ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
b40798c0960553f287213fb82863d3bd03c0197e
from django.conf.urls.defaults import * from tastypie.api import Api from validation.api.resources import NoteResource, UserResource api = Api(api_name='v1') api.register(NoteResource(), canonical=True) api.register(UserResource(), canonical=True) urlpatterns = patterns('', url(r'^api/', include(api.urls)), )
py
b40798c415c51805081f1dbf467ecd6374e6fb2d
f = open("romanTest.txt", 'w') numeralArr = [ (1000, "M"), (500, "D"), (100, "C"), (50, "L"), (10, "X"), (5, "V"), (1, "I")] out = "" def convert(num, nums, iters, halfs): global out if num >= nums[0] - iters[0]: out += iters[1] + nums[1] num -= nums[0] - iters[0] elif num < nums[0] - iters[0]: if halfs[0]: out += halfs[2]; num -= halfs[1] out += iters[1] * (num // iters[0]) num -= iters[0] * (num // iters[0]) elif num == nums[0]: out += nums[1] num -= nums[0] return num for userNum in range(1, 5000): preserveNum = userNum out = "" for x in range(0, len(numeralArr) - 2, 2): number, numeral = numeralArr[x] halfNumber, halfNumeral = numeralArr[x + 1] iterNumber, iterNumeral = numeralArr[x + 2] out += numeral * (userNum // number) userNum -= number * (userNum // number) userNum = convert(userNum, (number, numeral) if userNum >= halfNumber else (halfNumber, halfNumeral), (iterNumber, iterNumeral), [userNum >= halfNumber, halfNumber, halfNumeral]) f.write(str(preserveNum) + " " + out + "\n") f.close() numerals = open("numerals.txt") romans = open("romanTest.txt") nums = numerals.readlines() roms = romans.readlines() for x in range(len(nums)): num = nums[x] rom = roms[x] if(num != rom): print(num, rom, sep="")
py
b4079b1200881a59ab5d3758bbbab8861002170e
"""Implementation of Rule L007.""" from sqlfluff.core.rules.base import BaseRule, LintResult, RuleContext after_description = "Operators near newlines should be after, not before the newline" before_description = "Operators near newlines should be before, not after the newline" class Rule_L007(BaseRule): """Operators should follow a standard for being before/after newlines. | **Anti-pattern** | The • character represents a space. | If ``operator_new_lines = after`` (or unspecified, as this is the default) | In this example, the operator '+' should not be at the end of the second line. .. code-block:: sql SELECT a + b FROM foo | **Best practice** | If ``operator_new_lines = after`` (or unspecified, as this is the default) | Place the operator after the newline. .. code-block:: sql SELECT a + b FROM foo | If ``operator_new_lines = before`` | Place the operator before the newline. .. code-block:: sql SELECT a + b FROM foo """ config_keywords = ["operator_new_lines"] def _eval(self, context: RuleContext) -> LintResult: """Operators should follow a standard for being before/after newlines. We use the memory to keep track of whitespace up to now, and whether the last code segment was an operator or not. Anchor is our signal as to whether there's a problem. We only trigger if we have an operator FOLLOWED BY a newline before the next meaningful code segment. """ anchor = None memory = context.memory description = after_description if self.operator_new_lines == "before": # type: ignore description = before_description # The parent stack tells us whether we're in an expression or not. if context.parent_stack and context.parent_stack[-1].is_type("expression"): if context.segment.is_code: # This is code, what kind? if context.segment.is_type("binary_operator", "comparison_operator"): # If it's an operator, then check if in "before" mode if self.operator_new_lines == "before": # type: ignore # If we're in "before" mode, then check if newline since last # code for s in memory["since_code"]: if s.name == "newline": # Had a newline - so mark this operator as a fail anchor = context.segment # TODO: Work out a nice fix for this failure. elif memory["last_code"] and memory["last_code"].is_type( "binary_operator", "comparison_operator" ): # It's not an operator, but the last code was. if self.operator_new_lines != "before": # type: ignore # If in "after" mode, then check to see # there is a newline between us and the last operator. for s in memory["since_code"]: if s.name == "newline": # Had a newline - so mark last operator as a fail anchor = memory["last_code"] # TODO: Work out a nice fix for this failure. # Prepare memory for later memory["last_code"] = context.segment memory["since_code"] = [] else: # This isn't a code segment... # Prepare memory for later memory["since_code"].append(context.segment) else: # Reset the memory if we're not in an expression memory = {"last_code": None, "since_code": []} # Anchor is our signal as to whether there's a problem if anchor: return LintResult(anchor=anchor, memory=memory, description=description) else: return LintResult(memory=memory)
py
b4079b38a58b4c95b606b5b0d7f4ecc9fae0b7c8
import pytest from s3parq.session_helper import SessionHelper class Test: def test_no_ec2(self): '''Verify that False is returned if not run on an ec2 server''' is_ec2 = SessionHelper._is_ec2(self) assert is_ec2 is False '''Verify that ec2 flag evaluates to false if not run on an ec2 server''' sh = SessionHelper( region='cheeseburger', cluster_id='cheeseburger_id', host='cheeseburger_host', port='cheeseburger_port', db_name='cheeseburger_params', ec2_user='cheeseburger_params') assert sh.is_ec2_flag is False def test_iam_user(self): '''Verify that iam_user will assume the value of ec2_user when run on an ec2 server''' sh = SessionHelper( region='cheeseburger', cluster_id='cheeseburger_id', host='cheeseburger_host', port='cheeseburger_port', db_name='cheeseburger_params', ec2_user='cheeseburger_user') # Fake is_ec2_flag to be True sh.is_ec2_flag = True sh.set_iam_user() assert sh.iam_user is 'cheeseburger_user' def test_no_ec2_user(self): '''Verify that SessionHelper can accept None as an argument for ec2 user''' sh = SessionHelper( region='cheeseburger', cluster_id='cheeseburger_id', host='cheeseburger_host', port='cheeseburger_port', db_name='cheeseburger_params', ec2_user=None) assert(type(sh.ec2_user)) is type(None) def test_ec2_user(self): '''Verify that SessionHelper can accept a string as an argument for ec2 user''' sh = SessionHelper( region='cheeseburger', cluster_id='cheeseburger_id', host='cheeseburger_host', port='cheeseburger_port', db_name='cheeseburger_params', ec2_user='cheeseburger_user') assert(isinstance(sh.ec2_user, str)) is True
py
b4079bb06a8429c298c0d14f3fc11e19f5e90f63
import numpy as np import torch from typing import Any, Dict, Optional, Tuple from .search_tree import SearchTree from .typing import SearchableEnv from .utils import import_and_get def create_network(network_type, board_size, num_blocks, base_chans): # backward compat if network_type in ('ChessNetwork', 'HexNetwork'): network_type = 'azalea.network.' + network_type Net = import_and_get(network_type) return Net(board_size=board_size, num_blocks=num_blocks, base_chans=base_chans) class Policy: """Game playing policy, combination of MCTS and network """ def __init__(self): """Construct new policy""" # do greedy & deterministic inference by default self.settings = { 'move_sampling': False, 'move_exploration': False, } self.rng = np.random.RandomState() self.seed() def initialize(self, config): """Initialize policy for training""" device = torch.device(config['device']) if device.type == 'cuda': # enable cudnn auto-tuner torch.backends.cudnn.benchmark = True self.net = create_network(config['network'], config['board_size'], config['num_blocks'], config['base_chans']) self.net.to(device) # don't train anything by default self.net.eval() # network params self.network_type = config['network'] self.board_size = config['board_size'] self.num_blocks = config['num_blocks'] self.base_chans = config['base_chans'] # search params self.simulations = config['simulations'] self.search_batch_size = config['search_batch_size'] self.exploration_coef = config['exploration_coef'] self.exploration_depth = config['exploration_depth'] self.exploration_noise_alpha = config['exploration_noise_alpha'] self.exploration_noise_scale = config['exploration_noise_scale'] self.exploration_temperature = config['exploration_temperature'] if 'seed' in config: self.seed(config['seed']) @property def net(self): try: return self._net except AttributeError: raise RuntimeError('Policy must be initialized or loaded before use') @net.setter def net(self, net): self._net = net def reset(self): """Start new game """ self.tree = SearchTree() self.ply = 0 def seed(self, seed: Optional[int] = None) -> None: self.rng.seed(seed) def load_state_dict(self, state): """Load model state """ # load network architecture and params self.network_type = state['network_type'] self.board_size = state['board_size'] self.num_blocks = state['num_blocks'] self.base_chans = state['base_chans'] self.net = create_network(self.network_type, self.board_size, self.num_blocks, self.base_chans) self.net.load_state_dict(state['net']) # load search params self.simulations = state['simulations'] self.search_batch_size = state['search_batch_size'] self.exploration_coef = state['exploration_coef'] self.exploration_depth = state['exploration_depth'] self.exploration_noise_alpha = state['exploration_noise_alpha'] self.exploration_noise_scale = state['exploration_noise_scale'] self.exploration_temperature = state['exploration_temperature'] # load random number generator state if 'rng' in state: self.rng.__setstate__(state['rng']) def state_dict(self): """Return model state Only serializes the (hyper)parameters, not ongoing game state (search tree etc) """ return { 'net': self.net.state_dict(), 'network_type': self.network_type, 'board_size': self.board_size, 'num_blocks': self.num_blocks, 'base_chans': self.base_chans, 'simulations': self.simulations, 'search_batch_size': self.search_batch_size, 'exploration_coef': self.exploration_coef, 'exploration_depth': self.exploration_depth, 'exploration_noise_alpha': self.exploration_noise_alpha, 'exploration_noise_scale': self.exploration_noise_scale, 'exploration_temperature': self.exploration_temperature, 'rng': self.rng.__getstate__(), } def choose_action(self, game: SearchableEnv) \ -> Tuple[int, Dict[str, Any]]: """Choose next move. can raise SearchTreeFull :param game: Current game environment :returns: move - chosen move info - auxiliary information """ assert not game.state.result temperature = 0.0 noise_scale = 0.0 if self.settings['move_sampling']: temperature = self.exploration_temperature if self.settings['move_exploration']: noise_scale = self.exploration_noise_scale if self.ply >= self.exploration_depth: temperature = 0. probs, value, metrics = self.tree.search( game, self.net, temperature=temperature, exploration_noise_scale=noise_scale, num_simulations=self.simulations, batch_size=self.search_batch_size, exploration_coef=self.exploration_coef, exploration_noise_alpha=self.exploration_noise_alpha, rng=self.rng) move_id = np.argmax(self.rng.multinomial(1, probs)) move = game.state.legal_moves[move_id] info = dict(prob=probs[move_id], value=value, moves=game.state.legal_moves, moves_prob=probs, move_id=move_id, metrics=metrics) return move, info def execute_action(self, move: int, legal_moves: np.ndarray) -> None: """Update search tree with own or opponent action. can raise SearchTreeFull """ move_id = legal_moves.tolist().index(move) self.tree.move(move_id) self.ply += 1 def tree_metrics(self): return self.tree.metrics() @classmethod def load(cls, path: str, device: Optional[str] = None) -> 'Policy': """Create policy and load weights from checkpoint Paths can be local filenames or s3://... URL's (please install smart_open library for S3 support). Loads tensors according to device :param path: Either local or S3 path of policy file """ policy = cls() if device: device = torch.device(device) location = device.type if location == 'cuda': location += f':{device.index or 0}' else: location = None if path.startswith('s3://'): # smart_open is optional dependency import smart_open with smart_open.smart_open(path) as f: state = torch.load(f, map_location=location) else: state = torch.load(path, map_location=location) policy.load_state_dict(state['policy']) policy.net.eval() if device: policy.net.to(device) return policy
py
b4079bd0a25f1e8dbe2a575d0ff99905229beb1a
#!/usr/local/bin/python3.6 #-*- coding: utf-8 -*- #Author WangJiang@2019 15810438848 [email protected] #All rights reserved ################################################################################################################ import pymysql from lib.mysql import Cls_Mysql from lib.usage import Cls_Usage from lib.file import Cls_File from lib.xlsx import Cls_Xlsx from lib.util import Cls_Util from lib.logging import Cls_Logging from lib.out import Cls_Out import conf.config as config ################################################################################################################ """ 使用范围:支持mysql导出数据到csv、txt、xlsx等(保持结果变化下后缀即可~~),但只支持<65535行(excel硬限制) 特别提醒:使用需谨慎。一切后果自负! """ ### Mysql导出到Excel类 class Cls_Mysql_to_Excel: ### 初始化 def __init__(self): self.usage = Cls_Usage().mysql_to_excel() self.util = Cls_Util() self.logging = Cls_Logging() self.out = Cls_Out() self.__config = config self.__mysql_desc = [] self.__mysql_data = [] self.__mysql_rowcount = 0 ### 导出函数 def __export(self): try: ### 输出格式化、标题 self.out.add_title(["IP", "Port", "Result"]) ### 获取源端mysql信息 ip_fd_value = str(self.usage["source_mysql"]).split(',') ### 获取SQL语句列表 sql_file = Cls_File(self.usage["sql_file"]) sql_file.read_all_data() ### 开始获取IP信息,连接数据库 self.mysql_db = Cls_Mysql(ip_fd_value[0], ip_fd_value[1], ip_fd_value[2], ip_fd_value[3], \ ip_fd_value[4], cursorclass=pymysql.cursors.SSCursor) self.mysql_db.execute('SET NET_READ_TIMEOUT='+self.__config.net_read_timeout) self.__mysql_result = self.mysql_db.query(sql_file.file_all_data) ### 判断执行结果 if self.__mysql_result["code"] == 0: file_name = ip_fd_value[0] + '_'+ ip_fd_value[1] + '_' + self.util.timestamp() + \ '_' +self.usage["export_file"] ### 执行SQL,添加xlsx文件、内容等 self.workbook = Cls_Xlsx(file_name) self.workbook.add_worksheet() ### 添加sheet标题 sheet_title = self.mysql_db.get_description() sheet_content = self.__mysql_result["content"] self.workbook.add_title('A1', sheet_title) ### 添加sheet内容 for d in range(0, len(sheet_title)): self.workbook.add_content(self.workbook.convertToTitle(d+1)+'2', \ self.util.get_single_index_tuple(sheet_content, d)) self.workbook.close() ### 执行SQL,添加行 self.out.add_row([ip_fd_value[0], ip_fd_value[1], file_name]) else: ### 执行SQL,添加行 self.out.add_row([ip_fd_value[0], ip_fd_value[1], "ERROR:"+self.__mysql_result["content"]]) ### 释放数据库资源 self.mysql_db.close() except Exception as e: ### 错误输出 self.logging.loggingError(str(e)) finally: ### 输出 self.out.print() ### 主函数 def main(self): self.__export() if __name__ == "__main__": Cls_Mysql_to_Excel().main()
py
b4079c75d82b64409f218cb02b5ba4a3dff21870
# coding: utf-8 """ Onshape REST API The Onshape REST API consumed by all clients. # noqa: E501 The version of the OpenAPI document: 1.113 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 import sys # noqa: F401 import six # noqa: F401 import nulltype # noqa: F401 from onshape_client.oas.model_utils import ( # noqa: F401 ModelComposed, ModelNormal, ModelSimple, date, datetime, file_type, int, none_type, str, validate_get_composed_info, ) try: from onshape_client.oas.models import btfs_value1888 except ImportError: btfs_value1888 = sys.modules["onshape_client.oas.models.btfs_value1888"] try: from onshape_client.oas.models import btfs_value_with_units1817_all_of except ImportError: btfs_value_with_units1817_all_of = sys.modules[ "onshape_client.oas.models.btfs_value_with_units1817_all_of" ] class BTFSValueWithUnits1817(ModelComposed): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ("quantity_type",): { "UNKNOWN": "UNKNOWN", "INTEGER": "INTEGER", "REAL": "REAL", "LENGTH": "LENGTH", "ANGLE": "ANGLE", "MASS": "MASS", "TIME": "TIME", "TEMPERATURE": "TEMPERATURE", "CURRENT": "CURRENT", "ANYTHING": "ANYTHING", }, } validations = {} additional_properties_type = None @staticmethod def openapi_types(): """ This must be a class method so a model may have properties that are of type self, this ensures that we don't create a cyclic import Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { "bt_type": (str,), # noqa: E501 "quantity_type": (str,), # noqa: E501 "unit_to_power": ({str: (int,)},), # noqa: E501 "value": (float,), # noqa: E501 "value_object": (float,), # noqa: E501 "configuration_value_string": (str,), # noqa: E501 "standard_type_name": (str,), # noqa: E501 "type_tag": (str,), # noqa: E501 } @staticmethod def discriminator(): return None attribute_map = { "bt_type": "btType", # noqa: E501 "quantity_type": "quantityType", # noqa: E501 "unit_to_power": "unitToPower", # noqa: E501 "value": "value", # noqa: E501 "value_object": "valueObject", # noqa: E501 "configuration_value_string": "configurationValueString", # noqa: E501 "standard_type_name": "standardTypeName", # noqa: E501 "type_tag": "typeTag", # noqa: E501 } required_properties = set( [ "_data_store", "_check_type", "_from_server", "_path_to_item", "_configuration", "_composed_instances", "_var_name_to_model_instances", "_additional_properties_model_instances", ] ) def __init__( self, _check_type=True, _from_server=False, _path_to_item=(), _configuration=None, **kwargs ): # noqa: E501 """btfs_value_with_units1817.BTFSValueWithUnits1817 - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _from_server (bool): True if the data is from the server False if the data is from the client (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. bt_type (str): [optional] # noqa: E501 quantity_type (str): [optional] # noqa: E501 unit_to_power ({str: (int,)}): [optional] # noqa: E501 value (float): [optional] # noqa: E501 value_object (float): [optional] # noqa: E501 configuration_value_string (str): [optional] # noqa: E501 standard_type_name (str): [optional] # noqa: E501 type_tag (str): [optional] # noqa: E501 """ self._data_store = {} self._check_type = _check_type self._from_server = _from_server self._path_to_item = _path_to_item self._configuration = _configuration constant_args = { "_check_type": _check_type, "_path_to_item": _path_to_item, "_from_server": _from_server, "_configuration": _configuration, } required_args = {} # remove args whose value is Null because they are unset required_arg_names = list(required_args.keys()) for required_arg_name in required_arg_names: if required_args[required_arg_name] is nulltype.Null: del required_args[required_arg_name] model_args = {} model_args.update(required_args) model_args.update(kwargs) composed_info = validate_get_composed_info(constant_args, model_args, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] unused_args = composed_info[3] for var_name, var_value in required_args.items(): setattr(self, var_name, var_value) for var_name, var_value in six.iteritems(kwargs): if ( var_name in unused_args and self._configuration is not None and self._configuration.discard_unknown_keys and not self._additional_properties_model_instances ): # discard variable. continue setattr(self, var_name, var_value) @staticmethod def _composed_schemas(): # we need this here to make our import statements work # we must store _composed_schemas in here so the code is only run # when we invoke this method. If we kept this at the class # level we would get an error beause the class level # code would be run when this module is imported, and these composed # classes don't exist yet because their module has not finished # loading return { "anyOf": [], "allOf": [ btfs_value1888.BTFSValue1888, btfs_value_with_units1817_all_of.BTFSValueWithUnits1817AllOf, ], "oneOf": [], }
py
b4079c7aa0b3cff4ac650afbcd57f9286920c765
# Copyright 2019 Kakao Brain # # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. """Multithreading in pipeline parallelism.""" from contextlib import contextmanager from queue import Queue import sys from threading import Thread from types import TracebackType from typing import TYPE_CHECKING, Callable, Dict, Generator, List, Optional, Tuple, Type, Union, cast import torch from .microbatch import Batch from .stream import AbstractStream, use_device, use_stream __all__: List[str] = [] ExcInfo = Tuple[Type[BaseException], BaseException, TracebackType] # Queue is generic only in stubs. # https://mypy.readthedocs.io/en/latest/common_issues.html#using-classes-that-are-generic-in-stubs-but-not-at-runtime if TYPE_CHECKING: InQueue = Queue[Optional["Task"]] OutQueue = Queue[Tuple[bool, Union[Tuple["Task", Batch], ExcInfo, None]]] else: InQueue = Queue OutQueue = Queue class Task: """A task represents how to compute a micro-batch on a partition. It consists of two parts: :meth:`compute` and :meth:`finalize`. :meth:`compute` should be executed in worker threads concurrently. :meth:`finalize` should be executed after when worker threads complete to execute :meth:`compute`. :meth:`compute` might be boosted by worker threads. Because it produces several CUDA API calls by user code. In PyTorch, parallel CUDA API calls are not serialized through GIL. So more than one CUDA API call can be produced at the same time. """ def __init__( self, stream: AbstractStream, *, compute: Callable[[], Batch], finalize: Optional[Callable[[Batch], None]], ) -> None: self.stream = stream self._compute = compute self._finalize = finalize self._grad_enabled = torch.is_grad_enabled() def compute(self) -> Batch: with use_stream(self.stream), torch.set_grad_enabled(self._grad_enabled): return self._compute() def finalize(self, batch: Batch) -> None: if self._finalize is None: return with use_stream(self.stream), torch.set_grad_enabled(self._grad_enabled): self._finalize(batch) def worker(in_queue: InQueue, out_queue: OutQueue, device: torch.device) -> None: """The main loop of a worker thread.""" with use_device(device): while True: task = in_queue.get() if task is None: break try: batch = task.compute() except Exception: exc_info = cast(ExcInfo, sys.exc_info()) out_queue.put((False, exc_info)) continue out_queue.put((True, (task, batch))) done = (False, None) out_queue.put(done) def create_workers(devices: List[torch.device],) -> Tuple[List[InQueue], List[OutQueue]]: """Spawns worker threads. A worker thread is bound to a device.""" in_queues: List[InQueue] = [] out_queues: List[OutQueue] = [] # Spawn workers. workers: Dict[torch.device, Tuple[InQueue, OutQueue]] = {} def normalize_device(device: torch.device) -> torch.device: if device.type == "cuda" and device.index is None: return torch.device("cuda", index=torch.cuda.current_device()) if device.type == "cpu" and device.index is not None: return torch.device("cpu") return device for device in devices: device = normalize_device(device) try: in_queue, out_queue = workers[device] except KeyError: in_queue = Queue() out_queue = Queue() workers[device] = (in_queue, out_queue) t = Thread(target=worker, args=(in_queue, out_queue, device), daemon=True,) t.start() in_queues.append(in_queue) out_queues.append(out_queue) return (in_queues, out_queues) @contextmanager def spawn_workers(devices: List[torch.device],) -> Generator[Tuple[List[InQueue], List[OutQueue]], None, None]: try: (in_queues, out_queues) = create_workers(devices) yield (in_queues, out_queues) finally: pass
py
b4079cb3b4ea86aba17af291d9e72af516aab510
import requests from validando_dados.cep import BuscaEndereco cep = "05783170" cep_intance = BuscaEndereco(cep) print()
py
b4079ddf9574dc872f6b4c16f9e66b59b17ae28a
from .discovery import discover_webmention_endpoint from .send import SendWebmentionResponse, send_webmention from .validate import validate_webmention __all__ = ["send_webmention", "validate_webmention", "discover_webmention_endpoint", "SendWebmentionResponse"]
py
b4079e2468a7c945f3c3ebaa671d044cddc0d30b
# Generated by Django 3.1 on 2021-04-22 17:08 from django.conf import settings import django.core.validators from django.db import migrations, models import django.db.models.deletion import re class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('fms_core', '0019_v3_1_2'), ] operations = [ migrations.AlterField( model_name='container', name='barcode', field=models.CharField(help_text='Unique container barcode.', max_length=200, unique=True, validators=[django.core.validators.RegexValidator(re.compile('^.{1,200}$'))]), ), migrations.AlterField( model_name='container', name='name', field=models.CharField(help_text='Unique name for the container.', max_length=200, unique=True, validators=[django.core.validators.RegexValidator(re.compile('^[a-zA-Z0-9.\\-_]{1,200}$'))]), ), migrations.AlterField( model_name='sample', name='name', field=models.CharField(help_text='Sample name.', max_length=200, validators=[django.core.validators.RegexValidator(re.compile('^[a-zA-Z0-9.\\-_]{1,200}$'))]), ), migrations.AlterField( model_name='sample', name='individual', field=models.ForeignKey(help_text='Individual associated with the sample.', on_delete=django.db.models.deletion.PROTECT, related_name='samples', to='fms_core.individual'), ), ]
py
b4079eddfd45ac100bf7714ab570d1accf2664bd
from processors.transformers import numerical_transformer, categorical_transformer from sklearn.compose import ColumnTransformer from instances import config preprocessor = ColumnTransformer( transformers=[ ('numerical', numerical_transformer, config.NUMERICAL_FEATURES), ('categorical', categorical_transformer, config.CATEGORICAL_FEATURES)])
py
b4079f169b354166d4184ef62617c1626622a045
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = [ 'GetPredictionModelStatusResult', 'AwaitableGetPredictionModelStatusResult', 'get_prediction_model_status', ] warnings.warn("""The 'latest' version is deprecated. Please migrate to the function in the top-level module: 'azure-native:customerinsights:getPredictionModelStatus'.""", DeprecationWarning) @pulumi.output_type class GetPredictionModelStatusResult: """ The prediction model status. """ def __init__(__self__, message=None, model_version=None, prediction_guid_id=None, prediction_name=None, signals_used=None, status=None, tenant_id=None, test_set_count=None, training_accuracy=None, training_set_count=None, validation_set_count=None): if message and not isinstance(message, str): raise TypeError("Expected argument 'message' to be a str") pulumi.set(__self__, "message", message) if model_version and not isinstance(model_version, str): raise TypeError("Expected argument 'model_version' to be a str") pulumi.set(__self__, "model_version", model_version) if prediction_guid_id and not isinstance(prediction_guid_id, str): raise TypeError("Expected argument 'prediction_guid_id' to be a str") pulumi.set(__self__, "prediction_guid_id", prediction_guid_id) if prediction_name and not isinstance(prediction_name, str): raise TypeError("Expected argument 'prediction_name' to be a str") pulumi.set(__self__, "prediction_name", prediction_name) if signals_used and not isinstance(signals_used, int): raise TypeError("Expected argument 'signals_used' to be a int") pulumi.set(__self__, "signals_used", signals_used) if status and not isinstance(status, str): raise TypeError("Expected argument 'status' to be a str") pulumi.set(__self__, "status", status) if tenant_id and not isinstance(tenant_id, str): raise TypeError("Expected argument 'tenant_id' to be a str") pulumi.set(__self__, "tenant_id", tenant_id) if test_set_count and not isinstance(test_set_count, int): raise TypeError("Expected argument 'test_set_count' to be a int") pulumi.set(__self__, "test_set_count", test_set_count) if training_accuracy and not isinstance(training_accuracy, int): raise TypeError("Expected argument 'training_accuracy' to be a int") pulumi.set(__self__, "training_accuracy", training_accuracy) if training_set_count and not isinstance(training_set_count, int): raise TypeError("Expected argument 'training_set_count' to be a int") pulumi.set(__self__, "training_set_count", training_set_count) if validation_set_count and not isinstance(validation_set_count, int): raise TypeError("Expected argument 'validation_set_count' to be a int") pulumi.set(__self__, "validation_set_count", validation_set_count) @property @pulumi.getter def message(self) -> str: """ The model status message. """ return pulumi.get(self, "message") @property @pulumi.getter(name="modelVersion") def model_version(self) -> str: """ Version of the model. """ return pulumi.get(self, "model_version") @property @pulumi.getter(name="predictionGuidId") def prediction_guid_id(self) -> str: """ The prediction GUID ID. """ return pulumi.get(self, "prediction_guid_id") @property @pulumi.getter(name="predictionName") def prediction_name(self) -> str: """ The prediction name. """ return pulumi.get(self, "prediction_name") @property @pulumi.getter(name="signalsUsed") def signals_used(self) -> int: """ The signals used. """ return pulumi.get(self, "signals_used") @property @pulumi.getter def status(self) -> str: """ Prediction model life cycle. When prediction is in PendingModelConfirmation status, it is allowed to update the status to PendingFeaturing or Active through API. """ return pulumi.get(self, "status") @property @pulumi.getter(name="tenantId") def tenant_id(self) -> str: """ The hub name. """ return pulumi.get(self, "tenant_id") @property @pulumi.getter(name="testSetCount") def test_set_count(self) -> int: """ Count of the test set. """ return pulumi.get(self, "test_set_count") @property @pulumi.getter(name="trainingAccuracy") def training_accuracy(self) -> int: """ The training accuracy. """ return pulumi.get(self, "training_accuracy") @property @pulumi.getter(name="trainingSetCount") def training_set_count(self) -> int: """ Count of the training set. """ return pulumi.get(self, "training_set_count") @property @pulumi.getter(name="validationSetCount") def validation_set_count(self) -> int: """ Count of the validation set. """ return pulumi.get(self, "validation_set_count") class AwaitableGetPredictionModelStatusResult(GetPredictionModelStatusResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetPredictionModelStatusResult( message=self.message, model_version=self.model_version, prediction_guid_id=self.prediction_guid_id, prediction_name=self.prediction_name, signals_used=self.signals_used, status=self.status, tenant_id=self.tenant_id, test_set_count=self.test_set_count, training_accuracy=self.training_accuracy, training_set_count=self.training_set_count, validation_set_count=self.validation_set_count) def get_prediction_model_status(hub_name: Optional[str] = None, prediction_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetPredictionModelStatusResult: """ The prediction model status. Latest API Version: 2017-04-26. :param str hub_name: The name of the hub. :param str prediction_name: The name of the Prediction. :param str resource_group_name: The name of the resource group. """ pulumi.log.warn("""get_prediction_model_status is deprecated: The 'latest' version is deprecated. Please migrate to the function in the top-level module: 'azure-native:customerinsights:getPredictionModelStatus'.""") __args__ = dict() __args__['hubName'] = hub_name __args__['predictionName'] = prediction_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:customerinsights/latest:getPredictionModelStatus', __args__, opts=opts, typ=GetPredictionModelStatusResult).value return AwaitableGetPredictionModelStatusResult( message=__ret__.message, model_version=__ret__.model_version, prediction_guid_id=__ret__.prediction_guid_id, prediction_name=__ret__.prediction_name, signals_used=__ret__.signals_used, status=__ret__.status, tenant_id=__ret__.tenant_id, test_set_count=__ret__.test_set_count, training_accuracy=__ret__.training_accuracy, training_set_count=__ret__.training_set_count, validation_set_count=__ret__.validation_set_count)
py
b4079f242a9cd1143d1d07281afb6c2a68f292b9
#!/usr/bin/env python3 -u # -*- coding: utf-8 -*- # copyright: sktime developers, BSD-3-Clause License (see LICENSE file) __author__ = ["Markus Löning"] __all__ = ["ESTIMATOR_TEST_PARAMS", "EXCLUDE_ESTIMATORS", "EXCLUDED_TESTS"] import numpy as np from hcrystalball.wrappers import HoltSmoothingWrapper from pyod.models.knn import KNN from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LinearRegression from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer from sklearn.preprocessing import StandardScaler from sktime.annotation.adapters import PyODAnnotator from sktime.base import BaseEstimator from sktime.classification.compose import ColumnEnsembleClassifier from sktime.classification.compose import ComposableTimeSeriesForestClassifier from sktime.classification.dictionary_based import ContractableBOSS from sktime.classification.dictionary_based import TemporalDictionaryEnsemble from sktime.classification.feature_based import ( Catch22Classifier, MatrixProfileClassifier, TSFreshClassifier, SignatureClassifier, ) from sktime.classification.hybrid import HIVECOTEV1 from sktime.classification.interval_based import CanonicalIntervalForest from sktime.classification.interval_based import DrCIF from sktime.classification.interval_based import RandomIntervalSpectralForest from sktime.classification.interval_based import SupervisedTimeSeriesForest from sktime.classification.interval_based import TimeSeriesForestClassifier as TSFC from sktime.classification.kernel_based import Arsenal from sktime.classification.kernel_based import ROCKETClassifier from sktime.classification.shapelet_based import ShapeletTransformClassifier from sktime.dists_kernels.compose_tab_to_panel import AggrDist from sktime.dists_kernels.scipy_dist import ScipyDist from sktime.forecasting.arima import AutoARIMA from sktime.forecasting.bats import BATS from sktime.forecasting.compose import ColumnEnsembleForecaster from sktime.forecasting.compose import DirRecTabularRegressionForecaster from sktime.forecasting.compose import DirRecTimeSeriesRegressionForecaster from sktime.forecasting.compose import DirectTabularRegressionForecaster from sktime.forecasting.compose import DirectTimeSeriesRegressionForecaster from sktime.forecasting.compose import EnsembleForecaster from sktime.forecasting.compose import ForecastingPipeline from sktime.forecasting.compose import MultioutputTabularRegressionForecaster from sktime.forecasting.compose import MultioutputTimeSeriesRegressionForecaster from sktime.forecasting.compose import MultiplexForecaster from sktime.forecasting.compose import RecursiveTabularRegressionForecaster from sktime.forecasting.compose import RecursiveTimeSeriesRegressionForecaster from sktime.forecasting.compose import StackingForecaster from sktime.forecasting.compose import AutoEnsembleForecaster from sktime.forecasting.compose import TransformedTargetForecaster from sktime.forecasting.exp_smoothing import ExponentialSmoothing from sktime.forecasting.fbprophet import Prophet from sktime.forecasting.hcrystalball import HCrystalBallForecaster from sktime.forecasting.model_selection import ForecastingGridSearchCV from sktime.forecasting.model_selection import ForecastingRandomizedSearchCV from sktime.forecasting.model_selection import SingleWindowSplitter from sktime.forecasting.naive import NaiveForecaster from sktime.forecasting.online_learning import OnlineEnsembleForecaster from sktime.forecasting.tbats import TBATS from sktime.forecasting.theta import ThetaForecaster from sktime.performance_metrics.forecasting import MeanAbsolutePercentageError from sktime.registry import ( ESTIMATOR_TAG_LIST, BASE_CLASS_LIST, BASE_CLASS_LOOKUP, TRANSFORMER_MIXIN_LIST, ) from sktime.regression.compose import ComposableTimeSeriesForestRegressor from sktime.series_as_features.compose import FeatureUnion from sktime.transformations.panel.compose import ColumnTransformer from sktime.transformations.panel.compose import ( SeriesToPrimitivesRowTransformer, ) from sktime.transformations.panel.compose import SeriesToSeriesRowTransformer from sktime.transformations.panel.dictionary_based import SFA from sktime.transformations.panel.interpolate import TSInterpolator from sktime.transformations.panel.reduce import Tabularizer from sktime.transformations.panel.shapelets import ContractedShapeletTransform from sktime.transformations.panel.shapelets import ShapeletTransform from sktime.transformations.panel.signature_based import SignatureTransformer from sktime.transformations.panel.summarize import FittedParamExtractor from sktime.transformations.panel.tsfresh import TSFreshFeatureExtractor from sktime.transformations.panel.tsfresh import ( TSFreshRelevantFeatureExtractor, ) from sktime.transformations.series.acf import AutoCorrelationTransformer from sktime.transformations.series.acf import PartialAutoCorrelationTransformer from sktime.transformations.series.adapt import TabularToSeriesAdaptor from sktime.transformations.series.boxcox import BoxCoxTransformer from sktime.transformations.series.compose import OptionalPassthrough from sktime.transformations.series.compose import ColumnwiseTransformer from sktime.transformations.series.detrend import Detrender from sktime.transformations.series.impute import Imputer from sktime.transformations.series.outlier_detection import HampelFilter from sktime.transformations.series.feature_selection import FeatureSelection # The following estimators currently do not pass all unit tests # What do they fail? ShapeDTW fails on 3d_numpy_input test, not set up for that EXCLUDE_ESTIMATORS = [ "ShapeDTW", "ElasticEnsemble", "ProximityForest", "ProximityStump", "ProximityTree", ] # This is temporary until BaseObject is implemented DIST_KERNELS_IGNORE_TESTS = [ "check_fit_updates_state", "_make_fit_args", "check_fit_returns_self", "check_raises_not_fitted_error", "check_fit_idempotent", "check_fit_does_not_overwrite_hyper_params", "check_methods_do_not_change_state", "check_persistence_via_pickle", ] EXCLUDED_TESTS = { "ShapeletTransformClassifier": ["check_fit_idempotent"], "ContractedShapeletTransform": ["check_fit_idempotent"], "HIVECOTEV1": ["check_fit_idempotent", "check_multiprocessing_idempotent"], "ScipyDist": DIST_KERNELS_IGNORE_TESTS, "AggrDist": DIST_KERNELS_IGNORE_TESTS, } # We here configure estimators for basic unit testing, including setting of # required hyper-parameters and setting of hyper-parameters for faster training. SERIES_TO_SERIES_TRANSFORMER = StandardScaler() SERIES_TO_PRIMITIVES_TRANSFORMER = FunctionTransformer( np.mean, kw_args={"axis": 0}, check_inverse=False ) TRANSFORMERS = [ ( "transformer1", SeriesToSeriesRowTransformer( SERIES_TO_SERIES_TRANSFORMER, check_transformer=False ), ), ( "transformer2", SeriesToSeriesRowTransformer( SERIES_TO_SERIES_TRANSFORMER, check_transformer=False ), ), ] REGRESSOR = LinearRegression() ANOMALY_DETECTOR = KNN() TIME_SERIES_CLASSIFIER = TSFC(n_estimators=3) TIME_SERIES_CLASSIFIERS = [ ("tsf1", TIME_SERIES_CLASSIFIER), ("tsf2", TIME_SERIES_CLASSIFIER), ] FORECASTER = ExponentialSmoothing() FORECASTERS = [("ses1", FORECASTER), ("ses2", FORECASTER)] STEPS_y = [ ("transformer", Detrender(ThetaForecaster())), ("forecaster", NaiveForecaster()), ] STEPS_X = [ ("transformer", TabularToSeriesAdaptor(StandardScaler())), ("forecaster", NaiveForecaster()), ] ESTIMATOR_TEST_PARAMS = { ColumnEnsembleForecaster: {"forecasters": FORECASTER}, OnlineEnsembleForecaster: {"forecasters": FORECASTERS}, FeatureUnion: {"transformer_list": TRANSFORMERS}, DirectTabularRegressionForecaster: {"estimator": REGRESSOR}, MultioutputTabularRegressionForecaster: {"estimator": REGRESSOR}, RecursiveTabularRegressionForecaster: {"estimator": REGRESSOR}, DirRecTabularRegressionForecaster: {"estimator": REGRESSOR}, DirectTimeSeriesRegressionForecaster: { "estimator": make_pipeline(Tabularizer(), REGRESSOR) }, RecursiveTimeSeriesRegressionForecaster: { "estimator": make_pipeline(Tabularizer(), REGRESSOR) }, MultioutputTimeSeriesRegressionForecaster: { "estimator": make_pipeline(Tabularizer(), REGRESSOR) }, DirRecTimeSeriesRegressionForecaster: { "estimator": make_pipeline(Tabularizer(), REGRESSOR) }, TransformedTargetForecaster: {"steps": STEPS_y}, ForecastingPipeline: {"steps": STEPS_X}, EnsembleForecaster: {"forecasters": FORECASTERS}, StackingForecaster: {"forecasters": FORECASTERS}, AutoEnsembleForecaster: {"forecasters": FORECASTERS}, Detrender: {"forecaster": FORECASTER}, ForecastingGridSearchCV: { "forecaster": NaiveForecaster(strategy="mean"), "cv": SingleWindowSplitter(fh=1), "param_grid": {"window_length": [2, 5]}, "scoring": MeanAbsolutePercentageError(symmetric=True), }, ForecastingRandomizedSearchCV: { "forecaster": NaiveForecaster(strategy="mean"), "cv": SingleWindowSplitter(fh=1), "param_distributions": {"window_length": [2, 5]}, "scoring": MeanAbsolutePercentageError(symmetric=True), }, TabularToSeriesAdaptor: {"transformer": StandardScaler()}, ColumnEnsembleClassifier: { "estimators": [ (name, estimator, 0) for (name, estimator) in TIME_SERIES_CLASSIFIERS ] }, FittedParamExtractor: { "forecaster": FORECASTER, "param_names": ["initial_level"], }, SeriesToPrimitivesRowTransformer: { "transformer": SERIES_TO_PRIMITIVES_TRANSFORMER, "check_transformer": False, }, SeriesToSeriesRowTransformer: { "transformer": SERIES_TO_SERIES_TRANSFORMER, "check_transformer": False, }, ColumnTransformer: { "transformers": [(name, estimator, [0]) for name, estimator in TRANSFORMERS] }, AutoARIMA: { "d": 0, "suppress_warnings": True, "max_p": 2, "max_q": 2, "seasonal": False, }, MultiplexForecaster: { "forecasters": [ ("Naive_mean", NaiveForecaster(strategy="mean")), ("Naive_last", NaiveForecaster(strategy="last")), ("Naive_drift", NaiveForecaster(strategy="drift")), ], "selected_forecaster": "Naive_mean", }, ShapeletTransformClassifier: { "n_estimators": 3, "transform_contract_in_mins": 0.075, }, ContractedShapeletTransform: {"time_contract_in_mins": 0.075}, ShapeletTransform: { "max_shapelets_to_store_per_class": 1, "min_shapelet_length": 3, "max_shapelet_length": 4, }, SignatureTransformer: { "augmentation_list": ("basepoint", "addtime"), "depth": 3, "window_name": "global", }, SignatureClassifier: { "augmentation_list": ("basepoint", "addtime"), "depth": 3, "window_name": "global", }, Catch22Classifier: { "estimator": RandomForestClassifier(n_estimators=3), }, MatrixProfileClassifier: { "subsequence_length": 4, }, TSFreshClassifier: { "estimator": RandomForestClassifier(n_estimators=3), "default_fc_parameters": "minimal", }, ROCKETClassifier: {"num_kernels": 100}, Arsenal: {"num_kernels": 50, "n_estimators": 3}, HIVECOTEV1: { "stc_params": {"n_estimators": 2, "transform_contract_in_mins": 0.02}, "tsf_params": {"n_estimators": 2}, "rise_params": {"n_estimators": 2}, "cboss_params": {"n_parameter_samples": 4, "max_ensemble_size": 2}, }, TSFreshFeatureExtractor: {"disable_progressbar": True, "show_warnings": False}, TSFreshRelevantFeatureExtractor: { "disable_progressbar": True, "show_warnings": False, "fdr_level": 0.01, }, TSInterpolator: {"length": 10}, RandomIntervalSpectralForest: {"n_estimators": 3, "acf_lag": 10, "min_interval": 5}, SFA: {"return_pandas_data_series": True}, ContractableBOSS: {"n_parameter_samples": 10, "max_ensemble_size": 5}, TemporalDictionaryEnsemble: { "n_parameter_samples": 10, "max_ensemble_size": 5, "randomly_selected_params": 5, }, TSFC: {"n_estimators": 3}, ComposableTimeSeriesForestClassifier: {"n_estimators": 3}, ComposableTimeSeriesForestRegressor: {"n_estimators": 3}, SupervisedTimeSeriesForest: {"n_estimators": 3}, CanonicalIntervalForest: {"n_estimators": 3}, DrCIF: {"n_estimators": 3}, HCrystalBallForecaster: {"model": HoltSmoothingWrapper()}, BATS: { "use_box_cox": False, "use_trend": False, "use_damped_trend": False, "sp": [], "use_arma_errors": False, "n_jobs": 1, }, TBATS: { "use_box_cox": False, "use_trend": False, "use_damped_trend": False, "sp": [], "use_arma_errors": False, "n_jobs": 1, }, Prophet: { "n_changepoints": 0, "yearly_seasonality": False, "weekly_seasonality": False, "daily_seasonality": False, "uncertainty_samples": 1000, "verbose": False, }, PartialAutoCorrelationTransformer: {"n_lags": 1}, AutoCorrelationTransformer: {"n_lags": 1}, Imputer: {"method": "mean"}, HampelFilter: {"window_length": 3}, OptionalPassthrough: {"transformer": BoxCoxTransformer(), "passthrough": True}, FeatureSelection: {"method": "all"}, ColumnwiseTransformer: {"transformer": Detrender()}, AggrDist: {"transformer": ScipyDist()}, PyODAnnotator: {"estimator": ANOMALY_DETECTOR}, } # We use estimator tags in addition to class hierarchies to further distinguish # estimators into different categories. This is useful for defining and running # common tests for estimators with the same tags. VALID_ESTIMATOR_TAGS = tuple(ESTIMATOR_TAG_LIST) # These methods should not change the state of the estimator, that is, they should # not change fitted parameters or hyper-parameters. They are also the methods that # "apply" the fitted estimator to data and useful for checking results. NON_STATE_CHANGING_METHODS = ( "predict", "predict_proba", "decision_function", "transform", "inverse_transform", ) # The following gives a list of valid estimator base classes. VALID_TRANSFORMER_TYPES = tuple(TRANSFORMER_MIXIN_LIST) VALID_ESTIMATOR_BASE_TYPES = tuple(BASE_CLASS_LIST) VALID_ESTIMATOR_TYPES = ( BaseEstimator, *VALID_ESTIMATOR_BASE_TYPES, *VALID_TRANSFORMER_TYPES, ) VALID_ESTIMATOR_BASE_TYPE_LOOKUP = BASE_CLASS_LOOKUP
py
b407a0b3ccf7e852ec6ea712ed1299b224a37830
import sys import os import glob import argparse import numpy as np from os.path import expanduser import h5py import pickle from time import time import subprocess velocity_bound=10000. def retrieve_commit_hash(path_to_repo): """ Return the commit hash of the git branch currently live in the input path. Parameters ---------- path_to_repo : string Returns ------- commit_hash : string """ cmd = 'cd {0} && git rev-parse HEAD'.format(path_to_repo) return subprocess.check_output(cmd, shell=True).strip() def velocity_bug_fix(output_snapshot, scalefactor=1.0): """ output_snapshot: dict containing mock data to be modified scale: correction factor for velocities """ #overwrite with corrected values for d in ['x', 'y', 'z']: print(".....Correcting v{}'s".format(d)) corrected_halo_velocity = output_snapshot['target_halo_v{}'.format(d)]*scalefactor host_centric_v = output_snapshot['host_centric_v{}'.format(d)] corrected_galaxy_velocity = corrected_halo_velocity + host_centric_v output_snapshot['target_halo_v{}'.format(d)] = corrected_halo_velocity output_snapshot['v{}'.format(d)] = corrected_galaxy_velocity return output_snapshot def mask_large_velocities(output_snapshot, max_value=velocity_bound): total = len(output_snapshot['target_halo_vx']) mask = np.ones(total, dtype=bool) for d in ['x', 'y', 'z']: mask &= np.abs(output_snapshot['target_halo_v{}'.format(d)]) < max_value nbad = np.sum(~mask) print('.....Masking {} galaxy(ies); total = {}; fraction = {}'.format(nbad, total, nbad/float(total))) return mask def apply_mask(output_snapshot, mask): for k in output_snapshot.keys(): output_snapshot[k] = output_snapshot[k][mask] return output_snapshot def healpix_mock_modify(healpix_filename, commit_hash, functions=None, correction_data=None): output_mock = {} masks_used = {} print('Starting correction of {}'.format(os.path.basename(healpix_filename))) with h5py.File(healpix_filename, 'r') as fh: print('...copying input to output_mock') #copy input mock to output mock for (k, v) in fh.items(): if k.isdigit(): output_snapshot = {} for kk, vv in v.items(): output_snapshot[kk] = vv.value output_mock[k] = output_snapshot print('...Keys copied to output mock: {}'.format(', '.join(output_mock.keys()))) for f in functions: corrections = correction_data.get(str(f),{}) for (k, v) in output_mock.items(): if k.isdigit(): if len(v) == 0: print('Skipping empty snap {}'.format(k)) continue print('...Processing snap {} with {} and data-correction value(s) {}'.format(k, str(f), corrections[int(k)])) output_mock[k] = f(v, corrections[int(k)]) #apply masks mask = mask_large_velocities(output_mock[k], max_value=velocity_bound) output_mock[k] = apply_mask(output_mock[k], mask) print('...Masked length of arrays in snapshot {} = {}'.format(k, len(output_mock[k]['galaxy_id']))) masks_used['large_velocities'] = mask_large_velocities del mask # copy and correct metaData k = 'metaData' output_mock[k] = {} for tk, v in fh[k].items(): output_mock[k][tk] = v.value output_mock[k]['versionMinorMinor'] += 1 for n, f in enumerate(functions): ckey = 'comment_'+str(n) output_mock[k][ckey] = ' '.join(['Corrected with', str(f)]) print('...Adding metaData comment: {}'.format(output_mock[k][ckey])) for tk, v in masks_used.items(): ckey = 'mask_'+tk output_mock[k][ckey] = ' '.join(['Corrected with', str(v)]) print('...Adding metaData comment: {}'.format(output_mock[k][ckey])) output_mock[k]['current_commit_hash'] = commit_hash return output_mock def write_output_mock(output_mock, output_healpix_file): hdfFile = h5py.File(output_healpix_file, 'w') for k, v in output_mock.items(): gGroup = hdfFile.create_group(k) for tk in v.keys(): gGroup[tk] = v[tk] hdfFile.close() print('...Wrote {} to disk'.format(output_healpix_file)) return home = expanduser("~") path_to_cosmodc2 = os.path.join(home, 'cosmology/cosmodc2') if 'mira-home' in home: sys.path.insert(0, '/gpfs/mira-home/ekovacs/.local/lib/python2.7/site-packages') sys.path.insert(0, path_to_cosmodc2) parser = argparse.ArgumentParser() parser.add_argument("-cutout", help="healpix cutout number to modify", default='*') parser.add_argument("-healpix_fname_template", help="Template filename of healpix cutout to modify", default='baseDC2*cutout_{}.hdf5') parser.add_argument("-input_master_dirname", help="Directory name (relative to home) storing input and output healpix file directories", default='cosmology/DC2/OR_Production') parser.add_argument("-output_mock_dirname", help="Directory name (relative to input_master_dirname) storing output mock healpix files", default='baseDC2_9.8C_v1.1_velocity_bug_fixes') # default='baseDC2_min_9.8_centrals_v0.4.7_velocity_bug_fixes') parser.add_argument("-input_mock_dirname", help="Directory name (relative to input_master_dirname) storing input mock healpix files", default='baseDC2_9.8C_v1.1') # default='baseDC2_min_9.8_centrals_v0.4.5') # default='baseDC2_min_9.8_centrals_v0.4.5_test') parser.add_argument("-modify_functions", help="Functions applied to modify input -> output", nargs='+', choices=[velocity_bug_fix], default=[velocity_bug_fix]) args = parser.parse_args() #setup directory names input_master_dirname = os.path.join(home, args.input_master_dirname) input_mock_dirname = os.path.join(input_master_dirname, args.input_mock_dirname) output_mock_dirname = os.path.join(input_master_dirname, args.output_mock_dirname) healpix_filename = args.healpix_fname_template.format(args.cutout) function_list = args.modify_functions print('Reading input from {}\n'.format(input_mock_dirname)) print('Writing output to {}\n'.format(output_mock_dirname)) print('Modifying healpix files matching {} with function(s) {}\n'.format(healpix_filename, function_list)) current_commit_hash = retrieve_commit_hash(path_to_cosmodc2)[0:7] print('Using current commit hash {}'.format(current_commit_hash)) #load additional data needed for corrections correction_data = {} function_names = map(str, function_list) for f in map(str, function_list): if 'velocity_bug_fix' in f: datfile = os.path.join(path_to_cosmodc2, 'scripts/velocity_correction_factors.pkl') #text file option #datfile = os.path.join(path_to_cosmodc2, 'scripts/velocity_correction_factors.txt') #ts, sf = np.loadtxt(datfile, unpack=True, usecols=[0, 1]) #correction_data[f] =dict(zip(ts.astype(int), sf)) with open(datfile, 'rb') as handle: correction_data[f] = pickle.load(handle) print('Using correction data input from {}\n'.format(datfile)) healpix_files = sorted(glob.glob(os.path.join(input_mock_dirname, healpix_filename))) start_time = time() for hpx in healpix_files: start_file = time() output_mock = healpix_mock_modify(hpx, current_commit_hash, functions=function_list, correction_data=correction_data) output_healpix_file = os.path.join(output_mock_dirname, os.path.basename(hpx)) write_output_mock(output_mock, output_healpix_file) end_file = time() print('Processed {} in {:.2f} minutes\n'.format(os.path.basename(output_healpix_file), (end_file - start_file)/60.)) time_stamp = time() msg = "End-to-end runtime = {0:.2f} minutes\n" print(msg.format((time_stamp-start_time)/60.))
py
b407a0e0e8d58ca00acc178ecd4fc7c7389ce850
######## Video Object Detection Using Tensorflow-trained Classifier ######### # # Author: Evan Juras # Date: 1/16/18 # Description: # This program uses a TensorFlow-trained classifier to perform object detection. # It loads the classifier uses it to perform object detection on a video. # It draws boxes and scores around the objects of interest in each frame # of the video. # Some of the code is copied from Google's example at # https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb # and some is copied from Dat Tran's exampsle at # https://github.com/datitran/object_detector_app/blob/master/object_detection_app.py # but I changed it to make it more understandable to me. # Import packages from image_processing_utils import find_turn_angle from utils import visualization_utils as vis_util from utils import label_map_util import os import cv2 import numpy as np import tensorflow as tf import sys # Modeli devreye sokma MODEL_ACTIVE = True # KEEP = True SHOW = True SHOW_ORIGINAL = True # Name of the directory containing the object detection module we're using MODEL_DIR = 'model' VIDEO_PATH = r'test/test.mp4' # Grab path to current working directory CWD_PATH = os.getcwd() # Path to frozen detection graph .pb file, which contains the model that is used # for object detection. PATH_TO_CKPT = os.path.join(CWD_PATH, MODEL_DIR, 'ali_model.pb') # Path to label map file PATH_TO_LABELS = os.path.join(CWD_PATH, MODEL_DIR, 'labelmap.pbtxt') # Path to video PATH_TO_VIDEO = os.path.join(CWD_PATH, VIDEO_PATH) # Number of classes the object detector can identify NUM_CLASSES = 14 # Alt algılama sınırı (olasılık %) MIN_SCORE_THRESH = 0.60 # OUT = cv2.VideoWriter( # 'OUTput.avi', # cv2.VideoWriter_fourcc(*'XVID'), # 5.0, # (640, 400) # ) if KEEP else None if MODEL_ACTIVE: # Load the label map. # Label maps map indices to category names, so that when our convolution # network predicts `5`, we know that this corresponds to `king`. # Here we use internal utility functions, but anything that returns a # dictionary mapping integers to appropriate string labels would be fine label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) # Load the Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') sess = tf.Session(graph=detection_graph) # Define input and output tensors (i.e. data) for the object detection classifier # Input tensor is the image image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Output tensors are the detection boxes, scores, and classes # Each box represents a part of the image where a particular object was detected detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represents level of confidence for each of the objects. # The score is shown on the result image, together with the class label. detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name( 'detection_classes:0') # Number of objects detected num_detections = detection_graph.get_tensor_by_name('num_detections:0') # Open video file video = cv2.VideoCapture(PATH_TO_VIDEO) while(video.isOpened()): # Acquire frame and expand frame dimensions to have shape: [1, None, None, 3] ret, frame = video.read() # Frame varsa kontrol yapma if frame is not None: # İlk videoyu ekrana basma cv2.imshow('Orjinal Video', frame) if SHOW_ORIGINAL else None if MODEL_ACTIVE: frame_expanded = np.expand_dims(frame, axis=0) # Perform the actual detection by running the model with the image as input (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: frame_expanded}) # Draw the results of the detection (aka 'visulaize the results') vis_util.visualize_boxes_and_labels_on_image_array( frame, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8, min_score_thresh=MIN_SCORE_THRESH) try: data = find_turn_angle(frame) if data is not None: frame, data = data print("Dönüş değerleri:", "Sol" if data[0] < 0 else "Sağ", "Pixel uzunluğu:", data[1]) except: print("Görüntü işlemede sorun meydana geldi") # Sonucu ekrana basma cv2.imshow('Islenmis Video', frame) if SHOW else None # Sonucu videoya kayıt etme # OUT.write(frame) if KEEP else None else: print("Frame değeri None olarak geldi, video kapatıldı.") break # Press 'q' to quit if cv2.waitKey(1) == ord('q'): break # Clean up video.release() cv2.destroyAllWindows() # OUT.release() if KEEP else None
py
b407a4062b7232381c5e1ede5b8e8a78e1188e85
import concurrent.futures as futures import os import pathlib import re from collections import OrderedDict import numpy as np from skimage import io def area(boxes, add1=False): """Computes area of boxes. Args: boxes: Numpy array with shape [N, 4] holding N boxes Returns: a numpy array with shape [N*1] representing box areas """ if add1: return (boxes[:, 2] - boxes[:, 0] + 1.0) * ( boxes[:, 3] - boxes[:, 1] + 1.0) else: return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) def intersection(boxes1, boxes2, add1=False): """Compute pairwise intersection areas between boxes. Args: boxes1: a numpy array with shape [N, 4] holding N boxes boxes2: a numpy array with shape [M, 4] holding M boxes Returns: a numpy array with shape [N*M] representing pairwise intersection area """ [y_min1, x_min1, y_max1, x_max1] = np.split(boxes1, 4, axis=1) [y_min2, x_min2, y_max2, x_max2] = np.split(boxes2, 4, axis=1) all_pairs_min_ymax = np.minimum(y_max1, np.transpose(y_max2)) all_pairs_max_ymin = np.maximum(y_min1, np.transpose(y_min2)) if add1: all_pairs_min_ymax += 1.0 intersect_heights = np.maximum( np.zeros(all_pairs_max_ymin.shape), all_pairs_min_ymax - all_pairs_max_ymin) all_pairs_min_xmax = np.minimum(x_max1, np.transpose(x_max2)) all_pairs_max_xmin = np.maximum(x_min1, np.transpose(x_min2)) if add1: all_pairs_min_xmax += 1.0 intersect_widths = np.maximum( np.zeros(all_pairs_max_xmin.shape), all_pairs_min_xmax - all_pairs_max_xmin) return intersect_heights * intersect_widths def iou(boxes1, boxes2, add1=False): """Computes pairwise intersection-over-union between box collections. Args: boxes1: a numpy array with shape [N, 4] holding N boxes. boxes2: a numpy array with shape [M, 4] holding N boxes. Returns: a numpy array with shape [N, M] representing pairwise iou scores. """ intersect = intersection(boxes1, boxes2, add1) area1 = area(boxes1, add1) area2 = area(boxes2, add1) union = np.expand_dims( area1, axis=1) + np.expand_dims( area2, axis=0) - intersect return intersect / union def get_image_index_str(img_idx): return "{:06d}".format(img_idx) def get_kitti_info_path(idx, prefix, info_type='image_2', file_tail='.png', training=True, relative_path=True, exist_check=True): img_idx_str = get_image_index_str(idx) img_idx_str += file_tail prefix = pathlib.Path(prefix) if training: file_path = pathlib.Path('training') / info_type / img_idx_str else: file_path = pathlib.Path('testing') / info_type / img_idx_str if exist_check and not (prefix / file_path).exists(): raise ValueError("file not exist: {}".format(file_path)) if relative_path: return str(file_path) else: return str(prefix / file_path) def get_image_path(idx, prefix, training=True, relative_path=True, exist_check=True): return get_kitti_info_path(idx, prefix, 'image_2', '.png', training, relative_path, exist_check) def get_label_path(idx, prefix, training=True, relative_path=True, exist_check=True): return get_kitti_info_path(idx, prefix, 'label_2', '.txt', training, relative_path, exist_check) def get_velodyne_path(idx, prefix, training=True, relative_path=True, exist_check=True): return get_kitti_info_path(idx, prefix, 'velodyne', '.bin', training, relative_path, exist_check) def get_calib_path(idx, prefix, training=True, relative_path=True, exist_check=True): return get_kitti_info_path(idx, prefix, 'calib', '.txt', training, relative_path, exist_check) def _extend_matrix(mat): mat = np.concatenate([mat, np.array([[0., 0., 0., 1.]])], axis=0) return mat def get_kitti_image_info(path, training=True, label_info=True, velodyne=False, calib=False, image_ids=7481, extend_matrix=True, num_worker=8, relative_path=True, with_imageshape=True): # image_infos = [] root_path = pathlib.Path(path) if not isinstance(image_ids, list): image_ids = list(range(image_ids)) def map_func(idx): image_info = {'image_idx': idx, 'pointcloud_num_features': 4} annotations = None if velodyne: image_info['velodyne_path'] = get_velodyne_path( idx, path, training, relative_path) image_info['img_path'] = get_image_path(idx, path, training, relative_path) if with_imageshape: img_path = image_info['img_path'] if relative_path: img_path = str(root_path / img_path) image_info['img_shape'] = np.array( io.imread(img_path).shape[:2], dtype=np.int32) if label_info: label_path = get_label_path(idx, path, training, relative_path) if relative_path: label_path = str(root_path / label_path) annotations = get_label_anno(label_path) if calib: calib_path = get_calib_path( idx, path, training, relative_path=False) with open(calib_path, 'r') as f: lines = f.readlines() P0 = np.array( [float(info) for info in lines[0].split(' ')[1:13]]).reshape( [3, 4]) P1 = np.array( [float(info) for info in lines[1].split(' ')[1:13]]).reshape( [3, 4]) P2 = np.array( [float(info) for info in lines[2].split(' ')[1:13]]).reshape( [3, 4]) P3 = np.array( [float(info) for info in lines[3].split(' ')[1:13]]).reshape( [3, 4]) if extend_matrix: P0 = _extend_matrix(P0) P1 = _extend_matrix(P1) P2 = _extend_matrix(P2) P3 = _extend_matrix(P3) image_info['calib/P0'] = P0 image_info['calib/P1'] = P1 image_info['calib/P2'] = P2 image_info['calib/P3'] = P3 R0_rect = np.array([ float(info) for info in lines[4].split(' ')[1:10] ]).reshape([3, 3]) if extend_matrix: rect_4x4 = np.zeros([4, 4], dtype=R0_rect.dtype) rect_4x4[3, 3] = 1. rect_4x4[:3, :3] = R0_rect else: rect_4x4 = R0_rect image_info['calib/R0_rect'] = rect_4x4 Tr_velo_to_cam = np.array([ float(info) for info in lines[5].split(' ')[1:13] ]).reshape([3, 4]) Tr_imu_to_velo = np.array([ float(info) for info in lines[6].split(' ')[1:13] ]).reshape([3, 4]) if extend_matrix: Tr_velo_to_cam = _extend_matrix(Tr_velo_to_cam) Tr_imu_to_velo = _extend_matrix(Tr_imu_to_velo) image_info['calib/Tr_velo_to_cam'] = Tr_velo_to_cam image_info['calib/Tr_imu_to_velo'] = Tr_imu_to_velo if annotations is not None: image_info['annos'] = annotations add_difficulty_to_annos(image_info) return image_info with futures.ThreadPoolExecutor(num_worker) as executor: image_infos = executor.map(map_func, image_ids) return list(image_infos) def label_str_to_int(labels, remove_dontcare=True, dtype=np.int32): class_to_label = get_class_to_label_map() ret = np.array([class_to_label[l] for l in labels], dtype=dtype) if remove_dontcare: ret = ret[ret > 0] return ret def get_class_to_label_map(): class_to_label = { 'Car': 0, 'Pedestrian': 1, 'Cyclist': 2, 'Van': 3, 'Person_sitting': 4, 'Truck': 5, 'Tram': 6, 'Misc': 7, 'DontCare': -1, } return class_to_label def get_classes(): return get_class_to_label_map().keys() def filter_gt_boxes(gt_boxes, gt_labels, used_classes): mask = np.array([l in used_classes for l in gt_labels], dtype=np.bool) return mask def filter_anno_by_mask(image_anno, mask): img_filtered_annotations = {} for key in image_anno.keys(): img_filtered_annotations[key] = ( image_anno[key][mask]) return img_filtered_annotations def filter_infos_by_used_classes(infos, used_classes): new_infos = [] for info in infos: annos = info["annos"] name_in_info = False for name in used_classes: if name in annos["name"]: name_in_info = True break if name_in_info: new_infos.append(info) return new_infos def remove_dontcare(image_anno): img_filtered_annotations = {} relevant_annotation_indices = [ i for i, x in enumerate(image_anno['name']) if x != "DontCare" ] for key in image_anno.keys(): img_filtered_annotations[key] = ( image_anno[key][relevant_annotation_indices]) return img_filtered_annotations def remove_low_height(image_anno, thresh): img_filtered_annotations = {} relevant_annotation_indices = [ i for i, s in enumerate(image_anno['bbox']) if (s[3] - s[1]) >= thresh ] for key in image_anno.keys(): img_filtered_annotations[key] = ( image_anno[key][relevant_annotation_indices]) return img_filtered_annotations def remove_low_score(image_anno, thresh): img_filtered_annotations = {} relevant_annotation_indices = [ i for i, s in enumerate(image_anno['score']) if s >= thresh ] for key in image_anno.keys(): img_filtered_annotations[key] = ( image_anno[key][relevant_annotation_indices]) return img_filtered_annotations def keep_arrays_by_name(gt_names, used_classes): inds = [ i for i, x in enumerate(gt_names) if x in used_classes ] inds = np.array(inds, dtype=np.int64) return inds def drop_arrays_by_name(gt_names, used_classes): inds = [ i for i, x in enumerate(gt_names) if x not in used_classes ] inds = np.array(inds, dtype=np.int64) return inds def apply_mask_(array_dict): pass def filter_kitti_anno(image_anno, used_classes, used_difficulty=None, dontcare_iou=None): if not isinstance(used_classes, (list, tuple, np.ndarray)): used_classes = [used_classes] img_filtered_annotations = {} relevant_annotation_indices = [ i for i, x in enumerate(image_anno['name']) if x in used_classes ] for key in image_anno.keys(): img_filtered_annotations[key] = ( image_anno[key][relevant_annotation_indices]) if used_difficulty is not None: relevant_annotation_indices = [ i for i, x in enumerate(img_filtered_annotations['difficulty']) if x in used_difficulty ] for key in image_anno.keys(): img_filtered_annotations[key] = ( img_filtered_annotations[key][relevant_annotation_indices]) if 'DontCare' in used_classes and dontcare_iou is not None: dont_care_indices = [ i for i, x in enumerate(img_filtered_annotations['name']) if x == 'DontCare' ] # bounding box format [y_min, x_min, y_max, x_max] all_boxes = img_filtered_annotations['bbox'] ious = iou(all_boxes, all_boxes[dont_care_indices]) # Remove all bounding boxes that overlap with a dontcare region. if ious.size > 0: boxes_to_remove = np.amax(ious, axis=1) > dontcare_iou for key in image_anno.keys(): img_filtered_annotations[key] = (img_filtered_annotations[key][ np.logical_not(boxes_to_remove)]) return img_filtered_annotations def filter_annos_class(image_annos, used_class): new_image_annos = [] for anno in image_annos: img_filtered_annotations = {} relevant_annotation_indices = [ i for i, x in enumerate(anno['name']) if x in used_class ] for key in anno.keys(): img_filtered_annotations[key] = ( anno[key][relevant_annotation_indices]) new_image_annos.append(img_filtered_annotations) return new_image_annos def filter_annos_low_score(image_annos, thresh): new_image_annos = [] for anno in image_annos: img_filtered_annotations = {} relevant_annotation_indices = [ i for i, s in enumerate(anno['score']) if s >= thresh ] for key in anno.keys(): img_filtered_annotations[key] = ( anno[key][relevant_annotation_indices]) new_image_annos.append(img_filtered_annotations) return new_image_annos def filter_annos_difficulty(image_annos, used_difficulty): new_image_annos = [] for anno in image_annos: img_filtered_annotations = {} relevant_annotation_indices = [ i for i, x in enumerate(anno['difficulty']) if x in used_difficulty ] for key in anno.keys(): img_filtered_annotations[key] = ( anno[key][relevant_annotation_indices]) new_image_annos.append(img_filtered_annotations) return new_image_annos def filter_annos_low_height(image_annos, thresh): new_image_annos = [] for anno in image_annos: img_filtered_annotations = {} relevant_annotation_indices = [ i for i, s in enumerate(anno['bbox']) if (s[3] - s[1]) >= thresh ] for key in anno.keys(): img_filtered_annotations[key] = ( anno[key][relevant_annotation_indices]) new_image_annos.append(img_filtered_annotations) return new_image_annos def filter_empty_annos(image_annos): new_image_annos = [] for anno in image_annos: if anno["name"].shape[0] > 0: new_image_annos.append(anno.copy()) return new_image_annos def kitti_result_line(result_dict, precision=4): prec_float = "{" + ":.{}f".format(precision) + "}" res_line = [] all_field_default = OrderedDict([ ('name', None), ('truncated', -1), ('occluded', -1), ('alpha', -10), ('bbox', None), ('dimensions', [-1, -1, -1]), ('location', [-1000, -1000, -1000]), ('rotation_y', -10), ('score', 0.0), ]) res_dict = [(key, None) for key, val in all_field_default.items()] res_dict = OrderedDict(res_dict) for key, val in result_dict.items(): if all_field_default[key] is None and val is None: raise ValueError("you must specify a value for {}".format(key)) res_dict[key] = val for key, val in res_dict.items(): if key == 'name': res_line.append(val) elif key in ['truncated', 'alpha', 'rotation_y', 'score']: if val is None: res_line.append(str(all_field_default[key])) else: res_line.append(prec_float.format(val)) elif key == 'occluded': if val is None: res_line.append(str(all_field_default[key])) else: res_line.append('{}'.format(val)) elif key in ['bbox', 'dimensions', 'location']: if val is None: res_line += [str(v) for v in all_field_default[key]] else: res_line += [prec_float.format(v) for v in val] else: raise ValueError("unknown key. supported key:{}".format( res_dict.keys())) return ' '.join(res_line) def annos_to_kitti_label(annos): num_instance = len(annos["name"]) result_lines = [] for i in range(num_instance): result_dict = { 'name': annos["name"][i], 'truncated': annos["truncated"][i], 'occluded': annos["occluded"][i], 'alpha':annos["alpha"][i], 'bbox': annos["bbox"][i], 'dimensions': annos["dimensions"][i], 'location': annos["location"][i], 'rotation_y': annos["rotation_y"][i], 'score': annos['score'][i] } line = kitti_result_line(result_dict) result_lines.append(line) return result_lines def add_difficulty_to_annos(info): min_height = [40, 25, 25] # minimum height for evaluated groundtruth/detections max_occlusion = [ 0, 1, 2 ] # maximum occlusion level of the groundtruth used for evaluation max_trunc = [ 0.15, 0.3, 0.5 ] # maximum truncation level of the groundtruth used for evaluation annos = info['annos'] dims = annos['dimensions'] # lhw format bbox = annos['bbox'] height = bbox[:, 3] - bbox[:, 1] occlusion = annos['occluded'] truncation = annos['truncated'] diff = [] easy_mask = np.ones((len(dims), ), dtype=np.bool) moderate_mask = np.ones((len(dims), ), dtype=np.bool) hard_mask = np.ones((len(dims), ), dtype=np.bool) i = 0 for h, o, t in zip(height, occlusion, truncation): if o > max_occlusion[0] or h <= min_height[0] or t > max_trunc[0]: easy_mask[i] = False if o > max_occlusion[1] or h <= min_height[1] or t > max_trunc[1]: moderate_mask[i] = False if o > max_occlusion[2] or h <= min_height[2] or t > max_trunc[2]: hard_mask[i] = False i += 1 is_easy = easy_mask is_moderate = np.logical_xor(easy_mask, moderate_mask) is_hard = np.logical_xor(hard_mask, moderate_mask) for i in range(len(dims)): if is_easy[i]: diff.append(0) elif is_moderate[i]: diff.append(1) elif is_hard[i]: diff.append(2) else: diff.append(-1) annos["difficulty"] = np.array(diff, np.int32) return diff def add_difficulty_to_annos_v2(info): min_height = [40, 25, 25] # minimum height for evaluated groundtruth/detections max_occlusion = [ 0, 1, 2 ] # maximum occlusion level of the groundtruth used for evaluation max_trunc = [ 0.15, 0.3, 0.5 ] # maximum truncation level of the groundtruth used for evaluation annos = info['annos'] dims = annos['dimensions'] # lhw format bbox = annos['bbox'] height = bbox[:, 3] - bbox[:, 1] occlusion = annos['occluded'] truncation = annos['truncated'] diff = [] easy_mask = not ((occlusion > max_occlusion[0]) or (height < min_height[0]) or (truncation > max_trunc[0])) moderate_mask = not ((occlusion > max_occlusion[1]) or (height < min_height[1]) or (truncation > max_trunc[1])) hard_mask = not ((occlusion > max_occlusion[2]) or (height < min_height[2]) or (truncation > max_trunc[2])) is_easy = easy_mask is_moderate = np.logical_xor(easy_mask, moderate_mask) is_hard = np.logical_xor(hard_mask, moderate_mask) for i in range(len(dims)): if is_easy[i]: diff.append(0) elif is_moderate[i]: diff.append(1) elif is_hard[i]: diff.append(2) else: diff.append(-1) annos["difficulty"] = np.array(diff, np.int32) return diff def get_label_anno(label_path): annotations = {} annotations.update({ 'name': [], 'truncated': [], 'occluded': [], 'alpha': [], 'bbox': [], 'dimensions': [], 'location': [], 'rotation_y': [] }) with open(label_path, 'r') as f: lines = f.readlines() # if len(lines) == 0 or len(lines[0]) < 15: # content = [] # else: content = [line.strip().split(' ') for line in lines] num_objects = len([x[0] for x in content if x[0] != 'DontCare']) annotations['name'] = np.array([x[0] for x in content]) num_gt = len(annotations['name']) annotations['truncated'] = np.array([float(x[1]) for x in content]) annotations['occluded'] = np.array([int(x[2]) for x in content]) annotations['alpha'] = np.array([float(x[3]) for x in content]) annotations['bbox'] = np.array( [[float(info) for info in x[4:8]] for x in content]).reshape(-1, 4) # dimensions will convert hwl format to standard lhw(camera) format. annotations['dimensions'] = np.array( [[float(info) for info in x[8:11]] for x in content]).reshape( -1, 3)[:, [2, 0, 1]] annotations['location'] = np.array( [[float(info) for info in x[11:14]] for x in content]).reshape(-1, 3) annotations['rotation_y'] = np.array( [float(x[14]) for x in content]).reshape(-1) if len(content) != 0 and len(content[0]) == 16: # have score annotations['score'] = np.array([float(x[15]) for x in content]) else: annotations['score'] = np.zeros((annotations['bbox'].shape[0], )) index = list(range(num_objects)) + [-1] * (num_gt - num_objects) annotations['index'] = np.array(index, dtype=np.int32) annotations['group_ids'] = np.arange(num_gt, dtype=np.int32) return annotations def get_pseudo_label_anno(): annotations = {} annotations.update({ 'name': np.array(['Car']), 'truncated': np.array([0.0]), 'occluded': np.array([0]), 'alpha': np.array([0.0]), 'bbox': np.array([[0.1, 0.1, 15.0, 15.0]]), 'dimensions': np.array([[0.1, 0.1, 15.0, 15.0]]), 'location': np.array([[0.1, 0.1, 15.0]]), 'rotation_y': np.array([[0.1, 0.1, 15.0]]) }) return annotations def get_start_result_anno(): annotations = {} annotations.update({ 'name': [], 'truncated': [], 'occluded': [], 'alpha': [], 'bbox': [], 'dimensions': [], 'location': [], 'rotation_y': [], 'score': [], }) return annotations def empty_result_anno(): annotations = {} annotations.update({ 'name': np.array([]), 'truncated': np.array([]), 'occluded': np.array([]), 'alpha': np.array([]), 'bbox': np.zeros([0, 4]), 'dimensions': np.zeros([0, 3]), 'location': np.zeros([0, 3]), 'rotation_y': np.array([]), 'score': np.array([]), }) return annotations def get_label_annos(label_folder, image_ids=None): if image_ids is None: filepaths = pathlib.Path(label_folder).glob('*.txt') prog = re.compile(r'^\d{6}.txt$') filepaths = filter(lambda f: prog.match(f.name), filepaths) image_ids = [int(p.stem) for p in filepaths] image_ids = sorted(image_ids) if not isinstance(image_ids, list): image_ids = list(range(image_ids)) annos = [] label_folder = pathlib.Path(label_folder) for idx in image_ids: image_idx_str = get_image_index_str(idx) label_filename = label_folder / (image_idx_str + '.txt') anno = get_label_anno(label_filename) num_example = anno["name"].shape[0] anno["image_idx"] = np.array([idx] * num_example, dtype=np.int64) annos.append(anno) return annos def anno_to_rbboxes(anno): loc = anno["location"] dims = anno["dimensions"] rots = anno["rotation_y"] rbboxes = np.concatenate([loc, dims, rots[..., np.newaxis]], axis=1) return rbboxes
py
b407a4aac79d4dd34eb63371a9c19006b82232dc
import json from django.test.testcases import TestCase from django.test.client import RequestFactory from django.test.testcases import SimpleTestCase from fakecouch import FakeCouchDb from corehq.apps.users.models import WebUser from corehq.apps.domain.models import Domain from casexml.apps.case.models import CommCareCase from corehq.apps.userreports.expressions import ExpressionFactory from corehq.apps.userreports.filters.factory import FilterFactory from corehq.apps.userreports.models import DataSourceConfiguration from corehq.apps.userreports.specs import FactoryContext from corehq.apps.users.models import CommCareUser from couchforms.models import XFormInstance import os class ChampTestCase(TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.factory = RequestFactory() # gets created + removed in package level setup / teardown domain = Domain.get_or_create_with_name('champ-cameroon') domain.is_active = True domain.save() cls.domain = domain cls.user = WebUser.create(domain.name, 'test', 'passwordtest') cls.user.is_authenticated = True cls.user.is_superuser = True cls.user.is_authenticated = True cls.user.is_active = True @classmethod def tearDownClass(cls): cls.user.delete() super().tearDownClass() class TestDataSourceExpressions(SimpleTestCase): data_source_name = None def get_expression(self, column_id, column_type): column = self.get_column(column_id) if column['type'] == 'boolean': return FilterFactory.from_spec( column['filter'], context=FactoryContext(self.named_expressions, {}) ) else: self.assertEqual(column['datatype'], column_type) return ExpressionFactory.from_spec( column['expression'], context=FactoryContext(self.named_expressions, {}) ) @classmethod def setUpClass(cls): super(TestDataSourceExpressions, cls).setUpClass() data_source_file = os.path.join( os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)), 'ucr_data_sources', cls.data_source_name ) with open(data_source_file, encoding='utf-8') as f: cls.data_source = DataSourceConfiguration.wrap(json.loads(f.read())['config']) cls.named_expressions = cls.data_source.named_expression_objects def setUp(self): self.database = FakeCouchDb() self.case_orig_db = CommCareCase.get_db() self.form_orig_db = XFormInstance.get_db() self.user_orig_db = CommCareUser.get_db() CommCareCase.set_db(self.database) XFormInstance.set_db(self.database) CommCareUser.set_db(self.database) def tearDown(self): CommCareCase.set_db(self.case_orig_db) XFormInstance.set_db(self.form_orig_db) CommCareUser.set_db(self.user_orig_db) def get_column(self, column_id): return [ ind for ind in self.data_source.configured_indicators if ind['column_id'] == column_id ][0]
py
b407a5857494e86a4da6f6cb21124dab19d3f4fc
MAX_PROFILES = 1e2 MIN_PROFILES = 1e1 TEMP_FOLDER = "s3_data/"
py
b407a69089feb50539bb5aca09ba31124f716f9d
import argparse import time # Initiate the parser parser = argparse.ArgumentParser() parser.add_argument("--model", "-m", help="show model", action="store_true") parser.add_argument("--version", "-v", help="show program version", action="store_true") parser.add_argument("--qwe", "-qwe", help="show program version", action="store_true") # Read arguments from the command line args = parser.parse_args() # Check for --version or -V if args.version: time.sleep(3.4) print("This is myprogram version 0.1") # Check for --version or -V if args.model: print("This is model") # Check for --version or -V if args.qwe: print("This is qwe")
py
b407a793043a8a3e880d1925749a21ce13491cf9
from userbot import CMD_LIST from userbot.utils import admin_cmd import sys from telethon import events, functions, __version__ @command(pattern="^.help ?(.*)") #@borg.on(admin_cmd(pattern=r"help ?(.*)")) async def cmd_list(event): if not event.text[0].isalpha() and event.text[0] not in ("/", "#", "@", "!"): tgbotusername = Var.TG_BOT_USER_NAME_BF_HER input_str = event.pattern_match.group(1) if tgbotusername is None or input_str == "text": string = "" for i in CMD_LIST: string += "📌 " + i + "\n" for iter_list in CMD_LIST[i]: string += " `" + str(iter_list) + "`" string += "\n" string += "\n" if len(string) > 4095: with io.BytesIO(str.encode(string)) as out_file: out_file.name = "cmd.txt" await bot.send_file( event.chat_id, out_file, force_document=True, allow_cache=False, caption="**COMMANDS**", reply_to=reply_to_id ) await event.delete() else: await event.edit(string) elif input_str: if input_str in CMD_LIST: string = "Commands found in {}:".format(input_str) for i in CMD_LIST[input_str]: string += " " + i string += "\n" await event.edit(string) else: await event.edit(input_str + " is not a valid plugin!") else: help_string = """Userbot Helper.. \nProvided by [FRIDAY](https://github.com/leobrownlee/FRIDAY)\n`Userbot Helper to reveal all the commands`""" results = await bot.inline_query( # pylint:disable=E0602 tgbotusername, help_string ) await results[0].click( event.chat_id, reply_to=event.reply_to_msg_id, hide_via=True ) await event.delete() @borg.on(admin_cmd(pattern="syntax (.*)")) async def _(event): if event.fwd_from: return plugin_name = event.pattern_match.group(1) if plugin_name in borg._plugins: help_string = borg._plugins[plugin_name].__doc__ unload_string = f"Use `.unload {plugin_name}` to remove this plugin.\n © @UniBorg" if help_string: plugin_syntax = f"Syntax for plugin **{plugin_name}**:\n\n{help_string}\n{unload_string}" else: plugin_syntax = f"No DOCSTRING has been setup for {plugin_name} plugin." else: plugin_syntax = "Enter valid **Plugin** name.\nDo `.exec ls stdplugins` or `.helpme` to get list of valid plugin names." await event.edit(plugin_syntax)
