["username"] + "/%s" % (project) return projecttaskdir def get_taskdriver(cmdfile): if not os.path.exists(cmdfile): return 'Unknown' else: with open(cmdfile, 'r') as f: ln = f.readline().strip() splits = ln.split('|') return splits[0] if len(splits) > 1 else 'Unknown'
py
b4061026a6a8b51049627ed8329e242fb6293107
# 8888888888 .d88888b. 8888888b. .d88888b. # 888 d88P" "Y88b 888 "Y88b d88P" "Y88b # 888 888 888 888 888 888 888 # 888 888 888 888 888 888 888 # 888 888 888 888 888 888 888 # 888 888 888 888 888 888 888 # 888 Y88b. .d88P 888 .d88P Y88b. .d88P # 888 "Y88888P" 8888888P" "Y888888" # push button to remove the inactive nodes # Use Qt threads # single node refresh # store data # display data on graphs import re import sys import qdarkstyle from time import sleep, time from threading import Lock, Thread from PyQt5 import QtGui, QtWidgets, QtCore from serial_interface import serial_constants as S_C # pylint: disable=no-name-in-module from PyQt5.QtWidgets import QApplication, QMainWindow from GUI.Employee_overview_ui import Ui_Employees_Overview from serial_interface.overview_processing import OverviewProcessing import serial_interface.data_logger as D_L ############################################################################### ## Classe used heriting from Push Button to animate the blinkin ## class AnimatedButton(QtWidgets.QPushButton): def __init__(self, darkmode): QtWidgets.QPushButton.__init__(self) self.darkmode = darkmode if (self.darkmode): color1 = QtGui.QColor(0x31, 0x36, 0x3b) color2 = QtGui.QColor("black") else: color1 = QtGui.QColor(0xe1, 0xe1, 0xe1) color2 = QtGui.QColor("red") self.co_get = 0 self.co_set = 0 byar = QtCore.QByteArray() byar.append('zcolor') self.color_anim = QtCore.QPropertyAnimation(self, byar) self.color_anim.setStartValue(color1) self.color_anim.setKeyValueAt(0.5, color2) self.color_anim.setEndValue(color1) self.color_anim.setDuration(900) self.color_anim.setLoopCount(7) self.custom_anim = QtCore.QPropertyAnimation(self, byar) # parse the current palette def parseStyleSheet(self): ss = self.styleSheet() sts = [s.strip() for s in ss.split(';') if len(s.strip())] return sts # get the background color of the current palette def getBackColor(self): self.co_get += 1 return self.palette().color(self.pal_ele) # Set the new backgroud def setBackColor(self, color): self.co_set += 1 sss = self.parseStyleSheet() bg_new = 'background-color: rgba(%d,%d,%d,%d);' % (color.red(), color.green(), color.blue(), color.alpha()) for k, sty in enumerate(sss): if re.search(r'\Abackground-color:', sty): sss[k] = bg_new break else: sss.append(bg_new) self.setStyleSheet('; '.join(sss)) def gray_out(self): self.setEnabled(False) def un_gray_out(self): self.setDisabled(False) pal_ele = QtGui.QPalette.Window zcolor = QtCore.pyqtProperty(QtGui.QColor, getBackColor, setBackColor) ############################################################################### ## Main GUI window ## class MyMainWindow(QMainWindow, Ui_Employees_Overview): def __init__(self, darkmode=0, parent=None): super(MyMainWindow, self).__init__(parent=None) self.setupUi(self) self.buttonGroup = QtWidgets.QButtonGroup(self) self.buttonGroup.buttonClicked.connect(self.handleButtonClicked) # Windows Icon setting-up icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("GUI/gui_image/drop_icon.jpg"), QtGui.QIcon.Normal, QtGui.QIcon.On) self.setWindowIcon(icon) # Windows image setting-up QPixmap_path = "GUI/gui_image/water_bottle.jpg" self.LB_image.setPixmap(QtGui.QPixmap(QPixmap_path)) # Push buttogn signal function setting-up self.PB_report .clicked.connect(self.PB_report_f) self.PB_notif_all .clicked.connect(self.PB_notif_all_f) self.PB_drink .clicked.connect(self.PB_drink_f) self.PB_connect_nrf .clicked.connect(self.PB_connect_nrf_f) self.PB_save .clicked.connect(self.PB_save_f) self.PB_import .clicked.connect(self.PB_import_f) self.PB_set_name .clicked.connect(self.PB_set_name_f) self.darkmode = darkmode # instanciate main processing object self.overview_processing = OverviewProcessing() self.empl_button_dict = dict() self.empl_dict_temp = dict() # try a first connection to the nrf self.timer = QtCore.QTimer() # self.timer.timeout.connect(self.update) self.timer.start(1000) #trigger every sec. self.timer.timeout.connect(self.timer_refresh_UI) self.selected_employee_addr = "" self.blink_tr = None connect_nrf(self) D_L.init_logger() print("\nOVERVIEW Starting #################\n\n\r") ########################################################################### # Class functions ## def handleButtonClicked(self, button): for item in self.buttonGroup.buttons(): if button is item: PB_employee_f(self, item.objectName()) def PB_report_f(self): send_notif_cmd(self) def PB_notif_all_f(self): send_notif_all_cmd(self) def PB_drink_f(self): send_drink_cmd(self) def PB_connect_nrf_f(self): connect_nrf(self) # def PB_set_path_f(self): # set_config_file(self) def PB_set_name_f(self): showDial(self) def PB_save_f(self): save_config(self) def PB_import_f(self): import_config(self) def timer_refresh_UI(self): refresh_UI(self) ############################################################################### ## end class MyMainWindow ##################################################### ############################################################################### # function to display another form ############################################################################### ## function to display a form for the name changing ## def showDial(M_W): if (M_W.selected_employee_addr == ""): print("no employee selected") else: text, okPressed = QtWidgets.QInputDialog.getText(M_W, "", "Employee name:", QtWidgets.QLineEdit.Normal, "") if okPressed and text != '': if (M_W.selected_employee_addr != ""): M_W.overview_processing.config_employee.employee_dict[ \ M_W.selected_employee_addr].name = text ############################################################################### ## Refresh the UI ## def refresh_UI(M_W): refresh_all(M_W) # TO DO implement a single not based on a Queue refresh process # refresh_all_cnt = 0 # refresh_node(M_W) # refresh_all_cnt = (refresh_all_cnt + 1) % 5 # if (not refresh_all_cnt): # refresh_all(M_W) ############################################################################### ## to be implemented ## refresh a single node ## def refresh_node(M_W): pass ############################################################################### ## Refresh all node in a row, rather heavy function so it needs to be ## caller not often ## def refresh_all(M_W): # temporary coppy of the employee copy M_W.empl_dict_temp = dict( M_W.overview_processing.config_employee.employee_dict) # run through the temporary dict for empl_key in list(M_W.empl_dict_temp): empl_value = M_W.empl_dict_temp[empl_key] # add the employe to the button dict if does not exist if empl_key not in M_W.empl_button_dict: M_W.empl_button_dict[empl_key] = empl_value add_push_button(M_W, str(empl_key), empl_value) # else simply refresh the employee else: M_W.empl_button_dict[empl_key] = empl_value refresh_push_button(M_W, str(empl_key), empl_value) if (empl_value.notif): set_notif(M_W, empl_key) # refresh the employe detailed info if (empl_key == M_W.selected_employee_addr): PB_employee_f(M_W, empl_key) D_L.log_to_file(empl_value) ############################################################################### ## display a notification emanating from an employee by blinking his ## dedicated push button ## def set_notif (M_W, empl_key): blink(M_W, empl_key) M_W.overview_processing.config_employee.un_notify(empl_key) employee = M_W.empl_button_dict[empl_key] employee.notif = 0 M_W.empl_button_dict[empl_key] = employee ############################################################################### ## Add a push button dynamically to the employee list the push buttons ## are contained in a pushbutton group ## def add_push_button(M_W, button_name, employee): BT_name = button_name # empl_button = QtWidgets.QPushButton(BT_name, M_W.SAWidget_employee_list) empl_button = AnimatedButton(M_W.darkmode) empl_button.setObjectName(BT_name) empl_button_txt = get_push_button_txt(employee) empl_button.setText(empl_button_txt) M_W.verticalLayout.addWidget(empl_button) # link each employee buttons to its function for button in M_W.VGB_employees.findChildren(AnimatedButton): # for button in M_W.VGB_employees.findChildren(QtWidgets.QPushButton): if (M_W.buttonGroup.id(button) < 0): M_W.buttonGroup.addButton(button) ############################################################################### ## refresh a single node info and gray it out if inactive ## def refresh_push_button(M_W, button_name, employee): for button in M_W.VGB_employees.findChildren(QtWidgets.QPushButton): if (button.objectName() == button_name): empl_key = button_name # empl_button_txt = str(employee.name) + " " + \ # str(int(employee.dehydration)) empl_button_txt = get_push_button_txt(employee) button.setText(empl_button_txt) if (not is_up_to_date(M_W, empl_key)): button.gray_out() else: button.un_gray_out() ############################################################################### ## Format employee info for the push button ## def get_push_button_txt(employee): return str(employee.name) + ' ' + \ "\n\rSkin Temperature " + \ str(int(employee.skin_temperature)) + '°C '\ "\n\rAmbiant Temperature " + \ str(int(employee.ambiant_temperature)) + '°C ' + \ "\n\rAmbiant Humidity " + \ str(int(employee.ambiant_humidity)) + '%' ############################################################################### ## Check if a single node has been inactive for too long ## def is_up_to_date(M_W, empl_key): empl_date = M_W.empl_button_dict[empl_key].last_activity time_now = time() delta_time = time_now - empl_date if (delta_time >= 10): return 0 else: return 1 ############################################################################### ## fuction called by the employee push button list, that will refresh ## the detailled info about the selected employee, call either by a ## push button click or a refresh all for the selected employee ## def PB_employee_f(M_W, PB_name): employee = M_W.empl_button_dict[PB_name] update_selected_employee_info( M_W, employee.name, PB_name, employee.ambiant_temperature, employee.ambiant_humidity, employee.skin_temperature) ############################################################################### # Test and Connect the serial UART connection ## def connect_nrf(M_W): ret = M_W.overview_processing.nrf_serial.connect_nrf() if (ret): M_W.LB_status_val.setText("Connected") else: M_W.LB_status_val.setText("Not Connected") ############################################################################### # Update the labels containing the info of the current # selected employee # arg number: employee number # arg name: employee name # arg dehydration: employee dehydration number ## def update_selected_employee_info(M_W, name, address, ambiant_temperature, ambiant_humidity, skin_temperature): M_W.selected_employee_addr = address M_W.LB_name_val .setText(name) M_W.LB_select_val .setText(str(address)) M_W.LB_dehydration_val .setText(str(int(skin_temperature))+'°C') M_W.LB_temperature_val .setText(str(int(ambiant_temperature))+'°C') M_W.LB_humidity_val .setText(str(int(ambiant_humidity))+'%') ############################################################################### ## Save the configuration info of the employee (name and other data) ## def save_config(M_W): save_path = QtWidgets.QFileDialog.getSaveFileName() if (save_path[0] != ""): M_W.overview_processing.config_employee.save_config(save_path[0]) ############################################################################### ## Import a configuration, usefull if we don't want to retype the employee ## name each time ## def import_config(M_W): import_path = QtWidgets.QFileDialog.getOpenFileName() if (import_path[0] != ""): M_W.overview_processing.config_employee.import_config(import_path[0]) ############################################################################### ## Blink a custom push button in the employee list ## def blink(M_W, empl_key): for button in M_W.VGB_employees.findChildren(AnimatedButton): if (button.objectName() == empl_key): button.color_anim.stop() button.color_anim.start() ############################################################################### ## send drink command notification to the currently selected node ## def send_drink_cmd(M_W): if (M_W.selected_employee_addr != ""): M_W.overview_processing.nrf_serial.send_to_node( M_W.selected_employee_addr, S_C.DRINK_NOTIF) else: M_W.LB_name_val.setText("No employee selected") ############################################################################### ## send general command notification to the currently selected node ## def send_notif_cmd(M_W): if (M_W.selected_employee_addr != ""): M_W.overview_processing.nrf_serial.send_to_node( M_W.selected_employee_addr, S_C.NOTIF) else: M_W.LB_name_val.setText("No employee selected") ############################################################################### ## send notif to ALL nodes ## def send_notif_all_cmd(M_W): M_W.overview_processing.nrf_serial.send_to_all(S_C.NOTIF_ALL) ############################################################################### ## MAIN ## def main(): app = QApplication(sys.argv) darkmode = 0 arguments = sys.argv[1:] count = len(arguments) if (count == 0): pass elif ((count == 1) and (sys.argv[1] == "-dark")): # Set dark theme darkmode = 1 app.setStyleSheet(qdarkstyle.load_stylesheet_pyqt5()) else: print("\n\r USAGE: python main.py [-dark] \n\r") return 1 w = MyMainWindow(darkmode) # w = MyMainWindow() w.show() sys.exit(app.exec_()) if __name__ == '__main__': main()
py
b4061074c39ef46ca5982d0b1bfa2e033118e7b3
import unittest from qiskit.circuit import QuantumCircuit, ParameterVector from surfer.tools.unroll_parameterized_gates import UnrollParameterizedGates class TestUnrollParameterized(unittest.TestCase): """Test the pass to unroll parameterized gates.""" def setUp(self): super().setUp() self.supported_gates = ["rx", "ry", "rz", "cp", "crx", "cry", "crz"] def test_only_parameterized_is_unrolled(self): """Test only parameterized gates are unrolled.""" x = ParameterVector("x", 4) block1 = QuantumCircuit(1) block1.rx(x[0], 0) sub_block = QuantumCircuit(2) sub_block.cx(0, 1) sub_block.rz(x[2], 0) block2 = QuantumCircuit(2) block2.ry(x[1], 0) block2.append(sub_block.to_gate(), [0, 1]) block3 = QuantumCircuit(3) block3.ccx(0, 1, 2) circuit = QuantumCircuit(3) circuit.append(block1.to_gate(), [1]) circuit.append(block2.to_gate(), [0, 1]) circuit.append(block3.to_gate(), [0, 1, 2]) circuit.cry(x[3], 0, 2) unroller = UnrollParameterizedGates(self.supported_gates) unrolled = unroller(circuit) expected = QuantumCircuit(3) expected.rx(x[0], 1) expected.ry(x[1], 0) expected.cx(0, 1) expected.rz(x[2], 0) expected.append(block3.to_gate(), [0, 1, 2]) expected.cry(x[3], 0, 2) self.assertEqual(unrolled, expected)
py
b406116863385d89c7fc00c850fb52d519e7dd18
from shape import Shape from point import Point class Square(Shape): """ A square Shape. """ def __init__(self, corners): """ Create Square self with vertices corners. Assume all sides are equal and corners are square. @param Square self: this Square object @param list[Point] corners: corners that define this Square @rtype: None >>> s = Square([Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 0)]) """ Shape.__init__(self, corners) def _set_area(self): """ Set Square self's area. Overrides Shape._set_area @type self: Square @rtype: float >>> s = Square([Point(0,0), Point(10,0), Point(10,10), Point(0,10)]) >>> s.area 100.0 """ self._area = self.corners[-1].distance(self.corners[0])**2 if __name__ == '__main__': import doctest doctest.testmod() s = Square([Point(0, 0)]) # Pycharm flags these, # as it should. # print(s.corners + "three") # print(s.area + "three")
py
b4061230f8cef3472664ce73f575e35fa8d61cf7
from django import template register = template.Library() @register.filter("can_user_challenge") def can_user_challenge(debate, user): return debate.can_user_challenge(user)
py
b40612b9664209ee45974282b2fe7be41f728d46
import numpy as np import tensorflow as tf from collections import Counter from textdect.convertmodel import ConvertedModel from misc.freezemodel import FreezedModel from mesgclsf.datapreptools import resize_to_desired from mesgclsf.s2train import FEATURE_HEIGHT, FEATURE_WIDTH def classify(classifier, session, img_arr, stride=16): """ Take an image file (an output from the first step), read and analyze the image, and returns the class ID of the input image based on the message content on it. Args: classifier: A FreezedModel constructed based on a trained model for step 2. session: The TensorFlow session. img_arr: A numpy ndarray that holds the image features. stride: Optional. The stride of the sliding. Returns: class_id: Message class ID of the input image. confidence: A percentage indicating how many slided images were predicted as this class identified by the class_id. """ height, width = FEATURE_HEIGHT, FEATURE_WIDTH resized_img = resize_to_desired(img_arr) img_height, img_width = resized_img.shape assert img_height == height features = [] for x in range(0, img_width - FEATURE_WIDTH + 1, stride): this_win = resized_img[:, x:x + FEATURE_WIDTH] features.append(this_win.reshape(-1)) _, indices = classifier.predict(session, np.asarray(features)) img_cnt = len(features) cls_list = [] for i in range(img_cnt): cls_list.append(indices[i][0]) class_id, pos_cnt = Counter(cls_list).most_common()[0] confidence = (pos_cnt / img_cnt) * 100.0 return class_id, confidence def detect_and_classify(detector, classifier, session, image_array, debug=False): boxes = detector.predict(session, image_array) for box in boxes: xmin, ymin, xmax, ymax = box.get_coordinates() gry_arr = cv2.cvtColor(image_array, cv2.COLOR_BGR2GRAY) area_img = gry_arr[ymin:ymax, xmin:xmax] cls_id, conf = classify(classifier, session, area_img) if debug: cv2.rectangle(image_array, (xmin, ymin), (xmax, ymax), (255, 0, 0), 1) print("class ID: {}, confidence: {}".format(cls_id, conf)) if __name__ == "__main__": import cv2 import json import os import matplotlib.pyplot as plt from time import time from settings import PROJECT_ROOT t0 = time() model_dir = os.path.join(PROJECT_ROOT, 'Data', 'Result') s1_model = 's1_keras_model.pb' lss_model = 's2_lss_model.pb' tas_model = 's2_tas_model.pb' sign_type = 'TAS' # LSS or TAS img_file = os.path.join(PROJECT_ROOT, 'Data', 'Step1', 'Test', 'sign1.jpg') img_arr = cv2.imread(img_file) s1_config_file = os.path.join(PROJECT_ROOT, 'textdect', 'config.json') with open(s1_config_file) as config_buffer: s1_config = json.loads(config_buffer.read()) with tf.Graph().as_default() as graph: detector = ConvertedModel(s1_config, graph, 's1_keras', model_dir, s1_model) lss_classifier = FreezedModel(graph, 's2_lss', model_dir, lss_model) tas_classifier = FreezedModel(graph, 's2_tas', model_dir, tas_model) with tf.Session(graph=graph) as sess: if sign_type == 'LSS': detect_and_classify(detector, lss_classifier, sess, img_arr, debug=True) else: detect_and_classify(detector, tas_classifier, sess, img_arr, debug=True) t1 = time() print("Running time: {:4.2f} seconds".format(t1-t0)) plt.imshow(img_arr) plt.show()
py
b40612d51ca983c3f185a203ca3306816564da54
import os, random, struct import py from rpython.jit.backend.x86 import rx86 from rpython.rlib.rarithmetic import intmask from rpython.tool.udir import udir INPUTNAME = 'checkfile_%s.s' FILENAME = 'checkfile_%s.o' BEGIN_TAG = '<<<rx86-test-begin>>>' END_TAG = '<<<rx86-test-end>>>' class CodeCheckerMixin(object): def __init__(self, expected, accept_unnecessary_prefix): self.expected = expected self.accept_unnecessary_prefix = accept_unnecessary_prefix self.index = 0 def begin(self, op): self.op = op self.instrindex = self.index def writechar(self, char): if char != self.expected[self.index:self.index+1]: if (char == self.accept_unnecessary_prefix and self.index == self.instrindex): return # ignore the extra character '\x40' print self.op print "\x09from rx86.py:", hexdump(self.expected[self.instrindex:self.index] + char)+"..." print "\x09from 'as': ", hexdump(self.expected[self.instrindex:self.index+15])+"..." raise Exception("Differs") self.index += 1 def done(self): assert len(self.expected) == self.index def stack_frame_size_delta(self, delta): pass # ignored def check_stack_size_at_ret(self): pass # ignored def hexdump(s): return ' '.join(["%02X" % ord(c) for c in s]) def reduce_to_32bit(s): if s[:2] != '%r': return s if s[2:].isdigit(): return s + 'd' else: return '%e' + s[2:] # ____________________________________________________________ COUNT1 = 15 suffixes = {0:'', 1:'b', 2:'w', 4:'l', 8:'q'} class TestRx86_32(object): WORD = 4 TESTDIR = 'rx86_32' X86_CodeBuilder = rx86.X86_32_CodeBuilder REGNAMES = ['%eax', '%ecx', '%edx', '%ebx', '%esp', '%ebp', '%esi', '%edi'] REGNAMES8 = ['%al', '%cl', '%dl', '%bl', '%ah', '%ch', '%dh', '%bh'] XMMREGNAMES = ['%%xmm%d' % i for i in range(16)] REGS = range(8) REGS8 = [i|rx86.BYTE_REG_FLAG for i in range(8)] NONSPECREGS = [rx86.R.eax, rx86.R.ecx, rx86.R.edx, rx86.R.ebx, rx86.R.esi, rx86.R.edi] accept_unnecessary_prefix = None methname = '?' def reg_tests(self): return self.REGS def reg8_tests(self): return self.REGS8 def xmm_reg_tests(self): return self.reg_tests() def stack_bp_tests(self, count=COUNT1): return ([0, 4, -4, 124, 128, -128, -132] + [random.randrange(-0x20000000, 0x20000000) * 4 for i in range(count)]) def stack_sp_tests(self, count=COUNT1): return ([0, 4, 124, 128] + [random.randrange(0, 0x20000000) * 4 for i in range(count)]) def memory_tests(self): return [(reg, ofs) for reg in self.NONSPECREGS for ofs in self.stack_bp_tests(5) ] def array_tests(self): return [(reg1, reg2, scaleshift, ofs) for reg1 in self.NONSPECREGS for reg2 in self.NONSPECREGS for scaleshift in [0, 1, 2, 3] for ofs in self.stack_bp_tests(1) ] def imm8_tests(self): v = ([-128,-1,0,1,127] + [random.randrange(-127, 127) for i in range(COUNT1)]) return v def imm32_tests(self): v = ([-0x80000000, 0x7FFFFFFF, 128, 256, -129, -255] + [random.randrange(-32768,32768)<<16 | random.randrange(0,65536) for i in range(COUNT1)] + [random.randrange(128, 256) for i in range(COUNT1)]) return self.imm8_tests() + v def relative_tests(self): py.test.skip("explicit test required for %r" % (self.methname,)) def get_all_tests(self): return { 'r': self.reg_tests, 'r8': self.reg8_tests, 'x': self.xmm_reg_tests, 'b': self.stack_bp_tests, 's': self.stack_sp_tests, 'm': self.memory_tests, 'a': self.array_tests, 'i': self.imm32_tests, 'i8': self.imm8_tests, 'j': self.imm32_tests, 'l': self.relative_tests, } def assembler_operand_reg(self, regnum): return self.REGNAMES[regnum] def assembler_operand_reg8(self, regnum): assert regnum & rx86.BYTE_REG_FLAG return self.REGNAMES8[regnum &~ rx86.BYTE_REG_FLAG] def assembler_operand_xmm_reg(self, regnum): return self.XMMREGNAMES[regnum] def assembler_operand_stack_bp(self, position): return '%d(%s)' % (position, self.REGNAMES[5]) def assembler_operand_stack_sp(self, position): return '%d(%s)' % (position, self.REGNAMES[4]) def assembler_operand_memory(self, (reg1, offset)): if not offset: offset = '' return '%s(%s)' % (offset, self.REGNAMES[reg1]) def assembler_operand_array(self, (reg1, reg2, scaleshift, offset)): if not offset: offset = '' return '%s(%s,%s,%d)' % (offset, self.REGNAMES[reg1], self.REGNAMES[reg2], 1<<scaleshift) def assembler_operand_imm(self, value): return '$%d' % value def assembler_operand_imm_addr(self, value): return '%d' % value def get_all_assembler_operands(self): return { 'r': self.assembler_operand_reg, 'r8': self.assembler_operand_reg8, 'x': self.assembler_operand_xmm_reg, 'b': self.assembler_operand_stack_bp, 's': self.assembler_operand_stack_sp, 'm': self.assembler_operand_memory, 'a': self.assembler_operand_array, 'i': self.assembler_operand_imm, 'i8': self.assembler_operand_imm, 'j': self.assembler_operand_imm_addr, } def run_test(self, methname, instrname, argmodes, args_lists, instr_suffix=None): global labelcount labelcount = 0 oplist = [] testdir = udir.ensure(self.TESTDIR, dir=1) inputname = str(testdir.join(INPUTNAME % methname)) filename = str(testdir.join(FILENAME % methname)) g = open(inputname, 'w') g.write('\x09.string "%s"\n' % BEGIN_TAG) # if instrname == 'MOVDQ': if self.WORD == 8: instrname = 'MOVQ' else: instrname = 'MOVD' if argmodes == 'xb': py.test.skip('"as" uses an undocumented alternate encoding??') if argmodes == 'xx' and self.WORD != 8: instrname = 'MOVQ' # for args in args_lists: suffix = "" if (argmodes and not self.is_xmm_insn and not instrname.startswith('FSTP') and not instrname.startswith('FLD')): suffix = suffixes[self.WORD] # Special case: On 64-bit CPUs, rx86 assumes 64-bit integer # operands when converting to/from floating point, so we need to # indicate that with a suffix if (self.WORD == 8) and (instrname.startswith('CVT') and 'SI' in instrname): suffix = suffixes[self.WORD] if instr_suffix is not None: suffix = instr_suffix # overwrite following = "" if False: # instr.indirect: suffix = "" if args[-1][0] == i386.REL32: #in (i386.REL8,i386.REL32): labelcount += 1 following = "\nL%d:" % labelcount elif args[-1][0] in (i386.IMM8,i386.IMM32): args = list(args) args[-1] = ("%d", args[-1][1]) # no '$' sign else: suffix += " *" k = -1 else: k = len(args) #for m, extra in args[:k]: # assert m != i386.REL32 #not in (i386.REL8,i386.REL32) assembler_operand = self.get_all_assembler_operands() ops = [] for mode, v in zip(argmodes, args): ops.append(assembler_operand[mode](v)) ops.reverse() # if (instrname.lower() == 'mov' and suffix == 'q' and ops[0].startswith('$') and 0 <= int(ops[0][1:]) <= 4294967295 and ops[1].startswith('%r')): # movq $xxx, %rax => movl $xxx, %eax suffix = 'l' ops[1] = reduce_to_32bit(ops[1]) # op = '\t%s%s %s%s' % (instrname.lower(), suffix, ', '.join(ops), following) g.write('%s\n' % op) oplist.append(op) g.write('\t.string "%s"\n' % END_TAG) g.close() f, g = os.popen4('as --%d "%s" -o "%s"' % (self.WORD*8, inputname, filename), 'r') f.close() got = g.read() g.close() error = [line for line in got.splitlines() if 'error' in line.lower()] if error: raise Exception("Assembler got an error: %r" % error[0]) error = [line for line in got.splitlines() if 'warning' in line.lower()] if error: raise Exception("Assembler got a warning: %r" % error[0]) try: f = open(filename, 'rb') except IOError: raise Exception("Assembler did not produce output?") data = f.read() f.close() i = data.find(BEGIN_TAG) assert i>=0 j = data.find(END_TAG, i) assert j>=0 as_code = data[i+len(BEGIN_TAG)+1:j] return oplist, as_code def make_all_tests(self, methname, modes, args=[]): if modes: tests = self.get_all_tests() m = modes[0] if m == 'p' and self.WORD == 4: return [] lst = tests[m]() random.shuffle(lst) if methname == 'PSRAD_xi' and m == 'i': lst = [x for x in lst if 0 <= x <= 31] result = [] for v in lst: result += self.make_all_tests(methname, modes[1:], args+[v]) return result else: # special cases if methname in ('ADD_ri', 'AND_ri', 'CMP_ri', 'OR_ri', 'SUB_ri', 'XOR_ri', 'SBB_ri'): if args[0] == rx86.R.eax: return [] # ADD EAX, constant: there is a special encoding if methname in ('CMP8_ri',): if args[0] == rx86.R.al: return [] # CMP AL, constant: there is a special encoding if methname == 'XCHG_rr' and rx86.R.eax in args: return [] # special encoding if methname == 'MOV_rj' and args[0] == rx86.R.eax: return [] # MOV EAX, [immediate]: there is a special encoding if methname == 'MOV_jr' and args[1] == rx86.R.eax: return [] # MOV [immediate], EAX: there is a special encoding if methname == 'MOV8_rj' and args[0] == rx86.R.al: return [] # MOV AL, [immediate]: there is a special encoding if methname == 'MOV8_jr' and args[1] == rx86.R.al: return [] # MOV [immediate], AL: there is a special encoding return [args] def get_code_checker_class(self): class X86_CodeBuilder(CodeCheckerMixin, self.X86_CodeBuilder): pass return X86_CodeBuilder def should_skip_instruction(self, instrname, argmodes): is_artificial_instruction = (argmodes != '' and argmodes[-1].isdigit()) is_artificial_instruction |= (instrname[-1].isdigit() and instrname[-1] != '8') return ( is_artificial_instruction or # XXX: Can't tests shifts automatically at the moment (instrname[:3] in ('SHL', 'SAR', 'SHR')) or # CALL_j is actually relative, so tricky to test (instrname == 'CALL' and argmodes == 'j') or # SET_ir must be tested manually (instrname == 'SET' and argmodes == 'ir') or # MULTIBYTE_NOPs can't easily be tested the same way (instrname == 'MULTIBYTE') ) def should_skip_instruction_bit32(self, instrname, argmodes): if self.WORD != 8: # those are tested in the 64 bit test case return ( # the test suite uses 64 bit registers instead of 32 bit... (instrname == 'PEXTRQ') or (instrname == 'PINSRQ') ) return False def complete_test(self, methname): if '_' in methname: instrname, argmodes = methname.split('_') else: instrname, argmodes = methname, '' if self.should_skip_instruction(instrname, argmodes) or \ self.should_skip_instruction_bit32(instrname, argmodes): print "Skipping %s" % methname return # XXX: ugly way to deal with the differences between 32 and 64 bit if not hasattr(self.X86_CodeBuilder, methname): return # XXX: hack hack hack if methname == 'WORD': return if instrname.endswith('8'): instrname = instrname[:-1] if instrname == 'MOVSX' or instrname == 'MOVZX': instr_suffix = 'b' + suffixes[self.WORD] instrname = instrname[:-1] if argmodes[1] == 'r': argmodes = [argmodes[0], 'r8'] else: instr_suffix = 'b' realargmodes = [] for mode in argmodes: if mode == 'r': mode = 'r8' elif mode == 'i': mode = 'i8' realargmodes.append(mode) argmodes = realargmodes elif instrname == 'CALL' or instrname == 'JMP': instr_suffix = suffixes[self.WORD] + ' *' else: instr_suffix = None if instrname.find('EXTR') != -1 or \ instrname.find('INSR') != -1 or \ instrname.find('INSERT') != -1 or \ instrname.find('EXTRACT') != -1 or \ instrname.find('SRLDQ') != -1 or \ instrname.find('SHUF') != -1 or \ instrname.find('PBLEND') != -1 or \ instrname.find('CMPP') != -1: realargmodes = [] for mode in argmodes: if mode == 'i': mode = 'i8' realargmodes.append(mode) argmodes = realargmodes print "Testing %s with argmodes=%r" % (instrname, argmodes) self.methname = methname self.is_xmm_insn = getattr(getattr(self.X86_CodeBuilder, methname), 'is_xmm_insn', False) ilist = self.make_all_tests(methname, argmodes) oplist, as_code = self.run_test(methname, instrname, argmodes, ilist, instr_suffix) cls = self.get_code_checker_class() cc = cls(as_code, self.accept_unnecessary_prefix) for op, args in zip(oplist, ilist): if op: cc.begin(op) getattr(cc, methname)(*args) cc.done() def setup_class(cls): import os g = os.popen('as -version </dev/null -o /dev/null 2>&1') data = g.read() g.close() if not data.startswith('GNU assembler'): py.test.skip("full tests require the GNU 'as' assembler") def test_all(self): for name in rx86.all_instructions: yield self.complete_test, name
py
b40612ff914d58fdfc156c72ef60b1ec2de2e8f0
from pathlib import Path from django.test import TestCase from papermerge.core.models import ( Document, Folder, ColoredTag ) from papermerge.test.utils import create_root_user # points to papermerge.testing folder BASE_DIR = Path(__file__).parent class TestDocument(TestCase): def setUp(self): self.user = create_root_user() def test_basic_document_tagging(self): doc = Document.create_document( title="document_c", file_name="document_c.pdf", size='1212', lang='DEU', user=self.user, page_count=5, ) doc.save() # associate "invoice" and "paid" tags # boths tags belong to self.user doc.tags.add( "invoice", "paid", tag_kwargs={"user": self.user} ) # If you’re filtering on multiple tags, it’s very common to get # duplicate results, # because of the way relational databases work. Often # you’ll want to make use of the distinct() method on QuerySets. found_docs = Document.objects.filter( tags__name__in=["paid", "invoice"] ).distinct() self.assertEquals( found_docs.count(), 1 ) self.assertEquals( found_docs.first().title, "document_c" ) def test_basic_folder_tagging(self): folder = Folder.objects.create( title="Markus", user=self.user ) folder.tags.add( "invoices", tag_kwargs={"user": self.user} ) found_folders = Folder.objects.filter( tags__name__in=["invoices"] ) self.assertEquals( found_folders.count(), 1 ) self.assertEquals( found_folders.first().title, "Markus" )
py
b406130ce24b03b60b24f896d185217a2a1593f4
# Copyright 2020 The SQLFlow Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import functools import json import os import sys import numpy as np import tensorflow as tf from sqlflow_submitter.db import (buffered_db_writer, connect_with_data_source, db_generator, parseMaxComputeDSN) from .fast_predict import FastPredict from .input_fn import (get_dtype, pai_maxcompute_db_generator, pai_maxcompute_input_fn, parse_sparse_feature, parse_sparse_feature_predict) # Disable Tensorflow INFO and WARNING logs os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' try: import sqlflow_models except: pass # TODO(shendiaomo): Remove after we fully upgrade to TF2.0 TF_VERSION_2 = True TF_VERSION_PARTS = tf.__version__.split(".") if int(TF_VERSION_PARTS[0]) == 1: TF_VERSION_2 = False # Disable Tensorflow INFO and WARNING logs if TF_VERSION_2: import logging tf.get_logger().setLevel(logging.ERROR) else: tf.logging.set_verbosity(tf.logging.ERROR) from .pai_distributed import define_tf_flags, make_distributed_info_without_evaluator, dump_into_tf_config def keras_predict(estimator, model_params, save, result_table, feature_column_names, feature_metas, result_col_name, datasource, select, hdfs_namenode_addr, hive_location, hdfs_user, hdfs_pass): classifier = estimator(**model_params) classifier_pkg = sys.modules[estimator.__module__] conn = connect_with_data_source(datasource) def eval_input_fn(batch_size, cache=False): feature_types = [] for name in feature_column_names: # NOTE: vector columns like 23,21,3,2,0,0 should use shape None if feature_metas[name]["is_sparse"]: feature_types.append((tf.int64, tf.int32, tf.int64)) else: feature_types.append(get_dtype(feature_metas[name]["dtype"])) gen = db_generator(conn.driver, conn, select, feature_column_names, None, feature_metas) dataset = tf.data.Dataset.from_generator(gen, (tuple(feature_types), )) ds_mapper = functools.partial( parse_sparse_feature_predict, feature_column_names=feature_column_names, feature_metas=feature_metas) dataset = dataset.map(ds_mapper).batch(batch_size) if cache: dataset = dataset.cache() return dataset # NOTE: always use batch_size=1 when predicting to get the pairs of features and predict results # to insert into result table. pred_dataset = eval_input_fn(1) one_batch = next(iter(pred_dataset)) # NOTE: must run predict one batch to initialize parameters # see: https://www.tensorflow.org/alpha/guide/keras/saving_and_serializing#saving_subclassed_models classifier.predict_on_batch(one_batch) classifier.load_weights(save) pred_dataset = eval_input_fn(1, cache=True).make_one_shot_iterator() buff_rows = [] column_names = feature_column_names[:] column_names.append(result_col_name) with buffered_db_writer(conn.driver, conn, result_table, column_names, 100, hdfs_namenode_addr, hive_location, hdfs_user, hdfs_pass) as w: for features in pred_dataset: result = classifier.predict_on_batch(features) result = classifier_pkg.prepare_prediction_column(result[0]) row = [] for idx, name in enumerate(feature_column_names): val = features[name].numpy()[0][0] row.append(str(val)) if isinstance(result, np.ndarray) and len(result) > 1: # NOTE(typhoonzero): if the output dimension > 1, format output tensor # using a comma separated string. Only available for keras models. row.append(",".join([str(i) for i in result])) else: row.append(str(result)) w.write(row) del pred_dataset def estimator_predict(estimator, model_params, save, result_table, feature_column_names, feature_metas, result_col_name, datasource, select, hdfs_namenode_addr, hive_location, hdfs_user, hdfs_pass, is_pai, pai_table): classifier = estimator(**model_params) if not is_pai: conn = connect_with_data_source(datasource) def fast_input_fn(generator): feature_types = [] for name in feature_column_names: if feature_metas[name]["is_sparse"]: feature_types.append((tf.int64, tf.int32, tf.int64)) else: feature_types.append(get_dtype(feature_metas[name]["dtype"])) def _inner_input_fn(): dataset = tf.data.Dataset.from_generator(generator, (tuple(feature_types), )) ds_mapper = functools.partial( parse_sparse_feature_predict, feature_column_names=feature_column_names, feature_metas=feature_metas) dataset = dataset.map(ds_mapper) dataset = dataset.batch(1).cache() iterator = dataset.make_one_shot_iterator() features = iterator.get_next() return features return _inner_input_fn column_names = feature_column_names[:] column_names.append(result_col_name) fast_predictor = FastPredict(classifier, fast_input_fn) if is_pai: driver = "pai_maxcompute" conn = None pai_table_parts = pai_table.split(".") formated_pai_table = "odps://%s/tables/%s" % (pai_table_parts[0], pai_table_parts[1]) predict_generator = pai_maxcompute_db_generator( formated_pai_table, feature_column_names, None, feature_metas)() else: driver = conn.driver predict_generator = db_generator(conn.driver, conn, select, feature_column_names, None, feature_metas)() with buffered_db_writer(driver, conn, result_table, column_names, 100, hdfs_namenode_addr, hive_location, hdfs_user, hdfs_pass) as w: for features in predict_generator: result = fast_predictor.predict(features) row = [] for idx, _ in enumerate(feature_column_names): val = features[0][idx][0] row.append(str(val)) if "class_ids" in list(result)[0]: row.append(str(list(result)[0]["class_ids"][0])) else: # regression predictions row.append(str(list(result)[0]["predictions"][0])) w.write(row) def pred(datasource, estimator, select, result_table, feature_columns, feature_column_names, result_col_name, feature_metas={}, model_params={}, save="", batch_size=1, hdfs_namenode_addr="", hive_location="", hdfs_user="", hdfs_pass="", is_pai=False, pai_table=""): if not is_pai: conn = connect_with_data_source(datasource) model_params.update(feature_columns) is_estimator = issubclass( estimator, (tf.estimator.Estimator, tf.estimator.BoostedTreesClassifier, tf.estimator.BoostedTreesRegressor)) if not is_estimator: if not issubclass(estimator, tf.keras.Model): # functional model need field_metas parameter model_params["field_metas"] = feature_metas keras_predict(estimator, model_params, save, result_table, feature_column_names, feature_metas, result_col_name, datasource, select, hdfs_namenode_addr, hive_location, hdfs_user, hdfs_pass) else: if is_pai: FLAGS = define_tf_flags() model_params["model_dir"] = FLAGS.checkpointDir else: model_params['model_dir'] = save estimator_predict(estimator, model_params, save, result_table, feature_column_names, feature_metas, result_col_name, datasource, select, hdfs_namenode_addr, hive_location, hdfs_user, hdfs_pass, is_pai, pai_table) print("Done predicting. Predict table : %s" % result_table)
py
b4061424d1d94167d7fa9b8d1de95c11aba27116
