ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b40678810b5d99a662cccc54475bea12069ffe9d
import click import logging import os import subprocess import time from threading import Thread from ray.autoscaler.tags import TAG_RAY_NODE_STATUS, TAG_RAY_RUNTIME_CONFIG, \ TAG_RAY_FILE_MOUNTS_CONTENTS, \ STATUS_UP_TO_DATE, STATUS_UPDATE_FAILED, STATUS_WAITING_FOR_SSH, \ STATUS_SETTING_UP, STATUS_SYNCING_FILES from ray.autoscaler.command_runner import NODE_START_WAIT_S, SSHOptions from ray.autoscaler.log_timer import LogTimer from ray.autoscaler.cli_logger import cli_logger import colorful as cf logger = logging.getLogger(__name__) READY_CHECK_INTERVAL = 5 class NodeUpdater: """A process for syncing files and running init commands on a node.""" def __init__(self, node_id, provider_config, provider, auth_config, cluster_name, file_mounts, initialization_commands, setup_commands, ray_start_commands, runtime_hash, file_mounts_contents_hash, cluster_synced_files=None, process_runner=subprocess, use_internal_ip=False, docker_config=None): self.log_prefix = "NodeUpdater: {}: ".format(node_id) use_internal_ip = (use_internal_ip or provider_config.get("use_internal_ips", False)) self.cmd_runner = provider.get_command_runner( self.log_prefix, node_id, auth_config, cluster_name, process_runner, use_internal_ip, docker_config) self.daemon = True self.process_runner = process_runner self.node_id = node_id self.provider = provider self.file_mounts = { remote: os.path.expanduser(local) for remote, local in file_mounts.items() } self.initialization_commands = initialization_commands self.setup_commands = setup_commands self.ray_start_commands = ray_start_commands self.runtime_hash = runtime_hash self.file_mounts_contents_hash = file_mounts_contents_hash self.cluster_synced_files = cluster_synced_files self.auth_config = auth_config def run(self): cli_logger.old_info(logger, "{}Updating to {}", self.log_prefix, self.runtime_hash) try: with LogTimer(self.log_prefix + "Applied config {}".format(self.runtime_hash)): self.do_update() except Exception as e: error_str = str(e) if hasattr(e, "cmd"): error_str = "(Exit Status {}) {}".format( e.returncode, " ".join(e.cmd)) self.provider.set_node_tags( self.node_id, {TAG_RAY_NODE_STATUS: STATUS_UPDATE_FAILED}) cli_logger.error("New status: {}", cf.bold(STATUS_UPDATE_FAILED)) cli_logger.old_error(logger, "{}Error executing: {}\n", self.log_prefix, error_str) cli_logger.error("!!!") if hasattr(e, "cmd"): cli_logger.error( "Setup command `{}` failed with exit code {}. stderr:", cf.bold(e.cmd), e.returncode) else: cli_logger.verbose_error("{}", str(vars(e))) # todo: handle this better somehow? cli_logger.error("{}", str(e)) # todo: print stderr here cli_logger.error("!!!") cli_logger.newline() if isinstance(e, click.ClickException): # todo: why do we ignore this here return raise tags_to_set = { TAG_RAY_NODE_STATUS: STATUS_UP_TO_DATE, TAG_RAY_RUNTIME_CONFIG: self.runtime_hash, } if self.file_mounts_contents_hash is not None: tags_to_set[ TAG_RAY_FILE_MOUNTS_CONTENTS] = self.file_mounts_contents_hash self.provider.set_node_tags(self.node_id, tags_to_set) cli_logger.labeled_value("New status", STATUS_UP_TO_DATE) self.exitcode = 0 def sync_file_mounts(self, sync_cmd): nolog_paths = [] if cli_logger.verbosity == 0: nolog_paths = [ "~/ray_bootstrap_key.pem", "~/ray_bootstrap_config.yaml" ] def do_sync(remote_path, local_path, allow_non_existing_paths=False): if allow_non_existing_paths and not os.path.exists(local_path): # Ignore missing source files. In the future we should support # the --delete-missing-args command to delete files that have # been removed return assert os.path.exists(local_path), local_path if os.path.isdir(local_path): if not local_path.endswith("/"): local_path += "/" if not remote_path.endswith("/"): remote_path += "/" with LogTimer(self.log_prefix + "Synced {} to {}".format(local_path, remote_path)): self.cmd_runner.run("mkdir -p {}".format( os.path.dirname(remote_path))) sync_cmd(local_path, remote_path) if remote_path not in nolog_paths: # todo: timed here? cli_logger.print("{} from {}", cf.bold(remote_path), cf.bold(local_path)) # Rsync file mounts with cli_logger.group( "Processing file mounts", _numbered=("[]", 2, 6)): for remote_path, local_path in self.file_mounts.items(): do_sync(remote_path, local_path) if self.cluster_synced_files: with cli_logger.group( "Processing worker file mounts", _numbered=("[]", 3, 6)): for path in self.cluster_synced_files: do_sync(path, path, allow_non_existing_paths=True) else: cli_logger.print( "No worker file mounts to sync", _numbered=("[]", 3, 6)) def wait_ready(self, deadline): with cli_logger.group( "Waiting for SSH to become available", _numbered=("[]", 1, 6)): with LogTimer(self.log_prefix + "Got remote shell"): cli_logger.old_info(logger, "{}Waiting for remote shell...", self.log_prefix) cli_logger.print("Running `{}` as a test.", cf.bold("uptime")) while time.time() < deadline and \ not self.provider.is_terminated(self.node_id): try: cli_logger.old_debug(logger, "{}Waiting for remote shell...", self.log_prefix) self.cmd_runner.run("uptime") cli_logger.old_debug(logger, "Uptime succeeded.") cli_logger.success("Success.") return True except Exception as e: retry_str = str(e) if hasattr(e, "cmd"): retry_str = "(Exit Status {}): {}".format( e.returncode, " ".join(e.cmd)) cli_logger.print( "SSH still not available {}, " "retrying in {} seconds.", cf.gray(retry_str), cf.bold(str(READY_CHECK_INTERVAL))) cli_logger.old_debug(logger, "{}Node not up, retrying: {}", self.log_prefix, retry_str) time.sleep(READY_CHECK_INTERVAL) assert False, "Unable to connect to node" def do_update(self): self.provider.set_node_tags( self.node_id, {TAG_RAY_NODE_STATUS: STATUS_WAITING_FOR_SSH}) cli_logger.labeled_value("New status", STATUS_WAITING_FOR_SSH) deadline = time.time() + NODE_START_WAIT_S self.wait_ready(deadline) node_tags = self.provider.node_tags(self.node_id) logger.debug("Node tags: {}".format(str(node_tags))) # runtime_hash will only change whenever the user restarts # or updates their cluster with `get_or_create_head_node` if node_tags.get(TAG_RAY_RUNTIME_CONFIG) == self.runtime_hash and ( self.file_mounts_contents_hash is None or node_tags.get(TAG_RAY_FILE_MOUNTS_CONTENTS) == self.file_mounts_contents_hash): # todo: we lie in the confirmation message since # full setup might be cancelled here cli_logger.print( "Configuration already up to date, " "skipping file mounts, initalization and setup commands.") cli_logger.old_info(logger, "{}{} already up-to-date, skip to ray start", self.log_prefix, self.node_id) else: cli_logger.print( "Updating cluster configuration.", _tags=dict(hash=self.runtime_hash)) self.provider.set_node_tags( self.node_id, {TAG_RAY_NODE_STATUS: STATUS_SYNCING_FILES}) cli_logger.labeled_value("New status", STATUS_SYNCING_FILES) self.sync_file_mounts(self.rsync_up) # Only run setup commands if runtime_hash has changed because # we don't want to run setup_commands every time the head node # file_mounts folders have changed. if node_tags.get(TAG_RAY_RUNTIME_CONFIG) != self.runtime_hash: # Run init commands self.provider.set_node_tags( self.node_id, {TAG_RAY_NODE_STATUS: STATUS_SETTING_UP}) cli_logger.labeled_value("New status", STATUS_SETTING_UP) if self.initialization_commands: with cli_logger.group( "Running initialization commands", _numbered=("[]", 4, 6)): # todo: fix command numbering with LogTimer( self.log_prefix + "Initialization commands", show_status=True): for cmd in self.initialization_commands: self.cmd_runner.run( cmd, ssh_options_override=SSHOptions( self.auth_config.get( "ssh_private_key"))) else: cli_logger.print( "No initialization commands to run.", _numbered=("[]", 4, 6)) if self.setup_commands: with cli_logger.group( "Running setup commands", _numbered=("[]", 5, 6)): # todo: fix command numbering with LogTimer( self.log_prefix + "Setup commands", show_status=True): total = len(self.setup_commands) for i, cmd in enumerate(self.setup_commands): if cli_logger.verbosity == 0: cmd_to_print = cf.bold(cmd[:30]) + "..." else: cmd_to_print = cf.bold(cmd) cli_logger.print( "{}", cmd_to_print, _numbered=("()", i, total)) self.cmd_runner.run(cmd) else: cli_logger.print( "No setup commands to run.", _numbered=("[]", 5, 6)) with cli_logger.group( "Starting the Ray runtime", _numbered=("[]", 6, 6)): with LogTimer( self.log_prefix + "Ray start commands", show_status=True): for cmd in self.ray_start_commands: self.cmd_runner.run(cmd) def rsync_up(self, source, target): cli_logger.old_info(logger, "{}Syncing {} to {}...", self.log_prefix, source, target) self.cmd_runner.run_rsync_up(source, target) cli_logger.verbose("`rsync`ed {} (local) to {} (remote)", cf.bold(source), cf.bold(target)) def rsync_down(self, source, target): cli_logger.old_info(logger, "{}Syncing {} from {}...", self.log_prefix, source, target) self.cmd_runner.run_rsync_down(source, target) cli_logger.verbose("`rsync`ed {} (remote) to {} (local)", cf.bold(source), cf.bold(target)) class NodeUpdaterThread(NodeUpdater, Thread): def __init__(self, *args, **kwargs): Thread.__init__(self) NodeUpdater.__init__(self, *args, **kwargs) self.exitcode = -1
py
b40678815476f2f9d07f7ca5b749dd19048b238f
"""Test module for jpl/rules/task/task.""" import pytest from jpl.rules.task.task import ( TaskHasName, TaskHasDescription, TaskHasFunction ) from tests.test_utils import load_from_json class MockTask: def __init__(self): self.data = load_from_json( fp="testData/task.json" ) @property def passing(self): return self.data @property def name_empty(self): self.data["name"] = "" return self.data @property def name_missing(self): self.data.pop("name") return self.data @property def desc_empty(self): self.data["description"] = "" return self.data @property def desc_missing(self): self.data.pop("description") return self.data @property def function_missing(self): self.data.pop("function") return self.data @pytest.mark.parametrize( "task, expected", [ (MockTask().passing, "PASSED"), (MockTask().name_empty, "FAILED"), (MockTask().name_missing, "FAILED") ] ) def test_task_has_name(task, expected): rule = TaskHasName() result = rule.run( playbook=task ) assert result == expected @pytest.mark.parametrize( "task, expected", [ (MockTask().passing, "PASSED"), (MockTask().desc_empty, "WARNING"), (MockTask().desc_missing, "WARNING") ] ) def test_task_has_desc(task, expected): rule = TaskHasDescription() result = rule.run( playbook=task ) assert result == expected @pytest.mark.parametrize( "task, expected", [ (MockTask().passing, "PASSED"), (MockTask().function_missing, "FAILED") ] ) def test_task_has_function(task, expected): rule = TaskHasFunction() result = rule.run( playbook=task ) assert result == expected
py
b40678d12c112d28a727f19d6c87ad647099d189
from typing import List import pyexlatex as pl import pyexlatex.table as lt import pyexlatex.presentation as lp import pyexlatex.graphics as lg import pyexlatex.layouts as ll def get_wacc_graphics(): equal_graphic = EquityDebtWACCGraphicForHalfAndHalf( 0.16, 0.08, 0.5, 0.5, 0.35 ) seventy_five_percent_equity_graphic = EquityDebtWACCGraphicForSeventyFivePercentEquity( 0.16, 0.08, 0.75, 0.25, 0.35 ) return [ equal_graphic, seventy_five_percent_equity_graphic ] # TODO [#15]: this whole thing is a mess. Tried to make one reusable class for creating this graphic, but was having issues # TODO [#16]: actually getting it to work. It seems the graphics sizes are not working as expected. Therefore I made a # TODO [#17]: separate class for each version of the graphic, with some values hard-coded, and these classes are not # TODO [#18]: reusable at all. class EquityDebtWACCGraphicForSeventyFivePercentEquity(pl.Template): def __init__(self, cost_of_equity: float, cost_of_debt: float, weight_of_equity: float, weight_of_debt: float, tax_rate: float): self.cost_of_equity = cost_of_equity self.cost_of_debt = cost_of_debt self.weight_of_equity = weight_of_equity self.weight_of_debt = weight_of_debt self.tax_rate = tax_rate self.contents = self._get_contents() super().__init__() @property def wacc(self): return self.cost_of_equity * self.weight_of_equity + self.after_tax_cost_of_debt * self.weight_of_debt @property def after_tax_cost_of_debt(self): return self.cost_of_debt * (1 - self.tax_rate) def _get_contents(self): all_node_options = [ 'every text node part/.style={align=center}' ] debt_options = all_node_options + [ 'fill=blue' ] debt_text_options = all_node_options + [ 'text=white' ] equity_options = all_node_options + [ 'fill=orange' ] wacc_options = all_node_options + [ 'fill=violet!80' ] debt_equity_width = 3 total_height = 4 debt_height = self.weight_of_debt * total_height equity_height = self.weight_of_equity * total_height debt_contents = [ 'Debt', pl.OutputLineBreak(), f'Pre-tax: {self.cost_of_debt:.2%}', pl.OutputLineBreak(), f'After: {self.after_tax_cost_of_debt:.2%}', ] equity_contents = [ 'Equity', pl.OutputLineBreak(), f'{self.cost_of_equity:.2%}' ] wacc_contents = ['WACC', pl.OutputLineBreak(), f'{self.wacc:.2%}'] debt_rect = lg.Rectangle(debt_equity_width, debt_height, debt_contents, shape_options=debt_options, text_options=debt_text_options) equity_rect = lg.Rectangle(debt_equity_width, equity_height, equity_contents, offset=(0, 2.15), shape_options=equity_options) wacc_rect = lg.Rectangle(2, 4.3, wacc_contents, offset=(3, 1.5), shape_options=wacc_options) contents = lg.TikZPicture( [ pl.TextSize(-1), debt_rect, equity_rect, wacc_rect, lg.Arrow(debt_rect, wacc_rect), lg.Arrow(equity_rect, wacc_rect) ] ) return contents class EquityDebtWACCGraphicForHalfAndHalf(pl.Template): def __init__(self, cost_of_equity: float, cost_of_debt: float, weight_of_equity: float, weight_of_debt: float, tax_rate: float): self.cost_of_equity = cost_of_equity self.cost_of_debt = cost_of_debt self.weight_of_equity = weight_of_equity self.weight_of_debt = weight_of_debt self.tax_rate = tax_rate self.contents = self._get_contents() super().__init__() @property def wacc(self): return self.cost_of_equity * self.weight_of_equity + self.after_tax_cost_of_debt * self.weight_of_debt @property def after_tax_cost_of_debt(self): return self.cost_of_debt * (1 - self.tax_rate) def _get_contents(self): all_node_options = [ 'every text node part/.style={align=center}' ] debt_options = all_node_options + [ 'fill=blue' ] debt_text_options = all_node_options + [ 'text=white' ] equity_options = all_node_options + [ 'fill=orange' ] wacc_options = all_node_options + [ 'fill=violet!80' ] debt_equity_width = 3 total_height = 4 debt_height = self.weight_of_debt * total_height equity_height = self.weight_of_equity * total_height debt_contents = [ 'Debt', pl.OutputLineBreak(), f'Pre-tax: {self.cost_of_debt:.2%}', pl.OutputLineBreak(), f'After: {self.after_tax_cost_of_debt:.2%}', ] equity_contents = [ 'Equity', pl.OutputLineBreak(), f'{self.cost_of_equity:.2%}' ] wacc_contents = ['WACC', pl.OutputLineBreak(), f'{self.wacc:.2%}'] debt_rect = lg.Rectangle(debt_equity_width, debt_height, debt_contents, shape_options=debt_options, text_options=debt_text_options) equity_rect = lg.Rectangle(debt_equity_width, equity_height, equity_contents, offset=(0, debt_height), shape_options=equity_options) wacc_rect = lg.Rectangle(2, total_height, wacc_contents, offset=(3, 1), shape_options=wacc_options) contents = lg.TikZPicture( [ debt_rect, equity_rect, wacc_rect, lg.Arrow(debt_rect, wacc_rect), lg.Arrow(equity_rect, wacc_rect) ] ) return contents
py
b40678d6e6142c5ce139c5ab13bce7b7eed2edf6
import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import matplotlib.cm from scipy.signal.windows import gaussian import sklearn.metrics from DataSet import createDataSetFromFile from Utils import getProjectPath from Evaluation import getSpecificColorMap, plotMinErrors, plotAlongAxisErrors,\ plotMinErrorsSqueezed def createTargetShapeDelayFigure(): gestureLen = 20 gestureSig = np.concatenate([np.zeros((10,3)),np.random.normal(size=(gestureLen,3))*np.atleast_2d(gaussian(20, 3, 0)*2).T,np.zeros((10,3))],0) target = np.concatenate([np.zeros((10,1)),np.ones((gestureLen,1)),np.zeros((10,1))],0) target_gaus = np.concatenate([np.zeros((5,1)),np.atleast_2d(gaussian(gestureLen+10,5)).T,np.zeros((5,1))],0) target_delayed = np.concatenate([np.zeros((28,1)),np.ones((5,1)),np.zeros((7,1))],0) fig, ax = plt.subplots(1, 3, sharey=True, sharex=True, figsize=(20,5)) plt.ylim(-5,5) for axn in ax: axn.plot(gestureSig,label='input signal') axn.plot([0,40],[0,0],c='black',linewidth=1) ax[0].plot(target,label='target',c='red',linewidth=2) ax[0].fill_between(np.arange(0,40),0,target.squeeze(),facecolor='red',alpha=0.5) ax[0].set_title('(a)') ax[0].set_xlabel('timestep') ax[1].plot(target_gaus,label='target',c='red',linewidth=2) ax[1].fill_between(np.arange(0,40),0,target_gaus.squeeze(),facecolor='red',alpha=0.5) ax[1].set_title('(b)') ax[1].set_xlabel('timestep') ax[2].plot(target_delayed,label='target',c='red',linewidth=2) ax[2].fill_between(np.arange(0,40),0,target_delayed.squeeze(),facecolor='red',alpha=0.5) ax[2].set_title('(c)') ax[2].set_xlabel('timestep') #plt.legend(bbox_to_anchor=(1., 1.05), loc=1, borderaxespad=0.) plt.tight_layout() projectPath = 'C:\Users\Steve\Documents\Uni\BAThesis\\src\\targetShapeDelay2.pdf' pp = PdfPages(projectPath) pp.savefig() pp.close() def createEvaluationProblem(): gestureLen = 20 target = np.concatenate([np.ones((gestureLen+1,1)),np.zeros((9,1)),np.ones((gestureLen,1)),np.zeros((40,1))],0) target2 = np.concatenate([np.zeros((70,1)),np.ones((gestureLen,1))],0) pred1 = np.concatenate([np.ones((8,1)),np.zeros((5,1)),np.ones((8,1)),np.zeros((69,1))],0) pred2 = np.concatenate([np.zeros((7,1)),np.ones((7,1)),np.zeros((66,1)),np.ones((10,1))],0) zero = np.zeros((100,1)) plt.figure(figsize=(20,5)) #plt.plot(target, label='Target Gesture 1', color='red', linewidth=2, linestyle='--') #plt.plot(pred1, label='Pred. Gesture 1', color='red', linewidth=2, linestyle='-') #plt.plot(pred2, label='Pred. Gesture 2', color='blue', linewidth=2, linestyle='-') #plt.fill_between(np.arange(0,70), 0, 1, label='Target Gesture 1', facecolor='red', alpha=0.2, where=np.squeeze(target>0)) #plt.fill_between(np.arange(0,70), 0, np.squeeze(pred1), label='Pred. Gesture 1', facecolor='red', where=np.squeeze(pred1>=pred2)) #plt.fill_between(np.arange(0,70), 0, np.squeeze(pred2), label='Pred. Gesture 2', facecolor='blue', where=np.squeeze(pred2>=pred1)) plt.plot(np.ones((90,1))*0.5,color='black') plt.plot(np.ones((90,1))*1,color='black') plt.plot(np.ones((90,1))*-0.5,color='black') plt.plot(np.ones((90,1))*-1,color='black') plt.fill_between(np.arange(0,90), 0.5, 1, label='no gesture', facecolor='grey', alpha=0.4) plt.fill_between(np.arange(0,90), 0.5, 1, facecolor='red', alpha=0.8, where=np.squeeze(target>0)) plt.fill_between(np.arange(0,90), 0.5, 1, facecolor='blue', alpha=0.8, where=np.squeeze(target2>0)) plt.fill_between(np.arange(0,90), -0.5, -1, facecolor='grey', alpha=0.4) plt.fill_between(np.arange(0,90), -0.5, -1, label='Gesture 1', facecolor='red', where=np.squeeze(pred1==1)) plt.fill_between(np.arange(0,90), -0.50, -1, label='Gesture 2', facecolor='blue', where=np.squeeze(pred2==1)) plt.fill_between(np.arange(0,90), -0.2, 0.2, facecolor='yellow', alpha=0.2) plt.annotate('TP',xy=(3.5,-0.1)) plt.plot([3,10],[-0.75,0.75],linewidth=3, color='black') plt.annotate('WG',xy=(8,-0.1)) plt.plot([10,10],[-0.75,0.75],linewidth=3, color='black') plt.annotate('FP',xy=(14,-0.1)) plt.plot([17,10],[-0.75,0.75],linewidth=3, color='black') plt.annotate('TP',xy=(34,-0.1)) plt.plot([50,25],[-0.75,0.75],linewidth=3, color='black') plt.annotate('FN',xy=(46,-0.1)) plt.plot([50,40],[-0.75,0.75],linewidth=3, color='black') plt.annotate('TP',xy=(55.5,-0.1)) plt.plot([50,60],[-0.75,0.75],linewidth=3, color='black') plt.annotate('TP',xy=(83.5,-0.1)) plt.plot([85,80],[-0.75,0.75],linewidth=3, color='black') ax = plt.gca() ax.text( 2.5, -1.3,str(1),bbox=dict(facecolor='none', edgecolor='black', boxstyle='circle,pad=0.5')) ax.text( 9.5, -1.3,str(2),bbox=dict(facecolor='none', edgecolor='black', boxstyle='circle,pad=0.5')) ax.text(15 , -1.3,str(3),bbox=dict(facecolor='none', edgecolor='black', boxstyle='circle,pad=0.5')) ax.text(50 , -1.3,str(4),bbox=dict(facecolor='none', edgecolor='black', boxstyle='circle,pad=0.5')) ax.text(84.5, -1.3,str(5),bbox=dict(facecolor='none', edgecolor='black', boxstyle='circle,pad=0.5')) ax.text(39.5, 1.2,str(6),bbox=dict(facecolor='none', edgecolor='black', boxstyle='circle,pad=0.5')) ax.text(59.5, 1.2,str(7),bbox=dict(facecolor='none', edgecolor='black', boxstyle='circle,pad=0.5')) plt.xlabel('time step') plt.yticks([-0.75,0,0.75]) plt.setp(plt.gca(), 'yticklabels', ['Prediction','Mapping','Target']) plt.ylim(-1.5,1.5) plt.xlim(0,120) plt.legend() plt.tight_layout() projectPath = 'C:\Users\Steve\Documents\Uni\BAThesis\\src\\classificationProb.pdf' pp = PdfPages(projectPath) pp.savefig() pp.close() true = [1,1,1,2,3,3,3] pred = [1,2,3,2,1,3,3] print sklearn.metrics.f1_score(true,pred,average=None) print np.mean(sklearn.metrics.f1_score(true,pred,average=None)) def createInputSignalFigure(): errors = [0.272813277233,0.233033147087,0.217966453407,0.139282580674,0.0953774246893,0.0898370698925,0.0551168200035] labels = ['F','G','A','FG','FA','GA','FGA'] ax = plt.subplot() #ax.bar(np.arange(0,7), errors, alpha=0.5) cmap = matplotlib.cm.brg_r for i, error in enumerate(errors): ax.bar([i], errors[i], facecolor=cmap(error/0.5), alpha=1) ax.set_xticks(np.arange(0.5,7.5,1)) ax.set_xticklabels(labels) plt.ylabel('Validation Error') plt.xlabel('Input signal') plt.xlim(-0.5,7.5) plt.ylim(0,0.5) projectPath = 'C:\Users\Steve\Documents\Uni\BAThesis\\src\\errorByInput.pdf' pp = PdfPages(projectPath) pp.savefig() pp.close() return ax def createGroundTruthCreation(): ds = createDataSetFromFile('julian_0_fullSet.npz') def bla(): vals = np.array([0.8867924528301887, 0.85238095238095235, 0.89047619047619042, 0.8418604651162791, 0.89622641509433965, 0.875, 0.86301369863013699, 0.82027649769585254, 0.83783783783783783, 0.90094339622641506, 0.75, 0.74568965517241381, 0.76855895196506552, 0.78240740740740744, 0.76923076923076927, 0.85308056872037918, 0.85915492957746475, 0.87019230769230771, 0.86976744186046506, 0.82938388625592419, 0.90047393364928907, 0.83257918552036203, 0.80888888888888888, 0.89671361502347413, 0.86915887850467288, 0.78026905829596416, 0.76211453744493396, 0.76956521739130435, 0.73931623931623935, 0.75107296137339052, 0.90476190476190477, 0.84931506849315064, 0.89099526066350709, 0.83486238532110091, 0.84722222222222221, 0.86098654708520184, 0.87441860465116283, 0.8545454545454545, 0.85849056603773588, 0.88732394366197187, 0.74889867841409696, 0.79824561403508776, 0.82949308755760365, 0.77253218884120167, 0.77876106194690264]) np.set_printoptions(precision=3) for i in range(9): print i print str( "{0:.3f}".format(np.mean(vals[i*5:i*5+5]) )) + " (" + str("{0:.2f}".format(np.std(vals[i*5:i*5+5]))) + ")" print def evaluateNPZ(npzFile): pp = PdfPages(getProjectPath()+"error_space_"+npzFile+".pdf") a = np.load(getProjectPath()+npzFile) plotMinErrors(a['errors'], a['params'], a['paraRanges'], pp, getSpecificColorMap()) i = 0 inputSignalAxis = -1 inputScalingAxis = -1 normAxis = -1 for node, param in a['params']: if param == 'spectral_radius': inputSignalAxis = i elif param == 'output_dim': inputScalingAxis = i elif param == 'ridge_param': normAxis = i i =i+1 plotAlongAxisErrors(a['errors'], a['params'], a['paraRanges'], normAxis, inputSignalAxis, inputScalingAxis, pp, getSpecificColorMap()) pp.close() #plt.close('all') def plotErrorResSize(): matplotlib.rcParams.update({'font.size': 25}) npzFile = '2016-04-28-09-57_bigRunOnlySnap.npz' npz2 = '2016-04-28-15-18_bigRunOnlySnap.npz' projectPath = 'C:\Users\Steve\Documents\Uni\BAThesis\\src\\errorResSize.pdf' pp = PdfPages(projectPath) a = np.load(getProjectPath()+npzFile) errors = a['errors'] errors = np.mean(errors,2).squeeze() b = np.load(getProjectPath()+npz2) errors2 = b['errors'] errors2 = np.mean(errors2,2).squeeze() plt.figure(figsize=(10,7.5)) plt.plot(errors, 'o', linestyle='-', linewidth=3, label='ridge para = 0.01') #plt.plot(errors2, 'o', linestyle='-', linewidth=3, label='ridge para = 0.1') plt.grid() plt.minorticks_on() plt.grid(which='minor', axis='y') plt.xlabel('Reservoir size') ticks = np.arange(0, 8) labels = [25,50,100,200,400,800,1600,3200] plt.xticks(ticks, labels) plt.ylabel('Validation error') plt.ylim(0,1) plt.tight_layout() pp.savefig() pp.close() #plt.close('all') if __name__ == '__main__': matplotlib.rcParams.update({'font.size': 20}) createGroundTruthCreation()
py
b40679debd80cbceb789f022857efc3d98067435
from dynamic_preferences.types import StringPreference, IntegerPreference, BooleanPreference from dynamic_preferences.registries import global_preferences_registry from dynamic_preferences.preferences import Section from django.conf import settings general_section = Section('general') homepage_section = Section('homepage') @global_preferences_registry.register class SiteTitle(StringPreference): section = general_section name = 'admin_title' verbose_name = 'Admin Site Title' default = 'Global Trade Motors' @global_preferences_registry.register class SiteHeader(StringPreference): section = general_section name = 'admin_header' verbose_name = 'Admin Site Header' default = 'Global Trade Motors' @global_preferences_registry.register class NumberOfVehiclesOnHompage(IntegerPreference): section = homepage_section name = 'number_of_vehicles' verbose_name = 'Homepage Vehicles' help_text = 'Please enter the number of vehicles to show on homepage.' default = 16 @global_preferences_registry.register class DefaultEmailAddress(StringPreference): section = general_section name = 'default_email' verbose_name = 'Default Email Address' help_text = 'Please enter the email address to show on the top header \ and other pages.' default = '[email protected]' if settings.DEFAULT_EMAIL_ADDRESS: default = settings.DEFAULT_EMAIL_ADDRESS @global_preferences_registry.register class LiveChatFeature(BooleanPreference): section = general_section name = 'live_chat' verbose_name = 'Live Chat' help_text = 'Turn Live Chat feature on/off.' default = False
py
b4067a16f3ff96aab1b49ba6604a1cbcc689873e
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html from scrapy import Item, Field class CrawlerType1Item(Item): # define the fields for your item here like: # name = scrapy.Field() text = Field() heading = Field() img = Field()
py
b4067a7c98c0e411f1155319c0bd1dc3c42bcc08
# -*- coding: utf-8 -*- from django.test import TestCase from hipster_api import fields class FiledIntTestCase(TestCase): def get_value(self, obj): obj.to_python() obj.to_rules(None) return obj.value def test_field_int(self): obj = fields.Integer(default=0) obj.setitem('123') self.assertEqual(self.get_value(obj), 123) obj.setitem(1234) self.assertEqual(self.get_value(obj), 1234) obj.setitem(-23) self.assertEqual(self.get_value(obj), -23) obj.setitem('asd123') self.assertEqual(self.get_value(obj), 0) def test_field_int_less(self): obj = fields.IntegerLess(default=0, less=5) obj.setitem('123') self.assertEqual(self.get_value(obj), 0) obj.setitem(2) self.assertEqual(self.get_value(obj), 2) obj.setitem(-23) self.assertEqual(self.get_value(obj), -23) obj.setitem('asd123') self.assertEqual(self.get_value(obj), 0) def test_field_int_larger(self): obj = fields.IntegerLarger(default=0, larger=5) obj.setitem('123') self.assertEqual(self.get_value(obj), 123) obj.setitem(2) self.assertEqual(self.get_value(obj), 0) obj.setitem(-23) self.assertEqual(self.get_value(obj), 0) obj.setitem('asd123') self.assertEqual(self.get_value(obj), 0) def test_field_int_list(self): obj = fields.IntegerList(default='') self.assertListEqual(self.get_value(obj), []) obj.setitem('123,2,6') self.assertListEqual(self.get_value(obj), [123, 2, 6]) obj.setitem('123, asdf, 2,6') self.assertListEqual(self.get_value(obj), [])
py
b4067ad10b7ed171364fff7125a54b83f8410f4f
# -*- coding: utf-8 -*- """ Created on Wed Jan 2 11:25:58 2019 @author: bjwil """ import copy import networkx as nx edge_dict = copy.deepcopy(edict) def eulerian_path(edge_dict): '''Generates an Eulerian cycle from the given edges.''' G = nx.DiGraph(edge_dict) if not(nx.is_eulerian(G)): out_degrees = G.out_degree([node for node in G]) in_degrees = G.in_degree([node for node in G]) ds = [out_degrees, in_degrees] d = {} for k in out_degrees.keys(): d[k] = tuple(d[k] for d in ds) for key in d: d[key] = d[key][0] - d[key][1] extra_out = [key for (key, value) in d.items() if value == 1][0] extra_in = [key for (key, value) in d.items() if value == -1][0] edge_dict[extra_in] = extra_out current_node = extra_out else: current_node = next(iter(edge_dict.keys())) path = [current_node] # Get the initial cycle. while True: path.append(edge_dict[current_node][0]) if len(edge_dict[current_node]) == 1: del edge_dict[current_node] else: edge_dict[current_node] = edge_dict[current_node][1:] if path[-1] in edge_dict: current_node = path[-1] else: break # Continually expand the initial cycle until we're out of edge_dict. while len(edge_dict) > 0: for i in range(len(path)): if path[i] in edge_dict: current_node = path[i] cycle = [current_node] while True: cycle.append(edge_dict[current_node][0]) if len(edge_dict[current_node]) == 1: del edge_dict[current_node] else: edge_dict[current_node] = edge_dict[current_node][1:] if cycle[-1] in edge_dict: current_node = cycle[-1] else: break path = path[:i] + cycle + path[i+1:] break return path if __name__ == '__main__': # Read the input data. with open ('last.txt', 'r') as in_file: lines = in_file.read().split('\n') edges = {} for connection in lines: connection = connection.replace(" ", "") edges[connection.split('->')[0]] = [v for v in connection.split('->')[1].split(',')] # Get the Eulerian cycle. path = eulerian_path(edges) # Print and save the answer. print('->'.join(map(str,path))) with open('Output9.txt', 'w') as output_data: output_data.write('->'.join(map(str,path)))
py
b4067b0aa08f7801c34fb1b4afd81fed0392a8d6
from board import Board def choose_move(data: dict) -> str: board:Board = Board(data) move = board.chose_direction(board.you) print(f"{data['game']['id']} MOVE {data['turn']}: {move} picked") return move
py
b4067b4a6065ff4f99c8740c57875fe8969b4fac
"""Snake, classic arcade game. Exercises 1. How do you make the SnakeFast or SnakeSlow classes? 2. How do you make a SnakeSmart, that change the direction when collide with edges? 3. How would you make a new food types? When snake eat them it will more fast or decrease? 4. How do you create a Actor that will be the Head and Food superclass? """ from turtle import setup, hideturtle, tracer, listen, onkey, done, update, clear, ontimer from random import randrange, choice from freegames import square, vector class Head: def __init__(self, x, y): self.position = vector(x, y) @property def x(self): return self.position.x @property def y(self): return self.position.y class Food: color = 'Blue' cal = 1 def __init__(self, x, y): self.position = vector(x, y) @property def x(self): return self.position.x @property def y(self): return self.position.y class Snake: SPEED = 1 def __init__(self, x=0, y=0): self.head = Head(x, y) self.body = [vector(10, 0)] self.aim = vector(0*self.SPEED, -10*self.SPEED) self.direction = "SOUTH" self.status = 'LIVE' def eat(self, food): print('snake is eating', food.cal) for x in range(food.cal): self.body.append(self.head.position) for x in range(food.cal, 0): del self.body[0] def move(self): "Move snake forward one segment." self.head = Head(*self.body[-1].copy()) self.head.position.move(self.aim) if self.is_colliding_with_border(): self.on_collision_with_border() elif self.is_eating_himself(): self.on_eating_himself() else: self.body.append(self.head.position) self.body.pop(0) # cut the tail def on_collision_with_border(self): self.dead() def on_eating_himself(self): self.dead() def is_eating_himself(self): return (self.head.position in self.body) def dead(self): self.status = 'DEAD' def alive(self): return self.status != 'DEAD' def is_colliding_with_border(self): return not(-200 < self.head.x < 190 and -200 < self.head.y < 190) def left(self): if self.direction == "NORTH" : self.aim.x = -10*self.SPEED self.aim.y = 0*self.SPEED elif self.direction == "SOUTH": self.aim.x = 10*self.SPEED self.aim.y = 0*self.SPEED elif self.direction == "WEST" : self.aim.x = 0*self.SPEED self.aim.y = -10*self.SPEED elif self.direction == "EAST": self.aim.x = 0*self.SPEED self.aim.y = 10*self.SPEED def right(self): if self.direction == "NORTH" : self.aim.x = 10*self.SPEED self.aim.y = 0*self.SPEED elif self.direction == "SOUTH": self.aim.x = -10*self.SPEED self.aim.y = 0*self.SPEED elif self.direction == "WEST" : self.aim.x = 0*self.SPEED self.aim.y = 10*self.SPEED elif self.direction == "EAST": self.aim.x = 0*self.SPEED self.aim.y = -10*self.SPEED class GameSnake: def __init__(self): self.food = self.new_food() self.snake = Snake() onkey(lambda: self.on_rightkeypressed() , 'Right') onkey(lambda: self.on_leftkeypressed(), 'Left') onkey(lambda: self.on_upkeypressed(), 'Up') onkey(lambda: self.on_downkeypressed(), 'Down') def on_rightkeypressed(self): if self.snake.direction == 'NORTH': self.snake.right() elif self.snake.direction == "SOUTH": self.snake.left() self.snake.direction = "EAST" def on_leftkeypressed(self): if self.snake.direction == 'NORTH': self.snake.left() elif self.snake.direction == "SOUTH": self.snake.right() self.snake.direction = "WEST" def on_upkeypressed(self): if self.snake.direction == 'WEST': self.snake.right() elif self.snake.direction == "EAST": self.snake.left() self.snake.direction = "NORTH" def on_downkeypressed (self): if self.snake.direction == 'WEST': self.snake.left() elif self.snake.direction == "EAST": self.snake.right() self.snake.direction = "SOUTH" def new_food(self): foods = [Food] type_food = choice(foods) food = type_food(0, 0) food.position = vector(randrange(-15, 15) * 10, randrange(-15, 15) * 10) return food def run(self): clear() for body in self.snake.body: square(body.x, body.y, 9, 'black') square(self.food.x, self.food.y, 9, self.food.color) update() self.snake.move() if self.snake.head.position == self.food.position: self.snake.eat(self.food) self.food = self.new_food() if self.snake.alive(): ontimer(self.run, 100) else: print('>>> SNAKE IS DEAD <<<') square(self.snake.head.x, self.snake.head.y, 9, 'red') return def init(): setup(420, 420, 370, 0) hideturtle() tracer(False) listen() game = GameSnake() game.run() done() if __name__ == '__main__': init()
py
b4067c64995ebacdbd7024bad4674ac5a1401703
import math import torch import torch.nn as nn import torch.nn.functional as F import numpy as np def default_conv(in_channels, out_channels, kernel_size, bias=True, dilation=1): return nn.Conv2d( in_channels, out_channels, kernel_size, padding=(kernel_size//2), bias=bias, dilation=dilation) class ChannelZeroPad(nn.Module): def __init__(self, prepadding=1, postpadding=0, value=0): super(ChannelZeroPad, self).__init__() self.prepadding = prepadding self.postpadding = postpadding self.value = 0 def forward(self, input): return F.pad(input, (0, 0, 0, 0, self.prepadding, self.postpadding)) class MyUpsampler(nn.Module): def __init__(self, conv, upscale_factor, n_feats, bias=True): super(MyUpsampler, self).__init__() self.upscale_factor = upscale_factor self.conv1 = conv(n_feats, n_feats // 2, 3, bias) self.conv2 = conv(n_feats // 2, self.upscale_factor ** 2 - 1, 3, bias) self.ChannelZeroPad = ChannelZeroPad(1, 0, 0) self.positionupscale = nn.PixelShuffle(self.upscale_factor) self.relu = nn.ReLU(True) def forward(self, x, preintp_x): x = self.relu(self.conv1(x)) x = self.conv2(x) x = self.ChannelZeroPad(x) x += preintp_x.repeat(1, self.upscale_factor**2, 1, 1) x = self.positionupscale(x) return x
py
b4067e5ce3ae0566cde77fcade345f29b2c40b96
from .cart import * def cart(request): return {'cart': Cart(request)} def cart1(request): return {'cart1': Cart1(request)}
py
b4067fdad7574aa11a471c9a712137aadd520eae
# Copyright (c) 2012 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Utilities for standard operations on URIs of different kinds.""" from __future__ import print_function import re import sys import urllib import urllib2 from chromite.lib.paygen import filelib from chromite.lib.paygen import gslib # This module allows files from different storage types to be handled # in a common way, for supported operations. PROTOCOL_GS = gslib.PROTOCOL PROTOCOL_HTTP = 'http' PROTOCOL_HTTPS = 'https' PROTOCOLS = (PROTOCOL_GS, PROTOCOL_HTTP, PROTOCOL_HTTPS) PROTOCOL_SEP = '://' EXTRACT_PROTOCOL_RE = re.compile(r'^(\w+)%s' % PROTOCOL_SEP) SPLIT_URI_RE = re.compile(r'^(\w+)%s(.*)$' % PROTOCOL_SEP) TYPE_GS = PROTOCOL_GS TYPE_HTTP = PROTOCOL_HTTP TYPE_HTTPS = PROTOCOL_HTTPS TYPE_LOCAL = 'file' class NotSupportedForType(RuntimeError): """Raised when operation is not supported for a particular file type""" def __init__(self, uri_type, extra_msg=None): # pylint: disable=protected-access function = sys._getframe(1).f_code.co_name msg = 'Function %s not supported for %s URIs' % (function, uri_type) if extra_msg: msg += ', ' + extra_msg RuntimeError.__init__(self, msg) class NotSupportedForTypes(RuntimeError): """Raised when operation is not supported for all particular file type""" def __init__(self, extra_msg=None, *uri_types): # pylint: disable=protected-access function = sys._getframe(1).f_code.co_name msg = ('Function %s not supported for set of URIs with types: %s' % (function, ', '.join(uri_types))) if extra_msg: msg += ', ' + extra_msg RuntimeError.__init__(self, msg) class NotSupportedBetweenTypes(RuntimeError): """Raised when operation is not supported between particular file types""" def __init__(self, uri_type1, uri_type2, extra_msg=None): # pylint: disable=protected-access function = sys._getframe(1).f_code.co_name msg = ('Function %s not supported between %s and %s URIs' % (function, uri_type1, uri_type2)) if extra_msg: msg += ', ' + extra_msg RuntimeError.__init__(self, msg) class MissingURLError(RuntimeError): """Raised when nothing exists at URL.""" def ExtractProtocol(uri): """Take a URI and return the protocol it is using, if any. Examples: 'gs://some/path' ==> 'gs' 'file:///some/path' ==> 'file' '/some/path' ==> None '/cns/some/colossus/path' ==> None Args: uri: The URI to get protocol from. Returns: Protocol string that is found, or None. """ match = EXTRACT_PROTOCOL_RE.search(uri) if match: return match.group(1) return None def GetUriType(uri): """Get the type of a URI. See the TYPE_* constants for examples. This is mostly based on URI protocols, with Colossus and local files as exceptions. Args: uri: The URI to consider Returns: The URI type. """ protocol = ExtractProtocol(uri) if protocol: return protocol return TYPE_LOCAL def SplitURI(uri): """Get the protocol and path from a URI Examples: 'gs://some/path' ==> ('gs', 'some/path') 'file:///some/path' ==> ('file', '/some/path') '/some/path' ==> (None, '/some/path') '/cns/some/colossus/path' ==> (None, '/cns/some/colossus/path') Args: uri: The uri to get protocol and path from. Returns; Tuple (protocol, path) """ match = SPLIT_URI_RE.search(uri) if match: return (match.group(1), match.group(2)) return (None, uri) def IsGsURI(uri): """Returns True if given uri uses Google Storage protocol.""" return PROTOCOL_GS == ExtractProtocol(uri) def IsFileURI(uri): """Return True if given uri is a file URI (or path). If uri uses the file protocol or it is a plain non-Colossus path then return True. Args: uri: Any URI or path. Returns: True or False as described above. """ return TYPE_LOCAL == GetUriType(uri) def IsHttpURI(uri, https_ok=False): """Returns True if given uri uses http, or optionally https, protocol. Args: uri: The URI to check. https_ok: If True, then accept https protocol as well. Returns: Boolean """ uri_type = GetUriType(uri) return TYPE_HTTP == uri_type or (https_ok and TYPE_HTTPS == uri_type) def IsHttpsURI(uri): """Returns True if given uri uses https protocol.""" return TYPE_HTTPS == GetUriType(uri) def MD5Sum(uri): """Compute or retrieve MD5 sum of uri. Supported for: local files, GS files. Args: uri: The /unix/path or gs:// uri to compute the md5sum on. Returns: A string representing the md5sum of the file/uri passed in. None if we do not understand the uri passed in or cannot compute the md5sum. """ uri_type = GetUriType(uri) if uri_type == TYPE_LOCAL: return filelib.MD5Sum(uri) elif uri_type == TYPE_GS: try: return gslib.MD5Sum(uri) except gslib.GSLibError: return None # Colossus does not have a command for getting MD5 sum. We could # copy the file to local disk and calculate it, but it seems better # to explicitly say it is not supported. raise NotSupportedForType(uri_type) def Cmp(uri1, uri2): """Return True if paths hold identical files. If either file is missing then always return False. Args: uri1: URI to a file. uri2: URI to a file. Returns: True if files are the same, False otherwise. Raises: NotSupportedBetweenTypes if Cmp cannot be done between the two URIs provided. """ uri_type1 = GetUriType(uri1) uri_type2 = GetUriType(uri2) uri_types = set([uri_type1, uri_type2]) if TYPE_GS in uri_types: # GS only supported between other GS files or local files. if len(uri_types) == 1 or TYPE_LOCAL in uri_types: return gslib.Cmp(uri1, uri2) if TYPE_LOCAL in uri_types and len(uri_types) == 1: return filelib.Cmp(uri1, uri2) raise NotSupportedBetweenTypes(uri_type1, uri_type2) class URLopener(urllib.FancyURLopener): """URLopener that will actually complain when download fails.""" # The urllib.urlretrieve function, which seems like a good fit for this, # does not give access to error code. def http_error_default(self, *args, **kwargs): urllib.URLopener.http_error_default(self, *args, **kwargs) def URLRetrieve(src_url, dest_path): """Download file from given URL to given local file path. Args: src_url: URL to download from. dest_path: Path to download to. Raises: MissingURLError if URL cannot be downloaded. """ opener = URLopener() try: opener.retrieve(src_url, dest_path) except IOError as e: # If the domain is valid but download failed errno shows up as None. if e.errno is None: raise MissingURLError('Unable to download %s' % src_url) # If the domain is invalid the errno shows up as 'socket error', weirdly. try: int(e.errno) # This means there was some normal error writing to the dest_path. raise except ValueError: raise MissingURLError('Unable to download %s (bad domain?)' % src_url) def Copy(src_uri, dest_uri): """Copy one uri to another. Args: src_uri: URI to copy from. dest_uri: Path to copy to. Raises: NotSupportedBetweenTypes if Cmp cannot be done between the two URIs provided. """ uri_type1 = GetUriType(src_uri) uri_type2 = GetUriType(dest_uri) uri_types = set([uri_type1, uri_type2]) if TYPE_GS in uri_types: # GS only supported between other GS files or local files. if len(uri_types) == 1 or TYPE_LOCAL in uri_types: return gslib.Copy(src_uri, dest_uri) if TYPE_LOCAL in uri_types and len(uri_types) == 1: return filelib.Copy(src_uri, dest_uri) if uri_type1 in (TYPE_HTTP, TYPE_HTTPS) and uri_type2 == TYPE_LOCAL: # Download file from URL. return URLRetrieve(src_uri, dest_uri) raise NotSupportedBetweenTypes(uri_type1, uri_type2) def Remove(*args, **kwargs): """Delete the file(s) at uris, or directory(s) with recurse set. Args: args: One or more URIs. ignore_no_match: If True, then do not complain if anything was not removed because no URI match was found. Like rm -f. Defaults to False. recurse: Remove recursively starting at path. Same as rm -R. Defaults to False. """ uri_types = set([GetUriType(u) for u in args]) if TYPE_GS in uri_types: # GS support only allows local files among list. if len(uri_types) == 1 or (TYPE_LOCAL in uri_types and len(uri_types) == 2): return gslib.Remove(*args, **kwargs) if TYPE_LOCAL in uri_types and len(uri_types) == 1: return filelib.Remove(*args, **kwargs) raise NotSupportedForTypes(*list(uri_types)) def Size(uri): """Return size of file at URI in bytes. Args: uri: URI to consider Returns: Size of file at given URI in bytes. Raises: MissingURLError if uri is a URL and cannot be found. """ uri_type = GetUriType(uri) if TYPE_GS == uri_type: return gslib.FileSize(uri) if TYPE_LOCAL == uri_type: return filelib.Size(uri) if TYPE_HTTP == uri_type or TYPE_HTTPS == uri_type: try: response = urllib2.urlopen(uri) if response.getcode() == 200: return int(response.headers.getheader('Content-Length')) except urllib2.HTTPError as e: # Interpret 4** errors as our own MissingURLError. if e.code < 400 or e.code >= 500: raise raise MissingURLError('No such file at URL %s' % uri) raise NotSupportedForType(uri_type) def Exists(uri, as_dir=False): """Return True if file exists at given URI. If URI is a directory and as_dir is False then this will return False. Args: uri: URI to consider as_dir: If True then check URI as a directory, otherwise check as a file. Returns: True if file (or directory) exists at URI, False otherwise. """ uri_type = GetUriType(uri) if TYPE_GS == uri_type: if as_dir: # GS does not contain directories. return False return gslib.Exists(uri) if TYPE_LOCAL == uri_type: return filelib.Exists(uri, as_dir=as_dir) if TYPE_HTTP == uri_type or TYPE_HTTPS == uri_type: if as_dir: raise NotSupportedForType(uri_type, extra_msg='with as_dir=True') try: response = urllib2.urlopen(uri) return response.getcode() == 200 except urllib2.HTTPError: return False raise NotSupportedForType(uri_type) def ListFiles(root_path, recurse=False, filepattern=None, sort=False): """Return list of file paths under given root path. Directories are intentionally excluded from results. The root_path argument can be a local directory path, a Google storage directory URI, or a Colossus (/cns) directory path. Args: root_path: A local path, CNS path, or GS path to directory. recurse: Look for files in subdirectories, as well filepattern: glob pattern to match against basename of file sort: If True then do a default sort on paths Returns: List of paths to files that matched """ uri_type = GetUriType(root_path) if TYPE_GS == uri_type: return gslib.ListFiles(root_path, recurse=recurse, filepattern=filepattern, sort=sort) if TYPE_LOCAL == uri_type: return filelib.ListFiles(root_path, recurse=recurse, filepattern=filepattern, sort=sort) raise NotSupportedForType(uri_type) def CopyFiles(src_dir, dst_dir): """Recursively copy all files from src_dir into dst_dir This leverages the Copy method, so the restrictions there for what copies are supported apply here. Args: src_dir: A local, CNS, or GS directory to copy from. dst_dir: A local, CNS, or GS directory to copy into. Returns: A list of absolute path files for all copied files. """ dst_paths = [] src_paths = ListFiles(src_dir, recurse=True) for src_path in src_paths: dst_path = src_path.replace(src_dir, dst_dir) Copy(src_path, dst_path) dst_paths.append(dst_path) return dst_paths def RemoveDirContents(base_dir): """Remove all contents of a directory. Args: base_dir: directory to delete contents of. """ uri_type = GetUriType(base_dir) if TYPE_GS == uri_type: return gslib.RemoveDirContents(base_dir) if TYPE_LOCAL == uri_type: return filelib.RemoveDirContents(base_dir) raise NotSupportedForType(uri_type)
py
b4067ff8d39e85d93218f5a92b0d4ea89da282d6
import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torch.utils.data import DataLoader from encoder import Encoder from decoder import Decoder from fc_decoder import FCDecoder from vae import VAE from vae import latent_loss from data import FSPeptide from data import UnlabeledContact import numpy as np import argparse parser = argparse.ArgumentParser(description='Setup experiment.') parser.add_argument('--input_size', type=int, default=441, help='flattened image size.') parser.add_argument('--latent_size', type=int, default=3, help='latent dimension') parser.add_argument('--batch_size', type=int, default=1, help='batch size for net') parser.add_argument('--use_cuda', type=bool, default=True, help='Whether to use cuda.') parser.add_argument('--model_path', type=str, default='/home/ygx/molecules/molecules/variational_autoencoder/save_points/saves_latent3/', help='Path to saved model weights.') parser.add_argument('--model_name', type=str, default='epoch90.pt', help='name of the saved model') parser.add_argument('--latent_save_path', type=str, default='/home/ygx/molecules/molecules/variational_autoencoder/generate_latent/fs_latent3_epoch90/', help='path to save generated latent dimensions') parser.add_argument('--recon_save_path', type=str, default='/home/ygx/molecules/molecules/variational_autoencoder/generate_recon/fs_latent3_epoch90/', help='path to save reconstructed images') args = parser.parse_args() def main(): """ Generate images from a saved model """ train_data = UnlabeledContact(data='/home/ygx/data/fspeptide/fs_peptide.npy') print('Number of samples: {}'.format(len(train_data))) trainloader = DataLoader(train_data, batch_size=args.batch_size) encoder = Encoder(input_size=args.input_size, latent_size=args.latent_size) decoder = Decoder(latent_size=args.latent_size, output_size=args.input_size) vae = VAE(encoder, decoder, use_cuda=args.use_cuda) # Load saved model vae.load_state_dict(torch.load(args.model_path + args.model_name)) if args.use_cuda: encoder = encoder.cuda() decoder = decoder.cuda() vae = vae.cuda() latent_arrys = [] recon_arrys = [] for batch_idx, data in enumerate(trainloader): inputs = data['cont_matrix'] inputs = inputs.resize_(args.batch_size, 1, 21, 21) inputs = inputs.float() if args.use_cuda: inputs = inputs.cuda() inputs = Variable(inputs) latent_array = encoder(inputs).data.cpu().numpy() #print('latent_array has shape {}'.format(latent_array.shape)) latent_arrys.append(latent_array) reconstructed_array = vae(inputs).data.cpu().numpy() recon_arrys.append(reconstructed_array) if batch_idx % 100 == 0: print('Saving progress: {:.3f}%'.format(batch_idx * 100. / len(trainloader))) print('\nNumber of images prepared: {}'.format(len(latent_arrys))) latent_stacked = np.stack(latent_arrys, axis=0) latent_filename = 'latent_imgs' np.save(args.latent_save_path + latent_filename, latent_stacked) recon_stacked = np.stack(recon_arrys, axis=0) recon_filename = 'recon_imgs' np.save(args.recon_save_path + recon_filename, recon_stacked) if __name__=='__main__': main()
py
b4068003e58d594120f5de133c1794db7330f12a
from abc import ABC, abstractmethod from striatum import make_logger import gym logger = make_logger(__file__) class Env(gym.Env): ... class Policy(ABC): @abstractmethod def update(self, reward): pass @abstractmethod def sample(self, observation): pass def sample_and_update(self, reward, observation): self.update(reward) return self.sample()
py
b40681ff853ad32ab4f938e26f610699a4462898
from datetime import date as d, timedelta from time import strptime from testfixtures import ShouldRaise, test_date, replace, compare from testfixtures.tests import sample1, sample2 from unittest import TestCase class TestDate(TestCase): # NB: Only the today method is currently stubbed out, # if you need other methods, tests and patches # greatfully received! @replace('datetime.date', test_date()) def test_today(self): from datetime import date compare(date.today(), d(2001, 1, 1)) compare(date.today(), d(2001, 1, 2)) compare(date.today(), d(2001, 1, 4)) @replace('datetime.date', test_date(2001, 2, 3)) def test_today_supplied(self): from datetime import date compare(date.today(), d(2001, 2, 3)) @replace('datetime.date', test_date(year=2001, month=2, day=3)) def test_today_all_kw(self): from datetime import date compare(date.today(), d(2001, 2, 3)) @replace('datetime.date', test_date(None)) def test_today_sequence(self, t): t.add(2002, 1, 1) t.add(2002, 1, 2) t.add(2002, 1, 3) from datetime import date compare(date.today(), d(2002, 1, 1)) compare(date.today(), d(2002, 1, 2)) compare(date.today(), d(2002, 1, 3)) @replace('datetime.date', test_date(None)) def test_today_requested_longer_than_supplied(self, t): t.add(2002, 1, 1) t.add(2002, 1, 2) from datetime import date compare(date.today(), d(2002, 1, 1)) compare(date.today(), d(2002, 1, 2)) compare(date.today(), d(2002, 1, 3)) compare(date.today(), d(2002, 1, 5)) @replace('datetime.date', test_date(None)) def test_add_date_supplied(self): from datetime import date date.add(d(2001, 1, 2)) date.add(date(2001, 1, 3)) compare(date.today(), d(2001, 1, 2)) compare(date.today(), d(2001, 1, 3)) def test_instantiate_with_date(self): from datetime import date t = test_date(date(2002, 1, 1)) compare(t.today(), d(2002, 1, 1)) @replace('datetime.date', test_date(strict=True)) def test_call(self, t): compare(t(2002, 1, 2), d(2002, 1, 2)) from datetime import date dt = date(2003, 2, 1) self.failIf(dt.__class__ is d) compare(dt, d(2003, 2, 1)) def test_gotcha_import(self): # standard `replace` caveat, make sure you # patch all revelent places where date # has been imported: @replace('datetime.date', test_date()) def test_something(): from datetime import date compare(date.today(), d(2001, 1, 1)) compare(sample1.str_today_1(), '2001-01-02') with ShouldRaise(AssertionError) as s: test_something() # This convoluted check is because we can't stub # out the date, since we're testing stubbing out # the date ;-) j, dt1, j, dt2, j = s.raised.args[0].split("'") # check we can parse the date dt1 = strptime(dt1, '%Y-%m-%d') # check the dt2 bit was as it should be compare(dt2, '2001-01-02') # What you need to do is replace the imported type: @replace('testfixtures.tests.sample1.date', test_date()) def test_something(): compare(sample1.str_today_1(), '2001-01-01') test_something() def test_gotcha_import_and_obtain(self): # Another gotcha is where people have locally obtained # a class attributes, where the normal patching doesn't # work: @replace('testfixtures.tests.sample1.date', test_date()) def test_something(): compare(sample1.str_today_2(), '2001-01-01') with ShouldRaise(AssertionError) as s: test_something() # This convoluted check is because we can't stub # out the date, since we're testing stubbing out # the date ;-) j, dt1, j, dt2, j = s.raised.args[0].split("'") # check we can parse the date dt1 = strptime(dt1, '%Y-%m-%d') # check the dt2 bit was as it should be compare(dt2, '2001-01-01') # What you need to do is replace the imported name: @replace('testfixtures.tests.sample1.today', test_date().today) def test_something(): compare(sample1.str_today_2(), '2001-01-01') test_something() # if you have an embedded `today` as above, *and* you need to supply # a list of required dates, then it's often simplest just to # do a manual try-finally with a replacer: def test_import_and_obtain_with_lists(self): t = test_date(None) t.add(2002, 1, 1) t.add(2002, 1, 2) from testfixtures import Replacer r = Replacer() r.replace('testfixtures.tests.sample1.today', t.today) try: compare(sample1.str_today_2(), '2002-01-01') compare(sample1.str_today_2(), '2002-01-02') finally: r.restore() @replace('datetime.date', test_date()) def test_repr(self): from datetime import date compare(repr(date), "<class 'testfixtures.tdatetime.tdate'>") @replace('datetime.date', test_date(delta=2)) def test_delta(self): from datetime import date compare(date.today(), d(2001, 1, 1)) compare(date.today(), d(2001, 1, 3)) compare(date.today(), d(2001, 1, 5)) @replace('datetime.date', test_date(delta_type='weeks')) def test_delta_type(self): from datetime import date compare(date.today(), d(2001, 1, 1)) compare(date.today(), d(2001, 1, 8)) compare(date.today(), d(2001, 1, 22)) @replace('datetime.date', test_date(None)) def test_set(self): from datetime import date date.set(2001, 1, 2) compare(date.today(), d(2001, 1, 2)) date.set(2002, 1, 1) compare(date.today(), d(2002, 1, 1)) compare(date.today(), d(2002, 1, 3)) @replace('datetime.date', test_date(None)) def test_set_date_supplied(self): from datetime import date date.set(d(2001, 1, 2)) compare(date.today(), d(2001, 1, 2)) date.set(date(2001, 1, 3)) compare(date.today(), d(2001, 1, 3)) @replace('datetime.date', test_date(None)) def test_set_kw(self): from datetime import date date.set(year=2001, month=1, day=2) compare(date.today(), d(2001, 1, 2)) @replace('datetime.date', test_date(None)) def test_add_kw(self, t): t.add(year=2002, month=1, day=1) from datetime import date compare(date.today(), d(2002, 1, 1)) @replace('datetime.date', test_date(strict=True)) def test_isinstance_strict_true(self): from datetime import date to_check = [] to_check.append(date(1999, 1, 1)) to_check.append(date.today()) date.set(2001, 1, 2) to_check.append(date.today()) date.add(2001, 1, 3) to_check.append(date.today()) to_check.append(date.today()) date.set(date(2001, 1, 4)) to_check.append(date.today()) date.add(date(2001, 1, 5)) to_check.append(date.today()) to_check.append(date.today()) date.set(d(2001, 1, 4)) to_check.append(date.today()) date.add(d(2001, 1, 5)) to_check.append(date.today()) to_check.append(date.today()) for inst in to_check: self.failUnless(isinstance(inst, date), inst) self.failUnless(inst.__class__ is date, inst) self.failUnless(isinstance(inst, d), inst) self.failIf(inst.__class__ is d, inst) @replace('datetime.date', test_date()) def test_isinstance_default(self): from datetime import date to_check = [] to_check.append(date(1999, 1, 1)) to_check.append(date.today()) date.set(2001, 1, 2) to_check.append(date.today()) date.add(2001, 1, 3) to_check.append(date.today()) to_check.append(date.today()) date.set(date(2001, 1, 4)) to_check.append(date.today()) date.add(date(2001, 1, 5)) to_check.append(date.today()) to_check.append(date.today()) date.set(d(2001, 1, 4)) to_check.append(date.today()) date.add(d(2001, 1, 5)) to_check.append(date.today()) to_check.append(date.today()) for inst in to_check: self.failIf(isinstance(inst, date), inst) self.failIf(inst.__class__ is date, inst) self.failUnless(isinstance(inst, d), inst) self.failUnless(inst.__class__ is d, inst) def test_tick_when_static(self): date = test_date(delta=0) compare(date.today(), expected=d(2001, 1, 1)) date.tick(days=1) compare(date.today(), expected=d(2001, 1, 2)) def test_tick_when_dynamic(self): # hopefully not that common? date = test_date() compare(date.today(), expected=date(2001, 1, 1)) date.tick(days=1) compare(date.today(), expected=date(2001, 1, 3)) def test_tick_with_timedelta_instance(self): date = test_date(delta=0) compare(date.today(), expected=d(2001, 1, 1)) date.tick(timedelta(days=1)) compare(date.today(), expected=d(2001, 1, 2))
py
b40682f761f6eb1db7904ef86c2757986e4ee177
""" Contour segmentation """ """ This file is part of Cytometer Copyright 2021 Medical Research Council SPDX-License-Identifier: Apache-2.0 Author: Ramon Casero <[email protected]> """ # cross-platform home directory from pathlib import Path home = str(Path.home()) # PyCharm automatically adds cytometer to the python path, but this doesn't happen if the script is run # with "python scriptname.py" import os import sys sys.path.extend([os.path.join(home, 'Software/cytometer')]) import pickle import inspect # other imports import glob import shutil import datetime import numpy as np import matplotlib.pyplot as plt # use CPU for testing on laptop #os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 #os.environ["CUDA_VISIBLE_DEVICES"] = "" # limit number of GPUs os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3' os.environ['KERAS_BACKEND'] = 'tensorflow' import keras import keras.backend as K from keras.models import Model from keras.layers import Input, Conv2D, MaxPooling2D, AvgPool2D, Activation # for data parallelism in keras models from keras.utils import multi_gpu_model import cytometer.data import cytometer.model_checkpoint_parallel import random import tensorflow as tf # # limit GPU memory used # from keras.backend.tensorflow_backend import set_session # config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction = 1.0 # set_session(tf.Session(config=config)) # specify data format as (n, row, col, channel) K.set_image_data_format('channels_last') DEBUG = False # number of blocks to split each image into so that training fits into GPU memory nblocks = 2 # number of folds for k-fold cross validation n_folds = 11 # number of epochs for training epochs = 20 '''Directories and filenames ''' # data paths root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') training_dir = os.path.join(root_data_dir, 'klf14_b6ntac_training') training_non_overlap_data_dir = os.path.join(root_data_dir, 'klf14_b6ntac_training_non_overlap') training_augmented_dir = os.path.join(root_data_dir, 'klf14_b6ntac_training_augmented') saved_models_dir = os.path.join(root_data_dir, 'saved_models') # script name to identify this experiment experiment_id = inspect.getfile(inspect.currentframe()) if experiment_id == '<input>': experiment_id = 'unknownscript' else: experiment_id = os.path.splitext(os.path.basename(experiment_id))[0] '''CNN Model ''' def fcn_sherrah2016_classifier(input_shape, for_receptive_field=False): input = Input(shape=input_shape, dtype='float32', name='input_image') x = Conv2D(filters=32, kernel_size=(5, 5), strides=1, dilation_rate=1, padding='same')(input) if for_receptive_field: x = Activation('linear')(x) x = AvgPool2D(pool_size=(3, 3), strides=1, padding='same')(x) else: x = Activation('relu')(x) x = MaxPooling2D(pool_size=(3, 3), strides=1, padding='same')(x) x = Conv2D(filters=int(96/2), kernel_size=(5, 5), strides=1, dilation_rate=2, padding='same')(x) if for_receptive_field: x = Activation('linear')(x) x = AvgPool2D(pool_size=(5, 5), strides=1, padding='same')(x) else: x = Activation('relu')(x) x = MaxPooling2D(pool_size=(5, 5), strides=1, padding='same')(x) x = Conv2D(filters=int(128/2), kernel_size=(3, 3), strides=1, dilation_rate=4, padding='same')(x) if for_receptive_field: x = Activation('linear')(x) x = AvgPool2D(pool_size=(9, 9), strides=1, padding='same')(x) else: x = Activation('relu')(x) x = MaxPooling2D(pool_size=(9, 9), strides=1, padding='same')(x) x = Conv2D(filters=int(196/2), kernel_size=(3, 3), strides=1, dilation_rate=8, padding='same')(x) if for_receptive_field: x = Activation('linear')(x) x = AvgPool2D(pool_size=(17, 17), strides=1, padding='same')(x) else: x = Activation('relu')(x) x = MaxPooling2D(pool_size=(17, 17), strides=1, padding='same')(x) x = Conv2D(filters=int(512/2), kernel_size=(3, 3), strides=1, dilation_rate=16, padding='same')(x) if for_receptive_field: x = Activation('linear')(x) else: x = Activation('relu')(x) # dimensionality reduction x = Conv2D(filters=1, kernel_size=(1, 1), strides=1, dilation_rate=1, padding='same')(x) # classification output classification_output = Activation('hard_sigmoid', name='classification_output')(x) return Model(inputs=input, outputs=[classification_output]) '''Prepare folds ''' # list of original training images, pre-augmentation im_orig_file_list = glob.glob(os.path.join(training_augmented_dir, 'im_*_nan_*.tif')) # number of original training images n_orig_im = len(im_orig_file_list) # create k-fold sets to split the data into training vs. testing kfold_seed = 0 random.seed(kfold_seed) idx = random.sample(range(n_orig_im), n_orig_im) idx_test_all = np.array_split(idx, n_folds) # save the k-fold description for future reference saved_model_datainfo_filename = os.path.join(saved_models_dir, experiment_id + '_info.pickle') with open(saved_model_datainfo_filename, 'wb') as f: x = {'file_list': im_orig_file_list, 'idx_test_all': idx_test_all, 'kfold_seed': kfold_seed} pickle.dump(x, f, pickle.HIGHEST_PROTOCOL) # loop each fold: we split the data into train vs test, train a model, and compute errors with the # test data. In each fold, the test data is different # for i_fold, idx_test in enumerate(idx_test_all): for i_fold, idx_test in enumerate([idx_test_all[0]]): '''Load data ''' # split the data into training and testing datasets im_test_file_list, im_train_file_list = cytometer.data.split_list(im_orig_file_list, idx_test) # add the augmented image files im_train_file_list = cytometer.data.augment_file_list(im_train_file_list, '_nan_', '_*_') im_test_file_list = cytometer.data.augment_file_list(im_test_file_list, '_nan_', '_*_') # load the train and test data: im, seg, dmap and mask data train_dataset, train_file_list, train_shuffle_idx = \ cytometer.data.load_datasets(im_train_file_list, prefix_from='im', prefix_to=['im', 'seg', 'mask'], nblocks=nblocks, shuffle_seed=i_fold) test_dataset, test_file_list, test_shuffle_idx = \ cytometer.data.load_datasets(im_test_file_list, prefix_from='im', prefix_to=['im', 'seg', 'mask'], nblocks=nblocks, shuffle_seed=i_fold) # remove training data where the mask has very few valid pixels train_dataset = cytometer.data.remove_poor_data(train_dataset, prefix='mask', threshold=1000) test_dataset = cytometer.data.remove_poor_data(test_dataset, prefix='mask', threshold=1000) if DEBUG: i = 150 plt.clf() for pi, prefix in enumerate(train_dataset.keys()): plt.subplot(1, len(train_dataset.keys()), pi + 1) if train_dataset[prefix].shape[-1] < 3: plt.imshow(train_dataset[prefix][i, :, :, 0]) else: plt.imshow(train_dataset[prefix][i, :, :, :]) plt.title('out[' + prefix + ']') i = 22 plt.clf() for pi, prefix in enumerate(test_dataset.keys()): plt.subplot(1, len(test_dataset.keys()), pi + 1) if test_dataset[prefix].shape[-1] < 3: plt.imshow(test_dataset[prefix][i, :, :, 0]) else: plt.imshow(test_dataset[prefix][i, :, :, :]) plt.title('out[' + prefix + ']') '''Convolutional neural network training Note: you need to use my branch of keras with the new functionality, that allows element-wise weights of the loss function ''' # list all CPUs and GPUs device_list = K.get_session().list_devices() # number of GPUs gpu_number = np.count_nonzero(['GPU' in str(x) for x in device_list]) # instantiate model with tf.device('/cpu:0'): model = fcn_sherrah2016_classifier(input_shape=train_dataset['im'].shape[1:]) saved_model_filename = os.path.join(saved_models_dir, experiment_id + '_model_fold_' + str(i_fold) + '.h5') if gpu_number > 1: # compile and train model: Multiple GPUs # checkpoint to save model after each epoch checkpointer = cytometer.model_checkpoint_parallel.ModelCheckpoint(filepath=saved_model_filename, verbose=1, save_best_only=True) # compile model parallel_model = multi_gpu_model(model, gpus=gpu_number) parallel_model.compile(loss={'classification_output': 'binary_crossentropy'}, optimizer='Adadelta', metrics={'classification_output': 'accuracy'}, sample_weight_mode='element') # train model tic = datetime.datetime.now() parallel_model.fit(train_dataset['im'], {'classification_output': train_dataset['seg']}, sample_weight={'classification_output': train_dataset['mask'][..., 0]}, validation_data=(test_dataset['im'], {'classification_output': test_dataset['seg']}, {'classification_output': test_dataset['mask'][..., 0]}), batch_size=10, epochs=epochs, initial_epoch=0, callbacks=[checkpointer]) toc = datetime.datetime.now() print('Training duration: ' + str(toc - tic)) else: # compile and train model: One GPU # checkpoint to save model after each epoch checkpointer = keras.callbacks.ModelCheckpoint(filepath=saved_model_filename, verbose=1, save_best_only=True) # compile model model.compile(loss={'classification_output': 'binary_crossentropy'}, optimizer='Adadelta', metrics={'classification_output': 'accuracy'}, sample_weight_mode='element') # train model tic = datetime.datetime.now() model.fit(train_dataset['im'], {'classification_output': train_dataset['seg']}, sample_weight={'classification_output': train_dataset['mask'][..., 0]}, validation_data=(test_dataset['im'], {'classification_output': test_dataset['seg']}, {'classification_output': test_dataset['mask'][..., 0]}), batch_size=10, epochs=epochs, initial_epoch=0, callbacks=[checkpointer]) toc = datetime.datetime.now() print('Training duration: ' + str(toc - tic)) # if we run the script with qsub on the cluster, the standard output is in file # klf14_b6ntac_exp_0001_cnn_dmap_contour.sge.sh.oPID where PID is the process ID # Save it to saved_models directory log_filename = os.path.join(saved_models_dir, experiment_id + '.log') stdout_filename = os.path.join(home, 'Software', 'cytometer', 'scripts', experiment_id + '.sge.sh.o*') stdout_filename = glob.glob(stdout_filename)[0] if stdout_filename and os.path.isfile(stdout_filename): shutil.copy2(stdout_filename, log_filename) else: # if we ran the script with nohup in linux, the standard output is in file nohup.out. # Save it to saved_models directory log_filename = os.path.join(saved_models_dir, experiment_id + '.log') nohup_filename = os.path.join(home, 'Software', 'cytometer', 'scripts', 'nohup.out') if os.path.isfile(nohup_filename): shutil.copy2(nohup_filename, log_filename)
py
b406843ee5b73c4ff70e44e48a6a2762785dd492
#!/usr/bin/env python # coding: utf-8 # # Author: Kazuto Nakashima # URL: http://kazuto1011.github.io # Created: 2017-11-19 from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.model_zoo as model_zoo class _ConvBatchNormReLU(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, relu=True): super(_ConvBatchNormReLU, self).__init__() self.add_module( 'conv', nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False, ), ) self.add_module( 'bn', nn.BatchNorm2d( num_features=out_channels, eps=1e-5, momentum=0.999, affine=True, ), ) if relu: self.add_module('relu', nn.ReLU()) def forward(self, x): return super(_ConvBatchNormReLU, self).forward(x) class _Bottleneck(nn.Sequential): """Bottleneck Unit""" def __init__(self, in_channels, mid_channels, out_channels, stride, dilation, downsample): super(_Bottleneck, self).__init__() self.reduce = _ConvBatchNormReLU(in_channels, mid_channels, 1, stride, 0, 1) self.conv3x3 = _ConvBatchNormReLU(mid_channels, mid_channels, 3, 1, dilation, dilation) self.increase = _ConvBatchNormReLU(mid_channels, out_channels, 1, 1, 0, 1, relu=False) self.downsample = downsample if self.downsample: self.proj = _ConvBatchNormReLU(in_channels, out_channels, 1, stride, 0, 1, relu=False) def forward(self, x): h = self.reduce(x) h = self.conv3x3(h) h = self.increase(h) if self.downsample: h += self.proj(x) else: h += x return F.relu(h) class _ResBlock(nn.Sequential): """Residual Block""" def __init__(self, n_layers, in_channels, mid_channels, out_channels, stride, dilation): super(_ResBlock, self).__init__() self.add_module('block1', _Bottleneck(in_channels, mid_channels, out_channels, stride, dilation, True)) for i in range(2, n_layers + 1): self.add_module('block' + str(i), _Bottleneck(out_channels, mid_channels, out_channels, 1, dilation, False)) def __call__(self, x): return super(_ResBlock, self).forward(x) class _ResBlockMG(nn.Sequential): """3x Residual Block with multi-grid""" def __init__(self, n_layers, in_channels, mid_channels, out_channels, stride, dilation, mg=[1, 2, 1]): super(_ResBlockMG, self).__init__() self.add_module('block1', _Bottleneck(in_channels, mid_channels, out_channels, stride, dilation * mg[0], True)) self.add_module('block2', _Bottleneck(out_channels, mid_channels, out_channels, 1, dilation * mg[1], False)) self.add_module('block3', _Bottleneck(out_channels, mid_channels, out_channels, 1, dilation * mg[2], False)) def __call__(self, x): return super(_ResBlockMG, self).forward(x)
py
b406848635fb87b7adf4aeb40dc3d4dc148a64cd
OO_MODULE_LEN = 4
py
b406848b5fbf1e52c431982d301299fb752dd1f2
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import glob import itertools import os.path import re import weakref from oslo_config import cfg from oslo_log import log from oslo_utils import fnmatch import six from heat.common import environment_format as env_fmt from heat.common import exception from heat.common.i18n import _ from heat.common.i18n import _LE from heat.common.i18n import _LI from heat.common.i18n import _LW from heat.common import policy from heat.engine import support LOG = log.getLogger(__name__) HOOK_TYPES = ( HOOK_PRE_CREATE, HOOK_PRE_UPDATE, HOOK_PRE_DELETE, HOOK_POST_CREATE, HOOK_POST_UPDATE, HOOK_POST_DELETE ) = ( 'pre-create', 'pre-update', 'pre-delete', 'post-create', 'post-update', 'post-delete' ) RESTRICTED_ACTIONS = (UPDATE, REPLACE) = ('update', 'replace') def valid_hook_type(hook): return hook in HOOK_TYPES def valid_restricted_actions(action): return action in RESTRICTED_ACTIONS def is_hook_definition(key, value): is_valid_hook = False if key == 'hooks': if isinstance(value, six.string_types): is_valid_hook = valid_hook_type(value) elif isinstance(value, collections.Sequence): is_valid_hook = all(valid_hook_type(hook) for hook in value) if not is_valid_hook: msg = (_('Invalid hook type "%(value)s" for resource ' 'breakpoint, acceptable hook types are: %(types)s') % {'value': value, 'types': HOOK_TYPES}) raise exception.InvalidBreakPointHook(message=msg) return is_valid_hook def is_valid_restricted_action(key, value): valid_action = False if key == 'restricted_actions': if isinstance(value, six.string_types): valid_action = valid_restricted_actions(value) elif isinstance(value, collections.Sequence): valid_action = all(valid_restricted_actions( action) for action in value) if not valid_action: msg = (_('Invalid restricted_action type "%(value)s" for ' 'resource, acceptable restricted_action ' 'types are: %(types)s') % {'value': value, 'types': RESTRICTED_ACTIONS}) raise exception.InvalidRestrictedAction(message=msg) return valid_action class ResourceInfo(object): """Base mapping of resource type to implementation.""" def __new__(cls, registry, path, value, **kwargs): """Create a new ResourceInfo of the appropriate class.""" if cls != ResourceInfo: # Call is already for a subclass, so pass it through return super(ResourceInfo, cls).__new__(cls) name = path[-1] if name.endswith(('.yaml', '.template')): # a template url for the resource "Type" return TemplateResourceInfo(registry, path, value) elif not isinstance(value, six.string_types): return ClassResourceInfo(registry, path, value) elif value.endswith(('.yaml', '.template')): # a registered template return TemplateResourceInfo(registry, path, value) elif name.endswith('*'): return GlobResourceInfo(registry, path, value) else: return MapResourceInfo(registry, path, value) def __init__(self, registry, path, value): self._registry = weakref.ref(registry) self.path = path self.name = path[-1] self.value = value self.user_resource = True @property def registry(self): return self._registry() def __eq__(self, other): if other is None: return False return (self.path == other.path and self.value == other.value and self.user_resource == other.user_resource) def __ne__(self, other): return not self.__eq__(other) def __lt__(self, other): if self.user_resource != other.user_resource: # user resource must be sorted above system ones. return self.user_resource > other.user_resource if len(self.path) != len(other.path): # more specific (longer) path must be sorted above system ones. return len(self.path) > len(other.path) return self.path < other.path def __gt__(self, other): return other.__lt__(self) def get_resource_info(self, resource_type=None, resource_name=None): return self def matches(self, resource_type): return False def get_class(self): raise NotImplemented def get_class_to_instantiate(self): return self.get_class() def __str__(self): return '[%s](User:%s) %s -> %s' % (self.description, self.user_resource, self.name, str(self.value)) class ClassResourceInfo(ResourceInfo): """Store the mapping of resource name to python class implementation.""" description = 'Plugin' def get_class(self, files=None): return self.value class TemplateResourceInfo(ResourceInfo): """Store the info needed to start a TemplateResource.""" description = 'Template' def __init__(self, registry, path, value): super(TemplateResourceInfo, self).__init__(registry, path, value) if self.name.endswith(('.yaml', '.template')): self.template_name = self.name else: self.template_name = value self.value = self.template_name def get_class(self, files=None): from heat.engine.resources import template_resource if files and self.template_name in files: data = files[self.template_name] else: if self.user_resource: allowed_schemes = template_resource.REMOTE_SCHEMES else: allowed_schemes = template_resource.LOCAL_SCHEMES data = template_resource.TemplateResource.get_template_file( self.template_name, allowed_schemes) param_defaults = self.registry.param_defaults return template_resource.generate_class_from_template(str(self.name), data, param_defaults) def get_class_to_instantiate(self): from heat.engine.resources import template_resource return template_resource.TemplateResource class MapResourceInfo(ResourceInfo): """Store the mapping of one resource type to another. like: OS::Networking::FloatingIp -> OS::Neutron::FloatingIp """ description = 'Mapping' def get_class(self, files=None): return None def get_resource_info(self, resource_type=None, resource_name=None): return self.registry.get_resource_info(self.value, resource_name) class GlobResourceInfo(MapResourceInfo): """Store the mapping (with wild cards) of one resource type to another. like: OS::Networking::* -> OS::Neutron::* Also supports many-to-one mapping (mostly useful together with special "OS::Heat::None" resource) like: OS::* -> OS::Heat::None """ description = 'Wildcard Mapping' def get_resource_info(self, resource_type=None, resource_name=None): # NOTE(pas-ha) we end up here only when self.name already # ends with * so truncate it orig_prefix = self.name[:-1] if self.value.endswith('*'): new_type = self.value[:-1] + resource_type[len(orig_prefix):] else: new_type = self.value return self.registry.get_resource_info(new_type, resource_name) def matches(self, resource_type): # prevent self-recursion in case of many-to-one mapping match = (resource_type != self.value and resource_type.startswith(self.name[:-1])) return match class ResourceRegistry(object): """By looking at the environment, find the resource implementation.""" def __init__(self, global_registry, param_defaults): self._registry = {'resources': {}} self.global_registry = global_registry self.param_defaults = param_defaults def load(self, json_snippet): self._load_registry([], json_snippet) def register_class(self, resource_type, resource_class, path=None): if path is None: path = [resource_type] ri = ResourceInfo(self, path, resource_class) self._register_info(path, ri) def _load_registry(self, path, registry): for k, v in iter(registry.items()): if v is None: self._register_info(path + [k], None) elif is_hook_definition(k, v) or is_valid_restricted_action(k, v): self._register_item(path + [k], v) elif isinstance(v, dict): self._load_registry(path + [k], v) else: self._register_info(path + [k], ResourceInfo(self, path + [k], v)) def _register_item(self, path, item): name = path[-1] registry = self._registry for key in path[:-1]: if key not in registry: registry[key] = {} registry = registry[key] registry[name] = item def _register_info(self, path, info): """Place the new info in the correct location in the registry. :param path: a list of keys ['resources', 'my_srv', 'OS::Nova::Server'] """ descriptive_path = '/'.join(path) name = path[-1] # create the structure if needed registry = self._registry for key in path[:-1]: if key not in registry: registry[key] = {} registry = registry[key] if info is None: if name.endswith('*'): # delete all matching entries. for res_name in list(six.iterkeys(registry)): if (isinstance(registry[res_name], ResourceInfo) and res_name.startswith(name[:-1])): LOG.warning(_LW('Removing %(item)s from %(path)s'), { 'item': res_name, 'path': descriptive_path}) del registry[res_name] else: # delete this entry. LOG.warning(_LW('Removing %(item)s from %(path)s'), { 'item': name, 'path': descriptive_path}) registry.pop(name, None) return if name in registry and isinstance(registry[name], ResourceInfo): if registry[name] == info: return details = { 'path': descriptive_path, 'was': str(registry[name].value), 'now': str(info.value)} LOG.warning(_LW('Changing %(path)s from %(was)s to %(now)s'), details) if isinstance(info, ClassResourceInfo): if info.value.support_status.status != support.SUPPORTED: if info.value.support_status.message is not None: details = { 'name': info.name, 'status': six.text_type( info.value.support_status.status), 'message': six.text_type( info.value.support_status.message) } LOG.warning(_LW('%(name)s is %(status)s. %(message)s'), details) info.user_resource = (self.global_registry is not None) registry[name] = info def log_resource_info(self, show_all=False, prefix=None): registry = self._registry prefix = '%s ' % prefix if prefix is not None else '' for name in registry: if name == 'resources': continue if show_all or isinstance(registry[name], TemplateResourceInfo): msg = (_LI('%(p)sRegistered: %(t)s') % {'p': prefix, 't': six.text_type(registry[name])}) LOG.info(msg) def remove_item(self, info): if not isinstance(info, TemplateResourceInfo): return registry = self._registry for key in info.path[:-1]: registry = registry[key] if info.path[-1] in registry: registry.pop(info.path[-1]) def get_rsrc_restricted_actions(self, resource_name): """Returns a set of restricted actions. For a given resource we get the set of restricted actions. Actions are set in this format via `resources`: { "restricted_actions": [update, replace] } A restricted_actions value is either `update`, `replace` or a list of those values. Resources support wildcard matching. The asterisk sign matches everything. """ ress = self._registry['resources'] restricted_actions = set() for name_pattern, resource in six.iteritems(ress): if fnmatch.fnmatchcase(resource_name, name_pattern): if 'restricted_actions' in resource: actions = resource['restricted_actions'] if isinstance(actions, six.string_types): restricted_actions.add(actions) elif isinstance(actions, collections.Sequence): restricted_actions |= set(actions) return restricted_actions def matches_hook(self, resource_name, hook): """Return whether a resource have a hook set in the environment. For a given resource and a hook type, we check to see if the passed group of resources has the right hook associated with the name. Hooks are set in this format via `resources`: { "res_name": { "hooks": [pre-create, pre-update] }, "*_suffix": { "hooks": pre-create }, "prefix_*": { "hooks": pre-update } } A hook value is either `pre-create`, `pre-update` or a list of those values. Resources support wildcard matching. The asterisk sign matches everything. """ ress = self._registry['resources'] for name_pattern, resource in six.iteritems(ress): if fnmatch.fnmatchcase(resource_name, name_pattern): if 'hooks' in resource: hooks = resource['hooks'] if isinstance(hooks, six.string_types): if hook == hooks: return True elif isinstance(hooks, collections.Sequence): if hook in hooks: return True return False def remove_resources_except(self, resource_name): ress = self._registry['resources'] new_resources = {} for name, res in six.iteritems(ress): if fnmatch.fnmatchcase(resource_name, name): new_resources.update(res) if resource_name in ress: new_resources.update(ress[resource_name]) self._registry['resources'] = new_resources def iterable_by(self, resource_type, resource_name=None): is_templ_type = resource_type.endswith(('.yaml', '.template')) if self.global_registry is not None and is_templ_type: # we only support dynamic resource types in user environments # not the global environment. # resource with a Type == a template # we dynamically create an entry as it has not been registered. if resource_type not in self._registry: res = ResourceInfo(self, [resource_type], None) self._register_info([resource_type], res) yield self._registry[resource_type] # handle a specific resource mapping. if resource_name: impl = self._registry['resources'].get(resource_name) if impl and resource_type in impl: yield impl[resource_type] # handle: "OS::Nova::Server" -> "Rackspace::Cloud::Server" impl = self._registry.get(resource_type) if impl: yield impl # handle: "OS::*" -> "Dreamhost::*" def is_a_glob(resource_type): return resource_type.endswith('*') globs = six.moves.filter(is_a_glob, six.iterkeys(self._registry)) for pattern in globs: if self._registry[pattern].matches(resource_type): yield self._registry[pattern] def get_resource_info(self, resource_type, resource_name=None, registry_type=None, ignore=None): """Find possible matches to the resource type and name. Chain the results from the global and user registry to find a match. """ # use cases # 1) get the impl. # - filter_by(res_type=X), sort_by(res_name=W, is_user=True) # 2) in TemplateResource we need to get both the # TemplateClass and the ResourceClass # - filter_by(res_type=X, impl_type=TemplateResourceInfo), # sort_by(res_name=W, is_user=True) # - filter_by(res_type=X, impl_type=ClassResourceInfo), # sort_by(res_name=W, is_user=True) # 3) get_types() from the api # - filter_by(is_user=False) # 4) as_dict() to write to the db # - filter_by(is_user=True) if self.global_registry is not None: giter = self.global_registry.iterable_by(resource_type, resource_name) else: giter = [] matches = itertools.chain(self.iterable_by(resource_type, resource_name), giter) for info in sorted(matches): try: match = info.get_resource_info(resource_type, resource_name) except exception.EntityNotFound: continue if registry_type is None or isinstance(match, registry_type): if ignore is not None and match == ignore: continue # NOTE(prazumovsky): if resource_type defined in outer env # there is a risk to lose it due to h-eng restarting, so # store it to local env (exclude ClassResourceInfo because it # loads from resources; TemplateResourceInfo handles by # template_resource module). if (match and not match.user_resource and not isinstance(info, (TemplateResourceInfo, ClassResourceInfo))): self._register_info([resource_type], info) return match raise exception.EntityNotFound(entity='Resource Type', name=resource_type) def get_class(self, resource_type, resource_name=None, files=None): info = self.get_resource_info(resource_type, resource_name=resource_name) return info.get_class(files=files) def get_class_to_instantiate(self, resource_type, resource_name=None): if resource_type == "": msg = _('Resource "%s" has no type') % resource_name raise exception.StackValidationFailed(message=msg) elif resource_type is None: msg = _('Non-empty resource type is required ' 'for resource "%s"') % resource_name raise exception.StackValidationFailed(message=msg) elif not isinstance(resource_type, six.string_types): msg = _('Resource "%s" type is not a string') % resource_name raise exception.StackValidationFailed(message=msg) try: info = self.get_resource_info(resource_type, resource_name=resource_name) except exception.EntityNotFound as exc: raise exception.StackValidationFailed(message=six.text_type(exc)) return info.get_class_to_instantiate() def as_dict(self): """Return user resources in a dict format.""" def _as_dict(level): tmp = {} for k, v in iter(level.items()): if isinstance(v, dict): tmp[k] = _as_dict(v) elif is_hook_definition( k, v) or is_valid_restricted_action(k, v): tmp[k] = v elif v.user_resource: tmp[k] = v.value return tmp return _as_dict(self._registry) def get_types(self, cnxt=None, support_status=None, type_name=None, version=None, with_description=False): """Return a list of valid resource types.""" # validate the support status if support_status is not None and not support.is_valid_status( support_status): msg = (_('Invalid support status and should be one of %s') % six.text_type(support.SUPPORT_STATUSES)) raise exception.Invalid(reason=msg) def is_resource(key): return isinstance(self._registry[key], (ClassResourceInfo, TemplateResourceInfo)) def status_matches(cls): return (support_status is None or cls.get_class().support_status.status == support_status) def is_available(cls): if cnxt is None: return True try: return cls.get_class().is_service_available(cnxt) except Exception: return False def not_hidden_matches(cls): return cls.get_class().support_status.status != support.HIDDEN def is_allowed(enforcer, name): if cnxt is None: return True try: enforcer.enforce(cnxt, name) except enforcer.exc: return False else: return True enforcer = policy.ResourceEnforcer() def name_matches(name): try: return type_name is None or re.match(type_name, name) except: # noqa return False def version_matches(cls): return (version is None or cls.get_class().support_status.version == version) def resource_description(name, cls, with_description): if not with_description: return name if cls.description == 'Plugin': rsrc = cls.value elif cls.description == 'Template': rsrc = cls.get_class() else: rsrc = None return { 'resource_type': name, 'description': rsrc.__doc__} return [resource_description(name, cls, with_description) for name, cls in six.iteritems(self._registry) if (is_resource(name) and name_matches(name) and status_matches(cls) and is_available(cls) and is_allowed(enforcer, name) and not_hidden_matches(cls) and version_matches(cls))] class Environment(object): def __init__(self, env=None, user_env=True): """Create an Environment from an input dict. The dict may be in one of two formats: 1) old-school flat parameters; or 2) newer {resource_registry: bla, parameters: foo} :param env: the json environment :param user_env: boolean, if False then we manage python resources too. """ if env is None: env = {} if user_env: from heat.engine import resources global_env = resources.global_env() global_registry = global_env.registry event_sink_classes = global_env.event_sink_classes else: global_registry = None event_sink_classes = {} self.param_defaults = env.get(env_fmt.PARAMETER_DEFAULTS, {}) self.registry = ResourceRegistry(global_registry, self.param_defaults) self.registry.load(env.get(env_fmt.RESOURCE_REGISTRY, {})) self.encrypted_param_names = env.get(env_fmt.ENCRYPTED_PARAM_NAMES, []) if env_fmt.PARAMETERS in env: self.params = env[env_fmt.PARAMETERS] else: self.params = dict((k, v) for (k, v) in six.iteritems(env) if k not in (env_fmt.PARAMETER_DEFAULTS, env_fmt.ENCRYPTED_PARAM_NAMES, env_fmt.EVENT_SINKS, env_fmt.RESOURCE_REGISTRY)) self.event_sink_classes = event_sink_classes self._event_sinks = [] self._built_event_sinks = [] self._update_event_sinks(env.get(env_fmt.EVENT_SINKS, [])) self.constraints = {} self.stack_lifecycle_plugins = [] def load(self, env_snippet): self.registry.load(env_snippet.get(env_fmt.RESOURCE_REGISTRY, {})) self.params.update(env_snippet.get(env_fmt.PARAMETERS, {})) self.param_defaults.update( env_snippet.get(env_fmt.PARAMETER_DEFAULTS, {})) self._update_event_sinks(env_snippet.get(env_fmt.EVENT_SINKS, [])) def user_env_as_dict(self): """Get the environment as a dict, ready for storing in the db.""" return {env_fmt.RESOURCE_REGISTRY: self.registry.as_dict(), env_fmt.PARAMETERS: self.params, env_fmt.PARAMETER_DEFAULTS: self.param_defaults, env_fmt.ENCRYPTED_PARAM_NAMES: self.encrypted_param_names, env_fmt.EVENT_SINKS: self._event_sinks} def register_class(self, resource_type, resource_class, path=None): self.registry.register_class(resource_type, resource_class, path=path) def register_constraint(self, constraint_name, constraint): self.constraints[constraint_name] = constraint def register_stack_lifecycle_plugin(self, stack_lifecycle_name, stack_lifecycle_class): self.stack_lifecycle_plugins.append((stack_lifecycle_name, stack_lifecycle_class)) def register_event_sink(self, event_sink_name, event_sink_class): self.event_sink_classes[event_sink_name] = event_sink_class def get_class(self, resource_type, resource_name=None, files=None): return self.registry.get_class(resource_type, resource_name, files=files) def get_class_to_instantiate(self, resource_type, resource_name=None): return self.registry.get_class_to_instantiate(resource_type, resource_name) def get_types(self, cnxt=None, support_status=None, type_name=None, version=None, with_description=False): return self.registry.get_types(cnxt, support_status=support_status, type_name=type_name, version=version, with_description=with_description) def get_resource_info(self, resource_type, resource_name=None, registry_type=None, ignore=None): return self.registry.get_resource_info(resource_type, resource_name, registry_type, ignore=ignore) def get_constraint(self, name): return self.constraints.get(name) def get_stack_lifecycle_plugins(self): return self.stack_lifecycle_plugins def _update_event_sinks(self, sinks): self._event_sinks.extend(sinks) for sink in sinks: sink = sink.copy() sink_class = sink.pop('type') sink_class = self.event_sink_classes[sink_class] self._built_event_sinks.append(sink_class(**sink)) def get_event_sinks(self): return self._built_event_sinks def get_child_environment(parent_env, child_params, item_to_remove=None, child_resource_name=None): """Build a child environment using the parent environment and params. This is built from the child_params and the parent env so some resources can use user-provided parameters as if they come from an environment. 1. resource_registry must be merged (child env should be loaded after the parent env to take precedence). 2. child parameters must overwrite the parent's as they won't be relevant in the child template. If `child_resource_name` is provided, resources in the registry will be replaced with the contents of the matching child resource plus anything that passes a wildcard match. """ def is_flat_params(env_or_param): if env_or_param is None: return False for sect in env_fmt.SECTIONS: if sect in env_or_param: return False return True child_env = parent_env.user_env_as_dict() child_env[env_fmt.PARAMETERS] = {} flat_params = is_flat_params(child_params) new_env = Environment() if flat_params and child_params is not None: child_env[env_fmt.PARAMETERS] = child_params new_env.load(child_env) if not flat_params and child_params is not None: new_env.load(child_params) if item_to_remove is not None: new_env.registry.remove_item(item_to_remove) if child_resource_name: new_env.registry.remove_resources_except(child_resource_name) return new_env def read_global_environment(env, env_dir=None): if env_dir is None: cfg.CONF.import_opt('environment_dir', 'heat.common.config') env_dir = cfg.CONF.environment_dir try: env_files = glob.glob(os.path.join(env_dir, '*')) except OSError as osex: LOG.error(_LE('Failed to read %s'), env_dir) LOG.exception(osex) return for file_path in env_files: try: with open(file_path) as env_fd: LOG.info(_LI('Loading %s'), file_path) env_body = env_fmt.parse(env_fd.read()) env_fmt.default_for_missing(env_body) env.load(env_body) except ValueError as vex: LOG.error(_LE('Failed to parse %(file_path)s'), { 'file_path': file_path}) LOG.exception(vex) except IOError as ioex: LOG.error(_LE('Failed to read %(file_path)s'), { 'file_path': file_path}) LOG.exception(ioex)
py
b40688bf3217f87b535c87e18d559b6973ba3714
#!/usr/bin/env python2 # -*- coding: utf-8 -*- # Packages of Christophe from datetime import datetime import time import json import math import os, sys import socket import traceback import urllib2 as urllib import os.path user = "GW3" test = True # True to run the code locally # False to implement the code on the server # 1) Ensure to run in the user home directory # !!! MUST NOT BE CHANGED !!! if test: host = "greenwall.gembloux.uliege.be" else: host = "localhost" # Ensure to run in the user home directory DIR_BASE = os.path.expanduser("~") if not os.path.samefile(os.getcwd(), DIR_BASE): os.chdir(DIR_BASE) print(os.getcwd()) # 2)Ensure to be the only instance to run # !!! MUST NOT BE CHANGED !!! # Explanation: if another program is running, it gets killed and replaced by this one pid = str(os.getpid()) _lock_socket = socket.socket(socket.AF_UNIX, socket.SOCK_DGRAM) try: _lock_socket.bind('\0' + user) print('Socket ' + user + ' now locked for process #' + pid) # Make the current pid available to be able to kill the process... open("pid.txt", 'w').write(pid) except socket.error: current = open("pid.txt", 'r').read() print(user + ' lock exists for process #' + current + " : may be you should ./clean.sh !") sys.exit() # 3) Date determination # !!! MUST NOT BE CHANGED !!! # Explanation: EPOCH time is the number of seconds since 1/1/1970 def get_timestamp(): return int(time.time()) # Transform an EPOCH time in a lisible date (for Grafana) def formatDate(epoch): dt = datetime.fromtimestamp(epoch) return dt.isoformat() # Transform an EPOCH time in a lisible date (for Grafana) def formatDateGMT(epoch): dt = datetime.fromtimestamp(epoch - (2 * 60 * 60)) # We are in summer and in Belgium ! return dt.isoformat() delimiters = ' \t\n\r\"\'' # 4) Getting the list of all available sensors # !!! MUST NOT BE CHANGED !!! dataFile = None try: # urlopen not usable with "with" url = "http://" + host + "/api/grafana/search" dataFile = urllib.urlopen(url, json.dumps(""), 20) result = json.load(dataFile) #for index in result: #print(index) except: print(u"URL=" + (url if url else "") + \ u", Message=" + traceback.format_exc()) if dataFile: dataFile.close() # 5) Irrigation scheme: collecting sensor readings, taking a decision to irrigate or not # and sending the instructions to the valves # !!! THIS IS WHERE WE MAKE CHANGES !!! """ Objective: Your program must create a data file with one column with the Linux EPOCH time and your valve state (0=closed, 1=opened) """ while (True): # __________________________________________________________________ # a. reading all values of the last 5 minutes (5 minutes of 60 seconds) """ sensors' names: - HUM7 : first humidity sensor [V] - HUM8 : second humidity sensor [V] - HUM9 : third humidity sensor [V] - SDI11 : humidity sensor temperature [°C] """ dataFile = None try: # urlopen not usable with "with" url = "http://" + host + "/api/grafana/query" now = get_timestamp() gr = {'range': {'from': formatDateGMT(now - (1 * 5 * 60)), 'to': formatDateGMT(now)}, \ 'targets': [{'target': 'HUM7'}, {'target': 'HUM8'}, {'target': 'HUM9'}, {'target': 'SDI11'}]} data = json.dumps(gr) #print(data) dataFile = urllib.urlopen(url, data, 20) result = json.load(dataFile) if result: #print(result) for target in result: # print target index = target.get('target') for datapoint in target.get('datapoints'): value = datapoint[0] stamp = datapoint[1] / 1000 #print(index + ": " + formatDate(stamp) + " = " + str(value)) except: print(u"URL=" + (url if url else "") + \ u", Message=" + traceback.format_exc()) if dataFile: dataFile.close() # ________________________________________________________________________ # b. Choose to use Plan A or not # --------------------------------------------------------------------------- # 5.1) Parameters # Acceptable standard deviation std_threshold = 0.03 # Humidity sensor uncertainty[-] # -------------------------------------------------------------------------- # 5.2) Check for NaN values # Build lists Vraw7 = [] Vraw8 = [] Vraw9 = [] length_result = len(result[0].get('datapoints')) for i in range(0, length_result): Vraw7.append(result[0].get('datapoints')[i][0]) Vraw8.append(result[1].get('datapoints')[i][0]) Vraw9.append(result[2].get('datapoints')[i][0]) print ( """#################################### Sensor readings ####################################""" ) print 'HUM7 [V]:', Vraw7 print 'HUM8 [V]:', Vraw8 print 'HUM9 [V]:', Vraw9 # Find NaN values Vraw7_NaN = [] Vraw8_NaN = [] Vraw9_NaN = [] for i in range(0, length_result): Vraw7_NaN.append(math.isnan(Vraw7[i])) Vraw8_NaN.append(math.isnan(Vraw8[i])) Vraw9_NaN.append(math.isnan(Vraw8[i])) print ( """#################################### Presence of NaN values ####################################""" ) print 'HUM7:', Vraw7_NaN.count(True) print 'HUM8:', Vraw8_NaN.count(True) print 'HUM9:', Vraw9_NaN.count(True) # -------------------------------------------------------------------------- # 5.3). Check for outliers # build function def detect_outlier(list_data, threshold): length_list = len(list_data) # mean mean = math.fsum(list_data)/length_list # Compute mean # standard deviation var = 0 # Initialize variance for j in range(0, length_list): var += (list_data[i] - mean) ** 2 / length_list # Compute variance std = math.sqrt(var) # Compute standard deviation outliers = [] # Initialize list of outliers for y in list_data: # Loop on data z_score = (y - mean) / std # Compute z-score if abs(z_score) > threshold: # z-score compared to a threshold outliers.append(y) # y considered as an outlier return outliers # Build lists of outliers Vraw7_outliers = detect_outlier(Vraw7, 3) Vraw8_outliers = detect_outlier(Vraw8, 3) Vraw9_outliers = detect_outlier(Vraw9, 3) # Compute number of outliers per list Vraw7_NbOut = len(Vraw7_outliers) Vraw8_NbOut = len(Vraw8_outliers) Vraw9_NbOut = len(Vraw9_outliers) print ( """#################################### Presence of outliers ####################################""" ) print 'Method: z-scores' print 'HUM7:', Vraw7_NbOut print 'HUM8:', Vraw8_NbOut print 'HUM9:', Vraw9_NbOut # -------------------------------------------------------------------------- # 5.4) Compute standard deviation # mean function def std(list_data): length_list = len(list_data) # mean mean = math.fsum(list_data)/length_list # Compute mean # standard deviation var = 0 # Initialize variance for j in range(0, length_list): var += (list_data[i] - mean) ** 2 / length_list # Compute variance std = math.sqrt(var) / mean # Compute standard deviation return std std7 = std(Vraw7) std8 = std(Vraw8) std9 = std(Vraw9) print( """#################################### Standard deviation ####################################""" ) print 'Threshold [-]:',std_threshold print 'HUM7:', std7 print 'HUM8:', std8 print 'HUM9:', std9 # -------------------------------------------------------------------------- # 5.5) Can Plan A be used? # 5.5.1) Check conditions for each sensor conditionA = [] # List with 1 if OK and 0 if not OK print ( """#################################### Are sensor's readings usable? ####################################""" ) # HUM7 if ( all(x == False for x in Vraw7_NaN) and # No NaN values (std7 < std_threshold) and # Standard deviation < threshold Vraw7_NbOut == 0 # No outliers ): conditionA.append(1) print 'HUM7 can be used' else: conditionA.append(0) print 'HUM7 can not be used' # HUM8 if ( all(x == False for x in Vraw8_NaN) and # No NaN values (std8 < std_threshold) and # Standard deviation < threshold Vraw8_NbOut == 0 # No outliers ): conditionA.append(1) print 'HUM8 can be used' else: conditionA.append(0) print 'HUM8 can not be used' # HUM9 if ( all(x == False for x in Vraw9_NaN) and # No NaN values (std9 < std_threshold) and # Standard deviation < threshold Vraw9_NbOut == 0 # No outliers ): conditionA.append(1) print 'HUM9 can be used' else: conditionA.append(0) print 'HUM9 can not be used' # 5.4.2) Choose to use humidity sensors or not NbHumMin = 2 # Minimal number of operating humidity sensor if conditionA.count(1) >= NbHumMin: print("Plan A can be run") timestamp = get_timestamp() if os.path.isfile('filename.txt'): print ("File exist") # erase the current file and open the valve in 30 seconds open("filename.txt", 'a').write(str(timestamp) + ";A\n") else: print ("File not exist") file("filename.txt","w+") open("filename.txt", 'a').write(str(timestamp) + ";A\n") # Irrigate with if conditionA == 1 to only operating sensors else: print("Go to plan B") timestamp = get_timestamp() if os.path.isfile('filename.txt'): print ("File exist") # erase the current file and open the valve in 30 seconds open("filename.txt", 'a').write(str(timestamp) + ";B\n") else: print ("File not exist") file("filename.txt", "w+") open("filename.txt", 'a').write(str(timestamp) + ";B\n") # sleep for 24 hours (in seconds) time.sleep(24 * 60 * 60)