py
b407a85744b463de74474e9c779411722f6d77a2
import unittest import sys import os try: from unittest import mock except: import mock import voltverine.plugins class TestNoShutdownFile(unittest.TestCase): def test_no_shutdownfile_provided(self): voltverine_plugin = voltverine.plugins.NoShutdownFile() (action, info) = voltverine_plugin.analyze() self.assertTrue(action == voltverine.plugins.DUNNO) self.assertTrue(info == {}) def test_no_shutdownfile(self): with mock.patch('os.path.exists', return_value=False): voltverine_plugin = voltverine.plugins.NoShutdownFile('/nonexistant/path') (action, info) = voltverine_plugin.analyze() self.assertTrue(action == voltverine.plugins.OK) self.assertTrue(info == {}) def test_shutdownfile(self): with mock.patch('os.path.exists', return_value=True): voltverine_plugin = voltverine.plugins.NoShutdownFile('/existant/path') (action, info) = voltverine_plugin.analyze() self.assertTrue(action == voltverine.plugins.NOT_OK) self.assertTrue(info == {}) if __name__ == '__main__': # avoid writing to stderr unittest.main(testRunner=unittest.TextTestRunner(stream=sys.stdout, verbosity=2))
py
b407a8a643be7c047d93c21405cb7ae0295ca10f
#!/usr/bin/env python3 """ Convert the X11 locale.alias file into a mapping dictionary suitable for locale.py. Written by Marc-Andre Lemburg <[email protected]>, 2004-12-10. """ import locale import sys _locale = locale # Location of the X11 alias file. LOCALE_ALIAS = '/usr/share/X11/locale/locale.alias' # Location of the glibc SUPPORTED locales file. SUPPORTED = '/usr/share/i18n/SUPPORTED' def parse(filename): with open(filename, encoding='latin1') as f: lines = list(f) # Remove mojibake in /usr/share/X11/locale/locale.alias. # b'\xef\xbf\xbd' == '\ufffd'.encode('utf-8') lines = [line for line in lines if '\xef\xbf\xbd' not in line] data = {} for line in lines: line = line.strip() if not line: continue if line[:1] == '#': continue locale, alias = line.split() # Fix non-standard locale names, e.g. [email protected] if '@' in alias: alias_lang, _, alias_mod = alias.partition('@') if '.' in alias_mod: alias_mod, _, alias_enc = alias_mod.partition('.') alias = alias_lang + '.' + alias_enc + '@' + alias_mod # Strip ':' if locale[-1] == ':': locale = locale[:-1] # Lower-case locale locale = locale.lower() # Ignore one letter locale mappings (except for 'c') if len(locale) == 1 and locale != 'c': continue # Normalize encoding, if given if '.' in locale: lang, encoding = locale.split('.')[:2] encoding = encoding.replace('-', '') encoding = encoding.replace('_', '') locale = lang + '.' + encoding data[locale] = alias return data def parse_glibc_supported(filename): with open(filename, encoding='latin1') as f: lines = list(f) data = {} for line in lines: line = line.strip() if not line: continue if line[:1] == '#': continue line = line.replace('/', ' ').strip() line = line.rstrip('\\').rstrip() words = line.split() if len(words) != 2: continue alias, alias_encoding = words # Lower-case locale locale = alias.lower() # Normalize encoding, if given if '.' in locale: lang, encoding = locale.split('.')[:2] encoding = encoding.replace('-', '') encoding = encoding.replace('_', '') locale = lang + '.' + encoding # Add an encoding to alias alias, _, modifier = alias.partition('@') alias = _locale._replace_encoding(alias, alias_encoding) if modifier and not (modifier == 'euro' and alias_encoding == 'ISO-8859-15'): alias += '@' + modifier data[locale] = alias return data def pprint(data): items = sorted(data.items()) for k, v in items: print(' %-40s%a,' % ('%a:' % k, v)) def print_differences(data, olddata): items = sorted(olddata.items()) for k, v in items: if k not in data: print('# removed %a' % k) elif olddata[k] != data[k]: print('# updated %a -> %a to %a' % \ (k, olddata[k], data[k])) # Additions are not mentioned def optimize(data): locale_alias = locale.locale_alias locale.locale_alias = data.copy() for k, v in data.items(): del locale.locale_alias[k] if locale.normalize(k) != v: locale.locale_alias[k] = v newdata = locale.locale_alias errors = check(data) locale.locale_alias = locale_alias if errors: sys.exit(1) return newdata def check(data): # Check that all alias definitions from the X11 file # are actually mapped to the correct alias locales. errors = 0 for k, v in data.items(): if locale.normalize(k) != v: print('ERROR: %a -> %a != %a' % (k, locale.normalize(k), v), file=sys.stderr) errors += 1 return errors if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--locale-alias', default=LOCALE_ALIAS, help='location of the X11 alias file ' '(default: %a)' % LOCALE_ALIAS) parser.add_argument('--glibc-supported', default=SUPPORTED, help='location of the glibc SUPPORTED locales file ' '(default: %a)' % SUPPORTED) args = parser.parse_args() data = locale.locale_alias.copy() data.update(parse_glibc_supported(args.glibc_supported)) data.update(parse(args.locale_alias)) while True: # Repeat optimization while the size is decreased. n = len(data) data = optimize(data) if len(data) == n: break print_differences(data, locale.locale_alias) print() print('locale_alias = {') pprint(data) print('}')
py
b407a902de414b0ee78ffd91533817509a5d82c3
#!/usr/bin/python3 __version__ = '0.0.11' # Time-stamp: <2021-10-26T07:53:12Z> ## Language: Japanese/UTF-8 """Simulation Buddhism Prototype No.3 - Adultery 不倫関連 """ ## ## Author: ## ## JRF ( http://jrf.cocolog-nifty.com/statuses/ (in Japanese)) ## ## License: ## ## The author is a Japanese. ## ## I intended this program to be public-domain, but you can treat ## this program under the (new) BSD-License or under the Artistic ## License, if it is convenient for you. ## ## Within three months after the release of this program, I ## especially admit responsibility of efforts for rational requests ## of correction to this program. ## ## I often have bouts of schizophrenia, but I believe that my ## intention is legitimately fulfilled. ## import itertools import math import random import numpy as np import simbdp3.base as base from simbdp3.base import ARGS, Person0, Economy0, EconomyPlot0 from simbdp3.common import np_clip, np_random_choice, Adultery, Marriage class PersonAD (Person0): def adultery_charm (self): p = self if p.marriage is None: ma = 0 else: no_child_years = None if not p.marriage.children: no_child_years = (p.economy.term - p.marriage.begin) / 12 if no_child_years is None: ma = - 0.2 elif no_child_years < 5: x = np_clip(no_child_years, 3, 5) ma = ((-0.2 - 0) / (3 - 5)) \ * (x - 5) + 0 else: x = np_clip(no_child_years, 5, 8) ma = ((0.1 - 0) / (8 - 5)) \ * (x - 5) + 0 ma += - 0.1 * len(p.adulteries) if p.sex == 'M': suit = 0.2 * math.exp(- ((p.age - 24) / 5) ** 2) else: suit = 0.2 * math.exp(- ((p.age - 20) / 5) ** 2) if p.sex == 'M': pa = 0.1 * p.adult_success else: pa = 0.05 * p.adult_success if p.sex == 'M': ast = 0.3 * p.tmp_asset_rank else: if p.marriage is None and not p.adulteries: ast = 0 else: if p.marriage is not None: x = p.relative_spouse_asset(p.marriage) else: x = max(list(map(lambda a: p.relative_spouse_asset(a), p.adulteries))) if x >= 1.1: x = np_clip(x, 1.1, 3) ast = ((- 0.1 - 0) / (3 - 1.1)) * (x - 1.1) + 0 else: x = np_clip(x, 1/3, 1.1) ast = ((0.1 - 0) / (1/3 - 1.1)) * (x - 1.1) + 0 ed = -0.3 * p.education pr = -0.05 if p.in_priesthood() else 0 ij = -0.1 * p.injured return np_clip(ma + suit + pa + ast + ed + pr + ij, 0.0, 1.0) def adultery_favor (self, q): p = self if p.sex == 'M': ast = 1.5 * q.tmp_asset_rank * (2 * abs(p.education - 0.5) + (1 - p.tmp_asset_rank)) / 2 ed = 0.5 * q.education \ + 0.25 * math.exp(- ((q.education - 0.2 - p.education) / 0.2) ** 2) x = np_clip(p.age, 12, 60) t1 = ((5 - 2) / (60 - 12)) * (x - 12) + 2 t2 = ((10 - 2) / (60 - 12)) * (x - 12) + 2 t3 = ((7 - 2) / (60 - 12)) * (x - 12) + 2 same = math.exp(- ((q.age + t1 - p.age) / t2) ** 2) suit = math.exp(- ((q.age - 24) / t3) ** 2) if q.in_priesthood(): suit *= 0.8 ed2 = 1 if p.education < 0.5 else ((2 - 1) / 0.5)\ * (p.education - 0.5) + 1 age = max([ed2 * same, 2.5 * suit]) mar = -0.5 if p.marriage is None \ and q.marriage is not None else 0 ht = -2.0 * p.hating[q.id] if q.id in p.hating else 0 jl = -1.0 if q.in_jail() else 0 ij = -0.5 * q.injured else: ed1 = 0 if p.education > 0.5 else (0.5 - p.education) / 0.5 ast = 3 * q.tmp_asset_rank * (ed1 + (1 - p.tmp_asset_rank)) / 2 ed = 1 * q.education \ + 0.25 * math.exp(- ((q.education + 0.2 - p.education) / 0.2) ** 2) x = np_clip(p.age, 12, 60) t1 = ((5 - 2) / (60 - 12)) * (x - 12) + 2 t2 = ((10 - 2) / (60 - 12)) * (x - 12) + 2 t3 = ((7 - 2) / (60 - 12)) * (x - 12) + 2 same = math.exp(- ((q.age - t1 - p.age) / t2) ** 2) suit = math.exp(- ((q.age - 20) / t3) ** 2) if q.in_priesthood(): suit *= 0.8 ed2 = 1.5 if p.education < 0.5 else ((2.5 - 1.5) / 0.5)\ * (p.education - 0.5) + 1.5 age = max([ed2 * same, 2 * suit]) mar = -1 if p.marriage is None and q.marriage is not None else 0 ht = -2.0 * p.hating[q.id] if q.id in p.hating else 0 jl = -1.0 if q.in_jail() else 0 ij = -0.5 * q.injured return ed + ast + age + mar + ht + jl + ij + 4 * q.tmp_luck def adultery_separability (self, adultery): p = self a = adultery economy = p.economy years = (economy.term - a.begin) / 12 x = np_clip(years, 0, 3) q = ((0.1 - 1) / (3 - 0)) * (x - 0) + 1 hating = 0 rel_favor = 0 if a.spouse != '' and economy.is_living(a.spouse): s = economy.people[a.spouse] if p.id in s.hating: hating = s.hating[p.id] rel_favor = p.adultery_favor(s) - a.init_favor rel_favor = np_clip(rel_favor, -5, 5) ch = 0.5 if a.children else 1 ht = 1 + hating x = rel_favor if x > 0: fv = ((0.5 - 1) / (5 - 0)) * (x - 0) + 1 else: fv = ((2 - 1) / (-5 - 0)) * (x - 0) + 1 q = np_clip(q * ch * ht * fv, 0.05, 1) return q ** ARGS.adultery_separability_mag class EconomyPlotAD (EconomyPlot0): def __init__ (self): super().__init__() self.options.update({ 'adulteries': ('Adulteries', self.view_adulteries), 'adultery-separability': ('Ad Separability', self.view_adultery_separability), 'adultery-age-vs-years': ('Adultery age vs years', self.view_adultery_age_vs_years) }) def view_adultery_age_vs_years (self, ax, economy): m1 = [] m2 = [] for p in economy.people.values(): for a in p.adulteries: m1.append(p.age - ((economy.term - (a.true_begin or a.begin)) / 12)) m2.append((economy.term - (a.true_begin or a.begin)) / 12) ax.scatter(m1, m2, c="pink", alpha=0.5) def view_adulteries (self, ax, economy): m = [] f = [] for p in economy.people.values(): if p.adulteries: m.append(len(p.adulteries)) if p.sex == 'F': f.append(len(p.adulteries)) ax.hist(m, bins=ARGS.bins) print("Adulteries: %d %d" % (len(m), sum(m))) #print("Female Adulteries: %d %d" % (len(f), sum(f))) def view_adultery_separability (self, ax, economy): x = [] l = [] for p in economy.people.values(): for a in p.adulteries: x.append((economy.term - (a.true_begin or a.begin)) / 12) l.append(p.adultery_separability(a)) ax.scatter(x, l, c="pink", alpha=0.5) def choose_from_districts (m_district, f_district, m_choice_nums, f_choice_nums, external_rate_m, external_rate_f, duplicate=True): districts = len(m_district) assert districts == len(f_district) assert districts == len(m_choice_nums) assert districts == len(f_choice_nums) len_m_district = list(map(len, m_district)) len_f_district = list(map(len, f_district)) am = m_choice_nums af = f_choice_nums qm = [[0] * districts for i in range(districts)] qf = [[0] * districts for i in range(districts)] for district in range(districts): aem = int(math.ceil(am[district] * external_rate_m)) aef = int(math.ceil(af[district] * external_rate_f)) lm1 = len_m_district[0:district] \ + len_m_district[district + 1:districts] s_lm1 = sum(lm1) lf1 = len_f_district[0:district] \ + len_f_district[district + 1:districts] s_lf1 = sum(lf1) for i in range(districts): if i != district: qm[district][i] = int(math.floor(aem * len_m_district[i] / s_lm1)) qf[district][i] = int(math.floor(aef * len_f_district[i] / s_lf1)) for i in range(districts): qm[i][i] = am[i] - sum(qm[i]) qf[i][i] = af[i] - sum(qf[i]) qmt = np.array(qm).T qft = np.array(qf).T rm = [[[] for j in range(districts)] for i in range(districts)] rf = [[[] for j in range(districts)] for i in range(districts)] for district in range(districts): l1 = [] l2 = [] for p in m_district[district]: q = p.tmp_score if q < 0.02: q = 0.02 while q > 0: l1.append(p) l2.append(q) if duplicate: q = q - 0.1 else: q = 0 l2 = np.array(l2).astype(np.longdouble) l3 = np_random_choice(l1, size=sum(qmt[district]), replace=False, p=l2/np.sum(l2)) random.shuffle(l3) x = 0 for i in range(districts): rm[i][district] = l3[x:x + qmt[district][i]] x += qmt[district][i] l1 = [] l2 = [] for p in f_district[district]: q = p.tmp_score if q < 0.02: q = 0.02 while q > 0: l1.append(p) l2.append(q) if duplicate: q = q - 0.1 else: q = 0 l2 = np.array(l2).astype(np.longdouble) l3 = np_random_choice(l1, size=sum(qft[district]), replace=False, p=l2/np.sum(l2)) random.shuffle(l3) x = 0 for i in range(districts): rf[i][district] = l3[x:x + qft[district][i]] x += qft[district][i] r = [] for i in range(districts): m = [] f = [] for j in range(districts): m += list(rm[i][j]) f += list(rf[i][j]) r.append((m, f)) return r def choose_adulterers (economy): districts = len(ARGS.population) m_district = [[] for i in range(districts)] f_district = [[] for i in range(districts)] m_adulterers = [0] * districts f_adulterers = [0] * districts for p in economy.people.values(): if not p.is_dead(): if p.age >= 12 and (p.pregnancy is None or economy.term - p.pregnancy.begin < 8) \ and not p.in_jail(): p.tmp_score = p.adultery_charm() if p.sex == 'M': m_district[p.district].append(p) else: f_district[p.district].append(p) if p.adulteries: if p.sex == 'M': m_adulterers[p.district] += len(p.adulteries) else: f_adulterers[p.district] += len(p.adulteries) am = [0] * districts af = [0] * districts for district in range(districts): lm = len(m_district[district]) lf = len(f_district[district]) q = math.ceil((lf + lm) * ARGS.new_adultery_rate) \ - m_adulterers[district] - f_adulterers[district] if q < 0: q = 0 am[district] = int(q / 2) af[district] = int(q / 2) return choose_from_districts(m_district, f_district, am, af, ARGS.external_adultery_rate_male, ARGS.external_adultery_rate_female, duplicate=True) def match_favor (male, female, favor_func, threshold=None): l = [(m, f, favor_func(male[m], female[f]), favor_func(female[f], male[m])) for m, f in itertools.product(range(len(male)), range(len(female)))] if threshold is not None: l = [(m, f, fm, ff) for m, f, fm, ff in l if fm >= threshold and ff >= threshold] l = sorted(l, key=lambda x: x[2] + x[3], reverse=True) n_m = 0 n_f = 0 mdone = [False] * len(male) fdone = [False] * len(female) i = 0 matches = [] for m, f, fm, ff in l: if not (n_m < len(male) and n_f < len(female)): break if (not mdone[m]) and (not fdone[f]): mdone[m] = True fdone[f] = True n_m += 1 n_f += 1 matches.append((male[m], female[f])) return matches def update_adultery_hating (economy, person, adultery, rape=False): p = person a = adultery success = True if p.sex == 'M': if a.spouse == '' or not economy.is_living(a.spouse): if a.begin == a.end: hating = random.random() < 0.1 else: hating = random.random() < 0.5 if hating: success = False p.add_hating('', 0.5) else: ex_hating = 0.0 if rape: ex_hating = 0.25 s = economy.people[a.spouse] if a.begin == a.end: hating = random.random() < 0.1 else: hating = random.random() < 0.5 if hating: success = False p.add_hating(s.id, 0.5) if s.marriage is not None \ and economy.is_living(s.marriage.spouse): ss = economy.people[s.marriage.spouse] if s.pregnancy is not None: hating = 0.8 elif a.children: hating = 0.7 else: hating = 0.5 hated = random.random() < 0.3 if hated: known = random.random() < 0.3 if known: success = False ss.add_hating(p.id, hating + ex_hating) else: ss.add_hating('', hating + ex_hating) for a in s.adulteries: if economy.is_living(a.spouse): ss = economy.people[a.spouse] hating = 0.4 hated = random.random() < 0.15 if hated: known = random.random() < 0.3 if known: success = False ss.add_hating(p.id, hating + ex_hating) else: ss.add_hating('', hating + ex_hating) else: # p.sex == 'F': ex_hating = 0.0 if rape: ex_hating = 0.25 if a.spouse == '' or not economy.is_living(a.spouse): if a.begin == a.end: hating = rape or random.random() < 0.2 else: hating = random.random() < 0.5 if hating: success = False p.add_hating('', 0.5 + ex_hating) else: s = economy.people[a.spouse] if a.begin == a.end: hating = rape or random.random() < 0.2 if rape and random.random() < 0.5: s.karma = max([s.karma, 0.25]) \ + 0.1 * min([s.karma, 0.25]) s.karma = np_clip(s.karma, 0.0, 1.0) else: hating = random.random() < 0.5 if hating: success = False p.add_hating(s.id, 0.5 + ex_hating) if s.marriage is not None \ and economy.is_living(s.marriage.spouse): ss = economy.people[s.marriage.spouse] if p.pregnancy: hating = 0.6 elif a.children: hating = 0.5 else: hating = 0.5 hated = random.random() < 0.5 if hated: known = random.random() < 0.7 if known: success = False ss.add_hating(p.id, hating) else: ss.add_hating('', hating) for a in s.adulteries: if economy.is_living(a.spouse): ss = economy.people[a.spouse] hating = 0.4 hated = random.random() < 0.15 if hated: known = random.random() < 0.7 if known: success = False ss.add_hating(p.id, hating) else: ss.add_hating('', hating) if success: p.adult_success += 1 else: p.adult_success -= 1 if p.adult_success < 0: p.adult_success = 0 def remove_some_new_adulteries (economy, matches): n_p = 0 l1 = list(range(len(matches))) l2 = map(lambda m: m[0].adultery_favor(m[1]) + m[1].adultery_favor(m[0]) + 5, matches) l2 = list(map(lambda m: m if m > 1 else 1, l2)) n = int(len(matches) * (1 - ARGS.new_adultery_reduce)) l2 = np.array(l2).astype(np.longdouble) l3 = np_random_choice(l1, size=n, replace=False, p=l2/np.sum(l2)) s3 = set(l3) for i in l1: m = matches[i][0] f = matches[i][1] ex = False for a in m.adulteries: if a.spouse == f.id: ex = True break if ex: continue am = Adultery() af = Adultery() am.spouse = f.id am.init_favor = m.adultery_favor(f) am.begin = economy.term af.spouse = m.id af.init_favor = f.adultery_favor(m) af.begin = economy.term # # 時間を食うので以下のチェックは行わないことにする。 # amt = [] # aft = [] # for x in m.trash: # if isinstance(x, Marriage) or isinstance(x, Adultery): # if x.spouse == f.id: # amt.append(x.end - x.begin) # for x in f.trash: # if isinstance(x, Marriage) or isinstance(x, Adultery): # if x.spouse == m.id: # aft.append(x.end - x.begin) # if amt: # am.true_begin = am.begin # am.begin -= math.floor(max(amt) / 2) # if aft: # af.true_begin = af.begin # af.begin -= math.floor(max(aft) / 2) if i in s3: m.adulteries.append(am) f.adulteries.append(af) else: am.end = economy.term af.end = economy.term m.trash.append(am) f.trash.append(af) rape = random.random() < 0.01 update_adultery_hating(economy, m, am, rape) update_adultery_hating(economy, f, af, rape) if m.fertility != 0 and f.fertility != 0 and f.pregnancy is None: ft = (m.fertility + f.fertility) / 2 if random.random() < ARGS.new_adulteries_pregnant_rate \ * (ft ** ARGS.new_adulteries_pregnant_mag): f.get_pregnant(af) n_p += 1 print("Adultery Pregnancy 1:", n_p) def reboot_some_adulteries (economy): rebooting = 0 for p in economy.people.values(): if p.is_dead(): continue reboot_rate = ARGS.adultery_reboot_rate if p.marriage is not None or p.adulteries: reboot_rate = ARGS.with_spouse_adultery_reboot_rate if random.random() < reboot_rate: rellist = [x for x in p.trash if (isinstance(x, Marriage) or isinstance(x, Adultery))] if not rellist: continue l2 = [0.1 + math.log(1 + (x.end - x.begin) / 12) \ * np_clip(x.init_favor, 0, 10) for x in rellist] l2 = np.array(l2).astype(np.longdouble) y = np_random_choice(rellist, 1, replace=False, p=l2/np.sum(l2))[0] if y.spouse == '' or not economy.is_living(y.spouse): continue s = economy.people[y.spouse] if s.marriage is not None or s.adulteries: ex = False for x1 in [s.marriage] + s.adulteries: if x1 is None: continue if x1.spouse == p.id: ex = True break if ex: continue if random.random() < 0.5: continue rebooting += 1 a1 = Adultery() a2 = Adultery() p.adulteries.append(a1) s.adulteries.append(a2) a1.spouse = s.id a1.init_favor = p.adultery_favor(s) a1.begin = economy.term a2.spouse = p.id a2.init_favor = s.adultery_favor(p) a2.begin = economy.term a1t = [] a2t = [] for x in p.trash: if isinstance(x, Marriage) or isinstance(x, Adultery): if x.spouse == s.id: a1t.append(x.end - x.begin) for x in s.trash: if isinstance(x, Marriage) or isinstance(x, Adultery): if x.spouse == p.id: a2t.append(x.end - x.begin) if a1t: a1.true_begin = a1.begin a1.begin -= math.floor(max(a1t) / 2) if a2t: a2.true_begin = a2.begin a2.begin -= math.floor(max(a2t) / 2) print("Reboot:", rebooting) def get_pregnant_adulteries (economy): n_u = 0 n_i = 0 for p in economy.people.values(): if not p.is_dead() and p.sex == 'F' and p.pregnancy is None: for a in p.adulteries: wc = p.want_child(a) if a.spouse == '' or not economy.is_living(a.spouse): ft = random.random() if ft < 0.1: ft = 0 else: ft = economy.people[a.spouse].fertility if p.fertility != 0 and ft != 0 and p.pregnancy is None: ft = (p.fertility + ft) / 2 if wc and p.pregnancy_wait is None: if random.random() < ARGS.intended_pregnant_rate \ * (ft ** ARGS.intended_pregnant_mag): p.get_pregnant(a) n_i += 1 break else: if random.random() < ARGS.unintended_pregnant_rate \ * (ft ** ARGS.unintended_pregnant_mag): p.get_pregnant(a) n_u += 1 break print("Adultery Pregnancy 2:", n_i, n_u) def remove_some_adulteries (economy): lamu = [] # 相手が不明の男性の不倫のリスト laf = [] # 不明かどうかに関係ない女性の不倫のリスト n_m = 0 n_f = 0 for p in economy.people.values(): if not p.is_dead(): if p.age >= 12 and (p.pregnancy is None or economy.term - p.pregnancy.begin < 8): if p.sex == 'M': n_m += 1 else: n_f += 1 if p.adulteries: if p.sex == 'F': laf.extend([(p, a) for a in p.adulteries]) else: lamu.extend([(p, a) for a in p.adulteries if a.spouse == '']) l1 = list(range(len(laf))) l2 = list(map(lambda x: x[0].adultery_separability(x[1]), laf)) n = math.floor(n_f * ARGS.adultery_rate) if n > len(l1): n = len(l1) l2 = np.array(l2).astype(np.longdouble) l3 = np_random_choice(l1, len(l1) - n, replace=False, p=l2/np.sum(l2)) n_u = 0 for i in l3: p, a = laf[i] a.end = economy.term p.adulteries.remove(a) p.trash.append(a) update_adultery_hating(economy, p, a) if a.spouse == '' or not economy.is_living(a.spouse): n_u += 1 else: s = economy.people[a.spouse] sa = [a for a in s.adulteries if a.spouse == p.id][0] sa.end = economy.term s.adulteries.remove(sa) s.trash.append(sa) update_adultery_hating(economy, s, sa) l1 = list(range(len(lamu))) l2 = list(map(lambda x: x[0].adultery_separability(x[1]), lamu)) if n_u > len(l1): n_u = len(l1) l2 = np.array(l2).astype(np.longdouble) l3 = np_random_choice(l1, n_u, replace=False, p=l2/np.sum(l2)) for i in l3: p, a = lamu[i] a.end = economy.term p.adulteries.remove(a) p.trash.append(a) update_adultery_hating(economy, p, a) def update_adulteries (economy): print("\nAdulteries:...", flush=True) print("Choosing...", flush=True) # 不倫用の tmp_asset_rank の計算 domrank = { None: 0, 'cavalier': 1 - 0.30, 'vassal': 1 - 0.10, 'governor': 1 - 0.10, 'king': 1 - 0.05 } l = sorted(economy.people.values(), key=lambda p: p.consumption, reverse=True) s = len(l) for i in range(len(l)): p = l[i] p.tmp_asset_rank = (s - i) / s if p.dominator_position is not None: p.tmp_asset_rank = max([p.tmp_asset_rank, domrank[p.dominator_position]]) # 不倫用の幸運度の計算 for p in economy.people.values(): p.tmp_luck = random.random() adulterers = choose_adulterers(economy) print("Matching...", flush=True) matches = [] for m, f in adulterers: matches.append(match_favor(m, f, lambda p, q: p.adultery_favor(q))) print("...", flush=True) print("Matches:", [len(l) for l in matches], flush=True) m0 = matches[0] matches = sum(matches, []) # if len(m0) >= 10: # print("Match Samples:", flush=True) # for i in range(0, 10): # print(m0[i][0], m0[i][1], # m0[i][0].adultery_favor(m0[i][1]), # m0[i][1].adultery_favor(m0[i][0])) # print("...") # for i in range(len(m0) - 10, len(m0)): # print(m0[i][0], m0[i][1], # m0[i][0].adultery_favor(m0[i][1]), # m0[i][1].adultery_favor(m0[i][0])) for p in economy.people.values(): p.tmp_luck = 0 print("Updating...", flush=True) remove_some_new_adulteries(economy, matches) reboot_some_adulteries(economy) get_pregnant_adulteries(economy) remove_some_adulteries(economy)
py
b407aaa7f6075c9935c9f6f8a5ee64ec7c347ee9
#============================================================================= # Copyright (c) 2017 Paul Fultz II # conf.py # Distributed under the Boost Software License, Version 1.0. (See accompanying # file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #============================================================================== # -*- coding: utf-8 -*- # # Boost.HigherOrderFunctions documentation build configuration file, created by # sphinx-quickstart on Thu Jun 2 00:33:55 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os from recommonmark.parser import CommonMarkParser from recommonmark.transform import AutoStructify import sphinx_boost # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ # 'sphinx.ext.autodoc', # 'sphinx.ext.githubpages', 'sphinx.ext.autosectionlabel', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] source_parsers = { '.md': CommonMarkParser, '.hpp': CommonMarkParser } # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md', '.hpp'] # source_suffix = '.rst' # The encoding of source files. # # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'doc/index' # General information about the project. project = u'Boost.HigherOrderFunctions' copyright = u'2016, Paul Fultz II' author = u'Paul Fultz II' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # def parse_version(): lines = open('../include/boost/hof/version.hpp').readlines() defines = ['BOOST_HOF_VERSION_MAJOR', 'BOOST_HOF_VERSION_MINOR', 'BOOST_HOF_VERSION_PATCH'] versions = ['0','0','0'] for line in lines: for di, define in enumerate(defines): needle = '#define ' + define i = line.find(needle) if i >= 0: versions[di] = line[i+len(needle):].strip() final_version = versions[0] + '.' + versions[1] if versions[2] != '0': final_version = final_version + '.' + versions[2] return final_version # The short X.Y version. version = parse_version() # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # # today = '' # # Else, today_fmt is used as the format for a strftime call. # # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [ '_build', 'Thumbs.db', '.DS_Store', 'README.md', '**/alias.hpp', '**/config.hpp', '**/hof.hpp', '**/static_def.hpp', '**/test.hpp', '**/detail/*.hpp', ] # The reST default role (used for this markup: `text`) to use for all # documents. # # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # # show_authors = False highlight_language = 'cpp' # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'tango' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme = 'alabaster' html_theme = 'boost' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [sphinx_boost.get_html_theme_path()] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. # # html_title = u'Boost.HigherOrderFunctions v1.0' # A shorter title for the navigation bar. Default is the same as html_title. # # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # # html_logo = 'boost-proposed.png' # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # # html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. # # html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = { 'index': 'redirect.html', } # If false, no module index is generated. # # html_domain_indices = True # If false, no index is generated. # # html_use_index = True # If true, the index is split into individual pages for each letter. # # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True html_copy_source = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr', 'zh' # # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. # # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'Boost.HigherOrderFunctionsdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'Boost.HigherOrderFunctions.tex', u'Boost.HigherOrderFunctions Documentation', u'Paul Fultz II', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # # latex_use_parts = False # If true, show page references after internal links. # # latex_show_pagerefs = False # If true, show URL addresses after external links. # # latex_show_urls = False # Documents to append as an appendix to all manuals. # # latex_appendices = [] # If false, no module index is generated. # # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'Boost.HigherOrderFunctions', u'Boost.HigherOrderFunctions Documentation', [author], 1) ] # If true, show URL addresses after external links. # # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Boost.HigherOrderFunctions', u'Boost.HigherOrderFunctions Documentation', author, 'Boost.HigherOrderFunctions', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # # texinfo_appendices = [] # If false, no module index is generated. # # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # # texinfo_no_detailmenu = False nitpicky = True def insert_header(lines, f): for line in lines: yield line if line.startswith('=='): yield "" yield "Header" yield "------" yield "" yield " #include <{0}>".format(f) yield "" extract_prefix = '/// ' include_dir = os.path.abspath('../include/') def extract_doc(app, docname, source): path = app.env.doc2path(docname) if path.endswith('.hpp'): lines = source[0].split('\n') md = [line[len(extract_prefix):] for line in lines if line.startswith(extract_prefix)] source[0] = '\n'.join(insert_header(md, os.path.relpath(path, include_dir))) # app setup hook def setup(app): app.srcdir = os.path.abspath(os.path.join(app.srcdir, os.pardir)) app.add_config_value('recommonmark_config', { 'enable_eval_rst': True, # 'enable_auto_doc_ref': True, 'commonmark_suffixes': ['.md', '.hpp'], }, True) app.add_transform(AutoStructify) app.connect('source-read', extract_doc)
py
b407aaf0557999b5e984968ef01edd69f6bdf379
import pytest import numpy as np from numpy.testing import assert_allclose from bidu import backend as K from bidu.models import Sequential from bidu.layers import convolutional_recurrent from bidu.utils.test_utils import layer_test from bidu import regularizers def test_recurrent_convolutional(): nb_row = 3 nb_col = 3 nb_filter = 5 nb_samples = 2 input_channel = 2 input_nb_row = 5 input_nb_col = 5 sequence_len = 2 for dim_ordering in ['th', 'tf']: if dim_ordering == 'th': input = np.random.rand(nb_samples, sequence_len, input_channel, input_nb_row, input_nb_col) else: # tf input = np.random.rand(nb_samples, sequence_len, input_nb_row, input_nb_col, input_channel) for return_sequences in [True, False]: # test for ouptput shape: output = layer_test(convolutional_recurrent.ConvLSTM2D, kwargs={'dim_ordering': dim_ordering, 'return_sequences': return_sequences, 'nb_filter': nb_filter, 'nb_row': nb_row, 'nb_col': nb_col, 'border_mode': "same"}, input_shape=input.shape) output_shape = [nb_samples, input_nb_row, input_nb_col] if dim_ordering == 'th': output_shape.insert(1, nb_filter) else: output_shape.insert(3, nb_filter) if return_sequences: output_shape.insert(1, sequence_len) assert output.shape == tuple(output_shape) # No need to check statefulness for both if dim_ordering == 'th' or return_sequences: continue # Tests for statefulness model = Sequential() kwargs = {'dim_ordering': dim_ordering, 'return_sequences': return_sequences, 'nb_filter': nb_filter, 'nb_row': nb_row, 'nb_col': nb_col, 'stateful': True, 'batch_input_shape': input.shape, 'border_mode': "same"} layer = convolutional_recurrent.ConvLSTM2D(**kwargs) model.add(layer) model.compile(optimizer='sgd', loss='mse') out1 = model.predict(np.ones_like(input)) assert(out1.shape == tuple(output_shape)) # train once so that the states change model.train_on_batch(np.ones_like(input), np.ones_like(output)) out2 = model.predict(np.ones_like(input)) # if the state is not reset, output should be different assert(out1.max() != out2.max()) # check that output changes after states are reset # (even though the model itself didn't change) layer.reset_states() out3 = model.predict(np.ones_like(input)) assert(out2.max() != out3.max()) # check that container-level reset_states() works model.reset_states() out4 = model.predict(np.ones_like(input)) assert_allclose(out3, out4, atol=1e-5) # check that the call to `predict` updated the states out5 = model.predict(np.ones_like(input)) assert(out4.max() != out5.max()) # check regularizers kwargs = {'dim_ordering': dim_ordering, 'return_sequences': return_sequences, 'nb_filter': nb_filter, 'nb_row': nb_row, 'nb_col': nb_col, 'stateful': True, 'batch_input_shape': input.shape, 'W_regularizer': regularizers.WeightRegularizer(l1=0.01), 'U_regularizer': regularizers.WeightRegularizer(l1=0.01), 'b_regularizer': 'l2', 'border_mode': "same"} layer = convolutional_recurrent.ConvLSTM2D(**kwargs) layer.build(input.shape) output = layer(K.variable(np.ones(input.shape))) K.eval(output) # check dropout layer_test(convolutional_recurrent.ConvLSTM2D, kwargs={'dim_ordering': dim_ordering, 'return_sequences': return_sequences, 'nb_filter': nb_filter, 'nb_row': nb_row, 'nb_col': nb_col, 'border_mode': "same", 'dropout_W': 0.1, 'dropout_U': 0.1}, input_shape=input.shape) if __name__ == '__main__': pytest.main([__file__])
py
b407ab1dfb587340426ea668331cbed77f42c3a3
#! /usr/bin/env python # -*- coding: utf-8 -*- import json import requests PROTOCOL = 'http' # or https RVISION = '127.0.0.1' # ip or hostname USERNAME = 'admin' # any user login PASSWORD = 'admin' requests.packages.urllib3.disable_warnings() s = requests.Session() # Авторизируемся login = s.post( PROTOCOL + '://' + RVISION + '/login', data={ 'username': USERNAME, 'password': PASSWORD }, verify=False ) loginResult = login.json() # Применяем пагинацию и лимит orgParams = { 'page': 1, # Пагинация, номер страницы 'start': 0, # Пагинация, позиция элемента с которого начать поиск 'limit': 50 # Сколько всего выводить } # Следующая страница # orgParams = { # 'page': 2, # 'start': 10, # 'limit': 10 # } # Вывести все (может быть очень долго) # orgParams = { # 'page': 1, # 'start': 0, # 'limit': 999999 # Итоговое количество может быть ограничено лицензией # } org = s.get( PROTOCOL + '://' + RVISION + '/api/v1/am/organization', params=orgParams, verify=False ) orgResult = org.json() print json.dumps(orgResult, indent=2, sort_keys=True, ensure_ascii=False)
py
b407ab4d90c605d514bc4a1785152b244c2d6b22
import os stream_framework_DEFAULT_KEYSPACE = 'test_stream_framework' if os.environ.get('TEST_CASSANDRA_HOST'): stream_framework_CASSANDRA_HOSTS = [os.environ['TEST_CASSANDRA_HOST']] SECRET_KEY = 'ib_^kc#v536)v$x!h3*#xs6&l8&7#4cqi^rjhczu85l9txbz+w' stream_framework_DISCOVER_CASSANDRA_NODES = False stream_framework_CASSANDRA_CONSITENCY_LEVEL = 'ONE' stream_framework_REDIS_CONFIG = { 'default': { 'host': '127.0.0.1', 'port': 6379, 'db': 0, 'password': None }, }
py
b407abef30a56b734f4e01d8484ab72d27e1cfa4
#!/usr/local/bin/python # -*- coding: iso-8859-1 -*- # $Id: rfc3454.py,v 1.1.1.1 2011/06/10 09:34:42 andrew Exp $ # Copyright (c) 2004 Kungliga Tekniska Högskolan # (Royal Institute of Technology, Stockholm, Sweden). # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the Institute nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. import re import string def read(filename): """return a dict of tables from rfc3454""" f = open(filename, 'r') inTable = False ret = {} while True: l = f.readline() if not l: break if inTable: m = re.search('^ *----- End Table ([A-Z0-9\.]+) ----- *$', l) if m: ret[m.group(1)] = t inTable = False else: t.append(l) if re.search('^ *----- Start Table ([A-Z0-9\.]+) ----- *$', l): inTable = True t = [] f.close() return ret
py
b407ac22df5587d433156621b9b8ce46a12c5c4e
from string import printable from sys import stderr from fileinput import input from argparse import ArgumentParser from pathlib import Path from time import sleep from urllib.request import urlopen, Request from urllib.error import URLError from urllib.parse import urlparse, quote, ParseResult from typing import Union, Any def process(url: str) -> str: req = Request(url=quote(url, safe=printable), method="HEAD") req.add_header(key="User-Agent", val="Mozilla/5.0 (Windows NT 10.0; rv:91.0) Gecko/20100101 Firefox/91.0") code = 0 try: with urlopen(url=req, timeout=4) as response: code = response.status except URLError as e: if hasattr(e, 'code'): code = e.code elif hasattr(e, 'reason'): print("Processing error: " + url + " -> " + str(e.reason), file=stderr) return str(code) def check_url(url: str) -> Union[ParseResult, bool]: u = urlparse(url) return u if u.scheme in ["http", "https"] else False def check_code(code: str, codes: set[str], exclude: bool) -> bool: return (code not in codes) if exclude \ else (code in codes) def process_file(file: str, codes: set[str], exclude: bool, delay: int): try: with input(file) as f: for line in f: url = check_url(line.strip()) if not url: break sleep(delay) code = process(url.geturl()) if check_code(code, codes, exclude): print(url.geturl()) except PermissionError as e: print("Permission denied: " + e.filename, file=stderr) def process_files(params: dict[str, Any]): for file in params['files']: if Path(file).is_file() or file == '-': process_file(file, params['codes'], params['exclude'], params['delay']) if __name__ == '__main__': parser = ArgumentParser(description="Performs HEAD HTTP requests to URLs from a list " "and filters URLs by specified HTTP status code(s). " "A file should contain one URL per line.") parser.add_argument("files", metavar="file", default="-", nargs="+", help="Files to process or '-' for stdin.") parser.add_argument("-d", "--delay", metavar="delay", dest="delay", default=0, type=int, help="Delay between requests in seconds. Default is 0.") cgroup = parser.add_mutually_exclusive_group() cgroup.add_argument("-c", "--http-codes", metavar="codes", dest="http_codes", default="200", help="HTTP status codes to filter. Default is 200. Several codes can be separated by commas.") cgroup.add_argument("-nc", "--no-http-codes", metavar="codes", dest="no_http_codes", help="HTTP status codes to exclude. Several codes can be separated by commas.") args = parser.parse_args() if args.no_http_codes is None: config = {"codes": set(args.http_codes.split(sep=',')), "exclude": False, "delay": args.delay, "files": set(args.files)} else: config = {"codes": set(args.no_http_codes.split(sep=',')), "exclude": True, "delay": args.delay, "files": set(args.files)} process_files(config)
py
b407ac56ed27a0299ca3bd463df144b5e4eb87b2
# Generated by Django 2.0.2 on 2018-06-06 23:09 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('seating', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='seating', name='table', ), ]
py
b407ac8c55113c27b8af25f02fe43500bcfbe4ce
from __future__ import absolute_import, unicode_literals import datetime from django import forms from django.db.models.fields import BLANK_CHOICE_DASH from django.template.loader import render_to_string from django.utils import six from django.utils.encoding import force_text from django.utils.dateparse import parse_date, parse_time, parse_datetime from django.utils.functional import cached_property from django.utils.html import format_html from django.utils.safestring import mark_safe from wagtail.wagtailcore.rich_text import RichText from .base import Block class FieldBlock(Block): """A block that wraps a Django form field""" class Meta: default = None def id_for_label(self, prefix): return self.field.widget.id_for_label(prefix) def render_form(self, value, prefix='', errors=None): widget = self.field.widget widget_attrs = {'id': prefix, 'placeholder': self.label} field_value = self.value_for_form(value) if hasattr(widget, 'render_with_errors'): widget_html = widget.render_with_errors(prefix, field_value, attrs=widget_attrs, errors=errors) widget_has_rendered_errors = True else: widget_html = widget.render(prefix, field_value, attrs=widget_attrs) widget_has_rendered_errors = False return render_to_string('wagtailadmin/block_forms/field.html', { 'name': self.name, 'classes': self.meta.classname, 'widget': widget_html, 'field': self.field, 'errors': errors if (not widget_has_rendered_errors) else None }) def value_from_form(self, value): """ The value that we get back from the form field might not be the type that this block works with natively; for example, the block may want to wrap a simple value such as a string in an object that provides a fancy HTML rendering (e.g. EmbedBlock). We therefore provide this method to perform any necessary conversion from the form field value to the block's native value. As standard, this returns the form field value unchanged. """ return value def value_for_form(self, value): """ Reverse of value_from_form; convert a value of this block's native value type to one that can be rendered by the form field """ return value def value_from_datadict(self, data, files, prefix): return self.value_from_form(self.field.widget.value_from_datadict(data, files, prefix)) def clean(self, value): # We need an annoying value_for_form -> value_from_form round trip here to account for # the possibility that the form field is set up to validate a different value type to # the one this block works with natively return self.value_from_form(self.field.clean(self.value_for_form(value))) class CharBlock(FieldBlock): def __init__(self, required=True, help_text=None, max_length=None, min_length=None, **kwargs): # CharField's 'label' and 'initial' parameters are not exposed, as Block handles that functionality natively # (via 'label' and 'default') self.field = forms.CharField( required=required, help_text=help_text, max_length=max_length, min_length=min_length ) super(CharBlock, self).__init__(**kwargs) def get_searchable_content(self, value): return [force_text(value)] class TextBlock(FieldBlock): def __init__(self, required=True, help_text=None, rows=1, max_length=None, min_length=None, **kwargs): self.field_options = { 'required': required, 'help_text': help_text, 'max_length': max_length, 'min_length': min_length } self.rows = rows super(TextBlock, self).__init__(**kwargs) @cached_property def field(self): from wagtail.wagtailadmin.widgets import AdminAutoHeightTextInput field_kwargs = {'widget': AdminAutoHeightTextInput(attrs={'rows': self.rows})} field_kwargs.update(self.field_options) return forms.CharField(**field_kwargs) def get_searchable_content(self, value): return [force_text(value)] class URLBlock(FieldBlock): def __init__(self, required=True, help_text=None, max_length=None, min_length=None, **kwargs): self.field = forms.URLField( required=required, help_text=help_text, max_length=max_length, min_length=min_length ) super(URLBlock, self).__init__(**kwargs) class BooleanBlock(FieldBlock): def __init__(self, required=True, help_text=None, **kwargs): # NOTE: As with forms.BooleanField, the default of required=True means that the checkbox # must be ticked to pass validation (i.e. it's equivalent to an "I agree to the terms and # conditions" box). To get the conventional yes/no behaviour, you must explicitly pass # required=False. self.field = forms.BooleanField(required=required, help_text=help_text) super(BooleanBlock, self).__init__(**kwargs) class DateBlock(FieldBlock): def __init__(self, required=True, help_text=None, **kwargs): self.field_options = {'required': required, 'help_text': help_text} super(DateBlock, self).__init__(**kwargs) @cached_property def field(self): from wagtail.wagtailadmin.widgets import AdminDateInput field_kwargs = {'widget': AdminDateInput} field_kwargs.update(self.field_options) return forms.DateField(**field_kwargs) def to_python(self, value): # Serialising to JSON uses DjangoJSONEncoder, which converts date/time objects to strings. # The reverse does not happen on decoding, because there's no way to know which strings # should be decoded; we have to convert strings back to dates here instead. if value is None or isinstance(value, datetime.date): return value else: return parse_date(value) class TimeBlock(FieldBlock): def __init__(self, required=True, help_text=None, **kwargs): self.field_options = {'required': required, 'help_text': help_text} super(TimeBlock, self).__init__(**kwargs) @cached_property def field(self): from wagtail.wagtailadmin.widgets import AdminTimeInput field_kwargs = {'widget': AdminTimeInput} field_kwargs.update(self.field_options) return forms.TimeField(**field_kwargs) def to_python(self, value): if value is None or isinstance(value, datetime.time): return value else: return parse_time(value) class DateTimeBlock(FieldBlock): def __init__(self, required=True, help_text=None, **kwargs): self.field_options = {'required': required, 'help_text': help_text} super(DateTimeBlock, self).__init__(**kwargs) @cached_property def field(self): from wagtail.wagtailadmin.widgets import AdminDateTimeInput field_kwargs = {'widget': AdminDateTimeInput} field_kwargs.update(self.field_options) return forms.DateTimeField(**field_kwargs) def to_python(self, value): if value is None or isinstance(value, datetime.datetime): return value else: return parse_datetime(value) class ChoiceBlock(FieldBlock): choices = () def __init__(self, choices=None, required=True, help_text=None, **kwargs): if choices is None: # no choices specified, so pick up the choice list defined at the class level choices = list(self.choices) else: choices = list(choices) # keep a copy of all kwargs (including our normalised choices list) for deconstruct() self._constructor_kwargs = kwargs.copy() self._constructor_kwargs['choices'] = choices if required is not True: self._constructor_kwargs['required'] = required if help_text is not None: self._constructor_kwargs['help_text'] = help_text # If choices does not already contain a blank option, insert one # (to match Django's own behaviour for modelfields: # https://github.com/django/django/blob/1.7.5/django/db/models/fields/__init__.py#L732-744) has_blank_choice = False for v1, v2 in choices: if isinstance(v2, (list, tuple)): # this is a named group, and v2 is the value list has_blank_choice = any([value in ('', None) for value, label in v2]) if has_blank_choice: break else: # this is an individual choice; v1 is the value if v1 in ('', None): has_blank_choice = True break if not has_blank_choice: choices = BLANK_CHOICE_DASH + choices self.field = forms.ChoiceField(choices=choices, required=required, help_text=help_text) super(ChoiceBlock, self).__init__(**kwargs) def deconstruct(self): """ Always deconstruct ChoiceBlock instances as if they were plain ChoiceBlocks with their choice list passed in the constructor, even if they are actually subclasses. This allows users to define subclasses of ChoiceBlock in their models.py, with specific choice lists passed in, without references to those classes ending up frozen into migrations. """ return ('wagtail.wagtailcore.blocks.ChoiceBlock', [], self._constructor_kwargs) def get_searchable_content(self, value): # Return the display value as the searchable value text_value = force_text(value) for k, v in self.field.choices: if isinstance(v, (list, tuple)): # This is an optgroup, so look inside the group for options for k2, v2 in v: if value == k2 or text_value == force_text(k2): return [k, v2] else: if value == k or text_value == force_text(k): return [v] return [] # Value was not found in the list of choices class RichTextBlock(FieldBlock): def __init__(self, required=True, help_text=None, **kwargs): self.field_options = {'required': required, 'help_text': help_text} super(RichTextBlock, self).__init__(**kwargs) def get_default(self): if isinstance(self.meta.default, RichText): return self.meta.default else: return RichText(self.meta.default) def to_python(self, value): # convert a source-HTML string from the JSONish representation # to a RichText object return RichText(value) def get_prep_value(self, value): # convert a RichText object back to a source-HTML string to go into # the JSONish representation return value.source @cached_property def field(self): from wagtail.wagtailcore.fields import RichTextArea return forms.CharField(widget=RichTextArea, **self.field_options) def value_for_form(self, value): # RichTextArea takes the source-HTML string as input (and takes care # of expanding it for the purposes of the editor) return value.source def value_from_form(self, value): # RichTextArea returns a source-HTML string; concert to a RichText object return RichText(value) def get_searchable_content(self, value): return [force_text(value.source)] class RawHTMLBlock(FieldBlock): def __init__(self, required=True, help_text=None, max_length=None, min_length=None, **kwargs): self.field = forms.CharField( required=required, help_text=help_text, max_length=max_length, min_length=min_length, widget=forms.Textarea) super(RawHTMLBlock, self).__init__(**kwargs) def get_default(self): return mark_safe(self.meta.default or '') def to_python(self, value): return mark_safe(value) def get_prep_value(self, value): # explicitly convert to a plain string, just in case we're using some serialisation method # that doesn't cope with SafeText values correctly return six.text_type(value) def value_for_form(self, value): # need to explicitly mark as unsafe, or it'll output unescaped HTML in the textarea return six.text_type(value) def value_from_form(self, value): return mark_safe(value) class Meta: icon = 'code' class ChooserBlock(FieldBlock): def __init__(self, required=True, help_text=None, **kwargs): self.required = required self.help_text = help_text super(ChooserBlock, self).__init__(**kwargs) """Abstract superclass for fields that implement a chooser interface (page, image, snippet etc)""" @cached_property def field(self): return forms.ModelChoiceField( queryset=self.target_model.objects.all(), widget=self.widget, required=self.required, help_text=self.help_text) def to_python(self, value): # the incoming serialised value should be None or an ID if value is None: return value else: try: return self.target_model.objects.get(pk=value) except self.target_model.DoesNotExist: return None def get_prep_value(self, value): # the native value (a model instance or None) should serialise to an ID or None if value is None: return None else: return value.id def value_from_form(self, value): # ModelChoiceField sometimes returns an ID, and sometimes an instance; we want the instance if value is None or isinstance(value, self.target_model): return value else: try: return self.target_model.objects.get(pk=value) except self.target_model.DoesNotExist: return None def clean(self, value): # ChooserBlock works natively with model instances as its 'value' type (because that's what you # want to work with when doing front-end templating), but ModelChoiceField.clean expects an ID # as the input value (and returns a model instance as the result). We don't want to bypass # ModelChoiceField.clean entirely (it might be doing relevant validation, such as checking page # type) so we convert our instance back to an ID here. It means we have a wasted round-trip to # the database when ModelChoiceField.clean promptly does its own lookup, but there's no easy way # around that... if isinstance(value, self.target_model): value = value.pk return super(ChooserBlock, self).clean(value) class PageChooserBlock(ChooserBlock): def __init__(self, can_choose_root=False, **kwargs): self.can_choose_root = can_choose_root super(PageChooserBlock, self).__init__(**kwargs) @cached_property def target_model(self): from wagtail.wagtailcore.models import Page # TODO: allow limiting to specific page types return Page @cached_property def widget(self): from wagtail.wagtailadmin.widgets import AdminPageChooser return AdminPageChooser(can_choose_root=self.can_choose_root) def render_basic(self, value): if value: return format_html('<a href="{0}">{1}</a>', value.url, value.title) else: return '' # Ensure that the blocks defined here get deconstructed as wagtailcore.blocks.FooBlock # rather than wagtailcore.blocks.field.FooBlock block_classes = [ FieldBlock, CharBlock, URLBlock, RichTextBlock, RawHTMLBlock, ChooserBlock, PageChooserBlock, TextBlock, BooleanBlock, DateBlock, TimeBlock, DateTimeBlock, ChoiceBlock, ] DECONSTRUCT_ALIASES = { cls: 'wagtail.wagtailcore.blocks.%s' % cls.__name__ for cls in block_classes } __all__ = [cls.__name__ for cls in block_classes]
py
b407ad2406685770092f93d5ce390b45b161424b
import pathlib from setuptools import setup HERE = pathlib.Path(__file__).parent README = (HERE / "README.md").read_text() setup( name="hmmpy", version="0.1.0", description="Hidden Markov models in Python", long_description=README, long_description_content_type="text/markdown", url="https://github.com/klaapbakken/hmmpy", author="Øyvind Klåpbakken", author_email="[email protected]", license="MIT", packages=["hmmpy"], include_package_data=True, install_requires=["numpy", "scipy", "tqdm"] )
py
b407ae7cc6e2fbc7e3f5ef4c3427b74f5b0b623d
""" Baltrad to S3 porting """ import sys from creds import URL, LOGIN, PASSWORD import datamover as dm def main(): """Run data transfer from Baltrad to S3""" # ------------------ # DATA TRANSFER # ------------------ # Setup the connection of the Baltrad and S3 btos = dm.BaltradToS3(URL, LOGIN, PASSWORD, "lw-enram") # Execute the transfer btos.transfer(name_match="_vp_", overwrite=False, limit=None) btos.report(reset_file=False, transfertype="Baltrad to S3") # --------------------------------------------- # UPDATE COVERAGE AND MOST RECENT FILE DATETIME # --------------------------------------------- # Connect to S3 client s3client = dm.S3EnramHandler("lw-enram") # Rerun file list overview to extract the current coverage coverage_count, most_recent = s3client.count_enram_coverage(level='day') # Save the coverage information on S3 with open("coverage.csv", 'w') as outfile: dm.coverage_to_csv(outfile, coverage_count) s3client.upload_file("coverage.csv", "coverage.csv") # Save the last provided radar file information on S3 with open("radars.csv", 'w') as outfile: dm.most_recent_to_csv(outfile, most_recent) s3client.upload_file("radars.csv", "radars.csv") # ---------------------------- # UPDATE ZIP FILE AVAILABILITY # ---------------------------- # Rerun ZIP handling of S3 for the transferred files, given by report s3client.create_zip_version(btos.transferred) if __name__ == "__main__": sys.exit(main())
py
b407af242e4de71bdd9a978053e63d28cd72c988
# # Copyright (c) 2013, Digium, Inc. # """Async ARI client library. """ import json import urllib import aiohttp import aioswagger11.client import asyncio from aioari.model import * log = logging.getLogger(__name__) class Client(object): """Async ARI Client object. :param base_url: Base URL for accessing Asterisk. :param http_client: HTTP client interface. """ def __init__(self, base_url, http_client): self.base_url = base_url self.http_client = http_client self.app = None self.websockets = None url = urllib.parse.urljoin(base_url, "ari/api-docs/resources.json") self.swagger = aioswagger11.client.SwaggerClient( http_client=http_client, url=url) async def init(self): await self.swagger.init() # Extract models out of the events resource events = [api['api_declaration'] for api in self.swagger.api_docs['apis'] if api['name'] == 'events'] if events: self.event_models = events[0]['models'] else: self.event_models = {} self.repositories = { name: Repository(self, name, api) for (name, api) in self.swagger.resources.items()} self.websockets = set() self.event_listeners = {} self.exception_handler = \ lambda ex: log.exception("Event listener threw exception") def __getattr__(self, item): """Exposes repositories as fields of the client. :param item: Field name """ repo = self.get_repo(item) if not repo: raise AttributeError( "'%r' object has no attribute '%s'" % (self, item)) return repo async def close(self): """Close this ARI client. This method will close any currently open WebSockets, and close the underlying Swaggerclient. """ unsubscribe = { 'channel': '__AST_CHANNEL_ALL_TOPIC', 'bridge': '__AST_BRIDGE_ALL_TOPIC', 'endpoint': '__AST_ENDPOINT_ALL_TOPIC', 'deviceState': '__AST_DEVICE_STATE_ALL_TOPIC' } unsubscribe_str = ','.join([('%s:%s' % (key, value)) for (key, value) in unsubscribe.items()]) try: full_url = '%sari/applications/%s/subscription?eventSource=%s' % (self.base_url, self.app, unsubscribe_str) await self.http_client.request('delete', full_url) except Exception as ex: pass for ws in list(self.websockets): # changes during processing try: host, port = ws.get_extra_info('peername') except TypeError: # host, port = 'unknown', 'unknown' self.websockets.remove(ws) await ws.close() continue log.info('Successfully disconnected from ws://%s:%s, app: %s' % (host, port, self.app)) self.websockets.remove(ws) await ws.close() await self.swagger.close() def get_repo(self, name): """Get a specific repo by name. :param name: Name of the repo to get :return: Repository, or None if not found. :rtype: aioari.model.Repository """ return self.repositories.get(name) async def __run(self, ws): """Drains all messages from a WebSocket, sending them to the client's listeners. :param ws: WebSocket to drain. """ # TypeChecker false positive on iter(callable, sentinel) -> iterator # Fixed in plugin v3.0.1 # noinspection PyTypeChecker while True: msg = await ws.receive() if msg is None: return ## EOF elif msg.type in {aiohttp.WSMsgType.CLOSED, aiohttp.WSMsgType.CLOSING}: break elif msg.type != aiohttp.WSMsgType.TEXT: log.warning("Unknown JSON message type: %s", repr(msg)) continue # ignore msg_json = json.loads(msg.data) if not isinstance(msg_json, dict) or 'type' not in msg_json: log.error("Invalid event: %s" % msg) continue listeners = list(self.event_listeners.get(msg_json['type'], [])) \ + list(self.event_listeners.get('*', [])) for listener in listeners: # noinspection PyBroadException try: callback, args, kwargs = listener log.debug("cb_type=%s" % type(callback)) args = args or () kwargs = kwargs or {} cb = callback(msg_json, *args, **kwargs) # The callback may or may not be an async function if hasattr(cb,'__await__'): await cb except Exception as e: self.exception_handler(e) async def run(self, apps, *, _test_msgs=[]): """Connect to the WebSocket and begin processing messages. This method will block until all messages have been received from the WebSocket, or until this client has been closed. :param apps: Application (or list of applications) to connect for :type apps: str or list of str """ self.app = apps.split('&')[0] while True: if isinstance(apps, list): apps = ','.join(apps) try: ws = await self.swagger.events.eventWebsocket(app=apps) except (OSError, aiohttp.ClientConnectionError, aiohttp.WSServerHandshakeError) as ex: log.error(ex) await asyncio.sleep(1) continue host, port = ws.get_extra_info('peername') log.info('Successfully connected to ws://%s:%s, app: %s' % (host, port, self.app)) self.websockets.add(ws) # For tests for m in _test_msgs: ws.push(m) await self.__run(ws) def on_event(self, event_type, event_cb, *args, **kwargs): """Register callback for events with given type. :param event_type: String name of the event to register for. :param event_cb: Callback function :type event_cb: (dict) -> None :param args: Arguments to pass to event_cb :param kwargs: Keyword arguments to pass to event_cb """ listeners = self.event_listeners.setdefault(event_type, list()) for cb in listeners: if event_cb == cb[0]: listeners.remove(cb) callback_obj = (event_cb, args, kwargs) log.debug("event_cb=%s" % event_cb) listeners.append(callback_obj) client = self class EventUnsubscriber(object): """Class to allow events to be unsubscribed. """ def close(self): """Unsubscribe the associated event callback. """ if callback_obj in client.event_listeners[event_type]: client.event_listeners[event_type].remove(callback_obj) return EventUnsubscriber() def on_object_event(self, event_type, event_cb, factory_fn, model_id, *args, **kwargs): """Register callback for events with the given type. Event fields of the given model_id type are passed along to event_cb. If multiple fields of the event have the type model_id, a dict is passed mapping the field name to the model object. :param event_type: String name of the event to register for. :param event_cb: Callback function :type event_cb: (Obj, dict) -> None or (dict[str, Obj], dict) -> :param factory_fn: Function for creating Obj from JSON :param model_id: String id for Obj from Swagger models. :param args: Arguments to pass to event_cb :param kwargs: Keyword arguments to pass to event_cb """ # Find the associated model from the Swagger declaration log.debug("On object event %s %s %s %s"%(event_type, event_cb, factory_fn, model_id)) event_model = self.event_models.get(event_type) if not event_model: raise ValueError("Cannot find event model '%s'" % event_type) # Extract the fields that are of the expected type obj_fields = [k for (k, v) in event_model['properties'].items() if v['type'] == model_id] if not obj_fields: raise ValueError("Event model '%s' has no fields of type %s" % (event_type, model_id)) def extract_objects(event, *args, **kwargs): """Extract objects of a given type from an event. :param event: Event :param args: Arguments to pass to the event callback :param kwargs: Keyword arguments to pass to the event callback """ # Extract the fields which are of the expected type obj = {obj_field: factory_fn(self, event[obj_field]) for obj_field in obj_fields if event.get(obj_field)} # If there's only one field in the schema, just pass that along if len(obj_fields) == 1: if obj: vals = list(obj.values()) obj = vals[0] else: obj = None return event_cb(obj, event, *args, **kwargs) return self.on_event(event_type, extract_objects, *args, **kwargs) def on_channel_event(self, event_type, fn, *args, **kwargs): """Register callback for Channel related events :param event_type: String name of the event to register for. :param fn: Callback function :type fn: (Channel, dict) -> None or (list[Channel], dict) -> None :param args: Arguments to pass to fn :param kwargs: Keyword arguments to pass to fn """ return self.on_object_event(event_type, fn, Channel, 'Channel', *args, **kwargs) def on_bridge_event(self, event_type, fn, *args, **kwargs): """Register callback for Bridge related events :param event_type: String name of the event to register for. :param fn: Callback function :type fn: (Bridge, dict) -> None or (list[Bridge], dict) -> None :param args: Arguments to pass to fn :param kwargs: Keyword arguments to pass to fn """ return self.on_object_event(event_type, fn, Bridge, 'Bridge', *args, **kwargs) def on_playback_event(self, event_type, fn, *args, **kwargs): """Register callback for Playback related events :param event_type: String name of the event to register for. :param fn: Callback function :type fn: (Playback, dict) -> None or (list[Playback], dict) -> None :param args: Arguments to pass to fn :param kwargs: Keyword arguments to pass to fn """ return self.on_object_event(event_type, fn, Playback, 'Playback', *args, **kwargs) def on_live_recording_event(self, event_type, fn, *args, **kwargs): """Register callback for LiveRecording related events :param event_type: String name of the event to register for. :param fn: Callback function :type fn: (LiveRecording, dict) -> None or (list[LiveRecording], dict) -> None :param args: Arguments to pass to fn :param kwargs: Keyword arguments to pass to fn """ return self.on_object_event(event_type, fn, LiveRecording, 'LiveRecording', *args, **kwargs) def on_stored_recording_event(self, event_type, fn, *args, **kwargs): """Register callback for StoredRecording related events :param event_type: String name of the event to register for. :param fn: Callback function :type fn: (StoredRecording, dict) -> None or (list[StoredRecording], dict) -> None :param args: Arguments to pass to fn :param kwargs: Keyword arguments to pass to fn """ return self.on_object_event(event_type, fn, StoredRecording, 'StoredRecording', *args, **kwargs) def on_endpoint_event(self, event_type, fn, *args, **kwargs): """Register callback for Endpoint related events :param event_type: String name of the event to register for. :param fn: Callback function :type fn: (Endpoint, dict) -> None or (list[Endpoint], dict) -> None :param args: Arguments to pass to fn :param kwargs: Keyword arguments to pass to fn """ return self.on_object_event(event_type, fn, Endpoint, 'Endpoint', *args, **kwargs) def on_device_state_event(self, event_type, fn, *args, **kwargs): """Register callback for DeviceState related events :param event_type: String name of the event to register for. :param fn: Callback function :type fn: (DeviceState, dict) -> None or (list[DeviceState], dict) -> None :param args: Arguments to pass to fn :param kwargs: Keyword arguments to pass to fn """ return self.on_object_event(event_type, fn, DeviceState, 'DeviceState', *args, **kwargs) def on_sound_event(self, event_type, fn, *args, **kwargs): """Register callback for Sound related events :param event_type: String name of the event to register for. :param fn: Sound function :type fn: (Sound, dict) -> None or (list[Sound], dict) -> None :param args: Arguments to pass to fn :param kwargs: Keyword arguments to pass to fn """ return self.on_object_event(event_type, fn, Sound, 'Sound', *args, **kwargs)
py
b407af95f3d355d737348f65f63816f58dc35d91
import os import pickle as pk import itertools as it import numpy as np from pattern_database import PatternDatabase from algorithm import run from utils import softmax class Candidate: def __init__(self, patterns, wildcards, macros): self.patterns = patterns self.wildcards = wildcards self.macros = macros self.solved_sum = 0 self.godliness_sum = 0 self.evaluation_count = 0 def check_domination_of(x, by): # assumes one or both arguments are 2d return (by >= x).all(axis=1) & (by > x).any(axis=1) def screen(cand, state, path, rng, tree, max_depth, tree_depth, use_safe_depth): patterns = cand.patterns wildcards = cand.wildcards macros = cand.macros upgraded = False # becomes True if candidate gets upgraded # restrict any rules needed so that state will not trigger bad macros wr, wc = [], [] # rows and columns where wildcards are disabled triggered = ((state == patterns) | wildcards).all(axis=1) for r in np.flatnonzero(triggered): goodmacro = (len(macros[r]) <= len(path)) and macros[r] == path[:len(macros[r])] if not goodmacro: wr.append(r) wc.append(rng.choice(np.flatnonzero(state != patterns[r]))) if len(wr) > 0: wildcards = wildcards.copy() wildcards[wr, wc] = False upgraded = True # check if state is in neighborhood of a trigger # due to incomplete tree it must also be triggered within distance to tree_depth # otherwise macro_search could exit set where pdb is correct safe_depth = max_depth if use_safe_depth: safe_depth = min(max_depth, tree_depth - len(path)) triggered = False # until proven otherwise for _, neighbor in tree.rooted_at(state, up_to_depth=safe_depth): triggered = ((neighbor == patterns) | wildcards).all(axis=1).any() if triggered: break # if not, create a new rule triggered by state if not triggered: upgraded = True # if this code is reached, path is longer than max depth macro = path[:rng.integers(max_depth, len(path))+1] # random macro pattern = state # wildcard = np.ones(pattern.shape, dtype=bool) # start with all wildcards which will gradually be disabled wildcard = (np.random.rand(*pattern.shape) < (len(path) / domain.god_number())) # more wildcards in deeper states # add to pdb patterns = np.append(patterns, pattern[np.newaxis,:], axis=0) wildcards = np.append(wildcards, wildcard[np.newaxis,:], axis=0) macros = macros + [macro] if upgraded: return patterns, wildcards, macros else: return None if __name__ == "__main__": # config # larger exploration is important for larger state spaces, at least with uniform state sampling # larger state spaces need a few rules to start getting any godliness # otherwise the initial candidate dominates its offspring and keeps getting selected # tree_depth = 11 # use_safe_depth = False tree_depth = 8 use_safe_depth = True exploration = 1 state_sampling = "bfs" # state_sampling = "uniform" max_depth = 1 cube_size = 2 # valid_actions = None valid_actions = tuple(it.product((0,1,2), (1,), (1, 2, 3))) # only spinning one plane on each axis for 2cube max_actions = 30 orientation_neutral=False selection_policy = "hucb" # selection_policy = "sucb" # selection_policy = "uniform" obj_names = ("godliness", "folkliness") num_search_iters = 2**16 # candidate_buffer_size = num_search_iters candidate_buffer_size = 64 num_instances = 32 num_reps = 1 # break_seconds = 30 * 60 break_seconds = 0 dump_dir = "psearch" save_period = 1000 config = { name: value for (name, value) in globals().items() if type(value) in [bool, int, str, tuple] and name[:2] != "__"} animate_tree = False verbose = True do_dump = True do_search = False show_results = True post_mortem = False # set up descriptive dump name dump_base = "N%d_D%d_M%d_C%d_%s_%s%s" % ( cube_size, tree_depth, max_depth, candidate_buffer_size, state_sampling, selection_policy, exploration) # Set up domain and state-space from cube import CubeDomain domain = CubeDomain(cube_size, valid_actions) init = domain.solved_state() from tree import SearchTree tree = SearchTree(domain, tree_depth, orientation_neutral) paths, states = zip(*tree.rooted_at(init)) states = np.array(states) paths = list(map(tuple, map(domain.reverse, paths))) # from state to solved dists = np.array(list(map(len, paths))) # if verbose: # print("tree layer sizes:") # for dep in range(tree_depth): print(len(tree._layers[dep])) # random number generation rng = np.random.default_rng() def evaluate(cand, instances): # wrap candidate in pattern database pdb = PatternDatabase(cand.patterns, cand.wildcards, cand.macros, domain, orientation_neutral) # run algorithm on problem instances for state, distance in instances: solved, plan = run(state, domain, tree, pdb, max_depth, max_actions, orientation_neutral) if solved: soln_len = sum([len(actions) + len(macro) for (actions, _, macro) in plan]) if soln_len == 0: godliness = int(distance == 0) else: godliness = distance / soln_len cand.godliness_sum += godliness cand.solved_sum += 1 cand.evaluation_count += 1 # return evaluation metrics godliness = cand.godliness_sum / cand.evaluation_count folkliness = -len(cand.macros) # larger pdb is worse return godliness, folkliness def instance_minibatch(): index = rng.choice(len(states), num_instances) return tuple((states[i], dists[i]) for i in index) if do_search: from time import sleep for rep in range(num_reps): # set up candidate pool candidate = {} # saves the best candidates found so far selection_count = np.zeros(num_search_iters, dtype=int) objective = np.empty((num_search_iters, len(obj_names))) parent = -np.ones(num_search_iters, dtype=int) ranking = np.empty(num_search_iters, dtype=int) # rank = number of candidates that dominate (frontier is rank 0) state_counter = np.zeros(num_search_iters, dtype=int) # for ordered state sampling # initialize candidate with one rule for solved state candidate[0] = Candidate( patterns = states[:1,:].copy(), wildcards = np.zeros((1, domain.state_size()), dtype=bool), macros = [()]) # maintain invariant that every candidate is ranked and evaluated at least once godliness, folkliness = evaluate(candidate[0], instance_minibatch()) objective[0] = godliness, folkliness ranking[0] = 0 # no other candidates yet leaves = set([0]) num_cand = 1 for n in range(1, num_search_iters): # backup leaf rankings leaf_index = list(leaves) legacy = np.ones(num_cand) * ranking[:num_cand].max() legacy[leaf_index] = ranking[leaf_index] for c in reversed(range(num_cand)): legacy[parent[c]] = min(legacy[parent[c]], legacy[c]) # enumerate currently buffered candidates keys = list(candidate.keys()) # discard candidate with worst legacy if buffer size reached if len(candidate) == candidate_buffer_size: worst = keys[legacy[keys].argmax()] keys.remove(worst) candidate.pop(worst) # upper confidence bounds N = selection_count[keys] # Q = -ranking[keys].copy() # ranking closer to 0 is better Q = -legacy[keys].copy() # descendent ranking closer to 0 is better ucb_logits = Q + exploration * np.sqrt(np.log(n) / (N+1)) ## select a candidate still saved in memory if selection_policy == "hucb": c = keys[ucb_logits.argmax()] if selection_policy == "sucb": c = rng.choice(keys, p = softmax(ucb_logits)) if selection_policy == "uniform": c = rng.choice(keys) selection_count[c] += 1 # check whether each neighbor is dominated by current candidate before evaluation # was_dominated = check_domination_of(objective[:num_cand], by=objective[c]) if c in leaves: was_dominated = check_domination_of(objective[leaf_index], by=objective[c]) # sample a state if state_sampling == "uniform": s = rng.choice(len(states)) if state_sampling == "bfs": s = state_counter[c] % len(states) state_counter[c] += 1 state, path = states[s], paths[s] # evaluate and update objectives godliness, folkliness = evaluate(candidate[c], instance_minibatch()) objective[c] = godliness, folkliness # update dominated status of neighbors after evaluation # is_dominated = check_domination_of(objective[:num_cand], by=objective[c]) if c in leaves: is_dominated = check_domination_of(objective[leaf_index], by=objective[c]) # # update rankings # ranking[:num_cand] += (is_dominated.astype(int) - was_dominated.astype(int)) # ranking[c] = check_domination_of(objective[c], by=objective[:num_cand]).sum() if c in leaves: ranking[leaf_index] += (is_dominated.astype(int) - was_dominated.astype(int)) ranking[c] = check_domination_of(objective[c], by=objective[leaf_index]).sum() # upgrade selected candidate if needed upgrade = screen(candidate[c], state, path, rng, tree, max_depth, tree_depth, use_safe_depth) if upgrade is not None: # update candidate set patterns, wildcards, macros = upgrade candidate[num_cand] = Candidate(patterns, wildcards, macros) parent[num_cand] = c selection_count[num_cand] = 0 state_counter[num_cand] = state_counter[c] # # carry forward parent metrics # candidate[num_cand].evaluation_count = candidate[c].evaluation_count # candidate[num_cand].godliness_sum = candidate[c].godliness_sum # candidate[num_cand].solved_sum = candidate[c].solved_sum # godliness = candidate[num_cand].godliness_sum / candidate[num_cand].evaluation_count # folkliness = -len(candidate[num_cand].macros) # objective[num_cand] = godliness, folkliness # first child candidate evaluation godliness, folkliness = evaluate(candidate[num_cand], instance_minibatch()) objective[num_cand] = godliness, folkliness # update rankings # ranking[:num_cand] += check_domination_of(objective[:num_cand], by = objective[num_cand]) # ranking[num_cand] = check_domination_of(objective[num_cand], by = objective[:num_cand]).sum() ranking[leaf_index] += check_domination_of(objective[leaf_index], by = objective[num_cand]) ranking[num_cand] = check_domination_of(objective[num_cand], by = objective[leaf_index]).sum() # update leaf set leaves.add(num_cand) leaves.discard(c) # # discard most dominated candidate if buffer size reached # if len(candidate) > candidate_buffer_size: # worst = keys[ranking[keys].argmax()] # candidate.pop(worst) # update num candidates num_cand += 1 # save results periodically if do_dump and (n % save_period == 0 or n + 1 == num_search_iters): metrics = tuple(metric[:num_cand] for metric in [selection_count, parent, objective, ranking, state_counter]) dump_name = "%s_r%d" % (dump_base, rep) with open(dump_name + ".pkl", "wb") as df: pk.dump((config, candidate, leaves, metrics), df) if verbose: print(" saving to disk") # if verbose and n % (10**int(np.log10(n))) == 0: if verbose: # bests = ["%s: %s" % (obj_names[i], objective[(selection_count > 0), i].max()) for i in range(objective.shape[1])] bests = ["%s: %s" % (obj_names[i], objective[:num_cand, i].max()) for i in range(objective.shape[1])] print("%d/%d: selected %d~%.1f~%d | counter <= %d | %d leaves | %d cands | bests: %s" % (n, num_search_iters, selection_count[:num_cand].min(), selection_count[:num_cand].mean(), selection_count[:num_cand].max(), state_counter.max(), len(leaves), len(candidate), ", ".join(bests))) # print("%d | %d in frontier | %d spawns | counts <=%d | bests: %s" % (c, frontier.size, num_spawns, count[:c+1].max(), ", ".join(bests))) # print("iter %d: %d <= %d rules, %f wildcard, done=%s (k=%d)" % (epoch, len(macros), len(states), wildcards.sum() / wildcards.size, done, k)) # archive results if do_dump: dump_name = "%s_r%d" % (dump_base, rep) os.system("mv %s.pkl %s/%s.pkl" % (dump_name, dump_dir, dump_name)) if verbose: print("Breaking for %s seconds..." % str(break_seconds)) sleep(break_seconds) if show_results: import matplotlib.pyplot as pt # load results rep_results = [] rep_leaves = [] for rep in range(num_reps): # dump_name = "%s/rep_%d.pkl" % (dump_dir, rep) # dump_name = "%s/rep_%d_N2_D11_bfs_d1_hucb_x1.pkl" % (dump_dir, rep) dump_name = "%s/%s_r%d" % (dump_dir, dump_base, rep) with open(dump_name + ".pkl", "rb") as df: config, candidate, leaves, results = pk.load(df) rep_results.append(results) rep_leaves.append(leaves) # # overwrite config with loaded values # for name, value in config.items(): eval("%s = %s" % (name, str(value))) selection_count, parent, objective, ranking, state_counter = rep_results[0] leaves = list(rep_leaves[0]) nc = len(ranking) # elites = np.flatnonzero(ranking[1:] < 20) + 1 # elites = np.arange(1, nc) elites = leaves if animate_tree: pt.ion() pt.figure() else: pt.figure(figsize=(20,15)) pt.xlabel("folkliness") pt.ylabel("godliness") # for c in range(1,nc): for c in elites: pt.plot( [objective[c,obj_names.index("folkliness")], objective[parent[c],obj_names.index("folkliness")]], [objective[c,obj_names.index("godliness")], objective[parent[c],obj_names.index("godliness")]], '-ko') if animate_tree: pt.pause(0.01) pt.plot( objective[leaves, obj_names.index("folkliness")], objective[leaves, obj_names.index("godliness")], 'go') if not animate_tree: pt.savefig("%s/%s_r0_ptree.png" % (dump_dir, dump_base)) pt.show() # pt.figure(figsize=(15, 5)) # for rep, results in enumerate(rep_results): # selection_count, parent, objective, ranking = results # # sc = np.flatnonzero(selection_count > 0) # sc = np.arange(len(ranking)) # nc = len(ranking) # num_plots = 5 # pt.subplot(1, num_plots, 1) # pt.bar(np.arange(len(sc)), objective[sc, obj_names.index("godliness")], label=str(rep)) # pt.xlabel("candidate") # pt.ylabel("godliness") # pt.subplot(1, num_plots, 2) # pt.bar(np.arange(nc), selection_count, label=str(rep)) # pt.xlabel("candidate") # pt.ylabel("selection count") # pt.subplot(1, num_plots, 3) # pt.scatter(selection_count[sc], ranking[sc], label=str(rep)) # pt.xlabel("selection count") # pt.ylabel("ranking") # pt.subplot(1, num_plots, 4) # pt.scatter(selection_count[sc], objective[sc, obj_names.index("godliness")], label=str(rep)) # pt.xlabel("selection count") # pt.ylabel("godliness") # pt.subplot(1, num_plots, 5) # pt.scatter(objective[sc, obj_names.index("folkliness")], objective[sc, obj_names.index("godliness")], label=str(rep)) # pt.xlabel("folkliness") # pt.ylabel("godliness") # pt.legend() # pt.savefig("%s/%s.png" % (dump_dir, dump_base)) # pt.show() if post_mortem: godly_metric, godly_so_far, godly_uniform = [], [], [] solved_metric, solved_so_far, solved_uniform = [], [], [] for rep in range(num_reps): dump_name = "%s/%s_r%d" % (dump_dir, dump_base, rep) with open(dump_name + ".pkl", "rb") as df: config, candidate, leaves, results = pk.load(df) selection_count, parent, objective, ranking, state_counter = results for c, cand in candidate.items(): # if selection_count[c] < 1: continue godly_metric.append(cand.godliness_sum / cand.evaluation_count) solved_metric.append(cand.solved_sum / cand.evaluation_count) cand.godliness_sum = cand.solved_sum = cand.evaluation_count = 0 evaluate(cand, [(states[s], dists[s]) for s in rng.choice(state_counter[c], size=32) % len(states)]) godly_so_far.append(cand.godliness_sum / cand.evaluation_count) solved_so_far.append(cand.solved_sum / cand.evaluation_count) cand.godliness_sum = cand.solved_sum = cand.evaluation_count = 0 evaluate(cand, [(states[s], dists[s]) for s in rng.choice(len(states), size=32)]) godly_uniform.append(cand.godliness_sum / cand.evaluation_count) solved_uniform.append(cand.solved_sum / cand.evaluation_count) import matplotlib.pyplot as pt pt.subplot(2,2,1) pt.scatter(godly_metric, godly_so_far) pt.xlabel("godly metric") pt.ylabel("so_far") pt.subplot(2,2,2) pt.scatter(godly_metric, godly_uniform) pt.xlabel("godly metric") pt.ylabel("uniform") pt.subplot(2,2,3) pt.scatter(solved_metric, solved_so_far) pt.xlabel("solved metric") pt.ylabel("so_far") pt.subplot(2,2,4) pt.scatter(solved_metric, solved_uniform) pt.xlabel("solved metric") pt.ylabel("uniform") pt.tight_layout() pt.show()