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional test for OptimizerV2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from absl.testing import parameterized import numpy as np from tensorflow.python import keras from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.keras import backend from tensorflow.python.keras import callbacks from tensorflow.python.keras import combinations from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import losses from tensorflow.python.keras import optimizers from tensorflow.python.keras import testing_utils from tensorflow.python.keras.engine import input_layer from tensorflow.python.keras.engine import sequential from tensorflow.python.keras.engine import training from tensorflow.python.keras.layers import core from tensorflow.python.keras.optimizer_v2 import adadelta from tensorflow.python.keras.optimizer_v2 import adagrad from tensorflow.python.keras.optimizer_v2 import adam from tensorflow.python.keras.optimizer_v2 import adamax from tensorflow.python.keras.optimizer_v2 import ftrl from tensorflow.python.keras.optimizer_v2 import gradient_descent from tensorflow.python.keras.optimizer_v2 import learning_rate_schedule from tensorflow.python.keras.optimizer_v2 import nadam from tensorflow.python.keras.optimizer_v2 import optimizer_v2 from tensorflow.python.keras.optimizer_v2 import rmsprop from tensorflow.python.keras.utils import np_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import momentum from tensorflow.python.training import training_util from tensorflow.python.training.tracking import util as trackable_utils _DATA_TYPES = [dtypes.half, dtypes.float32, dtypes.float64] # TODO(b/141710709): complex support in NVCC and ROCM. if (not test_util.IsBuiltWithNvcc() and not test.is_built_with_rocm()): _DATA_TYPES += [dtypes.complex64, dtypes.complex128] class OptimizerTest(test.TestCase, parameterized.TestCase): @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testBasic(self): for dtype in _DATA_TYPES: with testing_utils.use_gpu(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) loss = lambda: 5 * var0 + 3 * var1 # pylint: disable=cell-var-from-loop sgd = gradient_descent.SGD(3.0) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 1 step of sgd through optimizer opt_op = sgd.minimize(loss, var_list=[var0, var1]) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) # Validate updated params self.assertAllClose([-14., -13.], self.evaluate(var0)) self.assertAllClose([-6., -5.], self.evaluate(var1)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testAdaptiveLearningRate(self): for dtype in _DATA_TYPES: with self.test_session(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) def loss(): return 5 * var0 + 3 * var1 # pylint: disable=cell-var-from-loop sgd = gradient_descent.SGD(1.0) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 1 step of sgd through optimizer opt_op = sgd.minimize(loss, [var0, var1]) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) # Validate updated params # var0 = [1., 2.] - 1.0 * [5, 5] self.assertAllClose([-4., -3.], self.evaluate(var0)) # var1 = [3., 4.] - 1.0 * [3, 3] self.assertAllClose([0., 1.], self.evaluate(var1)) sgd.learning_rate = 0.5 if context.executing_eagerly(): sgd.minimize(loss, [var0, var1]) else: self.evaluate(opt_op) # Validate updated params # var0 = [-4., -3.] - 0.5 * [5, 5] self.assertAllClose([-6.5, -5.5], self.evaluate(var0)) # var1 = [0., 1.] - 0.5 * [3, 3] self.assertAllClose([-1.5, -0.5], self.evaluate(var1)) sgd.learning_rate = learning_rate_schedule.InverseTimeDecay( 0.5, decay_steps=1.0, decay_rate=0.5) if context.executing_eagerly(): sgd.minimize(loss, [var0, var1]) else: self.evaluate(opt_op) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testPrecomputedGradient(self): for dtype in _DATA_TYPES: with testing_utils.use_gpu(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) loss = lambda: 5 * var0 + 3 * var1 # pylint: disable=cell-var-from-loop grad_loss = constant_op.constant([42, -42], dtype=dtype) sgd = gradient_descent.SGD(3.0) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 1 step of sgd through optimizer opt_op = sgd.minimize(loss, var_list=[var0, var1], grad_loss=grad_loss) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) # Validate updated params self.assertAllClose([1.0 - 3 * 5 * 42.0, 2.0 - 3 * 5 * (-42.0)], self.evaluate(var0)) self.assertAllClose([3.0 - 3 * 3 * 42.0, 4.0 - 3 * 3 * (-42.0)], self.evaluate(var1)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testNoGradients(self): for dtype in _DATA_TYPES: with testing_utils.use_gpu(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) loss = lambda: 5 * var0 # pylint: disable=cell-var-from-loop sgd_op = gradient_descent.SGD(3.0) with self.assertRaisesRegex(ValueError, 'No gradients'): # var1 has no gradient sgd_op.minimize(loss, var_list=[var1]) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testNoGradientsForAnyVariables_Minimize(self): for dtype in _DATA_TYPES: with testing_utils.use_gpu(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) loss = lambda: constant_op.constant(5.0) sgd_op = gradient_descent.SGD(3.0) with self.assertRaisesRegex(ValueError, 'No gradients provided for any variable'): sgd_op.minimize(loss, var_list=[var0, var1]) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testNoGradientsForAnyVariables_ApplyGradients(self): for dtype in _DATA_TYPES: with testing_utils.use_gpu(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) sgd_op = gradient_descent.SGD(3.0) with self.assertRaisesRegex(ValueError, 'No gradients provided for any variable'): sgd_op.apply_gradients([(None, var0), (None, var1)]) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testGradientsAsVariables(self): for i, dtype in enumerate(_DATA_TYPES): with testing_utils.use_gpu(): var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([3.0, 4.0], dtype=dtype) loss = lambda: 5 * var0 + 3 * var1 # pylint: disable=cell-var-from-loop sgd = gradient_descent.SGD(3.0) grads_and_vars = sgd._compute_gradients(loss, [var0, var1]) # Convert gradients to tf.Variables converted_grads = [ variables.Variable( array_ops.zeros([2], dtype), name='c_%d_%d' % (i, j)) for j, gv in enumerate(grads_and_vars) ] convert_ops = [ state_ops.assign(converted_grads[j], gv[0]) for j, gv in enumerate(grads_and_vars) ] # Run convert_ops to achieve the gradients converting self.evaluate(variables.global_variables_initializer()) self.evaluate(convert_ops) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 1 step of sgd through optimizer converted_grads_and_vars = list(zip(converted_grads, [var0, var1])) opt_op = sgd.apply_gradients(converted_grads_and_vars) self.evaluate(variables.global_variables_initializer()) self.evaluate(convert_ops) self.evaluate(opt_op) # Validate updated params self.assertAllClose([-14., -13.], self.evaluate(var0)) self.assertAllClose([-6., -5.], self.evaluate(var1)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testComputeGradientsWithTensors(self): with testing_utils.use_gpu(): x = ops.convert_to_tensor_v2_with_dispatch(1.0) def f(): return x * x sgd = gradient_descent.SGD(3.0) grads_and_vars = sgd._compute_gradients(f, [x]) self.assertLen(grads_and_vars, 1) grad, x_as_var = grads_and_vars[0] self.assertIs(x, x_as_var) self.assertEqual(2.0, self.evaluate(grad)) with self.assertRaises(NotImplementedError): sgd.apply_gradients(grads_and_vars) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testConstraint(self): constraint_01 = lambda x: clip_ops.clip_by_value(x, -0.1, 0.) constraint_0 = lambda x: clip_ops.clip_by_value(x, 0., 1.) with testing_utils.use_gpu(): var0 = variables.Variable([1.0, 2.0], constraint=constraint_01) var1 = variables.Variable([3.0, 4.0], constraint=constraint_0) loss = lambda: 5 * var0 + 3 * var1 sgd = gradient_descent.SGD(3.0) self.evaluate(variables.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) self.assertAllClose([3.0, 4.0], self.evaluate(var1)) # Run 1 step of sgd through optimizer opt_op = sgd.minimize(loss, var_list=[var0, var1]) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) # Validate updated params self.assertAllClose([-0.1, -0.1], self.evaluate(var0)) self.assertAllClose([0., 0.], self.evaluate(var1)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testIterationWithoutMinimize(self): with testing_utils.use_gpu(): sgd = gradient_descent.SGD(3.0) self.evaluate(sgd.iterations.initializer) self.assertEqual(0, self.evaluate(sgd.iterations)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testConfig(self): with testing_utils.use_gpu(): opt = gradient_descent.SGD(learning_rate=1.0) config = opt.get_config() opt2 = gradient_descent.SGD.from_config(config) lr = opt._get_hyper('learning_rate') lr2 = opt2._get_hyper('learning_rate') self.evaluate(variables.global_variables_initializer()) # assert both are equal float values. self.assertEqual(self.evaluate(lr), self.evaluate(lr2)) var0 = variables.Variable([[1.0], [2.0]], dtype=dtypes.float32) loss = lambda: 3 * var0 # learning rate variable created when calling minimize. opt.minimize(loss, [var0]) opt3 = gradient_descent.SGD.from_config(config) lr3 = opt3._get_hyper('learning_rate') self.evaluate(variables.global_variables_initializer()) self.assertEqual(self.evaluate(lr), self.evaluate(lr3)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testConfigWithLearningRateDecay(self): with testing_utils.use_gpu(): var0 = variables.Variable([[1.0], [2.0]], dtype=dtypes.float32) for decay_schedule in [ learning_rate_schedule.InverseTimeDecay( 0.5, decay_steps=1.0, decay_rate=0.1), learning_rate_schedule.PiecewiseConstantDecay( [5], [1., .5]) ]: step = 10 opt = gradient_descent.SGD(decay_schedule) config = opt.get_config() opt2 = gradient_descent.SGD.from_config(config) # assert both are equal float values. self.assertAllEqual( decay_schedule(step), opt._get_hyper('learning_rate')(step)) self.assertAllEqual( decay_schedule(step), opt2._get_hyper('learning_rate')(step)) loss = lambda: 3 * var0 # learning rate variable is created when calling minimize. opt.minimize(loss, [var0]) self.evaluate(variables.global_variables_initializer()) config = opt.get_config() opt3 = gradient_descent.SGD.from_config(config) self.assertAllEqual( self.evaluate(opt._get_hyper('learning_rate')(step)), opt3._get_hyper('learning_rate')(step)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testGradClipValue(self): with testing_utils.use_gpu(): var = variables.Variable([1.0, 2.0]) loss = lambda: 3 * var opt = gradient_descent.SGD(learning_rate=1.0, clipvalue=1.0) opt_op = opt.minimize(loss, [var]) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) self.assertAllClose([0., 1.], self.evaluate(var)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testGradClipNorm(self): with testing_utils.use_gpu(): var = variables.Variable([1.0]) loss = lambda: 3 * var opt = gradient_descent.SGD(learning_rate=1.0, clipnorm=1.0) opt_op = opt.minimize(loss, [var]) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) self.assertAllClose([0.], self.evaluate(var)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testGradGlobalClipNorm(self): with testing_utils.use_gpu(): # l2 norm is 5.0 var1 = variables.Variable([1.0]) var2 = variables.Variable([2.0]) loss = lambda: 3 * var1 + 4 * var2 opt = gradient_descent.SGD(learning_rate=1.0, global_clipnorm=2.0) opt_op = opt.minimize(loss, [var1, var2]) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) # grad1 = 3.0 * 2.0 / 5.0 = 1.2 self.assertAllClose([-.2], self.evaluate(var1)) # grad2 = 4.0 * 2.0 / 5.0 = 1.6 self.assertAllClose([.4], self.evaluate(var2)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testInvalidClipNorm(self): with self.assertRaisesRegex(ValueError, '>= 0'): gradient_descent.SGD(learning_rate=1.0, clipnorm=-1.0) @combinations.generate( combinations.combine( mode=['graph', 'eager'], clip_type=['clipnorm', 'global_clipnorm', 'clipvalue'])) def testConfigWithCliping(self, clip_type): opt = gradient_descent.SGD(learning_rate=1.0, **{clip_type: 2.0}) config = opt.get_config() opt = gradient_descent.SGD.from_config(config) self.assertEqual(getattr(opt, clip_type), 2.0) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testInvalidKwargs(self): with self.assertRaisesRegex(TypeError, 'Unexpected keyword argument'): gradient_descent.SGD(learning_rate=1.0, invalidkwargs=1.0) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testWeights(self): with testing_utils.use_gpu(): opt1 = adam.Adam(learning_rate=1.0) var1 = variables.Variable([1.0, 2.0], dtype=dtypes.float32) loss1 = lambda: 3 * var1 opt_op_1 = opt1.minimize(loss1, [var1]) self.evaluate(variables.global_variables_initializer()) config = opt1.get_config() opt2 = adam.Adam.from_config(config) var2 = variables.Variable([1.0, 2.0], dtype=dtypes.float32) loss2 = lambda: 3 * var2 opt_op_2 = opt2.minimize(loss2, [var2]) weights = opt1.get_weights() # Assert set_weights and both variables get updated to same value. self.evaluate(variables.global_variables_initializer()) opt2.set_weights(weights) self.evaluate([opt_op_1, opt_op_2]) self.assertAllClose(self.evaluate(var1), self.evaluate(var2)) self.assertEqual(1, self.evaluate(opt1.iterations)) self.assertEqual(1, self.evaluate(opt2.iterations)) var3 = variables.Variable([1.0, 2.0, 3.0], dtype=dtypes.float32) var4 = variables.Variable([4.0, 5.0, 6.0], dtype=dtypes.float32) loss3 = lambda: 3 * var3 + 5 * var4 opt_op_3 = opt1.minimize(loss3, [var3, var4]) # Assert set_weights with ValueError since weight list does not match. self.evaluate(variables.global_variables_initializer()) weights = opt1.get_weights() with self.assertRaisesRegex(ValueError, 'but the optimizer was'): opt2.set_weights(weights) # Assert set_weights and variables get updated to same value. var5 = variables.Variable([1.0, 2.0, 3.0], dtype=dtypes.float32) var6 = variables.Variable([4.0, 5.0, 6.0], dtype=dtypes.float32) loss4 = lambda: 3 * var5 + 5 * var6 opt_op_4 = opt2.minimize(loss4, [var5, var6]) self.evaluate(variables.global_variables_initializer()) opt2.set_weights(weights) self.evaluate([opt_op_3, opt_op_4]) self.assertAllClose( self.evaluate([var3, var4]), self.evaluate([var5, var6])) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testGettingHyperParameters(self): with self.test_session(): opt = adam.Adam(learning_rate=1.0) var = variables.Variable([1.0, 2.0], dtype=dtypes.float32) loss = lambda: 3 * var opt_op = opt.minimize(loss, [var]) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) lr = self.evaluate(opt.lr) self.assertEqual(1.0, lr) opt.lr = 2.0 lr = self.evaluate(opt.lr) self.assertEqual(2.0, lr) self.evaluate(opt.lr.assign(3.0)) lr = self.evaluate(opt.lr) self.assertEqual(3.0, lr) with self.assertRaises(AttributeError): opt.not_an_attr += 3 @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testGettingHyperParametersWithLrInConstructor(self): with self.test_session(): opt = gradient_descent.SGD(lr=3.0) var = variables.Variable([1.0, 2.0], dtype=dtypes.float32) loss = lambda: 3 * var opt_op = opt.minimize(loss, [var]) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) self.assertIsInstance(opt.lr, variables.Variable) self.assertIsInstance(opt.learning_rate, variables.Variable) lr = self.evaluate(opt.lr) self.assertEqual(3.0, lr) opt.lr = 2.0 lr = self.evaluate(opt.lr) self.assertEqual(2.0, lr) self.evaluate(opt.lr.assign(4.0)) lr = self.evaluate(opt.lr) self.assertEqual(4.0, lr) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testOptimizerWithKerasModel(self): a = input_layer.Input(shape=(3,), name='input_a') b = input_layer.Input(shape=(3,), name='input_b') dense = core.Dense(4, name='dense') c = dense(a) d = dense(b) e = core.Dropout(0.5, name='dropout')(c) model = training.Model([a, b], [d, e]) optimizer = gradient_descent.SGD(learning_rate=0.001) loss = 'mse' model.compile(optimizer, loss, metrics=['mae']) input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) output_d_np = np.random.random((10, 4)) output_e_np = np.random.random((10, 4)) model.fit([input_a_np, input_b_np], [output_d_np, output_e_np], epochs=1, batch_size=5) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testOptimizerWithCallbacks(self): np.random.seed(1331) input_np = np.random.random((10, 3)) output_np = np.random.random((10, 4)) a = input_layer.Input(shape=(3,), name='input_a') model = sequential.Sequential() model.add(core.Dense(4, kernel_initializer='zeros', name='dense')) model.add(core.Dropout(0.5, name='dropout')) model(a) optimizer = gradient_descent.SGD(learning_rate=0.1) model.compile(optimizer, loss='mse', metrics=['mae']) # This does not reduce the LR after the first epoch (due to low delta). cbks = [ callbacks.ReduceLROnPlateau( monitor='val_loss', factor=0.1, min_delta=0, patience=1, cooldown=5) ] model.fit( input_np, output_np, batch_size=10, validation_data=(input_np, output_np), callbacks=cbks, epochs=2, verbose=0) self.assertAllClose( float(backend.get_value(model.optimizer.lr)), 0.1, atol=1e-4) # This should reduce the LR after the first epoch (due to high delta). cbks = [ callbacks.ReduceLROnPlateau( monitor='val_loss', factor=0.1, min_delta=10, patience=1, cooldown=5) ] model.fit( input_np, output_np, batch_size=10, validation_data=(input_np, output_np), callbacks=cbks, epochs=2, verbose=2) self.assertAllClose( float(backend.get_value(model.optimizer.lr)), 0.01, atol=1e-4) def testOptimizerSetIterations(self): global_step = training_util.get_or_create_global_step() opt = adam.Adam(learning_rate=1.0) opt.iterations = global_step var = variables.Variable([1.0, 2.0], dtype=dtypes.float32) self.evaluate(variables.global_variables_initializer()) init_step_value = self.evaluate(global_step) loss = lambda: 3 * var opt_op = opt.minimize(loss, [var]) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) new_step_value = self.evaluate(global_step) self.assertEqual(new_step_value, init_step_value + 1) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testOptimizerWithCallableVarList(self): train_samples = 20 input_dim = 1 num_classes = 2 (x, y), _ = testing_utils.get_test_data( train_samples=train_samples, test_samples=10, input_shape=(input_dim,), num_classes=num_classes) y = np_utils.to_categorical(y) num_hidden = 1 model = testing_utils.get_small_sequential_mlp( num_hidden=num_hidden, num_classes=num_classes) opt = adam.Adam() loss = lambda: losses.mean_squared_error(model(x), y) var_list = lambda: model.trainable_weights with self.assertRaisesRegex( ValueError, 'Weights for model .* have not yet been created'): var_list() train_op = opt.minimize(loss, var_list) if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) self.assertEqual( [[0.]], self.evaluate(opt.get_slot(var_list()[0], 'm'))) self.evaluate(train_op) self.assertNotEqual( [[0.]], self.evaluate(opt.get_slot(var_list()[0], 'm'))) self.assertLen(var_list(), 4) def testVarKey(self): with ops.get_default_graph().as_default(): a = variables.Variable([1., 2.], name='var') b = variables.Variable([1.], name='var') self.assertTrue(a._in_graph_mode) self.assertTrue(b._in_graph_mode) var_key = optimizer_v2._var_key(a) self.assertEqual('var', var_key) var_key = optimizer_v2._var_key(b) self.assertEqual('var_1', var_key) def testVarName(self): with ops.get_default_graph().as_default(): var = variables.Variable([1., 2.], name='var') loss = var + 1. opt = adam.Adam() opt.get_updates(loss, [var]) opt_vars = opt.variables() self.assertLen(opt_vars, 3) self.assertEqual('Adam/iter:0', opt_vars[0].name) self.assertEqual('Adam/var/m:0', opt_vars[1].name) var_2 = variables.Variable([1., 2.], name='var_2') loss = var_2 + 1. with backend.name_scope('outter'): opt.get_updates(loss, [var_2]) opt_vars = opt.variables() self.assertLen(opt_vars, 5) self.assertEqual('outter/Adam/var_2/m:0', opt_vars[3].name) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testEmptyVarList(self): opt = gradient_descent.SGD(1.) opt.minimize(lambda: constant_op.constant(1.), []) opt.apply_gradients([]) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testAggregationTrue(self): # Test that experimental_aggregate_gradients=True works without distributed # strategy. var = variables.Variable([1., 2.]) opt = gradient_descent.SGD(3.0) self.evaluate(variables.global_variables_initializer()) self.assertAllClose([1., 2.], self.evaluate(var)) opt_op = opt.apply_gradients([([0.1, 0.1], var)], experimental_aggregate_gradients=True) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) self.assertAllClose([0.7, 1.7], self.evaluate(var)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testAggregationFalse(self): # Test that experimental_aggregate_gradients=False works without distributed # strategy. var = variables.Variable([1., 2.]) opt = gradient_descent.SGD(3.0) self.evaluate(variables.global_variables_initializer()) self.assertAllClose([1., 2.], self.evaluate(var)) opt_op = opt.apply_gradients([([0.1, 0.1], var)], experimental_aggregate_gradients=False) self.evaluate(variables.global_variables_initializer()) self.evaluate(opt_op) self.assertAllClose([0.7, 1.7], self.evaluate(var)) @combinations.generate(combinations.combine(mode=['eager'])) def testRestoringIterationsWithoutAnOptimizer(self): opt = gradient_descent.SGD(3.0) opt.iterations.assign(5) checkpoint = trackable_utils.Checkpoint(optimizer=opt) path = checkpoint.save(self.get_temp_dir()) # Following verifies that the `iterations` can be restored with the absence # of an `Optimizer` object (using a `Checkpoint` as a placeholder). iterations_var = variables.Variable(0, dtype=dtypes.int64) optimizer_checkpoint = trackable_utils.Checkpoint(iter=iterations_var) checkpoint_to_restore = trackable_utils.Checkpoint( optimizer=optimizer_checkpoint) checkpoint_to_restore.restore(path) self.assertEqual(5, self.evaluate(iterations_var)) @keras_parameterized.run_all_keras_modes class OptimizersCompatibilityTest(keras_parameterized.TestCase): def _testOptimizersCompatibility(self, opt_v1, opt_v2, test_weights=True): if context.executing_eagerly(): self.skipTest( 'v1 optimizer does not run in eager mode') np.random.seed(1331) with testing_utils.use_gpu(): train_samples = 20 input_dim = 3 num_classes = 2 (x, y), _ = testing_utils.get_test_data( train_samples=train_samples, test_samples=10, input_shape=(input_dim,), num_classes=num_classes) y = np_utils.to_categorical(y) num_hidden = 5 model_v1 = testing_utils.get_small_sequential_mlp( num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) model_v1.compile( opt_v1, loss='categorical_crossentropy', metrics=[], run_eagerly=testing_utils.should_run_eagerly()) model_v1.fit(x, y, batch_size=5, epochs=1) model_v2 = testing_utils.get_small_sequential_mlp( num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) model_v2.set_weights(model_v1.get_weights()) model_v2.compile( opt_v2, loss='categorical_crossentropy', metrics=[], run_eagerly=testing_utils.should_run_eagerly()) if not ops.executing_eagerly_outside_functions(): model_v2._make_train_function() if test_weights: opt_v2.set_weights(opt_v1.get_weights()) hist_1 = model_v1.fit(x, y, batch_size=5, epochs=1, shuffle=False) hist_2 = model_v2.fit(x, y, batch_size=5, epochs=1, shuffle=False) self.assertAllClose(model_v1.get_weights(), model_v2.get_weights(), rtol=1e-5, atol=1e-5) self.assertAllClose(hist_1.history['loss'], hist_2.history['loss'], rtol=1e-5, atol=1e-5) def testAdadeltaCompatibility(self): opt_v1 = optimizers.Adadelta(lr=0.01) opt_v2 = adadelta.Adadelta(learning_rate=0.01) self._testOptimizersCompatibility(opt_v1, opt_v2) def testAdagradCompatibility(self): opt_v1 = optimizers.Adagrad(lr=0.01) opt_v2 = adagrad.Adagrad(learning_rate=0.01) self._testOptimizersCompatibility(opt_v1, opt_v2) def testAdamCompatibility(self): opt_v1 = optimizers.Adam() opt_v2 = adam.Adam() self._testOptimizersCompatibility(opt_v1, opt_v2) def testAdamaxCompatibility(self): opt_v1 = optimizers.Adamax(lr=0.01) opt_v2 = adamax.Adamax(learning_rate=0.01) self._testOptimizersCompatibility(opt_v1, opt_v2) def testNadamCompatibility(self): opt_v1 = optimizers.Nadam(lr=0.001) opt_v2 = nadam.Nadam(learning_rate=0.001) self._testOptimizersCompatibility(opt_v1, opt_v2) def testMomentumCompatibility(self): opt_v1 = optimizers.SGD(lr=0.01, momentum=0.9) opt_v2 = gradient_descent.SGD(learning_rate=0.01, momentum=0.9) self._testOptimizersCompatibility(opt_v1, opt_v2) def testRMSpropCompatibility(self): opt_v1 = optimizers.RMSprop() opt_v2 = rmsprop.RMSprop() self._testOptimizersCompatibility(opt_v1, opt_v2) def testSGDCompatibility(self): opt_v1 = optimizers.SGD(lr=0.01) opt_v2 = gradient_descent.SGD(learning_rate=0.01) self._testOptimizersCompatibility(opt_v1, opt_v2, False) def testNumericEquivalenceForNesterovMomentum(self): if context.executing_eagerly(): self.skipTest( 'v1 optimizer does not run in eager mode') np.random.seed(1331) with testing_utils.use_gpu(): train_samples = 20 input_dim = 3 num_classes = 2 (x, y), _ = testing_utils.get_test_data( train_samples=train_samples, test_samples=10, input_shape=(input_dim,), num_classes=num_classes) y = np_utils.to_categorical(y) num_hidden = 5 model_k_v1 = testing_utils.get_small_sequential_mlp( num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) model_k_v2 = testing_utils.get_small_sequential_mlp( num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) model_k_v2.set_weights(model_k_v1.get_weights()) model_tf = testing_utils.get_small_sequential_mlp( num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) model_tf.set_weights(model_k_v2.get_weights()) opt_k_v1 = optimizers.SGD(momentum=0.9, nesterov=True) opt_k_v2 = gradient_descent.SGD(momentum=0.9, nesterov=True) opt_tf = momentum.MomentumOptimizer( learning_rate=0.01, momentum=0.9, use_nesterov=True) model_k_v1.compile( opt_k_v1, loss='categorical_crossentropy', metrics=[], run_eagerly=testing_utils.should_run_eagerly()) model_k_v2.compile( opt_k_v2, loss='categorical_crossentropy', metrics=[], run_eagerly=testing_utils.should_run_eagerly()) model_tf.compile( opt_tf, loss='categorical_crossentropy', metrics=[], run_eagerly=testing_utils.should_run_eagerly()) hist_k_v1 = model_k_v1.fit(x, y, batch_size=5, epochs=10, shuffle=False) hist_k_v2 = model_k_v2.fit(x, y, batch_size=5, epochs=10, shuffle=False) hist_tf = model_tf.fit(x, y, batch_size=5, epochs=10, shuffle=False) self.assertAllClose(model_k_v1.get_weights(), model_tf.get_weights()) self.assertAllClose(model_k_v1.get_weights(), model_k_v2.get_weights()) self.assertAllClose(opt_k_v1.get_weights(), opt_k_v2.get_weights()) self.assertAllClose(hist_k_v1.history['loss'], hist_tf.history['loss']) self.assertAllClose(hist_k_v1.history['loss'], hist_k_v2.history['loss']) def testNumericEquivalenceForAmsgrad(self): if context.executing_eagerly(): self.skipTest( 'v1 optimizer does not run in eager mode') np.random.seed(1331) with testing_utils.use_gpu(): train_samples = 20 input_dim = 3 num_classes = 2 (x, y), _ = testing_utils.get_test_data( train_samples=train_samples, test_samples=10, input_shape=(input_dim,), num_classes=num_classes) y = np_utils.to_categorical(y) num_hidden = 5 model_k_v1 = testing_utils.get_small_sequential_mlp( num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) model_k_v2 = testing_utils.get_small_sequential_mlp( num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) model_k_v2.set_weights(model_k_v1.get_weights()) opt_k_v1 = optimizers.Adam(amsgrad=True) opt_k_v2 = adam.Adam(amsgrad=True) model_k_v1.compile( opt_k_v1, loss='categorical_crossentropy', metrics=[], run_eagerly=testing_utils.should_run_eagerly()) model_k_v2.compile( opt_k_v2, loss='categorical_crossentropy', metrics=[], run_eagerly=testing_utils.should_run_eagerly()) hist_k_v1 = model_k_v1.fit(x, y, batch_size=5, epochs=10, shuffle=False) hist_k_v2 = model_k_v2.fit(x, y, batch_size=5, epochs=10, shuffle=False) self.assertAllClose(model_k_v1.get_weights(), model_k_v2.get_weights()) self.assertAllClose(opt_k_v1.get_weights(), opt_k_v2.get_weights()) self.assertAllClose(hist_k_v1.history['loss'], hist_k_v2.history['loss']) # Note: These tests are kept in a separate class to avoid bugs in some # distributions of Python that break AutoGraph which is used by tf.function. @combinations.generate(combinations.combine(mode=['eager'])) class OptimizerWithFunctionTest(test.TestCase, parameterized.TestCase): def testBasic(self): var = variables.Variable([1.0, 2.0], dtype=dtypes.float32) loss = lambda: 3 * var opt = adam.Adam(learning_rate=1.0) @def_function.function def fn(): opt.minimize(loss, [var]) return var self.assertAllClose([0., 1.], fn(), atol=1e-4) self.assertAllClose([-1, 0.], fn(), atol=1e-4) def testVarKeyWithVarCreatedInEager(self): a = variables.Variable([1., 2.], name='var') b = variables.Variable([1.], name='var') @test_util.also_run_as_tf_function def var_key_test(): self.assertFalse(a._in_graph_mode) self.assertFalse(b._in_graph_mode) var_key_a = optimizer_v2._var_key(a) self.assertStartsWith(var_key_a, 'var_') var_key_b = optimizer_v2._var_key(b) self.assertStartsWith(var_key_b, 'var_') self.assertNotEqual(var_key_a, var_key_b) var_key_test() def testLearningRateDecayUsedInTwoFunctions(self): a = variables.Variable([1., 2.], name='var') b = variables.Variable([1.], name='var') learning_rate_decay = learning_rate_schedule.InverseTimeDecay( 0.5, decay_steps=1.0, decay_rate=0.5) opt = adam.Adam(learning_rate=learning_rate_decay) loss_a = lambda: 3 * a loss_b = lambda: 2 * b @def_function.function def fn_a(): opt.minimize(loss_a, [a]) return a @def_function.function def fn_b(): opt.minimize(loss_b, [b]) return b fn_a() fn_b() _NUM_LEARNERS = 50 APPLY_SCOPE = 'debug_apply' ALLOWLIST = [ # optimizer_v2._deduplicate_indexed_slices contains an indexed slice: # array_ops.shape(unique_indices)[0] # which winds up expanding to [0:1:1] thereby creating three constants # to represent the indices. ('embeddings/strided_slice/stack', 'Const'), ] def get_inputs(op): op_inputs = list(op.inputs) + op.control_inputs names = [i.name for i in op_inputs] op_inputs = [getattr(i, 'op', i) for i in op_inputs] return op_inputs, names def strip_name(node): if 'Placeholder' in node.op: return node.name = '' def topological_sort(graph): graph_ops = graph.get_operations() sources = [] result = [] inputs = {} outputs = collections.defaultdict(set) for op in graph_ops: op_inputs = get_inputs(op)[0] if not op_inputs: sources.append(op) inputs[op] = set(op_inputs) for i in op_inputs: outputs[i].add(op) while sources: op = sources.pop() for op_output in outputs[op]: inputs[op_output].remove(op) if not inputs[op_output]: sources.append(op_output) result.append(op) # Check correctness. if len(result) != len(graph_ops): raise ValueError('Sort result has {} ops, source graph has {}.' .format(len(result), len(graph_ops))) sort_check_seen = set() for op in result: sort_check_seen.add(op) for i in get_inputs(op)[0]: assert i in sort_check_seen return result def identify_redundant_ops(graph): """Implements basic common subexpression elimination. This is not intended to replicate the graph semantics of TensorFlow Graphs (for instance it does not handle stateful op ordering), nor is it intended to replace the common subexpression elimination Grappler pass. Rather, it provides a high level sanity check that clearly redundant ops are not being created. Args: graph: The graph to be analyzed. Returns: A count of the duplicate ops and a description of the structure of each. """ sorted_ops = topological_sort(graph) duplicates = collections.defaultdict(list) unified_node_defs = {} name_map = {} for op in sorted_ops: input_names = [] for op_input, name in zip(*get_inputs(op)): input_def = op_input.node_def # Operations can have multiple outputs. We track which is used to prevent # overzealous elimination. input_def.name = name input_def.input[:] = [name_map.get(i, i) for i in input_def.input] strip_name(input_def) # NodeDef.SerializeToString() does not provide identical serialized # representations for identical NodeDefs, so we instead use string # representation as a dict key. key = repr(input_def) if key in unified_node_defs: input_names.append(unified_node_defs[key]) else: unified_node_defs[key] = op_input.name input_names.append(name) node_def = op.node_def node_def.input[:] = input_names strip_name(node_def) key = repr(node_def) duplicates[key].append(op) name_map[op.name] = duplicates[key][0].name num_duplicates = 0 duplicate_types = [] for standard_def, op_defs in duplicates.items(): # We are only interested in testing the apply method of the optimizer op_defs = [i for i in op_defs if APPLY_SCOPE in i.name] # We only check for per-apply redundant ops. if len(op_defs) < _NUM_LEARNERS: continue # Certain ops are simply not worth eliminating, and are instead simply # ignored. name, op_type = op_defs[0].name, op_defs[0].type if any(allowlisted_scope in name and op_type == allowlisted_type for allowlisted_scope, allowlisted_type in ALLOWLIST): continue num_duplicates += len(op_defs) traceback = [] for level in op_defs[0].traceback: traceback.append(' {} {}:{}'.format(level[0], level[2], level[1])) duplicate_types.append( '# Example name: {}\n# Op creation stack:\n{}\n{}'.format( op_defs[0].name, '\n'.join(traceback), standard_def)) return num_duplicates, duplicate_types def make_model(): r"""Constructs a simple ensemble of weak learners model. --------- --------- --------- --------- | Input | | Input | ... | Input | | Input | --------- --------- --------- --------- | | | | V V V V --------- --------- --------- --------- | Embed | | Embed | ... | Embed | | Embed | --------- --------- --------- --------- | | | | V V V V --------- --------- --------- --------- | Dense | | Dense | ... | Dense | | Dense | --------- --------- --------- --------- \ | | / \ | | / --------------------------------------------- | --------- | Dense | --------- This topology is chosen because it exercises both dense and sparse update paths. Returns: A model for testing optimizer coefficient reuse. """ inputs = [] intermediates = [] for _ in range(_NUM_LEARNERS): inp = keras.layers.Input(shape=(1,), dtype=dtypes.int32) layer = keras.layers.Embedding(1, 4)(inp) layer = keras.layers.Dense(1)(layer) inputs.append(inp) intermediates.append(layer) layer = keras.layers.Concatenate(axis=-1)(intermediates) layer = keras.layers.Dense(1)(layer) return keras.models.Model(inputs, layer) COEFFICIENT_PARAMS = ( ('Adadelta', adadelta.Adadelta, None), ('Adagrad', adagrad.Adagrad, None), ('Adam', adam.Adam, None), ('Adam_amdgrad', adam.Adam, dict(amsgrad=True)), ('Adamax', adamax.Adamax, None), ('Ftrl', ftrl.Ftrl, None), ('Ftrl_l2_shrinkage', ftrl.Ftrl, dict(l2_shrinkage_regularization_strength=0.1)), ('SGD', gradient_descent.SGD, None), ('SGD_momentum', gradient_descent.SGD, dict(momentum=0.5)), ('Nadam', nadam.Nadam, None), ('RMSprop', rmsprop.RMSprop, None), ('RMSprop_centered', rmsprop.RMSprop, dict(centered=True)), ('RMSprop_momentum', rmsprop.RMSprop, dict(momentum=0.5)), ('RMSprop_momentum_centered', rmsprop.RMSprop, dict(momentum=0.5, centered=True)), ) class OptimizerCoefficientTest(keras_parameterized.TestCase): @parameterized.named_parameters(*COEFFICIENT_PARAMS) def test_duplicate_ops(self, optimizer_class, init_kwargs=None): init_kwargs = init_kwargs or {} optimizer = optimizer_class(**init_kwargs) graph = ops.Graph() with graph.as_default(): model = make_model() trainable_variables = model.trainable_variables grads = optimizer.get_gradients(model.outputs[0], trainable_variables) with backend.name_scope(APPLY_SCOPE): optimizer.apply_gradients(zip(grads, trainable_variables)) num_duplicates, duplicate_types = identify_redundant_ops(graph) if num_duplicates: # Avoid spamming logs. if len(duplicate_types) > 3: duplicate_types = duplicate_types[:3] + ['...'] num_total = len(graph.get_operations()) raise ValueError('{} of {} ({:.1f}%) ops were duplicates:\n\n{}'.format( num_duplicates, num_total, num_duplicates / num_total * 100, '\n'.join(duplicate_types))) @parameterized.named_parameters(*COEFFICIENT_PARAMS) def test_subclass_compat(self, optimizer_class, init_kwargs=None): """Ensure that subclassed optimizers without apply_state still work.""" class SubclassedOptimizer(optimizer_class): def _resource_apply_dense(self, grad, var): # pylint: disable=useless-super-delegation return super(SubclassedOptimizer, self)._resource_apply_dense(grad, var) def _resource_apply_sparse(self, grad, var, indices): # pylint: disable=useless-super-delegation return super(SubclassedOptimizer, self)._resource_apply_sparse( grad, var, indices) init_kwargs = init_kwargs or {} optimizer = SubclassedOptimizer(**init_kwargs) graph = ops.Graph() with graph.as_default(): model = make_model() trainable_variables = model.trainable_variables grads = optimizer.get_gradients(model.outputs[0], trainable_variables) with backend.name_scope(APPLY_SCOPE): optimizer.apply_gradients(zip(grads, trainable_variables)) if __name__ == '__main__': test.main()
py
b406157f6f3e7dfb27c7e613e6ec761cbda4c3df
# -*- coding: utf-8 -*- """Black Friday Dataset-Linear Regression Model.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1IJdM0lsxz7fljcJCwSWB-lYrSntXv0YV - In this we are going to predict the purchasing amount of customers during Black Friday, using various features such as age, gender, marital status. - The dataset we are going to use is the Black Friday dataset from Kaggle which contains about 550068 rows and 12 features that can be downloaded - The dataset contains the labels which we have to predict and the labels are continuous. So the problem we have is a Supervised Regression type. ## Import libraries """ # Import libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') """## Importing dataset""" train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') """## Descriptive analysis""" # Preview training dataset train.head() # Preview testing dataset test.head() # Training dataset dimensions - (rows, columns) print('Training data: \nRows: {} Columns: {}'.format(train.shape[0], train.shape[1])) train.shape test.shape # Features data-type train.info() train.describe() # Statistical summary train.describe().T train.apply(lambda x: len(x.unique())) """## Checking for Null values""" train.isnull() train.isnull().sum() # Checking for Null values round((train.isnull().sum() / train.shape[0]) * 100, 2).astype(str) + ' %' """## Age :""" train['Age'].value_counts() # Checking the % counts of unique values round((train['Age'].value_counts(normalize = True).mul(100)), 2).astype(str) + ' %' """## Stay_In_Current_City_Years :""" train['Stay_In_Current_City_Years'].value_counts() # Checking the % counts of unique values round((train['Stay_In_Current_City_Years'].value_counts(normalize = True).mul(100)), 2).astype(str) + ' %' train['Product_Category_1'].value_counts() round((train['Product_Category_1'].value_counts(normalize = True).mul(100)), 2).astype(str) + ' %' round((train['Product_Category_2'].value_counts(normalize = True).mul(100)), 2).astype(str) + ' %' round((train['Product_Category_3'].value_counts(normalize = True).mul(100)), 2).astype(str) + ' %' """## Observations : - The feature 'Product_Category_2' contains 31.57% null values which can be imputed whereas 'Product_Category_3' contains 69.67% null values so we can drop this feature. - The features 'Age' and 'Stay_In_Current_City_Years' contain some values which have '+' in them which need to be replaced. ## Exploratory Data Analysis: ### Univariate Analysis: #### 'Purchase': """ plt.style.use('ggplot') plt.figure(figsize = (20, 7)) sns.distplot(train['Purchase'], bins = 20, color='GREEN') plt.title('Distribution of Purchase Amount', fontdict = {'fontname' : 'Monospace', 'fontsize' : 30, 'fontweight' : 'bold'}) plt.xlabel('Purchase amount', fontdict = {'fontname' : 'Monospace', 'fontsize' : 20}) plt.ylabel('Number of people', fontdict = {'fontname' : 'Monospace', 'fontsize' : 20}) plt.tick_params(labelsize = 15) plt.show() """### Creating a barplot for 'Gender'""" gen = train['Gender'].value_counts() plt.figure(figsize = (6, 6)) plt.style.use('seaborn-whitegrid') sns.barplot(gen.index, gen.values, palette = 'bright') plt.title('Distribution of Gender', fontdict = {'fontname' : 'Monospace', 'fontsize' : 20, 'fontweight' : 'bold'}) plt.xlabel('Gender', fontdict = {'fontname' : 'Monospace', 'fontsize' : 15}) plt.ylabel('Number of people', fontdict = {'fontname' : 'Monospace', 'fontsize' : 15}) plt.tick_params(labelsize = 10) plt.show() """### Creating a pie chart for 'City Category'""" city = train['City_Category'].value_counts() plt.style.use('seaborn') plt.figure(figsize = (10, 7)) plt.pie(city.values, labels = city.index, startangle = 30, explode = (0 , 0.20, 0), shadow = True, autopct = '%1.1f%%') plt.title('City category distribution', fontdict = {'fontname' : 'Monospace', 'fontsize' : 30, 'fontweight' : 'bold'}) plt.legend() plt.legend(prop = {'size' : 20}) plt.axis('equal') plt.show() """### Creating a donut chart for 'Age'""" age = train['Age'].value_counts() plt.style.use('bmh') plt.figure(figsize = (10, 5)) plt.pie(age.values, labels = age.index, startangle = 50, autopct = '%1.1f%%') centre_circle = plt.Circle((0, 0), 0.7, fc = 'white') fig = plt.gcf() fig.gca().add_artist(centre_circle) plt.title('Age distribution', fontdict = {'fontname' : 'Monospace', 'fontsize' : 30, 'fontweight' : 'bold'}) plt.axis('equal') plt.legend(prop = {'size' : 20}) plt.show() """### Creating a barplot for 'Occupation'""" occupation = train['Occupation'].value_counts() plt.figure(figsize = (20, 6)) plt.style.use('seaborn-whitegrid') sns.barplot(occupation.index, occupation.values, palette = 'Paired') plt.title('Occupation wise Distribution', fontdict = {'fontname' : 'Monospace', 'fontsize' : 30, 'fontweight' : 'bold'}) plt.xlabel('Occupation code', fontdict = {'fontname' : 'Monospace', 'fontsize' : 25}) plt.ylabel('Number of people', fontdict = {'fontname' : 'Monospace', 'fontsize' : 25}) plt.tick_params(labelsize = 20) plt.show() """### Creating a countplot for 'Marital Status'""" plt.style.use('seaborn') plt.figure(figsize = (7, 6)) sns.countplot(train['Marital_Status']) plt.title('Marital Status Distribution', fontdict = {'fontname' : 'Monospace', 'fontsize' : 20, 'fontweight' : 'bold'}) plt.xlabel('Marital Status', fontdict = {'fontname' : 'Monospace', 'fontsize' : 15}) plt.ylabel('Number of people', fontdict = {'fontname' : 'Monospace', 'fontsize' : 15}) plt.tick_params(labelsize = 10) plt.show() """### Creating a Treemap for 'Stay_In_Current_City_Years'""" stay = train['Stay_In_Current_City_Years'].value_counts() import squarify plt.style.use('default') plt.figure(figsize = (7, 5)) squarify.plot(sizes = stay.values, label = stay.index, value = stay.values) plt.title('Stay in current city distribution', fontdict = {'fontname' : 'Monospace', 'fontsize' : 20, 'fontweight' : 'bold'}) plt.show() """### Bivariate Analysis: ### Creating a barplot of 'Occupation vs Purchase' """ plt.figure(figsize = (10, 5)) plt.style.use('seaborn') sns.barplot(train['Occupation'], train['Purchase'], palette = 'Paired') plt.title('Purchase amount across Occupation', fontdict = {'fontname' : 'Monospace', 'fontsize' : 20, 'fontweight' : 'bold'}) plt.xlabel('Occupation code', fontdict = {'fontname' : 'Monospace', 'fontsize' : 15}) plt.ylabel('Purchase amount', fontdict = {'fontname' : 'Monospace', 'fontsize' : 15}) plt.tick_params(labelsize = 15) plt.show() """### Creating a boxplot of 'Age vs Purchase'""" plt.style.use('bmh') sns.boxplot(train['Age'], train['Purchase'], palette = 'colorblind') plt.title('Purchase amount across Age', fontdict = {'fontname' : 'Monospace', 'fontsize' : 20, 'fontweight' : 'bold'}) plt.xlabel('Age', fontdict = {'fontname' : 'Monospace', 'fontsize' : 15}) plt.ylabel('Purchase amount', fontdict = {'fontname' : 'Monospace', 'fontsize' : 15}) plt.tick_params(labelsize = 10) plt.grid() plt.show() """### Creating a barplot of 'Gender vs Purchase'""" plt.style.use('default') sns.barplot(train['Gender'], train['Purchase']) plt.title('Purchase amount across Gender', fontdict = {'fontname' : 'Monospace', 'fontsize' : 15, 'fontweight' : 'bold'}) plt.xlabel('Gender', fontdict = {'fontname' : 'Monospace', 'fontsize' : 10}) plt.ylabel('Purchase amount', fontdict = {'fontname' : 'Monospace', 'fontsize' : 10}) plt.tick_params(labelsize = 7) plt.show() """### Creating a barplot of 'City_Category vs Purchase'""" plt.style.use('bmh') sns.barplot(train['City_Category'], train['Purchase']) plt.title('Purchase amount across City Category', fontdict = {'fontname' : 'Monospace', 'fontsize' : 15, 'fontweight' : 'bold'}) plt.xlabel('City Category', fontdict = {'fontname' : 'Monospace', 'fontsize' : 10}) plt.ylabel('Purchase amount', fontdict = {'fontname' : 'Monospace', 'fontsize' : 10}) plt.tick_params(labelsize = 7) plt.show() """### Creating a barplot of 'Product_Category_1 vs Purchase'""" plt.style.use('default') plt.figure(figsize = (20, 7)) sns.barplot(train['Product_Category_1'], train['Purchase'], palette = 'colorblind') plt.title('Purchase amount across Product Category', fontdict = {'fontname' : 'Monospace', 'fontsize' : 20, 'fontweight' : 'bold'}) plt.xlabel('Product Category_1', fontdict = {'fontname' : 'Monospace', 'fontsize' : 15}) plt.ylabel('Purchase amount', fontdict = {'fontname' : 'Monospace', 'fontsize' : 15}) plt.tick_params(labelsize = 20) plt.grid() plt.show() """### Creating a barplot of 'Marital Status vs Purchase'""" plt.style.use('ggplot') plt.figure(figsize = (6, 3)) sns.barplot(train['Marital_Status'], train['Purchase']) plt.title('Purchase amount across Marital Status', fontdict = {'fontname' : 'Monospace', 'fontsize' : 15, 'fontweight' : 'bold'}) plt.xlabel('Marital Status', fontdict = {'fontname' : 'Monospace', 'fontsize' : 10}) plt.ylabel('Purchase amount', fontdict = {'fontname' : 'Monospace', 'fontsize' : 10}) plt.tick_params(labelsize = 7) plt.show() """### Multivariate Analysis:""" # Creating a Pairplot for all features plt.style.use('default') sns.pairplot(train) plt.show() # Creating a heatmap of correlation matrix sns.heatmap(train.corr(), annot = True) plt.show() """- An interesting observation can be made from the gender distribution plot that the number of females was less than the number of men who shopped during Black Friday. - From the correlation heatmap, we can observe that the dependent feature 'Purchase' is highly correlated with 'Product_Category_1' and 'Product_Category_2'. ## Data Preprocessing: ### Merging of train and test """ train['source'] = 'train' test['source'] = 'test' dataset = pd.concat([train, test]) # Creating a heatmap of correlation matrix sns.heatmap(dataset.corr(), annot = True) plt.show() """### Replacing '+' in 'Age' and 'Stay_In_Current_City_Years'""" dataset['Age'] = dataset['Age'].apply(lambda x : str(x).replace('55+', '55')) dataset['Stay_In_Current_City_Years'] = dataset['Stay_In_Current_City_Years'].apply(lambda x : str(x).replace('4+', '4')) """### Dropping irrelevant features:""" dataset.drop('Product_Category_3', axis = 1, inplace = True) dataset.drop('Product_Category_2',axis=1,inplace=True) dataset.drop('User_ID', axis = 1, inplace = True) dataset.drop('Product_ID', axis = 1, inplace = True) dataset dataset["Age"].unique() dataset.shape """### Feature Encoding:""" from sklearn.preprocessing import LabelEncoder label_encoder_gender = LabelEncoder() dataset['Gender'] = label_encoder_gender.fit_transform(dataset['Gender']) dataset['Gender'] label_encoder_age = LabelEncoder() dataset['Age'] = label_encoder_age.fit_transform(dataset['Age']) label_encoder_city = LabelEncoder() dataset['City_Category'] = label_encoder_city.fit_transform(dataset['City_Category']) """### Converting 'Stay_In_Current_City_Years' into numeric data type""" dataset['Stay_In_Current_City_Years'] = dataset['Stay_In_Current_City_Years'].astype('int') """### Separating Dataset into train and test:""" train = dataset.loc[dataset['source'] == 'train'] test = dataset.loc[dataset['source'] == 'test'] train.drop('source', axis = 1, inplace = True) test.drop('source', axis = 1, inplace = True) """### Separating train into X and Y""" X = train.drop("Purchase", axis = 1) Y = train["Purchase"] """### Creating a train test split""" from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.3, random_state = 123) print("X_train shape:", X_train.shape) print("X_test shape:", X_test.shape) print("Y_train shape:", Y_train.shape) print("Y_test shape:", Y_test.shape) X_train.head() """## ML Model Implementation: ### Linear Regression: """ from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X_train, Y_train) Y_pred_lin_reg = lin_reg.predict(X_test) len(Y_pred_lin_reg) Y_pred_lin_reg X_test.head() features=["0","3","12","2","1","0","11"] int_features = [int(x) for x in features] final_features = [np.array(int_features)] Y_predicted = lin_reg.predict(final_features) print(Y_predicted) import pickle pickle.dump(lin_reg,open(r"C:\Users\DELL\OneDrive\Desktop\Desktop Files\Practice\Projects\Black Friday Datset\LinearModel.pkl","wb")) LinearModel=pickle.load(open(r"C:\Users\DELL\OneDrive\Desktop\Desktop Files\Practice\Projects\Black Friday Datset\LinearModel.pkl","rb")) Y_predicted1=LinearModel.predict(final_features) Y_predicted1
py
