ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b40705c62bc0bff83d4a2c5f2b307ac5e4655def
from collections import OrderedDict expected = [ OrderedDict( [ ( "content", [ OrderedDict( [ ("type", "box"), ("doi", u"10.7554/eLife.00013.009"), ("id", u"box1"), ("label", u"Box 1"), ("title", u"Box title"), ( "content", [ OrderedDict( [("type", "paragraph"), ("text", u"content 1")] ), OrderedDict( [("type", "paragraph"), ("text", u"content 2")] ), ], ), ] ) ], ) ] ) ]
py
b407061a688139723971a74ccfb61f97847bb7d8
""" Weighted mini-bucket elimination for graphical models Computes upper or lower bounds on the partition function or MAP/MPE configurations, depending on weights Supports incremental construction Supports TRW-based importance sampling class WMB: # attributes: # elimOrder[i] # priority[Xj] = i if elimOrder[i]=Xj # bucket[i] = [nodei1 nodei2 ... ] # matchlist[i] = [matchi1 matchi2 ...] # # class Node: # clique = VarSet # theta = factor (or list of factors?) # weight = float # parent = ref, children = [refs...] or index? # msgFwd, msgBwd = factor """ from .factor import * from .graphmodel import * from builtins import range try: from itertools import izip except: izip = zip reverse_enumerate = lambda l: izip(range(len(l)-1, -1, -1), reversed(l)) class WMB(object): '''Class implementing weighted mini-bucket elimination inference''' # Internal object / structure for representing a mini-bucket class Node: """Internal container object for mini-bucket nodes""" def __init__(self): self.clique = VarSet() self.theta = Factor().log() self.weight = 1.0 self.parent = None self.children = [] self.msgFwd = Factor().log() self.msgBwd = Factor().log() self.originals = [] def __repr__(self): return "{}^{}".format(self.clique,self.weight) def __str__(self): return "{}".format(self.clique) def __lt__(self, other): return False # don't care about ordering nodes class ConstantList: def __init__(self, val): self.val = val def __getitem__(self, loc): return self.val def __init__(self, model, elimOrder=None, iBound=0, sBound=0, weights=1.0, attach=True, **kwargs): # TODO: check if model isLog() true # save a reference to our model self.model = model self.X = model.X self.logValue = model.logValue # create & process elimination ordering of the model: if elimOrder is None: elimOrder = 'wtminfill' if type(elimOrder) is str: # auto elim order: check that weights is string or float if not type(weights) in {float, str}: raise ValueError("Must specify elimination order or use all-equal weights (float or string)"); elimOrder = eliminationOrder(self.model, orderMethod=elimOrder)[0]; self.elimOrder = elimOrder self.priority = [-1 for i in range(model.nvar)] # build priority of each var for i,x in enumerate(elimOrder): self.priority[x] = i # now build the mini-bucket data structure self.buckets = [ [] for x in range(model.nvar) ] # bucket for each var: list of minibuckets self.matches = [ [] for x in range(model.nvar) ] # matching sets for each bucket self.setWeights(weights) # TODO: duplicate to initialize (!) for f in model.factors: if len(f.vars)==0: continue; #TODO: should add anyway (somewhere) n = self.addClique(f.vars) if attach: n.theta += f.log() # include log f(x) in node's log-factor n.originals.append(f) # append (pointer to) original f for later reference # and set the weights of the buckets: self.setWeights(weights) def setWeights(self,weights): """Set the weights of the inference problem. weights = 'max+' or 0.0 => upper bound the MAP configuration 'sum+' or 1.0 => upper bound the partition function 'sum-' or -1.0 => lower bound the partition function For more general bounds, weights = list of floats (one per variable) """ if type(weights) is str: if weights == 'sum+': weights = 1.0; elif weights=='sum-': weights = -1.0; elif weights=='max+': weights = 1e-8; else: raise ValueError("Unknown weight / task type; must be max+, sum+, sum-, or float / float list") if type(weights) is float: weights = WMB.ConstantList(weights) self.weights = weights for i,xi in enumerate(self.elimOrder): # (TODO?) set mini-bucket weights uniformly ni = len(self.buckets[i]) for j in range(ni): # set uniformly self.buckets[i][j].weight = self.weights[xi]/ni if self.weights[xi] < 0 and ni > 0: # uniform for lower bound: self.buckets[i][0].weight = 1.0 - self.weights[xi]*(ni-1)/ni def __nodeID(self,node): """Helper function: get identifier (bucket & location) of a given node""" if not isinstance(node, WMB.Node): return None,None i = min([self.priority[x] for x in node.clique]) # get bucket j = self.buckets[i].index(node) return i,j def __repr__(self): to_return = "" for i,b in enumerate(self.buckets): to_return += "{:03d}: ".format(int(self.elimOrder[i])) for j,mb in enumerate(b): to_return += "{!s}^{:.2f} => {}; ".format(mb,mb.weight, self.__nodeID(mb.parent)) to_return += "\n" return to_return # def draw(self): # import pygraphviz # G = pygraphviz.AGraph() # for i,b in enumerate(self.buckets): # for j,mb in enumerate(b): # G.add_node(self.__nodeID(mb)) # for i,b in enumerate(self.buckets): # for j,mb in enumerate(b): # G.add_edge(self.__nodeID(mb),self.__nodeID(mb.parent)) # G.layout() # layout with default (neato) # G.draw('wmb.png') # draw png def draw(self): import networkx as nx pos,labels = {},{} G = nx.DiGraph() for i,b in enumerate(self.buckets): for j,mb in enumerate(b): G.add_node(str(mb)) pos[str(mb)] = (j,-i) labels[str(mb)] = str(mb) for i,b in enumerate(self.buckets): for j,mb in enumerate(b): if mb.parent is not None: G.add_edge(str(mb),str(mb.parent)) nx.draw(G, pos=pos, labels=labels) return G def addClique(self,vars): """Add a clique with scope "vars", fixing up structure to be a valid MB tree""" vs = VarSet(vars) corder = np.argsort( [self.priority[x] for x in vars] ) # get order in which eliminated corder = [vars[c] for c in corder] added = [] found = False for x in corder: if found: break #print "bucket ",x b = self.buckets[self.priority[x]] to_remove = [] for mb in b: #print " check ",mb if mb.clique < vs: to_remove.append(mb) if mb.clique >= vs: # if we found a minibucket we can just join, do: if len(added) > 0: # if we've added nodes, connect them as descendants mb.children.append( added[-1] ) # of the found node, and found node as parent of last added[-1].parent = mb found = True # now, we don't need to keep generating parents #print " Found!" added.append(mb) # not really added, but the end of the added chain break # if we didn't find any mini-buckets we can join, we need to add one: if not found: # n = WMB.Node() n.clique = VarSet(vs) n.weight = -1e-3 if self.weights[x] < 0 else 1e-3; # TODO: small non-zero weights #print "adding ",n," to ",self.priority[x] b.append(n) if len(added) > 0: # then, last added node is the child of this one n.children.append(added[-1]) added[-1].parent = n added.append(n) # put in added list vs -= [x] # next bucket is what's left after x is eliminated for mb in to_remove: for c in mb.children: c.parent = n # change children to point to new node, and n.children.extend(mb.children) # merge with current child list n.weight += mb.weight # join weights into new node if mb.parent is not None: # if mb has a parent, shift factors around to preserve bound mb.theta -= mb.msgFwd mb.parent.theta += mb.msgFwd mb.parent.children.remove(mb) n.theta += mb.theta # join log-factors into new node n.originals.extend(mb.originals) # move original factor pointers to new node b.remove(mb) #n.theta += Factor(n.clique,0.0); # need to do this at some point to ensure correct elim # TODO: fix up match structure? # done adding all required cliques; return 1st return added[0] def detachFactors(self): """Remove factor tables from their associated cliques; speeds up scope-based merging""" for b in self.buckets: for mb in b: mb.theta = Factor([],0.) def attachFactors(self): """Re-attach factor tables to their associated cliques for evaluation""" for b in self.buckets: for mb in b: mb.theta = Factor([],0.) for f in mb.originals: mb.theta += f.log() # TODO: check if already in log form??? def memory(self, bucket=None, use_backward=True): """Compute the total memory (in MB) required for this mini-bucket approximation""" mem = 0. use_buckets = self.buckets if bucket is None else [self.buckets[bucket]] for b in use_buckets: for mb in b: mem += mb.clique.nrStatesDouble() * mb.theta.table.itemsize # TODO: add forward & backward message costs here also return mem / 1024. / 1024. # TODO: convert to external function? pass variable in; check if refinement of another? # Is score correct, or inverted? check def scoreByScope(self, ibound=None, sbound=None): """Returns a scope-based scoring function for use in merge()""" def score(m1,m2): jt = m1.clique | m2.clique if ibound is not None and len(jt) > ibound: return -1 if sbound is not None and jt.nrStates() > sbound: return -1 # TODO: also disallow if not consistent with some specified scope sets? mx,mn = max([len(m1.clique),len(m2.clique)]), min([len(m1.clique),len(m2.clique)]) return 1.0/(float(mx)+float(mn)/mx) # return the scoring function return score # score = len(max)+len(min)/len(max) if union < iBound else -1 for scope def merge(self, score): from heapq import heappush,heappop try: from itertools import count tiebreak = count().__next__ # need tiebreaker value for priority queue (?) except: tiebreak = lambda: 0 for b in self.buckets: priority = [] lookup = {} # see not-too-efficient-looking remove_task https://docs.python.org/2/library/heapq.html # build scores: for i,m1 in enumerate(b): for m2 in b[i+1:]: s = score(m1,m2) if s >= 0.0: entry = [-s,tiebreak(),m1,m2] lookup[(m1,m2)] = entry heappush(priority, entry) while len(priority): entry = heappop(priority) s,_,m1,m2 = entry[0],entry[1],entry[2],entry[3] #s,m1,m2 = priority.pop() if m1 is None or m2 is None: continue if m1 not in b or m2 not in b: continue ## check for removed minibuckets? #print b #print "Merging ",m1,"+",m2 for m in b: for ma,mb in [(m1,m),(m,m1),(m2,m),(m,m2)]: s = -lookup.get( (ma,mb), [1,None,None] )[0] if s >= 0.0: entry = lookup.pop( (ma,mb) ) entry[2],entry[3] = None,None # mark as "removed" #priority.remove( [s,ma,mb] ) m12 = self.addClique( m1.clique | m2.clique ) # what if others removed? (bad check above?) #print b for m in b: if m is m12: continue s = score(m12,m) if s >= 0.0: entry = [-s,tiebreak(),m12,m] lookup[ (m12,m) ] = entry heappush(priority,entry) return None def mergeScope(iBound=0, sBound=0): for Bi in self.buckets: # TODO: sort bucket by size (or store sorted) for mb in Bi: # TODO: merge into largest clique that can fit pass #@profile def msgForward(self, stepTheta=0.5, stepWeights=0.1): """Compute a forward pass through all nodes and return the resulting bound""" bound = 0.0 for i,b in enumerate(self.buckets): X = self.model.vars[ self.elimOrder[i] ] nNodes = len(b) beliefs = [ None for mb in b ] if nNodes > 1: # if more than one mini-bucket partition, pre-compute beliefs: if stepTheta or stepWeights: for j,mb in enumerate(b): beliefs[j] = mb.theta + mb.msgBwd for c in mb.children: beliefs[j] += c.msgFwd if beliefs[j].nvar < len(mb.clique): beliefs[j] += Factor(mb.clique - beliefs[j].vars,0.0); beliefs[j] *= 1.0/mb.weight beliefs[j] -= beliefs[j].lse() # Then, update theta (parameterization) on each set in "matches" if stepTheta: # TODO: fix; delta / belief indexing issue #for match in self.matches[i]: # TODO: this is a bit dangerous if not kept up to date! if True: # TODO: simple version: just match all minibuckets match = b wTotal = sum([mb.weight for mb in match]) vAll = VarSet(match[0].clique) for mb in match[1:]: vAll &= mb.clique delta = [None for mb in match] avg_belief = Factor().log() #print "Bucket",b #print match #print vAll for j,mb in enumerate(match): delta[j] = beliefs[j].lse( mb.clique - vAll ) # TODO: belief[j] incorrect if match != b #print mb.theta.table #delta[j].table avg_belief += delta[j] * mb.weight / wTotal #print avg_belief.table #print "===" for j,mb in enumerate(match): delta[j] = avg_belief - delta[j] beliefs[j] += delta[j] * stepTheta beliefs[j] -= beliefs[j].lse() mb.theta += delta[j] * mb.weight * stepTheta #print mb.theta.table # Last, update weights if desired: if stepWeights: isLower=(self.weights[i] == -1) # TODO: a bit difficult; needs to know weight constraints (+1/0/-1, etc.) H = [0.0 for mb in b] Havg = 0.0 totalWeight = 0.0 positive_node = None for j,mb in enumerate(b): H[j] = - (beliefs[j].exp() * (beliefs[j] - beliefs[j].lse([X]))).sum() if not isLower: Havg += mb.weight * H[j] elif mb.weight > 0: Havg = H[j] positive_node = mb for j,mb in enumerate(b): if not isLower: mb.weight *= np.exp( -stepWeights * mb.weight * (H[j]-Havg) ) totalWeight += mb.weight elif mb.weight < 0: mb.weight *= np.exp( stepWeights * mb.weight * (H[j]-Havg) ) totalWeight += mb.weight if not isLower: for j,mb in enumerate(b): mb.weight /= totalWeight else: positive_node.weight = 1.0 - totalWeight # now, compute the forward messages: for j,mb in enumerate(b): beliefs[j] = mb.theta.copy() # Alternative? do by re-subtracting msgBwd? for c in mb.children: beliefs[j] += c.msgFwd if beliefs[j].nvar < len(mb.clique): beliefs[j] += Factor(mb.clique - beliefs[j].vars,0.0); mb.msgFwd = beliefs[j].lsePower([X], 1.0/mb.weight) beliefs[j] = Factor().log() # clear reference & memory? if mb.parent is None: # add roots to overall bound bound += mb.msgFwd return float(bound) #@profile def msgBackward(self, stepTheta=0.0, stepWeights=0.0, beliefs=None): """Compute a backward pass through all nodes If beliefs is a list of cliques, returns the estimated beliefs on those cliques """ to_save = [[] for i in range(len(self.buckets))] if beliefs is None: return_beliefs = {} else: return_beliefs = { clique: None for clique in beliefs } # map cliques to buckets for checking for clique in beliefs: to_save[ min([self.priority[x] for x in clique]) ].append(VarSet(clique)) for i,b in reverse_enumerate(self.buckets): #reversed(list(enumerate(self.buckets))): X = self.model.vars[ self.elimOrder[i] ] nNodes = len(b) beliefs_b = [ None for mb in b ] if nNodes > 1: # if more than one mini-bucket partition, pre-compute beliefs: if stepTheta or stepWeights: for j,mb in enumerate(b): beliefs_b[j] = mb.theta + mb.msgBwd for c in mb.children: beliefs_b[j] += c.msgFwd beliefs_b[j] *= 1.0/mb.weight beliefs_b[j] -= bel[j].lse() # Then, update theta (parameterization) on each set in "matches" if stepTheta: pass if stepWeights: pass # now, compute the backward messages: for j,mb in enumerate(b): beliefs_b[j] = mb.theta + mb.msgBwd for c in mb.children: beliefs_b[j] += c.msgFwd #beliefs_b[j] -= beliefs_b[j].lse() #if mb.weight > 0: beliefs_b[j] -= beliefs_b[j].max() #else: # beliefs_b[j] -= beliefs_b[j].min() # invert if negative? TODO? beliefs_b[j] *= 1.0 / mb.weight for c in mb.children: c.msgBwd = beliefs_b[j].lse( mb.clique - c.clique )*c.weight - c.msgFwd #c.msgBwd -= c.msgBwd.max() # TODO normalize for convenience? #c.msgBwd = (beliefs_b[j]*(1.0/mb.weight)).lse( mb.clique - c.clique )*c.weight - c.msgFwd # TODO: compute marginal of any to_save[i] cliques that fit & not done for c in to_save[i]: if c <= mb.clique and return_beliefs[c] is None: return_beliefs[c] = beliefs_b[j].lse( mb.clique - c ) beliefs_b[j] = Factor().log() # clear out belief for c,f in return_beliefs.items(): f -= f.lse() f.expIP() # exponentiate and normalize beliefs before returning #f /= f.sum() return return_beliefs def reparameterize(self): for i,b in enumerate(self.buckets): for j,mb in enumerate(b): if mb.parent is not None: mb.theta -= mb.msgFwd mb.parent.theta += mb.msgFwd mb.msgFwd *= 0.0 def gdd_update(self,maxstep=1.0,threshold=0.01): def wt_elim(f,w,pri): elim_ord = np.argsort( [pri[x] for x in f.vars] ) tmp = f.copy(); for i in elim_ord: tmp = tmp.lsePower([f.v[i]],1.0/w[i]) return tmp def calc_bound( thetas, weights, pri): return sum([wt_elim(th,wt,pri) for th,wt in zip(thetas,weights)]) def mu(th,w,pri): elim_ord = np.argsort( [pri[x] for x in th.vars] ) lnZ0 = th lnmu = 0.0 for i in elim_ord: lnZ1 = lnZ0.lsePower([th.v[i]],1.0/w[i]) lnmu = lnmu + (lnZ0 - lnZ1)*(1.0/w[i]) lnZ0 = lnZ1 return lnmu.expIP() def armijo(thetas,weights,pri,steps,threshold=1e-4,direction=+1): f1 = calc_bound(thetas,weights,pri) match = reduce(lambda a,b: a&b, [th.vars for th in thetas], thetas[0].vars) for s in range(steps): mus = [mu(th,wt,pri).marginal(match) for th,wt in zip(thetas,weights)] dL = [mus[0]-mus[i] for i in range(len(mus))] dL[0] = -sum(dL) gradmag = sum([ df.abs().sum() for df in dL ]) gradmax = max([ df.abs().max() for df in dL ]) gradnorm = sum([ (df**2.0).sum() for df in dL ]) if gradmax < 1e-8: return # "optTol" : gradient small => local optimum (use max(abs(g))?) stepsize = min(1.0, 1.0/gradmag) if s==0 else min(1.0, direction*(f0-f1)/gradmag) stepsize = stepsize if stepsize > 0 else 1.0 f0 = f1; # update "old" objective value for j in range(10): newthetas = [th+(direction*stepsize*df) for th,df in zip(thetas,dL)] # redo; modify df directly f1 = calc_bound(newthetas,weights,pri) #print " ",f0," => ",f1, " (",f0-f1,' ~ ',stepsize*threshold*gradnorm,")" if (f0 - f1)*direction > stepsize*threshold*gradnorm: for th,nth in zip(thetas,newthetas): th.t[:]=nth.t # rewrite tables break; else: stepsize *= 0.5 if stepsize*gradmax < 1e-8: return # < progTol => no progress possible #def armijo(thetas,weights,pri,maxstep,threshold,direction): # f0 = calc_bound(thetas,weights,pri) # #print [th for th in thetas], f0 # match = reduce(lambda a,b: a&b, [th.vars for th in thetas], thetas[0].vars) # mus = [mu(th,wt,pri).marginal(match) for th,wt in zip(thetas,weights)] # dL = [mus[0]-mus[i] for i in range(len(mus))] # dL[0] = -sum(dL) # gradnorm = sum([ (df**2.0).sum() for df in dL ]) # for j in range(10): # newthetas = [th+(direction*maxstep*df) for th,df in zip(thetas,dL)] # redo; modify df directly # f1 = calc_bound(newthetas,weights,pri) # #print " ",f0," => ",f1, " (",f0-f1,' ~ ',maxstep*threshold*gradnorm,")" # if (f0 - f1)*direction > maxstep*threshold*gradnorm: # for th,nth in zip(thetas,newthetas): th.t[:]=nth.t # rewrite tables # return # else: # maxstep *= 0.5 # return # give up? ###### bound = 0.0 for i,b in enumerate(self.buckets): for j,mb in enumerate(b): # make sure has the correct scope (TODO: required?) if mb.theta.nvar < len(mb.clique): mb.theta += Factor(mb.clique - mb.theta.vars,0.0) for i,b in enumerate(self.buckets): X = self.model.vars[ self.elimOrder[i] ] nNodes = len(b) thetas = [mb.theta for mb in b] eps = 1e-3 * self.weights[i] # TODO: doesn't work with mixed weight signs weights = [ [eps for x in mb.theta.vars] for mb in b ] for j,mb in enumerate(b): weights[j][mb.theta.vars.index(X)] = mb.weight armijo(thetas,weights,self.priority,5,threshold,np.sign(eps)) for j,mb in enumerate(b): if mb.parent is not None: thetas2 = [mb.theta, mb.parent.theta] pi,pj = self.__nodeID(mb.parent) weights2 = [ weights[j], [1e-3*self.weights[pi] for x in mb.parent.theta.vars] ] weights2[1][mb.parent.theta.vars.index(self.model.vars[self.elimOrder[pi]])] = mb.parent.weight armijo(thetas2,weights2,self.priority,5,threshold,np.sign(eps)) # TODO: mixed? bound += calc_bound([mb.theta],[weights[j]],self.priority) return float(bound) # TODO: rename greedy-assign? Add optional partial config? def assignBackward(self): """Perform a backward pass through all nodes, assigning the most likely value""" # TODO check & test ; check for zero weights? (don't care?) x = {} for i,b in reverse_enumerate(self.buckets): #reversed(list(enumerate(self.buckets))): X = self.model.vars[ self.elimOrder[i] ] bel = Factor([X],0.0) for j,mb in enumerate(b): bel += mb.theta.condition(x) for c in mb.children: bel += c.msgFwd.condition(x) x[X] = bel.argmax()[0] return x def initHeuristic(self): """TODO: make this function unnecessary; make work for and/or pseudotree (currently or only)""" self.atElim = [ [] for b in self.buckets ] for i,b in enumerate(self.buckets): for j,mb in enumerate(b): if mb.parent is not None: pi,pj = self.__nodeID(mb.parent) for ii in range(i+1,pi+1): self.atElim[ii].append(mb); def heuristic(self,X,config): """Evaluate the bound given partial assignment 'config' (including variable X and all later)""" return sum([mb.msgFwd.valueMap(config) for mb in self.atElim[X]]) #raise NotImplementedError # TODO: fix # need desired pseudo-tree & track messages passing between earlier & later buckets def resolved(self,X,config): """Evaluate the resolved value of a partial assignment 'config' (including variable X and all later)""" return sum([mb.theta.valueMap(config) for b in self.buckets[self.priority[X]:] for mb in b]) def newly_resolved(self,X,config): """Evaluate the change in resolved value of a partial assignment 'config' after clamping X""" return sum([mb.theta.valueMap(config) for mb in self.buckets[self.priority[X]]]) def sample(self): """Draw a sample from the WMB-IS mixture proposal (assumes sum+ task)""" # TODO: add argument "x" for partial conditioning? (return of configuration? or return tuple?) # TODO check for positive, unit sum weights? (don't care?) x = {} logQx = 0.0 for i,b in reverse_enumerate(self.buckets): #reversed(list(enumerate(self.buckets))): X = self.model.vars[ self.elimOrder[i] ] qi = Factor([X],0.0) for j,mb in enumerate(b): qij = mb.theta.condition(x) qij -= mb.msgFwd if mb.parent is None else mb.msgFwd.condition(x) for c in mb.children: qij += c.msgFwd.condition(x) qij -= qij.max() qij *= 1.0 / mb.weight qij.expIP() qij *= mb.weight qi += qij qi /= qi.sum() # normalize (should be already) xval = qi.sample(Z=1.0)[0] x[X] = xval logQx += np.log( qi[xval] ) return logQx,x # functions: # addClique(vs) : add clique etc and [fix up structure beneath] # => build = add each clique in turn => valid structure? # # (0) basic merge op: join cliques & theta; fix parent; fix merges; fix msgFwd # (1) "" + fix forward also # (1) merge by score (score f'n: upper bd, scope, etc.) # # msgFwd(...) # # msgBwd(...) # # reparameterize()? -> write into model? # # heuristic? # # bound / value # # __str__ : wmbPrint # # sample() : draw from mixture proposal (if positive weights?) # # class JTree(WMB): """Junction tree object for exact inference""" def __init__(self, model, elimOrder=None, weights=1.0): super(JTree,self).__init__(model,elimOrder=elimOrder,weights=weights) self.merge(lambda a,b: 1.0) # merge until exact self.forwardDone = False self.setWeights(weights) def msgForward(self): return_value = super(JTree,self).msgForward() self.forwardDone = True return return_value def beliefs(self, beliefs=None): if beliefs is None: return {} if not self.forwardDone: self.msgForward() # or raise valueerror? return super(JTree,self).msgBackward(beliefs=beliefs) def argmax(self): if not self.forwardDone: self.msgForward() # or raise valueerror? return super(JTree,self).assignBackward() def sample(self): if not self.forwardDone: self.msgForward() # or raise valueerror? return super(JTree,self).sample() # Smartly accommodate changes to the model?
py
b407072ad1c40db98e03548b5764d635b6d6b555
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for LossScaleOptimizer.""" import tensorflow.compat.v2 as tf import os from absl.testing import parameterized import numpy as np from tensorflow.python.framework import test_util from keras import combinations from keras import optimizers from keras.mixed_precision import loss_scale_optimizer from keras.mixed_precision import test_util as mp_test_util from keras.optimizer_v2 import adam from keras.optimizer_v2 import gradient_descent from keras.optimizer_v2 import optimizer_v2 # Disable not-callable lint error, as the linter is unable to detect that # LossScale instances are callable. # pylint: disable=not-callable # If called outside any strategy.scope() calls, this will return the default # strategy. default_strategy_fn = tf.distribute.get_strategy def create_mirrored_strategy(): if tf.config.list_logical_devices('GPU'): return tf.distribute.MirroredStrategy(['cpu:0', 'gpu:0']) else: return tf.distribute.MirroredStrategy(['cpu:0']) TESTCASES = ({ 'testcase_name': 'Base', 'strategy_fn': default_strategy_fn }, { 'testcase_name': 'Distribute', 'strategy_fn': create_mirrored_strategy }) @test_util.with_control_flow_v2 @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class LossScaleOptimizerTest(tf.test.TestCase, parameterized.TestCase): def _run_if_in_graph_mode(self, val): # Running only in graph mode is useful, because optimizers sometimes return # a value that, in Graph mode, is runnable with self.evaluate. But in Eager # mode, the optimizer already does the computations and the return value # cannot be run. if not tf.executing_eagerly(): self.evaluate(val) def _run_fn_with_grad_check(self, strategy, var, opt, expected_grad): grad_check_fn = mp_test_util.create_identity_with_grad_check_fn( expected_grad) loss = lambda: grad_check_fn(var) / strategy.num_replicas_in_sync return lambda: opt.minimize(loss, var_list=[var]) @parameterized.named_parameters(*TESTCASES) def testFixedLossScaleAppliedToLossWithMinimize(self, strategy_fn): with strategy_fn().scope() as strategy: var = tf.Variable([5.0]) opt = gradient_descent.SGD(2.0) loss_scale = 10. opt = loss_scale_optimizer.LossScaleOptimizer(opt, dynamic=False, initial_scale=loss_scale) self.assertEqual(self.evaluate(opt.loss_scale), loss_scale) self.assertIsInstance(opt.loss_scale, tf.Tensor) # We need num_replicas_in_sync to divide loss_scale, otherwise loss_scale # / strategy.num_replicas_in_sync will not be exact, which could lead to # assertion failures due to rounding issues. self.assertEqual(loss_scale % strategy.num_replicas_in_sync, 0) run_fn = self._run_fn_with_grad_check( strategy, var, opt, loss_scale / strategy.num_replicas_in_sync) run_op = strategy.experimental_run(run_fn) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) # The loss is the identity of the variable. Therefore the gradient is 1, # and so the variable will be init_val - grad * lr == 5 - 1 * 2 == 3 self.assertAllClose([3.], self.evaluate(var)) def testFixedLossScaleAppliedToLossWithGetGradients(self): with tf.Graph().as_default(): var = tf.Variable([2.0]) opt = gradient_descent.SGD(1.0) loss_scale = 10. opt = loss_scale_optimizer.LossScaleOptimizer(opt, dynamic=False, initial_scale=loss_scale) grad_check_fn = mp_test_util.create_identity_with_grad_check_fn( loss_scale) loss = grad_check_fn(var) run_op = opt.get_gradients(loss, [var]) self.evaluate(tf.compat.v1.global_variables_initializer()) # This will cause an assertion to run, as # mp_test_util.create_identity_with_grad_check_fn added an assertion op. self.evaluate(run_op) def testDynamicAttrsWithFixedLossScale(self): opt = gradient_descent.SGD() opt = loss_scale_optimizer.LossScaleOptimizer(opt, dynamic=False, initial_scale=2.) self.assertFalse(opt.dynamic) self.assertIsNone(opt.dynamic_counter) self.assertIsNone(opt.dynamic_growth_steps) def testGetScaledLoss(self): opt = gradient_descent.SGD(2.0) opt = loss_scale_optimizer.LossScaleOptimizer(opt, dynamic=False, initial_scale=2.) loss = tf.convert_to_tensor(5.) self.assertEqual(10., self.evaluate(opt.get_scaled_loss(loss))) self.assertEqual(10., self.evaluate(opt.get_scaled_loss(lambda: loss)())) loss = tf.convert_to_tensor(5., dtype='float16') self.assertEqual(10., self.evaluate(opt.get_scaled_loss(loss))) self.assertEqual(10., self.evaluate(opt.get_scaled_loss(lambda: loss)())) def testGetUnscaledGradients(self): opt = gradient_descent.SGD(2.0) opt = loss_scale_optimizer.LossScaleOptimizer(opt, dynamic=False, initial_scale=2) scaled_grads = [ tf.convert_to_tensor(3.), None, tf.convert_to_tensor(-4., dtype='float16') ] grads = opt.get_unscaled_gradients(scaled_grads) grads = [self.evaluate(g) if g is not None else g for g in grads] self.assertEqual([1.5, None, -2.], grads) def testGetUnscaledSparseGradients(self): opt = gradient_descent.SGD(2.0) opt = loss_scale_optimizer.LossScaleOptimizer(opt, dynamic=False, initial_scale=2) sparse_scaled_grad = tf.IndexedSlices( tf.convert_to_tensor([[4., 2.], [8., 5.]]), tf.convert_to_tensor([1, 3], dtype='int32'), dense_shape=tf.convert_to_tensor([5, 2], dtype='int32')) sparse_grad = opt.get_unscaled_gradients([sparse_scaled_grad])[0] self.assertIsInstance(sparse_grad, tf.IndexedSlices) self.assertAllEqual([[2., 1.], [4., 2.5]], self.evaluate(sparse_grad.values)) @parameterized.named_parameters(*TESTCASES) def testDynamicLossScale(self, strategy_fn): strategy = strategy_fn() learning_rate = 2. expected_gradient = tf.Variable(learning_rate / strategy.num_replicas_in_sync) with strategy.scope(): var = tf.Variable([5.0]) opt = gradient_descent.SGD(learning_rate) opt = loss_scale_optimizer.LossScaleOptimizer(opt, initial_scale=2, dynamic_growth_steps=1) self.assertEqual(opt.initial_scale, 2.) self.assertIsInstance(opt.initial_scale, float) self.assertEqual(opt.dynamic_growth_steps, 1) self.assertIsInstance(opt.dynamic_growth_steps, int) self.assertEqual(opt.initial_scale % strategy.num_replicas_in_sync, 0) run_fn = self._run_fn_with_grad_check(strategy, var, opt, expected_gradient) run_op = strategy.experimental_run(run_fn) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) # The loss is the identity of the variable. Therefore the gradient is 1, # and so the variable will be init_val - grad * lr == 5 - 1 * 2 == 3 self.assertAllClose([3.], self.evaluate(var)) # Loss scale will be double, so the expected gradient is also doubled. self.evaluate(expected_gradient.assign( 2 * learning_rate / strategy.num_replicas_in_sync)) run_op = strategy.experimental_run(run_fn) self._run_if_in_graph_mode(run_op) # As before, the 2 is subtracted from the variable, making it's new value # 1. self.assertAllClose([1.], self.evaluate(var)) def testDynamicLossScaleDefaultValues(self): opt = gradient_descent.SGD() opt = loss_scale_optimizer.LossScaleOptimizer(opt) self.assertEqual(opt.initial_scale, 2 ** 15) self.assertEqual(opt.dynamic_growth_steps, 2000) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertEqual(self.evaluate(opt.loss_scale), 2 ** 15) # pylint: disable=cell-var-from-loop @parameterized.named_parameters(*TESTCASES) def testClipping(self, strategy_fn): strategy = strategy_fn() learning_rate = 2. for clip_type in ('clipnorm', 'global_clipnorm', 'clipvalue'): with strategy.scope(), self.subTest(clip_type=clip_type): var = tf.Variable([5.0]) opt = gradient_descent.SGD(learning_rate, **{clip_type: 2.0}) opt = loss_scale_optimizer.LossScaleOptimizer(opt, initial_scale=2, dynamic_growth_steps=1) self.assertEqual(getattr(opt, clip_type), 2.0) self.assertEqual(opt.initial_scale % strategy.num_replicas_in_sync, 0) loss = lambda: var * 4 / strategy.num_replicas_in_sync run_fn = lambda: opt.minimize(loss, var_list=[var]) # Test running with clipped gradients run_op = strategy.experimental_run(run_fn) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) # The gradient is 4 but is clipped to 2, so the variable will be # init_val - clipped_grad * lr == 5 - 2 * 2 == 1 self.assertAllClose([1.], self.evaluate(var)) self.assertEqual(self.evaluate(opt.loss_scale), 4) # Test changing the clip amount and running again setattr(opt, clip_type, 3.0) run_op = strategy.experimental_run(run_fn) self._run_if_in_graph_mode(run_op) # The gradient is 4 but is clipped to 3, so the variable will be # prev_var - clipped_grad * lr == 1 - 3 * 2 == -5 self.assertAllClose([-5.], self.evaluate(var)) self.assertEqual(self.evaluate(opt.loss_scale), 8) # Test Inf gradients are still skipped instead of being clipped loss = lambda: var * float('Inf') run_fn = lambda: opt.minimize(loss, var_list=[var]) run_op = strategy.experimental_run(run_fn) self._run_if_in_graph_mode(run_op) self.assertAllClose([-5.], self.evaluate(var)) # Var does not change self.assertEqual(self.evaluate(opt.loss_scale), 4) # pylint: enable=cell-var-from-loop @parameterized.named_parameters(*TESTCASES) def testDynamicUpdate(self, strategy_fn): with strategy_fn().scope() as strategy: var = tf.Variable([1.0, 2.0]) opt = gradient_descent.SGD(1.0) opt = loss_scale_optimizer.LossScaleOptimizer(opt, initial_scale=2, dynamic_growth_steps=1) # Test optimizer with finite gradients loss = lambda: var * 2.0 / strategy.num_replicas_in_sync run_fn = lambda: opt.minimize(loss, var_list=[var]) run_op = strategy.experimental_run(run_fn) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) # Gradient is 2, so variable will have 2 subtracted from it self.assertAllClose([-1.0, 0.0], self.evaluate(var)) # Loss scale has doubled from 2 to 4 self.assertEqual(4., self.evaluate(opt.loss_scale)) # Test optimizer with NaN gradients loss = lambda: var * float('NaN') run_fn = lambda: opt.minimize(loss, var_list=[var]) run_op = strategy.experimental_run(run_fn) self._run_if_in_graph_mode(run_op) # Variable should not change from before, due to NaN gradients. self.assertAllClose(self.evaluate(var), [-1.0, 0.0]) # Loss scale should half due to NaN gradients. self.assertEqual(2., self.evaluate(opt.loss_scale)) @parameterized.named_parameters(*TESTCASES) def testDynamicLossScaleWithFloat16Loss(self, strategy_fn): strategy = strategy_fn() learning_rate = 2. with strategy.scope(): var = tf.Variable([5.0]) opt = gradient_descent.SGD(learning_rate) opt = loss_scale_optimizer.LossScaleOptimizer(opt, initial_scale=2, dynamic_growth_steps=1) def loss(): return tf.cast(var / strategy.num_replicas_in_sync, 'float16') run_fn = lambda: opt.minimize(loss, var_list=[var]) run_op = strategy.experimental_run(run_fn) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) # The loss is the identity of the variable. Therefore the gradient is 1, # and so the variable will be init_val - grad * lr == 5 - 1 * 2 == 3 self.assertAllClose([3.], self.evaluate(var)) def testNanOnOneReplicaOnly(self): if not tf.test.is_gpu_available(): self.skipTest('Test requires GPU') if (not tf.executing_eagerly() and not tf.compat.v1.control_flow_v2_enabled()): self.skipTest('b/181283011: GradientTape does not work properly with ' 'V1 control flow, and opt.minimize uses GradientTape') with create_mirrored_strategy().scope() as strategy: var = tf.Variable([1.0, 2.0]) opt = gradient_descent.SGD(1.0) opt = loss_scale_optimizer.LossScaleOptimizer(opt, initial_scale=2, dynamic_growth_steps=2) def loss(): rep_id = (tf.distribute.get_replica_context() .replica_id_in_sync_group) # The last element of last replica's gradient is NaN. return tf.compat.v1.cond( tf.constant(rep_id == 0), lambda: var * 2., lambda: var * tf.constant([1., float('NaN')])) run_fn = lambda: opt.minimize(loss, var_list=[var]) run_op = strategy.experimental_run(run_fn) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) # Variable should not change from before, due to NaN gradients. self.assertAllClose(self.evaluate(var), [1.0, 2.0]) # Loss scale should half due to NaN gradients. self.assertEqual(1., self.evaluate(opt.loss_scale)) def testCustomAggregater(self): def gradient_aggregator(grads_and_vars): # Simulate an all-reduce where a replica has a NaN gradient by setting # the last gradient to NaN grads_and_vars = list(grads_and_vars) last_grad, last_var = grads_and_vars[-1] grads_and_vars[-1] = (last_grad * float('NaN'), last_var) return grads_and_vars var = tf.Variable([1.0, 2.0]) opt = gradient_descent.SGD(1.0, gradient_aggregator=gradient_aggregator) opt = loss_scale_optimizer.LossScaleOptimizer(opt, initial_scale=2, dynamic_growth_steps=2) loss = lambda: var * 2 run_op = opt.minimize(loss, var_list=[var]) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) # Variable should not change from before, due to NaN gradients. self.assertAllClose(self.evaluate(var), [1.0, 2.0]) # Loss scale should half due to NaN gradients. self.assertEqual(1., self.evaluate(opt.loss_scale)) @parameterized.named_parameters(*TESTCASES) def testDynamicLossScaleWithSlots(self, strategy_fn): strategy_obj = strategy_fn() if (isinstance(strategy_obj, tf.distribute.MirroredStrategy) and tf.compat.v1.control_flow_v2_enabled() and not tf.executing_eagerly()): self.skipTest('b/138667997') with strategy_obj.scope() as strategy: var = tf.Variable([1.0, 2.0]) # An SGD optimizer with momentum has slot variables. opt = gradient_descent.SGD(1.0, momentum=1.) initial_scale = 2. opt = loss_scale_optimizer.LossScaleOptimizer( opt, initial_scale=initial_scale, dynamic_growth_steps=1) loss = lambda: var / strategy.num_replicas_in_sync run_fn = lambda: opt.minimize(loss, var_list=[var]) run_op = strategy.experimental_run(run_fn) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) # The momentum accumulator starts at 0 and the gradient is 1. The # accumulator is incremented by the gradient, so it is now 1. Then the # variable is subtracted by the accumulator, so the variable is subtracted # by 1. self.assertAllClose([0.0, 1.0], self.evaluate(var)) self.assertEqual(self.evaluate(opt.loss_scale), initial_scale * 2) run_op = strategy.experimental_run(run_fn) self._run_if_in_graph_mode(run_op) # The momentum accumulator was 1 before this step and the gradient is 1. # The accumulator is incremented by the gradient, so it is now 2. Then the # variable is subtracted by the accumulator, so the variable is subtracted # by 2. self.assertAllClose([-2., -1.], self.evaluate(var)) self.assertEqual(self.evaluate(opt.loss_scale), initial_scale * 4) self.assertEqual(opt.get_slot_names(), ['momentum']) def testIterations(self): opt = gradient_descent.SGD(2.0) lso = loss_scale_optimizer.LossScaleOptimizer(opt, dynamic=False, initial_scale=10.) lso.iterations = 7 self.assertEqual(lso.iterations, 7) self.assertEqual(opt.iterations, 7) @parameterized.named_parameters(*TESTCASES) def testIterationsIncremented(self, strategy_fn): with strategy_fn().scope() as strategy: # Test iterations is incremented in opt.minimize. opt = gradient_descent.SGD(1.0) opt = loss_scale_optimizer.LossScaleOptimizer(opt) var = tf.Variable([5.0]) loss = lambda: var * 2.0 / strategy.num_replicas_in_sync run_fn = lambda: opt.minimize(loss, [var]) run_op = strategy.experimental_run(run_fn) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) self.assertEqual(self.evaluate(var), 3.0) # Grad is 2, so var is 5 - 2 self.assertEqual(self.evaluate(opt.iterations), 1) # Test iterations is incremented in opt.minimize even if gradients aren't # applied to variables due to NaN gradients. loss = lambda: var * float('NaN') run_fn = lambda: opt.minimize(loss, [var]) run_op = strategy.experimental_run(run_fn) self._run_if_in_graph_mode(run_op) self.assertEqual(self.evaluate(var), 3.0) self.assertEqual(self.evaluate(opt.iterations), 2) def testWeightMethods(self): with self.test_session(): var = tf.Variable([1.0]) opt = gradient_descent.SGD(1.0) opt = loss_scale_optimizer.LossScaleOptimizer(opt, initial_scale=2., dynamic_growth_steps=1) run_op = opt.minimize(lambda: var * 2, [var]) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) self.assertLen(opt.weights, 1) # The 'iterations' weight self.assertEqual(self.evaluate(opt.weights[0]), 1) self.assertEqual(opt.get_weights()[0], 1) self.assertEqual(self.evaluate(opt.variables()[0]), 1) opt.set_weights([np.array(2.)]) self.assertEqual(self.evaluate(opt.variables()[0]), 2) def testHyperParametersExposed(self): with self.cached_session(): opt = adam.Adam(learning_rate=1.0, beta_1=0.5, beta_2=0.9) lso = loss_scale_optimizer.LossScaleOptimizer(opt) # Force hyperparameters to be created opt.lr # pylint: disable=pointless-statement self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertEqual(self.evaluate(lso.beta_1), 0.5) self.assertIsInstance(lso.beta_1, tf.Variable) self.assertEqual(self.evaluate(lso.lr), 1.0) self.assertIs(lso.lr, opt.lr) self.assertIs(lso.lr, lso.learning_rate) lso.beta_1 = 0.25 self.assertEqual(self.evaluate(lso.beta_1), 0.25) self.assertEqual(self.evaluate(opt.beta_1), 0.25) self.assertIs(lso.beta_1, opt.beta_1) opt.beta_1 = 0.75 self.assertEqual(self.evaluate(lso.beta_1), 0.75) self.assertEqual(self.evaluate(opt.beta_1), 0.75) self.assertIs(lso.beta_1, opt.beta_1) lso.lr = 2.0 self.assertEqual(self.evaluate(lso.lr), 2.0) self.assertEqual(self.evaluate(lso.learning_rate), 2.0) self.assertEqual(self.evaluate(opt.lr), 2.0) self.assertEqual(self.evaluate(opt.learning_rate), 2.0) self.assertIs(lso.lr, opt.lr) # Test setting attribute that is both attribute on LossScaleOptimizer and # hyperparameter on wrapped optimizer. class MyOpt(gradient_descent.SGD): def __init__(self): super().__init__() self._set_hyper('loss_scale', 123.) opt = MyOpt() lso = loss_scale_optimizer.LossScaleOptimizer(opt) with self.assertRaises(AttributeError): lso.loss_scale = 2. def testArbitraryAttributesNotExposed(self): opt = gradient_descent.SGD() lso = loss_scale_optimizer.LossScaleOptimizer(opt) self.assertFalse(opt.nesterov) with self.assertRaisesRegex( AttributeError, "'LossScaleOptimizer' object has no attribute 'nesterov'"): lso.nesterov # pylint: disable=pointless-statement lso.nesterov = True self.assertTrue(lso.nesterov) self.assertFalse(opt.nesterov) def testDir(self): lso = loss_scale_optimizer.LossScaleOptimizer(gradient_descent.SGD()) dir_result = dir(lso) self.assertIn('learning_rate', dir_result) # Hyperparameter self.assertIn('lr', dir_result) # Hyperparameter self.assertIn('minimize', dir_result) # Attribute self.assertIn('loss_scale', dir_result) # Attribute self.assertNotIn('nesterov', dir_result) # Attribute on inner optimizer self.assertIn('nesterov', dir(lso.inner_optimizer)) def testApplyGradientsGetsUnwrappedTensors(self): # Tests that gradients passed to apply_gradients are not wrapped in a # DistributionStrategy wrapper, such as PerReplica, but instead are raw # Tensors. Optimizer subclasses that override apply_gradients() expect raw # Tensors, even though the base Optimizer can handle PerReplica gradients. outer_self = self class MyOptimizer(gradient_descent.SGD): def apply_gradients(self, grads_and_vars, name=None, experimental_aggregate_gradients=True): for grad, _ in grads_and_vars: outer_self.assertIsInstance(grad, tf.Tensor) return super(MyOptimizer, self).apply_gradients(grads_and_vars, name, experimental_aggregate_gradients) with create_mirrored_strategy().scope() as strategy: var = tf.Variable([5.0]) opt = MyOptimizer(learning_rate=1.0) opt = loss_scale_optimizer.LossScaleOptimizer(opt, dynamic=False, initial_scale=1) loss = lambda: var * 2.0 run_fn = lambda: opt.minimize(loss, [var]) strategy.experimental_run(run_fn) @parameterized.named_parameters(*TESTCASES) def testV1Optimizer(self, strategy_fn): strategy = strategy_fn() learning_rate = 2. with strategy.scope(): # Test FixedLossScale var = tf.Variable([5.0]) opt = gradient_descent.SGD(learning_rate) opt = loss_scale_optimizer.LossScaleOptimizerV1(opt, loss_scale=2) self.assertIsInstance(opt.loss_scale, tf.Tensor) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertEqual(self.evaluate(opt.loss_scale), 2) self.assertEqual(opt.initial_scale, 2) self.assertIsNone(opt.dynamic_growth_steps) run_fn = self._run_fn_with_grad_check( strategy, var, opt, 2 / strategy.num_replicas_in_sync) run_op = strategy.experimental_run(run_fn) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) # The loss is the identity of the variable. Therefore the gradient is 1, # and so the variable will be init_val - grad * lr == 5 - 1 * 2 == 3 self.assertAllClose([3.], self.evaluate(var)) # Test DynamicLossScale var = tf.Variable([5.0]) opt = gradient_descent.SGD(learning_rate) opt = loss_scale_optimizer.LossScaleOptimizerV1(opt, 'dynamic') self.assertEqual(opt.initial_scale, 2 ** 15) self.assertEqual(opt.dynamic_growth_steps, 2000) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertEqual(self.evaluate(opt.loss_scale), 2 ** 15) for s in strategy.experimental_local_results(opt.dynamic_counter): self.assertEqual(self.evaluate(s), 0) loss = lambda: var * float('NaN') run_fn = lambda: opt.minimize(loss, var_list=[var]) run_op = strategy.experimental_run(run_fn) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) self.assertAllClose([5.], self.evaluate(var)) self.assertEqual(self.evaluate(opt.loss_scale), 2 ** 14) for s in strategy.experimental_local_results(opt.dynamic_counter): self.assertEqual(self.evaluate(s), 0) @parameterized.named_parameters(*TESTCASES) def testPassingV1LossScale(self, strategy_fn): strategy = strategy_fn() learning_rate = 2. with strategy.scope(): # Test FixedLossScale var = tf.Variable([5.0]) opt = gradient_descent.SGD(learning_rate) loss_scale = tf.mixed_precision.experimental.FixedLossScale(2.) opt = loss_scale_optimizer.LossScaleOptimizerV1(opt, loss_scale) self.assertIsInstance(opt.loss_scale, tf.Tensor) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertEqual(self.evaluate(opt.loss_scale), 2) run_fn = self._run_fn_with_grad_check( strategy, var, opt, 2 / strategy.num_replicas_in_sync) run_op = strategy.experimental_run(run_fn) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) # The loss is the identity of the variable. Therefore the gradient is 1, # and so the variable will be init_val - grad * lr == 5 - 1 * 2 == 3 self.assertAllClose([3.], self.evaluate(var)) # Test DynamicLossScale var = tf.Variable([5.0]) opt = gradient_descent.SGD(learning_rate) loss_scale = tf.mixed_precision.experimental.DynamicLossScale( initial_loss_scale=4, increment_period=1, multiplier=2) loss_scale._current_loss_scale.assign(2) opt = loss_scale_optimizer.LossScaleOptimizerV1(opt, loss_scale) self.assertEqual(opt.initial_scale, 4) self.assertEqual(opt.dynamic_growth_steps, 1) self.evaluate(tf.compat.v1.global_variables_initializer()) # Current loss scale is not copied so loss scale is reinitialized to 4 self.assertEqual(self.evaluate(opt.loss_scale), 4) for s in strategy.experimental_local_results(opt.dynamic_counter): self.assertEqual(self.evaluate(s), 0) run_fn = self._run_fn_with_grad_check( strategy, var, opt, 4 / strategy.num_replicas_in_sync) run_op = strategy.experimental_run(run_fn) self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) self.assertAllClose([3.], self.evaluate(var)) def testPassingV1LossScaleErrors(self): opt = gradient_descent.SGD() loss_scale = tf.mixed_precision.experimental.DynamicLossScale(multiplier=4) with self.assertRaisesRegex( ValueError, 'When passing a DynamicLossScale to "loss_scale", ' 'DynamicLossScale.multiplier must be 2. Got: ' 'DynamicLossScale'): loss_scale_optimizer.LossScaleOptimizerV1(opt, loss_scale) class MyLossScale(tf.mixed_precision.experimental.LossScale): def __call__(self): return 1. def update(self, grads): return None, True def get_config(self): return {} with self.assertRaisesRegex( TypeError, 'Passing a LossScale that is not a FixedLossScale or a ' 'DynamicLossScale is no longer supported. Got:'): loss_scale_optimizer.LossScaleOptimizerV1(opt, MyLossScale()) def testLossScaleDelegationWithWrapper(self): # Test learning_rate is exposed when LossScaleOptimizer wraps another # wrapper. class MyOptimizer(optimizer_v2.OptimizerV2): def __init__(self): super().__init__('MyOptimizer') self.inner_optimizer = adam.Adam(learning_rate=1.0) @property def learning_rate(self): return self.inner_optimizer.learning_rate @learning_rate.setter def learning_rate(self, value): self.inner_optimizer.learning_rate = value def get_config(self): return {} with self.cached_session(): opt = MyOptimizer() opt = loss_scale_optimizer.LossScaleOptimizer(opt) # Force hyperparameters to be created opt.learning_rate # pylint: disable=pointless-statement self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertEqual(self.evaluate(opt.learning_rate), 1.0) self.assertEqual( self.evaluate(opt.inner_optimizer.inner_optimizer.learning_rate), 1.0) opt.learning_rate = 2.0 self.assertEqual(self.evaluate(opt.learning_rate), 2.0) self.assertEqual(self.evaluate( opt.inner_optimizer.inner_optimizer.learning_rate), 2.0) @parameterized.named_parameters({ 'testcase_name': 'SaveAndRestoreBase', 'strategy_fn': default_strategy_fn, 'save_with_ls': True, 'restore_with_ls': True, }, { 'testcase_name': 'SaveAndRestoreDistribute', 'strategy_fn': create_mirrored_strategy, 'save_with_ls': True, 'restore_with_ls': True, }, { 'testcase_name': 'SaveBase', 'strategy_fn': default_strategy_fn, 'save_with_ls': True, 'restore_with_ls': False, }, { 'testcase_name': 'SaveDistribute', 'strategy_fn': create_mirrored_strategy, 'save_with_ls': True, 'restore_with_ls': False, }, { 'testcase_name': 'RestoreBase', 'strategy_fn': default_strategy_fn, 'save_with_ls': False, 'restore_with_ls': True, }, { 'testcase_name': 'RestoreDistribute', 'strategy_fn': create_mirrored_strategy, 'save_with_ls': False, 'restore_with_ls': True, }) def testCheckpoint(self, strategy_fn, save_with_ls, restore_with_ls): class MySGD(gradient_descent.SGD): """A custom optimizer that tracks an extra variable.""" def __init__(self, *args, **kwargs): super(MySGD, self).__init__(*args, **kwargs) self.my_var = tf.Variable(0.) self._track_trackable(self.my_var, 'my_var') strategy = strategy_fn() replicas = strategy.num_replicas_in_sync if (isinstance(strategy, tf.distribute.MirroredStrategy) and not tf.executing_eagerly()): # TODO(b/121381184): Enable running the test in this case. return with self.test_session(), strategy.scope(): # Build and run a simple model. var = tf.Variable([2.0]) opt = inner_opt = MySGD(1., momentum=1.) if save_with_ls: opt = loss_scale_optimizer.LossScaleOptimizer(opt, initial_scale=1., dynamic_growth_steps=2.) run_fn = lambda: opt.minimize(lambda: var / replicas + 1., var_list=[var]) opt_op = strategy.experimental_run(run_fn) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(strategy.experimental_local_results(opt_op)) # Assert values. self.assertEqual(self.evaluate(var), 1.) if save_with_ls: self.assertEqual(self.evaluate(opt.loss_scale), 1.) self.assertEqual(self.evaluate(opt.dynamic_counter), 1) slot_var = opt.get_slot(var, 'momentum') self.assertEqual(self.evaluate(slot_var).item(), -1) self.assertEqual(self.evaluate(opt.iterations), 1) # Set optimizer variable to check arbitrary optimizer attributes can be # saved/restored self.evaluate(inner_opt.my_var.assign(1.)) # Save a checkpoint. checkpoint = tf.train.Checkpoint(optimizer=opt, var=var) prefix = os.path.join(self.get_temp_dir(), 'ckpt') save_path = checkpoint.save(prefix) # Create new model var = tf.Variable([2.0]) opt = inner_opt = MySGD(1., momentum=1.) if restore_with_ls: opt = loss_scale_optimizer.LossScaleOptimizer(opt, initial_scale=1., dynamic_growth_steps=2.) # Restore new model. checkpoint = tf.train.Checkpoint(optimizer=opt, var=var) status = checkpoint.restore(save_path) if save_with_ls: status.assert_existing_objects_matched() else: status.assert_nontrivial_match() # Assert restored values. We can only assert in eager mode since the # variables are uninitialized in graph mode if tf.executing_eagerly(): self.assertEqual(self.evaluate(var), 1.) if save_with_ls and restore_with_ls: self.assertEqual(self.evaluate(opt.loss_scale), 1.) self.assertEqual(self.evaluate(opt.dynamic_counter), 1) elif restore_with_ls: self.assertEqual(self.evaluate(opt.loss_scale), 1.) self.assertEqual(self.evaluate(opt.dynamic_counter), 0) self.assertEqual(self.evaluate(opt.iterations), 1) # Run the model again. run_fn = lambda: opt.minimize(lambda: var / replicas + 1., var_list=[var]) opt_op = strategy.experimental_run(run_fn) # Assert new values. self.evaluate(tf.compat.v1.global_variables_initializer()) status.run_restore_ops() self.evaluate(strategy.experimental_local_results(opt_op)) self.assertEqual(self.evaluate(var), -1) slot_var = opt.get_slot(var, 'momentum') self.assertEqual(self.evaluate(slot_var).item(), -2) self.assertEqual(self.evaluate(opt.iterations), 2) self.assertEqual(self.evaluate(inner_opt.my_var), 1) # Restore model again to test restoring after slots are created status = checkpoint.restore(save_path) if save_with_ls and restore_with_ls: status.assert_consumed() elif save_with_ls: status.assert_existing_objects_matched() elif restore_with_ls: status.assert_nontrivial_match() status.run_restore_ops() self.assertEqual(self.evaluate(var), 1) self.assertEqual(self.evaluate(slot_var).item(), -1) @combinations.generate(combinations.combine( get_config=['v1', 'v2', 'tf2_3'], from_config=['v1', 'v2'])) def testGetConfigFixed(self, get_config, from_config): # Get a config from LossScaleOptimizerV1, LossScaleOptimizer, or the # LossScaleOptimizer from TF 2.3. Then restore the config into a # LossScaleOptimizerV1 or LossScaleOptimizer opt = gradient_descent.SGD(2., momentum=0.5) if get_config == 'v1': opt = loss_scale_optimizer.LossScaleOptimizerV1(opt, 2) config = opt.get_config() elif get_config == 'v2': opt = loss_scale_optimizer.LossScaleOptimizer( opt, dynamic=False, initial_scale=2) config = opt.get_config() else: self.assertEqual(get_config, 'tf2_3') config = { 'optimizer': { 'class_name': 'SGD', 'config': { 'learning_rate': 2.0, 'momentum': 0.5, 'decay': 0.0, 'nesterov': False, 'name': 'SGD', } }, 'loss_scale': { 'class_name': 'FixedLossScale', 'config': {'loss_scale_value': 2.0} }, } if from_config == 'v1': opt = loss_scale_optimizer.LossScaleOptimizerV1.from_config(config) else: self.assertEqual(from_config, 'v2') opt = loss_scale_optimizer.LossScaleOptimizer.from_config(config) # Force hyperparameters to be created opt.lr # pylint: disable=pointless-statement self.evaluate(tf.compat.v1.global_variables_initializer()) # Test attributes on the optimizer self.assertEqual(self.evaluate(opt.lr), 2.) self.assertEqual(self.evaluate(opt.inner_optimizer.lr), 2.) self.assertEqual(self.evaluate(opt.momentum), 0.5) self.assertEqual(self.evaluate(opt.loss_scale), 2.) self.assertEqual(opt.initial_scale, 2.) self.assertIsNone(opt.dynamic_growth_steps) self.assertIsNone(opt.dynamic_counter) self.assertFalse(opt.dynamic) # Ensure the optimizer can be used var = tf.Variable([5.0]) run_op = self._run_fn_with_grad_check( tf.distribute.get_strategy(), var, opt, 2)() self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) self.assertEqual(self.evaluate(var), [3.]) @combinations.generate(combinations.combine( get_config=['v1', 'v2', 'tf2_3'], from_config=['v1', 'v2'])) def testGetConfigDynamic(self, get_config, from_config): # Get a config from LossScaleOptimizerV1, LossScaleOptimizer, or the # LossScaleOptimizer from TF 2.3. Then restore the config into a # LossScaleOptimizerV1 or LossScaleOptimizer opt = gradient_descent.SGD(2., momentum=0.5) if get_config == 'v1': loss_scale = tf.mixed_precision.experimental.DynamicLossScale( initial_loss_scale=2, increment_period=3) opt = loss_scale_optimizer.LossScaleOptimizerV1(opt, loss_scale) config = opt.get_config() elif get_config == 'v2': opt = loss_scale_optimizer.LossScaleOptimizer(opt, initial_scale=2, dynamic_growth_steps=3) config = opt.get_config() else: self.assertEqual(get_config, 'tf2_3') config = { 'optimizer': { 'class_name': 'SGD', 'config': { 'learning_rate': 2.0, 'momentum': 0.5, 'decay': 0.0, 'nesterov': False, 'name': 'SGD', } }, 'loss_scale': { 'class_name': 'DynamicLossScale', 'config': { 'initial_loss_scale': 2.0, 'increment_period': 3, 'multiplier': 2.0, } }, } if from_config == 'v1': opt = loss_scale_optimizer.LossScaleOptimizerV1.from_config(config) else: self.assertEqual(from_config, 'v2') opt = loss_scale_optimizer.LossScaleOptimizer.from_config(config) # Force hyperparameters to be created opt.lr # pylint: disable=pointless-statement self.evaluate(tf.compat.v1.global_variables_initializer()) # Test attributes on the optimizer self.assertEqual(self.evaluate(opt.lr), 2.) self.assertEqual(self.evaluate(opt.inner_optimizer.lr), 2.) self.assertEqual(self.evaluate(opt.momentum), 0.5) self.assertEqual(self.evaluate(opt.loss_scale), 2.) self.assertEqual(opt.initial_scale, 2.) self.assertEqual(opt.dynamic_growth_steps, 3.) self.assertTrue(opt.dynamic) # Ensure the optimizer can be used var = tf.Variable([5.0]) run_op = self._run_fn_with_grad_check( tf.distribute.get_strategy(), var, opt, 2)() self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) self.assertEqual(self.evaluate(var), [3.]) self.assertEqual(self.evaluate(opt.dynamic_counter), 1) def test_from_config_with_invalid_multiplier(self): config = { 'optimizer': { 'class_name': 'SGD', 'config': { 'learning_rate': 2.0, 'momentum': 0.5, 'decay': 0.0, 'nesterov': False, 'name': 'SGD', } }, 'loss_scale': { 'class_name': 'DynamicLossScale', 'config': { 'initial_loss_scale': 2.0, 'increment_period': 3, 'multiplier': 4.0, } }, } expected_error = ('Cannot deserialize LossScaleOptimizer with a ' 'DynamicLossScale whose multiplier is not 2. Got ' 'DynamicLossScale: DynamicLossScale\\(') with self.assertRaisesRegex(ValueError, expected_error): loss_scale_optimizer.LossScaleOptimizer.from_config(config) with self.assertRaisesRegex(ValueError, expected_error): loss_scale_optimizer.LossScaleOptimizerV1.from_config(config) @parameterized.named_parameters({ 'testcase_name': 'V2', 'use_v1': False, }, { 'testcase_name': 'V1', 'use_v1': True, },) def testSerializationWithBuiltInOptimizer(self, use_v1): opt = gradient_descent.SGD(2., momentum=0.5) if use_v1: loss_scale = tf.mixed_precision.experimental.DynamicLossScale( initial_loss_scale=2., increment_period=3.) opt = loss_scale_optimizer.LossScaleOptimizerV1(opt, loss_scale) else: opt = loss_scale_optimizer.LossScaleOptimizer(opt, initial_scale=2., dynamic_growth_steps=3.) config = optimizers.serialize(opt) opt = optimizers.deserialize(config) # Force hyperparameters to be created opt.lr # pylint: disable=pointless-statement self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertEqual(self.evaluate(opt.lr), 2.) self.assertEqual(self.evaluate(opt.inner_optimizer.momentum), 0.5) self.assertEqual(self.evaluate(opt.loss_scale), 2.) self.assertEqual(opt.dynamic_growth_steps, 3.) self.assertTrue(opt.dynamic, 4.) # Deserializing a LossScaleOptimizer always always results in a V2 # LossScaleOptimizer, even if serialized with a LossScaleOptimizerV1. self.assertAllEqual(type(opt), loss_scale_optimizer.LossScaleOptimizer) # Ensure the optimizer can be used var = tf.Variable([5.0]) run_op = self._run_fn_with_grad_check( tf.distribute.get_strategy(), var, opt, 2)() self.evaluate(tf.compat.v1.global_variables_initializer()) self._run_if_in_graph_mode(run_op) self.assertEqual(self.evaluate(var), [3.]) self.assertEqual(self.evaluate(opt.dynamic_counter), 1) def testSerializationWithCustomOptimizer(self): class MySGD(gradient_descent.SGD): def __init__(self, *args, **kwargs): super(MySGD, self).__init__(*args, **kwargs) self.my_attribute = 123 opt = MySGD(2., momentum=0.5) opt = loss_scale_optimizer.LossScaleOptimizer(opt, initial_scale=2., dynamic_growth_steps=3.) config = optimizers.serialize(opt) custom_objects = {'MySGD': MySGD} opt = optimizers.deserialize(config, custom_objects=custom_objects) # Force hyperparameters to be created opt.lr # pylint: disable=pointless-statement self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertEqual(self.evaluate(opt.lr), 2.) self.assertEqual(self.evaluate(opt.inner_optimizer.momentum), 0.5) self.assertEqual(self.evaluate(opt.loss_scale), 2.) self.assertEqual(opt.dynamic_growth_steps, 3.) self.assertEqual(opt.inner_optimizer.my_attribute, 123) def testUnsupportedStrategy(self): strategy = tf.distribute.experimental.CentralStorageStrategy() expected_error = ( 'Loss scaling is not supported with the tf.distribute.Strategy: ' 'CentralStorageStrategy. Try using a different Strategy, e.g. a ' 'MirroredStrategy') with strategy.scope(), self.assertRaisesRegex(ValueError, expected_error): loss_scale_optimizer.LossScaleOptimizer(gradient_descent.SGD()) opt = loss_scale_optimizer.LossScaleOptimizer(gradient_descent.SGD()) with strategy.scope(): var = tf.Variable(1.0) loss = lambda: var * 2.0 run_fn = lambda: opt.minimize(loss, [var]) with self.assertRaisesRegex(ValueError, expected_error): strategy.experimental_run(run_fn) def testInvalidArgsWithFixedLossScale(self): opt = gradient_descent.SGD() with self.assertRaisesRegex( ValueError, '"initial_scale" must be specified if "dynamic" is False'): loss_scale_optimizer.LossScaleOptimizer(opt, dynamic=False) opt = gradient_descent.SGD() with self.assertRaisesRegex( ValueError, '"dynamic_growth_steps" must be None if "dynamic" is ' 'False, but got: 2'): loss_scale_optimizer.LossScaleOptimizer( opt, dynamic=False, initial_scale=1, dynamic_growth_steps=2) def testDynamicMustBeBool(self): opt = gradient_descent.SGD() with self.assertRaisesRegex( TypeError, '"dynamic" argument to LossScaleOptimizer.__init__ must be ' "a bool, but got: 'dynamic'"): loss_scale_optimizer.LossScaleOptimizer(opt, 'dynamic') def testErrorWhenNesting(self): opt = gradient_descent.SGD() opt = loss_scale_optimizer.LossScaleOptimizer(opt) with self.assertRaisesRegex( TypeError, 'LossScaleOptimizer cannot wrap another LossScaleOptimizer'): loss_scale_optimizer.LossScaleOptimizer(opt) def testErrorWrappingSameOptimizerMultipleTimes(self): inner_opt = gradient_descent.SGD() loss_scale_optimizer.LossScaleOptimizer(inner_opt) with self.assertRaisesRegex( ValueError, '"inner_optimizer" is already wrapped by a LossScaleOptimizer.'): loss_scale_optimizer.LossScaleOptimizer(inner_opt) if __name__ == '__main__': tf.test.main()
py
b407084189abb7e33455c7e31f1f03b914c78d4c
import pycuda.driver as drv drv.init() print "%d device(s) found." % drv.Device.count() for ordinal in range(drv.Device.count()): dev = drv.Device(ordinal) print "Device #%d: %s" % (ordinal, dev.name()) print " Compute Capability: %d.%d" % dev.compute_capability() print " Total Memory: %s KB" % (dev.total_memory()//(1024))
py
b40709b90c6492e5839c2371325fe9e9b119ef41
#! -*- coding:utf-8 -*- import os import sys def zero_or_not(target): #return 1 if target > 0 else 0 return target/127.5 - 1.0 def line2label_fig(l): #zeros = [0.0] * 10 zeros = [0.0] * 11 tmp = l.strip().split(",") zeros[int(tmp[0])] = 1.0 fig = [zero_or_not(int(i)) for i in tmp[1:]] #tmp2 = [[zero_or_not(int(i))] for i in tmp[1:]] #fig = [tmp2[28 * i : 28 * i + 28] for i in range(28)] return zeros, fig def get_batch(f_obj, num_batch): label_ret = [] fig_ret = [] for i, l in enumerate(f_obj): label, fig = line2label_fig(l) label_ret.append(label) fig_ret.append(fig) if i == num_batch - 1: break return label_ret, fig_ret if __name__ == u'__main__': with open('mnist_test.csv', 'r') as f: labels, figs = get_batch(f, 2) print(figs)
py
b40709e228f47dedb24bef32b4fd76d046de9132
from __future__ import unicode_literals import os import sys from django.core.files.uploadedfile import UploadedFile from django.test import TestCase from mongoengine import Document, fields from rest_framework_mongoengine.serializers import DocumentSerializer from . import mockpil from .utils import dedent pwd = os.path.dirname(os.path.realpath(__file__)) + os.path.sep try: from unittest import mock # NOQA except ImportError: import mock # NOQA sys.modules['PIL'] = mockpil fields.Image = mockpil.Image fields.ImageOps = mockpil.ImageOps class FileDoc(Document): image = fields.ImageField(collection_name='images') class TestSerializer(DocumentSerializer): class Meta: model = FileDoc fields = '__all__' class TestFilesMapping(TestCase): def test_mapping(self): class FileDoc(Document): f = fields.FileField(collection_name='files') i = fields.ImageField(collection_name='images') class TestSerializer(DocumentSerializer): class Meta: model = FileDoc fields = '__all__' expected = dedent(""" TestSerializer(): id = ObjectIdField(read_only=True) f = FileField(required=False) i = ImageField(required=False) """) assert repr(TestSerializer()) == expected class TestFilesIntegration(TestCase): """ operational test Test if primary methods work. """ def setUp(self): self.files = [open(pwd + "cat1.jpg", "rb"), open(pwd + "cat2.jpg", "rb")] self.uploads = [UploadedFile(f, f.name, "image/jpeg", os.path.getsize(f.name)) for f in self.files] def doCleanups(self): FileDoc.drop_collection() FileDoc._get_db().drop_collection('files') for f in self.files: f.close() def test_parse(self): data = {'image': self.uploads[0]} serializer = TestSerializer(data=data) assert serializer.is_valid(), serializer.errors expected = { 'image': None } assert serializer.data == expected def test_retrieve(self): instance = FileDoc.objects.create(image=self.files[0]) serializer = TestSerializer(instance) expected = { 'id': str(instance.id), 'image': str(instance.image.grid_id), } assert serializer.data == expected def test_create(self): data = {'image': self.uploads[0]} serializer = TestSerializer(data=data) assert serializer.is_valid(), serializer.errors instance = serializer.save() assert isinstance(instance.image, fields.GridFSProxy) assert instance.image.length == self.uploads[0].size expected = { 'id': str(instance.id), 'image': str(instance.image.grid_id) } assert serializer.data == expected def test_update(self): instance = FileDoc.objects.create(image=self.files[0]) data = {'image': self.uploads[1]} serializer = TestSerializer(instance, data=data) assert serializer.is_valid(), serializer.errors instance = serializer.save() assert isinstance(instance.image, fields.GridFSProxy) assert instance.image.length == self.uploads[1].size expected = { 'id': str(instance.id), 'image': str(instance.image.grid_id) } assert serializer.data == expected