py
b407afcf370f3725fdfc167f87bf0052e7b72904
"""StoneVilla URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path ,include from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('Stone_app/', include('Stone_app.urls')), ] urlpatterns +=static(settings.STATIC_URL , commnet_root=settings.STATIC_ROOT)
py
b407b1ebd3a84f1acea533fa698be1ac6ed52e72
# Generated by Django 2.2.9 on 2020-05-21 14:42 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('posts', '0004_auto_20200521_1725'), ] operations = [ migrations.AddField( model_name='group', name='pub_date_group', field=models.DateTimeField( auto_now_add=True, default=django.utils.timezone.now, verbose_name='date published_group'), preserve_default=False, ), ]
py
b407b2635563a722ee413b223e7aaafc0ee32188
from tqdm import tqdm import numpy as np from PIL import Image from math import log, sqrt, pi import argparse import torch from torch import nn, optim from torch.autograd import Variable, grad from torch.utils.data import DataLoader from torchvision import datasets, transforms, utils from model import Glow #device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device = torch.device('cuda') parser = argparse.ArgumentParser(description='Glow trainer') parser.add_argument('--batch', default=16, type=int, help='batch size') parser.add_argument('--iter', default=200000, type=int, help='maximum iterations') parser.add_argument( '--n_flow', default=32, type=int, help='number of flows in each block' ) parser.add_argument('--n_block', default=4, type=int, help='number of blocks') parser.add_argument( '--no_lu', action='store_true', help='use plain convolution instead of LU decomposed version', ) parser.add_argument( '--affine', action='store_true', help='use affine coupling instead of additive' ) parser.add_argument('--n_bits', default=4, type=int, help='number of bits') parser.add_argument('--lr', default=1e-4, type=float, help='learning rate') parser.add_argument('--img_size', default=64, type=int, help='image size') parser.add_argument('--temp', default=0.7, type=float, help='temperature of sampling') parser.add_argument('--n_sample', default=20, type=int, help='number of samples') parser.add_argument('path', metavar='PATH', type=str, help='Path to image directory') def sample_data(path, batch_size, image_size): transform = transforms.Compose( [ transforms.Resize(image_size), transforms.CenterCrop(image_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (1, 1, 1)), ] ) dataset = datasets.ImageFolder(path, transform=transform) loader = DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=4) loader = iter(loader) while True: try: yield next(loader) except StopIteration: loader = DataLoader( dataset, shuffle=True, batch_size=batch_size, num_workers=4 ) loader = iter(loader) yield next(loader) def calc_z_shapes(n_channel, input_size, n_flow, n_block): z_shapes = [] for i in range(n_block - 1): input_size //= 2 n_channel *= 2 z_shapes.append((n_channel, input_size, input_size)) input_size //= 2 z_shapes.append((n_channel * 4, input_size, input_size)) return z_shapes def calc_loss(log_p, logdet, image_size, n_bins): # log_p = calc_log_p([z_list]) n_pixel = image_size * image_size * 3 loss = -log(n_bins) * n_pixel loss = loss + logdet + log_p return ( (-loss / (log(2) * n_pixel)).mean(), (log_p / (log(2) * n_pixel)).mean(), (logdet / (log(2) * n_pixel)).mean(), ) def train(args, model, optimizer): dataset = iter(sample_data(args.path, args.batch, args.img_size)) n_bins = 2. ** args.n_bits z_sample = [] z_shapes = calc_z_shapes(3, args.img_size, args.n_flow, args.n_block) for z in z_shapes: z_new = torch.randn(args.n_sample, *z) * args.temp z_sample.append(z_new.to(device)) with tqdm(range(args.iter)) as pbar: for i in pbar: image, _ = next(dataset) image = image.to(device) if i == 0: with torch.no_grad(): log_p, logdet, _ = model.module(image + torch.rand_like(image) / n_bins) continue else: log_p, logdet, _ = model(image + torch.rand_like(image) / n_bins) logdet = logdet.mean() loss, log_p, log_det = calc_loss(log_p, logdet, args.img_size, n_bins) model.zero_grad() loss.backward() # warmup_lr = args.lr * min(1, i * batch_size / (50000 * 10)) warmup_lr = args.lr optimizer.param_groups[0]['lr'] = warmup_lr optimizer.step() pbar.set_description( f'Loss: {loss.item():.5f}; logP: {log_p.item():.5f}; logdet: {log_det.item():.5f}; lr: {warmup_lr:.7f}' ) if i % 500 == 0: with torch.no_grad(): utils.save_image( model_single.reverse(z_sample).cpu().data, f'sample/{str(i + 1).zfill(6)}.png', normalize=True, nrow=10, range=(-0.5, 0.5), ) if i % 2000 == 0: torch.save( model.state_dict(), f'checkpoint/model.pt' ) torch.save( optimizer.state_dict(), f'checkpoint/optim.pt' ) if __name__ == '__main__': args = parser.parse_args() print(args) model_single = Glow( 3, args.n_flow, args.n_block, affine=args.affine, conv_lu=not args.no_lu ) model = nn.DataParallel(model_single) # model = model_single model = model.to(device) #model.load_state_dict(torch.load('checkpoint/model.pt', map_location=lambda storage, loc: storage)) optimizer = optim.Adam(model.parameters(), lr=args.lr) torch.cuda.set_device(0) # adding this line fixed it #optimizer.load_state_dict(torch.load('checkpoint/optim.pt', map_location=lambda storage, loc: storage)) train(args, model, optimizer)
py
b407b355bd980aab57fa70a1f8be627dde21e441
""" Request ======= When a page is requested, automatically created a :class:`Request` object that contains metadata about the request. Since this object is global within the thread, you can freely import from anywhere and retrieve request information. """ import base64 import fnmatch import hashlib import hmac import threading import cgi import json import pickle from urllib.parse import SplitResult from http.cookies import SimpleCookie ################################################################################## # Request Object ################################################################# ################################################################################## class Request: """ A wrapper for WSGI environment dictionaries. """ __slots__ = ('environ', '_body', '_forms') def __init__(self, environ=None): self.environ = {} if environ is None else environ self.environ['kobin.request'] = self self._body = None self._forms = None def get(self, value, default=None): return self.environ.get(value, default) @property def path(self): """ The value of ``PATH_INFO`` with exactly one prefixed slash (to fix broken clients and avoid the "empty path" edge case). """ return '/' + self.environ.get('PATH_INFO', '').lstrip('/') @property def method(self): """ The ``REQUEST_METHOD`` value as an uppercase string. """ return self.environ.get('REQUEST_METHOD', 'GET').upper() @property def headers(self): return {k[len('HTTP_'):]: v for k, v in self.environ.items() if k.startswith('HTTP_')} @property def query(self): params = cgi.FieldStorage( environ=self.environ, keep_blank_values=True, ) p = {k: params[k].value for k in params} return p @property def forms(self): if self._forms is None: form = cgi.FieldStorage( fp=self.environ['wsgi.input'], environ=self.environ, keep_blank_values=True, ) self._forms = {k: form[k].value for k in form} return self._forms @property def raw_body(self): if self._body is not None: return self._body length = self.environ.get('CONTENT_LENGTH') if length: self._body = self.environ['wsgi.input'].read(int(length)) else: self._body = b'' return self._body @property def body(self): return self.raw_body.decode('utf-8') @property def json(self): return json.loads(self.body) @property def url(self): protocol = self.get('HTTP_X_FORWARDED_PROTO') or self.get('wsgi.url_scheme', 'http') host = self.get('HTTP_X_FORWARDED_HOST') or self.get('HTTP_HOST') query_params = self.get("QUERY_STRING") url_split_result = SplitResult(protocol, host, self.path, query_params, '') return url_split_result.geturl() @property def cookies(self): cookies = SimpleCookie(self.environ.get('HTTP_COOKIE', '')).values() return {c.key: c.value for c in cookies} def get_cookie(self, key, default=None, secret=None, digestmod=hashlib.sha256): from kobin.app import current_config if secret is None: secret = current_config('SECRET_KEY') value = self.cookies.get(key) if secret and value and value.startswith('!') and '?' in value: # See BaseResponse.set_cookie for details. if isinstance(secret, str): secret = secret.encode('utf-8') sig, msg = map(lambda x: x.encode('utf-8'), value[1:].split('?', 1)) hash_string = hmac.new(secret, msg, digestmod=digestmod).digest() if sig == base64.b64encode(hash_string): key_and_value = pickle.loads(base64.b64decode(msg)) if key_and_value and key_and_value[0] == key: return key_and_value[1] return value or default def __getitem__(self, key): return self.environ[key] def __delitem__(self, key): self[key] = "" del (self.environ[key]) def __setitem__(self, key, value): """ Change an environ value and clear all caches that depend on it. """ self.environ[key] = value todelete = () if key == 'wsgi.input': todelete = ('body', 'forms', 'files', 'params', 'post', 'json') elif key == 'QUERY_STRING': todelete = ('query', 'params') elif key.startswith('HTTP_'): todelete = ('headers', 'cookies') for key in todelete: self.environ.pop('kobin.request.' + key, None) def __len__(self): return len(self.environ) def __repr__(self): return '<{cls}: {method} {url}>'.format( cls=self.__class__.__name__, method=self.method, url=self.path ) # for Accept header. def _split_into_mimetype_and_priority(x): """Split an accept header item into mimetype and priority. >>> _split_into_mimetype_and_priority('text/*') ('text/*', 1.0) >>> _split_into_mimetype_and_priority('application/json;q=0.5') ('application/json', 0.5) """ if ';' in x: content_type, priority = x.split(';') casted_priority = float(priority.split('=')[1]) else: content_type, casted_priority = x, 1.0 content_type = content_type.lstrip().rstrip() # Replace ' text/html' to 'text/html' return content_type, casted_priority def _parse_and_sort_accept_header(accept_header): """Parse and sort the accept header items. >>> _parse_and_sort_accept_header('application/json;q=0.5, text/*') [('text/*', 1.0), ('application/json', 0.5)] """ return sorted([_split_into_mimetype_and_priority(x) for x in accept_header.split(',')], key=lambda x: x[1], reverse=True) def accept_best_match(accept_header, mimetypes): """Return a mimetype best matched the accept headers. >>> accept_best_match('application/json, text/html', ['application/json', 'text/plain']) 'application/json' >>> accept_best_match('application/json;q=0.5, text/*', ['application/json', 'text/plain']) 'text/plain' """ for mimetype_pattern, _ in _parse_and_sort_accept_header(accept_header): matched_types = fnmatch.filter(mimetypes, mimetype_pattern) if matched_types: return matched_types[0] return mimetypes[0] def _local_property(): ls = threading.local() def fget(_): try: return ls.var except AttributeError: raise RuntimeError("Request context not initialized.") def fset(_, value): ls.var = value def fdel(_): del ls.var return property(fget, fset, fdel, 'Thread-local property') class LocalRequest(Request): bind = Request.__init__ environ = _local_property() _body = _local_property() _forms = _local_property() request = LocalRequest()
py
b407b3bc0feaf040ebcaef9bcda9b5872602c1dc
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('sbirez', '0031_merge'), ] operations = [ migrations.AddField( model_name='element', name='report_question_number', field=models.TextField(blank=True, null=True), ), ]
py
b407b3d70947178289be5103e1a06cdb915865fb
price = float(input('Digite o preço do pão R$: ')) print('Panificadora Pão de Ontem - Tabela de Preços') for x in range(1, 52): quantity = x print(f'{quantity} - R$ {quantity * price:.2f}')
py
b407b41e6b794c3c1ed311584e809f40510f5d73
# terrascript/provider/brightbox.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:13:43 UTC) # # For imports without namespace, e.g. # # >>> import terrascript.provider.brightbox # # instead of # # >>> import terrascript.provider.brightbox.brightbox # # This is only available for 'official' and 'partner' providers. from terrascript.provider.brightbox.brightbox import *
py
b407b4926024235ce5c0704b1c66a506b4ba4e0f
import base64 import json import urllib.request, urllib.parse, urllib.error from urllib3._collections import HTTPHeaderDict from . import httplib2 import logger import traceback import socket import time import re import uuid from copy import deepcopy from threading import Thread from TestInput import TestInputSingleton from TestInput import TestInputServer from testconstants import MIN_KV_QUOTA, INDEX_QUOTA, FTS_QUOTA, CBAS_QUOTA from testconstants import COUCHBASE_FROM_VERSION_4, IS_CONTAINER, CLUSTER_QUOTA_RATIO from lib.Cb_constants.CBServer import CbServer try: from couchbase_helper.document import DesignDocument, View except ImportError: from lib.couchbase_helper.document import DesignDocument, View from memcached.helper.kvstore import KVStore from .exception import ServerAlreadyJoinedException, ServerUnavailableException, InvalidArgumentException from membase.api.exception import BucketCreationException, ServerSelfJoinException, ClusterRemoteException, \ RebalanceFailedException, FailoverFailedException, DesignDocCreationException, QueryViewException, \ ReadDocumentException, GetBucketInfoFailed, CompactViewFailed, SetViewInfoNotFound, AddNodeException, \ BucketFlushFailed, CBRecoveryFailedException, XDCRException, SetRecoveryTypeFailed, BucketCompactionException log = logger.Logger.get_logger() # helper library methods built on top of RestConnection interface class RestHelper(object): def __init__(self, rest_connection): self.rest = rest_connection def is_ns_server_running(self, timeout_in_seconds=360): log.info("-->is_ns_server_running?") end_time = time.time() + timeout_in_seconds while time.time() <= end_time: try: status = self.rest.get_nodes_self(5) if status is not None and status.status == 'healthy': return True else: if status is not None: log.warn("server {0}:{1} status is {2}"\ .format(self.rest.ip, self.rest.port, status.status)) else: log.warn("server {0}:{1} status is down"\ .format(self.rest.ip, self.rest.port)) except ServerUnavailableException: log.error("server {0}:{1} is unavailable"\ .format(self.rest.ip, self.rest.port)) time.sleep(5) msg = 'unable to connect to the node {0} even after waiting {1} seconds' log.error(msg.format(self.rest.ip, timeout_in_seconds)) return False def is_cluster_healthy(self, timeout=120): # get the nodes and verify that all the nodes.status are healthy nodes = self.rest.node_statuses(timeout) return all(node.status == 'healthy' for node in nodes) def rebalance_reached(self, percentage=100,retry_count=40): start = time.time() progress = 0 previous_progress = 0 retry = 0 while progress is not -1 and progress < percentage and retry < retry_count: # -1 is error , -100 means could not retrieve progress progress = self.rest._rebalance_progress() if progress == -100: log.error("unable to retrieve rebalanceProgress.try again in 2 seconds") retry += 1 else: if previous_progress == progress: retry += 0.5 else: retry = 0 previous_progress = progress # sleep for 2 seconds time.sleep(3) if progress <= 0: log.error("rebalance progress code : {0}".format(progress)) return False elif retry >= retry_count: log.error("rebalance stuck on {0}%".format(progress)) return False else: duration = time.time() - start log.info('rebalance reached >{0}% in {1} seconds '.format(progress, duration)) return True # return true if cluster balanced, false if it needs rebalance def is_cluster_rebalanced(self): command = "ns_orchestrator:needs_rebalance()" status, content = self.rest.diag_eval(command) if status: return content.lower() == "false" log.error("can't define if cluster balanced") return None # this method will rebalance the cluster by passing the remote_node as # ejected node def remove_nodes(self, knownNodes, ejectedNodes, wait_for_rebalance=True): if len(ejectedNodes) == 0: return False self.rest.rebalance(knownNodes, ejectedNodes) if wait_for_rebalance: return self.rest.monitorRebalance() else: return False def vbucket_map_ready(self, bucket, timeout_in_seconds=360): end_time = time.time() + timeout_in_seconds while time.time() <= end_time: vBuckets = self.rest.get_vbuckets(bucket) if vBuckets: return True else: time.sleep(0.5) msg = 'vbucket map is not ready for bucket {0} after waiting {1} seconds' log.info(msg.format(bucket, timeout_in_seconds)) return False def bucket_exists(self, bucket): try: buckets = self.rest.get_buckets() names = [item.name for item in buckets] log.info("node {1} existing buckets : {0}" \ .format(names, self.rest.ip)) for item in buckets: if item.name == bucket: log.info("node {1} found bucket {0}" \ .format(bucket, self.rest.ip)) return True return False except Exception: return False def wait_for_node_status(self, node, expected_status, timeout_in_seconds): status_reached = False end_time = time.time() + timeout_in_seconds while time.time() <= end_time and not status_reached: nodes = self.rest.node_statuses() for n in nodes: if node.id == n.id: log.info('node {0} status : {1}'.format(node.id, n.status)) if n.status.lower() == expected_status.lower(): status_reached = True break if not status_reached: log.info("sleep for 5 seconds before reading the node.status again") time.sleep(5) log.info('node {0} status_reached : {1}'.format(node.id, status_reached)) return status_reached def _wait_for_task_pid(self, pid, end_time, ddoc_name): while (time.time() < end_time): new_pid, _ = self.rest._get_indexer_task_pid(ddoc_name) if pid == new_pid: time.sleep(5) continue else: return def _wait_for_indexer_ddoc(self, servers, ddoc_name, timeout=300): nodes = self.rest.get_nodes() servers_to_check = [] for node in nodes: for server in servers: if node.ip == server.ip and str(node.port) == str(server.port): servers_to_check.append(server) for server in servers_to_check: try: rest = RestConnection(server) log.info('Check index for ddoc %s , server %s' % (ddoc_name, server.ip)) end_time = time.time() + timeout log.info('Start getting index for ddoc %s , server %s' % (ddoc_name, server.ip)) old_pid, is_pid_blocked = rest._get_indexer_task_pid(ddoc_name) if not old_pid: log.info('Index for ddoc %s is not going on, server %s' % (ddoc_name, server.ip)) continue while is_pid_blocked: log.info('Index for ddoc %s is blocked, server %s' % (ddoc_name, server.ip)) self._wait_for_task_pid(old_pid, end_time, ddoc_name) old_pid, is_pid_blocked = rest._get_indexer_task_pid(ddoc_name) if time.time() > end_time: log.error("INDEX IS STILL BLOKED node %s ddoc % pid %" % (server, ddoc_name, old_pid)) break if old_pid: log.info('Index for ddoc %s is running, server %s' % (ddoc_name, server.ip)) self._wait_for_task_pid(old_pid, end_time, ddoc_name) except Exception as ex: log.error('unable to check index on server %s because of %s' % (server.ip, str(ex))) def _get_vbuckets(self, servers, bucket_name='default'): vbuckets_servers = {} for server in servers: buckets = RestConnection(server).get_buckets() if not buckets: return vbuckets_servers if bucket_name: bucket_to_check = [bucket for bucket in buckets if bucket.name == bucket_name][0] else: bucket_to_check = [bucket for bucket in buckets][0] vbuckets_servers[server] = {} vbs_active = [vb.id for vb in bucket_to_check.vbuckets if vb.master.startswith(str(server.ip))] vbs_replica = [] for replica_num in range(0, bucket_to_check.numReplicas): vbs_replica.extend([vb.id for vb in bucket_to_check.vbuckets if replica_num in vb.replica and vb.replica[replica_num].startswith(str(server.ip))]) vbuckets_servers[server]['active_vb'] = vbs_active vbuckets_servers[server]['replica_vb'] = vbs_replica return vbuckets_servers class RestConnection(object): def __new__(cls, serverInfo={}): # allow port to determine # behavior of restconnection port = None if isinstance(serverInfo, dict): if 'port' in serverInfo: port = serverInfo['port'] else: port = serverInfo.port if not port: port = CbServer.port if CbServer.use_https: port = CbServer.ssl_port if int(port) in range(9091, 9100): # return elastic search rest connection from membase.api.esrest_client import EsRestConnection obj = super(EsRestConnection,cls).__new__(cls) else: # default obj = object.__new__(cls) return obj def __init__(self, serverInfo): # serverInfo can be a json object/dictionary if isinstance(serverInfo, dict): self.ip = serverInfo["ip"] self.username = serverInfo["username"] self.password = serverInfo["password"] self.port = serverInfo["port"] self.index_port = CbServer.index_port self.fts_port = CbServer.fts_port self.query_port = CbServer.n1ql_port self.eventing_port = CbServer.eventing_port self.capi_port = CbServer.capi_port if "index_port" in list(serverInfo.keys()): self.index_port = serverInfo["index_port"] if "fts_port" in list(serverInfo.keys()): if serverInfo['fts_port']: self.fts_port = serverInfo["fts_port"] if "eventing_port" in list(serverInfo.keys()): if serverInfo['eventing_port']: self.eventing_port = serverInfo["eventing_port"] self.hostname = '' self.services = '' if "hostname" in serverInfo: self.hostname = serverInfo["hostname"] if "services" in serverInfo: self.services = serverInfo["services"] else: self.ip = serverInfo.ip self.username = serverInfo.rest_username self.password = serverInfo.rest_password self.port = serverInfo.port self.hostname = '' self.index_port = CbServer.index_port self.fts_port = CbServer.fts_port self.query_port = CbServer.n1ql_port self.eventing_port = CbServer.eventing_port self.capi_port = CbServer.capi_port self.services = "kv" self.debug_logs = False if hasattr(serverInfo, "services"): self.services = serverInfo.services if hasattr(serverInfo, 'index_port'): self.index_port = serverInfo.index_port if hasattr(serverInfo, 'query_port'): self.query_port = serverInfo.query_port if hasattr(serverInfo, 'fts_port'): if serverInfo.fts_port: self.fts_port = serverInfo.fts_port if hasattr(serverInfo, 'eventing_port'): if serverInfo.eventing_port: self.eventing_port = serverInfo.eventing_port if hasattr(serverInfo, 'hostname') and serverInfo.hostname and\ serverInfo.hostname.find(self.ip) == -1: self.hostname = serverInfo.hostname if hasattr(serverInfo, 'services'): self.services = serverInfo.services self.input = TestInputSingleton.input if self.input is not None: """ from watson, services param order and format: new_services=fts-kv-index-n1ql """ self.services_node_init = self.input.param("new_services", None) self.debug_logs = self.input.param("debug-logs", False) self.eventing_role = self.input.param('eventing_role', False) if CbServer.use_https: self.port = CbServer.ssl_port_map.get(str(self.port), str(self.port)) self.index_port = CbServer.ssl_port_map.get(str(self.index_port), str(self.index_port)) self.query_port = CbServer.ssl_port_map.get(str(self.query_port), str(self.query_port)) self.fts_port = CbServer.ssl_port_map.get(str(self.fts_port), str(self.fts_port)) self.eventing_port = CbServer.ssl_port_map.get(str(self.eventing_port), str(self.eventing_port)) self.capi_port = CbServer.ssl_port_map.get(str(self.capi_port), str(self.capi_port)) http_url = "http://%s:%s/" https_url = "https://%s:%s/" generic_url = http_url if CbServer.use_https: generic_url = https_url url_host = "%s" % self.ip if self.hostname: url_host = "%s" % self.hostname self.baseUrl = generic_url % (url_host, self.port) self.fts_baseUrl = generic_url % (url_host, self.fts_port) self.index_baseUrl = generic_url % (url_host, self.index_port) self.query_baseUrl = generic_url % (url_host, self.query_port) self.capiBaseUrl = generic_url % (url_host, self.capi_port) self.eventing_baseUrl = generic_url % (url_host, self.eventing_port) # Initialization of CBAS related params self.cbas_ip = self.ip self.cbas_port = CbServer.cbas_port if hasattr(self.input, 'cbas'): if self.input.cbas: self.cbas_node = self.input.cbas if hasattr(self.cbas_node, 'port'): self.cbas_port = self.cbas_node.port if hasattr(self.cbas_node, 'ip'): self.cbas_ip = self.cbas_node.ip if CbServer.use_https: self.cbas_port = CbServer.ssl_cbas_port self.cbas_base_url = generic_url % (self.cbas_ip, self.cbas_port) self.cbas_base_url = self.cbas_base_url[:-1] # for Node is unknown to this cluster error for iteration in range(5): http_res, success = self.init_http_request(api=self.baseUrl + "nodes/self") if not success and isinstance(http_res, str) and\ (http_res.find('Node is unknown to this cluster') > -1 or \ http_res.find('Unexpected server error, request logged') > -1): log.error("Error {0} was gotten, 5 seconds sleep before retry"\ .format(http_res)) time.sleep(5) if iteration == 2: log.error("node {0}:{1} is in a broken state!"\ .format(self.ip, self.port)) raise ServerUnavailableException(self.ip) continue else: break # determine the real couchApiBase for cluster_run # couchApiBase appeared in version 2.* if isinstance(http_res, dict): if not http_res or http_res["version"][0:2] == "1.": self.capiBaseUrl = self.baseUrl + "/couchBase" else: for iteration in range(5): if "couchApiBase" not in http_res.keys(): if self.is_cluster_mixed(): self.capiBaseUrl = self.baseUrl + "/couchBase" return time.sleep(0.2) http_res, success = self.init_http_request(self.baseUrl + 'nodes/self') else: if CbServer.use_https: self.capiBaseUrl = http_res["couchApiBaseHTTPS"] else: self.capiBaseUrl = http_res["couchApiBase"] return raise ServerUnavailableException("couchApiBase doesn't exist in nodes/self: %s " % http_res) def sasl_streaming_rq(self, bucket, timeout=120, disable_ssl_certificate_validation=True): api = self.baseUrl + 'pools/default/bucketsStreaming/{0}'.format(bucket) if isinstance(bucket, Bucket): api = self.baseUrl + 'pools/default/bucketsStreaming/{0}'.format(bucket.name) try: httplib2.Http(timeout=timeout, disable_ssl_certificate_validation=disable_ssl_certificate_validation).\ request(api, 'GET', '', headers=self._create_capi_headers()) except Exception as ex: log.warn('Exception while streaming: %s' % str(ex)) def open_sasl_streaming_connection(self, bucket, timeout=1000): if self.debug_logs: log.info("Opening sasl streaming connection for bucket {0}"\ .format((bucket, bucket.name)[isinstance(bucket, Bucket)])) t = Thread(target=self.sasl_streaming_rq, name="streaming_" + str(uuid.uuid4())[:4], args=(bucket, timeout)) try: t.start() except: log.warn("thread is not started") return None return t def is_cluster_mixed(self, timeout=120): http_res, success = self.init_http_request(self.baseUrl + 'pools/default', timeout=timeout) if http_res == 'unknown pool': return False try: versions = list({node["version"][:1] for node in http_res["nodes"]}) except: log.error('Error while processing cluster info {0}'.format(http_res)) # not really clear what to return but False see to be a good start until we figure what is happening return False if '1' in versions and '2' in versions: return True return False def is_cluster_compat_mode_greater_than(self, version): """ curl -v -X POST -u Administrator:welcome http://10.3.4.186:8091/diag/eval -d 'cluster_compat_mode:get_compat_version().' Returns : [3,2] if version = 3.2.0 """ status, content = self.diag_eval('cluster_compat_mode:get_compat_version().') if status: json_parsed = json.loads(content) cluster_ver = float("%s.%s" % (json_parsed[0], json_parsed[1])) if cluster_ver > version: return True return False def is_enterprise_edition(self): http_res, success = self.init_http_request(self.baseUrl + 'pools/default') if http_res == 'unknown pool': return False editions = [] community_nodes = [] """ get the last word in node["version"] as in "version": "2.5.1-1073-rel-enterprise" """ for node in http_res["nodes"]: editions.extend(node["version"].split("-")[-1:]) if "community" in node["version"].split("-")[-1:]: community_nodes.extend(node["hostname"].split(":")[:1]) if "community" in editions: log.error("IP(s) for node(s) with community edition {0}".format(community_nodes)) return False return True def init_http_request(self, api, timeout=120): content = None try: headers = self._create_capi_headers() status, content, header = self._http_request(api, 'GET', headers=headers, timeout=timeout) json_parsed = json.loads(content) if status: return json_parsed, True else: print("{0} with status {1}: {2}".format(api, status, json_parsed)) return json_parsed, False except ValueError as e: if content is not None: print("{0}: {1}".format(api, content)) else: print(e) return content, False def rename_node(self, hostname, username='Administrator', password='password'): params = urllib.parse.urlencode({'username': username, 'password': password, 'hostname': hostname}) api = "%snode/controller/rename" % self.baseUrl status, content, header = self._http_request(api, 'POST', params) return status, content def active_tasks(self): api = self.baseUrl + "pools/default/tasks" try: status, content, header = self._http_request(api, 'GET', headers=self._create_capi_headers()) json_parsed = json.loads(content) except ValueError as e: print(e) return "" return json_parsed def ns_server_tasks(self): api = self.baseUrl + 'pools/default/tasks' retries = 3 while retries: try: status, content, header = self._http_request(api, 'GET', headers=self._create_headers()) return json.loads(content) except ValueError: time.sleep(10) retries -= 1 return "" # DEPRECATED: use create_ddoc() instead. def create_view(self, design_doc_name, bucket_name, views, options=None): return self.create_ddoc(design_doc_name, bucket_name, views, options) def create_ddoc(self, design_doc_name, bucket, views, options=None): design_doc = DesignDocument(design_doc_name, views, options=options) if design_doc.name.find('/') != -1: design_doc.name = design_doc.name.replace('/', '%2f') design_doc.id = '_design/{0}'.format(design_doc.name) return self.create_design_document(bucket, design_doc) def create_design_document(self, bucket, design_doc): log.info("-->create_design_document") try: design_doc_name = design_doc.id api = '%s/%s/%s' % (self.capiBaseUrl, bucket, design_doc_name) if isinstance(bucket, Bucket): api = '%s/%s/%s' % (self.capiBaseUrl, bucket.name, design_doc_name) status, content, header = self._http_request(api, 'PUT', str(design_doc), headers=self._create_capi_headers()) except Exception as e: traceback.print_exc() if not status: raise DesignDocCreationException(design_doc_name, content) return json.loads(content.decode()) def is_index_triggered(self, ddoc_name, index_type='main'): run, block = self._get_indexer_task_pid(ddoc_name, index_type=index_type) if run or block: return True else: return False def _get_indexer_task_pid(self, ddoc_name, index_type='main'): active_tasks = self.active_tasks() if 'error' in active_tasks: return None if active_tasks: for task in active_tasks: if task['type'] == 'indexer' and task['indexer_type'] == index_type: for ddoc in task['design_documents']: if ddoc == ('_design/%s' % ddoc_name): return task['pid'], False if task['type'] == 'blocked_indexer' and task['indexer_type'] == index_type: for ddoc in task['design_documents']: if ddoc == ('_design/%s' % ddoc_name): return task['pid'], True return None, None def query_view(self, design_doc_name, view_name, bucket, query, timeout=120, invalid_query=False, type="view"): status, content, header = self._query(design_doc_name, view_name, bucket, type, query, timeout) if not status and not invalid_query: stat = 0 if 'status' in header: stat = int(header['status']) raise QueryViewException(view_name, content, status=stat) return json.loads(content) def _query(self, design_doc_name, view_name, bucket, view_type, query, timeout): if design_doc_name.find('/') != -1: design_doc_name = design_doc_name.replace('/', '%2f') if view_name.find('/') != -1: view_name = view_name.replace('/', '%2f') api = self.capiBaseUrl + '%s/_design/%s/_%s/%s?%s' % (bucket, design_doc_name, view_type, view_name, urllib.parse.urlencode(query)) if isinstance(bucket, Bucket): api = self.capiBaseUrl + '%s/_design/%s/_%s/%s?%s' % (bucket.name, design_doc_name, view_type, view_name, urllib.parse.urlencode(query)) log.info("index query url: {0}".format(api)) status, content, header = self._http_request(api, headers=self._create_capi_headers(), timeout=timeout) return status, content, header def view_results(self, bucket, ddoc_name, params, limit=100, timeout=120, view_name=None): status, json = self._index_results(bucket, "view", ddoc_name, params, limit, timeout=timeout, view_name=view_name) if not status: raise Exception("unable to obtain view results") return json # DEPRECATED: Incorrectly named function kept for backwards compatibility. def get_view(self, bucket, view): log.info("DEPRECATED function get_view(" + view + "). use get_ddoc()") return self.get_ddoc(bucket, view) def get_data_path(self): node_info = self.get_nodes_self() data_path = node_info.storage[0].get_data_path() return data_path def get_index_path(self): node_info = self.get_nodes_self() data_path = node_info.storage[0].get_index_path() return data_path def get_memcached_port(self): node_info = self.get_nodes_self() return node_info.memcached def get_ddoc(self, bucket, ddoc_name): status, json, meta = self._get_design_doc(bucket, ddoc_name) if not status: raise ReadDocumentException(ddoc_name, json) return json, meta # the same as Preview a Random Document on UI def get_random_key(self, bucket): api = self.baseUrl + 'pools/default/buckets/%s/localRandomKey' % bucket status, content, header = self._http_request(api, headers=self._create_capi_headers()) json_parsed = json.loads(content) if not status: raise Exception("unable to get random document/key for bucket %s" % bucket) return json_parsed def create_scope(self, bucket, scope, params=None, num_retries=3): api = self.baseUrl + 'pools/default/buckets/%s/scopes' % bucket body = {'name': scope} if params: body.update(params) params = urllib.parse.urlencode(body) headers = self._create_headers() while num_retries > 0: status, content, header = self._http_request(api, 'POST', params=params, headers=headers) log.info("{0} with params: {1}".format(api, params)) if status: json_parsed = json.loads(content) log.info("Scope created {}->{} {}".format(bucket, scope, json_parsed)) break elif header["status"] == "400": log.info("Scope already exists. Skipping create {}->{}".format(bucket, scope)) break else: time.sleep(10) num_retries -= 1 else: raise Exception("Create scope failed : status:{0},content:{1}".format(status, content)) return status def _create_single_collection(self, bucket, scope, collection, params=None): api = self.baseUrl + 'pools/default/buckets/%s/scopes/%s/collections' % (bucket, scope) body = {'name': collection} if params: body.update(params) params = urllib.parse.urlencode(body) headers = self._create_headers() status, content, header = self._http_request(api, 'POST', params=params, headers=headers) log.info("{0} with params: {1}".format(api, params)) return status,content,header def create_collection(self, bucket, scope, collection, params=None, num_retries=3): if not isinstance(collection, list): collection = [collection] for c in collection: while num_retries > 0: status, content, header = self._create_single_collection(bucket, scope, c, params) if status: json_parsed = json.loads(content) log.info("Collection created {}->{}->{} manifest:{}".format(bucket, scope, c, json_parsed)) break elif header["status"] == "400": log.info("Collection already exists. Skipping create {}->{}-{}".format(bucket, scope, c)) break else: time.sleep(10) num_retries -= 1 else: raise Exception("Create collection failed : status:{0},content:{1}".format(status, content)) return status def put_collection_scope_manifest(self, bucket, manifest, ensure_manifest=True): """ Put collection scope manifest to bulk update collection/scopes Args: ensure_manifest (bool): If set, blocks until the manifest has been applied to all nodes as the endpoint is asynchronous. """ if isinstance(bucket, Bucket): bucket = bucket.name params, headers = json.dumps(manifest), self._create_capi_headers() status, content, _ = self._http_request(f"{self.baseUrl}pools/default/buckets/{bucket}/scopes", 'PUT', params=params, headers=headers) if ensure_manifest: uid = json.loads(content)['uid'] ensure_manifest_status, manifest_content, _ = self._http_request( f"{self.baseUrl}pools/default/buckets/{bucket}/scopes/@ensureManifest/{uid}", 'POST', headers=headers) return status def get_bucket_manifest(self, bucket): if isinstance(bucket, Bucket): bucket = bucket.name api = '{0}{1}{2}{3}'.format(self.baseUrl, 'pools/default/buckets/', bucket, '/scopes') status, content, header = self._http_request(api) if status: return json.loads(content) else: raise Exception( "Cannot get manifest for bucket {}: status:{}, content:{}".format(bucket, status, content)) def _parse_manifest(self, bucket, extract=None): try: manifest = self.get_bucket_manifest(bucket) scopes = [] collections = [] for scope in manifest["scopes"]: scopes.append(scope["name"]) for collection in scope["collections"]: collections.append(collection["name"]) if extract == "scopes": return scopes elif extract == "collections": return collections except Exception as e: raise Exception("Cannot extract {} for bucket {} from manifest {}".format(extract, bucket, e.message)) def get_bucket_scopes(self, bucket): return self._parse_manifest(bucket, "scopes") def get_bucket_collections(self, bucket): return self._parse_manifest(bucket, "collections") def get_scope_collections(self, bucket, scope): try: manifest = self.get_bucket_manifest(bucket) scope_found = False collections_in_scope = [] for scopes in manifest["scopes"]: if scopes['name'] == scope: scope_found = True for collection in scopes['collections']: collections_in_scope.append(collection['name']) if not scope_found: log.error("Cannot get collections for scope {} because it does not exist".format(scope)) return collections_in_scope except Exception as e: raise Exception("Cannot get collections for bucket {}-> scope{} {}".format(bucket, scope, e.message)) def delete_scope(self, bucket, scope): api = self.baseUrl + 'pools/default/buckets/%s/scopes/%s' % (bucket, scope) headers = self._create_headers() status, content, header = self._http_request(api, 'DELETE', headers=headers) log.info("{0}".format(api)) return status def get_rest_endpoint_data(self, endpoint=None, ip=None, port=None): protocol = "http" if CbServer.use_https: port = CbServer.ssl_port_map.get(str(port), str(port)) protocol = "https" endpoint_base_url = "{0}://{1}:{2}/".format(protocol, ip, port) api = str(endpoint_base_url) + str(endpoint) print(f'Executing GET on: {api}') headers = self._create_headers() status, content, header = self._http_request(api, 'GET', headers=headers) return status, content def delete_collection(self, bucket, scope, collection): api = self.baseUrl + 'pools/default/buckets/%s/scopes/%s/collections/%s' % (bucket, scope, collection) headers = self._create_headers() status, content, header = self._http_request(api, 'DELETE', headers=headers) return status def get_collection(self, bucket): api = self.baseUrl + 'pools/default/buckets/%s/scopes' % bucket headers = self._create_headers() status, content, header = self._http_request(api, 'GET', headers=headers) return status, content def get_collection_uid(self, bucket, scope, collection): try: manifest = self.get_bucket_manifest(bucket) for scopes in manifest["scopes"]: if scopes['name'] == scope: for col in scopes['collections']: if col['name'] == collection: return col['uid'] log.error("Cannot get collection uid because {0}.{1}.{2} does not exist" .format(bucket, scope, collection)) except Exception as e: raise Exception("Exception thrown while getting collection uid {}" .format(e.message)) def run_view(self, bucket, view, name): api = self.capiBaseUrl + '/%s/_design/%s/_view/%s' % (bucket, view, name) status, content, header = self._http_request(api, headers=self._create_capi_headers()) json_parsed = json.loads(content) if not status: raise Exception("unable to create view") return json_parsed def delete_view(self, bucket, view): status, json = self._delete_design_doc(bucket, view) if not status: raise Exception("unable to delete the view") return json def spatial_results(self, bucket, spatial, params, limit=100): status, json = self._index_results(bucket, "spatial", spatial, params, limit) if not status: raise Exception("unable to obtain spatial view results") return json def create_spatial(self, bucket, spatial, function): status, json = self._create_design_doc(bucket, spatial, function) if status == False: raise Exception("unable to create spatial view") return json def get_spatial(self, bucket, spatial): status, json, meta = self._get_design_doc(bucket, spatial) if not status: raise Exception("unable to get the spatial view definition") return json, meta def delete_spatial(self, bucket, spatial): status, json = self._delete_design_doc(bucket, spatial) if not status: raise Exception("unable to delete the spatial view") return json # type_ is "view" or "spatial" def _index_results(self, bucket, type_, ddoc_name, params, limit, timeout=120, view_name=None): if view_name is None: view_name = ddoc_name query = '/{0}/_design/{1}/_{2}/{3}' api = self.capiBaseUrl + query.format(bucket, ddoc_name, type_, view_name) num_params = 0 if limit != None: num_params = 1 api += "?limit={0}".format(limit) for param in params: if num_params > 0: api += "&" else: api += "?" num_params += 1 if param in ["key", "startkey", "endkey", "start_range", "end_range"] or isinstance(params[param], bool): api += "{0}={1}".format(param, json.dumps(params[param], separators=(',', ':'))) else: api += "{0}={1}".format(param, params[param]) log.info("index query url: {0}".format(api)) status, content, header = self._http_request(api, headers=self._create_capi_headers(), timeout=timeout) json_parsed = json.loads(content) return status, json_parsed def get_couch_doc(self, doc_id, bucket="default", timeout=120): """ use couchBase uri to retrieve document from a bucket """ api = self.capiBaseUrl + '/%s/%s' % (bucket, doc_id) status, content, header = self._http_request(api, headers=self._create_capi_headers(), timeout=timeout) if not status: raise ReadDocumentException(doc_id, content) return json.loads(content) def _create_design_doc(self, bucket, name, function): api = self.capiBaseUrl + '/%s/_design/%s' % (bucket, name) status, content, header = self._http_request( api, 'PUT', function, headers=self._create_capi_headers()) json_parsed = json.loads(content) return status, json_parsed def _get_design_doc(self, bucket, name): api = self.capiBaseUrl + '/%s/_design/%s' % (bucket, name) if isinstance(bucket, Bucket): api = self.capiBaseUrl + '/%s/_design/%s' % (bucket.name, name) status, content, header = self._http_request(api, headers=self._create_capi_headers()) json_parsed = json.loads(content.decode()) meta_parsed = "" if status: # in dp4 builds meta data is in content, not in header if 'X-Couchbase-Meta' in header: meta = header['X-Couchbase-Meta'] meta_parsed = json.loads(meta) elif 'x-couchbase-meta' in header: meta = header['x-couchbase-meta'] meta_parsed = json.loads(meta) else: meta_parsed = {} try: meta_parsed["_rev"] = json_parsed["_rev"] meta_parsed["_id"] = json_parsed["_id"] except KeyError: pass return status, json_parsed, meta_parsed def _delete_design_doc(self, bucket, name): status, design_doc, meta = self._get_design_doc(bucket, name) if not status: raise Exception("unable to find for deletion design document") api = self.capiBaseUrl + '/%s/_design/%s' % (bucket, name) if isinstance(bucket, Bucket): api = self.capiBaseUrl + '/%s/_design/%s' % (bucket.name, name) status, content, header = self._http_request(api, 'DELETE', headers=self._create_capi_headers()) json_parsed = json.loads(content) return status, json_parsed def spatial_compaction(self, bucket, design_name): api = self.capiBaseUrl + '/%s/_design/%s/_spatial/_compact' % (bucket, design_name) if isinstance(bucket, Bucket): api = self.capiBaseUrl + \ '/%s/_design/%s/_spatial/_compact' % (bucket.name, design_name) status, content, header = self._http_request(api, 'POST', headers=self._create_capi_headers()) json_parsed = json.loads(content) return status, json_parsed # Make a _design/_info request def set_view_info(self, bucket, design_name): """Get view diagnostic info (node specific)""" api = self.capiBaseUrl if isinstance(bucket, Bucket): api += '/_set_view/{0}/_design/{1}/_info'.format(bucket.name, design_name) else: api += '_set_view/{0}/_design/{1}/_info'.format(bucket, design_name) status, content, header = self._http_request(api, 'GET', headers=self._create_capi_headers()) if not status: raise SetViewInfoNotFound(design_name, content) json_parsed = json.loads(content) return status, json_parsed # Make a _spatial/_info request def spatial_info(self, bucket, design_name): api = self.capiBaseUrl + \ '/%s/_design/%s/_spatial/_info' % (bucket, design_name) status, content, header = self._http_request( api, 'GET', headers=self._create_capi_headers()) json_parsed = json.loads(content) return status, json_parsed def _create_capi_headers(self): authorization = self.get_authorization(self.username, self.password) return {'Content-Type': 'application/json', 'Authorization': 'Basic %s' % authorization, 'Accept': '*/*'} def _create_capi_headers_with_auth(self, username, password): authorization = self.get_authorization(username, password) return {'Content-Type': 'application/json', 'Authorization': 'Basic %s' % authorization, 'Accept': '*/*'} def _create_headers_with_auth(self, username, password): authorization = self.get_authorization(username, password) return {'Authorization': 'Basic %s' % authorization} # authorization must be a base64 string of username:password def _create_headers(self): authorization = self.get_authorization(self.username, self.password) return {'Content-Type': 'application/x-www-form-urlencoded', 'Authorization': 'Basic %s' % authorization, 'Accept': '*/*'} # authorization must be a base64 string of username:password def _create_headers_encoded_prepared(self): authorization = self.get_authorization(self.username, self.password) return {'Content-Type': 'application/json', 'Authorization': 'Basic %s' % authorization} def _get_auth(self, headers): key = 'Authorization' if key in headers: val = headers[key] if val.startswith("Basic "): try: val = val.encode() return str("auth: " + base64.decodebytes(val[6:]).decode()) except Exception as e: print(e) return "" def _http_request(self, api, method='GET', params='', headers=None, timeout=120, disable_ssl_certificate_validation=True): if not headers: headers = self._create_headers() end_time = time.time() + timeout log.debug("Executing {0} request for following api {1} with Params: {2} and Headers: {3}"\ .format(method, api, params, headers)) count = 1 t1 = 3 while True: try: try: if TestInputSingleton.input.param("debug.api.calls", False): log.info("--->Start calling httplib2.Http({}).request({},{},{},{})".format(timeout,api,headers,method,params)) except AttributeError: pass response, content = httplib2.Http(timeout=timeout, disable_ssl_certificate_validation=disable_ssl_certificate_validation).\ request(api, method, params, headers) try: if TestInputSingleton.input.param("debug.api.calls", False): log.info( "--->End calling httplib2.Http({}).request({},{},{},{})".format(timeout, api, headers, method, params)) except AttributeError: pass if response['status'] in ['200', '201', '202']: return True, content, response else: try: json_parsed = json.loads(content) except ValueError as e: json_parsed = {} json_parsed["error"] = "status: {0}, content: {1}"\ .format(response['status'], content) reason = "unknown" if "error" in json_parsed: reason = json_parsed["error"] message = '{0} {1} body: {2} headers: {3} error: {4} reason: {5} {6} {7}'.\ format(method, api, params, headers, response['status'], reason, str(str(content).rstrip('\n')), self._get_auth(headers)) log.error(message) log.debug(''.join(traceback.format_stack())) return False, content, response except socket.error as e: if count < 4: log.error("socket error while connecting to {0} error {1} ".format(api, e)) if time.time() > end_time: log.error("Giving up due to {2}! Tried {0} connect {1} times.".format( api, count, e)) raise ServerUnavailableException(ip=self.ip) except (AttributeError, httplib2.ServerNotFoundError) as e: if count < 4: log.error("ServerNotFoundError error while connecting to {0} error {1} "\ .format(api, e)) if time.time() > end_time: log.error("Giving up due to {2}! Tried {0} connect {1} times.".\ format(api, count, e)) raise ServerUnavailableException(ip=self.ip) time.sleep(t1) count += 1 t1 *= 2 def init_cluster(self, username='Administrator', password='password', port='8091'): log.info("--> in init_cluster...{},{},{}".format(username,password,port)) api = self.baseUrl + 'settings/web' params = urllib.parse.urlencode({'port': port, 'username': username, 'password': password}) log.info('settings/web params on {0}:{1}:{2}'.format(self.ip, self.port, params)) status, content, header = self._http_request(api, 'POST', params=params) log.info("--> status:{}".format(status)) return status def init_node(self, set_node_services=None): """ need a standalone method to initialize a node that could call anywhere with quota from testconstant """ self.node_services = [] if set_node_services is None: set_node_services = self.services_node_init if set_node_services is None and self.services == "": self.node_services = ["kv"] elif set_node_services is None and self.services != "": self.node_services = self.services.split(",") elif set_node_services is not None: if "-" in set_node_services: self.node_services = set_node_services.split("-") if "," in set_node_services: self.node_services = set_node_services.split(",") kv_quota = 0 while kv_quota == 0: time.sleep(1) kv_quota = int(self.get_nodes_self().mcdMemoryReserved) info = self.get_nodes_self() kv_quota = int(info.mcdMemoryReserved * CLUSTER_QUOTA_RATIO) cb_version = info.version[:5] if cb_version in COUCHBASE_FROM_VERSION_4: if "index" in self.node_services: log.info("quota for index service will be %s MB" % (INDEX_QUOTA)) kv_quota -= INDEX_QUOTA log.info("set index quota to node %s " % self.ip) self.set_service_memoryQuota(service='indexMemoryQuota', memoryQuota=INDEX_QUOTA) if "fts" in self.node_services: log.info("quota for fts service will be %s MB" % (FTS_QUOTA)) kv_quota -= FTS_QUOTA log.info("set both index and fts quota at node %s "% self.ip) self.set_service_memoryQuota(service='ftsMemoryQuota', memoryQuota=FTS_QUOTA) if "cbas" in self.node_services: log.info("quota for cbas service will be %s MB" % (CBAS_QUOTA)) kv_quota -= CBAS_QUOTA self.set_service_memoryQuota(service = "cbasMemoryQuota", memoryQuota=CBAS_QUOTA) kv_quota -= 1 if kv_quota < MIN_KV_QUOTA: raise Exception("KV RAM needs to be more than %s MB" " at node %s" % (MIN_KV_QUOTA, self.ip)) log.info("quota for kv: %s MB" % kv_quota) self.init_cluster_memoryQuota(self.username, self.password, kv_quota) if cb_version in COUCHBASE_FROM_VERSION_4: self.init_node_services(username=self.username, password=self.password, services=self.node_services) self.init_cluster(username=self.username, password=self.password) return kv_quota def init_node_services(self, username='Administrator', password='password', hostname='127.0.0.1', port='8091', services=None): if CbServer.use_https: port = CbServer.ssl_port_map.get(str(port), str(port)) log.info("--> init_node_services({},{},{},{},{})".format(username,password,hostname,port,services)) api = self.baseUrl + '/node/controller/setupServices' if services == None: log.info(" services are marked as None, will not work") return False params_dict = {'user': username, 'password': password, 'services': ",".join(services)} if hostname == "127.0.0.1": hostname = "{0}:{1}".format(hostname, port) params = urllib.parse.urlencode({ 'hostname': hostname, 'user': username, 'password': password, 'services': ",".join(services)}) log.info('/node/controller/setupServices params on {0}: {1}:{2}'.format(self.ip, self.port, params)) status, content, header = self._http_request(api, 'POST', params) error_message = "cannot change node services after cluster is provisioned" if not status and error_message in str(content): status = True log.info("This node is already provisioned with services, we do not consider this as failure for test case") return status def get_cluster_settings(self): settings = {} api = self.baseUrl + 'settings/web' status, content, header = self._http_request(api, 'GET') if status: settings = json.loads(content) log.info('settings/web params on {0}:{1}:{2}'.format(self.ip, self.port, settings)) return settings def init_cluster_memoryQuota(self, username='Administrator', password='password', memoryQuota=256): api = self.baseUrl + 'pools/default' params = urllib.parse.urlencode({'memoryQuota': memoryQuota}) log.info('pools/default params : {0}'.format(params)) status, content, header = self._http_request(api, 'POST', params) return status def set_service_memoryQuota(self, service, username='Administrator', password='password', memoryQuota=256): ''' cbasMemoryQuota for cbas service. ftsMemoryQuota for fts service. indexMemoryQuota for index service.''' api = self.baseUrl + 'pools/default' params = urllib.parse.urlencode({service: memoryQuota}) log.info('pools/default params : {0}'.format(params)) status, content, header = self._http_request(api, 'POST', params) return status def set_cluster_name(self, name): api = self.baseUrl + 'pools/default' if name is None: name = "" params = urllib.parse.urlencode({'clusterName': name}) log.info('pools/default params : {0}'.format(params)) status, content, header = self._http_request(api, 'POST', params) return status def set_indexer_storage_mode(self, username='Administrator', password='password', storageMode='plasma'): """ StorageMode could be plasma or memopt From spock, we replace forestdb with plasma """ api = self.baseUrl + 'settings/indexes' params = urllib.parse.urlencode({'storageMode': storageMode}) error_message = "storageMode must be one of plasma, memory_optimized" log.info('settings/indexes params : {0}'.format(params)) status, content, header = self._http_request(api, 'POST', params) if not status and error_message in content.decode(): #TODO: Currently it just acknowledges if there is an error. #And proceeds with further initialization. log.info(content) return status def set_indexer_num_replica(self, num_replica=0): api = self.index_baseUrl + 'settings' params = {'indexer.settings.num_replica': num_replica} params = json.dumps(params) status, content, header = self._http_request(api, 'POST', params=params, timeout=60) error_message = "" log.info('settings params : {0}'.format(params)) status, content, header = self._http_request(api, 'POST', params) if not status and error_message in content: # TODO: Currently it just acknowledges if there is an error. # And proceeds with further initialization. log.info(content) return status def cleanup_indexer_rebalance(self, server): protocol = "http" if CbServer.use_https: protocol = "https" if server: api = "{0}://{1}:{2}/".format(protocol, server.ip, self.index_port) + 'cleanupRebalance' else: api = self.baseUrl + 'cleanupRebalance' status, content, _ = self._http_request(api, 'GET') if status: return content else: log.error("cleanupRebalance:{0},content:{1}".format(status, content)) raise Exception("indexer rebalance cleanup failed") def list_indexer_rebalance_tokens(self, server): protocol = "http" if CbServer.use_https: protocol = "https" if server: api = "{0}://{1}:{2}/".format(protocol, server.ip, self.index_port) + 'listRebalanceTokens' else: api = self.baseUrl + 'listRebalanceTokens' print(api) status, content, _ = self._http_request(api, 'GET') if status: return content.decode('utf-8') else: log.error("listRebalanceTokens:{0},content:{1}".format(status, content)) raise Exception("list rebalance tokens failed") def wait_until_cbas_is_ready(self, timeout): """ Wait until a http request can be made to the analytics service """ timeout = time.time() + timeout while time.time() < timeout: try: self.execute_statement_on_cbas("SELECT 'hello' as message", None) return True except ServerUnavailableException: self.sleep(1, "Waiting for analytics server to be ready") return False def execute_statement_on_cbas(self, statement, mode, pretty=True, timeout=70, client_context_id=None, username=None, password=None): if not username: username = self.username if not password: password = self.password api = self.cbas_base_url + "/analytics/service" headers = self._create_capi_headers_with_auth(username, password) params = {'statement': statement, 'pretty': pretty, 'client_context_id': client_context_id} if mode is not None: params['mode'] = mode params = json.dumps(params) status, content, header = self._http_request(api, 'POST', headers=headers, params=params, timeout=timeout) if status: return content elif str(header['status']) == '503': log.info("Request Rejected") raise Exception("Request Rejected") elif str(header['status']) in ['500', '400']: json_content = json.loads(content) msg = json_content['errors'][0]['msg'] if "Job requirement" in msg and "exceeds capacity" in msg: raise Exception("Capacity cannot meet job requirement") else: return content else: log.error("/analytics/service status:{0},content:{1}".format( status, content)) raise Exception("Analytics Service API failed") def delete_active_request_on_cbas(self, client_context_id, username=None, password=None): if not username: username = self.username if not password: password = self.password api = self.cbas_base_url + "/analytics/admin/active_requests?client_context_id={0}".format( client_context_id) headers = self._create_capi_headers_with_auth(username, password) status, content, header = self._http_request(api, 'DELETE', headers=headers, timeout=60) if status: return header['status'] elif str(header['status']) == '404': log.info("Request Not Found") return header['status'] else: log.error( "/analytics/admin/active_requests status:{0},content:{1}".format( status, content)) raise Exception("Analytics Admin API failed") def get_cluster_ceritificate(self): api = self.baseUrl + 'pools/default/certificate' status, content, _ = self._http_request(api, 'GET') if status: return content.decode("utf-8") else: log.error("/pools/default/certificate status:{0},content:{1}".format(status, content)) raise Exception("certificate API failed") def regenerate_cluster_certificate(self): api = self.baseUrl + 'controller/regenerateCertificate' status, content, _ = self._http_request(api, 'POST') if status: return content else: log.error("controller/regenerateCertificate status:{0},content:{1}".format(status, content)) raise Exception("regenerateCertificate API failed") def __remote_clusters(self, api, op, remoteIp, remotePort, username, password, name, demandEncryption=0, certificate='', encryptionType="half"): param_map = {'hostname': "{0}:{1}".format(remoteIp, remotePort), 'username': username, 'password': password, 'name':name} from TestInput import TestInputServer remote = TestInputServer() remote.ip = remoteIp remote.rest_username = username remote.rest_password = password remote.port = remotePort if demandEncryption: param_map ['demandEncryption'] = 'on' if certificate != '': param_map['certificate'] = certificate if self.check_node_versions("5.5") and RestConnection(remote).check_node_versions("5.5"): # 5.5.0 and above param_map['secureType'] = encryptionType elif self.check_node_versions("5.0") and RestConnection(remote).check_node_versions("5.0"): param_map['encryptionType'] = encryptionType params = urllib.parse.urlencode(param_map) retries = 5 while retries: status, content, _ = self._http_request(api, 'POST', params) # sample response : # [{"name":"two","uri":"/pools/default/remoteClusters/two","validateURI":"/pools/default/remoteClusters/two?just_validate=1","hostname":"127.0.0.1:9002","username":"Administrator"}] remoteCluster = json.loads(content) if status or "Duplicate cluster" in remoteCluster["_"]: return remoteCluster retries -= 1 raise Exception("remoteCluster API '{0} remote cluster' failed".format(op)) def add_remote_cluster(self, remoteIp, remotePort, username, password, name, demandEncryption=0, certificate='', encryptionType="full"): # example : password:password username:Administrator hostname:127.0.0.1:9002 name:two msg = "adding remote cluster hostname:{0}:{1} with username:password {2}:{3} name:{4} to source node: {5}:{6}" log.info(msg.format(remoteIp, remotePort, username, password, name, self.ip, self.port)) api = self.baseUrl + 'pools/default/remoteClusters' return self.__remote_clusters(api, 'add', remoteIp, remotePort, username, password, name, demandEncryption, certificate, encryptionType) def add_remote_cluster_new(self, remoteIp, remotePort, username, password, name, demandEncryption=0, certificate=''): # example : password:password username:Administrator hostname:127.0.0.1:9002 name:two msg = "adding remote cluster hostname:{0}:{1} with username:password {2}:{3} name:{4} to source node: {5}:{6}" log.info(msg.format(remoteIp, remotePort, username, password, name, self.ip, self.port)) api = self.baseUrl + 'pools/default/remoteClusters' return self.__remote_clusters(api, 'add', remoteIp, remotePort, username, password, name, demandEncryption, certificate) def modify_remote_cluster(self, remoteIp, remotePort, username, password, name, demandEncryption=0, certificate='', encryptionType="half"): log.info("modifying remote cluster name:{0}".format(name)) api = self.baseUrl + 'pools/default/remoteClusters/' + urllib.parse.quote(name) return self.__remote_clusters(api, 'modify', remoteIp, remotePort, username, password, name, demandEncryption, certificate, encryptionType) def get_remote_clusters(self): remote_clusters = [] api = self.baseUrl + 'pools/default/remoteClusters/' params = urllib.parse.urlencode({}) status, content, header = self._http_request(api, 'GET', params) if status: remote_clusters = json.loads(content) return remote_clusters def remove_all_remote_clusters(self): remote_clusters = self.get_remote_clusters() for remote_cluster in remote_clusters: try: if remote_cluster["deleted"] == False: self.remove_remote_cluster(remote_cluster["name"]) except KeyError: # goxdcr cluster references will not contain "deleted" field self.remove_remote_cluster(remote_cluster["name"]) def remove_remote_cluster(self, name): # example : name:two msg = "removing remote cluster name:{0}".format(urllib.parse.quote(name)) log.info(msg) api = self.baseUrl + 'pools/default/remoteClusters/{0}?'.format(urllib.parse.quote(name)) params = urllib.parse.urlencode({}) status, content, header = self._http_request(api, 'DELETE', params) #sample response : "ok" if not status: log.error("failed to remove remote cluster: status:{0},content:{1}".format(status, content)) raise Exception("remoteCluster API 'remove cluster' failed") # replicationType:continuous toBucket:default toCluster:two fromBucket:default # defaults at https://github.com/couchbase/goxdcr/metadata/replication_settings.go#L20-L33 def start_replication(self, replicationType, fromBucket, toCluster, rep_type="xmem", toBucket=None, xdcr_params={}): toBucket = toBucket or fromBucket msg = "starting {0} replication type:{1} from {2} to {3} in the remote" \ " cluster {4} with settings {5}" log.info(msg.format(replicationType, rep_type, fromBucket, toBucket, toCluster, xdcr_params)) api = self.baseUrl + 'controller/createReplication' param_map = {'replicationType': replicationType, 'toBucket': toBucket, 'fromBucket': fromBucket, 'toCluster': toCluster, 'type': rep_type} param_map.update(xdcr_params) params = urllib.parse.urlencode(param_map) retries = 3 while retries: try: status, content, header = self._http_request(api, 'POST', params) # response : {"id": "replication_id"} json_parsed = json.loads(content) log.info("Replication created with id: {0}".format(json_parsed['id'])) return json_parsed['id'] except ValueError: time.sleep(10) retries -= 1 except: raise Exception("create replication failed: status:{0},content:{1}".format(status, content)) def get_replications(self): replications = [] content = self.ns_server_tasks() for item in content: if not isinstance(item, dict): log.error("Unexpected error while retrieving pools/default/tasks : {0}".format(content)) raise Exception("Unexpected error while retrieving pools/default/tasks : {0}".format(content)) if item["type"] == "xdcr": replications.append(item) return replications def remove_all_replications(self): replications = self.get_replications() for replication in replications: self.stop_replication(replication["cancelURI"]) def stop_replication(self, uri): log.info("Deleting replication {0}".format(uri)) api = self.baseUrl[:-1] + uri retries = 3 while retries: status, content, header = self._http_request(api, 'DELETE') if status: log.info("Replication deleted successfully") return else: retries -= 1 time.sleep(10) raise Exception("delete replication failed: status:{0}, content:{1}".format(status, content)) def remove_all_recoveries(self): recoveries = [] content = self.ns_server_tasks() for item in content: if item["type"] == "recovery": recoveries.append(item) for recovery in recoveries: api = self.baseUrl + recovery["stopURI"] status, content, header = self._http_request(api, 'POST') if not status: raise CBRecoveryFailedException("impossible to stop cbrecovery by {0}".format(api)) log.info("recovery stopped by {0}".format(api)) # params serverIp : the server to add to this cluster # raises exceptions when # unauthorized user # server unreachable # can't add the node to itself ( TODO ) # server already added # returns otpNode def add_node(self, user='', password='', remoteIp='', port='8091', zone_name='', services=None): otpNode = None protocol = "http" if CbServer.use_https: port = CbServer.ssl_port protocol = "https" # if ip format is ipv6 and enclosing brackets are not found, # enclose self.ip and remoteIp if self.ip.count(':') and self.ip[0] != '[': self.ip = '[' + self.ip + ']' if remoteIp.count(':') and remoteIp[0] != '[': remoteIp = '[' + remoteIp + ']' log.info('adding remote node @{0}:{1} to this cluster @{2}:{3}'\ .format(remoteIp, port, self.ip, self.port)) if zone_name == '': api = self.baseUrl + 'controller/addNode' else: api = self.baseUrl + 'pools/default/serverGroups' if self.is_zone_exist(zone_name): zones = self.get_zone_names() api = "/".join((api, zones[zone_name], "addNode")) log.info("node {0} will be added to zone {1}".format(remoteIp, zone_name)) else: raise Exception("There is not zone with name: %s in cluster" % zone_name) params = urllib.parse.urlencode({'hostname': "{0}://{1}:{2}".format(protocol, remoteIp, port), 'user': user, 'password': password}) if services != None: services = ','.join(services) params = urllib.parse.urlencode({'hostname': "{0}://{1}:{2}".format(protocol, remoteIp, port), 'user': user, 'password': password, 'services': services}) if self.monitorRebalance(): status, content, header = self._http_request(api, 'POST', params) if status: json_parsed = json.loads(content) otpNodeId = json_parsed['otpNode'] otpNode = OtpNode(otpNodeId) if otpNode.ip == '127.0.0.1': otpNode.ip = self.ip else: self.print_UI_logs() try: # print logs from node that we want to add wanted_node = deepcopy(self) wanted_node.ip = remoteIp wanted_node.print_UI_logs() except Exception as ex: self.log(ex) if content.find(b'Prepare join failed. Node is already part of cluster') >= 0: raise ServerAlreadyJoinedException(nodeIp=self.ip, remoteIp=remoteIp) elif content.find(b'Prepare join failed. Joining node to itself is not allowed') >= 0: raise ServerSelfJoinException(nodeIp=self.ip, remoteIp=remoteIp) else: log.error('add_node error : {0}'.format(content)) raise AddNodeException(nodeIp=self.ip, remoteIp=remoteIp, reason=content) else: raise AddNodeException(nodeIp=self.ip, remoteIp=remoteIp, reason="Rebalance error, cannot add node") return otpNode # params serverIp : the server to add to this cluster # raises exceptions when # unauthorized user # server unreachable # can't add the node to itself ( TODO ) # server already added # returns otpNode def do_join_cluster(self, user='', password='', remoteIp='', port='8091', zone_name='', services=None): otpNode = None if CbServer.use_https: port = CbServer.ssl_port log.info('adding remote node @{0}:{1} to this cluster @{2}:{3}'\ .format(remoteIp, port, self.ip, self.port)) api = self.baseUrl + '/node/controller/doJoinCluster' params = urllib.parse.urlencode({'hostname': "{0}:{1}".format(remoteIp, port), 'user': user, 'password': password}) if services != None: services = ','.join(services) params = urllib.parse.urlencode({'hostname': "{0}:{1}".format(remoteIp, port), 'user': user, 'password': password, 'services': services}) status, content, header = self._http_request(api, 'POST', params) if status: json_parsed = json.loads(content) otpNodeId = json_parsed['otpNode'] otpNode = OtpNode(otpNodeId) if otpNode.ip == '127.0.0.1': otpNode.ip = self.ip else: self.print_UI_logs() try: # print logs from node that we want to add wanted_node = deepcopy(self) wanted_node.ip = remoteIp wanted_node.print_UI_logs() except Exception as ex: self.log(ex) if content.find('Prepare join failed. Node is already part of cluster') >= 0: raise ServerAlreadyJoinedException(nodeIp=self.ip, remoteIp=remoteIp) elif content.find('Prepare join failed. Joining node to itself is not allowed') >= 0: raise ServerSelfJoinException(nodeIp=self.ip, remoteIp=remoteIp) else: log.error('add_node error : {0}'.format(content)) raise AddNodeException(nodeIp=self.ip, remoteIp=remoteIp, reason=content) return otpNode def eject_node(self, user='', password='', otpNode=None): if not otpNode: log.error('otpNode parameter required') return False api = self.baseUrl + 'controller/ejectNode' params = urllib.parse.urlencode({'otpNode': otpNode, 'user': user, 'password': password}) status, content, header = self._http_request(api, 'POST', params) if status: log.info('ejectNode successful') else: if content.find('Prepare join failed. Node is already part of cluster') >= 0: raise ServerAlreadyJoinedException(nodeIp=self.ip, remoteIp=otpNode) else: # TODO : raise an exception here log.error('eject_node error {0}'.format(content)) return True def force_eject_node(self): self.diag_eval("gen_server:cast(ns_cluster, leave).") self.check_delay_restart_coucbase_server() """ when we do reset couchbase server by force reject, couchbase server will not down right away but delay few seconds to be down depend on server spec. This fx will detect that delay and return true when couchbase server down and up again after force reject """ def check_delay_restart_coucbase_server(self): api = self.baseUrl + 'nodes/self' headers = self._create_headers() break_out = 0 count_cbserver_up = 0 while break_out < 60 and count_cbserver_up < 2: try: response, content = httplib2.Http(timeout=120).request(api, 'GET', '', headers) if response['status'] in ['200', '201', '202'] and count_cbserver_up == 0: log.info("couchbase server is up but down soon.") time.sleep(1) break_out += 1 # time needed for couchbase server reload after reset config if break_out == 7: log.info("couchbase server may be up already") count_cbserver_up = 1 elif response['status'] in ['200', '201', '202']: count_cbserver_up = 2 log.info("couchbase server is up again in few seconds") time.sleep(7) except (socket.error, AttributeError) as e: log.info("couchbase server is down. Waiting for couchbase server up") time.sleep(2) break_out += 1 count_cbserver_up = 1 pass if break_out >= 60: raise Exception("Couchbase server did not start after 60 seconds") def fail_over(self, otpNode=None, graceful=False): if otpNode is None: log.error('otpNode parameter required') return False api = self.baseUrl + 'controller/failOver' if graceful: api = self.baseUrl + 'controller/startGracefulFailover' params = urllib.parse.urlencode({'otpNode': otpNode}) status, content, header = self._http_request(api, 'POST', params) if status: log.info('fail_over node {0} successful'.format(otpNode)) else: log.error('fail_over node {0} error : {1}'.format(otpNode, content)) raise FailoverFailedException(content) return status def set_recovery_type(self, otpNode=None, recoveryType=None): log.info("Going to set recoveryType={0} for node :: {1}".format(recoveryType, otpNode)) if otpNode is None: log.error('otpNode parameter required') return False if recoveryType is None: log.error('recoveryType is not set') return False api = self.baseUrl + 'controller/setRecoveryType' params = urllib.parse.urlencode({'otpNode': otpNode, 'recoveryType': recoveryType}) status, content, header = self._http_request(api, 'POST', params) if status: log.info('recoveryType for node {0} set successful'.format(otpNode)) else: log.error('recoveryType node {0} not set with error : {1}'.format(otpNode, content)) raise SetRecoveryTypeFailed(content) return status def add_back_node(self, otpNode=None): if otpNode is None: log.error('otpNode parameter required') return False api = self.baseUrl + 'controller/reAddNode' params = urllib.parse.urlencode({'otpNode': otpNode}) status, content, header = self._http_request(api, 'POST', params) if status: log.info('add_back_node {0} successful'.format(otpNode)) else: log.error('add_back_node {0} error : {1}'.format(otpNode, content)) raise InvalidArgumentException('controller/reAddNode', parameters=params) return status def rebalance(self, otpNodes=[], ejectedNodes=[], deltaRecoveryBuckets=None): knownNodes = ','.join(otpNodes) ejectedNodesString = ','.join(ejectedNodes) if deltaRecoveryBuckets == None: params = {'knownNodes': knownNodes, 'ejectedNodes': ejectedNodesString, 'user': self.username, 'password': self.password} else: deltaRecoveryBuckets = ",".join(deltaRecoveryBuckets) params = {'knownNodes': knownNodes, 'ejectedNodes': ejectedNodesString, 'deltaRecoveryBuckets': deltaRecoveryBuckets, 'user': self.username, 'password': self.password} log.info('rebalance params : {0}'.format(params)) params = urllib.parse.urlencode(params) api = self.baseUrl + "controller/rebalance" status, content, header = self._http_request(api, 'POST', params) if status: log.info('rebalance operation started') else: log.error('rebalance operation failed: {0}'.format(content)) # extract the error raise InvalidArgumentException('controller/rebalance with error message {0}'.format(content), parameters=params) return status def diag_eval(self, code, print_log=True): api = '{0}{1}'.format(self.baseUrl, 'diag/eval/') status, content, header = self._http_request(api, "POST", code) if content: try: content = content.decode('utf-8') except (UnicodeDecodeError, AttributeError): pass if print_log: log.info("/diag/eval status on {0}:{1}: {2} content: {3} command: {4}". format(self.ip, self.port, status, content, code)) return status, content def set_chk_max_items(self, max_items): status, content = self.diag_eval("ns_config:set(chk_max_items, " + str(max_items) + ")") return status, content def set_chk_period(self, period): status, content = self.diag_eval("ns_config:set(chk_period, " + str(period) + ")") return status, content def set_enable_flow_control(self, flow=True, bucket='default'): flow_control = "false" if flow: flow_control = "true" code = "ns_bucket:update_bucket_props(\"" + bucket + "\", [{extra_config_string, \"upr_enable_flow_control=" + flow_control + "\"}])" status, content = self.diag_eval(code) return status, content def change_flusher_total_batch_limit(self, flusher_total_batch_limit=3, bucket='default'): code = "ns_bucket:update_bucket_props(\"" + bucket \ + "\", [{extra_config_string, " \ + "\"flusher_total_batch_limit=" \ + str(flusher_total_batch_limit) + "\"}])." status, content = self.diag_eval(code) return status, content def diag_master_events(self): api = '{0}{1}'.format(self.baseUrl, 'diag/masterEvents?o=1') status, content, header = self._http_request(api, "GET") log.info("diag/masterEvents?o=1 status: {0} content: {1}".format(status, content)) return status, content def get_admin_credentials(self): code = 'ns_config:search_node_prop(node(), ns_config:latest(), memcached, admin_user)' status, id = self.diag_eval(code) code = 'ns_config:search_node_prop(node(), ns_config:latest(), memcached, admin_pass)' status, password = self.diag_eval(code) return id.strip('"'), password.strip('"') def monitorRebalance(self, stop_if_loop=True): start = time.time() progress = 0 retry = 0 same_progress_count = 0 previous_progress = 0 while progress != -1 and (progress != 100 or \ self._rebalance_progress_status() == 'running') and retry < 20: # -1 is error , -100 means could not retrieve progress progress = self._rebalance_progress() if progress == -100: log.error("unable to retrieve rebalanceProgress.try again in 1 second") retry += 1 else: retry = 0 if stop_if_loop: # reset same_progress_count if get a different result, # or progress is still O # (it may take a long time until the results are different from 0) if previous_progress != progress or progress == 0: previous_progress = progress same_progress_count = 0 else: same_progress_count += 1 if same_progress_count > 50: log.error("apparently rebalance progress code in infinite loop:" " {0}".format(progress)) return False # sleep 10 seconds to printout less log time.sleep(10) if progress < 0: log.error("rebalance progress code : {0}".format(progress)) return False else: duration = time.time() - start if duration > 10: sleep = 10 else: sleep = duration log.info('rebalance progress took {:.02f} seconds '.format(duration)) log.info("sleep for {0} seconds after rebalance...".format(sleep)) time.sleep(sleep) return True def _rebalance_progress_status(self): api = self.baseUrl + "pools/default/rebalanceProgress" status, content, header = self._http_request(api) json_parsed = json.loads(content) if status: if "status" in json_parsed: return json_parsed['status'] else: return None def _rebalance_status_and_progress(self): """ Returns a 2-tuple capturing the rebalance status and progress, as follows: ('running', progress) - if rebalance is running ('none', 100) - if rebalance is not running (i.e. assumed done) (None, -100) - if there's an error getting the rebalance progress from the server (None, -1) - if the server responds but there's no information on what the status of rebalance is The progress is computed as a average of the progress of each node rounded to 2 decimal places. Throws RebalanceFailedException if rebalance progress returns an error message """ avg_percentage = -1 rebalance_status = None api = self.baseUrl + "pools/default/rebalanceProgress" try: status, content, header = self._http_request(api) except ServerUnavailableException as e: log.error(e) return None, -100 json_parsed = json.loads(content) if status: if "status" in json_parsed: rebalance_status = json_parsed["status"] if "errorMessage" in json_parsed: msg = '{0} - rebalance failed'.format(json_parsed) log.error(msg) self.print_UI_logs() raise RebalanceFailedException(msg) elif rebalance_status == "running": total_percentage = 0 count = 0 for key in json_parsed: if key.find('@') >= 0: ns_1_dictionary = json_parsed[key] percentage = ns_1_dictionary['progress'] * 100 count += 1 total_percentage += percentage if count: avg_percentage = (total_percentage // count) else: avg_percentage = 0 log.info('rebalance percentage : {0:.02f} %'. format(round(avg_percentage, 2))) else: avg_percentage = 100 else: avg_percentage = -100 return rebalance_status, avg_percentage def _rebalance_progress(self): return self._rebalance_status_and_progress()[1] def log_client_error(self, post): api = self.baseUrl + 'logClientError' status, content, header = self._http_request(api, 'POST', post) if not status: log.error('unable to logClientError') return status, content, header def trigger_index_compaction(self, timeout=120): node = None api = self.index_baseUrl + 'triggerCompaction' status, content, header = self._http_request(api, timeout=timeout) if not status: raise Exception(content) def set_index_settings(self, setting_json, timeout=120): api = self.index_baseUrl + 'settings' status, content, header = self._http_request(api, 'POST', json.dumps(setting_json)) if not status: raise Exception(content) log.info("{0} set".format(setting_json)) def set_index_settings_internal(self, setting_json, timeout=120): api = self.index_baseUrl + 'internal/settings' status, content, header = self._http_request(api, 'POST', json.dumps(setting_json)) if not status: if header['status']=='404': log.info("This endpoint is introduced only in 5.5.0, hence not found. Redirecting the request to the old endpoint") self.set_index_settings(setting_json, timeout) else: raise Exception(content) log.info("{0} set".format(setting_json)) def get_index_settings(self, timeout=120): node = None api = self.index_baseUrl + 'settings' status, content, header = self._http_request(api, timeout=timeout) if not status: raise Exception(content) return json.loads(content) def get_index_storage_mode(self, timeout=120): api = self.index_baseUrl + 'settings' status, content, header = self._http_request(api, timeout=timeout) if not status: raise Exception(content) return json.loads(content)["indexer.settings.storage_mode"] def set_index_planner_settings(self, setting, timeout=120): api = self.index_baseUrl + 'settings/planner?