b40615b7ebce782dd5f86735c34644c60f50220b
import numpy as np from torch import nn from torch.nn import functional as F from torchvision.models.inception import inception_v3 from scipy.stats import entropy class InceptionScore(nn.Module): def __init__(self, device, batch_size=32, resize=False): super(InceptionScore, self).__init__() assert batch_size > 0 self.resize = resize self.batch_size = batch_size self.device = device # Load inception model self.inception_model = inception_v3(pretrained=True, transform_input=False).to(self.device) self.inception_model.eval() self.clean() def clean(self): self.preds = np.zeros((0, 1000)) def get_pred(self, x): if self.resize: # x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=True) x = F.interpolate(x, size=(299, 299), mode='bilinear') x = self.inception_model(x) return F.softmax(x, dim=1).data.cpu().numpy() def forward(self, imgs): # Get predictions preds_imgs = self.get_pred(imgs.to(self.device)) self.preds = np.append(self.preds, preds_imgs, axis=0) def compute_score(self, splits=1): # Now compute the mean kl-div split_scores = [] preds = self.preds N = self.preds.shape[0] for k in range(splits): part = preds[k * (N // splits): (k + 1) * (N // splits), :] py = np.mean(part, axis=0) scores = [] for i in range(part.shape[0]): pyx = part[i, :] scores.append(entropy(pyx, py)) split_scores.append(np.exp(np.mean(scores))) return np.mean(split_scores), np.std(split_scores)
py
b40615ed90552789cef50c77188648c8c91b485f
""" This file demonstrates writing tests using the unittest module. These will pass when you run "manage.py test". Replace this with more appropriate tests for your application. """ from django.test import TestCase from models import (Team, Event, Group, Competition, LoginForm, Match, TeamResult, MatchSaveForm) from django.test.client import Client # class SimpleTest(TestCase): # def test_basic_addition(self): # """ # Tests that 1 + 1 always equals 2. # """ # self.assertEqual(1 + 1, 2) # class ModelTest(TestCase): # def test_models(self): # self.teamA = Team.objects.create(name="testTeamA") # self.teamB = Team.objects.create(name="testTeamB") # self.resultA = TeamResult.objects.create(team=self.teamA) # self.resultB = TeamResult.objects.create(team=self.teamB) # #self.match = Match.objects.create(teamA=self.teamA, teamB=self.teamB, referee=) # #self.group = Group.objects.create(name="testGroup", teams=[self.teamA, self.teamB, matches=[], results=[self.resultA, self.resultB]) # #self.competition = Competition.objects.create(name="testCompetition", groups=[self.group]) # #self.event = Event.objects.create(name="testEvent", competitions=[self.competition]) # self.assertEqual(self.teamA.name, "testTeamA") class LoginTest(TestCase): def setUp(self): self.client = Client() def test_basic_login_page(self): response = self.client.get('/login/') # check if page is OK self.assertEqual(response.status_code, 200) # check if we have a form self.assertTrue('form' in response.context) self.assertTrue(isinstance(response.context['form'], LoginForm)) # check if we get to index (/) after logging in self.assertTrue('next' in response.context) self.assertEqual(response.context['next'], '/') def test_login_page_with_forward(self): response = self.client.get('/login/?next=/events') # check if page is OK self.assertEqual(response.status_code, 200) # check if we have a form self.assertTrue('form' in response.context) self.assertTrue(isinstance(response.context['form'], LoginForm)) # check if we get to events (/events) after logging in self.assertTrue('next' in response.context) self.assertEqual(response.context['next'], '/events')
py
b40615fe72ecd763c96d10ba4cf9e88e0145540b
"""Huawei LTE sensor tests.""" import pytest from openpeerpower.components.huawei_lte import sensor from openpeerpower.const import ( SIGNAL_STRENGTH_DECIBELS, SIGNAL_STRENGTH_DECIBELS_MILLIWATT, ) @pytest.mark.parametrize( ("value", "expected"), ( ("-71 dBm", (-71, SIGNAL_STRENGTH_DECIBELS_MILLIWATT)), ("15dB", (15, SIGNAL_STRENGTH_DECIBELS)), (">=-51dBm", (-51, SIGNAL_STRENGTH_DECIBELS_MILLIWATT)), ), ) def test_format_default(value, expected): """Test that default formatter copes with expected values.""" assert sensor.format_default(value) == expected
py
b40616757d2eaef423b482cffa2e7c6429b69cca
# swift_build_support/products/product.py -----------------------*- python -*- # # This source file is part of the Swift.org open source project # # Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See https://swift.org/LICENSE.txt for license information # See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors # # ---------------------------------------------------------------------------- class Product(object): @classmethod def product_name(cls): """product_name() -> str The identifier-style name to use for this product. """ return cls.__name__.lower() @classmethod def get_build_directory_name(cls, host_target): return "{}-{}".format(cls.product_name(), host_target.name) def __init__(self, args, toolchain, source_dir, build_dir): self.args = args self.toolchain = toolchain self.source_dir = source_dir self.build_dir = build_dir self.cmake_options = []
py
b406173271a993bb7532d7805170ce8dea159574
import curses import logging.config VERSION = 1.0 MOTD01 = "-----------------------------------------------------------\n" MOTD01 += " ____ _ _ ____ ____ _____ ____ ____ __ __ ____ \n" MOTD01 += " / ___| | | | _ \/ ___|| ____/ ___| / ___| \/ | _ \ \n" MOTD01 += " | | | | | | |_) \___ \| _| \___ \| | | |\/| | | | |\n" MOTD01 += " | |___| |_| | _ < ___) | |___ ___) | |___| | | | |_| |\n" MOTD01 += " \____|\___/|_| \_\____/|_____|____/ \____|_| |_|____/ \n" MOTD01 += " Command Line Application Template Version + " + str(VERSION) + "\n" MOTD01 += "-----------------------------------------------------------\n" MOTD02 = "Commands: \n" MOTD02 += "<H>ELP, <S>TATUS, <T>IMER, <E>CHO, \n" MOTD02 += "<R>ECONNECT, <D>ISCONNECT, <Q>UIT/EXIT\n" def disp(stdscr, current_line, text, newLine = False): curses.echo() # if current_line moves stuff off screen, move the screen first # by that many text lines before display actual_current_line = current_line max_y, max_x = stdscr.getmaxyx() if current_line >= max_y - 1: actual_current_line = min(max_y-1, current_line) stdscr.move(1, 0) stdscr.refresh() if newLine: stdscr.addstr(actual_current_line, 0, text + "\n") else: stdscr.addstr(actual_current_line, 0, text) # display the text stdscr.refresh() def increment(stdscr, in_line): max_y, max_x = stdscr.getmaxyx() return min(max_y-1, in_line + 1) def my_raw_input(stdscr, r, prompt_string): input = stdscr.getstr(r, len(prompt_string), 20) return input # ^^^^ reading input at next line if __name__ == "__main__": # Configure the logger # loggerConfigFileName: The name and path of your configuration file loggerConfigFileName = "./logconfig.txt" logging.config.fileConfig(loggerConfigFileName) # Create the logger # Admin_Client: The name of a logger defined in the config file myLogger = logging.getLogger('APP' + str(VERSION)) #myLogger.debug(msg) myLogger.info("Initialized APP" + str(VERSION)) #myLogger.warn(msg) #myLogger.error(msg) #myLogger.critical(msg) stdscr = curses.initscr() stdscr.scrollok(1) stdscr.idlok(1) stdscr.idcok(1) stdscr.keypad(True) stdscr.clear() disp(stdscr, 0, MOTD01) disp(stdscr,len(MOTD01.split("\n"))+1, MOTD02) MOTD_line_count = len(MOTD01.split("\n")) + len(MOTD02.split("\n")) prompt = "APP" + str(VERSION) + " <"+ "IN[off] OUT[off]" + "> " keep_going = True return_prompt = True cycling_history = False max_y, max_x = stdscr.getmaxyx() current_line = MOTD_line_count + 1 while keep_going: curses.echo() myLogger.debug("current_line after prompt display: " + str(current_line)) myLogger.debug("screen height before prompt display: " + str(max_y)) if return_prompt: disp(stdscr, current_line, prompt) choice = my_raw_input(stdscr, current_line, prompt).lower().strip() current_line = increment(stdscr, current_line) if choice == "help" or choice == "h": pass elif choice == "timer" or choice == "t": pass elif choice == "reconnect" or choice == "r": pass elif choice == "disconnect" or choice == "d": pass elif choice == "status" or choice == "s": disp(stdscr, current_line, "status called", newLine=True) myLogger.debug("current_line after status called: " + str(current_line)) myLogger.debug("screen height after status called: " + str(max_y)) current_line = increment(stdscr, current_line) return_prompt = True elif choice == "": return_prompt = True pass elif choice == "quit" or choice == "exit" or choice == "q": keep_going = False else: disp(stdscr, current_line, "Invalid Input. Type <help> for commands.", newLine=True) current_line = increment(stdscr, current_line) return_prompt = True myLogger.info("Shutting Down APP" + str(VERSION)) curses.endwin() logging.shutdown()
py
b406173bb3a4cd6d2f96fd9477cb3ebfe6e4535c
from pathlib import Path from unittest import TestCase from clvm_tools.clvmc import compile_clvm from stai.types.blockchain_format.program import Program, SerializedProgram wallet_program_files = set( [ "stai/wallet/puzzles/calculate_synthetic_public_key.clvm", "stai/wallet/puzzles/cc.clvm", "stai/wallet/puzzles/stailisp_deserialisation.clvm", "stai/wallet/puzzles/rom_bootstrap_generator.clvm", "stai/wallet/puzzles/generator_for_single_coin.clvm", "stai/wallet/puzzles/genesis-by-coin-id-with-0.clvm", "stai/wallet/puzzles/genesis-by-puzzle-hash-with-0.clvm", "stai/wallet/puzzles/lock.inner.puzzle.clvm", "stai/wallet/puzzles/p2_conditions.clvm", "stai/wallet/puzzles/p2_delegated_conditions.clvm", "stai/wallet/puzzles/p2_delegated_puzzle.clvm", "stai/wallet/puzzles/p2_delegated_puzzle_or_hidden_puzzle.clvm", "stai/wallet/puzzles/p2_m_of_n_delegate_direct.clvm", "stai/wallet/puzzles/p2_puzzle_hash.clvm", "stai/wallet/puzzles/rl_aggregation.clvm", "stai/wallet/puzzles/rl.clvm", "stai/wallet/puzzles/sha256tree_module.clvm", "stai/wallet/puzzles/singleton_top_layer.clvm", "stai/wallet/puzzles/did_innerpuz.clvm", "stai/wallet/puzzles/decompress_puzzle.clvm", "stai/wallet/puzzles/decompress_coin_spend_entry_with_prefix.clvm", "stai/wallet/puzzles/decompress_coin_spend_entry.clvm", "stai/wallet/puzzles/block_program_zero.clvm", "stai/wallet/puzzles/test_generator_deserialize.clvm", "stai/wallet/puzzles/test_multiple_generator_input_arguments.clvm", "stai/wallet/puzzles/p2_singleton.clvm", "stai/wallet/puzzles/pool_waitingroom_innerpuz.clvm", "stai/wallet/puzzles/pool_member_innerpuz.clvm", "stai/wallet/puzzles/singleton_launcher.clvm", "stai/wallet/puzzles/p2_singleton_or_delayed_puzhash.clvm", ] ) clvm_include_files = set( ["stai/wallet/puzzles/create-lock-puzzlehash.clvm", "stai/wallet/puzzles/condition_codes.clvm"] ) CLVM_PROGRAM_ROOT = "stai/wallet/puzzles" def list_files(dir, glob): dir = Path(dir) entries = dir.glob(glob) files = [f for f in entries if f.is_file()] return files def read_file(path): with open(path) as f: return f.read() def path_with_ext(path, ext): return Path(str(path) + ext) class TestClvmCompilation(TestCase): """ These are tests, and not just build scripts to regenerate the bytecode, because the developer must be aware if the compiled output changes, for any reason. """ def test_all_programs_listed(self): """ Checks to see if a new .clvm file was added to stai/wallet/puzzles, but not added to `wallet_program_files` """ existing_files = list_files(CLVM_PROGRAM_ROOT, "*.clvm") existing_file_paths = set([Path(x).relative_to(CLVM_PROGRAM_ROOT) for x in existing_files]) expected_files = set(clvm_include_files).union(set(wallet_program_files)) expected_file_paths = set([Path(x).relative_to(CLVM_PROGRAM_ROOT) for x in expected_files]) self.assertEqual( expected_file_paths, existing_file_paths, msg="Please add your new program to `wallet_program_files` or `clvm_include_files.values`", ) def test_include_and_source_files_separate(self): self.assertEqual(clvm_include_files.intersection(wallet_program_files), set()) # TODO: Test recompilation with all available compiler configurations & implementations def test_all_programs_are_compiled(self): """Checks to see if a new .clvm file was added without its .hex file""" all_compiled = True msg = "Please compile your program with:\n" # Note that we cannot test all existing .clvm files - some are not # meant to be run as a "module" with load_clvm; some are include files # We test for inclusion in `test_all_programs_listed` for prog_path in wallet_program_files: try: output_path = path_with_ext(prog_path, ".hex") hex = output_path.read_text() self.assertTrue(len(hex) > 0) except Exception as ex: all_compiled = False msg += f" run -i {prog_path.parent} -d {prog_path} > {prog_path}.hex\n" print(ex) msg += "and check it in" self.assertTrue(all_compiled, msg=msg) def test_recompilation_matches(self): self.maxDiff = None for f in wallet_program_files: f = Path(f) compile_clvm(f, path_with_ext(f, ".recompiled"), search_paths=[f.parent]) orig_hex = path_with_ext(f, ".hex").read_text().strip() new_hex = path_with_ext(f, ".recompiled").read_text().strip() self.assertEqual(orig_hex, new_hex, msg=f"Compilation of {f} does not match {f}.hex") pass def test_all_compiled_programs_are_hashed(self): """Checks to see if a .hex file is missing its .sha256tree file""" all_hashed = True msg = "Please hash your program with:\n" for prog_path in wallet_program_files: try: hex = path_with_ext(prog_path, ".hex.sha256tree").read_text() self.assertTrue(len(hex) > 0) except Exception as ex: print(ex) all_hashed = False msg += f" opd -H {prog_path}.hex | head -1 > {prog_path}.hex.sha256tree\n" msg += "and check it in" self.assertTrue(all_hashed, msg) # TODO: Test all available shatree implementations on all progams def test_shatrees_match(self): """Checks to see that all .sha256tree files match their .hex files""" for prog_path in wallet_program_files: # load the .hex file as a program hex_filename = path_with_ext(prog_path, ".hex") clvm_hex = hex_filename.read_text() # .decode("utf8") clvm_blob = bytes.fromhex(clvm_hex) s = SerializedProgram.from_bytes(clvm_blob) p = Program.from_bytes(clvm_blob) # load the checked-in shatree existing_sha = path_with_ext(prog_path, ".hex.sha256tree").read_text().strip() self.assertEqual( s.get_tree_hash().hex(), existing_sha, msg=f"Checked-in shatree hash file does not match shatree hash of loaded SerializedProgram: {prog_path}", # noqa ) self.assertEqual( p.get_tree_hash().hex(), existing_sha, msg=f"Checked-in shatree hash file does not match shatree hash of loaded Program: {prog_path}", )
py
b406174e6a2c807df6743c85fb23d8505b26944d
from SignLanguage import create_app app = create_app() if __name__ == '__main__': app.run(debug=True)
py
b406177c90b1e4673c03d27022d8fc35f15579a1
from mavros_msgs.msg import Waypoint MAV_GLOBAL_FRAME = 3 MAV_CMD_WAYPOINT = 16 MAV_CMD_RTL = 20 def waypoint(lat, lon, alt, delay): w = Waypoint() w.frame = MAV_GLOBAL_FRAME w.command = MAV_CMD_WAYPOINT w.is_current = False w.autocontinue = True w.param1 = delay # Hold time in mession w.param2 = 2 # Position trashold in meters w.x_lat = lat w.y_long = lon w.z_alt = alt return w def rtl(): w = Waypoint() w.command = MAV_CMD_RTL return w def mission_planner(lat0, lon0, lat, lon): takeoff = waypoint(lat0, lon0, 10, 5) takeoff.is_current = True return [ takeoff , waypoint(lat0, lon0, 50, 10) , waypoint(lat, lon, 50, 10) , rtl() ]
py
b40617b0921198b824d99d0b3142eab9af2b5d39
from typing import List, Union, Dict, Any, Tuple from abc import ABC, abstractmethod import pandas as pd import pdfplumber import layoutparser as lp import pdf2image from .datamodel import * def convert_token_dict_to_layout(tokens): return lp.Layout( [ lp.TextBlock( lp.Rectangle( x_1=token["x"], y_1=token["y"], x_2=token["x"] + token["width"], y_2=token["y"] + token["height"], ), text=token["text"], type=token.get("type"), ) for token in tokens ] ) def load_page_data_from_dict(source_data: Dict[str, Any]) -> List[Dict]: return [ PDFPage( height=page_data["page"]["height"], width=page_data["page"]["width"], tokens=convert_token_dict_to_layout(page_data["tokens"]), url_tokens=convert_token_dict_to_layout(page_data["url_tokens"]), lines=lp.Layout( [ lp.Rectangle( x_1=line["x"], y_1=line["y"], x_2=line["x"] + line["width"], y_2=line["y"] + line["height"], ) for line in page_data["lines"] ] ), ) for page_data in source_data ] class BasePDFTokenExtractor(ABC): """PDF token extractors will load all the *tokens* and save using pdfstructure service.""" def __call__(self, pdf_path: str): return self.extract(pdf_path) @abstractmethod def extract(self, pdf_path: str): """Extract PDF Tokens from the input pdf_path Args: pdf_path (str): The path to a PDF file Returns: """ pass class PDFPlumberTokenExtractor(BasePDFTokenExtractor): NAME = "pdfplumber" UNDERLINE_HEIGHT_THRESHOLD = 3 UNDERLINE_WIDTH_THRESHOLD = 100 # Defines what a regular underline should look like @staticmethod def convert_to_pagetoken(row: pd.Series) -> Dict: """Convert a row in a DataFrame to pagetoken""" return dict( text=row["text"], x=row["x0"], width=row["width"], y=row["top"], height=row["height"], type=row.get("fontname"), ) def obtain_word_tokens(self, cur_page: pdfplumber.page.Page) -> List[Dict]: """Obtain all words from the current page. Args: cur_page (pdfplumber.page.Page): the pdfplumber.page.Page object with PDF token information Returns: List[PageToken]: A list of page tokens stored in PageToken format. """ words = cur_page.extract_words( x_tolerance=1.5, y_tolerance=3, keep_blank_chars=False, use_text_flow=True, horizontal_ltr=True, vertical_ttb=True, extra_attrs=["fontname", "size"], ) if len(words) == 0: return [] df = pd.DataFrame(words) # Avoid boxes outside the page df[["x0", "x1"]] = ( df[["x0", "x1"]].clip(lower=0, upper=int(cur_page.width)).astype("float") ) df[["top", "bottom"]] = ( df[["top", "bottom"]] .clip(lower=0, upper=int(cur_page.height)) .astype("float") ) df["height"] = df["bottom"] - df["top"] df["width"] = df["x1"] - df["x0"] word_tokens = df.apply(self.convert_to_pagetoken, axis=1).tolist() return word_tokens def obtain_page_hyperlinks(self, cur_page: pdfplumber.page.Page) -> List[Dict]: if len(cur_page.hyperlinks) == 0: return [] df = pd.DataFrame(cur_page.hyperlinks) df[["x0", "x1"]] = ( df[["x0", "x1"]].clip(lower=0, upper=int(cur_page.width)).astype("float") ) df[["top", "bottom"]] = ( df[["top", "bottom"]] .clip(lower=0, upper=int(cur_page.height)) .astype("float") ) df[["height", "width"]] = df[["height", "width"]].astype("float") hyperlink_tokens = ( df.rename(columns={"uri": "text"}) .apply(self.convert_to_pagetoken, axis=1) .tolist() ) return hyperlink_tokens def obtain_page_lines(self, cur_page: pdfplumber.page.Page) -> List[Dict]: height = float(cur_page.height) page_objs = cur_page.rects + cur_page.lines possible_underlines = [ dict( x=float(ele["x0"]), y=height - float(ele["y0"]), height=float(ele["height"]), width=float(ele["width"]), ) for ele in filter( lambda obj: obj["height"] < self.UNDERLINE_HEIGHT_THRESHOLD and obj["width"] < self.UNDERLINE_WIDTH_THRESHOLD, page_objs, ) ] return possible_underlines def extract(self, pdf_path: str) -> List[Dict]: """Extracts token text, positions, and style information from a PDF file. Args: pdf_path (str): the path to the pdf file. include_lines (bool, optional): Whether to include line tokens. Defaults to False. target_data (str, optional): {"token", "hyperlink"} Returns: PdfAnnotations: A `PdfAnnotations` containing all the paper token information. """ plumber_pdf_object = pdfplumber.open(pdf_path) pages = [] for page_id in range(len(plumber_pdf_object.pages)): cur_page = plumber_pdf_object.pages[page_id] tokens = self.obtain_word_tokens(cur_page) url_tokens = self.obtain_page_hyperlinks(cur_page) lines = self.obtain_page_lines(cur_page) page = dict( page=dict( width=float(cur_page.width), height=float(cur_page.height), index=page_id, ), tokens=tokens, url_tokens=url_tokens, lines=lines, ) pages.append(page) return load_page_data_from_dict(pages) class PDFExtractor: """PDF Extractor will load both images and layouts for PDF documents for downstream processing.""" def __init__(self, pdf_extractor_name, **kwargs): self.pdf_extractor_name = pdf_extractor_name.lower() if self.pdf_extractor_name == PDFPlumberTokenExtractor.NAME: self.pdf_extractor = PDFPlumberTokenExtractor(**kwargs) else: raise NotImplementedError( f"Unknown pdf_extractor_name {pdf_extractor_name}" ) def load_tokens_and_image( self, pdf_path: str, resize_image=False, resize_layout=False, **kwargs ): pdf_tokens = self.pdf_extractor(pdf_path, **kwargs) page_images = pdf2image.convert_from_path(pdf_path, dpi=72) assert not ( resize_image and resize_layout ), "You could not resize image and layout simultaneously." if resize_layout: for image, page in zip(page_images, pdf_tokens): width, height = image.size resize_factor = width / page.width, height / page.height page.tokens = page.tokens.scale(resize_factor) page.image_height = height page.image_width = width elif resize_image: page_images = [ image.resize((int(page.width), int(page.height))) if page.width != image.size[0] else image for image, page in zip(page_images, pdf_tokens) ] return pdf_tokens, page_images
py
b40617b2f8b689267935c2beb1faa333fde534eb
# -*- coding: utf-8 -*- import re #Credits : stackoverflow alphabets= "([A-Za-z])" prefixes = "(Mr|St|Mrs|Ms|Dr)[.]" suffixes = "(Inc|Ltd|Jr|Sr|Co)" starters = "(Mr|Mrs|Ms|Dr|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever)" acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)" websites = "[.](com|net|org|io|gov)" def split_into_lists_of_words(text, split_words = True): text = " " + text + " " text = text.replace("\n"," ") text = re.sub(prefixes,"\\1<prd>",text) text = re.sub(websites,"<prd>\\1",text) if "Ph.D" in text: text = text.replace("Ph.D.","Ph<prd>D<prd>") text = re.sub("\s" + alphabets + "[.] "," \\1<prd> ",text) text = re.sub(acronyms+" "+starters,"\\1<stop> \\2",text) text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>\\3<prd>",text) text = re.sub(alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>",text) text = re.sub(" "+suffixes+"[.] "+starters," \\1<stop> \\2",text) text = re.sub(" "+suffixes+"[.]"," \\1<prd>",text) text = re.sub(" " + alphabets + "[.]"," \\1<prd>",text) if "”" in text: text = text.replace(".”","”.") if "\"" in text: text = text.replace(".\"","\".") if "!" in text: text = text.replace("!\"","\"!") if "?" in text: text = text.replace("?\"","\"?") text = text.replace(".",".<stop>") text = text.replace("?","?<stop>") text = text.replace("!","!<stop>") text = text.replace("<prd>",".") text = text.replace(' ', " ") sentences = text.split("<stop>") sentences = sentences[:-1] if split_words : sentences = [s.strip().split(' ') for s in sentences if len(s) > 3] #sentences = [s.strip() for s in sentences if len(s) > 1] return sentences
py
b4061812c4bd945ff6bd534e0e5a524d4e58b579
from tool.runners.python import SubmissionPy class EvqnaSubmission(SubmissionPy): def is_valid(self, password_entry): policy, c, pwd = password_entry.split() policy_min, policy_max = policy.split('-') return int(policy_min) <= pwd.count(c[0]) <= int(policy_max) def run(self, input): return sum(1 for entry in input.splitlines() if self.is_valid(entry))
py
b406182542010e1f1b41ea606bb4b3671cad71bd
# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Functions for common roidb manipulations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import six import logging import numpy as np import utils.boxes as box_utils import utils.keypoints as keypoint_utils import utils.segms as segm_utils import utils.blob as blob_utils from core.config import cfg from .json_dataset import JsonDataset from .clevr_dataset import ClevrDataset logger = logging.getLogger(__name__) def combined_roidb_for_training(dataset_names, proposal_files): """Load and concatenate roidbs for one or more datasets, along with optional object proposals. The roidb entries are then prepared for use in training, which involves caching certain types of metadata for each roidb entry. """ def get_roidb(dataset_name, proposal_file): if 'clevr' in dataset_name: ds = ClevrDataset(dataset_name) else: ds = JsonDataset(dataset_name) roidb = ds.get_roidb( gt=True, proposal_file=proposal_file, crowd_filter_thresh=cfg.TRAIN.CROWD_FILTER_THRESH ) if cfg.TRAIN.USE_FLIPPED: logger.info('Appending horizontally-flipped training examples...') extend_with_flipped_entries(roidb, ds) logger.info('Loaded dataset: {:s}'.format(ds.name)) return roidb if isinstance(dataset_names, six.string_types): dataset_names = (dataset_names, ) if isinstance(proposal_files, six.string_types): proposal_files = (proposal_files, ) if len(proposal_files) == 0: proposal_files = (None, ) * len(dataset_names) assert len(dataset_names) == len(proposal_files) roidbs = [get_roidb(*args) for args in zip(dataset_names, proposal_files)] roidb = roidbs[0] for r in roidbs[1:]: roidb.extend(r) roidb = filter_for_training(roidb) if cfg.TRAIN.ASPECT_GROUPING or cfg.TRAIN.ASPECT_CROPPING: logger.info('Computing image aspect ratios and ordering the ratios...') ratio_list, ratio_index = rank_for_training(roidb) logger.info('done') else: ratio_list, ratio_index = None, None logger.info('Computing bounding-box regression targets...') add_bbox_regression_targets(roidb) logger.info('done') _compute_and_log_stats(roidb) return roidb, ratio_list, ratio_index def extend_with_flipped_entries(roidb, dataset): """Flip each entry in the given roidb and return a new roidb that is the concatenation of the original roidb and the flipped entries. "Flipping" an entry means that that image and associated metadata (e.g., ground truth boxes and object proposals) are horizontally flipped. """ flipped_roidb = [] for entry in roidb: width = entry['width'] boxes = entry['boxes'].copy() oldx1 = boxes[:, 0].copy() oldx2 = boxes[:, 2].copy() boxes[:, 0] = width - oldx2 - 1 boxes[:, 2] = width - oldx1 - 1 assert (boxes[:, 2] >= boxes[:, 0]).all() flipped_entry = {} dont_copy = ('boxes', 'segms', 'gt_keypoints', 'flipped') for k, v in entry.items(): if k not in dont_copy: flipped_entry[k] = v flipped_entry['boxes'] = boxes flipped_entry['segms'] = segm_utils.flip_segms( entry['segms'], entry['height'], entry['width'] ) if dataset.keypoints is not None: flipped_entry['gt_keypoints'] = keypoint_utils.flip_keypoints( dataset.keypoints, dataset.keypoint_flip_map, entry['gt_keypoints'], entry['width'] ) flipped_entry['flipped'] = True flipped_roidb.append(flipped_entry) roidb.extend(flipped_roidb) def filter_for_training(roidb): """Remove roidb entries that have no usable RoIs based on config settings. """ def is_valid(entry): # Valid images have: # (1) At least one foreground RoI OR # (2) At least one background RoI overlaps = entry['max_overlaps'] # find boxes with sufficient overlap fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0] # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI) bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) & (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0] # image is only valid if such boxes exist valid = len(fg_inds) > 0 or len(bg_inds) > 0 if cfg.MODEL.KEYPOINTS_ON: # If we're training for keypoints, exclude images with no keypoints valid = valid and entry['has_visible_keypoints'] return valid num = len(roidb) filtered_roidb = [entry for entry in roidb if is_valid(entry)] num_after = len(filtered_roidb) logger.info('Filtered {} roidb entries: {} -> {}'. format(num - num_after, num, num_after)) return filtered_roidb def rank_for_training(roidb): """Rank the roidb entries according to image aspect ration and mark for cropping for efficient batching if image is too long. Returns: ratio_list: ndarray, list of aspect ratios from small to large ratio_index: ndarray, list of roidb entry indices correspond to the ratios """ RATIO_HI = cfg.TRAIN.ASPECT_HI # largest ratio to preserve. RATIO_LO = cfg.TRAIN.ASPECT_LO # smallest ratio to preserve. need_crop_cnt = 0 ratio_list = [] for entry in roidb: width = entry['width'] height = entry['height'] ratio = width / float(height) if cfg.TRAIN.ASPECT_CROPPING: if ratio > RATIO_HI: entry['need_crop'] = True ratio = RATIO_HI need_crop_cnt += 1 elif ratio < RATIO_LO: entry['need_crop'] = True ratio = RATIO_LO need_crop_cnt += 1 else: entry['need_crop'] = False else: entry['need_crop'] = False ratio_list.append(ratio) if cfg.TRAIN.ASPECT_CROPPING: logging.info('Number of entries that need to be cropped: %d. Ratio bound: [%.2f, %.2f]', need_crop_cnt, RATIO_LO, RATIO_HI) ratio_list = np.array(ratio_list) ratio_index = np.argsort(ratio_list) return ratio_list[ratio_index], ratio_index def add_bbox_regression_targets(roidb): """Add information needed to train bounding-box regressors.""" for entry in roidb: entry['bbox_targets'] = _compute_targets(entry) def _compute_targets(entry): """Compute bounding-box regression targets for an image.""" # Indices of ground-truth ROIs rois = entry['boxes'] overlaps = entry['max_overlaps'] labels = entry['max_classes'] gt_inds = np.where((entry['gt_classes'] > 0) & (entry['is_crowd'] == 0))[0] # Targets has format (class, tx, ty, tw, th) targets = np.zeros((rois.shape[0], 5), dtype=np.float32) if len(gt_inds) == 0: # Bail if the image has no ground-truth ROIs return targets # Indices of examples for which we try to make predictions ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0] # Get IoU overlap between each ex ROI and gt ROI ex_gt_overlaps = box_utils.bbox_overlaps( rois[ex_inds, :].astype(dtype=np.float32, copy=False), rois[gt_inds, :].astype(dtype=np.float32, copy=False)) # Find which gt ROI each ex ROI has max overlap with: # this will be the ex ROI's gt target gt_assignment = ex_gt_overlaps.argmax(axis=1) gt_rois = rois[gt_inds[gt_assignment], :] ex_rois = rois[ex_inds, :] # Use class "1" for all boxes if using class_agnostic_bbox_reg targets[ex_inds, 0] = ( 1 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else labels[ex_inds]) targets[ex_inds, 1:] = box_utils.bbox_transform_inv( ex_rois, gt_rois, cfg.MODEL.BBOX_REG_WEIGHTS) return targets def _compute_and_log_stats(roidb): classes = roidb[0]['dataset'].classes char_len = np.max([len(c) for c in classes]) hist_bins = np.arange(len(classes) + 1) # Histogram of ground-truth objects gt_hist = np.zeros((len(classes)), dtype=np.int) for entry in roidb: gt_inds = np.where( (entry['gt_classes'] > 0) & (entry['is_crowd'] == 0))[0] gt_classes = entry['gt_classes'][gt_inds] gt_hist += np.histogram(gt_classes, bins=hist_bins)[0] logger.debug('Ground-truth class histogram:') for i, v in enumerate(gt_hist): logger.debug( '{:d}{:s}: {:d}'.format( i, classes[i].rjust(char_len), v)) logger.debug('-' * char_len) logger.debug( '{:s}: {:d}'.format( 'total'.rjust(char_len), np.sum(gt_hist)))
py
b4061a9d8fb2478f34d2845a21f9931d235ca2d5
'''! * Copyright (c) 2020-2021 Microsoft Corporation. All rights reserved. * Licensed under the MIT License. ''' import json from typing import IO from contextlib import contextmanager import warnings class TrainingLogRecord(object): def __init__(self, record_id: int, iter_per_learner: int, logged_metric: float, trial_time: float, wall_clock_time: float, validation_loss, config, best_validation_loss, best_config, learner, sample_size): self.record_id = record_id self.iter_per_learner = iter_per_learner self.logged_metric = logged_metric self.trial_time = trial_time self.wall_clock_time = wall_clock_time self.validation_loss = validation_loss self.config = config self.best_validation_loss = best_validation_loss self.best_config = best_config self.learner = learner self.sample_size = sample_size def dump(self, fp: IO[str]): d = vars(self) return json.dump(d, fp) @classmethod def load(cls, json_str: str): d = json.loads(json_str) return cls(**d) def __str__(self): return json.dumps(vars(self)) class TrainingLogCheckPoint(TrainingLogRecord): def __init__(self, curr_best_record_id: int): self.curr_best_record_id = curr_best_record_id class TrainingLogWriter(object): def __init__(self, output_filename: str): self.output_filename = output_filename self.file = None self.current_best_loss_record_id = None self.current_best_loss = float('+inf') self.current_sample_size = None self.current_record_id = 0 def open(self): self.file = open(self.output_filename, 'w') def append_open(self): self.file = open(self.output_filename, 'a') def append(self, it_counter: int, train_loss: float, trial_time: float, wall_clock_time: float, validation_loss, config, best_validation_loss, best_config, learner, sample_size): if self.file is None: raise IOError("Call open() to open the outpute file first.") if validation_loss is None: raise ValueError('TEST LOSS NONE ERROR!!!') record = TrainingLogRecord(self.current_record_id, it_counter, train_loss, trial_time, wall_clock_time, validation_loss, config, best_validation_loss, best_config, learner, sample_size) if validation_loss < self.current_best_loss or \ validation_loss == self.current_best_loss and \ self.current_sample_size is not None and \ sample_size > self.current_sample_size: self.current_best_loss = validation_loss self.current_sample_size = sample_size self.current_best_loss_record_id = self.current_record_id self.current_record_id += 1 record.dump(self.file) self.file.write('\n') self.file.flush() def checkpoint(self): if self.file is None: raise IOError("Call open() to open the outpute file first.") if self.current_best_loss_record_id is None: warnings.warn("checkpoint() called before any record is written, " "skipped.") return record = TrainingLogCheckPoint(self.current_best_loss_record_id) record.dump(self.file) self.file.write('\n') self.file.flush() def close(self): if self.file is not None: self.file.close() self.file = None # for pickle class TrainingLogReader(object): def __init__(self, filename: str): self.filename = filename self.file = None def open(self): self.file = open(self.filename) def records(self): if self.file is None: raise IOError("Call open() before reading log file.") for line in self.file: data = json.loads(line) if len(data) == 1: # Skip checkpoints. continue yield TrainingLogRecord(**data) def close(self): if self.file is not None: self.file.close() self.file = None # for pickle def get_record(self, record_id) -> TrainingLogRecord: if self.file is None: raise IOError("Call open() before reading log file.") for rec in self.records(): if rec.record_id == record_id: return rec raise ValueError(f"Cannot find record with id {record_id}.") @contextmanager def training_log_writer(filename: str, append: bool = False): try: w = TrainingLogWriter(filename) if not append: w.open() else: w.append_open() yield w finally: w.close() @contextmanager def training_log_reader(filename: str): try: r = TrainingLogReader(filename) r.open() yield r finally: r.close()
py
b4061ab57e2f2604f0574865e88656421caa0133
from ..tre_elements import TREExtension, TREElement __classification__ = "UNCLASSIFIED" __author__ = "Thomas McCullough" class RSMPIAType(TREElement): def __init__(self, value): super(RSMPIAType, self).__init__() self.add_field('IID', 's', 80, value) self.add_field('EDITION', 's', 40, value) self.add_field('R0', 's', 21, value) self.add_field('RX', 's', 21, value) self.add_field('RY', 's', 21, value) self.add_field('RZ', 's', 21, value) self.add_field('RXX', 's', 21, value) self.add_field('RXY', 's', 21, value) self.add_field('RXZ', 's', 21, value) self.add_field('RYY', 's', 21, value) self.add_field('RYZ', 's', 21, value) self.add_field('RZZ', 's', 21, value) self.add_field('C0', 's', 21, value) self.add_field('CX', 's', 21, value) self.add_field('CY', 's', 21, value) self.add_field('CZ', 's', 21, value) self.add_field('CXX', 's', 21, value) self.add_field('CXY', 's', 21, value) self.add_field('CXZ', 's', 21, value) self.add_field('CYY', 's', 21, value) self.add_field('CYZ', 's', 21, value) self.add_field('CZZ', 's', 21, value) self.add_field('RNIS', 's', 3, value) self.add_field('CNIS', 's', 3, value) self.add_field('TNIS', 's', 3, value) self.add_field('RSSIZ', 's', 21, value) self.add_field('CSSIZ', 's', 21, value) class RSMPIA(TREExtension): _tag_value = 'RSMPIA' _data_type = RSMPIAType
py
b4061adc9259055fce6a81e0478e169d807fbab7
from app.models import Configs, Devices from app import db # The function is needed to check if the device is in database def get_exist_device_on_db(ipaddress: str) -> bool: """ The function is needed to check if the device is in database """ try: # Get last configurations from DB data = ( Devices.query.order_by(Devices.timestamp.desc()) .filter_by(device_ip=ipaddress) .first() ) if data: return True else: return False except: return False # The function gets env for all devices from database def get_devices_env() -> dict: """ The function gets env for all devices from database return: Devices env dict """ # Create dict for device environment data devices_env_dict = {} # Gets devices ip from database data = Devices.query.order_by(Devices.device_ip.desc()) # Create list for device ip addresses ip_list = [ip.device_ip for ip in data] # Create a tuple for unique ip addresses ip_list = sorted(tuple(set(ip_list))) # This variable need to create html element id for accordion for html_element_id, ip in enumerate(ip_list, start=1): db_data = get_last_env_for_device_from_db(ip) # Checking if the previous configuration exists to enable/disable # the "Compare configuration" button on the device page check_previous_config = check_if_previous_configuration_exists(ipaddress=ip) # Getting last config timestamp for device page last_config_timestamp = get_last_config_for_device(ipaddress=ip)["timestamp"] # If the latest configuration does not exist, return "No backup yet" if last_config_timestamp is None: last_config_timestamp = "No backup yet" # Update device dict devices_env_dict.update( { ip: { "html_element_id": f"{html_element_id}", "hostname": db_data["hostname"], "vendor": db_data["vendor"], "model": db_data["model"], "os_version": db_data["os_version"], "sn": db_data["sn"], "uptime": db_data["uptime"], "connection_status": db_data["connection_status"], "timestamp": db_data["timestamp"], "check_previous_config": check_previous_config, "last_config_timestamp": last_config_timestamp, } } ) return devices_env_dict # The function gets the latest env from the database for the provided device def get_last_env_for_device_from_db(ipaddress: str) -> dict or None: """ Need to parm: Ipaddress return: device env dict or None """ try: # Get last configurations from DB data = ( Devices.query.order_by(Devices.timestamp.desc()) .filter_by(device_ip=ipaddress) .first() ) # Variable for device env db_last_ipaddress = data.device_ip db_last_hostname = data.device_hostname db_device_vendor = data.device_vendor db_device_model = data.device_model db_device_os_version = data.device_os_version db_device_sn = data.device_sn db_device_uptime = data.device_uptime db_connection_status = data.connection_status # Variable to set the timestamp db_last_timestamp = data.timestamp # Return device env dict return { "ipaddress": db_last_ipaddress, "hostname": db_last_hostname, "vendor": db_device_vendor, "model": db_device_model, "os_version": db_device_os_version, "sn": db_device_sn, "connection_status": db_connection_status, "uptime": db_device_uptime, "timestamp": db_last_timestamp, } except Exception as db_error: print(db_error) # If env not found return None return None # This function update a device environment file to the DB def update_device_env_on_db( ipaddress: str, hostname: str, vendor: str, model: str, os_version: str, sn: str, uptime: str, connection_status: str, connection_driver: str, timestamp: str, ) -> None: """ This function update a device environment file to the DB parm: ipaddress: str hostname: str vendor: str model: str os_version: str sn: str uptime: str timestamp: str return: None """ try: # Getting device data from db data = db.session.query(Devices).filter_by(device_ip=ipaddress).first() # If device hostname changed overwrite data on db if data.device_hostname != hostname: data.device_hostname = hostname # If device vendor name changed overwrite data on db if data.device_vendor != vendor: data.device_vendor = vendor # If device model changed overwrite data on db if data.device_model != model: data.device_model = model # If device os version changed overwrite data on db if data.device_os_version != os_version: data.device_os_version = os_version # If device serial number changed overwrite data on db if data.device_sn != sn: data.device_sn = sn if data.connection_status != connection_status: data.connection_status = connection_status if data.connection_driver != connection_driver: data.connection_driver = connection_driver # Overwrite device uptime on db data.device_uptime = uptime # Overwrite timestamp on db data.timestamp = timestamp # Apply changing db.session.commit() db.session.close() except Exception as update_sql_error: # If an error occurs as a result of writing to the DB, # then rollback the DB and write a message to the log print(update_sql_error) db.session.rollback() # This function update a device environment file to the DB def update_device_status_on_db( ipaddress: str, connection_status: str, timestamp: str, ) -> None: """ This function update a device environment file to the DB parm: ipaddress: str connection_status: str timestamp: str return: None """ try: # Getting device data from db data = db.session.query(Devices).filter_by(device_ip=ipaddress).first() if data.connection_status != connection_status: data.connection_status = connection_status # Overwrite timestamp on db data.timestamp = timestamp # Apply changing db.session.commit() db.session.close() except Exception as update_sql_error: # If an error occurs as a result of writing to the DB, # then rollback the DB and write a message to the log print(update_sql_error) db.session.rollback() # This function writes a new device environment file to the DB if device is not exist def write_device_env_on_db( ipaddress: str, hostname: str, vendor: str, model: str, os_version: str, sn: str, uptime: str, connection_status: str, connection_driver: str, ) -> None: """ This function writes a new device environment file to the DB if device is not exist Need to parm: ipaddress: str hostname: str vendor: str model: str os_version: str sn: str uptime: str Ipaddress and config, timestamp generated automatically return: None """ # We form a request to the database and pass the IP address and device environment device_env = Devices( device_ip=ipaddress, device_hostname=hostname, device_vendor=vendor, device_model=model, device_os_version=os_version, device_sn=sn, device_uptime=uptime, connection_status=connection_status, connection_driver=connection_driver, ) try: # Sending data in BD db.session.add(device_env) # Committing changes db.session.commit() db.session.close() except Exception as write_sql_error: # If an error occurs as a result of writing to the DB, # then rollback the DB and write a message to the log print(write_sql_error) db.session.rollback() # The function gets the latest configuration file from the database for the provided device def get_last_config_for_device(ipaddress: str) -> dict or None: """ Need to parm: Ipaddress: str return: Dict or None """ try: # Get last configurations from DB data = ( Configs.query.order_by(Configs.timestamp.desc()) .filter_by(device_ip=ipaddress) .first() ) # Variable for device configuration db_last_config = data.device_config # Variable to set the timestamp db_last_timestamp = data.timestamp return {"last_config": db_last_config, "timestamp": db_last_timestamp} except: # If configuration not found return None return None # This function gets all timestamps for which there is a configuration for this device def get_all_cfg_timestamp_for_device(ipaddress: str) -> list or None: """ Need to parm: Ipaddress: str return List or None """ try: # Gets all timestamp from DB data = Configs.query.order_by(Configs.timestamp.desc()).filter_by( device_ip=ipaddress ) # Return list minus last config timestamp return [db_timestamp.timestamp for db_timestamp in data[1:]] except: # If timestamp not found return None return None # This function gets the previous config for this device from the DB def get_previous_config(ipaddress: str, db_timestamp: str) -> str or None: """ Need to parm: Ipaddress timestamp return str or None """ try: # Get configurations from DB data = Configs.query.order_by(Configs.timestamp.desc()).filter_by( device_ip=ipaddress, timestamp=db_timestamp ) # The database returns a list, we get text data from it and return it from the function return data[0].device_config except: # If config not found return None return None # This function is needed to check if there are previous configuration versions # for the device in the database check def check_if_previous_configuration_exists(ipaddress: str) -> bool: """ # This function is needed to check if there are previous configuration versions for the device in the database check Parm: ipaddress: str return: bool """ # Get configurations from DB data = Configs.query.order_by(Configs.timestamp.desc()).filter_by( device_ip=ipaddress ) # Len configs configs_list = [ip.device_ip for ip in data] return True if len(configs_list) > 1 else False # This function writes a new configuration file to the DB def write_cfg_on_db(ipaddress: str, config: str) -> None: """ Need to parm: Ipaddress and config, timestamp generated automatically return None """ # We form a request to the database and pass the IP address and device configuration config = Configs(device_ip=ipaddress, device_config=config) try: # Sending data in BD db.session.add(config) # Committing changes db.session.commit() db.session.close() except Exception as write_sql_error: # If an error occurs as a result of writing to the DB, # then rollback the DB and write a message to the log print(write_sql_error) db.session.rollback() if __name__ == "__main__": print(get_last_env_for_device_from_db(ipaddress="10.255.101.190"))