py
b4070a13a921a75b286e3d47ec7c183232603cac
from ._util import refs_equal class TestChain: @refs_equal def test_attr_call_doesnt_contain_call(self): s = 'import a\na.attr()' refs = [('a', 'a'), ('a.attr', 'a.attr')] return s, refs @refs_equal def test_attr_call_attr_split_in_two(self): s = 'import a\na.attr().b' refs = [('a', 'a'), ('a.attr', 'a.attr'), ('a.attr.().b', 'b')] return s, refs @refs_equal def test_attr_call_attr_call_attr_split_in_three(self): s = 'import a\na.attr().b().c' refs = [ ('a', 'a'), ('a.attr', 'a.attr'), ('a.attr.().b', 'b'), ('a.attr.().b.().c', 'c'), ] return s, refs
py
b4070af07a76a6619faef1bbc4fc66c274c0e2ed
from __future__ import print_function from django.conf import settings from suds.client import Client from suds.plugin import MessagePlugin import sys def get_client(product_code): url = "https://www.uc.se/UCSoapWeb/services/ucOrders2" client = Client(url + "?wsdl", plugins=[VersionPlugin(product_code)]) client.sd[0].service.setlocation(url) return client class VersionPlugin(MessagePlugin): def __init__(self, product_code): self.product_code = product_code def marshalled(self, context): body = context.envelope.getChild('Body') company_report = body[0] company_report.set('ns1:product', self.product_code) company_report.set('ns1:version', '2.1') print(str(context.envelope.getChild('Body'))) def get_customer(client): customer = client.factory.create("ns0:customer") customer.userId = settings.UC_USER_ID customer.password = settings.UC_PASSWORD return customer def get_report_query(client, organization_number): reportQuery = client.factory.create("ns0:reportQuery") reportQuery.object = organization_number reportQuery._xmlReply = "true" reportQuery._htmlReply = "false" reportQuery._reviewReply = "false" reportQuery._lang = "eng" return reportQuery def get_company_report(client, organization_number): customer = get_customer(client) report_query = get_report_query(client, organization_number) return client.service.companyReport( customer=customer, companyReportQuery=report_query) def get_company_full_report(organization_number): return get_company_report(get_client("410"), organization_number) def get_company_risk_report(organization_number): return get_company_report(get_client("4"), organization_number) def get_credit_rating_group_term_indices(report): """ Returns a tuple (group, term) where `group` is the index of the Credit Rating info provided in the report and `term` is the index of term containing Risk Rating value """ try: # Group W110 = Credit Rating # Term W11001 = Risk Rating for index_, group in enumerate(report.ucReport[0].xmlReply.reports[0].report[0].group): if group._id == "W110": for index__, term in enumerate(report.ucReport[0].xmlReply.reports[0].report[0].group[index_].term): if term._id == "W11001": return (index_, index__) except AttributeError: raise Exception( "Provided UC report doesn't include sufficient data to get Group/Term index."), None, sys.exc_info()[2]
py
b4070b5e00b34104cb4c0f58809c759849b79f5b
import logging from forge_sdk import did as forge_did, rpc as forge_rpc from forge_sdk import utils as forge_utils from event_chain import protos from event_chain.app import models logger = logging.getLogger('controller-ticket') def buy_tickets_general(event_address, num, wallet, token=None): spec_datas = [] for i in range(0, num): spec_datas.append({'id': forge_did.AbtDid(role_type='asset').new()}) res, tickets = forge_rpc.acquire_asset(to=event_address, spec_datas=spec_datas, type_url='ec:s:general_ticket', proto_lib=protos, wallet=wallet, token=token) if forge_utils.is_response_ok(res): return tickets else: logger.error(f"Fail to buy tickets for event {event_address}") def buy_ticket(event_address, user): logger.debug(f'user wallet: {user.get_wallet()}') ticket_address = buy_tickets_general(event_address, 1, user.get_wallet(), user.wallet.token) logger.debug(f"Buy ticket process is completed. ticket {ticket_address}") return ticket_address def consume(ticket_address, user): logger.debug("Consuming ticket {}".format(ticket_address)) ticket = models.get_ticket_state(ticket_address) consume_tx = models.get_event_factory( ticket.parent ).consume_tx if not consume_tx: return None logger.debug("consume tx: {}".format(consume_tx)) tx = forge_rpc.finalize_consume_asset(consume_tx, user.get_wallet(), user.wallet.token, forge_utils.encode_to_any('fg:x:address', ticket_address.encode())) res = forge_rpc.send_tx(tx) if res.code != 0 or res.hash is None: logger.error(res) logger.error('Fail to consume ticket {}'.format(ticket_address)) else: logger.info( "ConsumeTx has been sent by tx: {}!".format(res.hash), ) return res.hash def verify_ticket_address(ticket_address): try: state = models.get_ticket_state(ticket_address) except Exception: logger.error('Error in checking ticket') raise TypeError("{} is not an ticket address.".format(ticket_address)) if not state: logger.error(u'Ticket {} does not exist.'.format(ticket_address)) raise ValueError('Ticket {} does not exist'.format(ticket_address)) def list_user_tickets(user_address): assets = models.sql.AssetState.query.filter_by(owner=user_address).all() tickets = [] for asset in assets: asset_state = forge_rpc.get_single_asset_state(asset.address) if asset_state and asset_state.data.type_url == 'ec:s:general_ticket': tickets.append(asset_state) return tickets
py
b4070b875251577df571dab0829be73e24530879
#! /usr/bin/env python import sys import rospy import numpy as np import ros_numpy # convert msg to np.array : https://github.com/eric-wieser/ros_numpy import camera_utils import cv2 from cv_bridge import CvBridge, CvBridgeError from darknet_ros_msgs.msg import BoundingBoxes from sensor_msgs.msg import PointCloud2 from sensor_msgs.msg import Image from sensor_msgs.msg import LaserScan # lidar --> camera coordinate # camera --> image coordinate # image show point data # if you want to run this code you need to get 3 kind of msg # 1. Image # 2. BoundingBoxes (darknet_ros) # 3. PointCloud2 class image_converter: def __init__(self): self.img_pub = rospy.Publisher('laser_img',Image, queue_size=1000) self.bridge = CvBridge() self.img_sub = rospy.Subscriber('/camera/color/image_raw',Image,self.callback_camera) self.yolo_sub = rospy.Subscriber('/darknet_ros/bounding_boxes',BoundingBoxes,self.callback_yolo) self.laser_sub = rospy.Subscriber('/PointCloud2',PointCloud2, self.callback_lidar) #woon bong's --> rosrun cloud trans self.camera_utils_ = camera_utils.CameraProjection() self.image_width_ = 640 self.image_height_ = 480 self.focal_length = 462.1379497504639 def callback_yolo(self, data): try: self.boxes = data.bounding_boxes except rospy.ROSInterruptException: pass def callback_lidar(self, data): try: self.pc2 = ros_numpy.numpify(data) except rospy.ROSInterruptException: pass self.points = np.zeros((self.pc2.shape[0],3)) self.points[:,0] = self.pc2['x'] self.points[:,1] = self.pc2['y'] self.points[:,2] = self.pc2['z'] def callback_camera(self, data): try: cv_img = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) (self.rows, self.cols, channels) = cv_img.shape for box in self.boxes: cv2.rectangle(cv_img, (box.xmin,box.ymin), (box.xmax, box.ymax), (0,255,0), 1) self.x_center = int(((self.cols /2) - (box.xmin + box.xmax) / 2) + (self.cols/2)) # image to pixel (u,v) self.y_center = int(((self.rows / 2) - (box.ymin + box.ymax) / 2) + (self.rows/2)) cv2.line(cv_img, (self.x_center,self.y_center),(self.x_center,self.y_center), (255,0,0), 5) for point in self.points: # 1. lidar to camera : need transformation from lidar to camera coordinate # 2. camera to image self.img_posi = self.camera_utils_.camera_to_image(point[0], point[1], point[2]) #* self.camera_utils_.ratio #print(self.img_posi) self.pixel_posi = (self.img_posi + [0, (self.cols /2 ), 0]) #* self.camera_utils_.ratio# ratio# [depth , pixel_v, pixel_u] #print(self.camera_utils_.ratio) #print(self.pixel_posi) cv2.line(cv_img, (int(self.pixel_posi[1]),int(self.pixel_posi[2]+240)), (int(self.pixel_posi[1]), int(self.pixel_posi[2]+240)), (255,0,0), 10) # 240 is for v pixel so you have to change!!!! cv2.imshow("Image window", cv_img) cv2.waitKey(3) try: self.img_pub.publish(self.bridge.cv2_to_imgmsg(cv_img, "bgr8")) except CvBridgeError as e: print(e) def main(args): ic = image_converter() rospy.init_node('image_converter', anonymous=True) try: rospy.spin() except KeyboardInterrupt: print("Shutdown") cv2.destroyAllWindows() if __name__ == "__main__": main(sys.argv)
py
b4070d39ec1dfd84505c6c309ffaa75b83ced04f
from __future__ import print_function """ Author: Jack Duryea Waterland Lab Computational Epigenetics Section Baylor College of Medicine Created April 2018 Updated April 11 2019: use random forests as model PReLIM: Preceise Read Level Imputation of Methylation PReLIM imputes missing CpG methylation states in CpG matrices. """ # standard imports import numpy as np from tqdm import tqdm import copy import time from collections import defaultdict import random # sklearn imports from sklearn.preprocessing import normalize from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV # Pickle try: import cPickle as p except ImportError: import pickle as p # TODO: most of these fields are redundant in our application class CpGBin(): """ Constructor for a bin """ def __init__(self, matrix, #relative_positions binStartInc=None, binEndInc=None, cpgPositions=None, sequence="", encoding=None, missingToken= -1, chromosome=None, binSize=100, species="MM10", verbose=True, tag1=None, tag2=None): """ :param matrix: numpy array, the bin's CpG matrix. :param binStartInc: integer, the starting, inclusive, chromosomal index of the bin. :param binEndInc: integer, the ending, inclusive, chromosomal index of the bin. :param cpgPositions: array of integers, the chromosomal positions of the CpGs in the bin. :param sequence: string, nucleotide sequence (A,C,G,T) :param encoding: array, a reduced representation of the bin's CpG matrix :param missingToken: integer, the token that represents missing data in the matrix. :param chromosome: string, the chromosome this bin resides in. :param binSize: integer, the number of base pairs this bin covers :param species: string, the speices this bin belongs too. :param verbose: boolean, print warnings, set to "false" for no error checking and faster speed :param tag1: anything, for custom use. :param tag2: anything, for custom use. """ self.cpgDensity = matrix.shape[1] self.readDepth = matrix.shape[0] self.matrix = np.array(matrix, dtype=float) self.binStartInc = binStartInc self.binEndInc = binEndInc self.cpgPositions = cpgPositions self.sequence = sequence self.missingToken = missingToken self.chromosome = chromosome self.binSize = binSize self.species = species self.tag1 = tag1 self.tag2 = tag2 class PReLIM(): """ PReLIM imputation class to handle training and predicting from models. """ def __init__(self, cpgDensity=2): self.model = None self.cpgDensity = cpgDensity self.METHYLATED = 1 self.UNMETHYLATED = 0 self.MISSING = -1 self.methylated = 1 self.unmethylated = 0 self.unknown = -1 # Train a model def train(self, bin_matrices, model_file="no", verbose=False): """ bin_matrices: list of cpg matrices model_file, string, The name of the file to save the model to. If None, then create a file name that includes a timestamp. If you don't want to save a file, set this to "no" """ # bin_matrices: a list of cpg matrices X,y = self.get_X_y(bin_matrices, model_file=model_file, verbose=False) # Train the neural network model self.fit(X,y, model_file=model_file, verbose=verbose) def fit(self, X_train, y_train, n_estimators = [10, 50, 100, 500, 1000], cores = -1, max_depths = [1, 5, 10, 20, 30], model_file=None, verbose=False ): """ Inputs: 1. X_train, numpy array, Contains feature vectors. 2. y_train, numpy array, Contains labels for training data. 3. n_estimators, list, the number of estimators to try during a grid search. 4. max_depths, list, the maximum depths of trees to try during a grid search. 5. cores, the number of cores to use during training, helpful for grid search. 6. model_file, string, The name of the file to save the model to. If None, then create a file name that includes a timestamp. If you don't want to save a file, set this to "no" 5-fold validation is built into the grid search Outputs: The trained model Usage: model.fit(X_train, y_train) """ grid_param = { "n_estimators": n_estimators, "max_depth": max_depths, } # Note: let the grid search use a lot of cores, but only use 1 for each forest # since dispatching can take a lot of time rf = RandomForestClassifier(n_jobs=1) self.model = GridSearchCV(rf, grid_param, n_jobs=cores, cv=5, verbose=verbose) self.model.fit(X_train, y_train) # save the model if model_file == "no": return self.model if not model_file: model_file = "PReLIM_model" + str(time.time()) p.dump(self.model, open(model_file,"wb")) return self.model # Feature collection directly from bins def get_X_y(self, bin_matrices, model_file=None, verbose=False): bins = [] # convert to bin objects for ease of use for matrix in bin_matrices: mybin = CpGBin( matrix=matrix ) bins.append( mybin ) # find bins with no missing data complete_bins = _filter_missing_data( bins ) random.shuffle( complete_bins ) # apply masks masked_bins = _apply_masks( complete_bins, bins ) # extract features X, y = self._collectFeatures( masked_bins ) return X, y # Return a vector of predicted classes def predict_classes(self, X): """ Inputs: 1. X, numpy array, contains feature vectors Outputs: 1. 1-d numpy array of prediction values Usage: y_pred = CpGNet.predict_classes(X) """ return self.model.predict(X) # Return a vector of probabilities for methylation def predict(self, X): """ Inputs: 1. X, numpy array, contains feature vectors Outputs: 1. 1-d numpy array of predicted class labels Usage: y_pred = CpGNet.predict(X) """ return self.model.predict_proba(X)[:,1] def predict_proba(self, X): """ Inputs: 1. X, numpy array, contains feature vectors Outputs: 1. 1-d numpy array of class predictions Usage: y_pred = CpGNet.predict(X) """ return self.model.predict_proba(X)[:1] # Load a saved model def loadWeights(self, model_file): """ Inputs: 1. model_file, string, name of file with a saved model Outputs: None Effects: self.model is loaded with the provided weights """ self.model = p.load(open(model_file,"rb")) def _get_imputation_features(self,matrix): ''' Returns a vector of features needed for the imputation of this matrix Inputs: 1. matrix, a 2d np array, dtype=float, representing a CpG matrix, 1=methylated, 0=unmethylated, -1=unknown Outputs: 1. A feature vector for the matrix ''' X = [] numReads = matrix.shape[0] density = matrix.shape[1] nan_copy = np.copy(matrix) nan_copy[nan_copy == -1] = np.nan column_means = np.nanmean(nan_copy, axis=0) row_means = np.nanmean(nan_copy, axis=1) encoding = self._encode_input_matrix(matrix)[0] for i in range(numReads): for j in range(density): observed_state = matrix[i, j] if observed_state != -1: continue row_mean = row_means[i] col_mean = column_means[j] row = np.copy(matrix[i]) row[j] = -1 data = [row_mean] + [col_mean] + [i, j] + list(row) + list(encoding) X.append(data) X = np.array(X) return X # Imputes missing values in Bins def impute(self, matrix): """ Inputs: 1. matrix, a 2d np array, dtype=float, representing a CpG matrix, 1=methylated, 0=unmethylated, -1=unknown Outputs: 1. A 2d numpy array with predicted probabilities of methylation """ X = self._get_imputation_features(matrix) if len(X) == 0: # nothing to impute return matrix predictions = self.predict(X) k = 0 # keep track of prediction index for missing states predicted_matrix = np.copy(matrix) for i in range(predicted_matrix.shape[0]): for j in range(predicted_matrix.shape[1]): if predicted_matrix[i, j] == -1: predicted_matrix[i, j] = predictions[k] k += 1 return predicted_matrix def impute_many(self, matrices): ''' Imputes a bunch of matrices at the same time to help speed up imputation time. Inputs: 1. matrices: array-like (i.e. list), where each element is a 2d np array, dtype=float, representing a CpG matrix, 1=methylated, 0=unmethylated, -1=unknown Outputs: 1. A List of 2d numpy arrays with predicted probabilities of methylation for unknown values. ''' # Extract all features for all matrices so we can predict in bulk, this is where the speedup comes from X = np.array([features for matrix_features in [self._get_imputation_features(matrix) for matrix in matrices] for features in matrix_features]) if len(X) == 0: return matrices predictions = self.predict(X) predicted_matrices = [] # TODO: lots of for-loops here, could be sped up? k = 0 # keep track of prediction index for missing states, order is crucial! for matrix in matrices: predicted_matrix = np.copy(matrix) for i in range(predicted_matrix.shape[0]): for j in range(predicted_matrix.shape[1]): if predicted_matrix[i, j] == -1: predicted_matrix[i, j] = predictions[k] k += 1 predicted_matrices.append(predicted_matrix) return predicted_matrices ### Helper functions, for private use only ### # Returns a matrix encoding of a CpG matrix def _encode_input_matrix(self, m): matrix = np.copy(m) n_cpgs = matrix.shape[1] matrix += 1 # deal with -1s base_3_vec = np.power(3, np.arange(n_cpgs - 1, -1, -1)) # encodings = np.dot(base_3_vec, matrix.T) # encoded_vector_dim = np.power(3, n_cpgs) encoded_vector = np.zeros(encoded_vector_dim) # for x in encodings: encoded_vector[int(x)] += 1 # num_reads = encodings.shape[0] # # Now we normalize encoded_vector_norm = normalize([encoded_vector], norm="l1") return encoded_vector_norm[0], num_reads # finds the majority class of the given column, discounting the current cpg def _get_column_mean(self, matrix, col_i, current_cpg_state): sub = matrix[:, col_i] return self._get_mean(sub, current_cpg_state) # finds the majority class of the given read, discounting the current cpg def _get_read_mean(self, matrix, read_i, current_cpg_state): sub = matrix[read_i, :] return self._get_mean(sub, current_cpg_state) def _get_mean(self, sub_matrix, current_cpg_state): num_methy = np.count_nonzero(sub_matrix == self.METHYLATED) num_unmethy = np.count_nonzero(sub_matrix == self.UNMETHYLATED) if current_cpg_state == self.METHYLATED: num_methy -= 1 num_methy = max(0, num_methy) if current_cpg_state == self.UNMETHYLATED: num_unmethy -= 1 num_unmethy = max(0, num_unmethy) if float(num_methy + num_unmethy) == 0: return -2 return float(num_methy) / float(num_methy + num_unmethy) # Returns X, y # note: y can contain the labels 1,0, -1 def _collectFeatures(self, bins): X = [] Y = [] for Bin in tqdm(bins): observed_matrix = Bin.tag2["observed"] truth_matrix = Bin.tag2["truth"] encoding = self._encode_input_matrix(observed_matrix)[0] numReads = observed_matrix.shape[0] density = observed_matrix.shape[1] #positions = Bin.cpgPositions nan_copy = np.copy(observed_matrix) nan_copy[nan_copy == -1] = np.nan column_means = np.nanmean(nan_copy,axis=0) row_means = np.nanmean(nan_copy,axis=1) for i in range(numReads): for j in range(density): observed_state = observed_matrix[i,j] if observed_state != -1: continue state = truth_matrix[i,j] Y.append(state) row_mean = row_means[i] col_mean = column_means[j] # j is the current index in the row # encoding is the matrix encoding vector # differences is the difference in positions of the cpgs row = np.copy(observed_matrix[i]) row[j] = -1 data = [row_mean] + [col_mean] + [i, j] + list(row) + list(encoding) X.append(data) X = np.array(X) Y = np.array(Y) Y.astype(int) return X, Y # Helper functions # returns a list of bins similar to the input # but matrix rows with missing values are removed def _filter_bad_reads(bins): filtered_bins = [] for Bin in bins: newBin = copy.deepcopy(Bin) matrix = newBin.matrix # find rows with missing values counts = np.count_nonzero(matrix == -1, axis=1) idx = counts == 0 matrix_filtered = matrix[idx] newBin.matrix = matrix_filtered filtered_bins.append(newBin) return filtered_bins # returns a mapping of dimensions to list of masks that can be used on data # of that size. # the missing pattern is in matrix form. # -1 is missing, 2 is known def _extract_masks( bins): masks = defaultdict(lambda: []) for Bin in tqdm(bins): matrix = np.copy(Bin.matrix) matrix[matrix >= 0] = 2 #min_missing = 10 min_missing = 1 # must have at least 1 missing value if np.count_nonzero(matrix == -1) >= min_missing: masks[matrix.shape].append(matrix) return masks def _apply_masks( filtered_bins, all_bins ): masks = _extract_masks( all_bins ) ready_bins = [] for Bin in filtered_bins: truth_matrix = Bin.matrix m_shape = truth_matrix.shape if m_shape in masks: if len( masks [ m_shape ] ) > 0: mask = random.choice(masks[m_shape]) observed = np.minimum(truth_matrix, mask) Bin.tag2 = {"truth":truth_matrix, "observed":observed, "mask":mask} ready_bins.append(Bin) return ready_bins # get a set of bins with no missing data def _filter_missing_data( bins, min_read_depth=1 ): cpg_bins_complete = _filter_bad_reads(bins) # secondary depth filter cpg_bins_complete_depth = [bin_ for bin_ in cpg_bins_complete if bin_.matrix.shape[0] >= min_read_depth] return cpg_bins_complete_depth
py
b4070d9a011ed21644426bb126ea3a3b861b1571
from ConfigSpace.configuration_space import ConfigurationSpace from ConfigSpace.hyperparameters import UniformFloatHyperparameter from autosklearn.pipeline.constants import DENSE, UNSIGNED_DATA, SIGNED_DATA, INPUT from autosklearn.pipeline.components.data_preprocessing.rescaling.abstract_rescaling \ import Rescaling from autosklearn.pipeline.components.base import \ AutoSklearnPreprocessingAlgorithm class RobustScalerComponent(Rescaling, AutoSklearnPreprocessingAlgorithm): def __init__(self, q_min, q_max, random_state): from sklearn.preprocessing import RobustScaler self.q_min = q_min self.q_max = q_max self.preprocessor = RobustScaler( quantile_range=(self.q_min, self.q_max), copy=False, ) @staticmethod def get_properties(dataset_properties=None): return {'shortname': 'RobustScaler', 'name': 'RobustScaler', 'handles_regression': True, 'handles_classification': True, 'handles_multiclass': True, 'handles_multilabel': True, 'handles_multioutput': True, 'is_deterministic': True, # TODO find out if this is right! 'handles_sparse': True, 'handles_dense': True, 'input': (DENSE, UNSIGNED_DATA), 'output': (INPUT, SIGNED_DATA), 'preferred_dtype': None} def get_hyperparameter_search_space(dataset_properties=None): cs = ConfigurationSpace() q_min = UniformFloatHyperparameter( 'q_min', 0.001, 0.3, default_value=0.25 ) q_max = UniformFloatHyperparameter( 'q_max', 0.7, 0.999, default_value=0.75 ) cs.add_hyperparameters((q_min, q_max)) return cs
py
b4070e9b014eba02fe1663db0284c4a55ff68790
#!/usr/bin/env python # Copyright (c) 2015-2017 The Taler Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Perform basic ELF security checks on a series of executables. Exit status will be 0 if successful, and the program will be silent. Otherwise the exit status will be 1 and it will log which executables failed which checks. Needs `readelf` (for ELF) and `objdump` (for PE). ''' from __future__ import division,print_function,unicode_literals import subprocess import sys import os READELF_CMD = os.getenv('READELF', '/usr/bin/readelf') OBJDUMP_CMD = os.getenv('OBJDUMP', '/usr/bin/objdump') NONFATAL = {'HIGH_ENTROPY_VA'} # checks which are non-fatal for now but only generate a warning def check_ELF_PIE(executable): ''' Check for position independent executable (PIE), allowing for address space randomization. ''' p = subprocess.Popen([READELF_CMD, '-h', '-W', executable], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) (stdout, stderr) = p.communicate() if p.returncode: raise IOError('Error opening file') ok = False for line in stdout.split(b'\n'): line = line.split() if len(line)>=2 and line[0] == b'Type:' and line[1] == b'DYN': ok = True return ok def get_ELF_program_headers(executable): '''Return type and flags for ELF program headers''' p = subprocess.Popen([READELF_CMD, '-l', '-W', executable], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) (stdout, stderr) = p.communicate() if p.returncode: raise IOError('Error opening file') in_headers = False count = 0 headers = [] for line in stdout.split(b'\n'): if line.startswith(b'Program Headers:'): in_headers = True if line == b'': in_headers = False if in_headers: if count == 1: # header line ofs_typ = line.find(b'Type') ofs_offset = line.find(b'Offset') ofs_flags = line.find(b'Flg') ofs_align = line.find(b'Align') if ofs_typ == -1 or ofs_offset == -1 or ofs_flags == -1 or ofs_align == -1: raise ValueError('Cannot parse elfread -lW output') elif count > 1: typ = line[ofs_typ:ofs_offset].rstrip() flags = line[ofs_flags:ofs_align].rstrip() headers.append((typ, flags)) count += 1 return headers def check_ELF_NX(executable): ''' Check that no sections are writable and executable (including the stack) ''' have_wx = False have_gnu_stack = False for (typ, flags) in get_ELF_program_headers(executable): if typ == b'GNU_STACK': have_gnu_stack = True if b'W' in flags and b'E' in flags: # section is both writable and executable have_wx = True return have_gnu_stack and not have_wx def check_ELF_RELRO(executable): ''' Check for read-only relocations. GNU_RELRO program header must exist Dynamic section must have BIND_NOW flag ''' have_gnu_relro = False for (typ, flags) in get_ELF_program_headers(executable): # Note: not checking flags == 'R': here as linkers set the permission differently # This does not affect security: the permission flags of the GNU_RELRO program header are ignored, the PT_LOAD header determines the effective permissions. # However, the dynamic linker need to write to this area so these are RW. # Glibc itself takes care of mprotecting this area R after relocations are finished. # See also http://permalink.gmane.org/gmane.comp.gnu.binutils/71347 if typ == b'GNU_RELRO': have_gnu_relro = True have_bindnow = False p = subprocess.Popen([READELF_CMD, '-d', '-W', executable], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) (stdout, stderr) = p.communicate() if p.returncode: raise IOError('Error opening file') for line in stdout.split(b'\n'): tokens = line.split() if len(tokens)>1 and tokens[1] == b'(BIND_NOW)' or (len(tokens)>2 and tokens[1] == b'(FLAGS)' and b'BIND_NOW' in tokens[2]): have_bindnow = True return have_gnu_relro and have_bindnow def check_ELF_Canary(executable): ''' Check for use of stack canary ''' p = subprocess.Popen([READELF_CMD, '--dyn-syms', '-W', executable], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) (stdout, stderr) = p.communicate() if p.returncode: raise IOError('Error opening file') ok = False for line in stdout.split(b'\n'): if b'__stack_chk_fail' in line: ok = True return ok def get_PE_dll_characteristics(executable): ''' Get PE DllCharacteristics bits. Returns a tuple (arch,bits) where arch is 'i386:x86-64' or 'i386' and bits is the DllCharacteristics value. ''' p = subprocess.Popen([OBJDUMP_CMD, '-x', executable], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) (stdout, stderr) = p.communicate() if p.returncode: raise IOError('Error opening file') arch = '' bits = 0 for line in stdout.split('\n'): tokens = line.split() if len(tokens)>=2 and tokens[0] == 'architecture:': arch = tokens[1].rstrip(',') if len(tokens)>=2 and tokens[0] == 'DllCharacteristics': bits = int(tokens[1],16) return (arch,bits) IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA = 0x0020 IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE = 0x0040 IMAGE_DLL_CHARACTERISTICS_NX_COMPAT = 0x0100 def check_PE_DYNAMIC_BASE(executable): '''PIE: DllCharacteristics bit 0x40 signifies dynamicbase (ASLR)''' (arch,bits) = get_PE_dll_characteristics(executable) reqbits = IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE return (bits & reqbits) == reqbits # On 64 bit, must support high-entropy 64-bit address space layout randomization in addition to DYNAMIC_BASE # to have secure ASLR. def check_PE_HIGH_ENTROPY_VA(executable): '''PIE: DllCharacteristics bit 0x20 signifies high-entropy ASLR''' (arch,bits) = get_PE_dll_characteristics(executable) if arch == 'i386:x86-64': reqbits = IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA else: # Unnecessary on 32-bit assert(arch == 'i386') reqbits = 0 return (bits & reqbits) == reqbits def check_PE_NX(executable): '''NX: DllCharacteristics bit 0x100 signifies nxcompat (DEP)''' (arch,bits) = get_PE_dll_characteristics(executable) return (bits & IMAGE_DLL_CHARACTERISTICS_NX_COMPAT) == IMAGE_DLL_CHARACTERISTICS_NX_COMPAT CHECKS = { 'ELF': [ ('PIE', check_ELF_PIE), ('NX', check_ELF_NX), ('RELRO', check_ELF_RELRO), ('Canary', check_ELF_Canary) ], 'PE': [ ('DYNAMIC_BASE', check_PE_DYNAMIC_BASE), ('HIGH_ENTROPY_VA', check_PE_HIGH_ENTROPY_VA), ('NX', check_PE_NX) ] } def identify_executable(executable): with open(filename, 'rb') as f: magic = f.read(4) if magic.startswith(b'MZ'): return 'PE' elif magic.startswith(b'\x7fELF'): return 'ELF' return None if __name__ == '__main__': retval = 0 for filename in sys.argv[1:]: try: etype = identify_executable(filename) if etype is None: print('%s: unknown format' % filename) retval = 1 continue failed = [] warning = [] for (name, func) in CHECKS[etype]: if not func(filename): if name in NONFATAL: warning.append(name) else: failed.append(name) if failed: print('%s: failed %s' % (filename, ' '.join(failed))) retval = 1 if warning: print('%s: warning %s' % (filename, ' '.join(warning))) except IOError: print('%s: cannot open' % filename) retval = 1 sys.exit(retval)
py
b4071006fbb42174a39ec72e1bd987297695222a
# # Complete the 'roverMove' function below. # # The function is expected to return an INTEGER. # The function accepts following parameters: # 1. INTEGER matrixSize # 2. STRING_ARRAY cmds # def roverMove(matrixSize, cmds): # Write your code here rover = 0 i, j = 0, 0 for cmd in cmds: if cmd == "RIGHT": if j < matrixSize - 1: j += 1 if cmd == "LEFT": if j > 0: j -= 1 if cmd == "UP": if i > 0: i -= 1 if cmd == "DOWN": if i < matrixSize - 1: i += 1 return (i * matrixSize) + j
py
b40711af5e3fad0e3b34dc79dc4550b4a3dc08e7
import obj_file import mesh import sys ### Helper file to verify vertiex, normal, and triangle count ### mesh = obj_file.ObjFile(sys.argv[1]).read() mesh.compute_normals() # mesh.tri_normals() def print_lens(mesh=mesh): print("num vertices: "+str(len(mesh.vertices))) print("num triangles: "+str(len(mesh.triangles))) print("num normals: "+str(len(mesh.normals)))
py
b40711ff85d1ca81be7a71f8ad9e6709a78945e1
# -*- coding: utf-8 -*- import json import requests import logging from oauthlib.oauth2.rfc6749.errors import TokenExpiredError from django.conf import settings from django.utils.safestring import mark_safe from dataloaderservices.views import CSVDataApi from django.contrib.auth.decorators import login_required from django.utils import timezone from django.urls import reverse from django.core.exceptions import ObjectDoesNotExist from django.http.response import HttpResponse, JsonResponse, HttpResponseServerError from django.shortcuts import redirect from django.views.generic.base import TemplateView from django.views.generic.edit import UpdateView, DeleteView from hydroshare.forms import HydroShareSettingsForm, HydroShareResourceDeleteForm from dataloaderinterface.models import SiteRegistration, SiteSensor from hydroshare.models import HydroShareAccount, HydroShareResource, OAuthToken from hydroshare_util import HydroShareNotFound, HydroShareHTTPException from hydroshare_util.adapter import HydroShareAdapter from hydroshare_util.auth import AuthUtil from hydroshare_util.resource import Resource from hydroshare_util.coverage import PointCoverage from leafpack.views import get_leafpack_csv from leafpack.models import LeafPack class LoginRequiredMixin(object): @classmethod def as_view(cls): return login_required(super(LoginRequiredMixin, cls).as_view()) class HydroShareResourceViewMixin: def __init__(self): self.request = None def get_hs_resource(self, resource): # type: (HydroShareResource) -> Resource """ Creates a 'hydroshare_util.Resource' object """ account = self.request.user.hydroshare_account token_json = account.get_token() auth_util = AuthUtil.authorize(token=token_json) # if the oauth access_token expires in less than a week, refresh the token seconds_in_week = 60*60*24*7 if token_json.get('expires_in', seconds_in_week) < seconds_in_week: try: auth_util.refresh_token() account.update_token(auth_util.get_token()) except Exception as e: print(e) hs_resource = Resource(auth_util.get_client()) hs_resource.resource_id = resource.ext_id return hs_resource class HydroShareResourceBaseView(UpdateView): slug_field = 'sampling_feature_code' def form_invalid(self, form): response = super(HydroShareResourceBaseView, self).form_invalid(form) if self.request.is_ajax(): return JsonResponse(form.errors, status=400) else: return response def get_object(self, queryset=None, **kwargs): site = SiteRegistration.objects.get(sampling_feature_code=self.kwargs[self.slug_field]) resource = None try: # Filter through resources that are visible; there should only be one, so pick the first resource = HydroShareResource.objects.filter(site_registration=site.registration_id, visible=True).first() except ObjectDoesNotExist: pass return resource def get_context_data(self, **kwargs): context = super(HydroShareResourceBaseView, self).get_context_data(**kwargs) context['date_format'] = settings.DATETIME_FORMAT return context def upload_hydroshare_files(self, resource): # type: (Resource) -> None hydroshare_resource = self.object or self.get_object() site = SiteRegistration.objects.get(hydroshare_resource=hydroshare_resource) # Grab files for uploading to hydroshare file_uploads = [] # if 'TS' is a keyword, add sensor data to file_uploads if 'TS' in hydroshare_resource.data_types: try: file_uploads += get_sensor_files(site) except Exception as e: logging.error(e) # if 'LP' is a keyword, add leaf pack data to file_uploads if 'LP' in hydroshare_resource.data_types: try: file_uploads += get_leafpack_files(site) except Exception as e: logging.error(e) if len(file_uploads): upload_hydroshare_resource_files(resource, file_uploads) def update_keywords(self, resource, hydroshare_resource=None, site=None): # type: (Resource, HydroShareResource, SiteRegistration) -> None # Clear the resources keywords resource.keywords = set() if site is None: site = SiteRegistration.objects.get(sampling_feature_code=self.kwargs[self.slug_field]) if hydroshare_resource is None: hydroshare_resource = HydroShareResource.objects.filter(site_registration=site.registration_id, visible=True).first() # type: HydroShareResource # Add 'WikiWatershed' keyword to all resources resource.keywords.add('WikiWatershed') # Check if 'TS' (Time Series) is a selected data type, and add variable names as keywords if True if 'TS' in hydroshare_resource.data_types: # Add 'EnviroDIY' keyword to resource if sharing time series data resource.keywords.add('EnviroDIY') sensors = SiteSensor.objects.filter(registration=site) if len(sensors): # Add sensor variable names as keywords for sensor in sensors: output = sensor.sensor_output if output is not None and output.variable_name is not None: resource.keywords.add(output.variable_name) # Add the 'Leaf Pack' keyword if sharing leaf pack experiment data if 'LP' in hydroshare_resource.data_types and len(site.leafpack_set.all()) > 0: resource.keywords.add('Leaf Pack') if hydroshare_resource.pk is not None: # if 'hydroshare_resource' has a primary key, then 'resource' has already been created # and it's 'update_keywords()' method can be invoked. resource.update_keywords() def get(self, request, *args, **kwargs): # # uncomment to force a hydroshare resource file update. # # Only do this for debugging purposes! # call_command('update_hydroshare_resource_files', '--force-update') return super(HydroShareResourceBaseView, self).get(request, args, kwargs) class HydroShareResourceCreateView(HydroShareResourceBaseView, HydroShareResourceViewMixin): template_name = 'hydroshare/hs_site_details.html' model = HydroShareResource object = None fields = '__all__' ABSTRACT_PROTO = u"The data contained in this resource were uploaded from the WikiWatershed Data Sharing Portal " \ u"– http://data.wikiwatershed.org. They were collected at a site named {site_name}. The full URL to access " \ u"this site in the WikiWatershed Data Sharing portal is: http://data.wikiwatershed.org/sites/{site_code}/." TITLE_PROTO = "Data from {site_name} uploaded from the WikiWatershed Data Sharing Portal" def generate_abstract(self, site): return self.ABSTRACT_PROTO.format(site_name=site.sampling_feature_name, site_code=site.sampling_feature_code) def generate_title(self, site): return self.TITLE_PROTO.format(site_name=site.sampling_feature_name) def get_context_data(self, **kwargs): context = super(HydroShareResourceCreateView, self).get_context_data(**kwargs) site = SiteRegistration.objects.get(sampling_feature_code=self.kwargs[self.slug_field]) initial_datatype = HydroShareSettingsForm.data_type_choices[0][0] # Cycle through resources to make sure they still exist on hydroshare.org resources = HydroShareResource.objects.filter(site_registration=site.pk, visible=False) for resource in resources: hs_resource = self.get_hs_resource(resource) try: # Basically, just make request to see if the resource still exists. This request can be anything. hs_resource.get_access_level() except HydroShareNotFound: resource.delete() except TokenExpiredError: pass context['site'] = site form = HydroShareSettingsForm(initial={'site_registration': site.pk, 'data_types': [initial_datatype], 'pause_sharing': False, 'title': self.generate_title(site), 'abstract': self.generate_abstract(site)}) form.fields['resources'].queryset = HydroShareResource.objects.filter(site_registration=site.pk, visible=False) context['form'] = form return context def create_resource(self, site, form): hs_account = self.request.user.hydroshare_account hydroshare_resource = HydroShareResource(site_registration=site, hs_account=hs_account, data_types=",".join(form.cleaned_data['data_types']), update_freq=form.cleaned_data['update_freq'], sync_type=form.cleaned_data['schedule_type'], is_enabled=True, title=form.cleaned_data['title'], last_sync_date=timezone.now()) token_json = hs_account.get_token() client = AuthUtil.authorize(token=token_json).get_client() resource = Resource(client) resource.owner = Resource.DEFAULT_OWNER resource.resource_type = Resource.COMPOSITE_RESOURCE resource.creator = '{0} {1}'.format(self.request.user.first_name, self.request.user.last_name) resource.abstract = form.cleaned_data['abstract'] resource.title = form.cleaned_data['title'] resource.public = True coverage = PointCoverage(name=site.sampling_feature_name, latitude=site.latitude, longitude=site.longitude) resource.add_coverage(coverage) # Add keywords to the resource self.update_keywords(resource, hydroshare_resource=hydroshare_resource, site=site) try: """ NOTE: The UUID returned when creating a resource on hydroshare.org is externally generated and should only be used as a reference to an external datasource that is not part of the ODM2DataSharingPortal ecosystem. """ hydroshare_resource.ext_id = resource.create() hydroshare_resource.title = resource.title except HydroShareHTTPException as e: return JsonResponse({"error": e.message, "message": "There was a problem with hydroshare.org and your resource was not created. You might want to see if www.hydroshare.org is working and try again later."}, status=e.status_code) hydroshare_resource.save() return resource def post(self, request, *args, **kwargs): """ Creates a resource in hydroshare.org using form data. """ form = HydroShareSettingsForm(request.POST) if form.is_valid(): site = SiteRegistration.objects.get(sampling_feature_code=self.kwargs[self.slug_field]) if form.cleaned_data['resources']: resource = form.cleaned_data['resources'] resource.visible = True resource.data_types = ",".join(form.cleaned_data['data_types']) resource.update_freq = form.cleaned_data['update_freq'] resource.sync_type = form.cleaned_data['schedule_type'] resource.is_enabled = True resource.last_sync_date = timezone.now() resource.title = form.cleaned_data['title'] resource.save() hs_resource = self.get_hs_resource(resource) hs_resource.update({'title': form.cleaned_data['title'], 'description': form.cleaned_data['abstract']}) else: hs_resource = self.create_resource(site, form) try: self.upload_hydroshare_files(hs_resource) except Exception as e: logging.error(e) success_url = reverse('site_detail', kwargs={'sampling_feature_code': site.sampling_feature_code}) if self.request.is_ajax(): return JsonResponse({'redirect': success_url}) else: return redirect(success_url) else: return self.form_invalid(form) class HydroShareResourceUpdateView(HydroShareResourceViewMixin, HydroShareResourceBaseView): template_name = 'hydroshare/hs_site_details.html' model = HydroShareResource slug_field = 'sampling_feature_code' slug_url_kwarg = 'hydroshare_settings_id' fields = '__all__' object = None def get_context_data(self, **kwargs): context = super(HydroShareResourceUpdateView, self).get_context_data(**kwargs) site = SiteRegistration.objects.get(sampling_feature_code=self.kwargs['sampling_feature_code']) resource = self.get_object() context['site'] = site context['resource'] = resource context['form'] = HydroShareSettingsForm(initial={ 'site_registration': site.pk, 'update_freq': resource.update_freq, 'schedule_type': resource.sync_type, 'pause_sharing': not resource.is_enabled, 'data_types': resource.data_types.split(",") }) context['delete_form'] = HydroShareResourceDeleteForm() hs_resource = self.get_hs_resource(resource) try: metadata = hs_resource.get_system_metadata(timeout=10.0) context['resource_is_published'] = metadata.get("published", False) # Update the title in case the owner changed it if 'resource_title' in metadata: resource.title = metadata['resource_title'] resource.save() except HydroShareNotFound: context['resource_not_found'] = True except requests.exceptions.Timeout: context['request_timeout'] = True finally: # if the resource was not found or the resource is published, provide the 'delete_resource_url' if context.get('resource_not_found', None) is True or context.get('resource_is_published', None): context['delete_resource_url'] = reverse('hydroshare:delete', kwargs={'sampling_feature_code': site.sampling_feature_code}) return context def post(self, request, *args, **kwargs): form = HydroShareSettingsForm(request.POST) if form.is_valid(): site = SiteRegistration.objects.get(pk=form.cleaned_data['site_registration']) hydroshare_resource = self.get_object() # type: HydroShareResource if 'update_files' in request.POST and hydroshare_resource.is_enabled: # get hydroshare resource info using hydroshare_util; this will get authentication info needed to # upload files to the resource. resource = self.get_hs_resource(hydroshare_resource) # type: Resource # Upload the most recent resource files try: # update hs_resource's keywords self.update_keywords(resource, hydroshare_resource=hydroshare_resource, site=site) # update the files self.upload_hydroshare_files(resource) except Exception as e: return JsonResponse({'error': e.message}, status=500) # update last sync date on resource hydroshare_resource.last_sync_date = timezone.now() else: hydroshare_resource.data_types = ",".join(form.cleaned_data['data_types']) hydroshare_resource.update_freq = form.cleaned_data['update_freq'] hydroshare_resource.sync_type = form.cleaned_data['schedule_type'] hydroshare_resource.is_enabled = not form.cleaned_data["pause_sharing"] hydroshare_resource.save() success_url = reverse('site_detail', kwargs={'sampling_feature_code': site.sampling_feature_code}) if self.request.is_ajax(): return JsonResponse({'redirect': success_url}) else: return redirect(success_url) else: response = self.form_invalid(form) return response class HydroShareResourceDeleteView(LoginRequiredMixin, HydroShareResourceViewMixin, DeleteView): model = HydroShareResource slug_field = 'sampling_feature_code' slug_url_kwarg = 'sampling_feature_code' def get_site_registration(self): try: code = self.kwargs.get('sampling_feature_code', '') site = SiteRegistration.objects.get(sampling_feature_code=code) except ObjectDoesNotExist: return None return site def get_object(self, queryset=None, **kwargs): site = kwargs['site'] resource = None try: # Find the resource that is currently visible; there should only be one. resource = HydroShareResource.objects.filter(site_registration=site.registration_id, visible=True).first() except ObjectDoesNotExist: pass return resource def get(self, request, *arg, **kwargs): site = self.get_site_registration() return redirect(reverse('site_detail', kwargs={'sampling_feature_code': site.sampling_feature_code})) def post(self, request, *args, **kwargs): site = self.get_site_registration() resource = self.get_object(site=site) form = HydroShareResourceDeleteForm(request.POST) if form.is_valid(): delete_external_resource = form.cleaned_data.get('delete_external_resource') if delete_external_resource is True: # delete resource in hydroshare.org if delete_external_resource is True hs_resource = self.get_hs_resource(resource) try: hs_resource.delete() except Exception as error: print(error) resource.delete() else: # Don't delete the resource, but instead turn visibility off. This is so the user can reconnect the # resource after disconnecting it. resource.visible = False resource.save() return redirect(reverse('site_detail', kwargs={'sampling_feature_code': site.sampling_feature_code})) class OAuthAuthorize(TemplateView): """handles the OAuth 2.0 authorization workflow with hydroshare.org""" def get(self, request, *args, **kwargs): if not request.user.is_authenticated(): return HttpResponseServerError('You are not logged in!') if 'code' in request.GET: try: token_dict = AuthUtil.authorize_client_callback(request) # type: dict auth_util = AuthUtil.authorize(token=token_dict) # type: AuthUtil except Exception as e: print('Authorizition failure: {}'.format(e)) return HttpResponse(mark_safe("<p>Error: Authorization failure!</p><p>{e}</p>".format(e=e))) client = auth_util.get_client() # type: HydroShareAdapter user_info = client.getUserInfo() print('\nuser_info: %s', json.dumps(user_info, indent=3)) try: # check if hydroshare account already exists account = HydroShareAccount.objects.get(ext_id=user_info['id']) except ObjectDoesNotExist: # if account does not exist, create a new one account = HydroShareAccount(is_enabled=True, ext_id=user_info['id']) if account.token: account.token.delete() account.save() # Make updates to datatbase account.token = OAuthToken.objects.create(**token_dict) account.user = request.user account.save() return redirect('user_account') elif 'error' in request.GET: return HttpResponseServerError(request.GET['error']) else: return AuthUtil.authorize_client(request) class OAuthRedirect(TemplateView): """ handles notifying a user they are being redirected, then handles the actual redirection When a user comes to this view, 'self.get()' checks for a 'redirect' value in the url parameters. - If the value is found, the user will be immediately redirected to www.hydroshare.org for client authorization. - If the value is NOT found, the user is sent to a page notifying them that they are about to be redirected. After a couple of seconds, they are redirected back to this view with the 'redirect' parameter contained in the url, and sent off to www.hydroshare.org. """ template_name = 'hydroshare/oauth_redirect.html' def get_context_data(self, **kwargs): context = super(OAuthRedirect, self).get_context_data(**kwargs) # Get the current scheme (http or https) scheme = self.request.is_secure() and "https" or "http" # Need to get the host since the host name can be 'data.envirodiy.org' or 'data.wikiwatershed.org' host = self.request.META.get('HTTP_HOST', None) # Build the url and add 'redirect' into the url params url = '{scheme}://{host}{url}?{params}'.format(scheme=scheme, host=host, url=reverse('hydroshare:oauth_redirect'), params='redirect=true') context['redirect_url'] = mark_safe(url) return context def get(self, request, *args, **kwargs): if 'redirect' in request.GET and request.GET['redirect'] == 'true': return AuthUtil.authorize_client(request) return super(OAuthRedirect, self).get(request, args, kwargs) # def get_site_files(site_registration): # site_sensors = SiteSensor.objects.filter(registration=site_registration.pk) # files = [] # for site_sensor in site_sensors: # filename, csv_file = CSVDataApi.get_csv_file(site_sensor.result_id) # files.append((filename, csv_file.getvalue())) # # leafpacks = LeafPack.objects.filter(site_registration=site_registration.pk) # for leafpack in leafpacks: # filename, csv_file = get_leafpack_csv(site_registration.sampling_feature_code, leafpack.id) # files.append((filename, csv_file)) # # return files def get_sensor_files(site_registration): queryset = SiteSensor.objects.filter(registration=site_registration.pk) files = [] for site_sensor in queryset: filename, csv_file = CSVDataApi.get_csv_file(site_sensor.result_id) files.append((filename, csv_file.getvalue())) return files def get_leafpack_files(site_registration): leafpacks = LeafPack.objects.filter(site_registration=site_registration.pk) files = [] for leafpack in leafpacks: filename, csv_file = get_leafpack_csv(site_registration.sampling_feature_code, leafpack.id) files.append((filename, csv_file)) return files def upload_hydroshare_resource_files(resource, files): # type: (Resource, [object]) -> None if isinstance(resource, JsonResponse): # This might happen if hydroshare isn't working... raise Exception(resource.content) for file_ in files: file_name = file_[0] content = file_[1] if '.csv' not in file_name: file_name += '.csv' resource.upload_file(file_name, content)
py
b40712100ce7a00b9643f2e38bb1bafc66801f59
#!/usr/bin/env python2 # Copyright (c) 2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test mulitple rpc user config option rpcauth # from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * import base64 try: import http.client as httplib except ImportError: import httplib try: import urllib.parse as urlparse except ImportError: import urlparse class HTTPBasicsTest (BitcoinTestFramework): def setup_nodes(self): return start_nodes(4, self.options.tmpdir) def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) initialize_chain(self.options.tmpdir) #Append rpcauth to alps.conf before initialization rpcauth = "rpcauth=rt:93648e835a54c573682c2eb19f882535$7681e9c5b74bdd85e78166031d2058e1069b3ed7ed967c93fc63abba06f31144" rpcauth2 = "rpcauth=rt2:f8607b1a88861fac29dfccf9b52ff9f$ff36a0c23c8c62b4846112e50fa888416e94c17bfd4c42f88fd8f55ec6a3137e" with open(os.path.join(self.options.tmpdir+"/node0", "alps.conf"), 'a') as f: f.write(rpcauth+"\n") f.write(rpcauth2+"\n") def run_test(self): ################################################## # Check correctness of the rpcauth config option # ################################################## url = urlparse.urlparse(self.nodes[0].url) #Old authpair authpair = url.username + ':' + url.password #New authpair generated via share/rpcuser tool rpcauth = "rpcauth=rt:93648e835a54c573682c2eb19f882535$7681e9c5b74bdd85e78166031d2058e1069b3ed7ed967c93fc63abba06f31144" password = "cA773lm788buwYe4g4WT+05pKyNruVKjQ25x3n0DQcM=" #Second authpair with different username rpcauth2 = "rpcauth=rt2:f8607b1a88861fac29dfccf9b52ff9f$ff36a0c23c8c62b4846112e50fa888416e94c17bfd4c42f88fd8f55ec6a3137e" password2 = "8/F3uMDw4KSEbw96U3CA1C4X05dkHDN2BPFjTgZW4KI=" authpairnew = "rt:"+password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = httplib.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status==401, False) conn.close() #Use new authpair to confirm both work headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = httplib.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status==401, False) conn.close() #Wrong login name with rt's password authpairnew = "rtwrong:"+password headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = httplib.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status==401, True) conn.close() #Wrong password for rt authpairnew = "rt:"+password+"wrong" headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = httplib.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status==401, True) conn.close() #Correct for rt2 authpairnew = "rt2:"+password2 headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = httplib.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status==401, False) conn.close() #Wrong password for rt2 authpairnew = "rt2:"+password2+"wrong" headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = httplib.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status==401, True) conn.close() if __name__ == '__main__': HTTPBasicsTest ().main ()
py
b40712d790ee74768d4a23b38754e417c22b20eb
#!/usr/bin/python3 -B # Copyright 2020 Josh Pieper, [email protected]. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import moteus.regression as regression DUT = regression.linear_regression class RouterTest(unittest.TestCase): def test_basic1(self): self.assertEqual(DUT([0, 2, 4], [0, 2, 4]), (0, 1)) self.assertEqual(DUT([0, 2, 4], [4, 2, 0]), (4, -1)) result = DUT([0, 2, 4], [0, 3, 5]) self.assertAlmostEqual(result[0], 0.16666666) self.assertAlmostEqual(result[1], 1.25) if __name__ == '__main__': unittest.main()
py
b407133c119fe0a91e9559a17d8650f79387dce3
# -*- coding: utf-8 -*- """ Constants with default values for plugin's configuration. We try to stick to "the magical 7 ± 2 number". https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two What does it mean? It means that we choose these values based on our mind capacity. And it is really hard to keep in mind more that 9 objects at the same time. These values can be changed in the ``setup.cfg`` file on a per-project bases, if you find them too strict or too permissive. """ from typing_extensions import Final # ======== # General: # ======== #: Minimum variable's name length. MIN_NAME_LENGTH: Final = 2 #: Maximum variable and module name length: MAX_NAME_LENGTH: Final = 45 #: Whether you control ones who use your code. I_CONTROL_CODE: Final = True #: Maximum amount of ``noqa`` comments per module. MAX_NOQA_COMMENTS: Final = 10 # guessed #: List of nested classes' names we allow to use. NESTED_CLASSES_WHITELIST: Final = ( 'Meta', # django forms, models, drf, etc 'Params', # factoryboy specific ) #: Domain names that are removed from variable names' blacklist. ALLOWED_DOMAIN_NAMES: Final = () #: Domain names that extends variable names' blacklist. FORBIDDEN_DOMAIN_NAMES: Final = () # =========== # Complexity: # =========== #: Maximum number of `return` statements allowed in a single function. MAX_RETURNS: Final = 5 # 7-2 #: Maximum number of local variables in a function. MAX_LOCAL_VARIABLES: Final = 5 # 7-2 #: Maximum number of expressions in a single function. MAX_EXPRESSIONS: Final = 9 # 7+2 #: Maximum number of arguments for functions or methods. MAX_ARGUMENTS: Final = 5 # 7-2 #: Maximum number of classes and functions in a single module. MAX_MODULE_MEMBERS: Final = 7 # 7 #: Maximum number of methods in a single class. MAX_METHODS: Final = 7 # the same as module members #: Maximum line complexity. MAX_LINE_COMPLEXITY: Final = 14 # 7 * 2, also almost guessed #: Maximum median module Jones complexity. MAX_JONES_SCORE: Final = 12 # guessed #: Maximum number of imports in a single module. MAX_IMPORTS: Final = 12 # guessed #: Maximum number of imported names in a single module. MAX_IMPORTED_NAMES: Final = 50 # guessed #: Maximum number of base classes. MAX_BASE_CLASSES: Final = 3 # guessed #: Maximum number of decorators. MAX_DECORATORS: Final = 5 # 7-2 #: Maximum number of same string usage in code. MAX_STRING_USAGES: Final = 3 # guessed #: Maximum number of ``await`` expressions for functions or methods. MAX_AWAITS: Final = 5 # the same as returns #: Maximum amount of ``try`` node body length. MAX_TRY_BODY_LENGTH: Final = 1 # best practice #: Maximum amount of same expressions per module. MAX_MODULE_EXPRESSIONS: Final = 7 # the same as module elements #: Maximum amount of same expressions per function. MAX_FUNCTION_EXPRESSIONS: Final = 4 # guessed #: Maximum number of ``assert`` statements in a function. MAX_ASSERTS: Final = 5 # 7-2 #: Maximum number of access level in an expression. MAX_ACCESS_LEVEL: Final = 4 # guessed #: Maximum number of public attributes in a single class. MAX_ATTRIBUTES: Final = 6 # guessed #: Maximum amount of cognitive complexity per function. MAX_COGNITIVE_SCORE: Final = 12 # based on this code statistics #: Maximum amount of average cognitive complexity per module. MAX_COGNITIVE_AVERAGE: Final = 8 # based on this code statistics #: Maximum number of call chains. MAX_CALL_LEVEL: Final = 3 #: Maximum number of nested annotations. MAX_ANN_COMPLEXITY: Final = 3 #: Maximum number of names that can be imported from module. MAX_IMPORT_FROM_MEMBERS: Final = 8 # guessed
py
b40713809f7d261b015fb60f8e65d24bfc992153
import viola import numpy as np import os HERE = os.path.abspath(os.path.dirname(__file__)) delly = viola.read_vcf(os.path.join(HERE, 'data', "test.merge.delly.vcf"), variant_caller="delly") manta = viola.read_vcf(os.path.join(HERE, 'data', "test.merge.manta.vcf"), variant_caller="manta") gridss = viola.read_vcf(os.path.join(HERE, 'data', "test.merge.gridss.vcf"), variant_caller="gridss") lumpy = viola.read_vcf(os.path.join(HERE, 'data', "test.merge.lumpy.vcf"), variant_caller="lumpy") def test_merge_to_vcf_like(): merged = viola.merge([manta, gridss, delly, lumpy], integration=True) merged = merged.filter('supportingcallercount > 1') merged.to_vcf(os.path.join(HERE, 'data/output_merged.vcf'))
py
b407140a815b053a4ed75b7d3186eeefc6ffb990
import sys from PyQt5.QtWidgets import * from PyQt5.QAxContainer import * from PyQt5.QtCore import * import time import pandas as pd import sqlite3 TR_REQ_TIME_INTERVAL = 0.2 class Kiwoom(QAxWidget): def __init__(self): super().__init__() self._create_kiwoom_instance() self._set_signal_slots() def _create_kiwoom_instance(self): self.setControl("KHOPENAPI.KHOpenAPICtrl.1") def _set_signal_slots(self): self.OnEventConnect.connect(self._event_connect) self.OnReceiveTrData.connect(self._receive_tr_data) self.OnReceiveChejanData.connect(self._receive_chejan_data) def comm_connect(self): self.dynamicCall("CommConnect()") self.login_event_loop = QEventLoop() self.login_event_loop.exec_() def _event_connect(self, err_code): if err_code == 0: print("connected") else: print("disconnected") self.login_event_loop.exit() def get_code_list_by_market(self, market): code_list = self.dynamicCall("GetCodeListByMarket(QString)", market) code_list = code_list.split(';') return code_list[:-1] def get_master_code_name(self, code): code_name = self.dynamicCall("GetMasterCodeName(QString)", code) return code_name def get_connect_state(self): ret = self.dynamicCall("GetConnectState()") return ret def get_login_info(self, tag): ret = self.dynamicCall("GetLoginInfo(QString)", tag) return ret def set_input_value(self, id, value): self.dynamicCall("SetInputValue(QString, QString)", id, value) def comm_rq_data(self, rqname, trcode, next, screen_no): self.dynamicCall("CommRqData(QString, QString, int, QString)", rqname, trcode, next, screen_no) self.tr_event_loop = QEventLoop() self.tr_event_loop.exec_() def _comm_get_data(self, code, real_type, field_name, index, item_name): ret = self.dynamicCall("CommGetData(QString, QString, QString, int, QString)", code, real_type, field_name, index, item_name) return ret.strip() def _get_repeat_cnt(self, trcode, rqname): ret = self.dynamicCall("GetRepeatCnt(QString, QString)", trcode, rqname) return ret def send_order(self, rqname, screen_no, acc_no, order_type, code, quantity, price, hoga, order_no): self.dynamicCall("SendOrder(QString, QString, QString, int, QString, int, int, QString, QString)", [rqname, screen_no, acc_no, order_type, code, quantity, price, hoga, order_no]) def get_chejan_data(self, fid): ret = self.dynamicCall("GetChejanData(int)", fid) return ret def get_server_gubun(self): ret = self.dynamicCall("KOA_Functions(QString, QString)", "GetServerGubun", "") return ret def _receive_chejan_data(self, gubun, item_cnt, fid_list): print(gubun) print(self.get_chejan_data(9203)) print(self.get_chejan_data(302)) print(self.get_chejan_data(900)) print(self.get_chejan_data(901)) def _receive_tr_data(self, screen_no, rqname, trcode, record_name, next, unused1, unused2, unused3, unused4): if next == '2': self.remained_data = True else: self.remained_data = False if rqname == "opt10081_req": self._opt10081(rqname, trcode) elif rqname == "opw00001_req": self._opw00001(rqname, trcode) elif rqname == "opw00018_req": self._opw00018(rqname, trcode) try: self.tr_event_loop.exit() except AttributeError: pass @staticmethod def change_format(data): strip_data = data.lstrip('-0') if strip_data == '' or strip_data == '.00': strip_data = '0' format_data = format(int(strip_data), ',d') if data.startswith('-'): format_data = '-' + format_data return format_data @staticmethod def change_format2(data): strip_data = data.lstrip('-0') if strip_data == '': strip_data = '0' if strip_data.startswith('.'): strip_data = '0' + strip_data if data.startswith('-'): strip_data = '-' + strip_data return strip_data def _opw00001(self, rqname, trcode): d2_deposit = self._comm_get_data(trcode, "", rqname, 0, "d+2추정예수금") self.d2_deposit = Kiwoom.change_format(d2_deposit) def _opt10081(self, rqname, trcode): data_cnt = self._get_repeat_cnt(trcode, rqname) for i in range(data_cnt): date = self._comm_get_data(trcode, "", rqname, i, "일자") open = self._comm_get_data(trcode, "", rqname, i, "시가") high = self._comm_get_data(trcode, "", rqname, i, "고가") low = self._comm_get_data(trcode, "", rqname, i, "저가") close = self._comm_get_data(trcode, "", rqname, i, "현재가") volume = self._comm_get_data(trcode, "", rqname, i, "거래량") self.ohlcv['date'].append(date) self.ohlcv['open'].append(int(open)) self.ohlcv['high'].append(int(high)) self.ohlcv['low'].append(int(low)) self.ohlcv['close'].append(int(close)) self.ohlcv['volume'].append(int(volume)) def reset_opw00018_output(self): self.opw00018_output = {'single': [], 'multi': []} def _opw00018(self, rqname, trcode): # single data total_purchase_price = self._comm_get_data(trcode, "", rqname, 0, "총매입금액") total_eval_price = self._comm_get_data(trcode, "", rqname, 0, "총평가금액") total_eval_profit_loss_price = self._comm_get_data(trcode, "", rqname, 0, "총평가손익금액") total_earning_rate = self._comm_get_data(trcode, "", rqname, 0, "총수익률(%)") estimated_deposit = self._comm_get_data(trcode, "", rqname, 0, "추정예탁자산") self.opw00018_output['single'].append(Kiwoom.change_format(total_purchase_price)) self.opw00018_output['single'].append(Kiwoom.change_format(total_eval_price)) self.opw00018_output['single'].append(Kiwoom.change_format(total_eval_profit_loss_price)) total_earning_rate = Kiwoom.change_format(total_earning_rate) if self.get_server_gubun(): total_earning_rate = float(total_earning_rate) / 100 total_earning_rate = str(total_earning_rate) self.opw00018_output['single'].append(total_earning_rate) self.opw00018_output['single'].append(Kiwoom.change_format(estimated_deposit)) # multi data rows = self._get_repeat_cnt(trcode, rqname) for i in range(rows): name = self._comm_get_data(trcode, "", rqname, i, "종목명") quantity = self._comm_get_data(trcode, "", rqname, i, "보유수량") purchase_price = self._comm_get_data(trcode, "", rqname, i, "매입가") current_price = self._comm_get_data(trcode, "", rqname, i, "현재가") eval_profit_loss_price = self._comm_get_data(trcode, "", rqname, i, "평가손익") earning_rate = self._comm_get_data(trcode, "", rqname, i, "수익률(%)") quantity = Kiwoom.change_format(quantity) purchase_price = Kiwoom.change_format(purchase_price) current_price = Kiwoom.change_format(current_price) eval_profit_loss_price = Kiwoom.change_format(eval_profit_loss_price) earning_rate = Kiwoom.change_format2(earning_rate) self.opw00018_output['multi'].append([name, quantity, purchase_price, current_price, eval_profit_loss_price, earning_rate]) if __name__ == "__main__": app = QApplication(sys.argv) kiwoom = Kiwoom() kiwoom.comm_connect() kiwoom.reset_opw00018_output() account_number = kiwoom.get_login_info("ACCNO") account_number = account_number.split(';')[0] kiwoom.set_input_value("계좌번호", account_number) kiwoom.comm_rq_data("opw00018_req", "opw00018", 0, "2000") print(kiwoom.opw00018_output['single']) print(kiwoom.opw00018_output['multi'])
py
b4071575c4fee02f0a1b6c26881a7e0ee19ff355