{0}'.format(setting) status, content, header = self._http_request(api, timeout=timeout) if not status: raise Exception(content) return json.loads(content) def get_index_stats(self, timeout=120, index_map=None): api = self.index_baseUrl + 'stats' status, content, header = self._http_request(api, timeout=timeout) if status: json_parsed = json.loads(content) index_map = RestParser().parse_index_stats_response(json_parsed, index_map=index_map) return index_map def get_index_stats_collections(self, timeout=120, index_map=None): api = self.index_baseUrl + 'stats' status, content, header = self._http_request(api, timeout=timeout) if status: json_parsed = json.loads(content) index_map = RestParser().parse_index_stats_response_collections(json_parsed, index_map=index_map) return index_map def get_all_index_stats(self, timeout=120, inst_id_filter=[], consumer_filter=None, text=False): """return: json object or text response of :9102/stats""" api = self.index_baseUrl + 'stats' all_index_stats = {} if inst_id_filter: inst_id_filter = json.dumps(inst_id_filter) elif consumer_filter: api += f"?consumerFilter={consumer_filter}" else: inst_id_filter = "" status, content, _ = self._http_request(api, timeout=timeout, params=inst_id_filter) if status: if text: all_index_stats = content.decode("utf8").replace('":', '": ').replace(",", ", ") else: all_index_stats = json.loads(content) return all_index_stats def get_index_official_stats(self, timeout=120, index_map=None, bucket="", scope="", collection=""): api = self.index_baseUrl + 'api/v1/stats' if bucket: api += f'/`{bucket.replace("%", "%25")}`' if scope: api += f'.{scope}' if collection: api += f'.{collection}' status, content, header = self._http_request(api, timeout=timeout) if status: json_parsed = json.loads(content) return json_parsed def get_indexes_count(self): indexes_count = {} index_map = self.get_index_storage_stats() for bucket, indexes in index_map.items(): for index, stats in indexes.items(): indexes_count[index] = stats["MainStore"]["count"] return indexes_count def get_index_storage_stats(self, timeout=120, index_map=None): api = self.index_baseUrl + 'stats/storage' status, content, header = self._http_request(api, timeout=timeout) if not status: raise Exception(content) json_parsed = json.loads(content) index_storage_stats = {} for index_stats in json_parsed: bucket = index_stats["Index"].split(":")[0] index_name = index_stats["Index"].split(":")[-1] if bucket not in list(index_storage_stats.keys()): index_storage_stats[bucket] = {} index_storage_stats[bucket][index_name] = index_stats["Stats"] return index_storage_stats def get_indexer_stats(self, timeout=120, index_map=None, baseUrl=None): if baseUrl is None: api = self.index_baseUrl + 'stats' else: api = baseUrl + 'stats' index_map = {} status, content, header = self._http_request(api, timeout=timeout) if status: json_parsed = json.loads(content) for key in list(json_parsed.keys()): tokens = key.split(":") val = json_parsed[key] if len(tokens) == 1: field = tokens[0] index_map[field] = val return index_map def get_indexer_metadata(self, timeout=120, index_map=None): api = self.index_baseUrl + 'getIndexStatus' index_map = {} status, content, header = self._http_request(api, timeout=timeout) if status: json_parsed = json.loads(content) for key in list(json_parsed.keys()): tokens = key.split(":") val = json_parsed[key] if len(tokens) == 1: field = tokens[0] index_map[field] = val return index_map def get_indexer_internal_stats(self, timeout=120, index_map=None): api = self.index_baseUrl + 'settings?internal=ok' index_map = {} status, content, header = self._http_request(api, timeout=timeout) if status: json_parsed = json.loads(content) for key in list(json_parsed.keys()): tokens = key.split(":") val = json_parsed[key] if len(tokens) == 1: field = tokens[0] index_map[field] = val return index_map def trigger_compaction(self, timeout=120): api = self.index_baseUrl + 'plasmaDiag' command = {'Cmd': 'listDBs'} status, content, header = self._http_request(api, 'POST', json.dumps(command), timeout=timeout) for l in list(iter(str(content, 'utf-8').splitlines())): try: x, id = l.split(" : ") if id: log.info(f'Triggering compaction for instance id {id}') compact_command = {'Cmd': 'compactAll', 'Args': [int(id)]} status, content, header = self._http_request(api, 'POST', json.dumps(compact_command)) if not status: log.error(f'Failed to trigger compaction : {content}') except ValueError: pass def get_index_status(self, timeout=120, index_map=None): api = self.baseUrl + 'indexStatus' index_map = {} status, content, header = self._http_request(api, timeout=timeout) if status: json_parsed = json.loads(content) index_map = RestParser().parse_index_status_response(json_parsed) return index_map def get_index_id_map(self, timeout=120): api = self.baseUrl + 'indexStatus' index_map = {} status, content, header = self._http_request(api, timeout=timeout) if status: json_parsed = json.loads(content) for map in json_parsed["indexes"]: bucket_name = map['bucket'] if bucket_name not in list(index_map.keys()): index_map[bucket_name] = {} index_name = map['index'] index_map[bucket_name][index_name] = {} index_map[bucket_name][index_name]['id'] = map['id'] return index_map def get_index_statements(self, timeout=120): api = self.index_baseUrl + 'getIndexStatement' index_map = {} status, content, header = self._http_request(api, timeout=timeout) if status: json_parsed = json.loads(content) return json_parsed # returns node data for this host def get_nodes_self(self, timeout=120): node = None api = self.baseUrl + 'nodes/self' status, content, header = self._http_request(api, timeout=timeout) if status: json_parsed = json.loads(content) node = RestParser().parse_get_nodes_response(json_parsed) return node def get_ip_from_ini_file(self): """ in alternate address, we need to get hostname from ini file """ return self.ip def node_statuses(self, timeout=120): nodes = [] api = self.baseUrl + 'nodeStatuses' status, content, header = self._http_request(api, timeout=timeout) json_parsed = json.loads(content) if status: for key in json_parsed: # each key contain node info value = json_parsed[key] # Create an OtpNode object given the id and status. # Note the OtpNode object grabs the ip address from the id. node = OtpNode(id=value['otpNode'], status=value['status']) if node.ip == 'cb.local': node.ip = self.ip node.id = node.id.replace('cb.local', self.ip.__str__()) # The ip address grabbed from the id is '127.0.0.1' or '::1' # when the node is not part of a cluster. This can be amended # to the ip address in the TestInputServer object that is # provided. if node.ip in ['127.0.0.1', '[::1]']: node.ip = self.ip node.port = int(key[key.rfind(":") + 1:]) node.replication = value['replication'] if 'gracefulFailoverPossible' in list(value.keys()): node.gracefulFailoverPossible = value['gracefulFailoverPossible'] else: node.gracefulFailoverPossible = False nodes.append(node) return nodes def cluster_status(self): parsed = {} api = self.baseUrl + 'pools/default' status, content, header = self._http_request(api) if status: parsed = json.loads(content) return parsed def fetch_vbucket_map(self, bucket="default"): """Return vbucket map for bucket Keyword argument: bucket -- bucket name """ api = self.baseUrl + 'pools/default/buckets/' + bucket status, content, header = self._http_request(api) _stats = json.loads(content) return _stats['vBucketServerMap']['vBucketMap'] def get_vbucket_map_and_server_list(self, bucket="default"): """ Return server list, replica and vbuckets map that matches to server list """ vbucket_map = self.fetch_vbucket_map(bucket) api = self.baseUrl + 'pools/default/buckets/' + bucket status, content, header = self._http_request(api) _stats = json.loads(content) num_replica = _stats['vBucketServerMap']['numReplicas'] vbucket_map = _stats['vBucketServerMap']['vBucketMap'] servers = _stats['vBucketServerMap']['serverList'] server_list = [] for node in servers: node = node.split(":") server_list.append(node[0]) return vbucket_map, server_list, num_replica def get_pools_info(self): parsed = {} api = self.baseUrl + 'pools' status, content, header = self._http_request(api) json_parsed = json.loads(content) if status: parsed = json_parsed return parsed def get_pools_default(self, query='', timeout=30): parsed = {} api = self.baseUrl + 'pools/default' if query: api += "?" + query status, content, header = self._http_request(api, timeout=timeout) json_parsed = json.loads(content) if status: parsed = json_parsed return parsed def get_cluster_stats(self): """ Reads cluster nodes statistics using `pools/default` rest GET method :return stat_dict - Dictionary of CPU & Memory status each cluster node: """ stat_dict = dict() json_output = self.get_pools_default() if 'nodes' in json_output: for node_stat in json_output['nodes']: stat_dict[node_stat['hostname']] = dict() stat_dict[node_stat['hostname']]['services'] = node_stat['services'] stat_dict[node_stat['hostname']]['cpu_utilization'] = node_stat['systemStats']['cpu_utilization_rate'] stat_dict[node_stat['hostname']]['mem_free'] = node_stat['systemStats']['mem_free'] stat_dict[node_stat['hostname']]['mem_total'] = node_stat['systemStats']['mem_total'] stat_dict[node_stat['hostname']]['swap_mem_used'] = node_stat['systemStats']['swap_used'] stat_dict[node_stat['hostname']]['swap_mem_total'] = node_stat['systemStats']['swap_total'] return stat_dict def get_pools(self): version = None api = self.baseUrl + 'pools' status, content, header = self._http_request(api) json_parsed = json.loads(content) if status: version = MembaseServerVersion(json_parsed['implementationVersion'], json_parsed['componentsVersion']) return version def get_buckets(self, num_retries=3, poll_interval=15): buckets = [] api = '{0}{1}'.format(self.baseUrl, 'pools/default/buckets?basic_stats=true') buckets_are_received = False status = "" content = "" while num_retries > 0: try: # get all the buckets status, content, header = self._http_request(api) json_parsed = json.loads(content) if status: for item in json_parsed: bucketInfo = RestParser().parse_get_bucket_json(item) buckets.append(bucketInfo) buckets_are_received = True break else: log.error("Response status is: False, response content is: {0}".format(content)) num_retries -= 1 time.sleep(poll_interval) except Exception as e: num_retries -= 1 log.error(e) log.error('{0} seconds sleep before calling get_buckets again...'.format(poll_interval)) time.sleep(poll_interval) if not buckets_are_received: log.error("Could not get buckets list from the following api: {0}".format(api)) log.error("Last response status is: {0}".format(status)) log.error("Last response content is: {0}".format(content)) return buckets def get_bucket_by_name(self,bucket_name): # get all the buckets buckets = [] api = '{0}{1}'.format(self.baseUrl, 'pools/default/buckets?basic_stats=true') status, content, header = self._http_request(api) json_parsed = json.loads(content) if status: for item in json_parsed: bucketInfo = RestParser().parse_get_bucket_json(item) if bucketInfo.name == bucket_name: buckets.append(bucketInfo) return buckets def get_buckets_itemCount(self): # get all the buckets bucket_map = {} api = '{0}{1}'.format(self.baseUrl, 'pools/default/buckets?basic_stats=true') status, content, header = self._http_request(api) json_parsed = json.loads(content) if status: for item in json_parsed: bucketInfo = RestParser().parse_get_bucket_json(item) bucket_map[bucketInfo.name] = bucketInfo.stats.itemCount return bucket_map def get_bucket_stats_for_node(self, bucket='default', node=None): if not node: log.error('node_ip not specified') return None stats = {} api = "{0}{1}{2}{3}{4}:{5}{6}".format(self.baseUrl, 'pools/default/buckets/', bucket, "/nodes/", node.ip, node.port, "/stats") status, content, header = self._http_request(api) if status: json_parsed = json.loads(content) op = json_parsed["op"] samples = op["samples"] for stat_name in samples: if stat_name not in stats: if len(samples[stat_name]) == 0: stats[stat_name] = [] else: stats[stat_name] = samples[stat_name][-1] else: raise Exception("Duplicate entry in the stats command {0}".format(stat_name)) return stats def get_node_settings(self, setting_name=None): api = "{0}{1}".format(self.fts_baseUrl, 'api/manager') status, content, header = self._http_request(api) json_parsed = json.loads(content) options_vals = json_parsed['mgr']['options'] if setting_name in options_vals.keys(): return options_vals[setting_name] log.error("Setting {0} not available".format(setting_name)) def get_bucket_status(self, bucket): if not bucket: log.error("Bucket Name not Specified") return None api = self.baseUrl + 'pools/default/buckets' status, content, header = self._http_request(api) if status: json_parsed = json.loads(content) for item in json_parsed: if item["name"] == bucket: return item["nodes"][0]["status"] log.error("Bucket {0} doesn't exist".format(bucket)) return None def fetch_bucket_stats(self, bucket='default', zoom='minute'): """Return deserialized buckets stats. Keyword argument: bucket -- bucket name zoom -- stats zoom level (minute | hour | day | week | month | year) """ api = self.baseUrl + 'pools/default/buckets/{0}/stats?zoom={1}'.format(bucket, zoom) log.info(api) status, content, header = self._http_request(api) return json.loads(content) def set_query_index_api_mode(self, index_api_mode=3): api = self.query_baseUrl + 'admin/settings' query_api_setting = {"max-index-api": index_api_mode} status, content, header = self._http_request(api, 'POST', json.dumps(query_api_setting)) if not status: raise Exception(content) log.info("{0} set".format(query_api_setting)) def fetch_bucket_xdcr_stats(self, bucket='default', zoom='minute'): """Return deserialized bucket xdcr stats. Keyword argument: bucket -- bucket name zoom -- stats zoom level (minute | hour | day | week | month | year) """ api = self.baseUrl + 'pools/default/buckets/@xdcr-{0}/stats?zoom={1}'.format(bucket, zoom) status, content, header = self._http_request(api) return json.loads(content) def fetch_system_stats(self): """Return deserialized system stats.""" api = self.baseUrl + 'pools/default/' status, content, header = self._http_request(api) return json.loads(content) def get_xdc_queue_size(self, bucket): """Fetch bucket stats and return the latest value of XDC replication queue size""" bucket_stats = self.fetch_bucket_xdcr_stats(bucket) return bucket_stats['op']['samples']['replication_changes_left'][-1] def get_dcp_queue_size(self, bucket): """Fetch bucket stats and return the latest value of DCP queue size""" bucket_stats = self.fetch_bucket_stats(bucket) return bucket_stats['op']['samples']['ep_dcp_xdcr_items_remaining'][-1] def get_active_key_count(self, bucket): """Fetch bucket stats and return the bucket's curr_items count""" bucket_stats = self.fetch_bucket_stats(bucket) ret_val = -1 retries = 10 while retries > 0: try: ret_val = bucket_stats['op']['samples']['curr_items'][-1] return ret_val except KeyError as err: log.error(f"get_active_key_count() function for bucket {bucket} reported an error {err}") log.error(f"Corresponding bucket stats JSON is {bucket_stats}") time.sleep(2) retries = retries - 1 return ret_val def get_replica_key_count(self, bucket): """Fetch bucket stats and return the bucket's replica count""" bucket_stats = self.fetch_bucket_stats(bucket) return bucket_stats['op']['samples']['vb_replica_curr_items'][-1] def get_nodes(self, get_all_nodes=False): nodes = [] api = self.baseUrl + 'pools/default' status, content, header = self._http_request(api) count = 0 while not content and count < 7: log.info("sleep 5 seconds and retry") time.sleep(5) status, content, header = self._http_request(api) count += 1 if count == 7: raise Exception("could not get node info after 30 seconds") json_parsed = json.loads(content) if status: if "nodes" in json_parsed: for json_node in json_parsed["nodes"]: node = RestParser().parse_get_nodes_response(json_node) node.rest_username = self.username node.rest_password = self.password if node.ip == "127.0.0.1": node.ip = self.ip # Only add nodes which are active on cluster if get_all_nodes or node.clusterMembership == 'active': nodes.append(node) else: log.info("Node {0} not part of cluster {1}".format(node.ip, node.clusterMembership)) return nodes # this method returns the number of node in cluster def get_cluster_size(self): nodes = self.get_nodes() node_ip = [] for node in nodes: node_ip.append(node.ip) log.info("Number of node(s) in cluster is {0} node(s)".format(len(node_ip))) return len(node_ip) """ this medthod return version on node that is not initialized yet """ def get_nodes_version(self): node = self.get_nodes_self() version = node.version log.info("Node version in cluster {0}".format(version)) return version # this method returns the versions of nodes in cluster def get_nodes_versions(self, logging=True): nodes = self.get_nodes() versions = [] for node in nodes: versions.append(node.version) if logging: log.info("Node versions in cluster {0}".format(versions)) return versions def get_major_version(self): """ Returns the major version of the node (e.g. 6.5) """ return self.get_nodes_self().major_version def check_cluster_compatibility(self, version): """ Check if all nodes in cluster are of versions equal or above the version required. :param version: Version to check the cluster compatibility for. Should be of format major_ver.minor_ver. For example: 5.0, 4.5, 5.1 :return: True if cluster is compatible with the version specified, False otherwise. Return None if cluster is uninitialized. """ nodes = self.get_nodes() if not nodes: # If nodes returned is None, it means that the cluster is not initialized yet and hence cluster # compatibility cannot be found. Return None return None major_ver, minor_ver = version.split(".") compatibility = int(major_ver) * 65536 + int(minor_ver) is_compatible = True for node in nodes: clusterCompatibility = int(node.clusterCompatibility) if clusterCompatibility < compatibility: is_compatible = False return is_compatible # this method returns the services of nodes in cluster - implemented for Sherlock def get_nodes_services(self): nodes = self.get_nodes() map = {} for node in nodes: key = "{0}:{1}".format(node.ip, node.port) map[key] = node.services return map # Check node version def check_node_versions(self, check_version="4.0"): versions = self.get_nodes_versions() if versions[0] < check_version: return False return True def get_bucket_stats(self, bucket='default'): stats = {} status, json_parsed = self.get_bucket_stats_json(bucket) if status: op = json_parsed["op"] samples = op["samples"] for stat_name in samples: if samples[stat_name]: last_sample = len(samples[stat_name]) - 1 if last_sample: stats[stat_name] = samples[stat_name][last_sample] return stats def get_fts_stats(self, index_name=None, bucket_name=None, stat_name=None): """ List of fts stats available as of 03/16/2017 - default:default_idx3:avg_queries_latency: 0, default:default_idx3:batch_merge_count: 0, default:default_idx3:doc_count: 0, default:default_idx3:iterator_next_count: 0, default:default_idx3:iterator_seek_count: 0, default:default_idx3:num_bytes_live_data: 0, default:default_idx3:num_bytes_used_disk: 0, default:default_idx3:num_mutations_to_index: 0, default:default_idx3:num_pindexes: 0, default:default_idx3:num_pindexes_actual: 0, default:default_idx3:num_pindexes_target: 0, default:default_idx3:num_recs_to_persist: 0, default:default_idx3:reader_get_count: 0, default:default_idx3:reader_multi_get_count: 0, default:default_idx3:reader_prefix_iterator_count: 0, default:default_idx3:reader_range_iterator_count: 0, default:default_idx3:timer_batch_store_count: 0, default:default_idx3:timer_data_delete_count: 0, default:default_idx3:timer_data_update_count: 0, default:default_idx3:timer_opaque_get_count: 0, default:default_idx3:timer_opaque_set_count: 0, default:default_idx3:timer_rollback_count: 0, default:default_idx3:timer_snapshot_start_count: 0, default:default_idx3:total_bytes_indexed: 0, default:default_idx3:total_bytes_query_results: 0, default:default_idx3:total_compactions: 0, default:default_idx3:total_queries: 0, default:default_idx3:total_queries_error: 0, default:default_idx3:total_queries_slow: 0, default:default_idx3:total_queries_timeout: 0, default:default_idx3:total_request_time: 0, default:default_idx3:total_term_searchers: 0, default:default_idx3:writer_execute_batch_count: 0, :param index_name: name of the index :param bucket_name: source bucket :param stat_name: any of the above :return: """ api = "{0}{1}".format(self.fts_baseUrl, 'api/nsstats') attempts = 0 while attempts < 5: status, content, header = self._http_request(api) json_parsed = json.loads(content) if bucket_name is None and index_name is None and stat_name is None: return status, content if bucket_name is None and index_name is None: key = stat_name else: key = bucket_name+':'+index_name+':'+stat_name if key in json_parsed: return status, json_parsed[key] attempts += 1 log.info("Stat {0} not available yet".format(stat_name)) time.sleep(1) log.error("ERROR: Stat {0} error on {1} on bucket {2}". format(stat_name, index_name, bucket_name)) def start_fts_index_compaction(self, index_name): api = "{0}{1}".format(self.fts_baseUrl, f'api/index/{index_name}/tasks') params = {"op": "merge"} status, content, header = self._http_request(api, method='POST', params=json.dumps(params, ensure_ascii=False), headers=self._create_capi_headers(), timeout=30) json_parsed = json.loads(content) return status, json_parsed def get_fts_index_compactions(self, index_name): api = "{0}{1}".format(self.fts_baseUrl, f'api/index/{index_name}/tasks') params = {"op": "get"} status, content, header = self._http_request(api, method='POST', params=json.dumps(params, ensure_ascii=False), headers=self._create_capi_headers(), timeout=30) json_parsed = json.loads(content) return status, json_parsed def cancel_fts_index_compaction(self, index_name=None, uuid=None): api = "{0}{1}".format(self.fts_baseUrl, f'api/index/{index_name}/tasks') params = {"op": "cancel", "uuid": uuid} status, content, header = self._http_request(api, method='POST', params=json.dumps(params, ensure_ascii=False), headers=self._create_capi_headers(), timeout=30) json_parsed = json.loads(content) return status, json_parsed def get_bucket_stats_json(self, bucket='default'): stats = {} api = "{0}{1}{2}{3}".format(self.baseUrl, 'pools/default/buckets/', bucket, "/stats") if isinstance(bucket, Bucket): api = '{0}{1}{2}{3}'.format(self.baseUrl, 'pools/default/buckets/', bucket.name, "/stats") status, content, header = self._http_request(api) json_parsed = json.loads(content) return status, json_parsed def get_bucket_json(self, bucket='default'): api = '{0}{1}{2}'.format(self.baseUrl, 'pools/default/buckets/', bucket) if isinstance(bucket, Bucket): api = '{0}{1}{2}'.format(self.baseUrl, 'pools/default/buckets/', bucket.name) status, content, header = self._http_request(api) if not status: raise GetBucketInfoFailed(bucket, content) return json.loads(content) def get_bucket_maxTTL(self, bucket='default'): bucket_info = self.get_bucket_json(bucket=bucket) return bucket_info['maxTTL'] def get_bucket_compressionMode(self, bucket='default'): bucket_info = self.get_bucket_json(bucket=bucket) info = self.get_nodes_self() if 5.5 > float(info.version[:3]): bucket_info['compressionMode'] = "off" return bucket_info['compressionMode'] def is_lww_enabled(self, bucket='default'): bucket_info = self.get_bucket_json(bucket=bucket) try: if bucket_info['conflictResolutionType'] == 'lww': return True except KeyError: return False def get_bucket(self, bucket='default', num_attempt=1, timeout=1): bucketInfo = None try: bucket = bucket.decode() except AttributeError: pass api = '%s%s%s?basic_stats=true' % (self.baseUrl, 'pools/default/buckets/', bucket) if isinstance(bucket, Bucket): api = '%s%s%s?basic_stats=true' % (self.baseUrl, 'pools/default/buckets/', bucket.name) status, content, header = self._http_request(api) num = 1 while not status and num_attempt > num: log.error("try to get {0} again after {1} sec".format(api, timeout)) time.sleep(timeout) status, content, header = self._http_request(api) num += 1 if status: bucketInfo = RestParser().parse_get_bucket_response(content) return bucketInfo def get_vbuckets(self, bucket='default'): b = self.get_bucket(bucket) return None if not b else b.vbuckets def delete_bucket(self, bucket='default', num_retries=3, poll_interval=5): api = '%s%s%s' % (self.baseUrl, 'pools/default/buckets/', bucket) if isinstance(bucket, Bucket): api = '%s%s%s' % (self.baseUrl, 'pools/default/buckets/', bucket.name) status = False while num_retries > 0: try: status, content, header = self._http_request(api, 'DELETE') if int(header['status']) == 500: # According to http://docs.couchbase.com/couchbase-manual-2.5/cb-rest-api/#deleting-buckets # the cluster will return with 500 if it failed to nuke # the bucket on all of the nodes within 30 secs log.warning("Bucket deletion timed out waiting for all nodes, retrying...") num_retries -= 1 time.sleep(poll_interval) else: break except Exception as e: num_retries -= 1 log.error(e) log.error('{0} seconds sleep before calling delete_bucket again...'.format(poll_interval)) time.sleep(poll_interval) return status def delete_all_buckets(self): buckets = self.get_buckets() for bucket in buckets: if isinstance(bucket, Bucket): api = '%s%s%s' % (self.baseUrl, 'pools/default/buckets/', bucket.name) self._http_request(api, 'DELETE') '''Load any of the three sample buckets''' def load_sample(self, sample_name, poll_interval=3, max_wait_time=1200, max_error_retries=3): api = '{0}{1}'.format(self.baseUrl, "sampleBuckets/install") data = '["{0}"]'.format(sample_name) status, content, header = self._http_request(api, 'POST', data) # Allow the sample bucket to be loaded self.wait_until_bucket_loaded(sample_name, poll_interval, max_wait_time, max_error_retries) return status def wait_until_bucket_loaded(self, bucket_name, poll_interval=3, max_wait_time=1200, max_error_retries=3): max_time = time.time() + float(max_wait_time) is_bucket_loaded = False response = "" api = '{0}{1}'.format(self.baseUrl, "pools/default/buckets/{}".format(bucket_name)) previous_doc_count = 0 while time.time() < max_time and max_error_retries > 0: time.sleep(poll_interval) status, content, response = self._http_request(api, method='GET') data = json.loads(content) current_doc_count = int(data["basicStats"]["itemCount"]) if status: if current_doc_count == previous_doc_count: is_bucket_loaded = True break else: previous_doc_count = current_doc_count else: max_error_retries -= 1 log.warning("Something wrong happened while getting bucket {0} items count, retrying.".format(bucket_name)) log.warning("Server response is {0}".format(str(response))) if not is_bucket_loaded: log.error("Bucket {0} was not loaded completely") log.error("Last response is: {0}".format(str(response))) # figure out the proxy port def create_bucket(self, bucket='', ramQuotaMB=1, replicaNumber=1, proxyPort=11211, bucketType='membase', replica_index=1, threadsNumber=3, flushEnabled=1, evictionPolicy='valueOnly', lww=False, maxTTL=None, compressionMode='passive', storageBackend='couchstore'): api = '{0}{1}'.format(self.baseUrl, 'pools/default/buckets') params = urllib.parse.urlencode({}) init_params = {'name': bucket, 'ramQuotaMB': ramQuotaMB, 'replicaNumber': replicaNumber, # 'proxyPort': proxyPort, 'bucketType': bucketType, 'replicaIndex': replica_index, 'threadsNumber': threadsNumber, 'flushEnabled': flushEnabled, 'evictionPolicy': evictionPolicy} if bucketType == "memcached": log.info("Create memcached bucket") # 'replicaNumber' is not valid for memcached buckets init_params.pop("replicaNumber", None) if lww: init_params['conflictResolutionType'] = 'lww' if maxTTL: init_params['maxTTL'] = maxTTL if compressionMode and self.is_enterprise_edition(): init_params['compressionMode'] = compressionMode if bucketType == 'ephemeral': del init_params['replicaIndex'] # does not apply to ephemeral buckets, and is even rejected # bucket storage is applicable only for membase bucket if bucketType == "membase": init_params['storageBackend'] = storageBackend pre_spock = not self.check_cluster_compatibility("5.0") if pre_spock: init_params['proxyPort'] = proxyPort params = urllib.parse.urlencode(init_params) log.info("{0} with param: {1}".format(api, params)) create_start_time = time.time() maxwait = 60 for numsleep in range(maxwait): status, content, header = self._http_request(api, 'POST', params) if status: break elif (int(header['status']) == 503 and '{"_":"Bucket with given name still exists"}'.encode('utf-8') in content): log.info("The bucket still exists, sleep 1 sec and retry") time.sleep(1) else: raise BucketCreationException(ip=self.ip, bucket_name=bucket) if (numsleep + 1) == maxwait: log.error("Tried to create the bucket for {0} secs.. giving up". format(maxwait)) raise BucketCreationException(ip=self.ip, bucket_name=bucket) create_time = time.time() - create_start_time log.info("{0:.02f} seconds to create bucket {1}". format(round(create_time, 2), bucket)) return status def change_bucket_props(self, bucket, ramQuotaMB=None, replicaNumber=None, proxyPort=None, replicaIndex=None, flushEnabled=None, timeSynchronization=None, maxTTL=None, compressionMode=None): api = '{0}{1}{2}'.format(self.baseUrl, 'pools/default/buckets/', bucket) if isinstance(bucket, Bucket): api = '{0}{1}{2}'.format(self.baseUrl, 'pools/default/buckets/', bucket.name) params = urllib.parse.urlencode({}) params_dict = {} existing_bucket = self.get_bucket_json(bucket) if ramQuotaMB: params_dict["ramQuotaMB"] = ramQuotaMB if replicaNumber: params_dict["replicaNumber"] = replicaNumber #if proxyPort: # params_dict["proxyPort"] = proxyPort if replicaIndex: params_dict["replicaIndex"] = replicaIndex if flushEnabled: params_dict["flushEnabled"] = flushEnabled if timeSynchronization: params_dict["timeSynchronization"] = timeSynchronization if maxTTL: params_dict["maxTTL"] = maxTTL if compressionMode and self.is_enterprise_edition(): params_dict["compressionMode"] = compressionMode params = urllib.parse.urlencode(params_dict) log.info("%s with param: %s" % (api, params)) status, content, header = self._http_request(api, 'POST', params) if timeSynchronization: if status: raise Exception("Erroneously able to set bucket settings %s for bucket on time-sync" % (params, bucket)) return status, content if not status: raise Exception("Unable to set bucket settings %s for bucket" % (params, bucket)) log.info("bucket %s updated" % bucket) return status # return AutoFailoverSettings def get_autofailover_settings(self): settings = None api = self.baseUrl + 'settings/autoFailover' status, content, header = self._http_request(api) json_parsed = json.loads(content) if status: settings = AutoFailoverSettings() settings.enabled = json_parsed["enabled"] settings.count = json_parsed["count"] settings.timeout = json_parsed["timeout"] settings.failoverOnDataDiskIssuesEnabled = json_parsed["failoverOnDataDiskIssues"]["enabled"] settings.failoverOnDataDiskIssuesTimeout = json_parsed["failoverOnDataDiskIssues"]["timePeriod"] settings.maxCount = json_parsed["maxCount"] settings.failoverServerGroup = json_parsed["failoverServerGroup"] if json_parsed["canAbortRebalance"]: settings.can_abort_rebalance = json_parsed["canAbortRebalance"] return settings def update_autofailover_settings(self, enabled, timeout, canAbortRebalance=False, enable_disk_failure=False, disk_timeout=120, maxCount=1, enableServerGroup=False): params_dict = {} params_dict['timeout'] = timeout if enabled: params_dict['enabled'] = 'true' else: params_dict['enabled'] = 'false' if canAbortRebalance: params_dict['canAbortRebalance'] = 'true' if enable_disk_failure: params_dict['failoverOnDataDiskIssues[enabled]'] = 'true' params_dict['failoverOnDataDiskIssues[timePeriod]'] = disk_timeout else: params_dict['failoverOnDataDiskIssues[enabled]'] = 'false' params_dict['maxCount'] = maxCount if enableServerGroup: params_dict['failoverServerGroup'] = 'true' else: params_dict['failoverServerGroup'] = 'false' params = urllib.parse.urlencode(params_dict) api = self.baseUrl + 'settings/autoFailover' log.info('settings/autoFailover params : {0}'.format(params)) status, content, header = self._http_request(api, 'POST', params) if not status: log.warning('''failed to change autofailover_settings! See MB-7282. Workaround: wget --user=Administrator --password=asdasd --post-data='rpc:call(mb_master:master_node(), erlang, apply ,[fun () -> erlang:exit(erlang:whereis(mb_master), kill) end, []]).' http://localhost:8091/diag/eval''') return status # return AutoReprovisionSettings def get_autoreprovision_settings(self): settings = None api = self.baseUrl + 'settings/autoReprovision' status, content, header = self._http_request(api) json_parsed = json.loads(content) if status: settings = AutoReprovisionSettings() settings.enabled = json_parsed["enabled"] settings.count = json_parsed["count"] settings.max_nodes = json_parsed["max_nodes"] return settings def update_autoreprovision_settings(self, enabled, maxNodes=1): if enabled: params = urllib.parse.urlencode({'enabled': 'true', 'maxNodes': maxNodes}) else: params = urllib.parse.urlencode({'enabled': 'false', 'maxNodes': maxNodes}) api = self.baseUrl + 'settings/autoReprovision' log.info('settings/autoReprovision params : {0}'.format(params)) status, content, header = self._http_request(api, 'POST', params) if not status: log.error('failed to change autoReprovision_settings!') return status def reset_autofailover(self): api = self.baseUrl + 'settings/autoFailover/resetCount' status, content, header = self._http_request(api, 'POST', '') return status def reset_autoreprovision(self): api = self.baseUrl + 'settings/autoReprovision/resetCount' status, content, header = self._http_request(api, 'POST', '') return status def set_alerts_settings(self, recipients, sender, email_username, email_password, email_host='localhost', email_port=25, email_encrypt='false', alerts='auto_failover_node,auto_failover_maximum_reached'): api = self.baseUrl + 'settings/alerts' params = urllib.parse.urlencode({'enabled': 'true', 'recipients': recipients, 'sender': sender, 'emailUser': email_username, 'emailPass': email_password, 'emailHost': email_host, 'emailPort': email_port, 'emailEncrypt': email_encrypt, 'alerts': alerts}) log.info('settings/alerts params : {0}'.format(params)) status, content, header = self._http_request(api, 'POST', params) return status def get_alerts_settings(self): api = self.baseUrl + 'settings/alerts' status, content, header = self._http_request(api) json_parsed = json.loads(content) if not status: raise Exception("unable to get autofailover alerts settings") return json_parsed def disable_alerts(self): api = self.baseUrl + 'settings/alerts' params = urllib.parse.urlencode({'enabled': 'false'}) log.info('settings/alerts params : {0}'.format(params)) status, content, header = self._http_request(api, 'POST', params) return status def set_cas_drift_threshold(self, bucket, ahead_threshold_in_millisecond, behind_threshold_in_millisecond): api = self.baseUrl + 'pools/default/buckets/{0}'. format( bucket ) params_dict ={'driftAheadThresholdMs': ahead_threshold_in_millisecond, 'driftBehindThresholdMs': behind_threshold_in_millisecond} params = urllib.parse.urlencode(params_dict) log.info("%s with param: %s" % (api, params)) status, content, header = self._http_request(api, 'POST', params) return status def stop_rebalance(self, wait_timeout=10): api = self.baseUrl + '/controller/stopRebalance' status, content, header = self._http_request(api, 'POST') if status: for i in range(int(wait_timeout)): if self._rebalance_progress_status() == 'running': log.warning("rebalance is not stopped yet after {0} sec".format(i + 1)) time.sleep(1) status = False else: log.info("rebalance was stopped") status = True break else: log.error("Rebalance is not stopped due to {0}".format(content)) return status def set_data_path(self, data_path=None, index_path=None, cbas_path=None): end_point = '/nodes/self/controller/settings' api = self.baseUrl + end_point paths = HTTPHeaderDict() set_path = False if data_path: set_path = True paths.add('path', data_path) if index_path: set_path = True paths.add('index_path', index_path) if cbas_path: set_path = True import ast for cbas in ast.literal_eval(cbas_path): paths.add('cbas_path', cbas) if set_path: params = urllib.parse.urlencode(paths) log.info('%s : %s' % (end_point, params)) status, content, header = self._http_request(api, 'POST', params) if status: log.info("Setting data_path: {0}: status {1}".format(data_path, status)) else: log.error("Unable to set data_path {0} : {1}".format(data_path, content)) return status def get_database_disk_size(self, bucket='default'): api = self.baseUrl + "pools/{0}/buckets".format(bucket) status, content, header = self._http_request(api) json_parsed = json.loads(content) # disk_size in MB disk_size = (json_parsed[0]["basicStats"]["diskUsed"]) // (1024 * 1024) return status, disk_size def ddoc_compaction(self, design_doc_id, bucket="default"): api = self.baseUrl + "pools/default/buckets/%s/ddocs/%s/controller/compactView" % \ (bucket, design_doc_id) status, content, header = self._http_request(api, 'POST') if not status: raise CompactViewFailed(design_doc_id, content) log.info("compaction for ddoc '%s' was triggered" % design_doc_id) def check_compaction_status(self, bucket_name): tasks = self.active_tasks() if "error" in tasks: raise Exception(tasks) for task in tasks: log.info("Task is {0}".format(task)) if task["type"] == "bucket_compaction": if task["bucket"] == bucket_name: return True, task["progress"] return False, None def change_memcached_t_option(self, value): cmd = '[ns_config:update_key({node, N, memcached}, fun (PList)' + \ ' -> lists:keystore(verbosity, 1, PList, {verbosity, \'-t ' + str(value) + '\'}) end)' + \ ' || N <- ns_node_disco:nodes_wanted()].' return self.diag_eval(cmd) def set_ensure_full_commit(self, value): """Dynamic settings changes""" # the boolean paramter is used to turn on/off ensure_full_commit(). In XDCR, # issuing checkpoint in this function is expensive and not necessary in some # test, turning off this function would speed up some test. The default value # is ON. cmd = 'ns_config:set(ensure_full_commit_enabled, {0}).'.format(value) return self.diag_eval(cmd) def get_internalSettings(self, param): """allows to get internalSettings values for: indexAwareRebalanceDisabled, rebalanceIndexWaitingDisabled, rebalanceIndexPausingDisabled, maxParallelIndexers, maxParallelReplicaIndexers, maxBucketCount""" api = self.baseUrl + "internalSettings" status, content, header = self._http_request(api) json_parsed = json.loads(content) param = json_parsed[param] return param def set_internalSetting(self, param, value): "Set any internal setting" api = self.baseUrl + "internalSettings" if isinstance(value, bool): value = str(value).lower() params = urllib.parse.urlencode({param : value}) status, content, header = self._http_request(api, "POST", params) log.info('Update internal setting {0}={1}'.format(param, value)) return status def get_replication_for_buckets(self, src_bucket_name, dest_bucket_name): replications = self.get_replications() for replication in replications: if src_bucket_name in replication['source'] and \ replication['target'].endswith(dest_bucket_name): return replication raise XDCRException("Replication with Src bucket: {0} and Target bucket: {1} not found". format(src_bucket_name, dest_bucket_name)) """ By default, these are the global replication settings - { optimisticReplicationThreshold:256, workerBatchSize:500, failureRestartInterval:1, docBatchSizeKb":2048, checkpointInterval":1800, maxConcurrentReps":32} You can override these using set_xdcr_param() """ def set_xdcr_param(self, src_bucket_name, dest_bucket_name, param, value): replication = self.get_replication_for_buckets(src_bucket_name, dest_bucket_name) api = self.baseUrl[:-1] + replication['settingsURI'] value = str(value).lower() params = urllib.parse.urlencode({param: value}) status, content, header = self._http_request(api, "POST", params) if not status: raise XDCRException("Unable to set replication setting {0}={1} on bucket {2} on node {3}". format(param, value, src_bucket_name, self.ip)) else: log.info("Updated {0}={1} on bucket '{2}' on {3}".format(param, value, src_bucket_name, self.ip)) def set_xdcr_params(self, src_bucket_name, dest_bucket_name, param_value_map): replication = self.get_replication_for_buckets(src_bucket_name, dest_bucket_name) api = self.baseUrl[:-1] + replication['settingsURI'] params = urllib.parse.urlencode(param_value_map) status, content, header = self._http_request(api, "POST", params) if not status: raise XDCRException("{0} \n Unable to set replication settings {1} on bucket {2} on node {3}". format(content, param_value_map, src_bucket_name, self.ip)) else: log.info("Updated {0} on bucket '{1}' on {2}".format(param_value_map, src_bucket_name, self.ip)) def set_global_xdcr_param(self, param, value): api = self.baseUrl[:-1] + "/settings/replications" value = str(value).lower() params = urllib.parse.urlencode({param: value}) status, _, _ = self._http_request(api, "POST", params) if not status: raise XDCRException("Unable to set replication setting {0}={1} on node {2}". format(param, value, self.ip)) log.info("Updated {0}={1} on {2}".format(param, value, self.ip)) # Gets per-replication setting value def get_xdcr_param(self, src_bucket_name, dest_bucket_name, param): replication = self.get_replication_for_buckets(src_bucket_name, dest_bucket_name) api = self.baseUrl[:-1] + replication['settingsURI'] status, content, _ = self._http_request(api) if not status: raise XDCRException("Unable to get replication setting {0} on bucket {1} on node {2}". format(param, src_bucket_name, self.ip)) json_parsed = json.loads(content) # when per-replication settings match global(internal) settings, # the param is not returned by rest API # in such cases, return internalSetting value for the param try: return json_parsed[param] except KeyError: if param == 'pauseRequested': return False else: param = 'xdcr' + param[0].upper() + param[1:] log.info("Trying to fetch xdcr param:{0} from global settings". format(param)) return self.get_internalSettings(param) # Returns a boolean value on whether replication def is_replication_paused(self, src_bucket_name, dest_bucket_name): return self.get_xdcr_param(src_bucket_name, dest_bucket_name, 'pauseRequested') def is_replication_paused_by_id(self, repl_id): repl_id = repl_id.replace('/', '%2F') api = self.baseUrl + 'settings/replications/' + repl_id status, content, header = self._http_request(api) if not status: raise XDCRException("Unable to retrieve pause resume status for replication {0}". format(repl_id)) repl_stats = json.loads(content) return repl_stats['pauseRequested'] def pause_resume_repl_by_id(self, repl_id, param, value): repl_id = repl_id.replace('/', '%2F') api = self.baseUrl + 'settings/replications/' + repl_id params = urllib.parse.urlencode({param: value}) status, _, _ = self._http_request(api, "POST", params) if not status: raise XDCRException("Unable to update {0}={1} setting for replication {2}". format(param, value, repl_id)) log.info("Updated {0}={1} on {2}".format(param, value, repl_id)) def get_recent_xdcr_vb_ckpt(self, repl_id): command = 'ns_server_testrunner_api:grab_all_goxdcr_checkpoints().' status, content = self.diag_eval(command, print_log=False) if not status: raise Exception("Unable to get recent XDCR checkpoint information") repl_ckpt_list = json.loads(content) # a single decoding will only return checkpoint record as string # convert string to dict using json chkpt_doc_string = repl_ckpt_list['/ckpt/%s/0' % repl_id].replace('"', '\"') chkpt_dict = json.loads(chkpt_doc_string) return chkpt_dict['checkpoints'][0] def get_repl_stat(self, repl_id, src_bkt="default", stat="data_replicated", timestamp=None): repl_id = repl_id.replace('/', '%2F') api = self.baseUrl + "pools/default/buckets/" + src_bkt + "/stats/replications%2F" \ + repl_id + "%2F" + stat if timestamp: api += "?haveTStamp=" + timestamp status, content, header = self._http_request(api) if not status: raise XDCRException("Unable to retrieve {0} stat for replication {1}". format(stat, repl_id)) repl_stat = json.loads(content) samples = [] for node in self.get_nodes(): items = repl_stat["nodeStats"]["{0}:8091".format(node.ip)] samples.append(items) return samples """ Start of FTS rest apis""" def set_fts_ram_quota(self, value): """set fts ram quota""" api = self.baseUrl + "pools/default" params = urllib.parse.urlencode({"ftsMemoryQuota": value}) status, content, _ = self._http_request(api, "POST", params) if status: log.info("SUCCESS: FTS RAM quota set to {0}mb".format(value)) else: raise Exception("Error setting fts ram quota: {0}".format(content)) return status def set_maxConcurrentPartitionMovesPerNode(self, value): api = self.fts_baseUrl + "api/managerOptions" params = {"maxConcurrentPartitionMovesPerNode": str(value)} status, content, _ = self._http_request(api, "PUT", params=json.dumps(params, ensure_ascii=False), headers=self._create_capi_headers()) if status: log.info("SUCCESS: FTS maxConcurrentPartitionMovesPerNode set to {0}".format(value)) return status def set_disableFileTransferRebalance(self, value): api = self.fts_baseUrl + "api/managerOptions" params = {"disableFileTransferRebalance": str(value)} status, content, _ = self._http_request(api, "PUT", params=json.dumps(params, ensure_ascii=False), headers=self._create_capi_headers()) if status: log.info("SUCCESS: FTS disableFileTransferRebalance set to {0}".format(value)) return status def set_maxFeedsPerDCPAgent(self, value): api = self.fts_baseUrl + "api/managerOptions" params = {"maxFeedsPerDCPAgent": str(value)} status, content, _ = self._http_request(api, "PUT", params=json.dumps(params, ensure_ascii=False), headers=self._create_capi_headers()) if status: log.info("SUCCESS: FTS maxFeedsPerDCPAgent set to {0}".format(value)) return status def set_maxDCPAgents(self, value): api = self.fts_baseUrl + "api/managerOptions" params = {"maxDCPAgents": str(value)} status, content, _ = self._http_request(api, "PUT", params=json.dumps(params, ensure_ascii=False), headers=self._create_capi_headers()) if status: log.info("SUCCESS: FTS maxDCPAgents set to {0}".format(value)) return status def create_fts_index(self, index_name, params): """create or edit fts index , returns {"status":"ok"} on success""" api = self.fts_baseUrl + "api/index/{0}".format(index_name) log.info(json.dumps(params)) status, content, header = self._http_request(api, 'PUT', json.dumps(params, ensure_ascii=False), headers=self._create_capi_headers(), timeout=30) if status: log.info("Index {0} created".format(index_name)) else: raise Exception("Error creating index: {0}".format(content)) return status def update_fts_index(self, index_name, index_def): api = self.fts_baseUrl + "api/index/{0}".format(index_name) log.info(json.dumps(index_def, indent=3)) status, content, header = self._http_request(api, 'PUT', json.dumps(index_def, ensure_ascii=False), headers=self._create_capi_headers(), timeout=30) if status: log.info("Index/alias {0} updated".format(index_name)) else: raise Exception("Error updating index: {0}".format(content)) return status def get_fts_index_definition(self, name, timeout=30): """ get fts index/alias definition """ json_parsed = {} api = self.fts_baseUrl + "api/index/{0}".format(name) status, content, header = self._http_request( api, headers=self._create_capi_headers(), timeout=timeout) if status: json_parsed = json.loads(content) return status, json_parsed def get_fts_index_doc_count(self, name, timeout=30): """ get number of docs indexed""" json_parsed = {} api = self.fts_baseUrl + "api/index/{0}/count".format(name) status, content, header = self._http_request( api, headers=self._create_capi_headers(), timeout=timeout) if status: json_parsed = json.loads(content) return json_parsed['count'] def get_fts_index_uuid(self, name, timeout=30): """ Returns uuid of index/alias """ json_parsed = {} api = self.fts_baseUrl + "api/index/{0}".format(name) status, content, header = self._http_request( api, headers=self._create_capi_headers(), timeout=timeout) if status: json_parsed = json.loads(content) return json_parsed['indexDef']['uuid'] def get_fts_pindex_stats(self, timeout=30): """ Returns uuid of index/alias """ json_parsed = {} api = self.fts_baseUrl + "api/stats" status, content, header = self._http_request( api, headers=self._create_capi_headers(), timeout=timeout) if status: json_parsed = json.loads(content) return json_parsed['pindexes'] def delete_fts_index(self, name): """ delete fts index/alias """ api = self.fts_baseUrl + "api/index/{0}".format(name) status, content, header = self._http_request( api, 'DELETE', headers=self._create_capi_headers()) return status def delete_fts_index_extended_output(self, name): """ delete fts index/alias """ api = self.fts_baseUrl + "api/index/{0}".format(name) status, content, header = self._http_request( api, 'DELETE', headers=self._create_capi_headers()) return status, content, header def stop_fts_index_update(self, name): """ method to stop fts index from updating""" api = self.fts_baseUrl + "api/index/{0}/ingestControl/pause".format(name) log.info('calling api : {0}'.format(api)) status, content, header = self._http_request( api, 'POST', '', headers=self._create_capi_headers()) return status def resume_fts_index_update(self, name): """ method to stop fts index from updating""" api = self.fts_baseUrl + "api/index/{0}/ingestControl/resume".format(name) log.info('calling api : {0}'.format(api)) status, content, header = self._http_request( api, 'POST', '', headers=self._create_capi_headers()) return status def freeze_fts_index_partitions(self, name): """ method to freeze index partitions asignment""" api = self.fts_baseUrl+ "api/index/{0}/planFreezeControl/freeze".format(name) log.info('calling api : {0}'.format(api)) status, content, header = self._http_request( api, 'POST', '', headers=self._create_capi_headers()) return status def set_bleve_max_result_window(self, bmrw_value): """create or edit fts index , returns {"status":"ok"} on success""" api = self.fts_baseUrl + "api/managerOptions" params = {"bleveMaxResultWindow": str(bmrw_value)} log.info(json.dumps(params)) status, content, header = self._http_request(api, 'PUT', json.dumps(params, ensure_ascii=False), headers=self._create_capi_headers(), timeout=30) if status: log.info("Updated bleveMaxResultWindow") else: raise Exception("Error Updating bleveMaxResultWindow: {0}".format(content)) return status def set_node_setting(self, setting_name, value): """create or edit fts index , returns {"status":"ok"} on success""" api = self.fts_baseUrl + "api/managerOptions" params = {str(setting_name): str(value)} log.info(json.dumps(params)) status, content, header = self._http_request(api, 'PUT', json.dumps(params, ensure_ascii=False), headers=self._create_capi_headers(), timeout=30) if status: log.info("Updated {0}".format(setting_name)) else: raise Exception("Error Updating {0}: {1}".format(setting_name, content)) return status def unfreeze_fts_index_partitions(self, name): """ method to freeze index partitions asignment""" api = self.fts_baseUrl+ "api/index/{0}/planFreezeControl/unfreeze".format(name) log.info('calling api : {0}'.format(api)) status, content, header = self._http_request( api, 'POST', '', headers=self._create_capi_headers()) return status def disable_querying_on_fts_index(self, name): """ method to disable querying on index""" api = self.fts_baseUrl + "api/index/{0}/queryControl/disallow".format(name) log.info('calling api : {0}'.format(api)) status, content, header = self._http_request( api, 'POST', '', headers=self._create_capi_headers()) return status def enable_querying_on_fts_index(self, name): """ method to enable querying on index""" api = self.fts_baseUrl + "api/index/{0}/queryControl/allow".format(name) log.info('calling api : {0}'.format(api)) status, content, header = self._http_request( api, 'POST', '', headers=self._create_capi_headers()) return status def run_fts_query(self, index_name, query_json, timeout=70): """Method run an FTS query through rest api""" api = self.fts_baseUrl + "api/index/{0}/query".format(index_name) headers = self._create_capi_headers() status, content, header = self._http_request( api, "POST", json.dumps(query_json, ensure_ascii=False).encode('utf8'), headers, timeout=timeout) content = json.loads(content) if status: return content['total_hits'], content['hits'], content['took'], \ content['status'] else: return -1, content['error'], -1, content['status'] def run_fts_query_generalized(self, index_name, query_json, timeout=70): """Method run an FTS query through rest api""" api = self.fts_baseUrl + "api/index/{0}/query".format(index_name) headers = self._create_capi_headers() status, content, header = self._http_request( api, "POST", json.dumps(query_json, ensure_ascii=False).encode('utf8'), headers, timeout=timeout) content = json.loads(content) return content def run_fts_query_with_facets(self, index_name, query_json): """Method run an FTS query through rest api""" api = self.fts_baseUrl + "api/index/{0}/query".format(index_name) headers = self._create_capi_headers() status, content, header = self._http_request( api, "POST", json.dumps(query_json, ensure_ascii=False).encode('utf8'), headers, timeout=70) if status: content = json.loads(content) return content['total_hits'], content['hits'], content['took'], \ content['status'], content['facets'] """ End of FTS rest APIs """ def set_reb_cons_view(self, disable): """Enable/disable consistent view for rebalance tasks""" api = self.baseUrl + "internalSettings" params = {"indexAwareRebalanceDisabled": str(disable).lower()} params = urllib.parse.urlencode(params) status, content, header = self._http_request(api, "POST", params) log.info('Consistent-views during rebalance was set as indexAwareRebalanceDisabled={0}'\ .format(str(disable).lower())) return status def set_reb_index_waiting(self, disable): """Enable/disable rebalance index waiting""" api = self.baseUrl + "internalSettings" params = {"rebalanceIndexWaitingDisabled": str(disable).lower()} params = urllib.parse.urlencode(params) status, content, header = self._http_request(api, "POST", params) log.info('rebalance index waiting was set as rebalanceIndexWaitingDisabled={0}'\ .format(str(disable).lower())) return status def set_rebalance_index_pausing(self, disable): """Enable/disable index pausing during rebalance""" api = self.baseUrl + "internalSettings" params = {"rebalanceIndexPausingDisabled": str(disable).lower()} params = urllib.parse.urlencode(params) status, content, header = self._http_request(api, "POST", params) log.info('index pausing during rebalance was set as rebalanceIndexPausingDisabled={0}'\ .format(str(disable).lower())) return status def set_max_parallel_indexers(self, count): """set max parallel indexer threads""" api = self.baseUrl + "internalSettings" params = {"maxParallelIndexers": count} params = urllib.parse.urlencode(params) status, content, header = self._http_request(api, "POST", params) log.info('max parallel indexer threads was set as maxParallelIndexers={0}'.\ format(count)) return status def set_max_parallel_replica_indexers(self, count): """set max parallel replica indexers threads""" api = self.baseUrl + "internalSettings" params = {"maxParallelReplicaIndexers": count} params = urllib.parse.urlencode(params) status, content, header = self._http_request(api, "POST", params) log.info('max parallel replica indexers threads was set as maxParallelReplicaIndexers={0}'.\ format(count)) return status def get_internal_replication_type(self): buckets = self.get_buckets() cmd = "\'{ok, BC} = ns_bucket:get_bucket(%s), ns_bucket:replication_type(BC).\'" % buckets[0].name return self.diag_eval(cmd) def set_mc_threads(self, mc_threads=4): """ Change number of memcached threads and restart the cluster """ cmd = "[ns_config:update_key({node, N, memcached}, " \ "fun (PList) -> lists:keystore(verbosity, 1, PList," \ " {verbosity, \"-t %s\"}) end) " \ "|| N <- ns_node_disco:nodes_wanted()]." % mc_threads return self.diag_eval(cmd) def get_auto_compaction_settings(self): api = self.baseUrl + "settings/autoCompaction" status, content, header = self._http_request(api) return json.loads(content) def set_auto_compaction(self, parallelDBAndVC="false", dbFragmentThreshold=None, viewFragmntThreshold=None, dbFragmentThresholdPercentage=None, viewFragmntThresholdPercentage=None, allowedTimePeriodFromHour=None, allowedTimePeriodFromMin=None, allowedTimePeriodToHour=None, allowedTimePeriodToMin=None, allowedTimePeriodAbort=None, bucket=None): """Reset compaction values to default, try with old fields (dp4 build) and then try with newer fields""" params = {} api = self.baseUrl if bucket is None: # setting is cluster wide api = api + "controller/setAutoCompaction" else: # overriding per/bucket compaction setting api = api + "pools/default/buckets/" + bucket params["autoCompactionDefined"] = "true" # reuse current ram quota in mb per node num_nodes = len(self.node_statuses()) bucket_info = self.get_bucket_json(bucket) quota = self.get_bucket_json(bucket)["quota"]["ram"] // (1048576 * num_nodes) params["ramQuotaMB"] = quota params["parallelDBAndViewCompaction"] = parallelDBAndVC # Need to verify None because the value could be = 0 if dbFragmentThreshold is not None: params["databaseFragmentationThreshold[size]"] = dbFragmentThreshold if viewFragmntThreshold is not None: params["viewFragmentationThreshold[size]"] = viewFragmntThreshold if dbFragmentThresholdPercentage is not None: params["databaseFragmentationThreshold[percentage]"] = dbFragmentThresholdPercentage if viewFragmntThresholdPercentage is not None: params["viewFragmentationThreshold[percentage]"] = viewFragmntThresholdPercentage if allowedTimePeriodFromHour is not None: params["allowedTimePeriod[fromHour]"] = allowedTimePeriodFromHour if allowedTimePeriodFromMin is not None: params["allowedTimePeriod[fromMinute]"] = allowedTimePeriodFromMin if allowedTimePeriodToHour is not None: params["allowedTimePeriod[toHour]"] = allowedTimePeriodToHour if allowedTimePeriodToMin is not None: params["allowedTimePeriod[toMinute]"] = allowedTimePeriodToMin if allowedTimePeriodAbort is not None: params["allowedTimePeriod[abortOutside]"] = allowedTimePeriodAbort params = urllib.parse.urlencode(params) log.info("'%s' bucket's settings will be changed with parameters: %s" % (bucket, params)) return self._http_request(api, "POST", params) def disable_auto_compaction(self): """ Cluster-wide Setting Disable autocompaction on doc and view """ api = self.baseUrl + "controller/setAutoCompaction" log.info("Disable autocompaction in cluster-wide setting") status, content, header = self._http_request(api, "POST", "parallelDBAndViewCompaction=false") return status def set_purge_interval_and_parallel_compaction(self, interval=3, parallel="false"): """ Cluster-wide setting. Set purge interval Set parallel db and view compaction Return: status """ api = self.baseUrl + "controller/setAutoCompaction" log.info("Set purgeInterval to %s and parallel DB and view compaction to %s"\ % (interval, parallel)) params = {} params["purgeInterval"] = interval params["parallelDBAndViewCompaction"] = parallel params = urllib.parse.urlencode(params) status, content, header = self._http_request(api, "POST", params) return status, content def set_indexer_compaction(self, mode="circular", indexDayOfWeek=None, indexFromHour=0, indexFromMinute=0, abortOutside=False, indexToHour=0, indexToMinute=0, fragmentation=30): """Reset compaction values to default, try with old fields (dp4 build) and then try with newer fields""" params = {} api = self.baseUrl + "controller/setAutoCompaction" params["indexCompactionMode"] = mode params["indexCircularCompaction[interval][fromHour]"] = indexFromHour params["indexCircularCompaction[interval][fromMinute]"] = indexFromMinute params["indexCircularCompaction[interval][toHour]"] = indexToHour params["indexCircularCompaction[interval][toMinute]"] = indexToMinute if indexDayOfWeek: params["indexCircularCompaction[daysOfWeek]"] = indexDayOfWeek params["indexCircularCompaction[interval][abortOutside]"] = str(abortOutside).lower() params["parallelDBAndViewCompaction"] = "false" if mode == "full": params["indexFragmentationThreshold[percentage]"] = fragmentation log.info("Indexer Compaction Settings: %s" % (params)) params = urllib.parse.urlencode(params) return self._http_request(api, "POST", params) def set_global_loglevel(self, loglevel='error'): """Set cluster-wide logging level for core components Possible loglevel: -- debug -- info -- warn -- error """ api = self.baseUrl + 'diag/eval' request_body = 'rpc:eval_everywhere(erlang, apply, [fun () -> \ [ale:set_loglevel(L, {0}) || L <- \ [ns_server, couchdb, user, menelaus, ns_doctor, stats, \ rebalance, cluster, views, stderr]] end, []]).'.format(loglevel) return self._http_request(api=api, method='POST', params=request_body, headers=self._create_headers()) def set_indexer_params(self, parameter, val): """ :Possible parameters: -- indexerThreads -- memorySnapshotInterval -- stableSnapshotInterval -- maxRollbackPoints -- logLevel """ params = {} api = self.baseUrl + 'settings/indexes' params[parameter] = val params = urllib.parse.urlencode(params) status, content, header = self._http_request(api, "POST", params) log.info('Indexer {0} set to {1}'.format(parameter, val)) return status def get_global_index_settings(self): api = self.baseUrl + "settings/indexes" status, content, header = self._http_request(api) if status: return json.loads(content) return None def set_couchdb_option(self, section, option, value): """Dynamic settings changes""" cmd = 'ns_config:set({{couchdb, {{{0}, {1}}}}}, {2}).'.format(section, option, value) return self.diag_eval(cmd) def get_alerts(self): api = self.baseUrl + "pools/default/" status, content, header = self._http_request(api) json_parsed = json.loads(content) if status: if "alerts" in json_parsed: return json_parsed['alerts'] else: return None def get_nodes_data_from_cluster(self, param="nodes"): api = self.baseUrl + "pools/default/" status, content, header = self._http_request(api) json_parsed = json.loads(content) if status: if param in json_parsed: return json_parsed[param] else: return None def flush_bucket(self, bucket="default"): if isinstance(bucket, Bucket): bucket_name = bucket.name else: bucket_name = bucket api = self.baseUrl + "pools/default/buckets/%s/controller/doFlush" % (bucket_name) status, content, header = self._http_request(api, 'POST') if not status: raise BucketFlushFailed(self.ip, bucket_name) log.info("Flush for bucket '%s' was triggered" % bucket_name) return True def update_notifications(self, enable): api = self.baseUrl + 'settings/stats' params = urllib.parse.urlencode({'sendStats' : enable}) log.info('settings/stats params : {0}'.format(params)) status, content, header = self._http_request(api, 'POST', params) return status def get_notifications(self): api = self.baseUrl + 'settings/stats' status, content, header = self._http_request(api) json_parsed = json.loads(content) if status: return json_parsed["sendStats"] return None def get_num_rollback_stat(self, bucket): api = self.index_baseUrl + 'stats' status, content, header = self._http_request(api) json_parsed = json.loads(content) num_rollback = json_parsed["MAINT_STREAM:{}:num_rollbacks".format(bucket)] return num_rollback def get_num_rollback_to_zero_stat(self, bucket): api = self.index_baseUrl + 'stats' status, content, header = self._http_request(api) json_parsed = json.loads(content) num_rollback = json_parsed["MAINT_STREAM:{}:num_rollbacks_to_zero".format(bucket)] return num_rollback def get_logs(self, last_n=10, contains_text=None): api = self.baseUrl + 'logs' status, content, header = self._http_request(api) json_parsed = json.loads(content.decode("utf-8","ignore")) logs = json_parsed['list'] logs.reverse() result = [] for i in range(min(last_n, len(logs))): result.append(logs[i]) if contains_text is not None and contains_text in logs[i]["text"]: break return result def print_UI_logs(self, last_n=10, contains_text=None): logs = self.get_logs(last_n, contains_text) log.info("Latest logs from UI on {0}:".format(self.ip)) for lg in logs: log.error(lg) def get_ro_user(self): api = self.baseUrl + 'settings/readOnlyAdminName' status, content, header = self._http_request(api, 'GET', '') return content, status def delete_ro_user(self): api = self.baseUrl + 'settings/readOnlyUser' status, content, header = self._http_request(api, 'DELETE', '') return status def create_ro_user(self, username, password): api = self.baseUrl + 'settings/readOnlyUser' params = urllib.parse.urlencode({'username' : username, 'password' : password}) log.info('settings/readOnlyUser params : {0}'.format(params)) status, content, header = self._http_request(api, 'POST', params) return status # Change password for readonly user def changePass_ro_user(self, username, password): api = self.baseUrl + 'settings/readOnlyUser' params = urllib.parse.urlencode({'username' : username, 'password' : password}) log.info('settings/readOnlyUser params : {0}'.format(params)) status, content, header = self._http_request(api, 'PUT', params) return status '''Start Monitoring/Profiling Rest Calls''' def set_completed_requests_collection_duration(self, server, min_time): http = httplib2.Http(disable_ssl_certificate_validation=True) n1ql_port = CbServer.n1ql_port protocol = "http" if CbServer.use_https: n1ql_port = str(CbServer.ssl_port_map.get(str(n1ql_port), str(n1ql_port))) protocol = "https" api = "%s://%s:%s/" % (protocol,server.ip, n1ql_port) + "admin/settings" body = {"completed-threshold": min_time} headers = self._create_headers_with_auth('Administrator', 'password') response, content = http.request(api, "POST", headers=headers, body=json.dumps(body)) return response, content def set_completed_requests_max_entries(self, server, no_entries): http = httplib2.Http(disable_ssl_certificate_validation=True) n1ql_port = CbServer.n1ql_port protocol = "http" if CbServer.use_https: n1ql_port = str(CbServer.ssl_port_map.get(str(n1ql_port), str(n1ql_port))) protocol = "https" api = "%s://%s:%s/" % (protocol, server.ip, n1ql_port) + "admin/settings" body = {"completed-limit": no_entries} headers = self._create_headers_with_auth('Administrator', 'password') response, content = http.request(api, "POST", headers=headers, body=json.dumps(body)) return response, content def set_profiling(self, server, setting): http = httplib2.Http(disable_ssl_certificate_validation=True) n1ql_port = CbServer.n1ql_port protocol = "http" if CbServer.use_https: n1ql_port = str(CbServer.ssl_port_map.get(str(n1ql_port), str(n1ql_port))) protocol = "https" api = "%s://%s:%s/" % (protocol, server.ip, n1ql_port) + "admin/settings" body = {"profile": setting} headers = self._create_headers_with_auth('Administrator', 'password') response, content = http.request(api, "POST", headers=headers, body=json.dumps(body)) return response, content def set_profiling_controls(self, server, setting): http = httplib2.Http(disable_ssl_certificate_validation=True) n1ql_port = CbServer.n1ql_port protocol = "http" if CbServer.use_https: n1ql_port = str(CbServer.ssl_port_map.get(str(n1ql_port), str(n1ql_port))) protocol = "https" api = "%s://%s:%s/" % (protocol, server.ip, n1ql_port) + "admin/settings" body = {"controls": setting} headers = self._create_headers_with_auth('Administrator', 'password') response, content = http.request(api, "POST", headers=headers, body=json.dumps(body)) return response, content def get_query_admin_settings(self, server): http = httplib2.Http(disable_ssl_certificate_validation=True) n1ql_port = CbServer.n1ql_port protocol = "http" if CbServer.use_https: n1ql_port = str(CbServer.ssl_port_map.get(str(n1ql_port), str(n1ql_port))) protocol = "https" api = "%s://%s:%s/" % (protocol, server.ip, n1ql_port) + "admin/settings" headers = self._create_headers_with_auth('Administrator', 'password') response, content = http.request(api, "GET", headers=headers) result = json.loads(content) return result def get_query_vitals(self, server): http = httplib2.Http(disable_ssl_certificate_validation=True) n1ql_port = CbServer.n1ql_port protocol = "http" if CbServer.use_https: n1ql_port = str(CbServer.ssl_port_map.get(str(n1ql_port), str(n1ql_port))) protocol = "https" api = "%s://%s:%s/" % (protocol,server.ip, n1ql_port) + "admin/vitals" headers = self._create_headers_with_auth('Administrator', 'password') response, content = http.request(api, "GET", headers=headers) return response, content '''End Monitoring/Profiling Rest Calls''' def create_whitelist(self, server, whitelist): http = httplib2.Http(disable_ssl_certificate_validation=True) protocol = "http" if CbServer.use_https: protocol = "https" api = "%s://%s:%s/" % (protocol, server.ip, server.port) + "settings/querySettings/curlWhitelist" headers = self._create_headers_with_auth('Administrator', 'password') response, content = http.request(api, "POST", headers=headers, body=json.dumps(whitelist)) return response, content def query_tool(self, query, port=8093, timeout=1300, query_params={}, is_prepared=False, named_prepare=None, verbose = True, encoded_plan=None, servers=None): if timeout is None: timeout = 1300 protocol = "http" if CbServer.use_https: port = str(CbServer.ssl_port_map.get(str(port), str(port))) protocol = "https" key = 'prepared' if is_prepared else 'statement' headers = None prepared = json.dumps(query) if is_prepared: if named_prepare and encoded_plan: http = httplib2.Http(disable_ssl_certificate_validation=True) if len(servers)>1: url = "%s://%s:%s/query/service" % (protocol, servers[1].ip, port) else: url = "%s://%s:%s/query/service" % (protocol, self.ip, port) headers = self._create_headers_encoded_prepared() body = {'prepared': named_prepare, 'encoded_plan':encoded_plan} response, content = http.request(url, 'POST', headers=headers, body=json.dumps(body)) return eval(content) elif named_prepare and not encoded_plan: params = 'prepared=' + urllib.parse.quote(prepared, '~()') params = 'prepared="%s"'% named_prepare else: if isinstance(query, dict): prepared = json.dumps(query['name']) else: prepared = json.dumps(query) prepared = str(prepared) params = 'prepared=' + urllib.parse.quote(prepared, '~()') if 'creds' in query_params and query_params['creds']: headers = self._create_headers_with_auth(query_params['creds'][0]['user'], query_params['creds'][0]['pass']) api = "%s://%s:%s/query/service?%s" % (protocol, self.ip, port, params) log.info("%s"%api) else: params = {key : query} try: if 'creds' in query_params and query_params['creds']: headers = self._create_headers_with_auth(query_params['creds'][0]['user'], query_params['creds'][0]['pass']) del query_params['creds'] except Exception: traceback.print_exc() params.update(query_params) params = urllib.parse.urlencode(params) if verbose: log.info('query params : {0}'.format(params)) api = "%s://%s:%s/query?%s" % (protocol, self.ip, port, params) if 'query_context' in query_params and query_params['query_context']: log.info(f"Running Query with query_context: {query_params['query_context']}") try: status, content, header = self._http_request(api, 'POST', timeout=timeout, headers=headers) except Exception as ex: print("\nException error: ", str(ex)) print("\napi: ", api) print("\nheaders: ", headers) try: return json.loads(content) except ValueError: return content def analytics_tool(self, query, port=8095, timeout=650, query_params={}, is_prepared=False, named_prepare=None, verbose = True, encoded_plan=None, servers=None): protocol = "http" if CbServer.use_https: port = str(CbServer.ssl_port_map.get(str(port), str(port))) protocol = "https" key = 'prepared' if is_prepared else 'statement' headers = None content="" prepared = json.dumps(query) if is_prepared: if named_prepare and encoded_plan: http = httplib2.Http(disable_ssl_certificate_validation=True) if len(servers)>1: url = "%s://%s:%s/query/service" % (protocol, servers[1].ip, port) else: url = "%s://%s:%s/query/service" % (protocol, self.ip, port) headers = {'Content-type': 'application/json'} body = {'prepared': named_prepare, 'encoded_plan':encoded_plan} response, content = http.request(url, 'POST', headers=headers, body=json.dumps(body)) return eval(content) elif named_prepare and not encoded_plan: params = 'prepared=' + urllib.parse.quote(prepared, '~()') params = 'prepared="%s"'% named_prepare else: prepared = json.dumps(query) prepared = str(prepared.encode('utf-8')) params = 'prepared=' + urllib.parse.quote(prepared, '~()') if 'creds' in query_params and query_params['creds']: headers = self._create_headers_with_auth(query_params['creds'][0]['user'], query_params['creds'][0]['pass']) api = "%s/analytics/service?%s" % (self.cbas_base_url, params) log.info("%s"%api) else: params = {key : query} if 'creds' in query_params and query_params['creds']: headers = self._create_headers_with_auth(query_params['creds'][0]['user'], query_params['creds'][0]['pass']) del query_params['creds'] params.update(query_params) params = urllib.parse.urlencode(params) if verbose: log.info('query params : {0}'.format(params)) api = "%s/analytics/service?%s" % (self.cbas_base_url, params) status, content, header = self._http_request(api, 'POST', timeout=timeout, headers=headers) try: return json.loads(content) except ValueError: return content def query_tool_stats(self): n1ql_port = CbServer.n1ql_port protocol = "http" if CbServer.use_https: n1ql_port = CbServer.ssl_n1ql_port protocol = "https" log.info('query n1ql stats') api = "%s://%s:%s/admin/stats" % (protocol, str(n1ql_port), self.ip) status, content, header = self._http_request(api, 'GET') log.info(content) try: return json.loads(content) except ValueError: return content def index_tool_stats(self, show_index_stats=True): log.info('index n1ql stats') port = CbServer.port protocol = "http" if CbServer.use_https: port = CbServer.ssl_port protocol = "https" api = "%s://%s:%s/indexStatus" % (protocol, self.ip, port) params = "" status, content, header = self._http_request(api, 'GET', params) if show_index_stats: log.info(content) try: return json.loads(content) except ValueError: return content # return all rack/zone info def get_all_zones_info(self, timeout=120): zones = {} api = self.baseUrl + 'pools/default/serverGroups' status, content, header = self._http_request(api, timeout=timeout) if status: zones = json.loads(content) else: raise Exception("Failed to get all zones info.