py
b4061b79357b87ad1b8fdfa80eb87822e241e2f7
import compileall import contextlib import filecmp import importlib.util import io import itertools import os import pathlib import py_compile import shutil import struct import sys import tempfile import test.test_importlib.util import time import unittest from unittest import mock, skipUnless try: from concurrent.futures import ProcessPoolExecutor _have_multiprocessing = True except ImportError: _have_multiprocessing = False from test import support from test.support import script_helper from .test_py_compile import without_source_date_epoch from .test_py_compile import SourceDateEpochTestMeta def get_pyc(script, opt): if not opt: # Replace None and 0 with '' opt = '' return importlib.util.cache_from_source(script, optimization=opt) def get_pycs(script): return [get_pyc(script, opt) for opt in (0, 1, 2)] def is_hardlink(filename1, filename2): """Returns True if two files have the same inode (hardlink)""" inode1 = os.stat(filename1).st_ino inode2 = os.stat(filename2).st_ino return inode1 == inode2 class CompileallTestsBase: def setUp(self): self.directory = tempfile.mkdtemp() self.source_path = os.path.join(self.directory, '_test.py') self.bc_path = importlib.util.cache_from_source(self.source_path) with open(self.source_path, 'w') as file: file.write('x = 123\n') self.source_path2 = os.path.join(self.directory, '_test2.py') self.bc_path2 = importlib.util.cache_from_source(self.source_path2) shutil.copyfile(self.source_path, self.source_path2) self.subdirectory = os.path.join(self.directory, '_subdir') os.mkdir(self.subdirectory) self.source_path3 = os.path.join(self.subdirectory, '_test3.py') shutil.copyfile(self.source_path, self.source_path3) def tearDown(self): shutil.rmtree(self.directory) def add_bad_source_file(self): self.bad_source_path = os.path.join(self.directory, '_test_bad.py') with open(self.bad_source_path, 'w') as file: file.write('x (\n') def timestamp_metadata(self): with open(self.bc_path, 'rb') as file: data = file.read(12) mtime = int(os.stat(self.source_path).st_mtime) compare = struct.pack('<4sll', importlib.util.MAGIC_NUMBER, 0, mtime) return data, compare def recreation_check(self, metadata): """Check that compileall recreates bytecode when the new metadata is used.""" if os.environ.get('SOURCE_DATE_EPOCH'): raise unittest.SkipTest('SOURCE_DATE_EPOCH is set') py_compile.compile(self.source_path) self.assertEqual(*self.timestamp_metadata()) with open(self.bc_path, 'rb') as file: bc = file.read()[len(metadata):] with open(self.bc_path, 'wb') as file: file.write(metadata) file.write(bc) self.assertNotEqual(*self.timestamp_metadata()) compileall.compile_dir(self.directory, force=False, quiet=True) self.assertTrue(*self.timestamp_metadata()) def test_mtime(self): # Test a change in mtime leads to a new .pyc. self.recreation_check(struct.pack('<4sll', importlib.util.MAGIC_NUMBER, 0, 1)) def test_magic_number(self): # Test a change in mtime leads to a new .pyc. self.recreation_check(b'\0\0\0\0') def test_compile_files(self): # Test compiling a single file, and complete directory for fn in (self.bc_path, self.bc_path2): try: os.unlink(fn) except: pass self.assertTrue(compileall.compile_file(self.source_path, force=False, quiet=True)) self.assertTrue(os.path.isfile(self.bc_path) and not os.path.isfile(self.bc_path2)) os.unlink(self.bc_path) self.assertTrue(compileall.compile_dir(self.directory, force=False, quiet=True)) self.assertTrue(os.path.isfile(self.bc_path) and os.path.isfile(self.bc_path2)) os.unlink(self.bc_path) os.unlink(self.bc_path2) # Test against bad files self.add_bad_source_file() self.assertFalse(compileall.compile_file(self.bad_source_path, force=False, quiet=2)) self.assertFalse(compileall.compile_dir(self.directory, force=False, quiet=2)) def test_compile_file_pathlike(self): self.assertFalse(os.path.isfile(self.bc_path)) # we should also test the output with support.captured_stdout() as stdout: self.assertTrue(compileall.compile_file(pathlib.Path(self.source_path))) self.assertRegex(stdout.getvalue(), r'Compiling ([^WindowsPath|PosixPath].*)') self.assertTrue(os.path.isfile(self.bc_path)) def test_compile_file_pathlike_ddir(self): self.assertFalse(os.path.isfile(self.bc_path)) self.assertTrue(compileall.compile_file(pathlib.Path(self.source_path), ddir=pathlib.Path('ddir_path'), quiet=2)) self.assertTrue(os.path.isfile(self.bc_path)) def test_compile_path(self): with test.test_importlib.util.import_state(path=[self.directory]): self.assertTrue(compileall.compile_path(quiet=2)) with test.test_importlib.util.import_state(path=[self.directory]): self.add_bad_source_file() self.assertFalse(compileall.compile_path(skip_curdir=False, force=True, quiet=2)) def test_no_pycache_in_non_package(self): # Bug 8563 reported that __pycache__ directories got created by # compile_file() for non-.py files. data_dir = os.path.join(self.directory, 'data') data_file = os.path.join(data_dir, 'file') os.mkdir(data_dir) # touch data/file with open(data_file, 'w'): pass compileall.compile_file(data_file) self.assertFalse(os.path.exists(os.path.join(data_dir, '__pycache__'))) def test_optimize(self): # make sure compiling with different optimization settings than the # interpreter's creates the correct file names optimize, opt = (1, 1) if __debug__ else (0, '') compileall.compile_dir(self.directory, quiet=True, optimize=optimize) cached = importlib.util.cache_from_source(self.source_path, optimization=opt) self.assertTrue(os.path.isfile(cached)) cached2 = importlib.util.cache_from_source(self.source_path2, optimization=opt) self.assertTrue(os.path.isfile(cached2)) cached3 = importlib.util.cache_from_source(self.source_path3, optimization=opt) self.assertTrue(os.path.isfile(cached3)) def test_compile_dir_pathlike(self): self.assertFalse(os.path.isfile(self.bc_path)) with support.captured_stdout() as stdout: compileall.compile_dir(pathlib.Path(self.directory)) line = stdout.getvalue().splitlines()[0] self.assertRegex(line, r'Listing ([^WindowsPath|PosixPath].*)') self.assertTrue(os.path.isfile(self.bc_path)) @mock.patch('concurrent.futures.ProcessPoolExecutor') def test_compile_pool_called(self, pool_mock): compileall.compile_dir(self.directory, quiet=True, workers=5) self.assertTrue(pool_mock.called) def test_compile_workers_non_positive(self): with self.assertRaisesRegex(ValueError, "workers must be greater or equal to 0"): compileall.compile_dir(self.directory, workers=-1) @mock.patch('concurrent.futures.ProcessPoolExecutor') def test_compile_workers_cpu_count(self, pool_mock): compileall.compile_dir(self.directory, quiet=True, workers=0) self.assertEqual(pool_mock.call_args[1]['max_workers'], None) @mock.patch('concurrent.futures.ProcessPoolExecutor') @mock.patch('compileall.compile_file') def test_compile_one_worker(self, compile_file_mock, pool_mock): compileall.compile_dir(self.directory, quiet=True) self.assertFalse(pool_mock.called) self.assertTrue(compile_file_mock.called) @mock.patch('concurrent.futures.ProcessPoolExecutor', new=None) @mock.patch('compileall.compile_file') def test_compile_missing_multiprocessing(self, compile_file_mock): compileall.compile_dir(self.directory, quiet=True, workers=5) self.assertTrue(compile_file_mock.called) def test_compile_dir_maxlevels(self): # Test the actual impact of maxlevels parameter depth = 3 path = self.directory for i in range(1, depth + 1): path = os.path.join(path, f"dir_{i}") source = os.path.join(path, 'script.py') os.mkdir(path) shutil.copyfile(self.source_path, source) pyc_filename = importlib.util.cache_from_source(source) compileall.compile_dir(self.directory, quiet=True, maxlevels=depth - 1) self.assertFalse(os.path.isfile(pyc_filename)) compileall.compile_dir(self.directory, quiet=True, maxlevels=depth) self.assertTrue(os.path.isfile(pyc_filename)) def _test_ddir_only(self, *, ddir, parallel=True): """Recursive compile_dir ddir must contain package paths; bpo39769.""" fullpath = ["test", "foo"] path = self.directory mods = [] for subdir in fullpath: path = os.path.join(path, subdir) os.mkdir(path) script_helper.make_script(path, "__init__", "") mods.append(script_helper.make_script(path, "mod", "def fn(): 1/0\nfn()\n")) compileall.compile_dir( self.directory, quiet=True, ddir=ddir, workers=2 if parallel else 1) self.assertTrue(mods) for mod in mods: self.assertTrue(mod.startswith(self.directory), mod) modcode = importlib.util.cache_from_source(mod) modpath = mod[len(self.directory+os.sep):] _, _, err = script_helper.assert_python_failure(modcode) expected_in = os.path.join(ddir, modpath) mod_code_obj = test.test_importlib.util.get_code_from_pyc(modcode) self.assertEqual(mod_code_obj.co_filename, expected_in) self.assertIn(f'"{expected_in}"', os.fsdecode(err)) def test_ddir_only_one_worker(self): """Recursive compile_dir ddir= contains package paths; bpo39769.""" return self._test_ddir_only(ddir="<a prefix>", parallel=False) def test_ddir_multiple_workers(self): """Recursive compile_dir ddir= contains package paths; bpo39769.""" return self._test_ddir_only(ddir="<a prefix>", parallel=True) def test_ddir_empty_only_one_worker(self): """Recursive compile_dir ddir='' contains package paths; bpo39769.""" return self._test_ddir_only(ddir="", parallel=False) def test_ddir_empty_multiple_workers(self): """Recursive compile_dir ddir='' contains package paths; bpo39769.""" return self._test_ddir_only(ddir="", parallel=True) def test_strip_only(self): fullpath = ["test", "build", "real", "path"] path = os.path.join(self.directory, *fullpath) os.makedirs(path) script = script_helper.make_script(path, "test", "1 / 0") bc = importlib.util.cache_from_source(script) stripdir = os.path.join(self.directory, *fullpath[:2]) compileall.compile_dir(path, quiet=True, stripdir=stripdir) rc, out, err = script_helper.assert_python_failure(bc) expected_in = os.path.join(*fullpath[2:]) self.assertIn( expected_in, str(err, encoding=sys.getdefaultencoding()) ) self.assertNotIn( stripdir, str(err, encoding=sys.getdefaultencoding()) ) def test_prepend_only(self): fullpath = ["test", "build", "real", "path"] path = os.path.join(self.directory, *fullpath) os.makedirs(path) script = script_helper.make_script(path, "test", "1 / 0") bc = importlib.util.cache_from_source(script) prependdir = "/foo" compileall.compile_dir(path, quiet=True, prependdir=prependdir) rc, out, err = script_helper.assert_python_failure(bc) expected_in = os.path.join(prependdir, self.directory, *fullpath) self.assertIn( expected_in, str(err, encoding=sys.getdefaultencoding()) ) def test_strip_and_prepend(self): fullpath = ["test", "build", "real", "path"] path = os.path.join(self.directory, *fullpath) os.makedirs(path) script = script_helper.make_script(path, "test", "1 / 0") bc = importlib.util.cache_from_source(script) stripdir = os.path.join(self.directory, *fullpath[:2]) prependdir = "/foo" compileall.compile_dir(path, quiet=True, stripdir=stripdir, prependdir=prependdir) rc, out, err = script_helper.assert_python_failure(bc) expected_in = os.path.join(prependdir, *fullpath[2:]) self.assertIn( expected_in, str(err, encoding=sys.getdefaultencoding()) ) self.assertNotIn( stripdir, str(err, encoding=sys.getdefaultencoding()) ) def test_strip_prepend_and_ddir(self): fullpath = ["test", "build", "real", "path", "ddir"] path = os.path.join(self.directory, *fullpath) os.makedirs(path) script_helper.make_script(path, "test", "1 / 0") with self.assertRaises(ValueError): compileall.compile_dir(path, quiet=True, ddir="/bar", stripdir="/foo", prependdir="/bar") def test_multiple_optimization_levels(self): script = script_helper.make_script(self.directory, "test_optimization", "a = 0") bc = [] for opt_level in "", 1, 2, 3: bc.append(importlib.util.cache_from_source(script, optimization=opt_level)) test_combinations = [[0, 1], [1, 2], [0, 2], [0, 1, 2]] for opt_combination in test_combinations: compileall.compile_file(script, quiet=True, optimize=opt_combination) for opt_level in opt_combination: self.assertTrue(os.path.isfile(bc[opt_level])) try: os.unlink(bc[opt_level]) except Exception: pass @support.skip_unless_symlink def test_ignore_symlink_destination(self): # Create folders for allowed files, symlinks and prohibited area allowed_path = os.path.join(self.directory, "test", "dir", "allowed") symlinks_path = os.path.join(self.directory, "test", "dir", "symlinks") prohibited_path = os.path.join(self.directory, "test", "dir", "prohibited") os.makedirs(allowed_path) os.makedirs(symlinks_path) os.makedirs(prohibited_path) # Create scripts and symlinks and remember their byte-compiled versions allowed_script = script_helper.make_script(allowed_path, "test_allowed", "a = 0") prohibited_script = script_helper.make_script(prohibited_path, "test_prohibited", "a = 0") allowed_symlink = os.path.join(symlinks_path, "test_allowed.py") prohibited_symlink = os.path.join(symlinks_path, "test_prohibited.py") os.symlink(allowed_script, allowed_symlink) os.symlink(prohibited_script, prohibited_symlink) allowed_bc = importlib.util.cache_from_source(allowed_symlink) prohibited_bc = importlib.util.cache_from_source(prohibited_symlink) compileall.compile_dir(symlinks_path, quiet=True, limit_sl_dest=allowed_path) self.assertTrue(os.path.isfile(allowed_bc)) self.assertFalse(os.path.isfile(prohibited_bc)) class CompileallTestsWithSourceEpoch(CompileallTestsBase, unittest.TestCase, metaclass=SourceDateEpochTestMeta, source_date_epoch=True): pass class CompileallTestsWithoutSourceEpoch(CompileallTestsBase, unittest.TestCase, metaclass=SourceDateEpochTestMeta, source_date_epoch=False): pass class EncodingTest(unittest.TestCase): """Issue 6716: compileall should escape source code when printing errors to stdout.""" def setUp(self): self.directory = tempfile.mkdtemp() self.source_path = os.path.join(self.directory, '_test.py') with open(self.source_path, 'w', encoding='utf-8') as file: file.write('# -*- coding: utf-8 -*-\n') file.write('print u"\u20ac"\n') def tearDown(self): shutil.rmtree(self.directory) def test_error(self): try: orig_stdout = sys.stdout sys.stdout = io.TextIOWrapper(io.BytesIO(),encoding='ascii') compileall.compile_dir(self.directory) finally: sys.stdout = orig_stdout class CommandLineTestsBase: """Test compileall's CLI.""" @classmethod def setUpClass(cls): for path in filter(os.path.isdir, sys.path): directory_created = False directory = pathlib.Path(path) / '__pycache__' path = directory / 'test.try' try: if not directory.is_dir(): directory.mkdir() directory_created = True with path.open('w') as file: file.write('# for test_compileall') except OSError: sys_path_writable = False break finally: support.unlink(str(path)) if directory_created: directory.rmdir() else: sys_path_writable = True cls._sys_path_writable = sys_path_writable def _skip_if_sys_path_not_writable(self): if not self._sys_path_writable: raise unittest.SkipTest('not all entries on sys.path are writable') def _get_run_args(self, args): return [*support.optim_args_from_interpreter_flags(), '-S', '-m', 'compileall', *args] def assertRunOK(self, *args, **env_vars): rc, out, err = script_helper.assert_python_ok( *self._get_run_args(args), **env_vars) self.assertEqual(b'', err) return out def assertRunNotOK(self, *args, **env_vars): rc, out, err = script_helper.assert_python_failure( *self._get_run_args(args), **env_vars) return rc, out, err def assertCompiled(self, fn): path = importlib.util.cache_from_source(fn) self.assertTrue(os.path.exists(path)) def assertNotCompiled(self, fn): path = importlib.util.cache_from_source(fn) self.assertFalse(os.path.exists(path)) def setUp(self): self.directory = tempfile.mkdtemp() self.addCleanup(support.rmtree, self.directory) self.pkgdir = os.path.join(self.directory, 'foo') os.mkdir(self.pkgdir) self.pkgdir_cachedir = os.path.join(self.pkgdir, '__pycache__') # Create the __init__.py and a package module. self.initfn = script_helper.make_script(self.pkgdir, '__init__', '') self.barfn = script_helper.make_script(self.pkgdir, 'bar', '') def test_no_args_compiles_path(self): # Note that -l is implied for the no args case. self._skip_if_sys_path_not_writable() bazfn = script_helper.make_script(self.directory, 'baz', '') self.assertRunOK(PYTHONPATH=self.directory) self.assertCompiled(bazfn) self.assertNotCompiled(self.initfn) self.assertNotCompiled(self.barfn) @without_source_date_epoch # timestamp invalidation test def test_no_args_respects_force_flag(self): self._skip_if_sys_path_not_writable() bazfn = script_helper.make_script(self.directory, 'baz', '') self.assertRunOK(PYTHONPATH=self.directory) pycpath = importlib.util.cache_from_source(bazfn) # Set atime/mtime backward to avoid file timestamp resolution issues os.utime(pycpath, (time.time()-60,)*2) mtime = os.stat(pycpath).st_mtime # Without force, no recompilation self.assertRunOK(PYTHONPATH=self.directory) mtime2 = os.stat(pycpath).st_mtime self.assertEqual(mtime, mtime2) # Now force it. self.assertRunOK('-f', PYTHONPATH=self.directory) mtime2 = os.stat(pycpath).st_mtime self.assertNotEqual(mtime, mtime2) def test_no_args_respects_quiet_flag(self): self._skip_if_sys_path_not_writable() script_helper.make_script(self.directory, 'baz', '') noisy = self.assertRunOK(PYTHONPATH=self.directory) self.assertIn(b'Listing ', noisy) quiet = self.assertRunOK('-q', PYTHONPATH=self.directory) self.assertNotIn(b'Listing ', quiet) # Ensure that the default behavior of compileall's CLI is to create # PEP 3147/PEP 488 pyc files. for name, ext, switch in [ ('normal', 'pyc', []), ('optimize', 'opt-1.pyc', ['-O']), ('doubleoptimize', 'opt-2.pyc', ['-OO']), ]: def f(self, ext=ext, switch=switch): script_helper.assert_python_ok(*(switch + ['-m', 'compileall', '-q', self.pkgdir])) # Verify the __pycache__ directory contents. self.assertTrue(os.path.exists(self.pkgdir_cachedir)) expected = sorted(base.format(sys.implementation.cache_tag, ext) for base in ('__init__.{}.{}', 'bar.{}.{}')) self.assertEqual(sorted(os.listdir(self.pkgdir_cachedir)), expected) # Make sure there are no .pyc files in the source directory. self.assertFalse([fn for fn in os.listdir(self.pkgdir) if fn.endswith(ext)]) locals()['test_pep3147_paths_' + name] = f def test_legacy_paths(self): # Ensure that with the proper switch, compileall leaves legacy # pyc files, and no __pycache__ directory. self.assertRunOK('-b', '-q', self.pkgdir) # Verify the __pycache__ directory contents. self.assertFalse(os.path.exists(self.pkgdir_cachedir)) expected = sorted(['__init__.py', '__init__.pyc', 'bar.py', 'bar.pyc']) self.assertEqual(sorted(os.listdir(self.pkgdir)), expected) def test_multiple_runs(self): # Bug 8527 reported that multiple calls produced empty # __pycache__/__pycache__ directories. self.assertRunOK('-q', self.pkgdir) # Verify the __pycache__ directory contents. self.assertTrue(os.path.exists(self.pkgdir_cachedir)) cachecachedir = os.path.join(self.pkgdir_cachedir, '__pycache__') self.assertFalse(os.path.exists(cachecachedir)) # Call compileall again. self.assertRunOK('-q', self.pkgdir) self.assertTrue(os.path.exists(self.pkgdir_cachedir)) self.assertFalse(os.path.exists(cachecachedir)) @without_source_date_epoch # timestamp invalidation test def test_force(self): self.assertRunOK('-q', self.pkgdir) pycpath = importlib.util.cache_from_source(self.barfn) # set atime/mtime backward to avoid file timestamp resolution issues os.utime(pycpath, (time.time()-60,)*2) mtime = os.stat(pycpath).st_mtime # without force, no recompilation self.assertRunOK('-q', self.pkgdir) mtime2 = os.stat(pycpath).st_mtime self.assertEqual(mtime, mtime2) # now force it. self.assertRunOK('-q', '-f', self.pkgdir) mtime2 = os.stat(pycpath).st_mtime self.assertNotEqual(mtime, mtime2) def test_recursion_control(self): subpackage = os.path.join(self.pkgdir, 'spam') os.mkdir(subpackage) subinitfn = script_helper.make_script(subpackage, '__init__', '') hamfn = script_helper.make_script(subpackage, 'ham', '') self.assertRunOK('-q', '-l', self.pkgdir) self.assertNotCompiled(subinitfn) self.assertFalse(os.path.exists(os.path.join(subpackage, '__pycache__'))) self.assertRunOK('-q', self.pkgdir) self.assertCompiled(subinitfn) self.assertCompiled(hamfn) def test_recursion_limit(self): subpackage = os.path.join(self.pkgdir, 'spam') subpackage2 = os.path.join(subpackage, 'ham') subpackage3 = os.path.join(subpackage2, 'eggs') for pkg in (subpackage, subpackage2, subpackage3): script_helper.make_pkg(pkg) subinitfn = os.path.join(subpackage, '__init__.py') hamfn = script_helper.make_script(subpackage, 'ham', '') spamfn = script_helper.make_script(subpackage2, 'spam', '') eggfn = script_helper.make_script(subpackage3, 'egg', '') self.assertRunOK('-q', '-r 0', self.pkgdir) self.assertNotCompiled(subinitfn) self.assertFalse( os.path.exists(os.path.join(subpackage, '__pycache__'))) self.assertRunOK('-q', '-r 1', self.pkgdir) self.assertCompiled(subinitfn) self.assertCompiled(hamfn) self.assertNotCompiled(spamfn) self.assertRunOK('-q', '-r 2', self.pkgdir) self.assertCompiled(subinitfn) self.assertCompiled(hamfn) self.assertCompiled(spamfn) self.assertNotCompiled(eggfn) self.assertRunOK('-q', '-r 5', self.pkgdir) self.assertCompiled(subinitfn) self.assertCompiled(hamfn) self.assertCompiled(spamfn) self.assertCompiled(eggfn) @support.skip_unless_symlink def test_symlink_loop(self): # Currently, compileall ignores symlinks to directories. # If that limitation is ever lifted, it should protect against # recursion in symlink loops. pkg = os.path.join(self.pkgdir, 'spam') script_helper.make_pkg(pkg) os.symlink('.', os.path.join(pkg, 'evil')) os.symlink('.', os.path.join(pkg, 'evil2')) self.assertRunOK('-q', self.pkgdir) self.assertCompiled(os.path.join( self.pkgdir, 'spam', 'evil', 'evil2', '__init__.py' )) def test_quiet(self): noisy = self.assertRunOK(self.pkgdir) quiet = self.assertRunOK('-q', self.pkgdir) self.assertNotEqual(b'', noisy) self.assertEqual(b'', quiet) def test_silent(self): script_helper.make_script(self.pkgdir, 'crunchyfrog', 'bad(syntax') _, quiet, _ = self.assertRunNotOK('-q', self.pkgdir) _, silent, _ = self.assertRunNotOK('-qq', self.pkgdir) self.assertNotEqual(b'', quiet) self.assertEqual(b'', silent) def test_regexp(self): self.assertRunOK('-q', '-x', r'ba[^\\/]*$', self.pkgdir) self.assertNotCompiled(self.barfn) self.assertCompiled(self.initfn) def test_multiple_dirs(self): pkgdir2 = os.path.join(self.directory, 'foo2') os.mkdir(pkgdir2) init2fn = script_helper.make_script(pkgdir2, '__init__', '') bar2fn = script_helper.make_script(pkgdir2, 'bar2', '') self.assertRunOK('-q', self.pkgdir, pkgdir2) self.assertCompiled(self.initfn) self.assertCompiled(self.barfn) self.assertCompiled(init2fn) self.assertCompiled(bar2fn) def test_d_compile_error(self): script_helper.make_script(self.pkgdir, 'crunchyfrog', 'bad(syntax') rc, out, err = self.assertRunNotOK('-q', '-d', 'dinsdale', self.pkgdir) self.assertRegex(out, b'File "dinsdale') def test_d_runtime_error(self): bazfn = script_helper.make_script(self.pkgdir, 'baz', 'raise Exception') self.assertRunOK('-q', '-d', 'dinsdale', self.pkgdir) fn = script_helper.make_script(self.pkgdir, 'bing', 'import baz') pyc = importlib.util.cache_from_source(bazfn) os.rename(pyc, os.path.join(self.pkgdir, 'baz.pyc')) os.remove(bazfn) rc, out, err = script_helper.assert_python_failure(fn, __isolated=False) self.assertRegex(err, b'File "dinsdale') def test_include_bad_file(self): rc, out, err = self.assertRunNotOK( '-i', os.path.join(self.directory, 'nosuchfile'), self.pkgdir) self.assertRegex(out, b'rror.*nosuchfile') self.assertNotRegex(err, b'Traceback') self.assertFalse(os.path.exists(importlib.util.cache_from_source( self.pkgdir_cachedir))) def test_include_file_with_arg(self): f1 = script_helper.make_script(self.pkgdir, 'f1', '') f2 = script_helper.make_script(self.pkgdir, 'f2', '') f3 = script_helper.make_script(self.pkgdir, 'f3', '') f4 = script_helper.make_script(self.pkgdir, 'f4', '') with open(os.path.join(self.directory, 'l1'), 'w') as l1: l1.write(os.path.join(self.pkgdir, 'f1.py')+os.linesep) l1.write(os.path.join(self.pkgdir, 'f2.py')+os.linesep) self.assertRunOK('-i', os.path.join(self.directory, 'l1'), f4) self.assertCompiled(f1) self.assertCompiled(f2) self.assertNotCompiled(f3) self.assertCompiled(f4) def test_include_file_no_arg(self): f1 = script_helper.make_script(self.pkgdir, 'f1', '') f2 = script_helper.make_script(self.pkgdir, 'f2', '') f3 = script_helper.make_script(self.pkgdir, 'f3', '') f4 = script_helper.make_script(self.pkgdir, 'f4', '') with open(os.path.join(self.directory, 'l1'), 'w') as l1: l1.write(os.path.join(self.pkgdir, 'f2.py')+os.linesep) self.assertRunOK('-i', os.path.join(self.directory, 'l1')) self.assertNotCompiled(f1) self.assertCompiled(f2) self.assertNotCompiled(f3) self.assertNotCompiled(f4) def test_include_on_stdin(self): f1 = script_helper.make_script(self.pkgdir, 'f1', '') f2 = script_helper.make_script(self.pkgdir, 'f2', '') f3 = script_helper.make_script(self.pkgdir, 'f3', '') f4 = script_helper.make_script(self.pkgdir, 'f4', '') p = script_helper.spawn_python(*(self._get_run_args(()) + ['-i', '-'])) p.stdin.write((f3+os.linesep).encode('ascii')) script_helper.kill_python(p) self.assertNotCompiled(f1) self.assertNotCompiled(f2) self.assertCompiled(f3) self.assertNotCompiled(f4) def test_compiles_as_much_as_possible(self): bingfn = script_helper.make_script(self.pkgdir, 'bing', 'syntax(error') rc, out, err = self.assertRunNotOK('nosuchfile', self.initfn, bingfn, self.barfn) self.assertRegex(out, b'rror') self.assertNotCompiled(bingfn) self.assertCompiled(self.initfn) self.assertCompiled(self.barfn) def test_invalid_arg_produces_message(self): out = self.assertRunOK('badfilename') self.assertRegex(out, b"Can't list 'badfilename'") def test_pyc_invalidation_mode(self): script_helper.make_script(self.pkgdir, 'f1', '') pyc = importlib.util.cache_from_source( os.path.join(self.pkgdir, 'f1.py')) self.assertRunOK('--invalidation-mode=checked-hash', self.pkgdir) with open(pyc, 'rb') as fp: data = fp.read() self.assertEqual(int.from_bytes(data[4:8], 'little'), 0b11) self.assertRunOK('--invalidation-mode=unchecked-hash', self.pkgdir) with open(pyc, 'rb') as fp: data = fp.read() self.assertEqual(int.from_bytes(data[4:8], 'little'), 0b01) @skipUnless(_have_multiprocessing, "requires multiprocessing") def test_workers(self): bar2fn = script_helper.make_script(self.directory, 'bar2', '') files = [] for suffix in range(5): pkgdir = os.path.join(self.directory, 'foo{}'.format(suffix)) os.mkdir(pkgdir) fn = script_helper.make_script(pkgdir, '__init__', '') files.append(script_helper.make_script(pkgdir, 'bar2', '')) self.assertRunOK(self.directory, '-j', '0') self.assertCompiled(bar2fn) for file in files: self.assertCompiled(file) @mock.patch('compileall.compile_dir') def test_workers_available_cores(self, compile_dir): with mock.patch("sys.argv", new=[sys.executable, self.directory, "-j0"]): compileall.main() self.assertTrue(compile_dir.called) self.assertEqual(compile_dir.call_args[-1]['workers'], 0) def test_strip_and_prepend(self): fullpath = ["test", "build", "real", "path"] path = os.path.join(self.directory, *fullpath) os.makedirs(path) script = script_helper.make_script(path, "test", "1 / 0") bc = importlib.util.cache_from_source(script) stripdir = os.path.join(self.directory, *fullpath[:2]) prependdir = "/foo" self.assertRunOK("-s", stripdir, "-p", prependdir, path) rc, out, err = script_helper.assert_python_failure(bc) expected_in = os.path.join(prependdir, *fullpath[2:]) self.assertIn( expected_in, str(err, encoding=sys.getdefaultencoding()) ) self.assertNotIn( stripdir, str(err, encoding=sys.getdefaultencoding()) ) def test_multiple_optimization_levels(self): path = os.path.join(self.directory, "optimizations") os.makedirs(path) script = script_helper.make_script(path, "test_optimization", "a = 0") bc = [] for opt_level in "", 1, 2, 3: bc.append(importlib.util.cache_from_source(script, optimization=opt_level)) test_combinations = [["0", "1"], ["1", "2"], ["0", "2"], ["0", "1", "2"]] for opt_combination in test_combinations: self.assertRunOK(path, *("-o" + str(n) for n in opt_combination)) for opt_level in opt_combination: self.assertTrue(os.path.isfile(bc[int(opt_level)])) try: os.unlink(bc[opt_level]) except Exception: pass @support.skip_unless_symlink def test_ignore_symlink_destination(self): # Create folders for allowed files, symlinks and prohibited area allowed_path = os.path.join(self.directory, "test", "dir", "allowed") symlinks_path = os.path.join(self.directory, "test", "dir", "symlinks") prohibited_path = os.path.join(self.directory, "test", "dir", "prohibited") os.makedirs(allowed_path) os.makedirs(symlinks_path) os.makedirs(prohibited_path) # Create scripts and symlinks and remember their byte-compiled versions allowed_script = script_helper.make_script(allowed_path, "test_allowed", "a = 0") prohibited_script = script_helper.make_script(prohibited_path, "test_prohibited", "a = 0") allowed_symlink = os.path.join(symlinks_path, "test_allowed.py") prohibited_symlink = os.path.join(symlinks_path, "test_prohibited.py") os.symlink(allowed_script, allowed_symlink) os.symlink(prohibited_script, prohibited_symlink) allowed_bc = importlib.util.cache_from_source(allowed_symlink) prohibited_bc = importlib.util.cache_from_source(prohibited_symlink) self.assertRunOK(symlinks_path, "-e", allowed_path) self.assertTrue(os.path.isfile(allowed_bc)) self.assertFalse(os.path.isfile(prohibited_bc)) def test_hardlink_bad_args(self): # Bad arguments combination, hardlink deduplication make sense # only for more than one optimization level self.assertRunNotOK(self.directory, "-o 1", "--hardlink-dupes") def test_hardlink(self): # 'a = 0' code produces the same bytecode for the 3 optimization # levels. All three .pyc files must have the same inode (hardlinks). # # If deduplication is disabled, all pyc files must have different # inodes. for dedup in (True, False): with tempfile.TemporaryDirectory() as path: with self.subTest(dedup=dedup): script = script_helper.make_script(path, "script", "a = 0") pycs = get_pycs(script) args = ["-q", "-o 0", "-o 1", "-o 2"] if dedup: args.append("--hardlink-dupes") self.assertRunOK(path, *args) self.assertEqual(is_hardlink(pycs[0], pycs[1]), dedup) self.assertEqual(is_hardlink(pycs[1], pycs[2]), dedup) self.assertEqual(is_hardlink(pycs[0], pycs[2]), dedup) class CommandLineTestsWithSourceEpoch(CommandLineTestsBase, unittest.TestCase, metaclass=SourceDateEpochTestMeta, source_date_epoch=True): pass class CommandLineTestsNoSourceEpoch(CommandLineTestsBase, unittest.TestCase, metaclass=SourceDateEpochTestMeta, source_date_epoch=False): pass class HardlinkDedupTestsBase: # Test hardlink_dupes parameter of compileall.compile_dir() def setUp(self): self.path = None @contextlib.contextmanager def temporary_directory(self): with tempfile.TemporaryDirectory() as path: self.path = path yield path self.path = None def make_script(self, code, name="script"): return script_helper.make_script(self.path, name, code) def compile_dir(self, *, dedup=True, optimize=(0, 1, 2), force=False): compileall.compile_dir(self.path, quiet=True, optimize=optimize, hardlink_dupes=dedup, force=force) def test_bad_args(self): # Bad arguments combination, hardlink deduplication make sense # only for more than one optimization level with self.temporary_directory(): self.make_script("pass") with self.assertRaises(ValueError): compileall.compile_dir(self.path, quiet=True, optimize=0, hardlink_dupes=True) with self.assertRaises(ValueError): # same optimization level specified twice: # compile_dir() removes duplicates compileall.compile_dir(self.path, quiet=True, optimize=[0, 0], hardlink_dupes=True) def create_code(self, docstring=False, assertion=False): lines = [] if docstring: lines.append("'module docstring'") lines.append('x = 1') if assertion: lines.append("assert x == 1") return '\n'.join(lines) def iter_codes(self): for docstring in (False, True): for assertion in (False, True): code = self.create_code(docstring=docstring, assertion=assertion) yield (code, docstring, assertion) def test_disabled(self): # Deduplication disabled, no hardlinks for code, docstring, assertion in self.iter_codes(): with self.subTest(docstring=docstring, assertion=assertion): with self.temporary_directory(): script = self.make_script(code) pycs = get_pycs(script) self.compile_dir(dedup=False) self.assertFalse(is_hardlink(pycs[0], pycs[1])) self.assertFalse(is_hardlink(pycs[0], pycs[2])) self.assertFalse(is_hardlink(pycs[1], pycs[2])) def check_hardlinks(self, script, docstring=False, assertion=False): pycs = get_pycs(script) self.assertEqual(is_hardlink(pycs[0], pycs[1]), not assertion) self.assertEqual(is_hardlink(pycs[0], pycs[2]), not assertion and not docstring) self.assertEqual(is_hardlink(pycs[1], pycs[2]), not docstring) def test_hardlink(self): # Test deduplication on all combinations for code, docstring, assertion in self.iter_codes(): with self.subTest(docstring=docstring, assertion=assertion): with self.temporary_directory(): script = self.make_script(code) self.compile_dir() self.check_hardlinks(script, docstring, assertion) def test_only_two_levels(self): # Don't build the 3 optimization levels, but only 2 for opts in ((0, 1), (1, 2), (0, 2)): with self.subTest(opts=opts): with self.temporary_directory(): # code with no dostring and no assertion: # same bytecode for all optimization levels script = self.make_script(self.create_code()) self.compile_dir(optimize=opts) pyc1 = get_pyc(script, opts[0]) pyc2 = get_pyc(script, opts[1]) self.assertTrue(is_hardlink(pyc1, pyc2)) def test_duplicated_levels(self): # compile_dir() must not fail if optimize contains duplicated # optimization levels and/or if optimization levels are not sorted. with self.temporary_directory(): # code with no dostring and no assertion: # same bytecode for all optimization levels script = self.make_script(self.create_code()) self.compile_dir(optimize=[1, 0, 1, 0]) pyc1 = get_pyc(script, 0) pyc2 = get_pyc(script, 1) self.assertTrue(is_hardlink(pyc1, pyc2)) def test_recompilation(self): # Test compile_dir() when pyc files already exists and the script # content changed with self.temporary_directory(): script = self.make_script("a = 0") self.compile_dir() # All three levels have the same inode self.check_hardlinks(script) pycs = get_pycs(script) inode = os.stat(pycs[0]).st_ino # Change of the module content script = self.make_script("print(0)") # Recompilation without -o 1 self.compile_dir(optimize=[0, 2], force=True) # opt-1.pyc should have the same inode as before and others should not self.assertEqual(inode, os.stat(pycs[1]).st_ino) self.assertTrue(is_hardlink(pycs[0], pycs[2])) self.assertNotEqual(inode, os.stat(pycs[2]).st_ino) # opt-1.pyc and opt-2.pyc have different content self.assertFalse(filecmp.cmp(pycs[1], pycs[2], shallow=True)) def test_import(self): # Test that import updates a single pyc file when pyc files already # exists and the script content changed with self.temporary_directory(): script = self.make_script(self.create_code(), name="module") self.compile_dir() # All three levels have the same inode self.check_hardlinks(script) pycs = get_pycs(script) inode = os.stat(pycs[0]).st_ino # Change of the module content script = self.make_script("print(0)", name="module") # Import the module in Python with -O (optimization level 1) script_helper.assert_python_ok( "-O", "-c", "import module", __isolated=False, PYTHONPATH=self.path ) # Only opt-1.pyc is changed self.assertEqual(inode, os.stat(pycs[0]).st_ino) self.assertEqual(inode, os.stat(pycs[2]).st_ino) self.assertFalse(is_hardlink(pycs[1], pycs[2])) # opt-1.pyc and opt-2.pyc have different content self.assertFalse(filecmp.cmp(pycs[1], pycs[2], shallow=True)) class HardlinkDedupTestsWithSourceEpoch(HardlinkDedupTestsBase, unittest.TestCase, metaclass=SourceDateEpochTestMeta, source_date_epoch=True): pass class HardlinkDedupTestsNoSourceEpoch(HardlinkDedupTestsBase, unittest.TestCase, metaclass=SourceDateEpochTestMeta, source_date_epoch=False): pass if __name__ == "__main__": unittest.main()
py
b4061b9e0402d8cad05a5b4d55c52b4b1fa11eca
import logging from urllib.parse import urlparse from dbas.database import DBDiscussionSession from dbas.database.discussion_model import StatementReference, User, Statement, Issue from dbas.input_validator import is_integer from dbas.lib import get_profile_picture, get_enabled_arguments_as_query, \ get_enabled_premises_as_query LOG = logging.getLogger(__name__) def get_references_for_argument(uid, main_page): """ Returns all references for the premises group of given argument :param uid: uid of the argument :param main_page: current overview page :return: dict """ LOG.debug("%s", uid) if not is_integer(uid): return {}, {} db_arguments = get_enabled_arguments_as_query() db_argument = db_arguments.filter_by(uid=uid).first() if not db_argument: return {}, {} db_premises = get_enabled_premises_as_query() db_premises = db_premises.filter_by(premisegroup_uid=db_argument.premisegroup_uid).all() data = {} text = {} for premise in db_premises: tmp_uid = premise.statement_uid references_array = __get_references_for_statement(tmp_uid, main_page)[tmp_uid] data[premise.statement_uid] = references_array text[premise.statement_uid] = premise.get_text() if db_argument.conclusion_uid is not None: tmp_uid = db_argument.conclusion_uid references_array = __get_references_for_statement(tmp_uid, main_page)[tmp_uid] data[tmp_uid] = references_array db_statement = DBDiscussionSession.query(Statement).get(tmp_uid) text[tmp_uid] = db_statement.get_text() else: d, t = get_references_for_argument(db_argument.argument_uid, main_page) data.update(d) text.update(t) return data, text def get_references_for_statements(uids, main_page): """ Returns all references for the current given statements :param uids: uids of the statement :param main_page: current overview page :return: dict """ data = {} text = {} for uid in uids: references_array = __get_references_for_statement(uid, main_page)[uid] data[uid] = references_array db_statement = DBDiscussionSession.query(Statement).get(uid) text[uid] = db_statement.get_text() return data, text def __get_references_for_statement(uid, main_page): """ Returns all references for the current given statement :param uid: uid of the statement :param main_page: current overview page :return: dict """ LOG.debug("%s", uid) db_references = DBDiscussionSession.query(StatementReference).filter_by(statement_uid=uid).all() references_array = [__get_values_of_reference(ref, main_page) for ref in db_references] return {uid: references_array} def __get_values_of_reference(reference: StatementReference, main_page) -> dict: """ Creates dictionary with all values of the column :param reference: Current database row :param main_page: current overview page :return: Dictionary with all columns """ user: User = DBDiscussionSession.query(User).get(int(reference.author_uid)) img_path: str = get_profile_picture(user, 20, True) name: str = user.global_nickname link: str = main_page + '/user/' + str(user.uid) return {'uid': reference.uid, 'reference': reference.text, 'host': reference.host, 'path': reference.path, 'author': {'img': img_path, 'name': name, 'link': link}, 'created': str(reference.created.humanize), 'statement_text': reference.get_statement_text()} def set_reference(text: str, url: str, user: User, statement: Statement, issue: Issue) -> bool: """ Creates a new reference for a statement. :param issue: The issue of the referenced statement. :param text: Text of the reference. :param url: The url for the reference. :param user: User who referenced the statement. :param statement: Statement which should be referenced. :return: Boolean """ parsed_url: url = urlparse(url) host: str = '{}://{}'.format(parsed_url.scheme, parsed_url.netloc) path: str = '{}?{}'.format(parsed_url.path, parsed_url.query) DBDiscussionSession.add(StatementReference(text, host, path, user, statement, issue)) DBDiscussionSession.flush() return True def get_references(uids, is_argument, application_url) -> dict: """ Returns references for an argument or statement. :param uids: IDs of statements or arguments as list :param is_argument: boolean if the ids are for arguments :param application_url: url of the application :rtype: dict :return: prepared collection with error, data and text field """ if is_argument: data, text = get_references_for_argument(uids, application_url) else: data, text = get_references_for_statements(uids, application_url) return { 'data': data, 'text': text }
py
b4061c471954663b4f1050d62f3086c87b0a5574