py
b4068912c8bb234eff54d6b4feae499f7e8ab30c
import warnings import torch import torch.nn.functional as F def resize(input, size=None, scale_factor=None, mode='nearest', align_corners=None, warning=True): if warning: if size is not None and align_corners: input_h, input_w = tuple(int(x) for x in input.shape[2:]) output_h, output_w = tuple(int(x) for x in size) if output_h > input_h or output_w > output_h: if ((output_h > 1 and output_w > 1 and input_h > 1 and input_w > 1) and (output_h - 1) % (input_h - 1) and (output_w - 1) % (input_w - 1)): warnings.warn( f'When align_corners={align_corners}, ' 'the output would more aligned if ' f'input size {(input_h, input_w)} is `x+1` and ' f'out size {(output_h, output_w)} is `nx+1`') if isinstance(size, torch.Size): size = tuple(int(x) for x in size) return F.interpolate(input, size, scale_factor, mode, align_corners)
py
b406892b7367c279ec392aea354595ef4a3ea16a
"""integrating_vue URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf import settings from django.contrib import admin from django.urls import path, re_path from app_one import views as appone_views from app_two import views as apptwo_views urlpatterns = [ path('admin/', admin.site.urls), path('', appone_views.index, name="root_one_index"), path('appone/', appone_views.index, name="one_index"), path('apptwo/', apptwo_views.index, name="two_index"), ] # In developement, proxy hot update requests to webpack-dev-server since they can't if settings.DEBUG: try: from revproxy.views import ProxyView except ImportError: pass else: from revproxy import utils # responses bigger than MIN_STREAMING_LENGTH are streamed, breaking Webpack dev server # We monkey patch it to a big enough value, here 256MB utils.MIN_STREAMING_LENGTH = 256 * 1024 * 1024 # noqa urlpatterns += [ re_path(r'(?P<path>.*\.hot-update\..*)$', ProxyView.as_view(upstream=settings.WEBPACK_DEVSERVER_URL), name='hotreload_proxy'), ]
py
b40689f474871344d31144dafaf33fd1f3c15d12
"""Commit parser helpers """ from typing import Tuple def parse_text_block(text: str) -> Tuple[str, str]: """ This will take a text block and return a tuple with body and footer, where footer is defined as the last paragraph. :param text: The text string to be divided. :return: A tuple with body and footer, where footer is defined as the last paragraph. """ body, footer = '', '' if text: body = text.split('\n\n')[0] if len(text.split('\n\n')) == 2: footer = text.split('\n\n')[1] return body.replace('\n', ' '), footer.replace('\n', ' ')
py
b4068a85ea4acc2ae467e754ba213ff0627c881a
import numpy as np from emma.utils.utils import EMMAException, int_to_one_hot, bytearray_to_many_hot from emma.attacks.leakagemodels import LeakageModel class AIInputType: """ Class that defines all possible types of inputs for the ML models. Input classes must have an attribute 'input_type' with one of the values defined in this class. """ SIGNAL = 'signal' SIGNAL_PLAINTEXT = 'signal_plaintext' SIGNAL_PLAINTEXT_OH = 'signal_plaintext_oh' SIGNAL_PLAINTEXT_MH = 'signal_plaintext_mh' # For testing purposes SIGNAL_KEY = 'signal_key' SIGNAL_PLAINTEXT_KEY = 'signal_plaintext_key' PLAINTEXT_KEY = 'plaintext_key' PLAINTEXT_KEY_OH = 'plaintext_key_oh' SIGNAL_LEAKAGE = 'signal_leakage' RANDOM = 'random' @classmethod def choices(cls): """ Get all possible AIInputTypes in list form :return: """ c = [] for k, v in cls.__dict__.items(): if k[:2] != '__' and type(v) is str: c.append(v) return c class AIInputMeta(type): """ Metaclass used for checking whether the child class contains a valid input_type attribute. """ class BadAIInputClassException(EMMAException): pass class InvalidInputTypeException(EMMAException): pass def __new__(mcs, name, bases, class_dict): if bases != (object,): # Do not validate LeakageModel class if 'input_type' not in class_dict: raise AIInputMeta.BadAIInputClassException if class_dict['input_type'] not in AIInputType.choices(): raise AIInputMeta.InvalidInputTypeException return type.__new__(mcs, name, bases, class_dict) class AIInput(object, metaclass=AIInputMeta): """ AI input base class. """ class UnknownAIInputException(EMMAException): pass def __new__(cls, conf): """ Called when instantiating an AIInput object. Returns an instance of the appropriate class depending on the input_type parameter. :param conf: :return: """ for subclass in cls._get_subclasses(): if subclass.input_type == conf.input_type: return object.__new__(subclass) # Avoid recursion by calling object.__new__ instead of cls.__new__ raise AIInput.UnknownAIInputException def __init__(self, conf): self.conf = conf @classmethod def _get_subclasses(cls): for subclass in cls.__subclasses__(): if cls is not object: for subsubclass in subclass._get_subclasses(): # Also yield children of children yield subsubclass yield subclass def get_trace_inputs(self, trace): raise NotImplementedError def get_trace_set_inputs(self, trace_set): """ Givem a trace set, returns inputs suitable for training an AI model. :param trace_set: :return: """ inputs = [] for trace in trace_set.traces: inputs.append(self.get_trace_inputs(trace)) result = np.array(inputs) # CNNs expect a channels dimension if self.conf.cnn: result = np.expand_dims(result, axis=-1) return result class SignalAIInput(AIInput): input_type = AIInputType.SIGNAL def get_trace_inputs(self, trace): return trace.signal class SignalPlaintextAIInput(AIInput): input_type = AIInputType.SIGNAL_PLAINTEXT def get_trace_inputs(self, trace): return np.concatenate((trace.signal, trace.plaintext)) class SignalPlaintextMHAIInput(AIInput): input_type = AIInputType.SIGNAL_PLAINTEXT_MH def get_trace_inputs(self, trace): return np.concatenate((trace.signal, bytearray_to_many_hot(trace.plaintext))) class SignalPlaintextOHAIInput(AIInput): input_type = AIInputType.SIGNAL_PLAINTEXT_OH def get_trace_inputs(self, trace): result = [] for p in trace.plaintext: result.append(int_to_one_hot(p, 256)) result = np.concatenate(result) return np.concatenate((trace.signal, result)) class SignalKeyAIInput(AIInput): input_type = AIInputType.SIGNAL_KEY def get_trace_inputs(self, trace): return np.concatenate((trace.signal, trace.key)) class SignalPlaintextKeyAIInput(AIInput): input_type = AIInputType.SIGNAL_PLAINTEXT_KEY def get_trace_inputs(self, trace): return np.concatenate((trace.signal, trace.plaintext, trace.key)) class PlaintextKeyAIInput(AIInput): input_type = AIInputType.PLAINTEXT_KEY def get_trace_inputs(self, trace): return np.concatenate((trace.plaintext, trace.key)) class PlaintextKeyOHAIInput(AIInput): input_type = AIInputType.PLAINTEXT_KEY_OH def get_trace_inputs(self, trace): result = [] for p in trace.plaintext: result.append(int_to_one_hot(p, 256)) for k in trace.key: result.append(int_to_one_hot(k, 256)) return np.concatenate(result) class SignalLeakageAIInput(AIInput): input_type = AIInputType.SIGNAL_LEAKAGE def __init__(self, conf): super().__init__(conf) self.leakage_model = LeakageModel(conf) def get_trace_inputs(self, trace): leakages = [] for k in range(16): leakage = self.leakage_model.get_trace_leakages(trace, k) if isinstance(leakage, list) or isinstance(leakage, np.ndarray): leakages.extend(list(leakage)) else: leakages.append(leakage) leakages = np.array(leakages) return np.concatenate((trace.signal, leakages)) class RandomInput(AIInput): input_type = AIInputType.RANDOM def get_trace_inputs(self, trace): return np.random.uniform(0.0, 1.0, len(trace.signal))
py
b4068bdca82aad91e28eb75d2d04a99007edf1bc
from nanopores import * from checksolve import check_solve geo_name = "H_geo" x0 = [0.0, 0.0, 0.0e-9] # 2D with molecule generate_mesh(2.0, geo_name, x0=x0) geo = geo_from_name(geo_name, x0=x0) p = PNPSAxisym(geo) check_solve(p)
py
b4068d75a75f2f29da9a9586874b6ae47d90c257
"""This contains the configuration of the Singleton application.""" # Django Imports from django.apps import AppConfig class SingletonConfig(AppConfig): name = "ghostwriter.singleton" def ready(self): try: import ghostwriter.singleton.signals # noqa F401 isort:skip except ImportError: pass
py
b4068d88400b369e07171724a4d83b814d8c3978
from prisma import Prisma, Base64 async def filtering(client: Prisma) -> None: # case: all valid filter fields await client.types.find_first( where={ 'bytes': Base64.encode(b'foo'), }, ) await client.types.find_first( where={ 'bytes': { 'equals': Base64.encode(b'a'), }, }, ) await client.types.find_first( where={ 'bytes': { 'not': Base64.encode(b'a'), }, }, ) await client.types.find_first( where={ 'bytes': { 'not': { 'equals': Base64.encode(b'a'), }, }, }, ) # case: invalid types await client.types.find_first( where={ # E: Argument of type "dict[str, bytes]" cannot be assigned to parameter "where" of type "TypesWhereInput | None" in function "find_first" 'bytes': b'foo', }, ) await client.types.find_first( where={ # E: Argument of type "dict[str, bytes]" cannot be assigned to parameter "where" of type "TypesWhereInput | None" in function "find_first" 'bytes': b'foo', }, )
py
b4068db31cce94159fc9d591723ee0dcc68ea265
import discord import os import time ## ended ## looping import discord import os import time ## ended
py
b4069018b591fed93045bd1036c6f83154831aef
from __future__ import annotations import random import string from typing import Union, Generator, Callable, SupportsRound, Any class IterationNotCompleted(BaseException): """Generator stopped iteration. Make sure it iterates over all arrays length""" pass class UndefinedVariable(Exception): """Exception raised for UndefinedVariable""" def __init__(self, variable): self.message = f"Variable {variable} not defined." class BoundingError(Exception): """Exception raised for BoundingError""" def __init__(self, lower_bound, upper_bound): self.message = f"Lower bound less than upper bound." + \ f" lower bound: {lower_bound}, upper bound: {upper_bound}" super(BoundingError, self).__init__(self.message) class Variables: """Simple Base class for all variables :kwargs ------- * **generator**: ``Callable[..., Generator]`` A Callable function that returns a Generator used to generate variable. * **decimal_places**: ``int`` Rounds generated variables, **default**: ``no rounding`` """ def __init__(self, *args, **kwargs): self.args = args self.generator = kwargs.get('generator') self.decimal_places = kwargs.get('decimal_places') # last will used to access last generated variable # in case of use Variable in other generators as parameters self.last = None # Initialize self.next() def rounder(self, val): if self.decimal_places and isinstance(val, SupportsRound): self.last = round(val, self.decimal_places) else: self.last = val return self.last def next(self): tmp_args = [x if not isinstance(x, (IntVar, FloatVar)) else x.last for x in self.args] self.last = self.rounder(self.generator(*tmp_args)) return self.last class BoundedVar(Variables): """A simple wrapper for variables that has bounding option. :raise *BoundingError* if bounding is wrong. """ def __init__(self, lower_bound, upper_bound, *args, **kwargs): tmp_upper = upper_bound if not isinstance(upper_bound, Variables) else upper_bound.last tmp_lower = lower_bound if not isinstance(lower_bound, Variables) else lower_bound.last if tmp_upper < tmp_lower: raise BoundingError(lower_bound, upper_bound) super().__init__(lower_bound, upper_bound, *args, **kwargs) class IntVar(BoundedVar): """Generates random random integer between lower and upper bound using random.randint callable. """ def __init__(self, lower_bound: Union[IntVar, int], upper_bound: Union[IntVar, int], **kwargs): super().__init__(lower_bound, upper_bound, generator=random.randint, **kwargs) class FloatVar(BoundedVar): """Generates random random float between lower and upper bound using random.uniform callable. """ def __init__(self, lower_bound: Union[float, int, IntVar, FloatVar], upper_bound: Union[float, int, IntVar, FloatVar], **kwargs): super().__init__(lower_bound, upper_bound, generator=random.uniform, **kwargs) class Collections(Variables): """A base class for all collection type variables. use this CustomArray() instead if you want to make cus """ def __init__(self, *args, **kwargs): self.length = kwargs.get('length') if kwargs.get('length') else 1 super(Collections, self).__init__(*args, **kwargs) def next(self): # Using temp args to get current args Variable if they are # [:Variable:] for current generation, tmp_args = [x if not isinstance(x, (IntVar, FloatVar)) else x.last for x in self.args] tmp_length = self.length if not isinstance(self.length, IntVar) else self.length.last # not using temp args/length will cause to set arguments as a not # changeable integer for next generations. return [self.rounder(self.generator(*tmp_args)) for _ in range(tmp_length)] class CustomArray(Collections): """A class to build custom arrays using a Generator.""" # The difference with :Collections: class is :CustomArray: gets a Callable[..., Generator] # that yields each member for a generation, But Collection uses a generator # that returns each member of array(e.g random.randint). def __init__(self, length: Union[int, IntVar], generator: Callable[..., Generator[Any, Any, Any]], *args, **kwargs): super().__init__(*args, generator=generator, length=length, **kwargs) def next(self): tmp_args = [x if not isinstance(x, (IntVar, FloatVar)) else x.last for x in self.args] tmp_length = self.length if not isinstance(self.length, IntVar) else self.length.last # Making a generator from Callable[..., Generator] function for each generation gen = self.generator(*tmp_args) try: self.last = [self.rounder(next(gen)) for _ in range(tmp_length)] except StopIteration: raise IterationNotCompleted("\nGenerator stopped iteration. Make sure it iterates over all arrays length.") return self.last class IntArray(Collections): """"Generates random integer for each member of array using random.randint generator""" def __init__(self, lower_bound: Union[IntVar, int], upper_bound: Union[IntVar, int], length: Union[IntVar, int]): super().__init__(lower_bound, upper_bound, length=length, generator=random.randint, decimal_places=0) class Array2d(Collections): """"Generates random integer for each member of array using random.randint generator""" def __init__(self, array: Union[IntArray, FloatArray, CustomArray, Array2d], length: Union[IntVar, int]): self.array = array super().__init__(length=length) def next(self): tmp_args = [x if not isinstance(x, (IntVar, FloatVar)) else x.last for x in self.args] tmp_length = self.length if not isinstance(self.length, IntVar) else self.length.last self.last = [self.array.next() for _ in range(tmp_length)] return self.last class FloatArray(Collections): """"Generates random float for each member of array using random.uniform generator""" def __init__(self, lower_bound: Union[int, float, IntVar, FloatVar], upper_bound: Union[int, float, IntVar, FloatVar], length: Union[int, IntVar], decimal_places: int = 1): super().__init__(lower_bound, upper_bound, length=length, generator=random.uniform, decimal_places=decimal_places) class ChoiceList(Collections): """Generates random choice from given list with random.choice generator""" def __init__(self, length: Union[int, IntVar], choice_list: list, *args, **kwargs): super().__init__(choice_list, *args, generator=random.choice, length=length, **kwargs) class CharArray(ChoiceList): """"Generates random choice from all available english characters""" def __init__(self, length: Union[int, IntVar]): super().__init__(length, string.ascii_letters)
py
b4069049100d4b4ead8a11694f70bd8c7554bcd1
from setuptools import setup, find_packages version = "1.4.2" with open("README.md", "r", encoding="utf-8") as readme_file: long_description = readme_file.read() # with open("requirements.txt", "r", encoding="utf-8") as req_file: # requirements = req_file.readlines() setup( name="vscode-ext", version=version, description="Create VSCode Extensions with python", long_description=long_description, long_description_content_type="text/markdown", author="Swas.py", author_email="[email protected]", packages=find_packages(), include_package_data=True, url = "https://github.com/CodeWithSwastik/vscode-ext", project_urls={ "Issue tracker": "https://github.com/CodeWithSwastik/vscode-ext/issues", }, classifiers=[ "Programming Language :: Python :: 3", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Topic :: Internet", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Utilities", ], install_requires=[], python_requires=">=3.6", )
py
b4069216014099b0a16d088e7ee9654a724f5e01
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2015 Thomas Voegtlin # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from enum import IntEnum from PyQt5.QtCore import Qt, QItemSelectionModel from PyQt5.QtGui import QStandardItemModel, QStandardItem, QFont from PyQt5.QtWidgets import QAbstractItemView from PyQt5.QtWidgets import QHeaderView, QMenu, QVBoxLayout, QGridLayout, QLabel, QTreeWidget, QTreeWidgetItem from electrum.i18n import _ from electrum.util import format_time, PR_UNPAID, PR_PAID, PR_INFLIGHT from electrum.util import get_request_status from electrum.util import PR_TYPE_ONCHAIN, PR_TYPE_LN from electrum.lnutil import format_short_channel_id from electrum.bitcoin import COIN from electrum import constants from .util import (MyTreeView, read_QIcon, MONOSPACE_FONT, import_meta_gui, export_meta_gui, pr_icons) from .util import CloseButton, Buttons from .util import WindowModalDialog ROLE_REQUEST_TYPE = Qt.UserRole ROLE_REQUEST_ID = Qt.UserRole + 1 class InvoiceList(MyTreeView): class Columns(IntEnum): DATE = 0 DESCRIPTION = 1 AMOUNT = 2 STATUS = 3 headers = { Columns.DATE: _('Date'), Columns.DESCRIPTION: _('Description'), Columns.AMOUNT: _('Amount'), Columns.STATUS: _('Status'), } filter_columns = [Columns.DATE, Columns.DESCRIPTION, Columns.AMOUNT] def __init__(self, parent): super().__init__(parent, self.create_menu, stretch_column=self.Columns.DESCRIPTION, editable_columns=[]) self.setSortingEnabled(True) self.setModel(QStandardItemModel(self)) self.setSelectionMode(QAbstractItemView.ExtendedSelection) self.update() def update_item(self, key, status): req = self.parent.wallet.get_invoice(key) if req is None: return model = self.model() for row in range(0, model.rowCount()): item = model.item(row, 0) if item.data(ROLE_REQUEST_ID) == key: break else: return status_item = model.item(row, self.Columns.STATUS) status, status_str = get_request_status(req) if self.parent.wallet.lnworker: log = self.parent.wallet.lnworker.logs.get(key) if log and status == PR_INFLIGHT: status_str += '... (%d)'%len(log) status_item.setText(status_str) status_item.setIcon(read_QIcon(pr_icons.get(status))) def update(self): _list = self.parent.wallet.get_invoices() # filter out paid invoices unless we have the log lnworker_logs = self.parent.wallet.lnworker.logs if self.parent.wallet.lnworker else {} _list = [x for x in _list if x and x.get('status') != PR_PAID or x.get('rhash') in lnworker_logs] self.model().clear() self.update_headers(self.__class__.headers) for idx, item in enumerate(_list): invoice_type = item['type'] if invoice_type == PR_TYPE_LN: key = item['rhash'] icon_name = 'lightning.png' elif invoice_type == PR_TYPE_ONCHAIN: key = item['id'] icon_name = 'bitcoin.png' if item.get('bip70'): icon_name = 'seal.png' else: raise Exception('Unsupported type') status, status_str = get_request_status(item) message = item['message'] amount = item['amount'] timestamp = item.get('time', 0) date_str = format_time(timestamp) if timestamp else _('Unknown') amount_str = self.parent.format_amount(amount, whitespaces=True) labels = [date_str, message, amount_str, status_str] items = [QStandardItem(e) for e in labels] self.set_editability(items) items[self.Columns.DATE].setIcon(read_QIcon(icon_name)) items[self.Columns.STATUS].setIcon(read_QIcon(pr_icons.get(status))) items[self.Columns.DATE].setData(key, role=ROLE_REQUEST_ID) items[self.Columns.DATE].setData(invoice_type, role=ROLE_REQUEST_TYPE) self.model().insertRow(idx, items) self.selectionModel().select(self.model().index(0,0), QItemSelectionModel.SelectCurrent) # sort requests by date self.model().sort(self.Columns.DATE) # hide list if empty if self.parent.isVisible(): b = self.model().rowCount() > 0 self.setVisible(b) self.parent.invoices_label.setVisible(b) self.filter() def import_invoices(self): import_meta_gui(self.parent, _('invoices'), self.parent.invoices.import_file, self.update) def export_invoices(self): export_meta_gui(self.parent, _('invoices'), self.parent.invoices.export_file) def create_menu(self, position): items = self.selected_in_column(0) if len(items)>1: keys = [ item.data(ROLE_REQUEST_ID) for item in items] invoices = [ self.parent.wallet.get_invoice(key) for key in keys] invoices = [ invoice for invoice in invoices if invoice['status'] == PR_UNPAID and invoice['type'] == PR_TYPE_ONCHAIN] if len(invoices) > 1: menu = QMenu(self) menu.addAction(_("Pay multiple invoices"), lambda: self.parent.pay_multiple_invoices(invoices)) menu.exec_(self.viewport().mapToGlobal(position)) return idx = self.indexAt(position) item = self.model().itemFromIndex(idx) item_col0 = self.model().itemFromIndex(idx.sibling(idx.row(), self.Columns.DATE)) if not item or not item_col0: return key = item_col0.data(ROLE_REQUEST_ID) request_type = item_col0.data(ROLE_REQUEST_TYPE) menu = QMenu(self) self.add_copy_menu(menu, idx) invoice = self.parent.wallet.get_invoice(key) menu.addAction(_("Details"), lambda: self.parent.show_invoice(key)) if invoice['status'] == PR_UNPAID: menu.addAction(_("Pay"), lambda: self.parent.do_pay_invoice(invoice)) if self.parent.wallet.lnworker: log = self.parent.wallet.lnworker.logs.get(key) if log: menu.addAction(_("View log"), lambda: self.show_log(key, log)) menu.addAction(_("Delete"), lambda: self.parent.delete_invoice(key)) menu.exec_(self.viewport().mapToGlobal(position)) def show_log(self, key, log): d = WindowModalDialog(self, _("Payment log")) vbox = QVBoxLayout(d) log_w = QTreeWidget() log_w.setHeaderLabels([_('Route'), _('Channel ID'), _('Message'), _('Blacklist')]) for i, (route, success, failure_log) in enumerate(log): route_str = '%d'%len(route) if not success: sender_idx, failure_msg, blacklist = failure_log short_channel_id = route[sender_idx+1].short_channel_id data = failure_msg.data message = repr(failure_msg.code) else: short_channel_id = route[-1].short_channel_id message = _('Success') blacklist = False chan_str = format_short_channel_id(short_channel_id) x = QTreeWidgetItem([route_str, chan_str, message, repr(blacklist)]) log_w.addTopLevelItem(x) vbox.addWidget(log_w) vbox.addLayout(Buttons(CloseButton(d))) d.exec_()
py
b40692593099b2b045a56632062e91474d413653
#!/usr/bin/env python """t is for people that want do things, not organize their tasks.""" from __future__ import with_statement, print_function import os, re, sys, hashlib, time from operator import itemgetter from optparse import OptionParser, OptionGroup import json class InvalidTaskfile(Exception): """Raised when the path to a task file already exists as a directory.""" pass class AmbiguousPrefix(Exception): """Raised when trying to use a prefix that could identify multiple tasks.""" def __init__(self, prefix): super(AmbiguousPrefix, self).__init__() self.prefix = prefix class UnknownPrefix(Exception): """Raised when trying to use a prefix that does not match any tasks.""" def __init__(self, prefix): super(UnknownPrefix, self).__init__() self.prefix = prefix class BadFile(Exception): """Raised when something else goes wrong trying to work with the task file.""" def __init__(self, path, problem): super(BadFile, self).__init__() self.path = path self.problem = problem def _hash(text): """Return a hash of the given text for use as an id. Currently SHA1 hashing is used. It should be plenty for our purposes. """ return hashlib.sha1((str(time.time()) + text).encode('utf-8')).hexdigest() def _task_from_taskline(taskline): """Parse a taskline (from a task file) and return a task. A taskline should be in the format: summary text ... | {json of metadata} The task returned will be a dictionary such as: { 'id': <hash id>, 'text': <summary text>, ... other metadata ... } A taskline can also consist of only summary text, in which case the id and other metadata will be generated when the line is read. This is supported to enable editing of the taskfile with a simple text editor. """ if taskline.strip().startswith('#'): return None elif '|' in taskline: text, _, meta = taskline.partition('|') task = json.loads(meta) task['text'] = text.strip() else: text = taskline.strip() task = { 'id': _hash(text), 'text': text } if 'timestamp' not in task: task['timestamp'] = 0 if 'show_full_id' not in task: task['show_full_id'] = False if 'parent_id' not in task: task['parent_id'] = None return task def _tasklines_from_tasks(tasks): """Parse a list of tasks into tasklines suitable for writing.""" tasklines = [] textlen = max(map(lambda t: len(t['text']), tasks)) if tasks else 0 for task in tasks: meta = dict(task) # remove text as it isn't part of the metadata del meta['text'] # don't add show_full_id if it is false if 'show_full_id' in meta and not meta['show_full_id']: del meta['show_full_id'] # don't add parent_id if it is None if 'parent_id' in meta and meta['parent_id'] == None: del meta['parent_id'] tasklines.append('%s | %s\n' % (task['text'].ljust(textlen), json.dumps(meta, sort_keys=True))) return tasklines def _prefixes(ids): """Return a mapping of ids to prefixes in O(n) time. Each prefix will be the shortest possible substring of the ID that can uniquely identify it among the given group of IDs. If an ID of one task is entirely a substring of another task's ID, the entire ID will be the prefix. """ ps = {} for id in ids: id_len = len(id) for i in range(1, id_len+1): # identifies an empty prefix slot, or a singular collision prefix = id[:i] if (not prefix in ps) or (ps[prefix] and prefix != ps[prefix]): break if prefix in ps: # if there is a collision other_id = ps[prefix] for j in range(i, id_len+1): if other_id[:j] == id[:j]: ps[id[:j]] = '' else: ps[other_id[:j]] = other_id ps[id[:j]] = id break else: ps[other_id[:id_len+1]] = other_id ps[id] = id else: # no collision, can safely add ps[prefix] = id ps = dict(zip(ps.values(), ps.keys())) if '' in ps: del ps[''] return ps class TaskDict(object): """A set of tasks, both finished and unfinished, for a given list. The list's files are read from disk when the TaskDict is initialized. They can be written back out to disk with the write() function. """ def __init__(self, taskdir='.', name='tasks'): """Initialize by reading the task files, if they exist.""" self.tasks = {} self.done = {} self.name = name self.taskdir = taskdir filemap = (('tasks', self.name), ('done', '.%s.done' % self.name)) for kind, filename in filemap: path = os.path.join(os.path.expanduser(self.taskdir), filename) if os.path.isdir(path): raise InvalidTaskfile if os.path.exists(path): try: with open(path, 'r') as tfile: tls = [tl.strip() for tl in tfile if tl] tasks = map(_task_from_taskline, tls) for task in tasks: if task is not None: getattr(self, kind)[task['id']] = task except IOError as e: raise BadFile(path, e.strerror) def __getitem__(self, prefix): """Return the unfinished task with the given prefix. If more than one task matches the prefix an AmbiguousPrefix exception will be raised, unless the prefix is the entire ID of one task. If no tasks match the prefix an UnknownPrefix exception will be raised. """ matched = [tid for tid in self.tasks.keys() if tid.startswith(prefix)] if len(matched) == 1: return self.tasks[matched[0]] elif len(matched) == 0: raise UnknownPrefix(prefix) elif prefix in matched: return self.tasks[prefix] else: raise AmbiguousPrefix(prefix) def add_task(self, text, verbose, quiet, task_id = None, parent_id = None): """Add a new, unfinished task with the given summary text.""" if not task_id: task_id = _hash(text) show_full_id = False else: show_full_id = True if parent_id: parent = self[parent_id] parent_id = parent['id'] timestamp = time.time() self.tasks[task_id] = {'id': task_id, 'text': text, 'timestamp': timestamp} if show_full_id: self.tasks[task_id]['show_full_id'] = show_full_id if parent_id: self.tasks[task_id]['parent_id'] = parent_id if not quiet: if verbose or show_full_id: print(task_id) else: prefixes = _prefixes(self.tasks) print(prefixes[task_id]) def edit_task(self, prefix, text): """Edit the task with the given prefix. If more than one task matches the prefix an AmbiguousPrefix exception will be raised, unless the prefix is the entire ID of one task. If no tasks match the prefix an UnknownPrefix exception will be raised. """ task = self[prefix] if text.startswith('s/') or text.startswith('/'): text = re.sub('^s?/', '', text).rstrip('/') find, _, repl = text.partition('/') text = re.sub(find, repl, task['text']) task['text'] = text if 'id' not in task: task['id'] = _hash(text) def add_tag(self, task, tag): """Add tag to the the task with the given prefix. If more than one task matches the prefix an AmbiguousPrefix exception will be raised, unless the prefix is the entire ID of one task. If no tasks match the prefix an UnknownPrefix exception will be raised. """ if 'tags' in task: task['tags'].append(tag) else: task['tags'] = [tag] def remove_tag(self, task, tag): """Remove tag to the the task with the given prefix. If more than one task matches the prefix an AmbiguousPrefix exception will be raised, unless the prefix is the entire ID of one task. If no tasks match the prefix an UnknownPrefix exception will be raised. """ if 'tags' in task: task['tags'].remove(tag) if len(task['tags']) == 0: del task['tags'] def tag(self, prefix, tags): """Add (or remove) tag to the the task with the given prefix. If more than one task matches the prefix an AmbiguousPrefix exception will be raised, unless the prefix is the entire ID of one task. If no tasks match the prefix an UnknownPrefix exception will be raised. """ task = self[prefix] for tag in tags.strip().split(' '): if not tag: continue elif tag[0] == '-': self.remove_tag(task, tag[1:]) else: self.add_tag(task, tag) def children(self, task): return [self.tasks[t] for t in self.tasks if 'parent_id' in self.tasks[t] and self.tasks[t]['parent_id'] == task['id']] def num_children(self, task): return len(self.children(task)) def finish_task(self, prefix, force = False): """Mark the task with the given prefix as finished. If more than one task matches the prefix an AmbiguousPrefix exception will be raised, if no tasks match it an UnknownPrefix exception will be raised. """ if not force and self.num_children(self[prefix]) > 0: print('cannot finish task - it has open sub-tasks. use --force to override.\n') return task = self.tasks.pop(self[prefix]['id']) self.done[task['id']] = task for child in self.children(task): self.finish_task(child['id']) def remove_task(self, prefix): """Remove the task from tasks list. If more than one task matches the prefix an AmbiguousPrefix exception will be raised, if no tasks match it an UnknownPrefix exception will be raised. """ self.tasks.pop(self[prefix]['id']) def print_list(self, kind='tasks', verbose=False, quiet=False, grep='', parent_id=None, indent=""): """Print out a nicely formatted list of unfinished tasks.""" tasks = dict(getattr(self, kind).items()) label = 'prefix' if not verbose else 'id' if not verbose: for task_id, prefix in _prefixes(tasks).items(): if tasks[task_id]['show_full_id']: tasks[task_id]['prefix'] = task_id else: tasks[task_id]['prefix'] = prefix plen = max(map(lambda t: len(t[label]), tasks.values())) if tasks else 0 for task in sorted(tasks.values(), key=lambda t:t['timestamp']): if grep.lower() in task['text'].lower(): if parent_id == task['parent_id']: num_str = "(%d) " % self.num_children(task) p = '%s - ' % task[label].ljust(plen) if not quiet else '' if 'tags' in task: tags_str = " ".join(["[%s]" % tag for tag in task['tags']]) + " " else: tags_str = "" print(indent + num_str + p + tags_str + task['text']) self.print_list(kind, verbose, quiet, grep, task['id'], indent + " ") def write(self, delete_if_empty=False): """Flush the finished and unfinished tasks to the files on disk.""" filemap = (('tasks', self.name), ('done', '.%s.done' % self.name)) for kind, filename in filemap: path = os.path.join(os.path.expanduser(self.taskdir), filename) if os.path.isdir(path): raise InvalidTaskfile tasks = sorted(getattr(self, kind).values(), key=itemgetter('id')) if tasks or not delete_if_empty: try: with open(path, 'w') as tfile: for taskline in _tasklines_from_tasks(tasks): tfile.write(taskline) except IOError as e: raise BadFile(path, e.strerror) elif not tasks and os.path.isfile(path): os.remove(path) def _die(message): sys.stderr.write('error: %s\n' % message) sys.exit(1) def _build_parser(): """Return a parser for the command-line interface.""" usage = "Usage: %prog [-t DIR] [-l LIST] [options] [TEXT]" parser = OptionParser(usage=usage) actions = OptionGroup(parser, "Actions", "If no actions are specified the TEXT will be added as a new task.") actions.add_option("-a", "--add", dest="add", default="", help="add TASK with TEXT", metavar="TASK") actions.add_option("-e", "--edit", dest="edit", default="", help="edit TASK to contain TEXT", metavar="TASK") actions.add_option("-f", "--finish", dest="finish", help="mark TASK as finished", metavar="TASK") actions.add_option("-r", "--remove", dest="remove", help="Remove TASK from list", metavar="TASK") actions.add_option("-s", "--sub", dest="sub", help="add sub task to PARENT", metavar="PARENT") actions.add_option("-x", "--tag", dest="tag", help="add tag to TASK", metavar="TASK") actions.add_option("--force", action="store_true", dest="force", default=False, help="used to force an action even if it is not recommended") parser.add_option_group(actions) config = OptionGroup(parser, "Configuration Options") config.add_option("-l", "--list", dest="name", default="tasks", help="work on LIST", metavar="LIST") config.add_option("-t", "--task-dir", dest="taskdir", default="", help="work on the lists in DIR", metavar="DIR") config.add_option("-d", "--delete-if-empty", action="store_true", dest="delete", default=False, help="delete the task file if it becomes empty") parser.add_option_group(config) output = OptionGroup(parser, "Output Options") output.add_option("-g", "--grep", dest="grep", default='', help="print only tasks that contain WORD", metavar="WORD") output.add_option("-v", "--verbose", action="store_true", dest="verbose", default=False, help="print more detailed output (full task ids, etc)") output.add_option("-q", "--quiet", action="store_true", dest="quiet", default=False, help="print less detailed output (no task ids, etc)") output.add_option("--done", action="store_true", dest="done", default=False, help="list done tasks instead of unfinished ones") parser.add_option_group(output) return parser def _main(): """Run the command-line interface.""" (options, args) = _build_parser().parse_args() td = TaskDict(taskdir=options.taskdir, name=options.name) text = ' '.join(args).strip() if '\n' in text: _die('task text cannot contain newlines') try: if options.finish: td.finish_task(options.finish, force=options.force) td.write(options.delete) elif options.remove: td.remove_task(options.remove, force=options.force) td.write(options.delete) elif options.edit: td.edit_task(options.edit, text) td.write(options.delete) elif options.tag: td.tag(options.tag, text) td.write(options.delete) elif text: td.add_task(text, verbose=options.verbose, quiet=options.quiet, task_id=options.add, parent_id=options.sub) td.write(options.delete) else: kind = 'tasks' if not options.done else 'done' td.print_list(kind=kind, verbose=options.verbose, quiet=options.quiet, grep=options.grep) except AmbiguousPrefix: e = sys.exc_info()[1] _die('the ID "%s" matches more than one task' % e.prefix) except UnknownPrefix: e = sys.exc_info()[1] _die('the ID "%s" does not match any task' % e.prefix) except BadFile as e: _die('%s - %s' % (e.problem, e.path)) if __name__ == '__main__': _main()
py
b4069289fec750daea8d55ff7dc280b4c3fc1e33
def soma(num1, num2): return num1 + num2
py
b4069292212e0ff216d53c39be813abbced3d261
import torch import random import torch.nn as nn import numpy as np def global_local_temporal_contrastive(lsr,gdr, temperature): #lsr denotes local sparse-clip representation= representation of temporal slice of global clip #gdr denotes global dense-clip representation= representation of global(pooled) feature of local clip #lsr,gdr shape should be [BS,4,128] similarity_matrix = torch.bmm(lsr, gdr.permute(0,2,1)) # [BS, 4, 4] # print(similarity_matrix) similarity_matrix = torch.cat((similarity_matrix, similarity_matrix.permute(0,2,1)),dim=0) # [BS*2, 4, 4] # print() # print(similarity_matrix) similarity_matrix = similarity_matrix.view(-1,4) # [BS*8, 4] # print() # print(similarity_matrix) # print() sample_lab = [0,1,2,3] label = [] for i in range(lsr.shape[0]*2): label.extend(sample_lab) label = torch.from_numpy(np.asarray(label)).long().cuda() similarity_matrix /= temperature loss = nn.functional.cross_entropy(similarity_matrix, label, reduction='sum') return loss/ (2*lsr.shape[0]) if __name__ == '__main__': BS = 40 emb_size = 128 lsr = nn.functional.normalize(torch.rand(BS,4, emb_size),dim=2).cuda() gdr = nn.functional.normalize(torch.rand(BS,4, emb_size),dim=2).cuda() loss = global_local_temporal_contrastive(lsr, gdr, 0.1) print(f'Loss is {loss}')
py
b406935051028034305fefc76fb6f7c1d7fe34ab
# coding: utf-8 """ Cisco Intersight Cisco Intersight is a management platform delivered as a service with embedded analytics for your Cisco and 3rd party IT infrastructure. This platform offers an intelligent level of management that enables IT organizations to analyze, simplify, and automate their environments in more advanced ways than the prior generations of tools. Cisco Intersight provides an integrated and intuitive management experience for resources in the traditional data center as well as at the edge. With flexible deployment options to address complex security needs, getting started with Intersight is quick and easy. Cisco Intersight has deep integration with Cisco UCS and HyperFlex systems allowing for remote deployment, configuration, and ongoing maintenance. The model-based deployment works for a single system in a remote location or hundreds of systems in a data center and enables rapid, standardized configuration and deployment. It also streamlines maintaining those systems whether you are working with small or very large configurations. # noqa: E501 The version of the OpenAPI document: 1.0.9-1295 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import intersight from intersight.models.hyperflex_cluster_storage_policy_all_of import HyperflexClusterStoragePolicyAllOf # noqa: E501 from intersight.rest import ApiException class TestHyperflexClusterStoragePolicyAllOf(unittest.TestCase): """HyperflexClusterStoragePolicyAllOf unit test stubs""" def setUp(self): pass def tearDown(self): pass def testHyperflexClusterStoragePolicyAllOf(self): """Test HyperflexClusterStoragePolicyAllOf""" # FIXME: construct object with mandatory attributes with example values # model = intersight.models.hyperflex_cluster_storage_policy_all_of.HyperflexClusterStoragePolicyAllOf() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
b406935e145510932ee9c90eeb73c985f0acf35d
../stage.py
py
b40694542ec2d37208d876220f24acf45823b0f9
# Copyright 2010-2013 by Peter Cock. All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Python 3 compatibility tools (PRIVATE). We currently have lines like this under Python 2 in order to use iterator based zip, map and filter: from future_builtins import zip There is no similar option for range yet, other than: range = xrange input = raw_input or: from __builtin__ import xrange as range from __builtin__ import raw_input as input Under Python 3 this imports need to be removed. Also, deliberate importing of built in functions like open changes from Python 2: from __builtin__ import open to this under Python 3: from builtins import open Instead, we can do this under either Python 2 or 3: from Bio._py3k import open from Bio._py3k import zip Once we drop support for Python 2, the whole of Bio._py3k will go away. """ import sys if sys.version_info[0] >= 3: #Code for Python 3 from builtins import open, zip, map, filter, range, input import codecs #Lots of our Python 2 code uses isinstance(x, basestring) #which after 2to3 becomes isinstance(x, str) basestring = str unicode = str _bytes_to_string = lambda b: b.decode() # bytes to unicode string _string_to_bytes = lambda s: s.encode() # unicode string to bytes def _as_unicode(s): """Turn byte string or unicode string into a unicode string.""" if isinstance(s, str): return s #Assume it is a bytes string #Note ISO-8859-1 aka Latin-1 preserves first 256 chars return codecs.latin_1_decode(s)[0] def _as_bytes(s): """Turn byte string or unicode string into a bytes string. The Python 2 version returns a (byte) string. """ if isinstance(s, bytes): return s #Assume it is a unicode string #Note ISO-8859-1 aka Latin-1 preserves first 256 chars return codecs.latin_1_encode(s)[0] _as_string = _as_unicode def _is_int_or_long(i): """Check if the value is an integer. Note there are no longs on Python 3. """ return isinstance(i, int) import io def _binary_to_string_handle(handle): """Treat a binary (bytes) handle like a text (unicode) handle.""" #See also http://bugs.python.org/issue5628 #and http://bugs.python.org/issue13541 #and http://bugs.python.org/issue13464 which should be fixed in Python 3.3 #return io.TextIOWrapper(io.BufferedReader(handle)) #TODO - Re-evaluate this workaround under Python 3.3 #(perhaps we will only need it on Python 3.1 and 3.2?) class EvilHandleHack(object): def __init__(self, handle): self._handle = handle def read(self, length=None): return _as_string(self._handle.read(length)) def readline(self): return _as_string(self._handle.readline()) def __iter__(self): for line in self._handle: yield _as_string(line) def close(self): return self._handle.close() def seek(self, pos): return self._handle.seek(pos) def tell(self): return self._handle.tell() return EvilHandleHack(handle) #On Python 3, can depend on OrderedDict being present: from collections import OrderedDict #On Python 3, this will be a unicode StringIO from io import StringIO #On Python 3 urllib, urllib2, and urlparse were merged: from urllib.request import urlopen, Request, urlretrieve, urlparse from urllib.parse import urlencode, quote from urllib.error import HTTPError else: #Python 2 code from __builtin__ import open, basestring, unicode #Import Python3 like iterator functions: from future_builtins import zip, map, filter from __builtin__ import xrange as range from __builtin__ import raw_input as input _bytes_to_string = lambda b: b # bytes to string, i.e. do nothing _string_to_bytes = lambda s: str(s) # str (or unicode) to bytes string def _as_unicode(s): """Turn a (byte) string or a unicode string into a (byte) string.""" #Will be changed by 2to3 to "isinstance(s, str)" but doesn't matter: if isinstance(s, unicode): return s return s.decode() def _as_bytes(s): """Turn a (byte) string or a unicode string into a (byte) string.""" return str(s) _as_string = _as_bytes def _is_int_or_long(i): """Check if the value is an integer or long.""" return isinstance(i, (int, long)) def _binary_to_string_handle(handle): """Treat a binary handle like a text handle.""" return handle try: #Present on Python 2.7 from collections import OrderedDict except ImportError: try: #Raymond Hettinger's backport available on PyPI from ordereddict import OrderedDict except ImportError: #Use our bundled copy instead from ._ordereddict import OrderedDict # On Python 2 this will be a (bytes) string based handle. # Note this doesn't work as it is unicode based: # from io import StringIO try: from cStringIO import StringIO except ImportError: from StringIO import StringIO #Under urllib.request on Python 3: from urllib2 import urlopen, Request from urllib import urlretrieve from urlparse import urlparse #Under urllib.parse on Python 3: from urllib import urlencode, quote #Under urllib.error on Python 3: from urllib2 import HTTPError if sys.platform == "win32": # Can't use commands.getoutput on Python 2, Unix only/broken: # http://bugs.python.org/issue15073 # Can't use subprocess.getoutput on Python 3, Unix only/broken: # http://bugs.python.org/issue10197 def getoutput(cmd): import subprocess child = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, shell=False) stdout, stderr = child.communicate() # Remove trailing \n to match the Unix function, return stdout.rstrip("\n") elif sys.version_info[0] >= 3: # Use subprocess.getoutput on Python 3, from subprocess import getoutput else: # Use commands.getoutput on Python 2, from commands import getoutput
py
b40695bd945490d36300ffd7abba1d1632ffbf0a
from time import sleep i=0 while True: print(i) i+=1 sleep(3)
py
b406970ebeeb05dfd631e77b042e3877b2e4c478
# -*- coding: utf-8 -*- """Top-level package for led_tester.""" __author__ = """Thomas Anderson""" __email__ = '[email protected]' __version__ = '0.1.0'
py
b406978cdedb0a49c5e931125ea687fd92432ab7
_base_ = [ '../_base_/models/mocov2.py', '../_base_/datasets/imagenet30p_mocov2_b128.py', '../_base_/schedules/sgd_coslr-200e_in1k.py', '../_base_/default_runtime.py', ] # runtime settings # the max_keep_ckpts controls the max number of ckpt file in your work_dirs # if it is 3, when CheckpointHook (in mmcv) saves the 4th ckpt # it will remove the oldest one to keep the number of total ckpts as 3 checkpoint_config = dict(interval=10, max_keep_ckpts=3)
py
b40697df3ee456846b7c62bca1b9c1c95a9efc38
#!/usr/bin/env python """ Usage: jip [--loglevel <level>] [-p] <command> [<args>...] jip [--version] [--help] Options: -p, --pipeline the file contains a pipeline (interpreter mode) -h --help Show this help message --version Show the version information --loglevel <level> Set the JIP log level to one of error|warn|info|debug Commands ======== run Locally run a jip script submit submit a jip script to a remote cluster bash Run or submit a bash command pipe Run or submit a pipeline command List and query jobs =================== jobs list and update jobs from the job database Manipulate jobs =============== delete delete the selected jobs archive archive the selected jobs cancel cancel selected and running jobs hold put selected jobs on hold restart restart selected jobs logs show log files of jobs edit edit job commands for a given job show show job options and command for jobs Miscellaneous ============= tools list all tools available through the search paths profiles list all available profiles specs create a spec file for a given pipeline clean remove job logs check check job status server start the jip grid server Documentation, bug-reports and feedback --------------------------------------- If you discover any issues, please open a bug report in the JIP issue tracker. Documentation: http://pyjip.rtfd.org Source Code : https://github.com/thasso/pyjip/ Issue Tracker: https://github.com/thasso/pyjip/issues """ import os import sys import jip import jip.options import jip.tools import jip.cli import jip.cluster import jip.configuration import jip.templates from jip.logger import getLogger, log_level from jip.vendor.docopt import docopt log = getLogger('jip.cli.jip_main') def main(): try: jip.configuration.install_path = os.path.abspath( os.path.dirname(sys.argv[0]) ) except: pass try: _main() except jip.options.ParserException as err: log.debug("parser error: %s", str(err), exc_info=True) sys.stderr.write(str(err)) sys.exit(1) except jip.ValidationError as va: log.debug("validation error: %s", str(va), exc_info=True) sys.stderr.write(str(va)) sys.stderr.write("\n") sys.exit(1) except jip.templates.RenderError as va: log.debug("render error: %s", str(va), exc_info=True) sys.stderr.write(str(va)) sys.stderr.write("\n") sys.exit(1) except jip.tools.ToolNotFoundException as notFound: log.debug("Tool not found: %s", str(notFound), exc_info=True) print >>sys.stderr, jip.cli.colorize(str(notFound), jip.cli.RED) print >>sys.stderr, """\ Check your search paths and your jip configuration to include and find tool definitions that are not in any default paths. """ sys.exit(1) except jip.cluster.ClusterImplementationError as notFound: log.debug("Cluster not found: %s", str(notFound), exc_info=True) print >>sys.stderr, jip.cli.colorize(str(notFound), jip.cli.RED) sys.exit(1) except jip.cluster.SubmissionError as notFound: log.debug("Submission error: %s", str(notFound), exc_info=True) print >>sys.stderr, jip.cli.colorize(str(notFound), jip.cli.RED) sys.exit(1) def _main(): version = str(jip.__version__) args = docopt(__doc__, version=version, options_first=True, help=True) if args['--loglevel']: log_level(args['--loglevel']) cmd = args['<command>'] if not cmd: docopt(__doc__, version=version, options_first=True, argv=['--help'], help=True) sys.exit(1) try: import runpy argv = ["jip-" + cmd] + args['<args>'] sys.argv = argv # reset options runpy.run_module("jip.cli.jip_%s" % cmd, run_name="__main__") except ImportError: log.debug("Import error, trying command. Here is the exception:", exc_info=True) # check interpreter mode import os if os.path.exists(cmd): import runpy argv = ["jip-interpreter"] + \ ([] if not args['--pipeline'] else ['--pipeline']) + \ [cmd] + args['<args>'] sys.argv = argv # reset options runpy.run_module("jip.cli.jip_interpreter", run_name="__main__") else: sys.stderr.write("\nCommand %s not found\n\n" % (cmd)) docopt(__doc__, version=version, options_first=True, argv=['--help'], help=True) sys.exit(0) except KeyboardInterrupt: sys.exit(1) if __name__ == "__main__": main()
py
b40699a159402e02285ee3723668239c3335d148
# -*- coding: utf-8 -*- # FLEDGE_BEGIN # See: http://fledge-iot.readthedocs.io/ # FLEDGE_END """ Provides utility functions to build a Fledge Support bundle. """ import logging import datetime import platform import os from os.path import basename import glob import sys import shutil import json import tarfile import fnmatch import subprocess from fledge.services.core.connect import * from fledge.common import logger from fledge.common.common import _FLEDGE_ROOT, _FLEDGE_DATA from fledge.common.configuration_manager import ConfigurationManager from fledge.common.plugin_discovery import PluginDiscovery from fledge.common.storage_client import payload_builder from fledge.services.core.api.service import get_service_records, get_service_installed __author__ = "Amarendra K Sinha" __copyright__ = "Copyright (c) 2017 OSIsoft, LLC" __license__ = "Apache 2.0" __version__ = "${VERSION}" _LOGGER = logger.setup(__name__, level=logging.INFO) _NO_OF_FILES_TO_RETAIN = 3 _SYSLOG_FILE = '/var/log/syslog' _PATH = _FLEDGE_DATA if _FLEDGE_DATA else _FLEDGE_ROOT + '/data' if ('centos' in platform.platform()) or ('redhat' in platform.platform()): _SYSLOG_FILE = '/var/log/messages' class SupportBuilder: _out_file_path = None _interim_file_path = None _storage = None def __init__(self, support_dir): try: if not os.path.exists(support_dir): os.makedirs(support_dir) else: self.check_and_delete_bundles(support_dir) self._out_file_path = support_dir self._interim_file_path = support_dir self._storage = get_storage_async() # from fledge.services.core.connect except (OSError, Exception) as ex: _LOGGER.error("Error in initializing SupportBuilder class: %s ", str(ex)) raise RuntimeError(str(ex)) async def build(self): try: today = datetime.datetime.now() file_spec = today.strftime('%y%m%d-%H-%M-%S') tar_file_name = self._out_file_path+"/"+"support-{}.tar.gz".format(file_spec) pyz = tarfile.open(tar_file_name, "w:gz") try: await self.add_fledge_version_and_schema(pyz) self.add_syslog_fledge(pyz, file_spec) self.add_syslog_storage(pyz, file_spec) cf_mgr = ConfigurationManager(self._storage) try: south_cat = await cf_mgr.get_category_child("South") south_categories = [sc["key"] for sc in south_cat] for service in south_categories: self.add_syslog_service(pyz, file_spec, service) except: pass try: north_cat = await cf_mgr.get_category_child("North") north_categories = [nc["key"] for nc in north_cat] for task in north_categories: if task != "OMF_TYPES": self.add_syslog_service(pyz, file_spec, task) except: pass await self.add_table_configuration(pyz, file_spec) await self.add_table_audit_log(pyz, file_spec) await self.add_table_schedules(pyz, file_spec) await self.add_table_scheduled_processes(pyz, file_spec) await self.add_table_statistics_history(pyz, file_spec) await self.add_table_plugin_data(pyz, file_spec) await self.add_table_streams(pyz, file_spec) self.add_service_registry(pyz, file_spec) self.add_machine_resources(pyz, file_spec) self.add_psinfo(pyz, file_spec) self.add_script_dir_content(pyz) self.add_package_log_dir_content(pyz) self.add_software_list(pyz, file_spec) finally: pyz.close() except Exception as ex: _LOGGER.error("Error in creating Support .tar.gz file: %s ", str(ex)) raise RuntimeError(str(ex)) self.check_and_delete_temp_files(self._interim_file_path) _LOGGER.info("Support bundle %s successfully created.", tar_file_name) return tar_file_name def check_and_delete_bundles(self, support_dir): files = glob.glob(support_dir + "/" + "support*.tar.gz") files.sort(key=os.path.getmtime) if len(files) >= _NO_OF_FILES_TO_RETAIN: for f in files[:-2]: if os.path.isfile(f): os.remove(os.path.join(support_dir, f)) def check_and_delete_temp_files(self, support_dir): # Delete all non *.tar.gz files for f in os.listdir(support_dir): if not fnmatch.fnmatch(f, 'support*.tar.gz'): os.remove(os.path.join(support_dir, f)) def write_to_tar(self, pyz, temp_file, data): with open(temp_file, 'w') as outfile: json.dump(data, outfile, indent=4) pyz.add(temp_file, arcname=basename(temp_file)) async def add_fledge_version_and_schema(self, pyz): temp_file = self._interim_file_path + "/" + "fledge-info" with open('{}/VERSION'.format(_FLEDGE_ROOT)) as f: lines = [line.rstrip() for line in f] self.write_to_tar(pyz, temp_file, lines) def add_syslog_fledge(self, pyz, file_spec): # The fledge entries from the syslog file temp_file = self._interim_file_path + "/" + "syslog-{}".format(file_spec) try: subprocess.call("grep -a '{}' {} > {}".format("Fledge", _SYSLOG_FILE, temp_file), shell=True) except OSError as ex: raise RuntimeError("Error in creating {}. Error-{}".format(temp_file, str(ex))) pyz.add(temp_file, arcname=basename(temp_file)) def add_syslog_storage(self, pyz, file_spec): # The contents of the syslog file that relate to the database layer (postgres) temp_file = self._interim_file_path + "/" + "syslogStorage-{}".format(file_spec) try: subprocess.call("grep -a '{}' {} > {}".format("Fledge Storage", _SYSLOG_FILE, temp_file), shell=True) except OSError as ex: raise RuntimeError("Error in creating {}. Error-{}".format(temp_file, str(ex))) pyz.add(temp_file, arcname=basename(temp_file)) def add_syslog_service(self, pyz, file_spec, service): # The fledge entries from the syslog file for a service or task # Replace space occurrences with hyphen for service or task - so that file is created tmp_svc = service.replace(' ', '-') temp_file = self._interim_file_path + "/" + "syslog-{}-{}".format(tmp_svc, file_spec) try: subprocess.call("grep -a -E '(Fledge {})\[' {} > {}".format(service, _SYSLOG_FILE, temp_file), shell=True) pyz.add(temp_file, arcname=basename(temp_file)) except Exception as ex: raise RuntimeError("Error in creating {}. Error-{}".format(temp_file, str(ex))) async def add_table_configuration(self, pyz, file_spec): # The contents of the configuration table from the storage layer temp_file = self._interim_file_path + "/" + "configuration-{}".format(file_spec) data = await self._storage.query_tbl("configuration") self.write_to_tar(pyz, temp_file, data) async def add_table_audit_log(self, pyz, file_spec): # The contents of the audit log from the storage layer temp_file = self._interim_file_path + "/" + "audit-{}".format(file_spec) data = await self._storage.query_tbl("log") self.write_to_tar(pyz, temp_file, data) async def add_table_schedules(self, pyz, file_spec): # The contents of the schedules table from the storage layer temp_file = self._interim_file_path + "/" + "schedules-{}".format(file_spec) data = await self._storage.query_tbl("schedules") self.write_to_tar(pyz, temp_file, data) async def add_table_scheduled_processes(self, pyz, file_spec): temp_file = self._interim_file_path + "/" + "scheduled_processes-{}".format(file_spec) data = await self._storage.query_tbl("scheduled_processes") self.write_to_tar(pyz, temp_file, data) async def add_table_statistics_history(self, pyz, file_spec): # The contents of the statistics history from the storage layer temp_file = self._interim_file_path + "/" + "statistics-history-{}".format(file_spec) payload = payload_builder.PayloadBuilder() \ .LIMIT(1000) \ .ORDER_BY(['history_ts', 'DESC']) \ .payload() data = await self._storage.query_tbl_with_payload("statistics_history", payload) self.write_to_tar(pyz, temp_file, data) async def add_table_plugin_data(self, pyz, file_spec): # The contents of the plugin_data from the storage layer temp_file = self._interim_file_path + "/" + "plugin-data-{}".format(file_spec) payload = payload_builder.PayloadBuilder() \ .LIMIT(1000) \ .ORDER_BY(['key', 'ASC']) \ .payload() data = await self._storage.query_tbl_with_payload("plugin_data", payload) self.write_to_tar(pyz, temp_file, data) async def add_table_streams(self, pyz, file_spec): # The contents of the streams from the storage layer temp_file = self._interim_file_path + "/" + "streams-{}".format(file_spec) payload = payload_builder.PayloadBuilder() \ .LIMIT(1000) \ .ORDER_BY(['id', 'ASC']) \ .payload() data = await self._storage.query_tbl_with_payload("streams", payload) self.write_to_tar(pyz, temp_file, data) def add_service_registry(self, pyz, file_spec): # The contents of the service registry temp_file = self._interim_file_path + "/" + "service_registry-{}".format(file_spec) data = { "about": "Service Registry", "serviceRegistry": get_service_records() } self.write_to_tar(pyz, temp_file, data) def add_machine_resources(self, pyz, file_spec): # Details of machine resources, memory size, amount of available memory, storage size and amount of free storage temp_file = self._interim_file_path + "/" + "machine-{}".format(file_spec) total, used, free = shutil.disk_usage("/") memory = subprocess.Popen('free -h', shell=True, stdout=subprocess.PIPE).stdout.readlines()[1].split()[1:] data = { "about": "Machine resources", "platform": sys.platform, "totalMemory": memory[0].decode(), "usedMemory": memory[1].decode(), "freeMemory": memory[2].decode(), "totalDiskSpace_MB": int(total / (1024 * 1024)), "usedDiskSpace_MB": int(used / (1024 * 1024)), "freeDiskSpace_MB": int(free / (1024 * 1024)), } self.write_to_tar(pyz, temp_file, data) def add_psinfo(self, pyz, file_spec): # A PS listing of al the python applications running on the machine temp_file = self._interim_file_path + "/" + "psinfo-{}".format(file_spec) a = subprocess.Popen('ps -aufx | egrep "(%MEM|fledge\.)" | grep -v grep', shell=True, stdout=subprocess.PIPE).stdout.readlines() c = [b.decode() for b in a] # Since "a" contains return value in bytes, convert it to string c_tasks = subprocess.Popen('ps -aufx | grep "./tasks" | grep -v grep', shell=True, stdout=subprocess.PIPE).stdout.readlines() c_tasks_decode = [t.decode() for t in c_tasks] if c_tasks_decode: c.extend(c_tasks_decode) # Remove "/n" from the c list output data = { "runningProcesses": list(map(str.strip, c)) } self.write_to_tar(pyz, temp_file, data) def add_script_dir_content(self, pyz): script_file_path = _PATH + '/scripts' if os.path.exists(script_file_path): # recursively 'true' by default and __pycache__ dir excluded pyz.add(script_file_path, arcname='scripts', filter=self.exclude_pycache) def add_package_log_dir_content(self, pyz): script_package_logs_path = _PATH + '/logs' if os.path.exists(script_package_logs_path): # recursively 'true' by default and __pycache__ dir excluded pyz.add(script_package_logs_path, arcname='package_logs', filter=self.exclude_pycache) def add_software_list(self, pyz, file_spec) -> None: data = { "plugins": PluginDiscovery.get_plugins_installed(), "services": get_service_installed() } temp_file = self._interim_file_path + "/" + "software-{}".format(file_spec) self.write_to_tar(pyz, temp_file, data) def exclude_pycache(self, tar_info): return None if '__pycache__' in tar_info.name else tar_info
py
b40699d3cad95c5740a4e33c48371f8f556359f9
# # PySNMP MIB module AVAYAGEN-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/AVAYAGEN-MIB # Produced by pysmi-0.3.4 at Wed May 1 11:32:06 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ValueSizeConstraint, SingleValueConstraint, ConstraintsIntersection, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ValueSizeConstraint", "SingleValueConstraint", "ConstraintsIntersection", "ValueRangeConstraint") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Bits, Gauge32, Counter64, IpAddress, TimeTicks, Counter32, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType, MibIdentifier, Unsigned32, ObjectIdentity, enterprises, Integer32, iso, ModuleIdentity = mibBuilder.importSymbols("SNMPv2-SMI", "Bits", "Gauge32", "Counter64", "IpAddress", "TimeTicks", "Counter32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType", "MibIdentifier", "Unsigned32", "ObjectIdentity", "enterprises", "Integer32", "iso", "ModuleIdentity") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") avaya = ModuleIdentity((1, 3, 6, 1, 4, 1, 6889)) avaya.setRevisions(('1909-12-19 10:00', '1904-01-27 09:00', '1902-08-15 09:00', '1902-07-28 09:00', '1901-08-09 17:00', '1901-06-21 11:55', '1900-10-15 10:45', '1900-10-15 13:05',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: avaya.setRevisionsDescriptions(('Rev 1.4.1 - Nick Saparoff. rename mibs to avayaMibs. rename products to avayaProducts. ', 'Rev 1.4.0 - Meir Deutsch. adds avGatewayProducts under avayaProducts. adds avGatewayMibs under avayaMibs. ', 'Rev 1.3.0 - Itai Zilbershterin. adds avayaSystemStats under lsg. ', 'Rev 1.2.0 - Itai Zilbershterin. adds avayaEISTopology under lsg. ', 'Rev 1.1.0 - Itai Zilbershterin. adds products OID to those defined. ', 'Rev 1.0.0 - Itai Zilbershterin. Fixed the mibs placement error. Avaya Mibs reside under avaya.2 and not avaya.1. The MIB branch is called avayaMibs.', 'Rev 0.9.0 - Itai Zilbershterin. The initial version of this MIB module. The following Organizational top-level groups are defined: lsg - Mibs of the LAN System Group (Concord & Israel).', "Rev 0.9.1 - Itai Zilbershterin. Dates in Revisions changed from 'yyyymmddhhmm' to 'yymmddhhmm', to support older development environments.",)) if mibBuilder.loadTexts: avaya.setLastUpdated('0401270900Z') if mibBuilder.loadTexts: avaya.setOrganization('Avaya Inc.') if mibBuilder.loadTexts: avaya.setContactInfo('Avaya Customer Services Postal: Avaya, Inc. 211 Mt Airy Rd. Basking Ridge, NJ 07920 USA Tel: +1 908 953 6000 WWW: http://www.avaya.com ') if mibBuilder.loadTexts: avaya.setDescription('Avaya top-level OID tree. This MIB module deals defines the Avaya enterprise-specific tree. Development organizations within Avaya who wish to register MIBs under the Avaya enterprise OID, should: a. Contact the maintainer of this module, and get an organization OID and group OID. b. Import the definition of their Organization OID from this MIB. ') avayaProducts = MibIdentifier((1, 3, 6, 1, 4, 1, 6889, 1)) avayaMibs = MibIdentifier((1, 3, 6, 1, 4, 1, 6889, 2)) avGatewayProducts = MibIdentifier((1, 3, 6, 1, 4, 1, 6889, 1, 6)) avGatewayMibs = MibIdentifier((1, 3, 6, 1, 4, 1, 6889, 2, 6)) lsg = MibIdentifier((1, 3, 6, 1, 4, 1, 6889, 2, 1)) avayaEISTopology = MibIdentifier((1, 3, 6, 1, 4, 1, 6889, 2, 1, 10)) avayaSystemStats = MibIdentifier((1, 3, 6, 1, 4, 1, 6889, 2, 1, 11)) mibBuilder.exportSymbols("AVAYAGEN-MIB", avayaMibs=avayaMibs, avayaEISTopology=avayaEISTopology, avGatewayMibs=avGatewayMibs, lsg=lsg, avayaProducts=avayaProducts, avayaSystemStats=avayaSystemStats, PYSNMP_MODULE_ID=avaya, avGatewayProducts=avGatewayProducts, avaya=avaya)
py
b40699fbf0cca01b55220c350f7dade474b5a501
from typing import Any, Dict, Iterable, List from ...models.models import Mediafile from ...shared.patterns import Collection, FullQualifiedId from ..base import ActionPayload from ..default_schema import DefaultSchema from ..generics import DeleteAction from ..register import register_action @register_action("mediafile.delete") class MediafileDelete(DeleteAction): """ Action to delete a user. """ model = Mediafile() schema = DefaultSchema(Mediafile()).get_delete_schema() def get_updated_instances(self, payload: ActionPayload) -> Iterable[Dict[str, Any]]: new_payload = [] for instance in payload: new_payload.extend( [{"id": id_} for id_ in self.get_tree_ids(instance["id"])] ) return new_payload def get_tree_ids(self, id_: int) -> List[int]: tree_ids = [id_] node = self.database.get( FullQualifiedId(Collection("mediafile"), id_), ["child_ids"] ) if node.get("child_ids"): for child_id in node["child_ids"]: tree_ids.extend(self.get_tree_ids(child_id)) return tree_ids
py
b4069bf1db38512095236c874d67315fcb1dd780
"""Test the coverage plugin.""" import os import sys import unittest import shutil from nose.plugins import PluginTester from nose.plugins.cover import Coverage support = os.path.join(os.path.dirname(__file__), 'support') try: import coverage # Python 3.3 may accidentally pick up our support area when running the unit # tests. Look for the coverage attribute to make sure we've got the right # package. hasCoverage = hasattr(coverage, 'coverage') except ImportError: hasCoverage = False class TestCoveragePlugin(PluginTester, unittest.TestCase): activate = "--with-coverage" args = ['-v', '--cover-package=blah', '--cover-html', '--cover-min-percentage', '25'] plugins = [Coverage()] suitepath = os.path.join(support, 'coverage') def setUp(self): if not hasCoverage: raise unittest.SkipTest('coverage not available; skipping') self.cover_file = os.path.join(os.getcwd(), '.coverage') self.cover_html_dir = os.path.join(os.getcwd(), 'cover') if os.path.exists(self.cover_file): os.unlink(self.cover_file) if os.path.exists(self.cover_html_dir): shutil.rmtree(self.cover_html_dir) super(TestCoveragePlugin, self).setUp() def runTest(self): self.assertTrue("blah 4 3 25% 1" in self.output) self.assertTrue("Ran 1 test in" in self.output) # Assert coverage html report exists self.assertTrue(os.path.exists(os.path.join(self.cover_html_dir, 'index.html'))) # Assert coverage data is saved self.assertTrue(os.path.exists(self.cover_file)) class TestCoverageMinPercentagePlugin(PluginTester, unittest.TestCase): activate = "--with-coverage" args = ['-v', '--cover-package=blah', '--cover-min-percentage', '100'] plugins = [Coverage()] suitepath = os.path.join(support, 'coverage') def setUp(self): if not hasCoverage: raise unittest.SkipTest('coverage not available; skipping') self.cover_file = os.path.join(os.getcwd(), '.coverage') self.cover_html_dir = os.path.join(os.getcwd(), 'cover') if os.path.exists(self.cover_file): os.unlink(self.cover_file) if os.path.exists(self.cover_html_dir): shutil.rmtree(self.cover_html_dir) self.assertRaises(SystemExit, super(TestCoverageMinPercentagePlugin, self).setUp) def runTest(self): pass class TestCoverageMinPercentageSinglePackagePlugin( PluginTester, unittest.TestCase): activate = "--with-coverage" args = ['-v', '--cover-package=blah', '--cover-html', '--cover-min-percentage', '100'] plugins = [Coverage()] suitepath = os.path.join(support, 'coverage') def setUp(self): if not hasCoverage: raise unittest.SkipTest('coverage not available; skipping') self.cover_file = os.path.join(os.getcwd(), '.coverage') self.cover_html_dir = os.path.join(os.getcwd(), 'cover') if os.path.exists(self.cover_file): os.unlink(self.cover_file) if os.path.exists(self.cover_html_dir): shutil.rmtree(self.cover_html_dir) self.assertRaises(SystemExit, super(TestCoverageMinPercentageSinglePackagePlugin, self).setUp) def runTest(self): pass class TestCoverageMinPercentageSinglePackageWithBranchesPlugin( PluginTester, unittest.TestCase): activate = "--with-coverage" args = ['-v', '--cover-package=blah', '--cover-branches', '--cover-html', '--cover-min-percentage', '100'] plugins = [Coverage()] suitepath = os.path.join(support, 'coverage') def setUp(self): if not hasCoverage: raise unittest.SkipTest('coverage not available; skipping') self.cover_file = os.path.join(os.getcwd(), '.coverage') self.cover_html_dir = os.path.join(os.getcwd(), 'cover') if os.path.exists(self.cover_file): os.unlink(self.cover_file) if os.path.exists(self.cover_html_dir): shutil.rmtree(self.cover_html_dir) self.assertRaises( SystemExit, super(TestCoverageMinPercentageSinglePackageWithBranchesPlugin, self).setUp) def runTest(self): pass class TestCoverageMinPercentageTOTALPlugin(PluginTester, unittest.TestCase): activate = "--with-coverage" args = ['-v', '--cover-package=blah', '--cover-package=moo', '--cover-min-percentage', '100'] plugins = [Coverage()] suitepath = os.path.join(support, 'coverage2') def setUp(self): if not hasCoverage: raise unittest.SkipTest('coverage not available; skipping') self.cover_file = os.path.join(os.getcwd(), '.coverage') self.cover_html_dir = os.path.join(os.getcwd(), 'cover') if os.path.exists(self.cover_file): os.unlink(self.cover_file) if os.path.exists(self.cover_html_dir): shutil.rmtree(self.cover_html_dir) self.assertRaises(SystemExit, super(TestCoverageMinPercentageTOTALPlugin, self).setUp) def runTest(self): pass class TestCoverageMinPercentageWithBranchesTOTALPlugin( PluginTester, unittest.TestCase): activate = "--with-coverage" args = ['-v', '--cover-package=blah', '--cover-package=moo', '--cover-branches', '--cover-min-percentage', '100'] plugins = [Coverage()] suitepath = os.path.join(support, 'coverage2') def setUp(self): if not hasCoverage: raise unittest.SkipTest('coverage not available; skipping') self.cover_file = os.path.join(os.getcwd(), '.coverage') self.cover_html_dir = os.path.join(os.getcwd(), 'cover') if os.path.exists(self.cover_file): os.unlink(self.cover_file) if os.path.exists(self.cover_html_dir): shutil.rmtree(self.cover_html_dir) self.assertRaises( SystemExit, super(TestCoverageMinPercentageWithBranchesTOTALPlugin, self).setUp) def runTest(self): pass if __name__ == '__main__': unittest.main()
py
b4069cae06b81fd0d4401ac235b9b8db454f84bb
''' Script installation resources. Modified from setuptools/easy_install.py. ''' import os import re import sys import pkg_resources SCRIPT_TEXT = '''# PYG-ENTRY-SCRIPT: {spec!r},{group!r},{name!r} __requires__ = {spec!r} import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.exit( load_entry_point({spec!r}, {group!r}, {name!r})() )''' def isascii(s): try: s.encode('ascii') return True except UnicodeError: return False def nt_quote_arg(arg): result = [] needquote = False nb = 0 needquote = (" " in arg) or ("\t" in arg) if needquote: result.append('"') for c in arg: if c == '\\': nb += 1 elif c == '"': # double preceding backslashes, then add a \" result.append('\\' * (nb * 2) + '\\"') nb = 0 else: if nb: result.append('\\' * nb) nb = 0 result.append(c) if nb: result.append('\\' * nb) if needquote: result.append('\\' * nb) # double the trailing backslashes result.append('"') return ''.join(result) def get_script_header(script_text, executable=sys.executable): first_line_re = re.compile('^#!.*python[0-9.]*([ \t].*)?$') first = (script_text + '\n').splitlines()[0] match = first_line_re.match(first) options = '' if match: options = match.group(1) or '' if options: options = ' ' + options executable = nt_quote_arg(executable) hdr = "#!{0}{1}\n".format(executable, options) if not isascii(hdr): # Non-ascii path to sys.executable, use -x to prevent warnings if options: if options.strip().startswith('-'): options = ' -x' + options.strip()[1:] # else: punt, we can't do it, let the warning happen anyway else: options = ' -x' hdr = "#!{0}{1}\n".format(executable, options) return hdr def script_args(dist): spec = dist.as_req header = get_script_header("", sys.executable) for group in 'console_scripts', 'gui_scripts': for name, ep in dist.entry_points_map(group).items(): script_text = SCRIPT_TEXT.format(**locals()) if sys.platform == 'win32': # On Windows/wininst, add a .py extension and an .exe launcher if group == 'gui_scripts': ext, launcher = '-script.pyw', 'gui.exe' new_header = re.sub('(?i)python.exe', 'pythonw.exe', header) else: ext, launcher = '-script.py', 'cli.exe' new_header = re.sub('(?i)pythonw.exe', 'python.exe', header) if os.path.exists(new_header[2:-1]): hdr = new_header else: hdr = header yield (name + ext, hdr + script_text, 't') yield ( name + '.exe', pkg_resources.resource_string('setuptools', launcher), 'b' # write in binary mode ) else: # On other platforms, we assume the right thing to do is to # just write the stub with no extension. yield (name, header + script_text, '')
py
b4069d56f5712e896abf2328d0df418fcadf1225
"""Configuration file parsing and utilities.""" import copy import itertools import os from collections import Set, namedtuple from re import compile as re try: # Python 3.x from ConfigParser import RawConfigParser except ImportError: # Python 2.x from configparser import RawConfigParser from .utils import __version__, log from .violations import ErrorRegistry, conventions def check_initialized(method): """Check that the configuration object was initialized.""" def _decorator(self, *args, **kwargs): if self._arguments is None or self._options is None: raise RuntimeError('using an uninitialized configuration') return method(self, *args, **kwargs) return _decorator class ConfigurationParser(object): """Responsible for parsing configuration from files and CLI. There are 2 types of configurations: Run configurations and Check configurations. Run Configurations: ------------------ Responsible for deciding things that are related to the user interface and configuration discovery, e.g. verbosity, debug options, etc. All run configurations default to `False` or `None` and are decided only by CLI. Check Configurations: -------------------- Configurations that are related to which files and errors will be checked. These are configurable in 2 ways: using the CLI, and using configuration files. Configuration files are nested within the file system, meaning that the closer a configuration file is to a checked file, the more relevant it will be. For instance, imagine this directory structure: A +-- tox.ini: sets `select=D100` +-- B +-- foo.py +-- tox.ini: sets `add-ignore=D100` Then `foo.py` will not be checked for `D100`. The configuration build algorithm is described in `self._get_config`. Note: If any of `BASE_ERROR_SELECTION_OPTIONS` was selected in the CLI, all configuration files will be ignored and each file will be checked for the error codes supplied in the CLI. """ CONFIG_FILE_OPTIONS = ('convention', 'select', 'ignore', 'add-select', 'add-ignore', 'match', 'match-dir', 'ignore-decorators') BASE_ERROR_SELECTION_OPTIONS = ('ignore', 'select', 'convention') DEFAULT_MATCH_RE = '(?!test_).*\.py' DEFAULT_MATCH_DIR_RE = '[^\.].*' DEFAULT_IGNORE_DECORATORS_RE = '' DEFAULT_CONVENTION = conventions.pep257 PROJECT_CONFIG_FILES = ( 'setup.cfg', 'tox.ini', '.pydocstyle', '.pydocstyle.ini', '.pydocstylerc', '.pydocstylerc.ini', # The following is deprecated, but remains for backwards compatibility. '.pep257', ) POSSIBLE_SECTION_NAMES = ('pydocstyle', 'pep257') def __init__(self): """Create a configuration parser.""" self._cache = {} self._override_by_cli = None self._options = self._arguments = self._run_conf = None self._parser = self._create_option_parser() # ---------------------------- Public Methods ----------------------------- def get_default_run_configuration(self): """Return a `RunConfiguration` object set with default values.""" options, _ = self._parse_args([]) return self._create_run_config(options) def parse(self): """Parse the configuration. If one of `BASE_ERROR_SELECTION_OPTIONS` was selected, overrides all error codes to check and disregards any error code related configurations from the configuration files. """ self._options, self._arguments = self._parse_args() self._arguments = self._arguments or ['.'] if not self._validate_options(self._options): raise IllegalConfiguration() self._run_conf = self._create_run_config(self._options) config = self._create_check_config(self._options, use_defaults=False) self._override_by_cli = config @check_initialized def get_user_run_configuration(self): """Return the run configuration for the script.""" return self._run_conf @check_initialized def get_files_to_check(self): """Generate files and error codes to check on each one. Walk dir trees under `self._arguments` and generate yield filnames that `match` under each directory that `match_dir`. The method locates the configuration for each file name and yields a tuple of (filename, [error_codes]). With every discovery of a new configuration file `IllegalConfiguration` might be raised. """ def _get_matches(config): """Return the `match` and `match_dir` functions for `config`.""" match_func = re(config.match + '$').match match_dir_func = re(config.match_dir + '$').match return match_func, match_dir_func def _get_ignore_decorators(config): """Return the `ignore_decorators` as None or regex.""" if config.ignore_decorators: # not None and not '' ignore_decorators = re(config.ignore_decorators) else: ignore_decorators = None return ignore_decorators for name in self._arguments: if os.path.isdir(name): for root, dirs, filenames in os.walk(name): config = self._get_config(root) match, match_dir = _get_matches(config) ignore_decorators = _get_ignore_decorators(config) # Skip any dirs that do not match match_dir dirs[:] = [dir for dir in dirs if match_dir(dir)] for filename in filenames: if match(filename): full_path = os.path.join(root, filename) yield (full_path, list(config.checked_codes), ignore_decorators) else: config = self._get_config(name) match, _ = _get_matches(config) ignore_decorators = _get_ignore_decorators(config) if match(name): yield (name, list(config.checked_codes), ignore_decorators) # --------------------------- Private Methods ----------------------------- def _get_config_by_discovery(self, node): """Get a configuration for checking `node` by config discovery. Config discovery happens when no explicit config file is specified. The file system is searched for config files starting from the directory containing the file being checked, and up until the root directory of the project. See `_get_config` for further details. """ path = self._get_node_dir(node) if path in self._cache: return self._cache[path] config_file = self._get_config_file_in_folder(path) if config_file is None: parent_dir, tail = os.path.split(path) if tail: # No configuration file, simply take the parent's. config = self._get_config(parent_dir) else: # There's no configuration file and no parent directory. # Use the default configuration or the one given in the CLI. config = self._create_check_config(self._options) else: # There's a config file! Read it and merge if necessary. options, inherit = self._read_configuration_file(config_file) parent_dir, tail = os.path.split(path) if tail and inherit: # There is a parent dir and we should try to merge. parent_config = self._get_config(parent_dir) config = self._merge_configuration(parent_config, options) else: # No need to merge or parent dir does not exist. config = self._create_check_config(options) return config def _get_config(self, node): """Get and cache the run configuration for `node`. If no configuration exists (not local and not for the parent node), returns and caches a default configuration. The algorithm: ------------- * If the current directory's configuration exists in `self._cache` - return it. * If a configuration file does not exist in this directory: * If the directory is not a root directory: * Cache its configuration as this directory's and return it. * Else: * Cache a default configuration and return it. * Else: * Read the configuration file. * If a parent directory exists AND the configuration file allows inheritance: * Read the parent configuration by calling this function with the parent directory as `node`. * Merge the parent configuration with the current one and cache it. * If the user has specified one of `BASE_ERROR_SELECTION_OPTIONS` in the CLI - return the CLI configuration with the configuration match clauses * Set the `--add-select` and `--add-ignore` CLI configurations. """ if self._run_conf.config is None: log.debug('No config file specified, discovering.') config = self._get_config_by_discovery(node) else: log.debug('Using config file %r', self._run_conf.config) if not os.path.exists(self._run_conf.config): raise IllegalConfiguration('Configuration file {!r} specified ' 'via --config was not found.' .format(self._run_conf.config)) if None in self._cache: return self._cache[None] options, _ = self._read_configuration_file(self._run_conf.config) config = self._create_check_config(options) # Make the CLI always win final_config = {} for attr in CheckConfiguration._fields: cli_val = getattr(self._override_by_cli, attr) conf_val = getattr(config, attr) final_config[attr] = cli_val if cli_val is not None else conf_val config = CheckConfiguration(**final_config) self._set_add_options(config.checked_codes, self._options) # Handle caching if self._run_conf.config is not None: self._cache[None] = config else: self._cache[self._get_node_dir(node)] = config return config @staticmethod def _get_node_dir(node): """Return the absolute path of the directory of a filesystem node.""" path = os.path.abspath(node) return path if os.path.isdir(path) else os.path.dirname(path) def _read_configuration_file(self, path): """Try to read and parse `path` as a configuration file. If the configurations were illegal (checked with `self._validate_options`), raises `IllegalConfiguration`. Returns (options, should_inherit). """ parser = RawConfigParser() options = None should_inherit = True if parser.read(path) and self._get_section_name(parser): option_list = dict([(o.dest, o.type or o.action) for o in self._parser.option_list]) # First, read the default values new_options, _ = self._parse_args([]) # Second, parse the configuration section_name = self._get_section_name(parser) for opt in parser.options(section_name): if opt == 'inherit': should_inherit = parser.getboolean(section_name, opt) continue if opt.replace('_', '-') not in self.CONFIG_FILE_OPTIONS: log.warning("Unknown option '{}' ignored".format(opt)) continue normalized_opt = opt.replace('-', '_') opt_type = option_list[normalized_opt] if opt_type in ('int', 'count'): value = parser.getint(section_name, opt) elif opt_type == 'string': value = parser.get(section_name, opt) else: assert opt_type in ('store_true', 'store_false') value = parser.getboolean(section_name, opt) setattr(new_options, normalized_opt, value) # Third, fix the set-options options = self._fix_set_options(new_options) if options is not None: if not self._validate_options(options): raise IllegalConfiguration('in file: {}'.format(path)) return options, should_inherit def _merge_configuration(self, parent_config, child_options): """Merge parent config into the child options. The migration process requires an `options` object for the child in order to distinguish between mutually exclusive codes, add-select and add-ignore error codes. """ # Copy the parent error codes so we won't override them error_codes = copy.deepcopy(parent_config.checked_codes) if self._has_exclusive_option(child_options): error_codes = self._get_exclusive_error_codes(child_options) self._set_add_options(error_codes, child_options) kwargs = dict(checked_codes=error_codes) for key in ('match', 'match_dir', 'ignore_decorators'): kwargs[key] = \ getattr(child_options, key) or getattr(parent_config, key) return CheckConfiguration(**kwargs) def _parse_args(self, args=None, values=None): """Parse the options using `self._parser` and reformat the options.""" options, arguments = self._parser.parse_args(args, values) return self._fix_set_options(options), arguments @staticmethod def _create_run_config(options): """Create a `RunConfiguration` object from `options`.""" values = dict([(opt, getattr(options, opt)) for opt in RunConfiguration._fields]) return RunConfiguration(**values) @classmethod def _create_check_config(cls, options, use_defaults=True): """Create a `CheckConfiguration` object from `options`. If `use_defaults`, any of the match options that are `None` will be replaced with their default value and the default convention will be set for the checked codes. """ checked_codes = None if cls._has_exclusive_option(options) or use_defaults: checked_codes = cls._get_checked_errors(options) kwargs = dict(checked_codes=checked_codes) for key in ('match', 'match_dir', 'ignore_decorators'): kwargs[key] = getattr(cls, 'DEFAULT_{0}_RE'.format(key.upper())) \ if getattr(options, key) is None and use_defaults \ else getattr(options, key) return CheckConfiguration(**kwargs) @classmethod def _get_section_name(cls, parser): """Parse options from relevant section.""" for section_name in cls.POSSIBLE_SECTION_NAMES: if parser.has_section(section_name): return section_name return None @classmethod def _get_config_file_in_folder(cls, path): """Look for a configuration file in `path`. If exists return its full path, otherwise None. """ if os.path.isfile(path): path = os.path.dirname(path) for fn in cls.PROJECT_CONFIG_FILES: config = RawConfigParser() full_path = os.path.join(path, fn) if config.read(full_path) and cls._get_section_name(config): return full_path @classmethod def _get_exclusive_error_codes(cls, options): """Extract the error codes from the selected exclusive option.""" codes = set(ErrorRegistry.get_error_codes()) checked_codes = None if options.ignore is not None: ignored = cls._expand_error_codes(options.ignore) checked_codes = codes - ignored elif options.select is not None: checked_codes = cls._expand_error_codes(options.select) elif options.convention is not None: checked_codes = getattr(conventions, options.convention) # To not override the conventions nor the options - copy them. return copy.deepcopy(checked_codes) @classmethod def _set_add_options(cls, checked_codes, options): """Set `checked_codes` by the `add_ignore` or `add_select` options.""" checked_codes |= cls._expand_error_codes(options.add_select) checked_codes -= cls._expand_error_codes(options.add_ignore) @staticmethod def _expand_error_codes(code_parts): """Return an expanded set of error codes to ignore.""" codes = set(ErrorRegistry.get_error_codes()) expanded_codes = set() try: for part in code_parts: if len(part) < 4: for code in codes: if code.startswith(part): expanded_codes.add(code) else: expanded_codes.add(part) except TypeError as e: raise IllegalConfiguration(e) return expanded_codes @classmethod def _get_checked_errors(cls, options): """Extract the codes needed to be checked from `options`.""" checked_codes = cls._get_exclusive_error_codes(options) if checked_codes is None: checked_codes = cls.DEFAULT_CONVENTION cls._set_add_options(checked_codes, options) return checked_codes @classmethod def _validate_options(cls, options): """Validate the mutually exclusive options. Return `True` iff only zero or one of `BASE_ERROR_SELECTION_OPTIONS` was selected. """ for opt1, opt2 in \ itertools.permutations(cls.BASE_ERROR_SELECTION_OPTIONS, 2): if getattr(options, opt1) and getattr(options, opt2): log.error('Cannot pass both {} and {}. They are ' 'mutually exclusive.'.format(opt1, opt2)) return False if options.convention and options.convention not in conventions: log.error("Illegal convention '{}'. Possible conventions: {}" .format(options.convention, ', '.join(conventions.keys()))) return False return True @classmethod def _has_exclusive_option(cls, options): """Return `True` iff one or more exclusive options were selected.""" return any([getattr(options, opt) is not None for opt in cls.BASE_ERROR_SELECTION_OPTIONS]) @staticmethod def _fix_set_options(options): """Alter the set options from None/strings to sets in place.""" optional_set_options = ('ignore', 'select') mandatory_set_options = ('add_ignore', 'add_select') def _get_set(value_str): """Split `value_str` by the delimiter `,` and return a set. Removes any occurrences of '' in the set. """ return set(value_str.split(',')) - {''} for opt in optional_set_options: value = getattr(options, opt) if value is not None: setattr(options, opt, _get_set(value)) for opt in mandatory_set_options: value = getattr(options, opt) if value is None: value = '' if not isinstance(value, Set): value = _get_set(value) setattr(options, opt, value) return options @classmethod def _create_option_parser(cls): """Return an option parser to parse the command line arguments.""" from optparse import OptionParser parser = OptionParser( version=__version__, usage='Usage: pydocstyle [options] [<file|dir>...]') option = parser.add_option # Run configuration options option('-e', '--explain', action='store_true', default=False, help='show explanation of each error') option('-s', '--source', action='store_true', default=False, help='show source for each error') option('-d', '--debug', action='store_true', default=False, help='print debug information') option('-v', '--verbose', action='store_true', default=False, help='print status information') option('--count', action='store_true', default=False, help='print total number of errors to stdout') option('--config', metavar='<path>', default=None, help='use given config file and disable config discovery') # Error check options option('--select', metavar='<codes>', default=None, help='choose the basic list of checked errors by ' 'specifying which errors to check for (with a list of ' 'comma-separated error codes or prefixes). ' 'for example: --select=D101,D2') option('--ignore', metavar='<codes>', default=None, help='choose the basic list of checked errors by ' 'specifying which errors to ignore (with a list of ' 'comma-separated error codes or prefixes). ' 'for example: --ignore=D101,D2') option('--convention', metavar='<name>', default=None, help='choose the basic list of checked errors by specifying an ' 'existing convention. Possible conventions: {}' .format(', '.join(conventions))) option('--add-select', metavar='<codes>', default=None, help='amend the list of errors to check for by specifying ' 'more error codes to check.') option('--add-ignore', metavar='<codes>', default=None, help='amend the list of errors to check for by specifying ' 'more error codes to ignore.') # Match clauses option('--match', metavar='<pattern>', default=None, help=("check only files that exactly match <pattern> regular " "expression; default is --match='{}' which matches " "files that don't start with 'test_' but end with " "'.py'").format(cls.DEFAULT_MATCH_RE)) option('--match-dir', metavar='<pattern>', default=None, help=("search only dirs that exactly match <pattern> regular " "expression; default is --match-dir='{}', which " "matches all dirs that don't start with " "a dot").format(cls.DEFAULT_MATCH_DIR_RE)) # Decorators option('--ignore-decorators', metavar='<decorators>', default=None, help=("ignore any functions or methods that are decorated " "by a function with a name fitting the <decorators> " "regular expression; default is --ignore-decorators='{0}'" " which does not ignore any decorated functions." .format(cls.DEFAULT_IGNORE_DECORATORS_RE))) return parser # Check configuration - used by the ConfigurationParser class. CheckConfiguration = namedtuple('CheckConfiguration', ('checked_codes', 'match', 'match_dir', 'ignore_decorators')) class IllegalConfiguration(Exception): """An exception for illegal configurations.""" pass # General configurations for pydocstyle run. RunConfiguration = namedtuple('RunConfiguration', ('explain', 'source', 'debug', 'verbose', 'count', 'config'))
py
b4069df5b7750d8d88b6155047b24007c1036161
import random import copy class MyPlayer: '''This Player plays randomly''' def __init__(self, my_color, opponent_color): self.name = 'krivast1' self.my_color = my_color self.opponent_color = opponent_color self.size = 8 self.tokens_on_board = 4 self.moves = [(-1,-1), (+1,+1), (-1,+1), (+1,-1), (+1,0), (0,+1), (-1,0), (0,-1)] self.eval_matrix = [ [20,0 ,10,10,10,10,0 ,20], [0 ,0 ,2 ,2 ,2 ,2 ,0 ,0 ], [10,2 ,10,8 ,8 ,10,2 ,10], [10,2 ,8 ,5 ,5 ,8 ,2 ,10], [10,2 ,8 ,5 ,5 ,8 ,2 ,10], [10,2 ,10,8 ,8 ,10,2 ,10], [0 ,0 ,2 ,2 ,2 ,2 ,0 ,0 ], [20,0 ,10,10,10,10,0 ,20]] def move(self, board): max_token_flips = self.size**2 my_tokens, enemy_tokens, free_tokens = self.get_coords(board, self.my_color) my_possible_moves = self.get_possible_moves(my_tokens, enemy_tokens, free_tokens) evaluated_moves = [] for coords in my_possible_moves: new_board = self.swap_stones(board, coords, self.my_color, self.opponent_color) max_value = self.minimax( new_board, self.opponent_color, self.my_color, 1, -max_token_flips, max_token_flips, False) value = max_value evaluated_moves.append(value) self.tokens_on_board += 2 if my_possible_moves: return my_possible_moves[evaluated_moves.index(max(evaluated_moves))] else: return None def evaluate(self, board, own_color, my_possible_moves, opponent_possible_moves, my_tokens, enemy_tokens): board_size = self.size**2 if self.tokens_on_board < 3*board_size/4: evaluation = len(my_possible_moves) - len(opponent_possible_moves) else: evaluation = len(my_tokens) - len(enemy_tokens) return evaluation def minimax(self, board, own_color, opponent_color, depth, alpha, beta, maximize): my_tokens, enemy_tokens, free_tokens = self.get_coords(board, own_color) my_possible_moves = self.get_possible_moves(my_tokens, enemy_tokens, free_tokens) if depth == 0: opponent_possible_moves = self.get_possible_moves(enemy_tokens, my_tokens, free_tokens) evaluation = self.evaluate( board, own_color, my_possible_moves, opponent_possible_moves, my_tokens, enemy_tokens) return evaluation max_token_flips = self.size**2 if maximize: max_value = -max_token_flips for coords in my_possible_moves: new_board = self.swap_stones(board, coords, own_color, opponent_color) max_tokens = self.minimax(new_board, opponent_color, own_color, depth - 1, alpha, beta, False) max_value = max(max_value, max_tokens) alpha = max(alpha, max_tokens) if beta <= alpha: break return max_value else: min_value = max_token_flips for coords in my_possible_moves: new_board = self.swap_stones(board, coords, own_color, opponent_color) min_tokens = self.minimax(new_board, opponent_color, own_color, depth - 1, alpha, beta, True) min_value = min(min_value, min_tokens) beta = min(beta, min_tokens) if beta <= alpha: break return min_value def swap_stones(self, board, coords, own_color, opponent_color): new_board = copy.deepcopy(board) new_board[coords[0]][coords[1]] = own_color for move in self.moves: next_row = coords[0] + move[0] next_col = coords[1] + move[1] row_border = next_row < self.size and next_row >= 0 col_border = next_col < self.size and next_col >= 0 if not row_border or not col_border: continue while new_board[next_row][next_col] == opponent_color: next_row += move[0] next_col += move[1] row_border = next_row < self.size and next_row >= 0 col_border = next_col < self.size and next_col >= 0 if not row_border or not col_border: break if not row_border or not col_border: continue if new_board[next_row][next_col] == own_color: while next_row != coords[0] or next_col != coords[1]: new_board[next_row][next_col] = own_color next_row -= move[0] next_col -= move[1] return new_board # Testing function def prt(self, board): for i in board: line = "" for j in i: if j == -1: j = 'a' line += " " + str(j) print(line) print("\n") def get_coords(self, board, color): my_tokens = [] enemy_tokens = [] free_tokens = [] for row in range(self.size): for col in range(self.size): if board[row][col] == -1: free_tokens.append((row,col)) elif board[row][col] == color: my_tokens.append((row,col)) else: enemy_tokens.append((row,col)) return my_tokens, enemy_tokens, free_tokens def get_possible_moves(self, my_tokens, enemy_tokens, free_tokens): possible_moves = [] for my_token in my_tokens: for i in range(len(self.moves)): position = tuple(x + y for x, y in zip(my_token, self.moves[i])) if position in enemy_tokens: while position in enemy_tokens: position = tuple(x + y for x, y in zip(position, self.moves[i])) if position in free_tokens: possible_moves.append(position) return possible_moves
py
b4069ebb1361269d39d4a310b18a40983e37c5c7