\n \ Zone only supports from couchbase server version 2.5 and up.") return zones # return group name and unique uuid def get_zone_names(self): zone_names = {} zone_info = self.get_all_zones_info() if zone_info and len(zone_info["groups"]) >= 1: for i in range(0, len(zone_info["groups"])): # pools/default/serverGroups/ = 27 chars zone_names[zone_info["groups"][i]["name"]] = zone_info["groups"][i]["uri"][28:] return zone_names def add_zone(self, zone_name): api = self.baseUrl + 'pools/default/serverGroups' request_name = "name={0}".format(zone_name) status, content, header = self._http_request(api, "POST", \ params=request_name) if status: log.info("zone {0} is added".format(zone_name)) return True else: raise Exception("Failed to add zone with name: %s " % zone_name) def delete_zone(self, zone_name): api = self.baseUrl + 'pools/default/serverGroups/' # check if zone exist found = False zones = self.get_zone_names() for zone in zones: if zone_name == zone: api += zones[zone_name] found = True break if not found: raise Exception("There is not zone with name: %s in cluster" % zone_name) status, content, header = self._http_request(api, "DELETE") if status: log.info("zone {0} is deleted".format(zone_name)) else: raise Exception("Failed to delete zone with name: %s " % zone_name) def rename_zone(self, old_name, new_name): api = self.baseUrl + 'pools/default/serverGroups/' # check if zone exist found = False zones = self.get_zone_names() for zone in zones: if old_name == zone: api += zones[old_name] request_name = "name={0}".format(new_name) found = True break if not found: raise Exception("There is not zone with name: %s in cluster" % old_name) status, content, header = self._http_request(api, "PUT", params=request_name) if status: log.info("zone {0} is renamed to {1}".format(old_name, new_name)) else: raise Exception("Failed to rename zone with name: %s " % old_name) # get all nodes info in one zone/rack/group def get_nodes_in_zone(self, zone_name): nodes = {} tmp = {} zone_info = self.get_all_zones_info() if zone_name != "": found = False if len(zone_info["groups"]) >= 1: for i in range(0, len(zone_info["groups"])): if zone_info["groups"][i]["name"] == zone_name: tmp = zone_info["groups"][i]["nodes"] if not tmp: log.info("zone {0} is existed but no node in it".format(zone_name)) # remove port for node in tmp: node["hostname"] = node["hostname"].split(":") node["hostname"] = node["hostname"][0] nodes[node["hostname"]] = node found = True break if not found: raise Exception("There is not zone with name: %s in cluster" % zone_name) return nodes def get_zone_and_nodes(self): """ only return zones with node in its """ zones = {} tmp = {} zone_info = self.get_all_zones_info() if len(zone_info["groups"]) >= 1: for i in range(0, len(zone_info["groups"])): tmp = zone_info["groups"][i]["nodes"] if not tmp: log.info("zone {0} is existed but no node in it".format(tmp)) # remove port else: nodes = [] for node in tmp: node["hostname"] = node["hostname"].split(":") node["hostname"] = node["hostname"][0] print(node["hostname"][0]) nodes.append(node["hostname"]) zones[zone_info["groups"][i]["name"]] = nodes return zones def get_zone_uri(self): zone_uri = {} zone_info = self.get_all_zones_info() if zone_info and len(zone_info["groups"]) >= 1: for i in range(0, len(zone_info["groups"])): zone_uri[zone_info["groups"][i]["name"]] = zone_info["groups"][i]["uri"] return zone_uri def shuffle_nodes_in_zones(self, moved_nodes, source_zone, target_zone): # moved_nodes should be a IP list like # ["192.168.171.144", "192.168.171.145"] request = "" for i in range(0, len(moved_nodes)): moved_nodes[i] = "ns_1@" + moved_nodes[i] all_zones = self.get_all_zones_info() api = self.baseUrl + all_zones["uri"][1:] moved_node_json = [] for i in range(0, len(all_zones["groups"])): for node in all_zones["groups"][i]["nodes"]: if all_zones["groups"][i]["name"] == source_zone: for n in moved_nodes: if n == node["otpNode"]: moved_node_json.append({"otpNode": node["otpNode"]}) zone_json = {} group_json = [] for i in range(0, len(all_zones["groups"])): node_j = [] zone_json["uri"] = all_zones["groups"][i]["uri"] zone_json["name"] = all_zones["groups"][i]["name"] zone_json["nodes"] = node_j if not all_zones["groups"][i]["nodes"]: if all_zones["groups"][i]["name"] == target_zone: for i in range(0, len(moved_node_json)): zone_json["nodes"].append(moved_node_json[i]) else: zone_json["nodes"] = [] else: for node in all_zones["groups"][i]["nodes"]: if all_zones["groups"][i]["name"] == source_zone and \ node["otpNode"] in moved_nodes: pass else: node_j.append({"otpNode": node["otpNode"]}) if all_zones["groups"][i]["name"] == target_zone: for k in range(0, len(moved_node_json)): node_j.append(moved_node_json[k]) zone_json["nodes"] = node_j group_json.append({"name": zone_json["name"], "uri": zone_json["uri"], "nodes": zone_json["nodes"]}) request = '{{"groups": {0} }}'.format(json.dumps(group_json)) status, content, header = self._http_request(api, "PUT", params=request) # sample request format # request = ' {"groups":[{"uri":"/pools/default/serverGroups/0","nodes": [] },\ # {"uri":"/pools/default/serverGroups/c8275b7a88e6745c02815dde4a505e70","nodes": [] },\ # {"uri":"/pools/default/serverGroups/1acd9810a027068bd14a1ddd43db414f","nodes": \ # [{"otpNode":"[email protected]"},{"otpNode":"[email protected]"}]} ]} ' return status def is_zone_exist(self, zone_name): found = False zones = self.get_zone_names() if zones: for zone in zones: if zone_name == zone: found = True return True break if not found: log.error("There is not zone with name: {0} in cluster.".format(zone_name)) return False def get_items_info(self, keys, bucket='default'): items_info = {} for key in keys: api = '{0}{1}{2}/docs/{3}'.format(self.baseUrl, 'pools/default/buckets/', bucket, key) status, content, header = self._http_request(api) if status: items_info[key] = json.loads(content) return items_info def start_cluster_logs_collection(self, nodes="*", upload=False, \ uploadHost=None, customer="", ticket=""): if not upload: params = urllib.parse.urlencode({"nodes":nodes}) else: params = urllib.parse.urlencode({"nodes":nodes, "uploadHost":uploadHost, \ "customer":customer, "ticket":ticket}) api = self.baseUrl + "controller/startLogsCollection" status, content, header = self._http_request(api, "POST", params) return status, content def get_cluster_logs_collection_info(self): api = self.baseUrl + "pools/default/tasks/" status, content, header = self._http_request(api, "GET") if status: tmp = json.loads(content) for k in tmp: if k["type"] == "clusterLogsCollection": content = k return content return None """ result["progress"]: progress logs collected at cluster level result["status]: status logs collected at cluster level result["perNode"]: all information logs collected at each node """ def get_cluster_logs_collection_status(self): result = self.get_cluster_logs_collection_info() if result: return result["progress"], result["status"], result["perNode"] return None, None, None def cancel_cluster_logs_collection(self): api = self.baseUrl + "controller/cancelLogsCollection" status, content, header = self._http_request(api, "POST") return status, content def set_log_redaction_level(self, redaction_level="none"): api = self.baseUrl + "settings/logRedaction" params = urllib.parse.urlencode({"logRedactionLevel":redaction_level}) status, content, header = self._http_request(api, "POST", params) if status: result = json.loads(content) if result["logRedactionLevel"] == redaction_level: return True else: return False return False def get_bucket_CCCP(self, bucket): log.info("Getting CCCP config ") api = '%spools/default/b/%s' % (self.baseUrl, bucket) if isinstance(bucket, Bucket): api = '%spools/default/b/%s' % (self.baseUrl, bucket.name) status, content, header = self._http_request(api) if status: return json.loads(content) return None def get_recovery_task(self): content = self.ns_server_tasks() for item in content: if item["type"] == "recovery": return item return None def get_recovery_progress(self, recoveryStatusURI): api = '%s%s' % (self.baseUrl, recoveryStatusURI) status, content, header = self._http_request(api) if status: return json.loads(content) return None def get_warming_up_tasks(self): tasks = self.ns_server_tasks() tasks_warmup = [] for task in tasks: if task["type"] == "warming_up": tasks_warmup.append(task) return tasks_warmup def compact_bucket(self, bucket="default"): api = self.baseUrl + 'pools/default/buckets/{0}/controller/compactBucket'.format(bucket) status, content, header = self._http_request(api, 'POST') if status: log.info('bucket compaction successful') else: raise BucketCompactionException(bucket) return True def cancel_bucket_compaction(self, bucket="default"): api = self.baseUrl + 'pools/default/buckets/{0}/controller/cancelBucketCompaction'.format(bucket) if isinstance(bucket, Bucket): api = self.baseUrl + 'pools/default/buckets/{0}/controller/cancelBucketCompaction'.format(bucket.name) status, content, header = self._http_request(api, 'POST') log.info("Status is {0}".format(status)) if status: log.info('Cancel bucket compaction successful') else: raise BucketCompactionException(bucket) return True def set_bucket_compressionMode(self, bucket="default", mode="passive"): api = self.baseUrl + "pools/default/buckets/" + bucket body = {'compressionMode': mode} params = urllib.parse.urlencode(body) headers = self._create_headers() status, content, header = self._http_request(api, 'POST', params=params, headers=headers) log.info("{0} with params: {1}".format(api, params)) if not status: raise Exception("Unable to set compressionMode {0} for bucket {1}".format(mode, bucket)) '''LDAP Rest API ''' ''' clearLDAPSettings - Function to clear LDAP settings Parameter - None Returns - status of LDAPAuth clear command ''' def clearLDAPSettings(self): api = self.baseUrl + 'settings/saslauthdAuth' params = urllib.parse.urlencode({'enabled':'false'}) status, content, header = self._http_request(api, 'POST', params) return status, content, header ''' ldapUserRestOperation - Execute LDAP REST API Input Parameter - authOperation - this is for auth need to be enabled or disabled - True or 0 currAdmmins - a list of username to add to full admin matching with ldap currROAdmins - a list of username to add to RO Admin Returns - status, content and header for the command executed ''' def ldapUserRestOperation(self, authOperation, adminUser='', ROadminUser=''): authOperation = authOperation currAdmins = '' currROAdmins = '' if (adminUser != ''): for user in adminUser: currAdmins = user[0] + "\n\r" + currAdmins if (ROadminUser != ''): for user in ROadminUser: currROAdmins = user[0] + "\n\r" + currROAdmins content = self.executeLDAPCommand(authOperation, currAdmins, currROAdmins) '''LDAP Rest API ''' ''' clearLDAPSettings - Function to clear LDAP settings Parameter - None Returns - status of LDAPAuth clear command ''' def clearLDAPSettings (self): api = self.baseUrl + 'settings/saslauthdAuth' params = urllib.parse.urlencode({'enabled':'false'}) status, content, header = self._http_request(api, 'POST', params) return status, content, header ''' ldapUserRestOperation - Execute LDAP REST API Input Parameter - authOperation - this is for auth need to be enabled or disabled - True or 0 currAdmmins - a list of username to add to full admin matching with ldap currROAdmins - a list of username to add to RO Admin Returns - status, content and header for the command executed ''' def ldapUserRestOperation(self, authOperation, adminUser='', ROadminUser='', exclude=None): if (authOperation): authOperation = 'true' else: authOperation = 'false' currAdmins = '' currROAdmins = '' if (adminUser != ''): for user in adminUser: currAdmins = user[0] + "\n\r" + currAdmins if (ROadminUser != ''): for user in ROadminUser: currROAdmins = user[0] + "\n\r" + currROAdmins content = self.executeLDAPCommand(authOperation, currAdmins, currROAdmins, exclude) ''' executeLDAPCommand - Execute LDAP REST API Input Parameter - authOperation - this is for auth need to be enabled or disabled - True or 0 currAdmmins - a list of username to add to full admin matching with ldap currROAdmins - a list of username to add to RO Admin Returns - status, content and header for the command executed ''' def executeLDAPCommand(self, authOperation, currAdmins, currROAdmins, exclude=None): api = self.baseUrl + "settings/saslauthdAuth" if (exclude is None): log.info ("into exclude is None") params = urllib.parse.urlencode({ 'enabled': authOperation, 'admins': '{0}'.format(currAdmins), 'roAdmins': '{0}'.format(currROAdmins), }) else: log.info ("Into exclude for value of fullAdmin {0}".format(exclude)) if (exclude == 'fullAdmin'): params = urllib.parse.urlencode({ 'enabled': authOperation, 'roAdmins': '{0}'.format(currROAdmins), }) else: log.info ("Into exclude for value of fullAdmin {0}".format(exclude)) params = urllib.parse.urlencode({ 'enabled': authOperation, 'admins': '{0}'.format(currAdmins), }) status, content, header = self._http_request(api, 'POST', params) return content ''' validateLogin - Validate if user can login using a REST API Input Parameter - user and password to check for login. Also take a boolean to decide if the status should be 200 or 400 and everything else should be false Returns - True of false based if user should login or login fail ''' def validateLogin(self, user, password, login, getContent=False): api = self.baseUrl + "uilogin" header = {'Content-type': 'application/x-www-form-urlencoded'} params = urllib.parse.urlencode({'user':'{0}'.format(user), 'password':'{0}'.format(password)}) log.info ("value of param is {0}".format(params)) http = httplib2.Http() status, content = http.request(api, 'POST', headers=header, body=params) log.info ("Status of login command - {0}".format(status)) if (getContent): return status, content if ((status['status'] == "200" and login == True) or (status ['status'] == "400" and login == False)): return True else: return False ''' ldapRestOperationGet - Get setting of LDAPAuth - Settings Returns - list of Admins, ROAdmins and is LDAPAuth enabled or not ''' def ldapRestOperationGetResponse(self): log.info ("GET command for LDAP Auth") api = self.baseUrl + "settings/saslauthdAuth" status, content, header = self._http_request(api, 'GET') return json.loads(content) ''' executeValidateCredentials - API to check credentials of users Input - user and password that needs validation Returns - [role]:<currentrole> [source]:<saslauthd,builtin> ''' def executeValidateCredentials(self, user, password): api = self.baseUrl + "validateCredentials" params = urllib.parse.urlencode({ 'user':'{0}'.format(user), 'password':'{0}'.format(password) }) status, content, header = self._http_request(api, 'POST', params) log.info ("Status of executeValidateCredentials command - {0}".format(status)) return status, json.loads(content) '''MadHatter LDAP Group Support''' ''' Assign group roles ''' def add_group_role(self,group_name,description,roles,ldap_group_ref=None): api = self.baseUrl + "/settings/rbac/groups/" + group_name if ldap_group_ref is not None: params = urllib.parse.urlencode({ 'description':'{0}'.format(description), 'roles':'{0}'.format(roles), 'ldap_group_ref':'{0}'.format(ldap_group_ref) }) else: params = urllib.parse.urlencode({ 'description':'{0}'.format(description), 'roles':'{0}'.format(roles) }) status, content, header = self._http_request(api, 'PUT', params) log.info ("Status of Adding role to group command is {0}".format(status)) return status, json.loads(content) def delete_group(self,group_name): api = self.baseUrl + "/settings/rbac/groups/" + group_name status, content, header = self._http_request(api, 'DELETE') log.info ("Status of Delete role from CB is {0}".format(status)) return status, json.loads(content) def get_group_list(self): api = self.baseUrl + "/settings/rbac/groups/" status, content, header = self._http_request(api, 'GET') return status, json.loads(content) def get_group_details(self, group_name): api = self.baseUrl + "/settings/rbac/groups/" + group_name status, content, header = self._http_request(api, 'GET') return status, json.loads(content) def add_user_group(self,group_name,user_name): api = self.baseUrl + "/settings/rbac/users/local/" + user_name params = urllib.parse.urlencode({ 'groups':'{0}'.format(group_name) }) status, content, header = self._http_request(api, 'PUT', params) log.info ("Status of Adding role to group command is {0}".format(status)) return status, json.loads(content) def get_user_group(self,user_name): api = self.baseUrl + "/settings/rbac/users/local/" + user_name status, content, header = self._http_request(api, 'GET') log.info ("Status of Adding role to group command is {0}".format(status)) return status, json.loads(content) def grp_invalidate_cache(self): api = self.baseUrl + "/settings/invalidateLDAPCache/" status, content, header = self._http_request(api, 'POST') log.info("Status of Adding role to group command is {0}".format(status)) return status, json.loads(content) def invalidate_ldap_cache(self): api = self.baseUrl + '/settings/invalidateLDAPCache' status, content, header = self._http_request(api, 'POST') log.info("Status of Invalidate LDAP Cached is {0}".format(status)) return status, json.loads(content) def ldap_validate_conn(self): api = self.baseUrl + "/settings/ldap/validate/connectivity" status, content, header = self._http_request(api, 'POST') log.info("Status of Adding role to group command is {0}".format(status)) return status, json.loads(content) def ldap_validate_authen(self, user_name, password='password'): api = self.baseUrl + "/settings/ldap/validate/authentication" params = urllib.parse.urlencode({ 'auth_user': '{0}'.format(user_name), 'auth_pass': '{0}'.format(password) }) status, content, header = self._http_request(api, 'POST', params) log.info("Status of Adding role to group command is {0}".format(status)) return status, json.loads(content) def ldap_validate_grp_query(self, user): api = self.baseUrl + "/settings/ldap/validate/groups_query" params = urllib.parse.urlencode({ 'groups_query_user':'{0}'.format(user) }) status, content, header = self._http_request(api, 'POST',params) log.info ("Status of Adding role to group command is {0}".format(status)) return status, json.loads(content) def setup_ldap(self, data, extraparam): api = self.baseUrl + '/settings/ldap/' params = urllib.parse.urlencode(data) params = params + "&" + extraparam status, content, header = self._http_request(api, 'POST',params) log.info ("Status of Setting up LDAP command is {0}".format(status)) return status, json.loads(content) ''' Audit Commands ''' ''' getAuditSettings - API returns audit settings for Audit Input - None Returns - [archive_path]:<path for archieve> [auditd_enabled]:<enabled disabled status for auditd> [log_path]:<path for logs> [rotate_interval]:<log rotate interval> ''' def getAuditSettings(self): api = self.baseUrl + "settings/audit" status, content, header = self._http_request(api, 'GET') return json.loads(content) ''' getAuditSettings - API returns audit settings for Audit Input - [archive_path]:<path for archieve> [auditd_enabled]:<enabled disabled status for auditd> [rotate_interval]:<log rotate interval in seconds> ''' def setAuditSettings(self, enabled='true', rotateInterval=86400, logPath='/opt/couchbase/var/lib/couchbase/logs', services_to_disable=None): api = self.baseUrl + "settings/audit" params = {'rotateInterval':'{0}'.format(rotateInterval), 'auditdEnabled':'{0}'.format(enabled), 'logPath':'{0}'.format(logPath)} if services_to_disable: params['disabled'] = ",".join(services_to_disable) params = urllib.parse.urlencode(params) status, content, header = self._http_request(api, 'POST', params) log.info ("Value os status is {0}".format(status)) log.info ("Value of content is {0}".format(content)) if status: return status else: return status, json.loads(content) def get_audit_descriptors(self): api = self.baseUrl + "/settings/audit/descriptors" status, content, header = self._http_request(api, 'GET', headers=self._create_capi_headers()) return json.loads(content) if status else None def _set_secrets_password(self, new_password): api = self.baseUrl + "/node/controller/changeMasterPassword" params = urllib.parse.urlencode({ 'newPassword': '{0}'.format(new_password.encode('utf-8').strip()) }) log.info("Params getting set is ---- {0}".format(params)) params = params.replace('%24', '$') params = params.replace('%3D', '=') log.info("Params getting set is ---- {0}".format(params)) status, content, header = self._http_request(api, 'POST', params) log.info("Status of set password command - {0}".format(status)) log.info("Content of the response is {0}".format(content)) log.info ("Header of the response is {0}".format(header)) return status def set_downgrade_storage_mode_with_rest(self, downgrade=True, username="Administrator", password="password"): authorization = self.get_authorization(username, password) if downgrade: api = self.index_baseUrl + 'settings/storageMode?downgrade=true' else: api = self.index_baseUrl + 'settings/storageMode?downgrade=false' headers = {'Content-type': 'application/json','Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers) if not status: raise Exception(content) return json.loads(content) def create_index_with_rest(self, create_info, username="Administrator", password="password"): log.info("CREATE INDEX USING REST WITH PARAMETERS: " + str(create_info)) authorization = self.get_authorization(username, password) api = self.index_baseUrl + 'internal/indexes?create=true' headers = {'Content-type': 'application/json','Authorization': 'Basic %s' % authorization} params = json.loads("{0}".format(create_info).replace('\'', '"').replace('True', 'true').replace('False', 'false')) status, content, header = self._http_request(api, 'POST', headers=headers, params=json.dumps(params).encode("ascii", "ignore")) if not status: raise Exception(content) return json.loads(content) def build_index_with_rest(self, id, username="Administrator", password="password"): credentials = '{}:{}'.format(self.username, self.password) authorization = base64.encodebytes(credentials.encode('utf-8')) authorization = authorization.decode('utf-8').rstrip('\n') api = self.index_baseUrl + 'internal/indexes?build=true' build_info = {'ids': [id]} headers = {'Content-type': 'application/json','Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'PUT', headers=headers, params=json.dumps(build_info)) if not status: raise Exception(content) return json.loads(content) def drop_index_with_rest(self, id, username="Administrator", password="password"): authorization = self.get_authorization(username, password) url = 'internal/index/{0}'.format(id) api = self.index_baseUrl + url headers = {'Content-type': 'application/json','Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'DELETE', headers=headers) if not status: raise Exception(content) def get_all_indexes_with_rest(self, username="Administrator", password="password"): credentials = '{}:{}'.format(self.username, self.password) authorization = base64.encodebytes(credentials.encode('utf-8')) authorization = authorization.decode('utf-8').rstrip('\n') url = 'internal/indexes' api = self.index_baseUrl + url headers = {'Content-type': 'application/json','Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if not status: raise Exception(content) return json.loads(content) def lookup_gsi_index_with_rest(self, id, body, username="Administrator", password="password"): authorization = self.get_authorization(username, password) url = 'internal/index/{0}?lookup=true'.format(id) api = self.index_baseUrl + url headers = {'Content-type': 'application/json','Authorization': 'Basic %s' % authorization} params = json.loads("{0}".format(body).replace('\'', '"').replace('True', 'true').replace('False', 'false')) status, content, header = self._http_request(api, 'GET', headers=headers, params=json.dumps(params).encode("ascii", "ignore")) if not status: raise Exception(content) return json.loads(content) def full_table_scan_gsi_index_with_rest(self, id, body, username="Administrator", password="password"): if "limit" not in list(body.keys()): body["limit"] = 900000 authorization = self.get_authorization(username, password) url = 'internal/index/{0}?scanall=true'.format(id) api = self.index_baseUrl + url headers = {'Content-type': 'application/json','Authorization': 'Basic %s' % authorization} params = json.loads("{0}".format(body).replace('\'', '"').replace('True', 'true').replace('False', 'false')) status, content, header = self._http_request( api, 'GET', headers=headers, params=json.dumps(params).encode("ascii", "ignore")) if not status: raise Exception(content) # Following line is added since the content uses chunked encoding chunkless_content = content.decode().replace("][", ", \n") return json.loads(chunkless_content) def range_scan_gsi_index_with_rest(self, id, body, username="Administrator", password="password"): if "limit" not in list(body.keys()): body["limit"] = 300000 authorization = self.get_authorization(username, password) url = 'internal/index/{0}?range=true'.format(id) api = self.index_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} params = json.loads("{0}".format(body).replace( '\'', '"').replace('True', 'true').replace('False', 'false')) status, content, header = self._http_request( api, 'GET', headers=headers, params=json.dumps(params).encode("ascii", "ignore")) if not status: raise Exception(content) #Below line is there because of MB-20758 content = content.split(b'[]')[0].decode() # Following line is added since the content uses chunked encoding chunkless_content = content.decode().replace("][", ", \n") return json.loads(chunkless_content) def multiscan_for_gsi_index_with_rest(self, id, body, username="Administrator", password="password"): authorization = self.get_authorization(username, password) url = 'internal/index/{0}?multiscan=true'.format(id) api = self.index_baseUrl + url headers = {'Accept': 'application/json','Authorization': 'Basic %s' % authorization} params = json.loads("{0}".format(body).replace('\'', '"').replace( 'True', 'true').replace('False', 'false').replace( "~[]{}UnboundedtruenilNA~", "~[]{}UnboundedTruenilNA~")) params = json.dumps(params).encode("ascii", "ignore").decode().replace("\\\\", "\\") log.info(json.dumps(params).encode("ascii", "ignore")) status, content, header = self._http_request(api, 'GET', headers=headers, params=params) if not status: raise Exception(content) #Below line is there because of MB-20758 content = content.split(b'[]')[0].decode() # Following line is added since the content uses chunked encoding chunkless_content = content.replace("][", ", \n") if chunkless_content: return json.loads(chunkless_content) else: return content def multiscan_count_for_gsi_index_with_rest(self, id, body, username="Administrator", password="password"): authorization = self.get_authorization(username, password) url = 'internal/index/{0}?multiscancount=true'.format(id) api = self.index_baseUrl + url headers = {'Accept': 'application/json','Authorization': 'Basic %s' % authorization} count_cmd_body = body.replace('\'', '"').replace('True', 'true').replace('False', 'false') count_cmd_body = count_cmd_body.replace("~[]{}UnboundedtruenilNA~", "~[]{}UnboundedTruenilNA~") params = json.loads(count_cmd_body) params = json.dumps(params).encode("ascii", "ignore").decode().replace("\\\\", "\\") log.info(json.dumps(params).encode("ascii", "ignore")) status, content, header = self._http_request(api, 'GET', headers=headers, params=params) if not status: raise Exception(content) #Below line is there because of MB-20758 content = content.split(b'[]')[0].decode() # Following line is added since the content uses chunked encoding chunkless_content = content.replace("][", ", \n") if chunkless_content: return json.loads(chunkless_content) else: return content 'Get list of all roles that exist in the system' def retrive_all_user_role(self): url = "/settings/rbac/roles" api = self.baseUrl + url status, content, header = self._http_request(api, 'GET') if not status: raise Exception(content) return json.loads(content) 'Get list of current users and rols assigned to them' def retrieve_user_roles(self): url = "/settings/rbac/users" api = self.baseUrl + url status, content, header = self._http_request(api, 'GET') if not status: raise Exception(content) return json.loads(content) ''' Add/Update user role assignment user_id=userid of the user to act on payload=name=<nameofuser>&roles=admin,cluster_admin''' def set_user_roles(self, user_id, payload): url = "settings/rbac/users/" + user_id api = self.baseUrl + url status, content, header = self._http_request(api, 'PUT', payload) if not status: raise Exception(content) return json.loads(content) ''' Delete user from couchbase role assignment user_id=userid of user to act on''' def delete_user_roles(self, user_id): url = "settings/rbac/users/local/" + user_id api = self.baseUrl + url status, content, header = self._http_request(api, 'DELETE') if not status: raise Exception(content) return json.loads(content) ''' Returns base64 string of username:password ''' def get_authorization(self, username, password): credentials = '{}:{}'.format(username, password) authorization = base64.encodebytes(credentials.encode('utf-8')) return authorization.decode('utf-8').rstrip('\n') ''' Return list of permission with True/False if user has permission or not user_id = userid for checking permission password = password for userid permission_set=cluster.bucket[default].stats!read,cluster.bucket[default]!write ''' def check_user_permission(self, user_id, password, permission_set): url = "pools/default/checkPermissions/" api = self.baseUrl + url authorization = self.get_authorization(user_id, password) header = {'Content-Type': 'application/x-www-form-urlencoded', 'Authorization': 'Basic %s' % authorization, 'Accept': '*/*'} status, content, header = self._http_request(api, 'POST', params=permission_set, headers=header) if not status: raise Exception(content) return json.loads(content) ''' Add/Update user role assignment user_id=userid of the user to act on payload=name=<nameofuser>&roles=admin,cluster_admin&password=<password> if roles=<empty> user will be created with no roles''' def add_set_builtin_user(self, user_id, payload): url = "settings/rbac/users/local/" + user_id api = self.baseUrl + url status, content, header = self._http_request(api, 'PUT', payload) if not status: raise Exception(content) return json.loads(content) ''' Add External User ''' def add_external_user(self,user_id,payload): url = "settings/rbac/users/external/" + user_id api = self.baseUrl + url status, content, header = self._http_request(api, 'PUT', payload) if not status: raise Exception(content) return json.loads(content) ''' Delete External User ''' def delete_external_user(self,user_id): url = "settings/rbac/users/external/" + user_id api = self.baseUrl + url status, content, header = self._http_request(api, 'DELETE') if not status: raise Exception(content) return json.loads(content) ''' Delete built-in user ''' def delete_builtin_user(self, user_id): url = "settings/rbac/users/local/" + user_id api = self.baseUrl + url status, content, header = self._http_request(api, 'DELETE') if not status: raise Exception(content) return json.loads(content) ''' Add/Update user role assignment user_id=userid of the user to act on password=<new password>''' def change_password_builtin_user(self, user_id, password): url = "controller/changePassword/" + user_id api = self.baseUrl + url status, content, header = self._http_request(api, 'POST', password) if not status: raise Exception(content) return json.loads(content) # Applicable to eventing service ''' Eventing lifecycle operation ''' def lifecycle_operation(self, name, operation,body=None): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name +"/"+ operation api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} if body != None: status, content, header = self._http_request(api, 'POST', headers=headers, params=json.dumps(body).encode("ascii", "ignore")) else: status, content, header = self._http_request(api, 'POST', headers=headers) if not status: raise Exception(content) return content ''' Save the Function so that it is visible in UI ''' def save_function(self, name, body): authorization = self.get_authorization(self.username, self.password) url = "_p/event/saveAppTempStore/?name=" + name api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers, params=json.dumps(body).encode("ascii", "ignore")) if not status: raise Exception(content) return content ''' Deploy the Function ''' def deploy_function(self, name, body): authorization = self.get_authorization(self.username, self.password) url = "_p/event/setApplication/?name=" + name api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers, params=json.dumps(body).encode("ascii", "ignore")) if not status: raise Exception(content) return content ''' GET all the Functions ''' def get_all_functions(self): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if not status: raise Exception(content) return content ''' Undeploy the Function ''' def set_settings_for_function(self, name, body): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name +"/settings" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers, params=json.dumps(body).encode("ascii", "ignore")) if not status: raise Exception(content) return content ''' deploy the Function ''' def deploy_function_by_name(self, name): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name + "/settings" body = {"deployment_status": True, "processing_status": True} api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers, params=json.dumps(body).encode("ascii", "ignore")) if not status: raise Exception(content) return content ''' pause the Function ''' def pause_function_by_name(self, name): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name + "/settings" body = {"deployment_status": True, "processing_status": False} api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers, params=json.dumps(body).encode("ascii", "ignore")) if not status: raise Exception(content) return content ''' undeploy the Function ''' def undeploy_function(self, name): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name +"/settings" body= {"deployment_status": False, "processing_status": False} api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers, params=json.dumps(body).encode("ascii", "ignore")) if not status: raise Exception(content) return content ''' Delete all the functions ''' def delete_all_function(self): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'DELETE', headers=headers) if not status: raise Exception(content) return content ''' Delete single function ''' def delete_single_function(self, name): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'DELETE', headers=headers) if not status: raise Exception(content) return content ''' Delete the Function from UI ''' def delete_function_from_temp_store(self, name): authorization = self.get_authorization(self.username, self.password) url = "_p/event/deleteAppTempStore/?name=" + name api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'DELETE', headers=headers) if not status: raise Exception(content) return content ''' Delete the Function ''' def delete_function(self, name): authorization = self.get_authorization(self.username, self.password) url = "_p/event/deleteApplication/?name=" + name api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'DELETE', headers=headers) if not status: raise Exception(content) return content ''' Export the Function ''' def export_function(self, name): export_map = {} if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/export/" + name api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if not status: raise Exception(content) if status: json_parsed = json.loads(content) for key in list(json_parsed[0].keys()): # returns an array tokens = key.split(":") val = json_parsed[0][key] if len(tokens) == 1: field = tokens[0] export_map[field] = val return export_map ''' Import the Function ''' def import_function(self, body): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/import" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers, params=body) if not status: raise Exception(content) return content ''' Ensure that the eventing node is out of bootstrap node ''' def get_deployed_eventing_apps(self): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "getDeployedApps" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if not status: raise Exception(content) return json.loads(content) ''' Ensure that the eventing node is out of bootstrap node ''' def get_running_eventing_apps(self): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "getRunningApps" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if not status: raise Exception(content) return json.loads(content) ''' composite status of a handler ''' def get_composite_eventing_status(self): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/status" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if not status: raise Exception(content) return json.loads(content) ''' Get Eventing processing stats ''' def get_event_processing_stats(self, name, eventing_map=None): if eventing_map is None: eventing_map = {} if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "getEventProcessingStats?name=" + name api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if status: json_parsed = json.loads(content) for key in list(json_parsed.keys()): tokens = key.split(":") val = json_parsed[key] if len(tokens) == 1: field = tokens[0] eventing_map[field] = val return eventing_map ''' Get Aggregate Eventing processing stats ''' def get_aggregate_event_processing_stats(self, name, eventing_map=None): if eventing_map is None: eventing_map = {} if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "getAggEventProcessingStats?name=" + name api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if status: json_parsed = json.loads(content) for key in list(json_parsed.keys()): tokens = key.split(":") val = json_parsed[key] if len(tokens) == 1: field = tokens[0] eventing_map[field] = val return eventing_map ''' Get Eventing execution stats ''' def get_event_execution_stats(self, name, eventing_map=None): if eventing_map is None: eventing_map = {} if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "getExecutionStats?name=" + name api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if status: json_parsed = json.loads(content) for key in list(json_parsed.keys()): tokens = key.split(":") val = json_parsed[key] if len(tokens) == 1: field = tokens[0] eventing_map[field] = val return eventing_map ''' Get Eventing failure stats ''' def get_event_failure_stats(self, name, eventing_map=None): if eventing_map is None: eventing_map = {} if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "getFailureStats?name=" + name api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if status: json_parsed = json.loads(content) for key in list(json_parsed.keys()): tokens = key.split(":") val = json_parsed[key] if len(tokens) == 1: field = tokens[0] eventing_map[field] = val return eventing_map ''' Get all eventing stats ''' def get_all_eventing_stats(self, seqs_processed=False, eventing_map=None): if eventing_map is None: eventing_map = {} if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) if seqs_processed: url = "api/v1/stats?type=full" else: url = "api/v1/stats" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if not status: raise Exception(content) return json.loads(content) ''' Cleanup eventing ''' def cleanup_eventing(self): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "cleanupEventing" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if not status: raise Exception(content) return content ''' enable debugger ''' def enable_eventing_debugger(self): authorization = self.get_authorization(self.username, self.password) url = "_p/event/api/v1/config" api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} body="{\"enable_debugger\": true}" status, content, header = self._http_request(api, 'POST', headers=headers, params=body) if not status: raise Exception(content) return content ''' disable debugger ''' def disable_eventing_debugger(self): authorization = self.get_authorization(self.username, self.password) url = "_p/event/api/v1/config" api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} body = "{\"enable_debugger\": false}" status, content, header = self._http_request(api, 'POST', headers=headers, params=body) if not status: raise Exception(content) return content ''' Start debugger ''' def start_eventing_debugger(self, name): authorization = self.get_authorization(self.username, self.password) url="/pools/default" api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) url = "_p/event/startDebugger/?name=" + name api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers, params=content) if not status: raise Exception(content) return content ''' Stop debugger ''' def stop_eventing_debugger(self, name): authorization = self.get_authorization(self.username, self.password) url = "_p/event/stopDebugger/?name=" + name api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers) if not status: raise Exception(content) return content ''' Get debugger url ''' def get_eventing_debugger_url(self, name): authorization = self.get_authorization(self.username, self.password) url = "_p/event/getDebuggerUrl/?name=" + name api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers) if not status: raise Exception(content) return content ''' allow inter bucket recursion ''' def allow_interbucket_recursion(self): authorization = self.get_authorization(self.username, self.password) url = "_p/event/api/v1/config" api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} body = "{\"allow_interbucket_recursion\": true}" status, content, header = self._http_request(api, 'POST', headers=headers, params=body) if not status: raise Exception(content) return content ''' update eventing config ''' def update_eventing_config(self,body): authorization = self.get_authorization(self.username, self.password) url = "_p/event/api/v1/config" api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers, params=body) if not status: raise Exception(content) return content ''' GET eventing config ''' def get_eventing_config(self): authorization = self.get_authorization(self.username, self.password) url = "_p/event/api/v1/config" api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers, params='') if not status: raise Exception(content) return content ''' update eventing config function wise ''' def update_eventing_config_per_function(self, body, name): authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name + "/config" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers, params=json.dumps(body).encode("ascii", "ignore")) if not status: raise Exception(content) return content ''' GET eventing config for single function ''' def get_eventing_config_per_function(self, name): authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name + "/config" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers, params='') if not status: raise Exception(content) return content ''' Update function appcode ''' def update_function_appcode(self, body, name): authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name + "/appcode" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers, params=body) if not status: raise Exception(content) return content ''' Get function appcode ''' def get_function_appcode(self, name): authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name + "/appcode" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers, params='') if not status: raise Exception(content) return content ''' Get eventing rebalance status ''' def get_eventing_rebalance_status(self): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "getAggRebalanceStatus" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if status: return content ''' Get application logs ''' def get_app_logs(self,handler_name): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "getAppLog?aggregate=true&name="+handler_name api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if status: return content def create_function(self, name, body): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers, params=json.dumps(body).encode("ascii", "ignore")) if not status: raise Exception(content) return content def update_function(self, name, body): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} body['appname']=name status, content, header = self._http_request(api, 'POST', headers=headers, params=json.dumps(body).encode("ascii", "ignore")) if not status: raise Exception(content) return content def get_function_details(self, name): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if not status: raise Exception(content) return content def get_eventing_go_routine_dumps(self): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "debug/pprof/goroutine?debug=1" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if not status: raise Exception(content) return content def set_eventing_retry(self, name, body): if self.eventing_role: authorization = self.get_authorization("eventing_admin", "password") else: authorization = self.get_authorization(self.username, self.password) url = "api/v1/functions/" + name + "/retry" api = self.eventing_baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers, params=json.dumps(body).encode("ascii", "ignore")) if not status: raise Exception(content) return content def get_user(self, user_id): url = "settings/rbac/users/" api = self.baseUrl + url status, content, header = self._http_request(api, "GET") if content is not None: content_json = json.loads(content) for i in range(len(content_json)): user = content_json[i] if user.get('id') == user_id: return user return {} """ From 6.5.0, enable IPv6 on cluster/node needs 2 settings default is set to IPv6 We need to disable auto failover first, then set network version Then enable autofaiover again. """ def enable_ip_version(self, afamily='ipv6', afamilyOnly='false'): log.info("Start enable {0} on this node {1}".format(afamily, self.baseUrl)) self.update_autofailover_settings(False, 60) params = urllib.parse.urlencode({'afamily': afamily, 'afamilyOnly': afamilyOnly, 'nodeEncryption': 'off'}) api = "{0}node/controller/enableExternalListener".format(self.baseUrl) status, content, header = self._http_request(api, 'POST', params) if status: params = urllib.parse.urlencode({'afamily': afamily, 'afamilyOnly': afamilyOnly, 'nodeEncryption': 'off'}) api = "{0}node/controller/setupNetConfig".format(self.baseUrl) status, content, header = self._http_request(api, 'POST', params) if status: log.info("Done enable {0} on this node {1}".format(afamily, self.baseUrl)) else: log.error("Failed to set 'setupNetConfig' on this node {0}" .format(self.baseUrl)) raise Exception(content) else: log.error("Failed to set 'enableExternalListener' on this node {0}" .format(self.baseUrl)) raise Exception(content) if afamilyOnly == 'true': api = "{0}node/controller/disableUnusedExternalListeners".format(self.baseUrl) status, _, _ = self._http_request(api, 'POST', params) if not status: log.error("Failed to set 'disableUnusedExternalListeners' on this node {0}" .format(self.baseUrl)) self.update_autofailover_settings(True, 60) # These methods are added for Auto-Rebalance On Failure tests def set_retry_rebalance_settings(self, body): url = "settings/retryRebalance" api = self.baseUrl + url params = urllib.parse.urlencode(body) headers = self._create_headers() status, content, header = self._http_request(api, 'POST', headers=headers, params=params) if not status: raise Exception(content) return content def get_retry_rebalance_settings(self): authorization = self.get_authorization(self.username, self.password) url = "settings/retryRebalance" api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if not status: raise Exception(content) return content def get_pending_rebalance_info(self): authorization = self.get_authorization(self.username, self.password) url = "pools/default/pendingRetryRebalance" api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'GET', headers=headers) if not status: raise Exception(content) return content def cancel_pending_rebalance(self, id): authorization = self.get_authorization(self.username, self.password) url = "controller/cancelRebalanceRetry/" + str(id) api = self.baseUrl + url headers = {'Content-type': 'application/json', 'Authorization': 'Basic %s' % authorization} status, content, header = self._http_request(api, 'POST', headers=headers) if not status: raise Exception(content) return content # Upload a root certificate def upload_cluster_ca(self, certificate): """ Upload a certificate the cluster This can be a root certificate or an intermediate certificate. """ headers = self._create_capi_headers() headers['Content-Type'] = 'application/octet-stream' status, content, header = self._http_request(self.baseUrl + "controller/uploadClusterCA", 'POST', headers=headers, params=certificate) return status, content def reload_certificate(self): """ Reload certificate Call this function after uploading a certificate to the cluster to activate the new certificate. """ headers = self._create_capi_headers() status, content, header = self._http_request(self.baseUrl + "node/controller/reloadCertificate", 'POST', headers=headers) return status, content def client_cert_auth(self, state, prefixes): """ Args: state (str): Either 'enable', 'mandatory' or 'disable'. prefixes (list(dict)): A list of dicts of containing the keys 'path', 'prefix' and 'delimiter' e.g. {"path": .., "prefix": .., "delimiter", ..} """ headers = self._create_capi_headers() params = json.dumps({'state': state, 'prefixes': prefixes}) status, content, header = self._http_request(self.baseUrl + "settings/clientCertAuth", 'POST', headers=headers, params=params) return status, content class MembaseServerVersion: def __init__(self, implementationVersion='', componentsVersion=''): self.implementationVersion = implementationVersion self.componentsVersion = componentsVersion # this class will also contain more node related info class OtpNode(object): def __init__(self, id='', status=''): self.id = id self.ip = '' self.replication = '' self.port = CbServer.port if CbServer.use_https: self.port = CbServer.ssl_port self.gracefulFailoverPossible = 'true' # extract ns ip from the otpNode string # its normally [email protected] if id.find('@') >= 0: self.ip = id[id.index('@') + 1:] if self.ip.count(':') > 0: # raw ipv6? enclose in square brackets self.ip = '[' + self.ip + ']' self.status = status class NodeInfo(object): def __init__(self): self.availableStorage = None # list self.memoryQuota = None class NodeDataStorage(object): def __init__(self): self.type = '' # hdd or ssd self.path = '' self.index_path = '' self.quotaMb = '' self.state = '' # ok def __str__(self): return '{0}'.format({'type': self.type, 'path': self.path, 'index_path' : self.index_path, 'quotaMb': self.quotaMb, 'state': self.state}) def get_data_path(self): return self.path def get_index_path(self): return self.index_path class NodeDiskStorage(object): def __init__(self): self.type = 0 self.path = '' self.sizeKBytes = 0 self.usagePercent = 0 class Bucket(object): def __init__(self, bucket_size='', name="", num_replicas=0, port=11211, master_id=None, type='', eviction_policy="valueOnly", bucket_priority=None, uuid="", lww=False, maxttl=None, bucket_storage=None): self.name = name self.port = port self.type = type self.nodes = None self.stats = None self.servers = [] self.vbuckets = [] self.forward_map = [] self.numReplicas = num_replicas self.bucket_size = bucket_size self.kvs = {1:KVStore()} self.master_id = master_id self.eviction_policy = eviction_policy self.bucket_priority = bucket_priority self.uuid = uuid self.lww = lww self.maxttl = maxttl self.bucket_storage = bucket_storage def __str__(self): return self.name class Node(object): def __init__(self): self.uptime = 0 self.memoryTotal = 0 self.memoryFree = 0 self.mcdMemoryReserved = 0 self.mcdMemoryAllocated = 0 self.status = "" self.hostname = "" self.clusterCompatibility = "" self.clusterMembership = "" self.recoveryType = "" self.version = "" self.os = "" self.ports = [] self.availableStorage = [] self.storage = [] self.memoryQuota = 0 self.moxi = 11211 self.memcached = 11210 self.id = "" self.ip = "" self.rest_username = "" self.rest_password = "" self.port = 8091 if CbServer.use_https: self.port = CbServer.ssl_port self.services = [] self.storageTotalRam = 0 @property def failed_over_state_a(self): """ The state in which a node is failed-over and is requesting a recovery type from the user """ return self.clusterMembership == "inactiveFailed" @property def failed_over_state_b(self): """ The state in which a node is failed-over and the user has selected a recovery type """ return self.clusterMembership == "inactiveAdded" and self.recoveryType @property def has_failed_over(self): """ Returns tree if a node is in the failed-over state """ return self.failed_over_state_a or self.failed_over_state_b @property def complete_version(self): """ Returns the complete version of the node (e.g. 6.5.0) """ return self.version.split('-')[0] @property def major_version(self): """ Returns the major version of the node (e.g. 6.5) """ return self.complete_version.rsplit('.', 1)[0] @property def minor_version(self): """ Returns the minor version of the node (e.g. 0) """ return self.complete_version.rsplit('.', 1)[1] class AutoFailoverSettings(object): def __init__(self): self.enabled = True self.timeout = 0 self.count = 0 self.failoverOnDataDiskIssuesEnabled = False self.failoverOnDataDiskIssuesTimeout = 0 self.maxCount = 1 self.failoverServerGroup = False self.can_abort_rebalance = False class AutoReprovisionSettings(object): def __init__(self): self.enabled = True self.max_nodes = 0 self.count = 0 class NodePort(object): def __init__(self): self.proxy = 0 self.direct = 0 class BucketStats(object): def __init__(self): self.opsPerSec = 0 self.itemCount = 0 self.diskUsed = 0 self.memUsed = 0 self.ram = 0 class vBucket(object): def __init__(self): self.master = '' self.replica = [] self.id = -1 class RestParser(object): def parse_index_status_response(self, parsed): index_map = {} for map in parsed["indexes"]: bucket_name = map['bucket'] if bucket_name not in list(index_map.keys()): index_map[bucket_name] = {} index_name = map['index'] index_map[bucket_name][index_name] = {} index_map[bucket_name][index_name]['status'] = map['status'] index_map[bucket_name][index_name]['progress'] = str(map['progress']) index_map[bucket_name][index_name]['definition'] = map['definition'] if len(map['hosts']) == 1: index_map[bucket_name][index_name]['hosts'] = map['hosts'][0] else: index_map[bucket_name][index_name]['hosts'] = map['hosts'] index_map[bucket_name][index_name]['id'] = map['id'] return index_map def parse_index_stats_response(self, parsed, index_map=None): if index_map == None: index_map = {} for key in list(parsed.keys()): tokens = key.split(":") val = parsed[key] if len(tokens) == 3 and 'MAINT_STREAM' not in tokens[0] and 'INIT_STREAM' not in tokens[0]: bucket = tokens[0] index_name = tokens[1] stats_name = tokens[2] if bucket not in list(index_map.keys()): index_map[bucket] = {} if index_name not in list(index_map[bucket].keys()): index_map[bucket][index_name] = {} index_map[bucket][index_name][stats_name] = val return index_map def parse_index_stats_response_collections(self, parsed, index_map=None): if index_map == None: index_map = {} for key in list(parsed.keys()): tokens = key.split(":") val = parsed[key] if len(tokens) == 3 and 'MAINT_STREAM' not in tokens[0] and 'INIT_STREAM' not in tokens[0]: bucket = tokens[0] index_name = tokens[1] stats_name = tokens[2] if bucket not in list(index_map.keys()): index_map[bucket] = {} if index_name not in list(index_map[bucket].keys()): index_map[bucket][index_name] = {} index_map[bucket][index_name][stats_name] = val elif len(tokens) == 5 and 'MAINT_STREAM' not in tokens[0] and 'INIT_STREAM' not in tokens[0]: bucket = tokens[0] scope_name = tokens[1] collection_name = tokens[2] index_name = tokens[3] stats_name = tokens[4] keyspace = f'default:{bucket}.{scope_name}.{collection_name}' if keyspace not in list(index_map.keys()): index_map[keyspace] = {} if index_name not in list(index_map[keyspace].keys()): index_map[keyspace][index_name] = {} index_map[keyspace][index_name][stats_name] = val return index_map def parse_get_nodes_response(self, parsed): node = Node() node.uptime = parsed['uptime'] node.memoryFree = parsed['memoryFree'] node.memoryTotal = parsed['memoryTotal'] node.mcdMemoryAllocated = parsed['mcdMemoryAllocated'] node.mcdMemoryReserved = parsed['mcdMemoryReserved'] node.status = parsed['status'] node.hostname = parsed['hostname'] node.clusterCompatibility = parsed['clusterCompatibility'] node.clusterMembership = parsed['clusterMembership'] if 'recoveryType' in parsed: node.recoveryType = parsed['recoveryType'] node.version = parsed['version'] node.curr_items = 0 if 'interestingStats' in parsed and 'curr_items' in parsed['interestingStats']: node.curr_items = parsed['interestingStats']['curr_items'] node.port = parsed["hostname"][parsed["hostname"].rfind(":") + 1:] if CbServer.use_https: str_node_port = CbServer.ssl_port_map.get(str(node.port), str(node.port)) if type(node.port) == int: node.port = int(str_node_port) node.os = parsed['os'] if "services" in parsed: node.services = parsed["services"] if "otpNode" in parsed: node.id = parsed["otpNode"] if "hostname" in parsed: # should work for both: ipv4 and ipv6 node.ip = parsed["hostname"].rsplit(":", 1)[0] # memoryQuota if 'memoryQuota' in parsed: node.memoryQuota = parsed['memoryQuota'] if 'availableStorage' in parsed: availableStorage = parsed['availableStorage'] for key in availableStorage: # let's assume there is only one disk in each noce dict_parsed = parsed['availableStorage'] if 'path' in dict_parsed and 'sizeKBytes' in dict_parsed and 'usagePercent' in dict_parsed: diskStorage = NodeDiskStorage() diskStorage.path = dict_parsed['path'] diskStorage.sizeKBytes = dict_parsed['sizeKBytes'] diskStorage.type = key diskStorage.usagePercent = dict_parsed['usagePercent'] node.availableStorage.append(diskStorage) log.info(diskStorage) if 'storage' in parsed: storage = parsed['storage'] for key in storage: disk_storage_list = storage[key] for dict_parsed in disk_storage_list: if 'path' in dict_parsed and 'state' in dict_parsed and 'quotaMb' in dict_parsed: dataStorage = NodeDataStorage() dataStorage.path = dict_parsed['path'] dataStorage.index_path = dict_parsed.get('index_path', '') dataStorage.quotaMb = dict_parsed['quotaMb'] dataStorage.state = dict_parsed['state'] dataStorage.type = key node.storage.append(dataStorage) # ports":{"proxy":11211,"direct":11210} if "ports" in parsed: ports = parsed["ports"] if "proxy" in ports: node.moxi = ports["proxy"] if "direct" in ports: node.memcached = ports["direct"] if CbServer.use_https: node.memcached = int(CbServer.ssl_port_map.get(str(node.memcached), str(node.memcached))) if "storageTotals" in parsed: storageTotals = parsed["storageTotals"] if storageTotals.get("ram"): if storageTotals["ram"].get("total"): ramKB = storageTotals["ram"]["total"] node.storageTotalRam = ramKB//(1024*1024) if node.mcdMemoryReserved == 0: node.mcdMemoryReserved = node.storageTotalRam if IS_CONTAINER: # the storage total values are more accurate than # mcdMemoryReserved - which is container host memory node.mcdMemoryReserved = node.storageTotalRam * 0.70 return node def parse_get_bucket_response(self, response): parsed = json.loads(response) return self.parse_get_bucket_json(parsed) def parse_get_bucket_json(self, parsed): bucket = Bucket() bucket.name = parsed['name'] bucket.uuid = parsed['uuid'] bucket.type = parsed['bucketType'] if 'proxyPort' in parsed: bucket.port = parsed['proxyPort'] bucket.nodes = list() if 'vBucketServerMap' in parsed: vBucketServerMap = parsed['vBucketServerMap'] serverList = vBucketServerMap['serverList'] bucket.servers.extend(serverList) if "numReplicas" in vBucketServerMap: bucket.numReplicas = vBucketServerMap["numReplicas"] # vBucketMapForward if 'vBucketMapForward' in vBucketServerMap: # let's gather the forward map vBucketMapForward = vBucketServerMap['vBucketMapForward'] counter = 0 for vbucket in vBucketMapForward: # there will be n number of replicas vbucketInfo = vBucket() vbucketInfo.master = serverList[vbucket[0]] if vbucket: for i in range(1, len(vbucket)): if vbucket[i] != -1: vbucketInfo.replica.append(serverList[vbucket[i]]) vbucketInfo.id = counter counter += 1 bucket.forward_map.append(vbucketInfo) vBucketMap = vBucketServerMap['vBucketMap'] counter = 0 for vbucket in vBucketMap: # there will be n number of replicas vbucketInfo = vBucket() vbucketInfo.master = serverList[vbucket[0]] if vbucket: for i in range(1, len(vbucket)): if vbucket[i] != -1: vbucketInfo.replica.append(serverList[vbucket[i]]) vbucketInfo.id = counter counter += 1 bucket.vbuckets.append(vbucketInfo) # now go through each vbucket and populate the info # who is master , who is replica # get the 'storageTotals' log.debug('read {0} vbuckets'.format(len(bucket.vbuckets))) stats = parsed['basicStats'] # vBucketServerMap bucketStats = BucketStats() log.debug('stats:{0}'.format(stats)) bucketStats.opsPerSec = stats['opsPerSec'] bucketStats.itemCount = stats['itemCount'] if bucket.type != "memcached": bucketStats.diskUsed = stats['diskUsed'] bucketStats.memUsed = stats['memUsed'] quota = parsed['quota'] bucketStats.ram = quota['ram'] bucket.stats = bucketStats nodes = parsed['nodes'] for nodeDictionary in nodes: node = Node() node.uptime = nodeDictionary['uptime'] node.memoryFree = nodeDictionary['memoryFree'] node.memoryTotal = nodeDictionary['memoryTotal'] node.mcdMemoryAllocated = nodeDictionary['mcdMemoryAllocated'] node.mcdMemoryReserved = nodeDictionary['mcdMemoryReserved'] node.status = nodeDictionary['status'] node.hostname = nodeDictionary['hostname'] if 'clusterCompatibility' in nodeDictionary: node.clusterCompatibility = nodeDictionary['clusterCompatibility'] if 'clusterMembership' in nodeDictionary: node.clusterCompatibility = nodeDictionary['clusterMembership'] node.version = nodeDictionary['version'] node.os = nodeDictionary['os'] if "ports" in nodeDictionary: ports = nodeDictionary["ports"] if "proxy" in ports: node.moxi = ports["proxy"] if "direct" in ports: node.memcached = ports["direct"] if CbServer.use_https: node.memcached = int(CbServer.ssl_port_map.get(str(node.memcached), str(node.memcached))) if "hostname" in nodeDictionary: value = str(nodeDictionary["hostname"]) node.ip = value[:value.rfind(":")] node.port = int(value[value.rfind(":") + 1:]) if CbServer.use_https: node.port = int(CbServer.ssl_port_map.get(str(node.port), str(node.port))) if "otpNode" in nodeDictionary: node.id = nodeDictionary["otpNode"] bucket.nodes.append(node) return bucket
py
b407b5156f7f17517ba81e349e8f93b5d2fc18b6
#!/usr/bin/env python # -*- coding: utf-8 -*- import psycopg2 import sys import os sys.path.insert(0, f"{os.path.abspath(os.path.join(os.path.abspath(__file__), '../../../'))}") from configparser import ConfigParser path_root = os.path.abspath(os.path.join(os.path.abspath(__file__), "../../../")) def pg_config(filename='database.ini', section='pg_afolu_fe'): filename = f'{path_root}/config/{filename}' # create a parser parser = ConfigParser() # read config file parser.read(filename) # get section, default to postgresql db = {} if parser.has_section(section): params = parser.items(section) for param in params: db[param[0]] = param[1] return db else: raise Exception('Section {0} not found in the {1} file'.format(section, filename)) def pg_connection_str(**kwargs): """ Create string connection for using with pandas read_sql :type kwargs: basestring :param kwargs: set of strings for creating string connection :return: """ # read connection parameters if not kwargs: params = pg_config(**kwargs) else: params = kwargs conn = 'postgresql://{user}:{password}@{host}:{port}/{dbname}'.format(**params) return conn def pg_connection(**kwargs): """ Connect to the PostgreSQL database server """ conn = None try: # read connection parameters if not kwargs: params = pg_config(**kwargs) else: params = kwargs # connect to the PostgreSQL server # print('Connecting to the PostgreSQL database...') conn = psycopg2.connect(**params) except (Exception, psycopg2.DatabaseError) as error: print(error) return conn def get_from_ca_table(ca_id): """ Get data from categoria animal table :return: a1, tc """ conn = pg_connection() with conn as connection: query = """ SELECT coe_cat_animal, temp_conf, rcms, ib FROM categoria_animal WHERE id_categoria_animal = {0} """.format(ca_id) cur = connection.cursor() cur.execute(query) res = cur.fetchall() a1 = res[0][0] tc = res[0][1] rcms = res[0][2] bi = res[0][3] conn.close() return a1, tc, rcms, bi def get_from_cp_table(cp_id): """ Get data from coeficiente de preñez table :return: cp """ conn = pg_connection() with conn as connection: query = """ SELECT coe_prenez FROM coeficiente_prenez WHERE id_coe_prenez = {0} """.format(cp_id) cur = connection.cursor() cur.execute(query) res = cur.fetchall() cp = res[0][0] conn.close() return cp def get_from_grass_type(id_): conn = pg_connection() with conn as connection: query = """ SELECT ed_rumiantes, energia_bruta_pasto, fdn_dieta, fda, enm_rumiantes, ceniza_dieta, pc_dieta FROM variedad_pasto WHERE id_variedad = {0} """.format(id_) cur = connection.cursor() cur.execute(query) res = cur.fetchall() edr: float = res[0][0] ebp: float = res[0][1] fdn: float = res[0][2] fda: float = res[0][3] enm: float = res[0][4] cen: float = res[0][5] pcd: float = res[0][6] conn.close() return edr, ebp, fdn, fda, enm, cen, pcd def get_from_suplement_type(id_): conn = pg_connection() with conn as connection: query = """ SELECT edt_rumiantes, energia_bruta_pasto, fdn_dieta, fda, enm_rumiantes, ceniza_dieta, pc_dieta FROM suplemento WHERE id_suplemento = {0} """.format(id_) cur = connection.cursor() cur.execute(query) res = cur.fetchall() edr: float = res[0][0] ebp: float = res[0][1] fdn: float = res[0][2] fda: float = res[0][3] enm: float = res[0][4] cen: float = res[0][5] pcd: float = res[0][6] conn.close() return edr, ebp, fdn, fda, enm, cen, pcd def get_from_ac_table(ac_id): """ Get data from coeficiente de actividad table :return: ca """ conn = pg_connection() with conn as connection: query = """ SELECT coe_actividad FROM coeficiente_actividad WHERE id_coe_actividad = {0} """.format(ac_id) cur = connection.cursor() cur.execute(query) res = cur.fetchall() ca = res[0][0] conn.close() return ca def get_from_cs_table(id_cs): """ Get data from condición sexual table :return: ca """ conn = pg_connection() with conn as connection: query = """ SELECT coe_cond_sexual FROM condicion_sexual WHERE id_cond_sexual = {0} """.format(id_cs) cur = connection.cursor() cur.execute(query) res = cur.fetchall() fcs = res[0][0] conn.close() return fcs def get_from_pm_table(pm_id): """ Get data from produccion de metano table :return: cp """ conn = pg_connection() with conn as connection: query = """ SELECT bovino_alta_prod, bovino_otras FROM produccion_metano WHERE id = '{0}' """.format(pm_id) cur = connection.cursor() cur.execute(query) res = cur.fetchall() ap: float = res[0][0] bp: float = res[0][1] conn.close() return ap, bp def get_from_awms_table(awms_id): """ Get data from produccion de metano table :return: cp """ conn = pg_connection() with conn as connection: query = """ SELECT alta_prod, otras FROM gestion_residuos WHERE id = '{0}' """.format(awms_id) cur = connection.cursor() cur.execute(query) res = cur.fetchall() ap = res[0][0] bp = res[0][1] conn.close() return ap, bp def main(): db_parameters = pg_config() db_str = pg_connection_str() if __name__ == '__main__': main()
py
b407b56a85f90ec27bb3aabfc5675b9b6d726238
#!/usr/bin/env python3 # # Copyright (c) 2021 Cisco and/or its affiliates. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ''' This module implement Python access to the VPP statistics segment. It accesses the data structures directly in shared memory. VPP uses optimistic locking, so data structures may change underneath us while we are reading. Data is copied out and it's important to spend as little time as possible "holding the lock". Counters are stored in VPP as a two dimensional array. Index by thread and index (typically sw_if_index). Simple counters count only packets, Combined counters count packets and octets. Counters can be accessed in either dimension. stat['/if/rx'] - returns 2D lists stat['/if/rx'][0] - returns counters for all interfaces for thread 0 stat['/if/rx'][0][1] - returns counter for interface 1 on thread 0 stat['/if/rx'][0][1]['packets'] - returns the packet counter for interface 1 on thread 0 stat['/if/rx'][:, 1] - returns the counters for interface 1 on all threads stat['/if/rx'][:, 1].packets() - returns the packet counters for interface 1 on all threads stat['/if/rx'][:, 1].sum_packets() - returns the sum of packet counters for interface 1 on all threads stat['/if/rx-miss'][:, 1].sum() - returns the sum of packet counters for interface 1 on all threads for simple counters ''' import os import socket import array import mmap from struct import Struct import time import unittest import re def recv_fd(sock): '''Get file descriptor for memory map''' fds = array.array("i") # Array of ints _, ancdata, _, _ = sock.recvmsg(0, socket.CMSG_LEN(4)) for cmsg_level, cmsg_type, cmsg_data in ancdata: if cmsg_level == socket.SOL_SOCKET and cmsg_type == socket.SCM_RIGHTS: fds.frombytes(cmsg_data[:len(cmsg_data) - (len(cmsg_data) % fds.itemsize)]) return list(fds)[0] VEC_LEN_FMT = Struct('I') def get_vec_len(stats, vector_offset): '''Equivalent to VPP vec_len()''' return VEC_LEN_FMT.unpack_from(stats.statseg, vector_offset - 8)[0] def get_string(stats, ptr): '''Get a string from a VPP vector''' namevector = ptr - stats.base namevectorlen = get_vec_len(stats, namevector) if namevector + namevectorlen >= stats.size: raise IOError('String overruns stats segment') return stats.statseg[namevector:namevector+namevectorlen-1].decode('ascii') class StatsVector: '''A class representing a VPP vector''' def __init__(self, stats, ptr, fmt): self.vec_start = ptr - stats.base self.vec_len = get_vec_len(stats, ptr - stats.base) self.struct = Struct(fmt) self.fmtlen = len(fmt) self.elementsize = self.struct.size self.statseg = stats.statseg self.stats = stats if self.vec_start + self.vec_len * self.elementsize >= stats.size: raise IOError('Vector overruns stats segment') def __iter__(self): with self.stats.lock: return self.struct.iter_unpack(self.statseg[self.vec_start:self.vec_start + self.elementsize*self.vec_len]) def __getitem__(self, index): if index > self.vec_len: raise IOError('Index beyond end of vector') with self.stats.lock: if self.fmtlen == 1: return self.struct.unpack_from(self.statseg, self.vec_start + (index * self.elementsize))[0] return self.struct.unpack_from(self.statseg, self.vec_start + (index * self.elementsize)) class VPPStats(): '''Main class implementing Python access to the VPP statistics segment''' # pylint: disable=too-many-instance-attributes shared_headerfmt = Struct('QPQQPP') default_socketname = '/run/vpp/stats.sock' def __init__(self, socketname=default_socketname, timeout=10): self.socketname = socketname self.timeout = timeout self.directory = {} self.lock = StatsLock(self) self.connected = False self.size = 0 self.last_epoch = 0 self.error_vectors = 0 self.statseg = 0 def connect(self): '''Connect to stats segment''' if self.connected: return sock = socket.socket(socket.AF_UNIX, socket.SOCK_SEQPACKET) sock.connect(self.socketname) mfd = recv_fd(sock) sock.close() stat_result = os.fstat(mfd) self.statseg = mmap.mmap(mfd, stat_result.st_size, mmap.PROT_READ, mmap.MAP_SHARED) os.close(mfd) self.size = stat_result.st_size if self.version != 2: raise Exception('Incompatbile stat segment version {}' .format(self.version)) self.refresh() self.connected = True def disconnect(self): '''Disconnect from stats segment''' if self.connected: self.statseg.close() self.connected = False @property def version(self): '''Get version of stats segment''' return self.shared_headerfmt.unpack_from(self.statseg)[0] @property def base(self): '''Get base pointer of stats segment''' return self.shared_headerfmt.unpack_from(self.statseg)[1] @property def epoch(self): '''Get current epoch value from stats segment''' return self.shared_headerfmt.unpack_from(self.statseg)[2] @property def in_progress(self): '''Get value of in_progress from stats segment''' return self.shared_headerfmt.unpack_from(self.statseg)[3] @property def directory_vector(self): '''Get pointer of directory vector''' return self.shared_headerfmt.unpack_from(self.statseg)[4] @property def error_vector(self): '''Get pointer of error vector''' return self.shared_headerfmt.unpack_from(self.statseg)[5] elementfmt = 'IQ128s' def refresh(self, blocking=True): '''Refresh directory vector cache (epoch changed)''' directory = {} directory_by_idx = {} while True: try: with self.lock: self.last_epoch = self.epoch for i, direntry in enumerate(StatsVector(self, self.directory_vector, self.elementfmt)): path_raw = direntry[2].find(b'\x00') path = direntry[2][:path_raw].decode('ascii') directory[path] = StatsEntry(direntry[0], direntry[1]) directory_by_idx[i] = path self.directory = directory self.directory_by_idx = directory_by_idx # Cache the error index vectors self.error_vectors = [] for threads in StatsVector(self, self.error_vector, 'P'): self.error_vectors.append(StatsVector(self, threads[0], 'Q')) # Return statement must be outside the lock block to be sure # lock.release is executed return except IOError: if not blocking: raise def __getitem__(self, item, blocking=True): if not self.connected: self.connect() while True: try: if self.last_epoch != self.epoch: self.refresh(blocking) with self.lock: result = self.directory[item].get_counter(self) # Return statement must be outside the lock block to be sure # lock.release is executed return result except IOError: if not blocking: raise def __iter__(self): return iter(self.directory.items()) def set_errors(self, blocking=True): '''Return dictionary of error counters > 0''' if not self.connected: self.connect() errors = {k:v for k, v in self.directory.items() if k.startswith("/err/")} result = {} while True: try: if self.last_epoch != self.epoch: self.refresh(blocking) with self.lock: for k, entry in errors.items(): total = 0 i = entry.value for per_thread in self.error_vectors: total += per_thread[i] if total: result[k] = total return result except IOError: if not blocking: raise def set_errors_str(self, blocking=True): '''Return all errors counters > 0 pretty printed''' error_string = ['ERRORS:'] error_counters = self.set_errors(blocking) for k in sorted(error_counters): error_string.append('{:<60}{:>10}'.format(k, error_counters[k])) return '%s\n' % '\n'.join(error_string) def get_counter(self, name, blocking=True): '''Alternative call to __getitem__''' return self.__getitem__(name, blocking) def get_err_counter(self, name, blocking=True): '''Return a single value (sum of all threads)''' if not self.connected: self.connect() if name.startswith("/err/"): while True: try: if self.last_epoch != self.epoch: self.refresh(blocking) with self.lock: result = sum(self.directory[name].get_counter(self)) # Return statement must be outside the lock block to be sure # lock.release is executed return result except IOError: if not blocking: raise def ls(self, patterns): '''Returns list of counters matching pattern''' # pylint: disable=invalid-name if not self.connected: self.connect() if not isinstance(patterns, list): patterns = [patterns] regex = [re.compile(i) for i in patterns] return [k for k, v in self.directory.items() if any(re.match(pattern, k) for pattern in regex)] def dump(self, counters, blocking=True): '''Given a list of counters return a dictionary of results''' if not self.connected: self.connect() result = {} for cnt in counters: result[cnt] = self.__getitem__(cnt,blocking) return result class StatsLock(): '''Stat segment optimistic locking''' def __init__(self, stats): self.stats = stats self.epoch = 0 def __enter__(self): acquired = self.acquire(blocking=True) assert acquired, "Lock wasn't acquired, but blocking=True" return self def __exit__(self, exc_type=None, exc_value=None, traceback=None): self.release() def acquire(self, blocking=True, timeout=-1): '''Acquire the lock. Await in progress to go false. Record epoch.''' self.epoch = self.stats.epoch if timeout > 0: start = time.monotonic() while self.stats.in_progress: if not blocking: time.sleep(0.01) if timeout > 0: if start + time.monotonic() > timeout: return False return True def release(self): '''Check if data read while locked is valid''' if self.stats.in_progress or self.stats.epoch != self.epoch: raise IOError('Optimistic lock failed, retry') def locked(self): '''Not used''' class StatsCombinedList(list): '''Column slicing for Combined counters list''' def __getitem__(self, item): '''Supports partial numpy style 2d support. Slice by column [:,1]''' if isinstance(item, int): return list.__getitem__(self, item) return CombinedList([row[item[1]] for row in self]) class CombinedList(list): '''Combined Counters 2-dimensional by thread by index of packets/octets''' def packets(self): '''Return column (2nd dimension). Packets for all threads''' return [pair[0] for pair in self] def octets(self): '''Return column (2nd dimension). Octets for all threads''' return [pair[1] for pair in self] def sum_packets(self): '''Return column (2nd dimension). Sum of all packets for all threads''' return sum(self.packets()) def sum_octets(self): '''Return column (2nd dimension). Sum of all octets for all threads''' return sum(self.octets()) class StatsTuple(tuple): '''A Combined vector tuple (packets, octets)''' def __init__(self, data): self.dictionary = {'packets': data[0], 'bytes': data[1]} super().__init__() def __repr__(self): return dict.__repr__(self.dictionary) def __getitem__(self, item): if isinstance(item, int): return tuple.__getitem__(self, item) if item == 'packets': return tuple.__getitem__(self, 0) return tuple.__getitem__(self, 1) class StatsSimpleList(list): '''Simple Counters 2-dimensional by thread by index of packets''' def __getitem__(self, item): '''Supports partial numpy style 2d support. Slice by column [:,1]''' if isinstance(item, int): return list.__getitem__(self, item) return SimpleList([row[item[1]] for row in self]) class SimpleList(list): '''Simple counter''' def sum(self): '''Sum the vector''' return sum(self) class StatsEntry(): '''An individual stats entry''' # pylint: disable=unused-argument,no-self-use def __init__(self, stattype, statvalue): self.type = stattype self.value = statvalue if stattype == 1: self.function = self.scalar elif stattype == 2: self.function = self.simple elif stattype == 3: self.function = self.combined elif stattype == 4: self.function = self.error elif stattype == 5: self.function = self.name elif stattype == 7: self.function = self.symlink else: self.function = self.illegal def illegal(self, stats): '''Invalid or unknown counter type''' return None def scalar(self, stats): '''Scalar counter''' return self.value def simple(self, stats): '''Simple counter''' counter = StatsSimpleList() for threads in StatsVector(stats, self.value, 'P'): clist = [v[0] for v in StatsVector(stats, threads[0], 'Q')] counter.append(clist) return counter def combined(self, stats): '''Combined counter''' counter = StatsCombinedList() for threads in StatsVector(stats, self.value, 'P'): clist = [StatsTuple(cnt) for cnt in StatsVector(stats, threads[0], 'QQ')] counter.append(clist) return counter def error(self, stats): '''Error counter''' counter = SimpleList() for clist in stats.error_vectors: counter.append(clist[self.value]) return counter def name(self, stats): '''Name counter''' counter = [] for name in StatsVector(stats, self.value, 'P'): if name[0]: counter.append(get_string(stats, name[0])) return counter SYMLINK_FMT1 = Struct('II') SYMLINK_FMT2 = Struct('Q') def symlink(self, stats): '''Symlink counter''' b = self.SYMLINK_FMT2.pack(self.value) index1, index2 = self.SYMLINK_FMT1.unpack(b) name = stats.directory_by_idx[index1] return stats[name][:,index2] def get_counter(self, stats): '''Return a list of counters''' if stats: return self.function(stats) class TestStats(unittest.TestCase): '''Basic statseg tests''' def setUp(self): '''Connect to statseg''' self.stat = VPPStats() self.stat.connect() self.profile = cProfile.Profile() self.profile.enable() def tearDown(self): '''Disconnect from statseg''' self.stat.disconnect() profile = Stats(self.profile) profile.strip_dirs() profile.sort_stats('cumtime') profile.print_stats() print("\n--->>>") def test_counters(self): '''Test access to statseg''' print('/err/abf-input-ip4/missed', self.stat['/err/abf-input-ip4/missed']) print('/sys/heartbeat', self.stat['/sys/heartbeat']) print('/if/names', self.stat['/if/names']) print('/if/rx-miss', self.stat['/if/rx-miss']) print('/if/rx-miss', self.stat['/if/rx-miss'][1]) print('/nat44-ed/out2in/slowpath/drops', self.stat['/nat44-ed/out2in/slowpath/drops']) print('Set Errors', self.stat.set_errors()) with self.assertRaises(KeyError): print('NO SUCH COUNTER', self.stat['foobar']) print('/if/rx', self.stat.get_counter('/if/rx')) print('/err/ethernet-input/no error', self.stat.get_err_counter('/err/ethernet-input/no error')) def test_column(self): '''Test column slicing''' print('/if/rx-miss', self.stat['/if/rx-miss']) print('/if/rx', self.stat['/if/rx']) # All interfaces for thread #1 print('/if/rx thread #1', self.stat['/if/rx'][0]) # All interfaces for thread #1 print('/if/rx thread #1, interface #1', self.stat['/if/rx'][0][1]) # All interfaces for thread #1 print('/if/rx if_index #1', self.stat['/if/rx'][:, 1]) print('/if/rx if_index #1 packets', self.stat['/if/rx'][:, 1].packets()) print('/if/rx if_index #1 packets', self.stat['/if/rx'][:, 1].sum_packets()) print('/if/rx if_index #1 packets', self.stat['/if/rx'][:, 1].octets()) print('/if/rx-miss', self.stat['/if/rx-miss']) print('/if/rx-miss if_index #1 packets', self.stat['/if/rx-miss'][:, 1].sum()) print('/if/rx if_index #1 packets', self.stat['/if/rx'][0][1]['packets']) def test_error(self): '''Test the error vector''' print('/err/ethernet-input', self.stat['/err/ethernet-input/no error']) print('/err/nat44-ei-ha/pkts-processed', self.stat['/err/nat44-ei-ha/pkts-processed']) print('/err/ethernet-input', self.stat.get_err_counter('/err/ethernet-input/no error')) print('/err/ethernet-input', self.stat['/err/ethernet-input/no error'].sum()) def test_nat44(self): '''Test the nat counters''' print('/nat44-ei/ha/del-event-recv', self.stat['/nat44-ei/ha/del-event-recv']) print('/err/nat44-ei-ha/pkts-processed', self.stat['/err/nat44-ei-ha/pkts-processed'].sum()) def test_legacy(self): '''Legacy interface''' directory = self.stat.ls(["^/if", "/err/ip4-input", "/sys/node/ip4-input"]) data = self.stat.dump(directory) print(data) print('Looking up sys node') directory = self.stat.ls(["^/sys/node"]) print('Dumping sys node') data = self.stat.dump(directory) print(data) directory = self.stat.ls(["^/foobar"]) data = self.stat.dump(directory) print(data) def test_sys_nodes(self): '''Test /sys/nodes''' counters = self.stat.ls('^/sys/node') print('COUNTERS:', counters) print('/sys/node', self.stat.dump(counters)) print('/net/route/to', self.stat['/net/route/to']) def test_symlink(self): '''Symbolic links''' print('/interface/local0/rx', self.stat['/interfaces/local0/rx']) print('/sys/nodes/unix-epoll-input', self.stat['/nodes/unix-epoll-input/calls']) if __name__ == '__main__': import cProfile from pstats import Stats unittest.main()
py
b407b6caddf969f173fa9b997d00329a53944f72