from __future__ import division import math def addition(a, b): a = int(a) b = int(b) c = b + a return c def subtraction(a, b): a = int(a) b = int(b) c = b - a return c def multiplication(a, b): a = int(a) b = int(b) c = b * a return c def division(a, b): a = int(a) b = int(b) c = float(b / a) return round(c, 9) def square(a): a = int(a) c = a ** 2 return c def squareroot(a): a = int(a) c = math.sqrt(a) return float(format(c, '.8f')) class Calculator: result = 0 def __init__(self): pass def add(self, a, b): self.result = addition(a, b) return self.result def subtract(self, a, b): self.result = subtraction(a, b) return self.result def multiple(self, a, b): self.result = multiplication(a, b) return self.result def div(self, a, b): self.result = division(a, b) return self.result def square(self, a): self.result = square(a) return self.result def sqrt(self, a): self.result = squareroot(a) return self.result
py
b4061c8f9c5eec896a9f5882989e914051c70dfb
from poodle import Object import operator as op from functools import reduce # Python3 program to calculate nPr import math class Combinations(Object): number: int combinations: int def __init__(self, *args, **kwargs): super().__init__( *args, **kwargs) self.number = 0 self.combinations = 0 def __str__(self): return str(self.combinations) def ncr(n, r): r = min(r, n-r) numer = reduce(op.mul, range(n, n-r, -1), 1) denom = reduce(op.mul, range(1, r+1), 1) return numer / denom combinations_list = [] for i in range(10): combinations0 = Combinations(i) combinations0.number = i combinations0.combinations = int(ncr(i,2)) combinations_list.append(combinations0) class Permutations(Object): number: int permutations: int def __init__(self, *args, **kwargs): super().__init__( *args, **kwargs) self.number = 0 self.permutations = 0 def __str__(self): return str(self.permutations) def fact(n): if (n <= 1): return 1 return n * fact(n - 1) def nPr(n, r): return math.floor(fact(n) / fact(n - r)) permutation_list = [] for i in range(10): permutation0 = Permutations(i) permutation0.number = i permutation0.permutations = int(nPr(i,2)) permutation_list.append(permutation0)
py
b4061d2850eeedc8cd8217cde9fcb41730047466
""" Initialization module to define constructor classes/ agent implementations in the 'Agents' scope. To add a new neural network, add a key-argument to the AlphaZeroNetworks or MuZeroNetworks dictionary with as value the class reference that constructs the neural network. """ from .GymNetwork import AlphaZeroGymNetwork, MuZeroGymNetwork from .AtariNetwork import AlphaZeroAtariNetwork, MuZeroAtariNetwork from .HexNetwork import AlphaZeroHexNetwork, MuZeroHexNetwork from .Player import Player, ManualPlayer, RandomPlayer, DeterministicPlayer, \ DefaultMuZeroPlayer, DefaultAlphaZeroPlayer, BlindMuZeroPlayer # Add your AlphaZero neural network architecture here by referencing the imported Class with a string key. AlphaZeroNetworks = { 'Hex': AlphaZeroHexNetwork, 'Othello': AlphaZeroHexNetwork, 'Gym': AlphaZeroGymNetwork, "Atari": AlphaZeroAtariNetwork } # Add your MuZero neural network architecture here by referencing the imported Class with a string key. MuZeroNetworks = { 'Hex': MuZeroHexNetwork, 'Othello': MuZeroHexNetwork, 'Gym': MuZeroGymNetwork, 'Atari': MuZeroAtariNetwork } # Add different agent implementations for interacting with environments. Players = { "ALPHAZERO": DefaultAlphaZeroPlayer, "MUZERO": DefaultMuZeroPlayer, "BLIND_MUZERO": BlindMuZeroPlayer, "RANDOM": RandomPlayer, "DETERMINISTIC": DeterministicPlayer, "MANUAL": ManualPlayer }
py
b4061da1377bd335886fd28ffe6685fb85ec7825
import os, shutil original_dataset_dir = 'blog/dogs_cats/data/train' base_dir = 'blog/dogs_cats/data' if not os.path.exists(base_dir): os.mkdir(base_dir) # Create directories train_dir = os.path.join(base_dir,'train') if not os.path.exists(train_dir): os.mkdir(train_dir) validation_dir = os.path.join(base_dir,'validation') if not os.path.exists(validation_dir): os.mkdir(validation_dir) test_dir = os.path.join(base_dir,'test') if not os.path.exists(test_dir): os.mkdir(test_dir) train_cats_dir = os.path.join(train_dir,'cats') if not os.path.exists(train_cats_dir): os.mkdir(train_cats_dir) train_dogs_dir = os.path.join(train_dir,'dogs') if not os.path.exists(train_dogs_dir): os.mkdir(train_dogs_dir) validation_cats_dir = os.path.join(validation_dir,'cats') if not os.path.exists(validation_cats_dir): os.mkdir(validation_cats_dir) validation_dogs_dir = os.path.join(validation_dir, 'dogs') if not os.path.exists(validation_dogs_dir): os.mkdir(validation_dogs_dir) test_cats_dir = os.path.join(test_dir, 'cats') if not os.path.exists(test_cats_dir): os.mkdir(test_cats_dir) test_dogs_dir = os.path.join(test_dir, 'dogs') if not os.path.exists(test_dogs_dir): os.mkdir(test_dogs_dir) # Copy first 1000 cat images to train_cats_dir fnames = ['cat.{}.jpg'.format(i) for i in range(100)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(train_cats_dir, fname) shutil.copyfile(src, dst) # Copy next 500 cat images to validation_cats_dir fnames = ['cat.{}.jpg'.format(i) for i in range(200, 250)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(validation_cats_dir, fname) shutil.copyfile(src, dst) # Copy next 500 cat images to test_cats_dir fnames = ['cat.{}.jpg'.format(i) for i in range(250,300)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(test_cats_dir, fname) shutil.copyfile(src, dst) # Copy first 1000 dog images to train_dogs_dir fnames = ['dog.{}.jpg'.format(i) for i in range(100)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(train_dogs_dir, fname) shutil.copyfile(src, dst) # Copy next 500 dog images to validation_dogs_dir fnames = ['dog.{}.jpg'.format(i) for i in range(200,250)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(validation_dogs_dir, fname) shutil.copyfile(src, dst) # Copy next 500 dog images to test_dogs_dir fnames = ['dog.{}.jpg'.format(i) for i in range(250,300)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(test_dogs_dir, fname) shutil.copyfile(src, dst) # Sanity checks print('total training cat images:', len(os.listdir(train_cats_dir))) print('total training dog images:', len(os.listdir(train_dogs_dir))) print('total validation cat images:', len(os.listdir(validation_cats_dir))) print('total validation dog images:', len(os.listdir(validation_dogs_dir))) print('total test cat images:', len(os.listdir(test_cats_dir))) print('total test dog images:', len(os.listdir(test_dogs_dir)))
py
b4061df4bbdba99c4aa8e30c9c0ce78cfa7e0a66
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.ads.googleads.v5.enums.types import tracking_code_page_format from google.ads.googleads.v5.enums.types import tracking_code_type __protobuf__ = proto.module( package="google.ads.googleads.v5.common", marshal="google.ads.googleads.v5", manifest={"TagSnippet",}, ) class TagSnippet(proto.Message): r"""The site tag and event snippet pair for a TrackingCodeType. Attributes: type_ (google.ads.googleads.v5.enums.types.TrackingCodeTypeEnum.TrackingCodeType): The type of the generated tag snippets for tracking conversions. page_format (google.ads.googleads.v5.enums.types.TrackingCodePageFormatEnum.TrackingCodePageFormat): The format of the web page where the tracking tag and snippet will be installed, e.g. HTML. global_site_tag (str): The site tag that adds visitors to your basic remarketing lists and sets new cookies on your domain. event_snippet (str): The event snippet that works with the site tag to track actions that should be counted as conversions. """ type_ = proto.Field( proto.ENUM, number=1, enum=tracking_code_type.TrackingCodeTypeEnum.TrackingCodeType, ) page_format = proto.Field( proto.ENUM, number=2, enum=tracking_code_page_format.TrackingCodePageFormatEnum.TrackingCodePageFormat, ) global_site_tag = proto.Field(proto.STRING, number=5, optional=True) event_snippet = proto.Field(proto.STRING, number=6, optional=True) __all__ = tuple(sorted(__protobuf__.manifest))
py
b4061e7ac6e731381c5d363a58b4a539a90f7b83
import sys from sklearn.svm import SVC from sklearn.cross_decomposition import PLSCanonical, PLSRegression, CCA import re from sklearn.metrics import accuracy_score import numpy as np def main(args): (training_file, label_file, test_file, test_label, u_file) = args X_training = load_feat(training_file) n = len(X_training) U = load_feat(u_file) y_training = [int(line.strip()) for line in open(label_file)] U = np.asarray(U) X_training = np.asarray(X_training) #X = preprocessing.normalize(X, norm='l2') y_training = np.asarray(y_training) X_test = load_feat(test_file) y_test = [int(line.strip()) for line in open(test_label)] X_test = np.asarray(X_test) #test_X = preprocessing.normalize(test_X, norm='l2') y_test = np.asarray(y_test) cca = CCA(n_components=100) (X_cca, U_cca) = cca.fit_transform(X_training, U[:n]) X_test_cca = cca.predict(X_test) svr = SVC() svr.fit(X_cca, y_training) pred = svr.predict(X_test_cca) print pred print test_y print accuracy_score(y_test, pred) with open(test_file + '.cca.2.pred', 'w') as output: for p in pred: print >>output, p #svm_model.fit(X, y) #pickle.dump(lr, open(model_file, "wb")) return return def load_feat(feat_file): X = [] with open(feat_file) as feat: for line in feat: cols = re.split('\s+', line.strip()) features = [float(i) for i in cols] X.append(features) return X if __name__ == '__main__': if len(sys.argv) != 6: print 'usage:python ccaQEpy <training-features> <training-label> <test-features> <test-labels> <U-file>' sys.exit(1) else: main(sys.argv[1:])
py
b4061e97c9f1948dc150935b5d6f32a71bd006e9
import time import json import pandas as pd import re import sys from decimal import Decimal from itertools import islice from models.PyCryptoBot import PyCryptoBot from models.helper.TelegramBotHelper import TelegramBotHelper as TGBot from models.exchange.binance import PublicAPI as BPublicAPI from models.exchange.coinbase_pro import PublicAPI as CPublicAPI from models.exchange.kucoin import PublicAPI as KPublicAPI from models.exchange.Granularity import Granularity from models.exchange.ExchangesEnum import Exchange as CryptoExchange from tradingview_ta import * from importlib.metadata import version def volatility_calculator(bollinger_band_upper, bollinger_band_lower, keltner_upper, keltner_lower, high, low): """ A break away from traditional volatility calculations. Based entirely on the proportionate price gap between keltner channels, bolinger, and high / low averaged out """ try: b_spread = Decimal(bollinger_band_upper) - Decimal(bollinger_band_lower) k_spread = Decimal(keltner_upper) - Decimal(keltner_lower) p_spread = Decimal(high) - Decimal(low) except TypeError: return 0 b_pcnt = abs(b_spread / Decimal(bollinger_band_lower)) * 100 k_pcnt = abs(k_spread / Decimal(keltner_lower)) * 100 chan_20_pcnt = (b_pcnt + k_pcnt) / 2 p_pcnt = abs(p_spread / Decimal(low)) * 100 return abs((chan_20_pcnt + p_pcnt) / 2) def load_configs(): exchanges_loaded = [] try: with open("screener.json", encoding='utf8') as json_file: config = json.load(json_file) except IOError as err: raise(err) try: for exchange in config: ex = CryptoExchange(exchange) exchange_config = config[ex.value] if ex == CryptoExchange.BINANCE: binance_app = PyCryptoBot(exchange=ex) binance_app.public_api = BPublicAPI() binance_app.scanner_quote_currencies = exchange_config.get('quote_currency', ['USDT']) binance_app.granularity = Granularity(Granularity.convert_to_enum(exchange_config.get('granularity', '1h'))) binance_app.adx_threshold = exchange_config.get('adx_threshold', 25) binance_app.volatility_threshold = exchange_config.get('volatility_threshold', 9) binance_app.minimum_volatility = exchange_config.get('minimum_volatility', 5) binance_app.minimum_volume = exchange_config.get('minimum_volume', 20000) binance_app.volume_threshold = exchange_config.get('volume_threshold', 20000) binance_app.minimum_quote_price = exchange_config.get('minimum_quote_price', 0.0000001) binance_app.selection_score = exchange_config.get('selection_score', 10) binance_app.tv_screener_ratings = [rating.upper() for rating in exchange_config.get('tv_screener_ratings', ['STRONG_BUY'])] exchanges_loaded.append(binance_app) elif ex == CryptoExchange.COINBASEPRO: coinbase_app = PyCryptoBot(exchange=ex) coinbase_app.public_api = CPublicAPI() coinbase_app.scanner_quote_currencies = exchange_config.get('quote_currency', ['USDT']) coinbase_app.granularity = Granularity(Granularity.convert_to_enum(int(exchange_config.get('granularity', '3600')))) coinbase_app.adx_threshold = exchange_config.get('adx_threshold', 25) coinbase_app.volatility_threshold = exchange_config.get('volatility_threshold', 9) coinbase_app.minimum_volatility = exchange_config.get('minimum_volatility', 5) coinbase_app.minimum_volume = exchange_config.get('minimum_volume', 20000) coinbase_app.volume_threshold = exchange_config.get('volume_threshold', 20000) coinbase_app.minimum_quote_price = exchange_config.get('minimum_quote_price', 0.0000001) coinbase_app.selection_score = exchange_config.get('selection_score', 10) coinbase_app.tv_screener_ratings = [rating.upper() for rating in exchange_config.get('tv_screener_ratings', ['STRONG_BUY'])] exchanges_loaded.append(coinbase_app) elif ex == CryptoExchange.KUCOIN: kucoin_app = PyCryptoBot(exchange=ex) kucoin_app.public_api = KPublicAPI() kucoin_app.scanner_quote_currencies = exchange_config.get('quote_currency', ['USDT']) kucoin_app.granularity = Granularity(Granularity.convert_to_enum(exchange_config.get('granularity', '1h'))) kucoin_app.adx_threshold = exchange_config.get('adx_threshold', 25) kucoin_app.volatility_threshold = exchange_config.get('volatility_threshold', 9) kucoin_app.minimum_volatility = exchange_config.get('minimum_volatility', 5) kucoin_app.minimum_volume = exchange_config.get('minimum_volume', 20000) kucoin_app.volume_threshold = exchange_config.get('volume_threshold', 20000) kucoin_app.minimum_quote_price = exchange_config.get('minimum_quote_price', 0.0000001) kucoin_app.selection_score = exchange_config.get('selection_score', 10) kucoin_app.tv_screener_ratings = [rating.upper() for rating in exchange_config.get('tv_screener_ratings', ['STRONG_BUY'])] exchanges_loaded.append(kucoin_app) else: raise ValueError(f"Invalid exchange found in config: {ex}") except AttributeError as e: print(f"Invalid exchange: {e}...ignoring.") return exchanges_loaded def chunker(market_list, chunk_size): markets = iter(market_list) market_chunk = list(islice(markets, chunk_size)) while market_chunk: yield market_chunk market_chunk = list(islice(markets, chunk_size)) def get_markets(app, quote_currency): markets = [] quote_currency = quote_currency.upper() api = app.public_api resp = api.getMarkets24HrStats() if app.exchange == CryptoExchange.BINANCE: for row in resp: if row["symbol"].endswith(quote_currency): markets.append(row['symbol']) elif app.exchange == CryptoExchange.COINBASEPRO: for market in resp: market = str(market) if market.endswith(f"-{quote_currency}"): markets.append(market) elif app.exchange == CryptoExchange.KUCOIN: results = resp["data"]["ticker"] for result in results: if result["symbol"].endswith(f"-{quote_currency}"): markets.append(result['symbol']) return markets def process_screener_data(app, markets, quote_currency, exchange_name): """ Hit TradingView up for the goods so we don't waste unnecessary time/compute resources (brandon's top picks) """ # Do you want it to spit out all the debug stuff? debug = False ta_screener_list = [f"{re.sub('PRO', '', app.exchange.name, re.IGNORECASE)}:{re.sub('-', '', market)}" for market in markets] screener_staging = [p for p in chunker(ta_screener_list, 100)] screener_analysis = [] additional_indicators = ["ATR", "KltChnl.upper", "KltChnl.lower"] #TradingView.indicators.append("Volatility.D") for pair_list in screener_staging: screener_analysis.extend([a for a in get_multiple_analysis(screener='crypto', interval=app.granularity.short, symbols=pair_list, additional_indicators=additional_indicators).values()]) # Take what we need and do magic, ditch the rest. formatted_ta = [] for ta in screener_analysis: try: if debug : print(f"Checking {ta.symbol} on {exchange_name}\n") recommend = Decimal(ta.indicators.get('Recommend.All')) volatility = Decimal(volatility_calculator(ta.indicators['BB.upper'], ta.indicators['BB.lower'], ta.indicators['KltChnl.upper'], ta.indicators['KltChnl.lower'], ta.indicators['high'], ta.indicators['low'])) #volatility = Decimal(ta.indicators['Volatility.D']) * 100 adx = abs(Decimal(ta.indicators['ADX'])) adx_posi_di = Decimal(ta.indicators['ADX+DI']) adx_neg_di = Decimal(ta.indicators['ADX-DI']) high = Decimal(ta.indicators['high']).quantize(Decimal('1e-{}'.format(8))) low = Decimal(ta.indicators['low']).quantize(Decimal('1e-{}'.format(8))) close = Decimal(ta.indicators['close']).quantize(Decimal('1e-{}'.format(8))) # ATR normalised atr = (Decimal(ta.indicators['ATR']) / close * 100).quantize(Decimal('1e-{}'.format(2))) if "ATR" in ta.indicators else 0 volume = Decimal(ta.indicators['volume']) macd = Decimal(ta.indicators['MACD.macd']) macd_signal = Decimal(ta.indicators['MACD.signal']) bollinger_upper = Decimal(ta.indicators['BB.upper']) bollinger_lower = Decimal(ta.indicators['BB.lower']) kelt_upper = Decimal(ta.indicators['KltChnl.upper']) kelt_lower = Decimal(ta.indicators['KltChnl.lower']) rsi = Decimal(ta.indicators.get('RSI', 0)) stoch_d = Decimal(ta.indicators.get('Stoch.D', 0)) stoch_k = Decimal(ta.indicators.get('Stoch.K', 0)) williams_r = Decimal(ta.indicators.get('W.R', 0)) score = 0 analysis_summary = ta.summary rating = ta.summary["RECOMMENDATION"] #print(close) if rating == "SELL": score -= 2.5 elif rating == "STRONG_SELL": score -= 5 elif rating == "NEUTRAL": score += 0 elif rating == "BUY": score += 2.5 elif rating == "STRONG_BUY": score += 5 if (adx >= app.adx_threshold) and (adx_posi_di > adx_neg_di) and (adx_posi_di > adx): if debug : print(f"ADX({adx}) >= {app.adx_threshold}") score += 1 if volume >= app.volume_threshold: if debug : print(f"Volume({volume}) >= {app.volume_threshold}") score += 1 if abs(macd) > abs(macd_signal): if debug : print(f"MACD({macd}) above signal({macd_signal})") score += 1 if volatility >= app.volatility_threshold: if debug : print(f"Volatility({volatility} is above {app.volatility_threshold}") score += 1 if volatility < app.minimum_volatility: if debug : print(f"{ta.symbol} ({volatility}) is below min volatility of {app.minimum_volatility}") score -= 100 if volume < app.minimum_volume: if debug : print(f"{ta.symbol} ({volume}) is below min volume of {app.volume}") score -= 100 if close < app.minimum_quote_price: if debug : print(f"{ta.symbol} ({close}) is below min quote price of {app.minimum_quote_price}") score -= 100 if 30 >= rsi > 20: score += 1 if 20 < stoch_d <= 30: score += 1 if stoch_k > stoch_d: score += 1 if williams_r <= -30: score += 1 #print('symbol\tscore\tvolume\tvvolatilith\tadx\tadx_posi_di\tadx_neg_di\tmacd\tmacd_signal\tbollinger_upper\tbollinger_lower\trecommend') #print(ta.symbol, score, volume, volatility, adx, adx_posi_di, adx_neg_di, macd, macd_signal, bollinger_upper, bollinger_lower, recommend, "\n") #print(f"Symbol: {ta.symbol} Score: {score}/{app.selection_score} Rating: {rating}") if (score >= app.selection_score) and (rating in app.tv_screener_ratings): relavent_ta = {} if app.exchange == CryptoExchange.COINBASEPRO or app.exchange == CryptoExchange.KUCOIN: relavent_ta['market'] = re.sub(rf'(.*){quote_currency}', rf'\1-{quote_currency}', ta.symbol) #relavent_ta['market'] = re.sub(quote_currency,f"-{quote_currency}", ta.symbol) else: relavent_ta['market'] = ta.symbol #relavent_ta['market'] = ta.symbol relavent_ta['recommend'] = recommend relavent_ta['volume'] = volume relavent_ta['volatility'] = volatility relavent_ta['adx'] = adx relavent_ta['adx+di'] = adx_posi_di relavent_ta['adx-di'] = adx_neg_di relavent_ta['macd'] = macd relavent_ta['macd.signal'] = macd_signal relavent_ta['bollinger_upper'] = bollinger_upper relavent_ta['bollinger_lower'] = bollinger_lower relavent_ta['rsi'] = rsi relavent_ta['stoch_d'] = stoch_d relavent_ta['stoch_k'] = stoch_k relavent_ta['williamsR'] = williams_r relavent_ta['rating'] = rating relavent_ta['score'] = score ## Hack a percentage from the recommendation which would take into account all the indicators rather than just ATR if atr > 0: relavent_ta['atr72_pcnt'] = atr #else: # if recommend > 0: # relavent_ta['atr72_pcnt'] = recommend * 100 else: relavent_ta['atr72_pcnt'] = 0 try: relavent_ta['buy_next'] = 'SEND IT!' if re.search('BUY', rating) else False except AttributeError: relavent_ta['buy_next'] = False formatted_ta.append(relavent_ta) except Exception as e: pass if formatted_ta: # Stick it in a DF for the bots df_markets = pd.DataFrame(formatted_ta) df_markets = df_markets[["market", "score", "recommend", "volume", "volatility", "adx", "adx+di", "adx-di", "macd", "macd.signal", "bollinger_upper", "bollinger_lower", "rsi", "stoch_d", "stoch_k", "williamsR", "rating", "buy_next", "atr72_pcnt"]] df_markets.columns = ["market", "score", "recommend", "volume", "volatility", "adx", "adx+di", "adx-di", "macd", "macd.signal", "bollinger_upper", "bollinger_lower", "rsi", "stoch_d", "stoch_k", "williamsR", "rating", "buy_next", "atr72_pcnt"] df_markets["score"] = df_markets["score"].astype(float).round(0).astype(int) df_markets["recommend"] = df_markets["recommend"].astype(float) df_markets["volume"] = df_markets["volume"].astype(float).round(0).astype(int) df_markets["volatility"] = df_markets["volatility"].astype(float) df_markets["adx"] = df_markets["adx"].astype(float) df_markets["adx+di"] = df_markets["adx+di"].astype(float) df_markets["adx-di"] = df_markets["adx-di"].astype(float) df_markets["macd"] = df_markets["macd"].astype(float) df_markets["macd.signal"] = df_markets["macd.signal"].astype(float) df_markets["bollinger_upper"] = df_markets["bollinger_upper"].astype(float) df_markets["bollinger_lower"] = df_markets["bollinger_lower"].astype(float) df_markets['rsi'] = df_markets['rsi'].astype(float) df_markets['stoch_d'] = df_markets['stoch_d'].astype(float) df_markets['stoch_k'] = df_markets['stoch_k'].astype(float) df_markets['williamsR'] = df_markets['williamsR'].astype(float) df_markets['atr72_pcnt'] = df_markets['atr72_pcnt'].astype(float) df_markets.sort_values(by=["market"], ascending=True, inplace=True) df_markets.set_index("market", inplace=True) print( df_markets.sort_values( by=["buy_next", "atr72_pcnt"], ascending=[False, False], inplace=False ) ) TGBot(app, scanner=True).save_scanner_output(app.exchange.value, quote_currency, df_markets) else: blank_data = {} blank_data["buy_next"] = False blank_data["atr72_pcnt"] = 0 blank_data["volume"] = 0 formatted_ta.append(blank_data) df_markets = pd.DataFrame(formatted_ta) TGBot(app, scanner=True).save_scanner_output(app.exchange.value, quote_currency, df_markets) print('No pairs found!') return True if __name__ == '__main__': import time from datetime import datetime tvlib_ver = version('tradingview-ta') if tvlib_ver >= "3.2.10": print(f"Library is correct version - were good to go! (v {tvlib_ver})") else: print(f"Gotta update your tradingview-ta library please! (v {tvlib_ver})") sys.exit() start_time = time.time() print('Processing, please wait...') bootstrap_exchanges = load_configs() for app in bootstrap_exchanges: print(f"\n\n{app.exchange.name}") for quote_currency in app.scanner_quote_currencies: markets = get_markets(app, quote_currency) try: process_screener_data(app, markets, quote_currency, app.exchange.name) except Exception as e: print(e) print("Scan run finished!") print(f"Timestamp: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") print(f"Total elapsed time: {time.time() - start_time} sec")
py
b4061e9e5a8f00eb9d4c55b5076186b2012ec8fd
import numpy as np from ..gap_tools import check_gaps def bbox_mask(t_arr, x_arr, limits): """ Just a wrapper for np.where """ #NOTE: t_arr is included but no longer used mask = np.where( (x_arr >= limits[0]) & \ (x_arr <= limits[1]))[0] return mask def get_mask(loc_t_arr, loc_x_arr, loc, t_thresh, d_thresh, verbose=False): """ """ # Get the corresponding indices and ultimately adjust the bin mask = bbox_mask(loc_t_arr, loc_x_arr, [loc-d_thresh,loc+d_thresh]) # check if empty if mask.size <= 0: if verbose: print('\t\tmask empty (1)') #print(loc_t_arr) #print(loc_x_arr, loc-d_thresh, loc, loc+d_thresh) return np.empty([]) if verbose: print("\t\tmask 1:", mask[0], mask[-1]) #tbounds = [loc_t_arr[mask].min(), loc_t_arr[mask].max()] #print(tbounds) #mask = np.where((loc_t_arr >= loc_t_arr[mask].min()) & \ # (loc_t_arr <= loc_t_arr[mask].max()))[0] # Check if the loc_t_arr comtains gaps > time_thresh; if so, split and repeat gap_mask = check_gaps(loc_t_arr[mask], t_thresh, verbose) # Get those mask indices corresponding to the longest (sub)cluster mask = mask[gap_mask] # check if empty if mask.size <= 0: if verbose: print('\t\tmask empty (2)') return np.empty([]) if verbose: print("\t\tmask 2:",mask[0],mask[-1]) return mask def update_global_mask(g_mask, arr, lims): """ Update a Boolean array with keeps track of classified events. """ #Note: this is easier than tracking & storing the indices, for now. # Get the indices of the events within the cluster limits mask1 = np.where((arr >= lims.min()) & (arr <= lims.max())) # Store those indices as False (removing the events from processing) g_mask[mask1] = False return g_mask def get_mask_ends(loc_t_arr, loc_x_arr, loc, t_thresh, d_thresh, verbose=False): """ """ mask = np.where((loc_x_arr <= loc+1.0*d_thresh) & (loc_x_arr >= loc-1.0*d_thresh))[0] diffs = np.diff(loc_t_arr[mask]) dmask = np.where(diffs>t_thresh)[0].tolist() ddmask = [-1] + dmask + [mask.size-1] return [[mask[p[0]+1],mask[p[1]]] for p in list(zip(ddmask[:-1], ddmask[1:]))]
py
b4061f8fb4c2f84d69ea91e8339ef145a48fb59a
from typing import Protocol class Command(Protocol): def Details(self) -> str: ... def Execute(self) -> None: ... def Undo(self) -> None: ... def Redo(self) -> None: ...
py
b4061fa0dd6aefad3eac2d6755d8b53c3c1b6fe4
from cffi import FFI ffibuilder = FFI() # cdef() expects a single string declaring the C types, functions and # globals needed to use the shared object. It must be in valid C syntax. with open('ddcutil_gen.h', 'r') as header_file: ffibuilder.cdef(header_file.read()) # set_source() gives the name of the python extension module to # produce, and some C source code as a string. This C code needs # to make the declarated functions, types and globals available, # so it is often just the "#include". ffibuilder.set_source("_ddc_cffi", """ #include "ddcutil_c_api.h" #include "ddcutil_types.h" """, libraries=['ddcutil']) # library name, for the linker if __name__ == "__main__": ffibuilder.compile(verbose=True)
py
b40620324d946482e6e00a237ab0ab4dd5c1ba5f
from .eliminare import Eliminare from .riempire_na import RiempireNAItemWeight from .riempire_na import RiempireNAMedia from .riempire_na import RiempireNAOutletSize from .ottenere_dummy import OttenereDummy from .standardizzare import Standardizzare from .sbiancare import Sbiancare from .sostituire import Sostituire from .standardizzare import Standardizzare from .tweet_analyzer import tweet_analyzer
py
b40625b66384aac6d8e4036c750eec17408842af
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Unselected(_BaseTraceHierarchyType): # marker # ------ @property def marker(self): """ The 'marker' property is an instance of Marker that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.unselected.Marker` - A dict of string/value properties that will be passed to the Marker constructor Supported dict properties: color Sets the marker color of unselected points, applied only when a selection exists. opacity Sets the marker opacity of unselected points, applied only when a selection exists. size Sets the marker size of unselected points, applied only when a selection exists. Returns ------- plotly.graph_objs.scattercarpet.unselected.Marker """ return self["marker"] @marker.setter def marker(self, val): self["marker"] = val # textfont # -------- @property def textfont(self): """ The 'textfont' property is an instance of Textfont that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.unselected.Textfont` - A dict of string/value properties that will be passed to the Textfont constructor Supported dict properties: color Sets the text font color of unselected points, applied only when a selection exists. Returns ------- plotly.graph_objs.scattercarpet.unselected.Textfont """ return self["textfont"] @textfont.setter def textfont(self, val): self["textfont"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "scattercarpet" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ marker :class:`plotly.graph_objects.scattercarpet.unselected.M arker` instance or dict with compatible properties textfont :class:`plotly.graph_objects.scattercarpet.unselected.T extfont` instance or dict with compatible properties """ def __init__(self, arg=None, marker=None, textfont=None, **kwargs): """ Construct a new Unselected object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scattercarpet.Unselected` marker :class:`plotly.graph_objects.scattercarpet.unselected.M arker` instance or dict with compatible properties textfont :class:`plotly.graph_objects.scattercarpet.unselected.T extfont` instance or dict with compatible properties Returns ------- Unselected """ super(Unselected, self).__init__("unselected") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.scattercarpet.Unselected constructor must be a dict or an instance of :class:`plotly.graph_objs.scattercarpet.Unselected`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.scattercarpet import unselected as v_unselected # Initialize validators # --------------------- self._validators["marker"] = v_unselected.MarkerValidator() self._validators["textfont"] = v_unselected.TextfontValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("marker", None) self["marker"] = marker if marker is not None else _v _v = arg.pop("textfont", None) self["textfont"] = textfont if textfont is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Textfont(_BaseTraceHierarchyType): # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["color"] @color.setter def color(self, val): self["color"] = val # colorsrc # -------- @property def colorsrc(self): """ Sets the source reference on plot.ly for color . The 'colorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["colorsrc"] @colorsrc.setter def colorsrc(self, val): self["colorsrc"] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["family"] @family.setter def family(self, val): self["family"] = val # familysrc # --------- @property def familysrc(self): """ Sets the source reference on plot.ly for family . The 'familysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["familysrc"] @familysrc.setter def familysrc(self, val): self["familysrc"] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|float|numpy.ndarray """ return self["size"] @size.setter def size(self, val): self["size"] = val # sizesrc # ------- @property def sizesrc(self): """ Sets the source reference on plot.ly for size . The 'sizesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["sizesrc"] @sizesrc.setter def sizesrc(self, val): self["sizesrc"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "scattercarpet" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color colorsrc Sets the source reference on plot.ly for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on plot.ly for family . size sizesrc Sets the source reference on plot.ly for size . """ def __init__( self, arg=None, color=None, colorsrc=None, family=None, familysrc=None, size=None, sizesrc=None, **kwargs ): """ Construct a new Textfont object Sets the text font. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scattercarpet.Textfont` color colorsrc Sets the source reference on plot.ly for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on plot.ly for family . size sizesrc Sets the source reference on plot.ly for size . Returns ------- Textfont """ super(Textfont, self).__init__("textfont") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.scattercarpet.Textfont constructor must be a dict or an instance of :class:`plotly.graph_objs.scattercarpet.Textfont`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.scattercarpet import textfont as v_textfont # Initialize validators # --------------------- self._validators["color"] = v_textfont.ColorValidator() self._validators["colorsrc"] = v_textfont.ColorsrcValidator() self._validators["family"] = v_textfont.FamilyValidator() self._validators["familysrc"] = v_textfont.FamilysrcValidator() self._validators["size"] = v_textfont.SizeValidator() self._validators["sizesrc"] = v_textfont.SizesrcValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) self["color"] = color if color is not None else _v _v = arg.pop("colorsrc", None) self["colorsrc"] = colorsrc if colorsrc is not None else _v _v = arg.pop("family", None) self["family"] = family if family is not None else _v _v = arg.pop("familysrc", None) self["familysrc"] = familysrc if familysrc is not None else _v _v = arg.pop("size", None) self["size"] = size if size is not None else _v _v = arg.pop("sizesrc", None) self["sizesrc"] = sizesrc if sizesrc is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Stream(_BaseTraceHierarchyType): # maxpoints # --------- @property def maxpoints(self): """ Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. The 'maxpoints' property is a number and may be specified as: - An int or float in the interval [0, 10000] Returns ------- int|float """ return self["maxpoints"] @maxpoints.setter def maxpoints(self, val): self["maxpoints"] = val # token # ----- @property def token(self): """ The stream id number links a data trace on a plot with a stream. See https://plot.ly/settings for more details. The 'token' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["token"] @token.setter def token(self, val): self["token"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "scattercarpet" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://plot.ly/settings for more details. """ def __init__(self, arg=None, maxpoints=None, token=None, **kwargs): """ Construct a new Stream object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scattercarpet.Stream` maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://plot.ly/settings for more details. Returns ------- Stream """ super(Stream, self).__init__("stream") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.scattercarpet.Stream constructor must be a dict or an instance of :class:`plotly.graph_objs.scattercarpet.Stream`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.scattercarpet import stream as v_stream # Initialize validators # --------------------- self._validators["maxpoints"] = v_stream.MaxpointsValidator() self._validators["token"] = v_stream.TokenValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("maxpoints", None) self["maxpoints"] = maxpoints if maxpoints is not None else _v _v = arg.pop("token", None) self["token"] = token if token is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Selected(_BaseTraceHierarchyType): # marker # ------ @property def marker(self): """ The 'marker' property is an instance of Marker that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.selected.Marker` - A dict of string/value properties that will be passed to the Marker constructor Supported dict properties: color Sets the marker color of selected points. opacity Sets the marker opacity of selected points. size Sets the marker size of selected points. Returns ------- plotly.graph_objs.scattercarpet.selected.Marker """ return self["marker"] @marker.setter def marker(self, val): self["marker"] = val # textfont # -------- @property def textfont(self): """ The 'textfont' property is an instance of Textfont that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.selected.Textfont` - A dict of string/value properties that will be passed to the Textfont constructor Supported dict properties: color Sets the text font color of selected points. Returns ------- plotly.graph_objs.scattercarpet.selected.Textfont """ return self["textfont"] @textfont.setter def textfont(self, val): self["textfont"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "scattercarpet" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ marker :class:`plotly.graph_objects.scattercarpet.selected.Mar ker` instance or dict with compatible properties textfont :class:`plotly.graph_objects.scattercarpet.selected.Tex tfont` instance or dict with compatible properties """ def __init__(self, arg=None, marker=None, textfont=None, **kwargs): """ Construct a new Selected object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scattercarpet.Selected` marker :class:`plotly.graph_objects.scattercarpet.selected.Mar ker` instance or dict with compatible properties textfont :class:`plotly.graph_objects.scattercarpet.selected.Tex tfont` instance or dict with compatible properties Returns ------- Selected """ super(Selected, self).__init__("selected") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.scattercarpet.Selected constructor must be a dict or an instance of :class:`plotly.graph_objs.scattercarpet.Selected`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.scattercarpet import selected as v_selected # Initialize validators # --------------------- self._validators["marker"] = v_selected.MarkerValidator() self._validators["textfont"] = v_selected.TextfontValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("marker", None) self["marker"] = marker if marker is not None else _v _v = arg.pop("textfont", None) self["textfont"] = textfont if textfont is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Marker(_BaseTraceHierarchyType): # autocolorscale # -------------- @property def autocolorscale(self): """ Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `marker.colorscale`. Has an effect only if in `marker.color`is set to a numerical array. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. The 'autocolorscale' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["autocolorscale"] @autocolorscale.setter def autocolorscale(self, val): self["autocolorscale"] = val # cauto # ----- @property def cauto(self): """ Determines whether or not the color domain is computed with respect to the input data (here in `marker.color`) or the bounds set in `marker.cmin` and `marker.cmax` Has an effect only if in `marker.color`is set to a numerical array. Defaults to `false` when `marker.cmin` and `marker.cmax` are set by the user. The 'cauto' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["cauto"] @cauto.setter def cauto(self, val): self["cauto"] = val # cmax # ---- @property def cmax(self): """ Sets the upper bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmin` must be set as well. The 'cmax' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["cmax"] @cmax.setter def cmax(self, val): self["cmax"] = val # cmid # ---- @property def cmid(self): """ Sets the mid-point of the color domain by scaling `marker.cmin` and/or `marker.cmax` to be equidistant to this point. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color`. Has no effect when `marker.cauto` is `false`. The 'cmid' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["cmid"] @cmid.setter def cmid(self, val): self["cmid"] = val # cmin # ---- @property def cmin(self): """ Sets the lower bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmax` must be set as well. The 'cmin' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["cmin"] @cmin.setter def cmin(self, val): self["cmin"] = val # color # ----- @property def color(self): """ Sets themarkercolor. It accepts either a specific color or an array of numbers that are mapped to the colorscale relative to the max and min values of the array or relative to `marker.cmin` and `marker.cmax` if set. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A number that will be interpreted as a color according to scattercarpet.marker.colorscale - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["color"] @color.setter def color(self, val): self["color"] = val # coloraxis # --------- @property def coloraxis(self): """ Sets a reference to a shared color axis. References to these shared color axes are "coloraxis", "coloraxis2", "coloraxis3", etc. Settings for these shared color axes are set in the layout, under `layout.coloraxis`, `layout.coloraxis2`, etc. Note that multiple color scales can be linked to the same color axis. The 'coloraxis' property is an identifier of a particular subplot, of type 'coloraxis', that may be specified as the string 'coloraxis' optionally followed by an integer >= 1 (e.g. 'coloraxis', 'coloraxis1', 'coloraxis2', 'coloraxis3', etc.) Returns ------- str """ return self["coloraxis"] @coloraxis.setter def coloraxis(self, val): self["coloraxis"] = val # colorbar # -------- @property def colorbar(self): """ The 'colorbar' property is an instance of ColorBar that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.marker.ColorBar` - A dict of string/value properties that will be passed to the ColorBar constructor Supported dict properties: bgcolor Sets the color of padded area. bordercolor Sets the axis line color. borderwidth Sets the width (in px) or the border enclosing this color bar. dtick Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" exponentformat Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. len Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. lenmode Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. nticks Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". outlinecolor Sets the axis line color. outlinewidth Sets the width (in px) of the axis line. separatethousands If "true", even 4-digit integers are separated showexponent If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. showticklabels Determines whether or not the tick labels are drawn. showtickprefix If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. showticksuffix Same as `showtickprefix` but for tick suffixes. thickness Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. thicknessmode Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. tick0 Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. tickangle Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. tickcolor Sets the tick color. tickfont Sets the color bar's tick label font tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format And for dates see: https://github.com/d3/d3-3.x-api- reference/blob/master/Time-Formatting.md#format We add one item to d3's date formatter: "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" tickformatstops A tuple of :class:`plotly.graph_objects.scatter carpet.marker.colorbar.Tickformatstop` instances or dicts with compatible properties tickformatstopdefaults When used in a template (as layout.template.dat a.scattercarpet.marker.colorbar.tickformatstopd efaults), sets the default property values to use for elements of scattercarpet.marker.colorbar.tickformatstops ticklen Sets the tick length (in px). tickmode Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). tickprefix Sets a tick label prefix. ticks Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. ticksuffix Sets a tick label suffix. ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. ticktextsrc Sets the source reference on plot.ly for ticktext . tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. tickvalssrc Sets the source reference on plot.ly for tickvals . tickwidth Sets the tick width (in px). title :class:`plotly.graph_objects.scattercarpet.mark er.colorbar.Title` instance or dict with compatible properties titlefont Deprecated: Please use scattercarpet.marker.