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.core.exceptions import HttpResponseError import msrest.serialization class AnalyzedTokenInfo(msrest.serialization.Model): """Information about a token returned by an analyzer. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar token: Required. The token returned by the analyzer. :vartype token: str :ivar start_offset: Required. The index of the first character of the token in the input text. :vartype start_offset: int :ivar end_offset: Required. The index of the last character of the token in the input text. :vartype end_offset: int :ivar position: Required. The position of the token in the input text relative to other tokens. The first token in the input text has position 0, the next has position 1, and so on. Depending on the analyzer used, some tokens might have the same position, for example if they are synonyms of each other. :vartype position: int """ _validation = { 'token': {'required': True, 'readonly': True}, 'start_offset': {'required': True, 'readonly': True}, 'end_offset': {'required': True, 'readonly': True}, 'position': {'required': True, 'readonly': True}, } _attribute_map = { 'token': {'key': 'token', 'type': 'str'}, 'start_offset': {'key': 'startOffset', 'type': 'int'}, 'end_offset': {'key': 'endOffset', 'type': 'int'}, 'position': {'key': 'position', 'type': 'int'}, } def __init__( self, **kwargs ): """ """ super(AnalyzedTokenInfo, self).__init__(**kwargs) self.token = None self.start_offset = None self.end_offset = None self.position = None class AnalyzeRequest(msrest.serialization.Model): """Specifies some text and analysis components used to break that text into tokens. All required parameters must be populated in order to send to Azure. :ivar text: Required. The text to break into tokens. :vartype text: str :ivar analyzer: The name of the analyzer to use to break the given text. Possible values include: "ar.microsoft", "ar.lucene", "hy.lucene", "bn.microsoft", "eu.lucene", "bg.microsoft", "bg.lucene", "ca.microsoft", "ca.lucene", "zh-Hans.microsoft", "zh-Hans.lucene", "zh-Hant.microsoft", "zh-Hant.lucene", "hr.microsoft", "cs.microsoft", "cs.lucene", "da.microsoft", "da.lucene", "nl.microsoft", "nl.lucene", "en.microsoft", "en.lucene", "et.microsoft", "fi.microsoft", "fi.lucene", "fr.microsoft", "fr.lucene", "gl.lucene", "de.microsoft", "de.lucene", "el.microsoft", "el.lucene", "gu.microsoft", "he.microsoft", "hi.microsoft", "hi.lucene", "hu.microsoft", "hu.lucene", "is.microsoft", "id.microsoft", "id.lucene", "ga.lucene", "it.microsoft", "it.lucene", "ja.microsoft", "ja.lucene", "kn.microsoft", "ko.microsoft", "ko.lucene", "lv.microsoft", "lv.lucene", "lt.microsoft", "ml.microsoft", "ms.microsoft", "mr.microsoft", "nb.microsoft", "no.lucene", "fa.lucene", "pl.microsoft", "pl.lucene", "pt-BR.microsoft", "pt-BR.lucene", "pt-PT.microsoft", "pt-PT.lucene", "pa.microsoft", "ro.microsoft", "ro.lucene", "ru.microsoft", "ru.lucene", "sr-cyrillic.microsoft", "sr-latin.microsoft", "sk.microsoft", "sl.microsoft", "es.microsoft", "es.lucene", "sv.microsoft", "sv.lucene", "ta.microsoft", "te.microsoft", "th.microsoft", "th.lucene", "tr.microsoft", "tr.lucene", "uk.microsoft", "ur.microsoft", "vi.microsoft", "standard.lucene", "standardasciifolding.lucene", "keyword", "pattern", "simple", "stop", "whitespace". :vartype analyzer: str or ~azure.search.documents.indexes.models.LexicalAnalyzerName :ivar tokenizer: The name of the tokenizer to use to break the given text. Possible values include: "classic", "edgeNGram", "keyword_v2", "letter", "lowercase", "microsoft_language_tokenizer", "microsoft_language_stemming_tokenizer", "nGram", "path_hierarchy_v2", "pattern", "standard_v2", "uax_url_email", "whitespace". :vartype tokenizer: str or ~azure.search.documents.indexes.models.LexicalTokenizerName :ivar normalizer: The name of the normalizer to use to normalize the given text. Possible values include: "asciifolding", "elision", "lowercase", "standard", "uppercase". :vartype normalizer: str or ~azure.search.documents.indexes.models.LexicalNormalizerName :ivar token_filters: An optional list of token filters to use when breaking the given text. :vartype token_filters: list[str or ~azure.search.documents.indexes.models.TokenFilterName] :ivar char_filters: An optional list of character filters to use when breaking the given text. :vartype char_filters: list[str or ~azure.search.documents.indexes.models.CharFilterName] """ _validation = { 'text': {'required': True}, } _attribute_map = { 'text': {'key': 'text', 'type': 'str'}, 'analyzer': {'key': 'analyzer', 'type': 'str'}, 'tokenizer': {'key': 'tokenizer', 'type': 'str'}, 'normalizer': {'key': 'normalizer', 'type': 'str'}, 'token_filters': {'key': 'tokenFilters', 'type': '[str]'}, 'char_filters': {'key': 'charFilters', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword text: Required. The text to break into tokens. :paramtype text: str :keyword analyzer: The name of the analyzer to use to break the given text. Possible values include: "ar.microsoft", "ar.lucene", "hy.lucene", "bn.microsoft", "eu.lucene", "bg.microsoft", "bg.lucene", "ca.microsoft", "ca.lucene", "zh-Hans.microsoft", "zh-Hans.lucene", "zh-Hant.microsoft", "zh-Hant.lucene", "hr.microsoft", "cs.microsoft", "cs.lucene", "da.microsoft", "da.lucene", "nl.microsoft", "nl.lucene", "en.microsoft", "en.lucene", "et.microsoft", "fi.microsoft", "fi.lucene", "fr.microsoft", "fr.lucene", "gl.lucene", "de.microsoft", "de.lucene", "el.microsoft", "el.lucene", "gu.microsoft", "he.microsoft", "hi.microsoft", "hi.lucene", "hu.microsoft", "hu.lucene", "is.microsoft", "id.microsoft", "id.lucene", "ga.lucene", "it.microsoft", "it.lucene", "ja.microsoft", "ja.lucene", "kn.microsoft", "ko.microsoft", "ko.lucene", "lv.microsoft", "lv.lucene", "lt.microsoft", "ml.microsoft", "ms.microsoft", "mr.microsoft", "nb.microsoft", "no.lucene", "fa.lucene", "pl.microsoft", "pl.lucene", "pt-BR.microsoft", "pt-BR.lucene", "pt-PT.microsoft", "pt-PT.lucene", "pa.microsoft", "ro.microsoft", "ro.lucene", "ru.microsoft", "ru.lucene", "sr-cyrillic.microsoft", "sr-latin.microsoft", "sk.microsoft", "sl.microsoft", "es.microsoft", "es.lucene", "sv.microsoft", "sv.lucene", "ta.microsoft", "te.microsoft", "th.microsoft", "th.lucene", "tr.microsoft", "tr.lucene", "uk.microsoft", "ur.microsoft", "vi.microsoft", "standard.lucene", "standardasciifolding.lucene", "keyword", "pattern", "simple", "stop", "whitespace". :paramtype analyzer: str or ~azure.search.documents.indexes.models.LexicalAnalyzerName :keyword tokenizer: The name of the tokenizer to use to break the given text. Possible values include: "classic", "edgeNGram", "keyword_v2", "letter", "lowercase", "microsoft_language_tokenizer", "microsoft_language_stemming_tokenizer", "nGram", "path_hierarchy_v2", "pattern", "standard_v2", "uax_url_email", "whitespace". :paramtype tokenizer: str or ~azure.search.documents.indexes.models.LexicalTokenizerName :keyword normalizer: The name of the normalizer to use to normalize the given text. Possible values include: "asciifolding", "elision", "lowercase", "standard", "uppercase". :paramtype normalizer: str or ~azure.search.documents.indexes.models.LexicalNormalizerName :keyword token_filters: An optional list of token filters to use when breaking the given text. :paramtype token_filters: list[str or ~azure.search.documents.indexes.models.TokenFilterName] :keyword char_filters: An optional list of character filters to use when breaking the given text. :paramtype char_filters: list[str or ~azure.search.documents.indexes.models.CharFilterName] """ super(AnalyzeRequest, self).__init__(**kwargs) self.text = kwargs['text'] self.analyzer = kwargs.get('analyzer', None) self.tokenizer = kwargs.get('tokenizer', None) self.normalizer = kwargs.get('normalizer', None) self.token_filters = kwargs.get('token_filters', None) self.char_filters = kwargs.get('char_filters', None) class AnalyzeResult(msrest.serialization.Model): """The result of testing an analyzer on text. All required parameters must be populated in order to send to Azure. :ivar tokens: Required. The list of tokens returned by the analyzer specified in the request. :vartype tokens: list[~azure.search.documents.indexes.models.AnalyzedTokenInfo] """ _validation = { 'tokens': {'required': True}, } _attribute_map = { 'tokens': {'key': 'tokens', 'type': '[AnalyzedTokenInfo]'}, } def __init__( self, **kwargs ): """ :keyword tokens: Required. The list of tokens returned by the analyzer specified in the request. :paramtype tokens: list[~azure.search.documents.indexes.models.AnalyzedTokenInfo] """ super(AnalyzeResult, self).__init__(**kwargs) self.tokens = kwargs['tokens'] class TokenFilter(msrest.serialization.Model): """Base type for token filters. You probably want to use the sub-classes and not this class directly. Known sub-classes are: AsciiFoldingTokenFilter, CjkBigramTokenFilter, CommonGramTokenFilter, DictionaryDecompounderTokenFilter, EdgeNGramTokenFilter, EdgeNGramTokenFilterV2, ElisionTokenFilter, KeepTokenFilter, KeywordMarkerTokenFilter, LengthTokenFilter, LimitTokenFilter, NGramTokenFilter, NGramTokenFilterV2, PatternCaptureTokenFilter, PatternReplaceTokenFilter, PhoneticTokenFilter, ShingleTokenFilter, SnowballTokenFilter, StemmerOverrideTokenFilter, StemmerTokenFilter, StopwordsTokenFilter, SynonymTokenFilter, TruncateTokenFilter, UniqueTokenFilter, WordDelimiterTokenFilter. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, } _subtype_map = { 'odata_type': {'#Microsoft.Azure.Search.AsciiFoldingTokenFilter': 'AsciiFoldingTokenFilter', '#Microsoft.Azure.Search.CjkBigramTokenFilter': 'CjkBigramTokenFilter', '#Microsoft.Azure.Search.CommonGramTokenFilter': 'CommonGramTokenFilter', '#Microsoft.Azure.Search.DictionaryDecompounderTokenFilter': 'DictionaryDecompounderTokenFilter', '#Microsoft.Azure.Search.EdgeNGramTokenFilter': 'EdgeNGramTokenFilter', '#Microsoft.Azure.Search.EdgeNGramTokenFilterV2': 'EdgeNGramTokenFilterV2', '#Microsoft.Azure.Search.ElisionTokenFilter': 'ElisionTokenFilter', '#Microsoft.Azure.Search.KeepTokenFilter': 'KeepTokenFilter', '#Microsoft.Azure.Search.KeywordMarkerTokenFilter': 'KeywordMarkerTokenFilter', '#Microsoft.Azure.Search.LengthTokenFilter': 'LengthTokenFilter', '#Microsoft.Azure.Search.LimitTokenFilter': 'LimitTokenFilter', '#Microsoft.Azure.Search.NGramTokenFilter': 'NGramTokenFilter', '#Microsoft.Azure.Search.NGramTokenFilterV2': 'NGramTokenFilterV2', '#Microsoft.Azure.Search.PatternCaptureTokenFilter': 'PatternCaptureTokenFilter', '#Microsoft.Azure.Search.PatternReplaceTokenFilter': 'PatternReplaceTokenFilter', '#Microsoft.Azure.Search.PhoneticTokenFilter': 'PhoneticTokenFilter', '#Microsoft.Azure.Search.ShingleTokenFilter': 'ShingleTokenFilter', '#Microsoft.Azure.Search.SnowballTokenFilter': 'SnowballTokenFilter', '#Microsoft.Azure.Search.StemmerOverrideTokenFilter': 'StemmerOverrideTokenFilter', '#Microsoft.Azure.Search.StemmerTokenFilter': 'StemmerTokenFilter', '#Microsoft.Azure.Search.StopwordsTokenFilter': 'StopwordsTokenFilter', '#Microsoft.Azure.Search.SynonymTokenFilter': 'SynonymTokenFilter', '#Microsoft.Azure.Search.TruncateTokenFilter': 'TruncateTokenFilter', '#Microsoft.Azure.Search.UniqueTokenFilter': 'UniqueTokenFilter', '#Microsoft.Azure.Search.WordDelimiterTokenFilter': 'WordDelimiterTokenFilter'} } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str """ super(TokenFilter, self).__init__(**kwargs) self.odata_type = None # type: Optional[str] self.name = kwargs['name'] class AsciiFoldingTokenFilter(TokenFilter): """Converts alphabetic, numeric, and symbolic Unicode characters which are not in the first 127 ASCII characters (the "Basic Latin" Unicode block) into their ASCII equivalents, if such equivalents exist. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar preserve_original: A value indicating whether the original token will be kept. Default is false. :vartype preserve_original: bool """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'preserve_original': {'key': 'preserveOriginal', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword preserve_original: A value indicating whether the original token will be kept. Default is false. :paramtype preserve_original: bool """ super(AsciiFoldingTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.AsciiFoldingTokenFilter' # type: str self.preserve_original = kwargs.get('preserve_original', False) class AzureActiveDirectoryApplicationCredentials(msrest.serialization.Model): """Credentials of a registered application created for your search service, used for authenticated access to the encryption keys stored in Azure Key Vault. All required parameters must be populated in order to send to Azure. :ivar application_id: Required. An AAD Application ID that was granted the required access permissions to the Azure Key Vault that is to be used when encrypting your data at rest. The Application ID should not be confused with the Object ID for your AAD Application. :vartype application_id: str :ivar application_secret: The authentication key of the specified AAD application. :vartype application_secret: str """ _validation = { 'application_id': {'required': True}, } _attribute_map = { 'application_id': {'key': 'applicationId', 'type': 'str'}, 'application_secret': {'key': 'applicationSecret', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword application_id: Required. An AAD Application ID that was granted the required access permissions to the Azure Key Vault that is to be used when encrypting your data at rest. The Application ID should not be confused with the Object ID for your AAD Application. :paramtype application_id: str :keyword application_secret: The authentication key of the specified AAD application. :paramtype application_secret: str """ super(AzureActiveDirectoryApplicationCredentials, self).__init__(**kwargs) self.application_id = kwargs['application_id'] self.application_secret = kwargs.get('application_secret', None) class SearchIndexerSkill(msrest.serialization.Model): """Base type for skills. You probably want to use the sub-classes and not this class directly. Known sub-classes are: AzureMachineLearningSkill, WebApiSkill, CustomEntityLookupSkill, EntityRecognitionSkill, KeyPhraseExtractionSkill, LanguageDetectionSkill, MergeSkill, PIIDetectionSkill, SentimentSkill, SplitSkill, TextTranslationSkill, EntityLinkingSkill, EntityRecognitionSkillV3, SentimentSkillV3, ConditionalSkill, DocumentExtractionSkill, ShaperSkill, ImageAnalysisSkill, OcrSkill. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, } _subtype_map = { 'odata_type': {'#Microsoft.Skills.Custom.AmlSkill': 'AzureMachineLearningSkill', '#Microsoft.Skills.Custom.WebApiSkill': 'WebApiSkill', '#Microsoft.Skills.Text.CustomEntityLookupSkill': 'CustomEntityLookupSkill', '#Microsoft.Skills.Text.EntityRecognitionSkill': 'EntityRecognitionSkill', '#Microsoft.Skills.Text.KeyPhraseExtractionSkill': 'KeyPhraseExtractionSkill', '#Microsoft.Skills.Text.LanguageDetectionSkill': 'LanguageDetectionSkill', '#Microsoft.Skills.Text.MergeSkill': 'MergeSkill', '#Microsoft.Skills.Text.PIIDetectionSkill': 'PIIDetectionSkill', '#Microsoft.Skills.Text.SentimentSkill': 'SentimentSkill', '#Microsoft.Skills.Text.SplitSkill': 'SplitSkill', '#Microsoft.Skills.Text.TranslationSkill': 'TextTranslationSkill', '#Microsoft.Skills.Text.V3.EntityLinkingSkill': 'EntityLinkingSkill', '#Microsoft.Skills.Text.V3.EntityRecognitionSkill': 'EntityRecognitionSkillV3', '#Microsoft.Skills.Text.V3.SentimentSkill': 'SentimentSkillV3', '#Microsoft.Skills.Util.ConditionalSkill': 'ConditionalSkill', '#Microsoft.Skills.Util.DocumentExtractionSkill': 'DocumentExtractionSkill', '#Microsoft.Skills.Util.ShaperSkill': 'ShaperSkill', '#Microsoft.Skills.Vision.ImageAnalysisSkill': 'ImageAnalysisSkill', '#Microsoft.Skills.Vision.OcrSkill': 'OcrSkill'} } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] """ super(SearchIndexerSkill, self).__init__(**kwargs) self.odata_type = None # type: Optional[str] self.name = kwargs.get('name', None) self.description = kwargs.get('description', None) self.context = kwargs.get('context', None) self.inputs = kwargs['inputs'] self.outputs = kwargs['outputs'] class AzureMachineLearningSkill(SearchIndexerSkill): """The AML skill allows you to extend AI enrichment with a custom Azure Machine Learning (AML) model. Once an AML model is trained and deployed, an AML skill integrates it into AI enrichment. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar scoring_uri: (Required for no authentication or key authentication) The scoring URI of the AML service to which the JSON payload will be sent. Only the https URI scheme is allowed. :vartype scoring_uri: str :ivar authentication_key: (Required for key authentication) The key for the AML service. :vartype authentication_key: str :ivar resource_id: (Required for token authentication). The Azure Resource Manager resource ID of the AML service. It should be in the format subscriptions/{guid}/resourceGroups/{resource-group-name}/Microsoft.MachineLearningServices/workspaces/{workspace-name}/services/{service_name}. :vartype resource_id: str :ivar timeout: (Optional) When specified, indicates the timeout for the http client making the API call. :vartype timeout: ~datetime.timedelta :ivar region: (Optional for token authentication). The region the AML service is deployed in. :vartype region: str :ivar degree_of_parallelism: (Optional) When specified, indicates the number of calls the indexer will make in parallel to the endpoint you have provided. You can decrease this value if your endpoint is failing under too high of a request load, or raise it if your endpoint is able to accept more requests and you would like an increase in the performance of the indexer. If not set, a default value of 5 is used. The degreeOfParallelism can be set to a maximum of 10 and a minimum of 1. :vartype degree_of_parallelism: int """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'scoring_uri': {'key': 'uri', 'type': 'str'}, 'authentication_key': {'key': 'key', 'type': 'str'}, 'resource_id': {'key': 'resourceId', 'type': 'str'}, 'timeout': {'key': 'timeout', 'type': 'duration'}, 'region': {'key': 'region', 'type': 'str'}, 'degree_of_parallelism': {'key': 'degreeOfParallelism', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword scoring_uri: (Required for no authentication or key authentication) The scoring URI of the AML service to which the JSON payload will be sent. Only the https URI scheme is allowed. :paramtype scoring_uri: str :keyword authentication_key: (Required for key authentication) The key for the AML service. :paramtype authentication_key: str :keyword resource_id: (Required for token authentication). The Azure Resource Manager resource ID of the AML service. It should be in the format subscriptions/{guid}/resourceGroups/{resource-group-name}/Microsoft.MachineLearningServices/workspaces/{workspace-name}/services/{service_name}. :paramtype resource_id: str :keyword timeout: (Optional) When specified, indicates the timeout for the http client making the API call. :paramtype timeout: ~datetime.timedelta :keyword region: (Optional for token authentication). The region the AML service is deployed in. :paramtype region: str :keyword degree_of_parallelism: (Optional) When specified, indicates the number of calls the indexer will make in parallel to the endpoint you have provided. You can decrease this value if your endpoint is failing under too high of a request load, or raise it if your endpoint is able to accept more requests and you would like an increase in the performance of the indexer. If not set, a default value of 5 is used. The degreeOfParallelism can be set to a maximum of 10 and a minimum of 1. :paramtype degree_of_parallelism: int """ super(AzureMachineLearningSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Custom.AmlSkill' # type: str self.scoring_uri = kwargs.get('scoring_uri', None) self.authentication_key = kwargs.get('authentication_key', None) self.resource_id = kwargs.get('resource_id', None) self.timeout = kwargs.get('timeout', None) self.region = kwargs.get('region', None) self.degree_of_parallelism = kwargs.get('degree_of_parallelism', None) class Similarity(msrest.serialization.Model): """Base type for similarity algorithms. Similarity algorithms are used to calculate scores that tie queries to documents. The higher the score, the more relevant the document is to that specific query. Those scores are used to rank the search results. You probably want to use the sub-classes and not this class directly. Known sub-classes are: BM25Similarity, ClassicSimilarity. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Constant filled by server. :vartype odata_type: str """ _validation = { 'odata_type': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, } _subtype_map = { 'odata_type': {'#Microsoft.Azure.Search.BM25Similarity': 'BM25Similarity', '#Microsoft.Azure.Search.ClassicSimilarity': 'ClassicSimilarity'} } def __init__( self, **kwargs ): """ """ super(Similarity, self).__init__(**kwargs) self.odata_type = None # type: Optional[str] class BM25Similarity(Similarity): """Ranking function based on the Okapi BM25 similarity algorithm. BM25 is a TF-IDF-like algorithm that includes length normalization (controlled by the 'b' parameter) as well as term frequency saturation (controlled by the 'k1' parameter). All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Constant filled by server. :vartype odata_type: str :ivar k1: This property controls the scaling function between the term frequency of each matching terms and the final relevance score of a document-query pair. By default, a value of 1.2 is used. A value of 0.0 means the score does not scale with an increase in term frequency. :vartype k1: float :ivar b: This property controls how the length of a document affects the relevance score. By default, a value of 0.75 is used. A value of 0.0 means no length normalization is applied, while a value of 1.0 means the score is fully normalized by the length of the document. :vartype b: float """ _validation = { 'odata_type': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'k1': {'key': 'k1', 'type': 'float'}, 'b': {'key': 'b', 'type': 'float'}, } def __init__( self, **kwargs ): """ :keyword k1: This property controls the scaling function between the term frequency of each matching terms and the final relevance score of a document-query pair. By default, a value of 1.2 is used. A value of 0.0 means the score does not scale with an increase in term frequency. :paramtype k1: float :keyword b: This property controls how the length of a document affects the relevance score. By default, a value of 0.75 is used. A value of 0.0 means no length normalization is applied, while a value of 1.0 means the score is fully normalized by the length of the document. :paramtype b: float """ super(BM25Similarity, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.BM25Similarity' # type: str self.k1 = kwargs.get('k1', None) self.b = kwargs.get('b', None) class CharFilter(msrest.serialization.Model): """Base type for character filters. You probably want to use the sub-classes and not this class directly. Known sub-classes are: MappingCharFilter, PatternReplaceCharFilter. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the char filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the char filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, } _subtype_map = { 'odata_type': {'#Microsoft.Azure.Search.MappingCharFilter': 'MappingCharFilter', '#Microsoft.Azure.Search.PatternReplaceCharFilter': 'PatternReplaceCharFilter'} } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the char filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str """ super(CharFilter, self).__init__(**kwargs) self.odata_type = None # type: Optional[str] self.name = kwargs['name'] class CjkBigramTokenFilter(TokenFilter): """Forms bigrams of CJK terms that are generated from the standard tokenizer. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar ignore_scripts: The scripts to ignore. :vartype ignore_scripts: list[str or ~azure.search.documents.indexes.models.CjkBigramTokenFilterScripts] :ivar output_unigrams: A value indicating whether to output both unigrams and bigrams (if true), or just bigrams (if false). Default is false. :vartype output_unigrams: bool """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'ignore_scripts': {'key': 'ignoreScripts', 'type': '[str]'}, 'output_unigrams': {'key': 'outputUnigrams', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword ignore_scripts: The scripts to ignore. :paramtype ignore_scripts: list[str or ~azure.search.documents.indexes.models.CjkBigramTokenFilterScripts] :keyword output_unigrams: A value indicating whether to output both unigrams and bigrams (if true), or just bigrams (if false). Default is false. :paramtype output_unigrams: bool """ super(CjkBigramTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.CjkBigramTokenFilter' # type: str self.ignore_scripts = kwargs.get('ignore_scripts', None) self.output_unigrams = kwargs.get('output_unigrams', False) class ClassicSimilarity(Similarity): """Legacy similarity algorithm which uses the Lucene TFIDFSimilarity implementation of TF-IDF. This variation of TF-IDF introduces static document length normalization as well as coordinating factors that penalize documents that only partially match the searched queries. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Constant filled by server. :vartype odata_type: str """ _validation = { 'odata_type': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, } def __init__( self, **kwargs ): """ """ super(ClassicSimilarity, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.ClassicSimilarity' # type: str class LexicalTokenizer(msrest.serialization.Model): """Base type for tokenizers. You probably want to use the sub-classes and not this class directly. Known sub-classes are: ClassicTokenizer, EdgeNGramTokenizer, KeywordTokenizer, KeywordTokenizerV2, MicrosoftLanguageStemmingTokenizer, MicrosoftLanguageTokenizer, NGramTokenizer, PathHierarchyTokenizerV2, PatternTokenizer, LuceneStandardTokenizer, LuceneStandardTokenizerV2, UaxUrlEmailTokenizer. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the tokenizer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, } _subtype_map = { 'odata_type': {'#Microsoft.Azure.Search.ClassicTokenizer': 'ClassicTokenizer', '#Microsoft.Azure.Search.EdgeNGramTokenizer': 'EdgeNGramTokenizer', '#Microsoft.Azure.Search.KeywordTokenizer': 'KeywordTokenizer', '#Microsoft.Azure.Search.KeywordTokenizerV2': 'KeywordTokenizerV2', '#Microsoft.Azure.Search.MicrosoftLanguageStemmingTokenizer': 'MicrosoftLanguageStemmingTokenizer', '#Microsoft.Azure.Search.MicrosoftLanguageTokenizer': 'MicrosoftLanguageTokenizer', '#Microsoft.Azure.Search.NGramTokenizer': 'NGramTokenizer', '#Microsoft.Azure.Search.PathHierarchyTokenizerV2': 'PathHierarchyTokenizerV2', '#Microsoft.Azure.Search.PatternTokenizer': 'PatternTokenizer', '#Microsoft.Azure.Search.StandardTokenizer': 'LuceneStandardTokenizer', '#Microsoft.Azure.Search.StandardTokenizerV2': 'LuceneStandardTokenizerV2', '#Microsoft.Azure.Search.UaxUrlEmailTokenizer': 'UaxUrlEmailTokenizer'} } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str """ super(LexicalTokenizer, self).__init__(**kwargs) self.odata_type = None # type: Optional[str] self.name = kwargs['name'] class ClassicTokenizer(LexicalTokenizer): """Grammar-based tokenizer that is suitable for processing most European-language documents. This tokenizer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the tokenizer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar max_token_length: The maximum token length. Default is 255. Tokens longer than the maximum length are split. The maximum token length that can be used is 300 characters. :vartype max_token_length: int """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'max_token_length': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'max_token_length': {'key': 'maxTokenLength', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword max_token_length: The maximum token length. Default is 255. Tokens longer than the maximum length are split. The maximum token length that can be used is 300 characters. :paramtype max_token_length: int """ super(ClassicTokenizer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.ClassicTokenizer' # type: str self.max_token_length = kwargs.get('max_token_length', 255) class CognitiveServicesAccount(msrest.serialization.Model): """Base type for describing any cognitive service resource attached to a skillset. You probably want to use the sub-classes and not this class directly. Known sub-classes are: CognitiveServicesAccountKey, DefaultCognitiveServicesAccount. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the cognitive service resource attached to a skillset.Constant filled by server. :vartype odata_type: str :ivar description: Description of the cognitive service resource attached to a skillset. :vartype description: str """ _validation = { 'odata_type': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, } _subtype_map = { 'odata_type': {'#Microsoft.Azure.Search.CognitiveServicesByKey': 'CognitiveServicesAccountKey', '#Microsoft.Azure.Search.DefaultCognitiveServices': 'DefaultCognitiveServicesAccount'} } def __init__( self, **kwargs ): """ :keyword description: Description of the cognitive service resource attached to a skillset. :paramtype description: str """ super(CognitiveServicesAccount, self).__init__(**kwargs) self.odata_type = None # type: Optional[str] self.description = kwargs.get('description', None) class CognitiveServicesAccountKey(CognitiveServicesAccount): """A cognitive service resource provisioned with a key that is attached to a skillset. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the cognitive service resource attached to a skillset.Constant filled by server. :vartype odata_type: str :ivar description: Description of the cognitive service resource attached to a skillset. :vartype description: str :ivar key: Required. The key used to provision the cognitive service resource attached to a skillset. :vartype key: str """ _validation = { 'odata_type': {'required': True}, 'key': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'key': {'key': 'key', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword description: Description of the cognitive service resource attached to a skillset. :paramtype description: str :keyword key: Required. The key used to provision the cognitive service resource attached to a skillset. :paramtype key: str """ super(CognitiveServicesAccountKey, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.CognitiveServicesByKey' # type: str self.key = kwargs['key'] class CommonGramTokenFilter(TokenFilter): """Construct bigrams for frequently occurring terms while indexing. Single terms are still indexed too, with bigrams overlaid. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar common_words: Required. The set of common words. :vartype common_words: list[str] :ivar ignore_case: A value indicating whether common words matching will be case insensitive. Default is false. :vartype ignore_case: bool :ivar use_query_mode: A value that indicates whether the token filter is in query mode. When in query mode, the token filter generates bigrams and then removes common words and single terms followed by a common word. Default is false. :vartype use_query_mode: bool """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'common_words': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'common_words': {'key': 'commonWords', 'type': '[str]'}, 'ignore_case': {'key': 'ignoreCase', 'type': 'bool'}, 'use_query_mode': {'key': 'queryMode', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword common_words: Required. The set of common words. :paramtype common_words: list[str] :keyword ignore_case: A value indicating whether common words matching will be case insensitive. Default is false. :paramtype ignore_case: bool :keyword use_query_mode: A value that indicates whether the token filter is in query mode. When in query mode, the token filter generates bigrams and then removes common words and single terms followed by a common word. Default is false. :paramtype use_query_mode: bool """ super(CommonGramTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.CommonGramTokenFilter' # type: str self.common_words = kwargs['common_words'] self.ignore_case = kwargs.get('ignore_case', False) self.use_query_mode = kwargs.get('use_query_mode', False) class ConditionalSkill(SearchIndexerSkill): """A skill that enables scenarios that require a Boolean operation to determine the data to assign to an output. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] """ super(ConditionalSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Util.ConditionalSkill' # type: str class CorsOptions(msrest.serialization.Model): """Defines options to control Cross-Origin Resource Sharing (CORS) for an index. All required parameters must be populated in order to send to Azure. :ivar allowed_origins: Required. The list of origins from which JavaScript code will be granted access to your index. Can contain a list of hosts of the form {protocol}://{fully-qualified-domain-name}[:{port#}], or a single '*' to allow all origins (not recommended). :vartype allowed_origins: list[str] :ivar max_age_in_seconds: The duration for which browsers should cache CORS preflight responses. Defaults to 5 minutes. :vartype max_age_in_seconds: long """ _validation = { 'allowed_origins': {'required': True}, } _attribute_map = { 'allowed_origins': {'key': 'allowedOrigins', 'type': '[str]'}, 'max_age_in_seconds': {'key': 'maxAgeInSeconds', 'type': 'long'}, } def __init__( self, **kwargs ): """ :keyword allowed_origins: Required. The list of origins from which JavaScript code will be granted access to your index. Can contain a list of hosts of the form {protocol}://{fully-qualified-domain-name}[:{port#}], or a single '*' to allow all origins (not recommended). :paramtype allowed_origins: list[str] :keyword max_age_in_seconds: The duration for which browsers should cache CORS preflight responses. Defaults to 5 minutes. :paramtype max_age_in_seconds: long """ super(CorsOptions, self).__init__(**kwargs) self.allowed_origins = kwargs['allowed_origins'] self.max_age_in_seconds = kwargs.get('max_age_in_seconds', None) class LexicalAnalyzer(msrest.serialization.Model): """Base type for analyzers. You probably want to use the sub-classes and not this class directly. Known sub-classes are: CustomAnalyzer, PatternAnalyzer, LuceneStandardAnalyzer, StopAnalyzer. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the analyzer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the analyzer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, } _subtype_map = { 'odata_type': {'#Microsoft.Azure.Search.CustomAnalyzer': 'CustomAnalyzer', '#Microsoft.Azure.Search.PatternAnalyzer': 'PatternAnalyzer', '#Microsoft.Azure.Search.StandardAnalyzer': 'LuceneStandardAnalyzer', '#Microsoft.Azure.Search.StopAnalyzer': 'StopAnalyzer'} } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the analyzer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str """ super(LexicalAnalyzer, self).__init__(**kwargs) self.odata_type = None # type: Optional[str] self.name = kwargs['name'] class CustomAnalyzer(LexicalAnalyzer): """Allows you to take control over the process of converting text into indexable/searchable tokens. It's a user-defined configuration consisting of a single predefined tokenizer and one or more filters. The tokenizer is responsible for breaking text into tokens, and the filters for modifying tokens emitted by the tokenizer. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the analyzer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the analyzer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar tokenizer: Required. The name of the tokenizer to use to divide continuous text into a sequence of tokens, such as breaking a sentence into words. Possible values include: "classic", "edgeNGram", "keyword_v2", "letter", "lowercase", "microsoft_language_tokenizer", "microsoft_language_stemming_tokenizer", "nGram", "path_hierarchy_v2", "pattern", "standard_v2", "uax_url_email", "whitespace". :vartype tokenizer: str or ~azure.search.documents.indexes.models.LexicalTokenizerName :ivar token_filters: A list of token filters used to filter out or modify the tokens generated by a tokenizer. For example, you can specify a lowercase filter that converts all characters to lowercase. The filters are run in the order in which they are listed. :vartype token_filters: list[str or ~azure.search.documents.indexes.models.TokenFilterName] :ivar char_filters: A list of character filters used to prepare input text before it is processed by the tokenizer. For instance, they can replace certain characters or symbols. The filters are run in the order in which they are listed. :vartype char_filters: list[str or ~azure.search.documents.indexes.models.CharFilterName] """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'tokenizer': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'tokenizer': {'key': 'tokenizer', 'type': 'str'}, 'token_filters': {'key': 'tokenFilters', 'type': '[str]'}, 'char_filters': {'key': 'charFilters', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the analyzer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword tokenizer: Required. The name of the tokenizer to use to divide continuous text into a sequence of tokens, such as breaking a sentence into words. Possible values include: "classic", "edgeNGram", "keyword_v2", "letter", "lowercase", "microsoft_language_tokenizer", "microsoft_language_stemming_tokenizer", "nGram", "path_hierarchy_v2", "pattern", "standard_v2", "uax_url_email", "whitespace". :paramtype tokenizer: str or ~azure.search.documents.indexes.models.LexicalTokenizerName :keyword token_filters: A list of token filters used to filter out or modify the tokens generated by a tokenizer. For example, you can specify a lowercase filter that converts all characters to lowercase. The filters are run in the order in which they are listed. :paramtype token_filters: list[str or ~azure.search.documents.indexes.models.TokenFilterName] :keyword char_filters: A list of character filters used to prepare input text before it is processed by the tokenizer. For instance, they can replace certain characters or symbols. The filters are run in the order in which they are listed. :paramtype char_filters: list[str or ~azure.search.documents.indexes.models.CharFilterName] """ super(CustomAnalyzer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.CustomAnalyzer' # type: str self.tokenizer = kwargs['tokenizer'] self.token_filters = kwargs.get('token_filters', None) self.char_filters = kwargs.get('char_filters', None) class CustomEntity(msrest.serialization.Model): """An object that contains information about the matches that were found, and related metadata. All required parameters must be populated in order to send to Azure. :ivar name: Required. The top-level entity descriptor. Matches in the skill output will be grouped by this name, and it should represent the "normalized" form of the text being found. :vartype name: str :ivar description: This field can be used as a passthrough for custom metadata about the matched text(s). The value of this field will appear with every match of its entity in the skill output. :vartype description: str :ivar type: This field can be used as a passthrough for custom metadata about the matched text(s). The value of this field will appear with every match of its entity in the skill output. :vartype type: str :ivar subtype: This field can be used as a passthrough for custom metadata about the matched text(s). The value of this field will appear with every match of its entity in the skill output. :vartype subtype: str :ivar id: This field can be used as a passthrough for custom metadata about the matched text(s). The value of this field will appear with every match of its entity in the skill output. :vartype id: str :ivar case_sensitive: Defaults to false. Boolean value denoting whether comparisons with the entity name should be sensitive to character casing. Sample case insensitive matches of "Microsoft" could be: microsoft, microSoft, MICROSOFT. :vartype case_sensitive: bool :ivar accent_sensitive: Defaults to false. Boolean value denoting whether comparisons with the entity name should be sensitive to accent. :vartype accent_sensitive: bool :ivar fuzzy_edit_distance: Defaults to 0. Maximum value of 5. Denotes the acceptable number of divergent characters that would still constitute a match with the entity name. The smallest possible fuzziness for any given match is returned. For instance, if the edit distance is set to 3, "Windows10" would still match "Windows", "Windows10" and "Windows 7". When case sensitivity is set to false, case differences do NOT count towards fuzziness tolerance, but otherwise do. :vartype fuzzy_edit_distance: int :ivar default_case_sensitive: Changes the default case sensitivity value for this entity. It be used to change the default value of all aliases caseSensitive values. :vartype default_case_sensitive: bool :ivar default_accent_sensitive: Changes the default accent sensitivity value for this entity. It be used to change the default value of all aliases accentSensitive values. :vartype default_accent_sensitive: bool :ivar default_fuzzy_edit_distance: Changes the default fuzzy edit distance value for this entity. It can be used to change the default value of all aliases fuzzyEditDistance values. :vartype default_fuzzy_edit_distance: int :ivar aliases: An array of complex objects that can be used to specify alternative spellings or synonyms to the root entity name. :vartype aliases: list[~azure.search.documents.indexes.models.CustomEntityAlias] """ _validation = { 'name': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'subtype': {'key': 'subtype', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'case_sensitive': {'key': 'caseSensitive', 'type': 'bool'}, 'accent_sensitive': {'key': 'accentSensitive', 'type': 'bool'}, 'fuzzy_edit_distance': {'key': 'fuzzyEditDistance', 'type': 'int'}, 'default_case_sensitive': {'key': 'defaultCaseSensitive', 'type': 'bool'}, 'default_accent_sensitive': {'key': 'defaultAccentSensitive', 'type': 'bool'}, 'default_fuzzy_edit_distance': {'key': 'defaultFuzzyEditDistance', 'type': 'int'}, 'aliases': {'key': 'aliases', 'type': '[CustomEntityAlias]'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The top-level entity descriptor. Matches in the skill output will be grouped by this name, and it should represent the "normalized" form of the text being found. :paramtype name: str :keyword description: This field can be used as a passthrough for custom metadata about the matched text(s). The value of this field will appear with every match of its entity in the skill output. :paramtype description: str :keyword type: This field can be used as a passthrough for custom metadata about the matched text(s). The value of this field will appear with every match of its entity in the skill output. :paramtype type: str :keyword subtype: This field can be used as a passthrough for custom metadata about the matched text(s). The value of this field will appear with every match of its entity in the skill output. :paramtype subtype: str :keyword id: This field can be used as a passthrough for custom metadata about the matched text(s). The value of this field will appear with every match of its entity in the skill output. :paramtype id: str :keyword case_sensitive: Defaults to false. Boolean value denoting whether comparisons with the entity name should be sensitive to character casing. Sample case insensitive matches of "Microsoft" could be: microsoft, microSoft, MICROSOFT. :paramtype case_sensitive: bool :keyword accent_sensitive: Defaults to false. Boolean value denoting whether comparisons with the entity name should be sensitive to accent. :paramtype accent_sensitive: bool :keyword fuzzy_edit_distance: Defaults to 0. Maximum value of 5. Denotes the acceptable number of divergent characters that would still constitute a match with the entity name. The smallest possible fuzziness for any given match is returned. For instance, if the edit distance is set to 3, "Windows10" would still match "Windows", "Windows10" and "Windows 7". When case sensitivity is set to false, case differences do NOT count towards fuzziness tolerance, but otherwise do. :paramtype fuzzy_edit_distance: int :keyword default_case_sensitive: Changes the default case sensitivity value for this entity. It be used to change the default value of all aliases caseSensitive values. :paramtype default_case_sensitive: bool :keyword default_accent_sensitive: Changes the default accent sensitivity value for this entity. It be used to change the default value of all aliases accentSensitive values. :paramtype default_accent_sensitive: bool :keyword default_fuzzy_edit_distance: Changes the default fuzzy edit distance value for this entity. It can be used to change the default value of all aliases fuzzyEditDistance values. :paramtype default_fuzzy_edit_distance: int :keyword aliases: An array of complex objects that can be used to specify alternative spellings or synonyms to the root entity name. :paramtype aliases: list[~azure.search.documents.indexes.models.CustomEntityAlias] """ super(CustomEntity, self).__init__(**kwargs) self.name = kwargs['name'] self.description = kwargs.get('description', None) self.type = kwargs.get('type', None) self.subtype = kwargs.get('subtype', None) self.id = kwargs.get('id', None) self.case_sensitive = kwargs.get('case_sensitive', None) self.accent_sensitive = kwargs.get('accent_sensitive', None) self.fuzzy_edit_distance = kwargs.get('fuzzy_edit_distance', None) self.default_case_sensitive = kwargs.get('default_case_sensitive', None) self.default_accent_sensitive = kwargs.get('default_accent_sensitive', None) self.default_fuzzy_edit_distance = kwargs.get('default_fuzzy_edit_distance', None) self.aliases = kwargs.get('aliases', None) class CustomEntityAlias(msrest.serialization.Model): """A complex object that can be used to specify alternative spellings or synonyms to the root entity name. All required parameters must be populated in order to send to Azure. :ivar text: Required. The text of the alias. :vartype text: str :ivar case_sensitive: Determine if the alias is case sensitive. :vartype case_sensitive: bool :ivar accent_sensitive: Determine if the alias is accent sensitive. :vartype accent_sensitive: bool :ivar fuzzy_edit_distance: Determine the fuzzy edit distance of the alias. :vartype fuzzy_edit_distance: int """ _validation = { 'text': {'required': True}, } _attribute_map = { 'text': {'key': 'text', 'type': 'str'}, 'case_sensitive': {'key': 'caseSensitive', 'type': 'bool'}, 'accent_sensitive': {'key': 'accentSensitive', 'type': 'bool'}, 'fuzzy_edit_distance': {'key': 'fuzzyEditDistance', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword text: Required. The text of the alias. :paramtype text: str :keyword case_sensitive: Determine if the alias is case sensitive. :paramtype case_sensitive: bool :keyword accent_sensitive: Determine if the alias is accent sensitive. :paramtype accent_sensitive: bool :keyword fuzzy_edit_distance: Determine the fuzzy edit distance of the alias. :paramtype fuzzy_edit_distance: int """ super(CustomEntityAlias, self).__init__(**kwargs) self.text = kwargs['text'] self.case_sensitive = kwargs.get('case_sensitive', None) self.accent_sensitive = kwargs.get('accent_sensitive', None) self.fuzzy_edit_distance = kwargs.get('fuzzy_edit_distance', None) class CustomEntityLookupSkill(SearchIndexerSkill): """A skill looks for text from a custom, user-defined list of words and phrases. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar default_language_code: A value indicating which language code to use. Default is en. Possible values include: "da", "de", "en", "es", "fi", "fr", "it", "ko", "pt". :vartype default_language_code: str or ~azure.search.documents.indexes.models.CustomEntityLookupSkillLanguage :ivar entities_definition_uri: Path to a JSON or CSV file containing all the target text to match against. This entity definition is read at the beginning of an indexer run. Any updates to this file during an indexer run will not take effect until subsequent runs. This config must be accessible over HTTPS. :vartype entities_definition_uri: str :ivar inline_entities_definition: The inline CustomEntity definition. :vartype inline_entities_definition: list[~azure.search.documents.indexes.models.CustomEntity] :ivar global_default_case_sensitive: A global flag for CaseSensitive. If CaseSensitive is not set in CustomEntity, this value will be the default value. :vartype global_default_case_sensitive: bool :ivar global_default_accent_sensitive: A global flag for AccentSensitive. If AccentSensitive is not set in CustomEntity, this value will be the default value. :vartype global_default_accent_sensitive: bool :ivar global_default_fuzzy_edit_distance: A global flag for FuzzyEditDistance. If FuzzyEditDistance is not set in CustomEntity, this value will be the default value. :vartype global_default_fuzzy_edit_distance: int """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'default_language_code': {'key': 'defaultLanguageCode', 'type': 'str'}, 'entities_definition_uri': {'key': 'entitiesDefinitionUri', 'type': 'str'}, 'inline_entities_definition': {'key': 'inlineEntitiesDefinition', 'type': '[CustomEntity]'}, 'global_default_case_sensitive': {'key': 'globalDefaultCaseSensitive', 'type': 'bool'}, 'global_default_accent_sensitive': {'key': 'globalDefaultAccentSensitive', 'type': 'bool'}, 'global_default_fuzzy_edit_distance': {'key': 'globalDefaultFuzzyEditDistance', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword default_language_code: A value indicating which language code to use. Default is en. Possible values include: "da", "de", "en", "es", "fi", "fr", "it", "ko", "pt". :paramtype default_language_code: str or ~azure.search.documents.indexes.models.CustomEntityLookupSkillLanguage :keyword entities_definition_uri: Path to a JSON or CSV file containing all the target text to match against. This entity definition is read at the beginning of an indexer run. Any updates to this file during an indexer run will not take effect until subsequent runs. This config must be accessible over HTTPS. :paramtype entities_definition_uri: str :keyword inline_entities_definition: The inline CustomEntity definition. :paramtype inline_entities_definition: list[~azure.search.documents.indexes.models.CustomEntity] :keyword global_default_case_sensitive: A global flag for CaseSensitive. If CaseSensitive is not set in CustomEntity, this value will be the default value. :paramtype global_default_case_sensitive: bool :keyword global_default_accent_sensitive: A global flag for AccentSensitive. If AccentSensitive is not set in CustomEntity, this value will be the default value. :paramtype global_default_accent_sensitive: bool :keyword global_default_fuzzy_edit_distance: A global flag for FuzzyEditDistance. If FuzzyEditDistance is not set in CustomEntity, this value will be the default value. :paramtype global_default_fuzzy_edit_distance: int """ super(CustomEntityLookupSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Text.CustomEntityLookupSkill' # type: str self.default_language_code = kwargs.get('default_language_code', None) self.entities_definition_uri = kwargs.get('entities_definition_uri', None) self.inline_entities_definition = kwargs.get('inline_entities_definition', None) self.global_default_case_sensitive = kwargs.get('global_default_case_sensitive', None) self.global_default_accent_sensitive = kwargs.get('global_default_accent_sensitive', None) self.global_default_fuzzy_edit_distance = kwargs.get('global_default_fuzzy_edit_distance', None) class LexicalNormalizer(msrest.serialization.Model): """Base type for normalizers. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the normalizer. :vartype odata_type: str :ivar name: Required. The name of the normalizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. It cannot end in '.microsoft' nor '.lucene', nor be named 'asciifolding', 'standard', 'lowercase', 'uppercase', or 'elision'. :vartype name: str """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword odata_type: Required. Identifies the concrete type of the normalizer. :paramtype odata_type: str :keyword name: Required. The name of the normalizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. It cannot end in '.microsoft' nor '.lucene', nor be named 'asciifolding', 'standard', 'lowercase', 'uppercase', or 'elision'. :paramtype name: str """ super(LexicalNormalizer, self).__init__(**kwargs) self.odata_type = kwargs['odata_type'] self.name = kwargs['name'] class CustomNormalizer(LexicalNormalizer): """Allows you to configure normalization for filterable, sortable, and facetable fields, which by default operate with strict matching. This is a user-defined configuration consisting of at least one or more filters, which modify the token that is stored. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the normalizer. :vartype odata_type: str :ivar name: Required. The name of the normalizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. It cannot end in '.microsoft' nor '.lucene', nor be named 'asciifolding', 'standard', 'lowercase', 'uppercase', or 'elision'. :vartype name: str :ivar token_filters: A list of token filters used to filter out or modify the input token. For example, you can specify a lowercase filter that converts all characters to lowercase. The filters are run in the order in which they are listed. :vartype token_filters: list[str or ~azure.search.documents.indexes.models.TokenFilterName] :ivar char_filters: A list of character filters used to prepare input text before it is processed. For instance, they can replace certain characters or symbols. The filters are run in the order in which they are listed. :vartype char_filters: list[str or ~azure.search.documents.indexes.models.CharFilterName] """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'token_filters': {'key': 'tokenFilters', 'type': '[str]'}, 'char_filters': {'key': 'charFilters', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword odata_type: Required. Identifies the concrete type of the normalizer. :paramtype odata_type: str :keyword name: Required. The name of the normalizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. It cannot end in '.microsoft' nor '.lucene', nor be named 'asciifolding', 'standard', 'lowercase', 'uppercase', or 'elision'. :paramtype name: str :keyword token_filters: A list of token filters used to filter out or modify the input token. For example, you can specify a lowercase filter that converts all characters to lowercase. The filters are run in the order in which they are listed. :paramtype token_filters: list[str or ~azure.search.documents.indexes.models.TokenFilterName] :keyword char_filters: A list of character filters used to prepare input text before it is processed. For instance, they can replace certain characters or symbols. The filters are run in the order in which they are listed. :paramtype char_filters: list[str or ~azure.search.documents.indexes.models.CharFilterName] """ super(CustomNormalizer, self).__init__(**kwargs) self.token_filters = kwargs.get('token_filters', None) self.char_filters = kwargs.get('char_filters', None) class DataChangeDetectionPolicy(msrest.serialization.Model): """Base type for data change detection policies. You probably want to use the sub-classes and not this class directly. Known sub-classes are: HighWaterMarkChangeDetectionPolicy, SqlIntegratedChangeTrackingPolicy. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the data change detection policy.Constant filled by server. :vartype odata_type: str """ _validation = { 'odata_type': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, } _subtype_map = { 'odata_type': {'#Microsoft.Azure.Search.HighWaterMarkChangeDetectionPolicy': 'HighWaterMarkChangeDetectionPolicy', '#Microsoft.Azure.Search.SqlIntegratedChangeTrackingPolicy': 'SqlIntegratedChangeTrackingPolicy'} } def __init__( self, **kwargs ): """ """ super(DataChangeDetectionPolicy, self).__init__(**kwargs) self.odata_type = None # type: Optional[str] class DataDeletionDetectionPolicy(msrest.serialization.Model): """Base type for data deletion detection policies. You probably want to use the sub-classes and not this class directly. Known sub-classes are: SoftDeleteColumnDeletionDetectionPolicy. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the data deletion detection policy.Constant filled by server. :vartype odata_type: str """ _validation = { 'odata_type': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, } _subtype_map = { 'odata_type': {'#Microsoft.Azure.Search.SoftDeleteColumnDeletionDetectionPolicy': 'SoftDeleteColumnDeletionDetectionPolicy'} } def __init__( self, **kwargs ): """ """ super(DataDeletionDetectionPolicy, self).__init__(**kwargs) self.odata_type = None # type: Optional[str] class DataSourceCredentials(msrest.serialization.Model): """Represents credentials that can be used to connect to a datasource. :ivar connection_string: The connection string for the datasource. Set to ':code:`<unchanged>`' if you do not want the connection string updated. :vartype connection_string: str """ _attribute_map = { 'connection_string': {'key': 'connectionString', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword connection_string: The connection string for the datasource. Set to ':code:`<unchanged>`' if you do not want the connection string updated. :paramtype connection_string: str """ super(DataSourceCredentials, self).__init__(**kwargs) self.connection_string = kwargs.get('connection_string', None) class DefaultCognitiveServicesAccount(CognitiveServicesAccount): """An empty object that represents the default cognitive service resource for a skillset. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the cognitive service resource attached to a skillset.Constant filled by server. :vartype odata_type: str :ivar description: Description of the cognitive service resource attached to a skillset. :vartype description: str """ _validation = { 'odata_type': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword description: Description of the cognitive service resource attached to a skillset. :paramtype description: str """ super(DefaultCognitiveServicesAccount, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.DefaultCognitiveServices' # type: str class DictionaryDecompounderTokenFilter(TokenFilter): """Decomposes compound words found in many Germanic languages. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar word_list: Required. The list of words to match against. :vartype word_list: list[str] :ivar min_word_size: The minimum word size. Only words longer than this get processed. Default is 5. Maximum is 300. :vartype min_word_size: int :ivar min_subword_size: The minimum subword size. Only subwords longer than this are outputted. Default is 2. Maximum is 300. :vartype min_subword_size: int :ivar max_subword_size: The maximum subword size. Only subwords shorter than this are outputted. Default is 15. Maximum is 300. :vartype max_subword_size: int :ivar only_longest_match: A value indicating whether to add only the longest matching subword to the output. Default is false. :vartype only_longest_match: bool """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'word_list': {'required': True}, 'min_word_size': {'maximum': 300}, 'min_subword_size': {'maximum': 300}, 'max_subword_size': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'word_list': {'key': 'wordList', 'type': '[str]'}, 'min_word_size': {'key': 'minWordSize', 'type': 'int'}, 'min_subword_size': {'key': 'minSubwordSize', 'type': 'int'}, 'max_subword_size': {'key': 'maxSubwordSize', 'type': 'int'}, 'only_longest_match': {'key': 'onlyLongestMatch', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword word_list: Required. The list of words to match against. :paramtype word_list: list[str] :keyword min_word_size: The minimum word size. Only words longer than this get processed. Default is 5. Maximum is 300. :paramtype min_word_size: int :keyword min_subword_size: The minimum subword size. Only subwords longer than this are outputted. Default is 2. Maximum is 300. :paramtype min_subword_size: int :keyword max_subword_size: The maximum subword size. Only subwords shorter than this are outputted. Default is 15. Maximum is 300. :paramtype max_subword_size: int :keyword only_longest_match: A value indicating whether to add only the longest matching subword to the output. Default is false. :paramtype only_longest_match: bool """ super(DictionaryDecompounderTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.DictionaryDecompounderTokenFilter' # type: str self.word_list = kwargs['word_list'] self.min_word_size = kwargs.get('min_word_size', 5) self.min_subword_size = kwargs.get('min_subword_size', 2) self.max_subword_size = kwargs.get('max_subword_size', 15) self.only_longest_match = kwargs.get('only_longest_match', False) class ScoringFunction(msrest.serialization.Model): """Base type for functions that can modify document scores during ranking. You probably want to use the sub-classes and not this class directly. Known sub-classes are: DistanceScoringFunction, FreshnessScoringFunction, MagnitudeScoringFunction, TagScoringFunction. All required parameters must be populated in order to send to Azure. :ivar type: Required. Indicates the type of function to use. Valid values include magnitude, freshness, distance, and tag. The function type must be lower case.Constant filled by server. :vartype type: str :ivar field_name: Required. The name of the field used as input to the scoring function. :vartype field_name: str :ivar boost: Required. A multiplier for the raw score. Must be a positive number not equal to 1.0. :vartype boost: float :ivar interpolation: A value indicating how boosting will be interpolated across document scores; defaults to "Linear". Possible values include: "linear", "constant", "quadratic", "logarithmic". :vartype interpolation: str or ~azure.search.documents.indexes.models.ScoringFunctionInterpolation """ _validation = { 'type': {'required': True}, 'field_name': {'required': True}, 'boost': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'field_name': {'key': 'fieldName', 'type': 'str'}, 'boost': {'key': 'boost', 'type': 'float'}, 'interpolation': {'key': 'interpolation', 'type': 'str'}, } _subtype_map = { 'type': {'distance': 'DistanceScoringFunction', 'freshness': 'FreshnessScoringFunction', 'magnitude': 'MagnitudeScoringFunction', 'tag': 'TagScoringFunction'} } def __init__( self, **kwargs ): """ :keyword field_name: Required. The name of the field used as input to the scoring function. :paramtype field_name: str :keyword boost: Required. A multiplier for the raw score. Must be a positive number not equal to 1.0. :paramtype boost: float :keyword interpolation: A value indicating how boosting will be interpolated across document scores; defaults to "Linear". Possible values include: "linear", "constant", "quadratic", "logarithmic". :paramtype interpolation: str or ~azure.search.documents.indexes.models.ScoringFunctionInterpolation """ super(ScoringFunction, self).__init__(**kwargs) self.type = None # type: Optional[str] self.field_name = kwargs['field_name'] self.boost = kwargs['boost'] self.interpolation = kwargs.get('interpolation', None) class DistanceScoringFunction(ScoringFunction): """Defines a function that boosts scores based on distance from a geographic location. All required parameters must be populated in order to send to Azure. :ivar type: Required. Indicates the type of function to use. Valid values include magnitude, freshness, distance, and tag. The function type must be lower case.Constant filled by server. :vartype type: str :ivar field_name: Required. The name of the field used as input to the scoring function. :vartype field_name: str :ivar boost: Required. A multiplier for the raw score. Must be a positive number not equal to 1.0. :vartype boost: float :ivar interpolation: A value indicating how boosting will be interpolated across document scores; defaults to "Linear". Possible values include: "linear", "constant", "quadratic", "logarithmic". :vartype interpolation: str or ~azure.search.documents.indexes.models.ScoringFunctionInterpolation :ivar parameters: Required. Parameter values for the distance scoring function. :vartype parameters: ~azure.search.documents.indexes.models.DistanceScoringParameters """ _validation = { 'type': {'required': True}, 'field_name': {'required': True}, 'boost': {'required': True}, 'parameters': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'field_name': {'key': 'fieldName', 'type': 'str'}, 'boost': {'key': 'boost', 'type': 'float'}, 'interpolation': {'key': 'interpolation', 'type': 'str'}, 'parameters': {'key': 'distance', 'type': 'DistanceScoringParameters'}, } def __init__( self, **kwargs ): """ :keyword field_name: Required. The name of the field used as input to the scoring function. :paramtype field_name: str :keyword boost: Required. A multiplier for the raw score. Must be a positive number not equal to 1.0. :paramtype boost: float :keyword interpolation: A value indicating how boosting will be interpolated across document scores; defaults to "Linear". Possible values include: "linear", "constant", "quadratic", "logarithmic". :paramtype interpolation: str or ~azure.search.documents.indexes.models.ScoringFunctionInterpolation :keyword parameters: Required. Parameter values for the distance scoring function. :paramtype parameters: ~azure.search.documents.indexes.models.DistanceScoringParameters """ super(DistanceScoringFunction, self).__init__(**kwargs) self.type = 'distance' # type: str self.parameters = kwargs['parameters'] class DistanceScoringParameters(msrest.serialization.Model): """Provides parameter values to a distance scoring function. All required parameters must be populated in order to send to Azure. :ivar reference_point_parameter: Required. The name of the parameter passed in search queries to specify the reference location. :vartype reference_point_parameter: str :ivar boosting_distance: Required. The distance in kilometers from the reference location where the boosting range ends. :vartype boosting_distance: float """ _validation = { 'reference_point_parameter': {'required': True}, 'boosting_distance': {'required': True}, } _attribute_map = { 'reference_point_parameter': {'key': 'referencePointParameter', 'type': 'str'}, 'boosting_distance': {'key': 'boostingDistance', 'type': 'float'}, } def __init__( self, **kwargs ): """ :keyword reference_point_parameter: Required. The name of the parameter passed in search queries to specify the reference location. :paramtype reference_point_parameter: str :keyword boosting_distance: Required. The distance in kilometers from the reference location where the boosting range ends. :paramtype boosting_distance: float """ super(DistanceScoringParameters, self).__init__(**kwargs) self.reference_point_parameter = kwargs['reference_point_parameter'] self.boosting_distance = kwargs['boosting_distance'] class DocumentExtractionSkill(SearchIndexerSkill): """A skill that extracts content from a file within the enrichment pipeline. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar parsing_mode: The parsingMode for the skill. Will be set to 'default' if not defined. :vartype parsing_mode: str :ivar data_to_extract: The type of data to be extracted for the skill. Will be set to 'contentAndMetadata' if not defined. :vartype data_to_extract: str :ivar configuration: A dictionary of configurations for the skill. :vartype configuration: dict[str, any] """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'parsing_mode': {'key': 'parsingMode', 'type': 'str'}, 'data_to_extract': {'key': 'dataToExtract', 'type': 'str'}, 'configuration': {'key': 'configuration', 'type': '{object}'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword parsing_mode: The parsingMode for the skill. Will be set to 'default' if not defined. :paramtype parsing_mode: str :keyword data_to_extract: The type of data to be extracted for the skill. Will be set to 'contentAndMetadata' if not defined. :paramtype data_to_extract: str :keyword configuration: A dictionary of configurations for the skill. :paramtype configuration: dict[str, any] """ super(DocumentExtractionSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Util.DocumentExtractionSkill' # type: str self.parsing_mode = kwargs.get('parsing_mode', None) self.data_to_extract = kwargs.get('data_to_extract', None) self.configuration = kwargs.get('configuration', None) class DocumentKeysOrIds(msrest.serialization.Model): """DocumentKeysOrIds. :ivar document_keys: document keys to be reset. :vartype document_keys: list[str] :ivar datasource_document_ids: datasource document identifiers to be reset. :vartype datasource_document_ids: list[str] """ _attribute_map = { 'document_keys': {'key': 'documentKeys', 'type': '[str]'}, 'datasource_document_ids': {'key': 'datasourceDocumentIds', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword document_keys: document keys to be reset. :paramtype document_keys: list[str] :keyword datasource_document_ids: datasource document identifiers to be reset. :paramtype datasource_document_ids: list[str] """ super(DocumentKeysOrIds, self).__init__(**kwargs) self.document_keys = kwargs.get('document_keys', None) self.datasource_document_ids = kwargs.get('datasource_document_ids', None) class EdgeNGramTokenFilter(TokenFilter): """Generates n-grams of the given size(s) starting from the front or the back of an input token. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar min_gram: The minimum n-gram length. Default is 1. Must be less than the value of maxGram. :vartype min_gram: int :ivar max_gram: The maximum n-gram length. Default is 2. :vartype max_gram: int :ivar side: Specifies which side of the input the n-gram should be generated from. Default is "front". Possible values include: "front", "back". :vartype side: str or ~azure.search.documents.indexes.models.EdgeNGramTokenFilterSide """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'min_gram': {'key': 'minGram', 'type': 'int'}, 'max_gram': {'key': 'maxGram', 'type': 'int'}, 'side': {'key': 'side', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword min_gram: The minimum n-gram length. Default is 1. Must be less than the value of maxGram. :paramtype min_gram: int :keyword max_gram: The maximum n-gram length. Default is 2. :paramtype max_gram: int :keyword side: Specifies which side of the input the n-gram should be generated from. Default is "front". Possible values include: "front", "back". :paramtype side: str or ~azure.search.documents.indexes.models.EdgeNGramTokenFilterSide """ super(EdgeNGramTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.EdgeNGramTokenFilter' # type: str self.min_gram = kwargs.get('min_gram', 1) self.max_gram = kwargs.get('max_gram', 2) self.side = kwargs.get('side', None) class EdgeNGramTokenFilterV2(TokenFilter): """Generates n-grams of the given size(s) starting from the front or the back of an input token. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar min_gram: The minimum n-gram length. Default is 1. Maximum is 300. Must be less than the value of maxGram. :vartype min_gram: int :ivar max_gram: The maximum n-gram length. Default is 2. Maximum is 300. :vartype max_gram: int :ivar side: Specifies which side of the input the n-gram should be generated from. Default is "front". Possible values include: "front", "back". :vartype side: str or ~azure.search.documents.indexes.models.EdgeNGramTokenFilterSide """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'min_gram': {'maximum': 300}, 'max_gram': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'min_gram': {'key': 'minGram', 'type': 'int'}, 'max_gram': {'key': 'maxGram', 'type': 'int'}, 'side': {'key': 'side', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword min_gram: The minimum n-gram length. Default is 1. Maximum is 300. Must be less than the value of maxGram. :paramtype min_gram: int :keyword max_gram: The maximum n-gram length. Default is 2. Maximum is 300. :paramtype max_gram: int :keyword side: Specifies which side of the input the n-gram should be generated from. Default is "front". Possible values include: "front", "back". :paramtype side: str or ~azure.search.documents.indexes.models.EdgeNGramTokenFilterSide """ super(EdgeNGramTokenFilterV2, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.EdgeNGramTokenFilterV2' # type: str self.min_gram = kwargs.get('min_gram', 1) self.max_gram = kwargs.get('max_gram', 2) self.side = kwargs.get('side', None) class EdgeNGramTokenizer(LexicalTokenizer): """Tokenizes the input from an edge into n-grams of the given size(s). This tokenizer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the tokenizer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar min_gram: The minimum n-gram length. Default is 1. Maximum is 300. Must be less than the value of maxGram. :vartype min_gram: int :ivar max_gram: The maximum n-gram length. Default is 2. Maximum is 300. :vartype max_gram: int :ivar token_chars: Character classes to keep in the tokens. :vartype token_chars: list[str or ~azure.search.documents.indexes.models.TokenCharacterKind] """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'min_gram': {'maximum': 300}, 'max_gram': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'min_gram': {'key': 'minGram', 'type': 'int'}, 'max_gram': {'key': 'maxGram', 'type': 'int'}, 'token_chars': {'key': 'tokenChars', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword min_gram: The minimum n-gram length. Default is 1. Maximum is 300. Must be less than the value of maxGram. :paramtype min_gram: int :keyword max_gram: The maximum n-gram length. Default is 2. Maximum is 300. :paramtype max_gram: int :keyword token_chars: Character classes to keep in the tokens. :paramtype token_chars: list[str or ~azure.search.documents.indexes.models.TokenCharacterKind] """ super(EdgeNGramTokenizer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.EdgeNGramTokenizer' # type: str self.min_gram = kwargs.get('min_gram', 1) self.max_gram = kwargs.get('max_gram', 2) self.token_chars = kwargs.get('token_chars', None) class ElisionTokenFilter(TokenFilter): """Removes elisions. For example, "l'avion" (the plane) will be converted to "avion" (plane). This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar articles: The set of articles to remove. :vartype articles: list[str] """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'articles': {'key': 'articles', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword articles: The set of articles to remove. :paramtype articles: list[str] """ super(ElisionTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.ElisionTokenFilter' # type: str self.articles = kwargs.get('articles', None) class EntityLinkingSkill(SearchIndexerSkill): """Using the Text Analytics API, extracts linked entities from text. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar default_language_code: A value indicating which language code to use. Default is en. :vartype default_language_code: str :ivar minimum_precision: A value between 0 and 1 that be used to only include entities whose confidence score is greater than the value specified. If not set (default), or if explicitly set to null, all entities will be included. :vartype minimum_precision: float :ivar model_version: The version of the model to use when calling the Text Analytics service. It will default to the latest available when not specified. We recommend you do not specify this value unless absolutely necessary. :vartype model_version: str """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, 'minimum_precision': {'maximum': 1, 'minimum': 0}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'default_language_code': {'key': 'defaultLanguageCode', 'type': 'str'}, 'minimum_precision': {'key': 'minimumPrecision', 'type': 'float'}, 'model_version': {'key': 'modelVersion', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword default_language_code: A value indicating which language code to use. Default is en. :paramtype default_language_code: str :keyword minimum_precision: A value between 0 and 1 that be used to only include entities whose confidence score is greater than the value specified. If not set (default), or if explicitly set to null, all entities will be included. :paramtype minimum_precision: float :keyword model_version: The version of the model to use when calling the Text Analytics service. It will default to the latest available when not specified. We recommend you do not specify this value unless absolutely necessary. :paramtype model_version: str """ super(EntityLinkingSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Text.V3.EntityLinkingSkill' # type: str self.default_language_code = kwargs.get('default_language_code', None) self.minimum_precision = kwargs.get('minimum_precision', None) self.model_version = kwargs.get('model_version', None) class EntityRecognitionSkill(SearchIndexerSkill): """Text analytics entity recognition. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar categories: A list of entity categories that should be extracted. :vartype categories: list[str or ~azure.search.documents.indexes.models.EntityCategory] :ivar default_language_code: A value indicating which language code to use. Default is en. Possible values include: "ar", "cs", "zh-Hans", "zh-Hant", "da", "nl", "en", "fi", "fr", "de", "el", "hu", "it", "ja", "ko", "no", "pl", "pt-PT", "pt-BR", "ru", "es", "sv", "tr". :vartype default_language_code: str or ~azure.search.documents.indexes.models.EntityRecognitionSkillLanguage :ivar include_typeless_entities: Determines whether or not to include entities which are well known but don't conform to a pre-defined type. If this configuration is not set (default), set to null or set to false, entities which don't conform to one of the pre-defined types will not be surfaced. :vartype include_typeless_entities: bool :ivar minimum_precision: A value between 0 and 1 that be used to only include entities whose confidence score is greater than the value specified. If not set (default), or if explicitly set to null, all entities will be included. :vartype minimum_precision: float """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'categories': {'key': 'categories', 'type': '[str]'}, 'default_language_code': {'key': 'defaultLanguageCode', 'type': 'str'}, 'include_typeless_entities': {'key': 'includeTypelessEntities', 'type': 'bool'}, 'minimum_precision': {'key': 'minimumPrecision', 'type': 'float'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword categories: A list of entity categories that should be extracted. :paramtype categories: list[str or ~azure.search.documents.indexes.models.EntityCategory] :keyword default_language_code: A value indicating which language code to use. Default is en. Possible values include: "ar", "cs", "zh-Hans", "zh-Hant", "da", "nl", "en", "fi", "fr", "de", "el", "hu", "it", "ja", "ko", "no", "pl", "pt-PT", "pt-BR", "ru", "es", "sv", "tr". :paramtype default_language_code: str or ~azure.search.documents.indexes.models.EntityRecognitionSkillLanguage :keyword include_typeless_entities: Determines whether or not to include entities which are well known but don't conform to a pre-defined type. If this configuration is not set (default), set to null or set to false, entities which don't conform to one of the pre-defined types will not be surfaced. :paramtype include_typeless_entities: bool :keyword minimum_precision: A value between 0 and 1 that be used to only include entities whose confidence score is greater than the value specified. If not set (default), or if explicitly set to null, all entities will be included. :paramtype minimum_precision: float """ super(EntityRecognitionSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Text.EntityRecognitionSkill' # type: str self.categories = kwargs.get('categories', None) self.default_language_code = kwargs.get('default_language_code', None) self.include_typeless_entities = kwargs.get('include_typeless_entities', None) self.minimum_precision = kwargs.get('minimum_precision', None) class EntityRecognitionSkillV3(SearchIndexerSkill): """Using the Text Analytics API, extracts entities of different types from text. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar categories: A list of entity categories that should be extracted. :vartype categories: list[str] :ivar default_language_code: A value indicating which language code to use. Default is en. :vartype default_language_code: str :ivar minimum_precision: A value between 0 and 1 that be used to only include entities whose confidence score is greater than the value specified. If not set (default), or if explicitly set to null, all entities will be included. :vartype minimum_precision: float :ivar model_version: The version of the model to use when calling the Text Analytics service. It will default to the latest available when not specified. We recommend you do not specify this value unless absolutely necessary. :vartype model_version: str """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, 'minimum_precision': {'maximum': 1, 'minimum': 0}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'categories': {'key': 'categories', 'type': '[str]'}, 'default_language_code': {'key': 'defaultLanguageCode', 'type': 'str'}, 'minimum_precision': {'key': 'minimumPrecision', 'type': 'float'}, 'model_version': {'key': 'modelVersion', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword categories: A list of entity categories that should be extracted. :paramtype categories: list[str] :keyword default_language_code: A value indicating which language code to use. Default is en. :paramtype default_language_code: str :keyword minimum_precision: A value between 0 and 1 that be used to only include entities whose confidence score is greater than the value specified. If not set (default), or if explicitly set to null, all entities will be included. :paramtype minimum_precision: float :keyword model_version: The version of the model to use when calling the Text Analytics service. It will default to the latest available when not specified. We recommend you do not specify this value unless absolutely necessary. :paramtype model_version: str """ super(EntityRecognitionSkillV3, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Text.V3.EntityRecognitionSkill' # type: str self.categories = kwargs.get('categories', None) self.default_language_code = kwargs.get('default_language_code', None) self.minimum_precision = kwargs.get('minimum_precision', None) self.model_version = kwargs.get('model_version', None) class FieldMapping(msrest.serialization.Model): """Defines a mapping between a field in a data source and a target field in an index. All required parameters must be populated in order to send to Azure. :ivar source_field_name: Required. The name of the field in the data source. :vartype source_field_name: str :ivar target_field_name: The name of the target field in the index. Same as the source field name by default. :vartype target_field_name: str :ivar mapping_function: A function to apply to each source field value before indexing. :vartype mapping_function: ~azure.search.documents.indexes.models.FieldMappingFunction """ _validation = { 'source_field_name': {'required': True}, } _attribute_map = { 'source_field_name': {'key': 'sourceFieldName', 'type': 'str'}, 'target_field_name': {'key': 'targetFieldName', 'type': 'str'}, 'mapping_function': {'key': 'mappingFunction', 'type': 'FieldMappingFunction'}, } def __init__( self, **kwargs ): """ :keyword source_field_name: Required. The name of the field in the data source. :paramtype source_field_name: str :keyword target_field_name: The name of the target field in the index. Same as the source field name by default. :paramtype target_field_name: str :keyword mapping_function: A function to apply to each source field value before indexing. :paramtype mapping_function: ~azure.search.documents.indexes.models.FieldMappingFunction """ super(FieldMapping, self).__init__(**kwargs) self.source_field_name = kwargs['source_field_name'] self.target_field_name = kwargs.get('target_field_name', None) self.mapping_function = kwargs.get('mapping_function', None) class FieldMappingFunction(msrest.serialization.Model): """Represents a function that transforms a value from a data source before indexing. All required parameters must be populated in order to send to Azure. :ivar name: Required. The name of the field mapping function. :vartype name: str :ivar parameters: A dictionary of parameter name/value pairs to pass to the function. Each value must be of a primitive type. :vartype parameters: dict[str, any] """ _validation = { 'name': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'parameters': {'key': 'parameters', 'type': '{object}'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the field mapping function. :paramtype name: str :keyword parameters: A dictionary of parameter name/value pairs to pass to the function. Each value must be of a primitive type. :paramtype parameters: dict[str, any] """ super(FieldMappingFunction, self).__init__(**kwargs) self.name = kwargs['name'] self.parameters = kwargs.get('parameters', None) class FreshnessScoringFunction(ScoringFunction): """Defines a function that boosts scores based on the value of a date-time field. All required parameters must be populated in order to send to Azure. :ivar type: Required. Indicates the type of function to use. Valid values include magnitude, freshness, distance, and tag. The function type must be lower case.Constant filled by server. :vartype type: str :ivar field_name: Required. The name of the field used as input to the scoring function. :vartype field_name: str :ivar boost: Required. A multiplier for the raw score. Must be a positive number not equal to 1.0. :vartype boost: float :ivar interpolation: A value indicating how boosting will be interpolated across document scores; defaults to "Linear". Possible values include: "linear", "constant", "quadratic", "logarithmic". :vartype interpolation: str or ~azure.search.documents.indexes.models.ScoringFunctionInterpolation :ivar parameters: Required. Parameter values for the freshness scoring function. :vartype parameters: ~azure.search.documents.indexes.models.FreshnessScoringParameters """ _validation = { 'type': {'required': True}, 'field_name': {'required': True}, 'boost': {'required': True}, 'parameters': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'field_name': {'key': 'fieldName', 'type': 'str'}, 'boost': {'key': 'boost', 'type': 'float'}, 'interpolation': {'key': 'interpolation', 'type': 'str'}, 'parameters': {'key': 'freshness', 'type': 'FreshnessScoringParameters'}, } def __init__( self, **kwargs ): """ :keyword field_name: Required. The name of the field used as input to the scoring function. :paramtype field_name: str :keyword boost: Required. A multiplier for the raw score. Must be a positive number not equal to 1.0. :paramtype boost: float :keyword interpolation: A value indicating how boosting will be interpolated across document scores; defaults to "Linear". Possible values include: "linear", "constant", "quadratic", "logarithmic". :paramtype interpolation: str or ~azure.search.documents.indexes.models.ScoringFunctionInterpolation :keyword parameters: Required. Parameter values for the freshness scoring function. :paramtype parameters: ~azure.search.documents.indexes.models.FreshnessScoringParameters """ super(FreshnessScoringFunction, self).__init__(**kwargs) self.type = 'freshness' # type: str self.parameters = kwargs['parameters'] class FreshnessScoringParameters(msrest.serialization.Model): """Provides parameter values to a freshness scoring function. All required parameters must be populated in order to send to Azure. :ivar boosting_duration: Required. The expiration period after which boosting will stop for a particular document. :vartype boosting_duration: ~datetime.timedelta """ _validation = { 'boosting_duration': {'required': True}, } _attribute_map = { 'boosting_duration': {'key': 'boostingDuration', 'type': 'duration'}, } def __init__( self, **kwargs ): """ :keyword boosting_duration: Required. The expiration period after which boosting will stop for a particular document. :paramtype boosting_duration: ~datetime.timedelta """ super(FreshnessScoringParameters, self).__init__(**kwargs) self.boosting_duration = kwargs['boosting_duration'] class GetIndexStatisticsResult(msrest.serialization.Model): """Statistics for a given index. Statistics are collected periodically and are not guaranteed to always be up-to-date. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar document_count: Required. The number of documents in the index. :vartype document_count: long :ivar storage_size: Required. The amount of storage in bytes consumed by the index. :vartype storage_size: long """ _validation = { 'document_count': {'required': True, 'readonly': True}, 'storage_size': {'required': True, 'readonly': True}, } _attribute_map = { 'document_count': {'key': 'documentCount', 'type': 'long'}, 'storage_size': {'key': 'storageSize', 'type': 'long'}, } def __init__( self, **kwargs ): """ """ super(GetIndexStatisticsResult, self).__init__(**kwargs) self.document_count = None self.storage_size = None class HighWaterMarkChangeDetectionPolicy(DataChangeDetectionPolicy): """Defines a data change detection policy that captures changes based on the value of a high water mark column. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the data change detection policy.Constant filled by server. :vartype odata_type: str :ivar high_water_mark_column_name: Required. The name of the high water mark column. :vartype high_water_mark_column_name: str """ _validation = { 'odata_type': {'required': True}, 'high_water_mark_column_name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'high_water_mark_column_name': {'key': 'highWaterMarkColumnName', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword high_water_mark_column_name: Required. The name of the high water mark column. :paramtype high_water_mark_column_name: str """ super(HighWaterMarkChangeDetectionPolicy, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.HighWaterMarkChangeDetectionPolicy' # type: str self.high_water_mark_column_name = kwargs['high_water_mark_column_name'] class ImageAnalysisSkill(SearchIndexerSkill): """A skill that analyzes image files. It extracts a rich set of visual features based on the image content. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar default_language_code: A value indicating which language code to use. Default is en. Possible values include: "en", "es", "ja", "pt", "zh". :vartype default_language_code: str or ~azure.search.documents.indexes.models.ImageAnalysisSkillLanguage :ivar visual_features: A list of visual features. :vartype visual_features: list[str or ~azure.search.documents.indexes.models.VisualFeature] :ivar details: A string indicating which domain-specific details to return. :vartype details: list[str or ~azure.search.documents.indexes.models.ImageDetail] """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'default_language_code': {'key': 'defaultLanguageCode', 'type': 'str'}, 'visual_features': {'key': 'visualFeatures', 'type': '[str]'}, 'details': {'key': 'details', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword default_language_code: A value indicating which language code to use. Default is en. Possible values include: "en", "es", "ja", "pt", "zh". :paramtype default_language_code: str or ~azure.search.documents.indexes.models.ImageAnalysisSkillLanguage :keyword visual_features: A list of visual features. :paramtype visual_features: list[str or ~azure.search.documents.indexes.models.VisualFeature] :keyword details: A string indicating which domain-specific details to return. :paramtype details: list[str or ~azure.search.documents.indexes.models.ImageDetail] """ super(ImageAnalysisSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Vision.ImageAnalysisSkill' # type: str self.default_language_code = kwargs.get('default_language_code', None) self.visual_features = kwargs.get('visual_features', None) self.details = kwargs.get('details', None) class IndexerCurrentState(msrest.serialization.Model): """Represents all of the state that defines and dictates the indexer's current execution. Variables are only populated by the server, and will be ignored when sending a request. :ivar mode: The mode the indexer is running in. Possible values include: "indexingAllDocs", "indexingResetDocs". :vartype mode: str or ~azure.search.documents.indexes.models.IndexingMode :ivar all_docs_initial_change_tracking_state: Change tracking state used when indexing starts on all documents in the datasource. :vartype all_docs_initial_change_tracking_state: str :ivar all_docs_final_change_tracking_state: Change tracking state value when indexing finishes on all documents in the datasource. :vartype all_docs_final_change_tracking_state: str :ivar reset_docs_initial_change_tracking_state: Change tracking state used when indexing starts on select, reset documents in the datasource. :vartype reset_docs_initial_change_tracking_state: str :ivar reset_docs_final_change_tracking_state: Change tracking state value when indexing finishes on select, reset documents in the datasource. :vartype reset_docs_final_change_tracking_state: str :ivar reset_document_keys: The list of document keys that have been reset. The document key is the document's unique identifier for the data in the search index. The indexer will prioritize selectively re-ingesting these keys. :vartype reset_document_keys: list[str] :ivar reset_datasource_document_ids: The list of datasource document ids that have been reset. The datasource document id is the unique identifier for the data in the datasource. The indexer will prioritize selectively re-ingesting these ids. :vartype reset_datasource_document_ids: list[str] """ _validation = { 'mode': {'readonly': True}, 'all_docs_initial_change_tracking_state': {'readonly': True}, 'all_docs_final_change_tracking_state': {'readonly': True}, 'reset_docs_initial_change_tracking_state': {'readonly': True}, 'reset_docs_final_change_tracking_state': {'readonly': True}, 'reset_document_keys': {'readonly': True}, 'reset_datasource_document_ids': {'readonly': True}, } _attribute_map = { 'mode': {'key': 'mode', 'type': 'str'}, 'all_docs_initial_change_tracking_state': {'key': 'allDocsInitialChangeTrackingState', 'type': 'str'}, 'all_docs_final_change_tracking_state': {'key': 'allDocsFinalChangeTrackingState', 'type': 'str'}, 'reset_docs_initial_change_tracking_state': {'key': 'resetDocsInitialChangeTrackingState', 'type': 'str'}, 'reset_docs_final_change_tracking_state': {'key': 'resetDocsFinalChangeTrackingState', 'type': 'str'}, 'reset_document_keys': {'key': 'resetDocumentKeys', 'type': '[str]'}, 'reset_datasource_document_ids': {'key': 'resetDatasourceDocumentIds', 'type': '[str]'}, } def __init__( self, **kwargs ): """ """ super(IndexerCurrentState, self).__init__(**kwargs) self.mode = None self.all_docs_initial_change_tracking_state = None self.all_docs_final_change_tracking_state = None self.reset_docs_initial_change_tracking_state = None self.reset_docs_final_change_tracking_state = None self.reset_document_keys = None self.reset_datasource_document_ids = None class IndexerExecutionResult(msrest.serialization.Model): """Represents the result of an individual indexer execution. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar status: Required. The outcome of this indexer execution. Possible values include: "transientFailure", "success", "inProgress", "reset". :vartype status: str or ~azure.search.documents.indexes.models.IndexerExecutionStatus :ivar status_detail: The outcome of this indexer execution. Possible values include: "resetDocs". :vartype status_detail: str or ~azure.search.documents.indexes.models.IndexerExecutionStatusDetail :ivar current_state: All of the state that defines and dictates the indexer's current execution. :vartype current_state: ~azure.search.documents.indexes.models.IndexerCurrentState :ivar error_message: The error message indicating the top-level error, if any. :vartype error_message: str :ivar start_time: The start time of this indexer execution. :vartype start_time: ~datetime.datetime :ivar end_time: The end time of this indexer execution, if the execution has already completed. :vartype end_time: ~datetime.datetime :ivar errors: Required. The item-level indexing errors. :vartype errors: list[~azure.search.documents.indexes.models.SearchIndexerError] :ivar warnings: Required. The item-level indexing warnings. :vartype warnings: list[~azure.search.documents.indexes.models.SearchIndexerWarning] :ivar item_count: Required. The number of items that were processed during this indexer execution. This includes both successfully processed items and items where indexing was attempted but failed. :vartype item_count: int :ivar failed_item_count: Required. The number of items that failed to be indexed during this indexer execution. :vartype failed_item_count: int :ivar initial_tracking_state: Change tracking state with which an indexer execution started. :vartype initial_tracking_state: str :ivar final_tracking_state: Change tracking state with which an indexer execution finished. :vartype final_tracking_state: str """ _validation = { 'status': {'required': True, 'readonly': True}, 'status_detail': {'readonly': True}, 'current_state': {'readonly': True}, 'error_message': {'readonly': True}, 'start_time': {'readonly': True}, 'end_time': {'readonly': True}, 'errors': {'required': True, 'readonly': True}, 'warnings': {'required': True, 'readonly': True}, 'item_count': {'required': True, 'readonly': True}, 'failed_item_count': {'required': True, 'readonly': True}, 'initial_tracking_state': {'readonly': True}, 'final_tracking_state': {'readonly': True}, } _attribute_map = { 'status': {'key': 'status', 'type': 'str'}, 'status_detail': {'key': 'statusDetail', 'type': 'str'}, 'current_state': {'key': 'currentState', 'type': 'IndexerCurrentState'}, 'error_message': {'key': 'errorMessage', 'type': 'str'}, 'start_time': {'key': 'startTime', 'type': 'iso-8601'}, 'end_time': {'key': 'endTime', 'type': 'iso-8601'}, 'errors': {'key': 'errors', 'type': '[SearchIndexerError]'}, 'warnings': {'key': 'warnings', 'type': '[SearchIndexerWarning]'}, 'item_count': {'key': 'itemsProcessed', 'type': 'int'}, 'failed_item_count': {'key': 'itemsFailed', 'type': 'int'}, 'initial_tracking_state': {'key': 'initialTrackingState', 'type': 'str'}, 'final_tracking_state': {'key': 'finalTrackingState', 'type': 'str'}, } def __init__( self, **kwargs ): """ """ super(IndexerExecutionResult, self).__init__(**kwargs) self.status = None self.status_detail = None self.current_state = None self.error_message = None self.start_time = None self.end_time = None self.errors = None self.warnings = None self.item_count = None self.failed_item_count = None self.initial_tracking_state = None self.final_tracking_state = None class IndexingParameters(msrest.serialization.Model): """Represents parameters for indexer execution. :ivar batch_size: The number of items that are read from the data source and indexed as a single batch in order to improve performance. The default depends on the data source type. :vartype batch_size: int :ivar max_failed_items: The maximum number of items that can fail indexing for indexer execution to still be considered successful. -1 means no limit. Default is 0. :vartype max_failed_items: int :ivar max_failed_items_per_batch: The maximum number of items in a single batch that can fail indexing for the batch to still be considered successful. -1 means no limit. Default is 0. :vartype max_failed_items_per_batch: int :ivar configuration: A dictionary of indexer-specific configuration properties. Each name is the name of a specific property. Each value must be of a primitive type. :vartype configuration: ~azure.search.documents.indexes.models.IndexingParametersConfiguration """ _attribute_map = { 'batch_size': {'key': 'batchSize', 'type': 'int'}, 'max_failed_items': {'key': 'maxFailedItems', 'type': 'int'}, 'max_failed_items_per_batch': {'key': 'maxFailedItemsPerBatch', 'type': 'int'}, 'configuration': {'key': 'configuration', 'type': 'IndexingParametersConfiguration'}, } def __init__( self, **kwargs ): """ :keyword batch_size: The number of items that are read from the data source and indexed as a single batch in order to improve performance. The default depends on the data source type. :paramtype batch_size: int :keyword max_failed_items: The maximum number of items that can fail indexing for indexer execution to still be considered successful. -1 means no limit. Default is 0. :paramtype max_failed_items: int :keyword max_failed_items_per_batch: The maximum number of items in a single batch that can fail indexing for the batch to still be considered successful. -1 means no limit. Default is 0. :paramtype max_failed_items_per_batch: int :keyword configuration: A dictionary of indexer-specific configuration properties. Each name is the name of a specific property. Each value must be of a primitive type. :paramtype configuration: ~azure.search.documents.indexes.models.IndexingParametersConfiguration """ super(IndexingParameters, self).