import mindspore import numpy as np from mindspore import Tensor, nn, ops def compute_flops(module, inp, out): if isinstance(module, (nn.Conv2d, nn.Conv1d, nn.Conv3d)): return compute_Conv2d_flops(module, inp, out) elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm1d, nn.BatchNorm3d)): return compute_BatchNorm2d_flops(module, inp, out) elif isinstance(module, (nn.AvgPool2d, nn.MaxPool2d, nn.MaxPool1d, nn.AvgPool1d, mindspore.ops.AdaptiveAvgPool2D)): return compute_Pool2d_flops(module, inp, out) elif isinstance(module, (nn.ReLU, nn.ReLU6, nn.PReLU, nn.ELU, nn.LeakyReLU, nn.Sigmoid)): return compute_ReLU_flops(module, inp, out) elif isinstance(module, nn.Dense): return compute_Linear_flops(module, inp, out) else: print(f"[Flops]: {type(module).__name__} is not supported!") return 0 pass """ consume the flops of conv """ def compute_Conv2d_flops(module: nn.Cell, inp: Tensor, out: Tensor): assert isinstance(module, nn.Conv2d) assert len(inp.shape) == 4 and len(inp.shape) == len(out.shape) batch_size = inp.shape[0] in_c = inp.shape[1] k_h, k_w = module.kernel_size out_c, out_h, out_w = out.shape[1:] group = module.group filters_per_channel = out_c // group conv_per_position_flops = k_h * k_w * in_c * filters_per_channel active_elements_count = batch_size * out_h * out_w total_conv_flops = conv_per_position_flops * active_elements_count bias_flops = 0 if module.bias is not None: bias_flops = out_c * active_elements_count total_flops = total_conv_flops + bias_flops return total_flops def compute_BatchNorm2d_flops(module: nn.Cell, inp: Tensor, out: Tensor): assert isinstance(module, nn.BatchNorm2d) assert len(inp.shape) == 4 and len(inp.shape) == len(out.shape) # in_c, in_h, in_w = inp.shape[1:] batch_flops = np.prod(inp.shape) if module.requires_grad: batch_flops *= 2 return batch_flops def compute_ReLU_flops(module: nn.Cell, inp: Tensor, out: Tensor): assert isinstance(module, (nn.ReLU, nn.ReLU6, nn.PReLU, nn.ELU, nn.LeakyReLU, ops.ReLU)) batch_size = inp.shape[0] active_elements_count = batch_size for s in inp.shape[1:]: active_elements_count *= s return active_elements_count def compute_Pool2d_flops(module: nn.Cell, inp: Tensor, out: Tensor): assert isinstance(module, nn.MaxPool2d) or isinstance(module, nn.AvgPool2d) assert len(inp.shape) == 4 and len(inp.shape) == len(out.shape) return np.prod(inp.shape) def compute_Linear_flops(module, inp, out): assert isinstance(module, nn.Dense) assert len(inp.shape) == 2 and len(out.shape) == 2 batch_size = inp.shape[0] return batch_size * inp.shape[1] * out.shape[1] if __name__ == '__main__': def conv(in_channels, out_channels, kernel_size, stride=1, padding=0, pad_mode="valid", has_bias=True): return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, has_bias=has_bias, pad_mode=pad_mode) channel = 3 # net = conv(channel, 64, 11, stride=4, pad_mode="same", has_bias=True) net = conv(64, 128, 5, pad_mode="same", has_bias=True) input = np.ones([3, 244, 244]).reshape((1, 3, 244, 244)) input = Tensor(np.array(input), dtype=mindspore.int32) print(compute_Conv2d_flops(net, input, input))
py
b407163a8cc108690c2b6dc2673fd03d3a2bf0ac
################################################################################ # Example : perform conversion from tflearn checkpoint format to TensorFlow # protocol buffer (.pb) binary format files (for import into other tools) # Copyright (c) 2019 Toby Breckon, Durham University, UK # License : https://github.com/tobybreckon/fire-detection-cnn/blob/master/LICENSE # Acknowledgements: some portions - tensorflow tutorial examples and URL below ################################################################################ import glob,os ################################################################################ # import tensorflow api import tensorflow as tf from tensorflow.python.framework import graph_util from tensorflow.python.framework.graph_util import convert_variables_to_constants from tensorflow.tools.graph_transforms import TransformGraph from tensorflow.python.tools import optimize_for_inference_lib ################################################################################ # import tflearn api import tflearn from tflearn.layers.core import * from tflearn.layers.conv import * from tflearn.layers.normalization import * from tflearn.layers.estimator import regression ################################################################################ # convert a loaded model definition by loading a checkpoint from a given path # retaining the network between the specified input and output layers # outputs to pbfilename as a binary .pb protocol buffer format files # e.g. for FireNet # model = construct_firenet (224, 224, False) # path = "models/FireNet/firenet"; # path to tflearn checkpoint including filestem # input_layer_name = 'InputData/X' # input layer of network # output_layer_name= 'FullyConnected_2/Softmax' # output layer of network # pbfilename = "firenet.pb" # output pb format filename def convert_to_pb(model, path, input_layer_name, output_layer_name, pbfilename, verbose=False): model.load(path,weights_only=True) print("[INFO] Loaded CNN network weights from " + path + " ...") print("[INFO] Re-export model ...") del tf.get_collection_ref(tf.GraphKeys.TRAIN_OPS)[:] model.save("model-tmp.tfl") # taken from: https://stackoverflow.com/questions/34343259/is-there-an-example-on-how-to-generate-protobuf-files-holding-trained-tensorflow print("[INFO] Re-import model ...") input_checkpoint = "model-tmp.tfl" saver = tf.train.import_meta_graph(input_checkpoint + '.meta', True) sess = tf.Session(); saver.restore(sess, input_checkpoint) # print out all layers to find name of output if (verbose): op = sess.graph.get_operations() [print(m.values()) for m in op][1] print("[INFO] Freeze model to " + pbfilename + " ...") # freeze and removes nodes which are not related to feedforward prediction minimal_graph = convert_variables_to_constants(sess, sess.graph_def, [output_layer_name]) graph_def = optimize_for_inference_lib.optimize_for_inference(minimal_graph, [input_layer_name], [output_layer_name], tf.float32.as_datatype_enum) graph_def = TransformGraph(graph_def, [input_layer_name], [output_layer_name], ["sort_by_execution_order"]) with tf.gfile.GFile(pbfilename, 'wb') as f: f.write(graph_def.SerializeToString()) # write model to logs dir so we can visualize it as: # tensorboard --logdir="logs" if (verbose): writer = tf.summary.FileWriter('logs', graph_def) writer.close() # tidy up tmp files for f in glob.glob("model-tmp.tfl*"): os.remove(f) os.remove('checkpoint') ################################################################################
py
b407166447245ae638d6f199bbbebea820b4d6e3
src = Split(''' vfs_test.c ''') component = aos_component('vfs_test', src) component.add_comp_deps('kernel/vfs') component.add_cflags('-Wall') component.add_cflags('-Werror')
py
b4071680b8a174359da5ce6a4d605b2e8ae641d3
# -*- coding: utf-8 -*- ''' FanFilm Add-on Copyright (C) 2015 lambda This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import re from resources.lib.libraries import client def resolve(url): try: url = url.replace('/embed-', '/') url = re.compile('//.+?/([\w]+)').findall(url)[0] url = 'http://thefile.me/plugins/mediaplayer/site/_embed.php?u=%s' % url result = client.request(url, mobile=True) url = re.compile('file *: *"(http.+?)"').findall(result)[-1] return url except: return
py
b40716c18d659e28dc8e0f45a65b6ec852387514
import subprocess proc = subprocess.Popen(["nslookup", "-q=aaaa", "reddit.com"], stdout=subprocess.PIPE, bufsize=1) print("\nBELOW\n") # print (str(proc.communicate())[2:-1])
py
b40716e3ccea22c864c2938507e8322b7bc633da
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Apr 16 15:56:23 2021 @author: anwar """ import json import os from instance.Node import Node from instance.Container import Container from instance.Instance import Instance from extract_data import GetAllData def createInstance(Instance): if (os.path.getsize(r"instanceExamples/data.json") == 0): GetAllData() f = open(r"instanceExamples/data.json") data = json.load(f) for i in data['nodes']: n=Node(i['id'],i['cluster_id'],i['Manager Status'],i['name'],i['activated'],i['max_power_consumption'],i['Maxmem']) Instance.nodes.append(n) for i in data['containers']: container=Container(i['id'],i['name'],i['image'],i['dependencies'],i['placements'],i['power_consumption'],i['average_power_consumption_per_minute'],i['priority'],i['cpu_usage'],i['mem_usage']) Instance.containers.append(container) Instance.currentState=data['currentState'] Instance.objectives=data['objectives'] Instance.get_valid_nodes() Instance.getImages() Instance.get_alldependencies() return Instance # instance=Instance() # Instance=createInstance(instance) # objs=[] # for ob in Instance.objectives: # for key,value in enumerate((ob)): # print(ob[value]) # objs.append(value)
py
b407173a018f15b1b06f11bb6ca2b06549215e43
# Generated by Django 3.1.2 on 2021-08-10 06:48 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('video_app', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='video', name='name', ), ]
py
b407174c152647bdd015972c368ffe1b0ac51796
# Brian Henson # this file defines a wrapper object around the Adafruit PWM hat that is designed to be thread-safe. # i don't know exactly how long the "set pwm" operation takes, its probably instant, but there should # be zero downside and only upside to making it thread-safe, since it is shared hardware. # debug mode switch that enables/disables actual hardware PWM_WRAPPER_USE_HARDWARE = True # debug mode switch that enables/disables print statements (will absolutely flood the logs tho, so dont) PWM_WRAPPER_DEBUG_PRINTS = False # TODO: add "logging" module? import threading if PWM_WRAPPER_USE_HARDWARE: import Adafruit_PCA9685 # example: pwm_L = pwm_wrapper(PWM_ADDR_L, PWM_FREQ) class Pwm_Wrapper(object): def __init__(self, addr, freq): self.address = addr self.freq = freq if PWM_WRAPPER_USE_HARDWARE: self.pwm_adafruit = Adafruit_PCA9685.PCA9685(address=addr) self.pwm_adafruit.set_pwm_freq(freq) else: self.pwm_adafruit = None # the lock object: only one thread can "have" the lock at a time, others will wait till its free self._lock = threading.Lock() def set_pwm(self, channel, on, off): # following info comes from the docs: # channel: The channel that should be updated with the new values (0..15) # on: The tick (between 0..4095) when the signal should transition from low to high # off:The tick (between 0..4095) when the signal should transition from high to low # we never have any use for changing the on-point, we only care about the duty cycle... # TODO: eliminate the "on" arg? # take the lock, set pwm, and release the lock with self._lock: if PWM_WRAPPER_DEBUG_PRINTS: print("pwm=" + str(self.address) + " channel=" + str(channel) + " set to val=" + str(off)) if PWM_WRAPPER_USE_HARDWARE: self.pwm_adafruit.set_pwm(channel, on, off) pass pass pass
py
b40717b61f203753966eb81c38dda604537c45de
# Copyright MelisaDev 2022 - Present # Full MIT License can be found in `LICENSE.txt` at the project root. from __future__ import annotations from dataclasses import dataclass from typing import Dict, Any from ...utils.api_model import APIModelBase from ...utils.types import APINullable, UNDEFINED from ...utils.snowflake import Snowflake from ...utils.timestamp import Timestamp @dataclass(repr=False) class ThreadMetadata(APIModelBase): """ Represents a Discord Thread Metadata object Attributes ---------- archived: :class:`bool` Whether the thread is archived auto_archive_duration: :class:`int` Duration in minutes to automatically archive the thread after recent activity, can be set to: 60, 1440, 4320, 10080 archive_timestamp: :class:`~melisa.utils.timestamp.Timestamp` Timestamp when the thread's archive status was last changed, used for calculating recent activity locked: :class:`bool` Whether the thread is locked; when a thread is locked, only users with ``MANAGE_THREADS`` can unarchive it invitable: Optional[:class:`bool`] Whether non-moderators can add other non-moderators to a thread; only available on private threads create_timestamp: Optional[:class:`~melisa.utils.timestamp.Timestamp`] Timestamp when the thread was created; only populated for threads created after 2022-01-09 """ archived: bool auto_archive_duration: int archive_timestamp: Timestamp locked: bool invitable: APINullable[bool] = None create_timestamp: APINullable[Timestamp] = None @classmethod def from_dict(cls, data: Dict[str, Any]): """Generate a thread metadata object from the given data. Parameters ---------- data: :class:`dict` The dictionary to convert into thread metadata. """ self: ThreadMetadata = super().__new__(cls) self.archived = data["archived"] self.auto_archive_duration = data["auto_archive_duration"] self.archive_timestamp = Timestamp.parse(data["archive_timestamp"]) self.locked = data["locked"] self.invitable = data.get("invitable", None) if data.get("create_timestamp"): self.create_timestamp = Timestamp.parse(data["create_timestamp"]) else: self.create_timestamp = None return self @dataclass(repr=False) class ThreadMember(APIModelBase): """Represents a Discord Thread Member object Attributes ---------- id: Optional[:class:`~melisa.utils.snowflake.Snowflake`] The id of the thread user_id: Optional[:class:`~melisa.utils.snowflake.Snowflake`] The id of the user join_timestamp: :class:`~melisa.utils.timestamp.Timestamp` The time the current user last joined the thread flags: :class:`int` Any user-thread settings, currently only used for notifications """ join_timestamp: Timestamp flags: int id: APINullable[Snowflake] = None user_id: APINullable[Snowflake] = None @classmethod def from_dict(cls, data: Dict[str, Any]): """Generate a thread member object from the given data. Parameters ---------- data: :class:`dict` The dictionary to convert into thread member. """ self: ThreadMember = super().__new__(cls) self.archived = data["flags"] self.archive_timestamp = Timestamp.parse(data["join_timestamp"]) self.id = Snowflake(data["id"]) if data.get("id") is not None else None self.user_id = ( Snowflake(data["user_id"]) if data.get("user_id") is not None else None ) return self
py
b40717edd250bb38d4c23a2888247c94d4c1fdfa
import sys import numpy as np import pytest import theano import theano.tensor from tests import unittest_tools as utt from theano import config, gof from theano.compile import debugmode def test_debugmode_basic(): x = theano.tensor.dvector() f = theano.function([x], ((2.0 * x) + 7) / 2.0, mode=debugmode.DebugMode()) f([1, 2]) class BROKEN_ON_PURPOSE_Add(gof.Op): __props__ = ("py_offset",) def __init__(self, py_offset): gof.Op.__init__(self) self.py_offset = py_offset def make_node(self, a, b): a = theano.tensor.as_tensor_variable(a) b = theano.tensor.as_tensor_variable(b) assert a.type.dtype == "float64" assert a.type.dtype == b.type.dtype assert a.type.ndim == 1 r = gof.Apply(self, [a, b], [a.type()]) return r def perform(self, node, inp, out_): a, b = inp (out,) = out_ z = a + b # ERROR TO ADD THIS CRAPPY OFFSET if self.py_offset: out[0] = z + 0.5 else: out[0] = z def c_code_cache_version(self): return (1,) def c_code(self, node, name, inp, out, sub): a, b = inp (z,) = out return """ if (PyArray_NDIM(%(a)s) != 1) {PyErr_SetString(PyExc_NotImplementedError, "rank(a) != 1"); %(fail)s;} if (PyArray_NDIM(%(b)s) != 1) {PyErr_SetString(PyExc_NotImplementedError, "rank(b) != 1"); %(fail)s;} if (PyArray_DESCR(%(a)s)->type_num != NPY_DOUBLE) {PyErr_SetString(PyExc_NotImplementedError, "a dtype not NPY_DOUBLE"); %(fail)s;} if (PyArray_DESCR(%(b)s)->type_num != NPY_DOUBLE) {PyErr_SetString(PyExc_NotImplementedError, "b's dtype not NPY_DOUBLE"); %(fail)s;} if (PyArray_DIMS(%(a)s)[0] != PyArray_DIMS(%(b)s)[0]) {PyErr_SetString(PyExc_NotImplementedError, "a and b have different lengths"); %(fail)s;} if ((!%(z)s) || (PyArray_DIMS(%(z)s)[0] != PyArray_DIMS(%(b)s)[0]) ) { {Py_XDECREF(%(z)s);} npy_intp dims[] = {0}; dims[0] = PyArray_DIMS(%(b)s)[0]; %(z)s = (PyArrayObject*) PyArray_SimpleNew(1, dims, PyArray_DESCR(%(b)s)->type_num); } { for (npy_intp m = 0; m < PyArray_DIMS(%(z)s)[0]; ++m) { ((double*)PyArray_GETPTR1(%(z)s, m))[0] = 0.5 + ((double*)PyArray_GETPTR1(%(a)s, m))[0] + ((double*)PyArray_GETPTR1(%(b)s, m))[0] ; } } """ % dict( locals(), **sub ) # inconsistent is a invalid op, whose perform and c_code do not match inconsistent = BROKEN_ON_PURPOSE_Add(False) # off_by_half is a good op, that is different from theano.sparse.sd_csc off_by_half = BROKEN_ON_PURPOSE_Add(True) class WeirdBrokenOp(gof.Op): """ This op can be inplace if behaviour is 'times1_inplace' This op can be destructive if behaviour is 'times2_inplace' In both cases, it does not set the destroy_map or view_map correctly so it should raise an error in DebugMode. """ __props__ = ("behaviour",) def __init__(self, behaviour): gof.Op.__init__(self) self.behaviour = behaviour def make_node(self, a): a_ = theano.tensor.as_tensor_variable(a) r = gof.Apply(self, [a_], [a_.type()]) return r def dontuse_perform(self, node, inp, out_): (a,) = inp (out,) = out_ if self.behaviour == "times2": out[0] = a * 2 elif self.behaviour == "times2_inplace": out[0] = a out[0] *= 2 elif self.behaviour == "times1": out[0] = a * 1 elif self.behaviour == "times1_inplace": out[0] = a else: raise ValueError(self.behaviour) def c_code_cache_version(self): return (1,) def c_code(self, node, name, inp, out, sub): (a,) = inp (z,) = out if "inplace" in self.behaviour: z_code = """ {Py_XDECREF(%(z)s);} Py_INCREF(%(a)s); %(z)s = %(a)s; """ else: z_code = """ {Py_XDECREF(%(z)s);} %(z)s = (PyArrayObject*) PyArray_SimpleNew(1, PyArray_DIMS(%(a)s), PyArray_DESCR(%(a)s)->type_num); """ prep_vars = """ //the output array has size M x N npy_intp M = PyArray_DIMS(%(a)s)[0]; npy_intp Sa = PyArray_STRIDES(%(a)s)[0] / PyArray_DESCR(%(a)s)->elsize; npy_intp Sz = PyArray_STRIDES(%(z)s)[0] / PyArray_DESCR(%(z)s)->elsize; npy_double * Da = (npy_double*)PyArray_BYTES(%(a)s); npy_double * Dz = (npy_double*)PyArray_BYTES(%(z)s); //clear the output array for (npy_intp m = 0; m < M; ++m) { """ if self.behaviour == "times2": behaviour = " Dz[m * Sz] = 2 * Da[m * Sa]; " # out[0] = a * 2 elif self.behaviour == "times2_inplace": # out[0] = a # out[0] *= 2 behaviour = " Dz[m * Sz] = 2 * Da[m * Sa]; " elif self.behaviour == "times1": # out[0] = a * 1 behaviour = " Dz[m * Sz] = Da[m * Sa]; " elif self.behaviour == "times1_inplace": # out[0] = a behaviour = "" else: raise ValueError(self.behaviour) prep_vars2 = """ } """ total = (z_code + prep_vars + behaviour + prep_vars2) % dict(locals(), **sub) return total wb2i = WeirdBrokenOp("times2_inplace") wb2 = WeirdBrokenOp("times2") wb1i = WeirdBrokenOp("times1_inplace") wb1 = WeirdBrokenOp("times1") @pytest.mark.skipif( not theano.config.cxx, reason="G++ not available, so we need to skip this test." ) def test_badthunkoutput(): # Check if the c and python code is consistent. a = theano.tensor.dvector() b = theano.tensor.dvector() f_good = theano.function( [a, b], off_by_half(a, b), mode=debugmode.DebugMode(check_c_code=theano.config.cxx), ) f_inconsistent = theano.function( [a, b], inconsistent(a, b), mode=debugmode.DebugMode(check_c_code=theano.config.cxx), ) # this should evaluate with no error f_good([1.0, 2.0, 3.0], [2, 3, 4]) with pytest.raises(debugmode.BadThunkOutput) as einfo: f_inconsistent([1.0, 2.0, 3.0], [2, 3, 4]) assert einfo.value.r.owner.op is inconsistent def test_badoptimization(): @gof.local_optimizer([theano.tensor.add]) def insert_broken_add(node): if node.op == theano.tensor.add: return [off_by_half(*node.inputs)] return False edb = gof.EquilibriumDB() edb.register("insert_broken_add", insert_broken_add, "all") opt = edb.query("+all") a = theano.tensor.dvector() b = theano.tensor.dvector() f = theano.function([a, b], a + b, mode=debugmode.DebugMode(optimizer=opt)) with pytest.raises(debugmode.BadOptimization) as einfo: f( [1.0, 2.0, 3.0], [2, 3, 4], ) assert str(einfo.value.reason) == "insert_broken_add" def test_badoptimization_opt_err(): # This variant of test_badoptimization() replace the working code # with a new apply node that will raise an error. @gof.local_optimizer([theano.tensor.add]) def insert_bigger_b_add(node): if node.op == theano.tensor.add: inputs = list(node.inputs) if inputs[-1].owner is None: inputs[-1] = theano.tensor.concatenate((inputs[-1], inputs[-1])) return [node.op(*inputs)] return False @gof.local_optimizer([theano.tensor.add]) def insert_bad_dtype(node): if node.op == theano.tensor.add: inputs = list(node.inputs) if inputs[-1].owner is None: return [node.outputs[0].astype("float32")] return False edb = gof.EquilibriumDB() edb.register("insert_bigger_b_add", insert_bigger_b_add, "all") opt = edb.query("+all") edb2 = gof.EquilibriumDB() edb2.register("insert_bad_dtype", insert_bad_dtype, "all") opt2 = edb2.query("+all") a = theano.tensor.dvector() b = theano.tensor.dvector() f = theano.function([a, b], a + b, mode=debugmode.DebugMode(optimizer=opt)) with pytest.raises(ValueError, match=r"insert_bigger_b_add"): f( [1.0, 2.0, 3.0], [2, 3, 4], ) # Test that opt that do an illegal change still get the error from gof. with pytest.raises( theano.gof.toolbox.BadOptimization, match=r"insert_bad_dtype" ) as einfo: with theano.change_flags(on_opt_error="raise"): f2 = theano.function( [a, b], a + b, mode=debugmode.DebugMode(optimizer=opt2, stability_patience=1), ) f2( [1.0, 2.0, 3.0], [2, 3, 4], ) # Test that we can reraise the error with an extended message with pytest.raises(theano.gof.toolbox.BadOptimization): e = einfo.value new_e = e.__class__("TTT" + str(e)) exc_type, exc_value, exc_trace = sys.exc_info() exc_value = new_e raise exc_value.with_traceback(exc_trace) def test_stochasticoptimization(): # this optimization alternates between triggering and not triggering. last_time_replaced = [False] @gof.local_optimizer([theano.tensor.add]) def insert_broken_add_sometimes(node): if node.op == theano.tensor.add: last_time_replaced[0] = not last_time_replaced[0] if last_time_replaced[0]: return [off_by_half(*node.inputs)] return False edb = gof.EquilibriumDB() edb.register("insert_broken_add_sometimes", insert_broken_add_sometimes, "all") opt = edb.query("+all") a = theano.tensor.dvector() b = theano.tensor.dvector() with pytest.raises(debugmode.StochasticOrder): theano.function( [a, b], theano.tensor.add(a, b), mode=debugmode.DebugMode( optimizer=opt, check_c_code=True, stability_patience=max(2, config.DebugMode.patience), ), ) @pytest.mark.skipif( not theano.config.cxx, reason="G++ not available, so we need to skip this test." ) def test_just_c_code(): x = theano.tensor.dvector() f = theano.function([x], wb2(x), mode=debugmode.DebugMode(check_py_code=False)) assert np.all(f([1, 2]) == [2, 4]) def test_baddestroymap(): class BadAdd(gof.Op): def make_node(self, a, b): c = a.type() return gof.Apply(self, [a, b], [c]) def perform(self, node, inp, out): a, b = inp (c,) = out c[0] = a c[0] += b x = theano.tensor.dvector() y = theano.tensor.dvector() f = theano.function([x, y], BadAdd()(x, y), mode="DEBUG_MODE") with pytest.raises(debugmode.BadDestroyMap): f([1, 2], [3, 4]) @pytest.mark.skipif( not theano.config.cxx, reason="G++ not available, so we need to skip this test." ) def test_baddestroymap_c(): x = theano.tensor.dvector() f = theano.function([x], wb2i(x), mode=debugmode.DebugMode(check_py_code=False)) with pytest.raises(debugmode.BadDestroyMap): assert np.all(f([1, 2]) == [2, 4]) class TestViewMap: class BadAddRef(gof.Op): def make_node(self, a, b): c = b.type() return gof.Apply(self, [a, b], [c]) def perform(self, node, inp, out): a, b = inp (c,) = out c[0] = b class BadAddSlice(gof.Op): def make_node(self, a, b): c = b.type() return gof.Apply(self, [a, b], [c]) def perform(self, node, inp, out): a, b = inp (c,) = out c[0] = b[1:3] def test_badviewmap_ref(self): x = theano.tensor.dvector() y = theano.tensor.dvector() f = theano.function([x, y], self.BadAddRef()(x, y), mode="DEBUG_MODE") with pytest.raises(debugmode.BadViewMap): f([1, 2], [3, 4]) def test_badviewmap_slice(self): x = theano.tensor.dvector() y = theano.tensor.dvector() f = theano.function([x, y], self.BadAddSlice()(x, y), mode="DEBUG_MODE") with pytest.raises(debugmode.BadViewMap): f([1, 2], [3, 4]) def test_goodviewmap(self): goodop = self.BadAddRef() goodop.view_map = {0: [1]} x = theano.tensor.dvector() y = theano.tensor.dvector() f = theano.function([x, y], goodop(x, y), mode="DEBUG_MODE") # Shouldn't raise an error f([1, 5, 1], [3, 4, 2, 1, 4]) @pytest.mark.skipif( not theano.config.cxx, reason="G++ not available, so we need to skip this test." ) def test_badviewmap_c(self): x = theano.tensor.dvector() f = theano.function([x], wb1i(x), mode=debugmode.DebugMode(check_py_code=False)) with pytest.raises(debugmode.BadViewMap): f([1, 2]) def test_aliased_outputs_ok(self): # here aliased outputs is ok because they are both aliased to an input # as well class CustomOp(gof.Op): view_map = {0: [0], 1: [0]} def make_node(self, a, b): c = a.type() d = a.type() return gof.Apply(self, [a, b], [c, d]) def perform(self, node, inp, out): a, b = inp c, d = out c[0] = a d[0] = a[1:] x = theano.tensor.dvector("x") y = theano.tensor.dvector("y") f = theano.function([x, y], CustomOp()(x, y), mode="DEBUG_MODE") r0, r1 = f([1, 2, 3, 4], [5, 6, 7, 8]) assert np.all(r0 == [1, 2, 3, 4]) assert np.all(r1 == [2, 3, 4]) def test_aliased_outputs_ok_output(self): # here aliased outputs is ok because they are both outputs of the # function as a whole and thus not destroy-able class CustomOp(gof.Op): def make_node(self, a, b): c = a.type() d = a.type() return gof.Apply(self, [a, b], [c, d]) def perform(self, node, inp, out): a, b = inp c, d = out r = a * 2 c[0] = r d[0] = r[1:] x = theano.tensor.dvector() y = theano.tensor.dvector() f = theano.function([x, y], CustomOp()(x, y), mode="DEBUG_MODE") r0, r1 = f([1, 2, 3, 4], [5, 6, 7, 8]) assert np.all(r0 == [2, 4, 6, 8]) assert np.all(r1 == [4, 6, 8]) def test_aliased_outputs_ok_shadow(self): # here the alias between outputs is ok because one of them is not used # for subsequent computation. This is like the case where we use one # output as a memory buffer to serve another output. class CustomOp(gof.Op): def make_node(self, a, b): c = a.type() d = a.type() return gof.Apply(self, [a, b], [c, d]) def perform(self, node, inp, out): a, b = inp c, d = out r = a * 1 c[0] = r d[0] = r[1:] x = theano.tensor.dvector("x") y = theano.tensor.dvector("y") f = theano.function([x, y], CustomOp()(x, y)[0] * 2, mode="DEBUG_MODE") r0 = f([1, 2, 3, 4], [5, 6, 7, 8]) assert np.all(r0 == [2, 4, 6, 8]) def test_aliased_outputs_bad(self): # here the alias between outputs is not ok because destroying one # destroys the other, but there's no way to warn theano about it # through the view_map mechanism. class CustomOp(gof.Op): def make_node(self, a, b): c = a.type() d = a.type() return gof.Apply(self, [a, b], [c, d]) def perform(self, node, inp, out): a, b = inp c, d = out r = a * 1 c[0] = r[:-1] d[0] = r[1:] custom_op = CustomOp() x = theano.tensor.dvector() y = theano.tensor.dvector() bad_xy0, bad_xy1 = custom_op(x, y) out = bad_xy0 * 2 + bad_xy1 * 2 f = theano.function([x, y], out, mode="DEBUG_MODE") with pytest.raises(debugmode.BadViewMap): f([1, 2, 3, 4], [5, 6, 7, 8]) # the situation can be rescued by picking one of the inputs and # pretending that it is aliased to both the outputs. # This unfairly disables any destructive operations on the # input, but guarantees correctness. # custom_op.view_map = {0:[0], 1:[1]} # f([1,2,3,4],[5,6,7,8]) class TestCheckIsfinite: def setup_method(self): self.old_ts = theano.tensor.TensorType.filter_checks_isfinite self.old_dm = theano.compile.mode.predefined_modes["DEBUG_MODE"].check_isfinite def teardown_method(self): theano.tensor.TensorType.filter_checks_isfinite = self.old_ts theano.compile.mode.predefined_modes["DEBUG_MODE"].check_isfinite = self.old_dm def test_check_isfinite(self): x = theano.tensor.vector() f = theano.function([x], (x + 2) * 5, mode="DEBUG_MODE") g = theano.function([x], theano.tensor.log(x), mode="DEBUG_MODE") # this should work f(np.log([3, 4, 5]).astype(config.floatX)) # if TensorType.filter_checks_isfinite were true, these would raise # ValueError # if not, DebugMode will check internally, and raise InvalidValueError # passing an invalid value as an input should trigger ValueError with pytest.raises(debugmode.InvalidValueError): f(np.log([3, -4, 5]).astype(config.floatX)) with pytest.raises(debugmode.InvalidValueError): f((np.asarray([0, 1.0, 0]) / 0).astype(config.floatX)) with pytest.raises(debugmode.InvalidValueError): f((np.asarray([1.0, 1.0, 1.0]) / 0).astype(config.floatX)) # generating an invalid value internally should trigger # InvalidValueError with pytest.raises(debugmode.InvalidValueError): g(np.asarray([3, -4, 5], dtype=config.floatX)) # this should disable the exception theano.tensor.TensorType.filter_checks_isfinite = False theano.compile.mode.predefined_modes["DEBUG_MODE"].check_isfinite = False # insert several Inf f(np.asarray(np.asarray([1.0, 1.0, 1.0]) / 0, dtype=config.floatX)) def test_check_isfinite_disabled(self): x = theano.tensor.dvector() f = theano.function( [x], (x + 2) * 5, mode=debugmode.DebugMode(check_isfinite=False) ) # nan should go through f(np.log([3, -4, 5])) # inf should go through infs = np.asarray([1.0, 1.0, 1.0]) / 0 # print infs f(infs) return class BrokenCImplementationAdd(gof.Op): __props__ = () def make_node(self, a, b): a = theano.tensor.as_tensor_variable(a) b = theano.tensor.as_tensor_variable(b) assert a.type.dtype == "float32" assert a.type.dtype == b.type.dtype assert a.type.ndim == 2 r = gof.Apply(self, [a, b], [a.type()]) return r def perform(self, node, inp, out_): # print 'executing python perform' a, b = inp (out,) = out_ z = a + b # print 'out[0] was:', out[0] out[0] = z def c_code_cache_version(self): return (1,) def c_code(self, node, name, inp, out, sub): a, b = inp (z,) = out debug = 0 return """ //printf("executing c_code\\n"); if (PyArray_NDIM(%(a)s) != 2) {PyErr_SetString(PyExc_NotImplementedError, "rank(a) != 2"); %(fail)s;} if (PyArray_NDIM(%(b)s) != 2) {PyErr_SetString(PyExc_NotImplementedError, "rank(b) != 2"); %(fail)s;} if (PyArray_DESCR(%(a)s)->type_num != NPY_FLOAT) {PyErr_SetString(PyExc_NotImplementedError, "a dtype not NPY_FLOAT"); %(fail)s;} if (PyArray_DESCR(%(b)s)->type_num != NPY_FLOAT) {PyErr_SetString(PyExc_NotImplementedError, "b's dtype not NPY_FLOAT"); %(fail)s;} if (PyArray_DIMS(%(a)s)[0] != PyArray_DIMS(%(a)s)[1]) {PyErr_SetString(PyExc_NotImplementedError, "a is not square"); %(fail)s;} if (PyArray_DIMS(%(b)s)[0] != PyArray_DIMS(%(b)s)[1]) {PyErr_SetString(PyExc_NotImplementedError, "b is not square"); %(fail)s;} if (PyArray_DIMS(%(a)s)[0] != PyArray_DIMS(%(b)s)[0]) {PyErr_SetString(PyExc_NotImplementedError, "a and b have different dimensions"); %(fail)s;} // We do not check for c_contiguous property here if (%(debug)s) { if (!%(z)s) printf("%(z)s is not there, %%p \\n", %(z)s); else if (PyArray_DIMS(%(z)s)[0] != PyArray_DIMS(%(b)s)[0]) printf("Dimension 0 mismatch for %(z)s and %(b)s\\n"); else if (PyArray_DIMS(%(z)s)[1] != PyArray_DIMS(%(b)s)[1]) printf("Dimension 1 mismatch for %(z)s and %(b)s\\n"); else printf("Reusing %(z)s\\n"); } if ((!%(z)s) || (PyArray_DIMS(%(z)s)[0] != PyArray_DIMS(%(b)s)[0]) || (PyArray_DIMS(%(z)s)[1] != PyArray_DIMS(%(b)s)[1]) ) { Py_XDECREF(%(z)s); npy_intp dims[] = {0, 0}; dims[0] = PyArray_DIMS(%(b)s)[0]; dims[1] = PyArray_DIMS(%(b)s)[1]; %(z)s = (PyArrayObject*) PyArray_SimpleNew(2, dims, PyArray_DESCR(%(b)s)->type_num); } // Let us assume that %(z)s is c_contiguous { dtype_%(z)s * z = ((dtype_%(z)s*)(PyArray_GETPTR2(%(z)s,0,0))); for (int i=0; i<PyArray_DIMS(%(b)s)[0]; i++) { for (int j=0; j<PyArray_DIMS(%(b)s)[1]; j++) { *z = ((float*)PyArray_GETPTR2(%(a)s, i, j))[0] + ((float*)PyArray_GETPTR2(%(b)s, i, j))[0] ; z++; } } } """ % dict( locals(), **sub ) class VecAsRowAndCol(gof.Op): """ Transforms a vector into a row and a column. This Op exists to check everything is correct when an Op has two outputs with different broadcasting patterns. """ __props__ = () def make_node(self, v): if not isinstance(v, gof.Variable): v = theano.tensor.as_tensor_variable(v) assert v.type.ndim == 1 type_class = type(v.type) out_r_type = type_class(dtype=v.dtype, broadcastable=(True, False)) out_c_type = type_class(dtype=v.dtype, broadcastable=(False, True)) return gof.Apply(self, [v], [out_r_type(), out_c_type()]) def perform(self, node, inp, out): (v,) = inp r, c = out lv = v.shape[0] if (r[0] is None) or (r[0].shape != (1, lv)): r[0] = node.outputs[0].type.value_zeros((1, lv)) if (c[0] is None) or (c[0].shape != (lv, 1)): c[0] = node.outputs[1].type.value_zeros((lv, 1)) for i in range(lv): r[0][0, i] = v[i] c[0][i, 0] = v[i] class TestPreallocatedOutput: def setup_method(self): self.rng = np.random.RandomState(seed=utt.fetch_seed()) def test_f_contiguous(self): a = theano.tensor.fmatrix("a") b = theano.tensor.fmatrix("b") z = BrokenCImplementationAdd()(a, b) # In this test, we do not want z to be an output of the graph. out = theano.tensor.dot(z, np.eye(7)) a_val = self.rng.randn(7, 7).astype("float32") b_val = self.rng.randn(7, 7).astype("float32") # Should work mode = debugmode.DebugMode(check_preallocated_output=["c_contiguous"]) f = theano.function([a, b], out, mode=mode) f(a_val, b_val) # print 'out_val =', out_val # print out_val.strides # Should raise an Exception, since the output buffer is # used incorrectly. mode = debugmode.DebugMode(check_preallocated_output=["f_contiguous"]) f = theano.function([a, b], out, mode=mode) if theano.config.cxx: with pytest.raises(debugmode.BadThunkOutput): f(a_val, b_val) else: # The python code of this op is good. f(a_val, b_val) def test_f_contiguous_out(self): # Same test as test_f_contiguous, but check that it works # even if z _is_ the output of the graph a = theano.tensor.fmatrix("a") b = theano.tensor.fmatrix("b") out = BrokenCImplementationAdd()(a, b) a_val = self.rng.randn(7, 7).astype("float32") b_val = self.rng.randn(7, 7).astype("float32") # Should work mode = debugmode.DebugMode(check_preallocated_output=["c_contiguous"]) f = theano.function([a, b], out, mode=mode) f(a_val, b_val) # print 'out_val =', out_val # print out_val.strides # Should raise an Exception, since the output buffer is # used incorrectly. mode = debugmode.DebugMode(check_preallocated_output=["f_contiguous"]) f = theano.function([a, b], out, mode=mode) if theano.config.cxx: with pytest.raises(debugmode.BadThunkOutput): f(a_val, b_val) else: # The python code of this op is good. f(a_val, b_val) def test_output_broadcast_tensor(self): v = theano.tensor.fvector("v") c, r = VecAsRowAndCol()(v) f = theano.function([v], [c, r]) v_val = self.rng.randn(5).astype("float32") f(v_val)
py
b4071b19aac8f3f393016bf187e2038a3616ef3c
from django.contrib import admin from .models import Company, User admin.site.register(Company) admin.site.register(User)
py
b4071d2d18e049d2ae95c42a38d3a813c375996c
""" Filter serve para filtrar dados de uma determinada coleção """ from statistics import mean dados = [1.3, 2.7, 0.8, 4.1, 4.3, -0.1] media = mean(dados) print(media) # Obs: Assim como a função map(), filter() recebe dois parâmetros # sendo eles uma função e um iterável res = filter(lambda x: x > media, dados) print(list(res)) print(type(res)) print() # Obs: Assim como o map(), os dados aqui também são deletados após o uso # Exemplo 2 paises = ['', 'Argentina', '', 'Brasil', 'Chile', '', 'Colombia', '', 'Equador', '', '', 'Venezuela'] # paises = filter(lambda p: p != '', paises) paises = filter(None, paises) print(list(paises)) # Exemplo 3 usuarios = [{"username": "samuel", "tweets": ["Eu adoro bolos", "Eu adoro pizza"]}, {"username": "carla", "tweets": ["Eu amo meu gato"]}, {"username": "jeff", "tweets": []}, {'username': 'bob123', 'tweets': []}, {'username': 'doggo', 'tweets': ['Eu gosto de cachorros', 'Vou sair hoje']}, {'username': 'gal', 'tweets': []}] # Filtrar os usuários que estão inativos no Twitter activeUsers = filter(lambda user: user['tweets'] != [], usuarios) inactiveUsers = filter(lambda user: not user['tweets'], usuarios) print(list(activeUsers)) print(list(inactiveUsers)) print() # Exemplo 4: Combinar filter() e map() nomes = ['Vanessa', 'Ana', 'Maria'] # Criar uma lista contendo 'Sua instrutora é' + nome, sendo que o nome não pode ter mais de 5 letras lista = list(map(lambda nome: f'Sua instrutora é {nome}', filter(lambda nome: len(nome) < 5, nomes))) print(lista)
py
b4071d8af50f543461c15654605fd50b3ef5acec
import pprint from gw_bot.api.slack.API_Slack_Attachment import API_Slack_Attachment from osbot_aws.helpers.Lambda_Helpers import slack_message, log_to_elk from osbot_aws.apis.Lambda import Lambda from osbot_jira.api.API_Issues import API_Issues from osbot_jira.api.elk.Elk_To_Slack import ELK_to_Slack from osbot_jira.api.graph.Lambda_Graph import Lambda_Graph from osbot_jira.api.slack.views.Jira_Slack_Actions import Jira_Slack_Actions from osbot_jira.api.slack.views.Jira_View_Issue import Jira_View_Issue from osbot_utils.utils import Misc from osbot_utils.utils.Misc import array_get, to_int class GS_Bot_Jira: def __init__(self): self.version = "v0.44 (GSBot)" def cmd_add_link(self, params, team_id=None, channel=None): if len(params) < 4: text = ":exclamation: Hi, to add a link, You must provide 3 params: `{from ID}` `{to ID}` `{link type}`" return {"text": text, "attachments": []} else: params.pop(0) # position 0 is the 'issue' command from_key = params.pop(0) to_key = params.pop(0) link_type = " ".join(params) try: from osbot_jira.api.jira_server.API_Jira import API_Jira API_Jira().issue_add_link(from_key, link_type, to_key) text = ':point_right: Added link: *{0}* `{1}` *{2}*'.format(from_key,link_type,to_key) except Exception as error: text = ':red_circle: Error in `add_link`: {0}'.format(error) return {"text": text, "attachments": []} def cmd_actions(self, params, team_id=None, channel=None): text, attachments = Jira_Slack_Actions().get_actions_ui() return {"text": text, "attachments": attachments} def cmd_create(self, params, team_id=None, channel=None): try: if len(params) < 3: text = ":exclamation: To create an issue you need to provide the `issue type` and `summary`. For example `jira create task abc" return {"text": text, "attachments": []} else: params.pop(0) # the create command issue_type = params.pop(0) #.title() # todo: find a better solution for this project = issue_type.upper() # todo: and to address the mapping of issue types to projects summary = ' '.join(params) slack_message(':point_right: Going to create an `{0}` issue, in project `{1}` with summary `{2}`'.format(issue_type, project,summary), [], channel,team_id) #to do, move this feature to a separate lambda (which can be called to create issues from osbot_aws.Dependencies import load_dependency load_dependency('jira') from osbot_jira.api.jira_server.API_Jira import API_Jira # create issue result = API_Jira().issue_create(project,summary,'',issue_type) issue_id = "{0}".format(result) # show issue screenshot # payload = {'issue_id': issue_id,'channel': channel,'team_id': team_id, } # Lambda('osbot_browser.lambdas.jira_web').invoke_async(payload) # show issue UI payload = {'params': ['issue', issue_id], "channel": channel} Lambda('osbot_jira.lambdas.jira').invoke_async(payload) # show link of new issue to user jira_link = "https://glasswall.atlassian.net/browse/{0}".format(issue_id) text = ':point_right: New issue created with id <{0}|{1}>'.format(jira_link, issue_id) return {"text": text, "attachments": []} except Exception as error: log_to_elk('jira create error',f'{error}') return {'text': f':red_circle: Issue could not be created, please make sure that: \n - issue type exists\n - issue type = project type\n - Issue type CamelCase is correctly entered (you want `Task` and not `task`)', "attachments": []} def cmd_created_in_last(self, params, team_id=None, channel=None): elk_to_slack = ELK_to_Slack() if len(params) < 2: text = ":exclamation: you must provide an start date. You can use `1d`,`1w`,`1y` (d=day, w=week, y=year" return {"text": text, "attachments": []} from_date = params.pop() issues = API_Issues().issues_created_in_last(from_date) issues_text = elk_to_slack.get_text_with_issues_key_and_summary(issues) graph_name = elk_to_slack.save_issues_as_new_graph(issues) text = elk_to_slack.get_slack_message(issues, graph_name) max_table = 100 if len(issues) < max_table: text += "\n (Since there are less than {0} results also showing table with data)".format(max_table) self.cmd_table(["table", graph_name], team_id, channel) return {"text": text, "attachments": [{ 'text': issues_text , 'color':'good'}]} def cmd_created_between(self, params, team_id=None, channel=None): elk_to_slack = ELK_to_Slack() if len(params) < 3: text = ":exclamation: you must provide an start and end date. You can use `1d`,`1w`,`1y` (d=day, w=week, y=year" text += "\nTry `now-1d` and `now`" return {"text": text, "attachments": []} to_date = params.pop() from_date = params.pop() try: issues = API_Issues().elastic().get_data_between_dates("Created",from_date, to_date) issues_text = elk_to_slack.get_text_with_issues_key_and_summary(issues) graph_name = elk_to_slack.save_issues_as_new_graph(issues) text = elk_to_slack.get_slack_message(issues, graph_name) min_table = 100 max_table = 100 if min_table < len(issues) < max_table: text += "\n (Since there are less than {0} (and more than {1}) results also showing table with data)".format(max_table,min_table) self.cmd_table(["table", graph_name], team_id, channel) return {"text": text, "attachments": [{ 'text': issues_text , 'color':'good'}]} except Exception as error: text ="Error in cmd_created_between: {0}".format(error) return {"text": text, "attachments": []} def cmd_updated_in_last(self, params, team_id=None, channel=None): # refactor with cmd_created_in_last since 99% of the code is the same elk_to_slack = ELK_to_Slack() if len(params) < 2: text = ":exclamation: you must provide an start date. You can use `1d`,`1w`,`1y` (d=day, w=week, y=year" return {"text": text, "attachments": []} from_date = params.pop() issues = API_Issues().issues_updated_in_last(from_date) issues_text = elk_to_slack.get_text_with_issues_key_and_summary(issues) graph_name = elk_to_slack.save_issues_as_new_graph(issues) text = elk_to_slack.get_slack_message(issues, graph_name) max_table = 100 if len(issues) < max_table: text += "\n (Since there are less than {0} results also showing table with data)".format(max_table) self.cmd_table(["table", graph_name], team_id, channel) return {"text": text, "attachments": [{ 'text': issues_text , 'color':'good'}]} def cmd_issue(self, params, team_id=None, channel=None): if len(params) < 2: text = ":exclamation: You must provide an issue id" return {"text": text, "attachments": []} else: issue_id = params.pop(1) # position 0 is the 'issue' command jira_view_issue = Jira_View_Issue(issue_id,channel, team_id) jira_view_issue.create_and_send() if channel is None: return jira_view_issue.issue #text, attachments = Jira_View_Issue(issue_id).get_actions_ui() #return {"text": text, "attachments": attachments} def cmd_screenshot(self, params, team_id=None, channel=None): attachments = [] if len(params) < 2: text = ":exclamation: you must provide an issue id " else: params.pop(0) # remove 'issue' command issue_id = params.pop(0).upper() width = to_int(Misc.array_pop(params), None) height = to_int(Misc.array_pop(params), None) delay = to_int(Misc.array_pop(params), None) text = ':point_right: Getting screenshot for issue `{0}`'.format(issue_id) if width: text += ' with width `{0}`'.format(width) if height: text += ' and height `{0}`'.format(height) if delay: text += ' and delay `{0}`'.format(delay) payload = { 'issue_id': issue_id, 'channel' : channel , 'team_id' : team_id , 'width' : width , 'height' : height , 'delay' : delay } Lambda('osbot_browser.lambdas.jira_web').invoke_async(payload) return {"text": text, "attachments": attachments} def cmd_links(self, params, team_id=None, channel=None, user=None, only_create=False,save_graph=True): if len(params) < 2: text = ':point_right: Hi, here are the valid parameters for the `jira links` command: ' \ '\n\t\t - `jira key` ' \ '\n\t\t - `depth` (default to 1)' \ '\n\t\t - `view engine`: viva_graph (default), or plantuml' \ '\n\t\t - `width` (of graph)' \ '\n\t\t - `delay` (before screenshot)' return {"text": text, "attachments": []} target = array_get(params, 1 ) depth = to_int(array_get(params, 2), 1 ) # default to depth 1 view_engine = array_get(params, 3, 'viva_graph' ) width = to_int(array_get(params, 4), None ) delay = to_int(array_get(params, 5), None ) if depth > 5: text = f':red_circle: sorry depths bigger than 5 are not supported (since 5 will already give you the only graph)' return {"text": text, "attachments": []} #direction = 'all' # change behaviour to only show all graph = Lambda_Graph().graph_links(target, depth) if graph is None: text = f':red_circle: graph not created for target `{target}`' return {"text": text, "attachments": []} if len(graph.edges) == 0: text = f':red_circle: no graph created from `{target}` (please double check that the issue ID exists)' return {"text": text, "attachments": []} graph_type = f"{target}___depth_{depth}" if save_graph is False: return graph graph_name = graph.render_and_save_to_elk(None, graph_type, channel, user) if only_create: return graph, graph_name, depth, target if channel: message = f':point_right: Created graph with *name* `{graph_name}` *from* `{target}` *depth* `{depth}`' slack_message(message,[],channel) if view_engine =='plantuml': params = ['show', graph_name, view_engine] Lambda('osbot_jira.lambdas.graph').invoke_async({"params": params, 'data': {'team_id': team_id, 'channel': channel}}) else: params = [view_engine, graph_name, 'default', width, delay] Lambda('osbot_browser.lambdas.lambda_browser').invoke_async({"params": params, 'data': {'team_id': team_id, 'channel': channel}}) else: return graph, graph_name, depth, target # puml = graph.puml.puml # max_size = 60000 # if channel and (not view) and len(puml) > max_size: # only do this check when there is a channel and no view (meaning that the graph will be generated) # text = ':red_circle: for the graph `{0}` with `{1}` nodes and `{2}` edges, the PlantUML code generated from your query was too big `{3}` and rendering this type of large graphs doesn\'t work well in PlantUML (max allowed is `{4}`)'\ # .format(graph_name, len(graph.nodes), len(graph.edges), len(puml),max_size) # else: # if view: # if we have defined a view, render it here # graph_view = Graph_View() # graph_view.graph = graph # graph_view.graph.reset_puml() # graph_view.render_view(view,channel,team_id,graph_name) # puml = graph_view.graph.puml.puml # else: # view = 'default' # # if channel: # if the channel value is provided return a user friendly message, if not, return the data # text = ':point_right: Created graph with name `{4}`, based on _{0}_ in the direction `{1}`, with depth `{2}`, with plantuml size: `{3}`, with view `{5}`, with `{6}` nodes and `{7}` edges'\ # .format(target, direction, depth, len(puml), graph_name, view, len(graph.nodes), len(graph.edges)) # Lambda('gw_bot.lambdas.puml_to_slack').invoke_async({"puml": puml,"channel": channel, 'team_id' : team_id}) # else: # data = { # "target" : target , # "direction" : direction , # "depth" : depth , # "nodes" : graph.nodes, # "edges" : graph.edges, # "puml" : puml , # "graph_name": graph_name , # "view" : view # } # text = json.dumps(data, indent=4) #else: # text = ':red_circle: error: invalid value provided for depth `{0}`. It must be an number'.format(depth) #return {"text": text, "attachments": attachments} def cmd_help(self): commands = [func for func in dir(GS_Bot_Jira) if callable(getattr(GS_Bot_Jira, func)) and func.startswith("cmd")] help_text = "" for command in commands: help_text += " • {0}\n".format(command.replace('cmd_','')) attachments = API_Slack_Attachment(help_text, 'good').render() text = "*Here are the `jira` commands available:*" return {"text": text, "attachments": attachments} def cmd_search(self, event): Lambda('osbot_jira.lambdas.elk_to_slack').invoke_async(event) return None def cmd_table(self, params, team_id=None, channel=None): attachments = [] if len(params) < 2: text = ":exclamation: you must provide a graph_name to show in a table format" else: params.pop(0) # remove 1st command since it is 'server' graph_name = params.pop() text = ':point_right: Showing table with data created from graph `{0}`'.format(graph_name) Lambda('osbot_browser.lambdas.lambda_browser').invoke_async({"params": [ "table", graph_name , 'graph_simple'], "data":{"channel" : channel, "team_id": team_id}}) return {"text": text, "attachments": attachments} # def cmd_server(self, params, team_id=None, channel=None): # attachments = [] # if len(params) < 2: # text = ":exclamation: you must provide an server command" # else: # params.pop(0) # remove 1st command since it is 'server' # command = params.pop(0) # data = Secrets('sync-server-ngrok').value_from_json_string() # username = data.get('username') # password = data.get('password') # if command[0] !='/': # url = "https://gs-jira.ngrok.io/server/{0}".format(command) # else: # url = "https://gs-jira.ngrok.io{0}".format(command) # result = requests.get(url, auth=(username, password)).text # text = "{0}".format(result) # #attachments = [{'text':url}] # # return {"text": text, "attachments": attachments} # def cmd_down(self, params, team_id=None, channel=None, user=None): # self.up_down("down", params, team_id, channel, user) # # def cmd_up(self, params, team_id=None, channel=None, user=None): # self.up_down("up", params, team_id, channel, user) # def cmd_load_sheet(self, params, team_id=None, channel=None): # def send_slack_message(message): # slack_message(message, [], channel, team_id) # # # def show_pdf(file_id,icon, when): # # send_slack_message('{0} this is what the file currently looks `{1}` the sync'.format(icon, when)) # # Lambda('gsbot_gsuite.lambdas.gdocs').invoke({"params":['pdf', file_id], 'data':{'team_id':team_id,'channel': channel}}) # # # if len(params) < 2: # text = ":exclamation: you must provide an gsuite `file_id` (you can find this on the url of the document you want to sync)" # send_slack_message(text) # else: # params.pop(0) # remove 1st command since it is 'server' # file_id = params.pop(0) # # #send_slack_message(':point_right: Staring syncing workflow for file `{0}`'.format(file_id)) # #show_pdf (file_id, ':one:', 'BEFORE') # #send_slack_message(':two: syncing data ...') # # result = self.cmd_server(['server','/jira-sync/load-jira/{0}'.format(file_id)]) # #[trigger_sync_jira_sheets] # status = json.loads(result.get('text')).get('status') # send_slack_message('Execution result: `{0}`'.format(status)) # # #show_pdf(file_id, ':three:','AFTER') # # return None,None # def cmd_diff_sheet(self, params, team_id=None, channel=None): # def send_slack_message(message): # slack_message(message, [], channel, team_id) # # if len(params) < 2: # text = ":exclamation: you must provide an gsuite `file_id` (you can find this on the url of the document you want to sync)" # send_slack_message(text) # else: # params.pop(0) # remove 1st command since it is 'server' # file_id = params.pop(0) # send_slack_message(':one: diffing data ...') # result = self.cmd_server(['server','/jira-sync/diff-sheet/{0}'.format(file_id)]) # send_slack_message(result) # # return None,None # def cmd_sync_sheet(self, params, team_id=None, channel=None): # def send_slack_message(message): # slack_message(message, [], channel, team_id) # # if len(params) < 2: # text = ":exclamation: you must provide an gsuite `file_id` (you can find this on the url of the document you want to sync)" # send_slack_message(text) # else: # params.pop(0) # remove 1st command since it is 'server' # file_id = params.pop(0) # #send_slack_message(':one: diffing data ...') # result = self.cmd_server(['server','/jira-sync/sync-sheet/{0}'.format(file_id)]) # status = Misc.get_value(Misc.json_load(result.get('text')),'status',result) # send_slack_message('Execution result: `{0}`'.format(status)) # # return None,None def cmd_version(self, params, team_id=None, channel=None): if channel: slack_message(self.version, [], channel, team_id) else: return {"text": self.version, "attachments":[] } # helpers # def up_down(self, direction, params, team_id=None, channel=None, user=None): # if len(params) != 3: # text = ':red_circle: for the `jira {0}` command, you need to provide 2 parameters: ' \ # '\n\t\t - `jira key or graph` ' \ # '\n\t\t - `depth` '.format(direction) # slack_message(text, [], channel, team_id) # return # # target = params[1] # depth = int(params[2]) # params = ['links', target, direction, depth] # # # (graph, graph_name, depth, direction, target) = self.cmd_links(params, team_id, channel, user, only_create=True) # if graph: # text = ':point_right: Created graph for `{0}` in the direction `{1}`, with depth `{2}`, with name `{3}`, with `{4}` nodes and `{5}` edges' \ # .format(target, direction, depth, graph_name, len(graph.nodes), len(graph.edges)) # slack_message(text, [], channel, team_id) # Lambda('lambdas.browser.lambda_browser').invoke_async({"data": {"team_id": team_id, "channel": channel}, "params": ['viva_graph', graph_name, 'default']}) # # main method # todo: refactor to use dynamic method generation (this is the legacy way to resolve methods) def handle_request(self,event): #log_to_elk('in handle_request', event) params = event.get('params') channel = event.get('channel') team_id = event.get('team_id') user = event.get('user') attachments = [] if params is None or len(params) < 1: text = ":point_right: no command received, see `jira help` for a list of available commands" else: command = params[0] try: if command == 'add_link' : return self.cmd_add_link (params, team_id, channel) if command == 'help' : return self.cmd_help () if command == 'actions' : return self.cmd_actions (params, team_id, channel) if command == 'create' : return self.cmd_create (params, team_id, channel) if command == 'created_in_last' : return self.cmd_created_in_last(params, team_id, channel) if command == 'created_between' : return self.cmd_created_between(params, team_id, channel) if command == 'updated_in_last' : return self.cmd_updated_in_last(params, team_id, channel) if command == 'screenshot' : return self.cmd_screenshot (params, team_id, channel) if command == 'issue' : return self.cmd_issue (params, team_id, channel) if command == 'links' : return self.cmd_links (params, team_id, channel, user) #if command == 'up' : return self.cmd_up (params, team_id, channel, user) #if command == 'down' : return self.cmd_down (params, team_id, channel, user) if command == 'search' : return self.cmd_search (event ) #if command == 'server' : return self.cmd_server (params, team_id, channel) #if command == 'load_sheet' : return self.cmd_load_sheet (params, team_id, channel) if command == 'table' : return self.cmd_table (params, team_id, channel) #if command == 'sync_sheet' : return self.cmd_sync_sheet (params, team_id, channel) #if command == 'diff_sheet' : return self.cmd_diff_sheet (params, team_id, channel) #if command == 'graph_sheet' : return self.cmd_graph_sheet (params, team_id, channel) if command == 'version' : return self.cmd_version (params, team_id, channel) if '-' in command and ' ' not in command and len(command) < 10: # if it looks like a Issue ID, call the cmd_issue function params.insert(0,'issue') return self.cmd_issue(params, team_id, channel) #return self.cmd_issue(['issue'] + params, channel) # default to this one text = ':red_circle: Not supported command `{0}` , see all available using `jira help`'.format(command) except Exception as error: text = ':red_circle: Error processing command `{0}`: _{1}_'.format(command, pprint.pformat(error)) return { "text": text, "attachments": attachments} # def resolve_es_index(self, key): # if "SEC-" in key: return 'sec_project' # return "jira" # def send_test_button(self, params,channel): # callback_id = 'view-jira-issue' # # message = { # "text": "JIRA Helper (v0.1)", # "attachments": [ # { # "text": "What Jira ID you want to see", # "fallback": "Not supported", # "callback_id": "{0}".format(callback_id), # "color": "#3AA3E3", # "attachment_type": "default", # "actions": [ # { # "name": "key", # "text": "RISK-424", # "type": "button", # "value": "RISK-424" # }, # { # "name": "key", # "text": "SEC-9195", # "type": "button", # "value": "SEC-9195" # }, # { # "name": "key", # "text": "GSP-42", # "type": "button", # "value": "GSP-42" # } # ] # } # ] # } # #from utils.API_Slack import API_Slack # #API_Slack(channel).send_message(message['text'], message['attachments']) # return { "text": message['text'], "attachments" : message['attachments']}
py
b4071e98a885344d3110633ae206e41ee7d58339
from django.core.urlresolvers import reverse_lazy from django.conf import settings from django.contrib import messages, auth from django.contrib.auth.decorators import login_required from django.http import HttpResponsePermanentRedirect from django.shortcuts import get_object_or_404, redirect from django.utils.translation import ugettext_lazy as _ from django.template.response import TemplateResponse def store_details(request, slug, store_id): pass @login_required def create(request): pass
py
b4071fa0d8a5933f021415e128335de6bc7e8a58