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. titleside Deprecated: Please use scattercarpet.marker.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. x Sets the x position of the color bar (in plot fraction). xanchor Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. xpad Sets the amount of padding (in px) along the x direction. y Sets the y position of the color bar (in plot fraction). yanchor Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. ypad Sets the amount of padding (in px) along the y direction. Returns ------- plotly.graph_objs.scattercarpet.marker.ColorBar """ return self["colorbar"] @colorbar.setter def colorbar(self, val): self["colorbar"] = val # colorscale # ---------- @property def colorscale(self): """ Sets the colorscale. Has an effect only if in `marker.color`is set to a numerical array. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`marker.cmin` and `marker.cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnB u,Greens,YlOrRd,Bluered,RdBu,Reds,Blues,Picnic,Rainbow,Portland ,Jet,Hot,Blackbody,Earth,Electric,Viridis,Cividis. The 'colorscale' property is a colorscale and may be specified as: - A list of colors that will be spaced evenly to create the colorscale. Many predefined colorscale lists are included in the sequential, diverging, and cyclical modules in the plotly.colors package. - A list of 2-element lists where the first element is the normalized color level value (starting at 0 and ending at 1), and the second item is a valid color string. (e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']]) - One of the following named colorscales: ['aggrnyl', 'agsunset', 'algae', 'amp', 'armyrose', 'balance', 'blackbody', 'bluered', 'blues', 'blugrn', 'bluyl', 'brbg', 'brwnyl', 'bugn', 'bupu', 'burg', 'burgyl', 'cividis', 'curl', 'darkmint', 'deep', 'delta', 'dense', 'earth', 'edge', 'electric', 'emrld', 'fall', 'geyser', 'gnbu', 'gray', 'greens', 'greys', 'haline', 'hot', 'hsv', 'ice', 'icefire', 'inferno', 'jet', 'magenta', 'magma', 'matter', 'mint', 'mrybm', 'mygbm', 'oranges', 'orrd', 'oryel', 'peach', 'phase', 'picnic', 'pinkyl', 'piyg', 'plasma', 'plotly3', 'portland', 'prgn', 'pubu', 'pubugn', 'puor', 'purd', 'purp', 'purples', 'purpor', 'rainbow', 'rdbu', 'rdgy', 'rdpu', 'rdylbu', 'rdylgn', 'redor', 'reds', 'solar', 'spectral', 'speed', 'sunset', 'sunsetdark', 'teal', 'tealgrn', 'tealrose', 'tempo', 'temps', 'thermal', 'tropic', 'turbid', 'twilight', 'viridis', 'ylgn', 'ylgnbu', 'ylorbr', 'ylorrd']. Appending '_r' to a named colorscale reverses it. Returns ------- str """ return self["colorscale"] @colorscale.setter def colorscale(self, val): self["colorscale"] = val # colorsrc # -------- @property def colorsrc(self): """ Sets the source reference on plot.ly for color . The 'colorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["colorsrc"] @colorsrc.setter def colorsrc(self, val): self["colorsrc"] = val # gradient # -------- @property def gradient(self): """ The 'gradient' property is an instance of Gradient that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.marker.Gradient` - A dict of string/value properties that will be passed to the Gradient constructor Supported dict properties: color Sets the final color of the gradient fill: the center color for radial, the right for horizontal, or the bottom for vertical. colorsrc Sets the source reference on plot.ly for color . type Sets the type of gradient used to fill the markers typesrc Sets the source reference on plot.ly for type . Returns ------- plotly.graph_objs.scattercarpet.marker.Gradient """ return self["gradient"] @gradient.setter def gradient(self, val): self["gradient"] = val # line # ---- @property def line(self): """ The 'line' property is an instance of Line that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.marker.Line` - A dict of string/value properties that will be passed to the Line constructor Supported dict properties: autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `marker.line.colorscale`. Has an effect only if in `marker.line.color`is set to a numerical array. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. cauto Determines whether or not the color domain is computed with respect to the input data (here in `marker.line.color`) or the bounds set in `marker.line.cmin` and `marker.line.cmax` Has an effect only if in `marker.line.color`is set to a numerical array. Defaults to `false` when `marker.line.cmin` and `marker.line.cmax` are set by the user. cmax Sets the upper bound of the color domain. Has an effect only if in `marker.line.color`is set to a numerical array. Value should have the same units as in `marker.line.color` and if set, `marker.line.cmin` must be set as well. cmid Sets the mid-point of the color domain by scaling `marker.line.cmin` and/or `marker.line.cmax` to be equidistant to this point. Has an effect only if in `marker.line.color`is set to a numerical array. Value should have the same units as in `marker.line.color`. Has no effect when `marker.line.cauto` is `false`. cmin Sets the lower bound of the color domain. Has an effect only if in `marker.line.color`is set to a numerical array. Value should have the same units as in `marker.line.color` and if set, `marker.line.cmax` must be set as well. color Sets themarker.linecolor. It accepts either a specific color or an array of numbers that are mapped to the colorscale relative to the max and min values of the array or relative to `marker.line.cmin` and `marker.line.cmax` if set. coloraxis Sets a reference to a shared color axis. References to these shared color axes are "coloraxis", "coloraxis2", "coloraxis3", etc. Settings for these shared color axes are set in the layout, under `layout.coloraxis`, `layout.coloraxis2`, etc. Note that multiple color scales can be linked to the same color axis. colorscale Sets the colorscale. Has an effect only if in `marker.line.color`is set to a numerical array. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`marker.line.cmin` and `marker.line.cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu,R eds,Blues,Picnic,Rainbow,Portland,Jet,Hot,Black body,Earth,Electric,Viridis,Cividis. colorsrc Sets the source reference on plot.ly for color . reversescale Reverses the color mapping if true. Has an effect only if in `marker.line.color`is set to a numerical array. If true, `marker.line.cmin` will correspond to the last color in the array and `marker.line.cmax` will correspond to the first color. width Sets the width (in px) of the lines bounding the marker points. widthsrc Sets the source reference on plot.ly for width . Returns ------- plotly.graph_objs.scattercarpet.marker.Line """ return self["line"] @line.setter def line(self, val): self["line"] = val # maxdisplayed # ------------ @property def maxdisplayed(self): """ Sets a maximum number of points to be drawn on the graph. 0 corresponds to no limit. The 'maxdisplayed' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["maxdisplayed"] @maxdisplayed.setter def maxdisplayed(self, val): self["maxdisplayed"] = val # opacity # ------- @property def opacity(self): """ Sets the marker opacity. The 'opacity' property is a number and may be specified as: - An int or float in the interval [0, 1] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|float|numpy.ndarray """ return self["opacity"] @opacity.setter def opacity(self, val): self["opacity"] = val # opacitysrc # ---------- @property def opacitysrc(self): """ Sets the source reference on plot.ly for opacity . The 'opacitysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["opacitysrc"] @opacitysrc.setter def opacitysrc(self, val): self["opacitysrc"] = val # reversescale # ------------ @property def reversescale(self): """ Reverses the color mapping if true. Has an effect only if in `marker.color`is set to a numerical array. If true, `marker.cmin` will correspond to the last color in the array and `marker.cmax` will correspond to the first color. The 'reversescale' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["reversescale"] @reversescale.setter def reversescale(self, val): self["reversescale"] = val # showscale # --------- @property def showscale(self): """ Determines whether or not a colorbar is displayed for this trace. Has an effect only if in `marker.color`is set to a numerical array. The 'showscale' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["showscale"] @showscale.setter def showscale(self, val): self["showscale"] = val # size # ---- @property def size(self): """ Sets the marker size (in px). The 'size' property is a number and may be specified as: - An int or float in the interval [0, inf] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|float|numpy.ndarray """ return self["size"] @size.setter def size(self, val): self["size"] = val # sizemin # ------- @property def sizemin(self): """ Has an effect only if `marker.size` is set to a numerical array. Sets the minimum size (in px) of the rendered marker points. The 'sizemin' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["sizemin"] @sizemin.setter def sizemin(self, val): self["sizemin"] = val # sizemode # -------- @property def sizemode(self): """ Has an effect only if `marker.size` is set to a numerical array. Sets the rule for which the data in `size` is converted to pixels. The 'sizemode' property is an enumeration that may be specified as: - One of the following enumeration values: ['diameter', 'area'] Returns ------- Any """ return self["sizemode"] @sizemode.setter def sizemode(self, val): self["sizemode"] = val # sizeref # ------- @property def sizeref(self): """ Has an effect only if `marker.size` is set to a numerical array. Sets the scale factor used to determine the rendered size of marker points. Use with `sizemin` and `sizemode`. The 'sizeref' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["sizeref"] @sizeref.setter def sizeref(self, val): self["sizeref"] = val # sizesrc # ------- @property def sizesrc(self): """ Sets the source reference on plot.ly for size . The 'sizesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["sizesrc"] @sizesrc.setter def sizesrc(self, val): self["sizesrc"] = val # symbol # ------ @property def symbol(self): """ Sets the marker symbol type. Adding 100 is equivalent to appending "-open" to a symbol name. Adding 200 is equivalent to appending "-dot" to a symbol name. Adding 300 is equivalent to appending "-open-dot" or "dot-open" to a symbol name. The 'symbol' property is an enumeration that may be specified as: - One of the following enumeration values: [0, 'circle', 100, 'circle-open', 200, 'circle-dot', 300, 'circle-open-dot', 1, 'square', 101, 'square-open', 201, 'square-dot', 301, 'square-open-dot', 2, 'diamond', 102, 'diamond-open', 202, 'diamond-dot', 302, 'diamond-open-dot', 3, 'cross', 103, 'cross-open', 203, 'cross-dot', 303, 'cross-open-dot', 4, 'x', 104, 'x-open', 204, 'x-dot', 304, 'x-open-dot', 5, 'triangle-up', 105, 'triangle-up-open', 205, 'triangle-up-dot', 305, 'triangle-up-open-dot', 6, 'triangle-down', 106, 'triangle-down-open', 206, 'triangle-down-dot', 306, 'triangle-down-open-dot', 7, 'triangle-left', 107, 'triangle-left-open', 207, 'triangle-left-dot', 307, 'triangle-left-open-dot', 8, 'triangle-right', 108, 'triangle-right-open', 208, 'triangle-right-dot', 308, 'triangle-right-open-dot', 9, 'triangle-ne', 109, 'triangle-ne-open', 209, 'triangle-ne-dot', 309, 'triangle-ne-open-dot', 10, 'triangle-se', 110, 'triangle-se-open', 210, 'triangle-se-dot', 310, 'triangle-se-open-dot', 11, 'triangle-sw', 111, 'triangle-sw-open', 211, 'triangle-sw-dot', 311, 'triangle-sw-open-dot', 12, 'triangle-nw', 112, 'triangle-nw-open', 212, 'triangle-nw-dot', 312, 'triangle-nw-open-dot', 13, 'pentagon', 113, 'pentagon-open', 213, 'pentagon-dot', 313, 'pentagon-open-dot', 14, 'hexagon', 114, 'hexagon-open', 214, 'hexagon-dot', 314, 'hexagon-open-dot', 15, 'hexagon2', 115, 'hexagon2-open', 215, 'hexagon2-dot', 315, 'hexagon2-open-dot', 16, 'octagon', 116, 'octagon-open', 216, 'octagon-dot', 316, 'octagon-open-dot', 17, 'star', 117, 'star-open', 217, 'star-dot', 317, 'star-open-dot', 18, 'hexagram', 118, 'hexagram-open', 218, 'hexagram-dot', 318, 'hexagram-open-dot', 19, 'star-triangle-up', 119, 'star-triangle-up-open', 219, 'star-triangle-up-dot', 319, 'star-triangle-up-open-dot', 20, 'star-triangle-down', 120, 'star-triangle-down-open', 220, 'star-triangle-down-dot', 320, 'star-triangle-down-open-dot', 21, 'star-square', 121, 'star-square-open', 221, 'star-square-dot', 321, 'star-square-open-dot', 22, 'star-diamond', 122, 'star-diamond-open', 222, 'star-diamond-dot', 322, 'star-diamond-open-dot', 23, 'diamond-tall', 123, 'diamond-tall-open', 223, 'diamond-tall-dot', 323, 'diamond-tall-open-dot', 24, 'diamond-wide', 124, 'diamond-wide-open', 224, 'diamond-wide-dot', 324, 'diamond-wide-open-dot', 25, 'hourglass', 125, 'hourglass-open', 26, 'bowtie', 126, 'bowtie-open', 27, 'circle-cross', 127, 'circle-cross-open', 28, 'circle-x', 128, 'circle-x-open', 29, 'square-cross', 129, 'square-cross-open', 30, 'square-x', 130, 'square-x-open', 31, 'diamond-cross', 131, 'diamond-cross-open', 32, 'diamond-x', 132, 'diamond-x-open', 33, 'cross-thin', 133, 'cross-thin-open', 34, 'x-thin', 134, 'x-thin-open', 35, 'asterisk', 135, 'asterisk-open', 36, 'hash', 136, 'hash-open', 236, 'hash-dot', 336, 'hash-open-dot', 37, 'y-up', 137, 'y-up-open', 38, 'y-down', 138, 'y-down-open', 39, 'y-left', 139, 'y-left-open', 40, 'y-right', 140, 'y-right-open', 41, 'line-ew', 141, 'line-ew-open', 42, 'line-ns', 142, 'line-ns-open', 43, 'line-ne', 143, 'line-ne-open', 44, 'line-nw', 144, 'line-nw-open'] - A tuple, list, or one-dimensional numpy array of the above Returns ------- Any|numpy.ndarray """ return self["symbol"] @symbol.setter def symbol(self, val): self["symbol"] = val # symbolsrc # --------- @property def symbolsrc(self): """ Sets the source reference on plot.ly for symbol . The 'symbolsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["symbolsrc"] @symbolsrc.setter def symbolsrc(self, val): self["symbolsrc"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "scattercarpet" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `marker.colorscale`. Has an effect only if in `marker.color`is set to a numerical array. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. cauto Determines whether or not the color domain is computed with respect to the input data (here in `marker.color`) or the bounds set in `marker.cmin` and `marker.cmax` Has an effect only if in `marker.color`is set to a numerical array. Defaults to `false` when `marker.cmin` and `marker.cmax` are set by the user. cmax Sets the upper bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmin` must be set as well. cmid Sets the mid-point of the color domain by scaling `marker.cmin` and/or `marker.cmax` to be equidistant to this point. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color`. Has no effect when `marker.cauto` is `false`. cmin Sets the lower bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmax` must be set as well. color Sets themarkercolor. It accepts either a specific color or an array of numbers that are mapped to the colorscale relative to the max and min values of the array or relative to `marker.cmin` and `marker.cmax` if set. coloraxis Sets a reference to a shared color axis. References to these shared color axes are "coloraxis", "coloraxis2", "coloraxis3", etc. Settings for these shared color axes are set in the layout, under `layout.coloraxis`, `layout.coloraxis2`, etc. Note that multiple color scales can be linked to the same color axis. colorbar :class:`plotly.graph_objects.scattercarpet.marker.Color Bar` instance or dict with compatible properties colorscale Sets the colorscale. Has an effect only if in `marker.color`is set to a numerical array. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`marker.cmin` and `marker.cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu ,Reds,Blues,Picnic,Rainbow,Portland,Jet,Hot,Blackbody,E arth,Electric,Viridis,Cividis. colorsrc Sets the source reference on plot.ly for color . gradient :class:`plotly.graph_objects.scattercarpet.marker.Gradi ent` instance or dict with compatible properties line :class:`plotly.graph_objects.scattercarpet.marker.Line` instance or dict with compatible properties maxdisplayed Sets a maximum number of points to be drawn on the graph. 0 corresponds to no limit. opacity Sets the marker opacity. opacitysrc Sets the source reference on plot.ly for opacity . reversescale Reverses the color mapping if true. Has an effect only if in `marker.color`is set to a numerical array. If true, `marker.cmin` will correspond to the last color in the array and `marker.cmax` will correspond to the first color. showscale Determines whether or not a colorbar is displayed for this trace. Has an effect only if in `marker.color`is set to a numerical array. size Sets the marker size (in px). sizemin Has an effect only if `marker.size` is set to a numerical array. Sets the minimum size (in px) of the rendered marker points. sizemode Has an effect only if `marker.size` is set to a numerical array. Sets the rule for which the data in `size` is converted to pixels. sizeref Has an effect only if `marker.size` is set to a numerical array. Sets the scale factor used to determine the rendered size of marker points. Use with `sizemin` and `sizemode`. sizesrc Sets the source reference on plot.ly for size . symbol Sets the marker symbol type. Adding 100 is equivalent to appending "-open" to a symbol name. Adding 200 is equivalent to appending "-dot" to a symbol name. Adding 300 is equivalent to appending "-open-dot" or "dot- open" to a symbol name. symbolsrc Sets the source reference on plot.ly for symbol . """ def __init__( self, arg=None, autocolorscale=None, cauto=None, cmax=None, cmid=None, cmin=None, color=None, coloraxis=None, colorbar=None, colorscale=None, colorsrc=None, gradient=None, line=None, maxdisplayed=None, opacity=None, opacitysrc=None, reversescale=None, showscale=None, size=None, sizemin=None, sizemode=None, sizeref=None, sizesrc=None, symbol=None, symbolsrc=None, **kwargs ): """ Construct a new Marker object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scattercarpet.Marker` autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `marker.colorscale`. Has an effect only if in `marker.color`is set to a numerical array. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. cauto Determines whether or not the color domain is computed with respect to the input data (here in `marker.color`) or the bounds set in `marker.cmin` and `marker.cmax` Has an effect only if in `marker.color`is set to a numerical array. Defaults to `false` when `marker.cmin` and `marker.cmax` are set by the user. cmax Sets the upper bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmin` must be set as well. cmid Sets the mid-point of the color domain by scaling `marker.cmin` and/or `marker.cmax` to be equidistant to this point. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color`. Has no effect when `marker.cauto` is `false`. cmin Sets the lower bound of the color domain. Has an effect only if in `marker.color`is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmax` must be set as well. color Sets themarkercolor. It accepts either a specific color or an array of numbers that are mapped to the colorscale relative to the max and min values of the array or relative to `marker.cmin` and `marker.cmax` if set. coloraxis Sets a reference to a shared color axis. References to these shared color axes are "coloraxis", "coloraxis2", "coloraxis3", etc. Settings for these shared color axes are set in the layout, under `layout.coloraxis`, `layout.coloraxis2`, etc. Note that multiple color scales can be linked to the same color axis. colorbar :class:`plotly.graph_objects.scattercarpet.marker.Color Bar` instance or dict with compatible properties colorscale Sets the colorscale. Has an effect only if in `marker.color`is set to a numerical array. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`marker.cmin` and `marker.cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu ,Reds,Blues,Picnic,Rainbow,Portland,Jet,Hot,Blackbody,E arth,Electric,Viridis,Cividis. colorsrc Sets the source reference on plot.ly for color . gradient :class:`plotly.graph_objects.scattercarpet.marker.Gradi ent` instance or dict with compatible properties line :class:`plotly.graph_objects.scattercarpet.marker.Line` instance or dict with compatible properties maxdisplayed Sets a maximum number of points to be drawn on the graph. 0 corresponds to no limit. opacity Sets the marker opacity. opacitysrc Sets the source reference on plot.ly for opacity . reversescale Reverses the color mapping if true. Has an effect only if in `marker.color`is set to a numerical array. If true, `marker.cmin` will correspond to the last color in the array and `marker.cmax` will correspond to the first color. showscale Determines whether or not a colorbar is displayed for this trace. Has an effect only if in `marker.color`is set to a numerical array. size Sets the marker size (in px). sizemin Has an effect only if `marker.size` is set to a numerical array. Sets the minimum size (in px) of the rendered marker points. sizemode Has an effect only if `marker.size` is set to a numerical array. Sets the rule for which the data in `size` is converted to pixels. sizeref Has an effect only if `marker.size` is set to a numerical array. Sets the scale factor used to determine the rendered size of marker points. Use with `sizemin` and `sizemode`. sizesrc Sets the source reference on plot.ly for size . symbol Sets the marker symbol type. Adding 100 is equivalent to appending "-open" to a symbol name. Adding 200 is equivalent to appending "-dot" to a symbol name. Adding 300 is equivalent to appending "-open-dot" or "dot- open" to a symbol name. symbolsrc Sets the source reference on plot.ly for symbol . Returns ------- Marker """ super(Marker, self).__init__("marker") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.scattercarpet.Marker constructor must be a dict or an instance of :class:`plotly.graph_objs.scattercarpet.Marker`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.scattercarpet import marker as v_marker # Initialize validators # --------------------- self._validators["autocolorscale"] = v_marker.AutocolorscaleValidator() self._validators["cauto"] = v_marker.CautoValidator() self._validators["cmax"] = v_marker.CmaxValidator() self._validators["cmid"] = v_marker.CmidValidator() self._validators["cmin"] = v_marker.CminValidator() self._validators["color"] = v_marker.ColorValidator() self._validators["coloraxis"] = v_marker.ColoraxisValidator() self._validators["colorbar"] = v_marker.ColorBarValidator() self._validators["colorscale"] = v_marker.ColorscaleValidator() self._validators["colorsrc"] = v_marker.ColorsrcValidator() self._validators["gradient"] = v_marker.GradientValidator() self._validators["line"] = v_marker.LineValidator() self._validators["maxdisplayed"] = v_marker.MaxdisplayedValidator() self._validators["opacity"] = v_marker.OpacityValidator() self._validators["opacitysrc"] = v_marker.OpacitysrcValidator() self._validators["reversescale"] = v_marker.ReversescaleValidator() self._validators["showscale"] = v_marker.ShowscaleValidator() self._validators["size"] = v_marker.SizeValidator() self._validators["sizemin"] = v_marker.SizeminValidator() self._validators["sizemode"] = v_marker.SizemodeValidator() self._validators["sizeref"] = v_marker.SizerefValidator() self._validators["sizesrc"] = v_marker.SizesrcValidator() self._validators["symbol"] = v_marker.SymbolValidator() self._validators["symbolsrc"] = v_marker.SymbolsrcValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("autocolorscale", None) self["autocolorscale"] = autocolorscale if autocolorscale is not None else _v _v = arg.pop("cauto", None) self["cauto"] = cauto if cauto is not None else _v _v = arg.pop("cmax", None) self["cmax"] = cmax if cmax is not None else _v _v = arg.pop("cmid", None) self["cmid"] = cmid if cmid is not None else _v _v = arg.pop("cmin", None) self["cmin"] = cmin if cmin is not None else _v _v = arg.pop("color", None) self["color"] = color if color is not None else _v _v = arg.pop("coloraxis", None) self["coloraxis"] = coloraxis if coloraxis is not None else _v _v = arg.pop("colorbar", None) self["colorbar"] = colorbar if colorbar is not None else _v _v = arg.pop("colorscale", None) self["colorscale"] = colorscale if colorscale is not None else _v _v = arg.pop("colorsrc", None) self["colorsrc"] = colorsrc if colorsrc is not None else _v _v = arg.pop("gradient", None) self["gradient"] = gradient if gradient is not None else _v _v = arg.pop("line", None) self["line"] = line if line is not None else _v _v = arg.pop("maxdisplayed", None) self["maxdisplayed"] = maxdisplayed if maxdisplayed is not None else _v _v = arg.pop("opacity", None) self["opacity"] = opacity if opacity is not None else _v _v = arg.pop("opacitysrc", None) self["opacitysrc"] = opacitysrc if opacitysrc is not None else _v _v = arg.pop("reversescale", None) self["reversescale"] = reversescale if reversescale is not None else _v _v = arg.pop("showscale", None) self["showscale"] = showscale if showscale is not None else _v _v = arg.pop("size", None) self["size"] = size if size is not None else _v _v = arg.pop("sizemin", None) self["sizemin"] = sizemin if sizemin is not None else _v _v = arg.pop("sizemode", None) self["sizemode"] = sizemode if sizemode is not None else _v _v = arg.pop("sizeref", None) self["sizeref"] = sizeref if sizeref is not None else _v _v = arg.pop("sizesrc", None) self["sizesrc"] = sizesrc if sizesrc is not None else _v _v = arg.pop("symbol", None) self["symbol"] = symbol if symbol is not None else _v _v = arg.pop("symbolsrc", None) self["symbolsrc"] = symbolsrc if symbolsrc is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Line(_BaseTraceHierarchyType): # color # ----- @property def color(self): """ Sets the line color. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val # dash # ---- @property def dash(self): """ Sets the dash style of lines. Set to a dash type string ("solid", "dot", "dash", "longdash", "dashdot", or "longdashdot") or a dash length list in px (eg "5px,10px,2px,2px"). The 'dash' property is an enumeration that may be specified as: - One of the following dash styles: ['solid', 'dot', 'dash', 'longdash', 'dashdot', 'longdashdot'] - A string containing a dash length list in pixels or percentages (e.g. '5px 10px 2px 2px', '5, 10, 2, 2', '10% 20% 40%', etc.) Returns ------- str """ return self["dash"] @dash.setter def dash(self, val): self["dash"] = val # shape # ----- @property def shape(self): """ Determines the line shape. With "spline" the lines are drawn using spline interpolation. The other available values correspond to step-wise line shapes. The 'shape' property is an enumeration that may be specified as: - One of the following enumeration values: ['linear', 'spline'] Returns ------- Any """ return self["shape"] @shape.setter def shape(self, val): self["shape"] = val # smoothing # --------- @property def smoothing(self): """ Has an effect only if `shape` is set to "spline" Sets the amount of smoothing. 0 corresponds to no smoothing (equivalent to a "linear" shape). The 'smoothing' property is a number and may be specified as: - An int or float in the interval [0, 1.3] Returns ------- int|float """ return self["smoothing"] @smoothing.setter def smoothing(self, val): self["smoothing"] = val # width # ----- @property def width(self): """ Sets the line width (in px). The 'width' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["width"] @width.setter def width(self, val): self["width"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "scattercarpet" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color Sets the line color. dash Sets the dash style of lines. Set to a dash type string ("solid", "dot", "dash", "longdash", "dashdot", or "longdashdot") or a dash length list in px (eg "5px,10px,2px,2px"). shape Determines the line shape. With "spline" the lines are drawn using spline interpolation. The other available values correspond to step-wise line shapes. smoothing Has an effect only if `shape` is set to "spline" Sets the amount of smoothing. 0 corresponds to no smoothing (equivalent to a "linear" shape). width Sets the line width (in px). """ def __init__( self, arg=None, color=None, dash=None, shape=None, smoothing=None, width=None, **kwargs ): """ Construct a new Line object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scattercarpet.Line` color Sets the line color. dash Sets the dash style of lines. Set to a dash type string ("solid", "dot", "dash", "longdash", "dashdot", or "longdashdot") or a dash length list in px (eg "5px,10px,2px,2px"). shape Determines the line shape. With "spline" the lines are drawn using spline interpolation. The other available values correspond to step-wise line shapes. smoothing Has an effect only if `shape` is set to "spline" Sets the amount of smoothing. 0 corresponds to no smoothing (equivalent to a "linear" shape). width Sets the line width (in px). Returns ------- Line """ super(Line, self).__init__("line") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.scattercarpet.Line constructor must be a dict or an instance of :class:`plotly.graph_objs.scattercarpet.Line`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.scattercarpet import line as v_line # Initialize validators # --------------------- self._validators["color"] = v_line.ColorValidator() self._validators["dash"] = v_line.DashValidator() self._validators["shape"] = v_line.ShapeValidator() self._validators["smoothing"] = v_line.SmoothingValidator() self._validators["width"] = v_line.WidthValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) self["color"] = color if color is not None else _v _v = arg.pop("dash", None) self["dash"] = dash if dash is not None else _v _v = arg.pop("shape", None) self["shape"] = shape if shape is not None else _v _v = arg.pop("smoothing", None) self["smoothing"] = smoothing if smoothing is not None else _v _v = arg.pop("width", None) self["width"] = width if width is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Hoverlabel(_BaseTraceHierarchyType): # align # ----- @property def align(self): """ Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines The 'align' property is an enumeration that may be specified as: - One of the following enumeration values: ['left', 'right', 'auto'] - A tuple, list, or one-dimensional numpy array of the above Returns ------- Any|numpy.ndarray """ return self["align"] @align.setter def align(self, val): self["align"] = val # alignsrc # -------- @property def alignsrc(self): """ Sets the source reference on plot.ly for align . The 'alignsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["alignsrc"] @alignsrc.setter def alignsrc(self, val): self["alignsrc"] = val # bgcolor # ------- @property def bgcolor(self): """ Sets the background color of the hover labels for this trace The 'bgcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["bgcolor"] @bgcolor.setter def bgcolor(self, val): self["bgcolor"] = val # bgcolorsrc # ---------- @property def bgcolorsrc(self): """ Sets the source reference on plot.ly for bgcolor . The 'bgcolorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["bgcolorsrc"] @bgcolorsrc.setter def bgcolorsrc(self, val): self["bgcolorsrc"] = val # bordercolor # ----------- @property def bordercolor(self): """ Sets the border color of the hover labels for this trace. The 'bordercolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["bordercolor"] @bordercolor.setter def bordercolor(self, val): self["bordercolor"] = val # bordercolorsrc # -------------- @property def bordercolorsrc(self): """ Sets the source reference on plot.ly for bordercolor . The 'bordercolorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["bordercolorsrc"] @bordercolorsrc.setter def bordercolorsrc(self, val): self["bordercolorsrc"] = val # font # ---- @property def font(self): """ Sets the font used in hover labels. The 'font' property is an instance of Font that may be specified as: - An instance of :class:`plotly.graph_objs.scattercarpet.hoverlabel.Font` - A dict of string/value properties that will be passed to the Font constructor Supported dict properties: color colorsrc Sets the source reference on plot.ly for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on plot.ly for family . size sizesrc Sets the source reference on plot.ly for size . Returns ------- plotly.graph_objs.scattercarpet.hoverlabel.Font """ return self["font"] @font.setter def font(self, val): self["font"] = val # namelength # ---------- @property def namelength(self): """ Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. The 'namelength' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [-1, 9223372036854775807] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|numpy.ndarray """ return self["namelength"] @namelength.setter def namelength(self, val): self["namelength"] = val # namelengthsrc # ------------- @property def namelengthsrc(self): """ Sets the source reference on plot.ly for namelength . The 'namelengthsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["namelengthsrc"] @namelengthsrc.setter def namelengthsrc(self, val): self["namelengthsrc"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "scattercarpet" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on plot.ly for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on plot.ly for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on plot.ly for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on plot.ly for namelength . """ def __init__( self, arg=None, align=None, alignsrc=None, bgcolor=None, bgcolorsrc=None, bordercolor=None, bordercolorsrc=None, font=None, namelength=None, namelengthsrc=None, **kwargs ): """ Construct a new Hoverlabel object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scattercarpet.Hoverlabel` align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on plot.ly for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on plot.ly for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on plot.ly for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on plot.ly for namelength . Returns ------- Hoverlabel """ super(Hoverlabel, self).__init__("hoverlabel") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.scattercarpet.Hoverlabel constructor must be a dict or an instance of :class:`plotly.graph_objs.scattercarpet.Hoverlabel`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.scattercarpet import hoverlabel as v_hoverlabel # Initialize validators # --------------------- self._validators["align"] = v_hoverlabel.AlignValidator() self._validators["alignsrc"] = v_hoverlabel.AlignsrcValidator() self._validators["bgcolor"] = v_hoverlabel.BgcolorValidator() self._validators["bgcolorsrc"] = v_hoverlabel.BgcolorsrcValidator() self._validators["bordercolor"] = v_hoverlabel.BordercolorValidator() self._validators["bordercolorsrc"] = v_hoverlabel.BordercolorsrcValidator() self._validators["font"] = v_hoverlabel.FontValidator() self._validators["namelength"] = v_hoverlabel.NamelengthValidator() self._validators["namelengthsrc"] = v_hoverlabel.NamelengthsrcValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("align", None) self["align"] = align if align is not None else _v _v = arg.pop("alignsrc", None) self["alignsrc"] = alignsrc if alignsrc is not None else _v _v = arg.pop("bgcolor", None) self["bgcolor"] = bgcolor if bgcolor is not None else _v _v = arg.pop("bgcolorsrc", None) self["bgcolorsrc"] = bgcolorsrc if bgcolorsrc is not None else _v _v = arg.pop("bordercolor", None) self["bordercolor"] = bordercolor if bordercolor is not None else _v _v = arg.pop("bordercolorsrc", None) self["bordercolorsrc"] = bordercolorsrc if bordercolorsrc is not None else _v _v = arg.pop("font", None) self["font"] = font if font is not None else _v _v = arg.pop("namelength", None) self["namelength"] = namelength if namelength is not None else _v _v = arg.pop("namelengthsrc", None) self["namelengthsrc"] = namelengthsrc if namelengthsrc is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False __all__ = [ "Hoverlabel", "Line", "Marker", "Selected", "Stream", "Textfont", "Unselected", "hoverlabel", "marker", "selected", "unselected", ] from plotly.graph_objs.scattercarpet import unselected from plotly.graph_objs.scattercarpet import selected from plotly.graph_objs.scattercarpet import marker from plotly.graph_objs.scattercarpet import hoverlabel
py
b406268e87fc5ecd7b7bdaa10dade1e82918cce9
import os import re import setuptools HERE = os.path.abspath(os.path.dirname(__file__)) VERSION_PY = ["version.py"] REQUIRED_PCKGS = [ 'bokeh', ] def read(*args): """Read complete file contest.""" fp = os.path.join(HERE, *args) with open(fp) as fh: return fh.read() def get_requirements(): """Read the requirements file.""" requirements = read("requirements.txt") return [r for r in requirements.strip().splitlines()] def get_version(): """Parse version from file.""" version_file = read(*VERSION_PY) version_match = re.search( r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M ) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string") setuptools.setup( install_requires=get_requirements(), version=get_version(), )
py
b40629241909ae188296ebc5ec566835b1ca45bb
# Copyright 2007 Matt Chaput. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO # EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # The views and conclusions contained in the software and documentation are # those of the authors and should not be interpreted as representing official # policies, either expressed or implied, of Matt Chaput. from __future__ import with_statement import random, sys, time from bisect import insort, bisect_left from functools import wraps from whoosh.compat import xrange # These must be valid separate characters in CASE-INSENSTIVE filenames IDCHARS = "0123456789abcdefghijklmnopqrstuvwxyz" if hasattr(time, "perf_counter"): now = time.perf_counter elif sys.platform == 'win32': now = time.clock else: now = time.time def random_name(size=28): return "".join(random.choice(IDCHARS) for _ in xrange(size)) def make_binary_tree(fn, args, **kwargs): """Takes a function/class that takes two positional arguments and a list of arguments and returns a binary tree of results/instances. >>> make_binary_tree(UnionMatcher, [matcher1, matcher2, matcher3]) UnionMatcher(matcher1, UnionMatcher(matcher2, matcher3)) Any keyword arguments given to this function are passed to the class initializer. """ count = len(args) if not count: raise ValueError("Called make_binary_tree with empty list") elif count == 1: return args[0] half = count // 2 return fn(make_binary_tree(fn, args[:half], **kwargs), make_binary_tree(fn, args[half:], **kwargs), **kwargs) def make_weighted_tree(fn, ls, **kwargs): """Takes a function/class that takes two positional arguments and a list of (weight, argument) tuples and returns a huffman-like weighted tree of results/instances. """ if not ls: raise ValueError("Called make_weighted_tree with empty list") ls.sort() while len(ls) > 1: a = ls.pop(0) b = ls.pop(0) insort(ls, (a[0] + b[0], fn(a[1], b[1]))) return ls[0][1] # Fibonacci function _fib_cache = {} def fib(n): """Returns the nth value in the Fibonacci sequence. """ if n <= 2: return n if n in _fib_cache: return _fib_cache[n] result = fib(n - 1) + fib(n - 2) _fib_cache[n] = result return result # Decorators def synchronized(func): """Decorator for storage-access methods, which synchronizes on a threading lock. The parent object must have 'is_closed' and '_sync_lock' attributes. """ @wraps(func) def synchronized_wrapper(self, *args, **kwargs): with self._sync_lock: return func(self, *args, **kwargs) return synchronized_wrapper
gyp
b406299d5b754a6c11e95054ed0559a4bfc07509