__init__(**kwargs) self.batch_size = kwargs.get('batch_size', None) self.max_failed_items = kwargs.get('max_failed_items', 0) self.max_failed_items_per_batch = kwargs.get('max_failed_items_per_batch', 0) self.configuration = kwargs.get('configuration', None) class IndexingParametersConfiguration(msrest.serialization.Model): """A dictionary of indexer-specific configuration properties. Each name is the name of a specific property. Each value must be of a primitive type. :ivar additional_properties: Unmatched properties from the message are deserialized to this collection. :vartype additional_properties: dict[str, any] :ivar parsing_mode: Represents the parsing mode for indexing from an Azure blob data source. Possible values include: "default", "text", "delimitedText", "json", "jsonArray", "jsonLines". Default value: "default". :vartype parsing_mode: str or ~azure.search.documents.indexes.models.BlobIndexerParsingMode :ivar excluded_file_name_extensions: Comma-delimited list of filename extensions to ignore when processing from Azure blob storage. For example, you could exclude ".png, .mp4" to skip over those files during indexing. :vartype excluded_file_name_extensions: str :ivar indexed_file_name_extensions: Comma-delimited list of filename extensions to select when processing from Azure blob storage. For example, you could focus indexing on specific application files ".docx, .pptx, .msg" to specifically include those file types. :vartype indexed_file_name_extensions: str :ivar fail_on_unsupported_content_type: For Azure blobs, set to false if you want to continue indexing when an unsupported content type is encountered, and you don't know all the content types (file extensions) in advance. :vartype fail_on_unsupported_content_type: bool :ivar fail_on_unprocessable_document: For Azure blobs, set to false if you want to continue indexing if a document fails indexing. :vartype fail_on_unprocessable_document: bool :ivar index_storage_metadata_only_for_oversized_documents: For Azure blobs, set this property to true to still index storage metadata for blob content that is too large to process. Oversized blobs are treated as errors by default. For limits on blob size, see https://docs.microsoft.com/azure/search/search-limits-quotas-capacity. :vartype index_storage_metadata_only_for_oversized_documents: bool :ivar delimited_text_headers: For CSV blobs, specifies a comma-delimited list of column headers, useful for mapping source fields to destination fields in an index. :vartype delimited_text_headers: str :ivar delimited_text_delimiter: For CSV blobs, specifies the end-of-line single-character delimiter for CSV files where each line starts a new document (for example, "|"). :vartype delimited_text_delimiter: str :ivar first_line_contains_headers: For CSV blobs, indicates that the first (non-blank) line of each blob contains headers. :vartype first_line_contains_headers: bool :ivar document_root: For JSON arrays, given a structured or semi-structured document, you can specify a path to the array using this property. :vartype document_root: str :ivar data_to_extract: Specifies the data to extract from Azure blob storage and tells the indexer which data to extract from image content when "imageAction" is set to a value other than "none". This applies to embedded image content in a .PDF or other application, or image files such as .jpg and .png, in Azure blobs. Possible values include: "storageMetadata", "allMetadata", "contentAndMetadata". Default value: "contentAndMetadata". :vartype data_to_extract: str or ~azure.search.documents.indexes.models.BlobIndexerDataToExtract :ivar image_action: Determines how to process embedded images and image files in Azure blob storage. Setting the "imageAction" configuration to any value other than "none" requires that a skillset also be attached to that indexer. Possible values include: "none", "generateNormalizedImages", "generateNormalizedImagePerPage". Default value: "none". :vartype image_action: str or ~azure.search.documents.indexes.models.BlobIndexerImageAction :ivar allow_skillset_to_read_file_data: If true, will create a path //document//file_data that is an object representing the original file data downloaded from your blob data source. This allows you to pass the original file data to a custom skill for processing within the enrichment pipeline, or to the Document Extraction skill. :vartype allow_skillset_to_read_file_data: bool :ivar pdf_text_rotation_algorithm: Determines algorithm for text extraction from PDF files in Azure blob storage. Possible values include: "none", "detectAngles". Default value: "none". :vartype pdf_text_rotation_algorithm: str or ~azure.search.documents.indexes.models.BlobIndexerPDFTextRotationAlgorithm :ivar execution_environment: Specifies the environment in which the indexer should execute. Possible values include: "standard", "private". Default value: "standard". :vartype execution_environment: str or ~azure.search.documents.indexes.models.IndexerExecutionEnvironment :ivar query_timeout: Increases the timeout beyond the 5-minute default for Azure SQL database data sources, specified in the format "hh:mm:ss". :vartype query_timeout: str """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'parsing_mode': {'key': 'parsingMode', 'type': 'str'}, 'excluded_file_name_extensions': {'key': 'excludedFileNameExtensions', 'type': 'str'}, 'indexed_file_name_extensions': {'key': 'indexedFileNameExtensions', 'type': 'str'}, 'fail_on_unsupported_content_type': {'key': 'failOnUnsupportedContentType', 'type': 'bool'}, 'fail_on_unprocessable_document': {'key': 'failOnUnprocessableDocument', 'type': 'bool'}, 'index_storage_metadata_only_for_oversized_documents': {'key': 'indexStorageMetadataOnlyForOversizedDocuments', 'type': 'bool'}, 'delimited_text_headers': {'key': 'delimitedTextHeaders', 'type': 'str'}, 'delimited_text_delimiter': {'key': 'delimitedTextDelimiter', 'type': 'str'}, 'first_line_contains_headers': {'key': 'firstLineContainsHeaders', 'type': 'bool'}, 'document_root': {'key': 'documentRoot', 'type': 'str'}, 'data_to_extract': {'key': 'dataToExtract', 'type': 'str'}, 'image_action': {'key': 'imageAction', 'type': 'str'}, 'allow_skillset_to_read_file_data': {'key': 'allowSkillsetToReadFileData', 'type': 'bool'}, 'pdf_text_rotation_algorithm': {'key': 'pdfTextRotationAlgorithm', 'type': 'str'}, 'execution_environment': {'key': 'executionEnvironment', 'type': 'str'}, 'query_timeout': {'key': 'queryTimeout', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword additional_properties: Unmatched properties from the message are deserialized to this collection. :paramtype additional_properties: dict[str, any] :keyword parsing_mode: Represents the parsing mode for indexing from an Azure blob data source. Possible values include: "default", "text", "delimitedText", "json", "jsonArray", "jsonLines". Default value: "default". :paramtype parsing_mode: str or ~azure.search.documents.indexes.models.BlobIndexerParsingMode :keyword excluded_file_name_extensions: Comma-delimited list of filename extensions to ignore when processing from Azure blob storage. For example, you could exclude ".png, .mp4" to skip over those files during indexing. :paramtype excluded_file_name_extensions: str :keyword indexed_file_name_extensions: Comma-delimited list of filename extensions to select when processing from Azure blob storage. For example, you could focus indexing on specific application files ".docx, .pptx, .msg" to specifically include those file types. :paramtype indexed_file_name_extensions: str :keyword fail_on_unsupported_content_type: For Azure blobs, set to false if you want to continue indexing when an unsupported content type is encountered, and you don't know all the content types (file extensions) in advance. :paramtype fail_on_unsupported_content_type: bool :keyword fail_on_unprocessable_document: For Azure blobs, set to false if you want to continue indexing if a document fails indexing. :paramtype fail_on_unprocessable_document: bool :keyword index_storage_metadata_only_for_oversized_documents: For Azure blobs, set this property to true to still index storage metadata for blob content that is too large to process. Oversized blobs are treated as errors by default. For limits on blob size, see https://docs.microsoft.com/azure/search/search-limits-quotas-capacity. :paramtype index_storage_metadata_only_for_oversized_documents: bool :keyword delimited_text_headers: For CSV blobs, specifies a comma-delimited list of column headers, useful for mapping source fields to destination fields in an index. :paramtype delimited_text_headers: str :keyword delimited_text_delimiter: For CSV blobs, specifies the end-of-line single-character delimiter for CSV files where each line starts a new document (for example, "|"). :paramtype delimited_text_delimiter: str :keyword first_line_contains_headers: For CSV blobs, indicates that the first (non-blank) line of each blob contains headers. :paramtype first_line_contains_headers: bool :keyword document_root: For JSON arrays, given a structured or semi-structured document, you can specify a path to the array using this property. :paramtype document_root: str :keyword data_to_extract: Specifies the data to extract from Azure blob storage and tells the indexer which data to extract from image content when "imageAction" is set to a value other than "none". This applies to embedded image content in a .PDF or other application, or image files such as .jpg and .png, in Azure blobs. Possible values include: "storageMetadata", "allMetadata", "contentAndMetadata". Default value: "contentAndMetadata". :paramtype data_to_extract: str or ~azure.search.documents.indexes.models.BlobIndexerDataToExtract :keyword image_action: Determines how to process embedded images and image files in Azure blob storage. Setting the "imageAction" configuration to any value other than "none" requires that a skillset also be attached to that indexer. Possible values include: "none", "generateNormalizedImages", "generateNormalizedImagePerPage". Default value: "none". :paramtype image_action: str or ~azure.search.documents.indexes.models.BlobIndexerImageAction :keyword allow_skillset_to_read_file_data: If true, will create a path //document//file_data that is an object representing the original file data downloaded from your blob data source. This allows you to pass the original file data to a custom skill for processing within the enrichment pipeline, or to the Document Extraction skill. :paramtype allow_skillset_to_read_file_data: bool :keyword pdf_text_rotation_algorithm: Determines algorithm for text extraction from PDF files in Azure blob storage. Possible values include: "none", "detectAngles". Default value: "none". :paramtype pdf_text_rotation_algorithm: str or ~azure.search.documents.indexes.models.BlobIndexerPDFTextRotationAlgorithm :keyword execution_environment: Specifies the environment in which the indexer should execute. Possible values include: "standard", "private". Default value: "standard". :paramtype execution_environment: str or ~azure.search.documents.indexes.models.IndexerExecutionEnvironment :keyword query_timeout: Increases the timeout beyond the 5-minute default for Azure SQL database data sources, specified in the format "hh:mm:ss". :paramtype query_timeout: str """ super(IndexingParametersConfiguration, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.parsing_mode = kwargs.get('parsing_mode', "default") self.excluded_file_name_extensions = kwargs.get('excluded_file_name_extensions', "") self.indexed_file_name_extensions = kwargs.get('indexed_file_name_extensions', "") self.fail_on_unsupported_content_type = kwargs.get('fail_on_unsupported_content_type', False) self.fail_on_unprocessable_document = kwargs.get('fail_on_unprocessable_document', False) self.index_storage_metadata_only_for_oversized_documents = kwargs.get('index_storage_metadata_only_for_oversized_documents', False) self.delimited_text_headers = kwargs.get('delimited_text_headers', None) self.delimited_text_delimiter = kwargs.get('delimited_text_delimiter', None) self.first_line_contains_headers = kwargs.get('first_line_contains_headers', True) self.document_root = kwargs.get('document_root', None) self.data_to_extract = kwargs.get('data_to_extract', "contentAndMetadata") self.image_action = kwargs.get('image_action', "none") self.allow_skillset_to_read_file_data = kwargs.get('allow_skillset_to_read_file_data', False) self.pdf_text_rotation_algorithm = kwargs.get('pdf_text_rotation_algorithm', "none") self.execution_environment = kwargs.get('execution_environment', "standard") self.query_timeout = kwargs.get('query_timeout', "00:05:00") class IndexingSchedule(msrest.serialization.Model): """Represents a schedule for indexer execution. All required parameters must be populated in order to send to Azure. :ivar interval: Required. The interval of time between indexer executions. :vartype interval: ~datetime.timedelta :ivar start_time: The time when an indexer should start running. :vartype start_time: ~datetime.datetime """ _validation = { 'interval': {'required': True}, } _attribute_map = { 'interval': {'key': 'interval', 'type': 'duration'}, 'start_time': {'key': 'startTime', 'type': 'iso-8601'}, } def __init__( self, **kwargs ): """ :keyword interval: Required. The interval of time between indexer executions. :paramtype interval: ~datetime.timedelta :keyword start_time: The time when an indexer should start running. :paramtype start_time: ~datetime.datetime """ super(IndexingSchedule, self).__init__(**kwargs) self.interval = kwargs['interval'] self.start_time = kwargs.get('start_time', None) class InputFieldMappingEntry(msrest.serialization.Model): """Input field mapping for a skill. All required parameters must be populated in order to send to Azure. :ivar name: Required. The name of the input. :vartype name: str :ivar source: The source of the input. :vartype source: str :ivar source_context: The source context used for selecting recursive inputs. :vartype source_context: str :ivar inputs: The recursive inputs used when creating a complex type. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] """ _validation = { 'name': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'source': {'key': 'source', 'type': 'str'}, 'source_context': {'key': 'sourceContext', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the input. :paramtype name: str :keyword source: The source of the input. :paramtype source: str :keyword source_context: The source context used for selecting recursive inputs. :paramtype source_context: str :keyword inputs: The recursive inputs used when creating a complex type. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] """ super(InputFieldMappingEntry, self).__init__(**kwargs) self.name = kwargs['name'] self.source = kwargs.get('source', None) self.source_context = kwargs.get('source_context', None) self.inputs = kwargs.get('inputs', None) class KeepTokenFilter(TokenFilter): """A token filter that only keeps tokens with text contained in a specified list of words. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar keep_words: Required. The list of words to keep. :vartype keep_words: list[str] :ivar lower_case_keep_words: A value indicating whether to lower case all words first. Default is false. :vartype lower_case_keep_words: bool """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'keep_words': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'keep_words': {'key': 'keepWords', 'type': '[str]'}, 'lower_case_keep_words': {'key': 'keepWordsCase', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword keep_words: Required. The list of words to keep. :paramtype keep_words: list[str] :keyword lower_case_keep_words: A value indicating whether to lower case all words first. Default is false. :paramtype lower_case_keep_words: bool """ super(KeepTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.KeepTokenFilter' # type: str self.keep_words = kwargs['keep_words'] self.lower_case_keep_words = kwargs.get('lower_case_keep_words', False) class KeyPhraseExtractionSkill(SearchIndexerSkill): """A skill that uses text analytics for key phrase extraction. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar default_language_code: A value indicating which language code to use. Default is en. Possible values include: "da", "nl", "en", "fi", "fr", "de", "it", "ja", "ko", "no", "pl", "pt-PT", "pt-BR", "ru", "es", "sv". :vartype default_language_code: str or ~azure.search.documents.indexes.models.KeyPhraseExtractionSkillLanguage :ivar max_key_phrase_count: A number indicating how many key phrases to return. If absent, all identified key phrases will be returned. :vartype max_key_phrase_count: int :ivar model_version: The version of the model to use when calling the Text Analytics service. It will default to the latest available when not specified. We recommend you do not specify this value unless absolutely necessary. :vartype model_version: str """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'default_language_code': {'key': 'defaultLanguageCode', 'type': 'str'}, 'max_key_phrase_count': {'key': 'maxKeyPhraseCount', 'type': 'int'}, 'model_version': {'key': 'modelVersion', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword default_language_code: A value indicating which language code to use. Default is en. Possible values include: "da", "nl", "en", "fi", "fr", "de", "it", "ja", "ko", "no", "pl", "pt-PT", "pt-BR", "ru", "es", "sv". :paramtype default_language_code: str or ~azure.search.documents.indexes.models.KeyPhraseExtractionSkillLanguage :keyword max_key_phrase_count: A number indicating how many key phrases to return. If absent, all identified key phrases will be returned. :paramtype max_key_phrase_count: int :keyword model_version: The version of the model to use when calling the Text Analytics service. It will default to the latest available when not specified. We recommend you do not specify this value unless absolutely necessary. :paramtype model_version: str """ super(KeyPhraseExtractionSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Text.KeyPhraseExtractionSkill' # type: str self.default_language_code = kwargs.get('default_language_code', None) self.max_key_phrase_count = kwargs.get('max_key_phrase_count', None) self.model_version = kwargs.get('model_version', None) class KeywordMarkerTokenFilter(TokenFilter): """Marks terms as keywords. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar keywords: Required. A list of words to mark as keywords. :vartype keywords: list[str] :ivar ignore_case: A value indicating whether to ignore case. If true, all words are converted to lower case first. Default is false. :vartype ignore_case: bool """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'keywords': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'keywords': {'key': 'keywords', 'type': '[str]'}, 'ignore_case': {'key': 'ignoreCase', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword keywords: Required. A list of words to mark as keywords. :paramtype keywords: list[str] :keyword ignore_case: A value indicating whether to ignore case. If true, all words are converted to lower case first. Default is false. :paramtype ignore_case: bool """ super(KeywordMarkerTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.KeywordMarkerTokenFilter' # type: str self.keywords = kwargs['keywords'] self.ignore_case = kwargs.get('ignore_case', False) class KeywordTokenizer(LexicalTokenizer): """Emits the entire input as a single token. This tokenizer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the tokenizer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar buffer_size: The read buffer size in bytes. Default is 256. :vartype buffer_size: int """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'buffer_size': {'key': 'bufferSize', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword buffer_size: The read buffer size in bytes. Default is 256. :paramtype buffer_size: int """ super(KeywordTokenizer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.KeywordTokenizer' # type: str self.buffer_size = kwargs.get('buffer_size', 256) class KeywordTokenizerV2(LexicalTokenizer): """Emits the entire input as a single token. This tokenizer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the tokenizer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar max_token_length: The maximum token length. Default is 256. Tokens longer than the maximum length are split. The maximum token length that can be used is 300 characters. :vartype max_token_length: int """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'max_token_length': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'max_token_length': {'key': 'maxTokenLength', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword max_token_length: The maximum token length. Default is 256. Tokens longer than the maximum length are split. The maximum token length that can be used is 300 characters. :paramtype max_token_length: int """ super(KeywordTokenizerV2, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.KeywordTokenizerV2' # type: str self.max_token_length = kwargs.get('max_token_length', 256) class LanguageDetectionSkill(SearchIndexerSkill): """A skill that detects the language of input text and reports a single language code for every document submitted on the request. The language code is paired with a score indicating the confidence of the analysis. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar default_country_hint: A country code to use as a hint to the language detection model if it cannot disambiguate the language. :vartype default_country_hint: str :ivar model_version: The version of the model to use when calling the Text Analytics service. It will default to the latest available when not specified. We recommend you do not specify this value unless absolutely necessary. :vartype model_version: str """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'default_country_hint': {'key': 'defaultCountryHint', 'type': 'str'}, 'model_version': {'key': 'modelVersion', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword default_country_hint: A country code to use as a hint to the language detection model if it cannot disambiguate the language. :paramtype default_country_hint: str :keyword model_version: The version of the model to use when calling the Text Analytics service. It will default to the latest available when not specified. We recommend you do not specify this value unless absolutely necessary. :paramtype model_version: str """ super(LanguageDetectionSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Text.LanguageDetectionSkill' # type: str self.default_country_hint = kwargs.get('default_country_hint', None) self.model_version = kwargs.get('model_version', None) class LengthTokenFilter(TokenFilter): """Removes words that are too long or too short. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar min_length: The minimum length in characters. Default is 0. Maximum is 300. Must be less than the value of max. :vartype min_length: int :ivar max_length: The maximum length in characters. Default and maximum is 300. :vartype max_length: int """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'min_length': {'maximum': 300}, 'max_length': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'min_length': {'key': 'min', 'type': 'int'}, 'max_length': {'key': 'max', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword min_length: The minimum length in characters. Default is 0. Maximum is 300. Must be less than the value of max. :paramtype min_length: int :keyword max_length: The maximum length in characters. Default and maximum is 300. :paramtype max_length: int """ super(LengthTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.LengthTokenFilter' # type: str self.min_length = kwargs.get('min_length', 0) self.max_length = kwargs.get('max_length', 300) class LimitTokenFilter(TokenFilter): """Limits the number of tokens while indexing. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar max_token_count: The maximum number of tokens to produce. Default is 1. :vartype max_token_count: int :ivar consume_all_tokens: A value indicating whether all tokens from the input must be consumed even if maxTokenCount is reached. Default is false. :vartype consume_all_tokens: bool """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'max_token_count': {'key': 'maxTokenCount', 'type': 'int'}, 'consume_all_tokens': {'key': 'consumeAllTokens', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword max_token_count: The maximum number of tokens to produce. Default is 1. :paramtype max_token_count: int :keyword consume_all_tokens: A value indicating whether all tokens from the input must be consumed even if maxTokenCount is reached. Default is false. :paramtype consume_all_tokens: bool """ super(LimitTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.LimitTokenFilter' # type: str self.max_token_count = kwargs.get('max_token_count', 1) self.consume_all_tokens = kwargs.get('consume_all_tokens', False) class ListDataSourcesResult(msrest.serialization.Model): """Response from a List Datasources request. If successful, it includes the full definitions of all datasources. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar data_sources: Required. The datasources in the Search service. :vartype data_sources: list[~azure.search.documents.indexes.models.SearchIndexerDataSource] """ _validation = { 'data_sources': {'required': True, 'readonly': True}, } _attribute_map = { 'data_sources': {'key': 'value', 'type': '[SearchIndexerDataSource]'}, } def __init__( self, **kwargs ): """ """ super(ListDataSourcesResult, self).__init__(**kwargs) self.data_sources = None class ListIndexersResult(msrest.serialization.Model): """Response from a List Indexers request. If successful, it includes the full definitions of all indexers. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar indexers: Required. The indexers in the Search service. :vartype indexers: list[~azure.search.documents.indexes.models.SearchIndexer] """ _validation = { 'indexers': {'required': True, 'readonly': True}, } _attribute_map = { 'indexers': {'key': 'value', 'type': '[SearchIndexer]'}, } def __init__( self, **kwargs ): """ """ super(ListIndexersResult, self).__init__(**kwargs) self.indexers = None class ListIndexesResult(msrest.serialization.Model): """Response from a List Indexes request. If successful, it includes the full definitions of all indexes. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar indexes: Required. The indexes in the Search service. :vartype indexes: list[~azure.search.documents.indexes.models.SearchIndex] """ _validation = { 'indexes': {'required': True, 'readonly': True}, } _attribute_map = { 'indexes': {'key': 'value', 'type': '[SearchIndex]'}, } def __init__( self, **kwargs ): """ """ super(ListIndexesResult, self).__init__(**kwargs) self.indexes = None class ListSkillsetsResult(msrest.serialization.Model): """Response from a list skillset request. If successful, it includes the full definitions of all skillsets. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar skillsets: Required. The skillsets defined in the Search service. :vartype skillsets: list[~azure.search.documents.indexes.models.SearchIndexerSkillset] """ _validation = { 'skillsets': {'required': True, 'readonly': True}, } _attribute_map = { 'skillsets': {'key': 'value', 'type': '[SearchIndexerSkillset]'}, } def __init__( self, **kwargs ): """ """ super(ListSkillsetsResult, self).__init__(**kwargs) self.skillsets = None class ListSynonymMapsResult(msrest.serialization.Model): """Response from a List SynonymMaps request. If successful, it includes the full definitions of all synonym maps. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar synonym_maps: Required. The synonym maps in the Search service. :vartype synonym_maps: list[~azure.search.documents.indexes.models.SynonymMap] """ _validation = { 'synonym_maps': {'required': True, 'readonly': True}, } _attribute_map = { 'synonym_maps': {'key': 'value', 'type': '[SynonymMap]'}, } def __init__( self, **kwargs ): """ """ super(ListSynonymMapsResult, self).__init__(**kwargs) self.synonym_maps = None class LuceneStandardAnalyzer(LexicalAnalyzer): """Standard Apache Lucene analyzer; Composed of the standard tokenizer, lowercase filter and stop filter. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the analyzer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the analyzer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar max_token_length: The maximum token length. Default is 255. Tokens longer than the maximum length are split. The maximum token length that can be used is 300 characters. :vartype max_token_length: int :ivar stopwords: A list of stopwords. :vartype stopwords: list[str] """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'max_token_length': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'max_token_length': {'key': 'maxTokenLength', 'type': 'int'}, 'stopwords': {'key': 'stopwords', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the analyzer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword max_token_length: The maximum token length. Default is 255. Tokens longer than the maximum length are split. The maximum token length that can be used is 300 characters. :paramtype max_token_length: int :keyword stopwords: A list of stopwords. :paramtype stopwords: list[str] """ super(LuceneStandardAnalyzer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.StandardAnalyzer' # type: str self.max_token_length = kwargs.get('max_token_length', 255) self.stopwords = kwargs.get('stopwords', None) class LuceneStandardTokenizer(LexicalTokenizer): """Breaks text following the Unicode Text Segmentation rules. This tokenizer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the tokenizer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar max_token_length: The maximum token length. Default is 255. Tokens longer than the maximum length are split. :vartype max_token_length: int """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'max_token_length': {'key': 'maxTokenLength', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword max_token_length: The maximum token length. Default is 255. Tokens longer than the maximum length are split. :paramtype max_token_length: int """ super(LuceneStandardTokenizer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.StandardTokenizer' # type: str self.max_token_length = kwargs.get('max_token_length', 255) class LuceneStandardTokenizerV2(LexicalTokenizer): """Breaks text following the Unicode Text Segmentation rules. This tokenizer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the tokenizer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar max_token_length: The maximum token length. Default is 255. Tokens longer than the maximum length are split. The maximum token length that can be used is 300 characters. :vartype max_token_length: int """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'max_token_length': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'max_token_length': {'key': 'maxTokenLength', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword max_token_length: The maximum token length. Default is 255. Tokens longer than the maximum length are split. The maximum token length that can be used is 300 characters. :paramtype max_token_length: int """ super(LuceneStandardTokenizerV2, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.StandardTokenizerV2' # type: str self.max_token_length = kwargs.get('max_token_length', 255) class MagnitudeScoringFunction(ScoringFunction): """Defines a function that boosts scores based on the magnitude of a numeric field. All required parameters must be populated in order to send to Azure. :ivar type: Required. Indicates the type of function to use. Valid values include magnitude, freshness, distance, and tag. The function type must be lower case.Constant filled by server. :vartype type: str :ivar field_name: Required. The name of the field used as input to the scoring function. :vartype field_name: str :ivar boost: Required. A multiplier for the raw score. Must be a positive number not equal to 1.0. :vartype boost: float :ivar interpolation: A value indicating how boosting will be interpolated across document scores; defaults to "Linear". Possible values include: "linear", "constant", "quadratic", "logarithmic". :vartype interpolation: str or ~azure.search.documents.indexes.models.ScoringFunctionInterpolation :ivar parameters: Required. Parameter values for the magnitude scoring function. :vartype parameters: ~azure.search.documents.indexes.models.MagnitudeScoringParameters """ _validation = { 'type': {'required': True}, 'field_name': {'required': True}, 'boost': {'required': True}, 'parameters': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'field_name': {'key': 'fieldName', 'type': 'str'}, 'boost': {'key': 'boost', 'type': 'float'}, 'interpolation': {'key': 'interpolation', 'type': 'str'}, 'parameters': {'key': 'magnitude', 'type': 'MagnitudeScoringParameters'}, } def __init__( self, **kwargs ): """ :keyword field_name: Required. The name of the field used as input to the scoring function. :paramtype field_name: str :keyword boost: Required. A multiplier for the raw score. Must be a positive number not equal to 1.0. :paramtype boost: float :keyword interpolation: A value indicating how boosting will be interpolated across document scores; defaults to "Linear". Possible values include: "linear", "constant", "quadratic", "logarithmic". :paramtype interpolation: str or ~azure.search.documents.indexes.models.ScoringFunctionInterpolation :keyword parameters: Required. Parameter values for the magnitude scoring function. :paramtype parameters: ~azure.search.documents.indexes.models.MagnitudeScoringParameters """ super(MagnitudeScoringFunction, self).__init__(**kwargs) self.type = 'magnitude' # type: str self.parameters = kwargs['parameters'] class MagnitudeScoringParameters(msrest.serialization.Model): """Provides parameter values to a magnitude scoring function. All required parameters must be populated in order to send to Azure. :ivar boosting_range_start: Required. The field value at which boosting starts. :vartype boosting_range_start: float :ivar boosting_range_end: Required. The field value at which boosting ends. :vartype boosting_range_end: float :ivar should_boost_beyond_range_by_constant: A value indicating whether to apply a constant boost for field values beyond the range end value; default is false. :vartype should_boost_beyond_range_by_constant: bool """ _validation = { 'boosting_range_start': {'required': True}, 'boosting_range_end': {'required': True}, } _attribute_map = { 'boosting_range_start': {'key': 'boostingRangeStart', 'type': 'float'}, 'boosting_range_end': {'key': 'boostingRangeEnd', 'type': 'float'}, 'should_boost_beyond_range_by_constant': {'key': 'constantBoostBeyondRange', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword boosting_range_start: Required. The field value at which boosting starts. :paramtype boosting_range_start: float :keyword boosting_range_end: Required. The field value at which boosting ends. :paramtype boosting_range_end: float :keyword should_boost_beyond_range_by_constant: A value indicating whether to apply a constant boost for field values beyond the range end value; default is false. :paramtype should_boost_beyond_range_by_constant: bool """ super(MagnitudeScoringParameters, self).__init__(**kwargs) self.boosting_range_start = kwargs['boosting_range_start'] self.boosting_range_end = kwargs['boosting_range_end'] self.should_boost_beyond_range_by_constant = kwargs.get('should_boost_beyond_range_by_constant', None) class MappingCharFilter(CharFilter): """A character filter that applies mappings defined with the mappings option. Matching is greedy (longest pattern matching at a given point wins). Replacement is allowed to be the empty string. This character filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the char filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the char filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar mappings: Required. A list of mappings of the following format: "a=>b" (all occurrences of the character "a" will be replaced with character "b"). :vartype mappings: list[str] """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'mappings': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'mappings': {'key': 'mappings', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the char filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword mappings: Required. A list of mappings of the following format: "a=>b" (all occurrences of the character "a" will be replaced with character "b"). :paramtype mappings: list[str] """ super(MappingCharFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.MappingCharFilter' # type: str self.mappings = kwargs['mappings'] class MergeSkill(SearchIndexerSkill): """A skill for merging two or more strings into a single unified string, with an optional user-defined delimiter separating each component part. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar insert_pre_tag: The tag indicates the start of the merged text. By default, the tag is an empty space. :vartype insert_pre_tag: str :ivar insert_post_tag: The tag indicates the end of the merged text. By default, the tag is an empty space. :vartype insert_post_tag: str """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'insert_pre_tag': {'key': 'insertPreTag', 'type': 'str'}, 'insert_post_tag': {'key': 'insertPostTag', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword insert_pre_tag: The tag indicates the start of the merged text. By default, the tag is an empty space. :paramtype insert_pre_tag: str :keyword insert_post_tag: The tag indicates the end of the merged text. By default, the tag is an empty space. :paramtype insert_post_tag: str """ super(MergeSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Text.MergeSkill' # type: str self.insert_pre_tag = kwargs.get('insert_pre_tag', " ") self.insert_post_tag = kwargs.get('insert_post_tag', " ") class MicrosoftLanguageStemmingTokenizer(LexicalTokenizer): """Divides text using language-specific rules and reduces words to their base forms. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the tokenizer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar max_token_length: The maximum token length. Tokens longer than the maximum length are split. Maximum token length that can be used is 300 characters. Tokens longer than 300 characters are first split into tokens of length 300 and then each of those tokens is split based on the max token length set. Default is 255. :vartype max_token_length: int :ivar is_search_tokenizer: A value indicating how the tokenizer is used. Set to true if used as the search tokenizer, set to false if used as the indexing tokenizer. Default is false. :vartype is_search_tokenizer: bool :ivar language: The language to use. The default is English. Possible values include: "arabic", "bangla", "bulgarian", "catalan", "croatian", "czech", "danish", "dutch", "english", "estonian", "finnish", "french", "german", "greek", "gujarati", "hebrew", "hindi", "hungarian", "icelandic", "indonesian", "italian", "kannada", "latvian", "lithuanian", "malay", "malayalam", "marathi", "norwegianBokmaal", "polish", "portuguese", "portugueseBrazilian", "punjabi", "romanian", "russian", "serbianCyrillic", "serbianLatin", "slovak", "slovenian", "spanish", "swedish", "tamil", "telugu", "turkish", "ukrainian", "urdu". :vartype language: str or ~azure.search.documents.indexes.models.MicrosoftStemmingTokenizerLanguage """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'max_token_length': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'max_token_length': {'key': 'maxTokenLength', 'type': 'int'}, 'is_search_tokenizer': {'key': 'isSearchTokenizer', 'type': 'bool'}, 'language': {'key': 'language', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword max_token_length: The maximum token length. Tokens longer than the maximum length are split. Maximum token length that can be used is 300 characters. Tokens longer than 300 characters are first split into tokens of length 300 and then each of those tokens is split based on the max token length set. Default is 255. :paramtype max_token_length: int :keyword is_search_tokenizer: A value indicating how the tokenizer is used. Set to true if used as the search tokenizer, set to false if used as the indexing tokenizer. Default is false. :paramtype is_search_tokenizer: bool :keyword language: The language to use. The default is English. Possible values include: "arabic", "bangla", "bulgarian", "catalan", "croatian", "czech", "danish", "dutch", "english", "estonian", "finnish", "french", "german", "greek", "gujarati", "hebrew", "hindi", "hungarian", "icelandic", "indonesian", "italian", "kannada", "latvian", "lithuanian", "malay", "malayalam", "marathi", "norwegianBokmaal", "polish", "portuguese", "portugueseBrazilian", "punjabi", "romanian", "russian", "serbianCyrillic", "serbianLatin", "slovak", "slovenian", "spanish", "swedish", "tamil", "telugu", "turkish", "ukrainian", "urdu". :paramtype language: str or ~azure.search.documents.indexes.models.MicrosoftStemmingTokenizerLanguage """ super(MicrosoftLanguageStemmingTokenizer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.MicrosoftLanguageStemmingTokenizer' # type: str self.max_token_length = kwargs.get('max_token_length', 255) self.is_search_tokenizer = kwargs.get('is_search_tokenizer', False) self.language = kwargs.get('language', None) class MicrosoftLanguageTokenizer(LexicalTokenizer): """Divides text using language-specific rules. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the tokenizer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar max_token_length: The maximum token length. Tokens longer than the maximum length are split. Maximum token length that can be used is 300 characters. Tokens longer than 300 characters are first split into tokens of length 300 and then each of those tokens is split based on the max token length set. Default is 255. :vartype max_token_length: int :ivar is_search_tokenizer: A value indicating how the tokenizer is used. Set to true if used as the search tokenizer, set to false if used as the indexing tokenizer. Default is false. :vartype is_search_tokenizer: bool :ivar language: The language to use. The default is English. Possible values include: "bangla", "bulgarian", "catalan", "chineseSimplified", "chineseTraditional", "croatian", "czech", "danish", "dutch", "english", "french", "german", "greek", "gujarati", "hindi", "icelandic", "indonesian", "italian", "japanese", "kannada", "korean", "malay", "malayalam", "marathi", "norwegianBokmaal", "polish", "portuguese", "portugueseBrazilian", "punjabi", "romanian", "russian", "serbianCyrillic", "serbianLatin", "slovenian", "spanish", "swedish", "tamil", "telugu", "thai", "ukrainian", "urdu", "vietnamese". :vartype language: str or ~azure.search.documents.indexes.models.MicrosoftTokenizerLanguage """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'max_token_length': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'max_token_length': {'key': 'maxTokenLength', 'type': 'int'}, 'is_search_tokenizer': {'key': 'isSearchTokenizer', 'type': 'bool'}, 'language': {'key': 'language', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword max_token_length: The maximum token length. Tokens longer than the maximum length are split. Maximum token length that can be used is 300 characters. Tokens longer than 300 characters are first split into tokens of length 300 and then each of those tokens is split based on the max token length set. Default is 255. :paramtype max_token_length: int :keyword is_search_tokenizer: A value indicating how the tokenizer is used. Set to true if used as the search tokenizer, set to false if used as the indexing tokenizer. Default is false. :paramtype is_search_tokenizer: bool :keyword language: The language to use. The default is English. Possible values include: "bangla", "bulgarian", "catalan", "chineseSimplified", "chineseTraditional", "croatian", "czech", "danish", "dutch", "english", "french", "german", "greek", "gujarati", "hindi", "icelandic", "indonesian", "italian", "japanese", "kannada", "korean", "malay", "malayalam", "marathi", "norwegianBokmaal", "polish", "portuguese", "portugueseBrazilian", "punjabi", "romanian", "russian", "serbianCyrillic", "serbianLatin", "slovenian", "spanish", "swedish", "tamil", "telugu", "thai", "ukrainian", "urdu", "vietnamese". :paramtype language: str or ~azure.search.documents.indexes.models.MicrosoftTokenizerLanguage """ super(MicrosoftLanguageTokenizer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.MicrosoftLanguageTokenizer' # type: str self.max_token_length = kwargs.get('max_token_length', 255) self.is_search_tokenizer = kwargs.get('is_search_tokenizer', False) self.language = kwargs.get('language', None) class NGramTokenFilter(TokenFilter): """Generates n-grams of the given size(s). This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar min_gram: The minimum n-gram length. Default is 1. Must be less than the value of maxGram. :vartype min_gram: int :ivar max_gram: The maximum n-gram length. Default is 2. :vartype max_gram: int """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'min_gram': {'key': 'minGram', 'type': 'int'}, 'max_gram': {'key': 'maxGram', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword min_gram: The minimum n-gram length. Default is 1. Must be less than the value of maxGram. :paramtype min_gram: int :keyword max_gram: The maximum n-gram length. Default is 2. :paramtype max_gram: int """ super(NGramTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.NGramTokenFilter' # type: str self.min_gram = kwargs.get('min_gram', 1) self.max_gram = kwargs.get('max_gram', 2) class NGramTokenFilterV2(TokenFilter): """Generates n-grams of the given size(s). This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar min_gram: The minimum n-gram length. Default is 1. Maximum is 300. Must be less than the value of maxGram. :vartype min_gram: int :ivar max_gram: The maximum n-gram length. Default is 2. Maximum is 300. :vartype max_gram: int """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'min_gram': {'maximum': 300}, 'max_gram': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'min_gram': {'key': 'minGram', 'type': 'int'}, 'max_gram': {'key': 'maxGram', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword min_gram: The minimum n-gram length. Default is 1. Maximum is 300. Must be less than the value of maxGram. :paramtype min_gram: int :keyword max_gram: The maximum n-gram length. Default is 2. Maximum is 300. :paramtype max_gram: int """ super(NGramTokenFilterV2, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.NGramTokenFilterV2' # type: str self.min_gram = kwargs.get('min_gram', 1) self.max_gram = kwargs.get('max_gram', 2) class NGramTokenizer(LexicalTokenizer): """Tokenizes the input into n-grams of the given size(s). This tokenizer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the tokenizer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar min_gram: The minimum n-gram length. Default is 1. Maximum is 300. Must be less than the value of maxGram. :vartype min_gram: int :ivar max_gram: The maximum n-gram length. Default is 2. Maximum is 300. :vartype max_gram: int :ivar token_chars: Character classes to keep in the tokens. :vartype token_chars: list[str or ~azure.search.documents.indexes.models.TokenCharacterKind] """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'min_gram': {'maximum': 300}, 'max_gram': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'min_gram': {'key': 'minGram', 'type': 'int'}, 'max_gram': {'key': 'maxGram', 'type': 'int'}, 'token_chars': {'key': 'tokenChars', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword min_gram: The minimum n-gram length. Default is 1. Maximum is 300. Must be less than the value of maxGram. :paramtype min_gram: int :keyword max_gram: The maximum n-gram length. Default is 2. Maximum is 300. :paramtype max_gram: int :keyword token_chars: Character classes to keep in the tokens. :paramtype token_chars: list[str or ~azure.search.documents.indexes.models.TokenCharacterKind] """ super(NGramTokenizer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.NGramTokenizer' # type: str self.min_gram = kwargs.get('min_gram', 1) self.max_gram = kwargs.get('max_gram', 2) self.token_chars = kwargs.get('token_chars', None) class OcrSkill(SearchIndexerSkill): """A skill that extracts text from image files. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar default_language_code: A value indicating which language code to use. Default is en. Possible values include: "zh-Hans", "zh-Hant", "cs", "da", "nl", "en", "fi", "fr", "de", "el", "hu", "it", "ja", "ko", "nb", "pl", "pt", "ru", "es", "sv", "tr", "ar", "ro", "sr-Cyrl", "sr-Latn", "sk", "unk". :vartype default_language_code: str or ~azure.search.documents.indexes.models.OcrSkillLanguage :ivar should_detect_orientation: A value indicating to turn orientation detection on or not. Default is false. :vartype should_detect_orientation: bool :ivar line_ending: Defines the sequence of characters to use between the lines of text recognized by the OCR skill. The default value is "space". Possible values include: "space", "carriageReturn", "lineFeed", "carriageReturnLineFeed". :vartype line_ending: str or ~azure.search.documents.indexes.models.LineEnding """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'default_language_code': {'key': 'defaultLanguageCode', 'type': 'str'}, 'should_detect_orientation': {'key': 'detectOrientation', 'type': 'bool'}, 'line_ending': {'key': 'lineEnding', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword default_language_code: A value indicating which language code to use. Default is en. Possible values include: "zh-Hans", "zh-Hant", "cs", "da", "nl", "en", "fi", "fr", "de", "el", "hu", "it", "ja", "ko", "nb", "pl", "pt", "ru", "es", "sv", "tr", "ar", "ro", "sr-Cyrl", "sr-Latn", "sk", "unk". :paramtype default_language_code: str or ~azure.search.documents.indexes.models.OcrSkillLanguage :keyword should_detect_orientation: A value indicating to turn orientation detection on or not. Default is false. :paramtype should_detect_orientation: bool :keyword line_ending: Defines the sequence of characters to use between the lines of text recognized by the OCR skill. The default value is "space". Possible values include: "space", "carriageReturn", "lineFeed", "carriageReturnLineFeed". :paramtype line_ending: str or ~azure.search.documents.indexes.models.LineEnding """ super(OcrSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Vision.OcrSkill' # type: str self.default_language_code = kwargs.get('default_language_code', None) self.should_detect_orientation = kwargs.get('should_detect_orientation', False) self.line_ending = kwargs.get('line_ending', None) class OutputFieldMappingEntry(msrest.serialization.Model): """Output field mapping for a skill. All required parameters must be populated in order to send to Azure. :ivar name: Required. The name of the output defined by the skill. :vartype name: str :ivar target_name: The target name of the output. It is optional and default to name. :vartype target_name: str """ _validation = { 'name': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'target_name': {'key': 'targetName', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the output defined by the skill. :paramtype name: str :keyword target_name: The target name of the output. It is optional and default to name. :paramtype target_name: str """ super(OutputFieldMappingEntry, self).__init__(**kwargs) self.name = kwargs['name'] self.target_name = kwargs.get('target_name', None) class PathHierarchyTokenizerV2(LexicalTokenizer): """Tokenizer for path-like hierarchies. This tokenizer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the tokenizer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar delimiter: The delimiter character to use. Default is "/". :vartype delimiter: str :ivar replacement: A value that, if set, replaces the delimiter character. Default is "/". :vartype replacement: str :ivar max_token_length: The maximum token length. Default and maximum is 300. :vartype max_token_length: int :ivar reverse_token_order: A value indicating whether to generate tokens in reverse order. Default is false. :vartype reverse_token_order: bool :ivar number_of_tokens_to_skip: The number of initial tokens to skip. Default is 0. :vartype number_of_tokens_to_skip: int """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'max_token_length': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'delimiter': {'key': 'delimiter', 'type': 'str'}, 'replacement': {'key': 'replacement', 'type': 'str'}, 'max_token_length': {'key': 'maxTokenLength', 'type': 'int'}, 'reverse_token_order': {'key': 'reverse', 'type': 'bool'}, 'number_of_tokens_to_skip': {'key': 'skip', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword delimiter: The delimiter character to use. Default is "/". :paramtype delimiter: str :keyword replacement: A value that, if set, replaces the delimiter character. Default is "/". :paramtype replacement: str :keyword max_token_length: The maximum token length. Default and maximum is 300. :paramtype max_token_length: int :keyword reverse_token_order: A value indicating whether to generate tokens in reverse order. Default is false. :paramtype reverse_token_order: bool :keyword number_of_tokens_to_skip: The number of initial tokens to skip. Default is 0. :paramtype number_of_tokens_to_skip: int """ super(PathHierarchyTokenizerV2, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.PathHierarchyTokenizerV2' # type: str self.delimiter = kwargs.get('delimiter', "/") self.replacement = kwargs.get('replacement', "/") self.max_token_length = kwargs.get('max_token_length', 300) self.reverse_token_order = kwargs.get('reverse_token_order', False) self.number_of_tokens_to_skip = kwargs.get('number_of_tokens_to_skip', 0) class PatternAnalyzer(LexicalAnalyzer): """Flexibly separates text into terms via a regular expression pattern. This analyzer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the analyzer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the analyzer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar lower_case_terms: A value indicating whether terms should be lower-cased. Default is true. :vartype lower_case_terms: bool :ivar pattern: A regular expression pattern to match token separators. Default is an expression that matches one or more non-word characters. :vartype pattern: str :ivar flags: Regular expression flags. Possible values include: "CANON_EQ", "CASE_INSENSITIVE", "COMMENTS", "DOTALL", "LITERAL", "MULTILINE", "UNICODE_CASE", "UNIX_LINES". :vartype flags: str or ~azure.search.documents.indexes.models.RegexFlags :ivar stopwords: A list of stopwords. :vartype stopwords: list[str] """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'lower_case_terms': {'key': 'lowercase', 'type': 'bool'}, 'pattern': {'key': 'pattern', 'type': 'str'}, 'flags': {'key': 'flags', 'type': 'str'}, 'stopwords': {'key': 'stopwords', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the analyzer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword lower_case_terms: A value indicating whether terms should be lower-cased. Default is true. :paramtype lower_case_terms: bool :keyword pattern: A regular expression pattern to match token separators. Default is an expression that matches one or more non-word characters. :paramtype pattern: str :keyword flags: Regular expression flags. Possible values include: "CANON_EQ", "CASE_INSENSITIVE", "COMMENTS", "DOTALL", "LITERAL", "MULTILINE", "UNICODE_CASE", "UNIX_LINES". :paramtype flags: str or ~azure.search.documents.indexes.models.RegexFlags :keyword stopwords: A list of stopwords. :paramtype stopwords: list[str] """ super(PatternAnalyzer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.PatternAnalyzer' # type: str self.lower_case_terms = kwargs.get('lower_case_terms', True) self.pattern = kwargs.get('pattern', "\W+") self.flags = kwargs.get('flags', None) self.stopwords = kwargs.get('stopwords', None) class PatternCaptureTokenFilter(TokenFilter): """Uses Java regexes to emit multiple tokens - one for each capture group in one or more patterns. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar patterns: Required. A list of patterns to match against each token. :vartype patterns: list[str] :ivar preserve_original: A value indicating whether to return the original token even if one of the patterns matches. Default is true. :vartype preserve_original: bool """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'patterns': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'patterns': {'key': 'patterns', 'type': '[str]'}, 'preserve_original': {'key': 'preserveOriginal', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword patterns: Required. A list of patterns to match against each token. :paramtype patterns: list[str] :keyword preserve_original: A value indicating whether to return the original token even if one of the patterns matches. Default is true. :paramtype preserve_original: bool """ super(PatternCaptureTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.PatternCaptureTokenFilter' # type: str self.patterns = kwargs['patterns'] self.preserve_original = kwargs.get('preserve_original', True) class PatternReplaceCharFilter(CharFilter): """A character filter that replaces characters in the input string. It uses a regular expression to identify character sequences to preserve and a replacement pattern to identify characters to replace. For example, given the input text "aa bb aa bb", pattern "(aa)\s+(bb)", and replacement "$1#$2", the result would be "aa#bb aa#bb". This character filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the char filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the char filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar pattern: Required. A regular expression pattern. :vartype pattern: str :ivar replacement: Required. The replacement text. :vartype replacement: str """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'pattern': {'required': True}, 'replacement': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'pattern': {'key': 'pattern', 'type': 'str'}, 'replacement': {'key': 'replacement', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the char filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword pattern: Required. A regular expression pattern. :paramtype pattern: str :keyword replacement: Required. The replacement text. :paramtype replacement: str """ super(PatternReplaceCharFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.PatternReplaceCharFilter' # type: str self.pattern = kwargs['pattern'] self.replacement = kwargs['replacement'] class PatternReplaceTokenFilter(TokenFilter): """A character filter that replaces characters in the input string. It uses a regular expression to identify character sequences to preserve and a replacement pattern to identify characters to replace. For example, given the input text "aa bb aa bb", pattern "(aa)\s+(bb)", and replacement "$1#$2", the result would be "aa#bb aa#bb". This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar pattern: Required. A regular expression pattern. :vartype pattern: str :ivar replacement: Required. The replacement text. :vartype replacement: str """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'pattern': {'required': True}, 'replacement': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'pattern': {'key': 'pattern', 'type': 'str'}, 'replacement': {'key': 'replacement', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword pattern: Required. A regular expression pattern. :paramtype pattern: str :keyword replacement: Required. The replacement text. :paramtype replacement: str """ super(PatternReplaceTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.PatternReplaceTokenFilter' # type: str self.pattern = kwargs['pattern'] self.replacement = kwargs['replacement'] class PatternTokenizer(LexicalTokenizer): """Tokenizer that uses regex pattern matching to construct distinct tokens. This tokenizer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the tokenizer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar pattern: A regular expression pattern to match token separators. Default is an expression that matches one or more non-word characters. :vartype pattern: str :ivar flags: Regular expression flags. Possible values include: "CANON_EQ", "CASE_INSENSITIVE", "COMMENTS", "DOTALL", "LITERAL", "MULTILINE", "UNICODE_CASE", "UNIX_LINES". :vartype flags: str or ~azure.search.documents.indexes.models.RegexFlags :ivar group: The zero-based ordinal of the matching group in the regular expression pattern to extract into tokens. Use -1 if you want to use the entire pattern to split the input into tokens, irrespective of matching groups. Default is -1. :vartype group: int """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'pattern': {'key': 'pattern', 'type': 'str'}, 'flags': {'key': 'flags', 'type': 'str'}, 'group': {'key': 'group', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword pattern: A regular expression pattern to match token separators. Default is an expression that matches one or more non-word characters. :paramtype pattern: str :keyword flags: Regular expression flags. Possible values include: "CANON_EQ", "CASE_INSENSITIVE", "COMMENTS", "DOTALL", "LITERAL", "MULTILINE", "UNICODE_CASE", "UNIX_LINES". :paramtype flags: str or ~azure.search.documents.indexes.models.RegexFlags :keyword group: The zero-based ordinal of the matching group in the regular expression pattern to extract into tokens. Use -1 if you want to use the entire pattern to split the input into tokens, irrespective of matching groups. Default is -1. :paramtype group: int """ super(PatternTokenizer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.PatternTokenizer' # type: str self.pattern = kwargs.get('pattern', "\W+") self.flags = kwargs.get('flags', None) self.group = kwargs.get('group', -1) class PhoneticTokenFilter(TokenFilter): """Create tokens for phonetic matches. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar encoder: The phonetic encoder to use. Default is "metaphone". Possible values include: "metaphone", "doubleMetaphone", "soundex", "refinedSoundex", "caverphone1", "caverphone2", "cologne", "nysiis", "koelnerPhonetik", "haasePhonetik", "beiderMorse". :vartype encoder: str or ~azure.search.documents.indexes.models.PhoneticEncoder :ivar replace_original_tokens: A value indicating whether encoded tokens should replace original tokens. If false, encoded tokens are added as synonyms. Default is true. :vartype replace_original_tokens: bool """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'encoder': {'key': 'encoder', 'type': 'str'}, 'replace_original_tokens': {'key': 'replace', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword encoder: The phonetic encoder to use. Default is "metaphone". Possible values include: "metaphone", "doubleMetaphone", "soundex", "refinedSoundex", "caverphone1", "caverphone2", "cologne", "nysiis", "koelnerPhonetik", "haasePhonetik", "beiderMorse". :paramtype encoder: str or ~azure.search.documents.indexes.models.PhoneticEncoder :keyword replace_original_tokens: A value indicating whether encoded tokens should replace original tokens. If false, encoded tokens are added as synonyms. Default is true. :paramtype replace_original_tokens: bool """ super(PhoneticTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.PhoneticTokenFilter' # type: str self.encoder = kwargs.get('encoder', None) self.replace_original_tokens = kwargs.get('replace_original_tokens', True) class PIIDetectionSkill(SearchIndexerSkill): """Using the Text Analytics API, extracts personal information from an input text and gives you the option of masking it. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar default_language_code: A value indicating which language code to use. Default is en. :vartype default_language_code: str :ivar minimum_precision: A value between 0 and 1 that be used to only include entities whose confidence score is greater than the value specified. If not set (default), or if explicitly set to null, all entities will be included. :vartype minimum_precision: float :ivar masking_mode: A parameter that provides various ways to mask the personal information detected in the input text. Default is 'none'. Possible values include: "none", "replace". :vartype masking_mode: str or ~azure.search.documents.indexes.models.PIIDetectionSkillMaskingMode :ivar masking_character: The character used to mask the text if the maskingMode parameter is set to replace. Default is '*'. :vartype masking_character: str :ivar model_version: The version of the model to use when calling the Text Analytics service. It will default to the latest available when not specified. We recommend you do not specify this value unless absolutely necessary. :vartype model_version: str :ivar pii_categories: A list of PII entity categories that should be extracted and masked. :vartype pii_categories: list[str] :ivar domain: If specified, will set the PII domain to include only a subset of the entity categories. Possible values include: 'phi', 'none'. Default is 'none'. :vartype domain: str """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, 'minimum_precision': {'maximum': 1, 'minimum': 0}, 'masking_character': {'max_length': 1, 'min_length': 0}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'default_language_code': {'key': 'defaultLanguageCode', 'type': 'str'}, 'minimum_precision': {'key': 'minimumPrecision', 'type': 'float'}, 'masking_mode': {'key': 'maskingMode', 'type': 'str'}, 'masking_character': {'key': 'maskingCharacter', 'type': 'str'}, 'model_version': {'key': 'modelVersion', 'type': 'str'}, 'pii_categories': {'key': 'piiCategories', 'type': '[str]'}, 'domain': {'key': 'domain', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword default_language_code: A value indicating which language code to use. Default is en. :paramtype default_language_code: str :keyword minimum_precision: A value between 0 and 1 that be used to only include entities whose confidence score is greater than the value specified. If not set (default), or if explicitly set to null, all entities will be included. :paramtype minimum_precision: float :keyword masking_mode: A parameter that provides various ways to mask the personal information detected in the input text. Default is 'none'. Possible values include: "none", "replace". :paramtype masking_mode: str or ~azure.search.documents.indexes.models.PIIDetectionSkillMaskingMode :keyword masking_character: The character used to mask the text if the maskingMode parameter is set to replace. Default is '*'. :paramtype masking_character: str :keyword model_version: The version of the model to use when calling the Text Analytics service. It will default to the latest available when not specified. We recommend you do not specify this value unless absolutely necessary. :paramtype model_version: str :keyword pii_categories: A list of PII entity categories that should be extracted and masked. :paramtype pii_categories: list[str] :keyword domain: If specified, will set the PII domain to include only a subset of the entity categories. Possible values include: 'phi', 'none'. Default is 'none'. :paramtype domain: str """ super(PIIDetectionSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Text.PIIDetectionSkill' # type: str self.default_language_code = kwargs.get('default_language_code', None) self.minimum_precision = kwargs.get('minimum_precision', None) self.masking_mode = kwargs.get('masking_mode', None) self.masking_character = kwargs.get('masking_character', None) self.model_version = kwargs.get('model_version', None) self.pii_categories = kwargs.get('pii_categories', None) self.domain = kwargs.get('domain', None) class PrioritizedFields(msrest.serialization.Model): """Describes the title, content, and keywords fields to be used for semantic ranking, captions, highlights, and answers. :ivar title_field: Defines the title field to be used for semantic ranking, captions, highlights, and answers. If you don't have a title field in your index, leave this blank. :vartype title_field: ~azure.search.documents.indexes.models.SemanticField :ivar prioritized_content_fields: Defines the content fields to be used for semantic ranking, captions, highlights, and answers. For the best result, the selected fields should contain text in natural language form. The order of the fields in the array represents their priority. Fields with lower priority may get truncated if the content is long. :vartype prioritized_content_fields: list[~azure.search.documents.indexes.models.SemanticField] :ivar prioritized_keywords_fields: Defines the keyword fields to be used for semantic ranking, captions, highlights, and answers. For the best result, the selected fields should contain a list of keywords. The order of the fields in the array represents their priority. Fields with lower priority may get truncated if the content is long. :vartype prioritized_keywords_fields: list[~azure.search.documents.indexes.models.SemanticField] """ _attribute_map = { 'title_field': {'key': 'titleField', 'type': 'SemanticField'}, 'prioritized_content_fields': {'key': 'prioritizedContentFields', 'type': '[SemanticField]'}, 'prioritized_keywords_fields': {'key': 'prioritizedKeywordsFields', 'type': '[SemanticField]'}, } def __init__( self, **kwargs ): """ :keyword title_field: Defines the title field to be used for semantic ranking, captions, highlights, and answers. If you don't have a title field in your index, leave this blank. :paramtype title_field: ~azure.search.documents.indexes.models.SemanticField :keyword prioritized_content_fields: Defines the content fields to be used for semantic ranking, captions, highlights, and answers. For the best result, the selected fields should contain text in natural language form. The order of the fields in the array represents their priority. Fields with lower priority may get truncated if the content is long. :paramtype prioritized_content_fields: list[~azure.search.documents.indexes.models.SemanticField] :keyword prioritized_keywords_fields: Defines the keyword fields to be used for semantic ranking, captions, highlights, and answers. For the best result, the selected fields should contain a list of keywords. The order of the fields in the array represents their priority. Fields with lower priority may get truncated if the content is long. :paramtype prioritized_keywords_fields: list[~azure.search.documents.indexes.models.SemanticField] """ super(PrioritizedFields, self).__init__(**kwargs) self.title_field = kwargs.get('title_field', None) self.prioritized_content_fields = kwargs.get('prioritized_content_fields', None) self.prioritized_keywords_fields = kwargs.get('prioritized_keywords_fields', None) class RequestOptions(msrest.serialization.Model): """Parameter group. :ivar x_ms_client_request_id: The tracking ID sent with the request to help with debugging. :vartype x_ms_client_request_id: str """ _attribute_map = { 'x_ms_client_request_id': {'key': 'x-ms-client-request-id', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword x_ms_client_request_id: The tracking ID sent with the request to help with debugging. :paramtype x_ms_client_request_id: str """ super(RequestOptions, self).__init__(**kwargs) self.x_ms_client_request_id = kwargs.get('x_ms_client_request_id', None) class ResourceCounter(msrest.serialization.Model): """Represents a resource's usage and quota. All required parameters must be populated in order to send to Azure. :ivar usage: Required. The resource usage amount. :vartype usage: long :ivar quota: The resource amount quota. :vartype quota: long """ _validation = { 'usage': {'required': True}, } _attribute_map = { 'usage': {'key': 'usage', 'type': 'long'}, 'quota': {'key': 'quota', 'type': 'long'}, } def __init__( self, **kwargs ): """ :keyword usage: Required. The resource usage amount. :paramtype usage: long :keyword quota: The resource amount quota. :paramtype quota: long """ super(ResourceCounter, self).__init__(**kwargs) self.usage = kwargs['usage'] self.quota = kwargs.get('quota', None) class ScoringProfile(msrest.serialization.Model): """Defines parameters for a search index that influence scoring in search queries. All required parameters must be populated in order to send to Azure. :ivar name: Required. The name of the scoring profile. :vartype name: str :ivar text_weights: Parameters that boost scoring based on text matches in certain index fields. :vartype text_weights: ~azure.search.documents.indexes.models.TextWeights :ivar functions: The collection of functions that influence the scoring of documents. :vartype functions: list[~azure.search.documents.indexes.models.ScoringFunction] :ivar function_aggregation: A value indicating how the results of individual scoring functions should be combined. Defaults to "Sum". Ignored if there are no scoring functions. Possible values include: "sum", "average", "minimum", "maximum", "firstMatching". :vartype function_aggregation: str or ~azure.search.documents.indexes.models.ScoringFunctionAggregation """ _validation = { 'name': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'text_weights': {'key': 'text', 'type': 'TextWeights'}, 'functions': {'key': 'functions', 'type': '[ScoringFunction]'}, 'function_aggregation': {'key': 'functionAggregation', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the scoring profile. :paramtype name: str :keyword text_weights: Parameters that boost scoring based on text matches in certain index fields. :paramtype text_weights: ~azure.search.documents.indexes.models.TextWeights :keyword functions: The collection of functions that influence the scoring of documents. :paramtype functions: list[~azure.search.documents.indexes.models.ScoringFunction] :keyword function_aggregation: A value indicating how the results of individual scoring functions should be combined. Defaults to "Sum". Ignored if there are no scoring functions. Possible values include: "sum", "average", "minimum", "maximum", "firstMatching". :paramtype function_aggregation: str or ~azure.search.documents.indexes.models.ScoringFunctionAggregation """ super(ScoringProfile, self).__init__(**kwargs) self.name = kwargs['name'] self.text_weights = kwargs.get('text_weights', None) self.functions = kwargs.get('functions', None) self.function_aggregation = kwargs.get('function_aggregation', None) class SearchError(msrest.serialization.Model): """Describes an error condition for the Azure Cognitive Search API. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar code: One of a server-defined set of error codes. :vartype code: str :ivar message: Required. A human-readable representation of the error. :vartype message: str :ivar details: An array of details about specific errors that led to this reported error. :vartype details: list[~azure.search.documents.indexes.models.SearchError] """ _validation = { 'code': {'readonly': True}, 'message': {'required': True, 'readonly': True}, 'details': {'readonly': True}, } _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'details': {'key': 'details', 'type': '[SearchError]'}, } def __init__( self, **kwargs ): """ """ super(SearchError, self).__init__(**kwargs) self.code = None self.message = None self.details = None class SearchField(msrest.serialization.Model): """Represents a field in an index definition, which describes the name, data type, and search behavior of a field. All required parameters must be populated in order to send to Azure. :ivar name: Required. The name of the field, which must be unique within the fields collection of the index or parent field. :vartype name: str :ivar type: Required. The data type of the field. Possible values include: "Edm.String", "Edm.Int32", "Edm.Int64", "Edm.Double", "Edm.Boolean", "Edm.DateTimeOffset", "Edm.GeographyPoint", "Edm.ComplexType". :vartype type: str or ~azure.search.documents.indexes.models.SearchFieldDataType :ivar key: A value indicating whether the field uniquely identifies documents in the index. Exactly one top-level field in each index must be chosen as the key field and it must be of type Edm.String. Key fields can be used to look up documents directly and update or delete specific documents. Default is false for simple fields and null for complex fields. :vartype key: bool :ivar retrievable: A value indicating whether the field can be returned in a search result. You can disable this option if you want to use a field (for example, margin) as a filter, sorting, or scoring mechanism but do not want the field to be visible to the end user. This property must be true for key fields, and it must be null for complex fields. This property can be changed on existing fields. Enabling this property does not cause any increase in index storage requirements. Default is true for simple fields and null for complex fields. :vartype retrievable: bool :ivar searchable: A value indicating whether the field is full-text searchable. This means it will undergo analysis such as word-breaking during indexing. If you set a searchable field to a value like "sunny day", internally it will be split into the individual tokens "sunny" and "day". This enables full-text searches for these terms. Fields of type Edm.String or Collection(Edm.String) are searchable by default. This property must be false for simple fields of other non-string data types, and it must be null for complex fields. Note: searchable fields consume extra space in your index since Azure Cognitive Search will store an additional tokenized version of the field value for full-text searches. If you want to save space in your index and you don't need a field to be included in searches, set searchable to false. :vartype searchable: bool :ivar filterable: A value indicating whether to enable the field to be referenced in $filter queries. filterable differs from searchable in how strings are handled. Fields of type Edm.String or Collection(Edm.String) that are filterable do not undergo word-breaking, so comparisons are for exact matches only. For example, if you set such a field f to "sunny day", $filter=f eq 'sunny' will find no matches, but $filter=f eq 'sunny day' will. This property must be null for complex fields. Default is true for simple fields and null for complex fields. :vartype filterable: bool :ivar sortable: A value indicating whether to enable the field to be referenced in $orderby expressions. By default Azure Cognitive Search sorts results by score, but in many experiences users will want to sort by fields in the documents. A simple field can be sortable only if it is single-valued (it has a single value in the scope of the parent document). Simple collection fields cannot be sortable, since they are multi-valued. Simple sub-fields of complex collections are also multi-valued, and therefore cannot be sortable. This is true whether it's an immediate parent field, or an ancestor field, that's the complex collection. Complex fields cannot be sortable and the sortable property must be null for such fields. The default for sortable is true for single-valued simple fields, false for multi-valued simple fields, and null for complex fields. :vartype sortable: bool :ivar facetable: A value indicating whether to enable the field to be referenced in facet queries. Typically used in a presentation of search results that includes hit count by category (for example, search for digital cameras and see hits by brand, by megapixels, by price, and so on). This property must be null for complex fields. Fields of type Edm.GeographyPoint or Collection(Edm.GeographyPoint) cannot be facetable. Default is true for all other simple fields. :vartype facetable: bool :ivar analyzer: The name of the analyzer to use for the field. This option can be used only with searchable fields and it can't be set together with either searchAnalyzer or indexAnalyzer. Once the analyzer is chosen, it cannot be changed for the field. Must be null for complex fields. Possible values include: "ar.microsoft", "ar.lucene", "hy.lucene", "bn.microsoft", "eu.lucene", "bg.microsoft", "bg.lucene", "ca.microsoft", "ca.lucene", "zh-Hans.microsoft", "zh-Hans.lucene", "zh-Hant.microsoft", "zh-Hant.lucene", "hr.microsoft", "cs.microsoft", "cs.lucene", "da.microsoft", "da.lucene", "nl.microsoft", "nl.lucene", "en.microsoft", "en.lucene", "et.microsoft", "fi.microsoft", "fi.lucene", "fr.microsoft", "fr.lucene", "gl.lucene", "de.microsoft", "de.lucene", "el.microsoft", "el.lucene", "gu.microsoft", "he.microsoft", "hi.microsoft", "hi.lucene", "hu.microsoft", "hu.lucene", "is.microsoft", "id.microsoft", "id.lucene", "ga.lucene", "it.microsoft", "it.lucene", "ja.microsoft", "ja.lucene", "kn.microsoft", "ko.microsoft", "ko.lucene", "lv.microsoft", "lv.lucene", "lt.microsoft", "ml.microsoft", "ms.microsoft", "mr.microsoft", "nb.microsoft", "no.lucene", "fa.lucene", "pl.microsoft", "pl.lucene", "pt-BR.microsoft", "pt-BR.lucene", "pt-PT.microsoft", "pt-PT.lucene", "pa.microsoft", "ro.microsoft", "ro.lucene", "ru.microsoft", "ru.lucene", "sr-cyrillic.microsoft", "sr-latin.microsoft", "sk.microsoft", "sl.microsoft", "es.microsoft", "es.lucene", "sv.microsoft", "sv.lucene", "ta.microsoft", "te.microsoft", "th.microsoft", "th.lucene", "tr.microsoft", "tr.lucene", "uk.microsoft", "ur.microsoft", "vi.microsoft", "standard.lucene", "standardasciifolding.lucene", "keyword", "pattern", "simple", "stop", "whitespace". :vartype analyzer: str or ~azure.search.documents.indexes.models.LexicalAnalyzerName :ivar search_analyzer: The name of the analyzer used at search time for the field. This option can be used only with searchable fields. It must be set together with indexAnalyzer and it cannot be set together with the analyzer option. This property cannot be set to the name of a language analyzer; use the analyzer property instead if you need a language analyzer. This analyzer can be updated on an existing field. Must be null for complex fields. Possible values include: "ar.microsoft", "ar.lucene", "hy.lucene", "bn.microsoft", "eu.lucene", "bg.microsoft", "bg.lucene", "ca.microsoft", "ca.lucene", "zh-Hans.microsoft", "zh-Hans.lucene", "zh-Hant.microsoft", "zh-Hant.lucene", "hr.microsoft", "cs.microsoft", "cs.lucene", "da.microsoft", "da.lucene", "nl.microsoft", "nl.lucene", "en.microsoft", "en.lucene", "et.microsoft", "fi.microsoft", "fi.lucene", "fr.microsoft", "fr.lucene", "gl.lucene", "de.microsoft", "de.lucene", "el.microsoft", "el.lucene", "gu.microsoft", "he.microsoft", "hi.microsoft", "hi.lucene", "hu.microsoft", "hu.lucene", "is.microsoft", "id.microsoft", "id.lucene", "ga.lucene", "it.microsoft", "it.lucene", "ja.microsoft", "ja.lucene", "kn.microsoft", "ko.microsoft", "ko.lucene", "lv.microsoft", "lv.lucene", "lt.microsoft", "ml.microsoft", "ms.microsoft", "mr.microsoft", "nb.microsoft", "no.lucene", "fa.lucene", "pl.microsoft", "pl.lucene", "pt-BR.microsoft", "pt-BR.lucene", "pt-PT.microsoft", "pt-PT.lucene", "pa.microsoft", "ro.microsoft", "ro.lucene", "ru.microsoft", "ru.lucene", "sr-cyrillic.microsoft", "sr-latin.microsoft", "sk.microsoft", "sl.microsoft", "es.microsoft", "es.lucene", "sv.microsoft", "sv.lucene", "ta.microsoft", "te.microsoft", "th.microsoft", "th.lucene", "tr.microsoft", "tr.lucene", "uk.microsoft", "ur.microsoft", "vi.microsoft", "standard.lucene", "standardasciifolding.lucene", "keyword", "pattern", "simple", "stop", "whitespace". :vartype search_analyzer: str or ~azure.search.documents.indexes.models.LexicalAnalyzerName :ivar index_analyzer: The name of the analyzer used at indexing time for the field. This option can be used only with searchable fields. It must be set together with searchAnalyzer and it cannot be set together with the analyzer option. This property cannot be set to the name of a language analyzer; use the analyzer property instead if you need a language analyzer. Once the analyzer is chosen, it cannot be changed for the field. Must be null for complex fields. Possible values include: "ar.microsoft", "ar.lucene", "hy.lucene", "bn.microsoft", "eu.lucene", "bg.microsoft", "bg.lucene", "ca.microsoft", "ca.lucene", "zh-Hans.microsoft", "zh-Hans.lucene", "zh-Hant.microsoft", "zh-Hant.lucene", "hr.microsoft", "cs.microsoft", "cs.lucene", "da.microsoft", "da.lucene", "nl.microsoft", "nl.lucene", "en.microsoft", "en.lucene", "et.microsoft", "fi.microsoft", "fi.lucene", "fr.microsoft", "fr.lucene", "gl.lucene", "de.microsoft", "de.lucene", "el.microsoft", "el.lucene", "gu.microsoft", "he.microsoft", "hi.microsoft", "hi.lucene", "hu.microsoft", "hu.lucene", "is.microsoft", "id.microsoft", "id.lucene", "ga.lucene", "it.microsoft", "it.lucene", "ja.microsoft", "ja.lucene", "kn.microsoft", "ko.microsoft", "ko.lucene", "lv.microsoft", "lv.lucene", "lt.microsoft", "ml.microsoft", "ms.microsoft", "mr.microsoft", "nb.microsoft", "no.lucene", "fa.lucene", "pl.microsoft", "pl.lucene", "pt-BR.microsoft", "pt-BR.lucene", "pt-PT.microsoft", "pt-PT.lucene", "pa.microsoft", "ro.microsoft", "ro.lucene", "ru.microsoft", "ru.lucene", "sr-cyrillic.microsoft", "sr-latin.microsoft", "sk.microsoft", "sl.microsoft", "es.microsoft", "es.lucene", "sv.microsoft", "sv.lucene", "ta.microsoft", "te.microsoft", "th.microsoft", "th.lucene", "tr.microsoft", "tr.lucene", "uk.microsoft", "ur.microsoft", "vi.microsoft", "standard.lucene", "standardasciifolding.lucene", "keyword", "pattern", "simple", "stop", "whitespace". :vartype index_analyzer: str or ~azure.search.documents.indexes.models.LexicalAnalyzerName :ivar normalizer: The name of the normalizer to use for the field. This option can be used only with fields with filterable, sortable, or facetable enabled. Once the normalizer is chosen, it cannot be changed for the field. Must be null for complex fields. Possible values include: "asciifolding", "elision", "lowercase", "standard", "uppercase". :vartype normalizer: str or ~azure.search.documents.indexes.models.LexicalNormalizerName :ivar synonym_maps: A list of the names of synonym maps to associate with this field. This option can be used only with searchable fields. Currently only one synonym map per field is supported. Assigning a synonym map to a field ensures that query terms targeting that field are expanded at query-time using the rules in the synonym map. This attribute can be changed on existing fields. Must be null or an empty collection for complex fields. :vartype synonym_maps: list[str] :ivar fields: A list of sub-fields if this is a field of type Edm.ComplexType or Collection(Edm.ComplexType). Must be null or empty for simple fields. :vartype fields: list[~azure.search.documents.indexes.models.SearchField] """ _validation = { 'name': {'required': True}, 'type': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'key': {'key': 'key', 'type': 'bool'}, 'retrievable': {'key': 'retrievable', 'type': 'bool'}, 'searchable': {'key': 'searchable', 'type': 'bool'}, 'filterable': {'key': 'filterable', 'type': 'bool'}, 'sortable': {'key': 'sortable', 'type': 'bool'}, 'facetable': {'key': 'facetable', 'type': 'bool'}, 'analyzer': {'key': 'analyzer', 'type': 'str'}, 'search_analyzer': {'key': 'searchAnalyzer', 'type': 'str'}, 'index_analyzer': {'key': 'indexAnalyzer', 'type': 'str'}, 'normalizer': {'key': 'normalizer', 'type': 'str'}, 'synonym_maps': {'key': 'synonymMaps', 'type': '[str]'}, 'fields': {'key': 'fields', 'type': '[SearchField]'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the field, which must be unique within the fields collection of the index or parent field. :paramtype name: str :keyword type: Required. The data type of the field. Possible values include: "Edm.String", "Edm.Int32", "Edm.Int64", "Edm.Double", "Edm.Boolean", "Edm.DateTimeOffset", "Edm.GeographyPoint", "Edm.ComplexType". :paramtype type: str or ~azure.search.documents.indexes.models.SearchFieldDataType :keyword key: A value indicating whether the field uniquely identifies documents in the index. Exactly one top-level field in each index must be chosen as the key field and it must be of type Edm.String. Key fields can be used to look up documents directly and update or delete specific documents. Default is false for simple fields and null for complex fields. :paramtype key: bool :keyword retrievable: A value indicating whether the field can be returned in a search result. You can disable this option if you want to use a field (for example, margin) as a filter, sorting, or scoring mechanism but do not want the field to be visible to the end user. This property must be true for key fields, and it must be null for complex fields. This property can be changed on existing fields. Enabling this property does not cause any increase in index storage requirements. Default is true for simple fields and null for complex fields. :paramtype retrievable: bool :keyword searchable: A value indicating whether the field is full-text searchable. This means it will undergo analysis such as word-breaking during indexing. If you set a searchable field to a value like "sunny day", internally it will be split into the individual tokens "sunny" and "day". This enables full-text searches for these terms. Fields of type Edm.String or Collection(Edm.String) are searchable by default. This property must be false for simple fields of other non-string data types, and it must be null for complex fields. Note: searchable fields consume extra space in your index since Azure Cognitive Search will store an additional tokenized version of the field value for full-text searches. If you want to save space in your index and you don't need a field to be included in searches, set searchable to false. :paramtype searchable: bool :keyword filterable: A value indicating whether to enable the field to be referenced in $filter queries. filterable differs from searchable in how strings are handled. Fields of type Edm.String or Collection(Edm.String) that are filterable do not undergo word-breaking, so comparisons are for exact matches only. For example, if you set such a field f to "sunny day", $filter=f eq 'sunny' will find no matches, but $filter=f eq 'sunny day' will. This property must be null for complex fields. Default is true for simple fields and null for complex fields. :paramtype filterable: bool :keyword sortable: A value indicating whether to enable the field to be referenced in $orderby expressions. By default Azure Cognitive Search sorts results by score, but in many experiences users will want to sort by fields in the documents. A simple field can be sortable only if it is single-valued (it has a single value in the scope of the parent document). Simple collection fields cannot be sortable, since they are multi-valued. Simple sub-fields of complex collections are also multi-valued, and therefore cannot be sortable. This is true whether it's an immediate parent field, or an ancestor field, that's the complex collection. Complex fields cannot be sortable and the sortable property must be null for such fields. The default for sortable is true for single-valued simple fields, false for multi-valued simple fields, and null for complex fields. :paramtype sortable: bool :keyword facetable: A value indicating whether to enable the field to be referenced in facet queries. Typically used in a presentation of search results that includes hit count by category (for example, search for digital cameras and see hits by brand, by megapixels, by price, and so on). This property must be null for complex fields. Fields of type Edm.GeographyPoint or Collection(Edm.GeographyPoint) cannot be facetable. Default is true for all other simple fields. :paramtype facetable: bool :keyword analyzer: The name of the analyzer to use for the field. This option can be used only with searchable fields and it can't be set together with either searchAnalyzer or indexAnalyzer. Once the analyzer is chosen, it cannot be changed for the field. Must be null for complex fields. Possible values include: "ar.microsoft", "ar.lucene", "hy.lucene", "bn.microsoft", "eu.lucene", "bg.microsoft", "bg.lucene", "ca.microsoft", "ca.lucene", "zh-Hans.microsoft", "zh-Hans.lucene", "zh-Hant.microsoft", "zh-Hant.lucene", "hr.microsoft", "cs.microsoft", "cs.lucene", "da.microsoft", "da.lucene", "nl.microsoft", "nl.lucene", "en.microsoft", "en.lucene", "et.microsoft", "fi.microsoft", "fi.lucene", "fr.microsoft", "fr.lucene", "gl.lucene", "de.microsoft", "de.lucene", "el.microsoft", "el.lucene", "gu.microsoft", "he.microsoft", "hi.microsoft", "hi.lucene", "hu.microsoft", "hu.lucene", "is.microsoft", "id.microsoft", "id.lucene", "ga.lucene", "it.microsoft", "it.lucene", "ja.microsoft", "ja.lucene", "kn.microsoft", "ko.microsoft", "ko.lucene", "lv.microsoft", "lv.lucene", "lt.microsoft", "ml.microsoft", "ms.microsoft", "mr.microsoft", "nb.microsoft", "no.lucene", "fa.lucene", "pl.microsoft", "pl.lucene", "pt-BR.microsoft", "pt-BR.lucene", "pt-PT.microsoft", "pt-PT.lucene", "pa.microsoft", "ro.microsoft", "ro.lucene", "ru.microsoft", "ru.lucene", "sr-cyrillic.microsoft", "sr-latin.microsoft", "sk.microsoft", "sl.microsoft", "es.microsoft", "es.lucene", "sv.microsoft", "sv.lucene", "ta.microsoft", "te.microsoft", "th.microsoft", "th.lucene", "tr.microsoft", "tr.lucene", "uk.microsoft", "ur.microsoft", "vi.microsoft", "standard.lucene", "standardasciifolding.lucene", "keyword", "pattern", "simple", "stop", "whitespace". :paramtype analyzer: str or ~azure.search.documents.indexes.models.LexicalAnalyzerName :keyword search_analyzer: The name of the analyzer used at search time for the field. This option can be used only with searchable fields. It must be set together with indexAnalyzer and it cannot be set together with the analyzer option. This property cannot be set to the name of a language analyzer; use the analyzer property instead if you need a language analyzer. This analyzer can be updated on an existing field. Must be null for complex fields. Possible values include: "ar.microsoft", "ar.lucene", "hy.lucene", "bn.microsoft", "eu.lucene", "bg.microsoft", "bg.lucene", "ca.microsoft", "ca.lucene", "zh-Hans.microsoft", "zh-Hans.lucene", "zh-Hant.microsoft", "zh-Hant.lucene", "hr.microsoft", "cs.microsoft", "cs.lucene", "da.microsoft", "da.lucene", "nl.microsoft", "nl.lucene", "en.microsoft", "en.lucene", "et.microsoft", "fi.microsoft", "fi.lucene", "fr.microsoft", "fr.lucene", "gl.lucene", "de.microsoft", "de.lucene", "el.microsoft", "el.lucene", "gu.microsoft", "he.microsoft", "hi.microsoft", "hi.lucene", "hu.microsoft", "hu.lucene", "is.microsoft", "id.microsoft", "id.lucene", "ga.lucene", "it.microsoft", "it.lucene", "ja.microsoft", "ja.lucene", "kn.microsoft", "ko.microsoft", "ko.lucene", "lv.microsoft", "lv.lucene", "lt.microsoft", "ml.microsoft", "ms.microsoft", "mr.microsoft", "nb.microsoft", "no.lucene", "fa.lucene", "pl.microsoft", "pl.lucene", "pt-BR.microsoft", "pt-BR.lucene", "pt-PT.microsoft", "pt-PT.lucene", "pa.microsoft", "ro.microsoft", "ro.lucene", "ru.microsoft", "ru.lucene", "sr-cyrillic.microsoft", "sr-latin.microsoft", "sk.microsoft", "sl.microsoft", "es.microsoft", "es.lucene", "sv.microsoft", "sv.lucene", "ta.microsoft", "te.microsoft", "th.microsoft", "th.lucene", "tr.microsoft", "tr.lucene", "uk.microsoft", "ur.microsoft", "vi.microsoft", "standard.lucene", "standardasciifolding.lucene", "keyword", "pattern", "simple", "stop", "whitespace". :paramtype search_analyzer: str or ~azure.search.documents.indexes.models.LexicalAnalyzerName :keyword index_analyzer: The name of the analyzer used at indexing time for the field. This option can be used only with searchable fields. It must be set together with searchAnalyzer and it cannot be set together with the analyzer option. This property cannot be set to the name of a language analyzer; use the analyzer property instead if you need a language analyzer. Once the analyzer is chosen, it cannot be changed for the field. Must be null for complex fields. Possible values include: "ar.microsoft", "ar.lucene", "hy.lucene", "bn.microsoft", "eu.lucene", "bg.microsoft", "bg.lucene", "ca.microsoft", "ca.lucene", "zh-Hans.microsoft", "zh-Hans.lucene", "zh-Hant.microsoft", "zh-Hant.lucene", "hr.microsoft", "cs.microsoft", "cs.lucene", "da.microsoft", "da.lucene", "nl.microsoft", "nl.lucene", "en.microsoft", "en.lucene", "et.microsoft", "fi.microsoft", "fi.lucene", "fr.microsoft", "fr.lucene", "gl.lucene", "de.microsoft", "de.lucene", "el.microsoft", "el.lucene", "gu.microsoft", "he.microsoft", "hi.microsoft", "hi.lucene", "hu.microsoft", "hu.lucene", "is.microsoft", "id.microsoft", "id.lucene", "ga.lucene", "it.microsoft", "it.lucene", "ja.microsoft", "ja.lucene", "kn.microsoft", "ko.microsoft", "ko.lucene", "lv.microsoft", "lv.lucene", "lt.microsoft", "ml.microsoft", "ms.microsoft", "mr.microsoft", "nb.microsoft", "no.lucene", "fa.lucene", "pl.microsoft", "pl.lucene", "pt-BR.microsoft", "pt-BR.lucene", "pt-PT.microsoft", "pt-PT.lucene", "pa.microsoft", "ro.microsoft", "ro.lucene", "ru.microsoft", "ru.lucene", "sr-cyrillic.microsoft", "sr-latin.microsoft", "sk.microsoft", "sl.microsoft", "es.microsoft", "es.lucene", "sv.microsoft", "sv.lucene", "ta.microsoft", "te.microsoft", "th.microsoft", "th.lucene", "tr.microsoft", "tr.lucene", "uk.microsoft", "ur.microsoft", "vi.microsoft", "standard.lucene", "standardasciifolding.lucene", "keyword", "pattern", "simple", "stop", "whitespace". :paramtype index_analyzer: str or ~azure.search.documents.indexes.models.LexicalAnalyzerName :keyword normalizer: The name of the normalizer to use for the field. This option can be used only with fields with filterable, sortable, or facetable enabled. Once the normalizer is chosen, it cannot be changed for the field. Must be null for complex fields. Possible values include: "asciifolding", "elision", "lowercase", "standard", "uppercase". :paramtype normalizer: str or ~azure.search.documents.indexes.models.LexicalNormalizerName :keyword synonym_maps: A list of the names of synonym maps to associate with this field. This option can be used only with searchable fields. Currently only one synonym map per field is supported. Assigning a synonym map to a field ensures that query terms targeting that field are expanded at query-time using the rules in the synonym map. This attribute can be changed on existing fields. Must be null or an empty collection for complex fields. :paramtype synonym_maps: list[str] :keyword fields: A list of sub-fields if this is a field of type Edm.ComplexType or Collection(Edm.ComplexType). Must be null or empty for simple fields. :paramtype fields: list[~azure.search.documents.indexes.models.SearchField] """ super(SearchField, self).__init__(**kwargs) self.name = kwargs['name'] self.type = kwargs['type'] self.key = kwargs.get('key', None) self.retrievable = kwargs.get('retrievable', None) self.searchable = kwargs.get('searchable', None) self.filterable = kwargs.get('filterable', None) self.sortable = kwargs.get('sortable', None) self.facetable = kwargs.get('facetable', None) self.analyzer = kwargs.get('analyzer', None) self.search_analyzer = kwargs.get('search_analyzer', None) self.index_analyzer = kwargs.get('index_analyzer', None) self.normalizer = kwargs.get('normalizer', None) self.synonym_maps = kwargs.get('synonym_maps', None) self.fields = kwargs.get('fields', None) class SearchIndex(msrest.serialization.Model): """Represents a search index definition, which describes the fields and search behavior of an index. All required parameters must be populated in order to send to Azure. :ivar name: Required. The name of the index. :vartype name: str :ivar fields: Required. The fields of the index. :vartype fields: list[~azure.search.documents.indexes.models.SearchField] :ivar scoring_profiles: The scoring profiles for the index. :vartype scoring_profiles: list[~azure.search.documents.indexes.models.ScoringProfile] :ivar default_scoring_profile: The name of the scoring profile to use if none is specified in the query. If this property is not set and no scoring profile is specified in the query, then default scoring (tf-idf) will be used. :vartype default_scoring_profile: str :ivar cors_options: Options to control Cross-Origin Resource Sharing (CORS) for the index. :vartype cors_options: ~azure.search.documents.indexes.models.CorsOptions :ivar suggesters: The suggesters for the index. :vartype suggesters: list[~azure.search.documents.indexes.models.Suggester] :ivar analyzers: The analyzers for the index. :vartype analyzers: list[~azure.search.documents.indexes.models.LexicalAnalyzer] :ivar tokenizers: The tokenizers for the index. :vartype tokenizers: list[~azure.search.documents.indexes.models.LexicalTokenizer] :ivar token_filters: The token filters for the index. :vartype token_filters: list[~azure.search.documents.indexes.models.TokenFilter] :ivar char_filters: The character filters for the index. :vartype char_filters: list[~azure.search.documents.indexes.models.CharFilter] :ivar normalizers: The normalizers for the index. :vartype normalizers: list[~azure.search.documents.indexes.models.LexicalNormalizer] :ivar encryption_key: A description of an encryption key that you create in Azure Key Vault. This key is used to provide an additional level of encryption-at-rest for your data when you want full assurance that no one, not even Microsoft, can decrypt your data in Azure Cognitive Search. Once you have encrypted your data, it will always remain encrypted. Azure Cognitive Search will ignore attempts to set this property to null. You can change this property as needed if you want to rotate your encryption key; Your data will be unaffected. Encryption with customer-managed keys is not available for free search services, and is only available for paid services created on or after January 1, 2019. :vartype encryption_key: ~azure.search.documents.indexes.models.SearchResourceEncryptionKey :ivar similarity: The type of similarity algorithm to be used when scoring and ranking the documents matching a search query. The similarity algorithm can only be defined at index creation time and cannot be modified on existing indexes. If null, the ClassicSimilarity algorithm is used. :vartype similarity: ~azure.search.documents.indexes.models.Similarity :ivar semantic_settings: Defines parameters for a search index that influence semantic capabilities. :vartype semantic_settings: ~azure.search.documents.indexes.models.SemanticSettings :ivar e_tag: The ETag of the index. :vartype e_tag: str """ _validation = { 'name': {'required': True}, 'fields': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'fields': {'key': 'fields', 'type': '[SearchField]'}, 'scoring_profiles': {'key': 'scoringProfiles', 'type': '[ScoringProfile]'}, 'default_scoring_profile': {'key': 'defaultScoringProfile', 'type': 'str'}, 'cors_options': {'key': 'corsOptions', 'type': 'CorsOptions'}, 'suggesters': {'key': 'suggesters', 'type': '[Suggester]'}, 'analyzers': {'key': 'analyzers', 'type': '[LexicalAnalyzer]'}, 'tokenizers': {'key': 'tokenizers', 'type': '[LexicalTokenizer]'}, 'token_filters': {'key': 'tokenFilters', 'type': '[TokenFilter]'}, 'char_filters': {'key': 'charFilters', 'type': '[CharFilter]'}, 'normalizers': {'key': 'normalizers', 'type': '[LexicalNormalizer]'}, 'encryption_key': {'key': 'encryptionKey', 'type': 'SearchResourceEncryptionKey'}, 'similarity': {'key': 'similarity', 'type': 'Similarity'}, 'semantic_settings': {'key': 'semantic', 'type': 'SemanticSettings'}, 'e_tag': {'key': '@odata\\.etag', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the index. :paramtype name: str :keyword fields: Required. The fields of the index. :paramtype fields: list[~azure.search.documents.indexes.models.SearchField] :keyword scoring_profiles: The scoring profiles for the index. :paramtype scoring_profiles: list[~azure.search.documents.indexes.models.ScoringProfile] :keyword default_scoring_profile: The name of the scoring profile to use if none is specified in the query. If this property is not set and no scoring profile is specified in the query, then default scoring (tf-idf) will be used. :paramtype default_scoring_profile: str :keyword cors_options: Options to control Cross-Origin Resource Sharing (CORS) for the index. :paramtype cors_options: ~azure.search.documents.indexes.models.CorsOptions :keyword suggesters: The suggesters for the index. :paramtype suggesters: list[~azure.search.documents.indexes.models.Suggester] :keyword analyzers: The analyzers for the index. :paramtype analyzers: list[~azure.search.documents.indexes.models.LexicalAnalyzer] :keyword tokenizers: The tokenizers for the index. :paramtype tokenizers: list[~azure.search.documents.indexes.models.LexicalTokenizer] :keyword token_filters: The token filters for the index. :paramtype token_filters: list[~azure.search.documents.indexes.models.TokenFilter] :keyword char_filters: The character filters for the index. :paramtype char_filters: list[~azure.search.documents.indexes.models.CharFilter] :keyword normalizers: The normalizers for the index. :paramtype normalizers: list[~azure.search.documents.indexes.models.LexicalNormalizer] :keyword encryption_key: A description of an encryption key that you create in Azure Key Vault. This key is used to provide an additional level of encryption-at-rest for your data when you want full assurance that no one, not even Microsoft, can decrypt your data in Azure Cognitive Search. Once you have encrypted your data, it will always remain encrypted. Azure Cognitive Search will ignore attempts to set this property to null. You can change this property as needed if you want to rotate your encryption key; Your data will be unaffected. Encryption with customer-managed keys is not available for free search services, and is only available for paid services created on or after January 1, 2019. :paramtype encryption_key: ~azure.search.documents.indexes.models.SearchResourceEncryptionKey :keyword similarity: The type of similarity algorithm to be used when scoring and ranking the documents matching a search query. The similarity algorithm can only be defined at index creation time and cannot be modified on existing indexes. If null, the ClassicSimilarity algorithm is used. :paramtype similarity: ~azure.search.documents.indexes.models.Similarity :keyword semantic_settings: Defines parameters for a search index that influence semantic capabilities. :paramtype semantic_settings: ~azure.search.documents.indexes.models.SemanticSettings :keyword e_tag: The ETag of the index. :paramtype e_tag: str """ super(SearchIndex, self).