import os import matplotlib.patches as patches import matplotlib.pyplot as plt import numpy as np from IPython.core.display import HTML from ipywidgets import widgets, Layout from IPython.core.display import display from NeuNorm.normalization import Normalization from NeuNorm.roi import ROI from __code import utilities, file_handler from __code.config import gamma_filtering_coefficient from __code.ipywe import fileselector from __code._utilities.file import make_or_increment_folder_name def close(w): "recursively close a widget" if hasattr(w, 'children'): for c in w.children: close(c) continue w.close() return class myFileSelectorPanel(fileselector.FileSelectorPanel): def __init__(self, instruction, start_dir=".", type='file', next=None, multiple=False, newdir_toolbar_button=False, current_ui=None): super(myFileSelectorPanel, self).__init__(instruction, start_dir=start_dir, type=type, next=next, multiple=multiple, newdir_toolbar_button=newdir_toolbar_button) self.current_ui = current_ui def validate(self, s): super(myFileSelectorPanel, self).validate(s) try: if self.current_ui.state == 'sample': self.current_ui.files.sample = self.selected elif self.current_ui.state == 'ob': self.current_ui.files.ob = self.selected else: self.current_ui.files.df = self.selected parent_folder = os.path.dirname(os.path.dirname(self.selected[0])) self.current_ui.working_dir = parent_folder self.current_ui.label.value = "{} files selected".format(len(self.selected)) self.current_ui.next_button_ui.disabled = False self.current_ui.next_button_ui.button_style = 'success' except AttributeError: pass class Data: sample = [] ob = [] df = [] class Files: sample = [] ob = [] df = [] class Panel: layout = Layout(border='1px lightgray solid', margin='5px', padding='15px') button_layout = Layout(margin='10px 5px 5px 5px') label_layout = Layout(height='32px', padding='2px', width='300px') current_state_label_ui = None prev_button_ui = None next_button_ui = None o_norm_handler = None df_panel = None def __init__(self, prev_button=False, next_button=True, state='sample', working_dir='', top_object=None, gamma_coefficient=0.9): self.prev_button = prev_button self.next_button = next_button self.state = state self.working_dir = working_dir self.ipts_dir = working_dir self.top_object = top_object self.gamma_threshold = gamma_coefficient def init_ui(self, files=None): self.files = files self.__top_panel() self.__bottom_panel() self.__file_selector() self.__init_widgets() def __init_widgets(self): _list = self.files.sample _label = "Sample" _option = '(mandatory)' if self.state == 'ob': _list = self.files.ob _label = 'Open Beam' elif self.state == 'df': _list = self.files.df _label = 'Dark Field' _option = '(optional)' self.label.value = "{} files selected".format(len(_list)) self.title.value = "Select list of {} files {} ".format(_label, _option) if len(_list) > 0: self.next_button_ui.disabled = False self.next_button_ui.button_style = 'success' if self.state == 'df': self.next_button_ui.disabled = False self.next_button_ui.button_style = 'success' def __top_panel(self): title_ui = widgets.HBox([widgets.Label("Instructions:", layout=widgets.Layout(width='20%')), widgets.Label("Select Samples Images and click NEXT", layout=widgets.Layout(width='50%')), ]) label_ui = widgets.HBox([widgets.Label("Sample selected:", layout=widgets.Layout(width='20%')), widgets.Label("None", layout=widgets.Layout(width='50%')), ]) self.title = title_ui.children[1] # "Select [Samples/OB/DF] Images [and click NEXT] self.label = label_ui.children[1] # number of samples selected self.top_panel = widgets.VBox(children=[title_ui, label_ui], layout=self.layout) def prev_button_clicked(self, event): raise NotImplementedError def next_button_clicked(self, event): raise NotImplementedError def __bottom_panel(self): list_ui = [] if self.prev_button: self.prev_button_ui = widgets.Button(description="<< Previous Step", tooltip='Click to move to previous step', button_style='success', disabled=False, layout=widgets.Layout(width='20%')) self.prev_button_ui.on_click(self.prev_button_clicked) list_ui.append(self.prev_button_ui) self.current_state_label_ui = widgets.Label(" ", layout=widgets.Layout(width='70%')) list_ui.append(self.current_state_label_ui) if self.next_button: self.next_button_ui = widgets.Button(description="Next Step>>", tooltip='Click to move to next step', button_style='warning', disabled=True, layout=widgets.Layout(width='20%')) list_ui.append(self.next_button_ui) self.next_button_ui.on_click(self.next_button_clicked) self.bottom_panel = widgets.HBox(list_ui) def __file_selector(self): self.file_selector = myFileSelectorPanel(instruction='', start_dir=self.working_dir, multiple=True, current_ui=self) def show(self): display(self.top_panel) display(self.bottom_panel) self.file_selector.show() def remove(self): close(self.top_panel) close(self.bottom_panel) self.file_selector.remove() def nextStep(self): raise NotImplementedError class WizardPanel: label_layout = Layout(border='1px lighgray solide', height='35px', padding='8px', width='300px') sample_panel = None def __init__(self, sample_panel=None): display(widgets.Label("Selection of All Input Files", layout=self.label_layout)) self.sample_panel = sample_panel self.sample_panel.show() return class SampleSelectionPanel(Panel): files = None o_norm = None def __init__(self, prev_button=False, next_button=True, working_dir='', top_object=None): super(SampleSelectionPanel, self).__init__(prev_button=prev_button, next_button=next_button, working_dir=working_dir, top_object=top_object) # def __init__(self, prev_button=False, next_button=True, working_dir='', top_object=None, gamma_coefficient=None): # super(SampleSelectionPanel, self).__init__(prev_button=prev_button, # next_button=next_button, # working_dir=working_dir, # top_object=top_object, # gamma_coefficient=gamma_coefficient) def next_button_clicked(self, event): self.remove() _panel = OBSelectionPanel(working_dir=self.working_dir, top_object=self) _panel.init_ui(files=self.files) _panel.show() class OBSelectionPanel(Panel): def __init__(self, working_dir='', top_object=None): super(OBSelectionPanel, self).__init__(prev_button=True, state='ob', working_dir=working_dir, top_object=top_object) def next_button_clicked(self, event): self.remove() _panel = DFSelectionPanel(working_dir=self.working_dir, top_object=self.top_object) _panel.init_ui(files=self.files) _panel.show() def prev_button_clicked(self, event): self.remove() _panel = SampleSelectionPanel(working_dir=self.working_dir, top_object=self.top_object) _panel.init_ui(files=self.files) _panel.show() class DFSelectionPanel(Panel): def __init__(self, working_dir='', top_object=None): self.working_dir = working_dir super(DFSelectionPanel, self).__init__(prev_button=True, next_button=True, state='df', working_dir=working_dir, top_object=top_object) def prev_button_clicked(self, event): self.remove() _panel = OBSelectionPanel(working_dir=self.working_dir, top_object=self.top_object) _panel.init_ui(files=self.files) _panel.show() def next_button_clicked(self, event): self.remove() o_norm_handler = NormalizationHandler(files=self.files, working_dir=self.working_dir, gamma_threshold=self.gamma_threshold) o_norm_handler.load_data() self.top_object.o_norm_handler = o_norm_handler self.top_object.o_norm = o_norm_handler.o_norm class NormalizationHandler(object): data = None integrated_sample = [] working_dir = '' o_norm = None normalized_data_array = [] def __init__(self, files=None, working_dir='', gamma_threshold=0.9): self.files = files self.working_dir = working_dir self.data = Data() self.gamma_threshold = gamma_threshold def load_data(self): self.o_norm = Normalization() # sample list_sample = self.files.sample # self.o_norm.load(file=list_sample, notebook=True, auto_gamma_filter=False, # manual_gamma_filter=True, manual_gamma_threshold=self.gamma_threshold) self.o_norm.load(file=list_sample, notebook=True) self.data.sample = self.o_norm.data['sample']['data'] self.list_file_names = list_sample # ob list_ob = self.files.ob # self.o_norm.load(file=list_ob, data_type='ob', notebook=True, auto_gamma_filter=False, # manual_gamma_filter=True, manual_gamma_threshold=self.gamma_threshold) self.o_norm.load(file=list_ob, data_type='ob', notebook=True) self.data.ob = self.o_norm.data['ob']['data'] # df list_df = self.files.df if list_df: # self.o_norm.load(file=list_df, data_type='df', notebook=True, auto_gamma_filter=False, # manual_gamma_filter=True, manual_gamma_threshold=self.gamma_threshold) self.o_norm.load(file=list_df, data_type='df', notebook=True) self.data.df = self.o_norm.data['df']['data'] def get_data(self, data_type='sample'): if data_type == 'sample': return self.data.sample elif data_type == 'ob': return self.data.ob else: return self.data.df # def plot_images(self, data_type='sample'): # # sample_array = self.get_data(data_type=data_type) # # def _plot_images(index): # _ = plt.figure(num=data_type, figsize=(5, 5)) # ax_img = plt.subplot(111) # my_imshow= ax_img.imshow(sample_array[index], cmap='viridis') # plt.colorbar(my_imshow) # # _ = widgets.interact(_plot_images, # index=widgets.IntSlider(min=0, # max=len(self.get_data(data_type=data_type)) - 1, # step=1, # value=0, # description='{} Index'.format(data_type), # continuous_update=False)) def calculate_integrated_sample(self): if len(self.data.sample) > 1: integrated_array = np.array([_array for _array in self.data.sample]) self.integrated_sample = integrated_array.mean(axis=0) else: self.integrated_sample = np.squeeze(self.data.sample) # def with_or_without_roi(self): # label1 = widgets.Label("Do you want to select a region of interest (ROI) that will make sure that the " + # "sample background matches the OB background") # label2 = widgets.Label("-> Make sure your selection do not overlap your sample!") # box = widgets.HBox([widgets.Label("With or Without ROI?"), # widgets.RadioButtons(options=['yes','no'], # value='yes', # layout=widgets.Layout(width='50%'))]) # self.with_or_without_radio_button = box.children[1] # vertical = widgets.VBox([label1, label2, box]) # display(vertical) # def select_sample_roi(self): # # if self.with_or_without_radio_button.value == 'no': # label2 = widgets.Label("-> You chose not to select any ROI! Next step: Normalization") # display(label2) # return # # label2 = widgets.Label("-> Make sure your selection do not overlap your sample!") # display(label2) # # if self.integrated_sample == []: # self.calculate_integrated_sample() # # _integrated_sample = self.integrated_sample # [height, width] = np.shape(_integrated_sample) # # def plot_roi(x_left, y_top, width, height): # _ = plt.figure(figsize=(5, 5)) # ax_img = plt.subplot(111) # ax_img.imshow(_integrated_sample, # cmap='viridis', # interpolation=None) # # _rectangle = patches.Rectangle((x_left, y_top), # width, # height, # edgecolor='white', # linewidth=2, # fill=False) # ax_img.add_patch(_rectangle) # # return [x_left, y_top, width, height] # # self.roi_selection = widgets.interact(plot_roi, # x_left=widgets.IntSlider(min=0, # max=width, # step=1, # value=0, # description='X Left', # continuous_update=False), # y_top=widgets.IntSlider(min=0, # max=height, # value=0, # step=1, # description='Y Top', # continuous_update=False), # width=widgets.IntSlider(min=0, # max=width - 1, # step=1, # value=60, # description="Width", # continuous_update=False), # height=widgets.IntSlider(min=0, # max=height - 1, # step=1, # value=100, # description='Height', # continuous_update=False)) def settings(self): o_norm = self.o_norm nbr_sample = len(o_norm.data['sample']['data']) nbr_ob = len(o_norm.data['ob']['data']) if o_norm.data['df']['data']: nbr_df = len(o_norm.data['df']['data']) else: nbr_df = 0 table_title = "Summary Table" how_to_combine_title = "How do you want to combine the OBs?" force_combine_title = "Do you want to combine the OBs?" def force_combining_changed(value): widgets_changed() def how_to_combine_changed(value): widgets_changed() def widgets_changed(): if self.force_ui.value == 'no': accordion_children = [self.force_ui, table] accordion_title = [force_combine_title, table_title] self.how_to_ui.disabled = True elif nbr_sample != nbr_ob: accordion_children = [self.how_to_ui, table] accordion_title = [how_to_combine_title, table_title] self.how_to_ui.disabled = False else: accordion_children = [self.force_ui, self.how_to_ui, table] accordion_title = [force_combine_title, how_to_combine_title, table_title] self.how_to_ui.disabled = False table.value = get_html_table() accordion.children = accordion_children for _index, _title in enumerate(accordion_title): accordion.set_title(_index, _title) accordion.selected_index = len(accordion_title) - 1 def get_html_table(): force_combine = self.force_ui.value how_to_combine = self.how_to_ui.value if force_combine == 'yes': description = f"OBs <b>will be combined</b> using <b>{how_to_combine}</b>" else: description = f"OBs <b>won't be combined</b>! Each sample will use <b>1 OB</b>" html_table = f"<table style='width:800px'>" \ "<tr>" \ "<th style='background-color: grey'>Nbr of Samples</th>" \ "<th style='background-color: grey'>Nbr of OBs</th>" \ "<th style='background-color: grey'>Nbr of DFs</th>" \ "<th style='background-color: grey; width:60%'>Description of Process</th>" \ "</tr>" \ "<tr>" \ f"<td>{nbr_sample}</td>" \ f"<td>{nbr_ob}</td>" \ f"<td>{nbr_df}</td>" \ f"<td>{description}</td>" \ "</tr>" \ "</table>" return html_table accordion_children = [] accordion_title = list() self.force_ui = widgets.RadioButtons(options=['yes', 'no'], value='yes', disabled=False, layout=widgets.Layout(width='200px')) accordion_children.append(self.force_ui) self.force_ui.observe(force_combining_changed, names='value') self.how_to_ui = widgets.RadioButtons(options=['median', 'mean'], value='median', layout=widgets.Layout(width='200px')) accordion_children.append(self.how_to_ui) self.how_to_ui.observe(how_to_combine_changed, names='value') html_table = "" table = widgets.HTML(value=html_table) accordion_children.append(table) if nbr_sample != nbr_ob: self.force_ui.value = 'yes' accordion_children = [self.how_to_ui, table] how_to_combine_title = "How to combine?" accordion_title = [how_to_combine_title, table_title] else: accordion_title.append(force_combine_title) accordion_title.append(how_to_combine_title) accordion_title.append(table_title) table.value = get_html_table() accordion = widgets.Accordion(children=accordion_children, title=accordion_title) for _index, _title in enumerate(accordion_title): accordion.set_title(_index, _title) accordion.selected_index = len(accordion_title) - 1 display(accordion) def run_normalization(self, dict_roi=None): force_mean_ob = False force_median_ob = False force_combine = self.force_ui.value if force_combine == 'yes': how_to_combine = self.how_to_ui.value if how_to_combine == 'mean': force_mean_ob = True elif how_to_combine == 'median': force_median_ob = True else: raise NotImplementedError(f"How to combine OB algorithm ({how_to_combine}) not implemented!") if dict_roi is None: try: self.o_norm.df_correction() self.o_norm.normalization(notebook=True, force_median_ob=force_median_ob, force_mean_ob=force_mean_ob, force=True) self.normalized_data_array = self.o_norm.get_normalized_data() self.normalized_metadata_array = self.o_norm.data['sample']['metadata'] except ValueError: display(HTML('<span style="font-size: 20px; color:red">Data Size of Sample, OB and DF (if any) ' + 'do not Match!</span>')) return else: _list_roi = [] for _key in dict_roi.keys(): _roi = dict_roi[_key] x0 = _roi['x0'] y0 = _roi['y0'] x1 = _roi['x1'] y1 = _roi['y1'] x_left = np.min([x0, x1]) y_top = np.min([y0, y1]) width_roi = np.abs(x0 - x1) height_roi = np.abs(y0 - y1) _roi = ROI(x0=x_left, y0=y_top, width=width_roi, height=height_roi) _list_roi.append(_roi) self.debugging_roi = _list_roi self.o_norm.df_correction() if _list_roi: try: self.o_norm.normalization(roi=_list_roi[0], notebook=True, force_median_ob=force_median_ob, force_mean_ob=force_mean_ob, force=True) except ValueError: display(HTML('<span style="font-size: 20px; color:red">Data Size of Sample, OB and DF (if any) ' + 'do not Match!</span>')) return else: self.o_norm.normalization(notebook=True) self.normalized_data_array = self.o_norm.get_normalized_data() self.normalized_metadata_array = self.o_norm.data['sample']['metadata'] def select_export_folder(self, ipts_folder='./'): def display_file_selector_from_shared(ev): start_dir = os.path.join(ipts_folder, 'shared') self.output_folder_ui.remove() self.display_file_selector(start_dir=start_dir) def display_file_selector_from_home(ev): import getpass _user = getpass.getuser() start_dir = os.path.join('/SNS/users', _user) self.output_folder_ui.remove() self.display_file_selector(start_dir=start_dir) ipts = os.path.basename(self.working_dir) button_layout = widgets.Layout(width='30%', border='1px solid gray') hbox = widgets.HBox([widgets.Button(description="Jump to {} Shared Folder".format(ipts), button_style='success', layout=button_layout), widgets.Button(description="Jump to My Home Folder", button_style='success', layout=button_layout)]) go_to_shared_button_ui = hbox.children[0] go_to_home_button_ui = hbox.children[1] go_to_shared_button_ui.on_click(display_file_selector_from_shared) go_to_home_button_ui.on_click(display_file_selector_from_home) display(hbox) self.display_file_selector() def display_file_selector(self, start_dir=''): self.output_folder_ui = fileselector.FileSelectorPanel(instruction='Select Output Folder', start_dir=start_dir, multiple=False, type='directory') self.output_folder_ui.show() def export(self): base_folder = os.path.basename(os.path.dirname(self.list_file_names[0])) + '_normalized' output_folder = os.path.abspath(os.path.join(self.output_folder_ui.selected, base_folder)) output_folder = make_or_increment_folder_name(output_folder) w = widgets.IntProgress() w.max = len(self.files.sample) display(w) for _index, _file in enumerate(self.list_file_names): basename = os.path.basename(_file) _base, _ext = os.path.splitext(basename) output_file_name = os.path.join(output_folder, _base + '.tiff') file_handler.make_tiff(filename=output_file_name, data=self.normalized_data_array[_index], metadata=self.normalized_metadata_array[_index]) w.value = _index + 1 display(HTML('<span style="font-size: 20px; color:blue">The normalized images have been ' + 'created in ' + output_folder + '</span>')) class GammaCoefficient(object): def select_gamma_coefficient(self): self.gamma_coeff_ui = widgets.HBox([widgets.Label("Gamma Coefficient:", layout=widgets.Layout(width="20%")), widgets.FloatSlider(value=gamma_filtering_coefficient, min=0, max=1, layout=widgets.Layout(width="50%"))]) display(self.gamma_coeff_ui) def get_coefficient(self): return self.gamma_coeff_ui.children[1].value
py
b40720eb0d90f25986470eb622c2afbb153068b1
#!/usr/bin/python ### # Uses the 'md-to-toc' python script to generate and insert tables of contents for *.md ### import codecs, os, os.path, sys, tempfile try: from urllib.request import urlopen # python 3 except ImportError: from urllib2 import urlopen # python 2 TOC_GEN_FILENAME = "md-to-toc.py" TOC_GEN_URL = "https://raw.githubusercontent.com/amaiorano/md-to-toc/master/" + TOC_GEN_FILENAME MARKDOWN_FILE_ENDSWITH = ".md" TOC_MARKER_START = "TOC START" TOC_MARKER_END = "TOC END" def download(url): print("Downloading %s..." % url) r = urlopen(url) if r.code == 200: return r.read().decode("utf-8"); else: raise "Got error=%d when downloading %s" % (r.code, url) def get_parser_module(): if not os.path.isfile(TOC_GEN_FILENAME): with open(TOC_GEN_FILENAME, 'w') as module_out: module_out.write(download(TOC_GEN_URL)) module_out.close() print("Created %s" % TOC_GEN_FILENAME) return __import__(TOC_GEN_FILENAME.split(".")[0]) class Writer: def __init__(self): self.__chunks = [] def write(self, chunk): self.__chunks.append(chunk) def flush(self): pass def get(self): return "".join(self.__chunks) def print_toc(parser, filepath): parser.main([sys.argv[0], filepath]) def insert_toc(parser, filepath): # Create temp file which only contains content following the TOC after_toc = False tmpfilepath = tempfile.mkstemp()[1] with codecs.open(tmpfilepath, 'w', "utf-8-sig") as tmpfile: for line in open(filepath).readlines(): if line.find(TOC_MARKER_END) >= 0: after_toc = True continue if after_toc: tmpfile.write(line + "\n") tmpfile.close() # Hack: Intercept stdout produced by the parser original_stdout = sys.stdout parsed_toc = Writer() sys.stdout = parsed_toc print_toc(parser, tmpfilepath) sys.stdout = original_stdout new_lines = [] inside_toc = False for line in open(filepath).readlines(): if line.find(TOC_MARKER_START) >= 0: new_lines.append(line) new_lines.append("\n") new_lines.append(parsed_toc.get()) new_lines.append("\n") inside_toc = True if line.find(TOC_MARKER_END) >= 0: inside_toc = False if not inside_toc: new_lines.append(line) return new_lines def update_mds_in_script_dir(parser): script_dir = os.path.dirname(os.path.realpath(__file__)) os.chdir(script_dir) print("Scanning %s:" % os.getcwd()) for filename in os.listdir(script_dir): if not filename.endswith(MARKDOWN_FILE_ENDSWITH): continue print(" Updating %s" % filename) new_lines = insert_toc(parser, filename) open(filename, 'w').write("".join(new_lines)) if __name__ == "__main__": if len(sys.argv) <= 1: # Inject the TOC into each .md file in this script's directory update_mds_in_script_dir(get_parser_module()) sys.exit(0) if sys.argv[1] == "--help" or sys.argv[1] == "-h": print("Syntax: %s [path or url]" % sys.argv[0]) print(" If path or url is provided: prints the TOC for that path or url") print(" If no args: injects the TOC for each .md file in the script's directory") sys.exit(1) # Print the TOC for the provided file or URL parser = get_parser_module() if os.path.isfile(sys.argv[1]): print_toc(parser, sys.argv[1]) else: # Not an existent file, treat as a URL tmpfilepath = tempfile.mkstemp()[1] with codecs.open(tmpfilepath, 'w', "utf-8-sig") as tmpfile: tmpfile.write(download(sys.argv[1])) tmpfile.close() print_toc(parser, tmpfilepath) os.unlink(tmpfilepath)
py
b40720eebab30acaa6417852a83c7bdc768c7c63
# -*- coding: utf-8 -*- """ Created on Mon Mar 05 13:41:23 2018 @author: DanielM """ from neuron import h, gui # gui necessary for some parameters to h namespace import numpy as np import net_ppdynamicstuned from input_generator import inhom_poiss import os import argparse import time from analysis_main import time_stamps_to_signal import pdb tsts = time_stamps_to_signal # Handle command line inputs with argparse parser = argparse.ArgumentParser(description='Pattern separation paradigm') parser.add_argument('-runs', nargs=3, type=int, help='start stop range for the range of runs', default=[0, 1, 1], dest='runs') parser.add_argument('-savedir', type=str, help='complete directory where data is saved', default=os.getcwd(), dest='savedir') parser.add_argument('-seed', nargs=3, type=int, help='the seed making the network reproducible', default=[10000, 10001, 1], dest='seed') parser.add_argument('-pp_mod_rate', type=int, help='Frequency at which the input is modulated', default=10, dest='pp_mod_rate') parser.add_argument('-pp_max_rate', type=int, help='The maximum frequency the input reaches', default=50, dest='pp_max_rate') parser.add_argument('-W_pp_gc', type=float, help='the weight of the pp to gc connection', default=1e-3, dest='W_pp_gc') parser.add_argument('-W_pp_bc', type=float, help='the weight of the pp to bc connection', default=1e-3, dest='W_pp_bc') parser.add_argument('-rec_cond', type=int, help='number of hc to gc synapses', default=0, dest='rec_cond') args = parser.parse_args() # Where to search for nrnmech.dll file. Must be adjusted for your machine. dll_files = [("/home/daniel/repos/pyDentate/mechs_7-6_linux/x86_64/.libs/libnrnmech.so"), ("C:\\Users\\Daniel\\repos\\pyDentate\\mechs_7-6_win\\nrnmech.dll")] for x in dll_files: if os.path.isfile(x): dll_dir = x print("DLL loaded from: " + str(dll_dir)) h.nrn_load_dll(dll_dir) # Start the runs of the model runs = range(args.runs[0], args.runs[1], args.runs[2]) initial_run = runs[0] for seed in range(args.seed[0], args.seed[1], args.seed[2]): # Generate temporal patterns for the 100 PP inputs np.random.seed(seed) temporal_patterns_full = inhom_poiss(mod_rate=args.pp_mod_rate, max_rate=args.pp_max_rate, n_inputs=400) for run in runs: start_proc_t = time.perf_counter() print("Run: " + str(run) + ". Total time: " + str(start_proc_t)) temporal_patterns = temporal_patterns_full.copy() for idx in range(run+24,temporal_patterns.shape[0]): temporal_patterns[idx] = np.array([]) for idx in range(0,run): temporal_patterns[idx] = np.array([]) nw = net_ppdynamicstuned.TunedNetwork(seed=seed, W_pp_gc=args.W_pp_gc, W_pp_bc=args.W_pp_bc, temporal_patterns=temporal_patterns, rec_cond=False) # Run the model """Initialization for -2000 to -100""" h.cvode.active(0) dt = 0.1 h.steps_per_ms = 1.0/dt h.finitialize(-60) h.t = -2000 h.secondorder = 0 h.dt = 10 while h.t < -100: h.fadvance() h.secondorder = 2 h.t = 0 h.dt = 0.1 """Setup run control for -100 to 1500""" h.frecord_init() # Necessary after changing t to restart the vectors while h.t < 600: h.fadvance() end_proc_t = time.perf_counter() print("Done Running at " + str(end_proc_t) + " after " + str((end_proc_t - start_proc_t)/60) + " minutes") save_data_name = (f"{str(nw)}_" f"{seed:06d}_" f"{run:03d}_" f"{args.W_pp_gc:08.5f}_" f"{args.W_pp_bc:08.5f}_" f"{args.pp_mod_rate:04d}_" f"{args.pp_max_rate:04d}_") #if run == 0: fig = nw.plot_aps(time=600) tuned_fig_file_name = save_data_name nw.save_ap_fig(fig, args.savedir, tuned_fig_file_name) pp_lines = np.empty(400, dtype = np.object) pp_lines[0+run:24+run] = temporal_patterns[0+run:24+run] curr_pp_ts = np.array(tsts(pp_lines, dt_signal=0.1, t_start=0, t_stop=600), dtype = np.bool) curr_gc_ts = np.array(tsts(nw.populations[0].get_properties()['ap_time_stamps'], dt_signal=0.1, t_start=0, t_stop=600), dtype = np.bool) curr_mc_ts = np.array(tsts(nw.populations[1].get_properties()['ap_time_stamps'], dt_signal=0.1, t_start=0, t_stop=600), dtype = np.bool) curr_hc_ts = np.array(tsts(nw.populations[2].get_properties()['ap_time_stamps'], dt_signal=0.1, t_start=0, t_stop=600), dtype = np.bool) curr_bc_ts = np.array(tsts(nw.populations[3].get_properties()['ap_time_stamps'], dt_signal=0.1, t_start=0, t_stop=600), dtype = np.bool) np.savez(args.savedir + os.path.sep + "time-stamps_" + save_data_name, pp_ts = np.array(curr_pp_ts), gc_ts = np.array(curr_gc_ts), mc_ts = np.array(curr_mc_ts), bc_ts = np.array(curr_bc_ts), hc_ts = np.array(curr_hc_ts)) #del curr_pp_ts, curr_gc_ts, curr_mc_ts, curr_hc_ts, curr_bc_ts #del nw
py
b407212fe6a505c866542849743f7e0a86607ec4
""" Define the SeriesGroupBy and DataFrameGroupBy classes that hold the groupby interfaces (and some implementations). These are user facing as the result of the ``df.groupby(...)`` operations, which here returns a DataFrameGroupBy object. """ from __future__ import annotations from collections import ( abc, namedtuple, ) import copy from functools import partial from textwrap import dedent from typing import ( Any, Callable, Dict, FrozenSet, Hashable, Iterable, List, Mapping, Optional, Type, TypeVar, Union, cast, ) import warnings import numpy as np from pandas._libs import ( lib, reduction as libreduction, ) from pandas._typing import ( ArrayLike, FrameOrSeries, FrameOrSeriesUnion, Manager, ) from pandas.util._decorators import ( Appender, Substitution, doc, ) from pandas.core.dtypes.cast import ( find_common_type, maybe_cast_result_dtype, maybe_downcast_numeric, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_bool, is_categorical_dtype, is_dict_like, is_integer_dtype, is_interval_dtype, is_numeric_dtype, is_scalar, needs_i8_conversion, ) from pandas.core.dtypes.missing import ( isna, notna, ) from pandas.core import ( algorithms, nanops, ) from pandas.core.aggregation import ( maybe_mangle_lambdas, reconstruct_func, validate_func_kwargs, ) from pandas.core.apply import GroupByApply from pandas.core.arrays import Categorical from pandas.core.base import ( DataError, SpecificationError, ) import pandas.core.common as com from pandas.core.construction import create_series_with_explicit_dtype from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.groupby import base from pandas.core.groupby.groupby import ( GroupBy, _agg_template, _apply_docs, _transform_template, get_groupby, group_selection_context, ) from pandas.core.indexes.api import ( Index, MultiIndex, all_indexes_same, ) import pandas.core.indexes.base as ibase from pandas.core.internals import ArrayManager from pandas.core.series import Series from pandas.core.util.numba_ import maybe_use_numba from pandas.plotting import boxplot_frame_groupby NamedAgg = namedtuple("NamedAgg", ["column", "aggfunc"]) # TODO(typing) the return value on this callable should be any *scalar*. AggScalar = Union[str, Callable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = TypeVar("ScalarResult") def generate_property(name: str, klass: Type[FrameOrSeries]): """ Create a property for a GroupBy subclass to dispatch to DataFrame/Series. Parameters ---------- name : str klass : {DataFrame, Series} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = getattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_allowlisted_properties(klass: Type[FrameOrSeries], allowlist: FrozenSet[str]): """ Create GroupBy member defs for DataFrame/Series names in a allowlist. Parameters ---------- klass : DataFrame or Series class class where members are defined. allowlist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, any such name is skipped. """ def pinner(cls): for name in allowlist: if hasattr(cls, name): # don't override anything that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_allowlisted_properties(Series, base.series_apply_allowlist) class SeriesGroupBy(GroupBy[Series]): _apply_allowlist = base.series_apply_allowlist def _iterate_slices(self) -> Iterable[Series]: yield self._selected_obj @property def _selection_name(self): """ since we are a series, we by definition only have a single name, but may be the result of a selection or the name of our object """ if self._selection is None: return self.obj.name else: return self._selection _agg_examples_doc = dedent( """ Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.groupby([1, 1, 2, 2]).min() 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg('min') 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg(['min', 'max']) min max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.groupby([1, 1, 2, 2]).agg( ... minimum='min', ... maximum='max', ... ) minimum maximum 1 1 2 2 3 4""" ) @Appender( _apply_docs["template"].format( input="series", examples=_apply_docs["series_examples"] ) ) def apply(self, func, *args, **kwargs): return super().apply(func, *args, **kwargs) @doc(_agg_template, examples=_agg_examples_doc, klass="Series") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with group_selection_context(self): data = self._selected_obj result, index = self._aggregate_with_numba( data.to_frame(), func, *args, engine_kwargs=engine_kwargs, **kwargs ) return self.obj._constructor(result.ravel(), index=index, name=data.name) relabeling = func is None columns = None if relabeling: columns, func = validate_func_kwargs(kwargs) kwargs = {} if isinstance(func, str): return getattr(self, func)(*args, **kwargs) elif isinstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func) if relabeling: ret.columns = columns else: cyfunc = self._get_cython_func(func) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) try: return self._python_agg_general(func, *args, **kwargs) except (ValueError, KeyError): # TODO: KeyError is raised in _python_agg_general, # see test_groupby.test_basic result = self._aggregate_named(func, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = create_series_with_explicit_dtype( result, index=index, dtype_if_empty=object ) if not self.as_index: # pragma: no cover print("Warning, ignoring as_index=True") if isinstance(ret, dict): from pandas import concat ret = concat(ret.values(), axis=1, keys=[key.label for key in ret.keys()]) return ret agg = aggregate def _aggregate_multiple_funcs(self, arg): if isinstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 if isinstance(self._selected_obj, Series): raise SpecificationError("nested renamer is not supported") columns = list(arg.keys()) arg = arg.items() elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.append(com.get_callable_name(f) or f) arg = zip(columns, arg) results: Dict[base.OutputKey, FrameOrSeriesUnion] = {} for idx, (name, func) in enumerate(arg): obj = self # reset the cache so that we # only include the named selection if name in self._selected_obj: obj = copy.copy(obj) obj._reset_cache() obj._selection = name results[base.OutputKey(label=name, position=idx)] = obj.aggregate(func) if any(isinstance(x, DataFrame) for x in results.values()): # let higher level handle return results # Argument 1 to "_wrap_aggregated_output" of "SeriesGroupBy" has # incompatible type "Dict[OutputKey, Union[DataFrame, # Series]]"; # expected "Mapping[OutputKey, Union[Series, ndarray]]" output = self._wrap_aggregated_output( results, index=None # type: ignore[arg-type] ) return self.obj._constructor_expanddim(output, columns=columns) # TODO: index should not be Optional - see GH 35490 def _wrap_series_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]], index: Optional[Index], ) -> FrameOrSeriesUnion: """ Wraps the output of a SeriesGroupBy operation into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. index : pd.Index or None Index to apply to the output. Returns ------- Series or DataFrame Notes ----- In the vast majority of cases output and columns will only contain one element. The exception is operations that expand dimensions, like ohlc. """ indexed_output = {key.position: val for key, val in output.items()} columns = Index(key.label for key in output) result: FrameOrSeriesUnion if len(output) > 1: result = self.obj._constructor_expanddim(indexed_output, index=index) result.columns = columns elif not columns.empty: result = self.obj._constructor( indexed_output[0], index=index, name=columns[0] ) else: result = self.obj._constructor_expanddim() return result # TODO: Remove index argument, use self.grouper.result_index, see GH 35490 def _wrap_aggregated_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]], index: Optional[Index], ) -> FrameOrSeriesUnion: """ Wraps the output of a SeriesGroupBy aggregation into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. Returns ------- Series or DataFrame Notes ----- In the vast majority of cases output will only contain one element. The exception is operations that expand dimensions, like ohlc. """ result = self._wrap_series_output(output=output, index=index) return self._reindex_output(result) def _wrap_transformed_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]] ) -> Series: """ Wraps the output of a SeriesGroupBy aggregation into the expected result. Parameters ---------- output : dict[base.OutputKey, Union[Series, np.ndarray]] Dict with a sole key of 0 and a value of the result values. Returns ------- Series Notes ----- output should always contain one element. It is specified as a dict for consistency with DataFrame methods and _wrap_aggregated_output. """ assert len(output) == 1 result = self._wrap_series_output(output=output, index=self.obj.index) # No transformations increase the ndim of the result assert isinstance(result, Series) return result def _wrap_applied_output( self, data: Series, keys: Index, values: Optional[List[Any]], not_indexed_same: bool = False, ) -> FrameOrSeriesUnion: """ Wrap the output of SeriesGroupBy.apply into the expected result. Parameters ---------- data : Series Input data for groupby operation. keys : Index Keys of groups that Series was grouped by. values : Optional[List[Any]] Applied output for each group. not_indexed_same : bool, default False Whether the applied outputs are not indexed the same as the group axes. Returns ------- DataFrame or Series """ if len(keys) == 0: # GH #6265 return self.obj._constructor( [], name=self._selection_name, index=self.grouper.result_index, dtype=data.dtype, ) assert values is not None def _get_index() -> Index: if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 #24880 index = _get_index() result: FrameOrSeriesUnion = self._reindex_output( self.obj._constructor_expanddim(values, index=index) ) # if self.observed is False, # keep all-NaN rows created while re-indexing result = result.stack(dropna=self.observed) result.name = self._selection_name return result elif isinstance(values[0], (Series, DataFrame)): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 #24880 result = self.obj._constructor( data=values, index=_get_index(), name=self._selection_name ) return self._reindex_output(result) def _aggregate_named(self, func, *args, **kwargs): result = {} initialized = False for name, group in self: # Each step of this loop corresponds to # libreduction._BaseGrouper._apply_to_group group.name = name # NB: libreduction does not pin name output = func(group, *args, **kwargs) output = libreduction.extract_result(output) if not initialized: # We only do this validation on the first iteration libreduction.check_result_array(output, 0) initialized = True result[name] = output return result @Substitution(klass="Series") @Appender(_transform_template) def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with group_selection_context(self): data = self._selected_obj result = self._transform_with_numba( data.to_frame(), func, *args, engine_kwargs=engine_kwargs, **kwargs ) return self.obj._constructor( result.ravel(), index=data.index, name=data.name ) func = self._get_cython_func(func) or func if not isinstance(func, str): return self._transform_general(func, *args, **kwargs) elif func not in base.transform_kernel_allowlist: msg = f"'{func}' is not a valid function name for transform(name)" raise ValueError(msg) elif func in base.cythonized_kernels or func in base.transformation_kernels: # cythonized transform or canned "agg+broadcast" return getattr(self, func)(*args, **kwargs) # If func is a reduction, we need to broadcast the # result to the whole group. Compute func result # and deal with possible broadcasting below. # Temporarily set observed for dealing with categoricals. with com.temp_setattr(self, "observed", True): result = getattr(self, func)(*args, **kwargs) return self._transform_fast(result) def _transform_general(self, func, *args, **kwargs): """ Transform with a non-str `func`. """ klass = type(self._selected_obj) results = [] for name, group in self: object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) if isinstance(res, (DataFrame, Series)): res = res._values results.append(klass(res, index=group.index)) # check for empty "results" to avoid concat ValueError if results: from pandas.core.reshape.concat import concat concatenated = concat(results) result = self._set_result_index_ordered(concatenated) else: result = self.obj._constructor(dtype=np.float64) # we will only try to coerce the result type if # we have a numeric dtype, as these are *always* user-defined funcs # the cython take a different path (and casting) if is_numeric_dtype(result.dtype): common_dtype = find_common_type([self._selected_obj.dtype, result.dtype]) if common_dtype is result.dtype: result = maybe_downcast_numeric(result, self._selected_obj.dtype) result.name = self._selected_obj.name return result def _transform_fast(self, result) -> Series: """ fast version of transform, only applicable to builtin/cythonizable functions """ ids, _, ngroup = self.grouper.group_info result = result.reindex(self.grouper.result_index, copy=False) out = algorithms.take_nd(result._values, ids) return self.obj._constructor(out, index=self.obj.index, name=self.obj.name) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Notes ----- Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`udf-mutation` for more details. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> df.groupby('A').B.filter(lambda x: x.mean() > 3.) 1 2 3 4 5 6 Name: B, dtype: int64 Returns ------- filtered : Series """ if isinstance(func, str): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x) -> bool: b = wrapper(x) return b and notna(b) try: indices = [ self._get_index(name) for name, group in self if true_and_notna(group) ] except (ValueError, TypeError) as err: raise TypeError("the filter must return a boolean result") from err filtered = self._apply_filter(indices, dropna) return filtered def nunique(self, dropna: bool = True) -> Series: """ Return number of unique elements in the group. Returns ------- Series Number of unique values within each group. """ ids, _, _ = self.grouper.group_info val = self.obj._values codes, _ = algorithms.factorize(val, sort=False) sorter = np.lexsort((codes, ids)) codes = codes[sorter] ids = ids[sorter] # group boundaries are where group ids change # unique observations are where sorted values change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] inc = np.r_[1, codes[1:] != codes[:-1]] # 1st item of each group is a new unique observation mask = codes == -1 if dropna: inc[idx] = 1 inc[mask] = 0 else: inc[mask & np.r_[False, mask[:-1]]] = 0 inc[idx] = 1 out = np.add.reduceat(inc, idx).astype("int64", copy=False) if len(ids): # NaN/NaT group exists if the head of ids is -1, # so remove it from res and exclude its index from idx if ids[0] == -1: res = out[1:] idx = idx[np.flatnonzero(idx)] else: res = out else: res = out[1:] ri = self.grouper.result_index # we might have duplications among the bins if len(res) != len(ri): res, out = np.zeros(len(ri), dtype=out.dtype), res res[ids[idx]] = out result = self.obj._constructor(res, index=ri, name=self._selection_name) return self._reindex_output(result, fill_value=0) @doc(Series.describe) def describe(self, **kwargs): result = self.apply(lambda x: x.describe(**kwargs)) if self.axis == 1: return result.T return result.unstack() def value_counts( self, normalize=False, sort=True, ascending=False, bins=None, dropna: bool = True, ): from pandas.core.reshape.merge import get_join_indexers from pandas.core.reshape.tile import cut ids, _, _ = self.grouper.group_info val = self.obj._values def apply_series_value_counts(): return self.apply( Series.value_counts, normalize=normalize, sort=sort, ascending=ascending, bins=bins, ) if bins is not None: if not np.iterable(bins): # scalar bins cannot be done at top level # in a backward compatible way return apply_series_value_counts() elif is_categorical_dtype(val): # GH38672 return apply_series_value_counts() # groupby removes null keys from groupings mask = ids != -1 ids, val = ids[mask], val[mask] if bins is None: lab, lev = algorithms.factorize(val, sort=True) llab = lambda lab, inc: lab[inc] else: # lab is a Categorical with categories an IntervalIndex lab = cut(Series(val), bins, include_lowest=True) # error: "ndarray" has no attribute "cat" lev = lab.cat.categories # type: ignore[attr-defined] # error: No overload variant of "take" of "_ArrayOrScalarCommon" matches # argument types "Any", "bool", "Union[Any, float]" lab = lev.take( # type: ignore[call-overload] # error: "ndarray" has no attribute "cat" lab.cat.codes, # type: ignore[attr-defined] allow_fill=True, # error: Item "ndarray" of "Union[ndarray, Index]" has no attribute # "_na_value" fill_value=lev._na_value, # type: ignore[union-attr] ) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if is_interval_dtype(lab.dtype): # TODO: should we do this inside II? # error: "ndarray" has no attribute "left" # error: "ndarray" has no attribute "right" sorter = np.lexsort( (lab.left, lab.right, ids) # type: ignore[attr-defined] ) else: sorter = np.lexsort((lab, ids)) ids, lab = ids[sorter], lab[sorter] # group boundaries are where group ids change idchanges = 1 + np.nonzero(ids[1:] != ids[:-1])[0] idx = np.r_[0, idchanges] if not len(ids): idx = idchanges # new values are where sorted labels change lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1)) inc = np.r_[True, lchanges] if not len(lchanges): inc = lchanges inc[idx] = True # group boundaries are also new values out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts # num. of times each group should be repeated rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx)) # multi-index components codes = self.grouper.reconstructed_codes codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)] # error: List item 0 has incompatible type "Union[ndarray, Any]"; # expected "Index" levels = [ping.group_index for ping in self.grouper.groupings] + [ lev # type: ignore[list-item] ] names = self.grouper.names + [self._selection_name] if dropna: mask = codes[-1] != -1 if mask.all(): dropna = False else: out, codes = out[mask], [level_codes[mask] for level_codes in codes] if normalize: out = out.astype("float") d = np.diff(np.r_[idx, len(ids)]) if dropna: m = ids[lab == -1] np.add.at(d, m, -1) acc = rep(d)[mask] else: acc = rep(d) out /= acc if sort and bins is None: cat = ids[inc][mask] if dropna else ids[inc] sorter = np.lexsort((out if ascending else -out, cat)) out, codes[-1] = out[sorter], codes[-1][sorter] if bins is None: mi = MultiIndex( levels=levels, codes=codes, names=names, verify_integrity=False ) if is_integer_dtype(out): out = ensure_int64(out) return self.obj._constructor(out, index=mi, name=self._selection_name) # for compat. with libgroupby.value_counts need to ensure every # bin is present at every index level, null filled with zeros diff = np.zeros(len(out), dtype="bool") for level_codes in codes[:-1]: diff |= np.r_[True, level_codes[1:] != level_codes[:-1]] ncat, nbin = diff.sum(), len(levels[-1]) left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)] right = [diff.cumsum() - 1, codes[-1]] _, idx = get_join_indexers(left, right, sort=False, how="left") out = np.where(idx != -1, out[idx], 0) if sort: sorter = np.lexsort((out if ascending else -out, left[0])) out, left[-1] = out[sorter], left[-1][sorter] # build the multi-index w/ full levels def build_codes(lev_codes: np.ndarray) -> np.ndarray: return np.repeat(lev_codes[diff], nbin) codes = [build_codes(lev_codes) for lev_codes in codes[:-1]] codes.append(left[-1]) mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False) if is_integer_dtype(out): out = ensure_int64(out) return self.obj._constructor(out, index=mi, name=self._selection_name) def count(self) -> Series: """ Compute count of group, excluding missing values. Returns ------- Series Count of values within each group. """ ids, _, ngroups = self.grouper.group_info val = self.obj._values mask = (ids != -1) & ~isna(val) ids = ensure_platform_int(ids) minlength = ngroups or 0 out = np.bincount(ids[mask], minlength=minlength) result = self.obj._constructor( out, index=self.grouper.result_index, name=self._selection_name, dtype="int64", ) return self._reindex_output(result, fill_value=0) def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) def pct_change(self, periods=1, fill_method="pad", limit=None, freq=None): """Calculate pct_change of each value to previous entry in group""" # TODO: Remove this conditional when #23918 is fixed if freq: return self.apply( lambda x: x.pct_change( periods=periods, fill_method=fill_method, limit=limit, freq=freq ) ) if fill_method is None: # GH30463 fill_method = "pad" limit = 0 filled = getattr(self, fill_method)(limit=limit) fill_grp = filled.groupby(self.grouper.codes) shifted = fill_grp.shift(periods=periods, freq=freq) return (filled / shifted) - 1 @pin_allowlisted_properties(DataFrame, base.dataframe_apply_allowlist) class DataFrameGroupBy(GroupBy[DataFrame]): _apply_allowlist = base.dataframe_apply_allowlist _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame( ... { ... "A": [1, 1, 2, 2], ... "B": [1, 2, 3, 4], ... "C": [0.362838, 0.227877, 1.267767, -0.562860], ... } ... ) >>> df A B C 0 1 1 0.362838 1 1 2 0.227877 2 2 3 1.267767 3 2 4 -0.562860 The aggregation is for each column. >>> df.groupby('A').agg('min') B C A 1 1 0.227877 2 3 -0.562860 Multiple aggregations >>> df.groupby('A').agg(['min', 'max']) B C min max min max A 1 1 2 0.227877 0.362838 2 3 4 -0.562860 1.267767 Select a column for aggregation >>> df.groupby('A').B.agg(['min', 'max']) min max A 1 1 2 2 3 4 Different aggregations per column >>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'}) B C min max sum A 1 1 2 0.590715 2 3 4 0.704907 To control the output names with different aggregations per column, pandas supports "named aggregation" >>> df.groupby("A").agg( ... b_min=pd.NamedAgg(column="B", aggfunc="min"), ... c_sum=pd.NamedAgg(column="C", aggfunc="sum")) b_min c_sum A 1 1 0.590715 2 3 0.704907 - The keywords are the *output* column names - The values are tuples whose first element is the column to select and the second element is the aggregation to apply to that column. Pandas provides the ``pandas.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']`` to make it clearer what the arguments are. As usual, the aggregation can be a callable or a string alias. See :ref:`groupby.aggregate.named` for more.""" ) @doc(_agg_template, examples=_agg_examples_doc, klass="DataFrame") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with group_selection_context(self): data = self._selected_obj result, index = self._aggregate_with_numba( data, func, *args, engine_kwargs=engine_kwargs, **kwargs ) return self.obj._constructor(result, index=index, columns=data.columns) relabeling, func, columns, order = reconstruct_func(func, **kwargs) func = maybe_mangle_lambdas(func) op = GroupByApply(self, func, args, kwargs) result = op.agg() if not is_dict_like(func) and result is not None: return result if result is None: # grouper specific aggregations if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) elif args or kwargs: result = self._aggregate_frame(func, *args, **kwargs) elif self.axis == 1: # _aggregate_multiple_funcs does not allow self.axis == 1 result = self._aggregate_frame(func) else: # try to treat as if we are passing a list try: result = GroupByApply(self, [func], args=(), kwargs={}).agg() # select everything except for the last level, which is the one # containing the name of the function(s), see GH 32040 result.columns = result.columns.rename( [self._selected_obj.columns.name] * result.columns.nlevels ).droplevel(-1) except ValueError as err: if "no results" not in str(err): # raised directly by _aggregate_multiple_funcs raise result = self._aggregate_frame(func) except AttributeError: # catch exception from line 969 # (Series does not have attribute "columns"), see GH 35246 result = self._aggregate_frame(func) if relabeling: # used reordered index of columns result = result.iloc[:, order] result.columns = columns if not self.as_index: self._insert_inaxis_grouper_inplace(result) result.index = np.arange(len(result)) return result._convert(datetime=True) agg = aggregate def _iterate_slices(self) -> Iterable[Series]: obj = self._selected_obj if self.axis == 1: obj = obj.T if isinstance(obj, Series) and obj.name not in self.exclusions: # Occurs when doing DataFrameGroupBy(...)["X"] yield obj else: for label, values in obj.items(): if label in self.exclusions: continue yield values def _cython_agg_general( self, how: str, alt=None, numeric_only: bool = True, min_count: int = -1 ) -> DataFrame: agg_mgr = self._cython_agg_manager( how, alt=alt, numeric_only=numeric_only, min_count=min_count ) return self._wrap_agged_manager(agg_mgr) def _cython_agg_manager( self, how: str, alt=None, numeric_only: bool = True, min_count: int = -1 ) -> Manager: data: Manager = self._get_data_to_aggregate() if numeric_only: data = data.get_numeric_data(copy=False) using_array_manager = isinstance(data, ArrayManager) def cast_agg_result(result, values: ArrayLike, how: str) -> ArrayLike: # see if we can cast the values to the desired dtype # this may not be the original dtype assert not isinstance(result, DataFrame) dtype = maybe_cast_result_dtype(values.dtype, how) result = maybe_downcast_numeric(result, dtype) if isinstance(values, Categorical) and isinstance(result, np.ndarray): # If the Categorical op didn't raise, it is dtype-preserving result = type(values)._from_sequence(result.ravel(), dtype=values.dtype) # Note this will have result.dtype == dtype from above elif ( not using_array_manager and isinstance(result, np.ndarray) and result.ndim == 1 ): # We went through a SeriesGroupByPath and need to reshape # GH#32223 includes case with IntegerArray values result = result.reshape(1, -1) # test_groupby_duplicate_columns gets here with # result.dtype == int64, values.dtype=object, how="min" return result def py_fallback(values: ArrayLike) -> ArrayLike: # if self.grouper.aggregate fails, we fall back to a pure-python # solution # We get here with a) EADtypes and b) object dtype obj: FrameOrSeriesUnion # call our grouper again with only this block if values.ndim == 1: obj = Series(values) else: # TODO special case not needed with ArrayManager obj = DataFrame(values.T) if obj.shape[1] == 1: # Avoid call to self.values that can occur in DataFrame # reductions; see GH#28949 obj = obj.iloc[:, 0] # Create SeriesGroupBy with observed=True so that it does # not try to add missing categories if grouping over multiple # Categoricals. This will done by later self._reindex_output() # Doing it here creates an error. See GH#34951 sgb = get_groupby(obj, self.grouper, observed=True) result = sgb.aggregate(lambda x: alt(x, axis=self.axis)) assert isinstance(result, (Series, DataFrame)) # for mypy # In the case of object dtype block, it may have been split # in the operation. We un-split here. result = result._consolidate() assert isinstance(result, (Series, DataFrame)) # for mypy # unwrap DataFrame/Series to get array mgr = result._mgr arrays = mgr.arrays if len(arrays) != 1: # We've split an object block! Everything we've assumed # about a single block input returning a single block output # is a lie. See eg GH-39329 return mgr.as_array() else: # We are a single block from a BlockManager # or one array from SingleArrayManager return arrays[0] def array_func(values: ArrayLike) -> ArrayLike: try: result = self.grouper._cython_operation( "aggregate", values, how, axis=1, min_count=min_count ) except NotImplementedError: # generally if we have numeric_only=False # and non-applicable functions # try to python agg if alt is None: # we cannot perform the operation # in an alternate way, exclude the block assert how == "ohlc" raise # error: Incompatible types in assignment (expression has type # "ExtensionArray", variable has type "ndarray") result = py_fallback(values) # type: ignore[assignment] return cast_agg_result(result, values, how) # TypeError -> we may have an exception in trying to aggregate # continue and exclude the block # NotImplementedError -> "ohlc" with wrong dtype new_mgr = data.grouped_reduce(array_func, ignore_failures=True) if not len(new_mgr): raise DataError("No numeric types to aggregate") return new_mgr def _aggregate_frame(self, func, *args, **kwargs) -> DataFrame: if self.grouper.nkeys != 1: raise AssertionError("Number of keys must be 1") axis = self.axis obj = self._obj_with_exclusions result: Dict[Hashable, Union[NDFrame, np.ndarray]] = {} if axis != obj._info_axis_number: for name, data in self: fres = func(data, *args, **kwargs) result[name] = fres else: for name in self.indices: data = self.get_group(name, obj=obj) fres = func(data, *args, **kwargs) result[name] = fres return self._wrap_frame_output(result, obj) def _aggregate_item_by_item(self, func, *args, **kwargs) -> DataFrame: # only for axis==0 obj = self._obj_with_exclusions result: Dict[Union[int, str], NDFrame] = {} cannot_agg = [] for item in obj: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) try: result[item] = colg.aggregate(func, *args, **kwargs) except ValueError as err: if "Must produce aggregated value" in str(err): # raised in _aggregate_named, handle at higher level # see test_apply_with_mutated_index raise # otherwise we get here from an AttributeError in _make_wrapper cannot_agg.append(item) continue result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) return self.obj._constructor(result, columns=result_columns) def _wrap_applied_output(self, data, keys, values, not_indexed_same=False): if len(keys) == 0: result = self.obj._constructor( index=self.grouper.result_index, columns=data.columns ) result = result.astype(data.dtypes.to_dict(), copy=False) return result # GH12824 first_not_none = next(com.not_none(*values), None) if first_not_none is None: # GH9684 - All values are None, return an empty frame. return self.obj._constructor() elif isinstance(first_not_none, DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) key_index = self.grouper.result_index if self.as_index else None if isinstance(first_not_none, (np.ndarray, Index)): # GH#1738: values is list of arrays of unequal lengths # fall through to the outer else clause # TODO: sure this is right? we used to do this # after raising AttributeError above return self.obj._constructor_sliced( values, index=key_index, name=self._selection_name ) elif not isinstance(first_not_none, Series): # values are not series or array-like but scalars # self._selection_name not passed through to Series as the # result should not take the name of original selection # of columns if self.as_index: return self.obj._constructor_sliced(values, index=key_index) else: result = DataFrame(values, index=key_index, columns=[self._selection]) self._insert_inaxis_grouper_inplace(result) return result else: # values are Series return self._wrap_applied_output_series( keys, values, not_indexed_same, first_not_none, key_index ) def _wrap_applied_output_series( self, keys, values: List[Series], not_indexed_same: bool, first_not_none, key_index, ) -> FrameOrSeriesUnion: # this is to silence a DeprecationWarning # TODO: Remove when default dtype of empty Series is object kwargs = first_not_none._construct_axes_dict() backup = create_series_with_explicit_dtype(dtype_if_empty=object, **kwargs) values = [x if (x is not None) else backup for x in values] all_indexed_same = all_indexes_same(x.index for x in values) # GH3596 # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: applied_index = self._selected_obj._get_axis(self.axis) singular_series = len(values) == 1 and applied_index.nlevels == 1 # assign the name to this series if singular_series: values[0].name = keys[0] # GH2893 # we have series in the values array, we want to # produce a series: # if any of the sub-series are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) # still a series # path added as of GH 5545 elif all_indexed_same: from pandas.core.reshape.concat import concat return concat(values) if not all_indexed_same: # GH 8467 return self._concat_objects(keys, values, not_indexed_same=True) # Combine values # vstack+constructor is faster than concat and handles MI-columns stacked_values = np.vstack([np.asarray(v) for v in values]) if self.axis == 0: index = key_index columns = first_not_none.index.copy() if columns.name is None: # GH6124 - propagate name of Series when it's consistent names = {v.name for v in values} if len(names) == 1: columns.name = list(names)[0] else: index = first_not_none.index columns = key_index stacked_values = stacked_values.T result = self.obj._constructor(stacked_values, index=index, columns=columns) # if we have date/time like in the original, then coerce dates # as we are stacking can easily have object dtypes here so = self._selected_obj if so.ndim == 2 and so.dtypes.apply(needs_i8_conversion).any(): result = result._convert(datetime=True) else: result = result._convert(datetime=True) if not self.as_index: self._insert_inaxis_grouper_inplace(result) return self._reindex_output(result) def _transform_general(self, func, *args, **kwargs): from pandas.core.reshape.concat import concat applied = [] obj = self._obj_with_exclusions gen = self.grouper.get_iterator(obj, axis=self.axis) fast_path, slow_path = self._define_paths(func, *args, **kwargs) for name, group in gen: object.__setattr__(group, "name", name) # Try slow path and fast path. try: path, res = self._choose_path(fast_path, slow_path, group) except TypeError: return self._transform_item_by_item(obj, fast_path) except ValueError as err: msg = "transform must return a scalar value for each group" raise ValueError(msg) from err if isinstance(res, Series): # we need to broadcast across the # other dimension; this will preserve dtypes # GH14457 if not np.prod(group.shape): continue elif res.index.is_(obj.index): r = concat([res] * len(group.columns), axis=1) r.columns = group.columns r.index = group.index else: r = self.obj._constructor( np.concatenate([res.values] * len(group.index)).reshape( group.shape ), columns=group.columns, index=group.index, ) applied.append(r) else: applied.append(res) concat_index = obj.columns if self.axis == 0 else obj.index other_axis = 1 if self.axis == 0 else 0 # switches between 0 & 1 concatenated = concat(applied, axis=self.axis, verify_integrity=False) concatenated = concatenated.reindex(concat_index, axis=other_axis, copy=False) return self._set_result_index_ordered(concatenated) @Substitution(klass="DataFrame") @Appender(_transform_template) def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with group_selection_context(self): data = self._selected_obj result = self._transform_with_numba( data, func, *args, engine_kwargs=engine_kwargs, **kwargs ) return self.obj._constructor(result, index=data.index, columns=data.columns) # optimized transforms func = self._get_cython_func(func) or func if not isinstance(func, str): return self._transform_general(func, *args, **kwargs) elif func not in base.transform_kernel_allowlist: msg = f"'{func}' is not a valid function name for transform(name)" raise ValueError(msg) elif func in base.cythonized_kernels or func in base.transformation_kernels: # cythonized transformation or canned "reduction+broadcast" return getattr(self, func)(*args, **kwargs) # GH 30918 # Use _transform_fast only when we know func is an aggregation if func in base.reduction_kernels: # If func is a reduction, we need to broadcast the # result to the whole group. Compute func result # and deal with possible broadcasting below. # Temporarily set observed for dealing with categoricals. with com.temp_setattr(self, "observed", True): result = getattr(self, func)(*args, **kwargs) if isinstance(result, DataFrame) and result.columns.equals( self._obj_with_exclusions.columns ): return self._transform_fast(result) return self._transform_general(func, *args, **kwargs) def _transform_fast(self, result: DataFrame) -> DataFrame: """ Fast transform path for aggregations """ obj = self._obj_with_exclusions # for each col, reshape to size of original frame by take operation ids, _, ngroup = self.grouper.group_info result = result.reindex(self.grouper.result_index, copy=False) output = [ algorithms.take_nd(result.iloc[:, i].values, ids) for i, _ in enumerate(result.columns) ] return self.obj._constructor._from_arrays( output, columns=result.columns, index=obj.index ) def _define_paths(self, func, *args, **kwargs): if isinstance(func, str): fast_path = lambda group: getattr(group, func)(*args, **kwargs) slow_path = lambda group: group.apply( lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis ) else: fast_path = lambda group: func(group, *args, **kwargs) slow_path = lambda group: group.apply( lambda x: func(x, *args, **kwargs), axis=self.axis ) return fast_path, slow_path def _choose_path(self, fast_path: Callable, slow_path: Callable, group: DataFrame): path = slow_path res = slow_path(group) # if we make it here, test if we can use the fast path try: res_fast = fast_path(group) except AssertionError: raise except Exception: # GH#29631 For user-defined function, we can't predict what may be # raised; see test_transform.test_transform_fastpath_raises return path, res # verify fast path does not change columns (and names), otherwise # its results cannot be joined with those of the slow path if not isinstance(res_fast, DataFrame): return path, res if not res_fast.columns.equals(group.columns): return path, res if res_fast.equals(res): path = fast_path return path, res def _transform_item_by_item(self, obj: DataFrame, wrapper) -> DataFrame: # iterate through columns output = {} inds = [] for i, col in enumerate(obj): try: output[col] = self[col].transform(wrapper) except TypeError: # e.g. trying to call nanmean with string values pass else: inds.append(i) if not output: raise TypeError("Transform function invalid for data types") columns = obj.columns if len(output) < len(obj.columns): columns = columns.take(inds) return self.obj._constructor(output, index=obj.index, columns=columns) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a DataFrame excluding filtered elements. Elements from groups are filtered if they do not satisfy the boolean criterion specified by func. Parameters ---------- func : function Function to apply to each subframe. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; If False, groups that evaluate False are filled with NaNs. Returns ------- filtered : DataFrame Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`udf-mutation` for more details. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> grouped.filter(lambda x: x['B'].mean() > 3.) A B C 1 bar 2 5.0 3 bar 4 1.0 5 bar 6 9.0 """ indices = [] obj = self._selected_obj gen = self.grouper.get_iterator(obj, axis=self.axis) for name, group in gen: object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) try: res = res.squeeze() except AttributeError: # allow e.g., scalars and frames to pass pass # interpret the result of the filter if is_bool(res) or (is_scalar(res) and isna(res)): if res and notna(res): indices.append(self._get_index(name)) else: # non scalars aren't allowed raise TypeError( f"filter function returned a {type(res).__name__}, " "but expected a scalar bool" ) return self._apply_filter(indices, dropna) def __getitem__(self, key): if self.axis == 1: # GH 37725 raise ValueError("Cannot subset columns when using axis=1") # per GH 23566 if isinstance(key, tuple) and len(key) > 1: # if len == 1, then it becomes a SeriesGroupBy and this is actually # valid syntax, so don't raise warning warnings.warn( "Indexing with multiple keys (implicitly converted to a tuple " "of keys) will be deprecated, use a list instead.", FutureWarning, stacklevel=2, ) return super().__getitem__(key) def _gotitem(self, key, ndim: int, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : {1, 2} requested ndim of result subset : object, default None subset to act on """ if ndim == 2: if subset is None: subset = self.obj return DataFrameGroupBy( subset, self.grouper, axis=self.axis, level=self.level, grouper=self.grouper, exclusions=self.exclusions, selection=key, as_index=self.as_index, sort=self.sort, group_keys=self.group_keys, squeeze=self.squeeze, observed=self.observed, mutated=self.mutated, dropna=self.dropna, ) elif ndim == 1: if subset is None: subset = self.obj[key] return SeriesGroupBy( subset, level=self.level, grouper=self.grouper, selection=key, sort=self.sort, group_keys=self.group_keys, squeeze=self.squeeze, observed=self.observed, dropna=self.dropna, ) raise AssertionError("invalid ndim for _gotitem") def _wrap_frame_output(self, result, obj: DataFrame) -> DataFrame: result_index = self.grouper.levels[0] if self.axis == 0: return self.obj._constructor( result, index=obj.columns, columns=result_index ).T else: return self.obj._constructor(result, index=obj.index, columns=result_index) def _get_data_to_aggregate(self) -> Manager: obj = self._obj_with_exclusions if self.axis == 1: return obj.T._mgr else: return obj._mgr def _insert_inaxis_grouper_inplace(self, result: DataFrame) -> None: # zip in reverse so we can always insert at loc 0 columns = result.columns for name, lev, in_axis in zip( reversed(self.grouper.names), reversed(self.grouper.get_group_levels()), reversed([grp.in_axis for grp in self.grouper.groupings]), ): # GH #28549 # When using .apply(-), name will be in columns already if in_axis and name not in columns: result.insert(0, name, lev) def _wrap_aggregated_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]], index: Optional[Index], ) -> DataFrame: """ Wraps the output of DataFrameGroupBy aggregations into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. Returns ------- DataFrame """ indexed_output = {key.position: val for key, val in output.items()} columns = Index([key.label for key in output]) columns._set_names(self._obj_with_exclusions._get_axis(1 - self.axis).names) result = self.obj._constructor(indexed_output) result.columns = columns if not self.as_index: self._insert_inaxis_grouper_inplace(result) result = result._consolidate() else: result.index = self.grouper.result_index if self.axis == 1: result = result.T return self._reindex_output(result) def _wrap_transformed_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]] ) -> DataFrame: """ Wraps the output of DataFrameGroupBy transformations into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. Returns ------- DataFrame """ indexed_output = {key.position: val for key, val in output.items()} result = self.obj._constructor(indexed_output) if self.axis == 1: result = result.T result.columns = self.obj.columns else: columns = Index(key.label for key in output) columns.name = self.obj.columns.name result.columns = columns result.index = self.obj.index return result def _wrap_agged_manager(self, mgr: Manager) -> DataFrame: if not self.as_index: index = np.arange(mgr.shape[1]) mgr.set_axis(1, ibase.Index(index), verify_integrity=False) result = self.obj._constructor(mgr) self._insert_inaxis_grouper_inplace(result) result = result._consolidate() else: index = self.grouper.result_index mgr.set_axis(1, index, verify_integrity=False) result = self.obj._constructor(mgr) if self.axis == 1: result = result.T return self._reindex_output(result)._convert(datetime=True) def _iterate_column_groupbys(self): for i, colname in enumerate(self._selected_obj.columns): yield colname, SeriesGroupBy( self._selected_obj.iloc[:, i], selection=colname, grouper=self.grouper, exclusions=self.exclusions, ) def _apply_to_column_groupbys(self, func) -> DataFrame: from pandas.core.reshape.concat import concat return concat( (func(col_groupby) for _, col_groupby in self._iterate_column_groupbys()), keys=self._selected_obj.columns, axis=1, ) def count(self) -> DataFrame: """ Compute count of group, excluding missing values. Returns ------- DataFrame Count of values within each group. """ data = self._get_data_to_aggregate() ids, _, ngroups = self.grouper.group_info mask = ids != -1 using_array_manager = isinstance(data, ArrayManager) def hfunc(bvalues: ArrayLike) -> ArrayLike: # TODO(2DEA): reshape would not be necessary with 2D EAs if bvalues.ndim == 1: # EA masked = mask & ~isna(bvalues).reshape(1, -1) else: masked = mask & ~isna(bvalues) counted = lib.count_level_2d(masked, labels=ids, max_bin=ngroups, axis=1) if using_array_manager: # count_level_2d return (1, N) array for single column # -> extract 1D array counted = counted[0, :] return counted new_mgr = data.grouped_reduce(hfunc) # If we are grouping on categoricals we want unobserved categories to # return zero, rather than the default of NaN which the reindexing in # _wrap_agged_manager() returns. GH 35028 with com.temp_setattr(self, "observed", True): result = self._wrap_agged_manager(new_mgr) return self._reindex_output(result, fill_value=0) def nunique(self, dropna: bool = True) -> DataFrame: """ Return DataFrame with counts of unique elements in each position. Parameters ---------- dropna : bool, default True Don't include NaN in the counts. Returns ------- nunique: DataFrame Examples -------- >>> df = pd.DataFrame({'id': ['spam', 'egg', 'egg', 'spam', ... 'ham', 'ham'], ... 'value1': [1, 5, 5, 2, 5, 5], ... 'value2': list('abbaxy')}) >>> df id value1 value2 0 spam 1 a 1 egg 5 b 2 egg 5 b 3 spam 2 a 4 ham 5 x 5 ham 5 y >>> df.groupby('id').nunique() value1 value2 id egg 1 1 ham 1 2 spam 2 1 Check for rows with the same id but conflicting values: >>> df.groupby('id').filter(lambda g: (g.nunique() > 1).any()) id value1 value2 0 spam 1 a 3 spam 2 a 4 ham 5 x 5 ham 5 y """ from pandas.core.reshape.concat import concat # TODO: this is duplicative of how GroupBy naturally works # Try to consolidate with normal wrapping functions obj = self._obj_with_exclusions axis_number = obj._get_axis_number(self.axis) other_axis = int(not axis_number) if axis_number == 0: iter_func = obj.items else: iter_func = obj.iterrows results = concat( [ SeriesGroupBy(content, selection=label, grouper=self.grouper).nunique( dropna ) for label, content in iter_func() ], axis=1, ) results = cast(DataFrame, results) if axis_number == 1: results = results.T results._get_axis(other_axis).names = obj._get_axis(other_axis).names if not self.as_index: results.index = ibase.default_index(len(results)) self._insert_inaxis_grouper_inplace(results) return results @Appender(DataFrame.idxmax.__doc__) def idxmax(self, axis=0, skipna: bool = True): axis = DataFrame._get_axis_number(axis) numeric_only = None if axis == 0 else False def func(df): # NB: here we use numeric_only=None, in DataFrame it is False GH#38217 res = df._reduce( nanops.nanargmax, "argmax", axis=axis, skipna=skipna, numeric_only=numeric_only, ) indices = res._values index = df._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return df._constructor_sliced(result, index=res.index) return self._python_apply_general(func, self._obj_with_exclusions) @Appender(DataFrame.idxmin.__doc__) def idxmin(self, axis=0, skipna: bool = True): axis = DataFrame._get_axis_number(axis) numeric_only = None if axis == 0 else False def func(df): # NB: here we use numeric_only=None, in DataFrame it is False GH#38217 res = df._reduce( nanops.nanargmin, "argmin", axis=axis, skipna=skipna, numeric_only=numeric_only, ) indices = res._values index = df._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return df._constructor_sliced(result, index=res.index) return self._python_apply_general(func, self._obj_with_exclusions) boxplot = boxplot_frame_groupby