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { # TODO(dmaclach): can we pick this up some other way? Right now it's # duplicated from chrome.gyp 'chromium_code': 1, # Use consistent strings across all platforms. Note that the plugin name # is brand-dependent and is defined further down. # Must match host/plugin/constants.h 'host_plugin_mime_type': 'application/vnd.chromium.remoting-host', 'host_plugin_description': 'Allow another user to access your computer securely over the Internet.', # The version is composed from major & minor versions specific to remoting # and build & patch versions inherited from Chrome. 'version_py_path': '../chrome/tools/build/version.py', 'version_path': '../remoting/VERSION', 'chrome_version_path': '../chrome/VERSION', 'version_full': '<!(python <(version_py_path) -f <(version_path) -t "@MAJOR@.@MINOR@").' '<!(python <(version_py_path) -f <(chrome_version_path) -t "@BUILD@.@PATCH@")', 'version_short': '<!(python <(version_py_path) -f <(version_path) -t "@MAJOR@.@MINOR@").' '<!(python <(version_py_path) -f <(chrome_version_path) -t "@BUILD@")', 'conditions': [ ['OS=="mac"', { 'conditions': [ ['branding=="Chrome"', { 'mac_bundle_id': 'com.google.Chrome', 'mac_creator': 'rimZ', }, { # else: branding!="Chrome" 'mac_bundle_id': 'org.chromium.Chromium', 'mac_creator': 'Cr24', }], # branding ], # conditions 'host_plugin_extension': 'plugin', 'host_plugin_prefix': '', }], ['os_posix == 1 and OS != "mac" and target_arch == "ia32"', { # linux 32 bit 'host_plugin_extension': 'ia32.so', 'host_plugin_prefix': 'lib', }], ['os_posix == 1 and OS != "mac" and target_arch == "x64"', { # linux 64 bit 'host_plugin_extension': 'x64.so', 'host_plugin_prefix': 'lib', }], ['os_posix == 1 and OS != "mac" and target_arch == "arm"', { # linux 64 bit 'host_plugin_extension': 'arm.so', 'host_plugin_prefix': 'lib', }], ['OS=="win"', { 'host_plugin_extension': 'dll', 'host_plugin_prefix': '', }], ['branding=="Chrome"', { # Must match host/plugin/constants.h 'host_plugin_name': 'Chrome Remote Desktop Host', 'remoting_webapp_locale_files': [ 'webapp/_locales.official/ar/messages.json', 'webapp/_locales.official/bg/messages.json', 'webapp/_locales.official/ca/messages.json', 'webapp/_locales.official/cs/messages.json', 'webapp/_locales.official/da/messages.json', 'webapp/_locales.official/de/messages.json', 'webapp/_locales.official/el/messages.json', 'webapp/_locales.official/en/messages.json', 'webapp/_locales.official/en_GB/messages.json', 'webapp/_locales.official/es/messages.json', 'webapp/_locales.official/es_419/messages.json', 'webapp/_locales.official/et/messages.json', 'webapp/_locales.official/fi/messages.json', 'webapp/_locales.official/fil/messages.json', 'webapp/_locales.official/fr/messages.json', 'webapp/_locales.official/he/messages.json', 'webapp/_locales.official/hi/messages.json', 'webapp/_locales.official/hr/messages.json', 'webapp/_locales.official/hu/messages.json', 'webapp/_locales.official/id/messages.json', 'webapp/_locales.official/it/messages.json', 'webapp/_locales.official/ja/messages.json', 'webapp/_locales.official/ko/messages.json', 'webapp/_locales.official/lt/messages.json', 'webapp/_locales.official/lv/messages.json', 'webapp/_locales.official/nb/messages.json', 'webapp/_locales.official/nl/messages.json', 'webapp/_locales.official/pl/messages.json', 'webapp/_locales.official/pt_BR/messages.json', 'webapp/_locales.official/pt_PT/messages.json', 'webapp/_locales.official/ro/messages.json', 'webapp/_locales.official/ru/messages.json', 'webapp/_locales.official/sk/messages.json', 'webapp/_locales.official/sl/messages.json', 'webapp/_locales.official/sr/messages.json', 'webapp/_locales.official/sv/messages.json', 'webapp/_locales.official/th/messages.json', 'webapp/_locales.official/tr/messages.json', 'webapp/_locales.official/uk/messages.json', 'webapp/_locales.official/vi/messages.json', 'webapp/_locales.official/zh_CN/messages.json', 'webapp/_locales.official/zh_TW/messages.json', ], }, { # else: branding!="Chrome" # Must match host/plugin/constants.h 'host_plugin_name': 'Chromoting Host', 'remoting_webapp_locale_files': [ 'webapp/_locales/en/messages.json', ], }], ], 'remoting_webapp_files': [ 'resources/icon_cross.png', 'resources/icon_host.png', 'resources/icon_pencil.png', 'resources/icon_warning.png', 'webapp/client_plugin.js', 'webapp/client_plugin_async.js', 'webapp/client_plugin_v1.js', 'webapp/client_screen.js', 'webapp/client_session.js', 'webapp/clipboard.js', 'webapp/connection_history.css', 'webapp/connection_history.js', 'webapp/connection_stats.css', 'webapp/connection_stats.js', 'webapp/cs_oauth2_trampoline.js', 'webapp/event_handlers.js', 'webapp/format_iq.js', 'webapp/host_controller.js', 'webapp/host_list.js', 'webapp/host_screen.js', 'webapp/host_session.js', 'webapp/host_setup_dialog.js', 'webapp/host_table_entry.js', 'webapp/l10n.js', 'webapp/log_to_server.js', 'webapp/main.css', 'webapp/main.html', 'webapp/manifest.json', 'webapp/menu_button.css', 'webapp/menu_button.js', 'webapp/oauth2.js', 'webapp/oauth2_callback.html', 'webapp/plugin_settings.js', 'webapp/remoting.js', 'webapp/scale-to-fit.png', 'webapp/server_log_entry.js', 'webapp/spinner.gif', 'webapp/stats_accumulator.js', 'webapp/toolbar.css', 'webapp/toolbar.js', 'webapp/ui_mode.js', 'webapp/wcs.js', 'webapp/wcs_loader.js', 'webapp/xhr.js', 'resources/chromoting16.png', 'resources/chromoting48.png', 'resources/chromoting128.png', 'resources/disclosure_arrow_down.png', 'resources/disclosure_arrow_right.png', 'resources/infographic_my_computers.png', 'resources/infographic_remote_assistance.png', 'resources/tick.png', ], 'remoting_host_installer_mac_roots': [ 'host/installer/mac/', '<(DEPTH)/chrome/installer/mac/', ], 'remoting_host_installer_mac_files': [ 'host/installer/mac/do_signing.sh', 'host/installer/mac/ChromotingHost.packproj', 'host/installer/mac/ChromotingHostService.packproj', 'host/installer/mac/ChromotingHostUninstaller.packproj', 'host/installer/mac/LaunchAgents/org.chromium.chromoting.plist', 'host/installer/mac/PrivilegedHelperTools/org.chromium.chromoting.me2me.sh', 'host/installer/mac/Scripts/keystone_install.sh', 'host/installer/mac/Scripts/remoting_postflight.sh', 'host/installer/mac/Scripts/remoting_preflight.sh', 'host/installer/mac/Keystone/GoogleSoftwareUpdate.pkg.zip', '<(DEPTH)/chrome/installer/mac/pkg-dmg', ], }, 'target_defaults': { 'defines': [ ], 'include_dirs': [ '..', # Root of Chrome checkout ], }, 'conditions': [ ['OS=="linux"', { 'targets': [ # Linux breakpad processing { 'target_name': 'remoting_linux_symbols', 'type': 'none', 'conditions': [ ['linux_dump_symbols==1', { 'actions': [ { 'action_name': 'dump_symbols', 'variables': { 'plugin_file': '<(host_plugin_prefix)remoting_host_plugin.<(host_plugin_extension)', }, 'inputs': [ '<(DEPTH)/build/linux/dump_app_syms', '<(PRODUCT_DIR)/dump_syms', '<(PRODUCT_DIR)/<(plugin_file)', ], 'outputs': [ '<(PRODUCT_DIR)/<(plugin_file).breakpad.<(target_arch)', ], 'action': ['<(DEPTH)/build/linux/dump_app_syms', '<(PRODUCT_DIR)/dump_syms', '<(linux_strip_binary)', '<(PRODUCT_DIR)/<(plugin_file)', '<@(_outputs)'], 'message': 'Dumping breakpad symbols to <(_outputs)', 'process_outputs_as_sources': 1, }, ], 'dependencies': [ 'remoting_host_plugin', '../breakpad/breakpad.gyp:dump_syms', ], }], # 'linux_dump_symbols==1' ], # end of 'conditions' }, # end of target 'linux_symbols' ], # end of 'targets' }], # 'OS=="linux"' ['OS=="mac"', { 'targets': [ { 'target_name': 'remoting_host_uninstaller', 'type': 'executable', 'mac_bundle': 1, 'conditions': [ ['branding == "Chrome"', { 'variables': { 'copyright_by': 'Google Inc.', 'bundle_id': 'com.google.chromeremotedesktop.host_uninstaller', 'bundle_name': 'Chrome Remote Desktop Host Uninstaller', }, }, { # else branding!="Chrome" 'variables': { 'copyright_by': 'The Chromium Authors.', 'bundle_id': 'org.chromium.remoting.host_uninstaller', 'bundle_name': 'Chromoting Host Uninstaller', }, }], ], 'dependencies': [ '<(DEPTH)/base/base.gyp:base', ], 'sources': [ 'host/installer/mac/uninstaller/remoting_uninstaller.h', 'host/installer/mac/uninstaller/remoting_uninstaller.mm', ], 'xcode_settings': { 'INFOPLIST_FILE': 'host/installer/mac/uninstaller/remoting_uninstaller-Info.plist', 'INFOPLIST_PREPROCESS': 'YES', 'INFOPLIST_PREPROCESSOR_DEFINITIONS': 'VERSION_FULL="<(version_full)" VERSION_SHORT="<(version_short)" BUNDLE_NAME="<(bundle_name)" BUNDLE_ID="<(bundle_id)" COPYRIGHT_BY="<(copyright_by)"', }, 'mac_bundle_resources': [ 'host/installer/mac/uninstaller/remoting_uninstaller.icns', 'host/installer/mac/uninstaller/remoting_uninstaller.xib', 'host/installer/mac/uninstaller/remoting_uninstaller-Info.plist', ], 'mac_bundle_resources!': [ 'host/installer/mac/uninstaller/remoting_uninstaller-Info.plist', ], }, # end of target 'remoting_host_uninstaller' # This packages up the files needed for the remoting host installer so # they can be sent off to be signed. # We don't build an installer here because we don't have signed binaries. { 'target_name': 'remoting_me2me_host_archive', 'type': 'none', 'dependencies': [ 'remoting_me2me_host', 'remoting_host_uninstaller', ], 'sources': [ 'host/installer/build-installer-archive.py', '<@(remoting_host_installer_mac_files)', ], 'conditions': [ ['branding == "Chrome"', { 'variables': { 'copyright_by': 'Google Inc.', 'host_name': 'Chrome Remote Desktop Host', 'host_service_name': 'Chrome Remote Desktop Host Service', 'host_uninstaller_name': 'Chrome Remote Desktop Host Uninstaller', 'bundle_prefix': 'com.google.pkg', }, }, { # else branding!="Chrome" 'variables': { 'copyright_by': 'The Chromium Authors.', 'host_name': 'Chromoting Host', 'host_service_name': 'Chromoting Host Service', 'host_uninstaller_name': 'Chromoting Host Uninstaller', 'bundle_prefix': 'org.chromium.pkg', }, }], ], # conditions 'actions': [ { 'action_name': 'Zip installer files for signing', 'temp_dir': '<(SHARED_INTERMEDIATE_DIR)/remoting/remoting-me2me-host', 'zip_path': '<(PRODUCT_DIR)/remoting-me2me-host-<(OS).zip', 'generated_files': [ '<(PRODUCT_DIR)/remoting_me2me_host', '<(PRODUCT_DIR)/remoting_host_uninstaller.app', ], 'generated_files_dst': [ 'PrivilegedHelperTools/org.chromium.chromoting.me2me_host', 'Applications/<(host_uninstaller_name).app', ], 'source_files': [ '<@(remoting_host_installer_mac_files)', ], 'defs': [ 'VERSION=<(version_full)', 'VERSION_SHORT=<(version_short)', 'VERSION_MAJOR=<!(python <(version_py_path) -f <(version_path) -t "@MAJOR@")', 'VERSION_MINOR=<!(python <(version_py_path) -f <(version_path) -t "@MINOR@")', 'COPYRIGHT_BY=<(copyright_by)', 'HOST_NAME=<(host_name)', 'HOST_SERVICE_NAME=<(host_service_name)', 'HOST_UNINSTALLER_NAME=<(host_uninstaller_name)', 'HOST_PKG=<(host_name)', 'HOST_SERVICE_PKG=<!(echo <(host_service_name) | sed "s/ //g")', 'HOST_UNINSTALLER_PKG=<!(echo <(host_uninstaller_name) | sed "s/ //g")', 'BUNDLE_ID_HOST=<(bundle_prefix).<(host_name)', 'BUNDLE_ID_HOST_SERVICE=<(bundle_prefix).<(host_service_name)', 'BUNDLE_ID_HOST_UNINSTALLER=<(bundle_prefix).<(host_uninstaller_name)', 'DMG_NAME=<(host_name)', ], 'inputs': [ 'host/installer/build-installer-archive.py', '<@(_source_files)', ], 'outputs': [ '<(_zip_path)', ], 'action': [ 'python', 'host/installer/build-installer-archive.py', '<(_temp_dir)', '<(_zip_path)', '--source-file-roots', '<@(remoting_host_installer_mac_roots)', '--source-files', '<@(_source_files)', '--generated-files', '<@(_generated_files)', '--generated-files-dst', '<@(_generated_files_dst)', '--defs', '<@(_defs)', ], }, ], # actions }, # end of target 'remoting_me2me_host_archive' ], # end of 'targets' }], # 'OS=="mac"' ['OS=="win"', { 'targets': [ { 'target_name': 'remoting_elevated_controller', 'type': 'static_library', 'sources': [ 'host/elevated_controller.idl', '<(SHARED_INTERMEDIATE_DIR)/remoting/host/elevated_controller.h', '<(SHARED_INTERMEDIATE_DIR)/remoting/host/elevated_controller_i.c', ], # This target exports a hard dependency because dependent targets may # include elevated_controller.h, a generated header. 'hard_dependency': 1, 'msvs_settings': { 'VCMIDLTool': { 'OutputDirectory': '<(SHARED_INTERMEDIATE_DIR)/remoting/host', }, }, 'direct_dependent_settings': { 'include_dirs': [ '<(SHARED_INTERMEDIATE_DIR)', ], }, }, # end of target 'remoting_elevated_controller' { 'target_name': 'remoting_host_controller', 'type': 'executable', 'variables': { 'enable_wexit_time_destructors': 1, }, 'defines' : [ '_ATL_APARTMENT_THREADED', '_ATL_NO_AUTOMATIC_NAMESPACE', '_ATL_CSTRING_EXPLICIT_CONSTRUCTORS', 'STRICT', ], 'include_dirs': [ '<(INTERMEDIATE_DIR)', ], 'dependencies': [ '../base/base.gyp:base', 'remoting_elevated_controller', 'remoting_protocol', 'remoting_version_resources', ], 'sources': [ 'host/branding.cc', 'host/branding.h', 'host/daemon_controller_common_win.cc', 'host/daemon_controller_common_win.h', 'host/elevated_controller.rc', 'host/elevated_controller_module_win.cc', 'host/elevated_controller_win.cc', 'host/elevated_controller_win.h', 'host/pin_hash.cc', 'host/pin_hash.h', 'host/verify_config_window_win.cc', 'host/verify_config_window_win.h', '<(SHARED_INTERMEDIATE_DIR)/remoting/elevated_controller_version.rc' ], 'link_settings': { 'libraries': [ '-lcomctl32.lib', ], }, 'msvs_settings': { 'VCLinkerTool': { 'AdditionalOptions': [ "/MANIFESTUAC:level='requireAdministrator'", "\"/manifestdependency:type='win32' " "name='Microsoft.Windows.Common-Controls' " "version='6.0.0.0' " "processorArchitecture='*' " "publicKeyToken='6595b64144ccf1df' language='*'\"", ], # 2 == /SUBSYSTEM:WINDOWS 'SubSystem': '2', }, }, }, # end of target 'remoting_host_controller' { 'target_name': 'remoting_service', 'type': 'executable', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:base_static', '../base/third_party/dynamic_annotations/dynamic_annotations.gyp:dynamic_annotations', '../ipc/ipc.gyp:ipc', 'remoting_version_resources', ], 'sources': [ 'base/scoped_sc_handle_win.h', 'host/branding.cc', 'host/branding.h', 'host/chromoting_messages.cc', 'host/chromoting_messages.h', 'host/constants.h', 'host/host_service.rc', 'host/host_service_resource.h', 'host/host_service_win.cc', 'host/host_service_win.h', 'host/sas_injector.h', 'host/sas_injector_win.cc', 'host/wts_console_monitor_win.h', 'host/wts_console_observer_win.h', 'host/wts_session_process_launcher_win.cc', 'host/wts_session_process_launcher_win.h', '<(SHARED_INTERMEDIATE_DIR)/remoting/host_service_version.rc' ], 'msvs_settings': { 'VCLinkerTool': { 'AdditionalDependencies': [ 'wtsapi32.lib', ], }, }, }, # end of target 'remoting_service' # Generates the version information resources for the Windows binaries. # The .RC files are generated from the "version.rc.version" template and # placed in the "<(SHARED_INTERMEDIATE_DIR)/remoting" folder. # The substitution strings are taken from: # - build/util/LASTCHANGE - the last source code revision. # - chrome/VERSION - the build & patch versions. # - remoting/VERSION - the major & minor versions. # - xxx_branding - UI/localizable strings. # - xxx.ver - per-binary non-localizable strings such as the binary # name. { 'target_name': 'remoting_version_resources', 'type': 'none', 'dependencies': [ '../build/util/build_util.gyp:lastchange#target', ], 'inputs': [ 'chromium_branding', 'google_chrome_branding', 'version.rc.version', '<(DEPTH)/build/util/LASTCHANGE', '<(version_path)', '<(chrome_version_path)', ], 'direct_dependent_settings': { 'include_dirs': [ '<(SHARED_INTERMEDIATE_DIR)/remoting', ], }, 'sources': [ 'host/elevated_controller.ver', 'host/host_service.ver', 'host/plugin/host_plugin.ver', 'host/remoting_me2me_host.ver', ], 'rules': [ { 'rule_name': 'version', 'extension': 'ver', 'variables': { 'lastchange_path': '<(DEPTH)/build/util/LASTCHANGE', 'template_input_path': 'version.rc.version', }, 'conditions': [ ['branding == "Chrome"', { 'variables': { 'branding_path': 'google_chrome_branding', }, }, { # else branding!="Chrome" 'variables': { 'branding_path': 'chromium_branding', }, }], ], 'inputs': [ '<(template_input_path)', '<(version_path)', '<(chrome_version_path)', '<(branding_path)', '<(lastchange_path)', ], 'outputs': [ '<(SHARED_INTERMEDIATE_DIR)/remoting/<(RULE_INPUT_ROOT)_version.rc', ], 'action': [ 'python', '<(version_py_path)', '-f', '<(RULE_INPUT_PATH)', '-f', '<(chrome_version_path)', '-f', '<(version_path)', '-f', '<(branding_path)', '-f', '<(lastchange_path)', '<(template_input_path)', '<@(_outputs)', ], 'message': 'Generating version information in <@(_outputs)' }, ], }, # end of target 'remoting_version_resources' ], # end of 'targets' }], # 'OS=="win"' # The host installation is generated only if WiX is available and when # building a non-component build. WiX does not provide a easy way to # include all DLLs imported by the installed binaries, so supporting # the component build becomes a burden. ['OS == "win" and component != "shared_library" and wix_exists == "True" \ and platformsdk_exists == "True"', { 'targets': [ { 'target_name': 'remoting_host_installation', 'type': 'none', 'dependencies': [ 'remoting_host_controller', 'remoting_service', 'remoting_me2me_host', ], 'sources': [ 'host/installer/chromoting.wxs', ], 'outputs': [ '<(PRODUCT_DIR)/chromoting.msi', ], 'wix_defines' : [ '"-dBranding=<(branding)"', ], 'conditions': [ ['buildtype == "Official"', { 'wix_defines': [ '-dOfficialBuild=1', ], }], ], 'rules': [ { 'rule_name': 'candle', 'extension': 'wxs', 'inputs': [ '<(PRODUCT_DIR)/remoting_host_controller.exe', '<(PRODUCT_DIR)/remoting_me2me_host.exe', '<(PRODUCT_DIR)/remoting_service.exe', '<(platformsdk_path)/redist/x86/sas.dll', ], 'outputs': [ '<(INTERMEDIATE_DIR)/<(RULE_INPUT_ROOT).wixobj', ], 'process_outputs_as_sources': 1, 'msvs_cygwin_shell': 0, 'msvs_quote_cmd': 0, 'action': [ '"<(wix_path)\\candle"', '-ext "<(wix_path)\\WixFirewallExtension.dll"', '-ext "<(wix_path)\\WixUIExtension.dll"', '-ext "<(wix_path)\\WixUtilExtension.dll"', '-dVersion=<(version_full)', '"-dFileSource=<(PRODUCT_DIR)."', '"-dSasDllPath=<(platformsdk_path)/redist/x86/sas.dll"', '<@(_wix_defines)', '-out <@(_outputs)', '"<(RULE_INPUT_PATH)"', ], 'message': 'Generating <@(_outputs)', }, { 'rule_name': 'light', 'extension': 'wixobj', 'inputs': [ '<(PRODUCT_DIR)/remoting_host_controller.exe', '<(PRODUCT_DIR)/remoting_me2me_host.exe', '<(PRODUCT_DIR)/remoting_service.exe', '<(platformsdk_path)/redist/x86/sas.dll', ], 'outputs': [ '<(PRODUCT_DIR)/<(RULE_INPUT_ROOT).msi', '<(PRODUCT_DIR)/<(RULE_INPUT_ROOT).wixpdb', ], 'msvs_cygwin_shell': 0, 'msvs_quote_cmd': 0, 'action': [ '"<(wix_path)\\light"', '-ext "<(wix_path)\\WixFirewallExtension.dll"', '-ext "<(wix_path)\\WixUIExtension.dll"', '-ext "<(wix_path)\\WixUtilExtension.dll"', '-cultures:en-us', '-sw1076', '-dVersion=<(version_full)', '"-dFileSource=<(PRODUCT_DIR)."', '"-dSasDllPath=<(platformsdk_path)/redist/x86/sas.dll"', '<@(_wix_defines)', '-out "<(PRODUCT_DIR)/<(RULE_INPUT_ROOT).msi"', '"<(RULE_INPUT_PATH)"', ], 'message': 'Generating <(PRODUCT_DIR)/<(RULE_INPUT_ROOT).msi', }, ], }, # end of target 'remoting_host_installation' # The 'remoting_host_installation_unittest' target is used to make sure # that the code signing job (running outside of Chromium tree) will be # able to unpack and re-assemble the installation successfully. # # *** If this target fails to compile the code signing job will fail # too, breaking the official build. *** # # N.B. The command lines passed to the WiX tools here should be in sync # with the code signing script. { 'target_name': 'remoting_host_installation_unittest', 'type': 'none', 'dependencies': [ 'remoting_host_installation', ], 'sources': [ '<(PRODUCT_DIR)/chromoting.msi', ], 'outputs': [ '<(INTERMEDIATE_DIR)/chromoting-test.msi', ], 'rules': [ { 'rule_name': 'dark', 'extension': 'msi', 'outputs': [ '<(INTERMEDIATE_DIR)/<(RULE_INPUT_ROOT).wxs', ], 'process_outputs_as_sources': 1, 'msvs_cygwin_shell': 0, 'msvs_quote_cmd': 0, 'action': [ '"<(wix_path)\\dark"', '"<(RULE_INPUT_PATH)"', '-o <@(_outputs)', '-o <@(_outputs)', '-x <(INTERMEDIATE_DIR)', ], 'message': 'Dark: unpacking <(RULE_INPUT_PATH)', }, { 'rule_name': 'candle', 'extension': 'wxs', 'outputs': [ '<(INTERMEDIATE_DIR)/<(RULE_INPUT_ROOT).wixobj', ], 'process_outputs_as_sources': 1, 'msvs_cygwin_shell': 0, 'msvs_quote_cmd': 0, 'action': [ '"<(wix_path)\\candle"', '"<(RULE_INPUT_PATH)"', '-o <@(_outputs)', '-ext "<(wix_path)\\WixFirewallExtension.dll"', ], 'message': 'Candle: compiling <(RULE_INPUT_PATH)', }, { 'rule_name': 'light', 'extension': 'wixobj', 'outputs': [ '<(INTERMEDIATE_DIR)/<(RULE_INPUT_ROOT)-test.msi', ], 'msvs_cygwin_shell': 0, 'msvs_quote_cmd': 0, 'action': [ '"<(wix_path)\\light"', '"<(RULE_INPUT_PATH)"', '-o <@(_outputs)', '-ext "<(wix_path)\\WixFirewallExtension.dll"', '-sw1076', ], 'message': 'Light: linking <(RULE_INPUT_PATH)', }, ], }, # end of target 'remoting_host_installation_unittest' ], # end of 'targets' }], # '<(wix_path) != ""' ], # end of 'conditions' 'targets': [ { 'target_name': 'remoting_client_plugin', 'type': 'static_library', 'variables': { 'enable_wexit_time_destructors': 1, }, 'defines': [ 'HAVE_STDINT_H', # Required by on2_integer.h ], 'dependencies': [ 'remoting_base', 'remoting_client', 'remoting_jingle_glue', '../media/media.gyp:media', '../ppapi/ppapi.gyp:ppapi_cpp_objects', '../skia/skia.gyp:skia', ], 'sources': [ 'client/plugin/chromoting_instance.cc', 'client/plugin/chromoting_instance.h', 'client/plugin/chromoting_scriptable_object.cc', 'client/plugin/chromoting_scriptable_object.h', 'client/plugin/pepper_entrypoints.cc', 'client/plugin/pepper_entrypoints.h', 'client/plugin/pepper_input_handler.cc', 'client/plugin/pepper_input_handler.h', 'client/plugin/pepper_network_manager.cc', 'client/plugin/pepper_network_manager.h', 'client/plugin/pepper_packet_socket_factory.cc', 'client/plugin/pepper_packet_socket_factory.h', 'client/plugin/pepper_plugin_thread_delegate.cc', 'client/plugin/pepper_plugin_thread_delegate.h', 'client/plugin/pepper_view.cc', 'client/plugin/pepper_view.h', 'client/plugin/pepper_util.cc', 'client/plugin/pepper_util.h', 'client/plugin/pepper_xmpp_proxy.cc', 'client/plugin/pepper_xmpp_proxy.h', ], }, # end of target 'remoting_client_plugin' { 'target_name': 'remoting_host_plugin', 'type': 'loadable_module', 'variables': { 'enable_wexit_time_destructors': 1, }, 'product_extension': '<(host_plugin_extension)', 'product_prefix': '<(host_plugin_prefix)', 'dependencies': [ 'remoting_base', 'remoting_host', 'remoting_jingle_glue', '../third_party/npapi/npapi.gyp:npapi', ], 'sources': [ 'host/branding.cc', 'host/branding.h', 'host/it2me_host_user_interface.cc', 'host/it2me_host_user_interface.h', 'host/plugin/daemon_controller.h', 'host/daemon_controller_common_win.cc', 'host/daemon_controller_common_win.h', 'host/plugin/daemon_controller_linux.cc', 'host/plugin/daemon_controller_mac.cc', 'host/plugin/daemon_controller_win.cc', 'host/plugin/daemon_installer_win.cc', 'host/plugin/daemon_installer_win.h', 'host/plugin/host_log_handler.cc', 'host/plugin/host_log_handler.h', 'host/plugin/host_plugin.cc', 'host/plugin/host_plugin_resource.h', 'host/plugin/host_plugin_utils.cc', 'host/plugin/host_plugin_utils.h', 'host/plugin/host_script_object.cc', 'host/plugin/host_script_object.h', ], 'conditions': [ ['OS=="mac"', { 'mac_bundle': 1, 'xcode_settings': { 'CHROMIUM_BUNDLE_ID': '<(mac_bundle_id)', 'INFOPLIST_FILE': 'host/plugin/host_plugin-Info.plist', 'INFOPLIST_PREPROCESS': 'YES', # TODO(maruel): Use INFOPLIST_PREFIX_HEADER to remove the need to # duplicate string once # http://code.google.com/p/gyp/issues/detail?id=243 is fixed. 'INFOPLIST_PREPROCESSOR_DEFINITIONS': 'HOST_PLUGIN_MIME_TYPE="<(host_plugin_mime_type)" HOST_PLUGIN_NAME="<(host_plugin_name)" HOST_PLUGIN_DESCRIPTION="<(host_plugin_description)"', }, # TODO(mark): Come up with a fancier way to do this. It should # only be necessary to list host_plugin-Info.plist once, not the # three times it is listed here. 'mac_bundle_resources': [ 'host/disconnect_window.xib', 'host/plugin/host_plugin-Info.plist', 'resources/chromoting16.png', 'resources/chromoting48.png', 'resources/chromoting128.png', ], 'mac_bundle_resources!': [ 'host/plugin/host_plugin-Info.plist', ], 'conditions': [ ['mac_breakpad==1', { 'variables': { # A real .dSYM is needed for dump_syms to operate on. 'mac_real_dsym': 1, }, }], ], # conditions }], # OS=="mac" [ 'OS=="win"', { 'dependencies': [ '../google_update/google_update.gyp:google_update', '../ipc/ipc.gyp:ipc', 'remoting_elevated_controller', 'remoting_version_resources', ], 'include_dirs': [ '<(INTERMEDIATE_DIR)', ], 'sources': [ 'host/plugin/host_plugin.def', 'host/plugin/host_plugin.rc', '<(SHARED_INTERMEDIATE_DIR)/remoting/host_plugin_version.rc' ], }], ], }, # end of target 'remoting_host_plugin' { 'target_name': 'remoting_webapp', 'type': 'none', 'dependencies': [ 'remoting_host_plugin', ], 'sources': [ 'webapp/build-webapp.py', 'webapp/verify-webapp.py', '<(version_path)', '<(chrome_version_path)', '<@(remoting_webapp_files)', '<@(remoting_webapp_locale_files)', ], # Can't use a 'copies' because we need to manipulate # the manifest file to get the right plugin name. # Also we need to move the plugin into the me2mom # folder, which means 2 copies, and gyp doesn't # seem to guarantee the ordering of 2 copies statements # when the actual project is generated. 'actions': [ { 'action_name': 'Verify Remoting WebApp i18n', 'inputs': [ 'host/plugin/host_script_object.cc', 'webapp/_locales/en/messages.json', 'webapp/client_screen.js', 'webapp/host_controller.js', 'webapp/host_table_entry.js', 'webapp/host_setup_dialog.js', 'webapp/main.html', 'webapp/manifest.json', 'webapp/remoting.js', 'webapp/verify-webapp.py', ], 'outputs': [ '<(PRODUCT_DIR)/remoting/webapp_verified.stamp', ], 'action': [ 'python', 'webapp/verify-webapp.py', '<(PRODUCT_DIR)/remoting/webapp_verified.stamp', 'webapp/_locales/en/messages.json', 'webapp/client_screen.js', 'webapp/host_controller.js', 'webapp/host_table_entry.js', 'webapp/host_setup_dialog.js', 'webapp/main.html', 'webapp/manifest.json', 'webapp/remoting.js', 'host/plugin/host_script_object.cc', ], }, { 'action_name': 'Build Remoting WebApp', 'output_dir': '<(PRODUCT_DIR)/remoting/remoting.webapp', 'plugin_path': '<(PRODUCT_DIR)/<(host_plugin_prefix)remoting_host_plugin.<(host_plugin_extension)', 'zip_path': '<(PRODUCT_DIR)/remoting-webapp.zip', 'inputs': [ 'webapp/build-webapp.py', '<(_plugin_path)', '<(version_path)', '<(chrome_version_path)', '<@(remoting_webapp_files)', '<@(remoting_webapp_locale_files)', ], 'outputs': [ '<(_output_dir)', '<(_zip_path)', ], 'action': [ 'python', 'webapp/build-webapp.py', '<(buildtype)', '<(version_full)', '<(host_plugin_mime_type)', '<(_output_dir)', '<(_zip_path)', '<(_plugin_path)', '<@(remoting_webapp_files)', '--locales', '<@(remoting_webapp_locale_files)', ], }, ], }, # end of target 'remoting_webapp' { 'target_name': 'remoting_base', 'type': 'static_library', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ '../base/base.gyp:base', '../base/third_party/dynamic_annotations/dynamic_annotations.gyp:dynamic_annotations', '../ui/ui.gyp:ui', '../net/net.gyp:net', '../skia/skia.gyp:skia', '../third_party/libvpx/libvpx.gyp:libvpx', '../third_party/protobuf/protobuf.gyp:protobuf_lite', '../third_party/zlib/zlib.gyp:zlib', '../media/media.gyp:yuv_convert', 'remoting_jingle_glue', 'proto/chromotocol.gyp:chromotocol_proto_lib', ], 'export_dependent_settings': [ '../base/base.gyp:base', '../net/net.gyp:net', '../skia/skia.gyp:skia', '../third_party/protobuf/protobuf.gyp:protobuf_lite', 'proto/chromotocol.gyp:chromotocol_proto_lib', ], # This target needs a hard dependency because dependent targets # depend on chromotocol_proto_lib for headers. 'hard_dependency': 1, 'sources': [ 'base/auth_token_util.cc', 'base/auth_token_util.h', 'base/capture_data.cc', 'base/capture_data.h', 'base/compound_buffer.cc', 'base/compound_buffer.h', 'base/compressor.h', 'base/compressor_verbatim.cc', 'base/compressor_verbatim.h', 'base/compressor_zlib.cc', 'base/compressor_zlib.h', 'base/constants.cc', 'base/constants.h', 'base/decoder.h', 'base/decoder_vp8.cc', 'base/decoder_vp8.h', 'base/decoder_row_based.cc', 'base/decoder_row_based.h', 'base/decompressor.h', 'base/decompressor_verbatim.cc', 'base/decompressor_verbatim.h', 'base/decompressor_zlib.cc', 'base/decompressor_zlib.h', 'base/encoder.h', 'base/encoder_vp8.cc', 'base/encoder_vp8.h', 'base/encoder_row_based.cc', 'base/encoder_row_based.h', 'base/plugin_message_loop_proxy.cc', 'base/plugin_message_loop_proxy.h', 'base/rate_counter.cc', 'base/rate_counter.h', 'base/running_average.cc', 'base/running_average.h', 'base/scoped_thread_proxy.cc', 'base/scoped_thread_proxy.h', 'base/util.cc', 'base/util.h', ], }, # end of target 'remoting_base' { 'target_name': 'remoting_host', 'type': 'static_library', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ 'remoting_base', 'remoting_jingle_glue', 'remoting_protocol', 'differ_block', '../crypto/crypto.gyp:crypto', ], 'sources': [ 'host/capturer.h', 'host/capturer_helper.cc', 'host/capturer_helper.h', 'host/capturer_fake.cc', 'host/capturer_fake.h', 'host/capturer_linux.cc', 'host/capturer_mac.cc', 'host/capturer_win.cc', 'host/capture_scheduler.cc', 'host/capture_scheduler.h', 'host/chromoting_host.cc', 'host/chromoting_host.h', 'host/chromoting_host_context.cc', 'host/chromoting_host_context.h', 'host/client_session.cc', 'host/client_session.h', 'host/constants.h', 'host/continue_window.h', 'host/continue_window_mac.mm', 'host/continue_window_linux.cc', 'host/continue_window_win.cc', 'host/curtain.h', 'host/curtain_linux.cc', 'host/curtain_mac.cc', 'host/curtain_win.cc', 'host/desktop_environment.cc', 'host/desktop_environment.h', 'host/desktop_win.cc', 'host/desktop_win.h', 'host/differ.h', 'host/differ.cc', 'host/disconnect_window.h', 'host/disconnect_window_linux.cc', 'host/disconnect_window_mac.h', 'host/disconnect_window_mac.mm', 'host/disconnect_window_win.cc', 'host/event_executor.h', 'host/event_executor_linux.cc', 'host/event_executor_mac.cc', 'host/event_executor_win.cc', 'host/heartbeat_sender.cc', 'host/heartbeat_sender.h', 'host/gaia_oauth_client.cc', 'host/gaia_oauth_client.h', 'host/host_config.cc', 'host/host_config.h', 'host/host_key_pair.cc', 'host/host_key_pair.h', 'host/host_port_allocator.cc', 'host/host_port_allocator.h', 'host/host_secret.cc', 'host/host_secret.h', 'host/host_status_observer.h', 'host/in_memory_host_config.cc', 'host/in_memory_host_config.h', 'host/json_host_config.cc', 'host/json_host_config.h', 'host/local_input_monitor.h', 'host/local_input_monitor_linux.cc', 'host/local_input_monitor_mac.mm', 'host/local_input_monitor_thread_linux.cc', 'host/local_input_monitor_thread_linux.h', 'host/local_input_monitor_thread_win.cc', 'host/local_input_monitor_thread_win.h', 'host/local_input_monitor_win.cc', 'host/log_to_server.cc', 'host/log_to_server.h', 'host/network_settings.h', 'host/pin_hash.cc', 'host/pin_hash.h', 'host/policy_hack/nat_policy.h', 'host/policy_hack/nat_policy.cc', 'host/policy_hack/nat_policy_linux.cc', 'host/policy_hack/nat_policy_mac.mm', 'host/policy_hack/nat_policy_win.cc', 'host/register_support_host_request.cc', 'host/register_support_host_request.h', 'host/remote_input_filter.cc', 'host/remote_input_filter.h', 'host/screen_recorder.cc', 'host/screen_recorder.h', 'host/server_log_entry.cc', 'host/server_log_entry.h', 'host/session_event_executor_win.cc', 'host/session_event_executor_win.h', 'host/signaling_connector.cc', 'host/signaling_connector.h', 'host/scoped_thread_desktop_win.cc', 'host/scoped_thread_desktop_win.h', 'host/ui_strings.cc', 'host/ui_strings.h', 'host/url_fetcher.cc', 'host/url_fetcher.h', 'host/url_request_context.cc', 'host/url_request_context.h', 'host/usb_keycode_map.h', 'host/user_authenticator.h', 'host/user_authenticator_linux.cc', 'host/user_authenticator_mac.cc', 'host/user_authenticator_win.cc', 'host/vlog_net_log.cc', 'host/vlog_net_log.h', ], 'conditions': [ ['toolkit_uses_gtk == 1', { 'dependencies': [ '../build/linux/system.gyp:gtk', ], 'sources': [ 'host/x_server_pixel_buffer.cc', 'host/x_server_pixel_buffer.h', ], 'link_settings': { 'libraries': [ '-lX11', '-lXdamage', '-lXfixes', '-lXtst', '-lpam', '-lXext' ], }, }], ['OS=="mac"', { 'sources': [ '../third_party/GTM/AppKit/GTMCarbonEvent.h', '../third_party/GTM/AppKit/GTMCarbonEvent.m', '../third_party/GTM/DebugUtils/GTMDebugSelectorValidation.h', '../third_party/GTM/DebugUtils/GTMTypeCasting.h', '../third_party/GTM/Foundation/GTMObjectSingleton.h', '../third_party/GTM/GTMDefines.h', ], 'include_dirs': [ '../third_party/GTM', '../third_party/GTM/AppKit', '../third_party/GTM/DebugUtils', '../third_party/GTM/Foundation', ], 'link_settings': { 'libraries': [ '$(SDKROOT)/System/Library/Frameworks/OpenGL.framework', ], }, }], ['OS=="win"', { 'sources': [ 'host/chromoting_messages.cc', 'host/chromoting_messages.h', ], }], ], }, # end of target 'remoting_host' { 'target_name': 'remoting_client', 'type': 'static_library', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ 'remoting_base', 'remoting_jingle_glue', 'remoting_protocol', ], 'sources': [ 'client/chromoting_client.cc', 'client/chromoting_client.h', 'client/chromoting_stats.cc', 'client/chromoting_stats.h', 'client/chromoting_view.h', 'client/client_config.cc', 'client/client_config.h', 'client/client_context.cc', 'client/client_context.h', 'client/frame_consumer.h', 'client/frame_consumer_proxy.cc', 'client/frame_consumer_proxy.h', 'client/frame_producer.h', 'client/key_event_mapper.cc', 'client/key_event_mapper.h', 'client/rectangle_update_decoder.cc', 'client/rectangle_update_decoder.h', ], }, # end of target 'remoting_client' { 'target_name': 'remoting_simple_host', 'type': 'executable', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ 'remoting_base', 'remoting_host', 'remoting_jingle_glue', '../base/base.gyp:base', '../base/base.gyp:base_i18n', '../media/media.gyp:media', ], 'sources': [ 'host/continue_window.h', 'host/continue_window_mac.mm', 'host/continue_window_linux.cc', 'host/continue_window_win.cc', 'host/disconnect_window_linux.cc', 'host/disconnect_window_mac.h', 'host/disconnect_window_mac.mm', 'host/disconnect_window_win.cc', 'host/it2me_host_user_interface.cc', 'host/it2me_host_user_interface.h', 'host/simple_host_process.cc', ], 'conditions': [ ['OS=="win"', { 'dependencies': [ '../ipc/ipc.gyp:ipc' ], }], ], }, # end of target 'remoting_simple_host' { 'target_name': 'remoting_me2me_host', 'type': 'executable', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ 'remoting_base', 'remoting_host', 'remoting_jingle_glue', '../base/base.gyp:base', '../base/base.gyp:base_i18n', '../media/media.gyp:media', ], 'sources': [ 'host/branding.cc', 'host/branding.h', 'host/host_event_logger.h', 'host/sighup_listener_mac.cc', 'host/sighup_listener_mac.h', 'host/remoting_me2me_host.cc', ], 'conditions': [ ['os_posix==1', { 'sources': [ 'host/host_event_logger_posix.cc', ], }], ['OS=="mac"', { 'sources': [ 'host/remoting_me2me_host-Info.plist', ], 'conditions': [ ['branding == "Chrome"', { 'variables': { 'host_bundle_id': 'com.google.chrome_remote_desktop.remoting_me2me_host', }, }, { # else branding!="Chrome" 'variables': { 'host_bundle_id': 'org.chromium.chromoting.remoting_me2me_host', }, }], ], 'xcode_settings': { 'OTHER_LDFLAGS': [ '-Wl,-sectcreate,__TEXT,__info_plist,<(INTERMEDIATE_DIR)/remoting_me2me_host-Info.plist' ], }, 'rules': [ { 'rule_name': 'brand_mac', 'extension': 'plist', 'inputs': [ ], 'outputs': [ '<(INTERMEDIATE_DIR)/remoting_me2me_host-Info.plist', ], 'action': [ 'python', '<(version_py_path)', '-i', 'host/remoting_me2me_host-Info.plist', '-o', '<(INTERMEDIATE_DIR)/remoting_me2me_host-Info.plist', '-e', 'VERSION_FULL="<(version_full)"', '-e', 'VERSION_SHORT="<(version_short)"', '-e', 'BUNDLE_ID="<(host_bundle_id)"', ], 'process_outputs_as_sources': 1, 'message': 'Branding and versioning remoting_me2me_host.', }, ], }], ['OS=="win"', { 'dependencies': [ '../ipc/ipc.gyp:ipc', 'remoting_version_resources', ], 'sources': [ 'host/host_event_logger_win.cc', 'host/remoting_host_messages.mc', '<(SHARED_INTERMEDIATE_DIR)/remoting/remoting_me2me_host_version.rc' ], 'include_dirs': [ '<(INTERMEDIATE_DIR)', ], # Rule to run the message compiler. 'rules': [ { 'rule_name': 'message_compiler', 'extension': 'mc', 'inputs': [ ], 'outputs': [ '<(INTERMEDIATE_DIR)/remoting_host_messages.h', '<(INTERMEDIATE_DIR)/remoting_host_messages.rc', ], 'msvs_cygwin_shell': 0, 'msvs_quote_cmd': 0, 'action': [ 'mc.exe -h <(INTERMEDIATE_DIR) -r <(INTERMEDIATE_DIR) <(RULE_INPUT_PATH)', ], 'process_outputs_as_sources': 1, 'message': 'Running message compiler on <(RULE_INPUT_PATH).', }, ], 'msvs_settings': { 'VCLinkerTool': { # 2 == /SUBSYSTEM:WINDOWS 'SubSystem': '2', }, }, }], ], # end of 'conditions' }, # end of target 'remoting_me2me_host' { 'target_name': 'remoting_host_keygen', 'type': 'executable', 'dependencies': [ 'remoting_base', '../base/base.gyp:base', '../base/base.gyp:base_i18n', '../crypto/crypto.gyp:crypto', ], 'sources': [ 'host/keygen_main.cc', ], }, # end of target 'remoting_host_keygen' { 'target_name': 'remoting_jingle_glue', 'type': 'static_library', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ '../base/base.gyp:base', '../jingle/jingle.gyp:jingle_glue', '../jingle/jingle.gyp:notifier', '../third_party/libjingle/libjingle.gyp:libjingle', '../third_party/libjingle/libjingle.gyp:libjingle_p2p', ], 'export_dependent_settings': [ '../third_party/libjingle/libjingle.gyp:libjingle', '../third_party/libjingle/libjingle.gyp:libjingle_p2p', ], 'sources': [ 'jingle_glue/iq_sender.cc', 'jingle_glue/iq_sender.h', 'jingle_glue/javascript_signal_strategy.cc', 'jingle_glue/javascript_signal_strategy.h', 'jingle_glue/jingle_info_request.cc', 'jingle_glue/jingle_info_request.h', 'jingle_glue/jingle_thread.cc', 'jingle_glue/jingle_thread.h', 'jingle_glue/signal_strategy.h', 'jingle_glue/ssl_adapter.h', 'jingle_glue/ssl_adapter.cc', 'jingle_glue/ssl_socket_adapter.cc', 'jingle_glue/ssl_socket_adapter.h', 'jingle_glue/xmpp_proxy.h', 'jingle_glue/xmpp_signal_strategy.cc', 'jingle_glue/xmpp_signal_strategy.h', 'jingle_glue/xmpp_socket_adapter.cc', 'jingle_glue/xmpp_socket_adapter.h', ], }, # end of target 'remoting_jingle_glue' { 'target_name': 'remoting_protocol', 'type': 'static_library', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ 'remoting_base', 'remoting_jingle_glue', '../crypto/crypto.gyp:crypto', '../jingle/jingle.gyp:jingle_glue', '../net/net.gyp:net', ], 'export_dependent_settings': [ 'remoting_jingle_glue', ], 'sources': [ 'protocol/auth_util.cc', 'protocol/auth_util.h', 'protocol/authentication_method.cc', 'protocol/authentication_method.h', 'protocol/authenticator.cc', 'protocol/authenticator.h', 'protocol/buffered_socket_writer.cc', 'protocol/buffered_socket_writer.h', 'protocol/channel_authenticator.h', 'protocol/channel_dispatcher_base.cc', 'protocol/channel_dispatcher_base.h', 'protocol/client_control_dispatcher.cc', 'protocol/client_control_dispatcher.h', 'protocol/client_event_dispatcher.cc', 'protocol/client_event_dispatcher.h', 'protocol/client_stub.h', 'protocol/clipboard_filter.h', 'protocol/clipboard_filter.cc', 'protocol/clipboard_stub.h', 'protocol/connection_to_client.cc', 'protocol/connection_to_client.h', 'protocol/connection_to_host.cc', 'protocol/connection_to_host.h', 'protocol/content_description.cc', 'protocol/content_description.h', 'protocol/errors.h', 'protocol/host_control_dispatcher.cc', 'protocol/host_control_dispatcher.h', 'protocol/host_event_dispatcher.cc', 'protocol/host_event_dispatcher.h', 'protocol/host_event_stub.h', 'protocol/host_stub.h', 'protocol/input_event_tracker.cc', 'protocol/input_event_tracker.h', 'protocol/input_filter.cc', 'protocol/input_filter.h', 'protocol/input_stub.h', 'protocol/it2me_host_authenticator_factory.cc', 'protocol/it2me_host_authenticator_factory.h', 'protocol/jingle_messages.cc', 'protocol/jingle_messages.h', 'protocol/jingle_session.cc', 'protocol/jingle_session.h', 'protocol/jingle_session_manager.cc', 'protocol/jingle_session_manager.h', 'protocol/libjingle_transport_factory.cc', 'protocol/libjingle_transport_factory.h', 'protocol/me2me_host_authenticator_factory.cc', 'protocol/me2me_host_authenticator_factory.h', 'protocol/message_decoder.cc', 'protocol/message_decoder.h', 'protocol/message_reader.cc', 'protocol/message_reader.h', 'protocol/mouse_input_filter.cc', 'protocol/mouse_input_filter.h', 'protocol/negotiating_authenticator.cc', 'protocol/negotiating_authenticator.h', 'protocol/pepper_transport_factory.cc', 'protocol/pepper_transport_factory.h', 'protocol/pepper_transport_socket_adapter.cc', 'protocol/pepper_transport_socket_adapter.h', 'protocol/protobuf_video_reader.cc', 'protocol/protobuf_video_reader.h', 'protocol/protobuf_video_writer.cc', 'protocol/protobuf_video_writer.h', 'protocol/rtcp_writer.cc', 'protocol/rtcp_writer.h', 'protocol/rtp_reader.cc', 'protocol/rtp_reader.h', 'protocol/rtp_utils.cc', 'protocol/rtp_utils.h', 'protocol/rtp_video_reader.cc', 'protocol/rtp_video_reader.h', 'protocol/rtp_video_writer.cc', 'protocol/rtp_video_writer.h', 'protocol/rtp_writer.cc', 'protocol/rtp_writer.h', 'protocol/session.h', 'protocol/session_config.cc', 'protocol/session_config.h', 'protocol/session_manager.h', 'protocol/socket_reader_base.cc', 'protocol/socket_reader_base.h', 'protocol/ssl_hmac_channel_authenticator.cc', 'protocol/ssl_hmac_channel_authenticator.h', 'protocol/transport.cc', 'protocol/transport.h', 'protocol/transport_config.cc', 'protocol/transport_config.h', 'protocol/util.cc', 'protocol/util.h', 'protocol/v1_authenticator.cc', 'protocol/v1_authenticator.h', 'protocol/v2_authenticator.cc', 'protocol/v2_authenticator.h', 'protocol/video_reader.cc', 'protocol/video_reader.h', 'protocol/video_stub.h', 'protocol/video_writer.cc', 'protocol/video_writer.h', ], }, # end of target 'remoting_protocol' { 'target_name': 'differ_block', 'type': 'static_library', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ '../media/media.gyp:cpu_features', ], 'conditions': [ [ 'target_arch == "ia32" or target_arch == "x64"', { 'dependencies': [ 'differ_block_sse2', ], }], ], 'sources': [ 'host/differ_block.cc', 'host/differ_block.h', ], }, # end of target differ_block { 'target_name': 'differ_block_sse2', 'type': 'static_library', 'conditions': [ [ 'os_posix == 1 and OS != "mac"', { 'cflags': [ '-msse2', ], }], ], 'sources': [ 'host/differ_block_sse2.cc', ], }, # end of target differ_block_sse2 # Remoting unit tests { 'target_name': 'remoting_unittests', 'type': 'executable', 'dependencies': [ 'remoting_base', 'remoting_client', 'remoting_host', 'remoting_jingle_glue', 'remoting_protocol', '../base/base.gyp:base', '../base/base.gyp:base_i18n', '../base/base.gyp:test_support_base', '../media/media.gyp:media', '../net/net.gyp:net_test_support', '../ppapi/ppapi.gyp:ppapi_cpp', '../testing/gmock.gyp:gmock', '../testing/gtest.gyp:gtest', '../ui/ui.gyp:ui', ], 'include_dirs': [ '../testing/gmock/include', ], 'sources': [ 'base/auth_token_util_unittest.cc', 'base/codec_test.cc', 'base/codec_test.h', 'base/compound_buffer_unittest.cc', 'base/compressor_zlib_unittest.cc', 'base/decoder_vp8_unittest.cc', 'base/decompressor_zlib_unittest.cc', 'base/encode_decode_unittest.cc', 'base/encoder_vp8_unittest.cc', 'base/encoder_row_based_unittest.cc', 'base/base_mock_objects.cc', 'base/base_mock_objects.h', 'base/util_unittest.cc', 'client/key_event_mapper_unittest.cc', 'host/capturer_helper_unittest.cc', 'host/capturer_linux_unittest.cc', 'host/capturer_mac_unittest.cc', 'host/capturer_win_unittest.cc', 'host/chromoting_host_context_unittest.cc', 'host/chromoting_host_unittest.cc', 'host/client_session_unittest.cc', 'host/differ_block_unittest.cc', 'host/differ_unittest.cc', 'host/heartbeat_sender_unittest.cc', 'host/host_key_pair_unittest.cc', 'host/host_mock_objects.cc', 'host/host_mock_objects.h', 'host/it2me_host_user_interface.cc', 'host/it2me_host_user_interface.h', 'host/json_host_config_unittest.cc', 'host/log_to_server_unittest.cc', 'host/pin_hash_unittest.cc', 'host/register_support_host_request_unittest.cc', 'host/remote_input_filter_unittest.cc', 'host/screen_recorder_unittest.cc', 'host/server_log_entry_unittest.cc', 'host/test_key_pair.h', 'host/url_fetcher_unittest.cc', 'jingle_glue/fake_signal_strategy.cc', 'jingle_glue/fake_signal_strategy.h', 'jingle_glue/iq_sender_unittest.cc', 'jingle_glue/jingle_thread_unittest.cc', 'jingle_glue/mock_objects.cc', 'jingle_glue/mock_objects.h', 'protocol/authenticator_test_base.cc', 'protocol/authenticator_test_base.h', 'protocol/connection_tester.cc', 'protocol/connection_tester.h', 'protocol/connection_to_client_unittest.cc', 'protocol/fake_authenticator.cc', 'protocol/fake_authenticator.h', 'protocol/fake_session.cc', 'protocol/fake_session.h', 'protocol/jingle_messages_unittest.cc', 'protocol/jingle_session_unittest.cc', 'protocol/input_event_tracker_unittest.cc', 'protocol/message_decoder_unittest.cc', 'protocol/message_reader_unittest.cc', 'protocol/mouse_input_filter_unittest.cc', 'protocol/negotiating_authenticator_unittest.cc', 'protocol/protocol_mock_objects.cc', 'protocol/protocol_mock_objects.h', 'protocol/ppapi_module_stub.cc', 'protocol/rtp_video_reader_unittest.cc', 'protocol/rtp_video_writer_unittest.cc', 'protocol/ssl_hmac_channel_authenticator_unittest.cc', 'protocol/v1_authenticator_unittest.cc', 'protocol/v2_authenticator_unittest.cc', 'run_all_unittests.cc', ], 'conditions': [ [ 'OS=="win"', { 'dependencies': [ '../ipc/ipc.gyp:ipc' ], }], ['chromeos != 0', { 'dependencies!': [ 'remoting_host', ], 'sources/': [ ['exclude', 'host/*'], ] }], ['toolkit_uses_gtk == 1', { 'dependencies': [ # Needed for the following #include chain: # base/run_all_unittests.cc # ../base/test_suite.h # gtk/gtk.h '../build/linux/system.gyp:gtk', '../build/linux/system.gyp:ssl', ], 'conditions': [ [ 'linux_use_tcmalloc==1', { 'dependencies': [ '../base/allocator/allocator.gyp:allocator', ], }, ], ], }], ], # end of 'conditions' }, # end of target 'remoting_unittests' ], # end of targets }
py
b4062b2bf028b852289e1324805dc5b4697df862
from functools import wraps from flask_restx import abort from flask import request from settings import MAX_RETRY_COUNT import logging def task_request(): def decorator(func): @wraps(func) def middleware(*args, **kwargs): task_name = request.headers.get("X-Cloudtasks-Taskname") if not task_name: abort(403, message='Access denied') task_execution_count = int(request.headers.get( "X-CloudTasks-TaskExecutionCount")) if task_execution_count > MAX_RETRY_COUNT: logging.error(f'Task getting suspended {task_name}') return 'done' return func(*args, **kwargs) return middleware return decorator
py
b4062bdc08139240d1806d4915877e1c94b70045
from unittest import TestCase from unittest.mock import patch from better_id3.__main__ import CLI class TestMain(TestCase): def setUp(self) -> None: self.cli = CLI() self.config_path = "config_path" def test_format(self): self.assert_command_run(self.cli.clean, "clean") def assert_command_run(self, cli_fn, command_name): with patch("better_id3.__main__.load_config_from_file") as mock_load_config: cli_fn(self.config_path) mock_load_config.assert_called_with(self.config_path) mock_load_config.return_value[command_name].run.assert_called()
py
b4062c6f987f336f4d5bd5c141ea5e1c52a4da7f