__init__(**kwargs) self.name = kwargs['name'] self.fields = kwargs['fields'] self.scoring_profiles = kwargs.get('scoring_profiles', None) self.default_scoring_profile = kwargs.get('default_scoring_profile', None) self.cors_options = kwargs.get('cors_options', None) self.suggesters = kwargs.get('suggesters', None) self.analyzers = kwargs.get('analyzers', None) self.tokenizers = kwargs.get('tokenizers', None) self.token_filters = kwargs.get('token_filters', None) self.char_filters = kwargs.get('char_filters', None) self.normalizers = kwargs.get('normalizers', None) self.encryption_key = kwargs.get('encryption_key', None) self.similarity = kwargs.get('similarity', None) self.semantic_settings = kwargs.get('semantic_settings', None) self.e_tag = kwargs.get('e_tag', None) class SearchIndexer(msrest.serialization.Model): """Represents an indexer. All required parameters must be populated in order to send to Azure. :ivar name: Required. The name of the indexer. :vartype name: str :ivar description: The description of the indexer. :vartype description: str :ivar data_source_name: Required. The name of the datasource from which this indexer reads data. :vartype data_source_name: str :ivar skillset_name: The name of the skillset executing with this indexer. :vartype skillset_name: str :ivar target_index_name: Required. The name of the index to which this indexer writes data. :vartype target_index_name: str :ivar schedule: The schedule for this indexer. :vartype schedule: ~azure.search.documents.indexes.models.IndexingSchedule :ivar parameters: Parameters for indexer execution. :vartype parameters: ~azure.search.documents.indexes.models.IndexingParameters :ivar field_mappings: Defines mappings between fields in the data source and corresponding target fields in the index. :vartype field_mappings: list[~azure.search.documents.indexes.models.FieldMapping] :ivar output_field_mappings: Output field mappings are applied after enrichment and immediately before indexing. :vartype output_field_mappings: list[~azure.search.documents.indexes.models.FieldMapping] :ivar is_disabled: A value indicating whether the indexer is disabled. Default is false. :vartype is_disabled: bool :ivar e_tag: The ETag of the indexer. :vartype e_tag: str :ivar encryption_key: A description of an encryption key that you create in Azure Key Vault. This key is used to provide an additional level of encryption-at-rest for your indexer definition (as well as indexer execution status) when you want full assurance that no one, not even Microsoft, can decrypt them in Azure Cognitive Search. Once you have encrypted your indexer definition, it will always remain encrypted. Azure Cognitive Search will ignore attempts to set this property to null. You can change this property as needed if you want to rotate your encryption key; Your indexer definition (and indexer execution status) will be unaffected. Encryption with customer-managed keys is not available for free search services, and is only available for paid services created on or after January 1, 2019. :vartype encryption_key: ~azure.search.documents.indexes.models.SearchResourceEncryptionKey :ivar cache: Adds caching to an enrichment pipeline to allow for incremental modification steps without having to rebuild the index every time. :vartype cache: ~azure.search.documents.indexes.models.SearchIndexerCache """ _validation = { 'name': {'required': True}, 'data_source_name': {'required': True}, 'target_index_name': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'data_source_name': {'key': 'dataSourceName', 'type': 'str'}, 'skillset_name': {'key': 'skillsetName', 'type': 'str'}, 'target_index_name': {'key': 'targetIndexName', 'type': 'str'}, 'schedule': {'key': 'schedule', 'type': 'IndexingSchedule'}, 'parameters': {'key': 'parameters', 'type': 'IndexingParameters'}, 'field_mappings': {'key': 'fieldMappings', 'type': '[FieldMapping]'}, 'output_field_mappings': {'key': 'outputFieldMappings', 'type': '[FieldMapping]'}, 'is_disabled': {'key': 'disabled', 'type': 'bool'}, 'e_tag': {'key': '@odata\\.etag', 'type': 'str'}, 'encryption_key': {'key': 'encryptionKey', 'type': 'SearchResourceEncryptionKey'}, 'cache': {'key': 'cache', 'type': 'SearchIndexerCache'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the indexer. :paramtype name: str :keyword description: The description of the indexer. :paramtype description: str :keyword data_source_name: Required. The name of the datasource from which this indexer reads data. :paramtype data_source_name: str :keyword skillset_name: The name of the skillset executing with this indexer. :paramtype skillset_name: str :keyword target_index_name: Required. The name of the index to which this indexer writes data. :paramtype target_index_name: str :keyword schedule: The schedule for this indexer. :paramtype schedule: ~azure.search.documents.indexes.models.IndexingSchedule :keyword parameters: Parameters for indexer execution. :paramtype parameters: ~azure.search.documents.indexes.models.IndexingParameters :keyword field_mappings: Defines mappings between fields in the data source and corresponding target fields in the index. :paramtype field_mappings: list[~azure.search.documents.indexes.models.FieldMapping] :keyword output_field_mappings: Output field mappings are applied after enrichment and immediately before indexing. :paramtype output_field_mappings: list[~azure.search.documents.indexes.models.FieldMapping] :keyword is_disabled: A value indicating whether the indexer is disabled. Default is false. :paramtype is_disabled: bool :keyword e_tag: The ETag of the indexer. :paramtype e_tag: str :keyword encryption_key: A description of an encryption key that you create in Azure Key Vault. This key is used to provide an additional level of encryption-at-rest for your indexer definition (as well as indexer execution status) when you want full assurance that no one, not even Microsoft, can decrypt them in Azure Cognitive Search. Once you have encrypted your indexer definition, it will always remain encrypted. Azure Cognitive Search will ignore attempts to set this property to null. You can change this property as needed if you want to rotate your encryption key; Your indexer definition (and indexer execution status) will be unaffected. Encryption with customer-managed keys is not available for free search services, and is only available for paid services created on or after January 1, 2019. :paramtype encryption_key: ~azure.search.documents.indexes.models.SearchResourceEncryptionKey :keyword cache: Adds caching to an enrichment pipeline to allow for incremental modification steps without having to rebuild the index every time. :paramtype cache: ~azure.search.documents.indexes.models.SearchIndexerCache """ super(SearchIndexer, self).__init__(**kwargs) self.name = kwargs['name'] self.description = kwargs.get('description', None) self.data_source_name = kwargs['data_source_name'] self.skillset_name = kwargs.get('skillset_name', None) self.target_index_name = kwargs['target_index_name'] self.schedule = kwargs.get('schedule', None) self.parameters = kwargs.get('parameters', None) self.field_mappings = kwargs.get('field_mappings', None) self.output_field_mappings = kwargs.get('output_field_mappings', None) self.is_disabled = kwargs.get('is_disabled', False) self.e_tag = kwargs.get('e_tag', None) self.encryption_key = kwargs.get('encryption_key', None) self.cache = kwargs.get('cache', None) class SearchIndexerCache(msrest.serialization.Model): """SearchIndexerCache. :ivar storage_connection_string: The connection string to the storage account where the cache data will be persisted. :vartype storage_connection_string: str :ivar enable_reprocessing: Specifies whether incremental reprocessing is enabled. :vartype enable_reprocessing: bool """ _attribute_map = { 'storage_connection_string': {'key': 'storageConnectionString', 'type': 'str'}, 'enable_reprocessing': {'key': 'enableReprocessing', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword storage_connection_string: The connection string to the storage account where the cache data will be persisted. :paramtype storage_connection_string: str :keyword enable_reprocessing: Specifies whether incremental reprocessing is enabled. :paramtype enable_reprocessing: bool """ super(SearchIndexerCache, self).__init__(**kwargs) self.storage_connection_string = kwargs.get('storage_connection_string', None) self.enable_reprocessing = kwargs.get('enable_reprocessing', None) class SearchIndexerDataContainer(msrest.serialization.Model): """Represents information about the entity (such as Azure SQL table or CosmosDB collection) that will be indexed. All required parameters must be populated in order to send to Azure. :ivar name: Required. The name of the table or view (for Azure SQL data source) or collection (for CosmosDB data source) that will be indexed. :vartype name: str :ivar query: A query that is applied to this data container. The syntax and meaning of this parameter is datasource-specific. Not supported by Azure SQL datasources. :vartype query: str """ _validation = { 'name': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'query': {'key': 'query', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the table or view (for Azure SQL data source) or collection (for CosmosDB data source) that will be indexed. :paramtype name: str :keyword query: A query that is applied to this data container. The syntax and meaning of this parameter is datasource-specific. Not supported by Azure SQL datasources. :paramtype query: str """ super(SearchIndexerDataContainer, self).__init__(**kwargs) self.name = kwargs['name'] self.query = kwargs.get('query', None) class SearchIndexerDataIdentity(msrest.serialization.Model): """Abstract base type for data identities. You probably want to use the sub-classes and not this class directly. Known sub-classes are: SearchIndexerDataNoneIdentity, SearchIndexerDataUserAssignedIdentity. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the identity.Constant filled by server. :vartype odata_type: str """ _validation = { 'odata_type': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, } _subtype_map = { 'odata_type': {'#Microsoft.Azure.Search.SearchIndexerDataNoneIdentity': 'SearchIndexerDataNoneIdentity', '#Microsoft.Azure.Search.SearchIndexerDataUserAssignedIdentity': 'SearchIndexerDataUserAssignedIdentity'} } def __init__( self, **kwargs ): """ """ super(SearchIndexerDataIdentity, self).__init__(**kwargs) self.odata_type = None # type: Optional[str] class SearchIndexerDataNoneIdentity(SearchIndexerDataIdentity): """Clears the identity property of a datasource. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the identity.Constant filled by server. :vartype odata_type: str """ _validation = { 'odata_type': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, } def __init__( self, **kwargs ): """ """ super(SearchIndexerDataNoneIdentity, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.SearchIndexerDataNoneIdentity' # type: str class SearchIndexerDataSource(msrest.serialization.Model): """Represents a datasource definition, which can be used to configure an indexer. All required parameters must be populated in order to send to Azure. :ivar name: Required. The name of the datasource. :vartype name: str :ivar description: The description of the datasource. :vartype description: str :ivar type: Required. The type of the datasource. Possible values include: "azuresql", "cosmosdb", "azureblob", "azuretable", "mysql", "adlsgen2". :vartype type: str or ~azure.search.documents.indexes.models.SearchIndexerDataSourceType :ivar credentials: Required. Credentials for the datasource. :vartype credentials: ~azure.search.documents.indexes.models.DataSourceCredentials :ivar container: Required. The data container for the datasource. :vartype container: ~azure.search.documents.indexes.models.SearchIndexerDataContainer :ivar identity: An explicit managed identity to use for this datasource. If not specified and the connection string is a managed identity, the system-assigned managed identity is used. If not specified, the value remains unchanged. If "none" is specified, the value of this property is cleared. :vartype identity: ~azure.search.documents.indexes.models.SearchIndexerDataIdentity :ivar data_change_detection_policy: The data change detection policy for the datasource. :vartype data_change_detection_policy: ~azure.search.documents.indexes.models.DataChangeDetectionPolicy :ivar data_deletion_detection_policy: The data deletion detection policy for the datasource. :vartype data_deletion_detection_policy: ~azure.search.documents.indexes.models.DataDeletionDetectionPolicy :ivar e_tag: The ETag of the data source. :vartype e_tag: str :ivar encryption_key: A description of an encryption key that you create in Azure Key Vault. This key is used to provide an additional level of encryption-at-rest for your datasource definition when you want full assurance that no one, not even Microsoft, can decrypt your data source definition in Azure Cognitive Search. Once you have encrypted your data source definition, it will always remain encrypted. Azure Cognitive Search will ignore attempts to set this property to null. You can change this property as needed if you want to rotate your encryption key; Your datasource definition will be unaffected. Encryption with customer-managed keys is not available for free search services, and is only available for paid services created on or after January 1, 2019. :vartype encryption_key: ~azure.search.documents.indexes.models.SearchResourceEncryptionKey """ _validation = { 'name': {'required': True}, 'type': {'required': True}, 'credentials': {'required': True}, 'container': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'credentials': {'key': 'credentials', 'type': 'DataSourceCredentials'}, 'container': {'key': 'container', 'type': 'SearchIndexerDataContainer'}, 'identity': {'key': 'identity', 'type': 'SearchIndexerDataIdentity'}, 'data_change_detection_policy': {'key': 'dataChangeDetectionPolicy', 'type': 'DataChangeDetectionPolicy'}, 'data_deletion_detection_policy': {'key': 'dataDeletionDetectionPolicy', 'type': 'DataDeletionDetectionPolicy'}, 'e_tag': {'key': '@odata\\.etag', 'type': 'str'}, 'encryption_key': {'key': 'encryptionKey', 'type': 'SearchResourceEncryptionKey'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the datasource. :paramtype name: str :keyword description: The description of the datasource. :paramtype description: str :keyword type: Required. The type of the datasource. Possible values include: "azuresql", "cosmosdb", "azureblob", "azuretable", "mysql", "adlsgen2". :paramtype type: str or ~azure.search.documents.indexes.models.SearchIndexerDataSourceType :keyword credentials: Required. Credentials for the datasource. :paramtype credentials: ~azure.search.documents.indexes.models.DataSourceCredentials :keyword container: Required. The data container for the datasource. :paramtype container: ~azure.search.documents.indexes.models.SearchIndexerDataContainer :keyword identity: An explicit managed identity to use for this datasource. If not specified and the connection string is a managed identity, the system-assigned managed identity is used. If not specified, the value remains unchanged. If "none" is specified, the value of this property is cleared. :paramtype identity: ~azure.search.documents.indexes.models.SearchIndexerDataIdentity :keyword data_change_detection_policy: The data change detection policy for the datasource. :paramtype data_change_detection_policy: ~azure.search.documents.indexes.models.DataChangeDetectionPolicy :keyword data_deletion_detection_policy: The data deletion detection policy for the datasource. :paramtype data_deletion_detection_policy: ~azure.search.documents.indexes.models.DataDeletionDetectionPolicy :keyword e_tag: The ETag of the data source. :paramtype e_tag: str :keyword encryption_key: A description of an encryption key that you create in Azure Key Vault. This key is used to provide an additional level of encryption-at-rest for your datasource definition when you want full assurance that no one, not even Microsoft, can decrypt your data source definition in Azure Cognitive Search. Once you have encrypted your data source definition, it will always remain encrypted. Azure Cognitive Search will ignore attempts to set this property to null. You can change this property as needed if you want to rotate your encryption key; Your datasource definition will be unaffected. Encryption with customer-managed keys is not available for free search services, and is only available for paid services created on or after January 1, 2019. :paramtype encryption_key: ~azure.search.documents.indexes.models.SearchResourceEncryptionKey """ super(SearchIndexerDataSource, self).__init__(**kwargs) self.name = kwargs['name'] self.description = kwargs.get('description', None) self.type = kwargs['type'] self.credentials = kwargs['credentials'] self.container = kwargs['container'] self.identity = kwargs.get('identity', None) self.data_change_detection_policy = kwargs.get('data_change_detection_policy', None) self.data_deletion_detection_policy = kwargs.get('data_deletion_detection_policy', None) self.e_tag = kwargs.get('e_tag', None) self.encryption_key = kwargs.get('encryption_key', None) class SearchIndexerDataUserAssignedIdentity(SearchIndexerDataIdentity): """Specifies the identity for a datasource to use. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the identity.Constant filled by server. :vartype odata_type: str :ivar user_assigned_identity: Required. The fully qualified Azure resource Id of a user assigned managed identity typically in the form "/subscriptions/12345678-1234-1234-1234-1234567890ab/resourceGroups/rg/providers/Microsoft.ManagedIdentity/userAssignedIdentities/myId" that should have been assigned to the search service. :vartype user_assigned_identity: str """ _validation = { 'odata_type': {'required': True}, 'user_assigned_identity': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'user_assigned_identity': {'key': 'userAssignedIdentity', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword user_assigned_identity: Required. The fully qualified Azure resource Id of a user assigned managed identity typically in the form "/subscriptions/12345678-1234-1234-1234-1234567890ab/resourceGroups/rg/providers/Microsoft.ManagedIdentity/userAssignedIdentities/myId" that should have been assigned to the search service. :paramtype user_assigned_identity: str """ super(SearchIndexerDataUserAssignedIdentity, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.SearchIndexerDataUserAssignedIdentity' # type: str self.user_assigned_identity = kwargs['user_assigned_identity'] class SearchIndexerError(msrest.serialization.Model): """Represents an item- or document-level indexing error. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar key: The key of the item for which indexing failed. :vartype key: str :ivar error_message: Required. The message describing the error that occurred while processing the item. :vartype error_message: str :ivar status_code: Required. The status code indicating why the indexing operation failed. Possible values include: 400 for a malformed input document, 404 for document not found, 409 for a version conflict, 422 when the index is temporarily unavailable, or 503 for when the service is too busy. :vartype status_code: int :ivar name: The name of the source at which the error originated. For example, this could refer to a particular skill in the attached skillset. This may not be always available. :vartype name: str :ivar details: Additional, verbose details about the error to assist in debugging the indexer. This may not be always available. :vartype details: str :ivar documentation_link: A link to a troubleshooting guide for these classes of errors. This may not be always available. :vartype documentation_link: str """ _validation = { 'key': {'readonly': True}, 'error_message': {'required': True, 'readonly': True}, 'status_code': {'required': True, 'readonly': True}, 'name': {'readonly': True}, 'details': {'readonly': True}, 'documentation_link': {'readonly': True}, } _attribute_map = { 'key': {'key': 'key', 'type': 'str'}, 'error_message': {'key': 'errorMessage', 'type': 'str'}, 'status_code': {'key': 'statusCode', 'type': 'int'}, 'name': {'key': 'name', 'type': 'str'}, 'details': {'key': 'details', 'type': 'str'}, 'documentation_link': {'key': 'documentationLink', 'type': 'str'}, } def __init__( self, **kwargs ): """ """ super(SearchIndexerError, self).__init__(**kwargs) self.key = None self.error_message = None self.status_code = None self.name = None self.details = None self.documentation_link = None class SearchIndexerKnowledgeStore(msrest.serialization.Model): """Definition of additional projections to azure blob, table, or files, of enriched data. All required parameters must be populated in order to send to Azure. :ivar storage_connection_string: Required. The connection string to the storage account projections will be stored in. :vartype storage_connection_string: str :ivar projections: Required. A list of additional projections to perform during indexing. :vartype projections: list[~azure.search.documents.indexes.models.SearchIndexerKnowledgeStoreProjection] """ _validation = { 'storage_connection_string': {'required': True}, 'projections': {'required': True}, } _attribute_map = { 'storage_connection_string': {'key': 'storageConnectionString', 'type': 'str'}, 'projections': {'key': 'projections', 'type': '[SearchIndexerKnowledgeStoreProjection]'}, } def __init__( self, **kwargs ): """ :keyword storage_connection_string: Required. The connection string to the storage account projections will be stored in. :paramtype storage_connection_string: str :keyword projections: Required. A list of additional projections to perform during indexing. :paramtype projections: list[~azure.search.documents.indexes.models.SearchIndexerKnowledgeStoreProjection] """ super(SearchIndexerKnowledgeStore, self).__init__(**kwargs) self.storage_connection_string = kwargs['storage_connection_string'] self.projections = kwargs['projections'] class SearchIndexerKnowledgeStoreProjectionSelector(msrest.serialization.Model): """Abstract class to share properties between concrete selectors. :ivar reference_key_name: Name of reference key to different projection. :vartype reference_key_name: str :ivar generated_key_name: Name of generated key to store projection under. :vartype generated_key_name: str :ivar source: Source data to project. :vartype source: str :ivar source_context: Source context for complex projections. :vartype source_context: str :ivar inputs: Nested inputs for complex projections. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] """ _attribute_map = { 'reference_key_name': {'key': 'referenceKeyName', 'type': 'str'}, 'generated_key_name': {'key': 'generatedKeyName', 'type': 'str'}, 'source': {'key': 'source', 'type': 'str'}, 'source_context': {'key': 'sourceContext', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, } def __init__( self, **kwargs ): """ :keyword reference_key_name: Name of reference key to different projection. :paramtype reference_key_name: str :keyword generated_key_name: Name of generated key to store projection under. :paramtype generated_key_name: str :keyword source: Source data to project. :paramtype source: str :keyword source_context: Source context for complex projections. :paramtype source_context: str :keyword inputs: Nested inputs for complex projections. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] """ super(SearchIndexerKnowledgeStoreProjectionSelector, self).__init__(**kwargs) self.reference_key_name = kwargs.get('reference_key_name', None) self.generated_key_name = kwargs.get('generated_key_name', None) self.source = kwargs.get('source', None) self.source_context = kwargs.get('source_context', None) self.inputs = kwargs.get('inputs', None) class SearchIndexerKnowledgeStoreBlobProjectionSelector(SearchIndexerKnowledgeStoreProjectionSelector): """Abstract class to share properties between concrete selectors. All required parameters must be populated in order to send to Azure. :ivar reference_key_name: Name of reference key to different projection. :vartype reference_key_name: str :ivar generated_key_name: Name of generated key to store projection under. :vartype generated_key_name: str :ivar source: Source data to project. :vartype source: str :ivar source_context: Source context for complex projections. :vartype source_context: str :ivar inputs: Nested inputs for complex projections. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar storage_container: Required. Blob container to store projections in. :vartype storage_container: str """ _validation = { 'storage_container': {'required': True}, } _attribute_map = { 'reference_key_name': {'key': 'referenceKeyName', 'type': 'str'}, 'generated_key_name': {'key': 'generatedKeyName', 'type': 'str'}, 'source': {'key': 'source', 'type': 'str'}, 'source_context': {'key': 'sourceContext', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'storage_container': {'key': 'storageContainer', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword reference_key_name: Name of reference key to different projection. :paramtype reference_key_name: str :keyword generated_key_name: Name of generated key to store projection under. :paramtype generated_key_name: str :keyword source: Source data to project. :paramtype source: str :keyword source_context: Source context for complex projections. :paramtype source_context: str :keyword inputs: Nested inputs for complex projections. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword storage_container: Required. Blob container to store projections in. :paramtype storage_container: str """ super(SearchIndexerKnowledgeStoreBlobProjectionSelector, self).__init__(**kwargs) self.storage_container = kwargs['storage_container'] class SearchIndexerKnowledgeStoreFileProjectionSelector(SearchIndexerKnowledgeStoreBlobProjectionSelector): """Projection definition for what data to store in Azure Files. All required parameters must be populated in order to send to Azure. :ivar reference_key_name: Name of reference key to different projection. :vartype reference_key_name: str :ivar generated_key_name: Name of generated key to store projection under. :vartype generated_key_name: str :ivar source: Source data to project. :vartype source: str :ivar source_context: Source context for complex projections. :vartype source_context: str :ivar inputs: Nested inputs for complex projections. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar storage_container: Required. Blob container to store projections in. :vartype storage_container: str """ _validation = { 'storage_container': {'required': True}, } _attribute_map = { 'reference_key_name': {'key': 'referenceKeyName', 'type': 'str'}, 'generated_key_name': {'key': 'generatedKeyName', 'type': 'str'}, 'source': {'key': 'source', 'type': 'str'}, 'source_context': {'key': 'sourceContext', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'storage_container': {'key': 'storageContainer', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword reference_key_name: Name of reference key to different projection. :paramtype reference_key_name: str :keyword generated_key_name: Name of generated key to store projection under. :paramtype generated_key_name: str :keyword source: Source data to project. :paramtype source: str :keyword source_context: Source context for complex projections. :paramtype source_context: str :keyword inputs: Nested inputs for complex projections. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword storage_container: Required. Blob container to store projections in. :paramtype storage_container: str """ super(SearchIndexerKnowledgeStoreFileProjectionSelector, self).__init__(**kwargs) class SearchIndexerKnowledgeStoreObjectProjectionSelector(SearchIndexerKnowledgeStoreBlobProjectionSelector): """Projection definition for what data to store in Azure Blob. All required parameters must be populated in order to send to Azure. :ivar reference_key_name: Name of reference key to different projection. :vartype reference_key_name: str :ivar generated_key_name: Name of generated key to store projection under. :vartype generated_key_name: str :ivar source: Source data to project. :vartype source: str :ivar source_context: Source context for complex projections. :vartype source_context: str :ivar inputs: Nested inputs for complex projections. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar storage_container: Required. Blob container to store projections in. :vartype storage_container: str """ _validation = { 'storage_container': {'required': True}, } _attribute_map = { 'reference_key_name': {'key': 'referenceKeyName', 'type': 'str'}, 'generated_key_name': {'key': 'generatedKeyName', 'type': 'str'}, 'source': {'key': 'source', 'type': 'str'}, 'source_context': {'key': 'sourceContext', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'storage_container': {'key': 'storageContainer', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword reference_key_name: Name of reference key to different projection. :paramtype reference_key_name: str :keyword generated_key_name: Name of generated key to store projection under. :paramtype generated_key_name: str :keyword source: Source data to project. :paramtype source: str :keyword source_context: Source context for complex projections. :paramtype source_context: str :keyword inputs: Nested inputs for complex projections. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword storage_container: Required. Blob container to store projections in. :paramtype storage_container: str """ super(SearchIndexerKnowledgeStoreObjectProjectionSelector, self).__init__(**kwargs) class SearchIndexerKnowledgeStoreProjection(msrest.serialization.Model): """Container object for various projection selectors. :ivar tables: Projections to Azure Table storage. :vartype tables: list[~azure.search.documents.indexes.models.SearchIndexerKnowledgeStoreTableProjectionSelector] :ivar objects: Projections to Azure Blob storage. :vartype objects: list[~azure.search.documents.indexes.models.SearchIndexerKnowledgeStoreObjectProjectionSelector] :ivar files: Projections to Azure File storage. :vartype files: list[~azure.search.documents.indexes.models.SearchIndexerKnowledgeStoreFileProjectionSelector] """ _attribute_map = { 'tables': {'key': 'tables', 'type': '[SearchIndexerKnowledgeStoreTableProjectionSelector]'}, 'objects': {'key': 'objects', 'type': '[SearchIndexerKnowledgeStoreObjectProjectionSelector]'}, 'files': {'key': 'files', 'type': '[SearchIndexerKnowledgeStoreFileProjectionSelector]'}, } def __init__( self, **kwargs ): """ :keyword tables: Projections to Azure Table storage. :paramtype tables: list[~azure.search.documents.indexes.models.SearchIndexerKnowledgeStoreTableProjectionSelector] :keyword objects: Projections to Azure Blob storage. :paramtype objects: list[~azure.search.documents.indexes.models.SearchIndexerKnowledgeStoreObjectProjectionSelector] :keyword files: Projections to Azure File storage. :paramtype files: list[~azure.search.documents.indexes.models.SearchIndexerKnowledgeStoreFileProjectionSelector] """ super(SearchIndexerKnowledgeStoreProjection, self).__init__(**kwargs) self.tables = kwargs.get('tables', None) self.objects = kwargs.get('objects', None) self.files = kwargs.get('files', None) class SearchIndexerKnowledgeStoreTableProjectionSelector(SearchIndexerKnowledgeStoreProjectionSelector): """Description for what data to store in Azure Tables. All required parameters must be populated in order to send to Azure. :ivar reference_key_name: Name of reference key to different projection. :vartype reference_key_name: str :ivar generated_key_name: Name of generated key to store projection under. :vartype generated_key_name: str :ivar source: Source data to project. :vartype source: str :ivar source_context: Source context for complex projections. :vartype source_context: str :ivar inputs: Nested inputs for complex projections. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar table_name: Required. Name of the Azure table to store projected data in. :vartype table_name: str """ _validation = { 'table_name': {'required': True}, } _attribute_map = { 'reference_key_name': {'key': 'referenceKeyName', 'type': 'str'}, 'generated_key_name': {'key': 'generatedKeyName', 'type': 'str'}, 'source': {'key': 'source', 'type': 'str'}, 'source_context': {'key': 'sourceContext', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'table_name': {'key': 'tableName', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword reference_key_name: Name of reference key to different projection. :paramtype reference_key_name: str :keyword generated_key_name: Name of generated key to store projection under. :paramtype generated_key_name: str :keyword source: Source data to project. :paramtype source: str :keyword source_context: Source context for complex projections. :paramtype source_context: str :keyword inputs: Nested inputs for complex projections. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword table_name: Required. Name of the Azure table to store projected data in. :paramtype table_name: str """ super(SearchIndexerKnowledgeStoreTableProjectionSelector, self).__init__(**kwargs) self.table_name = kwargs['table_name'] class SearchIndexerLimits(msrest.serialization.Model): """SearchIndexerLimits. Variables are only populated by the server, and will be ignored when sending a request. :ivar max_run_time: The maximum duration that the indexer is permitted to run for one execution. :vartype max_run_time: ~datetime.timedelta :ivar max_document_extraction_size: The maximum size of a document, in bytes, which will be considered valid for indexing. :vartype max_document_extraction_size: long :ivar max_document_content_characters_to_extract: The maximum number of characters that will be extracted from a document picked up for indexing. :vartype max_document_content_characters_to_extract: long """ _validation = { 'max_run_time': {'readonly': True}, 'max_document_extraction_size': {'readonly': True}, 'max_document_content_characters_to_extract': {'readonly': True}, } _attribute_map = { 'max_run_time': {'key': 'maxRunTime', 'type': 'duration'}, 'max_document_extraction_size': {'key': 'maxDocumentExtractionSize', 'type': 'long'}, 'max_document_content_characters_to_extract': {'key': 'maxDocumentContentCharactersToExtract', 'type': 'long'}, } def __init__( self, **kwargs ): """ """ super(SearchIndexerLimits, self).__init__(**kwargs) self.max_run_time = None self.max_document_extraction_size = None self.max_document_content_characters_to_extract = None class SearchIndexerSkillset(msrest.serialization.Model): """A list of skills. All required parameters must be populated in order to send to Azure. :ivar name: Required. The name of the skillset. :vartype name: str :ivar description: The description of the skillset. :vartype description: str :ivar skills: Required. A list of skills in the skillset. :vartype skills: list[~azure.search.documents.indexes.models.SearchIndexerSkill] :ivar cognitive_services_account: Details about cognitive services to be used when running skills. :vartype cognitive_services_account: ~azure.search.documents.indexes.models.CognitiveServicesAccount :ivar knowledge_store: Definition of additional projections to azure blob, table, or files, of enriched data. :vartype knowledge_store: ~azure.search.documents.indexes.models.SearchIndexerKnowledgeStore :ivar e_tag: The ETag of the skillset. :vartype e_tag: str :ivar encryption_key: A description of an encryption key that you create in Azure Key Vault. This key is used to provide an additional level of encryption-at-rest for your skillset definition when you want full assurance that no one, not even Microsoft, can decrypt your skillset definition in Azure Cognitive Search. Once you have encrypted your skillset definition, it will always remain encrypted. Azure Cognitive Search will ignore attempts to set this property to null. You can change this property as needed if you want to rotate your encryption key; Your skillset definition will be unaffected. Encryption with customer-managed keys is not available for free search services, and is only available for paid services created on or after January 1, 2019. :vartype encryption_key: ~azure.search.documents.indexes.models.SearchResourceEncryptionKey """ _validation = { 'name': {'required': True}, 'skills': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'skills': {'key': 'skills', 'type': '[SearchIndexerSkill]'}, 'cognitive_services_account': {'key': 'cognitiveServices', 'type': 'CognitiveServicesAccount'}, 'knowledge_store': {'key': 'knowledgeStore', 'type': 'SearchIndexerKnowledgeStore'}, 'e_tag': {'key': '@odata\\.etag', 'type': 'str'}, 'encryption_key': {'key': 'encryptionKey', 'type': 'SearchResourceEncryptionKey'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the skillset. :paramtype name: str :keyword description: The description of the skillset. :paramtype description: str :keyword skills: Required. A list of skills in the skillset. :paramtype skills: list[~azure.search.documents.indexes.models.SearchIndexerSkill] :keyword cognitive_services_account: Details about cognitive services to be used when running skills. :paramtype cognitive_services_account: ~azure.search.documents.indexes.models.CognitiveServicesAccount :keyword knowledge_store: Definition of additional projections to azure blob, table, or files, of enriched data. :paramtype knowledge_store: ~azure.search.documents.indexes.models.SearchIndexerKnowledgeStore :keyword e_tag: The ETag of the skillset. :paramtype e_tag: str :keyword encryption_key: A description of an encryption key that you create in Azure Key Vault. This key is used to provide an additional level of encryption-at-rest for your skillset definition when you want full assurance that no one, not even Microsoft, can decrypt your skillset definition in Azure Cognitive Search. Once you have encrypted your skillset definition, it will always remain encrypted. Azure Cognitive Search will ignore attempts to set this property to null. You can change this property as needed if you want to rotate your encryption key; Your skillset definition will be unaffected. Encryption with customer-managed keys is not available for free search services, and is only available for paid services created on or after January 1, 2019. :paramtype encryption_key: ~azure.search.documents.indexes.models.SearchResourceEncryptionKey """ super(SearchIndexerSkillset, self).__init__(**kwargs) self.name = kwargs['name'] self.description = kwargs.get('description', None) self.skills = kwargs['skills'] self.cognitive_services_account = kwargs.get('cognitive_services_account', None) self.knowledge_store = kwargs.get('knowledge_store', None) self.e_tag = kwargs.get('e_tag', None) self.encryption_key = kwargs.get('encryption_key', None) class SearchIndexerStatus(msrest.serialization.Model): """Represents the current status and execution history of an indexer. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar status: Required. Overall indexer status. Possible values include: "unknown", "error", "running". :vartype status: str or ~azure.search.documents.indexes.models.IndexerStatus :ivar last_result: The result of the most recent or an in-progress indexer execution. :vartype last_result: ~azure.search.documents.indexes.models.IndexerExecutionResult :ivar execution_history: Required. History of the recent indexer executions, sorted in reverse chronological order. :vartype execution_history: list[~azure.search.documents.indexes.models.IndexerExecutionResult] :ivar limits: Required. The execution limits for the indexer. :vartype limits: ~azure.search.documents.indexes.models.SearchIndexerLimits """ _validation = { 'status': {'required': True, 'readonly': True}, 'last_result': {'readonly': True}, 'execution_history': {'required': True, 'readonly': True}, 'limits': {'required': True, 'readonly': True}, } _attribute_map = { 'status': {'key': 'status', 'type': 'str'}, 'last_result': {'key': 'lastResult', 'type': 'IndexerExecutionResult'}, 'execution_history': {'key': 'executionHistory', 'type': '[IndexerExecutionResult]'}, 'limits': {'key': 'limits', 'type': 'SearchIndexerLimits'}, } def __init__( self, **kwargs ): """ """ super(SearchIndexerStatus, self).__init__(**kwargs) self.status = None self.last_result = None self.execution_history = None self.limits = None class SearchIndexerWarning(msrest.serialization.Model): """Represents an item-level warning. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar key: The key of the item which generated a warning. :vartype key: str :ivar message: Required. The message describing the warning that occurred while processing the item. :vartype message: str :ivar name: The name of the source at which the warning originated. For example, this could refer to a particular skill in the attached skillset. This may not be always available. :vartype name: str :ivar details: Additional, verbose details about the warning to assist in debugging the indexer. This may not be always available. :vartype details: str :ivar documentation_link: A link to a troubleshooting guide for these classes of warnings. This may not be always available. :vartype documentation_link: str """ _validation = { 'key': {'readonly': True}, 'message': {'required': True, 'readonly': True}, 'name': {'readonly': True}, 'details': {'readonly': True}, 'documentation_link': {'readonly': True}, } _attribute_map = { 'key': {'key': 'key', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'details': {'key': 'details', 'type': 'str'}, 'documentation_link': {'key': 'documentationLink', 'type': 'str'}, } def __init__( self, **kwargs ): """ """ super(SearchIndexerWarning, self).__init__(**kwargs) self.key = None self.message = None self.name = None self.details = None self.documentation_link = None class SearchResourceEncryptionKey(msrest.serialization.Model): """A customer-managed encryption key in Azure Key Vault. Keys that you create and manage can be used to encrypt or decrypt data-at-rest in Azure Cognitive Search, such as indexes and synonym maps. All required parameters must be populated in order to send to Azure. :ivar key_name: Required. The name of your Azure Key Vault key to be used to encrypt your data at rest. :vartype key_name: str :ivar key_version: Required. The version of your Azure Key Vault key to be used to encrypt your data at rest. :vartype key_version: str :ivar vault_uri: Required. The URI of your Azure Key Vault, also referred to as DNS name, that contains the key to be used to encrypt your data at rest. An example URI might be https://my-keyvault-name.vault.azure.net. :vartype vault_uri: str :ivar access_credentials: Optional Azure Active Directory credentials used for accessing your Azure Key Vault. Not required if using managed identity instead. :vartype access_credentials: ~azure.search.documents.indexes.models.AzureActiveDirectoryApplicationCredentials :ivar identity: An explicit managed identity to use for this encryption key. If not specified and the access credentials property is null, the system-assigned managed identity is used. On update to the resource, if the explicit identity is unspecified, it remains unchanged. If "none" is specified, the value of this property is cleared. :vartype identity: ~azure.search.documents.indexes.models.SearchIndexerDataIdentity """ _validation = { 'key_name': {'required': True}, 'key_version': {'required': True}, 'vault_uri': {'required': True}, } _attribute_map = { 'key_name': {'key': 'keyVaultKeyName', 'type': 'str'}, 'key_version': {'key': 'keyVaultKeyVersion', 'type': 'str'}, 'vault_uri': {'key': 'keyVaultUri', 'type': 'str'}, 'access_credentials': {'key': 'accessCredentials', 'type': 'AzureActiveDirectoryApplicationCredentials'}, 'identity': {'key': 'identity', 'type': 'SearchIndexerDataIdentity'}, } def __init__( self, **kwargs ): """ :keyword key_name: Required. The name of your Azure Key Vault key to be used to encrypt your data at rest. :paramtype key_name: str :keyword key_version: Required. The version of your Azure Key Vault key to be used to encrypt your data at rest. :paramtype key_version: str :keyword vault_uri: Required. The URI of your Azure Key Vault, also referred to as DNS name, that contains the key to be used to encrypt your data at rest. An example URI might be https://my-keyvault-name.vault.azure.net. :paramtype vault_uri: str :keyword access_credentials: Optional Azure Active Directory credentials used for accessing your Azure Key Vault. Not required if using managed identity instead. :paramtype access_credentials: ~azure.search.documents.indexes.models.AzureActiveDirectoryApplicationCredentials :keyword identity: An explicit managed identity to use for this encryption key. If not specified and the access credentials property is null, the system-assigned managed identity is used. On update to the resource, if the explicit identity is unspecified, it remains unchanged. If "none" is specified, the value of this property is cleared. :paramtype identity: ~azure.search.documents.indexes.models.SearchIndexerDataIdentity """ super(SearchResourceEncryptionKey, self).__init__(**kwargs) self.key_name = kwargs['key_name'] self.key_version = kwargs['key_version'] self.vault_uri = kwargs['vault_uri'] self.access_credentials = kwargs.get('access_credentials', None) self.identity = kwargs.get('identity', None) class SemanticConfiguration(msrest.serialization.Model): """Defines a specific configuration to be used in the context of semantic capabilities. All required parameters must be populated in order to send to Azure. :ivar name: Required. The name of the semantic configuration. :vartype name: str :ivar prioritized_fields: Required. Describes the title, content, and keyword fields to be used for semantic ranking, captions, highlights, and answers. At least one of the three sub properties (titleField, prioritizedKeywordsFields and prioritizedContentFields) need to be set. :vartype prioritized_fields: ~azure.search.documents.indexes.models.PrioritizedFields """ _validation = { 'name': {'required': True}, 'prioritized_fields': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'prioritized_fields': {'key': 'prioritizedFields', 'type': 'PrioritizedFields'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the semantic configuration. :paramtype name: str :keyword prioritized_fields: Required. Describes the title, content, and keyword fields to be used for semantic ranking, captions, highlights, and answers. At least one of the three sub properties (titleField, prioritizedKeywordsFields and prioritizedContentFields) need to be set. :paramtype prioritized_fields: ~azure.search.documents.indexes.models.PrioritizedFields """ super(SemanticConfiguration, self).__init__(**kwargs) self.name = kwargs['name'] self.prioritized_fields = kwargs['prioritized_fields'] class SemanticField(msrest.serialization.Model): """A field that is used as part of the semantic configuration. :ivar field_name: :vartype field_name: str """ _attribute_map = { 'field_name': {'key': 'fieldName', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword field_name: :paramtype field_name: str """ super(SemanticField, self).__init__(**kwargs) self.field_name = kwargs.get('field_name', None) class SemanticSettings(msrest.serialization.Model): """Defines parameters for a search index that influence semantic capabilities. :ivar configurations: The semantic configurations for the index. :vartype configurations: list[~azure.search.documents.indexes.models.SemanticConfiguration] """ _attribute_map = { 'configurations': {'key': 'configurations', 'type': '[SemanticConfiguration]'}, } def __init__( self, **kwargs ): """ :keyword configurations: The semantic configurations for the index. :paramtype configurations: list[~azure.search.documents.indexes.models.SemanticConfiguration] """ super(SemanticSettings, self).__init__(**kwargs) self.configurations = kwargs.get('configurations', None) class SentimentSkill(SearchIndexerSkill): """Text analytics positive-negative sentiment analysis, scored as a floating point value in a range of zero to 1. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar default_language_code: A value indicating which language code to use. Default is en. Possible values include: "da", "nl", "en", "fi", "fr", "de", "el", "it", "no", "pl", "pt-PT", "ru", "es", "sv", "tr". :vartype default_language_code: str or ~azure.search.documents.indexes.models.SentimentSkillLanguage """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'default_language_code': {'key': 'defaultLanguageCode', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword default_language_code: A value indicating which language code to use. Default is en. Possible values include: "da", "nl", "en", "fi", "fr", "de", "el", "it", "no", "pl", "pt-PT", "ru", "es", "sv", "tr". :paramtype default_language_code: str or ~azure.search.documents.indexes.models.SentimentSkillLanguage """ super(SentimentSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Text.SentimentSkill' # type: str self.default_language_code = kwargs.get('default_language_code', None) class SentimentSkillV3(SearchIndexerSkill): """Using the Text Analytics API, evaluates unstructured text and for each record, provides sentiment labels (such as "negative", "neutral" and "positive") based on the highest confidence score found by the service at a sentence and document-level. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar default_language_code: A value indicating which language code to use. Default is en. :vartype default_language_code: str :ivar include_opinion_mining: If set to true, the skill output will include information from Text Analytics for opinion mining, namely targets (nouns or verbs) and their associated assessment (adjective) in the text. Default is false. :vartype include_opinion_mining: bool :ivar model_version: The version of the model to use when calling the Text Analytics service. It will default to the latest available when not specified. We recommend you do not specify this value unless absolutely necessary. :vartype model_version: str """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'default_language_code': {'key': 'defaultLanguageCode', 'type': 'str'}, 'include_opinion_mining': {'key': 'includeOpinionMining', 'type': 'bool'}, 'model_version': {'key': 'modelVersion', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword default_language_code: A value indicating which language code to use. Default is en. :paramtype default_language_code: str :keyword include_opinion_mining: If set to true, the skill output will include information from Text Analytics for opinion mining, namely targets (nouns or verbs) and their associated assessment (adjective) in the text. Default is false. :paramtype include_opinion_mining: bool :keyword model_version: The version of the model to use when calling the Text Analytics service. It will default to the latest available when not specified. We recommend you do not specify this value unless absolutely necessary. :paramtype model_version: str """ super(SentimentSkillV3, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Text.V3.SentimentSkill' # type: str self.default_language_code = kwargs.get('default_language_code', None) self.include_opinion_mining = kwargs.get('include_opinion_mining', False) self.model_version = kwargs.get('model_version', None) class ServiceCounters(msrest.serialization.Model): """Represents service-level resource counters and quotas. All required parameters must be populated in order to send to Azure. :ivar document_counter: Required. Total number of documents across all indexes in the service. :vartype document_counter: ~azure.search.documents.indexes.models.ResourceCounter :ivar index_counter: Required. Total number of indexes. :vartype index_counter: ~azure.search.documents.indexes.models.ResourceCounter :ivar indexer_counter: Required. Total number of indexers. :vartype indexer_counter: ~azure.search.documents.indexes.models.ResourceCounter :ivar data_source_counter: Required. Total number of data sources. :vartype data_source_counter: ~azure.search.documents.indexes.models.ResourceCounter :ivar storage_size_counter: Required. Total size of used storage in bytes. :vartype storage_size_counter: ~azure.search.documents.indexes.models.ResourceCounter :ivar synonym_map_counter: Required. Total number of synonym maps. :vartype synonym_map_counter: ~azure.search.documents.indexes.models.ResourceCounter :ivar skillset_counter: Total number of skillsets. :vartype skillset_counter: ~azure.search.documents.indexes.models.ResourceCounter """ _validation = { 'document_counter': {'required': True}, 'index_counter': {'required': True}, 'indexer_counter': {'required': True}, 'data_source_counter': {'required': True}, 'storage_size_counter': {'required': True}, 'synonym_map_counter': {'required': True}, } _attribute_map = { 'document_counter': {'key': 'documentCount', 'type': 'ResourceCounter'}, 'index_counter': {'key': 'indexesCount', 'type': 'ResourceCounter'}, 'indexer_counter': {'key': 'indexersCount', 'type': 'ResourceCounter'}, 'data_source_counter': {'key': 'dataSourcesCount', 'type': 'ResourceCounter'}, 'storage_size_counter': {'key': 'storageSize', 'type': 'ResourceCounter'}, 'synonym_map_counter': {'key': 'synonymMaps', 'type': 'ResourceCounter'}, 'skillset_counter': {'key': 'skillsetCount', 'type': 'ResourceCounter'}, } def __init__( self, **kwargs ): """ :keyword document_counter: Required. Total number of documents across all indexes in the service. :paramtype document_counter: ~azure.search.documents.indexes.models.ResourceCounter :keyword index_counter: Required. Total number of indexes. :paramtype index_counter: ~azure.search.documents.indexes.models.ResourceCounter :keyword indexer_counter: Required. Total number of indexers. :paramtype indexer_counter: ~azure.search.documents.indexes.models.ResourceCounter :keyword data_source_counter: Required. Total number of data sources. :paramtype data_source_counter: ~azure.search.documents.indexes.models.ResourceCounter :keyword storage_size_counter: Required. Total size of used storage in bytes. :paramtype storage_size_counter: ~azure.search.documents.indexes.models.ResourceCounter :keyword synonym_map_counter: Required. Total number of synonym maps. :paramtype synonym_map_counter: ~azure.search.documents.indexes.models.ResourceCounter :keyword skillset_counter: Total number of skillsets. :paramtype skillset_counter: ~azure.search.documents.indexes.models.ResourceCounter """ super(ServiceCounters, self).__init__(**kwargs) self.document_counter = kwargs['document_counter'] self.index_counter = kwargs['index_counter'] self.indexer_counter = kwargs['indexer_counter'] self.data_source_counter = kwargs['data_source_counter'] self.storage_size_counter = kwargs['storage_size_counter'] self.synonym_map_counter = kwargs['synonym_map_counter'] self.skillset_counter = kwargs.get('skillset_counter', None) class ServiceLimits(msrest.serialization.Model): """Represents various service level limits. :ivar max_fields_per_index: The maximum allowed fields per index. :vartype max_fields_per_index: int :ivar max_field_nesting_depth_per_index: The maximum depth which you can nest sub-fields in an index, including the top-level complex field. For example, a/b/c has a nesting depth of 3. :vartype max_field_nesting_depth_per_index: int :ivar max_complex_collection_fields_per_index: The maximum number of fields of type Collection(Edm.ComplexType) allowed in an index. :vartype max_complex_collection_fields_per_index: int :ivar max_complex_objects_in_collections_per_document: The maximum number of objects in complex collections allowed per document. :vartype max_complex_objects_in_collections_per_document: int """ _attribute_map = { 'max_fields_per_index': {'key': 'maxFieldsPerIndex', 'type': 'int'}, 'max_field_nesting_depth_per_index': {'key': 'maxFieldNestingDepthPerIndex', 'type': 'int'}, 'max_complex_collection_fields_per_index': {'key': 'maxComplexCollectionFieldsPerIndex', 'type': 'int'}, 'max_complex_objects_in_collections_per_document': {'key': 'maxComplexObjectsInCollectionsPerDocument', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword max_fields_per_index: The maximum allowed fields per index. :paramtype max_fields_per_index: int :keyword max_field_nesting_depth_per_index: The maximum depth which you can nest sub-fields in an index, including the top-level complex field. For example, a/b/c has a nesting depth of 3. :paramtype max_field_nesting_depth_per_index: int :keyword max_complex_collection_fields_per_index: The maximum number of fields of type Collection(Edm.ComplexType) allowed in an index. :paramtype max_complex_collection_fields_per_index: int :keyword max_complex_objects_in_collections_per_document: The maximum number of objects in complex collections allowed per document. :paramtype max_complex_objects_in_collections_per_document: int """ super(ServiceLimits, self).__init__(**kwargs) self.max_fields_per_index = kwargs.get('max_fields_per_index', None) self.max_field_nesting_depth_per_index = kwargs.get('max_field_nesting_depth_per_index', None) self.max_complex_collection_fields_per_index = kwargs.get('max_complex_collection_fields_per_index', None) self.max_complex_objects_in_collections_per_document = kwargs.get('max_complex_objects_in_collections_per_document', None) class ServiceStatistics(msrest.serialization.Model): """Response from a get service statistics request. If successful, it includes service level counters and limits. All required parameters must be populated in order to send to Azure. :ivar counters: Required. Service level resource counters. :vartype counters: ~azure.search.documents.indexes.models.ServiceCounters :ivar limits: Required. Service level general limits. :vartype limits: ~azure.search.documents.indexes.models.ServiceLimits """ _validation = { 'counters': {'required': True}, 'limits': {'required': True}, } _attribute_map = { 'counters': {'key': 'counters', 'type': 'ServiceCounters'}, 'limits': {'key': 'limits', 'type': 'ServiceLimits'}, } def __init__( self, **kwargs ): """ :keyword counters: Required. Service level resource counters. :paramtype counters: ~azure.search.documents.indexes.models.ServiceCounters :keyword limits: Required. Service level general limits. :paramtype limits: ~azure.search.documents.indexes.models.ServiceLimits """ super(ServiceStatistics, self).__init__(**kwargs) self.counters = kwargs['counters'] self.limits = kwargs['limits'] class ShaperSkill(SearchIndexerSkill): """A skill for reshaping the outputs. It creates a complex type to support composite fields (also known as multipart fields). All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] """ super(ShaperSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Util.ShaperSkill' # type: str class ShingleTokenFilter(TokenFilter): """Creates combinations of tokens as a single token. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar max_shingle_size: The maximum shingle size. Default and minimum value is 2. :vartype max_shingle_size: int :ivar min_shingle_size: The minimum shingle size. Default and minimum value is 2. Must be less than the value of maxShingleSize. :vartype min_shingle_size: int :ivar output_unigrams: A value indicating whether the output stream will contain the input tokens (unigrams) as well as shingles. Default is true. :vartype output_unigrams: bool :ivar output_unigrams_if_no_shingles: A value indicating whether to output unigrams for those times when no shingles are available. This property takes precedence when outputUnigrams is set to false. Default is false. :vartype output_unigrams_if_no_shingles: bool :ivar token_separator: The string to use when joining adjacent tokens to form a shingle. Default is a single space (" "). :vartype token_separator: str :ivar filter_token: The string to insert for each position at which there is no token. Default is an underscore ("_"). :vartype filter_token: str """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'max_shingle_size': {'minimum': 2}, 'min_shingle_size': {'minimum': 2}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'max_shingle_size': {'key': 'maxShingleSize', 'type': 'int'}, 'min_shingle_size': {'key': 'minShingleSize', 'type': 'int'}, 'output_unigrams': {'key': 'outputUnigrams', 'type': 'bool'}, 'output_unigrams_if_no_shingles': {'key': 'outputUnigramsIfNoShingles', 'type': 'bool'}, 'token_separator': {'key': 'tokenSeparator', 'type': 'str'}, 'filter_token': {'key': 'filterToken', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword max_shingle_size: The maximum shingle size. Default and minimum value is 2. :paramtype max_shingle_size: int :keyword min_shingle_size: The minimum shingle size. Default and minimum value is 2. Must be less than the value of maxShingleSize. :paramtype min_shingle_size: int :keyword output_unigrams: A value indicating whether the output stream will contain the input tokens (unigrams) as well as shingles. Default is true. :paramtype output_unigrams: bool :keyword output_unigrams_if_no_shingles: A value indicating whether to output unigrams for those times when no shingles are available. This property takes precedence when outputUnigrams is set to false. Default is false. :paramtype output_unigrams_if_no_shingles: bool :keyword token_separator: The string to use when joining adjacent tokens to form a shingle. Default is a single space (" "). :paramtype token_separator: str :keyword filter_token: The string to insert for each position at which there is no token. Default is an underscore ("_"). :paramtype filter_token: str """ super(ShingleTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.ShingleTokenFilter' # type: str self.max_shingle_size = kwargs.get('max_shingle_size', 2) self.min_shingle_size = kwargs.get('min_shingle_size', 2) self.output_unigrams = kwargs.get('output_unigrams', True) self.output_unigrams_if_no_shingles = kwargs.get('output_unigrams_if_no_shingles', False) self.token_separator = kwargs.get('token_separator', " ") self.filter_token = kwargs.get('filter_token', "_") class SkillNames(msrest.serialization.Model): """SkillNames. :ivar skill_names: the names of skills to be reset. :vartype skill_names: list[str] """ _attribute_map = { 'skill_names': {'key': 'skillNames', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword skill_names: the names of skills to be reset. :paramtype skill_names: list[str] """ super(SkillNames, self).__init__(**kwargs) self.skill_names = kwargs.get('skill_names', None) class SnowballTokenFilter(TokenFilter): """A filter that stems words using a Snowball-generated stemmer. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar language: Required. The language to use. Possible values include: "armenian", "basque", "catalan", "danish", "dutch", "english", "finnish", "french", "german", "german2", "hungarian", "italian", "kp", "lovins", "norwegian", "porter", "portuguese", "romanian", "russian", "spanish", "swedish", "turkish". :vartype language: str or ~azure.search.documents.indexes.models.SnowballTokenFilterLanguage """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'language': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'language': {'key': 'language', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword language: Required. The language to use. Possible values include: "armenian", "basque", "catalan", "danish", "dutch", "english", "finnish", "french", "german", "german2", "hungarian", "italian", "kp", "lovins", "norwegian", "porter", "portuguese", "romanian", "russian", "spanish", "swedish", "turkish". :paramtype language: str or ~azure.search.documents.indexes.models.SnowballTokenFilterLanguage """ super(SnowballTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.SnowballTokenFilter' # type: str self.language = kwargs['language'] class SoftDeleteColumnDeletionDetectionPolicy(DataDeletionDetectionPolicy): """Defines a data deletion detection policy that implements a soft-deletion strategy. It determines whether an item should be deleted based on the value of a designated 'soft delete' column. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the data deletion detection policy.Constant filled by server. :vartype odata_type: str :ivar soft_delete_column_name: The name of the column to use for soft-deletion detection. :vartype soft_delete_column_name: str :ivar soft_delete_marker_value: The marker value that identifies an item as deleted. :vartype soft_delete_marker_value: str """ _validation = { 'odata_type': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'soft_delete_column_name': {'key': 'softDeleteColumnName', 'type': 'str'}, 'soft_delete_marker_value': {'key': 'softDeleteMarkerValue', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword soft_delete_column_name: The name of the column to use for soft-deletion detection. :paramtype soft_delete_column_name: str :keyword soft_delete_marker_value: The marker value that identifies an item as deleted. :paramtype soft_delete_marker_value: str """ super(SoftDeleteColumnDeletionDetectionPolicy, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.SoftDeleteColumnDeletionDetectionPolicy' # type: str self.soft_delete_column_name = kwargs.get('soft_delete_column_name', None) self.soft_delete_marker_value = kwargs.get('soft_delete_marker_value', None) class SplitSkill(SearchIndexerSkill): """A skill to split a string into chunks of text. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar default_language_code: A value indicating which language code to use. Default is en. Possible values include: "da", "de", "en", "es", "fi", "fr", "it", "ko", "pt". :vartype default_language_code: str or ~azure.search.documents.indexes.models.SplitSkillLanguage :ivar text_split_mode: A value indicating which split mode to perform. Possible values include: "pages", "sentences". :vartype text_split_mode: str or ~azure.search.documents.indexes.models.TextSplitMode :ivar maximum_page_length: The desired maximum page length. Default is 10000. :vartype maximum_page_length: int """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'default_language_code': {'key': 'defaultLanguageCode', 'type': 'str'}, 'text_split_mode': {'key': 'textSplitMode', 'type': 'str'}, 'maximum_page_length': {'key': 'maximumPageLength', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword default_language_code: A value indicating which language code to use. Default is en. Possible values include: "da", "de", "en", "es", "fi", "fr", "it", "ko", "pt". :paramtype default_language_code: str or ~azure.search.documents.indexes.models.SplitSkillLanguage :keyword text_split_mode: A value indicating which split mode to perform. Possible values include: "pages", "sentences". :paramtype text_split_mode: str or ~azure.search.documents.indexes.models.TextSplitMode :keyword maximum_page_length: The desired maximum page length. Default is 10000. :paramtype maximum_page_length: int """ super(SplitSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Text.SplitSkill' # type: str self.default_language_code = kwargs.get('default_language_code', None) self.text_split_mode = kwargs.get('text_split_mode', None) self.maximum_page_length = kwargs.get('maximum_page_length', None) class SqlIntegratedChangeTrackingPolicy(DataChangeDetectionPolicy): """Defines a data change detection policy that captures changes using the Integrated Change Tracking feature of Azure SQL Database. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the data change detection policy.Constant filled by server. :vartype odata_type: str """ _validation = { 'odata_type': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, } def __init__( self, **kwargs ): """ """ super(SqlIntegratedChangeTrackingPolicy, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.SqlIntegratedChangeTrackingPolicy' # type: str class StemmerOverrideTokenFilter(TokenFilter): """Provides the ability to override other stemming filters with custom dictionary-based stemming. Any dictionary-stemmed terms will be marked as keywords so that they will not be stemmed with stemmers down the chain. Must be placed before any stemming filters. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar rules: Required. A list of stemming rules in the following format: "word => stem", for example: "ran => run". :vartype rules: list[str] """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'rules': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'rules': {'key': 'rules', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword rules: Required. A list of stemming rules in the following format: "word => stem", for example: "ran => run". :paramtype rules: list[str] """ super(StemmerOverrideTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.StemmerOverrideTokenFilter' # type: str self.rules = kwargs['rules'] class StemmerTokenFilter(TokenFilter): """Language specific stemming filter. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar language: Required. The language to use. Possible values include: "arabic", "armenian", "basque", "brazilian", "bulgarian", "catalan", "czech", "danish", "dutch", "dutchKp", "english", "lightEnglish", "minimalEnglish", "possessiveEnglish", "porter2", "lovins", "finnish", "lightFinnish", "french", "lightFrench", "minimalFrench", "galician", "minimalGalician", "german", "german2", "lightGerman", "minimalGerman", "greek", "hindi", "hungarian", "lightHungarian", "indonesian", "irish", "italian", "lightItalian", "sorani", "latvian", "norwegian", "lightNorwegian", "minimalNorwegian", "lightNynorsk", "minimalNynorsk", "portuguese", "lightPortuguese", "minimalPortuguese", "portugueseRslp", "romanian", "russian", "lightRussian", "spanish", "lightSpanish", "swedish", "lightSwedish", "turkish". :vartype language: str or ~azure.search.documents.indexes.models.StemmerTokenFilterLanguage """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'language': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'language': {'key': 'language', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword language: Required. The language to use. Possible values include: "arabic", "armenian", "basque", "brazilian", "bulgarian", "catalan", "czech", "danish", "dutch", "dutchKp", "english", "lightEnglish", "minimalEnglish", "possessiveEnglish", "porter2", "lovins", "finnish", "lightFinnish", "french", "lightFrench", "minimalFrench", "galician", "minimalGalician", "german", "german2", "lightGerman", "minimalGerman", "greek", "hindi", "hungarian", "lightHungarian", "indonesian", "irish", "italian", "lightItalian", "sorani", "latvian", "norwegian", "lightNorwegian", "minimalNorwegian", "lightNynorsk", "minimalNynorsk", "portuguese", "lightPortuguese", "minimalPortuguese", "portugueseRslp", "romanian", "russian", "lightRussian", "spanish", "lightSpanish", "swedish", "lightSwedish", "turkish". :paramtype language: str or ~azure.search.documents.indexes.models.StemmerTokenFilterLanguage """ super(StemmerTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.StemmerTokenFilter' # type: str self.language = kwargs['language'] class StopAnalyzer(LexicalAnalyzer): """Divides text at non-letters; Applies the lowercase and stopword token filters. This analyzer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the analyzer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the analyzer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar stopwords: A list of stopwords. :vartype stopwords: list[str] """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'stopwords': {'key': 'stopwords', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the analyzer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword stopwords: A list of stopwords. :paramtype stopwords: list[str] """ super(StopAnalyzer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.StopAnalyzer' # type: str self.stopwords = kwargs.get('stopwords', None) class StopwordsTokenFilter(TokenFilter): """Removes stop words from a token stream. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar stopwords: The list of stopwords. This property and the stopwords list property cannot both be set. :vartype stopwords: list[str] :ivar stopwords_list: A predefined list of stopwords to use. This property and the stopwords property cannot both be set. Default is English. Possible values include: "arabic", "armenian", "basque", "brazilian", "bulgarian", "catalan", "czech", "danish", "dutch", "english", "finnish", "french", "galician", "german", "greek", "hindi", "hungarian", "indonesian", "irish", "italian", "latvian", "norwegian", "persian", "portuguese", "romanian", "russian", "sorani", "spanish", "swedish", "thai", "turkish". :vartype stopwords_list: str or ~azure.search.documents.indexes.models.StopwordsList :ivar ignore_case: A value indicating whether to ignore case. If true, all words are converted to lower case first. Default is false. :vartype ignore_case: bool :ivar remove_trailing_stop_words: A value indicating whether to ignore the last search term if it's a stop word. Default is true. :vartype remove_trailing_stop_words: bool """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'stopwords': {'key': 'stopwords', 'type': '[str]'}, 'stopwords_list': {'key': 'stopwordsList', 'type': 'str'}, 'ignore_case': {'key': 'ignoreCase', 'type': 'bool'}, 'remove_trailing_stop_words': {'key': 'removeTrailing', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword stopwords: The list of stopwords. This property and the stopwords list property cannot both be set. :paramtype stopwords: list[str] :keyword stopwords_list: A predefined list of stopwords to use. This property and the stopwords property cannot both be set. Default is English. Possible values include: "arabic", "armenian", "basque", "brazilian", "bulgarian", "catalan", "czech", "danish", "dutch", "english", "finnish", "french", "galician", "german", "greek", "hindi", "hungarian", "indonesian", "irish", "italian", "latvian", "norwegian", "persian", "portuguese", "romanian", "russian", "sorani", "spanish", "swedish", "thai", "turkish". :paramtype stopwords_list: str or ~azure.search.documents.indexes.models.StopwordsList :keyword ignore_case: A value indicating whether to ignore case. If true, all words are converted to lower case first. Default is false. :paramtype ignore_case: bool :keyword remove_trailing_stop_words: A value indicating whether to ignore the last search term if it's a stop word. Default is true. :paramtype remove_trailing_stop_words: bool """ super(StopwordsTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.StopwordsTokenFilter' # type: str self.stopwords = kwargs.get('stopwords', None) self.stopwords_list = kwargs.get('stopwords_list', None) self.ignore_case = kwargs.get('ignore_case', False) self.remove_trailing_stop_words = kwargs.get('remove_trailing_stop_words', True) class Suggester(msrest.serialization.Model): """Defines how the Suggest API should apply to a group of fields in the index. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar name: Required. The name of the suggester. :vartype name: str :ivar search_mode: A value indicating the capabilities of the suggester. Has constant value: "analyzingInfixMatching". :vartype search_mode: str :ivar source_fields: Required. The list of field names to which the suggester applies. Each field must be searchable. :vartype source_fields: list[str] """ _validation = { 'name': {'required': True}, 'search_mode': {'required': True, 'constant': True}, 'source_fields': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'search_mode': {'key': 'searchMode', 'type': 'str'}, 'source_fields': {'key': 'sourceFields', 'type': '[str]'}, } search_mode = "analyzingInfixMatching" def __init__( self, **kwargs ): """ :keyword name: Required. The name of the suggester. :paramtype name: str :keyword source_fields: Required. The list of field names to which the suggester applies. Each field must be searchable. :paramtype source_fields: list[str] """ super(Suggester, self).__init__(**kwargs) self.name = kwargs['name'] self.source_fields = kwargs['source_fields'] class SynonymMap(msrest.serialization.Model): """Represents a synonym map definition. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar name: Required. The name of the synonym map. :vartype name: str :ivar format: The format of the synonym map. Only the 'solr' format is currently supported. Has constant value: "solr". :vartype format: str :ivar synonyms: Required. A series of synonym rules in the specified synonym map format. The rules must be separated by newlines. :vartype synonyms: str :ivar encryption_key: A description of an encryption key that you create in Azure Key Vault. This key is used to provide an additional level of encryption-at-rest for your data when you want full assurance that no one, not even Microsoft, can decrypt your data in Azure Cognitive Search. Once you have encrypted your data, it will always remain encrypted. Azure Cognitive Search will ignore attempts to set this property to null. You can change this property as needed if you want to rotate your encryption key; Your data will be unaffected. Encryption with customer-managed keys is not available for free search services, and is only available for paid services created on or after January 1, 2019. :vartype encryption_key: ~azure.search.documents.indexes.models.SearchResourceEncryptionKey :ivar e_tag: The ETag of the synonym map. :vartype e_tag: str """ _validation = { 'name': {'required': True}, 'format': {'required': True, 'constant': True}, 'synonyms': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'format': {'key': 'format', 'type': 'str'}, 'synonyms': {'key': 'synonyms', 'type': 'str'}, 'encryption_key': {'key': 'encryptionKey', 'type': 'SearchResourceEncryptionKey'}, 'e_tag': {'key': '@odata\\.etag', 'type': 'str'}, } format = "solr" def __init__( self, **kwargs ): """ :keyword name: Required. The name of the synonym map. :paramtype name: str :keyword synonyms: Required. A series of synonym rules in the specified synonym map format. The rules must be separated by newlines. :paramtype synonyms: str :keyword encryption_key: A description of an encryption key that you create in Azure Key Vault. This key is used to provide an additional level of encryption-at-rest for your data when you want full assurance that no one, not even Microsoft, can decrypt your data in Azure Cognitive Search. Once you have encrypted your data, it will always remain encrypted. Azure Cognitive Search will ignore attempts to set this property to null. You can change this property as needed if you want to rotate your encryption key; Your data will be unaffected. Encryption with customer-managed keys is not available for free search services, and is only available for paid services created on or after January 1, 2019. :paramtype encryption_key: ~azure.search.documents.indexes.models.SearchResourceEncryptionKey :keyword e_tag: The ETag of the synonym map. :paramtype e_tag: str """ super(SynonymMap, self).__init__(**kwargs) self.name = kwargs['name'] self.synonyms = kwargs['synonyms'] self.encryption_key = kwargs.get('encryption_key', None) self.e_tag = kwargs.get('e_tag', None) class SynonymTokenFilter(TokenFilter): """Matches single or multi-word synonyms in a token stream. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar synonyms: Required. A list of synonyms in following one of two formats: 1. incredible, unbelievable, fabulous => amazing - all terms on the left side of => symbol will be replaced with all terms on its right side; 2. incredible, unbelievable, fabulous, amazing - comma separated list of equivalent words. Set the expand option to change how this list is interpreted. :vartype synonyms: list[str] :ivar ignore_case: A value indicating whether to case-fold input for matching. Default is false. :vartype ignore_case: bool :ivar expand: A value indicating whether all words in the list of synonyms (if => notation is not used) will map to one another. If true, all words in the list of synonyms (if => notation is not used) will map to one another. The following list: incredible, unbelievable, fabulous, amazing is equivalent to: incredible, unbelievable, fabulous, amazing => incredible, unbelievable, fabulous, amazing. If false, the following list: incredible, unbelievable, fabulous, amazing will be equivalent to: incredible, unbelievable, fabulous, amazing => incredible. Default is true. :vartype expand: bool """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'synonyms': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'synonyms': {'key': 'synonyms', 'type': '[str]'}, 'ignore_case': {'key': 'ignoreCase', 'type': 'bool'}, 'expand': {'key': 'expand', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword synonyms: Required. A list of synonyms in following one of two formats: 1. incredible, unbelievable, fabulous => amazing - all terms on the left side of => symbol will be replaced with all terms on its right side; 2. incredible, unbelievable, fabulous, amazing - comma separated list of equivalent words. Set the expand option to change how this list is interpreted. :paramtype synonyms: list[str] :keyword ignore_case: A value indicating whether to case-fold input for matching. Default is false. :paramtype ignore_case: bool :keyword expand: A value indicating whether all words in the list of synonyms (if => notation is not used) will map to one another. If true, all words in the list of synonyms (if => notation is not used) will map to one another. The following list: incredible, unbelievable, fabulous, amazing is equivalent to: incredible, unbelievable, fabulous, amazing => incredible, unbelievable, fabulous, amazing. If false, the following list: incredible, unbelievable, fabulous, amazing will be equivalent to: incredible, unbelievable, fabulous, amazing => incredible. Default is true. :paramtype expand: bool """ super(SynonymTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.SynonymTokenFilter' # type: str self.synonyms = kwargs['synonyms'] self.ignore_case = kwargs.get('ignore_case', False) self.expand = kwargs.get('expand', True) class TagScoringFunction(ScoringFunction): """Defines a function that boosts scores of documents with string values matching a given list of tags. All required parameters must be populated in order to send to Azure. :ivar type: Required. Indicates the type of function to use. Valid values include magnitude, freshness, distance, and tag. The function type must be lower case.Constant filled by server. :vartype type: str :ivar field_name: Required. The name of the field used as input to the scoring function. :vartype field_name: str :ivar boost: Required. A multiplier for the raw score. Must be a positive number not equal to 1.0. :vartype boost: float :ivar interpolation: A value indicating how boosting will be interpolated across document scores; defaults to "Linear". Possible values include: "linear", "constant", "quadratic", "logarithmic". :vartype interpolation: str or ~azure.search.documents.indexes.models.ScoringFunctionInterpolation :ivar parameters: Required. Parameter values for the tag scoring function. :vartype parameters: ~azure.search.documents.indexes.models.TagScoringParameters """ _validation = { 'type': {'required': True}, 'field_name': {'required': True}, 'boost': {'required': True}, 'parameters': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'field_name': {'key': 'fieldName', 'type': 'str'}, 'boost': {'key': 'boost', 'type': 'float'}, 'interpolation': {'key': 'interpolation', 'type': 'str'}, 'parameters': {'key': 'tag', 'type': 'TagScoringParameters'}, } def __init__( self, **kwargs ): """ :keyword field_name: Required. The name of the field used as input to the scoring function. :paramtype field_name: str :keyword boost: Required. A multiplier for the raw score. Must be a positive number not equal to 1.0. :paramtype boost: float :keyword interpolation: A value indicating how boosting will be interpolated across document scores; defaults to "Linear". Possible values include: "linear", "constant", "quadratic", "logarithmic". :paramtype interpolation: str or ~azure.search.documents.indexes.models.ScoringFunctionInterpolation :keyword parameters: Required. Parameter values for the tag scoring function. :paramtype parameters: ~azure.search.documents.indexes.models.TagScoringParameters """ super(TagScoringFunction, self).__init__(**kwargs) self.type = 'tag' # type: str self.parameters = kwargs['parameters'] class TagScoringParameters(msrest.serialization.Model): """Provides parameter values to a tag scoring function. All required parameters must be populated in order to send to Azure. :ivar tags_parameter: Required. The name of the parameter passed in search queries to specify the list of tags to compare against the target field. :vartype tags_parameter: str """ _validation = { 'tags_parameter': {'required': True}, } _attribute_map = { 'tags_parameter': {'key': 'tagsParameter', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword tags_parameter: Required. The name of the parameter passed in search queries to specify the list of tags to compare against the target field. :paramtype tags_parameter: str """ super(TagScoringParameters, self).__init__(**kwargs) self.tags_parameter = kwargs['tags_parameter'] class TextTranslationSkill(SearchIndexerSkill): """A skill to translate text from one language to another. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar default_to_language_code: Required. The language code to translate documents into for documents that don't specify the to language explicitly. Possible values include: "af", "ar", "bn", "bs", "bg", "yue", "ca", "zh-Hans", "zh-Hant", "hr", "cs", "da", "nl", "en", "et", "fj", "fil", "fi", "fr", "de", "el", "ht", "he", "hi", "mww", "hu", "is", "id", "it", "ja", "sw", "tlh", "tlh-Latn", "tlh-Piqd", "ko", "lv", "lt", "mg", "ms", "mt", "nb", "fa", "pl", "pt", "pt-br", "pt-PT", "otq", "ro", "ru", "sm", "sr-Cyrl", "sr-Latn", "sk", "sl", "es", "sv", "ty", "ta", "te", "th", "to", "tr", "uk", "ur", "vi", "cy", "yua", "ga", "kn", "mi", "ml", "pa". :vartype default_to_language_code: str or ~azure.search.documents.indexes.models.TextTranslationSkillLanguage :ivar default_from_language_code: The language code to translate documents from for documents that don't specify the from language explicitly. Possible values include: "af", "ar", "bn", "bs", "bg", "yue", "ca", "zh-Hans", "zh-Hant", "hr", "cs", "da", "nl", "en", "et", "fj", "fil", "fi", "fr", "de", "el", "ht", "he", "hi", "mww", "hu", "is", "id", "it", "ja", "sw", "tlh", "tlh-Latn", "tlh-Piqd", "ko", "lv", "lt", "mg", "ms", "mt", "nb", "fa", "pl", "pt", "pt-br", "pt-PT", "otq", "ro", "ru", "sm", "sr-Cyrl", "sr-Latn", "sk", "sl", "es", "sv", "ty", "ta", "te", "th", "to", "tr", "uk", "ur", "vi", "cy", "yua", "ga", "kn", "mi", "ml", "pa". :vartype default_from_language_code: str or ~azure.search.documents.indexes.models.TextTranslationSkillLanguage :ivar suggested_from: The language code to translate documents from when neither the fromLanguageCode input nor the defaultFromLanguageCode parameter are provided, and the automatic language detection is unsuccessful. Default is en. Possible values include: "af", "ar", "bn", "bs", "bg", "yue", "ca", "zh-Hans", "zh-Hant", "hr", "cs", "da", "nl", "en", "et", "fj", "fil", "fi", "fr", "de", "el", "ht", "he", "hi", "mww", "hu", "is", "id", "it", "ja", "sw", "tlh", "tlh-Latn", "tlh-Piqd", "ko", "lv", "lt", "mg", "ms", "mt", "nb", "fa", "pl", "pt", "pt-br", "pt-PT", "otq", "ro", "ru", "sm", "sr-Cyrl", "sr-Latn", "sk", "sl", "es", "sv", "ty", "ta", "te", "th", "to", "tr", "uk", "ur", "vi", "cy", "yua", "ga", "kn", "mi", "ml", "pa". :vartype suggested_from: str or ~azure.search.documents.indexes.models.TextTranslationSkillLanguage """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, 'default_to_language_code': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'default_to_language_code': {'key': 'defaultToLanguageCode', 'type': 'str'}, 'default_from_language_code': {'key': 'defaultFromLanguageCode', 'type': 'str'}, 'suggested_from': {'key': 'suggestedFrom', 'type': 'str'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword default_to_language_code: Required. The language code to translate documents into for documents that don't specify the to language explicitly. Possible values include: "af", "ar", "bn", "bs", "bg", "yue", "ca", "zh-Hans", "zh-Hant", "hr", "cs", "da", "nl", "en", "et", "fj", "fil", "fi", "fr", "de", "el", "ht", "he", "hi", "mww", "hu", "is", "id", "it", "ja", "sw", "tlh", "tlh-Latn", "tlh-Piqd", "ko", "lv", "lt", "mg", "ms", "mt", "nb", "fa", "pl", "pt", "pt-br", "pt-PT", "otq", "ro", "ru", "sm", "sr-Cyrl", "sr-Latn", "sk", "sl", "es", "sv", "ty", "ta", "te", "th", "to", "tr", "uk", "ur", "vi", "cy", "yua", "ga", "kn", "mi", "ml", "pa". :paramtype default_to_language_code: str or ~azure.search.documents.indexes.models.TextTranslationSkillLanguage :keyword default_from_language_code: The language code to translate documents from for documents that don't specify the from language explicitly. Possible values include: "af", "ar", "bn", "bs", "bg", "yue", "ca", "zh-Hans", "zh-Hant", "hr", "cs", "da", "nl", "en", "et", "fj", "fil", "fi", "fr", "de", "el", "ht", "he", "hi", "mww", "hu", "is", "id", "it", "ja", "sw", "tlh", "tlh-Latn", "tlh-Piqd", "ko", "lv", "lt", "mg", "ms", "mt", "nb", "fa", "pl", "pt", "pt-br", "pt-PT", "otq", "ro", "ru", "sm", "sr-Cyrl", "sr-Latn", "sk", "sl", "es", "sv", "ty", "ta", "te", "th", "to", "tr", "uk", "ur", "vi", "cy", "yua", "ga", "kn", "mi", "ml", "pa". :paramtype default_from_language_code: str or ~azure.search.documents.indexes.models.TextTranslationSkillLanguage :keyword suggested_from: The language code to translate documents from when neither the fromLanguageCode input nor the defaultFromLanguageCode parameter are provided, and the automatic language detection is unsuccessful. Default is en. Possible values include: "af", "ar", "bn", "bs", "bg", "yue", "ca", "zh-Hans", "zh-Hant", "hr", "cs", "da", "nl", "en", "et", "fj", "fil", "fi", "fr", "de", "el", "ht", "he", "hi", "mww", "hu", "is", "id", "it", "ja", "sw", "tlh", "tlh-Latn", "tlh-Piqd", "ko", "lv", "lt", "mg", "ms", "mt", "nb", "fa", "pl", "pt", "pt-br", "pt-PT", "otq", "ro", "ru", "sm", "sr-Cyrl", "sr-Latn", "sk", "sl", "es", "sv", "ty", "ta", "te", "th", "to", "tr", "uk", "ur", "vi", "cy", "yua", "ga", "kn", "mi", "ml", "pa". :paramtype suggested_from: str or ~azure.search.documents.indexes.models.TextTranslationSkillLanguage """ super(TextTranslationSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Text.TranslationSkill' # type: str self.default_to_language_code = kwargs['default_to_language_code'] self.default_from_language_code = kwargs.get('default_from_language_code', None) self.suggested_from = kwargs.get('suggested_from', None) class TextWeights(msrest.serialization.Model): """Defines weights on index fields for which matches should boost scoring in search queries. All required parameters must be populated in order to send to Azure. :ivar weights: Required. The dictionary of per-field weights to boost document scoring. The keys are field names and the values are the weights for each field. :vartype weights: dict[str, float] """ _validation = { 'weights': {'required': True}, } _attribute_map = { 'weights': {'key': 'weights', 'type': '{float}'}, } def __init__( self, **kwargs ): """ :keyword weights: Required. The dictionary of per-field weights to boost document scoring. The keys are field names and the values are the weights for each field. :paramtype weights: dict[str, float] """ super(TextWeights, self).__init__(**kwargs) self.weights = kwargs['weights'] class TruncateTokenFilter(TokenFilter): """Truncates the terms to a specific length. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar length: The length at which terms will be truncated. Default and maximum is 300. :vartype length: int """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'length': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'length': {'key': 'length', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword length: The length at which terms will be truncated. Default and maximum is 300. :paramtype length: int """ super(TruncateTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.TruncateTokenFilter' # type: str self.length = kwargs.get('length', 300) class UaxUrlEmailTokenizer(LexicalTokenizer): """Tokenizes urls and emails as one token. This tokenizer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the tokenizer.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar max_token_length: The maximum token length. Default is 255. Tokens longer than the maximum length are split. The maximum token length that can be used is 300 characters. :vartype max_token_length: int """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'max_token_length': {'maximum': 300}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'max_token_length': {'key': 'maxTokenLength', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword max_token_length: The maximum token length. Default is 255. Tokens longer than the maximum length are split. The maximum token length that can be used is 300 characters. :paramtype max_token_length: int """ super(UaxUrlEmailTokenizer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.UaxUrlEmailTokenizer' # type: str self.max_token_length = kwargs.get('max_token_length', 255) class UniqueTokenFilter(TokenFilter): """Filters out tokens with same text as the previous token. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar only_on_same_position: A value indicating whether to remove duplicates only at the same position. Default is false. :vartype only_on_same_position: bool """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'only_on_same_position': {'key': 'onlyOnSamePosition', 'type': 'bool'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword only_on_same_position: A value indicating whether to remove duplicates only at the same position. Default is false. :paramtype only_on_same_position: bool """ super(UniqueTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.UniqueTokenFilter' # type: str self.only_on_same_position = kwargs.get('only_on_same_position', False) class WebApiSkill(SearchIndexerSkill): """A skill that can call a Web API endpoint, allowing you to extend a skillset by having it call your custom code. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the skill.Constant filled by server. :vartype odata_type: str :ivar name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :vartype name: str :ivar description: The description of the skill which describes the inputs, outputs, and usage of the skill. :vartype description: str :ivar context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :vartype context: str :ivar inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :vartype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :ivar outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :vartype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :ivar uri: Required. The url for the Web API. :vartype uri: str :ivar http_headers: The headers required to make the http request. :vartype http_headers: dict[str, str] :ivar http_method: The method for the http request. :vartype http_method: str :ivar timeout: The desired timeout for the request. Default is 30 seconds. :vartype timeout: ~datetime.timedelta :ivar batch_size: The desired batch size which indicates number of documents. :vartype batch_size: int :ivar degree_of_parallelism: If set, the number of parallel calls that can be made to the Web API. :vartype degree_of_parallelism: int """ _validation = { 'odata_type': {'required': True}, 'inputs': {'required': True}, 'outputs': {'required': True}, 'uri': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'context': {'key': 'context', 'type': 'str'}, 'inputs': {'key': 'inputs', 'type': '[InputFieldMappingEntry]'}, 'outputs': {'key': 'outputs', 'type': '[OutputFieldMappingEntry]'}, 'uri': {'key': 'uri', 'type': 'str'}, 'http_headers': {'key': 'httpHeaders', 'type': '{str}'}, 'http_method': {'key': 'httpMethod', 'type': 'str'}, 'timeout': {'key': 'timeout', 'type': 'duration'}, 'batch_size': {'key': 'batchSize', 'type': 'int'}, 'degree_of_parallelism': {'key': 'degreeOfParallelism', 'type': 'int'}, } def __init__( self, **kwargs ): """ :keyword name: The name of the skill which uniquely identifies it within the skillset. A skill with no name defined will be given a default name of its 1-based index in the skills array, prefixed with the character '#'. :paramtype name: str :keyword description: The description of the skill which describes the inputs, outputs, and usage of the skill. :paramtype description: str :keyword context: Represents the level at which operations take place, such as the document root or document content (for example, /document or /document/content). The default is /document. :paramtype context: str :keyword inputs: Required. Inputs of the skills could be a column in the source data set, or the output of an upstream skill. :paramtype inputs: list[~azure.search.documents.indexes.models.InputFieldMappingEntry] :keyword outputs: Required. The output of a skill is either a field in a search index, or a value that can be consumed as an input by another skill. :paramtype outputs: list[~azure.search.documents.indexes.models.OutputFieldMappingEntry] :keyword uri: Required. The url for the Web API. :paramtype uri: str :keyword http_headers: The headers required to make the http request. :paramtype http_headers: dict[str, str] :keyword http_method: The method for the http request. :paramtype http_method: str :keyword timeout: The desired timeout for the request. Default is 30 seconds. :paramtype timeout: ~datetime.timedelta :keyword batch_size: The desired batch size which indicates number of documents. :paramtype batch_size: int :keyword degree_of_parallelism: If set, the number of parallel calls that can be made to the Web API. :paramtype degree_of_parallelism: int """ super(WebApiSkill, self).__init__(**kwargs) self.odata_type = '#Microsoft.Skills.Custom.WebApiSkill' # type: str self.uri = kwargs['uri'] self.http_headers = kwargs.get('http_headers', None) self.http_method = kwargs.get('http_method', None) self.timeout = kwargs.get('timeout', None) self.batch_size = kwargs.get('batch_size', None) self.degree_of_parallelism = kwargs.get('degree_of_parallelism', None) class WordDelimiterTokenFilter(TokenFilter): """Splits words into subwords and performs optional transformations on subword groups. This token filter is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :ivar odata_type: Required. Identifies the concrete type of the token filter.Constant filled by server. :vartype odata_type: str :ivar name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :vartype name: str :ivar generate_word_parts: A value indicating whether to generate part words. If set, causes parts of words to be generated; for example "AzureSearch" becomes "Azure" "Search". Default is true. :vartype generate_word_parts: bool :ivar generate_number_parts: A value indicating whether to generate number subwords. Default is true. :vartype generate_number_parts: bool :ivar catenate_words: A value indicating whether maximum runs of word parts will be catenated. For example, if this is set to true, "Azure-Search" becomes "AzureSearch". Default is false. :vartype catenate_words: bool :ivar catenate_numbers: A value indicating whether maximum runs of number parts will be catenated. For example, if this is set to true, "1-2" becomes "12". Default is false. :vartype catenate_numbers: bool :ivar catenate_all: A value indicating whether all subword parts will be catenated. For example, if this is set to true, "Azure-Search-1" becomes "AzureSearch1". Default is false. :vartype catenate_all: bool :ivar split_on_case_change: A value indicating whether to split words on caseChange. For example, if this is set to true, "AzureSearch" becomes "Azure" "Search". Default is true. :vartype split_on_case_change: bool :ivar preserve_original: A value indicating whether original words will be preserved and added to the subword list. Default is false. :vartype preserve_original: bool :ivar split_on_numerics: A value indicating whether to split on numbers. For example, if this is set to true, "Azure1Search" becomes "Azure" "1" "Search". Default is true. :vartype split_on_numerics: bool :ivar stem_english_possessive: A value indicating whether to remove trailing "'s" for each subword. Default is true. :vartype stem_english_possessive: bool :ivar protected_words: A list of tokens to protect from being delimited. :vartype protected_words: list[str] """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'generate_word_parts': {'key': 'generateWordParts', 'type': 'bool'}, 'generate_number_parts': {'key': 'generateNumberParts', 'type': 'bool'}, 'catenate_words': {'key': 'catenateWords', 'type': 'bool'}, 'catenate_numbers': {'key': 'catenateNumbers', 'type': 'bool'}, 'catenate_all': {'key': 'catenateAll', 'type': 'bool'}, 'split_on_case_change': {'key': 'splitOnCaseChange', 'type': 'bool'}, 'preserve_original': {'key': 'preserveOriginal', 'type': 'bool'}, 'split_on_numerics': {'key': 'splitOnNumerics', 'type': 'bool'}, 'stem_english_possessive': {'key': 'stemEnglishPossessive', 'type': 'bool'}, 'protected_words': {'key': 'protectedWords', 'type': '[str]'}, } def __init__( self, **kwargs ): """ :keyword name: Required. The name of the token filter. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :paramtype name: str :keyword generate_word_parts: A value indicating whether to generate part words. If set, causes parts of words to be generated; for example "AzureSearch" becomes "Azure" "Search". Default is true. :paramtype generate_word_parts: bool :keyword generate_number_parts: A value indicating whether to generate number subwords. Default is true. :paramtype generate_number_parts: bool :keyword catenate_words: A value indicating whether maximum runs of word parts will be catenated. For example, if this is set to true, "Azure-Search" becomes "AzureSearch". Default is false. :paramtype catenate_words: bool :keyword catenate_numbers: A value indicating whether maximum runs of number parts will be catenated. For example, if this is set to true, "1-2" becomes "12". Default is false. :paramtype catenate_numbers: bool :keyword catenate_all: A value indicating whether all subword parts will be catenated. For example, if this is set to true, "Azure-Search-1" becomes "AzureSearch1". Default is false. :paramtype catenate_all: bool :keyword split_on_case_change: A value indicating whether to split words on caseChange. For example, if this is set to true, "AzureSearch" becomes "Azure" "Search". Default is true. :paramtype split_on_case_change: bool :keyword preserve_original: A value indicating whether original words will be preserved and added to the subword list. Default is false. :paramtype preserve_original: bool :keyword split_on_numerics: A value indicating whether to split on numbers. For example, if this is set to true, "Azure1Search" becomes "Azure" "1" "Search". Default is true. :paramtype split_on_numerics: bool :keyword stem_english_possessive: A value indicating whether to remove trailing "'s" for each subword. Default is true. :paramtype stem_english_possessive: bool :keyword protected_words: A list of tokens to protect from being delimited. :paramtype protected_words: list[str] """ super(WordDelimiterTokenFilter, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.WordDelimiterTokenFilter' # type: str self.generate_word_parts = kwargs.get('generate_word_parts', True) self.generate_number_parts = kwargs.get('generate_number_parts', True) self.catenate_words = kwargs.get('catenate_words', False) self.catenate_numbers = kwargs.get('catenate_numbers', False) self.catenate_all = kwargs.get('catenate_all', False) self.split_on_case_change = kwargs.get('split_on_case_change', True) self.preserve_original = kwargs.get('preserve_original', False) self.split_on_numerics = kwargs.get('split_on_numerics', True) self.stem_english_possessive = kwargs.get('stem_english_possessive', True) self.protected_words = kwargs.get('protected_words', None)