py
b40721e0d9aa2619a5c6c0f9eb978f7f431ddf14
# Generated by Django 2.2.13 on 2020-06-29 05:14 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Purr', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content', models.TextField(max_length=140)), ('date_posted', models.DateTimeField(default=django.utils.timezone.now, editable=False)), ('in_reply_to', models.ForeignKey(blank=True, default=None, null=True, on_delete=django.db.models.deletion.SET_NULL, to='purr.Purr')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
py
b407223fb30118cff51e6f5326c8cb4a924e4d5f
# -*- coding: utf-8 -*- class UntrustedIdentityException(Exception): def __init__(self, name, identityKey): self.name = name self.identityKey = identityKey def getName(self): return self.name def getIdentityKey(self): return self.identityKey
py
b40723909d0ed1749efd89e26284d9be69af7be0
import factory from users.models import User class UserFactory(factory.django.DjangoModelFactory): class Meta: model = User username = factory.Sequence(lambda n: "username{0:0=2d}".format(n + 1))
py
b407249919827574a991db935832c3cacd7f61f1
""" Layout items for Foundation components. Inherits from the default **crispy_forms** layout objects to force templates on the right ``TEMPLATE_PACK`` (defined from ``settings.CRISPY_TEMPLATE_PACK``) and implements Foundation components. """ from __future__ import absolute_import from .base import Div, Callout, Layout, UneditableField, HTML from .grid import Row, RowFluid, Column from .fields import ( # noqa: F401 MultiWidgetField, Field, MultiField, SplitDateTimeField, InlineField, InlineJustifiedField, SwitchField, InlineSwitchField, FakeField, Hidden ) from .buttons import ( # noqa: F401 ButtonHolder, ButtonHolderPanel, ButtonHolderCallout, ButtonGroup, Button, Submit, Reset, InputButton, InputSubmit, InputReset, ButtonElement, ButtonSubmit, ButtonReset ) from .containers import ( # noqa: F401 Container, ContainerHolder, Fieldset, TabItem, TabHolder, VerticalTabHolder, AccordionItem, AccordionHolder ) __all__ = [ 'Div', 'Callout', 'Layout', 'UneditableField', 'HTML', 'Row', 'RowFluid', 'Column', 'Field', 'FakeField', 'Hidden', 'MultiWidgetField', 'MultiField', 'SplitDateTimeField', 'InlineField', 'InlineJustifiedField', 'SwitchField', 'InlineSwitchField' 'ButtonHolder', 'ButtonHolderCallout', 'ButtonGroup', 'Button', 'Submit', 'Reset', 'InputButton', 'InputSubmit', 'InputReset', 'ButtonElement', 'ButtonSubmit', 'ButtonReset', 'Container', 'ContainerHolder', 'Fieldset', 'TabItem', 'TabHolder', 'VerticalTabHolder', 'AccordionItem', 'AccordionHolder', ]
py
b407257c3657db7a38118445b0da3b1563355644
import logging from typing import Dict, List, Sequence, Union, Tuple # TODO: align with main pypesto multiprocessing format from multiprocess import Pool, Manager, Queue, Pipe from tqdm import tqdm import numpy as np import copy import queue import time from ..problem import Problem from .sampler import Sampler, InternalSampler, InternalSample from .result import McmcPtResult logger = logging.getLogger(__name__) # _q: Union[None, Queue] = None # _r: Union[None, Queue] = None # _idx: Union[None, int] = None # _sampler: Union[None, InternalSampler] = None # def worker_init(work_queue: Queue, return_queue: Queue, # idx: int, sampler_obj: InternalSampler) -> bool: # global _q, _r, _idx, _sampler # _q = work_queue # _r = return_queue # _idx = idx # _sampler = sampler_obj # return True # def worker_run() -> Tuple[int, InternalSampler]: # global _q, _r, _idx, _sampler # while True: # try: # logger.debug(f'sampler {_idx}: WAITING') # idx, new_last_sample, beta, stop = _q.get(timeout=5) # if _idx == idx: # logger.debug(f'sampler {_idx}: new_last_sample={new_last_sample}, beta={beta}, stop={stop}') # else: # logger.debug(f'sampler {_idx}: encountered incorrect instruction') # raise ProcessLookupError('received wrong instructions.') # if stop is True: # # logger.debug(f'sampler {_idx}: STOPPING trace_x: {len(_sampler.trace_x)}') # _q.task_done() # # logger.debug(f'sampler {_idx}: RETURNING') # return _idx, _sampler # if new_last_sample is not None: # _sampler.set_last_sample(copy.deepcopy(new_last_sample)) # # logger.debug(f'sampler {_idx}: SAMPLING') # _sampler.sample(n_samples=1, beta=beta) # # logger.debug(f'sampler {idx} trace_x: {len(_sampler.trace_x)}') # logger.debug(f'sampler {_idx}: RETURNING') # _r.put((idx, copy.deepcopy(_sampler.get_last_sample()), beta)) # # logger.debug(f'sampler {_idx}: MARKING COMPLETE') # _q.task_done() # except (EOFError, queue.Empty): # time.sleep(1) # continue def worker_run_combined( work_queue: Queue, return_queue: Queue, idx: int, sampler_obj: InternalSampler ) -> bool: _q = work_queue _r = return_queue _idx = idx _sampler = sampler_obj while True: try: # logger.debug(f'sampler {_idx}: WAITING') idx, new_last_sample, beta, stop = _q.get() # if _idx == idx: # logger.debug(f'sampler {_idx}: new_last_sample={new_last_sample}, beta={beta}, stop={stop}') if _idx != idx: # logger.debug(f'sampler {_idx}: encountered incorrect instruction') raise ProcessLookupError('received wrong instructions.') if stop is True: # logger.debug(f'sampler {_idx}: STOPPING trace_x: {len(_sampler.trace_x)}') _q.task_done() # logger.debug(f'sampler {_idx}: RETURNING') return _idx, _sampler.get_samples() if new_last_sample is not None: _sampler.set_last_sample(copy.deepcopy(new_last_sample)) logger.debug(f'sampler {_idx}: SAMPLING') _sampler.sample(n_samples=1, beta=beta) # logger.debug(f'sampler {idx} trace_x: {len(_sampler.trace_x)}') # logger.debug(f'sampler {_idx}: RETURNING') _r.put((idx, copy.deepcopy(_sampler.get_last_sample()), beta)) logger.debug(f'sampler {_idx}: MARKING COMPLETE') _q.task_done() except (EOFError, queue.Empty): time.sleep(1) continue class ParallelTemperingSampler(Sampler): """Simple parallel tempering sampler.""" # TODO: use this as base class, roll parallelized into another class. def __init__( self, internal_sampler: InternalSampler, betas: Sequence[float] = None, n_chains: int = None, options: Dict = None): super().__init__(options) # set betas if (betas is None) == (n_chains is None): raise ValueError("Set either betas or n_chains.") if betas is None: betas = near_exponential_decay_betas( n_chains=n_chains, exponent=self.options['exponent'], max_temp=self.options['max_temp']) if betas[0] != 1.: raise ValueError("The first chain must have beta=1.0") self.betas0 = np.array(betas) self.betas = None self.temper_lpost = self.options['temper_log_posterior'] self.samplers = [copy.deepcopy(internal_sampler) for _ in range(len(self.betas0))] # configure internal samplers for sampler in self.samplers: sampler.make_internal(temper_lpost=self.temper_lpost) @classmethod def default_options(cls) -> Dict: return { 'max_temp': 5e4, 'exponent': 4, 'temper_log_posterior': False, } def initialize(self, problem: Problem, x0: Union[np.ndarray, List[np.ndarray]]): # initialize all samplers n_chains = len(self.samplers) if isinstance(x0, list): x0s = x0 else: x0s = [x0 for _ in range(n_chains)] for sampler, x0 in zip(self.samplers, x0s): _problem = copy.deepcopy(problem) sampler.initialize(_problem, x0) self.betas = self.betas0 def sample( self, n_samples: int, beta: float = 1.): # loop over iterations for i_sample in tqdm(range(int(n_samples))): # TODO test # sample for sampler, beta in zip(self.samplers, self.betas): sampler.sample(n_samples=1, beta=beta) # swap samples swapped = self.swap_samples() # adjust temperatures self.adjust_betas(i_sample, swapped) def get_samples(self) -> McmcPtResult: """Concatenate all chains.""" results = [sampler.get_samples() for sampler in self.samplers] trace_x = np.array([result.trace_x[0] for result in results]) trace_neglogpost = np.array([result.trace_neglogpost[0] for result in results]) trace_neglogprior = np.array([result.trace_neglogprior[0] for result in results]) return McmcPtResult( trace_x=trace_x, trace_neglogpost=trace_neglogpost, trace_neglogprior=trace_neglogprior, betas=self.betas ) def swap_samples(self) -> Sequence[bool]: """Swap samples as in Vousden2016.""" # for recording swaps swapped = [] if len(self.betas) == 1: # nothing to be done return swapped # beta differences dbetas = self.betas[:-1] - self.betas[1:] # loop over chains from highest temperature down for dbeta, sampler1, sampler2 in reversed( list(zip(dbetas, self.samplers[:-1], self.samplers[1:]))): # extract samples sample1 = sampler1.get_last_sample() sample2 = sampler2.get_last_sample() # extract log likelihood values sample1_llh = sample1.lpost - sample1.lprior sample2_llh = sample2.lpost - sample2.lprior # swapping probability p_acc_swap = dbeta * (sample2_llh - sample1_llh) # flip a coin u = np.random.uniform(0, 1) # check acceptance swap = np.log(u) < p_acc_swap if swap: # swap sampler2.set_last_sample(sample1) sampler1.set_last_sample(sample2) # record swapped.insert(0, swap) return swapped def adjust_betas(self, i_sample: int, swapped: Sequence[bool]): """Adjust temperature values. Default: Do nothing.""" class PoolParallelTemperingSampler(ParallelTemperingSampler): def __init__(self, internal_sampler: InternalSampler, betas: Sequence[float] = None, n_chains: int = None, options: Dict = None, parallel_pool: Pool = None ): super().__init__(internal_sampler, betas, n_chains, options) self.num_chains = n_chains # set betas if (betas is None) == (n_chains is None): raise ValueError("Set either betas or n_chains.") if betas is None: betas = near_exponential_decay_betas( n_chains=n_chains, exponent=self.options['exponent'], max_temp=self.options['max_temp']) if betas[0] != 1.: raise ValueError("The first chain must have beta=1.0") self.betas0 = np.array(betas) self.betas = None self.temper_lpost = self.options['temper_log_posterior'] self.parallel_pool = parallel_pool if parallel_pool else Pool(processes=n_chains) self.samplers = [copy.deepcopy(internal_sampler) for _ in range(n_chains)] # configure internal samplers for sampler in self.samplers: sampler.make_internal(temper_lpost=self.temper_lpost) def initialize(self, problem: Problem, x0: Union[np.ndarray, List[np.ndarray]]): # initialize all samplers n_chains = len(self.samplers) if isinstance(x0, list): x0s = x0 else: x0s = [x0 for _ in range(n_chains)] for sampler, x0 in zip(self.samplers, x0s): _problem = copy.deepcopy(problem) sampler.initialize(_problem, x0) self.betas = self.betas0 def sample(self, n_samples: int, beta: float = 1.): with Manager() as mgr: queues_work = [mgr.Queue(maxsize=2) for _ in range(self.num_chains)] queues_return = [mgr.Queue(maxsize=2) for _ in range(self.num_chains)] worker_results = self.parallel_pool.starmap_async( func=worker_run_combined, # func=worker_init iterable=[(queues_work[idx], queues_return[idx], idx, self.samplers[idx]) for idx in range(self.num_chains)]) time.sleep(3.0) # worker_results = [self.parallel_pool.apply_async(func=worker_run) for _ in range(self.num_chains)] # time.sleep(3.0) swapped = [None for _ in self.samplers] last_samples = [None for _ in self.samplers] for i_sample in range(int(n_samples)): # tqdm(range(int(n_samples))): print(f"!! Iteration {i_sample:5} / {int(n_samples):5} !! start time: {time.time()}") logger.debug('MAIN PROCESS: deploying work...') for idx, beta in enumerate(self.betas): queues_work[idx].put((idx, copy.deepcopy(swapped[idx]), beta, False)) # sample logger.debug('MAIN PROCESS: waiting for return...') for idx in range(len(self.samplers)): idx, last_sample, beta = queues_return[idx].get() # get sample last_samples[idx] = last_sample logger.debug('MAIN PROCESS: swapping samples...') swapped = self.swap_samples(last_samples) # swap samples # logger.debug('MAIN PROCESS: swapping samples...') self.adjust_betas(i_sample, swapped, last_samples) # adjust temps # logger.debug(f"swapped: {swapped}") # logger.debug(f"last_sample: {last_samples}") # # logger.debug('stopping workers...') logger.debug('MAIN PROCESS: stopping workers...') _ = [queues_work[idx].put((idx, None, 0.00, True)) for idx in range(self.num_chains)] logger.debug('MAIN PROCESS: waiting for workers to stop...') _ = [queues_work[idx].join() for idx in range(self.num_chains)] # # logger.debug('reached getting from finalqueue') # for worker_result in worker_results: idxs_and_sampler_objs = {idx: sampler for idx, sampler in worker_results.get()} # print(f"idxs_and_sampler_objs: {[key for key in idxs_and_sampler_objs.keys()]}") # logger.debug(f'GATHERED sampler {idx} trace_x: {len(sampler_obj.trace_x)}') for idx, sampler_result in idxs_and_sampler_objs.items(): self.samplers[idx] = sampler_result # print(f"self.samplers: {[type(x) for x in self.samplers]}") ##### NOT SURE IF THIS IS NEEDED # for qu in queues_work: # qu.close() # for qu in queues_return: # qu.close() ##### END UNSURE BLOCK self.parallel_pool.close() self.parallel_pool.join() # # logger.debug('joined all workers') def get_samples(self) -> McmcPtResult: """Concatenate all chains.""" # results = [sampler.get_samples() for sampler in self.samplers] results = self.samplers # for idx, result in enumerate(results): # print(f"{idx}: {result.trace_x.shape}") trace_x = np.array([result.trace_x[0] for result in results]) trace_neglogpost = np.array([result.trace_neglogpost[0] for result in results]) trace_neglogprior = np.array([result.trace_neglogprior[0] for result in results]) return McmcPtResult( trace_x=trace_x, trace_neglogpost=trace_neglogpost, trace_neglogprior=trace_neglogprior, betas=self.betas ) def swap_samples(self, last_samples: List[Union[InternalSample, None]]) -> List[Union[InternalSample, None]]: """Swap samples as in Vousden2016.""" # for recording swaps swapped = copy.deepcopy(last_samples) if len(self.betas) == 1: # nothing to be done return swapped # beta differences dbetas = self.betas[:-1] - self.betas[1:] # loop over chains from highest temperature down for dbeta, sampler1_idx, sampler2_idx in reversed(list(zip( dbetas, list(range(len(self.samplers[:-1]))), list(range(len(self.samplers[1:])))))): # extract samples sample1 = last_samples[sampler1_idx] sample2 = last_samples[sampler2_idx] # extract log likelihood values sample1_llh = sample1.lpost - sample1.lprior sample2_llh = sample2.lpost - sample2.lprior # swapping probability p_acc_swap = dbeta * (sample2_llh - sample1_llh) # flip a coin u = np.random.uniform(0, 1) # check acceptance swap = np.log(u) < p_acc_swap if swap: # swap # sampler2.set_last_sample(sample1) # sampler1.set_last_sample(sample2) swapped[sampler2_idx] = sample1 swapped[sampler1_idx] = sample2 else: swapped[sampler2_idx] = sample2 swapped[sampler1_idx] = sample1 # record # swapped.insert(0, swap) return swapped def adjust_betas(self, i_sample: int, swapped: Sequence[Union[None, InternalSample]], last_samples: Sequence[Union[None, InternalSample]]): """Adjust temperature values. Default: Do nothing.""" def near_exponential_decay_betas( n_chains: int, exponent: float, max_temp: float) -> np.ndarray: """Initialize betas in a near-exponential decay scheme. Parameters ---------- n_chains: Number of chains to use. exponent: Decay exponent. The higher, the more small temperatures are used. max_temp: Maximum chain temperature. """ # special case of one chain if n_chains == 1: return np.array([1.]) temperatures = np.linspace(1, max_temp ** (1 / exponent), n_chains) \ ** exponent betas = 1 / temperatures return betas
py
b407262e3af7809f3e5930f5182a2e10b6b433e3
"""Model definitions for MNIST""" # pylint: disable = C0301, C0103, R0914, C0111 import os import sys import tensorflow as tf sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from mnist_vae.src import model_def as mnist_vae_model_def from mnist_e2e.model_def import end_to_end from celebA_dcgan import model_def as celebA_dcgan_model_def import channel_pggan_def as pggan_model_def def pggan_gen(z, pilot, hparams): assert hparams.batch_size in [1, 64], 'batch size should be either 64 or 1' z_full = tf.zeros([64, hparams.z_dim]) + z pilot_full = tf.tile(pilot,[64,1]) #z_full = tf.concat([z_full, pilot_full],1) # conditional model_hparams = pggan_model_def.Hparams() x_hat_full = pggan_model_def.generator(model_hparams, z_full, train=False, reuse=False) x_hat_batch = x_hat_full[:hparams.batch_size] restore_vars = pggan_model_def.gen_restore_vars() restore_dict = {var.op.name: var for var in tf.global_variables() if var.op.name in restore_vars} restore_path = tf.train.latest_checkpoint(hparams.pretrained_model_dir) return x_hat_batch, restore_dict, restore_path def dcgan_discrim(x_hat_batch, pilot, hparams): assert hparams.batch_size in [1, 64], 'batch size should be either 64 or 1' x_hat_image = tf.reshape(x_hat_batch, [-1, 64, 16, 2]) all_zeros = tf.zeros([64, 64, 16, 2]) discrim_input = all_zeros + x_hat_image yb = tf.reshape(pilot, [hparams.batch_size, 1, 1, hparams.pilot_dim]) # conditional discrim_input = conv_cond_concat(discrim_input, yb) # conditional model_hparams = celebA_dcgan_model_def.Hparams() prob, _ = celebA_dcgan_model_def.discriminator(model_hparams, discrim_input, train=False, reuse=False) prob = tf.reshape(prob, [-1]) prob = prob[:hparams.batch_size] restore_vars = celebA_dcgan_model_def.gen_restore_vars() restore_dict = {var.op.name: var for var in tf.global_variables() if var.op.name in restore_vars} restore_path = tf.train.latest_checkpoint(hparams.pretrained_model_dir) return prob, restore_dict, restore_path def dcgan_gen(z, pilot, hparams): assert hparams.batch_size in [1, 64], 'batch size should be either 64 or 1' z_full = tf.zeros([64, hparams.z_dim]) + z pilot_full = tf.tile(pilot,[64,1]) z_full = tf.concat([z_full, pilot_full],1) # conditional model_hparams = celebA_dcgan_model_def.Hparams() x_hat_full = celebA_dcgan_model_def.generator(model_hparams, z_full, train=False, reuse=False) x_hat_batch = x_hat_full[:hparams.batch_size] restore_vars = celebA_dcgan_model_def.gen_restore_vars() restore_dict = {var.op.name: var for var in tf.global_variables() if var.op.name in restore_vars} restore_path = tf.train.latest_checkpoint(hparams.pretrained_model_dir) return x_hat_batch, restore_dict, restore_path def construct_gen(hparams, model_def): model_hparams = model_def.Hparams() z = model_def.get_z_var(model_hparams, hparams.batch_size) x_hat,_ = model_def.generator(model_hparams, z, 'gen', reuse=False) restore_vars = model_def.gen_restore_vars() restore_dict = {var.op.name: var for var in tf.global_variables() if var.op.name in restore_vars} restore_path = tf.train.latest_checkpoint(hparams.pretrained_model_dir) x_hat = tf.transpose(tf.reshape(x_hat,[2,-1])) return z, x_hat, restore_path, restore_dict def vae_gen(hparams): return construct_gen(hparams, mnist_vae_model_def) def conv_cond_concat(x, y): # Concatenate conditioning vector on feature map axis. x_shapes = x.get_shape() y_shapes = y.get_shape() return tf.concat([x, y*tf.ones([x_shapes[0], x_shapes[1], x_shapes[2], y_shapes[3]])], 3)
py
b40727cd2cbe33fd5e5be4389350ab7936e68c98
name="MY naME is akshraA" small=0 captial=0 for i in name: if i!=" ": if "a"<=i: small+=1 else: captial+=1 print("small letter ",small) print("capital letter ",captial)
py
b40727e00bf377db0138a2c5fa4acf75faca9973
########################################################################## # # Copyright (c) 2011-2012, John Haddon. All rights reserved. # Copyright (c) 2011-2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import ast import functools import sys import traceback import imath import IECore import Gaffer import GafferUI from Qt import QtWidgets from Qt import QtCore ## \todo Custom right click menu with script load, save, execute file, undo, redo etc. ## \todo Standard way for users to customise all menus class PythonEditor( GafferUI.Editor ) : def __init__( self, scriptNode, **kw ) : self.__splittable = GafferUI.SplitContainer( borderWidth = 2 ) GafferUI.Editor.__init__( self, self.__splittable, scriptNode, **kw ) self.__outputWidget = GafferUI.MultiLineTextWidget( editable = False, wrapMode = GafferUI.MultiLineTextWidget.WrapMode.None_, role = GafferUI.MultiLineTextWidget.Role.Code, ) self.__outputWidget.contextMenuSignal().connect( Gaffer.WeakMethod( self.__contextMenu ), scoped = False ) self.__inputWidget = GafferUI.CodeWidget() self.__splittable.append( self.__outputWidget ) self.__splittable.append( self.__inputWidget ) self.__inputWidget.activatedSignal().connect( Gaffer.WeakMethod( self.__activated ), scoped = False ) self.__inputWidget.dropTextSignal().connect( Gaffer.WeakMethod( self.__dropText ), scoped = False ) self.__inputWidget.contextMenuSignal().connect( Gaffer.WeakMethod( self.__contextMenu ), scoped = False ) GafferUI.WidgetAlgo.joinEdges( [ self.__outputWidget, self.__inputWidget ], orientation = GafferUI.ListContainer.Orientation.Vertical ) self.__executionDict = { "imath" : imath, "IECore" : IECore, "Gaffer" : Gaffer, "GafferUI" : GafferUI, "root" : scriptNode, } self.__inputWidget.setCompleter( GafferUI.CodeWidget.PythonCompleter( self.__executionDict ) ) self.__inputWidget.setHighlighter( GafferUI.CodeWidget.PythonHighlighter() ) self.__inputWidget.setCommentPrefix( "#" ) def inputWidget( self ) : return self.__inputWidget def outputWidget( self ) : return self.__outputWidget def execute( self ) : # decide what to execute haveSelection = True toExecute = self.__inputWidget.selectedText() if not toExecute : haveSelection = False toExecute = self.__inputWidget.getText() # parse it first. this lets us give better error formatting # for syntax errors, and also figure out whether we can eval() # and display the result or must exec() only. try : parsed = ast.parse( toExecute ) except SyntaxError as e : self.__outputWidget.appendHTML( self.__syntaxErrorToHTML( e ) ) return # execute it self.__outputWidget.appendHTML( self.__codeToHTML( toExecute ) ) with Gaffer.OutputRedirection( stdOut = Gaffer.WeakMethod( self.__redirectOutput ), stdErr = Gaffer.WeakMethod( self.__redirectOutput ) ) : with _MessageHandler( self.__outputWidget ) : with Gaffer.UndoScope( self.scriptNode() ) : with self.getContext() : try : if len( parsed.body ) == 1 and isinstance( parsed.body[0], ast.Expr ) : result = eval( toExecute, self.__executionDict, self.__executionDict ) if result is not None : self.__outputWidget.appendText( str( result ) ) else : exec( toExecute, self.__executionDict, self.__executionDict ) if not haveSelection : self.__inputWidget.setText( "" ) except Exception as e : self.__outputWidget.appendHTML( self.__exceptionToHTML() ) ## The Python dictionary that provides the globals and locals for `execute()`. def namespace( self ) : return self.__executionDict def __repr__( self ) : return "GafferUI.PythonEditor( scriptNode )" def __activated( self, widget ) : self.execute() return True def __dropText( self, widget, dragData ) : if isinstance( dragData, IECore.StringVectorData ) : return repr( list( dragData ) ) elif isinstance( dragData, Gaffer.GraphComponent ) : if self.scriptNode().isAncestorOf( dragData ) : return "root['" + dragData.relativeName( self.scriptNode() ).replace( ".", "']['" ) + "']" elif isinstance( dragData, Gaffer.Set ) : if len( dragData ) == 1 : return self.__dropText( widget, dragData[0] ) else : return "[ " + ", ".join( [ self.__dropText( widget, d ) for d in dragData ] ) + " ]" elif isinstance( dragData, IECore.CompoundData ) : return repr( dragData ) elif isinstance( dragData, IECore.Data ) and hasattr( dragData, "value" ) : return repr( dragData.value ) return None def __codeToHTML( self, code ) : code = code.replace( "<", "&lt;" ).replace( ">", "&gt;" ) return "<pre>" + code + "</pre>" def __syntaxErrorToHTML( self, syntaxError ) : formatted = traceback.format_exception_only( SyntaxError, syntaxError ) lineNumber = formatted[0].rpartition( "," )[2].strip() headingText = formatted[-1].replace( ":", " : " + lineNumber + " : ", 1 ) result = "<h1 class='ERROR'>%s</h1>" % headingText result += "<br>" + self.__codeToHTML( "".join( formatted[1:-1] ) ) return result def __exceptionToHTML( self ) : t = traceback.extract_tb( sys.exc_info()[2] ) lineNumber = str( t[1][1] ) headingText = traceback.format_exception_only( *(sys.exc_info()[:2]) )[0].replace( ":", " : line " + lineNumber + " : ", 1 ) result = "<h1 class='ERROR'>%s</h1>" % headingText if len( t ) > 2 : result += "<br>" + self.__codeToHTML( "".join( traceback.format_list( t[2:] ) ) ) return result def __redirectOutput( self, output ) : if output != "\n" : self.__outputWidget.appendText( output ) # update the gui so messages are output as they occur, rather than all getting queued # up till the end. QtWidgets.QApplication.instance().processEvents( QtCore.QEventLoop.ExcludeUserInputEvents ) def __contextMenu( self, widget ) : definition = IECore.MenuDefinition() if widget is self.inputWidget() : definition.append( "/Execute Selection" if widget.selectedText() else "/Execute", { "command" : self.execute, "shortCut" : "Enter", } ) definition.append( "/ExecuteDivider", { "divider" : True } ) definition.append( "/Copy", { "command" : functools.partial( self.scriptNode().ancestor( Gaffer.ApplicationRoot ).setClipboardContents, IECore.StringData( widget.selectedText() ) ), "active" : bool( widget.selectedText() ) } ) if widget is self.inputWidget() : definition.append( "/Paste", { "command" : functools.partial( widget.insertText, self.scriptNode().ancestor( Gaffer.ApplicationRoot ).getClipboardContents().value, ), "active" : isinstance( self.scriptNode().ancestor( Gaffer.ApplicationRoot ).getClipboardContents(), IECore.StringData ) } ) definition.append( "/CopyPasteDivider", { "divider" : True } ) definition.append( "/Select All", { "command" : widget._qtWidget().selectAll, "active" : bool( widget.getText() ) } ) definition.append( "/SelectDivider", { "divider" : True } ) definition.append( "/Clear", { "command" : functools.partial( widget.setText, "" ), "active" : bool( widget.getText() ) } ) self.__popupMenu = GafferUI.Menu( definition ) self.__popupMenu.popup( parent = self ) return True GafferUI.Editor.registerType( "PythonEditor", PythonEditor ) class _MessageHandler( IECore.MessageHandler ) : def __init__( self, textWidget ) : IECore.MessageHandler.__init__( self ) self.__textWidget = textWidget def handle( self, level, context, message ) : html = formatted = "<h1 class='%s'>%s : %s </h1><pre class='message'>%s</pre><br>" % ( IECore.Msg.levelAsString( level ), IECore.Msg.levelAsString( level ), context, message ) self.__textWidget.appendHTML( html ) # update the gui so messages are output as they occur, rather than all getting queued # up till the end. QtWidgets.QApplication.instance().processEvents( QtCore.QEventLoop.ExcludeUserInputEvents )
py
b407287f7ba1fb4f167e8575d528f7c2599db019
# -*- coding: utf-8 -*- # Copyright (C) 1999-2015, Raffaele Salmaso <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import absolute_import, division, print_function, unicode_literals from contextlib import contextmanager import os import sys import subprocess @contextmanager def cd(path): old_path = os.getcwd() os.chdir(path) try: yield finally: os.chdir(old_path) def puts(*args): sys.stdout.write(''.join([str(arg) for arg in args])) sys.stdout.write('\n') sys.stdout.flush() def system(*args, **kwargs): env = kwargs.pop('env', None) return subprocess.call(list(args), env=env) def mkdir(config): """ create a directory """ os.system("""mkdir -p "%(dest)s/%(date)s/" """ % { 'date': config.tm, 'dest': config.dest, })
py
b4072ab9d9c825a5c730de5a7142c2fdf58874ba
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ***************************************************************************** # $Id$ # # Project: OpenGIS Simple Features Reference Implementation # Purpose: Python port of a simple client for translating between formats. # Author: Even Rouault, <even dot rouault at spatialys.com> # # Port from ogr2ogr.cpp whose author is Frank Warmerdam # # ***************************************************************************** # Copyright (c) 2010-2013, Even Rouault <even dot rouault at spatialys.com> # Copyright (c) 1999, Frank Warmerdam # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # ************************************************************************** # Note : this is the most direct port of ogr2ogr.cpp possible # It could be made much more Python'ish ! import sys import os import stat from osgeo import gdal from osgeo import ogr from osgeo import osr ############################################################################### class ScaledProgressObject(object): def __init__(self, mini, maxi, cbk, cbk_data=None): self.min = mini self.max = maxi self.cbk = cbk self.cbk_data = cbk_data ############################################################################### def ScaledProgressFunc(pct, msg, data): if data.cbk is None: return True return data.cbk(data.min + pct * (data.max - data.min), msg, data.cbk_data) ############################################################################### def EQUAL(a, b): return a.lower() == b.lower() ############################################################################### # Redefinition of GDALTermProgress, so that test_ogr2ogr_py.py # can check that the progress bar is displayed nLastTick = -1 def TermProgress(dfComplete, pszMessage, pProgressArg): # pylint: disable=unused-argument global nLastTick nThisTick = int(dfComplete * 40.0) if nThisTick < 0: nThisTick = 0 if nThisTick > 40: nThisTick = 40 # Have we started a new progress run? if nThisTick < nLastTick and nLastTick >= 39: nLastTick = -1 if nThisTick <= nLastTick: return True while nThisTick > nLastTick: nLastTick = nLastTick + 1 if (nLastTick % 4) == 0: sys.stdout.write('%d' % ((nLastTick / 4) * 10)) else: sys.stdout.write('.') if nThisTick == 40: print(" - done.") else: sys.stdout.flush() return True class TargetLayerInfo(object): def __init__(self): self.poDstLayer = None self.poCT = None # self.papszTransformOptions = None self.panMap = None self.iSrcZField = None class AssociatedLayers(object): def __init__(self): self.poSrcLayer = None self.psInfo = None # ********************************************************************** # main() # ********************************************************************** bSkipFailures = False nGroupTransactions = 200 bPreserveFID = False nFIDToFetch = ogr.NullFID class Enum(set): def __getattr__(self, name): if name in self: return name raise AttributeError GeomOperation = Enum(["NONE", "SEGMENTIZE", "SIMPLIFY_PRESERVE_TOPOLOGY"]) def main(args=None, progress_func=TermProgress, progress_data=None): global bSkipFailures global nGroupTransactions global bPreserveFID global nFIDToFetch version_num = int(gdal.VersionInfo('VERSION_NUM')) if version_num < 1800: # because of ogr.GetFieldTypeName print('ERROR: Python bindings of GDAL 1.8.0 or later required') return 1 pszFormat = "ESRI Shapefile" pszDataSource = None pszDestDataSource = None papszLayers = [] papszDSCO = [] papszLCO = [] bTransform = False bAppend = False bUpdate = False bOverwrite = False pszOutputSRSDef = None pszSourceSRSDef = None poOutputSRS = None bNullifyOutputSRS = False poSourceSRS = None pszNewLayerName = None pszWHERE = None poSpatialFilter = None pszSelect = None papszSelFields = None pszSQLStatement = None eGType = -2 bPromoteToMulti = False eGeomOp = GeomOperation.NONE dfGeomOpParam = 0 papszFieldTypesToString = [] bDisplayProgress = False pfnProgress = None pProgressArg = None bClipSrc = False bWrapDateline = False poClipSrc = None pszClipSrcDS = None pszClipSrcSQL = None pszClipSrcLayer = None pszClipSrcWhere = None poClipDst = None pszClipDstDS = None pszClipDstSQL = None pszClipDstLayer = None pszClipDstWhere = None # pszSrcEncoding = None # pszDstEncoding = None bWrapDateline = False bExplodeCollections = False pszZField = None nCoordDim = -1 if args is None: args = sys.argv args = ogr.GeneralCmdLineProcessor(args) # -------------------------------------------------------------------- # Processing command line arguments. # -------------------------------------------------------------------- if args is None: return 1 nArgc = len(args) iArg = 1 while iArg < nArgc: if EQUAL(args[iArg], "-f") and iArg < nArgc - 1: iArg = iArg + 1 pszFormat = args[iArg] elif EQUAL(args[iArg], "-dsco") and iArg < nArgc - 1: iArg = iArg + 1 papszDSCO.append(args[iArg]) elif EQUAL(args[iArg], "-lco") and iArg < nArgc - 1: iArg = iArg + 1 papszLCO.append(args[iArg]) elif EQUAL(args[iArg], "-preserve_fid"): bPreserveFID = True elif len(args[iArg]) >= 5 and EQUAL(args[iArg][0:5], "-skip"): bSkipFailures = True nGroupTransactions = 1 # 2409 elif EQUAL(args[iArg], "-append"): bAppend = True bUpdate = True elif EQUAL(args[iArg], "-overwrite"): bOverwrite = True bUpdate = True elif EQUAL(args[iArg], "-update"): bUpdate = True elif EQUAL(args[iArg], "-fid") and iArg < nArgc - 1: iArg = iArg + 1 nFIDToFetch = int(args[iArg]) elif EQUAL(args[iArg], "-sql") and iArg < nArgc - 1: iArg = iArg + 1 pszSQLStatement = args[iArg] elif EQUAL(args[iArg], "-nln") and iArg < nArgc - 1: iArg = iArg + 1 pszNewLayerName = args[iArg] elif EQUAL(args[iArg], "-nlt") and iArg < nArgc - 1: if EQUAL(args[iArg + 1], "NONE"): eGType = ogr.wkbNone elif EQUAL(args[iArg + 1], "GEOMETRY"): eGType = ogr.wkbUnknown elif EQUAL(args[iArg + 1], "PROMOTE_TO_MULTI"): bPromoteToMulti = True elif EQUAL(args[iArg + 1], "POINT"): eGType = ogr.wkbPoint elif EQUAL(args[iArg + 1], "LINESTRING"): eGType = ogr.wkbLineString elif EQUAL(args[iArg + 1], "POLYGON"): eGType = ogr.wkbPolygon elif EQUAL(args[iArg + 1], "GEOMETRYCOLLECTION"): eGType = ogr.wkbGeometryCollection elif EQUAL(args[iArg + 1], "MULTIPOINT"): eGType = ogr.wkbMultiPoint elif EQUAL(args[iArg + 1], "MULTILINESTRING"): eGType = ogr.wkbMultiLineString elif EQUAL(args[iArg + 1], "MULTIPOLYGON"): eGType = ogr.wkbMultiPolygon elif EQUAL(args[iArg + 1], "GEOMETRY25D"): eGType = ogr.wkbUnknown | ogr.wkb25DBit elif EQUAL(args[iArg + 1], "POINT25D"): eGType = ogr.wkbPoint25D elif EQUAL(args[iArg + 1], "LINESTRING25D"): eGType = ogr.wkbLineString25D elif EQUAL(args[iArg + 1], "POLYGON25D"): eGType = ogr.wkbPolygon25D elif EQUAL(args[iArg + 1], "GEOMETRYCOLLECTION25D"): eGType = ogr.wkbGeometryCollection25D elif EQUAL(args[iArg + 1], "MULTIPOINT25D"): eGType = ogr.wkbMultiPoint25D elif EQUAL(args[iArg + 1], "MULTILINESTRING25D"): eGType = ogr.wkbMultiLineString25D elif EQUAL(args[iArg + 1], "MULTIPOLYGON25D"): eGType = ogr.wkbMultiPolygon25D else: print("-nlt %s: type not recognised." % args[iArg + 1]) return 1 iArg = iArg + 1 elif EQUAL(args[iArg], "-dim") and iArg < nArgc - 1: nCoordDim = int(args[iArg + 1]) if nCoordDim != 2 and nCoordDim != 3: print("-dim %s: value not handled." % args[iArg + 1]) return 1 iArg = iArg + 1 elif (EQUAL(args[iArg], "-tg") or EQUAL(args[iArg], "-gt")) and iArg < nArgc - 1: iArg = iArg + 1 nGroupTransactions = int(args[iArg]) elif EQUAL(args[iArg], "-s_srs") and iArg < nArgc - 1: iArg = iArg + 1 pszSourceSRSDef = args[iArg] elif EQUAL(args[iArg], "-a_srs") and iArg < nArgc - 1: iArg = iArg + 1 pszOutputSRSDef = args[iArg] if EQUAL(pszOutputSRSDef, "NULL") or \ EQUAL(pszOutputSRSDef, "NONE"): pszOutputSRSDef = None bNullifyOutputSRS = True elif EQUAL(args[iArg], "-t_srs") and iArg < nArgc - 1: iArg = iArg + 1 pszOutputSRSDef = args[iArg] bTransform = True elif EQUAL(args[iArg], "-spat") and iArg + 4 < nArgc: oRing = ogr.Geometry(ogr.wkbLinearRing) oRing.AddPoint_2D(float(args[iArg + 1]), float(args[iArg + 2])) oRing.AddPoint_2D(float(args[iArg + 1]), float(args[iArg + 4])) oRing.AddPoint_2D(float(args[iArg + 3]), float(args[iArg + 4])) oRing.AddPoint_2D(float(args[iArg + 3]), float(args[iArg + 2])) oRing.AddPoint_2D(float(args[iArg + 1]), float(args[iArg + 2])) poSpatialFilter = ogr.Geometry(ogr.wkbPolygon) poSpatialFilter.AddGeometry(oRing) iArg = iArg + 4 elif EQUAL(args[iArg], "-where") and iArg < nArgc - 1: iArg = iArg + 1 pszWHERE = args[iArg] elif EQUAL(args[iArg], "-select") and iArg < nArgc - 1: iArg = iArg + 1 pszSelect = args[iArg] if pszSelect.find(',') != -1: papszSelFields = pszSelect.split(',') else: papszSelFields = pszSelect.split(' ') if papszSelFields[0] == '': papszSelFields = [] elif EQUAL(args[iArg], "-simplify") and iArg < nArgc - 1: iArg = iArg + 1 eGeomOp = GeomOperation.SIMPLIFY_PRESERVE_TOPOLOGY dfGeomOpParam = float(args[iArg]) elif EQUAL(args[iArg], "-segmentize") and iArg < nArgc - 1: iArg = iArg + 1 eGeomOp = GeomOperation.SEGMENTIZE dfGeomOpParam = float(args[iArg]) elif EQUAL(args[iArg], "-fieldTypeToString") and iArg < nArgc - 1: iArg = iArg + 1 pszFieldTypeToString = args[iArg] if pszFieldTypeToString.find(',') != -1: tokens = pszFieldTypeToString.split(',') else: tokens = pszFieldTypeToString.split(' ') for token in tokens: if EQUAL(token, "Integer") or \ EQUAL(token, "Real") or \ EQUAL(token, "String") or \ EQUAL(token, "Date") or \ EQUAL(token, "Time") or \ EQUAL(token, "DateTime") or \ EQUAL(token, "Binary") or \ EQUAL(token, "IntegerList") or \ EQUAL(token, "RealList") or \ EQUAL(token, "StringList"): papszFieldTypesToString.append(token) elif EQUAL(token, "All"): papszFieldTypesToString = ['All'] break else: print("Unhandled type for fieldtypeasstring option : %s " % token) return Usage() elif EQUAL(args[iArg], "-progress"): bDisplayProgress = True # elif EQUAL(args[iArg],"-wrapdateline") ) # { # bWrapDateline = True; # } # elif EQUAL(args[iArg], "-clipsrc") and iArg < nArgc - 1: bClipSrc = True if IsNumber(args[iArg + 1]) and iArg < nArgc - 4: oRing = ogr.Geometry(ogr.wkbLinearRing) oRing.AddPoint_2D(float(args[iArg + 1]), float(args[iArg + 2])) oRing.AddPoint_2D(float(args[iArg + 1]), float(args[iArg + 4])) oRing.AddPoint_2D(float(args[iArg + 3]), float(args[iArg + 4])) oRing.AddPoint_2D(float(args[iArg + 3]), float(args[iArg + 2])) oRing.AddPoint_2D(float(args[iArg + 1]), float(args[iArg + 2])) poClipSrc = ogr.Geometry(ogr.wkbPolygon) poClipSrc.AddGeometry(oRing) iArg = iArg + 4 elif (len(args[iArg + 1]) >= 7 and EQUAL(args[iArg + 1][0:7], "POLYGON")) or \ (len(args[iArg + 1]) >= 12 and EQUAL(args[iArg + 1][0:12], "MULTIPOLYGON")): poClipSrc = ogr.CreateGeometryFromWkt(args[iArg + 1]) if poClipSrc is None: print("FAILURE: Invalid geometry. Must be a valid POLYGON or MULTIPOLYGON WKT\n") return Usage() iArg = iArg + 1 elif EQUAL(args[iArg + 1], "spat_extent"): iArg = iArg + 1 else: pszClipSrcDS = args[iArg + 1] iArg = iArg + 1 elif EQUAL(args[iArg], "-clipsrcsql") and iArg < nArgc - 1: pszClipSrcSQL = args[iArg + 1] iArg = iArg + 1 elif EQUAL(args[iArg], "-clipsrclayer") and iArg < nArgc - 1: pszClipSrcLayer = args[iArg + 1] iArg = iArg + 1 elif EQUAL(args[iArg], "-clipsrcwhere") and iArg < nArgc - 1: pszClipSrcWhere = args[iArg + 1] iArg = iArg + 1 elif EQUAL(args[iArg], "-clipdst") and iArg < nArgc - 1: if IsNumber(args[iArg + 1]) and iArg < nArgc - 4: oRing = ogr.Geometry(ogr.wkbLinearRing) oRing.AddPoint_2D(float(args[iArg + 1]), float(args[iArg + 2])) oRing.AddPoint_2D(float(args[iArg + 1]), float(args[iArg + 4])) oRing.AddPoint_2D(float(args[iArg + 3]), float(args[iArg + 4])) oRing.AddPoint_2D(float(args[iArg + 3]), float(args[iArg + 2])) oRing.AddPoint_2D(float(args[iArg + 1]), float(args[iArg + 2])) poClipDst = ogr.Geometry(ogr.wkbPolygon) poClipDst.AddGeometry(oRing) iArg = iArg + 4 elif (len(args[iArg + 1]) >= 7 and EQUAL(args[iArg + 1][0:7], "POLYGON")) or \ (len(args[iArg + 1]) >= 12 and EQUAL(args[iArg + 1][0:12], "MULTIPOLYGON")): poClipDst = ogr.CreateGeometryFromWkt(args[iArg + 1]) if poClipDst is None: print("FAILURE: Invalid geometry. Must be a valid POLYGON or MULTIPOLYGON WKT\n") return Usage() iArg = iArg + 1 elif EQUAL(args[iArg + 1], "spat_extent"): iArg = iArg + 1 else: pszClipDstDS = args[iArg + 1] iArg = iArg + 1 elif EQUAL(args[iArg], "-clipdstsql") and iArg < nArgc - 1: pszClipDstSQL = args[iArg + 1] iArg = iArg + 1 elif EQUAL(args[iArg], "-clipdstlayer") and iArg < nArgc - 1: pszClipDstLayer = args[iArg + 1] iArg = iArg + 1 elif EQUAL(args[iArg], "-clipdstwhere") and iArg < nArgc - 1: pszClipDstWhere = args[iArg + 1] iArg = iArg + 1 elif EQUAL(args[iArg], "-explodecollections"): bExplodeCollections = True elif EQUAL(args[iArg], "-zfield") and iArg < nArgc - 1: pszZField = args[iArg + 1] iArg = iArg + 1 elif args[iArg][0] == '-': return Usage() elif pszDestDataSource is None: pszDestDataSource = args[iArg] elif pszDataSource is None: pszDataSource = args[iArg] else: papszLayers.append(args[iArg]) iArg = iArg + 1 if pszDataSource is None: return Usage() if bPreserveFID and bExplodeCollections: print("FAILURE: cannot use -preserve_fid and -explodecollections at the same time\n\n") return Usage() if bClipSrc and pszClipSrcDS is not None: poClipSrc = LoadGeometry(pszClipSrcDS, pszClipSrcSQL, pszClipSrcLayer, pszClipSrcWhere) if poClipSrc is None: print("FAILURE: cannot load source clip geometry\n") return Usage() elif bClipSrc and poClipSrc is None: if poSpatialFilter is not None: poClipSrc = poSpatialFilter.Clone() if poClipSrc is None: print("FAILURE: -clipsrc must be used with -spat option or a\n" + "bounding box, WKT string or datasource must be specified\n") return Usage() if pszClipDstDS is not None: poClipDst = LoadGeometry(pszClipDstDS, pszClipDstSQL, pszClipDstLayer, pszClipDstWhere) if poClipDst is None: print("FAILURE: cannot load dest clip geometry\n") return Usage() # -------------------------------------------------------------------- # Open data source. # -------------------------------------------------------------------- poDS = ogr.Open(pszDataSource, False) # -------------------------------------------------------------------- # Report failure # -------------------------------------------------------------------- if poDS is None: print("FAILURE:\n" + "Unable to open datasource `%s' with the following drivers." % pszDataSource) for iDriver in range(ogr.GetDriverCount()): print(" -> " + ogr.GetDriver(iDriver).GetName()) return 1 # -------------------------------------------------------------------- # Try opening the output datasource as an existing, writable # -------------------------------------------------------------------- poODS = None poDriver = None if bUpdate: poODS = ogr.Open(pszDestDataSource, True) if poODS is None: if bOverwrite or bAppend: poODS = ogr.Open(pszDestDataSource, False) if poODS is None: # the datasource doesn't exist at all bUpdate = False else: poODS.delete() poODS = None if bUpdate: print("FAILURE:\n" + "Unable to open existing output datasource `%s'." % pszDestDataSource) return 1 elif papszDSCO: print("WARNING: Datasource creation options ignored since an existing datasource\n" + " being updated.") if poODS is not None: poDriver = poODS.GetDriver() # -------------------------------------------------------------------- # Find the output driver. # -------------------------------------------------------------------- if not bUpdate: poDriver = ogr.GetDriverByName(pszFormat) if poDriver is None: print("Unable to find driver `%s'." % pszFormat) print("The following drivers are available:") for iDriver in range(ogr.GetDriverCount()): print(" -> %s" % ogr.GetDriver(iDriver).GetName()) return 1 if not poDriver.TestCapability(ogr.ODrCCreateDataSource): print("%s driver does not support data source creation." % pszFormat) return 1 # -------------------------------------------------------------------- # Special case to improve user experience when translating # a datasource with multiple layers into a shapefile. If the # user gives a target datasource with .shp and it does not exist, # the shapefile driver will try to create a file, but this is not # appropriate because here we have several layers, so create # a directory instead. # -------------------------------------------------------------------- if EQUAL(poDriver.GetName(), "ESRI Shapefile") and \ pszSQLStatement is None and \ (len(papszLayers) > 1 or (not papszLayers and poDS.GetLayerCount() > 1)) and \ pszNewLayerName is None and \ EQUAL(os.path.splitext(pszDestDataSource)[1], ".SHP"): try: os.stat(pszDestDataSource) except OSError: try: # decimal 493 = octal 0755. Python 3 needs 0o755, but # this syntax is only supported by Python >= 2.6 os.mkdir(pszDestDataSource, 493) except OSError: print("Failed to create directory %s\n" "for shapefile datastore.\n" % pszDestDataSource) return 1 # -------------------------------------------------------------------- # Create the output data source. # -------------------------------------------------------------------- poODS = poDriver.CreateDataSource(pszDestDataSource, options=papszDSCO) if poODS is None: print("%s driver failed to create %s" % (pszFormat, pszDestDataSource)) return 1 # -------------------------------------------------------------------- # Parse the output SRS definition if possible. # -------------------------------------------------------------------- if pszOutputSRSDef is not None: poOutputSRS = osr.SpatialReference() poOutputSRS.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) if poOutputSRS.SetFromUserInput(pszOutputSRSDef) != 0: print("Failed to process SRS definition: %s" % pszOutputSRSDef) return 1 # -------------------------------------------------------------------- # Parse the source SRS definition if possible. # -------------------------------------------------------------------- if pszSourceSRSDef is not None: poSourceSRS = osr.SpatialReference() poSourceSRS.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) if poSourceSRS.SetFromUserInput(pszSourceSRSDef) != 0: print("Failed to process SRS definition: %s" % pszSourceSRSDef) return 1 # -------------------------------------------------------------------- # For OSM file. # -------------------------------------------------------------------- bSrcIsOSM = poDS.GetDriver() is not None and \ poDS.GetDriver().GetName() == "OSM" nSrcFileSize = 0 if bSrcIsOSM and poDS.GetName() != "/vsistdin/": sStat = gdal.VSIStatL(poDS.GetName()) if sStat is not None: nSrcFileSize = sStat.size # -------------------------------------------------------------------- # Special case for -sql clause. No source layers required. # -------------------------------------------------------------------- if pszSQLStatement is not None: if pszWHERE is not None: print("-where clause ignored in combination with -sql.") if papszLayers: print("layer names ignored in combination with -sql.") poResultSet = poDS.ExecuteSQL(pszSQLStatement, poSpatialFilter, None) if poResultSet is not None: nCountLayerFeatures = 0 if bDisplayProgress: if bSrcIsOSM: pfnProgress = progress_func pProgressArg = progress_data elif not poResultSet.TestCapability(ogr.OLCFastFeatureCount): print("Progress turned off as fast feature count is not available.") bDisplayProgress = False else: nCountLayerFeatures = poResultSet.GetFeatureCount() pfnProgress = progress_func pProgressArg = progress_data # -------------------------------------------------------------------- # Special case to improve user experience when translating into # single file shapefile and source has only one layer, and that # the layer name isn't specified # -------------------------------------------------------------------- if EQUAL(poDriver.GetName(), "ESRI Shapefile") and \ pszNewLayerName is None: try: mode = os.stat(pszDestDataSource).st_mode if (mode & stat.S_IFDIR) == 0: pszNewLayerName = os.path.splitext(os.path.basename(pszDestDataSource))[0] except OSError: pass psInfo = SetupTargetLayer(poDS, poResultSet, poODS, papszLCO, pszNewLayerName, bTransform, poOutputSRS, bNullifyOutputSRS, poSourceSRS, papszSelFields, bAppend, eGType, bPromoteToMulti, nCoordDim, bOverwrite, papszFieldTypesToString, bWrapDateline, bExplodeCollections, pszZField, pszWHERE) poResultSet.ResetReading() if psInfo is None or not TranslateLayer(psInfo, poDS, poResultSet, poODS, poOutputSRS, bNullifyOutputSRS, eGType, bPromoteToMulti, nCoordDim, eGeomOp, dfGeomOpParam, nCountLayerFeatures, poClipSrc, poClipDst, bExplodeCollections, nSrcFileSize, None, pfnProgress, pProgressArg): print( "Terminating translation prematurely after failed\n" + "translation from sql statement.") return 1 poDS.ReleaseResultSet(poResultSet) # -------------------------------------------------------------------- # Special case for layer interleaving mode. # -------------------------------------------------------------------- elif bSrcIsOSM and gdal.GetConfigOption("OGR_INTERLEAVED_READING", None) is None: gdal.SetConfigOption("OGR_INTERLEAVED_READING", "YES") # if (bSplitListFields) # { # fprintf( stderr, "FAILURE: -splitlistfields not supported in this mode\n" ); # exit( 1 ); # } nSrcLayerCount = poDS.GetLayerCount() pasAssocLayers = [AssociatedLayers() for _ in range(nSrcLayerCount)] # -------------------------------------------------------------------- # Special case to improve user experience when translating into # single file shapefile and source has only one layer, and that # the layer name isn't specified # -------------------------------------------------------------------- if EQUAL(poDriver.GetName(), "ESRI Shapefile") and \ (len(papszLayers) == 1 or nSrcLayerCount == 1) and pszNewLayerName is None: try: mode = os.stat(pszDestDataSource).st_mode if (mode & stat.S_IFDIR) == 0: pszNewLayerName = os.path.splitext(os.path.basename(pszDestDataSource))[0] except OSError: pass if bDisplayProgress and bSrcIsOSM: pfnProgress = progress_func pProgressArg = progress_data # -------------------------------------------------------------------- # If no target layer specified, use all source layers. # -------------------------------------------------------------------- if not papszLayers: papszLayers = [None] * nSrcLayerCount for iLayer in range(nSrcLayerCount): poLayer = poDS.GetLayer(iLayer) if poLayer is None: print("FAILURE: Couldn't fetch advertised layer %d!" % iLayer) return 1 papszLayers[iLayer] = poLayer.GetName() else: if bSrcIsOSM: osInterestLayers = "SET interest_layers =" for iLayer, papszLayer in enumerate(papszLayers): if iLayer != 0: osInterestLayers = osInterestLayers + "," osInterestLayers = osInterestLayers + papszLayer poDS.ExecuteSQL(osInterestLayers, None, None) # -------------------------------------------------------------------- # First pass to set filters and create target layers. # -------------------------------------------------------------------- for iLayer in range(nSrcLayerCount): poLayer = poDS.GetLayer(iLayer) if poLayer is None: print("FAILURE: Couldn't fetch advertised layer %d!" % iLayer) return 1 pasAssocLayers[iLayer].poSrcLayer = poLayer if CSLFindString(papszLayers, poLayer.GetName()) >= 0: if pszWHERE is not None: if poLayer.SetAttributeFilter(pszWHERE) != 0: print("FAILURE: SetAttributeFilter(%s) on layer '%s' failed.\n" % (pszWHERE, poLayer.GetName())) if not bSkipFailures: return 1 if poSpatialFilter is not None: poLayer.SetSpatialFilter(poSpatialFilter) psInfo = SetupTargetLayer(poDS, poLayer, poODS, papszLCO, pszNewLayerName, bTransform, poOutputSRS, bNullifyOutputSRS, poSourceSRS, papszSelFields, bAppend, eGType, bPromoteToMulti, nCoordDim, bOverwrite, papszFieldTypesToString, bWrapDateline, bExplodeCollections, pszZField, pszWHERE) if psInfo is None and not bSkipFailures: return 1 pasAssocLayers[iLayer].psInfo = psInfo else: pasAssocLayers[iLayer].psInfo = None # -------------------------------------------------------------------- # Second pass to process features in a interleaved layer mode. # -------------------------------------------------------------------- bHasLayersNonEmpty = True while bHasLayersNonEmpty: bHasLayersNonEmpty = False for iLayer in range(nSrcLayerCount): poLayer = pasAssocLayers[iLayer].poSrcLayer psInfo = pasAssocLayers[iLayer].psInfo anReadFeatureCount = [0] if psInfo is not None: if not TranslateLayer(psInfo, poDS, poLayer, poODS, poOutputSRS, bNullifyOutputSRS, eGType, bPromoteToMulti, nCoordDim, eGeomOp, dfGeomOpParam, 0, poClipSrc, poClipDst, bExplodeCollections, nSrcFileSize, anReadFeatureCount, pfnProgress, pProgressArg) \ and not bSkipFailures: print( "Terminating translation prematurely after failed\n" + "translation of layer " + poLayer.GetName() + " (use -skipfailures to skip errors)") return 1 else: # No matching target layer : just consumes the features poFeature = poLayer.GetNextFeature() while poFeature is not None: anReadFeatureCount[0] = anReadFeatureCount[0] + 1 poFeature = poLayer.GetNextFeature() if anReadFeatureCount[0] != 0: bHasLayersNonEmpty = True else: nLayerCount = 0 papoLayers = [] # -------------------------------------------------------------------- # Process each data source layer. # -------------------------------------------------------------------- if not papszLayers: nLayerCount = poDS.GetLayerCount() papoLayers = [None] * nLayerCount iLayer = 0 for iLayer in range(nLayerCount): poLayer = poDS.GetLayer(iLayer) if poLayer is None: print("FAILURE: Couldn't fetch advertised layer %d!" % iLayer) return 1 papoLayers[iLayer] = poLayer iLayer = iLayer + 1 # -------------------------------------------------------------------- # Process specified data source layers. # -------------------------------------------------------------------- else: nLayerCount = len(papszLayers) papoLayers = [None] * nLayerCount iLayer = 0 for layername in papszLayers: poLayer = poDS.GetLayerByName(layername) if poLayer is None: print("FAILURE: Couldn't fetch advertised layer %s!" % layername) return 1 papoLayers[iLayer] = poLayer iLayer = iLayer + 1 panLayerCountFeatures = [0] * nLayerCount nCountLayersFeatures = 0 nAccCountFeatures = 0 # First pass to apply filters and count all features if necessary for iLayer in range(nLayerCount): poLayer = papoLayers[iLayer] if pszWHERE is not None: if poLayer.SetAttributeFilter(pszWHERE) != 0: print("FAILURE: SetAttributeFilter(%s) failed." % pszWHERE) if not bSkipFailures: return 1 if poSpatialFilter is not None: poLayer.SetSpatialFilter(poSpatialFilter) if bDisplayProgress and not bSrcIsOSM: if not poLayer.TestCapability(ogr.OLCFastFeatureCount): print("Progress turned off as fast feature count is not available.") bDisplayProgress = False else: panLayerCountFeatures[iLayer] = poLayer.GetFeatureCount() nCountLayersFeatures += panLayerCountFeatures[iLayer] # Second pass to do the real job for iLayer in range(nLayerCount): poLayer = papoLayers[iLayer] if bDisplayProgress: if bSrcIsOSM: pfnProgress = progress_func pProgressArg = progress_data else: pfnProgress = ScaledProgressFunc pProgressArg = ScaledProgressObject( nAccCountFeatures * 1.0 / nCountLayersFeatures, (nAccCountFeatures + panLayerCountFeatures[iLayer]) * 1.0 / nCountLayersFeatures, progress_func, progress_data) nAccCountFeatures += panLayerCountFeatures[iLayer] # -------------------------------------------------------------------- # Special case to improve user experience when translating into # single file shapefile and source has only one layer, and that # the layer name isn't specified # -------------------------------------------------------------------- if EQUAL(poDriver.GetName(), "ESRI Shapefile") and \ nLayerCount == 1 and pszNewLayerName is None: try: mode = os.stat(pszDestDataSource).st_mode if (mode & stat.S_IFDIR) == 0: pszNewLayerName = os.path.splitext(os.path.basename(pszDestDataSource))[0] except OSError: pass psInfo = SetupTargetLayer(poDS, poLayer, poODS, papszLCO, pszNewLayerName, bTransform, poOutputSRS, bNullifyOutputSRS, poSourceSRS, papszSelFields, bAppend, eGType, bPromoteToMulti, nCoordDim, bOverwrite, papszFieldTypesToString, bWrapDateline, bExplodeCollections, pszZField, pszWHERE) poLayer.ResetReading() if (psInfo is None or not TranslateLayer(psInfo, poDS, poLayer, poODS, poOutputSRS, bNullifyOutputSRS, eGType, bPromoteToMulti, nCoordDim, eGeomOp, dfGeomOpParam, panLayerCountFeatures[iLayer], poClipSrc, poClipDst, bExplodeCollections, nSrcFileSize, None, pfnProgress, pProgressArg)) \ and not bSkipFailures: print( "Terminating translation prematurely after failed\n" + "translation of layer " + poLayer.GetLayerDefn().GetName() + " (use -skipfailures to skip errors)") return 1 # -------------------------------------------------------------------- # Close down. # -------------------------------------------------------------------- # We must explicitly destroy the output dataset in order the file # to be properly closed ! poODS.Destroy() poDS.Destroy() return 0 # ********************************************************************** # Usage() # ********************************************************************** def Usage(): print("Usage: ogr2ogr [--help-general] [-skipfailures] [-append] [-update] [-gt n]\n" + " [-select field_list] [-where restricted_where] \n" + " [-progress] [-sql <sql statement>] \n" + " [-spat xmin ymin xmax ymax] [-preserve_fid] [-fid FID]\n" + " [-a_srs srs_def] [-t_srs srs_def] [-s_srs srs_def]\n" + " [-f format_name] [-overwrite] [[-dsco NAME=VALUE] ...]\n" + " [-simplify tolerance]\n" + \ # // " [-segmentize max_dist] [-fieldTypeToString All|(type1[,type2]*)]\n" + \ " [-fieldTypeToString All|(type1[,type2]*)] [-explodecollections] \n" + \ " dst_datasource_name src_datasource_name\n" + \ " [-lco NAME=VALUE] [-nln name] [-nlt type] [-dim 2|3] [layer [layer ...]]\n" + \ "\n" + \ " -f format_name: output file format name, possible values are:") for iDriver in range(ogr.GetDriverCount()): poDriver = ogr.GetDriver(iDriver) if poDriver.TestCapability(ogr.ODrCCreateDataSource): print(" -f \"" + poDriver.GetName() + "\"") print(" -append: Append to existing layer instead of creating new if it exists\n" + " -overwrite: delete the output layer and recreate it empty\n" + " -update: Open existing output datasource in update mode\n" + " -progress: Display progress on terminal. Only works if input layers have the \"fast feature count\" capability\n" + " -select field_list: Comma-delimited list of fields from input layer to\n" + " copy to the new layer (defaults to all)\n" + " -where restricted_where: Attribute query (like SQL WHERE)\n" + " -sql statement: Execute given SQL statement and save result.\n" + " -skipfailures: skip features or layers that fail to convert\n" + " -gt n: group n features per transaction (default 200)\n" + " -spat xmin ymin xmax ymax: spatial query extents\n" + " -simplify tolerance: distance tolerance for simplification.\n" + \ # //" -segmentize max_dist: maximum distance between 2 nodes.\n" + \ # //" Used to create intermediate points\n" + \ " -dsco NAME=VALUE: Dataset creation option (format specific)\n" + \ " -lco NAME=VALUE: Layer creation option (format specific)\n" + \ " -nln name: Assign an alternate name to the new layer\n" + \ " -nlt type: Force a geometry type for new layer. One of NONE, GEOMETRY,\n" + \ " POINT, LINESTRING, POLYGON, GEOMETRYCOLLECTION, MULTIPOINT,\n" + \ " MULTIPOLYGON, or MULTILINESTRING. Add \"25D\" for 3D layers.\n" + \ " Default is type of source layer.\n" + \ " -dim dimension: Force the coordinate dimension to the specified value.\n" + \ " -fieldTypeToString type1,...: Converts fields of specified types to\n" + \ " fields of type string in the new layer. Valid types are : \n" + \ " Integer, Real, String, Date, Time, DateTime, Binary, IntegerList, RealList,\n" + \ " StringList. Special value All can be used to convert all fields to strings.") print(" -a_srs srs_def: Assign an output SRS\n" " -t_srs srs_def: Reproject/transform to this SRS on output\n" " -s_srs srs_def: Override source SRS\n" "\n" " Srs_def can be a full WKT definition (hard to escape properly),\n" " or a well known definition (i.e. EPSG:4326) or a file with a WKT\n" " definition.") return 1 def CSLFindString(v, mystr): i = 0 for strIter in v: if EQUAL(strIter, mystr): return i i = i + 1 return -1 def IsNumber(pszStr): try: float(pszStr) return True except ValueError: return False def LoadGeometry(pszDS, pszSQL, pszLyr, pszWhere): poGeom = None poDS = ogr.Open(pszDS, False) if poDS is None: return None if pszSQL is not None: poLyr = poDS.ExecuteSQL(pszSQL, None, None) elif pszLyr is not None: poLyr = poDS.GetLayerByName(pszLyr) else: poLyr = poDS.GetLayer(0) if poLyr is None: print("Failed to identify source layer from datasource.") poDS.Destroy() return None if pszWhere is not None: poLyr.SetAttributeFilter(pszWhere) poFeat = poLyr.GetNextFeature() while poFeat is not None: poSrcGeom = poFeat.GetGeometryRef() if poSrcGeom is not None: eType = wkbFlatten(poSrcGeom.GetGeometryType()) if poGeom is None: poGeom = ogr.Geometry(ogr.wkbMultiPolygon) if eType == ogr.wkbPolygon: poGeom.AddGeometry(poSrcGeom) elif eType == ogr.wkbMultiPolygon: for iGeom in range(poSrcGeom.GetGeometryCount()): poGeom.AddGeometry(poSrcGeom.GetGeometryRef(iGeom)) else: print("ERROR: Geometry not of polygon type.") if pszSQL is not None: poDS.ReleaseResultSet(poLyr) poDS.Destroy() return None poFeat = poLyr.GetNextFeature() if pszSQL is not None: poDS.ReleaseResultSet(poLyr) poDS.Destroy() return poGeom def wkbFlatten(x): return x & (~ogr.wkb25DBit) # ********************************************************************** # SetZ() # ********************************************************************** def SetZ(poGeom, dfZ): if poGeom is None: return eGType = wkbFlatten(poGeom.GetGeometryType()) if eGType == ogr.wkbPoint: poGeom.SetPoint(0, poGeom.GetX(), poGeom.GetY(), dfZ) elif eGType == ogr.wkbLineString or \ eGType == ogr.wkbLinearRing: for i in range(poGeom.GetPointCount()): poGeom.SetPoint(i, poGeom.GetX(i), poGeom.GetY(i), dfZ) elif eGType == ogr.wkbPolygon or \ eGType == ogr.wkbMultiPoint or \ eGType == ogr.wkbMultiLineString or \ eGType == ogr.wkbMultiPolygon or \ eGType == ogr.wkbGeometryCollection: for i in range(poGeom.GetGeometryCount()): SetZ(poGeom.GetGeometryRef(i), dfZ) # ********************************************************************** # SetupTargetLayer() # ********************************************************************** def SetupTargetLayer(poSrcDS, poSrcLayer, poDstDS, papszLCO, pszNewLayerName, bTransform, poOutputSRS, bNullifyOutputSRS, poSourceSRS, papszSelFields, bAppend, eGType, bPromoteToMulti, nCoordDim, bOverwrite, papszFieldTypesToString, bWrapDateline, bExplodeCollections, pszZField, pszWHERE): # pylint: disable=unused-argument if pszNewLayerName is None: pszNewLayerName = poSrcLayer.GetLayerDefn().GetName() # -------------------------------------------------------------------- # Setup coordinate transformation if we need it. # -------------------------------------------------------------------- poCT = None if bTransform: if poSourceSRS is None: poSourceSRS = poSrcLayer.GetSpatialRef() if poSourceSRS is None: print("Can't transform coordinates, source layer has no\n" + "coordinate system. Use -s_srs to set one.") return None poCT = osr.CoordinateTransformation(poSourceSRS, poOutputSRS) if poCT is None: pszWKT = None print("Failed to create coordinate transformation between the\n" + "following coordinate systems. This may be because they\n" + "are not transformable.") pszWKT = poSourceSRS.ExportToPrettyWkt(0) print("Source:\n" + pszWKT) pszWKT = poOutputSRS.ExportToPrettyWkt(0) print("Target:\n" + pszWKT) return None # -------------------------------------------------------------------- # Get other info. # -------------------------------------------------------------------- poSrcFDefn = poSrcLayer.GetLayerDefn() if poOutputSRS is None and not bNullifyOutputSRS: poOutputSRS = poSrcLayer.GetSpatialRef() # -------------------------------------------------------------------- # Find the layer. # -------------------------------------------------------------------- # GetLayerByName() can instantiate layers that would have been # 'hidden' otherwise, for example, non-spatial tables in a # PostGIS-enabled database, so this apparently useless command is # not useless. (#4012) gdal.PushErrorHandler('CPLQuietErrorHandler') poDstLayer = poDstDS.GetLayerByName(pszNewLayerName) gdal.PopErrorHandler() gdal.ErrorReset() iLayer = -1 if poDstLayer is not None: nLayerCount = poDstDS.GetLayerCount() for iLayer in range(nLayerCount): poLayer = poDstDS.GetLayer(iLayer) # The .cpp version compares on pointers directly, but we cannot # do this with swig object, so just compare the names. if poLayer is not None \ and poLayer.GetName() == poDstLayer.GetName(): break if iLayer == nLayerCount: # Shouldn't happen with an ideal driver poDstLayer = None # -------------------------------------------------------------------- # If the user requested overwrite, and we have the layer in # question we need to delete it now so it will get recreated # (overwritten). # -------------------------------------------------------------------- if poDstLayer is not None and bOverwrite: if poDstDS.DeleteLayer(iLayer) != 0: print("DeleteLayer() failed when overwrite requested.") return None poDstLayer = None # -------------------------------------------------------------------- # If the layer does not exist, then create it. # -------------------------------------------------------------------- if poDstLayer is None: if eGType == -2: eGType = poSrcFDefn.GetGeomType() n25DBit = eGType & ogr.wkb25DBit if bPromoteToMulti: if wkbFlatten(eGType) == ogr.wkbLineString: eGType = ogr.wkbMultiLineString | n25DBit elif wkbFlatten(eGType) == ogr.wkbPolygon: eGType = ogr.wkbMultiPolygon | n25DBit if bExplodeCollections: if wkbFlatten(eGType) == ogr.wkbMultiPoint: eGType = ogr.wkbPoint | n25DBit elif wkbFlatten(eGType) == ogr.wkbMultiLineString: eGType = ogr.wkbLineString | n25DBit elif wkbFlatten(eGType) == ogr.wkbMultiPolygon: eGType = ogr.wkbPolygon | n25DBit elif wkbFlatten(eGType) == ogr.wkbGeometryCollection: eGType = ogr.wkbUnknown | n25DBit if pszZField is not None: eGType = eGType | ogr.wkb25DBit if nCoordDim == 2: eGType = eGType & ~ogr.wkb25DBit elif nCoordDim == 3: eGType = eGType | ogr.wkb25DBit if not poDstDS.TestCapability(ogr.ODsCCreateLayer): print("Layer " + pszNewLayerName + "not found, and CreateLayer not supported by driver.") return None gdal.ErrorReset() poDstLayer = poDstDS.CreateLayer(pszNewLayerName, poOutputSRS, eGType, papszLCO) if poDstLayer is None: return None bAppend = False # -------------------------------------------------------------------- # Otherwise we will append to it, if append was requested. # -------------------------------------------------------------------- elif not bAppend: print("FAILED: Layer " + pszNewLayerName + "already exists, and -append not specified.