import sys import os import time import pdb import random import argparse import cProfile, pstats import scipy.io import pickle import configparser import torch import numpy as np sys.path.append("../src") import stats.kernels import stats.svGPFA.svGPFAModelFactory import stats.svGPFA.svEM import plot.svGPFA.plotUtils import utils.svGPFA.initUtils # import utils.svGPFA.miscUtils def main(argv): parser = argparse.ArgumentParser() parser.add_argument("mEstNumber", help="Matlab's estimation number", type=int) parser.add_argument("--deviceName", help="name of device (cpu or cuda)", default="cpu") parser.add_argument("--profile", help="perform profiling", action="store_true") args = parser.parse_args() if args.profile: profile = True else: profile = False mEstNumber = args.mEstNumber deviceName = args.deviceName if not torch.cuda.is_available(): deviceName = "cpu" device = torch.device(deviceName) print("Using {:s}".format(deviceName)) mEstConfig = configparser.ConfigParser() mEstConfig.read("../../matlabCode/scripts/results/{:08d}-pointProcessEstimationParams.ini".format(mEstNumber)) mSimNumber = int(mEstConfig["data"]["simulationNumber"]) indPointsLocsKMSEpsilon = float(mEstConfig["control_variables"]["epsilon"]) ppSimulationFilename = os.path.join(os.path.dirname(__file__), "../../matlabCode/scripts/results/{:08d}-pointProcessSimulation.mat".format(mSimNumber)) initDataFilename = os.path.join(os.path.dirname(__file__), "../../matlabCode/scripts/results/{:08d}-pointProcessInitialConditions.mat".format(mEstNumber)) # save estimated values estimationPrefixUsed = True while estimationPrefixUsed: pEstNumber = random.randint(0, 10**8) estimMetaDataFilename = \ "results/{:08d}_leasSimulation_estimationChol_metaData_{:s}.ini".format(pEstNumber, deviceName) if not os.path.exists(estimMetaDataFilename): estimationPrefixUsed = False modelSaveFilename = \ "results/{:08d}_leasSimulation_estimatedModelChol_{:s}.pickle".format(pEstNumber, deviceName) profilerFilenamePattern = \ "results/{:08d}_leaseSimulation_estimatedModelChol_{:s}.pstats".format(pEstNumber, deviceName) lowerBoundHistFigFilename = \ "figures/{:08d}_leasSimulation_lowerBoundHistChol_{:s}.png".format(pEstNumber, deviceName) mat = scipy.io.loadmat(initDataFilename) nLatents = len(mat['Z0']) nTrials = mat['Z0'][0,0].shape[2] qMu0 = [torch.from_numpy(mat['q_mu0'][(0,k)]).type(torch.DoubleTensor).permute(2,0,1).to(device) for k in range(nLatents)] qSVec0 = [torch.from_numpy(mat['q_sqrt0'][(0,k)]).type(torch.DoubleTensor).permute(2,0,1).to(device) for k in range(nLatents)] qSDiag0 = [torch.from_numpy(mat['q_diag0'][(0,k)]).type(torch.DoubleTensor).permute(2,0,1).to(device) for k in range(nLatents)] Z0 = [torch.from_numpy(mat['Z0'][(k,0)]).type(torch.DoubleTensor).permute(2,0,1).to(device) for k in range(nLatents)] C0 = torch.from_numpy(mat["C0"]).type(torch.DoubleTensor).to(device) b0 = torch.from_numpy(mat["b0"]).type(torch.DoubleTensor).squeeze().to(device) legQuadPoints = torch.from_numpy(mat['ttQuad']).type(torch.DoubleTensor).permute(2, 0, 1).to(device) legQuadWeights = torch.from_numpy(mat['wwQuad']).type(torch.DoubleTensor).permute(2, 0, 1).to(device) # qSigma0[k] \in nTrials x nInd[k] x nInd[k] qSigma0 = utils.svGPFA.initUtils.buildQSigmaFromQSVecAndQSDiag(qSVec=qSVec0, qSDiag=qSDiag0) qSRSigma0 = [[None] for k in range(nLatents)] for k in range(nLatents): nIndPointsK = qSigma0[k].shape[1] qSRSigma0[k] = torch.empty((nTrials, nIndPointsK, nIndPointsK), dtype=torch.double) for r in range(nTrials): qSRSigma0[k][r,:,:] = torch.cholesky(qSigma0[k][r,:,:]) yMat = loadmat(ppSimulationFilename) YNonStacked_tmp = yMat['Y'] nNeurons = YNonStacked_tmp[0,0].shape[0] YNonStacked = [[[] for n in range(nNeurons)] for r in range(nTrials)] for r in range(nTrials): for n in range(nNeurons): spikesTrialNeuron = YNonStacked_tmp[r,0][n,0] if len(spikesTrialNeuron)>0: YNonStacked[r][n] = torch.from_numpy(spikesTrialNeuron[:,0]).type(torch.DoubleTensor).to(device) else: YNonStacked[r][n] = [] kernelNames = mat["kernelNames"] hprs0 = mat["hprs0"] # create kernels kernels = [[None] for k in range(nLatents)] for k in range(nLatents): if np.char.equal(kernelNames[0,k][0], "PeriodicKernel"): kernels[k] = stats.kernels.PeriodicKernel(scale=1.0) elif np.char.equal(kernelNames[0,k][0], "rbfKernel"): kernels[k] = stats.kernels.ExponentialQuadraticKernel(scale=1.0) else: raise ValueError("Invalid kernel name: %s"%(kernelNames[k])) # create initial parameters kernelsParams0 = [[None] for k in range(nLatents)] for k in range(nLatents): if np.char.equal(kernelNames[0,k][0], "PeriodicKernel"): kernelsParams0[k] = torch.tensor([float(hprs0[k,0][0]), float(hprs0[k,0][1])], dtype=torch.double).to(device) elif np.char.equal(kernelNames[0,k][0], "rbfKernel"): kernelsParams0[k] = torch.tensor([float(hprs0[k,0][0])], dtype=torch.double).to(device) else: raise ValueError("Invalid kernel name: %s"%(kernelNames[k])) qUParams0 = {"qMu0": qMu0, "qSRSigma0": qSRSigma0} kmsParams0 = {"kernelsParams0": kernelsParams0, "inducingPointsLocs0": Z0} qKParams0 = {"svPosteriorOnIndPoints": qUParams0, "kernelsMatricesStore": kmsParams0} qHParams0 = {"C0": C0, "d0": b0} initialParams = {"svPosteriorOnLatents": qKParams0, "svEmbedding": qHParams0} quadParams = {"legQuadPoints": legQuadPoints, "legQuadWeights": legQuadWeights} optimParams = {"emMaxIter":50, # "eStepEstimate":True, "eStepMaxIter":100, "eStepTol":1e-3, "eStepLR":1e-3, "eStepLineSearchFn":"strong_wolfe", # "eStepLineSearchFn":"None", "eStepNIterDisplay":1, # "mStepEmbeddingEstimate":True, "mStepEmbeddingMaxIter":100, "mStepEmbeddingTol":1e-3, "mStepEmbeddingLR":1e-3, "mStepEmbeddingLineSearchFn":"strong_wolfe", # "mStepEmbeddingLineSearchFn":"None", "mStepEmbeddingNIterDisplay":1, # "mStepKernelsEstimate":True, "mStepKernelsMaxIter":10, "mStepKernelsTol":1e-3, "mStepKernelsLR":1e-3, "mStepKernelsLineSearchFn":"strong_wolfe", # "mStepKernelsLineSearchFn":"None", "mStepKernelsNIterDisplay":1, "mStepKernelsNIterDisplay":1, # "mStepIndPointsEstimate":True, "mStepIndPointsMaxIter":20, "mStepIndPointsTol":1e-3, "mStepIndPointsLR":1e-4, "mStepIndPointsLineSearchFn":"strong_wolfe", # "mStepIndPointsLineSearchFn":"None", "mStepIndPointsNIterDisplay":1, # "verbose":True } estimConfig = configparser.ConfigParser() estimConfig["data"] = {"mEstNumber": mEstNumber} estimConfig["optim_params"] = optimParams estimConfig["control_params"] = {"indPointsLocsKMSEpsilon": indPointsLocsKMSEpsilon} with open(estimMetaDataFilename, "w") as f: estimConfig.write(f) trialsLengths = yMat["trLen"].astype(np.float64).flatten().tolist() kernelsTypes = [type(kernels[k]).__name__ for k in range(len(kernels))] estimationDataForMatlabFilename = "results/{:08d}_estimationDataForMatlab.mat".format(0) # estimationDataForMatlabFilename = "results/{:08d}_estimationDataForMatlab.mat".format(estResNumber) # utils.svGPFA.miscUtils.saveDataForMatlabEstimations( # qMu0=qMu0, qSVec0=qSVec0, qSDiag0=qSDiag0, # C0=C0, d0=b0, # indPointsLocs0=Z0, # legQuadPoints=legQuadPoints, # legQuadWeights=legQuadWeights, # kernelsTypes=kernelsTypes, # kernelsParams0=kernelsParams0, # spikesTimes=YNonStacked, # indPointsLocsKMSEpsilon=indPointsLocsKMSEpsilon, # trialsLengths=np.array(trialsLengths).reshape(-1,1), # emMaxIter=optimParams["emMaxIter"], # eStepMaxIter=optimParams["eStepMaxIter"], # mStepEmbeddingMaxIter=optimParams["mStepEmbeddingMaxIter"], # mStepKernelsMaxIter=optimParams["mStepKernelsMaxIter"], # mStepIndPointsMaxIter=optimParams["mStepIndPointsMaxIter"], # saveFilename=estimationDataForMatlabFilename) model = stats.svGPFA.svGPFAModelFactory.SVGPFAModelFactory.buildModel( conditionalDist=stats.svGPFA.svGPFAModelFactory.PointProcess, linkFunction=stats.svGPFA.svGPFAModelFactory.ExponentialLink, embeddingType=stats.svGPFA.svGPFAModelFactory.LinearEmbedding, kernels=kernels, ) # start debug code # parametersList = [] # i = 0 # for parameter in model.parameters(): # print("Inside for loop") # print(i, parameter) # parametersList.append(parameter) # print("Outside for loop") # pdb.set_trace() # ned debug code # model.to(device) # maximize lower bound svEM = stats.svGPFA.svEM.SVEM() if profile: pr = cProfile.Profile() pr.enable() tStart = time.time() lowerBoundHist, elapsedTimeHist = \ svEM.maximize(model=model, measurements=YNonStacked, initialParams=initialParams, quadParams=quadParams, optimParams=optimParams, indPointsLocsKMSEpsilon=indPointsLocsKMSEpsilon, ) tElapsed = time.time()-tStart print("Completed maximize in {:.2f} seconds".format(tElapsed)) # start debug code # parametersList = [] # i = 0 # for parameter in model.parameters(): # print("Inside for loop") # print(i, parameter) # parametersList.append(parameter) # i += 1 # print("Outside for loop") # pdb.set_trace() # end debug code if profile: pr.disable() profilerFilename = profilerFilenamePattern.format(optimParams["emMaxIter"]) s = open(profilerFilename, "w") sortby = "cumulative" ps = pstats.Stats(pr, stream=s) ps.strip_dirs().sort_stats(sortby).print_stats() s.close() resultsToSave = {"lowerBoundHist": lowerBoundHist, "elapsedTimeHist": elapsedTimeHist, "model": model} with open(modelSaveFilename, "wb") as f: pickle.dump(resultsToSave, f) # plot lower bound history plot.svGPFA.plotUtils.plotLowerBoundHist(lowerBoundHist=lowerBoundHist, elapsedTimeHist=elapsedTimeHist, figFilename=lowerBoundHistFigFilename) pdb.set_trace() if __name__=="__main__": main(sys.argv)
py
b407b7fa901a4f0b10153591dc2dae3101b500c4
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from google.api_core.gapic_v1 import client_info import mock import pytest from google.cloud.bigquery_storage_v1 import types PROJECT = "my-project" SERVICE_ACCOUNT_PROJECT = "project-from-credentials" @pytest.fixture() def mock_transport(monkeypatch): from google.cloud.bigquery_storage_v1.gapic.transports import ( big_query_read_grpc_transport, ) transport = mock.create_autospec( big_query_read_grpc_transport.BigQueryReadGrpcTransport ) return transport @pytest.fixture() def client_under_test(mock_transport): from google.cloud.bigquery_storage_v1 import client # The mock is detected as a callable. By creating a real callable here, the # mock can still be used to verify RPCs. def transport_callable(credentials=None, default_class=None, address=None): return mock_transport return client.BigQueryReadClient(transport=transport_callable) def test_constructor_w_client_info(mock_transport): from google.cloud.bigquery_storage_v1 import client def transport_callable(credentials=None, default_class=None, address=None): return mock_transport client_under_test = client.BigQueryReadClient( transport=transport_callable, client_info=client_info.ClientInfo( client_library_version="test-client-version" ), ) user_agent = client_under_test._client_info.to_user_agent() assert "test-client-version" in user_agent def test_create_read_session(mock_transport, client_under_test): table = "projects/{}/datasets/{}/tables/{}".format( "data-project-id", "dataset_id", "table_id" ) read_session = types.ReadSession() read_session.table = table client_under_test.create_read_session("projects/other-project", read_session) expected_request = types.CreateReadSessionRequest( parent="projects/other-project", read_session=read_session ) mock_transport.create_read_session.assert_called_once_with( expected_request, metadata=mock.ANY, timeout=mock.ANY ) def test_read_rows(mock_transport, client_under_test): stream_name = "teststream" offset = 0 client_under_test.read_rows(stream_name) expected_request = types.ReadRowsRequest(read_stream=stream_name, offset=offset) mock_transport.create_read_session.read_rows( expected_request, metadata=mock.ANY, timeout=mock.ANY )
py
b407b89e9bef56bee4a01a7e386a27ca9a818741
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.DAG/Sans_12/udhr_Latn.DAG_Sans_12.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
py
b407ba2be571a3fd58e67d147841d27d0f0e53e9
from .bubblesort import bubble_sort from .insertionsort import insertion_sort from .mergesort import merge_sort from .quicksort import quick_sort, test_quick_sort from .selectionsort import selection_sort, test_selection_sort from .doubleselectionsort import double_selection_sort, test_double_selection_sort from .heapsort import heap_sort functions = { "bubble_sort": bubble_sort, "insertion_sort": insertion_sort, "merge_sort": merge_sort, "quick_sort": quick_sort, "selection_sort": selection_sort, "double_selection_sort": double_selection_sort, "heap_sort": heap_sort, }
py
b407bb64c9ed1b87bb22fbd0e73f758333c6512f
#!/usr/bin/python3 from pyrob.api import * @task def task_2_2(): move_down() for i in range(5): move_right() fill_cell() move_right() move_down() fill_cell() move_down() move_left() fill_cell() move_up() fill_cell() move_left() fill_cell() move_up() if i != 4: move_right(4) if __name__ == '__main__': run_tasks()
py
b407bc15dd42850061d41c0f8e22a7bffb84fcc2
_base_ = [ '../../_base_/models/slowfast_r50.py', '../../_base_/default_runtime.py' ] dataset_type = 'RawframeDataset' data_root = 'data/kinetics400/rawframes_train' data_root_val = 'data/kinetics400/rawframes_val' ann_file_train = 'data/kinetics400/kinetics400_train_list_rawframes.txt' ann_file_val = 'data/kinetics400/kinetics400_val_list_rawframes.txt' ann_file_test = 'data/kinetics400/kinetics400_val_list_rawframes.txt' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False) train_pipeline = [ dict(type='SampleFrames', clip_len=32, frame_interval=2, num_clips=1), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='RandomResizedCrop'), dict(type='Resize', scale=(224, 224), keep_ratio=False), dict(type='Flip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label']) ] val_pipeline = [ dict( type='SampleFrames', clip_len=32, frame_interval=2, num_clips=1, test_mode=True), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='CenterCrop', crop_size=224), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] test_pipeline = [ dict( type='SampleFrames', clip_len=32, frame_interval=2, num_clips=10, test_mode=True), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='ThreeCrop', crop_size=256), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] data = dict( videos_per_gpu=8, workers_per_gpu=4, train=dict( type=dataset_type, ann_file=ann_file_train, data_prefix=data_root, pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=ann_file_val, data_prefix=data_root_val, pipeline=val_pipeline), test=dict( type=dataset_type, ann_file=ann_file_test, data_prefix=data_root_val, pipeline=test_pipeline)) evaluation = dict( interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy']) # optimizer optimizer = dict( type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001) # this lr is used for 8 gpus optimizer_config = dict(grad_clip=dict(max_norm=40, norm_type=2)) # learning policy lr_config = dict( policy='CosineAnnealing', min_lr=0, warmup='linear', warmup_by_epoch=True, warmup_iters=34) total_epochs = 256 # precise bn precise_bn = dict(num_iters=200, interval=1) # runtime settings checkpoint_config = dict(interval=4) work_dir = './work_dirs/slowfast_prebn_r50_4x16x1_256e_kinetics400_rgb' find_unused_parameters = False
py
b407bd2431ce89ef09eb6447c2871efde891a33f
''' Provides functionality for converting a given list of tokens (words) into numbers, according to the given vocabulary. ''' import numbers import numpy as np from .create_vocab import extend_vocab, VocabBuilder from .word_generator import WordGenerator from .global_variables import SPECIAL_TOKENS from sklearn.model_selection import train_test_split from copy import deepcopy class SentenceTokenizer(): """ Create numpy array of tokens corresponding to input sentences. The vocabulary can include Unicode tokens. """ def __init__(self, vocabulary, fixed_length, custom_wordgen=None, ignore_sentences_with_only_custom=False, masking_value=0, unknown_value=1): """ Needs a dictionary as input for the vocabulary. """ if len(vocabulary) > np.iinfo('uint16').max: raise ValueError('Dictionary is too big ({} tokens) for the numpy ' 'datatypes used (max limit={}). Reduce vocabulary' ' or adjust code accordingly!' .format(len(vocabulary), np.iinfo('uint16').max)) # Shouldn't be able to modify the given vocabulary self.vocabulary = deepcopy(vocabulary) self.fixed_length = fixed_length self.ignore_sentences_with_only_custom = ignore_sentences_with_only_custom self.masking_value = masking_value self.unknown_value = unknown_value # Initialized with an empty stream of sentences that must then be fed # to the generator at a later point for reusability. # A custom word generator can be used for domain-specific filtering etc if custom_wordgen is not None: assert custom_wordgen.stream is None self.wordgen = custom_wordgen self.uses_custom_wordgen = True else: self.wordgen = WordGenerator(None, allow_unicode_text=True, ignore_emojis=False, remove_variation_selectors=True, break_replacement=True) self.uses_custom_wordgen = False def tokenize_sentences(self, sentences, reset_stats=True, max_sentences=None): """ Converts a given list of sentences into a numpy array according to its vocabulary. # Arguments: sentences: List of sentences to be tokenized. reset_stats: Whether the word generator's stats should be reset. max_sentences: Maximum length of sentences. Must be set if the length cannot be inferred from the input. # Returns: Numpy array of the tokenization sentences with masking, infos, stats # Raises: ValueError: When maximum length is not set and cannot be inferred. """ if max_sentences is None and not hasattr(sentences, '__len__'): raise ValueError('Either you must provide an array with a length' 'attribute (e.g. a list) or specify the maximum ' 'length yourself using `max_sentences`!') n_sentences = (max_sentences if max_sentences is not None else len(sentences)) if self.masking_value == 0: tokens = np.zeros((n_sentences, self.fixed_length), dtype='uint16') else: tokens = (np.ones((n_sentences, self.fixed_length), dtype='uint16') * self.masking_value) if reset_stats: self.wordgen.reset_stats() # With a custom word generator info can be extracted from each # sentence (e.g. labels) infos = [] # Returns words as strings and then map them to vocabulary self.wordgen.stream = sentences next_insert = 0 n_ignored_unknowns = 0 for s_words, s_info in self.wordgen: s_tokens = self.find_tokens(s_words) if (self.ignore_sentences_with_only_custom and np.all([True if t < len(SPECIAL_TOKENS) else False for t in s_tokens])): n_ignored_unknowns += 1 continue if len(s_tokens) > self.fixed_length: s_tokens = s_tokens[:self.fixed_length] tokens[next_insert, :len(s_tokens)] = s_tokens infos.append(s_info) next_insert += 1 # For standard word generators all sentences should be tokenized # this is not necessarily the case for custom wordgenerators as they # may filter the sentences etc. if not self.uses_custom_wordgen and not self.ignore_sentences_with_only_custom: assert len(sentences) == next_insert else: # adjust based on actual tokens received tokens = tokens[:next_insert] infos = infos[:next_insert] return tokens, infos, self.wordgen.stats def find_tokens(self, words): assert len(words) > 0 tokens = [] for w in words: try: tokens.append(self.vocabulary[w]) except KeyError: tokens.append(self.unknown_value) return tokens def split_train_val_test(self, sentences, info_dicts, split_parameter=[0.7, 0.1, 0.2], extend_with=0): """ Splits given sentences into three different datasets: training, validation and testing. # Arguments: sentences: The sentences to be tokenized. info_dicts: A list of dicts that contain information about each sentence (e.g. a label). split_parameter: A parameter for deciding the splits between the three different datasets. If instead of being passed three values, three lists are passed, then these will be used to specify which observation belong to which dataset. extend_with: An optional parameter. If > 0 then this is the number of tokens added to the vocabulary from this dataset. The expanded vocab will be generated using only the training set, but is applied to all three sets. # Returns: List of three lists of tokenized sentences, List of three corresponding dictionaries with information, How many tokens have been added to the vocab. Make sure to extend the embedding layer of the model accordingly. """ # If passed three lists, use those directly if isinstance(split_parameter, list) and \ all(isinstance(x, list) for x in split_parameter) and \ len(split_parameter) == 3: # Helper function to verify provided indices are numbers in range def verify_indices(inds): return list([i for i in inds if isinstance(i, numbers.Number) and i < len(sentences)]) ind_train = verify_indices(split_parameter[0]) ind_val = verify_indices(split_parameter[1]) ind_test = verify_indices(split_parameter[2]) else: # Split sentences and dicts ind = list(range(len(sentences))) ind_train, ind_test = train_test_split(ind, test_size=split_parameter[2]) ind_train, ind_val = train_test_split(ind_train, test_size=split_parameter[1]) # Map indices to data train = np.array([sentences[x] for x in ind_train]) test = np.array([sentences[x] for x in ind_test]) val = np.array([sentences[x] for x in ind_val]) info_train = np.array([info_dicts[x] for x in ind_train]) info_test = np.array([info_dicts[x] for x in ind_test]) info_val = np.array([info_dicts[x] for x in ind_val]) added = 0 # Extend vocabulary with training set tokens if extend_with > 0: wg = WordGenerator(train) vb = VocabBuilder(wg) vb.count_all_words() added = extend_vocab(self.vocabulary, vb, max_tokens=extend_with) # Wrap results result = [self.tokenize_sentences(s)[0] for s in [train, val, test]] result_infos = [info_train, info_val, info_test] return result, result_infos, added def to_sentence(self, sentence_idx): """ Converts a tokenized sentence back to a list of words. # Arguments: sentence_idx: List of numbers, representing a tokenized sentence given the current vocabulary. # Returns: String created by converting all numbers back to words and joined together with spaces. """ # Have to recalculate the mappings in case the vocab was extended. ind_to_word = {ind: word for word, ind in self.vocabulary.items()} sentence_as_list = [ind_to_word[x] for x in sentence_idx] cleaned_list = [x for x in sentence_as_list if x != 'CUSTOM_MASK'] return " ".join(cleaned_list) def coverage(dataset, verbose=False): """ Computes the percentage of words in a given dataset that are unknown. # Arguments: dataset: Tokenized dataset to be checked. verbose: Verbosity flag. # Returns: Percentage of unknown tokens. """ n_total = np.count_nonzero(dataset) n_unknown = np.sum(dataset == 1) coverage = 1.0 - float(n_unknown) / n_total if verbose: print("Unknown words: {}".format(n_unknown)) print("Total words: {}".format(n_total)) print("Coverage: {}".format(coverage)) return coverage
py
b407bdb29f086c017ac36aa1f9a89e9057649946
""" This file offers the methods to automatically retrieve the graph Candidatus Falkowbacteria bacterium CG1_02_37_44. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def CandidatusFalkowbacteriaBacteriumCg1023744( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Candidatus Falkowbacteria bacterium CG1_02_37_44 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Candidatus Falkowbacteria bacterium CG1_02_37_44 graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="CandidatusFalkowbacteriaBacteriumCg1023744", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
py
b407bdcd60485365a9c9a7fcbdd3d986d1c09d7f
from scinet3.model import Document class Recommender(object): """ Recommendation engine that handles the recommending stuff """ def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) if not Document.all_docs_loaded: print "loading docs from db..." Document.load_all_from_db() def recommend_keywords(self, *args, **kwargs): raise NotImplementedError def recommend_documents(self, *args, **kwargs): raise NotImplementedError def associated_keywords_from_docs(self, docs, exclude_kws = None): """ get associated keywoeds from documents. Param: docs: list of Document exclude: set of Keyword Return: list of Keyword """ if not exclude_kws: exclude_kws = set() else: exclude_kws = set(exclude_kws) return list(set([kw for doc in docs for kw in doc['keywords'] if kw not in exclude_kws]))
py
b407bdf6a55fa00bde95c3ae77e3aa19daf10f35
#!/usr/bin/env python import unittest from framework import VppTestCase, VppTestRunner from util import ppp from scapy.packet import Raw from scapy.layers.inet import IP, UDP from vpp_papi_provider import SYSLOG_SEVERITY from syslog_rfc5424_parser import SyslogMessage, ParseError from syslog_rfc5424_parser.constants import SyslogFacility, SyslogSeverity class TestSyslog(VppTestCase): """ Syslog Protocol Test Cases """ @classmethod def setUpClass(cls): super(TestSyslog, cls).setUpClass() try: cls.create_pg_interfaces(range(1)) cls.pg0.admin_up() cls.pg0.config_ip4() cls.pg0.resolve_arp() except Exception: super(TestSyslog, cls).tearDownClass() raise def syslog_generate(self, facility, severity, appname, msgid, sd=None, msg=None): """ Generate syslog message :param facility: facility value :param severity: severity level :param appname: application name that originate message :param msgid: message indetifier :param sd: structured data (optional) :param msg: free-form message (optional) """ facility_str = ['kernel', 'user-level', 'mail-system', 'system-daemons', 'security-authorization', 'syslogd', 'line-printer', 'network-news', 'uucp', 'clock-daemon', '', 'ftp-daemon', 'ntp-subsystem', 'log-audit', 'log-alert', '', 'local0', 'local1', 'local2', 'local3', 'local4', 'local5', 'local6', 'local7'] severity_str = ['emergency', 'alert', 'critical', 'error', 'warning', 'notice', 'informational', 'debug'] cli_str = "test syslog %s %s %s %s" % (facility_str[facility], severity_str[severity], appname, msgid) if sd is not None: for sd_id, sd_params in sd.items(): cli_str += " sd-id %s" % (sd_id) for name, value in sd_params.items(): cli_str += " sd-param %s %s" % (name, value) if msg is not None: cli_str += " %s" % (msg) self.vapi.cli(cli_str) def syslog_verify(self, data, facility, severity, appname, msgid, sd=None, msg=None): """ Verify syslog message :param data: syslog message :param facility: facility value :param severity: severity level :param appname: application name that originate message :param msgid: message indetifier :param sd: structured data (optional) :param msg: free-form message (optional) """ message = data.decode('utf-8') if sd is None: sd = {} try: message = SyslogMessage.parse(message) self.assertEqual(message.facility, facility) self.assertEqual(message.severity, severity) self.assertEqual(message.appname, appname) self.assertEqual(message.msgid, msgid) self.assertEqual(message.msg, msg) self.assertEqual(message.sd, sd) self.assertEqual(message.version, 1) self.assertEqual(message.hostname, self.pg0.local_ip4) except ParseError as e: self.logger.error(e) def test_syslog(self): """ Syslog Protocol test """ self.vapi.syslog_set_sender(self.pg0.remote_ip4n, self.pg0.local_ip4n) config = self.vapi.syslog_get_sender() self.assertEqual(str(config.collector_address), self.pg0.remote_ip4) self.assertEqual(config.collector_port, 514) self.assertEqual(str(config.src_address), self.pg0.local_ip4) self.assertEqual(config.vrf_id, 0) self.assertEqual(config.max_msg_size, 480) appname = 'test' msgid = 'testMsg' msg = 'this is message' sd1 = {'exampleSDID@32473': {'iut': '3', 'eventSource': 'App', 'eventID': '1011'}} sd2 = {'exampleSDID@32473': {'iut': '3', 'eventSource': 'App', 'eventID': '1011'}, 'examplePriority@32473': {'class': 'high'}} self.pg_enable_capture(self.pg_interfaces) self.syslog_generate(SyslogFacility.local7, SyslogSeverity.info, appname, msgid, None, msg) capture = self.pg0.get_capture(1) try: self.assertEqual(capture[0][IP].src, self.pg0.local_ip4) self.assertEqual(capture[0][IP].dst, self.pg0.remote_ip4) self.assertEqual(capture[0][UDP].dport, 514) self.assert_packet_checksums_valid(capture[0], False) except: self.logger.error(ppp("invalid packet:", capture[0])) raise self.syslog_verify(capture[0][Raw].load, SyslogFacility.local7, SyslogSeverity.info, appname, msgid, None, msg) self.pg_enable_capture(self.pg_interfaces) self.vapi.syslog_set_filter(SYSLOG_SEVERITY.WARN) filter = self.vapi.syslog_get_filter() self.assertEqual(filter.severity, SYSLOG_SEVERITY.WARN) self.syslog_generate(SyslogFacility.local7, SyslogSeverity.info, appname, msgid, None, msg) self.pg0.assert_nothing_captured() self.pg_enable_capture(self.pg_interfaces) self.syslog_generate(SyslogFacility.local6, SyslogSeverity.warning, appname, msgid, sd1, msg) capture = self.pg0.get_capture(1) self.syslog_verify(capture[0][Raw].load, SyslogFacility.local6, SyslogSeverity.warning, appname, msgid, sd1, msg) self.vapi.syslog_set_sender(self.pg0.remote_ip4n, self.pg0.local_ip4n, collector_port=12345) config = self.vapi.syslog_get_sender() self.assertEqual(config.collector_port, 12345) self.pg_enable_capture(self.pg_interfaces) self.syslog_generate(SyslogFacility.local5, SyslogSeverity.err, appname, msgid, sd2, None) capture = self.pg0.get_capture(1) try: self.assertEqual(capture[0][UDP].dport, 12345) except: self.logger.error(ppp("invalid packet:", capture[0])) raise self.syslog_verify(capture[0][Raw].load, SyslogFacility.local5, SyslogSeverity.err, appname, msgid, sd2, None) if __name__ == '__main__': unittest.main(testRunner=VppTestRunner)
py
b407be651f0a4b6e242f938d0dc1f8e32d9e82dd
class Data(): def shuffle_split_data(self, X, y, train_size=0.7): # X: input data, y:labels, 70% of data for training import numpy as np arr_rand = np.random.rand(X.shape[0]) # shuffles data split = arr_rand < np.percentile(arr_rand, train_size * 100) # takes 70% of data X_train = np.array(X[split]).T # to reshape the data as required for model y_train = np.array(y[split]).ravel() # ( m , ) instead of ( m, 1 ) X_test = np.array(X[~split]).T # takes the remaining 30% for testing y_test = np.array(y[~split]).ravel() return X_train, y_train, X_test, y_test def load_data(self, path, label): import pandas as pd data = pd.read_csv(path) # read the csv data file Y = data[[label]] # getting data labels data.drop([label], inplace=True, axis=1) # dropping the label column X = data return self.shuffle_split_data(X, Y)
py
b407bec18d0384bfb588ea6a45f6c8a385ed9fa2
""" The MIT License (MIT) Copyright (c) 2018 Victor Axelsson Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER D """ import numpy as np class Wordlist: def getWordlist(self, data): items = set() for row in data: for col in row: items.add(col) wordlist = dict() reversedList = [] counter = 0 for item in items: wordlist[item] = counter reversedList.append(item) counter += 1 return items, wordlist, reversedList def getWordlistFromGraph(self, data): allItems = {} for k in data: allItems[k] = 1 for innerKey in data[k]: allItems[innerKey] = 1 items = np.array(list(allItems.keys())) reversedList = [] itemsKeys = {} for i in range(len(items)): itemsKeys[items[i]] = i reversedList.append(items[i]) return items, itemsKeys, reversedList
py
b407becba193d46cbc6e48754b5d98f36922a3ec
import numpy import rospy import time from openai_ros import robot_gazebo_env from std_msgs.msg import Float64 from sensor_msgs.msg import JointState from sensor_msgs.msg import Image from sensor_msgs.msg import LaserScan from sensor_msgs.msg import PointCloud2 from nav_msgs.msg import Odometry from geometry_msgs.msg import Twist from openai_ros.openai_ros_common import ROSLauncher class TurtleBot2Env(robot_gazebo_env.RobotGazeboEnv): """Superclass for all CubeSingleDisk environments. """ def __init__(self, ros_ws_abspath): """ Initializes a new TurtleBot2Env environment. Turtlebot2 doesnt use controller_manager, therefore we wont reset the controllers in the standard fashion. For the moment we wont reset them. To check any topic we need to have the simulations running, we need to do two things: 1) Unpause the simulation: without that th stream of data doesnt flow. This is for simulations that are pause for whatever the reason 2) If the simulation was running already for some reason, we need to reset the controlers. This has to do with the fact that some plugins with tf, dont understand the reset of the simulation and need to be reseted to work properly. The Sensors: The sensors accesible are the ones considered usefull for AI learning. Sensor Topic List: * /odom : Odometry readings of the Base of the Robot * /camera/depth/image_raw: 2d Depth image of the depth sensor. * /camera/depth/points: Pointcloud sensor readings * /camera/rgb/image_raw: RGB camera * /kobuki/laser/scan: Laser Readings Actuators Topic List: /cmd_vel, Args: """ rospy.logdebug("Start TurtleBot2Env INIT...") # Variables that we give through the constructor. # None in this case # We launch the ROSlaunch that spawns the robot into the world ROSLauncher(rospackage_name="turtlebot_gazebo", launch_file_name="put_robot_in_world.launch", ros_ws_abspath=ros_ws_abspath) # Internal Vars # Doesnt have any accesibles self.controllers_list = [] # It doesnt use namespace self.robot_name_space = "" # We launch the init function of the Parent Class robot_gazebo_env.RobotGazeboEnv super(TurtleBot2Env, self).__init__(controllers_list=self.controllers_list, robot_name_space=self.robot_name_space, reset_controls=False, start_init_physics_parameters=False, reset_world_or_sim="WORLD") self.gazebo.unpauseSim() #self.controllers_object.reset_controllers() self._check_all_sensors_ready() # We Start all the ROS related Subscribers and publishers rospy.Subscriber("/odom", Odometry, self._odom_callback) #rospy.Subscriber("/camera/depth/image_raw", Image, self._camera_depth_image_raw_callback) #rospy.Subscriber("/camera/depth/points", PointCloud2, self._camera_depth_points_callback) #rospy.Subscriber("/camera/rgb/image_raw", Image, self._camera_rgb_image_raw_callback) rospy.Subscriber("/kobuki/laser/scan", LaserScan, self._laser_scan_callback) self._cmd_vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=1) self._check_publishers_connection() self.gazebo.pauseSim() rospy.logdebug("Finished TurtleBot2Env INIT...") # Methods needed by the RobotGazeboEnv # ---------------------------- def _check_all_systems_ready(self): """ Checks that all the sensors, publishers and other simulation systems are operational. """ self._check_all_sensors_ready() return True # CubeSingleDiskEnv virtual methods # ---------------------------- def _check_all_sensors_ready(self): rospy.logdebug("START ALL SENSORS READY") self._check_odom_ready() # We dont need to check for the moment, takes too long #self._check_camera_depth_image_raw_ready() #self._check_camera_depth_points_ready() #self._check_camera_rgb_image_raw_ready() self._check_laser_scan_ready() rospy.logdebug("ALL SENSORS READY") def _check_odom_ready(self): self.odom = None rospy.logdebug("Waiting for /odom to be READY...") while self.odom is None and not rospy.is_shutdown(): try: self.odom = rospy.wait_for_message("/odom", Odometry, timeout=5.0) rospy.logdebug("Current /odom READY=>") except: rospy.logerr("Current /odom not ready yet, retrying for getting odom") return self.odom def _check_camera_depth_image_raw_ready(self): self.camera_depth_image_raw = None rospy.logdebug("Waiting for /camera/depth/image_raw to be READY...") while self.camera_depth_image_raw is None and not rospy.is_shutdown(): try: self.camera_depth_image_raw = rospy.wait_for_message("/camera/depth/image_raw", Image, timeout=5.0) rospy.logdebug("Current /camera/depth/image_raw READY=>") except: rospy.logerr("Current /camera/depth/image_raw not ready yet, retrying for getting camera_depth_image_raw") return self.camera_depth_image_raw def _check_camera_depth_points_ready(self): self.camera_depth_points = None rospy.logdebug("Waiting for /camera/depth/points to be READY...") while self.camera_depth_points is None and not rospy.is_shutdown(): try: self.camera_depth_points = rospy.wait_for_message("/camera/depth/points", PointCloud2, timeout=10.0) rospy.logdebug("Current /camera/depth/points READY=>") except: rospy.logerr("Current /camera/depth/points not ready yet, retrying for getting camera_depth_points") return self.camera_depth_points def _check_camera_rgb_image_raw_ready(self): self.camera_rgb_image_raw = None rospy.logdebug("Waiting for /camera/rgb/image_raw to be READY...") while self.camera_rgb_image_raw is None and not rospy.is_shutdown(): try: self.camera_rgb_image_raw = rospy.wait_for_message("/camera/rgb/image_raw", Image, timeout=5.0) rospy.logdebug("Current /camera/rgb/image_raw READY=>") except: rospy.logerr("Current /camera/rgb/image_raw not ready yet, retrying for getting camera_rgb_image_raw") return self.camera_rgb_image_raw def _check_laser_scan_ready(self): self.laser_scan = None rospy.logdebug("Waiting for /kobuki/laser/scan to be READY...") while self.laser_scan is None and not rospy.is_shutdown(): try: self.laser_scan = rospy.wait_for_message("/kobuki/laser/scan", LaserScan, timeout=5.0) rospy.logdebug("Current /kobuki/laser/scan READY=>") except: rospy.logerr("Current /kobuki/laser/scan not ready yet, retrying for getting laser_scan") return self.laser_scan def _odom_callback(self, data): self.odom = data def _camera_depth_image_raw_callback(self, data): self.camera_depth_image_raw = data def _camera_depth_points_callback(self, data): self.camera_depth_points = data def _camera_rgb_image_raw_callback(self, data): self.camera_rgb_image_raw = data def _laser_scan_callback(self, data): self.laser_scan = data def _check_publishers_connection(self): """ Checks that all the publishers are working :return: """ rate = rospy.Rate(10) # 10hz while self._cmd_vel_pub.get_num_connections() == 0 and not rospy.is_shutdown(): rospy.logdebug("No susbribers to _cmd_vel_pub yet so we wait and try again") try: rate.sleep() except rospy.ROSInterruptException: # This is to avoid error when world is rested, time when backwards. pass rospy.logdebug("_cmd_vel_pub Publisher Connected") rospy.logdebug("All Publishers READY") # Methods that the TrainingEnvironment will need to define here as virtual # because they will be used in RobotGazeboEnv GrandParentClass and defined in the # TrainingEnvironment. # ---------------------------- def _set_init_pose(self): """Sets the Robot in its init pose """ raise NotImplementedError() def _init_env_variables(self): """Inits variables needed to be initialised each time we reset at the start of an episode. """ raise NotImplementedError() def _compute_reward(self, observations, done): """Calculates the reward to give based on the observations given. """ raise NotImplementedError() def _set_action(self, action): """Applies the given action to the simulation. """ raise NotImplementedError() def _get_obs(self): raise NotImplementedError() def _is_done(self, observations): """Checks if episode done based on observations given. """ raise NotImplementedError() # Methods that the TrainingEnvironment will need. # ---------------------------- def move_base(self, linear_speed, angular_speed, epsilon=0.05, update_rate=10, min_laser_distance=-1): """ It will move the base based on the linear and angular speeds given. It will wait untill those twists are achived reading from the odometry topic. :param linear_speed: Speed in the X axis of the robot base frame :param angular_speed: Speed of the angular turning of the robot base frame :param epsilon: Acceptable difference between the speed asked and the odometry readings :param update_rate: Rate at which we check the odometry. :return: """ cmd_vel_value = Twist() cmd_vel_value.linear.x = linear_speed cmd_vel_value.angular.z = angular_speed rospy.logdebug("TurtleBot2 Base Twist Cmd>>" + str(cmd_vel_value)) self._check_publishers_connection() self._cmd_vel_pub.publish(cmd_vel_value) time.sleep(0.2) #time.sleep(0.02) """ self.wait_until_twist_achieved(cmd_vel_value, epsilon, update_rate, min_laser_distance) """ def wait_until_twist_achieved(self, cmd_vel_value, epsilon, update_rate, min_laser_distance=-1): """ We wait for the cmd_vel twist given to be reached by the robot reading from the odometry. :param cmd_vel_value: Twist we want to wait to reach. :param epsilon: Error acceptable in odometry readings. :param update_rate: Rate at which we check the odometry. :return: """ rospy.logwarn("START wait_until_twist_achieved...") rate = rospy.Rate(update_rate) start_wait_time = rospy.get_rostime().to_sec() end_wait_time = 0.0 epsilon = 0.05 rospy.logdebug("Desired Twist Cmd>>" + str(cmd_vel_value)) rospy.logdebug("epsilon>>" + str(epsilon)) linear_speed = cmd_vel_value.linear.x angular_speed = cmd_vel_value.angular.z linear_speed_plus = linear_speed + epsilon linear_speed_minus = linear_speed - epsilon angular_speed_plus = angular_speed + epsilon angular_speed_minus = angular_speed - epsilon while not rospy.is_shutdown(): crashed_into_something = self.has_crashed(min_laser_distance) current_odometry = self._check_odom_ready() odom_linear_vel = current_odometry.twist.twist.linear.x odom_angular_vel = current_odometry.twist.twist.angular.z rospy.logdebug("Linear VEL=" + str(odom_linear_vel) + ", ?RANGE=[" + str(linear_speed_minus) + "," + str(linear_speed_plus)+"]") rospy.logdebug("Angular VEL=" + str(odom_angular_vel) + ", ?RANGE=[" + str(angular_speed_minus) + "," + str(angular_speed_plus)+"]") linear_vel_are_close = (odom_linear_vel <= linear_speed_plus) and (odom_linear_vel > linear_speed_minus) angular_vel_are_close = (odom_angular_vel <= angular_speed_plus) and (odom_angular_vel > angular_speed_minus) if linear_vel_are_close and angular_vel_are_close: rospy.logwarn("Reached Velocity!") end_wait_time = rospy.get_rostime().to_sec() break if crashed_into_something: rospy.logerr("TurtleBot has crashed, stopping movement!") break rospy.logwarn("Not there yet, keep waiting...") rate.sleep() delta_time = end_wait_time- start_wait_time rospy.logdebug("[Wait Time=" + str(delta_time)+"]") rospy.logwarn("END wait_until_twist_achieved...") return delta_time def has_crashed(self, min_laser_distance): """ It states based on the laser scan if the robot has crashed or not. Crashed means that the minimum laser reading is lower than the min_laser_distance value given. If min_laser_distance == -1, it returns always false, because its the way to deactivate this check. """ robot_has_crashed = False if min_laser_distance != -1: laser_data = self.get_laser_scan() for i, item in enumerate(laser_data.ranges): if item == float ('Inf') or numpy.isinf(item): pass elif numpy.isnan(item): pass else: # Has a Non Infinite or Nan Value if (item < min_laser_distance): rospy.logerr("TurtleBot HAS CRASHED >>> item=" + str(item) + "< " + str(min_laser_distance)) robot_has_crashed = True break return robot_has_crashed def get_odom(self): return self.odom def get_camera_depth_image_raw(self): return self.camera_depth_image_raw def get_camera_depth_points(self): return self.camera_depth_points def get_camera_rgb_image_raw(self): return self.camera_rgb_image_raw def get_laser_scan(self): return self.laser_scan def reinit_sensors(self): """ This method is for the tasks so that when reseting the episode the sensors values are forced to be updated with the real data and """
py
b407bef0e724709308b6eb2a4e53ef955d42ed6d
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright European Organization for Nuclear Research (CERN) since 2012 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Run this once to set up the database. # PYTHONPATH=/opt/rucio/.venv/lib/python2.7/site-packages/rucio python tools/bootstrap.py # # Verify for default SQLite: # for i in `sqlite3 /tmp/rucio.db ".tables"`; do echo $i:; sqlite3 /tmp/rucio.db "select * from $i"; echo; done import sys import os.path base_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(base_path) os.chdir(base_path) from rucio.db.sqla.util import (build_database, create_base_vo, create_root_account) # noqa: E402 if __name__ == '__main__': build_database() create_base_vo() create_root_account()
py
b407bf060f4432cbb32dcfc79308b9572be80a1b
""" Asynchronous Shared-Memory Scheduler for Dask Graphs. This scheduler coordinates several workers to execute tasks in a dask graph in parallel. It depends on a ``concurrent.futures.Executor`` and a corresponding Queue for worker-to-scheduler communication. It tries to execute tasks in an order which maintains a small memory footprint throughout execution. It does this by running tasks that allow us to release data resources. Task Selection Policy ===================== When we complete a task we add more data in to our set of available data; this new data makes new tasks available. We preferentially choose tasks that were just made available in a last-in-first-out fashion. We implement this as a simple stack. This results in more depth-first rather than breadth first behavior which encourages us to process batches of data to completion before starting in on new data when possible. When the addition of new data readies multiple tasks simultaneously we add tasks to the stack in sorted order so that tasks with greater keynames are run first. This can be handy to break ties in a predictable fashion. State ===== Many functions pass around a ``state`` variable that holds the current state of the computation. This variable consists of several other dictionaries and sets, explained below. Constant state -------------- 1. dependencies: {x: [a, b ,c]} a,b,c, must be run before x 2. dependents: {a: [x, y]} a must run before x or y Changing state -------------- ### Data 1. cache: available concrete data. {key: actual-data} 2. released: data that we've seen, used, and released because it is no longer needed ### Jobs 1. ready: A fifo stack of ready-to-run tasks 2. running: A set of tasks currently in execution 3. finished: A set of finished tasks 4. waiting: which tasks are still waiting on others :: {key: {keys}} Real-time equivalent of dependencies 5. waiting_data: available data to yet-to-be-run-tasks :: {key: {keys}} Real-time equivalent of dependents Examples -------- >>> import pprint # doctest: +SKIP >>> dsk = {'x': 1, 'y': 2, 'z': (inc, 'x'), 'w': (add, 'z', 'y')} # doctest: +SKIP >>> pprint.pprint(start_state_from_dask(dsk)) # doctest: +SKIP {'cache': {'x': 1, 'y': 2}, 'dependencies': {'w': {'z', 'y'}, 'x': set(), 'y': set(), 'z': {'x'}}, 'dependents': defaultdict(None, {'w': set(), 'x': {'z'}, 'y': {'w'}, 'z': {'w'}}), 'finished': set(), 'ready': ['z'], 'released': set(), 'running': set(), 'waiting': {'w': {'z'}}, 'waiting_data': {'x': {'z'}, 'y': {'w'}, 'z': {'w'}}} Optimizations ============= We build this scheduler with out-of-core array operations in mind. To this end we have encoded some particular optimizations. Compute to release data ----------------------- When we choose a new task to execute we often have many options. Policies at this stage are cheap and can significantly impact performance. One could imagine policies that expose parallelism, drive towards a particular output, etc.. Our current policy is to run tasks that were most recently made available. Inlining computations --------------------- We hold on to intermediate computations either in memory or on disk. For very cheap computations that may emit new copies of the data, like ``np.transpose`` or possibly even ``x + 1`` we choose not to store these as separate pieces of data / tasks. Instead we combine them with the computations that require them. This may result in repeated computation but saves significantly on space and computation complexity. See the function ``inline_functions`` for more information. """ import os from concurrent.futures import Executor, Future from functools import partial from queue import Empty, Queue from . import config from .callbacks import local_callbacks, unpack_callbacks from .core import _execute_task, flatten, get_dependencies, has_tasks, reverse_dict from .order import order from .utils_test import add, inc # noqa: F401 if os.name == "nt": # Python 3 windows Queue.get doesn't handle interrupts properly. To # workaround this we poll at a sufficiently large interval that it # shouldn't affect performance, but small enough that users trying to kill # an application shouldn't care. def queue_get(q): while True: try: return q.get(block=True, timeout=0.1) except Empty: pass else: def queue_get(q): return q.get() DEBUG = False def start_state_from_dask(dsk, cache=None, sortkey=None): """Start state from a dask Examples -------- >>> dsk = {'x': 1, 'y': 2, 'z': (inc, 'x'), 'w': (add, 'z', 'y')} # doctest: +SKIP >>> from pprint import pprint # doctest: +SKIP >>> pprint(start_state_from_dask(dsk)) # doctest: +SKIP {'cache': {'x': 1, 'y': 2}, 'dependencies': {'w': {'z', 'y'}, 'x': set(), 'y': set(), 'z': {'x'}}, 'dependents': defaultdict(None, {'w': set(), 'x': {'z'}, 'y': {'w'}, 'z': {'w'}}), 'finished': set(), 'ready': ['z'], 'released': set(), 'running': set(), 'waiting': {'w': {'z'}}, 'waiting_data': {'x': {'z'}, 'y': {'w'}, 'z': {'w'}}} """ if sortkey is None: sortkey = order(dsk).get if cache is None: cache = config.get("cache", None) if cache is None: cache = dict() data_keys = set() for k, v in dsk.items(): if not has_tasks(dsk, v): cache[k] = v data_keys.add(k) dsk2 = dsk.copy() dsk2.update(cache) dependencies = {k: get_dependencies(dsk2, k) for k in dsk} waiting = {k: v.copy() for k, v in dependencies.items() if k not in data_keys} dependents = reverse_dict(dependencies) for a in cache: for b in dependents.get(a, ()): waiting[b].remove(a) waiting_data = {k: v.copy() for k, v in dependents.items() if v} ready_set = {k for k, v in waiting.items() if not v} ready = sorted(ready_set, key=sortkey, reverse=True) waiting = {k: v for k, v in waiting.items() if v} state = { "dependencies": dependencies, "dependents": dependents, "waiting": waiting, "waiting_data": waiting_data, "cache": cache, "ready": ready, "running": set(), "finished": set(), "released": set(), } return state """ Running tasks ------------- When we execute tasks we both 1. Perform the actual work of collecting the appropriate data and calling the function 2. Manage administrative state to coordinate with the scheduler """ def execute_task(key, task_info, dumps, loads, get_id, pack_exception): """ Compute task and handle all administration See Also -------- _execute_task : actually execute task """ try: task, data = loads(task_info) result = _execute_task(task, data) id = get_id() result = dumps((result, id)) failed = False except BaseException as e: result = pack_exception(e, dumps) failed = True return key, result, failed def batch_execute_tasks(it): """ Batch computing of multiple tasks with `execute_task` """ return [execute_task(*a) for a in it] def release_data(key, state, delete=True): """Remove data from temporary storage See Also -------- finish_task """ if key in state["waiting_data"]: assert not state["waiting_data"][key] del state["waiting_data"][key] state["released"].add(key) if delete: del state["cache"][key] def finish_task( dsk, key, state, results, sortkey, delete=True, release_data=release_data ): """ Update execution state after a task finishes Mutates. This should run atomically (with a lock). """ for dep in sorted(state["dependents"][key], key=sortkey, reverse=True): s = state["waiting"][dep] s.remove(key) if not s: del state["waiting"][dep] state["ready"].append(dep) for dep in state["dependencies"][key]: if dep in state["waiting_data"]: s = state["waiting_data"][dep] s.remove(key) if not s and dep not in results: if DEBUG: from chest.core import nbytes print( "Key: %s\tDep: %s\t NBytes: %.2f\t Release" % (key, dep, sum(map(nbytes, state["cache"].values()) / 1e6)) ) release_data(dep, state, delete=delete) elif delete and dep not in results: release_data(dep, state, delete=delete) state["finished"].add(key) state["running"].remove(key) return state def nested_get(ind, coll): """Get nested index from collection Examples -------- >>> nested_get(1, 'abc') 'b' >>> nested_get([1, 0], 'abc') ('b', 'a') >>> nested_get([[1, 0], [0, 1]], 'abc') (('b', 'a'), ('a', 'b')) """ if isinstance(ind, list): return tuple(nested_get(i, coll) for i in ind) else: return coll[ind] def default_get_id(): """Default get_id""" return None def default_pack_exception(e, dumps): raise def reraise(exc, tb=None): if exc.__traceback__ is not tb: raise exc.with_traceback(tb) raise exc def identity(x): """Identity function. Returns x. >>> identity(3) 3 """ return x """ Task Selection -------------- We often have a choice among many tasks to run next. This choice is both cheap and can significantly impact performance. We currently select tasks that have recently been made ready. We hope that this first-in-first-out policy reduces memory footprint """ """ `get` ----- The main function of the scheduler. Get is the main entry point. """ def get_async( submit, num_workers, dsk, result, cache=None, get_id=default_get_id, rerun_exceptions_locally=None, pack_exception=default_pack_exception, raise_exception=reraise, callbacks=None, dumps=identity, loads=identity, chunksize=None, **kwargs, ): """Asynchronous get function This is a general version of various asynchronous schedulers for dask. It takes a ``concurrent.futures.Executor.submit`` function to form a more specific ``get`` method that walks through the dask array with parallel workers, avoiding repeat computation and minimizing memory use. Parameters ---------- submit : function A ``concurrent.futures.Executor.submit`` function num_workers : int The number of workers that task submissions can be spread over dsk : dict A dask dictionary specifying a workflow result : key or list of keys Keys corresponding to desired data cache : dict-like, optional Temporary storage of results get_id : callable, optional Function to return the worker id, takes no arguments. Examples are `threading.current_thread` and `multiprocessing.current_process`. rerun_exceptions_locally : bool, optional Whether to rerun failing tasks in local process to enable debugging (False by default) pack_exception : callable, optional Function to take an exception and ``dumps`` method, and return a serialized tuple of ``(exception, traceback)`` to send back to the scheduler. Default is to just raise the exception. raise_exception : callable, optional Function that takes an exception and a traceback, and raises an error. callbacks : tuple or list of tuples, optional Callbacks are passed in as tuples of length 5. Multiple sets of callbacks may be passed in as a list of tuples. For more information, see the dask.diagnostics documentation. dumps: callable, optional Function to serialize task data and results to communicate between worker and parent. Defaults to identity. loads: callable, optional Inverse function of `dumps`. Defaults to identity. chunksize: int, optional Size of chunks to use when dispatching work. Defaults to 1. If -1, will be computed to evenly divide ready work across workers. See Also -------- threaded.get """ chunksize = chunksize or config.get("chunksize", 1) queue = Queue() if isinstance(result, list): result_flat = set(flatten(result)) else: result_flat = {result} results = set(result_flat) dsk = dict(dsk) with local_callbacks(callbacks) as callbacks: _, _, pretask_cbs, posttask_cbs, _ = unpack_callbacks(callbacks) started_cbs = [] succeeded = False # if start_state_from_dask fails, we will have something # to pass to the final block. state = {} try: for cb in callbacks: if cb[0]: cb[0](dsk) started_cbs.append(cb) keyorder = order(dsk) state = start_state_from_dask(dsk, cache=cache, sortkey=keyorder.get) for _, start_state, _, _, _ in callbacks: if start_state: start_state(dsk, state) if rerun_exceptions_locally is None: rerun_exceptions_locally = config.get("rerun_exceptions_locally", False) if state["waiting"] and not state["ready"]: raise ValueError("Found no accessible jobs in dask") def fire_tasks(chunksize): """Fire off a task to the thread pool""" # Determine chunksize and/or number of tasks to submit nready = len(state["ready"]) if chunksize == -1: ntasks = nready chunksize = -(ntasks // -num_workers) else: used_workers = -(len(state["running"]) // -chunksize) avail_workers = max(num_workers - used_workers, 0) ntasks = min(nready, chunksize * avail_workers) # Prep all ready tasks for submission args = [] for _ in range(ntasks): # Get the next task to compute (most recently added) key = state["ready"].pop() # Notify task is running state["running"].add(key) for f in pretask_cbs: f(key, dsk, state) # Prep args to send data = { dep: state["cache"][dep] for dep in get_dependencies(dsk, key) } args.append( ( key, dumps((dsk[key], data)), dumps, loads, get_id, pack_exception, ) ) # Batch submit for i in range(-(len(args) // -chunksize)): each_args = args[i * chunksize : (i + 1) * chunksize] if not each_args: break fut = submit(batch_execute_tasks, each_args) fut.add_done_callback(queue.put) # Main loop, wait on tasks to finish, insert new ones while state["waiting"] or state["ready"] or state["running"]: fire_tasks(chunksize) for key, res_info, failed in queue_get(queue).result(): if failed: exc, tb = loads(res_info) if rerun_exceptions_locally: data = { dep: state["cache"][dep] for dep in get_dependencies(dsk, key) } task = dsk[key] _execute_task(task, data) # Re-execute locally else: raise_exception(exc, tb) res, worker_id = loads(res_info) state["cache"][key] = res finish_task(dsk, key, state, results, keyorder.get) for f in posttask_cbs: f(key, res, dsk, state, worker_id) succeeded = True finally: for _, _, _, _, finish in started_cbs: if finish: finish(dsk, state, not succeeded) return nested_get(result, state["cache"]) """ Synchronous concrete version of get_async Usually we supply a ``concurrent.futures.Executor``. Here we provide a sequential one. This is useful for debugging and for code dominated by the GIL """ class SynchronousExecutor(Executor): _max_workers = 1 def submit(self, fn, *args, **kwargs): fut = Future() try: fut.set_result(fn(*args, **kwargs)) except BaseException as e: fut.set_exception(e) return fut synchronous_executor = SynchronousExecutor() def get_sync(dsk, keys, **kwargs): """A naive synchronous version of get_async Can be useful for debugging. """ kwargs.pop("num_workers", None) # if num_workers present, remove it return get_async( synchronous_executor.submit, synchronous_executor._max_workers, dsk, keys, **kwargs, ) """ Adaptor for ``multiprocessing.Pool`` instances Usually we supply a ``concurrent.futures.Executor``. Here we provide a wrapper class for ``multiprocessing.Pool`` instances so we can treat them like ``concurrent.futures.Executor`` instances instead. This is mainly useful for legacy use cases or users that prefer ``multiprocessing.Pool``. """ class MultiprocessingPoolExecutor(Executor): def __init__(self, pool): self.pool = pool self._max_workers = len(pool._pool) def submit(self, fn, *args, **kwargs): return submit_apply_async(self.pool.apply_async, fn, *args, **kwargs) def submit_apply_async(apply_async, fn, *args, **kwargs): fut = Future() apply_async(fn, args, kwargs, fut.set_result, fut.set_exception) return fut def get_apply_async(apply_async, num_workers, *args, **kwargs): return get_async( partial(submit_apply_async, apply_async), num_workers, *args, **kwargs ) def sortkey(item): """Sorting key function that is robust to different types Both strings and tuples are common key types in dask graphs. However In Python 3 one can not compare strings with tuples directly. This function maps many types to a form where they can be compared Examples -------- >>> sortkey('Hello') ('str', 'Hello') >>> sortkey(('x', 1)) ('tuple', ('x', 1)) """ return (type(item).__name__, item)
py
b407bf56fd6c6fb34801296c7eab14a9426424cf
import re from typing import Any, Dict, List, Optional, Tuple from django.conf import settings from django.utils import timezone from ee.clickhouse.client import sync_execute from ee.clickhouse.models.cohort import format_filter_query from ee.clickhouse.models.util import is_int, is_json from ee.clickhouse.sql.events import SELECT_PROP_VALUES_SQL, SELECT_PROP_VALUES_SQL_WITH_FILTER from ee.clickhouse.sql.person import GET_DISTINCT_IDS_BY_PROPERTY_SQL from posthog.models.cohort import Cohort from posthog.models.event import Selector from posthog.models.property import Property from posthog.models.team import Team from posthog.utils import is_valid_regex, relative_date_parse def parse_prop_clauses( filters: List[Property], team_id: Optional[int], prepend: str = "global", table_name: str = "", allow_denormalized_props: bool = False, filter_test_accounts=False, is_person_query=False, ) -> Tuple[str, Dict]: final = [] params: Dict[str, Any] = {} if team_id is not None: params["team_id"] = team_id if table_name != "": table_name += "." if filter_test_accounts: test_account_filters = Team.objects.only("test_account_filters").get(id=team_id).test_account_filters filters.extend([Property(**prop) for prop in test_account_filters]) for idx, prop in enumerate(filters): if prop.type == "cohort": cohort = Cohort.objects.get(pk=prop.value, team_id=team_id) person_id_query, cohort_filter_params = format_filter_query(cohort) params = {**params, **cohort_filter_params} final.append( "AND {table_name}distinct_id IN ({clause})".format(table_name=table_name, clause=person_id_query) ) elif prop.type == "person": filter_query, filter_params = prop_filter_json_extract( prop, idx, "{}person".format(prepend), allow_denormalized_props=allow_denormalized_props ) if is_person_query: final.append(filter_query) params.update(filter_params) else: final.append( "AND {table_name}distinct_id IN ({filter_query})".format( filter_query=GET_DISTINCT_IDS_BY_PROPERTY_SQL.format(filters=filter_query), table_name=table_name, ) ) params.update(filter_params) elif prop.type == "element": query, filter_params = filter_element({prop.key: prop.value}, prepend="{}_".format(idx)) final.append("AND {}".format(query[0])) params.update(filter_params) else: filter_query, filter_params = prop_filter_json_extract( prop, idx, prepend, prop_var="{}properties".format(table_name), allow_denormalized_props=allow_denormalized_props, ) final.append(f"{filter_query} AND {table_name}team_id = %(team_id)s" if team_id else filter_query) params.update(filter_params) return " ".join(final), params def prop_filter_json_extract( prop: Property, idx: int, prepend: str = "", prop_var: str = "properties", allow_denormalized_props: bool = False ) -> Tuple[str, Dict[str, Any]]: # Once all queries are migrated over we can get rid of allow_denormalized_props is_denormalized = prop.key.lower() in settings.CLICKHOUSE_DENORMALIZED_PROPERTIES and allow_denormalized_props json_extract = "trim(BOTH '\"' FROM JSONExtractRaw({prop_var}, %(k{prepend}_{idx})s))".format( idx=idx, prepend=prepend, prop_var=prop_var ) denormalized = "properties_{}".format(prop.key.lower()) operator = prop.operator params: Dict[str, Any] = {} if operator == "is_not": params = {"k{}_{}".format(prepend, idx): prop.key, "v{}_{}".format(prepend, idx): box_value(prop.value)} return ( "AND NOT has(%(v{prepend}_{idx})s, {left})".format( idx=idx, prepend=prepend, left=denormalized if is_denormalized else json_extract ), params, ) elif operator == "icontains": value = "%{}%".format(prop.value) params = {"k{}_{}".format(prepend, idx): prop.key, "v{}_{}".format(prepend, idx): value} return ( "AND {left} LIKE %(v{prepend}_{idx})s".format( idx=idx, prepend=prepend, left=denormalized if is_denormalized else json_extract ), params, ) elif operator == "not_icontains": value = "%{}%".format(prop.value) params = {"k{}_{}".format(prepend, idx): prop.key, "v{}_{}".format(prepend, idx): value} return ( "AND NOT ({left} LIKE %(v{prepend}_{idx})s)".format( idx=idx, prepend=prepend, left=denormalized if is_denormalized else json_extract ), params, ) elif operator in ("regex", "not_regex"): if not is_valid_regex(prop.value): return "AND 1 = 2", {} params = {"k{}_{}".format(prepend, idx): prop.key, "v{}_{}".format(prepend, idx): prop.value} return ( "AND {regex_function}({left}, %(v{prepend}_{idx})s)".format( regex_function="match" if operator == "regex" else "NOT match", idx=idx, prepend=prepend, left=denormalized if is_denormalized else json_extract, ), params, ) elif operator == "is_set": params = {"k{}_{}".format(prepend, idx): prop.key, "v{}_{}".format(prepend, idx): prop.value} if is_denormalized: return ( "AND NOT isNull({left})".format(left=denormalized), params, ) return ( "AND JSONHas({prop_var}, %(k{prepend}_{idx})s)".format(idx=idx, prepend=prepend, prop_var=prop_var), params, ) elif operator == "is_not_set": params = {"k{}_{}".format(prepend, idx): prop.key, "v{}_{}".format(prepend, idx): prop.value} if is_denormalized: return ( "AND isNull({left})".format(left=denormalized), params, ) return ( "AND (isNull({left}) OR NOT JSONHas({prop_var}, %(k{prepend}_{idx})s))".format( idx=idx, prepend=prepend, prop_var=prop_var, left=json_extract ), params, ) elif operator == "gt": params = {"k{}_{}".format(prepend, idx): prop.key, "v{}_{}".format(prepend, idx): prop.value} return ( "AND toInt64OrNull(trim(BOTH '\"' FROM replaceRegexpAll({left}, ' ', ''))) > %(v{prepend}_{idx})s".format( idx=idx, prepend=prepend, left=denormalized if is_denormalized else "visitParamExtractRaw({prop_var}, %(k{prepend}_{idx})s)".format( idx=idx, prepend=prepend, prop_var=prop_var, ), ), params, ) elif operator == "lt": params = {"k{}_{}".format(prepend, idx): prop.key, "v{}_{}".format(prepend, idx): prop.value} return ( "AND toInt64OrNull(trim(BOTH '\"' FROM replaceRegexpAll({left}, ' ', ''))) < %(v{prepend}_{idx})s".format( idx=idx, prepend=prepend, left=denormalized if is_denormalized else "visitParamExtractRaw({prop_var}, %(k{prepend}_{idx})s)".format( idx=idx, prepend=prepend, prop_var=prop_var, ), ), params, ) else: if is_json(prop.value) and not is_denormalized: clause = "AND has(%(v{prepend}_{idx})s, replaceRegexpAll(visitParamExtractRaw({prop_var}, %(k{prepend}_{idx})s),' ', ''))" params = { "k{}_{}".format(prepend, idx): prop.key, "v{}_{}".format(prepend, idx): box_value(prop.value, remove_spaces=True), } else: clause = "AND has(%(v{prepend}_{idx})s, {left})" params = {"k{}_{}".format(prepend, idx): prop.key, "v{}_{}".format(prepend, idx): box_value(prop.value)} return ( clause.format( left=denormalized if is_denormalized else json_extract, idx=idx, prepend=prepend, prop_var=prop_var ), params, ) def box_value(value: Any, remove_spaces=False) -> List[Any]: if not isinstance(value, List): value = [value] return [str(value).replace(" ", "") if remove_spaces else str(value) for value in value] def get_property_values_for_key(key: str, team: Team, value: Optional[str] = None): parsed_date_from = "AND timestamp >= '{}'".format(relative_date_parse("-7d").strftime("%Y-%m-%d 00:00:00")) parsed_date_to = "AND timestamp <= '{}'".format(timezone.now().strftime("%Y-%m-%d 23:59:59")) if value: return sync_execute( SELECT_PROP_VALUES_SQL_WITH_FILTER.format(parsed_date_from=parsed_date_from, parsed_date_to=parsed_date_to), {"team_id": team.pk, "key": key, "value": "%{}%".format(value)}, ) return sync_execute( SELECT_PROP_VALUES_SQL.format(parsed_date_from=parsed_date_from, parsed_date_to=parsed_date_to), {"team_id": team.pk, "key": key}, ) def filter_element(filters: Dict, prepend: str = "") -> Tuple[List[str], Dict]: params = {} conditions = [] if filters.get("selector"): or_conditions = [] selectors = filters["selector"] if isinstance(filters["selector"], list) else [filters["selector"]] for idx, query in enumerate(selectors): selector = Selector(query, escape_slashes=False) key = "{}_{}_selector_regex".format(prepend, idx) params[key] = _create_regex(selector) or_conditions.append("match(elements_chain, %({})s)".format(key)) if len(or_conditions) > 0: conditions.append("(" + (" OR ".join(or_conditions)) + ")") if filters.get("tag_name"): or_conditions = [] tag_names = filters["tag_name"] if isinstance(filters["tag_name"], list) else [filters["tag_name"]] for idx, tag_name in enumerate(tag_names): key = "{}_{}_tag_name_regex".format(prepend, idx) params[key] = r"(^|;){}(\.|$|;|:)".format(tag_name) or_conditions.append("match(elements_chain, %({})s)".format(key)) if len(or_conditions) > 0: conditions.append("(" + (" OR ".join(or_conditions)) + ")") attributes: Dict[str, List] = {} for key in ["href", "text"]: vals = filters.get(key) if filters.get(key): attributes[key] = [re.escape(vals)] if isinstance(vals, str) else [re.escape(text) for text in filters[key]] if len(attributes.keys()) > 0: or_conditions = [] for key, value_list in attributes.items(): for idx, value in enumerate(value_list): params["{}_{}_{}_attributes_regex".format(prepend, key, idx)] = ".*?({}).*?".format( ".*?".join(['{}="{}"'.format(key, value)]) ) or_conditions.append("match(elements_chain, %({}_{}_{}_attributes_regex)s)".format(prepend, key, idx)) if len(or_conditions) > 0: conditions.append("(" + (" OR ".join(or_conditions)) + ")") return (conditions, params) def _create_regex(selector: Selector) -> str: regex = r"" for idx, tag in enumerate(selector.parts): if tag.data.get("tag_name") and isinstance(tag.data["tag_name"], str): if tag.data["tag_name"] == "*": regex += ".+" else: regex += tag.data["tag_name"] if tag.data.get("attr_class__contains"): regex += r".*?\.{}".format(r"\..*?".join(sorted(tag.data["attr_class__contains"]))) if tag.ch_attributes: regex += ".*?" for key, value in sorted(tag.ch_attributes.items()): regex += '{}="{}".*?'.format(key, value) regex += r"([-_a-zA-Z0-9\.]*?)?($|;|:([^;^\s]*(;|$|\s)))" if tag.direct_descendant: regex += ".*" return regex
py
b407bf6fdc5ef5bcb237dae467dcff27bb31075d
import os from quorumtoolbox.constellation import Constellation from quorumtoolbox.geth import Geth from quorumtoolbox.ibft import Ibft from quorumtoolbox.raft import Raft from quorumtoolbox.utils import enode_utils, bash_utils, node_utils class QuorumNode: blockchain_dir_name = 'blockchain' quorum_node_config_file_name = 'quorum_node_config.sh' def __init__(self, context, address, rpcaddr, networkid, node_state, private_manager='constellation', geth_params=None, consensus_params=None, private_manager_params=None): self.base_dir = os.path.join(context, self.blockchain_dir_name) self.quorum_node_config_file = os.path.join(self.base_dir, self.quorum_node_config_file_name) self.node_state = node_state geth_params = {} if geth_params is None else geth_params consensus_params = {} if consensus_params is None else consensus_params private_manager_params = {} if private_manager_params is None else private_manager_params self.geth = Geth(context, address, rpcaddr, networkid, **geth_params) if node_utils.is_raft_node(self.node_state): self.consensus = Raft(context, self.geth.enode_id_geth, node_state, **consensus_params) else: self.consensus = Ibft(context, self.geth.enode_id_geth, node_state, **consensus_params) if private_manager.lower() == 'constellation': self.private_manager = Constellation(context, address, **private_manager_params) # make the node's enode_id depending on consensus self._enode_id = self.make_enode_id_from_geth() if node_utils.is_raft_node(self.node_state) else \ self.geth.enode_id_geth self._ibft_address, self._nodekey = self.geth.ibft_address, self.geth.nodekey # get launch params from components, combine to launch this node self.launch_params = bash_utils.make_quorum_node_launch_params([self.geth.launch_parameters, self.consensus.launch_parameters, self.private_manager.launch_parameters ]) bash_utils.write_quorum_node_launch_config(self.launch_params, self.quorum_node_config_file) self.build_config = { 'local': { 'config_file': self.quorum_node_config_file }, 'geth': self.geth.build_configuration, 'consensus': self.consensus.build_configuration, 'private_manager': self.private_manager.build_configuration } def make_enode_id_from_geth(self): return enode_utils.make_enode_id2(self.geth.enode_id_geth, self.consensus.build_configuration['network']['port']) @property def launch_parameters(self): return self.launch_parameters @property def build_configuration(self): return self.build_config @property def ibft_address(self): return self._ibft_address @property def enode_id(self): return self._enode_id @property def nodekey(self): return self._nodekey @property def accounts(self): return self.geth.accounts # TODO Formalize interface for Consensus (and all other components) @property def consensus_id(self): return self.consensus.joining_id # TODO Formalize interface for PTM (and all other components) @property def ptm_peers(self): return self.private_manager.ptm_peers @property def ptm_url(self): return self.private_manager.ptm_url @property def ptm_address(self): return self.private_manager.ptm_address
py
b407c0039e5960171ab5cef85721b9b7fc22a1f3
#!/usr/bin/env python # Hellish Tech # No commercial usage without authorization # deluge.password.py <password> <salt> # # import hashlib import sys password = sys.argv[1] salt = sys.argv[2] s = hashlib.sha1() s.update(salt) s.update(password) print s.hexdigest()
py
b407c04ec93415574f1174879b07d3426fdb25d3
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Label map utility functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging from six import string_types from six.moves import range import tensorflow as tf from google.protobuf import text_format # from object_detection.protos import string_int_label_map_pb2 from . import string_int_label_map_pb2 def _validate_label_map(label_map): """Checks if a label map is valid. Args: label_map: StringIntLabelMap to validate. Raises: ValueError: if label map is invalid. """ for item in label_map.item: if item.id < 0: raise ValueError('Label map ids should be >= 0.') if (item.id == 0 and item.name != 'background' and item.display_name != 'background'): raise ValueError('Label map id 0 is reserved for the background label') def create_category_index(categories): """Creates dictionary of COCO compatible categories keyed by category id. Args: categories: a list of dicts, each of which has the following keys: 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog', 'pizza'. Returns: category_index: a dict containing the same entries as categories, but keyed by the 'id' field of each category. """ category_index = {} for cat in categories: category_index[cat['id']] = cat return category_index def get_max_label_map_index(label_map): """Get maximum index in label map. Args: label_map: a StringIntLabelMapProto Returns: an integer """ return max([item.id for item in label_map.item]) def convert_label_map_to_categories(label_map, max_num_classes, use_display_name=True): """Given label map proto returns categories list compatible with eval. This function converts label map proto and returns a list of dicts, each of which has the following keys: 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog', 'pizza'. We only allow class into the list if its id-label_id_offset is between 0 (inclusive) and max_num_classes (exclusive). If there are several items mapping to the same id in the label map, we will only keep the first one in the categories list. Args: label_map: a StringIntLabelMapProto or None. If None, a default categories list is created with max_num_classes categories. max_num_classes: maximum number of (consecutive) label indices to include. use_display_name: (boolean) choose whether to load 'display_name' field as category name. If False or if the display_name field does not exist, uses 'name' field as category names instead. Returns: categories: a list of dictionaries representing all possible categories. """ categories = [] list_of_ids_already_added = [] if not label_map: label_id_offset = 1 for class_id in range(max_num_classes): categories.append({ 'id': class_id + label_id_offset, 'name': 'category_{}'.format(class_id + label_id_offset) }) return categories for item in label_map.item: if not 0 < item.id <= max_num_classes: logging.info( 'Ignore item %d since it falls outside of requested ' 'label range.', item.id) continue if use_display_name and item.HasField('display_name'): name = item.display_name else: name = item.name if item.id not in list_of_ids_already_added: list_of_ids_already_added.append(item.id) categories.append({'id': item.id, 'name': name}) return categories def load_labelmap(path): """Loads label map proto. Args: path: path to StringIntLabelMap proto text file. Returns: a StringIntLabelMapProto """ with tf.io.gfile.GFile(path, 'r') as fid: label_map_string = fid.read() label_map = string_int_label_map_pb2.StringIntLabelMap() try: text_format.Merge(label_map_string, label_map) except text_format.ParseError: label_map.ParseFromString(label_map_string) _validate_label_map(label_map) return label_map def get_label_map_dict(label_map_path_or_proto, use_display_name=False, fill_in_gaps_and_background=False): """Reads a label map and returns a dictionary of label names to id. Args: label_map_path_or_proto: path to StringIntLabelMap proto text file or the proto itself. use_display_name: whether to use the label map items' display names as keys. fill_in_gaps_and_background: whether to fill in gaps and background with respect to the id field in the proto. The id: 0 is reserved for the 'background' class and will be added if it is missing. All other missing ids in range(1, max(id)) will be added with a dummy class name ("class_<id>") if they are missing. Returns: A dictionary mapping label names to id. Raises: ValueError: if fill_in_gaps_and_background and label_map has non-integer or negative values. """ if isinstance(label_map_path_or_proto, string_types): label_map = load_labelmap(label_map_path_or_proto) else: _validate_label_map(label_map_path_or_proto) label_map = label_map_path_or_proto label_map_dict = {} for item in label_map.item: if use_display_name: label_map_dict[item.display_name] = item.id else: label_map_dict[item.name] = item.id if fill_in_gaps_and_background: values = set(label_map_dict.values()) if 0 not in values: label_map_dict['background'] = 0 if not all(isinstance(value, int) for value in values): raise ValueError('The values in label map must be integers in order to' 'fill_in_gaps_and_background.') if not all(value >= 0 for value in values): raise ValueError('The values in the label map must be positive.') if len(values) != max(values) + 1: # there are gaps in the labels, fill in gaps. for value in range(1, max(values)): if value not in values: # TODO(rathodv): Add a prefix 'class_' here once the tool to generate # teacher annotation adds this prefix in the data. label_map_dict[str(value)] = value return label_map_dict def create_categories_from_labelmap(label_map_path, use_display_name=True): """Reads a label map and returns categories list compatible with eval. This function converts label map proto and returns a list of dicts, each of which has the following keys: 'id': an integer id uniquely identifying this category. 'name': string representing category name e.g., 'cat', 'dog'. Args: label_map_path: Path to `StringIntLabelMap` proto text file. use_display_name: (boolean) choose whether to load 'display_name' field as category name. If False or if the display_name field does not exist, uses 'name' field as category names instead. Returns: categories: a list of dictionaries representing all possible categories. """ label_map = load_labelmap(label_map_path) max_num_classes = max(item.id for item in label_map.item) return convert_label_map_to_categories(label_map, max_num_classes, use_display_name) def create_category_index_from_labelmap(label_map_path, use_display_name=True): """Reads a label map and returns a category index. Args: label_map_path: Path to `StringIntLabelMap` proto text file. use_display_name: (boolean) choose whether to load 'display_name' field as category name. If False or if the display_name field does not exist, uses 'name' field as category names instead. Returns: A category index, which is a dictionary that maps integer ids to dicts containing categories, e.g. {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}, ...} """ categories = create_categories_from_labelmap(label_map_path, use_display_name) return create_category_index(categories) def create_class_agnostic_category_index(): """Creates a category index with a single `object` class.""" return {1: {'id': 1, 'name': 'object'}}
py
b407c26162a486d257f15357d632d91504a823bd
import os import re #define file path filePath = os.getcwd() fileList = [] #define line match for forward && backward forwardLine = r"^.+layer\d+ (.+) forward cost time: (.+)$" backwardLine = r"^.+layer\d+ (.+) Backward cost time: (.+)$" def init(filePath): recentFileList = os.listdir(filePath) return recentFileList if __name__ == '__main__' : forwardResults = [] backwardResults = [] fileList = init(filePath) for file in fileList : wholeFileName = filePath + "/" + file suffix = ".*log$" if not re.match(suffix, file): continue readFile = open(wholeFileName, "r") while True: ln = readFile.readline() if not ln: break forwardMatch = re.match(forwardLine, ln) if forwardMatch: forwardResult = [forwardMatch.group(1), forwardMatch.group(2)] forwardResults.append(forwardResult) backwardMatch = re.match(backwardLine, ln) if backwardMatch: backwardResult = [backwardMatch.group(1), backwardMatch.group(2)] backwardResults.append(backwardResult) backwardResults.reverse() #print forwardResults #print backwardResults if not os.path.exists(filePath + "/result") : os.mkdir(filePath + "/result") forwardFile = filePath + "/result/" + file.split('.')[0] + "Forward.txt" backwardFile = filePath + "/result/" + file.split('.')[0] + "Backward.txt" writeForwardFile = open(forwardFile, "w+") for forwardResult in forwardResults : writeForwardFile.write(forwardResult[0].ljust(80,' ') + " " + forwardResult[1] + '\n') writeForwardFile.close() writeBackwardFile = open(backwardFile, "w+") for backwardResult in backwardResults : writeBackwardFile.write(backwardResult[0].ljust(80,' ') + " " + backwardResult[1] + '\n') writeBackwardFile.close() readFile.close()
py
b407c2c50f2aecaefcd23efdef75be6b99cdd81f