py
b4069f6f48a343a62755e3319cf1fdf6ad6b404e
import json import logging import multiprocessing import os from pathlib import Path from typing import Optional, Tuple, List import psutil as ps import re import shutil import subprocess import tempfile import time import traceback from datetime import datetime, timezone from ddtrace import tracer from ddtrace.ext import SpanTypes from django.conf import settings from usaspending_api.awards.v2.filters.filter_helpers import add_date_range_comparison_types from usaspending_api.awards.v2.lookups.lookups import contract_type_mapping, assistance_type_mapping, idv_type_mapping from usaspending_api.common.csv_helpers import count_rows_in_delimited_file, partition_large_delimited_file from usaspending_api.common.exceptions import InvalidParameterException from usaspending_api.common.helpers.orm_helpers import generate_raw_quoted_query from usaspending_api.common.helpers.s3_helpers import multipart_upload from usaspending_api.common.helpers.text_helpers import slugify_text_for_file_names from usaspending_api.common.retrieve_file_from_uri import RetrieveFileFromUri from usaspending_api.common.tracing import SubprocessTrace from usaspending_api.download.download_utils import construct_data_date_range from usaspending_api.download.filestreaming import NAMING_CONFLICT_DISCRIMINATOR from usaspending_api.download.filestreaming.download_source import DownloadSource from usaspending_api.download.filestreaming.file_description import build_file_description, save_file_description from usaspending_api.download.filestreaming.zip_file import append_files_to_zip_file from usaspending_api.download.helpers import verify_requested_columns_available, write_to_download_log as write_to_log from usaspending_api.download.lookups import JOB_STATUS_DICT, VALUE_MAPPINGS, FILE_FORMATS from usaspending_api.download.models import DownloadJob DOWNLOAD_VISIBILITY_TIMEOUT = 60 * 10 MAX_VISIBILITY_TIMEOUT = 60 * 60 * settings.DOWNLOAD_DB_TIMEOUT_IN_HOURS EXCEL_ROW_LIMIT = 1000000 WAIT_FOR_PROCESS_SLEEP = 5 JOB_TYPE = "USAspendingDownloader" logger = logging.getLogger(__name__) def generate_download(download_job: DownloadJob, origination: Optional[str] = None): """Create data archive files from the download job object""" # Parse data from download_job json_request = json.loads(download_job.json_request) columns = json_request.get("columns", None) limit = json_request.get("limit", None) piid = json_request.get("piid", None) award_id = json_request.get("award_id") assistance_id = json_request.get("assistance_id") file_format = json_request.get("file_format") request_type = json_request.get("request_type") span = tracer.current_span() if span and request_type: span.resource = request_type file_name = start_download(download_job) working_dir = None try: # Create temporary files and working directory zip_file_path = settings.CSV_LOCAL_PATH + file_name if not settings.IS_LOCAL and os.path.exists(zip_file_path): # Clean up a zip file that might exist from a prior attempt at this download os.remove(zip_file_path) working_dir = os.path.splitext(zip_file_path)[0] if not os.path.exists(working_dir): os.mkdir(working_dir) write_to_log(message=f"Generating {file_name}", download_job=download_job) # Generate sources from the JSON request object sources = get_download_sources(json_request, origination) for source in sources: # Parse and write data to the file; if there are no matching columns for a source then add an empty file source_column_count = len(source.columns(columns)) if source_column_count == 0: create_empty_data_file( source, download_job, working_dir, piid, assistance_id, zip_file_path, file_format ) else: download_job.number_of_columns += source_column_count parse_source( source, columns, download_job, working_dir, piid, assistance_id, zip_file_path, limit, file_format ) include_data_dictionary = json_request.get("include_data_dictionary") if include_data_dictionary: add_data_dictionary_to_zip(working_dir, zip_file_path) include_file_description = json_request.get("include_file_description") if include_file_description: write_to_log(message="Adding file description to zip file") file_description = build_file_description(include_file_description["source"], sources) file_description = file_description.replace("[AWARD_ID]", str(award_id)) file_description_path = save_file_description( working_dir, include_file_description["destination"], file_description ) append_files_to_zip_file([file_description_path], zip_file_path) download_job.file_size = os.stat(zip_file_path).st_size except InvalidParameterException as e: exc_msg = "InvalidParameterException was raised while attempting to process the DownloadJob" fail_download(download_job, e, exc_msg) raise InvalidParameterException(e) except Exception as e: # Set error message; job_status_id will be set in download_sqs_worker.handle() exc_msg = "An exception was raised while attempting to process the DownloadJob" fail_download(download_job, e, exc_msg) raise Exception(download_job.error_message) from e finally: # Remove working directory if working_dir and os.path.exists(working_dir): shutil.rmtree(working_dir) _kill_spawned_processes(download_job) # push file to S3 bucket, if not local if not settings.IS_LOCAL: with tracer.trace( name=f"job.{JOB_TYPE}.download.s3", service="bulk-download", resource=f"s3://{settings.BULK_DOWNLOAD_S3_BUCKET_NAME}", span_type=SpanTypes.WORKER, ) as span, tracer.trace( name="s3.command", service="aws.s3", resource=".".join( [multipart_upload.__module__, (multipart_upload.__qualname__ or multipart_upload.__name__)] ), span_type=SpanTypes.WEB, ) as s3_span: # NOTE: Traces still not auto-picking-up aws.s3 service upload activity # Could be that the patches for boto and botocore don't cover the newer boto3 S3Transfer upload approach span.set_tag("file_name", file_name) try: bucket = settings.BULK_DOWNLOAD_S3_BUCKET_NAME region = settings.USASPENDING_AWS_REGION s3_span.set_tags({"bucket": bucket, "region": region, "file": zip_file_path}) start_uploading = time.perf_counter() multipart_upload(bucket, region, zip_file_path, os.path.basename(zip_file_path)) write_to_log( message=f"Uploading took {time.perf_counter() - start_uploading:.2f}s", download_job=download_job ) except Exception as e: # Set error message; job_status_id will be set in download_sqs_worker.handle() exc_msg = "An exception was raised while attempting to upload the file" fail_download(download_job, e, exc_msg) if isinstance(e, InvalidParameterException): raise InvalidParameterException(e) else: raise Exception(download_job.error_message) from e finally: # Remove generated file if os.path.exists(zip_file_path): os.remove(zip_file_path) _kill_spawned_processes(download_job) return finish_download(download_job) def get_download_sources(json_request: dict, origination: Optional[str] = None): download_sources = [] for download_type in json_request["download_types"]: agency_id = json_request.get("agency", "all") filter_function = VALUE_MAPPINGS[download_type]["filter_function"] download_type_table = VALUE_MAPPINGS[download_type]["table"] if VALUE_MAPPINGS[download_type]["source_type"] == "award": # Award downloads # Use correct date range columns for advanced search # (Will not change anything for keyword search since "time_period" is not provided)) filters = add_date_range_comparison_types( json_request["filters"], is_subaward=download_type != "awards", gte_date_type="action_date", lte_date_type="date_signed", ) queryset = filter_function(filters) if filters.get("prime_and_sub_award_types") is not None: award_type_codes = set(filters["prime_and_sub_award_types"][download_type]) else: award_type_codes = set(filters["award_type_codes"]) if ( award_type_codes & (set(contract_type_mapping.keys()) | set(idv_type_mapping.keys())) or "procurement" in award_type_codes ): # only generate d1 files if the user is asking for contract data d1_source = DownloadSource( VALUE_MAPPINGS[download_type]["table_name"], "d1", download_type, agency_id, filters ) d1_filters = {f"{VALUE_MAPPINGS[download_type]['contract_data']}__isnull": False} d1_source.queryset = queryset & download_type_table.objects.filter(**d1_filters) download_sources.append(d1_source) if award_type_codes & set(assistance_type_mapping.keys()) or ("grant" in award_type_codes): # only generate d2 files if the user is asking for assistance data d2_source = DownloadSource( VALUE_MAPPINGS[download_type]["table_name"], "d2", download_type, agency_id, filters ) d2_filters = {f"{VALUE_MAPPINGS[download_type]['assistance_data']}__isnull": False} d2_source.queryset = queryset & download_type_table.objects.filter(**d2_filters) download_sources.append(d2_source) elif VALUE_MAPPINGS[download_type]["source_type"] == "account": # Account downloads account_source = DownloadSource( VALUE_MAPPINGS[download_type]["table_name"], json_request["account_level"], download_type, agency_id ) account_source.queryset = filter_function( download_type, VALUE_MAPPINGS[download_type]["table"], json_request["filters"], json_request["account_level"], ) download_sources.append(account_source) elif VALUE_MAPPINGS[download_type]["source_type"] == "disaster": # Disaster Page downloads disaster_source = DownloadSource( VALUE_MAPPINGS[download_type]["source_type"], VALUE_MAPPINGS[download_type]["table_name"], download_type, agency_id, ) disaster_source.award_category = json_request["award_category"] disaster_source.queryset = filter_function( json_request["filters"], download_type, VALUE_MAPPINGS[download_type]["base_fields"] ) download_sources.append(disaster_source) verify_requested_columns_available(tuple(download_sources), json_request.get("columns", [])) return download_sources def build_data_file_name(source, download_job, piid, assistance_id): d_map = {"d1": "Contracts", "d2": "Assistance", "treasury_account": "TAS", "federal_account": "FA"} if download_job and download_job.monthly_download: # For monthly archives, use the existing detailed zip filename for the data files # e.g. FY(All)-012_Contracts_Delta_20191108.zip -> FY(All)-012_Contracts_Delta_20191108_%.csv return strip_file_extension(download_job.file_name) file_name_pattern = VALUE_MAPPINGS[source.source_type]["download_name"] timestamp = datetime.strftime(datetime.now(timezone.utc), "%Y-%m-%d_H%HM%MS%S") if source.is_for_idv or source.is_for_contract: data_file_name = file_name_pattern.format(piid=slugify_text_for_file_names(piid, "UNKNOWN", 50)) elif source.is_for_assistance: data_file_name = file_name_pattern.format( assistance_id=slugify_text_for_file_names(assistance_id, "UNKNOWN", 50) ) elif source.source_type == "disaster_recipient": data_file_name = file_name_pattern.format(award_category=source.award_category, timestamp=timestamp) else: if source.agency_code == "all": agency = "All" else: agency = str(source.agency_code) request = json.loads(download_job.json_request) filters = request["filters"] if request.get("limit"): agency = "" elif source.file_type not in ("treasury_account", "federal_account"): agency = f"{agency}_" data_file_name = file_name_pattern.format( agency=agency, data_quarters=construct_data_date_range(filters), level=d_map[source.file_type], timestamp=timestamp, type=d_map[source.file_type], ) return data_file_name def parse_source(source, columns, download_job, working_dir, piid, assistance_id, zip_file_path, limit, file_format): """Write to delimited text file(s) and zip file(s) using the source data""" data_file_name = build_data_file_name(source, download_job, piid, assistance_id) source_query = source.row_emitter(columns) extension = FILE_FORMATS[file_format]["extension"] source.file_name = f"{data_file_name}.{extension}" source_path = os.path.join(working_dir, source.file_name) write_to_log(message=f"Preparing to download data as {source.file_name}", download_job=download_job) # Generate the query file; values, limits, dates fixed export_query = generate_export_query(source_query, limit, source, columns, file_format) temp_file, temp_file_path = generate_export_query_temp_file(export_query, download_job) start_time = time.perf_counter() try: # Create a separate process to run the PSQL command; wait psql_process = multiprocessing.Process(target=execute_psql, args=(temp_file_path, source_path, download_job)) psql_process.start() wait_for_process(psql_process, start_time, download_job) delim = FILE_FORMATS[file_format]["delimiter"] # Log how many rows we have write_to_log(message="Counting rows in delimited text file", download_job=download_job) try: download_job.number_of_rows += count_rows_in_delimited_file( filename=source_path, has_header=True, delimiter=delim ) except Exception: write_to_log( message="Unable to obtain delimited text file line count", is_error=True, download_job=download_job ) download_job.save() # Create a separate process to split the large data files into smaller file and write to zip; wait zip_process = multiprocessing.Process( target=split_and_zip_data_files, args=(zip_file_path, source_path, data_file_name, file_format, download_job), ) zip_process.start() wait_for_process(zip_process, start_time, download_job) download_job.save() except Exception as e: raise e finally: # Remove temporary files os.close(temp_file) os.remove(temp_file_path) def split_and_zip_data_files(zip_file_path, source_path, data_file_name, file_format, download_job=None): with SubprocessTrace( name=f"job.{JOB_TYPE}.download.zip", service="bulk-download", span_type=SpanTypes.WORKER, source_path=source_path, zip_file_path=zip_file_path, ) as span: try: # Split data files into separate files # e.g. `Assistance_prime_transactions_delta_%s.csv` log_time = time.perf_counter() delim = FILE_FORMATS[file_format]["delimiter"] extension = FILE_FORMATS[file_format]["extension"] output_template = f"{data_file_name}_%s.{extension}" write_to_log(message="Beginning the delimited text file partition", download_job=download_job) list_of_files = partition_large_delimited_file( file_path=source_path, delimiter=delim, row_limit=EXCEL_ROW_LIMIT, output_name_template=output_template ) span.set_tag("file_parts", len(list_of_files)) msg = f"Partitioning data into {len(list_of_files)} files took {time.perf_counter() - log_time:.4f}s" write_to_log(message=msg, download_job=download_job) # Zip the split files into one zipfile write_to_log(message="Beginning zipping and compression", download_job=download_job) log_time = time.perf_counter() append_files_to_zip_file(list_of_files, zip_file_path) write_to_log( message=f"Writing to zipfile took {time.perf_counter() - log_time:.4f}s", download_job=download_job ) except Exception as e: message = "Exception while partitioning text file" if download_job: fail_download(download_job, e, message) write_to_log(message=message, download_job=download_job, is_error=True) logger.error(e) raise e def start_download(download_job): # Update job attributes download_job.job_status_id = JOB_STATUS_DICT["running"] download_job.number_of_rows = 0 download_job.number_of_columns = 0 download_job.file_size = 0 download_job.save() write_to_log(message=f"Starting to process DownloadJob {download_job.download_job_id}", download_job=download_job) return download_job.file_name def finish_download(download_job): download_job.job_status_id = JOB_STATUS_DICT["finished"] download_job.save() write_to_log(message=f"Finished processing DownloadJob {download_job.download_job_id}", download_job=download_job) return download_job.file_name def wait_for_process(process, start_time, download_job): """Wait for the process to complete, throw errors for timeouts or Process exceptions""" log_time = time.perf_counter() # Let the thread run until it finishes (max MAX_VISIBILITY_TIMEOUT), with a buffer of DOWNLOAD_VISIBILITY_TIMEOUT sleep_count = 0 while process.is_alive(): if ( download_job and not download_job.monthly_download and (time.perf_counter() - start_time) > MAX_VISIBILITY_TIMEOUT ): break if sleep_count < 10: time.sleep(WAIT_FOR_PROCESS_SLEEP / 5) else: time.sleep(WAIT_FOR_PROCESS_SLEEP) sleep_count += 1 over_time = (time.perf_counter() - start_time) >= MAX_VISIBILITY_TIMEOUT if download_job and (not download_job.monthly_download and over_time) or process.exitcode != 0: if process.is_alive(): # Process is running for longer than MAX_VISIBILITY_TIMEOUT, kill it write_to_log( message=f"Attempting to terminate process (pid {process.pid})", download_job=download_job, is_error=True ) process.terminate() e = TimeoutError( f"DownloadJob {download_job.download_job_id} lasted longer than {MAX_VISIBILITY_TIMEOUT / 3600} hours" ) else: # An error occurred in the process e = Exception("Command failed. Please see the logs for details.") raise e return time.perf_counter() - log_time def generate_export_query(source_query, limit, source, columns, file_format): if limit: source_query = source_query[:limit] query_annotated = apply_annotations_to_sql(generate_raw_quoted_query(source_query), source.columns(columns)) options = FILE_FORMATS[file_format]["options"] return r"\COPY ({}) TO STDOUT {}".format(query_annotated, options) def generate_export_query_temp_file(export_query, download_job, temp_dir=None): write_to_log(message=f"Saving PSQL Query: {export_query}", download_job=download_job, is_debug=True) dir_name = "/tmp" if temp_dir: dir_name = temp_dir # Create a unique temporary file to hold the raw query, using \copy (temp_sql_file, temp_sql_file_path) = tempfile.mkstemp(prefix="bd_sql_", dir=dir_name) with open(temp_sql_file_path, "w") as file: file.write(export_query) return temp_sql_file, temp_sql_file_path def apply_annotations_to_sql(raw_query, aliases): """ Django's ORM understandably doesn't allow aliases to be the same names as other fields available. However, if we want to use the efficiency of psql's COPY method and keep the column names, we need to allow these scenarios. This function simply outputs a modified raw sql which does the aliasing, allowing these scenarios. """ cte_sql, select_statements = _select_columns(raw_query) DIRECT_SELECT_QUERY_REGEX = r'^[^ ]*\."[^"]*"$' # Django is pretty consistent with how it prints out queries # Create a list from the non-derived values between SELECT and FROM selects_list = [str for str in select_statements if re.search(DIRECT_SELECT_QUERY_REGEX, str)] # Create a list from the derived values between SELECT and FROM aliased_list = [str for str in select_statements if not re.search(DIRECT_SELECT_QUERY_REGEX, str.strip())] deriv_dict = {} for str in aliased_list: split_string = _top_level_split(str, " AS ") alias = split_string[1].replace('"', "").replace(",", "").strip() if alias not in aliases: raise Exception(f'alias "{alias}" not found!') deriv_dict[alias] = split_string[0] # Match aliases with their values values_list = [ f'{deriv_dict[alias] if alias in deriv_dict else selects_list.pop(0)} AS "{alias}"' for alias in aliases ] sql = raw_query.replace(_top_level_split(raw_query, "FROM")[0], "SELECT " + ", ".join(values_list), 1) if cte_sql: sql = f"{cte_sql} {sql}" # Now that we've converted the queryset to SQL, cleaned up aliasing for non-annotated fields, and sorted # the SELECT columns, there's one final step. The Django ORM does now allow alias names to conflict with # column/field names on the underlying model. For annotated fields, naming conflict exceptions occur at # the time they are applied to the queryset which means they never get to this function. To work around # this, we give them a temporary name that cannot conflict with a field name on the model by appending # the suffix specified by NAMING_CONFLICT_DISCRIMINATOR. Now that we have the "final" SQL, we must remove # that suffix. return sql.replace(NAMING_CONFLICT_DISCRIMINATOR, "") def _select_columns(sql: str) -> Tuple[str, List[str]]: in_quotes = False in_cte = False parens_depth = 0 last_processed_index = 0 cte_sql = None retval = [] for index, char in enumerate(sql): if char == '"': in_quotes = not in_quotes if in_quotes: continue if char == "(": parens_depth = parens_depth + 1 if in_cte: continue if char == ")": parens_depth = parens_depth - 1 if in_cte and parens_depth == 0: in_cte = False cte_sql = sql[: index + 1] last_processed_index = index if parens_depth == 0 and not in_cte: # Set flag to ignore the CTE if sql[index : index + 5] == "WITH ": in_cte = True # Ignore the SELECT statement if sql[index : index + 6] == "SELECT": last_processed_index = index + 6 # If there is a FROM at the bottom level, we have all the values we need and can return if sql[index : index + 4] == "FROM": retval.append(sql[last_processed_index:index].strip()) return cte_sql, retval # If there is a comma on the bottom level, add another select value and start parsing a new one if char == ",": retval.append(sql[last_processed_index:index].strip()) last_processed_index = index + 1 # skips the comma by design return cte_sql, retval # this will almost certainly error out later. def _top_level_split(sql, splitter): in_quotes = False parens_depth = 0 for index, char in enumerate(sql): if char == '"': in_quotes = not in_quotes if in_quotes: continue if char == "(": parens_depth = parens_depth + 1 if char == ")": parens_depth = parens_depth - 1 if parens_depth == 0: if sql[index : index + len(splitter)] == splitter: return [sql[:index], sql[index + len(splitter) :]] raise Exception(f"SQL string ${sql} cannot be split on ${splitter}") def execute_psql(temp_sql_file_path, source_path, download_job): """Executes a single PSQL command within its own Subprocess""" download_sql = Path(temp_sql_file_path).read_text() if download_sql.startswith("\\COPY"): # Trace library parses the SQL, but cannot understand the psql-specific \COPY command. Use standard COPY here. download_sql = download_sql[1:] # Stack 3 context managers: (1) psql code, (2) Download replica query, (3) (same) Postgres query with SubprocessTrace( name=f"job.{JOB_TYPE}.download.psql", service="bulk-download", resource=download_sql, span_type=SpanTypes.SQL, source_path=source_path, ), tracer.trace( name="postgres.query", service="db_downloaddb", resource=download_sql, span_type=SpanTypes.SQL ), tracer.trace( name="postgres.query", service="postgres", resource=download_sql, span_type=SpanTypes.SQL ): try: log_time = time.perf_counter() temp_env = os.environ.copy() if download_job and not download_job.monthly_download: # Since terminating the process isn't guaranteed to end the DB statement, add timeout to client connection temp_env["PGOPTIONS"] = f"--statement-timeout={settings.DOWNLOAD_DB_TIMEOUT_IN_HOURS}h" cat_command = subprocess.Popen(["cat", temp_sql_file_path], stdout=subprocess.PIPE) subprocess.check_output( ["psql", "-q", "-o", source_path, retrieve_db_string(), "-v", "ON_ERROR_STOP=1"], stdin=cat_command.stdout, stderr=subprocess.STDOUT, env=temp_env, ) duration = time.perf_counter() - log_time write_to_log( message=f"Wrote {os.path.basename(source_path)}, took {duration:.4f} seconds", download_job=download_job ) except Exception as e: if not settings.IS_LOCAL: # Not logging the command as it can contain the database connection string e.cmd = "[redacted psql command]" logger.error(e) sql = subprocess.check_output(["cat", temp_sql_file_path]).decode() logger.error(f"Faulty SQL: {sql}") raise e def retrieve_db_string(): """It is necessary for this to be a function so the test suite can mock the connection string""" return settings.DOWNLOAD_DATABASE_URL def strip_file_extension(file_name): return os.path.splitext(os.path.basename(file_name))[0] def fail_download(download_job, exception, message): stack_trace = "".join( traceback.format_exception(etype=type(exception), value=exception, tb=exception.__traceback__) ) download_job.error_message = f"{message}:\n{stack_trace}" download_job.job_status_id = JOB_STATUS_DICT["failed"] download_job.save() def add_data_dictionary_to_zip(working_dir, zip_file_path): write_to_log(message="Adding data dictionary to zip file") data_dictionary_file_name = "Data_Dictionary_Crosswalk.xlsx" data_dictionary_file_path = os.path.join(working_dir, data_dictionary_file_name) data_dictionary_url = settings.DATA_DICTIONARY_DOWNLOAD_URL RetrieveFileFromUri(data_dictionary_url).copy(data_dictionary_file_path) append_files_to_zip_file([data_dictionary_file_path], zip_file_path) def _kill_spawned_processes(download_job=None): """Cleanup (kill) any spawned child processes during this job run""" job = ps.Process(os.getpid()) for spawn_of_job in job.children(recursive=True): write_to_log( message=f"Attempting to terminate child process with PID [{spawn_of_job.pid}] and name " f"[{spawn_of_job.name}]", download_job=download_job, is_error=True, ) try: spawn_of_job.kill() except ps.NoSuchProcess: pass def create_empty_data_file( source: DownloadSource, download_job: DownloadJob, working_dir: str, piid: str, assistance_id: str, zip_file_path: str, file_format: str, ) -> None: data_file_name = build_data_file_name(source, download_job, piid, assistance_id) extension = FILE_FORMATS[file_format]["extension"] source.file_name = f"{data_file_name}.{extension}" source_path = os.path.join(working_dir, source.file_name) write_to_log( message=f"Skipping download of {source.file_name} due to no valid columns provided", download_job=download_job ) Path(source_path).touch() append_files_to_zip_file([source_path], zip_file_path)
py
b4069f9fa93b52d15b2b77484920decbbd7c5e69
import os import time import re import pytest from src.benchmark_metrics import ( TENSORFLOW2_INFERENCE_GPU_THRESHOLD, TENSORFLOW2_INFERENCE_CPU_THRESHOLD, TENSORFLOW1_INFERENCE_GPU_THRESHOLD, TENSORFLOW1_INFERENCE_CPU_THRESHOLD, ) from test.test_utils import BENCHMARK_RESULTS_S3_BUCKET, is_tf1 from test.test_utils.ec2 import ( ec2_performance_upload_result_to_s3_and_validate, post_process_inference, ) @pytest.mark.model("inception, RCNN-Resnet101-kitti, resnet50_v2, mnist, SSDResnet50Coco") @pytest.mark.parametrize("ec2_instance_type", ["p3.16xlarge"], indirect=True) def test_performance_ec2_tensorflow_inference_gpu(tensorflow_inference, ec2_connection, region, gpu_only): threshold = ( TENSORFLOW1_INFERENCE_GPU_THRESHOLD if is_tf1(tensorflow_inference) else TENSORFLOW2_INFERENCE_GPU_THRESHOLD ) ec2_performance_tensorflow_inference(tensorflow_inference, "gpu", ec2_connection, region, threshold) @pytest.mark.model("inception, RCNN-Resnet101-kitti, resnet50_v2, mnist, SSDResnet50Coco") @pytest.mark.parametrize("ec2_instance_type", ["c5.18xlarge"], indirect=True) def test_performance_ec2_tensorflow_inference_cpu(tensorflow_inference, ec2_connection, region, cpu_only): threshold = ( TENSORFLOW1_INFERENCE_CPU_THRESHOLD if is_tf1(tensorflow_inference) else TENSORFLOW2_INFERENCE_CPU_THRESHOLD ) ec2_performance_tensorflow_inference(tensorflow_inference, "cpu", ec2_connection, region, threshold) def ec2_performance_tensorflow_inference(image_uri, processor, ec2_connection, region, threshold): docker_cmd = "nvidia-docker" if processor == "gpu" else "docker" container_test_local_dir = os.path.join("$HOME", "container_tests") tf_version = "1" if is_tf1(image_uri) else "2" tf_api_version = "1.15" if tf_version == "1" else "2.3.0" # Make sure we are logged into ECR so we can pull the image ec2_connection.run(f"$(aws ecr get-login --no-include-email --region {region})", hide=True) ec2_connection.run(f"{docker_cmd} pull -q {image_uri} ") # Run performance inference command, display benchmark results to console ec2_connection.run(f"pip3 install -U pip") ec2_connection.run( f"pip3 install boto3 grpcio tensorflow-serving-api=={tf_api_version} --user --no-warn-script-location" ) time_str = time.strftime("%Y-%m-%d-%H-%M-%S") commit_info = os.getenv("CODEBUILD_RESOLVED_SOURCE_VERSION") log_file = f"synthetic_{commit_info}_{time_str}.log" ec2_connection.run( f"python3 {container_test_local_dir}/bin/benchmark/tf{tf_version}_serving_perf.py " f"--processor {processor} --docker_image_name {image_uri} --run_all_s3 --binary /usr/bin/tensorflow_model_server --get_perf --iterations 1000 " f"2>&1 | tee {log_file}" ) ec2_performance_upload_result_to_s3_and_validate( ec2_connection, image_uri, log_file, "synthetic", threshold, post_process_inference, log_file, )
py
b406a0679642125eb224bced65768bfbcd64ab08
import json escalation_config = { "share_reward": False, "shape_reward": False, "shape_beta": 0.8, "defect_coef": -0.9, "symmetry_plan": None } for i in range(10): escalation_config["defect_coef"] = - i / 10 json.dump(escalation_config, open(f"./env-configs/escalation-gw-rr/-0.{i}.json", "w"))
py
b406a109fb33bf521ecf9f3b2a9579c5bbd6c478
""" 保存autodata的唯一标识 create by judy 2019/08/15 """ import traceback from datetime import datetime import pytz from commonbaby.sql import (SqliteColumn, SqliteConn, SqliteTable, table_locker) from .sqliteconfig import SqliteConfig from .tbsqlitebase import TbSqliteBase class TbUnEXPDBData(TbSqliteBase): __tb_autodata: SqliteTable = SqliteTable( 'undata', True, SqliteColumn( colname='Id', coltype='INTEGER', nullable=False, is_primary_key=True, is_auto_increament=True, is_unique=True).set_index_new(), SqliteColumn(colname='UniqueId', nullable=False).set_index_new(), SqliteColumn(colname='DownloadTime', coltype='DATETIME', nullable=False), ) databasename = 'expdbdata' def __init__(self, dbcfg: SqliteConfig): TbSqliteBase.__init__(self, TbUnEXPDBData.__tb_autodata._tbname, dbcfg, TbUnEXPDBData.databasename) def _append_tables(self): self._conn_mngr.append_table(TbUnEXPDBData.__tb_autodata) @table_locker(__tb_autodata._tbname) def insert_identify(self, unique_info): """ 存储数据的唯一标识 :param unique_info: :return: """ sql = ''' INSERT INTO undata( UniqueId, DownloadTime )VALUES (?, ?) ''' time_str = datetime.now(pytz.timezone('Asia/Shanghai')).strftime('%Y-%m-%d %H:%M:%S') pars = (unique_info, time_str) res = False conn: SqliteConn = None try: conn: SqliteConn = self.connect_write(5) c = conn.cursor result = c.execute(sql, pars) if result is None or result.rowcount < 1: # or len(result) < 1: res = False else: res = True except: self._logger.error(f"Insert auto unique data error,err:{traceback.format_exc()}") finally: if conn is not None: conn.commit() conn.close() return res @table_locker(__tb_autodata._tbname) def identify_count(self, unique_info) -> bool: """ 查询数据库中是否已经下载了该数据 :param unique_info: :return: """ conn: SqliteConn = False res: bool = False sql = """select count(1) from undata where UniqueId=?""" pars = (unique_info,) try: for conn in self.connect_all(5): try: conn: SqliteConn = conn c = conn.cursor result = c.execute(sql, pars) for c in result: # print(c) if len(c) > 0 and c[0] > 0: res = True break except Exception as ex: conn._conn.rollback() raise ex finally: if conn is not None: conn.close() if res: break except: self._logger.error(f"Count auto unique data error,err:{traceback.format_exc()}") finally: if conn is not None: conn.commit() conn.close() return res
py
b406a2bd139ab2f7deff572cf02ef40f6f33a647
_base_ = [ '../_base_/datasets/ade20k_repeat.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k_adamw.py' ] norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='SDModuleMT', cfg_s=dict( type='EncoderDecoder', pretrained='pretrained/mit_b0.pth', backbone=dict( type='mit_b0', style='pytorch'), decode_head=dict( type='SegFormerHead', in_channels=[32, 64, 160, 256], in_index=[0, 1, 2, 3], feature_strides=[4, 8, 16, 32], channels=128, dropout_ratio=0.1, num_classes=150, norm_cfg=norm_cfg, align_corners=False, decoder_params=dict(embed_dim=256), loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), ), cfg_t=[dict( type='EncoderDecoder', backbone=dict( type='mit_b1', style='pytorch'), decode_head=dict( type='SegFormerHead', in_channels=[64, 128, 320, 512], in_index=[0, 1, 2, 3], feature_strides=[4, 8, 16, 32], channels=128, dropout_ratio=0.1, num_classes=150, norm_cfg=norm_cfg, align_corners=False, decoder_params=dict(embed_dim=256), loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), ), dict( type='EncoderDecoder', backbone=dict( type='mit_b2', style='pytorch'), decode_head=dict( type='SegFormerHead', in_channels=[64, 128, 320, 512], in_index=[0, 1, 2, 3], feature_strides=[4, 8, 16, 32], channels=128, dropout_ratio=0.1, num_classes=150, norm_cfg=norm_cfg, align_corners=False, decoder_params=dict(embed_dim=768), loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), ), dict( type='EncoderDecoder', backbone=dict( type='mit_b3', style='pytorch'), decode_head=dict( type='SegFormerHead', in_channels=[64, 128, 320, 512], in_index=[0, 1, 2, 3], feature_strides=[4, 8, 16, 32], channels=128, dropout_ratio=0.1, num_classes=150, norm_cfg=norm_cfg, align_corners=False, decoder_params=dict(embed_dim=768), loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), ), ], distillation = [ {'student_layer':'decode_head.linear_pred', 'teacher_layer':'decode_head.linear_pred', 'loss_name':'MTLoss', 'loss_config':{ 'weight':2, 'tau':1, 'reshape_config':'logits', 'resize_config':{'mode':'bilinear','align_corners':False}, 'transform_config':{'loss_type':'channel','group_size':10}, 'latestart_config':0, 'earlystop_config':120000, # 'rot_config':[0,100] }, }, {'student_layer':'decode_head.linear_pred', 'teacher_layer':'decode_head.linear_pred', 'loss_name':'MTLoss', 'loss_config':{ 'weight':2, 'tau':1, 'reshape_config':'logits', 'resize_config':{'mode':'bilinear','align_corners':False}, 'transform_config':{'loss_type':'channel','group_size':10}, 'latestart_config':100, 'earlystop_config':120000, # 'rot_config':[1,100] }, }, {'student_layer':'decode_head.linear_pred', 'teacher_layer':'decode_head.linear_pred', 'loss_name':'MTLoss', 'loss_config':{ 'weight':2, 'tau':1, 'reshape_config':'logits', 'resize_config':{'mode':'bilinear','align_corners':False}, 'transform_config':{'loss_type':'channel','group_size':10}, 'latestart_config':200, 'earlystop_config':120000, # 'rot_config':[2,100] }, }, ], t_pretrain = ['./pretrained/segformer.b1.512x512.ade.160k.pth',\ './pretrained/segformer.b2.512x512.ade.160k.pth', './pretrained/segformer.b3.512x512.ade.160k.pth'], train_cfg=dict(), test_cfg=dict(mode='whole'), ) optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9,0.999), weight_decay=0.01, paramwise_cfg=dict(custom_keys={'pos_block': dict(decay_mult=0.), 'norm': dict(decay_mult=0.), 'head': dict(lr_mult=10.) })) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) work_dir = '/apdcephfs/private_inchzhang/shared_info/10.24/MT_example' data = dict(samples_per_gpu=2) evaluation = dict(interval=16000, metric='mIoU') log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook', by_epoch=False), # dict(type='TensorboardLoggerHook') ]) # resume_from = ''
py
b406a2cc7eb18b9a9cb3e58d68c955aabff3078c
# -*- coding: utf-8 -*- """ S3 Extensions for gluon.dal.Field, reusable fields @requires: U{B{I{gluon}} <http://web2py.com>} @copyright: 2009-2018 (c) Sahana Software Foundation @license: MIT Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import datetime import sys from itertools import chain from uuid import uuid4 from gluon import * # Here are dependencies listed for reference: #from gluon import current #from gluon.html import * #from gluon.validators import * from gluon.storage import Storage from gluon.languages import lazyT from s3dal import Query, SQLCustomType from s3datetime import S3DateTime from s3navigation import S3ScriptItem from s3utils import s3_auth_user_represent, s3_auth_user_represent_name, s3_unicode, s3_str, S3MarkupStripper from s3validators import IS_ISO639_2_LANGUAGE_CODE, IS_ONE_OF, IS_UTC_DATE, IS_UTC_DATETIME from s3widgets import S3CalendarWidget, S3DateWidget # ============================================================================= class FieldS3(Field): """ S3 extensions of the gluon.sql.Field clas If Server Side Pagination is on, the proper CAST is needed to match the lookup table id """ def __init__(self, fieldname, type="string", length=None, default=None, required=False, requires="<default>", ondelete="CASCADE", notnull=False, unique=False, uploadfield=True, widget=None, label=None, comment=None, writable=True, readable=True, update=None, authorize=None, autodelete=False, represent=None, uploadfolder=None, compute=None, sortby=None): self.sortby = sortby Field.__init__(self, fieldname, type, length, default, required, requires, ondelete, notnull, unique, uploadfield, widget, label, comment, writable, readable, update, authorize, autodelete, represent, uploadfolder, compute) # ------------------------------------------------------------------------- def join_via(self, value): if self.type.find("reference") == 0: return Query(self, "=", value) else: return QueryS3(self, "join_via", value) # ============================================================================= class QueryS3(Query): """ S3 extensions of the gluon.sql.Query class If Server Side Pagination is on, the proper CAST is needed to match the string-typed id to lookup table id """ def __init__(self, left, op=None, right=None): if op != "join_via": Query.__init__(self, left, op, right) else: self.sql = "CAST(TRIM(%s,"|") AS INTEGER)=%s" % (left, right) # ============================================================================= def s3_fieldmethod(name, f, represent=None, search_field=None): """ Helper to attach a representation method to a Field.Method. @param name: the field name @param f: the field method @param represent: the representation function @param search_field: the field to use for searches - only used by datatable_filter currently - can only be a single field in the same table currently """ if represent is None and search_field is None: fieldmethod = Field.Method(name, f) else: class Handler(object): def __init__(self, method, row): self.method=method self.row=row def __call__(self, *args, **kwargs): return self.method(self.row, *args, **kwargs) if represent is not None: if hasattr(represent, "bulk"): Handler.represent = represent else: Handler.represent = staticmethod(represent) if search_field is not None: Handler.search_field = search_field fieldmethod = Field.Method(name, f, handler=Handler) return fieldmethod # ============================================================================= class S3ReusableField(object): """ DRY Helper for reusable fields: This creates neither a Table nor a Field, but just an argument store. The field is created with the __call__ method, which is faster than copying an existing field. """ def __init__(self, name, type="string", **attr): self.name = name self.__type = type self.attr = Storage(attr) # ------------------------------------------------------------------------- def __call__(self, name=None, **attr): if not name: name = self.name ia = Storage(self.attr) DEFAULT = "default" widgets = ia.pop("widgets", {}) if attr: empty = attr.pop("empty", True) if not empty: requires = ia.requires if requires: if not isinstance(requires, (list, tuple)): requires = [requires] if requires: r = requires[0] if isinstance(r, IS_EMPTY_OR): requires = r.other ia.update(requires=requires) widget = attr.pop("widget", DEFAULT) ia.update(**attr) else: widget = DEFAULT if isinstance(widget, basestring): if widget == DEFAULT and "widget" in ia: widget = ia.widget else: if not isinstance(widgets, dict): widgets = {DEFAULT: widgets} if widget != DEFAULT and widget not in widgets: raise NameError("Undefined widget: %s" % widget) else: widget = widgets.get(widget) ia.widget = widget if "script" in ia: if ia.script: if ia.comment: ia.comment = TAG[""](ia.comment, S3ScriptItem(script=ia.script)) else: ia.comment = S3ScriptItem(script=ia.script) del ia["script"] if ia.sortby is not None: return FieldS3(name, self.__type, **ia) else: return Field(name, self.__type, **ia) # ============================================================================= class S3Represent(object): """ Scalable universal field representation for option fields and foreign keys. Can be subclassed and tailored to the particular model where necessary. @group Configuration (in the model): __init__ @group API (to apply the method): __call__, multiple, bulk, render_list @group Prototypes (to adapt in subclasses): lookup_rows, represent_row, link @group Internal Methods: _setup, _lookup """ def __init__(self, lookup=None, key=None, fields=None, labels=None, options=None, translate=False, linkto=None, show_link=False, multiple=False, hierarchy=False, default=None, none=None, field_sep=" " ): """ Constructor @param lookup: the name of the lookup table @param key: the field name of the primary key of the lookup table, a field name @param fields: the fields to extract from the lookup table, a list of field names @param labels: string template or callable to represent rows from the lookup table, callables must return a string @param options: dictionary of options to lookup the representation of a value, overrides lookup and key @param multiple: web2py list-type (all values will be lists) @param hierarchy: render a hierarchical representation, either True or a string template like "%s > %s" @param translate: translate all representations (using T) @param linkto: a URL (as string) to link representations to, with "[id]" as placeholder for the key @param show_link: whether to add a URL to representations @param default: default representation for unknown options @param none: representation for empty fields (None or empty list) @param field_sep: separator to use to join fields """ self.tablename = lookup self.table = None self.key = key self.fields = fields self.labels = labels self.options = options self.list_type = multiple self.hierarchy = hierarchy self.translate = translate self.linkto = linkto self.show_link = show_link self.default = default self.none = none self.field_sep = field_sep self.setup = False self.theset = None self.queries = 0 self.lazy = [] self.lazy_show_link = False self.rows = {} # Attributes to simulate being a function for sqlhtml's represent() # Make sure we indicate only 1 position argument self.func_code = Storage(co_argcount = 1) self.func_defaults = None if hasattr(self, "lookup_rows"): self.custom_lookup = True else: self.lookup_rows = self._lookup_rows self.custom_lookup = False # ------------------------------------------------------------------------- def _lookup_rows(self, key, values, fields=[]): """ Lookup all rows referenced by values. (in foreign key representations) @param key: the key Field @param values: the values @param fields: the fields to retrieve """ fields.append(key) if len(values) == 1: query = (key == values[0]) else: query = key.belongs(values) rows = current.db(query).select(*fields) self.queries += 1 return rows # ------------------------------------------------------------------------- def represent_row(self, row, prefix=None): """ Represent the referenced row. (in foreign key representations) @param row: the row @return: the representation of the Row, or None if there is an error in the Row """ labels = self.labels translated = False if self.slabels: # String Template or lazyT try: row_dict = row.as_dict() except AttributeError: # Row just a dict/Storage after all? (e.g. custom lookup) row_dict = row # Represent None as self.none none = self.none for k, v in row_dict.items(): if v is None: row_dict[k] = self.none v = labels % row_dict elif self.clabels: # External Renderer v = labels(row) else: # Default values = [row[f] for f in self.fields if row[f] not in (None, "")] if len(values) > 1: # Multiple values => concatenate with separator if self.translate: # Translate items individually before concatenating T = current.T values = [T(v) if not type(v) is lazyT else v for v in values] translated = True sep = self.field_sep v = sep.join([s3_str(v) for v in values]) elif values: v = s3_str(values[0]) else: v = self.none if not translated and self.translate and not type(v) is lazyT: output = current.T(v) else: output = v if prefix and self.hierarchy: return self.htemplate % (prefix, output) return output # ------------------------------------------------------------------------- def link(self, k, v, row=None): """ Represent a (key, value) as hypertext link. - Typically, k is a foreign key value, and v the representation of the referenced record, and the link shall open a read view of the referenced record. - In the base class, the linkto-parameter expects a URL (as string) with "[id]" as placeholder for the key. @param k: the key @param v: the representation of the key @param row: the row with this key (unused in the base class) """ if self.linkto: k = s3_str(k) return A(v, _href=self.linkto.replace("[id]", k) \ .replace("%5Bid%5D", k)) else: return v # ------------------------------------------------------------------------- def __call__(self, value, row=None, show_link=True): """ Represent a single value (standard entry point). @param value: the value @param row: the referenced row (if value is a foreign key) @param show_link: render the representation as link """ self._setup() show_link = show_link and self.show_link if self.list_type: # Is a list-type => use multiple return self.multiple(value, rows=row, list_type=False, show_link=show_link) # Prefer the row over the value if row and self.table: value = row[self.key] # Lookup the representation if value: rows = [row] if row is not None else None items = self._lookup([value], rows=rows) if value in items: k, v = value, items[value] r = self.link(k, v, row=self.rows.get(k)) \ if show_link else items[value] else: r = self.default return r return self.none # ------------------------------------------------------------------------- def multiple(self, values, rows=None, list_type=True, show_link=True): """ Represent multiple values as a comma-separated list. @param values: list of values @param rows: the referenced rows (if values are foreign keys) @param show_link: render each representation as link """ self._setup() show_link = show_link and self.show_link # Get the values if rows and self.table: key = self.key values = [row[key] for row in rows] elif self.list_type and list_type: try: hasnone = None in values if hasnone: values = [i for i in values if i != None] values = list(set(chain.from_iterable(values))) if hasnone: values.append(None) except TypeError: raise ValueError("List of lists expected, got %s" % values) else: values = [values] if type(values) is not list else values # Lookup the representations if values: default = self.default items = self._lookup(values, rows=rows) if show_link: link = self.link rows = self.rows labels = [[link(k, s3_str(items[k]), row=rows.get(k)), ", "] if k in items else [default, ", "] for k in values] if labels: return TAG[""](list(chain.from_iterable(labels))[:-1]) else: return "" else: labels = [s3_str(items[k]) if k in items else default for k in values] if labels: return ", ".join(labels) return self.none # ------------------------------------------------------------------------- def bulk(self, values, rows=None, list_type=True, show_link=True): """ Represent multiple values as dict {value: representation} @param values: list of values @param rows: the rows @param show_link: render each representation as link @return: a dict {value: representation} @note: for list-types, the dict keys will be the individual values within all lists - and not the lists (simply because lists can not be dict keys). Thus, the caller would still have to construct the final string/HTML. """ self._setup() show_link = show_link and self.show_link # Get the values if rows and self.table: key = self.key _rows = self.rows values = set() add_value = values.add for row in rows: value = row[key] _rows[value] = row add_value(value) values = list(values) elif self.list_type and list_type: try: hasnone = None in values if hasnone: values = [i for i in values if i != None] values = list(set(chain.from_iterable(values))) if hasnone: values.append(None) except TypeError: raise ValueError("List of lists expected, got %s" % values) else: values = [values] if type(values) is not list else values # Lookup the representations if values: labels = self._lookup(values, rows=rows) if show_link: link = self.link rows = self.rows labels = dict((k, link(k, v, rows.get(k))) for k, v in labels.items()) for k in values: if k not in labels: labels[k] = self.default else: labels = {} labels[None] = self.none return labels # ------------------------------------------------------------------------- def render_list(self, value, labels, show_link=True): """ Helper method to render list-type representations from bulk()-results. @param value: the list @param labels: the labels as returned from bulk() @param show_link: render references as links, should be the same as used with bulk() """ show_link = show_link and self.show_link if show_link: labels = [(labels[v], ", ") if v in labels else (self.default, ", ") for v in value] if labels: return TAG[""](list(chain.from_iterable(labels))[:-1]) else: return "" else: return ", ".join([s3_str(labels[v]) if v in labels else self.default for v in value]) # ------------------------------------------------------------------------- def _setup(self): """ Lazy initialization of defaults """ if self.setup: return self.queries = 0 # Default representations messages = current.messages if self.default is None: self.default = s3_str(messages.UNKNOWN_OPT) if self.none is None: self.none = messages["NONE"] # Initialize theset if self.options is not None: if self.translate: T = current.T self.theset = dict((opt, T(label)) if isinstance(label, basestring) else (opt, label) for opt, label in self.options.items() ) else: self.theset = self.options else: self.theset = {} # Lookup table parameters and linkto if self.table is None: tablename = self.tablename if tablename: table = current.s3db.table(tablename) if table is not None: if self.key is None: self.key = table._id.name if not self.fields: if "name" in table: self.fields = ["name"] else: self.fields = [self.key] self.table = table if self.linkto is None and self.show_link: c, f = tablename.split("_", 1) self.linkto = URL(c=c, f=f, args=["[id]"], extension="") # What type of renderer do we use? labels = self.labels # String template? self.slabels = isinstance(labels, (basestring, lazyT)) # External renderer? self.clabels = callable(labels) # Hierarchy template if isinstance(self.hierarchy, basestring): self.htemplate = self.hierarchy else: self.htemplate = "%s > %s" self.setup = True # ------------------------------------------------------------------------- def _lookup(self, values, rows=None): """ Lazy lookup values. @param values: list of values to lookup @param rows: rows referenced by values (if values are foreign keys) optional """ theset = self.theset keys = {} items = {} lookup = {} # Check whether values are already in theset table = self.table for _v in values: v = _v if v is not None and table and isinstance(v, basestring): try: v = int(_v) except ValueError: pass keys[v] = _v if v is None: items[_v] = self.none elif v in theset: items[_v] = theset[v] else: lookup[v] = True if table is None or not lookup: return items if table and self.hierarchy: # Does the lookup table have a hierarchy? from s3hierarchy import S3Hierarchy h = S3Hierarchy(table._tablename) if h.config: def lookup_parent(node_id): parent = h.parent(node_id) if parent and \ parent not in theset and \ parent not in lookup: lookup[parent] = False lookup_parent(parent) return for node_id in lookup.keys(): lookup_parent(node_id) else: h = None else: h = None # Get the primary key pkey = self.key ogetattr = object.__getattribute__ try: key = ogetattr(table, pkey) except AttributeError: return items # Use the given rows to lookup the values pop = lookup.pop represent_row = self.represent_row represent_path = self._represent_path if rows and not self.custom_lookup: rows_ = dict((row[key], row) for row in rows) self.rows.update(rows_) for row in rows: k = row[key] if k not in theset: if h: theset[k] = represent_path(k, row, rows = rows_, hierarchy = h, ) else: theset[k] = represent_row(row) if pop(k, None): items[keys.get(k, k)] = theset[k] # Retrieve additional rows as needed if lookup: if not self.custom_lookup: try: # Need for speed: assume all fields are in table fields = [ogetattr(table, f) for f in self.fields] except AttributeError: # Ok - they are not: provide debug output and filter fields current.log.error(sys.exc_info()[1]) fields = [ogetattr(table, f) for f in self.fields if hasattr(table, f)] else: fields = [] rows = self.lookup_rows(key, lookup.keys(), fields=fields) rows = dict((row[key], row) for row in rows) self.rows.update(rows) if h: for k, row in rows.items(): if lookup.pop(k, None): items[keys.get(k, k)] = represent_path(k, row, rows = rows, hierarchy = h, ) else: for k, row in rows.items(): lookup.pop(k, None) items[keys.get(k, k)] = theset[k] = represent_row(row) # Anything left gets set to default if lookup: for k in lookup: items[keys.get(k, k)] = self.default return items # ------------------------------------------------------------------------- def _represent_path(self, value, row, rows=None, hierarchy=None): """ Recursive helper method to represent value as path in a hierarchy. @param value: the value @param row: the row containing the value @param rows: all rows from _loopup as dict @param hierarchy: the S3Hierarchy instance """ theset = self.theset if value in theset: return theset[value] prefix = None parent = hierarchy.parent(value) if parent: if parent in theset: prefix = theset[parent] elif parent in rows: prefix = self._represent_path(parent, rows[parent], rows=rows, hierarchy=hierarchy) result = self.represent_row(row, prefix=prefix) theset[value] = result return result # ============================================================================= class S3RepresentLazy(object): """ Lazy Representation of a field value, utilizes the bulk-feature of S3Represent-style representation methods """ def __init__(self, value, renderer): """ Constructor @param value: the value @param renderer: the renderer (S3Represent instance) """ self.value = value self.renderer = renderer self.multiple = False renderer.lazy.append(value) # ------------------------------------------------------------------------- def __repr__(self): return s3_str(self.represent()) # ------------------------------------------------------------------------- def represent(self): """ Represent as string """ value = self.value renderer = self.renderer if renderer.lazy: labels = renderer.bulk(renderer.lazy, show_link=False) renderer.lazy = [] else: labels = renderer.theset if renderer.list_type: if self.multiple: return renderer.multiple(value, show_link=False) else: return renderer.render_list(value, labels, show_link=False) else: if self.multiple: return renderer.multiple(value, show_link=False) else: return renderer(value, show_link=False) # ------------------------------------------------------------------------- def render(self): """ Render as HTML """ value = self.value renderer = self.renderer if renderer.lazy: labels = renderer.bulk(renderer.lazy) renderer.lazy = [] else: labels = renderer.theset if renderer.list_type: if not value: value = [] if self.multiple: if len(value) and type(value[0]) is not list: value = [value] return renderer.multiple(value) else: return renderer.render_list(value, labels) else: if self.multiple: return renderer.multiple(value) else: return renderer(value) # ------------------------------------------------------------------------- def render_node(self, element, attributes, name): """ Render as text or attribute of an XML element @param element: the element @param attributes: the attributes dict of the element @param name: the attribute name """ # Render value text = s3_unicode(self.represent()) # Strip markup + XML-escape if text and "<" in text: try: stripper = S3MarkupStripper() stripper.feed(text) text = stripper.stripped() except: pass # Add to node if text is not None: if element is not None: element.text = text else: attributes[name] = text return # ============================================================================= # Record identity meta-fields # Use URNs according to http://tools.ietf.org/html/rfc4122 s3uuid = SQLCustomType(type = "string", native = "VARCHAR(128)", encoder = lambda x: "%s" % (uuid4().urn if x == "" else str(x.encode("utf-8"))), decoder = lambda x: x) #if db and current.db._adapter.represent("X", s3uuid) != "'X'": # # Old web2py DAL, must add quotes in encoder # s3uuid = SQLCustomType(type = "string", # native = "VARCHAR(128)", # encoder = (lambda x: "'%s'" % (uuid4().urn # if x == "" # else str(x.encode("utf-8")).replace("'", "''"))), # decoder = (lambda x: x)) # Universally unique identifier for a record s3_meta_uuid = S3ReusableField("uuid", type=s3uuid, length = 128, notnull = True, unique = True, readable = False, writable = False, default = "") # Master-Copy-Index (for Sync) s3_meta_mci = S3ReusableField("mci", "integer", default = 0, readable = False, writable = False) def s3_uid(): return (s3_meta_uuid(), s3_meta_mci()) # ============================================================================= # Record "soft"-deletion meta-fields # "Deleted"-flag s3_meta_deletion_status = S3ReusableField("deleted", "boolean", default = False, readable = False, writable = False) # Parked foreign keys of a deleted record in JSON format # => to be restored upon "un"-delete s3_meta_deletion_fk = S3ReusableField("deleted_fk", #"text", readable = False, writable = False) # ID of the record replacing this record # => for record merger (de-duplication) s3_meta_deletion_rb = S3ReusableField("deleted_rb", "integer", readable = False, writable = False) def s3_deletion_status(): return (s3_meta_deletion_status(), s3_meta_deletion_fk(), s3_meta_deletion_rb()) # ============================================================================= # Record timestamp meta-fields s3_meta_created_on = S3ReusableField("created_on", "datetime", readable = False, writable = False, default = lambda: \ datetime.datetime.utcnow()) s3_meta_modified_on = S3ReusableField("modified_on", "datetime", readable = False, writable = False, default = lambda: \ datetime.datetime.utcnow(), update = lambda: \ datetime.datetime.utcnow()) def s3_timestamp(): return (s3_meta_created_on(), s3_meta_modified_on()) # ============================================================================= # Record authorship meta-fields def s3_authorstamp(): """ Record ownership meta-fields """ auth = current.auth utable = auth.settings.table_user if auth.is_logged_in(): # Not current.auth.user to support impersonation current_user = current.session.auth.user.id else: current_user = None if current.deployment_settings.get_ui_auth_user_represent() == "name": represent = s3_auth_user_represent_name else: represent = s3_auth_user_represent # Author of a record s3_meta_created_by = S3ReusableField("created_by", utable, readable = False, writable = False, requires = None, default = current_user, represent = represent, ondelete = "RESTRICT") # Last author of a record s3_meta_modified_by = S3ReusableField("modified_by", utable, readable = False, writable = False, requires = None, default = current_user, update = current_user, represent = represent, ondelete = "RESTRICT") return (s3_meta_created_by(), s3_meta_modified_by()) # ============================================================================= def s3_ownerstamp(): """ Record ownership meta-fields """ auth = current.auth utable = auth.settings.table_user # Individual user who owns the record s3_meta_owned_by_user = S3ReusableField("owned_by_user", utable, readable = False, writable = False, requires = None, # Not current.auth.user to support impersonation default = current.session.auth.user.id if auth.is_logged_in() else None, represent = lambda id: \ id and s3_auth_user_represent(id) or \ current.messages.UNKNOWN_OPT, ondelete="RESTRICT") # Role of users who collectively own the record s3_meta_owned_by_group = S3ReusableField("owned_by_group", "integer", readable = False, writable = False, requires = None, default = None, represent = S3Represent(lookup="auth_group", fields=["role"]) ) # Person Entity controlling access to this record s3_meta_realm_entity = S3ReusableField("realm_entity", "integer", default = None, readable = False, writable = False, requires = None, # use a lambda here as we don't # want the model to be loaded yet represent = lambda val: \ current.s3db.pr_pentity_represent(val)) return (s3_meta_owned_by_user(), s3_meta_owned_by_group(), s3_meta_realm_entity()) # ============================================================================= def s3_meta_fields(): """ Normal meta-fields added to every table """ # Approver of a record s3_meta_approved_by = S3ReusableField("approved_by", "integer", readable = False, writable = False, requires = None, represent = s3_auth_user_represent) fields = (s3_meta_uuid(), s3_meta_mci(), s3_meta_deletion_status(), s3_meta_deletion_fk(), s3_meta_deletion_rb(), s3_meta_created_on(), s3_meta_modified_on(), s3_meta_approved_by(), ) fields = (fields + s3_authorstamp() + s3_ownerstamp()) return fields def s3_all_meta_field_names(): return [field.name for field in s3_meta_fields()] # ============================================================================= # Reusable roles fields def s3_role_required(): """ Role Required to access a resource - used by GIS for map layer permissions management """ T = current.T gtable = current.auth.settings.table_group represent = S3Represent(lookup="auth_group", fields=["role"]) f = S3ReusableField("role_required", gtable, sortby="role", requires = IS_EMPTY_OR( IS_ONE_OF(current.db, "auth_group.id", represent, zero=T("Public"))), #widget = S3AutocompleteWidget("admin", # "group", # fieldname="role"), represent = represent, label = T("Role Required"), comment = DIV(_class="tooltip", _title="%s|%s" % (T("Role Required"), T("If this record should be restricted then select which role is required to access the record here."))), ondelete = "RESTRICT") return f() # ----------------------------------------------------------------------------- def s3_roles_permitted(name="roles_permitted", **attr): """ List of Roles Permitted to access a resource - used by CMS """ T = current.T represent = S3Represent(lookup="auth_group", fields=["role"]) if "label" not in attr: attr["label"] = T("Roles Permitted") if "sortby" not in attr: attr["sortby"] = "role" if "represent" not in attr: attr["represent"] = represent if "requires" not in attr: attr["requires"] = IS_EMPTY_OR(IS_ONE_OF(current.db, "auth_group.id", represent, multiple=True)) if "comment" not in attr: attr["comment"] = DIV(_class="tooltip", _title="%s|%s" % (T("Roles Permitted"), T("If this record should be restricted then select which role(s) are permitted to access the record here."))) if "ondelete" not in attr: attr["ondelete"] = "RESTRICT" f = S3ReusableField(name, "list:reference auth_group", **attr) return f() # ============================================================================= def s3_comments(name="comments", **attr): """ Return a standard Comments field """ from s3widgets import s3_comments_widget T = current.T if "label" not in attr: attr["label"] = T("Comments") if "represent" not in attr: # Support HTML markup attr["represent"] = lambda comments: \ XML(comments) if comments else current.messages["NONE"] if "widget" not in attr: attr["widget"] = s3_comments_widget if "comment" not in attr: attr["comment"] = DIV(_class="tooltip", _title="%s|%s" % \ (T("Comments"), T("Please use this field to record any additional information, including a history of the record if it is updated."))) f = S3ReusableField(name, "text", **attr) return f() # ============================================================================= def s3_currency(name="currency", **attr): """ Return a standard Currency field @ToDo: Move to a Finance module? """ settings = current.deployment_settings if "label" not in attr: attr["label"] = current.T("Currency") if "default" not in attr: attr["default"] = settings.get_fin_currency_default() if "requires" not in attr: currency_opts = settings.get_fin_currencies() attr["requires"] = IS_IN_SET(currency_opts.keys(), zero=None) if "writable" not in attr: attr["writable"] = settings.get_fin_currency_writable() f = S3ReusableField(name, length=3, **attr) return f() # ============================================================================= def s3_language(name="language", **attr): """ Return a standard Language field """ if "label" not in attr: attr["label"] = current.T("Language") if "default" not in attr: attr["default"] = current.deployment_settings.get_L10n_default_language() empty = attr.pop("empty", None) if empty: zero = "" else: zero = None list_from_settings = attr.pop("list_from_settings", True) select = attr.pop("select", None) # None = Full list translate = attr.pop("translate", True) if select or not list_from_settings: requires = IS_ISO639_2_LANGUAGE_CODE(select = select, sort = True, translate = translate, zero = zero, ) else: # Use deployment_settings to show a limited list requires = IS_ISO639_2_LANGUAGE_CODE(sort = True, translate = translate, zero = zero, ) if "requires" not in attr: if empty is False: attr["requires"] = requires else: # Default attr["requires"] = IS_EMPTY_OR(requires) if "represent" not in attr: attr["represent"] = requires.represent f = S3ReusableField(name, length=8, **attr) return f() # ============================================================================= def s3_date(name="date", **attr): """ Return a standard date-field @param name: the field name @keyword default: the field default, can be specified as "now" for current date, or as Python date @keyword past: number of selectable past months @keyword future: number of selectable future months @keyword widget: the form widget for the field, can be specified as "date" for S3DateWidget, "calendar" for S3CalendarWidget, or as a web2py FormWidget, defaults to "calendar" @keyword calendar: the calendar to use for this widget, defaults to current.calendar @keyword start_field: CSS selector for the start field for interval selection @keyword default_interval: the default interval @keyword default_explicit: whether the user must click the field to set the default, or whether it will automatically be set when the value for start_field is set @keyword set_min: CSS selector for another date/time widget to dynamically set the minimum selectable date/time to the value selected in this widget @keyword set_max: CSS selector for another date/time widget to dynamically set the maximum selectable date/time to the value selected in this widget @note: other S3ReusableField keywords are also supported (in addition to the above) @note: calendar-option requires widget="calendar" (default), otherwise Gregorian calendar is enforced for the field @note: set_min/set_max only supported for widget="calendar" (default) @note: interval options currently not supported by S3CalendarWidget, only available with widget="date" @note: start_field and default_interval should be given together @note: sets a default field label "Date" => use label-keyword to override if necessary @note: sets a default validator IS_UTC_DATE => use requires-keyword to override if necessary @note: sets a default representation S3DateTime.date_represent => use represent-keyword to override if necessary @ToDo: Different default field name in case we need to start supporting Oracle, where 'date' is a reserved word """ attributes = dict(attr) # Calendar calendar = attributes.pop("calendar", None) # Past and future options past = attributes.pop("past", None) future = attributes.pop("future", None) # Label if "label" not in attributes: attributes["label"] = current.T("Date") # Widget-specific options (=not intended for S3ReusableField) WIDGET_OPTIONS = ("start_field", "default_interval", "default_explicit", "set_min", "set_max", ) # Widget widget = attributes.get("widget", "calendar") widget_options = {} if widget == "date": # Legacy: S3DateWidget # @todo: deprecate (once S3CalendarWidget supports all legacy options) # Must use Gregorian calendar calendar = "Gregorian" # Past/future options if past is not None: widget_options["past"] = past if future is not None: widget_options["future"] = future # Supported additional widget options SUPPORTED_OPTIONS = ("start_field", "default_interval", "default_explicit", ) for option in WIDGET_OPTIONS: if option in attributes: if option in SUPPORTED_OPTIONS: widget_options[option] = attributes[option] del attributes[option] widget = S3DateWidget(**widget_options) elif widget == "calendar": # Default: calendar widget widget_options["calendar"] = calendar # Past/future options if past is not None: widget_options["past_months"] = past if future is not None: widget_options["future_months"] = future # Supported additional widget options SUPPORTED_OPTIONS = ("set_min", "set_max", ) for option in WIDGET_OPTIONS: if option in attributes: if option in SUPPORTED_OPTIONS: widget_options[option] = attributes[option] del attributes[option] widget = S3CalendarWidget(**widget_options) else: # Drop all widget options for option in WIDGET_OPTIONS: attributes.pop(option, None) attributes["widget"] = widget # Default value now = current.request.utcnow.date() if attributes.get("default") == "now": attributes["default"] = now # Representation if "represent" not in attributes: attributes["represent"] = lambda dt: \ S3DateTime.date_represent(dt, utc=True, calendar=calendar, ) # Validator if "requires" not in attributes: if past is None and future is None: requires = IS_UTC_DATE(calendar=calendar) else: from dateutil.relativedelta import relativedelta minimum = maximum = None if past is not None: minimum = now - relativedelta(months = past) if future is not None: maximum = now + relativedelta(months = future) requires = IS_UTC_DATE(calendar=calendar, minimum=minimum, maximum=maximum, ) empty = attributes.pop("empty", None) if empty is False: attributes["requires"] = requires else: # Default attributes["requires"] = IS_EMPTY_OR(requires) f = S3ReusableField(name, "date", **attributes) return f() # ============================================================================= def s3_datetime(name="date", **attr): """ Return a standard datetime field @param name: the field name @keyword default: the field default, can be specified as "now" for current date/time, or as Python date @keyword past: number of selectable past hours @keyword future: number of selectable future hours @keyword widget: form widget option, can be specified as "date" for date-only, or "datetime" for date+time (default), or as a web2py FormWidget @keyword calendar: the calendar to use for this field, defaults to current.calendar @keyword set_min: CSS selector for another date/time widget to dynamically set the minimum selectable date/time to the value selected in this widget @keyword set_max: CSS selector for another date/time widget to dynamically set the maximum selectable date/time to the value selected in this widget @note: other S3ReusableField keywords are also supported (in addition to the above) @note: sets a default field label "Date" => use label-keyword to override if necessary @note: sets a default validator IS_UTC_DATE/IS_UTC_DATETIME => use requires-keyword to override if necessary @note: sets a default representation S3DateTime.date_represent or S3DateTime.datetime_represent respectively => use the represent-keyword to override if necessary @ToDo: Different default field name in case we need to start supporting Oracle, where 'date' is a reserved word """ attributes = dict(attr) # Calendar calendar = attributes.pop("calendar", None) # Limits limits = {} for keyword in ("past", "future", "min", "max"): if keyword in attributes: limits[keyword] = attributes[keyword] del attributes[keyword] # Compute earliest/latest widget = attributes.pop("widget", None) now = current.request.utcnow if widget == "date": # Helper function to convert past/future hours into # earliest/latest datetime, retaining day of month and # time of day def limit(delta): current_month = now.month years, hours = divmod(-delta, 8760) months = divmod(hours, 744)[0] if months > current_month: years += 1 month = divmod((current_month - months) + 12, 12)[1] year = now.year - years return now.replace(month=month, year=year) earliest = limits.get("min") if not earliest: past = limits.get("past") if past is not None: earliest = limit(-past) latest = limits.get("max") if not latest: future = limits.get("future") if future is not None: latest = limit(future) else: # Compute earliest/latest earliest = limits.get("min") if not earliest: past = limits.get("past") if past is not None: earliest = now - datetime.timedelta(hours=past) latest = limits.get("max") if not latest: future = limits.get("future") if future is not None: latest = now + datetime.timedelta(hours=future) # Label if "label" not in attributes: attributes["label"] = current.T("Date") # Widget set_min = attributes.pop("set_min", None) set_max = attributes.pop("set_max", None) date_only = False if widget == "date": date_only = True widget = S3CalendarWidget(calendar = calendar, timepicker = False, minimum = earliest, maximum = latest, set_min = set_min, set_max = set_max, ) elif widget is None or widget == "datetime": widget = S3CalendarWidget(calendar = calendar, timepicker = True, minimum = earliest, maximum = latest, set_min = set_min, set_max = set_max, ) attributes["widget"] = widget # Default value if attributes.get("default") == "now": attributes["default"] = now # Representation represent = attributes.pop("represent", None) represent_method = None if represent == "date" or represent is None and date_only: represent_method = S3DateTime.date_represent elif represent is None: represent_method = S3DateTime.datetime_represent if represent_method: represent = lambda dt: represent_method(dt, utc=True, calendar=calendar, ) attributes["represent"] = represent # Validator and empty-option if "requires" not in attributes: if date_only: validator = IS_UTC_DATE else: validator = IS_UTC_DATETIME requires = validator(calendar=calendar, minimum=earliest, maximum=latest, ) empty = attributes.pop("empty", None) if empty is False: attributes["requires"] = requires else: attributes["requires"] = IS_EMPTY_OR(requires) f = S3ReusableField(name, "datetime", **attributes) return f() # END =========================================================================
py
b406a3049b2971409dcc609c774d0b77aed8d2c6
#!/usr/bin/env python """ This module contains some common routines used by other samples. """ # Python 2/3 compatibility from __future__ import print_function import sys PY3 = sys.version_info[0] == 3 if PY3: from functools import reduce import itertools as it # built-in modules import os from contextlib import contextmanager import cv2 as cv import numpy as np image_extensions = [".bmp", ".jpg", ".jpeg", ".png", ".tif", ".tiff", ".pbm", ".pgm", ".ppm"] class Bunch(object): def __init__(self, **kw): self.__dict__.update(kw) def __str__(self): return str(self.__dict__) def splitfn(fn): path, fn = os.path.split(fn) name, ext = os.path.splitext(fn) return path, name, ext def anorm2(a): return (a * a).sum(-1) def anorm(a): return np.sqrt(anorm2(a)) def homotrans(H, x, y): xs = H[0, 0] * x + H[0, 1] * y + H[0, 2] ys = H[1, 0] * x + H[1, 1] * y + H[1, 2] s = H[2, 0] * x + H[2, 1] * y + H[2, 2] return xs / s, ys / s def to_rect(a): a = np.ravel(a) if len(a) == 2: a = (0, 0, a[0], a[1]) return np.array(a, np.float64).reshape(2, 2) def rect2rect_mtx(src, dst): src, dst = to_rect(src), to_rect(dst) cx, cy = (dst[1] - dst[0]) / (src[1] - src[0]) tx, ty = dst[0] - src[0] * (cx, cy) M = np.float64([[cx, 0, tx], [0, cy, ty], [0, 0, 1]]) return M def lookat(eye, target, up=(0, 0, 1)): fwd = np.asarray(target, np.float64) - eye fwd /= anorm(fwd) right = np.cross(fwd, up) right /= anorm(right) down = np.cross(fwd, right) R = np.float64([right, down, fwd]) tvec = -np.dot(R, eye) return R, tvec def mtx2rvec(R): w, u, vt = cv.SVDecomp(R - np.eye(3)) p = vt[0] + u[:, 0] * w[0] # same as np.dot(R, vt[0]) c = np.dot(vt[0], p) s = np.dot(vt[1], p) axis = np.cross(vt[0], vt[1]) return axis * np.arctan2(s, c) def draw_str(dst, target, s): x, y = target cv.putText(dst, s, (x + 1, y + 1), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness=2, lineType=cv.LINE_AA) cv.putText(dst, s, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv.LINE_AA) class Sketcher: def __init__(self, windowname, dests, colors_func): self.prev_pt = None self.windowname = windowname self.dests = dests self.colors_func = colors_func self.dirty = False self.show() cv.setMouseCallback(self.windowname, self.on_mouse) def show(self): cv.imshow(self.windowname, self.dests[0]) def on_mouse(self, event, x, y, flags, param): pt = (x, y) if event == cv.EVENT_LBUTTONDOWN: self.prev_pt = pt elif event == cv.EVENT_LBUTTONUP: self.prev_pt = None if self.prev_pt and flags & cv.EVENT_FLAG_LBUTTON: for dst, color in zip(self.dests, self.colors_func()): cv.line(dst, self.prev_pt, pt, color, 5) self.dirty = True self.prev_pt = pt self.show() # palette data from matplotlib/_cm.py _jet_data = { "red": ((0.0, 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89, 1, 1), (1, 0.5, 0.5)), "green": ((0.0, 0, 0), (0.125, 0, 0), (0.375, 1, 1), (0.64, 1, 1), (0.91, 0, 0), (1, 0, 0)), "blue": ((0.0, 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65, 0, 0), (1, 0, 0)), } cmap_data = {"jet": _jet_data} def make_cmap(name, n=256): data = cmap_data[name] xs = np.linspace(0.0, 1.0, n) channels = [] eps = 1e-6 for ch_name in ["blue", "green", "red"]: ch_data = data[ch_name] xp, yp = [], [] for x, y1, y2 in ch_data: xp += [x, x + eps] yp += [y1, y2] ch = np.interp(xs, xp, yp) channels.append(ch) return np.uint8(np.array(channels).T * 255) def nothing(*arg, **kw): pass def clock(): return cv.getTickCount() / cv.getTickFrequency() @contextmanager def Timer(msg): print( msg, "...", ) start = clock() try: yield finally: print("%.2f ms" % ((clock() - start) * 1000)) class StatValue: def __init__(self, smooth_coef=0.5): self.value = None self.smooth_coef = smooth_coef def update(self, v): if self.value is None: self.value = v else: c = self.smooth_coef self.value = c * self.value + (1.0 - c) * v class RectSelector: def __init__(self, win, callback): self.win = win self.callback = callback cv.setMouseCallback(win, self.onmouse) self.drag_start = None self.drag_rect = None def onmouse(self, event, x, y, flags, param): x, y = np.int16([x, y]) # BUG if event == cv.EVENT_LBUTTONDOWN: self.drag_start = (x, y) return if self.drag_start: if flags & cv.EVENT_FLAG_LBUTTON: xo, yo = self.drag_start x0, y0 = np.minimum([xo, yo], [x, y]) x1, y1 = np.maximum([xo, yo], [x, y]) self.drag_rect = None if x1 - x0 > 0 and y1 - y0 > 0: self.drag_rect = (x0, y0, x1, y1) else: rect = self.drag_rect self.drag_start = None self.drag_rect = None if rect: self.callback(rect) def draw(self, vis): if not self.drag_rect: return False x0, y0, x1, y1 = self.drag_rect cv.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2) return True @property def dragging(self): return self.drag_rect is not None def grouper(n, iterable, fillvalue=None): """grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx""" args = [iter(iterable)] * n if PY3: output = it.zip_longest(fillvalue=fillvalue, *args) else: output = it.izip_longest(fillvalue=fillvalue, *args) return output def mosaic(w, imgs): """Make a grid from images. w -- number of grid columns imgs -- images (must have same size and format) """ imgs = iter(imgs) if PY3: img0 = next(imgs) else: img0 = imgs.next() pad = np.zeros_like(img0) imgs = it.chain([img0], imgs) rows = grouper(w, imgs, pad) return np.vstack(map(np.hstack, rows)) def getsize(img): h, w = img.shape[:2] return w, h def mdot(*args): return reduce(np.dot, args) def draw_keypoints(vis, keypoints, color=(0, 255, 255)): for kp in keypoints: x, y = kp.pt cv.circle(vis, (int(x), int(y)), 2, color)
py
b406a46d6097181d7fc672466b03a53844ab102f
#!/usr/bin/env python """A wrapper script around clang-format, suitable for linting multiple files and to use for continuous integration. This is an alternative API for the clang-format command line. It runs over multiple files and directories in parallel. A diff output is produced and a sensible exit code is returned. """ from __future__ import print_function, unicode_literals import argparse import codecs import difflib import fnmatch import io import errno import multiprocessing import os import signal import subprocess import sys import traceback from functools import partial try: from subprocess import DEVNULL # py3k except ImportError: DEVNULL = open(os.devnull, "wb") DEFAULT_EXTENSIONS = 'c,h,C,H,cpp,hpp,cc,hh,c++,h++,cxx,hxx' DEFAULT_CLANG_FORMAT_IGNORE = '.clang-format-ignore' class ExitStatus: SUCCESS = 0 DIFF = 1 TROUBLE = 2 def excludes_from_file(ignore_file): excludes = [] try: with io.open(ignore_file, 'r', encoding='utf-8') as f: for line in f: if line.startswith('#'): # ignore comments continue pattern = line.rstrip() if not pattern: # allow empty lines continue excludes.append(pattern) except EnvironmentError as e: if e.errno != errno.ENOENT: raise return excludes def list_files(files, recursive=False, extensions=None, exclude=None): if extensions is None: extensions = [] if exclude is None: exclude = [] out = [] for file in files: if recursive and os.path.isdir(file): for dirpath, dnames, fnames in os.walk(file): fpaths = [os.path.join(dirpath, fname) for fname in fnames] for pattern in exclude: # os.walk() supports trimming down the dnames list # by modifying it in-place, # to avoid unnecessary directory listings. dnames[:] = [ x for x in dnames if not fnmatch.fnmatch(os.path.join(dirpath, x), pattern) ] fpaths = [ x for x in fpaths if not fnmatch.fnmatch(x, pattern) ] for f in fpaths: ext = os.path.splitext(f)[1][1:] if ext in extensions: out.append(f) else: out.append(file) return out def make_diff(file, original, reformatted): return list( difflib.unified_diff( original, reformatted, fromfile='{}\t(original)'.format(file), tofile='{}\t(reformatted)'.format(file), n=3)) class DiffError(Exception): def __init__(self, message, errs=None): super(DiffError, self).__init__(message) self.errs = errs or [] class UnexpectedError(Exception): def __init__(self, message, exc=None): super(UnexpectedError, self).__init__(message) self.formatted_traceback = traceback.format_exc() self.exc = exc def run_clang_format_diff_wrapper(args, file): try: ret = run_clang_format_diff(args, file) return ret except DiffError: raise except Exception as e: raise UnexpectedError('{}: {}: {}'.format(file, e.__class__.__name__, e), e) def run_clang_format_diff(args, file): try: with io.open(file, 'r', encoding='utf-8') as f: original = f.readlines() except IOError as exc: raise DiffError(str(exc)) invocation = [args.clang_format_executable] if args.inplace: invocation.append("-i") if args.style is not None: invocation.append('--style') invocation.append(args.style) invocation.append(file) # Use of utf-8 to decode the process output. # # Hopefully, this is the correct thing to do. # # It's done due to the following assumptions (which may be incorrect): # - clang-format will returns the bytes read from the files as-is, # without conversion, and it is already assumed that the files use utf-8. # - if the diagnostics were internationalized, they would use utf-8: # > Adding Translations to Clang # > # > Not possible yet! # > Diagnostic strings should be written in UTF-8, # > the client can translate to the relevant code page if needed. # > Each translation completely replaces the format string # > for the diagnostic. # > -- http://clang.llvm.org/docs/InternalsManual.html#internals-diag-translation # # It's not pretty, due to Python 2 & 3 compatibility. encoding_py3 = {} if sys.version_info[0] >= 3: encoding_py3['encoding'] = 'utf-8' try: proc = subprocess.Popen( invocation, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, **encoding_py3) except OSError as exc: raise DiffError( "Command '{}' failed to start: {}".format( subprocess.list2cmdline(invocation), exc ) ) proc_stdout = proc.stdout proc_stderr = proc.stderr if sys.version_info[0] < 3: # make the pipes compatible with Python 3, # reading lines should output unicode encoding = 'utf-8' proc_stdout = codecs.getreader(encoding)(proc_stdout) proc_stderr = codecs.getreader(encoding)(proc_stderr) # hopefully the stderr pipe won't get full and block the process outs = list(proc_stdout.readlines()) errs = list(proc_stderr.readlines()) proc.wait() if proc.returncode: raise DiffError( "Command '{}' returned non-zero exit status {}".format( subprocess.list2cmdline(invocation), proc.returncode ), errs, ) # edited file has to read form disk if args.inplace: try: with io.open(file, 'r', encoding='utf-8') as f: outs = f.readlines() except IOError as exc: raise DiffError(str(exc)) return make_diff(file, original, outs), errs def bold_red(s): return '\x1b[1m\x1b[31m' + s + '\x1b[0m' def colorize(diff_lines): def bold(s): return '\x1b[1m' + s + '\x1b[0m' def cyan(s): return '\x1b[36m' + s + '\x1b[0m' def green(s): return '\x1b[32m' + s + '\x1b[0m' def red(s): return '\x1b[31m' + s + '\x1b[0m' for line in diff_lines: if line[:4] in ['--- ', '+++ ']: yield bold(line) elif line.startswith('@@ '): yield cyan(line) elif line.startswith('+'): yield green(line) elif line.startswith('-'): yield red(line) else: yield line def print_diff(diff_lines, use_color): if use_color: diff_lines = colorize(diff_lines) if sys.version_info[0] < 3: sys.stdout.writelines((l.encode('utf-8') for l in diff_lines)) else: sys.stdout.writelines(diff_lines) def print_trouble(prog, message, use_colors): error_text = 'error:' if use_colors: error_text = bold_red(error_text) print("{}: {} {}".format(prog, error_text, message), file=sys.stderr) def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--clang-format-executable', metavar='EXECUTABLE', help='path to the clang-format executable', default='clang-format') parser.add_argument( '--extensions', help='comma separated list of file extensions (default: {})'.format( DEFAULT_EXTENSIONS), default=DEFAULT_EXTENSIONS) parser.add_argument( '-r', '--recursive', action='store_true', help='run recursively over directories') parser.add_argument('files', metavar='file', nargs='+') parser.add_argument( '-q', '--quiet', action='store_true', help="disable output, useful for the exit code") parser.add_argument( '-j', metavar='N', type=int, default=0, help='run N clang-format jobs in parallel' ' (default number of cpus + 1)') parser.add_argument( '--color', default='auto', choices=['auto', 'always', 'never'], help='show colored diff (default: auto)') parser.add_argument( '-e', '--exclude', metavar='PATTERN', action='append', default=[], help='exclude paths matching the given glob-like pattern(s)' ' from recursive search') parser.add_argument( '-i', '--inplace', action='store_true', help='correct files in place') parser.add_argument( '-s', '--style', metavar="STRING_OR_FILE", action='store', help='pass file path or style to apply special formatting') args = parser.parse_args() # use default signal handling, like diff return SIGINT value on ^C # https://bugs.python.org/issue14229#msg156446 signal.signal(signal.SIGINT, signal.SIG_DFL) try: signal.SIGPIPE except AttributeError: # compatibility, SIGPIPE does not exist on Windows pass else: signal.signal(signal.SIGPIPE, signal.SIG_DFL) colored_stdout = False colored_stderr = False if args.color == 'always': colored_stdout = True colored_stderr = True elif args.color == 'auto': colored_stdout = sys.stdout.isatty() colored_stderr = sys.stderr.isatty() version_invocation = [args.clang_format_executable, str("--version")] try: subprocess.check_call(version_invocation, stdout=DEVNULL) except subprocess.CalledProcessError as e: print_trouble(parser.prog, str(e), use_colors=colored_stderr) return ExitStatus.TROUBLE except OSError as e: print_trouble( parser.prog, "Command '{}' failed to start: {}".format( subprocess.list2cmdline(version_invocation), e ), use_colors=colored_stderr, ) return ExitStatus.TROUBLE retcode = ExitStatus.SUCCESS excludes = excludes_from_file(DEFAULT_CLANG_FORMAT_IGNORE) excludes.extend(args.exclude) files = list_files( args.files, recursive=args.recursive, exclude=excludes, extensions=args.extensions.split(',')) if not files: return njobs = args.j if njobs == 0: njobs = multiprocessing.cpu_count() + 1 njobs = min(len(files), njobs) if njobs == 1: # execute directly instead of in a pool, # less overhead, simpler stacktraces it = (run_clang_format_diff_wrapper(args, file) for file in files) pool = None else: pool = multiprocessing.Pool(njobs) it = pool.imap_unordered( partial(run_clang_format_diff_wrapper, args), files) while True: try: outs, errs = next(it) except StopIteration: break except DiffError as e: print_trouble(parser.prog, str(e), use_colors=colored_stderr) retcode = ExitStatus.TROUBLE sys.stderr.writelines(e.errs) except UnexpectedError as e: print_trouble(parser.prog, str(e), use_colors=colored_stderr) sys.stderr.write(e.formatted_traceback) retcode = ExitStatus.TROUBLE # stop at the first unexpected error, # something could be very wrong, # don't process all files unnecessarily if pool: pool.terminate() break else: sys.stderr.writelines(errs) if outs == []: continue if not args.quiet: print_diff(outs, use_color=colored_stdout) if retcode == ExitStatus.SUCCESS: retcode = ExitStatus.DIFF return retcode if __name__ == '__main__': sys.exit(main())
py
b406a58548043d751fa9b1a1ce457725483cdac1
# -*- coding: utf-8 -*- def to_text(path, language='fra'): """Wraps Tesseract 4 OCR with custom language model. Parameters ---------- path : str path of electronic invoice in JPG or PNG format Returns ------- extracted_str : str returns extracted text from image in JPG or PNG format """ import subprocess from distutils import spawn import tempfile import time # Check for dependencies. Needs Tesseract and Imagemagick installed. if not spawn.find_executable('tesseract'): raise EnvironmentError('tesseract not installed.') if not spawn.find_executable('convert'): raise EnvironmentError('imagemagick not installed.') if not spawn.find_executable('gs'): raise EnvironmentError('ghostscript not installed.') with tempfile.NamedTemporaryFile(suffix='.tiff') as tf: # Step 1: Convert to TIFF gs_cmd = [ 'gs', '-q', '-dNOPAUSE', '-r600x600', '-sDEVICE=tiff24nc', '-sOutputFile=' + tf.name, path, '-c', 'quit', ] subprocess.Popen(gs_cmd) time.sleep(3) # Step 2: Enhance TIFF magick_cmd = [ 'convert', tf.name, '-colorspace', 'gray', '-type', 'grayscale', '-contrast-stretch', '0', '-sharpen', '0x1', 'tiff:-', ] p1 = subprocess.Popen(magick_cmd, stdout=subprocess.PIPE) tess_cmd = ['tesseract', '-l', language, '--oem', '1', '--psm', '3', 'stdin', 'stdout'] p2 = subprocess.Popen(tess_cmd, stdin=p1.stdout, stdout=subprocess.PIPE) out, err = p2.communicate() extracted_str = out return extracted_str
py
b406a5dc7444fe638510a635c22d06be132956de
from __future__ import absolute_import from __future__ import print_function from DeploymentDirector.rules import ActionSettings, ParamValueAssignation, Match from voluptuous import Schema import yaml import pytest action_settings = ActionSettings.binding() settings_1 = """ enabled: True labels: label1: value1 parameters: param1: one value param2: [two, values] """ settings_1 = yaml.safe_load(settings_1) settings_2 = """ parameters: the_repo: ${repo} the_branch: ${branch} the_ref: "${repo}#${branch}" """ settings_2 = yaml.safe_load(settings_2) @pytest.mark.parametrize('settings', [ settings_1, settings_2 ]) def test_action_settings(settings, match): def unwind(obj): if type(obj) in (list,tuple,set): for v in obj: unwind(v) elif type(obj) == dict: for v in obj.values(): unwind(v) else: yield v x = action_settings(settings) assert(isinstance(x, ActionSettings)) assert(all([isinstance(p,ParamValueAssignation) for p in x.parameters.values()])) print(x.parameters) x = x.resolve(match) print(x.parameters) assert(isinstance(x, ActionSettings)) assert(all([type(p) in (str,bool,int) for (k,p) in unwind(list(x.parameters.items()))]))
py
b406a648d4aa7db6b5dcd3b75d931e9a16f22e04
import os import sys import tempfile from .platform import OnPlatform, Platform #---------------------------------------------------------------------------------------------- class Runner: def __init__(self, nop=False): self.nop = nop def run(self, cmd, output_on_error=False, _try=False): print(cmd) sys.stdout.flush() if self.nop: return if output_on_error: fd, temppath = tempfile.mkstemp() os.close(fd) cmd = "{{ {}; }} >{} 2>&1".format(cmd, temppath) rc = os.system(cmd) if rc > 0: if output_on_error: os.system("cat {}".format(temppath)) os.remove(temppath) eprint("command failed: " + cmd) sys.stderr.flush() if not _try: sys.exit(1) return rc def has_command(self, cmd): return os.system("command -v " + cmd + " > /dev/null") == 0 #---------------------------------------------------------------------------------------------- class RepoRefresh(OnPlatform): def __init__(self, runner): OnPlatform.__init__(self) self.runner = runner def redhat_compat(self): pass def debian_compat(self): self.runner.run("apt-get -qq update -y") def macosx(self): self.runner.run("brew update || true") #---------------------------------------------------------------------------------------------- class Setup(OnPlatform): def __init__(self, nop=False): OnPlatform.__init__(self) self.runner = Runner(nop) self.stages = [0] self.platform = Platform() self.os = self.platform.os self.dist = self.platform.dist self.ver = self.platform.os_ver if self.has_command("python"): self.python = "python" elif self.has_command("python2"): self.python = "python2" elif self.has_command("python3"): self.python = "python3" if self.os == 'macosx': # this is required because osx pip installed are done with --user os.environ["PATH"] = os.environ["PATH"] + ':' + '$HOME/Library/Python/2.7/bin' if self.platform.is_debian_compat(): # prevents apt-get from interactively prompting os.environ["DEBIAN_FRONTEND"] = 'noninteractive' os.environ["PYTHONWARNINGS"] = 'ignore:DEPRECATION::pip._internal.cli.base_command' def setup(self): RepoRefresh(self.runner).invoke() self.invoke() def run(self, cmd, output_on_error=False, _try=False): return self.runner.run(cmd, output_on_error=output_on_error, _try=_try) def has_command(self, cmd): return self.runner.has_command(cmd) #------------------------------------------------------------------------------------------ def apt_install(self, packs, group=False, _try=False): self.run("apt-get -qq install -y " + packs, output_on_error=True, _try=_try) def yum_install(self, packs, group=False, _try=False): if not group: self.run("yum install -q -y " + packs, output_on_error=True, _try=_try) else: self.run("yum groupinstall -y " + packs, output_on_error=True, _try=_try) def dnf_install(self, packs, group=False, _try=False): if not group: self.run("dnf install -y " + packs, output_on_error=True, _try=_try) else: self.run("dnf groupinstall -y " + packs, output_on_error=True, _try=_try) def zypper_install(self, packs, group=False, _try=False): self.run("zipper --non-interactive install " + packs, output_on_error=True, _try=_try) def pacman_install(self, packs, group=False, _try=False): self.run("pacman --noconfirm -S " + packs, output_on_error=True, _try=_try) def brew_install(self, packs, group=False, _try=False): # brew will fail if package is already installed for pack in packs.split(): self.run("brew list {} &>/dev/null || brew install {}".format(pack, pack), output_on_error=True, _try=_try) def install(self, packs, group=False, _try=False): if self.os == 'linux': if self.dist == 'fedora': self.dnf_install(packs, group=group, _try=_try) elif self.dist == 'ubuntu' or self.dist == 'debian': self.apt_install(packs, group=group, _try=_try) elif self.dist == 'centos' or self.dist == 'redhat': self.yum_install(packs, group=group, _try=_try) elif self.dist == 'suse': self.zypper_install(packs, group=group, _try=_try) elif self.dist == 'arch': self.pacman_install(packs, group=group, _try=_try) else: Assert(False), "Cannot determine installer" elif self.os == 'macosx': self.brew_install(packs, group=group, _try=_try) else: Assert(False), "Cannot determine installer" def group_install(self, packs): self.install(packs, group=True) #------------------------------------------------------------------------------------------ def yum_add_repo(self, repourl, repo=""): if not self.has_command("yum-config-manager"): self.install("yum-utils") self.run("yum-config-manager -y --add-repo {}".format(repourl)) def apt_add_repo(self, repourl, repo=""): if not self.has_command("yum-config-manager"): self.install("software-properties-common") self.run("add-apt-repository -y {}".format(repourl)) self.run("apt-get -qq update") def dnf_add_repo(self, repourl, repo=""): if self.run("dnf config-manager 2>/dev/null", _try=True): self.install("dnf-plugins-core") self.run("dnf config-manager -y --add-repo {}".format(repourl)) def zypper_add_repo(self, repourl, repo=""): pass def pacman_add_repo(self, repourl, repo=""): pass def brew_add_repo(self, repourl, repo=""): pass def add_repo(self, repourl, repo=""): if self.os == 'linux': if self.dist == 'fedora': self.dnf_add_repo(repourl, repo=repo) elif self.dist == 'ubuntu' or self.dist == 'debian': self.apt_add_repo(repourl, repo=repo) elif self.dist == 'centos' or self.dist == 'redhat': self.yum_add_repo(repourl, repo=repo) elif self.dist == 'suse': self.zypper_add_repo(repourl, repo=repo) elif self.dist == 'arch': self.pacman_add_repo(repourl, repo=repo) else: Assert(False), "Cannot determine installer" elif self.os == 'macosx': self.brew_add_repo(packs, group=group, _try=_try) else: Assert(False), "Cannot determine installer" #------------------------------------------------------------------------------------------ def pip_install(self, cmd, _try=False): pip_user = '' if self.os == 'macosx': pip_user = '--user ' self.run("pip install --disable-pip-version-check " + pip_user + cmd, output_on_error=True, _try=_try) def pip3_install(self, cmd, _try=False): pip_user = '' if self.os == 'macosx': pip_user = '--user ' self.run("pip3 install --disable-pip-version-check " + pip_user + cmd, output_on_error=True, _try=_try) def setup_pip(self): get_pip = "set -e; wget -q https://bootstrap.pypa.io/get-pip.py -O /tmp/get-pip.py" if not self.has_command("pip"): # self.install("python3-distutils") self.install_downloaders() self.run(get_pip + "; " + self.python + " /tmp/get-pip.py", output_on_error=True) def install_downloaders(self): if self.os == 'linux': self.install("ca-certificates") self.install("curl wget") def install_git_lfs_on_linux(self): self.run("curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash") self.install("git-lfs")
py
b406a65f13e4e24796821fac7e045bd18d44b9ae
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 32 , FREQ = 'D', seed = 0, trendtype = "LinearTrend", cycle_length = 30, transform = "Fisher", sigma = 0.0, exog_count = 20, ar_order = 12);
py
b406a6b28e24b01043619519f0a60d56ea216ee3
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('iom', '0028_auto_20151204_1407'), ] operations = [ migrations.AlterModelOptions( name='alias', options={'verbose_name_plural': 'Aliassen'}, ), ]
py
b406a78a060027349f1d033b5392cb64bc888107
# Copyright (c) 2012-2021 Esri R&D Center Zurich # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # A copy of the license is available in the repository's LICENSE file. import sys import os import pyprt from pyprt.pyprt_utils import visualize_prt_results CS_FOLDER = os.path.dirname(os.path.realpath(__file__)) def asset_file(filename): return os.path.join(CS_FOLDER, 'data', filename) # PRT Initialization print('\nInitializing PRT.') pyprt.initialize_prt() if not pyprt.is_prt_initialized(): raise Exception('PRT is not initialized') # Data rpk = asset_file('candler.rpk') attrs = {} # Initial Shapes shape_geometry_1 = pyprt.InitialShape( [0, 0, 0, 0, 0, 100, 100, 0, 100, 100, 0, 0]) shape_geometry_2 = pyprt.InitialShape( [0, 0, 0, 0, 0, -10, -10, 0, -10, -10, 0, 0, -5, 0, -5]) # PRT Generation m = pyprt.ModelGenerator([shape_geometry_2, shape_geometry_1]) encoder_options = {'outputPath': '/tmp/pyprt_output'} os.makedirs(encoder_options['outputPath'], exist_ok=True) models = m.generate_model( [attrs], rpk, 'com.esri.prt.codecs.OBJEncoder', encoder_options) print('\nGenerated models located in '+encoder_options['outputPath']) # PRT End pyprt.shutdown_prt() print('\nShutdown PRT.')