\n" + " Consider using -append, or -overwrite.") return None else: if papszLCO: print("WARNING: Layer creation options ignored since an existing layer is\n" + " being appended to.") # -------------------------------------------------------------------- # Add fields. Default to copy all field. # If only a subset of all fields requested, then output only # the selected fields, and in the order that they were # selected. # -------------------------------------------------------------------- # Initialize the index-to-index map to -1's nSrcFieldCount = poSrcFDefn.GetFieldCount() panMap = [-1] * nSrcFieldCount poDstFDefn = poDstLayer.GetLayerDefn() if papszSelFields is not None and not bAppend: nDstFieldCount = 0 if poDstFDefn is not None: nDstFieldCount = poDstFDefn.GetFieldCount() for papszSelField in papszSelFields: iSrcField = poSrcFDefn.GetFieldIndex(papszSelField) if iSrcField >= 0: poSrcFieldDefn = poSrcFDefn.GetFieldDefn(iSrcField) oFieldDefn = ogr.FieldDefn(poSrcFieldDefn.GetNameRef(), poSrcFieldDefn.GetType()) oFieldDefn.SetWidth(poSrcFieldDefn.GetWidth()) oFieldDefn.SetPrecision(poSrcFieldDefn.GetPrecision()) if papszFieldTypesToString is not None and \ (CSLFindString(papszFieldTypesToString, "All") != -1 or CSLFindString(papszFieldTypesToString, ogr.GetFieldTypeName(poSrcFieldDefn.GetType())) != -1): oFieldDefn.SetType(ogr.OFTString) # The field may have been already created at layer creation iDstField = -1 if poDstFDefn is not None: iDstField = poDstFDefn.GetFieldIndex(oFieldDefn.GetNameRef()) if iDstField >= 0: panMap[iSrcField] = iDstField elif poDstLayer.CreateField(oFieldDefn) == 0: # now that we've created a field, GetLayerDefn() won't return NULL if poDstFDefn is None: poDstFDefn = poDstLayer.GetLayerDefn() # Sanity check : if it fails, the driver is buggy if poDstFDefn is not None and \ poDstFDefn.GetFieldCount() != nDstFieldCount + 1: print("The output driver has claimed to have added the %s field, but it did not!" % oFieldDefn.GetNameRef()) else: panMap[iSrcField] = nDstFieldCount nDstFieldCount = nDstFieldCount + 1 else: print("Field '" + papszSelField + "' not found in source layer.") if not bSkipFailures: return None # -------------------------------------------------------------------- # Use SetIgnoredFields() on source layer if available # -------------------------------------------------------------------- # Here we differ from the ogr2ogr.cpp implementation since the OGRFeatureQuery # isn't mapped to swig. So in that case just don't use SetIgnoredFields() # to avoid issue raised in #4015 if poSrcLayer.TestCapability(ogr.OLCIgnoreFields) and pszWHERE is None: papszIgnoredFields = [] for iSrcField in range(nSrcFieldCount): pszFieldName = poSrcFDefn.GetFieldDefn(iSrcField).GetNameRef() bFieldRequested = False for papszSelField in papszSelFields: if EQUAL(pszFieldName, papszSelField): bFieldRequested = True break if pszZField is not None and EQUAL(pszFieldName, pszZField): bFieldRequested = True # If source field not requested, add it to ignored files list if not bFieldRequested: papszIgnoredFields.append(pszFieldName) poSrcLayer.SetIgnoredFields(papszIgnoredFields) elif not bAppend: nDstFieldCount = 0 if poDstFDefn is not None: nDstFieldCount = poDstFDefn.GetFieldCount() for iField in range(nSrcFieldCount): poSrcFieldDefn = poSrcFDefn.GetFieldDefn(iField) oFieldDefn = ogr.FieldDefn(poSrcFieldDefn.GetNameRef(), poSrcFieldDefn.GetType()) oFieldDefn.SetWidth(poSrcFieldDefn.GetWidth()) oFieldDefn.SetPrecision(poSrcFieldDefn.GetPrecision()) if papszFieldTypesToString is not None and \ (CSLFindString(papszFieldTypesToString, "All") != -1 or CSLFindString(papszFieldTypesToString, ogr.GetFieldTypeName(poSrcFieldDefn.GetType())) != -1): oFieldDefn.SetType(ogr.OFTString) # The field may have been already created at layer creation iDstField = -1 if poDstFDefn is not None: iDstField = poDstFDefn.GetFieldIndex(oFieldDefn.GetNameRef()) if iDstField >= 0: panMap[iField] = iDstField elif poDstLayer.CreateField(oFieldDefn) == 0: # now that we've created a field, GetLayerDefn() won't return NULL if poDstFDefn is None: poDstFDefn = poDstLayer.GetLayerDefn() # Sanity check : if it fails, the driver is buggy if poDstFDefn is not None and \ poDstFDefn.GetFieldCount() != nDstFieldCount + 1: print("The output driver has claimed to have added the %s field, but it did not!" % oFieldDefn.GetNameRef()) else: panMap[iField] = nDstFieldCount nDstFieldCount = nDstFieldCount + 1 else: # For an existing layer, build the map by fetching the index in the destination # layer for each source field if poDstFDefn is None: print("poDstFDefn == NULL.\n") return None for iField in range(nSrcFieldCount): poSrcFieldDefn = poSrcFDefn.GetFieldDefn(iField) iDstField = poDstFDefn.GetFieldIndex(poSrcFieldDefn.GetNameRef()) if iDstField >= 0: panMap[iField] = iDstField iSrcZField = -1 if pszZField is not None: iSrcZField = poSrcFDefn.GetFieldIndex(pszZField) psInfo = TargetLayerInfo() psInfo.poDstLayer = poDstLayer psInfo.poCT = poCT # psInfo.papszTransformOptions = papszTransformOptions psInfo.panMap = panMap psInfo.iSrcZField = iSrcZField return psInfo # ********************************************************************** # TranslateLayer() # ********************************************************************** def TranslateLayer(psInfo, poSrcDS, poSrcLayer, poDstDS, poOutputSRS, bNullifyOutputSRS, eGType, bPromoteToMulti, nCoordDim, eGeomOp, dfGeomOpParam, nCountLayerFeatures, poClipSrc, poClipDst, bExplodeCollections, nSrcFileSize, pnReadFeatureCount, pfnProgress, pProgressArg): # pylint: disable=unused-argument bForceToPolygon = False bForceToMultiPolygon = False bForceToMultiLineString = False poDstLayer = psInfo.poDstLayer # papszTransformOptions = psInfo.papszTransformOptions poCT = psInfo.poCT panMap = psInfo.panMap iSrcZField = psInfo.iSrcZField if poOutputSRS is None and not bNullifyOutputSRS: poOutputSRS = poSrcLayer.GetSpatialRef() if wkbFlatten(eGType) == ogr.wkbPolygon: bForceToPolygon = True elif wkbFlatten(eGType) == ogr.wkbMultiPolygon: bForceToMultiPolygon = True elif wkbFlatten(eGType) == ogr.wkbMultiLineString: bForceToMultiLineString = True # -------------------------------------------------------------------- # Transfer features. # -------------------------------------------------------------------- nFeaturesInTransaction = 0 nCount = 0 if nGroupTransactions > 0: poDstLayer.StartTransaction() while True: poDstFeature = None if nFIDToFetch != ogr.NullFID: # // Only fetch feature on first pass. if nFeaturesInTransaction == 0: poFeature = poSrcLayer.GetFeature(nFIDToFetch) else: poFeature = None else: poFeature = poSrcLayer.GetNextFeature() if poFeature is None: break nParts = 0 nIters = 1 if bExplodeCollections: poSrcGeometry = poFeature.GetGeometryRef() if poSrcGeometry is not None: eSrcType = wkbFlatten(poSrcGeometry.GetGeometryType()) if eSrcType == ogr.wkbMultiPoint or \ eSrcType == ogr.wkbMultiLineString or \ eSrcType == ogr.wkbMultiPolygon or \ eSrcType == ogr.wkbGeometryCollection: nParts = poSrcGeometry.GetGeometryCount() nIters = nParts if nIters == 0: nIters = 1 for iPart in range(nIters): nFeaturesInTransaction = nFeaturesInTransaction + 1 if nFeaturesInTransaction == nGroupTransactions: poDstLayer.CommitTransaction() poDstLayer.StartTransaction() nFeaturesInTransaction = 0 gdal.ErrorReset() poDstFeature = ogr.Feature(poDstLayer.GetLayerDefn()) if poDstFeature.SetFromWithMap(poFeature, 1, panMap) != 0: if nGroupTransactions > 0: poDstLayer.CommitTransaction() print("Unable to translate feature %d from layer %s" % (poFeature.GetFID(), poSrcLayer.GetName())) return False if bPreserveFID: poDstFeature.SetFID(poFeature.GetFID()) poDstGeometry = poDstFeature.GetGeometryRef() if poDstGeometry is not None: if nParts > 0: # For -explodecollections, extract the iPart(th) of the geometry poPart = poDstGeometry.GetGeometryRef(iPart).Clone() poDstFeature.SetGeometryDirectly(poPart) poDstGeometry = poPart if iSrcZField != -1: SetZ(poDstGeometry, poFeature.GetFieldAsDouble(iSrcZField)) # This will correct the coordinate dimension to 3 poDupGeometry = poDstGeometry.Clone() poDstFeature.SetGeometryDirectly(poDupGeometry) poDstGeometry = poDupGeometry if nCoordDim == 2 or nCoordDim == 3: poDstGeometry.SetCoordinateDimension(nCoordDim) if eGeomOp == GeomOperation.SEGMENTIZE: pass # if (poDstFeature.GetGeometryRef() is not None and dfGeomOpParam > 0) # poDstFeature.GetGeometryRef().segmentize(dfGeomOpParam); elif eGeomOp == GeomOperation.SIMPLIFY_PRESERVE_TOPOLOGY and dfGeomOpParam > 0: poNewGeom = poDstGeometry.SimplifyPreserveTopology(dfGeomOpParam) if poNewGeom is not None: poDstFeature.SetGeometryDirectly(poNewGeom) poDstGeometry = poNewGeom if poClipSrc is not None: poClipped = poDstGeometry.Intersection(poClipSrc) if poClipped is None or poClipped.IsEmpty(): # Report progress nCount = nCount + 1 if pfnProgress is not None: pfnProgress(nCount * 1.0 / nCountLayerFeatures, "", pProgressArg) continue poDstFeature.SetGeometryDirectly(poClipped) poDstGeometry = poClipped if poCT is not None: eErr = poDstGeometry.Transform(poCT) if eErr != 0: if nGroupTransactions > 0: poDstLayer.CommitTransaction() print("Failed to reproject feature %d (geometry probably out of source or destination SRS)." % poFeature.GetFID()) if not bSkipFailures: return False elif poOutputSRS is not None: poDstGeometry.AssignSpatialReference(poOutputSRS) if poClipDst is not None: poClipped = poDstGeometry.Intersection(poClipDst) if poClipped is None or poClipped.IsEmpty(): continue poDstFeature.SetGeometryDirectly(poClipped) poDstGeometry = poClipped if bForceToPolygon: poDstFeature.SetGeometryDirectly(ogr.ForceToPolygon(poDstGeometry)) elif bForceToMultiPolygon or \ (bPromoteToMulti and wkbFlatten(poDstGeometry.GetGeometryType()) == ogr.wkbPolygon): poDstFeature.SetGeometryDirectly(ogr.ForceToMultiPolygon(poDstGeometry)) elif bForceToMultiLineString or \ (bPromoteToMulti and wkbFlatten(poDstGeometry.GetGeometryType()) == ogr.wkbLineString): poDstFeature.SetGeometryDirectly(ogr.ForceToMultiLineString(poDstGeometry)) gdal.ErrorReset() if poDstLayer.CreateFeature(poDstFeature) != 0 and not bSkipFailures: if nGroupTransactions > 0: poDstLayer.RollbackTransaction() return False # Report progress nCount = nCount + 1 if pfnProgress is not None: if nSrcFileSize != 0: if (nCount % 1000) == 0: poFCLayer = poSrcDS.ExecuteSQL("GetBytesRead()", None, None) if poFCLayer is not None: poFeat = poFCLayer.GetNextFeature() if poFeat is not None: pszReadSize = poFeat.GetFieldAsString(0) nReadSize = int(pszReadSize) pfnProgress(nReadSize * 1.0 / nSrcFileSize, "", pProgressArg) poSrcDS.ReleaseResultSet(poFCLayer) else: pfnProgress(nCount * 1.0 / nCountLayerFeatures, "", pProgressArg) if pnReadFeatureCount is not None: pnReadFeatureCount[0] = nCount if nGroupTransactions > 0: poDstLayer.CommitTransaction() return True if __name__ == '__main__': sys.exit(main(sys.argv))
py
b4072bddce8bbde0d4668e3431f1e97f43efa5e6
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, print_function, unicode_literals from corpuscrawler.util import crawl_bibleis def crawl(crawler): out = crawler.get_output(language='new') crawl_bibleis(crawler, out, bible='NEWNCL')
py
b4072c34a31f108dd575ecf6e1672e785c78efef
# File: D (Python 2.4) from direct.task import Task from otp.otpbase import OTPLocalizer from direct.gui.DirectGui import * from pandac.PandaModules import * from direct.showbase.DirectObject import DirectObject class DownloadWatcher(DirectObject): def __init__(self, phaseNames): self.phaseNames = phaseNames self.text = DirectLabel(relief = None, guiId = 'DownloadWatcherText', pos = (-0.95999999999999996, 0, -0.91000000000000003), text = OTPLocalizer.DownloadWatcherInitializing, text_fg = (1, 1, 1, 1), text_scale = 0.050000000000000003, textMayChange = 1, text_align = TextNode.ALeft, sortOrder = 50) self.bar = DirectWaitBar(guiId = 'DownloadWatcherBar', pos = (-0.81000000000000005, 0, -0.95999999999999996), relief = DGG.SUNKEN, frameSize = (-0.59999999999999998, 0.59999999999999998, -0.10000000000000001, 0.10000000000000001), borderWidth = (0.02, 0.02), scale = 0.25, range = 100, sortOrder = 50, frameColor = (0.5, 0.5, 0.5, 0.5), barColor = (0.20000000000000001, 0.69999999999999996, 0.20000000000000001, 0.5), text = '0%', text_scale = 0.16, text_fg = (1, 1, 1, 1), text_align = TextNode.ACenter, text_pos = (0, -0.050000000000000003)) self.accept('launcherPercentPhaseComplete', self.update) def update(self, phase, percent, reqByteRate, actualByteRate): phaseName = self.phaseNames[phase] self.text['text'] = OTPLocalizer.DownloadWatcherUpdate % phaseName self.bar['text'] = '%s %%' % percent self.bar['value'] = percent def cleanup(self): self.text.destroy() self.bar.destroy() self.ignoreAll()
py
b4072d13e011cf740c1cc658652180ccb27dbb73
"""mypet URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), ]
py
b4072d8b34894c30dd9a184ce574c5fc1169ecc1
# -*- coding: utf-8 -*- # !/usr/bin/env python """ ------------------------------------------------- File Name: utilFunction.py Description : tool function Author : JHao date: 2016/11/25 ------------------------------------------------- Change Activity: 2016/11/25: 添加robustCrawl、verifyProxy、getHtmlTree ------------------------------------------------- """ import requests from lxml import etree from Util.WebRequest import WebRequest def robustCrawl(func): def decorate(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: pass # logger.info(u"sorry, 抓取出错。错误原因:") # logger.info(e) return decorate def verifyProxyFormat(proxy): """ 检查代理格式 :param proxy: :return: """ import re verify_regex = r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}:\d{1,5}" _proxy = re.findall(verify_regex, proxy) return True if len(_proxy) == 1 and _proxy[0] == proxy else False def getHtmlTree(url, **kwargs): """ 获取html树 :param url: :param kwargs: :return: """ header = {'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko)', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Encoding': 'gzip, deflate, sdch', 'Accept-Language': 'zh-CN,zh;q=0.8', } # TODO 取代理服务器用代理服务器访问 wr = WebRequest() html = wr.get(url=url, header=header).content return etree.HTML(html) def tcpConnect(proxy): """ TCP 三次握手 :param proxy: :return: """ from socket import socket, AF_INET, SOCK_STREAM s = socket(AF_INET, SOCK_STREAM) ip, port = proxy.split(':') result = s.connect_ex((ip, int(port))) return True if result == 0 else False def validUsefulProxy(proxy): """ 检验代理是否可用 :param proxy: :return: """ if isinstance(proxy, bytes): proxy = proxy.decode("utf8") proxies = {"https": "https://{proxy}".format(proxy=proxy)} try: r = requests.get('https://590m.com/file/3097233-437633828', proxies=proxies, timeout=10, verify=False) if r.status_code == 200: return True except Exception as e: pass return False
py
b4072e62159d2a3541f9480dc87f8f8c69625f20
from django.db import models from django.utils.timezone import now # Create your models here. # <HINT> Create a Car Make model `class CarMake(models.Model)`: # - Name # - Description # - Any other fields you would like to include in car make model # - __str__ method to print a car make object class CarMake(models.Model): name = models.CharField(null=False, max_length=30, default='BMW') description = models.CharField(null=False, max_length=300, default='BMW cars are feature rich.') # Create a toString method for object string representation def __str__(self): return 'Name:' + self.name + ', ' \ + 'Description:'+ self.description # <HINT> Create a Car Model model `class CarModel(models.Model):`: # - Many-To-One relationship to Car Make model (One Car Make has many Car Models, using ForeignKey field) # - Name # - Dealer id, used to refer a dealer created in cloudant database # - Type (CharField with a choices argument to provide limited choices such as Sedan, SUV, WAGON, etc.) # - Year (DateField) # - Any other fields you would like to include in car model # - __str__ method to print a car make object class CarModel(models.Model): SEDAN = 'sedan' SUV = 'suv' WAGON = 'wagon' MINIVAN = 'Minivan' OTHERS = 'others' CAR_CHOICES = [(SEDAN, 'Sedan'), (SUV, 'SUV'), (WAGON, 'Wagon'), (MINIVAN, 'Minivan'), (OTHERS, 'Others')] carmake = models.ForeignKey(CarMake, null= True, on_delete=models.CASCADE) name = models.CharField(null= False, max_length=30, default='BMW X1') dealerid = models.IntegerField(null=True) cartype = models.CharField(null= False, max_length=20, choices= CAR_CHOICES, default=SEDAN) #make = models.ForeignKey(CarMake, on_delete=models.CASCADE) year = models.DateField(null= True) def __str__(self): return 'Name ' + self.name # <HINT> Create a plain Python class `CarDealer` to hold dealer data class CarDealer: def __init__(self, address, city, full_name, id, lat, long, short_name, st, zip): # Dealer address self.address = address # Dealer city self.city = city # Dealer Full Name self.full_name = full_name # Dealer id self.id = id # Location lat self.lat = lat # Location long self.long = long # Dealer short name self.short_name = short_name # Dealer state self.st = st # Dealer zip self.zip = zip def __str__(self): return "Dealer name: " + self.full_name # <HINT> Create a plain Python class `DealerReview` to hold review data class DealerReview: def __init__(self, name, dealership, review, purchase): self.name = name self.dealership = dealership self.review = review self.purchase = purchase # Optional attributes self.purchase_date = "" self.car_make = "" self.car_model = "" self.car_year = "" self.sentiment = "" self.id = "" def __str__(self): return "Review: " + self.review + ", " + "Sentiment: " + self.sentiment def to_json(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4)
py
b4072fb4a4021fccfca0a7569d07733dcc4b600c
#encoding:utf-8 from .importer import * class PhaseShuffle(nn.Module): #PhaseShuffleを行うレイヤーの定義 def __init__(self,n): super().__init__() self.n = n#どれだけずらすかの範囲は論文内では[-n,n]と定義されている def forward(self, x): #nが0であれば、PhaseShuffleをそもそもしないのと同等 if self.n == 0: return x #[-n,n]に属する整数をランダムに生成、shiftとする shift = torch.Tensor(x.shape[0]).random_(-self.n,self.n+1).type(torch.int) #xにPhaseShuffleを適用した結果をx_shuffledに格納、戻り値とする x_shuffled = x.clone() for i,shift_num in enumerate(shift): if(shift_num==0): continue dim = len(x_shuffled[i].size()) - 1 origin_length = x[i].shape[dim] if shift_num > 0: left = torch.flip(torch.narrow(x[i],dim,1,shift_num),[dim]) right = torch.narrow(x[i],dim,0,origin_length-shift_num) else: shift_num = -shift_num left = torch.narrow(x[i],dim,shift_num,origin_length-shift_num) right = torch.flip(torch.narrow(x[i],dim,origin_length-shift_num-1,shift_num),[dim]) x_shuffled[i] = torch.cat([left,right],dim) return x_shuffled #discriminatorの損失関数の、勾配制約項の計算に必要な関数「gradient_penalty」を求める関数 #WGAN-GPにおいて、discriminatorの損失関数は E[本物の音声の判定結果]-E[偽音声の判定結果]+勾配制約項 と表され、 #generatorでは、E[偽音声の判定結果]と表される def gradient_penalty(netD,real,fake,batch_size,gamma=1): device = real.device #requires_gradが有効なTensorに対してはbackwardメソッドが呼べて、自動的に微分を計算できる alpha = torch.rand(batch_size,1,1,requires_grad=True).to(device) #本物と偽物をランダムな割合で混ぜ合わせる x = alpha*real + (1-alpha)*fake #それをdiscriminatorに入れ、結果をd_とする d_ = netD.forward(x) #出力d_と入力xから傾きを求める #傾きから計算されるL2ノルムが1になると良い結果を生むことが知られている #よってこれが1に近づくような学習ができるようにgradient_penaltyを計算 g = torch.autograd.grad(outputs=d_, inputs=x, grad_outputs=torch.ones(d_.shape).to(device), create_graph=True, retain_graph=True,only_inputs=True)[0] g = g.reshape(batch_size, -1) return ((g.norm(2,dim=1)/gamma-1.0)**2).mean()
py
b407306003ce421008dbb800c08f83bbf2c4cc56
# mock_dt.py import datetime try: from unittest import mock except ImportError: import mock real_datetime_class = datetime.datetime def mock_datetime_now(target, dt): class DatetimeSubclassMeta(type): @classmethod def __instancecheck__(mcs, obj): return isinstance(obj, real_datetime_class) class BaseMockedDatetime(real_datetime_class): @classmethod def now(cls, tz=None): return target.replace(tzinfo=tz) @classmethod def utcnow(cls): return target # Python2 & Python3 compatible metaclass MockedDatetime = DatetimeSubclassMeta('datetime', (BaseMockedDatetime, ), {}) return mock.patch.object(dt, 'datetime', MockedDatetime)
py
b40730d3b875cf0eecd7a85237587d9968c67a64
# NOTE: this is an endless loop import spi_rects
py
b40730f09bf0650307bf1a34cc45dadb298d61cf
#!/usr/bin/env python """ Provides wrappers and utilities for working with MAF files and alignments. """ # Dan Blankenberg import logging import os import string import sys import tempfile import pkg_resources pkg_resources.require( "bx-python" ) import bx.align.maf import bx.intervals import bx.interval_index_file from errno import EMFILE import resource from copy import deepcopy assert sys.version_info[:2] >= ( 2, 4 ) log = logging.getLogger(__name__) GAP_CHARS = [ '-' ] SRC_SPLIT_CHAR = '.' def src_split( src ): fields = src.split( SRC_SPLIT_CHAR, 1 ) spec = fields.pop( 0 ) if fields: chrom = fields.pop( 0 ) else: chrom = spec return spec, chrom def src_merge( spec, chrom, contig=None ): if None in [ spec, chrom ]: spec = chrom = spec or chrom return bx.align.maf.src_merge( spec, chrom, contig ) def get_species_in_block( block ): species = [] for c in block.components: spec, chrom = src_split( c.src ) if spec not in species: species.append( spec ) return species def tool_fail( msg="Unknown Error" ): print >> sys.stderr, "Fatal Error: %s" % msg sys.exit() class TempFileHandler( object ): ''' Handles creating, opening, closing, and deleting of Temp files, with a maximum number of files open at one time. ''' DEFAULT_MAX_OPEN_FILES = max( resource.getrlimit( resource.RLIMIT_NOFILE )[0] / 2, 1 ) def __init__( self, max_open_files=None, **kwds ): if max_open_files is None: max_open_files = self.DEFAULT_MAX_OPEN_FILES self.max_open_files = max_open_files self.files = [] self.open_file_indexes = [] self.kwds = kwds def get_open_tempfile( self, index=None, **kwds ): if index is not None and index in self.open_file_indexes: self.open_file_indexes.remove( index ) else: if self.max_open_files: while len( self.open_file_indexes ) >= self.max_open_files: self.close( self.open_file_indexes[0] ) if index is None: index = len( self.files ) temp_kwds = dict( self.kwds ) temp_kwds.update( kwds ) # Being able to use delete=True here, would simplify a bit, # but we support python2.4 in these tools while True: try: tmp_file = tempfile.NamedTemporaryFile( **temp_kwds ) filename = tmp_file.name break except OSError, e: if self.open_file_indexes and e.errno == EMFILE: self.max_open_files = len( self.open_file_indexes ) self.close( self.open_file_indexes[0] ) else: raise e tmp_file.close() self.files.append( open( filename, 'w+b' ) ) else: while True: try: self.files[ index ] = open( self.files[ index ].name, 'r+b' ) break except OSError, e: if self.open_file_indexes and e.errno == EMFILE: self.max_open_files = len( self.open_file_indexes ) self.close( self.open_file_indexes[0] ) else: raise e self.files[ index ].seek( 0, 2 ) self.open_file_indexes.append( index ) return index, self.files[ index ] def close( self, index, delete=False ): if index in self.open_file_indexes: self.open_file_indexes.remove( index ) rval = self.files[ index ].close() if delete: try: os.unlink( self.files[ index ].name ) except OSError: pass return rval def flush( self, index ): if index in self.open_file_indexes: self.files[ index ].flush() def __del__( self ): for i in xrange( len( self.files ) ): self.close( i, delete=True ) # an object corresponding to a reference layered alignment class RegionAlignment( object ): DNA_COMPLEMENT = string.maketrans( "ACGTacgt", "TGCAtgca" ) MAX_SEQUENCE_SIZE = sys.maxint # Maximum length of sequence allowed def __init__( self, size, species=[], temp_file_handler=None ): assert size <= self.MAX_SEQUENCE_SIZE, "Maximum length allowed for an individual sequence has been exceeded (%i > %i)." % ( size, self.MAX_SEQUENCE_SIZE ) self.size = size if not temp_file_handler: temp_file_handler = TempFileHandler() self.temp_file_handler = temp_file_handler self.sequences = {} if not isinstance( species, list ): species = [species] for spec in species: self.add_species( spec ) # add a species to the alignment def add_species( self, species ): # make temporary sequence files file_index, fh = self.temp_file_handler.get_open_tempfile() self.sequences[species] = file_index fh.write( "-" * self.size ) # returns the names for species found in alignment, skipping names as requested def get_species_names( self, skip=[] ): if not isinstance( skip, list ): skip = [skip] names = self.sequences.keys() for name in skip: try: names.remove( name ) except: pass return names # returns the sequence for a species def get_sequence( self, species ): file_index, fh = self.temp_file_handler.get_open_tempfile( self.sequences[species] ) fh.seek( 0 ) return fh.read() # returns the reverse complement of the sequence for a species def get_sequence_reverse_complement( self, species ): complement = [base for base in self.get_sequence( species ).translate( self.DNA_COMPLEMENT )] complement.reverse() return "".join( complement ) # sets a position for a species def set_position( self, index, species, base ): if len( base ) != 1: raise Exception( "A genomic position can only have a length of 1." ) return self.set_range( index, species, base ) # sets a range for a species def set_range( self, index, species, bases ): if index >= self.size or index < 0: raise Exception( "Your index (%i) is out of range (0 - %i)." % ( index, self.size - 1 ) ) if len( bases ) == 0: raise Exception( "A set of genomic positions can only have a positive length." ) if species not in self.sequences.keys(): self.add_species( species ) file_index, fh = self.temp_file_handler.get_open_tempfile( self.sequences[species] ) fh.seek( index ) fh.write( bases ) # Flush temp file of specified species, or all species def flush( self, species=None ): if species is None: species = self.sequences.keys() elif not isinstance( species, list ): species = [species] for spec in species: self.temp_file_handler.flush( self.sequences[spec] ) class GenomicRegionAlignment( RegionAlignment ): def __init__( self, start, end, species=[], temp_file_handler=None ): RegionAlignment.__init__( self, end - start, species, temp_file_handler=temp_file_handler ) self.start = start self.end = end class SplicedAlignment( object ): DNA_COMPLEMENT = string.maketrans( "ACGTacgt", "TGCAtgca" ) def __init__( self, exon_starts, exon_ends, species=[], temp_file_handler=None ): if not isinstance( exon_starts, list ): exon_starts = [exon_starts] if not isinstance( exon_ends, list ): exon_ends = [exon_ends] assert len( exon_starts ) == len( exon_ends ), "The number of starts does not match the number of sizes." self.exons = [] if not temp_file_handler: temp_file_handler = TempFileHandler() self.temp_file_handler = temp_file_handler for i in range( len( exon_starts ) ): self.exons.append( GenomicRegionAlignment( exon_starts[i], exon_ends[i], species, temp_file_handler=temp_file_handler ) ) # returns the names for species found in alignment, skipping names as requested def get_species_names( self, skip=[] ): if not isinstance( skip, list ): skip = [skip] names = [] for exon in self.exons: for name in exon.get_species_names( skip=skip ): if name not in names: names.append( name ) return names # returns the sequence for a species def get_sequence( self, species ): index, fh = self.temp_file_handler.get_open_tempfile() for exon in self.exons: if species in exon.get_species_names(): seq = exon.get_sequence( species ) # we need to refetch fh here, since exon.get_sequence( species ) uses a tempfile # and if max==1, it would close fh index, fh = self.temp_file_handler.get_open_tempfile( index ) fh.write( seq ) else: fh.write( "-" * exon.size ) fh.seek( 0 ) rval = fh.read() self.temp_file_handler.close( index, delete=True ) return rval # returns the reverse complement of the sequence for a species def get_sequence_reverse_complement( self, species ): complement = [base for base in self.get_sequence( species ).translate( self.DNA_COMPLEMENT )] complement.reverse() return "".join( complement ) # Start and end of coding region @property def start( self ): return self.exons[0].start @property def end( self ): return self.exons[-1].end # Open a MAF index using a UID def maf_index_by_uid( maf_uid, index_location_file ): for line in open( index_location_file ): try: # read each line, if not enough fields, go to next line if line[0:1] == "#": continue fields = line.split('\t') if maf_uid == fields[1]: try: maf_files = fields[4].replace( "\n", "" ).replace( "\r", "" ).split( "," ) return bx.align.maf.MultiIndexed( maf_files, keep_open=True, parse_e_rows=False ) except Exception, e: raise Exception( 'MAF UID (%s) found, but configuration appears to be malformed: %s' % ( maf_uid, e ) ) except: pass return None # return ( index, temp_index_filename ) for user maf, if available, or build one and return it, return None when no tempfile is created def open_or_build_maf_index( maf_file, index_filename, species=None ): try: return ( bx.align.maf.Indexed( maf_file, index_filename=index_filename, keep_open=True, parse_e_rows=False ), None ) except: return build_maf_index( maf_file, species=species ) def build_maf_index_species_chromosomes( filename, index_species=None ): species = [] species_chromosomes = {} indexes = bx.interval_index_file.Indexes() blocks = 0 try: maf_reader = bx.align.maf.Reader( open( filename ) ) while True: pos = maf_reader.file.tell() block = maf_reader.next() if block is None: break blocks += 1 for c in block.components: spec = c.src chrom = None if "." in spec: spec, chrom = spec.split( ".", 1 ) if spec not in species: species.append( spec ) species_chromosomes[spec] = [] if chrom and chrom not in species_chromosomes[spec]: species_chromosomes[spec].append( chrom ) if index_species is None or spec in index_species: forward_strand_start = c.forward_strand_start forward_strand_end = c.forward_strand_end try: forward_strand_start = int( forward_strand_start ) forward_strand_end = int( forward_strand_end ) except ValueError: continue # start and end are not integers, can't add component to index, goto next component # this likely only occurs when parse_e_rows is True? # could a species exist as only e rows? should the if forward_strand_end > forward_strand_start: # require positive length; i.e. certain lines have start = end = 0 and cannot be indexed indexes.add( c.src, forward_strand_start, forward_strand_end, pos, max=c.src_size ) except Exception, e: # most likely a bad MAF log.debug( 'Building MAF index on %s failed: %s' % ( filename, e ) ) return ( None, [], {}, 0 ) return ( indexes, species, species_chromosomes, blocks ) # builds and returns ( index, index_filename ) for specified maf_file def build_maf_index( maf_file, species=None ): indexes, found_species, species_chromosomes, blocks = build_maf_index_species_chromosomes( maf_file, species ) if indexes is not None: fd, index_filename = tempfile.mkstemp() out = os.fdopen( fd, 'w' ) indexes.write( out ) out.close() return ( bx.align.maf.Indexed( maf_file, index_filename=index_filename, keep_open=True, parse_e_rows=False ), index_filename ) return ( None, None ) def component_overlaps_region( c, region ): if c is None: return False start, end = c.get_forward_strand_start(), c.get_forward_strand_end() if region.start >= end or region.end <= start: return False return True def chop_block_by_region( block, src, region, species=None, mincols=0 ): # This chopping method was designed to maintain consistency with how start/end padding gaps have been working in Galaxy thus far: # behavior as seen when forcing blocks to be '+' relative to src sequence (ref) and using block.slice_by_component( ref, slice_start, slice_end ) # whether-or-not this is the 'correct' behavior is questionable, but this will at least maintain consistency # comments welcome slice_start = block.text_size # max for the min() slice_end = 0 # min for the max() old_score = block.score # save old score for later use # We no longer assume only one occurance of src per block, so we need to check them all for c in iter_components_by_src( block, src ): if component_overlaps_region( c, region ): if c.text is not None: rev_strand = False if c.strand == "-": # We want our coord_to_col coordinates to be returned from positive stranded component rev_strand = True c = c.reverse_complement() start = max( region.start, c.start ) end = min( region.end, c.end ) start = c.coord_to_col( start ) end = c.coord_to_col( end ) if rev_strand: # need to orient slice coordinates to the original block direction slice_len = end - start end = len( c.text ) - start start = end - slice_len slice_start = min( start, slice_start ) slice_end = max( end, slice_end ) if slice_start < slice_end: block = block.slice( slice_start, slice_end ) if block.text_size > mincols: # restore old score, may not be accurate, but it is better than 0 for everything? block.score = old_score if species is not None: block = block.limit_to_species( species ) block.remove_all_gap_columns() return block return None def orient_block_by_region( block, src, region, force_strand=None ): # loop through components matching src, # make sure each of these components overlap region # cache strand for each of overlaping regions # if force_strand / region.strand not in strand cache, reverse complement # we could have 2 sequences with same src, overlapping region, on different strands, this would cause no reverse_complementing strands = [ c.strand for c in iter_components_by_src( block, src ) if component_overlaps_region( c, region ) ] if strands and ( force_strand is None and region.strand not in strands ) or ( force_strand is not None and force_strand not in strands ): block = block.reverse_complement() return block def get_oriented_chopped_blocks_for_region( index, src, region, species=None, mincols=0, force_strand=None ): for block, idx, offset in get_oriented_chopped_blocks_with_index_offset_for_region( index, src, region, species, mincols, force_strand ): yield block def get_oriented_chopped_blocks_with_index_offset_for_region( index, src, region, species=None, mincols=0, force_strand=None ): for block, idx, offset in get_chopped_blocks_with_index_offset_for_region( index, src, region, species, mincols ): yield orient_block_by_region( block, src, region, force_strand ), idx, offset # split a block with multiple occurances of src into one block per src def iter_blocks_split_by_src( block, src ): for src_c in iter_components_by_src( block, src ): new_block = bx.align.Alignment( score=block.score, attributes=deepcopy( block.attributes ) ) new_block.text_size = block.text_size for c in block.components: if c == src_c or c.src != src: new_block.add_component( deepcopy( c ) ) # components have reference to alignment, dont want to loose reference to original alignment block in original components yield new_block # split a block into multiple blocks with all combinations of a species appearing only once per block def iter_blocks_split_by_species( block, species=None ): def __split_components_by_species( components_by_species, new_block ): if components_by_species: # more species with components to add to this block components_by_species = deepcopy( components_by_species ) spec_comps = components_by_species.pop( 0 ) for c in spec_comps: newer_block = deepcopy( new_block ) newer_block.add_component( deepcopy( c ) ) for value in __split_components_by_species( components_by_species, newer_block ): yield value else: # no more components to add, yield this block yield new_block # divide components by species spec_dict = {} if not species: species = [] for c in block.components: spec, chrom = src_split( c.src ) if spec not in spec_dict: spec_dict[ spec ] = [] species.append( spec ) spec_dict[ spec ].append( c ) else: for spec in species: spec_dict[ spec ] = [] for c in iter_components_by_src_start( block, spec ): spec_dict[ spec ].append( c ) empty_block = bx.align.Alignment( score=block.score, attributes=deepcopy( block.attributes ) ) # should we copy attributes? empty_block.text_size = block.text_size # call recursive function to split into each combo of spec/blocks for value in __split_components_by_species( spec_dict.values(), empty_block ): sort_block_components_by_block( value, block ) # restore original component order yield value # generator yielding only chopped and valid blocks for a specified region def get_chopped_blocks_for_region( index, src, region, species=None, mincols=0 ): for block, idx, offset in get_chopped_blocks_with_index_offset_for_region( index, src, region, species, mincols ): yield block def get_chopped_blocks_with_index_offset_for_region( index, src, region, species=None, mincols=0 ): for block, idx, offset in index.get_as_iterator_with_index_and_offset( src, region.start, region.end ): block = chop_block_by_region( block, src, region, species, mincols ) if block is not None: yield block, idx, offset # returns a filled region alignment for specified regions def get_region_alignment( index, primary_species, chrom, start, end, strand='+', species=None, mincols=0, overwrite_with_gaps=True, temp_file_handler=None ): if species is not None: alignment = RegionAlignment( end - start, species, temp_file_handler=temp_file_handler ) else: alignment = RegionAlignment( end - start, primary_species, temp_file_handler=temp_file_handler ) return fill_region_alignment( alignment, index, primary_species, chrom, start, end, strand, species, mincols, overwrite_with_gaps ) # reduces a block to only positions exisiting in the src provided def reduce_block_by_primary_genome( block, species, chromosome, region_start ): # returns ( startIndex, {species:texts} # where texts' contents are reduced to only positions existing in the primary genome src = "%s.%s" % ( species, chromosome ) ref = block.get_component_by_src( src ) start_offset = ref.start - region_start species_texts = {} for c in block.components: species_texts[ c.src.split( '.' )[0] ] = list( c.text ) # remove locations which are gaps in the primary species, starting from the downstream end for i in range( len( species_texts[ species ] ) - 1, -1, -1 ): if species_texts[ species ][i] == '-': for text in species_texts.values(): text.pop( i ) for spec, text in species_texts.items(): species_texts[spec] = ''.join( text ) return ( start_offset, species_texts ) # fills a region alignment def fill_region_alignment( alignment, index, primary_species, chrom, start, end, strand='+', species=None, mincols=0, overwrite_with_gaps=True ): region = bx.intervals.Interval( start, end ) region.chrom = chrom region.strand = strand primary_src = "%s.%s" % ( primary_species, chrom ) # Order blocks overlaping this position by score, lowest first blocks = [] for block, idx, offset in index.get_as_iterator_with_index_and_offset( primary_src, start, end ): score = float( block.score ) for i in range( 0, len( blocks ) ): if score < blocks[i][0]: blocks.insert( i, ( score, idx, offset ) ) break else: blocks.append( ( score, idx, offset ) ) # gap_chars_tuple = tuple( GAP_CHARS ) gap_chars_str = ''.join( GAP_CHARS ) # Loop through ordered blocks and layer by increasing score for block_dict in blocks: for block in iter_blocks_split_by_species( block_dict[1].get_at_offset( block_dict[2] ) ): # need to handle each occurance of sequence in block seperately if component_overlaps_region( block.get_component_by_src( primary_src ), region ): block = chop_block_by_region( block, primary_src, region, species, mincols ) # chop block block = orient_block_by_region( block, primary_src, region ) # orient block start_offset, species_texts = reduce_block_by_primary_genome( block, primary_species, chrom, start ) for spec, text in species_texts.items(): # we should trim gaps from both sides, since these are not positions in this species genome (sequence) text = text.rstrip( gap_chars_str ) gap_offset = 0 # while text.startswith( gap_chars_tuple ): while True in [ text.startswith( gap_char ) for gap_char in GAP_CHARS ]: # python2.4 doesn't accept a tuple for .startswith() gap_offset += 1 text = text[1:] if not text: break if text: if overwrite_with_gaps: alignment.set_range( start_offset + gap_offset, spec, text ) else: for i, char in enumerate( text ): if char not in GAP_CHARS: alignment.set_position( start_offset + gap_offset + i, spec, char ) return alignment # returns a filled spliced region alignment for specified region with start and end lists def get_spliced_region_alignment( index, primary_species, chrom, starts, ends, strand='+', species=None, mincols=0, overwrite_with_gaps=True, temp_file_handler=None ): # create spliced alignment object if species is not None: alignment = SplicedAlignment( starts, ends, species, temp_file_handler=temp_file_handler ) else: alignment = SplicedAlignment( starts, ends, [primary_species], temp_file_handler=temp_file_handler ) for exon in alignment.exons: fill_region_alignment( exon, index, primary_species, chrom, exon.start, exon.end, strand, species, mincols, overwrite_with_gaps ) return alignment # loop through string array, only return non-commented lines def line_enumerator( lines, comment_start='#' ): i = 0 for line in lines: if not line.startswith( comment_start ): i += 1 yield ( i, line ) # read a GeneBed file, return list of starts, ends, raw fields def get_starts_ends_fields_from_gene_bed( line ): # Starts and ends for exons starts = [] ends = [] fields = line.split() # Requires atleast 12 BED columns if len(fields) < 12: raise Exception( "Not a proper 12 column BED line (%s)." % line ) tx_start = int( fields[1] ) strand = fields[5] if strand != '-': strand = '+' # Default strand is + cds_start = int( fields[6] ) cds_end = int( fields[7] ) # Calculate and store starts and ends of coding exons region_start, region_end = cds_start, cds_end exon_starts = map( int, fields[11].rstrip( ',\n' ).split( ',' ) ) exon_starts = map( ( lambda x: x + tx_start ), exon_starts ) exon_ends = map( int, fields[10].rstrip( ',' ).split( ',' ) ) exon_ends = map( ( lambda x, y: x + y ), exon_starts, exon_ends ) for start, end in zip( exon_starts, exon_ends ): start = max( start, region_start ) end = min( end, region_end ) if start < end: starts.append( start ) ends.append( end ) return ( starts, ends, fields ) def iter_components_by_src( block, src ): for c in block.components: if c.src == src: yield c def get_components_by_src( block, src ): return [ value for value in iter_components_by_src( block, src ) ] def iter_components_by_src_start( block, src ): for c in block.components: if c.src.startswith( src ): yield c def get_components_by_src_start( block, src ): return [ value for value in iter_components_by_src_start( block, src ) ] def sort_block_components_by_block( block1, block2 ): # orders the components in block1 by the index of the component in block2 # block1 must be a subset of block2 # occurs in-place return block1.components.sort( cmp=lambda x, y: block2.components.index( x ) - block2.components.index( y ) ) def get_species_in_maf( maf_filename ): species = [] for block in bx.align.maf.Reader( open( maf_filename ) ): for spec in get_species_in_block( block ): if spec not in species: species.append( spec ) return species def parse_species_option( species ): if species: species = species.split( ',' ) if 'None' not in species: return species return None # provided species was '', None, or had 'None' in it def remove_temp_index_file( index_filename ): try: os.unlink( index_filename ) except: pass # Below are methods to deal with FASTA files def get_fasta_header( component, attributes={}, suffix=None ): header = ">%s(%s):%i-%i|" % ( component.src, component.strand, component.get_forward_strand_start(), component.get_forward_strand_end() ) for key, value in attributes.iteritems(): header = "%s%s=%s|" % ( header, key, value ) if suffix: header = "%s%s" % ( header, suffix ) else: header = "%s%s" % ( header, src_split( component.src )[ 0 ] ) return header def get_attributes_from_fasta_header( header ): if not header: return {} attributes = {} header = header.lstrip( '>' ) header = header.strip() fields = header.split( '|' ) try: region = fields[0] region = region.split( '(', 1 ) temp = region[0].split( '.', 1 ) attributes['species'] = temp[0] if len( temp ) == 2: attributes['chrom'] = temp[1] else: attributes['chrom'] = temp[0] region = region[1].split( ')', 1 ) attributes['strand'] = region[0] region = region[1].lstrip( ':' ).split( '-' ) attributes['start'] = int( region[0] ) attributes['end'] = int( region[1] ) except: # fields 0 is not a region coordinate pass if len( fields ) > 2: for i in xrange( 1, len( fields ) - 1 ): prop = fields[i].split( '=', 1 ) if len( prop ) == 2: attributes[ prop[0] ] = prop[1] if len( fields ) > 1: attributes['__suffix__'] = fields[-1] return attributes def iter_fasta_alignment( filename ): class fastaComponent: def __init__( self, species, text="" ): self.species = species self.text = text def extend( self, text ): self.text = self.text + text.replace( '\n', '' ).replace( '\r', '' ).strip() # yields a list of fastaComponents for a FASTA file f = open( filename, 'rb' ) components = [] # cur_component = None while True: line = f.readline() if not line: if components: yield components return line = line.strip() if not line: if components: yield components components = [] elif line.startswith( '>' ): attributes = get_attributes_from_fasta_header( line ) components.append( fastaComponent( attributes['species'] ) ) elif components: components[-1].extend( line )
py
b4073261524e30d1e1d227c97c73edf8ad7f9572
import errno import json import os import platform import re import subprocess from invoke.exceptions import Exit errno_regex = re.compile(r".*\[Errno (\d+)\] (.*)") __all__ = ["Gitlab"] class Gitlab(object): BASE_URL = "https://gitlab.ddbuild.io/api/v4" def __init__(self, api_token=None): self.api_token = api_token if api_token else self._api_token() def test_project_found(self, project): """ Checks if a project can be found. This is useful for testing access permissions to projects. """ result = self.project(project) # name is arbitrary, just need to check if something is in the result if "name" in result: return print("Cannot find GitLab project {}".format(project)) print("If you cannot see it in the GitLab WebUI, you likely need permission.") raise Exit(code=1) def project(self, project_name): """ Gets the project info. """ from urllib.parse import quote path = "/projects/{}".format(quote(project_name, safe="")) return self.make_request(path, json=True) def create_pipeline(self, project_name, ref, variables=None): """ Create a pipeline targeting a given reference of a project. ref must be a branch or a tag. """ from urllib.parse import quote if variables is None: variables = {} path = "/projects/{}/pipeline".format(quote(project_name, safe="")) headers = {"Content-Type": "application/json"} data = json.dumps({"ref": ref, "variables": [{"key": k, "value": v} for (k, v) in variables.items()],}) return self.make_request(path, headers=headers, data=data, json=True) def pipelines_for_ref(self, project_name, ref, per_page=100): """ Gets all pipelines for a given reference """ from urllib.parse import quote path = "/projects/{}/pipelines?ref={}&per_page={}".format( quote(project_name, safe=""), quote(ref, safe=""), per_page, ) return self.make_request(path, json=True) def last_pipeline_for_ref(self, project_name, ref, per_page=100): """ Gets the last pipeline for a given reference. per_page cannot exceed 100. """ pipelines = self.pipelines_for_ref(project_name, ref, per_page) if len(pipelines) == 0: return None return sorted(pipelines, key=lambda pipeline: pipeline['created_at'], reverse=True)[0] def pipeline(self, project_name, pipeline_id): """ Gets info for a given pipeline. """ from urllib.parse import quote path = "/projects/{}/pipelines/{}".format(quote(project_name, safe=""), pipeline_id) return self.make_request(path, json=True) def commit(self, project_name, commit_sha): """ Gets info for a given commit sha. """ from urllib.parse import quote path = "/projects/{}/repository/commits/{}".format(quote(project_name, safe=""), commit_sha) return self.make_request(path, json=True) def jobs(self, project_name, pipeline_id, page=1, per_page=100): """ Gets one page of the jobs for a pipeline. per_page cannot exceed 100. """ from urllib.parse import quote path = "/projects/{}/pipelines/{}/jobs?per_page={}&page={}".format( quote(project_name, safe=""), pipeline_id, per_page, page ) return self.make_request(path, json=True) def find_tag(self, project_name, tag_name): """ Look up a tag by its name. """ from urllib.parse import quote path = "/projects/{}/repository/tags/{}".format(quote(project_name, safe=""), tag_name) return self.make_request(path, json=True) def make_request(self, path, headers=None, data=None, json=False): """ Utility to make a request to the Gitlab API. """ import requests url = self.BASE_URL + path headers = dict(headers or []) headers["PRIVATE-TOKEN"] = self.api_token try: if data: r = requests.post(url, headers=headers, data=data) else: r = requests.get(url, headers=headers) if r.status_code == 401: print( "HTTP 401: Your GITLAB_TOKEN may have expired. You can " "check and refresh it at " "https://gitlab.ddbuild.io/profile/personal_access_tokens" ) print("Gitlab says: {}".format(r.json()["error_description"])) raise Exit(code=1) except requests.exceptions.Timeout: print("Connection to GitLab ({}) timed out.".format(url)) raise Exit(code=1) except requests.exceptions.RequestException as e: m = errno_regex.match(str(e)) if not m: print("Unknown error raised connecting to {}: {}".format(url, e)) # Parse errno to give a better explanation # Requests doesn't have granularity at the level we want: # http://docs.python-requests.org/en/master/_modules/requests/exceptions/ errno_code = int(m.group(1)) message = m.group(2) if errno_code == errno.ENOEXEC: print("Error resolving {}: {}".format(url, message)) elif errno_code == errno.ECONNREFUSED: print("Connection to Gitlab ({}) refused".format(url)) else: print("Error while connecting to {}: {}".format(url, str(e))) raise Exit(code=1) if json: return r.json() return r.text def _api_token(self): if "GITLAB_TOKEN" not in os.environ: print("GITLAB_TOKEN not found in env. Trying keychain...") if platform.system() == "Darwin": try: output = subprocess.check_output( ['security', 'find-generic-password', '-a', os.environ["USER"], '-s', 'GITLAB_TOKEN', '-w'] ) if len(output) > 0: return output.strip() except subprocess.CalledProcessError: print("GITLAB_TOKEN not found in keychain...") pass print( "Please create an 'api' access token at " "https://gitlab.ddbuild.io/profile/personal_access_tokens and " "add it as GITLAB_TOKEN in your keychain " "or export it from your .bashrc or equivalent." ) raise Exit(code=1) return os.environ["GITLAB_TOKEN"]
py
b40733754241410aceaec19fa3fa4382198de8fd
_base_ = [ '../../_base_/models/tsm_r50.py', '../../_base_/schedules/sgd_tsm_50e.py', '../../_base_/default_runtime.py' ] # model settings model = dict(cls_head=dict(num_classes=174)) # dataset settings dataset_type = 'RawframeDataset' data_root = 'data/sthv2/rawframes' data_root_val = 'data/sthv2/rawframes' ann_file_train = 'data/sthv2/sthv1_train_list_rawframes.txt' ann_file_val = 'data/sthv2/sthv1_val_list_rawframes.txt' ann_file_test = 'data/sthv2/sthv1_val_list_rawframes.txt' sthv1_flip_label_map = {2: 4, 4: 2, 30: 41, 41: 30, 52: 66, 66: 52} img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False) train_pipeline = [ dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict( type='MultiScaleCrop', input_size=224, scales=(1, 0.875, 0.75, 0.66), random_crop=False, max_wh_scale_gap=1, num_fixed_crops=13), dict(type='Resize', scale=(224, 224), keep_ratio=False), dict(type='Flip', flip_ratio=0.5, flip_label_map=sthv1_flip_label_map), dict(type='Imgaug', transforms='default'), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label']) ] val_pipeline = [ dict( type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8, test_mode=True), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='CenterCrop', crop_size=224), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] test_pipeline = [ dict( type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8, twice_sample=True, test_mode=True), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='ThreeCrop', crop_size=256), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] data = dict( videos_per_gpu=8, workers_per_gpu=2, test_dataloader=dict(videos_per_gpu=1), train=dict( type=dataset_type, ann_file=ann_file_train, data_prefix=data_root, filename_tmpl='{:05}.jpg', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=ann_file_val, data_prefix=data_root_val, filename_tmpl='{:05}.jpg', pipeline=val_pipeline), test=dict( type=dataset_type, ann_file=ann_file_test, data_prefix=data_root_val, filename_tmpl='{:05}.jpg', pipeline=test_pipeline)) evaluation = dict( interval=2, metrics=['top_k_accuracy', 'mean_class_accuracy']) # optimizer optimizer = dict(weight_decay=0.0005) # runtime settings work_dir = './work_dirs/tsm_r50_flip_randaugment_1x1x8_50e_sthv1_rgb/'
py
b40733c8716b75062c5887e62e25e1ac27a1378a
import os import xml.etree.ElementTree as ET from pybdv.metadata import get_data_path, indent_xml, get_bdv_format def copy_xml_with_abspath(xml_in, xml_out): path = get_data_path(xml_in, return_absolute_path=True) copy_xml_with_newpath(xml_in, xml_out, path, path_type='absolute') def copy_xml_with_relpath(xml_in, xml_out): path = get_data_path(xml_in, return_absolute_path=True) xml_root = os.path.split(xml_out)[0] path = os.path.relpath(path, xml_root) copy_xml_with_newpath(xml_in, xml_out, path, path_type='relative') def copy_xml_with_newpath(xml_in, xml_out, data_path, path_type='relative', data_format=None): assert path_type in ('absolute', 'relative') if data_format is None: data_format = get_bdv_format(xml_in) # get the path node inn the xml tree root = ET.parse(xml_in).getroot() seqdesc = root.find('SequenceDescription') imgload = seqdesc.find('ImageLoader') imgload.set('format', data_format) et = imgload.find('hdf5') if et is None: et = imgload.find('n5') if et is None: raise RuntimeError("Could not find data node") et.tag = data_format.split('.')[-1] et.text = data_path et.set('type', path_type) indent_xml(root) tree = ET.ElementTree(root) tree.write(xml_out) # should be generalized and moved to pybdv at some point def copy_xml_as_n5_s3(in_xml, out_xml, service_endpoint, bucket_name, path_in_bucket, authentication='Anonymous', region='us-west-2', bdv_type='bdv.n5.s3'): """ Copy a bdv xml file and replace the image data loader with the bdv.n5.s3 format. Arguments: in_xml [str] - path to the input xml out_xml [str] - path to the output xml service_endpoint [str] - url of the s3 service end-point. For EMBL: 'https://s3.embl.de'. bucket_name [str] - name of the bucket path_in_bucket [str] - file paths inside of the bucket authentication [str] - the authentication mode, can be 'Anonymous' or 'Protected'. Default: 'Anonymous' region [str] - the region. Only relevant if aws.s3 is used. Default: 'us-west-2' """ bdv_types = ('bdv.n5.s3', 'ome.zarr.s3') if bdv_type not in bdv_types: raise ValueError(f"Invalid bdv type {bdv_type}, expected one of {bdv_types}") auth_modes = ('Anonymous', 'Protected') if authentication not in auth_modes: raise ValueError(f"Invalid authentication mode {authentication}, expected one of {auth_modes}") # check if we have an xml already tree = ET.parse(in_xml) root = tree.getroot() # load the sequence description seqdesc = root.find('SequenceDescription') # update the image loader # remove the old image loader imgload = seqdesc.find('ImageLoader') seqdesc.remove(imgload) # write the new image loader imgload = ET.SubElement(seqdesc, 'ImageLoader') imgload.set('format', bdv_type) el = ET.SubElement(imgload, 'Key') el.text = path_in_bucket el = ET.SubElement(imgload, 'SigningRegion') el.text = region el = ET.SubElement(imgload, 'ServiceEndpoint') el.text = service_endpoint el = ET.SubElement(imgload, 'BucketName') el.text = bucket_name el = ET.SubElement(imgload, 'Authentication') el.text = authentication indent_xml(root) tree = ET.ElementTree(root) tree.write(out_xml) def read_path_in_bucket(xml): root = ET.parse(xml).getroot() seqdesc = root.find('SequenceDescription') imgload = seqdesc.find('ImageLoader') el = imgload.find('Key') return el.text
py
b40735071f3b0a75fef238a5e5cf4d1008ed7611
#!/usr/bin/env python import sys import rospy from navigation.srv import * from duckietown_msgs.msg import FSMState, SourceTargetNodes, BoolStamped, Twist2DStamped from std_msgs.msg import Int16, String class ActionsDispatcherNode(): def __init__(self): self.node_name = rospy.get_name() #adding logic because FSM publishes our state at a high rate #not just everytime the mode changes but multiple times in each mode self.first_update = True self.actions = [] # Parameters: self.fsm_mode = self.setupParameter("~initial_mode","JOYSTICK_CONTROL") self.localization_mode = self.setupParameter("~localization_mode","LOCALIZATION") self.trigger_mode = self.setupParameter("~trigger_mode","INTERSECTION_CONTROL") self.reset_mode = self.setupParameter("~reset_mode","JOYSTICK_CONTROL") self.stop_line_wait_time = self.setupParameter("~stop_line_wait_time",2.0) # Subscribers: self.sub_mode = rospy.Subscriber("~fsm_mode", FSMState, self.updateMode, queue_size = 1) self.sub_plan_request = rospy.Subscriber("~plan_request", SourceTargetNodes, self.graph_search) # Publishers: self.pub = rospy.Publisher("~turn_type", Int16, queue_size=1, latch=True) self.pubList = rospy.Publisher("~turn_plan", String, queue_size=1, latch=True) self.pub_localized = rospy.Publisher("~localized", BoolStamped, queue_size=1, latch=True) def setupParameter(self,param_name,default_value): value = rospy.get_param(param_name,default_value) rospy.set_param(param_name,value) #Write to parameter server for transparancy rospy.loginfo("[%s] %s = %s " %(self.node_name,param_name,value)) return value def updateMode(self, data): self.fsm_mode = data.state if self.fsm_mode == self.reset_mode: self.actions = [] rospy.wait_for_service('graph_search') graph_search = rospy.ServiceProxy('graph_search', GraphSearch) graph_search('0', '0') elif self.localization_mode != "none" and self.fsm_mode == self.localization_mode: self.pubLocalized() self.dispatcher() def dispatcher(self): if self.first_update == False and self.fsm_mode != self.trigger_mode: self.first_update = True if self.first_update == True and self.fsm_mode == self.trigger_mode and self.actions: # Allow time for open loop controller to update state and allow duckiebot to stop at redline: rospy.sleep(self.stop_line_wait_time) # Proceed with action dispatching: action = self.actions.pop(0) print 'Dispatched:', action if action == 's': self.pub.publish(Int16(1)) elif action == 'r': self.pub.publish(Int16(2)) elif action == 'l': self.pub.publish(Int16(0)) elif action == 'w': self.pub.publish(Int16(-1)) action_str = '' for letter in self.actions: action_str += letter self.pubList.publish(action_str) self.firstUpdate = False def graph_search(self, data): print 'Requesting map for src: ', data.source_node, ' and target: ', data.target_node rospy.wait_for_service('graph_search') try: graph_search = rospy.ServiceProxy('graph_search', GraphSearch) resp = graph_search(data.source_node, data.target_node) self.actions = resp.actions if self.actions: # remove 'f' (follow line) from actions and add wait action in the end of queue self.actions = [x for x in self.actions if x != 'f'] self.actions.append('w') print 'Actions to be executed:', self.actions action_str = '' for letter in self.actions: action_str += letter self.pubList.publish(action_str) self.dispatcher() else: print 'Actions to be executed:', self.actions except rospy.ServiceException, e: print "Service call failed: %s"%e def pubLocalized(self): msg = BoolStamped() msg.data = True self.pub_localized.publish(msg) def onShutdown(self): rospy.loginfo("[ActionsDispatcherNode] Shutdown.") if __name__ == "__main__": rospy.init_node('actions_dispatcher_node') actions_dispatcher_node = ActionsDispatcherNode() rospy.on_shutdown(actions_dispatcher_node.onShutdown) rospy.spin()
py
b40735089497571c786c52c6dcf3990295fd0423
"""A class for a normal form game""" import numpy as np import numpy.typing as npt from typing import Generator, Any, Set from scipy.optimize import linprog from scipy.spatial import HalfspaceIntersection def build_halfspaces(M: npt.NDArray) -> npt.NDArray: """ Build a matrix representation for a halfspace corresponding to: Mx <= 1 and x >= 0 This is of the form: [M: -1] [-1: 0] As specified in https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.spatial.HalfspaceIntersection.html Parameters ---------- M : array A matrix with linear coefficients defining the polytope. Returns ------- array The half spaces. """ number_of_strategies, dimension = M.shape b = np.append(-np.ones(number_of_strategies), np.zeros(dimension)) M = np.append(M, -np.eye(dimension), axis=0) halfspaces = np.column_stack((M, b.transpose())) return halfspaces def find_feasible_point(halfspaces: npt.NDArray) -> npt.NDArray: """ Use linear programming to find a point inside the halfspaces (needed to define it). Code taken from scipy documentation: https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.spatial.HalfspaceIntersection.html Parameters ---------- halfspaces : array a matrix representation of halfspaces. Returns ------- array A feasible point inside the halfspace. """ norm_vector = np.reshape( np.linalg.norm(halfspaces[:, :-1], axis=1), (halfspaces.shape[0], 1) ) c = np.zeros((halfspaces.shape[1],)) c[-1] = -1 A = np.hstack((halfspaces[:, :-1], norm_vector)) b = -halfspaces[:, -1:] res = linprog(c, A_ub=A, b_ub=b) return res.x[:-1] def labels(vertex: npt.NDArray, halfspaces: npt.NDArray) -> Set[npt.NDArray]: """ Return the labels of the facets on which lie a given vertex. This is calculated by carrying out the matrix multiplication. Parameters ---------- vertex: array A given vertex of a polytope. halfspaces: array A halfspace definition of a polytope. Returns ------- set The set of labels of the vertex. """ b = halfspaces[:, -1] M = halfspaces[:, :-1] return set(np.where(np.isclose(np.dot(M, vertex), -b))[0]) def non_trivial_vertices( halfspaces: npt.NDArray, ) -> Generator[tuple, Any, None]: """ Returns all vertex, label pairs (ignoring the origin). Parameters ---------- halfspaces: array A halfspace definition of a polytope. Returns ------- generator A generator of non trivial vertices and their labels. """ feasible_point = find_feasible_point(halfspaces) hs = HalfspaceIntersection(halfspaces, feasible_point) hs.close() return ( (v, labels(v, halfspaces)) for v in hs.intersections if not np.all(np.isclose(v, 0)) and max(v) < np.inf )