""" An example call script that performs a single static VASP calculation. Performs a self consistent electron convergence run using the standard silicon structure. """ # pylint: disable=too-many-arguments import numpy as np from aiida.common.extendeddicts import AttributeDict from aiida.orm import Code, Bool, Str from aiida.plugins import DataFactory, WorkflowFactory from aiida.engine import submit from aiida import load_profile load_profile() def get_structure(): """ Set up Si primitive cell Si 5.431 0.0000000000000000 0.5000000000000000 0.5000000000000000 0.5000000000000000 0.0000000000000000 0.5000000000000000 0.5000000000000000 0.5000000000000000 0.0000000000000000 Si 2 Direct 0.8750000000000000 0.8750000000000000 0.8750000000000000 0.1250000000000000 0.1250000000000000 0.1250000000000000 """ structure_data = DataFactory('structure') alat = 5.431 lattice = np.array([[.5, 0, .5], [.5, .5, 0], [0, .5, .5]]) * alat structure = structure_data(cell=lattice) for pos_direct in ([0.875, 0.875, 0.875], [0.125, 0.125, 0.125]): pos_cartesian = np.dot(pos_direct, lattice) structure.append_atom(position=pos_cartesian, symbols='Si') return structure def main(code_string, incar, kmesh, structure, potential_family, potential_mapping, options): """Main method to setup the calculation.""" # First, we need to fetch the AiiDA datatypes which will # house the inputs to our calculation dict_data = DataFactory('dict') kpoints_data = DataFactory('array.kpoints') # Then, we set the workchain you would like to call workchain = WorkflowFactory('vasp.converge') # And finally, we declare the options, settings and input containers settings = AttributeDict() inputs = AttributeDict() # Organize settings settings.parser_settings = {'output_params': ['total_energies', 'maximum_force']} # Set inputs for the following WorkChain execution # Set code inputs.code = Code.get_from_string(code_string) # Set structure inputs.structure = structure # Set k-points grid density if kmesh: # Only set it if kmesh is supplied, otherwise run convergence # tests kpoints = kpoints_data() kpoints.set_kpoints_mesh(kmesh) inputs.kpoints = kpoints # Set parameters inputs.parameters = dict_data(dict=incar) # Set potentials and their mapping inputs.potential_family = Str(potential_family) inputs.potential_mapping = dict_data(dict=potential_mapping) # Set options inputs.options = dict_data(dict=options) # Set settings inputs.settings = dict_data(dict=settings) # Set workchain related inputs, in this case, give more explicit output to repor inputs.verbose = Bool(True) # Convergence and relaxation related parameters that is passed to the convergence # and relaxation workchain, respectively # Turn of final relaxation (after convergence tests) relax = AttributeDict() relax.perform = Bool(False) inputs.relax = relax # Submit the requested workchain with the supplied inputs submit(workchain, **inputs) if __name__ == '__main__': # Code_string is chosen among the list given by 'verdi code list' CODE_STRING = 'vasp@mycluster' # POSCAR equivalent # Set the silicon structure STRUCTURE = get_structure() # INCAR equivalent # Set input parameters (make sure we do not set ENCUT in order to run convergence tests # on the plane wave cutoff) INCAR = {'incar': {'prec': 'NORMAL', 'ediff': 1E-4, 'ialgo': 38, 'ismear': -5, 'sigma': 0.1}} # KPOINTS equivalent # Set kpoint mesh KMESH = [] # POTCAR equivalent # Potential_family is chosen among the list given by # 'verdi data vasp-potcar listfamilies' POTENTIAL_FAMILY = 'pbe' # The potential mapping selects which potential to use, here we use the standard # for silicon, this could for instance be {'Si': 'Si_GW'} to use the GW ready # potential instead POTENTIAL_MAPPING = {'Si': 'Si'} # Jobfile equivalent # In options, we typically set scheduler options. # See https://aiida.readthedocs.io/projects/aiida-core/en/latest/scheduler/index.html # AttributeDict is just a special dictionary with the extra benefit that # you can set and get the key contents with mydict.mykey, instead of mydict['mykey'] OPTIONS = AttributeDict() OPTIONS.account = '' OPTIONS.qos = '' OPTIONS.resources = {'num_machines': 1, 'num_mpiprocs_per_machine': 1} OPTIONS.queue_name = '' OPTIONS.max_wallclock_seconds = 86400 OPTIONS.max_memory_kb = 9000000 main(CODE_STRING, INCAR, KMESH, STRUCTURE, POTENTIAL_FAMILY, POTENTIAL_MAPPING, OPTIONS)
py
b407c2f1bab07f13e3d63109f63dceb0506e96cc
import asyncio import logging import sys logging.basicConfig(format="{message}", style='{', datefmt="%H:%M:%S", level=logging.DEBUG) async def handle_connection(reader, writer): addr = writer.get_extra_info('peername')[0] logging.debug(f"[{addr}] Connected.") while True: try: data = await reader.readline() message = data.decode() if not message: logging.warning(f"[{addr}] Client sent an empty message, assuming disconnect.") break logging.info(f"[{addr}] {message}".strip()) except ConnectionError: logging.warning(f"[{addr}] Disconnected.") break writer.close() async def main(port: str = "5123"): server = await asyncio.start_server(handle_connection, '0.0.0.0', int(port)) addrs = ', '.join((lambda x: f"{x[0]}:{x[1]}")(sock.getsockname()) for sock in server.sockets) logging.debug(f'Serving on {addrs}') async with server: await server.serve_forever() if __name__ == "__main__": asyncio.run(main(*sys.argv[1:]))
py
b407c31e63095f43f6729d810a97ac6115d1492e
# Python3 from solution1 import greetingsGenerator as f qa = [ (['Athos', 'Porthos', 'Aramis'], ['Hello, Athos!', 'Hello, Porthos!', 'Hello, Aramis!']), (['Fifer', 'Fiddler', 'Edmund'], ['Hello, Fifer!', 'Hello, Fiddler!', 'Hello, Edmund!']), ([], []), (['Dwarf', 'Doc', 'Dopey', 'Bashful', 'Grumpy', 'Sneezy', 'Sleepy', 'Happy'], ['Hello, Dwarf!', 'Hello, Doc!', 'Hello, Dopey!', 'Hello, Bashful!', 'Hello, Grumpy!', 'Hello, Sneezy!', 'Hello, Sleepy!', 'Hello, Happy!']), (['Hero'], ['Hello, Hero!']) ] for *q, a in qa: for i, e in enumerate(q): print('input{0}: {1}'.format(i + 1, e)) ans = f(*q) if ans != a: print(' [failed]') print(' output:', ans) print(' expected:', a) else: print(' [ok]') print(' output:', ans) print()
py
b407c32c57a4a0ca5e9efda03f0c753d6bf20eb6
"""Class for working with MMCIF files.""" # BioPandas # Authors: Arian Jamasb <[email protected]>, # Authors: Sebastian Raschka <[email protected]> # License: BSD 3 clause # Project Website: http://rasbt.github.io/biopandas/ # Code Repository: https://github.com/rasbt/biopandas import gzip import sys from typing import Dict import numpy as np import pandas as pd try: from urllib.error import HTTPError, URLError from urllib.request import urlopen except ImportError: raise ValueError("Python 2.7 is no longer supported") import warnings from distutils.version import LooseVersion from ..pdb.engines import amino3to1dict from .engines import ANISOU_DF_COLUMNS, mmcif_col_types from .mmcif_parser import load_cif_data pd_version = LooseVersion(pd.__version__) class PandasMmcif: def __init__(self, use_auth: bool = True): self._df = None self.mmcif_text = "" self.header = "" self.code = "" self.mmcif_path = "" self.auth = use_auth self._get_dict = {} @property def df(self): """Acccess dictionary of pandas DataFrames for PDB record sections.""" return self._df @df.setter def df(self, value): """Assign a new value to the pandas DataFrame""" raise AttributeError( "Please use `PandasMmcif._df = ... ` instead\n" "of `PandasMmcif.df = ... ` if you are sure that\n" "you want to overwrite the `df` attribute." ) def read_mmcif(self, path): """Read MMCIF files (unzipped or gzipped) from local drive Attributes ---------- path : str Path to the MMCIF file in .cif format or gzipped format (.cif.gz). Returns --------- self """ self.mmcif_path, self.pdb_text = self._read_mmcif(path=path) self._df = self._construct_df(text=self.pdb_text) # self.header, self.code = self._parse_header_code() #TODO: implement self.code = self.data["entry"]["id"][0].lower() return self def fetch_mmcif(self, pdb_code: str): """Fetches mmCIF file contents from the Protein Databank at rcsb.org. Parameters ---------- pdb_code : str A 4-letter PDB code, e.g., "3eiy". Returns --------- self """ self.mmcif_path, self.mmcif_text = self._fetch_mmcif(pdb_code) self._df = self._construct_df(text=self.mmcif_text) return self def _construct_df(self, text: str): data = load_cif_data(text) data = data[list(data.keys())[0]] self.data = data df: Dict[str, pd.DataFrame] = {} full_df = pd.DataFrame.from_dict(data["atom_site"], orient="index").transpose() full_df = full_df.astype(mmcif_col_types, errors="ignore") df["ATOM"] = pd.DataFrame(full_df[full_df.group_PDB == "ATOM"]) df["HETATM"] = pd.DataFrame(full_df[full_df.group_PDB == "HETATM"]) try: df["ANISOU"] = pd.DataFrame(data["atom_site_anisotrop"]) except KeyError: df["ANISOU"] = pd.DataFrame(columns=ANISOU_DF_COLUMNS) return df @staticmethod def _fetch_mmcif(pdb_code): """Load MMCIF file from rcsb.org.""" txt = None url = f"https://files.rcsb.org/download/{pdb_code.lower()}.cif" try: response = urlopen(url) txt = response.read() txt = ( txt.decode("utf-8") if sys.version_info[0] >= 3 else txt.encode("ascii") ) except HTTPError as e: print(f"HTTP Error {e.code}") except URLError as e: print(f"URL Error {e.args}") return url, txt @staticmethod def _read_mmcif(path): """Read MMCIF file from local drive.""" r_mode = "r" if path.endswith((".cif", ".mmcif")): openf = open elif path.endswith((".cif.gz", ".mmcif.gz")): r_mode = "rb" openf = gzip.open else: allowed_formats = ", ".join((".cif", ".cif.gz", ".mmcif", ".mmcif.gz")) raise ValueError( f"Wrong file format; allowed file formats are {allowed_formats}" ) with openf(path, r_mode) as f: txt = f.read() if path.endswith(".gz"): txt = ( txt.decode("utf-8") if sys.version_info[0] >= 3 else txt.encode("ascii") ) return path, txt def get(self, s, df=None, invert=False, records=("ATOM", "HETATM")): """Filter PDB DataFrames by properties Parameters ---------- s : str in {'main chain', 'hydrogen', 'c-alpha', 'heavy'} String to specify which entries to return. df : pandas.DataFrame, default: None Optional DataFrame to perform the filter operation on. If df=None, filters on self.df['ATOM']. invert : bool, default: True Inverts the search query. For example if s='hydrogen' and invert=True, all but hydrogen entries are returned. records : iterable, default: ('ATOM', 'HETATM') Specify which record sections to consider. For example, to consider both protein and ligand atoms, set `records=('ATOM', 'HETATM')`. This setting is ignored if `df` is not set to None. For downward compatibility, a string argument is still supported but deprecated and will be removed in future versions. Returns -------- df : pandas.DataFrame Returns a DataFrame view on the filtered entries. """ if isinstance(records, str): warnings.warn( "Using a string as `records` argument is " "deprecated and will not be supported in future" " versions. Please use a tuple or" " other iterable instead", DeprecationWarning, ) records = (records,) if not self._get_dict: self._get_dict = self._init_get_dict() if s not in self._get_dict.keys(): raise AttributeError(f"s must be in {self._get_dict.keys()}") if not df: df = pd.concat(objs=[self.df[i] for i in records]) return self._get_dict[s](df, invert=invert) @staticmethod def _get_mainchain( df: pd.DataFrame, invert: bool = False, atom_col: str = "auth_atom_id" ) -> pd.DataFrame: """Return only main chain atom entries from a DataFrame""" return ( df[ (df[atom_col] != "C") & (df[atom_col] != "O") & (df[atom_col] != "N") & (df[atom_col] != "CA") ] if invert else df[ (df[atom_col] == "C") | (df[atom_col] == "O") | (df[atom_col] == "N") | (df[atom_col] == "CA") ] ) @staticmethod def _get_hydrogen(df, invert): """Return only hydrogen atom entries from a DataFrame""" return ( df[(df["type_symbol"] != "H")] if invert else df[(df["type_symbol"] == "H")] ) @staticmethod def _get_heavy(df, invert): """Return only heavy atom entries from a DataFrame""" return df[df["type_symbol"] == "H"] if invert else df[df["type_symbol"] != "H"] @staticmethod def _get_calpha(df, invert, atom_col: str = "auth_atom_id"): """Return c-alpha atom entries from a DataFrame""" return df[df[atom_col] != "CA"] if invert else df[df[atom_col] == "CA"] @staticmethod def _get_carbon(df, invert): """Return carbon atom entries from a DataFrame""" return df[df["type_symbol"] != "C"] if invert else df[df["type_symbol"] == "C"] def amino3to1( self, record: str = "ATOM", residue_col: str = "auth_comp_id", residue_number_col: str = "auth_seq_id", chain_col: str = "auth_asym_id", fillna: str = "?", ): """Creates 1-letter amino acid codes from DataFrame Non-canonical amino-acids are converted as follows: ASH (protonated ASP) => D CYX (disulfide-bonded CYS) => C GLH (protonated GLU) => E HID/HIE/HIP (different protonation states of HIS) = H HYP (hydroxyproline) => P MSE (selenomethionine) => M Parameters ---------- record : str, default: 'ATOM' Specfies the record DataFrame. residue_col : str, default: 'residue_name' Column in `record` DataFrame to look for 3-letter amino acid codes for the conversion. fillna : str, default: '?' Placeholder string to use for unknown amino acids. Returns --------- pandas.DataFrame : Pandas DataFrame object consisting of two columns, `'chain_id'` and `'residue_name'`, where the former contains the chain ID of the amino acid and the latter contains the 1-letter amino acid code, respectively. """ tmp = self.df[record] cmp = "placeholder" indices = [] residue_number_insertion = ( tmp[residue_number_col].astype(str) + tmp["pdbx_PDB_ins_code"] ) for num, ind in zip(residue_number_insertion, np.arange(tmp.shape[0])): if num != cmp: indices.append(ind) cmp = num transl = tmp.iloc[indices][residue_col].map(amino3to1dict).fillna(fillna) return pd.concat((tmp.iloc[indices][chain_col], transl), axis=1) @staticmethod def rmsd(df1, df2, s=None, invert=False): """Compute the Root Mean Square Deviation between molecules. Parameters ---------- df1 : pandas.DataFrame DataFrame with HETATM, ATOM, and/or ANISOU entries. df2 : pandas.DataFrame Second DataFrame for RMSD computation against df1. Must have the same number of entries as df1. s : {'main chain', 'hydrogen', 'c-alpha', 'heavy', 'carbon'} or None, default: None String to specify which entries to consider. If None, considers all atoms for comparison. invert : bool, default: False Inverts the string query if true. For example, the setting `s='hydrogen', invert=True` computes the RMSD based on all but hydrogen atoms. Returns --------- rmsd : float Root Mean Square Deviation between df1 and df2 """ if df1.shape[0] != df2.shape[0]: raise AttributeError("DataFrames have unequal lengths") get_dict = PandasMmcif._init_get_dict() if s: if s not in get_dict.keys(): raise AttributeError(f"s must be in {get_dict.keys()} or None") df1 = get_dict[s](df1, invert=invert) df2 = get_dict[s](df2, invert=invert) total = ( (df1["Cartn_x"].values - df2["Cartn_x"].values) ** 2 + (df1["Cartn_y"].values - df2["Cartn_y"].values) ** 2 + (df1["Cartn_z"].values - df2["Cartn_z"].values) ** 2 ) return round((total.sum() / df1.shape[0]) ** 0.5, 4) def distance(self, xyz=(0.00, 0.00, 0.00), records=("ATOM", "HETATM")): """Computes Euclidean distance between atoms and a 3D point. Parameters ---------- xyz : tuple, default: (0.00, 0.00, 0.00) X, Y, and Z coordinate of the reference center for the distance computation. records : iterable, default: ('ATOM', 'HETATM') Specify which record sections to consider. For example, to consider both protein and ligand atoms, set `records=('ATOM', 'HETATM')`. This setting is ignored if `df` is not set to None. For downward compatibility, a string argument is still supported but deprecated and will be removed in future versions. Returns --------- pandas.Series : Pandas Series object containing the Euclidean distance between the atoms in the record section and `xyz`. """ if isinstance(records, str): warnings.warn( "Using a string as `records` argument is " "deprecated and will not be supported in future" " versions. Please use a tuple or" " other iterable instead", DeprecationWarning, ) records = (records,) df = pd.concat(objs=[self.df[i] for i in records]) return np.sqrt( np.sum( df[["Cartn_x", "Cartn_y", "Cartn_z"]].subtract(xyz, axis=1) ** 2, axis=1 ) ) @staticmethod def distance_df(df, xyz=(0.00, 0.00, 0.00)): """Computes Euclidean distance between atoms and a 3D point. Parameters ---------- df : DataFrame DataFrame containing entries in the `PandasPdb.df['ATOM']` or `PandasPdb.df['HETATM']` format for the the distance computation to the `xyz` reference coordinates. xyz : tuple, default: (0.00, 0.00, 0.00) X, Y, and Z coordinate of the reference center for the distance computation. Returns --------- pandas.Series : Pandas Series object containing the Euclidean distance between the atoms in the record section and `xyz`. """ return np.sqrt( np.sum( df[["Cartn_x", "Cartn_y", "Cartn_z"]].subtract(xyz, axis=1) ** 2, axis=1 ) ) @staticmethod def _init_get_dict(): """Initialize dictionary for filter operations.""" return { "main chain": PandasMmcif._get_mainchain, "hydrogen": PandasMmcif._get_hydrogen, "c-alpha": PandasMmcif._get_calpha, "carbon": PandasMmcif._get_carbon, "heavy": PandasMmcif._get_heavy, } def read_mmcif_from_list(self, mmcif_lines): """Reads mmCIF file from a list into DataFrames Attributes ---------- pdb_lines : list A list of lines containing the mmCIF file contents. Returns --------- self """ self.pdb_text = "".join(mmcif_lines) self._df = self._construct_df(mmcif_lines) # self.header, self.code = self._parse_header_code() self.code = self.data["entry"]["id"][0].lower() return self
py
b407c33f7c18e24c8160063e0a86c45717d679ca
################### ## AI AGENT ## ################### from ai_agent.game_handler import * from ai_agent.brain_tree import * class agent: def __init__(self, cost_multipliers): self.cost_multipliers = cost_multipliers self.piece = None self.next_pieces = [] self.tree = None self.goal = None self.state = None self.lowest_cost_prediction = None self.updating = False self.check = "ok" def get_node_path(self, node): if not node: return None if not node.parent: return [node] return self.get_node_path(node.parent) + [node] def update_goal(self): #get map from first piece that leads to the future lowest cost map temp = self.get_node_path(self.lowest_cost_prediction) if temp: self.goal = temp[2] return "ok" else: return "error" #get new goal def brain_cycle(self, game, piece, next_pieces): self.updating = True self.piece = coords_to_piece(piece) self.state = coord_to_bitmap(game) self.next_pieces = next_pieces self.tree = generate_base_tree(self.piece[0], self.state, self.cost_multipliers) self.lowest_cost_prediction = None for p in self.next_pieces: self.lowest_cost_prediction = insert_next_piece_to_tree(self.tree, coords_to_piece(p, True)[0], self.cost_multipliers) self.check = self.update_goal() self.updating = False #achieve current goal def move_cycle(self, piece): self.piece = coords_to_piece(piece) return get_best_key(self.goal, self.piece, self.state) def get_best_key(best_position_node, piece, game_map): #rotation if not best_position_node.parent.data == piece[1]: return 'w' #current x_position compared to desired x_position simulation_piece = piece_to_bitmap(piece) piece_map = piece_to_bitmap(piece) while not (game_map|simulation_piece) == best_position_node.data: simulation_piece = simulation_piece << 1 scanner = BORDER_LEFT current = 0 wanted = 0 while not scanner & simulation_piece: scanner = sh_r(scanner,1) wanted += 1 scanner = BORDER_LEFT while not scanner & piece_map: scanner = sh_r(scanner,1) current += 1 if current == wanted: return 's' #Não clicar S para isso damos o que mesmo ?? if current < wanted: return 'd' if current > wanted: return 'a' return ''
py
b407c34412bc9a02c815123ba02e99004ca1f900
"""Molecule representation. API --- .. autoclass:: Molecule """ import copy as cp from pathlib import Path from typing import List, Optional, Tuple, Union import h5py import numpy as np from .utils import BOHR2ANG Pathlike = Union[Path, str] class Molecule: """Molecule definition.""" def __init__(self): self.name = "molecule" self.elements = [] self.coordinates = [] self.gradient = None self.has_data = False self.has_xyz = False self.has_gradient = False self.hessian = None self.has_hessian = False def add_atom(self, element: str, x: float, y: float, z: float): """Add a single atom to the molecule.""" self.elements.append(element) self.coordinates.append(np.array([x, y, z])) self.has_xyz = True def copy_and_displace(self, mol2, atomidx: int, coordidx: int, dr: float) -> None: """Create a new molecule displace by a dr factor.""" if self.has_xyz: raise Exception("Molecule coordinates already defined!") # deep-copying elements and coordinates self.elements = cp.deepcopy(mol2.elements) self.coordinates = cp.deepcopy(mol2.coordinates) # displacing one atom in one direction as requested self.coordinates[atomidx][coordidx] += dr def print_xyz(self) -> None: """Print the molecule in xyz format.""" for (element, coordinates) in zip(self.elements, self.coordinates): print(element, coordinates) def read_xyz_file(self, filename: Pathlike) -> None: """Read the molecular coordinates from a given file.""" with open(filename, 'r') as handler: lines = handler.readlines() self.name = Path(filename).stem arr = [(row[0], np.array(row[1:], dtype=float)) for row in [ x.split() for x in lines[2:]]] self.elements, self.coordinates = tuple(zip(*arr)) self.has_xyz = True def write_xyz_file(self, filename: Pathlike): """Write the molecule in XYZ format.""" atoms = "\n".join(f"{elem} {xyz[0]:.4f} {xyz[1]:.4f} {xyz[2]:.4f}" for elem, xyz in zip( self.elements, self.coordinates)) mol = f"""{len(self.elements)} {self.name} created by pyvotca writer {atoms} """ with open(filename, "w") as xyzfile: xyzfile.write(mol) def get_total_energy(self, kind: str, level: int, dynamic: bool = False) -> float: """Wrap call to individual total energy functions.""" if kind == 'dft_tot': return self.get_dft_energy() elif kind == 'ks': return self.get_ks_total_energy(level) elif kind == 'qp_pert': return self.get_qp_total_energy(level) elif kind == 'qp_diag': return self.get_qp_total_energy(level) elif kind == 'bse_singlet' and not dynamic: return self.get_bse_singlet_total_energy(level) elif kind == 'bse_singlet' and dynamic: return self.get_bse_singlet_dynamic_total_energy(level) elif kind == 'bse_triplet' and not dynamic: return self.get_bse_triplet_total_energy(level) elif kind == 'bse_triplet' and dynamic: return self.get_bse_triplet_dynamic_total_energy(level) else: raise Exception( f'Energy of kind {kind} is not available!') def get_gradient(self): """Return the stored nuclear gradient in Hartree/Bohr.""" if self.has_gradient: return self.gradient else: raise Exception( 'Nuclear gradient not available!') def get_dft_energy(self): """Return the DFT total energy.""" self.check_data() return self.DFTenergy def get_ks_total_energy(self, level=''): """Return the excited state KS total energy.""" self.check_data() lumo = self.homo + 1 total_energy = self.DFTenergy if (level < lumo): return(total_energy - self.ks_energies[level]) elif level < len(self.ks_energies): return(total_energy + self.ks_energies[level]) else: print("Requested KS level {} does not exist.") return 0.0 def get_qp_total_energy(self, level=''): """Return the excited state QP total energy.""" self.check_data() lumo = self.homo + 1 total_energy = self.DFTenergy if (level < lumo): return(total_energy - self.qp_energies[level - self.qpmin]) elif level < len(self.ks_energies): return(total_energy + self.qp_energies[level - self.qpmin]) else: print("Requested QP level {} does not exist.") return 0.0 def get_qp_diag_total_energy(self, level=''): """Return the excited state diag QP total energy.""" self.check_data() lumo = self.homo + 1 total_energy = self.DFTenergy if (level < lumo): return(total_energy - self.qp_energies_diag[level - self.qpmin]) elif level < len(self.ks_energies): return(total_energy + self.qp_energies_diag[level - self.qpmin]) else: print(f"Requested diag QP {level} does not exist.") return 0.0 def get_bse_singlet_total_energy(self, level: int) -> float: """Return the excited state BSE Singlet total energy.""" msg = f"Requested BSE singlet {level} does not exist." return self.check_and_read(level, "bse_singlet_energies", msg) def get_bse_triplet_total_energy(self, level: int) -> float: """Return the excited state BSE Singlet total energy.""" msg = f"Requested BSE triplet {level} does not exist." return self.check_and_read(level, "bse_triplet_energies", msg) def get_bse_singlet_dynamic_total_energy(self, level: int) -> float: """Return the excited state BSE Singlet total energy.""" msg = f"Requested dynamic BSE singlet {level} does not exist." return self.check_and_read(level, "bse_singlet_energies_dynamic", msg) def get_bse_triplet_dynamic_total_energy(self, level: int) -> float: """Return the excited state BSE Singlet total energy.""" msg = f"Requested dynamic BSE triplet level {level} does not exist." return self.check_and_read(level, "bse_triplet_energies_dynamic", msg) def read_orb(self, orbfile: Pathlike) -> None: """Read data from the orb (HDF5) file.""" with h5py.File(orbfile, 'r') as handler: orb = handler['QMdata'] # get coordinates atoms = orb['qmmolecule']['qmatoms'] # coordinates are stored in Bohr! arr = [(atom['element'][0].decode(), BOHR2ANG * np.array( [atom['posX'][0], atom['posY'][0], atom['posZ'][0]], dtype=float)) for atom in atoms] elements_in, coordinates_in = tuple(zip(*arr)) if not self.has_xyz: self.elements = elements_in self.coordinates = coordinates_in else: self.check_molecule_integrity(elements_in, coordinates_in) self.has_xyz = True self.homo = int(orb.attrs['occupied_levels']) - 1 self.DFTenergy = float(orb.attrs['qm_energy']) self.qp_energies = read_flatten_array(orb, 'QPpert_energies') self.qp_energies_diag, self.ks_energies, self.bse_singlet_energies, self.bse_triplet_energies = [ read_flatten_array(orb, x, 'eigenvalues') for x in ('QPdiag', 'mos', 'BSE_singlet', 'BSE_triplet')] self.bse_singlet_energies_dynamic, self.bse_triplet_energies_dynamic = [ read_flatten_array(orb, f"BSE_{x}_dynamic") for x in ("singlet", "triplet")] self.qpmin = int(orb.attrs['qpmin']) self.qpmax = int(orb.attrs['qpmax']) td = orb['transition_dipoles'] self.transition_dipoles = np.array( [td[dset][()] for dset in td.keys()]) self.has_data = True def check_molecule_integrity(self, other_elements: List[str], other_coordinates: List[np.ndarray]): """Compare the atoms from self with the one stored in the HDF5.""" for k, (elem, coord, other_elem, other_coord) in enumerate( zip(self.elements, self.coordinates, other_elements, other_coordinates)): if elem != other_elem: raise Exception( f'Element {elem} with index {k} in molecule differs from element {other_elem} in orb file!') if not np.allclose(coord, other_coord): raise Exception( f'Molecular coordinates of element {k} {coord} differ from coordinates in orb file {other_coord}') def get_qp_corrections(self): self.check_data() qp_corrections = self.qp_energies -\ self.ks_energies[self.qpmin:self.qpmin + len(self.qp_energies)] return qp_corrections.flatten() def get_oscillator_strengths(self, dynamic: bool = False) -> Tuple[np.ndarray, np.ndarray]: """Retrieve oscillator strenghts' values.""" self.check_data() # get energies/oscillator strengths if dynamic: energy = self.bse_singlet_energies_dynamic else: energy = self.bse_singlet_energies osc = [(2. / 3.) * e * (t ** 2).sum() for e, t in zip(energy, self.transition_dipoles)] return energy, np.array(osc) def check_data(self): """Check that there is data in the molecule.""" if not self.has_data: raise Exception("No energy has been stored!") def check_and_read(self, level: int, prop: str, msg: str) -> float: """Check that there is data available and retrieve it.""" self.check_data() if level < len(getattr(self, prop)): return(self.DFTenergy + getattr(self, prop)[level]) else: print(msg) return 0.0 def read_flatten_array(group: h5py.Group, key1: str, key2: Optional[str] = None): """Read an array from h5py handler and flatten it.""" if key2 is None: arr = group[key1][()] else: arr = group[key1][key2][()] return arr.flatten()
py
b407c40b949f6bf2123d788385b261405a9c6388
import pandas as pd from os import path import os import hydrostats.data as hd import hydrostats.visual as hv import hydrostats as hs import datetime as dt import matplotlib.pyplot as plt import matplotlib.dates as mdates df = pd.read_csv('/Users/student/Dropbox/PhD/2020 Winter/Dissertation_v9/Africa/Blue_Nile/Blue_Nile_Stations.csv') COMIDs = df['COMID'].tolist() Names = df['Station'].tolist() Rivers = df['Stream'].tolist() obsFiles = [] simFiles = [] #COD = [] for comid, name in zip(COMIDs, Names): obsFiles.append( '/Users/student/Dropbox/PhD/2020 Winter/Dissertation_v9/Africa/Blue_Nile/Data/Historical/observed_data/Annual/' + str(comid) + '_' + str(name) + '.csv') simFiles.append( '/Users/student/Dropbox/PhD/2020 Winter/Dissertation_v9/Africa/Blue_Nile/Data/Historical/simulated_data/ERA_Interim/Annual_Corrected/' + str(comid) + '_' + str(name) + '.csv') #simFiles.append( # '/Users/student/Dropbox/PhD/2020 Winter/Dissertation_v9/Africa/Blue_Nile/Data/Historical/simulated_data/ERA_5/Annual_Corrected/' # + str(comid) + '_' + str(name) + '.csv') #User Input catchment = 'Blue_Nile' output_dir = '/Users/student/Dropbox/PhD/2020 Winter/Dissertation_v9/Africa/Blue_Nile/Annual_Corrected/validationResults_ERA-Interim/' #output_dir = '/Users/student/Dropbox/PhD/2020 Winter/Dissertation_v9/Africa/Blue_Nile/Annual_Corrected/validationResults_ERA-5/' '''Initializing Variables to Append to''' #Creating blank dataframe for Tables all_station_table = pd.DataFrame() #Making directories for all the Desired Plots table_out_dir = path.join(output_dir, 'Tables') if not path.isdir(table_out_dir): os.makedirs(table_out_dir) plot_obs_hyd_dir = path.join(output_dir, 'Observed_Hydrographs') if not path.isdir(plot_obs_hyd_dir): os.makedirs(plot_obs_hyd_dir) plot_sim_hyd_dir = path.join(output_dir, 'Simulated_Hydrographs') if not path.isdir(plot_sim_hyd_dir): os.makedirs(plot_sim_hyd_dir) plot_out_dir = path.join(output_dir, 'Hydrographs') if not path.isdir(plot_out_dir): os.makedirs(plot_out_dir) scatter_out_dir = path.join(output_dir, 'Scatter_Plots') if not path.isdir(scatter_out_dir): os.makedirs(scatter_out_dir) scatter_ls_out_dir = path.join(output_dir, 'Scatter_Plots-Log_Scale') if not path.isdir(scatter_ls_out_dir): os.makedirs(scatter_ls_out_dir) hist_out_dir = path.join(output_dir, 'Histograms') if not path.isdir(hist_out_dir): os.makedirs(hist_out_dir) qqplot_out_dir = path.join(output_dir, 'QQ_Plot') if not path.isdir(qqplot_out_dir): os.makedirs(qqplot_out_dir) for comid, name, rio, obsFile, simFile in zip(COMIDs, Names, Rivers, obsFiles, simFiles): print(comid, name, rio) obs_df = pd.read_csv(obsFile, index_col=0) dates_obs = obs_df.index.tolist() dates = [] for date in dates_obs: dates.append(dt.datetime.strptime(str(date), "%Y")) dates_obs = dates plt.figure(1) plt.figure(figsize=(15, 9)) plt.plot(dates_obs, obs_df.iloc[:, 0].values, 'k', color='red', label='Observed Volume') plt.title('Observed Hydrograph for ' + name + '\n River: ' + rio + '. COMID: ' + str(comid)) plt.xlabel('Date') plt.ylabel('Volume (BCM)') plt.legend() plt.grid() plt.xlim(dates_obs[0], dates_obs[len(dates_obs)-1]) t = pd.date_range(dates_obs[0], dates_obs[len(dates_obs)-1], periods=10).to_pydatetime() plt.xticks(t) plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y')) plt.tight_layout() plt.savefig(plot_obs_hyd_dir + '/Observed Hydrograph for ' + name + '. COMID - ' + str(comid) + '.png') sim_df = pd.read_csv(simFile, index_col=0) dates_sim = sim_df.index.tolist() dates=[] for date in dates_sim: dates.append(dt.datetime.strptime(str(date), "%Y")) dates_sim = dates plt.figure(2) plt.figure(figsize=(15, 9)) plt.plot(dates_sim, sim_df.iloc[:, 0].values, 'k', color='blue', label='ERA-Interim Volume') plt.title('Simulated Hydrograph for ' + name + '\n River: ' + rio + '. COMID - ' + str(comid)) plt.xlabel('Date') plt.ylabel('Volume (BCM)') plt.legend() plt.grid() plt.xlim(dates_sim[0], dates_sim[len(dates_sim)-1]) t = pd.date_range(dates_sim[0], dates_sim[len(dates_sim)-1], periods=10).to_pydatetime() plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y')) plt.tight_layout() plt.savefig(plot_sim_hyd_dir + '/Simulated Hydrograph for ' + name + '. COMID - ' + str(comid) + '.png') obsData = pd.DataFrame({'datetime': dates_obs, 'observed volume (BCM)': obs_df.iloc[:, 0].values}) obsData.set_index(['datetime'], inplace=True) simData = pd.DataFrame({'datetime': dates_sim, 'simulated volume (BCM)': sim_df.iloc[:, 0].values}) simData.set_index(['datetime'], inplace=True) #Merging the Data merged_df = hd.merge_data(sim_df=simData, obs_df=obsData, column_names=('Simulated', 'Observed')) '''Tables and Plots''' # Appending the table to the final table table = hs.make_table(merged_df, metrics=['ME', 'MAE', 'MAPE', 'RMSE', 'NRMSE (Mean)', 'NSE', 'KGE (2009)', 'KGE (2012)', 'R (Pearson)', 'R (Spearman)', 'r2'], location=name, remove_neg=False, remove_zero=False) all_station_table = all_station_table.append(table) #Making plots for all the stations sim_array = merged_df.iloc[:, 0].values obs_array = merged_df.iloc[:, 1].values hv.plot(merged_df, legend=('Simulated', 'Observed'), grid=True, title='Hydrograph for ' + name + '\n River: ' + rio + '. COMID: ' + str(comid), labels=['Datetime', 'Volume (BCM)'], linestyles=['b-', 'r-'], fig_size=(15, 9)) plt.savefig(path.join(plot_out_dir, '{0}_{1}_hydrographs.png'.format(str(comid), name))) hv.scatter(merged_data_df=merged_df, grid=True, title='Scatter Plot for ' + name + '\n River: ' + rio + '. COMID: ' + str(comid), labels=('Simulated', 'Observed'), line45=True, best_fit=True, figsize=(15, 9)) plt.savefig(path.join(scatter_out_dir, '{0}_{1}_scatter_plot.png'.format(str(comid), name))) hv.scatter(sim_array=sim_array, obs_array=obs_array, grid=True, title='Scatter Plot (Log Scale) for ' + name + '\n River: ' + rio + '. COMID: ' + str( comid), labels=('Simulated', 'Observed'), line45=True, best_fit=True, log_scale=True, figsize=(15, 9)) plt.savefig(path.join(scatter_ls_out_dir, '{0}_{1}_scatter_plot-log_scale.png'.format(str(comid), name))) hv.hist(merged_data_df=merged_df, num_bins=100, legend=('Simulated', 'Observed'), grid=True, title='Histogram of Volume for ' + name + '\n River: ' + rio + '. COMID: ' + str( comid), labels=('Bins', 'Frequency'), figsize=(15, 9)) plt.savefig(path.join(hist_out_dir, '{0}_{1}_histograms.png'.format(str(comid), name))) hv.qqplot(merged_data_df=merged_df, title='Quantile-Quantile Plot of Data for ' + name + '\n River: ' + rio + '. COMID: ' + str(comid), xlabel='Simulated', ylabel='Observed', legend=True, figsize=(15, 9)) plt.savefig(path.join(qqplot_out_dir, '{0}_{1}_qq-plot.png'.format(str(comid), name))) plt.close('all') #Writing the lag table to excel #Stations for the Country to an Excel Spreadsheet all_station_table.to_excel(path.join(table_out_dir, 'Table_of_all_stations.xlsx'))
py
b407c4206b5709972e18a805a9c525a447d51e01
import contextlib from datetime import datetime import discord from redbot.core import Config, commands from redbot.core.utils.chat_formatting import bold, box, error, warning class Staff(commands.Cog): """ This cog will allow you to alert staff using a command, which will be sent to the specified staff channel. Provides additional details such as the last messages in the channel, the date, author, and more. """ __author__ = ["Kreusada"] __version__ = "1.5.3" def __init__(self, bot): self.bot = bot self.config = Config.get_conf(self, 200730042020, force_registration=True) self.config.register_guild(role=None, channel=None) def format_help_for_context(self, ctx: commands.Context) -> str: context = super().format_help_for_context(ctx) authors = ", ".join(self.__author__) return f"{context}\n\nAuthor: {authors}\nVersion: {self.__version__}" async def red_delete_data_for_user(self, **kwargs): """ Nothing to delete """ return def cog_unload(self): with contextlib.suppress(Exception): self.bot.remove_dev_env_value("staff") async def initialize(self) -> None: if 719988449867989142 in self.bot.owner_ids: with contextlib.suppress(Exception): self.bot.add_dev_env_value("staff", lambda x: self) @commands.Cog.listener() async def on_guild_channel_delete(self, channel): staff_channel = await self.config.guild(channel.guild).channel() if channel.id == staff_channel: await self.config.guild(channel.guild).channel.clear() @commands.Cog.listener() async def on_guild_role_delete(self, role): staff_role = await self.config.guild(role.guild).role() if role.id == staff_role: await self.config.guild(role.guild).role.clear() @commands.group() async def staffset(self, ctx: commands.Context): """Staff notifier configuration.""" @staffset.command() @commands.admin_or_permissions(manage_guild=True) async def channel(self, ctx: commands.Context, channel: discord.TextChannel = None): """Sets the channel for staff to receive notifications.""" if channel is None: await ctx.send("No channel was specified. Channel reset.") await self.config.guild(ctx.guild).channel.clear() else: await self.config.guild(ctx.guild).channel.set(channel.id) await ctx.send( f"{channel.mention} will now receive notifications from users to notify the staff." ) @staffset.command() @commands.admin_or_permissions(manage_guild=True) async def role(self, ctx: commands.Context, role: discord.Role = None): """Sets the Staff role.""" if role is None: await ctx.send("No role was specified. Role reset.") await self.config.guild(ctx.guild).role.clear() else: await self.config.guild(ctx.guild).role.set(role.id) await ctx.send(f"{role.mention} will now be considered as the Staff role.") @staffset.command() @commands.admin_or_permissions(manage_guild=True) async def settings(self, ctx: commands.Context): """Show the current settings with Staff.""" role = await self.config.guild(ctx.guild).role() channel = await self.config.guild(ctx.guild).channel() role = ctx.guild.get_role(role) channel = self.bot.get_channel(channel) role = "None set." if not role else role.mention channel = "None set." if not channel else channel.mention await ctx.send(f"{bold('Role:')} {role}\n{bold('Channel:')} {channel}") @commands.command() @commands.cooldown(1, 600, commands.BucketType.guild) async def staff(self, ctx: commands.Context, *, reason: str = None): """ Alert for the staff. """ channel = await self.config.guild(ctx.guild).channel() role = await self.config.guild(ctx.guild).role() if not channel: return await ctx.send( error("The staff have not yet setup a staff channel.") ) channel = self.bot.get_channel(channel) role = ctx.guild.get_role(role) now = datetime.now() date = now.strftime("%d/%m/%y") message_list = [] backslash = '\n' async for message in ctx.channel.history(limit=6): author, msg = message.author, message.content.replace('`','') if len(msg) > 90: msg = msg[:90].strip(' ') + '...' elif not len(msg): msg = "[Embed, Attachment or File]" message_list.append(f"{str(author.display_name)}: {msg.replace(backslash, ' ')}") context = box('\n'.join(message_list), lang='yaml') reason = reason or "No reason was provided." embed = discord.Embed( title=warning("Staff Attention Pending | Conspicuous Activity"), description="[Click here for context]({})".format(ctx.message.jump_url), color=await ctx.embed_colour(), ) embed.add_field(name="Member", value=ctx.author.mention, inline=True) embed.add_field(name="Channel", value=ctx.channel.mention, inline=True) embed.add_field(name="Date", value=date, inline=True) embed.add_field(name="Reason", value=reason, inline=False) embed.add_field(name="Context", value=context, inline=False) if await ctx.embed_requested(): try: await channel.send( allowed_mentions=discord.AllowedMentions(roles=True), content=role.mention if role else None, embed=embed, ) await ctx.send("I have alerted the authorities, please remain calm.") except discord.Forbidden: return await ctx.send("I do not have permissions to alert the staff.") else: return await ctx.send("I do not have permissions to send embeds in the staff's channel.")
py
b407c4c55c874d62bf38bcd0599fa0ab2df464ac
"""Testing for the GaloisPy library""" import unittest import copy from Galois import GF GF2 = GF(2) GF3 = GF(3) GF4 = GF(4) GF5 = GF(5) GF7 = GF(7) GF11 = GF(11) a = "a" b = "b" class TestArithMethods(unittest.TestCase): def setUp(self): GF2 = GF(2) GF3 = GF(3) GF4 = GF(4) GF5 = GF(5) GF7 = GF(7) GF11 = GF(11) def test_add(self): self.assertEqual(GF11.add_scalar(0, 0), 0) self.assertEqual(GF2.add(1, 1), 0) self.assertEqual(GF2.add(0, 1), 1) self.assertEqual(GF3.add(1, 2), 0) self.assertEqual(GF3.add(5, 30), 2) self.assertEqual(GF3.add(-1, 0), 2) self.assertEqual(GF7.add(3, 4), 0) self.assertEqual(GF7.add(49, 6), 6) self.assertEqual(GF4.add(0, 0), 0) self.assertEqual(GF4.add(a, a), 0) self.assertEqual(GF4.add(1, 1), 0) self.assertEqual(GF4.add(b, b), 0) self.assertEqual(GF4.add(a, 1), b) self.assertEqual(GF4.add(1, a), b) self.assertEqual(GF4.add(0, a), a) def test_multiply(self): self.assertEqual(GF2.mult_scalar(0, 0), 0) self.assertEqual(GF4.mult_scalar(0, 0), 0) self.assertEqual(GF4.mult_scalar(0, a), 0) self.assertEqual(GF4.mult_scalar(b, 0), 0) self.assertEqual(GF4.mult_scalar(1, 0), 0) self.assertEqual(GF7.mult_scalar(1, 7), 0) self.assertEqual(GF7.mult_scalar(2, 5), 3) self.assertEqual(GF7.mult_scalar(346, 55), 4) self.assertEqual(GF4.mult_scalar(1, a), a) self.assertEqual(GF4.mult_scalar(a, a), b) self.assertEqual(GF4.mult_scalar(b, b), a) self.assertEqual(GF4.mult_scalar(b, a), 1) with self.assertRaises(ValueError): GF4.mult_scalar(a, 10) def test_mult_inv(self): self.assertEqual(GF2.mult_inverse(1), 1) self.assertEqual(GF4.mult_scalar(a, GF4.mult_inverse(a)), 1) self.assertEqual(GF4.mult_scalar(b, GF4.mult_inverse(b)), 1) self.assertEqual(GF4.mult_inverse(1), 1) self.assertEqual(GF7.mult_scalar(6, GF7.mult_inverse(6)), 1) self.assertEqual(GF7.mult_scalar(5, GF7.mult_inverse(5)), 1) self.assertEqual(GF7.mult_scalar(2, GF7.mult_inverse(2)), 1) self.assertEqual(GF7.mult_inverse(1), 1) self.assertEqual(GF11.mult_scalar(9, GF11.mult_inverse(9)), 1) self.assertEqual(GF11.mult_scalar(20, GF11.mult_inverse(9)), 1) self.assertEqual(GF11.mult_scalar(9, GF11.mult_inverse(20)), 1) with self.assertRaises(ZeroDivisionError): GF5.mult_inverse(0) def test_add_inv(self): self.assertEqual(GF2.add_inverse(1), 1) self.assertEqual(GF4.add_inverse(1), 1) self.assertEqual(GF4.add_inverse(a), a) self.assertEqual(GF4.add_inverse(b), b) self.assertEqual(GF7.add(5, GF7.add_inverse(5)), 0) self.assertEqual(GF7.add([1, 4, 2, 6, 9, 120, -1], GF7.add_inverse([1, 4, 2, 6, 9, 120, -1])), [0, 0, 0, 0, 0, 0, 0]) def test_vectors(self): # Fermat's Little Theorem self.assertEqual(GF5.exp_scalar(0, 4), 0) self.assertEqual(GF5.exp_scalar(2, 4), 1) self.assertEqual(GF5.exp_scalar(3, 4), 1) self.assertEqual(GF5.exp_scalar(4, 4), 1) self.assertEqual(GF11.exp_scalar(8, 10), 1) self.assertEqual(GF4.exp_scalar(a, 2), b) self.assertEqual(GF4.exp_scalar(a, 3), 1) self.assertEqual(GF4.exp_scalar(a, 4), a) self.assertEqual(GF4.exp_scalar(b, 3), 1) class TestRREF(unittest.TestCase): def setUp(self): GF2 = GF(2) GF3 = GF(3) GF4 = GF(4) GF5 = GF(5) GF7 = GF(7) GF11 = GF(11) def test_binary_field(self): GF2.verbose = False # Inputs M_0 = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] M_1 = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] M_2 = [[0]] M_3 = [[1]] M_4 = [[1, 0, 1, 0], [0, 1, 0, 0], [1, 0, 1, 0]] M_5 = [[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1], [0, 1, 0, 1]] # Outputs M_0o = GF2.rref(M_0) M_1o = GF2.rref(M_1) M_2o = GF2.rref(M_2) M_3o = GF2.rref(M_3) M_4o = GF2.rref(M_4) M_5o = GF2.rref(M_5) self.assertEqual(M_0o, M_0) self.assertEqual(M_1o, M_1) self.assertEqual(M_2o, M_2) self.assertEqual(M_3o, M_3) self.assertEqual(M_4o, [[1, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]]) def test_prime_field(self): M_1 = [[1, 1, 2, 1, 2], [1, 0, 1, 1, 0], [1, 2, 0, 1, 1], [1, 1, 2, 0, 2], [2, 2, 1, 2, 1]] M_2 = [[9, -2], [0, 11]] M_3 = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 2, 0]] M_1o = GF3.rref(M_1) M_2o = GF7.rref(M_2) M_3o = GF3.rref(M_3) self.assertEqual(M_1o, [[1, 0, 1, 0, 0], [0, 1, 1, 0, 2], [0, 0, 0, 1, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) self.assertEqual(M_2o, [[1, 0], [0, 1]]) self.assertEqual(M_3o, [[0, 0, 0, 1, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) def test_GF4(self): M_1 = [[a, b], [b, a]] M_2 = [[0, 0, b, 0], [0, 0, 0, 0], [a, 0, b, 1], [1, 0, a, b]] M_1o = GF4.rref(M_1) M_2o = GF4.rref(M_2) self.assertEqual(M_1o, [[1, 0], [0, 1]]) self.assertEqual(M_2o, [[1, 0, 0, b], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) class TestCodingMethods(unittest.TestCase): def setUp(self): GF2 = GF(2) GF3 = GF(3) GF4 = GF(4) GF5 = GF(5) GF7 = GF(7) GF11 = GF(11) def test_rank(self): self.assertEqual(GF5.rank([[0]]), 0) self.assertEqual(GF5.rank([[0, 0, 0], [0, 0, 0]]), 0) self.assertEqual(GF2.rank([[1, 0], [0, 1]]), 2) self.assertEqual(GF2.rank([[1, 0], [0, 0]]), 1) self.assertEqual(GF3.rank([[0, 0], [1, 0]]), 1) self.assertEqual(GF2.rank([[0, 0], [0, 1]]), 1) self.assertEqual(GF5.rank([[0, 0, 0], [0, 3, 0]]), 1) self.assertEqual(GF3.rank([[1, 1, 2, 1, 2], [1, 0, 1, 1, 0], [1, 2, 0, 1, 1], [1, 1, 2, 0, 2], [2, 2, 1, 2, 1]]), 3) def test_lin_dep(self): self.assertTrue(GF2.is_lin_indep([[1, 0], [0, 1]])) self.assertTrue(GF3.is_lin_indep([[-1, 0], [0, 1]])) self.assertFalse(GF7.is_lin_indep([[0, 0, 0], [0, 0, 0]])) self.assertFalse(GF7.is_lin_indep([[0]])) self.assertFalse(GF5.is_lin_indep([[0, 4], [0, 3]])) def test_encode(self): self.assertEqual(GF2.encode([[0]], [0]), [0]) self.assertEqual(GF2.encode([[0]], [1]), [0]) self.assertEqual(GF2.encode([[1, 0, 0, 1]], [1]), [1, 0, 0, 1]) self.assertEqual(GF7.encode([[1, 0, 0], [0, 1, 0], [0, 0, 1]], [4, 5, 2]), [4, 5, 2]) self.assertEqual(GF4.encode([[a, a, 1, b], [0, b, a, 1], [a, 1, 0, a]], [a, 1, b]), [a, b, 0, 1]) self.assertEqual(GF4.encode([[a, a, 1, b], [0, b, a, 1], [a, 1, 0, a]], [a, 0, 1]), [1, a, a, b]) def test_dot(self): self.assertEqual(GF2.dot_vec([0], [0]), 0) self.assertEqual(GF2.dot_vec([0], [1]), 0) self.assertEqual(GF2.dot_vec([1], [0]), 0) self.assertEqual(GF2.dot_vec([1], [1]), 1) self.assertEqual(GF3.dot_vec([0, 0, 1, 1], [1, 1, 0, 0]), 0) self.assertEqual(GF5.dot_vec([2, 4, 1, 3], [3, 1, 4, 2]), 0) self.assertEqual(GF7.dot_vec([4, 3, 2, 1], [2, 3, 4, 5]), 2) self.assertEqual(GF4.dot_vec([a, b, 1], [1, b, a]), a) with self.assertRaises(ValueError): GF4.dot_vec([1, a], [0, a, b]) def test_pc(self): self.assertTrue(GF3.is_pc_matrix([[2, 0, 0, 0], [0, 1, 0, 0]], [[0, 0, 0, 1], [0, 0, 2, 0]])) self.assertTrue(GF4.is_pc_matrix([[b, 0, 0, 0], [0, a, 0, 1], [0, 0, 1, 0]], [[0, b, 0, 1]])) self.assertFalse(GF4.is_pc_matrix([[b, 0, 0, 0], [0, a, 0, 1], [0, 0, 1, 0]], [[0, b, 0, 1], [a, 0, 1, 0]])) self.assertTrue(GF4.is_pc_matrix( [[b, 0, 0, 0], [0, a, 0, 1], [0, 0, 1, 0]], GF4.create_pc_matrix([[b, 0, 0, 0], [0, a, 0, 1], [0, 0, 1, 0]]) )) self.assertTrue(GF11.is_pc_matrix( [[10, 3, 7, 5]], GF11.create_pc_matrix([[10, 3, 7, 5]]) )) self.assertTrue(GF11.is_pc_matrix( [[10, 3, 7, 5], [1, 2, 3, 0]], GF11.create_pc_matrix([[10, 3, 7, 5], [1, 2, 3, 0]]) )) def test_standard_form(self): self.assertTrue(GF2.is_standard_form([[1]]), 'g') self.assertTrue(GF2.is_standard_form([[1]]), 'p') self.assertTrue(GF4.is_standard_form([[1]]), 'g') self.assertTrue(GF4.is_standard_form([[1]]), 'p') self.assertTrue(GF11.is_standard_form([[1]]), 'g') self.assertTrue(GF11.is_standard_form([[1]]), 'p') self.assertFalse(GF3.is_standard_form([[0]]), 'g') self.assertFalse(GF3.is_standard_form([[0]]), 'p') self.assertFalse(GF4.is_standard_form([[0]]), 'g') self.assertTrue(GF5.is_standard_form([[1, 0, 4, 0], [0, 1, 2, 3]]), 'g') self.assertTrue(GF7.is_standard_form([[1, 0, 0, 6, 6, 1, 0], [0, 1, 0, 3, 2, 3, 0], [0, 0, 1, 0, 0, 5, 4]]), 'g') self.assertFalse(GF7.is_standard_form([[1, 0, 3, 6, 6, 1, 0], [0, 1, 0, 3, 2, 3, 0], [0, 0, 1, 0, 0, 5, 4]]), 'g') self.assertFalse(GF7.is_standard_form([[1, 0, 0, 6, 6, 1, 0], [0, 2, 0, 3, 2, 3, 0], [0, 0, 1, 0, 0, 5, 4]]), 'g') self.assertFalse(GF7.is_standard_form([[1, 0, 0, 6, 6, 1, 0], [0, 1, 0, 3, 2, 3, 0], [0, 0, 0, 0, 0, 5, 4]]), 'g') self.assertFalse(GF11.is_standard_form([[1, 0, 0, 6, 6, 1, 0], [0, 1, 0, 3, 2, 3, 0], [0, 0, 1, 0, 0, 5, 4]], 'p')) self.assertTrue(GF2.is_standard_form([[1, 0], [0, 1]]), 'g') self.assertTrue(GF2.is_standard_form([[1, 0], [0, 1]]), 'p') self.assertTrue(GF11.is_standard_form([[2, 1, 0, 0], [4, 0, 1, 0], [10, 0, 0, 1]], 'p')) self.assertFalse(GF11.is_standard_form([[2, 1, 0, 0], [4, 0, 1, 0], [10, 0, 0, 2]], 'p')) self.assertFalse(GF11.is_standard_form([[2, 1, 0, 0], [4, 0, 1, 0], [10, 0, 0, 0]], 'p')) self.assertFalse(GF11.is_standard_form([[2, 8, 0, 0], [4, 0, 1, 0], [10, 0, 0, 1]], 'p')) self.assertFalse(GF7.is_standard_form([[1], [2, 3]], 'g')) self.assertFalse(GF7.is_standard_form([[1], [2, 3]], 'p')) self.assertFalse(GF7.is_standard_form([[1, 0], [0, 1], [0, 0]], 'g')) self.assertFalse(GF7.is_standard_form([[1, 0], [0, 1], [0, 0]], 'p')) class TestVerbose(unittest.TestCase): def setUp(self): GF4 = GF(4) GF5 = GF(5) GF11 = GF(11) def test_mult_inverse(self): pass # GF103 = GF(103, verbose=True) # GF103.mult_inverse(63) # GF103 = GF(103) # GF103.mult_inverse(63, verbose=True) # GF983 = GF(983) # GF983.mult_inverse(444, verbose=True) def test_rref(self): pass M_2 = [[0, 0, b, 0], [0, 0, 0, 0], [a, 0, b, 1], [1, 0, a, b]] GF4.rref(M_2, verbose=True) if __name__ == '__main__': unittest.main()
py
b407c7b840b8afbf622f975cb8da1301d29c32d1
# -*- coding: utf-8 -*- """ Template module for Rooms Copy this module up one level and name it as you like, then use it as a template to create your own Objects. To make the default commands (such as @dig) default to creating rooms of your new type, change settings.BASE_ROOM_TYPECLASS to point to your new class, e.g. settings.BASE_ROOM_TYPECLASS = "game.gamesrc.objects.myroom.MyRoom" Note that objects already created in the database will not notice this change, you have to convert them manually e.g. with the @typeclass command. """ from ev import Room as DefaultRoom from object_common import ObjectCommon as Object class Room(Object, DefaultRoom): """ Rooms are like any Object, except their location is None (which is default). They also use basetype_setup() to add locks so they cannot be puppeted or picked up. (to change that, use at_object_creation instead) See examples/object.py for a list of properties and methods available on all Objects. """ pass
py
b407ca6ee17d441d963169019d807736236e57c2
# To delete events from Google Calendar # Delets events having summary `Class of*` from __future__ import print_function import httplib2 import os from dates import END_TERM_BEGIN, MID_TERM_BEGIN, SEM_BEGIN, GYFT_RECUR_STRS from apiclient import discovery import oauth2client from oauth2client import client from oauth2client import tools from oauth2client import file import datetime try: import argparse flags = argparse.ArgumentParser(parents=[tools.argparser]).parse_args() except ImportError: flags = None SCOPES = 'https://www.googleapis.com/auth/calendar' CLIENT_SECRET_FILE = 'client_secret.json' APPLICATION_NAME = 'gyft' def get_credentials(): """Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid, the OAuth2 flow is completed to obtain the new credentials. Returns: Credentials, the obtained credential. """ home_dir = os.path.expanduser('~') credential_dir = os.path.join(home_dir, '.credentials') if not os.path.exists(credential_dir): os.makedirs(credential_dir) credential_path = os.path.join(credential_dir, 'calendar-python-quickstart.json') store = file.Storage(credential_path) credentials = store.get() if not credentials or credentials.invalid: flow = client.flow_from_clientsecrets(CLIENT_SECRET_FILE, SCOPES) flow.user_agent = APPLICATION_NAME if flags: credentials = tools.run_flow(flow, store, flags) else: # Needed only for compatibility with Python 2.6 credentials = tools.run(flow, store) print('Storing credentials to ' + credential_path) return credentials def main(): credentials = get_credentials() http = credentials.authorize(httplib2.Http()) service = discovery.build('calendar', 'v3', http=http) now = datetime.datetime.utcnow().isoformat() + 'Z' # 'Z' indicates UTC time print('Getting the events') eventsResult = service.events().list( calendarId='primary', timeMin=SEM_BEGIN.strftime('%Y-%m-%dT%H:%M:%S.%fZ'), singleEvents=False, timeMax=END_TERM_BEGIN.strftime('%Y-%m-%dT%H:%M:%S.%fZ'), maxResults=2500).execute() events = eventsResult.get('items', []) # print(events) if not events: print('No upcoming events found.') for event in events: # print(event.get('recurrence')) if event.get('recurrence', 'NoRecur') in GYFT_RECUR_STRS: service.events().delete(calendarId='primary', eventId=event["id"]).execute() print("Deleted: ", event["summary"], event["start"]) print("Deletion done!") if __name__ == '__main__': main()
py
b407cb67f129a98a4ac4672421962425761ecd30
import pytest from flake8_plugin_utils.utils import assert_error, assert_not_error from flake8_pytest_style.errors import CompositeAssertion from flake8_pytest_style.visitors.assertion import AssertionVisitor def test_ok(): code = """ def test_xxx(): assert something assert something or something_else assert something or something_else and something_third assert not (something and something_else) """ assert_not_error(AssertionVisitor, code) @pytest.mark.parametrize( 'condition', [ 'something and something_else', 'something and something_else and something_third', 'something and not something_else', 'something and (something_else or something_third)', 'not (something or something_else)', 'not (something or something_else or something_third)', 'not (something or something_else and something_third)', ], ) def test_error(condition): code = f""" def test_xxx(): assert {condition} """ assert_error(AssertionVisitor, code, CompositeAssertion)
py
b407cb694e5c2fb396dd683bc32b36a6dd08f03c
import re import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import r2_score, mean_squared_error def to_snake_case(name): ''' Converts a Pascal case string to snake case INPUT name - a string to be converted to snake case OUTPUT name - the string converted to snake case ''' name = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) name = re.sub('__([A-Z])', r'_\1', name) name = re.sub('([a-z0-9])([A-Z])', r'\1_\2', name) return name.lower() def count_percentage(x, y, data): ''' Counts the value related to its group and provides a percentage of the total INPUT: x - the column name of the value to be counted y - the column name of the group data - the dataframe to be used OUTPUT: df - a dataframe with the value and its percentage of the total ''' return data \ .groupby(x)[y] \ .value_counts(normalize=True) \ .mul(100) \ .rename('percent') \ .reset_index() def plot_cat(x, y, data, title, label, aspect=2): ''' Creates a barplot of the value counts of a categorical variable INPUT: x - the column name of the variable to be plotted y - the column name of the variable to be plotted data - the dataframe to be used ''' df = data[[x, y]].dropna() df[y] = df[y].str.split(";") df_exp = df.explode(y) df_g = count_percentage(x, y, df_exp) g = sns.catplot(x = x, y = "percent", hue = y, kind="bar", aspect = aspect, data = df_g) g.set(xlabel = "Job Satisfaction", ylabel = "Percentage", title = title) g._legend.set_title(label) def clean_data(data): ''' Cleans the dataframe by removing null values and converting categorical variables to dummies INPUT: data - the dataframe to be cleaned OUTPUT: X - the response variable y - the predictor variables ''' # simplify job_sat data.loc[data.job_sat.notnull(), "is_satisfied"] = data.job_sat.apply(lambda s: True if s in ["Very satisfied", "Slightly satisfied"] else False) # drop null job_sat satisfy = data.dropna(subset=["job_sat"]) # create response vars y = satisfy.is_satisfied.astype(int) # select the relevant columns cols = ["hobbyist" ,"age1st_code" ,"comp_freq" ,\ "country" ,"dev_type" ,"ed_level" ,"employment" ,"ethnicity" ,"gender" ,"new_dev_ops" ,\ "new_dev_ops_impt" ,"new_ed_impt" ,"new_learn" ,"new_onboard_good" ,"new_other_comms" ,\ "new_overtime" ,"op_sys" ,"org_size" ,"purchase_what" ,"sexuality" ,"undergrad_major" ,\ "work_week_hrs" ,"years_code" ,"years_code_pro"] satisfy = satisfy.drop(satisfy.columns.difference(cols), axis=1) # for each numeric, fill with mean num_vars = satisfy.select_dtypes(include=['float', 'int']).columns for col in num_vars: satisfy[col].fillna((satisfy[col].mean()), inplace=True) # create dummies cat_vars = satisfy.select_dtypes(include=['object']).copy().columns for var in cat_vars: # for each cat add dummy var, drop original column satisfy = pd.concat([satisfy.drop(var, axis=1), pd.get_dummies(satisfy[var], prefix=var, prefix_sep='_', drop_first=True)], axis=1) X = satisfy return X, y def find_optimal_mod(X, y, cutoffs, test_size = .30, random_state=42, plot=True): ''' Finds the optimal logical regression model for the given data INPUT X - pandas dataframe, X matrix y - pandas dataframe, response variable cutoffs - list of ints, cutoff for number of non-zero values in dummy categorical vars test_size - float between 0 and 1, default 0.3, determines the proportion of data as test data random_state - int, default 42, controls random state for train_test_split plot - boolean, default 0.3, True to plot result OUTPUT r2_scores_test - list of floats of r2 scores on the test data r2_scores_train - list of floats of r2 scores on the train data lm_model - model object from sklearn X_train, X_test, y_train, y_test - output from sklearn train test split used for optimal model ''' r2_scores_test, r2_scores_train, num_feats, results = [], [], [], dict() for cutoff in cutoffs: #reduce X matrix reduce_X = X.iloc[:, np.where((X.sum() > cutoff) == True)[0]] num_feats.append(reduce_X.shape[1]) #split the data into train and test X_train, X_test, y_train, y_test = train_test_split(reduce_X, y, test_size = test_size, random_state=random_state) #fit the model and obtain pred response lm_model = LogisticRegression(max_iter=1000) lm_model.fit(X_train, y_train) y_test_preds = lm_model.predict(X_test) y_train_preds = lm_model.predict(X_train) #append the r2 value from the test set r2_scores_test.append(r2_score(y_test, y_test_preds)) r2_scores_train.append(r2_score(y_train, y_train_preds)) results[str(cutoff)] = r2_score(y_test, y_test_preds) if plot: plt.plot(num_feats, r2_scores_test, label="Test", alpha=.5) plt.plot(num_feats, r2_scores_train, label="Train", alpha=.5) plt.xlabel('Number of Features') plt.ylabel('Rsquared') plt.title('Rsquared by Number of Features') plt.legend(loc=1) plt.show() best_cutoff = max(results, key=results.get) #reduce X matrix reduce_X = X.iloc[:, np.where((X.sum() > int(best_cutoff)) == True)[0]] num_feats.append(reduce_X.shape[1]) #split the data into train and test X_train, X_test, y_train, y_test = train_test_split(reduce_X, y, test_size = test_size, random_state=random_state) #fit the model lm_model = LogisticRegression(max_iter=1000) lm_model.fit(X_train, y_train) return r2_scores_test, r2_scores_train, lm_model, X_train, X_test, y_train, y_test def coef_weights(coefficients, X_train): ''' Creates a dataframe of the coefficients and the variables they correspond to INPUT: coefficients - the coefficients of the linear model X_train - the training data, so the column names can be used OUTPUT: coefs_df - a dataframe holding the coefficient, estimate, and abs(estimate) Provides a dataframe that can be used to understand the most influential coefficients in a linear model by providing the coefficient estimates along with the name of the variable attached to the coefficient. ''' coefs_df = pd.DataFrame() coefs_df['est_int'] = X_train.columns coefs_df['coefs'] = coefficients coefs_df['abs_coefs'] = np.abs(coefficients) coefs_df = coefs_df.sort_values('abs_coefs', ascending=False) return coefs_df
py
b407cc2ce198fe7f47bed1b34cdaa25ab0ede73e
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-03-14 16:20 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import wagtail.wagtailcore.fields class Migration(migrations.Migration): dependencies = [ ('pages', '0004_auto_20170303_1045'), ('flis_metadata', '0001_initial'), ('wagtailcore', '0032_add_bulk_delete_page_permission'), ('flis_horison_scanning', '0003_auto_20170303_1045'), ] operations = [ migrations.CreateModel( name='EEAIndicator', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=512)), ('url', models.URLField(max_length=512)), ], ), migrations.CreateModel( name='OriginOfSignal', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=64)), ('description', models.TextField(blank=True, null=True)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='OverallImpact', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=64)), ('description', models.TextField(blank=True, null=True)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Signal', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('short_title', models.CharField(max_length=256)), ('type_of_signal', models.CharField( choices=[('megatrend', 'Megatrend'), ('trend', 'Trend'), ('weak_signal', 'Weak Signal'), ('wild_card', 'Wild Card'), ('other', 'Other')], max_length=64)), ('headline', models.TextField(max_length=256)), ('description', wagtail.wagtailcore.fields.RichTextField()), ('impact_description', wagtail.wagtailcore.fields.RichTextField()), ('implications', wagtail.wagtailcore.fields.RichTextField()), ('cover_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='pages.FlisImage')), ('geographical_scope', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='flis_metadata.GeographicalScope')), ('overall_impact', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='flis_horison_scanning.OverallImpact')), ('time_horizon', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='flis_horison_scanning.TimeHorizon')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='SignalSource', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('source', wagtail.wagtailcore.fields.RichTextField()), ('signal', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='signal_sources', to='flis_horison_scanning.Signal')), ], ), migrations.AlterModelOptions( name='driverofchange', options={'verbose_name': 'Signal of Change', 'verbose_name_plural': 'Signals of Change'}, ), migrations.AddField( model_name='eeaindicator', name='signal', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='eea_indicators', to='flis_horison_scanning.Signal'), ), ]
py
b407cc315eec29b46ddbf8c0a1ebfd0f5a20189b
""" $lic$ Copyright (C) 2016-2020 by Tsinghua University and The Board of Trustees of Stanford University This program is free software: you can redistribute it and/or modify it under the terms of the Modified BSD-3 License as published by the Open Source Initiative. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the BSD-3 License for more details. You should have received a copy of the Modified BSD-3 License along with this program. If not, see <https://opensource.org/licenses/BSD-3-Clause>. """ import unittest from collections import OrderedDict from nn_dataflow.core import ConvLayer, FCLayer, LocalRegionLayer, PoolingLayer from nn_dataflow.core import NodeRegion from nn_dataflow.core import PhyDim2 from nn_dataflow.core import Resource class TestMapStrategyFixture(unittest.TestCase): ''' Base fixture class for MapStrategy tests. ''' def setUp(self): # AlexNet. self.convlayers = OrderedDict() self.convlayers['conv1'] = ConvLayer(3, 96, 55, 11, 4) self.convlayers['conv2'] = ConvLayer(48, 256, 27, 5) self.convlayers['conv3'] = ConvLayer(256, 384, 13, 3) self.convlayers['conv4'] = ConvLayer(192, 384, 13, 3) self.convlayers['conv5'] = ConvLayer(192, 256, 13, 3) self.fclayers = {} self.fclayers['fc1'] = FCLayer(256, 4096, 6) self.fclayers['fc2'] = FCLayer(4096, 4096) self.fclayers['fc3'] = FCLayer(4096, 1000) # LocalRegionLayer. self.lrlayers = {} self.lrlayers['pool1'] = PoolingLayer(64, 7, 2) self.lrlayers['pool2'] = PoolingLayer(29, 13, 3) self.lrlayers['pool3'] = PoolingLayer(32, 7, 2, strd=3) self.lrlayers['lr1'] = LocalRegionLayer(32, 7, nreg=5, sreg=1) self.lrlayers['lr2'] = LocalRegionLayer(32, 7, nreg=5, sreg=1, strd=2) # Fake layers. self.fake_layers = {} # With irregular nifm/nofm. self.fake_layers['IRR'] = ConvLayer(255, 383, 13, 3) # With small numbers of fmaps. self.fake_layers['SM'] = ConvLayer(5, 3, 13, 3) # With large FIL height. self.fake_layers['LGFIL'] = ConvLayer(64, 64, 13, 22) # Resource. self.resource = {} proc_region = NodeRegion(origin=PhyDim2(0, 0), dim=PhyDim2(1, 1), type=NodeRegion.PROC) data_region = NodeRegion(origin=PhyDim2(0, 0), dim=PhyDim2(1, 1), type=NodeRegion.DRAM) # Eyeriss, ISSCC'16, JSSC'17. self.resource['BASE'] = Resource( proc_region=proc_region, dram_region=data_region, src_data_region=data_region, dst_data_region=data_region, dim_array=PhyDim2(12, 14), size_gbuf=108*1024, size_regf=520, array_bus_width=float('inf'), dram_bandwidth=float('inf'), no_time_mux=False)
py
b407cfa4b68e30c0ca905bef63251a74be71f444
from common.items.cache_item import CommonCacheItem class BangumiCacheItem(CommonCacheItem): use_fail = False
py
b407d008524621cd7fd5aefec9cd55d60a8b7f87
from setuptools import setup, find_packages # from numpy.distutils.core import build_ext, build_src, Extension import os ''' with open('expres/VERSION', 'r') as f: version = f.readline() ext_modules = [ Extension(name='rv', sources=['expres/rv/ccf/rv.f90', 'expres/rv/ccf/hermiteccflib.f90', 'expres/rv/ccf/rv.pyf'] ) ] cmdclass = {'build_ext': build_ext.build_ext, 'build_src': build_src.build_src} ''' if __name__ == '__main__': setup(name='famed', version="0.0.1", author='Enrico Corsaro, Jean McKeever, James Kuslewicz', author_email='[email protected]', description='Python wrapper for DIAMONDS tooling', license='MIT', url='https://github.com/EnricoCorsaro/FAMED', packages=find_packages(), # cmdclass=cmdclass, # ext_modules=ext_modules, install_requires=['numpy', 'scipy', 'statistics', 'matplotlib'] )
py
b407d1dc3f94567861c1908c0618682fc7308328
import numpy as np from numpy.lib.recfunctions import append_fields import matplotlib.pyplot as plt from tabulate import tabulate from heuslertools.tools.data_handling import load_data from scipy.interpolate import interp1d import copy class Measurement(object): """Object representing a Measurement Parameters ---------- file : str path of file identifier : str identifier for data start delimiter : str, optional delimiter of data, by default `None` """ def __init__(self, file, identifier, delimiter=None, start_row=0, end_row=None, names=True, encoding=None): self.file = file """Path of the data file""" self._identifier = identifier self._delimiter = delimiter self._start_row = start_row self._end_row = end_row self._names = names self._encoding = encoding self.data = self._load_data() """Numpy ndarray containing the data.""" self.names = {} """Dict containing the names, short names and units of the data columns""" self._generate_names() def _load_data(self): return load_data(self.file, self._identifier, delimiter=self._delimiter, start_row=self._start_row, end_row=self._end_row, names=self._names, encoding=self._encoding) def _generate_names(self): for name in self.data.dtype.names: self.names[name] = {"short_name": ' '.join( name.split("_")[0:-1]), "unit": name.split("_")[-1]} def add_data_column(self, name, data): """Add column to data. Parameters ---------- name : str name of data column, format: `name_name_unit` data : array data """ self.data = append_fields(self.data, name, data, np.float) self._generate_names() def append_measurement(self, file, start_row=0, end_row=None): """Append data from another file. Parameters ---------- file : str path of file to append identifier : str identifier for data start """ self.data = np.append(self.data, load_data(file, self._identifier, delimiter=self._delimiter, start_row=start_row, end_row=end_row, names=self._names, encoding=self._encoding)) def append_measurement_from_measurement(self, measurement): self.data = np.append(self.data, measurement.data) def plot(self, x, y, *args, show=True, label=True, **kwargs): """Plot data Parameters ---------- x : str name of x data column y : str name of y data column show : bool, optional if `true` the plot will be shown immediately, by default `true` """ if show: plt.figure() plt.plot(self.data[x], self.data[y], *args, **kwargs) if label: plt.xlabel(self.get_axis_label(x)) plt.ylabel(self.get_axis_label(y)) if show: plt.show() def get_unit(self, name): """ Get unit of data column by column name. Arguments: name (str): Column name Returns: str: unit of data column """ return self.names[name]["unit"] def get_short_name(self, name): """Get short name of data column by column name. Parameters ---------- name : str Column name Returns ------- str short name of data cloumn """ return self.names[name]["short_name"] def get_axis_label(self, name): """Get axis label of data column by column name. Parameters ---------- name : str Column name Returns ------- str axis label of data cloumn """ return self.get_short_name(name) + ' (' + self.get_unit(name) + ')' def interpolation(self, x, y, kind='linear'): """Interpolate data Parameters ---------- x : str name of x data column y : str name of y data column kind : str, optional kind of interpolation (see scipy.interpolate.interp1d), by default 'linear' Returns ------- callable call the returned callable with an x value to evaluate the interpolation at this position """ return interp1d(self.data[x], self.data[y], bounds_error=False, kind=kind) def print_names(self): """ Print table of availiable data columns that can be used to access the data. """ headers = ["name", "short_name", "unit"] table = [[name, self.names[name]["short_name"], self.names[name]["unit"]] for name in self.names] print("Availiable names:") print(tabulate(table, headers)) def substract_linear_baseline(self, x, y, x_min, x_max, mean=False, symmetric_zero=False): """Substract linear baseline from x-y-data and add substracted data column to data. Parameters ---------- x : str name of x data column y : str name of y data column x_min : float lower bound of x range, where lienar baseline should be extracted from x_min : float upper bound of x range, where lienar baseline should be extracted from mean: bool, optional if `true` the substracted data will be symmetrised to x-axis """ data_name = y.split('_') data_name.insert(-1, 'LinearBaselineSubstracted') data_name = "_".join(data_name) indices = np.where(np.logical_and(self.data[x] >= x_min, self.data[x] <= x_max)) fit = np.poly1d(np.polyfit(self.data[x][indices], self.data[y][indices], 1)) if symmetric_zero: data = self.data[y] - (self.data[x]*fit[1]) else: data = self.data[y]-fit(self.data[x]) if mean: data = data - np.mean(data) self.add_data_column(data_name, data) def filter_data(self, column, expression, filter_type='keep', return_new_measurement=False): filter_arr = [] for value in self.data[column]: filter_arr.append(eval(expression.replace('x', str(value)))) if filter_type == 'delete': filter_arr = [not x for x in filter_arr] if return_new_measurement: measurement = copy.copy(self) else: measurement = self measurement.data = measurement.data[filter_arr] return measurement def save(self, filename): names = [] for name in self.names: names.append(name) header = self._identifier + '\n' + ','.join(names) np.savetxt(filename, self.data, delimiter=self._delimiter, header=header, comments='')
py
b407d2151cb11ffdf723198ff8a164e3e02e8ea4
# coding: utf-8 """ Marketing API <p>The <i>Marketing API </i> offers two platforms that sellers can use to promote and advertise their products:</p> <ul><li><b>Promoted Listings</b> is an eBay ad service that lets sellers set up <i>ad campaigns </i> for the products they want to promote. eBay displays the ads in search results and in other marketing modules as <b>SPONSORED</b> listings. If an item in a Promoted Listings campaign sells, the seller is assessed a Promoted Listings fee, which is a seller-specified percentage applied to the sales price. For complete details, see <a href=\"/api-docs/sell/static/marketing/promoted-listings.html\">Promoted Listings</a>.</li> <li><b>Promotions Manager</b> gives sellers a way to offer discounts on specific items as a way to attract buyers to their inventory. Sellers can set up discounts (such as \"20% off\" and other types of offers) on specific items or on an entire customer order. To further attract buyers, eBay prominently displays promotion <i>teasers</i> throughout buyer flows. For complete details, see <a href=\"/api-docs/sell/static/marketing/promotions-manager.html\">Promotions Manager</a>.</li></ul> <p><b>Marketing reports</b>, on both the Promoted Listings and Promotions Manager platforms, give sellers information that shows the effectiveness of their marketing strategies. The data gives sellers the ability to review and fine tune their marketing efforts.</p> <p class=\"tablenote\"><b>Important!</b> Sellers must have an active eBay Store subscription, and they must accept the <b>Terms and Conditions</b> before they can make requests to these APIs in the Production environment. There are also site-specific listings requirements and restrictions associated with these marketing tools, as listed in the \"requirements and restrictions\" sections for <a href=\"/api-docs/sell/marketing/static/overview.html#PL-requirements\">Promoted Listings</a> and <a href=\"/api-docs/sell/marketing/static/overview.html#PM-requirements\">Promotions Manager</a>.</p> <p>The table below lists all the Marketing API calls grouped by resource.</p> # noqa: E501 OpenAPI spec version: v1.10.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class CampaignPagedCollection(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'campaigns': 'list[Campaign]', 'href': 'str', 'limit': 'int', 'next': 'str', 'offset': 'int', 'prev': 'str', 'total': 'int' } attribute_map = { 'campaigns': 'campaigns', 'href': 'href', 'limit': 'limit', 'next': 'next', 'offset': 'offset', 'prev': 'prev', 'total': 'total' } def __init__(self, campaigns=None, href=None, limit=None, next=None, offset=None, prev=None, total=None): # noqa: E501 """CampaignPagedCollection - a model defined in Swagger""" # noqa: E501 self._campaigns = None self._href = None self._limit = None self._next = None self._offset = None self._prev = None self._total = None self.discriminator = None if campaigns is not None: self.campaigns = campaigns if href is not None: self.href = href if limit is not None: self.limit = limit if next is not None: self.next = next if offset is not None: self.offset = offset if prev is not None: self.prev = prev if total is not None: self.total = total @property def campaigns(self): """Gets the campaigns of this CampaignPagedCollection. # noqa: E501 A list of campaigns contained on this page from the paginated response. # noqa: E501 :return: The campaigns of this CampaignPagedCollection. # noqa: E501 :rtype: list[Campaign] """ return self._campaigns @campaigns.setter def campaigns(self, campaigns): """Sets the campaigns of this CampaignPagedCollection. A list of campaigns contained on this page from the paginated response. # noqa: E501 :param campaigns: The campaigns of this CampaignPagedCollection. # noqa: E501 :type: list[Campaign] """ self._campaigns = campaigns @property def href(self): """Gets the href of this CampaignPagedCollection. # noqa: E501 The URI of the current page of results from the result set. # noqa: E501 :return: The href of this CampaignPagedCollection. # noqa: E501 :rtype: str """ return self._href @href.setter def href(self, href): """Sets the href of this CampaignPagedCollection. The URI of the current page of results from the result set. # noqa: E501 :param href: The href of this CampaignPagedCollection. # noqa: E501 :type: str """ self._href = href @property def limit(self): """Gets the limit of this CampaignPagedCollection. # noqa: E501 The number of items returned on a single page from the result set. This value can be set in the request with the limit query parameter. # noqa: E501 :return: The limit of this CampaignPagedCollection. # noqa: E501 :rtype: int """ return self._limit @limit.setter def limit(self, limit): """Sets the limit of this CampaignPagedCollection. The number of items returned on a single page from the result set. This value can be set in the request with the limit query parameter. # noqa: E501 :param limit: The limit of this CampaignPagedCollection. # noqa: E501 :type: int """ self._limit = limit @property def next(self): """Gets the next of this CampaignPagedCollection. # noqa: E501 The URI for the following page of results. This value is returned only if there is an additional page of results to display from the result set. Max length: 2048 # noqa: E501 :return: The next of this CampaignPagedCollection. # noqa: E501 :rtype: str """ return self._next @next.setter def next(self, next): """Sets the next of this CampaignPagedCollection. The URI for the following page of results. This value is returned only if there is an additional page of results to display from the result set. Max length: 2048 # noqa: E501 :param next: The next of this CampaignPagedCollection. # noqa: E501 :type: str """ self._next = next @property def offset(self): """Gets the offset of this CampaignPagedCollection. # noqa: E501 The number of results skipped in the result set before listing the first returned result. This value can be set in the request with the offset query parameter. Note: The items in a paginated result set use a zero-based list where the first item in the list has an offset of 0. # noqa: E501 :return: The offset of this CampaignPagedCollection. # noqa: E501 :rtype: int """ return self._offset @offset.setter def offset(self, offset): """Sets the offset of this CampaignPagedCollection. The number of results skipped in the result set before listing the first returned result. This value can be set in the request with the offset query parameter. Note: The items in a paginated result set use a zero-based list where the first item in the list has an offset of 0. # noqa: E501 :param offset: The offset of this CampaignPagedCollection. # noqa: E501 :type: int """ self._offset = offset @property def prev(self): """Gets the prev of this CampaignPagedCollection. # noqa: E501 The URI for the preceding page of results. This value is returned only if there is a previous page of results to display from the result set. Max length: 2048 # noqa: E501 :return: The prev of this CampaignPagedCollection. # noqa: E501 :rtype: str """ return self._prev @prev.setter def prev(self, prev): """Sets the prev of this CampaignPagedCollection. The URI for the preceding page of results. This value is returned only if there is a previous page of results to display from the result set. Max length: 2048 # noqa: E501 :param prev: The prev of this CampaignPagedCollection. # noqa: E501 :type: str """ self._prev = prev @property def total(self): """Gets the total of this CampaignPagedCollection. # noqa: E501 The total number of items retrieved in the result set. If no items are found, this field is returned with a value of 0. # noqa: E501 :return: The total of this CampaignPagedCollection. # noqa: E501 :rtype: int """ return self._total @total.setter def total(self, total): """Sets the total of this CampaignPagedCollection. The total number of items retrieved in the result set. If no items are found, this field is returned with a value of 0. # noqa: E501 :param total: The total of this CampaignPagedCollection. # noqa: E501 :type: int """ self._total = total def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(CampaignPagedCollection, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CampaignPagedCollection): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
b407d295c4f6211786ea450a41b70aac7db3d4a9
# -*- coding: utf-8 -*- # Generated by Django 1.11.26 on 2020-05-09 07:17 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('api', '0004_apptoken'), ] operations = [ migrations.CreateModel( name='EditRequestLog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('access', models.DateTimeField(auto_now_add=True)), ('resource', models.CharField(max_length=100)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['access'], }, ), ]
py
b407d2ec984e4df33aaf5a0edf8d43dce1cb41f8
# CTK: Cherokee Toolkit # # Authors: # Alvaro Lopez Ortega <[email protected]> # # Copyright (C) 2009 Alvaro Lopez Ortega # # This program is free software; you can redistribute it and/or # modify it under the terms of version 2 of the GNU General Public # License as published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301, USA. # from Widget import Widget from Server import cfg from util import props_to_str class Combobox (Widget): """ Widget for drop-down combo elements. Arguments: props: dictionary with properties for the HTML element, such as {'name': 'foo', 'id': 'bar', 'class': 'noauto'}. options: set of tuples in the form (value, description), (v2, d2), ... Examples: combo = CTK.Combobox({'name': 'language'}, [('en', 'English'), ('es', 'Spanish')]) """ def __init__ (self, props, options): Widget.__init__ (self) self.props = props.copy() self._options = options if not 'id' in self.props: self.props['id'] = 'Combobox_%s' %(self.uniq_id) self.id = self.props['id'] def Render (self): selected = self.props.get('selected') def render_str (o): if len(o) == 2: name, label = o props = {} elif len(o) == 3: name, label, props = o props_str = props_to_str(props) if selected and str(selected) == str(name): return '<option value="%s" selected="true" %s>%s</option>' % (name, props_str, label) else: return '<option value="%s" %s>%s</option>' % (name, props_str, label) def render_list (o): if len(o) == 2: name, options = o props = {} elif len(o) == 3: name, options, props = o props_str = props_to_str(props) txt = '<optgroup label="%s" %s>' %(name, props_str) for o in options: txt += render_str (o) txt += '</optgroup>' return txt # Render entries content = '' for o in self._options: if type(o[1]) == str: content += render_str (o) elif type(o[1]) == list: content += render_list (o) else: raise ValueError # Render the container header = '' for p in filter(lambda x: x!='selected', self.props): if self.props[p]: header += ' %s="%s"' %(p, self.props[p]) else: header += ' %s' %(p) html = '<select%s>%s</select>' %(header, content) render = Widget.Render (self) render.html += html return render class ComboCfg (Combobox): """ Configuration-Tree based Combobox widget. Pre-selects the combo-entry corresponding to the value of the configuration tree given by key argument if it exists. Everything else is like the Combobox widget. """ def __init__ (self, key, options, _props={}): props = _props.copy() # Read the key value val = cfg.get_val(key) sel = None # Look for the selected entry for v,k in options: if v == val: sel = val if sel: props['selected'] = sel # Other properties props['name'] = key # Init parent Combobox.__init__ (self, props, options)
py