py
b406a7dd2aa2ee796a0e7feeb736f2400ba61128
import os import numpy as np from PIL import Image from common_utils import save_as_hdf5 POSTFIX = ['.png','.jpg','.JPG','.Jpg','.jpeg','.bmp','.BMP','.tif'] DIM = (512,512) def postfix_search(input_path): ''' DFS for postfix searching which is beneficial for data converting. ''' postfix = set() if os.path.isdir(input_path): entry_iterator = os.scandir(input_path) for item in entry_iterator: if item.is_dir(): postfix = postfix.union(postfix_search(item.path)) else: postfix.add(os.path.splitext(item.name)[1]) return postfix def convert_to_npy(input_path,save_path): ''' Convert the raw data(e.g. jpg...) to numpy array and save as hdf5. Basic process operations: - normalization:[0,1] - resize:(512,512) - stack:single silce to 3d format ''' ID = [] if not os.path.exists(save_path): os.makedirs(save_path) if os.path.isdir(input_path): item_list = os.listdir(input_path) if len(item_list) > 0: if os.path.isfile(os.path.join(input_path,item_list[0])): patient_id = os.path.basename(input_path) ID.append(patient_id) hdf5_path = os.path.join(save_path,"%s.hdf5" % patient_id) try: # convert image to numpy array with fixed 2d-dim: DIM(512,512) item_list.sort(key=lambda x:int(x.split('.')[0])) img_list = [img_reader(os.path.join(input_path,item),DIM) for item in item_list] img_array = np.stack(img_list,axis=0) # (z,x,y) # save as hdf5, key='img' save_as_hdf5(img_array,hdf5_path,'img') except: print(input_path) pass else: for item in item_list: ID.extend(convert_to_npy(os.path.join(input_path,item),save_path)) return ID def img_reader(input_path,dim): ''' Image file reader, return image array. Other operation: - resize: fixed dim - normalize: [0,1] Args: - input path: file path - dim: a tuple of 2 integers ''' # graylevel mode img = Image.open(input_path).convert('L') # resize if need, mode=Image.NEAREST if img.size != dim: img = img.resize(dim,Image.NEAREST) # convert to numpy array, data type = np.float32 img_array = np.asarray(img,dtype=np.float32) # normalize:[0,255] -> [0.0,1.0] img_array = img_array / 255.0 return img_array if __name__ == "__main__": ''' # Part-1:search all file postfixes for converting input_path = '/staff/shijun/torch_projects/COVID-19_CLS/dataset/raw_data/Normal' postfix = postfix_search(input_path) print(postfix) ''' # Part-2:convert image to numpy array and save as hdf5 input_path = '/staff/shijun/torch_projects/COVID-19_CLS/dataset/raw_data/CP' save_path = '/staff/shijun/torch_projects/COVID-19_CLS/dataset/npy_data/CP' patient_id = convert_to_npy(input_path,save_path) print("CP %d samples done"%len(patient_id)) input_path = '/staff/shijun/torch_projects/COVID-19_CLS/dataset/raw_data/NCP' save_path = '/staff/shijun/torch_projects/COVID-19_CLS/dataset/npy_data/NCP' patient_id = convert_to_npy(input_path,save_path) print("NCP %d samples done"%len(patient_id)) input_path = '/staff/shijun/torch_projects/COVID-19_CLS/dataset/raw_data/Normal' save_path = '/staff/shijun/torch_projects/COVID-19_CLS/dataset/npy_data/Normal' patient_id = convert_to_npy(input_path,save_path) print("Normal %d samples done"%len(patient_id))
py
b406a85fe5f3c33054c3b005d9d13bbe11eaa3c1
from __future__ import print_function import numpy as np import tensorflow as tf import argparse import time import os from six.moves import cPickle from utils import TextLoader from model import Model def main(): parser = argparse.ArgumentParser() parser.add_argument('--save_dir', type=str, default='save', help='model directory to load stored checkpointed models from') parser.add_argument('-n', type=int, default=250, help='number of words to sample') parser.add_argument('--prime', type=str, default='gig', help='prime text') parser.add_argument('--pick', type=int, default=1, help='1 = weighted pick, 2 = beam search pick') parser.add_argument('--width', type=int, default=4, help='width of the beam search') parser.add_argument('--sample', type=int, default=1, help='0 to use max at each timestep, 1 to sample at each timestep, 2 to sample on spaces') parser.add_argument('--count', '-c', type=int, default=1, help='number of samples to print') parser.add_argument('--quiet', '-q', default=False, action='store_true', help='suppress printing the prime text (default false)') args = parser.parse_args() sample(args) def sample(args): with open(os.path.join(args.save_dir, 'config.pkl'), 'rb') as f: saved_args = cPickle.load(f) with open(os.path.join(args.save_dir, 'words_vocab.pkl'), 'rb') as f: words, vocab = cPickle.load(f) model = Model(saved_args, True) with tf.Session() as sess: tf.global_variables_initializer().run() saver = tf.train.Saver(tf.global_variables()) ckpt = tf.train.get_checkpoint_state(args.save_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) for _ in range(args.count): print(model.sample(sess, words, vocab, args.n, args.prime, args.sample, args.pick, args.width, args.quiet)) if __name__ == '__main__': main()
py
b406a9364fd615beb91b42aa48308d172afbcfc9
#!/usr/bin/env python3 import os, sys, time, re, string import datetime, pytz import subprocess import shutil from enum import Enum import platform import threading import yaml import firebase_admin from firebase_admin import credentials from firebase_admin import firestore import google.cloud.storage import google.cloud.logging import logging from tkbuild.job import TKBuildJob, TKWorkstepDef, JobStatus from tkbuild.project import TKBuildProject from tkbuild.artifact import TKArtifact # TKBUILD TODO # - Add build tags to builds to filter agents (e.g. win32, dev) # - Figure out "voting" or transaction based write for firebase to ensure only one agent runs a job # - Figure out reliable way to stop/resume build agent on mac class TKBuildAgentConfig(object): def __init__(self, agentConfigFile): self.googleCredentialFile = "MISSING" self.googleProjectId = "my-projectid-00000" self.projectConfigs = [] print("Initializing build agent from config ", agentConfigFile) if not os.path.exists(agentConfigFile): print("WARN: agent config file doesn't exist or can't be read:", agentConfigFile) else: with open(agentConfigFile) as fpconfig: docs = yaml.full_load(fpconfig) agentCfg = docs.get("build-agent") print( agentCfg['name'] ) print( agentCfg['desc'] ) for projectCfgDoc in docs['projects']: projectCfgData = projectCfgDoc['project'] project = TKBuildProject.createFromConfig( projectCfgData ) # An agent is a script that runs builds on a worker machine. One agent # may have multiple projects class TKBuildAgent(object): def __init__(self ): self.name = "unnamed-build-agent" self.desc = "TkBuild Build Agent" self.tkbuildDir = "/tmp/tkbuild/" self.googleCredentialFile = "MISSING" self.googleProjectId = "my-projectid-00000" self.dryRun = False self.projects = {} self.platform = platform.system() # e.g. "Darwin" self.serverDone = False self.updCount = 0 # mostly for debugging self.storage_client = None self.db = None self.jobList = [] # Will be populated from the jobs callback # Set when something has changed and the worker should # run an update self.changeEvent = threading.Event() # This is the currently running job. self.currentJob = None @classmethod def createFromConfig( cls, configData, tkBuildDir ): agentCfg = configData.get("build-agent") agent = cls() agent.name = agentCfg.get( 'name', agent.name ) agent.desc = agentCfg.get( 'desc', agent.desc ) agent.tkbuildDir = tkBuildDir gcloudConfig = agentCfg.get('gcloud', {} ) agent.googleCredentialFile = gcloudConfig.get( 'credfile', agent.googleCredentialFile ) agent.googleProjectId = gcloudConfig.get( 'project-id', agent.googleProjectId ) for projectCfgDoc in configData.get('projects'): projectCfgData = projectCfgDoc['project'] project = TKBuildProject.createFromConfig( projectCfgData ) if project: agent.projects[project.projectId] = project return agent def commitJobChanges( self, job): job_ref = self.jobs_ref.document( job.jobKey ) jobData = job.toFirebaseDict() job_ref.set( jobData ) def updateJobsList(self, jobs_ref ): newJobsList = [] for jobRef in jobs_ref: proj = self.projects[ jobRef.get('projectId') ] job = TKBuildJob.createFromFirebaseDict( proj, jobRef.id, jobRef ) newJobsList.append( job ) # TODO; wrap log_struct with something that can log to console too #self.logger.log_struct({ 'jobkey' : job.jobKey, 'worksteps' : job.worksteps } ) self.jobList = newJobsList logging.info( f"Updated jobs list (length {len(self.jobList)}).") def onJobsListChanged( self, jobs, changes, read_time): #print( "On jobslist changed: ", jobs ) logging.info( "Job list changed:") self.updateJobsList( jobs ) # alert the main build that we might need to do some work self.changeEvent.set() @classmethod def createFromConfigFile(cls, agentConfigFile ): # Use where the agent Cfg is located as the default for the build dir defaultTkBuildDir = os.path.split( agentConfigFile )[0] if not os.path.exists(agentConfigFile): logging.warning("WARN: agent config file doesn't exist or can't be read:", agentConfigFile) else: with open(agentConfigFile) as fpconfig: configData = yaml.full_load(fpconfig) return cls.createFromConfig( configData, defaultTkBuildDir ) def orderedProjects(self): projects = list( self.projects.values() ) projects.sort( key=lambda pp: pp.sortKey ) return projects def serverMainloop(self, db ): self.db = db # Set the jobs changed callback self.jobs_ref = db.collection(u'jobs') query_watch = self.jobs_ref.on_snapshot( self.onJobsListChanged ) #self.updateJobsList(jobs_ref.get() ) # for doc in jobs_ref.get(): # print(f'{doc.id} => {doc.to_dict()}') # Make some test jobs # testJob = TKBuildJob("testrepo") # testJob.commitVer = "f5c86435acd0af16561eeaaa74225d4b93829115" # testJob.worksteps = {"fetch": JobStatus.TODO, # "build": JobStatus.TODO } # testJob = TKBuildJob("tkwordlist") # testJob.commitVer = "05350960499b752bc13dd56144d6be8632ad82ca" # testJob.worksteps = {"fetch": JobStatus.TODO, # "build": JobStatus.TODO} # # print(f"Testjob: {testJob}") # testJobRef = db.collection(u'jobs').document() # testJobRef.set(testJob.toFirebaseDict()) # Run the mainloop while not self.serverDone: print("update ...") self.serverUpdate() self.changeEvent.wait( 60.0 ) # TODO: make timeout time an option self.changeEvent.clear() def serverUpdate(self): logging.info( f"Agent update ... {self.updCount}") self.updCount += 1 print( f" {len(self.jobList)} avail jobs:") # Check if there are any obsolete jobs, and delete them self.cleanupObsoleteJobs() # Check if there are any jobdirs that do not exist in the job list. If so, clean up those job dirs. self.cleanupOldJobDirs() # Check if there are jobs we can do for job in self.jobList: proj = self.projects[job.projectId] # Ignore jobs marked "RUN" ... this might be running on another node (todo) but # probably is just stale because firebase updates are not instant. if JobStatus.RUN in job.worksteps.values(): logging.warning("Job is marked RUN?? but we're not running it.") #sys.exit(1) continue # If the job has work left to do if job.hasWorkRemaining( proj.workstepNames ): print("job ", job, "has work left...") self.currentJob = job break else: print( "No work remains", job, job.worksteps ) # Did we find a job to run? if self.currentJob == None: logging.info("No matching jobs found to run.") else: # run the job self.runNextJobStep( self.currentJob ) # clear the current job self.currentJob = None # Check if there are any jobs with todo worksteps that match the project and platform for this agent. # (todo: sort/priority for these) If so: # - Change workstep status to “running” # - Do the workstep (call $PROJECT_DIR/workdir/$REPO_NAME/tkbuild workstep) # - Change the workstep status to “Completed” or “Failed” def cleanupOldProjectJobs(self, proj, projJobExpireDate ): print("cleanupOldProjectJobs", proj.projectId, len(self.jobList) ) for job in self.jobList: if (job.projectId==proj.projectId) and (job.timestamp < projJobExpireDate): self.db.collection(u'jobs').document(job.jobKey).delete() def cleanupObsoleteJobs(self): if len(self.jobList)==0: return for proj in self.projects.values(): projJobExpireDate = datetime.datetime.now( tz=pytz.UTC ) - datetime.timedelta( minutes=proj.jobDeleteAge ) print(f"Project {proj.projectId} will expire jobs before {projJobExpireDate}") self.cleanupOldProjectJobs( proj, projJobExpireDate ) def cleanupOldJobDirs(self ): # Make a list of the jobkeys we have for easy lookup haveJobKeys = set() for job in self.jobList: haveJobKeys.add( job.jobKey ) # Look in the project workdir for any jobdirs that # match the pattern for a jobdir for proj in self.projects.values(): for dir in os.listdir( proj.workDir ): dsplit = dir.split( "_" ) if len (dsplit) != 2: continue dirProj, jobKey = dsplit if dirProj != proj.projectId: continue if len(jobKey) != 20: continue # At this point we are pretty sure this is a work dir, and # can infer the jobkey from the workdir if jobKey in haveJobKeys: print ("Nope this is an active job") continue # Also look for other dirs listed in cleanupDirs workDir = os.path.join( proj.workDir, dir ) cleanupDirs = [ workDir ] workname = proj.projectId + "_" + jobKey for extraDir in proj.cleanupDirs: dir2 = self.replacePathVars2( extraDir, workDir, proj, None, workname ) # Make sure there are no unexpanded vars, kind of a hack but if dir2.find("$")==-1: cleanupDirs.append( dir2 ) for cleanDir in cleanupDirs: if os.path.exists( cleanDir ): logging.info( f"Cleaning up old workdir {cleanDir}" ) shutil.rmtree( cleanDir ) def failJob(self, job, wsdefFailed ): logging.error( f"Job {job.jobKey}:{wsdefFailed.stepname} failed.") # Go through the worksteps until we find the one that failed. # Mark it as failed, and any subsequent ones as cancelled proj = self.projects[job.projectId] foundFailedStep = False for wsdef in proj.workstepDefs: if not foundFailedStep and wsdef.stepname == wsdefFailed.stepname: foundFailedStep = True job.setWorkstepStatus( wsdef.stepname, JobStatus.FAIL ) elif foundFailedStep and job.worksteps[ wsdef.stepname ] == JobStatus.TODO: job.setWorkstepStatus(wsdef.stepname, JobStatus.CANCEL) self.commitJobChanges( job ) def archiveLog(self, job, wsdef, workstepLog ): proj = self.projects[job.projectId] # Check that we're configured to publish stuff if not proj.bucketName: logging.warning("archiveLog: No bucketName set in project, can't archive log.") return False # Make sure the file exists if not os.path.exists(workstepLog): logging.warning( f"archiveLog: Workstep log file {workstepLog} does not exist." ) return False else: logging.info(f"Archiving {workstepLog} to bucket {proj.bucketName}") if self.storage_client is None: self.storage_client = google.cloud.storage.Client() logFilename = os.path.split(workstepLog)[-1] bucket = self.storage_client.bucket(proj.bucketName) blobName = os.path.join(proj.projectId, job.jobKey, "logs", logFilename) blob = bucket.blob(blobName) result = blob.upload_from_filename(workstepLog, content_type="text/plain;charset=UTF-8") logArchiveUrl = f"https://{bucket.name}.storage.googleapis.com/{blob.name}" logging.info(f"Result of upload is {logArchiveUrl}") def replacePathVars(self, origPath, workdirRepoPath, proj, job ): return self.replacePathVars2( origPath, workdirRepoPath, proj, job, job.jobDirShort ) def replacePathVars2(self, origPath, workdirRepoPath, proj, job, workname ): vars = { "TKBUILD" : self.tkbuildDir, "WORKDIR" : workdirRepoPath, "PROJWORKDIR" : proj.workDir, "WORKNAME": workname, } if job: vars.update( { "COMMIT": job.commitVer, "VERSION": job.version, "BUILDNUM": str(job.buildNum) }) result = origPath for varname, value in vars.items(): varstr = "$" + varname if result.find( varstr ) != -1: result = result.replace( varstr, value ) # result = origPath.replace("$TKBUILD", self.tkbuildDir) # result = result.replace("$WORKDIR", workdirRepoPath) return result def publishArtifact( self, proj, job, wsdef, workdirRepoPath ): # Check that we're configured to publish stuff if not proj.bucketName: logging.warning("publishArtifact: No bucketName set in project, can't publish.") return False # Make sure the file exists artifactFile = wsdef.artifact artifactFile = self.replacePathVars( artifactFile, workdirRepoPath, proj, job ) if not os.path.exists( artifactFile ): failMsg = f"Artifact file {artifactFile} does not exist." logging.warning( failMsg ) job.lastError = failMsg return False else: logging.info( f"Publishing {artifactFile} to bucket {proj.bucketName}") if self.storage_client is None: self.storage_client = google.cloud.storage.Client() artifactFileName = os.path.split( artifactFile )[-1] bucket = self.storage_client.bucket( proj.bucketName ) blobName = os.path.join( proj.projectId, job.jobKey, artifactFileName) blob = bucket.blob( blobName ) result = blob.upload_from_filename( artifactFile ) artifactUrl = f"https://storage.googleapis.com/{bucket.name}/{blob.name}" logging.info( f"Result of upload is {artifactUrl}") # Make an artifact entry in the DB artifact = TKArtifact() artifact.project = proj.projectId artifact.commitVer = job.commitVer artifact.jobKey = job.jobKey artifact.builtfile = artifactUrl # If the artifact has a manifestBundleId, make a manifest for it if proj.manifestBundleId: artifact.addManifestInfo( proj.manifestAppTitle, proj.manifestBundleId, job.version, job.buildNum, artifactUrl ) # maybe want to make this more configurable manifestName = f"{proj.projectId}_manifest_{job.version}_build_{job.buildNum}.plist" manifestBlobName = os.path.join( proj.projectId, job.jobKey, manifestName) manifestBlob = bucket.blob( manifestBlobName ) result = manifestBlob.upload_from_string( artifact.generateManifestFile()) manifestUrl = f"https://storage.googleapis.com/{bucket.name}/{manifestBlob.name}" artifact.manifest['manifestURL'] = manifestUrl logging.info( f"Uploaded IOS manifest to {manifestUrl}" ) pubArtifactRef = self.db.collection(u'artifacts').document() pubArtifactRef.set( artifact.toFirebaseDict() ) logging.info( f"Added artifact with ref {pubArtifactRef.id}") return True def peekVersion( self, job, versionFile ): if not os.path.exists( versionFile ): logging.warning( f"Version file {versionFile} does not exist.") return with open( versionFile ) as fp: verLine = fp.readline().strip() if verLine: job.version = verLine logging.info( f"PeekVersion: Version is {job.version}" ) def runNextJobStep(self, job ): logging.info("Run next job step....") # Go through the worksteps defined for this project and # do the next one that needs to be done for this job proj = self.projects[ job.projectId ] for wsdef in proj.workstepDefs: if ((wsdef.stepname in job.worksteps) and (job.worksteps[wsdef.stepname] == JobStatus.TODO)): # Mark this workstep as running job.setWorkstepStatus(wsdef.stepname, JobStatus.RUN) self.commitJobChanges( job ) # Open a logfile for this workstep workstepLog = os.path.join( proj.workDir, "logs", job.jobDirShort + "_" + wsdef.stepname ) logPath = os.path.split( workstepLog )[0] os.makedirs( logPath, exist_ok=True ) with open( workstepLog, "wt") as fpLog: fpLog.write( f"WORKSTEP: {wsdef.stepname}\n" ) # Extra magic for 'fetch' and 'build' for now if wsdef.stepname == 'fetch': if not self.workstepFetch( job, wsdef, fpLog ): logging.warning("fetch workstep FAILED.") # The fetch failed for some reason, fail the workstep self.failJob( job, wsdef ) break else: logging.info("fetch succeeded, marking as DONE") job.setWorkstepStatus(wsdef.stepname, JobStatus.DONE) self.commitJobChanges(job) elif wsdef.stepname == 'build': job.buildNum = proj.incrementBuildNumber( job.jobKey, self.db ) # Common workstep steps logging.info( f"Will do job step {wsdef.stepname}" ) workdirRepoPath = os.path.join(proj.workDir, job.jobDirShort) if wsdef.cmd: # Fixme: allow array args or something to handle spaces in args stepCmd = [] for stepCmdSplit in wsdef.cmd.split(): #print ("SPLIT", stepCmdSplit) # Replace the project dirs stepCmdSplit = self.replacePathVars( stepCmdSplit, workdirRepoPath, proj, job ) stepCmd.append( stepCmdSplit ) print("step command is ", stepCmd ) result, cmdTime = self.echoRunCommand( stepCmd, fpLog, self, job ) elif wsdef.stepname != 'fetch': # Fetch might not have a cmd, but other steps probably will logging.warning(f"Workstep {job.projectId}:{wsdef.stepname} has no cmd defined.") result = 0 # treat as done cmdTime = datetime.timedelta(0) if result == 0: # Did succeed? logging.info(f"Workstep {job.projectId}:{wsdef.stepname} completed success.") # If this workstep generates a version number, retrieve it now if wsdef.peekVersion: versionFile = self.replacePathVars( wsdef.peekVersion, workdirRepoPath, proj, job ) self.peekVersion( job, versionFile ) # And set the status to done job.setWorkstepStatus(wsdef.stepname, JobStatus.DONE ) self.commitJobChanges(job) # If this workstep made an artifact that should get published, do so logging.info( f"wsdef artifact is {wsdef.artifact}") if wsdef.artifact: if not self.publishArtifact( proj, job, wsdef, workdirRepoPath ): self.failJob( job, wsdef ) else: # Step failed, fail the whole job :_( self.failJob( job, wsdef ) # Workstep finished, archive the log file self.archiveLog(job, wsdef, workstepLog) # we did one workstep here, so don't keep looking for available ones. We'll # get the next one the next time through the loop break def makePristineRepoPath(self, proj ): pristineRepoPath = os.path.join(proj.projectDir, proj.projectId + "_pristine") return pristineRepoPath def getRecentCommits(self, proj ): pristineRepoPath = self.makePristineRepoPath( proj) if not os.path.exists(pristineRepoPath): # Don't implicitly pull the repo here return [] gitCmd = ["git", "-C", pristineRepoPath, "log", "--oneline", "--no-decorate", "-n","20" ] print( "gitCmd is ", gitCmd ) # PIPE nonsense does capture_output in py3.6 #result = subprocess.run( gitCmd, capture_output=True ) result = subprocess.run( gitCmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) if result.returncode: return [ "ERROR in git log" ] else: commitList = [] for line in result.stdout.decode("utf-8").split("\n"): if line: commitList.append( line ) return commitList def updatePristineRepo( self, proj, wsdef, fpLog ): # see if the "pristine repo" exists pristineRepoPath = self.makePristineRepoPath( proj ) if not os.path.exists( pristineRepoPath ): logging.info(f"Cloning pristine repo {pristineRepoPath}") gitCmd = [ "git", "clone", wsdef.repoUrl, pristineRepoPath ] retVal, cmdTime = self.echoRunCommand( gitCmd, fpLog ) else: logging.info(f"Pristine repo exists at {pristineRepoPath}") # Bring the pristine repo up to date with remote main gitPullCmd = [ "git", "-C", pristineRepoPath, "pull" ] retVal, cmdTime = self.echoRunCommand(gitPullCmd, fpLog ) if retVal: return None return pristineRepoPath # I don't like this workstep being hardcoded in the agent but not sure exactly # how I want it to look so I'm putting it here for now. def workstepFetch(self, job, wsdef, fpLog ): proj = self.projects[job.projectId] pristineRepoPath = self.updatePristineRepo( proj, wsdef, fpLog ) if not pristineRepoPath: return False # Now clone the pristine repo into the work dir workdirRepoPath = os.path.join( proj.workDir, job.jobDirShort ) if os.path.exists( workdirRepoPath ): # Might make this a fatal error later, or nuke and re-copy this dir, but for # now we'll allow this to make debugging easier. logging.warning( f"Workdir repo {workdirRepoPath} already exists, using that.") else: gitCloneCommand = [ "git", "clone", pristineRepoPath, workdirRepoPath ] retVal, cmdTime = self.echoRunCommand(gitCloneCommand, fpLog) if retVal: return False # Now bring the workdir copy of the repo up to date with what we're # trying to build gitCheckoutCommand = [ "git", "-C", workdirRepoPath, "checkout", job.commitVer ] retVal, cmdTime = self.echoRunCommand( gitCheckoutCommand, fpLog ) if retVal: return False return True def _runCommandInternal( self, process): while True: line = process.stdout.readline().rstrip() if not line: break yield line def echoRunCommand( self, command, fpLog, agent = None, job = None ): """returns ( returnValue, timeTaken) """ cmdStr = " ".join(command) if fpLog: fpLog.write( "CMD: " + cmdStr + "\n") fpLog.flush() logging.info(cmdStr) if (self.dryRun): return (0, datetime.timedelta(0)) startTime = datetime.datetime.now() # FIXME: handle STDERR separately, but python makes this hard process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) # , shell=True) while True: for linebytes in self._runCommandInternal(process): line = linebytes.decode("utf-8") isError = False isWarn = False # FIXME: Better parsing here, also make it tool-aware if line.find( "fatal:") >= 0 or line.find( "error:" ) >= 0: isError = True elif line.find("warning:") >= 0: isWarn = True if isError: logging.error(line) if fpLog: fpLog.write( "ERROR: "+ line + "\n") fpLog.flush() if job: job.countError( line ) elif isWarn: logging.warning(line) if fpLog: fpLog.write("WARN: " + line + "\n") fpLog.flush() if job: job.countWarning() else: logging.info( line ) if fpLog: fpLog.write( line + "\n") fpLog.flush() if (isError or isWarn) and (agent and job): agent.commitJobChanges( job ) # Is the subprocess done? if process.poll() is not None: break endTime = datetime.datetime.now() cmdDuration = endTime - startTime cmdStatus = f"Finished with retval {process.returncode} time taken {cmdDuration}"; logging.info( cmdStatus ) if fpLog: fpLog.write( cmdStatus + "\n\n\n" ) fpLog.flush() return (process.returncode, cmdDuration)
bzl
b406a946d3570f720b32024cf559476a7f9dbe75
# In both open-source and fbcode builds, these are generated into # torch/csrc/{autgrad,jit}/generated.i GENERATED_CPP = [ "autograd/generated/Functions.cpp", "autograd/generated/VariableType_0.cpp", "autograd/generated/VariableType_1.cpp", "autograd/generated/VariableType_2.cpp", "autograd/generated/VariableType_3.cpp", "autograd/generated/VariableType_4.cpp", "autograd/generated/TraceType_0.cpp", "autograd/generated/TraceType_1.cpp", "autograd/generated/TraceType_2.cpp", "autograd/generated/TraceType_3.cpp", "autograd/generated/TraceType_4.cpp", "autograd/generated/ADInplaceOrViewType_0.cpp", "autograd/generated/ADInplaceOrViewType_1.cpp", "autograd/generated/python_functions.cpp", "autograd/generated/python_nn_functions.cpp", "autograd/generated/python_fft_functions.cpp", "autograd/generated/python_linalg_functions.cpp", "autograd/generated/python_special_functions.cpp", "autograd/generated/python_torch_functions.cpp", "autograd/generated/python_variable_methods.cpp", ] # NVFuser runtime library libtorch_nvfuser_runtime_sources = [ "torch/csrc/jit/codegen/cuda/runtime/block_reduction.cu", "torch/csrc/jit/codegen/cuda/runtime/broadcast.cu", "torch/csrc/jit/codegen/cuda/runtime/fp16_support.cu", "torch/csrc/jit/codegen/cuda/runtime/grid_reduction.cu", "torch/csrc/jit/codegen/cuda/runtime/helpers.cu", "torch/csrc/jit/codegen/cuda/runtime/random_numbers.cu", "torch/csrc/jit/codegen/cuda/runtime/tensor.cu", "aten/src/ATen/cuda/detail/PhiloxCudaStateRaw.cuh", "aten/src/ATen/cuda/detail/UnpackRaw.cuh", ] libtorch_nvfuser_generated_headers = ["{}.h".format(name.split("/")[-1].split(".")[0]) for name in libtorch_nvfuser_runtime_sources] def libtorch_generated_sources(gencode_pattern): return [gencode_pattern.format(name) for name in [ "autograd/generated/Functions.cpp", "autograd/generated/VariableType_0.cpp", "autograd/generated/VariableType_1.cpp", "autograd/generated/VariableType_2.cpp", "autograd/generated/VariableType_3.cpp", "autograd/generated/VariableType_4.cpp", "autograd/generated/TraceType_0.cpp", "autograd/generated/TraceType_1.cpp", "autograd/generated/TraceType_2.cpp", "autograd/generated/TraceType_3.cpp", "autograd/generated/TraceType_4.cpp", "autograd/generated/ADInplaceOrViewType_0.cpp", "autograd/generated/ADInplaceOrViewType_1.cpp", ]] # copied from https://github.com/pytorch/pytorch/blob/f99a693cd9ff7a9b5fdc71357dac66b8192786d3/aten/src/ATen/core/CMakeLists.txt jit_core_headers = [ "torch/csrc/utils/memory.h", "torch/csrc/WindowsTorchApiMacro.h", "torch/csrc/jit/frontend/source_range.h", "torch/csrc/jit/serialization/callstack_debug_info_serialization.h", "torch/csrc/jit/serialization/source_range_serialization.h", "torch/csrc/jit/frontend/lexer.h", "torch/csrc/jit/frontend/strtod.h", "torch/csrc/jit/frontend/parser_constants.h", "torch/csrc/jit/frontend/function_schema_parser.h", "torch/csrc/jit/frontend/parse_string_literal.h", "torch/csrc/jit/frontend/schema_type_parser.h", "torch/csrc/jit/frontend/error_report.h", "torch/csrc/jit/frontend/tree.h", "torch/custom_class.h", "torch/custom_class_detail.h", "torch/library.h", ] jit_core_sources = [ "torch/csrc/jit/frontend/error_report.cpp", "torch/csrc/jit/frontend/function_schema_parser.cpp", "torch/csrc/jit/frontend/lexer.cpp", "torch/csrc/jit/frontend/schema_type_parser.cpp", "torch/csrc/jit/frontend/strtod.cpp", "torch/csrc/jit/frontend/source_range.cpp", ] # copied from https://github.com/pytorch/pytorch/blob/0bde610c14b92d351b968a0228df29e92442b1cc/torch/CMakeLists.txt # There are some common files used in both internal lite-interpreter and full-jit. Making a separate # list for the shared files. core_sources_common = [ "torch/csrc/autograd/profiler_legacy.cpp", "torch/csrc/autograd/profiler_kineto.cpp", "torch/csrc/autograd/profiler_utils.cpp", "torch/csrc/autograd/autograd_meta.cpp", "torch/csrc/autograd/forward_grad.cpp", "torch/csrc/jit/frontend/edit_distance.cpp", "torch/csrc/jit/frontend/string_to_type.cpp", "torch/csrc/jit/mobile/type_parser.cpp", "torch/csrc/jit/mobile/runtime_compatibility.cpp", "torch/csrc/jit/runtime/instruction.cpp", "torch/csrc/jit/runtime/jit_exception.cpp", "torch/csrc/jit/runtime/operator.cpp", "torch/csrc/jit/runtime/print_handler.cpp", "torch/csrc/jit/runtime/slice_indices_adjust.cpp", "torch/csrc/jit/runtime/register_ops_utils.cpp", "torch/csrc/jit/runtime/vararg_functions.cpp", "torch/csrc/jit/serialization/import_read.cpp", "torch/csrc/jit/serialization/unpickler.cpp", ] libtorch_sources_common = core_sources_common core_trainer_sources = [ "torch/csrc/autograd/anomaly_mode.cpp", "torch/csrc/autograd/autograd.cpp", "torch/csrc/autograd/cpp_hook.cpp", "torch/csrc/autograd/custom_function.cpp", "torch/csrc/autograd/engine.cpp", "torch/csrc/autograd/function.cpp", "torch/csrc/autograd/function_hook.cpp", "torch/csrc/autograd/functions/accumulate_grad.cpp", "torch/csrc/autograd/functions/basic_ops.cpp", "torch/csrc/autograd/functions/tensor.cpp", "torch/csrc/autograd/functions/utils.cpp", "torch/csrc/autograd/input_buffer.cpp", "torch/csrc/autograd/record_function_ops.cpp", "torch/csrc/autograd/saved_variable.cpp", "torch/csrc/autograd/variable.cpp", "torch/csrc/jit/frontend/name_mangler.cpp", "torch/csrc/jit/ir/type_hashing.cpp", "torch/csrc/jit/serialization/pickler.cpp", "torch/csrc/jit/serialization/type_name_uniquer.cpp", ] core_sources_full_mobile = [ "torch/csrc/jit/api/function_impl.cpp", "torch/csrc/jit/api/module.cpp", "torch/csrc/jit/api/object.cpp", "torch/csrc/jit/backends/backend_debug_handler.cpp", "torch/csrc/jit/backends/backend_detail.cpp", "torch/csrc/jit/backends/backend_interface.cpp", "torch/csrc/jit/backends/backend_resolver.cpp", "torch/csrc/jit/codegen/fuser/codegen.cpp", "torch/csrc/jit/codegen/fuser/compiler.cpp", "torch/csrc/jit/codegen/fuser/executor.cpp", "torch/csrc/jit/codegen/fuser/fallback.cpp", "torch/csrc/jit/codegen/fuser/interface.cpp", "torch/csrc/jit/codegen/fuser/kernel_cache.cpp", "torch/csrc/jit/frontend/builtin_functions.cpp", "torch/csrc/jit/frontend/versioned_symbols.cpp", "torch/csrc/jit/frontend/canonicalize_modified_loop.cpp", "torch/csrc/jit/frontend/convert_to_ssa.cpp", "torch/csrc/jit/frontend/exit_transforms.cpp", "torch/csrc/jit/frontend/inline_loop_condition.cpp", "torch/csrc/jit/frontend/ir_emitter.cpp", "torch/csrc/jit/frontend/parser.cpp", "torch/csrc/jit/frontend/schema_matching.cpp", "torch/csrc/jit/frontend/script_type_parser.cpp", "torch/csrc/jit/frontend/sugared_value.cpp", "torch/csrc/jit/frontend/tracer.cpp", "torch/csrc/jit/ir/alias_analysis.cpp", "torch/csrc/jit/ir/attributes.cpp", "torch/csrc/jit/ir/constants.cpp", "torch/csrc/jit/ir/ir.cpp", "torch/csrc/jit/ir/irparser.cpp", "torch/csrc/jit/ir/node_hashing.cpp", "torch/csrc/jit/ir/scope.cpp", "torch/csrc/jit/ir/subgraph_matcher.cpp", "torch/csrc/jit/jit_log.cpp", "torch/csrc/jit/jit_opt_limit.cpp", "torch/csrc/jit/passes/annotate_warns.cpp", "torch/csrc/jit/passes/bailout_graph.cpp", "torch/csrc/jit/passes/batch_mm.cpp", "torch/csrc/jit/passes/canonicalize.cpp", "torch/csrc/jit/passes/canonicalize_graph_fuser_ops.cpp", "torch/csrc/jit/passes/clear_profiling.cpp", "torch/csrc/jit/passes/clear_undefinedness.cpp", "torch/csrc/jit/passes/common_subexpression_elimination.cpp", "torch/csrc/jit/passes/concat_opt.cpp", "torch/csrc/jit/passes/constant_pooling.cpp", "torch/csrc/jit/passes/constant_propagation.cpp", "torch/csrc/jit/passes/create_autodiff_subgraphs.cpp", "torch/csrc/jit/passes/dead_code_elimination.cpp", "torch/csrc/jit/passes/remove_redundant_profiles.cpp", "torch/csrc/jit/passes/remove_exceptions.cpp", "torch/csrc/jit/passes/decompose_ops.cpp", "torch/csrc/jit/passes/erase_number_types.cpp", "torch/csrc/jit/passes/fixup_trace_scope_blocks.cpp", "torch/csrc/jit/passes/freeze_module.cpp", "torch/csrc/jit/passes/fuse_linear.cpp", "torch/csrc/jit/passes/fuse_relu.cpp", "torch/csrc/jit/passes/graph_fuser.cpp", "torch/csrc/jit/passes/graph_rewrite_helper.cpp", "torch/csrc/jit/passes/guard_elimination.cpp", "torch/csrc/jit/passes/hoist_conv_packed_params.cpp", "torch/csrc/jit/passes/inline_autodiff_subgraphs.cpp", "torch/csrc/jit/passes/inline_forked_closures.cpp", "torch/csrc/jit/passes/inline_fork_wait.cpp", "torch/csrc/jit/passes/inliner.cpp", "torch/csrc/jit/passes/inplace_check.cpp", "torch/csrc/jit/passes/insert_guards.cpp", "torch/csrc/jit/passes/lift_closures.cpp", "torch/csrc/jit/passes/liveness.cpp", "torch/csrc/jit/passes/loop_unrolling.cpp", "torch/csrc/jit/passes/lower_grad_of.cpp", "torch/csrc/jit/passes/lower_tuples.cpp", "torch/csrc/jit/passes/normalize_ops.cpp", "torch/csrc/jit/passes/peephole_list_idioms.cpp", "torch/csrc/jit/passes/peephole_alias_sensitive.cpp", "torch/csrc/jit/passes/pass_manager.cpp", "torch/csrc/jit/passes/peephole.cpp", "torch/csrc/jit/passes/create_functional_graphs.cpp", "torch/csrc/jit/passes/remove_mutation.cpp", "torch/csrc/jit/passes/prepack_folding.cpp", "torch/csrc/jit/passes/fold_conv_bn.cpp", "torch/csrc/jit/passes/frozen_conv_add_relu_fusion.cpp", "torch/csrc/jit/passes/frozen_conv_folding.cpp", "torch/csrc/jit/passes/frozen_ops_to_mkldnn.cpp", "torch/csrc/jit/passes/frozen_graph_optimizations.cpp", "torch/csrc/jit/passes/remove_expands.cpp", "torch/csrc/jit/passes/remove_dropout.cpp", "torch/csrc/jit/passes/requires_grad_analysis.cpp", "torch/csrc/jit/passes/shape_analysis.cpp", "torch/csrc/jit/passes/specialize_autogradzero.cpp", "torch/csrc/jit/passes/update_differentiable_graph_requires_grad.cpp", "torch/csrc/jit/passes/subgraph_rewrite.cpp", "torch/csrc/jit/passes/tensorexpr_fuser.cpp", "torch/csrc/jit/passes/utils/memory_dag.cpp", "torch/csrc/jit/passes/utils/subgraph_utils.cpp", "torch/csrc/jit/passes/xnnpack_rewrite.cpp", "torch/csrc/jit/passes/vulkan_rewrite.cpp", "torch/csrc/jit/passes/metal_rewrite.cpp", "torch/csrc/jit/passes/quantization/helper.cpp", "torch/csrc/jit/passes/quantization/quantization_type.cpp", "torch/csrc/jit/passes/quantization/insert_observers.cpp", "torch/csrc/jit/passes/quantization/insert_quant_dequant.cpp", "torch/csrc/jit/passes/quantization/dedup_module_uses.cpp", "torch/csrc/jit/passes/quantization/finalize.cpp", "torch/csrc/jit/passes/quantization/fusion_passes.cpp", "torch/csrc/jit/python/update_graph_executor_opt.cpp", "torch/csrc/jit/runtime/argument_spec.cpp", "torch/csrc/jit/runtime/autodiff.cpp", "torch/csrc/jit/runtime/graph_executor.cpp", "torch/csrc/jit/runtime/interpreter/frame.cpp", "torch/csrc/jit/runtime/interpreter/preprocess_graph.cpp", "torch/csrc/jit/runtime/interpreter.cpp", "torch/csrc/jit/runtime/logging.cpp", "torch/csrc/jit/runtime/profiling_graph_executor_impl.cpp", "torch/csrc/jit/runtime/profiling_record.cpp", "torch/csrc/jit/runtime/script_profile.cpp", "torch/csrc/jit/runtime/symbolic_script.cpp", "torch/csrc/jit/serialization/callstack_debug_info_serialization.cpp", "torch/csrc/jit/serialization/import.cpp", "torch/csrc/jit/serialization/import_export_helpers.cpp", "torch/csrc/jit/serialization/import_source.cpp", "torch/csrc/jit/serialization/pickle.cpp", "torch/csrc/jit/serialization/python_print.cpp", "torch/csrc/jit/serialization/source_range_serialization.cpp", "torch/csrc/jit/tensorexpr/block_codegen.cpp", "torch/csrc/jit/tensorexpr/bounds_inference.cpp", "torch/csrc/jit/tensorexpr/bounds_overlap.cpp", "torch/csrc/jit/tensorexpr/codegen.cpp", "torch/csrc/jit/tensorexpr/cpp_codegen.cpp", "torch/csrc/jit/tensorexpr/eval.cpp", "torch/csrc/jit/tensorexpr/expr.cpp", "torch/csrc/jit/tensorexpr/external_functions_registry.cpp", "torch/csrc/jit/tensorexpr/hash_provider.cpp", "torch/csrc/jit/tensorexpr/intrinsic_symbols.cpp", "torch/csrc/jit/tensorexpr/ir.cpp", "torch/csrc/jit/tensorexpr/ir_mutator.cpp", "torch/csrc/jit/tensorexpr/ir_printer.cpp", "torch/csrc/jit/tensorexpr/ir_simplifier.cpp", "torch/csrc/jit/tensorexpr/ir_verifier.cpp", "torch/csrc/jit/tensorexpr/ir_visitor.cpp", "torch/csrc/jit/tensorexpr/kernel.cpp", "torch/csrc/jit/tensorexpr/llvm_codegen.cpp", "torch/csrc/jit/tensorexpr/llvm_jit.cpp", "torch/csrc/jit/tensorexpr/loopnest.cpp", "torch/csrc/jit/tensorexpr/mem_arena.cpp", "torch/csrc/jit/tensorexpr/mem_dependency_checker.cpp", "torch/csrc/jit/tensorexpr/operators/conv2d.cpp", "torch/csrc/jit/tensorexpr/reduction.cpp", "torch/csrc/jit/tensorexpr/registerizer.cpp", "torch/csrc/jit/tensorexpr/tensor.cpp", "torch/csrc/jit/tensorexpr/types.cpp", "torch/csrc/jit/tensorexpr/unique_name_manager.cpp", "torch/csrc/jit/testing/file_check.cpp", "torch/csrc/jit/testing/hooks_for_testing.cpp", "torch/csrc/utils/tensor_flatten.cpp", "torch/csrc/utils/variadic.cpp", ] core_sources_full = core_sources_full_mobile + [ "torch/csrc/jit/runtime/static/fusion.cpp", "torch/csrc/jit/runtime/static/impl.cpp", "torch/csrc/jit/runtime/static/ops.cpp", "torch/csrc/jit/runtime/static/passes.cpp", "torch/csrc/jit/tensorexpr/external_functions.cpp", "torch/csrc/jit/tensorexpr/external_functions_codegen.cpp", ] libtorch_core_sources = sorted(core_sources_common + core_sources_full + core_trainer_sources) libtorch_distributed_sources = [ "torch/csrc/distributed/autograd/autograd.cpp", "torch/csrc/distributed/autograd/utils.cpp", "torch/csrc/distributed/autograd/context/container.cpp", "torch/csrc/distributed/autograd/context/context.cpp", "torch/csrc/distributed/autograd/engine/dist_engine.cpp", "torch/csrc/distributed/autograd/functions/recvrpc_backward.cpp", "torch/csrc/distributed/autograd/functions/sendrpc_backward.cpp", "torch/csrc/distributed/autograd/rpc_messages/autograd_metadata.cpp", "torch/csrc/distributed/autograd/rpc_messages/propagate_gradients_req.cpp", "torch/csrc/distributed/autograd/rpc_messages/propagate_gradients_resp.cpp", "torch/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_req.cpp", "torch/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_resp.cpp", "torch/csrc/distributed/autograd/rpc_messages/rpc_with_autograd.cpp", "torch/csrc/distributed/autograd/rpc_messages/rpc_with_profiling_req.cpp", "torch/csrc/distributed/autograd/rpc_messages/rpc_with_profiling_resp.cpp", "torch/csrc/distributed/autograd/rpc_messages/rref_backward_req.cpp", "torch/csrc/distributed/autograd/rpc_messages/rref_backward_resp.cpp", "torch/csrc/distributed/rpc/message.cpp", "torch/csrc/distributed/rpc/profiler/remote_profiler_manager.cpp", "torch/csrc/distributed/rpc/profiler/server_process_global_profiler.cpp", "torch/csrc/distributed/rpc/python_call.cpp", "torch/csrc/distributed/rpc/python_remote_call.cpp", "torch/csrc/distributed/rpc/python_resp.cpp", "torch/csrc/distributed/rpc/request_callback.cpp", "torch/csrc/distributed/rpc/request_callback_no_python.cpp", "torch/csrc/distributed/rpc/rpc_agent.cpp", "torch/csrc/distributed/rpc/rref_context.cpp", "torch/csrc/distributed/rpc/rref_impl.cpp", "torch/csrc/distributed/rpc/rref_proto.cpp", "torch/csrc/distributed/rpc/script_call.cpp", "torch/csrc/distributed/rpc/script_remote_call.cpp", "torch/csrc/distributed/rpc/script_resp.cpp", "torch/csrc/distributed/rpc/torchscript_functions.cpp", "torch/csrc/distributed/rpc/types.cpp", "torch/csrc/distributed/rpc/utils.cpp", "torch/csrc/distributed/rpc/metrics/registry.cpp", ] jit_sources_full = [ "torch/csrc/jit/codegen/cuda/interface.cpp", "torch/csrc/jit/passes/lower_graph.cpp", "torch/csrc/jit/runtime/register_c10_ops.cpp", "torch/csrc/jit/runtime/register_prim_ops.cpp", "torch/csrc/jit/runtime/register_prim_ops_fulljit.cpp", "torch/csrc/jit/runtime/register_special_ops.cpp", "torch/csrc/jit/passes/remove_inplace_ops.cpp", "torch/csrc/jit/passes/utils/check_alias_annotation.cpp", ] libtorch_core_jit_sources = sorted(jit_sources_full) torch_mobile_core = [ "torch/csrc/jit/mobile/function.cpp", "torch/csrc/jit/mobile/import.cpp", "torch/csrc/jit/mobile/interpreter.cpp", "torch/csrc/jit/mobile/model_compatibility.cpp", "torch/csrc/jit/mobile/module.cpp", "torch/csrc/jit/mobile/observer.cpp", "torch/csrc/jit/runtime/register_prim_ops.cpp", "torch/csrc/jit/runtime/register_special_ops.cpp", ] libtorch_lite_eager_symbolication = [ "torch/csrc/jit/frontend/source_range.cpp", "torch/csrc/jit/ir/scope.cpp", "torch/csrc/jit/mobile/debug_info.cpp", "torch/csrc/jit/serialization/callstack_debug_info_serialization.cpp", "torch/csrc/jit/serialization/source_range_serialization.cpp", # Later we can split serialization and deserialization logic # to have better separation within build and only build relevant parts. "torch/csrc/jit/serialization/pickle.cpp", "torch/csrc/jit/serialization/pickler.cpp", "torch/csrc/jit/serialization/unpickler.cpp", ] # TODO: core_trainer_sources is not necessary for libtorch lite libtorch_lite_cmake_sources = sorted(core_trainer_sources + core_sources_common + torch_mobile_core) libtorch_cmake_sources = libtorch_core_sources + libtorch_core_jit_sources libtorch_extra_sources = libtorch_core_jit_sources + [ "torch/csrc/autograd/TraceTypeManual.cpp", "torch/csrc/autograd/VariableTypeManual.cpp", "torch/csrc/autograd/FunctionsManual.cpp", "torch/csrc/jit/api/module_save.cpp", "torch/csrc/jit/codegen/fuser/cpu/fused_kernel.cpp", "torch/csrc/jit/mobile/backport.cpp", "torch/csrc/jit/mobile/backport_manager.cpp", # To be included for eager symbolication in lite interpreter # when it is built in libtorch "torch/csrc/jit/mobile/debug_info.cpp", "torch/csrc/jit/mobile/function.cpp", "torch/csrc/jit/mobile/import.cpp", "torch/csrc/jit/mobile/import_data.cpp", "torch/csrc/jit/mobile/interpreter.cpp", "torch/csrc/jit/mobile/model_compatibility.cpp", "torch/csrc/jit/mobile/module.cpp", "torch/csrc/jit/mobile/nnc/context.cpp", "torch/csrc/jit/mobile/nnc/registry.cpp", "torch/csrc/jit/mobile/observer.cpp", "torch/csrc/jit/mobile/train/export_data.cpp", "torch/csrc/jit/mobile/train/optim/sgd.cpp", "torch/csrc/jit/mobile/train/random.cpp", "torch/csrc/jit/mobile/train/sequential.cpp", "torch/csrc/jit/serialization/onnx.cpp", "torch/csrc/jit/serialization/export.cpp", "torch/csrc/jit/serialization/export_module.cpp", "torch/csrc/jit/serialization/import_legacy.cpp", "torch/csrc/utils/byte_order.cpp", "torch/csrc/utils/out_types.cpp", ] def libtorch_sources(gencode_pattern = ":generate-code[{}]"): return libtorch_generated_sources(gencode_pattern) + libtorch_core_sources + libtorch_distributed_sources + libtorch_extra_sources libtorch_cuda_core_sources = [ "torch/csrc/CudaIPCTypes.cpp", "torch/csrc/cuda/comm.cpp", "torch/csrc/jit/codegen/fuser/cuda/fused_kernel.cpp", "torch/csrc/autograd/profiler_cuda.cpp", "torch/csrc/autograd/functions/comm.cpp", "torch/csrc/jit/codegen/cuda/arith.cpp", "torch/csrc/jit/codegen/cuda/compute_at.cpp", "torch/csrc/jit/codegen/cuda/codegen.cpp", "torch/csrc/jit/codegen/cuda/dispatch.cpp", "torch/csrc/jit/codegen/cuda/expr_evaluator.cpp", "torch/csrc/jit/codegen/cuda/executor.cpp", "torch/csrc/jit/codegen/cuda/executor_kernel_arg.cpp", "torch/csrc/jit/codegen/cuda/executor_launch_params.cpp", "torch/csrc/jit/codegen/cuda/executor_utils.cpp", "torch/csrc/jit/codegen/cuda/fusion.cpp", "torch/csrc/jit/codegen/cuda/graph_fuser.cpp", "torch/csrc/jit/codegen/cuda/index_compute.cpp", "torch/csrc/jit/codegen/cuda/instrumentation.cpp", "torch/csrc/jit/codegen/cuda/ir_base_nodes.cpp", "torch/csrc/jit/codegen/cuda/ir_cloner.cpp", "torch/csrc/jit/codegen/cuda/ir_graphviz.cpp", "torch/csrc/jit/codegen/cuda/ir_nodes.cpp", "torch/csrc/jit/codegen/cuda/ir_iostream.cpp", "torch/csrc/jit/codegen/cuda/iter_visitor.cpp", "torch/csrc/jit/codegen/cuda/kernel.cpp", "torch/csrc/jit/codegen/cuda/kernel_cache.cpp", "torch/csrc/jit/codegen/cuda/kernel_ir.cpp", "torch/csrc/jit/codegen/cuda/kernel_ir_builder.cpp", "torch/csrc/jit/codegen/cuda/kernel_ir_printer.cpp", "torch/csrc/jit/codegen/cuda/lower_index.cpp", "torch/csrc/jit/codegen/cuda/lower_loops.cpp", "torch/csrc/jit/codegen/cuda/lower_alias_memory.cpp", "torch/csrc/jit/codegen/cuda/lower_insert_syncs.cpp", "torch/csrc/jit/codegen/cuda/lower_unroll.cpp", "torch/csrc/jit/codegen/cuda/lower_thread_predicate.cpp", "torch/csrc/jit/codegen/cuda/lower_utils.cpp", "torch/csrc/jit/codegen/cuda/lower_validation.cpp", "torch/csrc/jit/codegen/cuda/lower2device.cpp", "torch/csrc/jit/codegen/cuda/manager.cpp", "torch/csrc/jit/codegen/cuda/mutator.cpp", "torch/csrc/jit/codegen/cuda/parser.cpp", "torch/csrc/jit/codegen/cuda/partition.cpp", "torch/csrc/jit/codegen/cuda/predicate_compute.cpp", "torch/csrc/jit/codegen/cuda/register_interface.cpp", "torch/csrc/jit/codegen/cuda/scheduler.cpp", "torch/csrc/jit/codegen/cuda/shape_inference.cpp", "torch/csrc/jit/codegen/cuda/tensor_view.cpp", "torch/csrc/jit/codegen/cuda/transform_iter.cpp", "torch/csrc/jit/codegen/cuda/transform_replay.cpp", "torch/csrc/jit/codegen/cuda/transform_rfactor.cpp", "torch/csrc/jit/codegen/cuda/type.cpp", "torch/csrc/jit/tensorexpr/cuda_codegen.cpp", "torch/csrc/jit/runtime/register_cuda_ops.cpp", ] libtorch_cuda_sources = libtorch_cuda_core_sources + [ "torch/csrc/cuda/nccl.cpp", ] torch_cpp_srcs = [ "torch/csrc/api/src/cuda.cpp", # this just forwards stuff, no real CUDA "torch/csrc/api/src/data/datasets/mnist.cpp", "torch/csrc/api/src/data/samplers/distributed.cpp", "torch/csrc/api/src/data/samplers/random.cpp", "torch/csrc/api/src/data/samplers/sequential.cpp", "torch/csrc/api/src/data/samplers/stream.cpp", "torch/csrc/api/src/enum.cpp", "torch/csrc/api/src/jit.cpp", "torch/csrc/api/src/serialize.cpp", "torch/csrc/api/src/nn/init.cpp", "torch/csrc/api/src/nn/module.cpp", "torch/csrc/api/src/nn/modules/_functions.cpp", "torch/csrc/api/src/nn/modules/activation.cpp", "torch/csrc/api/src/nn/modules/adaptive.cpp", "torch/csrc/api/src/nn/modules/batchnorm.cpp", "torch/csrc/api/src/nn/modules/normalization.cpp", "torch/csrc/api/src/nn/modules/instancenorm.cpp", "torch/csrc/api/src/nn/modules/conv.cpp", "torch/csrc/api/src/nn/modules/dropout.cpp", "torch/csrc/api/src/nn/modules/distance.cpp", "torch/csrc/api/src/nn/modules/embedding.cpp", "torch/csrc/api/src/nn/modules/fold.cpp", "torch/csrc/api/src/nn/modules/linear.cpp", "torch/csrc/api/src/nn/modules/loss.cpp", "torch/csrc/api/src/nn/modules/padding.cpp", "torch/csrc/api/src/nn/modules/pixelshuffle.cpp", "torch/csrc/api/src/nn/modules/pooling.cpp", "torch/csrc/api/src/nn/modules/rnn.cpp", "torch/csrc/api/src/nn/modules/upsampling.cpp", "torch/csrc/api/src/nn/modules/transformer.cpp", "torch/csrc/api/src/nn/modules/container/functional.cpp", "torch/csrc/api/src/nn/options/activation.cpp", "torch/csrc/api/src/nn/options/adaptive.cpp", "torch/csrc/api/src/nn/options/batchnorm.cpp", "torch/csrc/api/src/nn/options/conv.cpp", "torch/csrc/api/src/nn/options/dropout.cpp", "torch/csrc/api/src/nn/options/instancenorm.cpp", "torch/csrc/api/src/nn/options/linear.cpp", "torch/csrc/api/src/nn/options/normalization.cpp", "torch/csrc/api/src/nn/options/embedding.cpp", "torch/csrc/api/src/nn/options/padding.cpp", "torch/csrc/api/src/nn/options/pooling.cpp", "torch/csrc/api/src/nn/options/rnn.cpp", "torch/csrc/api/src/nn/options/vision.cpp", "torch/csrc/api/src/nn/options/transformer.cpp", "torch/csrc/api/src/optim/adagrad.cpp", "torch/csrc/api/src/optim/adam.cpp", "torch/csrc/api/src/optim/adamw.cpp", "torch/csrc/api/src/optim/lbfgs.cpp", "torch/csrc/api/src/optim/optimizer.cpp", "torch/csrc/api/src/optim/rmsprop.cpp", "torch/csrc/api/src/optim/serialize.cpp", "torch/csrc/api/src/optim/sgd.cpp", "torch/csrc/api/src/optim/schedulers/lr_scheduler.cpp", "torch/csrc/api/src/optim/schedulers/step_lr.cpp", "torch/csrc/api/src/serialize/input-archive.cpp", "torch/csrc/api/src/serialize/output-archive.cpp", ] libtorch_python_cuda_core_sources = [ "torch/csrc/cuda/Event.cpp", "torch/csrc/cuda/Module.cpp", "torch/csrc/cuda/python_comm.cpp", "torch/csrc/cuda/Storage.cpp", "torch/csrc/cuda/Stream.cpp", "torch/csrc/cuda/Graph.cpp", "torch/csrc/cuda/serialization.cpp", "torch/csrc/cuda/shared/cudart.cpp", "torch/csrc/cuda/shared/nvtx.cpp", "torch/csrc/cuda/utils.cpp", ] libtorch_python_cuda_sources = libtorch_python_cuda_core_sources + [ "torch/csrc/cuda/python_nccl.cpp", "torch/csrc/cuda/shared/cudnn.cpp", "torch/csrc/cuda/Tensor.cpp", ] libtorch_python_core_sources = [ "torch/csrc/DataLoader.cpp", "torch/csrc/Device.cpp", "torch/csrc/Dtype.cpp", "torch/csrc/DynamicTypes.cpp", "torch/csrc/Exceptions.cpp", "torch/csrc/Generator.cpp", "torch/csrc/Layout.cpp", "torch/csrc/MemoryFormat.cpp", "torch/csrc/QScheme.cpp", "torch/csrc/Module.cpp", "torch/csrc/python_dimname.cpp", "torch/csrc/Size.cpp", "torch/csrc/Storage.cpp", "torch/csrc/Stream.cpp", "torch/csrc/TypeInfo.cpp", "torch/csrc/api/src/python/init.cpp", "torch/csrc/autograd/functions/init.cpp", "torch/csrc/autograd/init.cpp", "torch/csrc/autograd/python_anomaly_mode.cpp", "torch/csrc/autograd/python_cpp_function.cpp", "torch/csrc/autograd/python_engine.cpp", "torch/csrc/autograd/python_function.cpp", "torch/csrc/autograd/python_hook.cpp", "torch/csrc/autograd/python_legacy_variable.cpp", "torch/csrc/autograd/python_variable.cpp", "torch/csrc/autograd/python_variable_indexing.cpp", "torch/csrc/jit/backends/backend_init.cpp", "torch/csrc/jit/python/init.cpp", "torch/csrc/jit/passes/onnx.cpp", "torch/csrc/jit/passes/onnx/cast_all_constant_to_floating.cpp", "torch/csrc/jit/passes/onnx/eval_peephole.cpp", "torch/csrc/jit/passes/onnx/constant_fold.cpp", "torch/csrc/jit/passes/onnx/constant_map.cpp", "torch/csrc/jit/passes/onnx/eliminate_unused_items.cpp", "torch/csrc/jit/passes/onnx/fixup_onnx_controlflow.cpp", "torch/csrc/jit/passes/onnx/list_model_parameters.cpp", "torch/csrc/jit/passes/onnx/function_substitution.cpp", "torch/csrc/jit/passes/onnx/fold_if_node.cpp", "torch/csrc/jit/passes/onnx/helper.cpp", "torch/csrc/jit/passes/onnx/peephole.cpp", "torch/csrc/jit/passes/onnx/preprocess_for_onnx.cpp", "torch/csrc/jit/passes/onnx/prepare_division_for_onnx.cpp", "torch/csrc/jit/passes/onnx/scalar_type_analysis.cpp", "torch/csrc/jit/passes/onnx/unpack_quantized_weights.cpp", "torch/csrc/jit/passes/onnx/remove_inplace_ops_for_onnx.cpp", "torch/csrc/jit/passes/onnx/shape_type_inference.cpp", "torch/csrc/jit/python/pybind_utils.cpp", "torch/csrc/jit/passes/onnx/pattern_conversion/common.cpp", "torch/csrc/jit/passes/onnx/pattern_conversion/pattern_encapsulation.cpp", "torch/csrc/jit/passes/onnx/pattern_conversion/pattern_conversion.cpp", "torch/csrc/jit/python/python_arg_flatten.cpp", "torch/csrc/jit/python/python_custom_class.cpp", "torch/csrc/jit/python/python_interpreter.cpp", "torch/csrc/jit/python/python_ir.cpp", "torch/csrc/jit/python/python_tracer.cpp", "torch/csrc/jit/python/script_init.cpp", "torch/csrc/jit/frontend/concrete_module_type.cpp", "torch/csrc/jit/frontend/tree_views.cpp", "torch/csrc/jit/python/python_sugared_value.cpp", "torch/csrc/jit/python/python_tree_views.cpp", "torch/csrc/jit/runtime/static/init.cpp", "torch/csrc/fx/fx_init.cpp", "torch/csrc/jit/tensorexpr/tensorexpr_init.cpp", "torch/csrc/multiprocessing/init.cpp", "torch/csrc/onnx/init.cpp", "torch/csrc/serialization.cpp", "torch/csrc/tensor/python_tensor.cpp", "torch/csrc/utils/init.cpp", "torch/csrc/utils/throughput_benchmark.cpp", "torch/csrc/utils.cpp", "torch/csrc/utils/cuda_lazy_init.cpp", "torch/csrc/utils/invalid_arguments.cpp", "torch/csrc/utils/crash_handler.cpp", "torch/csrc/utils/object_ptr.cpp", "torch/csrc/utils/python_arg_parser.cpp", "torch/csrc/utils/python_dispatch.cpp", "torch/csrc/utils/structseq.cpp", "torch/csrc/utils/tensor_apply.cpp", "torch/csrc/utils/tensor_dtypes.cpp", "torch/csrc/utils/tensor_layouts.cpp", "torch/csrc/utils/tensor_memoryformats.cpp", "torch/csrc/utils/tensor_qschemes.cpp", "torch/csrc/utils/tensor_list.cpp", "torch/csrc/utils/tensor_new.cpp", "torch/csrc/utils/tensor_numpy.cpp", "torch/csrc/utils/tensor_types.cpp", "torch/csrc/utils/disable_torch_function.cpp", ] libtorch_python_distributed_core_sources = [ "torch/lib/c10d/comm.cpp", "torch/lib/c10d/default_comm_hooks.cpp", "torch/lib/c10d/frontend.cpp", "torch/lib/c10d/reducer.cpp", "torch/lib/c10d/logger.cpp", "torch/csrc/distributed/c10d/python_comm_hook.cpp", "torch/csrc/distributed/c10d/init.cpp", ] libtorch_python_distributed_sources = libtorch_python_distributed_core_sources + [ "torch/csrc/distributed/autograd/init.cpp", "torch/csrc/distributed/rpc/agent_utils.cpp", "torch/csrc/distributed/rpc/init.cpp", "torch/csrc/distributed/rpc/process_group_agent.cpp", "torch/csrc/distributed/rpc/py_rref.cpp", "torch/csrc/distributed/rpc/python_functions.cpp", "torch/csrc/distributed/rpc/python_rpc_handler.cpp", "torch/csrc/distributed/rpc/request_callback_impl.cpp", "torch/csrc/distributed/rpc/tensorpipe_agent.cpp", "torch/csrc/distributed/rpc/tensorpipe_utils.cpp", "torch/csrc/distributed/rpc/testing/faulty_process_group_agent.cpp", "torch/csrc/distributed/rpc/testing/init.cpp", "torch/csrc/distributed/rpc/unpickled_python_call.cpp", "torch/csrc/distributed/rpc/unpickled_python_remote_call.cpp", "torch/csrc/jit/runtime/register_distributed_ops.cpp", ] def glob_libtorch_python_sources(gencode_pattern = ":generate-code[{}]"): _libtorch_python_sources = [gencode_pattern.format(name) for name in [ "autograd/generated/python_functions.cpp", "autograd/generated/python_nn_functions.cpp", "autograd/generated/python_fft_functions.cpp", "autograd/generated/python_linalg_functions.cpp", "autograd/generated/python_special_functions.cpp", "autograd/generated/python_torch_functions.cpp", "autograd/generated/python_variable_methods.cpp", ]] _libtorch_python_sources.extend(libtorch_python_core_sources) _libtorch_python_sources.extend(libtorch_python_distributed_sources) return _libtorch_python_sources aten_cpu_source_non_codegen_list = [ "aten/src/ATen/BatchedTensorImpl.cpp", "aten/src/ATen/CPUGeneratorImpl.cpp", "aten/src/ATen/Context.cpp", "aten/src/ATen/DLConvertor.cpp", "aten/src/ATen/ExpandUtils.cpp", "aten/src/ATen/MemoryOverlap.cpp", "aten/src/ATen/NamedTensorUtils.cpp", "aten/src/ATen/ParallelCommon.cpp", "aten/src/ATen/ParallelNative.cpp", "aten/src/ATen/ParallelNativeTBB.cpp", "aten/src/ATen/ParallelOpenMP.cpp", "aten/src/ATen/ParallelThreadPoolNative.cpp", "aten/src/ATen/ScalarOps.cpp", "aten/src/ATen/SequenceNumber.cpp", "aten/src/ATen/SparseTensorImpl.cpp", "aten/src/ATen/SparseCsrTensorImpl.cpp", "aten/src/ATen/SparseTensorUtils.cpp", "aten/src/ATen/TensorGeometry.cpp", "aten/src/ATen/TensorIndexing.cpp", "aten/src/ATen/TensorMeta.cpp", "aten/src/ATen/TensorNames.cpp", "aten/src/ATen/TensorUtils.cpp", "aten/src/ATen/ThreadLocalState.cpp", "aten/src/ATen/Utils.cpp", "aten/src/ATen/Version.cpp", "aten/src/ATen/VmapMode.cpp", "aten/src/ATen/VmapTransforms.cpp", "aten/src/ATen/core/BackendSelectFallbackKernel.cpp", "aten/src/ATen/core/DeprecatedTypeProperties.cpp", "aten/src/ATen/core/DeprecatedTypePropertiesRegistry.cpp", "aten/src/ATen/core/Dict.cpp", "aten/src/ATen/core/Dimname.cpp", "aten/src/ATen/core/Formatting.cpp", "aten/src/ATen/core/Generator.cpp", "aten/src/ATen/core/List.cpp", "aten/src/ATen/core/NamedTensor.cpp", "aten/src/ATen/core/Tensor.cpp", "aten/src/ATen/core/VariableFallbackKernel.cpp", "aten/src/ATen/core/VariableHooksInterface.cpp", "aten/src/ATen/core/Vitals.cpp", "aten/src/ATen/core/boxing/KernelFunction.cpp", "aten/src/ATen/core/custom_class.cpp", "aten/src/ATen/core/dispatch/DispatchKeyExtractor.cpp", "aten/src/ATen/core/dispatch/Dispatcher.cpp", "aten/src/ATen/core/dispatch/ObservedOperators.cpp", "aten/src/ATen/core/dispatch/OperatorEntry.cpp", "aten/src/ATen/core/interned_strings.cpp", "aten/src/ATen/core/ivalue.cpp", "aten/src/ATen/core/library.cpp", "aten/src/ATen/core/op_registration/infer_schema.cpp", "aten/src/ATen/core/op_registration/op_registration.cpp", "aten/src/ATen/core/operator_name.cpp", "aten/src/ATen/core/register_symbols.cpp", "aten/src/ATen/core/type.cpp", "aten/src/ATen/cpu/FlushDenormal.cpp", "aten/src/ATen/detail/CPUGuardImpl.cpp", "aten/src/ATen/detail/CUDAHooksInterface.cpp", "aten/src/ATen/detail/HIPHooksInterface.cpp", "aten/src/ATen/metal/Context.cpp", "aten/src/ATen/native/AutogradComposite.cpp", "aten/src/ATen/native/BatchLinearAlgebraKernel.cpp", "aten/src/ATen/native/DispatchStub.cpp", "aten/src/ATen/native/UpSample.cpp", "aten/src/ATen/native/mkl/LinearAlgebra.cpp", "aten/src/ATen/native/mkl/SparseCsrLinearAlgebra.cpp", "aten/src/ATen/native/mkl/SpectralOps.cpp", "aten/src/ATen/native/mkldnn/BinaryOps.cpp", "aten/src/ATen/native/mkldnn/Conv.cpp", "aten/src/ATen/native/mkldnn/Copy.cpp", "aten/src/ATen/native/mkldnn/IDeepRegistration.cpp", "aten/src/ATen/native/mkldnn/Linear.cpp", "aten/src/ATen/native/mkldnn/MKLDNNCommon.cpp", "aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp", "aten/src/ATen/native/mkldnn/MkldnnTensorMath.cpp", "aten/src/ATen/native/mkldnn/Normalization.cpp", "aten/src/ATen/native/mkldnn/Pooling.cpp", "aten/src/ATen/native/mkldnn/Relu.cpp", "aten/src/ATen/native/mkldnn/SoftMax.cpp", "aten/src/ATen/native/mkldnn/TensorFactories.cpp", "aten/src/ATen/native/mkldnn/TensorShape.cpp", "aten/src/ATen/native/mkldnn/UnaryOps.cpp", "aten/src/ATen/native/mkldnn/Utils.cpp", "aten/src/ATen/native/quantized/cpu/init_qnnpack.cpp", "aten/src/ATen/record_function.cpp", "aten/src/ATen/vulkan/Context.cpp", ] aten_cpu_source_codegen_list = [ "aten/src/ATen/native/cpu/AdaptiveAvgPoolKernel.cpp", ] # When buliding lite interpreter in OSS, "aten/src/ATen/native/cpu/AdaptiveAvgPoolKernel.cpp" will go through # codegen process. The codegen version of this file, like Activation.cpp.DEFAULT.cpp, will be included # in ${cpu_kernel_cpp} in aten/src/ATen/CMakeLists.txt. As a result, in aten/src/ATen/CMakeLists.txt, # only aten_cpu_source_non_codegen_list need to be added to ${all_cpu_cpp}. aten_cpu_source_list = sorted(aten_cpu_source_non_codegen_list + aten_cpu_source_codegen_list) # Same as ${aten_cpu_source_codegen_list}, this list will go through aten codegen, and be included in # ${cpu_kernel_cpp} in aten/src/ATen/CMakeLists.txt. aten_native_source_codegen_list = [ "aten/src/ATen/native/cpu/Activation.cpp", "aten/src/ATen/native/cpu/BinaryOpsKernel.cpp", "aten/src/ATen/native/cpu/BlasKernel.cpp", "aten/src/ATen/native/cpu/CatKernel.cpp", "aten/src/ATen/native/cpu/ComplexKernel.cpp", "aten/src/ATen/native/cpu/CopyKernel.cpp", "aten/src/ATen/native/cpu/CrossKernel.cpp", "aten/src/ATen/native/cpu/DepthwiseConvKernel.cpp", "aten/src/ATen/native/cpu/DistanceOpsKernel.cpp", "aten/src/ATen/native/cpu/FillKernel.cpp", "aten/src/ATen/native/cpu/FunctionOfAMatrixUtilsKernel.cpp", "aten/src/ATen/native/cpu/GridSamplerKernel.cpp", "aten/src/ATen/native/cpu/IndexKernel.cpp", "aten/src/ATen/native/cpu/LerpKernel.cpp", "aten/src/ATen/native/cpu/LinearAlgebraKernel.cpp", "aten/src/ATen/native/cpu/MaxPooling.cpp", "aten/src/ATen/native/cpu/MaxPoolKernel.cpp", "aten/src/ATen/native/cpu/MultinomialKernel.cpp", "aten/src/ATen/native/cpu/PointwiseOpsKernel.cpp", "aten/src/ATen/native/cpu/PowKernel.cpp", "aten/src/ATen/native/cpu/RangeFactoriesKernel.cpp", "aten/src/ATen/native/cpu/ReduceAllOpsKernel.cpp", "aten/src/ATen/native/cpu/ReduceOpsKernel.cpp", "aten/src/ATen/native/cpu/ScatterGatherKernel.cpp", "aten/src/ATen/native/cpu/SoftMaxKernel.cpp", "aten/src/ATen/native/cpu/SortingKernel.cpp", "aten/src/ATen/native/cpu/StackKernel.cpp", "aten/src/ATen/native/cpu/SumKernel.cpp", "aten/src/ATen/native/cpu/TensorCompareKernel.cpp", "aten/src/ATen/native/cpu/UnaryOpsKernel.cpp", "aten/src/ATen/native/cpu/Unfold2d.cpp", "aten/src/ATen/native/cpu/UnfoldBackwardKernel.cpp", "aten/src/ATen/native/cpu/UpSampleKernel.cpp", "aten/src/ATen/native/cpu/UpSampleMoreKernel.cpp", "aten/src/ATen/native/cpu/batch_norm_kernel.cpp", "aten/src/ATen/native/cpu/group_norm_kernel.cpp", "aten/src/ATen/native/cpu/layer_norm_kernel.cpp", "aten/src/ATen/native/quantized/cpu/kernels/QuantizedOpKernels.cpp", ] # This aten native source file list will not go through aten codegen process aten_native_source_non_codegen_list = [ "aten/src/ATen/native/ao_sparse/library.cpp", "aten/src/ATen/native/ao_sparse/quantized/cpu/fbgemm_utils.cpp", "aten/src/ATen/native/ao_sparse/quantized/cpu/qlinear.cpp", "aten/src/ATen/native/ao_sparse/quantized/cpu/qlinear_dynamic.cpp", "aten/src/ATen/native/ao_sparse/quantized/cpu/qlinear_prepack.cpp", "aten/src/ATen/native/ao_sparse/quantized/cpu/qlinear_unpack.cpp", "aten/src/ATen/native/quantized/cpu/fbgemm_utils.cpp", "aten/src/ATen/native/quantized/cpu/int_repr_quant.cpp", "aten/src/ATen/native/quantized/cpu/make_per_tensor_quantized_tensor.cpp", "aten/src/ATen/native/quantized/cpu/q_adaavgpool.cpp", "aten/src/ATen/native/quantized/cpu/q_avgpool.cpp", "aten/src/ATen/native/quantized/cpu/q_avgpool3d.cpp", "aten/src/ATen/native/quantized/cpu/qadd.cpp", "aten/src/ATen/native/quantized/cpu/qbatch_norm.cpp", "aten/src/ATen/native/quantized/cpu/qchannel_shuffle.cpp", "aten/src/ATen/native/quantized/cpu/qclamp.cpp", "aten/src/ATen/native/quantized/cpu/qconcat.cpp", "aten/src/ATen/native/quantized/cpu/qconv.cpp", "aten/src/ATen/native/quantized/cpu/qconv_prepack.cpp", "aten/src/ATen/native/quantized/cpu/qconv_unpack.cpp", "aten/src/ATen/native/quantized/cpu/qelu.cpp", "aten/src/ATen/native/quantized/cpu/qembeddingbag.cpp", "aten/src/ATen/native/quantized/cpu/qembeddingbag_prepack.cpp", "aten/src/ATen/native/quantized/cpu/qembeddingbag_unpack.cpp", "aten/src/ATen/native/quantized/cpu/qhardsigmoid.cpp", "aten/src/ATen/native/quantized/cpu/qhardswish.cpp", "aten/src/ATen/native/quantized/cpu/qlinear.cpp", "aten/src/ATen/native/quantized/cpu/qlinear_dynamic.cpp", "aten/src/ATen/native/quantized/cpu/qlinear_prepack.cpp", "aten/src/ATen/native/quantized/cpu/qlinear_unpack.cpp", "aten/src/ATen/native/quantized/cpu/qmul.cpp", "aten/src/ATen/native/quantized/cpu/qnormalization.cpp", "aten/src/ATen/native/quantized/cpu/qpool.cpp", "aten/src/ATen/native/quantized/cpu/qreduction.cpp", "aten/src/ATen/native/quantized/cpu/qrelu.cpp", "aten/src/ATen/native/quantized/cpu/qsigmoid.cpp", "aten/src/ATen/native/quantized/cpu/qsort.cpp", "aten/src/ATen/native/quantized/cpu/qtanh.cpp", "aten/src/ATen/native/quantized/cpu/qthreshold.cpp", "aten/src/ATen/native/quantized/cpu/qupsample_bilinear2d.cpp", "aten/src/ATen/native/quantized/cpu/qupsample_nearest2d.cpp", "aten/src/ATen/native/quantized/cpu/qupsample_nearest3d.cpp", "aten/src/ATen/native/quantized/cpu/tensor_operators.cpp", "aten/src/ATen/native/quantized/Copy.cpp", "aten/src/ATen/native/quantized/QTensor.cpp", "aten/src/ATen/native/quantized/TensorCompare.cpp", "aten/src/ATen/native/quantized/TensorFactories.cpp", "aten/src/ATen/native/quantized/affine_quantizer.cpp", "aten/src/ATen/native/quantized/affine_quantizer_base.cpp", "aten/src/ATen/native/quantized/fake_quant_per_channel_affine.cpp", "aten/src/ATen/native/quantized/fake_quant_per_tensor_affine.cpp", "aten/src/ATen/native/quantized/library.cpp", "aten/src/ATen/quantized/QTensorImpl.cpp", "aten/src/ATen/quantized/Quantizer.cpp", "aten/src/ATen/native/Activation.cpp", "aten/src/ATen/native/AdaptiveAveragePooling.cpp", "aten/src/ATen/native/AdaptiveAveragePooling3d.cpp", "aten/src/ATen/native/AdaptiveMaxPooling2d.cpp", "aten/src/ATen/native/AdaptiveMaxPooling3d.cpp", "aten/src/ATen/native/AffineGridGenerator.cpp", "aten/src/ATen/native/AveragePool2d.cpp", "aten/src/ATen/native/AveragePool3d.cpp", "aten/src/ATen/native/BatchLinearAlgebra.cpp", "aten/src/ATen/native/Batching.cpp", "aten/src/ATen/native/BinaryOps.cpp", "aten/src/ATen/native/Blas.cpp", "aten/src/ATen/native/BlasKernel.cpp", "aten/src/ATen/native/Bucketization.cpp", "aten/src/ATen/native/CPUBlas.cpp", "aten/src/ATen/native/ChanelShuffle.cpp", "aten/src/ATen/native/Col2Im.cpp", "aten/src/ATen/native/ConstantPadNd.cpp", "aten/src/ATen/native/Convolution.cpp", "aten/src/ATen/native/ConvolutionMM2d.cpp", "aten/src/ATen/native/ConvolutionMM3d.cpp", "aten/src/ATen/native/ConvolutionTBC.cpp", "aten/src/ATen/native/Copy.cpp", "aten/src/ATen/native/Cross.cpp", "aten/src/ATen/native/DilatedMaxPool2d.cpp", "aten/src/ATen/native/DilatedMaxPool3d.cpp", # Referenced by both native and ATen/Version.cpp. Does not reference to other native symbols # "aten/src/ATen/native/DispatchStub.cpp", # "aten/src/ATen/native/quantized/cpu/init_qnnpack.cpp", "aten/src/ATen/native/Distance.cpp", "aten/src/ATen/native/Distributions.cpp", "aten/src/ATen/native/Dropout.cpp", "aten/src/ATen/native/Embedding.cpp", "aten/src/ATen/native/EmbeddingBag.cpp", "aten/src/ATen/native/Fill.cpp", "aten/src/ATen/native/ForeachOpsKernels.cpp", "aten/src/ATen/native/FractionalMaxPool2d.cpp", "aten/src/ATen/native/FractionalMaxPool3d.cpp", "aten/src/ATen/native/FunctionOfAMatrixUtils.cpp", "aten/src/ATen/native/GatedLinearUnit.cpp", "aten/src/ATen/native/GridSampler.cpp", "aten/src/ATen/native/Im2Col.cpp", "aten/src/ATen/native/IndexingUtils.cpp", "aten/src/ATen/native/Integration.cpp", "aten/src/ATen/native/Itertools.cpp", "aten/src/ATen/native/LegacyBridge.cpp", "aten/src/ATen/native/LegacyNNDefinitions.cpp", "aten/src/ATen/native/Lerp.cpp", "aten/src/ATen/native/Linear.cpp", "aten/src/ATen/native/LinearAlgebra.cpp", "aten/src/ATen/native/Loss.cpp", "aten/src/ATen/native/LossCTC.cpp", "aten/src/ATen/native/LossMultiLabelMargin.cpp", "aten/src/ATen/native/LossMultiMargin.cpp", "aten/src/ATen/native/LossNLL.cpp", "aten/src/ATen/native/LossNLL2d.cpp", "aten/src/ATen/native/MaxPooling.cpp", "aten/src/ATen/native/MaxUnpooling.cpp", "aten/src/ATen/native/Memory.cpp", "aten/src/ATen/native/MetaTensor.cpp", "aten/src/ATen/native/NNPACK.cpp", "aten/src/ATen/native/NaiveConvolutionTranspose2d.cpp", "aten/src/ATen/native/NaiveConvolutionTranspose3d.cpp", "aten/src/ATen/native/NaiveDilatedConvolution.cpp", "aten/src/ATen/native/NamedTensor.cpp", "aten/src/ATen/native/Normalization.cpp", "aten/src/ATen/native/Onehot.cpp", "aten/src/ATen/native/PackedSequence.cpp", "aten/src/ATen/native/PixelShuffle.cpp", "aten/src/ATen/native/PointwiseOps.cpp", "aten/src/ATen/native/Pooling.cpp", "aten/src/ATen/native/Pow.cpp", "aten/src/ATen/native/QuantizedLinear.cpp", "aten/src/ATen/native/RNN.cpp", "aten/src/ATen/native/RangeFactories.cpp", "aten/src/ATen/native/ReduceAllOps.cpp", "aten/src/ATen/native/ReduceOps.cpp", "aten/src/ATen/native/ReflectionPad.cpp", "aten/src/ATen/native/Repeat.cpp", "aten/src/ATen/native/ReplicationPadding.cpp", "aten/src/ATen/native/Resize.cpp", "aten/src/ATen/native/RowwisePrune.cpp", "aten/src/ATen/native/SegmentReduce.cpp", "aten/src/ATen/native/Scalar.cpp", "aten/src/ATen/native/SobolEngineOps.cpp", "aten/src/ATen/native/SobolEngineOpsUtils.cpp", "aten/src/ATen/native/SoftMax.cpp", "aten/src/ATen/native/Sorting.cpp", "aten/src/ATen/native/SpectralOps.cpp", "aten/src/ATen/native/SummaryOps.cpp", "aten/src/ATen/native/TensorAdvancedIndexing.cpp", "aten/src/ATen/native/TensorCompare.cpp", "aten/src/ATen/native/TensorConversions.cpp", "aten/src/ATen/native/TensorFactories.cpp", "aten/src/ATen/native/TensorIteratorReduce.cpp", "aten/src/ATen/native/TensorProperties.cpp", "aten/src/ATen/native/TensorShape.cpp", "aten/src/ATen/native/TensorTransformations.cpp", "aten/src/ATen/native/TestOps.cpp", "aten/src/ATen/native/TriangularOps.cpp", "aten/src/ATen/native/TypeProperties.cpp", "aten/src/ATen/native/UnaryOps.cpp", "aten/src/ATen/native/Unfold2d.cpp", "aten/src/ATen/native/Unfold3d.cpp", "aten/src/ATen/native/UnfoldBackward.cpp", "aten/src/ATen/native/Unique.cpp", # Low-level functions that can be directly referenced # "aten/src/ATen/native/UpSample.cpp", "aten/src/ATen/native/UpSampleBicubic2d.cpp", "aten/src/ATen/native/UpSampleBilinear2d.cpp", "aten/src/ATen/native/UpSampleLinear1d.cpp", "aten/src/ATen/native/UpSampleNearest1d.cpp", "aten/src/ATen/native/UpSampleNearest2d.cpp", "aten/src/ATen/native/UpSampleNearest3d.cpp", "aten/src/ATen/native/UpSampleTrilinear3d.cpp", "aten/src/ATen/native/VariableMethodStubs.cpp", "aten/src/ATen/native/WeightNorm.cpp", "aten/src/ATen/native/group_norm.cpp", "aten/src/ATen/native/layer_norm.cpp", "aten/src/ATen/native/sparse/ParamUtils.cpp", "aten/src/ATen/native/sparse/SoftMax.cpp", "aten/src/ATen/native/sparse/SparseMatMul.cpp", "aten/src/ATen/native/sparse/SparseTensor.cpp", "aten/src/ATen/native/sparse/SparseCsrTensor.cpp", "aten/src/ATen/native/sparse/SparseTensorMath.cpp", "aten/src/ATen/native/sparse/SparseCsrTensorMath.cpp", "aten/src/TH/THAllocator.cpp", "aten/src/TH/THBlas.cpp", "aten/src/TH/THGeneral.cpp", "aten/src/TH/THLapack.cpp", "aten/src/TH/THStorageFunctions.cpp", "aten/src/TH/THTensor.cpp", "aten/src/TH/THTensorEvenMoreMath.cpp", "aten/src/TH/THTensorLapack.cpp", "aten/src/TH/THTensorMath.cpp", "aten/src/TH/THTensorMoreMath.cpp", "aten/src/ATen/native/utils/Factory.cpp", "aten/src/ATen/native/xnnpack/Activation.cpp", "aten/src/ATen/native/xnnpack/ChannelShuffle.cpp", "aten/src/ATen/native/xnnpack/Convolution.cpp", "aten/src/ATen/native/xnnpack/AveragePooling.cpp", "aten/src/ATen/native/xnnpack/Init.cpp", "aten/src/ATen/native/xnnpack/Linear.cpp", "aten/src/ATen/native/xnnpack/MaxPooling.cpp", "aten/src/ATen/native/xnnpack/OpContext.cpp", "aten/src/ATen/native/xnnpack/RegisterOpContextClass.cpp", "aten/src/ATen/native/xnnpack/Shim.cpp", # Files not in native, but depends on native symbols # "aten/src/ATen/TensorIndexing.cpp", "aten/src/ATen/TensorIterator.cpp", "aten/src/ATen/LegacyTHFunctionsCPU.cpp", "aten/src/ATen/nnapi/nnapi_bind.cpp", "aten/src/ATen/nnapi/nnapi_wrapper.cpp", "aten/src/ATen/nnapi/nnapi_model_loader.cpp", ] # 1. Files in ATen/native with a few exceptions # TODO: move the exceptions to proper locations # 2. The whole aten native source list includes the list with and without aten codegen process. aten_native_source_list = sorted(aten_native_source_non_codegen_list + aten_native_source_codegen_list)
py
b406aa5f145e93a7460b63ed71297b6b76a3b54f
from __future__ import absolute_import import base64 from kombu.serialization import registry, encode, decode from ..exceptions import SecurityError from ..utils.encoding import bytes_to_str, str_to_bytes from .certificate import Certificate, FSCertStore from .key import PrivateKey def b64encode(s): return bytes_to_str(base64.b64encode(str_to_bytes(s))) def b64decode(s): return base64.b64decode(str_to_bytes(s)) class SecureSerializer(object): def __init__(self, key=None, cert=None, cert_store=None, digest="sha1", serializer="json"): self._key = key self._cert = cert self._cert_store = cert_store self._digest = digest self._serializer = serializer def serialize(self, data): """serialize data structure into string""" assert self._key is not None assert self._cert is not None try: content_type, content_encoding, body = encode( data, serializer=self._serializer) # What we sign is the serialized body, not the body itself. # this way the receiver doesn't have to decode the contents # to verify the signature (and thus avoiding potential flaws # in the decoding step). return self._pack(body, content_type, content_encoding, signature=self._key.sign(body, self._digest), signer=self._cert.get_id()) except Exception, exc: raise SecurityError("Unable to serialize: %r" % (exc, )) def deserialize(self, data): """deserialize data structure from string""" assert self._cert_store is not None try: payload = self._unpack(data) signature, signer, body = (payload["signature"], payload["signer"], payload["body"]) self._cert_store[signer].verify(body, signature, self._digest) except Exception, exc: raise SecurityError("Unable to deserialize: %r" % (exc, )) return decode(body, payload["content_type"], payload["content_encoding"], force=True) def _pack(self, body, content_type, content_encoding, signer, signature, sep='\x00\x01'): return b64encode(sep.join([signer, signature, content_type, content_encoding, body])) def _unpack(self, payload, sep='\x00\x01', fields=("signer", "signature", "content_type", "content_encoding", "body")): return dict(zip(fields, b64decode(payload).split(sep))) def register_auth(key=None, cert=None, store=None, digest="sha1", serializer="json"): """register security serializer""" s = SecureSerializer(key and PrivateKey(key), cert and Certificate(cert), store and FSCertStore(store), digest=digest, serializer=serializer) registry.register("auth", s.serialize, s.deserialize, content_type="application/data", content_encoding="utf-8")
py
b406aad2d93338ea3d6ec7471165c0e795b6bb8a
# Import package import cv2 import math import numpy as np import matplotlib as plt FilePath = '../Images and Videos/theroad.mp4' cap = cv2.VideoCapture(FilePath) w = cap.get(3) h = cap.get(4) def callback(x): pass cv2.namedWindow('cor') cv2.resizeWindow('cor', 700, 1000) cv2.createTrackbar('lowh', 'cor', 0, 180, callback) cv2.createTrackbar('highh', 'cor', 0, 180, callback) cv2.createTrackbar('lows', 'cor', 0, 255, callback) cv2.createTrackbar('highs', 'cor', 0, 255, callback) cv2.createTrackbar('lowv', 'cor', 0, 255, callback) cv2.createTrackbar('highv', 'cor', 0, 255, callback) cv2.setTrackbarPos('lowh', 'cor',0) cv2.setTrackbarPos('lows', 'cor', 0) cv2.setTrackbarPos('lowv', 'cor', 130) cv2.setTrackbarPos('highh', 'cor', 255) cv2.setTrackbarPos('highs', 'cor', 255) cv2.setTrackbarPos('highv', 'cor', 255) cv2.createTrackbar('minline', 'cor', 0, 500, callback) cv2.createTrackbar('maxgap', 'cor', 0, 500, callback) cv2.setTrackbarPos('minline', 'cor', 10) cv2.setTrackbarPos('maxgap', 'cor', 20) cv2.createTrackbar('rad', 'cor', 0, 1800, callback) cv2.createTrackbar('rad2', 'cor', 0, 1800, callback) cv2.createTrackbar('width', 'cor', 0, 1800, callback) cv2.setTrackbarPos('rad', 'cor',958) cv2.setTrackbarPos('rad2', 'cor', 477) cv2.setTrackbarPos('width', 'cor', 520) cv2.createTrackbar('centerX', 'cor', 0, 1500, callback) cv2.createTrackbar('centerY', 'cor', 0, 1500, callback) cv2.setTrackbarPos('centerX', 'cor', 640) cv2.setTrackbarPos('centerY', 'cor', 640) cv2.createTrackbar('alpha', 'cor', 0,100, callback) cv2.createTrackbar('beta', 'cor', 0, 100, callback) cv2.setTrackbarPos('alpha', 'cor', 80) cv2.setTrackbarPos('beta', 'cor', 100) cv2.namedWindow('Perspective_transform') cv2.resizeWindow('Perspective_transform', 700, 1000) # 1280 -> width and 720 -> Height cv2.createTrackbar('src_x1', 'Perspective_transform', 0, 1280, callback) cv2.createTrackbar('src_y1', 'Perspective_transform', 0, 720, callback) cv2.createTrackbar('src_x2', 'Perspective_transform', 0, 1280, callback) cv2.createTrackbar('src_y2', 'Perspective_transform', 0, 720, callback) cv2.createTrackbar('src_x3', 'Perspective_transform', 0, 1280, callback) cv2.createTrackbar('src_y3', 'Perspective_transform', 0, 720, callback) cv2.createTrackbar('src_x4', 'Perspective_transform', 0, 1280, callback) cv2.createTrackbar('src_y4', 'Perspective_transform', 0, 720, callback) cv2.createTrackbar('dist_x1', 'Perspective_transform', 0, 1280, callback) cv2.createTrackbar('dist_y1', 'Perspective_transform', 0, 720, callback) cv2.createTrackbar('dist_x2', 'Perspective_transform', 0, 1280, callback) cv2.createTrackbar('dist_y2', 'Perspective_transform', 0, 720, callback) cv2.createTrackbar('dist_x3', 'Perspective_transform', 0, 1280, callback) cv2.createTrackbar('dist_y3', 'Perspective_transform', 0, 720, callback) cv2.createTrackbar('dist_x4', 'Perspective_transform', 0, 1280, callback) cv2.createTrackbar('dist_y4', 'Perspective_transform', 0, 720, callback) cv2.setTrackbarPos('src_x1', 'Perspective_transform', 523) cv2.setTrackbarPos('src_y1', 'Perspective_transform', 453) cv2.setTrackbarPos('src_x2', 'Perspective_transform', 811) cv2.setTrackbarPos('src_y2', 'Perspective_transform', 440) cv2.setTrackbarPos('src_x3', 'Perspective_transform', 405) cv2.setTrackbarPos('src_y3', 'Perspective_transform', 639) cv2.setTrackbarPos('src_x4', 'Perspective_transform', 1261) cv2.setTrackbarPos('src_y4', 'Perspective_transform', 671) cv2.setTrackbarPos('dist_x1', 'Perspective_transform', 160) cv2.setTrackbarPos('dist_y1', 'Perspective_transform', 93) cv2.setTrackbarPos('dist_x2', 'Perspective_transform', 1200) cv2.setTrackbarPos('dist_y2', 'Perspective_transform', 0) cv2.setTrackbarPos('dist_x3', 'Perspective_transform', 200) cv2.setTrackbarPos('dist_y3', 'Perspective_transform', 710) cv2.setTrackbarPos('dist_x4', 'Perspective_transform', 1200) cv2.setTrackbarPos('dist_y4', 'Perspective_transform', 710) def automatic_canny(images, sigma=0.33): median = np.median(images) ## Based on some statistics lower = int(max(0, (1-sigma)*median)) upper = int(min(255, (1+sigma)*median)) edge = cv2.Canny(images, lower, upper,3) return edge def perspectiveWarp(inpImage): # Get image size img_size = (inpImage.shape[1], inpImage.shape[0]) src_x1 = cv2.getTrackbarPos('src_x1','Perspective_transform') src_y1 = cv2.getTrackbarPos('src_y1','Perspective_transform') src_x2 = cv2.getTrackbarPos('src_x2','Perspective_transform') src_y2 = cv2.getTrackbarPos('src_y2','Perspective_transform') src_x3 = cv2.getTrackbarPos('src_x3','Perspective_transform') src_y3 = cv2.getTrackbarPos('src_y3','Perspective_transform') src_x4 = cv2.getTrackbarPos('src_x4','Perspective_transform') src_y4 = cv2.getTrackbarPos('src_y4','Perspective_transform') dist_x1 = cv2.getTrackbarPos('dist_x1','Perspective_transform') dist_y1 = cv2.getTrackbarPos('dist_y1','Perspective_transform') dist_x2 = cv2.getTrackbarPos('dist_x2','Perspective_transform') dist_y2 = cv2.getTrackbarPos('dist_y2','Perspective_transform') dist_x3 = cv2.getTrackbarPos('dist_x3','Perspective_transform') dist_y3 = cv2.getTrackbarPos('dist_y3','Perspective_transform') dist_x4 = cv2.getTrackbarPos('dist_x4','Perspective_transform') dist_y4 = cv2.getTrackbarPos('dist_y4','Perspective_transform') # Perspective points to be warped src = np.float32([[src_x1,src_y1], [src_x2, src_y2], [src_x3, src_y3], [src_x4, src_y4]]) # Window to be shown dst = np.float32([[dist_x1,dist_y1], [dist_x2,dist_y2], [dist_x3,dist_y3], [dist_x4,dist_y4]]) # Matrix to warp the image for birdseye window matrix = cv2.getPerspectiveTransform(src, dst) # Inverse matrix to unwarp the image for final window minv = cv2.getPerspectiveTransform(dst, src) birdseye = cv2.warpPerspective(inpImage, matrix, img_size) # Get the birdseye window dimensions height, width = birdseye.shape[:2] # Divide the birdseye view into 2 halves to separate left & right lanes birdseyeLeft = birdseye[0:height, 0:width // 2] birdseyeRight = birdseye[0:height, width // 2:width] return birdseye, birdseyeLeft, birdseyeRight, minv while True: _, img = cap.read() # Masking lowh = cv2.getTrackbarPos('lowh','cor') lows = cv2.getTrackbarPos('lows','cor') lowv = cv2.getTrackbarPos('lowv','cor') highh = cv2.getTrackbarPos('highh','cor') highs = cv2.getTrackbarPos('highs','cor') highv = cv2.getTrackbarPos('highv','cor') # For ellipse (center cordinates) centerX = cv2.getTrackbarPos('centerX','cor') centerY = cv2.getTrackbarPos('centerY','cor') # addWeighted parameters alpha = cv2.getTrackbarPos('alpha','cor') beta = cv2.getTrackbarPos('beta','cor') # Hide corner using ellipse rad = cv2.getTrackbarPos('rad', 'cor') rad2 = cv2.getTrackbarPos('rad2', 'cor') width = cv2.getTrackbarPos('width', 'cor') # define range of white color in HSV (Change the value for another color using trackbar) lower_red = np.array([lowh,lows,lowv]) upper_red = np.array([highh,highs,highv]) # Convert BGR to HSV hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) cv2.imshow('hsv',hsv) # Threshold the HSV image to get only blue colors mask = cv2.inRange(hsv, lower_red, upper_red) cv2.imshow('mask',mask) # Make ellipse to hide (black out) upper region and only focus on the road part cv2.ellipse(mask, (640,640), (rad, rad2), 0, 0, 360, (0, 0, 0), width) # Bitwise-AND mask and original image res = cv2.bitwise_and(img , img, mask = mask) cv2.imshow('res',res) # Grayscale gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) cv2.imshow('gray',gray) # Gaussian Blur (Remove noise) gray_blur = cv2.GaussianBlur(gray,(3, 3), 0) # Canny edge edges = automatic_canny(gray_blur) cv2.imshow('Canny edge', edges) # Thresolding (Binary image) ret, thresh = cv2.threshold(edges,125, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) cv2.imshow('thresold',thresh) # Define kernel size kernel = np.ones((10,10), np.uint8) # Apply closing closing = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) cv2.imshow('closing', closing) # Data loader for hough transform rho = 1 theta = np.pi/180 threshold = 50 min_line_len = cv2.getTrackbarPos('minline', 'cor') max_line_gap = cv2.getTrackbarPos('maxgap', 'cor') lines = cv2.HoughLinesP(closing, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) line_img = np.zeros((closing.shape[0], closing.shape[1], 3), dtype=np.uint8) if lines is not None: for line in lines: for x1,y1,x2,y2 in line: cv2.line(line_img, (x1, y1), (x2, y2), [0,0,255],3) # Merge the image with the lines onto the original. # img = img * α + line_img * β + γ # NOTE: img and line_img must be the same shape! alpha = alpha / 100 if alpha > 0 else 0.01 beta = beta / 100 if beta > 0 else 0.01 img = cv2.addWeighted(img, alpha, line_img, beta, 0.0) birdView, birdViewL, birdViewR, minverse = perspectiveWarp(img) cv2.imshow('birdView',birdView) cv2.imshow('birdViewL',birdViewL) cv2.imshow('birdViewR',birdViewR) cv2.imshow('line_img',line_img) ''' # Apply contour to get the bounding box on the lane contours, hierarchy=cv2.findContours(closing,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) for i in contours: area = cv2.contourArea(i) if(area>10000): x,y,w,h = cv2.boundingRect(i) rect = cv2.minAreaRect(i) box = cv2.boxPoints(rect) box = np.int0(box) #cv2.drawContours(img,[box],0,(255,0,0),4) cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),4) cv2.putText(img,"Lane detected",(x,y),cv2.FONT_HERSHEY_SIMPLEX,4, (0,255,0),cv2.LINE_AA) ''' cv2.imshow('Output', img) k = cv2.waitKey(1) & 0xFF if k == 27: break cap.release() cv2.destroyAllWindows()
py
b406ac0f2c1e0954f5d0cf3260aecc4eaee5e4e9
# Copyright 2022 The TEMPO Collaboration # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Module for calculating bath dynamics as outlined in [Gribben2021]. **[Gribben2021]** D. Gribben, A. Strathearn, G. E. Fux, P. Kirton, and B. W. Lovett, *Using the Environment to Understand non-Markovian Open Quantum Systems*, arXiv:2106.04212 [quant-ph] (2021). """ from typing import Optional, Text, Tuple import numpy as np from numpy import ndarray from oqupy.base_api import BaseAPIClass from oqupy.process_tensor import BaseProcessTensor from oqupy.bath import Bath from oqupy.system import BaseSystem from oqupy.config import NpDtype from oqupy.contractions import compute_correlations class TwoTimeBathCorrelations(BaseAPIClass): """ Class to facilitate calculation of two-time bath correlations. Parameters ---------- system: BaseSystem The system. bath: Bath The bath object containing all coupling information and temperature. process_tensor: ProcessTensor The corresponding process tensor calculated for the given bath. initial_state: ndarray Initial state of the system. system_correlations: ndarray Optional previously calculated system correlations. This must be an upper triangular array with all ordered correlations up to a certain time. name: str An optional name for the bath dynamics object. description: str An optional description of the bath dynamics object. """ def __init__( self, system: BaseSystem, bath: Bath, process_tensor: BaseProcessTensor, initial_state: Optional[ndarray] = None, system_correlations: Optional[ndarray] = None, name: Optional[Text] = None, description: Optional[Text] = None) -> None: """Create a TwoTimeBathCorrelations object.""" self._system = system self._bath = bath initial_tensor = process_tensor.get_initial_tensor() assert (initial_state is None) ^ (initial_tensor is None), \ "Initial state must be either (exclusively) encoded in the " \ + "process tensor or given as an argument." self._process_tensor = process_tensor self._initial_state = initial_state if system_correlations is None: self._system_correlations = np.array([[]], dtype=NpDtype) else: self._system_correlations = system_correlations self._temp = bath.correlations.temperature self._bath_correlations = {} super().__init__(name, description) @property def system(self) -> BaseSystem: """The system. """ return self._system @property def bath(self) -> Bath: """The bath. """ return self._bath @property def initial_state(self) -> ndarray: """The initial system state. """ return self._initial_state def generate_system_correlations( self, final_time: float, progress_type: Optional[Text] = None) -> None: r""" Function to generate all ordered system correlations up to a given time using the process tensor. Parameters ---------- final_time: float The latest time appearing in the generated system correlation functions. progress_type: str (default = None) The progress report type during the computation. Types are: {``silent``, ``simple``, ``bar``}. If `None` then the default progress type is used. """ dt = self._process_tensor.dt corr_mat_dim = int(np.round(final_time/dt)) current_corr_dim = self._system_correlations.shape[0] times_a = slice(corr_mat_dim) if self._system_correlations.size == 0: times_b = slice(corr_mat_dim) else: times_b = slice(current_corr_dim, corr_mat_dim) dim_diff = corr_mat_dim - current_corr_dim if dim_diff > 0: coup_op = self.bath.unitary_transform \ @ self.bath.coupling_operator \ @ self.bath.unitary_transform.conjugate().T _,_,_new_sys_correlations = \ compute_correlations(self.system, self._process_tensor, coup_op, coup_op, times_a, times_b, initial_state = self.initial_state, progress_type=progress_type) self._system_correlations = np.pad(self._system_correlations, ((0, dim_diff), (0, 0)), 'constant', constant_values = np.nan) self._system_correlations = np.append(self._system_correlations, _new_sys_correlations, axis = 1) def occupation( self, freq: float, dw: Optional[float] = 1.0, change_only: Optional[bool] = False, progress_type: Optional[Text] = None) -> Tuple[ndarray, ndarray]: r""" Function to calculate the change in bath occupation in a particular bandwidth. Parameters ---------- freq: float Central frequency of the frequency band. dw: float Width of the the frequency band. By default this method returns a a *density* by setting the frequency band `dw=1.0`. change_only: bool Option to include the initial occupation (density) in the result. progress_type: str (default = None) The progress report type during the computation. Types are: {``silent``, ``simple``, ``bar``}. If `None` then the default progress type is used. Returns ------- times: ndarray Times of the occupation dynamics. bath_occupation: ndarray Occupation (density) (difference) of the bath in the specified frequency band. """ corr_mat_dim = len(self._process_tensor) dt = self._process_tensor.dt last_time = corr_mat_dim * dt tlist = np.arange(0, last_time+dt, dt) if freq == 0: return tlist, np.ones(len(tlist), dtype=NpDtype) * (np.nan + 1.0j*np.nan) self.generate_system_correlations(last_time, progress_type) _sys_correlations = self._system_correlations[:corr_mat_dim, :corr_mat_dim] _sys_correlations = np.nan_to_num(_sys_correlations) last_time = len(self._process_tensor) * self._process_tensor.dt re_kernel, im_kernel = self._calc_kernel(freq, last_time, freq, last_time, (1, 0)) coup = self._bath.correlations.spectral_density(freq) * dw bath_occupation = np.cumsum( np.sum(_sys_correlations.real*re_kernel \ + 1j*_sys_correlations.imag*im_kernel, axis = 0) ).real * coup bath_occupation = np.append([0], bath_occupation) if not change_only and self._temp > 0: bath_occupation += np.exp(-freq/self._temp) \ / (1 - np.exp(-freq/self._temp)) return tlist, bath_occupation def correlation( self, freq_1: float, time_1: float, freq_2: Optional[float] = None, time_2: Optional[float] = None, dw: Optional[tuple] = (1.0, 1.0), dagg: Optional[tuple] = (1, 0), interaction_picture: Optional[bool] = False, change_only: Optional[bool] = False, progress_type: Optional[Text] = None) -> complex: r""" Function to calculate two-time correlation function between two frequency bands of a bath. The calculation consists of a double integral of the form: .. math:: \int_0^t \int_0^{t'} \left\{ \mathrm{Re} \langle O(t')O(t'') \rangle \, K_R(t',t'') + i \,\mathrm{Im} \langle O(t')O(t'') \rangle \, K_I(t',t'') \right\} dt'' dt' where :math:`O` is the system operator coupled to the bath and :math:`K_R` and :math:`K_I` are generally piecewise kernels which depend on the exact bath correlation function desired. Parameters ---------- freq_1: float Frequency of the earlier time operator. time_1: float Time the earlier operator acts. freq_2: float Frequency of the later time operator. If set to None will default to freq_2=freq_1. time_2: float Time the later operator acts. If set to None will default to time_2=time_1. dw: tuple Width of the the frequency bands. By default this method returns a correlation *density* by setting the frequency bands to `dw=(1.0, 1.0)`. dagg: tuple Determines whether each operator is daggered or not e.g. (1,0) would correspond to :math:`< a^\dagger a >`. interaction_picture: bool Option whether to generate the result within the bath interaction picture. change_only: bool Option to include the initial occupation in the result. progress_type: str (default = None) The progress report type during the computation. Types are: {``silent``, ``simple``, ``bar``}. If `None` then the default progress type is used. Returns ------- correlation : complex Bath correlation function <a^{dagg[0]}_{freq_2} (time_2) a^{dagg[1]}_{freq_1} (time_1)> """ dt = self._process_tensor.dt if time_2 is None: time_2 = time_1 if freq_2 is None: freq_2 = freq_1 self.generate_system_correlations(time_2, progress_type) corr_mat_dim = int(np.round(time_2/dt)) _sys_correlations = self._system_correlations[:corr_mat_dim, :corr_mat_dim] _sys_correlations = np.nan_to_num(_sys_correlations) re_kernel,im_kernel = self._calc_kernel(freq_1, time_1, freq_2, time_2, dagg) coup_1 = dw[0] * self._bath.correlations.spectral_density(freq_1)**0.5 coup_2 = dw[1] * self._bath.correlations.spectral_density(freq_2)**0.5 correlation = np.sum(_sys_correlations.real*re_kernel + \ 1j*_sys_correlations.imag*im_kernel) * \ coup_1 * coup_2 if (not change_only) and (freq_1 == freq_2) \ and (dagg in ((1, 0), (0, 1))): if self._temp > 0: correlation += np.exp(-freq_1/self._temp) \ / (1 - np.exp(-freq_1/self._temp)) if dagg == (0, 1): correlation += 1 if not interaction_picture: correlation *= np.exp(1j * ((2*dagg[0] - 1) * freq_2 * time_2 + \ (2*dagg[1] - 1) * freq_1 * time_1)) return correlation def _calc_kernel(self, freq_1: float, time_1: float, freq_2: float, time_2: float, dagg: tuple ) -> Tuple[ndarray, ndarray]: r""" Function to calculate the corresponding kernel for the desired correlation function. Parameters ---------- freq_1 : float Frequency of the earlier time operator. time_1 : float Time the earlier operator acts. freq_2 : float Frequency of the later time operator. time_2 : float Time the later operator acts. dagg : tuple Determines whether each operator is daggered or not e.g. (1,0) would correspond to :math:`< a^\dagger a >` Returns ------- re_kernel : ndarray An array that multiplies the real part of the system correlation functions before being summed. im_kernel : ndarray An array that multiplies the imaginary part of the system correlation functions before being summed. The general structure of the kernel is piecewise and different for the real and imaginary parts of the correlation function. To accommodate the most general case we split the integrals up in the following way: .. math:: \int_0^t \int_0^t' = \int_0^{t_1} \int_0^{t'}+ \int_{t_1}^{t} \int_0^{t_1}+ \int_{t_1}^{t} \int_{t_1}^{t'} where :math:`t_1` is the time the earlier operator acts. We will refer to these as regions `a`, `b` and `c` in the code. In the actual implementation we build the kernel for the full square integration region and then simply keep the upper triangular portion of the matrix. """ dt = self._process_tensor.dt #pieces of kernel consist of some combination of phases and #Bose-Einstein factors n_1, n_2 = 0, 0 if self._temp > 0: n_1 += np.exp(-freq_1/self._temp) / (1 - np.exp(-freq_1/self._temp)) n_2 += np.exp(-freq_2/self._temp) / (1 - np.exp(-freq_2/self._temp)) ker_dim = int(np.round(time_2 / dt)) # calculate index corresponding to t_1 switch = int(np.round(time_1 / dt)) re_kernel = np.zeros((ker_dim, ker_dim), dtype = NpDtype) im_kernel = np.zeros((ker_dim, ker_dim), dtype = NpDtype) tpp_index, tp_index = np.meshgrid( np.arange(ker_dim), np.arange(ker_dim), indexing='ij') #array of indices for each array element regions = { 'a': (slice(switch), slice(switch)), #(0->t_1, 0->t_1) 'b': (slice(switch), slice(switch, None)), #(0->t_1, t_1->t) 'c': (slice(switch, None), slice(switch, None))} #(t_1->t, t_1->t) def phase(region, swap_ts = False): tk = tp_index[regions[region]] tkp = tpp_index[regions[region]] if tk.size == 0 or tkp.size == 0: return 0 a = -1j * ((2*dagg[0] - 1)) * freq_2 b = -1j * ((2*dagg[1] - 1)) * freq_1 if swap_ts: a, b = b, a if region in ('a','c'): ph = np.triu( np.exp(a * (tk+1)*dt + b * (tkp+1)*dt) / (a * b), k = 1) ph -= np.triu( np.exp(a * (tk+1)*dt + b * tkp*dt) / (a * b), k = 1) ph -= np.triu( np.exp(a * tk*dt + b * (tkp+1)*dt) / (a * b), k = 1) ph += np.triu( np.exp(a * tk*dt + b * tkp*dt) / (a * b), k = 1) sel = np.diag(tk) di = -np.exp((a * (sel + 1) + b * sel) * dt) / (a * b) if a + b != 0: di += np.exp((a + b) * (sel + 1) * dt) / (b * (a+b)) di += np.exp((a + b) * sel * dt) / (a * (a+b)) else: di += (1 + a * sel * dt + b * (sel + 1) * dt) / (a * b) ph += np.diag(di) else: ph = np.exp(a * (tk+1)*dt + b * (tkp+1)*dt) / (a * b) ph -= np.exp(a * (tk+1)*dt + b * tkp*dt) / (a * b) ph -= np.exp(a * tk*dt + b * (tkp+1)*dt) / (a * b) ph += np.exp(a * tk*dt + b * tkp*dt) / (a * b) return ph if dagg == (0, 1): re_kernel[regions['a']] = phase('a') + phase('a', 1) re_kernel[regions['b']] = phase('b') im_kernel[regions['a']] = ((2*n_1 + 1) * phase('a') - (2*n_2 + 1) * phase('a', 1)) im_kernel[regions['b']] = (2*n_1 + 1) * phase('b') im_kernel[regions['c']] = -2 * (n_1 + 1) * phase('c') elif dagg == (1, 0): re_kernel[regions['a']] = phase('a') + phase('a', 1) re_kernel[regions['b']] = phase('b') im_kernel[regions['a']] = ((2*n_1 + 1) * phase('a') - (2*n_2 + 1) * phase('a', 1)) im_kernel[regions['b']] = (2*n_1 + 1) * phase('b') im_kernel[regions['c']] = 2 * n_1 * phase('c') elif dagg == (1, 1): re_kernel[regions['a']] = -(phase('a') + phase('a', 1)) re_kernel[regions['b']] = -phase('b') im_kernel[regions['a']] = ((2*n_1 + 1) * phase('a') + (2*n_2 + 1) * phase('a', 1)) im_kernel[regions['b']] = (2*n_1 + 1) * phase('b') im_kernel[regions['c']] = 2 * (n_1 + 1) * phase('c') elif dagg == (0, 0): re_kernel[regions['a']] = -(phase('a') + phase('a', 1)) re_kernel[regions['b']] = -phase('b') im_kernel[regions['a']] = -((2*n_2 + 1) * phase('a', 1) + (2*n_1 + 1) * phase('a')) im_kernel[regions['b']] = -(2*n_1 + 1) * phase('b') im_kernel[regions['c']] = -2 * n_1 * phase('c') re_kernel = np.triu(re_kernel) #only keep triangular region im_kernel = np.triu(im_kernel) return re_kernel, im_kernel
py
b406ac3eed1ba327060b05f34a41fea08ae1015a
""" NLP Sandbox API NLP Sandbox REST API # noqa: E501 The version of the OpenAPI document: 1.2.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from nlpsandbox.api_client import ApiClient, Endpoint as _Endpoint from nlpsandbox.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from nlpsandbox.model.deidentify_request import DeidentifyRequest from nlpsandbox.model.deidentify_response import DeidentifyResponse from nlpsandbox.model.error import Error class DeidentifiedNoteApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def __create_deidentified_notes( self, **kwargs ): """Deidentify a clinical note # noqa: E501 Returns the deidentified note # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_deidentified_notes(async_req=True) >>> result = thread.get() Keyword Args: deidentify_request (DeidentifyRequest): [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: DeidentifyResponse If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') return self.call_with_http_info(**kwargs) self.create_deidentified_notes = _Endpoint( settings={ 'response_type': (DeidentifyResponse,), 'auth': [], 'endpoint_path': '/deidentifiedNotes', 'operation_id': 'create_deidentified_notes', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'deidentify_request', ], 'required': [], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'deidentify_request': (DeidentifyRequest,), }, 'attribute_map': { }, 'location_map': { 'deidentify_request': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__create_deidentified_notes )
py
b406ad2c4561f94b7681640fab2763cb7e4b510f
from setuptools import setup setup( name='hail', version='0.3b2', py_modules=["hail"], author='Elisey Zanko', author_email='[email protected]', description='Pythonic bindings for the Apache Storm UI REST API', license='BSD-3-Clause', url='https://github.com/31z4/hail', test_suite='tests', tests_require='waiting' )
py
b406ad31cc6f7e3fc7bb1376e33b298352fe3590
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test uncertainty toolbox """ import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as C import mindspore.dataset.vision.c_transforms as CV import mindspore.nn as nn from mindspore import context, Tensor from mindspore import dtype as mstype from mindspore.common.initializer import TruncatedNormal from mindspore.dataset.vision import Inter from mindspore.nn.probability.toolbox.uncertainty_evaluation import UncertaintyEvaluation from mindspore.train import load_checkpoint, load_param_into_net context.set_context(mode=context.GRAPH_MODE, device_target="GPU") def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): """weight initial for conv layer""" weight = weight_variable() return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="valid") def fc_with_initialize(input_channels, out_channels): """weight initial for fc layer""" weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) def weight_variable(): """weight initial""" return TruncatedNormal(0.02) class LeNet5(nn.Cell): def __init__(self, num_class=10, channel=1): super(LeNet5, self).__init__() self.num_class = num_class self.conv1 = conv(channel, 6, 5) self.conv2 = conv(6, 16, 5) self.fc1 = fc_with_initialize(16 * 5 * 5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, self.num_class) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1): """ create dataset for train or test """ # define dataset mnist_ds = ds.MnistDataset(data_path) resize_height, resize_width = 32, 32 rescale = 1.0 / 255.0 shift = 0.0 rescale_nml = 1 / 0.3081 shift_nml = -1 * 0.1307 / 0.3081 # define map operations resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) rescale_op = CV.Rescale(rescale, shift) hwc2chw_op = CV.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) # apply map operations on images mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # apply DatasetOps buffer_size = 10000 mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds if __name__ == '__main__': # get trained model network = LeNet5() param_dict = load_checkpoint('checkpoint_lenet.ckpt') load_param_into_net(network, param_dict) # get train and eval dataset ds_train = create_dataset('workspace/mnist/train') ds_eval = create_dataset('workspace/mnist/test') evaluation = UncertaintyEvaluation(model=network, train_dataset=ds_train, task_type='classification', num_classes=10, epochs=1, epi_uncer_model_path=None, ale_uncer_model_path=None, save_model=False) for eval_data in ds_eval.create_dict_iterator(output_numpy=True, num_epochs=1): eval_data = Tensor(eval_data['image'], mstype.float32) epistemic_uncertainty = evaluation.eval_epistemic_uncertainty(eval_data) aleatoric_uncertainty = evaluation.eval_aleatoric_uncertainty(eval_data)
py
b406ad612404e95430cba12afa236665470ceb7b
# -*- coding: utf-8 -*- # # Poio Tools for Linguists # # Copyright (C) 2009-2013 Poio Project # Author: António Lopes <[email protected]> # URL: <http://media.cidles.eu/poio/> # For license information, see LICENSE.TXT """ """ from __future__ import absolute_import import re import xml.etree.ElementTree as ET import poioapi.io.graf class Parser(poioapi.io.graf.BaseParser): def __init__(self, filepath): """Class's constructor. Parameters ---------- filepath : str Path of the Toolbox XML file. """ self.filepath = filepath self.parse() def parse(self): """This method will parse the input file. """ root = ET.parse(self.filepath) tree = root.getroot() self._current_id = 0 self._elements_map = {"ref": [], "t": {}, "m": {}, "g": {}, "p": {}, "f": {}} self.parse_element_tree(tree) def parse_element_tree(self, tree): """ tag name and value represent the title ref represents the """ for t in tree: if t.tag == "ref": self._current_ref = t.attrib['value'] self._elements_map["ref"].append({"id":self._current_ref, "value":""}) elif t.tag == "t": self._current_t = self._next_id() self._add_elment_to_elements(t, self._current_t, self._current_ref, t.attrib['value']) self._add_phrase(t.attrib['value']) elif t.tag == "p": if t.text and "-" not in t.text: self._add_elment_to_elements(t, self._next_id(), self._current_t, t.text) elif t.tag == "m": self._current_m = self._next_id() self._add_elment_to_elements(t, self._current_m, self._current_t, t.attrib['value']) elif t.tag == "g": self._add_elment_to_elements(t, self._next_id(), self._current_m, t.text) elif t.tag == "name": self.meta_information = t.attrib["value"] if len(t.getchildren()) > 0: self.parse_element_tree(t) def _add_phrase(self, value): for ref in self._elements_map["ref"]: if ref["id"] == self._current_ref: ref["value"] += value + " " def _add_elment_to_elements(self, t, id, parent=None, value=None, features=None, region=None): if (t.tag, parent) in self._elements_map: self._elements_map[(t.tag, parent)].append( {"id": id, "value": value, "region": region, "features": features}) else: self._elements_map[(t.tag, parent)] = [{"id": id, "value": value, "region": region, "features": features}] def get_root_tiers(self): return [poioapi.io.graf.Tier("ref")] def get_child_tiers_for_tier(self, tier): if tier.name == "ref": return [poioapi.io.graf.Tier("t")] if tier.name == "t": return [poioapi.io.graf.Tier("p"), poioapi.io.graf.Tier("m")] if tier.name == "m": return [poioapi.io.graf.Tier("g")] def get_annotations_for_tier(self, tier, annotation_parent=None): if tier.name == "ref": return [poioapi.io.graf.Annotation(e["id"], e['value']) for e in self._elements_map[tier.name]] else: if (tier.name, annotation_parent.id) in self._elements_map: return [poioapi.io.graf.Annotation(e["id"], e["value"], e["features"]) for e in self._elements_map[(tier.name, annotation_parent.id)]] else: return [] def tier_has_regions(self, tier): #if tier.name == "t": # return True return False def region_for_annotation(self, annotation): idGroup = [value for key, value in self._elements_map.items() if "idGroup" in key] for elements in idGroup: for e in elements: if e["id"] == annotation.id: return e["region"] return None def get_primary_data(self): """This method gets the information about the source data file. Returns ------- primary_data : object PrimaryData object. """ primary_data = poioapi.io.graf.PrimaryData() primary_data.type = poioapi.io.graf.NONE primary_data.filename = "unknown" return primary_data def _next_id(self): current_id = str(int(self._current_id) + 1) self._current_id = current_id return current_id def _split_region(self, element): try: aud = element.find("aud").text results = re.findall("\d*\.\d+|\d+", aud) region = (results[-2], results[-1]) value = aud.split(results[-2])[0] except: value = None region = None return value, region
py
b406adc1ea4947d7c86c7cc1b9eb58f49f219f0a
# coding=utf-8 # Copyright 2020 The Trax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """NumPy like wrapper for Tensorflow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow import newaxis from trax.tf_numpy.numpy import random # pylint: disable=wildcard-import from trax.tf_numpy.numpy.array_creation import * from trax.tf_numpy.numpy.array_manipulation import * from trax.tf_numpy.numpy.array_methods import * from trax.tf_numpy.numpy.arrays import ndarray from trax.tf_numpy.numpy.dtypes import * from trax.tf_numpy.numpy.logic import * from trax.tf_numpy.numpy.math import * from trax.tf_numpy.numpy.utils import finfo # pylint: enable=wildcard-import
py
b406b128e24a3321bc45287a84d0ef982e206f16