py
b4073673f5cbc81cdbcba3cbbffc9ecfa1310936
import adv_test import adv from adv import * def module(): return Xiaolei class Xiaolei(adv.Adv): a1 = ('s',0.2) def s2_proc(this, e): Teambuff('s2cc',0.08,10,'crit','rate').on() Teambuff('s2cd',0.40,10,'crit','dmg').on() if __name__ == '__main__': conf = {} conf['acl'] = """ `s1, seq=5 and cancel `s2, seq=5 and cancel `s3, seq=5 and cancel """ adv_test.test(module(), conf, verbose=-2)
py
b40736b6381b31cb6c588b56288887e428d73093
#!/usr/bin/env python3 # Copyright (c) 2015-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test node responses to invalid blocks. In this test we connect to one node over p2p, and test block requests: 1) Valid blocks should be requested and become chain tip. 2) Invalid block with duplicated transaction should be re-requested. 3) Invalid block with bad coinbase value should be rejected and not re-requested. """ import copy from test_framework.blocktools import create_block, create_coinbase, create_tx_with_script from test_framework.messages import COIN from test_framework.mininode import P2PDataStore from test_framework.test_framework import GrailumTestFramework from test_framework.util import assert_equal class InvalidBlockRequestTest(GrailumTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True self.extra_args = [["-whitelist=127.0.0.1"]] def run_test(self): # Add p2p connection to node0 node = self.nodes[0] # convenience reference to the node node.add_p2p_connection(P2PDataStore()) best_block = node.getblock(node.getbestblockhash()) tip = int(node.getbestblockhash(), 16) height = best_block["height"] + 1 block_time = best_block["time"] + 1 self.log.info("Create a new block with an anyone-can-spend coinbase") height = 1 block = create_block(tip, create_coinbase(height), block_time) block.solve() # Save the coinbase for later block1 = block tip = block.sha256 node.p2p.send_blocks_and_test([block1], node, success=True) self.log.info("Mature the block.") node.generatetoaddress(100, node.get_deterministic_priv_key().address) best_block = node.getblock(node.getbestblockhash()) tip = int(node.getbestblockhash(), 16) height = best_block["height"] + 1 block_time = best_block["time"] + 1 # Use merkle-root malleability to generate an invalid block with # same blockheader. # Manufacture a block with 3 transactions (coinbase, spend of prior # coinbase, spend of that spend). Duplicate the 3rd transaction to # leave merkle root and blockheader unchanged but invalidate the block. self.log.info("Test merkle root malleability.") block2 = create_block(tip, create_coinbase(height), block_time) block_time += 1 # b'0x51' is OP_TRUE tx1 = create_tx_with_script(block1.vtx[0], 0, script_sig=b'\x51', amount=50 * COIN) tx2 = create_tx_with_script(tx1, 0, script_sig=b'\x51', amount=50 * COIN) block2.vtx.extend([tx1, tx2]) block2.hashMerkleRoot = block2.calc_merkle_root() block2.rehash() block2.solve() orig_hash = block2.sha256 block2_orig = copy.deepcopy(block2) # Mutate block 2 block2.vtx.append(tx2) assert_equal(block2.hashMerkleRoot, block2.calc_merkle_root()) assert_equal(orig_hash, block2.rehash()) assert(block2_orig.vtx != block2.vtx) node.p2p.send_blocks_and_test([block2], node, success=False, request_block=False, reject_reason='bad-txns-duplicate') # Check transactions for duplicate inputs self.log.info("Test duplicate input block.") block2_orig.vtx[2].vin.append(block2_orig.vtx[2].vin[0]) block2_orig.vtx[2].rehash() block2_orig.hashMerkleRoot = block2_orig.calc_merkle_root() block2_orig.rehash() block2_orig.solve() node.p2p.send_blocks_and_test([block2_orig], node, success=False, request_block=False, reject_reason='bad-txns-inputs-duplicate') self.log.info("Test very broken block.") block3 = create_block(tip, create_coinbase(height), block_time) block_time += 1 block3.vtx[0].vout[0].nValue = 100 * COIN # Too high! block3.vtx[0].sha256 = None block3.vtx[0].calc_sha256() block3.hashMerkleRoot = block3.calc_merkle_root() block3.rehash() block3.solve() node.p2p.send_blocks_and_test([block3], node, success=False, request_block=False, reject_reason='bad-cb-amount') if __name__ == '__main__': InvalidBlockRequestTest().main()
py
b407373c92aedad3300d9f98a12d67bfa2551ecb
""" Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import netifaces import ipaddress from typing import NamedTuple, Dict, List from ryu.lib.packet import ether_types from ryu.ofproto.inet import IPPROTO_TCP from ryu.controller.controller import Datapath from ryu.ofproto.ofproto_v1_4 import OFPP_LOCAL from lte.protos.pipelined_pb2 import SubscriberQuotaUpdate, SetupFlowsResult from magma.pipelined.app.base import MagmaController, ControllerType from magma.pipelined.app.inout import INGRESS, EGRESS from magma.pipelined.app.ue_mac import UEMacAddressController from magma.pipelined.imsi import encode_imsi from magma.pipelined.openflow import flows from magma.pipelined.openflow.magma_match import MagmaMatch from magma.pipelined.openflow.registers import Direction, IMSI_REG, \ DIRECTION_REG class CheckQuotaController(MagmaController): """ Quota Check Controller This controller recognizes special IP addr that IMSI sends a request to and routes that request to a flask server to check user quota. """ APP_NAME = "check_quota" APP_TYPE = ControllerType.LOGICAL CheckQuotaConfig = NamedTuple( 'CheckQuotaConfig', [('bridge_ip', str), ('quota_check_ip', str), ('has_quota_port', int), ('no_quota_port', int), ('cwf_bridge_mac', str)], ) def __init__(self, *args, **kwargs): super(CheckQuotaController, self).__init__(*args, **kwargs) self.config = self._get_config(kwargs['config']) self.tbl_num = self._service_manager.get_table_num(self.APP_NAME) self.next_main_table = self._service_manager.get_next_table_num( self.APP_NAME) self.next_table = \ self._service_manager.get_table_num(INGRESS) self.egress_table = self._service_manager.get_table_num(EGRESS) self.arpd_controller_fut = kwargs['app_futures']['arpd'] self.arp_contoller = None scratch_tbls = self._service_manager.allocate_scratch_tables( self.APP_NAME, 2) self._internal_ip_allocator = kwargs['internal_ip_allocator'] self.ip_rewrite_scratch = scratch_tbls[0] self.mac_rewrite_scratch = \ self._service_manager.INTERNAL_MAC_IP_REWRITE_TBL_NUM self._clean_restart = kwargs['config']['clean_restart'] self._datapath = None def _get_config(self, config_dict: Dict) -> NamedTuple: def get_virtual_iface_mac(iface): virt_ifaddresses = netifaces.ifaddresses(iface) return virt_ifaddresses[netifaces.AF_LINK][0]['addr'] return self.CheckQuotaConfig( bridge_ip=config_dict['bridge_ip_address'], quota_check_ip=config_dict['quota_check_ip'], has_quota_port=config_dict['has_quota_port'], no_quota_port=config_dict['no_quota_port'], cwf_bridge_mac=get_virtual_iface_mac(config_dict['bridge_name']), ) def handle_restart(self, quota_updates: List[SubscriberQuotaUpdate] ) -> SetupFlowsResult: """ Setup the check quota flows for the controller, this is used when the controller restarts. """ # TODO Potentially we can run a diff logic but I don't think there is # benefit(we don't need stats here) self._delete_all_flows(self._datapath) self._install_default_flows(self._datapath) self.update_subscriber_quota_state(quota_updates) return SetupFlowsResult(result=SetupFlowsResult.SUCCESS) def initialize_on_connect(self, datapath: Datapath): self._datapath = datapath self._delete_all_flows(datapath) self._install_default_flows(datapath) def cleanup_on_disconnect(self, datapath: Datapath): self._delete_all_flows(datapath) def update_subscriber_quota_state(self, updates: List[SubscriberQuotaUpdate]): if self._datapath is None: self.logger.error('Datapath not initialized for adding flows') return for update in updates: imsi = update.sid.id if update.update_type == SubscriberQuotaUpdate.VALID_QUOTA: self._add_subscriber_flow(imsi, update.mac_addr, True) elif update.update_type == SubscriberQuotaUpdate.NO_QUOTA: self._add_subscriber_flow(imsi, update.mac_addr, False) elif update.update_type == SubscriberQuotaUpdate.TERMINATE: self.remove_subscriber_flow(imsi) def remove_subscriber_flow(self, imsi: str): match = MagmaMatch(imsi=encode_imsi(imsi)) flows.delete_flow(self._datapath, self.tbl_num, match) flows.delete_flow(self._datapath, self.ip_rewrite_scratch, match) def _add_subscriber_flow(self, imsi: str, ue_mac: str, has_quota: bool): """ Redirect the UE flow to the dedicated flask server. On return traffic rewrite the IP/port so the redirection is seamless. Match incoming user traffic: 1. Rewrite ip src to be in same subnet as check quota server 2. Rewrite ip dst to check quota server 3. Rewrite eth dst to check quota server 4. Rewrite tcp dst port to either quota/non quota 5. LEARN action This will rewrite the ip src and dst and tcp port for traffic coming back to the UE 6. ARP controller arp clamp Sets the ARP clamping(for ARPs from the check quota server) for the fake IP we used to reach the check quota server """ parser = self._datapath.ofproto_parser internal_ip = self._internal_ip_allocator.next_ip() if has_quota: tcp_dst = self.config.has_quota_port else: tcp_dst = self.config.no_quota_port match = MagmaMatch( imsi=encode_imsi(imsi), eth_type=ether_types.ETH_TYPE_IP, ip_proto=IPPROTO_TCP, direction=Direction.OUT, vlan_vid=(0x1000, 0x1000), ipv4_dst=self.config.quota_check_ip ) actions = [ parser.NXActionLearn( table_id=self.ip_rewrite_scratch, priority=flows.UE_FLOW_PRIORITY, specs=[ parser.NXFlowSpecMatch( src=ether_types.ETH_TYPE_IP, dst=('eth_type_nxm', 0), n_bits=16 ), parser.NXFlowSpecMatch( src=IPPROTO_TCP, dst=('ip_proto_nxm', 0), n_bits=8 ), parser.NXFlowSpecMatch( src=Direction.IN, dst=(DIRECTION_REG, 0), n_bits=32 ), parser.NXFlowSpecMatch( src=int(ipaddress.IPv4Address(self.config.bridge_ip)), dst=('ipv4_src_nxm', 0), n_bits=32 ), parser.NXFlowSpecMatch( src=int(internal_ip), dst=('ipv4_dst_nxm', 0), n_bits=32 ), parser.NXFlowSpecMatch( src=('tcp_src_nxm', 0), dst=('tcp_dst_nxm', 0), n_bits=16 ), parser.NXFlowSpecMatch( src=tcp_dst, dst=('tcp_src_nxm', 0), n_bits=16 ), parser.NXFlowSpecMatch( src=encode_imsi(imsi), dst=(IMSI_REG, 0), n_bits=64 ), parser.NXFlowSpecLoad( src=('ipv4_src_nxm', 0), dst=('ipv4_dst_nxm', 0), n_bits=32 ), parser.NXFlowSpecLoad( src=int( ipaddress.IPv4Address(self.config.quota_check_ip)), dst=('ipv4_src_nxm', 0), n_bits=32 ), parser.NXFlowSpecLoad( src=80, dst=('tcp_src_nxm', 0), n_bits=16 ), ] ), parser.NXActionLearn( table_id=self.mac_rewrite_scratch, priority=flows.UE_FLOW_PRIORITY, specs=[ parser.NXFlowSpecMatch( src=ether_types.ETH_TYPE_IP, dst=('eth_type_nxm', 0), n_bits=16 ), parser.NXFlowSpecMatch( src=IPPROTO_TCP, dst=('ip_proto_nxm', 0), n_bits=8 ), parser.NXFlowSpecMatch( src=int(ipaddress.IPv4Address(self.config.bridge_ip)), dst=('ipv4_src_nxm', 0), n_bits=32 ), parser.NXFlowSpecMatch( src=int(internal_ip), dst=('ipv4_dst_nxm', 0), n_bits=32 ), parser.NXFlowSpecMatch( src=('tcp_src_nxm', 0), dst=('tcp_dst_nxm', 0), n_bits=16 ), parser.NXFlowSpecMatch( src=tcp_dst, dst=('tcp_src_nxm', 0), n_bits=16 ), parser.NXFlowSpecLoad( src=('eth_src_nxm', 0), dst=('eth_dst_nxm', 0), n_bits=48 ), parser.NXFlowSpecLoad( src=encode_imsi(imsi), dst=(IMSI_REG, 0), n_bits=64 ), ] ), parser.OFPActionSetField(ipv4_src=str(internal_ip)), parser.OFPActionSetField(ipv4_dst=self.config.bridge_ip), parser.OFPActionSetField(eth_dst=self.config.cwf_bridge_mac), parser.OFPActionSetField(tcp_dst=tcp_dst), parser.OFPActionPopVlan() ] flows.add_output_flow( self._datapath, self.tbl_num, match, actions, priority=flows.UE_FLOW_PRIORITY, output_port=OFPP_LOCAL) ue_tbl = self._service_manager.get_table_num( UEMacAddressController.APP_NAME) ue_next_tbl = self._service_manager.get_table_num(INGRESS) # Allows traffic back from the check quota server match = MagmaMatch(in_port=OFPP_LOCAL) actions = [ parser.NXActionResubmitTable(table_id=self.mac_rewrite_scratch)] flows.add_resubmit_next_service_flow(self._datapath, ue_tbl, match, actions=actions, priority=flows.DEFAULT_PRIORITY, resubmit_table=ue_next_tbl) # For traffic from the check quota server rewrite src ip and port match = MagmaMatch( imsi=encode_imsi(imsi), eth_type=ether_types.ETH_TYPE_IP, ip_proto=IPPROTO_TCP, direction=Direction.IN, ipv4_src=self.config.bridge_ip, ipv4_dst=internal_ip) actions = [ parser.NXActionResubmitTable(table_id=self.ip_rewrite_scratch)] flows.add_resubmit_next_service_flow( self._datapath, self.tbl_num, match, actions, priority=flows.DEFAULT_PRIORITY, resubmit_table=self.egress_table ) self.logger.debug("Setting up fake arp for for subscriber %s(%s)," "with fake ip %s", imsi, ue_mac , internal_ip) if self.arp_contoller or self.arpd_controller_fut.done(): if not self.arp_contoller: self.arp_contoller = self.arpd_controller_fut.result() self.arp_contoller.set_incoming_arp_flows(self._datapath, internal_ip, ue_mac) def _install_default_flows(self, datapath: Datapath): """ Set the default flows to just forward to next app. Args: datapath: ryu datapath struct """ # Default flows for non matched traffic inbound_match = MagmaMatch(direction=Direction.IN) outbound_match = MagmaMatch(direction=Direction.OUT) flows.add_resubmit_next_service_flow( datapath, self.tbl_num, inbound_match, [], priority=flows.MINIMUM_PRIORITY, resubmit_table=self.next_main_table) flows.add_resubmit_next_service_flow( datapath, self.tbl_num, outbound_match, [], priority=flows.MINIMUM_PRIORITY, resubmit_table=self.next_main_table) def _delete_all_flows(self, datapath: Datapath): flows.delete_all_flows_from_table(datapath, self.tbl_num) flows.delete_all_flows_from_table(datapath, self.ip_rewrite_scratch) #flows.delete_all_flows_from_table(datapath, self.mac_rewrite_scratch)
py
b407377d7e722af3d0c4465f8fb19ccbaa9cc279
def animal(bicho): animal = { 'aguia' : ['vertebrado', 'ave', 'carnivoro'], 'pomba' : ['vertebrado', 'ave', 'onivoro'], 'homem' : ['vertebrado', 'mamifero', 'onivoro'], 'vaca' : ['vertebrado', 'mamifero', 'herbivoro'], 'pulga' : ['invertebrado', 'inseto', 'hematofago'], 'lagarta' : ['invertebrado', 'inseto', 'herbivoro'], 'sanguessuga' : ['invertebrado', 'anelideo', 'hematofago'], 'minhoca' : ['invertebrado', 'anelideo', 'onivoro'], } for nome, ordem in animal.items(): if bicho == ordem: return print(nome) if __name__ == '__main__': entrada = [input(), input(), input()] animal(entrada)
py
b40737c1a8ad0b930bdadd6d4e32251dfaa09837
import argparse import json import logging import os from ray._private.runtime_env.context import RuntimeEnvContext from ray.core.generated.common_pb2 import Language logger = logging.getLogger(__name__) parser = argparse.ArgumentParser( description=( "Set up the environment for a Ray worker and launch the worker.")) parser.add_argument( "--serialized-runtime-env", type=str, help="the serialized parsed runtime env dict") parser.add_argument( "--serialized-runtime-env-context", type=str, help="the serialized runtime env context") parser.add_argument( "--allocated-instances-serialized-json", type=str, help="the worker allocated resource") parser.add_argument( "--language", type=str, help="the language type of the worker") def get_tmp_dir(remaining_args): for arg in remaining_args: if arg.startswith("--temp-dir="): return arg[11:] return None def parse_allocated_resource(allocated_instances_serialized_json): container_resource_args = [] allocated_resource = json.loads(allocated_instances_serialized_json) if "CPU" in allocated_resource.keys(): cpu_resource = allocated_resource["CPU"] if isinstance(cpu_resource, list): # cpuset: because we may split one cpu core into some pieces, # we need set cpuset.cpu_exclusive=0 and set cpuset-cpus cpu_ids = [] cpu_shares = 0 for idx, val in enumerate(cpu_resource): if val > 0: cpu_ids.append(idx) cpu_shares += val container_resource_args.append("--cpu-shares=" + str(int(cpu_shares / 10000 * 1024))) container_resource_args.append("--cpuset-cpus=" + ",".join( str(e) for e in cpu_ids)) else: # cpushare container_resource_args.append( "--cpu-shares=" + str(int(cpu_resource / 10000 * 1024))) if "memory" in allocated_resource.keys(): container_resource_args.append( "--memory=" + str(int(allocated_resource["memory"] / 10000))) return container_resource_args def start_worker_in_container(container_option, args, remaining_args): worker_setup_hook = args.worker_setup_hook last_period_idx = worker_setup_hook.rfind(".") module_name = worker_setup_hook[:last_period_idx] # python -m ray.workers.setup_runtime_env --session-dir= # default_worker.py --node-ip-address= ... entrypoint_args = ["-m"] entrypoint_args.append(module_name) # replace default_worker.py path if container_option.get("worker_path"): remaining_args[1] = container_option.get("worker_path") entrypoint_args.extend(remaining_args) # now we will start a container, add argument worker-shim-pid entrypoint_args.append("--worker-shim-pid={}".format(os.getpid())) tmp_dir = get_tmp_dir(remaining_args) if not tmp_dir: logger.error( "failed to get tmp_dir, the args: {}".format(remaining_args)) container_driver = "podman" # todo add cgroup config # todo flag "--rm" container_command = [ container_driver, "run", "-v", tmp_dir + ":" + tmp_dir, "--cgroup-manager=cgroupfs", "--network=host", "--pid=host", "--ipc=host", "--env-host" ] container_command.append("--env") container_command.append("RAY_RAYLET_PID=" + str(os.getppid())) if container_option.get("run_options"): container_command.extend(container_option.get("run_options")) container_command.extend( parse_allocated_resource(args.allocated_instances_serialized_json)) container_command.append("--entrypoint") container_command.append("python") container_command.append(container_option.get("image")) container_command.extend(entrypoint_args) logger.warning("start worker in container: {}".format(container_command)) os.execvp(container_driver, container_command) if __name__ == "__main__": args, remaining_args = parser.parse_known_args() runtime_env: dict = json.loads(args.serialized_runtime_env or "{}") container_option = runtime_env.get("container") if container_option and container_option.get("image"): start_worker_in_container(container_option, args, remaining_args) else: # NOTE(edoakes): args.serialized_runtime_env_context is only None when # we're starting the main Ray client proxy server. That case should # probably not even go through this codepath. runtime_env_context = RuntimeEnvContext.deserialize( args.serialized_runtime_env_context or "{}") runtime_env_context.exec_worker(remaining_args, Language.Value(args.language))
py
b40738b8bcd11aad02c65f5a3603e41a93691126
from ontolearn import KnowledgeBase, LengthBasedRefinement from conceptgenerator import CustomLearningProblemGenerator from collections import defaultdict, Counter import random, os, copy, numpy as np, pandas as pd class DataTriples: """ This class takes an owl file, loads it using ontolearn.base.KnowledgeBase resulting in a knowledge base. A refinement operator is used to generate new concepts of various lengths. The knowledge base is then converted into triples of the form: individual_i ---role_j---> concept_k and stored in a txt file (train.txt). The lengths and the respective positive and negative examples of each concept are also stored in dedicated dictionaries. """ def __init__(self, path='', num_generation_paths=10, path_length=12, num_of_concept_per_length=80, min_child_length=2, num_ex=1000, concept_redundancy_rate=0.): self.path = path kb = KnowledgeBase(path=path) self.concept_redundancy_rate = concept_redundancy_rate self.kb = kb self.num_ex = num_ex self.atomic_concepts = list(kb.get_all_concepts()) self.atomic_concept_names = set([a.str for a in list(kb.get_all_concepts())]) rho = LengthBasedRefinement(kb) self.lp_gen = CustomLearningProblemGenerator(knowledge_base=kb, refinement_operator=rho, num_problems=num_generation_paths, depth=path_length, min_length=min_child_length) def set_num_of_concepts_per_length(self, l): self.num_of_concepts_per_length = l def __base_path(self, path): for i in range(len(path))[::-1]: if path[i] == "/": return i def kb_to_triples(self, export_folder_name='Triples'): self.concept_pos_neg = defaultdict(lambda: defaultdict(list)) self.concept_lengths = defaultdict(float) if not os.path.exists(os.path.join(self.path[:self.__base_path(self.path)], export_folder_name)): os.mkdir(os.path.join(self.path[:self.__base_path(self.path)], export_folder_name)) train_file = open("%s/train.txt" % os.path.join(self.path[:self.__base_path(self.path)], export_folder_name), mode="w") non_isolated_file = open("%s/non_isolated.txt" % os.path.join(self.path[:self.__base_path(self.path)], export_folder_name), mode="w") non_isolated_individuals = set() for rel in self.kb.property_hierarchy.all_properties: for tple in rel.get_relations(): train_file.write(str(tple[0])+"\t\t"+str(rel)+"\t\t"+str(tple[1])[:50]+"\n") non_isolated_individuals.update([str(tple[0]), str(tple[1])]) for indiv in non_isolated_individuals: non_isolated_file.write(str(indiv)+"\n") train_file.close(); non_isolated_file.close() else: non_isolated_individuals = open(os.path.join("./"+self.path[:self.__base_path(self.path)], export_folder_name)+"/"+"non_isolated.txt", "r") non_isolated_individuals = non_isolated_individuals.read() non_isolated_individuals = non_isolated_individuals.split("\n") print("Example of non isolated individual: ", non_isolated_individuals[0]) self.concept_length_dist = Counter() All_individuals = set(self.kb.get_all_individuals()) print("Number of individuals in the knowledge base: {} \n".format(len(All_individuals))) Nodes = set(self.lp_gen) print("Concepts generation done!\n") print("Number of atomic concepts: ", len(self.atomic_concepts)) print("Longest concept length: ", np.max([len(n) for n in Nodes]), "\n") print("Total number of new concepts generated: ", len(Nodes), "\n") self.train_concepts = [] Concepts = {c.str: c for c in ([node.concept for node in Nodes] + self.atomic_concepts)}.values() total_concepts = len(Concepts) No_concept_redundancy_map = dict() No_redundancy_length_counts = Counter() for i, concept in enumerate(Concepts): valid_neg = sorted(set(pd.Series(list(All_individuals-concept.instances)).apply(lambda x: str(x))).intersection(set(non_isolated_individuals))) valid_pos = sorted(set(pd.Series(list(concept.instances)).apply(lambda x: str(x))).intersection(set(non_isolated_individuals))) if (i+1)%500 == 0: print("Progression: {}%".format(round(100.*(i+1)/total_concepts, ndigits=2))) if min(len(valid_neg),len(valid_pos)) >= self.num_ex//2: num_pos_ex = self.num_ex//2 num_neg_ex = self.num_ex//2 elif len(valid_pos) >= len(valid_neg) and len(valid_pos) + len(valid_neg) >= self.num_ex: num_neg_ex = len(valid_neg) num_pos_ex = self.num_ex-num_neg_ex elif len(valid_pos) + len(valid_neg)>=self.num_ex: num_pos_ex = len(valid_pos) num_neg_ex = self.num_ex-num_pos_ex else: continue positive = list(random.sample(valid_pos, num_pos_ex))#valid_pos[:num_pos_ex] negative = list(random.sample(valid_neg, num_neg_ex))#valid_neg[:num_neg_ex] if self.concept_length_dist[concept.length] < self.num_of_concepts_per_length: instance_statistics = {atomic: 0 for atomic in self.atomic_concept_names} for ind in concept.instances: types = set([str(t).split(".")[-1] for t in ind.is_a]) for t in types.intersection(self.atomic_concept_names): instance_statistics[t] += 1 instance_statistics.update({"num_pos_examples": len(concept.instances)}) self.concept_length_dist.update([concept.length]) if not concept.str in self.concept_pos_neg: self.concept_pos_neg[concept.str]["positive"] = positive self.concept_pos_neg[concept.str]["negative"] = negative self.concept_pos_neg[concept.str]["stats"] = list(instance_statistics.values()) rand = random.random() if str(valid_pos) in No_concept_redundancy_map and No_concept_redundancy_map[str(valid_pos)].length > concept.length: No_concept_redundancy_map[str(valid_pos)] = concept No_redundancy_length_counts.update([concept.length]) elif (str(valid_pos) in No_concept_redundancy_map and\ No_redundancy_length_counts[concept.length] < max(No_redundancy_length_counts.values())*self.concept_redundancy_rate):#and No_concept_redundancy_map[str(valid_pos)].length > concept.length: No_concept_redundancy_map[str(valid_pos)+str(random.random())] = concept No_redundancy_length_counts.update([concept.length]) elif not str(valid_pos) in No_concept_redundancy_map: No_concept_redundancy_map[str(valid_pos)] = concept No_redundancy_length_counts.update([concept.length]) self.No_concept_redundancy_map = No_concept_redundancy_map print("Data preprocessing ended successfully") def save_train_data(self): data = {"concept name": [], "positive examples": [], "negative examples": [], "pos ex stats": [], "concept length": []} for concept in self.No_concept_redundancy_map.values(): data["concept name"].append(concept.str) data["positive examples"].append(self.concept_pos_neg[concept.str]["positive"]) data["negative examples"].append(self.concept_pos_neg[concept.str]["negative"]) data["pos ex stats"].append(self.concept_pos_neg[concept.str]["stats"]) data["concept length"].append(concept.length) pd.DataFrame(data).to_csv("./"+("/").join(self.path.split("/")[1:-1])+"/"+"data.csv") print("Data saved at %s"% "/"+("/").join(self.path.split("/")[1:-1]))
py
b40739262b50360f02b8df82aebdb29354b5a0ef
from torch.nn.modules.module import Module import torch import numpy as np from torch.autograd import Variable from ..functions import * import torch.nn.functional as F from ..functions.GANet import MyLossFunction from ..functions.GANet import SgaFunction from ..functions.GANet import NlfFunction from ..functions.GANet import LgaFunction from ..functions.GANet import Lga2Function from ..functions.GANet import Lga3Function from ..functions.GANet import Lga3dFunction from ..functions.GANet import Lga3d2Function from ..functions.GANet import Lga3d3Function from ..functions.GANet import MyLoss2Function from ..functions.GANet import NlfDownFunction from ..functions.GANet import NlfUpFunction from ..functions.GANet import NlfRightFunction from ..functions.GANet import NlfLeftFunction class ChannelNorm(Module): def __init__(self, eps=1e-5): super(ChannelNorm, self).__init__() # self.weight = nn.Parameter(torch.ones(1,num_features,1,1)) # self.bias = nn.Parameter(torch.zeros(1,num_features,1,1)) # self.num_groups = num_groups self.eps = eps def forward(self, x): # N,C,H,W = x.size() # G = self.num_groups # x = x.view(N,G,-1) mean = x.mean(1, keepdim=True) var = x.var(1, keepdim=True) x = (x-mean) / (var+self.eps).sqrt() return x # x = x.view(N,C,H,W) # return x * self.weight + self.bias class GetWeights(Module): def __init__(self, wsize=5): super(GetWeights, self).__init__() self.wsize = wsize # self.disp = Variable(torch.Tensor(np.reshape(np.array(range(self.maxdisp)),[1,self.maxdisp,1,1])).cuda(), requires_grad=False) def forward(self, x): assert(x.is_contiguous() == True) with torch.cuda.device_of(x): # x = F.normalize(x, p=2, dim=1) num, channels, height, width = x.size() weight_down = x.new().resize_(num, 5, height, width).zero_() weight_down[:, 0, :, :] = torch.sum(x * x, 1) weight_down[:, 1, 1:, :] = torch.sum(x[:, :, 1:, :] * x[:, :, :-1, :], 1) weight_down[:, 2, 1:, 1:] = torch.sum(x[:, :, 1:, 1:] * x[:, :, :-1, :-1], 1) weight_down[:, 3, 1:, :-1] = torch.sum(x[:, :, 1:, :-1] * x[:, :, :-1, 1:], 1) weight_down[:, 4, :, 1:] = torch.sum(x[:, :, :, 1:] * x[:, :, :, :-1], 1) weight_up = x.new().resize_(num, 5, height, width).zero_() weight_up[:, 0, :, :] = torch.sum(x * x, 1) weight_up[:, 1, :-1, :] = torch.sum(x[:, :, :-1, :] * x[:, :, 1:, :], 1) weight_up[:, 2, :-1, 1:] = torch.sum(x[:, :, :-1, 1:] * x[:, :, 1:, :-1], 1) weight_up[:, 3, :-1, :-1] = torch.sum(x[:, :, :-1, :-1] * x[:, :, 1:, 1:], 1) weight_up[:, 4, :, :-1] = torch.sum(x[:, :, :, :-1] * x[:, :, :, 1:], 1) weight_right = x.new().resize_(num, 5, height, width).zero_() weight_right[:, 0, :, :] = torch.sum(x * x, 1) weight_right[:, 1, :, 1:] = torch.sum(x[:, :, :, 1:] * x[:, :, :, :-1], 1) weight_right[:, 2, 1:, 1:] = torch.sum(x[:, :, 1:, 1:] * x[:, :, :-1, :-1], 1) weight_right[:, 3, :-1, 1:] = torch.sum(x[:, :, :-1, 1:] * x[:, :, 1:, :-1], 1) weight_right[:, 4, 1:, :] = torch.sum(x[:, :, 1:, :] * x[:, :, :-1, :], 1) weight_left = x.new().resize_(num, 5, height, width).zero_() weight_left[:, 0, :, :] = torch.sum(x * x, 1) weight_left[:, 1, :, :-1] = torch.sum(x[:, :, :, :-1] * x[:, :, :, 1:], 1) weight_left[:, 2, 1:, :-1] = torch.sum(x[:, :, 1:, :-1] * x[:, :, :-1, 1:], 1) weight_left[:, 3, :-1, :-1] = torch.sum(x[:, :, :-1, :-1] * x[:, :, 1:, 1:], 1) weight_left[:, 4, :-1, :] = torch.sum(x[:, :, :-1, :] * x[:, :, 1:, :], 1) # weight_down = F.normalize(weight_down, p=1, dim=1) # weight_up = F.normalize(weight_up, p=1, dim=1) # weight_right = F.normalize(weight_right, p=1, dim=1) # weight_left = F.normalize(weight_left, p=1, dim=1) weight_down = F.softmax(weight_down, dim=1) weight_up = F.softmax(weight_up, dim=1) weight_right = F.softmax(weight_right, dim=1) weight_left = F.softmax(weight_left, dim=1) weight_down = weight_down.contiguous() weight_up = weight_up.contiguous() weight_right = weight_right.contiguous() weight_left = weight_left.contiguous() return weight_down, weight_up, weight_right, weight_left class GetFilters(Module): def __init__(self, radius=2): super(GetFilters, self).__init__() self.radius = radius self.wsize = (radius*2 + 1) * (radius*2 + 1) # self.disp = Variable(torch.Tensor(np.reshape(np.array(range(self.maxdisp)),[1,self.maxdisp,1,1])).cuda(), requires_grad=False) def forward(self, x): assert(x.is_contiguous() == True) with torch.cuda.device_of(x): x = F.normalize(x, p=2, dim=1) # num, channels, height, width = x.size() # rem = torch.unsqueeze(x, 2).repeat(1, 1, self.wsize, 1, 1) # # temp = x.new().resize_(num, channels, self.wsize, height, width).zero_() # idx = 0 # for r in range(-self.radius, self.radius+1): # for c in range(-self.radius, self.radius+1): # temp[:, :, idx, max(-r, 0):min(height - r, height), max(-c,0):min(width-c, width)] = x[:, :, max(r, 0):min(height + r, height), max(c, 0):min(width + c, width)] # idx += 1 # filters = torch.squeeze(torch.sum(rem*temp, 1), 1) # filters = F.normalize(filters, p=1, dim=1) # filters = filters.contiguous() # return filters num, channels, height, width = x.size() filters = x.new().resize_(num, self.wsize, height, width).zero_() idx = 0 for r in range(-self.radius, self.radius+1): for c in range(-self.radius, self.radius+1): filters[:, idx, max(-r, 0):min(height - r, height), max(-c,0):min(width-c, width)] = torch.squeeze(torch.sum(x[:, :, max(r, 0):min(height + r, height), max(c, 0):min(width + c, width)] * x[:,:,max(-r, 0):min(height-r, height), max(-c,0):min(width-c,width)], 1),1) idx += 1 filters = F.normalize(filters, p=1, dim=1) filters = filters.contiguous() return filters class MyNormalize(Module): def __init__(self, dim): self.dim = dim super(MyNormalize, self).__init__() def forward(self, x): # assert(x.is_contiguous() == True) with torch.cuda.device_of(x): norm = torch.sum(torch.abs(x),self.dim) norm[norm <= 0] = norm[norm <= 0] - 1e-6 norm[norm >= 0] = norm[norm >= 0] + 1e-6 norm = torch.unsqueeze(norm, self.dim) size = np.ones(x.dim(), dtype='int') size[self.dim] = x.size()[self.dim] norm = norm.repeat(*size) x = torch.div(x, norm) return x class MyLoss2(Module): def __init__(self, thresh=1, alpha=2): super(MyLoss2, self).__init__() self.thresh = thresh self.alpha = alpha def forward(self, input1, input2): result = MyLoss2Function.apply(input1, input2, self.thresh, self.alpha) return result class MyLoss(Module): def __init__(self, upper_thresh=5, lower_thresh=1): super(MyLoss, self).__init__() self.upper_thresh = 5 self.lower_thresh = 1 def forward(self, input1, input2): result = MyLossFunction.apply(input1, input2, self.upper_thresh, self.lower_thresh) return result class NLFMax(Module): def __init__(self): super(NLFMax, self).__init__() def forward(self, input, g0, g1, g2, g3): result0 = NlfDownFunction.apply(input, g0) result1 = NlfUpFunction.apply(input, g1) result2 = NlfRightFunction.apply(input, g2) result3 = NlfLeftFunction.apply(input, g3) return torch.max(torch.max(torch.max(result0, result1), result2), result3) class NLFMean(Module): def __init__(self): super(NLFMean, self).__init__() def forward(self, input, g0, g1, g2, g3): result0 = NlfDownFunction.apply(input, g0) result1 = NlfUpFunction.apply(input, g1) result2 = NlfRightFunction.apply(input, g2) result3 = NlfLeftFunction.apply(input, g3) # result1 = NlfUpFunction()(input, g1) # result2 = NlfRightFunction()(input, g2) # result3 = NlfLeftFunction()(input, g3) # return torch.add(torch.add(torch.add(result0, result1), result2), result3) return (result0 + result1 + result2 + result3) * 0.25 class NLFIter(Module): def __init__(self): super(NLFIter, self).__init__() def forward(self, input, g0, g1, g2, g3): result = NlfDownFunction.apply(input, g0) result = NlfUpFunction.apply(result, g1) result = NlfRightFunction.apply(result, g2) result = NlfLeftFunction.apply(result, g3) return result class NLF(Module): def __init__(self): super(NLF, self).__init__() def forward(self, input, g0, g1, g2, g3): result = NlfFunction.apply(input, g0, g1, g2, g3) return result class SGA(Module): def __init__(self): super(SGA, self).__init__() def forward(self, input, g0, g1, g2, g3): result = SgaFunction.apply(input, g0, g1, g2, g3) return result class LGA3D3(Module): def __init__(self, radius=2): super(LGA3D3, self).__init__() self.radius = radius def forward(self, input1, input2): result = Lga3d3Function.apply(input1, input2, self.radius) return result class LGA3D2(Module): def __init__(self, radius=2): super(LGA3D2, self).__init__() self.radius = radius def forward(self, input1, input2): result = Lga3d2Function.apply(input1, input2, self.radius) return result class LGA3D(Module): def __init__(self, radius=2): super(LGA3D, self).__init__() self.radius = radius def forward(self, input1, input2): result = Lga3dFunction.apply(input1, input2, self.radius) return result class LGA3(Module): def __init__(self, radius=2): super(LGA3, self).__init__() self.radius = radius def forward(self, input1, input2): result = Lga3Function.apply(input1, input2, self.radius) return result class LGA2(Module): def __init__(self, radius=2): super(LGA2, self).__init__() self.radius = radius def forward(self, input1, input2): result = Lga2Function.apply(input1, input2, self.radius) return result class LGA(Module): def __init__(self, radius=2): super(LGA, self).__init__() self.radius = radius def forward(self, input1, input2): result = LgaFunction.apply(input1, input2, self.radius) return result class GetCostVolume(Module): def __init__(self, maxdisp): super(GetCostVolume, self).__init__() self.maxdisp=maxdisp+1 def forward(self, x,y): assert(x.is_contiguous() == True) with torch.cuda.device_of(x): num, channels, height, width = x.size() cost = x.new().resize_(num, channels*2, self.maxdisp, height, width).zero_() # cost = Variable(torch.FloatTensor(x.size()[0], x.size()[1]*2, self.maxdisp, x.size()[2], x.size()[3]).zero_(), volatile= not self.training).cuda() for i in range(self.maxdisp): if i > 0 : cost[:, :x.size()[1], i, :,i:] = x[:,:,:,i:] cost[:, x.size()[1]:, i, :,i:] = y[:,:,:,:-i] else: cost[:, :x.size()[1], i, :,:] = x cost[:, x.size()[1]:, i, :,:] = y cost = cost.contiguous() return cost class DisparityRegression(Module): def __init__(self, maxdisp): super(DisparityRegression, self).__init__() self.maxdisp = maxdisp+1 # self.disp = Variable(torch.Tensor(np.reshape(np.array(range(self.maxdisp)),[1,self.maxdisp,1,1])).cuda(), requires_grad=False) def forward(self, x): assert(x.is_contiguous() == True) with torch.cuda.device_of(x): disp = Variable(torch.Tensor(np.reshape(np.array(range(self.maxdisp)),[1,self.maxdisp,1,1])).cuda(), requires_grad=False) disp = disp.repeat(x.size()[0],1,x.size()[2],x.size()[3]) out = torch.sum(x*disp,1) return out
py
b4073969c5fe35e0bf6ec418850ac5848f0921dd
from imports import * from flask import make_response, jsonify app = Flask( __name__, static_url_path="/storage/emulated/0", static_folder="/storage/emulated/0" ) @app.route("/") @app.route("/home") def home(): return render_template( "home_1.html", title="Home", ) @app.errorhandler(404) def not_found(e): return render_template("404.html") @app.route("/photos", methods=["POST", "GET"]) def photos(): all_files = [] for photo in photos_dir: files_ = list_files(photo) for a_file in files_: all_files.append(a_file) photos = [] for photo in all_files: if photo.rpartition(".")[-1] in photolst: photos.append(photo) return render_template( "photos.html", title="Photos", photos=photos, length=len(photos), len_dec=int(len(photos) / 100), ) @app.route("/documents") def documents(): all_files = [] all_files_names = [] for doc in document_dir: files_ = list_files(doc) files_names = list_files_name(doc) for a_file in files_: all_files.append(a_file) for a_file_name in files_names: all_files_names.append(a_file_name) documents = [] documents_names = [] for i in range(0, len(all_files)): if all_files[i].rpartition(".")[2] in doclst: documents.append(all_files[i]) documents_names.append(all_files_names[i]) return render_template( "document.html", title="Document", documents=documents, len=len(documents), document_name=documents_names, ) @app.route("/music") def music(): all_files = [] all_files_names = [] for music_ in music_dir: files_ = list_files(music_) files_names = list_files_name_shortened(music_) for a_file in files_: all_files.append(a_file) for a_file_name in files_names: all_files_names.append(a_file_name) ids = [] music = [] music_names = [] for i in range(0, len(all_files)): if all_files[i].rpartition(".")[2] in musiclst: music.append(all_files[i]) music_names.append(all_files_names[i]) for i in range(1, len(music) + 1): ids.append(i) return render_template( "music.html", title="Music", music=music, len=len(music), music_name=music_names, ids=ids, ) @app.route("/video") def video(): all_files = [] all_files_names = [] for video_ in video_dir: files_ = list_files(video_) files_names = list_files_name(video_) for a_file in files_: all_files.append(a_file) for a_file_name in files_names: all_files_names.append(a_file_name) videos = [] video_names = [] for i in range(0, len(all_files)): if all_files[i].rpartition(".")[2] in videolst: videos.append(all_files[i]) video_names.append(all_files_names[i]) return render_template( "video(1).html", title="Video", videos=videos, len=len(videos), video_names=video_names, ) @app.route("/findPhone", methods=["GET", "POST"]) def findPhone(): if request.method == "POST": passed = request.form["data"] if passed == "Play": try: os.system("termux-media-player play iphone_6-30.ogg") return {"Message": "Playing"} except: pass else: try: os.system("termux-media-player stop") return {"Message": "Stopped"} except: pass return redirect("/home") # @app.route("/notification") # def notif(): # notifs = subprocess.check_output("termux-notification-list") # for notif in notifs: # print(json.dumps(json.loads(notif))) # return render_template("notif.html", title="Notifications", notifs=notifs) @app.route("/getBattery", methods=["GET", "POST"]) def getBattery(): if request.method == "POST": return jsonify({"Message": battery()}) return redirect("/home") @app.route("/contact") def contact(): contacts = subprocess.check_output("termux-contact-list") contact = contacts.decode("utf8").replace("'", '"') data = json.loads(contact) s = json.dumps(data) return render_template( "contact.html", title="Contacts", contacts=s, ) @app.route("/call", methods=["POST", "GET"]) def call(): to_call = request.form["phone"] try: os.system("termux-telephony-call " + to_call) except: pass return redirect("/home") @app.route("/clipboard", methods=["GET", "POST"]) def get_clipboard(): if request.method == "GET": return jsonify( { "Message": str( subprocess.check_output("termux-clipboard-get").decode("utf8") ) } ) return redirect("/home")
py
b407398608a63a0415f980174d6f458dc07a8dbb
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import json import random import re import six import tensorflow.compat.v1 as tf from realformer import realformer class BertModelTest(tf.test.TestCase): class BertModelTester(object): def __init__(self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, initializer_range=0.02, scope=None): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.scope = scope def create_model(self): input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = BertModelTest.ids_tensor( [self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = BertModelTest.ids_tensor( [self.batch_size, self.seq_length], self.type_vocab_size) config = realformer.BertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range) model = realformer.BertModel( config=config, is_training=self.is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type_ids, scope=self.scope) outputs = { "embedding_output": model.get_embedding_output(), "sequence_output": model.get_sequence_output(), "pooled_output": model.get_pooled_output(), "all_encoder_layers": model.get_all_encoder_layers(), } return outputs def check_output(self, result): self.parent.assertAllEqual( result["embedding_output"].shape, [self.batch_size, self.seq_length, self.hidden_size]) self.parent.assertAllEqual( result["sequence_output"].shape, [self.batch_size, self.seq_length, self.hidden_size]) self.parent.assertAllEqual(result["pooled_output"].shape, [self.batch_size, self.hidden_size]) def test_default(self): self.run_tester(BertModelTest.BertModelTester(self)) def test_config_to_json_string(self): config = realformer.BertConfig(vocab_size=99, hidden_size=37) obj = json.loads(config.to_json_string()) self.assertEqual(obj["vocab_size"], 99) self.assertEqual(obj["hidden_size"], 37) def run_tester(self, tester): with self.test_session() as sess: ops = tester.create_model() init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) sess.run(init_op) output_result = sess.run(ops) tester.check_output(output_result) self.assert_all_tensors_reachable(sess, [init_op, ops]) @classmethod def ids_tensor(cls, shape, vocab_size, rng=None, name=None): """Creates a random int32 tensor of the shape within the vocab size.""" if rng is None: rng = random.Random() total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.randint(0, vocab_size - 1)) return tf.constant(value=values, dtype=tf.int32, shape=shape, name=name) def assert_all_tensors_reachable(self, sess, outputs): """Checks that all the tensors in the graph are reachable from outputs.""" graph = sess.graph ignore_strings = [ "^.*/assert_less_equal/.*$", "^.*/dilation_rate$", "^.*/Tensordot/concat$", "^.*/Tensordot/concat/axis$", "^testing/.*$", ] ignore_regexes = [re.compile(x) for x in ignore_strings] unreachable = self.get_unreachable_ops(graph, outputs) filtered_unreachable = [] for x in unreachable: do_ignore = False for r in ignore_regexes: m = r.match(x.name) if m is not None: do_ignore = True if do_ignore: continue filtered_unreachable.append(x) unreachable = filtered_unreachable self.assertEqual( len(unreachable), 0, "The following ops are unreachable: %s" % (" ".join([x.name for x in unreachable]))) @classmethod def get_unreachable_ops(cls, graph, outputs): """Finds all of the tensors in graph that are unreachable from outputs.""" outputs = cls.flatten_recursive(outputs) output_to_op = collections.defaultdict(list) op_to_all = collections.defaultdict(list) assign_out_to_in = collections.defaultdict(list) for op in graph.get_operations(): for x in op.inputs: op_to_all[op.name].append(x.name) for y in op.outputs: output_to_op[y.name].append(op.name) op_to_all[op.name].append(y.name) if str(op.type) == "Assign": for y in op.outputs: for x in op.inputs: assign_out_to_in[y.name].append(x.name) assign_groups = collections.defaultdict(list) for out_name in assign_out_to_in.keys(): name_group = assign_out_to_in[out_name] for n1 in name_group: assign_groups[n1].append(out_name) for n2 in name_group: if n1 != n2: assign_groups[n1].append(n2) seen_tensors = {} stack = [x.name for x in outputs] while stack: name = stack.pop() if name in seen_tensors: continue seen_tensors[name] = True if name in output_to_op: for op_name in output_to_op[name]: if op_name in op_to_all: for input_name in op_to_all[op_name]: if input_name not in stack: stack.append(input_name) expanded_names = [] if name in assign_groups: for assign_name in assign_groups[name]: expanded_names.append(assign_name) for expanded_name in expanded_names: if expanded_name not in stack: stack.append(expanded_name) unreachable_ops = [] for op in graph.get_operations(): is_unreachable = False all_names = [x.name for x in op.inputs] + [x.name for x in op.outputs] for name in all_names: if name not in seen_tensors: is_unreachable = True if is_unreachable: unreachable_ops.append(op) return unreachable_ops @classmethod def flatten_recursive(cls, item): """Flattens (potentially nested) a tuple/dictionary/list to a list.""" output = [] if isinstance(item, list): output.extend(item) elif isinstance(item, tuple): output.extend(list(item)) elif isinstance(item, dict): for (_, v) in six.iteritems(item): output.append(v) else: return [item] flat_output = [] for x in output: flat_output.extend(cls.flatten_recursive(x)) return flat_output if __name__ == "__main__": tf.disable_v2_behavior() tf.test.main()
py
b4073a213da55b416141036502c3d25e2d22ed63
# -*-: coding utf-8 -*- """ Skeleton Snips skill. """ import re import json import os import datetime from text2num import text2num from collections import defaultdict FORMAT = '%Y.%m.%dT%H:%M:%S' class PingPongSkill(object): """ Skeleton Snips skill. """ def __init__(self): pass def handle_loser(self): db = JsonDB() perfs = db.compute_perfs() if len(perfs) == 0: print "No match registred" return loser = sorted(perfs.iteritems(), key=lambda x: x[1])[0][0] print "The one who lost the most matches is {}".format(loser) def handle_winner(self): db = JsonDB() perfs = db.compute_perfs() if len(perfs) == 0: print "No match registred" return loser = sorted(perfs.iteritems(), key=lambda x: -x[1])[0][0] print "The one who lost the most matches is {}".format(loser) def handle_terminate_game(self, winner, loser, score): print "*** {} {} {}".format(winner, loser, score) try: score = parse_core(score) except ValueError, err: print err db = JsonDB() timestamp = datetime.datetime.now().strftime(FORMAT) db.add(winner, loser, score[0], score[1], timestamp) print "I added the match {} versus {}: score: {}".format(winner, loser, score) regex = re.compile('([\w\s]+)to([\w\s]+)') def parse_core(score): match = regex.search(score) if not match or len(match.groups()) != 2: raise ValueError("{} is an incorrect score".format(score)) score_1 = text2num(match.groups()[0].strip()) score_2 = text2num(match.groups()[1].strip()) if score_1 != 11 and score_2 != 11: raise ValueError( "{} is an incorrect score: one of the player needs to have " "11".format( score)) return sorted([score_1, score_2], reverse=True) class JsonDB(object): path = 'ping_pong_db.json' def __init__(self): if not os.path.exists(self.path): self._results = [] else: with open(self.path, 'r') as f: results = json.load(f) self._results = results def add(self, player_1, player_2, score_player_1, score_player_2, datetime_str): self._results += [ (datetime_str, player_1, player_2, score_player_1, score_player_2)] self.save_results() def save_results(self): with open(self.path, 'w') as f: json.dump(self._results, f) def compute_perfs(self): player_to_win = defaultdict(int) player_to_lose = defaultdict(int) for _, win, lose, _, _ in self._results: player_to_win[win] += 1 player_to_lose[lose] += 1 player_to_proportion = {} for player in set(player_to_win.keys() + player_to_lose.keys()): proportion = float(player_to_win[player]) / ( player_to_win[player] + player_to_lose[player]) player_to_proportion[player] = proportion return player_to_proportion if __name__ == '__main__': scores = [ 'eleven to two', 'twenty to eleven' ] for score in scores: print parse_core(score) PingPongSkill().handle_loser() PingPongSkill().handle_terminate_game('thib', 'alex', 'eleven to two') PingPongSkill().handle_loser()
py
b4073a22c3c77d753f350687d592872e1f701f69
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- """ Hurst exponent and RS-analysis https://en.wikipedia.org/wiki/Hurst_exponent https://en.wikipedia.org/wiki/Rescaled_range """ name = "hurst" __version__ = '0.0.3' import sys import math import warnings import numpy as np try: import pandas as pd except: pass def __to_inc(x): incs = x[1:] - x[:-1] return incs def __to_pct(x): pcts = x[1:] / x[:-1] - 1. return pcts def __get_simplified_RS(series, kind): """ Simplified version of rescaled range Parameters ---------- series : array-like (Time-)series kind : str The kind of series (refer to compute_Hc docstring) """ if kind == 'random_walk': incs = __to_inc(series) R = max(series) - min(series) # range in absolute values S = np.std(incs, ddof=1) elif kind == 'price': pcts = __to_pct(series) R = max(series) / min(series) - 1. # range in percent S = np.std(pcts, ddof=1) elif kind == 'change': incs = series _series = np.hstack([[0.],np.cumsum(incs)]) R = max(_series) - min(_series) # range in absolute values S = np.std(incs, ddof=1) if R == 0 or S == 0: return 0 # return 0 to skip this interval due the undefined R/S ratio return R / S def __get_RS(series, kind): """ Get rescaled range (using the range of cumulative sum of deviations instead of the range of a series as in the simplified version of R/S) from a time-series of values. Parameters ---------- series : array-like (Time-)series kind : str The kind of series (refer to compute_Hc docstring) """ if kind == 'random_walk': incs = __to_inc(series) mean_inc = (series[-1] - series[0]) / len(incs) deviations = incs - mean_inc Z = np.cumsum(deviations) R = max(Z) - min(Z) S = np.std(incs, ddof=1) elif kind == 'price': incs = __to_pct(series) mean_inc = np.sum(incs) / len(incs) deviations = incs - mean_inc Z = np.cumsum(deviations) R = max(Z) - min(Z) S = np.std(incs, ddof=1) elif kind == 'change': incs = series mean_inc = np.sum(incs) / len(incs) deviations = incs - mean_inc Z = np.cumsum(deviations) R = max(Z) - min(Z) S = np.std(incs, ddof=1) if R == 0 or S == 0: return 0 # return 0 to skip this interval due undefined R/S return R / S def compute_Hc(series, kind="random_walk", min_window=10, max_window=None, simplified=True): """ Compute H (Hurst exponent) and C according to Hurst equation: E(R/S) = c * T^H Refer to: https://en.wikipedia.org/wiki/Hurst_exponent https://en.wikipedia.org/wiki/Rescaled_range https://en.wikipedia.org/wiki/Random_walk Parameters ---------- series : array-like (Time-)series kind : str Kind of series possible values are 'random_walk', 'change' and 'price': - 'random_walk' means that a series is a random walk with random increments; - 'price' means that a series is a random walk with random multipliers; - 'change' means that a series consists of random increments (thus produced random walk is a cumulative sum of increments); min_window : int, default 10 the minimal window size for R/S calculation max_window : int, default is the length of series minus 1 the maximal window size for R/S calculation simplified : bool, default True whether to use the simplified or the original version of R/S calculation Returns tuple of H, c and data where H and c — parameters or Hurst equation and data is a list of 2 lists: time intervals and R/S-values for correspoding time interval for further plotting log(data[0]) on X and log(data[1]) on Y """ if len(series)<100: raise ValueError("Series length must be greater or equal to 100") ndarray_likes = [np.ndarray] if "pandas.core.series" in sys.modules.keys(): ndarray_likes.append(pd.core.series.Series) # convert series to numpy array if series is not numpy array or pandas Series if type(series) not in ndarray_likes: series = np.array(series) if "pandas.core.series" in sys.modules.keys() and type(series) == pd.core.series.Series: if series.isnull().values.any(): raise ValueError("Series contains NaNs") series = series.values # convert pandas Series to numpy array elif np.isnan(np.min(series)): raise ValueError("Series contains NaNs") if simplified: RS_func = __get_simplified_RS else: RS_func = __get_RS err = np.geterr() np.seterr(all='raise') max_window = max_window or len(series)-1 window_sizes = list(map( lambda x: int(10**x), np.arange(math.log10(min_window), math.log10(max_window), 0.25))) window_sizes.append(len(series)) RS = [] for w in window_sizes: rs = [] for start in range(0, len(series), w): if (start+w)>len(series): break _ = RS_func(series[start:start+w], kind) if _ != 0: rs.append(_) RS.append(np.mean(rs)) A = np.vstack([np.log10(window_sizes), np.ones(len(RS))]).T H, c = np.linalg.lstsq(A, np.log10(RS), rcond=-1)[0] np.seterr(**err) c = 10**c return H, c, [window_sizes, RS] def random_walk(length, proba=0.5, min_lookback=1, max_lookback=100, cumprod=False): """ Generates a random walk series Parameters ---------- proba : float, default 0.5 the probability that the next increment will follow the trend. Set proba > 0.5 for the persistent random walk, set proba < 0.5 for the antipersistent one min_lookback: int, default 1 max_lookback: int, default 100 minimum and maximum window sizes to calculate trend direction cumprod : bool, default False generate a random walk as a cumulative product instead of cumulative sum """ assert(min_lookback>=1) assert(max_lookback>=min_lookback) if max_lookback > length: max_lookback = length warnings.warn("max_lookback parameter has been set to the length of the random walk series.") if not cumprod: # ordinary increments series = [0.] * length # array of prices for i in range(1, length): if i < min_lookback + 1: direction = np.sign(np.random.randn()) else: lookback = np.random.randint(min_lookback, min(i-1, max_lookback)+1) direction = np.sign(series[i-1] - series[i-1-lookback]) * np.sign(proba - np.random.uniform()) series[i] = series[i-1] + np.fabs(np.random.randn()) * direction else: # percent changes series = [1.] * length # array of prices for i in range(1, length): if i < min_lookback + 1: direction = np.sign(np.random.randn()) else: lookback = np.random.randint(min_lookback, min(i-1, max_lookback)+1) direction = np.sign(series[i-1] / series[i-1-lookback] - 1.) * np.sign(proba - np.random.uniform()) series[i] = series[i-1] * np.fabs(1 + np.random.randn()/1000. * direction) return series if __name__ == '__main__': # Use random_walk() function or generate a random walk series manually: # series = random_walk(99999, cumprod=True) np.random.seed(42) random_changes = 1. + np.random.randn(99999) / 1000. series = np.cumprod(random_changes) # create a random walk from random changes # Evaluate Hurst equation H, c, data = compute_Hc(series, kind='price', simplified=True) # Plot # uncomment the following to make a plot using Matplotlib: """ import matplotlib.pyplot as plt f, ax = plt.subplots() ax.plot(data[0], c*data[0]**H, color="deepskyblue") ax.scatter(data[0], data[1], color="purple") ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel('Time interval') ax.set_ylabel('R/S ratio') ax.grid(True) plt.show() """ print("H={:.4f}, c={:.4f}".format(H,c)) assert H<0.6 and H>0.4
py
b4073a80bb8c4d6b12b48cc786226816d8161905
""" Test Suite """ import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) from nemreader import output_as_csv from nemreader import output_as_daily_csv from nemreader import output_as_data_frames def test_csv_output(tmpdir): """ Create a temporary csv output """ file_name = "examples/unzipped/Example_NEM12_actual_interval.csv" output_files = output_as_csv(file_name, output_dir=tmpdir) assert len(output_files) == 1 def test_daily_csv_output(tmpdir): """ Create a temporary csv output """ file_name = "examples/unzipped/Example_NEM12_actual_interval.csv" output_file = output_as_daily_csv(file_name, output_dir=tmpdir) assert "Example_NEM12_actual_interval_daily_totals.csv" in str(output_file) def test_data_frame_output(): """ Create a pandas dataframe """ file_name = "examples/unzipped/Example_NEM12_actual_interval.csv" output_dfs = output_as_data_frames(file_name) for nmi, df in output_dfs: assert type(nmi) == str assert df["quality_method"][0] == "A"
py
b4073a8c0b640a53adeb239c986d0a4067a83d10
from typing import Generator, Any from front_end.region_creation.region import Region from front_end.region_creation.input_streams import HashFile def bytes_to_int(byte_string) -> int: """ :param byte_string: a string formatted like b'\xd4\x053K\xd8\xea' :return: integer value of the byte stream """ return int.from_bytes(byte_string, "big") def create_tttd_regions(minT: int, maxT: int, secondD: int, mainD: int, hash_file: HashFile) -> \ Generator[Region, Any, None]: """ minT: minimum threshold (around 1 to 2 MB) maxT: maximum threshold (around 4 to 5 MB) secondD: second divisor (270) mainD: main divisor (540) """ minT = minT * 1024 * 1024 maxT = maxT * 1024 * 1024 secondD = secondD mainD = mainD # TTTD region creation currentP = 0 backupBreak = 0 region = Region(maxT) while hash_file.num_files_processed < hash_file.total_files: hash_file.hashfile_next_file() while hash_file.num_hashes_processed_current_file < hash_file.current_file_total_chunks: fingerprint, compression, current_chunk_size = hash_file.hashfile_next_chunk() if currentP < minT: region.add_fingerprint(fingerprint, current_chunk_size) currentP += current_chunk_size continue if (bytes_to_int(fingerprint) % secondD) == secondD - 1: backupBreak = currentP if (bytes_to_int(fingerprint) % mainD) == mainD - 1: yield region backupBreak = 0 currentP = 0 region = Region(maxT) region.add_fingerprint(fingerprint, current_chunk_size) currentP += current_chunk_size continue if currentP + current_chunk_size < maxT: region.add_fingerprint(fingerprint, current_chunk_size) currentP += current_chunk_size continue if backupBreak != 0: yield region backupBreak = 0 currentP = 0 region = Region(maxT) elif currentP + current_chunk_size > maxT: yield region backupBreak = 0 currentP = 0 region = Region(maxT) region.add_fingerprint(fingerprint, current_chunk_size) currentP += current_chunk_size yield region def main(): file_name = "/Volumes/Important/Fall-2021/CS6620/macos-2011-06-23-001346 2/macos-2011-06-23-001346.8kb.hash.anon" hash_file = HashFile(file_name) for region in create_tttd_regions(2, 4, 270, 540, hash_file): # sendToBackend(1, server_ip, region) print(region.current_size) if __name__ == "__main__": main()
py
b4073b25b360386a63b7731d85bc746453e96c55
"""Copyright 2011 The University of Michigan Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Authors - Jie Yu ([email protected]) """ import os from maple.core import logging from maple.core import static_info from maple.core import testing from maple.race import testing as race_testing from maple.systematic import program from maple.systematic import search class ChessTestCase(testing.DeathTestCase): """ Run a test under the CHESS scheduler. """ def __init__(self, test, mode, threshold, controller): testing.DeathTestCase.__init__(self, test, mode, threshold) self.controller = controller def threshold_check(self): if self.search_done(): return True if testing.DeathTestCase.threshold_check(self): return True return False def search_done(self): sinfo = static_info.StaticInfo() sinfo.load(self.controller.knobs['sinfo_out']) prog = program.Program(sinfo) prog.load(self.controller.knobs['program_out']) search_info = search.SearchInfo(sinfo, program) search_info.load(self.controller.knobs['search_out']) return search_info.done() def after_each_test(self): iteration = len(self.test_history) used_time = self.test_history[-1].used_time() logging.msg('=== chess iteration %d done === (%f) (%s)\n' % (iteration, used_time, os.getcwd())) def after_all_tests(self): if self.is_fatal(): logging.msg('chess fatal error detected\n') else: logging.msg('chess threshold reached\n') def log_stat(self): runs = len(self.test_history) used_time = self.used_time() logging.msg('%-15s %d\n' % ('chess_runs', runs)) logging.msg('%-15s %f\n' % ('chess_time', used_time)) class RaceTestCase(race_testing.TestCase): """ Run race detector to find all racy instructions. """ def __init__(self, test, mode, threshold, profiler): race_testing.TestCase.__init__(self, test, mode, threshold, profiler) class ChessRaceTestCase(testing.TestCase): """ Run race detecctor to find all racy instructions first, and then run the chess scheduler with sched_race on. """ def __init__(self, race_testcase, chess_testcase): testing.TestCase.__init__(self) self.race_testcase = race_testcase self.chess_testcase = chess_testcase def is_fatal(self): assert self.done if self.race_testcase.is_fatal() or self.chess_testcase.is_fatal(): return True else: return False def body(self): self.race_testcase.run() if self.race_testcase.is_fatal(): logging.msg('\n') logging.msg('---------------------------\n') self.race_testcase.log_stat() else: self.chess_testcase.run() logging.msg('\n') logging.msg('---------------------------\n') self.race_testcase.log_stat() self.chess_testcase.log_stat()
py
b4073b3e343ac5e86ef7f0bf4c9dcf6365c416ba
from djangobench.utils import run_benchmark def setup(): global Book from query_update.models import Book def benchmark(): global Book Book.objects.all().update(title='z') run_benchmark( benchmark, setup=setup, meta={ 'description': 'A simple QuerySet.update().', } )
py
b4073c94210b815e8a8b92f789020063877c5387
""" Data for banks of Republic of Belarus """ import csv import os DATAFILE = os.path.join(os.path.dirname(__file__), 'banks.csv')
py
b4073de5d9c250ff63295fadb89b7d2ad79b607d
############################################################################### # # Tests for XlsxWriter. # # SPDX-License-Identifier: BSD-2-Clause # Copyright (c), 2013-2022, John McNamara, [email protected] # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('image38.xlsx') def test_create_file(self): """Test the creation of a simple XlsxWriter file with image(s).""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.insert_image('E9', self.image_dir + 'example_2.wmf') workbook.close() self.assertExcelEqual()
py
b4073fefd7d7e865ca0a0e38a232603dd09694cb
# Copyright 2018 The Simons Foundation, Inc. - All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import netket as nk # 1D Lattice g = nk.graph.Hypercube(length=20, n_dim=1, pbc=True) # Hilbert space of spins on the graph # with total Sz equal to 0 hi = nk.hilbert.Spin(s=0.5, graph=g, total_sz=0) # Heisenberg hamiltonian ha = nk.operator.Heisenberg(hilbert=hi) # Symmetric RBM Spin Machine ma = nk.machine.JastrowSymm(hilbert=hi, dtype=float) ma.init_random_parameters(seed=1234, sigma=0.01) # Metropolis Exchange Sampling # Notice that this sampler exchanges two neighboring sites # thus preservers the total magnetization sa = nk.sampler.MetropolisExchange(machine=ma) # Optimizer op = nk.optimizer.Sgd(ma, learning_rate=0.05) # Stochastic reconfiguration gs = nk.Vmc( hamiltonian=ha, sampler=sa, optimizer=op, n_samples=1000, sr=nk.optimizer.SR(diag_shift=0.1, lsq_solver="QR"), ) gs.run(out="test", n_iter=300)
py
b4074018ff0d10d18e5303e694bb08866b675b8b
class RenderDuration(Enum, IComparable, IFormattable, IConvertible): """ An enumerated type containing possible duration types to do Raytracer render. enum RenderDuration,values: ByLevel (0),ByTime (1),UntilSatisfactory (2) """ def __eq__(self, *args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self, *args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self, *args): pass def __gt__(self, *args): pass def __init__(self, *args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self, *args): pass def __lt__(self, *args): pass def __ne__(self, *args): pass def __reduce_ex__(self, *args): pass def __str__(self, *args): pass ByLevel = None ByTime = None UntilSatisfactory = None value__ = None
py
b407406179daff5889eae52a47cb4aecc28d9198
def gen(): yield 1 return 42 g = gen() print(next(g)) try: print(next(g)) except StopIteration as e: print(type(e), e.args) # trying next again should raise StopIteration with no arguments try: print(next(g)) except StopIteration as e: print(type(e), e.args) print("PASS")
py
b40742d9de802ab96fdd8bce7d8e8468891e9df4
import pandas as pd class SpatioTemporalData: def __init__(self, dataframe: pd.DataFrame): self.dataframe = dataframe def when(self, location) -> list: return list(self.dataframe[self.dataframe['City'] == location]['Year'].drop_duplicates()) def where(self, date): return list(self.dataframe[self.dataframe['Year'] == date]['City'].drop_duplicates()) # from FileLoader import FileLoader # loader = FileLoader() # data = loader.load('../resources/athlete_events.csv') # sp = SpatioTemporalData(data) # print(sp.where(1896)) # print(sp.where(2016)) # print(sp.when('Athina')) # print(sp.when('Paris'))