from django.contrib import admin from recipes import models admin.site.register(models.Ingredient) admin.site.register(models.Recipe)
py
b4062e0558be75d0b55a4884e9abb7a1391a2463
from fastapi import APIRouter, Request, status, Depends from fastapi.openapi.models import APIKey from fastapi.responses import JSONResponse from commands import commands from router.key import validate_api_key # Defining our API router def get_router(app): # Create a FastAPI router router = APIRouter() # Creates a persistent storage directory in the recommended storage path @router.post("/storage/create", response_description="Creating storage directories") async def create_app(request: Request, api_key: APIKey = Depends(validate_api_key)): body_parsed = await request.json() success = commands.storage_create(volume_name=body_parsed["name"]) content = {"success": success} return JSONResponse(status_code=status.HTTP_200_OK, content=content) # Mount a Storage @router.post("/storage/{app_name}/mount", response_description="Mount a Storage") async def create_app(request: Request, app_name: str, api_key: APIKey = Depends(validate_api_key)): body_parsed = await request.json() success = commands.storage_mount(app_name=app_name, mount_point_left=body_parsed["mount_point_left"], mount_point_right=body_parsed["mount_point_right"]) content = {"success": success} return JSONResponse(status_code=status.HTTP_200_OK, content=content) # We return our router return router
py
b4062eb8472f3ab4bfe2f2180f58c197df6000ce
import os import csv import datetime as dt from io import BytesIO, StringIO from odm2_postgres_api.schemas import schemas class UploadBlobWrapper: def __init__(self): self._uploader = None def __call__(self, *args, **kwargs): if self._uploader is None: self.set_uploader() self._uploader(*args, **kwargs) def set_uploader(self): environment = os.environ.get("NIVA_ENVIRONMENT") if environment in ["dev", "master"]: from gcloud_common_utils.blob_helper import upload_blob elif environment == "localdev": from gcloud_common_utils.blob_helper_local import upload_blob else: raise ValueError(f"NIVA_ENVIRONMENT set to {environment} please use: 'localdev', 'dev' or 'master'") self._uploader = upload_blob upload_blob_wrapper = UploadBlobWrapper() def generate_csv_from_form(begroing_result: schemas.BegroingResultCreate): date_string = (begroing_result.date + dt.timedelta(hours=6)).date().strftime("%d-%m-%Y %H:%M:%S") # round date # date_string = begroing_result.date.strftime('%d-%m-%Y %H:%M:%S') csv_rows = [] for index, species in enumerate(begroing_result.taxons): used_method_indices = [i for i, e in enumerate(begroing_result.observations[index]) if e] if len(used_method_indices) != 1: raise ValueError("Must have one and only one method per species") used_method_index = used_method_indices[0] method = begroing_result.methods[used_method_index].methodname value = begroing_result.observations[index][used_method_index] data_row = { "Prosjektnavn": "&&".join([e.directivedescription for e in begroing_result.projects]), "lok_sta": begroing_result.station.samplingfeaturename.split(",")[0], "dato": date_string, "rubin_kode": species["taxonomicclassifiercommonname"].split(",")[0], "mengderef": "% dekning", } if method == "Microscopic abundance": data_row["Mengde_tall"] = "" data_row["Flagg"] = "" data_row["Mengde_tekst"] = value elif method == "Macroscopic coverage": # if begroing_result.observations[index][method_index] == '<1' data_row["Mengde_tall"] = 1 if value == "<1" else value data_row["Flagg"] = "<" if value == "<1" else "" data_row["Mengde_tekst"] = "" else: raise ValueError("Currently only methods 'Microscopic abundance' and 'Macroscopic coverage' are allowed") csv_rows.append(data_row) return csv_rows def put_csv_to_bucket(csv_data): bucket_name = os.environ["DATA_UPLOAD_BUCKET"] file_name = f"begroing/{dt.datetime.now().isoformat()}_data.csv" with StringIO() as csv_file: fieldnames = list(csv_data[0].keys()) writer = csv.DictWriter(csv_file, fieldnames=fieldnames) writer.writeheader() for row in csv_data: writer.writerow(row) content = csv_file.getvalue().encode("utf-8") with BytesIO(initial_bytes=content) as csv_file: upload_blob_wrapper(bucket_name, file_name, csv_file)
py
b4062efa3e36bc278fc7f9e8672a92f1aeffa4bf
''' Feeds ===== The following methods allow for interaction into the Tenable.sc :sc-api:`Feed <Feed.html>` API. Methods available on ``sc.feeds``: .. rst-class:: hide-signature .. autoclass:: FeedAPI :members: ''' from .base import SCEndpoint class FeedAPI(SCEndpoint): def status(self, feed_type=None): ''' Returns the status of either a specific feed type (if requested) or all of the feed types if nothing is specifically asked. :sc-api:`feed <Feed.html>` :sc-api:`feed: feed-type <Feed.html#FeedRESTReference-FeedGETType>` Args: feed_type (str, optional): The feed type to specifically return. Valid types are `active`, `passive`, `lce`, `sc`, or `all`. Returns: :obj:`dict`: If no specific feed type is specified, then a dictionary with each type listed with a sub-dictionary detailing the status is returned. If a specific feed type is requested, then only the status information for that feed type is returned. Examples: Getting all of the feed types returned: >>> status = sc.feed.status() Getting the feed status for a specific type (e.g. `active`). >>> status = sc.feeds.status('active') ''' self._check('feed_type', feed_type, str, choices=[ 'active', 'passive', 'lce', 'sc', 'all']) if not feed_type: return self._api.get('feed').json()['response'] else: return self._api.get('feed/{}'.format(feed_type)).json()['response'] def update(self, feed_type=None): ''' Initiates an on-line feed update based on the specified feed_type. If no feed type is specified, then it will default to initiating an update for all feed types. :sc-api:`feed: update <Feed.html#FeedRESTReference-FeedUpdatePOSTType>` Args: feed_type (str, optional); The feed type to specifically return. Valid types are `active`, `passive`, `lce`, `sc`, or `all`. Returns: :obj:`None`: Update successfully requested. ''' self._api.post('feed/{}/update'.format( self._check('feed_type', feed_type, str, default='all', choices=[ 'active', 'passive', 'lce', 'sc', 'all'])), json={}) def process(self, feed_type, fobj): ''' Initiates an off-line feed update based on the specified feed_type using the file object passed as the update file. :sc-api:`feed: process <Feed.html#FeedRESTReference-FeedUpdatePOSTProcess>` Args: feed_type (str); The feed type to specifically return. Valid types are `active`, `passive`, `lce`, `sc`, or `all`. fobj (FileObject): The file object to upload into SecurityCenter and use as the update package. Returns: :obj:`None`: Update successfully requested. Examples: updating the active plugins: >>> with open('sc-plugins-diff.tar.gz', 'rb') as plugfile: ... sc.feeds.process('active', plugfile) ''' filename = self._api.files.upload(fobj) self._api.post('feed/{}/process'.format( self._check('feed_type', feed_type, str, choices=[ 'active', 'passive', 'lce', 'sc'])), json={'filename': filename})
py
b4062f10e8182c683be25503aa98a45c80d0d306
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import threading import time import sys import math import signal import configparser import audioop import subprocess as sp import argparse import os import os.path import pymumble.pymumble_py3 as pymumble import variables as var import logging import logging.handlers import traceback from packaging import version import util import command import constants from database import SettingsDatabase, MusicDatabase import media.system from media.item import ValidationFailedError, PreparationFailedError from media.playlist import BasePlaylist from media.cache import MusicCache class MumbleBot: version = '6.1.1' def __init__(self, args): self.log = logging.getLogger("bot") self.log.info("bot: botamusique version %s, starting..." % self.version) signal.signal(signal.SIGINT, self.ctrl_caught) self.cmd_handle = {} self.volume_set = var.config.getfloat('bot', 'volume') if var.db.has_option('bot', 'volume'): self.volume_set = var.db.getfloat('bot', 'volume') self.volume = self.volume_set if args.channel: self.channel = args.channel else: self.channel = var.config.get("server", "channel", fallback=None) if args.verbose: self.log.setLevel(logging.DEBUG) self.log.debug("Starting in DEBUG loglevel") elif args.quiet: self.log.setLevel(logging.ERROR) self.log.error("Starting in ERROR loglevel") var.user = args.user var.music_folder = util.solve_filepath(var.config.get('bot', 'music_folder')) var.tmp_folder = util.solve_filepath(var.config.get('bot', 'tmp_folder')) var.is_proxified = var.config.getboolean( "webinterface", "is_web_proxified") self.exit = False self.nb_exit = 0 self.thread = None self.thread_stderr = None self.is_pause = False self.pause_at_id = "" self.playhead = -1 self.song_start_at = -1 self.last_ffmpeg_err = "" self.read_pcm_size = 0 # self.download_threads = [] self.wait_for_ready = False # flag for the loop are waiting for download to complete in the other thread if var.config.getboolean("webinterface", "enabled"): wi_addr = var.config.get("webinterface", "listening_addr") wi_port = var.config.getint("webinterface", "listening_port") tt = threading.Thread( target=start_web_interface, name="WebThread", args=(wi_addr, wi_port)) tt.daemon = True self.log.info('Starting web interface on {}:{}'.format(wi_addr, wi_port)) tt.start() if var.config.getboolean("bot", "auto_check_update"): th = threading.Thread(target=self.check_update, name="UpdateThread") th.daemon = True th.start() if args.host: host = args.host else: host = var.config.get("server", "host") if args.port: port = args.port else: port = var.config.getint("server", "port") if args.password: password = args.password else: password = var.config.get("server", "password") if args.channel: self.channel = args.channel else: self.channel = var.config.get("server", "channel") if args.certificate: certificate = args.certificate else: certificate = util.solve_filepath(var.config.get("server", "certificate")) if args.tokens: tokens = args.tokens else: tokens = var.config.get("server", "tokens") tokens = tokens.split(',') if args.user: self.username = args.user else: self.username = var.config.get("bot", "username") self.mumble = pymumble.Mumble(host, user=self.username, port=port, password=password, tokens=tokens, debug=var.config.getboolean('debug', 'mumbleConnection'), certfile=certificate) self.mumble.callbacks.set_callback(pymumble.constants.PYMUMBLE_CLBK_TEXTMESSAGERECEIVED, self.message_received) self.mumble.set_codec_profile("audio") self.mumble.start() # start the mumble thread self.mumble.is_ready() # wait for the connection self.set_comment() self.mumble.users.myself.unmute() # by sure the user is not muted self.join_channel() self.mumble.set_bandwidth(200000) self.is_ducking = False self.on_ducking = False self.ducking_release = time.time() if not var.db.has_option("bot", "ducking") and var.config.getboolean("bot", "ducking", fallback=False)\ or var.config.getboolean("bot", "ducking"): self.is_ducking = True self.ducking_volume = var.config.getfloat("bot", "ducking_volume", fallback=0.05) self.ducking_volume = var.db.getfloat("bot", "ducking_volume", fallback=self.ducking_volume) self.ducking_threshold = var.config.getfloat("bot", "ducking_threshold", fallback=5000) self.ducking_threshold = var.db.getfloat("bot", "ducking_threshold", fallback=self.ducking_threshold) self.mumble.callbacks.set_callback(pymumble.constants.PYMUMBLE_CLBK_SOUNDRECEIVED, self.ducking_sound_received) self.mumble.set_receive_sound(True) if var.config.get("bot", "when_nobody_in_channel") not in ['pause', 'pause_resume', 'stop', 'nothing']: self.log.warn('Config "when_nobody_in_channel" is not on of "pause", "pause_resume", "stop" or "nothing", falling back to "nothing".') if var.config.get("bot", "when_nobody_in_channel", fallback='nothing') in ['pause', 'pause_resume', 'stop']: self.mumble.callbacks.set_callback(pymumble.constants.PYMUMBLE_CLBK_USERREMOVED, self.users_changed) self.mumble.callbacks.set_callback(pymumble.constants.PYMUMBLE_CLBK_USERUPDATED, self.users_changed) # Debug use self._loop_status = 'Idle' self._display_rms = False self._max_rms = 0 # Set the CTRL+C shortcut def ctrl_caught(self, signal, frame): self.log.info( "\nSIGINT caught, quitting, {} more to kill".format(2 - self.nb_exit)) self.exit = True self.pause() if self.nb_exit > 1: self.log.info("Forced Quit") sys.exit(0) self.nb_exit += 1 if var.config.getboolean('bot', 'save_playlist', fallback=True) \ and var.config.get("bot", "save_music_library", fallback=True): self.log.info("bot: save playlist into database") var.playlist.save() def check_update(self): self.log.debug("update: checking for updates...") new_version = util.new_release_version() if version.parse(new_version) > version.parse(self.version): self.log.info("update: new version %s found, current installed version %s." % (new_version, self.version)) self.send_channel_msg(constants.strings('new_version_found')) else: self.log.debug("update: no new version found.") def register_command(self, cmd, handle, no_partial_match=False, access_outside_channel=False): cmds = cmd.split(",") for command in cmds: command = command.strip() if command: self.cmd_handle[command] = {'handle': handle, 'partial_match': not no_partial_match, 'access_outside_channel': access_outside_channel} self.log.debug("bot: command added: " + command) def set_comment(self): self.mumble.users.myself.comment(var.config.get('bot', 'comment')) def join_channel(self): if self.channel: if '/' in self.channel: self.mumble.channels.find_by_tree(self.channel.split('/')).move_in() else: self.mumble.channels.find_by_name(self.channel).move_in() # ======================= # Message # ======================= # All text send to the chat is analysed by this function def message_received(self, text): message = text.message.strip() user = self.mumble.users[text.actor]['name'] if var.config.getboolean('commands', 'split_username_at_space'): # in can you use https://github.com/Natenom/mumblemoderator-module-collection/tree/master/os-suffixes , # you want to split the username user = user.split()[0] if message[0] in var.config.get('commands', 'command_symbol'): # remove the symbol from the message message = message[1:].split(' ', 1) # use the first word as a command, the others one as parameters if len(message) > 0: command = message[0].lower() parameter = '' if len(message) > 1: parameter = message[1].rstrip() else: return self.log.info('bot: received command ' + command + ' - ' + parameter + ' by ' + user) # Anti stupid guy function if not self.is_admin(user) and not var.config.getboolean('bot', 'allow_private_message') and text.session: self.mumble.users[text.actor].send_text_message( constants.strings('pm_not_allowed')) return for i in var.db.items("user_ban"): if user.lower() == i[0]: self.mumble.users[text.actor].send_text_message( constants.strings('user_ban')) return if not self.is_admin(user) and parameter: input_url = util.get_url_from_input(parameter) if input_url: for i in var.db.items("url_ban"): if input_url == i[0]: self.mumble.users[text.actor].send_text_message( constants.strings('url_ban')) return command_exc = "" try: if command in self.cmd_handle: command_exc = command if not self.cmd_handle[command]['access_outside_channel'] \ and not self.is_admin(user) \ and not var.config.getboolean('bot', 'allow_other_channel_message') \ and self.mumble.users[text.actor]['channel_id'] != self.mumble.users.myself['channel_id']: self.mumble.users[text.actor].send_text_message( constants.strings('not_in_my_channel')) return self.cmd_handle[command]['handle'](self, user, text, command, parameter) else: # try partial match cmds = self.cmd_handle.keys() matches = [] for cmd in cmds: if cmd.startswith(command) and self.cmd_handle[cmd]['partial_match']: matches.append(cmd) if len(matches) == 1: self.log.info("bot: {:s} matches {:s}".format(command, matches[0])) command_exc = matches[0] if not self.cmd_handle[command_exc]['access_outside_channel'] \ and not self.is_admin(user) \ and not var.config.getboolean('bot', 'allow_other_channel_message') \ and self.mumble.users[text.actor]['channel_id'] != self.mumble.users.myself[ 'channel_id']: self.mumble.users[text.actor].send_text_message( constants.strings('not_in_my_channel')) return self.cmd_handle[command_exc]['handle'](self, user, text, command_exc, parameter) elif len(matches) > 1: self.mumble.users[text.actor].send_text_message( constants.strings('which_command', commands="<br>".join(matches))) else: self.mumble.users[text.actor].send_text_message( constants.strings('bad_command', command=command)) except: error_traceback = traceback.format_exc() error = error_traceback.rstrip().split("\n")[-1] self.log.error("bot: command %s failed with error: %s\n" % (command_exc, error_traceback)) self.send_msg(constants.strings('error_executing_command', command=command_exc, error=error), text) def send_msg(self, msg, text): msg = msg.encode('utf-8', 'ignore').decode('utf-8') # text if the object message, contain information if direct message or channel message self.mumble.users[text.actor].send_text_message(msg) def send_channel_msg(self, msg): msg = msg.encode('utf-8', 'ignore').decode('utf-8') own_channel = self.mumble.channels[self.mumble.users.myself['channel_id']] own_channel.send_text_message(msg) def is_admin(self, user): list_admin = var.config.get('bot', 'admin').rstrip().split(';') if user in list_admin: return True else: return False # ======================= # Users changed # ======================= def users_changed(self, user, message): own_channel = self.mumble.channels[self.mumble.users.myself['channel_id']] # only check if there is one more user currently in the channel # else when the music is paused and somebody joins, music would start playing again if len(own_channel.get_users()) == 2: if var.config.get("bot", "when_nobody_in_channel") == "pause_resume": self.resume() elif var.config.get("bot", "when_nobody_in_channel") == "pause": self.send_channel_msg(constants.strings("auto_paused")) elif len(own_channel.get_users()) == 1: # if the bot is the only user left in the channel self.log.info('bot: Other users in the channel left. Stopping music now.') if var.config.get("bot", "when_nobody_in_channel") == "stop": self.clear() else: self.pause() # ======================= # Launch and Download # ======================= def launch_music(self): if var.playlist.is_empty(): return assert self.wait_for_ready is False music_wrapper = var.playlist.current_item() uri = music_wrapper.uri() self.log.info("bot: play music " + music_wrapper.format_debug_string()) if var.config.getboolean('bot', 'announce_current_music'): self.send_channel_msg(music_wrapper.format_current_playing()) if var.config.getboolean('debug', 'ffmpeg'): ffmpeg_debug = "debug" else: ffmpeg_debug = "warning" command = ("ffmpeg", '-v', ffmpeg_debug, '-nostdin', '-i', uri, '-ac', '1', '-f', 's16le', '-ar', '48000', '-') self.log.debug("bot: execute ffmpeg command: " + " ".join(command)) # The ffmpeg process is a thread # prepare pipe for catching stderr of ffmpeg pipe_rd, pipe_wd = os.pipe() util.pipe_no_wait(pipe_rd) # Let the pipe work in non-blocking mode self.thread_stderr = os.fdopen(pipe_rd) self.thread = sp.Popen(command, stdout=sp.PIPE, stderr=pipe_wd, bufsize=480) self.is_pause = False self.read_pcm_size = 0 self.song_start_at = -1 self.playhead = 0 self.last_volume_cycle_time = time.time() def async_download_next(self): # Function start if the next music isn't ready # Do nothing in case the next music is already downloaded self.log.debug("bot: Async download next asked ") while var.playlist.next_item() and var.playlist.next_item().type in ['url', 'url_from_playlist']: # usually, all validation will be done when adding to the list. # however, for performance consideration, youtube playlist won't be validate when added. # the validation has to be done here. next = var.playlist.next_item() try: next.validate() if not next.is_ready(): self.async_download(next) break except ValidationFailedError as e: self.send_channel_msg(e.msg) var.playlist.remove_by_id(next.id) var.cache.free_and_delete(next.id) def async_download(self, item): th = threading.Thread( target=self._download, name="Prepare-" + item.id[:7], args=(item,)) self.log.info("bot: start preparing item in thread: %s" % item.format_debug_string()) th.daemon = True th.start() return th def _download(self, item): ver = item.version try: item.prepare() except PreparationFailedError as e: self.send_channel_msg(e.msg) return False if item.version > ver: var.playlist.version += 1 # ======================= # Loop # ======================= # Main loop of the Bot def loop(self): raw_music = "" while not self.exit and self.mumble.is_alive(): while self.thread and self.mumble.sound_output.get_buffer_size() > 0.5 and not self.exit: # If the buffer isn't empty, I cannot send new music part, so I wait self._loop_status = 'Wait for buffer %.3f' % self.mumble.sound_output.get_buffer_size() time.sleep(0.01) if self.thread: # I get raw from ffmpeg thread # move playhead forward self._loop_status = 'Reading raw' if self.song_start_at == -1: self.song_start_at = time.time() - self.playhead self.playhead = time.time() - self.song_start_at raw_music = self.thread.stdout.read(480) self.read_pcm_size += 480 try: self.last_ffmpeg_err = self.thread_stderr.readline() if self.last_ffmpeg_err: self.log.debug("ffmpeg: " + self.last_ffmpeg_err.strip("\n")) except: pass if raw_music: # Adjust the volume and send it to mumble self.volume_cycle() self.mumble.sound_output.add_sound( audioop.mul(raw_music, 2, self.volume)) else: time.sleep(0.1) else: time.sleep(0.1) if not self.is_pause and (self.thread is None or self.thread.poll() is not None): # ffmpeg thread has gone. indicate that last song has finished, or something is wrong. if self.read_pcm_size < 481 and len(var.playlist) > 0 and var.playlist.current_index != -1 \ and self.last_ffmpeg_err: current = var.playlist.current_item() self.log.error("bot: cannot play music %s", current.format_debug_string()) self.log.error("bot: with ffmpeg error: %s", self.last_ffmpeg_err) self.last_ffmpeg_err = "" self.send_channel_msg(constants.strings('unable_play', item=current.format_title())) var.playlist.remove_by_id(current.id) var.cache.free_and_delete(current.id) # move to the next song. if not self.wait_for_ready: # if wait_for_ready flag is not true, move to the next song. if var.playlist.next(): current = var.playlist.current_item() try: current.validate() if not current.is_ready(): self.log.info("bot: current music isn't ready, start downloading.") self.async_download(current) self.send_channel_msg( constants.strings('download_in_progress', item=current.format_title())) self.wait_for_ready = True except ValidationFailedError as e: self.send_channel_msg(e.msg) var.playlist.remove_by_id(current.id) var.cache.free_and_delete(current.id) else: self._loop_status = 'Empty queue' else: # if wait_for_ready flag is true, means the pointer is already pointing to target song. start playing current = var.playlist.current_item() if current: if current.is_ready(): self.wait_for_ready = False self.launch_music() self.async_download_next() elif current.is_failed(): var.playlist.remove_by_id(current.id) self.wait_for_ready = False else: self._loop_status = 'Wait for the next item to be ready' else: self.wait_for_ready = False while self.mumble.sound_output.get_buffer_size() > 0: # Empty the buffer before exit time.sleep(0.01) time.sleep(0.5) if self.exit: self._loop_status = "exited" if var.config.getboolean('bot', 'save_playlist', fallback=True) \ and var.config.get("bot", "save_music_library", fallback=True): self.log.info("bot: save playlist into database") var.playlist.save() def volume_cycle(self): delta = time.time() - self.last_volume_cycle_time if self.on_ducking and self.ducking_release < time.time(): self.on_ducking = False self._max_rms = 0 if delta > 0.001: if self.is_ducking and self.on_ducking: self.volume = (self.volume - self.ducking_volume) * math.exp(- delta / 0.2) + self.ducking_volume else: self.volume = self.volume_set - (self.volume_set - self.volume) * math.exp(- delta / 0.5) self.last_volume_cycle_time = time.time() def ducking_sound_received(self, user, sound): rms = audioop.rms(sound.pcm, 2) self._max_rms = max(rms, self._max_rms) if self._display_rms: if rms < self.ducking_threshold: print('%6d/%6d ' % (rms, self._max_rms) + '-'*int(rms/200), end='\r') else: print('%6d/%6d ' % (rms, self._max_rms) + '-'*int(self.ducking_threshold/200) + '+'*int((rms - self.ducking_threshold)/200), end='\r') if rms > self.ducking_threshold: if self.on_ducking is False: self.log.debug("bot: ducking triggered") self.on_ducking = True self.ducking_release = time.time() + 1 # ducking release after 1s # ======================= # Play Control # ======================= def clear(self): # Kill the ffmpeg thread and empty the playlist if self.thread: self.thread.kill() self.thread = None var.playlist.clear() self.wait_for_ready = False self.log.info("bot: music stopped. playlist trashed.") def stop(self): self.interrupt() self.is_pause = True var.playlist.next() self.wait_for_ready = True self.log.info("bot: music stopped.") def interrupt(self): # Kill the ffmpeg thread if self.thread: self.thread.kill() self.thread = None self.song_start_at = -1 self.playhead = 0 def pause(self): # Kill the ffmpeg thread if self.thread: self.pause_at_id = var.playlist.current_item().id self.thread.kill() self.thread = None self.is_pause = True self.song_start_at = -1 self.log.info("bot: music paused at %.2f seconds." % self.playhead) def resume(self): if var.playlist.current_index == -1: var.playlist.next() music_wrapper = var.playlist.current_item() if not music_wrapper or not music_wrapper.id == self.pause_at_id or not music_wrapper.is_ready(): self.is_pause = False self.playhead = 0 return if var.config.getboolean('debug', 'ffmpeg'): ffmpeg_debug = "debug" else: ffmpeg_debug = "warning" self.log.info("bot: resume music at %.2f seconds" % self.playhead) uri = music_wrapper.uri() command = ("ffmpeg", '-v', ffmpeg_debug, '-nostdin', '-ss', "%f" % self.playhead, '-i', uri, '-ac', '1', '-f', 's16le', '-ar', '48000', '-') if var.config.getboolean('bot', 'announce_current_music'): self.send_channel_msg(var.playlist.current_item().format_current_playing()) self.log.info("bot: execute ffmpeg command: " + " ".join(command)) # The ffmpeg process is a thread # prepare pipe for catching stderr of ffmpeg pipe_rd, pipe_wd = os.pipe() util.pipe_no_wait(pipe_rd) # Let the pipe work in non-blocking mode self.thread_stderr = os.fdopen(pipe_rd) self.thread = sp.Popen(command, stdout=sp.PIPE, stderr=pipe_wd, bufsize=480) self.last_volume_cycle_time = time.time() self.pause_at_id = "" self.is_pause = False def start_web_interface(addr, port): global formatter import interface # setup logger werkzeug_logger = logging.getLogger('werkzeug') logfile = util.solve_filepath(var.config.get('webinterface', 'web_logfile')) if logfile: handler = logging.handlers.RotatingFileHandler(logfile, mode='a', maxBytes=10240) # Rotate after 10KB else: handler = logging.StreamHandler() werkzeug_logger.addHandler(handler) interface.init_proxy() interface.web.env = 'development' interface.web.run(port=port, host=addr) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Bot for playing music on Mumble') # General arguments parser.add_argument("--config", dest='config', type=str, default='configuration.ini', help='Load configuration from this file. Default: configuration.ini') parser.add_argument("--db", dest='db', type=str, default=None, help='database file. Default: database.db') parser.add_argument("-q", "--quiet", dest="quiet", action="store_true", help="Only Error logs") parser.add_argument("-v", "--verbose", dest="verbose", action="store_true", help="Show debug log") # Mumble arguments parser.add_argument("-s", "--server", dest="host", type=str, help="Hostname of the Mumble server") parser.add_argument("-u", "--user", dest="user", type=str, help="Username for the bot") parser.add_argument("-P", "--password", dest="password", type=str, help="Server password, if required") parser.add_argument("-T", "--tokens", dest="tokens", type=str, help="Server tokens, if required") parser.add_argument("-p", "--port", dest="port", type=int, help="Port for the Mumble server") parser.add_argument("-c", "--channel", dest="channel", type=str, help="Default channel for the bot") parser.add_argument("-C", "--cert", dest="certificate", type=str, default=None, help="Certificate file") args = parser.parse_args() config = configparser.ConfigParser(interpolation=None, allow_no_value=True) parsed_configs = config.read([util.solve_filepath('configuration.default.ini'), util.solve_filepath(args.config)], encoding='utf-8') var.dbfile = args.db if args.db is not None else util.solve_filepath( config.get("bot", "database_path", fallback="database.db")) if len(parsed_configs) == 0: logging.error('Could not read configuration from file \"{}\"'.format(args.config)) sys.exit() var.config = config var.db = SettingsDatabase(var.dbfile) # Setup logger bot_logger = logging.getLogger("bot") formatter = logging.Formatter('[%(asctime)s %(levelname)s %(threadName)s] %(message)s', "%b %d %H:%M:%S") bot_logger.setLevel(logging.INFO) logfile = util.solve_filepath(var.config.get('bot', 'logfile')) handler = None if logfile: handler = logging.handlers.RotatingFileHandler(logfile, mode='a', maxBytes=10240) # Rotate after 10KB else: handler = logging.StreamHandler() handler.setFormatter(formatter) bot_logger.addHandler(handler) logging.getLogger("root").addHandler(handler) var.bot_logger = bot_logger if var.config.get("bot", "save_music_library", fallback=True): var.music_db = MusicDatabase(var.dbfile) else: var.music_db = MusicDatabase(":memory:") var.cache = MusicCache(var.music_db) # load playback mode playback_mode = None if var.db.has_option("playlist", "playback_mode"): playback_mode = var.db.get('playlist', 'playback_mode') else: playback_mode = var.config.get('bot', 'playback_mode', fallback="one-shot") if playback_mode in ["one-shot", "repeat", "random", "autoplay"]: var.playlist = media.playlist.get_playlist(playback_mode) else: raise KeyError("Unknown playback mode '%s'" % playback_mode) var.bot = MumbleBot(args) command.register_all_commands(var.bot) if var.config.get("bot", "refresh_cache_on_startup", fallback=True): var.cache.build_dir_cache() # load playlist if var.config.getboolean('bot', 'save_playlist', fallback=True): var.bot_logger.info("bot: load playlist from previous session") var.playlist.load() # Start the main loop. var.bot.loop()
py
b4062f2b08a776b19622ea8dd0ed8946d11ec080
from __future__ import print_function #--------------------------------------------------------------------- # This script demonstrates the usage of hotkeys. # # Note: Hotkeys only work with the GUI version of IDA and not in # text mode. # # Author: Gergely Erdelyi <[email protected]> #--------------------------------------------------------------------- import idaapi def foo(): print("Hotkey activated!") # IDA binds hotkeys to IDC functions so a trampoline IDC function # must be created idaapi.compile_idc_text('static key_2() { RunPythonStatement("foo()"); }') # Add the hotkey add_idc_hotkey("2", 'key_2') # Press 2 to activate foo() # The hotkey can be removed with # del_idc_hotkey('2')
py
b406306039bc189d60828a39e6e78f9fbb56ec16
import os basedir = os.path.abspath(os.path.dirname(__file__)) class Config(object): DEBUG = False TESTING = False CSRF_ENABLED = True SECRET_KEY = os.urandom(24) SQLALCHEMY_DATABASE_URI = os.environ["DATABASE_URL"] class ProductionConfig(Config): DEBUG = False class StagingConfig(Config): DEVELOPMENT = True DEBUG = True class DevelopmentConfig(Config): DEVELOPMENT = True DEBUG = True class TestingConfig(Config): TESTING = True
py
b40630dda0fc5091cdb46bae1be237fc3896760f
from abc import ABCMeta, abstractmethod class IGetAuthTokenUseCase(metaclass=ABCMeta): @abstractmethod def execute(self): raise NotImplementedError
py
b40630e6de6973c1e3352515b15ef37bd232cfb3
from itertools import repeat, product import numpy as np from scipy.optimize import fmin_slsqp from scipy.special import expit from girth.latent_ability_distribution import LatentPDF from girth import (condition_polytomous_response, validate_estimation_options) from girth.polytomous_utils import _graded_partial_integral_md, _build_einsum_string __all__ = ["multidimensional_ability_map", "multidimensional_ability_eap"] def multidimensional_ability_map(dataset, difficulty, discrimination, options=None): """Estimates the abilities for dichotomous models. Estimates the ability parameters (theta) for dichotomous models via maximum a posterior likelihood estimation. Args: dataset: [n_items, n_participants] (2d Array) of measured responses difficulty: (1d Array) of difficulty parameters for each item discrimination: (1d Array) of disrimination parameters for each item options: dictionary with updates to default options Returns: abilities: (2d array) estimated abilities Options: * distribution: callable """ n_factors = discrimination.shape[1] if n_factors < 2: raise AssertionError("Number of factors specified must be greater than 1.") options = validate_estimation_options(options) cpr_result = condition_polytomous_response(dataset, trim_ends=False) responses, item_counts, valid_response_mask = cpr_result invalid_response_mask = ~valid_response_mask n_items = responses.shape[0] difficulty = difficulty.reshape(n_items, -1) abilities = np.zeros((n_factors, dataset.shape[1])) # Initialize difficulty parameter storage betas = np.full((item_counts.sum(),), 10000.0) cumulative_item_counts = item_counts.cumsum() start_indices = np.roll(cumulative_item_counts, 1) start_indices[0] = 0 # Initialize discrimination parameters storage local_discrimination = np.zeros((betas.size, n_factors)) for ndx in range(n_items): end_ndx = cumulative_item_counts[ndx] start_ndx = start_indices[ndx] betas[(start_ndx + 1):end_ndx] = difficulty[ndx][:item_counts[ndx] - 1] local_discrimination[start_ndx:end_ndx, :] = discrimination[ndx] betas_roll = np.roll(betas, -1) betas_roll[cumulative_item_counts-1] = -10000.0 # Set invalid index to zero, this allows minimal # changes for invalid data and it is corrected # during integration responses[invalid_response_mask] = 0 distribution = options['distribution'] for person_ndx in range(abilities.shape[1]): person_response = responses[:, person_ndx] invalid_person_mask = invalid_response_mask[:, person_ndx] def _person_function(estimates): kernel = (local_discrimination * estimates).sum(1) temp1 = kernel + betas temp2 = kernel + betas_roll graded_prob = expit(temp1) graded_prob -= expit(temp2) # Set all the responses and fix afterward temp_output = graded_prob[person_response] temp_output[invalid_person_mask] = 1.0 return -(np.log(temp_output).sum() + np.log(distribution(estimates)).sum()) abilities[:, person_ndx] = fmin_slsqp(_person_function, np.zeros((n_factors)), bounds=[(-4, 4),] * n_factors, disp=False) return abilities def multidimensional_ability_eap(dataset, difficulty, discrimination, options=None): """Estimates the abilities for dichotomous models. Estimates the ability parameters (theta) for dichotomous models via expected a posterior likelihood estimation. Args: dataset: [n_items, n_participants] (2d Array) of measured responses difficulty: (1d Array) of difficulty parameters for each item discrimination: (1d Array) of disrimination parameters for each item options: dictionary with updates to default options Returns: abilities: (2d array) estimated abilities Options: * distribution: callable * quadrature_bounds: (float, float) * quadrature_n: int """ n_factors = discrimination.shape[1] if n_factors < 2: raise AssertionError("Number of factors specified must be greater than 1.") options = validate_estimation_options(options) cpr_result = condition_polytomous_response(dataset, trim_ends=False) responses, item_counts, valid_response_mask = cpr_result invalid_response_mask = ~valid_response_mask n_items = responses.shape[0] difficulty = difficulty.reshape(n_items, -1) # Multi-dimensional Quadrature Locations latent_pdf = LatentPDF(options) theta = np.asarray(list(product(*repeat(latent_pdf.quadrature_locations, n_factors)))).T dist_x_weight = latent_pdf(None, 0) einsum_string = _build_einsum_string(n_factors) distribution_x_weight = np.einsum(einsum_string, *repeat(dist_x_weight, n_factors)).flatten() # Initialize difficulty parameter storage betas = np.full((item_counts.sum(),), 10000.0) cumulative_item_counts = item_counts.cumsum() start_indices = np.roll(cumulative_item_counts, 1) start_indices[0] = 0 # Initialize discrimination parameters storage local_discrimination = np.zeros((betas.size, n_factors)) for ndx in range(n_items): end_ndx = cumulative_item_counts[ndx] start_ndx = start_indices[ndx] betas[(start_ndx + 1):end_ndx] = difficulty[ndx][:item_counts[ndx] - 1] local_discrimination[start_ndx:end_ndx, :] = discrimination[ndx] betas_roll = np.roll(betas, -1) betas_roll[cumulative_item_counts-1] = -10000.0 # Set invalid index to zero, this allows minimal # changes for invalid data and it is corrected # during integration responses[invalid_response_mask] = 0 # Compute partial int for calculations partial_int = np.ones((responses.shape[1], theta.shape[1])) for item_ndx in range(n_items): partial_int *= _graded_partial_integral_md(theta, betas, betas_roll, local_discrimination, responses[item_ndx], invalid_response_mask[item_ndx]) # Loop over each dimension and compute abilities = np.zeros((n_factors, dataset.shape[1])) adjustment = ([latent_pdf.quadrature_locations] + [np.ones_like(latent_pdf.quadrature_locations),] * (n_factors-1)) denominator = (partial_int * distribution_x_weight) denominator_sum = denominator.sum(1) for factor_ndx in range(n_factors): linear_adjustment = np.einsum(einsum_string, *adjustment).flatten() numerator = denominator * linear_adjustment abilities[factor_ndx] = numerator.sum(1) / denominator_sum adjustment.insert(0, adjustment.pop()) return abilities
py
b406319c54d8705bf5e97b04125fa2c94c40f238
r""" Implements a buffer with insertion points. When you know you need to "get back" to a place and write more later, simply call insertion_point() at that spot and get a new StringIOTree object that is "left behind". EXAMPLE: >>> a = StringIOTree() >>> _= a.write('first\n') >>> b = a.insertion_point() >>> _= a.write('third\n') >>> _= b.write('second\n') >>> a.getvalue().split() ['first', 'second', 'third'] >>> c = b.insertion_point() >>> d = c.insertion_point() >>> _= d.write('alpha\n') >>> _= b.write('gamma\n') >>> _= c.write('beta\n') >>> b.getvalue().split() ['second', 'alpha', 'beta', 'gamma'] >>> i = StringIOTree() >>> d.insert(i) >>> _= i.write('inserted\n') >>> out = StringIO() >>> a.copyto(out) >>> out.getvalue().split() ['first', 'second', 'alpha', 'inserted', 'beta', 'gamma', 'third'] """ from __future__ import absolute_import #, unicode_literals try: # Prefer cStringIO since io.StringIO() does not support writing 'str' in Py2. from cStringIO import StringIO except ImportError: from io import StringIO class StringIOTree(object): """ See module docs. """ def __init__(self, stream=None): self.prepended_children = [] if stream is None: stream = StringIO() self.stream = stream self.write = stream.write self.markers = [] def getvalue(self): content = [x.getvalue() for x in self.prepended_children] content.append(self.stream.getvalue()) return "".join(content) def copyto(self, target): """Potentially cheaper than getvalue as no string concatenation needs to happen.""" for child in self.prepended_children: child.copyto(target) stream_content = self.stream.getvalue() if stream_content: target.write(stream_content) def commit(self): # Save what we have written until now so that the buffer # itself is empty -- this makes it ready for insertion if self.stream.tell(): self.prepended_children.append(StringIOTree(self.stream)) self.prepended_children[-1].markers = self.markers self.markers = [] self.stream = StringIO() self.write = self.stream.write def insert(self, iotree): """ Insert a StringIOTree (and all of its contents) at this location. Further writing to self appears after what is inserted. """ self.commit() self.prepended_children.append(iotree) def insertion_point(self): """ Returns a new StringIOTree, which is left behind at the current position (it what is written to the result will appear right before whatever is next written to self). Calling getvalue() or copyto() on the result will only return the contents written to it. """ # Save what we have written until now # This is so that getvalue on the result doesn't include it. self.commit() # Construct the new forked object to return other = StringIOTree() self.prepended_children.append(other) return other def allmarkers(self): children = self.prepended_children return [m for c in children for m in c.allmarkers()] + self.markers
py
b406321ed9f5a3ef248fd20ed16985b748b932de
#!/usr/bin/python # -*- coding: utf-8 -*- import datetime from datetime import timedelta import os import time import pytz from dotenv import load_dotenv load_dotenv(verbose=True) #---------------------------# # APPLICATION CONFIGURATION # #---------------------------# """ Variable controls what timezone formatting we must apply to our UTC datetimes. """ LOCAL_TIMEZONE = pytz.timezone(os.getenv("LOCAL_TIMEZONE_NAME")) """ Variable controls where to save the `wpa_supplicant_conf` file to. """ WPA_SUPPLICANT_CONF = os.getenv("WPA_SUPPLICANT_CONF") SUDO_MODE = os.getenv("SUDO_MODE") #-------------------# # UTILITY FUNCTIONS # #-------------------# def getDT(): """ Function will return the current datetime aware of the local timezone. """ # Get our UTC datetime without any timezone awareness. naive_now_dt = datetime.datetime.utcnow() # Convert to our local timezone. utc_aware_now_dt = naive_now_dt.replace(tzinfo=pytz.utc) # Make UTC timezone aware. local_aware_now_dt = utc_aware_now_dt.astimezone(LOCAL_TIMEZONE) # Convert to local timezone. # Return our datetime converted to our local timezone. return local_aware_now_dt
py
b406333074ec1264e3e0c32523b9c9b02086f457
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import logging from loguru import logger as logger_ logger = logger_ """ :说明: 日志记录器对象。 :默认信息: * 格式: ``[%(asctime)s %(name)s] %(levelname)s: %(message)s`` * 等级: ``DEBUG`` / ``INFO`` ,根据 config 配置改变 * 输出: 输出至 stdout :用法: .. code-block:: python from epicteller.log import logger """ # default_handler = logging.StreamHandler(sys.stdout) # default_handler.setFormatter( # logging.Formatter("[%(asctime)s %(name)s] %(levelname)s: %(message)s")) # logger.addHandler(default_handler) class Filter: def __init__(self) -> None: self.level = "DEBUG" def __call__(self, record): record["name"] = record["name"].split(".")[0] levelno = logger.level(self.level).no return record["level"].no >= levelno class LoguruHandler(logging.Handler): def emit(self, record): try: level = logger.level(record.levelname).name except ValueError: level = record.levelno frame, depth = logging.currentframe(), 2 while frame.f_code.co_filename == logging.__file__: frame = frame.f_back depth += 1 logger.opt(depth=depth, exception=record.exc_info).log(level, record.getMessage()) logger.remove() default_filter = Filter() default_format = ( "<g>{time:MM-DD HH:mm:ss}</g> " "[<lvl>{level}</lvl>] " "<c><u>{name}</u></c> | " # "<c>{function}:{line}</c>| " "{message}") logger.add(sys.stdout, colorize=True, diagnose=False, filter=default_filter, format=default_format)