# qubit number=5 # total number=54 import cirq import qiskit from qiskit.providers.aer import QasmSimulator from qiskit.test.mock import FakeVigo from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") oracle = QuantumCircuit(controls, name="Zf") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.h(controls[n]) if n >= 2: oracle.mcu1(pi, controls[1:], controls[0]) for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[0]) # number=3 prog.h(input_qubit[1]) # number=4 prog.h(input_qubit[2]) # number=5 prog.h(input_qubit[3]) # number=6 prog.h(input_qubit[0]) # number=38 prog.cz(input_qubit[1],input_qubit[0]) # number=39 prog.h(input_qubit[0]) # number=40 prog.cx(input_qubit[1],input_qubit[0]) # number=48 prog.z(input_qubit[1]) # number=49 prog.h(input_qubit[0]) # number=51 prog.cz(input_qubit[1],input_qubit[0]) # number=52 prog.h(input_qubit[0]) # number=53 prog.h(input_qubit[0]) # number=32 prog.cz(input_qubit[1],input_qubit[0]) # number=33 prog.h(input_qubit[0]) # number=34 prog.h(input_qubit[4]) # number=21 Zf = build_oracle(n, f) repeat = floor(sqrt(2 ** n) * pi / 4) for i in range(repeat): prog.append(Zf.to_gate(), [input_qubit[i] for i in range(n)]) prog.h(input_qubit[0]) # number=1 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.cx(input_qubit[3],input_qubit[0]) # number=41 prog.z(input_qubit[3]) # number=42 prog.cx(input_qubit[3],input_qubit[0]) # number=43 prog.cx(input_qubit[1],input_qubit[3]) # number=44 prog.cx(input_qubit[3],input_qubit[2]) # number=45 prog.x(input_qubit[0]) # number=9 prog.x(input_qubit[1]) # number=10 prog.x(input_qubit[2]) # number=11 prog.cx(input_qubit[0],input_qubit[3]) # number=35 prog.x(input_qubit[3]) # number=36 prog.cx(input_qubit[0],input_qubit[3]) # number=37 if n>=2: prog.mcu1(pi,input_qubit[1:],input_qubit[0]) prog.cx(input_qubit[1],input_qubit[0]) # number=24 prog.x(input_qubit[0]) # number=25 prog.cx(input_qubit[1],input_qubit[0]) # number=26 prog.x(input_qubit[1]) # number=14 prog.x(input_qubit[2]) # number=15 prog.x(input_qubit[3]) # number=16 prog.x(input_qubit[3]) # number=46 prog.y(input_qubit[1]) # number=47 prog.h(input_qubit[0]) # number=17 prog.h(input_qubit[1]) # number=18 prog.h(input_qubit[2]) # number=19 prog.h(input_qubit[3]) # number=20 prog.x(input_qubit[1]) # number=22 prog.x(input_qubit[1]) # number=23 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': key = "00000" f = lambda rep: str(int(rep == key)) prog = make_circuit(5,f) backend = FakeVigo() sample_shot =7924 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit_noisy1380.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
py
b406b188e356e4371a37e7cf683042a04e01ced3
from setuptools import setup setup( name="pytodotxt", version="0.1", author="senft", author_email="[email protected]", description=("A simple parser for todo.txt files."), license="GPL", url="https://github.com/senft/pytodotxt", py_modules=['pytodotxt'], classifiers=[ "Development Status :: 3 - Alpha", "Topic :: Utilities", ], )
py
b406b1db25c9667b17737e491871919ee6325496
""" Copyright (C) 2018-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import pytest def model_path(is_myriad=False): path_to_repo = os.environ["MODELS_PATH"] if not is_myriad: test_xml = os.path.join(path_to_repo, "models", "test_model", 'test_model_fp32.xml') test_bin = os.path.join(path_to_repo, "models", "test_model", 'test_model_fp32.bin') else: test_xml = os.path.join(path_to_repo, "models", "test_model", 'test_model_fp16.xml') test_bin = os.path.join(path_to_repo, "models", "test_model", 'test_model_fp16.bin') return (test_xml, test_bin) def model_onnx_path(): path_to_repo = os.environ["MODELS_PATH"] test_onnx = os.path.join(path_to_repo, "models", "test_model", 'test_model.onnx') return test_onnx def model_prototxt_path(): path_to_repo = os.environ["MODELS_PATH"] test_prototxt = os.path.join(path_to_repo, "models", "test_model", 'test_model.prototxt') return test_prototxt def image_path(): path_to_repo = os.environ["DATA_PATH"] path_to_img = os.path.join(path_to_repo, 'validation_set', '224x224', 'dog.bmp') return path_to_img def plugins_path(): path_to_repo = os.environ["DATA_PATH"] plugins_xml = os.path.join(path_to_repo, 'ie_class', 'plugins.xml') plugins_win_xml = os.path.join(path_to_repo, 'ie_class', 'plugins_win.xml') plugins_osx_xml = os.path.join(path_to_repo, 'ie_class', 'plugins_apple.xml') return (plugins_xml, plugins_win_xml, plugins_osx_xml) @pytest.fixture(scope='session') def device(): return os.environ.get("TEST_DEVICE") if os.environ.get("TEST_DEVICE") else "CPU"
py
b406b296f0e632b714fe31999ac7ea5da224c845
import tensorflow as tf from keras import keras_parameterized, testing_utils from ..upconv import UpConvBlock @keras_parameterized.run_all_keras_modes class TestUpConvBlock(keras_parameterized.TestCase): def test_layer(self): testing_utils.layer_test( UpConvBlock, kwargs={'filters': 1, 'up_scale': 2}, input_shape=[2, 16, 16, 3], input_dtype='float32', expected_output_shape=[None, 64, 64, 1], expected_output_dtype='float32' ) testing_utils.layer_test( UpConvBlock, kwargs={'filters': 2, 'up_scale': 2}, input_shape=[2, 16, 16, 3], input_dtype='float32', expected_output_shape=[None, 64, 64, 2], expected_output_dtype='float32' ) if __name__ == '__main__': tf.test.main()
py
b406b468a3f86c882208333f55d77945ebdaf72f
# Copyright 2015 PLUMgrid, Inc. All Rights Reserved. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from neutronclient.common import extension from neutronclient.i18n import _ class TransitDomain(extension.NeutronClientExtension): resource = 'transit_domain' resource_plural = 'transit_domains' path = 'transit-domains' object_path = '/%s' % path resource_path = '/%s/%%s' % path versions = ['2.0'] def args2body(self, parsed_args): try: if parsed_args.name: tvd_name = parsed_args.name body = {'transit_domain': {'name': tvd_name}} else: body = {'transit_domain': {}} return body except KeyError as err: raise Exception("KeyError: " + str(err)) class TransitDomainCreate(extension.ClientExtensionCreate, TransitDomain): """Create a transit domain.""" shell_command = 'transit-domain-create' def add_known_arguments(self, parser): parser.add_argument( 'name', metavar='<TRANSIT-DOMAIN-NAME>', help=_('Descriptive name for transit domain.')) def args2body(self, parsed_args): body = args2body(self, parsed_args) if parsed_args.tenant_id: (body['transit_domain'] ['tenant_id']) = parsed_args.tenant_id return body class TransitDomainList(extension.ClientExtensionList, TransitDomain): """List transit domains""" shell_command = 'transit-domain-list' list_columns = ['id', 'name'] pagination_support = True sorting_support = True class TransitDomainShow(extension.ClientExtensionShow, TransitDomain): """Show information of a given transit domain""" shell_command = 'transit-domain-show' class TransitDomainDelete(extension.ClientExtensionDelete, TransitDomain): """Delete a given transit domain""" shell_command = 'transit-domain-delete' class TransitDomainUpdate(extension.ClientExtensionUpdate, TransitDomain): """Update a given transit domain""" shell_command = 'transit-domain-update' def add_known_arguments(self, parser): parser.add_argument( '--name', metavar='name', help=_('Descriptive name for transit domain')) def args2body(self, parsed_args): body = {'transit_domain': {'name': parsed_args.name}} return body
py
b406b50728d8af859c9f484f0607c64b739e8127
from password_generator.Database.database import Database from datetime import date class My_Space: def __init__(self): self.d = Database() def create_space(self, username): flag = True if flag: query = "create table `my_space`.`{}`(account_name varchar(45) primary key not null, user_pass varchar(120) not null, date varchar(45));".format(username) db = self.d.connect() result = self.d.execute(query) self.d.close(db) return flag def add_password(self, username, account_name, user_pass): #insert password into the database query = "insert into `my_space`.`{}` values('{}', '{}', '{}');".format(username, account_name, user_pass.decode(), str(date.today())) db = self.d.connect() result = self.d.execute(query) self.d.close(db) return result def show_passwords(self, username): query = "select * from `my_space`.`{}`;".format(username) db = self.d.connect() result = self.d.fetch_multiple(query) self.d.close(db) return result def delete_passwords(self, username, account_name): query = "delete from `my_space`.`{}` where account_name='{}';".format(username, account_name) db = self.d.connect() result = self.d.execute(query) self.d.close(db) return result #Driver Code #m = My_Space() #username, account_name, user_pass = '', '', '' #print(m.create_space(username)) #print(m.add_password(username, account_name, user_pass)) #print(m.show_passwords(username)) #print(m.delete_passwords(username, account_name))
py
b406b6625a11c65302e42ad8e15f15275b17895a
import re from nlputils import * from udb import * ############################################################################### ### TDT4 internal format: ### ### format = 'TDT4' ### bmeta = { sfile, ... } ### chunks = [] ### chunk = [ text, cmeta={ stype,slang,sorg,date,btopic,ntopic, ... } ] ### ### Notes: ### 1. text: text contained in the <TEXT>..</TEXT> element ### 2. cmeta{}: dictionary for storing chunk meta-data ### 3. bmeta{}: dictionary for storing bundle meta-data ### ############################################################################### ### regex templates to extract fields from TDT4 source data RX_DOC = "<DOC>(.*?)</DOC>" RX_STYPE = "<SOURCE_TYPE>(.*?)</SOURCE_TYPE>" RX_SLANG = "<SOURCE_LANG>(.*?)</SOURCE_LANG>" RX_SORG = "<SOURCE_ORG>(.*?)</SOURCE_ORG>" RX_DDATE = "<DOC_DATE>(.*?)</DOC_DATE>" RX_BTOPIC = "<BROAD_TOPIC>(.*?)</BROAD_TOPIC>" RX_NTOPIC = "<NARROW_TOPIC>(.*?)</NARROW_TOPIC>" RX_TEXT = "<TEXT>(.*?)</TEXT>" ############################################################################### ### Parse TDT4 source content and return as a UDB encapsulated TDT4 object ############################################################################### def parse_to_udb (src_data, src_mdata, options): # options are unused at this time bundle = udb() bundle.format = 'TDT4' # TDT4 internal format bundle.bmeta = src_mdata ### extract chunks and meta data and insert into UDB bundle ### interate to extract DOC elements rx_doc = re.compile(RX_DOC,re.DOTALL) iter = rx_doc.finditer(src_data) for match in iter: doc = match.group(1) chunk=[] cmeta = {} # cmeta dictionary ### find SOURCE_TYPE element rx_stype = re.compile(RX_STYPE, re.DOTALL) stype = rx_stype.search(doc) if stype != None: cmeta['stype'] = stype.group(1) else: cmeta['stype'] = None print "Warning: SOURCE_TYPE missing in DOC" ### find SOURCE_LANG element rx_slang = re.compile(RX_SLANG, re.DOTALL) slang = rx_slang.search(doc) if slang != None: cmeta['slang'] = slang.group(1) else: cmeta['slang'] = None print "Warning: SOURCE_LANG missing in DOC" ### find SOURCE_ORG element rx_sorg = re.compile(RX_SORG, re.DOTALL) sorg = rx_sorg.search(doc) if sorg != None: cmeta['sorg'] = sorg.group(1) else: cmeta['sorg'] = None print "Warning: SOURCE_ORG missing in DOC" ### find DOC_DATE element rx_ddate = re.compile(RX_DDATE, re.DOTALL) ddate = rx_ddate.search(doc) if ddate != None: cmeta['ddate'] = ddate.group(1) else: cmeta['ddate'] = None print "Warning: DOC_DATE missing in DOC" ### find BROAD_TOPIC element rx_btopic = re.compile(RX_BTOPIC, re.DOTALL) btopic = rx_btopic.search(doc) if btopic != None: cmeta['btopic'] = btopic.group(1) else: cmeta['btopic'] = None print "Warning: BROAD_TOPIC missing in DOC" ### find NARROW_TOPIC element rx_ntopic = re.compile(RX_NTOPIC, re.DOTALL) ntopic = rx_ntopic.search(doc) if ntopic != None: cmeta['ntopic'] = ntopic.group(1) else: cmeta['ntopic'] = None print "Warning: NARROW_TOPIC missing in DOC" ### find TEXT element rx_text = re.compile(RX_TEXT, re.DOTALL) text = rx_text.search(doc) if text != None: chunk_text = text.group(1) else: chunk_text = None print "Warning: TEXT missing in DOC" chunk.append(chunk_text) chunk.append(cmeta) bundle.chunks.append(chunk) return bundle
py
b406b6d318db4606becb6d034b399e6a30e5efdb
""" 1) 改变图像短边为 256,且保持图像长宽比例不变 2) 计算训练集合的均值和方差(直接跳过,归一化后直接用0.5和0.5代替) """ import os import cv2 #### 设置路径 #### root_dir = "/root/fly2fly/median_compute/flick30k" img_dir = "flickr30k-images" text_file = 'results_20130124.token' train_fid = 'flick30k_train.txt' savepath = 'flick30k_image_256' def getfullpath(subdir): return os.path.join(root_dir,subdir) #### 初始化列表 #### train_len = 29784 val_len = 1000 test_len = 1000 imglist = os.listdir(getfullpath(img_dir)) imglist.sort() train_list = imglist[0:train_len] val_list = imglist[train_len:train_len + val_len] test_list = imglist[-test_len-1:-1] #### 预处理数据 #### # 1) 改变形状 if not os.path.exists(getfullpath(savepath)): os.makedirs(getfullpath(savepath)) s = 256 for name in imglist: fullpath = os.path.join(getfullpath(img_dir), name) img = cv2.imread(fullpath) h,w,c = img.shape if h < w: rate = s / h # (w , h) img = cv2.resize(img,(round(rate*w), s), interpolation = cv2.INTER_CUBIC) else: rate = s / w img = cv2.resize(img,(s, round(rate*h) ), interpolation = cv2.INTER_CUBIC) cv2.imwrite(os.path.join(getfullpath(savepath), name),img)
py
b406b6eb1a47e833ed11287ac532c4b18d596b58
from .page import * time.sleep(2) def case_5_2(self, full_screen): self.page.loger('\n Запуск Тест кейс № 5_2 tvweb_new-5_2: Проверка работоспособности элементов окошка пользователя, личный кабинет \n') emailt = '[email protected]' passw = '111111' time.sleep(2) self.page.click_f('Клик_Вход', 1) time.sleep(1) #self.page.send_f('Ввод_логина_вход', emailt, 2) self.driver.find_element_by_xpath('.//input[@class="authorization__login textbox"]').send_keys(emailt) time.sleep(2) #self.page.send_f('Ввод_пароля_вход', passw, 3) self.driver.find_element_by_xpath('.//input[@class="authorization__password textbox"]').send_keys(passw) time.sleep(2) self.page.click_f('Клик_Войти_auth', 4) time.sleep(2) self.prof.click_f('Клик_значок_пользователя', 5) time.sleep(2) self.driver.find_element_by_xpath('.//span[@class="__userbalance currency- currency currency-RUB"]').click() # Клик на кошелёк self.page.loger('Шаг 6. Клик на кошелёк') time.sleep(7) self.page.waitForElementVisible('.//div[@class="cabinet__content cabinet-account"]', 30) # Проверка перехода и содержание страницы res_txt = str(self.result.find_link("div", "cabinet__content cabinet-account")) assert('Баланс') in res_txt assert('Пополнить счёт') in res_txt assert('Программа лояльности') in res_txt assert('Промокод') in res_txt assert('Бонусная программа') in res_txt self.page.loger('Переход в кошелёк и содержание страницы подтверждено') time.sleep(3) self.page.loger('Шаг 7. Проверка Истории платежей') self.driver.find_element_by_xpath('.//button[@class="cabinet-balance__history button button_light button_stretched"]').click() # Проверка окна истории платежей time.sleep(4) self.page.waitForElementVisible('.//div[@class="modal__content payment-history js-modal-content modal__content_open"]', 30) # Проверка появления окна res_txt = str(self.result.find_link("div", "modal__content payment-history js-modal-content modal__content_open")) assert('История платежей') in res_txt self.page.loger('Появление окна истории платежей подтверждено') time.sleep(3) self.page.waitForElementVisible('.//td[@class="payment-history__cell payment-history__cell_description"]', 30) # Проверка наличия платежа self.page.loger('Наличие платежа в истории подтверждено') time.sleep(3) self.page.loger('Шаг 8. Клик на покупки') self.driver.find_element_by_xpath('.//button[@data-sort-type="2"]').click() # Клик на покупки time.sleep(3) self.page.waitForElementVisible('.//td[@class="payment-history__cell payment-history__cell_description"]', 30) # Проверка наличия платежа self.page.loger('Наличие платежей в покупках подтверждено') time.sleep(3) self.page.loger('Шаг 9. Клик на Пополнения') self.driver.find_element_by_xpath('.//button[@data-sort-type="1"]').click() # Клик на пополнения time.sleep(3) self.page.waitForElementVisible('.//td[@class="payment-history__cell payment-history__cell_description"]', 30) # Проверка наличия пополнений self.page.loger('Наличие пополнений счета подтверждено') time.sleep(3) self.driver.find_element_by_xpath('.//button[@class="modal__close"]').click() # Клик на крестик time.sleep(3) self.prof.click_f('Клик_значок_пользователя', 10) time.sleep(3) self.page.loger('Шаг 11. Клик на счет') self.driver.find_element_by_xpath('.//a[@href="/profile/#tab=cabinet-account"]').click() # Клик на счет time.sleep(6) res_txt = str(self.result.find_link("div", "cabinet__content cabinet-account")) assert('Баланс') in res_txt self.page.loger('Переход в счет подтвержден') time.sleep(3) self.page.loger('Шаг 12. Клик на "Узнать подробности" в программе лояльности') self.driver.find_element_by_xpath('.//a[@class="cabinet-loyalty__about button button_light button_stretched"]').click() # Клик на узнать подробности программа лояльности time.sleep(4) self.page.waitForElementVisible('.//h1[@class="loyalty__heading heading-1"]', 30) # Проверка перехода на страницу программы лояльности self.page.loger('Переход на страницу программы лояльности подтвержден') #self.driver.back() time.sleep(5) self.prof.click_f('Клик_значок_пользователя', 13) time.sleep(3) self.page.loger('Шаг 14. Клик на бонусную программу') self.driver.find_element_by_xpath('.//a[@href="/loyalty/"]').click() # Клик на бонусную программу из окна пользователя time.sleep(3) self.page.waitForElementVisible('.//div[@class="loyalty__rewards loyalty-rewards"]', 10) self.page.loger('Переход на страницу Бонусной программы подтвержден') self.prof.click_f('Клик_значок_пользователя', 15) time.sleep(3) self.page.loger('Шаг 16. Клик на подписки') self.driver.find_element_by_xpath('.//a[@href="/profile/#tab=cabinet-subscriptions"]').click() # Клик на подписки time.sleep(5) self.page.waitForElementVisible('.//h2[@class="cabinet__heading heading-2"][contains(., "Подписки")]', 30) # Проверка наличия надписи Подписки self.page.waitForElementVisible('.//div[@class="cabinet-subscriptions__item subscription-card"]', 30) # Проверка наличия подписок self.page.loger('Переход на вкладку подписки подтвержден') time.sleep(2) self.prof.click_f('Клик_значок_пользователя', 17) time.sleep(3) self.page.loger('Шаг 18. Проверка перехода на страницу/раздел мои фильмы') self.driver.find_element_by_xpath('.//a[@href="/profile/#tab=cabinet-clips"]').click() # Клик на "Мои фильмы" time.sleep(3) # Проверка перехода и содержания self.page.waitForElementVisible('.//div[@class="selection__heading heading-2"][contains(., "Купленные фильмы")]', 30) # купленные фильмы time.sleep(2) self.page.waitForElementVisible('.//div[@class="selection__heading heading-2"][contains(., "Избранное")]', 30) # Избранное time.sleep(2) self.page.waitForElementVisible('.//div[@class="selection__heading heading-2"][contains(., "История просмотра")]', 30) # История просмотра self.page.loger('Переход в "Мои фильмы" и содежание страницы подтверждено') time.sleep(2) self.prof.click_f('Клик_значок_пользователя', 19) time.sleep(3) self.driver.find_element_by_xpath('.//a[@href="/profile/#tab=cabinet-settings"]').click() # Клик настройки time.sleep(4) self.page.waitForElementVisible('.//h2[@class="cabinet__heading heading-2"][contains(., "Личные данные")]', 30) time.sleep(1) self.page.waitForElementVisible('.//div[@class="cabinet-information__label"]', 30) time.sleep(1) self.page.waitForElementVisible('.//h2[@class="cabinet__heading heading-2"][contains(., "Смена пароля")]', 30) self.page.loger('Переход на страницу "Настройки" и содержание страницы подтверждено') time.sleep(1) self.prof.click_f('Клик_значок_пользователя', 20) time.sleep(3) self.driver.find_element_by_xpath('.//a[@href="/profile/#tab=cabinet-devices"]').click() # Клик Мои устройства time.sleep(3) self.page.waitForElementVisible('.//div[@class="cabinet-binding__heading cabinet__heading heading-2"]', 30) time.sleep(2) self.page.waitForElementVisible('.//div[@class="cabinet-binding__subheading subheading-1"]', 30) self.page.loger('Переход на страницу "Мои устройства" и содержание страницы подтверждено') time.sleep(2) self.driver.quit()
py
b406b7608a6448b8e25216b210fa36bf14e9de2f
from __future__ import print_function try: from minio import Minio from minio.error import ResponseError except ImportError: print('This test requires minio: perhaps try pip install minio') exit() import commands import datetime import os import platform import random import re import shutil import string import subprocess import urllib3 from resource_suite_s3_nocache import Test_S3_NoCache_Base import sys if sys.version_info >= (2,7): import unittest else: import unittest2 as unittest from .. import lib from . import session from ..configuration import IrodsConfig from .resource_suite import ResourceSuite from .test_chunkydevtest import ChunkyDevTest class Test_S3_Cache_Base(ResourceSuite, ChunkyDevTest): def __init__(self, *args, **kwargs): """Set up the cache test.""" # if self.proto is defined use it else default to HTTPS if not hasattr(self, 'proto'): self.proto = 'HTTPS' # if self.archive_naming_policy is defined use it # else default to 'consistent' if not hasattr(self, 'archive_naming_policy'): self.archive_naming_policy = 'consistent' super(Test_S3_Cache_Base, self).__init__(*args, **kwargs) def setUp(self): # skip ssl tests on ub12 distro_str = ''.join(platform.linux_distribution()[:2]).replace(' ','').replace('.', '') if self._testMethodName.startswith('test_ssl') and distro_str.lower().startswith('ubuntu12'): self.skipTest("skipping ssl tests on ubuntu 12") # set up aws configuration self.read_aws_keys() # set up s3 bucket try: httpClient = urllib3.poolmanager.ProxyManager( os.environ['http_proxy'], timeout=urllib3.Timeout.DEFAULT_TIMEOUT, cert_reqs='CERT_REQUIRED', retries=urllib3.Retry( total=5, backoff_factor=0.2, status_forcelist=[500, 502, 503, 504] ) ) except KeyError: httpClient = None if self.proto == 'HTTPS': s3_client = Minio(self.s3endPoint, access_key=self.aws_access_key_id, secret_key=self.aws_secret_access_key, http_client=httpClient, region=self.s3region) else: s3_client = Minio(self.s3endPoint, access_key=self.aws_access_key_id, secret_key=self.aws_secret_access_key, http_client=httpClient, region=self.s3region, secure=False) if hasattr(self, 'static_bucket_name'): self.s3bucketname = self.static_bucket_name else: self.s3bucketname = 'irods-ci-' + distro_str + datetime.datetime.utcnow().strftime('-%Y-%m-%d%H-%M-%S-%f-') self.s3bucketname += ''.join(random.choice(string.letters) for i in xrange(10)) self.s3bucketname = self.s3bucketname[:63].lower() # bucket names can be no more than 63 characters long s3_client.make_bucket(self.s3bucketname, location=self.s3region) # set up resources hostname = lib.get_hostname() s3params = 'S3_RETRY_COUNT=15;S3_WAIT_TIME_SEC=1;S3_PROTO=%s;S3_MPU_CHUNK=10;S3_MPU_THREADS=4;S3_ENABLE_MD5=1' % self.proto s3params += ';S3_STSDATE=' + self.s3stsdate s3params += ';S3_DEFAULT_HOSTNAME=' + self.s3endPoint s3params += ';S3_AUTH_FILE=' + self.keypairfile s3params += ';S3_REGIONNAME=' + self.s3region s3params += ';ARCHIVE_NAMING_POLICY=' + self.archive_naming_policy if hasattr(self, 's3sse'): s3params += ';S3_SERVER_ENCRYPT=' + str(self.s3sse) s3params=os.environ.get('S3PARAMS', s3params); with session.make_session_for_existing_admin() as admin_session: irods_config = IrodsConfig() admin_session.assert_icommand("iadmin modresc demoResc name origResc", 'STDOUT_SINGLELINE', 'rename', input='yes\n') admin_session.assert_icommand("iadmin mkresc demoResc compound", 'STDOUT_SINGLELINE', 'compound') admin_session.assert_icommand("iadmin mkresc cacheResc 'unixfilesystem' " + hostname + ":" + irods_config.irods_directory + "/cacheRescVault", 'STDOUT_SINGLELINE', 'cacheResc') admin_session.assert_icommand('iadmin mkresc archiveResc s3 '+hostname+':/'+self.s3bucketname+'/irods/Vault "'+s3params+'"', 'STDOUT_SINGLELINE', 'archiveResc') admin_session.assert_icommand("iadmin addchildtoresc demoResc cacheResc cache") admin_session.assert_icommand("iadmin addchildtoresc demoResc archiveResc archive") super(Test_S3_Cache_Base, self).setUp() def tearDown(self): super(Test_S3_Cache_Base, self).tearDown() # delete s3 bucket try: httpClient = urllib3.poolmanager.ProxyManager( os.environ['http_proxy'], timeout=urllib3.Timeout.DEFAULT_TIMEOUT, cert_reqs='CERT_REQUIRED', retries=urllib3.Retry( total=5, backoff_factor=0.2, status_forcelist=[500, 502, 503, 504] ) ) except KeyError: httpClient = None if self.proto == 'HTTPS': s3_client = Minio(self.s3endPoint, access_key=self.aws_access_key_id, secret_key=self.aws_secret_access_key, http_client=httpClient, region=self.s3region) else: s3_client = Minio(self.s3endPoint, access_key=self.aws_access_key_id, secret_key=self.aws_secret_access_key, http_client=httpClient, region=self.s3region, secure=False) objects = s3_client.list_objects_v2(self.s3bucketname, recursive=True) if not hasattr(self, 'static_bucket_name'): s3_client.remove_bucket(self.s3bucketname) # tear down resources with session.make_session_for_existing_admin() as admin_session: admin_session.assert_icommand("iadmin rmchildfromresc demoResc archiveResc") admin_session.assert_icommand("iadmin rmchildfromresc demoResc cacheResc") admin_session.assert_icommand("iadmin rmresc archiveResc") admin_session.assert_icommand("iadmin rmresc cacheResc") admin_session.assert_icommand("iadmin rmresc demoResc") admin_session.assert_icommand("iadmin modresc origResc name demoResc", 'STDOUT_SINGLELINE', 'rename', input='yes\n') shutil.rmtree(IrodsConfig().irods_directory + "/cacheRescVault", ignore_errors=True) def read_aws_keys(self): # read access keys from keypair file with open(self.keypairfile) as f: self.aws_access_key_id = f.readline().rstrip() self.aws_secret_access_key = f.readline().rstrip() # read the endpoint address from the file endpointfile @staticmethod def read_endpoint(endpointfile): # read endpoint file with open(endpointfile) as f: return f.readline().rstrip() def test_irm_specific_replica(self): self.admin.assert_icommand("ils -L "+self.testfile,'STDOUT_SINGLELINE',self.testfile) # should be listed self.admin.assert_icommand("irepl -R "+self.testresc+" "+self.testfile) # creates replica self.admin.assert_icommand("ils -L "+self.testfile,'STDOUT_SINGLELINE',self.testfile) # should be listed twice self.admin.assert_icommand("irm -n 0 "+self.testfile, 'STDOUT_SINGLELINE','deprecated') # remove original from cacheResc only self.admin.assert_icommand("ils -L "+self.testfile,'STDOUT_SINGLELINE',["2 "+self.testresc,self.testfile]) # replica 2 should still be there self.admin.assert_icommand_fail("ils -L "+self.testfile,'STDOUT_SINGLELINE',["0 "+self.admin.default_resource,self.testfile]) # replica 0 should be gone trashpath = self.admin.session_collection_trash self.admin.assert_icommand_fail("ils -L "+trashpath+"/"+self.testfile,'STDOUT_SINGLELINE',["0 "+self.admin.default_resource,self.testfile]) # replica should not be in trash @unittest.skip("--wlock has possible race condition due to Compound/Replication PDMO") def test_local_iput_collision_with_wlock(self): pass @unittest.skip("NOTSURE / FIXME ... -K not supported, perhaps") def test_local_iput_checksum(self): pass @unittest.skip("EMPTY_RESC_PATH - no vault path for coordinating resources") def test_ireg_as_rodsuser_in_vault(self): pass @unittest.skip("No Vault for S3 archive resource") def test_iput_overwrite_others_file__ticket_2086(self): pass def test_local_iput_with_force_and_destination_resource__ticket_1706(self): # local setup filename = "iputwithforceanddestination.txt" filepath = lib.create_local_testfile(filename) doublefile = "doublefile.txt" os.system("cat %s %s > %s" % (filename, filename, doublefile)) doublesize = str(os.stat(doublefile).st_size) # assertions self.admin.assert_icommand("ils -L "+filename,'STDERR_SINGLELINE',"does not exist") # should not be listed self.admin.assert_icommand("iput "+filename) # put file self.admin.assert_icommand("irepl -R "+self.testresc+" "+filename) # replicate to test resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # self.admin.assert_icommand("iput -f -R %s %s %s" % (self.testresc, doublefile, filename) ) # overwrite test repl with different data self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 "," "+filename]) # default resource cache should have dirty copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 "," "+filename]) # default resource archive should have dirty copy self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 "," "+doublesize+" "," "+filename]) # default resource cache should not have doublesize file self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 "," "+doublesize+" "," "+filename]) # default resource archive should not have doublesize file self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 "," "+doublesize+" ","& "+filename]) # targeted resource should have new double clean copy # local cleanup os.remove(filepath) os.remove(doublefile) ################### # irepl ################### def test_irepl_update_replicas(self): # local setup filename = "updatereplicasfile.txt" filepath = lib.create_local_testfile(filename) hostname = lib.get_hostname() doublefile = "doublefile.txt" os.system("cat %s %s > %s" % (filename, filename, doublefile)) doublesize = str(os.stat(doublefile).st_size) # assertions self.admin.assert_icommand("iadmin mkresc thirdresc unixfilesystem %s:/tmp/thirdrescVault" % hostname, 'STDOUT_SINGLELINE', "Creating") # create third resource self.admin.assert_icommand("iadmin mkresc fourthresc unixfilesystem %s:/tmp/fourthrescVault" % hostname, 'STDOUT_SINGLELINE', "Creating") # create fourth resource self.admin.assert_icommand("ils -L "+filename,'STDERR_SINGLELINE',"does not exist") # should not be listed self.admin.assert_icommand("iput "+filename) # put file self.admin.assert_icommand("irepl -R "+self.testresc+" "+filename) # replicate to test resource self.admin.assert_icommand("irepl -R thirdresc "+filename) # replicate to third resource self.admin.assert_icommand("irepl -R fourthresc "+filename) # replicate to fourth resource self.admin.assert_icommand("iput -f -R "+self.testresc+" "+doublefile+" "+filename) # repave overtop test resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 "," & "+filename]) # should have a dirty copy self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 "," & "+filename]) # should have a dirty copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 "," & "+filename]) # should have a clean copy self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 3 "," & "+filename]) # should have a dirty copy self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 4 "," & "+filename]) # should have a dirty copy self.admin.assert_icommand(['irepl', filename]) # update replica on default resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 "," & "+filename]) # should have a clean copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 "," & "+filename]) # should have a clean copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 "," & "+filename]) # should have a clean copy self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 3 "," & "+filename]) # should have a dirty copy self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 4 "," & "+filename]) # should have a dirty copy self.admin.assert_icommand("irepl -aU "+filename) # update all replicas self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 "," & "+filename]) # should have a clean copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 "," & "+filename]) # should have a clean copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 "," & "+filename]) # should have a clean copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 3 "," & "+filename]) # should have a clean copy self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 4 "," & "+filename]) # should have a clean copy self.admin.assert_icommand("irm -f "+filename) # cleanup file self.admin.assert_icommand("iadmin rmresc thirdresc") # remove third resource self.admin.assert_icommand("iadmin rmresc fourthresc") # remove third resource # local cleanup os.remove(filepath) os.remove(doublefile) def test_irepl_over_existing_second_replica__ticket_1705(self): # local setup filename = "secondreplicatest.txt" filepath = lib.create_local_testfile(filename) # assertions self.admin.assert_icommand("ils -L "+filename,'STDERR_SINGLELINE',"does not exist") # should not be listed self.admin.assert_icommand("iput -R "+self.testresc+" "+filename) # put file self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand("irepl "+filename) # replicate to default resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand(['irepl', filename], 'STDERR', 'SYS_NOT_ALLOWED') # replicate overtop default resource self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 3 "," & "+filename]) # should not have a replica 3 self.admin.assert_icommand(['irepl', '-R', self.testresc, filename], 'STDERR', 'SYS_NOT_ALLOWED') # replicate overtop test resource self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 3 "," & "+filename]) # should not have a replica 3 # local cleanup os.remove(filepath) def test_irepl_over_existing_third_replica__ticket_1705(self): # local setup filename = "thirdreplicatest.txt" filepath = lib.create_local_testfile(filename) hostname = lib.get_hostname() # assertions self.admin.assert_icommand("iadmin mkresc thirdresc unixfilesystem %s:/tmp/thirdrescVault" % hostname, 'STDOUT_SINGLELINE', "Creating") # create third resource self.admin.assert_icommand("ils -L "+filename,'STDERR_SINGLELINE',"does not exist") # should not be listed self.admin.assert_icommand("iput "+filename) # put file self.admin.assert_icommand("irepl -R "+self.testresc+" "+filename) # replicate to test resource self.admin.assert_icommand("irepl -R thirdresc "+filename) # replicate to third resource self.admin.assert_icommand(['irepl', filename], 'STDERR', 'SYS_NOT_ALLOWED') # replicate overtop default resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand(['irepl', '-R', self.testresc, filename], 'STDERR', 'SYS_NOT_ALLOWED') # replicate overtop test resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand(['irepl', '-R', 'thirdresc', filename], 'STDERR', 'SYS_NOT_ALLOWED') # replicate overtop third resource self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',filename) # for debugging self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 4 "," & "+filename]) # should not have a replica 4 self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 5 "," & "+filename]) # should not have a replica 5 self.admin.assert_icommand("irm -f "+filename) # cleanup file self.admin.assert_icommand("iadmin rmresc thirdresc") # remove third resource # local cleanup os.remove(filepath) def test_irepl_over_existing_bad_replica__ticket_1705(self): # local setup filename = "reploverwritebad.txt" filepath = lib.create_local_testfile(filename) doublefile = "doublefile.txt" os.system("cat %s %s > %s" % (filename, filename, doublefile)) doublesize = str(os.stat(doublefile).st_size) # assertions self.admin.assert_icommand("ils -L " + filename, 'STDERR_SINGLELINE', "does not exist") # should not be listed self.admin.assert_icommand("iput " + filename) # put file self.admin.assert_icommand("ils -L " + filename, 'STDOUT_SINGLELINE', filename) # for debugging self.admin.assert_icommand("irepl -R " + self.testresc + " " + filename) # replicate to test resource self.admin.assert_icommand("ils -L " + filename, 'STDOUT_SINGLELINE', filename) # for debugging # overwrite default repl with different data self.admin.assert_icommand("iput -f %s %s" % (doublefile, filename)) # default resource cache should have clean copy self.admin.assert_icommand("ils -L " + filename, 'STDOUT_SINGLELINE', [" 0 ", " & " + filename]) # default resource cache should have new double clean copy self.admin.assert_icommand("ils -L " + filename, 'STDOUT_SINGLELINE', [" 0 ", " " + doublesize + " ", " & " + filename]) # default resource archive should have clean copy self.admin.assert_icommand("ils -L " + filename, 'STDOUT_SINGLELINE', [" 1 ", " & " + filename]) # default resource archive should have new double clean copy self.admin.assert_icommand("ils -L " + filename, 'STDOUT_SINGLELINE', [" 1 ", " " + doublesize + " ", " & " + filename]) # test resource should not have doublesize file self.admin.assert_icommand_fail("ils -L " + filename, 'STDOUT_SINGLELINE', [" 2 " + self.testresc, " " + doublesize + " ", " " + filename]) # replicate back onto test resource self.admin.assert_icommand("irepl -R " + self.testresc + " " + filename) # test resource should have new clean doublesize file self.admin.assert_icommand("ils -L " + filename, 'STDOUT_SINGLELINE', [" 2 " + self.testresc, " " + doublesize + " ", " & " + filename]) # should not have a replica 3 self.admin.assert_icommand_fail("ils -L " + filename, 'STDOUT_SINGLELINE', [" 3 ", " & " + filename]) # local cleanup os.remove(filepath) os.remove(doublefile) def test_iput_with_purgec(self): # local setup filename = "purgecfile.txt" filepath = os.path.abspath(filename) with open(filepath, 'wt') as f: print("TESTFILE -- [" + filepath + "]", file=f, end='') try: self.admin.assert_icommand_fail("ils -L " + filename, 'STDOUT_SINGLELINE', filename) # should not be listed self.admin.assert_icommand("iput --purgec " + filename) # put file # should not be listed (trimmed) self.admin.assert_icommand_fail("ils -L " + filename, 'STDOUT_SINGLELINE', [" 0 ", filename]) # should be listed once - replica 1 self.admin.assert_icommand("ils -L " + filename, 'STDOUT_SINGLELINE', [" 1 ", filename]) self.admin.assert_icommand_fail("ils -L " + filename, 'STDOUT_SINGLELINE', [" 2 ", filename]) # should be listed only once self.admin.assert_icommand(['irm', '-f', filename]) self.admin.assert_icommand_fail("ils -L " + filename, 'STDOUT_SINGLELINE', filename) # should not be listed self.admin.assert_icommand(['iput', '-b', '--purgec', filename]) # put file... in bulk! # should not be listed (trimmed) self.admin.assert_icommand_fail("ils -L " + filename, 'STDOUT_SINGLELINE', [" 0 ", filename]) # should be listed once - replica 1 self.admin.assert_icommand("ils -L " + filename, 'STDOUT_SINGLELINE', [" 1 ", filename]) self.admin.assert_icommand_fail("ils -L " + filename, 'STDOUT_SINGLELINE', [" 2 ", filename]) # should be listed only once finally: if os.path.exists(filepath): os.unlink(filepath) def test_iget_with_purgec(self): # local setup filename = "purgecgetfile.txt" filepath = os.path.abspath(filename) f = open(filepath,'wb') f.write("TESTFILE -- ["+filepath+"]") f.close() # assertions self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',filename) # should not be listed self.admin.assert_icommand("iput "+filename) # put file self.admin.assert_icommand("iget -f --purgec "+filename) # get file and purge 'cached' replica self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 ",filename]) # should not be listed (trimmed) self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 ",filename]) # should be listed once self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 ",filename]) # should not be listed # local cleanup output = commands.getstatusoutput( 'rm '+filepath ) def test_irepl_with_purgec(self): # local setup filename = "purgecreplfile.txt" filepath = os.path.abspath(filename) f = open(filepath,'wb') f.write("TESTFILE -- ["+filepath+"]") f.close() # assertions self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',filename) # should not be listed self.admin.assert_icommand("iput "+filename) # put file self.admin.assert_icommand("irepl -R " + self.testresc + " --purgec " + filename) # replicate to test resource self.admin.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',[" 0 ",filename]) # should not be listed (trimmed) self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 1 ",filename]) # should be listed twice - 2 of 3 self.admin.assert_icommand("ils -L "+filename,'STDOUT_SINGLELINE',[" 2 ",filename]) # should be listed twice - 1 of 3 # local cleanup output = commands.getstatusoutput( 'rm '+filepath ) def test_decoupled_naming_policy(self): if self.archive_naming_policy != 'decoupled': self.skipTest("Archive naming policy is not set to 'decoupled'") # local setup filename = self.testfile # run as regular user session = self.user0 collection = session.session_collection # iquest to get the object id of the replica on the S3 archive id_query = ( "select DATA_ID where COLL_NAME =" + "'" + collection + "'" + " and DATA_NAME =" + "'" + filename + "'" + " and DATA_REPL_NUM ='1'" ) # iquest to get the pysical path of the replica on the S3 archive path_query = ( "select DATA_PATH where COLL_NAME =" + "'" + collection + "'" + " and DATA_NAME =" + "'" + filename + "'" + " and DATA_REPL_NUM ='1'" ) # assertions session.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',filename) # should not be listed session.assert_icommand("iput "+filename) # put file # get object id object_id = session.run_icommand('iquest "%s" ' + '"' + id_query + '"')[0].strip() # physical path we expect to see: /{bucket_name}/{reversed_id}/{obj_name} target_path = '/' + self.s3bucketname + '/' + object_id[::-1] + '/' + filename # get object path physical_path = session.run_icommand('iquest "%s" ' + '"' + path_query + '"')[0].strip() # verify object path self.assertEqual(target_path, physical_path) # move the file new_filename = "%s.new" % filename session.assert_icommand("imv %s %s" % (filename, new_filename)) # get and purge cache replica session.assert_icommand("iget -f --purgec %s" % new_filename) # get file and purge 'cached' replica # get again now that it is not in cache session.assert_icommand("iget -f %s" % new_filename) # get file # cleanup session.run_icommand('irm -f ' + new_filename) def test_decoupled_naming_policy_issue1855(self): if self.archive_naming_policy != 'decoupled': self.skipTest("Archive naming policy is not set to 'decoupled'") # local setup filename = self.testfile # run as regular user session = self.user0 collection = session.session_collection # modify the s3 archive resource so that it only has the bucket name in the context self.admin.assert_icommand('iadmin modresc archiveResc path /%s' % self.s3bucketname, 'STDOUT_SINGLELINE', 'Previous resource path:') # iquest to get the object id of the replica on the S3 archive id_query = ( "select DATA_ID where COLL_NAME =" + "'" + collection + "'" + " and DATA_NAME =" + "'" + filename + "'" + " and DATA_REPL_NUM ='1'" ) # iquest to get the pysical path of the replica on the S3 archive path_query = ( "select DATA_PATH where COLL_NAME =" + "'" + collection + "'" + " and DATA_NAME =" + "'" + filename + "'" + " and DATA_REPL_NUM ='1'" ) # assertions session.assert_icommand_fail("ils -L "+filename,'STDOUT_SINGLELINE',filename) # should not be listed session.assert_icommand("iput "+filename) # put file # get object id object_id = session.run_icommand('iquest "%s" ' + '"' + id_query + '"')[0].strip() # physical path we expect to see: /{bucket_name}/{reversed_id}/{obj_name} target_path = '/' + self.s3bucketname + '/' + object_id[::-1] + '/' + filename # get object path physical_path = session.run_icommand('iquest "%s" ' + '"' + path_query + '"')[0].strip() # verify object path self.assertEqual(target_path, physical_path) # move the file new_filename = "%s.new" % filename session.assert_icommand("imv %s %s" % (filename, new_filename)) # get and purge cache replica session.assert_icommand("iget -f --purgec %s" % new_filename) # get file and purge 'cached' replica # get again now that it is not in cache session.assert_icommand("iget -f %s" % new_filename) # get file # cleanup session.run_icommand('irm -f ' + filename) @unittest.skip("skip until minio added to CI") def test_multiple_s3_endpoints_replication_issue1858(self): # local setup filename = self.testfile # run as regular user session = self.user0 collection = session.session_collection # set up resources # TODO change these as necessary minio_auth_file = '/var/lib/irods/s3.keypair' minio_bucket_name = 'irods-bucket' hostname = lib.get_hostname() s3params_aws = 'S3_RETRY_COUNT=1;S3_WAIT_TIME_SEC=1;S3_PROTO=%s;S3_MPU_CHUNK=10;S3_MPU_THREADS=4;S3_ENABLE_MD5=1' % self.proto s3params_aws += ';S3_DEFAULT_HOSTNAME=%s' % self.s3endPoint s3params_aws += ';S3_AUTH_FILE=%s' % self.keypairfile s3params_aws += ';S3_REGIONNAME=%s' % self.s3region s3params_aws += ';ARCHIVE_NAMING_POLICY=%s' % self.archive_naming_policy s3params_minio = 'S3_RETRY_COUNT=1;S3_WAIT_TIME_SEC=1;S3_PROTO=%s;S3_MPU_CHUNK=10;S3_MPU_THREADS=4;S3_ENABLE_MD5=1' % self.proto s3params_minio += ';S3_DEFAULT_HOSTNAME=%s:9000' % hostname s3params_minio += ';S3_AUTH_FILE=%s' % minio_auth_file s3params_minio += ';S3_REGIONNAME=%s' % self.s3region s3params_minio += ';ARCHIVE_NAMING_POLICY=%s' % self.archive_naming_policy try: # make resource tree with repl and two compound resources underneath self.admin.assert_icommand('iadmin mkresc s3repl_1858 replication', 'STDOUT_SINGLELINE', 'Creating') self.admin.assert_icommand('iadmin mkresc s3compound1_1858 compound', 'STDOUT_SINGLELINE', 'Creating') self.admin.assert_icommand('iadmin mkresc s3compound2_1858 compound', 'STDOUT_SINGLELINE', 'Creating') self.admin.assert_icommand('iadmin mkresc s3cache1_1858 unixfilesystem %s:/tmp/s3cache1_1858 unixfilesystem' % hostname, 'STDOUT_SINGLELINE', 'Creating') self.admin.assert_icommand('iadmin mkresc s3archive1_1858 s3 %s:/%s/irods/Vault %s' % (hostname, self.s3bucketname, s3params_aws), 'STDOUT_SINGLELINE', 's3archive1_1858') self.admin.assert_icommand('iadmin mkresc s3cache2_1858 unixfilesystem %s:/tmp/s3cache2_1858 unixfilesystem' % hostname, 'STDOUT_SINGLELINE', 'Creating') self.admin.assert_icommand('iadmin mkresc s3archive2_1858 s3 %s:/%s/irods/s3archive2_1858_vault %s' % (hostname, minio_bucket_name, s3params_minio), 'STDOUT_SINGLELINE', 's3archive2_1858') self.admin.assert_icommand('iadmin addchildtoresc s3repl_1858 s3compound1_1858') self.admin.assert_icommand('iadmin addchildtoresc s3repl_1858 s3compound2_1858') self.admin.assert_icommand('iadmin addchildtoresc s3compound1_1858 s3cache1_1858 cache') self.admin.assert_icommand('iadmin addchildtoresc s3compound1_1858 s3archive1_1858 archive') self.admin.assert_icommand('iadmin addchildtoresc s3compound2_1858 s3cache2_1858 cache') self.admin.assert_icommand('iadmin addchildtoresc s3compound2_1858 s3archive2_1858 archive') # put a file to this tree session.assert_icommand('iput -R s3repl_1858 %s' % filename) # put file # make sure we have four replicas session.assert_icommand('ils -L %s' % filename, 'STDOUT_MULTILINE', ['s3repl_1858;s3compound1_1858;s3cache1_1858', 's3repl_1858;s3compound1_1858;s3archive1_1858', 's3repl_1858;s3compound2_1858;s3cache2_1858', 's3repl_1858;s3compound2_1858;s3archive2_1858']) finally: # remove the file session.assert_icommand('irm -f %s' % filename) # remove file # cleanup self.admin.assert_icommand('iadmin rmchildfromresc s3repl_1858 s3compound1_1858') self.admin.assert_icommand('iadmin rmchildfromresc s3repl_1858 s3compound2_1858') self.admin.assert_icommand('iadmin rmchildfromresc s3compound1_1858 s3cache1_1858 cache') self.admin.assert_icommand('iadmin rmchildfromresc s3compound1_1858 s3archive1_1858 archive') self.admin.assert_icommand('iadmin rmchildfromresc s3compound2_1858 s3cache2_1858 cache') self.admin.assert_icommand('iadmin rmchildfromresc s3compound2_1858 s3archive2_1858 archive') self.admin.assert_icommand('iadmin rmresc s3repl_1858') self.admin.assert_icommand('iadmin rmresc s3compound1_1858') self.admin.assert_icommand('iadmin rmresc s3compound2_1858') self.admin.assert_icommand('iadmin rmresc s3cache1_1858') self.admin.assert_icommand('iadmin rmresc s3archive1_1858') self.admin.assert_icommand('iadmin rmresc s3cache2_1858') self.admin.assert_icommand('iadmin rmresc s3archive2_1858')
py
b406b791acc87a9f8899bd2e7bae00d0b568bcec
# Copyright (C) 2013 - Oscar Campos <[email protected]> # This program is Free Software see LICENSE file for details import sublime import sublime_plugin from ..anaconda_lib.helpers import get_settings from ..anaconda_lib.helpers import valid_languages from ..anaconda_lib.linting.sublime import ANACONDA, update_statusbar class AnacondaNextLintError(sublime_plugin.WindowCommand): """Jump to the next lint error on the page """ def run(self) -> None: self.jump(self._harvest_next()) update_statusbar(self.window.active_view()) def is_enabled(self) -> bool: """Determines if the command is enabled """ view = self.window.active_view() if (view.file_name() in ANACONDA['DISABLED'] or not get_settings(view, 'anaconda_linting')): return False location = view.sel()[0].begin() for lang in valid_languages(): matcher = 'source.{}'.format(lang) if view.match_selector(location, matcher) is True: return True return False def jump(self, lineno: int = None) -> None: """Jump to a line in the view buffer """ if lineno is None: sublime.status_message('No lint errors') return pt = self.window.active_view().text_point(lineno, 0) self.window.active_view().sel().clear() self.window.active_view().sel().add(sublime.Region(pt)) self.window.active_view().show_at_center(pt) def _harvest_next(self) -> int: """Harvest the next error that we find and return it back """ (cur_line, cur_col) = self.window.active_view().rowcol( self.window.active_view().sel()[0].begin() ) lines = set([]) vid = self.window.active_view().id() for error_type in ['ERRORS', 'WARNINGS', 'VIOLATIONS']: for line, _ in ANACONDA[error_type].get(vid, {}).items(): lines.add(int(line)) lines = sorted(lines) if not len(lines): return None if cur_line is not None and lines[-1] > cur_line: lines = [l for l in lines if l > cur_line] return lines[0] if len(lines) > 0 else None
py
b406b9cebe10459aedb1b433ffd9eff0ece9a2ee
# -*- coding: utf-8 -*- # Copyright (2017-2018) Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # Python libs import json # 3rd party libs from flask_api import status from hpOneView.exceptions import HPOneViewException from hpOneView.resources.servers.server_profiles import ServerProfiles from hpOneView.resources.servers.server_hardware import ServerHardware # Module libs from oneview_redfish_toolkit.blueprints import network_interface_collection from oneview_redfish_toolkit.tests.base_flask_test import BaseFlaskTest class TestNetworkInterfaceCollection(BaseFlaskTest): """Tests for NetworkInterfaceCollection blueprint""" @classmethod def setUpClass(self): super(TestNetworkInterfaceCollection, self).setUpClass() self.app.register_blueprint( network_interface_collection.network_interface_collection) with open( 'oneview_redfish_toolkit/mockups/oneview/ServerProfile.json' ) as f: self.server_profile = json.load(f) with open( 'oneview_redfish_toolkit/mockups/oneview/ServerHardware.json' ) as f: self.server_hardware = json.load(f) def test_get_network_interface_collection(self): """Tests NetworkInterfaceCollection""" with open( 'oneview_redfish_toolkit/mockups/redfish/' 'NetworkInterfaceCollection.json' ) as f: network_interface_collection_mockup = json.load(f) profile_obj = ServerProfiles(self.oneview_client, self.server_profile) serverhw_obj = ServerHardware( self.oneview_client, self.server_hardware) self.oneview_client.\ server_profiles.get_by_id.return_value = profile_obj self.oneview_client.server_hardware.get_by_uri.return_value = \ serverhw_obj response = self.client.get( "/redfish/v1/Systems/b425802b-a6a5-4941-8885-aab68dfa2ee2/" "NetworkInterfaces/" ) result = json.loads(response.data.decode("utf-8")) self.assertEqual(status.HTTP_200_OK, response.status_code) self.assertEqual("application/json", response.mimetype) self.assertEqualMockup(network_interface_collection_mockup, result) self.oneview_client.server_profiles.get_by_id.assert_called_with( self.server_profile["uuid"]) self.oneview_client.server_hardware.get_by_uri.assert_called_with( self.server_profile["serverHardwareUri"]) def test_get_network_interface_collection_when_profile_not_found( self): """Tests when the searching a server profile returns not found""" e = HPOneViewException({ 'errorCode': 'RESOURCE_NOT_FOUND', 'message': 'server-hardware not found', }) self.oneview_client.server_profiles.get_by_id.side_effect = e response = self.client.get( "/redfish/v1/Systems/b425802b-a6a5-4941-8885-aab68dfa2ee2/" "NetworkInterfaces/" ) self.assertEqual(status.HTTP_404_NOT_FOUND, response.status_code) self.assertEqual("application/json", response.mimetype) self.oneview_client.server_profiles.get_by_id.assert_called_with( self.server_profile["uuid"]) self.oneview_client.server_hardware.get_by_uri.assert_not_called() def test_get_network_interface_collection_when_server_hardware_not_found( self): """Tests when the searching a server hardware returns not found""" e = HPOneViewException({ 'errorCode': 'RESOURCE_NOT_FOUND', 'message': 'server-hardware not found', }) self.oneview_client.server_profiles.get_by_id.side_effect = e response = self.client.get( "/redfish/v1/Systems/b425802b-a6a5-4941-8885-aab68dfa2ee2/" "NetworkInterfaces/" ) self.assertEqual(status.HTTP_404_NOT_FOUND, response.status_code) self.assertEqual("application/json", response.mimetype) self.oneview_client.server_profiles.get_by_id.assert_called_with( self.server_profile["uuid"]) self.oneview_client.server_hardware.get_by_uri.assert_not_called() def test_get_network_interface_collection_when_profile_raise_any_exception( self): """Tests when the searching a server profile raises any exception""" e = HPOneViewException({ 'errorCode': 'ANOTHER_ERROR', 'message': 'server-hardware-types error', }) self.oneview_client.server_profiles.get_by_id.side_effect = e response = self.client.get( "/redfish/v1/Systems/b425802b-a6a5-4941-8885-aab68dfa2ee2/" "NetworkInterfaces/" ) self.assertEqual( status.HTTP_500_INTERNAL_SERVER_ERROR, response.status_code ) self.assertEqual("application/json", response.mimetype) self.oneview_client.server_profiles.get_by_id.assert_called_with( self.server_profile["uuid"]) self.oneview_client.server_hardware.get_by_uri.assert_not_called()
py
b406ba187b7a47c7e839b8c094b89ac20ff397f2
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import time from gaiatest import GaiaTestCase from gaiatest.apps.messages.app import Messages class TestSmsWithPictureAttached(GaiaTestCase): _text_message_content = 'Automated Test %s' % str(time.time()) def setUp(self): GaiaTestCase.setUp(self) # connect to mobile data self.data_layer.connect_to_cell_data() # add photo to storage self.push_resource('IMG_0001.jpg') def test_sms_cropped_picture(self): """ https://moztrap.mozilla.org/manage/case/10742/ """ # launch the app messages = Messages(self.marionette) messages.launch() # click new message new_message = messages.tap_create_new_message() # type phone number new_message.type_phone_number(self.testvars['local_phone_numbers'][0]) # type text message new_message.type_message(self._text_message_content) # add attachment activities_list = new_message.tap_attachment() # select gallery gallery = activities_list.tap_gallery() # go through the crop process gallery.wait_for_thumbnails_to_load() gallery.thumbnails[0].tap() from gaiatest.apps.gallery.regions.crop_view import CropView crop_view = CropView(self.marionette) # can't actually crop the element crop_view.tap_crop_done() # back to messages app frame new_message.wait_for_resizing_to_finish() # Tap on attachment attachment_options = new_message.tap_image_attachment() view_image = attachment_options.tap_view_button() # Check that the attached image is displayed self.assertTrue(view_image.is_image_visible) view_image.tap_back_button() attachment_options.tap_cancel() # click send self.message_thread = new_message.tap_send(timeout=300) self.message_thread.wait_for_received_messages(timeout=300) # get the most recent listed and most recent received text message last_received_message = self.message_thread.received_messages[-1] last_message = self.message_thread.all_messages[-1] # Check the most recent received message has the same text content self.assertEqual(self._text_message_content, last_received_message.text.strip('\n').strip()) # Check that most recent message is also the most recent received message self.assertEqual(last_received_message.id, last_message.id) # Check that message has attachments self.assertTrue(last_message.has_attachments) # Tap on the attachment view_image = last_message.tap_attachment() # Check that the attached image is displayed self.assertTrue(view_image.is_image_visible)
py
b406ba893c105f4d3e8723cd91cd2297a7fd29a7
from django.shortcuts import get_object_or_404, render, render_to_response from ..cart.forms import CartAddProductForm from .forms import ProductsSearchForm from .models import Category, Product def main(request): context = { 'form': ProductsSearchForm(request.GET), } return render(request, 'shop/main.html', context) def product_list(request, category_slug=None): if category_slug is None: category = None products = Product.objects.filter(available=True) else: category = get_object_or_404(Category, slug=category_slug) products = category.products context = { 'category': category, 'categories': Category.objects.all(), 'products': products } return render(request, 'shop/product_list.html', context) def product_detail(request, slug): product = get_object_or_404(Product, slug=slug, available=True) context = { 'product': product, 'cart_product_form': CartAddProductForm(product_id=product.id), 'images': [img.image for img in product.images.all()] } return render(request, 'shop/product_detail.html', context) def product_list_by_manufacturer(request): pass def products(request): form = ProductsSearchForm(request.GET) context = { 'form': form, 'products': form.search() } return render_to_response('search/search.html', context)
py
b406bab862bb73374f9ac0ebde8cd73cddcec3a7
######################################################################## # SwarmOps - Heuristic optimization for Python. # Copyright (C) 2003-2016 Magnus Erik Hvass Pedersen. # See the file README.md for instructions. # See the file LICENSE.txt for license details. # SwarmOps on the internet: http://www.Hvass-Labs.org/ ######################################################################## ######################################################################## # Particle Swarm Optimization (PSO). # # PSO is a heuristic optimizer that does not use the gradient of the problem # being optimized. A so-called global-best variant of the PSO is implemented here. # A simple PSO variant is also implemented here. # # Search-space boundaries are necessary for this PSO variant to work properly. # So if your optimization problem does not have natural boundaries, you should # simply choose some boundaries that are reasonable. # # PSO starts by creating a number of random trials called particles. In each # iteration, these particles are moved around in the search-space using a # formula that involves the particle's best-known position as well as the # entire swarm's best-known position. This has been found to work well for # optimizing many difficult problems, although a satisfactory solution is # not guaranteed to be found. # # The PSO was originally proposed around year 1995, see [1] and [2]. In the # following 20 years, thousands of PSO variants have been proposed. # One of the early and basic variants of the PSO is implemented here. # Newer PSO variants often claim to adapt the control parameters during # optimization, thus making the PSO adapt better to new problems. But it # was found in [3] that the basic PSO could perform just as well if using # proper control parameters. Control parameters tuned for different # optimization scenarios are given in [4] and included in this file below. # # References: # # [1] J. Kennedy, R.C. Eberhart. Particle Swarm Optimization. Proceedings of # IEEE International Conference on Neural Networks. pp. 1942-1948. 1995. # # [2] Y. Shi, R.C. Eberhart. A modified particle swarm optimizer. Proceedings # of IEEE International Conference on Evolutionary Computation. pp. 69-73. 1998. # # [3] M.E.H. Pedersen. Tuning & Simplifying Heuristical Optimization (PhD thesis). # University of Southampton, School of Engineering Sciences. 2010 # http://www.hvass-labs.org/people/magnus/thesis/pedersen08thesis.pdf # # [4] M.E.H. Pedersen. Good parameters for particle swarm optimization. # Technical Report HL-1001, Hvass Laboratories. 2010. # http://www.hvass-labs.org/people/magnus/publications/pedersen10good-pso.pdf # ######################################################################## import numpy as np from swarmops.Optimize import SingleRun from swarmops import tools ################################################## class Base(SingleRun): def __init__(self, problem, parallel=False, *args, **kwargs): """ Create object instance and perform a single optimization run using PSO. :param problem: The problem to be optimized. Instance of Problem-class. :param parallel: Evaluate the fitness for the particles in parallel. See the README.md file for a discussion on this. :return: Object instance. Get the optimization results from the object's variables. - best is the best-found solution. - best_fitness is the associated fitness of the best-found solution. - fitness_trace is an instance of the FitnessTrace-class. """ # Copy arguments to instance variables. self.problem = problem self.parallel = parallel # Initialize all particles with random positions in the search-space. # The first index is for the particle number. # The second index is for the search-space dimension. # Note that self.num_particles must be set prior to this by the sub-class. self.particle = tools.rand_population(lower=problem.lower_init, upper=problem.upper_init, num_agents=self.num_particles, dim=problem.dim) # Initialize best-known positions for the particles to their starting positions. # A copy is made because the particle positions will change during optimization # regardless of improvement to the particle's fitness. self.particle_best = np.copy(self.particle) # Initialize fitness of best-known particle positions to infinity. self.particle_best_fitness = np.repeat(np.inf, self.num_particles) # Boundaries for the velocity. These are set to the range of the search-space. bound_range = np.abs(problem.upper_bound - problem.lower_bound) self.velocity_lower_bound = -bound_range self.velocity_upper_bound = bound_range # Initialize all velocities with random values in the allowed range. self.velocity = tools.rand_population(lower=self.velocity_lower_bound, upper=self.velocity_upper_bound, num_agents=self.num_particles, dim=problem.dim) # Initialize parent-class which also starts the optimization run. SingleRun.__init__(self, *args, **kwargs) def _optimize(self): """ Perform a single optimization run. This function is called by the parent-class. """ # Calculate fitness for the initial particle positions. self._update_fitness() # Optimization iterations. # The counting starts with num_particles because the fitness has # already been calculated once for each particle during initialization. for i in range(self.num_particles, self.max_evaluations, self.num_particles): # Update the particle velocities and positions. self._update_particles() # Update the fitness for each particle. self._update_fitness() # Call parent-class to print status etc. during optimization. self._iteration(i) def _fitness(self, i): """ Calculate the fitness for the i'th particle. """ return self.problem.fitness(self.particle[i, :], limit=self.particle_best_fitness[i]) def _update_fitness(self): """ Calculate and update the fitness for each particle. Also updates the particle's and swarm's best-known fitness and position if an improvement is found. """ if not self.parallel: # Calculate the fitness for each particle. Not parallel. new_fitness = [self._fitness(i) for i in range(self.num_particles)] else: import multiprocessing as mp # Create a pool of workers sized according to the CPU cores available. pool = mp.Pool() # Calculate the fitness for each particle in parallel. new_fitness = pool.map(self._fitness, range(self.num_particles)) # Close the pool of workers and wait for them all to finish. pool.close() pool.join() # For each particle. for i in range(self.num_particles): # If the fitness is an improvement over the particle's best-known fitness. if new_fitness[i] < self.particle_best_fitness[i]: # Update the particle's best-known fitness and position. self.particle_best_fitness[i] = new_fitness[i] self.particle_best[i, :] = self.particle[i, :] # Update the entire swarm's best-known fitness and position if an improvement. # The parent-class is used for this. self._update_best(fitness=new_fitness[i], x=self.particle_best[i, :]) ################################################## class PSO(Base): """ Perform a single optimization run using Particle Swarm Optimization (PSO). This is a so-called global-best variant, although it may have slightly different features than other global-best variants in the research literature. In practice, you would typically perform multiple optimization runs using the MultiRun-class. The reason is that PSO is a heuristic optimizer so there is no guarantee that an acceptable solution is found in any single run. It is more likely that an acceptable solution is found if you perform multiple optimization runs. Control parameters have been tuned for different optimization scenarios. First try and use the default parameters. If that does not give satisfactory results, then you may try some of the following. Select the parameters that most closely match your problem. For example, if you want to optimize a problem where the search-space has 15 dimensions and you can perform 30000 evaluations, then you could first try using parameters_20dim_40000eval. If that does not give satisfactory results then you could try using parameters_10dim_20000eval. If that does not work then you will either need to meta-optimize the parameters for the problem at hand, or you should try using another optimizer. """ # Name of this optimizer. name = "PSO" name_full = "Particle Swarm Optimization (Global-Best Variant)" # Number of control parameters for PSO. Used by MetaFitness-class. num_parameters = 4 # Lower boundaries for the control parameters of PSO. Used by MetaFitness-class. parameters_lower_bound = [1.0, -2.0, -4.0, -4.0] # Upper boundaries for the control parameters of PSO. Used by MetaFitness-class. parameters_upper_bound = [300.0, 2.0, 4.0, 6.0] @staticmethod def parameters_list(num_particles, omega, phi_p, phi_g): """ Create a list with PSO parameters in the correct order. :param num_particles: Number of particles for the PSO swarm. :param omega: The omega parameter (aka. inertia weight) for the PSO. :param phi_p: The phi_p parameter (aka. particle weight) for the PSO. :param phi_g: The phi_g parameter (aka. social weight) for the PSO. :return: List with PSO parameters. """ return [num_particles, omega, phi_p, phi_g] @staticmethod def parameters_dict(parameters): """ Create and return a dict from a list of PSO parameters. This is useful for printing the named parameters. :param parameters: List with PSO parameters assumed to be in the correct order. :return: Dict with PSO parameters. """ return {'num_particles': parameters[0], 'omega': parameters[1], 'phi_p': parameters[2], 'phi_g': parameters[3]} # Default parameters for the PSO which will be used if no other parameters are specified. # These are a compromise of the tuned parameters below. Try this first and see if it works. parameters_default = [50.0, -0.4, -0.3, 3.9] # Parameters tuned by hand. These are common in the older research literature on PSO # but perform much worse than meta-optimized parameters, especially for this PSO variant. parameters_hand_tuned = [50.0, 0.729, 1.49445, 1.49445] # Parameters tuned for benchmark problems in 2 dimensions using 400 fitness evaluations. parameters_2dim_400eval_a = [25.0, 0.3925, 2.5586, 1.3358] parameters_2dim_400eval_b = [29.0, -0.4349, -0.6504, 2.2073] # Parameters tuned for benchmark problems in 2 dimensions using 4000 fitness evaluations. parameters_2dim_4000eval_a = [156.0, 0.4091, 2.1304, 1.0575] parameters_2dim_4000eval_b = [237.0, -0.2887, 0.4862, 2.5067] # Parameters tuned for benchmark problems in 5 dimensions using 1000 fitness evaluations. parameters_5dim_1000eval_a = [63.0, -0.3593, -0.7238, 2.0289] parameters_5dim_1000eval_b = [47.0, -0.1832, 0.5287, 3.1913] # Parameters tuned for benchmark problems in 5 dimensions using 10000 fitness evaluations. parameters_5dim_10000eval_a = [223.0, -0.3699, -0.1207, 3.3657] parameters_5dim_10000eval_b = [203.0, 0.5069, 2.5524, 1.0056] # Parameters tuned for benchmark problems in 10 dimensions using 2000 fitness evaluations. parameters_10dim_2000eval_a = [63.0, 0.6571, 1.6319, 0.6239] parameters_10dim_2000eval_b = [204.0, -0.2134, -0.3344, 2.3259] # Parameters tuned for benchmark problems in 10 dimensions using 20000 fitness evaluations. parameters_10dim_20000eval = [53.0, -0.3488, -0.2746, 4.8976] # Parameters tuned for benchmark problems in 20 dimensions using 40000 fitness evaluations. parameters_20dim_40000eval = [69.0, -0.4438, -0.2699, 3.395] # Parameters tuned for benchmark problems in 20 dimensions using 400000 fitness evaluations. parameters_20dim_400000eval_a = [149.0, -0.3236, -0.1136, 3.9789] parameters_20dim_400000eval_b = [60.0, -0.4736, -0.97, 3.7904] parameters_20dim_400000eval_c = [256.0, -0.3499, -0.0513, 4.9087] # Parameters tuned for benchmark problems in 30 dimensions using 60000 fitness evaluations. parameters_30dim_60000eval = [134.0, -0.1618, 1.8903, 2.1225] # Parameters tuned for benchmark problems in 30 dimensions using 600000 fitness evaluations. parameters_30dim_600000eval = [95.0, -0.6031, -0.6485, 2.6475] # Parameters tuned for benchmark problems in 50 dimensions using 100000 fitness evaluations. parameters_50dim_100000eval = [106.0, -0.2256, -0.1564, 3.8876] # Parameters tuned for benchmark problems in 100 dimensions using 200000 fitness evaluations. parameters_100dim_200000eval = [161.0, -0.2089, -0.0787, 3.7637] def __init__(self, parameters=parameters_default, *args, **kwargs): """ Create object instance and perform a single optimization run using PSO. :param parameters: Control parameters for the PSO. These may have a significant impact on the optimization performance. First try and use the default parameters and if they don't give satisfactory results, then experiment with other parameters. :return: Object instance. Get the optimization results from the object's variables. - best is the best-found solution. - best_fitness is the associated fitness of the best-found solution. - fitness_trace is an instance of the FitnessTrace-class. """ # Unpack control parameters. self.num_particles, self.omega, self.phi_p, self.phi_g = parameters # The number of particles must be an integer. self.num_particles = int(self.num_particles) # Initialize parent-class which also starts the optimization run. Base.__init__(self, *args, **kwargs) def _update_particles(self): """ Update the velocities and positions for all particles. This does not update the fitness for each particle. """ # Random values between zero and one. One random value per particle. rand_p = tools.rand_uniform(size=self.num_particles) rand_g = tools.rand_uniform(size=self.num_particles) # Update velocity for all particles using numpy operations. # For an explanation of this formula, see the research papers referenced above. # Note that self.best is the swarm's best-known position aka. global-best. self.velocity = (self.omega * self.velocity.T \ + self.phi_p * rand_p * (self.particle_best - self.particle).T \ + self.phi_g * rand_g * (self.best - self.particle).T).T # Fix de-normalized floating point values which can make the execution very slow. self.velocity = tools.denormalize_trunc(self.velocity) # Bound velocity. self.velocity = tools.bound(self.velocity, self.velocity_lower_bound, self.velocity_upper_bound) # Update particle positions in the search-space by adding the velocity. self.particle = self.particle + self.velocity # Bound particle position to search-space. self.particle = tools.bound(self.particle, self.problem.lower_bound, self.problem.upper_bound) ################################################## class MOL(Base): """ Perform a single optimization run using Many Optimizing Liaisons (MOL). In practice, you would typically perform multiple optimization runs using the MultiRun-class. The reason is that MOL is a heuristic optimizer so there is no guarantee that an acceptable solution is found in any single run. It is more likely that an acceptable solution is found if you perform multiple optimization runs. Control parameters have been tuned for different optimization scenarios. First try and use the default parameters. If that does not give satisfactory results, then you may try some of the following. Select the parameters that most closely match your problem. For example, if you want to optimize a problem where the search-space has 15 dimensions and you can perform 30000 evaluations, then you could first try using parameters_20dim_40000eval. If that does not give satisfactory results then you could try using parameters_10dim_20000eval. If that does not work then you will either need to meta-optimize the parameters for the problem at hand, or you should try using another optimizer. """ # Name of this optimizer. name = "MOL" name_full = "Many Optimizing Liaisons (Simple Variant of PSO)" # Number of control parameters for MOL. Used by MetaFitness-class. num_parameters = 3 # Lower boundaries for the control parameters of MOL. Used by MetaFitness-class. parameters_lower_bound = [1.0, -2.0, -4.0] # Upper boundaries for the control parameters of MOL. Used by MetaFitness-class. parameters_upper_bound = [300.0, 2.0, 6.0] @staticmethod def parameters_dict(parameters): """ Create and return a dict from a list of MOL parameters. This is useful for printing the named parameters. :param parameters: List with MOL parameters assumed to be in the correct order. :return: Dict with MOL parameters. """ return {'num_particles': parameters[0], 'omega': parameters[1], 'phi_g': parameters[2]} @staticmethod def parameters_list(num_particles, omega, phi_g): """ Create a list with MOL parameters in the correct order. :param num_particles: Number of particles for the MOL swarm. :param omega: The omega parameter (aka. inertia weight) for the MOL. :param phi_g: The phi_g parameter (aka. social weight) for the MOL. :return: List with MOL parameters. """ return [num_particles, omega, phi_g] # Default parameters for MOL which will be used if no other parameters are specified. # These are a compromise of the tuned parameters below. Try this first and see if it works. parameters_default = [100.0, -0.35, 3.0] # Parameters tuned for benchmark problems in 2 dimensions using 400 fitness evaluations. parameters_2dim_400eval_a = [23.0, -0.3328, 2.8446] parameters_2dim_400eval_b = [50.0, 0.2840, 1.9466] # Parameters tuned for benchmark problems in 2 dimensions using 4000 fitness evaluations. parameters_2dim_4000eval_a = [183.0, -0.2797, 3.0539] parameters_2dim_4000eval_b = [139.0, 0.6372, 1.0949] # Parameters tuned for benchmark problems in 5 dimensions using 10000 fitness evaluations. parameters_5dim_1000eval = [50.0, -0.3085, 2.0273] # Parameters tuned for benchmark problems in 5 dimensions using 10000 fitness evaluations. parameters_5dim_10000eval = [96.0, -0.3675, 4.1710] # Parameters tuned for benchmark problems in 10 dimensions using 2000 fitness evaluations. parameters_10dim_2000eval = [60.0, -0.2700, 2.9708] # Parameters tuned for benchmark problems in 10 dimensions using 20000 fitness evaluations. parameters_10dim_20000eval = [116.0, -0.3518, 3.8304] # Parameters tuned for benchmark problems in 20 dimensions using 40000 fitness evaluations. parameters_20dim_40000eval = [228.0, -0.3747, 4.2373] # Parameters tuned for benchmark problems in 20 dimensions using 400000 fitness evaluations. parameters_20dim_400000eval = [125.0, -0.2575, 4.6713] # Parameters tuned for benchmark problems in 30 dimensions using 600000 fitness evaluations. parameters_30dim_60000eval = [198.0, -0.2723, 3.8283] # Parameters tuned for benchmark problems in 50 dimensions using 100000 fitness evaluations. parameters_50dim_100000eval = [290.0, -0.3067, 3.6223] # Parameters tuned for benchmark problems in 100 dimensions using 200000 fitness evaluations. parameters_100dim_200000eval = [219.0, -0.1685, 3.9162] def __init__(self, parameters=parameters_default, *args, **kwargs): """ Create object instance and perform a single optimization run using MOL. :param problem: The problem to be optimized. Instance of Problem-class. :param parameters: Control parameters for the MOL. These may have a significant impact on the optimization performance. First try and use the default parameters and if they don't give satisfactory results, then experiment with other the parameters. :return: Object instance. Get the optimization results from the object's variables. - best is the best-found solution. - best_fitness is the associated fitness of the best-found solution. - fitness_trace is an instance of the FitnessTrace-class. """ # Unpack control parameters. self.num_particles, self.omega, self.phi_g = parameters # The number of particles must be an integer. self.num_particles = int(self.num_particles) # Initialize parent-class which also starts the optimization run. Base.__init__(self, *args, **kwargs) def _update_particles(self): """ Update the velocities and positions for all particles. This does not update the fitness for each particle. """ # Random values between zero and one. One random value per particle. rand_g = tools.rand_uniform(size=self.num_particles) # Update velocity for all particles using numpy operations. # For an explanation of this formula, see the research papers referenced above. # Note that self.best is the swarm's best-known position aka. global-best. self.velocity = (self.omega * self.velocity.T \ + self.phi_g * rand_g * (self.best - self.particle).T).T # Fix de-normalized floating point values which can make the execution very slow. self.velocity = tools.denormalize_trunc(self.velocity) # Bound velocity. self.velocity = tools.bound(self.velocity, self.velocity_lower_bound, self.velocity_upper_bound) # Update particle positions in the search-space by adding the velocity. self.particle = self.particle + self.velocity # Bound particle position to search-space. self.particle = tools.bound(self.particle, self.problem.lower_bound, self.problem.upper_bound) ##################################################
py
b406bbb665f2c087c0af3c92a5aec0bca85023c7
# -*- coding: utf-8 -*- """Module providing controlpanels""" import datetime import json import time import six from Products.Five import BrowserView from Products.statusmessages.interfaces import IStatusMessage from ade25.widgets.config import PKG_WIDGETS from plone.app.registry.browser.controlpanel import RegistryEditForm from plone.autoform import form from plone.autoform import directives as form_directives from zope import schema from zope.interface import Interface from plone.z3cform import layout from plone.app.registry.browser.controlpanel import ControlPanelFormWrapper from ade25.widgets import utils as widget_utils from ade25.widgets import MessageFactory as _ class Ade25WidgetsSettings(BrowserView): """ Ade25 settings overview """ def update(self): if super(Ade25WidgetsSettings, self).update(): if 'form.button.setup' in self.request.form: self.processSetup() def processSetup(self): IStatusMessage(self.request).addStatusMessage( _(u'Setup initialized.'), 'info') class IAde25WidgetsControlPanel(Interface): content_widgets_header = schema.List( title=_(u"Content Widgets Page Header"), description=_(u"Select Content Widgets that should be available " u"for the page header section."), value_type=schema.Choice( vocabulary='ade25.widgets.vocabularies.AvailableContentWidgets' ), required=False ) content_widgets_main = schema.List( title=_(u"Content Widgets Main Content Area"), description=_(u"Select Content Widgets that should be available " u"for the main page content area."), value_type=schema.Choice( vocabulary='ade25.widgets.vocabularies.AvailableContentWidgets' ), required=False ) content_widgets_footer = schema.List( title=_(u"Content Widgets Page Footer"), description=_(u"Select Content Widgets that should be available " u"for the page header section."), value_type=schema.Choice( vocabulary='ade25.widgets.vocabularies.AvailableContentWidgets' ), required=False ) widget_settings = schema.Text( title=_(u"Widget Settings JSON"), description=_(u"Widget configuration registry storing a string " u"representation of a valid JSON settings array"), required=False, ) class Ade25WidgetsControlPanelForm(RegistryEditForm): schema = IAde25WidgetsControlPanel schema_prefix = "ade25.widgets" label = u'Ade25 Widgets' Ade25WidgetsSettingsBase = layout.wrap_form( Ade25WidgetsControlPanelForm, ControlPanelFormWrapper ) class IAde25WidgetsControlPanelWidgets(Interface): read_more_icon = schema.TextLine( title=_(u"Read More Icon Name"), description=_(u"Please enter icon to be used in read more links when " u"a layout with icon is selected. Note: the icon needs to " u"exist in the themes icon sprite for this to work."), default=u'chevron', required=False ) form_directives.widget('listing_scale', klass='js-choices-selector') listing_scale = schema.Choice( title=_(u"Content Listing: Image Scale"), vocabulary='ade25.widgets.vocabularies.AvailableImageScales', default=u'ratio-4:3', required=False ) listing_hidden_fields = schema.List( title=_(u"Content Listing: Hidden Elements"), description=_(u"Please select which elements should be hidden in the " u"widget add and edit forms."), value_type=schema.Choice( vocabulary='ade25.widgets.vocabularies.ContentWidgetSchemaOptions' ), default=['text', 'link', ], required=False ) form_directives.widget('listing_cards_scale', klass='js-choices-selector') listing_cards_scale = schema.Choice( title=_(u"Content Listing Cards: Image Scale"), vocabulary='ade25.widgets.vocabularies.AvailableImageScales', default=u'ratio-4:3', required=False ) listing_cards_hidden_fields = schema.List( title=_(u"Content Listing Cards: Hidden Elements"), description=_(u"Please select which elements should not be available in the " u"widget add and edit forms."), value_type=schema.Choice( vocabulary='ade25.widgets.vocabularies.ContentWidgetSchemaOptions' ), default=['text', 'link', ], required=False ) form_directives.widget('image_cover_scale', klass='js-choices-selector') image_cover_scale = schema.Choice( title=_(u"Cover Image: Image Scale"), vocabulary='ade25.widgets.vocabularies.AvailableImageScales', default=u'ratio-4:3', required=False ) form_directives.widget('image_poster_scale', klass='js-choices-selector') image_poster_scale = schema.Choice( title=_(u"Poster Image: Image Scale"), vocabulary='ade25.widgets.vocabularies.AvailableImageScales', default=u'ratio-16:9', required=False ) image_poster_hidden_fields = schema.List( title=_(u"Poster Image: Hidden Elements"), description=_(u"Please select which elements should be available in the " u"widget add and edit forms."), value_type=schema.Choice( vocabulary='ade25.widgets.vocabularies.ContentWidgetSchemaOptions' ), default=['text', 'link', ], required=False ) class Ade25WidgetsControlPanelWidgetsForm(RegistryEditForm): schema = IAde25WidgetsControlPanelWidgets schema_prefix = "ade25.widgets" label = u'Ade25 Widgets Settings' Ade25WidgetsSettingsWidgets = layout.wrap_form( Ade25WidgetsControlPanelWidgetsForm, ControlPanelFormWrapper ) class Ade25WidgetsSettingsJSON(BrowserView): """ Ade25 settings json export """ def __call__(self): return self.render() @staticmethod def _widget_configuration(): content_widgets = PKG_WIDGETS return content_widgets def render(self): msg = _(u"JSON file could not be generated") data = { 'success': False, 'message': msg } configuration = self._widget_configuration() if configuration: data = configuration widgets = { "items": data, "timestamp": six.text_type(int(time.time())), "updated": datetime.datetime.now().isoformat() } self.request.response.setHeader('Content-Type', 'application/json; charset=utf-8') return json.dumps(widgets)
py
b406bc4edabce57df0c30d7f9e6db02db62ccd15
#!usr/bin/python # -*- coding: utf-8 -*- """ Implementation of Res2Net with extended modifications (Res2Net-Plus): Improvements: 3x3 stem instead of 7x7, BN before activation, Mish activation instead of ReLU this file: https://github.com/lessw2020/res2net-plus all based on original paper and impl: https://arxiv.org/abs/1904.01169v2 then based on https://github.com/gasvn/Res2Net then based on: https://github.com/frgfm/Holocron/blob/master/holocron/models/res2net.py and finally: https://github.com/lessw2020/res2net-plus """ import torch import torch.nn as nn from torchvision.models.resnet import conv1x1, conv3x3 from torchvision.models.utils import load_state_dict_from_url from fastai.torch_core import * import torch.nn as nn import torch,math,sys import torch.utils.model_zoo as model_zoo from functools import partial #from ...torch_core import Module from fastai.torch_core import Module import torch.nn.functional as F #(uncomment if needed,but you likely already have it) class Mish(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x *( torch.tanh(F.softplus(x))) act_fn = Mish() def conv(ni, nf, ks=3, stride=1, bias=False): return nn.Conv1d(ni, nf, kernel_size=ks, stride=stride, padding=ks//2, bias=bias) class Res2Block(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=4, dilation=1, scale=4, first_block=False, norm_layer=None): """Implements a residual block Args: inplanes (int): input channel dimensionality planes (int): output channel dimensionality stride (int): stride used for conv3x3 downsample (torch.nn.Module): module used for downsampling groups: num of convolution groups base_width: base width dilation (int): dilation rate of conv3x3 scale (int): scaling ratio for cascade convs first_block (bool): whether the block is the first to be placed in the conv layer norm_layer (torch.nn.Module): norm layer to be used in blocks """ super(Res2Block, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm1d width = int(planes * (base_width / 64.)) * groups self.conv1 = conv(inplanes, width * scale, 1) self.bn1 = norm_layer(width * scale) # If scale == 1, single conv else identity & (scale - 1) convs nb_branches = max(scale, 2) - 1 if first_block: self.pool = nn.AvgPool1d(kernel_size=3, stride=stride, padding=1) self.convs = nn.ModuleList([conv(width, width, 3, stride) for _ in range(nb_branches)]) self.bns = nn.ModuleList([norm_layer(width) for _ in range(nb_branches)]) self.first_block = first_block self.scale = scale self.conv3 = conv(width * scale, planes * self.expansion, 1) self.relu = Mish() #nn.ReLU(inplace=False) self.bn3 = norm_layer(planes * self.expansion) #bn reverse self.downsample = downsample def forward(self, x): residual = x out = self.conv1(x) out = self.relu(out) out = self.bn1(out) #bn reverse # Chunk the feature map xs = torch.chunk(out, self.scale, dim=1) # Initialize output as empty tensor for proper concatenation y = 0 for idx, conv in enumerate(self.convs): # Add previous y-value if self.first_block: y = xs[idx] else: y += xs[idx] y = conv(y) y = self.relu(self.bns[idx](y)) # Concatenate with previously computed values out = torch.cat((out, y), 1) if idx > 0 else y # Use last chunk as x1 if self.scale > 1: if self.first_block: out = torch.cat((out, self.pool(xs[len(self.convs)])), 1) else: out = torch.cat((out, xs[len(self.convs)]), 1) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out def conv_layer(ni, nf, ks=3, stride=1, zero_bn=False, act=True): bn = nn.BatchNorm1d(nf) nn.init.constant_(bn.weight, 0. if zero_bn else 1.) if act: layers = [conv(ni, nf, ks, stride=stride), act_fn, bn] else: layers = [conv(ni, nf, ks, stride=stride), bn] #if act: layers.append(act_fn) return nn.Sequential(*layers) class Res2Net(nn.Module): """Implements a Res2Net model as described in https://arxiv.org/pdf/1904.01169.pdf Args: block (torch.nn.Module): class constructor to be used for residual blocks layers (list<int>): layout of layers num_classes (int): number of output classes zero_init_residual (bool): whether the residual connections should be initialized at zero groups (int): number of convolution groups width_per_group (int): number of channels per group scale (int): scaling ratio within blocks replace_stride_with_dilation (list<bool>): whether stride should be traded for dilation norm_layer (torch.nn.Module): norm layer to be used """ def __init__(self, block, layers, c_in=3,num_classes=1000, zero_init_residual=False, groups=1, width_per_group=26, scale=4, replace_stride_with_dilation=None, norm_layer=None): super(Res2Net, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm1d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.scale = scale #self.conv1 = nn.Conv1d(3, self.inplanes, kernel_size=7, stride=2, padding=3, # bias=False) #modify stem #stem = [] sizes = [c_in,32,64,64] #modified per Grankin #for i in range(3): # stem.append(conv_layer(sizes[i], sizes[i+1], stride=2 if i==0 else 1)) #stem (initial entry layers) self.conv1 = conv_layer(c_in, sizes[1], stride=2) self.conv2 = conv_layer(sizes[1],sizes[2]) self.conv3 = conv_layer(sizes[2],sizes[3]) self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1) #nn.MaxPool1d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool1d(1) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv1d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottle2neck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv(self.inplanes, planes * block.expansion, 1, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, self.scale, first_block=True, norm_layer=norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, scale=self.scale, first_block=False, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): #stem layers x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.maxpool(x) #res2 block layers x = self.layer1(x) # print('1: ', x.shape) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def create_res2net(ni, nout, layers=[3, 4, 6, 3], scale=4, width=26): return Res2Net(Res2Block, layers, c_in=ni, num_classes=nout, scale=scale, width_per_group=width)
py
b406bd75077956e353321adb2f72dcb920a9fbe8
import torch import torch.nn as nn import torchvision.models as models class EncoderCNN(nn.Module): def __init__(self, embed_size): super().__init__() resnet = models.resnet50(pretrained=True) for param in resnet.parameters(): param.requires_grad_(False) modules = list(resnet.children())[:-1] self.resnet = nn.Sequential(*modules) self.embed = nn.Linear(resnet.fc.in_features, embed_size) def forward(self, images): features = self.resnet(images) features = features.view(features.size(0), -1) features = self.embed(features) return features class DecoderRNN(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1): super().__init__() self.embed_size = embed_size self.hidden_size = hidden_size self.vocab_size = vocab_size self.num_layers = num_layers self.word_embeddings = nn.Embedding(vocab_size, embed_size) self.lstm = nn.LSTM( input_size=embed_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, ) self.fc = nn.Linear(hidden_size, vocab_size) def forward(self, features, captions): assert ( features.shape[0] == captions.shape[0] ), "Batch sizes are different for features and captions." embeddings = self.word_embeddings(captions[:, :-1]) list_of_inputs = torch.cat((features, embeddings), dim=1) list_of_outputs, _ = self.lstm(list_of_inputs, None) return self.fc(list_of_outputs) def sample(self, features, hidden=None, max_len=20): """ accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) """ inputs = features token_ids = [] for _ in range(max_len): outputs, hidden = self.lstm(inputs, hidden) outputs = self.fc(outputs) _, token_id = outputs.max(2) token_ids.append(token_id.item()) inputs = self.word_embeddings(token_id) return token_ids
py
b406be8c1206e4404546859a1290805cb0459e7f
import pytest from lxml import etree from ...services.xsd.constants import TOOL_XSD_FILE from ...services.xsd.validation import GalaxyToolValidationService from .sample_data import ( TEST_INVALID_TOOL_01_DOCUMENT, TEST_MACRO_01_DOCUMENT, TEST_SYNTAX_ERROR_MACRO_01_DOCUMENT, TEST_SYNTAX_ERROR_TOOL_01_DOCUMENT, TEST_TOOL_01_DOCUMENT, ) from .utils import TestUtils TEST_SERVER_NAME = "Test Server" @pytest.fixture(scope="module") def xsd_schema() -> etree.XMLSchema: root = etree.parse(str(TOOL_XSD_FILE)) schema = etree.XMLSchema(root) return schema class TestGalaxyToolValidationServiceClass: def test_validate_document_returns_empty_diagnostics_when_valid(self, xsd_schema: etree.XMLSchema) -> None: service = GalaxyToolValidationService(TEST_SERVER_NAME, xsd_schema) xml_document = TestUtils.from_document_to_xml_document(TEST_TOOL_01_DOCUMENT) actual = service.validate_document(xml_document) assert actual == [] def test_validate_macro_file_returns_empty_diagnostics_when_valid(self, xsd_schema: etree.XMLSchema) -> None: service = GalaxyToolValidationService(TEST_SERVER_NAME, xsd_schema) xml_document = TestUtils.from_document_to_xml_document(TEST_MACRO_01_DOCUMENT) actual = service.validate_document(xml_document) assert actual == [] def test_validate_document_returns_diagnostics_when_invalid(self, xsd_schema: etree.XMLSchema) -> None: service = GalaxyToolValidationService(TEST_SERVER_NAME, xsd_schema) xml_document = TestUtils.from_document_to_xml_document(TEST_INVALID_TOOL_01_DOCUMENT) actual = service.validate_document(xml_document) assert len(actual) > 0 def test_validate_document_returns_diagnostics_when_syntax_error(self, xsd_schema: etree.XMLSchema) -> None: service = GalaxyToolValidationService(TEST_SERVER_NAME, xsd_schema) xml_document = TestUtils.from_document_to_xml_document(TEST_SYNTAX_ERROR_TOOL_01_DOCUMENT) actual = service.validate_document(xml_document) assert len(actual) == 1 def test_validate_macro_file_returns_diagnostics_when_syntax_error(self, xsd_schema: etree.XMLSchema) -> None: service = GalaxyToolValidationService(TEST_SERVER_NAME, xsd_schema) xml_document = TestUtils.from_document_to_xml_document(TEST_SYNTAX_ERROR_MACRO_01_DOCUMENT) actual = service.validate_document(xml_document) assert len(actual) == 1
py
b406beb82c0d075e36dd7c3cd514fa973635b7ec
import os import stat import struct import time import zlib from zipfile import ZipFile as BaseZipfile, ZipInfo, ZIP_STORED, ZIP64_LIMIT, \ ZIP_DEFLATED, LargeZipFile, crc32, \ _ZipDecrypter randomFunc = os.urandom class _ZipEncrypter(_ZipDecrypter): def __call__(self, c): """Encrypt a single character.""" _c = ord(c) k = self.key2 | 2 _c = _c ^ (((k * (k ^ 1)) >> 8) & 255) _c = chr(_c) self._UpdateKeys(c) # this is the only line that actually changed return _c class ZipFile(BaseZipfile): def write(self, filename, arcname=None, compress_type=None, pwd=None): """Put the bytes from filename into the archive under the name arcname.""" if not self.fp: raise RuntimeError( "Attempt to write to ZIP archive that was already closed") st = os.stat(filename) isdir = stat.S_ISDIR(st.st_mode) mtime = time.localtime(st.st_mtime) date_time = mtime[0:6] # Create ZipInfo instance to store file information if arcname is None: arcname = filename arcname = os.path.normpath(os.path.splitdrive(arcname)[1]) while arcname[0] in (os.sep, os.altsep): arcname = arcname[1:] if isdir: arcname += '/' zinfo = ZipInfo(arcname, date_time) zinfo.external_attr = (st[0] & 0xFFFF) << 16L # Unix attributes if isdir: zinfo.compress_type = ZIP_STORED elif compress_type is None: zinfo.compress_type = self.compression else: zinfo.compress_type = compress_type zinfo.file_size = st.st_size zinfo.flag_bits = 0x00 zinfo.header_offset = self.fp.tell() # Start of header bytes self._writecheck(zinfo) self._didModify = True if isdir: zinfo.file_size = 0 zinfo.compress_size = 0 zinfo.CRC = 0 zinfo.external_attr |= 0x10 # MS-DOS directory flag self.filelist.append(zinfo) self.NameToInfo[zinfo.filename] = zinfo self.fp.write(zinfo.FileHeader(False)) return pwd = pwd or self.pwd if pwd: zinfo.flag_bits |= 0x8 | 0x1 # set stream and encrypted with open(filename, "rb") as fp: # Must overwrite CRC and sizes with correct data later zinfo.CRC = CRC = 0 zinfo.compress_size = compress_size = 0 # Compressed size can be larger than uncompressed size zip64 = self._allowZip64 and \ zinfo.file_size * 1.05 > ZIP64_LIMIT self.fp.write(zinfo.FileHeader(zip64)) if zinfo.compress_type == ZIP_DEFLATED: cmpr = zlib.compressobj(zlib.Z_DEFAULT_COMPRESSION, zlib.DEFLATED, -15) else: cmpr = None if pwd: ze = _ZipEncrypter(pwd) encrypt = lambda x: "".join(map(ze, x)) zinfo._raw_time = ( zinfo.date_time[3] << 11 | zinfo.date_time[4] << 5 | (zinfo.date_time[5] // 2)) check_byte = (zinfo._raw_time >> 8) & 0xff enryption_header = randomFunc(11) + chr(check_byte) self.fp.write(encrypt(enryption_header)) else: encrypt = lambda x: x file_size = 0 while 1: buf = fp.read(1024 * 8) if not buf: break file_size = file_size + len(buf) CRC = crc32(buf, CRC) & 0xffffffff if cmpr: buf = cmpr.compress(buf) compress_size = compress_size + len(buf) self.fp.write(encrypt(buf)) if cmpr: buf = cmpr.flush() compress_size = compress_size + len(buf) self.fp.write(encrypt(buf)) zinfo.compress_size = compress_size else: zinfo.compress_size = file_size zinfo.CRC = CRC zinfo.file_size = file_size if not zip64 and self._allowZip64: if file_size > ZIP64_LIMIT: raise RuntimeError( 'File size has increased during compressing') if compress_size > ZIP64_LIMIT: raise RuntimeError( 'Compressed size larger than uncompressed size') if pwd: # Write CRC and file sizes after the file data zinfo.compress_size += 12 fmt = '<LQQ' if zip64 else '<LLL' self.fp.write(struct.pack( fmt, zinfo.CRC, zinfo.compress_size, zinfo.file_size)) self.fp.flush() else: # Seek backwards and write file header (which will now include # correct CRC and file sizes) position = self.fp.tell() # Preserve current position in file self.fp.seek(zinfo.header_offset, 0) self.fp.write(zinfo.FileHeader(zip64)) self.fp.seek(position, 0) self.filelist.append(zinfo) self.NameToInfo[zinfo.filename] = zinfo def writestr(self, zinfo_or_arcname, bytes, compress_type=None, pwd=None): """Write a file into the archive. The contents is the string 'bytes'. 'zinfo_or_arcname' is either a ZipInfo instance or the name of the file in the archive.""" if not isinstance(zinfo_or_arcname, ZipInfo): zinfo = ZipInfo(filename=zinfo_or_arcname, date_time=time.localtime(time.time())[:6]) zinfo.compress_type = self.compression if zinfo.filename[-1] == '/': zinfo.external_attr = 0o40775 << 16 # drwxrwxr-x zinfo.external_attr |= 0x10 # MS-DOS directory flag else: zinfo.external_attr = 0o600 << 16 # ?rw------- else: zinfo = zinfo_or_arcname if not self.fp: raise RuntimeError( "Attempt to write to ZIP archive that was already closed") if compress_type is not None: zinfo.compress_type = compress_type zinfo.file_size = len(bytes) # Uncompressed size zinfo.header_offset = self.fp.tell() # Start of header bytes self._writecheck(zinfo) self._didModify = True zinfo.CRC = crc32(bytes) & 0xffffffff # CRC-32 checksum if zinfo.compress_type == ZIP_DEFLATED: co = zlib.compressobj(zlib.Z_DEFAULT_COMPRESSION, zlib.DEFLATED, -15) bytes = co.compress(bytes) + co.flush() zinfo.compress_size = len(bytes) # Compressed size else: zinfo.compress_size = zinfo.file_size zip64 = zinfo.file_size > ZIP64_LIMIT or \ zinfo.compress_size > ZIP64_LIMIT if zip64 and not self._allowZip64: raise LargeZipFile("Filesize would require ZIP64 extensions") pwd = pwd or self.pwd if pwd: zinfo.flag_bits |= 0x01 zinfo.compress_size += 12 # 12 extra bytes for the header if zinfo.flag_bits & 0x8: zinfo._raw_time = ( zinfo.date_time[3] << 11 | zinfo.date_time[4] << 5 | (zinfo.date_time[5] // 2)) check_byte = (zinfo._raw_time >> 8) & 0xff else: check_byte = (zinfo.CRC >> 24) & 0xff enryption_header = randomFunc(11) + chr(check_byte) ze = _ZipEncrypter(pwd) bytes = "".join(map(ze, enryption_header + bytes)) self.fp.write(zinfo.FileHeader(zip64)) self.fp.write(bytes) if zinfo.flag_bits & 0x08: # Write CRC and file sizes after the file data fmt = '<LQQ' if zip64 else '<LLL' self.fp.write(struct.pack(fmt, zinfo.CRC, zinfo.compress_size, zinfo.file_size)) self.fp.flush() self.filelist.append(zinfo) self.NameToInfo[zinfo.filename] = zinfo
py
b406bf498fb04f3c28363041a790736f019922fa
#!/usr/bin/env python3 """ An attempt to solve the Conversation Log problem on Kattis """ import sys import logging logging.basicConfig(level=logging.INFO) ignored = sys.stdin.readline() all_unique_words = set() words = dict() wordcount = dict() for line in sys.stdin: data = line.rstrip().split(" ") if data[0] not in words: words[data[0]] = set() for index in range(1, len(data)): try: wordcount[data[index]] += 1 except KeyError: wordcount[data[index]] = 1 finally: words[data[0]].add(data[index]) all_unique_words.add(data[index]) logging.info("words: {}\nwordcount: {}\nall_unique_words: {}".format( words, wordcount, all_unique_words)) for person in words: all_unique_words.intersection_update(words[person]) logging.info("all_unique_words:{}".format(all_unique_words)) if all_unique_words: results = [[i, wordcount[i]] for i in all_unique_words] sorted_results = sorted(results, key=lambda x: (-x[1], x[0])) for result in sorted_results: print(result[0]) else: print("ALL CLEAR")
py
b406bf812b2157bac582f01ee22bb7e5ad95372e
#!/usr/bin/env python import os import sys import glob # Try and import pip. We'll stop if it is not present try: import pip except ImportError: print "Installation of SeqFindr requires pip. Please install it! See -" print "http://pip.readthedocs.org/en/latest/installing.html" sys.exit(1) from setuptools import setup __title__ = 'SeqFindr' __version__ = '0.35.0' __description__ = "A tool to easily create informative genomic feature plots" __author__ = 'Mitchell Stanton-Cook' __license__ = 'ECL 2.0' __author_email__ = "[email protected]" __url__ = 'http://github.com/mscook/SeqFindr' # Helper functions if sys.argv[-1] == 'publish': print "Please use twine or do_release.sh" sys.exit() if sys.argv[-1] == 'clean': os.system('rm -rf SeqFindr.egg-info build dist') sys.exit() if sys.argv[-1] == 'docs': os.system('cd docs && make html') sys.exit() packages = [__title__, ] requires = [] with open('requirements.txt') as fin: lines = fin.readlines() for line in lines: requires.append(line.strip()) # Build lists to package the docs html, sources, static = [], [], [] html_f = glob.glob('docs/_build/html/*') accessory = glob.glob('docs/_build/html/*/*') for f in html_f: if os.path.isfile(f): html.append(f) for f in accessory: if f.find("_static") != -1: if os.path.isfile(f): static.append(f) elif f.find("_sources"): if os.path.isfile(f): sources.append(f) setup( name=__title__, version=__version__, description=__description__, long_description=open('README.rst').read(), author=__author__, author_email=__author_email__, url=__url__, packages=packages, test_suite="tests", package_dir={__title__: __title__}, scripts=[__title__+'/'+__title__, __title__+'/vfdb_to_seqfindr'], package_data={}, data_files=[('', ['LICENSE', 'requirements.txt', 'README.rst']), ('docs', html), ('docs/_static', static), ('docs/_sources', sources)], include_package_data=True, install_requires=requires, license=__license__, zip_safe=False, classifiers=('Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved', 'Natural Language :: English', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 2 :: Only', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'Topic :: Scientific/Engineering :: Visualization',), )
py
b406c08bb20e2827afc53494cfb86cb60d6faddf
# Enter your code here. Read input from STDIN. Print output to STDOUT c,a = int(input()), input().split() d,b = int(input()), input().split() x=set(a) y=set(b) m=x.difference(y) n=y.difference(x) o=m.union(n) print('\n'.join(sorted(o, key=int)))
py
b406c0ac4821d42a06f4e1b14bcd547a4313e10f
from django.http.response import HttpResponse from django.shortcuts import render, redirect from django.template.context import Context from django.conf import settings import json import pkg_resources from rest_framework.views import APIView from accounts.models import User def index(request): return render(request, 'index.html', Context({ 'dev_shared_key': settings.VAULTIER.get('dev_shared_key'), })) class ConfigView(APIView): """ View to provide JS configuration """ def get(self, request): """ Get configuration from settings, format it and return """ # get settings and transform it to json conf_settings = json.dumps({ 'VERSION': pkg_resources.get_distribution("Vaultier").version, 'raven_key': settings.VAULTIER.get('raven_key'), 'invitation_lifetime': settings.VAULTIER.get( 'invitation_lifetime'), 'registration_allow': settings.VAULTIER.get('registration_allow'), 'registration_enforce': not bool(User.objects.all().count()), # dev 'dev_shared_key': settings.VAULTIER.get('dev_shared_key'), 'dev_show_token': settings.VAULTIER.get('dev_show_token'), 'dev_email': settings.VAULTIER.get('dev_email') }) # add settings to script script = 'InitializeConfig = function(app) { ' \ 'app.Config = Ember.Object.extend(%s); }' % conf_settings return HttpResponse(script, content_type='text/javascript') def error404(request): return redirect('/#'+request.path) # def dev_mail(request): # context = build_context(Member.objects.filter( # status=MemberStatusField.STATUS_INVITED).reverse()[0]) # plain, html = render_email('mailer/invitation', context) # return HttpResponse(html)