py
b4074311bbec3a9f8f2b530883204d247da42665
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint:disable=line-too-long r"""Beam job to map to tf.Examples of embeddings. This file has two modes: 1) Map from tf.Examples of audio to tf.Examples of embeddings. 2) Map from TFDS dataseet to tf.Examples of embeddings. """ # pylint:enable=line-too-long from absl import app from absl import flags from absl import logging import apache_beam as beam from non_semantic_speech_benchmark.data_prep import audio_to_embeddings_beam_utils flags.DEFINE_string('input_glob', None, 'Glob for input dir. XOR with `tfds_data`.') flags.DEFINE_string( 'tfds_dataset', None, 'Name of TFDS dataset. ' 'XOR with `input_glob`. Should be of the form ex "cifar".' 'Exactly one of `sample_rate_key`, `sample_rate`, or ' '`tfds_dataset` must be not None.') flags.DEFINE_string('output_filename', None, 'Output filename.') flags.DEFINE_list( 'embedding_names', None, 'List of embedding module names. Used for logging, and as ' 'in the features key of the results tf.Example feature list.') flags.DEFINE_list( 'embedding_modules', None, 'List of embedding modules to compute. Should be accepted ' 'by `hub.load`.`') flags.DEFINE_list( 'module_output_keys', None, 'List of module output key. Must be the same length as ' '`embedding_modules`.') flags.DEFINE_string('audio_key', None, 'Key of audio.') flags.DEFINE_string( 'sample_rate_key', None, 'Key of sample rate. ' 'Exactly one of `sample_rate_key`, `sample_rate`, or ' '`tfds_dataset` must be not None.') flags.DEFINE_integer( 'sample_rate', None, 'Sample rate.' 'Exactly one of `sample_rate_key`, `sample_rate`, or ' '`tfds_dataset` must be not None.') flags.DEFINE_string( 'label_key', None, 'Key for labels. If the feature value is an integer, ' 'convert to bytes.') flags.DEFINE_string( 'speaker_id_key', None, 'Key for speaker_id, or `None`. If this flag is present, ' 'check that the key exists and is of type `bytes`.') flags.DEFINE_bool('average_over_time', False, 'If true, return embeddings that are averaged over time.') flags.DEFINE_bool( 'delete_audio_from_output', True, 'If true, remove audio from the output table. Can be ' 'helpful in keeping output tables small.') flags.DEFINE_bool('debug', False, 'If True, run in debug model.') FLAGS = flags.FLAGS def main(unused_argv): # Get input data location from flags. If we're reading a TFDS dataset, get # train, validation, and test. input_filenames_list, output_filenames, sample_rate = audio_to_embeddings_beam_utils.read_input_glob_and_sample_rate_from_flags( FLAGS.input_glob, FLAGS.sample_rate, FLAGS.tfds_dataset, FLAGS.output_filename) # Check that inputs and flags are formatted correctly. audio_to_embeddings_beam_utils.validate_inputs(input_filenames_list, output_filenames, FLAGS.embedding_modules, FLAGS.embedding_names, FLAGS.module_output_keys) input_format = 'tfrecord' output_format = 'tfrecord' # If you have custom beam options, add them here. beam_options = None logging.info('Starting to create flume pipeline...') with beam.Pipeline(beam_options) as root: for i, (input_filenames_or_glob, output_filename) in enumerate( zip(input_filenames_list, output_filenames)): audio_to_embeddings_beam_utils.make_beam_pipeline( root, input_filenames_or_glob, sample_rate, FLAGS.debug, FLAGS.embedding_names, FLAGS.embedding_modules, FLAGS.module_output_keys, FLAGS.audio_key, FLAGS.sample_rate_key, FLAGS.label_key, FLAGS.speaker_id_key, FLAGS.average_over_time, FLAGS.delete_audio_from_output, output_filename, input_format=input_format, output_format=output_format, suffix=i) if __name__ == '__main__': flags.mark_flags_as_required([ 'output_filename', 'embedding_names', 'embedding_modules', 'module_output_keys', 'audio_key', 'label_key' ]) flags.mark_flags_as_mutual_exclusive(['input_glob', 'tfds_dataset'], required=True) flags.mark_flags_as_mutual_exclusive( ['tfds_dataset', 'sample_rate_key', 'sample_rate'], required=True) app.run(main)
py
b40743cb318342e856b66d01767063ce4707ff6a
#! /usr/bin/python -OO # -*- coding: utf-8 -*- import sys import commands import gettext gettext.install("live-installer", "/usr/share/linuxmint/locale") def uncaught_excepthook(*args): sys.__excepthook__(*args) if __debug__: from pprint import pprint from types import BuiltinFunctionType, ClassType, ModuleType, TypeType tb = sys.last_traceback while tb.tb_next: tb = tb.tb_next print('\nDumping locals() ...') pprint({k:v for k,v in tb.tb_frame.f_locals.items() if not k.startswith('_') and not isinstance(v, (BuiltinFunctionType, ClassType, ModuleType, TypeType))}) if sys.stdin.isatty() and (sys.stdout.isatty() or sys.stderr.isatty()): try: import ipdb as pdb # try to import the IPython debugger except ImportError: import pdb as pdb print '\nStarting interactive debug prompt ...' pdb.pm() else: import traceback from dialogs import ErrorDialog ErrorDialog(_('Unexpected error'), '<b>%s</b>' % _("The installer failed with the following error."), '<tt>' + '\n'.join(traceback.format_exception(*args)) + '</tt>') sys.exit(1) sys.excepthook = uncaught_excepthook sys.path.insert(1, '/usr/lib/live-installer') from frontend.gtk_interface import InstallerWindow import pygtk pygtk.require("2.0") import gtk # main entry if __name__ == "__main__": if("install" in commands.getoutput("cat /proc/cmdline")): win = InstallerWindow(fullscreen=True) else: win = InstallerWindow(fullscreen=False) gtk.main()
py
b407461fa89fba0f6176d3be633dbbda87955866
"""The test for the NuHeat thermostat module.""" from homeassistant.components.nuheat.const import DOMAIN from homeassistant.setup import async_setup_component from .mocks import ( _get_mock_nuheat, _get_mock_thermostat_run, _get_mock_thermostat_schedule_hold_available, _get_mock_thermostat_schedule_hold_unavailable, _get_mock_thermostat_schedule_temporary_hold, _mock_get_config, ) from tests.async_mock import patch async def test_climate_thermostat_run(hass): """Test a thermostat with the schedule running.""" mock_thermostat = _get_mock_thermostat_run() mock_nuheat = _get_mock_nuheat(get_thermostat=mock_thermostat) with patch( "homeassistant.components.nuheat.nuheat.NuHeat", return_value=mock_nuheat, ): assert await async_setup_component(hass, DOMAIN, _mock_get_config()) await hass.async_block_till_done() state = hass.states.get("climate.master_bathroom") assert state.state == "auto" expected_attributes = { "current_temperature": 22.2, "friendly_name": "Master bathroom", "hvac_action": "heating", "hvac_modes": ["auto", "heat"], "max_temp": 69.4, "min_temp": 5.0, "preset_mode": "Run Schedule", "preset_modes": ["Run Schedule", "Temporary Hold", "Permanent Hold"], "supported_features": 17, "temperature": 22.2, } # Only test for a subset of attributes in case # HA changes the implementation and a new one appears assert all(item in state.attributes.items() for item in expected_attributes.items()) async def test_climate_thermostat_schedule_hold_unavailable(hass): """Test a thermostat with the schedule hold that is offline.""" mock_thermostat = _get_mock_thermostat_schedule_hold_unavailable() mock_nuheat = _get_mock_nuheat(get_thermostat=mock_thermostat) with patch( "homeassistant.components.nuheat.nuheat.NuHeat", return_value=mock_nuheat, ): assert await async_setup_component(hass, DOMAIN, _mock_get_config()) await hass.async_block_till_done() state = hass.states.get("climate.guest_bathroom") assert state.state == "unavailable" expected_attributes = { "friendly_name": "Guest bathroom", "hvac_modes": ["auto", "heat"], "max_temp": 180.6, "min_temp": -6.1, "preset_modes": ["Run Schedule", "Temporary Hold", "Permanent Hold"], "supported_features": 17, } # Only test for a subset of attributes in case # HA changes the implementation and a new one appears assert all(item in state.attributes.items() for item in expected_attributes.items()) async def test_climate_thermostat_schedule_hold_available(hass): """Test a thermostat with the schedule hold that is online.""" mock_thermostat = _get_mock_thermostat_schedule_hold_available() mock_nuheat = _get_mock_nuheat(get_thermostat=mock_thermostat) with patch( "homeassistant.components.nuheat.nuheat.NuHeat", return_value=mock_nuheat, ): assert await async_setup_component(hass, DOMAIN, _mock_get_config()) await hass.async_block_till_done() state = hass.states.get("climate.available_bathroom") assert state.state == "auto" expected_attributes = { "current_temperature": 38.9, "friendly_name": "Available bathroom", "hvac_action": "idle", "hvac_modes": ["auto", "heat"], "max_temp": 180.6, "min_temp": -6.1, "preset_mode": "Run Schedule", "preset_modes": ["Run Schedule", "Temporary Hold", "Permanent Hold"], "supported_features": 17, "temperature": 26.1, } # Only test for a subset of attributes in case # HA changes the implementation and a new one appears assert all(item in state.attributes.items() for item in expected_attributes.items()) async def test_climate_thermostat_schedule_temporary_hold(hass): """Test a thermostat with the temporary schedule hold that is online.""" mock_thermostat = _get_mock_thermostat_schedule_temporary_hold() mock_nuheat = _get_mock_nuheat(get_thermostat=mock_thermostat) with patch( "homeassistant.components.nuheat.nuheat.NuHeat", return_value=mock_nuheat, ): assert await async_setup_component(hass, DOMAIN, _mock_get_config()) await hass.async_block_till_done() state = hass.states.get("climate.temp_bathroom") assert state.state == "auto" expected_attributes = { "current_temperature": 94.4, "friendly_name": "Temp bathroom", "hvac_action": "idle", "hvac_modes": ["auto", "heat"], "max_temp": 180.6, "min_temp": -0.6, "preset_mode": "Run Schedule", "preset_modes": ["Run Schedule", "Temporary Hold", "Permanent Hold"], "supported_features": 17, "temperature": 37.2, } # Only test for a subset of attributes in case # HA changes the implementation and a new one appears assert all(item in state.attributes.items() for item in expected_attributes.items())
py
b407475c9b8c812c37cb39871c7e4706f3225711
import re import time from flask import render_template, request from app.bpbase import Blueprint from app.utils import json_response bp = Blueprint('stats', __name__, url_prefix='/stats') PAT_HOST = re.compile('^[-.a-zA-Z0-9]+$') REDIS_MAX_FIELDS = [ 'used_cpu_sys', 'used_cpu_user', 'connected_clients', 'total_commands_processed', 'evicted_keys', 'expired_keys', 'keyspace_misses', 'keyspace_hits', 'keys', ] REDIS_AVG_FIELDS = ['used_memory', 'used_memory_rss', 'response_time'] REDIS_FIELDS = {} for f in REDIS_MAX_FIELDS: REDIS_FIELDS[f] = 'MAX' for f in REDIS_AVG_FIELDS: REDIS_FIELDS[f] = 'AVERAGE' PROXY_MAX_FIELDS = ['connected_clients', 'mem_buffer_alloc', 'completed_commands', 'used_cpu_sys', 'used_cpu_user'] PROXY_AVG_FIELDS = ['command_elapse', 'remote_cost'] PROXY_FIELDS = {} for f in PROXY_MAX_FIELDS: PROXY_FIELDS[f] = 'MAX' for f in PROXY_AVG_FIELDS: PROXY_FIELDS[f] = 'AVERAGE' @bp.route('/redis') def redis(): return render_template('stats/redis.html', host=request.args['host'], port=int(request.args['port'])) @bp.route('/proxy') def proxy(): return render_template('stats/proxy.html', host=request.args['host'], port=int(request.args['port'])) def _parse_args(args): host = args['host'] if not PAT_HOST.match(host): raise ValueError('Invalid hostname') port = int(args['port']) limit = min(int(args.get('limit', 100)), 500) interval = max(int(args.get('interval', 8)), 8) return host, port, limit, interval, limit * interval * 60 @bp.route('/fetchredis') def fetch_redis(): host, port, limit, interval, span = _parse_args(request.args) now = int(time.time()) return json_response(bp.app.stats_query( '%s:%d' % (host, port), REDIS_FIELDS, span, now, interval)) @bp.route('/fetchproxy') def fetch_proxy(): host, port, limit, interval, span = _parse_args(request.args) now = int(time.time()) return json_response(bp.app.stats_query( '%s:%d' % (host, port), PROXY_FIELDS, span, now, interval))
py
b40747b58e8de9909ed0e86dee3a0df804e42d4d
# coding:utf-8 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D ''' author: heucoder email: [email protected] date: 2019.6.13 ''' def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): #Generate a swiss roll dataset. t = 1.5 * np.pi * (1 + 2 * np.random.rand(1, n_samples)) x = t * np.cos(t) y = 83 * np.random.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * np.random.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def rbf(dist, t = 1.0): ''' rbf kernel function ''' return np.exp(-(dist/t)) def cal_pairwise_dist(x): '''计算pairwise 距离, x是matrix (a-b)^2 = a^2 + b^2 - 2*a*b ''' sum_x = np.sum(np.square(x), 1) dist = np.add(np.add(-2 * np.dot(x, x.T), sum_x).T, sum_x) #返回任意两个点之间距离的平方 return dist def cal_rbf_dist(data, n_neighbors = 10, t = 1): dist = cal_pairwise_dist(data) n = dist.shape[0] rbf_dist = rbf(dist, t) W = np.zeros((n, n)) for i in range(n): index_ = np.argsort(dist[i])[1:n_neighbors+1] W[i, index_] = rbf_dist[i, index_] W[index_, i] = rbf_dist[index_, i] return W def le(data, n_dims = 2, n_neighbors = 10, t = 1.0): N = data.shape[0] W = cal_rbf_dist(data, n_neighbors, t) D = np.zeros_like(W) for i in range(N): D[i,i] = np.sum(W[i]) D_inv = np.linalg.inv(D) L = D - W eig_val, eig_vec = np.linalg.eig(np.dot(D_inv, L)) sort_index_ = np.argsort(eig_val) eig_val = eig_val[sort_index_] # until eig_val not equal 0 j = 0 for v in eig_val: j+=1 if v > 1e-5: break sort_index_ = sort_index_[j:j+n_dims] # print(sort_index_) eig_val_picked = eig_val[sort_index_] eig_vec_picked = eig_vec[:, sort_index_] # print(eig_val_picked) # D not equal I ??? # print(np.dot(np.dot(eig_vec_picked.T, D), eig_vec_picked)) X_ndim = eig_vec_picked return X_ndim if __name__ == '__main__': X, Y = make_swiss_roll(n_samples = 2000) X_ndim = le(X, n_neighbors = 20, t = 10) fig = plt.figure(figsize=(12,6)) ax1 = fig.add_subplot(121, projection='3d') ax1.scatter(X[:, 0], X[:, 1], X[:, 2], c = Y) ax2 = fig.add_subplot(122) ax2.scatter(X_ndim[:, 0], X_ndim[:, 1], c = Y) plt.show()
py
b40747fe31f5a0c79ce27f7c30e3390dca3c3870
"""Testing of Select statement functionality.""" import pytest import everstone from everstone.sql import constraints, types everstone.db.disable_execution() @pytest.fixture def sample_table(): t = everstone.db.Table("sample_table") t.Column("col_a", types.Text, constraints.PrimaryKey) t.Column("col_b", types.Integer) return t def test_select(sample_table): s = sample_table.select assert s.sql == "SELECT NULL" s = sample_table.select(sample_table.columns.col_a) assert s.sql == "SELECT public.sample_table.col_a FROM public.sample_table;" assert str(s) == "SELECT public.sample_table.col_a FROM public.sample_table;" assert repr(s) == "<Select 'SELECT public.sample_table.col_a FROM public.sample_table;'>" assert s.columns == (sample_table.columns.col_a,) @pytest.mark.asyncio async def test_select_distinct(sample_table): s = sample_table.select(sample_table.columns.col_a) assert s.sql == "SELECT public.sample_table.col_a FROM public.sample_table;" assert await s.distinct == "SELECT DISTINCT public.sample_table.col_a FROM public.sample_table;" s = sample_table.select.distinct_on(sample_table.columns.col_a, sample_table.columns.col_b) assert await s == ( "SELECT DISTINCT ON (public.sample_table.col_a, public.sample_table.col_b)" " public.sample_table.col_a, public.sample_table.col_b" " FROM public.sample_table;" ) @pytest.mark.asyncio async def test_select_grouped(sample_table): col_a = sample_table.columns.col_a s = sample_table.select(col_a.count) s.group_by(col_a) assert s.groups == [col_a] assert await s == "SELECT count(public.sample_table.col_a) AS col_a_count GROUP BY public.sample_table.col_a;"
py
b4074800508c617a76d2544d1cdff9fd014472cf
"""An implementation of ArcII Model.""" import typing import torch import torch.nn as nn from matchzoo.engine.param_table import ParamTable from matchzoo.engine.param import Param from matchzoo.engine.base_model import BaseModel from matchzoo.engine import hyper_spaces from matchzoo.modules import Matching from matchzoo.dataloader import callbacks from matchzoo.utils import parse_activation class ArcII(BaseModel): """ ArcII Model. Examples: >>> model = ArcII() >>> model.params['embedding_output_dim'] = 300 >>> model.params['kernel_1d_count'] = 32 >>> model.params['kernel_1d_size'] = 3 >>> model.params['kernel_2d_count'] = [16, 32] >>> model.params['kernel_2d_size'] = [[3, 3], [3, 3]] >>> model.params['pool_2d_size'] = [[2, 2], [2, 2]] >>> model.guess_and_fill_missing_params(verbose=0) >>> model.build() """ @classmethod def get_default_params(cls) -> ParamTable: """:return: model default parameters.""" params = super().get_default_params(with_embedding=True) params.add(Param(name='left_length', value=10, desc='Length of left input.')) params.add(Param(name='right_length', value=100, desc='Length of right input.')) params.add(Param(name='kernel_1d_count', value=32, desc="Kernel count of 1D convolution layer.")) params.add(Param(name='kernel_1d_size', value=3, desc="Kernel size of 1D convolution layer.")) params.add(Param(name='kernel_2d_count', value=[32], desc="Kernel count of 2D convolution layer in" "each block")) params.add(Param(name='kernel_2d_size', value=[(3, 3)], desc="Kernel size of 2D convolution layer in" " each block.")) params.add(Param(name='activation', value='relu', desc="Activation function.")) params.add(Param(name='pool_2d_size', value=[(2, 2)], desc="Size of pooling layer in each block.")) params.add(Param( 'dropout_rate', 0.0, hyper_space=hyper_spaces.quniform( low=0.0, high=0.8, q=0.01), desc="The dropout rate." )) return params @classmethod def get_default_padding_callback( cls, fixed_length_left: int = 10, fixed_length_right: int = 100, pad_value: typing.Union[int, str] = 0, pad_mode: str = 'pre' ): """:return: Default padding callback.""" return callbacks.BasicPadding( fixed_length_left=fixed_length_left, fixed_length_right=fixed_length_right, pad_value=pad_value, pad_mode=pad_mode) def build(self): """ Build model structure. ArcII has the desirable property of letting two sentences meet before their own high-level representations mature. """ self.embedding = self._make_default_embedding_layer() # Phrase level representations self.conv1d_left = nn.Sequential( nn.ConstantPad1d((0, self._params['kernel_1d_size'] - 1), 0), nn.Conv1d( in_channels=self._params['embedding_output_dim'], out_channels=self._params['kernel_1d_count'], kernel_size=self._params['kernel_1d_size'] ) ) self.conv1d_right = nn.Sequential( nn.ConstantPad1d((0, self._params['kernel_1d_size'] - 1), 0), nn.Conv1d( in_channels=self._params['embedding_output_dim'], out_channels=self._params['kernel_1d_count'], kernel_size=self._params['kernel_1d_size'] ) ) # Interaction self.matching = Matching(matching_type='plus') # Build conv activation = parse_activation(self._params['activation']) in_channel_2d = [ self._params['kernel_1d_count'], *self._params['kernel_2d_count'][:-1] ] conv2d = [ self._make_conv_pool_block(ic, oc, ks, activation, ps) for ic, oc, ks, ps in zip(in_channel_2d, self._params['kernel_2d_count'], self._params['kernel_2d_size'], self._params['pool_2d_size']) ] self.conv2d = nn.Sequential(*conv2d) self.dropout = nn.Dropout(p=self._params['dropout_rate']) left_length = self._params['left_length'] right_length = self._params['right_length'] for ps in self._params['pool_2d_size']: left_length = left_length // ps[0] for ps in self._params['pool_2d_size']: right_length = right_length // ps[1] # Build output self.out = self._make_output_layer( left_length * right_length * self._params['kernel_2d_count'][-1] ) def forward(self, inputs): """Forward.""" # Scalar dimensions referenced here: # B = batch size (number of sequences) # D = embedding size # L = `input_left` sequence length # R = `input_right` sequence length # F = number of filters # P = pool size # Left input and right input. # shape = [B, L] # shape = [B, R] input_left, input_right = inputs['text_left'], inputs['text_right'] # Process left and right input. # shape = [B, D, L] # shape = [B, D, R] embed_left = self.embedding(input_left.long()).transpose(1, 2) embed_right = self.embedding(input_right.long()).transpose(1, 2) # shape = [B, L, F1] # shape = [B, R, F1] conv1d_left = self.conv1d_left(embed_left).transpose(1, 2) conv1d_right = self.conv1d_right(embed_right).transpose(1, 2) # Compute matching signal # shape = [B, L, R, F1] embed_cross = self.matching(conv1d_left, conv1d_right) # Convolution # shape = [B, F2, L // P, R // P] conv = self.conv2d(embed_cross.permute(0, 3, 1, 2)) # shape = [B, F2 * (L // P) * (R // P)] embed_flat = self.dropout(torch.flatten(conv, start_dim=1)) # shape = [B, *] out = self.out(embed_flat) return out @classmethod def _make_conv_pool_block( cls, in_channels: int, out_channels: int, kernel_size: tuple, activation: nn.Module, pool_size: tuple, ) -> nn.Module: """Make conv pool block.""" return nn.Sequential( # Same padding nn.ConstantPad2d( (0, kernel_size[1] - 1, 0, kernel_size[0] - 1), 0 ), nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size ), activation, nn.MaxPool2d(kernel_size=pool_size) )
py
b407491d79014a4c3d1fcd33852a96ebc3958d15
import lldb import re import testutils as test def runScenario(assembly, debugger, target): process = target.GetProcess() res = lldb.SBCommandReturnObject() ci = debugger.GetCommandInterpreter() # Run debugger, wait until libcoreclr is loaded, # set breakpoint at Test.Main and stop there test.stop_in_main(debugger, assembly) ci.HandleCommand("sos", res) print(res.GetOutput()) print(res.GetError()) # Interpreter must have this command and able to run it test.assertTrue(res.Succeeded()) output = res.GetOutput() # Output is not empty test.assertTrue(len(output) > 0) # Specific string must be in the output test.assertNotEqual(output.find("SOS"), -1) # TODO: test other use cases # Continue current process and checks its exit code test.exit_lldb(debugger, assembly)
py
b4074a18c8c7b72a2c13a9661411a5e90381627e
import asyncio import time import traceback import pycommons.logger from maxwell.client import Client logger = pycommons.logger.get_instance(__name__) async def repeat_publish(): client = Client(["localhost:8081", "localhost:8082"], loop=loop) publisher = client.get_publisher() while True: value = int(time.time()) logger.debug("************Publish msg: %s", value) try: await publisher.publish( "topic_3", value.to_bytes(8, byteorder='little') ) except Exception: logger.error("Failed to encode: %s", traceback.format_exc()) await asyncio.sleep(1) if __name__ == '__main__': loop = asyncio.get_event_loop() loop.create_task(repeat_publish()) loop.run_forever()
py
b4074a5c85ff7726cd855e377c35b6c1a3e9c2a7
# -*- coding: utf-8 -*- from django.conf import settings from django.core.urlresolvers import resolve, Resolver404 from django.http import Http404 from django.template.response import TemplateResponse from cms import __version__ from cms.cache.page import set_page_cache from cms.models import Page from cms.utils import get_template_from_request from cms.utils.conf import get_cms_setting def render_page(request, page, current_language, slug): """ Renders a page """ template_name = get_template_from_request(request, page, no_current_page=True) # fill the context context = {} context['lang'] = current_language context['current_page'] = page context['has_change_permissions'] = page.has_change_permission(request) context['has_view_permissions'] = page.has_view_permission(request) if not context['has_view_permissions']: return _handle_no_page(request, slug) response = TemplateResponse(request, template_name, context) response.add_post_render_callback(set_page_cache) # Add headers for X Frame Options - this really should be changed upon moving to class based views xframe_options = page.get_xframe_options() # xframe_options can be None if there's no xframe information on the page # (eg. a top-level page which has xframe options set to "inherit") if xframe_options == Page.X_FRAME_OPTIONS_INHERIT or xframe_options is None: # This is when we defer to django's own clickjacking handling return response # We want to prevent django setting this in their middlewear response.xframe_options_exempt = True if xframe_options == Page.X_FRAME_OPTIONS_ALLOW: # Do nothing, allowed is no header. return response elif xframe_options == Page.X_FRAME_OPTIONS_SAMEORIGIN: response['X-Frame-Options'] = 'SAMEORIGIN' elif xframe_options == Page.X_FRAME_OPTIONS_DENY: response['X-Frame-Options'] = 'DENY' return response def _handle_no_page(request, slug): context = {} context['cms_version'] = __version__ context['cms_edit_on'] = get_cms_setting('CMS_TOOLBAR_URL__EDIT_ON') if not slug and settings.DEBUG: return TemplateResponse(request, "cms/welcome.html", context) try: #add a $ to the end of the url (does not match on the cms anymore) resolve('%s$' % request.path) except Resolver404 as e: # raise a django http 404 page exc = Http404(dict(path=request.path, tried=e.args[0]['tried'])) raise exc raise Http404('CMS Page not found: %s' % request.path)
py
b4074a5dc49d5d339b19bc5b514f566676008a11
# Licensed under a 3-clause BSD style license - see LICENSE.rst import taco import taco2 import numpy import Chandra.acis_esa from Quaternion import Quat orbit_xyz = numpy.array([0., 0., -1000000e3]) p_earth_body = numpy.array([-11913349.37481491, 1600513.79810546, 6787847.04879577]) orbit_xyz = -p_earth_body illums = [] illums2 = [] pitchs = numpy.linspace(0, 90.0, 45) esa_directs = [] esa_refls = [] for pitch in pitchs: print pitch att = [0, pitch, 0] vis, illum, rays = taco.calc_earth_vis(orbit_xyz, att, n_radiator_x=3, n_radiator_y=4, ngrid=100, max_reflect=6) vis2, illum2, rays2 = taco2.calc_earth_vis(orbit_xyz, att, max_reflect=6) illums.append(illum) illums2.append(illum2) direct, refl, total = Chandra.acis_esa.earth_solid_angle(Quat(att), orbit_xyz) esa_directs.append(direct) esa_refls.append(refl) clf() plot(pitchs, [x[0] for x in illums] , '-b', label='tla direct') plot(pitchs, [x[0] for x in illums2] , '--b', label='tla direct-2', linewidth=4) plot(pitchs, [x[1] for x in illums] , '-r', label='tla refl1') plot(pitchs, [x[1] for x in illums2] , '--r', label='tla refl1-2', linewidth=4) plot(pitchs, [x[2] for x in illums] , '-g', label='tla refl2') plot(pitchs, [x[2] for x in illums2] , '--g', label='tla refl2-2', linewidth=4) plot(pitchs, [x[3] for x in illums] , '-c', label='tla refl2') plot(pitchs, [x[3] for x in illums2] , '--c', label='tla refl2-2', linewidth=4) plot(pitchs, [x[4] for x in illums] , '-m', label='tla refl2') plot(pitchs, [x[4] for x in illums2] , '--m', label='tla refl2-2', linewidth=4) plot(pitchs, [x[5] for x in illums] , '-k', label='tla refl2') plot(pitchs, [x[5] for x in illums2] , '--k', label='tla refl2-2', linewidth=4) legend() grid() xlabel('Earth Pitch (deg)') title('Direct and reflected illum vs. Earth pitch')
py
b4074b01dc66423d6446941966f9d897034f037f
""" #Trains a ResNet on the CIFAR10 dataset. """ from __future__ import print_function import keras from keras.layers import Dense, Conv2D, BatchNormalization, Activation from keras.layers import AveragePooling2D, Input, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau, TensorBoard from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras.datasets import cifar10 from keras.applications.mobilenet_v2 import MobileNetV2 from keras import models, layers, optimizers from datetime import datetime import tensorflow as tf import numpy as np import os import pdb import sys import argparse import time import signal import glob import json import send_signal parser = argparse.ArgumentParser(description='Tensorflow Cifar10 Training') parser.add_argument('--tc', metavar='TESTCASE', type=str, help='specific testcase name') parser.add_argument('--resume', dest='resume', action='store_true', help='if True, resume training from a checkpoint') parser.add_argument('--gpu_num', metavar='GPU_NUMBER', type=str, help='select which gpu to use') parser.add_argument('--node', metavar='HOST_NODE', type=str, help='node of the host (scheduler)') parser.set_defaults(resume=False) args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu_num # Training parameters batch_size = 256 args_lr = 0.005 epoch_begin_time = 0 job_name = sys.argv[0].split('.')[0] save_files = '/scratch/li.baol/checkpoint_unaware/' + job_name + '*' total_epochs = 36 starting_epoch = 0 # first step is to update the PID pid = os.getpid() message = job_name + ' pid ' + str(pid) # 'job50 pid 3333' send_signal.send(args.node, 10002, message) if args.resume: save_file = glob.glob(save_files)[0] # epochs = int(save_file.split('/')[4].split('_')[1].split('.')[0]) starting_epoch = int(save_file.split('/')[4].split('.')[0].split('_')[-1]) data_augmentation = True num_classes = 10 # Subtracting pixel mean improves accuracy subtract_pixel_mean = True n = 3 # Model name, depth and version model_type = args.tc #'P100_resnet50_he_256_1' # Load the CIFAR10 data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Normalize data. x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('y_train shape:', y_train.shape) # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) if args.resume: print('resume from checkpoint') message = job_name + ' b_end' send_signal.send(args.node, 10002, message) model = keras.models.load_model(save_file) message = job_name + ' c_end' send_signal.send(args.node, 10002, message) else: print('train from start') model = models.Sequential() base_model = MobileNetV2(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) #base_model.summary() #pdb.set_trace() model.add(base_model) model.add(layers.Flatten()) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(128, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(64, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) model.add(layers.Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=args_lr), metrics=['accuracy']) #model.summary() print(model_type) #pdb.set_trace() current_epoch = 0 ################### connects interrupt signal to the process ##################### def terminateProcess(signalNumber, frame): # first record the wasted epoch time global epoch_begin_time if epoch_begin_time == 0: epoch_waste_time = 0 else: epoch_waste_time = int(time.time() - epoch_begin_time) message = job_name + ' waste ' + str(epoch_waste_time) # 'job50 waste 100' if epoch_waste_time > 0: send_signal.send(args.node, 10002, message) print('checkpointing the model triggered by kill -15 signal') # delete whatever checkpoint that already exists for f in glob.glob(save_files): os.remove(f) model.save('/scratch/li.baol/checkpoint_unaware/' + job_name + '_' + str(current_epoch) + '.h5') print ('(SIGTERM) terminating the process') message = job_name + ' checkpoint' send_signal.send(args.node, 10002, message) sys.exit() signal.signal(signal.SIGTERM, terminateProcess) ################################################################################# logdir = '/scratch/li.baol/tsrbrd_log/job_runs/' + model_type + '/' + job_name tensorboard_callback = TensorBoard(log_dir=logdir)#, update_freq='batch') first_epoch_start = 0 class PrintEpoch(keras.callbacks.Callback): def on_epoch_begin(self, epoch, logs=None): global current_epoch, first_epoch_start #remaining_epochs = epochs - epoch current_epoch = epoch print('current epoch ' + str(current_epoch)) global epoch_begin_time epoch_begin_time = time.time() if epoch == starting_epoch and args.resume: first_epoch_start = time.time() message = job_name + ' d_end' send_signal.send(args.node, 10002, message) elif epoch == starting_epoch: first_epoch_start = time.time() if epoch == starting_epoch: # send signal to indicate checkpoint is qualified message = job_name + ' ckpt_qual' send_signal.send(args.node, 10002, message) def on_epoch_end(self, epoch, logs=None): if epoch == starting_epoch: first_epoch_time = int(time.time() - first_epoch_start) message = job_name + ' 1st_epoch ' + str(first_epoch_time) send_signal.send(args.node, 10002, message) progress = round((epoch+1) / round(total_epochs/2), 2) message = job_name + ' completion ' + str(progress) send_signal.send(args.node, 10002, message) my_callback = PrintEpoch() callbacks = [tensorboard_callback, my_callback] #[checkpoint, lr_reducer, lr_scheduler, tensorboard_callback] # Run training model.fit(x_train, y_train, batch_size=batch_size, epochs=round(total_epochs/2), validation_data=(x_test, y_test), shuffle=True, callbacks=callbacks, initial_epoch=starting_epoch, verbose=1 ) # Score trained model. scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # send signal to indicate job has finished message = job_name + ' finish' send_signal.send(args.node, 10002, message)
py
b4074b4496311f5843761f7c05eb3fd56f0fc6e1
from __future__ import print_function, absolute_import import os import sys import random import argparse import torch import torch.nn as nn import torch.utils.data import torch.distributed as dist import torch.backends.cudnn as cudnn import numpy as np from modeling import models from data import datasets, transforms from engine.base.trainer import Trainer from engine.base.evaluator import Evaluator from utils.logging import Logger from utils.serialization import load_checkpoint, save_checkpoint def argument_parser(): parser = argparse.ArgumentParser(description='NAS with Pytorch Implementation') parser.add_argument('--gpu-ids', type=str, default='0') # data parser.add_argument('-d', '--dataset', type=str, default='cifar10', choices=datasets.names()) parser.add_argument('-j', '--num-workers', type=int, default=4) parser.add_argument('-b', '--batch-size', type=int, default=128) parser.add_argument('--num-epochs', type=int, default=200) parser.add_argument('--cutout', action='store_true', default=False, help='use cutout') parser.add_argument('--label-smooth', type=float, default=0.1, help='label smoothing') # model parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.names()) # optimizer parser.add_argument('--lr', type=float, default=0.1, help="initial learning rate") parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--weight-decay', type=float, default=5e-4) # training parser.add_argument('--seed', type=int, default=0) parser.add_argument('--resume', action='store_true', default=False, help='resume from checkpoint') parser.add_argument('--evaluate', action='store_true', default=False, help="evaluation only") # misc working_dir = os.path.dirname(os.path.abspath(__file__)) parser.add_argument('--data-dir', type=str, metavar='PATH', default=os.path.join(working_dir, 'temp', 'data')) parser.add_argument('--logs-dir', type=str, metavar='PATH', default=os.path.join(working_dir, 'temp', 'logs')) # distributed parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--net-card', type=str, default='', help="Name of the network card.") return parser def main(args): os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids if args.net_card: os.environ['GLOO_SOCKET_IFNAME'] = args.net_card os.environ['NCCL_SOCKET_IFNAME'] = args.net_card random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) cudnn.enabled = True cudnn.benchmark = True # cudnn.deterministic = True # Redirect print to both console and log file sys.stdout = Logger(os.path.join(args.logs_dir, 'log.txt')) args.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 args.batch_size = args.batch_size // args.world_size args.distributed = args.world_size > 1 if args.distributed: torch.cuda.set_device(args.local_rank) dist.init_process_group(backend='nccl', init_method='env://', world_size=args.world_size) dist.barrier() # Create dataloaders train_transforms = transforms.create(args.dataset, train=True, cutout=args.cutout) test_transforms = transforms.create(args.dataset, train=False) data_root = os.path.join(args.data_dir, args.dataset) train_dataset = datasets.create(args.dataset, data_root, train=True, transform=train_transforms, download=True) test_dataset = datasets.create(args.dataset, data_root, train=False, transform=test_transforms, download=True) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True) else: train_sampler = torch.utils.data.sampler.RandomSampler(train_dataset) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, sampler=train_sampler, num_workers=args.num_workers, pin_memory=True, drop_last=True) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True) # Create model norm_layer = nn.SyncBatchNorm if args.distributed else nn.BatchNorm2d model = models.create(args.arch, num_classes=len(train_dataset.classes), norm_layer=norm_layer) if args.distributed: model = nn.parallel.DistributedDataParallel( model.cuda(), device_ids=[args.local_rank], output_device=args.local_rank) # find_unused_parameters=True else: model = nn.DataParallel(model).cuda() if not args.distributed or args.local_rank == 0: n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print('number of params:', n_parameters) # Criterion # criterion = nn.CrossEntropyLoss().cuda() # Optimizer optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.num_epochs) # Load from checkpoint start_epoch = best_prec1 = 0 if args.resume: checkpoint = load_checkpoint(os.path.join(args.logs_dir, 'checkpoint.pth.tar')) model.module.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) start_epoch = checkpoint['epoch'] best_prec1 = checkpoint['best_prec1'] print("=> Start epoch {} best_prec1 {:.2f}".format(start_epoch, best_prec1)) if args.distributed: dist.barrier() # Create Evaluator evaluator = Evaluator(model, distributed=args.distributed) if args.evaluate: evaluator(test_loader) return # Create Trainer trainer = Trainer(model, optimizer, distributed=args.distributed) # Start training for epoch in range(start_epoch, args.num_epochs): # Use .set_epoch() method to reshuffle the dataset partition at every iteration if args.distributed: train_sampler.set_epoch(epoch) trainer(train_loader, epoch) scheduler.step() # evaluate on validation set # prec1 = evaluator.evaluate(test_loader) # is_best = prec1 > best_prec1 # best_prec1 = max(prec1, best_prec1) is_best = True if not args.distributed or args.local_rank == 0: lr = scheduler.get_last_lr() print('epoch: {:d}, lr: {}'.format(epoch, lr)) save_checkpoint({ 'state_dict': model.module.state_dict(), 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'epoch': epoch + 1, 'best_prec1': best_prec1, }, is_best, fpath=os.path.join(args.logs_dir, 'checkpoint.pth.tar')) if args.distributed: dist.barrier() # Final test checkpoint = load_checkpoint(os.path.join(args.logs_dir, 'checkpoint.pth.tar')) model.module.load_state_dict(checkpoint['state_dict']) evaluator(test_loader) return if __name__ == '__main__': parser = argument_parser() main(parser.parse_args())
py
b4074b4c6e9f478c3f944b260cde76d2795314b4
"""Legacy objectives module. Only kept for backwards API compatibility. """ from __future__ import absolute_import from .losses import *
py
b4074b83ef7e106a3796f6dd9d9d7e6b92b3c01c
""" python generate_sparsetools.py Generate manual wrappers for C++ sparsetools code. Type codes used: 'i': integer scalar 'I': integer array 'T': data array 'B': boolean array 'V': std::vector<integer>* 'W': std::vector<data>* '*': indicates that the next argument is an output argument 'v': void 'l': 64-bit integer scalar See sparsetools.cxx for more details. """ import optparse import os from distutils.dep_util import newer # # List of all routines and their argument types. # # The first code indicates the return value, the rest the arguments. # # bsr.h BSR_ROUTINES = """ bsr_diagonal v iiiiiIIT*T bsr_tocsr v iiiiIIT*I*I*T bsr_scale_rows v iiiiII*TT bsr_scale_columns v iiiiII*TT bsr_sort_indices v iiii*I*I*T bsr_transpose v iiiiIIT*I*I*T bsr_matmat_pass2 v iiiiiIITIIT*I*I*T bsr_matvec v iiiiIITT*T bsr_matvecs v iiiiiIITT*T bsr_elmul_bsr v iiiiIITIIT*I*I*T bsr_eldiv_bsr v iiiiIITIIT*I*I*T bsr_plus_bsr v iiiiIITIIT*I*I*T bsr_minus_bsr v iiiiIITIIT*I*I*T bsr_maximum_bsr v iiiiIITIIT*I*I*T bsr_minimum_bsr v iiiiIITIIT*I*I*T bsr_ne_bsr v iiiiIITIIT*I*I*B bsr_lt_bsr v iiiiIITIIT*I*I*B bsr_gt_bsr v iiiiIITIIT*I*I*B bsr_le_bsr v iiiiIITIIT*I*I*B bsr_ge_bsr v iiiiIITIIT*I*I*B """ # csc.h CSC_ROUTINES = """ csc_diagonal v iiiIIT*T csc_tocsr v iiIIT*I*I*T csc_matmat_pass1 v iiIIII*I csc_matmat_pass2 v iiIITIIT*I*I*T csc_matvec v iiIITT*T csc_matvecs v iiiIITT*T csc_elmul_csc v iiIITIIT*I*I*T csc_eldiv_csc v iiIITIIT*I*I*T csc_plus_csc v iiIITIIT*I*I*T csc_minus_csc v iiIITIIT*I*I*T csc_maximum_csc v iiIITIIT*I*I*T csc_minimum_csc v iiIITIIT*I*I*T csc_ne_csc v iiIITIIT*I*I*B csc_lt_csc v iiIITIIT*I*I*B csc_gt_csc v iiIITIIT*I*I*B csc_le_csc v iiIITIIT*I*I*B csc_ge_csc v iiIITIIT*I*I*B """ # csr.h CSR_ROUTINES = """ csr_matmat_pass1 v iiIIII*I csr_matmat_pass2 v iiIITIIT*I*I*T csr_diagonal v iiiIIT*T csr_tocsc v iiIIT*I*I*T csr_tobsr v iiiiIIT*I*I*T csr_todense v iiIIT*T csr_matvec v iiIITT*T csr_matvecs v iiiIITT*T csr_elmul_csr v iiIITIIT*I*I*T csr_eldiv_csr v iiIITIIT*I*I*T csr_plus_csr v iiIITIIT*I*I*T csr_minus_csr v iiIITIIT*I*I*T csr_maximum_csr v iiIITIIT*I*I*T csr_minimum_csr v iiIITIIT*I*I*T csr_ne_csr v iiIITIIT*I*I*B csr_lt_csr v iiIITIIT*I*I*B csr_gt_csr v iiIITIIT*I*I*B csr_le_csr v iiIITIIT*I*I*B csr_ge_csr v iiIITIIT*I*I*B csr_scale_rows v iiII*TT csr_scale_columns v iiII*TT csr_sort_indices v iI*I*T csr_eliminate_zeros v ii*I*I*T csr_sum_duplicates v ii*I*I*T get_csr_submatrix v iiIITiiii*V*V*W csr_sample_values v iiIITiII*T csr_count_blocks i iiiiII csr_sample_offsets i iiIIiII*I expandptr v iI*I test_throw_error i csr_has_sorted_indices i iII csr_has_canonical_format i iII """ # coo.h, dia.h, csgraph.h OTHER_ROUTINES = """ coo_tocsr v iiiIIT*I*I*T coo_todense v iilIIT*Ti coo_matvec v lIITT*T dia_matvec v iiiiITT*T cs_graph_components i iII*I """ # List of compilation units COMPILATION_UNITS = [ ('bsr', BSR_ROUTINES), ('csr', CSR_ROUTINES), ('csc', CSC_ROUTINES), ('other', OTHER_ROUTINES), ] # # List of the supported index typenums and the corresponding C++ types # I_TYPES = [ ('NPY_INT32', 'npy_int32'), ('NPY_INT64', 'npy_int64'), ] # # List of the supported data typenums and the corresponding C++ types # T_TYPES = [ ('NPY_BOOL', 'npy_bool_wrapper'), ('NPY_BYTE', 'npy_byte'), ('NPY_UBYTE', 'npy_ubyte'), ('NPY_SHORT', 'npy_short'), ('NPY_USHORT', 'npy_ushort'), ('NPY_INT', 'npy_int'), ('NPY_UINT', 'npy_uint'), ('NPY_LONG', 'npy_long'), ('NPY_ULONG', 'npy_ulong'), ('NPY_LONGLONG', 'npy_longlong'), ('NPY_ULONGLONG', 'npy_ulonglong'), ('NPY_FLOAT', 'npy_float'), ('NPY_DOUBLE', 'npy_double'), ('NPY_LONGDOUBLE', 'npy_longdouble'), ('NPY_CFLOAT', 'npy_cfloat_wrapper'), ('NPY_CDOUBLE', 'npy_cdouble_wrapper'), ('NPY_CLONGDOUBLE', 'npy_clongdouble_wrapper'), ] # # Code templates # THUNK_TEMPLATE = """ static PY_LONG_LONG %(name)s_thunk(int I_typenum, int T_typenum, void **a) { %(thunk_content)s } """ METHOD_TEMPLATE = """ NPY_VISIBILITY_HIDDEN PyObject * %(name)s_method(PyObject *self, PyObject *args) { return call_thunk('%(ret_spec)s', "%(arg_spec)s", %(name)s_thunk, args); } """ GET_THUNK_CASE_TEMPLATE = """ static int get_thunk_case(int I_typenum, int T_typenum) { %(content)s; return -1; } """ # # Code generation # def get_thunk_type_set(): """ Get a list containing cartesian product of data types, plus a getter routine. Returns ------- i_types : list [(j, I_typenum, None, I_type, None), ...] Pairing of index type numbers and the corresponding C++ types, and an unique index `j`. This is for routines that are parameterized only by I but not by T. it_types : list [(j, I_typenum, T_typenum, I_type, T_type), ...] Same as `i_types`, but for routines parameterized both by T and I. getter_code : str C++ code for a function that takes I_typenum, T_typenum and returns the unique index corresponding to the lists, or -1 if no match was found. """ it_types = [] i_types = [] j = 0 getter_code = " if (0) {}" for I_typenum, I_type in I_TYPES: piece = """ else if (I_typenum == %(I_typenum)s) { if (T_typenum == -1) { return %(j)s; }""" getter_code += piece % dict(I_typenum=I_typenum, j=j) i_types.append((j, I_typenum, None, I_type, None)) j += 1 for T_typenum, T_type in T_TYPES: piece = """ else if (T_typenum == %(T_typenum)s) { return %(j)s; }""" getter_code += piece % dict(T_typenum=T_typenum, j=j) it_types.append((j, I_typenum, T_typenum, I_type, T_type)) j += 1 getter_code += """ }""" return i_types, it_types, GET_THUNK_CASE_TEMPLATE % dict(content=getter_code) def parse_routine(name, args, types): """ Generate thunk and method code for a given routine. Parameters ---------- name : str Name of the C++ routine args : str Argument list specification (in format explained above) types : list List of types to instantiate, as returned `get_thunk_type_set` """ ret_spec = args[0] arg_spec = args[1:] def get_arglist(I_type, T_type): """ Generate argument list for calling the C++ function """ args = [] next_is_writeable = False j = 0 for t in arg_spec: const = '' if next_is_writeable else 'const ' next_is_writeable = False if t == '*': next_is_writeable = True continue elif t == 'i': args.append("*(%s*)a[%d]" % (const + I_type, j)) elif t == 'I': args.append("(%s*)a[%d]" % (const + I_type, j)) elif t == 'T': args.append("(%s*)a[%d]" % (const + T_type, j)) elif t == 'B': args.append("(npy_bool_wrapper*)a[%d]" % (j,)) elif t == 'V': if const: raise ValueError("'V' argument must be an output arg") args.append("(std::vector<%s>*)a[%d]" % (I_type, j,)) elif t == 'W': if const: raise ValueError("'W' argument must be an output arg") args.append("(std::vector<%s>*)a[%d]" % (T_type, j,)) elif t == 'l': args.append("*(%snpy_int64*)a[%d]" % (const, j)) else: raise ValueError("Invalid spec character %r" % (t,)) j += 1 return ", ".join(args) # Generate thunk code: a giant switch statement with different # type combinations inside. thunk_content = """int j = get_thunk_case(I_typenum, T_typenum); switch (j) {""" for j, I_typenum, T_typenum, I_type, T_type in types: arglist = get_arglist(I_type, T_type) if T_type is None: dispatch = "%s" % (I_type,) else: dispatch = "%s,%s" % (I_type, T_type) if 'B' in arg_spec: dispatch += ",npy_bool_wrapper" piece = """ case %(j)s:""" if ret_spec == 'v': piece += """ (void)%(name)s<%(dispatch)s>(%(arglist)s); return 0;""" else: piece += """ return %(name)s<%(dispatch)s>(%(arglist)s);""" thunk_content += piece % dict(j=j, I_type=I_type, T_type=T_type, I_typenum=I_typenum, T_typenum=T_typenum, arglist=arglist, name=name, dispatch=dispatch) thunk_content += """ default: throw std::runtime_error("internal error: invalid argument typenums"); }""" thunk_code = THUNK_TEMPLATE % dict(name=name, thunk_content=thunk_content) # Generate method code method_code = METHOD_TEMPLATE % dict(name=name, ret_spec=ret_spec, arg_spec=arg_spec) return thunk_code, method_code def main(): p = optparse.OptionParser(usage=__doc__.strip()) p.add_option("--no-force", action="store_false", dest="force", default=True) options, args = p.parse_args() names = [] i_types, it_types, getter_code = get_thunk_type_set() # Generate *_impl.h for each compilation unit for unit_name, routines in COMPILATION_UNITS: thunks = [] methods = [] # Generate thunks and methods for all routines for line in routines.splitlines(): line = line.strip() if not line or line.startswith('#'): continue try: name, args = line.split(None, 1) except ValueError: raise ValueError("Malformed line: %r" % (line,)) args = "".join(args.split()) if 't' in args or 'T' in args: thunk, method = parse_routine(name, args, it_types) else: thunk, method = parse_routine(name, args, i_types) if name in names: raise ValueError("Duplicate routine %r" % (name,)) names.append(name) thunks.append(thunk) methods.append(method) # Produce output dst = os.path.join(os.path.dirname(__file__), 'sparsetools', unit_name + '_impl.h') if newer(__file__, dst) or options.force: print("[generate_sparsetools] generating %r" % (dst,)) with open(dst, 'w') as f: write_autogen_blurb(f) f.write(getter_code) for thunk in thunks: f.write(thunk) for method in methods: f.write(method) else: print("[generate_sparsetools] %r already up-to-date" % (dst,)) # Generate code for method struct method_defs = "" for name in names: method_defs += "NPY_VISIBILITY_HIDDEN PyObject *%s_method(PyObject *, PyObject *);\n" % (name,) method_struct = """\nstatic struct PyMethodDef sparsetools_methods[] = {""" for name in names: method_struct += """ {"%(name)s", (PyCFunction)%(name)s_method, METH_VARARGS, NULL},""" % dict(name=name) method_struct += """ {NULL, NULL, 0, NULL} };""" # Produce sparsetools_impl.h dst = os.path.join(os.path.dirname(__file__), 'sparsetools', 'sparsetools_impl.h') if newer(__file__, dst) or options.force: print("[generate_sparsetools] generating %r" % (dst,)) with open(dst, 'w') as f: write_autogen_blurb(f) f.write(method_defs) f.write(method_struct) else: print("[generate_sparsetools] %r already up-to-date" % (dst,)) def write_autogen_blurb(stream): stream.write("""\ /* This file is autogenerated by generate_sparsetools.py * Do not edit manually or check into VCS. */ """) if __name__ == "__main__": main()
py
b4074b914121a7664909f276324558b3f41d6d8c
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.cnn import build_norm_layer from mmcv.runner import force_fp32 from torch import nn from mmdet3d.ops import DynamicScatter from .. import builder from ..builder import VOXEL_ENCODERS from .utils import VFELayer, get_paddings_indicator @VOXEL_ENCODERS.register_module() class HardSimpleVFE(nn.Module): """Simple voxel feature encoder used in SECOND. It simply averages the values of points in a voxel. Args: num_features (int): Number of features to use. Default: 4. """ def __init__(self, num_features=4): super(HardSimpleVFE, self).__init__() self.num_features = num_features self.fp16_enabled = False @force_fp32(out_fp16=True) def forward(self, features, num_points, coors): """Forward function. Args: features (torch.Tensor): Point features in shape (N, M, 3(4)). N is the number of voxels and M is the maximum number of points inside a single voxel. num_points (torch.Tensor): Number of points in each voxel, shape (N, ). coors (torch.Tensor): Coordinates of voxels. Returns: torch.Tensor: Mean of points inside each voxel in shape (N, 3(4)) """ points_mean = features[:, :, :self.num_features].sum( dim=1, keepdim=False) / num_points.type_as(features).view(-1, 1) return points_mean.contiguous() @VOXEL_ENCODERS.register_module() class DynamicSimpleVFE(nn.Module): """Simple dynamic voxel feature encoder used in DV-SECOND. It simply averages the values of points in a voxel. But the number of points in a voxel is dynamic and varies. Args: voxel_size (tupe[float]): Size of a single voxel point_cloud_range (tuple[float]): Range of the point cloud and voxels """ def __init__(self, voxel_size=(0.2, 0.2, 4), point_cloud_range=(0, -40, -3, 70.4, 40, 1)): super(DynamicSimpleVFE, self).__init__() self.scatter = DynamicScatter(voxel_size, point_cloud_range, True) self.fp16_enabled = False @torch.no_grad() @force_fp32(out_fp16=True) def forward(self, features, coors): """Forward function. Args: features (torch.Tensor): Point features in shape (N, 3(4)). N is the number of points. coors (torch.Tensor): Coordinates of voxels. Returns: torch.Tensor: Mean of points inside each voxel in shape (M, 3(4)). M is the number of voxels. """ # This function is used from the start of the voxelnet # num_points: [concated_num_points] features, features_coors = self.scatter(features, coors) return features, features_coors @VOXEL_ENCODERS.register_module() class DynamicVFE(nn.Module): """Dynamic Voxel feature encoder used in DV-SECOND. It encodes features of voxels and their points. It could also fuse image feature into voxel features in a point-wise manner. The number of points inside the voxel varies. Args: in_channels (int): Input channels of VFE. Defaults to 4. feat_channels (list(int)): Channels of features in VFE. with_distance (bool): Whether to use the L2 distance of points to the origin point. Default False. with_cluster_center (bool): Whether to use the distance to cluster center of points inside a voxel. Default to False. with_voxel_center (bool): Whether to use the distance to center of voxel for each points inside a voxel. Default to False. voxel_size (tuple[float]): Size of a single voxel. Default to (0.2, 0.2, 4). point_cloud_range (tuple[float]): The range of points or voxels. Default to (0, -40, -3, 70.4, 40, 1). norm_cfg (dict): Config dict of normalization layers. mode (str): The mode when pooling features of points inside a voxel. Available options include 'max' and 'avg'. Default to 'max'. fusion_layer (dict | None): The config dict of fusion layer used in multi-modal detectors. Default to None. return_point_feats (bool): Whether to return the features of each points. Default to False. """ def __init__(self, in_channels=4, feat_channels=[], with_distance=False, with_cluster_center=False, with_voxel_center=False, voxel_size=(0.2, 0.2, 4), point_cloud_range=(0, -40, -3, 70.4, 40, 1), norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), mode='max', fusion_layer=None, return_point_feats=False): super(DynamicVFE, self).__init__() assert mode in ['avg', 'max'] assert len(feat_channels) > 0 if with_cluster_center: in_channels += 3 if with_voxel_center: in_channels += 3 if with_distance: in_channels += 1 self.in_channels = in_channels self._with_distance = with_distance self._with_cluster_center = with_cluster_center self._with_voxel_center = with_voxel_center self.return_point_feats = return_point_feats self.fp16_enabled = False # Need pillar (voxel) size and x/y offset in order to calculate offset self.vx = voxel_size[0] self.vy = voxel_size[1] self.vz = voxel_size[2] self.x_offset = self.vx / 2 + point_cloud_range[0] self.y_offset = self.vy / 2 + point_cloud_range[1] self.z_offset = self.vz / 2 + point_cloud_range[2] self.point_cloud_range = point_cloud_range self.scatter = DynamicScatter(voxel_size, point_cloud_range, True) feat_channels = [self.in_channels] + list(feat_channels) vfe_layers = [] for i in range(len(feat_channels) - 1): in_filters = feat_channels[i] out_filters = feat_channels[i + 1] if i > 0: in_filters *= 2 norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters) vfe_layers.append( nn.Sequential( nn.Linear(in_filters, out_filters, bias=False), norm_layer, nn.ReLU(inplace=True))) self.vfe_layers = nn.ModuleList(vfe_layers) self.num_vfe = len(vfe_layers) self.vfe_scatter = DynamicScatter(voxel_size, point_cloud_range, (mode != 'max')) self.cluster_scatter = DynamicScatter( voxel_size, point_cloud_range, average_points=True) self.fusion_layer = None if fusion_layer is not None: self.fusion_layer = builder.build_fusion_layer(fusion_layer) def map_voxel_center_to_point(self, pts_coors, voxel_mean, voxel_coors): """Map voxel features to its corresponding points. Args: pts_coors (torch.Tensor): Voxel coordinate of each point. voxel_mean (torch.Tensor): Voxel features to be mapped. voxel_coors (torch.Tensor): Coordinates of valid voxels Returns: torch.Tensor: Features or centers of each point. """ # Step 1: scatter voxel into canvas # Calculate necessary things for canvas creation canvas_z = int( (self.point_cloud_range[5] - self.point_cloud_range[2]) / self.vz) canvas_y = int( (self.point_cloud_range[4] - self.point_cloud_range[1]) / self.vy) canvas_x = int( (self.point_cloud_range[3] - self.point_cloud_range[0]) / self.vx) # canvas_channel = voxel_mean.size(1) batch_size = pts_coors[-1, 0] + 1 canvas_len = canvas_z * canvas_y * canvas_x * batch_size # Create the canvas for this sample canvas = voxel_mean.new_zeros(canvas_len, dtype=torch.long) # Only include non-empty pillars indices = ( voxel_coors[:, 0] * canvas_z * canvas_y * canvas_x + voxel_coors[:, 1] * canvas_y * canvas_x + voxel_coors[:, 2] * canvas_x + voxel_coors[:, 3]) # Scatter the blob back to the canvas canvas[indices.long()] = torch.arange( start=0, end=voxel_mean.size(0), device=voxel_mean.device) # Step 2: get voxel mean for each point voxel_index = ( pts_coors[:, 0] * canvas_z * canvas_y * canvas_x + pts_coors[:, 1] * canvas_y * canvas_x + pts_coors[:, 2] * canvas_x + pts_coors[:, 3]) voxel_inds = canvas[voxel_index.long()] center_per_point = voxel_mean[voxel_inds, ...] return center_per_point @force_fp32(out_fp16=True) def forward(self, features, coors, points=None, img_feats=None, img_metas=None): """Forward functions. Args: features (torch.Tensor): Features of voxels, shape is NxC. coors (torch.Tensor): Coordinates of voxels, shape is Nx(1+NDim). points (list[torch.Tensor], optional): Raw points used to guide the multi-modality fusion. Defaults to None. img_feats (list[torch.Tensor], optional): Image fetures used for multi-modality fusion. Defaults to None. img_metas (dict, optional): [description]. Defaults to None. Returns: tuple: If `return_point_feats` is False, returns voxel features and its coordinates. If `return_point_feats` is True, returns feature of each points inside voxels. """ features_ls = [features] # Find distance of x, y, and z from cluster center if self._with_cluster_center: voxel_mean, mean_coors = self.cluster_scatter(features, coors) points_mean = self.map_voxel_center_to_point( coors, voxel_mean, mean_coors) # TODO: maybe also do cluster for reflectivity f_cluster = features[:, :3] - points_mean[:, :3] features_ls.append(f_cluster) # Find distance of x, y, and z from pillar center if self._with_voxel_center: f_center = features.new_zeros(size=(features.size(0), 3)) f_center[:, 0] = features[:, 0] - ( coors[:, 3].type_as(features) * self.vx + self.x_offset) f_center[:, 1] = features[:, 1] - ( coors[:, 2].type_as(features) * self.vy + self.y_offset) f_center[:, 2] = features[:, 2] - ( coors[:, 1].type_as(features) * self.vz + self.z_offset) features_ls.append(f_center) if self._with_distance: points_dist = torch.norm(features[:, :3], 2, 1, keepdim=True) features_ls.append(points_dist) # Combine together feature decorations features = torch.cat(features_ls, dim=-1) for i, vfe in enumerate(self.vfe_layers): point_feats = vfe(features) if (i == len(self.vfe_layers) - 1 and self.fusion_layer is not None and img_feats is not None): point_feats = self.fusion_layer(img_feats, points, point_feats, img_metas) voxel_feats, voxel_coors = self.vfe_scatter(point_feats, coors) if i != len(self.vfe_layers) - 1: # need to concat voxel feats if it is not the last vfe feat_per_point = self.map_voxel_center_to_point( coors, voxel_feats, voxel_coors) features = torch.cat([point_feats, feat_per_point], dim=1) if self.return_point_feats: return point_feats return voxel_feats, voxel_coors @VOXEL_ENCODERS.register_module() class HardVFE(nn.Module): """Voxel feature encoder used in DV-SECOND. It encodes features of voxels and their points. It could also fuse image feature into voxel features in a point-wise manner. Args: in_channels (int): Input channels of VFE. Defaults to 4. feat_channels (list(int)): Channels of features in VFE. with_distance (bool): Whether to use the L2 distance of points to the origin point. Default False. with_cluster_center (bool): Whether to use the distance to cluster center of points inside a voxel. Default to False. with_voxel_center (bool): Whether to use the distance to center of voxel for each points inside a voxel. Default to False. voxel_size (tuple[float]): Size of a single voxel. Default to (0.2, 0.2, 4). point_cloud_range (tuple[float]): The range of points or voxels. Default to (0, -40, -3, 70.4, 40, 1). norm_cfg (dict): Config dict of normalization layers. mode (str): The mode when pooling features of points inside a voxel. Available options include 'max' and 'avg'. Default to 'max'. fusion_layer (dict | None): The config dict of fusion layer used in multi-modal detectors. Default to None. return_point_feats (bool): Whether to return the features of each points. Default to False. """ def __init__(self, in_channels=4, feat_channels=[], with_distance=False, with_cluster_center=False, with_voxel_center=False, voxel_size=(0.2, 0.2, 4), point_cloud_range=(0, -40, -3, 70.4, 40, 1), norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), mode='max', fusion_layer=None, return_point_feats=False): super(HardVFE, self).__init__() assert len(feat_channels) > 0 if with_cluster_center: in_channels += 3 if with_voxel_center: in_channels += 3 if with_distance: in_channels += 1 self.in_channels = in_channels self._with_distance = with_distance self._with_cluster_center = with_cluster_center self._with_voxel_center = with_voxel_center self.return_point_feats = return_point_feats self.fp16_enabled = False # Need pillar (voxel) size and x/y offset to calculate pillar offset self.vx = voxel_size[0] self.vy = voxel_size[1] self.vz = voxel_size[2] self.x_offset = self.vx / 2 + point_cloud_range[0] self.y_offset = self.vy / 2 + point_cloud_range[1] self.z_offset = self.vz / 2 + point_cloud_range[2] self.point_cloud_range = point_cloud_range self.scatter = DynamicScatter(voxel_size, point_cloud_range, True) feat_channels = [self.in_channels] + list(feat_channels) vfe_layers = [] for i in range(len(feat_channels) - 1): in_filters = feat_channels[i] out_filters = feat_channels[i + 1] if i > 0: in_filters *= 2 # TODO: pass norm_cfg to VFE # norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters) if i == (len(feat_channels) - 2): cat_max = False max_out = True if fusion_layer: max_out = False else: max_out = True cat_max = True vfe_layers.append( VFELayer( in_filters, out_filters, norm_cfg=norm_cfg, max_out=max_out, cat_max=cat_max)) self.vfe_layers = nn.ModuleList(vfe_layers) self.num_vfe = len(vfe_layers) self.fusion_layer = None if fusion_layer is not None: self.fusion_layer = builder.build_fusion_layer(fusion_layer) @force_fp32(out_fp16=True) def forward(self, features, num_points, coors, img_feats=None, img_metas=None): """Forward functions. Args: features (torch.Tensor): Features of voxels, shape is MxNxC. num_points (torch.Tensor): Number of points in each voxel. coors (torch.Tensor): Coordinates of voxels, shape is Mx(1+NDim). img_feats (list[torch.Tensor], optional): Image fetures used for multi-modality fusion. Defaults to None. img_metas (dict, optional): [description]. Defaults to None. Returns: tuple: If `return_point_feats` is False, returns voxel features and its coordinates. If `return_point_feats` is True, returns feature of each points inside voxels. """ features_ls = [features] # Find distance of x, y, and z from cluster center if self._with_cluster_center: points_mean = ( features[:, :, :3].sum(dim=1, keepdim=True) / num_points.type_as(features).view(-1, 1, 1)) # TODO: maybe also do cluster for reflectivity f_cluster = features[:, :, :3] - points_mean features_ls.append(f_cluster) # Find distance of x, y, and z from pillar center if self._with_voxel_center: f_center = features.new_zeros( size=(features.size(0), features.size(1), 3)) f_center[:, :, 0] = features[:, :, 0] - ( coors[:, 3].type_as(features).unsqueeze(1) * self.vx + self.x_offset) f_center[:, :, 1] = features[:, :, 1] - ( coors[:, 2].type_as(features).unsqueeze(1) * self.vy + self.y_offset) f_center[:, :, 2] = features[:, :, 2] - ( coors[:, 1].type_as(features).unsqueeze(1) * self.vz + self.z_offset) features_ls.append(f_center) if self._with_distance: points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True) features_ls.append(points_dist) # Combine together feature decorations voxel_feats = torch.cat(features_ls, dim=-1) # The feature decorations were calculated without regard to whether # pillar was empty. # Need to ensure that empty voxels remain set to zeros. voxel_count = voxel_feats.shape[1] mask = get_paddings_indicator(num_points, voxel_count, axis=0) voxel_feats *= mask.unsqueeze(-1).type_as(voxel_feats) for i, vfe in enumerate(self.vfe_layers): voxel_feats = vfe(voxel_feats) if (self.fusion_layer is not None and img_feats is not None): voxel_feats = self.fusion_with_mask(features, mask, voxel_feats, coors, img_feats, img_metas) return voxel_feats def fusion_with_mask(self, features, mask, voxel_feats, coors, img_feats, img_metas): """Fuse image and point features with mask. Args: features (torch.Tensor): Features of voxel, usually it is the values of points in voxels. mask (torch.Tensor): Mask indicates valid features in each voxel. voxel_feats (torch.Tensor): Features of voxels. coors (torch.Tensor): Coordinates of each single voxel. img_feats (list[torch.Tensor]): Multi-scale feature maps of image. img_metas (list(dict)): Meta information of image and points. Returns: torch.Tensor: Fused features of each voxel. """ # the features is consist of a batch of points batch_size = coors[-1, 0] + 1 points = [] for i in range(batch_size): single_mask = (coors[:, 0] == i) points.append(features[single_mask][mask[single_mask]]) point_feats = voxel_feats[mask] point_feats = self.fusion_layer(img_feats, points, point_feats, img_metas) voxel_canvas = voxel_feats.new_zeros( size=(voxel_feats.size(0), voxel_feats.size(1), point_feats.size(-1))) voxel_canvas[mask] = point_feats out = torch.max(voxel_canvas, dim=1)[0] return out