b407d500778622616abd438e118a110150683014
# -*- coding: utf-8 -*- """ “Commons Clause” License Condition v1.0 Copyright Oli 2019-2020 The Software is provided to you by the Licensor under the License, as defined below, subject to the following condition. Without limiting other conditions in the License, the grant of rights under the License will not include, and the License does not grant to you, the right to Sell the Software. For purposes of the foregoing, “Sell” means practicing any or all of the rights granted to you under the License to provide to third parties, for a fee or other consideration (including without limitation fees for hosting or consulting/ support services related to the Software), a product or service whose value derives, entirely or substantially, from the functionality of the Software. Any license notice or attribution required by the License must also include this Commons Clause License Condition notice. Software: PartyBot (fortnitepy-bot) License: Apache 2.0 """ try: # System imports. from typing import Tuple, Any, Union import asyncio import sys import datetime import json import functools import os import random as py_random import logging import uuid import json # Third party imports. from fortnitepy.ext import commands import crayons import fortnitepy import BenBotAsync import aiohttp import pypresence import psutil except ModuleNotFoundError as e: print(e) print('Failed to import 1 or more modules, running "INSTALL PACKAGES.bat"' 'might fix the issue, if not please create an issue or join' 'the support server.') sys.exit() # Imports uvloop and uses it if installed (Unix only). try: import uvloop except ImportError: pass else: asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) if sys.platform == 'win32': asyncio.set_event_loop(asyncio.ProactorEventLoop()) def time() -> str: return datetime.datetime.now().strftime('%H:%M:%S') def get_device_auth_details() -> dict: if os.path.isfile('device_auths.json'): with open('device_auths.json', 'r') as fp: return json.load(fp) else: with open('device_auths.json', 'w+') as fp: json.dump({}, fp, sort_keys=False, indent=4) return {} def store_device_auth_details(email: str, details: dict) -> None: existing = get_device_auth_details() existing[email] = details with open('device_auths.json', 'w') as fp: json.dump(existing, fp, sort_keys=False, indent=4) def check_if_process_running(name: str) -> bool: for process in psutil.process_iter(): try: if name.lower() in process.name().lower(): return True except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess): pass return False async def set_vtid(variant_token: str) -> Tuple[str, str, int]: async with aiohttp.ClientSession() as session: request = await session.request( method='GET', url='https://benbotfn.tk/api/v1/assetProperties', params={ 'path': 'FortniteGame/Content/Athena/' f'Items/CosmeticVariantTokens/{variant_token}.uasset' }) response = await request.json() file_location = response['export_properties'][0] skin_cid = file_location['cosmetic_item'] variant_channel_tag = file_location['VariantChanelTag']['TagName'] variant_name_tag = file_location['VariantNameTag']['TagName'] variant_type = variant_channel_tag.split( 'Cosmetics.Variant.Channel.' )[1].split('.')[0] variant_int = int("".join(filter( lambda x: x.isnumeric(), variant_name_tag ))) return skin_cid, variant_type if variant_type != 'ClothingColor' else 'clothing_color', variant_int async def get_playlist(display_name: str) -> str: async with aiohttp.ClientSession() as session: request = await session.request( method='GET', url='http://scuffedapi.xyz/api/playlists/search', params={ 'displayName': display_name }) response = await request.json() return response['id'] if 'error' not in response else None async def set_and_update_member_prop(schema_key: str, new_value: Any) -> None: prop = {schema_key: client.party.me.meta.set_prop(schema_key, new_value)} await client.party.me.patch(updated=prop) async def set_and_update_party_prop(schema_key: str, new_value: Any) -> None: prop = {schema_key: client.party.me.meta.set_prop(schema_key, new_value)} await client.party.patch(updated=prop) async def start_discord_rich_presence() -> None: rpc = pypresence.AioPresence( client_id='717610574837710919', loop=client.loop ) try: await rpc.connect() except Exception as discord_error: print(f'There was an error: {discord_error}.') start_time = datetime.datetime.now().timestamp() while True: try: outfit = (await BenBotAsync.get_cosmetic_from_id( cosmetic_id=client.party.me.outfit )).name except BenBotAsync.exceptions.NotFound: outfit = client.party.me.outfit await rpc.update( details=f"Logged in as {client.user.display_name}.", state=f"{client.party.leader.display_name}'s party.", large_image="skull_trooper", large_text="discord.gg/fnpy", small_image="outfit", small_text=outfit, start=int(start_time), party_id=client.party.id, party_size=[client.party.member_count, 16], join=uuid.uuid4().hex ) await asyncio.sleep(20) print(crayons.cyan(f'[PartyBot] [{time()}] PartyBot made by xMistt. ' 'Massive credit to Terbau for creating the library.')) print(crayons.cyan(f'[PartyBot] [{time()}] Discord server: https://discord.gg/fnpy - For support, questions, etc.')) with open('config.json') as f: data = json.load(f) if data['debug']: logger = logging.getLogger('fortnitepy.http') logger.setLevel(level=logging.DEBUG) handler = logging.StreamHandler(sys.stdout) handler.setFormatter(logging.Formatter('\u001b[36m %(asctime)s:%(levelname)s:%(name)s: %(message)s \u001b[0m')) logger.addHandler(handler) logger = logging.getLogger('fortnitepy.xmpp') logger.setLevel(level=logging.DEBUG) handler = logging.StreamHandler(sys.stdout) handler.setFormatter(logging.Formatter('\u001b[35m %(asctime)s:%(levelname)s:%(name)s: %(message)s \u001b[0m')) logger.addHandler(handler) device_auth_details = get_device_auth_details().get(data['email'], {}) client = commands.Bot( command_prefix='!', auth=fortnitepy.AdvancedAuth( email=data['email'], password=data['password'], prompt_authorization_code=True, delete_existing_device_auths=True, **device_auth_details ), status=data['status'], platform=fortnitepy.Platform(data['platform']), avatar=fortnitepy.Avatar( asset="cid_028_ff2b06cf446376144ba408d3482f5c982bf2584cf0f508ee3e4ba4a0fd461a38", background_colors=fortnitepy.KairosBackgroundColorPreset.PINK.value ) ) @client.event async def event_device_auth_generate(details: dict, email: str) -> None: store_device_auth_details(email, details) @client.event async def event_ready() -> None: print(crayons.green(f'[PartyBot] [{time()}] Client ready as {client.user.display_name}.')) discord_exists = await client.loop.run_in_executor(None, check_if_process_running, 'Discord') if discord_exists: client.loop.create_task(start_discord_rich_presence()) for pending in list(client.pending_friends.values()): if pending.direction == 'INBOUND': try: epic_friend = await pending.accept() if data["friend_accept"] else await pending.decline() if isinstance(epic_friend, fortnitepy.Friend): print(f"[PartyBot] [{time()}] Accepted friend request from: {epic_friend.display_name}.") else: print(f"[PartyBot] [{time()}] Declined friend request from: {pending.display_name}.") except fortnitepy.HTTPException as epic_error: if epic_error.message_code != 'errors.com.epicgames.common.throttled': raise await asyncio.sleep(int(epic_error.message_vars[0] + 1)) await pending.accept() if data["friend_accept"] else await pending.decline() @client.event async def event_party_invite(invite: fortnitepy.ReceivedPartyInvitation) -> None: await invite.accept() print(f'[PartyBot] [{time()}] Accepted party invite from {invite.sender.display_name}.') @client.event async def event_friend_request(request: fortnitepy.PendingFriend) -> None: print(f"[PartyBot] [{time()}] Received friend request from: {request.display_name}.") if data['friend_accept']: await request.accept() print(f"[PartyBot] [{time()}] Accepted friend request from: {request.display_name}.") else: await request.decline() print(f"[PartyBot] [{time()}] Declined friend request from: {request.display_name}.") @client.event async def event_party_member_join(member: fortnitepy.PartyMember) -> None: await BenBotAsync.set_default_loadout(client, data, member) @client.event async def event_friend_message(message: fortnitepy.FriendMessage) -> None: print(crayons.magenta(f'[PartyBot] [{time()}] {message.author.display_name}: {message.content}')) @client.event async def event_party_message(message: fortnitepy.FriendMessage) -> None: print(crayons.green(f'[PartyBot] [{time()}] {message.author.display_name}: {message.content}')) @commands.dm_only() @client.command() async def skin(ctx: fortnitepy.ext.commands.Context, *, content: str) -> None: try: cosmetic = await BenBotAsync.get_cosmetic( lang="en", searchLang="en", matchMethod="contains", name=content, backendType="AthenaCharacter" ) await ctx.send(f'Skin set to {cosmetic.id}.') print(f"[PartyBot] [{time()}] Set skin to: {cosmetic.id}.") await client.party.me.set_outfit(asset=cosmetic.id) except BenBotAsync.exceptions.NotFound: await ctx.send(f"Failed to find a skin with the name: {content}.") print(f"[PartyBot] [{time()}] Failed to find a skin with the name: {content}.") @commands.dm_only() @client.command() async def backpack(ctx: fortnitepy.ext.commands.Context, *, content: str) -> None: try: cosmetic = await BenBotAsync.get_cosmetic( lang="en", searchLang="en", matchMethod="contains", name=content, backendType="AthenaBackpack" ) await ctx.send(f'Backpack set to {cosmetic.id}.') print(f"[PartyBot] [{time()}] Set backpack to: {cosmetic.id}.") await client.party.me.set_backpack(asset=cosmetic.id) except BenBotAsync.exceptions.NotFound: await ctx.send(f"Failed to find a backpack with the name: {content}.") print(f"[PartyBot] [{time()}] Failed to find a backpack with the name: {content}.") @commands.dm_only() @client.command() async def emote(ctx: fortnitepy.ext.commands.Context, *, content: str) -> None: try: cosmetic = await BenBotAsync.get_cosmetic( lang="en", searchLang="en", matchMethod="contains", name=content, backendType="AthenaDance" ) await ctx.send(f'Emote set to {cosmetic.id}.') print(f"[PartyBot] [{time()}] Set emote to: {cosmetic.id}.") await client.party.me.clear_emote() await client.party.me.set_emote(asset=cosmetic.id) except BenBotAsync.exceptions.NotFound: await ctx.send(f"Failed to find an emote with the name: {content}.") print(f"[PartyBot] [{time()}] Failed to find an emote with the name: {content}.") @commands.dm_only() @client.command() async def pickaxe(ctx: fortnitepy.ext.commands.Context, *, content: str) -> None: try: cosmetic = await BenBotAsync.get_cosmetic( lang="en", searchLang="en", matchMethod="contains", name=content, backendType="AthenaPickaxe" ) await ctx.send(f'Pickaxe set to {cosmetic.id}.') print(f"[PartyBot] [{time()}] Set pickaxe to: {cosmetic.id}.") await client.party.me.set_pickaxe(asset=cosmetic.id) except BenBotAsync.exceptions.NotFound: await ctx.send(f"Failed to find a pickaxe with the name: {content}.") print(f"[PartyBot] [{time()}] Failed to find a pickaxe with the name: {content}.") @commands.dm_only() @client.command() async def pet(ctx: fortnitepy.ext.commands.Context, *, content: str) -> None: try: cosmetic = await BenBotAsync.get_cosmetic( lang="en", searchLang="en", matchMethod="contains", name=content, backendType="AthenaPetCarrier" ) await ctx.send(f'Pet set to {cosmetic.id}.') print(f"[PartyBot] [{time()}] Set pet to: {cosmetic.id}.") await client.party.me.set_pet(asset=cosmetic.id) except BenBotAsync.exceptions.NotFound: await ctx.send(f"Failed to find a pet with the name: {content}.") print(f"[PartyBot] [{time()}] Failed to find a pet with the name: {content}.") @commands.dm_only() @client.command() async def emoji(ctx: fortnitepy.ext.commands.Context, *, content: str) -> None: try: cosmetic = await BenBotAsync.get_cosmetic( lang="en", searchLang="en", matchMethod="contains", name=content, backendType="AthenaEmoji" ) await ctx.send(f'Emoji set to {cosmetic.id}.') print(f"[PartyBot] [{time()}] Set emoji to: {cosmetic.id}.") await client.party.me.set_emoji(asset=cosmetic.id) except BenBotAsync.exceptions.NotFound: await ctx.send(f"Failed to find an emoji with the name: {content}.") print(f"[PartyBot] [{time()}] Failed to find an emoji with the name: {content}.") @commands.dm_only() @client.command() async def contrail(ctx: fortnitepy.ext.commands.Context, *, content: str) -> None: try: cosmetic = await BenBotAsync.get_cosmetic( lang="en", searchLang="en", matchMethod="contains", name=content, backendType="AthenaSkyDiveContrail" ) await ctx.send(f'Contrail set to {cosmetic.id}.') print(f"[PartyBot] [{time()}] Set contrail to: {cosmetic.id}.") await client.party.me.set_contrail(asset=cosmetic.id) except BenBotAsync.exceptions.NotFound: await ctx.send(f"Failed to find a contrail with the name: {content}.") print(f"[PartyBot] [{time()}] Failed to find an contrail with the name: {content}.") @commands.dm_only() @client.command() async def purpleskull(ctx: fortnitepy.ext.commands.Context) -> None: skin_variants = client.party.me.create_variants( clothing_color=1 ) await client.party.me.set_outfit( asset='CID_030_Athena_Commando_M_Halloween', variants=skin_variants ) await ctx.send('Skin set to Purple Skull Trooper!') print(f"[PartyBot] [{time()}] Skin set to Purple Skull Trooper.") @commands.dm_only() @client.command() async def pinkghoul(ctx: fortnitepy.ext.commands.Context) -> None: skin_variants = client.party.me.create_variants( material=3 ) await client.party.me.set_outfit( asset='CID_029_Athena_Commando_F_Halloween', variants=skin_variants ) await ctx.send('Skin set to Pink Ghoul Trooper!') print(f"[PartyBot] [{time()}] Skin set to Pink Ghoul Trooper.") @commands.dm_only() @client.command() async def purpleportal(ctx: fortnitepy.ext.commands.Context) -> None: skin_variants = client.party.me.create_variants( item='AthenaBackpack', particle_config='Particle', particle=1 ) await client.party.me.set_backpack( asset='BID_105_GhostPortal', variants=skin_variants ) await ctx.send('Backpack set to Purple Ghost Portal!') print(f"[PartyBot] [{time()}] Backpack set to Purple Ghost Portal.") @commands.dm_only() @client.command() async def banner(ctx: fortnitepy.ext.commands.Context, icon: str, colour: str, banner_level: int) -> None: await client.party.me.set_banner(icon=icon, color=colour, season_level=banner_level) await ctx.send(f'Banner set to: {icon}, {colour}, {banner_level}.') print(f"[PartyBot] [{time()}] Banner set to: {icon}, {colour}, {banner_level}.") @commands.dm_only() @client.command() async def cid(ctx: fortnitepy.ext.commands.Context, character_id: str) -> None: await client.party.me.set_outfit( asset=character_id, variants=client.party.me.create_variants(profile_banner='ProfileBanner') ) await ctx.send(f'Skin set to {character_id}') print(f'[PartyBot] [{time()}] Skin set to {character_id}') @commands.dm_only() @client.command() async def vtid(ctx: fortnitepy.ext.commands.Context, variant_token: str) -> None: variant_id = await set_vtid(variant_token) if variant_id[1].lower() == 'particle': skin_variants = client.party.me.create_variants(particle_config='Particle', particle=1) else: skin_variants = client.party.me.create_variants(**{vtid[1].lower(): int(vtid[2])}) await client.party.me.set_outfit(asset=vtid[0], variants=skin_variants) print(f'[PartyBot] [{time()}] Set variants of {vtid[0]} to {vtid[1]} {vtid[2]}.') await ctx.send(f'Variants set to {variant_token}.\n' '(Warning: This feature is not supported, please use !variants)') @commands.dm_only() @client.command() async def variants(ctx: fortnitepy.ext.commands.Context, cosmetic_id: str, variant_type: str, variant_int: str) -> None: if 'cid' in cosmetic_id.lower() and 'jersey_color' not in variant_type.lower(): skin_variants = client.party.me.create_variants( **{variant_type: int(variant_int) if variant_int.isdigit() else variant_int} ) await client.party.me.set_outfit( asset=cosmetic_id, variants=skin_variants ) elif 'cid' in cosmetic_id.lower() and 'jersey_color' in variant_type.lower(): cosmetic_variants = client.party.me.create_variants( pattern=0, numeric=69, **{variant_type: int(variant_int) if variant_int.isdigit() else variant_int} ) await client.party.me.set_outfit( asset=cosmetic_id, variants=cosmetic_variants ) elif 'bid' in cosmetic_id.lower(): cosmetic_variants = client.party.me.create_variants( item='AthenaBackpack', **{variant_type: int(variant_int) if variant_int.isdigit() else variant_int} ) await client.party.me.set_backpack( asset=cosmetic_id, variants=cosmetic_variants ) elif 'pickaxe_id' in cosmetic_id.lower(): cosmetic_variants = client.party.me.create_variants( item='AthenaPickaxe', **{variant_type: int(variant_int) if variant_int.isdigit() else variant_int} ) await client.party.me.set_pickaxe( asset=cosmetic_id, variants=cosmetic_variants ) await ctx.send(f'Set variants of {cosmetic_id} to {variant_type} {variant_int}.') print(f'[PartyBot] [{time()}] Set variants of {cosmetic_id} to {variant_type} {variant_int}.') @commands.dm_only() @client.command() async def checkeredrenegade(ctx: fortnitepy.ext.commands.Context) -> None: skin_variants = client.party.me.create_variants( material=2 ) await client.party.me.set_outfit( asset='CID_028_Athena_Commando_F', variants=skin_variants ) await ctx.send('Skin set to Checkered Renegade!') print(f'[PartyBot] [{time()}] Skin set to Checkered Renegade.') @commands.dm_only() @client.command() async def mintyelf(ctx: fortnitepy.ext.commands.Context) -> None: skin_variants = client.party.me.create_variants( material=2 ) await client.party.me.set_outfit( asset='CID_051_Athena_Commando_M_HolidayElf', variants=skin_variants ) await ctx.send('Skin set to Minty Elf!') print(f'[PartyBot] [{time()}] Skin set to Minty Elf.') @commands.dm_only() @client.command() async def eid(ctx: fortnitepy.ext.commands.Context, emote_id: str) -> None: await client.party.me.clear_emote() await client.party.me.set_emote( asset=emote_id ) await ctx.send(f'Emote set to {emote_id}!') @commands.dm_only() @client.command() async def stop(ctx: fortnitepy.ext.commands.Context) -> None: await client.party.me.clear_emote() await ctx.send('Stopped emoting.') @commands.dm_only() @client.command() async def bid(ctx: fortnitepy.ext.commands.Context, backpack_id: str) -> None: await client.party.me.set_backpack( asset=backpack_id ) await ctx.send(f'Backbling set to {backpack_id}!') @commands.dm_only() @client.command() async def _help(ctx: fortnitepy.ext.commands.Context) -> None: await ctx.send('For a list of commands, go to: https://github.com/xMistt/fortnitepy-bot/wiki/Commands') @commands.dm_only() @client.command(aliases=['legacypickaxe']) async def pickaxe_id(ctx: fortnitepy.ext.commands.Context, pickaxe_id_: str) -> None: await client.party.me.set_pickaxe( asset=pickaxe_id_ ) await ctx.send(f'Pickaxe set to {pickaxe_id_}') @commands.dm_only() @client.command() async def pet_carrier(ctx: fortnitepy.ext.commands.Context, pet_carrier_id: str) -> None: await client.party.me.set_pet( asset=pet_carrier_id ) await ctx.send(f'Pet set to {pet_carrier_id}!') @commands.dm_only() @client.command() async def emoji_id(ctx: fortnitepy.ext.commands.Context, emoji_: str) -> None: await client.party.me.clear_emote() await client.party.me.set_emoji( asset=emoji_ ) await ctx.send(f'Emoji set to {emoji_}!') @commands.dm_only() @client.command() async def trails(ctx: fortnitepy.ext.commands.Context, trails_: str) -> None: await client.party.me.set_contrail( asset=trails_ ) await ctx.send(f'Contrail set to {trails}!') @commands.dm_only() @client.command() async def point(ctx: fortnitepy.ext.commands.Context, *, content: Union[str, None] = None) -> None: if content is None: await client.party.me.set_emote(asset='EID_IceKing') await ctx.send(f'Point it Out played.') elif 'pickaxe_id' in content.lower(): await client.party.me.set_pickaxe(asset=content) await client.party.me.set_emote(asset='EID_IceKing') await ctx.send(f'Pickaxe set to {content} & Point it Out played.') else: try: cosmetic = await BenBotAsync.get_cosmetic( lang="en", searchLang="en", matchMethod="contains", name=content, backendType="AthenaPickaxe" ) await client.party.me.set_pickaxe(asset=cosmetic.id) await client.party.me.clear_emote() await client.party.me.set_emote(asset='EID_IceKing') await ctx.send(f'Pickaxe set to {content} & Point it Out played.') except BenBotAsync.exceptions.NotFound: await ctx.send(f"Failed to find a pickaxe with the name: {content}") @commands.dm_only() @client.command() async def ready(ctx: fortnitepy.ext.commands.Context) -> None: await client.party.me.set_ready(fortnitepy.ReadyState.READY) await ctx.send('Ready!') @commands.dm_only() @client.command(aliases=['sitin']) async def unready(ctx: fortnitepy.ext.commands.Context) -> None: await client.party.me.set_ready(fortnitepy.ReadyState.NOT_READY) await ctx.send('Unready!') @commands.dm_only() @client.command() async def sitout(ctx: fortnitepy.ext.commands.Context) -> None: await client.party.me.set_ready(fortnitepy.ReadyState.SITTING_OUT) await ctx.send('Sitting Out!') @commands.dm_only() @client.command() async def bp(ctx: fortnitepy.ext.commands.Context, tier: int) -> None: await client.party.me.set_battlepass_info( has_purchased=True, level=tier, ) await ctx.send(f'Set battle pass tier to {tier}.') @commands.dm_only() @client.command() async def level(ctx: fortnitepy.ext.commands.Context, banner_level: int) -> None: await client.party.me.set_banner( season_level=banner_level ) await ctx.send(f'Set level to {level}.') @commands.dm_only() @client.command() async def echo(ctx: fortnitepy.ext.commands.Context, *, content: str) -> None: await client.party.send(content) await ctx.send('Sent message to party chat.') @commands.dm_only() @client.command() async def status(ctx: fortnitepy.ext.commands.Context, *, content: str) -> None: await client.set_status(content) await ctx.send(f'Status set to {content}') print(f'[PartyBot] [{time()}] Status set to {content}.') @commands.dm_only() @client.command() async def leave(ctx: fortnitepy.ext.commands.Context) -> None: await client.party.me.set_emote('EID_Wave') await asyncio.sleep(2) await client.party.me.leave() await ctx.send('Bye!') print(f'[PartyBot] [{time()}] Left the party as I was requested.') @commands.dm_only() @client.command() async def kick(ctx: fortnitepy.ext.commands.Context, *, epic_username: str) -> None: user = await client.fetch_profile(epic_username) member = client.party.members.get(user.id) if member is None: await ctx.send("Failed to find that user, are you sure they're in the party?") else: try: await member.kick() await ctx.send(f"Kicked user: {member.display_name}.") print(f"[PartyBot] [{time()}] Kicked user: {member.display_name}") except fortnitepy.errors.Forbidden: await ctx.send(f"Failed to kick {member.display_name}, as I'm not party leader.") print(crayons.red(f"[PartyBot] [{time()}] [ERROR] " "Failed to kick member as I don't have the required permissions.")) @commands.dm_only() @client.command(aliases=['unhide']) async def promote(ctx: fortnitepy.ext.commands.Context, *, epic_username: Union[str, None] = None) -> None: if epic_username is None: user = await client.fetch_profile(ctx.author.display_name) member = client.party.members.get(user.id) else: user = await client.fetch_profile(epic_username) member = client.party.members.get(user.id) if member is None: await ctx.send("Failed to find that user, are you sure they're in the party?") else: try: await member.promote() await ctx.send(f"Promoted user: {member.display_name}.") print(f"[PartyBot] [{time()}] Promoted user: {member.display_name}") except fortnitepy.errors.Forbidden: await ctx.send(f"Failed topromote {member.display_name}, as I'm not party leader.") print(crayons.red(f"[PartyBot] [{time()}] [ERROR] " "Failed to kick member as I don't have the required permissions.")) @commands.dm_only() @client.command() async def playlist_id(ctx: fortnitepy.ext.commands.Context, playlist_: str) -> None: try: await client.party.set_playlist(playlist=playlist_) await ctx.send(f'Gamemode set to {playlist_}') except fortnitepy.errors.Forbidden: await ctx.send(f"Failed to set gamemode to {playlist_}, as I'm not party leader.") print(crayons.red(f"[PartyBot] [{time()}] [ERROR] " "Failed to set gamemode as I don't have the required permissions.")) @commands.dm_only() @client.command() async def privacy(ctx: fortnitepy.ext.commands.Context, privacy_type: str) -> None: try: if privacy_type.lower() == 'public': await client.party.set_privacy(fortnitepy.PartyPrivacy.PUBLIC) elif privacy_type.lower() == 'private': await client.party.set_privacy(fortnitepy.PartyPrivacy.PRIVATE) elif privacy_type.lower() == 'friends': await client.party.set_privacy(fortnitepy.PartyPrivacy.FRIENDS) elif privacy_type.lower() == 'friends_allow_friends_of_friends': await client.party.set_privacy(fortnitepy.PartyPrivacy.FRIENDS_ALLOW_FRIENDS_OF_FRIENDS) elif privacy_type.lower() == 'private_allow_friends_of_friends': await client.party.set_privacy(fortnitepy.PartyPrivacy.PRIVATE_ALLOW_FRIENDS_OF_FRIENDS) await ctx.send(f'Party privacy set to {client.party.privacy}.') print(f'[PartyBot] [{time()}] Party privacy set to {client.party.privacy}.') except fortnitepy.errors.Forbidden: await ctx.send(f"Failed to set party privacy to {privacy_type}, as I'm not party leader.") print(crayons.red(f"[PartyBot] [{time()}] [ERROR] " "Failed to set party privacy as I don't have the required permissions.")) @commands.dm_only() @client.command() async def copy(ctx: fortnitepy.ext.commands.Context, *, epic_username: Union[str, None] = None) -> None: if epic_username is None: member = client.party.members.get(ctx.author.id) else: user = await client.fetch_profile(epic_username) member = client.party.members.get(user.id) await client.party.me.edit( functools.partial( fortnitepy.ClientPartyMember.set_outfit, asset=member.outfit, variants=member.outfit_variants ), functools.partial( fortnitepy.ClientPartyMember.set_backpack, asset=member.backpack, variants=member.backpack_variants ), functools.partial( fortnitepy.ClientPartyMember.set_pickaxe, asset=member.pickaxe, variants=member.pickaxe_variants ), functools.partial( fortnitepy.ClientPartyMember.set_banner, icon=member.banner[0], color=member.banner[1], season_level=member.banner[2] ), functools.partial( fortnitepy.ClientPartyMember.set_battlepass_info, has_purchased=True, level=member.battlepass_info[1] ) ) await client.party.me.set_emote(asset=member.emote) await ctx.send(f'Copied the loadout of {member.display_name}.') @commands.dm_only() @client.command() async def hologram(ctx: fortnitepy.ext.commands.Context) -> None: await client.party.me.set_outfit( asset='CID_VIP_Athena_Commando_M_GalileoGondola_SG' ) await ctx.send('Skin set to Star Wars Hologram!') print(f'[PartyBot] [{time()}] Skin set to Star Wars Hologram.') @commands.dm_only() @client.command() async def gift(ctx: fortnitepy.ext.commands.Context) -> None: await client.party.me.clear_emote() await client.party.me.set_emote( asset='EID_NeverGonna' ) await ctx.send('What did you think would happen?') @commands.dm_only() @client.command() async def matchmakingcode(ctx: fortnitepy.ext.commands.Context, *, custom_matchmaking_key: str) -> None: await client.party.set_custom_key( key=custom_matchmaking_key ) await ctx.send(f'Custom matchmaking code set to: {custom_matchmaking_key}') @commands.dm_only() @client.command() async def ponpon(ctx: fortnitepy.ext.commands.Context) -> None: await client.party.me.set_emote( asset='EID_TourBus' ) await ctx.send('Emote set to Ninja Style!') @commands.dm_only() @client.command() async def enlightened(ctx: fortnitepy.ext.commands.Context, cosmetic_id: str, br_season: int, skin_level: int) -> None: variant_types = { 1: client.party.me.create_variants(progressive=4), 2: client.party.me.create_variants(progressive=4), 3: client.party.me.create_variants(material=2) } if 'cid' in cosmetic_id.lower(): await client.party.me.set_outfit( asset=cosmetic_id, variants=variant_types[br_season] if br_season in variant_types else variant_types[2], enlightenment=(br_season, level) ) await ctx.send(f'Skin set to {character_id} at level {skin_level} (for Season 1{br_season}).') elif 'bid' in cosmetic_id.lower(): await client.party.me.set_backpack( asset=cosmetic_id, variants=client.party.me.create_variants(progressive=2), enlightenment=(br_season, level) ) await ctx.send(f'Backpack set to {character_id} at level {skin_level} (for Season 1{br_season}).') print(f'[PartyBot] [{time()}] Enlightenment for {cosmetic_id} set to level {skin_level} (for Season 1{br_season}).') @commands.dm_only() @client.command() async def ninja(ctx: fortnitepy.ext.commands.Context) -> None: await client.party.me.set_outfit( asset='CID_605_Athena_Commando_M_TourBus' ) await ctx.send('Skin set to Ninja!') print(f'[PartyBot] [{time()}] Skin set to Ninja.') @commands.dm_only() @client.command() async def rareskins(ctx: fortnitepy.ext.commands.Context) -> None: await ctx.send('Showing all rare skins now.') await client.party.me.set_outfit( asset='CID_030_Athena_Commando_M_Halloween', variants=client.party.me.create_variants(clothing_color=1) ) await ctx.send('Skin set to Purple Skull Trooper!') print(f"[PartyBot] [{time()}] Skin set to Purple Skull Trooper.") await asyncio.sleep(2) await client.party.me.set_outfit( asset='CID_029_Athena_Commando_F_Halloween', variants=client.party.me.create_variants(material=3) ) await ctx.send('Skin set to Pink Ghoul Trooper!') print(f"[PartyBot] [{time()}] Skin set to Pink Ghoul Trooper.") await asyncio.sleep(2) for rare_skin in ('CID_028_Athena_Commando_F', 'CID_017_Athena_Commando_M'): await client.party.me.set_outfit( asset=rare_skin ) await ctx.send(f'Skin set to {rare_skin}!') print(f"[PartyBot] [{time()}] Skin set to: {rare_skin}!") await asyncio.sleep(2) @commands.dm_only() @client.command() async def goldenpeely(ctx: fortnitepy.ext.commands.Context) -> None: await client.party.me.set_outfit( asset='CID_701_Athena_Commando_M_BananaAgent', variants=client.party.me.create_variants(progressive=4), enlightenment=(2, 350) ) await ctx.send(f'Skin set to Golden Peely.') @commands.dm_only() @client.command() async def random(ctx: fortnitepy.ext.commands.Context, cosmetic_type: str = 'skin') -> None: if cosmetic_type == 'skin': all_outfits = await BenBotAsync.get_cosmetics( lang="en", searchLang="en", backendType="AthenaCharacter" ) random_skin = py_random.choice(all_outfits).id await client.party.me.set_outfit( asset=random_skin, variants=client.party.me.create_variants(profile_banner='ProfileBanner') ) await ctx.send(f'Skin randomly set to {skin}.') elif cosmetic_type == 'backpack': all_backpacks = await BenBotAsync.get_cosmetics( lang="en", searchLang="en", backendType="AthenaBackpack" ) random_backpack = py_random.choice(all_backpacks).id await client.party.me.set_backpack( asset=random_backpack, variants=client.party.me.create_variants(profile_banner='ProfileBanner') ) await ctx.send(f'Backpack randomly set to {backpack}.') elif cosmetic_type == 'emote': all_emotes = await BenBotAsync.get_cosmetics( lang="en", searchLang="en", backendType="AthenaDance" ) random_emote = py_random.choice(all_emotes).id await client.party.me.set_emote( asset=random_emote ) await ctx.send(f'Emote randomly set to {emote}.') elif cosmetic_type == 'all': all_outfits = await BenBotAsync.get_cosmetics( lang="en", searchLang="en", backendType="AthenaCharacter" ) all_backpacks = await BenBotAsync.get_cosmetics( lang="en", searchLang="en", backendType="AthenaBackpack" ) all_emotes = await BenBotAsync.get_cosmetics( lang="en", searchLang="en", backendType="AthenaDance" ) random_outfit = py_random.choice(all_outfits).id random_backpack = py_random.choice(all_backpacks).id random_emote = py_random.choice(all_emotes).id await client.party.me.set_outfit( asset=random_outfit ) await ctx.send(f'Skin randomly set to {random_outfit}.') await client.party.me.set_backpack( asset=random_backpack ) await ctx.send(f'Backpack randomly set to {random_backpack}.') await client.party.me.set_emote( asset=random_emote ) await ctx.send(f'Emote randomly set to {random_emote}.') @commands.dm_only() @client.command() async def nobackpack(ctx: fortnitepy.ext.commands.Context) -> None: await client.party.me.clear_backpack() await ctx.send('Removed backpack.') @commands.dm_only() @client.command() async def nopet(ctx: fortnitepy.ext.commands.Context) -> None: await client.party.me.clear_pet() await ctx.send('Removed pet.') @commands.dm_only() @client.command() async def nocontrail(ctx: fortnitepy.ext.commands.Context) -> None: await client.party.me.clear_contrail() await ctx.send('Removed contrail.') @commands.dm_only() @client.command() async def match(ctx: fortnitepy.ext.commands.Context, players: Union[str, int] = 0, match_time: int = 0) -> None: if players == 'progressive': match_time = datetime.datetime.utcnow() await client.party.me.set_in_match( players_left=100, started_at=match_time ) while (100 >= client.party.me.match_players_left > 0 and client.party.me.in_match()): await client.party.me.set_in_match( players_left=client.party.me.match_players_left - py_random.randint(3, 6), started_at=match_time ) await asyncio.sleep(py_random.randint(45, 65)) else: await client.party.me.set_in_match( players_left=int(players), started_at=datetime.datetime.utcnow() - datetime.timedelta(minutes=match_time) ) await ctx.send(f'Set state to in-game in a match with {players} players.' '\nUse the command: !lobby to revert back to normal.') @commands.dm_only() @client.command() async def lobby(ctx: fortnitepy.ext.commands.Context) -> None: if client.default_party_member_config.cls == fortnitepy.JustChattingClientPartyMember: client.default_party_member_config.cls = fortnitepy.ClientPartyMember party_id = client.party.id await client.party.me.leave() await ctx.send('Removed state of Just Chattin\'. Now attempting to rejoin party.') try: await client.join_to_party(party_id) except fortnitepy.errors.Forbidden: await ctx.send('Failed to join back as party is set to private.') except fortnitepy.errors.NotFound: await ctx.send('Party not found, are you sure Fortnite is open?') await client.party.me.clear_in_match() await ctx.send('Set state to the pre-game lobby.') @commands.dm_only() @client.command() async def join(ctx: fortnitepy.ext.commands.Context, *, epic_username: Union[str, None] = None) -> None: if epic_username is None: epic_friend = client.get_friend(ctx.author.id) else: user = await client.fetch_profile(epic_username) if user is not None: epic_friend = client.get_friend(user.id) else: epic_friend = None await ctx.send(f'Failed to find user with the name: {epic_username}.') if isinstance(epic_friend, fortnitepy.Friend): try: await epic_friend.join_party() await ctx.send(f'Joined the party of {epic_friend.display_name}.') except fortnitepy.errors.Forbidden: await ctx.send('Failed to join party since it is private.') except fortnitepy.errors.PartyError: await ctx.send('Party not found, are you sure Fortnite is open?') else: await ctx.send('Cannot join party as the friend is not found.') @commands.dm_only() @client.command() async def friend(ctx: fortnitepy.ext.commands.Context, *, epic_username: str) -> None: if data['friend_accept']: await ctx.send('All friend requests will be accepted so there is no need to add manually.') print(f'[PartyBot] [{time()}] !friend command ignored as friend requests will be accepted ' 'so there is no need to add manually.') else: user = await client.fetch_profile(epic_username) if user is not None: await client.add_friend(user.id) await ctx.send(f'Sent/accepted friend request to/from {user.display_name}.') print(f'[PartyBot] [{time()}] Sent/accepted friend request to/from {user.display_name}.') else: await ctx.send(f'Failed to find user with the name: {epic_username}.') print(crayons.red(f"[PartyBot] [{time()}] [ERROR] Failed to find a user with the name {epic_username}.")) @commands.dm_only() @client.command() async def playlist(ctx: fortnitepy.ext.commands.Context, *, playlist_name: str) -> None: try: scuffedapi_playlist_id = await get_playlist(playlist_name) if scuffedapi_playlist_id is not None: await client.party.set_playlist(playlist=scuffedapi_playlist_id) await ctx.send(f'Playlist set to {scuffedapi_playlist_id}.') print(f'[PartyBot] [{time()}] Playlist set to {scuffedapi_playlist_id}.') else: await ctx.send(f'Failed to find a playlist with the name: {playlist_name}.') print(crayons.red(f"[PartyBot] [{time()}] [ERROR] " f"Failed to find a playlist with the name: {playlist_name}.")) except fortnitepy.errors.Forbidden: await ctx.send(f"Failed to set playlist to {playlist_name}, as I'm not party leader.") print(crayons.red(f"[PartyBot] [{time()}] [ERROR] " "Failed to set playlist as I don't have the required permissions.")) @commands.dm_only() @client.command() async def invite(ctx: fortnitepy.ext.commands.Context, *, epic_username: Union[str, None] = None) -> None: if epic_username is None: epic_friend = client.get_friend(ctx.author.id) else: user = await client.fetch_profile(epic_username) if user is not None: epic_friend = client.get_friend(user.id) else: epic_friend = None await ctx.send(f'Failed to find user with the name: {epic_username}.') print(crayons.red(f"[PartyBot] [{time()}] [ERROR] " f"Failed to find user with the name: {epic_username}.")) if isinstance(epic_friend, fortnitepy.Friend): try: await epic_friend.invite() await ctx.send(f'Invited {epic_friend.display_name} to the party.') print(f"[PartyBot] [{time()}] [ERROR] Invited {epic_friend.display_name} to the party.") except fortnitepy.errors.PartyError: await ctx.send('Failed to invite friend as they are either already in the party or it is full.') print(crayons.red(f"[PartyBot] [{time()}] [ERROR] " "Failed to invite to party as friend is already either in party or it is full.")) else: await ctx.send('Cannot invite to party as the friend is not found.') print(crayons.red(f"[PartyBot] [{time()}] [ERROR] " "Failed to invite to party as the friend is not found.")) @commands.dm_only() @client.command() async def hide(ctx: fortnitepy.ext.commands.Context, party_member: Union[str, None] = None) -> None: if client.party.me.leader: if party_member is not None: user = await client.fetch_profile(party_member) member = client.party.members.get(user.id) if member is not None: raw_squad_assignments = client.party.meta.get_prop('Default:RawSquadAssignments_j')["RawSquadAssignments"] for player in raw_squad_assignments: if player['memberId'] == member.id: raw_squad_assignments.remove(player) await set_and_update_party_prop( 'Default:RawSquadAssignments_j', { 'RawSquadAssignments': raw_squad_assignments } ) else: await ctx.send(f'Failed to find user with the name: {party_member}.') print(crayons.red(f"[PartyBot] [{time()}] [ERROR] " f"Failed to find user with the name: {party_member}.")) else: await set_and_update_party_prop( 'Default:RawSquadAssignments_j', { 'RawSquadAssignments': [{'memberId': client.user.id, 'absoluteMemberIdx': 1}] } ) await ctx.send('Hid everyone in the party. Use !unhide if you want to unhide everyone.') print(f'[PartyBot] [{time()}] Hid everyone in the party.') else: await ctx.send("Failed to hide everyone, as I'm not party leader") print(crayons.red(f"[PartyBot] [{time()}] [ERROR] " "Failed to hide everyone as I don't have the required permissions.")) @commands.dm_only() @client.command() async def ghost(ctx: fortnitepy.ext.commands.Context, *, content: str) -> None: try: skin_variants = client.party.me.create_variants( progressive=2 ) cosmetic = await BenBotAsync.get_cosmetic( lang="en", searchLang="en", matchMethod="contains", name=content, backendType="AthenaCharacter" ) await client.party.me.set_outfit( asset=cosmetic.id, variants=skin_variants ) await ctx.send(f'Skin set to Ghost {cosmetic.name}!') print(f'[PartyBot] [{time()}] Skin set to Ghost {cosmetic.name}.') except BenBotAsync.exceptions.NotFound: await ctx.send(f"Failed to find a skin with the name: {content}.") print(f"[PartyBot] [{time()}] Failed to find a skin with the name: {content}.") @commands.dm_only() @client.command() async def shadow(ctx: fortnitepy.ext.commands.Context, *, content: str) -> None: try: skin_variants = client.party.me.create_variants( progressive=3 ) cosmetic = await BenBotAsync.get_cosmetic( lang="en", searchLang="en", matchMethod="contains", name=content, backendType="AthenaCharacter" ) await client.party.me.set_outfit( asset=cosmetic.id, variants=skin_variants ) await ctx.send(f'Skin set to Shadow {cosmetic.name}!') print(f'[PartyBot] [{time()}] Skin set to Ghost {cosmetic.name}.') except BenBotAsync.exceptions.NotFound: await ctx.send(f"Failed to find a skin with the name: {content}.") print(f"[PartyBot] [{time()}] Failed to find a skin with the name: {content}.") @commands.dm_only() @client.command() async def avatar(ctx: fortnitepy.ext.commands.Context, kairos_cid: str) -> None: kairos_avatar = fortnitepy.Avatar( asset=kairos_cid ) client.set_avatar(kairos_avatar) await ctx.send(f'Kairos avatar set to {kairos_cid}.') print(f'[PartyBot] [{time()}] Kairos avatar set to {kairos_cid}.') @commands.dm_only() @client.command(aliases=['clear']) async def clean(ctx: fortnitepy.ext.commands.Context) -> None: os.system('cls' if 'win' in sys.platform else 'clear') print(crayons.cyan(f'[PartyBot] [{time()}] PartyBot made by xMistt. ' 'Massive credit to Terbau for creating the library.')) print(crayons.cyan(f'[PartyBot] [{time()}] Discord server: https://discord.gg/fnpy - For support, questions, etc.')) await ctx.send('Command prompt/terminal cleared.') print(f'[PartyBot] [{time()}] Command prompt/terminal cleared.') @commands.dm_only() @client.command() async def set(ctx: fortnitepy.ext.commands.Context, *, content: str) -> None: cosmetic_types = { "AthenaBackpack": client.party.me.set_backpack, "AthenaCharacter": client.party.me.set_outfit, "AthenaEmoji": client.party.me.set_emoji, "AthenaDance": client.party.me.set_emote } set_items = await BenBotAsync.get_cosmetics( lang="en", searchLang="en", matchMethod="contains", set=content ) await ctx.send(f'Equipping all cosmetics from the {set_items[0].set} set.') print(f'[PartyBot] [{time()}] Equipping all cosmetics from the {set_items[0].set} set.') for cosmetic in set_items: if cosmetic.backend_type.value in cosmetic_types: await cosmetic_types[cosmetic.backend_type.value](asset=cosmetic.id) await ctx.send(f'{cosmetic.short_description} set to {cosmetic.name}!') print(f'[PartyBot] [{time()}] {cosmetic.short_description} set to {cosmetic.name}.') await asyncio.sleep(3) await ctx.send(f'Finished equipping all cosmetics from the {set_items[0].set} set.') print(f'[PartyBot] [{time()}] Fishing equipping all cosmetics from the {set_items[0].set} set.') @commands.dm_only() @client.command() async def style(ctx: fortnitepy.ext.commands.Context, cosmetic_name: str, variant_type: str, variant_int: str) -> None: # cosmetic_types = { # "AthenaCharacter": client.party.me.set_outfit, # "AthenaBackpack": client.party.me.set_backpack, # "AthenaPickaxe": client.party.me.set_pickaxe # } cosmetic = await BenBotAsync.get_cosmetic( lang="en", searchLang="en", matchMethod="contains", name=cosmetic_name, backendType="AthenaCharacter" ) cosmetic_variants = client.party.me.create_variants( # item=cosmetic.backend_type.value, **{variant_type: int(variant_int) if variant_int.isdigit() else variant_int} ) # await cosmetic_types[cosmetic.backend_type.value]( await client.party.me.set_outfit( asset=cosmetic.id, variants=cosmetic_variants ) await ctx.send(f'Set variants of {cosmetic.id} to {variant_type} {variant_int}.') print(f'[PartyBot] [{time()}] Set variants of {cosmetic.id} to {variant_type} {variant_int}.') @commands.dm_only() @client.command() async def new(ctx: fortnitepy.ext.commands.Context) -> None: async with aiohttp.ClientSession() as session: request = await session.request( method='GET', url='https://benbotfn.tk/api/v1/files/added', ) response = await request.json() for new_skin in [new_cid for new_cid in response if new_cid.split('/')[-1].lower().startswith('cid_')]: await client.party.me.set_outfit( asset=new_skin.split('/')[-1].split('.uasset')[0] ) await ctx.send(f"Skin set to {new_skin.split('/')[-1].split('.uasset')[0]}!") print(f"[PartyBot] [{time()}] Skin set to: {new_skin.split('/')[-1].split('.uasset')[0]}!") await asyncio.sleep(3) await ctx.send(f'Finished equipping all new unencrypted skins.') print(f'[PartyBot] [{time()}] Finished equipping all new unencrypted skins.') for new_emote in [new_eid for new_eid in response if new_eid.split('/')[-1].lower().startswith('eid_')]: await client.party.me.set_emote( asset=new_skin.split('/')[-1].split('.uasset')[0] ) await ctx.send(f"Emote set to {new_eid.split('/')[-1].split('.uasset')[0]}!") print(f"[PartyBot] [{time()}] Emote set to: {new_eid.split('/')[-1].split('.uasset')[0]}!") await asyncio.sleep(3) await ctx.send(f'Finished equipping all new unencrypted skins.') print(f'[PartyBot] [{time()}] Finished equipping all new unencrypted skins.') @commands.dm_only() @client.command() async def justchattin(ctx: fortnitepy.ext.commands.Context) -> None: client.default_party_member_config.cls = fortnitepy.JustChattingClientPartyMember party_id = client.party.id await client.party.me.leave() await ctx.send('Set state to Just Chattin\'. Now attempting to rejoin party.' '\nUse the command: !lobby to revert back to normal.') try: await client.join_to_party(party_id) except fortnitepy.errors.Forbidden: await ctx.send('Failed to join back as party is set to private.') except fortnitepy.errors.NotFound: await ctx.send('Party not found, are you sure Fortnite is open?') @commands.dm_only() @client.command() async def shop(ctx: fortnitepy.ext.commands.Context) -> None: store = await client.fetch_item_shop() await ctx.send(f"Equipping all skins in today's item shop.") print(f"[PartyBot] [{time()}] Equipping all skins in today's item shop.") for item in store.special_featured_items + store.special_daily_items: for grant in item.grants: if grant['type'] == 'AthenaCharacter': await client.party.me.set_outfit( asset=grant['asset'] ) await ctx.send(f"Skin set to {item.display_names[0]}!") print(f"[PartyBot] [{time()}] Skin set to: {item.display_names[0]}!") await asyncio.sleep(3) await ctx.send(f'Finished equipping all skins in the item shop.') print(f'[PartyBot] [{time()}] Finished equipping all skins in the item shop.') @commands.dm_only() @client.command() async def olddefault(ctx: fortnitepy.ext.commands.Context) -> None: random_default = py_random.choice( [cid_ for cid_ in dir(fortnitepy.DefaultCharactersChapter1) if not cid_.startswith('_')] ) await client.party.me.set_outfit( asset=random_default ) await ctx.send(f'Skin set to {random_default}!') print(f"[PartyBot] [{time()}] Skin set to {random_default}.") @commands.dm_only() @client.command() async def hatlessrecon(ctx: fortnitepy.ext.commands.Context) -> None: skin_variants = client.party.me.create_variants( parts=2 ) await client.party.me.set_outfit( asset='CID_022_Athena_Commando_F', variants=skin_variants ) await ctx.send('Skin set to Hatless Recon Expert!') print(f'[PartyBot] [{time()}] Skin set to Hatless Recon Expert.') @commands.dm_only() @client.command() async def season(ctx: fortnitepy.ext.commands.Context, br_season: int) -> None: max_tier_skins = { 1: "CID_028_Athena_Commando_F", 2: "CID_035_Athena_Commando_M_Medieval", 3: "CID_084_Athena_Commando_M_Assassin", 4: "CID_116_Athena_Commando_M_CarbideBlack", 5: "CID_165_Athena_Commando_M_DarkViking", 6: "CID_230_Athena_Commando_M_Werewolf", 7: "CID_288_Athena_Commando_M_IceKing", 8: "CID_352_Athena_Commando_F_Shiny", 9: "CID_407_Athena_Commando_M_BattleSuit", 10: "CID_484_Athena_Commando_M_KnightRemix", 11: "CID_572_Athena_Commando_M_Viper", 12: "CID_694_Athena_Commando_M_CatBurglar", 13: "CID_767_Athena_Commando_F_BlackKnight" } await client.party.me.set_outfit(asset=max_tier_skins[br_season]) await ctx.send(f'Skin set to {max_tier_skins[br_season]}!') print(f"[PartyBot] [{time()}] Skin set to {max_tier_skins[br_season]}.") @commands.dm_only() @client.command() async def henchman(ctx: fortnitepy.ext.commands.Context) -> None: random_henchman = py_random.choice( "CID_794_Athena_Commando_M_HenchmanBadShorts_D", "CID_NPC_Athena_Commando_F_HenchmanSpyDark", "CID_791_Athena_Commando_M_HenchmanGoodShorts_D", "CID_780_Athena_Commando_M_HenchmanBadShorts", "CID_NPC_Athena_Commando_M_HenchmanGood", "CID_692_Athena_Commando_M_HenchmanTough", "CID_707_Athena_Commando_M_HenchmanGood", "CID_792_Athena_Commando_M_HenchmanBadShorts_B", "CID_793_Athena_Commando_M_HenchmanBadShorts_C", "CID_NPC_Athena_Commando_M_HenchmanBad", "CID_790_Athena_Commando_M_HenchmanGoodShorts_C", "CID_779_Athena_Commando_M_HenchmanGoodShorts", "CID_NPC_Athena_Commando_F_RebirthDefault_Henchman", "CID_NPC_Athena_Commando_F_HenchmanSpyGood", "CID_706_Athena_Commando_M_HenchmanBad", "CID_789_Athena_Commando_M_HenchmanGoodShorts_B" ) await client.party.me.set_outfit( asset=random_henchman ) await ctx.send(f'Skin set to {random_henchman}!') print(f"[PartyBot] [{time()}] Skin set to {random_henchman}.") @commands.dm_only() @client.command() async def meta(ctx: fortnitepy.ext.commands.Context) -> None: print(json.dumps(client.party.meta.schema, sort_keys=False, indent=4)) if (data['email'] and data['password']) and (data['email'] != '[email protected]' and data['password'] != 'password1'): try: client.run() except fortnitepy.errors.AuthException as e: print(crayons.red(f"[PartyBot] [{time()}] [ERROR] {e}")) else: print(crayons.red(f"[PartyBot] [{time()}] [ERROR] Failed to login as no (or default) account details provided."))
py
b407d565c1f989204e739dc70079cdb7c13134fe
import numpy as np import nnfs from nnfs.datasets import spiral_data # See for code: https://gist.github.com/Sentdex/454cb20ec5acf0e76ee8ab8448e6266c nnfs.init() X, y = spiral_data(100, 3) class Layer_Dense: def __init__(self, n_inputs, n_neurons): self.weights = 0.10 * np.random.randn(n_inputs, n_neurons) self.biases = np.zeros((1, n_neurons)) def forward(self, inputs): self.output = np.dot(inputs, self.weights) + self.biases class Activation_ReLU: def forward(self, inputs): self.output = np.maximum(0, inputs) layer1 = Layer_Dense(2,5) activation1 = Activation_ReLU() layer1.forward(X) activation1.forward(layer1.output) print(activation1.output)
py
b407d64edc4e4ff40dd2a85ff179284aef0fddf8
# Copyright 2020,2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import nnabla as nn import nnabla.functions as F def softmax_cross_entropy_loss_vlabel(pred, vlabel): # The shape of vlabel is supposed to be (batch_size, n_class) logp = F.log_softmax(pred) loss = -1.0 * F.mean(F.sum(vlabel * logp, axis=1)) return loss # Abstract class for learning with mixed data class MixedDataLearning(object): def __init__(self): # Set params for mixing data return NotImplemented def set_mix_ratio(): return NotImplemented def mix_data(self, x, y): # Mix data given x and y, and return mix_x and mix_y # x, y, mix_x, and mix_y are supposed to be nn.Variable return NotImplemented def loss(self, pred, mix_y): # Calculate a classification loss given mix_y and prediction results of mix_x. # Both pred and mix_y are supposed to be a nn.Variable return NotImplemented # Mixup class MixupLearning(MixedDataLearning): def __init__(self, batch_size, alpha=0.5): # Set params for mixing data # For mixup, set alpha for the beta distribution that generates interpolation ratios. self._batch_size = batch_size self._alpha = alpha self._lam = nn.Variable((batch_size, 1)) def set_mix_ratio(self): if self._alpha > 0.0: self._lam.d = np.random.beta( self._alpha, self._alpha, self._batch_size).reshape((self._batch_size, 1)) else: self._lam.d = np.ones((self._batch_size, 1)) def mix_data(self, x, y): # Mix data given x and y, and return mix_x and mix_y # Both y and mix_y are supposed to be nn.Variable((batch_size, n_class)) batch_size = x.shape[0] ind = np.random.permutation(batch_size) x0 = x y0 = y x1 = x0[ind] y1 = y0[ind] mix_x = self._lam.reshape((-1, 1, 1, 1)) * x0 + \ (1.0-self._lam.reshape((-1, 1, 1, 1))) * x1 mix_y = self._lam * y0 + (1.0-self._lam) * y1 return mix_x, mix_y def loss(self, pred, mix_y): # Calculate a classification loss given mix_y and prediction results of mix_x. # Both pred and mix_y are supposed to be a nn.Variable return softmax_cross_entropy_loss_vlabel(pred, mix_y) # Cutmix class CutmixLearning(MixedDataLearning): def __init__(self, shape_of_batch, alpha=0.5, cutmix_prob=0.5): # Set params for mixing data # For cutmix, set alpha for the beta distribution that generates cutting area ratio. # cutmix_prob controls a probablity to conduct cutmix for each batch # shape_of_batch should be (batch_size, n_channels, height, width) self._batch_size = shape_of_batch[0] self._alpha = alpha self._cutmix_prob = cutmix_prob self._mask = nn.Variable(shape_of_batch) self._lam = nn.Variable((shape_of_batch[0], 1)) def set_mix_ratio(self): # How to get a random bounding box def rand_bbox(shape_of_x, lam): width = shape_of_x[3] height = shape_of_x[2] cut_ratio = np.sqrt(1.0 - lam) cut_w = np.int(width * cut_ratio) cut_h = np.int(height * cut_ratio) cx = np.random.randint(width) cy = np.random.randint(height) bbx0 = np.clip(cx - cut_w//2, 0, width) bby0 = np.clip(cy - cut_h//2, 0, height) bbx1 = np.clip(cx + cut_w//2, 0, width) bby1 = np.clip(cy + cut_h//2, 0, height) return bbx0, bby0, bbx1, bby1 def get_mask(shape_of_x, bbx0, bby0, bbx1, bby1): mask = np.zeros(shape_of_x) mask[:, :, bby0:bby1, bbx0:bbx1] = 1.0 return mask if self._alpha > 0.0 and np.random.rand() <= self._cutmix_prob: lam_tmp = np.random.beta(self._alpha, self._alpha) bbx0, bby0, bbx1, bby1 = rand_bbox(self._mask.shape, lam_tmp) self._mask.d = get_mask(self._mask.shape, bbx0, bby0, bbx1, bby1) self._lam.d = (1.0 - ((bbx1-bbx0)*(bby1-bby0)/( self._mask.shape[2]*self._mask.shape[3]))) * np.ones((self._batch_size, 1)) else: self._mask.d = np.zeros(self._mask.shape) self._lam.d = np.ones((self._batch_size, 1)) def mix_data(self, x, y): # Mix data given x and y, and return mix_x and mix_y # Both y and mix_y are supposed to be nn.Variable((batch_size, n_class)) batch_size = x.shape[0] ind = np.random.permutation(batch_size) x0 = x y0 = y x1 = x0[ind] y1 = y0[ind] mix_x = (1.0 - self._mask) * x0 + self._mask * x1 mix_y = self._lam * y0 + (1.0 - self._lam) * y1 return mix_x, mix_y def loss(self, pred, mix_y): # Calculate a classification loss given mix_y and prediction results of mix_x. # Both pred and mix_y are supposed to be a nn.Variable return softmax_cross_entropy_loss_vlabel(pred, mix_y) # VH-Mixup class VHMixupLearning(MixedDataLearning): def __init__(self, shape_of_batch, alpha=0.5): # Set params for mixing data # For vh-mixup, set alpha for the beta distribution that generates interpolation ratios. # shape_of_batch should be (batch_size, n_channels, height, width) self._batch_size = shape_of_batch[0] self._maskv = nn.Variable(shape_of_batch) self._maskh = nn.Variable(shape_of_batch) self._lamx = nn.Variable([shape_of_batch[0], 1]) self._lamy = nn.Variable([shape_of_batch[0], 1]) self._alpha = alpha def set_mix_ratio(self): # How to concatenate images def get_maskv(alpha): if alpha <= 0.0: return np.ones(self._maskv.shape), 1.0 mask = np.zeros(self._maskv.shape) lam = np.random.beta(self._alpha, self._alpha) lh = np.int(lam * self._maskv.shape[2]) mask[:, :, 0:lh, :] = 1.0 return mask, lam def get_maskh(alpha): if alpha <= 0.0: return np.ones(self._maskh.shape), 1.0 mask = np.zeros(self._maskh.shape) lam = np.random.beta(self._alpha, self._alpha) lw = np.int(lam * self._maskh.shape[3]) mask[:, :, :, 0:lw] = 1.0 return mask, lam self._maskv.d, lam1 = get_maskv(self._alpha) self._maskh.d, lam2 = get_maskh(self._alpha) if self._alpha > 0.0: self._lamx.d = np.random.beta( self._alpha, self._alpha, self._batch_size).reshape((self._batch_size, 1)) else: self._lamx.d = np.ones((self._batch_size, 1)) self._lamy.d = lam1 * self._lamx.d + lam2 * (1.0 - self._lamx.d) def mix_data(self, x, y): # Mix data given x and y, and return mix_x and mix_y # Both y and mix_y are supposed to be nn.Variable((batch_size, n_class)) batch_size = x.shape[0] ind = np.random.permutation(batch_size) x0 = x y0 = y x1 = x0[ind] y1 = y0[ind] x_hcat = self._maskh * x0 + (1.0 - self._maskh) * x1 x_vcat = self._maskv * x0 + (1.0 - self._maskv) * x1 mix_x = self._lamx.reshape( (-1, 1, 1, 1)) * x_hcat + (1.0-self._lamx.reshape((-1, 1, 1, 1))) * x_vcat mix_y = self._lamy * y0 + (1.0-self._lamy) * y1 return mix_x, mix_y def loss(self, pred, mix_y): # Calculate a classification loss given mix_y and prediction results of mix_x. # Both pred and mix_y are supposed to be a nn.Variable return softmax_cross_entropy_loss_vlabel(pred, mix_y)
py
b407d73fe1585a52e27bdc774479012ee2cb3cf0
# Created by [email protected] at 2022/1/20 10:01
py
b407d74600c393066953e4007bfee2407aeb1417
from ._abstract import AbstractScraper from ._utils import get_minutes, get_yields, normalize_string class HEB(AbstractScraper): @classmethod def host(self, domain="com"): return f"www.heb.{domain}" def title(self): return self.soup.find("h1", {"class": "title"}).get_text() def total_time(self): minutes_tag = self.soup.find("div", {"itemprop": "totalTime"}) return get_minutes(minutes_tag.parent.get_text()) def yields(self): yields_tag = self.soup.find("div", {"itemprop": "recipeYield"}) return get_yields(yields_tag.parent.get_text()) def ingredients(self): ingredients_container = self.soup.find(class_="ingredientswrapper") ingredients = ingredients_container.findAll("div", {"class": "recipestepstxt"}) return [normalize_string(ingredient.get_text()) for ingredient in ingredients] def _instructions_list(self): instructions_container = self.soup.find("div", {"class": "instructions"}) instructions = instructions_container.findAll( "span", {"class": "instructiontxt"} ) return [ normalize_string(instruction.get_text()) for instruction in instructions ] def instructions(self): data = self._instructions_list() return "\n".join(data) if data else None def image(self): container = self.soup.find("div", {"class": "recipeimage"}) if not container: return None image = container.find("img", {"src": True}) return image["src"] if image else None
py
b407d8b0afef24fe8bc6f3cbdb566227cffd5041
# -*- coding: utf-8 -*- from __future__ import unicode_literals from .client import load_json, ingest_data, write_parquet, convert_json, write_parquet_dataset __title__ = 'json2parquet' __version__ = '0.0.28' __all__ = ['load_json', 'ingest_data', 'write_parquet', 'convert_json', 'write_parquet_dataset']
py
b407d8ffcebbbfd87888115bab85fa401aed61ea
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf def make_summary(value_dict): return tf.Summary(value=[tf.Summary.Value(tag=k, simple_value=v) for k, v in value_dict.items()]) def flatten(l): return [item for sublist in l for item in sublist] def divide(x, y): return 0 if y == 0 else x / float(y) def projection(inputs, output_size, initializer=None): return ffnn(inputs, 0, -1, output_size, dropout=None, output_weights_initializer=initializer) def highway(inputs, num_layers, dropout): for i in range(num_layers): with tf.variable_scope("highway_{}".format(i)): j, f = tf.split(projection(inputs, 2 * shape(inputs, -1)), 2, -1) f = tf.sigmoid(f) j = tf.nn.relu(j) if dropout is not None: j = tf.nn.dropout(j, dropout) inputs = f * j + (1 - f) * inputs return inputs def shape(x, dim): return x.get_shape()[dim].value or tf.shape(x)[dim] # return x.get_shape().as_list()[dim] or x.shape.as_list()[dim] def ffnn(inputs, num_hidden_layers, hidden_size, output_size, dropout, output_weights_initializer=None): if len(inputs.get_shape()) > 3: raise ValueError("FFNN with rank {} not supported".format(len(inputs.get_shape()))) if len(inputs.get_shape()) == 3: batch_size = shape(inputs, 0) seqlen = shape(inputs, 1) emb_size = shape(inputs, 2) current_inputs = tf.reshape(inputs, [batch_size * seqlen, emb_size]) else: current_inputs = inputs for i in range(num_hidden_layers): hidden_weights = tf.get_variable("hidden_weights_{}".format(i), [shape(current_inputs, 1), hidden_size]) hidden_bias = tf.get_variable("hidden_bias_{}".format(i), [hidden_size]) current_outputs = tf.nn.relu(tf.nn.xw_plus_b(current_inputs, hidden_weights, hidden_bias)) if dropout is not None: current_outputs = tf.nn.dropout(current_outputs, dropout) current_inputs = current_outputs output_weights = tf.get_variable("output_weights", [shape(current_inputs, 1), output_size], initializer=output_weights_initializer) output_bias = tf.get_variable("output_bias", [output_size]) outputs = tf.nn.xw_plus_b(current_inputs, output_weights, output_bias) if len(inputs.get_shape()) == 3: outputs = tf.reshape(outputs, [batch_size, seqlen, output_size]) return outputs def cnn(inputs, filter_sizes, num_filters): num_words = shape(inputs, 0) num_chars = shape(inputs, 1) input_size = shape(inputs, 2) outputs = [] for i, filter_size in enumerate(filter_sizes): with tf.variable_scope("conv_{}".format(i)): w = tf.get_variable("w", [filter_size, input_size, num_filters]) b = tf.get_variable("b", [num_filters]) conv = tf.nn.conv1d(inputs, w, stride=1, padding="VALID") # [num_words, num_chars - filter_size, num_filters] h = tf.nn.relu(tf.nn.bias_add(conv, b)) # [num_words, num_chars - filter_size, num_filters] pooled = tf.reduce_max(h, 1) # [num_words, num_filters] outputs.append(pooled) return tf.concat(outputs, 1) # [num_words, num_filters * len(filter_sizes)] def batch_gather(emb, indices): batch_size = shape(emb, 0) seqlen = shape(emb, 1) if len(emb.get_shape()) > 2: emb_size = shape(emb, 2) else: emb_size = 1 flattened_emb = tf.reshape(emb, [batch_size * seqlen, emb_size]) # [batch_size * seqlen, emb] offset = tf.expand_dims(tf.range(batch_size) * seqlen, 1) # [batch_size, 1] gathered = tf.gather(flattened_emb, indices + offset) # [batch_size, num_indices, emb] if len(emb.get_shape()) == 2: gathered = tf.squeeze(gathered, 2) # [batch_size, num_indices] return gathered class CustomLSTMCell(tf.contrib.rnn.RNNCell): def __init__(self, num_units, batch_size, dropout): self._num_units = num_units self._dropout = dropout self._dropout_mask = tf.nn.dropout(tf.ones([batch_size, self.output_size]), dropout) self._initializer = self._block_orthonormal_initializer([self.output_size] * 3) initial_cell_state = tf.get_variable("lstm_initial_cell_state", [1, self.output_size]) initial_hidden_state = tf.get_variable("lstm_initial_hidden_state", [1, self.output_size]) self._initial_state = tf.contrib.rnn.LSTMStateTuple(initial_cell_state, initial_hidden_state) @property def state_size(self): return tf.contrib.rnn.LSTMStateTuple(self.output_size, self.output_size) @property def output_size(self): return self._num_units @property def initial_state(self): return self._initial_state def __call__(self, inputs, state, scope=None): """Long short-term memory cell (LSTM).""" with tf.variable_scope(scope or type(self).__name__): # "CustomLSTMCell" c, h = state h *= self._dropout_mask concat = projection(tf.concat([inputs, h], 1), 3 * self.output_size, initializer=self._initializer) i, j, o = tf.split(concat, num_or_size_splits=3, axis=1) i = tf.sigmoid(i) new_c = (1 - i) * c + i * tf.tanh(j) new_h = tf.tanh(new_c) * tf.sigmoid(o) new_state = tf.contrib.rnn.LSTMStateTuple(new_c, new_h) return new_h, new_state def _orthonormal_initializer(self, scale=1.0): def _initializer(shape, dtype=tf.float32, partition_info=None): M1 = np.random.randn(shape[0], shape[0]).astype(np.float32) M2 = np.random.randn(shape[1], shape[1]).astype(np.float32) Q1, R1 = np.linalg.qr(M1) Q2, R2 = np.linalg.qr(M2) Q1 = Q1 * np.sign(np.diag(R1)) Q2 = Q2 * np.sign(np.diag(R2)) n_min = min(shape[0], shape[1]) params = np.dot(Q1[:, :n_min], Q2[:n_min, :]) * scale return params return _initializer def _block_orthonormal_initializer(self, output_sizes): def _initializer(shape, dtype=np.float32, partition_info=None): assert len(shape) == 2 assert sum(output_sizes) == shape[1] initializer = self._orthonormal_initializer() params = np.concatenate([initializer([shape[0], o], dtype, partition_info) for o in output_sizes], 1) return params return _initializer
py
b407d9e09d3e45e85f0df41960edc6eb0b509536
""" Utility functions for candidate_cnn_builder.py """ from __future__ import division, print_function import math import os.path from random import random from itertools import permutations import numpy as np import torch from torch.utils.data import Dataset import torchvision.transforms.functional as TF import pyodbc from tqdm import tqdm DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.cuda.is_available(): torch.cuda.set_device(0) #container for custom errors class CustomError(Exception): """ Dummy container for raising errors. """ class ImageTensorCreator: """ utility class for translating binary column data into "image" tensor """ def __init__(self, image_depth, data_columns): """ set class variables for use in create_image_tensor args: image_depth: image tensor depth. must be between 1 (black and white) and 4 (RGBA) for generation of actual images data_columns: tuple or list of names for binary data columns """ self.image_depth = image_depth self.columns = data_columns self.col_count = len(data_columns) feature_count = 1.0 #using image_depth - 1 to account for 'age' of patient in final dimension for i in range(self.image_depth - 1): #model will perform image_depth - 1 permutations for each column feature_count *= (self.col_count - i) self.image_height_width = math.ceil(feature_count**0.5) self.norm_tuple = list() for i in range(self.image_depth): self.norm_tuple.extend([0.5]) self.norm_tuple = tuple(self.norm_tuple) print('total features: %i; image size: %i x %i x %i' % (feature_count, self.image_height_width, self.image_height_width, self.image_depth)) def create_image_tensor(self, row): """ Converts binary column data and patient age into an image tensor. INPUT: row: Expected format is [bindata,age] where bindata is a string of 1s and 0s supplied by the DB to indicate patient conditions OUTPUT: Normalized image tensor """ if row: icol = 0 irow = 0 if len(list(row[0])) != self.col_count: raise CustomError('Invalid Input Size: Expected %i, Received %i' % (self.col_count, len(list(row[0])))) if len(row) < 2: raise CustomError('Invalid Data: Expected row format is [bindata,age]') image_data = np.zeros((self.image_height_width, self.image_height_width, self.image_depth), dtype=np.float32) for pixel in permutations(list(row[0]), self.image_depth - 1): this_pixel = list() for channel in pixel: this_pixel.extend([float(channel)]) this_pixel.extend([float(row[1])/100.]) image_data[icol, irow, :] = this_pixel irow += 1 if irow > self.image_height_width - 1: icol += 1 irow = 0 return TF.normalize(TF.to_tensor(image_data), self.norm_tuple, self.norm_tuple) else: raise CustomError('Invalid Data: No row data supplied.') def create_fake_data(self, age, conditions): """ Creates a "fake" patient for use in model testing. Patient age and condition data may be specified, provided as a range, or left blank if a random patient is desired. INPUTS: age: if an integer, the value is used explicitly. if a tuple of integers, a random age between the two values is assigned. if None, a random age between 15 and 90 is assigned. conditions: if a list or string, assign all condtions in the list or string. if integer, assign a random set of conditions but do not apply more than this value. if None, assign a random set of conditions. Integer version is biased to early conditions in COLUMNS. NEEDS IMPROVEMENT. """ if age is None: age = randrange(15, 90) elif isinstance(age, tuple): age = randrange(age[0], age[1]) bindata = '' if isinstance(conditions, list) or isinstance(conditions, str): for col in self.columns: bindata += ('1' if col in conditions else '0') return self.create_image_tensor([bindata, age]).unsqueeze(0) total_conditions = 0 if isinstance(conditions, int) and conditions < self.col_count: total_conditions = conditions else: total_conditions = math.floor(self.col_count*random()) condition_count = 0 for i,col in enumerate(self.columns): if condition_count < total_conditions: if random() >= 0.5: if i == 1 and (age < 12 or age > 55 or bindata[0] == '1'): bindata += '0' else: bindata += '1' condition_count += 1 else: bindata += '0' else: bindata += '0' return self.create_image_tensor([bindata, age]).unsqueeze(0) def interpret_image_tensor(self, image_tensor): ''' translate tensor to text description of patient args: image_tensor ''' pts_data = list() for (bindata, age) in get_bindata_from_image_tensor(image_tensor): pt_data = str(int(age)) + ' yo, ' for i, val in enumerate(list(bindata)): if i == 0: if val == '1': pt_data += 'Male, ' else: pt_data += 'Female, ' elif val == '1': pt_data += self.columns[i] + ', ' pt_data = pt_data[:-2] pts_data.append(pt_data) return pts_data def get_bindata_from_image_tensor(self, image_tensor): ''' extract age and patient condition binary digit string from image tensor ''' pts_binary_data = list() for case in image_tensor: case = case / 2 + 0.5 case = case.numpy() case = np.transpose(case, (1, 2, 0)) bindata = '' for i in range(self.image_depth - 1): bindata += str(int(case[0, 0, i])) for i in range(1, len(self.columns) - self.image_depth + 2): bindata += str(int(case[0, i, self.image_depth - 2])) age = float(round(float(case[0, 0, self.image_depth - 1])*100.)) pts_binary_data.append((bindata, age)) return pts_binary_data class CovidCnnDataset(Dataset): ''' download data from mexican covid database, reformat into image tensors and split into training and validation sets ''' def __init__(self, import_export_filename, image_tensor_creator, **kwargs): ''' download data from mexican covid database, reformat into image tensors and split into training and validation sets args: import_export_filename: file from which data is loaded if it exists and where data will be saved for future recall after the dataset is built image_tensor_creator: instance of class ImageTensorCreator kwargs: pyodbc_conn_string: ODBC connection string for database query: stored procedure or query used to create the cursor for the remote data force_rebuild: force the dataset to rebuild even if import_export_filename mini_batch_size: number of images to process before backpropagation and loss calculation truncate_data: optionally trim dataset to a small size for testing/debugging on CPU. default is True for CPU, False for cuda. truncate_train_size: size of training dataset if truncation is enabled. 100 approx_dataset_size: approximate size of full dataset (train + validation) validation_ratio: ratio of dataset to be used for validation, default 0.4 ''' super(CovidCnnDataset).__init__() self.import_export_filename = import_export_filename self.itc = image_tensor_creator self.conn_string = kwargs.get('pyodbc_conn_string', 'connection string not supplied') self.query = kwargs.get('query', 'query not supplied') self.force_rebuild = kwargs.get('force_rebuild', False) self.truncate_data = kwargs.get('truncate_data', False if DEVICE == 'cuda' else True) self.truncate_train_size = kwargs.get('truncate_train_size', 50) self.train_data = list() self.validation_images = list() self.validation_labels = list() if self.force_rebuild or not(os.path.exists(self.import_export_filename)): self.mini_batch_size = kwargs.get('mini_batch_size', 4) self.dataset_size = kwargs.get('approx_dataset_size', int(50000/self.mini_batch_size)) self.validation_ratio = kwargs.get('validation_ratio', 0.4) self.validation_count = int(self.validation_ratio*self.dataset_size) self.train_count = self.dataset_size - self.validation_count rowgen = self.next_row() if self.truncate_data: self.train_count = self.truncate_train_size pbar = tqdm(enumerate(rowgen), total=self.train_count) for i, data in pbar: self.train_data.append(data) self.save_to_disk() else: self.reload_from_disk() self.dataset_size = len(self.validation_images) + len(self.train_data) self.train_count = len(self.train_data) self.validation_count = len(self.validation_images) self.validation_ratio = round(float(len(self.validation_images)) /float(self.dataset_size),3) def __len__(self): ''' required overload ''' return self.train_count def __getitem__(self, idx): ''' required overload. returns 'idx'th training sample in the form: a tensor of [self.mini_batch_size] image tensors, a tensor of [self.mini_batch_size] label tensors ''' return train_data[idx] def save_to_disk(self): ''' save dataset to disk ''' torch.save({'train_data' : self.train_data, 'validation_images' : self.validation_images, 'validation_labels': self.validation_labels, 'mini_batch_size': self.mini_batch_size, }, self.import_export_filename) def reload_from_disk(self): ''' save any manual edits performed in external subroutines to disk ''' datasets = torch.load(self.import_export_filename) self.train_data = datasets['train_data'] self.validation_images = datasets['validation_images'] self.validation_labels = datasets['validation_labels'] self.mini_batch_size = datasets['mini_batch_size'] def next_row(self): """ Generator function for retrieving patient data. OUTPUT: tuple of form (tensor of [BATCH_SIZE] images, tensor of [BATCH_SIZE] labels) """ conn = pyodbc.connect(self.conn_string) crsr = conn.cursor() crsr.execute(self.query) rowcnt = 0 imgs = list() labels = list() row = [0, 1, 2] idx = 0 while row and (not self.truncate_data or len(self.train_data) < self.truncate_train_size): while rowcnt < self.mini_batch_size: try: row = crsr.fetchone() except: conn = pyodbc.connect(self.conn_string) crsr = conn.cursor() crsr.execute(self.query) crsr.skip(idx*self.mini_batch_size + rowcnt) row = crsr.fetchone() rowcnt += 1 if row: imgtensor = self.itc.create_image_tensor(row) labels.append(np.array(list(row[2]), dtype=np.float32)) imgs.append(imgtensor) else: break if row: if random() < self.validation_ratio: self.validation_images.append(torch.stack(imgs)) self.validation_labels.append(torch.tensor(labels)) else: yield torch.stack(imgs), torch.tensor(labels) rowcnt = 0 idx += 1 imgs = list() labels = list() else: break
py
b407da8ca870131f9ff401a0f16c47324863379a
from django.forms import * from responses.models import EnoughResponse class ResponseForm(ModelForm): class Meta: model = EnoughResponse widgets = { "text": TextInput, }
py
b407db2cb8280a264179f671a060aa599f8df870
# -*- coding: utf-8 -*- """ Created on 2019/8/27 @author: LoyeLee """
py
b407dbcbd0b6338a06cb26bb81244654d78327da
import pytest from collections import OrderedDict from jina import Document, DocumentArray, Executor, Flow, requests from docarray.array.chunk import ChunkArray class DummyExecutor(Executor): def __init__(self, mode=None, *args, **kwargs): super().__init__(*args, **kwargs) if mode: self._mode = str(mode) @requests def do_something(self, docs, **kwargs): for doc in docs: if len(doc.chunks) > 0: chunks = ChunkArray( (d for d in doc.chunks if d.modality == self._mode), doc ) assert chunks[0].content == self._mode assert len(chunks) == 1 doc.chunks = chunks class MatchMerger(Executor): @requests def merge(self, docs_matrix, **kwargs): results = OrderedDict() for docs in docs_matrix: for doc in docs: if doc.id in results: results[doc.id].matches.extend(doc.matches) else: results[doc.id] = doc return DocumentArray(list(results.values())) class ChunkMerger(Executor): @requests def merge(self, docs_matrix, **kwargs): results = OrderedDict() for docs in docs_matrix: for doc in docs: if doc.id in results: results[doc.id].chunks.extend(doc.chunks) else: results[doc.id] = doc return DocumentArray(list(results.values())) @pytest.mark.timeout(60) @pytest.mark.parametrize('num_replicas, num_shards', [(1, 1), (2, 2)]) def test_sharding_tail_pea(num_replicas, num_shards): """TODO(Maximilian): Make (1, 2) and (2, 1) also workable""" f = Flow().add( uses=DummyExecutor, replicas=num_replicas, shards=num_shards, uses_after=MatchMerger, ) with f: results = f.post( on='/search', inputs=Document(matches=[Document()]), return_results=True, ) assert len(results[0].docs[0].matches) == num_shards def test_merging_head_pea(): def multimodal_generator(): for i in range(0, 5): document = Document() document.chunks.append(Document(modality='1', content='1')) document.chunks.append(Document(modality='2', content='2')) yield document f = ( Flow() .add(uses={'jtype': 'DummyExecutor', 'with': {'mode': '1'}}, name='executor1') .add( uses={'jtype': 'DummyExecutor', 'with': {'mode': '2'}}, name='executor2', needs='gateway', ) .add( uses_before=ChunkMerger, name='executor3', needs=['executor1', 'executor2'] ) ) with f: results = f.post( on='/search', inputs=multimodal_generator(), return_results=True, ) assert len(results[0].docs[0].chunks) == 2 assert len(results[0].docs) == 5
py
b407dc6fbc10109f91aae71e229e86bd41619365
import time from datadog import DogStatsd import time import sys statsd = DogStatsd(host="statsd", port=9125) REQUEST_LATENCY_METRIC_NAME = 'request_latency_seconds' REQUEST_COUNT_METRIC_NAME = 'request_count' class StatsdReporter(): def __init__(self, get_response): self.get_response = get_response def __call__(self, request): request.start_time = time.time() response = self.get_response(request) #FIXME: https://docs.djangoproject.com/en/2.2/ref/request-response/ print("Statsd middleware: request {0} {1}".format(request.path_info, request.method)) if response: resp_time = time.time() - request.start_time statsd.histogram(REQUEST_LATENCY_METRIC_NAME, resp_time, tags=[ 'service:webapp', 'endpoint: %s' % request.path_info, ] ) statsd.increment(REQUEST_COUNT_METRIC_NAME, tags=[ 'service: webapp', 'method: %s' % request.method, 'endpoint: %s' % request.path_info, 'status: %s' % str(response.status_code) ] ) return response
py
b407dca9307e331a43f1493253c6ad55da17884e
# Copyright 2001 by Gavin E. Crooks. All rights reserved. # Revisions copyright 2010 Jeffrey Finkelstein. All rights reserved. # # This file is part of the Biopython distribution and governed by your # choice of the "Biopython License Agreement" or the "BSD 3-Clause License". # Please see the LICENSE file that should have been included as part of this # package. """Handle the SCOP CLAssification file, which describes SCOP domains. The file format is described in the scop "release notes.":http://scop.mrc-lmb.cam.ac.uk/scop/release-notes.html The latest CLA file can be found "elsewhere at SCOP.":http://scop.mrc-lmb.cam.ac.uk/scop/parse/ "Release 1.73": http://scop.mrc-lmb.cam.ac.uk/scop/parse/dir.cla.scop.txt_1.73 (July 2008) """ from . import Residues class Record(object): """Holds information for one SCOP domain. Attributes: - sid - SCOP identifier. e.g. d1danl2 - residues - The domain definition as a Residues object - sccs - SCOP concise classification strings. e.g. b.1.2.1 - sunid - SCOP unique identifier for this domain - hierarchy - A dictionary, keys are nodetype, values are sunid, describing the location of this domain in the SCOP hierarchy. See the Scop module for a description of nodetypes. This used to be a list of (key,value) tuples in older versions of Biopython (see Bug 3109). """ def __init__(self, line=None): """Initialize the class.""" self.sid = "" self.residues = None self.sccs = "" self.sunid = "" self.hierarchy = {} if line: self._process(line) def _process(self, line): line = line.rstrip() # no trailing whitespace columns = line.split("\t") # separate the tab-delineated cols if len(columns) != 6: raise ValueError("I don't understand the format of %s" % line) self.sid, pdbid, residues, self.sccs, self.sunid, hierarchy = columns self.residues = Residues.Residues(residues) self.residues.pdbid = pdbid self.sunid = int(self.sunid) for ht in hierarchy.split(","): key, value = ht.split("=") self.hierarchy[key] = int(value) def __str__(self): """Represent the SCOP classification record as a tab-separated string.""" s = [] s.append(self.sid) s += str(self.residues).split(" ") s.append(self.sccs) s.append(self.sunid) s.append( ",".join( "=".join((key, str(value))) for key, value in self.hierarchy.items() ) ) return "\t".join(map(str, s)) + "\n" def parse(handle): """Iterate over a CLA file as Cla records for each line. Arguments: - handle - file-like object. """ for line in handle: if line.startswith("#"): continue yield Record(line) class Index(dict): """A CLA file indexed by SCOP identifiers for rapid random access.""" def __init__(self, filename): """Create CLA index. Arguments: - filename - The file to index """ dict.__init__(self) self.filename = filename with open(self.filename, "rU") as f: position = 0 while True: line = f.readline() if not line: break if line.startswith("#"): continue record = Record(line) key = record.sid if key is not None: self[key] = position position = f.tell() def __getitem__(self, key): """Return an item from the indexed file.""" position = dict.__getitem__(self, key) with open(self.filename, "rU") as f: f.seek(position) line = f.readline() record = Record(line) return record